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The use of intense laser light to bring about thermonuclear reactions in a plasma is of considerable
current interest. We present detailed analytical and computational studies which show the
feasibility of laser-driven fusion. The required laser technology and the presently anticipated
practical difficulties are discussed in outline.
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I. INTRODUCTION

The interest in lasers as a possible source of energy
arises from the characteristics of pulsed energy release
from a fuel pellet with no external confinement, for which

the time available for thermonuclear reactions is deter-
mined by the time required for hydrodynamic motion in
the pellet. This approach is, therefore, quite difIerent
from the quasi steady-state approach with magnetic field
confinement which has been studied for about twenty
years in laboratories in many countries. For a pulsed
system, the time available is set by the pellet dimension
and temperature. Crude considerations show that the
time is of the order of 10' sec and the energy in the range
of tens of kilojoules, giving a power requirement of
millions of megawatts (although only for 10' sec). The
only sources presently known which may yield such
enormous peak powers are pulsed lasers (or possibly
pulsed electron beams). This possible application of
lasers was discussed about a decade ago by Basov (1963)
and Dawson (1964), and in more detail by Daiber,
Hertzberg and Wittliff (1966). Much work has since been
devoted to a study of its feasibility (Nuckolls et al. 1972).

The theoretical and computational results reviewed in
this paper predict that laser-driven fusion can be experi-
mentally studied at the energetic breakeven level with
lasers well within the state of the art. This offers the
possibility of relatively early experimental study of the
phenomena to test the critically important predictions of
the theory. In addition, estimates of requirements for a
practical power-producing reactor show that although the
technological problems are substantial, no significant
difficulty is anticipated in designing and building the
necessary laser driver. The field has been studied inten-
sively for a relatively short time; nevertheless, it was felt
that there is now a need for a review which discusses the
various aspects of laser fusion in quantitative detail, and
which collates the widely scattered results of other work.
We have chosen to concentrate on the theory of the laser-
driven process and the presently anticipated difhculties.
In an article of this size, it is clearly impossible to discuss
every phenomenon that might occur in a laser —plasma
system. We have, therefore, only discussed phenomena
which we consider significant to laser-driven fusion. The
experimental situation and the laser technology required
for the experimental study of the various important
phenomena will be briefly reviewed.

Although laser fusion is rapidly acquiring the status of
an independent specialty, it is currently still a composite
based on such diverse fields as plasma physics, statistical
physics, hydrodynamics, nuclear physics, thermodynam-
ics, and numerical analysis. This is reflected in the
present treatment where we have found it convenient to
separate the subject into four broad categories. In Sec. II,
the basic energetic scaling laws of the fusion process are
analyzed for an inertially confined DT pellet by tradi-
tional methods familiar in the controlled fusion field.
This analysis, which is essentially a scaling law study,
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exhibits clearly the critical parameters of the process.
These are the coupling efIlciency of the laser to the
plasma, the density at which the plasma reacts, the initial
temperature produced by the laser-driven heating pro-
cesses, the temperature at which the plasma reacts follow-
ing the start of the thermonuclear reactions, and the
energy multiplication required for useful energy output.
Each of these parameters can strongly afIect the laser
energy requirement (and hence the feasibility of the
process) both for the early demonstration experiments
and for the eventual development of economic power
plants.

The effectiveness of the laser in heating the plasma is
governed by the coupling mechanisms. These are dis-
cussed in Sec. III, together with an extensive review of
laser-induced plasma instabilities and their potential ben-
efits or drawbacks. A brief appraisal is also given of the
experimental evidence for these instabilities, supplement-
ed by results from numerical simulation studies. In Sec.
IV, hydrodynamic compression is analyzed using a sim-

- ple model which shows how an unavoidable ine%ciency
of energy transfer results. Section V presents the princi-
pal features of the hydrodynamics of shock compression
and also considers in some detail the stability of pellet
hydrodynamics and the problems of pellet preheat.

The discussions in Secs. II, III, IV, and V are largely
analytic and are based on schematic models. The possible
sources of difhculty which arise from the various laser—
plasma and hydrodynamic instabilities are reviewed at
length in these sections. Although substantial uncertain-
ties exist in any description of these phenomena, an
idealization of the process is of great interest since a
complete calculation has shown that the laser-driven
process, in principe/e at least, warrants further theoretical
and experimental study. A highly useful idealization
results from the assumption that the unstable processes
do not significantly perturb the symmetry of the implo-
sion and hence that calcula, tions can be carried out with
spherical symmetry in the motion. The major question of
the laser —plasma coupling eS.ciency can be studied para-
metrically by the introduction of ad hoc corrections in
describing laser —plasma interaction.

The basic characteristics of computer methods for
studying the problem are given in Sec. VI. Section VII
first provides numerical results for the ignition and
burning sequences in compressed pellets and then pres-
ents some numerical results for complete implosion cal-
culations. Section VIII comments briefiy on the choice of
laser wavelengths and laser characteristics. In Sec. IX,
the results of this paper are summarized and a prognosis
is given for the further development of laser fusion.

II. ANALYTIC ESTIMATES OF ENERGY
PRODUCTION

A. Scaling laws

In this section, we analyze the scaling laws for energy
requirements and fusion energy production using simpli-
fied models. This analysis is intended to clarify the
dominant phenomena, which are somewhat obscured in
complete computer studies.

The methods used in this section are intended to be
only semiquantitative and hence in several instances we
use approximations which are plausible without further

discussion. In these cases the reader is invited to consider
more accurate methods if increased precision is desired.
We do not wish in this section to imply that quantitative
results can be obtained by rather simple methods. Our
purpose is pedagogical, to clarify the main features of
the phenomena. We will return to the detailed computer
results in Sec. VI, which also contains the equations of
the computer code and summarizes the important fea-
tures of this code.

The thermonuclear fuel which is most readily brought
to reaction is deuterium —tritium. It reacts by the process

D+T~n+0. + 8'
8' = 17.6 MeV.

(2 1)

About 80% of this energy goes into the neutron and the
balance to the 3.6 MeV o. particle. The nuclear crosssec-
tion has a resonance near zero energy with the eAect of
the Coulomb barrier included, and it reaches a peak of
about 5 b at 125 keV. According to Wandel et al. (1959),
this yields an appreciable reaction rate at a temperature
of several kilovolts (1 keV = 1.16 X 10''K). In contrast
to the D—T reaction, the D—D reaction, producing T + p
and n + He' through two equally probable reactions has
a reaction rate about .a factor of 30 lower at several
kilovolts, and hence is much harder to bring to the
condition at which significant fusion energy is produced.

For DT fuel, the dimension, time scale, and laser
energy requirement can be readily estimated for a speci-
fied level of multiplication of the laser energy by the
fusion process. To obtain the appropriate relationship, we
define an energy multiplication factor by

rusian/ &aser ( p )~ (2.2}
and an efhciency for coupling of laser energy into the
thermal energy of the DT

el. ——E„„.(thermal)/E„„, (output). (2.3)

The first factor M which measures over-all energy gain in
a practical application depends on the external laser
characteristics and on the system for converting laser
energy into fusion energy. The second factor eL is deter-
mined by the laser —plasma interaction and by the mech-
anism of energy transfer into hydrodynamic motion and
DT compression. The rate of fusion energy production is

(dE/dt), „„.„= ( ~r')n, n, (rv(0, )8'
= ( mr')(n'/4}vv(8;)W,

(2.4)

with n = nD + nT = total ion density, and ov the reac-
tion rate averaged over the thermal ion distribution. The
initial thermal energy is

E,„. .. = ',mr", n[0, (0) + 0;(0-)], -(2.5)
where 0, and 0; are, respectively, the electron and ion
temperatures times Boltzmann's constant. To proceed,
we first need an estimate of the ratio of the electron-to-
ion temperature. The laser energy deposiiion is almost
entirely to the electrons which subsequently heat the ions.
In the absence of hydrodynamic and nonlinear effects,
the energy transfer is by electron —ion collisions, and for
Maxwellian distributions is given by the well-known
equation
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n~h ——5.08,'~'10" sec cm '.
(2.8)

with 0, in keV. The ions and electrons reach the same
temperature if the time available for the reaction is con-
siderably greater than. r&h, giving the condition

nt &) 5.0 X 10"83 ' cm ' sec

= 1.58 X 10"cm 'sec,
(2.9)

where 8, = 10 keV. For the moment, we assume that this
condition is satisfied and set 8, = 8; in Eq. (2.5). We will
at the end of this section determine the conditions for
which this assumption is valid.

For the case of weak heating, the temperature does not
increase appreciably during the reaction, and the reaction
constant in Eq. (2.4) can be evaluated at the initial
temperature. Setting 8,(0) = 8;(0) = 8, in Eq. (2.4) and
Eq. (2.5), we find

Ef '
3 i««'n'ov(8p)8't,

E,h, ,i
= 4z«'n8p.

The condition for energy multiplication is then

Efusion (M/~L )Erhermsi

(2.10)

(2.1 i)

glvlng

nt = (M/. .)[128./re~ v(8.)] . (2.i2)

Equation (2.12) now allows us to estimate the energy
requirements. To relate the time to the pellet dimension,
we use the time for a rarefaction wave to move from the
surface to the center of the pellet,

The sound velocity is

«/V sound . (2.13)

~l/2
~sound 8 in keV,

vp = 3.5 X 10'cm/sec .

The laser enelgy then 1s

(2.14)

E. = (i/..)E,„. ..
(2.15)= 4~(M'/~L np)8p [128p

' vp/Wov(8p)]'.

If the coupling efficiency ~L, is assumed to be independent
of temperature, the laser energy given by Eq. (2.15) has a
broad minimum at 10 keV. At this temperature

nt = 5.7 X 10"M/dL cm—'sec

EL = (M'/~L) (n,/np)' 1.6MJ
n, = 4.5 X 10"jcm', (solid density) .

(2.i6)

The nt product for M/eL = 2 is the often quoted "Law-

d8,/dt = (8, —8;)/p.„, (2.6)

with the thermalization time according to Spitzer (1961)

v;h = [3m. m;/8(2m)'~'ne'In A](8,/m. )'~'. (2.7)
For the temperature and density range of interest we set
ln A = 5, and m; equal to the average ion mass, giving

son condition" for energy breakeven to be reached (cf.
Lawson, 1965). We note for M/eL = 2, that the thermal-
ization condition of Eq. (2.9) is not satisfied and the
derivation of Eq. (2.12), therefore, not valid. We turn
next to a further discussion of the conditions under which
the assumption of thermalization is correct.

B. Direct laser heating of uncompressed spheres

The results of Eq. (2.16) show the strong dependence
of the laser energy on the parameters M and ~„and on
the pellet density. Similar results have been obtained by,
among others, Krokhin (1965), Dawson (1964), Basov
and Krokhin (1964), Caruso, Bertotti, and Guipponi
(1966), Raizer (1965), Caruso and CJratton (1968), Mulser
and Witkowski (1969), and Haught and Polk (1966), and
have been the cause of much discussion on realistic
values for the parameters. The laser requirement for
M = 1 (fusion energy equal to thermal energy) and for
eL = 1 (perfect couphng) and for a pellet at solid density
is 1.6 MJ with a pulse length of less than one nanose-
cond. This is a very formidable technological require-
ment, the largest present laser in this pulse length range
giving about 600 J (Basov et a/. 1972). The assumption of
perfect coupling is, of course, highly optimistic under
most conditions, since perfect coupling cannot occur
unless no energy is reflected at the pellet surface or lost
through blowoff in producing hot, low-density plasma
that expands from the pellet surface. Coupling sufficient
to heat the pellet at solid density is in fact possible only
if the laser energy can easily penetrate into the pellet
interior. This can occur if the laser wavelength is suFi-
ciently short so the critical density of the plasma is
slightly above the solid density. In this case, the laser
light directly penetrates and heats the solid pellet, and
essentially complete energy deposition can result. This
requires a laser wavelength of about 1500 A. For such a
laser, the assumptions of eL, = 1 and uniform heating of
the electrons are reasonaMe. Lasers in this wavelength
region have not operated successfully with a significant
energy output. The technological problems, therefore, are
even more severe than those at wavelengths of 1IMm or
longer; work continues on development of lasers of this
type.

Detailed numerical calculations relevant to the model
of efficient pellet heating were made by Chu (1972) who
assumed an energy source in the electrons of the pellet
corresponding to classical laser heating, but did not study
the actual problem of energy deposition. He did correctly
follow the electron —ion energy exchange, the hydrody-
namic motion of the pellet, and the fusion reactions. He
showed that the estimate based on Eq. (2.15) was very
optimistic, the correct laser energy requirement for
breakeven being increased by a factor of about 600, or to
about 1000 MJ. The large increase was due in part to
numerical factors arising from the actual details of the
hydrodynamic expansion, but was mainly due to the'

marked lag in the ion temperature increase since the time
available during expansion is insufficient for thermal
equilibration between the electrons and ions. In his
calculation, no significant pellet compression could take
place because the rapid heating throughout the pellet
causes immediate pellet expansion.

Although conclusions showing laser energy require-
ments in the 1GOO MJ range, similar to those obtained by
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Chu, were being reached in 1969 and later in other
studies, intensive analysis of the possible use of uncom-
pressed pellets continued. Particular attention was given
to the mechanism of thermal conduction for obtaining
e%cient laser coup1ing into a pellet at solid density,
assuming that the pellet was overdense to the laser
radiation and hence could not be directly heated by the
laser. This possibility will now be reviewed in some
detail.

~here

dH = Uthd

= v, [(0, + e,)/2j"'t
(2.19)

vo = 3.5 X 10'cm/sec (8 in keV).

The conduction wave penetrates more rapidly than the
rarefaction wave until a penetration distance is reached
such that

C. Thermal conduction heating of uncompressed
spheres

dye, or

i'8, + 8, 'i"'
d,~

——(~o/2vo no) 8'~'
)

(2.20)

dth = Kp8, ~ r/np, (2.17)

with 8, measured in keV and

Published work by Shearer and Barnes (1970), Zakha-
rov et al. (1970), and Bobin et al. (1971) showed that
lasers can be used to heat thermonuclear fuel at densities
well above the critical density, where direct laser penetra-
tion and deposition cannot occur. The heating is due to
the supersonic penetration of the high-density region by
a thermal conduction wave with energy carried by elec-
trons. The very high thermal conductivity at thermonu-
clear temperatures allows the thermal wave to move
ahead of the hydrodynamic rarefaction wave, causing
strong heating of material which has not yet been aA'ect-
ed by the rarefaction wave. In this region, which is both
dense and hot, the rate of production of thermonuclear
energy peaks. Ahead of the conduction wave, the materi-
al is compressed by a shock driven by the pressure in the
laser deposition regions, but is still relatively cold. Behind
the rarefaction wave, the material is hot, but the density
drops rapidly due to hydrodynamic expansion. In this
region, the rapid thermal conduction keeps the electrons
nearly isothermal, but the ions cool by expansion, energy
transfer by collision from the hot electrons being too slow
to compensate for the cooling by expansion

Let us summarize the main features of the phenome-
non and exhibit the basic assumptions underlying the
published work.

Consider a laser Aux y which brings the electrons in the
surface of solid DT to a temperature 8„assumed to
remain constant during the laser pulse. This temperature
drives a conduction wave into the solid material, at
number density no The penet. ration distance dh as a
function of time t follows approximately on combining
the energy. conservation equation g&t = n08, dh with Fou-
rier's law y = K8,/dhk, where k is Boltzmann's constant,
and ~ is the conductivity, proportional to 8,'/' for a
plasma. Thus,

At this depth, the density may be assumed to be n0, in the
rarefaction wave, the density drops rapidly and becomes
underdense to the laser wave, giving a region of laser-
light absorption.

The thermal energy per unit area in the solid density
heated region is

e,„= nodR, (8, + 8;).

The fusion energy produced is

{2.2i)

~, = (no/4)(av); WdhrR, (2.22)

with the time of reaction v& given approximately by

1R dth/vth KO 8~ /v0 nO(8e + 8l) ~ (2.23)

The ion temperature which determines the reaction
rate (av); is fixed by the electron temperature, the equili-
bration rate between electrons and ions, and the time the
ions are subject at high density to the passage' of the
thermal wave. The equilibration rate given in Eq. (2.6)
can be integrated approximately to give

8 —= (r /r. , )(8 —8).
This result together with Eq. (2.23) yields

(2.24)

8; = 0.3158, . (Z.26)

Thus the ions only partially equilibrate, the ion tempera-
ture in the reaction zone remaining much lower than the
electron temperature. Complete computer calculations of
the structure of the conduction front give results very
close to the simple analysis leading to Eq. (2.26).

Combining the above equations gives

8; = 10"[~o8,(8, —8;)/vo'no(8, + 8;)]. (2.25)

Using the values of the parameters given above and
solving for 8; gives

~0 ——3 x 10"cm ' sec '(keV) '',
no = 4 X 10"cm '. (2.i8)

= 14 6008,' J/cm' (2.27)
The exact solution of the thermal diffusion equation for
a surface-heated planar medium gives a similar result for
the depth of penetration of the thermal front as a
function of time (see, for example, Krokhin, 1971; Bobin,
1971). A rarefaction wave also forms at the surface,
penetrating at the sound velocity, with a penetration

ey/e, h
= (av); %V[~08,' '/v'(8, + 8;)']
= O.646[iO"(av), ]8!~',

with (av); evaluated at 8; = 0.3158,. Examples are:
(1) 8. = 10 keV:
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8; = 3.15 keV

(ev); = 3.7 x 10 "cm'/sec

~,h
——14.6 MJ/cm'

et/e~ = 7.55 x 10 '

d,h = 0.105cm

a-& = 1.02 nsec

(2) 8, = 15 keV:

8; = 4.72 keV

(ov); = 1.3 x 10 "cm'/sec

e,h ——49.3MJ/cm'

~y/e~ = 0.325

d,„=0.236cm

v& = 5.90 nsec

(3) 8, = 30 keV:

8; = 9.45 keV

(~&); = 1.0 x 10 "cm'/sec

eth
——395MJ/cm'

ty/Eth = 3.54

dh = 0.95cm

v.& = 5.34 nsec.

(2.27a)

(2.27b)

(2.27c)

D. Summary of results for uncompressed spheres

The uncompressed sphere heated efficiently by a short
wavelength laser which can penetrate the solid density
plasma or by thermal conduction by hot electrons re-
quires approximately 1000 MJ laser input to reach a
comparable fusion output. This prohibitive laser energy
requirement is even further increased if the requirement
of useful energy production is imposed. The energy
multiplication M for practical application is determined
by the efficiency of conversion of fusion energy into
electrical energy and of electrical energy input to the
laser into laser energy. Assuming a thermal-to-electrical
conversion of 40%%uo efficiency and 25% efficiency for the
laser, the required energy multiplication for over all
energy breakeven is equal to ten. Equation (2.27) shows
that this increases the laser energy requirement by an
additional factor of 10'!

It is therefore clear that any expectation of producing
useful fusion energy in the absence of compression is
unrealistic. For a compressed sphere a new problem
arises since the coupling efficiency e& to a compressed
system becomes much less than unity. Results to be given
later show that M/~1. is, in fact, under the best conditions,
equal to approximately 200, requiring that the Lawson
condition be exceeded by a large factor. Under these
conditions, the thermalization requirement of Eq. (2.9) is
met. The large multiplication of the initial thermal energy
by the fusion process, however, invalidates the assump-
tion that the temperature remains- constant during the
reaction. We therefore turn next to an evaluation of the
effects of compression and of fusion energy deposition on
the preceding analysis. The problem of laser coupling is
reviewed in detail in Sec. III and IV.

The absorbed laser energy required to produce the
above results depends on the area illuminated. If the
dimensions of the illuminated area are appreciably larger
than the penetration depth, the lateral spreading of the
conduction wave can be ignored. Thus, if the area is wd„'„,
the absorbed laser energy required is 505 kJ at 10 keV,
8.61 MJ at 15 keV, and 1120 MJ at 30 keV. The absorbed
laser energy for which the fusion energy is equal to the
absorbed laser energy is several tens of megajoules,
similar to the estimate previously obtained for a uniform-
ly heated sphere.

The inclusion of other effects, such as incomplete laser
energy absorption, energy carried off in the blowoff layer
penetrated by the rarefaction wave, divergence of the
conduction wave, temperature and density gradients in
the heated layer, all reduce the e%ciency of the fusion
process. Calculations by Basov and Krokhin (1970) indi-
cated that for a pulse duration of 10 'sec a laser energy
of 10'J is required for breakeven. This is roughly consist-
ent with the results in Eq. (2.27) only if the electron and
ion temperatures are assumed to be the same and equal
to 10 keV, for which condition Eq. (2.27) gives a thermal
energy input of 14.6 MJ per cm' and a ratio of fusion to
thermal energy of 0.65. Thus, if an illuminated area of
lmm' is assumed, as in the paper by Basov and Krokhin
(1970), the laser energy requirement is 1.46 x 10'J. As
has been pointed out by Haught et al. (1968) and Chu
(1970, 1972), the inclusion of the other effects discussed
above, however, increases this estimate by a factor in the
range of 10' to 10'.

