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The problem of quantum collisions involving several particle systems is reviewed within the
framework of multiple scattering theory. The basic apparatus of collision theory for nonrelativistic
potential problems is first developed, and the Born and eikonal series are introduced. A general
analysis is then given of multiple scattering expansions for several particle problems. We discuss in
particular the Born developments, the Faddeev —Watson expansions, the Glauber method, and
various multiple scattering approaches to the determination of the optical potential. Applications to
atomic collision problems and to high-energy hadron —deuteron scattering are discussed at length.
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I. INTRODUCTION

Several particle dynamics is a problem of long-stand-
ing interest in physics. While the nonrelativistic motion
of two particles interacting through a given force is well
understood and powerful methods have been .developed
to deal with situations where a very large number of
particles are present, systems containing a few particles
have remained dificult to analyze. This is not surprising
since in general these systems exhibit all the complexity
of the many-body problem. We shall examine in this
review some quantum systems of this type from the point
of view of collision theory. Thus bound state ("spectros-
copic") properties will only be discussed insofar as they
inhuence scattering phenomena.

The theoretical methods which we shall describe to
analyze these problems all share a common feature: they
may be considered as multi@/e scattering expansions. Such
methods have been very useful in the analysis of atomic,
nuclear, and "elementary particle" collision processes. It
is the purpose of this article to present this approach
from a general point of view and to illustrate it on a few
selected examples.

In order to introduce some of the concepts involved in
multiple scattering expansions within a simple frame-
work, we begin in Sec. II with a study of the Born and
eikonal series in nonrelativistic potential scattering.

Section III is devoted to a general analysis of multiple
scattering series for several particle problems. We first
discuss the Born and distorted-wave Born developments,
then the Faddeev —Watson expansions, and finally the
Glauber "many-body" extensions of the eikonal method.
We also give a brief survey of multiple scattering ap-
proaches to the determination of the optical potential.

Applications of multiple scattering expansions to
atomic collision problems are the subject of Sec. IV. We
first analyze electron —hydrogen collisions, a classic three-

body problem. We then discuss several electron —helium
scattering processes at intermediate„and high (atomic)
energies, for which absolute measurements of differential
cross sections recently have become available.

In Sec. V we consider high-energy hadron —deuteron
collisions. These processes lie at the borderline between
elementary particle physics and nuclear physics and have
been a locus of fruitful interaction between the two fields.
Af ter recalling a . few general properties of hadron—
nucleus scattering at high energies, we revie~ the appli-
cations of Glauber s high-energy diAraction theory to
hadron —deuteron collisions. Particular emphasis is given
to elastic scattering, for which a comprehensive compar-
ison of theoretical and experimental work is made. We
also discuss hadron —deuteron scattering from the point of
view of Regge theory. We study the connection between
diffraction scattering and Regge poles and then investi-
gate the Regge cut contained in the 0-lauber eclipse term.
We also give a brief survey of phenomenological applica-
tions.

Finally, we summarize in Sec. VI the main results
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280 C. J. Joachain and C. Quigg: Multiple scattering expansions

discussed in this review and indicate several open prob- where the coefficients S&(k) are the S-matrix elements in
lems. the angular momentum representation; they are given in

terms of the phase shifts 6& by
II. POTENTIAL SCATTERING

A. Basic formulas
S((k) = exp [2i()((k)]. (2.i i)

Let us consider the nonrelativistic scattering of a
spinless particle of mass m by a local potential V(r) of a
range a. We denote by k; and kf the initial and final wave
vectors of the particle while L)) is the scattering angle
between k; and kf. It is also convenient to introduce the
"reduced potential" U(r) = 2mV(r)/h'. The particle's
energy is E = h'k'/2m, where k = lk;l = lktl is its
wave number. The Hamiltonian describing the system is
therefore

H = —(h'/2m)V", + V(r). (2.i)
We shall call g(,+) the stationary scattering eigenstate of

H which corresponds to an incident plane wave of
momentum hk; and exhibits the behavior of an outgoing
spherical wave. This wave function satisfies the Lipp-
mann —Schwinger equation

d', . '(r) = 4, (r) + f G,"(r, r')U(r')dt;, '(r')dr', (22)

where the incident plane wave is given by

B. The Born series

If we elect to solve the Lippmann —Schwinger equation
(2.2) by perturbation theory, starting from the "unper-
turbed" incident pla. ne wave (I)k, (r), we generate the
sequence of functions

&G(r) =- Ck, (r),

g(r) = O, (r) + f G,"(r, r )U(r )d', (r )d'r''
(2.i2)

(2.13)

&.(r) = @, (r) + f G,"(r, r')U(r')&„-, (r')dr'.

Let us assume for the moment that this sequence
converges towards g(„+). We may then write the Born series
for the scattering wave function, namely

(I)),,t(r) = (r
l
k;) = (2m)

' 'exp(i k; r). (2.3)
The "'normalization" convention which we adopt is such
that for plane wave states [k) and lk') the orthogonality
relation reads

'

where (I)o =
2t2o

= (I)),, and

q„(r) = f K.(r, r '
)g, (r '

) dr ', n ) 1 (2.14)

(k'lk) = 6(k —k'). (2.4)

The Green's function G,')(r, r') which appears in the and

Lippmann —Schwinger equation (2.2) is given by

G."(, ') = —(2 )
' t, , dK, (2.5)K' —k' —lC

K, (r, r') = G,"(r,r')U(r')

2G(r, r') = f Ir (r, r")K. , (r",r')dr",

n&2.

(2.is)

(2.16)

1 exp (ik
l
r —r 'l )

4m lr —r'l (26)

so that the wave function g' ) behaves asymptotically as

where the limiting processes ~ —& 0+ is always implied.
Explicitly, we have

It is apparent from Eqs (2.13)—(2.16), that the Born series
is a perturbation series in powers of the interaction
potential. Substituting the series (2.13) into the integral
representation (2.8), we obtain the corresponding Born
series for the scattering amplitude, namely

(2. i7)
gI;, (r) „„=(2w)

' '[exp(ik; r) + f exp(ikr)/r] (2.7)
where

and the elastic scattering amplitude f is given by

Here

f = —2~'(c",IUlql ). (2 8)

C),,(r) = (rlkf) = (2rr)
' 'exp(ikt ~ r) (2.9)

is a plane wave corresponding to the final wave vector k&
and "normalized" according to the convention (2.4). If
the potential is central, we recall that the scattering
amplitude (2.8) may also be decomposed in partial waves
as fe= Zf~'

n=l
(2.i9)

fa. = —2''(@kfl UGo U ' ' ' GG Ul(I)k, ) (2.18)

is an expression in which the interaction appears n times
and the free Green's function (n —1) times. It is worth
pointing out that the relation (2.18) gives the term of
order n of the Born series in general circumstances, for
example, when the interaction is complex and even
nonlocal. It is also convenient to define the jth order
Born approximation to the scattering amplitude as

+ (2l + I)[&(k) I]&( &) (2 I&)
In order to gain further insight into the physical

2ik I=o content of f&„, let us analyze Eq. (2.18) in momentum
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space. Defining (for a local potential)

(k'iUik) = (e, iUiC, )
= (2m) f exp [i(k —k') r] U(r] dr (2.20)

and using the integral representation (2.5) of G,",we find
that

fs] fB] 2~ (kflUlk ) (2.21)

1
& = —2m' dk]dkp ' dk —l(kf~lU~lk —])k —k„ 1 + lE'

I
~ «. ]

I
Ulk. -2) . «2 IU k]) ~, ~. ..«] IUlk )

(2.22)

The Green's function therefore appears as a propaga-
tor, while the quantities k I, k2, ;,k„ 1 are "interme-
diate momenta. "We can thus visualize the Born series by
picturing the scattering amplitude as

and that

Vo/E = U./k' « I, (2.25)

z

fz(r) = (2m)
' 'exp i k; . r —— U(b, z') dz'

2k

(2.26)

where we have adopted a cylindrical coordinate system
such that r =. b + gg;, so that the integral is evaluated
along a straight line parallel to the incident momentum
hk;. In terms of the potential V(r), we have

where Vo is a typical strength of the interaction V(r) and
Uo ——2m Vo/h'. Since the first, "high wave number" con-
dition (2.24) states that the reduced de Broglie wave
length A. = k ' of the particle is small with respect to the
range of the potential, we expect semiclassical methods to
be useful in this case. The second condition (2.25) will be
referred to as the "high-energy" condition. Tf these two
conditions are satisfied, the eikonal approximation (Mo-
liere, 1947; Glauber, 1953, 1955, 1959; Watson, 1953;
Schwinger, 1954; Malenka, 1954; SchiA; 1956; Saxon and
Schiff, 1957) may be used to obtain for the scattering
wave function g'„+, i the approximate expression

V

&E(r) = (2') ~ exp ik; r —~— V(b, z )dz
i

(2.27)

f
BI

f
B2

+ 0 St

C. The eikonal approximation and eikonal multiple
scattering series

Let us return to the Lippmann —Schwinger equation
(2.2). We assume that

(2.24)

-(2.23)
namely as a multiple scattering series in which the projec-
tile interacts repeatedly with the potential V and propa-
gates freely between two such interactions. On the basis
of this multiple scattering interpretation we expect that
the Born series will converge if the incident particle is

sufficiently fast that it cannot interact many times with
the potential and (or) if the potential is weak enough.
Detailed studies of the Born series (Jost and Pais, 1951;
Kohn, 1954; Zemach and Klein, 1958; Aaron and Klein,
1960; Davies, 1960; Manning, 1965) confirm these intui-
tive considerations. In particular:

(i) For a central potential V(r) less singular than r ' at
the origin and decreasing faster than r ' as r —+ oo, the
Born series always converges at sufficiently high energies.

(ii) For a central potential V(r) the Born series con-
verges for all energies if the potential —~V(r)~ cannot
support any bound state.

We emphasize that the results quoted above apply only
to nonrelativistic potential scattering; they may not nec-
essarily be valid for many-body problems and (or) rela-
tivistic collisions.

G,"(r,r') = —(2m) exp[i k; ~ (r —r')]

exp i - r —r'
2k ~ Q + Q' —ig

(2.28)

We now return to the Lippmann —Schwinger equation
(2.2), and provided that the two conditions (2.24) and
(2.25) are satisfied, we find it is legitimate to "linearize"
the denominator of the integrand (i.e., neglect the Q'
ter'm) and write

G&~&+](r, r') = —(2') 'exp[i k; ~ (r —r')j

x P . d . 2292k;. Q —ie

The integral on the right of Eq. (2.29) is then readily
performed, with the result

Go'(r, r') = (—i/2k)e'"' '' 6'(b —b')H(z —z'), (2.30)

where r = b+ zk;, r' = b'+ z'k;, and 0 is the step

where v; = hk~/m is the incident velocity. We shall not
discuss in detail the numerous derivations of the result
(2.26). We simply mention that it may be obtained from
stationary-phase arguments (Schiff, 1956) or from the
fact that the incoming plane wave is modulated by a
function which varies slowly over the de Broglie wave-
length of the incident particle (Glauber, 1959). Another
interesting way of deriving the eikonal wave function
(2.26) is to examine the free propagator G,'i appearing in
the Lippmann —Schwinger equation (2.2) (Malenka, 1954;
Schiff; 1956; Byron', Joachain, and Mund, 1973).Using its
momentum space representation (2.5) and introducing
the new variable Q = K —k;, one has
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function such that

O(x) = 1 x & 0

=0 x(0. (2.31)

5 = k; —kf (2.33)

is the wave vector transfer of length 5 = 2Ib sin(8/2).
In obtaining the eikonal wave function (2.26), we

pointed out that the integration in its phase should be
carried out along a straight line parallel to k;. In fact,
since the actual phase of the corresponding semiclassical
scattering wave function is evaluated along a curved
trajectory, it is reasonable to expect that an improvement
on Eq. (2.32) may be achieved by performing the z
integration in the phase along a direction parallel to the
bisector of the scattering angle (i.e, perpendicular to 5).
This suggestion, first made by Glauber (1959), leads
directly to the eikonal scattering amp/itude

kf, =
2 .f exp(ib .b) (exp [z«(b)] —2] d'b, (2 34)

where we work in a cylindrical coordinate system such
that

r = b+zg. (2.35)

and n is perpendicular to h. The eikonal phase shift
function X(b) appearing in Eq. (2.34) is given in terms of
the interaction by the simple linear relationship

«(b) = —
2„f U(bz)dz,

Defining the quantity

~(b) = 1 — p[x(b)]
we may also rewrite Eq. (2.34) as

(2.36)

(2.37)

f = 2—f exp(iib ~ b)1'(b)d'b. (2.38)
ik

For potentials which possess azimuthal symmetry, Eq.
(2.34) simplifies to

The linearized propagator (2.29) and (2.30), which clear-
ly exhibits forward propagation between successive inter-
actions with the potential, leads directly to the eikonal
wave function (2.26). Incidentally, let us remark that the
importance of the four-dimensional relativistic version of
the linearized propagator in treating field theoretical
problems was recognized by Schwinger (1954) and used
recently by several authors (Chang and Ma, 1969; Abar-
banel and Itzykson, 1969; Levy and Sucher, 1970, Eng-
lert et al. , 1969) to sum the series of Feynman amplitudes
corresponding to large classes of ladder diagrams.

With the eikonal wave function given by Eq. (2.26), we
may now return to the integral representation (2.8) and
write the scattering amplitude as

lf,( )ib= —
4 f exp(iib ~ r)

x U(r) exp.
—

24 f U(b, z') dz' dr, (2.32)

where

oo

f = —.f A(bb)(exp[i«(b)] —l]bdb, (2.39)

where X(b) is still given by Eq. (2.36). We may also look
at this relation from a somewhat different point of view.
Indeed, the right-hand side of Eq. (2.39) provides the
Fourier —Bessel representation of the exact scattering am-
plitude, provided that the phase X(b) is redefined accor-
dingly. This representation is exact for all energies and
angles (Adachi and Kotani, 1965, 1966; Predazzi, 1966;
Chadan, 1968). For high-energy, small angle scattering,
the phase X(b) may be related to the phase shifts 6]
appearing in the partial wave series (2.10). The result is

x(h) = 2~ (2.40)

where 6 and l are related by I = kb.
Two important remarks should be made about the

eikonal approximation. Firstly, it is equally valid for real
and complex potentials. In the latter case the phase shift
function X(b) becomes complex [see Eq. (2.36)]. Second-
ly, within its range of validity, the eikonal amplitude
satisfies the optical theorem (Glauber, 1959), in contra-
distinction to the first Born approximation.

By analogy with the Born series, we may define an
eikonal multiple scattering series by expanding the quanti-
ty I'(b) [see Eq. (2.37)] in powers of the interaction
potential. Thus we write

where

fE = ZfE
n= I

(2.41)

~ n

f = iiz , f, —.( —)3[ (bb)]" b«b. db(2 43)

We note that in the case of a real potential the objects fE.
given by Eq. (2.43) are alternately real and imaginary.
As in the case of the Born series [see Eq. (2.19)] we also
introduce the quantities

fE, = g fE. . (2.44)

We now investigate the relationship between the Born
and eikonal series. First of all, it is a simple matter to
show that

fE] = fE] (2.45)
for all energies and all momentum transfers (Glauber,
1959).We emphasize that the result (2.45) is valid for all
angles only when the z axis used in evaluating the eikonal
phase shift function [Eq. (2.36)] is chosen along a direc-
tion perpendicular to A. If, for example, the z axis were
chosen along k;, then we would only have approximately
5 ~ b = 5 - r for small 6's and Eq. (2.45) would hold
only for small scattering angles. In what follows we shall
consistently choose z perpendicular to h.

Remarkable relationships between the higher terms of
the eikonal and Born series have also been noticed
recently (Moore, 1970; Byron and Joachain, 1973a;

(2.42)

In particular, for potentials which possess azimuthal
symmetry, Eq. (2.42) reduces to

Rev. Mod. Phys. , Vol. 46, No. 2, April 1974
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00 —iver

U(r) = Uo p(n) dn.
ctp)0

(2.46)

A simple calculation shows that in this case the leading
term of the second Born expression f&2(k, 5) for large k
is such that

Byron, Joachain, and Mund, 1973; Swift, 1974). We shall
concentrate on real central potentials and follow the
treatment of Byron, Joa.chain, and Mund (1973), who
have made a detailed analysis of this problem for a
variety of interaction potentials.

First of all, we note that Re fE2 = 0 [see Eq. (2.43)]
while in general Re f&~ 4 0; hence there is no analog of
Eq. (2.45) for Re f~~ and Re f~2. We shall return shortly
to this point while discussing the relative merits of the
second Born and eikonal approximations. For the mo-
ment, we focus our attention on Im f&2 and Im f~2 and
consider the particular case of interactions having the
form of a superposition of Yukawa potentials, namely

F3(k, 6) = Re f~3 (k, 6),
Im f«(k, 6) = Im f«(k, 6),

(2.54a)

(2.S4b)

Moore (1970) has shown for a Yukawa potential (and
hence by a direct generalization for a superposition of
Yukawa potentials) that for large 6 the leading term in
As. (A), which is proportional to log" '5/5', is equal to the
first term in A E„(A). However, for Yukawa-type potentials
the quantities A~„(A) and A&„(h) are linear combinations
of terms of the form log 5/6', with 0 & m & n —1, so
that a general proof of Eq. (2.53) is much more difficult
to construct. Such a proof has been given recently by
Swift (1974).

Remembering that the quantities fs„are alternately
real and purely imaginary, we see that for large enough k
(and Yukawa-type potentials) the relations (2.51)—(2.53)
imply that in a.ddition to Eq. (2.50) we have the higher-
order relations

f „(k,a) = A„(a)/k+. (2.47)

where the quantity A~2(h) depends only on 6 and is
purely imaginary. In writing Eq. (2.47) we have neglected
terms of higher order in k '. On the other hand, we may
use Eq. (2.43) and the fact that the eikonal phase shift
function X is proportional to k ' [see Eq. (2.36)] to write

f~, (k, A) = AE2(h)/k, (2.48)

where A&2(6) is also purely imaginary and depends only
on

What is the relationship between the quantities AE2(A)
aiid Agi2 {6)?For Yukawa. -type potentials having the form
(2.46) it turns out that

A~2(h) = A~~(A) (2.49)

for all momentum transfers a. Thus, when k is large
enough so that Eq. (2.47) holds, we have {remembering
tliat AEp and Agg al e pllI'ely IIllaglllaIy)

Im f~2(k, h) = Im F2(k, h) (2.50)
for all IIalues of b,. For other interactions such as a
square-well potential, a Gaussian potential U(r) =
U, exp( —or') or a "polarization" potential of the form
U(r) = U, (r' + d') —' the relation (2.50) holds only for
small scattering angles.

The comparison of the terms f~. and f~. for n & 3 is a
difficult problem which we shall not treat in detail. On
the basis of a careful analysis of the first few terms of the
Born and eikonal series (up to n = 4) and for Yukawa-
type potentials of the form {2.46), Byron, Joachain, and
Mund (1973) have suggested that the following relations
hold: If one writes

fE.(k, 6) = Re fg. (k, 5),
Im fE„(k,6) = Im f& (k, 5),

(2.S4c)

n even, . (2.54d)

n odd

1 (2.ss)

is added to the inequalities (2.24) and (2.25). In this case
the Born series converges rapidly and the relations (2.54)
imply that the eikonal amplitude gives a consistently
poorer approximation to the exact amplitude than does
the second Born approximation f&2. This is due to the fact
that for ka )) 1 the exact amplitude may be written for
Yukawa-type potentials as

+ I ~ ~ (2.56)

where we have introduced the quantities A, 8, C, and D
which depend only on A. In terms of the objects 2&.
introduced above, we note that A~, (A) = iB(h), A~3(k)
= C(A), etc. On the other hand, the eikonal amplitude
has the structure

— which imply that the eikonal amplitude may be obtained,
for fixed momentum transfer, by summing the leading
term in each order of the Born series, in the large k limit.

The relationships (2.54) have some important conse-
quences. Let us first consider the weak coupling situation
such that the condition

and

fg. (k, A) „„„-Ap„(A)/k" ' + O(k ")

f „(k,A) = A .(6)/k" ',

(2.sl)

(2.s2)

fP(k, A) = fg((A) + i k +, +.a(n) C(a)

3 ~

(2.57)

then one has

A, (s) = A, (a) (2.53)

for all. values of A. %'e remark in this connection that

Therefore neither f&2 nor f& are correct to order k '.
However, since the coefficient A is proportional to U0
while C is proportional to U0, it is clear that for small
values of

~
Uo

~

the second Born amplitude should be more
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1957; Wu, 1957; Blankenbecler and Goldberger, 1962;
Feshbach, 1967; SchiA', 1968; Wilets and Wallace, 1968;
Sugar and Blankenbecler, 1969; Hahn, 1969, 1970; Levy
and Sucher, 1969, 1970; Abarbanel and Itzykson, 1969;
Moore, 1970;Kujawski, 1971;Wallace, 1971, 1973a, b, c;
Baker, 1972, 1973;Swift, 1974). We note, however, that
the Glauber form which we have discussed above is
probably the simplest eikonal approximation, a feature
which is very important when one wants to generalize
the method to many-body collisions.

