REVIEWS OF MODERN PHYSICS

VOLUME 45, NUMBER 2, PART II

April 1973

Review of Particle Properties Particle Data Group

THOMAS A. LASINSKI, ANGELA BARBARO-GALTIERI, ROBERT L. KELLY, ALAN RITTENBERG, ARTHUR H. ROSENFELD, and THOMAS G. TRIPPE

Lawrence Berkeley Laboratory,* University of California, Berkeley, California 94720 NAOMI BARASH-SCHMIDT

Brandeis University, Waltham, Massachusetts 02154

CLAUDE BRICMAN and VLADIMIR CHALOUPKA

CERN, 1211 Genève 23, Switzerland

PAUL SÖDING

DESY, 2000 Hamburg 52, Germany

MATTS ROOS

Department of Nuclear Physics, University of Helsinki, Helsinki 17, Finland

This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group (Phys. Letters **39B**, No. 1 (1972)). Data are evaluated, listed, averaged, and summarized in tables. A data booklet is also available.

CONTENTS

I. Introduction, Credits, Consultants	S1
II. Collection and Treatment of Data	S2
A. Annual Growth of Data	S2
B. Selection of Data	S3
III. Criteria for Resonances	S3
IV. Parameters and Conventions	Š4
A. Quantum Numbers	Š4
B. Particle Names	
C. Masses and Widths	57
D $SU(3)$ Sign Convention for A and Σ Resonances	58
E. Muon-Decay Parameters	58
F K-Decay Parameters	50
G m-Decay Parameters	Q11
H Baryon Decay Parameters	S11 S11
V Statistical Procedures	S11 S12
A Confidence Levels and Errors	S12 S12
P. Unconstrained Averaging Scale Easters	512
C. Constrained Fitz	513
VI Destiale Dete Comp Dell'estime	513
v1. Particle Data Group Publications	\$13
Acknowledgments	S14
References (for above sections)	S14
Tables of Particle Properties	S15
Stable Particles	S15
Addendum	S19
Mesons	S20
Baryons	S24

Miscellaneous Tables, Figures and Formulae	S29
Physical and Numerical Constants	S29
Clebsch-Gordan Coefficients and Spherical Harmonics.	S30
SU(3) Conventions	\$30
SU(3) Teorealar Factors	\$31
CM Energy and Momentum versus Ream	551
Momentum	\$32
Special Deletivity, Dhene Spece and Cross Sections	622
Special Relativity, Phase Space and Cross Sections	333
Confidence Level versus χ^2 for n_D Degrees of Freedom.	534
Gaussian-like Distributions.	S34
Atomic and Nuclear Properties of Materials	S35
Multiple Coulomb Scattering.	S35
Radioactivity and Radiation Protection	S35
Range and Energy Loss in Copper	S36
Range and Energy Loss in Liquid Hydrogen	S37
Cross Section Plots	\$38
Data Card Listings	\$41
Illustrative Ver	S/1
Stable Dentiales Ordered her Increasing Mars	C42
Stable Farticles, Ordered by Increasing Mass	343
Mesons, in Sequence Strangeness $S=0, S=1, \ldots, \ldots$	5/3
Baryons, in Sequence $S=0, +1, -1, -2, -3, \dots$	S106
Appendix I. Test of $\Delta I = \frac{1}{2}$ Rule for K Decays	S169
Appendix II. $SU(3)$ Classification of Resonances	S170
Appendix III. Test of $\Delta I = \frac{1}{2}$ Rule for Hyperon Decays	S173

I. INTRODUCTION, CREDITS, CONSULTANTS

This review is an updating through January 1973 of our previous review (Particle Data Group, 1972). In this version of the text we concentrate on topics that are either new or essential. For complementary information on our standard procedures the reader is referred

^{*} The Berkeley Particle Data Center is jointly supported by the U.S. Atomic Energy Commission, the Office of the Standard Reference Data of the National Bureau of Standards, and the National Science Foundation.

FIG. 1. Statistics on the rate of production of data on particle properties. From the top to the bottom, the number of results per year are presented for stable particles, meson resonances, $Y^* + Z^{*3}$, and the total of the three above. The full lines correspond to counters, spark chambers and spectrometers (C). Note that the figure omits N^* and Z^* , the field where counters have overwhelmed bubble chambers, because we punch mainly results from partial wave analyses instead of primary data.

to our January 1970 article (Particle Data Group, 1970).

Again we wish to emphasize that we compile the experimental results of others. It is inappropriate to give us the credit for their countless hours of effort. We urge that references be given directly to the original data, and we provide complete references in the Data Card Listings for that purpose. Only then is it appropriate to state "average value obtained from Rev. Mod. Phys. **45**, No. 2, S1 (1973)." If the list of experiments is so long that this is impractical, we suggest the form: Jones *et al.* 70, Smith *et al.* 69, \cdots average value and complete references in *Review of* \cdots .

The responsibilities of the authors of this compilation can roughly be broken down as follows:

(1) Stable particles: A. Barbaro-Galtieri, N. Barash-Schmidt, and T. G. Trippe.

(2) Meson resonances: V. Chaloupka, M. Roos, A. H. Rosenfeld, and P. Söding.

(3) Baryon resonances: A. Barbaro-Galtieri, C. Bricman, R. L. Kelly, and T. A. Lasinski.

General: All Berkeley authors.

Consultants: The three teams just mentioned must come to a consensus on how to treat the data and must write a number of mini-reviews. It is impractical to

spread this responsibility over more than a few people in each team and still expect to meet publication deadlines. Hence we limit our number of authors (to eleven in this edition), but thereby leave gaps in our coverage, both intellectual and geographical. To help us overcome this deficiency, we have solicited the help of consultants:

• Stanley J. Brodsky (Stanford Linear Accelerator Center)

• Chih-Yung Chien (Johns Hopkins University)

- Anatoli Kuznetsov (JINR, Dubna), starting 1973
- R. Gordon Moorhouse (University of Glasgow)
- Horst Oberlack (Lawrence Berkeley Laboratory)
- · Oliver E. Overseth (University of Michigan)
- LeRoy R. Price (University of California at Irvine)
- · Mark Sakitt (Brookhaven National Laboratory).

The usefulness of this compilation depends in large part on the interaction between the users and authors and consultants. We appreciate comments, criticisms, and suggestions for improvements of all stages of data retrieval, processing, and presentation.

II. COLLECTION AND TREATMENT OF DATA

A. Annual Growth of Data

Figure 1 shows the rate at which we have been recording results, as a function of year published. Through 1969 we subdivided our annual count into two parts:

(1) Highest quality data. These are the results that we accept for averaging and fitting.

(2) Lesser quality data; results which, for one of the reasons mentioned in Section B, below, we encoded but did not accept for averaging.

We have found that this subdivision stays at a fairly constant 60:40 ratio, and is not otherwise very informative, so we now merely count the total.

We see that the number of results per year from bubble chambers, though still dominant, is now dropping; that from counters is roughly constant.

It is of interest to compare the declining rate at which bubble chambers produce results on particle properties with the fact that the number of bubble chamber events measured each year is roughly constant. Apparently experiments have become larger and more specialized, and we now find ourselves encoding more density matrix elements for our compilations of cross sections, and fewer masses and widths of bumps.

It is of interest to compare the decreasing total rate at which we encode data on particle properties with the fact that the rate of publication of experimental papers is about constant. Some differences are that many new experiments are above the resonance region, there are many photon and electron experiments, and many studies of inclusive reactions. Again, compilers are flooded with new data, but the great majority go into collections of cross sections.

B. Selection of Data

All particles are considered to fall into one of the three groups:

(1) Stable particles, immune to decay via the strong interaction

(2) Meson resonances

(3) Baryon resonances

These groups are maintained within the two main parts of the compilation:

(1) Tables of Particle Properties

(2) Data Card Listings.

The Data Card Listings contain the original information (data, references, etc.), weighted averages, comments and "mini-reviews." Immediately preceding the Data Card Listings is an Illustrative Key thereto. We attempt to give complete Data Card Listings up to our closing date (February 1, 1973) for all journals listed in the Illustrative Key. We also include preprints and unpublished conference reports which have come to our attention, but make no attempt at completeness.

Roughly 40% of our encoded results have not been accepted for averaging. They are set off in parentheses; our reasoning is then often given in a footnote below the data. If the reason is not given, it is one of the following:

•The quantity was presented with no error stated.

•The result comes from a preprint or conference report. It is our experience that such results (and particularly the errors) often change before final publication. Accordingly we keep these new results in parentheses until we have corresponded with the authors.

•It involves some assumptions that we do not wish to incorporate.

•It is of poor quality, e.g., bad signal-to-noise ratio. •Two or more experiments give contradictory results, so that it is senseless to average the data.

When the data for a particle have received special treatment or when they present special problems, this is noted in a mini-review in the Data Card Listings.

The Tables of Particle Properties represent the output of weighted averages and some critical judgment. The extent to which "blind" averaging has been tempered with judgment is explained in footnotes to the Tables. In general, however, the footnotes are less complete than is the collection of notes and minireviews in the Data Card Listings. The reader is therefore encouraged to familiarize himself with the Data Card Listings and, ultimately, with the original experiments.

III. CRITERIA FOR RESONANCES

An experimentalist who finds some evidence for a peak in a mass spectrum will of course want to know what has been seen in that region in the past; hence, we strive to have the Data Card Listings serve as an archive for any substantial claim or evidence for a new state.

For the Tables of Particle Properties, on the other hand, we wish to be more conservative, and to include only those peaks or resonances which we feel have a $\gtrsim 90\%$ chance of survival. One's betting odds for survival are of course completely subjective; they are influenced mainly by the amount of information available (such as partial-wave analyses) and somewhat by the degree of controversy over interpretation and how long it will be before more information is available. An arrow (\rightarrow) at the left of the Tables of Particle Properties indicates that a questionable candidate has been omitted from the Table, but that it can be found in the corresponding part of the Data Card Listings.

More details on our acceptance criteria are as follows.

1. Partial Wave Analyses

(a) In those cases where energy-independent partialwave analyses are available (mostly for $N^{**}s$), approximate Breit-Wigner behavior of the amplitude appears to us to be the most satisfactory test for a resonance. We can check that the Argand plot follows roughly a left-hand circle, and that the "speed" of the amplitude also shows a maximum near the resonance energy; further, there should be data well above the resonance, showing that the speed again decreases. Indeed proper behavior of the partial-wave amplitude could accredit a resonance even if its elasticity is too small to make a noticeable peak in the cross section.

Of course, even if Argand plots are available, it may still be a matter of opinion as to what behavior constitutes a resonance. Such an example is the K^+p peak (near $K\Delta$ threshold) called $Z_1(1900)$, which is discussed in a mini-review in the Baryon Data Card Listings. $K^+p P_{13}$ Argand plots are displayed there, and most suggest a resonance; however, there is disagreement between the various analyses as to the speed of the amplitude, i.e., as to whether it has a Breit-Wigner type of behavior. In addition the errors on the amplitudes are still large, and we prefer to wait a bit longer before we put Z_1 in the Baryon Table.

(b) Often where there are insufficient data to perform energy-independent analyses, one resorts to energy-dependent partial-wave analyses (mostly for Y^{*} 's). In this case Breit-Wigner behavior is an input. We therefore require that resonance solutions be found by several different analyses, preferably in different channels $(\bar{K}N \rightarrow \bar{K}N, \pi\Sigma, \text{ etc.})$, before putting the claim in the table.

(c) Partial-wave analyses of three-body final states $(\pi N \rightarrow \pi \pi N)$ are becoming available. While these analyses are based on the isobar model $(\pi N \rightarrow \rho N, \pi \Delta,$ etc.) and are subject to theoretical objections of varying importance (triangle graphs, double counting, unitarity), they provide increasingly reliable information on inelastic decay modes of otherwise established resonances.

2. "Bumps"

This category includes most mesons, Ξ^* peaks, and the higher mass ($\gtrsim 2300$ MeV) N^* , Y^* peaks. Unless the peak is experimentally shaky, we put it in the table. Thus we accept peaks of high statistical significance or states that are observed via several different production processes.

3. "Diffractive Mesons"

(a) This category includes statistically significant peaks like A_1 , A_3 , or Q, which are not far above the $\rho\pi$, $f\pi$, or $K^*\pi$ thresholds. Although the threshold behavior in these channels may be described by the "Deck effect" or by its modern version "double Regge-pole exchange", the question of resonance interpretation has for some time been open. Several years ago we put these peaks into the Meson Table, but warned the reader not to conclude that we claim they are necessarily genuine resonances. However, if such effects can be convincingly associated with poles of the S-matrix on some unphysical sheet, we shall call them resonances (see, e.g., Chew, 1968).

(b) Recently Ascoli and collaborators (Ascoli, 1972) have attempted partial-wave analyses of the $\pi\pi\pi$ system in reactions like $\pi N \rightarrow (\pi\pi\pi)N$. There are several important aspects to such analyses:

(i) for a given t, the $\pi\pi\pi$ vertex is assumed to be independent of the NN vertex;

(ii) the $\pi\pi\pi$ reaction is assumed to proceed through quasi-two-body states ($\rho\pi$, $\epsilon\pi$, etc.) in the spirit of the isobar model;

(iii) in order to keep the number of parameters manageable, certain plausible assumptions are made on the vanishing of some of the spin density matrix elements of the $(\pi\pi\pi)$ system.

In view of the novelty and difficulty of this analysis, we are reluctant to place these partial-wave analyses in the same category as 1(c) above. However, through such an analysis, the already significant A_2 peak has been confirmed to be a Breit-Wigner type resonance through an observed phase change of 90° relative to other slowly varying partial waves. In contrast, peaks like A_1 and A_3 show an enhancement in a now "pure" J^P mass plot but reveal *no* relative 90° phase change. While this observation suggests that the A_1 and A_3 are not resonances, a mechanism has been suggested by Wright (1972) that reproduces the A_1 "partial wave" and still associates the A_1 with a pole on an unphysical sheet. In the sense of Chew 68, the A_1 may still be called a resonance.

We now ask "How likely is it that peaks of class 2 and 3(a) above (not checked by partial-wave analysis) will eventually be confirmed as resonances?" We know of no experimentally convincing peak that has been shown to have *nothing* to do with a resonance. But be warned that broad peaks may be misleading: they may contain several resonances, or they may include a resonance narrower than the peak, plus some other complications; for example:

•Before 1966 we might have tabulated the πp bumps at 1520 and 1688 MeV as single resonances, whereas partial-wave analysis shows that each contains several resonances.

•Before the $N'(1470, P_{11})$ was confirmed in partialwave analyses, it was seen as a missing mass or $p\pi\pi$ peak produced peripherally in high-energy pp collisions, and (like A_1 , Q, and A_3) was partly explained by the Deck effect and later by double-Regge-pole exchange.

In summary, we enter into the Tables of Particle Properties experimentally convincing peaks unless there is contradictory information; and we expect that most of these peaks will eventually be confirmed as one or more resonances.

IV. PARAMETERS AND CONVENTIONS

A. Quantum Numbers

The symbols $I^{\mathcal{G}}(J^{\mathcal{P}})C$ represent:

I = isospin G = G -parity J = spin P = space parity C = charge conjugation parity.

Mesons

The charge conjugation operator C turns particle into antiparticle and has eigenvalues ± 1 only for neutral states; so it is useful to define an extension Gwhich has eigenvalues for charged states too. It is usually¹ defined by

$$G = C \exp(i\pi I_y). \tag{1}$$

¹ Most texts define it as in Eq. (1); see, e.g., Gasiorowicz (1966); however, sometimes the rotation is taken about I_x . The difference between the two conventions is mentioned in a footnote in Källen (1964).

S5

A neutral nonstrange state is an eigenstate of exp $(i\pi I_y)$ with eigenvalue $(-1)^I$. Then we can write the eigenvalue equation for the whole multiplet as

$$G = C_n (-1)^I, \tag{2}$$

where C_n (*n* for neutral) is the eigenvalue *C* would have if applied to the neutral member of the multiplet. Thus, for a π^0 , *C* has the eigenvalue +1, and since I=1, G=-1. For the charged pion there are no eigenvalues corresponding to *C* and to the isospin rotation, but Eqs. (1) and (2) still give G=-1.

Consider a meson as a bound state of fermionantifermion, e.g., $\bar{q}q$, with orbital angular momentum l, and with the two fermion spins coupling to give a spin S. Then one can show that the charge-conjugation eigenvalue [defined in Eq. (2)] is

$$C_n = (-1)^{l+s}.$$
 (3)

Equations (2) and (3) combine to give

$$G = (-1)^{l+S+I}.$$
 (4)

$$P = -(-1)^{l}.$$
 (5a)

Equations (3) and (5) combine to give

The parity is

$$C_n P = -(-1)^s \tag{5b}$$

so all singlet $({}^{1}S_{0}, {}^{1}P_{1}, \cdots)$ have $C_{n}P = -1$, and all triplets $({}^{3}S_{1}, \cdots)$ have $C_{n}P = +1$. For proofs of the above, see our 1969 text (Particle Data Group, 1969) and Appendix by C. Zemach.

If, instead of $\bar{q}q$, we consider the meson as a state of boson-antiboson (e.g., $A_2 \rightarrow \bar{K}K$), it turns out that some signs cancel, and Eqs. (3) and (4) [not (5)!] apply *unchanged*. Of course the mesons are usually spinless and S is zero, but the equations are more general. Equations (3) and (4) can be considered as selection rules forbidding many decays.

We now use Eqs. (3) and (4) to introduce the concept of "Abnormal-C" mesons, i.e. mesons that cannot be composed of $\bar{q}q$.

The unitary triplets of quarks is of course defined to have isospin and hypercharge properties such that $\bar{q}q$ can combine (according to the SU(3) relations $\{3\} \otimes \{3\} = \{8\} \oplus \{1\}$) so as to form only unitary octets and singlets. The non-observation of "exotic" mesons (i.e. mesons in more complicated supermultiplets) is of course one of the bases of the quark model. But it is slightly less obvious that even some octets are forbidden by the model, for example those with $(J^P)C_n = (1^{-})$ -, (2^+) -, Such states are also not observed, and this is an additional piece of evidence for the quark model.

In what follows, do not confuse "Abnormal-C" with Normal or Abnormal J^P , both of which are allowed by the quark model. The series, $J^P=0^+$, 1^- , 2^+ , \cdots is called Normal because $P=(-1)^J$ as for normal spherical harmonics, and $J^P = 0^-$, 1^+ , \cdots is called Abnormal.

The top part of Table I shows all the low angular momentum states that can be formed from $\bar{q}q$. Note that half of the J^P states can be formed by both a triplet and a singlet $\bar{q}q$ state, e.g. ${}^{3}P_{1}$, ${}^{1}P_{1}$ or ${}^{3}D_{2}$, ${}^{1}D_{2}$. Equation (3) shows that ${}^{3}P_{1}$ and ${}^{1}P_{1}$ have opposite C_n , so the $\bar{q}q$ model allows both. But the states ${}^{3}P_{0}$ and ${}^{3}P_{2}$ have no ${}^{1}P$ counterparts. According to Eq. (5.1) they have $C_nP=+1$, and with the $\bar{q}q$ model there is no way to form a state with a J^P of ${}^{3}P_{0,2}$ (i.e. $J^P=$ Normal) and with $C_nP=-1$. As mentioned, such octets have not shown up. With the help of Table I one can also see that the special state ${}^{1}S_{0}$, $C_nP=+1$, cannot be formed, so has Abnormal C.

Baryons and Mesons

Well-established quantum numbers are underlined (except for stable particles, where most of the quantum numbers are established). We have used flimsy evidence to guess many of the remaining ones, and we have indicated with "?" the ones for which there is almost no evidence.

As is customary, we define antiparticles as the result of operating with CPT on particles, so both share the same spins, masses, and mean lives. Whenever there is a particularly interesting test of CPT invariance we include it in the Stable Particles Table.

B. Particle Names

If a meson has a well-accepted colloquial name, we use it. If not, we name it by a single symbol which specifies its baryon number B (=0 for mesons), its isospin *I*, its hypercharge *Y*, and, for a nonstrange meson, its *G* parity. For convenience, we also list the strangeness *S*, which is related to *Y* and *B* by

S = Y - B.

The name conventions for mesons are given in the first part of Table II.

To crowd even more information onto the symbol, we sometimes add a subscript giving J^P . If J^P is not known, but must be "Normal" (0⁺, 1⁻, 2⁺, ...), e.g., because $K\pi$ decays are seen, we use the subscript N. Thus $K_N(1420)$. If such modes are *not* seen (and are not otherwise forbidden), we guess that it is because J is "Abnormal", and we write, for example, $K_A(1240)$.

For baryons (B=1) no attempt has been made to attach a subscript about J and P. The name conventions for baryons are given in the second part of table 2. For stable baryons of each I and Y we use the symbol standing alone; for resonances, the mass is in parentheses [i.e., N(1688), $\Lambda(1405)$, $\Sigma(1765)$, etc.]. The J^P assignments are reported in the Baryon Table as $\frac{1}{2}$ +, $\frac{3}{2}$ -, $\frac{5}{2}$ +, etc., and also by the symbols P_{11} , D_{13} , F_{15} ,

Table I. $I^{G}(J^{P})$ of mesons from \overline{qq} model. For the distinction between abnormal J^{P} and abnormal C, see text below Eq. (5). K mesons share the same values of J^{P} as the I = 0 and 1 states shown, but are not eigenstates of G. The middle column, which gathers together (J^{P}) $\overline{N \text{ or } A}$ CP, is a redundant intermediate step intended to make the table easier to read.

1	qq State CP CP - +	(J ^P) CP Normal or abnormal	I ^G (J ^P)C _n	Examples and comments		
Parity	¹ s ₀	(0 ⁻) _A -	$\begin{cases} 0^+(0^-)+\\ 1^-(0^-)+ \end{cases}$	η, η' π		
	³ S ₁	(1 ⁻) _N +	{0 ⁻ (1 ⁻)- 1 ⁺ (1 ⁻)-	ω, φ ρ		
	¹ P ₁	(1 ⁺) _A -	$\begin{cases} 0^{-}(1^{+}) - \\ 1^{+}(1^{+}) - \end{cases}$	В		
ty +	³ P ₀	(0 ⁺) _N +	$\begin{cases} 0^{+}(0^{+}) + \\ 1^{-}(0^{+}) + \\ 1^{-}(0^{+}) + \\ 0^$	ε,S* π _N (1016)		
— Pari	³ P ₁	(1 ⁺) _A +	$\begin{cases} 0^{+}(1^{+}) + \\ 1^{-}(1^{+}) + \\ 0^{+}(2^{+}) + \end{cases}$	A1		
	³ P ₂	(2 ⁺) _N +	$1^{-}(2^{+})^{+}$	A2		
	¹ D ₂	(2 ⁻⁾ A-	$\begin{cases} 0^{+}(2^{-}) + \\ 1^{-}(2^{-}) + \\ 1^$	Regge recurrence of ¹ S ₀ , 0 ⁻		
ity -	³ D ₁	(1 ⁻) _N +	same as ³ S ₁			
— Par	³ D ₂	(2 ⁻) _A +	$ \begin{cases} 0^{-}(2^{-}) - \\ 1^{+}(2^{-}) - \\ \end{pmatrix} $	Regge recurrence of top abnormal-C state below: (J ^P)C _n = (0 ⁻)-		
	³ D ₃	(3 ⁻) _N +	J > 2			
1	¹ _{F3}	(3 ⁺) _A -	{ J > Z			
ty + .	³ F ₂	(2 ⁺) _N +	same as ${}^{3}P_{2}$			
Pari	³ F ₃	(3 ⁺) _A +	J > 2			
1	⁵ F ₄	(4 ⁺) _N +	etc.			
	ABNORM	IAL C STATE	ES THAT CANNOT CO	ME FROM qq MODEL		
	Abnormal C	(0 ⁻) _A +	0 ⁻ (0 ⁻)- 1 ⁺ (0 ⁻)-	All except		
	states	(1 ⁻) _N -	$\begin{cases} 0^+(1^-) + \\ 1^-(1^-) + \end{cases}$	$J^{\mathbf{P}} = 0^{-}$		
<	Have no $\overline{q}q$	(0 ⁺) _N -	$\begin{cases} 0^{-}(0^{+}) - \\ 1^{+}(0^{+}) - \end{cases}$	are		
	model	(2 ⁺) _N -	$\begin{cases} 0^{-}(2^{+}) - \\ 1^{+}(2^{+}) - \end{cases}$	$J^{\mathbf{r}} = \text{normal},$		
		(3 ⁻) _N -	$\begin{cases} 0^{+}(3^{-})+\\ 1^{-}(3^{-})+ \end{cases}$			

Name	I	Y	S	G
	Mes	ons		
η	0	0	0	+
ωorφ ^a	0	0	0	
ρ	1	0	0.0	+
π	1	0	0	
K^+, K^0	· <u>1</u>	+1	+1	
$K^-, ar{K}^0$	$\frac{1}{2}$	-1	-1	
	Bary	ons		
N	$\frac{1}{2}$	+1	Ô	
Δ	32	+1	0	
Z_0, Z_1	0, 1	+2	+1	
Λ	0	0	-1	
Σ	1	0	-1	
Ξ	$\frac{1}{2}$	-1	-2	
Ω	Ō	-2	-3	

TABLE II. Particle name conventions.

^a Starting in 1973, we use the symbol ω for those $I^{q}=0^{-}$ mesons that decay mainly into $3\pi[\omega(784), \omega(1675)]$; we reserve the symbol ϕ for $\phi(1019)$ and possible future higher-mass $I^{q}=0^{-}$ mesons that decay mainly into $K\bar{K}$.

which refer to the πp or Kp partial-wave amplitude in which the resonant state occurs (the first subscript refers to the isospin state; $2 \times I$ for N and Δ and just I for Z, Λ , and Σ).

When two *baryons* have identical quantum numbers we warn the reader by adding a *prime* to the symbol for the heavier one, e.g., p, $N'(1470, \frac{1}{2}^+)$. In the case of baryon resonances described by Argand diagrams which exhibit more than one resonance, we use one prime for the first, two for the second, \cdots ; thus the series of which the proton is the stable member becomes: p, $N'(1470, \frac{1}{2}^+)$, $N''(1780, \frac{1}{2}^+)$.

If there is only one resonance on an Argand plot, and thus no need for distinctions, we use no primes.

For some pairs of mesons with supposedly identical quantum numbers, we also use primes; e.g., η , η' ; f, f'.

C. Masses and Widths

An unstable particle of mass M, decaying with a mean life τ , has a wave function

$$\psi(t) \propto \exp \left\{-i\omega t - t/2\tau\right\} = \exp \left\{-\left(i/\hbar\right) \left(M - i\frac{1}{2}\Gamma\right)t\right\},\$$

where $\Gamma = \hbar/\tau$. Its Fourier transform is

$$\psi(m) \propto 1/(M - m - \frac{1}{2}i\Gamma)$$

which we call a nonrelativistic Breit-Wigner resonance.

For the metastable particles in the Stable Particle Table, we tabulate τ , but for resonances which decay by the strong interaction, we tabulate Γ , which is the full width at half-maximum of $|\psi(m)|^2$.

In practice, values of M and Γ are extracted from data via *models*, and we cannot average these values if the models are dissimilar. In the next few paragraphs we discuss this point in slightly more detail, using the example of an *s*-channel resonance.

An *elastic* nonrelativistic Breit-Wigner *T*-matrix element is usually written

$$T_{11} = \frac{1}{2}\Gamma/(M - m - \frac{1}{2}i\Gamma).$$
(6)

Here $\Gamma(m)$ is the width for decay into the channel 1, with angular momentum *l*. It contains barrier-penetration factors which can vary rapidly with energy; near threshold, $\Gamma(m)$ should start up as q^{2l+1} , and then level off. Various *m* dependences are used, mostly variants of the general form

$$\Gamma(m) \propto [q^2/\{1+(qR)^2\}]^l q.$$
 (7)

For a choice of forms, see Jackson (1964), Pišut and Roos (1968), and Barbaro–Galtieri (1968). Of course the detailed shape of the amplitude and also the value of Γ will depend slightly on the form chosen.

The width is also related to the behavior of T at resonance. It is easy to show (Herndon *et al.*, 1970) that, ignoring terms in $d\Gamma/dm$,

"Speed" (res) =
$$| dT/dm |_{m=M} = x_e/(\frac{1}{2}\Gamma(M)),$$
 (8)

where the elasticity, $x_e = \Gamma_e/\Gamma$, is introduced next. More detailed properties of "Speed" are discussed in the baryon mini-review at the front of the Baryon Data Card Listings of our April 1971 edition (Particle Data Group, 1971).

For an *inelastic* resonance feeding into channel β ,

$$T_{1\beta} = \frac{1}{2} (\Gamma_1 \Gamma_\beta)^{1/2} / (M - m - \frac{1}{2} i \Gamma) = (x_1 x_\beta)^{1/2}$$

 $\times \left[\frac{1}{2}\Gamma/(M - m - \frac{1}{2}i\Gamma)\right], \quad (9)$

where

$$\Gamma = \sum_{1}^{N} \Gamma_{\beta}, \qquad x_{\beta} = \Gamma_{\beta} / \Gamma, \qquad (10)$$

and x_1 (called the elasticity) is often written x_e . (Note that in the Data Card Listings we use the symbol P_{β} rather than x_{β} .)

The channel cross section $\sigma_{1\beta}$ for the reaction $1 \rightarrow \beta$ is

$$\sigma_{1\beta} = 4\pi \lambda^2 (J + \frac{1}{2}) |T_{1\beta}|^2, \qquad (11)$$

where $J = l \pm \frac{1}{2}$.

Resonances seen in production are even more complicated. Here $\Gamma_1^{1/2}$ disappears from *T*, and must be replaced with some model-dependent parametrization of the production process.

In conclusion, we have seen that because of the energy dependence of Γ even the amplitude T for a resonance does not have a full-width at half-maximum equal to Γ (but it does peak at or near M). Then kinematic factors enter into the cross section for

SU(3) RELATIVE SIGN OF RESONANT AMPLITUDES

FIG. 2. Plot adapted from Levi Setti (1969) showing the sign convention adopted here for the $\Sigma\pi$ and $\Lambda\pi$ amplitudes. Once the signs of one I=0 and one I=1amplitude are fixed, the others can be measured relative to these two. Arrows here indicate signs predicted by SU(3); × marks indicate the observed phases; • indicates phase chosen according to sign convention described in text. The $\Sigma(1915)$ predictions have been changed from Levi Setti's original figure.

formation [Eq. (11)] or production, and displace the observed peak away from M. For quantitative examples, see Barbaro-Galtieri (1968).

Most of the useful information on the N, Δ , Λ , and Σ baryon resonances with M < 2000 MeV has come from partial-wave analysis. Masses and widths of most of these states are dependent on the model, as well as on the data used by the different groups that performed these analyses; therefore, the masses in the Baryon Table are not averages, but plausible guesses, and the errors are "external errors" based on the consistency among different analyses. For the procedures adopted, different from resonance to resonance, see the appropriate mini-review in the Data Card Listings. *Res*onances with mass M > 2000 MeV have been detected primarily in total-cross-section experiments.

We can use Eq. (11) to relate the height of the peak at resonance σ_{res} to the elasticity x_e . At resonance the *channel* cross section is

$$\sigma_{\rm res}(1 \rightarrow \beta) = 4\pi \lambda^2 (J + \frac{1}{2}) x_e x_\beta \tag{12}$$

and the *total* cross section is

$$\sigma_{\rm res}(\text{total}) = 4\pi\lambda^2 (J + \frac{1}{2}) x_e. \tag{13}$$

If J is known, we can solve for x_e . If J is not known, the product $(J+\frac{1}{2})x_e$ is given in the Baryon Table.

Starting this year we give information in the Baryon Table relating to the photon couplings of N and Δ resonances. One of the mini-reviews on N's and Δ 's in the Baryon Data Card Listings contains a discussion of these couplings.

D. SU(3) Sign Conventions for Λ and Σ Resonances

Consider the partial width Γ_{β} of a resonance decaying into the channel β . We can always define a coupling constant such that

$$\Gamma_{\beta} \propto G_{\beta}^2$$
.

In this case the inelastic [Eq. (9)] amplitude for such a resonance will go as

$$T_{1\beta} \propto G_1 G_\beta / (M - m - \frac{1}{2}i\Gamma),$$

where G_1 is the coupling constant for the elastic channel. In the context of exact SU(3) symmetry the relative signs of the product G_1G_β for different resonances are often useful as a consistency check on SU(3) assignments of Λ and Σ resonances. See Appendix II for further details.

In the Data Card Listings for Λ and Σ resonances, we tabulate measured values for $(x_1x_\beta)^{1/2} \propto G_1G_\beta$. Whenever there is an explicit sign, it will be according to the convention advocated by Levi Setti (1969) and used in the table of SU(3) Isoscalar Factors presented in this review. This convention is shown in Fig. 2 from Levi Setti (1969).

E. Muon-Decay Parameters

The μ -decay parameters describe the momentum spectrum (ρ and η), the asymmetry (ξ and δ), and the helicity (h) of the electron in the process $\mu^{\pm} \rightarrow e^{\pm} + \nu + \overline{\nu}$. Assuming a local and lepton-conserving interaction, the matrix element may be written as

$$\sum_{i} \langle \bar{e} \mid \Gamma_{i} \mid \mu \rangle \langle \bar{\nu} \mid \Gamma_{i}(C_{i} + C_{i}'\gamma_{5}) \mid \nu \rangle, \qquad (14)$$

where the summation is taken over i=S, V, T, A, P. Using the definitions and sign conventions of Kinoshita and Sirlin (1957), we have for the momentum param-

$$\rho = [3g_A^2 + 3g_V^2 + 6g_T^2]/D, \qquad (15)$$

$$\eta = [g_{S^{2}} - g_{P^{2}} + 2g_{A^{2}} - 2g_{V^{2}}]/D, \qquad (16)$$

for the asymmetry parameters:

$$\xi = [+6g_Sg_P \cos \phi_{SP} - 8g_Ag_V \cos \phi_{AV}]$$

$$+14g_{T^2}\cos\phi_{TT}]/D,\quad(17)$$

$$\boldsymbol{\delta} = \left[-6g_A g_V \cos \phi_{AV} + 6g_T^2 \cos \phi_{TT}\right] / D\boldsymbol{\xi}, \quad (18)$$

and for the parameter describing the helicity of the electron:

$$h = \pm [2g_Sg_P \cos \phi_{SP} - 8g_Ag_V \cos \phi_{AV} - 6g_T^2 \cos \phi_{TT}]/D.$$
(19)

Here

$$D = g_S^2 + g_P^2 + 4g_V^2 + 6g_T^2 + 4g_A^2, \qquad (20)$$

$$g_i^2 = |C_i|^2 + |C_i'|^2, \tag{21}$$

and

$$\cos \phi_{ij} = \operatorname{Re} \left(C_i^* C_j' + C_i' C_j^* \right).$$
(22)

The quantities g_i are defined to be real non-negative numbers, and the ϕ_{ij} are phase angles between the *i*-type and *j*-type interactions. Under the assumption of two-component neutrinos, $C_i' = -C_i$ and $C_j' = -C_j$, the S, P, and T terms vanish, and ϕ_{AV} is the phase angle between C_A and C_V in the complex plane.

By using the above equations and the experimental determinations of ρ , η , ξ , δ , and h, limits can be placed on g_S/g_V , g_A/g_V , g_T/g_V , g_P/g_V , and ϕ_{AV} . The results, given in the Data Card Listings assume neither two-component neutrinos nor time-reversal invariance. If, however, two-component neutrinos are assumed, then $\sin \phi_{AV}$ is the amplitude of time-reversal violation. Note that most experiments study only the upper end of the spectrum where ρ and η are highly correlated, so they can only report ρ for $\eta \equiv 0$ and η for $\rho \equiv \frac{3}{4}$. The values for ρ and η we use here were obtained by combining measurements of both upper and lower ends of the spectrum and turn out to be nearly uncorrelated.

Note also that the radiative corrections are unambiguous only when $g_S = g_T = g_P = 0$. The same limits on g_A/g_V and ϕ_{AV} are obtained, however, as when g_S , g_T , and g_P are left free.

Current values for the asymmetry parameters as well as $|g_A/g_V|$ and ϕ_{AV} are given in the Addendum to the Stable Particle Table. In addition, upper limits on $|g_S/g_V|$, $|g_T/g_V|$ and $|g_P/g_V|$ are given in the μ section of the Stable Particle Data Card Listings.

F. K-Decay Parameters

F.1. Dalitz Plot for $K \rightarrow 3\pi$ Decays

The small deviation from uniformity of the Dalitz plot for the 3π decay of the K meson is usually de-

scribed by a "slope parameter" (Dalitz, 1956). For the τ and τ' decays of the charged K's, and the τ^0 decay mode of the K_{L^0} , we parametrize the Dalitz plot distribution by the expression

$$M |^{2} \propto 1 + g[(s_{3} - s_{0})/m_{\pi} + {}^{2}] + h[(s_{3} - s_{0})/m_{\pi} + {}^{2}]^{2} + j[(s_{2} - s_{1})/m_{\pi} + {}^{2}] + \cdots, \quad (23)$$

where $m_{\pi^{+2}}$ has been introduced so as to make the coefficients g, h, and j dimensionless, and

$$s_i = (P_K - P_i)^2 = (m_K - m_i)^2 - 2m_K T_i \qquad i = 1, 2, 3$$
(24)

$$s_0 = \frac{1}{3} \sum_{i} s_i = \frac{1}{3} (m_K^2 + m_1^2 + m_2^2 + m_3^2).$$
 (25)

Here the P_i are 4-vectors, m_i and T_i are mass and kinetic energy of the *i*th pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h measures the quadratic dependence on s_3 . The coefficient j is related to the asymmetry of the plot and must be zero if CP invariance holds. Note also that if CP is good, g must be the same for τ^+ and τ^- , and similarly for h.

At present there is no compelling experimental evidence for either the h or the j term (for upper limits on the j term, see section F.3(b) below). Thus we stop the above expansion at the first term and list only g. Since different experiments use different forms for $|M|^2$, in order to compare the experiments we have converted to g whatever coefficients have been measured. See the mini-review in the K^{\pm} section of the Stable Particle Data Card Listings for details on this point. The results are given in the Addendum to the Stable Particle Table and in the K^{\pm} and K_L^0 sections of the Stable Particle Data Card Listings.

Relations among τ^{\pm} , τ'^{\pm} , and τ^{0} are predicted by the $\Delta I = \frac{1}{2}$ rule. See Appendix I for these relations and a discussion of this rule.

F.2. Form Factors in K_{13} Leptonic Decays

Assuming that only the vector current contributes to these decays, we write the matrix element as

$$M \propto f_{+}(q^{2}) [(P_{K} + P_{\pi})_{\mu} \bar{u}_{l} \gamma_{\mu} (1 + \gamma_{5}) u_{\nu}]$$

+ $f_{-}(q^{2}) [m_{l} \bar{u}_{l} (1 + \gamma_{5}) u_{\nu}], \quad (26)$

where P_K and P_{π} are the four momenta of K and π mesons; m_i is the lepton mass; f_+ and f_- are dimensionless form factors which can depend only on $q^2 = (P_K - P_{\pi})^2$, the square of the momentum transfer to the leptons. The parameters we list are λ_{\pm} , the energy dependence of the $f_{\pm}(q^2)$ form factor, assuming the form

$$f_{\pm}(q^2) = f_{\pm}(0) [1 + \lambda_{\pm}(q/m_{\pi})^2]; \qquad (27)$$

and ξ , the ratio of the two form factors,

$$\xi = f_{-}/f_{+}.$$
 (28)

The quantity ξ can be determined in different ways:

(1) By measuring the $K_{\mu3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio as given in terms of $\xi(0) = f_{-}(0)/f_{+}(0)$.

$$\Gamma(K_{\mu3}^{\pm})/\Gamma(K_{e3}^{\pm}) = 0.6457 + 0.1264 \text{ Re } \xi + 0.0192 | \xi |^2$$

$$+1.4115\lambda_{+}+0.4754\lambda_{-} \operatorname{Re} \xi+0.0080\lambda_{+} \operatorname{Re} \xi,$$

$$\Gamma(K_{\mu3}^{0})/\Gamma(K_{e3}^{0}) = 0.6452 + 0.1246 \text{ Re } \xi + 0.0186 \mid \xi \mid^{2}$$

$$+1.3162\lambda_{+}+0.4370\lambda_{-} \operatorname{Re} \xi+0.0064\lambda_{+} \operatorname{Re} \xi.$$
 (29)

See Cabibbo (1966) and Fearing *et al.* (1970) (for the charge-dependent formulas). Note that the first constant has been changed to 0.6457; the earlier value was a misprint,² which we copied from Cabibbo (1966).

(2) By studying the Dalitz plot of the $K_{\mu3}$ decay. The K_{e3} Dalitz plot distribution is only dependent upon the λ_+ parameter, whereas the $K_{\mu3}$ distribution is dependent upon λ_- , λ_+ , ξ . Often experimenters have measured only the momentum spectrum of either the π or the lepton and compared it with the predicted spectrum. See the note on form factors in the K^{\pm} Data Card Listings for a discussion of this method. For a formula relating the Dalitz plot variables to ξ see, for example, Brene *et al.* (1961).

(3) By measuring the muon polarization in $K_{\mu3}$ decay. In the rest frame of the K the μ is expected to be polarized in the direction **A** with $\mathbf{P}=\mathbf{A}/|\mathbf{A}|$, where **A** is given (Cabibbo and Maksymowicz, 1964) by

$$\mathbf{A} = \alpha_{1}(\xi) \mathbf{p}_{\mu} - \alpha_{2}(\xi) \{ (\mathbf{p}_{\mu}/m_{\mu}) [m_{K} - E_{\pi} + (\mathbf{p}_{\pi} \cdot \mathbf{p}_{\mu}/| \mathbf{p}_{\mu} |^{2}) (E_{\mu} - m_{\mu})] + \mathbf{p}_{\pi} \} + m_{K} \operatorname{Im} \xi(q^{2}) (\mathbf{p}_{\pi} \times \mathbf{p}_{\mu}). \quad (30)$$

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in Eq. (26), would contain

$$+2m_{K}f_{S}\bar{u}_{l}(1+\gamma_{5})u_{\nu}+(2f_{T}/m_{K})(P_{K})_{\lambda}(P_{\pi})_{\mu}$$

$$\times \bar{u}_{l}\sigma_{\lambda\mu}(1+\gamma_{5})u_{\nu},$$

where f_S is the scalar form factor and f_T is the tensor form factor. In the case of the K_{e3} decays where the $f_$ term can be neglected, experiments have yielded limits on $|f_S/f_+|$ and $|f_T/f_+|$.

The experimental results for ξ , λ_{\pm} , and the upper limits on $|f_S/f_+|$ and $|f_T/f_+|$ are given in the K^{\pm} and K_L^0 sections of the Stable Particle Data Card Listings. See the note on form factors in the K^{\pm} Data Card Listings for discussions of these results.

F.3. CP Violation in K⁰ Decays

We list parameters for four different reactions in which CP can be tested [For details see Okun and Rubbia (1967), Steinberger (1969), and Wolfenstein (1969)].

(a) $K_S \rightarrow \pi^+ \pi^- \pi^0$. The quantity measured here is the ratio of amplitudes

$$A_{S}(K_{S} \rightarrow \pi^{+} \pi^{-} \pi^{0}) / A_{L}(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}) \equiv x + iy.$$
(31)

If CPT invariance holds and there is no I=3 state present, then x can be neglected and CP violation would be observed as a nonzero y. We give the result for (31) in the K_L^0 section of the Stable Particle Table and under Branching Ratio R4 in the K_S^0 section of the Stable Particle Data Card Listings. Our procedure is to assume that x=0, and to list $(A_S/A_L)^2$ in the form of a branching ratio.

(b) Charge asymmetry in $K_L \rightarrow 3\pi$ decays. As mentioned above, the presence of a term in (s_2-s_1) in expression (23) describing the Dalitz plot distribution for τ^{\pm} , τ^0 decays of K mesons would be an indication of CP violation. Rather than listing values of the (s_2-s_1) coefficient j in Eq. (23), we choose to list σ_{\pm} from the equivalent expression

$$|M|^2 \propto 1 + \sigma_{\pm}(2/\sqrt{3}) (T_+ - T)/T_{\pm \max}$$

+ (CP nonviolating terms), (32)

where T_{\pm} are the kinetic energies of the charged pions. We have momentarily abandoned the form involving the Mandelstam variables s_i in favor of (32) because the latter has been consistently used by experimenters searching for *CP* violation. We list σ_{\pm} among the *CP*violating parameters at the back of the K_{L^0} section of the Stable Particle Data Card Listings. Note that only upper limits have been reported for this quantity.

(c) A symmetry in the $K_L \rightarrow \pi^{\mp} l^{\pm} \nu$ decays. The quantity measured and compiled here is

$$\delta = \frac{\Gamma(K_L \rightarrow \pi^- l^+ \nu) - \Gamma(K_L \rightarrow \pi^+ l^- \nu)}{\Gamma(K_L \rightarrow \pi^- l^+ \nu) + \Gamma(K_L \rightarrow \pi^+ l^- \nu)} .$$
(33)

This asymmetry violates CP invariance. If CPT is good, for a pure K_L^0 beam, δ can be written as

$$\delta = 2 \left[(1 - |x|^2) / (|1 - x|^2) \right] \operatorname{Re} \epsilon, \qquad (34)$$

where x is the $\Delta S = \Delta Q$ -violating parameter defined in Section F.4, and ϵ is the parameter of the expansion

$$|K_{L}\rangle = [(1+\epsilon)|K\rangle - (1-\epsilon)|\vec{K}\rangle]/[2(1+|\epsilon|^{2})]^{1/2},$$
(35a)
$$|K_{S}\rangle = [(1+\epsilon)|K\rangle + (1-\epsilon)|\vec{K}\rangle]/[2(1+|\epsilon|^{2})]^{1/2}.$$

 $^{^{2}}$ We thank Drs. H. W. Fearing and J. Smith for calling this mistake to our attention.

separately for $K_L^0 \rightarrow \pi \mu \nu$ and $K_L^0 \rightarrow \pi e \nu$. (d) $K_L \rightarrow 2\pi$ decay. The relevant parameters are

$$\eta_{+} = A(K_L \rightarrow \pi^+ \pi^-) / A(K_S \rightarrow \pi^+ \pi^-) = |\eta_{+}| \exp(i\phi_{+}),$$
(36)

$$\eta_{00} = A \left(K_L \rightarrow \pi^0 \pi^0 \right) / A \left(K_S \rightarrow \pi^0 \pi^0 \right) = \left| \eta_{00} \right| \exp \left(i \phi_{00} \right),$$
(37)

 ϵ , defined in Eqs. (35) above, and

$$\epsilon' = \frac{1}{2} i \sqrt{2} \left[\exp i(\delta_2 - \delta_0) \right] \operatorname{Im} \left(A_2 / A_0 \right).$$
(38)

Here A_i and δ_i are the amplitude and phase of $\pi\pi$ scattering at the K mass, defined by

$$\langle I=0 \mid T \mid K \rangle = \exp(i\delta_0)A_0, \qquad (39a)$$

$$\langle I=2 \mid T \mid K \rangle = \exp(i\delta_2)A_2.$$
 (39b)

Wu and Yang (1964) have derived the relationships

$$\eta_{+} = \epsilon + \epsilon', \qquad (40a)$$

$$\eta_{00} = \epsilon - 2\epsilon'. \tag{40b}$$

At present many models have been proposed to explain the experimental results on CP violation, but more data are needed before the cause of CP violation can be ascertained.

We give η_{+} -, η_{00} , ϕ_{+} -, and ϕ_{00} in the Addendum to the Stable Particle Table. The phases are measured directly, whereas the magnitudes η_{+} - and η_{00} are derived parameters. We use, as far as we can, the directly measured quantities as input and calculate η_{+} - and η_{00} from the values given by our constrained fits. Therefore, if one looks at the Data Card Listings, most of the $|\eta|$ measurements appear in the form of branching ratios, with appropriate comments. We then give the values of η_{+} - and $|\eta_{00}|^2$ in a separate list at the end of the *CP*-violating parameters section of the K_{L^0} section of the Stable Particle Data Card Listings.

F.4. $\Delta S = \Delta Q$ Rule in K^0 Decays

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$x = A \left(\bar{K}^0 \rightarrow \pi^- l^+ \nu \right) / A \left(K^0 \rightarrow \pi^- l^+ \nu \right). \tag{41}$$

We list Re $\{x\}$ and Im $\{x\}$ for both K_{e3} and $K_{\mu3}$ at the end of the Stable Particle Data Card Listings and give values in the Addendum to the Stable Particle Table.

G. η -Decay Parameters

As a test of possible C violation in electromagnetic interactions, a number of experiments have looked for possible charge asymmetries in the decays $\eta \rightarrow \pi^+ \pi^- \pi^0$ and $\eta \rightarrow \pi^+ \pi^- \gamma$. For both modes we use the convention

Asymmetry
$$= f(+) - f(-)$$

where $f(\pm)$ means the fraction of the events with the $\pi^{(\pm)}$ energy greater than the $\pi^{(\mp)}$ energy in the η rest frame. We list the asymmetry parameters in the η section of the Stable Particle Data Card Listings and give average values in the Addendum to the Stable Particle Table.

H. Baryon-Decay Parameters

H.1. A/V Ratio for Baryon Leptonic Decays

Consider the decay

$$B_i \rightarrow B_f + l + \nu$$
.

Assuming V, A theory, neglecting "induced" scalar, "induced" pseudoscalar, and axial weak-magnetism terms, and neglecting the q^2 dependence of the form factors, the baryon part of the matrix element for these decays may be written (Goldberger and Treiman, 1958) as

$$B_{f} \mid \gamma_{\lambda}(g_{V} - g_{A}\gamma_{5}) + (g_{W}/m_{B_{i}})\sigma^{\lambda\nu}q_{\nu} \mid B_{i}\rangle, \quad (42)$$

where B_i and B_f represent initial and final baryons, g_A and g_V the axial and vector coupling constants, g_W the weak magnetism coupling constant, and q_v the sum of the lepton momenta. Here the Pauli representation is used for the γ matrices. The definition of g_A/g_V is

$$g_A/g_V = |g_A/g_V| \exp(i\delta), \qquad (43)$$

where δ is $0+n\pi$ if time-reversal invariance holds (see Jackson *et al.*, 1957).

In neutron beta decay the measurements are consistent with time reversal, so g_A/g_V is nearly real and has been considered to be such in all the baryon leptonic decays. Notice that by using the above definition of the matrix element with the Pauli representations, the value of g_A/g_V in neutron beta decay is negative.

Due to statistical limitation the weak magnetism form factor g_W is usually assumed from CVC and SU(3), so only g_A and g_V are determined experimentally. This determination is accomplished in a variety of ways:

(a) The lepton-neutrino angular correlation provides a measure of the absolute value of g_A/g_V (for relevant formulas see, e.g., Albright, 1959).

(b) The up-down asymmetry of the lepton from polarized baryon decays provides a measure of g_A/g_V with its sign (for relevant formulas, see, e.g., Albright, 1959).

(c) The lepton spectrum, given enough statistics, provides a measure of g_A/g_V with its sign (for relevant formulas see, e.g., Bender, 1968).

S12 REVIEWS OF MODERN PHYSICS • APRIL 1973 • PART II

(d) The polarization of the decay baryon, from polarized or unpolarized initial baryon, also provides g_A/g_V with its sign (for formulas, see, e.g., Willis and Thompson, 1968).

We compile the ratio g_A/g_V with its sign, for those decays for which it has been measured. For the neutron beta decay we compile also the phase δ .

All the coupling constants and decay rates for baryon leptonic decays are related by Cabibbo's theory (Cabibbo, 1964). The latest fit to this theory can be found in Ebenhöh (1971).

H.2. Asymmetry Parameters in Nonleptonic Hyperon Decays.

The transition matrix for the hyperon decay may be written as

$$M = s + p(\boldsymbol{\sigma} \cdot \mathbf{q}), \qquad (44)$$

where s and p are the parity-changing and the parity conserving amplitudes, respectively, σ is the Pauli spin operator, and **q** is a unit vector along the direction of the decay baryon in the hyperon rest frame.

The asymmetry parameters are defined by the relations

$$\alpha = 2 \operatorname{Re} (s^* p) / (|s|^2 + |p|^2), \qquad (45a)$$

$$\beta = 2 \operatorname{Im} (s^* p) / (|s|^2 + |p|^2),$$
 (45b)

$$\gamma = (|s|^2 - |p|^2) / (|s|^2 + |p|^2).$$
(45c)

With the transition matrix (44), the angular distribution of the decay baryon, in the hyperon rest system, is of the form

$$I = 1 + \alpha \mathbf{P}_Y \cdot \mathbf{q}, \tag{46}$$

where $\mathbf{P}_{Y} = \langle Y \mid \boldsymbol{\sigma} \mid Y \rangle$ is the hyperon polarization.

In the notation of Lee and Yang (1957) the polarization \mathbf{P}_B of the decay baryon is³

$$\mathbf{P}_{B} = \frac{(\alpha + \mathbf{P}_{Y} \cdot \mathbf{q}) \mathbf{q} + \beta(\mathbf{P}_{Y} \times \mathbf{q}) + \gamma \mathbf{q} \times (\mathbf{P}_{Y} \times \mathbf{q})}{1 + \alpha \mathbf{P}_{Y} \cdot \mathbf{q}}, \quad (47)$$

where \mathbf{P}_B is defined in that rest system of the baryon obtained by a Lorentz transformation along \mathbf{q} from the hyperon rest system in which \mathbf{q} and \mathbf{P}_Y are defined. Note that α is the helicity of the decay baryon for unpolarized hyperons.

The three parameters α , β , and γ satisfy the relation

$$\alpha^2 + \beta^2 + \gamma^2 = 1. \tag{48}$$

It is then convenient to describe hyperon nonleptonic decays in terms of the two independent parameters α

and the angle ϕ defined by

$$\beta = (1 - \alpha^2)^{1/2} \sin \phi, \qquad (49a)$$

$$\gamma = (1 - \alpha^2)^{1/2} \cos \phi, \qquad (49b)$$

which has a more nearly Gaussian distribution than β or γ . Evidently

$$-\frac{1}{2}\pi \leq \phi \leq \frac{1}{2}\pi \quad \text{for} \quad \gamma > 0, \tag{50a}$$

$$+\frac{1}{2}\pi \leq \phi \leq \frac{3}{2}\pi \quad \text{for} \quad \gamma < 0. \tag{50b}$$

In discussing time-reversal invariance, the quantity of interest is Δ , defined by

$$\alpha = 2 |s|| p |\cos \Delta/(|s|^2 + |p|^2), \quad (51a)$$

$$\beta = -2 |s|| p |\sin \Delta/(|s|^2 + |p|^2); \quad (51b)$$

that is Δ is the phase angle of s relative to p. Evidently

$$-\frac{1}{2}\pi \leq \Delta \leq \frac{1}{2}\pi \quad \text{for} \quad \alpha > 0, \tag{52a}$$

$$+\frac{1}{2}\pi \leq \Delta \leq \frac{3}{2}\pi \quad \text{for} \quad \alpha < 0. \tag{52b}$$

Under the assumption of time-reversal invariance, the angle Δ must satisfy the relation

$$\Delta = \delta_s - \delta_p, \tag{53}$$

modulo π , where δ_s and δ_p are the pion-baryon scattering phase shifts at the appropriate energy and for the appropriate isospin state. For Λ decay, assuming the validity of the $|\Delta I| = \frac{1}{2}$ rule,

$$\Delta = \delta_s - \delta_p = (6.8 \pm 2.0) \text{ deg.}^4$$

In the Stable Particle Data Card Listings we give α and ϕ for each decay since they are the most closely related to the experiments and are essentially uncorrelated. Whenever necessary we have changed the signs of the reported values, so as to agree with our conventions. In the Stable Particle Table we give α , ϕ , and Δ with errors; and for convenience we also give the central value of γ , without an error.

V. STATISTICAL PROCEDURES

This section is a much abbreviated version of Section IX in the text of our January 1970 edition (Particle Data Group, 1970) to which the reader is referred for details. See also the mini-review on K^* masses and mass differences in the $K^*(892)$ section of the Meson Data Card Listings.

A. Confidence Levels and Errors

Quoted errors represent one standard deviation (σ) . Upper and lower limits represent 68.3% confidence

³ Note that Lee and Yang (1957) contains a misprint. The minus sign in the definition of β should be replaced by a 2. In addition, our unit vector **q** is the direction of the baryon, whereas their unit vector **p** is the direction of the pion.

⁴ This value for $\delta_s - \delta_p$ is derived from the phase-shift analyses by Roper *et al.* (1965). The error is our estimation of the uncertainty.

bounds (1σ) , unless otherwise stated. The errors in the Tables of Particle Properties and the errors of the averages in the Data Card Listings often include a scale factor S; see section V.B. below.

Quantities that have changed more than 1σ since our April 1972 edition (Particle Data Group, 1972) are italicized in the Tables of Particle Properties. For a discussion see Section V.B in the text of the 1970 edition (Particle Data Group, 1970).

B. Unconstrained Averaging Scale Factors

In the absence of constraints, we calculate a weighted average

$$\bar{x} \pm \delta \bar{x} = \sum w_i x_i / \sum w_i \pm (\sum w_i)^{-1/2};$$

$$w_i = 1/(\delta x_i)^2,$$
(54)

where the sums run over N experiments. We also calculate χ^2 and compare it with its expectation value of N-1. If $\chi^2 > N-1$, we increase the error $\delta \bar{x}$ in Eq. (54) by a factor

$$S = [\chi^2 / (N-1)]^{1/2}.$$
 (55)

It is easy to design statistical tests for determining whether one experiment (or a group of experiments) is consistent with the other experiments. However, statistics does not tell us who is wrong in case of contradictions. When $S\gg1$, one can conclude either that:

(1) some (or all) experiments are wrong, or

(2) some (or all) experiments have underestimated their errors, or

(3) the experiments do not measure the same quantity (systematic errors).

We do our best to resolve these cases. If we cannot, we assume that all experimentalists underestimated their errors by the same scale factor. If we scale up all input errors by this factor, χ^2 returns to N-1, and of course the output error scales up by the same factor.

If all the experiments have errors of about the same size, the above procedure is straightforward. If, however, there are both precise and imprecise (large errors) measurements of a particular quantity, one must be very careful not to permit the imprecise ones to "dilute" the scale factor. See our January 1970 edition (Particle Data Group, 1970) for the prescription we use to handle this effect.

We often plot an ideogram to guide the reader in deciding which data he might reject before making his own selected average.

For further discussion of ideograms and scale factors, we refer the reader to Section IX of our January 1970 edition (Particle Data Group, 1970).

C. Constrained Fits

The information on partial-decay fractions P_i^{5} and partial widths $\Gamma_i = P_i \Gamma_{\text{total}}$ is frequently given by branching ratios R_i , say, $R_1 = P_1/(P_1+P_2)$, $R_2 = P_2/P_3$, $R_3 = P_1/P_2$, $R_4 = P_3/(P_1+P_2+P_3)$, etc.⁶

The number of experimental inputs R_j is often greater than the number of decay modes. In these cases we fit all available information on the P_i , Γ_i , and R_j subject to the constraint $\sum P_i=1$. When, in addition, the input R_j are contradictory so that scale factors may have to be introduced, one has to resort to iterative procedures.

The Data Card Listings give the values of the fitted R_i , P_i , and Γ_i , together with the error matrices of the P_i and of the Γ_i . For details about this procedure, the reader is referred to the text of the January 1970 edition (Particle Data Group, 1970), Sec. IV.B.

VI. PARTICLE DATA GROUP PUBLICATIONS

To obtain a reprint of this report, or any of the items listed below, write either Scientific Information Service, CERN, or Technical Information Division, Lawrence Berkeley Laboratory, whichever is closer.

A. Pocket-Sized Particle Data Booklet

In addition to the present complete, full-size version of the Review of Particle Properties available from CERN and LBL, a pocket-size data booklet is available. It contains the first part of this report, up to the Data Card Listings. The complete set of pocket-size items available comprises the data booklet, a 16month diary, a mini-atlas contributed by Digital Equipment Corporation, and a plastic cover. Any of these items that you have requested in the past will automatically be sent to you, but please note that our mailing lists are self-cancelling; unless you return the request card that is sent once a year, your name will be removed from our mailing list. If you wish to order any items in bulk we must charge 25 cents (US) for each of the pocket-sized items.

B. Other Compilations

We compile data not only on particle properties, but also on other aspects of strong interactions $(\pi N, KN, pN, \cdots$ cross sections; partial-wave amplitudes, etc.) Until 1971, our reports were called UCRL 20 000; they are now numbered LBL 50, \cdots , 99. In the front of each of these reports is a list of all relevant compilations. A complementary series of compilations is

⁵ We use the symbol P_i for partial-decay fractions throughout the Data Card Listings for stable particles, mesons, and baryons, although for baryons x_i is the commonly accepted symbol. See Eq. (10).

Eq. (10). ⁶ We are also able to fit *products* of rates from formation experiments as given in Eq. (12).

S14 **REVIEWS OF MODERN PHYSICS · APRIL 1973 · PART II**

produced by the CERN HERA Group. Both series are available from both LBL and CERN.

C. Magnetic Tapes

The Particle Data Group at LBL also has available for distribution magnetic tapes containing cross section data compilations produced by E. Flaminio *et al.* $(\pi N,$ $KN, \bar{K}N, NN, \bar{N}N$; G. Giacomelli *et al.* (πN) ; C. Lovelace et al. $(\pi N; \text{some } KN, \overline{K}N); L. D. Roper et al.$ $(\bar{K}N)$; P. Spillantini and V. Valente, or H. Oberlack (γN) ; and F. Wagner *et al.* $(KN, \overline{K}N)$; some πN). The original versions of these tapes are available immediately, while updated and corrected versions will be available in the near future. In addition, tapes containing partial-wave amplitudes for πN , KN, and γN exist and may also be requested. If you are interested in more details on the contents of any of these tapes, please write us.

D. Next Edition

We currently produce a new Review of Particle Properties every April. It is published alternately by Physics Letters and by Reviews of Modern Physics.

ACKNOWLEDGMENTS

Jane Kingston Zoba and Betty Armstrong have helped with all the data processing. We thank J. D. Jackson for useful comments, Fumiyo Uchiyama for help on the K^0 section, and Jochen Bartels and Denvse M. Chew for assistance with the mesons.

REFERENCES

- Albright, C. H., Phys. Rev. 115, 750 (1959).
 Ascoli, Giulio, papers submitted to the "Third Philadelphia Conference", American Institute of Physics, New York, 1972; and to the XVI International Conference on High Energy Physics, NAL, 1972.
- Barbaro-Galtieri, A., Baryon resonances, in: Advances in Particle Physics, edited by R. L. Cool and R. E. Marshak (Wiley, New York, 1968), Vol. 2. See specifically, Table IV and Figs. 10 and 12
- Bender, I., V. Linke, and H. J. Rothe, Z. Physik 212, 190 (1968).

- Brene, N., L. Egardt, and B. Qvist, Nucl. Phys. 22, 553 (1961). Cabibbo, N., Phys. Rev. Lett. 10, 531 (1963)
 - , and A. Maksymowicz, Phys. Letters 9, 352 (1964)
- Proc. 13th Intern. Conf. on High-Energy Physics, Berkeley, 1966 (University of California Press, Berkeley, 1967), p. 34.
- Chew, G. F., in Estratto da Old and New Problems in Elementary Particles, edited by G. Puppi (Academic, New York, 1968). Dalitz, R. H., Proc. Phys. Soc. (London) **69A**, 527 (1956). Ebenhöh, H., F. Eisele, H. Filthuth, W. Föhlisch, V. Hepp, E.
- Leitner, W. Presser, H. Schneider, T. Thouw, and G. Zech, Z. Physik **241**, 473 (1971).
- Fearing, H. W., E. Fischbach and J. Smith, Phys. Rev. D2, 542 (1970).
- Gasiorowicz, S., Elementary Particle Physics (Wiley, New York, 1966). Goldberger, M. L., and S. B. Treiman, Phys. Rev. 111, 354
- (1958)
- Herndon, D. J., A. Barbaro-Galtieri, and A. H. Rosenfeld, " πN partial-wave amplitudes—A Compilation," Lawrence Radiation Laboratory Report UCRL-20030 πN , Feb. 1972, p. 4, Eq. (9). Jackson, J. D., S. B. Treiman and H. W. Wyld Jr., Phys. Rev. **106**, 517 (1957).

- Jackson, J. D., Nuovo Cimento **34**, 1644 (1964). Källén, G., *Elementary Particle Physics* (Addison-Wesley Publ. Co., Reading, Mass., 1964).
- Kinoshita, T., and A. Sirlin, Phys. Rev. 108, 844 (1957)
- Lee, T. D., and C. N. Yang, Phys. Rev. 108, 1645 (1957)
- Levi Setti, R., Rapporteur talk at the Lund Intern. Conf. on
- Levi Setti, K., Kapporteur taik at the Lund Intern. Conf. on Particle Physics (Lund, June 1969).
 Okun, L. B., and C. Rubbia, Proc. Heidelberg Conf. on Elemen-tary Particles (1967), p. 301.
 Particle Data Group (1969): N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H. Rosenfeld, P. Söding, C. G. Wohl, M. Roos and G. Conforto, Rev. Mod. Phys. 41, 109 (1969).
 Particle Data Group (1970): A. Barbaro-Galtieri, S. E. Derenzo
- A. Roos and G. Contorto, Rev. Mod. Phys. 41, 109 (1969).
 Particle Data Group (1970): A. Barbaro-Galtieri, S. E. Derenzo, L. R. Price, A. Rittenberg, A. H. Rosenfeld, N. Barash-Schmidt, C. Bricman, M. Roos, P. Söding and C. G. Wohl, Rev. Mod. Phys. 42, 87 (1970).
- Phys. 42, 87 (1970).
 Particle Data Group (1972): P. Söding, J. Bartels, A. Barbaro-Galtieri, J. E. Enstrom, T. A. Lasinski, A. Rittenberg, A. H. Rosenfeld, T. G. Trippe, N. Barash-Schmidt, C. Bricman, V. Chaloupka and M. Roos, Phys. Letters 39B, No. 1 (1972).
 Pišut, J., and M. Roos, Nucl. Phys. B6, 325 (1968).
 Roper, L. D., R. M. Wright, and B. T. Feld, Phys. Rev. 138, B190
- (1965).
- Steinberger, J., CERN Topical Conference on Weak Interactions, CERN 69-7 (1969), p. 291.
- Willis, W., and J. Thompson, Leptonic Decays of Elementary Particles, in Advances in Particle Physics, edited by R. L. Cool and R. E. Marshak (Wiley, New York, 1968), Vol. 1, p. 295. Wolfenstein, L. in: Theory and Phenomenology in Particle Physics,
- edited by A. Zichichi (Academic, New York, 1969), p. 218.
- Wright, Jon, Illinois preprint, submitted to XVI International Conference on High Energy Physics, NAL, 1972.
 Wu, T. T., and C. N. Yang, Phys. Rev. Letters 12, 380 (1964).

TABLES OF PARTICLE PROPERTIES

April 1973

N. Barash-Schmidt, A. Barbaro-Galtieri, C. Bricman, V. Chaloupka R. L. Kelly, T. A. Lasinski, A. Rittenberg, M. Roos, A. H. Rosenfeld, P. Söding, and T. G. Trippe

(Closing date for data: Feb. 1, 1973)

Stable Particle Table

For additional parameters, see Addendum to this table.

Quantities in italics have changed by more than one (old) standard deviation since April 1972.

Particle	I ^G (J ^P)Cn	Mass	Mean life		Partial decay	mode		
	(MeV) Mass ² (GeV) ²		(sec) cτ (cm)	Mode	Fraction ^a		por p _{max} b (MeV/c	
γ	0,1(1 ⁻) ⁻	0(< 2)10 ⁻²¹	stable	stable			* .	
ν	$v_{\rm e}$ J = $\frac{1}{2}$ $v_{\rm \mu}$	0(<60 eV) 0(<1.2)	stable	stable				
е	$J = \frac{1}{2}$	0.5110041 ±.0000016	stable $(> 2 \times 10^{21} \text{y})$	stable				
μ	$J = \frac{1}{2}$ $m_{\mu} - m_{\pi} \pm$	$105.6595 \\ \pm .0003 \\ n^{2} = 0.0112 \\ = -33.909 \\ \pm .006$	2.1994×10 ⁻⁶ ±.0006 S=1.1* cτ=6.593×10 ⁴	eν ν eγγ 3e eγ	100 (<1.6 (<6 (< 2.2)10 ⁻⁵)10 ⁻⁹)10 ⁻⁸	53 53 53 53	
π^{\pm}	1-(0-) m	$139.5688 \pm .0064$ $a^2 = 0.0195$	2.6024×10 ⁻⁸ ±.0024 $c\tau = 780.2$ $(\tau^{+}-\tau^{-})/\tau^{-}=$ (0.05±0.07) ^m (test of CPT)	μν εν μνγ π ⁰ εν ενγ ενε ⁺ ε ⁻	100 (1.24±0. c(1.24±0. (1.02±0. c(3.0 ±0. (< 3.4	% 03)10-4 25)10-4 07)10-8 5)10-8)10-8	30 70 30 5 70 70	
π°	1 ⁻ (0 ⁻) ⁺ m _{π±} -m _{π⁰}	$134.9645 \\ \pm .0074 \\ ^{2} = 0.0182 \\ = 4.6043 \\ \pm .0037$	$0.8 \pm 10^{-16} \pm .10 \text{ S}=2.1^{*} \text{ c}\tau=2.5\times 10^{-6}$	$\gamma \gamma$ γe^+e^- $\gamma \gamma \gamma$ $e^+e^-e^+e^-$	(98.83±0. (1.17±0. (< 5 d(3.47	05)% 05)%)10-6)10-5	67 67 67 67	

Particle	IG(JP)Cn	Mass	Mean life	Partial decay mode			
		(MeV) Mass ²	(sec) cτ	Mode	Fraction ^a	p or p _{max} b	
		(Gev)-	(cm)			(MeV/c)	
Κ [±]	$\frac{1}{2}(0)$	493.715 ± 0.037 m ² =0.244	$\begin{array}{c} 1.2371 \times 10^{-8} \\ \pm .0026 \text{ S=} 1.9^{\circ} \\ c\tau = 370.8 \\ (\tau^+ - \tau^-)/\tau = \\ (.11\pm .09)\% \\ (\text{test of CPT}) \end{array}$	μν ππ ⁰ ππ ⁻ π ⁺ ππ ⁰ π ⁰ μπ ⁰ ν επ ⁰ ν	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	236 .1* 205 .1* 125 .4* 133 .9* 215 .1* 228	
	m _K ±-n	^a K ⁰ =-3.99 ±0.13 S=1.1*	S=1.2*	$e^{\pi\sigma} \pi^{0} v$ $\pi\pi^{\mp} e^{\pm} v$ $\pi\pi^{\pm} e^{\pm} v$ $\pi\pi^{\pm} \mu^{\mp} v$ ev ev ev $\pi\pi^{0} \gamma$ $\pi\pi^{+} \pi^{-} v$	$ \begin{pmatrix} 1.8 \pm 5.7 \\ 0.7 \pm 0.2 \end{pmatrix} 10^{-5} \\ (3.7 \pm 0.2) 10^{-5} \\ (<5) 10^{-7} \\ (0.9 \pm 0.4) 10^{-5} \\ (<3) 10^{-6} \\ (1.38 \pm 0.20) 10^{-5} \\ c(<7) 10^{-5} \\ h, c(2.66 \pm 0.18) 10^{-4} \\ c(40 \pm 4) 40^{-5} \\ c(50 \pm 0.18) 10^{-5} \\ $	207 203 203 151 151 247 247 247 205	
	•			$\begin{array}{c} \pi e \nu \gamma \\ \pi e^+ e^- \\ \pi^+ e^\pm e^\pm \\ \pi \mu^+ \mu^- \\ \pi \gamma \gamma \gamma \\ \pi \gamma \gamma \gamma \\ \pi \nu \bar{\nu} \\ \pi \gamma + \pm \end{array}$	$\begin{array}{cccc} (& 10 & \pm 4 &) & 10 & -4 \\ (& 3.7 & \pm 1.4 &) & 10 & -6 \\ (& < 0.4 &) & 10 & -5 \\ (& < 1.5 &) & 10 & -5 \\ (& < 2.4 &) & 10 & -6 \\ c(& < 3.5 &) & 10 & -5 \\ c(& < 3 &) & 10 & -4 \\ (& < 1.4 &) & 10 & -6 \\ (& < 4 &) & 10 & -8 \end{array}$	125 227 227 227 172 227 227 227 227 227	
				π [∓] e [±] μ [±] π [±] e [±] μ [∓] μννν	$ \begin{pmatrix} \langle 3 \\ \langle 1.4 \\ \langle 7 \end{pmatrix} \end{pmatrix} 10^{-6} \\$	214 214 236	
К°	$\frac{1}{2}(0)$	497.71	50% K _{Short} , 50	9% K _{Long}			
Ks	1/2 (0 ⁻)	S=1.1 m ² =0.248	$e_{0.882 \times 10^{-10}}$ ±.008 S=2.5 * c τ =2.65	$\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$ $\mu^{+}\mu^{-}$ $e^{+}e^{-}$ $\pi^{+}\pi^{-}\gamma$ $\gamma\gamma$	$ \begin{array}{c} (68.81 \pm 0.29)\% \\ (31.19 \pm 0.29)\% \\ (<0.7 \)10^{-5} \\ (<35 \)10^{-5} \\ (2.3 \pm 0.8 \)10^{-3} \\ (<0.7 \)10^{-3} \end{array} $	1* 206 209 225 249 206 249	
K ^o L	$\frac{1}{2}(0)$		5.181×10^{-8} ±0.041 c τ =1553	π ⁰ π ⁰ π ⁰ π ⁺ π ⁻ π ⁰ πμν πεν πενγ	$\begin{array}{c} (21.5 \pm 0.8) \% S=1 \\ (12.6 \pm 0.3) \% \\ (26.9 \pm 0.6) \% S=1 \\ (38.8 \pm 0.6) \% S=1 \\ (1.3 \pm 0.8) \% \end{array}$.4* 139 133 .1* 216 .1* 229 229	
	^m KL-n	${}^{h}K = 0.5402 \times 100035$ S ± 0.0035	10 ¹⁰ h sec ⁻¹	$\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$ $\pi^{+}\pi^{-}\gamma$ $\pi^{0}\gamma\gamma$	$(0.157\pm0.005)\%$ $(0.094\pm0.019)\%$ S=1, (<0.4) 10 ⁻³ (<2.4) 10 ⁻⁴ $(49,\pm0,4)$ 10 ⁻⁴	206 .5* 209 206 231 249	
				^{eμ} μ ⁺ μ ⁻ e ⁺ e ⁻	$ \begin{array}{c} (-1.6) & 10^{-9} \\ i & (<1.6) & 10^{-9} \\ i & (<1.9) & 10^{-9} \\ (<1.6) & 10^{-9} \end{array} $	238 225 249	
η	0 ⁺ (0 ⁻) ⁺	548.8 ± 0.6 S = 1.4 $m^2 = 0.301$	Γ =(2.63±0.58)keV Neutral decays 71.1%	$ \begin{pmatrix} \gamma \\ \pi^{0} \\ \gamma \\ 3\pi^{0} \\ \pi^{+}\pi^{-}\pi^{0} \\ \pi^{+}\pi^{-}\gamma \end{pmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.2* 274 .2* 258 .1* 180 .1* 175 236	
			Charged decays 28.9%	$\pi^{\circ}e^{-}e^{-}$ $\pi^{+}\pi^{-}e^{+}e^{-}$ $\pi^{+}\pi^{-}\pi^{0}\gamma$ $\mu^{+}\mu^{-}$ $\mu^{+}\mu^{-}\pi^{0}$	$\begin{array}{cccc} (<0.04) & \% \\ (& 0.1 \pm 0.1) & \% \\ (<0.2) & \% \\ (<0.2) & \% \\ (<0.2) & \% \\ (& 2.2 \pm 0.8) & 10^{-5} \\ (<5) & 10^{-4} \end{array}$	258 236 175 236 253 211	
р	$\frac{1}{2}(\frac{1}{2}^+)$	938.2592 ± 0.0052 $m^2 = 0.8803$	stable (> 2×10^{28} y)				
n	$\frac{1}{2}(\frac{1}{2}^{+})$ m _p -	$939.5527 \pm 0.0052 m2 = 0.8828 mn = -1.29344 \pm 0.00007$	$\begin{array}{l} (0.918 \pm 0.014) 10^{3} \\ \mathrm{c}\tau = 2.75 \times 10^{13} \end{array}$	pe v	100 %	1	

Stable Particle Table (cont'd)

.

Particle	IG(JP)Cn	Mass	Mean life		Partial decay mode	
		(MeV) _{Mass} 2 (GeV) ²	(sec) c τ (cm)	Mode	Fraction ^a	p or p _{max} b (MeV/c)
Λ	$0(\frac{1}{2}^{+})$	1115.59 ± 0.05 S=1.1* m ² = 1.245	2.524×10^{-10} ±.021 S=1.2* c τ = 7.56	הח מח פע פע פת γ	$ \begin{array}{c} (\ 64.2 \\ (\ 35.8 \pm 0.5 \)\% \\ (\ 8.13 \pm 0.29) 10^{-4} \\ (\ 1.57 \pm 0.35) 10^{-4} \\ (\ 0.85 \pm 0.14) 10^{-3} \end{array} $	100 104 163 131 100
Σ+	$1(\frac{1}{2}^+)$ $m_{\Sigma^+} - m_{\Sigma^+}$	$1189.41 \pm 0.07 S = 1.6* m2 = 1.415 h = -7.94 \pm .09 S = 1.2$	$\frac{0.800\times10^{-10}}{\pm.006}$ $c\tau = 2.40$ $\frac{\Gamma(\Sigma^{+} + \ell^{+} n\nu)}{\Gamma(\Sigma^{-} + \ell^{-} n\nu)} <.035$	$p\pi^{0}$ $n\pi^{+}$ $p\gamma$ $n\pi^{+}\gamma$ $\Lambda e^{+}\nu$ $(n\mu^{+}\nu)$ $ne^{+}\nu$ $pe^{+}e^{-}$	$ \begin{pmatrix} 51.6 \\ 48.4 \\ 0.7 \end{pmatrix} & 0 \\ (48.4 \\ 0.7 \end{pmatrix} & -3 \\ (1.24 \pm 0.18) & 10 \\ (1.31 \pm 0.24) & 10 \\ (2.02 \pm 0.47) & 10 \\ (2.02 \pm 0.47) & 10 \\ (2.4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	189 1.4* 225 185 72 202 224 225
Σ°	$1(\frac{1}{2}^+)$	1192.48 ±0.10 S= 1.1 $m^2=1.422$	$< 1.0 \times 10^{-14}$ c $\tau < 3 \times 10^{-4}$	Λγ Λe ⁺ e-	100 % d(5.45)10-3	74 74
Σ	$1(\frac{1}{2}^{+})$ $m_{\Sigma^{0}}$	$m^{-1.422}$ 1197.34 ± 0.07 $S = 1.2^{*}$ $m^{2} = 1.434$ $m_{\Sigma^{-}} = -4.86$ $\pm .06$	1.484×10^{-10} ±.019 S=1.6* c7 = 4.45	$n\pi^{-}$ $ne^{-}\nu$ $n\mu^{-}\nu$ $\Lambda e^{-}\nu$ $n\pi^{-}\gamma$	$ \begin{array}{c} 100 & \frac{\eta_0}{10^{-3}} \\ (1.10 \pm 0.05) 10^{-3} \\ (0.45 \pm 0.04) 10^{-3} \\ (0.60 \pm 0.06) 10^{-4} \\ c (1.0 \pm 0.2) 10^{-4} \end{array} $	193 230 210 79 193
Ξ°	<u>1</u> 2(<u>1</u> ⁺) f m _Ξ o - n	$1314.9 \pm 0.6 m^2 = 1.729 m^2 = -6.4 \pm .6$	2.98×10^{-10} ±.12 c7 = 8.93	$\begin{array}{c} \Delta \pi^{0} \\ p\pi^{-} \\ \Sigma^{+}e^{-}\nu \\ \Sigma^{-}e^{+}\nu \\ \Sigma^{+}\mu^{-}\nu \\ \Sigma^{-}\mu^{+}\nu \\ p\mu^{-}\nu \end{array}$		135 299 323 119 112 64 49 309
Ħ	$\frac{1}{2}(\frac{1}{2}^+)^{f}$	1321.29 ± 0.14 $m^2 = 1.746$	$\begin{array}{r} 1.672 \times 10^{-10} \\ \pm .032 \text{ S} = 1.1^{*} \\ \text{c}\tau = 5.01 \end{array}$	$ \Lambda \pi^{-} \Lambda e^{-} \nu \Sigma^{0} e^{-} \nu \Lambda \mu^{-} \nu \Sigma^{0} \mu^{-} \nu n \pi^{-} n e^{-} \nu $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 190 123 163 70 303 327
Ω_	$0(\frac{3}{2}^{+})^{f}$	1672.5±.5 m ² = 2.797	$1.3^{+0.4}_{-0.3} \times 10^{-10}_{0.3}$ c\tau = 3.9	Ξ ⁰ π ⁻ Ξ ⁻ π ⁰ Λ Κ ⁻	Total of 28 events seen	294 290 211

Stable Particle Table (cont'd)

*S = Scale factor = $\sqrt{\chi^2/(N-1)}$, where N \approx number of experiments. S should be \approx 1. If S > 1, we have enlarged the error of the mean, δx , i.e., $\delta x \rightarrow S \delta x$. This convention is still inadequate, since if S >> 1, the experiments are

a. Quoted upper limits correspond to a 90% confidence level.
b. In decays with more than two bodies, P_{max} is the maximum momentum that any particle can have.

any particle can have.
c. See Stable Particle Data Card Listings for energy limits used in this measurement.
d. Theoretical value; see also Stable Particle Data Card Listings.

a. Incorrection value, see also stable Particle Data Card Distings.
e. See note in Stable Particle Data Card Listings.
f. P for Ξ and J^P for Ω⁻ not yet measured. Values reported are SU(3) predictions.
g. Assumes rate for Ξ → Σ⁰ e⁻ν small compared with Ξ → Λ e⁻ν.
h. The direct emission branching ratio is (1.56±.35)×10⁻⁵.
i. A contradictory unpublished result of ~9×10⁻⁹ (with 6 events seen) has been reported by Carithers et al. See note in Stable Particle Data Card Listings. by Carithers et al. See note in Stable Particle Data Card Listings.