3n(d0/dt) .= (dE/dt), .„.„„„„„,
= ( '/n4)ov(0) W,„, (2.28)

with WQ p the part of the fusion energy 8'deposited in the
fuel. The time available is determined by the tempera-
ture; to allow for the variation of sound velocity as the
temperature increases, we change variable from t to v(t)
with dr/dt the sound velocity. Equation (2.28) then may
be written

d0v 0'~' 1

Je, ov(0)W,'„ (2.29)

The ratio of fusion energy produced to initial thermal
energy is

Efusion

E. ..(0)
n av(8)dt,

which from Eq. (2.28) can be rewritten

Et„„.„W " d8

Etg„.i(0) Ho g, Wg„(8)
(2.80)

E. Uniform sphere with compression and self-
heating

We now remove the assumption of no heating and
return to Eq. (2.4) and Eq. (2.5), setting 8, = 8; = 8. The
heating equation then is
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The analysis may now be completed by an estimate of
the energy deposited.

The deposition of energy by neutrons, due to the
charged particle recoils, depends on the ratio of pellet
size to neutron range. For 14 MeV neutrons, the neutron
range in DT is approximately fifty times larger than the
n-particle range at 5 keV electron temperature [see Eq.
(2.33)]. Consequently, the n-particle heating dominates
the initial ignition sequence. The neutron heating can
become important for large pellets at high density. Sim-
ple estimates similar to those of this section show that
this occurs in the megajoule energy input range for pellets
with density of the order of 1000 grams jcm'. This may be
determined with sufficient accuracy for the present pur-
pose by ignoring possible neutron deposition and ac-
counting approximately for the o.-particle energy. The
plasma is relatively transparent to the o. particles, partic-
ularly at high temperatures. The fraction of the energy
deposited is approximately r/R. for large R., and unity
for R. —+ 0. We interpolate roughly between these limits
by assuming

Thus the integral in Eq. (2.30) gives

+fusion

E„. ..(0)
W |"((h.oH'~'

Ho &Jg, ( rn
(2.34)

0 (H5/2 HS(2) 5
l 0

n r H,
' '

Ho

A similar approximation in Eq. (2.29) yields

(2.35)

.j—
) Ii+ Iz

W. ( norp ) 12 '

with II and Iz defined by

(2.36)

We now make the Anal approximation of this section and
evaluate r and n at their initial values. This approxima-
tion neglects the hydrodynamic motion and fuel deple-
tion during the burning of the DT. The depletion effect
limits the energy multiplication M/el. to W/6Ho= 3000 keV /8o. We use Eq. (2.3) for E,„„,„/E,„, „(0),and
we set 8' = 58.. The result is

II". = ~-9'j(&-+ &)I

R. = o. - particle range

6'. = n - particle energy (3.6 MeV).

(2.31) (2.37)

The o.-particle range is determined by energy loss to
electrons and to ions, the loss to electrons being domi-
nant for electron temperatures below approximately 40
keV. In this temperature range (Sigmar and Joyce, 1971) EL ——47'(ro /eL)no Ho . (2.38)

Equation (2.36) expresses noro as a function of Ho and H&

from which Eq. (2.35) gives M/eL. The corresponding
laser energy requirement is

dE. 32m'v' E'' t'm, )''
ne'lnA

A.p ——2 X 10"cm ' 8, in keV.

giving (cf. Hughes and Schwartz, 1958)

R. = Ao(Hv'/n),

(2.32)

(2.33) 12vo (M) ' eo
1 P 25M. X, g, ~ ~„(e,)

(2.39)

From these results we readily obtain the case of weak
heating, as given in Eq. (2.16), by going to the limit
A.p

—+ OO.

The temperature rise for small temperature increase,
for R. )) r, is

IOOO

IOO
FiG. 1. Analytic results for
laser energy as a function of
M/~&, based on Zqs. (2.85),
(2.86), and (2.87), for cornpres-
sion ratio of 5500, and laser
coupling efFiciency ~L, of 0.06.
The points of 25% and 50%
fuel depletion and of 50 and
100 keV final temperature
are indicated.

O, l

I

lo

Eo/e& (kilojoules)

IOO IOOO

Rev. Mod. Phys. , Vol. 46, No. 2, April 1974



K. A. Brueckner and S. Jorna: Laser-driven fusion

At 10 keV

(~&'
Ho = 0233' —

I
keV

k«L ) (2.40)

tion problem.

\

F. Nonuniform compressed sphere with self-
heating and propagation

cg = 4.9 x 10-"n'H' '(erg/cm' sec),

oT' = 1.05 X 10"H'(erg/cm'sec),

we find the transparency condition

H in keV,
(2 41)

rn' ~ 6.43 X 10"H'~'cm ' . (2.42)

Combining this with Eq. (2.12), using t = r/v(H), and
evaluating the resulting expression at 4 keV, we obtain
that for transparency

n/n, ~ 7.75 X 10 (eL/M). (2.43)

This shows that the fuel is transparent unless very highly
compressed under conditions of large energy multiplica-
tion, i.e., large M/~L, . However, under the condition of
interest for laser fusion, with high compression and large
values of M/~l. , the DT can become opaque to bremss-
trahlung, and fuel heating can occur for temperatures
considerably lower than 4 keV. Thus, the energy require-
ment given by Eq. (2.41) and Fig. 1 can be used for the
lower values given for Ho. The exact treatment of the
radiation loss requires more careful analysis of the radia-

Thus appreciable heating does not occur for M/eL of
order unity. For M/el, equal to 4, however, the tem-
perature rise is about 4 keV, and the reaction rate has
about doubled. This already gives substantial correction
to the energy requirement; the correction is clearly very
large for large energy multiplication. Under such condi-
tions evaluation of Eqs. (2.35) and (2.36) is necessary.
The results are given in Fig. 1, for several values of the
initial temperature Ho. The very large departure of the
correct result from the weak heating approximation is
apparent. The laser energy requirement drops by a factor
of 400 for the ratio of fusion energy to initial energy M/el.
equal to 100. This large drop in laser energy requirement
results from the DT temperature reaching 30—50 keV
where the DT reaction rate has a maximum, increasing
by a factor of about 10 over the rate at 10 keV, and a
factor of 100 over the rate at 4 keV. The laser, therefore,
is required only to provide the relatively small ignition
energy of the fuel which subsequently, through self-
heating, reaches the optimum temperature range for
efficient fusion energy release. The optimum initial tem-
perature changes with energy multiplication; for small
values of M/el. , the optimum is at about 10 keV, as
previously pointed out for the weak heating case. For
larger values of M/e~, the optimum temperature drops
well below 10 keV, reaching 2 keV for M/el. greater than
about 350. The achievable minimum, which in practice is
of interest, depends on other loss processes which prevent
heating, the most obvious being radiation loss by bremss-
trahlung. The total free—free emission rate per unit vol-
ume exceeds the n-particle heating rate below about 4
keV, which gives a lower limit for the occurrence of self-
heating, if the DT is transparent to the radiation. The
condition for transparency is that the volume emission
not exceed the surface blackbody radiation, or Vlf~ 4mr'aT", with «g the emissivity, and a the Stefan-
Boltzmann constant. Using (Allen, 1955)

Uy = mr'ave(no/4), (2.44)

ignoring the neutron energy which is only weakly depo-
sited in the burning region until the region increases in
size and becomes an appreciable fraction of the neutron
mean free path. The rate of change of internal energy in
the expanding region, assuming negligible energy in the
cold fuel and uniform density, is

(d/dt)( mr'noHO) = (4m/3)nor'H + 4mnor'Hr. (2.45)

Energy conservation therefore gives for the propagation
velocity of the burning front

r' = (no av W/12HO)r — r(HO/H0). (2.46)

The temperature in the burning fuel increases rapidly

In the preceding subsection (II.E), the effect of self-
heating on fusion energy production was analyzed using
a simple model of the processes of energy deposition and
hydrodynamic expansion. We next evaluate an extremely
important effect which occurs in a sphere with nonuni-
form initial conditions. The case of practical interest
which arises is a result of shock convergence in a
compressed sphere. This produces a sufficiently high
central temperature to cause central ignition of- the DT
fuel, surrounded by relatively cold fuel in which the
ignition condition is not met. In this case, the energy
produced in the ignited and burning central region of the
fuel, which is only partially deposited in this fuel region,
can heat the surrounding cold fuel sufficiently for laser
ignition to occur. This process leads to the formation of
a spherically expanding burning wave which can propa-
gate throughout the fuel causing complete ignition. The
energy required to initiate the burning process is then
substantially reduced from the requirement for uniform
ignition.

We analyze here the condition for spherical propaga-
tion using a relatively simple model which illustrates the
essential features of the process. In Sec. VII we return to
the results of detailed computer studies.

The spherical expansion of the burning region of the
fuel results from energy escaping from the burning fuel
which is deposited in the adjacent cold layers of fuel. The
energy loss can result from hydrodynamic expansion
which follows the rapid pressure buildup in the ignited
and burning fuel, from electron thermal conduction, or
from energy deposition by the reaction products escaping
from the fuel. The thermal conduction is subsonic for the
temperature ranges of interest in the ignition and propa-
gation phase of the burning front, provided that the fuel
density is of the order of magnitude of 10'gm/cm'. The
latter process usually dominates, the propagation of the
burning front being sufficiently supersonic to advance
more rapidly into the cold fuel than the hydrodynamic
disturbance from the pressure increase of the thermal
conduction front. The rate of advance of the burning
front then follows from energy conservation, ignoring
the hydrodynamic motion. The rate of energy production
in a uniformly burning region at density no is
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from the O.-particie heating until the increase in o.-particle
range with increasing electron temperature causes the 0.
particles to escape into -the surrounding cold fuel. The
consequence is that the temperature adjusts itself so that Thus
the O.-particle range is approximately equal to the radius
of the burning region. Thus

4 3Edeg, 3 KR np cdeg p

~p., = 2.68(np/n, )' ' ev/electron .

E„, = 80.5R'(np/n, )' 'kJ.

(2.54)

(2.55)

r =—R. = A.pHp'/np.3/2 (2.47)

This equation breaks down if the electron temperature
exceeds roughly 40 keV, the contribution of the ions no
longer being negligible. The propagation of the burning
front then is changed and a more detailed analysis is
required. The computer analyses described in Sec. VI and
VII are, of course, essential to follow the propagation
quantitatively. Equation (2.47) shows that

n = —ev(n'/2), (2.56)

glvlng

After ignition, the fuel burns at a temperature of
40—150 keV, depending on the dimension of the fuel. The
fuel depletion is determined in the absence of hydrody-
namic motion by

H,/H, —= 3(r',/r, ). (2.48)

eu
n/np = I/I 1 + —np t l. (2.57)

r/v, = 3av8.'Ap/44vp. (2.49)

With the values previously given for vp and Xp, Eq. (2.49)
gives

The ratio of the velocity of the burning front to sound
velocity, v, = vpH' ', is therefore

The fusion yield is

4, np= 3mR' 4 8(„,
ovt

OV1+ np —t
2

Ef ——
3

wR'(np —n)

(2.58)

r%, = 1.37(10"sec/cm')vv.
For the time t we assume the hydrodynamic disassembly

(2 50) time

6vp, &, W. Xp Ig &~'t'
nprp = ~ Il + )

Il'+
E. Vp )

(2.51)

The burning front advances supersonically (r/v, —2),
therefore, if the reaction rate is about 2 x 10 "cm'/sec
which occurs at 15 keV. At a lower temperature the
hydrodynamic expansion dominates, and additional
energy production in the burning region is required to
maintain energy balance. At a higher temperature the
burning front becomes strongly supersonic, r reaching a
peak of about 10v, at temperatures between 40 and 50
keV. The front also accelerates further as the neutron
heating becomes important.

We now use the preceding results for the condition for
supersonic propagation of the burning front. To deter-
mine the condition for this required temperature of 20
keV or greater to be reached in a central region of radius
rp and density np initially heated to Hp, we use the results
of Sec. II C. Equation (2.36) gives the condition

t = R/v, (H,„) (2.59)

and assume burning at 80 keV for which v, = 3.47
x 10'cm/sec and eu —= 10 "cm'/sec. The result is

1.75 X 10'(n,/n, )'R'
1 + 0.0648 Rnp/n,

(2.60)

For fixed compression ratio, Eq. (2.52) and Eq. (2.55)
determine R as a function of the initial internal energy.
Equation (2.60) then determines the fusion yield. Results
are given in Fig. 2 as a function of initial internal energy
for several values of the compression. At low initia1
energy the maximum yield ratio occurs for high compres-
sion. The optimum drops for large initial energy for
which the ignition energy is small compared with the
degeneracy energy, leading to lower compression require-
ments. For initial internal energies in the one to ten
kilojoule range, the energy multiplication for compres-
sions of 3 X 10' to 10' is several thousand.

Evaluating this at ep = 4 keV and 8& ——2keV, we obtain
III. LASER PLASMA COUPLING

(n,/n, )r, = 2.81. (2.52) A. Classical coupling
.The initial thermal energy to produce central ignition
then is

Eth —4%no Io ~o
(2.53)= 7.99 X 10'(n,/np)'kJ.

The initial energy in the rest of the fuel which is ignited
by the expanding burning wave is determined by the
temperature and density. The minimum energy is given
by the degeneracy energy of the electrons if the temper-
ature is much less than the degeneracy temperature. The
degeneracy energy of fuel with radius R is

The laser couphng efficiency as de6ned earlier is the
combined efficiency of the energy deposition from the
laser beam into the DT plasma and the subsequent
energy transfer from the laser deposition region into the
dense reacting region of the DT pellet. These problems
can clearly be treated separately since the direct laser
absorption may be of order unity without necessarily
implying that the energy absorbed is transferred efficient-
ly to the dense pellet.

The laser light incident on solid DT interacts with the
free electrons which then cascade rapidly, giving a plas-
ma at solid density which, as the ionization passes a few
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computing studies, and limited experimental evidence,
that strong nonclassical absorption occurs for laser power
fiux densities in excess of 10" or 10" watts/cm'. The
processes which may give rise to this will now be re-
viewed in detail.

B. Parametric excitation of instabilities

The parametric excitation of plasma instabilities by
intense coherent light has been the subject of intensive
study over the past eight years. The concept of paramet-
ric amplification dates back to Lord Rayleigh (1883) and
subsequently has found extensive application in electron-
ic devices (Louisell, 1960) and nonlinear optics (Shen and
Bloembergen, 1965). Its more recent application to laser-
produced plasmas has led to the prediction of a large
number of possible plasma instabilities. Some lead to
anomalous electron and ion heating; others to the scat-
tering of electromagnetic energy out of the plasma. These
collective phenomena are therefore of paramount impor-
tance in laser-driven fusion feasibility studies; and their
effect on plasma heating must be taken into account over
and above classical collisional heating (inverse bremss-
trahlung), particularly. as the latter process becomes
ineffective at high temperatures.

The possibility of a parametric plasma instability was
first noted by Silin (1964), and subsequently by DeBois
and Goldman (1967). Silin's analysis was based on the
hydrodynamic equations for a cold plasma. He ignored
the effect of pressure gradients, damping, and coupling to
the ion —acoustic wave. These deficiencies were overcome
by DuBois and G-oldman's Green's function analysis
which demonstrated that coupling of the excited high-
frequency Langmuir wave to the low-frequency ion-
acoustic wave led to the lowest threshold for the paramet-
ric instability. The calculation of Lee and Su (1966)
verified that these results could also be obtained from a
fluid model with phenomenological damping constants.
In yet another approach, Jackson (1967), in a kinetic
theory treatment based on the Vlasov equation, reco-
vered the results derived by the Green's function and
hydrodynamic techniques for the growing ion-acoustic
and electron plasma waves. This calculation also predict-
ed the excitation of two unstable plasma modes with
frequencies near the electron plasma frequency when
allowance was made for the spatial variation of the pump
field. Thus, we reach the paradoxical conclusion that
calculations based on the fluid model (collision dominat-
ed) and the Vlasov equation (collisionless) yield essential-
ly the same results for the growth rates and thresholds of
the plasma instabilities, so long as dissipation in the
continuum theory is treated microscopically. Nishikawa
(1968) developed a general framework for the parametric
interaction of electromagnetic waves with plasmas, illus-
trating his results by a comparison with the experiment of
Stern and Tzoar (1966). He also drew attention to a
purely growing mode, the oscillating two-stream instabil-
ity, which can be excited in the dense-to-superdense
regions of the plasma.

Most o'f the above studies are restricted to the dipole
or long wavelength approximation and thus refer only to
instability heating of electrons and ions near the critical
surface, where the wavelength of the pump greatly ex-
ceeds the electron excursion distance. In a recent ava-
lanche of publications, brought about by increased inter-

est in laser-driven fusion, a numer of authors have
investigated the excitation of unstable modes in the
underdense region of a homogeneous plasma. G-orbunov
(1968), utilizing one-dimensional fluid and kinetic de-
scriptions, calculated thresholds and growth rates for
backward stimulated Brillouin scattering (SBS) in the
weak and strong coupling limits. Briefly, the incident
electromagnetic field induces electron oscillations
through the Lorentz force. The electrons are initially
driven along the electric field vector but then develop a
longitudinal component through the V X B interaction.
Due to their large mass, the ions do not respond directly
to the driving beam. Thus, local charge imbalances are
generated which tend to be restored to neutrality by the
opposing Coulomb interaction. On a macroscopic scale,
the density oscillations are coupled to the pump field by
the electrostrictive force density which. varies essentially
as the gradient of the intensity. For suitable phase
matching between the incident and scattered waves,
growth is induced in slowly moving density waves above
a threshold intensity determined by Langmuir and acous-
tic wave dissipation. This instability can be excited in the
underdense region of the plasma, resulting in a partially
rejecting induced dielectric mirror which can lead to
substantial reAection of the incident radiation, thereby
possibly seriously reducing the fraction of laser energy
which reaches the critical density surface.

By a similar process, the nonlinear wave mixing can
also lead to the excitation of a high-frequency plasma
wave. This stimulated scattering of the light wave by a
Langmuir wave, or stimulated Raman scattering (SRS),
can, as will be shown later, only occur at densities less
than one-fourth the critical density, which constitutes a
kind of critical surface for SRS. In a homogeneous
plasma it has a lower threshold than SBS, althoughit is
more readily quenched by macroscopic density gradients.
Nevertheless, simulation experiments have sho~n that, as
for SBS, back-scattered SRS poses a serious threat to
laser-driven fusion by heating the electrons in the corona
and correspondingly diminishing the laser energy deposi-
tion in the bulk of the plasma.

The instabilities discussed hitherto may also conven-
iently be thought of as the induced decay of an incident
photon into various elementary excitations. Thus the
"parametric decay" instability corresponds to the decay
of a photon into a plasmon and phonon. Further possi-
bilities are photon —+ plasmon + plasmon, or ~ plasmon
+ photon (SRS), or ~ photon + phonon (SBS). In the
linearized theory, each of these processes modifies the
dispersion function differently.

All of the studies referred to above suffer from the
major defect that they are based on an oversimplified
analysis of the linearized dispersion relation in which no
allowance is made for spatial gain. It is well known that
this yields information only on the possible excitation of
instabilities and not on their character, i.e., whether they
are convective or absolute. This knowledge is, of course,
of great importance in determining meaningful thresh-
olds for unstable modes in an expanding plasma. %'ith-
out it we could not determine the time spent by the
instability in the interaction region, or the effective
interaction length.

The analysis of the dominant instabilities in a laser-
driven plasma will therefore be preceded by a brief
recapitulation of the salient features of instability analy-
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sis, developed principally by Sturrock (1958), Fainberg,
Kurilko, and Shapiro (1961), Polovin (1961), and Bers
and Briggs (1963). We adopt the linearized two-fluid
hydrodynamical equations supplemented by Maxwell's
relations, subject to the conditions that the electron
excursion length is much smaller than the minimum
transverse length over which there is a change in the ion
density. Dissipation eAects are described by phenomenol-
ogical damping constants. Temperature gradients are
ignored, an assumption which is in reasonable agreement
with computer studies for laser-produced plasmas. Final-
ly some calculations will be reproduced which attempt to
allow for macroscopic density gradients.

C. Instability analysis

A problem that often arises in a, linearized theory is
solving the equation

D[—iv, i(8/Bt)]u(r, t) = 8(r, t), (8.8)

where S(r, &) is the source function. For an infinite
system, utilization of Fourier transforms and the G-reen's
function formalism reduces this to evaluating the double
Fourier integral (in one dimension)

u(z, t) =
I exp[i(kz —cot)j

' dkdu, (3.4)
S(k, ~)-

D k, co

where S(k, cu) is the space —time Fourier transform of S.
To simplify the argument we assume that the source
function is of finite spatial and temporal extent so that S
contributes no singularities —in fact, for asymptotic con-
siderations we may as well take S to be a 6 function so
that $(k, ~) = 1. The dispersion function D(k, ~) is, of
course, just the reciprocal of the Fourier transform of the
Green's function.

The dispersion relation D(k, ~) = 0 expresses k (or ~)
as a function of co (or k) which usually has many
branches. These may be used to determine whether
temporally unstable modes, Im co ) 0 for real k, or
spatially unstable modes, Im k ( 0 for real co, can be
excited. They do not, however, provide the information
about the pulse shape of a growing disburbance required
for applying infinite medium results to finite systems. The
integral in Eq. (3.4) must then be evaluated approximat-
ely for large t. To satisfy the causality condition, the ~
contour is to be chosen such that it passes above all
solutions of the dispersion equation. In the limit of large
t, the dominant contribution to the integral is that due to
the singularity with max Im (~). Since it is always
possible to choose a reference frame moving at a speed,
V, say, in which a convective instability is absolute, it is
convenient to make the Galilean transformation z = Vt,
or ~ = ~ —Vk. Integrating first over ~ by the Cauchy
residue theorem, we reduce Eq. (3.4) to

imposes the condition that the double root in the k plane
must have resulted from the coalescing (pinching) of
roots which for Im ~ —& —oo lie on opposite sides of the
real axis. Physically, this means that it should always be
possible to apply a spatial impulse ~hose growth rate
exceeds that of any unstable mode in the system, so that
the resulting waves decay away from the origin.