Finally, we note that the derivation of the eikonal
scattering amplitude (2.34) may be generalized to relativ-
istic collisions and does not require the existence of a
potential to describe the collision process~although an
optical potential can always be found to describe the
scattering in the eikonal approximation (Glauber, 1959;
Omnes, 1965; see also Sec. III.D). Moreover, for high-
energy small angle scattering, the basic formula (2.34) is
valid in the laboratory system as well as in the center of
mass system (Franco and Glauber, 1966). The only
modifications are that the center of mass wave vectors k;
and kf must now be replaced by the corresponding
laboratory quantities k and k', while 5 = k; —kf is
replaced by q = k —k'. Of course the magnitude of k' is
now smaller than that of k because of recoil effects, but
these. effects are small for scattering near the forward
direction and can be minimized by interpreting the
quantity (—q') as the Mandelstam variable t, namely the
square of the four-momentum transfer of the collision.

III. SEVERAL PARTICLE PROBLEMS

(b~Sla). The theoretical analysis is conveniently carried
out in terms of the ~J-matrix elements such that (see, for
example, Goldberger and Watson, 1964)

H=H+ V, , (3 2)
where V; is the interaction between the two colliding
particles and the channel Hamiltonian H; describes these
particles when they are far apart and do not interact. We
then have

H;4. = E.4., (3.3)
where 4. is the corresponding free state vector. Similarly,
in the. final channel,

with

H=Hf+ Vf (3.4)

HfCb —EbC b.

We also introduce the 6-reen's operators

G&*&(E) = (E —H ~ i.) ',

(3.5)

(3.6a)

(blSla) = 6~ —2rri6(Eb —E )(bP~a). (3.1)

It will sometimes prove convenient to use a somewhat
more explicit notation and write a —= (i, n) and b —= (f,
P) where i and f are "arrangement channel" indices and
n and P denote, respectively, the state of the system in the
initial and final channel. Thus in the initial channel the
total Hamiltonian of the system may be decomposed as

A. The Born series and the distorted-wave Born
series

Let us consider a general quantum collision process
a —+ b for which we denote the S-matrix element by

I I I I I I I I. I I I I I I I I I

G&*&(E) = (E —H ~ &,)-',

Gf '(E) = (E —Hj ~ ic) '.

(3.6b)

(3.6c)

More generally, if c is any arrangement channel index
such that H = H, + V, we have

G,i=& = (E —H, ~ i~) '. (3.6d)

Direct collisions are characterized by the fact that the
channel Hamiltonians are the same in the initial and final
states. Writing H; = Hf = Hd and V; = Vf = Vd in this
case, we also define

Gd ——(E —Hd ~ re) '. (3.6e)

Finally, we shall denote by Ho the kinet:c energy operator
of the entire system (i.e., the Hamiltonian H from which
the total interaction V has been removed). The corre-
sponding free 6-reen's operator is then

Go = (E —Hs + ie) '. (3.6f)

I I I I I I I I I I I I I I I I I

0 300 60' 90 I20 I 50 180

Let us now examine the "on the energy shell" transi-
tion matrix elements (bl~Jla) appearing in Eq. (3.1). It is
convenient to factor out a momentum-conserving delta
function and to introduce the reduced T-matrix elements
Tl,. such that (bi%la) = 5(Pb —P.)Tb.. Then (Goldberger
and Watson, 1964)

FK'. 4. Same as Fig. 3 except that the imaginary part of the amplitude
is shown. (From Byron, Joachain, and Mund, 1973). T,. = (C„~V,~+.1 &) (3.7a)
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286 C. J. Joachain and C. Quigg: Multiple scattering expansions

or

T,.= (~.—lvlc. ), (3.7b)

The first Born approximation consists in retaining only
the first term of this expansion, namely

~here the state vectors 4'+) and +b' are such that T = (c.lvlc. ) = (c.lvflc. ). (3.16)

e.(.) = e. + G(.) V, e.,

+b ' = @b+ G' 'Vf@b

(3.Sa)

(3.sb)

For direct collisions it is natural to choose the propagator
G,'+) so that it coincides with the Green's operators G„'+)
defined by Eq. (3.6e). The corresponding Born series then
reads

and satisfy the Lippmann —Schwinger equations

@(+) —@ + G (+) V. q (+)

kb Cb + Gf Vf+b

(3.9a)

(3.9b)

We note that for any arrangement channel c the Green's
operators G'-) satisfy the relations

G(—) —G(-) + G(-) VG(-) (3.ioa)

G(-) —G(-) + G(—) VG(-) (3.10b)

Uj, = Vj+ VjG(') V,

U,, = V+ VG(-)V,

and the full many-body transition operator

T = V+ VG()V.

(3.i ia)

(3.i it)

(3.i ic)

These operators satisfy the Lippman —Schwinger equa-
tions

and

Uj;- = Vj+ Uj; G(+) V;,

Uj; = V;+ VjGj(+ Uji,

(3.i2a)

(3.12b)

T= V+ VG(-)T

= V+ TG."V.
(3.12c)

(3.i2d)

On the energy shell E. = Eb we have (C&b
l
V, lili. )

(4 b l Vtl@.) and, therefore, from Eq. (3.7)

(3»)
A variety of Born series expansions for the transition

matrix element T&. may be obtained by solving the
various Lippmann —Schwinger equations written above
by successive iterations. For example, we may first solve
for the full Green's operator G =i from Eqs. (3.10) and
write

G(-) —G(-) + G(-) VG(-) + G(-) VG(-) VG(-) +. . .

(3.i4)

which are the Lippmann —Schwinger equations for the full
Green's operator. We also define the (Lovelace) transi-
tion operators

Tb. ——(ciblvd+ v, Gd" v~+ v, G,"v, G,"v, + . le.).
(3.i7)

Little is known about the mathematical properties of
the Born series (3.15). For direct collisions the conditions
of convergence of the series (3.17) are probably similar to
those discussed in Sec. II.A for potential scattering. For
example, the Born series (3.17) may well be convergent
for nonrelativistic direct processes at suKciently high
colliding energies; this will be illustrated in Sec. IV. In
particular, we shall see in the case of the nonrelativistic
elastic scattering of charged particles by atoms that the
first Born approximation eventually governs the scatter-
ing at sufficiently high energies. For inelastic (direct)
collisions of charged particles with atoms the two first
terms of the Born series dominate the scattering at high
(nonrelativistic) energies.

On the other hand, when rearrangement collisions occur
some particles are transferred between the colliding sys-
tems during the reaction, so that V / Vf. The question of
the convergence of the Born series (3.15) in this case has
been investigated by several authors (see, for example,
Aaron, Amado, and Lee, 1961; Weinberg, 1963a, b;
1964a, b, c; Bransden, 1965, 1969; Rubin, Sugar, and
Tiktopoulos, 1966, 1967a, b; Dettmann and Leibfried,
1968, 1969; Shakeshaft and Spruch, 1973). At low ener-
gies the series diverges, and even at high energies its
convergence is doubtful. However, Dettmann and
Leibfried (1969) have pointed out that for nonrela-
tivistic rearrangement processes occuring in three-body
systems, and for a wide class of potentials, the energy
variation of the T-matrix element is given correctly at
high energies by the first two terms of the Born series. It
is interesting to note in this context that variational
methods of the Schwinger type (Lippmann and Schwin-
ger, 1950; Lippmann, 1956; Joachain, 1965) also involve
in lowest order the first- and second-order terms of the
Born series. More recently, Shakeshaft and Spruch
(1978) have shown that for a particular (nonrelativistic)
three-body rearrangement process (i.e., a pick-up reac-
tion involving two heavy particles of mass M and a light
one of mass m, with m/3f —+ 0) the second Born term
dominates in the forward direction at high energies.

Distorted-wave Born series are obtained by a simple
application of the two-potential scattering formalism
(Gell-Mann and Goldberger, 1953). Let us assume that
the interaction potentials V and Vf may be split as

Then, upon substitution in Eqs. (3.8) and then in Eqs.
(3.7), we find the Born development

V-= U;+ P',

Vj = Uj+ 8y

(3.iSa)

(3.isl )
(c, lv, (o. v,)+ v, G,. v, + V, G,& ivG,&'v, + "I+.) and more generally, in any arrangement channel c,

(3.15) V= U, + W, . (3.18c)
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C. J. Joachain and C. Quigg: Multiple scattering expansions

We define the new Hamiltonians H, = H, + U„ together
with the Green's operators G, ' = (E —H, +. ie), and
assume that the distorted waves

X„() = e. + G,"U,e. (3.19a)

Xb @b + Gf Uf@b
(-) (-) (3.19b)

are known. The T-matrix elements (3.7) are then given by
(Gell-Mann and Goldberger, 1953; Gerjuoy, 1958)

or

7" = &x~ 'l(V —Wt)l~') + &xb IWfl+.") (3.20a)

with

T~. = &c'~ l(vt —w)lx") + &+~' 'lwlx") (3.20b)

+(+) —X(+) + G(+) ~.X(+) (3.21a)

(3.22a)

T = (+''lwlx"). (3.22b)

If we wish to treat exactly the interactions U; and Uz
but elect to use perturbation theory to handle the inter-
actions 8; and 8z we generate the distorted-wave Born
series. For example, using the fact that

G(=) = G( + G, O'6( + G,= 8'G, 8'G, +

(3.21b)

The two-potential formulas (3.20) simplify when the
distorting potentials U; and Uz cannot induce the transi-
tion a —+ b considered. This may happen, for example, if
the interactions U; and Uf only generate elastic scattering
and the transition a —+ b is an inelastic process or a
rearrangement collision. In this case the first term on the
right of Eqs. (3.20) vanishes, so that

With a suitable choice of distorting potentials U, and
Uf this formula may improve sign&ficantly over the first
Born approximation (3.16), at least for direct collisions.
For rearrangement processes the situation is considerably
more involved. As for the Born series (3.15), the conver-
gence of the distorted-wave Born series (3.24) is again
doubtful in this case (Greider and Dodd, 1966; Dodd
and Greider, 1966).

A simple but physically reasonable interpretation may
be given of Eq. (3.25). Let us imagine for example that
the transition a ~ b is a process of the type A + B~ C + D (see Fig. 5). We see that the two particles A
and B first feel the initial state interaction U; (embodied in
X. '), then interact once through W (or Wt), and finally
experience the final state interaction Uq while emerging
from the collision. Since U; and Uf are treated exactly, we
note that the particles are allowed to interact repeatedly
through the distorting potentials.

The DWBA formula (3.25) has been used extensively
in atomic and nuclear physics (see for example Mott and
Massey, 1965; Tobocman, 1961). It also provided an
intuitive starting point for the various high-energy ab-
sorption models (Sopkovich, 1962; Gottfried and Jack-
son, 1964; Durand and Chiu, 1964, 1965a,b; Jackson,
1965). We shall discuss in Secs. IV and V a few applica-
tions of the eikonal D8 BA approximations, in which the
distorted waves X.'& and X,' ' appearing in Eq. (3.25) are
obtained with the help of the eikonal approximation.

H=Hp+ V,

where Ho is the kinetic energy operator and

(3.26)

B. The Faddeev-Lovelace-%arson expansions

In this section we shall study a nonrelativistic three-
body system such that the particles 1, 2, 3 interact by
means of two-body interactions. We shall denote by
V = V23 the potential acting between the particles 2 and
3, awhile V' —= V» acts between 1 and 3, and V' —= V12

between 1 and 2. The total Hamiltonian of the system is
then

(3.23)

we see that Eqs. (3.22) yield, with the help of (3.21),
V=+ V. (3.27)

Tb. = (Xb 'IW;(or Wf) + WfG W'+ WtG,' WG,"W;
We shall also need the Hamiltonian describing two
particles interacting while the third one is free, namely

(3.24)

The first term of this expansion gives the distorted-~ave
Born approximation (DWBA), namely

H;=Ho+ V'

and we define the operators

V-= V —V'

(3.28)

(3.29)

FIG. 5. Illustration of the dis-
torted-wave Born approximation
for a process A + B —+ C + D.

T, = V'+ V G,"V

= V'+ T, G,"V'
= V + V'G."T,.

(3.30a)

(3.30b)

(3.30c)

corresponding to the interactions in which particle i
participates. (For example: V&

——V —V' = V]2 + V/3. )
The Green's operators corresponding to H, H;, and Ho are
defined, respectively, by Eqs. (3.6a), (3.6b), and (3.6f).

The t~o-body T-matrices are given by
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288 C. J. Joachain and C. Quigg: Multiple scattering expansions

We also note that

and

G(~) G(—) + G(—) ViG(~)

= Gp +G; V'Gp

G(-) + G(-) TG(-)

(3.31a)

(3.3 lb)

(3.31c)

Uf; = V + g Tj, Go~
' UI„,

kWf
(3.3Sb)

where i, f, k = 1, 2, 3. The case i = f = 0 may also be
included by defining Tp

——0. For example, if i = 1, i.e.,
the particle 1 is incident on the bound pair (2,3), we find
that Eq. (3.35b) becomes

G() V= G."T,. (3.31d)

where the indices n and P contain additional information
on the momenta, spin, bound states, etc. , of the initia. l
and final states considered. Moreover, the operators Uf;
and Uf; are given, respectively, by Eqs. (3.11a) and (3.11b)
with V; = V —V' and Vf = V —Vf.

Before we turn to the problem of obtaining multiple
scattering expansions for the operators Uf, and Uf;, we
recall briefiy the work of Faddeev (1960, 1961, 1962),
who writes the full three-body operator T = V
+ VG(+) V as

T(j) + T(2) + T(3) (3.33)

where T") represents the sum of all contributions to T in
which the particles 2 and 3 interact last. The objects T(')

then satisfy the Faddeev equations

&~"') &')
(3.34)

which exhibit much better mathematical properties than
the Lippmann —Schwinger equations (3.12). The Faddeev
approach to the three-body problem immediately attract-
ed a great deal of attention (see, for example, Lovelace,
1964a,b; Weinberg, 1964a; Omnes, 1964; Rosenberg,
1964) and possible applications to a number of nuclear
and atomic problems have been investigated (a list of
references may be found in Watson and Nuttall, 1967,
and Chen and Joachain, 1971). Extensions of the Fad-
deev equations to relativistic three-body problems have
also been proposed (Alessandrini and Omnes, 1965;
Freedman, Lovelace, and NamysI'owski, 1966; Blanken-
becler and Sugar, 1966).

A slightly difrerent version of the Faddeev equations,
derived by Lovelace (1964a), involves the operators Uf;
and Uf, which lead directly to the transition matrix
elements (3.32) for a process in ~ fP. The result is

Uf; ——Vf + X UfkGo Tk
k%i

(3.3Sa)

We shall describe the various possible modes of frag-.
mentation of the three-body system by indices i, f which
take on the values 0, 1, 2, 3. Thus i = 0 corresponds to
three free particles in the initial state, i = 1 means that
initially the particle 1 is free and the pair (2, 3) is bound,
etc. A coHision process a ~ b is then described by the
reduced transition matrix To., given by Eqs. (3.7) and
(3.13). More explicitly, we shall write (on the energy
shell)

~fP (~'fP I Uf l~'«) '= (~'fu I Uf l~'«) '(3 32)

Ujj = Vj + T2 Gp+ U21 + T3Gp+ U31,
(+) (+)

U21
'=

Vj + Tj Gp Uj1 + T3 Gp U31
(+) (+)

U31 = Vj + Tj Gp+ Ujj + T2 Gp+ U21 .(+) (+)

(3.36)

We note that the matrix kernel of the Lovelace equa-
tions (3.36) is just the transpose of the Faddeev kernel
appearing in (3.34), so that all the mathematical proper-
ties of the Faddeev kernel apply equally well to the
Lovelace kernel. In constrast with the Faddeev equa-
tions, however, the Lovelace equations involve interac-
tion potentials. Nevertheless, a simple modification of the
Lovelace formalism also yields equations which do not
include any direct reference to potentials (Alt, Grassber-
ger, and Sandhas, 1967). A comparison between the
Faddeev and the Lovelace —Alt approaches to the three-
body problem has been made recently by Osborn and
Kowalski (1971). It is also worth pointing out that the
Faddeev or Lovelace equations are closely related to
Watson's multiple scattering equations (Watson, 1953,
1956, 1957; see also Goldberger and Watson, 1964;
Watson and Nuttall, 1967). We shall return to this point
later.

Let us now investigate how to obtain multiple scatter-
ing expansions for various three-body processes (Ekstein,
1956; Rosenberg, 1964; Queen, 1964, 1966; Bransden,
1965; Sloan, 1967, 1968; Chen and Joachain, 1971). In
what follows we shall concentrate on the intermediate and
high-energy regions such that the relative kinetic energy
of the incident particle 1 with respect to the target (2,3) is
large compared to the binding energy of that target
("weak binding" condition).

We start with the case f = 1 (elastic and inelastic
direct processes) and return to the Lovelace equations
(3.36). A simple iteration of these equations gives

Uj1 = Vj + T2 Gp+ Vj + T3 Gp+ Vj
(+) (+)

+ T2 Gp+ TjGp Vj + T2 Gp+ T3 Gp Vj

+ T3Go+ T)Go+ Vj+ T3Go+~ T3Go Vj+ . (3.37)

Then, using the fact that V —V' = V'+ V' and elimi-
nating the potentials in favor of the two-body T-matrices
by repeated use of Eq. (3.30b), we find that

Ujj = T2 + T3 + T2Gp T3 + T3Gp T2
(+) (+)

+ T2 Gp+ TjGp+ T2 + T2 Gp+ T3 Gp+ T2

+ T2 Gp Tj Gp+ T3 + T3 Gp Tj Gp+ T2

+ T3Go TjGo T3 + T3Go T2Go T3 + ' ' ' . (3.38)

Similar expansions may be found for the case of
rearrangement collisions. For example, when f = 3, i.e.,
for a process, 1 + (2, 3) ~ (1,2) + 3 we obtain from Eqs.
(3.36)
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U31 = V + T2 + Tj Gp+ T2

+ TIGp T3 + T2Gp T3 +(+) (+) (3.39)

For three-body breakup collisions 1 + (2, 3) ~ 1 + 2
+ 3, we must first include the channels i = f = 0 in the
Lovelace equations (with To ——0). Then

U31 —V + T2 + Tj Gp+ T2

+ TIGp T3 + T2Gp T3 +(+) (+) (3.41)

Upj = T2 + T3 + TjGp+ T2 + TjGp+ T3

+ T2GO+ T3 + T3GO+ Tj + ' ' ' . (3.40)

The rules for obtaining higher-order multiple scatter-
ing terms in the expansions (3.38)—(3.40) are easily de-
rived:

(i) Start from the right with a two-body T-matrix for
any of the pairs which participates in the initial interac-
tion V; = V —V'

(ii) Write G,'i and T; alternatively, avoiding the repeti-
tion of adjacent indices.

(iii) Terminate to the desired order with a two-body T
matrix for any of the pairs which participate in the final
interaction Vf = V —Vf.

The multiple scattering expansions (3.38)—(3.40) have
been obtained by using the operators Uj;. Similar expan-
sions may of course be written down by- making use of
the operators Uf;. For direct collisions one finds again
(3.38), while the new rearrangement and breakup series
are, respectively,

ries, especially for problems involving short-range strong
interactions where the use of two-body T-matrices (in-
stead of the corresponding potentials) is desirable.

If we write approximately (for weak coupling situa-
tions) T~

—V' and limit our expansions (8.88)—(8.42) to
the first order in the interaction potentials, we recover the
first Born approximation (3.16). It is very important to
note that this procedure is valid only for weak couplings.
For any problem in which the potentials can bind
particles, the validity of the first Born expression must be
examined carefully.

Let us return to the multiple scattering expansion
(3.38) for direct (elastic or inelastic) scattering. At suffi-
ciently high energies a useful approximation consists in
keeping only the first-order terms of this series, so that
the corresponding transition matrix element reads

». = Titii = (CiitilT~+»l@i«) (3.44)

and we recover the impulse approximation (Fermi, 1936;
Chew, 1950; Chew and Wick, 1952; Ashkin and Wick,
1952; Chew and Goldberger, 1952) for the process
considered. We note that the two-body T-matrices T2 and
T3 describe the scattering of the incident particle 1 by the
two target particles 2 and 3 as if those particles were free.
The eflect of the interaction V' = V23 between the two
target particles appears only in higher-order terms of the
series (3.38).

As a final remark, we note that the Faddeev —Lovelace-
Watson expansions presented in this section may be
generalized to 'systems with more than three particles.
The three-body system considered here was only selected
as the obvious prototype of many-body scattering.

J=2

Here the efIective waves yj are given by

(3.43a)

gj Cia + g Gi Tkil~k
kPj

(k = 2, 3) (3 43b)

and may be readily expressed in terms of the free Green's
operator Gory+i by using Eqs. (3.31). We also note that the
Faddeev —Lovelace —Watson expansions (3.38)—(3.42) are
rearrangements of the Born series (3.15). However, in
contrast with the Born development, and except for bare-
potential first terms, there are no disconnected terms (i.e.,
contributions such that two particles interact while the
third one remains undisturbed) in the Faddeev —Love-
lace Watson expansions. Hence these. expansions may
exhibit better convergence properties than the Born se-

Upj = V + T2 + T3 + TjGp+ T2

+ TiGii T3 + T2GO T3 + T3GO+ T2 + ' ' '. (3.42)

By comparing Eqs. (3.40) and (3.42) we expect that the
interaction V' should not contribute to the breakup
transition matrix element. This is easily verified since
(C'op~V'~%. ) = (~liop~&i —HO~C'i. ) = 0.