ADDENDUM TO

Stable Particle Table

	Magnetic mo	ment					
е	1.001 159 ±.000 000	6577 <u>e</u> 0035 <u>2n</u>	en ne	μ Decay p	arameters	8	
μ	1.001 166 ±.000 000	16 <u>et</u> 31 2m	$\frac{h}{\mu c} \rho = 0.752;$ $\xi = 0.972;$ $ g_A/g_V = 0.972;$	± 0.003 η = ± 0.013 δ = =0.86 ^{+0.33}	$-0.12 \pm 0.0755 \pm 0.0755 \pm 0.000$).21).009 h = 1.0)• ±15•	0±0.13
+	Mada	Partial r	-A - V	-0.11	<i>.</i> +	1	F faataur fan Iontonio
K	initiate (i	54 35±0	$\frac{10}{10} \frac{10}{10} 10$	$2^{1=1}$ rule	for $K^- \rightarrow 3$	5π	decavs
	ππ ⁰ (:	$17.02 \pm 0.$	$15)10^6$ S=1.2*	$\pi^{+}\pi^{+}\pi^{-}c_{g}$	$=214 \pm214 \pm $.005 S=1.7*	$\lambda_{i}^{e} = 0.028 \pm 0.005$
	$\pi \pi^+ \pi^-$ (4.52±0.	02)10 ⁶ S=1.1*	$\pi^{+}\pi^{0}\pi^{0}c_{g}$	$=214 \pm .523 \pm .523$.007 S=2.7*	+ See Stable Particle
	^{ππ^οπ^ο (μπ⁰ν (}	1.40 ± 0.0 2.62±0.0	$(04)10^{\circ}$ S=1.4* $(08)10^{\circ}$ S=1.9*	See also St	able Par	ticle	Data Card Listings for
	eπ ⁰ ν (3.92±0.	05)10 ⁶ S=1.1*	Appendix I		and	ξ and λ^{μ}_{+} .
Ks	$\pi^{+}\pi^{-}$ ($\pi^{0}\pi^{0}$ (0.780±.00 0.353±.00	$(08)10^{10}$ S=1.9* $(05)10^{10}$ S=1.4*	CP vic $ \eta_{+} = (1.98 \pm 100)$	lation para	ameters 3 , ϕ_{+} = (42±3)°	$\Delta I = \frac{1}{2} \text{ rule for } K_{L}^{0} \rightarrow 3\pi$ $\pi^{+}\pi^{-}\pi^{0}g_{=.}^{0}60\pm.02 \text{ S}=2.7^{*}$ See Data Cards & App. I
	-0-0-0 (4 15 +0	16 106 5-1 3*	S=1.1	≁ ⊧0.10)10 ⁻	-3 da=(43+19)°	$\Delta S = -\Delta Q$
K.	^{π+} π-π ^ο (2.43 ± 0	0.05)106	S=1.2	k	, ⁽¹³⁻¹)	Re x = $003 \pm .027$ S=1.6
	πμν (πον (5.19 ±0	$(12)10^{\circ}$ S=1.1	$d_{s=(33)}$	+ 04110	2	1111 X =0001.000 0-1.2
	π ⁺ π ⁻ (3.02 ±0	0.10)104	0 - (. 55	S=1. 5	Form Fa	ctors for leptonic decays
	π ⁰ π ⁰ (1.82 ±0	0.38)10 ⁴ S=1.5 [*]	$\int f y^2 < 0.2$	27	$\lambda_{+} = 0.02$	o Particlo Data Card
						Listings	for λ_{μ}^{μ} and ξ
η	$\frac{\text{Mode}}{\pi^+_+\pi^\pi^0} e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{$	0.24±.40)%	s=2.0*				
	Magnetic		., /0		b		
	moment		Measure	d	De	erived	$\underline{g_A/g_V^{\ b}} = \frac{g_V/g_A^{\ b}}{g_V/g_A^{\ b}}$
	$\frac{(e\hbar/2m_pc)}{p}$	1	α	<u> (degree)</u>	<u> </u>	Δ (degree)	
р	2.792782 ±.000017						
n	-1.913148 ±.000066	pe v					$-1.248\pm.010$ $\delta=(181.1\pm1.3)^{\circ}$
Λ	-0.67	pπ ⁻	0.647±0.013	(-6.5±3.5)°	0.76	$(7.6^{+4.0}_{-4.1})^{\circ}$	
	±.06	nπ ⁰	0.651 ± 0.045	· · · ·			-0.66+0.06 S=1.2*
		pπ ⁰	-0.984±0.017	(22±90)°	0.17	(184±15)°	
-+	2.59	+	+0.066+0.016	(167+20).	-0.97	$(-73^{+136})^{\circ}$	
2	±.46	Pγ	-1.03 ^{+.52} 42	S=1.1*		(
Σ-		nπ [−] ne [−] ν Λe [−] ν	-0.069±0.008	(10±15)°	0.98	$(249^{+12}_{-115})^{\circ}$	See Data Cds. 0.37±0.2 0
Ξ°	-	Λπ ⁰	-0.39±0.09	$(25\pm21)^{\circ}$ S=1.3*	0.84	$\left(225^{+16}_{-35}\right)^\circ$	
			0-1.2.				

ADDENDUM TO

Stable Particle Table (cont'd)

*S = scale factor. Quoted error includes scale factor; see footnote to main Stable Particle Table for definition.

a. $|g_A/g_V|$ defined by

$$g_{V}^{2} = |C_{V}|^{2} + |C'_{V}|^{2},$$

$$g_{A}^{2} = |C_{A}|^{2} + |C'_{A}|^{2},$$

$$\sum \langle \overline{e} |\Gamma_{i}| \mu \rangle \langle \overline{\nu} |\Gamma_{i}(C_{i} + C'_{i}\gamma_{5})| \nu \rangle;$$

 ϕ defined by cos ϕ = - R_e(C^{*}_AC'_V+C'_AC^{*}_V)/g_Ag_V [for more details, see text Section IV E]

b. The definition of these quantities is as follows $\ [$ for more details on sign convention, see text Section IV H]:

$$\alpha = \frac{2 |\mathbf{s}| |\mathbf{p}| \cos \Delta}{|\mathbf{s}|^2 + |\mathbf{p}|^2};$$

$$\beta = \frac{-2 |\mathbf{s}| |\mathbf{p}| \sin \Delta}{|\mathbf{s}|^2 + |\mathbf{p}|^2}.$$

$$\beta = \sqrt{1 - \alpha^2} \sin \phi;$$

$$\gamma = \sqrt{1 - \alpha^2} \cos \phi.$$

 $\mathbf{g}_{A}/\mathbf{g}_{V} \text{ defined by } \langle \mathbf{B}_{f} \mid \mathbf{\gamma}_{\lambda}(\mathbf{g}_{V}-\mathbf{g}_{A}\mathbf{\gamma}_{5}) \mid \mathbf{B}_{i} \rangle;$

 δ defined by $g_A/g_V = |g_A/g_V| e^{i\delta}$.

c. The definition of the slope parameter of the Dalitz plot is as follows:

$$|M|^2 = 1 + g\left(\frac{s_3 - s_0}{m_{\pi^+}^2}\right).$$

d. The definition for the charge asymmetry is as follows:

$$\delta = \frac{\Gamma(K_{L}^{0} \to \ell^{+}) - \Gamma(K_{L}^{0} \to \ell^{-})}{\Gamma(K_{L}^{0} \to \ell^{+}) + \Gamma(K_{L}^{0} \to \ell^{-})}$$

- e. See note in Stable Particle Data Card Listings.
 f. The quantity y² is defined as follows:

$$y^{2} = \frac{\Gamma(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0})}{\Gamma(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0})}$$

where CPT is assumed valid.

Meson Table

April 1973

In addition to the entries in the Meson Table, the Meson Data Card Listings contain all substantial claims for meson resonances. See Contents of Meson Data Card Listings $^{(1)}$.

Quantities in italics have changed by more than one (old) standard deviation since April 1972.

Name						Partial decay mode				
$\frac{G I 0 1}{-\omega/\phi \pi} + \eta \rho$	I ^G (J ^P)C _n Hestab.	Mass M (MeV)	Full Width 「 (MeV)	м² ±гм ^(а) (GeV)²	Mode	[Upper	Fraction (%) limits are 1	.o (%)]	p or Pmax ^(b) (MeV/c)	
π [±] (140) π ⁰ (135)	1 (0)+	139.57 134.96	0.0 7.8 eV ±.9 eV	0.019483 0.018217	See	Stable Pa	article Table			
n(549)	$0^+(0^-)^+$	548.8 ±0.6	2.63 keV ±.58 keV	0.301 ±.000	All neutral $\pi^+\pi^-\pi^0 + \pi^+$	π γ	71 See 29 Par	Stable ticle Ta	ble	
ε Existence	$\frac{0^+(0^+)}{0^+}$	≲700 ^(C) not establis	≳600 ^(c) hed. See no	te on ππ S	$\pi\pi$ wave [¶] .					
ρ(770)	<u>1⁺(1⁻)-</u>	770 s ±5	146 _{\$} ±10 ^{\$}	0.593 ±.112	e^+e^{μ} $\mu^+\mu^{\mu}$ For upper 1	imits, see	≈100 0.0043±000 0.0067±001 e footnote (e	5 (d) 2 (d))	359 385 370	
ω(784) →	0 (1)-	783.8 ^(f) ±0.3 S=1.3*	9.8 ±.5 S=1.1*	0.614 ±.008	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}$ $\pi^{0}\gamma$ $e^{+}e^{-}$ For upper 1.	imits, see	89.6±0.6 1.3±0.3 9.1±0.5 0.0076±.0017 e footnote (g	S=1.1 [*] S=1.5 [*] S=1.9 [*]	328 366 380 392	
→ n'(958) or X ⁰	<u>0</u> ⁺ (0 <u>)</u> +	958.1 ±0.4 S=1.4*	< 2	0.918 <.002	nππ π ⁺ π ⁻ γ (main γγ For upper 1:	ly ρ ⁰ γ) imits, see	71.8±3.9 26.2±3.5 1.9±0.3 e footnote (h	S=2.0* S=2.2*	234 458 479	
δ(970) former] Possibly	$1(0^{+})$	∿ 970 MN(975) bound state	$50_{\pm 30}$ of the I =	0.941 ±.049 1 KK̄ system	ηπ ¶				311	
See notes	$\frac{0^+(0^+)}{0} + $ on $\pi\pi$ and	∿ ₉₉₇ (c) 1 KK̄ S wave [¶]	50-150 ^(c)	0.993	ππ KK			near th	479 reshold	
Φ(1019)	0 (1)-	1019.6 ±0.3 S=1.9	4.2 ±.2	1.040 ±.004	K ⁺ K ⁻ K _L K _S π+π ⁻ π ⁰ (inc. nγ e ⁺ e ⁻ μ ⁺ μ ⁻ For upper 1:	l. ρπ) imits, see	46.8±2.7 35.0±2.8 15.2±3.6 3.0±1.1 .032±.003 .025±.003 footnote (i	S=1.6 S=1.6* S=1.8* S=1.6 S=1.9*	127 110 462 362 510 499	
₹ A ₁ (1100)	<u>1⁻(1⁺)+</u>	∿ 1100 ₽ +	200-400	1.21	ρπ		∿ 100		253	
Broad enh ≩	ancement i	n the J ^r =1 ⁺	ρπ partial ι	wave; not	a Breit-Wigne	er resonan	ice".			
B(1235)	1 ⁺ (1 ⁺)-	1237 ±10 [§]	120 ±20 [§]	1.53 ±.12	ωπ For upper 1	imits, see	only mode e footnote (j	seen)	351	

lame						Partial decay mode	
$\frac{I 0 1}{-\omega/\phi \pi} + \eta \rho +$	I ^G (J ^P)C _n +estab.	Mass M (MeV)	Full Width F (MeV)	м² ±гм ^(а) (GeV)²	Mode	Fraction (%) [Upper limits are lσ (%)]	p or Pmax ⁽¹ (MeV/o
f(1270)	$0^+(2^+)^+$	1270 ±5 [§]	163 ±15 [§]	1.61 ±.21	^{ππ} 2π ⁺ 2π ⁻ KK	∿ 80 5±2§ 5±3§	619 556 394
D(1285)	$0^{+}(A)_{+}$ $J^{P} = 0^{-},$	1286 _{\$} ±10 ^{\$} 1 ⁺ , 2 ⁻ , wi	30 ±20 [§] th 1 ⁺ favour	1.65 ±.03	Kkπ ηππ †[δ(970)π 2π ⁺ 2π ⁻ (pr	seen seen seen] rob.ρ ⁰ π ⁺ π ⁻) seen	305 484 250 565
A ₂ (1310)	<u>1⁻(2⁺)+</u>	1310 ±10 [§]	100 ±10§	1.72 ±.13	ρπ ηπ ωππ KK η'(958)π	72.4 ± 2.1 15.3 \pm 1.3 7.6 \pm 2.2 4.7 \pm 0.6 <1	413 529 353 428 279
E(1420)	0 ⁺ (A) <u>+</u>	1416 ±10 [§]	60 ±20§	2.01 ±.08	^K kπ +[K [*] k + k [*] κ ^{ηππ} +[δ(970)π	<pre></pre>	421 131 564 356
f'(1514)	$0^{+}(2^{+})^{+}$	1516 ±3	40 ±10	2.29 ±.06	KK For upper	only mode seen limits, see footnote (k)	572
F ₁ (1540) Evidence	1 (A) based on o	1540 ±5 only one ex	40 ±15 periment	2.37 ±.06	к [*] к + к [*] к	only mode seen	321
ρ ' (1600) Resonance	$\frac{1^+(1^-)}{\text{interpres}}$	~ 1600 tation unce	∿ 500 rtain.	2.56	4π † [ρππ ππ For upper	only mode seen ~80] < 1 (p)¶ limits, see footnote (p)	575 788 629
A₃(1640) Broad enł	$\frac{1(2)+}{2}$	~ 1645 in the J ^P =	100-400 2 fm part	2.71 ial wave;	fπ not a Breit-W	~ 100 Vigner resonance. [¶]	310
ω(1675) former]	0_(N)- y called (1675)	1664 ±13 S=1.2*	141 ±17	2.77 ±.23	ρπ 3π 5π	dominant possibly observed 10±10	645 804 777
g(1680) J ^P , M and	$\frac{1^+(3^-)}{\Gamma}$	$1680_{\pm 20}$ he 2 π mode	160 ±30 [§]	2.82 ±.27	2π 4π (incl. KK KKπ (incl.	$ \begin{array}{c} & \sim 40 \\ \pi\pi\rho,\rho\rho,A_2\pi,\omega\pi) & \sim 50 \\ & \sim 3 \\ K^*\vec{K}) & \sim 3 \end{array} \right\} $ (2)	828 781 677 617
→ See note	(1) for p	ossible hea	vier states	•			
K ⁺ (494) K⁰(498)	<u>1/2(0⁻)</u>	493.71 497.71		0.244 0.248	See Stable	e Particle Table	
the second se							

Meson Table (cont'd)

lama			Meson	n Tal	ble	(co	nt'd) Part	ial decay mo	de	
$\frac{I 0 1}{- \omega/\phi \pi} + \eta \rho +$	I ^G (J ^P)C _n estab.	Mass M (MeV)	Full Width F (MeV)	M ² ±гм ^(a) (GeV) ²		4ode	F [Upper 1:	raction (%) imits are lo	(%)]	p or P _{max} ^(b) (MeV/c)
ĸ See note	<u>1/2(0⁺)</u> on Kπ S wav	e [¶] .	δ_0^1 is near	90°, wit	h slow v	variati	on, in mas.	s region 120	0-1400 Me	eV.
\rightarrow $\begin{bmatrix} K_{A}(124) \\ or C \end{bmatrix}$	0)1/2(1 ⁺)	1242 ±10 seen in	127 ±25 pp at rest	1.54 ±.16	Кππ +[К [*] π			only mode large]	seen	
K _A (128 to 140 See no	0 <u>1/2(1⁺)</u> 0) te (m).	1280 to 1400			†[Κρ †[Κ(ππ]) _{&=0}		seen] possibly s	een]	
ζ _N (1420) \$	<u>1/2</u> (2 ⁺)	1421 ±5 [§] See note	$100_{\pm 10}$ $\pm 10^{\$}$ \Rightarrow (n).	2.02 ±.14	Κπ Κ [*] π Κρ Κω Κη			$55.0\pm3.329.5\pm2.79.2\pm2.94.4\pm1.72.0\pm1.8$	S=1.2* S=1.2*	616 415 319 304 482
L(17,70)	$\frac{1/2}{J^{P}=2^{-}}$ fav	$1765_{\pm 10}$ § coured, 1 ⁺	$140_{\pm 50}$ and 3 ⁺ not e	3.11 ±.25 xcluded.	Кпп Кппп †[К _N (14	420)π a	and other s	dominant seen ubreactions]	788 757

See note (1) for possible heavier states. *,*

_

	Non-strange $(Y = 0)$								
entry	$I^{G}(J^{P})C_{n}$	entry	$I^{G}(J^{P})C_{n}$	entry $I^{G}(J^{P})C_{n}$	entry I (J ^P)				
π (140)	1 (0)+	→ η _N (1080)	0 ⁺ (N)+	□ [A ₃ (1640) 1 ⁻ (2 ⁻)+	K (494) 1/2(0 ⁻)				
η (549)	0+(0)+	A_1 (1100)	$1^{-}(1^{+})$ +	·Π ω (1675) 0 (N)-	K [*] (892) 1/2(1 ⁻)				
ε (600)	$0^{+}(0^{+})^{+}$	→ M (1150)		$\left[\begin{array}{c} 0 \\ H \\ H \end{array} \right] g (1680) 1^{+}(3^{-}) -$	к 1/2(0 ⁺)				
ρ (770)	$1^{+}(1^{-})^{-}$	$\rightarrow A_{1.5}(1170)$	1	[∞] (→ X (1690) -	→ K _A (1175) 3/2				
ω (784)	0(1) -	B (1235)	$1^{+}(1^{+})$ -	→ X (1795) 1	$\rightarrow K_A(1265) 3/2$				
→ M (940)		F (1270)	$0^{+}(2^{+})^{+}$	→ η/ρ(1830)	Q 1/2(1 ⁺)				
→ M (953)	+	D (1285)	0 ⁺ (A)+	$\rightarrow \omega / \pi (1830)$ -	$K_{N}(1420) 1/2(2^{+})$				
ŋ ' (958)	0 ⁺ (0 ⁻)+	A ₂ (1310)	1 (2+)+	→ S (1930)	$\rightarrow K_{N}(1660) 1/2$				
δ (970)	$1^{-}(0^{+})$ +	E (1420)	0 ⁺ (A)+	→ρ (2100) 1 ⁺ `	$\rightarrow K_{\rm N}(1760) 1/2$				
→H (990)	0 (A)-	→ X (1430)	0	→ T (2200) 1	L (1770) 1/2(A)				
$S^{*}(1000)$	$0^{+}(0^{+})^{+}$	→ X (1440)	1	→ρ (2275) 1 ⁺	→ K _N (1850)				
φ (1019)	0(1) -	f' (1514)	$0^{+}(2^{+}) +$	→ U (2360) 1	→ K*(2200)				
→ M (1033)		F ₁ (1540)	1 (A)	→ NN (2375) 0	→ K [*] (2800)				
$\rightarrow B_1(1040)$	1 ⁺	ρ ' (1600)	$1^{+}(1^{-})$ -	→ X(2500-3600)					

(1)	Contents	of	Meson	Data	Card	Listings

Meson Table (cont'd)

- indicates an entry in Meson Data Card Listings not entered in the Meson Table. We do not regard these as established resonances.
- See Meson Data Card Listings. ¶
- Quoted error includes scale factor S = $\sqrt{\chi^2/(N-1)}$. See footnote to Stable Particle Table.
- $^{+}$ Square brackets indicate a subreaction of the previous (unbracketed) decay mode(s).
- This is only an educated guess; the error given is larger than the error of the average of the published values. (See Meson Data Card Listings for the latter.) §
- ΓM is approximately the half-width of the resonance when plotted against M^2 . (a)
- For decay modes into \geq 3 particles, p_{max} is the maximum momentum that any of the particles in the final state can have. The momenta have been calculated by using the averaged central mass (b) values, without taking into account the widths of the resonances.
- (c) From pole position (M i $\Gamma/2$). For both ε and S* the pole is on Riemann Sheet 2.
- (d) The e⁺e⁻ branching ratio is from e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$ experiments only. The $\omega\rho$ interference is then due to up mixing only, and is expected to be small. See note in Meson Data Card Listings. The $\mu^{+}\mu^{-}$ branching ratio is compiled from 3 experiments; each possibly with substantial ω_{p} interference. The error reflects this uncertainty; see notes in Meson Data Card Listings. If e_{μ} universality holds, $\Gamma(\rho^{0} \rightarrow \mu^{+}\mu^{-}) = \Gamma(\rho^{0} \rightarrow e^{+}e^{-}) \times$ phase space correction.
- (e) Empirical limits on fractions for other decay modes of $\rho(765)$ are $\pi^{\pm}\gamma < 0.5$ %, $\pi^{\pm}\eta < 0.8$ %, $\pi^+\pi^-\pi^- < 0.15\%, \pi^{\pm}\pi^+\pi^-\pi^0 < 0.2\%.$
- (f) Note that experiments with final state $K_S K_S \omega$ (pp at rest) give M_{ω} = 780.6 ± 0.5[¶].
- (g) Empirical limits on fractions for other decay modes of $\omega(784)$ are $\pi^+\pi^-\gamma < 5$ %, $\pi^0\pi^0\gamma < 1$ %, η + neutral(s) < 1.5%, $\mu^+\mu^- < 0.02$ %, $\pi^0\mu^+\mu^- < 0.2$ %, $\eta\gamma < 0.5$ %.
- (h) Empirical limits on fractions for other decay modes of n'(958): $\pi^+\pi^- < 2$ %, $\pi^+\pi^-\pi^0 < 5$ %, $\pi^+\pi^+\pi^-\pi^- < 1$ %, $\pi^+\pi^-\pi^-\pi^0 < 1$ %, $6\pi < 1$ %, $\pi^+\pi^-e^+e^- < 0.6$ %, $\pi^0e^+e^- < 1.3$ %, $ne^+e^- < 1.1$ %, $\pi^0\rho^0 < 4$ %, $\pi^{0}\omega < 8\%$.
- (i) Empirical limits on fractions for other decay modes of $\phi(1019)$ are $\pi^+\pi^- < 0.03$ %, $\pi^+\pi^-\gamma < 4$ %, $\omega\gamma < 5$ %, $\rho\gamma < 2$ %, $\pi^0\gamma < 0.35$ %, $2\pi^+2\pi^-\pi^0 < 9$ %.
- (j) Empirical limits on fractions for other decay modes of B(1235): $\pi\pi < 15\%$, $K\bar{K} < 2\%$, $4\pi < 50\%$, $\phi\pi < 1.5\%$, $\eta\pi < 25\%$, $(\bar{K}K)^{\pm}\pi^{0} < 8\%$, $K_{S}K_{S} \pi^{\pm} < 2\%$, $K_{S}K_{L} \pi^{\pm} < 6\%$.
- (k) Empirical limits on fractions for other decay modes of f'(1514) are $\pi^+\pi^- < 20\%$, $\eta\eta < 50\%$, $\eta\pi\pi < 30\%$, $K\bar{K}\pi + K^*\bar{K} < 35\%$, $2\pi^+2\pi^- < 32\%$.
- (2) We assume as a working hypothesis that peaks with $I^{G} = 1^{+}$ observed around 1.7 GeV all come from g(1680). For indications to the contrary see Meson Data Card Listings.
- (m) See Q-region note in Meson Data Card Listings. Some investigators see a broad enhancement in mass $(K\pi\pi)$ from 1250-1400 MeV (the Q region), and others see structure. The Kn, K ω , and K π are less than a few percent.
- (n) The tabulated mass of 1421 MeV comes only from charged $K_N(1420) \rightarrow K\pi$ measurements; the average of the <u>neutral</u> $K_N(1420)$ mass is 1423 MeV. Kmm mode can be contaminated with diffractively produced Q^{\pm} .
- (o) Empirical limits on fractions for other decay modes of f(1270) are $\eta\pi\pi$ < 15%; $K^0\bar{K}\pi^+$ + c.c. < 6%.
- The tiny partial width for $\rho' \rightarrow \pi\pi$ ($\Gamma < 2$ MeV) is based on an OPE model.[¶] Empirical limits are $\pi\pi < 20$ %, $K\overline{K} < 8$ %. (p)

$(J^P)C_n$ Nonet members	^θ lin.	^θ quadr.
(0 ⁻)+ π, Κ, η; η'	24 ± 1°	10 ± 1°
(1 [^])- ρ, Κ [*] , φ; ω	36 ± 1°	39 ± 1°
(2 ⁺)+ A ₂ , K _N (1420), f'; f	29 ± 2°	31 ± 2°

Established Nonets, and octet-singlet mixing angles from Appendix IIB, Eq. (2'). Of the two isosinglets, the "mainly octet" one is written first, followed by a semi-colon.

Baryon Table

April 1973

Baryon States for which information can be found in the Data Card Listings. The name, the mass, the quantum numbers, and the status are shown. Those states with four or three stars can be found in the following Table, the others have been omitted because the evidence for the existence of the effect and/or for its interpretation as a resonance is open to considerable question.

N(940) N(1470)	P11 P11	****	∆(1236) ∆(1650)	P33 S31	****	$\Lambda(1115) \\ \Lambda(1330) \\ \Lambda(135)$		**** Dead	$\Sigma(1190) \\ \Sigma(1385) \\ \Sigma(1440)$	P11 P13	****	Ξ(1320) Ξ(1530)	P11 P13	**** ****
N(1520)	D15	****	$\Delta(1670)$	D33	****	$\Lambda(1405)$	501 1	r er er er	$\Sigma(1440)$	PE	Dead	$\Xi(1030)$		**
IN(1535)	511	****	$\Delta(1690)$	P33	*r 	$\Lambda(1520)$	D03 *	r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\Sigma(1480)$	PE	*	$\Xi(1020)$		***
N(1670)	D15	~~~~	A(1890)	F 35	en en en	$\Lambda(1670)$	D01 1	n an an an Is als als als	$\Sigma(1620)$	511	**	$\Xi(1940)$		~~~ ~~
N(1688)	F 15	****	$\Delta(1910)$	P31	****	A(1690)	D03 4	n an an an	2(1620)	P11	~~	$\Xi(2030)$		**
N(1700)	511	****	<u>A(1950)</u>	F37	****	$\Lambda(1750)$	P01 4	6 - 76 1	2(1620)	PE	n n	E(2250)		*
N(1700)	D13	24.24	∆(1960)	D35	*	$\Lambda(1815)$	F.05 %	k ak akate	$\Sigma(1670)$	D13	ste ste ste ste	三(2500)		* *
N(1780)	P11	***	∆(2160)	P33	*	Λ(1830)	D05 *	***	$\Sigma(1670)$	PE	**			
N(1860)	P13	***	∆(2420)	H311	**	Λ(1860)	P03 *	**	$\Sigma(1690)$	\mathbf{PE}	**			
N(1990)	F17	**	∆(2850)		***	$\Lambda(1870)$	S01 *	k \$k	$\Sigma(1750)$	S11	***			
N(2040)	D13	**	∆(3230)		***	Λ(2010)	D03 *	k 2/4	$\Sigma(1765)$	D15	****	$\Omega(1670)$	P03	****
N(2100)	S11	*				Λ(2020)	F07 *	k *	$\Sigma(1840)$	P13	*			
N(2100)	D15	*				Λ(2100)	G07 *	****	Σ(1880)	P11	**			
N(2175)	F15	*				$\Lambda(2110)$	2	ĸ	$\Sigma(1915)$	F15	****			
N(2190)	G17	* **	Z0(1780)	P01	*	$\Lambda(2350)$	2	****	$\Sigma(1940)$	D13	***			
N(2220)	H19	***	Z0(1865)		*	$\Lambda(2585)$	*	***	$\Sigma(2000)$	S11	*			
N(2650)		***	Z1(1900)	P13	*	. ,			$\Sigma(2030)$	F17	****			
N(3030)		***	Z1(2150)		*				$\Sigma(2070)$	F15	*			
N(3245)		*	Z1(2500)		*				$\Sigma(2080)$	P13	**			
N(3690)		*							$\Sigma(2100)$	G17	**			
N(3755)		*							$\Sigma(2250)$		****			
1.(0.00)									$\Sigma(2455)$		***			
									$\Sigma(2620)$		***			
									$\Sigma(3000)$		**			
									_(,					
	_	_												
**** Go ** No	ood, c eeds c	lear, an onfirma	nd unmist ition.	akable	e. *** *	Good, bu Weak.	ut in n	leed of c	larificat	ion of	r not absol	lutely cer	tain.	

** Needs confirmation.

[See notes on N's and \triangle 's, on possible Z^{*} 's, and on Y^{*} 's at the beginning of those sections in the Baryon Data Card Listings; also see notes on <u>individual</u> resonances in the Baryon Data Card Listings.]

-

Particle ^a	I (J ^P)	π or K Beam	Mass	Full	M ²	Partia	decay mode			
	⊢—–∣ estab.	T(GeV) p(GeV/c) $\sigma = 4\pi \lambda^2$ (mb	M ^b (Me∨))	Width Γ ^b (MeV)	±ՐМ ^C (GeV ²)	Mode	Fraction %	p or p _{max} d (MeV/c)		
p n	1/2(1/2 ⁺)		938.3 939.6		0.880 0.883	See	Stable Par	ticle Table		
N' (1470)	$\frac{1/2(1/2^+)}{11}$ P'11	$T=0.53\pi p$ p=0.66 σ =27.8	~1470	165 to 300	2.16 ±0.41	Νπ Νππ [Ν€ [Δπ	60 40 5-30] ^e 20-30] ^e	420 368 173		
						[Νρ pγ ^g nγ ^g	~7] 0.05 0.0	435 435		
N' (1520)	1/2(3/2 ⁻) D' ₁₃	T=0.61 p=0.74 $\sigma=23.5$	1510 to 1540	105 to 150	2.31 ±0.18	Νπ Νππ [Νε	$50 \\ \sim 50 \\ 0-2]^{e} \\ 7 25]^{e}$	456 410		
						[Δπ [Δπ Νη pγ ^g nγ ^g	15-40] ^e 0.2-1.4 0.55 0.30	224 471 471		
N'(1535)	1/2(1/2 ⁻) S' 11	T=0.64 p=0.76 σ=22.5	1500 to 1600	50 to 160	2.36 ±0.18	Νπ Νη Νππ [Νρ ργ ^g	35 55 ~10 1-2] ^e 0. 2-0. 4	467 182 422 481		
						'nγg	0.12	481		

Baryon	Table	(cont'd)
--------	-------	----------

			Baryor	n Tab	le (co	ont'd)			
Pa	rticle ^a	I (J ^P) ⊢—I estab.	$\frac{\pi \text{ or } K \text{ Beam}}{T(\text{GeV})}$ $p(\text{GeV/c})$ $\sigma = 4\pi \lambda^2 \text{ (mb)}$	Mass M ^b (MeV)	Full Width Γ ^b (MeV)	M ² ±∩M ^c (GeV ²	Parti) Mode	al decay mode Fraction %	p or p _{max} d (MeV/c)
	N ['] (1670) ⁱ	<u>1/2(5/2</u>) D'15	T = 0.87 p = 1.00 $\sigma = 15.6$	1670 to 1685	115 to 175	2.79 ±0.24	Νπ Νππ [Δπ ΛΚ Νη pγ ^g nγg	$ \begin{array}{r} 40 \\ 60 \\ 50-60] e \\ <1 \\ <1j \\ 0.01 \\ 0.02 \end{array} $	560 525 357 200 368 572 572
	N'(1688)i	<u>1/2(5/2</u> ⁺) F ['] ₁₅	T=0.90 p=1.03 σ=14.9	1680 to 1690	105 to 180	2.85 ±0.21	Νπ Νππ [Νε [Δπ ΔΚ Νη ργ ^g ηγ ^g	$\begin{array}{c} 60\\ 40\\ 12]e\\ 15]e\\ 13-40]e\\ <0.1\\ <0.3j\\ 0.20\\ 0.01\end{array}$	572 538 340 372 231 388 583 583
•	N'' (1700) ⁱ	1/2(1/2 ⁻) S'' ₁₁	T=0.92 p=1.05 σ=14.3	1665 to 1765	100 to 300	2.89 ±0.42	Νπ Νππ [Νε [Νρ ΔΚ Νη ργ ^g ηγ ^g	$\begin{array}{c} 60\\ 25-30]^{e}\\ 10-20]^{e}\\ 5\\ -3^{j}\\ 0.05-0.1\\ 0.05\end{array}$	580 547 355 250 340 591 591
	N'' (1780)i	1/2(1/2 ⁺) ^{P''} 11	T=1.07 p=1.20 $\sigma=12.2$	1650 to 1860	50 to 350	3.17 ±0.51	Νπ Νππ [Νε [Δπ ΛΚ Νη ργ ^g ηγ ^g	~20 30-40] ^e , h 25-35] ^e , h <7 10-20 ^j 0.01 0.01	633 603 440 445 353 476 643 643
****	N(1860)	$\frac{1/2(3/2^+)}{2} P_{13}$	T=1.22 p=1.36 σ=10.4	1770 to 1860	180 to 330	3.46 ±0.57	Νπ Νππ [Νρ ΛΚ Νη	25 55-65] ^{e, h} ~5 ~4 ^j	685 657 366 437 545
	N(2190)	1/2(7/2 ⁻) G ₁₇	T=1.94 p=2.07 $\sigma=6.21$	2000 to 2260	270 to 325	4.80 ±0.67	Νπ Νππ	25	888 868
	N(2220)	<u>1/2(9/2⁺)</u> H ₁₉	T=2.00 p=2.14 σ=5.97	2200 to 2245	260 to 330	4.93 ±0.65	Νπ Νππ	15	905 887
	N(2650)	1/2(?)	T = 3.12 p = 3.26 $\sigma = 3.67$	~2650	~360	7.02 ±0.95	Νπ Νππ	(J+1/2)x =0.45 ^f	1154 1140
***	N(3030)	1/2(?)	T=4.27 p=4.41 $\sigma=2.62$	~3030	~ 400	9.18 ±1.21	Νπ Νππ	(J+1/2)x =0.05 ^f	1366 1354
	Δ ['] (1236) ^m	$\frac{3/2(3/2^+)}{2} P'_{33}$ Pole positio	T=0.195 (- p=0.304 $\sigma = 91.8$ on ^m : M-i $\Gamma/2$	++) 1230 to 1236 = (1211. 6±	110 to 122 0.7) -i(49	1.53 ±0.14 . 5±1.8)	${\scriptstyle {\rm N}\pi \atop {\rm N}\pi^{+}_{g}\pi^{-} \atop {\rm N}\gamma^{g}}$	99.4 0 ~0.6	231 90 262
	Δ (1650)	<u>3/2(1/2⁻)</u> S ₃₁	T=0.83 p=0.96 σ =16.4	1615 t o 1695	130 to 200	2.72 ±0.28	Νπ Νππ [Νρ [Δπ Νγ ^g	28 72 8-16] ^e 26-32] ^e 0.30	547 511 558 340 558

'article ^a	I (J ^P)	π or K Beam	Mass	Full	м ²	Partial decay mode				
	⊢ estab.	$\frac{T(GeV)}{p(GeV/c)}$ $\sigma = 4\pi \lambda^2 \text{ (mb)}$	M ^b (MeV))	Width Γ ^b (MeV)	±ΓM ^c (GeV ²)	Mode	Fraction %	p or p _{max} d (MeV/c)		
∆ (1670) ∴	3/2(3/2 ⁻) D ₃₃	T=0.87 p=1.00 $\sigma=15.6$	1650 to 1720	175 to 300	2.79 ±0.40	Νπ Νππ [Δπ Νγ ^g	15 22-30] ^e 0.05	560 525 357 572		
△(1890)	$\frac{3/2(5/2^+)}{5}$ F ₃₅	T=1.28 p=1.42 $\sigma=9.88$	1840 to 1920	200 to 350	3.57 ±0.49	Νπ Νππ [Νρ Νγ ^g	17 55-70] ^e 0.03	704 677 403 712		
△(1910)	3/2(1/2 ⁺) P ₃₁	T=1.33 p=1.46 $\sigma=9.54$	1780 to 1935	200 to 340	3.65 ±0.52	Νπ Νππ [Νρ [Δπ Νγ ^g	25 3-16] ^e 4-16] ^e 0.03	716 691 429 543 725		
∆ (1950) \$	$\frac{3/2(7/2^+)}{2}$ F ₃₇	T = 1.41 p = 1.54 σ = 8.90	1930 to 1980	170 to 270	3.80 ±0.44	Νπ Νππ [Νρ [Δπ Νγ ^g ΣΚ Σ(1385)	45 8-12] ^e 14-19] ^e 0.15 ~2)K 1.4	741 716 471 571 749 460 232		
<u>∆(2420)</u>	3/2(11/2 ⁺)	T=2.50 p=2.64 σ=4.68	2320 to 2450	270 to 350	5.86 ±0.75	Νπ Νππ.	11 >20	1023 1006		
Δ (2850)	3/2(? ⁺)	T=3.71 p=3.85 $\sigma=3.05$	~2850	~ 400	8.12 ±1.14	Νπ Νππ	(J+1/2)x =0.25	1266 1254		
Δ(3230)	3/2(?)	T=4.94 p=5.08 g =2.25	~ 3230	~440	10.4 ±1.4	Νπ Νππ	$(J+1/2)_{x}$ =0.05 f	1475 1464		
Z*	Evidence for s Listings for di	tates with hy scussion and	percharge 2 display of c	is contr lata.	oversial.	See the	Baryon Dat	a Card		
Δ 	0(1/2 ⁺)		1115.6		1.24	See Sta	able Particl	e Table		
Λ'(1405)	<u>0(1/2⁻)</u> S' ₀₁	p<0 K ⁻ p	1405 ±5 ⁿ	$40_{\pm 10}$ n	1.97 ±0.06	Σπ	100	142		
Λ'(1520)	0(3/2 ⁻) D' ₀₃	p=0.389 σ=84.5	1518 ±2 ⁿ	$\frac{16}{\pm 2}n$	2.30 ±0.02	ΝΚ Σπ Λππ Σππ	45±1 41±1 10±.5 1.0±.1	234 258 250 140		
Λ''(1670)	0(1/2 ⁻) S'' ₀₁	p =0.74 o =28.5	~1670	15 to 38	2.79 ±0.04	Ν Κ Λ η Σπ	15-35 15-25 30-50	410 64 393		
Λ''(1690)	0(3/2 ⁻) D'' ₀₃	p = 0.78 $\sigma = 26.1$	~1690	27 to 85	2.86 0.09	ΝΚ Σπ Λππ Σππ	20-30 40-70 <25 <25	429 409 415 352		
Λ'(1815)	$\frac{0(5/2^{+})}{100}$ F ¹ ₀₅	p = 1.05 $\sigma = 16.7$	1820 ±5 ⁿ	64 to 104	3.30 ±0.15	NK Σπ Σ (1385)	61 11 π 15-20	542 508 362		
Λ'(1830)	0(5/2 ⁻)D' ₀₅	p = 1.09 $\sigma = 15.8$	1810 to 1840	60 to 150	3.33 ±0.19	ΝΚ Σπ Λππ	~10 20-60	554 519 536		
Λ (2100)	0(7/2 ⁻) G ₀₇	p = 1.68 $\sigma = 8.68$	~2100	60 to 140	4.41 ±0.22		25 ~ 5 < 3 ~ 2 ~ 1	748 699 617 483 443		

Baryon Table (cont'd)

a	. , P.				<i>ii u j</i>	-		
article	I (J.)	$\frac{\pi \text{ or } K \text{ Beam}}{\pi}$	Mass	Full	M ²	Partial c	lecay mode	D. Or
	estab.	r(GeV) p(GeV/c) $\sigma = 4\pi \lambda^2$ (m	(MeV)	Width Γ ^b (MeV)	(GeV ²)	Mode	Fraction %	por d p _{max} d (MeV/c)
Λ (2350)	<u>0</u> (?)	p = 2.29 σ = 5.85	~ 2350	140 to 324	5.52 ±0.55	NK	$(J+1/2)x = 0.7^{f}$	913
Λ(2585)	<u>0(</u> ?)	p=2.91 $\sigma=4.37$	~ 2585	~ 300	6.66 ±0.77	NK	$(J+1/2)x = 1.0^{f}$	1058
Σ	1(1/2 ⁺)		(+)1189.4 (0)1192.5 (-)1197.3		1.41 1.42 1.43	See Sta	ble Partic	le Table
Σ'(1385)	$\frac{1(3/2^{+})}{13}$	p<0K⁻p	(+)1383±1 S=1.3* (-)1386±2 S=2.2*	(+) 34±2 S=2.0** (-)36±6 S=3.5*!	1.92 ±0.05	$\Lambda \pi$ $\Sigma \pi$	89 ±2 11±2	208 117
$\Sigma'(1670)^{\mathbf{k}}$	1(3/2-) D'13	p=0.74	~ 1670	35-65	2.79	NK	~8	410
	Parameters here	are obtaine	ed from par	rtial wave a	±0.00	Δπ	~40	447
	for a D ₁₂ resona	nce. Produ	iction exper	iments sug	gest	Σππ	5-15	326
	two such states; Listings.	see footnot	e k and the	Baryon Da	ta Card	[Λ (1405)π Λ ππ	Je	207 397
Σ''(1750)	1(1/2 ⁻) S'1	p=0.91	1700	50 to	3.05	NK	seen	483
	1 +	σ=20.7	to 1790	100	±0. 13	Λπ	seen	507
						2η	seen	54
Σ (1765)	1(5/2 ⁻) D ₁₅	p=0.94	1765 _n	~120	3.12	NK	~ 41	496
		$\sigma = 19.6$	±5		±0.21	$\Lambda \pi$ $\Lambda (1520)\pi$	~ 13 ~ 15	518
						$\Sigma (1385)\pi$	~ 10	315
						Σπ	~1	461
$\Sigma(1915)^{i}$	$1(5/2^{+})$ F!	p=1.25	1900-193	30 50-100	3,67	NŔ	~14	612
= /	15	$\sigma = 13.0$			±0.14	$\Lambda \pi$	~ 6	619
Formatio	on and production e	experiments	do not agr	ee on Σ⊤/Λ	π ratio.	Σπ	~ 6	568
Σ''(1940)	1(3/2 ⁻)D ¹ / ₂	p=1.32	~1940	~220	3.77	NK		678
	15	$\sigma = 12.0$			±0.43	$\Lambda\pi$	seen	680
		L				$\Sigma\pi$	seen	589
$\Sigma(2030)$	$1(7/2^{+})$ F.	p = 1.52	~2030	100 to	4.12	NK	~ 20	700
_()	= 17	σ=9.93		170	±0.27	Λπ	~ 20	700
						$\Sigma \pi$	~ 4	652
						ΞK	< 2	412
Σ (2250)	1(, ?)	p=2.04	~2250	100 to	5.06	$N\overline{K}$	(J+1/2)x	849 842
		σ=6.76		230	±0.37	<u></u>	-0.3*	799
Σ (2455)	1(?) -	p=2.57 σ=5.09	~ 2455	~120	6.03 ±0.29	NK	(J+1/2)x =0.2f	979
Σ (2620)	1(?)	p =2.95 σ =4.30	~ 2620	~175	6.86 ±0.46	NK	$(J+1/2)x = 0.3^{f}$	1064
Ξ ^ℓ	1/2(1/2 ⁺)	() (0) 1314.9 -)1321.3		1.73 1.75	See Stal	ole Particl	e Table
Ξ (1530)ℓ	1/2(3/2 ⁺) P ₁₃	(0) 1531. S=1.	6 ± 0.4 (0) 3*	9. 1±0. 5	2.34 ±0.01	Ξπ	100	144
= (4.820)	1/2/ 2)	(-/ 1555.	470E +-	12 +0	2 24	A IZ		3.04
≞ (1820)*	1/2(?)		1870	99	± 0.10	Λr. Ξπ		390 413
	All four decay been seen. Br there may be m	modes have anching rati 10re than on	los not quot le state her	ed because		$\Xi (1530)\pi$ ΣK		234 306
Ξ (1940)ℓ	1/2(?)		1894 to 1961	42 to 140	3.72 ±0.18	Ξπ Ξ(1530)π		499 336
	Seen in both fin clear if one, o	nal states; r r more, sta	not ites presen	t.				
<u></u>	0(2/2+)		4672 5		2.00	G . C :	1.1. D	le Teble
12	0(3/2')		1672.5		2.80	See Sta	ble Partic	le Table

Baryon Table (cont'd)

Baryon Table (cont'd)

- Quoted error includes an S(scale) factor. See footnote to Stable Particle Table. * An arrow at the left of the Table indicates a candidate that has been omitted because the evidence for the existence of the effect and (or) for its interpretation as a resonance is open to considerable question. For convenience all Baryon States for which information exists in the Baryon Data Card Listings are listed at the beginning of the Baryon Table. In that list, states with only a one or two star (*) rating have been omitted from the Baryon Table; for additional information on such states, see the Baryon Data Card Listings.
- For the baryon states, the name [such as N'(1470)] contains the mass, which may be different for each new analysis. The convention for using primes in the names is as а. follows: when there is more than one resonance on a given Argand diagram, the first has been designated with a prime, the second with a double prime, etc. The name (col. 1) is the same as can be found in large print in the Baryon Data Card Listings.
- For M and Γ of most baryons we report here an interval instead of an average. Averages Ъ. are appropriate if each result is based on independent measurements, but inappropriate here where the spread in parameters arises because different models or procedures have been applied to a common set of data. Where only one value is given it is either because only one experiment reports that state or because the various experiments agree. An error is quoted only when the various experiments averaged have taken into account the systematic errors.
- For this column M is the rounded average which also appears in the name column. Γ is c. taken as the center of the interval given in the column labeled "I".
- đ. For decay modes into ≥ 3 particles p_{max} is the maximum momentum that any of the particles in the final state can have. The momenta have been calculated using the averaged central mass values, without taking into account the widths of the resonances. For isobars, p is computed using the nominal isobar masses. If the isobar plus stable mass is less than the resonance mass, no value for p is given.
- Square brackets indicate a sub-reaction of the previous unbracketed decay mode. Our estimate is from data in the Baryon Data Card Listings (where available) and from the isobar model Argand plots of HERNDON 72. See the Mini-Review preceding the N* Data Card Listings.
- f.
- This state has been seen only in total cross sections. J is not known; x is Γ_{el}/Γ . The tabulated radiative fractions involve a sum over two helicities (1/2, 3/2). In the case g. of I=1/2 resonances, there are two distinct isospin couplings, whence γp and γn . For further information and conventions, see the Mini-Review preceding the Baryon Data Card Listings.
- These values are particularly crude. Any naive estimate from the Argand plots of HERNDON 72 (see the Mini-Review preceding the N[®] Data Card Listings) yields branching fractions the sum of which is greater than one. The values given have been scaled downh. ward to be consistent with the branching fractions from other (non-isobar) channels.
- i. Only information coming from partial-wave analyses has been used here. For the production experiments results see the Baryon Data Card Listings.
- Value obtained in an energy-dependent partial-wave analysis which uses a t-channel-poles-plus-resonance parametrization. The values of the couplings obtained for the resonances may be affected by double counting. j.
- In this energy region the situation is still confused. In addition to the $D_{13}(1670)$, formation experiments have found evidence for fairly narrow ($\Gamma \sim 50$ MeV) S_{11} and/or P_{11} states near 1620 MeV. It is not clear how many such states really exist. No one has reported a strong coupling of any of these states to KN, but there is much disagreement about branching ratios k. $\pi\Lambda$ and $\pi\Sigma$.
- Only $\Xi(1530)$ is firmly established; information on the other states comes from experiments 0. that have poor statistics due to the fact that the cross sections for S=-2 states are very low. For Z states, because of the meager statistics, we lower our standards and tabulate resonant effects if they have at least a four-standard-deviation statistical significance and if they are seen by more than one group. So $\Xi(2030)$, with main decay mode $\Sigma \overline{K}$, reported as a 3.5standard-deviation effect, is not tabulated. See the Baryon Data Card Listings for the other states.
- See note on $\Delta(1236)$ in the Baryon Data Card Listings. Values of mass and width are dependent upon resonance shape used to fit the data. The pole position appears to be much less dependent upon the parametrization used.
- This is only an educated guess; the error given is larger than the error of the average of the n. published values (see the Baryon Data Card Listings for the latter).

PHYSICAL AND NUMERICAL CONSTANTS*

			PHYSICAL CONSTANTS
Ν		= 6.02216	$59(40) \times 10^{23} \text{ mole}^{-1}$ (based on A _{C12} = 12)
с		= 2.99792	$250(10) \times 10^{10} \text{ cm sec}^{-1}$
e		= 4.8032	$50(21) \times 10^{-10}$ esu = 1.6021917(70) $\times 10^{-19}$ coulomb
1 MeV		= 1.6021	917(70)×10 ⁻⁶ erg
ħ		= 6.5821	$83(22) \times 10^{-22} \text{ MeV sec} = 1.0545919(80) \times 10^{-27} \text{ erg sec}$
ħc		= 1.9732	891(66)×10 ⁻¹¹ MeV cm = 197.32891(66) MeV fermi
		= 0.6240	$088(21) \text{ GeV mb}^{1/2}$
α		$= e^2/\hbar c$	= 1/137.03602(21)
k _{Boltzma}	nn	= 1.38062	22(59)×10 ⁻¹⁶ erg K ⁻¹
DOILZING		= 8.6170	$8(37) \times 10^{-11} \text{ MeV K}^{-1} = 1 \text{ eV}/11604.85(49) \text{K}$
m		= 0.5110	041(16) MeV = 9.109558(54)×10 ⁻³¹ kg
mn		= 938.25	92(52) MeV = 1836.109(11) m _e = 6.72211(63)m _{π^{\pm}}
r		= 1.0072	$7661(8)m_1(\text{where }m_1=1 \text{ amu}=\frac{1}{12}m_{C12}=931.4812(52)\text{ MeV})$
m _d		= 1875.5	87(10) MeV
re		$= e^2/m_e^2$	$c^2 = 2.817939(13)$ fermi (1 fermi = 10^{-13} cm)
λ _e		= $\hbar/m_e c$	$= r_e \alpha^{-1} = 3.861592(12) \times 10^{-11} cm$
^a ∞ Bohr		= \hbar^2/m_e	$e^2 = r_e \alpha^{-2} = 0.52917715(81)A (1A = 10^{-8} cm)$
σ _{Thoms}	on	$=\frac{8}{3}\pi r_{e}^{2}=$	$0.6652453(61) \times 10^{-24} \text{ cm}^2 = 0.6652453(61) \text{ barns}$
μ_{Bohr}		= eħ/2m	$e^{c} = 0.5788381(18) \times 10^{-14} \text{ MeV gauss}^{-1}$
$\mu_{nucleon}$		= eħ/2m	$p^{c} = 3.152526(21) \times 10^{-18} \text{ MeV gauss}^{-1}$
$\frac{1}{2}\omega^{e}_{cyclot}$	ron	$= e/2m_e$	$c = 8.794014(27) \times 10^{\circ} rad sec^{-1} gauss^{-1}$
$\frac{1}{2}\omega^{\rm p}_{\rm cyclot}$	ron	$= e/2m_p$	$c = 4.789484(27) \times 10^{5} rad sec^{-1} gauss^{-1}$
Hydroger	n-like a	tom (nonr	elativistic, μ = reduced mass):
		$\frac{\mathbf{v}}{\mathbf{v}}$) = =	$\frac{ze^2}{zt_{r}}$; E ₁ = $\frac{\mu}{2}v^2 = \frac{\mu z^2 e^4}{2}$; a ₁ = $\frac{n^2 \hbar^2}{2}$
	1.2	2 7 ms	$2(n\hbar)^2$ μze^2
$R_{\infty} = m_e \epsilon$	e ⁴ /2ħ ²	$= m_e c^2 \alpha^2 /$	$^{\prime}2 = 13.605826(45) \text{ eV} (\text{Rydberg})$
pc = 0.3	Hρ(Me\	7, kilogau	ss, cm); 0.3 (which is 10 ⁻¹¹ c) enters because there
are	≈ 300'	"volts"/e	su volt. 7 7
1 year (s	idereal	L)	= $365.256 \text{ days} = 3.1558 \times 10^{\circ} \text{ sec} (\approx \pi \times 10^{\circ} \text{ sec})$
density o	f dry a	ir	= 1.205 mg cm^{-3} (at 20 °C, 760 mm)
accelera	tion by	gravity	$= 980.62 \text{ cm sec}^{-1} (\text{sea level, } 45^\circ)$
gravitati	onal co	nstant	= 6.6732(31)×10 ° cm °g °sec ⁻
1 calorie	(thern	nochemica	(1) = 4.184 joules
1 atmosp	here		= 1033.2275 g cm
1 eV per	particl	le	= 11604.85(49) K (from $E = kT$)
	·	15005	NUMERICAL CONSTANTS
π	= 3.14	15927	$1 \text{ rad} = 57.2957795 \text{ deg} \sqrt{\pi} = 1.7724539$
e	= 2.71	82818	$1/e = 0.3678794$ $\sqrt{2} = 1.4142136$
ln 2	= 0.69	31472	$\ln 10 = 2.3025851 \qquad \text{N}3 = 1.7320508$
109_{10}^{2}	= 0.30	10300	$\log_{10} e = 0.4342945$ $\sqrt{10} = 3.1622777$

*Compiled by Stanley J. Brodsky, based mainly on the adjustment of the fundamental physical constants by B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. <u>41</u>, 375 (1969). The figures in parentheses correspond to the 1 standard deviation uncertainty in the last digits of the main number.

CLEBSCH-GORDAN COEFFICIENTS AND SPHERICAL HARMONICS

SU(3) CONVENTIONS

Since January 1970 we have used the convention that the first particle shall be a baryon, the second a meson (R. Levi Setti, Proceedings of Lund Conference, 1969, p. 339 and Table II). Note, for comparison, that the de Swart table of 8×8 is merely labeled with symbols like $(I_1 = 1/2, Y_1 = 1, I_2 = 1, Y_2 = 0)$, which can be read either as $(N\pi)$ or $(K\Sigma)$. Since there are no decuplet mesons, however, his 8×10 table is unambiguous; it must be read with the meson first.

The de Swart convention violates the other convention that the N,N π coupling shall be D + F (as opposed to -D + F). To get D + F one must use the first line of the "N" table, which reads. $.3\sqrt{5}/10|8_D\rangle + 1/2|8_F\rangle$ as opposed to. $.-3\sqrt{5}/10|8_D\rangle + 1/2|8_F\rangle$. The first line must then be labeled N π rather than K Σ , i.e., with the baryon first.

Levi Setti further advocates the convention of writing the baryon first for SU(2) as well as SU(3). For example, the sign of the amplitudes as plotted on his and our Argand plots comes from using our SU(2) Clebsch-Gordan coefficients (Condon Shortley notation) and writing the baryon first. To make it easier to abide by this universal convention we have changed de Swart's 8×10 (SU(3) table to 10×8 , with the help of his Eq. (14.3):

SU(3) ISOSCALAR FACTORS

Adapted from J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963) (See note on previous page concerning conventions)

 $\{8\} \otimes \{8\} = \{27\} \oplus \{10\} \oplus \{10^*\} \oplus \{8\}_1 \oplus \{8\}_2 \oplus \{1\}.$

try to check someone else who chose $\mu_2 \bigotimes \mu_1$ instead of $\mu_1 \otimes \mu_2$.

 $\{10\} \otimes \{8\} = \{35\} \oplus \{27\} \oplus \{10\} \oplus \{8\}$

* Four single coefficient tables are omitted; only the $\{27\}$ is -1; the three with $\{35\}$ are +1.

C.M. ENERGY AND MOMENTUM VS. BEAM MOMENTUM

 $E_{cm}^{dE} dE_{cm} = m_p^{dT}_{beam} = m_p^{v}_{beam}^{dP}_{beam} \approx m_p^{dP}_{beam}$

PBEAM (MEV/C)		C.M. EI (ME)	NERG¥ V}	MOME	NTUM (MEV.	IN C.' /C)	1	PBEAM (MEV/C)		C.M. EI (ME)	NERGY V)		MOMENT	TUM I (MEV/	IN C.M /C)	•	PBEAM (GEV/C)	C.M	• ENER (GEV)	GY	- MOMENT	UM IN GEV/C)	С.М
	үр ер	πp	Кр рр	үр ер	πp	Кр	pp		үр ер	πp	Кр	рр	үр ер	πp	Кр	рр		γp ep πp	Kp	рр	ΥΡ ep πp	Kp	рр
0 20	939 958 977	1078 1079	1432 187 1432 187 1433 187	7 0 7 20 7 38	0 17 35	0 13 26	0 10 20	1500 1520 1540	1922 1932 1942	1930 1940 1950	2022 2 2031 2 2039 2	254 261 268	732 738 744	729 735 741	696 702 709	624 631 637	3.0 3.2 3.4	2.56	2.61 2.68 2.75	2.77	1.10	1.08	1.02
60 80	996 1015	1089 1096	1434 187 1436 187	7 56 8 74 59 MEV	52 68	39 52	30 40	1560 1580	1951 1961	1959 1969	2048 2 2057 2	275	750 756 MEV	747 753	715 721	643 650	3.6 3.8	2.77	2.82 2.88	2.96 3.02	1.22	1.20 1.24	1.14 1.18
100	1033	1105	1439 187 1441 188	9 91 0 107 2 123	85 101	65 78	50 60 70	1600 1620	1970 1980	1978	2065 2	289 296 304	762 768 773	759 765 770	727	656 662	4.0 4.2	2.90	2.95 3.01	3.08	1.29	1.27	1.22
160 180	1089 1087 1104	1127 1139 1152	1449 188 1449 188 1453 188	2 125 3 138 5 153	132 147	104 116	80 90	1660 1680	1999 2008	2006	2091 2 2100 2	311 318	779 785	776 782	745	674 680	4.6 4.8	3.09 3.15	3.13 3.19	3.25	1.40	1.38	1.33
200 220	1121 1137	1165 1178	= PBEAM = 1457 188 1462 188	92 MEV 7 167 9 182	161	129	99 109	1700 1720	2018 2027	2025	2109 2 2117 2	325	791 796	788 793	756 762	686 692	5.0 5.2	3.21	3.25	= PBEAM 3.36 3.42	1.46	1.44	1.40
240 260 280	1154 1170 1186	1206 1219	1468 189 1474 189 1480 189	2 195 4 209 7 222	202 215	153 166 178	129 138	1740 1760 1780	2038 2045 2054	2053	2126 2 2134 2 2143 2	346 353	807 813	805 810	774 779	704 710	5.6 5.8	3.38 3.43	3.42	3.52	1.56	1.54	1.49
300 320	1201 1217	1233 1247	= PBEAM - 1486 190 1493 190	107 MEV 0 234 3 247	228 241	189 201	148 158	1800 1820	2064 2073	2071	2151 2 2159 2	360	818 824	816 821	785 791	716 721	6.0 6.2	3.49 3.54	3.52	3.63 3.68	1.61	1.60	1.55
340 360 380	1232 1247 1262	1261 1274 1288	1500 190 1507 191 1514 191	6 259 0 271 3 282	253 265 277	213 224 235	167 177 186	1840 1860 1880	2082 2091 2100	2089 2098 2107	2168 2 2176 2 2184 2	374 381 388	829 835 840	827 832 837	796 802 808	733 739	6.4 6.6 6.8	3.59 3.65 3.70	3.63 3.68 3.73	3.78 3.83	1.70	1.65	1.61 1.64 1.67
400 420	1277 1292	1302 1315	= PBEAM - 1522 191 1530 192	115 MEV 7 294 1 305	288 300	247 258	196 205	1900 1920	2108	2115 2124	= PBEAM 2193 2 2201 2	395	845 851	843 848	813 818	744 750	7.0 7.2	3.75	3.78	3.87 3.92	1.75	1.74	1.70
440 460 480	1306 1320 1335	1329 1342 1356	1538 192 1546 192 1554 193	5 316 9 327 3 337	311 322 332	268 279 290	214 224 233	1940 1960 1980	2126 2135 2144	2133 2142 2150	2209 2 2217 2 2226 2	409 416 423	856 861 867	853 859 864	824 829 835	755 761 767	7.6 7.8	3.85 3.89 3.94	3.88	4.02 4.06	1.81	1.82	1.78
500 520	1349 1362	T(P1) 1369 1382	= PBEAM - 1563 193 1572 194	120 MEV 8 348 3 358	343 353	300 310	242 251	2000 2020	2153 2161	2159 2168	= PBEAM 2234 2 2242 2	430 437	872 877	869 874	840 845	772 778	8.0 8.2	3.99 4.04	4.02 4.07	4.11 4.15	1.88	1.87 1.89	1.83
540 560 580	1376 1390 1403	1395 1408 1421	1580 194 1589 195 1598 195	7 368 2 378 7 388	363 373 383	321 331 341	260 269 278	2040 2060 2080	2170 2179 2187	2176 2185 2194	2250 2 2258 2 2266 2	444 451 458	882 887 892	879 885 890	851 856 861	783 789 794	8.4 8.6 8.8	4.08 4.13 4.17	4.11 4.16 4.20	4.20 4.24 4.29	1.95	1.92 1.94 1.96	1.88 1.90 1.93
600 620	1416 1430	T(PI) 1434 1446	= PBEAM - 1607 196 1616 196	123 MEV 2 397 7 407	393 402	350 360	287 295	2100 2120	2196 2204	T(PI) 2202 2211	= PBEAM 2274 2 2282 2	- 135 465 472	MEV 897 902	895 900	866 872	799 805	9.0 9.2	4.22 4.26	4.25 4.29	= PBEAM 4.33 4.37	2.00	1.99 2.01	1.95 1.97
640 660 680	1443 1456 1468	1459 1472 1484	1625 197 1634 197 1644 198	3 416 8 425 4 434	412 421 430	370 379 388	304 313 322	2140 2160 2180	2213 2221 2230	2219 2227 2236	2290 2 2298 2 2306 2	479 486 493	907 912 917	905 910 915	877 882 887	810 815 821	9•4 9•6 9•8	4.31 4.35 4.39	4.33 4.38 4.42	4.41 4.46 4.50	2.05 2.07 2.09	2.03 2.06 2.08	2.00 2.02 2.04
700 720	1481 1494	т (РІ) 1496 1509	= PBEAM - 1653 198 1662 199	125 MEV 9 443 5 452	439 448	397 406	330 339	2200 2220	2238 2246	T(PI) 2244 2253	= PBEAM 2314 2 2322 2	- 135 500 507	922 927	920 925	892 897	826 831	10.0	4.43 4.54	4.46 4.57	= PBEAM 4.54 4.64	2.12 2.17	2.10 2.16	2.07 2.12
740 760 780	1506 1519 1531	1521 1533 1545	1671 200 1681 200 1690 201	1 451 7 470 3 478	457 465 474	415 424 433	347 355 364	2240 2260 2280	2255 2263 2271	2261 2269 2277	2330 2 2338 2 2346 2	514 520 527	932 937 942	930 934 939	902 907 912	836 841 846	11.0 11.5 12.0	4.54 4.74 4.84	4.61 4.77 4.86	4.74 4.84 4.93	2.22 2.28 2.33	2.21	2.18 2.23 2.28
800 820	1543 1555	T(PI) 1557 1569	= PBEAM - 1699 201 1709 202	127 MEV 9 486 5 495	482 490	442 450	372 380	2300 2320	2280 2288	T(PI) 2286 2294	= PBEAM 2353 2 2361 2	- 135 534 541	947 951	944 949	917 922	852 857	12.5 13.0	4.94 5.03	4.96 5.05	= PBEAM 5.03 5.12	2.38	2.36 2.41	2.33 2.38
840 860 880	1567 1579 1591	1580 1592 1604	1718 203 1728 203 1737 204	1 503 7 511 3 519	499 507 515	459 467 475	388 396 404	2340 2360 2380	2296 2304 2312	2302 2310 2318	2369 2 2377 2 2384 2	548 555 561	956 961 966	954 959 963	927 932 937	862 867 872	13.5 14.0 14.5	5.12 5.21 5.30	5.15 5.24 5.32	5.21 5.30 5.39	2.52	2.51	2.43 2.48 2.53
900 920	1603 1615	T(PI) 1615 1627	= PBEAM - 1747 204 1756 205	129 MEV 9 527 6 535	523 531	483 492	412 420	2400 2420	2320 2328	2326 2334	= PBEAM 2392 2 2400 2	- 135 568 575	970 975	968 973	941 946	877 882	15.0 16.0	5.39 5.56	5.41 5.58	= PBEAM 5.47 5.64	2.61	2.60 2.69	2.57
940 960 980	1626 1638 1649	1638 1649 1661	1765 206 1775 206 1784 207	2 542 9 550 5 558	538 546 554	500 508 515	428 435 443	2440 2460 2480	2336 2344 2352	2342 2350 2358	2407 2 2415 2 2423 2	582 589 595	980 984 989	977 982 987	951 956 960	887 892 897	17.0 18.0 19.0	5.73	5.91 6.07	5.81 5.97 6.12	2.78 2.87 2.95	2.86	2.75 2.83 2.91
1000 1020	1660 1672	1672 1683	= PBEAM - 1794 208 1803 208	130 MEV 2 565 8 573	561 569	523 531	451 458	2500 2520	2360 2368	2366 2374	= PBEAM 2430 2 2438 2	- 136 602 609	994 998	991 996	965 970	901 906	20.0	6.20 6.49	6.22 6.51	= PBEAM 6.27 6.56	3.03	3.02 3.17	2.99
1040 1060 1080	1683 1694 1705	1694 1705 1716	1812 209 1822 210 1831 210	5 580 2 587 8 594	575 583 591	538 546 553	466 473 481	2540 2560 2580	2376 2384 2392	2382 2390 2398	2445 2 2453 2 2460 2	616 622 629	003 1 007 1 012 1	001 005 010	975 979 984	911 916 921	24.0 26.0 28.0	6.78 7.05 7.31	7.07	7.11 7.37	3.32 3.46 3.59	3.31 3.45 3.59	3.29 3.43 3.56
1100 1120	1716 1727	T(PI) 1726 1737	= PBEAM - 1840 211 1850 212	131 MEV 5 601 2 609	598 605	561 568	488 495	2600 2620	2400 2408	2405 2413	= PBEAM 2468 2 2475 2	636 1 643 1	MEV 1017 1 1021 1	014 019	988 993	926 930	30.0 32.0	7.56 7.81	7.58 7.82	7.62 7.86	3.72	3.71 3.84	3.69 3.82
1140 1160 1180	1738 1748 1759	1748 1758 1769	1859 212 1868 213 1877 214	9 616 5 622 2 629	612 619 626	575 583 590	502 510 517	2640 2660 2680	2415 2423 2431	2421 2429 2436	2483 2 2490 2 2498 2	656 1 663 1	1025 1 1030 1 1034 1	023	1002 1007	935 940 944	36.0 38.0	8.04 8.27 8.50	8.00	8.33	4.08 4.20	4.08	4.06 4.17
1200 1220	1770 1780	T(PI) 1780 1790	= PBEAM - 1887 214 1896 215	131 MEV 9 636 6 643	633 639	597 604	524 531	2700 2720	2439 2446	2444 2452	= PBEAM 2505 2 2512 2	- 136 669 1 676 1	MEV 1039 1 1043 1	037 041	1011 1016	949 954	40.0	8.72 8.93	8.73 8.94	= PBEAM 8.77 8.98	4.31	4.30 4.41	4.28 4.39
1240 1260 1280	1791 1801 1812	1800 1811 1821	1905 216 1914 217 1923 217	3 650 0 656 7 663	646 653 660	611 618 624	538 545 552	2740 2760 2780	2454 2462 2469	2459 2467 2474	2520 2 2527 2 2534 2	2682 1 2689 1 2696 1	1048 1 1052 1 1056 1	045 050 054	1020 1025 1029	958 963 968	44.0 46.0 48.0	9.14 9.34 9.54	9.15 9.35 9.55	9.18 9.39 9.58	4.52 4.62 4.72	4.51 4.62 4.72	4.50 4.60 4.70
1300 1320	1822 1832	1831 1841	= PBEAM - 1932 218 1941 219	132 MEV 4 669 1 676	666 673	631 638	559 565	2800 2820	2477 2484	2482 2490	2542 2 2549 2	702 I 709 I	5 MEV 1061 1 1065 1	058 063	1034 1038	972 977	50.0	9.73 10.65	9.74	9.78 10.69	4.82	4.81 5.28	4.80 5.26
1340 1360 1380	1843 1853 1863	1851 1862 1872	1950 219 1959 220 1968 221	8 682 5 689 2 695	679 685 692	645 651 658	572 579 585	2840 2860 2880	2492 2499 2507	2497 2505 2512	2556 2 2563 2 2570 2	722 1 728 1	L069 1 L074 1 L078 1	067 071 076	1042 1047 1051	981 986 990	80.0 90.0	11.50 12.29 13.03	11.51 12.30 13.04	11.54 12.32 13.06	5./1 6.11 6.48	6.10 6.48	5.69 6.09 6.46
1400 1420	1873 1883	f(PI) 1881 1891	= PBEAM - 1977 221 1986 222	133 MEV 9 701 6 708	698 704	664 671	592 599	2900 2920	2514	2520 2527	2578 2 2585 2	- 136 2735 1 2742 1	5 MEV 1082 1 1086 1	080	1056	995 999	100.0	13.73	13.74 19.40	= PBEAN 13.76 19.42	6.83 9.67	9.65V 9.67	6.82 9.66
1440 1460 1480	1893 1903 1912	1901 1911 1921	2004 224 2013 224	0 720 7 726	717 723	684 690	612 618	2940 2960 2980	2529 2537 2544	2534 2542 2549	2599 2 2599 2 2606 2	2755 1 2761 1	1091 1 1095 1 1099 1	093 097	1064 1069 1073	1004 1008 1013	1000.0	43.33 53.06	43.33 53.06	43.34 53.07	21.65	21.65 26.52	21.65 26.52
			· DEAN	*** UCV				-			. OLA:						-				• • • •		

SPECIAL RELATIVITY, PHASE SPACE, AND CROSS SECTIONS

Notation. 4-vector in c.m. $p = (w, \vec{p})$; in lab $P = (W, \vec{P})$, T = W-m. Solid-angle element $d\omega = 2\pi d \cos \theta$; $d\Omega = 2\pi d \cos \Theta$, $p^2 = w^2 - \vec{p}^2 = m^2$ is an invariant. Cross section σ is invariant.

Lorentz Transformation

/*\	/ Ţ	- <i>η</i>	0	$\left(\frac{w}{w} \right)$	If θ and Θ are measured with respect
$\begin{pmatrix} P_{\mathbf{x}} \\ P_{\mathbf{y}} \\ P_{\mathbf{y}} \end{pmatrix} =$	- <u>7</u> 0 0	₹ 0 0	0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_y \end{pmatrix}$	to the transformation axis x, $\frac{P_{\perp}}{P_{\mu}} = \tan \theta = \frac{ \vec{P} \sin \Theta}{\pi W (\pi \vec{D} \cos \Theta)}.$ (1)

If particle 1 is beam, 2 is target, then $(W_2, \vec{P}_2) = (m_2, \vec{0})$ and $\overline{\gamma} = (W_1 + m_2)/\sqrt{s}, \ \overline{\eta} \equiv \overline{\gamma}\overline{\beta} = |\vec{P}_1|/\sqrt{s}, \ |\vec{P}_1| = |\vec{P}_2| = \overline{\eta}m_2 = |\vec{P}_1|m_2/\sqrt{s}.$ (2) For $m_1 = m_2, \ \overline{\gamma}^2 = 1 + T_1/2m_1.$

$$\begin{array}{l} \underline{\text{General Lorentz Transformation}}_{\overline{\eta}} \left[\text{characterized by } \vec{\beta}, \text{ with } \vec{\gamma} = (1 - \vec{\beta}^2)^{-1/2} \\ \text{and } \vec{\overline{\eta}} = \frac{\vec{\gamma}}{\vec{\gamma}} \vec{\beta} \\ \underline{\vec{\beta}}; \quad w = \vec{\gamma} W = \vec{\eta} \cdot \vec{P}; \quad \vec{p} = \vec{P} - \vec{\eta} \quad \underbrace{W + w}_{\overline{\gamma} + 4} \\ \end{array} \right.$$

<u>A Useful Transformation</u>: Consider two 4-vectors $Q = (E, \vec{Q})$ and $q = (e, \vec{q})$. In the rest frame of Q $[Q^{1} = (M, \vec{0})]$, q becomes $(q \rightarrow q')$ $e^{1} = Q \cdot q/M$ and $\vec{q}' = \vec{q} - f\vec{Q}$,

where $Q^2 = M^2$ and f = (e + e)/(E + M). These equations follow from example (b), p. 34 of Hagedorn. They are particularly useful when Q is a sum of four-vectors that correspond to a resonant state.

<u>Invariants.</u> Notation: $1 + 2 \rightarrow 1' + 2'$.

$$\mathbf{s} = (\mathbf{p}_{1} + \mathbf{p}_{2})^{2} = \mathbf{m}_{1}^{2} + \mathbf{m}_{2}^{2} + 2(\mathbf{w}_{1}\mathbf{w}_{2} - \vec{\mathbf{p}}_{1}, \vec{\mathbf{p}}_{2}), \qquad (3)$$

$$t = (p'_{i} - p_{i})^{2} = m_{i}^{2} + m_{i}^{*2} - 2(w_{i}w'_{i} - \vec{p}_{i} \cdot \vec{p}_{i}), \quad (i = 1, 2), \quad (4)$$

 $u = (p'_1 - p'_2)^2 = (p'_2 - p'_1)^2$ [use (6), below]. (5)

General relation: $s + t + u = m_1^2 + m_1'^2 + m_2'^2 + m_2'^2$. (6) In lab system $P_2 = (m_2, \vec{0})$, and writing W = m + T,

$$s = m_1^2 + m_2^2 + 2W_1m_2 = (m_1 + m_2)^2 + 2T_1m_2$$
, (3,1ab)

 $t = m_2^2 + m_2'^2 - 2W_2m_2 = (m_2 - m_2')^2 - 2T_2'm_2.$ (4,1ab)

In c.m. system dt = $+2|\vec{p_1}||\vec{p_1}|d\cos\theta$. (4,cm) For elastic scattering (m₁ = m'₄, m₂ = m'₂), (4) and (5) in c.m. become $t = -2\vec{p}^2$ (1 - cos θ) = $-4\vec{p}^2 \sin^2\theta/2$. (4,el)

$$\begin{array}{l} t = -2p \quad (1 - \cos\theta) = -4p \quad \sin \theta/2 , \\ u = (m_4^2 - m_2^2)^2/s - 2p^2(1 + \cos\theta) = (m_4^2 - m_2^2)^2/s - 4p^2\cos^2\theta/2 . \\ \end{array}$$
(4,el)
For elastic scattering, using (4,lab), (4,el), and (2),

$$T'_{2} = \frac{2\vec{P}_{1} \frac{2}{m_{2}}}{s} \sin^{2}\left(\frac{\theta}{2}\right) \text{ (useful for calculating } \delta\text{-ray energies).}$$
(7)

Two-Body States. Energies and momenta in c.m.

$$w_{1} = \frac{s + m_{1}^{2} - m_{2}^{2}}{2\sqrt{s}}, \quad \vec{p}_{1}^{2} = \vec{p}_{2}^{2} = \frac{1}{4s} \left[s - (m_{1} + m_{2})^{2} \right] \left[s - (m_{1} - m_{2})^{2} \right]. \quad (8)$$

<u>3- and 4-Body States</u>. Let $m_{ij}^2 = (p_i + p_j)^2$, etc.; then

$$\sum_{i < j} m_{ij}^2 = \sum m_i^2 + m_{123}^2 = \text{const.} (i, j = 1, 2, 3) \text{ [follows from (6)]}$$
(9)
$$= 2\sum m_i^2 + m_{1234}^2 = \text{const.}$$
(1)

$$\sum_{i < j < k} \frac{2}{i j k} = \sum_{i = 1}^{2} \frac{2}{1234} = \text{const.}$$
 (10)

R_n, Invariant Volume in n-Body Momentum Space

A useful invariant is $\int d^4 p \, \delta(p^2 - m^2) = \int \frac{d^3 \vec{p}}{2w} = \int \frac{p^2 d |\vec{p}| d\omega}{2w} = \frac{1}{2} \int |\vec{p}| dw d\omega$. $R_2 = \pi |\vec{p}_1| / \sqrt{s}, R_3 = \pi^2 \int dw_1 dw_2 = (\pi^2 / 4s) \int dm_{12}^2 dm_{23}^2$.

<u>Recurrence Relation for Factoring R_n (see e.g., Hagedorn, p. 93^{*}):</u>

Write N + 1, 2, ..., k, k + 1, ..., n (R_n),
as N + K, k + 1, ..., n (R_{n-k+1})
or as N + K, L
+ 1, 2, ..., k (R_k)

$$\begin{pmatrix} \text{then} \\ R_n = \int d(m_K^2) R_k R_{n-k+1}, \\ k + 1, ..., n (R_k) \\ + 1, 2, ..., k (R_k) \end{pmatrix} \begin{pmatrix} \text{then} \\ R_n = \int d(m_K^2) d(m_L^2) R_k R_k \frac{\pi P(KL)}{\sqrt{s}} \end{pmatrix}$$

Cross Sections and Decay Rates[†]

or

For a system of n particles with overall four-momentum p and final momenta $q_1, \cdots, q_n [q_i = (e_i, \tilde{q_i})]$, define Lorentz Invariant Phase Space

$$d LIPS(s; q_1, \cdots, q_n) = (2\pi)^4 \delta^4(p - \sum_i q_i) \frac{1}{(2\pi)^3 n} \prod_{i=1}^n \frac{d^3 \vec{q}_i}{2e_i}.$$
 (11)

Note that $R_n = (2\pi)^{3n-4} \int dLIPS$. For 1 + 2 + n particles or 1 + n particles, in general $|i\rangle + |f\rangle$,

$$\sigma_{if} = \frac{1}{4F} \int |\mathbf{T}_{if}|^2 d \operatorname{LIPS}(\mathbf{s};\mathbf{q}_1, \cdots, \mathbf{q}_n) , \qquad (12)$$

$$\Gamma_{if} = \frac{1}{2m_{1}} \int |T_{if}|^{2} dLIPS(m_{1}^{2}; q_{1}, \dots, q_{n}), \qquad (13)$$

where T_{if} is an invariant matrix element. F is Møller's invariant flux factor, $F^2 = (p_1 \cdot p_2)^2 - p_1^2 p_2^2$. In every system where \vec{p}_1 and \vec{p}_2 are collinear, $F = w_4 w_2 | \vec{v}_1 - \vec{v}_2 | (\vec{v} = \vec{p}/w)$. If 1 is beam, 2, target $(\vec{p}_2 = 0)$, then $F = |\vec{P}_1| m_2 = |\vec{p}_1| \sqrt{s}$.

For elastic scattering in c.m.,
$$\frac{d \text{LIPS}}{d\Omega} = \frac{1}{(4\pi)^2} \frac{\left|\vec{P}_1\right|}{\sqrt{s}}$$
, and (12) yields

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{|\mathrm{T}|^2}{(8\pi)^2 \mathrm{s}} \text{ or } \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{|\mathrm{T}|^2}{64\pi |\mathbf{p}_1|^2 \mathrm{s}}.$$
 (14)

The normalization is such that the optical theorem reads

$$\operatorname{Im} T \Big|_{t=0} = 2 \Big| \overline{p}_1 \Big| \sqrt{s} \sigma_{\text{tot}} .$$
 (15)

The choice of Eq. (11) implies a particular normalization of any spinors that may occur in T.[†] The advantage of this normalization is that it greatly simplifies the structure of T by putting factors such as $\frac{4}{(2\pi)^3}\frac{4}{2E}$ into the phase space where they really belong. In addition, the labels, i, f, refer to specific spin (helicity) states, so that the usual "average and sum" rule is implicit.

^{*}R. Hagedorn, <u>Relativistic Kinematics</u>, W. A. Benjamin, New York, 1964.
 [†]See, for example, Chaps. 1 and 2 of H. Pilkuhn, <u>The Interactions of Hadrons</u>, John Wiley & Sons, New York, 1967.

$$P(x, \overline{x}) = \overline{x}^{x} e^{-x} / x!$$

Approximation for n! :

$$\sqrt{2\pi n} (n/e)^n < n! < \sqrt{2\pi n} (n/e)^n [1 + 1/(12n - 1)]$$

Relation between standard deviation σ and mean deviation α :

$$2\sigma^2 = \pi \alpha^2$$
; $\sigma = 1.4826$ probable error.

Odds against exceeding one standard deviation = 2.15:1; two, 21:1; three, 370:1; four, 16,000:1; five, 1,700,000:1.

Material	z	A	Nominal ^a Sectior ba r ns	Cross	Nomin Leng g cm ⁻	al Collision gth L _{Coll} b 2 cm	Absorption Length ^{m, n} λ , cm	dE/d <u>MeV</u> g/cm	x^{c} min. MeV a^{2} cm	Radiatio Lrad ^d g cm ⁻²	n Length cm	Density g cm-3
H ₂	1	1.01	0.063		26.5	374 ^e		4.13	0.292 ^e	62.8	887 ^e	0.0708 ^e
D ₂	1	2.01	0.100		33.4	202 ^e		2.07	0,342 ^e	126	764 ^e	0.165 ^e
He	2	4.00	0.16		42.0	336 ^e		1.94	0.243 ^e	93.1	745 ^e	0.125 ^e
Li	3	6.94	0.23		50.4	94.4		1.69	0.902	83.3	156	0.534
Be	4	9.01	0.28		55.0	29.8	39.5	1.60	2.96	66.0	35.7	1.848
С	6	12.01	0.33	р р	60.4	f		1.78	f	43.3	f	≈1.55 ^f
N ₂	7	14.01	0.36	an.	63.6	78.7 ^e		1.81	1.46 ^e	38.6	47.8 ^e	0.808 ^e
Ne	10	20.18	0.465	s S	72.1	60.1 ^e		1.73	2.08 ^e	29.1 ⁱ	24.3 ^e ,	1.200 ^{e,k}
Al	13	26.98	0.57	lote	79.2	29.3	38.8	1.62	4.37	24.3	9.00	2.70
Fe	26.	55.85	0.92	é	101.2	12.9	17.1	1,48	11.6	13.9	1.77	7.87
Cu	29	63.54	1.00	s	105.4	11.8	15.6	1.44	12.9	13.0	1.45	8.96
Sn	50	118.69	1.55	ΰ	129.7	17.7		1.28	9.4	8.9	1.22	7.31
W	74	183.85	2.02	II	150.8	7.81		1.17	22.6	6.8	0.35	19.3
Рb	82	207.19	2.20	AR	156.2	13.8	18.3	1.13	12.8	6.4	0.56	11.35
U,	92	238.03	2.42	M	163.6	≈ 8.63		1.09	≈ 20.7	6.1	≈0.32	≈18.95
Air					64.6	53610 ^g		1.81	0.0022 ^g	37.2	30870 ^g	0.001205 ^g
Freon (CF	3Br)				87.1	≈ 58		1.52	≈2.3	16.7	≈11	≈1.5
H ₂ (bubble	echan	nber, 27°	к)	d b	26.5	442 ^h		4.13	0.248 ^h	62.8	1050 ^h	≈0.060 ^h
H-Ne mix	ture (1	oubble cha	umber) ^J	an	67.3	96.1		1.83	1.28	29.8 ⁱ	42.6 ⁱ	0.70
H ₂ O				່ ຕີ ຜ	57.2	57.2		2.03	2.03	36.4	36.4	1.00
Ilford Em	ulsion			ote	103.0	27.0		1.44	5.49	11.2	2.94	3.815
LiF				en	63.8	24.2		1.69	4.46	39.8	15.1	2.64
Mylar (C ₅	H402)			Se	59.1	42.8		1.91	2.64	40.4	29.3	1.38
NaI				ΰI	119.0	32.4		1.32	4.84	9.5	2.59	3.67
Polyethylene (CH ₂)					51.0	≈ 55		2.09	່≈1.92	45.3	≈ 49	≈0.92
Polystyre	ne (CF	I) ^ℓ [≈Sci	ntillator]	R	54.9	≈ 52	68.5	2.03	≈2.13	44.3	≈ 42	≈1.05
Propane (с ₃ н ₈ ,	bubble c	hamber)	7M	48.9	119		2.28	0.94	45.9	112	0.41

ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

a. $\sigma = \sigma_{\text{nominal}} = \pi(\hbar/m_{\pi}c)^2 \times A^{2/3} = 62.8 \text{ mb} \times A^{2/3}$ b. $L_{\text{coll}} = A/[N\sigma_{\text{natural}}] = 26.5 \text{ g cm}^{-2} \times A^{1/3}$ $\begin{cases} \text{NOTE: These quantities are calculated assuming a "nuclear" radius" = (<math>\hbar/m_{\pi}c$) $A^{1/3} = (1.4f) A^{1/3}$. But attenuation of 25 GeV/c protons^m and 20 GeV/c neutronsⁿ is only 3/4 nominal.