In sum, the instability analysis requires solving the
coupled equations

D(k, co) = 0,

eD/ak+ V(aD/a~) = 0,

(3.6)

(3.7)

(3.8)

by a powerful minimization routine based on a method
described by Powell (1964). It will be noted that the
solutions of this equation satisfy Eqs. (3.6) and (3.7)
simultaneously. The parameter p, is adjusted to weight
equally the dispersion function and its derivative. This
procedure has the practical advantage of being self-
contained and obviates the necessity for a separate
search for the zeros of D.

for the untransformed variables k, ~; and the condition
for an absolute instability in a stationary system is that
the "frame" velocity V be zero. Typically the dependence
of growth rate on V varies with the coupling to the
driving force as in Fig. 5. Clearly, the threshold for the
convective instability (P&) is generally lower than that for
the absolute instability which grows throughout the sys-
tem: I'2 for a medium expanding at speed s, I'3 for a
medium at rest. This distinction will turn out to lead to
significantly higher thresholds for plasma instabilities
.than those previously quoted in the literature.

The practical application of this prescription is often
quite involved, and the work of Sturrock (1958) and
Briggs (1964) should certainly be consulted for further
details. One method for solving Eqs. (3.6) and (3.7),
developed by Hall and Heckrotte (1968), starts with the
determination of max Im (cu) for real k from Eq. (8.6),
and reduces the problem of determining the dependence
of growth rate on "observer" speed V to the solving of
coupled first ord-er difFerential equations. We have
adopted instead the more direct approach of satisfying
the equation

u(Vt, t) = 2mi g dk, (3.5)
exp( —o)t)

—ao BD B(ll g s&(jg)

where D(k, ~) = D(k, ~ + Vk), and the summation is
over the poles D[k, ~„(k)] = 0. The k integration can
be carried out by the method of steepest descents by
deforming the path of integration such that it passes
through the saddle point(s) given by BD/gk = 0. This

FK". 5. Typical variation of temporal gain with "observer" speed V,
comparing the levels of excitation P for convective and absolute
instabilities.
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D. Linearized plasma equations

We will write the basic equations such that all special
cases to be discussed subsequently are included. G-ravita-
tional eff'ects, macroscopic temperature, and density gra-
dients are ignored. Further, the plasma is assumed to be
of infinite extent, fully ionized, and macroscopically
neutral, containing on the average np electrons and ions
per cm'. Damping terms are inserted phenomenological-
ly: their values are to be obtained from microscopic
kinetic theory (cf. Oster, 1960) and include collisional as
well as Landau damping.

In the fiuid model, the physical parameters of a laser-
driven plasma vary with an applied electromagnetic field
according to the following conservation equations of
hydrodynamics (cf., for example, Spitzer 1961): The
momentum equation is

Let a laser beam linearly polarized along the x axis be
described by the infinite plane wave

Eo = Eo sin, (kl. z —~L, t) x, (321)
propagating in the z direction with wave number kt, and
frequency ~1.. In the absence of zero-order density gra-
dients, and with m; )) m„Eq. (3.9) yields to zero order
for the electrons

Vo, —= Vo = Vocos(kLZ —u~ t), (3.22)

where Vo' = —eEO/m ~L, as we may neglect Vo;.The damp-
ing factor 2I; has been ignored since uL )) I;. In the
plasma, ~L and kI, are related by the zero-order disper-
sion relation which follows by first combining Eqs. (3.11),
(3.12), (3.14), and (3.15) to obtain the wave equation

i
—+ 2I'„+ V„. V'

i
V„= —"

(
E + —"x H i—( 8 & e„( V„& Vp„

( Bt ) m~ i c p tri~Np

and the matter equation is

(3.9) (3.23)
and then substituting for Ep in its zero-order component.
This yields

0 N„/'dt = —V' (2V„U„) (3.io)-
(3.24)

in which the subscript p, refers to the electron or ion
species, I'„ is a phenomenological damping factor which
in general includes collisional as well as Landau damp-
ing, V„ is the particle velocity, e„and m„ the particle
charge and the particle charge and mass, respectively, P„
the hydrodynamic pressure, and W, the number density of
particle p. The change in the plasma parameters induced
by the incident radiation alters the current density j
which drives the electric and magnetic fields K and H
according to the Maxwell equations. In Gaussian units,

V x E = —I/c(SH/St),

V x H = (ije) (SE/St) + (4~/c) j,
V H=0
V E=4mge, X„

(3.i i)

(3.12)

(3.13)

(3.i4)

where

j = ge„~„&. (3.is)

In the small signal approximation these equations may
be solved iteratively by expressing each variable as the
sum of a large zero-order term and a small perturbation.
We write,

N„ = np + n„,

& =&"++.

H = HP+Hl,

P„= I'p„+ P„.

(3.i6)

(3.17)

(3.18)

(3.i9)

(3.20)

The relatively large mass of the ions leads to simplifica-
tions; it is therefore convenient to derive the equations
for the electrons and deduce therefrom the simpler ion
equations.

( 9Vp eVO l, kL
U~~ + IIip i-

Bz mph ) kl.

g2——'Vn, .
np

(3.25)

The precise relation between pressure and density
depends, of coUrse, on the plasma state, i.e., whether it is
isothermal or adiabatic. For isothermal conditions

V'p, = m, s,'V'n„V'p; = m;s,'V'n;,

where s„' = 8„/m„and 8„ is the temperature in energy
units. These results differ from those for adiabatic condi-
tions by the ratio of the specific heats (three for one
degree of freedom). In the following, the actual numeri-
cal factor is assumed to be contained in the appropriate
thermal speed.

The longitudinal and transverse components of v„v„
and v,. thus satisfy the coupled equations

(a e s,' Bn,
I
—+ 2I; + Vo. V Iv,.= ——E&„——'

pe ' ) m, "
no Bx (3.27)

e 0Vp+2I;+Vo V lU„= ——E(Bt ftgq 8 z

S~ One

np c) z

eVp

mc '~

(3.28)

which defines the dielectric constant for transverse oscil-
lations and where co,',; = 4mnoe'/m, ; is the square of the
electron (ion) plasma frequency for a macroscopically
neutral plasma of particle density no. From Eq. (3.9), the
perturbed electron velocity v, and density n, are, to first
order, related to the perturbed fields Kl and Hl by

( () e
(
—+21:+V, . ~ lv, = ——E,

m,
'
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We will assume that the wavelength of the excitation is
much larger than the Debye wavelength h. D

= (8,/4vrnoe')t~'. The ion wave damping must then in-
clude wavenumber-dependent Landau damping, while
the dissipation in the electron wave may be taken to be
collision dominated, except for low densities. From mi-
croscopic theory (see, for example, Krall and Trivelpiece,
1973), we have for ~, )) kV

, (m8, &'t'
2r, =. + kp'(

Sm;]

(g )3t~ ( g ) (m $'&'
&&

I

—'
( exp' -I/2 —'P

[ +
I
—'

I

r ~~r (3.29)

alt.
2~e = ~te +

fPl~
(3.30)

3

where p = (1 + O'AD) ', and v;, is the ion —electron colli-
sion frequency.

The various perturbed quantities in Eq. (3.25) may be
eliminated in favor of &.-' El„and El, by the perturbed
wave equation, n, by the equation of continuity. This
reduces the problem to that of solving two coupled
differential equations linking v,.and v„. It is then straight-
forward, though algebraically tedious, to derive the dis-
persion equation D(~, k) = 0 relating the frequency u
and wave vector k of the driven modes by taking the
Fourier transforms in space and time of these equations
and imposing the condition for nontrivial solutions. For
the full four-mode interaction, this leads to a six by six
determinant for D(~, k), which reduces to a four by four
determinant for the three-wave parametric scheme in
which one of the sidebands is suppressed. The reduction
to three-mode interaction is adequate provided the phase
shift of the unstable mode is much less than its frequency,
so that the contribution from the suppressed sideband is
far off resony. nce.

We discuss the various instabilities according to their
domain of excitation in the plasma. The oscillating two-
stream and the ion —acoustic wave decay instability are
excited near the critical density surface, while stimulated
Brillouin and Raman scattering can occur in the under-
dense region.

The above formalism is su%ciently general for a study
of the full two-dimensional problem. It is readily adapt-
ed, at least in principle, to treat arbitrary polarization of
the incident radiation, and can also be used to determine
the angular profile of the scattered radiation. The two-
dimensional problem is discussed in more detail by Jorna
(1973). In the present article, however, we restrict atten-
tion to much simpler one-dimensional applications. These
include the transversely driven instabilities and the back-
scattering modes, which are of greatest current interest to
laser-driven fusion.

To facilitate comparison with results quoted in the
literature, plasma values will be used for quantities which
depend on the incident field intensity. They are related to
their vacuum counterparts by the fiux ([I]) conserving
condition g&„., = q „;„+~.This corresponds to the so-
called "swelling" of the electromagnetic waves when, in
WKBJ language, a turning point is approached. Since in
this region the field is approximated by an Airy function,
it may also be termed the Airy function enhancement.
The factor I/+~ is particularly significant in the oscillat-

(a l(a
(
—+2r+V, V')( —+V. V fn,)

= u,'(n; —n, ) + s,' [7"'n, . (3.31)

The corresponding ion equation follows by analogy, with
the simplification due to the large ion mass, of negligible
ion quivering velocity. Hence,

(a' a
, + 2I;—+ u,' —s,'r[t' )n; = u,'n, .

pat' 'at (3.32)

The pump field is specified by Eq. (3.22) with IkL ——- 0, so
tliat Vp = Vo cos (cog, t). We can therefore readily obtain
from the Fourier transforms of Eqs. (3.31) and (3.32) and
the convolution theorem, coupled algebraic equations for
n, (k, ~) and n; (k, co) defined by

n, (k, ~) =, ]~ ] n„(r, t)exp[ —t(k. r —~t)]drdt.
(2~)' J-- J--

(3.33)
If the ions are taken to be static in Eq. (3.31) for the

electrons and only the slowly varying part of the driving
term is retained in Eq. (3.32), it was shown by Aliev and
Silin (1965) and in more detail by Kaw and. Dawson
(1969)that the low-frequency mode ean be expanded in
terms of the Bessel functions J,'(k . Vo/~L). A much
simpler analysis suffices, however, for the present case
where the phase velocity of the scattered wave is much
larger than the electron quivering velocity, i.e., ~L, )) k
~ Vo. It is clear that the wave mixing due to the nonlinear
coupling of the plasma and the pump leads to the
possible excitation of the four basic frequencies,

u, ~, and an infinite number of harmonics. This is
rejected in the hierarchy of coupled equations for
n, (k, ~ ~ ncuL) Equations (3.3. 1), (3.32), and (3.33) yield
the following recurrence relation for n, (k, ~) with kL = 0

L[k, ra) —-'V, 'k.')[n, [k ra)/ —V, k]

= (~+ uL)n, (k, u+ coL)

+ (co — coL)n, (k, co —coL) (3.34)

ing two-stream and ion-acoustic instabilities which are
excited near the critical density surface, where it reduces
the vacuum threshold power Aux densities by one to two
orders of magnitude.

E. Instabilities excited near the critical density
surface

The external field may be treated as spatially homoge-
neous (the dipole approximation) for instabilities excited
near the critical density surface, defined by ~, = ~L. This
follows directly from the zero-order dispersion relation
Eq. (3.24) with u& —u, and ~, && u;.

Equation (3.25) simplifies considerably with the neglect
of the spatial derivative of V0 and the correspondingly
decreased coupling of the electrons driven along the field
vector to the ions oscillating along the direction of energy
propagation. The equations of motion take on a particu-
larly convenient form for the electron and ion densities.
Eliminating P, from Eq. (3.25) by taking its divergence,
we obtain with the aid of Poisson s equation and the
equation of continuity
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with the abbreviations

L(k, u) = —co' —2i I; co —~,' [(u,'/0;) —1] + s,' k ', (3.35 )

Q, = u2 2iI', u + u2 + s2k2 (3.36)

= (~ + —,
' (u, )n. (k, ~), (3.37)

where the higher harmonic terms have again been neg-
lected. Elimination from Eq. (3.34) of the frequency
shif ted transforms by means of Eq. (3.37) leads to
nontrivial solutions for n, (k, ~), provided

2 2

D(k, ~) —= co' —s.'k' + 2ir;~ —— '
(Vo k)'

4 co,'
1 1

~' —~' + 2iI;~ ~' —~' + 2iI",~
= 0, (3.38)

where ~ = ~ ~ ~&. We have introduced the sound
speed s. defined by

s.' = s,'+ (m, /m;)s, ',
and the modified plasma frequency

2 2 + ~2k2

(3.39)

(3.40)

Equation (3.38) has been analyzed extensively by Nish-
ikawa (1968), and also by Kaw and Dawson (1969).We
discuss here the two main cases:

1. the modified oscillating two-stream instability, and
2. the ion-acoustic or parametric decay" instability.

1. Niodified oscillating twostream in-stability

The possible excitation of a purely growing mode was
noted by Nishikawa (1968) and by Kaw and Dawson
(1969). For this absolute instability Re ~ = 0, while the
second mode is driven at the pump frequency ~&. Neither
denominator in Eq. (3.38) can be assumed to be off
resonance, so that the interaction must be described by
full four-wave coupling.

The minimum threshold value for Vo', (Vo )', say,
determined by setting u = 0 in Eq. (3.38), follows from
the minimization with respect to Nishikawa's parameter
6 = ~L —~gof

The hierarchy of transforms is truncated by neglecting
terms involving n, (k, ~ +. n~~) with n & 2, consistent
with the small signal expansion. If these terms are
retained, the dispersion relation also contains contribu-
tions of O(VO') which we are neglecting here. A shift by
+.~L in the frequency co in Eq. (3.34) yields the further
approximate relations

[L(k, ~ +. coi) —
—,'V02 k„'] [n, (k, ~ ~ coL)/ —Vo . k]

energy (since I; (( ~L,).
The temporal gain near threshold, -obtained by linear-

izing Eq. (3.38) in co, is given by (cf. Nishikawa, 1968)

2. Acoustic instability

Inspection of Eq. (3.38) also shows a resonance at
Re ~ = s.k in the acoustic propagator. This corresponds
to the excitation of a phonon and a plasmon of frequency

For small phase mismatch ~& —~& —s„k, the
contribution at ~L + ~ may be neglected as being off
resonance. The problem now reduces to that of three-
mode parametric amplification. The lowest threshold
occurs for perfect phase matching in which case Eq.
(3.38) reduces to

D(k, co) =—(~' —s.'k'+ 2ir;~)(~ —6 + iI;)
+ ((u,'(u, /8~,')(Vo. k)' = 0, (3.45)

where 6 = ~L —~&. Thus, for Re co ——s.k and ~L ——s.k
+ GDg,

(3.46)

which differs from the threshold for the oscillating two-
stream instability by a factor 2r/s. k, and again indicates
an electron excitation energy much less than the electron-
ic thermal energy. Near Vo = Vo the growth rate is
approximately given by

= &.'k'r,
~ .' —1 ~/(.'k'+ 2rr) (3.43)

)
in terms of the incident and threshold power Aux densi-
ties, where Po ——cF0'/8m. Far above threshold, the damp-
ing constants may be ignored and the optimum growth
rate occurs for the frequency ~L = ~& —Im co with

Im ~ = (~,' k' Po/2a~ cnom, )' ', (3.44)

which varies as the one-third power of the incident
energy Aux.

As remarked earlier, the power flux densities in the
above expressions must be multiplied by the factor 1/Qe
if they are to refer to the vacuum rather than to the
plasma values.

Determination of the optimum value of the wave
number k depends on the damping. Nishikawa (1968)
finds that maximum growth rates for this mode are
obtained for relatively long wavelengths (kh. D «1) if the
damping is collision dominated.

The oscillating two-stream instability could effectively
enhance the plasma resistivity, except that the optimum
interaction takes place in the critical to supercritical
density region (~L ( co&) where the penetration of the
incident radiation is greatly reduced.

vo' ———4(s.' co,'/~, (u,') (6 + r, /6). (3.41)
& rI; 't t'y,
&r+r) ip (3.47)

This occurs for 6 = —I, when

(V )' = 8s![1 + (T/T)](r/~, ). (3.42)

which is independent of ion wave dissipation. Conse-
quently, this mode can be excited for an incident radia-
tion energy which is much less than the electron thermal

for a plasma with s.k ) I;,;, though it should be realized
that even for T/T, = 5 —10,1; = s.k and can still be
comparable to I",. For a more detailed analysis the work
of Nishikawa (1968) should be consulted.

The growth rate for negligible damping follows readily
from Eq. (3.45) by setting ~ = s.k + iso and s.k = 5.
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additional component which couples the transversely
driven electrons to the ion and electron waves propagat-
ing along the direction of (normal) incidence. Above a
certain threshold, low- and high-frequency instabilities
develop accompanied by a scattered electromagnetic
wave with a frequency and wave number given by the
phase-matching conditions ul = ~I + ~2, kL = kl + k2.
In quantum terminology, these processes, which have
been named stimulated Brillouin scattering (SBS) and
stimulated Raman scattering (SRS), correspond to the
decay of a photon into a phonon and a photon, or into a
plasmon and a photon. A mode in which the photon
decays into two plasmons is a third possibility, but this
process requires a two-dimensional treatment since the
Langmuir waves do not propagate parallel to the driving
light wave.

As has already been pointed out, the backward scatter-
ing instabilities are of particular importance to laser-
driven fusion, the more so because of their apparently
low thresholds.

The dispersion relation for these phenomena is most
conveniently derived by first separating Eq. (3.25) into its
transverse and longitudinal components Eqs. (3.27) and
(3.28) and then eliminating E, in favor of the perturbed
velocity by means of the perturbed wave equation, Eq.
(3.23). We obtain

I'0

i0l2

ioio
io'

I

ioiO
I

io IO

Group Velocity (cm/sec)
iOI I

FK.". 6. Temporal gain vs convective speed for the ion-acoustic
instability at a power Aux density of PL, ——10"~ cm-', and for I:
k~ ——9.5 && 104 cm ', 2: k = 1.2 && 10' cm '.

This yields

1
~. =;(V/') [ ~ ./(1 + TIT)l"', (3.48)

where ~„—= s.k.
The propagation speed V corresponding to the mode

with Max[Im ~] is readily calculated from the dispersion
relation by the prescription given previously, i.e, BD/Bk
+ VRD/Bpp = 0 with real k satifying D(k, ~) = 0. Near
threshold ()v,.&

rt '-+~'~ V'a"
~t ( Bxp

V, ) —
&

(n, —n, )
s,', Bn,

(3.50)

2

a'i —+2I;
i
—"—;

V = s.[1+ (r,/r, )]-', (3.49)
1 . ()

(n, —
np cso that the ion-acoustic instability is an absolute instabil-

ity in a plasma expanding at sound speed. Figure 6
shows the dependence of temporal gain on "observer"
speed V for a radiation power flux density of 10"W cm '
coupled to a DT plasma with T, = 1 keV and T,
= 0.1 keV. The calculations are based on the k-depend-
ent dissipation factors given earlier and illustrate the
sharp variation of gain with wave number, whose optimal
value in this case is given by kXD —0.07. Equation (3.45)
shows that far above threshold when damping may be
ignored, the growth rate exhibits the characteristic cube
root dependence on the incident power fIux density.

In early discussions (Kaw and Dawson, 1969) it was
speculated that this parametric decay instability might be
an eA'ective mechansm for direct heating of the ions at
temperatures where collisional heating has become inef5-
cient. The Manley-Rowe relations indicate, and comput-
er simulation studies confirm, that most of the energy
goes into the electrons, raising some to very high nonther-
mal energies. These so-called "hot" electrons exchange
little energy with the rest of the plasma and may, in fact,
be responsible for the undesirable preheating of the solid
core discussed elsewhere in this article. The simulation,
experiments of Bodner et al. (1973) do, however, indicate
the occurrence of instability heating of the ions by their
interaction with the turbulent plasma. The importance of
this decay mode for fusion may be diminished by the
excitation of back-scattering instabilities at subcritical
densities.

~'
] —,+ 2r,

[
——;—;,+ '

) V.
"+ v,„~,' 8, t' Bv„BVp

Bt+ ') c2 Bt
"

E,
P ax '"az

eVp l ~,' 0 s,', Bn,+ Hiy i

= ——'
(n; —n, ) ——' —~'

nl~c ) np Bz np Bz

(3.51)

where the d'Alembertian

2 —P2 (1/c2) g2/gf2 (8.52)

Fourier decomposition of these equations coupled with
the continuity equation leads to a six by six determinant
for the dispersion relation in two dimensions which will
be discussed elsewhere (Jorna, 1978).

For backward scattering there is no transverse varia-
tion, and Eqs. (3.50) and (3.51) simplify to

, (0 ~ ~,'0 ~,2 8

co,' ()

q' Bt np Bz
2

~e 2 ~ne——C1
np Bz

BVp eVp~ qv'"az+ m, c '~)
F. Subcritical density instabilities

In the subcritical density region of the plasma, u,
(8.54)

( ~L, so that the spatial variation of the driving field can The perturbed densities may be eliminated by the equa-
no longer be ignored. The Lorentz force now has an tion of continuity, and the perturbed magnetic field may
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be eliminated by Eq. (3.11) and the wave equation, Eq.
(3.23). Taking Fourier transforms of the resulting equa-
tions, we obtain (~, = ~ ~ p)L, k = k ~ kL, )

(~ —s.k + 2iI;(p) pp ——
~

kkL ——k
~
+ iI;

c' C 1

2 )
= —~,'O' Vp'/8(pL = —0', (3.61)

E, (k, co)v,.(k, a)) = — ', '
V,.(k-, ~ )

co,' Vp (k, —kl. )

+ ' v„(k, (u ),(k. + k.)