Let us comment briefIy on the multiple scattering
expansions which we have generated. First of all, it is a
simple matter to verify that these expansions may also be
obtained from the Watson multiple scattering equations
which (in the weak binding limit) read in this case

C. The eikonal approximation for many-body
coIIisions

The extension of the eikonal approximation to many-
body scattering problems was first proposed by Glauber
(1953, 1955, 1959, 1960, 1967, 1969) in connection with
high-energy, small angle hadron —nucleus collisions. The
resulting high energy digra-ction theory is in fact a general-
ization of the classical Fraunhofer diffraction theory (see,
for example, Born and Wolf, 1964).

Consider a fast point particle A incident on a compos-
ite target 8 (such as a nucleus or an atom) which contains
N scatterers. %'e assume that the internal motion of the
target particles is slow compared with the relative motion
of A and B. Moreover, we suppose that the incident
particle interacts with the target scatterers via two-body
spin-independent interactions. The Glauber scattering
amplitude for a small angle direct collision leading from
an initial target state ~0) to a final state ~m) is given in the
center of mass system by

k; d'b exp[ i' b ]

X &m~{exp [tx,'.,(b, b„ . . . , b.)] —X]~0&, (3.45a)

the corresponding differential cross section being

(3.45b)

Here b = k; —kf is the center of mass wave vector

Rev. Mod. Phys. , Vol. 46, No. 2, April 3974



C. J. Joachain and C. Quigg: Multiple scattering expansions

transfer, while

r =b+zg
is the initial relative coordinate and

(3.46)

ikF 0
——

2
d'b exp(iq b)

x (m~r...(b, b„.. . , b.)~o).

Introducing the quantities

(3.sl)

r =1+ zz (3.47)

are the coordinates of the target particles (relative to the
target center of mass). The z axis may be chosen along k;
for small angle collisions, but we shall also consider other
choices below [see the discussion preceeding Eq. (2.34)].
The total G-lauber phase shift function

r, (b —b, ) = 1 —exp[iX, (b —b, )],
Glauber now writes

N

I;., (b, b„.. . , b ) = 1 —g [1 —I;(b —b, )]

(3.52)

(3.s3)

x'. (» b~, , b~) = Z x (b —b') (3.48)
N

r... = g r, —g r, r, + . . + (—)
-' iI r, . (3.s4)

is just the sum of the phase shifts X, contributed by each
of the target scatterers as the wave representing the
incident particle progresses through the target system.
We note that if the elementary interactions between the
incident particle and the target particles are genuine two-
body problems (such as in nonrelativistic electron —atom
collisions) the phase shift functions X, are purely real. On
the contrary, if these elementary interactions lead to
several final channels (such as m + N ~ A& + N, where
N is a nucleon in a target nucleus) the phase shift
functions X, are complex.

The crucial property of phase shift additivity, ex-
pressed by Eq. (3A8), is clearly a direct consequence of
the one-dimensional nature of the relative motion, to-
gether with the neglect of three-body forces, target scat-
terer motions, and longitudinal momentum transfer.

Another important remark concerning Eq. (3.45a) is
that it applies only to collisions for which the energy
transfer AE is small compared with the incident particle
energy E;. This is true for elastic collisions and for
"mildly" inelastic ones in which the target is excited or
perhaps breaks up. It is not true for "deeply" inelastic
collisions in which the nature of the incident or target
particles is modified or the number of particles is altered
during the collision. We shall leave aside such processes
in what follows and comment briefly on them in Sec. V.
It is also worth noting that if we neglect recoil eAects,
which are small near the forward direction, we may write
the Glauber scattering amplitude in the laboratory sys-
tem as

This last equation, when substituted in Eq. (3.51), leads
directly to an interpretation of the collision in terms of a
multiple scattering expansion involving the incident par-
ticle and the various target scatterers. The term linear in
I; on the right-hand side of Eq. (3.54) accounts for the
"single scattering" (impulse) contribution to the scatter-
ing amplitude, whereas the next terms provide double,
triple, ~ ~ ~ scattering corrections. We note that the order
of the multiple scattering can at most be A, reflecting the
fact that the scattering is focused in the forward direc-
tion.

It is important to realize that the above generalization
of the eikonal method makes no reference to interaction
potentials; only the two-body phase shift functions x, (or
the functions I;) must be known in order to calculate I;.,
This fact makes the Glauber formula (3.49) particularly
useful for the analysis of high-energy hadron —nucleus
scattering, as we shall illustrate in Sec. V.

If the basic two-body interactions are known, as in
atomic physics, we can actually gain further insight by
obtaining the eikonal scattering amplitude in terms of
these interaction potentials. For example, if we consider
the nonrelativistic scattering of a charged "elementary"
particle (i.e., a particle which does not exhibit any
internal structure in the collision considered) by an atom,
and if we work in the center of mass system, we may
write the full eikonal wave function as a direct generali-
zation of the expression (2.27), namely

kF 0
——

2 . d'b exp(iq ~ b)
27Tl

&& (iri)[exp [ix;., (b, b, . . . , b )]—&}Io»

(3.49)

+~(r, X) = (2m)
"'

X exp~ ik; r —
&

V~(b, z', X)dz' ~$0(X).

(3.ss)

where q = k —k' is now the laboratory wave vector
transfer, and we have denoted the initial and final
laboratory wave numbers by k, and k', respectively. This
last expression is more convenient for analyzing high-
energy hadron —nucleus collisions since we want the nu-
clei to remain nonrelativistic and we also wish to com-
pare directly hadron —nucleus cross sections with those on
free nucleons (see Sec. V). Defining the quantity (Glaub-
er, 1959)

I;., (b, b), . . . , b+) = 1 —exp[ix,'., (b, b), . . . , b~)] (3.50)

we see that Eq. (3.49) becomes

Here r is the initial relative coordinate, v; = hk;/M, is the
initial relative velocity (with M, the reduced mass in the
initial channel), X denotes collectively the target coordi-
nates, and $0(X) is the initial bound-state wave function
of the target. The potential V; is the full initial channel
interaction between the incident particle and all the
particles in the target. The corresponding transition ma-
trix element is then given by Eq. (3.7a) in which the exact
state vector +„+ is replaced by 4&. A similar expression
may also be obtained from Eq. (3.7b). For a direct
collision process (V = Vf

——Vd) leading to a final target
state ~m), we may write more explicitly the many-body
eikonal scattering amplitude as
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I' 0 =
2

d'bdz exp i5 ~ r

)' i
x(~~14(h, ~, &)mpI ——J v(~..'. x)dz' [~~D).

AU;

k
F) = . d'b exp(ih b)2&l

X (O~ Iexp [ix,o, (b, b), b&)] —1]I0)

with

(3.57)

+oo

Xg((b, b), . . . , b+) = —
~ Vg(b, z, X)dz. (3.58)

l

However, for inelastic (direct) processes the Glauber
scattering amplitude (3.45) can only be obtained from
Eq. (3.56) by neglecting the longitudinal momentum
transfer since 5 now lies along k; in the case of forward
scattering (choosing the z axis perpendicular to 5 would
therefore be rather unnatural in this case). This neglect of
the longitudinal momentum transfer is not too serious for
mildly inelastic hadron —nucleus collisions at high ener-
gies, but it leads to undesirable features in atomic colli-
sions. %'e shall return to this point in Sec. IV.

Instead of generating a multiple scattering expansion
in terms of the quantities I; (which in turn, as we shall see
in Sec. V, may be obtained from the two-body scattering
amplitudes describing the scattering of the incident par-
ticle by the jth scatterer), we may also write from Eq.
(3.45) another multiple scattering series which is more
closely related to the one we have analyzed in connection
with potential scattering (see Sec. II.C). Limiting our-
selves to elastic scattering, we write the Glauber scatter-
ing amplitude (3.57) as

+G
n=l

(3.59)

where

k i"
I'G„= . — d'b exp(ih .b)2mi n! (3.60)

x (ollx...(b, b„.. . , b )l" lo).

We shall also denote by IG„ the sum of the first n terms
of the series (3.59). Thus

n

I'G. = g I'GJ. (3.61)
j= 1

With the choice of z axis which we have adopted (z
perpendicular to 5), it is a simple matter to see that for
all scattering angles

+Gl +B1 p (3.62)

where E» is the corresponding first Born scattering ampli-
tude. Higher terms of the Glauber series (3.59) and of the
Born series will be examined in Sec. IV for electron —atom

(8.56)

For elastic scattering processes such that ~k;~ = ~kf~= k, and if we choose the z axis to be perpendicular to
the momentum transfer, we may perform the z integral in
Eq. (3.56) to obtain the Glauber result [see Eq. (3.45) with
m=0]

collisions.
We have so far studied the many-body generalization

of the eikonal method proposed by Glauber. Various
attempts at deriving or improving Glauber's method by
starting from the multiple scattering formalism (Goldber-
ger and Watson, 1964; Kerman, McManus, and Thaler,
1959) have been made by several authors (Czyz and
Maximon, 1968, 1969; Remler, 1968, 1971; Feshbach and
Hiifner, 1970; Tarasov and Tseren, 1970; Kelly, 1971,
Eisenberg, 1972; Manning, 1972; Karlsson and Namy-
s1owski, 1972; Namystowski, 1972a; Tobocman and
Pauli, 1972; Kujawski, 1972; Kujawski and Lambert,
1978). The Glauber result (8.45) may also be viewed
as an eikonal approximation to a model proposed by
Chase (1956),in which the target particles are frozen
in a given configuration (Mittleman, 1970). Osborn
(1970) has used the Faddeev equations to suggest a way
of unitarizing the impulse approximation and obtaining
Glauber-type results without the eikonal approximation,
while Sanev and Salin (1972) have studied the Faddeev-
Lovelace equations in the eikonal approximation for a
three-body problem with two heavy particles and a light
one. We shall see in Sec. IV that the Glauber approxima-
tion is seriously deficient for the treatment of atomic
collision problems. However, we shall also show that the
combined use of the eikonal series and the Born series
(such that higher Born terms are calculated by means
of the eikonal approximation) yields very encouraging
results for electron —atom collisions at intermediate
energies (Byron and Joachain, 1978c, d). This eikonal-
Born series (EBS) method will be illustrated in Sec.
IV.B and IV.C for elastic scattering of fast electrons by
atomic hydrogen and helium.

Many-body collisions may also be studied by using the
eikonal approximation together with the optical model
formalism. For elastic collisions one first tries to obtain an
optical potentia/ which is subsequently "eikonalized. "The
optical model concept may also be used within the
framework of the eikonal DWBA approximation to study
inelastic collisions. The basic problem in this approach is
the determination of optical potentials, a question which
we now briefIy review from the point of view of multiple
scattering theory.

D. Multiple scattering approach to the optical
potential

The earlier applications of the optical model method
were made to the analysis of the propagation of light
through a refractive medium. In this case the use of a
complex refractive index is in fact equivalent to the
introduction of an optical potential (see, for example,
Lax, 1951). A generalization of the optical model idea
was made by Ostrofsky, Breit, and Johnson (1936) to the
study of n decay of nuclei, while Bethe (1940) introduced
the concept of an optical potential model for low-energy
nuclear collisions. The description of high-energy nuclear
collisions within the optical model formalism was initiat-
ed by Serber et al. (Serber, 1947; Fernbach, Serber, and
Taylor, 1949), who first described nucleon —nucleus colli-
sions in terms of nucleon-nucleon scattering. Their mul-

tiple scattering analysis led to the conclusion that par-
ticles should move more or less freely through nuclear
matter at high energies. This fact was verified qualitativ-
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+~+„) = IIO+.(+', (3.63)

where IIp is a projection operator onto the state lo). We
may therefore introduce formally an optical potential
operator V„, such that

(3.64)

with G„~' = (E —R~ + ie) . Thus the optical potential is
defined as an operator which, through the Lippmann-
Schwinger equation (3.64) (or the corresponding one for
the elastic T-matrix) leads to the exact transition ampli-
tude for elastic scattering of the incident particle by the
target.

Following the method of Watson et al. (Goldberger
and Watson, 1964; Fetter and Watson, 1965) one may
introduce an operator I' defined by

@(+) —y @(+) (3.65)

in terms of which the optical potential, which does not
depend on the internal coordinates of the target, is given
by

v„= (olvrlo). (3.66)

The operator I' satisfies the Lippmann —Schwinger equa-
tion

E = 1+ G& &(1 —II.)VE (3.67)

which can be solved by successive iterations. In this way
one generates for I' a Born series in powers of the
interaction Vd, namely

F = 1 + Gd+ (1 —IIp) Vd +
which, substituted into Eq. (3.66) yields

(3.68)

ely by experiment and led to a reassessment of the optical
model for low-energy nuclear scattering (see, for exam-
ple, Le Levier and Saxon, 1952; Feshbach, Porter, and
Weisskopf, 1954).

After the work of Serber et al. , several attempts were
made to derive the optical model from first principles
(Francis and Watson, 1953; Riesenfeld and Watson,
1956; Feshbach, 1958, 1962; Kerman, McManus, and
Thaler, 1959; Glauber, 1959). We shall summarize here
the multiple scattering derivations of Watson et al.
(Goldberger and Watson, 1964; Fetter and Watson,
1965) and of Glauber (1959).

Let us assume first that the incident particle is distinct
from each of the X scatterers in the target. We write the
total Hamiltonian of the system as H = Hd + Vd, where
the direct arrangement channel Hamiltonian H& includes
the kinetic energy of the colliding particles and the
internal target Hamiltonian, while Vd is the interaction
between the incident particle and the targe'. system. Thus

n

Vd=gv, ,
j=l

where vj is the interaction between the beam particle and
the jth target scatterer. Assuming that the target is
initially in the state lo), we call +,".' that part of the
complete state vector +(+' corresponding to coherent
(elastic) scattering. That is,

Zeg —eg
d +

r —rj
(3.7o)

We also ignore for the moment the possible effects of the
Pauli principle between the incident and target particles.

The first term on the right of Eq. (3.69) is simply the
static potential (OlVdlo). With the help of Eq. (3.70), we
see that in the case considered here the first approxima-
tion to the optical potential is given by

v"'(r) = (olvlo&

—ge g (o o).
j= I

(3.71)

This expression may be readily evaluated for simp1e
atoms or when an independent particle model (such as
the Hartree —Fock method) is used to describe the state
lo) of the target. The static potential (3.71) has been used
frequently to describe the elastic scattering of charged
particles by atoms. We note, however, that this potential
does not include several important features of the colli-
sion. For example, it does not take into account the
polarization of the atom due to the presence of the
incident particle having the charge Q. Moreover, at
energies above the excitation threshold of the target the
static potential (3.71), which is real, does not account for
the removal of incident particles from the initial channel.
Furthermore, if the incident particle is identical to one of
the target scatterers (i.e., in this case an electron or an ion
identical to the nucleus of the target atom), exchange
effects between the incident and target particles must be
considered; these effects are not present in the static
potential.

It is worth noting, however, that for small values of the
relative distance r, the static potential (3.71) reduces
correctly to the bare Coulomb interaction Zeg/r acting
between the incident particle A and the nucleus of the
target atom B. %'e therefore expect that the static inter-
action (3.71) will govern the elastic (direct) collisions
involving small relative distances. Hence, if exchange
effects can be neglected, and when semiclassical condi-

+ (ol vG" (1 —II )vlo) + (3.69)

As an illustration of the use of Eq. (3.69), let us
consider the nonrelativistic elastic scattering of an "ele-
mentary" particle A of charge Q by a neutral atom B
having Z electrons (Mittleman and Watson, 1959, 1960;
Mittleman; 1961, 1965). We treat the collision in the
center of mass system, using the relative coordinate r
which joins the position of the atomic nucleus (which we
assume to coincide with the center of mass of the atom)
to that of the particle A. We also denote by r, (j= 1,2, . . . , Z ) the vectors which determine the positions
of the atomic electrons. The relative kinetic energy
operator is K = —h'7, '/2M, where M is the reduced
mass of the two colliding particles 2 and B. We assume
that the internal target Hamiltonian h of the atom is such
that h

l n) = w„
l n), the atom being in the state lo)

before and after the collision. The interaction Vd is the
sum of the individual interactions of the incident particle
A with the (Z + 1) particles of the target. Neglecting all
but Coulomb interactions, we have
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(ol vln) (nl vlo).~o E —E —(w. —wp) + ie' (3.72)

tions apply, the static interaction (3.71) will give an
adequate description of large angle elastic scattering,
which precisely involves small impact parameters.

The second term on the right of Eq. (3.69) may be
written as

scattering matrices. To this end we define the objects

Uj + 'Ug Gd (1 —IIo)rj, (3.78)

where we recall that vi is the two-body interaction
between the incident particle and the jth target scatterer.
The operator I is then given by the Watson equations
(Cxoldberger and Watson, 1964)

where the summation runs over all the intermediate states
of the target and E = A'k'/2M is the incident relative
kinetic energy. . A detailed study of the expression (3.72)
has been made by Mittleman and Watson (1959) (see
also Goldberger and Watson, 1964). In particular, Mittle-

'

man and Watson analyzed the adiabatic approximation,
which consists of neglecting the kinetic energy variation
in the expression (3.72). Then Vi'i = V~', where the
(local and real) adiabatic potential Vdi2i may be shown to
behave at large distances as

F = 1 + g Gd+'(1 —IIp)t&FJ

with

FJ
——1 + Gd' g (1 —IIp)tkFk

k(+j)= I

and the optical potential is given by

v„, = (olg r, F, IO).

(3.79a)

(3.79b)

(3.80)

Vp" „„=—nQ'/2r ', (3.73)

with n being the atomic polarizability. A convenient
phenomenological parameterization of Vpi2i is then given
by the Buckingham polarization potential (Buckingham,
1937)

(rlv"ilr') =, G(')'(k', r, r')A(r, r').2M () (3.75)

Here Gpi'i(k', r, r') is the free Green's function (2.6)
corresponding to a wave number k' = (k' —2w)'~' and

~(r, r') = (Olvd(r, &)vd(r'»)Io&
—(ol Vd(r, X)lo) (Ol Vd(r', X)lo), (3.76)

~here the symbol X denotes collectively the target coor-
dinates. We note that the nonlocal second-order expres-
sion (3.75) contains explicitly an imaginary part, so that
"absorption" corrections due to the nonelastic processes
are now taken into account. Detailed studies of the
scattering by the optical potential

(rlV. Ir'& = V"'(r) + (rlV"'lr'), (3 77)

where Vi'i is given by Eq. (3.71) and (rl V"'lr') by Eq.
(3.75), have been made recently in the eikonal approxi-
mation for elastic electron —atom scattering at interme-
diate energies (Joachain and Mittleman, 1971a,b; Byron
and Joachain, 1974). We shall return to this question in
Sec. EV.

Let us now return to the Lippmann —Schwinger equa-
tion (3.67) for the operator F. An alternative way of
solving this equation is to express E in terms of two-body

V(r) = —nQ'/2(r' + d'), (3.74)

where d is a cutoA parameter. The adiabatic approxima-
tion has been shown by Mittleman and Watson (1959) to
improve with decreasing incident energies and increasing
values of Z.

Another approximate expression for the second-order
term V&", which has proved to be useful for intermediate
and high incident energies, may be obtained by replacing
in Eq. (3.72) the energy differences (m„—tep) by an
average excitation energy W. The summation on n may
then be performed by closure, so that

This expression is still exact, but the coupled Watson
equations (3.79) are in general very difficult to solve since
the operators ti include the eAect of the internal target
Hamiltonian. However, in the weak binding limit (i.e.,
when the incident particle has high energy compared to
the binding energy of a target particle) one can use the
impulse approximation to write t, = Ti, where Ti is a
genuine two-body scattering matrix for the collision of
the incident particle with a free target scatterer j. In this
case the Watson equations (3.79) read

F = 1+ G,'i(1 —II.) g T, F, (3.81a)

with

F, = 1+ Gd" (I —II.) (3.81b)

+ (ol y TJGd"(1 —IIp)Tklo) + . (3.83)

A detailed analysis of these single scattering and double
scattering contributions to V„may be found in Goldber-
ger and Watson (1964) for hadron —nucleus scattering in
the weak binding limit. For a "large" nucleus of mass
number A such that the concept of nuclear density is
meaningful, the first term on the right of Eq. (3.83) yields
the optical potential

2&C
V~~(r) = —

E Afpp(r), (3.84)

where E is the (laboratory) energy of the incident par-
ticle, fo is the (laboratory) forward hadron —nucleon scat-
tering amplitude averaged over the spins and isospins of
the target nucleons, and p(r) is the nuclear density
normalized to one. The double scattering term in Eq.

and the optical potential is given by

V, = (OI X TiF lo) (3.82)

Solving the Watson equations (3.81) by iteration, we then
obtain for Vpt the multiple scattering series

Nv„- (olg T, lo)
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where X.„,(b) is the optical phase shift function. If we
identify this amplitude with the Glauber (many-body)
elastic amplitude (3.57), we define the Glauber optical
phase shift function Xopt such that

exp[ix'. (b)1 = (0lexp[ix'(»b) .&~)]l0) (3 86)

From this relation one readily deduces that g.op is in
general complex and has a positive imaginary part as
soon as nonelastic scattering can occur. We also note
that, within the eikonal approximation, we may define an
optical potential which corresponds to the phase shift
function x.„.It is a local operator V„(r) such that

g„,,(b) = —
b
—f V„(b,z)dz.

Glauber (1959) has given a detailed discussion of Eq.
(3.86) for high-energy hadron —nucleus scattering. For a
large nucleus with uncorrelated nucleons, he finds that

x.',,(b) = Af, f p(b, z)dz, (3.88)

where A. = 2mk ' is the de Broglie wavelength of the
incident particle. We note that this result agrees with that
obtained by computing first V„ in the "single scattering"
approximation of Watson's multiple scattering theory
[Eq. (3.84)] and then "eikonalizing" the resulting poten-
tial by means of Eq. (3.87).