 $L_{coll} = A/(N\sigma_{natural}) = 26.5 \text{ g cm}^{-2} \times A^{1/3}$

From W. H. Barkas and M. J. Berger, <u>Tables of Energy Losses and Ranges of Heavy Charged Particles</u>, NASA SP-3013 (1964). Mainly from O. I. Dovzhenko and A. A. Pomanskii, Soviet Physics JETP <u>18</u>, 187 (1964). с.

d.

For liquid phase at 1 atm. and boiling temperature. Density variable. At 20° C.

e. f.

g. h.

j. k. l.

At 20° C. May vary by about $\pm 3\%$, depending on operating conditions. From F. R. Huson, <u>Ionization Loss, Range, Straggling and Multiple Scattering</u>, BNL 11386 (1967). 53.7 atomic percent Ne. Density of gas at STP = 0.900×10^{-3} g cm⁻³, i.e., 0.75×10^{-3} times the density (1.200) of the boiling liquid. Typical scintillator; e.g., PILOT B has an atomic ratio H/C = 1.1. G. Cocconi, Proc. 1960 Rochester Conf., p. 804, Fig. 6, find for attenuation, r (nuclear) = 1.23 A^{1/3}. J. Engler et al., Nucl. Instr. and Meth. 106, 189 (1973) report λ (Fe) = (17. 1±0.3) cm, λ (Scintillator) = (68. 5±1.5) cm. m. n.

MULTIPLE COULOMB SCATTERING*

The rms projected angle θ due to multiple Coulomb scattering (only) of a particle of charge z (in units of electron charge), momentum p (in MeV/c), and velocity v (in units of c) is

$$\theta_{\text{proj}} = z \frac{15}{pv} \sqrt{\frac{L}{L_{rad}}} (1 + \epsilon) \text{ radians;}$$

where L = length in scatterer.

For L \geq 1/10 L_{rad}, ϵ is generally < 1/10. The distribution of θ is not truly Gaussian.†

The rms projected displacement y on traversing an absorber of thickness L is

 $y_{\rm rms} = L\theta_{\rm proj}/\sqrt{3}$.

RADIOACTIVITY AND RADIATION PROTECTION

Unit of activity = Curie: 1 Ci = 3.7×10^{10} disintegrations/sec

Unit of exposure dose for x and γ radiation = Roentgen: 1 R = 1 esu/cm³ = 87.8 erg/g (5.49×10⁷ MeV/g) of air Unit of absorbed dose = rad:

Unit of absorbed dose = rad: 1 rad = 100 erg/g (6.25×10^7 MeV/g) in any material Unit of dose equivalent (for protection) = rem: rems (Roentgen equivalents for man) = rads×QF,

rems (Roentgen equivalents for man) = rads \times QF, where QF (quality factor) depends upon the type of radiation and other factors. For γ rays and HE protons, QF \approx 1; for thermal neutrons, QF \approx 3; for fast neutrons, QF ranges up to 10; and for α particles and heavy ions, QF ranges up to 20. Maximum permissible occupational dose for the whole body: 5 rem/year (or \approx 100 millirem/week) Fluxes (per cm²) to liberate 1R in carbon: 3×10^7 minimum ionizing singly charged particles $\alpha 0.0140^9$ metators of 4 MeM summers.

 3×10^7 minimum ionizing singly charged particles 0.9×10^9 protons of 1 MeV energy

(These fluxes are correct to within a factor of 2 for all materials.) Natural background: 120 to 130 millirem/year

atural background, 120 to 150 millinem/ year	~~~	
cosmic radiation (charged particles + neutrons)	~25) द्व	
cosmic radiation (y rays)	~ 25 } 5	
radiation from rocks and air (y rays)	~ 73) ដ	
	. н	

н

Cosmic ray background in counters: ~ 1/min/cm²/ster

^{*}Mainly from G. Z. Molière, Naturforsch. 3(a), 78 (1948). [†]See, for example, the experimental work of A. D. Hansen, L. H. Lanzl, E. M. Lyman, and M. B. Scott, Phys. Rev. <u>84</u>, 634 (1951).

RANGE AND ENERGY LOSS IN COPPER

Range and energy/momentum loss in copper, based on a calculation assuming a nominal mean excitation potential of 310 eV. (Calculation by W. A. Aron, UCRL-1325, 1951). The abscissa is to be read as kinetic energy T for the solid curves and momentum p for the dashed curves.

See scaling law at bottom of next page.

RANGE AND ENERGY LOSS IN LIQUID HYDROGEN

<u>Scaling law for particles of other mass or charge</u>: for a given medium, the range R_b of any beam particle with mass M_b , charge z_b , and momentum p_b is given in terms of the range R_a of any other particle with mass M_a , charge z_a , and momentum $p_a = p_b M_a / M_b$ (i. e., having the same velocity) by the expression

$$R_{b}(M_{b}, z_{b}, p_{b}) = \left[\frac{M_{b}/M_{a}}{z_{b}^{2}/z_{a}^{2}}\right] R_{a}(M_{a}, z_{a}, p_{a} = p_{b}M_{a}/M_{b}).$$

CROSS SECTION PLOTS

 $\sigma_{\rm tot}(\gamma p) \; {\rm and} \; \sigma_{\rm tot}(\gamma d) \; {\rm as} \; {\rm compiled} \; {\rm by} \; {\rm G}.$ M. Lewis, Glasgow.

σ_T (K[~]d)

σ_T (Κ ͡p)

Total energy of Kp system (GeV)

-4(2100)

2.0

[2035]

1.8

-2(1770) -- A(1815) Z (1910) K p

 K^-d

ŧ

55

20

2.4

10

12260 V(2340)

2,2

 K^-N

I=1,

0

2.2

Compiled and unfolded by G. R. Lynch,

Proc. 1970 Duke Baryon Conference.

K⁻ laboratory momentum (GeV/c)

1.4

1.8

1.0

CROSS SECTION PLOTS

From A. Barbaro-Galtieri in Advances in Particle Physics, Vol. 2, edited by R. L. Cool and R. E. Marshak (Wiley & Sons, 1968). The points at 55 GeV/c are taken from IHEP-CERN Collab., Phys. Letters 30B, 500 (1969).

CROSS SECTION PLOTS

DATA CARD LISTINGS

Illustrative Key (cont'd)

Measurement techniques

T

Abbreviations

Journals APA ADV

APAH	Acta Phys. Acad. Hungarica	1.11	ASPK	Automatic spark chambers
ADVP	Advances in Physics		CC	Cloud chamber
ANP	Annals of Physics	1	CNTR	Counters, electronics
ARNS	Annual Reviews of Nuclear Science		DBC	Deuterium bubble chamber
BAPS	Bulletin of the American Physical Society	1	DPWA	Energy-dependent partial wave analysis
JETP	English Translation of Soviet Physics JETP		EMUL	Emulsions
JETPL	Letters to Soviet Physics JETP		HBC	Hydrogen bubble chamber
LNC	Letters to Nuovo Cimento	1 .	HEBC	Helium bubble chamber
NC	Nuovo Cimento		HLBC	Heavy liquid bubble chamber
NP	Nuclear Physics		IPWA	Energy-independent partial wave analysis
PL	Physics Letters	1	MMS	Missing mass spectrometer
PN	Particles and Nuclei		MPWA	Model-dependent partial wave analysis
PPSL	Proceedings of the Physical Society of London		OSPK	Optical spark chambers
PR	Physical Review	1	RVUE	Review of previous experimental data
PRL	Physical Review Letters	10	STRC	Streamer chamber
PRSL	Proceedings of the Royal Society of London		Conformation	
RMP	Reviews of Modern Physics	1.1	Conferences	<u>-</u>
SJNP	Soviet Journal of Nuclear Physics	1	Conferen	aces are referred to by the location in which they
ZPHY	Zeitschrift für Physik	1	were held (e.g., DUBNA, BOULDER, LUND, etc.).

Institutions

 YY Zeitschrift für Physik
 Jons
 TECHNISCHE UNIV. AACHEN ATOMIC EVERSY RES. ESTAB. WILLOG EVERSY RES. ENTER WILLOG EVERSY RES. WILLOG CARNET EVERSY RES. WILLOG CARNET EVERSY RES. WILLOG CARNET EVERSY RESERVENTY. CARAGE EVERSION WILLOG WILLOG EVERSY RES. WILLOG CARNET EVERSY RESERVENTY. CARAGE EVERSION WILLOG WILLOG EVERSY RESERVENTY. CARAGE EVERSION WILLOG CARNET EVERSY RESERVENTY. CARAGE EVERSION WILLOG WILLOG EVERSION WILLOG WILLOG EVERSION WILLOG WILLOG EVERSION WILLOG CARAGE EVERSION WILLOG WILLOG EVERSION WILLOG WILLOG EVERSION WILLOG WILLOG FERST INST. OF TECHNOLOGY WILLOG EVERSION WILLOG WILLOG FERST WILL LINZ LIVP LOIC LOQM LOUC LOWC LPNP

LOUISIANA STATE UNIV. UNIV. J LUNG MATATTAR LOULER MATATTAR TO COLLEGE UNIV. AAINZ UNIV. OF MASSACHUSETTS UNIV. OF MASSACHUSETTS UNIV. OF MASSACHUSETTS UNIV. OF MASSACHUSETTS UNIV. OF MICHICAN MASSACHUSEN MASSACHUSEN MASSACHUSEN UNIV. OF MASSACHUSEN MASSACHUSEN UNIV. OF MASSACHUSEN MASSA UNIV. OF WYOMING YALE UNIV. ZEEMAN LAB., UNIV. OF AMSTERDAM

LSUDMANNIA LNADNIA MANNASAB MCGLISANNA MITIAN MANASAB MCGLISANNA MITIAN MITIAN MANASAB MITIAN MANASAB MITIAN MITIAN MANASAB MITIAN MITI

VPI WARS WASH WIEN WILL WISC WOOD WUSL WYOM YALE ZEEM

BATON ROUGE, LA., USA LUDRINGER, LA., USA LUDRINGER, N. Y., USA MAINJ, GERMAMY MAINJ, GERMAMY AMINJ, GERMAMY MAINJ, GERMAMY MANERSTE, NSS., USA ODJIGH, MASS., USA ODJIGH, MASS., USA MATERST, MARGE, NICH., USA MILANG, TIAN, TALY MINNEGAULIS, MINH, USA MODENA, ITALY MUNICH, GERMANY MESSINA, ITALY MUNICH, GERMANY MESSINA, ITALY MUNICH, GERMANY MESSINA, TALY MUNICH, GENMANY MESSINA, TALY MUNICH, GENMANY MESSINA, USA MUNICH, GENMANY MESSINA, TALY MUNICH, GENMANY MESSINA, TALY MUNICH, GENMANY MESSINA, USA MENDANY MESSINA, MININGKA, USA MUNICH, GENMANY MESSINA, USA MENDANY MESSINA, MININGKA, USA MUNICH, GENMANY MUNICH, GENMANY MUNICH, MENDANY MESSINA, MININGKA, USA MUNICH, MUNICH, MININGKA MUNICH, MININGKA, USA MENDANY MESSINA, MININGKA, USA MENDANY MESSINA, MININGKA, MININGKA MUNICH, MININGKA, MININGKA MUNICH, MININGKA, MININGKA MUNICH, MININGKA MININGKA MUNICH, MININGKA MININGKA MUNICH, MI

Stable Particles γ , ν_{e} , ν_{μ} , e, μ

CODE EVENTS QUANTITY ERROR+ ERROR- REFERENCE YR TECN SIGN COMMENTS DATE 3 ELECTRON MEAN LIFE (UNITS 10**21 YR) ABOVE BACKGROUND τ 2.0 OR MORE MOE 65 CNTR 6/66 ------3 ELECTRON MAGNETIC MOMENT(E/2ME)
 MM
 (1.0011609) +-(24)+10**-7 SCHUPP 61 CNTR

 MM
 (1.001159622) +-(27)*10**-7 SCHUPP 61 CNTR

 MM
 (1.001159527) +-(27)*10**-7 SCHUPP 61 CNTR

 MM
 (1.001159557) +-(30)*10**-6 RICH 66 CNTR +

 MM
 (1.0011595389)+-(31)*10**-0 RICH 68 CNTR

 MM
 (1.0011595889)+-(31)*10**-0 RICH 68 CNTR

 MM
 (1.0011595889)+-(31)*10**-0 RICH 68 CNTR

 MM
 (1.0011595877 +-153)*10**-0 MESLEY 70 CNTR

 MM
 (1.001159577 +-153)*10**-0 MESLEY 70 CNTR

 MM
 (1.00115037 +-112)*10**-0 FGLLELAND 72 CNTR +

 MM
 RICH 68 IS REEVALUATION 0F WILKINSON 63.
 γ 8/66 8/66 6/68 2/71 6/70 2/72 2/72 0 GAMMA (0, J=1) O GAMMA MASS (IN UNITS OF 10**-21 MEV)
 M
 P
 (6.) OR LESS
 PATEL
 65
 SATELLITE DATA
 10/69

 M
 6.
 OR LESS
 GINTSBURG 64
 SATELLITE DATA
 10/69

 M
 2.3
 OR LESS
 GUNDABER 68
 SATELLITE DATA
 10/69

 M
 F
 (0.6)
 OR LESS
 FRANKEN
 71
 LOW FREQ RES CIR
 3/72

 M
 F
 VALIDITY QUESTIDINABER 68
 CORDINILIANS
 TI CNTR
 TI SAUSS
 3/71

 M
 F
 VALIDITY QUESTIDINABER ACCORDINICIDANT HORS AND KROLL 71.
 3/72
 3/72
 REFERENCES FOR ELECTRON
 SCHUPP
 61
 PR
 121
 1

 WILKINSO
 63
 PR
 130
 852

 COHEN
 65
 RP
 37
 537

 MOE
 65
 PR
 17
 271

 RICH
 66
 PRL
 17
 271

 RICH
 68
 PRL
 20
 967

 TAYLOR
 69
 RP4
 1375

 WESLEY
 70
 PRL
 24
 1320

 GILLELAN
 72
 PR
 A5
 38
 A SCHUPPIN PIDI ELECTION A SCHUPPIN PIDD.H R CRAME (MICH) D T MILKINSON,H R CRAME (MICH) COHEN,DUMOND IN.A.AVIATION SCI.CENTERCITI M K MOEF REINES (CASE INST TECHNOLOGY) A RICH, H R CRAME (MICH) A RICH, H R CRAME (MICH) J C WESLEY,A.RICH (MICH) J C WESLEY,A.RICH (MICH) J GILLELAND,A RICH (MICH) REFERENCES FOR GAMMA GINTSBUR 64 SOV. ASTR.AJ7 536 M. A. GINTSBURG PATEL 65 PL 14 105 V. L. PATEL GOLDHABE 68 PRL 21 567 A. GOLDHABER,M. NIETO FRANKEN 71 PRL 26 159 P A FRANKEN G W AMPULSKI WILLIAMS 71 PRL 26 721 +FALLER,HILL (ACAD SCI,USSR) (DURHAM) (STONY BROOK) (MICH) (MICH) (WESLEYAN) PAPERS NOT REFERRED TO IN DATA CARDS GOLDHABE 71 RMP 43 277 A S GOLDHABER, M M NIETO (STON+BOHR+UCSB) KROLL 71 PRL 26 1395 N M KROLL (SLAC) μ 4 MUON (106, J=1/2) 4 MUON MASS (MEV) ν_{e} 1 E-NEUTRINO (0, J=1/2) (105.659) (0.002) FEINBERG 63 RVUE (105.6599) (0.0014) TAYLOR 69 RVUE USING NEW E/H (105.6597) (0.0005 CRANE 71 CNTR D 105.6594 0.0004 CRONE 72 CNTR C CRANE 71 GIVES MU/ME=206.7587(85). WE USE ME=.5110041(16)MEV. D CROWE 72 GIVES MU/ME=206.7682(5) AND USES ME=.5110041(16)MEV. USING NEW E/H 1 E-NEUTRINO MASS (KEV) (0.25) OR LESS LANGER 52 CNTR (0.15) OR LESS HAWILTON 53 CNTR (0.55) (0.28) FRIEDMAN 58 CNTR 0.06 OR LESS CL=.90 BERGKVIS 69 CNTR EL.STATIC.MAG.SP 11/69 MMMM 105.65952 0.00031 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 105.65955 .0003 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 1/73* AVG FIT 4 MUON MEAN LIFE (UNITS 10**-6) REFERENCES FOR E-NEUTRINO 0.001. 0.001 FARLEY 62 CNTR 0.004 LUNDY 62 CNTR CONLEV=.98 0.003 0.003 ECKHAUSE 63 CNTR + 0.005 0.002 MEVER 63 CNTR + 0.002 0.002 MEVER 63 CNTR + 0.002 0.002 MEVER 63 CNTR + 2.198 2.203 2.202 2.197 2.198 2.20026 T T T T T T T T AVG L M LANGER,R J D MOFFAT (INDIANA) D HAMILTON,W P ALFORD,L GROSS (PRINCETON) LEHIS FRIEDMAN,LINCOLN G SMITH (BNL) KARL-ERIK BERGKVIST (UNIV STOCKHOLM) LANGER 52 PR 88 689 HAMILTON 53 PR 92 1521 FRIEDMAN 58 PR 109 2214 BERGKVIS 69 CERN 69-7 91 11/67 7/66 2/72 2.19936 0.00061 0.00061 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.1) ν_{μ} 2 MU-NEUTRIND (0, J=1/2) 4 MU+/MU- MEAN LIFE RATIO 1.000 0.001 MEYER 63 CNTR MEAN LIFE MU+/MU-DT 7/66 2 MU-NEUTRINO MASS (MEV) 2 MU-NEUTRINO MASS (MEV) 3.5 OR LESS BARKAS 56 EMUL 4.0 OR LESS DUDZIAK 59 CNTR 7/66 3.0 OR LESS FEINDERG 63 RVUE 7/66 2.5 OR LESS ALLCOCK 65 RVUE 7/66 2.5 OR LESS CL=.90 SHAFER 65 CNTR 3/68 2.2 OR LESS CL=.90 HMAN 67 HEBC 0. K- HE 11/67 1.6 OR LESS CL=.90 HMAN 67 HEBC 0. K- HE 11/67 1.15 OR LESS CL=.90 SHAFER 65 CNTR PRELIMINARY 9/68 1.21 OR LESS CL=.90 SHRUM 71 CNTR M=22-1.28+-1.24 10/711 1.15 OR LESS CL=.90 SHRUM 71 CNTR M=22-1.28+-1.24 10/711 1.15 OR LESS CL=.90 SHRUM 71 CNTR M=22-0.29+-0.90 1/73# BACKENSTOSS 73 REPLACES BACKENSTO ST 1 AND USES THEIR NEW PI- MASS. 1/73# SHRUM 71 USES SHAFER 67 PI- MASS VALUE AND CRANE 71 MU MASS VALUE. 1/73# ****** 4 MUON ANDMALOUS MAGN. MOMENT (10**-6*E/(2*MU MASS)) (1162.0) (5.0) CHARPAK 62 CNTR + (1165.75) (0.71) BAILEY 68 CNTR - STOR. RINGS (1166.25) (0.24) BAILEY 68 CNTR - STOR. RINGS ERRORS STATISTICAL. VALUES COMBINED TO GIVE MU+ VALUE BELOW 1166.16 0.31 BAILEY 68 CNTR + STOR. RINGS MM B MM B MM B MM B MM 5/69 5/69 5/69 5/69 4 MUON TO PROTON MAGNETIC MOMENT RATIO

 4
 MUON TO PROFUM MAGNETIC RUNCHT RAILS

 MMR
 THIS RATID IS USED TO OBTAIN PRECISE VALUES OF THE MUON MASS.

 MMR
 3.1865
 .0022

 MMR
 3.18365
 .0011

 LUNDY
 58
 CNTR + PRECESSION STROB

 MMR
 3.1836
 .0001

 MMR
 3.1836
 .0002

 MMR
 3.1836
 .00007

 MMR
 3.1833
 .00007

 MMR
 3.1833
 .000061

 MMR
 3.18338
 .000064

 MMR
 3.18338
 .000061

 MMR
 3.18338
 .000061

 MMR
 3.18339
 .000064

 MMR
 3.18330
 .000044

 MMR
 3.183304
 .000013

 MMR
 3.183304
 .000013

 MMR
 3.1833261
 .000013

 MMR
 3.1833261
 .00
 4
 MUON TO PROTON MAGNETIC MOMENT RATIO

 THIS RATIO IS USED TO OBTAIN PRECISE VALUES OF THE MUON MASS.

 SEE CROWE 72.

 3.1865
 0.0022
 COFFIN
 50 CNTR + SPIN RESONANCE

 3.1805
 0.0011
 LUNOY
 50 CNTR + PRECESSION STROB

 3.1805
 0.011
 LUNOY
 50 CNTR + PRECESSION STROB

 3.1836
 0.001
 LUNOY
 50 CNTR + PRECESSION STROB

 3.1838
 0.0007
 BINGHAM G3 CNTR - PRECESSION STROB

 3.1838
 0.0004
 BINGHAM G3 CNTR - PRECESSION PHASE

 (3.183351)(.000016)
 EHRLICH 69 CNTR HFS SPLITTING

 3.1838
 0.00044
 HUTCHINS 50 CNTR + PRECESSION PHASE

 (3.183351)(.000016)
 EHRLICH 69 CNTR HFS SPLITTING

 3.18334
 0.00044
 HUTCHINS 70 CNTR + PRECESSION PHASE

 (3.183351)(.000013)
 GAMET T1 CNTR HFS SPLITTING

 (3.1833261)(.00013)
 GAMET T1 CNTR HFS SPLITTING

 (3.1833261)(.000013)
 GAMET T1 CNTR HFS SP ****** ************************ REFERENCES FOR MU-NEUTRINO W H BARKAS,W BIRNBAUM,F M SMITH (LRL) W F DUDZIAK,R SAGANE,J VEDDER (LRL) G FEINBERG, L M LEDERMAN (COLUMBIA) G R ALLEDCK (LIVERPOOL) BARDON,NORTON,PEOPLES + (COLV+STONY BROOK) BARKAS 56 PR 101 778 DUDZIAK 59 PR 114 336 FEINBERG 63 ARNS 13 431 ALLCOCK 65 PPSL 85 875 BARDON 65 PRL 14 449
 SHAFER
 65
 PRL
 14
 923
 R
 E
 SHAFER
 65
 PRL
 14
 923
 R
 E
 SHAFER
 SHAFER
 SE
 LLRL
 BOOTH, JOHNSON, MILLIAMS, MORALD
 LLRL
 BOOTH, JOHNSON, MILLIAMS, MORALD
 LLVERPOOL

 BUOTH, JOHNSON, MILLIAMS, MORALD
 LLVERPOOL
 TANK, GARET, LAKIN
 CALL
 1/73* 1/73* 1/73* 1/73* е 3 ELECTRON (0.5.J=1/2) ---- ------3 ELECTRON MASS (MEV) (.511006)(.00002) .5110041 .0000016 COHEN 65 RVUE TAYLOR 69 RVUE USING NEW E/H 7/70

Stable Particles

 μ , π^{\pm}

Data Card Listings For notation, see key at front of Listings.

	4 MUON PARTIAL DECAY MODES		1	REFERENCES FOR MUON	
P1 P2 P3 P4	MUGN INTO E (E-NEU) (MU-NEU) MUGN INTO E 26AMMA MUGN INTO BELECTRONS MUGN INTO E 6AMMA	DECAY MASSES .5+ 0+ 0 .5+ 0+ 0 .5+ .5+ .5 .5+ 0		COFFIN 58 PR 109 973 +GARNIN, PENNAN, LEDERNAN, SACHS (COLUMBIA) LUNDY 58 PRL 138 +SENS, SUANSON, TELEGOI, YOVANOVITCH (CHICAGO) BARDON 59 PRL 2 60 M BARDON, D BERLEY, L LEDERMAN, SACHS (COLUMBIA) DUDZIAK 59 PR 14 336 M DUZIAK, SGARE, J VEDDER (IRI) GARWIN 60 PR 118 271 GARWIN, HUTCHINSON, PENMAN, SHAPIRO (COLUMBIA) PLANO 60 PR 119400 R J PLANO (COLUMBIA) ALI-ZADE 61 LETP 13 ALI-ZADE, GOREVICH, NI KOLSKI (USR) KRUGER 61 UCRL-322 LWPUB) H KRUGER (LRL)	
R1 R1 R2 R2 F	4 MUON BRANCHING RATIOS MUON INTO E+2GAMMA (IN UNITS OF 10#=-5) (1.6) OR LESS CL=.90 FRANKEL1 63 OSPK MUON INTO 3E (IN UNITS OF 10#=-7) 5-0 OR LESS CL=.90 PARKER 62 CNTR	(P2)/(P1) (P3)/(P1)		ALIKHANO 62 CERN CONF 423 A I ALIKHANOV,A BABAEV + (ITEP MOSCOW) BLOCK 62 NC 23 111 BLOCK,FIORINI,KIWCHI+(DUKE,BOLOGNA,MILANO) CHARPAK 62 PL 16 G CHARPAK,F J M FARLEYR L GARWIN + (CERN) FARLEY 62 CERN CONF 415 FARLEY,MASSAM,MULLER,ZICHICHI (CERN) LUNDY 62 PR 125 1686 RICHARPA AL UNDY PARKER 62 NC 23 485 S PARKER,S PENMAN	
K2 F R2 F R2 F R2 K R2 K R2 F R2 R2 R2 R2 R2 R3	1.3 UK LESS CL=.90 ALIXHANUV 62 USPK 1.5 DK LESS CL=.90 FANKEL2 63 CMTR 1.2 DK LESS CL=.90 BABAEV 63 OSPK KORENCHENKO2 71 ASSUMES A CONSTANT MATRIX ELEMEN FOUR ABOVE EXPERIMENTS EVALUATED UPPER LINITS AS ORDER V-A NEUTRIND LOOP DIAGRAM. LINITS NOT SIGN ASSUMING A CONSTANT MATRIX ELEMENT. MUON INTO E+GAMMA (IN UNITS OF 10**-8)	NT. SUMING A SECOND NIFICANTLY CHANGED B (P4)/(P1)	2/72 2/72	BABAEV 63 JETP 16 1397 BABAEV,BALATS,KAFTANOV,LANDSBERG + (ITEP) BINGHAM (LRL) BUNGHAM (LRL) BUHLER 63 NC 7 BUNGHAM (LRL) BUHLER 63 PL 7 BOTOS 63 PL 7 368 FCABIBBO,FIDECARO,MASSAM,MULLER+ (CERN) DICK 50 PL 7 BUNCHAM 150 DICK,FEURALS,SPIGHEL (CERN) ECKHAUSE 63 PR 132 422 M ECKHAUSE;T A FILIPPAS + (CARNGIE) FEINBERG 63 ARN 134 13 131 FRANKEL, ANDERG, L LEDERMAN FRANKEL2 63 PR 130 351 S FRANKEL,M FRATIL,J HALPERN + (PENN) HUTCHINS 63 PR 130 351 S FRANKEL,AND,MENESTALACH,SHPIRD LOCULUBAL HUTCHINS	
R3 R3 R3	4.3 OR LESS CL=.90 FRAMKEL1 63 OSPK 2.2 OR LESS CL=.90 PARKE 64 OSPK 2.9 OR LESS CL=.90 KORENCH1 71 OSPK	+	10/71	METER 63 PK 132 2093 S L METER, ANDERSOUN, PLESER, LEDERMART COLUD BARLOW 64 PPS 84 239 +BOOTH, CARROL, COURT, DAVIES, EDVARDS+ (LIVP) BLOOM 64 PL 87 +DICK, FEUVRAIS, HENRY, MACQ, SPIGHEL (CERN) DUCLOS 64 PL 9 62 +HEINTZE, DE RUJULA, SDERGEL (CERN) QUREVICH, MAKARIYNA+ (KURCHATOV, MOSCOW) PONTECOR 64 PL 30 768 PARKER 64 PR 133 768 S PARKER ANDERSON, CREY (EFI)	
RHO RHO C RHO P RHO P	RELATED TEXT SECTION IV E RHO PARAMETER (V-A THEORY PREDICTS (0.741) (0.027) DUDZIAK 59 CMTR 213 0.745 0.025 PLAND 60 HBG THO PARAMETER FIT TO RHO AND ETA. 140 60 HBG	5 RHD=0.75) + 20-53 MEV E+ + WHOLE SPECTRUM	10/69 10/69	PEOPLES 66 NEVIS-147 (UNPUB) J PEOPLES (COLUMBIA) GUREVICH 67 R 62 1306 147 (KURCHATOV) SCHWARTZ 67 R 62 1306 M SCHWARTZ (FFI) SHERNOOD 67 PR 156 1475 B A SHERNOOD (FFI) BAILEY 68 PL 288 287 +BARTL_VON BOCHMANN, BROWN, FARLEY+ (CERN) ALSO 72 NC 93.369 +BARTL_VON BOCHMANN, BROWN, FARLEY+ (CERN) FRVBERGE 68 PR 16.1379 D FRVBERGER (FFI)	
RHO C 2 RHO D RHO D RHO D RHO D RHO C 2 RHO C 2 RHO C 1	(276 (0.751) (0.034) BLOCK 62 HEBC (0.64) (0.04) BARLOW 64 CNTR (0.661) (0.016) BARLOW 64 CNTR (0.867) (0.035) PONTECCRV 64 CCT RESULTS IN DOUBT. PONTECCRV 64 CC (000K (0.7503) (0.0026) PEOPLES 66 ASPK (0.000) SHERMODD 67 ASPK (0.000) FRYBERGER 68 ASPK	- WHOLE SPECTRUM - WHOLE SPECTRUM + WHOLE SPECTRUM - + 20-53 MEV E+ + 25-53 MEV E+	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69	DERENZO 69 PR 181 1854 S DERENZO (EFI) EHELICH 69 PR 23 51.3 +HOFER,MACHON,STOWELL,SWANSON+ (EHICAGO) TAYLOR 69 PR 1375 +PARKER,LANCENBERG (PRI+UCI+PENN) THOMPSON 69 PR 1375 +ANATO,CRANE,HUGHES, MOBLEY+ (VALE) HGUE 70 PRL 25 628 +ROTHBERG,SCHENCK,WILLIAMS+ (WASH+LL) HUTCHINS TO PRL 24 1254 HUTCHINSON,LARSON,SCHOEN,SUBER,+ (PPA)	
RHO C RHO C RHO RHO RHO AVO	ETA CONSTRAINED =0. THESE VALUES INCORPORATED IN FIT 00 RNO AND ETA BY DERENZO 69. 0.7518 0.0026 DERENZO 69 RVUE 0.7517 0.0026 AVERAGE (ERROR INCLUDES S ETA PARAMETER (V-A THEORY PREDICTS	TO A TWO PARAMETER	10/69	CRANE 71 PRL 27 474 +CASPERSON,CRANE,EGAN,HUGHES+ (YALE) DEVDE 71 PRL 25 1779(ER) +WCINTGRE, #AGRON,STOWELLS, SVANSON+ (CHICAGO) ALSO 71 PRL 26 213 DEVOE,MCINTGRE, #AGRON,STOWELLS (CHICAGO) FAVART 71 PRL 27 1336 +WCINTYRE,STOWELL,TELEGOI,DEVDE+ (CHICAGO) KORENCHIT 13.00 KORENCHCHKO,KOSTIN,MICELMACHER+ (JINR) KORENCHZ 71 SNP 13 728 KORENCHENC,KOSTIN,MICELMACHER+ (JINR) KORENCH 71 SJNP 13 728 KORENCHENC,KOSTIN,MICELMACHER+ (LBL+WASH)	
ETA P ETA P ETA C 2 ETA C 2 ETA C 1 ETA C 1	213 (-2.0) (0.9) PLANU 60 HBC TWD PARAMETER FIT TO RHD AND ETA- PLANU 60 DISCI 00K (0.05) PEDPLES 66 ASPK 80K (-0.7) (0.6) SHERWOOD 67 ASPK 70K (-0.7) (0.5) FRYBERGER 68 ASPK 810 <constrained< td=""> 0.75 FRYBERGER 68 ASPK 346 -0.12 0.21 DERENZO 69 HBC</constrained<>	+ WHOLE SPECTROM 1 20-53 MEV E+ + 25-53 MEV E+ + 25-53 MEV E+ + 1.6-6.8 MEV E+	10/69 10/69 10/69 10/69 10/69	WILLIAMS 72 PR D6 737 R WILLIAMS, D L WILLIAMS (WASHINGTON) PAPERS NOT REFERRED TO IN DATA CARDS FISHER 59 PRL 3 349 FISHER, LEONTIC, LUNDBY, MEUNIER, STROOT (CERN) ASTBURY 60 ROCH CONF 60 542 ASTBURY, HATTERSLEY, HUSAIN + (LIVERPOOL) DEVONS 60 PRL 5 330 DEVONS, GIDAL, LEDERMAN, SHAPIRO	
XSI XSI A XSI A XSI A XSI G XSI XSI G XSI G XSI	XSI PARAMETER (V=A THEORY PREDICTS 9K 0.97 0.05 BARDON 59 CMTR 1354 0.93 0.06 PLAND 60 HBC (0.903) (0.027) ALI-ZADE 61 EMUL DEPOLARIZATION BY MEDIUM NOT KNOWN SUFFICIENTLY 66K (0.975) (0.030) GUREVICH 64 EMUL 0.75 0.014 GUREVICH 67 EMUL GUREVICH 67 SUPERSEDES GUREVICH 64	S XSI=1) BRDMOFORM TARGET + 8.8 KGAUSS + 27 KGAUSS WELL. 140 KGAUSS	10/69 10/69 10/69 10/69 10/69 10/69	LATHROP 50 NC 11 139 J LATHROF, RA LUNDY, S PENMAN (EFI) LATHROP 50 NC 11 14 J LATHROF, RA LUNDY, S PENMAN (EFI) REITER 60 PRL 5 22 REITER, ROMANDKSLI, SUTTON + (CARVEGLE) (CERN) CHARPAK 61 PRL 6 128 CHARPAK, FARLEY, GARWIN, WULLER, SENS + (CERN) HUTCHINS 61 PRL 7 129 D H UTCHINSON, J MENES + (COLUMBIA) SHAPIRO 62 PR 125 1022 G SHAPIRO, L M LEDERMAN (COLUMBIA) FAIRLEY 66 NC 45A 281 FAIRLEY, BADWN, GIESCH + (CERN) VOSSLER 69 NC 63A 423 C VOSSLER (EFI)	
DEL DEL 83 DEL DEL 4 DEL 4 DEL 4 DEL 4	0.972 0.013 AVERAGE (ERROR INCLUDES) DELTA PARAMETER (V-A THEORY PREDICTS 54 0.78 0.05 PLAND 0 HBC 0.782 0.031 KRUGER 61 90K 0.752 0.009 FRYBERGE 68 ASPK VOSSLER 69 HAS MEASURED THE ASYMMETRY BELOW 10 M	CALE FACTOR OF 1.0) DELTA=0.75) + WHOLE SPECTRUM + 25-53 MEV E+ NEV	10/69 10/69 10/69 11/69	π± 8 CHARGED PION (140, JPG=0) I=1	
DEL AVO HEL HEL HEL D HEL D HEL HEL HEL HEL HEL HEL HEL HEL	0.7551 0.0085 AVERAGE (ERROR INCLUDES 3 HELICITY OF DECAY ELECTRON. (V-A THEORY PREDICTS HELICITY-+1 FOR E+-, RESP (V-A THEORY PREDICTS HELICITY-+1 FO	CALE FACTOR OF 1-0) CTIVELY) CAN AVERAGE + ANNIHILATION HODERATOR. + ANNIHILATION + BREMS TRANSMISS + BHABHA SCATT - MOLLER SCATT CALE FACTOR OF 1-0)	10/69 10/69 10/69 10/69 10/69	B CHARGED PION MASS (MEV) M 139-37 0.20 CROWE 54 CNTR - M 139-68 0.15 BARKAS 56 EMUL + M 139-577) 10.013) SHAFER 67 CNTR - MESONIC ATOMS 60/1 M 5 139.5491 0.0081 BACKENSTO 71 CNTR - MESONIC ATOMS 10/1 M 5 139.560 0.013 SHAFER 77 CNTR - MESONIC ATOMS 10/1 M 5 139.560 0.013 SHAFER 77 CNTR - MESONIC ATOMS 10/1 M 5 139.566 0.013 SHAFER 72 CMTR - MESONIC ATOMS 10/1 M 5 139.566 CORRECTS SHAFER 72 CMTLS 1/1 - MESONIC ATOMS 1/1 M BACKENSTOS 73 CORRECTS BACKENSTOSS 71 WITH NEW VACUUM POL. CALC. 1/1 1/1 M AVG 139.5662 0.0068 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0) 1/1 M FIT 139.5668 0.0064 FROM FIT FROR TINCLUDES SCALE FA	68 71 73* 73* 73* 73*
GS GS GAV	SCALAR COUPLING CONSTANT IN MUON DECAY (IN UNITS (0.33) OR LESS DERENZO 69 RVUE AXIAL VECTOR COUPLING CONSTANT IN MUON DECAY (IN 0.66 0.33 0.11 DERENZO 49 DVIE	UNITS OF GV)	10/69	B (PI+) - (MU+) MASS DIFFERENCE (MEV) D 34+00 0.076 BARKAS 56 EMUL	
FAV FAV GT	PHASE BETHEEN VECTOR AND AXIAL VECTOR COUPLINGS 180. 15. DERENZO 69 RVUE TENSOR COUPLING CONSTANT IN NUON DECAY (IN UNI TENSOR COUPLING CONSTANT IN NUON DECAY (IN UNI	(DEGREES) TS OF GV)	10/69	U 33.929 0.076 BAKKAS 56 EMUL D 145 33.881 0.035 HYMAN 67 HEBC + K-HE 27 D 33.925 0.025 BOOTH 70 CNTR + MAGNETIC SPECT. 27 D 33.915 0.019 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) D FIT 33.909 0.006 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 17	71 71 73*
GP GP ******	PSEUDOSCALAR COUPLING CONSTANT IN NUON DECAY (IN (0.33) OR LESS DERENZO 69 RVUE	UNITS OF GV).	10/69	8 ((PI+) - (PI-))/AVG., MASS DIFFERENCE (PERCENT) DM 0.02 0.05 AYRES 71 CNTR 3/7	71

Stable Particles π^{\pm}, π^{0}

Stable Particles

 π^0 , K[±]

Data Card Listings For notation, see key at front of Listings.

REFERENCES FOR NEUTRAL	PION	1		10	((K+) - (K-))	/AVG., MEAN LIFE DI	FFERENCE (PERCENT)
PANDESKY 51 PR 81 565 W K H PANDESKY R L AAM	ODT, J HADLEY (LRL)		DT N	THIS QUANTITY	IS A MEASURE OF	CPT INVARIANCE IN N	N.I.	
KROLL 55 PR 95 366 N KROLL , W WADA CASSELS 59 PPS 74 92 CASSELS, JONES, MURPHY, 0 HADDOCK 59 PRL 3 478 HADDOCK, ABASHIAN, CROWE HILLMAN 59 NC 14 887 HILLMAN, MIDDELKOOP, YAM	(COLUMBIA+NRL) •NEILL (LIVERPOOL) •CZIRR (LRL) AGATA, ZAVATTINI(CERN)		DT DT DT	0.47 0.090	0.30 0.078	FORD 67 CNTR LOBKOWICZ 69 CNTR	CALE FACTOR OF 1.	8/67 12/70
BUDAGOV 60 JETP 11 755 BUDAGOV,VIKTOR,DZHELEP	OV;ERMOLOV + (JINR)							
JOSEPH 60 NC 16 997 D W JOSEPH SAMIDS 60 NC 18 154 N P SAMIDS GLASSER 61 PR 123 1014 R G GLASSER,N SEEMAN,B SAMIDS 61 PR 121 275 N P SAMIDS SAMIDS 62 PR 126 1864 SAMIDS.PLAND,PRODELL +	(EFI) (COLUMBIA) STILLER (NRL) (COLUMBIA+BNL) (COLUMBIA+BNL)		21	10	CHARGED K PAR	TIAL DECAY MODES	DECAY MASSES	
TIETGE 62 PR 127 1324 J TIETGE, W PUESCHEL	(MAX PLANCK INST)		P1 P2 P3	CHAR. K INTO PI CHAR. K INTO PI	PI0 PI+ PI-	K PI2	139+ 134 139+ 139+ 139	
CZIRR 63 PR 130 341 JOHN B CZIRR KOLLER 63 NC 27 1405 E L KOLLER,S TAYLOR,T	(LRL) HUETTER (STEVENS)		P4 P5	CHAR. K INTO PI CHAR. K INTO MU	2PIO PIO NEU	TAU PRIME K MU3	139+ 134+ 134 105+ 134+ 0	
ALSO 66 STAMER PETRUKHI 63 SIENA CONF 208 V I PETRUKHIN, YU D PRO	KOSHKIN (JINR)		P6 P7	CHAR. K INTO E K+ INTO PI+ PI-	PIO NEU E+ NEU	K E3 K E+ 4	•5+ 134+ 0 139+ 139+ •5+	0
VON DARD 63 PL 4 51 VON DARDEL, DEKKERS, MER	MUD, VAN PUTTEN+(CERN)		P8 P9	K+ INTO PI+ PI+ K+ INTO PI+ PI-	E- NEU MU+ NEU	K E- 4 K+MU+ 4	139+ 139+ .5+ 139+ 139+ 105+	0
SHWE 04 FK 1300 1839 n shmet f Shmet f <thshmet f<="" th=""> Shmet f <ths< td=""><td>ACCINI+(PISA+FIRENZE) + (CERN+HEIDELBERG) (DXFORD) HKIN (JINR)</td><td></td><td>P10 P11 P12 P13 P14</td><td>K+ INTO PI+ PI+ CHAR. K INTO E CHAR. K INTO MU CHAR. K INTO PI CHAR. K INTO PI</td><td>MU- NEU NEU GAMMA PIO GAMMA PI+ PI- GAMMA</td><td>K+MU- 4 K E2 K MU RAD K PI RAD TAU RAD</td><td>139+ 139+ 105+ •5+ 0 105+ 0+ 0 139+ 134+ 0 139+ 139+ 139+</td><td>0</td></ths<></thshmet>	ACCINI+(PISA+FIRENZE) + (CERN+HEIDELBERG) (DXFORD) HKIN (JINR)		P10 P11 P12 P13 P14	K+ INTO PI+ PI+ CHAR. K INTO E CHAR. K INTO MU CHAR. K INTO PI CHAR. K INTO PI	MU- NEU NEU GAMMA PIO GAMMA PI+ PI- GAMMA	K+MU- 4 K E2 K MU RAD K PI RAD TAU RAD	139+ 139+ 105+ •5+ 0 105+ 0+ 0 139+ 134+ 0 139+ 139+ 139+	0
STAMER 66 PR 151 1108 STAMER,TAYLOR,KOLLER,H VASILEVS 66 PL 23 281 VASILEVSKY,VISHNYAKOV, BELLETTI 70 NC 66A 243 BELLETTINI,BEMPORAD,LU KRYSHKIN 70 JETP 30 1037 +STERLIGOV,USOV (UETTER+ (STEVENS) DUNAITSEV + (DUBNA) BELSMEY+ (PISA+BONN) TOMSK POLYTECH-INST.)		P15 P16 P17 P18 P19	CHAR. K INTO PI CHAR. K INTO PI CHAR. K INTO PI CHAR. K INTO PI K- INTO PI+ E-	E+ E- MU+ MU- GAMMA GAMMA E NEUTRING GAM E-	PIEE PIMUMU PIGAMGAM MAPIENEUGAM PI+E+E-	139+ .5+ .5 139+ 105+ 105 139+ 0+ 0 139+ .5+ 0+ 139+ .5+ .5	0
****** ********************************	**** ********* ********		P20 P21	CHAR. K INTO PI CHAR. K INTO E	NEU NEU NEU GAMMA	PI NEU NEU K E2 RAD	139+ 0+ 0 •5+ 0+ 0	
			P22 P23	CHAR. K INTO PI CHAR. K INTO PI	GAMMA 3GAMMA	K PI GAM PI 3GAM	139+ 0 139+ 0+ 0+	0
▲ IO CHARGED K (494, JP=0-) I=1/2			P24 P25	CHAR. K INTO PI K+ INTO PI- E+	O PIO E NEU MU+	K E4 2PIO PI-E+MU+	134+ 134+ .5+ 139+ .5+ 105	0
			P26 P27	CHAR. K INTO ML	NEU NEU NEUBAR	MU 3NEU	105+ 0+ 0+	0
10 CHARGED K MASS (MEV)	WIE +							
M 493.7 0.3 BARKAS 63 E M 493.78 0.17 GREINER 65 E	MUL - MUL - VIA TAU DECAY 7	7/66		CF DVERALL	ARGED K CONSTRA	AINED FIT FE, WIDTHS AND BRANC	HING	
M 493.87 0.19 KUNSELMAN 71 C M 493.691 0.040 BACKENSTO 73 C	NTR - KAONIC ATOMS 10 NTR - KAONIC ATOMS 1	/71		RATIOS U QUANTITI	ISES 52 DATA PO ES. OVERALL F	INTS TO DETERMINE SI IT HAS CHISQ=82.2.	MAIN	
M AVG 493.709 0.037 AVERAGE (ERROR INCLUD	ES SCALE FACTOR OF 1.0)			CONTRIBU 71 (WE S	ITION (16.3) CON EE NO REASON TO	MES FROM R19 OF HAID D REJECT THIS EXPERI	T MENT	
M FIT 493.715 0.037 FRDM FIT (ERROR INCLUD	ES SCALE FACTOR OF 1.0) 1	1/73*		AT THIS	TIME	i data <u>a</u>		
10 (K+) - (K-) MASS DIFFERENCE	(MEV)		FITT	ED PARTIAL DECA	Y MODE BRANC	HING FRACTIONS		
DM F 1.5M -0.032 0.090 FORD 72 A	SPK +- 4	/72*	Т	The matrix below is	derived from the	error matrix for the fit	tted partial decay m	ode *
DM F FORD 72 USES M(PI+)-M(PI-) = +28+-70 KEV.	1	/73*	branc 5D =	hing fractions, P_i ,	as follows: The state off-diagonal e	diagonal elements are F	$P_i \pm \delta P_i$, where ized correlation coe	ffi-
10 CHARGED K MEAN LIFE (UNITS 1	0**-8)		cients	$\langle \delta P_i \delta P_j \rangle / (\delta P_i \cdot \delta)$	P _j). For the defin	nitions of the individual	$\overline{\mathbf{P}_{i}}$, see the listings	
T CHAR. K MEAN LIFE			above	; only those P _i app	earing in the matr dd to 4.	ix are assumed in the f	it to be nonzero and	
T 0 (0.95) (0.36) (0.25) ILOFF 56 E T 0 52 (1.60) (0.3) (0.3) EISENBERG 58 E	MUL.			P1 P	2 P 3	P4 P5	Ρ 6	
T 1.21 0.06 0.06 BURROWES 59 C T 0 33 (1.38) (0.24) (0.24) FREDEN 60 E	NTR MUL		P 1 · ·	7953 .2106+ 1750 - 04	0018	a		
T 0 51 (1.27) (0.22) (0.17) BARKAS 61 E T 0 51 (1.27) (0.36) (0.23) BHOWINK 61 E T 293 1.31 0.08 0.08 NUMPLIN 61 H	MUL MUL		P 4 P 5	181407	28 .1456 . 30 .0439	0173+0005 0155 .0324+001	.0	
T (1.24) (0.07) NORDIN 61 R T 1.231 0.011 0.011 BOYARSKI 62 C	VUE - NTR +		P 6	285217	•11,99	0085 .4265 .	0485+0006	
T 1.2443 0.0038 FITCH 65 C T 1.221 0.011 FORD 67 C	NTR + K AT REST 6. NTR +- 8	/66	FITT.	ED PARTIAL DEC.	AY MODE RATES			
T 1.2272 0.0036 LOBKOWICZ 69 C T 3M 1.2380 0.0016 OTT 71 C	NTR + K IN FLIGHT 9. NTR + STOPPING K 2.	/66	1	The matrix below is	the branching fra	action matrix above, tra	ansformed into rate	
T O OLD EXPERIMENTS WITH LARGE ERRORS EXCLUDED F	ROM AVERAGING 2.	/71	space	; i.e., $G_i \equiv \Gamma_i =$	Lotal Pi, in appro	priate units. In analog	y to the matrix abov	в,
T FIT 1.2371 0.0026 FROM FIT (ERROR INCLUD (SEE DECORAM BELOW)	ES SCALE FACTOR OF 2. ES SCALE FACTOR OF 1.9)	4)	eleme	ents are the <u>normal</u>	ized correlation of	$\log_i = \sqrt{(\log_i \log_i)}$, while coefficients $\langle \delta G_i \delta G_i \rangle / (\delta$	$G_i \cdot \delta G_i$. Note that	,
			becau	se of the error in l	total, the errors	and correlations here a	are not directly deri	vable
WEIGHTED AVERAGE = 0.8084	± 0.0021		IFOM	those above.				
ERROR SCALED BY 2	.4		6 1	G 1 G	2. G3	.G4 G5	G 6	
			G 2 G 3	4575 .1702+	0015 35 .0452+000	2		
Values above of error, and scal	weighted average, e factor are for the		G 4 G 5	128406 204015	07 .1396 . 98 .0464	0140+0004 0142 .0262+000	08	
reader's conver data were actua	nience only. The lly processed by a		G 6	139912	99 .1207	0059 .4297 .	.0392+0005	
constrained fit j calculates its or	program, which				* . •			
and scale factor ent from the unit	, which are differ-					CAN DATES		
chi Hom the var	shown here.		w	CHAR. K INTO M	U NEU (UNITS 10	**6 SEC-1)	(61)	
	CHISQ 71 CNTR 0.4		W1 W1	51.2	0.8	FORD 67 CNTR	+-	8/67
+LOBKOW	ICZ 69 CNTR 7.3		W1 F	IT 51.35	0.19 FROM F	IT (ERROR INCLUDES S	SCALE FACTOR OF 1	2)
	67 CNTR 65 CNTR 3.7		W2 W2 F	CHAR. K INTO P (4.496)	1 PI+ PI- (UNIT (0.030)	5 10**6 SEC-1) FORD 67 CNTR	+- SEE NOTE F	8/67
HA BUYARS	KI 62 CNTR		W2 F W2 W2 F	5.2m (4.529) 4.511 THE LACT IS T	0.024 HE COMBINED PEC	FORD 70 ASPK	SEE NOTE F	11/70
	61 HBC ES 59 CNTR		W2 F	IT 4.520	0.023 FROM F	IT (ERROR INCLUDES	SCALE FACTOR OF 1	.1)
	11.4		W3	CHAR. K INTO (TAU) - (TAU PRI	ME) (UNITS 10**6 SEC		
0.70 0.75 0.80 0.85 0.90	0.95 (CDNLEV 0.95 =0.003)		W3 W3	USED FOR DELT	A I = 1/2 TEST.		(G3-G4)	
CHARGED K DECAY RATE (UNITS 10**B	SEC-1)		W3 W3 F	IT 3.117	0.043 FROM F	IT		
			1					

Stable Particles K[±]

Stable Particles

K±

Data Card Listings For notation, see key at front of Listings.

9/72* 9/72* 10/72*

R18 CHAR.K K INTO (P1 / P2 P10)/TAU (P4 / (P3)) R18 2027 0.303 0.009 BISI 65 H+HL + .8/66 R18 17 0.393 0.009 YOUNG 65 EMUL + .8/66 R18 17 0.3037 0.0090 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R18 0.3037 0.0009 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4)	R28 CHAR.K K INTO EENDJ/(HW NEU) (UNITS 10**-5) (P11)/(P1) R28 10 1.9 0.7 0.5 BOTTERIL 67 ASFK + 11/67 R28 8 1.8 0.8 0.6 MACEK 69 ASFK + 1/67 R28 113 2.42 0.42 CLARK 72 05FK + 1/73* R28 AVG 2.16 0.31 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
R19 CHAR. K INTO (MU PIO NEU)/TAU (P5)/(P3) R19 2175 0.632 0.035 BISI 65 H+HL + 8/66 R19 38 0.90 0.16 YOUNG 65 EMUL + 8/66 R19 H1505 (0.510) (0.017) EICHTEN 68 HLBC + 11/68 R19 H1505 0.503 0.019 EICHTEN 68 HLBC + 12/70 R19 H HAIDT 71 IS A REAMALYSIS OF EICHTEN 68 HLBC + 12/70 12/70 R19 H.AIOT 71 IS A REAMALYSIS OF EICHTEN 68. NENGE 50 0.019 R19 O.536 0.054 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 3.2) 0.010 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.9) R19 FIT 0.580 0.010 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.9) (SEE IDEOGRAM BELOW) WEIGHTED AUERAGE = 0.536 ± 0.054 ERROR SCALED BY 3.2	R29 CHAR. K INTO (MU PIO NEU)/(E PIO NEU) (P5)/(P6) R29 CI509 0.703 0.056 CALLAHAI 66 HLBC 6/68 R29 S610 0.607 BOTTERIZ 68 ASPK + 6/68 R29 A 1398 (0.506) (0.022) EICHTEN 68 HLBC 10/68 R29 A 1398 (0.506) (0.022) HAIDT 71 HLBC + 10/68 R29 A 400 0.698 (0.025) HAIDT 71 HLBC + 12/70 R29 D THIS VALUE IS STATISTICALLY INDEPENDENT OF CHIANG 72 R5 AND R6. 9/72# 8/72# R29 D THIS VALUE IS STATISTICALLY INDEPENDENT OF CHIANG 72 R5 AND R6. 9/72# R29 D THIS VALUE IS STATISTICALLY INDEPENDENT OF CHIANG 72 R5 AND R6. 9/72# R29 A ONLY INDIVIDUAL RATIOS INCLUDED IN FIT (SEE RI9 AND R20). 11/68 R29 C INCLUDE IN THE FIT THE RATIOS WU3/TAU AND E3/TAU, SINCE THEY SHOW 8/29 R29 C INCLUDE IN THE FIT THE RATIOS WU3/TAU AND E3/TAU, SINCE THEY SHOW 8/29 R29 C INCLUDE IN THE FIT THE RATIOS WU3/TAU AND E3/TAU, AND E3/TAU, SINCE THEY SHOW 8/29
Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of \overline{x}_{1} $\delta \overline{x}_{2}$, and scale factor, which are differ- ent from the values shown here.	R29 FIT 0.668 0.024 FROM FIT (ERROR INCLUDES SCALE FACTOR UP 2-2) R30 CHAR. K INTO (PI E NEU GAMMA)/PI E NEU) (P18)/(P6) R30 R 0.0121 0.022 R30 R 0.0122 0.022 R30 R 0.0121 0.022 R30 R 10.0121 0.022 R30 R 10.0122 0.022 R30 R 14.02 6.0144 R30 R 10.022 R0MAND R30 R 14.02 EGA GI OMEV 10.071 R30 R HAC CONSERVATION 14.02 27.2 R31 K = INTO (PI + E = -)/TOTAL (UNITS 10**-5) (P19) 7.1 7.15 R31 TEST OF LEFOR NUMBER CONSERVATION. G8 HBC - 37.68 37.68 R32 CHAR. K INTO (PI NEU NEU)/TOTAL (UNITS 10**-5) (P20) 7.70 7.70 R32 K I.4 OR LESS CL=+90 CAMERINI 69 HLBC + TEST NEUTA-CURR. 5/70 R32 K I.4 OR LESS CL=+90 SPECTAUN SANE AS P
CHISQ CHISQ 3.1 YDUNG 65 EMUL YDUNG 65 EMUL 0.2 0.6 1.0 CHISQ 1.4 CHISQ 3.1 CHISQ 3.1 CHISQ 0.5 CHISQ 0.6 CHISQ C	N33 M ABOVE IS MEASUREMENT OF STRUCTURE-DEPENDENT DECAY ONLY. R34 CHAR. K INTO (PI GAMMA)/TOTAL (UNITS 10**-6) (P22) R35 CHAR. K INTO (PI GAMMA)/TOTAL (UNITS 10**-6) (P22) R35 CHAR. K INTO (TAU)/(TAU PRIME) (P3/P4) R35 USED FOR DELTA 1=1/2 TEST. (P3/P4) R35 S.223 0.090 FROM FIT R36 CHAR. K INTO (PI SAMMA)/TOTAL (UNITS 10**-4) (P23) R36 CHAR. K INTO (PI SAMMA)/TOTAL (UNITS 10**-4) (P3/P4) R36 CHAR. K INTO (PI SAMMA)/TOTAL (UNITS 10**-4) (P23) R36 CHAR. K INTO (PI + PI - NEU)/(PI + PI - E + NEU) (P8)/(P7) 2/72 R37 K* INTO (PI + PI + E - NEU)/(PI + PI - E + NEU) (P8)/(P7) 2/72
R20 CHAR.K INTO (E PIO NEU)/TAU (P6)/(P3) R20 230 0.90 0.06 BORREANI 64 HBC + .8/66 R20 37 0.90 0.16 YOUNG 65 EMUL + .8/66 R20 854 0.94 0.09 BELLOTT2 67 HLBC .11/67 R20 H385 (0.846) (0.021) EICHTEN 68 HLBC + .11/68 R20 H4385 0.850 0.019 HAIDT 71 HLBC + .22/70 R20 H41DT 71 IS REANALYSIS OF EICHTEN 68. R20 R20 AVG 0.858 0.010 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R20 FIT 0.868 0.010 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	R38 CHAR. K INTO (PIO PIO E NEU)/KE3 (UNITS 10**-4) (P24)/(P6) 12/11 R38 CHAR. K INTO (PIO PIO E NEU)/KE3 (UNITS 10**-4) (P24)/(P6) 12/11 R38 0 37.0 OR LESS CL=:90 ROMAND 71 HLBC + 12/11 R38 2 3.8 5.1 1.3 CLINE 72 HLBC + 12/72 R39 K* INTO (PI- E+ MU+)/TOTAL (UNITS 10**-8) (P25) R39 K.1NTO (PI- E+ MU-)/TOTAL IS ALSO INCLUDED HERE 9/72* R39 C.8 OR LESS CL=:90 BEIER 72 OSPK + 9/72* R40 K+ INTO (PI+ E+ MU-)/TOTAL UNITS 10**-8) (P26) R40 INTO (PI+ E+ MU-)/TOTAL SALSO INCLUDED HERE 9/72* R40 INTO (PI- E+ MU-)/TOTAL SALSO INCLUDED HERE 9/72*
R21 K+ INTO (PI+PI-E+ NEU)/TAU (UNITS 10**-4) (P7)/(P3) R21 69 6.7 1.5 BIRGE 65 FBC 8/66 R21 269 5.83 0.63 ELY 69 HLBC 11/68 R21 200 7.36 0.68 BOURQUIN 71 ASPK 12/71 R21 106 7.0 0.9 SCHWEINBE 71 HLBC + 9/71 R21 106 7.0 0.40 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R22 106 0.40 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R22 K+ INTO (PI + PI - MU+ NEU)/TAU (UNITS 10**-4) (P9)/(P3) R22 1 (2.5) APPROX GREINER 64 EMUL + 8/66 R22 7 (2.5) APPROX GREINER 64 EMUL + 8/66 R23 1679 5.89 0.21 ESTER 60 SPK + 3/68 R23 5110 6.16 0.22 ESCHSTRUT 68 OSPK + 3/67 8/67 R23 510 6.16 0.21 ESCHSTRUT 68 OSPK + 3/68 R23 510 6.16 0.21 ESCHSTRUT 68 OSPK + <td>R41 CHAR. K INTO (NU 3NEU)/TOTAL (UNITS 10**-6) (P27) R41 7.0 OR LESS CL=.90 CABLE 72 CNTR + Note on Slope Parameter for K → 3π Decays As was discussed in Section IV F. 1 of the text, for the 3π decays of the K mesons we list the slope parameter "g" which is defined, as in that section, by</td>	R41 CHAR. K INTO (NU 3NEU)/TOTAL (UNITS 10**-6) (P27) R41 7.0 OR LESS CL=.90 CABLE 72 CNTR + Note on Slope Parameter for K → 3π Decays As was discussed in Section IV F. 1 of the text, for the 3π decays of the K mesons we list the slope parameter "g" which is defined, as in that section, by
R23 R24 CHAR K INTO (FF PAGING CERNOF INTO (FE PAGING FACTOR FACTOR <td>$\mathbf{M} ^{2} \propto 1 + g \frac{(\mathbf{s}_{3}^{-\mathbf{s}_{0}})}{\mathbf{m}_{\pi}^{2} +} + h \left(\frac{\mathbf{s}_{3}^{-\mathbf{s}_{0}}}{\mathbf{m}_{\pi}^{2} +}\right)^{2} + j \frac{(\mathbf{s}_{2}^{-\mathbf{s}_{1}})}{\mathbf{m}_{\pi}^{2} +} (1)$ where $\mathbf{s}_{i} = (\underline{\mathbf{p}}_{K} - \underline{\mathbf{p}}_{i})^{2} = (\mathbf{m}_{K} - \mathbf{m}_{i})^{2} - 2 \mathbf{m}_{K} \mathbf{T}_{i} (2)$</td>	$ \mathbf{M} ^{2} \propto 1 + g \frac{(\mathbf{s}_{3}^{-\mathbf{s}_{0}})}{\mathbf{m}_{\pi}^{2} +} + h \left(\frac{\mathbf{s}_{3}^{-\mathbf{s}_{0}}}{\mathbf{m}_{\pi}^{2} +}\right)^{2} + j \frac{(\mathbf{s}_{2}^{-\mathbf{s}_{1}})}{\mathbf{m}_{\pi}^{2} +} (1)$ where $\mathbf{s}_{i} = (\underline{\mathbf{p}}_{K} - \underline{\mathbf{p}}_{i})^{2} = (\mathbf{m}_{K} - \mathbf{m}_{i})^{2} - 2 \mathbf{m}_{K} \mathbf{T}_{i} (2)$
R25	$\mathbf{s}_{0} = \frac{1}{3} \sum_{i} \mathbf{s}_{i} = \frac{1}{3} (\mathbf{m}_{K}^{2} + \mathbf{m}_{1}^{2} + \mathbf{m}_{2}^{2} + \mathbf{m}_{3}^{2}) \qquad (3)$ $\underline{\mathbf{p}}_{K}, \underline{\mathbf{p}}_{i} \text{ are the four-vectors for the K and}$ $\text{ the i}^{\text{th}} \text{ pion, and the index 3 refers} \qquad (4)$ to the odd pion. We refer to the three possible charged decays as τ , τ ', τ^{0}
N21 (1) 11+301 0+012 FRUH F11	•

 $\begin{aligned} \tau^{\pm} & K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} \\ \tau^{1^{\pm}} & K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm} \\ \tau^{0} & K^{0}_{2} \rightarrow \pi^{+}\pi^{-}\pi^{0} \end{aligned}$

where the odd pion is the third one.

There is no strong evidence so far that a second order term in $(s_3 - s_0)$ is needed in Eq. (1), nor that the term in $(s_2 - s_1)$ is present. A value of $j \neq 0$ indicates CP violation as would a value of g for τ^+ different from that for τ^- . The CP violation tests in τ decays are listed as $\frac{(g^+ - g^-)}{(g^+ + g^-)}$ for charged K and as σ^{\pm} for neutral K (see Sec. IV F. 3b in the text).

As for the coefficient h, most of the experimenters have fitted their data with a second order term, which turned out to be consistent with zero. We use the value of g obtained when the second order term was dropped from the fit. HEUSSE 70 have studied the $K_{I}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decay where only a second order term could explain deviation from uniformity of the Dalitz plot. They also get results consistent with a zero coefficient. ALBROW 70 have studied $K^0_T \twoheadrightarrow \pi^+\pi^-\pi^0$ and found that the fit to the Dalitz plot improves if second and third order terms are added (CL goes from 24% to 48%), but the fit with no higher orders is a perfectly acceptable one (CL = 24%). FORD 72 have studied $K^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}$ and find that the χ^2/DF goes from 1.38 to 1.20 when the second order and the CP violation terms are added. However, the authors state that since their Coulomb correction is larger than the experimental errors and is not well known, it is difficult to interpret these results.

In the literature <u>other definitions</u> of slope parameters have appeared. We have converted to the definition of g in Eq. (1) whatever experimental quantity has been reported. We give the conversion to the definition (1) for two of the most widely used parametrizations and tabulate the conversion factors for the reader's convenience.

(a) For analysis of charged K's the expression often used is:

 $|\mathbf{M}|^2 = \mathbf{1} + \mathbf{a}_{\mathbf{v}} \mathbf{Y}$

with

$$Y = \frac{3T_3 - Q}{Q} , \quad Q = m_K - \sum m_i .$$

Stable Particles K[±]

The relevant formulae are:

Y =
$$-\frac{3}{2} \frac{s_3 - s_0}{m_K \Omega} + \Delta$$
, with $\Delta = \frac{m_{12} - m_3}{\Omega} (2 - \frac{m_3 + m_{12}}{m_K})$

and

$$g = \frac{-c_y a_y}{1+a_y \Delta} , \text{ with } c_y = \frac{3}{2} \frac{m_{\pi^+}^2}{m_K Q}$$

(b) For the analysis of K^0 decay the expression often used is:

$$|M|^2 = 1 + 2a_t \frac{m_K}{m_{r+1}^2} (2T_3 - T_{3 \max})$$

with

$$T_{3 \max} = \frac{m_{K}^{2} + m_{3}^{2} - 4m_{12}^{2}}{2m_{K}^{2}} - m_{3}^{2}$$

The relevant transformations are

$$T_3 = -\frac{s_3 - s_0}{2m_K} + \frac{Q}{3} (1 + \Delta)$$

and

$$g = \frac{-2a_t}{1+a_t c_t} , \text{ with } c_t = \frac{2m_K}{m_{\pi^+}} \left[\frac{2}{3}Q(1+\Delta) - T_{3\max}\right],$$

For the reader's convenience we give a table of numerical values for Q, $T_{3 \text{ max}}$, Δ , c_{y} and c_{t} , obtained using the masses from our August 1970 edition. The g values quoted in these Data Card Listings would not be changed if the current mass values were used.

	Q	$T_{3 \max}$	Δ	с _у	° _t
τ^{\pm}	74.96	48.15	0	0.7894	0.0924
τ'^{\pm}	84.24	53.27	-0.0789	0.7025	-0.0778
τ^0	83.54	53.92	0.0798	0.7028	0.3176

Some K^0 authors use the above form of matrix element:

$$|M|^2 = 1 + 2a_u \frac{m_K}{m_{\pi^+}^2} (2T_3 - T_3 max)$$

but define

$$T_{3 \max} = \frac{2}{3}Q$$

The relevant transformation is then

Stable Particles K±

$$g = \frac{-2a_u}{1 + a_u c_u}$$
, with $c_u = \frac{2m_K}{m_{\pi^+}^2} \Delta = 0.2272$.

Older K^0 analyses were done using

$$|M|^2 = 1 + a_v \frac{T_3}{m_K}$$
.

The relevant transformation is then

$$g = \frac{-c_{v}a_{v}}{1+d_{v}a_{v}}$$

with

$$c_v = \frac{m_{\pi^+}^2}{2m_K^2} = 0.0393$$

and
$$d_v = \frac{Q}{3m_K} (1 + \Delta) = 0.0604$$

10 CHARGED K ENERGY DEPENDENCE OF DALITZ PLOT

RELATED TEXT SECTION IV F.1, APPENDIX I, AND MINI-REVIEW ABOVE

MATRIX ELEMENT	SQUARED =	1 + G	(S3-S0)/(MPI+**2)
----------------	-----------	-------	-------------------

GT+	1	.INEAR	ENE	RGY	DEPE	IN DENC	E (G)	FOR	TAU (DECAY	rs	K+ I	NTO	PI+	PI+ /	PI		
GT +		THE	SE E	XPTS	5 FIT	M**2	=1+AY	*Y. W	ELIS	ST G	IN	THE	MAIN	LIS	TING	AND		
GT+		GIV	E AY	AT	RIGH	Π• G=	-1.5*	AY*(M	PI**2	2)/(M	1K *Q). S	EE N	OTE	ABOVE			
GT+	Z	5428	-0	•22		0.024			ZINCH	HENKO	0 67	HBC	+	AY=	0.28-	03		10/69
GT+		9994	-0	.218	8 - L	0.016			BUTLE	R	68	HBC	+	AY=	0.27	7+0	20	10/69
GT+	GI	7898	(-0	.196	a) (0.012	}		GRAU	1AN .	70	HLB	C +	AY=	0.224	3+0	30	8/70
GT+	Q	75 OK	-0	.215	8	0.002	8		FORD		72	ASP	қ +	AY=	0.273	34+	0035	4/72*
GT+	3	39819	-0	.201		0.008			HOFFN	1AST E	72	HL B	C +	INC	LUDES	GRA	UMAN	1/71
GT+	Q	THI	S VA	LUE	OF A	YIS	FROM .	A QUA	DRAT	IC FI	ет м	ITH	Y**2	COE	F≈.03	30+	010.	4/72*
GT+	Q	AL	INEA	RFI	TIS	QUOT	ED ON	LY FO	R THE	IR C	OMB	INED	К+	AND	K− SJ	MPLE		4/72*
GT+	Q	17	GIVE	S AY	/=0+2	737+-	• 0032	• T	HE QU	JADRA	AT IC	FIT	то	THE	COMB	INED		4/72*
GT+	Q	SAM	PLE	GIVE	S AY	=0.27	52+	0033	AND Y	**2	COE	FF=0	.025	+0	10 .			4/72*
GT+	Q	(CH	ISQ/	DF)=	1.38	FOR	LINEA	R FIT	AND	1.20) FO	r qu	ADRA	TIC	FIT.			1/73*
GT +	G	EMU	LS.	DATA	ADD	ED -	ALL E	VENTS	INCL	.UDEC) BY	HOF	FMAS	TER	72			1/71
GT+	Z	ALS	O IN	CLUD	ES D	BC EV	ENTS.											
GT+			• •															
GT+	Δ١	/G	→ 0	.214	4	0.004	5 AV	FRAGE	(EDD	000 1	MCL.	INEC	504		AC TO	OF	1 71	

Data Card Listings For notation, see key at front of Listings.

The definitions of the parameters λ_{+} , λ_{-} , and ξ can be found in Section IV F.2 of the text. Many approximations are usually made to extract these or related parameters from the experimental data.

1) Scalar and tensor currents: there is no evidence for scalar or tensor currents, so pure vector current is usually assumed.

2) Im ξ so far is consistent with 0, and this is usually assumed in most of the experiments.

3) Radiative corrections are not serious; they change λ_{+} by about 0.005 (GINSBERG 67 and 70).

4) Older $K_{\mu3}$ experiments have determined ξ assuming $\lambda_{+} = \lambda_{0} = 0$.

5) Momentum transfer dependence of ξ : many $K_{\mu3}$ experiments have determined ξ assuming a linear q² dependence for f_{+} , as in Eq. (27) of the main text. Some of these assume $\lambda_{-} = 0$ since there is no strong evidence for a non-zero λ_{-} . Others allow $\lambda_{-} \neq 0$ or equivalently $\Lambda \neq 0$ where

$$\xi(q^2) = \xi(0) + \Lambda \frac{q^2}{m_{-}^2}$$

Instead of $\lambda_{\rm or} \Lambda$, HAIDT 71 (K⁺) gives $\xi(q^2)$ where q^2 is chosen to minimize the correlation with $\xi(0)$.

6) Most K_{e3} experiments have assumed a linear q^2 dependence for f_+ .

Since it is now clear that $\lambda_{+} \neq 0$, assumption-4 values of ξ are parenthesized. Assumption-5 values of ξ and λ_{+} are encoded and any corresponding non-zero values of λ_{-} or Λ are given in footnotes. No attempt is made to average these ξ or λ_{+} values because they are highly correlated. ^{1, 2} As in the past, we keep the values of ξ as obtained in the μ polarization measurements ($\xi_{\rm B}$) separated from the values obtained from branching ratios and spectra ($\xi_{\rm A}$).

Assumption-6 values of λ_{+} (for K_{e3}) are encoded and averaged. There is some indication from CHIEN 71 (K_{L}^{0}) that a quadratic q² term may be required in f₊ for K_{e3}. Chounet, Gaillard, and Gaillard ² further suggest that the large values of λ_{+} in $K_{\mu3}^{0}$ (compared with K_{e3}^{0}) could be explained by the presence of a second order term.

See references 1 and 2 for excellent reviews of K_{13} form factors and for a thorough treatment of the problems of correlations, higher order terms, and alternative parametrizations.

References

1. M. K. Gaillard and L. M. Chounet, $K_{\ell 3}$ Form Factors, CERN 70-14 (May 1970), and Phys. Letters 32B, 505 (1970).

2. L. M. Chounet, J. M. Gaillard, and M. K. Gaillard, Physics Reports 4C, 199 (1972).

10 CHARGED K FORM FACTORS	8/67
RELATED TEXT SECTION IV F.2 AND MINI-REVIEW ABOVE	
F+ AND F- ARE FORM FACTORS FOR THE VECTOR MATRIX ELEMENT FS AND FT REFER TO THE SCALAR AND TENSOR TERM	
XIA = F-/F+ (DETERMINED FROM SPECTRA AND KMU3/KE3)	

XIA XIA = F-IF+ (DETERMINED FROM SPECTRA AND KMU3/KE3) XIA SOME OF THE QLDER EXPERIMENTS HAVE EVALUATED XI ASSUMING THAT IT IS XIA INDEPENDENT OF THE MOMENTUM TRANSFER (T), I.E., THEY SET L+=L-=O. XIA OTHERS HAVE ASSUMED A VALUE FOR L+ AND USED L-=O. ONLY RET L+=L-=O. XIA BOTH L+-L- AND XI(D) (OR THREE RELATED PARAMETERS) HAVE BEEN INCLU-XIA DED IN THE FITS . SEE HAIDT TJ. (OR CHIEN TO FOR KOL).