(8.55)

wjth I", = r,"(p,'/», in agreement with Bodner and Eddle-
man (1971). Here I," is the high-frequency damping
decrement of the Langmuir waves. An estimate for the
threshold of the phonon excitation follows readily on
setting p) = s.k + 6 with 0 ( ~B~ && s.k. We find for the
back-scattered mode (k = 2k). )

E2(k, (A))vga(kp M)

= —2f(k, u)V() kL + ',
'

v,.(k-, ~ )
1 — ~,'(k, —kL, )

~ = s.k+ ii;[(Pp/Pp ) —1],

with a threshold for Vo' given by

(3.62)

where

pp,'(k, + k, )(*„)ri (k„ra,)„),

(8.56)

(V.-)' = 16',') 1+ —'
~ (3.63)

The growth rate in the absence of damping follows
straightforwardly from Eq. (3.61) with I;" = I; = 0, and
~ = s.k + imp. For k = 2k', ,

E (k, u) = f(k, ~)(—1 —2i I;/~) + (u,'/c'), (8.57)
—

1/21 Vow,
4 ~. ~L 1+ T/T,

(3.64)

E,(k, pp) = ~'E((k, u)
2

+ ks p),'I ~' —1 I + s,'f(k, pp)'(0; ) (8.58)

f(k, pp) = —k'+ (c') 'pp', (8.59)

E2(k, pp) = 4','k.f(k, ~)
1 Vo

~,'(k. —k, ) ~~
1

c'f (k, co ) ) E) (k, ~ )
)( ~,'(k, + kL))( 1

c'f (k, co ) ) E((k, cu )
(3.60)

This expression has the characteristic form for four-wave
interaction. E& contains the plasma oscillations (ion-
acoustic and Langmuir waves), while the coupling factor
is multiplied by the Maxwell propagators for the up- and
downshift scattered waves.

1. Stimulated Brlllouin scattering

The dispersion relation for stimulated Brillouin scatter-
ing (SBS)follows from Eq. (8.60) with pp'&( pp,'. We reduce
the interaction to three-mode parametric coupling by
assuming perfect phase matching and suppressing the
wave upshifted in frequency. This yields for the Stokes
component (since k = 0, we drop the subscript z in k,)
near the point of resonance of the Maxwell propagator
where c'f(k, pp ) = u,'

and 0; is given by Eq. (3.36). The dispersion relation
follows on combining Eqs. (8.55) and (8.56) with their
frequency-shifted analogues and truncating the resulting
hierarchy of equations by neglecting the higher harmonic
terms. The result is (cf. Gorbunov, 1968)

These expressions are similar to those for the ion-
acoustic instability Eq. (3.46), and might lead to the
conclusion that both instabilities can be excited concur-
rently and independently. There are important differen-
ces, however. First, the SBS threshold depends inversely
on kL = cuL+~/c and decreases away from the critical
density surface. Thus, if SBS develops optimally, a par-
tially reflecting layer is generated in the subcritical densi-
ty region of the plasma sending photons of frequency
coL —s.k back out of the plasma, thereby reducing the
energy reaching the critical density surface. Any heating
of the ions would be of marginal importance because of
the low densities involved. The second difIerence con-
cerns the nature of the instability in an expanding
plasma. The threshold given by Eq (3.63) is that for a
convective instability propagating near threshold at a
large fraction of the speed of light (Brueckner and Jorna,
1973). This conclusion follows from a determination of
the propagation speed V in

aD/ak+ v(aD/a~) = 0, (3.6S)

for the solution Eq. (3.62). With ~ = s.k + (I) and D
given by Eq. (3.61), Eq. (3.65) yields approximately

c' t' 1
(V —s.) ~ ——'( kk, ——k'

~
+ i I,' + (8 + ii )f

COL, ( 2
2

Cx V ——(k. —k) = 0,
GAL,

or for the back-scattering mode

V = s. —[c&/2(1+ I'/21;)].

(3.66)

(3.67)

If we assume I'. = 4I;, V ——4 x 10' em sec ' for n= I/2n„and V ——3 x 10' cm sec ' for n = ,—'n,. For a
typical- interaction length of 100pm the growth time is
about 1 psec which is clearly too short for development
of the convective instability, An absolute instability is
approached for very small kl., but here the threshold is
correspondingly increased.
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Far above threshold the damping terms may be neg-
lected in Eq. (3.61) and the growth rate is given by Im to

where

tc = exp(im/3)Q, (3.68)

IO"

exhibiting the characteristic one-third power dependence
on the incident power flux density of the modified decay
instability. The propagation speed of the fastest tempo-
rally growing mode can again be calculated from Eq.
(3.65). We find V ——cue or V ——c/6 for n = 4n, for
a 1 keV DT plasma.

It is evident that Eq. (363) is not a meaningful
threshold for a finite plasma expanding at a speed 5R~
where %, is the Mach number. Instead, the threshold
must be determined for the excitation which in the frame
of the expanding plasma is an absolute instability (cf.
Section III.C). Thus, Eqs. (3.61) and (3.65) must be
solved with V = 9R,s. and a pump intensity for which
Im(tc —Vk) = 0. Figures 7(a) and 7(b) show the results
of numerical calculations for a DT plasma with T,
= 1 keV and T; = 0.1T, obtained by solving Eq. (3.8), for
various power Aux and plasma densities. By the present

criterion, we expect the onset of the absolute instability
to be at approximately 10"W cm ', several orders of
magnitude higher than that for the convective instability.
The effective intensity at which SBS should manifest
itself is still higher and depends on the magnitude of the
initiating fluctuation and the size, L, say, of the region
over which pha. se matching can be maintained. Let us
assume that the instability builds up from thermal noise
and that $ e foldings are required for the perturbed
quantities to be observable. The effective interaction time
may be approximated by r(psec) —5 L(ftrn)/%L For
reasonable values, $ —30, 9R, = 3, and L = 100@m, say,
the growth rate must be at least 2 X 10" sec ' at V
= 10' cm/sec '. Figures (7a) and (7b) indicate that this
raises the threshold for SBS to about 10"%' cm ' for a
DT plasma. Higher Z plasmas should have somewhat
lower effective thresholds due to decreased damping.

2. Two piasmon decay and stimulated Remen
scattering

The decay of a photon into a plasmon and a scattered
photon is also described by Eq. (8.60), but now the
region of interest is Re ~ cuit and cu' )) cc,'. With these
assumptions, the dispersion relation becomes (again, the
anti-Stokes wave is suppressed)

(to' —tc', + 2it;tc [to' —2tcto, —c'(k' —2kk, )
—(2il;"/to )(c'k' —tc')]

(3.69)

IoI'O

The threshold equation for an infinite medium follows on
setting to = co& + 6, ~5~ (( tc&, and is given by

(6 + il:)[6 + il:"to', /(td, —cog)']

I 0 lo

IO

IP I5

10 IO

—V (cm/sec )

IO

(b)

= —[~!Vo' k'/16~, (~, —~,)].
This yields

(V, )' = 161;to,'I;"/k'(to, —to, )to!,

subject to the resonance condition

tcR 2tos G)L = C k(k 2kL).

The temporal gain near threshold is given by

(3.70)

(3.71)

(3.72)

lo l2
KP,1m' = I

/

' —I
)Po )

tos ter ~ I~

The resonance condition imposes stringent restrictions
on the range of densities over which this instability can
be excited. Let the matching wave number k = fkL and
set tcL/tcR = n = toL/to, . This assumes that s, k
which is satisfied provided the density is not too low. Eq.
(3.72) is then satisfied for

IO"
IO IO IO

IO
IO

g = 1 ~ [n(n —2)/(n' —I)]'~', (3.74)

—Y (crn/sec )

Fm. 7. Temporal gain vs convective speed for stimulated Brillouin
scattering: (a) n = 0 5n;, power fl.ux densities in Wcm ', 1: 4 x 10", 2:
5 X 10", 3: 10" (b) n = 9n0„p weor flux densities in Wcm ', 1:
3 x 10" 2: 10" 3. 10"-

which shows that f ~ ~oo for n = ~1 and further that
there are no values of f for the range 1 ( n ( 2.
Consequently, there exists a critical region for this mode
at the density n = &/4n, . Also, as k increases from the
matching value k = kl., the corresponding density satis-
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fying the resonance condition decreases sharply away
from 4n, .

At the critical surface n = —,'n, the decay products in
two dimensions are two plasmons, each with a frequency

~&. In the backscattering case this is the cut-off den-
sity for a photon decaying into a plasmon and a photon.
The propagation speed at maximum temporal growth
follows on solving the saddle-point equation for V keep-
ing k real. Differentiations of Eq. (3.69) with respect to k
yields, near threshold, that V s,'/c 10'cmsec —'forn
= n, /4 and 0, = 1 keV. This indicates an absolute insta-
bility in a plasma expanding at a few times sound speed.
Figure 8(a) shows the results of numerical calculations
for a DT plasma withe, = 100; = 1 keV. If 30e foldings
are required for the instability to manifest itself in a
plasma expanding at three times the sound speed, the
graph shows the threshold must be increased from
10"W cm ' given by Eq. (3.71) to 10"W cm '. Analo-
gously with the "parametric decay" instability, there is a
further enhancer'nent due to the WKBJ factor at the
transition point. By Landau damping, the plasma oscilla-
tions heat the electrons in the underdense region in a
non-Maxwellian way, which can again result in the

generation of undesirable "hot" electrons.
For densities less than —,n„ the matching condition

~1 ——~& + u2 yields a dispersion for the ~2 mode given
by ~& = (~,'+ c'k&')'', k2 ——kL —k 4 0. The excita-
tions are now a plasmon and a scattered photon, a
process which may be termed stimulated Raman scatter-
ing. Since the threshold, Eq. (3.71), decreases with densi-
ty, this mode is most readily excited at low densities. Well
above threshold (~6~ )) I;), however, the temporal gain
becomes

1 t' ~,'k' Vo'
Im ~ = —

I I

—g~.~l. , (3 75)4 ( 6)s(631. G)s) 9 c

which falls oA at lower densities.
These results for SRS cannot be applied to a finite

medium because for n ( n, /4 the saddle-point relation
near threshold gives a propagation speed which is a
sizeable fraction of c. Instead, the threshold for the
absolute instability must be determined. Figure (8b)
shows the results of detailed numerical calculations based
on Eq. (3.69) and Eq. (3.7) for a DT plasma with
0, = 10g; = 1 keV. For n = n,/9, for example, the
threshold for the convective instability is 10" W cm ' in
agreement with Eq. (3.71), while for the absolute instabil-
ity in a plasma expanding at a speed of 10' cm sec ' it is
larger than 10" W cm '. lf the further requirement of 30
e foldings is imposed, the efI'ective threshold becomes
about 10" W cm ' for n = n, /9,

It is interesting to note the correspondence between the
ion-acoustic instability and the two-plasmon decay mode
as they relate to SBS and SRS, respectively. The ion-
acoustic instability is excited at the critical density n„
while SBS occurs for no ( n, Simila. rly, the two-plasmon
decay mode is excited at its "critical" density n„while
SRS occurs only for n ( n, .

Ip lo
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IQ
I2
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IO'o
T

IO IO IO
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I 0 Io

IO
IO
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G. Stabilizing mechanisms

The growth rates and thresholds of the instabilities
discussed so far are based on the limearized equations for
a homogeneous plasma. The finite extent of the interac-
tion has been taken into account through an efI'ective
interaction time determined by the propagation speed of
the instability. We have seen that in some instances this
raises considerably the expected threshold over the ho-
mogeneous value. A linear mechanism which can further
increase thresholds has been suggested by Perkins and
Flick (1971), and Rosenbluth (1972). Since a plasma has
zero-order density gradients, ' the wave numbers of the
elementary excitations depend on density so that in
general the resonance condition can only be satisfied
locally. The growth rate is now set by the magnitude of
the inhomogeneity which determines the size of the
region over which the phase mismatch is still reasonably
small. This process can lead to reduced growth rates and
correspondingly higher thresholds.

The following argument yields the main conclusion;
for details, the work of Rosenbluth (1972) should be
consulted. Assume that the amplitudes of the excited
fields are slowly varying functions of time and space.

Fra. 8. Temporal gain vs .convective speed. for /qn, and Haman
modes (a) n = ~&~4n, ; power Aux densities in W cm ', 1:8.5 X 10",
2: 10", stimulated Ramau scattering (b) n = 1/5n„pow rRuex
densities in %' cm-2 I:1011 2: 5 )& 1011 3: 10~4

This density variation was, of course, already implicit in the previous
discussions on subcritical density instabilities. There, ho~ever, ~e
assumed that this did not aA'ect the resonance conditions.
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a'W, /az' —ik'z(a~, /az) —(i~ + ~.'/V V)W, = O, (3.78)

for A2 ——a2 exp[ —i J*, «dz], where it is assumed for
simplicity that K = k z. Substituting in Eq (3.78)

S pe "dp, (3.79)

we obtain

2

(3.8o)

or

S(I) = exp( —,-'I'/ik')~"'* "" (3.81)

provided yo ) ~
V( V2k'~. The boundary terms are zero and

the solution properly behaved if for X we choose the
Hankel contour oo —(0 +) as defined by Whittaker and
Watson (1927), say. The asymptotic behavior of A2 is
determined by expanding the integrand around the sad-
dle point at I20 = —ik'z + [—(k'z)' + yo/V( V2]'/'. Expo-
nential growth occurs, therefore, over the range 0 ( ~z~

& z, = 2yo/k'(V( V2)' '. The net gain over this interval in
the intensity I = 2222 from some initial value Io is

I = Io exp(2m. yo/V(V2k'), (3.82)

so that the modified threshold condition is 22ry', )
ViV2k'.

To illustrate, k' —akL/az —konp/n, L+~, where ko is
the vacuum wave number of the incident radiation, and
L —= [(I/no)dno/dzJ

' is the scale length of the inhomoge-
neity. Equation (3.82) can now be combined with the
expressions for y0 to yield modified thresholds for the
various elementary processes discussed previously. The
results are conveniently expressed in terms of VD, the
electron quivering velocity in the photon field. We find
Vo'k. L ) V'. In this expression, V = s, for the ion-
acoustic instability, the two-plasmon decay excitation,
and SBS, and V = c for SRS; k is the photon wave
number, except for the ion-acoustic instability when k is
the acoustic wave number. As a numerical example, con-
sider SBS in a 1 keV DT plasma with 9, = loe; = 1 keV

Equations (8.9) to (8.15) then yield for the amplitudes, a2
and a2, say, of the decay products the following approxi-
mate equations (See, for example, Tsytovich, 1970):

z
'rta, /itt + t((rite/rtz) + 2pa, = y, a; exp(if z(z)dz),

(3.76)

2a;/at + V(2a'/rtz) + 2ra; = tea, exp(if z(z)dz).

(3.77)

The coupling factor yo is taken to be the growth rate in
the absence of damping for the homogeneous medium,
and has been given earlier for the various processes. The
phase mismatch «(z) = kL, —k( —k2 is defined such that
«(0) = 0, V, = a~, /ak„and V, = au, /ak2 are the group
velocities, and I( and I; the damping constants. If we now
assume that there are no normal temporal modes and
that the effective threshold much exceeds yo = I112, the
problem reduces to that of solving approximately the
Weber parabolic cylinder equation (cf. Miller, 1965)

so that s,' = 9,/ma = 1.76 X 10' (cm/sec ') For
= loopm and a photon wave number of 10' cm ', the
inhomogeneity threshold is Vo' —10"(cm/sec ')', corre-
sponding to a power flux density in the plasma of about
3 x 10"W cm '. While this is several orders of magni-
tude higher than the homogeneous infinite plasma value,
it is quite comparable to the threshold for the absolute
instability.

The application of the above analysis should be quali-
fied by the following considerations. First, the growth
rate yo follows from the equations for an infinite homoge-
neous plasma by ignoring dissipation and by further
assuming that yo is much less than the frequency of the
excited wave. The former assumption is justified a poste-
riori by the elevated effective threshold, but the latter
may be invalid in some applications, particularly in the
case of phonon excitation (yo g s.k) with scale lengths
of the order of mm. In fact, we have seen for phonon
excitation that, at high intensities, the growth rate no
longer varies linearly with the proper fiux density but,
rather, with its one-third power (cf. also, Galeev et al.
1973). In view of the discussions on absolute instabilities,
it is also not clear that the proper identification of the
group velocities V~ and V& can always be made without a
detailed analysis of the dispersion relation. This is closely
connected with the problem of the unique determination
of the wave number of the excitation. We saw, for
instance, that for SBS the mode growing at a rate yo
convected at a speed which was a sizable fraction of the
speed of light. This would, of course, result in a still
higher threshold. Finally, any application of these linear
theory results to instabilities which are excited near the
critical density surface must be viewed with some skepti-
cism, as these are transversely propagating modes whose
group velocity in the direction of Vno is zero in the one-
dimensional problem.

Since the parametric instabilities require for their exci-
tation a strongly phase-correlated driving beam, their
growth rates should be reduced by any mechanism which
lessens the space-time coherence of the laser beam. One
method for achieving this would be to heat the plasma by
a large number of mode-locked pulses. Another approach
involves frequency broadening (Bodner, 1973).Yamana-
ka et al. (1973)have indeed found that a broad band laser
system heats the plasma more effectively than the con-
ventional narrow band system.

Other stabilizing schemes which have been suggested
involve nonlinear interactions. An example is the analysis
by Valeo, Oberman and Perkins (1972) (see also DuBois
and Goldman, 1972) of the nonlinear wave-kinetic equa-
tion for the ion-acoustic instability. For strong acoustic
damping, the unstable plasma waves are stabilized by
coupling to stable plasma waves through ion nonlinear
Landau damping. The resulting plasma waves of smaller
wave number then decay by collisions. These calculations
assume three-mode coupling, equal ion and electron
temperatures, and weak turbulence which lessens their
significance for laser fusion conditions. In fact, the
stimulated decay waves will in turn be coupled by the
pump, a process which ultimately results in the incident
energy being distributed over a whole spectrum of exci-
tation s.

It has also been proposed that some nonlinear interac-
tion process may result in an effective electron collision
frequency, s* say, suKciently large to stabilize the para-
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metric instability, i.e., such that yo = I;v*. This would
lead to v* = ~l. ~.Eo /32mn, T, I; which would correspond
to strong absorption of the incident radiation.

Stimulated Raman scattering may be limited by Lan-
dau damping of the Langmuir waves, which sets in for
kX j) ~ 1/3. For back scattering k —2k&, predicting sta-
bilization at electron temperatures 8, —0.03m, c'no/~n, .
The upper limit on k for ion-acoustic waves is higher, so
that these continue to be excited down to considerably
shorter wavelengths, and this is not an effective satura-
tion mechanism for Brillouin back scatter.

It appears, therefore, that of the back scatter instabili-
ties SBS must be regarded as the more serious, not only
because of its lower threshold, but also because of the
apparent lack of strong saturation mechanisms. There is,
however, a need for a realistic nonlinear analysis for laser
fusion problems, as even the more elaborate calculations
only apply for weak turbulence and/or plane geometries.

d
dz

1 de(z) dw + kl. (e —sin'80)w = 0,z z (3.83)

and H = w(z) exp[ —i(kL sin Ooz —~Lr)] Ey= —i(BH./Bz)/k, e, E, = i(BH„/By)/k, e. For I; « cu„
the dielectric constant varies with z according to

()=1- ', ll+ '(=1- — ', (384)
GAL ) nc I.

if we assume a constant damping factor given by its value
at co, = coL,. Denisov (1956) studied the solutions of Eq.
(3.83) extensively for a linear density profile n/n, = z/L,
say. For large angles of incidence the singular point
zo = L(l —i2I:/uL) and the point of refiection z~ = L(1—sin'80 —i21;/~L) are su%ciently far apart in terms of
the wavelength for the solution near these points to be
given by distinct functions. As expected, the solution
away fi'olll z = zp is an Airy function. For z& ( z ( zo

H. Resonant absorption

The calculations so far have not allowed for the effect
of polarization on the energy absorption. Zhekulin (1934)
found for radio waves incident at angle Ho on a stratified
isotropic ionosphere that the electric field components
propagate independently through such a medium. The
calculation of the component perpendicular to the plane
of incidence is analogous to that for a normally incident
beam, and exhibits the usual Airy function enhancement
at the point of reAection where the dielectric constant

sin' Ho. The field components in the plane of inci-
dence satisfy an equation which in a collisionless system
has a singularity at the critical density surface leading to
increased absorption. This singularity clearly disappears
for normal incidence. Further, as the angle of incidence
increases, the point of reAection recedes from the critical
surface, thereby reducing the effect of the singularity.
One might expect, therefore, that the increase in absorp-
tion at the critical surface will be largest for some
intermediate angle whose value depends on the scale
length of the density inhomogeneity.