If the interaction Vd between the incident particle and
the target system is known, as in atomic collision prob-
lems, we may use Eqs. (3.58) and (3.86) to expand the
Glauber optical phase shift X.„, in powers of Vd (and
inverse powers of v;). Finally, we note that X.„may also
be expressed in terms of the quantity I;., defined by Eq.
(3.50). That is,

exp [ix.'„(b)] —I = -(0II;,(b, b„.. . , b.)I0) (3.89)

and I;.t may in turn be expanded as the multiple scatter-
ing series (3.54). The first term of this series is easily
shown to yield the familiar impulse approximation for I',I

as we shall illustrate in Sec. V.

(3.83) involves correlations between the target nucleons
and has been studied by several authors (Lax, 1951;
Francis and Watson, 1953; G-lauber, '1959; Beg, 1960;
Johnston and Watson, 1961; Goldhaber and Joachain,
1968).

Until now we have assumed that the incident particle
is distinct from each of the target particles. The scattering
of a particle identical with target scatterers has been
considered by Takeda and Watson (1955), Bell and
Squires (1959), Lippmann, Mittleman, and Watson
(1959), and Feshbach (1962). The Feshbach method is
particularly useful for low-energy scattering, a case which
we shall not consider here.

The multiple scattering approach to the determination
of the optical potential may also be formulated within the
framework of the Glauber approximation (Glauber,
1959). In this case we write the eikonal elastic scattering
amplitude as

d'b exp iA b exp ix»t b —1, 3.85
k

IV. ATOMIC COLLISIONS

A. The scattering of fast charged particles by atoms

Because the basic Coulomb interaction is well known,
it should be possible to investigate systematically the
validity of some of the theoretical methods discussed
above, for "simple" atomic collisions. %'e shall give here
a brief survey of recent work concerning the nonrelativ-
istic scattering of a fast, charged, "elementary" particle
by an atom.

The simplest high-energy approximation used in atom-
ic collisions is certainly the first Born approximation (3.16)
together with some modifications of it such as the unitar-
ized Born approximation (Seaton, 1961) and the Ochkur
approximation (Ochkur, 1963). The unitarized Born ap-
proximation is just the first Born approximation for the
corresponding A=matrix element, while the Ochkur ap-
proximation is a simplified version of the Born approxi-
mation in which only the leading term of the T-matrix
element in powers of k; ' (the inverse of the incident wave
number) is retained. The computation of these first-order
approximations is generally rather straightforward, at
least for collisions involving two fragments in the final
state and when simple uncorrelated wave functions (for
example, of the Hartree —Fock type) are used to describe
the bound atomic systems involved in the collision.

Second Born calculations imply a summation over the
intermediate states of the system and are therefore much
harder to perform, even approximately (see, for example,
Holt and Moiseiwitsch, 1968; Holt, Hunt, and Moisei-
witsch, 1971a, 1971b; Woollings and McDowell, 1973;
Byron and Joachain, 1973c). As an illustration of these
difhculties, let us consider the elastic scattering of an
electron by an atom of atomic number Z. We shall
analyze only the direct amplitude, thus neglecting ex-
change efrects between the incident and target electrons.
The initial and final momenta of the projectile electron
are denoted, respectively, by k; and kf, with

I « I

=
I kil= k. Neglecting recoil eAects, we choose the nucleus of

the target atom as the origin of our coordinate system
and denote the coordinate of the projectile electron by r,
while the positions of the atomic electrons are given by
r, (j = 1, 2, . . . , Z). We use atomic units (a.u.) such that
the unit of length is the "first Bohr radius" c, while the
unit of energy is e'/u, (i.e., A()ice the Rydberg). The free
motion of the two colliding particles is then described by
the Hamiltonian

H = IId+Vg, (42)
where the (direct) interaction potential between the inci-
dent electron and the ta.rget atom is given in a.u. by

Z '
1

Vd = — +
j=1

The second Born scattering amplitude for elastic scat-
tering (neglecting exchange) is then given by

(4.1)

where h is the internal target Harniltonian, with eigen-
states In) and internal energies )v.. We assume that the
target is in the state IO) before and after the collision.

The full Hamiltonian of the system is such that

Rev. Mod. Phys. , Vol. 46, No. 2, April 1974



C. J. Joachain and C. Quigg: Multiple scattering expansions 295

Fgl = FBl + +B2,y (4.4)

where E~~ is the corresponding first Born amplitude and

2 1 1
Fg2 = —

2) d
i

Z

X (0~(g [exp(—iK, ~ r, ) —I])
Z

Xi g [exp(iK ~ r ) —I]]10),

(4.7)
where K; = k; —~, Kq = kf —~, and k = (k —2w)''.
If the state ~0) is written as an antisymmetrized product
of orbitals [whose radial part is assumed to be the sum of
terms of the form r'exp( —nr)]the matrix elements in Eq.
(4.7) may be readily evaluated and the remaining integra-
tion on ~ can be reduced to a single integral by using the
Feynman parameterization technique (Feynman, 1949).
Such calculations will be discussed below for electron—
hydrogen and electron —helium scattering. In particular,
we shall see that the quantity F» is an important ingredi-
ent (but not the only one) necessary to obtain a consist-
ent expansion of the elastic differential cross section
through order k '.

Let us now consider the application of the Faddeev-
Watson multiple scattering (FWMS) expansions to inter-
mediate and high-energy atomic collisions. Since a recent
discussion of this method for three-body atomic prob-
lems has been given by Chen (1972), we shall only
emphasize a few important points. First of all, we recall
that the FWMS expansions are expressed in terms of off'-

shell two-body T-matrices. For the Coulomb interaction,
several representations of the two-body T-matrix are
available (see, for example, J. Chen and A. Chen, 1972).
However, at incident energies larger than the three-body
breakup threshold, particular care must be exercised in
handling the cuts of the Coulomb T-matrix (Nuttall and
Stagat, 1971-; Chen, Chen, and Kramer, 1971; Chen and
Kramer, 1971, 1972).

The application of the FWMS expansion (3.38), limit-
ed to first-order terms, has been studied for several elastic
scattering processes by Chen, Chen, Sinfailam, and Ham-

kf, 0 Vd sc, n K, n Vd k;, 0
~' —k'+ 2(w. —wo) —i~

Here we have written the asymptotic initial and final free
states (which are eigenstates of Hd), respectively, as
~k;, 0) and~kq, 0), while a general eigenstate of Hd is
denoted by ~sc, n). The normalization adopted is such
that

&', n~. , n) = a. ~(. —~). (4.6)

The summation over the index n appearing in Eq. (4.5)
evidently implies an integration when states belonging to
the continuum are concerned. As in the case of the
evaluation of the second-order contribution to the optical
potential [see Eq. (3.72)], we may obtain a useful approx-
imation for the quantity F» by replacing the energy
differences (~ —o) by an average excitation energy
w.The sum on intermediate states can then be done by
closure, and after performing the integration on the plane
wave part of the matrix elements one obtains

bro (1971), and Sinfailam and Chen (1972). Significant
differences between the first-order FWMS expansion and
the first Born approximation were found at high energies
and angles as large as 0.5 rad for the case of electron and
positron elastic scattering by hydrogen atoms. This efIect
does not appear in calculations using the Born series
(Byron and Soachain, 1978b) and is in fact spurious.
It is essentially removed when the second-order FWMS
terms (obtained with the help of the eikonal approxima-
tion) are taken into account (Chen et nl. , 1978).

Three-body rearrangement collisions have also been
analyzed by means of first order FWMS expansions,
obtained by using the multiple scattering series (3.39) or
(3.41) and keeping only the two first terms on the right.
(Shastry, Kumar, and Callaway, 1970; Chen and Ham-
bro, 1971; Chen and Kramer, 1972). Of particular inter-
est is the electron transfer or pickup reaction p + H—& H + p, in which p is a proton and H an hydrogen
atom. The role of the proton —proton interaction in this
reaction (at high energies) had already been the subject
of numerous investigations (Oppenheimer, 1928; Brink-
man and Kramers, 1930; Bates and Dalgarno, 1952;
Jackson and Schiff, 1953; Drisko, 1955; Bassel and
Gerjuoy, 1960; Bates, 1962; Mapleton, 1967; McCarroll
and Salin, 1967; Coleman, 1968). The first-order FWMS
results of Chen and Kramer (1971, 1972) indicate that at
very high laboratory energies (E ) 2MeV) the total
cross sections tend towards the first Born results of
Jackson and Schiff' (1953), thus exhibiting a high-energy
dependence of the form E '. However, s—ince the second-
order Born terms yield an E "energy dependence of the
total cross section in the high-energy limit (Drisko, 1955;
Mapleton, 1967), it is clearly necessary to examine high-
er-order terms of the FWMS expansions (Carpenter and
Tuan, 1970; Chen, Chen, and Kramer, 1971).This fact—
together with the spurious eftect mentioned above in
connection with the elastic scattering case—illustrates
some of the difhculties involved in trying to apply the
Faddeev —Watson multiple scattering expansions to atom-
ic collision problems.

We now turn to the application of eikonal approxima-
tions to intermediate and high-energy collisions of a
charged particle by an atom. We only outline here the
various methods which have been proposed. A more
detailed analysis of electron —hydrogen and electron—
helium collisions is given, respectively, in Secs. IV.B and
IV.C.

The many-body Glauber amplitude, given by Eq. (3.45),
has been evaluated for elastic electron —hydrogen colli-
sions (Franco, 1968; Birman and Rosendorff, 1969; Tai,
Teubner, and Bassel, 1969) and for the excitation of the
lowest levels of hydrogen by electron impact (Ghosh and
Sil, 1969; Ghosh, Sinha, and Sil, 1970; Tai, 8assel,
Gerjuoy, and Franco, 1970; Bhadra and Ghosh, 1971;
Sheorey, Gerjuoy, and Thomas, 1971; Gerjuoy, Thomas,
and Sheorey, 1972). Since exchange scattering is ignored
in these calculations, proton —hydrogen collisions may be
treated in a formally identical manner, except for a
change in the scale of the momentum transfer. Such
computations have been performed by Franco and Tho-
mas (1971), Bhadra and Ghosh (1971), and Ghosh and
Sil (1971). All these calculations on atomic hydrogen,
using the Glauber formula (3.45) may be reduced to the
evaluation of a single dimensional integral or even, as
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shown by Thomas and Gerjuoy (1971), to a finite sum of
hypergeometric functions (see also Gerjuoy, 1972). More
recently, the Glauber amplitude has also been evaluated
for the ionization of atomic hydrogen (Hidalgo,
McGuire, and Doolen, 1972; McGuire et al. , 1973).

For target atoms more complex than atomic hydrogen,
the reduction of the Glauber amplitude (3.45) to a
tractable form is more difficult to achieve. Such G-lauber
calculations have been performed for elastic scattering
from helium targets by Franco (1970) [using a Hartree-
Fock wave function for the helium ground state], John-
son and Brolley (1970), and more recently by Thomas
and Chan (1973).The Glauber expression (3.45) has also
been used to study the excitation of the 2' S state of
helium by electron impact (Yates and Tenney, 1972).
Glauber-type calculations taking into account the target
degrees of freedom in a simplified way have also been
carried out for alkali atoms (Mathur, Tripathi, and Joshi,
1971, 1972; Walters, 1973). A general reduction proce-
dure of the Glauber amplitude (3.45) for many-electron
atoms has been proposed by Franco (1971).

Two important reservations should be made about the
above-mentioned calculations using the Glauber expres-
sion (3.45). Firstly, for elastic (atomic) scattering process-
es a detailed comparison of the Glauber series (3.59) and
of the Born series, recently made by Byron and Joachain
(1973c), shows that the Glauber approximation sufi'ers
from serious deficiencies; we shall analyze these below
for elastic scattering of electrons by atomic hydrogen and
helium. It is probable that such difhculties also aNict
Glauber calculations dealing with inelastic (direct) pro-
cesses. Secondly, we have already pointed out in Sec.
III.C that for inelastic collisions the Glauber scattering
amplitude (3.45) can only be derived from the more
general expression (3.56) by neglecting the longitudinal
momentum transfer. The importance of treating correctly
the kinematics for inelastic atomic collisions has been
stressed by Byron (1971) and by Chen, Joachain, and
Watson (1972). Byron (1971) has also obtained the
general Glauber expression (3.56) by treating in the
eikonal approximation the complete set of close-coupling
equations (with exchange neglected). He then used the
Monte Carlo technique to perform the multidimensional
integrals appearing in Eq. (3.56) for the excitation of
various states of atomic hydrogen and helium by electron
impact. Similar calculations using the Monte Carlo meth-
od have also been made by Byron and Joachain (1972)
for the excitation of the 2'S state of helium by electron
impact, which is a pure rearrangement (knock-out) proc-
ess when spin-dependent interactions are neglected.

We now come to eikonal calculations involving the
optical model formalism (Joachain and Mittleman,
1971a,b; Chen, Joachain, and Watson, 1972; Joachain
and Vanderpoorten, 1973, 1974; Byron and Joachain,
1974). Starting from the optical potential (3.77) and using
the eikonal approximation, Joachain and Mittleman have
shown that the direct elastic scattering amplitude for the
collision of a charged particle by an atom is given by the
optical eikonal expression

d'bexp iA ~ b exp ~X(p') b —1, 4.8

where the (second-order) optical phase shift function
XP),(b) is obtained from I

,!;)~b) = ——f V'"(b, z) dz
l

+, CfZ dZ

(2) =Xopt Xst + Xabs + Xpol q (4.11a)

where

+~
x., (b) = ——f v'"(b, z)dz, (4.11b)

& cos[(k; —k';)(z —z')]A(b, z; b, z')

(4.11c)

x ., (b) = , f dz f dz'

&& sin[(k; —k';)(z —z')]A(b, z, b, z').

(4.11d)
We note that the quantity X„ is simply the eikonal

phase shift function corresponding to the static potential
V&'). , The term X,b„which is purely imaginary, accounts
for absorption e+ects induced by unitarity from the open
channels. Such effects, which are most important at small
angles, have been studied by Joachain and Mittleman
(1971a,b) for the case of the elastic scattering of fast
electrons by atoms. The remaining term X,.l has been
analyzed recently by Byron and Joacha. in (1974), who
showed that it contains the polarization effects induced by
the long range part of the second-order optical potential.
This term, whose contribution is also most important at
small angles, corresponds to an effective local polariza-
tion potential having the form V,.)(r) ——nQ'/(2r') at
large r [see Eq. (3.73)]. At large momentum transfers the
static potential V~) dominates the scattering, in accord-

exp[ —i(k; —k )(z —z')]A(b, z; b, z')

(4 9)

Here V&'& is the static (first-order) optical potential, as
given by Eq. (3.71), the quantity A (r; r') is defined by
Eq. (3.76), and t); = k,/M is the initial relative velocity
of the two colliding particles (M being their reduced
mass) . Moreover, an average excitation energy ii) of the
target states has been introduced, such that Mt)'„'/2 =
&l'/(2M) = k', /(2M) —iL). We note that within the
framework of the eikonal approximation we may use
Eq. (3.87) to extract from Eq. (4.9) the equivalent local'
(second-order) optical potential

V„' (r) = V&')(r) ——, dz'
i

)& exp [—i(k; —k';)(z —z')]A(b, z; b, z').

(4.10)
Let us return to Eq. (4.9).We shall write it in the form

Rev. Mod. Phys. , Vol. 46, No. 2, April I974



C. J. Joachain and C. Quigg: Multiple scattering expansions

ance with the discussion following Eq. (3.71). We shall
also see in Sec. IV.C how the leading exchange effects can
be included in the eikonal optical model. Finally, we shall
indicate there how the deficiencies associated with the
use of the eikonal method can be remedied by using
second-order perturbation theory.

It is interesting to compare the second-order optical
phase shift x(",, given by Eq. (4.9) with the Glauber optical
phase shift x.„obtained from Eq. (3.86). Thus, we first
write

x, , (b) = i Iog(—olexp(ix', )lo)
= (oIx' Io) —i log(0lexp i[x' —(oIx' 1o)]Io)

(4.12)

Then, using Eq. (3.58) and expanding the right-hand side
of Eq. (4.12) in powers of v; ', we find that

X:.(b) = f —v—:(b,z)dz (4.14)

contains no real second-order terms and corresponds to
the choice ~ = 0 for the average excitation energy of the
target. The fact that w = 0 in the G-lauber approximation
has important consequences, since it implies that the
Glauber many-body elastic scattering amplitude Eo)
diverges logarithmically at zero momentum transfer
(Franco, 1968a). This undesirable feature is removed in
the eikonul optical model discussed above.

The optical model formalism may also be used togeth-
er with the eikonal DWBA method to analyze inelastic or
rearrangement atomic processes (Chen, Joachain, and
Watson, 1972; Joachain and Vanderpoorten, 1973, 1974).
For example, in the case of a direct transition such that
the target, initially in the state IO), is left in the state In),
the eikonal DWBA transition matrix element obtained
from Eq. (3.25), is simply

where

T,
" = (2rr)

' f dr exp(ik ~ r)

exp(i[A;(1, z) + A (1,z)])Vo(b, z) (4.15)

z

A;(b, z) = ——f U(b, z')dz',
I

j
Az(b, z) = ——f Uz(b, z')dz',

(4.16)

y.'„(b) = ——f V"'(h, z)dz
t

+, dz dz'A b, z;b, z' + - . 4.13
t

Hence, by comparing this result with Eq. (4.9), we see
that the Glauber optical phase shift, or the corresponding
optical potential V„such that

of treating to first order that part of the interaction which
is responsible for the inelastic transition, this method
leads to reasonably simple expressions. These take into
account explicitly the longitudinal momentum transfer,
allow the evaluation of exchange effects, and may be
applied to complex target atoms. Applications of this
method to electron —atom inelastic collisions have been
made by using static distorting potentials (Chen, Joach-
ain, and Watson, 1972) and Glauber (complex) distorting
potentials (Joachain and Vanderpoorten, 1973, 1974).

To conclude this section, we would like to mention the
very interesting approach recently developed by Brans-
den et al. (Bransden and Coleman, 1972; Bransden,
Coleman, and Sullivan, 1972; Sullivan, Coleman, and
Bransden, 1972; Berrington, Bransden, and Coleman,
1973) to analyze the scattering of charged particles by
atoms. Starting from the set of close coupling equations,
these authors retain explicitly a group of states in a
truncated expansion of the full wave function. The
remaining states are accounted for by the introduction of
suitable second-order potentials, similar to those dis-
cussed above. This method has already been applied
successfully to the scattering of electrons and protons by
atomic hydrogen and helium.

where (in a.u.)

n= 1

(4.17)

Eg. = —(2m)'(kf, olVdGd' Vd. Gd' Vdlk;, 0). (4.18)

In this expression the potential Vd [given by Eq. (4.3) with
Z = 1] appears n times while the propagator G„(')
= (E —Hd + ie)

' [with Hd given by Eq. (4.1)] is counted
(n-1) times. We also define the objects

E.)'" = X Es . (4.19)
j=l

We now consider the Glauber elastic scattering ampli-
tude (3.57), together with the associated multiple scatter-
ing series defined by Eqs. (3.59)—(3.61). We recall that if
the Glauber phase shift function (3.58) is evaluated with
the z axis perpendicular to the momentum transfer 5, we
have exactly EU( ——E))( for all scattering angles [see Eq.
(3.62)].

Let us now compare the higher terms of the Born series
(4.17) and the Glauber series (3.59). We first remark that
for the interaction potential (4.3) the Glauber phase shift
function is given by

B. Electron scattering by atomic hydrogen

We shall now analyze in more detail the scattering of
electrons by atomic hydrogen at intermediate and high
energies. We begin by considering elastic collisions and
follow the treatment of Byron and Joachain (1973c) who
have carried out a detailed comparison of the Born and
the Glauber eikonal series. We write the Born series for
the direct elastic scattering amplitude as

V (b, z) = (nlVIO).

Here U; and Uf are, respectively, the initial and final
distorting potentials, while v; and vf are the relative
velocities in the initial and final channel. At the expense

X'(b b)»z)
z —

b b2-= —g log 1 —2 —'cos(@, —g) + —', , (4.20)k,=l b

where pj is the azimuthal angle of b, in the (xy) plane.
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Since gG, only depends on the difi'erences (p, —p) we
may choose the (xy) axes so that no p dependence
appears in X,., Hence Eq. (3.57) yields

G dbb J Qb 0 exp ix 1 0

and similarly we find from Eq. (3.60) that

Fg„= —.—t, dbb Jp Ab 0 X... "0 . (4.22)

It is apparent from Eq. (4.22) that, as in the case of
potential scattering [cf. the discussion following Eq.
(2 43)], the terms of the Glauber multiple scattering series
(8.59) are alternately purely real and purely imaginary.
This, again, is in contrast with the Born series (4.17),
~here already the term F» contains a real as well as an
imaginary part.