XIA XIA XIA XIA XIA XIA XIA XIA XIA XIA	L 76 L 87 L 1509 2648 444 L 1398 L 78 8 444 L 1398 L 78 8 444 L 78 8 444 L 78 8 40 1505 3480 1505 3480 L 14 L 4 K 133. K 123. K	(+1.8) (+0.7) (-0.1) (-0.17) (+0.6) THM +0.2 (+0.75) (+0.75) (+0.75) (+0.75) (-0.60) (-0.60) (-0.60) (-0.50) -0.72 -0.62 -0.65 0 -0.72 -0.65 BOTTERI T71 T=6 B R ASSUMES BOTTERI T71 T=0.45 BOTTERI T71 T=0	(1.6) (0.5) (0.75) (0.75) (0.75) (0.4) (0.4) (0.4) (0.4) (0.50) (0.20) (0.15) (0.50) (0.22) ((0.99) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	BROWN GIACOMELI JENSEN SHAKLEE BISI CATLAHAI CALLAHAI AUERBACH EICHTEN BOTTERLIZ HALDT HAIDT HAIDT HAIDT HAIDT HAIDT HAIDT HAIDT HAIDT HAIDT HAIDT ANKENBRAN CHIANG J. I.	62 64 64 65 65 66 66 66 68 68 68 68 68 69 70 71 71 71 72 72 72 72 72 72 72 72 72 72 72 72 72	XEBC XEBC XEBC OSPK HBC FRBC FRBC FRBC OSPK HLBC ASPK HLBC ASPK HLBC ASPK HLBC C SPK HLBC C SPK HLBC C SPK HLBC C SPK HLBC C SPK SPK S SPK SPK SPK SPK SPK SPK SPK S	+ MU+ + MU+ + MU+ + KMU2 + D_P. + KMU2 + D_P. + D_P	PIO SPE SPECTRL SPECTR	CTRA M CTRN M M 4. =:023 L+==0 =:023 =:045 5;T=0 E K 4 T=0 29T=0 L	8/67 8/67 8/67 8/67 8/67 8/67 8/67 8/67
XIB XIB XIB XIB XIB XIB XIB XIB XIB XIB	XIB = THE H NECE 2100 397 2950 3133 H6000 H6000 H HAID	F-/F+ (MU POLAR SSARY, T +1.2 -1.4 -0.7 -0.95 -0.6 -1.0 T 71 VALI	DETERMINE IZATION I SHOULD B 2.4 1.8 0.9 0.3 1.1 0.3 UES AT T= ESS (SCAL	D FROM MU S A MEASU E SPECIF 1.8 3.3 0 AND T=4 E FACTOR	J POLARIZA JRE OF XI (IED. BORREANI CALLAHA1 CALLAHA1 CALLAHA1 CALLAHA1 CALLAHA1 AIDT HAIDT HAIDT HAIDT HAIDT = 1.0)	45 66 66 68 71 71 CORR	N IN K NO AS FRBC FRBC OSPK HLBC HLBC ELATE	(MU3) SUMPTIO + POLA + TOTA + LONG + TOTA + TOTA + TOTA = D.	NS ON L RIZATIO L POLA- • POLAR L POL• L POL• L POL•	+ N • • T=3 T=0 T=4•9	8/67 8/67 8/67 6/68 2/72 2/72
IXI	11	AGINARY	PART OF	XI (TEST	OF T REVE	RSAL	.)				
111		0.1	0.4	0.3	BETTELS	68	HLBC	POLA	RIZATIO	N	10/69
FS FS FS FS FS FS	FS/F+ 2707 4017 FT/F+	RATIO (.18 (.30 (0.23 (0.14 (0.13 (RATIO (DF SCALAR DR LESS DR LESS DR LESS 0.03 DR LESS DF TENSOR	TO F+ CC CL=.90 CL=.95 CL=.90 0.04 CL=.90 TO F+ CC	DUPLINGS F BELLOTT2 KALMUS BOTTERIL1 STEINER CHIANG DUPLINGS F	OR K 67 68 71 72 0R K	E3 DE HLBC HLBC ASPK HLBC DSPK E3 DF	CAY(ABS + + L+,F: + CAY(ABS	• VALUE S•FT•PH) I FIT	10/69 10/69 8/66 2/72 9/72*
FT FT FT FT FT	2707 4017	.58 (1.1 (0.58 (0.24 0.75 (DR LESS DR LESS DR LESS 0.16 DR LESS	CL=.90 CL=.95 CL=.90 0.14 CL=.90	BELLOTT2 KALMUS BOTTERIL1 STEINER CHIANG	67 67 68 71 72	HLBC HLBC ASPK HLBC OSPK	+ + L+,F: +	5,FT,PH	I FIT	10/69 10/69 8/66 2/72 9/72*
LL++++++++++++++++++++++++++++++++++++	LAMBD FOR 8 217 407 230 854 1393 515 960 90 1458 2707 4017	A + (L1 AD. CORF +0.036 -0.010 -0.04 0.045 +0.016 +0.028 (.08) -0.02 .045 0.027 0.029 0.0282	INEAR ENE - 045 - 029 - 05 0.017 - 016 - 013 (.04) 0.08 - 015 0.010 - 0.011 - 0.0052	RGY DEPEN DAL ITZ P 0.018 .014 0.12 AVERAGE	DENCE OF I LOT, SEE BROWN JENSEN BORREANI BORREANI BELLOTT2 IMLAY KALMUS BOTTERILI BOTTERILI STEINER CHIANG (ERROR IN	F+ I GINS 62 64 64 67 67 68 68 67 68 68 70 71 72 NCLU	N KE3 BERG XEBC XEBC HBC FBC OSPK FBC ASPK HLBC OSPK HLBC OSPK	DECAY) 67. + PIO 5 + ELSE + DLTZ + DLTZ F + ESPEC + PIO 5 PIO 5 DLTZ PLT + DLTZ CALE FAC	SPEC, NO PEC, NO PLT, R PLT, R PLT, NO F SPEC, NO F SPEC, NO F SPECTRUM F SPECTRUM F SPECTRUM F SPECTRUM F SPECTRUM F SPEC, NO F SPEC, NO F SPECTRUM S SPE	R.C. R.C. R.C. R.C. R.C. R.C. R.C. L.C. R.C. L.C. R.C. R	8/67 8/67 11/67 8/67 6/68 6/68 10/69 11/71 9/72*
L+M L+M L+M L+M L+M L+M L+M	LAMBDA FOR R 3240 4025 AVERAGE M	+ (LIN AD. CORR 0.055 0.024 EANINGLE	EAR ENERG • TO DAL: 0.025 0.022 \$\$ (\$CALE	GY DEPEND ITZ PLOT FACTOR	ENCE OF F4 OF KMU3 S HAIDT ANKENBRAN = 1.0)	F IN SEE 0 71 1 72 7	KMU3 GINSB HLBC ASPK -	DECAY) ERG 70 KMU3 + PI0 S	DAL. PL PEC XI=	.0T 62	2/71 6/72*
BIRGE ILOFF ALEXA COHEN EISEN BURRC TAYLC	56 N 56 P NDE 57 N 1 57 F 18ER 58 P 18ES 59 P 18 59 P	C 4 R 102 C 6 UND.CONS C 8 6 RL 2 1 R 114 3	834 927 478 •PHYS• 63 17 59	REFERENC BIRGE, PE ILOFF, GO ALEXANDE +CROWE, DI EISÉNBER BURROWES S TAYLOR	ES FOR CHA RKINS,PETE LDHABER,LA R,JOHNSTON UMOND G,KOCH,LOH ,CALDWELL, HARRIS.OR	RSON NNUT J-DCE (AT FRIS	D K N,STOF TTI,GI ALLAI TOMICS NN,NIF SCH,HI	RK,WHITE ILBERT + IGH (DUB S INTER, KOLIC + ILL + SAUMEL (HEA (LR (LR LIN INS +LRL+CI (BER (MI	L) L) T) N) T)	

Stable Particles K[±]

AYLOR, HARRIS, OREAR, LEE, BA

 FREDEN
 60
 PR
 118
 564

 BARKAS
 61
 PR
 124
 1209

 BHOWMIK
 61
 NC
 20
 817

 FERROLU
 61
 NC
 22
 160

 OGE
 61
 PR
 27
 366

 BOYARSKI
 62
 PR
 128
 2398

 BROWN
 62
 PR
 450
 847

 BARKAS
 63
 PR
 1
 26

BARNEAN 64 PL 12 123 CALLAHAN 64 PR 136 B 1463 CANERINI 64 PRL 13 318 CLINE 64 PRL 13 101 GIACOMEL 64 NC 34 1134 GREINER 64 PRL 13 284 JENSEN 64 PRL 13 294 SHAKLEE 64 PRL 13 99

 BIRGE
 65
 PR
 139
 B
 1600

 BISI
 65
 NC
 35
 768

 BISI
 65
 PR
 139
 B
 1068

 BORREANI
 65
 PR
 140
 B1686

S C FREDEN,F C GILDERT,R S HHITE (LRL) BARKAS,DVER,MASON,HORRIS,NICKOLS,SMIT (LRL) B BHOWMIX,P C JAIN,P C MATHOR (DELIT (LRL) FERRO-LUZZI,MILLER,HWRRAY,ROSENFELD- (LRL) PAUL NORDIN JR ROF,SINCLAIR,BROWN,GLASER + (MICH+RL) BOYARSKI,LOH,HIEMELA,RITSON (HIT) BROWN,KADYK,TRILLING,ROE+ (LRL,MICH) W H BARKAS,J N DYER,H H HECKMAN (LRL)

G BORREANI, G RINAUDO, A WER&ROUCK (TURIN) A CALLAHAN, R MARCH, R STARK (WISCONSIN) CAMERINI, CLINF, FRY, POWELL (WISCONSIN+LRL) D CLINF, W F FRY (WISCONSIN) GIACOMELLI, MONTI, QUARENI+ (BOLGONA, MUNICH) D GREINER, W OSBORNE, W BARKAS (LRL) JENSEN, SHAKLEF, RAG SINCLAIR (MICH) +KERNAN, PU, POWELL DOWD (LRL, WISC) SHARLEF, JENSEN, RAGE SINCLAIR (MICH)

BIRGE, ELY, GIDAL, CAMERINI, CLINE + (LRL+WISC) BISI, BORREANI, CESTER, FERRARO + (TORINO) BISI, MAZARI-CHIESA, RINAUDO (TORINO) BORREANI, GIDAL, RINAUDO, CAFORIO+ (BARI TORI)

Stable Particles K[±], K⁰, K⁰_S

CALLAHAN 65 PRL 15 129 CAMERINI 65 NC 37 1795 CLINE 65 PL 15 293 A CALLAHAN,D CLINE +CLINE,GIDAL,KALMUS,KERNAN A CLINE,W F FRY (WISCONSIN) (WISC+LRL) (WISCONSIN) DE MARCO 65 PR 140 B 1430 FITCH 65 PR 140 B 1088 GREINER 65 PR 140 B 1088 GREINER 65 PR 138 B 440 TRILLIN 65 UCRL 16473 UPDATED FROM 1965 ARGON YOUNG 65 UCRL 16462 ALSO 67 PR 156 1464 DE MARCO, GROSSO, RINAUDO (TORINO+CERN) FITCH, QUARLES, HILKINS(PRINCETON+HT HOLYOKE) QUOTED BY BARKAS [LIRL] STAMER, HUETTER, KOLLER, TAYLOR, GRAUMAN (STEV) GEORGE H TRILLING [LIRL] CONF., PAGE 5. POH-SHIEN YOUNG (THESIS, BERKELEY) [LIRL] P-S YOUNG, H.Z.OSBORNE, W. H. BARKAS (LIRL) CALLAHAI 66 PR 150 1153 CALLAHAN,CAMERINI+(WISC,LRL,RIYERSIDE,BARI) CALLAHAN 66 NC 44A 90 A C CALLAHAN (WISCONSIN) CESTER 66 PL 21 343 CESTER,ESCHSTRUTH,ONEILL+ (PRINCETON-PENN) ALSO 67 AUERBACH, FOOTNOTE 1. AUERBACH 67 PR 155 1505 BELLOTT 67 HEIDELBERG CONF BELLOTT 67 NC 52A 1287 ALSO 66 PL 20 690 BISI 67 PL 25B 572 BOTTERIL 67 PRL 19 982 ALSO 68 BOTTERIL BOWEN 67 PR 154 1314 +DÖBBS, MANN, MCFARLANE, WHITE+ (PENN, PRIN) BELLOTTI, FULLIA (MILAN) BELLOTTI, FIDRINI, FULLIA (MILAN) BELLOTTI, F+DRINI, FULLIA (MILAN) BISI, CSTER, CHIESA, VIGONE (TORINO) BOTTERILL, BROWN, CORPETT, CULLIGAN + (DXFORD) BOWEN, MANN, MCFARLANE, HUGHES+ (PENN-PRINCETO) CLINE 67 HEIDELBERG CONF FLETCHER 67 PRL 19 98 FORD 67 PRL 18 1214 IMLAY 67 PR 160 1203 KALMUS 67 PR 159 1187 ZINCHENK 67 RUTGERS(THESIS) CLINE, HAGGERTY, SINGLETON, FRY+ (NISCONSIN) FLETCHER, BEIER, EDWRADS,+ (ILLINDIS) +LEMDNICK, NUMENBEGR, PIROUE (PRINCETON) IMLAY, ESCHSTRUTH, FRANKLIN+ (PRINCETON) XALMUS, KERNAN (LRL) ZINCHENKO (RUTGERS) BETTELS 68 NC 56A 1106 BOTTERIL 68 PR 171 1402 BOTTERII 68 PR 174 1661 BOTTERI2 68 PRL 21 766 BUTLER 68 UCRL-18420 CHANG 68 PRL 20 510 AACHEN-BARI-BERGEN-CERN-EP-NIJMEGEN-DRSAY+ BOTTERILLBRONN,CORBETT,CULLIGAN+ DOTTERILLBRONN,CLEGG,CORBETT,+ BOTTERILLBRONN,CLEGG,CORBETT,+ DALAND,GOLDHABER,GOLDHABER,HIRATA+ (LRL) CHANG, YODH, EHRLICH, PLANO+(MARYLAND, RUTGERS) CHEN 68 PRL 20 73 CUTTS 68 PRL 20 955 ALSO 65 PR 138 8969 ALSO 69 PR 184 1380 EICHTEN 68 PL 27B 586 EISLER 68 PR 165 1697 ESCHSTRU 68 PR 165 1697 GARLAND 68 PR 167 1225 MOSCOSO 68 THESIS CHEN, CUTTS, KIJEFNSKI, STIENING + L. KLRL, MITI CUTTS, STIENING, HIEGAND, DEUTSCH L. KLRL, MITI CUTTS, STIENING, MIEGAND, DEUTSCH L. KLRL, MITI +STIENING, MIEGAND, DEUTSCH L. KLRL, MITI ACHEN-BARTI-CERN-EP-OSAY-PAOUA-VALENCIA EISLER, FUNG, MARATECK, MEYER, PLAND (RUTGERS) ESCHSTAUTH, FRANKLIN, HOMEFES+ (FRINCETON, PENN) +TSJEJSJEFUNGS, MOSEN+ (COLUMBIA, RUTG, WISC) M L MOSGOSO (UNIY PARIS OSAY) CAMERINI 69 PRL 23 326 DAVISON 69 PR 180 1333 ELY 69 PR 180 1319 EMMERSON 69 PRL 23 393 +LJUNG,SHEAFF,CLINE (WISCONSIN) +BACASTON,BARKAS,EVANS,FUNG,PORTER+ (UCR) ELY,GIDAL,HAGOPIAN,KALMUS+ (LOUC+WISC+IRL) EMMERSON,QUIRK (OXFORD) HERZO 69 PR 186 1403 LOBKOWIC 69 PR 185 1676 ALSO 66 PRL 17 548 MACEK 69 PRL 22 32 MAST 69 PR 183 1200 ZELLER 69 PR 182 1420 +BANNER, BEIER, BERTRAM, EDMARDS + (ILL) +MELISSINOS, NAGASHIMA, TEWKSBURY+ (ROCH, BNL) LOBKONICZ, WELISSINOS, NAGASHIM + (ROCH+BNL) MACEK, MANN, MC FARLANE, ROBERTS+ (PENN, TEMPLE) +GERSHIM, NALSTON-GARNUDST, BANGERTER* (LLR) ZELLER, HADDOCK, HELLAND, PAHL+ (UCLA, ILL) BOTTERIL 70 PL 31B 325 FORD 70 PRL 25 1370 GRAUMAN 70 PR D1 1277 ALSO 69 PRL 23 737 MACEK 70 PR D1 1249 PANDOULA 70 PR D2 1205 +BROWN,CLEGG,CORBETT,CULLIGAN+ (DXF) +PIROUE,REMMEL,SWITH,SOUDER (PRIN) +VOLLER,TAYLOR,PANODULAS+ (STEV,SETO,LEHI) +KOLLER,TAYLOR,PANODULAS+ (STEV,SETO,LEHI) +KOLREN,TAYLOR,PANODULAS+ (STEV,SETO) +MANN,WCFALANE,ROBERTS (PENN) +TAYLOR,KOLLER,GRAUMAN + (STEV,SETO) BOURQUIN 71 PL 36B 615 HAIDT 71 PR 36B 615 ALSO 69 PL 29B 691 KLEMS 71 PR D4 66 ALSO 70 PRL 24 1086 ALSO 70 PRL 25 473 +BOYMOND.EXTERMANN,MARASCO+ (GEVA,SACL) AACHEN+BARI+CERN+EP+NIJHEGEN+OBSAY+PADDVA+ +(AACH+BARI,CERN+FPOL,NIJHCGEN+OBSAY+PADDVA+ +HILDEBRAND,STEINING (CHICLIRL) KLEMS,HILDEBRAND,STEINING (LRL,CHIC) KLEMS,HILDEBRAND,STEINING (LRL,CHIC) KUNSELMA 71 PL 348 485 OTT 71 PR D3 52 ROMANO 71 PL 36B 525 SCHWEINB 71 PL 36B 246 STEINER 71 PL 36B 521 R. KUNSELMAN (WYOMING) OTT, PRITCHARD (LOQM) HERMTON, AUBERT, BURBAN-LUTZ (BARI, CENN, ORSA) AACHEN+BAELGIUM-CERN+NIJMEGEN+FADDVA COLLAB AACHEN+BAELGIUM-CERN+PADDVA COLLAB SIEINER 11 PL 202 PL 201 PL 201</td AALTENYBAKITVEKNYEPULPUKSAYMIJMHYADUYI (MKIN CARROLL KYCIALI, MENSANIJMHYADUYI (MKIN CARROLL KYCIALI, MENSANIJMHYADUYI (MKIN MICENBRANDT, LARSEN (ENLESS HEUSSE, POSALOD, YIALEF (BNL + LASI-MALE) HEUSSE, POSALOD, YIALEF (BNL + LASI-MALE) HEUSSE, POSALOD, YIALEF (BNL + LASI-MALE) HULDERRAND, PANG, STE (FIL) CORR, ELIOF KERTH, MCREYNOLDS, MENTON+ (LISI) CLINF, D LJUNG (MISCONSIN) MEETER, BERTRAM, HERZO, KOESTER + (MISCONSIN) MOEF, KACHT, MCREYNOLDS, MENTON+ (LISI) (MISCONSIN) MOEF, RERTH, MCREYOLO, KOESTER + (MISCONSIN) MOFFMASTER, KOLLER, TAYLOR+ (SIEVSETO+ HILL) D LJUNG (MISCONSIN) BACKENST 73 TO BE PUB.IN PL B BACKENSTOSS, BAMBERGER+(CERN, KARL, HEID, STOH) LUCAS 73 PR TO BE PUBL. P W LUCAS, H D TAFT, W J WILLIS (YALE) QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS BLOCK 62 CERN CONF 371 BLOCK, LENDINARA, MONARI (NWES+BOLOGNA) PAPERS NOT REFERRED TO IN DATA CARDS PAPERS NUT REFERRED ID IN DATA CARUS DIRENE_FEGRATI,QVIST (NORD) DIRGE,FELY,GIDAL,CAMERINI + (LLL+HISC+BARI) DADIR,LEIPUNER (YALE,BNL) CABIBBO,MAKSYMOWICZ (CERN) CABIBBO,MAKSYMOWICZ (CERN) CABIBBO,MAKSYMOWICZ (CERN) CABIBBO,MAKSYMOWICZ (CERN) EDWARD S SUSSERG MANSYNGWICZ (CERN) EDWARD S SUSSERG MASSYNGONICZ (CERN) EDWARD S SUSSERG MASSING S SUSSERG FACH, SARAC, SMITH (SITOM-HODRA) E S GINSBERG (III HAIFA) BRENE 61 NP 22 553 BIRGE 63 PRL 11 35 ADAIR 64 PL 9 352 CABIBBO 64 PL 9 352 ALSO 64 PL 9 352 CABIBBO 64 PL 1360 ALSO 65 CABIBBO 64 PL 14 72 CABIBBO 64 PL 96 CABIBBO 64 PL 162 1570 35 GINSBERG 67 PR 162 1570 GINSIN ALSO 65 PL 14 72 05 0500 12 FADIN ALSO 64 PL 12 90 12 1000 12 1000 12 9 CONF 33

Data Card Listings For notation, see key at front of Listings.

In a bubble chamber experiment SKJEGGE-STAD 72 obtain a value for the K⁰_S mean life, $\tau_{\rm S}$ = (0.8958 ± 0.0045) x 10⁻¹⁰ sec, which is significantly higher than the combined results of previous experiments [(0.862 ± 0.006) x 10⁻¹⁰ sec from our 1972 edition]. In addition, the CERN-Heidelberg Collaboration (in a vacuum regeneration experiment) reported a preliminary value (0.899 ± 0.005) x 10⁻¹⁰ sec (Batavia 1972) in agreement with SKEGGESTAD. However, it should be pointed out that the CERN-Heidelberg number is highly correlated with $|\eta_{+-}|$ for which they find a value of (2.35 ± .07) x 10⁻³.

We have not entered the CERN-Heidelberg results in our listings because they have not been published yet.

The corrections for systematic biases in SKJEGGESTAD 72 and in HILL 68 (updated) amount to +1% and 0.7% respectively. Similar corrections, if applied to the older bubble chamber results, would probably increase their average by only about one standard deviation and would not account for the discrepancy. We therefore retain all results in the average, $\tau_{\rm S}$ = (0.882 ± 0.008) x 10⁻¹⁰ sec, where we have increased the error by a scale factor of 2.5 because of the disagreement.

Because of the uncertain future of $\tau_{\rm S}$, we have not attempted to adjust the $\mathrm{K}_{\mathrm{L}}^{0}\text{-}\mathrm{K}_{\mathrm{S}}^{0}$ mass difference, ϕ_{+-} or ϕ_{00} values. The fitted K_{S}^{0} rates, $|\eta_{+-}|$, and $|\eta_{00}|$ are automatically adjusted to our new τ_{S} value by our fitting procedure.

To show how $\triangle m(K_L^0 - K_S^0)$ and ϕ_{+-} are affected by our new au_{S} , we use the correlation given by ARON-SON 70 (K_L^{\emptyset}) between $\Delta m(K_L^{\emptyset}-K_S^{\emptyset})$ and τ_S , which indicates that a change in $\tau_{\rm S}$ from 0.862 to 0.882 increases their value of Δm by about .006 x 10¹⁰ sec⁻¹. A change in Δm of this amount would lead to an increase in $\varphi_{+_}$ of about 3.5°, using the Δm dependence of JENSEN 70, which is the most precise measurement of ϕ_{+-} . (See the F_{+-} section in the K_{1}^{0} Data Card Listings.)

Stable Particles Kg

Stable Particles K⁰_S, K⁰_L

Data Card Listings

WEIGHTED AVERAGE = 2.212 ± 0.034 ERROR SCALED BY 1.2	GOBBI 69 PRL 22 682 GOBBI,GREEN,HAKEL,MOFFETT,ROSEN+(ROCHESTER) HYAMS 69 PL 298 521 +KOCH,POTTER,VON LINDERN,LORENZ+ CERN(MPIM) MORFIN 69 PRL 23 660 MORFIN,SINCLAIR (MICH) STUTZKE 69 PR 177 2009 +ABASHIAN,JONES,MANTSCH,ORR,SMITH(ILLINOIS)
Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a	MOFFETT TO BAPS 15 512 +GOBBI, GREEN, HAKEL, ROSEN (ROCHESTER) WEBBER TO PR D1 1967 +SOLMITZ, CRAWFORD, ALSTON-GARNUDST (LR.) ALSO 69 UCRL 1222 FHESIS BR WEBBER (LR.) BALTAY 71 PRL 27 1678 +BRIDGEWATER, COOPER, GERSHWIN, HAB IBI+ (COLU) ALSO 71 PRTO THESIS WILLIAM COOPER (COLUMBIA) CHO 71 PR D3 1557 +DRALLE, CANTER, ENGLER, FISK+ (CARN+ BNL+CASE) MEISNER 71 PR D3 59 +NANN, HERTZBACH, KOFLER + (MASA+BNL+YALE) REPELLIN 71 PL 36 603 +NOLF, GHULET, GATLARD, JANE+ (MASA+BNL+YALE)
$\begin{array}{c c} \text{Constrained it program, which are different from the values shown have of \overline{x}_{1}, \overline{\delta x}_{1}, \\ \text{and scale factor, which are different from the values shown here.} \\ \hline \\ $	ALITTI 72 PL 398 568 J ALITTI,E LESQUOY,A MULLER (SACLAY) BANNER 72 PRL 29 237 +CRONIN,HOFFMAN,KMAPP,SHOCHET (PRINCETON) JAMES 72 PR 849 +MONTANET, PAUL, SAETREK (CERN+SACL+OSLO) JONES 72 NC 93 51 +ABSH1AN, GRAHAM, MANTSCH, ORR, SMITH+ (ILI) NETCALF 72 NC 94 51 +ABSH1AN, GRAHAM, MANTSCH, ORR, SMITH+ (ILI) NETCALF 72 PL 308 +NEUHOFER, NIEBERGALL+ (CERN+SACL+0SLO) NORSE 72 PL 308 +NEUHOFER, NIEBERGALL+ (CERN+FACL+0RP, NIHHEN) NORSY 72 PL 308 +NEUHOFER, NIEBERGALL+ (CERN+FACL+0RP, NHHEN) NAGY 72 PL 847 94 +TELBISLY, VESTERGONBI (BUDAPEST) ALSO 9 943 SKJEGGESTAD, JAMES, MONTANET+(SOLO+CERN+SACL) SKJEGGESTAD, JAMES, MONTANET+(SOLO+CERN+SACL)
A CONTRACT OF CONTRACT	PAPERS NOT REFERRED TO IN DATA CARDS
1.9 2.1 2.3 2.5 2.7 (CONLEU = 0.207) KOS INTO (PI+ PI-)/(PIO PIO) =0.207)	BIRGE 60 ROCH CONF 601 R W BIRGE,P P ELY + (LRL+WISCONSIN) MULER 60 PRL 4 48 MULER,BIRGE,FOWLER,GOOD,PICCIONI+(LRL+BNL) FITCH 61 NC 22 1160 V FITCH,P PIROUE,R PERKINS (PRIN+LASL) GODD 61 NC 22 1160 V FITCH,P PIROUE,R PERKINS (PRIN+LASL) GODD 61 PR 124 1223 GODD,MATSEN,MULLER,PICCIONI + (LRL) LAWAFORD 62 CERN CONF 827 F S CRAMFORD (LRL) JUERBACH, 65 PRL 14 192 AUERBACH,LANDE,MANN,SCIULLI,UTO + (PRN) TRILLING 65 UCLR 16473 GEORGE H TRILLING (LRL) UPDATED FROM 1950 AAGONWE CONF., PAGE 115. (LRL) (LRL)
	****** ********* **********************
R4 (KOS INTO PI+ PI- PIO, CP VIOLATING)/(KOL INTO PI+ PI- PIO) R4 TEST OF CP VIOLATION - SEE TEXT SECTION IV F.3.4 FOR DEFINITIONS R4 CPT ASSUMED VALID - (I.E. RE(A)=0) - ONLY (IMA)**2 QUOTED HERE R4 18 (3.8) OR LESS CL=.90 ANDERSON 65 HBC 10/69 R4 0.45 OR LESS CL=.90 BEHR 66 HBC 8/66	13 LONG-LIVED NEUTRAL K (498, JP=0-) I=1/2
R4 53 (1.7) OR LESS CL=.90 WEBBER 70 HBC 8/70 R4 C 11 0.8 DR LESS CL=.90 WEBBER 70 HBC 8/70 R4 9 1.2 OR LESS CL=.90 HBBER 70 HBC 8/70 R4 90 1.2 OR LESS CL=.90 CHO 71 DBC 4/71 R4 50 (1.2) OR LESS CL=.95 MEISNER 71 HBC CL=.9 NOT AVAIL. 2/71 R4 180 0.66 OR LESS CL=.90 JAMES 72 HBC CL=.9 NOT AVAIL. 2/71	13 (KOL) - (KOS) MASS DIFFERENCE WE GIVE (KOL-KOS MASS DIFFERENCE / HBAR) IN UNITS OF 10**10 SEC-1
R4 99 1.2 OR LESS CL=.90 JONES 72 OSPK 10/72* R4 384 0.27 OR LESS CL=.90 METCALF 72 ASPK 11/72* R4 M THESE AUTHORS FIND REAL(A)= 2.75+65, ABOVE VALUE AT RE(A)=0 2/71 R4 C THIS IS THE COMBINED RESULT OF ANDERSON 65 AND WEBBER 70 2/71	D T (2.20) (0.35) F1TCH 61 CMTR D 0.84 0.29 0.22 GOD0 61 HLBC D T 1.02 0.23 CAMERINI 62 HLBC SEE NOTE C BELOW 8/67 D C VALUE CHANGED FROM 1.7 (SEE TABLE 1 0F CAMERINI 66) 8/67 D T 0.55 0.24 AUBERT 65 HLBC 6/66
R5 KOS INTO (NU+ NU-)/CHARGED (UNITS 10**-5) (P3)/(P1) R5 10.0 OR LESS CL=.90 BOTT=BODE 67 05PK 8/67 R5 20.0 OR LESS CL=.90 BOTT=MODE 67 05PK 2/71 R5 1.07 OR LESS CL=.90 BOTT=69 05PK 2/71 R5 1.07 OR LESS CL=.90 SOFK 10/69 R5 3.2 0.0 DE LESS CL=.90 SOFK	D 0.26 0.36 0.26 BALDO-CEO 65 HLBC ASSUMES CP CONS. D T A 0.64 0.12 CHRISTENS 65 05PK 6/66 D A CHRISTENSON 65 HAS BEEN CORRECTED FOR INTERFERENCE BY FITCH 65 FTNOT 1/71 D T (0.70) 0K LESS FITCH 65 05PK CF. MEISNER 66 7/66 D V 130 (0.85) (0.15) VISHNEVSK 65 05PK CU AND AL REGEN 8/67
R5 S VALUE CALCULATED BY US, USING 2.3 INSTEAD OF U EVENT, 90 PERC.CL R6 K0S INTO (PI+ PI- GAMMA)/(PI+ PI-) (UN.10**-3) (P5)/(PI) PC 77 HOD BATLO CIVEN BELIOTIT 44 HER DO CT 50 MEV/C 10/40	D V VISHNEVSKY 65 NOT CORRECTED FOR INTERFERENCE EFFECTS 3/68 D 0.514 0.039 ALFF-STEI 66 OSPK 6/66 D 84 0.42 0.36 BALDO-CEO 66 HLBC K0+N INTO HYPER 8/67 D B (0.5311 (0.027) BOTT-BODE 66 OSPK C RECEN 9/66 D T 70 5.58 0.17 CAMERINI 66 HCS, OBC KOHN INTO HYPER 8/67
K6 2/ NU KAILU GAYEN DELLUII 1 36 NBC PG GT 30 MEV/C 10/69 R6 10 3.3 1.2 WEBBER 70 MBC PG GT 30 MEV/C 10/69 R7 KOS INTO (E+ E+)/CHARGED (UNITS 10#+-5) (F4)/(P1) (F4)/(P1) 2/71 R7 50.0 0.8 LSS 1.2 - 90 RDMM 69 OSEK 2/71	D N 72 (+ 0.64) (0.18) CANTER 66 DBC KO SCATTER ND 211/66 D N ERROR IGNORES UNCERTAINTY OF PHASE SHIFTS. THESE EVENTS ARE 10/71 D USED IN HILL 71. O.16 CHANG 66 HBC KOP INTO HYPER. 8/67
R8 K0S INTO 2 GAMMA/TOTAL (UNITS 10*#-3) (P6) R8 R 0 21.0 OR LESS CL=.90 BANNER 69 OSPK 12/71	D 0.81 0.17 FUJII 66 05PK IRON REGENERATOR 9/66 D 59 0.74 0.34 MEISNERI 66 HBC SEE NOTE M1 6/66 D M1 + SIGN FAVORED MEISNER2 66 HBC 9/66
R8 R 0 2.2 OR LESS CL=.90 BARNER 72 DSFK 3772* R8 O 0.71 OR ESS CL=.90 BANNER 72 DSFK 3772* R8 O 2.0 OR LESS CL=.90 BANNER 72 DSFK 2/72 R8 T HESS CL=.90 MORSE 72 DSFK 2/72 R8 T HESS CL=.90 MORSE 72 DSC 2/72 R8 T HESS CL=.90 MORSE 72 DSC 2/72 R8 T HESS CL=.90 MORSE 72 DSC 2/72	D 0.38 0.16 JOVANOVIC 66 059K C+URANIUM REGEN. 11/67 D T 136 +0.64 0.19 CANTER 67 050 K000 K00
R9 (KOS INTO PI+ PI- PIO, CP CONSERVING)/(KOL INTO PI+ PI- PIO) R9 384 0.42 OR LESS CL=90 METCALF 72 ASPK 11/72*	0 T +0.487 0.046 MELHOP 68 0.5PK ST.STEEL REGEN 6/68 D B 0.547 0.024 BOTT-BOD 69 05PK C REGEN 1/71 D B BOTT-BOD 69 IS A REEVALUATION OF BOTT-BOD 66 1/71 D F 0.555 0.020 FAISSNER 69 ASPK REGENIN CU 10/69
	D F ESTIMATED ADDITIONAL SYSTEMATIC UNCERTAINTY LESS THAN TWO PERCENT 1/71 D 0.542 0.006 CULLEN 70 CNTR 1/71 D 0.542 0.006 ARINNON 70 ASPK GAP METHOD 1/71
BOLDT 58 PRL 1 150 E BOLDT,D 0 CALDWELL,Y PAL (MIT)	D 0.481 0.052 0.075 BALATS 71 0SPK 9/71 D 0.534 0.007 CARNEGIE 71 ASPK GAP METHOD 8/71 D TH 119 (+ 0.67) (0.14) HILL 71 DBC
CRAWFURD 39 PRL 2 200 CRAWFURD, CRS11, DUDGLASS, GUDD, FICHU + (LRL) BAGLIN 60 NC 18 1043 BAGLIN, BLOCH, BRISSON, HENNESSY + (EPOL) BOUGEN 60 PR 10 2020 PRICE UND REVENUE CLUB MODESSY (DE TARBAL)	D H THE PRIMARY RESULT OF THIS EXPERIMENT IS THAT DM IS POSITIVE. $10/71$ D H THE MAGNITUDE MAY HAVE AN ADDITIONAL SYSTEMATIC ERROR OF ABOUT 0.12 $10/71$ D T A KOS MEAN LIFE OF 0.862 10^{344} -10 SEC MAS USED IN CONVERTING THE $1/71$
COLUMBIA 60 ROCH CONF 727 M SCHWARTZ + (COLUMBIA)	D T MASS DIFFERENCE FROM UNITS OF INVERSE KOS MEAN LIVES TO ABSOLUTE 1/71 D T UNITS, VALUES NOT BEARING THIS FOOTNOTE EITHER WERE GIVEN IN 1/71 D T ABSOLUTE UNITS OR WERE CONVERTED USING THE AUTHORS' VALUE OF THE 1/71
BRUBASON 22 CERN CON 1336 ACC MARKENERGY, BUSS CEMERALSEN, RAUTER (MICH) BERTANZA 62 PREPRINT D105 BERTANZA, CONNULY, CULVERK, EISLER + (BNL) UNPUBLISHED, BUT RECERTIFIED BY AUTHORS, AUGUST 66.	D T KOS MEAN LIFE. D AVG 0.5402 0.0035 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
CHRETIEN 63 PR 131 2208 CHRETIEN+ (BRANDEIS+BROWN+HARVARD+ MIT) BROWN 63 PR 130 769 BROWN,KADVK,TRILLING,ROE + (LRL+MICH) KREISLER 64 PR 136 1074 M KREISLER,60 UFRSETH,J GROIN (PRINCETON) +CRAWFOR,GOLDEN,STERN,BINFORD + (LRL+WISC)	13 KOL MEAN LIFE (UNITS 10**~8 SEC)
ALFF-STE 66 PL 21 595 ALFF-STEINBERGER,HEUER,KLEINKNECHT + (CERN) AUERBACH 66 PR 149 1052 AUERBACH,DOBBS,LANDE,MANN,SCIULLI+ (PENN) ALSO 65 AUERBACH	T KOL MEAN LIFE T 34 8.1 3.2 2.4 BARDON 58 CNTR T ASSUMED DS=DD AND DELTA I=1/2 CRAWFORD 59 HBC
BALTAY:SANDMEISS,STONEHILL * (YALE+BNL) BEHR 60 P1 22 25 40 BEHR,BRISGN/PTIAU+ (FPOL,HIALPADO,DSSAY) BELR 60 P1 22 27 40 BELR BEL BOTT-BOD 60 PL 23 27 7 BOTT-BOD 60 PL 23 (MILAN+PADUA) BOTT-BOD 60 PL 23 27 7 BOTT-BOD 60 PL 23 (CERN) KIRSCH 60 PL 147 (COLUMBIA) (COLUMBIA)	T 15 5.1 2.4 1.3 DARMON 62 FBC T 5.3 0.6 FUJII 64 0.5PK T 1700 6.1 1.5 1.2 ASTBURY3 65 CNTR T 5.15 0.14 DEVLIN 67 CNTR T 5.15 0.14 DEVLIN 67 CNTR T L (5.01) (0.51) LOWYS 67 HLBC T 4.40 5.154 0.044 VOSDURGH 72 CNTR 2/71
BOTT-BOD 67 PL 249 194 BOTT-BOD ENHAUSEN,DE BOUARD,CASSEL+ (CERN) DONALD 68 PL 278 58 DONALD,EDWARDS,NISAR+ (LIVP,CERN,IPNP,CDEF) HILL 68 PR 171 1418 HILL,ROBINSON,SAKITT + (BNL,CARNEGIE)	I L SUM UF PARTIAL DECAY RATES. T
BANNER 69 PR 188 2033 +CRONIN,LIU,PILCHER (PRINCETON) BOHM 69 THESIS A. BOHM (AACH) DOYLE 69 UCRL 18139-THESIS J.C. DOYLE (LRL)	

Stable Particles KL0

Stable Particles K⁰_L

 KOL
 INTO
 (PI
 E
 NEU) / ((PI
 E
 NEU) + (PI
 MU
 NEU))

 320
 0.415
 0.120
 ASTIER
 61
 CC
 (P4)/(P3+P4) R5 R5 0.5902 0.0077 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) FIT R6 R6 R6 R6 KOL INTO (PI+ PI- PIO)/TOTAL (P2) 0.1257 0.0027 FROM FIT FIT KOL INTO (LEPTON PI NEUTRINO)/TOTAL R7 R7 R7 R7 (P3+P4) 0.6568 0.0072 FROM FIT FIT IT 0.6568 0.0072 FROM FIT KOL INTO (2 GAHMA)/TOTAL (UN. 10*-4) (P9) (1.3) (0.6) CRIEGE 66 05PK 32 6.7 2.2 TODDROFF 67 05PK REPL. CRIEGEE66 33 (7.4) (1.6) CRIVIN 1 67 05PK 93 5.5 1.0 KONIN 1 67 05PK 93 5.5 1.0 KONIN 1 70 05PK KOL 1.5-9 GEV/C 4.56 0.94 BANNER2 72 05PK THIS VALUE USES [EG0/E+-]**2]. ASSUMES REGEN AMPL IN COPPER AT 26EV 15 22 MB. TO EVALUATE FOR A GIVEN REGEN AMPL AND ERROR, MULTIPLY BY (REGEN AMPL/22MB)**2 CRIEGE 66 REPLACED BY TODOROFF 67 CRIMINI 67 REPLACED BY KUNZ 68. 76 4.69 0.54 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) с 8/66 REPL. CRIEGEE66 11/68 11/67 NORM.TO 3PI(C+N) 2/71 KOL 1.5-9 GEV/C 2/72 к 8/72* 8/72* 8/72* BRR CK 2/71 AVG
 KOL INTO (PI+ PI-)/CHARGED (UNIT 10**-3)
 (P5)/(P2+P3+P4)

 45
 2.0
 0.4
 CHRISTENS 64 OSFK ETA += 1.94

 54
 2.08
 0.35
 GALBRAITH 65 OSFK ETA += 2.02

 1.93
 0.26
 BASILE
 66 OSFK ETA += 1.06

 1.993
 0.080
 BOTT-6DDE 66 OSFK ETA += 1.035
 R9 R9 R9 R9 R9 R9 R9 R9 9/66 9/66 1.992 2.001 0.073 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.063 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG FIT
 Image: Construction of the internal interacts state fraction of the interact state interacts states interacts states states states states states states interacts states interacts states interacts states interacts states interacts states s
 R10
 H

 R10
 2

 R10
 2

 R10
 2

 R10
 2

 R10
 13

 R10
 14

 R10
 14

 R10
 14

 R10
 15

 R10
 14

 R10
 15

 R10
 15

 R10
 15

 R10
 15

 R10
 FIT
 6/66 11/67 8/67 10/68 2/71 10/69 1/73* 10/70 1/73* REPL. BY EVANS 73 0.695 0.022 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.694 0.022 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)
 KOL INTO (MU+MU-)/CHARGED (UNITS 10**-6)

 100.0
 OR LESS
 ANIKINA
 65 CC

 250.0
 OR LESS
 CL=.90
 ANIFF-STEI 66 DSPK

 2.0
 OR LESS
 CL=.90
 BOTT-BODE 67 DSPK

 35.0
 OR LESS
 CL=.90
 FITCH
 67 DSPK
 (P6)/(P2+P3+P4) R11 R11 R11 6/66 9/66 8/67 3/68 R11 R11
 KOL INTO (PI+ PI- GAMMA)/TOTAL (UNITS 10**-3)

 15.0
 OR LESS

 0
 5.0
 OR LESS

 1
 3.0
 OR LESS

 0.4
 OR LESS
 NEFKENS

 0.4
 OR LESS
 Less
 R12 R12 R12 R12 R12 (210) 6/66 8/67 6/66 2/71 GAM KE 40-130 MV GAM KE 120 MEV GAM KE 20-170 MV KOL INTO (E+ E-)/CHARGED (UNITS 10*+-6) 1000.0 OR LESS ANTKINA 65 CC 200.0 OR LESS CL=.90 ALFF-STEI 66 OSPK 23.0 OR LESS CL=.90 BOTT-BODE 67 OSPK R13 R13 R13 R13 R13 (P7)/(P2+P3+P4) 6/66 6/66 8/67
 KOL
 INTO
 IE
 Into
 In R14 R14 R14 R14 R14 (P8)/(P2+P3+P4) 6/66 8/66 8/67 3/68
 KOL
 INTO
 (E+
 PI NEU)/(E PI+
 NEU)

 97
 (0.90)
 (0.18)
 NEAGU
 61
 CC

 94
 (1.01)
 (0.16)
 LUERS
 64
 HBC

 894
 (1.09)
 (0.023)
 KULYUKINA
 66
 CF

 1330
 (1.060)
 (0.050)
 AVERAGED.
 FOR
 MORE
 PRECISE
 VALUE,

 SEE
 SIA2(18)NUETT TO, MARX TO)
 SEE
 SIA2(18)NUETT TO, MARX TO)
 SEE
 SIA2(18)NUETT TO, MARX TO)
 R15 R15 O R15 O R15 O R15 O R15 O R15 O 8/66 9/66 8/67 KOL INTO (MU+ PI- NEU)/(MU- PI+ NEU) 1M 1.0081 0.0027 DORFAN 67 OSPK SEE ALSO SI3A2 AND SI3AL IN THE CP VIOLATION SECTION R16 R16 R16 11/67 2/71 KOL INTO (PIO PIO)/TOTAL (UNITS 10**-3) (P11) 7 (1.2) (1.5) (1.2) CRIEGEE 66 OSPK CRIEGEE EXPT NOT DESIGNED TO MEASURE 2 PIO DECAY MODE 189 (2.5) (0.8) GAILLARD 69 OSPK E00=3.6*+0.6 LATEST RESULT OF THIS EXPERIMENT GIVEN BY FAISSNER 70 R19 TO 0.94 0.19 FROM FIT R17 K R17 C R17 C R17 C R17 G R17 G R17 R17 FIT 7/66 5/69 (P1)/(P2) ALEKSANYA 64 FBC BUDAGOV 68 HLBC R18 8 R18 1 R18 10 R18 R18 R18 AVG R18 FIT KOL INTO (3PIO)/(PI+PI-PIO) 188 2.0 0.6 1010 1.80 0.13 9/66 10/68 1.81 0.13 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 1.711 0.081 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3)
 KOL
 INCL
 0.001
 FROM FIT TERROR INCLOSES SALE FALOR OF 1.91.

 KOL
 INTO (2P10) (2010) (UNITS 10**-2)
 (P11)/(P1)

 C
 109
 (1.89)
 (0.31)

 C
 C01.361
 CRONIN 1.67
 055K

 C
 (1.36)
 (0.18)
 CRONIN 2.67
 055K

 C
 CRONINZ 15 FURTHER ANALYSIS OF CRONIN1 + NON BOTH MITHORANN
 11/68

 ND
 EVENTS SEEN
 BARTLETT 68
 055K
 ETA00-2.22+-0.3
 2/72

 133
 1.31
 0.31
 CENCE 49
 055K
 ETA00-2.24+-0.5
 10/69

 20
 0.32
 6.03
 GENCE 49
 055K
 ETA00-2.24+-0.5
 10/70

 133
 1.31
 0.31
 CENCE 49
 055K
 ETA00-2.04+-0.5
 10/70

 20
 0.32
 6.05
 BARHIGOV 70
 HIBC
 ETA00-2.04+-0.5
 10/70

 21
 0.30
 FAISSINER 70
 0.90
 3.24+-0.5
 10/70

 21
 0.90
 0.30
 FAISSINE 70
 0.90
 3.24+-0.5
 12/70

 0.098 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) 0.29 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 5.1) (SEE IDEOGRAM BELOW) 0.439 R19 AVG R19 FIT

Data Card Listings For notation, see key at front of Listings.

Note on the $K_1^0 \rightarrow \mu^+ \mu^-$ Controversy

The $K_{L}^{0} \rightarrow \mu^{+}\mu^{-}$ branching ratios (R22) given by CLARK 71 and CARITHERS 73 are incompatible. We therefore make no attempt to combine their results.

CARITHERS 73 is a preliminary result based on their reported observation of 6 events. They are continuing data-taking and analysis.

CLARK 71 observe no events but would expect around 12 based on the CARITHERS 73 rate. CLARK 71 are rechecking their analysis but have found nothing which could account for the loss of these events (A. Clark, private communication).

The discrepancy is interesting on theoretical grounds because the CLARK 71 result is below the "unitarity" lower limit for this decay.

R22	KOL	. INTO (M	U+MU-)/(PI	+PI-) (UN	ITS 10**-5	3	(P6)/(P5)	
R22	() 14.0	OR LESS	CL=.90	FOETH	69 ASPK		5/70
R22	Ċ	1.8	OR LESS	CL=.90	DARRIULAT	70 ASPK		11/70
R22	i	0.12	OR LESS	CL=.90	CLARK	71 ASPK		6/71
R22 (e e	(0.6)			CARITHERS	73 ASPK	PRELIMINARY	1/73*
R22 C	. C/	RITHERS	72 GIVES K	31 TO MUH	MU-/ALL =9*	10**-9.1	E CONVERT TO 822.	1/73*
	-							
823	K 01	INTO (F	+ F-)/(PT	+PI-) (UN	ITS 10**5)	(P7)/(P5)	
022		10 0		CI - 90	ENETU	40 ASDK		5/70
0.23	``	0.10	ORIESS	(1 - 00	CLARK	71 ASPK		6771
125		0.10	OK LESS	0290	CLARK	A ASEK		0771
0.24	201	INTO (F	HUN // 07 40	1	C 10** E1		(00) ((05)	
R24	NUL	1010 10	MUTTER	I-J (UNIT	5 1044-51		(P817(P31	
K24		0.10	OK LESS	CL=.90	LLARK	11 ASPK		6771
							(0) 0) ((0))	
K25	KOL	INIU IP	I E NEU GA	MITTEL ES	I CONTIS I	0***21	(P12)/(P3)	
R25	10	3.3	2.0		PEACH	71 HLBC	GAM KE GT 15 MEV	6/71
R26	KOL	INTO (P	IO TWO GAM	MAS)/(3PI	<pre>O) (UNITS</pre>	10**-3)	(P13)/(P1)	
R26	0	1.1	OR LESS	CL=.90	BANNER	69 OSPK		2/72
								-

Data Card Listings

Stable Particles K⁰

 BERG 67.

 OLTZ PLOTNO R.C.

 DLTZ PLT,NO R.C.

 BOLTZ PLT,NO R.C.

 BOLTZ PLT,NO R.C.

 BERG READ COR

 BERG READ COR

 BOLTZ PLT,NO R.C.

 BOLTZ PLT, NO R.C.

CHISQ

0.0

6.3

0.2

0.0

0.1

1.0

3.1

10.7

(CDNLEV =0.098)

• 4/70 •12/70 •10/70

CHISQ 0.1

1.6

1.7 (CONLEU =0.190)

ZO USPK

68 CNTR

2

71 ASPK

71 ASPK

68 USPK

68 DSPK

67 FBC

67 HBC

65 DSPK

64 HBC

Stable Particles K⁰_L

Data Card Listings For notation, see key at front of Listings.

Note on $K_{I}^{0} \rightarrow 2\pi$ and K_{S} Regeneration

Some experiments obtain ϕ_{+-} (the phase of η_{+-}) using $K_{\rm S}$, $K_{\rm L} \rightarrow \pi^+\pi^-$ interference behind a regenerator. In these interference experiments the measured quantity is the difference of ϕ_{+-} and the regeneration phase $\phi_{\rm R}$, as shown in the expression below. After the regenerator, the intensity of the $\pi^+\pi^-$ decays in the forward direction is

$$I(t, p) = S(p) [|R(p)|^{2} e^{-\Gamma_{L}t} + 2|R(p)||\eta_{+-}|$$
(1)

$$\times e^{-(\Gamma_{S} + \Gamma_{L})t/2} \cos (\Delta m t + \phi_{R}(p) - \phi_{+-})],$$

where;

w

t is the decay time in the K^0 rest frame,

$$\begin{split} \Delta m &= m_L - m_S, \text{ and } m_L, \ \Gamma_L, m_S, \ \Gamma_S \text{ are the masses} \\ & \text{ and decay rates of the long- and short-lived } K^0, \\ \eta_{+-} &= | \ \eta_{+-} | e^{i\Phi_{+-}} \quad \text{is the ratio of decay amplitudes} \end{split}$$

$$A(K_{L} \rightarrow \pi^{+}\pi^{-})/A(K_{S} \rightarrow \pi^{+}\pi^{-}),$$

- S(p) is propotional to the K_L momentum spectrum, and idp (p)
- $\begin{array}{l} R(p) = \frac{i\phi_{R}(p)}{|R(p)|e} & \text{is the transmission-regenerated} \\ K_{S} \text{ amplitude (relative to the } K_{T}): \end{array}$

$$R(p) = \pi N \Lambda i \frac{\left[f_{0}(p) - \overline{f}_{0}(p)\right]}{p} \left\{ \frac{1 - e^{-\frac{1}{2}\Gamma_{S}\ell(p)\left[1 - 2i\Delta m/\Gamma_{S}\right]}}{\frac{1}{2}\Gamma_{S}\left[1 - 2i\Delta m/\Gamma_{S}\right]} \right\}$$
where

- l(p) is the thickness of regenerator measured in units of the mean decay length of K_S,
- is the number of nuclei per cubic centimeter, Ν
- Λ is the K_{S} mean decay length, and
- $f_{p}(p), \overline{f}_{p}(p)$ are the forward scattering amplitude of K^0 and \overline{K}^0 .

From (1) above it is clear that the value of φ_{+} is correlated with the value of $\bigtriangleup m$ and $\varphi_{\textstyle R}^{}.$. Usually $\bigtriangleup m$ is a parameter of the fit and $\boldsymbol{\phi}_R$ is determined by some other means (optical model calculations, time dependence of the charge asymmetry in K_{e3} decay, etc.).

We list ϕ_{+-} and give in comment cards both the value of $\varphi_{\mathbf{R}}$ used by the authors and the Δm dependence of

```
۰+- ۰
```

F+		PHASE OF	ETA +		(DEGR	EES)				
F+-		DM IS	KOL-KO	S MASS	DIFFERENC	E / HBAR)	IN UN	ITS OF	F 10**10 SEC-1	2/71
F+		:	SEE SEC	TION D	DF KOL LI	STINGS FOR	LATE	EST VA	LUE	
F+-		WE HAVE	E ADDEI) THE MAS	SS DEPEND	ENCE AND P	ROP AG	SATED '	THE ERROR IN DM	2/71
F+-		USING [DM=0.53	398+-0.01	033 FOR B	ENNETT 69	BOHM	1 69, 1	FAISSNER 69,	2/71
F+-		JENSEN	70, AM	D BALAT	5 71. THE	APRIL 197	2 DM	0.540	2+-0.0035) WOULD	3/72
F+		NOT MAR	KE A SI	GNIFICA	NT CHANGE	IN THE PH	IASE 🛛			3/72
F+		45	5.0	50.0		FITCH	65 C	DSPK	BE REGEN	11/67
F+		30	.0	45.0		FIRESTONE	66 H	IBC		11/67
F+		70	0.0	21.0		BOTT-BODE	67 C	JSPK	C REGEN	11/67
F+-		25	5.0	35.0		MISCHKE	67 C	DSPK	CU REGEN	7/68
F+	N	(5)		(11.0)		BENNETT2	68 C	INTR	CU REG. USES	8/68
F+-	с	34	••5	10.0		BENNETT	69 C	INTR	CU REGEN	2/71
F+	в	41	1.6	12.1		BOHM	69 C) SP K	VACUUM REGEN	2/71
F+	۴	46	• 2	7.4		FAISSNER	69 A	A SP K	CU REGEN	2/71
F+-	J	43	3.4	4.4		JENSEN	70 A	ASPK	VACUUM REGEN	2/71
F+	D	38	3.0	12.0		BALATS	71 C	JSPK	CU REGEN	9/71
F+-	Р	36	s• 2	6.1		CARNEGIE	72 A	SPK		1/73*
F+		• •								
F+	AVG	4]	8	2.8 COMMENTS	AVERAG	E (ERROR 1	NCLUD	DES SCA	ALE FACTOR OF 1.0)	
F+-	N	BENNETT	69 IS	A REEV	LUATION	OF BENNETT	2 68.			11/69
F+	С	BENNET	69 USE	S MEASU	REMENT OF	(F+-)-(PH	IF) (OF ALF	F-STEI 66	2/71
F+-	с	BENNETT	69 F4	-= 34.9	-10.0, N	OT INCLUDI	NG ER	ROR I	N DM	2/71
F+-	С	DM DEPE	NDENCE	OF BENN	NETT 69 I	S 69*(DM-C	.545)	DEG.	FR=-49.9+-5.4DEG.	2/71
F+-	в	BOHM 69) F+-=4	1+-12, 1	NOT INCLU	DING ERROR	IN C	DM.		2/71
F+	в	DM DEPE	NDENCE	OF BOH!	4 69 IS 4	79*(DM-0.5	26) D	DEG.		2/71
F+-	F	FAISSNE	R 69 E	RROR ENI	ARGED TO	INCLUDE E	RROR	IN REG	GENERATOR PHASE.	11/69
F+-	F	FAISSNE	R 69 F	+-=49.3	-7.4, NO	T INCLUDIN	G ERR	OR IN	DM •	2/71
F+	F	DM DEPE	NDENCE	OF FAIS	SSNER 69	IS 205*(DM	-0.55	55) DEG	G. FR=-42.7+-5DEG.	2/71
F+	J	JEN SEN	70 F+-	=42.4+-4	4.0, NOT	INCLUDING	ERROR	IN D	۹.	2/71
F+-	J	DM DEPE	NDENCE	OF JENS	SEN 70 IS	576*(DM-C	. 538)	DEG.		2/71
F+-	Ð	BALATS	71 F+-	-= 39+-12	NOT INC	LUDING ERP	OR IN	DM.	FR=-43+-4 DEG.	9/71
F+	D	DM DEPE	NDENCE	OF BAL	ATS 71 IS	198*(DM	544)	DEG.		, 9/71
F+	Р	CARNEG	E 72 1	NSENSIT	IVE TO DM	 FR=-56.2 	+-5.2	DEG.	•	1/73*
F00		PHASE C	OF ETA	00 (1	DEGREES					
F00		FIRST QL	JADRANT	PREFERE	RED	GOBBI	69 C	OSPK		11/69
F00	С	51	•	30 +		CHOLLET	70 C)SPK	CU REG.,4 GAMMAS	10/70
F00	Ŵ	56 38	3.0	25.0		WOLFF	71 C)SPK	CU REG.,4GAMMAS	12/71
F00										
F00	AVG	43	3.3	19.2	AVERAG	E (ERROR I	NCLUD	DES SCA	ALE FACTOR OF 1.0)	
F00	с	CHOLLET	70 US	ES REGEN	NERATOR P	HASE FR=+4	6.5+-	-4.4 DE	EG.	1/73*
F00	W	WOLFF 7	1 US	ES. REGEN	NERATOR P	HASE FR=-4	8.2+-	-3.5 DE	EG.	1/73*
			~			1 1 1				
			Su	nerwe	ак Мо	dei Pr	edic	ction	IS	

$$\underline{\operatorname{IOT}}_{\eta_{+}}$$
 and $\overline{\eta}_{00}$

The superweak model of Wolfenstein, Phys. Letters 13, 562 (1964) predicts that

and

$$\phi_{+-} = \phi_{00} = \tan^{-1} \left(\frac{2\Delta m \tau_s}{\hbar} \right)$$

Re $\epsilon = \left| \eta_{+-} \right| \left[1 + \left(\frac{2\Delta m \tau_s}{\hbar} \right)^2 \right]^{-1/2}$

The $K_L^0 - K_S^0$ mass difference, the K_S lifetime, and $|\eta_{+}|$ given in the Stable Particle Table result in the predictions that

$$\phi_{+-} = \phi_{00} = (43.63 \pm 0.32)^{\circ}$$

and

Stable Particles K_L⁰

3

Re ϵ = (1.433 ± 0.027) × 10⁻³.

$$\phi_{+-} = (41.8 \pm 2.8)^{\circ}$$

 $= (43 \pm 19)^{\circ}$

$$\text{Re} \in = (1.62 \pm 0.20) \times 10^{-7}$$

where ε has been computed from $\delta,$ the charge asymmetry parameter for leptonic K_{L}^{0} decays, and (Re x, Im x), the $\Delta S = -\Delta Q$ amplitude, using Eq. (34) of the text.

As noted in the mini-review preceding the $K^0_{\textbf{S}}$ mean life, the measured values of Δm and φ_{+-} used above have not been adjusted for our new value of τ_{c} . Had we used the adjusted value for Δm , the predictions would be

$$\phi_{+-} = \phi_{00} = (43.95 \pm .32)^{0}$$

and

Re
$$\epsilon = (1.426 \pm 0.027) \times 10^{-3}$$
.

The measured value of ϕ_{+} would be adjusted to

$$\phi_{+-} \simeq (45.2 \pm 2.8)^{\circ}.$$

(CONLEV =0.007) 0.8 -0.4 0.0 0.4 REAL PART OF X (DELTA S = -DELTA Q AMP)

Stable Particles K⁰L

Data Card Listings For notation, see key at front of Listings.

IMX IMAGINARY PART DF X A IMX C 152 -0.44 0.32	SSUMES MIKL)-MIKS) POSITIVE SEE SID) 0.19 BALDD-CE 65 HLBC K + CHARGE EXCHNG 3/68 0.15 AUBERT 65 HLBC K + CHARGE EXCHNG 3/68 0.30 FRANZINI 65 HC PEAR P 3/68 FELDMAN 67 DSPK P1-P TO KO LMBDA 11/67 0.29 JLL 67 DBC K +0 TELDS KOP 1/67 0.29 JLL 67 DBC K +0 TELDS KOP 1/67 0.29 JLL 70 DSPK F1-P 10 70 0.07 SCIULL 70 DSPK F1-P 10/70 0.07 SCIULL 70 DSPK F1-P 11/70 MEBBER 71 HBC K +P TO KORN 10/69 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 HBC K +P TO KOPP1 + 1/73 0.12 MANN 72 USPK KH3 FROM K0 LMB 2/72 GRAHAM 72 USPK P1-P TO KO LMBD 2/72 15 FIRST GRAHAM 72 VAUE COMBINED WITH 2/72 DTHETA-FOR REX AND IMX SEE SCHMIDT 67. 11/67 HOULD READ +0.58, NOT -0.58 (PRIV.COMM.) 3/68 UNAMBIGUOUS EVENTS IN NEW DATA AND HILL 67. AVERAGE (ERRGR INCLUDES SCALE FACTOR OF 1.2] EOGRAM BELOW)	CRIEGEE 66 PRL 17 150 FIRESTON 66 PRL 15 556 FIRESTON 66 PRL 17 116 FUJII 66 PRL 13 253 FUJII 66 FIS THE CORRECTED V HAKKINS 66 PL 21 238 CALSO 67 PR 156 1444 OVANOVI 66 PRL 17 1075 KULYUKIN 66 PRL 17 1075 KULYUKIN 66 BRKKELEY 28 MEISNERI 66 PRL 17 1075 KULYUKIN 66 PRL 17 1075 MEISNERI 66 PRL 17 492 OVERNEY 66 PRL 17 492 BENTETT 67 PRL 19 993 BENTETT 67 PRL 19 993 BENTETT 67 PRL 19 993 EDTT-80D 67 PL 248 134 EDTT-80D 67 PL 248 134 EDTT-80D 67 PL 248 134 EDTT-80D 67 PL 248 134 EDTT-80D 67 PL 248 237 CRONNI 167 PRL 18 25 CRONNI 267 PL 196 ALSO 65 PL 15 58
WEIGHTE	D AVERAGE = 0.005 ± 0.038 RRDR SCALED BY 1.2	DEVLIN 67 PRL 18 54 ALSO 68 PR 169 1045 DORFAN 67 PRL 19 987 FELDMAN 67 PR 155 1611 F FIRESTON 67 PRL 18 176 FITCH 67 PR 164 1711 F HAWKINS 67 PR 156 1444 HILL 67 PRL 19 668
	CHIS9 GRAHAM 72 DSPK 0.1 GRAHAM 72 HBC 2.3 Horston BURGUN 72 HBC 1.0 Horston HEBER 71 HBC 0.0	HOPKINS 67 PRL 19 185 KADYK 67 PRL 19 597 KULYUKIN 67 PREPRINT LOWYS 67 PL 248 75 MISCHKE 67 PRL 18 138 NEFKENS 67 PR 157 1233 TODOROFF 67 THESIS
	Horizontal Cluli 70 DSPK 1.5 CHU 70 DBC 1.5 CHU 70 DBC 1.5 CHU 70 DBC 1.2 CHU JAMES 68 HBC FELDMAN 67 DSPK 0.0 FRANZINI 65 HBC 2.7	ARNGID 68 PL 288 56 ARONGON 68 PL 208 287 ALSO 69 PR 175 1708 BALATZ 68 PL 268 320 BARTLETT 68 PRL 21 558 BASILE 68 PL 268 542 BASILE 68 PL 268 55 BASILE 68 PL 288 55 BASILE 68 PL 268 55 BASILE 68 55 BASILE 6
-1.0 -0.5 0 IMAG. PART DF X	BALDD-CE 65 HLBC <u>3.0</u> 13.4 (CONLEU 0.5 1.0 =0.144) (DELTA S = -DELTA Q AMP)	BLANPIED 68 PRL 21 1650 BUDAGOV 68 NC 57A 182 ALSO 68 PL 286 215 CARNEGIE 68 PRINC TR44 THESIS F JAMES 68 PR 28 365 ALSO 68 PRL 21 257 KULTUKIN 68 JETP 26 20 KUNZ 68 THESIS (PL 46)
****** *****	****** ********** ********************	HELHOP 66 PR 172 1613 T THATCHER 68 PR 174 1674 1 BANNER 69 PR 188 2033 4
BARDON 58 ANP 5 155 CRAWFORD 59 PRL 2 361 ASTIER 61 AIX CONF 1 227 FITCH 61 NR 22 160 GODD 61 PR 124 1229	MERERENCES FOR NOL M BARDON,K LANDE, L LEDERMAN (COLUMBIA+BNL) CANHERAC, CAESTI, DOUGLASS, GODO + (IRL) ASTIER, BLASKOVIC, DIVET, SIAUD + (EPOL) FITC, H, PISUDE, PISEKINS (PRINCETON) GODO,MATSEN, HULLER, PISCIONI, POWELL + (IRL) MEAGL, ARMAND, JEETRAY, JEGOSAMUA, BISKARUY (IND)	ALSO 68 PRL 21 1103 ALSO 68 PRL 21 1107 BEILLIER 69 PL 308 202 BENNET 69 PL 308 202 BOHM 69 NP 89 605 ALSO 68 PL 278 321 BOTT-BOD 69 CERN 69-7 329
CAMERINI 62 PR 128 362 DARMON 62 PL 3 57	CAMERINI,FRY,GAIDOS,BIRGE,ELY + (WISC+LRL) J DARMON,A ROUSSET,J SIX (EPOL)	CENCE 69 PRL 22 1210 C EVANS 69 PRL 23 427 E FAISSNER 69 PL 30B 204 4 FOETH 69 PL 30B 282 4
ADAIR 64 PL 12 67 ALEKSANY 64 DUBNA 2 102 ALEO 64 JETP 19 1019 ANIKINA 64 JETP 19 42 CHRISTEN 64 PRL 13 138 FUJII 64 DUBNA 2 146 LUERS 64 PR 133 B 1276	R K ADAIR,L B LEIPUNER (YALE+BNL) ALEKSANYAN,ALIKHANYAN,VARTAZARVANH (EREVAN) ALEKSANYAN,ALIKHANYAN,VARTAZARVANH (EREVAN) ALEKSANYAN,H LEBEDEV+MOS ENG PHYS+EREVAN) ANIXINA,ZHRAVLEYA+ (GEORG ACAD SCIP OUBNA) GYRISTENSON,GRONIN,FITCH,TURLAY (PRINCETON) FUJII,JOVANOVICH,TURKOT+ (BNL,MARVLAND,HIT) LUERS,MITTRA,WILLIS,VAMAMOTO (BNL)	GAILLARD 69 NC 59A 453 ALSO 67 PRL 18 20 GOBBI 69 PRL 22 685 LITTENBE 69 PRL 22 654 LITTENBE 69 PRL 22 654 LONGO 69 PR 181 1808 PACIOTTI 69 THESIS,UCRL 19446 SAAL 69 THESIS
ANIKINA 65 JINR P 2488 ANDERSIM 65 PRL 14 475 ASTBURY1 65 PL 16 80 ALSO 65 HELV.PH.AC.39 523 ASTBURY2 65 PL 18 175 ASTBURY2 65 PL 18 176 AUGERT 65 PL 18 176 AUGERT 65 PL 17 59 ALSO 67 LWYS BALDO-CE 65 NC 38 684	AMIKINA,YARDENGA,ZHURAVLEVA,KOTLYA+ (DUBNA) ANDERSON,CAMFORD,GOLDEN,STERN + (RLE+MISC) ASTBURY,FINOCCHIARO,BEUSCH + (CERN+ZURICH) ASTBURY,MICHELINI,BEUSCH + (CERN+ZURICH) ASTBURY,MICHELINI,BEUSCH + (CERN+ZURICH) AUBERT,BEHR,CANAVAN,CHOUNET+ (EPOL+ORSAY) BALDO-CEOLIN,CALIMANI,CIAMPOLILLO + (PADO)	ALBROW TO PL 338 516 ARONSON TO PRL 25 1057 BARNIN TO PL 338 577 BASILE TO PR 02 78 BUCHANAN TO PL 338 623 ALSO PRIVATE COMMUNICATION, BUDAGOV TO PR D2 815 ALSO 68 PL 288 215
CHRISTEN 65 PR 140 B 74 FISHER 65 ANL 7130 B3 FITCH 65 PRL 1573 FRANZINI 65 PR 140 B 127 GALBRAIT 65 PR 140 B 127 GUIDONI 65 PRC 143 83 GUIDONI 65 ARGONNE CONF 49 HOPKINS 65 ARGONNE CONF 67 VISHNEVS 65 PL 18 339	CHRISTENSON, CRONIN, FITCH, TURLAY (PRINCETON) FISHER, ABASHIAN, ABRAMS, CARPENTER+ (ILL) FITCH, ROTH, NUSS, VERNON (PRINCETON) FRANZINI, KIRSCH, PLAND + (COLUMBIA+RUTGERS) GALBRAITH, MANING, JONES + (AREHSBRIS+RHEL) +BARNES, FOELSCHE, FERBEL, FIRESTO+ (BNLEYALE) H K HOPKINS, BACON, EISLER (VAND+RUTGERS) VISHNEVSKY, GALANINA, SEMENOV + (ITEP)	CHIEN 70 PL 338 627 627 ALSO PRIVATE COMMUNICATION: 640 648 64
ALFF-STE 66 PL 21 595 ANIKINA 66 SND 2 339 AUERBACH 66 PRL 17 980 AUERBACH 66 PR 149 1052 ALSO 65 PRL 14 192 BALDO-CE 66 NC 45A 733 BASILE 66 BALATON CONF	ALFF-STEINBERGER, HEUER, RUBBIA + (CERN) ANIKINA, VARDENGA, LHURAVLEVA (JINR) AUERBACH, MANN, MCFARLANE, SCIULII (PENN) AUERBACH, DOBSS, LANDE, MANN, SCIULII+ (PENN) +LANDE, MANN, SCIULII, UTO, HHITE, YOUNG (PENN) BALOD-CEOLDN, CALIMANI, CIAMPOLILLO (PADUA) BASILE, CRONIN, THEVENET + (SACLAY)	JENDEN TU IHESIS ALSO 69 PRL 23 515 MAX 70 PL 328 515 ALSO 70 THESIS,NEVIS 179 SCIULLI 70 PRL 25 1214 SCRIBANO 70 PL 328 224 SMITH 70 PL 32B 133 WEBBER 70 PR DI 1967
BEHR 66 PL 22 540 BELLOTTI 66 NC 45A 737 BOTT-BOD 66 PL 23 277 CAMERINI 66 PR 150 1148 CAMTER 66 PR 17 942 CANTER 66 PR 142 871 CHANG 66 PL 23 702	+BRISSON,BALOD-CEDLIN,AUBERT+ (PADD,EPOL) BELLOTI,PULILA,BALDO-CEDLIN+(HILAM,FADUA) BOTI-BODENHAUSEN,DE BOUARD,CASSEL+ (CERN) CAMERINI,CINF.BORLISH,FISCHBEINH+ISCONSIN +CHO,ENGLER,FISK,HILL+ (CARNEGIE+BNL) CARPENTER,ABASHAN,ABRAHS,FISHER (ILLINOIS) CHANG,BASSAND,KIKUCHI,DODD+ (SYRACUSE,BNL)	ALSO 69 UCRL 19226 THESIS E BALATS 71 SJNP 13 53 BARMIN 71 PL 35B 604 BISI 71 PL 35B 533 CARNEGIE 71 PR D4 1 CHAN 71 LBL-350 THESIS

+FOX,FRAUENFELDER,HANSON,MOSCAT+ (ILLINOIS) FIRESTOME,KIM,LACH,SANDWEISS+ (YALE,BNL) FIRESTOME,KIM,LACH,SANDWEISS+ (YALE,BNL) FUJII,JOVANOVICH,TURKOT,ZORN (BNL+MARYLAND) YALUE GIVEN BY JOVANOVICH+AG C J B HAMKINS (YALE) JOVANGVICH,FUJII,TURKDT,ZORN +(BNL+UMD+HIT) KULYUKINA,MESTVIRISHVILI,MEAGU,PETR+ (JINR) G MEISNER,B B CRAMFORD,F CRAMFORD (LRL) G MEISNER,B CRAMFORD,F CRAMFORD (LRL) NEFKENS,ABASHIAN,ABRANS,CAPPENTER+ (ILL) VERHEY,MEFKENS,ABASHIAN+ (ILL) VERNET, NETRENS, ADASHIANY (ILLI) BENNETT, NYEREN, SAAL, STEINBERGER + (COLUMBI) BOTT-BODENHAUSEN, DEBULARD, CASSEL + (CERN) J.M. CANTER (PRIMEELER (PRIMEFOIE) +KUNZ, RISK, HWEELER (PRIMEFOIE) +KUNZ, RISK, HWEELER (PRIMEFOIN) HENDENUR, DEBULARD, CASH + (CERN) BEBULARD, DEKKERS, JORDAN, MERMOD + (CERN) DE BOULARD, DEKKERS, SCHARFF+ (CERN+ORSA+MPIM) DEVLIN, SOLOMON, SHE PARD, BEALL* (PRIN+UMD) SAYER, BEALL, DEVLIN, SHEPHARD+ (UMD+PPA+PRIN) DORFAN, ENTROM, RAYMOND, SCHWARTZ + (SLAC+LRL) FELDMAN, FRANKEL, HIGHLAND, SLOAN (PENN) FIRESTONE, KIM, LACH, SADWEISS,+ FIRESTONE, KIM, LACH, SADWEISS,+ C J B HAMKINS (YALE) HILL, LUERS, ROBINSON, CANTER* (BNL, CARNEGIE) HOPKINS, BACON, EISLER (BNL) KADYK, CHAN, DRIJARO, OREN, SHELDON (LRL) KULVUKINA+WESTVIRISHVILI+KEAGU (JINR) LUWYS, AUBERT, CHONNET, PASCAUD+ (EPOL, ORSA) MISCHKE, FABASHIAN, ABRAMS (LLLINOIS) +ABASHIAN, BABRAMS, CARPENTER, FISHER+ (ILL) JOHN A TODOROFF (JILLINOIS) +ABASHIAN, MISCHKE, NEFKENS, SMITH+ (ILLINDIS) ARNOLD, BUDAGGV, CUNDY, AUBERT+ (CERN+DRSAY) S. H.ARONSON, K. H. CHEN (PRINCETON) S. H. ARONSON, K. H. CHEN (PRINCETON) BALATZ, DERZIN, VISHN EVSXY, GALANINA+ (ITEP) BARTLETT, CARNEGIE, FITCH+ (PRINCETON) BALATZ, BEREZIN, VISINEVSKY, GALANINA* (ITEP) BARTLETT, CARNEGIE, FITCH (SACLAY) SARTLETT, CARNEGIE, FITCH (SACLAY) SEGNINT, HVERENET, TURLAY, ZVLBERALH + SACLAY) SEGNINT, HVERENET, TENBERGER- (COLUMBIA-CERN) BENNETI, MYOREN SITEINBERGER- (COLUMBIA-CERN) BENNETI, MYOREN SITEINBERGER- (COLUMBIA-CERN) BLANDIED, LEVIT. ENGELS+ (CASE+HARY+MCGI] BUDAGOV, BURNETISTER, CUNNY+ (CERN, ORSA, IPPO) +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, IPPO) +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, IPPO) +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, IPPO) HELLADD, LONGO, YOUNG (UCLA, MICH) P F KUNZ (PRINCETON) HELLADD, LONGO, YOUNG KULVUKINA, MESTVIRISHVILI, NEAGH+ (JINR) P F KUNZ +CRONIN,LIU,PILCHER (PRINCETON) BANNER,GRONIN,LIU,PILCHER (PRINCETON) BANNER GRONIN,LIU,PILCHER (PRINCETON) BEILLIERE,BOUTANG,LIMON (EPOL) +NYGREN,SAAL,STEINBERGER+ (COLU,BNL) +OARRIULAT,GROSSO,KAFTANOV (CERN) BOHM,DARRIULAT,GROSSO,KAFTANOV (CERN) BOTT-BODENHAUSEN,DE BOUARD,CASSEL+ (CERN) CENCE,JONES,PETERSON,STENGER+ (HAWAII,LRL) EVANS,GOLDEN,MUIR,PEACH+ (EDINBURGH,CERN) +FOETH,STAUDE,TITTEL+ (AACH+,CERN,TORI) HOLDER,RADERMACHEF (AACH+N,CERN,TORINO) +GALBRAITH,HUSSRI,JANE+ (CERN,RHEL,AACHEN) +KRIENEN,GALBRAITH,HUSSRI+ (CERN,RHEL+AACH) +KRIENEN,GALBRAITH,HUSSRI+ (CERN,RHEL+AACH) +GREBH,HAKE,HUOFFETIRJOSEN,GOZ+ (ROCH+RUTG) LITTENBERG,FIELD,PICCIONI,MEHLHOP+ (UCSD) M & PACIDITI M & PACIDITI M J SAAL (COLUMBIA) H J SAAL (COLUMBIA) +ASTON, BARBER, BIRD, ELLISON + (MCHS+DARE) +EHRLICH, HOPER, JENSEN (EFIILLC, SLAC) +BARYLON, BORISOV, BYSHEVA+ (ITEP, JINR) +CRONIN, THEVENT, TURLAY, YLBERJACH + (SACL) +ORICKEY, RUDNICK, SHEPARD+ (SLAC, HU, UCLA) , B. COX, FEB. 71 +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, FPOL) +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, PPOL) C-Y. CHIEN, COX, ETTLINGER + (JHU+SLAC+UCLA) , B. COX, FEB. 71 +ORALLE, CANABE, RATCIFER, KDELER, FISK+ (CARN, BNL, CASE) HILL, LUERS, ROB INSON, SAKITT + (BNL, CARN) +OARLEULAN, ABE, RATCIFER, KDELETH + (CERN, TORI) +OARLULAT, DEUTSCH, FOETH + (AACH, CERN, TORI) HERRERO, GROSSO, HOLDER + (AACH, CEN, TOKI) +REITHLER, THOME, GAILLARD + (AACH, CEN, TOKI) +REITHLER, THOME, GAILLARD + (AACH, CEN, TRHEL) D.A. JENSEN JENSEN, ARONSON, EHRLICH, FRYBERGER + (EFI, ILL) +HYGREN, PEOPLES, STEINBERGE+(COLU, HARV, CERN) JAY MARX (COLUMBIA) +GALLIVAN,BINNIE,GOMEZ,MALLARY,PECK+ (CIT) *MANNELLI,PIERAZZINI,MARX+ (PISA,COLU,HARY) *MANG,WHATLEY,ZORN,MORNBOSTE (UND, BNL) *SOLMITZ,CRAWFORO,ALSTON-GARNJOST (LRL) B R WEBBER (LRL) +BEREZIN, VISHNEVSKII, GALANINA+ (ITEP) +DARVLOV, VESELOVSKY, DAVIDENKO+ (ITEP) +DARRILLAT, FERRERO, RUBBIA+ (AACH, CERN, TORI) +CESTER, FITCH, STROVINK, SULAK (PRIN) J.HIONG-SING CHAN (LBL)

Data Card Listings

For notation, see key at front of Listings.

	(JHU,SLAC,UCLA)	TTLINGER, RESVA	+COX,E	261	PL 351 DALLY	71 72	CHIEN ALSO
	SK+ (CARN, BNL, CASE) INSON, KERTH+ (LRL) (LRL) (LRL) (SLAC, STAN) (STANFORD)	E,CANTER,ENGLE F,FIELD,FRISCH D JOHNSON FRISCH A,COOMBES,DORF STROM	+DRALL +ELIOF IS ROLLAN IS HENRY +AKAVI 5) J E EN	1557 1667 9709-THES 0264-THES 2629 6 (SLAC 12	PR D3 PRL 20 UCRL 1 UCRL 2 PR D4 THESIS	71 71 70 71 71 70	CHO CLARK ALSO ALSO ENSTROM ALSO
	ER+ (BNL,CARN,CASE) (MASA+BNL+YALE) INS+ (EDIN,CERN)	T,SKJEGGESTAD, HERTZBACH,KOFL MUIR,BUDAGOV,	+SAKIT +MANN; +EVANS	7 59 351	PR D4 PR D3 PL 356	71 71 71	HILL MEISNER PEACH
	JANE+ (ORSA,CERN) I-GARNJOST (LRL) ALSTONGARNJOST (LRL) (LRL) RD+ (ORSA,CERN)	CHOLLET,GAILL Z,CRAWFORD,AL SOLMITZ,CRAWF BBER T,REPELLIN,GA	+WOLFF +SOLMI WEBBER IS B R WE +CHOLL	603 64 498 9266-THES 517	PL 361 PR D3 PRL 21 UCRL 1 PL 365	71 71 68 69 71	REPELLIN NEBBER ALSO ALSO NOLFF
	ON+ (MCHS+DARE) R;RUDERMAN+ (UCSD) OCHET (PRINCETON) IOCHET (PRINCETON) (SACL+CERN+OSLO) (SACL+CERN+OSLO) ULAK (PRINCETON) OX+ (SLAC+JHU+UCLA)	,BARBER,BIRD,E ,MASEK,MAUNG,M ,HOFFMAN,KNAP ,HOFFMAN,KNAP Y,MULLER,PAUL LESQUOY,MULLER ,FITCH,STROVI ,FITCH,STROVI	+ASTON +BROWN +CRONI +CRONI +LESQU BURGUN +CESTE +INNOC	1 47 237 194 1169 2335 647	NP B44 PL 388 PRL 28 PRL 28 NP B50 LNC 2 PR D6 PL 418 CHIEN CHIEN	72 72 72 72 72 71 72 72 70 71	ALBROW ASHFORD BANNER1 BANNER2 BURGUN ALSO CARNEGIE DALLY ALSO ALSO
	ORR+ (ILL+NEAS) (AACH+CERN+TORI) (CERN+SACL+OSLO) I+ (CERN+SACL+OSLO)	IAN, JONES, MANT MACHER, STAUDE+ MET, PAUL, SAETR MONTANET, PAUL,	+ABASH +RADER +MONTA JAMES,	166 141 1 265	NC 9A PL 408 NP 849 PL 358	72 72 72 71	RAHAM HOLDER JAMES ALSO
	H (AACH+CERN+EDIN) H+ (MASA+BNL=YALE) RR+ (ILLNEAS) (CERN+IPN+HIEN) + (CERN+IPN+HIEN) + (CERN+GRSA+VIEN) N,FRYBERGER+ (SLAC) YMAN + (RUTG,MASA) (FRINCETON) (FRINCETON)	NS, EVANS, MUIR, R, MEISNER, HERT, AN, GRAHAM, JON, S, BUDNITZ, ENTI: CARTHY ER, NIEBER GALL- GGALL, REGLER, S' S, JONALDSON, DI J, ESTERL ING, GO. H, DEVLIN, ESTEI CARROLL WEBB	+HOPKI +KOFLE +ABASH +BREWE 0 R.L.MC +NEUHO +NIEBE +COOMB +DEVLI VOSBUR ROBERT	213 137 160 291 LBL - 550 703 642 1412 1834 866	LNC 4 PR D6 NC 9A PL 42E THESIS PL 40E PL 40E PL 40E PL 40E PL 29 PR D6 PRL 26 THESIS	72 72 72 71 72 72 72 72 72 72 72 72 71	KRENZ MANN MANTSCH MCCARTHY ALSO METCALF NEUHOFÉR VICCIONI VISBURGH ALSO
	UN+ (COLU+CERN+NYU) (EDINBURGH+CERN) (EDINBURGH+CERN)	RS, MODIS, NYGRI EACH, BUDAGOV+ GLDEN, MUIR, PE	CARITH +MUIR, EVANS,	8 26 36 427	BAPS 1 PR D7 PRL 23	73 73 69	ARITHER VANS ALSO
	N DATA CARDS	NOT REFERRED	PAPERS				
	CRAWFORD (LRL) + (BNL+MARYLAND) SON + (WISC+LRL) (EPOL,MILA,PADO) ROV,RUSAKOV+ (JINR) (LRL) (U. MASS BOSTON)	NDER,S ALMEID /IC,FISCHER,BU INFORD,LIND,AM ISSON,BELLOTT ISHVILI,NYAGU H TRILLING PAGE 115. S GINSBERG	G ALEX JOVANO STERN, BEHR,B MESTVI GEORGE NE CONF., EDWARD	69 NF 42 459 E CONF 59 2449 6473 965 Argoni 1570	PRL 9 BNL CO PRL 12 ARGONN JINR P UCRL 1 FROM 1 PR 162	62 63 65 65 65 ED 67	LEXANDE IDVANOVI TERN EHR IESTVIRI RILLING UPDA INSBERG
	(CERN+COLU) LEINKNECHT+ (CERN) LEINKNECHT+ (CERN) (CERN+COLU) (COLUMBIA) (PRINCETON) (IIT HAIFA) (ORSAY) (MIT)	A,J.STEINBERG EINBERGER,HEUI A,J.STEINBERGER IDT RAPPORTEURS TA ISBERG SBERG	C.RUBB ALFF-S ALFF-S C.RUBB S) P. SCH B1 CRONIN E S GI +AUBER E S GI	B 531 207 595 167 160(THESIS CONF P.28 229 449 2893	PL 24 PL 20 PL 21 PL 23 NEVIS VIENNA PR D1 LNC 3 PR D4	67 66 66 67 68 70 70 71	UBBIA ALSO 1 ALSO 2 ALSO 3 CHMIDT RONIN INSBERG IEUSSE INSBERG
**	** ******** ******	******** ****	*******	******* *******	***** *	****	*****
•	PROC. UNIV. OF PENN. Y., 1968)	O-+) I=O E ETA MESON, S (W.A.BENJAMIN,	(549,JPG VIEW OF TH CTROSCOPY	14 ETA LTAY'S REV MESON SPEC	R C. BA	FOR	η
		 }	MASS (ME	14 ETA			
	R	BASTIEN 62 PICKUP 62 ALFF 62 DELCOURT 63 FOELSCHE 64 KRAEMER 64 FOSTER3 65 JAMES 66		1.2 4.0 1.0 2.9 0.7 3.0 0.65 2.0	549.0 546.0 548.0 549.3 549.0 552.0 548.2 555.0	i3 15 11 18 15	1.3
.)	SCALE FACTOR OF 1.4	E (ERROR INCLU BELOW)	AVERAG IDEOGRAM	0.56 (SEE	548.82	•	AVG
-		v)	WIDTH (ME	14 ETA			
		ALFF 62 FOELSCHE 64		OR LESS OR LESS	(10.0)	1	14

would give

and

 $\Gamma_{\gamma\gamma}$ = 1.00 ± 0.22 keV

 $\Gamma_{\text{total}} = 2.63 \pm 0.58 \text{ keV}.$

See G. Benfatto, "Coherent Nuclear Photoproduction of the η -meson," Nuovo Cimento <u>69A</u>, 109 (1970) for a critique of this technique.

Stable Particles η

 INTO NEUTRALS/CHARGED
 (P1+P2+P7)/(P3+P4)

 12:51
 11.00
 PICKUP
 62 HBC

 13:201
 11:261
 BASTIEN
 62 HBC

 24:6
 9
 BUSCHBECK
 63 HBC

 24:6
 9
 BUSCHBECK
 63 HBC

 25:6
 9
 BUSCHBECK
 63 HBC

 26:2
 11:00
 JAMES
 66 HBC

 21:8
 ESE EXPENENTS HAVE NOT BERNEN COMPUTING THE AVERAGES

 21:1
 THEY MERE UNABLE TO SEPAREN USEN COMPUTING THE AVERAGES

 21:1
 HEY MERE UNABLE TO SEPAREN USEN COMPUTING THE AVERAGES

 22:1
 THEY MERE UNABLE TO SEPAREN USEN COMPUTING THE AVERAGES

 23:1
 THEY MERE UNABLE TO SEPAREN USEN COMPUTING THE AVERAGES

 24:0
 0:23
 BALTAY2

 24:0
 0:23
 BALTAY2
 (P1+P2+P7)/(P3+P4) ETA 10 53 R1 N N N 7/66 6/66 280 THESE AS THI FROM I SOME 22222 11/67 2.64 2.64 2.463 0.22 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.800 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG FIT (P1)/(P3+P4) R2 R2 R2 R2 ETA INTO 2GAMMA/CHARGED 0.99 0.48 CRAWFORD 63 HBC 1.316 0.053 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) FIT

14 ETA BRANCHING RATIOS

Note on $\eta \rightarrow \pi^0 \gamma \gamma$

The discrepancies between various measurements of branching ratios involving $\eta \rightarrow \pi^0 \gamma \gamma$ are displayed in the ideogram below, in which all relevant experiments have been converted to a common ratio, $\pi^0 \gamma \gamma$ /neutrals. Our branching ratio fit does not include DIGIUGNO 66, FELDMAN 67 or the upper limit measurements. See page 43 of "Review of Particle Properties", Physics Letters 39B, No. 1 (1972) for more discussion.

Data Card Listings For notation, see key at front of Listings.

FOSTER1 BAGLIN 65 HBC 69 HLBC

ETA INTO 2GAMMA/(PI+ PI- PO) 1.61 0.39 401 1.72 .25 87 87 87 7/69 0.21 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.064 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) 1.69 1.590 R7 R7 AVG FIT

Data Card Listings

For notation, see key at front of Listings.

ETA INTO NEUTRAL/(PI+ PI- PIO) (P1+P2+P7)/(P3) KRAEMER 64 DBC PAULI 64 DBC ALFF-STEI 66 HBC FLATTE2 67 HBC AGUILAR-B 72 HBC BLOODWORT 72 HBC D VALUE 0-5 BY BLOODWORTH, PRIV. COMM. (P1+P2+P7)/(P3) C IN INIU REURAL/ (PI+ PI- PIO) 5 3.6 0.8 1.1 2.89 0.56 2.4 3.9 0.56 2.29 3.4 70 2.83 0.80 ERROR INCREASED FROM PUBLISHED 7/66 9/66 1/68 1/72* 1/72* 1/73* 244 3.28 2.976 0.31 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.097 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG FIT ETA INTO (E+E-PI0)/(PI+PI-PI0) (UNITS 10**-2) 1.1 OR LESS PRICE 65 HB 0.77 OR LESS CL=.90 BAGLINI 67 HL 0.16 OR LESS CL=.90 BALLING 67 HL R9 R9 R9 R9 R9 (05)/(03) PRICE 65 HBC FOSTER2 65 HBC BAGLIN1 67 HLBC BILLING 67 HLBC 8/67 11/67 ETA INTO (E+E-PI+PI-)/TOTAL (UNITS 10**-2) (0.7) OR LESS RITTENBER 65 HBC R10 R10 (P6) 6/66 R11 R11 ETA INTO (E+E-PI+PI-)/(PI+PI-GAMMA) 1 0.026 0.026 GROSSMAN 66 HBC (P6)/(P4) 6/66 ETA INTO 2 GAMMA/NEUTRALS (0.416) (0.044) R12 R12 S
 ETA INTO 2 GAMMA/NEUTRALS
 (P1)/(P1+P2+P7)

 (0,4)6) (0.044)
 DIGIUGNO 66 CNTR
 ERROR DOUBLED

 .44
 .07
 GRUNHAUS 66 OSPK
 GRUNHAUS 66 OSPK

 (.579) (.052)
 FELDMAN 67 OSPK
 GRUNHAUS 66 CNTR
 GRUNHAUS 66 OSPK

 (0.93)
 (0.06)
 JONES 66 CNTR
 GRUNE FAR OS SECTIONS FROM TWO DIFFERENT EXPTS.