Let an electromagnetic wave propagate along the z
direction and be incident at angle 80 on an inhomoge-
neous plasma whose properties vary only with z, and let
the plane of incidence be the y—z plane. The field
components then follow from the solution of

the solution is essentially a modified Hankel function of
the first kind of order 1. From the relations below Eq.
(3.83) and the asymptotic behavior of the Hankel func-
tion it follows that at z = zo the field component E, has
a logarithmic singularity and

~

E,
~

—sin 9O w(zo) ~/~(z—zo)/zo + i21;/~ ~. In the limit 0, —& 0 this last result is
clearly incorrect as E, = 0 for normal incidence, reject-
ing the fact that for small angles the transition point and
the singularity can no longer be treated separately. To
determine the angle of incidence for which absorption at
z = zo is a maximum, Denisov (1956) obtained a solution
in terms of an Airy function and its derivative which
approximately represents w(zo) for all angles 80 On. the
basis of that calculation ~iE, (zo)~ has, in a collisionless
medium, its maximum value when (kl. L)' ' sin 80" ——0.7.
For 1.06p, radiation falling on a plasma with scale length
L = 100p„ this yields 80" —6' corresponding to ~E,

~—(~L/21;)(27rkLL) '' in units of the incident field. It
will be seen that this phenomenon can lead to large fields
and electron velocities at z = zo. This has been con-
firmed by the simulation studies of Freidberg et al. (1971)
who find that the resonant mechanism leads to the
formation of a strongly non-Maxwellian high-energy tail
on the electron velocity distribution. The approximate
electron energy, ~, say, may be calculated by integrating
the maximum E, from z = zo to the point zo ~ Az where
E, drops to half its maximum value. The above expres-
sion for E, yields Az = 21;zo/(a)L, and allowing for the
field normalization we obtain e, —(8PL ~l. m, L/n, )' ',
where PL is the absorbed power fiux density. For 1.06',
radiation, PL ——10"W/cm' and L = 100p„e, —,'- MeV.

I. Experiments and simulation studies

Experimental investigations on the above-named insta-
bilities are at present scant. There is no incontrovertible
evidence as yet for their excitation in laser-driven plas-
mas, although it is difficult to explain the reAection
measurements of Shearer, Mead, Petruzzi, Swain, and
Violet (1972) and of Eidman and Sigel (1972) without
invoking some sort of stimulated phenomenon such as
SBS. Yamanaka et al. (1972) found that the theoretical
thresholds for the modified two-stream instability and the
parametric decay instability were within the range of
intensities covered in their experiments which showed
anomalous absorption. They further correlated the onset
of anomalous absorption with an anomaly in light reAec-
tion and with the appearance of a fast-ion group and an
increase in electron temperature. These phenomena, inci-
dentally, appeared to be closely correlated with neutron
yield. The recent experiments of Bobin, Decroisette,
Meyer and Vitel (1973) are also convincingly explained
by coupling between parametrically excited longitudinal
Langmuir waves and the pump field. These experiments
all involved peak intensities of 10"—10"Wcm ', sufficient
for parametric conversion, even allowing for macroscopic
density gradients. Their counterparts are almost certainly
responsible for parametric coupling of waves, enhanced
heating, @nd anomalous refIectivity observed in micro-
wave and ionosphere experiments carried out among
others by Stern and Tzoar (1966), Gekker and Sizukhin
(1969), Eubank (1971), Phelps, Rynn, and Van Hoven
(1971), Dreicer, Henderson, and Ingraham (1971), and
Chu and Hendel (1972), for electromagnetic excitation,
and by Franklin, Hamberger, Lampis, and Smith (1971),
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and Stenzel and Wong (1972) with electrostatic excita-
tion. Where thresholds were measured they agree reason-
ably with calculated values, particularly in the Stenzel
and Wong (1972) experiment where boundary effects for
the decay waves were small, and in the experiment of
Eubank (1971) if allowance is made for plasma inhomo-
geneity (cf. Chu, Hendel, and Dawson, 1972). The ulti-
mate proof, however, must involve detailed substantia-
tion of the resonance conditions and determination of the
dispersion of the excited modes.

Further evidence has been provided by a number of
numerical or simulation experiments. We note particular-
ly those indicating anomalous electron heating (Kruer et
al. , 1970), ion-acoustic decay instability (Bodner, Chap-
line, and de Groot, 1973), anomalous high-frequency
resistivity (Kruer and Dawson, 1972), and excitation and
nonlinear development of back-scattered SRS and SBS
(Forslund, Kindel, and Lindman, 1972). Strong electron
heating due to the initial development of SRS at n ( &/4n,

was seen followed by saturation and the subsequent
excitation of the ion wave in SBS. Simulation calcula-
tions such a,s these are of great importance for studying
the nonlinear regime, especially with respect to stabilizing
mechanisms. The work of Forslund et al. (1972), for
instance, indicates stabilization by fiuid saturation when
the rejected wave has grown until it is equal in amplitude
to the pump wave. They also find that at high pump
intensities, linear growth is quenched by wave breaking,
resulting in reduced refIection. This nonlinear phenome-
non can occur when the perturbed density grows to
exceed the unperturbed density before Quid saturation is
attained. The limitation of these studies is that they do
not provide detailed information about the early, linear,
phase of instability development near threshold. This is
because the computer rurining time is limited to a
few thousand laser periods Thus, .a temporal gain of
10"sec ' is required, corresponding to intensities well
above threshold.

r'a a ~ an
m, nl —+ v —[v = -28—,

( at azp az

an/at+ anv/az = 0,
(4 1)

with z the depth from the surface, and t the time. The
solution is easily shown to be

n = n, exp( —z/c, t),
U = CT + (z/t),

(4.2)

with cT the isothermal sound velocity cT = (28/m;). The
total energy per unit area in the plasma is

1 t' zi'
E = ~ dz m, nj c—T+ —

~
+ 3n8

p 2 ( tp
= Snp8cTt.

(4.3)

These effects can be estimated to give the order-of-
magnitude of the energy partition among the various
processes. The pressure driving the implosion arises pri-
marily by removal of material at the surface of the dense
compressed DT, as a result of energy transport from the
laser deposition region to the region of compression. This
region of energy Bow, primarily by electron conduction,
must be approximately isothermal if efficient energy
transfer is occurring, although the density drops rapidly
outward from the dense heated surface due to outward
acceleration of the ablated material removed at the dense
surface. If the temperature is suKciently high so that the
laser energy Aux is efhciently transferred to the ablating
surface, energy balance requires that the incident laser
flux be equal to the energy in the ablated material. In one
dimension and under isothermal conditions, the equa-
tions of motion and continuity are (we assume equal
electron and ion temperatures)

IV. HYDRODYNAMIC ENERGY TRANSFER

The problem of laser energy deposition in the plasma,
which is clearly one of the major issues in laser-driven
fusion, has been extensively reviewed in the preceding
section. The analysis is necessarily inconclusive since the
actual magnitudes of the various coupling mechanisms
are limited by nonlinear effects which are outside the
scope of the usual instability theory. In addition, the time
dependence and spatial scale of the laser heating process
can markedly affect the instability growth. The problem
of the laser —plasma interaction therefore awaits experi-
mental resolution. For the present, we assume that the
various effects lead to good energy absorption.

The absorbed laser energy appears as thermal energy
of the absorbing layer, as kinetic energy of the expanding
plasma, and as thermal and kinetic energy of the over-
dense plasma into which energy is transferred primarily
by electron conduction. The penetration of energy into
the overdense plasma is accompanied by a hydrodynamic
rarefaction wave following the thermal conduction wave.
Consequently, the energy deposited by the laser is very
markedly depleted by the loss of energy to outward
motion and expansion of plasma heated by the conduc-
tion wave and subsequently removed by the hydrody-
namic rarefaction wave. ,

Thus energy balance in plane geometry requires a laser
energy flux

(pL ——8np 8cT. (4.4)

m(t) = m, —mt.

The equation of motion is

(4.5)

giving

(mp —mt)r- = p, (4 6)

v(t) = (p&/m) ln[m, /m(t)]
= cT ln[mp/m(t)].

(4.7)

The kinetic energy in the accelerated layer is

m(t)v(t)' = ,—'m(t)cT[ln[mp/m(t)]}'. (48)

The mass How into the rarefaction zone is m = m;cT np,

and the ablation pressure p~ = 2np8
These equations may now be used to determine the

acceleration of the surface. We treat the accelerating high
density layer as a mass layer of initial mass per unit area
mp. The mass loss makes the mass a function of time,
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The laser energy is

EL = (ALP

= 8npecp[(mp —m(t))/m]

= 4cr[m, —m(t)].

(4'.9)

[ m(t)v(t)'/E~] .. = 0.081 (4.11)

The above estimate is based on simplifying assump-
tions and has neglected the spherical nature of the
motion. More detailed calculations for the actual process
using the numerical methods described in Sec. VI give a
similar result, the energy transfer being at best about 10%
and more typically about a factor of two lower. Thus the
efficiency factor eL is between 0.05 and 0.10.

V. COMPRESSION

A. introduction

The preceding analysis shows that the production of
useful amounts of fusion energy can result only if the
pellet is highly and efficiently compressed. The compres-
sion must also be carried out under conditions which
bring the central region of the pellet to ignition tempera-
ture and density but which leave the rest of the com-
pressed pellet as cold as possible. The latter condition is
essential to minimize the over-all energy requirements.

The problem of compression centers around the hydro-
dynamics of convergent shocks and of providing the
pressure at the pellet surface which is required to produce
the desired hydrodynamic motion. The pressure variation
is in turn determined by the absorbed laser ffux and the
energy transfer from the deposition region into the
ablating pellet surface. These processes therefore depend
critically on a correct description of the laser deposition
process and the energy fIow into the dense pellet. Finally,
the compression may be limited by departures from
spherical symmetry produced by nonuniform laser illu-
mination, intrinsic pellet asymmetries, or by hydrody-
namic instability musing amplification of small disturb-
ances in the pellet motion.

In Secs. III and IV we have exhaustively examined the
problem of laser coupling to the plasma and given an
outline of the limits set by hydrodynamic transfer into
the dense pellet core. In subsection V.B we review the
general features of the hydrodynamics. In subsection V.c
we describe the structure of a single shock in spherical
geometry and show how the fusion energy produced can
be determined analytically. In subsection V.D we review
the theory of shock sequences in plane geometry as an
introduction to the more difIicult problem of shock
sequences in spherical geometry, which is reviewed in
subsection V.E. We then turn in subsection V.F to the
dificult issues of anomalous energy transport into the
pellet. Finally, in subsection V.G we discuss the origins

The ratio of energy in the accelerated layer to the
incident laser energy is then

m(t)v(t)' 1 m(t) ~f
mp

8 m. —m(t) E
"

m(t) &

The maximum energy transfer occurs at mp/m(t) = 5, so
that

and effects of asymmetry in the pellet compression.

B. General features of the hydrodynamics

The conditions to be achieved in the compressed pellet
are qualitatively clear from the analysis in Section II. The
center of the compressed pellet must be brought to the
ignition temperature of a few keV while the rest of the
pellet is highly compressed at the lowest possible temper-
ature. Very high compression is desirable to maximize the
reaction rate after the pellet has ignited. Too high com-
pression however requires excessive work done against
the degeneracy pressure of the electrons. Excessive com-
pression is also unnecessary since the pellet yield is
eventually limited by fuel depletion.

The driving pressure producing the pellet compression
results from the ablation of the dense pellet surface,
which is produced by the flow of energy from the laser
deposition region, the energy being carried by hot elec-
trons. If the electron distribution is Maxwellian and the
electron mean free path short, relative to the depth of the
overdense plasma, the electron energy is carried by
classical electron conduction which can be described by
the standard diffusion equation of heat fIow. Since the
conductivity of the electrons is proportional to (8,)'t', the
temperature in the conduction region is a steeply rising
function of distance from the thermal front, with most of
the 'conduction region being approximately isothermal.

Since the compression is ablation-driven, with the
velocity of material removal at the dense pellet surface
determined essentially by the local speed at the thermal
front, the time available for the hydrodynamic motion is
less than the sound transit time to the pellet center
through the relatively cold plasma ahead of the conduc-
tion front. The motion of the pellet surface must there-
fore be supersonic with respect to the cold plasma, and
shocks necessarily form. The shock heating, however,
must be minimized since the shocks heat the plasma
irreversibly, increasing the final work which is required to
reach the desired compression. The strength of the shocks
which form is determined by the pressure at the conduc-
tion front, which is fixed by the temperature in the
conduction region. The temperature is determined by the
laser flux which is absorbed near the critical density
surface.

The problem of minimizing the shock heating while at
the same time driving the pellet to high compression is
qualitatively clear but the highly nonlinear nature of the
process makes analysis diFicult. The problem is, however,
ideally suited to computer study which is the basis of the
quantitative results to be given later. The next subsection
analyzes the relatively simple case of a single shock in
spherical geometry.

C. Compression and fusion yield in a single
convergent shock

The first published suggestion of the possibility of
obtaining increased fusion yield by producing pellet
compression in a convergent shock is that of Daiber,
Hertzberg, and Wittliff (1966). They did not analyze the
problem. of laser energy deposition, or of the thermal
conduction process and pellet. ablation driving the implo-
sion, or of the energy loss into the ablated plasma. Their
results are, however, of considerable interest since they
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were among the erst to suggest using a laser as a
hydrodynamic driver of pellet compression rather than as
a plasma heater. Their analysis was based on the com-
pression produced by uniform pressure applied to the
pellet surface which produces a single shock. This case is
of interest since the results for fusion yield and shock
energy can be obtained analytically from the well known
results of Guderley (1942), provided that the perturbation
of the hydrodynamic process by the fusion reaction is
ignored. This is approximately valid under the conditions
which can be produced by a single shock, if the fusion
yield is not appreciably larger than the hydrodynamic
energy.

In a strong spherically convergent shock, a self-similar
solution holds which gives the shock position as a func-
tion of time as

The fusion energy is to a very good approximation
produced by the compression and heating due to the
reflected shock. In addition, the temperature in the
reflected shock is a slowly varying function of x, although
a rapidly varying function of ». Thus, Eq. (5.6) can be
accurately approximated by

E,„„„=nn'Wt r J'"r'+'r" drvv(d(r, x, ))f dxf,'( ),x

(5.7)
with x) the scaled time of the reflected shock. In Eq. (5.7)
the temperature following the second shock is given as a
function of radius by

(a)

» = ((—ts)", (S.l)
- with time measured from the time the shock reaches the

center of convergence. For an ideal gas with y = 5/3
and in spherical geometry, n = 0.6884 (Sigmar and
Joyce, 1971).The parameter ( in Eq (5.1) determines the
shock strength. The scaled density, scaled temperature,
and scaled pressure at a radius r are functions only of the
reduced time r/ro, i.e.,

20

IO

p/po = f, ( /r& )s,

p/po t/o' = f.(r/ro)

f/ = mp/2p = (muo/2) fs(r/rs),
(5.2) I

-I 0
I I

2 5 4
t/tp

I I I

5 6 7

(we assume equal electron and ion temperatures) with

p ~

po = initial density,

p, = pressure in initial shock

= (2/(v + 1))psmo.

(53)
l5—

N&

IO—

The functions f„ f„and fs are (from Goldman, 1973)
given in Figs. 9(a), 9(b), and 9(c). Figure 9(a) shows that
the passage of the erst converging shock gives a density
increase of a factor of four (for a gas with y = 5/3)
followed by adiabatic compression to a density ratio of
about 15. The shock then is rejected at the center and on
returning gives a further shock compression to a maxi-
mum density ratio of 33. This is the maximum compres-
sion that can be achieved in spherical geometry by
passage of a single shock. From Eq. (5.1), the shock
velocity is

0.5

The fusion yield is

rg —rrtgl/nr (n—1)/vv (5.4) 0.2

2

Ef..;.„=4m, r'dr dt 4 ov r, t 8' 5.5

where W = 17.6 MeV for the DT reaction. The fusion
yield sharply peaks for small r and near the time of
maximum compression, so that the upper limits of inte-
gration in Eq. (5.5) can be set equal to ~. Using Eq.
(5.1) and Eq. (5.2), we rewrite Eq. (5.5) as

E—icu

O. I

t/ to

q )/n

d»I —
I dxf (x)&~[g(» x)] (5 6) Fta. 9. Distributions of density p, pressure p, and temperature 1/ for a

4 () ' converging shock wave (Csoldman, 1972).
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8(» «) = (m/2)[I (r)/po]f4(x )

(n( 1/n r 1 —1/n)2f (X )y+1
In Eq. (5.7), changing variables from r to 8, we find

2(1 —n)

gives the correction, arising from the shock compression,
(5 g) to the simple formula in the brackets () in Eq. (5.16),

which would be the result for a homogeneous plasma at
density no with radius r, heated to 8, confined for the
hydrodynamic disassembly time to(r, ). The numerical
value can be determined by evaluation of the integral Ib
as defined in Eq. (5.9), using the function f, given in Eq.
(5.2). The result is

g( +3)/2(n —c) g g
0

with

&

n'(x /, (x )"I=J, dxf '(x).
The integral over 8 in Eq. (5.9) may be evaluated by a
saddle-point approximation. The reaction constant ov in
the few keV temperature range is (Wandel et al. , 1959)

ji = 3.43x10.3n 6m.

21 —n
(5.i7)

This large correction factor arises from an average com-
pression of about 30, an iocrease in temperature and rise
of reaction rate for the region r ( r„ from a reaction time
which is about five times to, and from a factor of about 2
over r, in the effective radius of the reacting fuel, r, being
the radius at which the reaction peaks.

The kinetic and thermal energy in the shock can be
similarly calculated. The energy is

ev = (~0/e'/') exp( —B/8' '). (5.io) Eshock 4~ r dr ZP& g p

d exp— (5.1 1)

with

Thus the integral over 8 in Eq. (5.9) may be written

with

msx

42» r dr po tto fE(t/t ),0 y+ 1

(5.i8)

f(8) = k in 8+ B8 '/',

k = (n+ 3)/2(1 —n)+ 2/3.

The saddle point is at

(5.12)
fE =

( 2p14'+ 2p [ I polo
I

~

Ev+ j
Using the relationship between r and to given in Eq. (5.1),
and Eq. (5.4) for uo, and introducing the variable x= t/to, we obtain for Eq. (5.18)

8, = (B/3k)' = 0.92 keV.

The saddle-point approximation gives

(5.i3) E„.„=4m[2/(y + 1)jpon'('t'" 'IE, (5.20)

d8 exp — 8 = „exp — g,

Returning to Eq. (5.9), we find = 3.60.
(5.21)

n 6m
Eg„„.„——mno 8Ii (, k (rv(8, )2 1 —n)

0 1 (Bn+1) /2(n 1)—
]4/(1—n) (5 ]4)(rnn' f()(x1) /I

The corresponding value of the radius at which 8 equals
8, is, using Eq. (5.8),

~&e.(V+ )l~""'" "(,/, „(515)
Emri'f&(*1) i

With this result, we can also put Eq. (5.14) into the form

4 PSn —2

Enhook 3
'2»(3no 8x)rx + '1 f (I 60)

IE ~n (5.22)

Using the numerical values of the various parameters, we
obtain the result

To evaluate Eq. (5.20), t must be specified. To obtain an
estimate we set t equal to the time at which the reflected
shock reaches the radius r„given in Eq. (5.15), i.e.,
t = 1.60to(r, ). The result may be put into clearer form by
also using the relationship in Eq. (5.15) between the
temperature 8, and the radius r, at the saddle point of the
temperature integral in Eq. (5.9). After some rearrange-
ment of Eq. (5.20) we find

4 n(2) ev(8,), 3n 6m
Efnsion 3 /t 4 »I'r, ' to (rx) ~ Ii.

2 1 —n
4

E,k k
= 24.13m(3n08, )r,'. (5.23)

The factor

3n 6m

2(1 —n)

(5.16) Eq. (5.23) shows that the energy in the shock is greater by
a factor of 24. 1 than that given by the thermal energy at
a density n0 and a temperature 0, within the radius r, . This
factor arises from the compression of about 20 within this
radius, and from higher temperatures than 8, for r ( r, .

Equation (5.16) for the fusion yield and Eq. (5.23) for
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the energy in the shock now may be combined to
determine r, as a function of EN...„/E,h.,k, and finally E,h.,k.

The result, which may be expressed in the form of Eq.
(2.16) with E),aer = Eaheek/EI. r 1s

n &' &Ef.„..&' 1
Eh- = 409' —'

l l

E no ] ( Eraser j 'EL,
(s.24)

In the original paper by Daiber et al. (1966), the energy
requirement for a fusion energy equal to twice the shock
energy and an initial density equal to solid density is
given as approximately 2 MJ. Since the details of their
calculations are not given we have not been able to
determine the source of the large discrepancy between
their result and that given by Eq. (5.23). They also did
not determine the coupling efficiency ~L.

The surprising result of the analysis leading to Eq.
(5.24) is that the shock compression has not reduced the
laser energy requirement from that given by Eq. (2.16),
assuming that the coupling efficiency is the same. The
effect of compression appears to be offset by an ineffi-
cient temperature distribution which reduces fusion ener-

gy production in most of the fuel. The compressed center
which is strongly heated has too small a volume and too
short a compression time to contribute appreciably to the
net fusion yield.

The effective laser coupling to the shock cannot be
readily estimated from the preceding analysis, since the
laser absorption, surface pellet ablation, and the energy
lost in the expanding plasma must be separately calculat-
ed.

Calculations by Lubin and collaborators (1971) give
for DD a fusion yield of 3.7 x 10' neutrons for an
absorbed laser energy of 927 J. Scaling this result to DT
gives a fusion yield of 0.41 J. Equation (5.24) gives this
yield for s& —0.21.