We have already pointed out in Sec. IV.A that by using
an average excitation energy w it is possible to reduce the
quantity F» to the expression (4.7) which then can be
evaluated in a straightforward manner. In fact, for simple
target atoms like hydrogen and helium one may even
include exactly a few states in the summation on n
appearing in Eq. (4.5), and then evaluate the sum on the
remaining states by closure methods (see, for example,
Holt, Hunt, and Moiseiwitsch, 1971b; Woollings and
McDowell, 1972; Byron and Joachain, 1973c). Of partic-
ular interest is the limit of large values of k for which, at
small scattering angles (8 ( 2w/k'), Byron and Joachain
find that Re F» varies like k ', while Im E&~ behaves like
k 'log A:. We note that this behavior of F» is difIerent
from that found in Sec. II.B [see Eqs. (2.47) and (2.56) j
for the case of potential scattering. In particular, we
emphasize that Re F» now gives the dominant correction
to the first Born difFerential cross section at small angles.
At larger angles 9 ) 2e/k' one retrieves the "potential
scattering" behavior such that Re F» varies like k—'
and Im F» like k—' for larger values of k. [See Eq. (2.56).]
This is not surprising since the static potential dominates
the large angle scattering.

Let us now examine the Glauber multiple scattering
series (3.59). The second-order term FG2, which is purely
imaginary, may easily be shown to diverge logarithmical-
ly at 5 = 0. Indeed, the corresponding quantity Im F»
also diverges logarithmically as W, the average excitation
energy, is set equal to zero. As shown explicitly by Byron
(1971), the many-body Glauber result (3.57) precisely
assumes that w = 0. Although the quantities Im 5» and
Im FG2 diA'er substantially at very smal/ momentum trans-
fers because of the divergence of Im FG2, a detailed study
of these two quantities shows that otherwise they agree
very well, even in the backward direction and for rather
low values of k. This is reminiscent of the relationship
(2.50) proved in potential scattering for Yukawa-type
potentials.

For n & 3, the terms FG~ of the Glauber multiple
scattering series (3.59) are finite, even at 6 = 0. It is
therefore very likely that these terms will agree with the
corresponding terms of the Born series (i.e., FG, with
Re F~3, Fo4 with a Im F+4 etc.) for large enough k
(Byron and Joachain, 1974b). Since the direct evalua-
tion of the quantity Re F» (which yields contributions
of order k—' to the diA'erential cross section) is an
extremely dificult task, it therefore seems reasonable

to use Fo3 in place of Re F». Thus we write the Ckrect
elastic scattering amplitude (through terms of order k—')

d~ =,-'JFg + Gg /'+ ,—'fFg —G, ['. (4.24)

The situation at large momentum transfers is diferent.
For a given energy (i.e., a given value of k), the conver-
gence of the Born series at large angles is slower than in
the small angle region. This means that terms of higher
order (in k ') than those included above may now play a
significant role. It is also worth noting that the Ochkur
term Gl drops oA like k ' for large k and 6 & k.

Further insight into large angle elastic scattering may
be obtained by noting that the second Born terms Re E&2
and Im F» are dominated at large momentum transfers
by the contribution arising from the ground state ~0)
acting as an intermediate state. A detailed study of higher
terms of the Born and Glauber series (Byron and Joach-
ain, 1978d, 1974b) yields similar conclusions. The central
role of the ground state in large angle multiple scattering
confirms the expectation that high-energy, large angle
direct elastic scattering is mainly governed by the static
potential U~'& = (O~U~~O).

As an example, we display in Fig. 6 the results ob-
tained from the EBS method for the elastic scattering of
electrons by atomic hydrogen at an energy of 50 eV. Also
shown on this figure are the first Born values, the G-lauber
differential cross section do.~/dQ = ~F~ I' and the results
obtained by solving numerically the partial wave radial
equations corresponding to the static potential

V"&(r) = —(1 + 1/r)exp( —2r).

We note from this figure that the EBS results agree
reasonably well with the experimental data of Teubner et
al. (1973) (which are normalized with respect to similar
absolute measurements made in molecular hydrogen), in
spite of the fact that an incident electron energy of 50 eV
is rather low for the applicability of the EBS method. As
we expect, the static results are good at large angles, but
fail. to account for the scattering at small angles, where
absorption and polarization eA'ects are important. The
first Born results are quite poor, especially at small
angles. Finally, the G-lauber results are seen to be inaccu-
rate over the whole angular range. We recall in this
connection that the Glauber diAerential cross section
diverges at 0 = 0 (because of the term Im F62) and lacks
the exchange term Gl together with the important term
Re Eg2.

A similar comparison is made in Fig. 7 for the elastic

F~ ——F» + Re F~2 + FG3 + i Im F» + . . (4.23)

and shall refer to this treatment as the eikonal —Born series
(EBS) method (Byron and Joachain, 1973c).

Before we compute the elastic differential cross section
we recall that the leading (Ochkur) term of the first order
exchange amplitude is of order k ' for large k and fixed
A. A consistent calculation of the small angle elastic
diAerentiaI cross section through order k ' therefore
requires the inclusion of this term, which we call Gl. The
small angle elastic differential cross section (for unpolar-
ized beam and target, and if no attempt is made to
distinguish between the various final spin states) is then
given by
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scattering of electrons from atomic hydrogen at an
energy of 100 eV. Here we have shown the EBS results
together with the first Born and the Glauber values. The
remaining curve on Fig. 7 corresponds to positron—
hydrogen scattering, calculated from the EBS amplitude
(4.23). Whereas the eikonal —Born series method predicts
significant differences between small angle electron and
positron scattering, the Born and Glauber approxima-
tions do not distinguish between the two cases. The
relative measurements of Teubner, Williams, and Carver
(quoted in Tai, Teubner, and Bassel, 1969) have been
normalized to the EBS curve at 8 = 30 . Since these data
are not absolute and correspond to angles 8 & 25'
(where the shapes of the various theoretical curves are
similar), they do not provide a severe test of the different
theories. This is in contrast with the more recent data
shown in Fig. 6 and with the situation for helium, which
we shall discuss below.

We now consider briefly some inelastic transitions
induced in atomic hydrogen by the impact of fast elec-
trons. Calculations using the Glauber approximation
(3.45) have been performed by several authors (Ghosh
and Sil, 1969; Ghosh, Sinha, and Sil, 1970; Tai, Bassel,
Gerjuoy, and Franco, 1970; Bhadra and G-osh, 1971;
Sheorey, Gerjuoy, and Thomas, 1971; Gerjuoy, Thomas,
and Sheorey, 1972) and reviewed by Gerjuoy (1972).

As an example, we show in Fig. 8 the total cross
section for excitation of the 2p state of hydrogen by
electron impact. Here, in addition to the first Born

10

approximation a.nd the Glauber results of Tai et a/.
(1970), we have also displayed the eikonal calculations of
Byron (1971), the four-channel approximation results of
Sullivan, Coleman and Bransden (1972), and the eikonal
DWBA calculations of Joachain and Vanderpoorten
(1973).Also shown for comparison are the close-coupling
results of Burke, Schey, and Smith (1963). The experi-
mental data are those of Long, Cox, and Smith (1968).
They are normalized at high energies to the first Born
values.

Another interesting quantity is the polarization I' of
the radiation emitted from the final state of the excitation
process e + H(ls) —+ e + H(2P). This polarization re-
sults from the relative population of the magnetic suble-
vels of the 2p states. The corresponding 2p —+ 1s line
occurs at 1216 A and has been studied experimentally by
Ott, Kauppila, and Fite (1967). Using the Glauber ex-
pression (3.45) which neglects the longitudinal momen-
tum transfer, Tai et al.(1970) found a selection rule
Am = ~ 1 for s ~ p transitions which leads to a constant
polarization P = —3/11. This result is in disagreement
with the experimental data of Ott, Kauppila, and Fite,
who find that the polarization P is positive from thresh-
old to about 250 eV. By using the more general and
kinematically correct expression (3.56), Byron (1971)
obtained theoretical values of P in much better agree-
ment with the experimental data. Gerjuoy, Thomas, and
Sheorey (1972) have also obtained good agreement with
experiment by using the Glauber expression (3A5), with
the axis of quantization chosen perpendicular to the
momentum transfer, and then transforming the calculat-
ed cross sections to refer them to a quantization axis in
the direction of k;. The results of the four-channel
approximation of Sullivan, Colemen, and Bransden
(1972) reproduce the experimental shape of P as a
function of the energy but lie somewhat below the
experimental values. It is worth noting that in this case
the first Born approximation agrees surprisingly well with
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FK . 6. Differential cross section for elastic scattering of electrons by
atomic hydrogen at an energy of 50 eV. The solid curve is obtained by
using the eikonal —Born series (EBS) method of Byron and Joachain
(1973c).The dashed curve represents the first Born approximation and
the dash —dot curve corresponds to the Glauber approximation. The
dotted curve represents the results obtained from a partial wave

analysis of the static potential V&'& = (OiVdio) corresponding to the

hydrogen ground state. The experimental points refer to the work of
Teubner, Lloyd, and %iegold (1973). (From Byron and Soachain,
1974b.)

FK". 7. Differential cross section for elastic scattering of electrons and
positrons by atomic hydrogen at an energy of 100 eV. The solid curve
is obtained for electrons by using the eikonal —Born series (EBS) method
of Byron and Joachain (1973c). The dash —double —dot curve is the
corresponding EBS curve for incident positrons. The dashed curve
represents the first Born approximation, and the dash —dot curve corre-
sponds to the (dauber approximation. The experimental points refer to
the work of Teubner, Williams, and Carver, quoted in Tai, Teubner,
and Bassel (1969).
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measurements.
Returning to the evaluation of excitation cross sec-

tions, we note that, as in the case of elastic scattering, the
Glauber expression (3.45) predicts identical results for
the excitation by electron or positron impact. Using
the more general Eq. (3.56), which accounts for the
longitudinal momentum transfer, Byron (1971)has found
significant difIerences between electron and positron
excitation of the 2s states of hydrogen. Since positron
scattering is presently not feasible, experimental data on
proton scattering by hydrogen (in the energy range
50—150 keV, i.e., at velocities corresponding to the elec-
tron case) would be very useful to settle this question. It
is worth noting that the eikonal DWBA method of Chen,
Joachain, and Watson (1972) and the approach of Brans-
den and Coleman (1972) also predict differences between
electron and positron (proton) scattering.

Before leaving the subject of electron scattering by
atomic hydrogen w'e remark that for elastic collisions the
first Born approximation eventually governs all the scat-
tering at sufficiently high (nonrelativistic) energies. This is
not the case for inelastic (direct) collisions where the
second Born term E&2 dominates at high energies and
large momentum transfers. This dominance of the second
Born term over the first one also occurs in elastic
exchange scattering (at large momentum transfers) and
for inelastic exchange amplitudes.

C. Electron-helium collisions

We now turn to the scgttgl jljg of electrons by helium
at intermediate and high (atomic) energies. In this case

the theoretical calculations are.obviously harder to per-
form than for atomic hydrogen, but on the other hand,
accurate, absolute experimental data for various process-
es have recently become available. It is therefore with
helium targets that the various theories examined above
can presently be tested in the most reliable way.

We begin by analyzing plastic electron —helium scatter-
ing, following the eikonal —Born series method of Byron
and Joachain (1973c).By using an analytical fit (see, for
example, Byron and Joachain, 1966) to the Hartree —Fock
ground state helium wave function (Roothaan, Sachs,
and Weiss, 1960), the reduction of the second Born
expression (4.7) proceeds as in the case of hydrogen.
Similarly, the Glauber expressions (4.21) and (4.22) can
also be evaluated in this case. The eikonal —Born series
(EBS) direct elastic scattering amplitude is still given by
Eq. (4.23), and the elastic diff'erential cross section now
reads

dOei
dn= (4.25)

where G& again refers to the leading (Ochkur) term of the
exchange amplitude.

As in the case of electron —hydrogen elastic scattering,
we expect that the EBS method should be particularly
useful for large k and small momentum transfers, in
which case the Born series for I',I is converging rapidly
and G& provides the leading exchange correction (of
order k ). This is illustrated in Fig. 9, where we show the
EBS results (Byron and Joachain, 1973c) together with
small angle absolute experimental data (Bromberg, 1969)
at an incident electron energy of 500 eV. Also shown on
Fig. 9 are the results given by the first Born approxima-
tion and those corresponding to the Glauber approxima-
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FK". 8. Total cross section for the excitation of the 2p state of atomic
hydrogen by electron impact as a function of the incident energy. Curve
l: first Born approximation; Curve 2: four-channel approximation of
Sullivan, Coleman, and Bransden (1972); Curve 3: Glauber approxima-
tion (Tai, Bassel, Gerjuoy, and Franco, 1970); Curve 4: Eikonal DWBA
method with Glauber distorting potentials (Joachain and Vanderpoor-
ten, 1973); Curve 4': same as curve 4, except that the quantity Q~
defined by Long, Cox and Smith (1968) is shown; Curve 5: Eikonal
calculation of Byron (1971), using Eq. (8.56), (x) = four-state close-
coupling calculation for tr2 (Burke, Schey, and Smith, 1963); (+): four-
state close-coupling calculation for Q~ (Burke et a/. , 1963).The dots are
the experimental data of Long, Cox, and Smith (1968). (From
Joaehain and Vanderpoorten, 1973.)
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Fsa. 9. Differential cross section for elastic scattering of electrons by
helium at an incident electron energy of 500 eV. The solid curve is
obtained from the eikonal —Born series method of Byron and Joachain
(1973c).The dash dot curve rep—resents the CJlauber approximation; the
dashed curve is the first Born approximation. The dots correspond to
the absolute measurements of Bromberg (1969). (From Byron and
Joachain, 1973e.)
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tion (Franco, 1970). It is clear from Fig. 9 that the EBS
results are in excellent agreement with experiment. The
Glauber diff'erential cross section which diverges at 8
= 0 and lacks the terms Re E&2 and GI is seen to be
deficient. 'We also note that even at 500 eV the first Born

results are still very inaccurate at small angles, although
at sufficiently high energies the first Born approximation
will eventually control the scattering at all angles.

For large k and large values of 6 (the magnitude of the
momentum transfer) we expect that the static potential
V'" = (O~V~~O) will govern the scattering. This is con-
firmed by a detailed analysis of higher terms of the Born
and Glauber series (Byron and Joachain, 1973d). To
illustrate this point, we display in Figs. 10a and 10b the
results obtained by solving numerically the partial wave
radial equations corresponding to the static potential V(",
together with the experimental data of Crooks and Rudd
(1972) at 200 eV and of Bromberg (1969) at 500 eV. We
note from Fig. 10 that the static and EBS results agree
well with each other (and with the experimental data)
outside the small angle region. At small angles the static
results are inaccurate since the potential V(') does not
include polarization, absorption, and exchange effects.
As in the case of electron —hydrogen scattering, it is worth
stressing that the success of the EBS method at large
momentum transfers depends on cancellations between
higher terms of the Born series. Such cancellations,
although present in the case of electron —helium scatter-
ing, may not be present in other situations.

As we are still dealing with elastic scattering, it is
interesting to discuss the results obtained from the eikon
al optical model involving second-order optical potentials
[See Eqs. (4.8) —(4.11)].The evaluation of the phase shift
functions x,b, and x,.~ (which are dominant in correcting
the first Born approximation at small angles) has been

(a.u. )
dA d ' (a.u)
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10
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10
0 20 40 60

0 'lO
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15 20
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25 30

(b)

Fir. 10. Difterential cross section for elastic scattering of electrons by
helium (a) at 200 eV and (b) at 500 eV. The solid curve represents the
eikonal —Born series results of Byron and Joachain (1973d) while the
dotted curve corresponds to an "exact" (partial wave) treatment of the
static potential V&'& = (OiV, iO) corresponding to the helium ground
state. The squares show the experimental results of Crooks and Rudd
(1972); the circles are the experimental data of Bromberg (1969).

Fto. 11. The differential cross section (in atomic units) for elastic
electron scattering by helium at an incident electron energy of 400 eV.
The solid curve represents the results obtained by using the optical
eikonal method. The dashed curve corresponds to the first Born
approximation. Triangles are the experimental results of Vriens, Kuyatt,
and 'Mielczarek (1968); solid circles are the same results as renormal-
ized by Chamberlain, Mielczarek, and Kuyatt (1970); squares show the
data of Crooks and Rudd (1972); open circles are the data, of Jost, Fink,
and Herrmann (1974). (From Byron and Zoaehain, 1974a.)
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Fel' = F,pt + Re Eg2. (4.26)

We note that for large k an expansion of FIPt in powers
of the full interaction Vd will duplicate the Born series
through second-order. It will also give approximations to
higher terms of the Born series. The third-order contribu-
tion has been discussed in detail by Byron and Joachain
(1974).

As in the case of the EBS method discussed above,
exchange eII'ects may also be included (through leading
order in k ') by using the first-order (Ochkur) expression
Gl. The full optical elastic amplitude is then given by
FIPt —Gl and the corresponding differential cross section
reads

X

0.2—

2

discussed by Joachain and Mittleman (1971a,b) and
Byron and Joachain (1974). The static phase X., plays the
dominant role at large momentum transfers.

The knowledge of the three phases X.t, X,.l, and g.b.
enables one to evaluate the optical eikonal amplitude F:„",
given by Eq. (4.8). This quantity, however, does not
contain important terms of order k ' (arising from
Re F&t) which a full wave treatment of the optical poten-
tial V') would give by the iteration of the static potential
V"1 to second order. Fortunately (at least for Hartree-
Fock ground state wave functions) it is straightforward to
obtain the second Born term Re E» corresponding to
V(". Adding this term to the optical eikonal amplitude
then yields the (direct) optical elastic amplitude,

opt

dQ (4.27)

As an illustration of the results obtained from Eq.
(4.27) we show in Fig. 11 the ditIerential cross section for
small angle electron —helium elastic scattering at an inci-
dent electron energy of 400 eV. The optical model curve,
which includes the static, absorption, and polarization
effects, together with the leading exchange corrections, is
seen to improve considerably over the first Born results.

Finally, it is worth noting that both the EBS method
and the optical model calculation yield forward scatter-
ing amplitudes which are in good agreement with the
analysis of Bransden and McDowell (1970) based on
dispersion relations.

We now describe briefly a few inelastic electron—
helium processes. We show in Fig. 12 the differential
cross section for the process e + He(1'S) ~ e
+ He(2' S) at an incident electron energy of 200 eV. The
experimental data are those of Vriens, Simpson, and
Mielczarek (1968), as renormalized by Chamberlain,
Mielczarek, and Kuyatt (1970). The various theoretical
predictions shown are those of the first Born approxima-
tion, of the second Born calculation performed by Wool-
lings and McDowell (1972),of the eikonal DWBA meth-
od (Joachain and Vanderpoorten, 1974) and of the four-
channel calculations of Berrington, Bransden, and Cole-
man (1973). In particular, Berrington et al. show that the
2' 5—2'P coupling, which they take into account explicit-
ly, strongly influences the angular distribution in the
forward direction and brings it into agreement with the
experimental data. The first Born and eikonal DWBA
results, on the contrary, are too low at small scattering
angles.

Let us now consider the excitation process e
+ He(l'S) ~ e + He(2'P). In this case the strong 1'S
—2' P coupling completely dominates. %'e should there-
fore expect in this case good results from the eikonal
DWBA method (Joachain and Vanderpoorten, 1974).
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Fta. 12. Diff'erential cross section for the process e + He(1'S) —+

~ e + He(2'S) at an incident energy of 200 eV. Curve 1: first Born
approximation; Curve 2: eikonal DWBA method with static distorting
potentials (Joachain and Vanderpoorten, 1974); Curve 3: eikonal
DWBA method with CJlauber distorting potentials (Joachain and
Vanderpoorten, 1974); Curve 4: four-channel calculations of Berring-
ton, Bransden and Coleman (1973); (x): second Born results of
Woollings and McDowell (1972).The dots refer to the measurements of
Vriens, Simpson and Mielczarek (1968) renormalized by Chamberlain,
Mielczarek, and Kuyatt (19701. (From Zoachain and Vanderpoor-
ten, Ig74. )

FK". 13. The ratio of the differential cross section to the corresponding
first Born approximation value, at an angle of 5, for electron excitation
of the 2'P state of helium. The solid circles represent the results
obtained by Byron (1971) from the eikonal amplitude (3.56).
(The "theoretical error bars" result from the use of the Monte Carlo
method to evaluate the required integrals. ) The solid curve corresponds
to the eikonal DWBA calculations of Joachain and Vanderpoorten
(1974), using Cxlauber distorting potential. The experimental data (open
squares) are those of Chamberlain, Mielt'. zarek, and Euyatt (1970).
(From Joachain and Vanderpoorten, 1974.)
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e + He(1'S) —& e + He(2'S). (4.28)

As we already mentioned in Sec. IV.A, this process is a
pure rearrangement ("knock-out" or exchange) collision
provided that very small spin-dependent interactions are
neglected. Although the reaction (4.28) received a large
amount of attention (Joachain and Mittleman, 1965;
Ochkur and Brattsev, 1965; Bell, Eissa, and Moisei-
witsch, 1966; Miller and Krauss, 1968; Kang and Choi,
1968; Joachain and Van den Eynde, 1970), no satisfacto-
ry explanation was found for the forward peaking ob-
served (Vriens, Simpson, and Mielczarek, 1968; Cham-
berlain, Mielczarek, and Kuyatt, 1970) in the diA'erential
cross section at small angles and for incident electron
energies ranging from 100 to 225 eV. In particular, the

C0
V

Vl

1/
I

I
/

I
I

I

This is confirmed by the examination of Figs. 18 and 14,
which show, respectively, the difFerential cross sections
(at f) = 5') and the total cross sections at intermediate
energies. We also note that the eikonal calculations of
Byron (1971), who used the expression (8.56), are in
good agreement with the experimental results.