 .535
 .018
 BUTTRAM 70 OSPK
 .535
 .018
 BUTTRAM 70 OSPK

 .454
 .036
 COX 70 HBC
 .057
 .0.9
 STRUGALSK 71 HLBC
 (P1)/(P1+P2+P7) ERROR DOUBLED 6/66 8/67 8/67 S T T 8/67 11/67 12/70 6/70 5/71 . . 0.018 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) 0.013 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) R12 AVG R12 FIT 0.535 0.534 R13 R13 S R13 R R13 S R13 S R13 R R13 R R13 R R13 R13 R13 R13 AV ETA INTO 3PIO/NEUTRALS (0.209) (0.054) DIGIUGNO 66 CNTR (.29) (.10) GRUMHAUS 66 DSPK (.177) (.035) FELDMAN 67 DSPK SEE THE NOTE ON ETA DECAY INTO NEUTRALS ABOVE. (P2)/(P1+P2+P7) ERROR DOUBLED 6/66 8/67 8/67 SEE THE NOTE ON ETA DECAT INTO NEUTACS ADVE-REDUNDANT INFORMATION FROM THIS EXPERIMENT. (.439) (.024) BUTTRAM TO OSPK .392 0.042 COX TO HBC 0.32 0.09 STRUGALSK 1 HLBC 7 OSPK 11/67 12/70 6/70 5/71 0.397 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.422 0.015 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) R13 AVG R13 FIT ETA INTO PIO (2 GAMMA)/2GAMMA (.5) OR LESS CL=.90 0.0 0.14 (0.05) (0.04) (P7)/(P1) 66 SPRK 7/66 67 DBC 11/67 67 SPRK PRELIMINARY RESULT 11/67 R14 R14 R14 R14 P WAHLIG BALTAY1 BONAMY R14 R14 FIT 0.082 0.030 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) R15 R15 R15 ETA INTO (E+E-PIO)/TOTAL (UNITS 10**-2) (0.7) OR LESS RITTENBEF (0.084)OR LESS CL=.90 BAZIN (P5) TTENBER 65 HBC ZIN 68 DBC 6/66 6/68 (P1)/(P2+P7) 63 CNTR R16 E R16 R16 R16 FIT ETA INTO 2GAMMA/(3PIO + PIO 2GAMMA) 0.80 .25 BACCI 7/66 1.147 0.060 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) ETA INTO (PI+PI-PIO GAMMA)/(PI+PI-PIO) (.07) OR LESS FLATTE (.009)OR LESS PRICE (.016)OR LESS CL=.95 BALTAY2 (.0.017)OR LESS CL=.90 ARNOLD 0.035 OR LESS CL=.90 THALER2 R17 R17 R17 R17 R17 R17 (P101/(P3))67 HBC 67 HBC 67 DBC 68 HLBC 72 ASPK 8/67 8/67 11/67 9/68 1/73* ETA INTO (PI+PI- 2GAMMA)/(PI+PI-PIO) (.009)OR LESS PRICE (.016)OR LESS CL=.95 BALTAN R18 R18 R18 (P11)/(P3) 67 HBC 67 DBC 8/67 11/67 PRICE BALTAY2 R19 | R19 R19 | R19 | R19 R19 AVG R19 FIT ETA INTO 3PIO/(PI+ PI- PIO) (P2)/(P3) IO) BAGLIN2 0.17 BULLOCK .29 BAGLIN 67 HLBC 68 HLBC 69 HLBC 8/67 9/68 7/69 1.3 1.47 1.50 0.20 199 0.13 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.058 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) 1.46 1.255 R20 R20 ETA INTO 2GAMMA/((3PIO)+2/3(PIO 2GAMMA)) 1.10 0.5 MULLER 63 DBC (P1)/(P2+2/3P7) 7/66 R20 R20 FIT 1.184 0.058 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) R 21 R 21 R 21 R 21 R 21 ETA INTO NEUTRALS/TOTAL (P1+P2+P7) BUNIATOV BASILE 67 OSPK 71 CNTR MM SPECTROMETER 11/67 8/71 .08 .008 16K .705 0.7058 0.0080 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.7113 0.0067 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) R21 AVG R21 FIT R22 ETA INTO (PIO 2GAMMA)/TOTAL R22 .12 OR LESS CL=.95 R22 R22 FIT 0.031 0.011 FROM FIT (P7) JACQUET 69 HLBC 6/70 R23 R23 ETA INTO MU+MU-/TOTAL (UNITS 10**-5) 0 2. OR LESS CL=.95 WEHMANN (P12) 68 OSPK 4/68 ETA INTO MU+MU-PIO/TOTAL (UNITS 10**-4) 5. OR LESS WEHMANN R24 R24 (P14) 68 OSPK 4/68 (P12)/(P1) 69 OSPK R25 R25 ETA INTO MU+MU-/2GAMMA (UNITS 10**-5) 5.9 2.2 HYAMS 7/69 2/71 2/71 2/71 2/71 2/71 2/71

ETA INTO PI+PI-PIO ASYMMETRY PARAMETER

H. Yuta and S. Okubo [Phys. Rev. Letters 21, 781 (1968)] have pointed out that an asymmetry in the decay $\eta \rightarrow \pi^+\pi^-\pi^0$ of about 2% need not imply a breakdown of C invariance, since an asymmetry of this amount <u>could</u> be caused by an interference between the η and the 3π background. Gormley et al. [Phys. Rev. Letters 22, 198 (1969)], however, believe that this effect can account for only $\leq 0.23\%$ in their experiment (above). Also see: A. Frenkel and G. Vesztergombi, "C-Violation in η -Decay," Nucl. Phys. <u>B15</u>, 429 (1970) and K. Taggart, "Asymmetry and Background in $\eta \rightarrow 3\pi$," Phys. Rev. D 2, 1960 (1970).

•			
B DECAY B 33 B N 1620 B N 4600 B N 4600 B 7257 B 36K B 100	ASYMMETRY PARAMETER -2. 17. -4. 8. 1.5 2.5 E EXPERIMENT IS SEN 1.22 1.56 0.5 0.6	FOR PI+ PI- GAMMA (UNITS 10**-2) CRAWFORD 66 HBC LITCHFIEL 67 DBC MULLER 69 DSPK SITIVE ONLY TO UPPER-4 6 OF GAMMA-RAY SPECTRUM GORMLEY 70 ASPK THALERI 72 ASPK	11/60 8/63 9/69 6/70 8/73
B AVG	0.61 0.54	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
***** ***	****** ***	****** ******	
		REFERENCES FOR ETA	
PEVSNER 6	1 PRL 7 421	PEVSNER, KRAEMER, NUSSBAUM, RICHARDSON + (JHU)	
ALFF 6 BASTIEN 6 CHRETIEN 6 PICKUP 6 SHAFER 6	2 PRL 9 322 2 PRL 8 114 2 PRL 9 127 2 PRL 8 329 2 CERN CONF 307	ALFF,9ERLEY,COLLEY,BRUGGER + (COLU+RUTGERS) BASTIEN,BERGE,DAH.JFERRO-LUZZI + (LRL) CHRETIEN+ (BRAN+BROWN+HARVARD+MIT+PADOVA) E PICKUP,ROBINSON;SALANT (CURC+BNL) J SHAFER,FERRO-LUZZI,MURRY + (UCB+LRL)	
BACCI 6 BUSCHBEC 6 CRAWFORD 6 ALSO 6 DELCOURT 6 MULLER 6	3 PRL 11 37 3 SIENA CONF 1 166 3 PRL 10 546 6 PRL 16 907 3 PL 7 215 3 SIENA CONF 99	BACCI,PENSO,SALVINI + (ROMA+FRAS) BUSCHBECK-CZAPP,CODPER + (VIENNA,CERN,AMSI) F SCRAMFORD,LLOYD,FOHLER (LRL+DUKE) F SCRAMFORD,L LLOYD,F FOHLER (LRL+DUKE) DELCOURT,LEFANCOIS,PEREZ Y JORBA+ (ORSAY) MULLER,PAULI + (SACL+ROMA)	
FOELSCHE 6 KRAEMER 6 PAULI 6	4 PR 134 B 1138 4 PR 136 B 496 4 PL 13 351	H W FOELSCHE,H L KRAYBILL (YALE) KRAEMER,MADANSKY,FIELDS + (JHU+NWES+WOOD) E PAULI,A MULLER (SACLAY)	
FOSTER1 6 FOSTER2 6	5 PR 138 B 652 5 ATHENS	FOSTER, PETERS, MEER, LOEFFLER + (WISC+PURDUE) FOSTER, GOOD, MEER (WISCONSIN)	

Stable Particles

 η

Stable Particles

η, p, n

FOSTER3 65 THESIS PRICE 65 PRL 15 123 RITTENBE 65 PRL 15 556 M.C.FOSTER L.R.PRICE,F.S.CRAWFORD RITTENBERG,KALBFLEISCH (WISCONSIN) (LRL) (LRL+BNL) ALFF-STE 66 PR 145 1072 BALTAY 66 PRL 16 1224 CRAWFORD 66 PRL 16 1224 DIGIUGNO 66 PRL 16 130 DIGIUGNO 66 PRL 16 767 GROSSMAN 66 PR 146 993 GRUNHAUS 66 PRL 164 JANES 66 PR 142 896 JANES 66 PL 23 597 WAHLIG 66 PRL 17 221 ALFF-STEINBERGER,BERLEY+ (COLUMBIA+RUTGERS) +FRANZINI,KIM,KIRSCH+(COLUMBIA+STONY BROOK) F-S-CRAMFORD,L-R.PRICE DIGIUGNO,GIORGI,SILVESTRI+ (NAPL,TRST,FRAS) GROSSMAM,L PRICE- GRAMFORD (LLRL) DIGIUGNO,GIORGI,SILVESTRI+ (NAPL,TKST,FRAS) K GROSSMAN,L PRICE,F CRAMFORD (LRL) J.GRUNHAUS (COLUMBIA) F E JAMES.H L KRAYBILL (YALEFBNL) JONES,BINNIE,DUANE,HORSEY,MASON,(LOIC,RHEL) MAHLIG,SHIBATA,MANNELII (MIT+PISA)
 MAHLIG
 66
 PRL
 17
 221
 MAHLIG
 SHIBATA, MANNELLI
 INITTISAF

 BAGLIN
 67
 PL 248
 637
 BAGLIN, BEZAGUET, DEGRANGE;
 (EPOL+UCB)

 BAGLIN2
 7 BAPS 12
 567
 BAGLIN3, BEZAGUET, DEGRANGE;
 (EPOL+UCB)

 BALTAY1
 67
 PRL 19
 1495
 BALTAY; FRANZINI; KIN, NEMMAN+
 (COLU+SRON)

 BALTAY1
 67
 PRL 19
 1495
 BALTAY; FRANZINI; KIN, NEMMAN+
 (COLU+SRON)

 BALTAY1
 67
 PRL 258
 380
 BEMPORAD, BRACCINI; FOA, LUBELSMEY+(PISA, BONN)

 ALSO
 PRIVATE COMMUNICATION
 BULING
 FL PLOLASE
 SACLAY)

 BOMAMY
 SONAHY, SONDEREGGER
 (LOU-SON), STENGER; CHIU+
 (LAMAI1+CR, ARAL)

 BUNIATOV 67
 FL 258
 560
 BUNIATOV, ZAVATTINI, DEINET, (CERN+KARL)
 (SACLAY)

 CENCE
 67
 PRL 18
 193
 CERCE, PETERSON, STENGER; CHIU+
 (HAMAI1+CR, ILR)

 FLATTE
 67
 PRL 18
 193
 SAN, FLATTE
 (LRL)

 FLATTE
 67
 PRL 18
 SAS</t +PATY, BAGLIN, BINGHAM+ (STRB+MADR+EPOL+UCB) BAZIN, GOSHAH, ZACHER, + (PRINCETON, QUEENS) HESTEN, FLEMING, GOVAN, HENDERSON, OMEN+ (LOUC) WEHMANN, ENGELS, + (HARV+CASE+SLAC+CORN+MCGI) ARNOLD 68 PL 27B 466 BAZIN 68 PRL 20 895 BULLOCK 68 PL 27B 402 WEHMANN 68 PRL 20 748 BAGLIN 69 PL 29B 445 ALSO 70 NP B22 66 HYAMS 69 PL 29B 128 JACQUET 69 NC 58 743 BAGLIN,BEZAGUET,+ (EPOL,UCB,MADR,STRB) +BEZAGUET,DEGRANGE,MUSSET +(EPOL,MADR,STRB) HYAMS,KOCH,POTTER,VON LINDER,+ (CERN,MEIM) ACQUET,NGUYEN-KHAC,HAATUFT+ (EPOL,BERG) +KREISLER,MISCHKE (PRIN) +KREISLER,MISCHKE (PRIN) (DUKE) +GRUNHAUS,KOZLONSKI,NEMETHY + (COLU,SYRA) GORMLEY,MYAN,LEE,NASH,PEDPLES+ (COLU) MICHAEL GORNLEY +BUNIATOV,ZAVATTINI,DEINET+ (CERN,KARL) BUTTRAM 70 PRL 25 1358 COX 70 PRL 24 534 DEVONS 70 PR D1 1936 GORMLEY 70 PR D2 501 ALSO 70 NEVIS 181(THESIS) KANDFSKY 70 NC 68 413 SCHMITT 70 PL 328 638 +BOLLINI,DALPIAZ,FRABETTI+ (CERN,BGNA,STRB) +CHUVILO,GEMESY,IVANOVSKAYA+ (JINR) AGUILAR-BENITEZ,CHUNG,EISNER,SAMIOS (BNL) BLODOWORTH,JACKSON,PRENTICE,YOON (TORONTO) BASILE 71 NC 3A 796 STRUGALS 71 NP B27 429 AGUILAR- 72 PR D6 29 BLOODWOR 72 NP B39 525 QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS BASTIEN 62 PRL 8 114 CARMONY 62 PRL 8 117 ROSENFEL 62 PRL 8 293 BASTIEN, BERGE, DAHL, FERRO-LUZZI, MILLER+(LRL) D CARMONY, A ROSENFELD, VAN DE WALLE (LRL) A ROSENFELD, D CARMONY, VAN DE WALLE (LRL) REFERENCES ON ETA ASYMMETRY PARAMETERS BALTAY, FRANZINI, KIM, KIRSCH+ (COLU+STON) CNOPS, FINOCCHIARS, LASSALLE, (CERN, ETHZ, SACL) F.S. CRAMPORD, I.R., PRICE COLUMBIA, IRI, PURDUE, MISCONSIN, YALE LARRIBE, LEVEQUE, MULLEN, PAULI, + (SACL+RHEL) BALTAY 66 PRL 16 1224 CNOPS 66 PL 22 546 CRAWFORD 66 PRL 16 333 CLPWY 66 PR 149 1044 LARRIBE 66 PL 23 600
 BOWEN
 CARRIDE, LEVENUE, RULLEK, PAULI, +
 (SACL+RREL)

 BOWEN
 67 PL 24B 206
 BOWEN, CNOPS, FINOCCHIARO, + (CERN+ETHZ+SACL)

 LITCHFIE 67 PL 24B 246
 LITCHFIELD, RANGAN, SEGAR, SITH+RENEL-SACLAY

 GORMLEY3
 68 PRL 21 402
 GORMLEY, HYMAN, LEE, NASH, PEOPLEST

 MULER
 69 THESIS
 ARMAND MULLER
 (STRB)

 CARPENTR 70 PR D1 1303
 CARPENTER, BINKLEY, CHAPMAN, COX, DAGAH+ (DUKE)
 (STRB)

 DANBURG
 OR PR D2 2564
 +ABOLINS, DAHLEY, DAVIES, HOKKIRZ, H
 (LRL)

 LAYTER
 72 PRL 29 316
 +APPEL, KOTLEWSKI, LAYTER, LEE, STEIN, THALER (COUL)
 (COLU)

 THALERI
 72 NEVIS 194(THESIS)
 JON J THALER
 (COLU)
 р 16 PROTON (938, J=1/2) I=1/2 ____ 16 PROTON MASS (MEV) (938.256) (0.005) 938.2592 .0052 COHEN 65 RVUE TAYLOR 69 RVUE USING NEW E/H 7/66 M M ------16 PROTON MEAN LIFE (UNITS 10**26 YR) (JO00001)0R MORE GOLDHABE 54 TH 232 FISS.MODE INDEPEN (0.00210R MORE FLEROY 57 TH 232 FISS.MODE INDEPEN (1.5) OR MORE BACKENSTO 60 CMTR (60.0) OR MORE KROPP 65 CMTR (200.0) OR MORE GURK 67 CMTR OEP. ON DECAY MODE KROPP AND BACKENSTOSS SENSITIVE TO PARTICULAR DECAY MODES OF PROT B B в 16 PROTON MAGNET. MOMENT(E/2MP) (2.792763(0.000030) 2.792782 .000017 COHEN 65 RVUE TAYLOR 69 RVUE USING NEW E/H MM MM 7/70 16 ANTIPROTON MAGNETIC MOMENT (E/2MP) -2.83 0.10 FOX 72 MM1 11/72* - --------____ -----16 PROTON ELECTRIC DIPOLE MOMENT (UNITS 10**-23 E CM) NONZERO VALUE IMPLIES VIOLATION OF T AND P IN EM INTERACTION 1G 700. 900. HARRISON 69 MBR 10/69 EDM

Data Card Listings For notation, see key at front of Listings.

		REFERENCES FOR PR	DTON	
GOLDHAB FLEROV BACKENS COHEN KROPP GURR HARRISO TAYLOR FOX	E 54 PR 96 1157 FNOTE 57 SOV PHYS DOK 3 7 16 O NC 16 749 65 RMP 37 537 65 PR 137 B 740 67 PR 158 1321 N 69 PRL 22 1263 69 RMP 41 375 72 PRL 29 193	2 GOLDHABER, F REINE 9 FLEROV, KLOCHKOV, SI BACKENSTOSS, FRAUEI +DUMOND (N.AMER.A' W R KROPP, F REINE GURR, KROPP, FEINES HARRISON, SANDARS, +PARKER, LANGENBER FOX, BARNES, EISENS	S+ (LOS ALAMOS,BNL) NEELDER,HYAMS + (CERN) VIATION SCIENCE CENT.,CITI S (CASE INST TECHNOLOGY) ,MEYER (CASE, JOHANNESSURG) ARIGHT (CLARENDON OXFORD) S (PR]N+UC1+FENN) S (PR]N+UC1+FENN)	
*****	****	****	********* ********* *******	
n	17 NEUT	RON (939,J=1/2) I=1	/2	

м Т м Т м Т	939-5527 .005 TAYLOR DETERMINATION NEUTRON-PROTON MASS	2 TAYLOR OF NEUTRON MASS NO DIFFERENCE MEASUREM	69 RVUE USING NEW E/H T INDEPENDENT OF ENTS BELOW.	7/70 7/70 7/70
	17 (NEU	TRON) - (PROTON) MA	SS DIFFERENCE (MEV)	
D M D M D M D M	1.29344 0.000 WE HAVE CONVERTED MA NEUTRON-PROTON MASS AND A HYDROGEN BINDI	07 MATTAUCH TTAUCH NEUTRON-HYDR DIFFERENCE USING CU NG ENERGY OF 13.6 E	65 RVUE OGEN MASS DIFFERENCE TO RRENT VALUE OF ELECTRON MASS V•	3/71 3/71 3/71 3/71 3/71
	17 NE UT	RON MAGNETIC MOMENT	(MAGNETONS,938.2 MEV)	
мм	-1.913148 0.00006	6 COHEN	56 RVUE	7/66
	17 NEUT TEST OF C VIC	RON ELECTRIC DIPOLE	MOMENT (UNITS 10**+23 E CM) TERACTION	
EŅM	(5.) OR LESS	BAIRD	69 MBR	10/69
	17 NEUT	BON MEAN LIFE (UNIT	S 10**3 SEC)	
	THE MEASUREMENT OF BEEN DISCARDED SIN RECENT RESULT OF C RIVED FROM THE NEW GA/GV VALUE OBTAIN	THE NEUTRON MEAN L CE 1. IT DISAGREES HRISTENSEN 67. 2. VALUE OF THE MEAN HED FROM THE FREE NE	IFE BY SOSNOVSKII 59 HAS WITH THE BETTER AND MORE THE VALUE OF GA/GV DE- LIFE AGREES WELL WITH THE UTRON DATA.	
T T E E	(1.012) (0.02) (0.935) (0.014 0.918 0.014 ERROR CHANGED BECAUS IN GOLD HAS BEEN REC) SOSNOVSKI CHRISTENS CHRISTENS CHRISTENS E ERROR IN CROSS SE DUCED.	59 PILE SEE NOTE E 67 PILE REPL BY CHRISTENS72 72 PILE CTION FOR NEUTRON ABSORPTION	7/68 3/68 6/72*
	17 NEU	RON BETA DECAY COUP	LING CONSTANTS	
	RELATED TEXT SECTION	I IV H.1		
AV AV C AV EP AV P AV EP AV EP AV EP AV EP AV C AV C AV E AV P	GA7GV (SEE TEXT FOR (-1.250) (0.044 (-1.250) (0.044 (-1.22) (0.08) (-1.22) (0.08) (-1.230) (0.027 (-1.230) (0.027 (-1.243) (0.017 (-1.243) (0.017 (-1.243) (0.017 (-1.243) (0.017 (-1.243) (0.017) (-1.243) (0.017) (-1	SIGN CONVENTION) CHRISTENS GRIGDREV CHRISTENS CHRISTENS CHRISTENS CHRISTENS KROPF FREE NEUTRON DATA ASURE THE ABSOLUTE NED BY FITTING ALL	67 RVUE SEE NOTE C BELOW 67 GWTR N DECAY FT VALUE 68 GWTR F-NEU ANG CORREL 70 GWTR PE-NEUT SPIN CORREL 71 GWTR PE-NEUT SPIN CORREL 72 GWTR N DECA-FT VALUE 78 RVUE N DECA-ALONE 78 RVUE N DECA-ALONE 70 JOGT. REPLE DY KROFF 73- VALUE OF GA/GY ONLY DATA THROUGH 1972.	11/68 10/71 10/71 1/73* 1/73* 1/73* 1/73* 10/71 1/73*
F F F F F F F F P	PHASE ANGLE OF GA RI (176.1) (6.4) (181.3) (1.3) 181.1 1.3 CONFORTO 67 COMBINES KROPF 73 VALUE OBTAL	ELATIVE TO GV (DEGF CONFORTO EROZOLIMS KROPF FREE NEUTRON DATA NED BY FITTING ALL	KEES) 67 RVUE 570 CNTR POLAR. NEUTRON 73 RVUE N DECAY TO 1967. REPL. BY KROPF 73. DATA THROUGH 1972.	11/68 10/69 1/73* 1/73*
*****	******	*****	******** ******** ******	
COHEN	56 PR 104 283	V W COHEN, CORNE	DLD, RAMSEY (BNL+HARVARD)	
SOSNOV	SK 59 JETP 9 717	SOSNOVSKII;SPIVA	(MAX PLANCK INST.CHEM.)	
CHRIST	EN 67 PL 26B 11 TO 67 APAH 22 15 EV 68 SJNP 6 239	CHRISTENSEN, NIELS G. CONFORTO +GRISHIN, VLADIMIR	SON, BAHNSEN, BROWN+ (RISO) (CERN) (SKII, NIKOLAEVSKII + (ITEP)	
BAIRD TAYLOR CHRIST EROZOL EROZOL CHRIST KROPF AL	69 PR 179 1285 69 RMP 41 375 EN 70 PR 61 1693 IM 70 SJNP 11 583 S0 PL 278 557 IM 71 JETPL 13 252 EN 72 PR D5 1628 73 SUBM. TO NP A S0 70 NP A154 160	+MILLER, DRESS, RAN +PARKER, LANGENBEH CHRISTENSEN, KROHM EROZOLIMSKI, BONDJ EROZOLIMSKY, BONDJ EROZOLIMSKY, BONDJ EROZOLIMSKY, BONDJ EROZOLIMSKY, BONDJ EROZOLIMSKY, BONDJ EROZOLIMSKY, BONDJ H PAUL	45EY (ORNL,HARY) 45,0 (PRIN+UCI+PENN) 47,00 (ANL) 47,000 (KURC MOSCON) 47,000 (KURC MOSCON) 47,000 (KURC NOSCON) 500,8AHNSEN,BROWN+ (RISO) 500,8AHNSEN,BROWN+ (RISO) (VIEN)	
	N 57 DO 104 517	PAPERS NOT REFERE	RED TO IN DATA CARDS	
DACKSO COHEN BHALLA	N 57 PK 106 517 65 RMP 37 537 66 PL 19 691	JACKSUN, IKEIMAN,) +DUMOND (N.AMER.) C P BHALLA	VILU (PRINCEION) WIATION SCIENCE CENT.,CIT) (ALABAMA)	
*****	****	*****	******** **********************	

Data Card Listings

٨

LLS

в

AVG FIT

DM DM DM DM

AVG

s

DT

0.044 0.085 BADIER 67 HBC 2.4 PBAR P 8/67

MMMMMM

For notation, see key at front of Listings.

WEIGHTED AVERAGE = 0.3967 ± 0.0033 ERROR SCALED BY 1.2 18 LAMBDA (1115, JP=1/2+) I=0 CHISQ 71 HBC 70 HLBC 68 HBC 67 HBC 67 HBC 67 HBC 67 DSPK 66 HBC 66 HLBC 65 DSPK 0.2 1.5 0.4 BAL TAY ·BHLTHY ·DEMIDOU ·HEPP ·GRIMM ·BADIER 18 LAMBDA MASS (MEV) . . . 0.2 SINCE OUR FINAL VALUES FOR THE SIGMA AND LAMBDA MASSES COME FROM DOING AN OVERALL FIT TO ALL MEASURED MASSES AND MASS DIFFERENCES, WE HAVE USED THE UNCORRELATED MEASUREMENTS FROM SCHWIDT OF SRATHER THAN THE ONES COMING FROM THE OVERALL FIT REPORTED IN THAT PAPER. SINCE THERE SEEMS TO BE MO COMVINCING ARGUMENT AS TO WHY ONE SHOULD IGNORE DATA USING RANGE MEASUREMENTS, WE HAVE INCLUDED HERE VALUES DEFENDING ON PROTON AND FIOR NANCES. BADIER AUERBACH HBC HLBC DSPK HBC HBC HBC HBC HBC HBC HBC HBC ·ENGELMANN ·BURAN 1.5 3.1 0.7 BURAN HILL BALTAY SCHWARTZ KREISLER HUBBARD CHRETIEN 65 65 0.0 1.0 3.7 0.6 1.7 6.3 2.7 0.1 64 64 63 63 62 62 ·BLDCK ·HUMPHREY HBC HBC CC HBC CHANG BOWEN 60 59 58 CRAWFORD 1.8 BOLDT CC 0.3 28.2 0.35 0.40 0.45 0.50 0.55 0.30 (CONLEV =0.080) LAMBDA DECAY RATE (UNITS 10**10 SEC-1) 18 LAMBDA MAGNETIC MOMENT (MAGNETONS,938.26 MEV) COOL 62 OSPK KERNAN 63 CC ANDERSON 64 HBC CHARRIERE 65 EMUL BARKOV 71 EMUL DAHLJENSE 71 EMUL HILL 71 OSPK -1.5 0.0 -1.39 -0.5 -0.67 -0.66 -0.73 0.5 0.6 0.72 0.28 0.31 0.07 0.18 8553 151 49 1300 3868 WEIGHTED AVERAGE = 1115.558 ± 0.052 ERROR SCALED BY 1.2 0.37 2/72 6/71 10/71 AVG -0.672 0.061 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of x_i , δx_i , and scale factor, which are differ-18 LAMBDA ELECTRIC DIPOLE MOMENT (UNITS 10**-14 E CM) NONZERO VALUE IMPLIES VIOLATION OF T AND P EDM 5.0 DR LESS CL=.95 GIBSON 66 EMUL EDM 8 1.0 OR LESS CL=.95 BARONI 71 EMUL EDM 8 BARONI MEASURES (-5.9+-2.9)*10**-15 E CM 2/72 2/72 2/72 ent from the values shown here. 18 LAMBDA PARTIAL DECAY MODES DECAY MASSES 938+ 139 939+ 134 938+ 105+ 0 938+ •5+ 0 938+ 139+ 0 CHISQ LAMBDA INTO PROTON PI-LAMBDA INTO NEUTRON PIO LAMBDA INTO PROTON MU- NEUTRINO LAMBDA INTO PROTON E- NEUTRINO LAMBDA INTO PROTON PI- GAMMA · · · · HYMAN 72 HEBC 0.2 P1 P2 P3 P4 P5 . . · · · · · MAYEUR 67 EMUL 2.0 - LONDON 66 HBC · · · · · SCHMIDT 65 HBC 1.1 · · · ·BHOWMIK 63 RVUE 1.0 -----4.1 18 LAMBDA BRANCHING RATIOS (CONLEV =0.246) 1116.2 LAMBDA INTO (P PI-)/((P PI-)+(N PIO)) 1115.4 1115.8 (P1)/(P1+P2) 1115.0 LANBDA INTO (P PI-)/((P PI-)+(N PIO)) (P1)/(P1+P2) 0.627 0.031 CRAHFORD 59 HBC 0.65 0.05 COLUMBIA 60 HBC U (0.665) (0.017) ANDERSON 62 HBC 903 0.643 0.016 HUMPHREY 62 HBC U 5736 0.635 0.007 DOYLE 69 HBC PI-P TO LAM. KO 4572 0.646 0.008 BALTAY 71 HBC K-P AT REST U ANDERSON RESULT NOT PUBLISHED, EVENTS ADDED TO DOYLE SAMPLE. R1 R1 R1 R1 R1 R1 LAMBDA MASS (MEV) 18 LAMDA - ANTILAMBDA MASS DIFFERENCE (MEV) 0.06 CHIEN 66 HBC 6.9 PBAR P 0.15 BADIER 67 HBC 2.4 PBAR P 2/71 6/71 2/71 0.05 0.29 R1 R1 R1 R1 R1 R1 9/67 0.6399 0.0049 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.6419 0.0049 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.083 0.083 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) AVG FIT - ----R2 L R2 FIT LAMBDA INTO (N PIO)/((P PI-)+(N PIO)) (P2)/(P1+P2) 0.23 0.09 EISLER 57 HLBC 0.43 0.14 CRAWFORD 59 HBC 0.28 0.08 BAGLIN 60 HLBC 0.35 0.05 BAGUN 63 HLBC 75 0.291 0.034 CHRETIEN 63 HLBC 18 LAMBDA MEAN LIFE (UNITS 10**-10) 188 2.63 0.21 0. 825 2.72 0.16 0. 140 2.72 0.29 0. 129 2.36 0.06 0. 799 2.69 0.11 0. 2.92 2.36 0.06 0. 706 2.75 0.09 0.17 740 2.59 0.09 0.16 534 2.61 0.16 534 720 2.701 (0.20) 1.13 2.13 2.452 0.056 0. 721 2.701 (0.20) 2.13 2.55 0.13 0. 2.44 721 2.701 0.20 1.3 2.55 0.13 0. 2.44 2.55 0.13 0. 2.44 2.55 0.10 1.5 342 2.54 2.54 0.10 0. 2.54 0.08 3.92 2.54 0.10 0. </t 58 CC 59 HBC 60 CC 62 HBC 63 HLBC 64 HBC 64 HBC 64 HBC 64 HBC 66 HBC 67 HBC 67 HBC 67 HBC 67 HBC 70 SPK 67 HBC 74 PBAR P 74 HBC 74 PBAR P 74 HBC 74 PBAR P 74 HBC 74 PBAR P 75 HBC 74 PBAR P 74 HBC 74 PBAR P 75 HBC 74 PBAR P 74 HBC 74 PBAR P 74 HBC 75 HBC 74 PBAR P 74 HBC 75 HBC 74 PBAR P 74 HBC 74 PBAR P 74 HBC 75 HBC 75 HBC 74 HBC 74 HBC 74 HBC 74 HBC 74 HBC 75 HBC 74 HBC 75 HBC 75 HBC 76 HBC 77 HBC 0.21 0.16 0.27 0.20 0.11 0.06 BOLDT CRAWFORD BOWEN CHANG CHANG CHARTIEN HUMDHREY BLOCK CHRETIEN HUBBARD KREISLER SCHWARTZ BALTAY HILL BALTAY HILL CHIEN CHIEN CHIEN AUERBACH BADIER BADIER BADIER GRIMM HEPP DEMIDOV BALTAY 188 825 140 186 799 2239 706 794 2260 1378 635 2534 916 \$ 1147 \$ 972 2213 585 0.304 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.3581 0.0049 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) LAMBDA INTO (P E- NEU/YOTAL (UNITS 10**-3) (P4)/(P1+P2) 15 (2:0) (0:5) HUMMHREY 62 F8C 8 (2:9) (1:5) (1:2) AUBERT 62 F8C 102 (0:78) AUBERT 62 F8C 102 (0:78) (0:23) (0:13) ELLIN 64 F8C K-AT 1:45 103 (0:78) (0:24) (0:13) ELLIN 64 F8C K-AT 1:45 104 (0:78) (0:03) ALLIN 64 F8C K-AT 1:45 105 (0:88) (0:10) LINO 64 F8C K-AT 1:45 106 (0:78) (0:03) ALLIN 64 F8C K-P AT REST 128 (0:88) (0:10) LINO 64 F8C K-P AT REST 128 (0:88) (0:10) LINO 415T 10 SPK F1 P T0 K0 THESE VALUES HAVE BEEN CHANGED BY US INTO RATIOS TO PROTON P1-BECAUSE HAT IS THE DIRECTLY MEASURED QUANTITY. SEE R5 BLOW LUM STATISTICS EXPERIMENTS. NOT AVERAGED 0022022220 K- AT REST K- AT 1.45 GEV/C 6/66 10/69 4/71 2/72 3/72 3/72 7/70 6/66 9/67 9/67 9/66 8/68 6/68 6/68 6/68 8/68 12/70 6/71 K-P AT REST PI- P TO KO 6.9 PBAR P 6.9 PBAR P,ANTI 0.054 0.11 2.4 PBAR P 2.4 PBAR P.ANTIL LOW STATISTICS EXPERIMENTS. NUL AVERAGEU LAMBDA INTO (P MU- NEU)/TOTAL (UNITS 10**~4) 1 (0.2) OR MORE GODD 62 1 (1.0) OR LESS ALSTON 63 2 (1.0) OR LESS KERNAN 64 BETWEEN 1.3 AND 6.0 LIND 64 3 1.3 0.7 LIND 64 2 1.5 1.2 RONNE 64 9 2.4 0.8 CANTER1 71 14 1.4 0.5 BAGGETT2 72 (P3)/(P1+P2) 8342 (UNITS 10**~4) GODD 62 HBC ALSTON 63 HBC KERNAN 64 FBC LIND 64 HBC LIND 64 HBC LIND 64 RVUE RONNE 64 FBC CANTER1 71 HBC BAGGETT2 72 HBC 2600 1059 4572 7/66 0.021 0.021 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW) 2.521 STOPPED K-P STOP K-7/71 8/72* 1.57 0.35 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG 18 ((LAMBDA) - (ANTI-LAMBDA))/AVG., MEAN LIFE DIFFERENCE

Stable Particles

Λ

Stable Particles

Λ, $Σ^+$

Data Card Listings For notation, see key at front of Listings.

R5 LAMBDA INTO (P E- NEU)/(P PI-) (UNITS 10**-3) (P4)/(P1) Z/72 R5 150 1.23 0.20 ELY 63 F8C 2/72 R5 150 1.17 0.18 BAGLIN 64 F8C 2/72 R5 143 1.20 0.12 MALONEY 69 H8C 2/72 R5 163 1.20 0.12 MALONEY 69 H8C 2/72 R5 1708 1.31 0.06 ALTHOFF1 71 JOSPK 2/72 77 R5 C 86 1.17 0.13 CANTER 71 H8C K-P AT REST 3/72 R5 C CALCULATED BY US FROM R3 ASSUMING THE AUTHORS USED (P PI-)/T0T=2/3 3/72 3/72 R5 AVG 1.267 0.044 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R6 LAMBDA INTO (P PI-G GAMHA)/(P PI-) (UNITS 10**-3) (P5)/(P1) 1/73* R6 T2 1.32 0.22 BAGGETT3 72 H8C PI-MON LT 95 MEV/C 1/73*	BAGLIN 60 NC 18 1043 BAGLIN,BLOCH,BRISSON,HENNESSY + (EPOL) BOWEN HARDY,REYNOLDS,SUN + (PRINCETON) GOUEN,HARDY,REYNOLDS,SUN + (PRINCETON) COLUMBIA 60 PR 120 DOWEN,HARDY,REYNOLDS,SUN + (IRLPRIN+BNL) COLUMBIA 60 PRL 67 M SCHWARTZ + (COLUMBIA) HUMPHREY 61 PRL 6 478 HUMPHREY,KIRZ,ROSENFELD,RHEE + (IRL+SYRA) ANDERSON 62 CERN CONF 832 ANDERSON,HENNESSY,SIX + (EPOL) (POL) CHANG 62 747 AUBERT,BRISSON,HENNESSY,SIX + (EPOL) COOL 62 THESIS DVEC (DUKE) COOL 62 TH27 2223 COOL,HIL,MARSHALL + (BNL-MIT+MYU4ANL) GOOD 62 PR 127 235 VE HUMPHREY,R ROSS
18 LAMBDA DECAY PARAMETERS Related Text Section IV H and Appendix III A- Alpha Lambda- (Lambda Into PI- proton)	ALSTON 6.3 UCRL 10926 ALSTON, KIRZ, NEUFELD, SOLMITZ, MUHLMUI (ULL) BHOWNIK 6.3 NC 28 1494 B BHOWNIK, SO P GOYAL BROWN 6.3 PR 130 766 BLOCK, GESSAROLI, RATTI+(NWES+BGNA+SYRA+ORNL) BROWN 6.3 PR 130 769 BROWN, KAOYK, TRILLINS, ROE + (ULL+MICH) CHRETIEN 5.3 PR 131 2208 CHRETIEN, CROUCH+ (BRAN+BROWN+HARYARD+MIT) CRONIN 6.3 PR 129 1795 J W CRONIN, DE OVERSETH (PRINCETON) ELY 6.3 PR 131 868 ELY, GIDAL, KALMUS, DSWALD, POWELL + (ULL) CERNAN, 63 PR 129 ATO KERNAN, NOVEY, WARSHAM, WATTENBERG (ANL+1LL)
A- 1156 0.62 0.07 CRONIN 63 CNTR LAMBDA FROM PI-P 8/67 A- (0.663) (0.022) BERGE 66 VUE INCLUDES ABOVE 9/66 A- 10130 0.645 0.017 OVERSETH 67 DSPK LAMBDA FROM PI-P 8/67 A- M 2520 (0.747) (0.066) MERRILL 68 HBC REPL BY DAUBER 68 6/68 A- 3520 0.677 0.066 DAUBER 69 HBC RFOM YI DECAY 6/68 A- 10325 0.6649 0.023 CLELAND 72 0SPK LAMBDA FROM PI-P 5/72* A- AVG 0.0437 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	ANDERSON 64 PR. 13 167 J A ANDERSON,F S CRAWFORD (LRL) BAGEIN 64 NC 35 977 BAGLIN,BINGHAM+ LEPOL+CERN+LOUC+RHEL+BERG) HUBBARD, 64 PR 135 153 HUBBARD, 64EGE, KALBFLEISCH, SHAFER + (LRL) KERNAN 64 PR 133 1271 KERNAN,POMELL,SANDLER + (LRL) KREISLER 64 PR 136 1074 M N KREISLER,O UVERSETH,J CRONIN (PRIN) INN) LIND 64 PR 135 1483 LIND,BINFORD,GODO.STERN (MISCONSIN) RONNE 64 PR 135 7 RONNEF CERN+FEPOL+LOUC++UNIV_BERGEN) SCHWARTZ 64 URL 135 DISPH ADAM SCHWARZZ (LRL)
AC DEFINED 1.10 ⁻¹⁰ - 27 ⁻¹⁰ DA (E INTORY DEFINITION CONTRELET) AC 0 4760 1.000 0.068 DLSEN 70 DSPK PI+N TO K+ LAMBDA 5/70 AC 4760 1.006 0.066 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AC 000 IL-006 0.066 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AC 000 DONE BY COMPARING PROTON DISTR.HITH N DISTR. FROM LAMBDA DECAY. F- PHI ANGLE (SIN(PHI)/COS(PHI)=BETA/GAMMA) (DEGREES) F- DISG 13-0 17.0 CRONIN 63 DSFK LAMBDA FROM PI-P 11/67	BAGLIN 65 PK D35 PT BAGLIN EPOL_CERN.LOUC, AREL, BERGEN) BALTAY ANDERESS, CULLUERS, SCULUER, ANDER AND BALTAY, SADHELSS, CULLUER, KOPP + VALE+BALD BARLOW ASTAY, SADHELSS, CULLUERS, KOPP + VALE+BALD JBARLOW + BLAIR, CONFORTOF (CERN+REL, PERGEN) GARLOW BARLOW, BLAIR, CONFORTOF (CERN+REL+PERN) JBARLOW GARADER SALED ARAITAY, SADHELSS, CULLUERCERN+MPIN) CONFORTO GONFORTO (CERN+PIN) CONFORTO SE CINT (HARZIERE, GIBSON+ (EPOL+BRIS-CERN+MPIN) CONFORTO SE CINT (HARZIERE, GIBSON+ (EPOL+BRIS-CERN+MPIN) CONFORTO SE CINT (LERN) (CERN) ELY G5 PR 137 B1302 ELY, GIDAL, KALMUS, POWELL + (LEL, LUCC) HILL G5 PR L138 D5 HILL, LI, J., J., MENDERNAN (MIT.BANL)
P- 10130 -8.0 6.0 UVERSETH 67 05PK LAMBDA FROM PIP 11/67 F- 7371 (-9.2) (5.2) CLELAND 67 05PK PEL BUY CLELAND 72 05PK FL BUY CLELAND 72 05PK LAMD A FROM PIP 5/72* F- 10325 -7.0 4.5 CLELAND 72 05PK LAMBDA FROM PIP 5/72* F- CLELAND 70 05PK FL BUY CLELAND 72 5/72* F- CLELAND 70 05PK FL BUY PL BUY CLELAND 72 5/72* F- CLELAND 70 05PK FL BUY PL BUY PLAND 71 F AVG GA/GV FOR LAMBDA BETA DECAY (SEE TEXT SEC. 10 H CONV.) 6/6 60 HBC NG CAU CLAUD 6/6 AV C 22 (-0.4.0) 0F MDRE BAD TO SCAU CLAUGE SCAU CLAUD 5/7*	SCHMIDT 65 PR 140 B 1328 P SCHMIDT (COLUMBIA) BERGE 66 BERKELEY 46 BERGE, CABIBBO ((RVUE) LRL, CERN) BURAN 66 PL 20 318 BURAN, EIVINDSON, SKJEGGESTAD, TOFTE + (OSLD) CHIEN 66 PL 20 318 BURAN, EIVINDSON, SKJEGGESTAD, TOFTE + (OSLD) CHIEN 66 PR 152 1171 +LACH, SANDKEISS, TAFT, YEH, OREN + (VALEFBNL) GIBSON 66 NC 453 1038 HOBELMANN, FLIVINTH, ALEXANDER* (INCHID, REHD) (INCH) GIBSON 66 NC 453 882 W M GIDSON, K GREEN (INCH), SKAJ LONDON 66 PR 143 1034 UNDON, RAU, GOLOBERG, LICHTMAN+ (BNL, SYRA)
AV C LO2 LO107 ORKE DARLIN OS DEBU AU LO167 AU L/71 AV C BETM (0. AND -1.1) DARLOW SOSRK NO SIGN SUPER 1/71 AV C 102 (0.71) OR MORE CL=.95 ELV 65 HLBC ABS. VALUE 1/71 AV -1.14 0.23 0.33 COMFORTO 65 RVUE 1/167 AV 148 -0.72 0.14 0.19 MALDNEY 69 HBC 10/69 AV 148 -0.75 0.15 0.18 CANTER 71 HBC 2/72 AV 141 -0.75 0.15 0.18 CANTER 71 HBC 2/72 AV 141 -0.63 (0.27) (0.17) LINDQUIST 71 DSFK POLARIZED LANBBDAS 2/72 AV L 173 -0.60 (0.27) (0.54) LINDQUIST 71 DSFK POL OND <td< td=""><td>AUERBACH 67 NC 47A 19 AUERBACH, BOWEN, DOBBS, LANDE, MANN+ (PENN) BADIER 67 PL 258 152 +BONNET, BRIANDET, SADDULET (EPOL) CLELAND, BLENLEIN, CONFORTO+ (CERN+GEVA+LUND) (EPOL) (EPOL) MAYEUR 67 PL.268 45 CLELAND, BLENLEIN, CONFORTO+ (CERN+GEVA+LUND) MAYEUR 67 JLIBR, BRUX, BUL32 C.MAYEUR, F.TOMPAJ, JWICKENS (BELG, LOUC) OVERSETH 67 PRL 19 391 0 EVERSETH, R FROTH (MICH+PRIN) GRIMM 68 NC 54A 187 H-J.GRIMM (HEIDELBERG) HEPP 68 ZPHYS 214 YHEPP, H. SCHLEICH (HEIDELBERG) MERRILL 68 PR 167 1202 MERRILL, SMAFER (LRL)</td></td<>	AUERBACH 67 NC 47A 19 AUERBACH, BOWEN, DOBBS, LANDE, MANN+ (PENN) BADIER 67 PL 258 152 +BONNET, BRIANDET, SADDULET (EPOL) CLELAND, BLENLEIN, CONFORTO+ (CERN+GEVA+LUND) (EPOL) (EPOL) MAYEUR 67 PL.268 45 CLELAND, BLENLEIN, CONFORTO+ (CERN+GEVA+LUND) MAYEUR 67 JLIBR, BRUX, BUL32 C.MAYEUR, F.TOMPAJ, JWICKENS (BELG, LOUC) OVERSETH 67 PRL 19 391 0 EVERSETH, R FROTH (MICH+PRIN) GRIMM 68 NC 54A 187 H-J.GRIMM (HEIDELBERG) HEPP 68 ZPHYS 214 YHEPP, H. SCHLEICH (HEIDELBERG) MERRILL 68 PR 167 1202 MERRILL, SMAFER (LRL)
AV 352 -0.74 0.09 0.12 BAGGETTI 72 HBC STOP.K- 2/72 AV C EXPERIMENTS INCLUDED INCOMPGRTO 6/68 AV M EXPT MEASURES ONLY THE ABSOLUTE VALUE 6/68 AV M EXPT MEASURES ONLY THE ABSOLUTE VALUE 6/68 AV M USES E AND PROTON UP-DOWN ASYMM AND E-NEU CORRELATIONS 2/72 AV L LIDQUIST I GETS THREE VALUES. WE AVERAGE THE ONE THAT USES 10/71 AV L ALL DATA. 10/71 10/71	DAUBER 69 PR 179 1262 + BERGE,HUBBARD,MERRILL,MILLER (LR.) DDYLE 69 UCRL 18139-THESIS J.C. DOYLE (LR.) MALONEY 69 PRL 24 MALONEY,SECHI-ZORN (UNIY MARYLAND) BOHM 70 NC 70A 384 + RRECKER + (BERL+BRUX+DUUC+LOUC+LOUC+ARRS) DEMIODY 70 SJNP 10 681 + KIRILLOY-URGYUMOY,PONDSOV,PROTASOV+ (ITEP) OLSEN 70 PRL 24 843 + PONDROM,HANDLER,LIMON,SMITH + (WISC,MICH)
AV AVG -0.665 0.063 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW) WEIGHTED AUERAGE = -0.639 ± 0.065 ERROR SCALED BY 1.1	ALTHOFF1 71 PL 378 531 +BRONN,FREYTAG,HEARD,HEINTZE + (CERN,HEID) ALTHOFF2 71 PL 378 535 +BRONN,FREYTAG,HEARD,HEINTZE + (CERN,HEID) BALTAY 71 PC D4 670 +BRIDGEWATER,CODPER,HABIBJ+ (COLU+BING) BARKOV 71 JETPL 14 60 +GUREVICH,MAKARINA,MARTEWYANDV+ (ITEP) BARONI 71 LNC 1256 GARONI,S PETRERA,6 GNANON (ROMA) CANTER 71 PR 26 868 +COLE,LEE-FRANZINI,LOVELESS + (STON+COLU)
	CANTERI 71 PRL 27 59 +COLE,LEE-FRANZINI,LUYELESS+ (STON-COLU) DANLJENS 71 NC 3A DANL-JENSEN (CERN-ANKA+LASHPIH-ROMA) HILL 71 PR D4 1979 +LI,JENKINS,KYCIA,RUDERMAN (MIT.BNL) HILL,LI,JENKINS,KYCIA,RUDERMAN (MIT.BNL) LINDQUIS 71 PRL 27 612 LINDQU+ST,SUMNE-+ (EFI,KUSL,OSU,ANL)
	BAGGETT J Z 2PHY 249 279 +BAGGETT,EISELF,FILTHUTH,FRENSE+ (HEID) BAGGETT J Z 2PHY 252 362 +BAGGETT,EISELF,FILTHUTH,FRENSE+ (HEID) BAGGETT J Z 2PH 252 362 +BAGGETT,EISELF,FILTHUTH,FRENSE+ (HEID) BAGGETT J Z 2PH 263 379 +BAGGETT,EISELF,FILTHUTH,FRENSE+ (HEID) CLELAND 72 NP B40 221 +CONFORTO,FATON,GERBER+ (CLENN-GEVA+LUND) HYMAN 72 PR 05 1063
	PAPERS NOT REFERRED TO IN DATA CARDS ARMENTER 62 CERN CONF 236 ARMENTEROS+ (CERN+EPOL+LOIC+BIRM+CEN-SACLAY) BALTAY 62 CERN CONF 233 BALTAY,FOMLER,SANDWEISS,CULWICK+ (YALE+BNL) BERGE 63 THESIS (BERKELEY) J PETER BERGE (LRL)
Image: Construction of the second s	Σ ⁺ 19 S1GMA+ (1189, JP=1/2+) I=1
-1.2 -0.8 -0.4 0.0 =0.265) GA/GV FOR LAMBDA BETA DECAY	M N SEE NOTE PRECEDING LAMBDA MASS LISTINGS
****** ******** ******** ******** ******	M 144 1189-28 0.15 BARKAS 63 EMUL + SEE NOTE S BELOW M 58 1189-26 0.22 BHOWHIK 64 EMUL + SEE NOTE S BELOW M S ABOVE SIGMA-MASSES HAVE BEEN ARISED-30 KEV TO ACCOUNT FOR 46 KEV M S ABOVE SIGMA-MASSES HAVE DEEN ARISED-30 KEV TO ACCOUNT FOR 46 KEV M S INCREASE IN PROTON MASS AND 21 KEV DECREASE IN PION MASS 6/6 M 4205 1189-16 0.12 HYMAN 67 HEBC 6/6 M 607 1189-39 0.06 BOHM 72 EMUL 1/7 M AVG 1189-18 0.076 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.6) 1/7 M AVG 1189-18 0.076 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.6) 1/7 M FIT 1189-406 0.068 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6) 1/7 (SEE IDEOGRAM BEL

Data Card Listings

Stable Particles Σ^+

A+ A+ A+ A+ ALPHA SIGNA++(SIGH TO PI+ N) 35000 0.069 0.017 BANGERTER 69 HBC K-P AT 400 MEV/C 4101 0.037 0.069 BERLEY 70 HBC AVG 0.066 0.016 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) K-P AT 400 MEV/C 11/69 AVG

9/66 9/66

Stable Particles

 Σ^+ , Σ^-

Data Card Listings For notation, see key at front of Listings.

A0 ALPHA SIGMA0 (SIG+ INTO PIO PROTON) A0 -0.80 0.16 BEALL A0 -0.90 0.125 TRIPP A0 -0.90 10.251 TRIPP A0 32000 -0.990 0.022 BANGENTER A0 32000 -0.990 0.022 BANGENTER A0 1335 -0.98 0.05 0.02 HARRIS A0 1335 -0.984 0.045 BELLAY 7 A0 HDECAY PROTONS SCATTERED OFF CARBON A0 AVG -0.944 0.017 AVERAGE (ERROR INC A0 AVG -0.944 0.017 AVERAGE (ERROR INC F+ F+ MIL+ ANGLE (SIGH INTO N PI) SIN(PHI)/COS F+ SERLEY F+ F+ 0 370 (1800.1 (30.1010.1 91) SIN(PHI)/COS F+ F+ O 140.1 20.1 AVERAGE (ERROR INC F+ 50.142.1 25.1 F+ AVG 167.3 20.1 AVERAGE (ERROR INC	2 CNTR 2 HBC REPLAC. BY BANGE 6 HBC K-P TO SIG+ P1- 7/66 9 HBC 10/69 0 OSPK P1+P TO SIG+ K+ 5/70 2 ASPK P1+P TO SIG+ K+ 5/70 LUDES SCALE FACTOR OF 1.0) 10/69 0 HBC + NEUTRON RESCATT. 9/66 0 HBC K-P AT 400 MEV/C 11/69 N CONVENTION. LUDES SCALE FACTOR OF 1.1)	20 SIGMA- (1198, JP=1/2+) I=1 20 SIGMA- MASS (MEV) M N SEE NOTE PRECEDING LAMBDA MASS LISTINGS M 30000 1197.47 0.11 SCHMIDT 65 HBC SEE NOTE N M FIT 1197.34 0.07 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) 20 (SIGMA-) - (SIGMA+) MASS DIFFERENCE (MEV) D 0.40 BABYAS 63 EWL 7	6/68 1/73*
AG 61 -1.03 0.52 0.42 GERSHWIN 6 F0 PHIO ANGLE (SIG+ INTO PIO PROTON) SIN(PHI) F0 H 22.0 90.0 HARRIS 7 F0 H DECAY PROTONS SCATTERED OFF CARBON. SCATGRON. SCATGRON.	9 HBC K-P TO SIG PI 11/69 /COS(PHI)=BETA/GAMMA (DEG) 0 OSPK PI+P TO SIG+ K+ 5/70	D 250 8.25 0.25 DOSCH 65 HBC. D 86 7.91 0.23 BOHM 72 ENUL D D AVG 8.09 0.16 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	1/73*
****** ******** ****** ****************	****		1//3+
REFERENCES FOR SIGM	4+	20 (SIGMA-) - (LAMBDA) MASS DIFFERENCE (MEV)	
CORK 60 PR 120 1000 CORK, KERTH, MENZEL, C EVANS 60 NC 15 BR15T+BRUSS-IAS-U-C FREDEN, H KORNBLUM FREDEN 60 NC 16 611 S FREDEN, H KORNBLUM KAPLON 60 ANP 91.39 M KAPLON AO MELISSIN PUSCHEL 60 NP 20 254 M PUSCHEL	RONIN,COOL(LRL+PRIN+BNL) DL-DUBLIN+LON+MILAN+PAD R WHITE (LRL) DS,YAMANOUCHI (ROCH) (MAX PLANCK INST)	DL N SEE NOTE PRECEDING LAMBDA MASS LISTINGS. DL 81.70 0.19 BURNSTEIN 64 HBC DL 85 81.80 0.24 SCHMIDT 65 HBC DL 272 81.64 0.09 HEPP 64 HBC	9/66 6/68 8/68
BARKAS61PR1241209BARKAS, DYER, MASON, NBERTHELO61NC21693BERTHELOT, DAUDIN, GOCHIESA61NC191171CHIESA, QUASSIATI, RI	ICHOLS,SMITH (LRL) JSSU + (SACLAY+ORSAY) VAUDO (INFN-TURIN)	DL AVG 81.666 0.077 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) DL FIT 81.749 0.067 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	1/73*
BEALL 62 PR L8 75 BEALL, CORK, KEEFE, MU GRARD 62 PR 127 607 F GRARD 6.4 SMITH GALTIERI 62 PR 127 607 GALTIERI, BARKAS, HEC HUMPHREY, R R0 TRIPP 62 PR 127 1305 W E HUMPHREY, R R0 TRIPP 64 PD 766 R0 TRIPH, M MASS	RPHY,WENZEL (LRL) (LRL) KMAN,PATRICK,SMITH (LRL) SS (LRL) N,M FERRO-LUZZI (LRL)	20 SIGMA- MEAN LIFE (UNITS 10**-10) T 1.67 0.40 0.28 BROWN 58 HLBC	
BARKAS 63 PRL 11 26 W H BARKAS, J N DYER ALSO 61 UCRL 9450 JOHN DYER (THESIS,	H H HECKMANN (LRL) BERKELEY) (LRL)	T 1.89 0.33 0.25 EISLER 58 HLBC T 45 1.35 0.32 0.17 CHIESA 61 EMUL	
BHOWMIK 64 NP 53 22 B BHOWMIK.P JAIN.P CARRARA 64 PL 12 72 CARRARA, CRESTI,GRIG COURANT 64 PR 136 1791 COURANT,FILTHUTH+ MURPHY 64 PR 134 188 C THORNTON MURPHY NAUENDER 64 PR 12 679 NAUENDERGKGMARATECK, MILLIS 64 PRL 13 291 WILLIS,COURANT,FINGE	MATHUR,LAKSHMI (DELHI) DLETTO,PERUZZO+ (PADDVA) (CERN+HEID+UND+NRL+MDL) (HISCONSIN) + (COLU+RUTG+PRIN) LMAN+(BNL,CERN,HEIDJUMD)	1 94. 1.13 0.37 0.39 0.30 0.40 0.40 1.40 T 1.208 1.58 0.06 0.06 HUMPREY 62.486C STOP. K- T C 3267 1.666 0.075 CHANG 66.48C STOP. K- T S 61.2081 (0.22) CH1EN 66.48C - 6.9 PBAR P T S 64. (1.461 (0.31) CH1EN 66.48C - 6.9 PBAR P, ANTI T 506 1.38 0.07 WHITESIDE 68.486 HGC 70.7 K- T 10253 1.472 0.016 BARLOUTAU 69.48C K-P.4-1.2 GeV/C T 1.485 0.022 EISELE 70.48C K-P AT REST	6/66 9/67 9/67 6/68 11/69 2/71
BALTAY 65 PR 140 B 1027 BALTAY, SANDHEISS, CU BAZIN 65 PR 14 154 BAZIN, BLUMENFELD, NA BAZIN 65 PR 140 154 BAZIN, PLAND, SCHMIDT CARAYAN 65 PR 138 B 433 CARAYANNOPOULOS, TAU QUARENI 65 NC 40 928 QUARENI, CARATACCI + SCHMIDT 65 PR 140 1328 P SCHMIDT	LWICK,KOPP + (YALE+BNL) JENBERG + (PRIN+COLU) + (PRIN,RUTG,COLU) TFEST,WILLMANN (PURDUE) (BGNA,FIRZ,GEN0,PARMA) (COLUMBIA)	T 1383 1.42 0.05 BAKKER 71 DBC - K-N TO SIG- 2PI 1.41 0.09 0.08 TOVE 71 EWL T C CHANG ERROR 0.018 RAISED BY US. SEE 1970 EDITION, RMP 42,123(1970) T S ERROR PURELY STATISTICAL. T AVG 1.484 0.019 0.018 AVERAGE (ERROR INCL. SCALE FACTOR OF (SEE IDEOGRAM BELOW)	10/71 12/71 1/73* 1.6)
BANGERTE 60 PRL 17 495 BANGERTER, GALTIERI, HERZBACH, KOLFLER, YA CHANG 66 PR 151 1081 CHUNG YUN CHANG ALSO 65 FHESIS CHUNG YUN CHANG CHIEN 66 PR 151 1081 CHUNG YUN CHANG CHIEN 66 PR 152 1171 +LACH, SANDWEISS, TAG COOK 66 PR 152 1212 +LACH, SANDWEISS, TAG COOK COOK, CHAST, MASEK, '	BERGE,MURRAY+ (LRL) AMMOTO + (BNL+MASA+YALE) (COLUMBIA) (COLUMBIA) T,YEH,OREN + (YALE+BNL) DRR,PLATNER (WASHINGTON)	WEIGHTED AVERAGE = 0.673B ± 0.0085 ERRDR SCALED BY 1.6	
BAGGETT 67 PRL 19 1458 ALSO 68 VIENNA ABS. 374 ALSO 68 PRIVATE COMM. N. BAGGETT	,KEHDE,KNOP+ (MARYLAND) (MARYLAND) (MARYLAND)		
BARASH 67 PRL 19 181 BARASH, DAY, GLASSER, FENGELMANN, FLITHUTH EISELE 67 ZPHYS 205 409 +ENGELMANN, FLITHUTH HYMAN 67 PL Z5 B 376 +LOKEN, PENTITY, MCKEN KOTELCHU 67 PRL 18 1166 KOTELCHUCK, GOZA, SULULIVAN, MCINTURFF, ALSO 64 PRL 18 246 A D MCINTURFF, C E	KEHDE,KNOP + (MARYLAND) FOLISH,HEPP+ (HEID) IE,+ (ANL+CARN+NMES) IVAN,ROSS (VANDERBILT) KOTELCHUCH (VANDERBILT) DOS (VANDERBILT)	CHISO	
BIERMAN 68 PRL 20 1459 BIERMAN, KOUNOSU, NAU COMBE 68 NC 57A 54 CERN-BRISTOL-LAUSAN MAST 68 PRL 20 1312 MAST, GERSHWIN, ALSTOR	ENBERG + (PRINCETON) NE-MUNICH-ROME-COLLABOR N-GARNJOST + (LRL)		
ANG 69 ZPHYS 228 151 +EBENHOH, EISELE, FUN BAGETT 69 MDDP-TAFOT3 N BAGETT 69 ITHESIS BALTAY 69 PRL 22 615 BALTAY, FRANZINI, INE BANGERT 69 IENE BANGERT 69 PCL 22 15 BALTAY, FRANZINI, INE BANGERT 69 IENE BARLOUTAD, 69 PR 187 1821 BANGERT 69 IENELEFON BARLOUTAD, 69 PR 181 183 BANGERT 69 IENELEFON EISELE 1 69 ZPHYS 221 +ENGELMANN, FILTHUTH IENGELMANN, FILTHUTH EISELE 26 ZPHYS 221 101 +ENGELMANN, FILTHUTH HORELMANN, FOLTHUTH GENSHHIN 69 PR 188 2077 +ALSTOM-GARNJOST, PA ALSTOM-GARSHIN ALSO UCRL 12946 HESSLE 264 HESSLE 265 ESSHIN NARRENCE K GERSHHIN	ELMANN,FILTHUTH (HEID) (UMD) VANN,NORTON+ (COLU,SION) FG (THESIS) (LRL) SALTIERI,GERSHWIN+ (LRL) GRANET+(SALC+CERN+HEID) FOHLISCH,HEPP+ (HEID) FOHLISCH,HEPP+ (HEID) NGERTER + (LRL)		
NORTON 69 NEVIS 175 (THESIS) HERBERT NORTON	(COLUMBIA)	SIGMA- DECAY RATE (UNITS 10**10 SEC-1)	
BENNENT 70 KIEV CONF +EISELE, F.NGELMANN, F ALSO 70 ZPHY 228 151 ANG, FISELE, F.NGELMANN, F EISELE 70 ZPHY 228 372 +FILTHUTH, HEPP, PRES HARRIS 70 PRL 24 165 +OVERSETH, PONDROM, D	LLTHUTH,FOHLISCH+ (HEID) V,FILTHUTH + (HEID) SER,ZECH (HEIDELBERG) ETTMANN (MICH,WISC)	20 SIGMA- PARTIAL DECAY MODES	
ALLEY 71 PR D3 75 +BENBROOK,COOK,GLAS BAKKER 71 LNC 37 +,5ABRE COLLAB. (Z COLE 71 PR 04 631 +LE-FRANZINI,LOVEL TOVEE 71 PR 933 493 LOUC,BELGRADE,BERL BELLAMY 72 PL 982 94 +NDEFSON,FAAHFORD,BENGRADE+BRU BOHM 72 NP B48 1 BERLIN+BELGRADE+BRU	S,GREEN,HAGUE + (MASH) EM+SACL+BGNA+REHO+EPOL) SS,BALTAY (STOM,SOLU) ARUX,DUBLIN,HARS COLLAB SYMON+ (LOWC+RHEL+SUSS) (+DUBLIN+LOUC+WARSAW	DECAY MASSES DECAY MASSES P1 SIGMA- INTO NEUTRON PI- 939+ 139 939+ 139 P2 SIGMA- INTO NEUTRON PI- 933 939+ 139+ 0 P3 SIGMA- INTO NEUTRON MU- P4 939+ 105+ 0 P4 SIGMA- INTO NEUTRON PI- 939+ 55+ 0 939+ 55+ 0 P5 SIGMA- INTO LAMBDA E- NEUTRINO 1115+ .55+ 0	
PAPERS NOT REFERRED	TO IN DATA CARDS		
GLASER 58 CERN CONF 270 GLASER, GOOD, MORRISO	N (MICH+LRL)	R1 SIGMA- INTO (N MU- NEU)/(N PI-) (UNITS 10**-3) (P3)/(P1)	
TRIPP 62 PRL 8 175 ALFF 63 SIENA CONF 1 205 ALFF 63 SIENA CONF 1 205 ALFF 64 SIENA CONF 1 205 ALFF, AURENBERGKIRS ALSO 65 PR 137 B 1105 ALFF, GELFAND, BRUGGE COURANT 63 SIENA CONF 1 73 COURANT 63 SIENA CONF 1 73	FERRO-LUZZI (LRL) P H++ (COLU+RUTG+BNL) R+BERLEY+(COLU+RUTG+BNL) RNSTEIN+DAY+ (CERN+UMD)	R1 22 0.66 0.15 COURANT 64 HBC R1 11 0.56 0.20 BAZIN 65 HBC FROM STOP, K- R1 56 0.43 0.09 BAGETT 69 HBC STOP, K- 1 R1 72 0.43 0.06 ANG 1 69 HBC STOP K- 1 R1 13 0.38 0.11 COLE 71 HBC STOP K- 1 R1 49 0.447 0.043 AVERAGE (FREAR INCLUDES SCALE FACTOR OF 1.01)	6/66 10/69 10/69 10/71
····· ********************************	******* *****************************		

Data Card Listings

For notation, see key at front of Listings.

Stable Particles

 Σ^{-}, Σ^{0}

 BARASH
 67
 PRL
 19
 181

 BERLEY
 67
 PRL
 19
 979

 BIERMAN
 68
 PRL
 20
 1459

 GERSHWIN
 68
 PRL
 20
 1270

 HEPP
 68
 ZPHY
 214

 SECHIZOR
 68
 NC
 54A
 537
 BARASH, DAY, GLASSER, KEHOE, KNOP + (MARYLAND) BERLEY, HERTZBACH, KOFLER + (BNL, MASA, YALE) BIERMAN, KOUNGSU, NAURMERER + (PRINCETON) GERSIMUN, ALSTON-GARNJOST, BANGERTER + (LRL) V.HEPP, H. SCHLEICH DAY, GLASSER, KNOP + VIENNA 3T5 (MARYLAND) H. WHITESIDE J. GOLLUG
 SIGMA INTO
 (N
 E NUJ/(N
 PI-)
 (UNITS
 10**-3)

 9
 1.0
 0.4
 0.3
 MURPHY
 64
 HLBC

 16
 1.37
 0.34
 MAUENBERG
 64
 HBC

 16
 1.15
 0.4
 MILLER
 64
 FBC

 31
 1.4
 0.3
 COURANT
 64
 HBC

 180
 1.11
 0.09
 BIERMAN
 68
 HBC

 A
 331
 1.22
 (0.13)
 ACMENT
 64
 HBC

 631
 1.02
 (0.03)
 ANELHO
 70
 HBC

 57
 0.97
 0.15
 COULE
 71
 HBC

 4
 ANGL REPLACED BY EBENHOH 70.
 COULE
 71
 HBC
 (P4)/(P1) 6/68 10/68 10/69 12/70 10/71 2/71 PRELIMINARY - STOP K-STOP K-STOP K-ANG 1 69 ZPHY 223 103 ANG 2 69 ZPHY 228 151 BAGGETT 69 PRL 23 249 BALTAY 69 PRL 23 245 BANGERTE 69 UCRL-19244 BANGERTI 69 PR 187 1821 ANG.FISELE,ENGELMANN,FILTHUTH + (HEID) +EBENHOR,EISELE,ENGELMANN,FILTHUTH+ (HEID) BAGETT,KENGE,SNOW (UNIV MARVLAND) BALTAY,FRANZINI,NEWMAN,NORTON+ (COLU,STON) ROGER ODELL BANGERTER (THESIS) (LRL) BANGERTER,GARNJOST,GALTIERI,GERSHWIN+ (LRL) AVG 1.096 0.046 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) SIGMA- INTO (LAMBDA E- NEU)/(N PI-) (UNITS 10**-4) (P5)/(P1) BARLOUTAUD,BELLEFON,GRANET+(SACL+CERN+HEID) COLLERAINE,DAY,GLASSER,KNDP+(UNIV MARYLAND) ENGELMANN,FILTHUTH,FOHLSCH+HEPP+ (HEID) EISELE,ENGELMANN,FILTHUTH,FOHLSCH+ (HEID) LAWRENCE KENNETH GESNHIN (THESIS) (LRL) R3 BARLOUTA 69 NP B14 153 COLLERAI 69 PRL 23 198 EISELE1 69 ZPHY 221 1 EISELE2 69 ZPHY 223 487 GERSHWIN 69 UCRL-19246
 11
 0.75
 0.28
 COURANT
 64
 HBC

 35
 0.64
 0.12
 BARASH
 67
 HBC

 31
 0.69
 0.12
 EISELE1
 69
 HBC

 31
 0.52
 0.09
 BALTAY
 69
 HBC
 STOP. K-STOP K-STOP K-STOP K-8/67 10/69
 35
 0.69
 0.12
 EISELE1
 69
 HBC
 STUP K

 31
 0.52
 0.09
 BALTAY
 69
 HBC
 STUP K

 AVG
 0.604
 0.060
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)

 BERLEY
 70
 PR
 D1
 2015

 BOGERT
 70
 PR
 D2
 6

 EBENHOH
 70
 KIEV
 CONF

 EISELE
 70
 ZPHY
 238
 372
 +YAMIN,HERTZBACH,KOFLER + (BNL,MASA,YALE) +LUCAS,TAFT,HILIS,BERLEY + (BNL,MASA,YALE) +EISELE,PORELMANN,FILTHUTH,FONLISCH (HEID) +FILTHUTH,HEPP,PRESSER,ZECH (HEIDELBERG) SIGMA- INTO (N PI- GAMMA)/(N PI-) (UNITS 10**-3) (P2)/(P1) (1.1)APPROXIM. BAZIN 65 HBC PI-LT 166 MEV/C 8/67 23 0.10 .02 ANG 2 69 HBC P(PI-) LT 110 10/69 BAKKER 71 LNC 1 37 COLE 71 PR D4 631 ALSO 69 NEVIS-175 THESIS TOVEE 71 NP B33 493 BALTAY 72 PR D5 1569 BOHM 72 NP B48 1 ELLIS 72 NP B48 1 ELLIS 72 NP 639 77 FRANZINI 72 PR D6 2417 +, SABRE COLLAB. (ZEEM+SACL+BGNA+REHO+EPOL) +LEE-FRANZINI,LOYELESS,BALTAY+ (STON,COLL) HERBERT NORTOM (COLLMBIA) LOUC,BELGRADE,BERL,BRUX,DUBLIN,HARS COLLAB +FEINMAN,FRANZINI,NEWMAN,YEH+ (COLL#STON) BERLIN+BELGRADE+BRUX+DUBLIN+LOUC+HARSAN OXF+AEREFRHEL+LOGH+LYON+NWESFITEP COLLABOR COLUMBIA+HEIDELBERG+MARYLAND+STONY BRODK ----- ------ -----------20 SIGMA- DECAY PARAMETERS RELATED TEXT SECTION IV H AND APPENDIX III ALPHA SIGMA-(-0.16) (0.21) TRIP 0 6500 (-0.010) (0.043) BANG 0 6086 (-0.104) (0.041) BERL 51000 -0.071 (0.034) BERL 0 50187 (-0.134) (0.034) BERL 0 00L RESULTS. MAYE BEEN REPLACED 0 BERLEY 70 REPLACED BY BGGERT 70 TRIPP 62 HBC BANGERTER 66 HBC BERLEY 67 HBC BANGERTER 69 HBC BERLEY 70 HBC BOGERT 70 HBC 2ED. REPL.BY BANGERTE K-P TO SIG- PI+ 7/66 K-P TO SIG- PI+ 11/67 10/69 K-P AT 400 MEV/C 2/71 K-P AT 400 MEV/C 12/70 PAPERS NOT REFERRED TO IN DATA CARDS J BROWN, D GLASER, M PERL (MICH+BNL) M NIETO (STON) BROWN 57 PR 108 1036 NIETO 68 RMP 40 140 2/71 AVG -0.0688 0.0081 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) ΣΟ
 PHI ANGLE (SIN(PHI)/COS(PHI)=BETA/GAMMA) (DEGREES)

 0 1006 (+22.)
 (30.)

 BERLEY
 67 HBC

 KARCET
 69 HBC

 CO22 + 5.
 23.

 BERLEY
 70 HBC

 NEMBERIEY
 70 HBC

 NEUTRON RESCATT.
 11/69

 C CHANGED FROM -5 TO +5 TO AGREE WITH SIGN CONVENTION

 AVG
 10.3

 14.6
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 21 SIGMAO (1193.JP=1/2+) I=1 F-F-F--F-F-F 21 (SIGMA-) - (SIGMAO) MASS DIFFERENCE (MEV) D1 N SEE NOTE PRECEDING LAMBDA MASS LISTINGS.
 18
 4.75
 0.1
 BURNSTEIN 64 HBC

 37
 4.87
 0.12
 DOSCH
 65 HBC

 12
 4.99
 0.13
 SCHMIDT
 65 HBC
 SEE NOTE N
 6/68

 4.849
 0.069
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 4.863
 0.064
 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)
 1/73*
 BURNSTEIN 64 HBC DOSCH 65 HBC SCHMIDT 65 HBC SEE NOTE N D1 D1 D1
 GV/GA FOR SIGMA TO LAMBDA BETA DECAY (TEXT SEC IV H-1 FOR SIGN CONV)

 PREDICTED TO BE ZERD BY CONSERVED VECTOR CURRENT THEORY

 F8 45 (0-31) (0-30) BARASH 67 HBC

 F5 51 (0-71) (0-4) BARASH 67 HBC

 F5 81 (0-22) (0-28) EISELEI 69 HBC

 F5 81 (0-22) (0-28) EISELEI 69 HBC

 F5 81 (0-37) FAS.02.20

 F5 81 (0-10-22) (0-28) EISELEI 69 HBC

 F5 81 (0-37) FAS.02.20

 F5 81 (0-10-22) (0-28) EISELEI 69 HBC

 F5 81 (0-37) FAS.02.20

 F5 81 (0-10-22) (0-28) EISELEI 69 HBC

 SIGN CHANGED TO AGREE WITH OUR CHARLEN

 SIGN CHANGED TO AGREE WITH OUR CHARLEN

 F5 FAR.101 72 INCLUDES EVENTS OF BARASH 67, EISELEI 69, BALTAY 69.
 AV AV AV AV AV AV F AV AV F D1 AVG D1 FIT 11/67 4/69 10/68 21 (SIGMAO) - (LAMBDA) MASS DIFFERENCE (MEV) 1/73*
 GA/GV FOR SIGMA TO NEUTRON BETA DECAY(TEXT SEC IV H.1 FOR SIGN CONV)

 57
 (0.05)
 (0.23)
 (0.32) GERSHWIN 66 HBC REPLACED BY GER.69
 6/68

 C 49
 0.23
 0.16
 COLLERAIN 69 HBC NEUTRON SCATTER. 10/69

 C 33
 0.37
 0.26
 0.17 EISELE2
 69 HBC NEUTRON SCATTER. 10/69

 6 3-0.33
 0.26
 0.17 GERENT 07 HBC NEUTRON SCATTER. 10/69
 10/70

 5
 -0.23
 0.28
 EBENION TO HBC - SPETRUM 372
 10/70

 5
 -0.20
 0.28
 DEBENION TO HBC - SPETRUM 372
 10/71

 4
 -0.40
 0.29
 BALTAY TZ HBC NEUTRON SCATTER. 4/72*
 43

 4
 -0.40
 0.52
 1.5
 ELLIS TZ ASPK POLARIZED SIGMAS 10/71

 1
 E
 (-0.10)
 (0.11)
 ELLIS TZ ASPK POLARIZED SIGMAS 10/71

 1
 E
 (-0.27)
 (0.13)
 0.171 FLLIS TZ ASPK POLARIZED SIGMAS 10/71

 1
 C
 COLLERAINE, FISELE, BALTAY MEASURE ABSOLUTE VALUE SUM LIKEL.(-SOL) 10/71
 6/72*

 1
 COLLIS (10.11)
 ELLIS TZ AND SUME SIGMENTER SIGN SIGN SIGN SUMANTINE SIGN SIGN SUMANTINE SIGN SIGN SUMANTINE SIGN SIGN SUMANTINE SIGN SIGN SUMANTI DL N SEE NOTE PRECEDING LAMBDA MASS LISTINGS. DL 208 76.63 0.28 SCHMIDT 65 HBC SEE NOTE N 6/68 DL 517 76.89 0.09 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) 1/73* 21 SIGMAO MEAN LIFE (UNITS 10**-14) (1.0) OR LESS DAVIS 62 EMUL т 21 SIGMAO PARTIAL DECAY MODES Avi DECAY MASSES P1 SIGMAO INTO LAMBDA GAMMA P2 SIGMAO INTO LAMBDA E+ E-1115+ 0 1115+ •5+ •5 _____ AVI AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) 21 SIGMAO BRANCHING RATIOS SIGMAO INTO(LAMBDA E+ E-)/TOTAL (0.00545) THEORET. CAL. FEINBERG 58 (P2)/(P1+P2) QUANTUM ELECT. 9/66 REFERENCES FOR SIGMA-R1 R1 BROWN,GLASER,GRAVES,PERL,CRONIN + (MICH) EISLER,BASSI,CONVERSI+ (COLU,BNL,BGNA,PISA) BROWN 58 CERN CONF 270 EISLER 58 NC SER10 10 150 (LRL) (TURIN) BARKAS 61 PR 124 1209 CHIESA 61 NC 19 1171 HUMPHREY 62 PR 127 1305 TRIPP 62 PRL 9 66 BARKAS,DYER,MASON,NICKOLS,SMITH A M CHIESA,B QUASSIATI,G RINAUDO W E HUMPHREY,R R ROSS R D TRIPP,M WATSON,M FERRO-LUZZI REFERENCES FOR SIGMAO G.FEINBERG (BNL) D DAVIS,R SETTI,M RAYMOND,G TOMASIN (FFI) BURNSTEIN,DAV,KEHDE,SECHI ZORN,SNOM (UMD) DDSCH,ENGELMANN,FILTHUTH,HEPP,KLUGE+(HEID) SCHHIOT (COLUMBIAI
 FEINBERG
 58
 PR
 109
 1019

 DAVIS
 62
 PR
 127
 605

 BURNSTEI
 64
 PRL
 13
 66

 DOSCH
 65
 PL
 14
 239

 SCHMIDT
 65
 PR
 140
 B
 1328
 (LRL) (LRL) W H BARKAS,J N DYER,H H HECKMAN (LRL) BURNSTEIN,DAY,KENDE,SECHT ZORN,SNOW (UMD) COURANT,FILTHUTH+ (CERN+HEID-UND+NHL+BNL) MILLER,STANNARD,BEZAGUET+ (LOUC,EPOL+BERG) C THORNTON HURPHY NAUENBERG,SCHHIDT,MARATECK+(COLU+RUTG+PRIN) BARKAS 63 PRL 11 26 BURNSTEI 64 PRL 13 66 COURANT 64 PR 136 B 1791 MILLER 64 PL 11 262 MURPHY 64 PR 134 B 188 NAUENBER 64 PRL 12 679 PAPERS NOT REFERRED TO IN DATA CARDS. COURANT, FILTHUTH, FRANZINI+ (CERN+UMD+NRL) COURANT 63 PRL 10 409 BAZIN, PLANO, SCHMIDT + (PRIN-RUTG+COLU) DOSCH, ENGELMANN, FILTHUTH, HEPP, KLUGE+ (HEID) CULWO YUN CHANG (COLUMBIA) BANGERTER, SALTIERI, BERGE, HURRAY (LRL) CHUNG YUN CHANG (COLUMBIA) LACH, SANDWEISS, TAFT, YEH, OREN + (LRL)
 BAZIN
 65
 PR
 140
 B
 1356

 DOSCH
 65
 PL
 14
 239
 ALSO
 66
 PR
 151
 1081

 SCHMIDT
 65
 PR
 140
 B1328
 BANGERTE
 66
 PR
 171
 495

 CHANG
 66
 PR
 151
 1081
 SCHANG
 66
 PR
 171
 1091

 CHANG
 66
 PR
 151
 1081
 SCHANG
 66
 PR
 151
 1081
 QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS 65 PR 137 B1105 ALFF, GELFAND, NAUENBERG+ (COLUMBIA+RUTG+BNL)P ALFF

Stable Particles Ξ^-, Ξ^0

Data Card Listings For notation, see key at front of Listings.

Data Card Listings

Stable Particles Ξ^0

Stable Particles Ω^-

Data Card Listings For notation, see key at front of Listings.