Calculations at KMS Fusion for a solid DT sphere
with a laser pulse constant in time give Ef„„,„=El„„ata
laser energy of about 500 MJ, although the calculation
difrers from the model described above in that the eN'ect

of pellet self-heating is included.
The analysis of this section and the numerical results

given show that pellet compression sufficient to give an
interesting fusion yield cannot be produced by a single
shock. This is. because a single shock in spherical geome-
try cannot give a compression greater than a factor of
about 30, which is too small to overcome the other
inefficiency factors in the laser coupling and in the
hydrodynamic processes.

We turn next to shock sequences for achieving high
compression.

D. Shock sequences in a plane

To clarify the problem of compression by a sequence
of convergent shocks, we first review the process of
compression in plane geometry for which the problem
can be solved exactly. We then will turn in the next
subsection to the actual case of interest in spherical
geometry.

The conditions at a shock are fixed by the conservation
of mass, momentum, and energy. Implicit in the assump-
tion of a shock is the process of entropy change due to
particle collisions which spread the shock discontinuity
over a few mean free paths.

with C„„ I the shock velocity between the n and n + 1

zones. Now consider the case of successive shocks such
that the same density change occurs at each shock
following the first shock into the stationary material at
po = 0 and Uo = 0, i.e.,

giving

Yp /p (C"+~ v )

p../p. = (Y+ I)/(Y -1+»)

(5.26)

(5.27)

(Note, that if A. = 1, p„~~ = p. and the shock is sonic. )
For this case,

p.. = p.(1+ [2Y(I —~)j(Y+ I)~]),
(5.28)

t-+~ = v + [2(I —~)/(Y+ 1)](Yp/p ~)"'.

The shock velocity is

C„„,= v. + (Yp/PP ) (5.29)

These equations show that the pressure and density
increase with n as

p„„/p, = I1 + [2Y(1 —X)/X(Y + 1)II,
P + /P = [(Y + I)j(Y —1 +»)l" (5.30)

p = [(Y+ 1)/(Y —1)]p'

The material velocity is

with

Un+ I

Ul
= 1+ ( ~ g " (S31)Y+ I &

v = ([2/(Y+ 1)](p/P ))"'
(5.32)

x = {[2Y+ &(I —Y)](Y —1 + 2&)/&(Y + 1)')' '.

The sum in Eq. (5.31) gives

Ul
= 1+ 1~ ~ ( 1. (533)1 —A. t'2Y(Y —1)l 't'x" —1

x—

Equations (5.30) and (5.33) combine to give v. as a
function of p„, i.e.,

v„ 1 —1 t'2Y(Y —1) &
' '

1 t'p. l"—"—1=
v, Y+1( A. p x —1 (p~)

(5.34)
g)

——ln x/ln~ 1 + 2Y(1 —Z) &

AY+1
Similarly,

In a one-dimensional planar shock the jump conditions
between n and n + 1 give

( ~1) )& 1
YP.

P & p. (C.. i
—v.)'t

(s.2s)
Cn a+1 vn+1 (pnjpn+I ) (Cnn+ I vn)r

pa+1 pn + (Can+1 vn) pn[1 (pn /pa+1)]r
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TABLE I. Effective gamma for
compression.

0.15
0.25
0.50
0.75
1.00

Pn+r/Pn

2.76
2.29
1.60
1.23
1.00

g2

2.06
1.89
1.74
1.68
1.67

p/p = (t /t )'*,

2~(I —Z) t' ~ + 1 y (5 35)
g, =ln 1+ In! !~(& + 1)

The efrective gamma for the compression is g2, which
reduces to y if the density change at successive shocks is
small, i.e. A -+ 1. For density increases, some typical
values of g2 are given in Table I. Thus the compression is
not far above adiabatic even with the density doubling at
each shock.

If the successive shocks are weak, h, ~ 1 and Eq. (5.34)
and Eq. (5.35) can be expanded in powers of 1 —A.. The
result is

g, = + ~, (1 —z)'+ o(1 —x)',
2Y 3Y Y + 1

g, = ~+ (1 —z)'+ o(1 —z)'.v(v —1)
3q+ I

(5.36)

Thus, for A. close to 1, the compression following the first
shock is adiabatic, and Eq. (5.34) reduces to

(5.38)

Equation (5.38) shows that the material velocity in-
creases only slowly with the driving pressure For a.
pressure increase of 100 over p&, the material velocity
is 10 times the velocity after the first shock.

The above equations hold only if the successive shocks
do not overtake each other. If the nth shock is formed at
t„, the condition for non-overtaking by time t is

v. (t —t.) & v. , (t —t. , ). (5.39)

Treating n as a continuous variable, Eq. (5.39) gives the
condition

dt„d" & v„/(t —t.)de (5.40)

or

v„/vi ( t/(t —t.). (5.41)

Thus, all shocks arrive at the same point at time t if
started at the time given by Eq. (5.41). The required
driving pressure is

p(t„)
PI

3
8(5)"' Et —t i

!+1 (5.42)

~n Y+1 tt'p ) (v—&i/2v

(2y(y —1))"' !
—"! —1, (5.37)

Y 1 &pl&

for y = 5/3,

E. Shock sequences in spherical geometry

As is apparent from the preceding analysis of shocks in
plane geometry, compression larger than that which can
be reached in a single shock can be produced if the fuel
is, subject to a rising pressure, or equivalently, to a
succession of shocks of increasing strength which are
adjusted in time so that the successive shocks do not
overtake each other before arriving at the center of
convergence. In either case, the compression and temper-
ature histories after the passage of the first shock follow
approximately an adiabat until the shock reaches the
center of convergence where the kinetic energy of motion
is converted into internal energy and a rejected shock
forms. The final temperature necessary to initiate the
fusion reaction is determined for a given final compres-
sion by the first shock strength. It is particularly impor-
tant to avoid excessive early heating of the DT by the
initial shock or by successive shock coalescence, since the
final temperature reached by the hydrodynamic compres-
sion may be too high. The optimum occurs when the DT,
after final compression, reaches the minimum tempera-
ture required for ignition. If a proper pressure history is
achieved, the achievable compression is limited finally
only by the degeneracy pressure of the electrons or
possibly by ignition of the fuel before the maximum
compression has been reached.

As an example, if DT is initially compressed without
excessive shock heating, the energy required at high
compression is the work done against the degeneracy
pressure of the electrons. The degeneracy energy per
electron is 2.68(n/n, )'t' electron volts. Thus at a compres-
sion of 300, the energy is 120 eV/electron. Compression
of a 1/2 mm radius sphere, initially at solid density, to
this density therefore requires an energy in compression
of 515 J. If a strong shock is now applied to the
compressed DT, further compression and heating will
result. The peak compression of 33 by the final refIected
shock will bring the final compression ratio to a peak of
about 10'. The temperature of five kilovolts required for
fuel ignition gives a pressure peak of 8 )& 10' Mbars. For
this to be achieved over a 5 pm dimension requires an
initial driving pressure at the surface of the precom-
pressed pellet of about 10' Mbars, the increase to 8 X 10'
Mbars resulting from the convergence and the formation
of the reflected shock. The pressure of 10' Mbars requires
an energy flux to the surface of the dense pellet of about
4 X 10"W/cm'. The actual problem of shaping the pres-
sure and hence the laser Aux profile is qualitatively clear
but can be solved quantitatively only by computer study.

The problem of fuel compression can also be solved by
the use of a spherical shell of DT fuel of relatively large
radius. The increase in the volume change of the fuel on
compression increases the hydrodynamic work resulting
from a given applied pressure, allowing a drop in driving
pressure for a given fuel mass. The shock strengths are
accordingly lower and an optimized pressure and com-
pression history may be realized more easily for a shell
than for a uniform sphere. The shell acceleration also
reduces the required range of laser powers very markedly,
particularly for relatively thin shells. The Aux optimiza-
tion problem is again soluble only by extensive computer
analysis.

The fuel compression which can in practice be
achieved at fuel. temperatures in the desired range of
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many kilovolts is sensitive to other details of the desired
density and temperature profiles, which will be discussed
later. The hydrodynamic studies in spherical geometry
using the numerical methods described in Sec. VI, which
include the laser energy deposition and energy partition
processes described earlier, show that central densities
peaking at several thousand gm/cm' are achievable.
Departures from spherical symmetry, and anomalies
in the energy transfer processes may, however, in practice
reduce the compression. These problems are described
next.

F. Preheat by fast electrons

At high laser power the laser energy deposition is
probably by anomalous absorption and strong electron
heating is expected together with departures of the
electron distribution from Maxwellian. The magnitude
of the electron heating can be estimated from a simple
model proposed by Morse and Nielson (1972). Detailed
calculations of energy deposition show approximate
agreement with the result of this model.

The laser fIux ql. , which under conditions of anoma-
lous absorption is deposited close to the critical density
surface, is removed by an inward flux qh. , of fast elec-
trons. The imposition of charge neutrality requires that
an outward Aux y,old of cold electrons balance the fast
electron current. For one dimension, with n(v)
= constant, v ( v ... the Auxes are

g)... = nH(m/8)vH,

(p,.„=n, (m/8)v, '. (5.43)

Current conservation requires nH vH = n& v~. The sum of
the electron densities may be taken equal to the critical
density n, , The result is

fP1
g3L = —nH UH 1—

8
nH

2

n t nH
(5.44)

According to the results of computer simulation studies,
the cruxes adjust themselves to minimize the fast electron
Aux, which occurs at nH = n,„„n~ = —,'n. t, giving

g)L, = (m/32)n t vH

= 3
4+hot

The resulting maximum electron energy is

E(vH) = 2mVH

= 5((pL h.„')'~' keV.

(5.45)

(5.46)

(Here pr, is in units of 10"w/cm', X in pm). The electron
energy can therefore become very high, particularly for
10 pm radiation, for laser power flux densities in the
range of 10"—10"W/cm'.

The fast electron flux from the deposition region can
.markedly aAect the heating and compression of the
pellet, preventing high compression from being achieved
if substantial preheating of the pellet occurs. The princi-
pal heating is from the unscattered electron flux. Scat-
tered electrons usually lose sufhcient energy to reduce
their range and prevent them from penetrating the pellet
further. The unattenuated fIux at the pellet center, with R

the radius of the dense pellet core, is

R dv
(pH(0) —l@L i~ expjo A.,(v) vH

h.,(vH) R
A, (vH)

(5.47)

For the reasons discussed in earlier sections, only 5 to
10% of the laser energy is effective in the hydrodynamic
compression of the pellet core. The hot electron flux,
therefore, may significantly perturb the compression un-
less the electron flux throughout most of the dense pellet
core is less than roughly 1% of the laser flux at the critical
density surface. This requires that the hot electron mean
free path. X, (vH) be much less than the pellet radius. To
obtain a quantitative estimate we assume that R/h. ,(vH) is
equal to four, which according to Eq. (5.47) gives a flux
q&H(0) at the pellet center equal to 1.4 x 10-'@,. The
Coulomb cross section for the fast electrons is approxi-
mately 6 x 10 "cm'/E (keV)' giving a mean free path

R(keV)'
X = 6 7 X 10-6

3
em.

p gin cm3
(5.48)

Thus, for pellet preheat to be prevented, the laser flux
must satisfy the approximate inequality

g)L ( [(Rp)'~'/h. „']1.2 x 10"W/cm'. (5.49)

In the final stages of compression the product of radius
and density ranges from 1 to 10 gm/cm', and the laser
flux ranges from 3 x 10" to 5 x 10"W/cm', depending
on the pellet configuration. The lower fIux value is typical
of a relatively thin fuel shell and the higher value is
typical of an initially uniform pellet. The condition
Eq. (5.49) therefore cannot be met for 10 pm radiation,
except possibly in the last stages of compression of a
relatively thin fuel shell giving a relatively high fusion
yield.

For 1 qm radiation, inequality Eq. (5.49) can only be
marginally satisfied for a typical flux and compression. If
this problem is present for DT spheres values, it may be
alleviated by the use of fuel shells which allow a large
reduction in laser power. The electron mean free path
may also be markedly reduced by the introduction of a
small admixture of high-Z contaminants in the DT.

The eAect of electron preheat is clearly important for
certain pellet configurations, particularly for long wave-
length lasers. The quantitative eAect must therefore be
determined by a complete calculation which includes the
variation of the Aux with time during the implosion, and
which treats more precisely the production of fast elec-
trons. This problem depends critically on laser coupling
instabilities in the deposition region, so that an experi-
mental study is needed to verify the general features of
the theory and to determine the possible anomalies in the
electron distribution which cause preheating.

G. Asymmetries in compression

While the compressions achievable in a spherically
symmetric implosion may be extremely high, assuming
that the pellet preheat problem can be avoided, unavoid-
able departures from symmetry certainly limit the com-
pression which can in practice be achieved. As pointed
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out in the introduction to this section, departures from
symmetry can arise from intrinsic pellet asymmetries,
from nonuniform laser illumination, and from hydro-
dynamic instability. We discuss these problems next.

The fusion pellets must, of course, be sufficiently
symmetric so that the compression is not reduced by
nonuniform motion of the pellet surface. To achieve a
compression of 10" requires the radius to be smaller by a
factor of 0.046. The initial pellet configuration should
therefore be symmetric to within one or two percent.
Though this requirement is severe, it is not unachievable.
The problems of illumination uniformity and implosion
stability appear to present more important difhculties.

The uniformity of laser energy deposition in a spheri-
cal pellet depends on the intensity and angle of incidence
of the laser Aux. These are determined by the intensity
distribution in the laser output and by the illumination
system used to deliver the laser output to the pellet
surface. It is very difFicult, if not impossible, to produce a
laser beam which is uniform in intensity and phase across
the output aperture of the laser amplifier. The focused
beam therefore will be nonuniform in space and usually
also in time. In addition, the application of illumina-
tion systems using multiple laser beams, beam splitters,
and focusing elements, results in unavoidable flux and
angle-of-incidence variation, even for uniform output
from the laser (or lasers for a multiple-beam laser sys-
tem). The consequence of these efFects is that the pellet is
exposed to a laser flux which has a relatively slow
variation resulting from the optics of the illumination
system, and a much more rapid variation due to interfer-
ence eflects and mode structure in the laser beam.

In the absence of any smoothing or averaging eAects,
the nonuniformity in laser flux would lead to marked
temperature and hence pressure varation in the pellet
surface, causing non-uniform acceleration and possibly
exciting instability in the hydrodynamic motion. The
efFects of nonuniformity are, however, very markedly
alleviated by electron conduction in the high temperature
region of laser deposition. The efFect may be qualitatively
estimated from the expected conductivity and tempera-
ture The dif.Fusion equation

(Ax)' K(T)ht/n, K.

The conductivity is

(s.sl)

K(T) ~ 3 x 10"T, '~' erg/cm sec, T, in keV. (5.52)

At the critical density n, = n, = 10"/iV„, and Eq. (5.51)
yields

(5.50)

shows that conduction gives approximate tempera-
ture uniformity over distances Ax and times At such that dv; 0 &()v; Bv & 2

p —= —V';p + p~ +
)
——B„p div U —pg;,dt ' ()x, q()x, ()x;) 3 '

dp—+pdiv v=0
dt
dc p dp 1—= —

2
—+ —dlv qdt p' dt p

(s.s4)

+ (second-order term in viscous dissipation),

scale is of the order of thousands of microns which is
typically much larger than the initial pellet radius. The
smoothing scale is much larger than for 10 pm radiation
where, however, the other problems of coupling instabil-
ity are more serious. Qualitatively, therefore, the very
rapid electron conduction leads to a very high tolerance
of the pellet hydrodynamics to laser illumination nonuni-
formity. The eAect of fine structure in the intensity
distribution is particularly strongly suppressed by the
rapid conduction flow.

The above eflects can be readily calculated with a two-
dimensional or three-dimensional hydrodynamic energy
deposition and conduction code. We have calculated a
number of implosions with a two-dimensional code with
variations as large as a factor of two in intensity between
the equator and pole of spheres and shells and found that
adequate symmetry is maintained in the implosion.
Since it is relatively easy to provide much more uniform
pellet illumination by a variety of optical methods, we
conclude that reasonable care in the design of the system
will adequately meet the symmetry requirements. This
apparently difTicult illumination problem, therefore, is
probably one of the more easily resolved issues in laser
fusion.

We finally turn to the question of stability in the
implosion. The implosion results from the acceleration of
a dense layer of plasma under the pressure resulting from
the ablation of the layer, leading to the formation of a hot
low density layer of plasma. This configuration resembles
two well known hydrodynamic conditions where instabil-
ity occurs. The classic problem of Rayleigh —Taylor insta-
bility arises in the acceleration of a dense fluid by a fluid
of lower density which is unstable against disturbances at
the interface, the dense fluid falling in "spikes" between
bubbles of the less dense fluid rising upward into the
dense fluid. The second type of instability is the forma-
tion of convection or Benard cells in a fluid heated from
below. This, of course, is most familiar in cloud forma-
tion in the atmosphere.

The possible importance of these phenomena can be
estimated from the well known results for the Rayleigh-
Taylor instability (Taylor, 1950) and for the formation of
Benard cells. We give these results first and then turn to
a more complete analysis of the problem. The equations
to be solved are:

(b, x) = 550K.„[ht (nsec)]' 'T, '~' pm. (5.53.)
This equation imposes a condition on the scale of the
temperature nonuniformity which must be satisfied for
temperature and hence pressure uniformity to be main-
tained. The characteristic implosion times are of the
order of one nanosecond, and the electron temperature in
the critical density region ranges from a few to tens of
keV. Thus for 1pm radiation the characteristic smoothing

In these equations d/dt is the convective derivative, i.e.,

d/dt = (()/Bt) + t V. (5.55)
The viscosity p and conductivity E are both proportional
to 8'~' and independent of density. The energy source
term, which is due to the laser deposition, is not included
in the above equations. This is most simply included by
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introducing an energy Aux boundary condition at the
critical density surface. We will later consider the solu-
tion of equations which include the material Bow due to
ablation. For the Rayleigh —Taylor and convective insta-
bilities, the unperturbed flow velocity and the derivative
of the heat flux can be set equal to zero. We also simplify
the problem by assuming a constant acceleration field g
in the z direction and unperturbed motion in the z
direction only These approximations are valid for times
sufFiciently short so that the change in acceleration can
be neglected, and for compressed layer thickness and
perturbed wavelengths much less than the radius of
curvature. The zero-order equations then are simply

dpo/dz = —pog,

dgojdz = 0.

In linearizing Eqs. (5.54), we use

t = 3kT/2m, .

p = kpT/m.

The linearized Eqs. (5.54) are then

BPI
PI g~i3Bx;

8 &Bv; Bv, & 2+
g PI g

+
g I 3 Pti~ di~v v

x, q x, xi'

(5.56)

(s.s7)

(s.s8)

p div v+ v ~ Vp + (Dpi/Bt) = 0,

(BT,/at) + v ~ VT = ——;Tdiv v+ (1/p)V'(KpTi),

f, (x, z, r) = f, (z) exp(nt + ikx) (s.s9)

We also set djdz = D a d n, =iiW. Equations (5.58) then
become

with rc = (2/3)(mjk)(K/p) the thermal diff'usivity. In Eq.
(5.58), the unperturbed quantities are p, p, T, ii, and the
first-order perturbed quantities v;, pi, Ti, pi If the motion
of the fluid is su%ciently subsonic, the divergence of the
Bow can be set equal to zero. In addition, it is usuaHy a
sufficiently accurate approximation to set the gradient of
the viscosity equal to zero. We now assume that the
perturbed quantities, depend on t and a transverse dimen-
sion x as

Eliminating the perturbed pressure gives

n' = kg[(p —p )l(p + p2)1 (s.63)

provided the depths of the liquids are much larger than
k '. The configuration is therefore unstable if pi ) p2.
The growth rate increases with increasing k until the
viscous eAects can no longer be ignored. The maximum
growth rate then occurs when the viscous drag becomes
comparable with the gravitational forces on the per-
turbed density. Chandrasekhar (1961) gives, for a large
ratio of pi/p~, the wave number at maximum growth
k .„=0.49(g/p')'' for which the growth rate is n ..
= 0.46(g'jv)"'with i = pjp.

For laser fusion applications the acceleration is about
5 x 10" cm/sec', corresponding to a final implosion ve-
locity of 5 X 10' cm/sec and an implosion time of 1 nsec.
The viscous diA'usivity p, /p for DT is about 5000 cm'/sec
at 1 keV and at the solid density of 0.19 gm/cm'. The
corresponding maximum growth rate is about 10"/sec at
a wave number of 600 cm '. This can seriously aA'ect an
implosion unless other eA'ects reduce or dominate the
growth.

The second instability, convective overturning or the
formation of Benard cells, again occurs in the case of no
ablative flow and with the flow assumed to be divergence
free. For this mode the growth is an absolute instability
so that the onset can be determined by considering the
linearized equations with the time derivatives set equal to
zero. Equations (5.60) then simplify, after eliminating v„,
to

[pn —p(D' —k')](D' —k') W

[nD—W + (gk'/n)W)Dp. (5.62)

The solutions of this equation are determined by the
boundary conditions in z.

A particularly simple configuration which exhibits the
principal features of the unstable growth is two uniform
Auids separated by an interface at z = 0. The boundary
condition then is that the perturbed z velocity TV van-
ishes far from the interface. Equations (5.61) show that

and D'8' are continuous, but that D8' is discontin-
uous at the interface. The resulting problem can be
readily solved. For long wavelengths the viscous term can
be ignored and the solution is particularly simple, with
the result

pnv. = ikpi + p,(D' ——k')v. ,

pnW = —Dpi —pig + p(D' —k')W,

AVDP + nPI = 0,

j9W+ ikv. = div v = 0,

nT, + WDT = (I/p)&'(~pT).