To conclude this section, let us examine the excitation
of triplet states of helium by electron impact, taking as a
particular example the reaction

first Born and the Ochkur approximations fail badly in
this case, as can be seen from the examination of Fig. 15.
The reasons for this failure have been given by Byron
and Joachain (1972), who have also performed many-
body eikonal calculations (using the Monte Carlo inte-
gration method) for the reaction ('4.28). Their results,
shown in Fig. 15, are seen to be in fair agreement with
experiment. Given the interest concerning the under-
standing of rearrangement collisions, more experimental
and theoretical work on the reaction (4.28) would be
very desirable, particularly at high energies.

V. HIGH-ENERGY HADRON-DEUTERON
COLLISIONS

The topic at hand is a vast one which we shall discuss
not in general terms but with the intent of illustrating the
applicability of multiple scattering expansions to a prac-
tical problem. We must be selective in our coverage, so
while we will describe some of the complexities of high-
energy scattering in detail, we shall have to ignore others.
For the reader whose primary concern is hadron —deuter-
on scattering we therefore list a few of the issues we have
not treated, together with one or two modern references
which provide access to the literature:

(i) scattering in the resonance region (Landau, 1971),
(ii) neutron cross sections (Musgrave, 1971; Julius,

1972);
(iii) high momentum spectators (Musgrave, 1971);
(iv) Fermi motion (Atwood and West, 1972; West,

1972);
(v) presence of isobars in the deuteron wave function

(Kerman and Kisslinger, 1969;Nath, Weber, and Kabir,
1971).
A. High-energy hadron-nucleus scattering

We consider a hadron X of initial laboratory energy E
and momentum k incident on a nucleus of mass number

o~-
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O 2-
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Fto. 14. Total cross section for the process e + He(1'S) ~ -+ e
+ He(2 'P) as a function of the incident electron energy. Curve I: first
Born approximation; Curve 2: eikonal DWBA method with Glauber
distorting potentials (Joachain and Vanderpoorten, 1974); Curve 3:
eikonal calculations of Byron (1971).Experimental data: V, Jobe and
St-John (1967); +, Vriens, et al. (1968), renormalized by Chamberlain
et al. (1970); A, Moustafa Moussa et al. (1969); &, de Jongh and van
Eck (1971); 0, Donaldson et al. (1972); ~, Crooks and Rudd
(1972). (From Joachain and Vanderpoorten, 1974.)

Fto. 15. The differential cross section for the process e + He(1'S)
+ He(2'S) at an incident electron energy of 225 eV The so»d

curve refers to the first Born approximation. The dash —dot curve
corresponds to the Ochkur approximation (Ochkur and Brattsev,
1966a). The squares are the results of the many-body eikonal
approximation (Byron and Joachain, 1972). The dots refer to the
measurements of Vriens, Simpson, and Mielczarek (1968), re-
normalized by Chamberlain, Mielczarek, and Kuyatt (%970).
(From Byron and Joachain, 1972.)

Rav. Mod. Phys. , Vol. 46, No. 2, April 1974



304 C. J. Joachain and C. Quigg: Multiple scattering expansions

A. We use units such that h = c = 1. We assume that
the incident particle travels much faster than the charac-
teristic nuclear velocities, and that it interacts with the
target nucleons via two-body spin-independent interac-
tions. (The generalization to spin-dependent interactions
will be discussed briefiy below. ) Furthermore, we shall
only consider for the moment small angle elastic or
"mildly" inelastic collisions. The transition amplitude
from an initial nuclear state l0) to a final nuclear state
lm) is then given (in the laboratory system) by the
Glauber expression (3.51), namely (Glauber, 1959)

Fp = d b exp iq b ~It«b, bi, . . . , b& 0, 5.1

where q is the laboratory-momentum transfer and I; t may
be written as [see Eq. (3.54)]

(5 2)

The multiple scattering series (5.2), which contains A
terms, has been particularly useful for analyzing the
scattering of high-energy hadrons by light nuclei. We
shall return shortly to this point in connection with
hadron —deuteron scattering. We note here that according
to Eq. (2.38), generalized to a high-energy two-body
collision, the quantity

F p —g fj(q)(mlexp(iq .1,)l0). (5.4)

In particular, for elastic scattering, and assuming that all
the f, ' s are identical (f) = f~ = f), we recover the
familiar result of the "impulse" approximation, namely

where

do.)
(' de &

d„' =
I dq, l I (q)l' (s.s)

(5.6)

is the elastic differential cross section for the scattering of
the incident particle by a free nucleon, and

S(q) = g (Olexp(iq ~ r)l0) (5.7)

is the elastic form factor of the target bound state. Since
S(0) = A, Eq. (5.5) predicts that in the impulse approx-
imation the coherent (elastic) differential cross section for
hadron —nucleus scattering is enhanced by a factor 2' in
the forward direction with respect to the corresponding
hadron —nucleon cross section. In fact, because hadrons
interact strongly with nucleons, multiple collision effects
are important in hadron —nucleus collisions. They lead to

f (q) = —J d'b exp(tq ~ b)I;(b) (5.3)

is just the eikonal (laboratory) two-body scattering ampli-
tude of the incident particle X by the jth nucleon. Hence,
using Eqs. (5.1) and (5.2), we immediately deduce that
the "single scattering" or "impulse" approximation, ob-
tained by retaining only the terms linear in I," on the right
of Eq. (5.2), leads to the hadron —nucleus scattering
amplitude

an A dependence of the forward differential cross section
which increases less rapidly than A', although the angular
distribution still remains heavily concentrated in the
forward direction. This strong forward peaking is the
major characteristic of high-energy coherent hadron—
nucleus scattering.

The elastic scattering of hadrons by "large" nuclei is
conveniently studied by means of the eikonal optical
model summarized at the end of Sec. III. For example,
using Eqs. (3.85) and (3.88), together with additional
corrections for Coulomb and target correlation effects,
Goldhaber and Joachain (1968) have analyzed the exper-
imental data of Bellettini et uL (1966) on high-energy
proton scattering by a variety of nuclei. Their analysis
includes a study of inelastic collisions which dominate at
larger angles. Goldhaber and Joachain have also pro-
posed a simple eikonal DWBA method to deal with
coherent production reactions such as

m + nucleus ~ Al + nucleus (5 8)
or

p + nucleus —+ N* + nucleus, etc. (5.9)
This formalism has been applied to extract the Al-
nucleon cross section from the analysis of coherent Ai
production in Freon (Goldhaber, Joachain, Lubatti, and
Veillet, 1969). Such coherent production reactions in
nuclei, which involve the propagation of "excited had-
rons" in nuclear matter, have attracted a great deal of
interest of late (Bemporad et al. , 1971, 1972; Rogers and
Wilkin, 1972; Van Hove, 1972, 1978; Gottfried, 1972;
Czyz and Maximon, 1972; Goldhaber, 1978; Ka,mal and
Chavda, 1978; Bell, 1978).

We shall not pursue further hadron scattering by
nuclei other than deuterium. The interested reader will
find additional information and references in recent work
(Stodolsky, 1966; Drell and Trefil, 1966; Formanek and
Trefil, 1967; Bassel and Wilkin, 1967, 1968; Czyz and
Lesniak, 1967; G-oldhaber and Joachain, 1968; Ross,
1968; Margolis, 1968; Kolbig and Margolis, 1968; Trefil,
1969; Kofoed-Hansen, 1969; Feshbach and Hufner,
1970; Feshbach, Gal, and Hufner, 1971; Moniz and
Nixon, 1971; Bassichis, Feshbach, and Reading, 1971;
Kofoed-Hansen and Wilkin, 1971; Lambert and Fesh-
bach, 1972, 1978; Kujawski, 1978) as well as in the
review articles of Glauber (1967, 1968), Wilkin (1968),
Czyz (1971);Silbar and Sternheim (1974);and Saudinos
and Wilkin (1974).

r., = 1 —exp(ElX. (b — s) + X,(b+ ,—'s)]).(S.lo)
The quantities x„and X, are phase shift functions contrib-
uted, respectively, by the neutron and the proton, while
the vector s is the projection of the internal relative vector

B. Hadron-deuteron scattering in the Giauber
formalism

Let us now concentrate on hadron —deuteron collisions,
which have been studied extensively by using the Glaub-
er generalization of the eikonal approximation. We fol-
low here the analysis of Franco and Glauber (1966).The
basic formula for elastic and mildly inelastic collisions is
still Eq. (5.1), where
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r& of the deuteron in the plane of impact parameters. If If the average neutron —proton interaction has much
we define the quantities larger range than the hadron —nucleon interaction, one

can readily derive from Eq. (5.'19) the approximate
I; b = 1 —exP iX.(b) (5.11) formula

and

I'(b) = 1 —exp[tX. (b)] (5.12)
~o = ——,Re[f (0)f.(0)l(&~ '»4m

k' (5.20)

we may write Eq. (5.10) as

r... = r„(b —,-'s)

+ I;(b + ,—'s) —I;(b —,—'s)I;(b+ ,—'s) (5.13)

where (r& ') is the inverse square of the neutron —proton
distance averaged over the deuteron ground state. Fur-
ther, if the amplitudes f„(0) and f, (0) are purely imagi-
nary ("black nucleons" ), one obtains the very simple
result (Glauber, 1959)

leading to the physical interpretation in terms of single
and double scattering, as we expect from the discussion
following Eq. (3.54). To analyze this situation in more
detail, we note that the functions I„and I, can be
expressed in terms of the hadron —neutron and hadron—
proton scattering amplitudes f„and f, by an approximate
two-dimensional Fourier inversion. [See Eq. (5.3).]

1
~tr —~ Groan trio& (rd ).

t'7T
(5.21)

Thus
& der 5

(5.14)
The total scattered intensity is obtained from

(5.22)
I;(b) =

2
.
&

d'q exp( —iq b)f.(q).
1

A similar formula holds for I;. Returning to Eq. (5.1), we
now have (5.23)

A variety of angular distributions can be derived from
Eqs. (5.15) and (5.16). The elastic differential cross sec-
tion is given by

F (&
= (m~{exp(i q ~ s)f.(q) + exp( —t'

q s)f, (q)

+2 &
d'q'eXpiq' ~ S „q'+ q p q 2q

and can be evaluated by using the closure relation on the
deuteron final states ~m). Inelastic processes in which the
deuteron is dissociated into two free nucleons are calcu-
lated from

(5.15)

(5.24)and for elastic scattering
(der 1 f'd(r& f'dtrl
(dQ);„(dQp„qdQ &.

'

The corresponding total cross sections a,l, o... and

2
o;„= tr,.- tr„are directly obtained by integrating+

2 I d q ~(q )~ (q + q)fr( q + 2q) (5 16) Eqs.(5.22)—(5.24) over the angles, while the "absorption"
cross section

where S(q) is the form factor of the deuteron ground
state, namely

d
+abs &tot &sc (5.25)

s(q) = f exp(iq r, )~q (r)~'dr, .

Here gs(r&) is the ground state deuteron wave function.
The formulas (5.15) and (5.16) clearly justify the interpre-
tation of the collision in terms of single and double
scattering processes. The two types of diagrams which
contribute to the scattering are shown in Fig. 16. Evident-
ly, these diagrams do not, at this point, have any more
content than the formulas (5.15) or (5.16). We shall
return to the analysis of diagrams in Sec. V.C when
dealing with analytic properties of scattering amplitudes.

We may immediately obtain the total hadron —deuteron
cross section from Eq. (5.16) by using the optical theo-
rem. Thus, writing tr~~., = 4m Im E&/k, one finds that
(Franco and Glauber, 1966)

I

l

I

I~l
I

I

I

I

t
X P 0

4

4

4

4

corresponds to all processes where the incident hadron
(5 17) disappears during the collision or reappears with one or

several produced particles.

n P
Not = Not + &tot (5.18)

where ot".t and ot'. t are, respectively, the total hadron—
neutron and hadron —proton total cross sections, and 6 a,
the "cross section defect, " is given by

6o = ——, ~q e .q, —q d'q. 5.19
2

FK;. 16. The two types of diagrams which contribute to elastic
hadron —deuteron scattering in the high-energy diffraction theory. [See
Eq. (5.16).] (a) Single scattering diagram; (b) double scattering diagram.
Another single scattering diagram with proton and neutron inter-
changed also contributes to the scattering.
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The generalization of these considerations to include
the spin and isospin degrees of freedom of the incident
particle and the target nucleons has been carried out by
several authors (Franco and Glauber, 1966; Wilkin,
1966; G-lauber and Franco, 1967; Alberi and Bertocchi,
1968, 1969b). For example, collision processes contribut-
ing to charge-exchange scattering by the deuteron in the
case of an incident hadron of isotopic spin 1/2 are
represented in Fig. 17, whereas in Fig. 18 the double
charge-exchange process leading to no net transfer of
charge is shown. This last eA'ect, first pointed out by
Wilkin (1966), is small relative to the other cross section
corrections. Indeed, if f, (q) is the charge-exchange ampli-
tude, one obtains now for the cross section defect, instead
of Eq. (5.19)(Glauber and Franco, 1967),

bo = ——,Re(f S(q)
2

x -', [f.(q)f (—q) + f (q)f. (—q)
—f (q)f (—q)]d'q), (5.26)

or

« = —„—«(f ~(q)Pi(o)f (q) —6'(o)2

—lf'(q)1 d'q] (5 27)

If the hadron —nucleon force range is small compared
with the average neutron —proton interaction, one may
again approximate

= ——.«[f (0)f.(0) —llf (0) —f.(0)l'](k'
(5.28)

which under the assumption of purely imaginary ampli-
tudes f.(0) and f, (0) reduces to [compare with Eq. (5.21)]

ll 2
'|)& —

4 [stot &tot 2 (Stot &tot) ] (rd ).4m. (5.29)

Franco and Glauber (1966) have applied the theory
outlined above to a detailed investigation of antiproton—
deuteron collisions in the (laboratory) energy range
0.13—17.1 GeV, using various ground-state deuteron wave
functions. They assume that at high energies the antipro-
ton —nucleon amplitudes are such that

f~ (q) = f.—.(q) —= f» (q) (5.30)

I+
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I

X pn
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I
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(b) (c)
Fr+. 17. The various processes which contribute to charge-exchange
scattering by the deuteron in the case of a positively charged incident
hadron of isotopic spin 1/2.

~l
0

x p n

Fix. 18. The double charge-ex-
change process.

and can be parameterized as

f;& = i(k;(r;&/4') exp( —n'q'). (5.31)

K+ + d —+ K' + p + p, (5.32)

which, together with K'p collisions, is used to extract
information about the K+n charge-exchange reaction
(Butterworth et al. , 1965)

K++n —+K +p. (5.33)

They showed that the efFect of the charge-exchange cor-
rection on the values of the (pn), ()()n), and (K+n) total
cross sections which are obtained indirectly through
deuteron measurements is very small for incident
hadron momenta above 2 GeV/c.

We now turn to a more detailed analysis of the angular
distribution of elastic hadron —deuteron scattering. We
start with proton —deuteron elastic scattering, which has
been studied in the GeV range by various authors
(Harrington, 1964, 1968a,b; Franco, 1966, 1968b; Franco
and Coleman, 1966; Kujawski, Sachs, and Trefil, 1968;
Franco and Glauber, 1969). To understand qualitatively
the main features of the angular distribution, let us return
to Eq. (5.16). We first note from the alternation of sign in
Eq. (5.13) that the double scattering term has opposite
sign to the single scattering term. In fact, if the ampli-
tudes f„and f, were purely imaginary, the double scatter-
ing term would completely cancel the contribution of the
single scattering amplitude at —t = 0.5(GeV/c)'. The
contribution of the single and double scattering terms for
such a parametriza, tion of the amplitudes is displayed in
Fig. 20, which also shows that the single scattering term
dominates near the forward direction. At larger momen-
tum transfers the double scattering term, which decreases
much more slowly with increasing q, becomes the domi-

Using as input the measured experimental data (Elioff et
al. , 1962; Galbraith et al. , 1965; Czyzewski et al. , 1965;
Coombes et al. , 1958; Armenteros et al. , 1960; Foley et
al. , 1963b; Ferbel et al. , 1965) on antiproton —proton
collisions, they obtained total and absorption antiproton—
deuteron cross sections in good agreement with experi-
ment (Elioff et a/. , 1962; Galbraith et al. , 1965; Cham-
berlain et al. , 1957) and showing an appreciable double
scattering efFect [see Fig. (19)]. They also investigated
spin-dependent efFects and concluded that their influ-
ence on the cross section defect should be small. Franco
(1966) has also analyzed the antiproton —deuteron elastic
angular distribution for small momentum transfers in the
region of incident momenta between 2.78 and 10.9
GeV/c. In a subsequent work, Glauber and Franco
(1967) studied the reaction
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nant contribution to the scattering amplitude.
Let us now analyze more closely the intermediate

region of momentum transfers where the single and
double scattering terms interfere destructively. Since the
proton —neutron and proton —proton scattering amplitudes
both have small real parts we do not expect the differen-
tial cross section to exhibit a zero, but instead to show a
sharp dip in the interference region. This region is
therefore of special interest since it depends delicately
upon the phases of the hadron —nucleon amplitudes.

The first experimental data on pd elastic scattering
(Kirillova et al. , 1964; Belletini et al. , 1965; Zolin et al. ,
1966; Coleman et al. , 1966, 1967) gave encouraging
agreement with Cslauber's theory. For example, the large-
angle measurements at 2.0 GeV (Coleman et al. , 1966)
confirmed the importance of the double scattering term
in the region of four-momentum transfers

0.5(GeV/c)' & t & 1.5(—GeV/c)' (5.34)

and were in good agreement with the theoretical calcula-
tions of Franco and Colemen (1966). However, these
larger-angle data did not fully cover the important inter-
mediate region. It remained for Bennett et al. (1967) to
perform a crucial pd experiment at 1 GeV, which showed
agreement with the theory in the small and larger mo-
mentum transfer ranges, but displayed only a shoulder
(no dip) in the interference region (see Fig. 21). This
result was confirmed by measurements at 582 MeV
(Boschitz, quoted in Glauber, 1969). A similar feature
was observed in s tg elastic scattering experiments
(Bradamante et al. , 1968).

Several suggestions were proposed to understand this
apparent paradox: momentum-transfer dependence of
the phases of the proton —neutron and proton —proton
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amplitudes (Bennett et al. , 1967), spin effects (Kujawski,
Sachs, and Trefil, 1968; Franco, 1968), influence of three-
body forces (Harrington, 1968a) or of inelastic interme-
diate states (Pumplin and Ross, 1968; Alberi and Bertoc-
chi, 1969a; Harrington, 1970). There is one crucial fact,
though, which leads to the resolution of the puzzle,
namely that interference minima are observed in the
elastic scattering of protons by the spin zero nuclei He',
C", and 0" (Palevsky et al. , 1967; Boschitz et al. , 1968).
It is therefore tempting to associate the absence of the dip
with the quadrupole deformation of the spin one deuter-
on (Harrington, 1968a).

The wave function for.a deuteron of spin projection M
can be written as

10 '

p-d ELASTIC SCATTERING 15T020 GeV/c

MPLITUDE RATIO Fd{-t)
Fp (0)

C~(r) = I~(r )(-,' m) m, IIM)x.', X.",u(r)

+ I2,u-.. .,(r )
w(r)

X (21M —m) —m2 m) + m2I1M)

X (2 /m) m2
I
1m) + m2)xm& Xmq 1 (5.3S)

10 2

)0 3

0

~ DOUBLE SCATTERING

( NEGAT I YE)

l

0.5 1,0
—t =(MOMENTUM TRANSF ER) (GeV/c)

where X', and y", are proton and neutron Pauli spinors of
projection mI and m2, and a summation over ml and m2 is
implicit. The 5-wave and D-wave radial wavefunctions
are chosen real and normalized by

dr u'+ ~' (5.36)

In the case of md scattering, four scattering amplitudes
must be considered, when spin is not ignored. In them,
one may recognize (Michael and Wilkin, 1968; Sidhu and
Quigg, 1973), the contributions from spherical, quadru-
pole, and magnetic form factors

Fr+. 20. The contributions to proton —deuteron elastic scattering from
the single and double scattering terms in the region 15—20 GeV/e. From
Glauber (1969).

pole fits of Barger and Phillips (1968, 1969) have been
exploited by Alberi and Bertocchi (1969b), Michael and
Wilkin (1969), and Sidhu and Quigg (1973).These calcu-
lations agree very well with the m. d elastic differential
cross sections of Fellinger et al. (1969) and Bradamante
et al. (1968, 1969, 1970a) for incident pion momenta
between 2 and 15.2 GeV/c, in the single-scattering regime

e (lv) = J, «i (le~) Il~(~)l'+ l~(~)l')

4Q(l )=qj «J (lq~)

X [2u(r) w(r) I w(")I'/v 2 1

e (lv) = J «(i (ls )

x [lu(r) I' —,-'Iw(r) I'l

+j&(2&r) [u(r)w(r)/~2 + Iw(r)I'j), (S.37)

lP-l

lp-&

JD

I I I I I I I I I I

the squares of which are plotted in Fig. 22 for the hard-
core model of Reid (1968). In a simple model (Michael
and Wilkin, 1968) in which the vrW spin-flip amplitude is
neglected and the nonAip amplitude is positive imagi-
nary, the contribution of the quadrupole form factor to
the differential cross section for md scattering remains
finite at the position of the diAraction zero in the
contribution of the spherical form factor and fills in the
dip. This cooperation is displayed in Fig. 23.