										24	OMEGA	- PARTIA	L DECAY M	ODES			
	0-	24 OM QUANTUM N	IEGA- (1675, IUMBERS ASSI	JP=3/2+) I GNED FROM	=0 SU3	·		P1 P2 P3	OMEGA OMEGA OMEGA	- INTO LAM - INTO XIO - INTO XI-	BDA K- PI- PIO				DECA) 1115+ 493 1314+ 139 1321+ 134	Y MASSES 3 9	
		24 OM	IEGA- MASS (MEV)							·						•
м		1(1620.0) (25.0) (10.0)	EISENBERG	54 EMUL					24	OMEGA	- BRANCH	ING RATIO	s			
* * * * *		1 1673.0 8.0 3 1673.3 1.0 3 1671.8 0.8 5 1674.2 1.6 6 1671.9 1.2		ABRAMS PALMER SCHULTZ SCOTTER SPETH	64 HBC 68 HBC 68 HBC 68 HBC 69 HBC	INTO XI- PIO K-P 4.6,5. GEV/C K-P 5.5 GEV/C K-P 6. GEV/C K-P 10. GEV/C	11/69 11/69 11/69 11/69	R1 R1 R1 R1 R1 R1	OMEGA- 2 3 5 6	- INTO LAM EVENTS EVENTS EVENTS EVENTS	IBDA K- . AMBIG.	XIO PI-	PALMER SCHULTZ SCOTTER SPETH	68 HBC 68 HBC 68 HBC 69 HBC	(P1)		11/69 11/69 11/69 11/69
м	AVG	1672.49 0.5	2 AVERAG	E (ERROR I	NCLUDES	SCALE FACTOR OF 1.0)		R2	OMEGA	- INTO XIC	PI-			44 UDC	(P2)		
		24 AN	TI-OMEGA+ M	ASS (MEV)				R2 R2 R2 R2	4 3 1	EVENTS EVENTS EVENT			PALMER SCOTTER SPETH	68 HBC 68 HBC 69 HBC			11/69 11/69 11/69
мв		1 1673.1 1.0		FIRESTONE	71 HBC	12 GEV/C K+D	3/71	R3 R3 R3	OMEGA- 1 1	- INTO XI- EVENT EVENT	- PI0		PALMER SCOTTER	68 HBC 68 HBC	(P3)		11/69 11/69
		24 01	IEGA- MEAN L	IFE (UNITS	10**-10	SEC)		******	*****	****	**** **	*****	******	******	* *******	* *******	
Ţ	A A	1 (1.63) 1 (0.7)		ABRAMS BARNES 1	64 HBC 64 HBC		7/66 7/66					REFEREN	CES FOR O	MEGA-			
י ד ד ד ד ד ד ד ד	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$ \begin{array}{cccc} 1 & (1.4) \\ 1 & (1.85) \\ 1 & (1.5) \\ 1 & (0.93) \\ 1 & (2.6) \\ 1 & (1.6) \\ 1 & (0.21) \\ 1 & (1.20) \end{array} $		COLLEY RICHARDSO ABCLV COL ABCLV COL ABCLV COL ABCLV COL SCHULTZ	65 HBC 65 HBC 65 HBC 68 HBC 68 HBC 68 HBC 68 HBC 68 HBC		7/66 7/66 11/67 11/67 11/67 11/67 11/67	EISENE ABRAMS BARNES COLLEY RICHAR SAMIOS	ER 54 64 2 64 65 DS 65 65	PR 96 541 PRL 13 670 PRL 12 2 PL 12 134 PL 19 152 BAPS 10 11 ARGONNE CO	04 .5 DNF 189	Y EISEN + BURNS V E BAR V E BAR COLLEY, RICHARD N P SAM	BERG TEIN,GLAS: NES,CONNO NES,CONNO DODD +(BI SON,BARNE: IOS	SER + LLY, CRENN LLY, CRENN RM+GLAS+L S, CRENNEL	(C (L ELL;CULWIC) ELL;CULWIC) OIC+MPIM+O) + (BNL+S) ((RVL)	CORNELL) JMD+NRL) (+ (BNL) (+ (BNL) (F+RHEL) (RACUSE) JE) BNL)	
	A A A A A A A A	$ \begin{array}{cccc} 1 & (0.06) \\ 1 & (0.63) \\ 1 & (0.25) \\ 1 & (0.30) \\ 1 & (0.71) \\ 1 & (0.08) \\ 1 & (1.04) \\ 1 & (2.38) \end{array} $		SCHULTZ SCHULTZ SCOTTER SCOTTER SCOTTER SCOTTER SCOTTER SCOTTER	68 HBC 68 HBC 68 HBC 68 HBC 68 HBC 68 HBC 68 HBC 68 HBC 68 HBC		11/67 11/67 6/68 6/68 6/68 6/68 6/68	ABCLV ALLISC PALMER SCHULT SCOTTE SPETH FIREST	CO 68 IN 68 C 68 C 68 R 68 69 ON 71	NUC PHYS (PRIV. COM PL 26B 323 PR 168 1 PL 26B 474 PL 29B 25 PRL 26 410	4 326	AACHEN+ JOHN AL PALMER, SCHULTZ SCOTTER SPETH+ +GOLDHA	BERLIN+CE LISON RADOJICIC + (ILL + (BI (AA BER,LISSA	RN+LONDON ,RAU,RICH ,ARGONNE, RM,GLASGO CHEN,BERL UER,SHELD	IMP.COLL. (LAN ARDSON+ (BN NORTHWESTEF W,LOIC,MUN] IN,CERN,LOI ON,TRILLING	VIENNA NCASTER) NL,SYRA) N,WISC) (CH,OXF) IC,VIEN) G (LRL)	
T T T T	A	ALLISON INCLUDES A 21 1.31 0.3 1 (2.3) 1 (0.31)	LL ABOVE + 7 0.24	3 MORE BNL ALLISON SPETH SPETH	EVENTS; 68 RVUE 69 HBC 69 HBC	UNPUBL IS HED.	6/68 6/68 10/69 10/69	******	*****	**** ***** **** ****	**** **	******	******** ******	******* *****	* ********	* ******** * *******	r
								1									
CODE EVENTS QUANTITY ERROR+ ERROR- REFERENCE YR TECN SIGN COMMENTS DATE Above Punched Background

 π^{\pm} 8 CHARGED PION (140, JPG=0--) I=1 SEE STABLE PARTICLE DATA CARD LISTINGS

 π^0

9 NEUTRAL PION (135, JPG=0--) I=1 SEE STABLE PARTICLE DATA CARD LISTINGS

 η 14 ETA (549, JPG=0-+) I=0 SEE STABLE PARTICLE DATA CARD LISTINGS

14 PI PI S WAVE, CALLED EPSILON

e

S-wave $\pi\pi$ Interactions in the Region 280-1400 MeV

In this note we first discuss the experimental results on the I = 0 $\pi\pi$ S-wave, and thereafter we comment on the possible interpretation.

At threshold, $\pi\pi$ interactions in the $I^{G}(J^{P})C =$ $0^+(0^+)^+$ wave are characterized by a scattering length which still is poorly known (EBEL 71, BASDEVANT 72).

No structure or resonant behavior is indicated near threshold in data from the reaction $\pi N \rightarrow \pi \pi N$. In fact, the only structures claimed in this region are due to reactions involving the nuclei d, H³, or He³ (BOOTH 63, HALL 69, BRODY 70, BANAIGS 71), for which the background may be difficult to assess (BRODY 72), and where kinematic reflections from low-mass baryons may contribute (DUBAL 71).

In the region from the $\pi\pi$ threshold (~280 MeV) up to the region near KK threshold (~990 MeV), $\pi\pi$ scattering is nearly elastic (BATON 70, CARROLL 72, GRAYER 72, PROTOPOPESCU 72). Up to the ρ meson mass region, δ_0^0 is (qualitatively) uniquely determined; it rises monotonically and reaches a value of 60° to 70° near 700 MeV (SONDEREGGER 69, BATON 70, BAILLON 72, CARROLL 72, FRENK-IEL 72, GAIDOS 72, GRAYER 72, PROTOPOPESCU 72).

In the mass region of 700 to 900 MeV, all energy-independent analyses find two solutions ("updown ambiguity"), with the exception of CARROLL 72 who claim to find only the lower ("down") solution . A possibility of resolving the up-down ambiguity arises from the observation by FLATTE 72, GAIDOS 72, and

Mesons π^{\pm} , π^{0} , η , ϵ

GRAYER 72 of a very rapid decrease in the S-wave amplitude between 950 and 980 MeV. The size of the observed drop corresponds to a change from nearly the unitarity limit to zero, i.e. to a phase shift change from $\sim 90^{\circ}$ to $\sim 180^{\circ}$. This is easily compatible with the "down" solution, which is in the 70° to 90° range between 800 and 900 MeV; in contrast the "up" solution is already near 150° at 900 MeV, and it appears unlikely that it could be smoothly connected with a 90° phase shift at 950 MeV.

In accordance with this, an energy-dependent phase-shift analysis by PROTOPOPESCU 72 using a 2-channel ($\pi\pi$ and $K\overline{K}$) effective range parametrization, gives a (qualitatively) unique I = 0 S-wave phaseshift solution from 550 to 1150 MeV. After having reached 180° near the KK threshold, inelasticity sets in and the phase continues to rise slowly. A preliminary analysis by GRAYER 72, as well as the analysis by CARROLL 72, suggests that δ_0^0 may slowly go through 270° somewhere between 1200 and 1400 MeV. (This energy region is however very complicated because the $4\pi,~\rho\pi\pi,$ etc. channels are no longer negligible.)

Independent evidence for the correctness of this ("down") solution comes from experiments on $\pi^0\pi^0$ scattering (APEL 72, SKUJA 72). They observe a wide $\pi^0\pi^0$ enhancement at ~800 MeV which is much better described by the "down" solution than by the "up" solution. Futhermore, indirect information from elastic $\pi\pi$ scattering in the crossed channel (NIELSEN 70, ELVEKJAER 71 and 72, HAMILTON 71) is compatible with the "down" but not the "up" solution.

It is clear that the behavior of δ_0^0 is much too complicated to allow a description in terms of one or several Breit-Wigner resonances. We therefore list the positions of the poles of the T matrix, found by searching in the complex energy plane, using the bestfit parameters of the K-matrix or M-matrix. The best fit of PROTOPOPESCU 72 obtains two poles on the second sheet, the $S^{*}(990)$ and the $\epsilon(600)$. The $S^{*}(990)$ is connected with the rapid variation of δ_0^0 near the $K\bar{K}$ threshold discussed above, and is also responsible for the large $K\overline{K}~I$ = 0 S-wave scattering length. The ϵ (600) pole is very far from the real axis and therefore much less certain; it is inferred from the large size and slow variation of the S-wave amplitude between 600 and 900 MeV, but PROTOPOPESCU 72 can fit this

ϵ , $\rho(770)$

HAMILTON 71 SPRINGER TRACTS NOD.PHYS.,VOL. 57,P.41 J.HAMILTON (NORDITA) KIM 71 PR D 4 265 + BAANDER (UCI) LYNG PET 71 PHYS.REPRTS 2 155 J.LYNG PETERSEN (REVIEW) (CERN) MORGAN 71 PREPRINT RPP/C30 D.HORGAN (REVIEW) behavior also without an ϵ pole. Finally, BASDEVANT 72 present a set of $\pi\pi$ amplitudes consistent with

 MORGAN
 71
 PREPRINT PPP/C3D
 VANDAGRAN
 (RHEL)

 APEL
 72
 PL 41
 B 542
 AUSLANDER, MULLER, BERTOLUCCI,
 (KARL+PISA)

 BAILLON
 72
 PL 41
 B 555
 *CANNEGI, FLUUGF, LETH, IVYCH, RATCLIFF+ISA.D)

 BAILLON
 72
 PL 41
 B 178
 BASDEVANT, FROGGATT, PETERSEN
 (CERN)

 BRODY
 72
 PRL 28
 1217
 +BRODY
 (PENNSYLVANIA)

 BRODY
 72
 PRL 28
 1217
 +GROVES, MAGLICH, NOREM,+
 (PENNSYLVANIA)

 BRODY
 72
 PRL 28
 1217
 +GROVES, MAGLICH, NOREM,+
 (ANL)

 CARROLL
 72
 PRL 28
 1217
 +GROVES, MAGLICH, NOREM,+
 (PENNSYLVANIA)

 BRODY
 72
 PRL 28
 1217
 +GROVES, MAGLICH, NOREM,+
 (ANL)

 CARROLL
 72
 PRL 28
 124
 +GROVES, MAGLICH, NOREM,+
 (ECRN)

 CAROLL
 72
 PRL 28
 124
 +GROVES, MAGLICH, NOREM,+
 (ECRN)

 FLVEXJATE
 72
 PR 3445
 FELVEXJAER
 (ANL)
 (ANL)

 FRENKIEL
 72
 PR 4445
 +GLEV crossing, unitarity, and analyticity, and with the $\pi\pi$ phase shifts up to 1100 MeV; their amplitude has a very wide ($\Gamma > 650 \text{ MeV}$) ϵ . We list the S^{*} parameters separately under Swave I = 0 KK Interactions. For a recent review see DIEBOLD 72. 14 REAL PART OF POLE POSITION (MEV) (650.0) OR LESS 660.0 100.0 BASDEVANT 72 RVUE SHEET 2 1/73* PROTOPOPE 72 HBC SHEET 2 7. PI+P 1/73* FUJII 73 NC 13 A 311 Y.FUJII.M.KATO - ---- -----14 NEGATIVE IMAG. PART OF POLE POSITION (MEV) Corresponds to half width, Not full width. $\rho(770)$ (325.0) OR MORE 320.0 70.0 BASDEVANT 72 RVUE PROTOPOPE 72 HBC 1/73* 9 RHO (770, JPG = 1-+) I=1 7. PI+ P ****** ******** ****** ****** ******** 9 RHO MASS (MEV) REFERENCES FOR EPSILON WE DO NOT LIST ALL VALUES PUBLISHED.WE AVERAGE ONLY THE MOST SIGNIFICANT DETERMINATIONS OF MASS AND WIDTH. SOME OF THE RHD O DATA MAY BE INFLUENCED BY RHO-OMEGA INTERFERENCE. M M M 2/73* SAMIOS 62 PRL 9 139 +BACHMAN, LEA+ (BNL+CUNY+COLU+KNTY) BLOKHINT 63 JETP 17 80 BOOTH 63 PR 132 2314 KIRZ 63 PR 130 2481 BLOKHINTSEVA,GREIBINNIK,ZHUKOV + (DUBNA) + ABASHIAN (LRL) +SCHWARTZ + TRIPP (LRL) MIXED CHARGES M M M (LRL) (LRL) ALITTI 63 HBC -0 1.6 PI-P CHADWICK 63 HBC +-0 0.0 PBAR P 240 (752.0) 290 (755.0)
 200
 (175.0)
 CHADREGE
 OBLY

 CHARGED ONLY
 CHADREGE
 GUIRAGOSS 63 HBC
 - 3.3 PI-P

 130
 (175.0)
 GUIRAGOSS 63 HBC
 - 3.3 PI-P

 130
 (175.0)
 GUIRAGOSS 63 HBC
 - 3.3 PI-P

 R
 (760.0)
 (9.0)
 CARMONY 64 HBC
 - 3.5 PI+P,FCUT 4

 S
 (760.0)
 (9.0)
 CARMONY 64 HBC
 - 3.5 PI+P,FCUT 4

 S
 (760.0)
 (9.0)
 ALEF-STEI 66 HBC
 - 2.3 PI+P
 6/66

 R
 (755.0)
 (5.0)
 ALEF-STEI 66 HBC
 - 3.0 PI-P
 6/66

 R
 (755.0)
 (10.5)
 HAGOPIANE 66 HBC
 - 3.0 PI-P
 6/66

 R
 (755.0)
 (10.0)
 HAGOPIANE 66 HBC
 - 2.1 PI+FUTZ 26 6/66
 755.0)

 R
 (775.0)
 (10.0)
 HAGOPIANE 66 HBC
 - 2.1 PI-FUTZ 26 6/66
 755.0)
 10.00
 MABS

 R
 (775.0)
 (10.0)
 HAGOPIANE 66 HBC
 - 2.1 PI-FUTZ 26 6/66
 766

 GUITASONS
 GUITASONS
 GUITASONS
 GUITASONS
 BARISH 64 PR 135 B 416 CRAWFORD 64 PRL 13 421 DEL FABR 64 PRL 12 674 KALMUS 64 PRL 13 99 BARISH,KURZ,PEREZ-MENDEZ,SOLOMON +GROSSMAN,LLOYO,PRICE,FOWLER DEL FABRO,DE PRETIS,JONES+ (f +KERNAN,PU,POWELL,DOWD (LRL+W) (LRL) ************************ UWLER (LRL) ES+ (FRASCATI) (LRL+WISCONSIN) BATON 65 NC 36 1149 BIRGE 65 PR 139 B 1600 BROWN 65 CORAL GABLES 219 DURAND 65 PRL 14 329 J.P.BATON, J.REGNIER (SACLAY) +ELY+GIDAL+KALMUS+CAMERINI+ (LRL+HISC) BROWN+FALER (NORTHWESTERN) L. DURAND AND Y.T. CHIU (YALE) JACOBS 66 PRL 16 669 KOPELMAN 66 PL 22 118 LOVELACE 66 PL 22 332 +SELOVE (LRL) +ALLEN,GODDEN,MARSHALL + (COLORADO+IOWA) LOVELACE,HEINZ,DONNACHIE (CERN) Lonconstructures SLEER+ (CHIC+ANL+CNRC+MCGILL+LOQM) A-B-CLEEG (LANCASTER) +JOHNSON+LOEFFLER+NCILMAIN+ (PURDUE+LRL) +JOHNSON+LOEFFLER+NCILMAIN+ (PURDUE+LRL) +CUTAY_EISNER,LKEIN,PETERS,SLAHNI,YEN+FQURD) E-MALANUD + P-E-SCHLEIN (UCLA) D-MAYEP (HISCONSIN) ANDERSON 67 PRL 18 89 CLEGG 67 PR 163 1664 CORBETT 67 PR 156 1451 GUTAY 67 PR 156 1451 GUTAY 67 PRL 18 142 JOHNSON 67 PR 163 1497 MALAHUD 67 PRL 19 1056 WALKER 67 RMP 39 695 WALKER 67 PRL 18 630 W.D.WALKER +CARROLL,GARFINKEL,OH (WISCONSIN) (WISCONSIN) BANDER 68 PR 168 1679 BISWAS 68 PL 27 B 513 BAUN 68 PRL 21 1275 DUTTA-R0 68 PR 169 1357 FISENHAN 68 PRL 20 758 FISENHAN 68 PRL 20 758 FISENHAN 68 PR 10 JONES 68 PR 166 1405 JONES 68 PR 166 1405 JONES 68 PR 166 151 LUELLEE 68 PRL 21 1613 SHAM, FULCO (UC IRVINE'S. DAR BARA) SHAM, FULCO (UC IRVINE'S. DAR BARA) FCASON, JOHNSON, KENNEY, POIRIER- (NDAM) B. DUTTA-ROY, I.R. LAPIDUS (STEV) ISSENIANDLER, MISTRY, MOSTEK + (CORNELL) *GAVILLET+LABROSSE+MONTANET+ (CERN+CDEF) *CACH, POTER,...YON LINDERN, LOREN(CERN+PIM) *CALOPELLE'SACHARDV+HARTING+BLEULER+ (CERN) +POIRIER, ISISAS, SUTAY+ (NDAM+PUND-SLAC) CLOVELACE HAGOPIAN,+ (PENN+LRL+COLO+PURD+TNTO+NISC) M X SYSTEMATIC ERRORS ADDED CORRESP. TO SPREAD OF DIFFERENT FITS.
 M AVG 705.9
 2.8
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7)
 MO REUTRAL CMLY
 MO RUTRAL CMLY
 MO R 300 (750.0)
 (10.0)
 ABOLINS 63 HEC
 0.3.5 PI+P
 MO R 300 (750.0)
 (10.0)
 GUIRAGOS 63 HEC
 0.3.5 PI+P
 MO R 500 (770.0)
 (10.0)
 GUIRAGOS 63 HEC
 0.3.7 PI+P
 MO R 500 (770.0)
 (10.0)
 GUIRAGOS 63 HEC
 0.3.7 PI+P
 MO R (750.0)
 (10.0)
 GUIRAGOS 63 HEC
 0.3.0 PI-P
 6/66
 MO R (775.0)
 (5.0)
 ALFF-STEI 66 HEC
 0.2.3 PI+P
 6/66
 MC (775.0)
 (5.1)
 HAGOPIANI 66 HEC
 0.2.91 PI+, FUT 12 66
 MG R (775.0)
 (5.0)
 JACOBS 66 HEC
 2.30 PI+P
 6/66
 MG R (775.1)
 (5.0)
 JACOBS 66 HEC
 2.30 PI+P
 6/66
 MG R (775.1)
 (5.0)
 JACOBS 66 HEC
 2.30 PI+P, 10/676
 MG R (775.1)
 (5.0)
 JACOBS 66 HEC
 0.2.1 PI+P, 10/676
 MG R (775.1)
 (10.1)
 DANYSZ 67 HEC
 0.3.0 PE P, 67 7/677
 MG R (775.1)
 (13.0)
 JACOBS 70 THEC
 (17.1)
 (13.1)
 HUWE 67 HEC
 (2.4 PI-P (767 7667
 MG R (775.0)
 (13.0)
 ABCCOLL 66 HEG NO 2.7 PI+T (72.20 9/66
 MO S (775.0)
 (13.0)
 ABCCOLL 66 HEG NO 12.4 PI+ 70 P+3/767
 MO S (775.0)
 (13.0)
 ABCCOLL 66 HEG NO 12.4 PI+ 70 P+3/767
 MO S (775.0)
 (15.0)
 2.8 765.9 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) MARATECK 68 PRL 21 1613 BIZZARRI 69 NP B14 169(SEE P.1 DAVISON 69 PR 180 1333 DEINET 69 PR 30 B 339 EELONAN 69 PR 120 1333 GUTAY 69 PR 122 316 GUTAY 69 NP B 12 31 HOPKINSO 69 NC 59 A 181 HALL 69 NP B 12 573 HOPKINSO 69 NC 59 A 181 GUTAY 69 NP B 10 261 ROBERTS 69 PL 29 B 368 SCHAREN1 69 PR 160 1387 SMITH 69 PRL 23 335 SONDEREG 69 SEE BASDEWANT 72 STRUGALS 69 NC 44 358 MARGARE 69 NC 64 A 189 BARSCH 70 NP B 22 1
 RADNER
 69 NL 64 A 189
 F. MADNEK
 (LERN)

 SAMTSCH
 TO NP 8 22 1
 **KEPPEL, GENSCH, MORBISON,*
 (AACH+BERL*CERN)

 BATON
 TO PL 33 0 528
 **LAURENS, REIGNIER
 (SACLAY)

 BATON
 TO PL 24 940
 GROVES, VANDERG, MACLIC(PENN+RUTG-UPN-NANL)
 (SACLAY)

 DIAZ
 TO NP 8 16 239
 *GAVILLET, LABROSSE, MONTANET+
 (CERN+COFF)

 YMMS
 TO PHL 33 0 521
 *KSCHEIN, BUSCH, + (CERN+NPIN *ETHZ+LOIC+HANANAN)

 MANG 70
 PL 133 0 521
 *KSCHEIN, BUSCH, + (CERN+NPIN *ETHZ+LOIC+HANANAN)

 MORGAN 70
 PL 33 0 521
 *MASEK, MILLER, RUDERMAN, VERNON, * (UCS0+IRL)

 MORGAN 270
 PR 10 2 520
 D. MORGAN, G.S, PAL
 (MORDITA)

 SCHARENG 70 NP B 22 52
 524
 YNO-PETERSH, PIETARINEN
 (NORDITA)

 SCHARENG 70 NP B 22 16
 SCHARENGUIVEL, GUTAY, MILLER, + (PURD+PENN)
 SCHARENGUIVEL, GUTAY, MILLER, * (PRET)
 (PURD+PENN)

 HEI 2494
 *GARFINKEL, MORSE, MALKER, PRENTICE (WISC+TNOIS)
 *RISCH, WAHLIG
 (MIT)

 (10.0)
 ALVENSLEB 70 CNTR
 0 GAMMA A,TCUT.01

 BATCON
 70 HBG
 0 2.8 GPL-P

 1.9
 BIGSS
 0 2.8 GPL-P

 1.9
 BIGSS
 0 5.7 SPL-P

 1.0
 BATCON
 70 HBG
 0 5.7 SPL-P

 5.0
 BALLAM
 72 HBG
 0 2.8 GAMMA P

 4.0
 BALLAM
 72 HBG
 0 2.8 GAMMA P

 4.0
 BALLAM
 72 HBG
 0 2.8 GAMMA P

 7.3
 BENAKSAS 72 OSFK
 0 E+F- COLL.0EGAMS

 1.7
 JACOBS 72 HBG
 0 7.1 PI+P,TCUT.4

 5.0
 RATCHIFF 72 ASFK
 0 15. PI-P

 10.0
 RATCHIFF 72 KBG
 0 8.0 PI-P

 1.2
 AVERAGE TERROR TACHOR TOLUDES SCALE FACTOR OF 1.3)
 (SEE IDEOGRAM BELOW)
 ALSTON-G 71 PL 36 B 152 BANAIGS 71 NP B 28 509 BEAUPRE 71 NP B 28 77 BENSINGE 71 PL 36 B 134 DUBAL 71 NP B 33 2535 EREL 71 NP B 33 317 ELVEKJAE 71 PETRINT RPP/C22 GUTAY 71 NP B 27 486 ALSTON-GARNJOST, BARBARO-GALTIERI,+ [LBL] +BERGER, DUFLO, GOLDZAHL, COTTEREA+(SACL+CAEN) +DEUTSCHMANN, GRAESSLER,+ (AACH+BERL+CERN) BENSINGER, ERWIN, THOMPSON, H.O. WALKER (WISC) L. JUBAL, D.J. JARDUN (CNR+CERN+LOUC+RHEL+NIJM) +MULLENSIEFEN+ (KARL+CERN+LOUC+RHEL+NIJM) F. ELVEKJAER, H.N. TELSEN (MORDITA+RHEL) +SCHARENGUIVEL, FUCHS, GAIDOS, MILLER,+ (PURD) 770.3 AVG

Data Card Listings For notation, see key at front of Listings.

Mesons p(770)

100000000000000000000000000000000000000	C P C1 S Z Z L C Z Z AV	2630 140K 2430 1930 1200 2000 900 880 G	119. (140. (131. 146. (120. 108. 155. 145. 145. 145. 145. 145. 146.	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	20 (5) (7) 20 (7) 20 12 13 23 (2) 10 21 19	•0 •0) •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0	AV	ERAGE	SCHAF ALVER BATOR BATOR BALG BALL BALL BALL BALL BALL BALL BALL	REN NSLEB NSLEB NS DWAY ON NM SAS S DPOPE IASHI ROR II	69 70 70 70 72 72 72 72 72 72 72 72 72	HBC CNTR HBC CNTR HBC ASPK HBC HBC ASPK HBC ASPK HBC ASPK HBC JDES S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-4 GAMN 2.8 HOT(5.9 15. 4.7 2.8 E+E- 2.8 7.1 15. 8.0 FA(PI- PROD PROD PI- GAMM GAMM COU PI- PI- PI- PI-	P TCUT P DUCTI P MA P MA P LL-BE P TCL P TCL P		1/73* 1/73* 1/71 1/73* 1/73* 1/73* 1/73* 1/73* 1/73* 1/73* 1/73* 1/73*
a a				NO	TES													
	C R S B P Z	FRO INC S-V HIC FRO ERI	OM POL CLUDEC AVE E SH COM DM PHO RORS 1	LE EX D IN BREIT MBINA DTOPR INCRE	TRAPO PISU -WIG TORI ODUC ASED	OLAT T 68 NER 1 AL 8 TION BY 1	ION RVUE FIT, ACKGR , MOD US, S	CANNO OUND EL DE EE TY	PENDI PED 1	COMB ENT. NOTE (INEC DN K	D WITH	4 OT	HER V	/ALUI	E S		

1234567	~	RHO RHO RHO RHO RHO RHO RHO	INTO INTO INTO INTO INTO INTO INTO	2PI 4PI FIG E+E PIE MU+ D PI+	АММА - ТА (1 МU- РІ-	VIOL. PIO	ATES (VIO	G) LATES	G)	10065				DE(39+ 1 39+ 1 39+ 5+ 39+ 1 39+ 1 39+ 1 39+ 1	CAY 1 139+ 0 •5 548 105 139+	139+ 139	S 139	
					9 1	RHO	BRANC	HING	RATIO)S								
21		RHO	INTO	4PI/	2P I								(P2)	/(P)				
		RHD RHD	- INT (0, (0, (0, 0, 0, (0, (0, (0, (0,	TO (P 026) 01) 002) 0035 0035 0 (PI 008) 002)	I+- OR LI OR LI OR LI OR LI OR LI OR LI	PI+ ESS ESS •004 - PI ESS ESS	PI- P + PI-	10) /	(PI+ BLIED DEUT: FERBI JAME: PI+ I JAME: CHUNG	PI DEN SCHMA EL S PI-) S	0) 66 66 66 66 66	MMSP HBC HBC HBC HBC HBC	- +	3-5 8.0 1+- 2.1 2.1 3.2	PI- PI+ P AI PI+I	P BOVE	2.5	6/66 6/66 10/66 11/66 6/66 7/67
₹1 ₹1			(0.	.002) .0015	OR LI	ESS LESS	CL=. CL=.	90 90	GERM	N N CO	68 69	HLBC HBC	0	16.0) PI- -5.8	- P GAMM	IA P	1/71 10/67
222222222222222222222222222222222222222	M M	RHO	INTO (0. (0. (0. (0.	PI G 02) 005) 007) 002) NE PI	OR LI OR LI OR LI OR LI OR LI OR LI	/2PI ESS ESS ESS ESS XCHAI	CL=. CL=. NGE M	97 90 IODEL	LANZE FIDEG HUSOF GERM USED	EROTT CARO N AN CO IN TI	65 66 66 69 HIS	CNTR OSPK HLBC HBC ESTIN	(P3) - -	GAM 15 I	L) MA PI PI-PI	BREM	15)	11/66 10/66 6/66

Extraction of a ratio for $\rho^0 \rightarrow e^+e^-$ is complicated by interference with ω^0 decay. In photoproduction, $\gamma A \rightarrow e^+ e^- A$, there is substantial interference between the allowed $(\rho^0, \omega) \rightarrow e^+ e^-$ decays. The interference in the colliding-beam reaction $e^+e^- \rightarrow \pi^+\pi^-$ is due to G parity violating mixing of the overlapping ρ^0 and ω resonances; it alters the results for the rate $\Gamma(\rho^0 \rightarrow e^+e^-)$ only by a small amount. Therefore we use at present, for the average, only the values from

 RHO INTO(E+ E-)/(P1+P1-) (UNITS 10**-4)
 (P4)/(P1)

 94
 (0.651)
 (0.14)
 ASBURY 1.67 CNT
 PHOTOPRODUCTION 9/67

 90551BLY LARGE RHO-OMGGA INTERFERENCE
 10.651
 (1.1)
 (0.51)
 HERTZBACH 67 OSFK ASSUME SU(3)+HIXING.10/66

 NOT SEPARATED FROM OMGGA DECAY.
 33
 (0.53)
 (0.11)
 ASTVACATU 68 OSFK ASSUME SU(3)+HIXING 6/68

 NOT SEPARATED FROM OMGGA DECAY.
 GOSFK E4-E
 COLLID.EAM 4/69
 6/68

 NOT SEPARATED FROM OMGGA DECAY.
 RNG SIGNA DECAY.
 E4-E
 COLLID.EAM 4/69

 6.561
 0.1051
 HUGUSTI1 69 OSFK E4-E
 COLLID.EAM 4/69
 6/70

 6.541
 0.120
 (0.151) BIGS
 70 CNTR
 PHOTOPRODUCTION 6/70

 6.541
 0.055
 BENAKSAS 72 OSFK E4-E
 COLL.BEAM 512/72*
 0.41 0.05 BENAKSAS 72 OSPK E+E- COLL.BEAMS 0.428 0.045 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (P5)/(P1) DEUTSCHMA 66 HBC + 8.0 PI+ P 6/66 FERBEL 66 HBC +- PI+- P ABOVE 2.5 11/66

$ho(770), \ \omega(784)$

Data Card Listings

For notation, see key at front of Listings.

R+O INTO (MU+ MU-)/(PI R5 SEE NOTE UNDER R5 H 0.97 0.31 R5 H 0.97 0.31 R5 H WAMS <mass<reso< td=""> R5 R 0.82 0.16 R5 R 0.82 0.16 R5 R 0.82 0.16 R5 R 0.56 0.15 R5 W FOR CENTRAL VAL R5 W GP POSSIBLE NLO R5 W GP FOSSIBLE NLO R5 W GP 0.67 0.12 R6 RHO O INTO (P1+ PI-PIPER FS R6 G MODEL DEPENDENT_AS</mass<reso<>	<pre>+ PI-) (UNITS 10**-4) (P6)/(P1) RHO INTO E+E- ABOVE 0.33 HYAMS 67 OSPK 11 PI- LI H L. IS 20 MEV. THE OMEGA REGION WAS EXCLUDED. 0.36 ROTIMHELL 69 CNTR PHOTOPRODUCTION. RHO-OMEGA INTERFERENCE LEADS US TO INCREASE MEHMANN 69 OSPK 12 PI- ON C,FE (11+-11) PER CENT CORRECTION TAKES ACCOUNT OMEGA INTERFERENCE AND THE UPPER LIMIT AGREES LIMIT OF (OMEGA INTO MU+ MU-) FROM THIS EXPT. AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0/(PI1+PI-) (PT//(PI) CL=.84 ABRAMS 71 HBC 0 3.7 PI+ P SUMES I = 1,2,0R 3 FOR THE 3PI SYSTEM REFERENCES FOR RHO</pre>	6/67 . 4/70 7/69 11/71 11/71	ALVENSLE 70 PRL 24 786 ALVENSLEBEN, BECKER, BERTRAM, CHEN, COHEN(DESY) BATON 70 RL 33 B 528 (SACLAY) BIGGS 70 RL 24 197 +BRABEN, CEIFGNIER (SACLAY) BIGGS 70 RL 24 955 +BRABEN, CEIFFT, CABATHULER, NITCHING + LOARED ISACLAY) BINGHAM 70 RL 24 955 +FRETTER, MOFFEIT, BALLAM+ (LRL+SLAC+IUFI) GALLOWAY 70 RD 1 3077 +HOTT, ALVA, LEE, MANTIN, PRICKETT (IND) BABANNAR, BUTLER, CONNE, GOLDHABER, HALL, +(LBL) BLODDOWORT1, JACKSON, PREMTICE, YOON (TOR NTO) BEIGNERG 71 PE 36 +BANNANA, BUTLER, CONNE, GOLDHASDE, HALL, +(LBL) BLODDOWORT1, JACKSON, GROVES, JONHSON, + (NOTRE DAME) HEISINGFAR, HOTH, HOHNE, HOFMANN, JANATA, KAROH+ LOESY) EISENBER 71 SLAC-PUB-933 EISENBER, BALLAM, CHADWIGK+ (REHO+STAN) BAILLON 72 PL 38 B 555 +CANNEGIE, FLUGE, LETH, LYNCH, RATCLIFF+ (SLAC) BAILLAM 72 PL 38 B 30EVANT, FARGGATT, PETERSEN (CERN) BASPANA, FUNCK, FROC, 5 HEINLOTH, HOHNE, HOFMAN
ANDERSON 61 PRL 6 365 ERWIN 61 PR 6 628 KENNEY 62 PR 126 736 SAMIOS 62 PRL 9139 XUONG 62 PR 128 1849 ABOLINS 63 PRL 11 381 ALITTI 63 NC 29 515 CHADNICK 63 PRL 10 62 GUIRAGOS 63 PRL 185	ANDERSON, BANG, BURKE, CARMONY, SCHMITZ (LRL) A.R., R. MARCH, H.D. WALKER, E. HEST (HISC) Y P. KENNEY, M.O. SHEPHARD, C.D. GALL (KENTUCKY) SAMIOS, BACHMAN, LEAH (BNL-CUNY+COLU+KNTY) NGUYEN HUU XUONG, GERALD R LYNCH (LRL) ABDLINS, LANDER, MEHLHOP, NGUYEN, YAGER (UCSD) ALITTI, BATON, ARMENISEY (SACL-GNSAHBARI+BGNA) CHADMICK, DAVIES, DERRICK, CRESTI + (DXFHPADD) ZAVEN GUIRAGOSSIAN (LRL)		ω(784) 1 OMEGA (784, JPG=1) I=0
SACLAY 63 SIENA CONF 1 239 BONDAR 64 NC 31 729 CARMONY 64 DUBNA CONF 1 486 GOLDHABE 64 PRL 12 336 ALYEA 65 PL 15 82 ARMENISE 65 NC 37 361 BLIEDEN 65 PL 19 444 CLARK 65 PR 139 B 1556 GUTAY 65 NC 39 381	SACLAY+DRSAY+DARI + BOLDONA - COLLABDRATION BONDAR+ (AACHEN+BIRN+BONN+DESY+LDIC+HPIH) CARMONY-HOA;LANDER, NG.H.XUONG,YAGER (UCSD) GOLDHABER, BROWN,KADYK,SHEN+ (RL+UCS) ALYEA,CRITTENDEN,MARTIN,RHODE + (INDIANA) SACLAY+DRSAY+BARI+BOLDONA COLLABDRATION CERN HISSING MASS SPECTROMETER GROUP (CERN) A CLARK,CCHRISTENSON,CRONIN,TURLAY(PRINCETO) OUTAY,LANNUTI,TULL		HERE WE LIST ONLY EXPERIMENTS IN WHICH THE EFFECTS OF MASS RESOLUTION HAVE BEEN EVALUATED. M FROM FINAL STATE KI KI OMEGA M 64 779.4 1.4 ARMENTERO 62 HBC 0.0 PBAR P KIKI M 155 779.5 1.5 BARASH 67 HBC 0.0 PBAR P KIKI 11/71 M 510 781.0 0.6 BIZZARRI 71 HBC 0.0 P PBAR KIKI 11/71 M 406 780.60 0.52 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) M EPON DTUEP EINM STATES
LANZERDT 65 PRL 15 210 ZDANIS 65 PRL 14 721 ACCENSI 66 PL 20 557 ALFF-STE 66 PR 145 1072 BALEAN 66 PL 20 770 ALFF-STE 66 PR 145 1072 CAMBRIDG 66 PR 146 170 CAMBRIDG 66 PR 146 1282 DEUTSCHM 66 PL 20 82 FERBEL 66 PL 23 163 HAGOPIANEG6 PR 152 1183 HUSON 66 PL 23 163 HAGOPIANEG6 PR 152 1183 HUSON 66 PL 42 896 WEST 66 PR 142 896 WEST 66 PR 149 869 ALLES-BO 67 NC 50 A 776 ASBURY 1 67 PRL 19 869 ASBURY 1 67 PRL 19 865	LANZEROTTI,BLUMENTHAL,EHN,FAISSLER + (HARV) ZOANIS,MADANSYY,KRABKER + (JNU96N) ACCENSI,ALLES-BORELLI,FRENCH,FRISK+ (CERN) ALFF-STEINBERGER,BERLEY,BRUGGER+(COLUPAUTG) HEANAZISIUU DESS,SPECTNSETTCG (GLOP UCER) CAMBRIDGE BUBBLE CHAMBER GROUP (MITHARV+) NM CASON (MISCONSIN) DEUTSCHMANN,STEINBERG + (AACH+BERLIN+ (CERN) BAGDIAN, SELOVE,ALITI,BATOH+(PENN+SACLAY) HAGOPIAN,SELOVE,ALITI,BATOH+(PENN+SACLAY) HAGOPIAN,BAN, OFIJARO,HENNESSV+ (NDSAY+EPCL) F EJAMES,KRAYBILL (YALE+BROKHAVEN) KEST,BOYD,ERWIN,MALKER (MISCONSIN) ALLES-BORELLI,FRENCH,FRISK,+ (CERN+BONN) +BECKER+BERTRAM+JOOS-JORDAN+ (DESY+COLU)		000 TOLO TALLE ALFF 62 HBC 2.3-2.9 P1+P M 34 T84.0 1.0 ANEMPTERO 63 HBC 0.0 PBAR P M 230 T81.0 2.0 ANEMPTERO 63 HBC 0.0 PBAR P M 220 T81.0 2.0 KRAEMER 64 DBC 1.2 P1+O M 785.6 1.2 MILLER D 05 HBC NUTH K+K+ M 666 786.0 1.0 JAMES 66 HBC 2.1 P1+P 6/6 M 742.8 1.1 KEY 68 HBC 0 PDAR P 9/66 M 200 782.4 0.5 DIZARRI 69 HBC DPAR P 9/67 M 200 786.1 DANBURG 70 DBC 1.2 P1+D 11/71 M 500 786.1 DANBURG 70 DBC 1.9 P1+D </td
BALUM G1 FN 125 6.63 000 BANNER G1 FN 125 70 000 BANNER G1 FN 25 70 300 BANLON G7 FN 25 819 BATALSO G7 FN 25 349 CLEAR G7 MC 51 801 90 FISNER G7 MC 51 801 90 FRENCH G7 MC 52 442 442 HERTZBAC G7 PL 248 252 442 HUWE G7 PL 248 532 414A18 MILLER G7 PT 153 1463 462	<pre>FILCAINGER NTLLS TODRA INS, MUDDIASUT HATOUSKANGER NTLLS TODRA INS, MUDDIASUT HATOUSKANGENT SING THE CERTER OFF TRADECYPT HATON G LAURENS, JAREIONIER (SACLAY) JABATON G LAURENS, JAREIONIER (SACLAY) JABATON G LAURENS, JAREIONIER (SACLAY) HUBHSTON-CODERMANNER (TNTD+AN+HISC) DANYSZ-FRENCH-SIAMK (CERN) HUBHSON-KLE IN+PETERS-SANNIHYEN+ (PURDUE) HUBHSON-KLE IN+PETERS-SANNIHYEN+ (CERN) KINSON-KODANLD-RIDDFOROP (CERN)BIRN) HERTZ BACH, KRAEMER, MADANSKI, ZDANIS+ (JHU+BNL) HERTZ BACH, KRAEMER, MADANSKI, ZDANIS+ (JHU+BNL) HUBHSON-KLE IN+PETERS-CHULTZ+HILSON (COLU) HUBHSON-KLE IN+PETERS-CHULTZ+HILSON (CERN)BIRN HERTZ BACH, KRAEMER, MADANSKI, ZDANIS+ (JHU+BNL) HUBHSON-KLE IN+PETERS-CHULTZ+HILSON HUBHSON-KLE IN+PETERS-CHULTZ+HILSON HUBHSON HUBHSON-KLE IN+PETERS-CHULTZ+HILSON HUBHSON HUBHSON-KLE IN+PETERS-CHULTZ+HILSON HUBHSON HUBHSON-KLE IN+PETERS-CHULTZ+HILSON HUBHSON H</pre>		M D FROM BEST-RESOLUTION SAMPLE OF COVNE 71 11/71 M 369 784.0 1.4 MATHIEWS 71 DBC 6.95 PI+ D 2/71 M 418 782.5 0.8 ACUILAR 72 HBC 3.9;4.6 K- P 12/72* M AVG 783.76 0.28 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) ISEE IDEOGRAM BELOW) WEIGHTED AUERAGE = 783.76 ± 0.28 ERROR SCALED BY 1.3 T CHISO
ABC COLL 68 NP 84 501 ARMENISE 68 NC 54A 399 ASTVACAT 68 PL 27 8 54 BATOM BATOM 66 PL 78 1574 BLEALSO 67 NC 52 A 1348 CHUNG 66 PR 165 1491 DONALD 66 NP 8 6 174 FOSTER 68 NP 8 6 174 FOSTER 68 NP 8 6 174 HUSON 68 PR 166 1405 JOHNSON 68 PR 176 1451 KEY 68 PR 166 1495 JOHNSON 68 PR 166 1395 LAMSER 68 PR 166 1395 LAMSER 68 PR 166 1363 JOHNSON 69 PR 168 225 AUGUSTI1 69 PL 28 B 508 AUGUSTI1 69 PL 28 B 508 AUGUSTI1 69 PR 182 0260 HAISSINS 69 ARGONNE CONF.373 JUHALA 69 PR 184 1461 MALAMD 69 PR 184 1424 MEVNOLDS 69 PR	AACHEN+BERLIN+CERN COLLABORATION +GHIDINI,FORINO+ (BARI+GGNA+FIRZ-NORSAY) STVACATUROV,AZIMOV,BALDIN+ (JINR+MOSCOH) J.P. BATON, G. LAURENS (SACLAY) BLECHSCHNUT, DOND,ELSNER,+ (DESY+KCKS) S.U.CHUNG,O.I.DAHL,J.KIRZ,D.H.MILLER (LRL) +EDWARDS,FRODESN,BETINI+ (LIVPOSLOP+DADD) +GAVILLET+LABROSSE+MONTANET+ (CERN+COEF) +UBATI,SIX,YEILLET+ (ORSAHILA+UCLA) +KOCH,POITER,MILSON,VON LINDERN+(CERN+MPIN) +BLEULER,CALOMELL,ELSNER,HARTING+ (CERN) +POIRIER,BISWAS,GUTAY+ (NDAM+PURD+SLAC) +POIRIER,BISWAS,GUTAY+ (NDAM+PURD+SLAC) +POIRIER,BISWAS,GUTAY+ (NDAM+PURD+SLAC) +POIRIER,BISWAS,GUTAY+ (NDAM+PURD+SLAC) +HAGOFIAN,+ (OPENN+LRL+COLOPPURD+TNTOHANL+HISC) +ELEVLER,COUPEN+MANREN (TNTOHANL+HISC) +ELEVLER,COUPEN+MARIN,+ (DRSAY) AUSEENDER,BUDKER,PANTUSOVA,PESTOV+ (NOVO) (SERNAN BUBLE CHAMBER COLL. (DESY) J.HAISSINSKI +LEACOK,FNDE,KOPACASJAF, (NORSAY) +AAMMAR,DAYIS,KENDER,ANT,HARN, (PURD) +AAMMAR,DAYIS,KROPACASJAF, (NORSAY) +AAMMAR,DAYIS,KROPACASJAF, (NORSA) +AAMMAR,DAYIS,KROPACASJAF, (NERARIN, HERARI) +AAMMAR,DAYIS,KROPACASJAF, (NERARIN, HERARIN, HONSA) +AAMMAR,DAYIS,KROPACSJAF, (NERARIN, HERARIN, HERARD) +AAMMAR,DAYIS,KROPAC,SJAF, (NERARIN, HERARIN, HERARD) +AAMMAR,DAYIS,KROPAC, (NERARIN, HERARIN, HERARIN, HERARD) +AAMMAR,DAYIS,KROPAC, SJAF, (NERARIN, HERARIN, HERARD) +AAMMAR,DAYIS,KROPAC, SJAF, (NERARIN, HERARIN, HERARD) +CHASS, HERARD, SUBLE CHAMBER (CENARIN) +ANDAR,JAYIS, KROPAC, SJAF, (NERARIN, HERARIN, HERARD) +AAMMAR,DAYIS, KROPAC, SJAF, (NERARIN, HERARIN, HERARD) +AAMMAR,DAYIS, KROPAC, SJAF, (NERARIN, HERARIN, HERARD) +CHASS, FARLES, GETTNER, GLASS, WEINFEI+ (NRAS)		Image: Constraint of the

Data Card Listings

For notation, see key at front of Listings.

Mesons $\omega(784)$

1 OMEGA FULL WIDTH (MEV) W 34 9.0 3.0 ARMENTERO 63 HBC 0.0 PBAR P W 13.4 2.0 MILLER D 65 HBC SEEN WITH K+ K-	R9 OMEGA INTO (NEUTRALS) / (CHARGED) (P3+)/(P1+P2) R9 0.124 0.021 FELDMAN 67 OSPK 1.2 PI-P 3/67 R9
H 155 (12.3) (2.0) BARASH 67 HBC SEEN WITH KI N. 6/66 H B 171 (5.8) (2.8) BARASH 67 HBC 0.0 PBAR P,KI KI 1.0/71 W B UNFOLDED BY COYNE 71 11/71 11/71 H 750 8.8 3.0 ABRAMOVIC 70 HBC 3.9 PI-P 6/70 N 11.2 2.7 ATHERTON 70 HBC 3.6 PBAR P, X ISI 11/71 11/71 N 510 10.3 1.4 BIZARRI 71 HBC 0.0 P PBAR KIKI 11/71	R10 OMEGA INTO (2P10 GAMMA)/(P1+P1-P10) (P5)/(P1) 4/70 R10 0.080 DR LESS CL=.95 JACQUET 69 HLBC 4/70 R11 OMEGA INTO (ETA GAMMA)/(P10 GAMMA) (P61/(P3) 4/70 R11 OMEGA INTO (ETA GAMMA)/(P10 GAMMA) (P61/(P3) 8/69 R11 0.901 D0 STRUGALSK 69 HLBC 2.34 P1 + 8/69 R11 0.002 D0 D0 D10 T1 HLBC 2.9 P1 + 11/71
N 248 12.8 3.0 BIZZARRI 71 HBC 0.0 P PBAR KM+ 11/71 M 4270 9.5 1.0 COYNE 71 HBC 3.7 P1+ P 11/71 M 418 13.3 2. AGUILAR 72 HBC 3.9 4.6 K P 12/72 M 9.1 0.8 BENAKSASI 72 COSK 25 FE FE COLLBEAMS 2/73 M E 940 7.70 1.65 BROWN 72 MMS 2.5 P1- P, N MMS 12/72 M E 9400 FERPROT TAKES ALCOUNT OF SYSTEMATICS ADDED LINEARLY 12/72 14 12/72	R11 0.010 0.253 DALDIN 11 HEDU 24-5 DI-P,N 3GAM 2/73* R11 0.010 0.045 DENAKSAS2 T2 OSPK 4-0 PI-P,N 3GAM 2/73* R11 (0.27) OR LESS CL=.90 BENAKSAS2 T2 OSPK E+E-COLL.8EAMS 2/73* R12 OMEGA INTO (PIO MU+ MU-) / TOTAL (UNITS 10**-3) (PI1) R12 (2.1) OR LESS WEHMANN 68 OSPK 12 PI-FE 6/68
W AVG 9.84 0.51 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1)	R13 OMEGA INTO (E+E-)/TOTAL (UNITS 10**-4) (P7) R13 3 2. 1.2 BINNIE 65 DSPK PI-P NEAR THLD. 6/66 R13 B MASS RESOLUTION OF BINNIE 65 IS ABOUT 15 MEV R13 H (1.0) (1.7) (0.75) HERTZBACH 67 DSPK ASSUME SU(3)+MIXING.10/66
1 OMEGA PARTIAL DECAY MODES DECAY MASSES P1 OMEGA INTO PI+ PI- PIO OMEGA INTO PI+ PI- (VIOLATES G) 20 OMEGA INTO PI+ PI- (VIOLATES G) 30 MEGA INTO PIO GAMMA (ONLY MEUTRAL INPUT TO FIT) 344 0	R13 H NOT RESOLVED FROM RHO DECAY. R13 A 3 (0.65) (0.13) ASTVACATU 68 OSPK ASSUME SU(3)+MIXING 6/68 R13 A NOT RESOLVED FROM RHO DECAY. ERROR STATISTICAL DNLY. R13 O.40 0.21 O.40 0.21 R13 Z MASS RESOLUTION OF BOLLINI 1 (8 CMTR 1.771-7+NOTE Z 9/68 R13 Z MASS RESOLUTION OF BOLLINI 1 (8 +-10 MEV-HIS ERROR 15 +-1.15 R13 Z WITHOUT RHO-DMEGA INTERFERCE. COMPLETE INTERFERENCE HOULD
P4 ONEGA INTO P1+ P1- GAMMA 139+ 139+ 0 P5 ONEGA INTO P10 GAMMA 134+ 134+ 0 P6 ONEGA INTO ETA GAMMA 134+ 134+ 0 P7 ONEGA INTO ETA GAMMA 548+ 0 P7 ONEGA INTO ETA GAMMA 548+ 0 P7 ONEGA INTO ETA GAMMA 154+ 134+ P8 ONEGA INTO ETA GAMMA 548+ 0 P7 ONEGA INTO ETA GAMMA 105+ 15 P8 ONEGA INTO HU+ MU- 105+ 105 P9 ONEGA INTO ETA P10_(UNICATES C) 588+ 134	R13 Z CHARGE VALUE DI CHASTIL AGO DSPK SEE NOTE E 2/72 R13 E (0.76) (0.14) AJGUSTIL 60 DSPK SEE NOTE E 2/72 R13 E FRDM E+ E- COLLIDING BEAMS, ASSUMING DMEGA WIDTH 12.2+1.3 MEV 4/69 R13 0.83 0.10 BENKÄSSI 72 2/73* R13 0.30 0.17 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1-9)
PI0 OHEGA INTO 3 GAMMA 0+ 0+ 0 P11 OHEGA INTO PIO MU+ 134+ 105+ 105	R14 OMEGA INTO NEUTRALS / TOTAL (P3+) (P3+) R14 0.084 0.015 BOLLINI 68 CNTR 2.1 P1- 6/68 R14 0.079 0.019 DEINET 69 DSPK 1.5 P1- P 9/69 R14 0.075 0.025 BIZZARRI 71 HBC 0.0 P PDBAR 11/71 R14 42 0.073 0.018 BASILE 72 CNTR 1.67 P1- P 2/73*
The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_{ij} , as follows: The diagonal elements are $P_{ij} \in \delta P_{ij}$, where	R14 R14 AVG 0.0788 0.0092 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R14 FIT 0.0909 0.0055 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) DIS ONEGA INTO (DI PL//(TIAL), SFE ALSO R2 (22)
$OP_i = \sqrt{OP_i OP_j}$, while the <u>out-support</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta P_i \delta P_j \rangle / \langle \delta P_i \cdot \delta P_j \rangle$. For the definitions of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. P 1 P 2 P 3 P 1 s 8641+z-0058	h15 0.022 0.013 AUGUST12 69 05PK E+E-CULL.BEAMS 8/69 R15 (0.003) DK MORE CL=.95 GOLDHABER 69 HBC 3.7-4.0 PI+P II/69 R15 (0.014) DR MORE CL=.95 ALLISON 70 HBC 1.3-1.7 PBAR P 6/70 R15 0.0080 0.0028 0.0022BIG65 70 CNTR PHOTDPRODUCTION 6/70 R15 0.0122 0.0030 ALVENSLEB 71 CMTR PHOTDPRODUCTION 11/71 R15 0.012 0.009 MOFFEIT 71 HBC 2.8.4.7 GAMMA P 11/71 R15 0.013 0.012 0.009 MOFFEIT 71 HBC 2.8.4.7 GAMAP 11/71 R15 0.030 0.022 0.009 KOFFEIT 71 HBC 2.8.4.7 GAMAP 11/71
P 23543 .0130+ .0027 P 392690226 .0909+0050	R15 R15 AVG 0.0102 0.0019 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R15 FIT 0.0130 0.0027 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5) R16 ONEGA INTO (FIT GAMMA) / (AIL NEUTRALS) (P6)/(P3+)
1 OMEGA BRANCHING RATIOS	R16 (0.24) OR LESS CL=.90 DE INET 69 OSPK 9/69 R16 (0.36) OR LESS CL=.90 DAKIN 72 OSPK 1.4 PI- P.N MMO 12/72* R17 OMEGA INTO (2 PIO GAMAA) / (ALL NEUTRALS) (P5)/(P3+) (P5)/(P3+)
R1 DMEGA INTO NEUTRAL/(PI+ PI- PIO) (P3+)/(P1) R1 0.17 0.04 ARMENTERO 63 HBC 0.0 PBAR P	A17 (0.19) OR LESS CL=.90 DEINET 69 OSPK 9/69 R17 D (0.22) (0.07) DAKIN 72 OSPK 1.4 PI- P.N MMO 12/72* R17 D SEE R18
R1 20 0.11 0.02 DOSCHELN GF IND 1.2 P1+D R1 35 0.08 0.03 RRAEMER 64 DBC 1.2 P1+D R1 65 0.10 0.04 ALFF-STEI 64 DBC CORR.BY SCHULTZ(COL) 9/64 R1 850 0.134 0.026 DIGIUGNO 66 CORR.BY SCHULTZ(COL) 9/64 R1 348 0.097 0.016 FLATTE 66 HBC 1.8 K-P 9/64 R1 0.06 0.05 0.02 JAMES 64 HBC 0.0 PBAB P 7/67 R1 19 0.10 0.03 BARASH 67 HBC 0.0 PBAB P 7/67	R18 OMEGA INTO (PIO GAMMA) / (ALL NEUTRALS) (P3)/(P3+) 9/69 R18 (0.81) OR MORE CE=90 DEINET 69 05PK 9/69 R18 (0.81) OR MORE CE=90 DEINET 69 05PK 9/69 R18 (0.81) OR OTA DAKIN 72 05PK 1.4 PI- P.N MMO 12/72E R18 D ERROR STATISTICAL ONLY.AUTHORS OBTAIN GOOD FIT ALSO ASSUMING 11/71 R18 D EGAMMA AS THE ONLY NEUTRAL DECAY. 11/71 11/71 TANGE AND AS THE ONLY NEUTRAL DECAY. ******** ********
R1 46 0.15 0.064 AGUILAR 72 HBC 3.944.6 K-P 1277.7 R1 AVG 0.1065 0.0088 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R1 F17 0.1015 0.0087 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	REFERENCES FOR OMEGA
R2 OMEGA INTO (PI+ PI-)/(PI+ PI- PIO). SEE ALSO R15 (P2)/(P1) R2 R (0.01110R MGE CL=>5 ABRAMOVIC 70 HBC 3.9 PI- P .6/77 PO PICTURE CL=>5 ABRAMOVIC 70 HBC 3.9 PI- P .6/77	MAGLIC 61 PRL / 118 B FAGLIC/ALVARGER/NGSAM/RICHARO+(JHU+NWES) PEVSNER KARMER/NGSAM/RICHARO+(JHU+NWES) XUONG 61 PRL 7 327 NGUYEN HUU XUONG,GERALD R LYNCH (LRL)
R2 (0.01910R MORE CL=.95 CHAPMAN 70 HBC 1.6-2.2 P PBAR 6/7' R2 F 1.00210R HORE CL=.90 FLATTE 70 HBC 1.5 K- P 8/6' R2 F FLATTE TO SEES NO SIGNAL AT 1.7, 2.1, 2.6 GEV/C.	ALFF 62 COMP 90 ALFF, BERLEY(CULLEY(CULLEY(SELFAND + (CULOPROIESK))) ARMENTER 62 CERN COMP 90 R ARMENTERGS, R BUDDE + (CERN+COEF+EPOL) STEVENSD 62 PR 125 687 STEVENSON, ALVAREZ, MAGLIC, ROSENFELD (LRL)
R2 (0.0026)DK MORE CL=:0+ HAGDFIAN TO HBC 2.3 F1- F 1/7 R2 (0.0010 K LESS CL=:04 HAGDFIAN TO HBC 2.3 F1- F 1/7 R2 R.002 0.009 0.01 RDS TO RVUE 6/7 R2 R R.005 TO COMBINES ABRAHOVICH TO AND BLZZARRI TO 6/7 7 R2 0.028 0.006 BEHREND TI ASPK PHOTOPRODUCTION 11/7 R2 0.028 0.006 BEHREND TI ASPK PHOTOPRODUCTION 11/7 R2 0.028 0.006 1.007 HABC 2.3 F1- F 1/7	ARMENTER 63 SIEMA CONF 1 296 ARMENTEROS,EDWARDS,JACOBSEN+ (CERN-GDEF) BARNIN,DCGOLENKO,RKEESTNIKOV+ (ITEP) BUSCHBEC 63 SIEMA CONF 1 166 BUSCHBECK,CZAPP+ (VIENMA+CERN+AMSTERDAM) GELFAND,MILLER,NUSSAUM,RATAUF (COLU+RUTG) MURRAY 63 PL 7 358 MURRAY,FERROLUZZI,HUWE,SHAFER,SOLMITZ+(LR.)
R2 S 0.021 0.028 0.028 ALLIFF 12 ASF 15.11 12/1 R2 S IGNIFICANT INTERFERENCE EFFECT OBSERVED.NB OF OMEGA INTO 3P1 12/1 R2 S COMES FROM AN EXTRAPOLATION. 12/1 R2	BARMIN 64 JETP 18 1289 BARNIN,DOLGOLENKO,KRESTNIKOV + (ITEP) KRAEMER 64 PR 136 B 496 KRAEMER,MADANSKY,MEER+ (JHU+NWES+WOOD) DINNEE ONDE LANE H INDEA
RZ AVG 0.0259 0.0049 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) RZ FIT 0.0145 0.0031 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5) R3 OMEGA INTO (PIO GAMMA) / (PI+ PI- PIO) (P3)/(P1)	BAITTEEL 55 PPL 14 279 A BARBARO GALTIERI,R O TRIPP (CR.) GALTIERI 56 PPL 14 279 A BARBARO GALTIERI,R O TRIPP (CR.) MILER (THESIS) (COLUMBIA) INCLUDES DATA OF GELFAND 63 ABOVE ALFF-STEINBERGER,BERLEY, BRUGGER+(COLU+RUTG)
R3 (0.125) (0.025) DR GKTN BARMIN 64 PARC 2.9 P1-7 R3 0.13 0.04 JACQUET 69 HLBC 10/6 R3 0.081 0.020 BALDIN 71 HLBC 2.9 P1+7 11/7 R3 0.109 0.025 BENAKSASZ 72 OSPK E+E-COLL.BEAMS 2/7	ZDANIS 65 PRL 14 721 ZDANIS, MADANSKY, KRAEMER, HERTZBACH+ (JHU+BNL) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI, TROISET (NAPL+FRASTNST) 20 JOING 60 NG 44A 1272 DI GIUGNO, PERUZZI,
R3 R3 AVG 0.097 0.015 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 FIT 0.1015 0.0067 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	JANES 66 PR 142 896 F E JANES KRAYBILL (YALE+BROOKHAVEN) BALTAY 67 PRL 18 93 +FRANZINI, SEVERIENS, YEH, ZANELLO (COLUMBIA)
R4 OMEGA INTO (PI+ PI- GAMMA)/(PI+ PI- PIO) (P4)/(P1) R4 (0.05) OR LESS FLATTE 66 HBC 1.8 K-P 9/6 C/ OWEGA INTO (WILA WIL-/(PILA BI- DIO)(INITS IN#A3) (P2)/(PI) 1.48 K-P 9/6	BARASH 67 PR 156 1399 BARASH,KIKSUH, MILLEK, IAN KUUDOBAN FELDMAN 67 PR 159 1219 +FRATI,GLEESON,HALPERN,HOUSBAUH (PENN) HERTZBAC 67 PR 155, 1461 HERTZBACH,KRAEMER,MADANSKI,ZDANIS+(JHU+BNL) ALSO 65 ZDANIS
R6 11.2 (IG R 1655 CL 11 FER 05 HBC 2.7 K-P R6 11.2 (IG R 1655 FL ATTE 66 HBC 1.8 K-P 9/6 R6 (1.2) OR LESS HLATTE 66 HBC 1.8 K-P 9/6 R6 (1.2) OR LESS WILSON 69 OSPK 12 PI- ON C.FE 9/6 R7 OMEGA INTO (2PIO GAMMA) (PIO GAMMA) (P51)(P3) R7 (0.1) OR LESS BARNIN 64 PXBC 1.3-2.8 PI-P	ASTVACAT 68 PL 27 B ASTVACATUROV, AZIMOV, BALDIN+ (JINR+MOSCOW) BOLLINI 68 NC 56 A 531 +BUHLER, DALPIAZ, MASSAM+ (CEN+05GNA+STRB) BOLLINI 68 NC 56 A 404 +BUHLER, DALPIAZ, MASSAM+ (CEN+05GNA+STRB) FIGURA 68 NP 86 A 420 +PRENTICE+CODPER+MAINER (TATO+AN+WISH) PISUT 68 NP 66 225 J-PISUT ASSESSACESCESCESCESCESCESCESCESCESCESCESCESCESC
R7 (0,45) (0,33) STRUGALSK 69 HLBC 2.34 PI+ N 8/6 R7 (0.14) OR LESS BALDIN TH.HBC 2.9 PI+ PI1/7 R7 (0.15) OR LESS CL=.90 BENAKSAS2 72 OSPK E+E- COLL. BEAMS 2/7 R8 OMEGA INTO (ETA PIO + ETA GAMMA)/(PI+ PI- PIO) (P9+P6)/(PI) PAR 9/6 9/6 R8 (0.017)OR LESS CL=.95 JACQUET 69 HLBC 4/7 4/7	AUGUST 11 69 PL 28 B 513 +BENAKSAS, BUON, GRACCO, HAISSINKL+ (ORSAY) AUGUST 12 69 LNC 2 214 +LEFRANCOIS, LEHMANN MARIN, + (ORSAY) BIZZARRI 69 NP B 14 169 +FOSTER, GAVILLET, MONTANET, + (CERN+COEF) DANBURG 69 UCRL+19275 JEROME S. DANBURG, THESIS (LRL)

$\omega(784), M(940), M(953), \eta'(958)$

+MENZIONE, MULLER, BUNIATOV+ (KARL+CERN) +MALKER, GOSHAW, WEINDERG (WISC+PRIN+VAND) BUTLER, COYNE, HALL, MACNAUGHTON, TRILING (LRL) +NGUYEN-KHAC, HAATUFT, HALSTEINSLI(EPOL+BERG) , MILLER, LICHTMAN, MILLMANN (PURDUE) DEINET 69 PL 30 B 9 364 ERWIN 69 PR 23 1351 1361 JACQUET 69 PR 23 1351 JACQUET 69 PR 23 1351 JACQUET 69 PR 24 2051 STRUGALS 69 PR 178 2061 STRUGALS 69 PR 19 532 WILSON 69 PR PX 532 RAMILLER,LICHTMAN,WILLMANN (PURDUE) +CHUVILO,FENYVES,+ (WARS+JINR+BUDA) RICHARD WILSON (SEE ALSO PR 178 2095)(HARV) RICHARD WILSON (SEE ALSO PR 178 2095)(HARV) ABRAMOVICH, BLUMENFELD, BRUYANT, + CCIAPETI, DONE, GASPERO, GUIDONI, + (ROMA+SYRA) *GOOFR, FEILWER, HINES *GOOFR, FEILWER, TUCHNO, FAND (DARE) *CLIFFT, GASATHULE, K. (TCHNO, FAND (DARE) *ANDREWS, BISMAS, GROVES, HARRINGTON, + *ANDRING, ALAGOFIAN, BOGE, YANDER VELDE (HICH) *ANDRING, ALAGOFIAN, BOGAT, SELOVE (SUPERN) *AND, ALAGOFIAN, BOGAT, SELOVE (SUPERN) *ARG, DARESBURY SUUY WEEKEND NO 1. *CERNING MILSUR 59 PRIVATE COMM. BBLANOUT TO NPB 20 209 BLISON TO PRL 25 1385 ALLISON TO PRL 25 408 ALLISON TO PRL 24 408 BIGGS TO PRL 24 1201 CASON TO PRL 25 140 DANBURG TO PRL 25 140 FLATTE TO PRL 15 HAGOPIAN TO PRL 25 1050 ROOS TO DNPL/RT P.173 PROC. DARESBURY STUDY WEEKEND ND 1. (CERN) +BARNHAM,BUTLER,COYNE,GOLDHABER,HALL,+(LBL) ALVENSLEBEN BECKER,BUSZA,CHEN,COHEN,+(DESY) +GRAMENITSKY,KANASIRSKY,KERATSCHEW,+(JIRN) +YERGAKOV,TREBUKHOVSKY,SHISHOV 1ITEP) BARDADIN-OTHINOWSKA,HOFMOKL,MICHEJDA+(MAS) BLOODWORTN,TREBUKHOVSKY,SHISHON HEEN NOBERG,WEHMAN,+ HOCHHCORN,FRONTCE,YOON (TORONTO) +HONTANET,NILSSON,D-ANDLAU,+ HOODWORTH,JACKSON,PRENTICE,YOON (TORONTO) +FORTNEY,FOWLER BUTLER,FAMG-LANDAU,MACHAUGHTON (LRL) +CODPER,RHINES,ALLISON (FSUPHENN) J.LEFRANCOIS -HARENTCE,YOON,CARROLL,MALKER,+ (TNTOHIS) +BRENTICE,FUONCARROLL,MALKER,+ (TNTOHIS) RUDS TO DUNCTOR P.173 ABRAMS T1 PR.0 453 ALVENSLE T1 SUP 24 ALVENSLE T1 SUP 24 BALDIN T1 SUPP 13 BARDADIN T1 SUPP 13 BELGENN T1 PR 24 BLIZARRIT T1 NP 27 BLODOWCR T1 NP 27 BLODOWCR T1 NP 333 CIELDS T1 RL 27 HAGOPIAN T1 BAS 16 LEFRANCO T1 PREPRINT<LALIZS</td> MATHHENS MATHENS T1 NP 29 349 AGUILAT 72 PR D 6 29 APEL 72 PL 41 8 234 BENAKSAS 72 PL 39 8 289 BENAKSAS 72 PL 39 8 289 BENAKSAS 72 PL 39 8 289 BENAKSAS 72 PL 42 8 507 BENAKSAS 72 PL 42 8 507 BENAKSAS 72 PL 42 8 107 BENAKSAS 72 PL 42 8 117 DAKIN 72 PR D 6 2321 EISENBER 72 PR D 6 15 RATCLIFF 72 PL 38 8 345 COULTAN - DENT TEZ, CHUNG ELSAR (LAL GOD SCAL) OF 1 ALUSLANDER, MULLER, BERTOLUCCI,+ (KARL+PISA) BOLLINI, BOGLIN, DALTAZ, FRABETT,+ (CERN) COSBE, JEAN-MARIE, JULLIAN, LAPLANCHE, (TOSA) COSBE, JEAN-MARIE, JULLIAN, LAPLANCHE, (DSA) SCOSBE, SCASBE, KISCHKE (PRINCETON) SISENBER, SALLAN, PACAM,+ (REHO'SLAC'FLA) +BULOS, CARNEGIE, KLUGE, LEITH, LYNCH,+ (SLAC) M(940) →ММ 66 M(940) \rightarrow EVIDENCE NOT COMPELLING.OMITTED FROM TABLE. 66 M(940) MASS (MEV) 55 940.5 1.7 CHESHIRE 72 MMS 0 2.4 PI- P,N MM 12/72* NOT SEEN BY BINNIE 72 AT THRESHOLD. M N M N ----66 M(940) WIDTH (MEV) W N 55 (10.4) OR LESS CL=.90 CHESHIRE 72 MMS 0 2.4 PI- P,N MM 12/72* 66 M(940) BRANCHING RATIOS M(940) INTO (NEUTRAL)/(TWO-CHARGE)/(FOUR-CHARGE) 0.12 0.86 0.02 CHESHIRE 72 MMS 0 2.4 PI- P,N MM 12/72* R1 R1 ****** ************************** REFERENCES FOR M(940) CHESHIRE 72 PRL 28 520 BINNIE 72 PL 39 B 275 +HOFFMAN, GARFINKEL,+ (IOWA+ANL+PURD) +CAMILLERI, DUANE, GARBUTT, BURTON+(LOIC+SHMP) M(953) *→γ*π⁺π⁻ <u>+γ</u>ρ⁰ 59 M (953,JPG= +) WHILE MASS AND WIDTH ARE CONSISTENT WITH THOSE OF THE ETA PRIME1958], THE (PI+ PI- GAMMA) DECAY DOES NOT SHOW A RHOD SIGNAL, WILKE THE ETA PRIME. THIS IS TAKEN AS EVIDENCE FOR A NEW PARIICLE, WHILE THIS DIFFERENCE IN DALITZ PLOT DISTRIBUTIONS APPEARS SIGNFICANT, IT STILL NEEDS FURTHER CONFIRMATION TO BE REGARDED AS WELL ESTABLISHED. POSSIBLY SEND TABLE. 59 M MASS (MEV)

Data Card Listings For notation, see key at front of Listings.

	59 M WID	TH (MEV)			
W W M	68 (10.0) OR LESS (15.) OR LESS	CL=.95 AGUILAR MAGLICH	70 HBC 71 MMS	3.9-4.6K-P,P K-M 3.8 P D,HE3 X0	1/71 2/72
	59 M PAR	TIAL DECAY MODES			
P1	M INTO PI+ PI- GAMMA			DECAY MASSES 139+ 139+ 0	
P2 P3	M INTO PI+ PI- ETA			770+ 0 139+ 139+ 548	
P4 P5	M INTO PIO ETA M INTO PI+ PI- PIO			134+ 548 139+ 139+ 134	
	59 M BRA	NCHING RATIOS			
R1 R1	M INTO (RHOO GAMMA)/(A 58 0.05 0.1	LL PI+ PI- GAMMA) AGUILAR	70 HBC	(P2)/(P1) 3.9+4.6K-P,P K-M	1/71
R2 R2	M INTO (PI+ PI- GAMMA) 58 1.2 0.3	/(PI+ PI- ETA NEU AGUILAR	TR.) 70 HBC	(P1)/(P3N) 3.9-4.6K-P,P K-M	1/71
R3 R3	M INTO (PI+ PI- PIO)/T 58 NOT OBSERVED	OTAL AGUILAR	70 HBC	(P5) 3.9-4.6K-P.P K-M	1/71
R4 R4	M INTO (PIO ETA NEUTR. 58 NOT OBSERVED	AGUILAR	70 HBC	(P4N) 3.9-4.6K-P,P K-M	1/71
*****	****	******	*****	*****	
		REFERENCES FOR M			
AGUILA	R 70 PRL 25 1635	AGUILAR-BENITEZ,	BA SS AND, SA	MIOS, BARNES+(BNL)	
MAGLICI ROSNER	H 71 PRL 27 1479 71 PRL 26 933	+OOSTENS, BRODY, CV J.L.ROSNER, E.W.CO	/IJANOVICH DLGLAZIER	(RUTG+PENN+UPNJ) (MINN+CIT)	
AGUILAN BRODY	R 72 PR 0 6 29 72 UPR+3E.SUBM.TO PR	AGUILAR-BENITEZ, C +GROVES, NOREM, CV	CHUNG, EISN IJANOVICH,	ER,SAMIOS (BNL) +(PENN+RUTG+UPNJ)	
******	***************************************	******	*******	******	
η'	(958) 2 ETA PI	RIME (958,JPG=0-+)	I=0		
	KNOWN	ALSO AS XO			

Note on the J^{P} Assignment of η' (958)

From the Dalitz plot analyses of the $\eta' \rightarrow \pi \pi \eta$ and $\eta' \rightarrow \pi^+\pi^-\gamma$ decays, and from the observation of a $\eta' \rightarrow YY$ decay mode, all assignments except J^{PC} = 0^{-+} and 2^{-+} are excluded. The Dalitz plot analyses favor spin 0 but cannot rule out spin 2. However, various attempts to find evidence for a spin different from zero, by searching for anisotropies in η' decay, were unsuccessful. The most complete study was made by DANBURG 72 with about 1000 η' decays from the reaction K $p \rightarrow \eta' \Lambda$ at 2.2 GeV/c. This number of events was sufficient to make cuts on momentum transfer and Λ polarization angle. No η' decay anisotropies or correlations were found. This is rather suggestive evidence that the η' spin is indeed zero. Presumably an Adair-type analysis could be used to settle this question unambiguously.

				2 FTA	PRIME MASS	(MEV)			
1	0	ON	LY EXPER	RIMENTS GIV	ING ERROR	LESS THAN	3 MEV KEPT	FOR AVERAGING	12/72*
1		85	(957.0)			DAUBER	64 HBC	1.95 K-P	
1	к		(958+0)	(1.0)		KALBFLEIS	64 HBC	2.7 K-P	6/66
1	к		KALBFI	EISCH 64 S	UPERSEDED	BY RITTEN	BERG 69		
1	0		(957.0)	(3+0)		BADIER	65 HBC	3.0 K-P	
1		8	960.0	2.0		TRILLING	65 HBC	3.65 PI+ P	9/66
1	0	7	(955.0)	(10.0)		COHN	66 DBC	3.3 PI+D	6/66
1	0		(959.0)	(3.0)		LONDON	66 HBC	2.2 K-P	6/66
1	0		(960.0)	(5.0)		MOTT	69 HBC	4.1-5.5 K- P	7/69
1			957.	1.		RITTENBER	69 HBC	1.7-2.7 K- P	9/69
1			956.0	2.0		AGUILAR	70 HBC	3.9-4.6K-P	1/71
1		3415	956.1	1.1		BASILE1	71 CNTR	1.6 PI- P,N XO	11/71
1		535	957.4	1.4		BASILE1	71 CNTR	1.6 PI- P,N XO	11/71
1			958.4	0.3		DANBURG	72 HBC	2.2 K- P.L XO	12/72*
4									
1	A٧	G	958.11	0.37	AVERAGE	(ERROR I	NCLUDES SCA	LE FACTOR OF 1.4)	
				1 SEE	IDEOGRAM P				

Mesons $\eta'(958)$

Data Card Listings For notation, see key at front of Listings.

The matrix below is derived from the error matrix for the fitted partial decay mode

The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_{1i} as follows: The <u>diagonal</u> elements are $P_{1i} \pm \delta P_{1j}$, where $\delta P_1 = \sqrt{\langle \delta P_1 \delta P_2 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients ($\delta P_1 \delta P_2 \rangle$, $\delta P_1 \rangle$, For the definitions of the individual P_1 , see the listings above; only those P_1 appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

P 1 P 2 P 3 P 4 .4719+-.0342 P 3 P 4 -.3506 .2465+-.0207 -.6026 -.5278 .2622+-.0350 .0217 -.1663 .0036 .0194+-.0029 P 1 P 2 P 3 P 4

Note on nº (958) Branching Fractions

In our calculation of the branching fractions of the η ' (958) we assume the decay modes $\eta \pi \pi$ (including $\eta \pi^0 \pi^0$, 71% of the η 's have neutral decays), $\rho^0 \gamma$, and yy.

In the fit we do not use the constraint

 $R = \Gamma (\eta^{!} \rightarrow \eta \pi^{+} \pi^{-}) / \Gamma (\eta^{!} \rightarrow \eta \pi^{0} \pi^{0}) = 2$

from I-spin conservation. The result of the fit is in agreement with it, $R = 1.9 \pm 0.2$.

2 ETA PRIME BRANCHING RATIOS	
R1 ETA PRIME INTO (P1+ P1-ETA (NEUTRAL DEC.))/TOTAL (P1N) R1 K G0.36) (0.05) KALBFLEIS 64 AUPERSEDED BY RITTENBERG 69 R1 Z 0.026 RITTENBERG 69 Cold and and and and and and and and and an	10/66 9/69
R1 R1 FIT 0.336 0.024 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.01	ı
R2 ETA PRIME INTO (P1+ P1- NEUTRALS) / TOTAL (P1N+P2C) R2 33 0.35 0.06 BADLER 65 HBC 3.0 K-P R2 39 0.4 0.1 LONDON 66 HBC 2.2 K-P R2 39 0.4 0.1 LONDON 66 HBC 2.2 K-P	10/66 10/66
R2 AVG 0.363 0.051 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R2 FIT 0.407 0.023 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.3)	
R3 ETA PRIME INTO (PI+ PI- ETA (CHRGD.DECAY))/TOTAL (PIC) R3 K 44 (0.12) (0.02) KALBFLEIS 64 HBC 2.7 K-P R3 K KAIBFLEISCH 64 SUBCERED R9 PUTTENBECK 60	10/66
R3 7 0.07 0.04 BADIER 65 HBC 3.0 K-P R3 10 0.1 0.04 LONDON 66 HBC 2.2 K-P	10/66 10/66
R3 107 0.123 0.014 R1TENDER 09 HBC 1.7-2.7 R-P R3 AVG 0.116 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.01 R3 FIT 0.1364 0.0099 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.01	9769
R4 ETA PRIME INTO (PI+ PI- NEUTRALS (EXCLUDING (P2C) R4 PI+ PI- ETA (NEUTRADEC.)) / TOTAL	
R4 K 10 (0.05) (0.04) KALBFLEIS 64 HBC 2.7 K-P R4 K KALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69 R4 K KALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69	10/66
R4 FIT 0.0712 0.0060 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	47.64
R5 ETA PRIME INTO (NEUTRALS) / TOTAL (P2N+P4) R5 K 54 (0.25) (0.05) KALBFLEIS 64 HBC 2.7 K-P	10/66
R5 K KALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69 R5 16 0.24 0.17 BADIER 65 HBC 3.0 K-P R5 32 0.3 0.1 LONDON 66 HBC 2.2 K-P	10/66
R5 123 0.189 0.026 RITTENBER 69 HBC 1.7-2.7 K-P R5 535 0.185 0.022 BASILE1 71 CNTR 1.6 PI-P,N X0	9/69 11/71
R5 AVG 0.190 0.016 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R5 FIT 0.195 0.025 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.8)	s I
R6 ETA PRIME INTO (PI+ PI- GAMMA (INCLUDING RHO GAMMA))/TOTAL R6 (P3)	
R6 K 42 (0.04) KALBFLEIS 64 HBC 2.7 K-P R6 K KALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69 R6 X XALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69 R6 X XALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69	10/66
R6 20 0.2 0.1 LONDON 66 HBC 2.2 K-P R6 298 0.329 0.033 RITTENBER 69 HBC 1.7-2.7 K-P	10/66
R6 AVG 0.316 0.038 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) R6 FIT 0.262 0.035 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.2)	l
R7 ETA PRIME INTO (PI+ PI- GAMMA (INCLUDING RHO GAMMA))/(PI PI ETA) R7 (P3//(P1+P2)	
R7 0.25 0.14 DAUBER 64 HBC 1.95 K-P R7 ETT 0.345 0.45 ERDN ETT (ERDD INCLUDES SOLLS FLOTD OF A 11	10/66
R8 ETA PRIME INTO (PIO E+ E-)/TOTAL (PIG)	
R9 ETA PRIME INTO (ETA E+ E-)/TOTAL (P17)	10/66
R9 (0.011)OR LESS RITTENBER 65 HBC 2.7 K-P R10 ETA PRIME INTO (PIO RHOO)/TOTAL (P18)	10/66
R10 (0.04) OR LESS RITTENBER 65 HBC 2.7 K-P R11 ETA PRIME INTO (PIO OMEGA) /TOTAL (P10)	10/66
R11 (0.08) OR LESS RITTENBER 65 HBC 2.7 K-P	10/66
R12 (0.006) OR LESS RITTENBER 65 HBC 2.7 K-P	10/66
R13 ETA PRIME INTO (2 PI)/TOTAL (P11) R13 (0-07) OR LESS LONDON 66 HBC COMPILATION	10/66
R14 ETA PRIME INTO (3 PI)/TOTAL (P12) R14 (0.07) OR LESS LONDON 66 HBC COMPILATION	10/66
R15 ETA PRIME INTO (4 PI)/TOTAL (P13) R15 (0.01) OR LESS LONDON 66 HBC COMPILATION	10/66
R16 ETA PRIME INTO (6 PI)/TOTAL (P15) R16 (0.01) OR LESS LONDON 66 HBC COMPILATION	10/66
R18 ETA PRIME INTO (RHOO GAMMA)/(PI PI ETA) (P6)/(P1+P2) R18 0.31 0.15 DAVIS 68 HBC 5.5 K- P	9468
R18 R18 F1T 0.365 0.065 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.1)	
R19 ETA PRIME INTO (2 GAMMA)/TOTAL (P4) R19 5 0.055 0.036 0.030 BOLLINI 68 CNTR 1.9 PI- P R10 7 0.124 0.075 0.030 BOLLINI 68 CNTR 1.9 PI- P	12/72*
R19 S 41 (0.017) (0.004) BASILE2 71 CNTR 1.6 PI- P.N XO R19 S SUPERSEDED BY DALPIAZ 72	12/72*
R19 31 0.020 0.008 0.006 HARVEY 71 OSPK 3.65 PI- P,N X0 R19 68 0.0171 0.0033 DALPIAZ 72 CNTR 1.6 PI- P,N X0 R19	11/71 12/72*
R19 AVG 0.0181 0.0030 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R19 FIT 0.0194 0.0029 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	
R20 ETA PRIME INTO (P1+P1-)/TOTAL R20 (0.02) OR LESS RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R21 ETA PRIME INTO (P1+PI-PIO)/TOTAL (P12) R21 (0.05) OR LESS RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R22 ETA PRIME INTO (PI+PI+PI-PI-)/TOTAL (PI3) R22 (0.01) OR LESS RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R23 ETA PRIME INTO (PI+PI+PI-PI-PIO)/TOTAL (P14) R23 (0.01) OR LESS RITTENBER 69 HBC 1.7-7.7 K-P	
R24 ETA PRIME INTO (PI+PI+PI-PI- NEUTRALS)/TOTAL (P16+) R24 (0.01) OR LESS RITTENARE AG HAC 1.7-2 7 -0	9/40
R25 ETA PRIME INTO (RHOO GAMMA)/(ALL PI+ PI- GAMMA) (P6)/(P3)	3769
R25 (1.1) (0.1) DANBURG 72 HBC 2.2 K- PiL XO	1/71 12/72*

.

Mesons

$\eta'(958), \ \delta(970)$

Data Card Listings

For notation, see key at front of Listings.