(5.60)

~ = (~/k')D(D'- k')W,

-gT = ( Tjp)Dp + (T~/p)(D'-- k')W, (564)
WDT = (D' —k')KTi.

If the derivatives of p, and K are again dropped, these
equations finally combine to give

The Rayleigh —Taylor instability occurs in the absence of
a temperature gradient. In Eqs. (5.60), the transverse
velocity can be eHminated by the use of the fourth
equation and the perturbed density by the use of the third
equation. The equations then reduce to

pnD W = —k'pi + p(D' —k ')D W,
(s.61)

pnW = Dpi + (gW/n)Dp + p(D' ——k')W.

(1/k')(D' —k')' W = (g pDT//~p, T)W. (5.65)

This equation has solutions satisfying the boundary con-
ditions at the top and bottom of the heated layer only for
a proper value of the dimensionless parameter

R = (gpDT/gpT)a',

with a the characteristic scale of the layer. The analysis
by Chandrasekhar (1961) shows that typical values of R
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are of the order of 10'. An example of a solution with
vanishing even derivatives at the surfaces of the layer is
8' —sin(zm/a), which yields the minimum value of R,
for ka = m/V2, so that R, = 27/4m' = 657.5. Other
more constrained modes have much higher values of R.
The onset of instability, which occurs for R greater than
R„results when the energy released by the convective
overturning or the rise of hot bubbles of fiuid exceeds
the dissipation due to the viscous drag and the cooling
of the bubble by lateral conduction.

For laser-driven fusion with typical values of K and p,

at 1 keV and at solid DT densities, with DT/T set equal
to a ', and an acceleration of 5 X 10" cm'/sec, 0.8

56

40

l6

R —= 10'a (cm)'. (5.67) o,4

Thus, the layer is unstable for a greater than approximat-
ely 100 pm. This is considerably greater than the depth of
the thermal front over which the temperature drop occurs
in a typical fusion pellet, which therefore appears to be
relatively stable against convective overturning. The or-
ders of magnitude, however, are sufficiently close to
require a more complete discussion of the full problem,
including the eAects of ablation.

The conduction into the dense colder material produc-
es ablation Aow, and changes the unperturbed solution in
a basic way. The viscous terms are generally unimportant
and will be dropped in the following analysis. We have,
however, included the full -viscous eAects in a more
complete analysis which will be discussed later. In the
following we will no longer assume divergence-free flow.
Hence, div v will not be set equal to zero. With zero-order
How included, the unperturbed equations are

0
-I.O -0.8 -0.6 -0.4 -0.2

0
0.2 0.4 0.6 0.8

FtG. 10. Spatial variation of the zero-order density (D), pressure (p),
temperature (T), and heat flux (q) in dimensionless units for the
boundary conditions q(0) = 1.69 and p'(0) = —0.14.

but the sonic point must be handled with care because of
the condition of continuity in the velocity. The solutions
are most easily obtained by starting at the sonic point
and integrating in both directions with the condition of
continuity applied explicitly. The solution which decreas-
es monotonically into the cold layer is obtained for only
a properly chosen value of the heat flux at the sonic
point. This determines the temperature gradient and
hence the density gradient at the sonic point. The proper
dimensionless constant is

pv(dv/dz) = -(dp/dz) + pg,

(t)/t)z)pv = 0,

v (dE/dz) = —
~ v —+ —.p dp

p dZ dZ

2 gIC(8p) t' de &

3 ppvs t dM jp
(5.72)

(5.68)
The corresponding solutiong are given in Fig. 10. The
dimensional energy Aux at the sonic point is

The conservation of mass flow gives pv = constant. The
momentum equation may be integrated to give

pv' = —p + g p dz + constant .

pip = 2 —(pe/poe)+ ~
The energy equation becomes

d0 20 dp 2 m, dq
3 p d~ 3 vopp dM'

qpK de
povo' dM'

(s.70)

(s.71)

These two equations determine 8 and p as a function of
M. Their numerical solution is relatively straightforward,

We have chosen the acceleration to be negative, directed
into the cold material. Large positive z therefore corre-
sponds to moving out into the high temperature and low
density region of the plasma. The flow generally will go
from subsonic in the cold plasma to supersonic in the hot
plasma. It is therefore convenient to choose the sonic
point v&&

——p&&/pe as the interface z = 0. Introducing the
dimensionless coordinate M = g fp pdz/ppvs, we rewrite
Eq. (5.69) as

To proceed with the instability analysis, we next linear-
ize the equations around the zero-order solutions. Neg-
lecting the viscous terms, we obtain

pl + vDW' + WDv
I
+ p) vDv = —Dp) + ptg,

p[(Bv./Bt) + uDv„] = ikp„—
D(pW+ pt v) + ikp v. + (Bp)/Bt) = 0,

—'
[[(e/et) + vD]e, + TWDe] ~ ~De

[
—+ vD ~p, + WDp + —

(
——,~vDp

2p 1' t) & 2/pt ppi'1
3p Et't J 3(p p )

(s.7s)2+
3

cllv ql,

ql
——A VOI + KI V8.

qe ——[K(de/dz)]s ——,'-(1.69)pp v,'. (5.73)

The isothermal sound speed in DT is equal to 3 5
x 10'e (keV)'t' cm/sec, so that the heat flux at the sonic
point is

qs = 1.1 X 10"pses (keV)'t' (W/cm'). (5.74)
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These equations determine the time evolution of p&, 8&, v„,
and 8' for fixed transverse wave number k. They can be
solved as an eigenvalue problem in the time variation,
subject to proper boundary conditions on the perturbed
variables. We have found it simpler to integrate the time-
dependent equations as an initial value problem, starting
from various assumed perturbations in 8' and v„. We
have assumed that the perturbations vanish at the bound-
aries of the system which were taken to lie far from the
sonic point. Of the various numerical difference schemes
investigated, the simplest stable scheme was an integra-
tion in Lagrangian coordinates with the unperturbed
quantities convecting through the Lagrangian mesh.

To determine the nature of the possible growing dis-
turbances, we have integrated the equations in different
approximations to identify the cause of unstable growth.
If the unperturbed velocity is set equal to zero, corre-
sponding to no ablation, and the perturbed heat Aux
dropped, the problem reduces approximately to the
standard Rayleigh —Taylor problem. We have verified
that the unstable growth which develops corresponds in
growth rate to that predicted by the dispersion relation.

We next included the effect of ablation but with the
perturbed heat flux set equal to zero. The growth was
sharply reduced, due to rapid convection of the fluid
through the narrow interface at the conduction front. The
usual Rayleigh —Taylor mode exponentiates only once or
twice as the fiuid moves through the unstable region,
which does not allow significant growth to occur.

We finally have integrated the full equations with
ablation and the perturbed heat Aux included. The effects
of viscosity were also included but were not found to
have a significant effect. The disturbances again were
very weakly amplified at the conduction front, showing
no appreciable unstable growth.

We conclude that the unperturbed ablative fiow alone
eliminates the Rayleigh —Taylor instability. The convec-
tive overturning is also absent, being suppressed both by
the ablative flow and by the combined effects of high
conductivity and high viscosity. These conclusions are in
qualitative agreement with a conjecture due to Nuckolls
et al. (1972) who, in a simplified model, found that the
effect of the perturbed heat Aux on the ablative fIow led
to a stabilization of the Rayleigh —Taylor growth.

We have also studied the problem using a two-dimen-
sional code which allows for the implosion of perturbed
shells and spheres. The complete hydrodynamic calcula-
tions have in no case shown arnplification of initial
hydrodynamic perturbations, in agreement with the pre-
diction of the linearized equations.

H. Induced magnetic fields

Under conditions of nonuniform laser illumination of
planar targets, magnetic fields have been observed (Stam-
per et al. , 1971). Rough estimates of the field strength in
the plasma have shown that fields of the order of a
megagauss are produced (Chase et a/. , 1973). The occur-
rence of strong magnetic fields can affect the plasma
behavior through hydromagnetic effects or from altera-
tions of the plasma transport coeKcients. Detailed calcu-
lations of the effects on laser heating of a planar target,
using a two-dimensional code axisymmetric around the
beam normally incident on the target have shown very
marked effects on electron temperature and neutron

production.
The magnitude of the source of the magnetic fields

produced can be estimated from a simple analysis. The
electron pressure produces charge separation along the
pressure gradient, and hence an electric field given rough-
ly from pressure balance, ignoring magnetic forces, by

eKn, —v(n, 8), (5.76)

where 8 is the electron temperature in energy units, and
n, the electron density. The magnetic field, therefore, has
a source term given by

88/at = —cV X E
= (c/c) ~ X f(n.)-'&(n.o)1

= (c/n, e)V8 X Vn. .
(5.77)

The magnetic field therefore vanishes if the temperature
gradient and density gradient coincide. To estimate the
magnetic field strength, we write

V8 = 8(8/Lg),

Vn. = n, (n,/L, ),
(5.7S)

with L~ and L, characteristic scale lengths. We also
assume that the time over which the field develops
and the density scale length are related by the hydrody-
namic velocity v„ i.e.,

B = dt' V xVn,
ne

c
VOx Vn,

v, n, e

c8xn,
8 LyUp

(5.79)

At 1 keV temperature, v, = 3 x 10' cm/sec and for a
scale length L~ of 50 qm, Eq. (5.79) gives

8 = .0468 xn, MG. (5.S0)

ne

B'/Sm
' (5.81)

From Eq. (5.79), using v, =—(8/m;)' ',

(8xn)'E c 2
(5.82)

For a DT plasma and for a scale length of 50 pm with
maximum asymmetry (~8 x n,

~

= 1), P is about 60. Un-
der these conditions, the magnetic field cannot apprecia-
bly affect the hydrodynamic motion of the plasma or the
flow of energy. Extensive experience in the CTR program
shows that under these conditions the magnetic field is
strongly distorted by the hydrodynamic motion, the field
diffusing slowly in the highly conducting plasma as the
hydrodynamic motion occurs.

This is of the correct order of magnitude for conditions
of illumination asymmetry where 8 4 n, .

The hydrodynamic effect of the magnetic field on the
plasma behavior is determined by. the ratio of the particle
pressure to the magnetic pressure,
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The effect of the magnetic field on the classical trans-
port coeKcients depends, under quiescent plasma condi-
tions, on the ratio of the Larmor frequency to the
collision rate, which is

l0 x n,
l

t'm
&l

v, n, o, LO im, ) (5.g3)

with a, the Coulomb cross section. At 1 keV a, is about
10—"cm' and for Lg of 50 pm, ~&/v, is about 13.Thus a
significant reduction in transport coeKcients might occur
if the classical formulae were relevant, the reduction
being roughly by the factor 1 + (~l/v, )'. This estimate,
however, cannot be expected to hold in the strongly
excited unstable plasmas characteristic of laser heating.
Under these conditions, the classical diffusion coefficient
3u,'/v, /[I + (~L/v, )'j is replaced by the much larger Bohm
diffusion coefficient U,'/coL, . For the example given above,
the Bohm coefficient is about 40 times larger than
classical. The discrepancy increases with increasing elec-
tron temperature.

The strong magnetic field distortion by hydromagnetic
effects in a plasma with large p and Bohm difTusion are
very difficult to simulate with the computer codes pre-
sently used in laser fusion analyses. In the authors'
judgment, the present evidence for magnetic field effects,
experimental and computational, is inconclusive. The
problem, if present, is much less important if good
symmetry of laser heating is achieved, which is essential
for implosion symmetry.

Transformation Equation

Vl. COMP UTE R CODE

A. Physical model

The model considers the hydrodynamic motion of a
plasma which is absorbing and emitting radiation by
bremsstrahlung and free-bound electron processes, and
which undergoes thermonuclear reactions. Electronic and
ionic thermal conduction and electron —ion energy ex-
change via electron —ion collisions, thermal radiation
pressure, and pressure from charged thermonuclear reac-
tant transport are included in the model.

The difference equations used in the calculation are in
the Lagrange formulation, i.e., in a reference frame
moving with the plasma. The one-dimensional equations
of motion and continuity in Lagrangian coordinates, and
the transformation equation between Lagrangian and
Eulerian coordinates are:-

Equation of Motion

du/dt = —(I/p)&p + F.;...,,

de, dV , ()T,;=-'; -Q +"+~.XR"~R-Q+'
de, dV . 8 . , BiT,

dt ' dt
+ g""'+ 'g + S;+ RmXIR '~R)

where S, and S; are the rates of deposition of thermonu-
clear energy. Thermonuclear processes are discussed in
Sec. VI.BS, and transport and deposition of the energy
released are discussed in Section VI.B6. The following
Section, VI.B1, discusses the equations of state for the
electrons and ions. A fundamental assumption made in

(6 4)

stant of the motion (excluding mass generation or loss) in
the Lagrange system and is the mass per unit area in slab
geometry, the mass per unit length per radian in cylindri-
cal geometry, and the mass per steradian in spherical
geometry. Shocks are treated through inclusion of a von
Neumann-Richtmyer artificial viscosity, q, if real viscous
effects give insufhcient spreading of the shock front. The
form of F„;„.„, is discussed in Sec. VI.B8.

The pressure, p, in the momentum equation is separat-
ed into electronic and ionic contributions, p, and p;.
Energy is transferred between internal and (directed)
kinetic energy via pdV work. The internal energy per unit
mass, e, is assumed to be separable into electronic and
ionic components, ~, and e;, which are directly coupled
only through electron —ion collisional energy exchange.
The electron pressure, p„ is thus assumed only to do pdV
work on the electrons, and the ion pressure, p;, to do work
only on the ions. The electron and ion densities are
assumed to be equal to maintain charge neutrality. Since
the ions have essentially all of the mass, the viscous work,
W„„, is assumed to apply entirely to the ions.

Let Q„be the rate of transfer of energy from electrons
to ions by electron —ion collisions (Sec. VI.B3). Energy is
also transferred between electrons, via electron —ion colli-
sions, and between ions, via ion —ion collisions, by ther-
mal conduction. The electron and ion thermal conductiv-
ities, y, and X;, will be discussed in Sec. VI.B4. They are
proportional to T, '/' and T, '/', respectively, in regions
where degeneracy effects can be ignored.

Let g&
= y(R) be the laser flux and K = K(R) the

absorptivity to the laser radiation. The energy yK is
assumed to be deposited locally in the electrons. The
laser absorption process (by inverse bremsstrahlung) is
discussed in Sec. VI.B2.

The electrons also lose (or absorb) energy by thermal
radiation at a rate Q,. If the bremsstrahlung mean free
path is sufficiently long at all frequencies, Q, is the local
free —free emissivity. If the complete pellet is not optically
thin, a more detailed treatment, as discussed in Sec.
VI.B7, becomes necessary.

To sum up, the model is based upon the following
internal energy equations for electrons and ions:

u = dR/dt, (6.2)

Continuity Equation

p(dR /dm) = n, (6.3)

where u is the plasma-directed velocity, p the density, p
the pressure, R the spatial coordinate, and n a geometric
parameter. (Here n = 1, 2, or 3 for slab, cylindrical or
spherical geometry. All work has been done on spherical-
ly symmetric configurations. ) The quantity m is a con-

T(ev)

10
10'
10'

10'

1.7
29
4.2
54
6.7

TABLE II. Variation of
Gaunt factor with electron
temperature at A. = 1.06',.
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deriving the equations of state is that the ions and
electrons are individually in local quasithermodynamic
equilibrium, at temperatures T; and T,. Local thermody-
namic equilibrium is also tacitly assumed in the discus-
sions of radiative transport, collisional processes, and
thermonuclear reaction rates.

~3 t'hi l (hei
~, 2kT ~

'"P
~ 2kT ~

where Ko is the modified Bessel function. Two useful
limiting expressions for ICp are (see, for example, Abra-
mowitz and Stegun, 1965)

B. Basic equations

1. Equation of state,

ICp (x) [1n (2/x) 0.5772], 0(x &2,

e"ICO(x) —(vr/2x)"' 1 — + 0( —, [8x (6.10)

p, = p~; = N;kT; dyne/cm',

~; = ';(No/A)kT; = 1.247 X 10'T; ( K)/A erg jgm.
(6.5)

The electron equation of state is based on the finite-
temperature Fermi —Thomas model as described by Lat-
ter (1944).The (O'K) degeneracy curve is distorted at low
density by correlation effects. The analysis of Salpeter
and Zapolsky (1967) was used, along with "low pressure"
data such as Bridgman's, and density and sound speed at
STP, to modify Latter's degeneracy curve at lower densi-
ties.

The electron internal energy, ~„partial pressure, p„
temperature, T„and entropy per unit mass, S„are related
by the second law of thermodynamics

de, = —p, dV+ TJS„ (6.6)
where V is the specific volume (cm'/gm). Here S, and V
are used as the independent thermodynamic variables.
Adiabats in the p„V and ~„V space are generated by
assuring that the two differentials defined by Eq. (6.6) are
everywhere satisfied

Bc

~~ s' ' ~S. v' (6.7)

The region 0 ( S, ( 1.75 kZ is fitted under the assump-
tion- that the logarithmic derivative of temperature with
respect to entropy is independent of S; in this region, i.e.,
that T = S'~' since T = 0 for S = 0. The Latter fit is
used for S & 1.75kZ.

2. Laser Absorption

The. plasma absorbs energy from the laser by the
mechanism of inverse bremsstrahlung (free —free transi-
tions). The absorption coefficient, including the effects of
stimulated emission, is given for hs/kT (( 1, by

I, = 1.98 X 10 "g,&, ¹
', , cm '. (6.8)

Z.N(Z)Z'

The factor (1 —~,'/~') '~' accounts for the reduction of
the group velocity of the wave in the region where the
plasma is nearly overdense, cu,

' being the plasma frequen-
cy.

The Flaunt factor in the Born approximation is (cf.
Wharton, 1961, pp. 319-320)

A monatomic, ideal gas equation of state is assumed
for all the ions. A Fermi —Thomas equation of state is
used for the electrons. The total pressure, p, is the sum of.
the ion and electron pressures, p; and p, . The ion pressure
is related to the ion energy density per unit mass, ~;, by

8. Collisional exchange

The rate of collisional transfer of energy (per unit
mass) from ions to electrons is given by

a. = -a. = C'(T —T)/, (6.11)

where T; and T, are the ion and electron temperatures,
respectively. The equilibration time, ~, is found by aver-
aging electron —ion collisions over a Maxwellian distribu-
tion of ions and (generally) a Fermi distribution of
electrons. The result is given by Brysk (1974) as

w = 3''m;(1 + o.)/(8m, 'e'Z ln A„). (6.12)

The quantity n is the exponential of the thermodynamic
potential, n = exp( —EF/kT), where EF is the Fermi
energy, while ln A„ is the Coulomb logarithm whose
classical limit is discussed by Spitzer (1961),but which is
usually taken from the calculation of Hubbard and
Lamp e (1969).

In the classical limit of o )) 1, n —+ I'(3/2)
(2m, kT/h')'~'/2m'N„and the equilibration time becomes

v.(...;..( ——3m;(kT)"'/e'(8mm, )r'N, Z' ln A„. (6.13)

2 ( x ( oo.

The variation of g with temperature for X = 1.06 ym
(h v = 1.17eV), the wavelength of the neodymium-doped
glass laser, is shown in Table II. It is clear that one
cannot take g = 1 in this regime.

If the plasma is initially overdense, the incoming light
will be absorbed only as a result of the evanescent wave,
which penetrates a distance of the order of a wavelength.
Experiments involving the interaction of laser beams with
surfaces are common and show more rapid heating than
can be accounted for by this eA™ect. The additional
absorption results from the existence of a density gra-
dient in the material. The light can then penetrate and
cause additional heating in the underdense region. When
this layer expands, the region moves into the material,
causing increased absorption of the incident radiation.
The underlying layers are heated and then also expand.
Dawson et al. (1969) have recently given an analysis of
this problem.

The inclusion of the square root factor in Eq. (6.8)
when attenuation is computed is also given by the WKB
solution for absorption in a critical-density plasma. Al-
though higher order WKB corrections may be applied,
they are not as important as the omission of refraction,
i.e., in spherical geometry, the bending of the penetrating
light beam away from the sphere. The inclusion of path
curvature converts the one-dimensional problem into a
two-dimensional one.
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de)/dt = —ND (av)DD ND NT (ov)DT,
(6.2i)

dNT jdt = ND—NT(av)DT + 4ND((7v)DDg
(6.14)y dy 1 + op = 2~ Ne A 2~ekTe

where ND and NT are the number of deuterium and
tritium ions per cm', respectively. The (2.45 MeV) neu-
tron production rate is

The ion specific heat at constant volume, C,', is taken
to be that of a monatomic perfect gas

In the degenerate limit, the result is merely Eq. (6.12) Thus the rate equations are
with e = 0. The value of o. is generally obtained implicit-
ly from the Fermi distribution normalization:

C. =,'-(N. i/W), (6.is) dN. /dt = ND (CFv)DD/4. (6.22)

20(2/~) "' (i T, ) 'i' i
,'/' 'Zl W„

(6.16)

The correction factors e and 6T are tabulated by Spitzer
(1961) for Z = 1, 2, 4, 16, and oo. The product eBT is
fitted to within 1S% by the approximation e6T= 0.472 Z/(4 + Z). Degeneracy effects change the form
of X, at about the same region where ln A, becomes of
order unity. The electron conductivity of a partially
degenerate plasma has been treated by Hubbard and
Lampe (1969). The present calculations use a tabular fit
to the Hubbard and Lampe results in the partially
degenerate region.