Because the pion —nucleon scattering amplitudes are so
well known, more detailed calculations have been possi-
ble. Alberi and Bertocchi (1969b) reanalyzed the data of
Bradamante et al. (1968) by taking into account the
deuteron D- state and using mN amplitudes given by
phase shift analyses. Some of their results are shown in
Fig. 24 which exhibits impressive agreement between
theory and experiment. (For a detailed account of this
work, see Bertocchi, 1969.) At higher energies the Regge

IP-4

IO-5
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I I I l I
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FK". 21. The proton —deuteron elastic scattering data of Bennett et al.
(1967), showing the absence of a dip in the "intermediate" region of
momentum transfers.
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and in the region of the break. Typical calculations are
shown in Figs. 25 - 27. At larger angles (in the double-
scattering regime), the theoretical curves lie systematical-
ly above the data. The number of detailed computations
which exhibit these features supports the inference of the
CERN —Trieste group (Bradamante et al. 1971) that the
disagreement in the double-scattering regime (which is
also observed in pd scattering) cannot be ascribed to the
uncertainty in our present knowledge of the hadron—
nucleon scattering amplitudes.

Similar considerations apply to proton —deuteron elas-
tic scattering. The calculations of Franco and Glauber
(1969) are compared with the experimental data at 1 and
2 GeV in Fig. 28. Recent measurements of pd elastic
scattering at 9.7, 12.8, and 15.8 GeVjc (Bradamante er al. ,
1970b) and at higher energies (Allaby et al. , 1969a, b;
Amaldi er al. , 1972) are also in excellent agreement with
the theory, except in the double-scattering regime.

A number of authors (Faldt, 1971; Gunion and Blan-
kenbecler, 1971; Cheng and Wu, 1972; Namyslowski,
1972b) have suggested that the Glauber theory without
consideration of deuteron recoil overestimates the over-
lap integral and hence the cross section in the double-
scattering regime. %'hile it is appealing to think that the
relative motion of initial- and final-state deuterons should
diminish the wavefunction overlap, the magnitude of- the
correction (as estimated, for example, in a covariant
formalism by Namyslowski, 1972b) is approximately
20%, whereas the data appear to demand a factor of 2
suppression. Additional precision experiments seem re-
quired before it is worthwhile to take the leap of formu-
lating the entire problem covariantly, with the complica-
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Fta. 23. A simple model calculation (Michael and Wilkin, 1968)
showing how the contribution from quadrupole transitions fills in the
expected dip in the md differential cross section.
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FK". 24. Comparison of the theoretical calculations by Alberi and
Bertocchi (1969b) with the wd elastic scattering data of Brada-
mante et al. (1968) at 895 MeV/c. The dashed curve corresponds
to a pure S-wave deuteron wave function. The solid curve includes
the efFect of the D-wave.
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FK;. 25. The differential cross section for m d elastic scattering at 9
Gev/c calculated by Sidhu and Quigg (1973) is compared with the data
of the CERN —Trieste Group (Bradamante et af. , 1971). In addition to
the statistical errors shown, the data carry an absolute normalization
error of 20%.

tions of spin fully included.
Since the scattering amplitude for elastic hadron—

deuteron scattering in the intermediate momentum trans-
fer region is dominated by quadrupole transitions be-
tween the deuteron S and D states, it is strongly depend-
ent on the relative orientations of the momentum transfer
and the deuteron spin. Thus, as Franco and Glauber
(1969) remarked and Alberi and Bertocchi (1969b) dem-
onstrated by explicit calculations, interesting effects
could appear in experiments involving polarized deuter-
on targets. Indeed, with such a target, the interference dip

Fto. 27. Same as Fig. 25 at 15.2 GeV/c

t ~ 1 I
1

t t t
(b)

t r 'f & 1

can appear or not depending on the particular experi-
mental arrangement, namely on the orientation of the
polarization axis. Another interesting experiment using
the spin dependence arising from the D-wave component
of the deuteron to produce high-energy aligned deuterons
has been proposed by Harrington (1969a). He pointed
out that this spin dependence could be studied in a
double-scattering experiment in which a high-energy
deuteron beam is scattered from two hydrogen targets in
succession. The experiment was carried out by Bunce et
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d at 13.0GeV/c
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FK. 28. Comparison of the theoretical predictions of Franco and
Glauber (1968) with the proton —deuteron elastic scattering experiments
(a) at 1 GeV by Bennett ei aI. (1967); (b) at 2 GeV by Coleman,
et aL (1966).
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al. (1972) using the external deuteron beam of the
Princeton —Pennsylvania Accelerator at 3.6 GeV/c, a mo-
mentum corresponding to pd scattering at 1.0 GeV/c
where the differential cross section has been measured by
Bennett ef al. (1967).In a double-scattering experiment in
which a deuteron beam is polarized by the first scattering
and analyzed by the second scattering, the difierential
cross section of the second scattering has the azimuthal
dependence

N(@) = Ns(1+ icos 2@ + Bcos P). (5,38)

The momentum transfer of the second scattering was
fixed at —tb

——(0.23 ~ 0.016)(GeV/c), and the azimuth-
al asymmetry N(p) was measured over a range of mo-
mentum transfers of the first scattering. The measured
values of the parameters A and B are shown in Fig. 29,
together with fits based on 6-lauber theory, in which the
D-state probability and real part of the NN scattering
amplitude enter as parameters. Thus the experiment
allows a Glauber model-dependent method for measur-
ing the real parts of NN amplitudes at high energies.

We also mention the experiments of Carter et al.
(1968), who measured md cross sections, and of Chase et
al. (1969) on inelastic pion —deuteron scattering at 5.53
GeV jc, leading to an outgoing pion plus anything in the
final state (missing-mass experiment). The inelastic inten-
sity, calculated from Eq.(5.24), was found to be in good
agreement with the data. (See also Hsiung et al. , 1968.)

We now turn to a comparison of the Glauber method
with the Faddeev —Watson multiple scattering equation.
Bhasin (1967) has studied the first four terms of the
expansion (3.38) for elastic hadron —deuteron scattering,

6-

A 0

-2-

-4-

.6-

.2;

5 0

.2 .3

PBE~M
o = 2.64 GCV/c
~ = 3.16
o =357
x =370 Is

.4

.6h

Utt —T2 + T3 + T2 G o Ts + T3 Go T2 +(+) (+) (5.39)

As expected, the two first terms on the right reduce to
Glauber's single scattering terms if one ignores the de-
pendence of T2 or T& on the energy of the third particle
and also assumes the two-body off-the-energy-shell am-
plitudes to be functions only of the momentum transfer.
With these assumptions and the additional requirement
that k; = kf, the double scattering terms T&G&Ts and
Tj Gp T2 also reduce to the Glauber "eclipse" correction.
Pumplin (1968) and Bhasin and Varma (1969) have
investigated the importance of the off-shell corrections on
the double scattering terms. They find that the corre-
sponding effect for proton —deuteron scattering is largest
in the interference region between single and double
scattering. However, Harrington (1969b) has recently
shown that in a potential model the off-energy-shell
effects in the double scattering term must cancel the
contribution of the remaining part of the multiple scatter-
ing series in the high-energy limit. (See also Sec. V. C.) It
should be noted here that only in high-energy difi'raction
theory does the multiple scattering series terminate after
A terms. In the deuteron case considered here the triple,
quadruple, ~ terms are small, since they contain at
least one (unlikely) backward scattering. Their sum could
well annihilate the off-energy-shell contribution to the
double scattering term, if the mechanism described by
Harrington also storks for interactions which cannot be
described by potentials.

While we are still discussing the multiple scattering
series, lt is worth mentioning an analysis by Kofoed-
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Fto. 29. Fits to the data of Bunce et al. (1972) using the Cxlauber
model. (a) The coefficient A in N(y) = No(1 + A cos 2y + B cos y);
(b) the coefficient B; (c) differential cross section from Bennettet al.
(1967).
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p+p —+p+ N* (5.40)

has a minimum momentum transfer greater than zero, so
that two relatively violent scatterings of this type, leaving
the deuteron in its bound state, are not likely to occur
with high probability compared with the single and
double scattering terms discussed before. Such "truly
inelastic" corrections have been considered for proton—
nucleus scattering by Pumplin and Ross (1968) and for
pion —deuteron scattering by Alberi and Bertocchi (1969a)
and Harrington (1970). We discuss them further in
connection with Gribov's Reggeon calculus approach in
Sec. V.C. The excellent agreement between conventional
Glauber theory and the 19.1 GeVjc pd data of Allaby et
al. (1969) indicates that inelastic corrections are negligi-
ble at that momentum.

More serious problems arise when one wants to study
coherent production reactions such as

Hansen (1969), who has pointed out that truncated
versions of the Glauber series (5.2) could produce mis-
leading results since the series is slowly converging in
terms of multiplicity. This remark evidently does not
apply to the deuteron case—where the multiplicity is
two but it is relevant in cases such as nucleus —nucleus
collisions (Franco, 1967, 1970) as well as in quark model
or multiple scattering theory of hadron —hadron scattering
(Harrington and Pagnamenta, 1967, 1968, 1969; Deloff,
1967; Barnhill, 1967; Schrauner, Benofy, and Cho, 1967;
Chou and Yang, 1968; Frautschi and Margolis, 1968;
Durand and Lipes, 1968).
. We now consider briefly the eff'ect of three-body forces

in hadron —deuteron collisions. Harrington (1968b) has
studied corrections to the Glauber expression due to the
scattering of the incident hadron from a pion being
exchanged by the two target nucleons. Numerical esti-
mates indicate that such an effect on the total cross
section is quite small (( 1% at very high energies), but
could possibly irifluence the differential cross section at
large momentum transfers.

As we have emphasized above, the G-lauber method is
at its best for collisions in which the inelasticity is small,
in particular for elastic scattering, for which the results in
the high-energy small angle limits are in excellent agree-
ment with the data. Even in that case, however, one
should keep in mind that several correction terms, typi-
fied by the contribution of inelastic intermediate states
(see Fig. 30) should be included in the scattering ampli-
tude. There is no simple way to take into account the
contribution of such inelastic intermediate states within
the framework of Glauber's method. Fortunately, be-
cause of the mass difference, the reaction

~ + nucleus —+ Al + nucleus,

m+d~AI+ d,

(5.41a)

(5.4 lb)

or

p + He' —+ N* + He', etc. (5.41c)

We shall return to this question in Sec. V.C. We note,
however, that existing discussions of unstable hadron—
nucleon cross sections ignore the issue of whether an
unstable hadron has time to materialize as such before
rescattering. Suppose the AI to be a normal resonance,
and consider reaction (5.4la). Of particular interest is the
term which describes the pion interacting with one nu-
cleon and being excited into an AI which subsequently
scatters from a second nucleon. Does enough time elapse
between the excitation and rescattering for the excited
pion to pull itself together as an A I? The simplest
estimates (Goldhaber, 1972), stimulated by the recent
experiments of Bemporad et nl. (1971, 1972) on pion +
nucleus ~ (three or five pions) + nucleus which indi-
cates (after a Goldhaber —Soachain analysis) rather small
cross sections for nonresonant three pion and five pion
systems on nucleons, suggest that the answer is no.

Coherent production of vector mesons would seem to
be a special, and. favorable, case since according to the
ideas of vector dominance the incoming photon actually
exists part of the time as an off-mass-shell vector meson.
Some experimental results on the reaction yd ~ p'g are
discussed in Sec. V.C.

C. Hadron-deuteron scattering and Regge theory

How to calculate Regge cuts (branch cuts in the
angular momentum plane) is one of the challenging
theoretical problems of the present day for which no
solution seems close at hand. We therefore choose a
historical approach to the relation between the Glauber
formalism and Regge theory. In this way we shall en-
counter some of the false steps which have been taken in
the past and try to convey the theoretical atmosphere of
the present. Some insight is gained into the connection
between diffraction and Regge poles if, following
Udgaonkar and Gell-Mann (1962), we understand the
shrinkage of the diffraction peak by an optical analog.

At high energies hadron —hadron scattering is apparent-
ly dominated by Pomeranchuk exchange. The X—Y elas-
tic scattering invariant amplitude, which we represent in
Fig. 31, has the form for small angles

Axr(s, t) = (i —cot[ jurnp(t)j)yx(t)yr(t)so(s/so)"", (5.42)

where s = —(p&+ p&)' is the square of the total c.m.

XI
I

I
e

I

x tpn

FK . 30. Diagram corresponding
to the contribution of an inelastic
intermediate state for elastic scat-
tering.

FK'. 3l. Reggeon exchange diagram for X—Y elastic scattering, which
is governed by Pomeranchuk (P) exchange.
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energy, t = —(p& —px) is the square of the four-mo-
mentum transfer, sp is the Regge scale energy-squared,
and n) (t) is the Pomeranchuk trajectory function: n) (0)= 1. The total cross section is given in terms of this
amplitude by the optical theorem.

o,.„,(s) =(I/s) 1m[A (s, O)] = y (0)y (0) (5.43)

Here we have explicitly exposed the factorization proper-
ty of the pole residues. Let us rewrite (5.42) as

( $ )(()(()
A(s, t) = (i —cot[ PTnp(t)]}sp(

esp)

x o,..., (s)b (th (t)/y (0)y, (0)]. (5.44)

Now assume that the Pomeranchuk trajectory is linear,
n) (t) = 1 + et, and that the residue functions are slowly
varying, so we may set the factor in square brackets equal
to 1. Then for small t, we have

S.(b, ~) = f d'b f d'b &(b, b )

&& S(b —b[, s)S(b —b2, s). (s.so)

Now we take the deuteron c.m. as the origin so that
bl = p, where p is the two-dimensional relative coordi-
nate. Let the wave function —ignoring spin —be g(p, z)
and define

system specified by a wave function referring to the
individual coordinates of the constituent nucleons. As-
suming that high-energy NN scattering is controlled by
Regge poles, we compute the amplitude for high-energy
Nd scattering. The probability distribution ~g~' of the
nucleon positions is integrated over the beam direction (z
coordinates) to give a probability distribution P(b], b2) of
two-dimensional vectors b;. Then the transmission coeffi-
cient for the deuteron, Sd(b, s), is just the averaged
product of the transmission coe%cients for the constitu-
ent nucleons:

A(s, t) ~ iso,.„,(s) exp et log I
—

I

(, sp
(s.4s) 0()') = f d fd (le(('')l «r((b'() (&»)

which exhibits, for e ) 0, the shrinkage of the diffraction
peak.

We write the partial-wave series for A(s, t)

Then we get for the scattering amplitude and total cross
section

A(s, t) = 8mi g (2l + 1)P((cos 0,)(1 —e""). (5.46) fxd(s, t) =

We turn the sum over I into an integral, introduce the
impact parameter b = 2ls '/', and use

I y n(t) —I

2oG(—.—'t)B(t) i

—
i4(~)"' (&0)

2

d'p6 p' B —,g —p
' B — q+ p

P((cos 8,) = P((1 + 2t/s) = Jp[b(—t)'('].

We then calculate f(s, t), an amplitude such that do/dt
=

~
f(s, t)~, which for NN scattering at high energies is

f(s, t) = [4$(m)"'] 'A(s, t), so that and

(S I I
—() + )'1+ I

—(-: — )') —))x( —
/

(5.52)

j($ t) =
(5.47)

where

,(,f 2((bdb[1 —S(b, s)]d [b( ()')']—
d'b[l —S(b, s)] exp(i b q ),

2 TT

2 q
2 (-p')-2

dpG p B —p

(s.s3)

where the transmission coefficient S(b, s) = e"" and q'
t. In the exp—onential approximation (5.45) Fourier

inversion gives the absorption coefficient [now o
+total

($1
1 —S(b, s) = —~ Iog( —

~

8TT (, sp )
(x exp
q4& log(s/s, ) )

(5.48)

2

0,1
= d'bl —S b, s '= - 5.49

tends to zero as s —& oo.
Let us describe a nucleus approximately as a composite

Evidently the eff'ective radius-squared (the value of b' for
which the absorption coefficient is 1/e times its value at
b = 0) is 4e log(s/sp), which increases logarithmically
with s. Likewise the transparency, which we define as

[1 —S(b = O, s)], is logarithmically increasing with s
because of the factor e log(s/sp). Finally we find that the
elastic cross section

&(t) = (1+ i cot[i n(t)]}$o7 (t)7 (t)/7~(0)7 (o)

is the Regge residue function.
In addition to the Pomeranchuk pole term, with a

coefficient twice as large in the forward direction as in the
NN case, there is an eclipse term which corresponds to a
continuous "smear" of Regge poles, i.e., to a Regge cut
with branch point at

n, = 2n(-,'t) —.1. (s.s4)

This is the result of Udgaonkar and Gell-Mann (1962).
At very high energies, the eclipse term at t = 0 vanishes
like 1/log(s/s()) and of„' —& 2o. (See also Cxribov, Ioffe,
Pomeranchuk, and Rudik, 1962.) This is sensible be-
cause, as we saw above, the nucleons become very
transparent at high energies. For intermediate energies,
the eclipse term can be identified with Glauber's.

Abers et al. (1966) observed that from the point of view
of Feynman graphs the double scattering term contains
no Regge cut, so the validity of the result of Udgaonkar
and Gell-Mann and, by extension, of G-lauber theory at
high energies is questionable. To compress this discussion
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somewhat we draw from a lecture by Wilkin (1969).
We may represent the Glauber terms graphically as
the impulse (or single scattering) terms of Figs. 82(a)
(and 32(b)) and the eclipse (or double scattering) term of
Fig. 32(c). Regarded as a Feynman diagram, the double
scattering graph has no Regge cut, because the oA-mass-
shell part of the loop integral cancels the Regge cut from
the on-mass-shell contribution which is obtained by
replacing the propagator by a delta function. Thus it
contributes asymptotically only as s ', not as sjlog s,
which is given by the G-lauber formula. A general Feyn-
man diagram as in Fig. 33 has a j-plane branch cut on the
physical sheet only if both the left-hand and the right-
hand blobs have nonzero third double spectral functions
[p,„(s,t)] in the r-channel sense. In other words, crossed
lines are required on both sides of the graph; the simplest
diagram with a Regge cut appears in Fig. 84 [cf.Mande&-
stam, 1968;Wilkin, 1964].Such a result must be a source
of embarrassment either for the Czlauber theory as em-
bodied in the calculation of Udgaonkar and Gell-Mann
or for Feynman graphs, . if not for both. On the one hand
Feynman diagrams are "fundamental" and therefore to
be believed. On the other, Glauber theory has been
checked experimentally for energies up to a few GeV.

One may try to circumvent the difficulty by imputing
to the projectile hadron an internal structure which
includes a cross, e.g. , Fig. 34(b), and claiming that the
compositeness of hadrons restores the Regge cut. Such a
calculation was performed by Abers ef al. (1966), who
thereby proposed to replace the Glauber eclipse with a
complicated expression dependent upon the internal
structure of the projectile. Assigning a particular internal
structure to the projectile seems artificial, especially when
the imputed structure may be absent. As Quigg (1970)
emphasizes, the statement p,„&0 is equivalent to the
statement that the projectile has definite (s-channel)
signature. To the extent that exchange degeneracy is
exact, hadrons do not have definite signature and the
cross, artificial or not, is unrealistic. Under the assump-
tion that duality diagrams are meaningful for Reggeon-
hadron scattering, Finkelstein (1971}derived a selection
rule for Regge cuts which makes more precise the con-
fhct between arbitrary inputed structure and exchange
degeneracy. This phenomenological argument provides
strong circumstantial evidence against the imputed
structure Feynman graph approach.

Landshoff (1969)has estimated the energy at which the
Glauber theory result (the Regge cut of Udgaonkar and
Gell-Mann) ceases to be valid numerically under the
assumption that the relevant amplitude is given by the
Feynman graph of Fig. 32(c), without assigning any

E„;„„)= m„.„„„„(M,„„...jdeuteron binding energy)' '.
(5.55)

For incident nucleons this is about 20 GeV. Thus while
the Feynman diagram considered has no cut in the j
plane its numerical properties are quite similar over a
wide range of energy to those of the Glauber eclipse
term.

Further doubt has been cast upon the simple diagram
approach by a potential theory calculation of Harrington
(1969b). In Glauber theory the amplitude for scattering
from a potential V is given by (see Sec. II. C)

f(q) = .f d'b exp(iq b)(exp[ix(b)] —r), (5.56)
k

where

x(b) = —f d~i'(b, ~).

We let q —= k —k' and invert the Fourier integral (5.56).
Thus

(5.57)

f(b) =
q f d q~xp—(—iq 'b)f(q).

In momentum space we have

V(p) =,f d'X exp (i p .X)V(X),
1

(2qr)'

(5.58)

(5.59)

Fto. 33. general Feynman graph for two-Reggeon exchange in (qua-

si) two-body scattering. The blobs may have complicated structure.

structure to the projectile. Since the deuteron is very.
lightly bound, the critical laboratory energy at which the
Glauber theory should break down is very large. On the
basis of heuristic arguments about the off-mass-shell
behavior of scattering amphtudes, LandshoA estimates

l
S

44
4

44
44

FK". 32. Graphical representation of the Glauber series for hadron
(dashed line) —deuteron scattering: (a) and (b) impulse terms; (c) eclipse
term. The wavy lines are Regge poles, the solid line the proton and the
dotted line the neutron.