R26 ETA PRIME INTO (PIO PIO ETA INTO 3 PIO)/TOTAL (P2N(3PIO)) P2A R26 4 0.11 0.06 BENSINGER 70 DBC 2.2 PI+ D 1/71 R26 1.00739 0.0062 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 1/71 R27 ETA PRIME INTO (PI+ PI- GAMMA)/(PI+ PI- ETA(NEUTRAL DEC.)) 1/71 1/72 R27 ETA PRIME INTO (PI+ PI- GAMMA)/(PI+ PI- ETA(NEUTRAL DEC.)) 1/72 1/72 R27 0.54 0.10 AGUILAR 72 HBC 2.7 (HC) 1/72 R27 (0.61) 0.009 DANBURG 72 HBC 2.2 K+ P, L XO 2/73* R27 10.78 0.15 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.3) 1/73* R28 ETA PRIME INTO(2 GAMMA)/(PIO PIO ETA(NEUTRAL DEC.) (P4)/(P2(N)) 1/73* R28 16 0.188 0.058 APEL 72 OSPK 3.8 PI- P,N XO 1/73* R28 FIT 0.111 0.054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.8) 1/73* R28 FIT 0.111 0.054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.8) <th>36 DELTA(970) MASS (MEV) M PEAKS SEEN IN MISSING MASS EXPERIMENTS M K 202 (962.0) (5.0) % KENZLE 65 MMS - 3-5 PI-P 9/66 M K 202 (962.0) (5.0) % KENZLE 65 MMS - 3-5 PI-P 9/66 M K 107 SEEN BY BANKERI 67 (11.8 PI-P) 66 MMS + 3.8 PP TO D + HM 9/66 975.0 6-0 6-0 AND AND RSCN 71 60 MMS + 3.8 -6.3 PP0+HM 1/71 M N 125 (962.9) (1.7) CHESHIRE 72 MMS 0 2.4 PI-P,N MM 12/72* M N NOT SEEN BY BINNIE 72 AT THRESHOLD. MMAR 68 HBC - 3.2 PI-P 5/70 M S 30 90.0 10.0 AMMAR 68 HBC - 3.2 PI-P 5/70 M S 30 900.0 15.0 BARNES 69 HBC - 4.5 K-PITETA PI 3/69 M 20 970.0 15.0 BARNES 69 HBC - 4.5 K-PITETA PI 3/69 M 20 970.0 15.0 BARNES 69 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0 BARDADIN 71 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0 BARDADIN 71 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0</th>	36 DELTA(970) MASS (MEV) M PEAKS SEEN IN MISSING MASS EXPERIMENTS M K 202 (962.0) (5.0) % KENZLE 65 MMS - 3-5 PI-P 9/66 M K 202 (962.0) (5.0) % KENZLE 65 MMS - 3-5 PI-P 9/66 M K 107 SEEN BY BANKERI 67 (11.8 PI-P) 66 MMS + 3.8 PP TO D + HM 9/66 975.0 6-0 6-0 AND AND RSCN 71 60 MMS + 3.8 -6.3 PP0+HM 1/71 M N 125 (962.9) (1.7) CHESHIRE 72 MMS 0 2.4 PI-P,N MM 12/72* M N NOT SEEN BY BINNIE 72 AT THRESHOLD. MMAR 68 HBC - 3.2 PI-P 5/70 M S 30 90.0 10.0 AMMAR 68 HBC - 3.2 PI-P 5/70 M S 30 900.0 15.0 BARNES 69 HBC - 4.5 K-PITETA PI 3/69 M 20 970.0 15.0 BARNES 69 HBC - 4.5 K-PITETA PI 3/69 M 20 970.0 15.0 BARNES 69 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0 BARDADIN 71 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0 BARDADIN 71 HBC - 4.5 K-NETA PI 17/69 M 21 940.0 7.0
BADLER 65 PL 17 337 BADLER, DEMOULIN, BARLOUTAUD+ (EPOL+SACL+ZEEN) KIENZLE 65 PL 19 438 KIENZLE KIELE, HAALLE, LEVRAT, LEFEBVRES + (CEN) RITTENDE 65 PL 15 556 KITTENBERG, KALBFLEISCH (IRI+BNL) TRILLING 65 PL 13 576 KITTENBERG, KALBFLEISCH (IRI+BNL) CONN 66 PL 21 347 CONN, GOLDHABERS, KADYK, SCANIO (IRI+BNL) LONDON 66 PL 21 347 CONN, MCULLOCH, BUGG, CONDO (DRNL+TENN+UCND) LONDON 66 PL 21 347 CONN, MCULLOCH, BUGG, CONDO (DRNL+TENN+UCND) BARBARO- 68 PL 20 349 BARBARO-GALTIERI, MATISON, RITTENBERG+ (INIANA U)I BARBARO- 68 PL 20 249 BARBARO-GALTIERI, MATISON, RITTENBERG+ (ILI)I=0 BARLOUTA 68 PL 20 805 HOERLER, MALTIZ, MASSAH ICERN+GANA+REHO+EPOLII=0 BARLOUTA 68 PL 20 805 HOERLER, MALTIZ, MASSAH ICERN+GANA+REHO+EPOLII=0	
AGUILAR TO PRL 25 1635 AGUILAR-BENTIFZ, BASSANO, SAMIDS, BARNES+(BNL) BENSINGE 70 PL 23 8 505 BENSINGER, ERWIN, THOMPSON, H.D., WALKER (WISC) BARDADIN 71 PR 04 2711 BARDADIN-TOWINOWSKA, HOPMOKL, MICHEJDA+(MARS) BASILE1 TI NO 31 +BOLLINI, DALPIAZ, FRABETTI, +(CERN+BGAN+STRB) BASILE2 TI NP 83 29 +BOLLINI, DALPIAZ, FRABETTI, +(CERN+BGAN+STRB) BASVEZ TI PRL 27 855 +BOLLINI, DALPIAZ, FRABETTI, +(CERN+BGAN+STRB) GAUTLAR TRUE YES HARVEY TI PRL 27 GOILVETS TI PL 25 B GOILVETS (DUBN+S) (DUBN+S) AUUILAR TENTEZ, CHUNG, ELSTEN, SANUSCY (DUBN+S) (DUBN+S) (DUBN+S) APEL 72 PL<05	Hot DerDia 72 HBC 0.4 Hot DerDia 71 HBC 6.5 Hot DerDia 9 HBC 0.1 Hot DerDia 980 1000 1040 Hot DerDia 1040 =0.027) 11.0 DELTA (970) MASS (MEU) 1040 =0.027) DELTA (1030.3) 7.0+575 TEMATIC ROSENFELD 65 RVUE ← .8/66 M A 1001004.1 100.1 .8/66 M A 10010104.1 100.1 .8/66 .7/FBAR P .7/67
$\delta(970) \rightarrow \eta \pi, \cdots$	M A SCATTLENGTH +2.5 → 1. FERMI ASTER 67 HBC → 0-1.2 PBAR P 7/67 M OR CMPLX: RE PART=-2.5 F
Under this entry, we list three types of I = 1 peaks near KK threshold.	H PEAKS SEEN IN MISSING MASS EXPERIMENTS # \$ 262 (5,0) OR LESS CAPERIMENTS # \$ 262 (5,0) OR LESS ODSTENS 66 MMS + 3.8 PP TD D + MM 9/66 W \$ 00,0 16:0 10.0 ABOLINS 70 MMS + 3.8-6.3 PPD+MM 1/71 # \$ 215 (5,9) OR LESS CL-9,9 CHESHIRE 72 MMS 0 2.4 PI- P,N MM 12/72* # \$ SEE NOTES ON DELTA MASS ABOVE
 Missing-mass peaks, some of them controversial. η_π decays, peaking slightly below KK threshold. This defines I^G = 1⁻ and J^P = Normal. Threshold enhancements in the (KK)[±] system with I = 1. The Q value is low and J^P therefore 	W ETA PI FINAL STATE ONLY W 30.00 30.0 DEFDIX 68.HBC. ← ,5.5K-,ETA PI 2/73* W 300 (25.0) DEFDIX 68.HBC. ← ,5.5K-,ETA PI 2/73* W 80 (25.0) OR LESS BARNES 69.HBC. ← ,2.PB P,ETA PI 3/69 W 40.15. CAMPBELL 69 DBC. ← -4.5.F.PI-ETA 9/69 1/73* W R 15 (60.0) (30.0) MILLER 69 HBC. ← -4.7.PI. D. PI 1/73* W R 15 (60.0) (25.0) MILLER 69 HBC. ← -4.7.PI.E.N.E0 PI 1 2/72 W R 15 (60.0) (26.0) MILLER 69 HBC. ← -4.7.PI.E.N.E0 PI 1 2/72 W R 15 (30.0) 12.60 DEFDIX 72 HBC. ← -7.7.PBA P.7.PI 1 1/73* W R 15 (30.0) 12.00 DEFDIX 72 HBC. ← -7.7.PBA P.7.PI 1 1/73* W R RESOLUTION NOT UNFOLDED AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) V K KABAR ONLY, SEE THE TYPED NOTE ABOVE + 4/3 (57.0) 13.0+5*YSTEMATIC ROSENFELD 65 RVUE +- 8/66 W A 100 (25.1, APROX. ASTIER 67 HBC. +- SEE NOTE A ABOVE 9/67 9/67
In listing them together under a common entry we do not imply that they are necessarily all related. However, the KK threshold enhancement may be due to a virtual bound state that could also be responsible	36 DELTA(970) PARTIAL DECAY MODES P1 DELTA(970) INTO FA P1 DECAY MASSES P2 DELTA(970) INTO FA P1 54.84 134 P3 DELTA(970) INTO FA 77.04 134 P4 S DELTA(970) INTO KBAR 77.04 134 P4 S SEE THE TYPED NOTE ABOVE 77.04 134
for the $\eta \pi$ peaks (ASTIER 67). More complete studies of the mass dependence of the KK threshold effect, using coupled channel analysis, are needed to clarify this question.	36 DELTA(970) BRANCHING RATIOS R1 DELTA(970) INTO (RHO PI)/(ETA PI) (P3)/(P2) (0.25) DTO LESS (L=.70 AMMAR 70 HBC ↔ 4.1,S.5K-,ETA PI. 5/70 R10 CHARGED DELTA OF KIENZLE 65 INTO (1 CHARGED)/(3 DR MORE CHARGED) R10 1.3 0.9 0.7 KIENZLE 65 MMS - 3-5 PI - P 9/66 R11 DELTA OF CHESHIRE 72 INTO (NEUTRAL)/(TWO-CHARGE)/(FOUR-CHARGE) R11 DELTA OF CHESHIRE 72 INTO (NEUTRAL)/(TWO-CHARGE)/(FOUR-CHARGE) R11 DELTA OF CHESHIRE 72 INTO (NEUTRAL)/(TWO-CHARGE)/ R11 DELTA OF CHESHIRE 72 MMS 0 2.4 PI - P.N MM 12/72*

o(a.n), H(aan),

.

	REFERENCES FOR DELTA
TURKOT 63 SIENNA CONF 1 661	+COLLINS,FUJII,KEMP+ (BNL+PITTSBURGH)
ARMENTER 65 PL 17 344 BARASH 65 PR 139 B 1659 KIENZLE 65 PL 19 438 ROSENFEL 65 OXFORD CONF 58	ARMENTEROS,EDWARDS, JACOBSEN + (CERN+CDEF) +FRANZINI,KIRSCH,MILLER,STEINBERGER+ (COLU) + MAGLIC,LEVRAT,LEFEBVRES + (CERN) A H ROSENFELD (LRLRVUE)
ALLEN D 66 PL 22 543 BALTAY 66 PR 142 B 932 FOCACCI 66 PRL 17 890 OOSTENS 66 PL 22 708	+GP FISHER,G GODDEN,L MARSHALL,SEARS (COLOJG=+ +LACH,SANDWEISS,TAFT,YEH,STONEHILL+ (YALE) + KIENZLE,LEVRAT,MAGLIC,MARTIN (CERN) +CHAVANON,CROZON,TOCQUEVILLE (SACLAY,CDEF}I=1
ALLISON 67 PL 258 619 ASTIER 67 PL 25 B 294 ASTIER 67 PL 25 B 294 BAILLON 67 NC 50A 393 BANNER 167 PL 25 B 300 BANNER 2 67 PL 25 B 300 BARLOW 67 NC 50A 701 CONFORTO 67 NP B3 469	+CRUZ+ {OXF+MPIN+BIRM+RHEL+GLAS+LOIC} +MONTAMET, BAUBILLIER, DUBOC+(CDEF+CERN+IRAD} SARLOW 67, COMPORTO 67, FAMENTEROS 65, +EDWARDS+D.ANDLAU+ASTIER+ (CERN+CDEF+IRAD) +FAYOUX, HAMEL, JSEMBERY, CHEZE+ (SACLAY+CAEN) +CHEZE, HAMEL, MAREL, TEIGER+ (CDEF+SACL) +MONTANET, D, ANDLAU+ (CERN+CDEF+IRAD+LIVP) CONFORTO, MARECHAL+ (CERN+CDEF+IRDP+LIVP)
AMMAR 68 PRL 21 1832 CHUNG S 68 PR 165 1491 DEFOIX 68 PL 28 8 253 GALTIERI 68 PRL 20 349 JUHALA 68 PL 27 B 257 SABRE CO 68 PL 26 B 674	+DAVIS,KROPAC,DERRICK,FIELDS,+ (NWES+ANL) +OLOAHL, J. KIRZ, D.H.MILLER (LR.) #RIVET,SIAUD,COMFORTO+ (CDEF+IPNP+CERN) BARBARO-GALTIERI,MATISON,RITTENBERG+ (LR.) +LEACOCK,FNDDE,KOPELMAN,LIBBY+ (IOMA+COLO) BARLOUTAUD+ (SACL+AMST+BGNA+REHO+EPOL)
BARNES 69 PRL 23 610 CAMPBELL 69 PRL 22 1204 CRENNELL 69 PRL 22 1398 JUHALA 69 PR 184 1461 KRUSE 69 PR 171 951 MILLER 69 PR 188 2011 SCHROEDE 69 PR 188 2081	+CHUNG,EISNER,BASSAND,GOLDBERG+ (BNL+SYRA) J.H.CAMPBELL,ICHTMAN,LOFFLER,+ (PURDUE) +KARSHON,KWAN HU LAI,+ (BNL+NYU) +LEACOCK,RHODE,KOPELMAN,LIBBY,+ (ISU+COLO) KRUSE,LOOSGOLWASSER (ILLINOIS) D.H.MILLER,S.L.KRAMER,D.D.CARMONY,+FUPURDUE) YEN,AMMANN,CARNONY,ELSNER,+ (PURDUE) SCHROEDER,KERNAN,FISHER,LIBBY,+ (ISU+COLO)
ABOLINS 70 PRL 25 469 AMMAR 70 PR D 2 430 COOPER 70 NP B 23 605 YIOU 70 THESIS, A 646	+GRAVEN,MCCARTHY,G.SMITH,L.SMITH+ (LRL+UCD) +RROPAC,DAVIS,DERRICK+ (KANS+NWES+ANL+WISC) +HANNER,MUSGRVE,POLLARD,VOYVODIC (ANL) TCHIU-PUNG YIOU (ORSAY)
ANDERSON 71 PRL 26 108 BARDADIN 71 PR D4 2711	+DIXIT,+ (CHIC+ANL+CARL+LASL+CNRC+NAGOYA) BARDADIN-OTWINOWSKA,HOFMOKL,MICHEJDA+(WARS)
ATHERTON 72 SUBM. TO PL BINNIE 72 PL 39 B 275 CHESHIRE 72 PRL 28 520 DEFOIX 72 NP B 44 125 DUBOC 72 NP B 46 429 HOLLOMAY 72 PHIL.CONF.PROC.133	+FRANEK,FRENCH,GHIDINI,HILPERT,+ (CERN) +CAMILLERI,DUANE,GARBUTT,BURTON+(LDIC+SHMP) +HOFFMAN,GARFINKEL+ (IOWA+ANL+PURD) +NASCIMENTO,BIZZARRI,+ (COEF+CERN) +GOLDBERG,MAKOWSKI,DONALD,+ (LPNP+LIVP) +HULD,KOETZ,KRUSE,BERNSTEIN,+ (ILL+ILLC)
****** ****	******* ********* ******* *************
н(аао) за н (аас	DEST - I ISO
THE EVIDEN RE-ANALYSI SIGNIFICAN	THE OF DEMSION OF HAS UISAPPEARED AFTER (S (CHAUDHARY 70). NO STATISTICALLY IT EVIDENCE FOR THE PRE-1968 H-ENHANCE-
MENT THERE HOWEVER, G	FORE REMAINS (BARBARO-GALTIERI 69). OLDHABER 69 REPORT A NEW (PI+PI-PIO)
EN HANCEMEN SEEN UNDER	NT AT ABOUT THE SAME MASS, M=1000 NEV, R CONDITIONS DIFFERENT FROM THOSE OF THE SERVATIONS. ONTITED FERM TABLE
CARLIER UB	******* ******** ********* ********* ****
	REFERENCES FOR H
BARTSCH 64 PL 11 167 GOLDHABE 65 CORAL GABLES P-74	AACHEN-ZEUTHEN-BIRM-BONN-HAMB-MUNCHEN COLL G. GOLDHABER
BENSON 66 PRL 17 1234 COHN 67 NP 81 57	+MARQUIT, ROE, SINCLAIR, VANDER VELDE (MICH) IJP +MC CULLOCH, BUGG, CONDO (ORNL+UNIV. TENN)
RUSENFEL 67 RMP 39 1, APPENDIX ARMENISE 68 PL 268 336 BARBARD- 68 PHILAD COME P 127	KUSENFELD, BARBARO-GALTIERI+(LRL+CERN+YALE) +GHIDINI, FORINO+ (BARI+BGNA+FIRZ+ORSAY) A. BARBARD-GALTIERI-P.SONING
FUNG 68 PRL 21 47 GOLDHABE 69 LUND CONF.P.273	G.GOLDHABER QUOTED BY B.MAGLIC (LRL)
CHAUDHAR 70 PR D 2 2110 GORDON 70 COD 1195 179 MICHAEL 72 DD1 20 177	B.CHAUDHARY, E.MARQUIT (MINNESOTA) THESIS, ILLINDIS (ILL)
MICHAEL 72 PKL 28 1475	M.MILTAEL;0.010AL (LBL)
****** ********* ********* ***	******* ********** ********************
S [*] (1000) 3 S* (10	000,JPG=0++) I=0
WE ONLY LI For Early	IST DETERMINATIONS OF POLE POSITION. WORK USING BREIT-WIGNER OR SCATTERING
LENGTH PAR SPECTRUM S	AMMEIRIZATION IN FITS TO THE (K KBAR) MASS See Reference Section and our 1972 edition.
S-wave KK Interactio	ons in the Region 990-1200 MeV
Under this entry	we list parameters of the S [*] pole
in the $I (J)C = 0 (0)$	a prostional linear the hering is a
entry "S-wave $\pi\pi$ int	cractions, near the beginning
or these Meson Data	Card Listings.
Note that possib	ion is listed senerately under
actions in the S reg	to its itsied separately under
"N ⁽¹⁰⁸⁰⁾ .	

Mesons δ(970), H(990), S^{*}(1000), φ(1019)

3	REAL PART OF	THE S* POL	E POSITION	(MEV)	1.
M H 970. M H 920.	30. 130. 80. 90.	HOANG HOANG	69 OSPK 69 OSPK	4. PI-P,KS KS N 5. PI-P,KS KS N	1/73* 1/73*
M B (965.) M B CALCULATED FRO	M SCATTERING LE	BEUSCH	70 OSPK F BEUSCH 70	4,6 PI-₽	1/73*
M (996.0) M 997.	5.	BA SDEVANT PROTOPOPE	72 RVUE 72 HBC	SHEET 2 SHEET 2 7. PI+ P	1/73* 1/73*
M AVG 996.6	5.0 AVERAG	E (ERROR I	NCLUDES SCA	LE FACTOR OF 1.0)	
3 C0	NEGATIVE IMAG DRRESPONDS TO HA	. PART OF LF-WIDTH, I	THE S* POLE NOT FULL WI	POSITION (MEV) DTH.	
WH 40. WH 30.	40. 60. 30. 70.	HOANG HOANG	69 OSPK 69 OSPK	4. PI-P,KS KS N 5. PI-P,KS KS N	1/73* 1/73*
W B (13.) W (65.0)		BEUSCH BASDEVANT	70 OSPK 72 RVUE	4,6 PI-P	1/73*
W P ANOTHER SOLUTI	ION HAS 52 MEV A	ND NO EPSI	ION POLE.	7. PI+ P	1//3*
W AVG 27.4	7.8 AVERAG	E (ERROR I	NCLUDES SCA	LE FACTOR OF 1.0)	
****** *******	***** *******	*****	*******	*****	
UNC (1 (570 12 22	REFEREN	ICES FOR S*			
BIGI 62 CERN CONF BINGHAM 62 CERN CONF	247 A BIGI	S BRANDT, 1	R CARRARA +	+ (JINK) (CERN) (EPO) +(EPN)	
ERWIN 62 PRL 9 34 BALTAY 64 DUBNA CONF	ERWIN, H	DYER, MARCH	WALKER, WAN	GLER (WISC+BNL)	
BARMIN 64 DUBNA CONF CRENNELL 66 PRL 16 102	1 433 BARMIN 5 CRENNEL	DOLGOLENKO	YEROFEEV,K SCH,LAI,SCA	RESTNI+ (ITEP) RR;SCHU+ (BNL)	
HESS 66 PRL 17 110	9 +DAHL+F	IARDY+KIRZ+	MILLER	(LRL)	
BARLOW 67 NC 50A 701 BEUSCH 67 PL 25 B 35	+LILLES 7 +FISCHE	R, GOBBI, AS	ET+ (CERN+ TBURY+	(ETHZ+CERN)	
ALITTI 68 PRL 21 170	5 +BARNES	CRENNELL,	FLAMINIO, GO	LDBERG,+ (BNL)	
PHELAN 68 THESIS ALSO 68 PRL 21 316	JAMES J HOANG, E	ARTLY, PHELAN	(ANL AN, ROBERTS+	+ST.LOUIS UNIV) (ANL+CHIC+NDAM)	
AGUILAR- 69 PL 29 B 2 ALSO 67 BARLOW	41 M.AGUII	A R-BENITEZ	,J.BARLOW,+	(CERN+CDEF)	
ALSO 69 NP B 14 19 HOANG 69 NC 61 A 32	5 M.AGUIL 5 T.F.HO	AR-BENITEZ	J. BARLOW,+	(CERN+CDEF) (ANL)	
BADIER 70 NP 8 22 51	2 +BONNET	DREVILION	- BAURTI I TER	(ANL+1LLC)	
BATON 70 PL 33 B 52 BEUSCH 70 PHILA.CONF	8 +LAUREN •P•185 W•BEUSC	S,REIGNIER		(SACLAY) (ETHZ+CERN)	
HYAMS 70 PHILA.CONF ALSO 70 NP B 22 18	•P•41 +KOCH,E 9 HYAMS,K	EUSCH,+	CERN+MPIM+	ETHZ+LOIC+HAWA} N,+ (CERN+MPIM)	
OH 70 PR D 1 249 ALSTON-G 71 PL 36 B 15	4 +GARFIN 2 ALSTON-	GARNJOST, B	WALKER, PREN ARBARO – GALT	TICE(WISC+TNTO) IERI,+ (LBL)	
BASDEVAN 72 PL 41 B 17 DAMERI 72 NC 9 A 1	8 BASDEVA	NT, FROGGAT	, PETERSEN	(CERN)	
DUBOC 72 NP 8 46 42 FLATTE 72 PL 38 B 23	9 +GOLDBE	RG, MAKOWSK	. DONALD,+	(LPNP+LIVP) TIERI,+ (LBL)	
GRAYER 72 PHIL.CONF. PROTOPOP 72 PREPRINT	PROC. 5 +HYAMS, LBL-970 PROTOPO	JONES, SCHL	EIN,BLUM,DI DN,BARBARG,	ETL+(CERN+MPIM) FLATTE,+ (LBL)	
WILLIAMS 72 PR D 6 317	N P.K.WIL	LIAMS		(FSU)	
****** *********	**** *******	*****	*******	*****	
	*****	*****	******	*****	
φ(1019) 4	PHI (1019,JPC	=1) I=0			
M 1019.0	2.0	SCHLEIN	63 HBC	2.0 K- P	
M 1018.6 M 1020.0	0.5	MILLER D	65 HBC 66 HBC	0.0 PBAR P 2.2 K-P	8/66 6/66
M 1021.5 M 1019.	0.8	ABRAMS BARLOW	67 HBC 67 HBC	4.2 K- P 1.2 PBAR P	11/67
M 165 1022. M 1018.	4.0 1.5 0.5 0.35	MOSTEK	68 OSPK	1-4 PI+ P 1.8 GAMMA + C	6/68
M (1020.) M 1021.0	(1.)	SABRE	70 DBC 71 OSPK	3.0 K- N GAMMA+C	1/71
M 1019.9 M 410(1019.9)	0.6 (0.3)	DIBIANCA STOTTLEMY	71 DBC 71 HBC	4.93 K- N 2.9 K-P,Y K KBAR	1/72 11/71
M 120 1019.6 M 100 1019.9	0.3	AGUILAR AGUILAR	72 HBC 72 HBC	3.9,4.6 K- P 3.9,4.6 K- P	12/72* 12/72*
M 87 1020.8 M 131 1020.4	0.8 0.5	BALAKIN COLLEY	72 OSPK 72 HBC	E+ E- COLL.BEAMS 10.K+ P.K+ P PHI	12/72* 12/72*
M AVG 1019.59	0.31 AVERAG	E (ERROR I	NCLUDES SCA	LE FACTOR OF 1.9)	
4	PHI WIDTH (ME	11			
W 3.5	1.0	MILLER D	65 HBC	0.0 PBAR P	8/66
W 1.8 W (10.) OR	3.0 1.5 LESS	ABRAMS	67 HBC 67 HBC	4.2 K- P 1.2 PBAR P	11/67
W 165 (4.5) W 150 4.2	(3.0) (2.0) 0.9	MOSTEK AUGUSTIN	68 OSPK 69 OSPK	1.8 GAMMA + C E+ E- COLL.BEAMS	6/68 12/72*
W 4.09 W 3.3	0.29 1.5 0.9	BIZOT HYAMS	70 OSPK 70 OSPK 71 OSPK	E+ E- COLL.BEAMS	12/72* 6/70
W 5.5 W S (4.7)	1.3 1.1	DIBIANCA	71 DBC 71 OSPK	4.93 K- N E+E- COLL. BEAMS	1/72 2/73*
W S SUPERSEDED BY W 110 (4.5)	JEAN-MARIE 73. (3.0) (4.0)	STOTTLENY	71 HBC	2.9 K-P,Y K KBAR	11/71
W 120 4.6 W 100 4.7	1.0 0.8 1.3 1.0	AGUILAR AGUILAR	72 HBC 72 HBC	3.9,4.6 K- P 3.9,4.6 K- P	12/72* 12/72*
w 131 5.0		A A A A A T A A			
W 3.81	1.3 0.34	COLLEY JEAN-MARI	72 HBC 73 OSPK	10.K+ P,K+ P PHI E+E- COLL.BEAMS	12/72* 2/73*

Mesons $\phi(1019)$

Data Card Listings For notation, see key at front of Listings.

WEIGHTED AVERAGE = 1019.59 ± 0.31	R8 PHI INTO (PI+ PI-)/(K KBAR) (SEE ALSO R18) (P8)/(P1+P2) R8 (0.2) OR LESS LONDON 66 HBC 2.2 K-P 10/66
	R9 PHI INTO (E+ E-)/(K+ K-) (UNITS 10**-4) (P5)/(P1) R9 (SEE ALSO R16)
CHISQ	R9 40 6-1 1-7 BECKER 68 CNTR GAMMA C 9/68
++	R10 3.5 3.5 1.8 WEHMANN 68 OSPK 12 K-C 6/68 R10 2.34 I.01 MOY 69 CNTR PHOTOPROD. 11/70
H	R10 2.17 0.60 EARLES 70 CNTR 6.0 BREMSSTR. 11/70 R10 2.69 0.46 HAYES 71 CNTR PHOTOPROD. .11/71
HOTER 72 HBC 0.0	RIO AVG 2.50 0.34 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
+	R11 PHI INTO (ETA GAMMA)/TOTAL (P4) R11 (0.2) OR LESS BADIER 65 HBC 3.0 K-P 10/66 R11 (0.08) OR LESS INNSEY 66 HBC 3.7 K-P 10/66
	R11 A 10 (0.020) (0.0075) BENAKSAS 70 OSPK E+ 2/72 R11 A SUPERSEDED BY BENAKSAS2 72 2/72 2/72
	R11 25 0.026 0.007 BENAKSAS2 72 OSPK E+E- COLL.BEAMS 2/73* R11
	R11 AVG 0.032 0.015 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.3) R11 FIT 0.030 0.011 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)
	R12 PHI INTO (PI+ PI- GAMMA)/(K KBAR) (P9)/(P1+P2) R12 (0.05) OR LESS LINDSEY 65 HBC 2.7 K-P 10/66
32.9 (CDNLEU	R13 PHI INTO (ETA NEUTRALS)/(K KBAR) (P13)/(P1+P2) R13 (0.15) OR LESS LINDSEY 66 HRC 2.7 K-P 10/66
1014 1018 1022 1026 1030 =0.000) PHI MASS (MEV)	R14 PHI INTO (DMEGA GAMMA) / TOTAL (P10) R14 (0.05) DR LESS LINDSEY 44 HPC 2.7 K-D 10///
4 PHI PARTIAL DECAY MODES	R15 PHI INTO (RHO GAMMA) / TOTAL (P12)
P1 PHI INTO K+ K- DECAY MASSES	R15 (0.02) UK LESS LINDSEY 66 HBC 2.7 K-P 10/66 R16 PHI INTO (E+ E-)/TOTAL (UNITS 10**-4) (P5)
P2 PHI INTO KLKS P3 PHI INTO PI+ PI- PIO (INCLUDING RHO PI) 139+ 139+ 134	R16 (SEE ALSO R9) R16 A 5 (6.6) (4.4) (2.8) ASTVACATU 68 DSPK 4 PI- P 6/68
P4 PHI INTO ETA GAMMA 548+ 0 P5 PHI INTO E+E− - 5+ 5 P6 PHI INTO MIE MIE- 205+ 35	R16 27 7-2 3-9 BINNIE 68 OSPK 1-6 PI-P . 6/68 R16 9 6-1 2-6 BOLLINI 68 CNTR 1-9 PI-P . 9/68
P7 PHI INTO PIO GAMMA 134+ 0 P8 PHI INTO PI+ PI- (VIOLATES G) 139+ 139	R16 C (3.45) (0.27) BIZOT 70 OSPK E+ E- COLL-BEAMS 11/71 R16 C SUPERSEDED BY CHATELUS 71 11/71 11/71 R16 2.81 0.25 RALAKIN 71 OSPK E+ E- COLL BEAMS 11/71
PIO PHI INTO PIFFI-GAMMA 139+ 0 PIO PHI INTO OMEGA GAMMA (VIOLATES C) 783+ 0 P11 PHI INTO ETA PIO (VIOLATES C) 548+ 134	R16 3.50 0.27 CHATELUS 71 OSPK E+ E- COLL-BEAMS 11/71 R16
P12 PHI INTO RHO GAMMA (VIOLATES C) 770+ 0 P13 PHI INTO ETA NEUTRALS P14 PUI INTO EDI	RIO AVG 3.15 U.34 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.9) RI7 PHI INTO (PIO GAMMA)/(TOTAL) (P7)
	R17 (.0035)OR LESS BEMPORAD 69 CNTR 5.5 GAMMA N 7/69 R17 A (0.0024)OR LESS CL=.95 BENAKSAS 70 OSPK E+ E- 2/72 R17 A SUPERSEDED BY BENAKSAS 70 OSPK E+ E- 2/72
FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS	R17 7 (0.0025) (0.0012) BENAKSAS2 72 OSPK E+E- COLL. BEAMS 2/73*
The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions. P., as follows: The diagonal elements are $P_{i} \pm \delta P_{i}$, where	KI8 PHI INTO (PI+ PI−)/(TOTAL) (UNITS 10**−4) (P8) R18 (SEE ALSO R8) R18 (SOO.) OR LESS LINDSEY2 65 HBC 1.7−2.7 K−0
$\delta P_{i} = \sqrt{\langle \delta P_{i} \delta P_{j} \rangle}, while the off-diagonal elements are the normalized correlation coeffi-$	R18 (50.) OR LESS CL=.95 BIZOT2 70 OSPK E+ E- COLL.BEAMS 11/71 R18 (80.) OR LESS CL=.95 BALAKIN 71 OSPK E+ E- COLL.BEAMS 11/71 R18 (10.) OR LESS CL=.95 BALAKIN 71 OSPK E+ E- COLL.BEAMS 1/71
above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and	R19 PHI INTO (KL KS)/(K+ K-) (P2)/(P1)
are thus constrained to add to 1. P = 1 $P = 2$ $P = 3$ $P = 4P = 1$ $P = 1$ $P = 2$ $P = 3$ $P = 4$	R19 144 0.89 0.10 AGUILAR 72 HBC 3.9,4.6 K-P 12/72* R19 125 1.15 0.15 COLLEY 72 HBC 10.K+P,K+P PHI 12/72* R19
P 23525 .3496+0272 P 338056557 .1524+0304	R19 AVG 0.97 0.12 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) R19 FIT 0.748 0.082 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)
P 4133815881287 .0305+0107	R20 PHI INTO (PI+ PI- PIO(INCL.RHO PI)/(K+ K-) (P3)/(P1) R20 34 0.28 0.09 AGUILAR 72 HBC 3.9,4.6 K- P 12/72*
	R20
4 PHI BRANCHING RATIOS	R21 PHI INTO (2PI+ 2PI- PIO)/(K+ K-) R21 (0.02) OR LESS CL=0.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/72*
RI PHI INTO (K+ K-)/TOTAL (P1) RI B 27 (0.26) (0.06) BADIER 65 HBC 10/66 RI 252 0.48 0.004 LINDEY 66 HBC 2.7 K-P 10/66	****** ********* ********* ************
R1 C (0.493) (0.044) BIZOT 70 OSPK E+ E- COLL.BEAMS 11/71 R1 C SUPERSEDED BY CHATELUS 71 11/71	REFERENCES FOR PHI BERTANZA 62 PRL 9 180 BERTANZA, BRISSON, CONNOLLY, MART 4 (BRLASVDA)
R1 0.540 0.034 BALAKIN 71 DSPK E+ E- COLL.BEAM 11/71 R1 0.486 0.044 CHATELUS 71 OSPK E+ E- COLL.BEAM 11/71 R1 0.486 0.044 CHATELUS 71 OSPK E+ E- COLL.BEAMS 11/71	GELFAND 63 PRL 11 438 GELFAND, MILLER, NUSSBAUM, KIRSCH+ (COLU+RUTG) GELFAND 63 DATA INCLUDED IN MILLER 65 BELOW
RI AVG 0.507 0.022 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) RI FIT 0.468 0.026 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)	BADIER 65 PL 17 337 BADIER, DEMOULIN, BARLOUTAUD+ (SACL+ZEEM)
R2 PHI INTO (KL KS)/TOTAL (P2) R2 B 25 (0.23) (0.06) BADIER 65 HBC 10/66	BERLEY 65 PR 139 B 1097 D BERLEY, N GELFAND (BNL+COLUMBIA) GALTIERI 65 PR 14 279 A BARBARD GALTIERI, R D TRIPP (LRL) LINDSEY 65 PR 12 14MES S LINDSEY (LRL)
R2 0.40 0.04 LINDSEY 66 HBC 2.7 K-P 10/66 R2 0.257 0.038 BALAKIN 71 OSPK E+ E- COLL.8EAMS. 1/73* R2 TO SPK E+ E- COLL.8EAMS. 1/73*	LINDSEY 65 DATA INCLUDED IN LINDSEY 66 BELOW LINDSEY2 65 UGRL 16526 JAMES S. LINDSEY (THESIS) (LRL)
R2 AVG 0.325 0.071 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.6) R2 FIT 0.350 0.027 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)	GRAY, L 66 PRL 17 501 +HAGERTY, BIZZARRI, CLAPFTTI + (SYRA+RDMA) LDC
R3 PHI INTO (PI+ PI- PIO (INCL.RHO PI))/TOTAL (P3) R3 30 0.12 0.08 LINDSEY 66 HBC 2.7 K-P .10/66	LINDSEY 66 PR 147 913 JAMES SLINDSEY, GERALD A SMITH (LRL) LINDSEY1 66 PL 20 93 J.S.LINDSEY, G.A.SMITH (LRL) LINDSEY 1 66 PL 20 93 L.S.LINDSEY 6 AROUT
R3 FIT 0.152 0.030 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5)	LONDON 66 PR 143 1034 LONDON, RAU, SAMIOS, GOLDBERG + (BNL+SYRACUSE)
R5 PHI INTO (KL KS)/(K KBAR) (P2)/(P1+P2) R5 10 0.40 0.10 SCHLEIN 63 HBC 2.0 K-P 10/66 R5 52 0.42 0.07 SCHLEIN 64 HBC 2.0 K-P 10/66	ABRAMS 67 MD TECH REP 720 GERALD ABRAMS , THESIS (MARYLAND) BARLOW 67 NC 50A 701 +LILLESTOL+MONTANET+ (CERN+CDEF+IRAD+LIVP) CHASE 67 PRL 18 710 R.C.CHASE.P.ROTHWELL.R.WEINSTFIN (CFANHEAS)
R5 0.44 0.07 LONDON 66 HBC 2.2 K-P .10/66	DAHL 67 PR 163 1377 +HARDY+HESS+KIRZ+MILLER (LRL) HERTZBAC 67 PR 155 1461 HERTZBACH, KRAEMER, MADANSKI, ZDANIS+(JHU+BNL) VMACHATU 7 PL 260 260 VINCUMENT HARDY+HESS+KIRZ+MILLER (LRL)
Nº AVE 0.448 0.044 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R5 FIT 0.428 0.027 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)	ABRAMS 68 PR 175 1697 +GLASSER,KEHDE,SECHI-ZORN,HOLSKY (MARYLAND)
R6 PHI INTO (PI+ PI- PIO (INCL.RHO PI))/(K KBAR) (P3)/(P1+P2) R6 0.30 0.15 LONDON 66 HBC 2.2 K-P 10/66	ASIVACAI 68 PL 27 B 45 ASTVACATUROV, AZIMOV, BALDIN+ (JINR+MOSCOW) ALSO 67 PRL 19 869 ASBURY, BECKER, BERTRAM, TINO+ (DESY+GCUUMBIA) BECKER 68 PRL 21 1504 HERTRAM, BINKIFY, IORAN, KANAGI+ (DESY+GCUUMBIA)
R6 FIT 0.187 0.044 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5)	BINNIE 68 PL 27B 106 +DUANE+FARUQI+HORSEY+ (LOIC+RHEL) BOLLINI 68 NC 56 A 1171 +BUHLER, DALPTAZ, MASSAM+ (CERN+BGNA+STRB) MOSTEK 68 PL 20.067 +ELENNLCO +CERN+BGNA+STRB)
R/ PHI INTO (PI+ PI- PIO (INCL.RHO PI)/(KL (KS) (P3)/(P2) R7 (0.3) OR LESS BERLEY 65 HBC 2.9 PI+P 10/66 R7 0.69 0.14 BIZOTI 70 050K E4 E1 01/7	WEHMANN 68 PRL 20 748 +EISENNANULER, MCCLELLAN, MISTRY+ (CORNELL) +ENGELS+ (HARVARD+CASE+SLAC+CORNELL+MCGILL)
R7 FIT 0.44 0.11 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5)	AUGUSTIN 69 PL 28 B 517 +BIZOT,BUON,DELCOURT,HAISSINSKI,+ (ORSAY) BALAKIN 69 IYAF 327 TRANS +BUDKER,KORSHUNOV,MISHNEV,SIDOROV+ (NOVO) ALSO 69 SIDDROV
••••••••••••••••••••••••••••••••••••••	

Data Card Listings

For notation, see key at front of Listings.

BEMPORAD 69 PL 29 B 383 MOY 69 THESIS SCOTTER 69 NC 62 A 1057 SIDOROV 69 LIVERPOOL SYMP.O	+BRACCINI,CASTALDI,LUBELSMEYER,+(PISA+BONN) KEN MIN MOY (NORTHEASTERN UNIVERSITY) +ERSKINE,PALER,+ (BIRM+GLAS+LOIC+MPIM+OXF) N ELECTROMS+PHOTOMS,P.227, SIDOROV (NOVO)	
BALAKIN 70 PREPRINT BENAKSAS 70 LAL 1240 BIZOT 70 PL 32 416 ALSO 69 PEREZ-Y-JORBA, L	+BUTLER, PAKHTUSOVA, SIDOROV, SKRINSKY, +(NOVO) +COSME, JEAN-MARIE, JULLIAN, LAPLANCHE+ (ORSA) +BUON, CHATELUS, JEANJEAN, LALANNE, + (ORSA) IVERPOOL SYMP, 69	
BIZOTI 70 PRIV.COMM. BIZOTZ 70 LNC 4 1273 EARLES 70 PRL 25 1312 HYAMS 70 NP B 22 189 SABRE 70 PREPRINT	PEREZ-Y-JORBA (ORSA) +OELCOURT, JEANJEAN,LALANNE,+ (ORSAY) +FAISSLER, GETTMER,LUTZ,MOY,TANG,+ (NEAS) +KOCH,POTTER,V.LINDERN,LORENL,LUTZENS(CERN) SABRE COLLABOR. SABRE COLLABOR. (SACL+AMST+BGNA+REHO+EPOL)	
ALVENSLE 71 PRL 27 441 BALAKIN 71 PL 34 B 328 DIBIANCA 71 NP B 35 13 CHATELUS 71 LAL 1247(THESIS HAYES 71 PR D 4 899 LEFRANCO 71 PREPRINT LAL125 STOTTLEM 71 THESIS	ALVENSLEBEN, BECKER, BUSZA, CHEN, + (MIT-DESY) BUDKER, PARHTUSOVA, SIDOROV, SKRINSKY, +(NOVO) + EINSCHLAG, ENDORF, FNGLEN, FISK, + (PITT) Y, CHATELUS + IMLAY, JOSEPH, KEIZER, STEIN (CORN) 4.R. STOTTLEMYER (MARYLAND)	
AGUILAR 72 PR D 6 29 ALVENSLE 72 PRL 28 66 BALAKIN 72 PL 40 B 431 BASILE 72 NP B 44 605 BENAKSAS272 PL 42 B 511 COLLEY 72 NP B 50 1	AGUILAR-BENITEZ, CHUNG, EISNER, SAMIOS (BNL) ALVENSLEBEN, BECKER, BIGGS, BINKLEY (MIT+DESY) BOKIN, PAKHTUSOVA, SIDOROV, (MOVOSIBIRSK) +DALPIAZ, FRABETTI, ZICHICHI+CERN+BGNA+STRB) +COSME, JEAM-MARIE, JULIAN, LAPLANCHE+(DRSAY) +JOBES, RIDDIFORD, GRIFFITHS, (BIRM+GLAS)	
JEAN-MAR 73 PRIV.COMM.	B.JEAN-MARIE, G.PARROUR (DRSAY)	
M(1033) →MM →MM	33) NOT COMPELLING-OMITTED FROM TABLE.	
67 M(10	33) MASS (MEV)	
M 240 1032.6 2.3	GARFINKEL 72 MMS 0 2.4 PI- P,N MM	12/72
67 M(10	33) WIDTH (MEV)	
W 240 16.2 4.8	7.5 GARFINKEL 72 MMS O 2.4 PI- P,N MM	12/72*
****** ****	******** **************	
GARFINKE 72 PRL 29 1477	REFERENCES FOR M(1033)	
***** ********************************	****** *** ******** ******* **********	
\overline{D} (1040)	******	
$B_1(1040)$ 48 B1(10	040) IG=1+	
$\rightarrow \omega \pi$ evidence	NOT COMPELLING. OMITTED FROM TABLE.	
48 B1(1) M (1040.)	D40) MASS (MEV) DEFOIX 72 HBC +- 0.7 PBAR P,7 P9	2/73*
48 B1(1)	040) WIDTH (MEV)	
W (55.)	DEFOIX 72 HBC +- 0.7 PBAR P,7 P9	2/73*
48 B1(10	040) PARTIAL DECAY MODES	
P1 B1(1040) INTO OMEGA P1	DECAY MASSES	
****** ******** *******	******* ********* ******* ******* ******	
DEEDIX 72 CURNITICS TO ST	REFERENCES FOR B1(1040)	
DEPOIN 12 SUBMITTED TO PL	THE TRANSPORT FOR THE TRANSPORT	
******* *****	+000K21WSK1,ESPIGAT,NASCIMENIU,+ (CDEF)	
****** ********* ******* ***	•••••••••• •••••••• ••••••• •••••••• •••••••• •••••••• •••••••• •••••••• ••••••••• ••••••••• •••••••••• •••••••••• •••••••••• •••••••••• ••••••••••• ••••••••••••• ••••••••••••••••••••••••••••••••••••	
$\eta_{\rm N}(1080)$ 30 ETA N	(1080, JPG=N+) I=0 J GREATER THAN 1	
$\eta_{\rm N}(1080)$ $\rightarrow \pi\pi$ 30 ETA N SOME	<pre>''''''''''''''''''''''''''''''''''''</pre>	
η _N (1080) →ππ →ππ	(1080, JPG=N +) I=O J GREATER THAN 1 EXPERIMENTS SUGGEST J=2.	
η _N (1080) →ππ →ππ	<pre>************************************</pre>	

The $\eta_N(1080)$ is seen in $\pi^- p \rightarrow \pi^+ \pi^- n$ predominantly at backward decay angles, $\cos \theta < -0.75$. OH 70 state that this "bump is almost certainly the result of P-D interference."

Mesons $\phi(1019), M(1033), B_1(1040), \eta_N(1080), A_1(1100)$

Note that the selection made in some HBC experiments to reduce the background under the $\eta_N(1080)$ in the reaction $\pi^-p \rightarrow \pi^+\pi^-n$ may lead to a sample of events ambiguous with $\pi^-p \rightarrow p\pi^-\pi^0\pi^0$. This is so because selection on small momentum transfer to the $\pi^+\pi^-$ system, together with large $\pi^-_{in}\pi^-_{out}$ scattering angle, leads to rather high lab momenta of the π^+ , so that ionization cannot be used to discriminate between the two hypotheses (BATON 70, footnote, p. 525; and private communications from G. Laurens).

The $A_1 \rightarrow \rho \pi$ bump has been mainly observed in the diffraction-like process $\pi N \rightarrow (\pi \pi \pi) N$ without quantum number exchange and at small momentum transfer. There are also observations of structure in the A_1 mass region in reactions with production of additional mesons, and in backward production from pions (see Data Card Listings). The indications for A_1 production in charge exchange reactions, or in \overline{pp} annihilation, do not appear significant.

The dominant effect in the A_1 mass region, for diffractive three-pion production, is a broad $J^P = 1^+ \rho \pi$ S-wave enhancement starting from $\rho \pi$ threshold; it has a maximum at ~1150 MeV and a width of the order of 300 to 400 MeV (ASCOLI 71 and 72). Such a behavior is obtained in Reggeized pion exchange models (the so-called Deck effect) [BERGER 71]. In recent partial wave analyses of the threepion system (ASCOLI 72) one finds very little phase

Mesons A₁(1100), M(1150)

variation of the $J^{P} = 1^{+} (l = 0) \rho \pi$ amplitude relative to various possible "background" amplitudes. Though not completely model-independent, these results suggest that the $J^{P} = 1^{+} \rho \pi$ system is not resonant in the A_{1} mass region. The observed effect may still be due to a pole on an unphysical sheet, shielded from the physical region by a cut due to coupling to e.g. the $S^{*}\pi$ channel (WRIGHT 72). In this case the Breit-Wiger approximation is not a good representation of the effects of the pole. (For further discussion of our criteria for resonances, see our text, Sect. III, 3).

For a recent review of the A_1 , see DIEBOLD 72.

				1	.0 A	1 MASS	(MEV)										
м	PROD	UCED	BY P	1 +													
м		(10	0.080)				ADERHOLZ	64	HBC		4.	0 P	I+P			
4		(10	80.)	A	PPRO	х.		BOESEBECK	68	HBC	+	8	PI+	Ρ			6/68
4		(10	40.0)				ARMENI SE	70	HBC) 9	PI+	N -	- A1	Ρ	1/71
м																	
м	PROD	UCED	BY P	I -													
м		(10	60.)					ASCOLI	68	HBC	- 0	35	PI-	Р		•	6/68
4		(10	0.980)	(12.	0)		BALLAM	68	HBC		16.	OP	I- P			9/68
4		(10	90.1	A	PPRO.	х.		CHUNG	68	HBC	-	з.	2,4	.2 P	I P		2/67
м		(10	055.0)	(6.	0)		JUNKMANN	68	HBC	-	16	5. P	I- P	, 5P	1	9/69
4	s	(1)	19.)		(30+)		KEY	68	HBC	-	3	PI-	Р			9/68
м	s	SF	HOUL D	ER C	N A2	ONLY											
4		(10	0.69)	(7.	0)		CASO	70	HBC	-	11.	2P I	-P			5/70
м		(11	20.0)				CRENNELL	70	HBC	~	6.	PI	- P,	= PI		5/70
4																	
м	PROD	UCED	BY P	IONS	,BAC	KWARDS	SCATT	•									
4		(11	15.0)	(20.	0)		ANDERSON	69	MMS	-	16	5 PI	- P+	BACK	19	8/69
м		(10)46.)		(10.)		BUHL.	71	HBC	-	2.5	5 PI	- P		•	11/71
4																	
м	PROD	UCED	BY P	BARS	, SE	E TYPE	D NOTE	•									
4		(10	54.)		(7.)		DANYSZ	67	нвс	+	з,	3.6	PBA	RΡ	•	7/67
4		(10	142.)		121.)		FRIDMAN	68	HBC	+	5.	7 P	BAR	Р		6/68
4	Α	(10	76.1		(5.)		ATHERTON	72	HBC	· +	5.7	PB.	AR P			1/73*
4	A	JP AN	IALYS	ISG	I VE S	SOME (EVIDEN	CE FOR RHO	ΡI	D-WA	٧E						1/73*
м																	
4	PROD	UCED	BY K	-, s	EE T	YPED NO	DTE.										
м		(11	11.)		(10.)		ALLISON	67	HBC	+ 1	6	K≁P	,LAM	+5	۶I	1/68
4		(1)	17.)		(30.)		ALLISON	67	нвс	+	6	К-Р	,LAM	+4	9 I	1/68
м		(10	060.1		(15.)		JUHALA	67	HBC		J 4.	6-5	к-Р	, 580	γc	1/68
4																	
М	PROD	UCED	BY K	+, S	SEE T	YPED NO	ОТΕ.										
м	К+	(10	0.60)	(20.	0)		ALEXANDER	69	HBC	+	9) K+	P .			9/69
м	K+	(10	0.00)	(20.	0)		BERL INGH I	69	HBC	+ 1	0 12	2.7	К+ Р			9/69
4	K+ F	OR CO	DNTRA	DICT	ORY	EVIDEN	CE SEE	RABIN 70	AND	TYPE	D NI	ле.					
м	A																
ч	А	A١	/ERAG	I NG	NOT	MEANING	SFUL										

10 A1 WIDTH (MEV)

PRODUCED BY PIONS, RESONANCE INTERP. CONFUSED BY DECK EFFECT PRODUCED BY PI + (80.0) (130.) APPROX. (50.0) OR LESS (300.) APPROX. F FOR JP=1+ (RHO PI) STATE ADERHOLZ 64 HBC 4.0 PI+P BDESEBECK 68 HBC + 8 PI+ P 6/68 ARMENISE 70 HBC 0 9 PI+ N -- A1 P 1/71 RINAUDO 71 HBC + 5. PI+P,P (3PI)+ 11/71 11/71 F PRODUCED BY PI -(140.0) (31.0) (125.) APPROX. (77.0) (17.0) K (76.) (46.) K SHOULDER ON A2 ONLY (99.0) (15.0) BALLAM68HBCCHUNG68HBCJUNKMANN68HBCKEY68HBC - 16.0 PI- P - 3.2,4.2 PI - 16. PI- P, - 3.0 PI- P 9/68 2/67 9/69 11/67 CASO 70 HBC ~ 11.2PI-P 5170 PRODUCED BY PIONS, BACKWARDS SCATT. (98.0) (45.0) (20.0) ANDERSON 69 MMS - 16 PI- P, BACKW9 8/69
 PRODUCED BY PBARS, SEE TYPED NOTE.
 133.1
 119.1
 DANYSZ
 67 HBC
 → 3,3.6 PBAR
 3.6
 ABR
 →
 5.7 PBAR P
 A
 136.1
 20.1
 115.1
 ATHERTON
 72 HBC
 →
 5.7 PBAR P
 A
 126.1
 120.1
 15.1
 15.1
 16.1
 →
 5.7 PBAR P
 A
 J
 JANLYSIS GIVES SOME EVIDENCE FOR RHOP ID → MVE
 7/67 6/68 1/73* 1/73* PRODUCED BY K-, SEE TYPED NOTE. (50.) (50.) (50.) (25.) (120.) (15.) ALLISON ALLISON JUHALA 67 HBC + 6 K-P,LAM +4 PI 67 HBC + 6 K-P,LAM +5 PI 67 HBC 0 4.6-5 K-P,5BCDY 1/68 1/68 1/68
 PRODUCED BY K+, SEE TYPED NOTE.
 ALEXANDER 69 HBC +
 9 K+P

 [160.0]
 (20.0)
 BERLINGHI 69 HBC +
 9 K+P

 [10.0]
 (30.0)
 BERLINGHI 69 HBC +
 12.7 K+P

 [K+ FGC CONTRADICTORY EVIDENCE SEE RABIN 70 AND TYPED NOTE.
 50.01
 20.01

 [G1 30.0]
 (20.0)
 BERLINGHI 69 HBC +
 12.7 K+P
 9/69 8/69 9/69 W A AVERAGING NOT MEANINGFUL

Data Card Listings For notation, see key at front of Listings.

Mesons A_{1.5}(1170), B(1235)

Mesons f(1270)

Data Card Listings For notation, see key at front of Listings.

		5 F BRANCHING RATIOS
f(1270) 5 F (1270, JPG=2++) I=0 WE NO LONGER LIST EVERY PUBLISHED VALUE. WE AVERAGE ONLY THE MOST SIGNIFICANT DETERMINATIONS OF MASS AND WIDTH.	1/73* 1/73* 1/73*	R10 F PARTIAL HAVE (1.E. I=1, JP=2+) AMPLITUDE AT F RESONANCE R10 WE TABULATE X = 1/2 (1 + ETA). THIS SHOULD BE PI PI FRACTION R10 FOR PURE BW WITH NO BACKGROUND. TO HBC 01.26 PI - P,P F 1/71 R10 600 0.8 0.04 TO HBC 01.26 PI - P,P F 1/71 R10 250 0.85 0.05 BEAUPRE TI HBC 08 PI + P,DELTA++F 1/71 R10 AVG 0.820 0.031 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
5 F MASS (MEV) M (1250.0) (25.0) SELOVE 62 HBC 3.0 PI-P M 1416(1267.0) (10.0) JACOBS 66 HBC 2-3 PI-P,T CUT20 M 1276. 11. RABIN 67 HBC 8.5 PI+P M 1360 1261. 5. ARMENISE 68 OBC 5.1 PI+N,P PI+- M T 360 1270. 10. ARMENISE 68 OBC 5.1 PI+N,P PI0 0 M 1265. 8. BOESEBECK 68 HBC 8 PI+P M 1268.0 6.0 JOHNSON 68 HBC 3.7 4-2. 2PI-P	1X73* 10/67 9/67 1/73* 1/73* 6/68 7/69	RI F INTO (2PI+2PI-) / (PI PI) (P2)/(P1) (P2)/(P1) RI ASCOLI 68 SUGGEST DECAY IS MAINLY RHO-RHO, 1/3 0P WHICH YIELD 2PI+2PI RI 0.08 0.06 BONDAR 63 HBC 4:0 PI-P RI 0 0.04 0:06 BONDAR 63 HBC 4:0 PI-P RI 0 0:04 0:06 CHUNG 65 HBC 3:2 PI-P 11/71 RI 0 0:02 0:045 0:022 BARDADIN 71 HBC 8: PI+P 6/68 RI 0:042 0:045 0:022 BARDADIN TI HBC 8: PI+P 7/73* RI 0:047 0:013 DH TO HBC 1:26 PI-P, P 2/73* RI 0:047 0:011 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1:0) 22 51 ND (W ADD (VC)
M J JOHNSON 68 INCLUDES BONDAR 63, LEE 64, DERADO 65, EISNER 67. 1275.0 13.0 ARMENISE 70 HBC 9 PI+N FM C 1271.0 51.0 ARMENISE 70 HBC 9 PI+N FM C 1271.0 51.6 VSYSTEMATIC DENOR ESIT 70 BBC ROM NB0.2 KS N M C 1272.0 10.0 SYSTEMATIC DENOR ESIT 70 BBC ROM NB0.2 KS N M C 1273.0 10.0 SYSTEMATIC DENOR ESIT 70 BBC ROM NB0.2 KS N M E (2273.0) 10.0 SYSTEMATIC DENOR ESIT 70 HBC 1.26 PI-P.PF F M E (21273.0) 16.0 SYSTEMATIC DENOR ESIT 70 BBC ROM NB0.2 KS N M E 300 1277.0 4.0 FLATTE 71 HBC 7.0 PI+S Y M E 300 1275.0 10.0 JACOBS 72 HBC 2.8 PI-P M E 000 1255.0 10.0 TAKAHASHI 72 HBC 8.0 PI-P, N 2FI M 1200 1274. 12. WHITEHEAD 72 ASPK 3.1-3.6 PI-P M E EVIDENCE FOR A STRUCTURE CLAIMED T EARDR INCRASED BY US. SEE TYPED NOTE ON K* MASS. M AVG 1229.9 2.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	1/71 1/71 1/71 1/71 1/71 6/71 12/72* 1/73* 2/73* 12/72*	R2 F MUER KARAF/R1 P1 R2 DELEMENTATION DIFFICULT BECAUSE PROXIMITY OF A2 WHICH HAS SAME R2 MELEMENTATION DIFFICULT BECAUSE PROXIMITY OF A2 WHICH HAS SAME R2 MELEMENTATION DIFFICULT BECAUSE PROXIMITY OF A2 WHICH HAS SAME R2 MELEMENTATION DIFFICULT BECAUSE PROXIMITY OF A2 WHICH HAS SAME R2 MEENTUCTIVE, EVENUEVES INCE INTERFERENCE MAY BE CONSTRUCTIVE R2 SOME UPPER LINTIS (X OR LESS) HAVE DERE PUNNEDUSS. R2 SOME UPPER LINTIS (X OR LESS) HAVE DERE PUNNEDUS. R2 (0.001) (0.10) R2 PROBABLY SEEN BARLOW 67 HBC 1.2 PBAR P-+2X13 R2 0.050 (0.216) R2 O.050 (0.212) SYST. BEUSCH 67 059K 5,7,12 P1-P .9/67 R2 D 0.050 (0.214) R2 CORRECTED BY 0.20AHL ADERHOLZ 69 HBC 8 P1+ P,K+K-P1 .9/67 R2 A K50 (CROSSECTION#BRANCHING RATIOJ FOR A2 IS SMALL. 12/728 R2 L 0.011 (0.0121) ADERHOLLAR 72 HOC 1.269 K- F1 12/738 R2 L 0.021 (CROSSECTION#BRANCHING RATIOJ FOR A2 IS SMALL. 12/728 R2 L 0.010 LESS CLE-855 MILLAR 72 HOC 1.266 K- F1 12/728 R2 <t< td=""></t<>
5 F WIDTH (MEV) W (100.0) (25.0) W 1416 (99.0) (10.0) JACOBS 66 HBC 2-3 PI-P,T W 155. 17. RASIN 67 HBC 8.5 PI-P W 156. 201 00 00 00 00 00 00 00 00 00 00 00 00 0	10/67	R2 AVG 0.051 0.063 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.0) R3 F INTO (KO K- PI+ AND C.C.)/(PI PI) (P4)/(P1) R3 (0.07) OR LESS CL=.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/72*
W T 360 210. 20. ARMENISE 68 DBC 5.1 PI+N,P PI+ W T 30 (188.) (40.) ARMENISE 68 DBC 5.1 PI+N,P PI0 W 1 218. 23. BUESEBECK 68 MBC 8 PI+P W J 176.0 13.0 JOHNSON 68 MBC 8.7-4.2 PI-P	1/73* 1/73* 6/68 7/69	R4 F INTO (ETA PI PI)/(PI PI) (P5)/(P1) R4 (0.19) OR LESS CL=.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/72#
W J JOHNSON 68 INCLUDES BONDAR 63, LEE 64, DERADO 65, EISNER 67. W 131.0 25.0 ARMENISE 70 HBC 9 PI+ N MM P W 173.0 11.0 ARMENISE 70 HBC 9 PI+ N F P) 1/71 1/71	****** ********* ******** ******** *****
W E (196.0) (18.0) STUNTEBEC 70 HBC 1.26 PI - PI P W E (196.0) (18.0) STUNTEBEC 70 HBC 8.PI - P, F, 4 PI P W 5300 183.0 15.0 FLATTE 71 HBC 7.PI + P, DETTA++F W E 300 (143.1) KEMP 72 OBC 1.7 PI + N W 2000 130.0 25.0 JACDBS 72 HBC 2.8 PI - P W T 600 166.0 28.0 TAKAHASHI 72 HBC 8.P I - P, N 2PI	1/71 11/71 1/71 12/72* 1/73* 1/73*	SELOVE 62 PEL 9 272 SELOVE, HAGOPIAN, BRODY, BAKER, LEBOY (PENN) BONDAR 63 PL 5 15 BONDAR+ (AACHEN+BIRM+BONN+DESY+LOIC+MPIN) GUIRAGOS 63 PRL 11 85 Z, 6-T, GUIRAGOSSIAN (LRL) HAGOPIAN 63 PRL 10 533 V HAGOPIAN, SELOVE (PENN) VEILLET, HENNESSY, BINCHAM, BLOCH+(EPOL+MILAN) 29 VEILLET, HENNESSY, BINCHAM, BLOCH+(EPOL+MILAN) (LRL)
W 1200 (217.) (24.) WHITEHEAD 72 ASPK 3.1-3.6 PI- P W E EVIDENCE FOR A STRUCTURE CLAIMED W T ERROR INCREASED BY US. SEE TYPED NOTE ON K* MASS.	• 2/73* 12/72*	ADERHOLZ 64 PL 10 240 AACHEN-BERLIN-BERLIN-BERLIN-BUN-HAMBURG-LOIC-MPI IJ BRUYANT 64 PL 10 232 BRUYANT.GOLDBERG.HOLDER, FLEURY+ (CERN-FOLL I LEE 64 PRL 12 32 LEF.ROFLSINCLAIR, VANDEVELDE (MICH) SODICKSO 64 PRL 12 485 SODICKSON, WAHLIG, MANNELLI, FRISCH+ (MIT) I
WEIGHTED AVERAGE = 162.9 ± 0.0 ERROR SCALED BY 1.7		BARMIN 65 SJNP 1 230 +DOLGOLENKO, ELENSKY, EROFEEV+ (ITEP MOSCOW) JP BARMIN 65 SJNP 1 623 +DOLGOLENKO, ELENSKY, EROFEEV+ (ITEP MOSCOW) JP CHUNG 65 FRL 15 525 CHUNG, OAH, HARDY, HESS, JACOBS, KIRZ (ITEP MOSCOW) DERADO 65 FRL 14 872 DERADO, KENNEY, PORTERE, SHEPHARD (NOTRE DAME) GUIRAGOS 65 FRL 14 872 OERADO, KENNEY, PORTERE, SHEPHARD (NOTRE DAME) GUIRAGOS 65 FRL 14 872 OERADO, KENNEY, PORTERE, SHEPHARD (NOTRE DAME) GUIRAGOS 65 FRL 14 7 PAROLER, A EKMIN, WALKER (HISCOMSIN)
		ACCENSI 66 PL 20 557 ACCENSI, ALLES-BORELLI, FRENCH, FRISK (CERN) JACOBS 66 UCR16877 L.O.JACOBS, THESIS WAHLIG 66 PR 147 941 + SHIBATA, GORDON, FRISCH, MANNELLI (MIT+PISA) J
CHISC	·	BARLOW 67 NC 50A 701 +LILLESTOL+MONTANET+ (CERN+CDEF+IRAD+LIVP) 8EUSCH 67 PL 25 B 357 +FISCHER,GOBBI,ASTBURY+ (ETHZ+CERN) DAHL 67 PR 163 1377 +HADY+HESSKHRZ+MILLER (ERL) EISNER 67 PR 163 1699 +JOHNSON+KLEIN+PETERS+SAHNI+YEN+ (PURDUE) POIRIER 67 PR 163 1462 +BISNAS,CASON,DERADD,KENEY+ (NDAM+PERN) RABIN 67 THESIS M. RABIN 67 THESIS M. RABIN
		ARMENISE 68 NC 54 999 +FORINO+CARTACCI+ (BARI+BGNA+FIRENZE+DRSAY) ASCOLI 68 PR 4 21 712 G.ASCOLI+H.B.CRANLEY,D.N.MORTARA,+ (ILL) BOESEBEC BOESEBEC BOESEBEC BOESEBEC ILL) FOSTER 68 PB 6 107 +GAVILLET+LABROSSE+MONTANET+ (ICENN+OEF) JOHNSON 68 PI 76 FORIRE, BISSE HONDAR+PURO+SLAC) ALSO 6380MOAR, LEE 64, DERADO 65, EISNER 67 (NOTREDAME) ALSO 63 POTIFIER +NCENEN, DIT,AITKEN+ (ARE+SHMP+LOUC)
		ADERHOLZ 69 NP B 11 259 +BARTSCH,+ (AACH+BERL+CERN+JAGL+WARS) AGUILAR-69 PL 29 B 241 M.AGUILAR-BENITEZ,J.BARLDM,+ (CERN+CDEF) ARMENISE 69 LNC 2501 +OHIDINI,FORINO,CARTACCH: (BARI+BORA+FIRZ) CASD 69 LNC 2501 +OHIDINI,FORINO,CARTACCH: (BARI+BORA+FIRZ) CASD 69 NC 62 A 755 +CONTE,BENZ,+ (CEN0+DESY+HANB+MILA+SACL) DONALD 69 NP B 11 551 +EDMARDS,BUAN,BETTINI,+ (LIVP-DSLO+PADD)
50 150 250 350 =0.003 F WIDTH (MEV)		AGUILAR 70 PRL 25 58 AGUILAR-BENITEZ, BARNES, BASSANO, + (BNL+SYRA) ARMENISE 70 NC 4 199 +GHIDINI, FCRING, CARTACCI, + (BARI+BGNA+FIRZ) BADIER 70 PB 25 12 BONNET, ORE VILLON, BAUBILLIER, + (EPOL-IPNP) EISENSTE 70 PB 12 42 11 OH 70 PC 12 494 + GARFINKEL, MORSE, WALKER, PRENTICE (W SIC+ITOL)) STUNTEBE 70 PL 32 8 391
5 F PARTIAL DECAY MODES		BARDADIN 71 PR D4 2711 BARDANIN-DITNINDUSKA, HDDMOKL+* (NARS) BEAUPRE 71 NP 8 28 77 DEUTSCHMMNN, CRAESLES,** (NARHBERL*1) FARBER 71 NP 8 29 237 ************************************
P1 F D0ECAY MASSES P2 F INTO 201+ 201- 130+ 139+ 139+ 139+ 139+ 139+ 139+ 139+ 139	9	AGUILAR 72 PR D 6 29 AGUILAR-GENTEZ, CHUGG, SINER, SANIDOS (BNL) BISWAS 72 PR D 5 1564 +CASON, HARRINGTON, KENNEY, SHE PHARD (NDAM) PGGLI 72 RC 8 A 670 FOGLI-MULIACCIA, PICIARELLI (BARI) GRAYER 72 PR D 1291 L.D.JACOBS (SACLAY) KEMP 72 RC 8 A 611 +MAJGR, CONTRI, + (DURH-GENO+HILA+EPOL+LPNP) (SACLAY) KEMP 72 NC 8 A 611 +MAJGR, CONTRI, + (DURH-GENO+HILA+EPOL+LPNP) (DURHAM) TAKAHASH 72 PR D 6 1266 TAKAHASH J, BARISH, + (TDH-PENN+HDAM+ANL) (MITEHEAA 72 NP B 48 365 (TAKAHASH 72 NPL 0)
		******* ********* *********************

Data Card Listings For notation, see key at front of Listings.

Mesons D(1285), A₂(1310)

10/66 1/73* 6/66 2/73*

8/67

8/6/ 9/67 6/68 5/68 9/68 1/73 1/71 8/69 5/70 12/69

1/71 1/71 5/70 1/73

5/70 1/71 1/71 11/71

11/71 11/71 11/71

1/73*

12/72*

11/71

8 D (1285, JPG= +1 I=0 D(1285) (JP=0-,1+,2- WITH 1+ FAVORED.) $A_2(1310)$ 12 A2 (1310, JPG=2+-) I=1 8 D MASS (MEV)
 BARLOW
 67
 HBC
 1.2
 PBAR
 P, 4PFS
 5/67

 DANL
 67
 HBC
 1.6-4.2
 PI-P
 10/64

 D.ANDLAU
 68
 HBC
 1.2
 PBAR, P, 4PFS
 5/67

 D.ANDLAU
 68
 HBC
 1.2
 PBAR, P, 4PFS
 5/67

 CAMPBELL
 69
 BC
 1.2
 PBAR, P, 7PI
 3/69

 LORSTAD
 69
 BC
 2.7
 PI P
 3/69

 DARDADIN TI HBC
 68
 PI P, 9, 5-BONY
 9/69
 9/69

 DOESDEECK 71
 HBC
 16.0
 PI P, 9, 7P1
 1/73*

 DUBDC
 72
 HBC
 1.2
 PBAR, P, 7P1
 1/73*

 THUN
 72
 HBC
 13.4<PI - P</td>
 12/72*

 TRUM
 12/72*
 13.4<PI - P</td>
 12/72*
 APPROX. We list the A_2 as an ordinary Breit-Wigner 5.0 7. resonance. This conclusion is based on the failure of
 0)
 DEFDI

 0
 10.0
 CAMPB

 7
 LORST
 LORST

 8.0
 BARDA
 DEFDI

 0
 6.0
 BDESE

 10
 DEFDI
 S

 0
 3.0
 DUBOC

 13.1
 THUN
 THUN
 experiments with high statistics and good resolution to confirm the reported splitting; moreover the reanalyses of the most significant "split-peak" experi-2.2 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) 1286.1 AVG ment have reduced the significance of the dip and revealed some experimental difficulties (DAMGAARD 8 D WIDTH (MEV) 72, e.g., Fig. 8; KIENZLE 72, e.g., Fig. 6). (35.0) (10.0) 46. 20. UNFOLDED BY DOBRZYNSKI 71 (40.0) 30.0 15.0 (60.1 (15.) (44.0) (24.0) (40.0) DAHL 67 HBC 1.6-4-2 PI- P 11/71 D.ANDLAU 68 HBC 1.2 PBAR P, 5-6 PFS 2/72 For a recent review see DIEBOLD 72. U U DEFOIX 68 HBC 1.2 PSAFT P1 2/72 CAMPBELL 69 DBC 2.7 PI 1 1/71 CAMPBELL 69 DBC 2.7 PI + 0 8/69 CORSTAD 69 HBC 0.7 PB P, 4, 5-50 DD 1/71 BARDADIN 71 HBC 0.7 PB P, 4, 5-50 DD 1/71 BOESEBECK 71 HBC 0.7 PBAR P,7 P9 1/73 DUBDC 72 HBC 0.7 PBAR P,7 P9 1/73 THUN 72 HMS 13.4 PI- P 12/72* TRUM 12/72*
 (4000)
 DEFC

 30.0
 15.0
 CAMP

 (60.1
 (15.1)
 LORS

 (44.0)
 (24.0)
 BAR

 10.0
 10.0
 BOBE

 150
 (28.1)
 I5.1

 180
 (46.2)
 I9.1

 500
 (37.1)
 I5.1
 DUBE

 500
 (37.1)
 I5.1
 THUN

 SEEN IN THE HISSING MASS SPECTRUM
 RESOLUTION NOT UNFOLDED
 CAMPACIDED
 R , 3PI MODE ADERHOLZ 64 HBC 4-0 PI+P GGLDMABER 64 HBC 4- 3.7 PI+- P FORINO 65 DBC 4-0 4.5 PI+0 LEFEBVRES 65 MKSP - 5.6.6.0 PI-P BEIDLITZ 65 DBC - 3.2 PI-0 BARNES 66 HBC - 6.0 PI-P EHINGTANIA 7 MIS - 7 PI-P LENGTON 66 HBC - 0 5.1 PI+0 ADERSON 68 HBC - 6.7 PI-P UNNKANN 68 HBC - 6.7 PI-P UNNKANN 68 HBC - 6.7 PI-P UNNKANG 68 HBC - 6.7 PI-P SUNNKANG 68 HBC - 6.7 PI-P UNNKANG 68 HBC - 6.7 PI-P UNNKANG 68 HBC - 6.7 PI-P SUNNKANG 68 HBC - 10.8 PI-P, SACKW9 ARDERSON 69 MS - 10.8 PI-P, SACKW9 ARDERSON 69 HBC + 5.1 PI+0, 3PI+P ANDERSON 69 HBC - 1.9 PI+0, 3PI+P ASCOLI 70 HBC - 5.7.5 PI-P ASCOLI 70 HBC - 1.9 PI+P, PI RWO GAR TIKEL 70 DBC - 4.5 K-D, LAMBOA GARDON 71 MBS - 7. PI-P BUNNEI 71 MMS - PI-P NEAR A2 THR BINNIEI 71 MMS - PI-P NEAR A2 THR BONKEN 71 MMS + 5. PI-P BUMEN 71 MMS + 5. PI-P BUMEN 71 MMS + 5. PI-P BUMEN 71 MMS - 5. PI-P BUMEN 71 MMS - 5. PI-P BUMEN 71 MMS - 5. PI-P SUNEN 71 MMS - 5. R 12 A2 MASS (MEV), 3PI MODE (1320.0) 1335.0 130(1310.0) 1425 1290.0 (1300.0) 1310.0 (1290.0) 1310.0 (120.0) 1300.0 1060 1286. 4000 1307. 260 1311.0 120 1320.0 (1301.0) A (1300.0) A (1299.) 0 (1295.0) A 241(1299.0) 1310.5 941 1306.0 280 1313.0 A 581(1288.0) 1335.5 (1335.5) (1355.5) (1355. (1320.0) ********************************* 10.0 S S R (5.0) **** (10.0) 20.6 10.0 (8.) 16. 9.6 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) 16. 6.0 10. (20.) (8.0) (14.) (14.) (20.0) (14.) (14.) (14.0 (12.0) 14.0 (3.) 4.0 8 D PARTIAL DECAY MODES DECAY MASSES 497+ 497+ 134 134+ 134+ 770 548+ 134+ 134 970+ 134 139+ 139+ 139+ 139 D INTO K KBAR PI D INTO PI PI RHO D INTO ETA PI PI D INTO DELTA PI D INTO 2PI+ 2PI~ P1 P2 P3 P4 P5 4.0 7.0 (10.0) A 581(1288.0) 1335.0 0 (1330.0) (1274.0) 360 1304.0 10000 1307. 5000 1309. 28000 1299.0 24000 1309. 17000 1309.0 (1307.) 5 (1307.) (10.0) 15.0 (15.0) (22.0) 4.5 5. 6.0 6.0 (12.) 4. 8 D BRANCHING RATIOS D D INTO (PI PI RHO) / (K KBAR PI) [2-0] OR LESS DAHL 67 HBC (4-0) OR LESS DONALD 69 HBC THIS IS FOR (RHOO PI+ PI-)/(K KBAR PIO) (P2)/(P1) CHARGED PI ONLY 10/66 1.2 PBAR P.5P+ . R1 R1 R1 D R1 D D INTO (K KBAR P1)/(ETA P1 P1) 0.166 0.055 DEFOIX 68 HBC REVISED BY DEFOIX 72 0.16 0.08 CAMPBELL 69 DBC 0.20 0.020 EFOIX 72 HBC K KBAR SYSTEM CHARACTERIZED BY THE I=1 THRESHOLD ENHANCEMENT (SEE UNDER DELTA(SPO)). R2 R2 K R2 R2 R2 R2 K R2 K R2 K R2 K (P1)/(P3) 1.2 PBAR P 1/73* K R R C P 2.7 PI+ D 1/73* 0.7 PBAR P,7 PI 1/73* 1315. 160 1307. 1580 1306. 4. 7. 9. ONLY EXPERIMENTS GIVING ERROR LESS THAN 20 MEV KEPT FOR AVERAGING MAY BE DIFFERENT OBJECT, ALTHOUGH JPC=2++. COMPARE CRENNELL 69. ANALYSIS COMPLICATED BY NEARBY PEAK (A1.5) AND/OR A1 BACKWARD PRODUCTION FROM A FIT TO JP=2+ RHO PI ****** R2 AVG 0.173 0.039 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0 D D.INTO (DELTA PI)/(ETA PI PI) POSSIBLY SEEN AMMAR 70 HBC 4.1,5.5K-,ETA 5/70 POSSIBLY SEEN OTWINDWSK 70 HBC 8.114 P, P+6PI 9/69 (0.8) (0.2) DEFOIX 72 HBC 0.7 PBAR P,7 PI .1/73* R3 R3 R3 R3 FROM A FIT AVG 1308-8 1.6 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) D INTO (2PI+ 2PI- (INCL. RHO PI PI))/(ETA PI+ PI-) (P5)/(2/3P3) 50 (0.55) OR MORE BOESEBECK 71 HBC 16. PI+- P.P 5PI 11/71 R4 R4 R4 12 A2 MASS (MEV), K KBAR MODE

 ARLOW
 67 H8C
 ←
 1.2 PBAR P, KK . 2/72

 BARLOW
 67 H8C
 ←
 1.2 PBAR P, KK . 9/67

 BUSCH
 67 05FK
 0.5 12 P1-P, KIX1 11/71

 CONFORTO
 67 H8C
 ←
 0. PBAR P IM KK. 9/67

 DAHL
 67 H8C
 ≥ 2.7-4.5 P1-P
 B/67

 DAHL
 67 H8C
 0. 0.2.7-4.5 P1-P
 B/67

 DAHL
 67 H8C
 0.6.0 P1-P, KIX1 11/71
 ADERHOLZ
 68 H8C
 0.6.0 P1-P, KIX1 11/71

 ALSTON-GA TO H8C
 *
 8 P1+P, FKK1
 11/71
 CRENNEL
 71 H8C
 -4.5 P1-P, KK1
 11/71

 CRAVENT
 71 H8C
 -1.7.0 P1+P, FKK5
 11/71
 CRENNEL
 71 ASPK
 172
 172

 CRAVENT
 71 ASPK
 17.2 P1-P, KKS5
 12/72
 FOLEY
 72 CATR
 20.3 P1-P, FK-K5
 12/72

 80(1317.0) 60 1333.0 N (1344.0) 130 1280.0 1317.2 N (1315.7) N (1315.7) 132 1301.0 132 1301.0 190 1313.0 5 1500 1319.0 730 1313.0 (3.0) 13.0 (7.) 12.0 4.0 ***** REFERENCES FOR D +BARLOW,ADAMSON,+ (CDEF+CERN+IRAD+LIVP) +CHUNG,OAH,JHESS,HARDY,KIRZ,+ (LRI+UCB) +MONTANET,O-ANDLAU+ (CERN+CDEF+IRAD+LIVP) +HARDYHESS+KIRZ+MILLER (CDEF+CEN+IRAD+LIVP) +SATIER,BARLOW+ (CDEF+CEN+IRAD+LIVP) KIVET,SIAUD,CONFORTO+ (CDEF+CEN+IRAD+LIVP) D.ANDLAU 65 PL 17 347 MILLER 65 PRL 14 1074 BARLOW 67 NC 50 A 701 DAHL 67 PR 163 1377 D.ANDLAU 68 NP B 5 693 DEFOIX 68 PL 28 B 353 (10.8) 7.0 7.0 3.0 4.0 CAMPBELL 69 PRL 22 1204 DONALD 69 NP B 11 551 LORSTAD 69 NP B 14 63 OTWINOWS 69 PL 29 B 529 +LICHTMAN,+ (PURD) +EOWARDS,BURAN,BETTINI,+ (LIVP+OSLO+PAOD) B.LORSTAD,D.ANDLAU,ASTIER,+ (CDE+CERN) S.OTWINOWSKI (WARSAH) N THE NEUTRAL MODE CAN INTERFERE WITH THE F MESON S SYSTEMATIC ERROR IN MASS SCALE SUBTRACTED (CDEF+CERN) (WARSAW) JP AVG 1315.0 3.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) (SEE IDEOGRAM BELOW) AMMAR 70 PR D2 430 +KROPAC, DAVIS, DERRICK+ (KANS+NWES+ANL+WISC) BARDADIN-OTWINOWSKA,HOFMOKL,MICHEJDA+(WARS) (AACH+BERL+BONN+CERN+CRAC+HEID+WARS) L.DOBRZYNSKI HAKOWSKI,TOUCHARO,DONALD,+ (IPN+LIVP) JP BARDADIN 71 PR D4 2711 BOESEBEC 71 PL 34 B 659 DOBRZYNS 71 PRIV.COMMUN. GOLDBERG 71 LNC 1 627 --------12 A2 MASS (MEV). ETA PI MODE +PRENTICE, STEENBERG, YOON, WALKER (TNTO+WISC) +CHURCH, LYS, MURPHY, RING, VANDER VELDE (MICH) HASCIMENTO, BIZZART,+ +GOLDBERG, MAKOVSKI, DONALD,+ LIDEDR, FINOCCHIARD, GOWEN,+ +LIDEDR, FINOCCHIARD, GOWEN,+ ALSTON-GA 70 HBC + 7.0 PI+P,PI ETA 1/71 CASO 70 HBC - 11.2PI-P,PI ETA 5/70 DZIERBA 70 HBC - 8. PI-P,PI ETA 1/73* JOHNSTON 70 HBC - 7.PI-P,PI-ETA 1/73* SPIGAT 72 HBC + 0.PGAR P,ETA 2PI 11/71 PREPOST 72 OSPK - 6.PI-P,P PI ETA 1/73*
 BERENYI
 72
 NP
 B
 37
 621

 CHAPMAN
 72
 NP
 B
 42
 1

 DEFOIX
 72
 NP
 B
 44
 125

 DUBOC
 72
 NP
 B
 46
 429

 THUN
 72
 PR
 B
 46
 123
 7.0 20.0 8. 7. 189 1312.0 1300.0 32 1300.0 30 1288.
 1.
 SUBARJON TZ HBC
 - 0.PBAR P.ETA 2PI

 (3.)
 ESPIGAT TZ OSPK
 - 6.PI- P.P PI ETA

 5.3
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3)

 (SEE IDEGGRAM BELOW)
 1320. 906(1326.) AVG 1300.8 --- ------- ------- -------- ----FOR THE MASSES OF A2L AND A2H SEE OUR APRIL 72 EDITION. SEE ALSO THE TYPED NOTE ABOVE. M M

Mesons $A_2(1310)$

Data Card Listings For notation, see key at front of Listings.

Data Card Listings

For notation, see key at front of Listings.