The ion contribution to thermal conduction arises
from ion-ion collisions. The ions are assumed to be
described by a classical (Maxwellian) distribution:

3.28(2/~)"'(i T) 'i' k
mi/'e'Z' ln A;

The ionic A; is always taken to be A.D/b&;. „&, the classical
value of the Debye length divided by the impact param-
eter. The electron and ion conductivity coefIicients differ
by the ratio g,/g;.

Xi

5. Thermonuclear processes
When the ions are su%ciently energetic, they may

participate in thermonuclear reactions. The reaction
products in turn contribute to the heating of the ions.

a. DT reaction

The DT reaction is

D + T —& He'(3. 52 MeV) + n(14.07 MeV). (6.18)

The corresponding rate equations are

dND d¹ dN. dN
dt di dt dt (6.19)

b. OO reaction

where No is Avogadro's number, and A the mass number.

4. Thermal conductivity

In the classical limit, where degeneracy effects can be
ignored, the electron thermal conductivity becomes

The tritium population builds up to a steady-state
value:

N, = 4[(av)DD/(~v)D, ]ND. (6.23)

where T; is in kilovolts. For DT reactions, the experimen-
tal results of Arnold et ai. (1954) were integrated and
fitted numerically. The result is

(av)» ——3.8 X 10 "T; '~' exp( —19.02T; '~') (cm'/sec),

for T~ ( 10 keV

= 3.41 X 10 "T; ' ' exp( —27.217T; ' '

for T; ) 10 keV.

+ 3.638T; '~') (cm'/sec),
(6.25)

The energy dependence of the cross sections is strong
enough for the mean energy of the particles taking part
in a reaction to differ considerably from the average
energy of the Maxwellian distribution of such particles.
This mean energy is computed by averaging the kinetic
energy of the two reactants over their respective Maxwel-
lian distributions times ov. If the above analytic fits are
used for ov, the calculation can be performed analytically
with the result (cf. Brysk, 1973)

7 1,/, 2,/3E = —T; ——CI T; ——C2Ti3 ' 3 ' 3 (6.26)

where CI is the coefficient of T, '/', and C2 the coefficient
of T,

'~' in the exponent of .Eq. (6.25). Some representa-
tive values of E for the DT reaction are quoted in Table
III; for comparison, 3T; (twice the Maxwellian mean
energy per particle) is also listed.

c. Reaction rates and energies

The reaction rates (av) are (as the notation implies)
values of the product of the cross section 0 with the
relative velocity v of the reacting particles averaged over
Maxwellian distributions of the reacting particles at the
ion temperature. For DD reactions, Post (1956) gives

(av)DD = 2.6 X 10 '"T; '~~' exp( —18.76T; '~') (cm'/sec),

(6.24)

The 0& reaction proceeds with approximately equal TABLE III. Mean energy of the reactants taking part in a DT

probability via two channels

T(1.01 MeV) + p(3 02 MeV).D+D~
He'(0. 82 MeV) + n(2.45 MeV).

(6.20)
T;

3T
E

1.00
3.00
8.67

8.0
24.0
44.0

27
81

107

64
192
203

125
375
353
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8. Energy momentum deposition

a. Charged particle

The charged particles from the thermonuclear reac-
tions do not necessarily deposit locally, i.e., where they
were created, but can travel some distance before they
are stopped. As they traverse a given path length, a
certain amount of energy is lost due to collisions. This
energy is then partitioned among the ions and the
electrons. The code follows several angle groups in
determining the net energy given to the ions and elec-
trons in a given spatial zone. These contributions are then
included in the source terms in the energy equations [Eq.
(6 4)j. The stopping power formulae and energy partition
factor show that the fractional energy loss per unit length
is given by

d~, /ds = ¹f„— (6.27)

where X is the number of electrons per unit volume, and
f, has the dimension of area, i.e., is a cross section:

4~& Z, 'I' Z; F, (2m, kjh')'~'

(1 + n)
(6.28)

4,), & W, l '~' e'~'
(6.29)

Apart from the last factor, this quantity has been dis-
cussed by Chandrasekhar (1924). In this expression, Z„
A„and 8, are the charge, mass number, and initial
energy of particle p, e, is the energy in units of 8,, while
Z; and A; are the average charge and mass number of the
ion in the zone A, = (1836)—'. The quantity a is the
Fermi normalization factor defined in Sec. VI.B3 on
collisional exchange. In the classical limit 0. && 1, the
second term under the bracket, i.e, the electron contri-
bution to the stopping power, becomes

plasma. The difierence between the original energy and
the energy deposited results in an energy loss to the
system.

Unless and until we reach the final stage of intense
burn (more than 10% depletion) the energy and momen-
tum deposition by the reaction products are much smal-
ler than the corresponding hydrodynamic quantities.
What makes the energy deposition important is that a
small rise in ion temperature due to the heating leads to
a large increase in the fusion reaction rate.

Reactions by energetic knock-ons are important for
very large systems. in which the neutrons are appreciably
stopped within the fusion medium. These effects are
analyzed elsewhere (Brueckner et al. , 1974). The present
discussion pertains to smaller systems where the neutron
scattering is relatively weak.

While the Lagrangian description is well suited to the
hydrodynamic motion, it is awkward to adjust for trans-
port of particles between zones because of the occurrence
of variables scaled with mass and the separation into
internal and directed motion.

f
'

f 2wR sin ORdRd0n(R)
J~, Jo 4m(R'+ r' —2rR cos 0)

(R + r) particles—ln nR dR
J~, 2» ~R —r~ cm'

(6.30)

b. iVeutron heating

Neutrons lose energy by elastic collision with ambient
ions. The recoiling ions then slow down (as discussed in
the last section), thus depositing energy in the medium.
For th'e conditions of interest here, most of the neutrons
escape unscattered, so that the number and distribution
of scattering events can be calculated without allowing
for attenuation of the neutron flux.

The fiuence, 4(r), at a point a distance r from the
center of a shell source, of inner and outer radii RI and
R2, emitting n(R) particles per cm is, in terms of the
geometry shown in Fig. 11,

Again, ln A„ is the usual Coulomb logarithm. The factor
ln A~ is an effective Coulomb logarithm for scattering of
particles p with much higher velocity than the Maxwel-
lian ions. Here ln Al is about 10 over most of the range
of interest to about 15%.The last term in Eq. (6.28) is the
contribution of nuclear scattering, with o„an "effective
transport cross-section" for particle p in the i medium
(Brueckner and Brysk, 1973). The correction factors F„
F;, and F;'are unity to first order but contain an energy
dependence in higher order.

When the energy of the charged particle becomes
equal to the average kinetic energy in a zone, it is said to
be stopped, and its mass is added to the zone in which
this occurs.

Charge is conserved and charge neutrality maintained
in each zone. Thus, the particle charge and an equal
electron charge are removed from the birth zone and
added to the stopping zone. The electron transit also
carries with it an adjustment of the electron kinetic
energy (average value ';T, per electron, varying from zone
to zone).

It is possible that a particle will escape from the FIa. 11. Geometry for calculation of neutron deposition.
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The number of scattering events per gram occurring in a
shell of density p gm/cm' and atomic number A with
bounding radii r& and r& is given by

where B„„is the Planck function, and 1.,„(&') the energy
transported per unit time per unit frequency interval per
unit solid angle per unit area into the zone from the other
zones

n~ = 4 p'(y2VpA pr dp' pr dp (6.31)
8. Viscosity

where e is the neutron scattering cross section (in cm'),
and %0 is Avogadro's number. Under the assumption that
n(R) and p(r) are constant within a spherical zone, the
double integral can be evaluated. For each zone, the
scattering events due to neutrons originating in all zones
are added up, yielding an effective source term for fast
ions. The fast ions are assigned their initial energy, 8,,
the mean energy obtained from the collision kinematics,
namely vE with E the neutron energy and

v = 2M„M,/(M„+ M, )' (6.32)

where M. is the neutron mass, and M, the ion mass. The
slowing down and energy deposition of the recoil ions are
then followed in the same fashion as for the charged
reaction products. In practice, the neutron fluence inte-
gration is performed first, and the tracking of all charged
particles (whether reaction products or neutron secondar-
ies) is then done concurrently.

c. Energy partition

The first term in the expression for f, in the energy loss
formulae [Eq. (6.28)] represents the loss due to collisions
with the ions, while the second term accounts for loss due
to collisions with the electrons. As the reaction particle,
e.g., an O.-particle or a D or T neutron knock-on, travers-
es a zone, it gives up some of its energy to the electrons
and some to the ions. These energy depositions are then
incorporated into the energy source term in the electron
and in the ion energy equations. If the reaction product
is stopped within a zone, the energy is partitioned be-
tween electrons and ions. The treatment of this partition-
ing is complicated by the existence of two temperature
distributions, one for the electrons and one for the ions,
in the zone (Brueckner and Brysk, 1973).

7. Radiation lasses
The principal source of radiation is bremsstrahlung. In

the code an approximate solution of the radiative trans-
port equation is used to compute the radiation produc-
tion and absorption. Since the radiation is isotropic,
it is computed in terms of solid angle groups. For a given
angle group, the free—free radiation is computed in terms
of frequency groups. For a given angle and frequency,
the radiation is assumed to proceed in a straight line
path. The Compton shift is almost always negligible. The
optical depth ~ is introduced by

. S

Kv,p ds~ (6.33)

AE = B„,„—I„,„s' l —exp —~ d V, 6.34

where K„',„ is the absorption coeKcient for the frequency
v and angular group 3p .= d(cos 8), corrected for stimu-
lated emission, and s —s is the distance traversed in the
medium. Energy loss within a zone is

The equation of state used is based on modeling the
electrons and ions individually as monatomic gases. The
bulk viscosity, s, of a monatomic gas is —;IM,where LM is
the normal viscosity. In the special case of v = —p, the
equation of motion of a plasma with one-dimensional
symmetry is

where 0. = l, 2 or 3 for slab, cylindrical, or spherical
symmetry.

The viscous contribution to the energy equation for the
three one-dimensional geometries are:

Slab Symmetry

Pe„.. = 3P,(BI'/Br)'.

Cylindrical Symmetry

(6.36)

4 -~a'~' &'a'&
p~. .. = —p I

—
I

—
I

—
I
+ (r%)' . (6.37)err &r arp

Spherical Symmetry

(6.38)

It is apparent that the viscous terms disappear from the
spherical equations for uniform compression or expan-
sion (rjr = constant), because volume elements are un-
distorted under this motion in spherical geometry.

The real viscosity of a plasma predominantly arises
from momentum transfer in ion —ion collisions. In the
units used in the computer code, the plasma viscosity is
given by (Spitzer, 1961)

—p = 1.28 x 10 'Av' Ti' '/(Z' ln A.). (6.39)

C. Description of computer code
The energy deposition and hydrodynamic code de-

scribing the focusing of a (spherically) convergent laser
pulse on a small pellet contained in a vacuum chamber is
discussed in this section. The energy pulse is assumed to
have vaporized and ionized the pellet by radiative heat-
ing before significant energy has been delivered, so that
initially there is a plasma of uniform temperature of a few
electron volts with specified density. Similar models have
been discussed by Kidder (1968) and by Dawson (1964).
The heating of the gas as the light propagates into it sets
up a (spherically convergent) shock wave.

For ease of computation, the Lagrangian description
of the hydrodynamic equations, wherein one follows the
history of an element of the Quid, has been adopted.
Thus, for the case of spherical symmetry, r denotes the
radial coordinate of a fiuid element having the initial
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2000

IOOO

—400
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Yll. NUMERICAL RESULTS

The code outlined in Section VI has been used to study
the various phenomena described in the preceding sec-
tions. The following subsections discuss the ignition and
thermonuclear burn of a uniform compressed sphere, the
eAect in a non-uniform sphere of propagation of a
burning wave, the laser coupling efficiency, and finally
some examples of complete implosion calculations show-
ing the compression, ignition, propagation, and ther-
monwclear burn sequence.

—IOO

IO
t( IO seconds)

Is

Frr. 12. Central density and temperature histories in uniformly com-
pressed and heated DT. The initial density is 2000 gm/cm', the initial
temperature 5 keV, and the initial radius 28.4'.The initial energy
in the fuel is 56.8 kS and the final fusion yield 10.49 MJ. The elec-
tron temperature rise is initially more rapid than the ion tempera-
ture rise due to the stronger n-particle heating of electrons. After
reaching approximately 40 keV, the ion temperature rapidly in-
creases to several times the electron temperature as the n-particle
deposition to the electrons becomes weak.

A. Uniform sphere

The case of an initially uniform compressed sphere at
uniform initial temperature shows the ignition and hy-
drodynamic sequence in the simplest configuration. Fig.
12 gives the central temperature and density histories for
a typical case, starting at 5 keV electron and ion temper-
ature. At this central temperature the thermonuclear
heating rate exceeds the bremsstrahlgng radiation loss

30

density p, gm/cm', and R = R(r, t) denotes the radial
coordinate of the same- element at the time t. It is
assumed that the electrons and ions are individually in
local quasithermodynamic equilibrium, described by Fer-
mi —Dirac and Maxwellian distribution functions, respec-
tively.

The plasma is divided into J—1 zones. Zone interfaces
are labeled with the Lagrangian (subscripted) coordinate
j(1 (j ( J). The temporal coordinate t is divided into
distinct intervals via the (superscripted) time coordinate
n(f") Spatia. l coordinates are hence defined at the La-
grange interfaces (R,). They are defined temporally at
integer values of the time coordinate (R,"), The (directed)
velocity u of the point R, is, defined at one-half integer
values of the time coordinate (u,""~').Extensive quantities
such as density, pressures, and internal energies, are
averaged between zone interfaces and assumed to act at
the Lagrange center of the zone (p,", „„p," „„e," „„etc.).
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FK". 13. Fusion energy production in uniformly compressed and
heated DT. The initial temperature is 5 keV. The curves are labeled by
the initial density in gm/cm'. The results are obtained with the
computer code described in Sec. VI.

Fto. 14. (a) Propagation of burning front in initially uniformly
compressed DT. The initial density is 600 gm/cm' and the initial radius
40pm. The central region initially heated to 5 keVhas a 6pmradius.
The curves are labeled by the time in units of 10 "sec.The central
temperature, after an initial rise, drops as a strong shock forms and
expands into the surrounding colder fuel. Subsequent recompression
and further heating causes the final temperature rise. The velocity of the
burning front increases with time, reaching 9 X 10' cm/sec at 0.160 time
units. (b) Propagation of burning front in initially uniformly com-
pressed DT. The initial density is 2000 gm/cm' and the initial radius
40 pm. The central region initially heated to 5 keV has a 8ym radius.
The velocity of the burning front reaches about 5 &C 10' cm/sec at
0.40 time units.
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which is also suppressed by self-absorption in the com-
pressed fuel. The calculations, therefore, have not includ-
ed the effect of radiation transport, diffusion, and loss.
The energy deposition by the initial particles and by
deuteron and triton recoils from the fast neutrons has
been included by the multiple —angle —group transport
method described in Sec. VI.

The ratio of total thermonuclear yield to initial energy
is given in Fig. 13 as a function of initial energy for
several densities. This ratio tends toward a.limiting value
of approximately 200 for all initial densities and for an
initial energy of several hundred kilojoules. The maxi-
mum possible yield per particle for complete fuel burnup
is 8800 keV (17.6 MeV per D + T pair), and the initial
energy at 5 keV is 15 keV (';8 per ion and electron). Thus
the maximum possible ratio of yield to initial energy is
587. The computed limiting value of about 200 in the
several hundred kilojoule range, therefore, corresponds to
about 34% fuel burn.

The analytic estimate obtained in Sec. II is in semi-
quantitative agreement with the computed results. Figure
1 shows an energy multiplication at a density of
1000 gm/cm' of about 250 at a fuel depletion of 34%,
with an initial energy of 36 kJ. The result from the
complete numerical calculation is a factor of about two
lower in energy multiplication at this initial energy:
excellent agreement considering the simple model used.

B. Nonuniform sphere with propagation

Calculations of the central ignition of a relatively cold
DT sphere have also been carried out for an initial
uniform density with the central temperature at 5 keV
and the rest of the fuel at 500 eV. At this temperature the
degeneracy energy of the electrons is appreciable, partic-
ularly at the highest compression considered. The radius
of the initially heated central region was varied to
determine the minimum radius at which ignition occurs.
At a density of 600 gm/cm', for example, propagation
occurred for a radius of 6 pm, corresponding to r,n, /n, of
2.21 cm which is close to the analytic estimate of Eq.
(2.52). Figures 14(a) and 14(b) show the development of
the propagating burn front for several densities. The
rapid acceleration of the front is apparent, particularly at
high density where the heating by deuteron and triton
recoils from the fast neutrons becomes important. The
energy multiplication from the complete calculation is
given in Fig. 15 for several densities. At all densities
considered, multiplication approaches a value of about
1200 for initial energy of several kilojoules. This ratio is
easily understood since the maximum energy per particle
for 34% fuel burnup is 3000 keV and the initial energy
(ignoring the small energy required for the central igni-
tion) is 750 eV per ion and at a density of 1000 gm/cm'
about 1250 eV per electron, including the degeneracy
energy. Thus, the maximum energy multiplication is
about 1500. This can be increased further only if the fuel
is initially at lower temperature. The initial energy re-
quirement, aside from the ignition energy in the central
fuel region, is then only the degeneracy energy of the
electrons.

The principal eA'ect of the formation of the propagat-
ing burn front is to reduce the initial energy requirements
by about a factor of ten from the case of a uniformly
heated sphere. This factor is of great importance since it

I I I I I I I II I I I I I I III I I I I I I III I I I I I II II I I I I I I II
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FK.". 15. Fusion energy production in uniformly compressed DT with
a spherical burning wave initiated at the fuel center by a region initially
heated to 5 keV. The rest of the fuel is initially at 500 eV. Details of the
propagation of the burning front for two typical cases are given in Fig.
(14a) and Fig. (14b). The curves are labeled by the fuel density in
gm/cm'.

allows large over-all energy multiplication to be obtained,
after the poor e%ciency of the laser coupling to the
compressed fuel is taken into account.
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Fia. 16. A schematic diagram showing typical density and tempera-
ture profiles during implosion.

C. Complete implosion calculations

The code described in Sec. VI allows a computer
simulation of the complete laser fusion process. A typical
calculation divides a sphere or shell into about 100 radial
zones and follows the various quantities through several
nanoseconds, with time-step intervals which become as
small as 10 " sec at the time of peak reaction. Such codes
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1. Solid DT sphere, initial radius of 1/2 millimeter

Laser pulse form: 6.3 X 10" W from 0 to 5.47 nsec;
6.3 X 10"W from 5.47 to 7.21 nsec; linear rise from
6.3 X 10"W at 7.21 nsec to 4 X 10"W at 7.42 nsec.
Absorption coefficient: 10 times classical to simulate
anomalous absorption
Laser energy absorbed: 60.1 kJ
Central density peak (averaged over 10% of radius):
1380 gm/cm'

Fraction of sphere imploded to density greater than
100 gm/cm'. 12%

Time of central compression greater than
100 gm/cm': l.8 x 10 " sec

Energy input into compressed DT at time of maxi-
mum compression: 2.9 kJ
Over-a11 laser coupling eS.ciency into compressed
DT: 4.8%
Total fusion yield: 510 kJ

2. Solid DT shell, outer radius of 3.1579 mm, inner
radius of 3.0223 mm

Laser pulse form: Linear rise with time

Laser energy incident: 679 kJ
Absorption coefTicient: Classical
Total fusion yield: 51.70 MJ

Some features of the temperature and density histories
are given in Figs. 16-23 .

Other computer studies carried out by us show that a
total fusion yield of 51 kJ can be produced from a solid
DT sphere with initial radius of 0.25 mm with a laser
energy input of 7.25 kJ, i.e., a multiplication of seven.
A multiplication of 21 is obtained, for a solid sphere
with radius of —,

' mm, at a laser energy of 60 kJ. The
computer results are surprisingly close to the results
given in Fig. 1 for an assumed uniform compression by a

I I I I I I I II

factor of 5500. The breakeven point, with fusion energy
equal to laser energy, is about 1 kJ, which is readily
achievable with present glass laser technology.

VIII. ALTERNATE CHOICES OF LASER
WAVELENGTH

According to the results just given, laser energy multi-
plication can probably be achieved with a neodymium
glass laser with energy output in the kilojoule range. The
over-all efficiency of the process is, however, too low to
be of practical interest. The conversion of electrical
energy into laser energy output for this type of laser is
roughly 1%, and the conversion of fusion energy to
electrical energy (at least by conventional processes)
about 40%. Thus over-all energy gain can be realized only
if the laser energy multiplication in the fusion process is
about 250. According to the present understanding of the
fusion process in DT, this multiplication will be dificult
to reach with technologically feasible glass lasers.

Lasers with higher conversion eKciency, which may
also be simpler than glass lasers, are of great interest.
Electrically excited gas lasers have been operated with
eKciency of a few tens of percent. Chemical lasers also
oAer in principle eKcient conversion of chemical energy
into laser energy output. A conversion efficiency of 25%
reduces the laser energy multiplication requirement for
the over-all breakeven condition to about ten, which may
be achievable with a laser delivering 10 kJ to the DT
pellet. A long range eAort has therefore been undertaken
worldwide to develop gas and chemical laser technology.
No such laser in the desired pulse length and energy
output range has, however, yet been operated. These
lasers will probably be successfully developed before the
other technological problems of laser-driven fusion reac-
tors are solved.

The use of electrically excited gas or chemical lasers
presents new problems in the theory of laser-driven
fusion, since for most cases presently considered, these
lasers operate at considerably longer wavelength than the
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FK". 19. Rising density profiles for Case 1 just before final conver-
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