Fta. 34. (a) The simplest Feynman graph which has a Regge cut; (b)
redrawn for hadron —deuteron scattering.
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and the phase shift expressed in terms of V is

x(&) = —f d'qcxi( —i~ &)v(a) (~6

We expand the integrand of (5.S6) in powers of iX(b),

f = ]~d'b p('q b)l, g
n=l

and substitute (5.60) into (5.61) to obtain

together at one end of the (Glauber, not Feynman!)
diagram and pushing all the mn interactions to the other

0) end.
Harrington's calculation goes further. Employing the

Faddeev multiple scattering series (cf. Sec. III.B of this
review) he proves that in the high-energy limit and in the
Glauber approximation the off-shell contribution to the

(5 61) double scattering term is canceled by the higher-order
terms in the series. The proof consists in observing that
in the high-energy limit the scattering is given by the
Glauber approximation

(5.62)

This represents an infinite sum of ladder graphs in which
the Feynman loop integrals are integrated only over
transverse momentum components. We can reexpress
(S.S6) in terms of the Born amplitude

~(2) ~(2) ~(2)
+Glauber +Glauber, 6 + ~Glauber, P & (5.68)

T —T~„„b„=g TG,",„b„, (5.67)
fl

where T~"„'„b„is Ti"~ after the Glauber approximations
have been made. If we break the linearized propagator
into its 6 function [8] and principal value [P] (off-mass-
shell) parts and correspondingly separate Tg,„b„as

f (q) = -2~'&(q) (5.63)
~(1) g (2)

TGlauber TGlauber + TGlauber, 8 ~ (5.69)

Thereby it follows that in the high-energy limit the off-
shell contribution to T") must be canceled by the higher-
order terms in the multiple scattering series

Thus we have a prescription for calculating the "absorp-
tion corrections" to any Born term f~. Wilkin next
applied these rules to m.d scattering to give some intuitive
background to Harrington's result. First notice that the
vertex d —+ np is merely a deuteron wave function which
we write in momentum space a.s @(p). If the mp amplitude
of Fig. 32(b) is the Born term fg(q) we get

&q' -'q —q' -'q q' ' q

which is the expected result. It is straightforward to verify
that the right answer is obtained for Fig. 32(c).

Now consider the graphs in Fig. 35. Remarkably, both
of these give the same answer,

d p d ql p p + ql a ql

d'q2 ~ q2 a 2q+ ql —q2, S.66

which is recognizable as part of the Glauber multiple
scattering term expanded in a Born series. Thus the
Glauber theory includes triple scattering terms such as
those in Fig. 3S. Notice that the ordering of the mp and
mn potential interactions does not affect the contribution
of the graph. This is true for any complicated graph, as
can be proved from the rules obtained above. It is then a
basic property of Glauber theory that the order in which
the interactions take place does not matter. A picturesque
explanation of this fact (Wilkin, 1969) is that in deriving
G-lauber theory it is always assumed that the incident
energy is large and any changes are very small. Comple-
mentary to this certainty in energy is an uncertainty in
time: it is impossible to tell which interaction takes place
first and hence there is a commutativity among the
several scatterings. G-lauber theory exploits this inde-
pendence of time order by lumping all the mp interactions

T~"' + g T'"' —T~'~".„„,p + g TG'i",'„b„= 0. (5.70)
n=3 n=3

It is not known whether this exact cancellation carries
over to the relativistic domain, but the likelihood that
more complicated diagrams will continue to be important
means that the use of a few Feynman graphs to debunk
(or derive!) Glauber is a very dubious procedure. There
is a lesson here for Regge cut calculations in non-nuclear
hadron —hadron scattering as well. (We do not pursue
nondeuteron scattering any further here, but for the
connection between multiple scattering and Regge cuts
see the discussion by Jackson, 1970.)

We now turn to the question of singularities in the
Mandelstam variables. We shall not dwell on the analytic
structure of the hadron —deuteron scattering amplitude in
the momentum variables, for we are able to refer the
reader to the elegant review by Ericson and Locher
(1969) on hadron —nucleus forward dispersion relations.
In the language of S-matrix theory, the lightly bound
structure of the deuteron is evidenced through the exist-
ence of anomalous threshold singularities (so called be-
cause they cannot be discerned in straightforward fash-
ion from unitarity) in d —& ab Regge residue functions

~ 8
t
S

(b)

FK". 35. Triple scat'tering Feynman graphs which appear in the Born
series for the CHauber eclipse term.
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(M + M.)' ) M,' & M'+ M.'. (5.71)

(Karplus et al. , 1958).A rather complete discussion of the
singularities of the dpn Regge residue function has
been given by Lee (1968). Here we content ourselves
with recalling for the reader what anomalous singularities
are, by giving an intuitive discussion due to Bohr (1960).

Consider the virtual process d ~~np. The deuteron is
stable in the usual sense because, Md ( M, + M„. For
states below threshold, with energies ~~;

~
( M~, a virtual

decay can take place if all the particles have positive
imaginary momenta (+i~) in the z direction, say. The
four-momentum vector of a particle with imaginary
three-momentum is Euclidean: M' = ~' + ~'. The ener-
gy momentum conservation equation can be represented
geometrically by a triangle in the ~—~ plane as in Fig. 36.
For the virtual. decay to occur all the energies ~ and
pseudomomenta ~ must be positive, which means the
triangle will close if Md' ) M,' + M.'. Hence an anoma-
lous singularity will occur for the deuteron because the
deuteron mass satisfies

markedly as inelastic rescattering becomes competitive
with the elastic rescattering responsible for the conven-
tional Glauber screening. Similar proposals have been
advanced on intuitive or phenomenological grounds by
Pumplin and Ross (1968), by Alberi and Bertocchi
(1969a), and by Harrington (1970). Gribov's proposed
modification' of Glauber theory has its roots in his earlier
work on a Reggeon calculus (Gribov, 1967) and on the
question of the vanishing of the eclipse term at very high
energies (Gribov, 1969a). The essence of the suggestion is
that inelastic scattering leading not only to discrete
resonances, but also to continuum excitation, be taken
into account in- the computation of rescattering correc-
tions. These inelastic intermediate states are indicated in
Fig. 37; their contributions are to be evaluated as usual,
by putting the intermediate states on the mass shell.

It is straightforward to apply these ideas to an evalua-
tion of the md total cross section defect at high energies.
Neglecting spin and assuming all production amplitudes
to be purely positive imaginary, Gribov (1969b) writes
the inelastic screening correction as

For the deuteron this anomalous threshold lies very near
the physical region, at

6o,„„„„,= 2 g dh p(4t) do, (h)/dh,
I

(5.73)

t, = 4M' —( ' ', "' = 0.03(GeV/c)' (5.72)

In most phenomenological studies the full complica-
tions of kinematics (in particular, of the anomalous
threshold) have been ignored. As an example we cite the
analysis of coherent K* (890) production Kd ~ K*d at
4.5 GeV/c of Eisner et al. (1968), in which the deuteron
is treated as a structureless spin one object. Typically,
statistics have been so low that more sophisticated anal-
ysis would be unwarranted. For example, see Buchner
et el. (1969) for coherent K* production at 8 GeV/c.
Alberi and Bertocchi (1969a) estimated the contribution
of inelastic intermediate meson states in ~d ~ 7rd. Again
the subtleties of kinematics were ignored as the Regge
pole parametrization was used to give the Phragmen-
Lindeloff theorem connection between asymptotic energy
dependence and the phase of an amplitude. Given the
success of theories for md ~ md which take proper ac-
count of spin (cf. Sec. V.B), the corrections due to
inelastic intermediate states are likely to be small at
intermediate energies. An exception to the general rule
is the paper by Barger and Michael (1969) in which the
full apparatus of Lee's kinematics is applied to pp —+ w+d,
despite the relative absence of data.

Having analyzed Glauber theory in the J plane and the
singularities in the Mandelstam variables, we now con-
sider a modification of the theory recently proposed by
Gribov (1969b). This author has argued that for incident
momenta ~ 10 GeV/c the screening effect changes

FIG. 86. The virtual dissociation d ~+
np for imaginary momenta of the three
particles. The length of a vector is pro-
portional to the mass of the correspond-
ing particle.

where p(t) is the deuteron form factor and do&/dt is the
diff'erential cross section for production of the Ith inter-
mediate state. As data become available on the inclusive
reaction

mp —+ p + anything (5.74)

(See, for example, Antipov et al. , 1972) it may prove
useful to recast (5.73) as

Ftc. 37. Gribov*s (1969b) proposed double
scattering diagram which contains the full
spectrum of physical states into which the
projectile m~ be excited. In conventional
Glauber theory, only the projectile itself is re-
tained in the intermediate state.

Bo;„„„„,= 2 d('3R, '/s) dt p(4t), , (5.75)f f
I (6L)

OO d W'st'
where do/d(3R, '/s)dt is the inclusive cross section to
produce a, proton recoiling against missing mass "3R.

Several attempts have been made to estimate inelastic
screening effects on the basis of (5.73). Gurvits and
Marinov (1970) predicted that inelastic effects should
diminish above 20 GeV/c However, their conclusion was
based on the identification of a decreasing experimental
cross section as "diffractive" and hence with a purely
imaginary amplitude, in conflict with analyticity, and
should be disregarded. Kancheli and Matinyan (1970),
employing the triple-Regge techniques introduced by
Kancheli (1970), traced qualitatively the energy depend-
ence of the eclipse term. They found that, with the onset
of inelastic rescattering, the eclipse term increases until
the inelastic screening reaches its asymptotic limit, then
decreases as the conventional Glauber term diminishes a
la Udgaonkar, Gell-Mann, Gribov, Ioffe, Pomeranchuk,
and Rudik and approaches a constant limit given solely
by inelastic screening. This is in accord with the expecta-
tions of Gribov (1969b).

More recently, Sidhu and Quigg (1973) have given a
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FK". 38. Inelastic screening corrections to the pion —cieuteron total
cross section calculated in a nova model by Sidhu and Quigg (1973).
Compare the experimental results shown in Fig. 41.

Fta. 40. Pion —deuteron total cross sections at high energies. Notice
that whereas the pion —nucleon total cross sections shown in Fig. 39 are
essentially constant between 30 and 60 GeV/e, the pion-deuteron cross
sections continue to decrease.

quantitative estimate of the inelastic screening to be
expected at high energies. They included as ir termediate screening corrections. Gorin et al. (1972) determined the
states all those multipion states which may be reached amount of screening directly from the high-energy data
from the incident pion by diAractive exciiation. For as
simplicity the difT'erential cross sections are parameter-
ized as exponentials Bo = tt, (m p) + rt, (vr p) — [tt, (vr'd) + tr, (vr d)]. (5.78)

dtt&/dt = Al tJt exp[At ttt[l —t&(p&,b)]), (5.76)

where tI is the minimum squared momentum transfer
required to produce the state I from an incident beam of
momentum pl, b, and A& is the slope of the diAerential cross
section. If the deuteron form factor is approximated by
an exponential as well, p(t) = e'",', one may simplify
(5.73) to

6o;„„„„,= 2 g At tr((a + A&) 'exp [at&(p„,)]. (5.77)

They took as intermediate states all channels containing
an odd number of pions () 1) and assigned them the
cross section suggested by the Nova model for inclusive
distributions (Jacob and Slansky, 1972). Choosing At= 2.5 (GeV/c)

' for every l, they computed the inelastic
screening contributions shown in Fig. 38, which they
estimate reliable within a factor of 2 in magnitude. The
energy dependence is in agreement with the qualitative
description given by Kancheli and Matinyan (1970).

Recent measurement of the m-p total cross sections
reveal several interesting features. Unlike the m=p total
crass sections [Fig. 39], which remain constant above 30
GeV/c, the md cross sections [Fig. 40] continue to fall. To
the extent that the mp cross sections are constant, the
decrease of the hard cross sections must be laid to inelastic

Their results are shown in Fig. 41 together with the
corresponding results of Galbraith et al. (1965). The
newly measured screening corrections are clearly increas-
ing with energy; the Serpukhov points ar..well A.tted by
the form Btr = (1.39 + 0.004[p] b/(1GeV/c, )]'")mb.
Taken literally, they seem to indicate the presence of
additional screening corrections, above and beyond those
predicted by Glauber theory, of roughly the magnitude
that Sidhu and Quigg (1973) found plausible in Gribov's
(1969b) formulation. Less convincing evidence for a
similar efIect in pd scattering is shown in Fig. 42, com-
piled by Kreisler et al. (1968).

Following the lead of Kancheli and Matinyan (1970),
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FK". 39. Pion —nucleon total cross sections at high energies. The m p
points are fromFoley et al. (1967) [c]and from Florin et al. (1971)[0];
the s+p points are from Foley et aL (1967) [+]and from Denisov,
ef al (1971) [~]. .

Frr. 41. Experimental results for the screening correction Be are
shown together with the expectations of Cslauber theory (solid curve).
Data are from Cxalbraith et al. (1965) [0] and from Cxorin et al. (1971)
[0].The dotted line is a best fit of the form A + Bpc to the Serpukhov
data. The dashed line is the calculatio". of Quigg and Wang (1973)
which combines Gribov's scheme with a triple-Reggeon fit to inclusive
spectra.
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Quigg and Wang (1973)have calculated the md total cross
section defect using as input a 'triple-Regge analysis of
the reaction m- p —+ p + anything published by Paige and
Wang (1972). In this way the phases of amplitudes are
prescribed by the Regge pole signature factors and need
not be assumed. The results of their calculation (cf. Fig.
41) are in remarkable agreement with the trend of the
Serpukhov data and differ markedly from the conven-
tional Glauber theory prediction at high energies. Indeed
it does not seem too much to hope that deuteron correc-
tions can provide an important consistency check on the
Reggeon calculus program in which Gribov vertices are
extracted from data on inclusive reactions. Similar results
have been presented by Anisovich et el. (1972), and by
Kwiecinski et, rjl. (1974).

To conclude this section, we shall now present a few
remarks concerning the experimental situation. As we
have indicated in the introduction to this review of high-
energy hadron —deuteron scattering, Glauber theory has
been tested and refined extensively for elastic hadron—
deuteron collisions. Such detailed comparison of theory
with experiment has not yet been made in inelastic
reactions, and we therefore wish to close by making some
simple remarks about inelastic scattering. Little is known
about the catastrophic case in which the deuteron is
broken up and one of the constituent nucleons is trans-
formed into a nucleon resonance or a hyperon. A purely
experimental investigation of great value is the compari-
son of %* production cross sections off deuterons with
the corresponding cross s'ections off' protons. For exam-
ple, examination of

(i)

(ii)

(iv)

md —+ Ai d,

pd —+ N'(1688)d,

Kd —& Qd,

pd~ p

(5.8O)

10 I I I I I I I I I I

10

cross section for K+p —+ E*'5++. In their data the im-
pulse approximation seems completely adequate.

Backward hadron —deuteron scattering is a case in
which the Glauber approximation would presumably
break down. The most straightforward reaction is pd—& dp, for which Bertocchi and Capella (1967) proposed
a double scattering mechanism with nucleon exchange
which was in satisfactory agreement with the data of
Coleman, et al. (1966). No single (known) particle ex-
change is allowed in md —+ dm, so any explanation of this
reaction will suffer all the ambiguities of exotic Regge cut
box graphs for hadron —hadron scattering.

Coherent excitation of the projectile seems a more
tractable problem theoretically, and several experiments
have been proposed (Bertocchi and Caneschi, 1967;
Formanek and Trefil, 1967) as means to unstable ha-
dron —nucleon cross sections. Of these we mention in
particular

K'd -+ K'6"n, vs K+p —+ K'5'+ (5.79)
will reveal whether the neutron is truly a spectator or not.
This kind of information is needed for one to critically
assess the evidence for "exotic" I = 2 exchange reported
in a comparison of yp ~ sr=A with yd —+ 7r+t1X, .(See the
discussion by Diebold, 1969.) One such comparison has
been published by Buchner et al. (1971), who claim that
at 2.97 GeV/c the diA'erential cross section for K'd
—+ K*'5++n, is not distinguishible from the differential
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Fto. 42. Compilation of data on the pd total cross section defect (from
Kreisler, et aL, 1968).
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FK'. 43. Differential cross sections for the reaction yd —+ p'd at 6, 12,
and 18 GeV/c from the experiment of Anderson et at. (1971).The
solid lines are Glauber theory 6ts made to extract information on
p'-nucleon scattering.
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All of these final states may be obtained by vacuum
exchange from the initial states. Using the multiple
scattering formalism, we can formulate the problem to
show explicitly what is to be learned from this class of
experiments.

For a general coherent production

X+ d —+X*+d (5.81)

IO, OOO

t pN ioN, This Exp

I GGO

OJ

E
I OO

IO

O. I 0.5

FK;. 44. Differential p'—nucleon scattering cross sections as derived
from the experiment of Anderson ef al. (1971).Only experimental
errors are indicated; the authors estimate a theoretical uncertainty
of about 10%For comparison, the solid lines represent ~ p elastic
scattering results of Foley et al. (1968a) at 7, 18, and 17 GeV/c.

we generalize the multiple scattering expansion (3.38) in
an obvious way to write the transition operator as

Tx'+x —Ty + Tn + @x+Ax+Ty + Jjx+y+z+Tn'

+ &hx&x„+ &,&B'x. + (5.82)

where E„- describes the elastic scattering of particles i and
j, and Tk is the amplitude corresponding to the process
Xk —+ X*k. For applications one assumes in the spirit of
Harrington (1969b) that the infinite series implied by
(5.82) can be replaced by the on-shell contributions to the
terms we have displayed explicitly. Then for the reactions
(5.80) above everything is known (or otherwise measura-
ble) except the X'—nucleon elastic scattering amplitude.
Thus difI'ractive excitation of hadron resonances off'

deuterons becomes a technique for studying unstable
hadron —nucleon scattering. Here we have committed the
usual sin, criticized in Sec. V.B, of assuming that the
excited object indeed corresponds to X' when it interacts
with the second nucleon.

%'e have already remarked that this implicit assump-
tion is more plausible for reaction (iv) than for the others.
In a recent experiment Anderson et al.- (1971) have
studied yd -+ p'd at 6, 12, and 18 GeV over a wide range
of momentum transfer. Their data, which are shown in
Fig. 43, greatly extend the older results of Hilpert et al.

(1970). The shape of the differential cross section is the
one characteristic of elastic hadron —deuteron scattering
that we have seen already in Figs. 21, 24—29. Using the
spin formalism of Michael and Wilkin (1969) and assum-
ing equality of the p'p and p'n elastic scattering ampli-
tudes, Anderson et al. extracted from their data the
differential cross section for p'—nucleon scattering over a
limited range of momentum transfer. Their results are
compared with the diff'erential cross sections for m p
—+ m p in Fig. 44. The rough agreement exhibited there is
in accord with simple quark model ideas. Because of the
ambiguities in the details of the theory in the region of
the break in de/dr for yd ~ p'd, the analysis cannot
reliably be extended to larger values of —r.

Vl. SUMMARY

Collision phenomena involving several particles have
been analyzed in this review within the framework of
multiple scattering theory. We have discussed various
multiple scattering expansions, namely the Born series
and distorted wave Born series, the -Faddeev —Watson
expansions, and the eikonal multiple scattering series. We
then reviewed the application of these methods to some
specific atomic and high-energy collision processes.

Let us recapitulate some important points and indicate
various open problems. First of all, we recall that the
Born series are perturbation expansions of exact scatter-
ing amplitudes in terms of interaction potentials, whereas
the Faddeev —Lovelace —Watson expansions are rear-
rangements of the Born series in which two-body scatter-
ing amplitudes (or T-matrices) appear explicitly. Al-
though the low-order terms of the Born and the Fad-
deev —Lovelace —%'atson expansions have been analyzed
in simple cases, the elucidation of the general properties
of these series for realistic multiparticle problems still
remains to be done.

One possible line of approach toward the solution of
these problems is to use an approximate but simpler form
of the many-body scattering amplitude, provided by the
eikonal method. Eikonal multiple scattering expansions
may then be generated in terms of either interaction
potentials or two-body amplitudes. These eikonal multi-
ple scattering expansions have a much simpler structure
than the corresponding Born or Faddeev —Lovelace —Wat-
son series. Moreover, remarkable relationships exist be-
tween the terms of the eikonal and the Born (or Fad-
deev —Lovelace —Watson) expansions. This was illustrated
in Sec. II for the simple case of potential scattering,
where we analyzed in some detail the correspondence
between the terms of the eikonal and Born series. The
results obtained in this way allow one to gain considera-
ble insight into the limits of validity of the eikonal
approximation. They also lead directly to the eikonal-
Born series method, wherein terms of the Born and the
eikonal series are combined to yield a consistent expan-
sion of the differential cross section through a given order
in k '. As we have shown in Sec. IV, this approach has
been generalized successfully to the analysis of the elastic
scattering of charged particles by simple atoms. The
generalization of these ideas to inelastic and rearrange-
ment collisions would be most desirable.

The deuteron problem at high energies is further
complicated by the strength of the interaction and by the
need at some point to incorporate relativistic recoil
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eAects. No satisfactory theoretical proof of the validity of
the Glauber approximation in the relativistic, hadronic
regime has been given, so even in the presence of
impressive experimental successes, a basic and probably
deep question remains. Hints in total cross section data
that inelastic screening corrections begin to appear at
energies above 20 GeV add to the theoretical interest in
a "fundamental" understanding of the approximation. It
seems likely to us that deuteron targets may provide a
controlled situation in which to probe the properties of
Regge cuts. A less exotic question, but one of increasing
practical importance, deals with the extraction of inelas-
tic and inclusive cross sections from deuterium. This is a
problem whose time has come.
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