Mesons

A₂(1310), E(1420)

12 A2 BRANCHING RATIOS	SARTSCH 67 PL 25B 48 +DEUTSCHMANN+GROTE+COCCONI+(AACH+BERL+CERN) BEUSCH 67 PL 25 B 357 +FISCHER,GOBBI,ASTBURY+ (ETHZ+CERN)
R1 A2 INTO (K KBAR) / (RHO PI) (P2)/(P1) R1 (0.08) OR LESS LANDER 64 HBC + 3.5 PI+P 10/66 R1 N (0.13) (0.03) BEUSCH 67 OSF 0.5,712 PI+P 10/66 R1 11 0.09 0.06 0.99 ASCOLI 68 HBC -5 PI-P 6/68 R1 0.093 0.022 CHUNG 68 HBC -5 2PI-P 1/67 R1 (0.033) (0.012) DONALD 68 HBC -3.2 PI-P 1/67 R1 (0.043) (0.012) DONALD 68 HBC -1.2 PBAR 2/72 R1 0.017 0.055 BOCKMANN 70 HBC 5.0 PI+P 9/69 R1 NUETDAI MORE CAN INTERFERENTINE CAN INTERFERENTIN 70 HBC + 5.0 PI+P 9/69	CASON 67 PRL 18 880 +LAMSA,BISWAS,DERADO,GROVES,+ (NOTREDAME) ALSO 64 LAMSA CERN MISSING MASS,DERADO,GROVES,+ (NOTREDAME) CHIKOVAN 67 PRL 18 100 +DAHL,HAROY,HESS,KIRZ,MILER (LRL) ALSO 66 UCRL-16832 RIGHARD HESS-THESS,SERKELEY (LRL) CONHO 67 NP 81 57 +HCCULLOCH400G MONTANET+ (CRN+UNIV TEINN-) CONFORTO S7 NP 83 469 +MARCHAL,MONTANET+ (CERV+CONDO (ORN+UNIV TEINN-) CONFORTO S7 NP 34 459 +TOMASINI,CORDS+(GENOVA-HAMB HILANO+SACLAV) DAHL 67 NC 51 1377 +HAROY+HESKIRZ+MILER (LR)
R1 0.06 0.03 ABRAMOVIC TO HEC - 3.93 PI-P 1/71 R1 E (0.026) DIAZ TO HBC +- 0.PBAR P, 4 PI 11/71 R1 E SUPERSEDED BY ESPIGAT 71 (SEE UNDER R2 AND R8) - 7.0 PI-P 6/70 R1 0.07 0.03 NEF TO MMS - 7.0 PI-P 6/70 R1 113 0.097 0.018 ALSTON-GA 71 HBC + 7.0 PI-P 2/73* R1 50 0.056 0.014 CHALOUPKA 73 HBC - 3.9 PI-P, P, A2 2/73* R1 AVG 0.0656 0.0082 FROM FIT FROR INCLUDES SCALE FACTOR OF 1.0) R1 FIT 0.0656 0.0082 FROM FIT (PGROR INCLUDES SCALE FACTOR OF 1.0) R2 A2 INTO (ETA PI)/(RMO PI + K KBAR + ETA PI) (P3)/(P1+P2+P3) R2 34 0.15 0.04 ESPIGAT 72 HBC + 3.7 FI+ P 11/71 R2 0.15 0.04 ESPIGAT 72 HBC + 4.0.7 FIA P, 11/71 </td <td>DANYSZ 67 NC 51 A 801 DANYSZ 4FRENCH+SIMAK (LERN) SLATTERY 67 NC 50A 377 +KRAYBIL+FORMAN+FEBBL (YALE+ROCH) JP ARMENISE 68 PL 26B 336 ARMENISE,FORINO,+ (BARI+BGNA+FIRZ+ORSAY) ASCOLI 68 PRL 20 1321 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP BALLAM 68 PRL 20 1321 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP BALLAM 68 PRL 20 1324 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP DOSEGEC 68 NP 8 4.501 DOSESBECK,DOUTSCHAMN,HCAACHENBERLIN+CERN) +CACHTERERLIN+CERN) +CACHTERERLIN+CERN) CASO 68 NC 54 A 983 +CONTE+CORDS+DIA2+ (GENOVA+HAMB+HILAN+SACL) +CHUNG 68 PR 165 1491 S.U.CHUNG,DOAHL,J.KIRZ,D.H.HILLER<(LRL)</td> +CRL) CRENNELL 68 PRL 20 1318 +KARSHON+KNAN LAI,SCARR,SKILLICORN (BNL) HONLAW HADESHARDSHAND,AN LAI,SCARR,SKILLORN (BNL) FOSTER 68 NP 8 174 +GAVILLET,LABROSSE,MONTANET,+ (CERN+COSLO+PADUA) +FONTAN-68 PR 167 126 +FANDESHAND-KAUALON-UNDETHINH +CERN+COSLO+PADUA)	DANYSZ 67 NC 51 A 801 DANYSZ 4FRENCH+SIMAK (LERN) SLATTERY 67 NC 50A 377 +KRAYBIL+FORMAN+FEBBL (YALE+ROCH) JP ARMENISE 68 PL 26B 336 ARMENISE,FORINO,+ (BARI+BGNA+FIRZ+ORSAY) ASCOLI 68 PRL 20 1321 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP BALLAM 68 PRL 20 1321 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP BALLAM 68 PRL 20 1324 +CRAWLEY,MCRTARA,SHAPIRO,BRIDGES+(ILLINOIS) JP DOSEGEC 68 NP 8 4.501 DOSESBECK,DOUTSCHAMN,HCAACHENBERLIN+CERN) +CACHTERERLIN+CERN) +CACHTERERLIN+CERN) CASO 68 NC 54 A 983 +CONTE+CORDS+DIA2+ (GENOVA+HAMB+HILAN+SACL) +CHUNG 68 PR 165 1491 S.U.CHUNG,DOAHL,J.KIRZ,D.H.HILLER<(LRL)
R2 AVG 0.140 0.028 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R2 FIT 0.105 0.013 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 A2 INTO (ETA PI) / (FNO PI) (P3)/(P1) (P3)/(P1) R3 0.3 0.20 ADERHOLZ 64 HBC 4.0 PI+P	JUNKMANN 68 NP 88 471 +COCCONI,+ (AACH+8ER,+BONN+CERN+MARS) KEY 68 PR 166 1430 +PRENTICE+COPER+MANNE+(TNTOFANL+WISC) LAMSA 68 PR 166 1395 +CASON+BISWAS+0ERAD0+GROVES+ (NOTREDAME) VON KROG 68 PL 27 8 253 +MIYASHITA,KOPELMAN,MARSHALL LIBBY (COLO) ÅDERHOLZ 69 NP 8.11 259 +HABTSCH.+ (AACH+8ER!+CERN+JAG!+WARS)
KS 0.22 0.09 CUNIE 67 HBC - 11.0 PI-P 8/67 R3 20 0.23 0.08 ASCOLI 68 HBC - 5.1-P 6/68 R3 0.12 0.08 CHUNG 68 HBC - 3.2 PI-P 6/68 R3 0.12 0.08 CHUNG 68 HBC - 3.2 PI-P 6/68 R3 0.16 0.10 KEY 68 HBC - 3.2 PI-P 11/67 R3 0.16 0.160 VETLITSKY 69 HBC - 3.3 PI-P 11/67 R3 0.3 0.13 ABRAMOVIC 70 HBC - 3.93 PI-P 1/71 R3 15 0.25 0.09 BOCKMANN 70 HBC 5.0 PI+P 9/69 R3 0.34 0.17 0.24 BOCKMANN 70 HS - 7.0 <td>ACUILAR 169 PL 29 B 62 +BARLOW, JACOBS, DELLA NEGRA+(CERN+COEF+LIVP) ACUILAR 269 PL 29 B 241 M.AGUILAR 260 PL 29 B 241 ADDERSON 69 PRL 22 1390 +COLLINS,+ (ERN+COEF) AMDENSON 69 PRL 22 1390 +COLLINS,+ (BNI+CARN) AMMENISE 69 LNC 2 501 +GHIDINI,FORINO,CARTACCI+ (BAI+CARN) CHIKOVAN 69 PL 22 1327 +KARSHON,KWAN WU LAI,+ (BNI-CARN) OGNALO 69 NP B 12 325 +EDWARDS,FOSTER, MOORE (LIVERPOOL) EISENBER 69 PRL 23 1322 EISENBER, HADER, BALLAN,CHADWICK+(REHO+SUAC) ALSO 76 BARLON,67 COMPORTO VETLITSK 69 SUNP 9 550 VETLITSK Y,GRIGOREVEV,GRISHIN,+ (ITEP)</td>	ACUILAR 169 PL 29 B 62 +BARLOW, JACOBS, DELLA NEGRA+(CERN+COEF+LIVP) ACUILAR 269 PL 29 B 241 M.AGUILAR 260 PL 29 B 241 ADDERSON 69 PRL 22 1390 +COLLINS,+ (ERN+COEF) AMDENSON 69 PRL 22 1390 +COLLINS,+ (BNI+CARN) AMMENISE 69 LNC 2 501 +GHIDINI,FORINO,CARTACCI+ (BAI+CARN) CHIKOVAN 69 PL 22 1327 +KARSHON,KWAN WU LAI,+ (BNI-CARN) OGNALO 69 NP B 12 325 +EDWARDS,FOSTER, MOORE (LIVERPOOL) EISENBER 69 PRL 23 1322 EISENBER, HADER, BALLAN,CHADWICK+(REHO+SUAC) ALSO 76 BARLON,67 COMPORTO VETLITSK 69 SUNP 9 550 VETLITSK Y,GRIGOREVEV,GRISHIN,+ (ITEP)
R3 AVE AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 AVG 0.021 SCALE R4 0.211 0.021 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R4 A2 INTO (ETA PRIME PI) / TOTAL (P8) R4 (0.1) OR LESS CHUNG 65 HBC -3.2 PI-P R4 0.02 OR LESS CHUNG 65 HBC -3.2 PI-P R4 0.02 OR LESS CLUNG 65 HBC -3.7 PI+P 2/72 R4 0.00 0.01 LIMIT ABOVE RESTATED FOR AVERAGING 2/72 R5 A2 INTO (ETA PRIME PI)/(RHO PI) (P8)/(P1) (P8)/(P1) R5 S 14 (0.071) (0.021) ASCOLI 68 HBC -5.0 PI-P 12/72*	ABKAMUVICH,BLUMENFELD,BKUTANI,+ (LERN) ALSTON-GATO PL 33 B 607 +BAKAMUVICH,BLUMENFELD,BKUTANI,+ (LERN) ALSTON-GATO PL 33 B 607 +BAKBARD,BUHL,DERRNZO,BEPRESON,FLATTEFILLT, ASCOLI 70 PRL 25 962 +BROCKWAY,GRAMLEY,ETSENSTEIN,HANFT,+ (ILRL) ASSILE 70 LNC 4 B8 +DALPIAZ,FRABETTI,MASSAH,+ (CERN BOKAMSTER) BAUD2 BAUD2 70 PHILAD,CONF,P.31 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PHILAD,CONF,P.31 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) BAUD3 70 PL 31 B 401 CERN BOSON SPECTROMETER GROUP (CERN) CAROLL 70 OL 02 1303 +FIREBAUGH,GARFINKEL,MORSE,OH,+ (KISCEN) (CL)
R5 0.04 0.03 0.04 0	DZIERBA TO PR D 2 2544 +SHEPHARD, BISHAS, CASON, JOHNSON, KENNEY(NDAH) ALSO 66 LAMSA GARFINKET, AGMANN, CARMONY, YEN (PURDUEJ)C GORDON TO COD 1195 179 THESIS, ILLIOIS JUHNSTON TO NP 8 24 253 +KEY, PRENTICE, YOUN, GARFINKEL, + (THTO+HISC) KRUSE TO PHILAD.COMF.P.359 U.KRUSE, PARTIAL WAYE ANALYSIS (ILL) NFF 70 THESISFRIV.COMM.CERN BOSON SPECTROMETER GROUP (CERN) SUTHERLA TO PHILAD.COMF.P.359 U.SUTHERLAND, INTERFERING RESDNANCE (GLASSOW)
R7 A2 INTO (ETA PI)/(K KBAR) (P3)/(P2) R7 E (13.0) OR LESS FOSTER 68 HBC - PBAR P,PBA REST 11/71 R7 E SUPERSEDE D BY ESPIGAT 72 (SEE UNDER R2 AND R8) - PBAR P,PBA REST 11/71 11/71 R7 FIT 3.22 0.50 FROM FIT	AGUILAR 71 PR D 4 2583 AGUILAR 71 PR D 4 2583 AGUILAR-BENITEZ,EISNER,KINSON (BNL) ALSTON-GA71 PL 24 B 156 +BARNABAD,BUHL,DERENZO,EPPERSON,FLATTE+(LRL) BARNHAM 71 PRL 26 149 +ABARMS,BUTLER,COVNE,GOLDHABER,HALL,+ (LBL) BEKETOV 71 SJNP 4 765 +SOMBKONSKY,KONOWALOV,KRUTSCHININ,+ (ITEP) JP BINNIE1 71 PL 36 B 57 +CAMILLERI,DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 36 B 537 +CAMILLERI,DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 36 B 537 +CAMILLERI,DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 36 B 537 +CAMILLERI,DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 36 B 537 +CAMILERI,DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 36 B 537 +CAMILERI DUANE,FARUGI BURTON,+(LOIC4-SHMP) BINNIE2 71 PL 76 BURTON BINNIE2 71 PL 76 BURTON
R0 AZ INIO IK KBAR/JKHU PI + K KBAR + EIA PI J (PZ)/PI+P24P3 J R1 70 -06 0.03 BARNHAM 71 HBC + 3.7 PI+P,KSK+P 11/71 R8 A (0.020) (0.004) ESPIGAT 72 HBC + 0.9BAR P, 2/72 R8 A (0.020) (0.004) ESPIGAT 72 HBC + 0.9BAR P, 2/72 R8 A FROM (K KBAR) AND (RHO PI) MODES BTWEEN MASSES R8 A FROM (K KBAR) AND (RHO PI) MODES CAMERI 72 HBC - 11. PI-P R8 0.032 0.042 DAMERI 72 HBC - 11. PI-P R8 0.039 0.017 AVERAGE (EROR INCLUDES SCALE FACTOR OF 1.0) R8 FIT 0.0514 0.0062 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	BUHL 1 PREPRINT +CLINE_TERREL (WISCONSIN) CLAYTON 1 PREPRINT +MASON_MUIRHEAD,RIGOPOULOS,+ (LIVP+ATEN) CRENNEL 71 PREPRINT +MASON_MUIRHEAD,RIGOPOULOS,+ (LIVP+ATEN) CRENNEL 71 PLS 5125 +GORDON,KNAN-HULLAI,SCARR (BNL) EISENBER 71 SLAC-PUB-933 EISENBER,BALLAM,CHADWICK+(REHO-STAN) FARBER FARBER 71 NP 29 237 +DE PINTO,BISWAS,CARO,DEER',KONNEY,+(NOAN) FOLEY 71 PRL 26 413 +LOVE,OZAKI,PLATNER,LINDENBAUH,+ (NOLH,0) FOLEY 71 PL 26 33 +HYARS,JONES, SCHELE IN, BUM JETET+LECEN+MPH IN) LYNCH 71 UCK 2022 239 +BOECKMANN,MAJOR+TORT+BONN+DURH-NIJM++ EPOL)
R9 A2 INTO (PI+ PI- PI-/(RHOO PI-) (PeC)/(PiC) R9 (0.23) GR LESS (CI=.90 ARRAMOVIC 70 HBC - 3.93 PI- P 1/71 R11 A2 INTO (PI GAMMA)/TOTAL (P7) (P7) R11 R 0.005) (0.005) (0.003)EISENBERG 71 HBC PHOTOPRODUCTION 11/71 R11 R DION EXCHANGE MODEL USED IN THIS ESTIMATION 11/71	ANKENBRANDT, BRABSON, CRITTENDEN, HEINZ, HIND) ANKENBRANDT, BRABSON, CRITTENDEN, HEINZ, HIND) ANKENDEN, CONF, PROC. + ARCOLI, BUSIN, CRITTENDEN, HEINZ, HIND) * ARCOLI, BUSIN, CONF, HEINZ, HIND) SHORDWOR, ZAMP, BJ, ZOJ BLODWOR, JACKSON, PRENTICE, YOON TATO, + BORZATTA, GOUSSU, + (CHON-HILAFSACL) ANGARD 72 UNPUBLISHED MEMO + LECHANDIN, HARTIN (BONR*GEVA)
R12 AZ INTO (OMEGA PI PI)/(RHO PI) (P4)/(P1) R12 0 0.10 DEFDIX 72 HBC 0.07 PBAR P,7 PI 2/73* R12 D DECAYS TO BI(10+0) PI, BI INTO OMEGA PI. 71 HBC 0.0.7 PBAR P,7 PI 2/73* R12 D DECAYS TO BI(10+0) PI, BI INTO OMEGA PI. 71 HBC 0.0.7 PBAR P,7 PI 2/73* R12 D DECAYS TO BI(10+0) PI, BI INTO OMEGA PI. 71 FI 71 71 R12 D DECOMPLICATED ANALYSIS. GRANJOST 72 HBC 0.71 PI+ P 2/73* R12 0.08 0.05 GRANJOST 72 HBC 0.9 PI- P,P A2 2/73* R12 279 0.10 0.05 CHALOUPKA 73 HBC 3.9 PI- P,P A2 2/73* R12 AVG 0.106 0.033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R12 PIT 0.033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R12 PIT 0.106 0.033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	DEFCIX 72 SUBMITTED TO PL +00BRZYNSKI,ESPIGAT,NASCIMENTO,+ (COEF) DIEBOLD 72 BATAV.COMF. R.DIEBOLD RAPPORTEUR TALK (ANL) EISENSER 72 PR 5 15 EISENBER,9ALLAM',DAGAN,+ (REHO-SLAC+TELA) EISENSTE 72 COD-1195-247 EISENSTEIN,SCHULTZ,ASCOLI,IOFFREDO,+ (ILL) ESPIGAT 72 PR 36 93 +6HESQUIERE,LILLESTOL,MONTANET (CERN+COEF) FOLEY 72 PR 36 93 +6HESQUIERE,LILLESTOL,MONTANET (CERN+COEF) GARNJOST 72 PR 10.VCOMMUNIC. MALSTON-GARNJOST (IBL) GGTINER (IBL) GARNJOST 72 PREVOMMUNIC. MALSTON-GARNJOST (IBL) (IBL) GARNJOST 72 PREVOMMUNIC. MALSTON-GARNJOST (IBL) (IBL) GARNJOST 72 PREVOMMUNIC. MALSTON-GARNJOST (IBL) (IBL) GARNJOST 72 PREVINTON (ISL) (IBL) (IBL) (IBL) (IBL)
REFERENCES FOR A2 ADERHOLZ 64 PL 10 248 (AACHEN+BERLIN+BIRH+BONN+HAMBURG+LOIC+MPIM) CHUNG 64 PRL 12 621 +DALH,HARDYHESS,KALBFLEISCH,KIRZ (LRL) GOLDHABE 64 DUBNA CONF 1 480 G GOLDHABER,S GOLDHABER,OHALLORAN,SHENILRL) LANDER 64 PRL 13 346 +ABOLINS,CARMONY,HENDRIKS,SUDGHG (LA JOLLA)	CHALOUPK 73 SUBMITTED TO PL CHALOUPKA,DOBRZYNSKI,FERRANDO,LOSTY,+(CERN)
ABOLINS 65 ATHENSIOHID)CONF. +CARMONY,LANDER,XUONG,YAGER [LA JOLLA)I=1 ADERHOLZ 65 PR 138 B 897 (AACHEN+BERL+BIRH+BONN+HAMB+LOIC+HFIM) ALITTI 65 PR 15 69 ALITTI BATCH,DELERS,RUSSAROF (SACLAY+BGNA) JP CHUNG 65 PRL 15 325 +DAHL,HARDY,HESS,JALCOBS,KIRZ,HILLER (LLK) DEFENNE 65 PRL 19 434 CERN HISTORG MASS SPECTROMETER GROUP (CERN) SEIDLITZ 65 PRL 15 217 L SEIDLITZ,O I DARHL,D H MILLER (LLK)	E(1420) 6 E (1420, JPG=A +) I=0 BAILLON 67 FAVOR JP=O DAHL 67 FAVOR 1+ BUT DO NOT EXCLUDE 2-, O LORSTAD 69 FIND O- OR 1+. 6 E MASS (MEV)
BARNES 66 PRL 16 41 BARNES,FOWLER,LAI,ORENSTEIN + (BNL+CUNY) BENSON 66 MICH COO-1112-6 G.C.BENSON, THESIS (MICH) ALSO 66 PRL 16 1177 G BENSON,LOVEL,MARQUIT,ROE + (MICH) EHRLICH 66 PRL 152 1194 R. EHRLICH,M.SELOVE,H.YUTA (PENN) FERBEL 66 PL 21 111 FERBEL (ROCHESTER) LEVRAT 66 PL 22 714 CERN MISSING MASS SPECTROMETER GROUP (CERN)	M 1425. 7. BAILLON 67 HBC 0. PBAR P 11/66 M 1420.0 20.0 DAHL 67 HBC 1.6-4.2 PI P 10/66 M 1423. 10. FRENCH 67 HBC 3-4 PBAR P/67 M 10 1420. 7. LORSTAD 69 HBC 0.7 PBAR 9/69 M 170 1393. 10. DEFOIX 72 HBC 0.7 PBAR P2K4P1 L2/72* M 280 1400. 72 HBC 1.2 P1L/72*
ARMENISE 67 PL 258 53 ARMENISE,FORINO,+ (BARI+BGNA+FIRZ+ORSAY) BALTAY 67 PL 258 160 +KIRSCH+KUNG+YEH+RABIN (COLU+BNL+RUTGERS) BARLOW 67 NC 50A 701 +LILLESTOL+MONTANET+ (CERN+CDEF+IRAD+LIVP)	M AVG 1415.5 4.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)

 $E(1420), X_0(1430), X_1(1440), f'(1514)$

Data Card Listings For notation, see key at front of Listings.

6 E WIDTH (MEV)		38 X(1440) MASS (MEV)	
M 80. 10. BAILLON 67 HBC 0. PBAR P N 60.0 20.0 DAHL 67 HBC 1.6-4.2 PI-P M 45. 20. PRENCH 67 HBC 3.6-48.2 PI-P M 310 60. 20. LORSTAD 69 HBC 0.7 PB P. 4, 5-BODY N 170 50. 10. DEFOIX 72 HBC 0.7 PB AR P.7 PI N 280 50. 12. DUBOC 72 HBC 1.2 PBAR P.3K4PI	11/66 10/66 6/67 9/69 1/73* 12/72*	M B POSSIBLY SEEN ABRAMS 67 HBC 4.25 K-P 5/6 N B THE AUTHORS ASSOCIATE THE PEAK WITH THE F PRIME, BUT BACKGROUND B 5/6 N B ESTIMATION IS DIFFICULT BALCN 67 HBC 1.2 PBAR P 5/6 N 1412- 23.0 BALCN 67 HBC 1.2 PBAR P 5/6 N 1439.0 5.0 6.0 BEUSCH GINT - 20.3 PI-P, 9/6 9/6 M (1425.0) FOLEY 71 (DIT - 20.3 PI-P, K-KS 2/7 MCIT - 20.3 PI-P, K-KS 2/7 MCIT - 20.3 PI-P, K-KS 2/7 M (1405.) DEFDIX 72 HBC 0.0.7 PBAR P, 7 PI 2/7 MCIT - 20.3 PI-P, K-KS 2/7	.7 57 11 73*
W AVG 59.8 6.0 AVERAGE (ERROR INCLOUES SCALE FACIUM OF 1.17		M AVG 1437.5 5.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
5 E PARTIAL DECAT MODES		38 X(1440) WIDTH (MEV)	
PI E INTO K K#{892} 497+ 891 P2 E INTO K K&BA PI 497+ 497+ 139 P3 E INTO PI RHO 134+ 134+ 770 P4 E INTO DELTA PI 970+ 139 P5 E INTO ETA PI PI 548+ 139+ 139		W 100. 70. BARLOW 67 HBC 1.2 PBAR P 5/6 W 43.0 17.0 18.0 BEUSCH 67 DSFK 57.12 P1-P 9/6 W (20.0) DR LESS FDLEY 71 CNTR - 20.3 P1-P,K-KS 2/7 9/6 W (40.1) DEFDIX 72 HBC 0.7 PBAR P,7 P1 2/7 W 466.4 17.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	17 17 13*
6 E BRANCHING RATIOS		****** ******** ********* *************	
R1 E INTO (KBAR K*(892) + C.C.)/(K KBAR PI) (P1)/(P2)		REFERENCES FOR X(1440)	
RI - 50 -10 ВАЛЦИИ 67 НВС 0-0 РААК Р R2 EINTO (PI PI RHO) / (K KBAR PI) (P3)/(P2) R2 (2-0) OR LESS DAHL 67 НВС 0 1-6-4-2 PI-Р.	.10/66	BARLOW 67 NC 50 A 701 +HONTANET,0^ANDLAU+ (CERN+CDEF+IRAD+LIVP) BRUSCH 67 PL 25 B 357 +FISCHER,60BF1A5TBURY+ (ETN2+CERN) FDLEY 71 PRL 26 413 +LOVE,0ZAK1,PLATNER,LINDENBAUM,+ (ENL+CUNY) DEFDIX 72 SUBMITTED TO PL >DOBRZYMSK1,ESPIGAT.NASCIMENTO,+ (CDEF)	
R3 E INTO (ETA 2 PIJ/(K KBAR PIJ R3 (1.5) OR LESS CL=.95 FOSTER 68 HBC - 0.0 PBAR P R3 1.5 0.8 DEFOIX 72 HBC 0.7 PBAR P	9/69 1/73*		
R4 E INTO (DELTA PIJ/(ETA PI PI) R4 0.4 0.2 DEFOIX 72 HBC 0.7 PBAR P,7 PI	1/73*	f'(1514) 13 F PRIME (1514, JPG=2++) I=0	
REFERENCES FOR E		13 F PRIME MASS (MEV)	
BAILLON 67 NC 50A 393 +EDWARDS+D.ANDLAU+ASTIER+ (CERN+CDEF+1RAD) BARASH 67 PR 156 1399 BARASH,KIRSCH,MILLER,TAN (COLUMBIA) DAHL 67 PR 163 1377 +HARDY+HESS+KIR2+MILLER (LR.LII. ALSO 65 PR 16 1074 MILLER.CHING.ANH,HESS,HARDY,KIR7+(IR1+LICR)	JP	M 1411400.07 CREMELL 06 HBC 6.07 FL 07.0 M B 51460.1 (10.) ABANS 67 HBC 4.25 K-P 5/6 M B BACKGROUND ESTIMATION DIFFICULT. 5/6 5.5 K-P 9/6 M 1515.0 7.0 AMMAR 67 HBC 4.55 K-P 9/6 M S 70(1513.0) (7.0) BARNES 67 HBC 4.65 5. K-P 9/6	57 57 57 57 72*
FRENCH 67 NC 52A 438 +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) POSTER 68 NP 68 174 +GAVILLET,LABROSSE,MONTANET,+ (CERN+CDEF) BETTINI 60 NF 62 A 1034 +GFSTLI.IMENTANI,BFETANIZA,BTGIFLOGAND+PISAICA		M S SUPERSEDED BY AGUILAR 72 M 100 1519, 7, AGUILAR 72 HBC 3.9,4.6 K- P 12/7 M 46 1514, 4, COLLEY 72 HBC 10.K+ P 12/7 M 47 1521, 7, VIDEAU 72 HBC 4.K- P ₁ L FPRIME 12/7	72* 72* 72*
LORSTAD 69 NP B 14 63 B.LORSTAD, D.ANDLAU, ASTIER,+ (CDEF+CERN) DEVONS 71 PRL 27 1614 +KOZLOWSKI, HORWITZ,+ (COLU+SYRA) CLADMAN 72 NP B 42 1 +CHURCHLYS, HURPHY-RING, VANDER VELDE (MICH)	JP	M AVG 1516.1 2.8 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
DEFOIX 72 NP B 44 125 +NASCIMENTO,BIZZARRI,+ (CDEF+CERN) DUBOC 72 NP B 46 429 +GOLDBERG,MAKOWSKI,DONALD,+ (LPNP+LIVP)		13 F PRIME WIDTH (MEV)	
		W B 5 (15.) (18.) ABRAMS 67 HBC 4.25 K− P 576 W B BACKGROUND ESTIMATION DIFFICULT- 576 576 576 W B 35.0 25.0 AMMAR 67 HBC 5.5 K− P 976 W S 70 (87.0) 15.0 BARNES 67 HBC 5.6 K− P 976	57 57 67 72*
$ \begin{array}{c} X_0(1430) \\ \rightarrow K_S K_S, \rho^0 \rho^0 \\ \end{array} \begin{array}{c} 29 \times (1430, JPG = \) I = 0 \\ \text{EVIDENCE NOT COMPELLING, OMITTED FROM TABLE} \\ \text{FUDENCE NOT COMPELLING, OMITTED FROM TABLE} \\ FUDENCE NOT COMPELIATE OF COMPELI$		W S SUPERSEDED BY AGUILAR 72 W 100 69, 22, AGUILAR 72 HBC 3.9,4.6 K- P 12/7 W 64 28, 15, COLLEY 72 HBC 10.K+ P 12/7 W E 47 40, 20, VIDEAU 72 HBC 4.K- P,L FPRIME 12/7 W E ERRORINGKEASED BY US.SEE TYPED NOTE ON K♥ MASS. W	72* 72* 72* 72*
		W AVG 39.9 9.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
29 X(1430) MASS (MEV)		13 F PRIME PARTIAL DECAY MODES	,
MRHOD RHOD MODE (1410.0) BETTINI 66 DBC 0 0. PBARP TO 5PR MKS KS MODE M B POSSIBLY SEEN ABRAMS 67 HBC 4.25 K- P M B THE AUTHORS ASSOCIATE THE PEAK WITH THE F PRIME, BUT BACKGROUND M B ESTIMATION IS DIFFICULT 1412. 23. BARLOW 67 HBC 1.2 PBAR P 1439.0 5.0 6.0 BEUSCH 67 OSPK 5,7.12 PI-P	9/66 5/67 5/67 9/67	DECAY MASSES P1 F PRIME INTO PI+ PI- 139+ 139 137 139+ 139 139+ 139 13 F PRIME INTO K K&AR 497+ 491 13 F PRIME INTO K K&AR 548+ 548 14 F PRIME INTO K K&AR 139+ 139 15 F PRIME INTO PI FI ETA 139+ 139+ 548 16 F PRIME INTO PI FI PI- 139+ 139+ 139 15 F PRIME INTO PI FI PI-PI- 139+ 139+ 139 15 F PRIME INTO PI FI PI-PI- 139+ 139+ 139	
M AVG 1437.5 5.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)		13 F PRIME BRANCHING RATIOS	
29 X(1430) WIOTH (MEV)		R1 F PRIME INTO (PI+ PI-)/(K KBAR) (P1)/(P2) R1 (0.2) OR LESS CL=.07 AMMAR 67 HBC 5.5 K-P 9/6 R1 (0.36) OR LESS CL=.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/7	67 72*
W (90.0) BETTINI 66 DBC 0 0. PBAR P TO 5PR	9/66	R3 F PR IME INTO (ETA ETA)/(K KBAR) (P4)/(P2) R3 (0.50) OR LESS BARNES 67 HBC 4.6, 5.0 K- P 10/6	67
M	5/67 9/67	R4 F PRIME INTO (PI PI ETA)/(K KBAR) (P5)/(P2) R4 (0.3) OR LESS CL=.67 AMMAR 67 HBC 10/6 R4 (0.25) (0.13) BARNES 67 HBC 4.6, 5.0 K- P 10/6 R4 SUPERSEDED BY AGUILAR 72 C 10 10 10	67 67
****** ******** ******** ******* ******		R4 (0.41) OR LESS CL=.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/7	72*
REFERENCES FOR X(1430) BETTINI 66 NC 42A 695 +CRESTILLIMENTANILORIA.PERUZZO+(PADO+PISA) BRAMK 67 PRI 18 620 +KFHDFGLASSFERSCHI-70RN.WDISKY (MARYLAND)		R5 (0.4) OR LESS CL=.057 AMARA 67 HBC 10/6 R5 (0.35) OR LESS CL=.057 AMARA 67 HBC 10/6 R5 (0.35) OR LESS CL=.057 AGUILAR 72 HBC 3.9,4.6 K P 12/7	67 72*
BARLON 67 NC 50 A 701 +HONTANET,D-ANDLAU+ (CERN+CDEF+IRAD+LIV) BEUSCH 67 PL 25 B 357 +FISCHER,6OBBI,ASTBU+ DUNALD 69 NP B 11 551 +EDWARDS,BURAN,BETTINI,+ (LIVF+SCL0+PADD)		R6 F FK HE INTO (F) F FIF FIF FIF J/ IK KOAR) R6 (0.32) DA LESS CLE-95 AGUILAR 72 HBC 3-944.6 K- P 12/7	72*
****** ******** ********* *************		REFERENCES FOR F PRIME	
$X_1(1440)$		BARNES 65 PRL 15 322 +CULWICK,GUIDONI,KALBFLEISCH,GOZ+(BNL+SYRA)	
→K _S K _S B X (1440, JPG=) I=1 EVIDENCE NOT COMPELLING-OMITTED FROM TABLE. PEAKS SEEN IN (KS KS) SPECTRA QUOTED UNDER		ABRAMS 67 PRL 18 620 +KEHOE,GLASSER,SECHI-ZORN,WOLSKY (MARYLAND) AMMAR 67 PRL 19 1071 +DAVIS,HHANG,DAGAN,OERRICK + (NNES+ANL) JP BARNES 67 PRL 19 964 +DORNAN,GOLDBERG,LEITNER + (BNL+SYRACUSE)ICJP ALITTI 68 PRL 21 1705 + HBARNES,GERNNELL,FLANINID,GOLDBERG.+ (ANN)	
X(1430) (I=0) AS WELL.		LORSTAD 69 NP 8 14 63 S.COTER 69 NC 62 A 1057 +ERSKINE,PALER,+ (ICDEF+CERN) JP	

Mesons f'(1514), $F_1(1540)$, $\rho'(1600)$, $A_3(1640)$

The ρ^{1} , long sought by looking for its 2π decay, has been seen clearly only in the reaction

 γ (real or virtual) $\rightarrow \rho^{\dagger 0} \rightarrow \rho^{0} \epsilon^{0} \rightarrow 4\pi$. There is some evidence from ALVENSLEBEN 71 and BULOS 71 for a 2π bump far out on the ρ tail, but interpretation is difficult. EISENBERG 72 claim to establish a width of less than 2 MeV for ρ^{\prime} \rightarrow 2π. This is not easily put in the format of the data cards below, so it is summarized here: Their 5 GeV/c π^+ p experiment yields 5600 $\rho\Delta^{++}$ and <37 $\rho^{\dagger}\Delta^{++}$; i.e., production ratios are >100:1. With minor corrections, the OPE model then gives a ratio of coupling constants squared for the 2π decay of ρ^{1} and ρ to be $g^{2}(\rho')/g^{2}(\rho) < 0.02$, which then yields the surprising $\Gamma(\rho' \rightarrow 2\pi) < 2$ MeV. If no 2π mode is found, MORTARA 72 suggests that the ρ' is just a $\rho \in$ threshold on the tail of the p, but again EISENBERG 72 claim to refute this.

Mass and width values punched below are only indicative, because for such a broad peak they are extremely dependent on the parametrization chosen. For reviews, see DIEBOLD 72 and SILVESTRINI 72.

65 RHO PRIME MASS (MEV)	
M (1600.] APPROX. BARBARII 72 OSPK 0 E+ E- TO 4 PI M 400 1430. 50. BINGHAM 72 HBC 0 9.3 GAM P.P 4PI M 1586. 22. DAVIER 72 STRC 0 4.5-18. G P.P4PI M 5 400(1500.) M.OF PEAK 400/40 SMADJA 72 HBC 0 9.3 GAM P.P 4PI M	1/73* 12/72* 12/72* 12/72*
M AVG 1560.7 57.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.9) S LATER FITS GIVEN BY BINGHAM 72	
65 RHO PRIME WIDTH (MEV)	,
W 400 650. 100. BINGHAM 72. HEC. 0.9.3 GAM P.P. P41 303. 64. DAVIER 72.5 TRC 0.4.5 C. P.P.A. W 303. 64. DAVIER 72.5 TRC 0.4.5 C. P.P.A. W 5 400 (600) FWHM 400/40 SMADIA 72. HBC 0.9.3 GAM P.P. P.P.I W S EXPTL.FULL WIDTH AT HALF MAX. LATER FITS GIVEN BY BINGHAM 72. INAMA 72.	12/72* 12/72* 12/72* 12/73*
W AVG 403.8 157.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.9)	
65 RHO PRIME PARTIAL DECAY MODES	
P1 RHD PRIME INTO RHO PI PI DECAY MASSES P2 NEUTRAL RHO PRIME INTO ALL CHARGED 4 PI MODES 1394 1394 1394 1394 1394 1394 1394 1394	
65 RHO PRIME BRANCHING RATIOS	
R1 RHO PRIME INTO (RHO PI+ PI-)/(4 PI, ALL CHARGED) (P1)/(P2) R1 S DOMINANT BARBAR11 72 OSPK O E+E- TO 4 PI R1 S (.80) BINGHAM 72 HBC 0 9.3 GAM P.P 4PI R1 S DOMINANT DAVIER 72 STRC 0 4.5-18. G P.P4PI R1 S THE PI PI SYSTEM IS IN S WAVE	1/73* 1/73* 1/73* 1/73*
R2 RHO PRIME INTO (RHO O RHO O)/(RHO O PI+ PI-) (P3)/(P1) R2 NONE (FORBIDDEN BY I=1)BINGHAM 72 HBC O 9.3 GAM P,P 4PI	1/73*
R3 RHO PRIME INTO (PI+ PI-)/(4 PI, ALL CHARGED) (P4)/(P2) R3 (.2) OR LESS 2 SIGMA BINGHAM 72 HBC 0 9.3 GAM P, P 2PI R3 (.01) OR LESS 2 SIGMA DISHOBERG 72 HBC 0 5 PI+P, 2 OR 4 PI R3 E SEE DISCUSSION IN TYPED MINI-REVIEW ABOVE. PI HBC 0 5 PI+P, 2 OR 4 PI	1/73* 1/73* 1/73*
R4 RHO PRIME INTO (K BAR K)/(4 PI, ALL CHARGED) (P5)/(P2) R4 (.04) OR LESS 2 SIGMA BINGHAM 72 HBC 0 9.3 GAM P	1/73*
****** ********* ******** ******** *****	
REFERENCES FOR RHO PRIME	
ALVENSLE 71 PRL 26 273 BRAUN 71 NP B30 213 +FRIDMAN, GERBER, GIVERNAUD,+ (JESY+HIT) G BULOS 71 PRL 26 149 +BUSZA,KEHDE,BENISTON,+ (SLAC+UMDET)BH+LBL) G	
BACCI 72 PL 38B 551 +PENSD,SALVINT,STELLA,BALDINI-CE(ROMA+FRAS) JPC BARBARI 72 NC 369 BARBARIS, 72 NC 369 BARBARIS 72 NC 369 BARBARIS, 72 NC 369 BARBARIS 72 NC 369 BARBARIS, 72 NC (FRAS-ROMA+PAD0-UMD) IGJE BARBARIS 72 NC 361 (FRAS-ROMA+PAD0-UMD) IGJE (FRAS-ROMA+PAD0-UMD) IGJE BARTOLI 72 PR D 62 374 +FELICETII-OGREN,+ (FRAS-ROMA+PAD0-UMD) IGJE BARTOLI 72 PR D 62 374 +FELICETII-OGREN,+ (FRAS-ROMA+NAPL) IGJE BARTOLI 72 PR D 62 374 +FELICETII-OGREN,+ (FRAS-ROMA+NAPL) IGJE BARTOLI 72 PR D 62 374 +FELICETII-OGREN,+ (FRAS-ROMA+NAPL) IGJE DAVIER 72 BATA/COMF, PAP.797 +FERDOLIS JAPPORTEUR SALCOMF, IGAE (FRAS-ROMAPAN,+SLACOMF) DIFEDUD 7 BATA/COMF, PAP.797 +FERDOLIS LAPPORTEUR (FRAS-ROMAPAN,+SLACOMF) (FRAS-ROMAPAN,+SLACOMF) DIFEDUD 7 PATA 72 COMF, PAP.791 +FERDOLIS LAPPORTEUR (FRAS-ROMAPAN,+SLACOMF) SILVESTR<	1 1
LEKAUINI /3 BAT.CONF.PAP.560(PL 1973)+CONVERSI,D*AN(FRAS+ROMA+PADO+MARY)IGJP	
[A ₂ (1640)]	
A3 (1640, JPG=2) I = 1	

The $A_3(1640)$ is seen as a bump in the diffraction-like process $\pi N \rightarrow (\pi \pi \pi)N$. The dominant effect is a 300-400 MeV wide enhancement in the $J^P = 2^- f\pi$ S-wave system, starting from $f\pi$ threshold. Neither additional (narrower) structure in the 3π mass distribution, nor other decay modes, have been clearly established. There appears to be little variation of the $J^P = 2^- f\pi$ phase in the A_3 mass region (ASCOLI 72). The situation thus resembles that of the A_4 .

 $A_3(1640), \omega(1675)$

Data Card Listings For notation, see key at front of Listings.

M M	34 A3 MASS (MEV) 30(1600.0) FORINO 65 DBC 04.5 PI+ D 10/66 20 1630.0 30.0 VETLITSKY 66 HBC - 4.7 PI- P	VETLITSKY, 605AVIN, KLIGER, ZOLGANOV + (ITE) DANYSZ 67 NC 51 A 801 DANYSZ+FRENCH+SIMAK (CERN) DUBAL 67 NP 83 435 CERN MISSING MASS SPECTROMETER GROUP (CERN) ALSO 68 THESIS 1456 L.DUBAL (GENEVE)
м м м м м м	1630. 10. BALTAY 68 HBC + 7, 8.5 PI+ P 6/68 1660.0 16.0 BARTSCH 68 HBC + 8, PI+P, P3PI P 8/66 1610. 19. LAMSA 68 HBC - 8.0 PI+P, P1-F 11/67 271 1673.0 40.0 ARMENISE 69 DBC + 5.1 PI+0, 50PI++- 5/70 1680.0 (20.0) CASO 69 HBC - 11 PI-P 5/70 1660.0 20.0 CASO 69 HBC - 11 PI-P, PI-F 5/70 1665.0 10.0 CRENNELL 70 HBC - 6.7 PI-P, PI-F 1/70 1(633.0) (12.0) MIXSHITA 70 HBC - 6.7 PI-P, PI-F 1/70	BALTAY 68 PRL 20 887 +KUNG+YEH+FERBEL+ (COLU+ROCH+RUTG+YALE)I=1 BARTSCH 68 PR 7 345 +KEPPEL,KRAUS,+ (CACH+BERL+CERN) JP CASO 68 C544 983 +KEPPEL,KRAUS,+ (GEN0VA+HAMB HILA+SACL) FERBEL 68 C544 983 -KEPBEL (ROCH-STER) JOFFREDO 68 NC 341 1212 +FERBEL (ROCH-STER) JOFFREDO 68 PRI 1212 +FERADENDENDER, BRENNER, EISENSTEIN+ (HARVARD) LAMSA 68 PRI 166 1395 +CASON+BISNAS+DERADD+CROVES+ (NOTEEDAME) YOST 68 UND *YOOH, EINSCHLAG, DAY, CLAS SER (UMD)
M M M M P	BACKGROUND SUBTRACTION DIFFICULT. (1672.0) BEKETOV 71 HBC - 4.45 PI- P 11/71 1600. 50. PALER 71 DBC + 13.PI+ D.D(3PIJ+.11/71 1660. 10. ASCOLI 72 HBC - 525.PI- P.P A3 12/72 COMMENT 70 PD- 5.7	ARMENISE 69 LNC 2 501 +GHIDINI,FORINO,CARTACCI+ (BARI+BGNA+FIRZ) BARNES 69 PRL 23 142 +CHUNG,EISNER,FLAMINIO,+ (BNL) CASO 69 LNC 2 437 +CONTE,TOMASINI,CANTORE+ (GENO+MILA+SACL) ALSO 68 CASO 68 CASO
M F M F M F M F M AV	FROM A F-11 TO JP=2-FP1 CASO 72 HBC + 11.7 PI+P 11.771 200 1650. 25.0 HWARISON TZ HBC - 1320. PI-P 12.772 FIT ASSUMES AN KODITIONAL PEAK AT 1830 MEV. 12.772 12.772 EVIDENCE FOR A SUBSTANTIAL DECAY INTO 3PI CLAIMED 12.772 5 16451. 5.5	BRANDENB 70 NP B16 369 +BRENNER,IDFFREDO,JDHNSON,KIM+ (HARVARD) CRENNELL 70 PRL 24 781 +KARSHON,LAI,SCARR,SIMS (BNL) CHIENI 70 TORKONTO PREPRINT +CHAD,JDHNSTON,PRENTICE,MALKER (INTO-WISC) CHIEN2 70 PHILAD.CONF.P.275 C.Y.CHIEN, REVIEW (JOHNS HOPKINS) MYIXSHIT 70 PR D 1771 MYIXSHITA,VON KROCH,KOPELMAN,LIBBY (COLO)
		BEKETOV 71 SJNP 4 765 +SOMBKOWSKY,KONOWALOV,KRUTSCHININ,+ (ITEP) JP CLAYTON 71 PREPRINT +MASON,MUIRHEAD,RIGOPOULOS,+ (LIVP+ATEN) PALER 71 PRL 6 1675 +BADEHTIZ.BRATIN,MUILER,PAIFERY,TERES(PURD)
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥	34 A3 WIDTH (MEY) 20 (100.) VETLITSKY 66 HBC - 4.7 PI-P 6/66 70. 40. BALTAY 68 HBC + 7, 8.5 PI+P 6/68 115.0 45.0 BARTSCH 68 HBC + 8.9 PI+P,37PI P 8/69 100. 50. 30. LAMSA 68 HBC + 8.0 PI-P PI-F 1/67 297 (240.0) (50.0) ARMENISE 69 DBC + 5.1 PI+0, 3PI+F 5/70 54CKGROUMO SUBTRACTION MODEL-DEPENDENT. - 5/70 (130.0) CAS0 69 HBC - 11.0 PI-P,PI-F 6/68 (150.0) CAS0 69 HBC - 11.0 PI-P,PI-F 6/68	ALEXANDE 72 NP B 45 29 ALEXANDER, BAR-NIR, BEVARY, DAGAN, + ITELA) ARKENISE 72 LNC 4 201 +FORINO, CARTACCI, + (BAR1+BGNAFER2) ASCOLI 72 PREP.COD-1195233 ILL+TNC+GENCHAMB+MILA+SACL+HARV+ COLLAB. JP ASCOLI 72 PHIL.CONF.FORCO-INTERNAT.COLLABORATION (ILL+) CASO 72 NP B 36 349 +MADDOCK, BASSLER+(DURH+GENO+DESY+HILA+SACL) HARRISON 72 PRL 28 775 +HETOA.JOHNSON, KIM.JA, MUELER, + (HARV) SALZBERG 72 NP B 41 397 +HARRISON, HEYDA, JOHNSON, KIM, LAN, + (HARV)
W W M W M	130.0 30.0 CRENNELL 70 HBC - 6. PI- P.F PI 5/70 (37.0) (24.0) MIYASHITA 70 HBC - 6.7 PI-P.PI-F 1/71 BACKGROUND SUBTRACTION DIFFICULT.	****** ******** ******** ******** ******
W W P	[128.0] BERETOV 71 HBC - 4.45 PI-P 11/71 220. 80. PALER 71 DBC 13.PI+0.p0(3P1)+.11/71 270. 60. ASCOLI 72 HBC - 525.PI-P.P.PA 312/72	$ \left \begin{array}{c} \omega(1675) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
	PROM A FIT TO JPEZ-FP1 CASO 72 HBC + 11.7 PI+P 1/72 200. TO 400. FROM PARTIAL-WAVE ANALYSIS,FOR JPEZ-(F PI)-STATE 1/72 200. 100. CASO 72 HBC + 11.7 PI+P 11/71 (53.) (20.) (16.) HARRISON 72 HBC - 1320. PI-P 12/72 FIT ASSUMES AN ADDITIONAL PEAK AT 1830 MEV. 12/72 12/72 12/72 EVIDENCE FOR A SUBSTANTIAL DECAY INTO 3PI CLAIMED 12/72 12/72	THIS 3PI BUMP OVERLAPS IN MASS WITH THE A3, BUT IN SOME EXPTS. ONE CAN ESTABLISH THAT THE ENHANCEMENT IS (RHO O PI) INSTEAD OF (F PI), SO THE OWEGA(1675) AND A3 HAVE DIFFERENT ISOSPIN. MATTHEWS 71 SUGGEST JP-NORMAL, A POSSIBLE RECURRENCE OF OMEGA(784).
		45 OMEGA(1675) MASS (MEV)
	34 A3 PARTIAL DECAY MODES DECAY MASSES	M 1636.0 20.0 ARMENISE 68 DBC 0 5.1 P1+D 9/68 M 1670.0 20.0 KENYON 69 DBC 8 P1+D 8/69 M (1640.00) ARMENISE 70 DBC 9. P1+D 1/71
P1 P2 P3 P4 P5 P6 P7	A3 INTO 3 PI 134+ 134+ 134 A3 INTO RNO PI 134+ 770 A3 INTO ETA PI 134+ 548 A3 INTO 5 PI 134+ 548 A3 INTO K (**(892)) 497+ 891 A3 INTO K (**(892)) 497+ 497 A3 INTO K (*K KBAR 497+ 497	M G (1616.0) (30.0) GUNDUN 70 DBC 0 4.2 91+0 1/11 M 100 1679.0 17.0 MATTHEWS 71 HBC 06.95 PI 0.2P 3PI 1/71 M G NOT CERTAIN IF OMEGA(1675) OBSERVED IN THIS EXPERIMENT M M AVG 1663.6 12.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)
P9	A3 INIO F PI 12/0* 134 A3 INIO OMEGA PI PI 783* 134+ 134	45 OMEGA(1675) WIDTH (MEV) W 112.0 60.0 ARMENISE 68 DBC 0 5.1 PI+D 9/68
	34 A3 BRANCHING RATIOS	W 100.0 40.0 KENYON 69 DBC 8 P1+ D.391 ZP 8(69) W G (188.0) (47.0) GORDON 70 DBC 0.4.2 P1+ D 1/71 W 100 155.0 20.0 MATTHEKS 71 HBC 06.95 P1 0.72 3P1 1/71 W 6 NOT CERTAIN IF OMEGA(1675) 0BSERVED IN THIS EXPERIMENT 1.15 EXPERIMENT 1.15 EXPERIMENT
R2 R2 R2	A3+- INTO (P1+- RHO)/(ALL P1+- P1+ P1-) (P2C)/(P1C) (0.3) GR LESS BARTSCH 68 HBC + 8. PI+ P,3PI P 8/69 (0.4) GR LESS FERBEL 68 RVUE +	W AVG 141.4 17.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
R2 R3	(.16) UK LESS (L=.95 PALEK /1 UBC + 15.974 0,01574/4 11/11 A3+- INTO (PI+- F)/(ALL PI+- PI+ PI+) (P8)/(PIC) (UTTU E INTO DIA DI-)	45 OMEGA(1675) PARTIAL DECAY MODES
R3 R3 R3 R3 R3 R3 R3 R3	INDICATION SEEN IN UDATTI 66 HIBC 16 PI- 11/66 (0.59)FOR JP=- 50,59)FOR JP=- 60,55)FOR JP=- 10,55)FOR JP=- 10,55)FOR JP=0- 10,55)FOR JP	PI OMEGA(1675) INTO 3 PI DECAY MASSES P2 OMEGA(1675) INTO 5 PI 134+ 134+ 134 P3 OMEGA(1675) INTO 7 PI 134+ 134+ 134+ P3 OMEGA(1675) INTO 7 PI 770+ 134
R3 R3 R3	(0.76) (0.24) (0.34) ARMENISE 69 DBC + 5.1 PI+0.391++- 5/70 CONSISTENT WITH 1.0 CRENNELL 70 HBC + 6. PI- P,F PI . 5/70 (.85) OR MORE CL=.95 PALER 71 DBC + 13.P++ D,D(3P+) + 11/71	45 OMEGA(1675) BRANCHING RATIOS
R 5 R 5 R 5	A3+- INTO (PI+- ETA)/(ALL PI+- PI+ PI-) (P3)/(PIC) (ALL ETA DECAYS) (0.09) OR LESS BALTAY 68 HBC + 7-8.5 PI+P 5/68	R1 UNE OF LOGS LIGS LIGS <thligs< th=""> <thligs< th=""></thligs<></thligs<>
R5 R6 R6	(0.10) DR LESS CRENNEL 70 HBC - 6. PI- P,F PI 5/70 A3+- INTO (PI+- 2PI+ 2PI-)/(ALL PI+- PI+ PI-) (P4C)/(PIC) (0.1) OR LESS BALTAY 68 HBC + 7,8.5 PI+ P 6/68	R2 100 (0.70) OR MORE MATTHENS 71 HBC 0 6.95 PI D,2P3PI 11/71 R2 6 NOT CERTAIN IF OMEGA(1675) OBSERVED IN THIS EXPERIMENT
R6 R8	(0.10) OR LESS CRENNELL 70 HBC - 6. P+- P,F P+ 5/70 A3+- INTO (RHO PII/(F PI) (P2)/(P8)	45 OMEGA(1675) CROSS SECTIONS
R9 R9 R9 R9	0.03 0.37 0.03 0.43 0.43 0.9 HBC - 11 F1- F 370 A3+- INTO (F1+- F1-)/(F F1) (F1-F1) 0.06 0.47 0.06 CASD 69 HBC - 11 F1- P 5/70 POSSIBLY SEEN HARRISON 72 HBC - 13.,20. F1- P 12/72	CS FOR A COMPILATION SEE MATTHEWS 71 HBC 06.95 PI 0,2P 3PI 1/71
R10 R10 M	A3+- INTO (UNCORREL.PI+- PI+ PI-)/(ALL PI+- PI+ PI-) (.05) OR LESS CL=.95 PALER 71 DBC + 13. PI+D,D(3PI)+ 11/71	ARMENISE 68 PL 26B 336 +GHIDINI,FORINO+ (BARI+BGNA +FIRZ +ORSAY) KENYON 69 PRL 23 146 +KINSON-SCARP.+ (RNI+HICHD-COMI)
R10 M ******	MUDEL DEPENDENT FIT 11/71	ARMENISE 70 LNC 4 199 +GHIDINI,FORINO,CARTACCI,+ (BARI+BGNA+FIRZ) GORDON 70 COO 1195 179 THESIS,ILLINDIS
EODINO		MATTHEWS 71 PR D 3 2561 +PRENTICE, YOON, CARROLL,+ (TNTO+WISC) MATTHEW1 71 LNC 1 361 +PRENTICE, YOON, CARROLL,+ (TNTO+WISC)
FOCACC LEVRAT LUBATT	66 PRL 17 890 CERN MISSING MASS SPECTROMETER GROUP (CERN) 66 PL 22 714 CERN MISSING MASS SPECTROMETER GROUP (CERN) 166 THESIS BERKELEY H.J.LUBATTI	****** ******** ******** ******** ******

g(1680) 15 G (1680, JPG = 3-+) I=1

This entry contains the 2π , 4π , $\omega\pi$, $K\bar{K}$ and $K\bar{K}\pi$ peaks in the region of 1700 MeV. The spinparity determination and the mass and width in the Meson Table come from the 2π decay mode. Analyses of 2π using OPE models suggest elasticity considerably less than 1 (BARTSCH 70, MATTHEWS 71). On the other hand, the discrepancies in masses, widths, and branching ratios indicate that there may be more than one $I^{\rm G} = 1^+$ meson in this region (see BARNHAM 70, HOLMES 72). For convenience we have collected all the data here under a common entry, without implying that they are necessarily all related. For a review see BARTSCH 70.

Mesons

g(1680)

W

* * * *

w

P1 P2 P4 P5 P5 P7 P8 P9

R2 R2

R 3 R 3

R4 R4 R4 R4 R4 R4

R5 R5

R7 R7 R7 R7 R7 R7

R8 R8 R8

R9 R9 R9 R9 R9

g(1680), X(1690), X⁻(1795)

Data Card Listings For notation, see key at front of Listings.

R FRACTION INTO ONE / THREE / FIVE OR MORE CHARGED TRACKS (0.371/ (0.591/ 0.04 FOCACCI 66 MMS - 7-12 PI-P,P MMS 2/72 (0.421/ (0.56)/ 0.01 FOCACCI 66 MMS - 7-12 PI-P,P MMS 2/72 (0.141/ (0.60)/ 0.05 FOCACCI 66 MMS - 7-12 PI-P,P MMS 2/72 R13 R13 R1 R13 R2 R13 R3 (4PI)+- MODE
 100.
 35.
 BALTAY
 68
 HBC
 +
 7,8,5
 PI+

 162.
 58.
 40.
 BISMAS
 68
 HBC
 8,PI-P

 (90.0)
 (20.0)
 JUHNSTON
 68
 HBC
 7.0
 PI-P

 NOT SEPARATED FROM 2 PI DECAY
 JUL
 JUL
 A
 7.0
 PI-P

 INCLUDED IN HOLMES T2
 JUL
 DARNTSCH
 70
 HBC
 +
 10
 K+ P,RHD

 190
 103.00
 BARTSCH
 70
 HBC
 +
 8
 PI+P,2

 102
 L160.01
 (30.0)
 BARTSCH
 70
 HBC
 +
 8
 PI+P,2

 104
 L60.01
 CASO
 70
 HBC
 +
 8
 PI+P,2
 6/68 2/72 6/68 ****** ******** ********* ***** 70 HBC + 10 K+ P,RHD PIPI 1/73 REFERENCES FOR G BARTSCH 70 HBC + 8 PI+ P,4 PI BARTSCH 70 HBC + 8 PI+ P,42 PI BARTSCH 70 HBC + 8 PI+ P,22 RHO CASO 70 HBC - 8 PI+ P,2 RHO CASO 70 HBC - 11.2PI-P,RHO 2P ARMENISE 72 HBC - 9,1 PI- P,P 4PI HOLMES 72 HBC + 10--12. K+ P BELLINI,DI CORATO,DUIMIG,FIORINI (MILANO) M.DEUTSCHMANN ET AL (AACHEN+BERLIN+CERN) FORING,GESSAROLI + (BDLOGNA+ORSAY+SACLAY) GOLDBERG+ (CERN+EPOL+ORSAY+MILANO+CEA-SACL) 4/71 4/71
 BELLINI
 65
 NC
 40
 A
 948

 DEUTSCHM
 65
 PL
 18
 351

 FORINO
 65
 PL
 19
 65

 GOLDBERG
 65
 PL
 17
 354
 5/70 12/72* 1/73* (160.0) R. EHRLICH,W.SELOVE,H.YUTA (PENNSYLVANIA) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) EHRLICH 66 PR 152 1194 FOCACCI 66 PRL 17 890 LEVRAT 66 PL 22 714 SEGUINOT 66 PL 19 712 130 30. AVG 128.4 17.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (4PI)0 MODE +KEHDE+GLASSER+SECHI-ZORN+WOLSKY (MARYLAND) +RRENCH+KINSON+SIMAK+ (CERN+LIVERPOOL) +FOCACCI+KIENZLE+LECHANDINE+LEVRAT+ (CERN) LOUBAL LOUBAL (CERNYE) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) ABRAMS 67 PRL 18 620 DANYSZ 67 PL 24B 309 DUBAL 67 NP B3 435 ALSO 68 THESIS 1456 FRENCH 67 NC 52A 442 R 80 (40.) (12.) DANYSZ 67 HBC OSEE NOTE R BELOW. 5/67 R SEEN IN 2.5-3 PBAR P. 2PI+2PI-,WITH 0,1,2 PI+PI- PAIRS IN RHOO BAND OMEGA PI MODE +FORIND+CARTACCI+(BARI+BONA +FIRENZE+ORSAY)I +KUNG+YEH+FERBEL+ (COLU+ROCH+RUTG+YALE)I-(CASON,DZIERBA,GROVES,KENNEY++ (NDAM) BOESEBECK,DEUTSCHMANN,+(AACHEN+BERLIN-CERN) +CONTE+CORS04DIZ+ (CONVA+HAMSH'ILA-SACL) +KARSHON;LAISCARB,SKLLCOCRN HILA-SACL) +RENTICE,TEENBERG,YON (TORONTO+HISC)IJP ARMENISE 68 NC 54 A 999 BALTAY 68 PRL 20 887 BISWAS 68 PRL 21 50 BOESEBEC 68 NP B 4 501 CASD 68 NC 54 A 983 GRENNELL 68 PL 28 B 136 JOHNSTON 68 PRL 20 1414 130. (60.0) 73. 43. BARNHAM 70 HBC + 10 K+ P, OMEGA PI 6/70 CASO 70 HBC - 11.2PI-P, PI OMEG 5/70 R PEAKS FROM MMS. (FOR DIFFICULTIES WITH MMS EXPT SEE A2 MINIREVIEW) 1/73* NR1 NR2 NR3 (21.) OR LESS (30.) OR LESS (38.) OR LESS NOT SEEN BY BOWEN 72 (195.0) FOCACCI 66 MMS - 7-12 PI-P,P MMS 12/72* FOCACCI 66 MMS - 7-12 PI-P,P MMS 12/72* FOCACCI 66 MMS - 7-12 PI-P,P MMS 12/72* +BARTSCH,+ (AACH+BERL+CERN+JAGL+MARS) +COLLINS,BLEDEN+ (BUH+CARN) >SELOYE,BISMAS,CASON,+ (PENN+NDAM+ROCH) +CONTE,BENZ,+ (GENO+DESY+HAMB+MILA+SACL) +GUHAIYN,KLIGER,ROLGANDY,LBEBDEV+ (ITEP) ADERHOLZ 69 NP B 11 259 ANDERSON 69 PRL 22 1390 BARISH 69 PR 184 1375 CASO 69 NC 62 A 755 VETLITSK 69 SJNP 9 461 N R ANDERSON 69 MMS - 16 PI+ P, BACKW 8/69 15 G PARTIAL DECAY MODES ARMENISE 70 LNC 4 199 BARNHAM 70 PRL 24 1083 BARTSCH 70 NP B 22 109 CASD 70 LNC 3 707 KRAMER 70 PRL 25 396 MAURER 70 THESIS NO.588 STUNTEBE 70 PL 32 B 391 +GHIDINI,FCRINO,CARTACCI,+ (BARI+BGNA+FIRZ) +COLLEY,JOBES,KENYON,PATHAK,RIDDIFORDIBIRM) +KRAUS,ISANOS,GROTE,KOTZAN+(AACHBERL+CERN) +CONTE,TONASINI,CORDS+(GENO+HANB+HIL4-SACL) +BARTON,GUTX,LICHTMAN,MILLER,+ (PURDUE) DECAY MASSES 139+ 139 139+ 139+ 139+ 139 770+ 770 1310+ 139 1310+ 139 1310+ 139 497+ 497 497+ 497+ 139 109+ 139 109+ 139 DECAY MASSES G INTO PI PI G INTO 2 RHO G INTO 2 RHO G INTO 22 RHO G INTO A2 PI G INTO K KBAR G INTO K KBAR PI G INTO K KBAR PI G INTO PHI PI G.MAURER (STRASBOURG) STUNTEBECK ,KENNEY, DEERY, BISWAS, CASON+ (NDAM) +CHADWICK,GUIRAGOSSIAN,JOHNSON,+ (SLAC) +FRIDMAN,GERBER,GIVERNAUD,KAHN,+ (STRB) +HYAMS,JOHES,SCHLEIN,BLUM,+ (CERN+MPIN)JP3-+PRENTICE,YODN,CARROLL,+ (TNTO+WISC)JP3-
 BALLAM
 71
 PR
 D
 3
 2606

 BRAUN
 71
 NP
 B
 30
 213

 GRAYER
 71
 PL
 35
 B
 610

 MATTHEWS
 71
 NP
 B
 331
 +FORING,CARTACCI,+ (BARI+BGNA+FIRZ) +EARLES,FAISSLER,BLIEDEN,+ (NEAS+STON) +MASON,MURHEAD,RIGOPOULOS,+ (LIVP+PATR) +HYANS,JONES,SCHLEIN,BLUM,DIETL+(CERH+MPIM) +FERBEL,SLATTERY,HERNER (NOCH) 15 G BRANCHING RATIOS ARMENISE 72 LNC 4 205 BOWEN 72 PRL 29 890 CLAYTON 72 NP B 47 81 GRAYER 72 PHTL.CONF.PROC. HOLMES 72 PR D 6 3336 (0.4) (0.4) (0.2) (0.22) (0.04) MATTHEWS 71 HOBC 0 7. PI+N, PI-P OPE MODEL USED IN THIS ESTIMATION OPE 100-000 OPE 100-0000 R1 R1 P R1 P R1 P 2/72
 OPE
 MUDEL
 USED
 Initial Estimation

 G
 INTO
 (PI)-(PIO)
 (PI)/(P2C)

 (0.08)
 OR
 ESS
 BALTAY
 68
 HBC
 +
 7-8-5
 PI+ P

 USING
 DATA
 OF
 DEUTSCHMANN
 65
 NPI+P
 TO
 PI+ PIO
 PI
 0.8
 0.2
 JOINSTON
 68
 HBC
 +
 7-PI-P
 0.8
 0.15
 BARTSCH
 70
 HBC
 +
 7-PI-P
 0.8
 0.15
 BARTSCH
 70
 HBC
 +
 0.7
 PI-P
 10.121
 DR<LESS</td>
 BALLAM
 TI
 HBC
 +
 0.7
 PI-P
 10.212
 OR<LESS</td>
 HOLMES
 T2
 HBC
 +
 10-12.
 K+P
 10-12.
 K+P
 10-32.
 G
 0.80
 0.12
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 6/68 6/68 2/72 2/72 2/72 1/73* D X(1690) 64 X(1690) $\rightarrow \omega \pi \pi$ THIS ENTRY CONTAINS (OMEGA PI PI) PEAKS AROUND 1690 MEV. EVIDENCE NOT COMPELLING. OMITTED FROM TABLE. AVG ≻ G+- INTO (2PI)/(2RHO) (0.48) OR LESS (P1)/(P3) BISWAS 68 HBC - 8. PI- P 2172 64 X(1690) MASS (MEV)
 G+ INTO (K KBARJ/(2P1)
 EHRLICH
 66 HBC
 +0 7:9 P1- P

 INDICATION SEEN
 EHRLICH
 66 HBC
 +0 7:9 P1- P

 INDICATION SEEN
 ABRAMS
 67 HBC
 0.425 K- P

 0.08
 0.03
 CRENNELL
 68 HBC
 6.0 P1- P

 0.08
 0.03
 BARTSCH
 70 HBC
 6.0 P1- P

 0.080
 0.03
 BARTSCH
 70 HBC
 6.0 P1- P

 0.080
 0.03
 BARTSCH
 70 HBC
 6.0 P1- P
 DANYSZ 67 HBC YOST 68 HBC BARNES 69 HBC 3/67 1689. 1670.0 1695.0 10. 18.0 20.0 0 3,3.6 PBAR P 1/73* 04.3 K-P,LMBD.5PI 1/73* 0 4.6 K-P,OMEG2PI 1/73* 12/68 1686.2 8.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG AVG _____ G+- INTO (K KBAR PI)/(2PI) 0.10 0.03 (P8)/(P1) BARTSCH 70 HBC + 8. PI+ P 2/72 64 X(1690) WIDTH (MEV) G+- INTO (RHO 2PI)/(ALL 4PI) CONSISTENT WITH 1. (P4)/(P2) CASO 68 HBC - 11 PI- P BARTSCH 70 HBC + 8. PI+ P BALLAM 71 HBC - 16. PI- P 18. 15.0 20. DANYSZ 67 HBC 0 3,3.6 PBAR P YOST 68 HBC 04.3 K-P,LMBD.5PI BARNES 69 HBC 0 4.6 K-P,OMEG2PI R6 R6 R6 R6 R6 R6 38. 50.0 90. 6/68 2/72 2/72 0.94 0.11 56.3 14.2 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG G+- INTO (2RHO)/(ALL 4PI) SEEN (0.63) OR MORE SEEN 0.7 0.15 (0.92)
 (P3)/(P2)

 DANYSZ
 67 HBC
 0 3-4 FBA R

 BALTAY
 68 HBC
 7,8.5 P1+ P

 BISMAS
 68 HBC

 JOHNSTON
 68 HBC

 ARENISE
 7 P1-P

 BARKENISE
 72 HBC

 9.1 P1-P,
 5/68 6/68 2/72 6/68 2/72 12/72* REFERENCES FOR X(1690) DANYSZ 67 NC 51 A 801 DANYSZ+FRENCH+SIMAK YOST 68 UMD T.REPORT849 +YODH,EINSCHLAG,DAY,GLASSER BARNES 69 PRL 23 142 +CHUNG,EISNER,FLAMINIO,+ (CERN) (UMD) (BNL) 4 P T (P3)/(P4) 68 HBC - 11 PI- P 68 HBC - 8. PI- P G+- INTO (2 RHO)/(ALL RHO 2PI) CASO BISWAS 6/68 0.48 0.16 (0.75) OR MORE G+- INTO (PI+- A20)/(ALL 4PI) G+- INTO (PI+- A20)/(ALL 4PI) (WITH A20 INTO (PI+ PI- PIO)) 0.40 0.20 BALTAY 68 HBC - 7,8.5 PI+P NOT SEEN JOINSTON 68 HBC - 7 PI- P (0.6) (0.15) BARTSCH 70 HBC + 8. PI+ P X-(1795) 63 x- (1795, JPG=) I=1 SEEN AS A (PBAR N) BOUND STATE IN PBAR D ANNIHILATIONS AT REST. NEEDS FURTHER CONFIRMATION.OMITTED FROM TABLE. BOGDANOVA 72 PREDICT A VECTOR MESON AT THIS ENERGY. 6/68 6/68 2/72 R10 G R10 R10 R10 R10 R10 R10 R10 AVG G↔ INTO (PI OMEGA)/(ALL 4PI) (NITH OMEGA INTO(PI+ PI- PIO)) 0.25 0.10 BALTAY 68 HBC + 7-8.5 PI+P -25 0.10 JOHNSTON 68 HBC - 7.0 PI- P 0.12 0.07 BALLAM 71 HBC - 16. PI- P 5/68 6/68 2/72 63 X-(1795) MASS (MEV) 1/72 1794.5 1.4 GRAY DECAYS TO FOUR OR MORE PIONS 71 DBC - 0.PBAR D M D M D 0.184 0.050 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) . G+- INTO (PI PHI)/(ALL 4PI) (0.11) OR LESS R11 R11 (P9)/(P2) BALTAY 68 HBC + 7,8.5 PI+P 6/68 63 X-(1795) WIDTH(MEV) G+- INTO (PI+- 2PI+ 2PI- PIO)/(ALL PI+- PI+ PI- PIO) (0.15) OR LESS BALTAY 68 HBC + 7,8.5 PI+ P R12 R12 (8.) OR LESS CL=.95 GRAY DECAYS TO FOUR OR MORE PIONS. 71 DBC - 0.PBAR D 1/72 W D W D 6768 ******

GRAY 71 PRL 26 1491 BOGDANOV 72 PRL 28 1418

 $\eta / \rho(1830)$

к

R R

**** к AVG

P1 P2 P3 P4

0

0 0 K K

P1 P2 P3 P4

DANYSZ 67 NC 51A 801 FRENCH 67 NC 52A 442 CLAYTON 72 NP B 47 81

DANYSZ 67 PL 248 309 FRENCH 67 NC 52A 442 CLAYTON 72 NP B 47 81

 $\omega/\pi(1830)$

 $\rightarrow \omega \pi \pi K^* \overline{K}$

 $\rightarrow 4\pi K^* \overline{K}$

REFERENCES FOR X-(1795)

42 ETA/RHO (1830, JPG= +)

42 ETA/RHO(1830) MASS (MEV)

42 ETA/RHO(1830) WIDTH (MEV)

ETA/RHO(1830) INTO 4 PI ETA/RHO(1830) INTO RHO PI PI ETA/RHO(1830) INTO RHO RHO ETA/RHO(1830) INTO K KBAR PI

42 ETA/RHO(1830) PARTIAL DECAY MODES

REFERENCES FOR ETA/RHO(1830)

43 OMEGA/PI (1830, JPG= -)

43 OMEGA/PI(1830) MASS (MEV)

43 OMEGA/PI(1830) WIDTH (MEV)

OMEGA/PI(1830) INTO 4 PI OMEGA/PI(1830) INTO UMEGA PI PI OMEGA/PI(1830) INTO 2 RHO OMEGA/PI(1830) INTO K KBAR PI

_____ 43 OMEGA/PI(1830) PARTIAL DECAY MODES

REFERENCES FOR OMEGA/PI(1830)

THIS ENTRY CONTAINS 4PI AND K KBAR PI PEAKS AROUND 1830 MEV. OMITTED FROM TABLE.

+HAGERT,KALOGEROPOULOS BOGDANOVA,DALKAROV,SHAPIRO

Mesons X⁻(1795), $\eta/\rho(1830)$, $\omega/\pi(1830)$, S(1930), $\rho(\sim 2100)$ S(1930) 31 S (1930, JPG=) (SYRA) (ITEP) THIS ENTRY CONTAINS THE STRUCTURE OBSERVED IN PBAR P BACKHARD ELASTIC SCATTERING AND VARIOUS PEAKS NEAR 1970 MEV. OMITTED FROM TABLE. FOR REVIEW SEE DIEBOLD 72. REGION 31 S MASS (MEV)
 31 5 MASS (MEV)

 N (1929-0) (14-0)
 CHIKOVANI 66 MMSP - 12.0 PI-P
 12/72*

 NOT SEEN BY BOHEN 72
 BOESEBECK 68 HBC + 8 PI+P,PI+PI0 6/68
 6/68

 A 1973.0 15.0
 CASD 70 HBC - 11.2PI-P.NOTE C 5/70
 70 HBC - 11.2PI-P.NOTE C 5/70

 K 1975.0 12.0
 KAMAER 70 HBC + 13.1 PI+P.2PI 11/70
 71/72

 K 1975.0 12.0
 KRAMER 70 HBC + 13.1 PI+P.2PI 11/70
 71/72

 C (1940.1) (8.1 C LINE 70 HBC 0 .25-74 PBAR P 2/72
 71/72
 71/72

 C (1940.1) (8.1 C LINE 70 HBC 0 .25-74 PBAR P 2/72
 71/72
 71/72

 C (1940.1) (8.1 C LINE 70 HBC 0 .25-74 PBAR P 2/72
 71/72
 71/72

 C (1940.1) (8.1 C LINE 70 HBC 70 HBC 0 .25-74 PBAR P 2/72
 71/72
 71/72

 C (1940.1) (8.1 C BY FORMULA TO THE PBAR P BACKWARD ELASTIC
 71/72
 71/72

 C G FA ADDITIONAL STRUCTURE IN BOTH DATA / .5 OO AND BIZARRI T2.
 81/72
 81/72

 G (1964.1)
 BENNENUT 11 HBC 0 .1 - 8 PBAR P 2/72
 71/72

 B BASED ON DNLY T1 VEYENTS OF THIS REACTION.
 12/72*
 72/72

 B BASED ON DNLY T1 VEYENTS OF THIS REACTION.
 12/72*
 12/72*
 110 1832. 6. DANYSZ 67 HBC OSEE NOTE R BELOW 5/67 SEEN IN 2.5-3. PBAR P. 2PI+2PI-, WITH 0,1/2 PI+PI- PAIRS 1820. 12. FRENCH 67 HBC NATO BARD 1820. 12. GRANITY DIRKDOW SEEN IN 3.-3.6 PBAR P TO (KS KO PIO...). G PARITY UNKNOW AVG 1829.6 5.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVERAGE MEANINGLESS (SCALE FACTOR = 1.3)
 110
 42.
 11.
 DANYSZ
 67 HBC
 OSEE NOTE R
 BELOW
 5/67

 SEEN IN 2.5-3.
 PBAR P. 2P1+2P1-, WITH 0,1,2 P1+P1- PAIRS
 IN RHOD BAND
 IN RHOD BAND
 S0.
 23.
 FRENCH
 67 HBC
 OSEE NOTE K
 BELOW 7/67
 SEEN IN 3.-3.6 PBAR P
 TO KKS KO PIO...). G
 FARITY UNKNOWN

 //
 43.5
 9.9
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 31 S WIDTH (MEV) N N (35.0) OR LESS CH KOVANI 66 MMSP - 12.0 PI-P 12/72* N N NOT SEEN BY BOHEN 72 BUESEBECK 68 HBC + 8 PI+ P.PI+ PIO 6/68 Z16. 105. CASD 70 HBC - 11.2PI- P.NOTEC 5/70 N A (80.0) CASD FTA ANTISELECTED IN 4 PI SYSTEM 5/70 N K (52.0) OR LESS CL=90 KRAMER 70 HBC + 13.1 PI+ P.2PI 11/70 N K (52.0) OR LESS CL=90 KRAMER 70 HBC + 13.1 PI+ P.2PI 11/70 N K (52.0) OR LESS CL=90 KRAMER 70 HBC + 13.1 PI+ P.2PI 11/70 N C (49.1 (9.1) CLINE 70 HBC 0 .25-.74 PBAR P 2/72 N C SEE REMARKS UNDER MASS ABOVE B SEE REMARKS UNDER MASS ABOVE 12/72* DECAY MASSES 139+ 139+ 139+ 139 139+ 139+ 770 770+ 770 134+ 497+ 497 31 S PARTIAL DECAY MODES DECAY MASSES 139+ 139 938+ 938 P1 S INTO PI+ PI-P2 S INTO PBAR P +FRENCH+KINSON+SIMAK+ (CERN+LIVERPOOL) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) +MASON,MUIRHEAD,RIGOPOULOS,+ (LIVP+PATR) REFERENCES FOR S CHIKOVAN 66 PL 22 233 FOCACCI 66 PRL 17 890 BOESEBEC 68 NP B 4 501 CLINE 68 PRL 21 1268 CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) BOESBBECK, DEUTSCHMANN,+(AACHEN+BERLINH(CERN) +ENGLISH,REEDER,TERRELL,TWITTY (WISCONSIN) +CORDS,COSTA,+ (GENO,DESY,HAMB,MILA,SACL) D.CLINE,J.ENGLISH,D.D.REEDER (WISCJ) +BARTON,GUTAY,LICHTMAN,MILLER,+ (PURDUE) J.LYS (MICH) CASO 70 LNC 3 707 CLINE 70 PREPRINT KRAMER 70 PRL 25 396 LYS 70 PREPRINT THIS ENTRY CONTAINS OMEGA PI PI AND K KBAR PI PEAKS ARQUND 1830 MEV. I=1 IF (OMEGA RHO) MODE EXISTS. THE KS KO PI PEAK, IF PRESENT AND EVEN IF NOT PART OF ETA/RHO(1830), IS ONLY A MINOR MODE. OMITTED FROM TABLE. BENVENUT 71 PRL 27 283 CLINE 71 REVIEW D≠ANDLAU 71 PREPRINT PINSKI 71 PRL 27 1548 BENVENUTI,CLINE,RUTZ,REEDER,SCHERER (WISC) D.CLINE,TALK AT ANL WORKSHOP JULY 71 (HISC) ASTIER,PETRI,+ (CDEF+PISA) STEPHEN S. PINSKY (UTAH+ARGONNE)

 BIZZARRI 72 PR D 6 160
 +GUIDONI,MARZANO,CASTELLI,+
 (ROMA*TRST)

 BOWEN 1 72 PRL 29 890
 +EARLES,FAISSLER,BLIEDEN,+
 (NEAS+STON)

 BOWEN 72 PREP.NUB 2167
 +EARLES,FAISSLER,GARELICK,GETTNER,+
 (NEAS)

 CARSUN 72 BAT.CONF.PAP.498
 HUTTON-SHAFER,YAMAMOTO,+
 (MAS+TOKY)

 DIEBOLD 72 BAT.VCONF.
 R.DIEBOLD RAPPORTEUX TALK
 (ANL)

 KIENZLE 72 PHIL-CONF.PROC207 W.KIENZLE
 (CERN)
 (CERN)

 WOHLNUT 72 BAT.CONF.PAP.475
 +YEE,JOHNSON,PETERS,STENGER
 (HAMAII)

 (1848.) (11.) DANYSZ 67 HBC 0 3,3.6 PBAR P OBSERVED IN (OMEGA PI+ PI-) (AND POSSIBLY (OMEGA RHO(0))) MODE (1820.) (12.) FRENCH 67 HBC 0 3,3.6 PBAR P OBSERVED IN (KS KO PIO...) MODE (G-PARITY UNKNOWN) 7/67 7/67 ρ(~2100) 51 RHO (2100, JPG= +) I=1 (67.) (27.) DANYSZ 67 HBC 0.3,3.6 PBAR P 7/67 DBSERVED IN (OMEGA PI+ PI-) (AND POSSIBLY (OMEGA RHO(0))) NODE (50.) (20.) FRENCH 67 HBC 0.3-4 PBAR P 7/67 OBSERVED IN (KS KO PI0...) MODE (G-PARITY UNKNOHN) REGION NICHOLSON 69 SUGGEST IG=1+, JP=3- FROM ANALYSIS OF DIFFERENTIAL CROS-SECTIONS FOR PBAR PI -- 2P1. NOTIFED FROM TABLE. _____ DECAY MASSES 139+ 139+ 139+ 139 139+ 139+ 783 783+ 770 139+ 497+ 497 51 RHD (2100) MASS (MEV) 38.0 ANDERSON 69 MMS - 16 PI- P,BACKW 8/69 NICHOLSON 69 CNTR 0.7-2.4 P8 P,2PI 9/69 TAKAHASHI 72 HBC 8. PI- P,N 2PI 1/73≭ 2086.0 (2120.) 50(2070.) ****** ****** 51 RHO (2100) WIDTH (MEV) DANYSZ+FRENCH+SIMAK (CERN) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) +MASON,MUIRHEAD,RIGOPDULOS,+ (LIVP+PATR) (150.0) ANDERSON 69 MMS - 16 PI- P,BACKW 8/69 (249.) NICHOLSON 69 CNTR 0 .7-2.4 PB P,2PI 9/69 THE WIDTH INCLUDES RESOLUTION. 50 (160.) TAKAHASHI 72 HBC 8. PI- P,N 2PI 1/73* REFERENCES FOR RHO(2100) ANDERSON 69 PRL 22 1390 NICHOLSO 69 PRL 23 603 +COLLINS,BLIEDEN+ (BNL+CARN) NICHOLSON,BARISH,DELORME,+ (CIT+ROCH+BNL)

 EHRLICH
 72
 PRL
 28
 1147
 +ETKIN,GLODIS,HUGHES,KONDO,LU,MORI,* (YALE)

 TAKAHASH
 72
 PR
 D
 6
 1266
 TAKAHASHI,BARISH,* (TOHO+PENN*NDAM*ANL)

 $T(2200), \rho(\sim 2275), U(2360)$

Data Card Listings For notation, see key at front of Listings.

52 RH0(2275) WIDTH (MEV) T(2200) (25.0) OR LESS ANDERSON 69 MMS - 16 PI- P;BACKW 8/69 (165.) NICHOLSON 69 CNTR 0 .7-2.4 PB P;2PI 9/69 THE WIDTH INCLUDES RESOLUTION. 32 T (2200, JPG=) W W N W N REGION THIS ENTRY CONTAINS VARIOUS PEAKS NEAR 2200 MEV. OMITTED FROM TABLE. FOR REVIEWS SEE BERTANZA 72, DIEBOLD 72. ****** ***** ------REFERENCES FOR RHO(2275) ANDERSON 69 PRL 22 1390 +COLLINS,BLIEDEN+ (BNL+CARN) NICHOLSO 69 PRL 23 603 NICHOLSON,BARISH,DELORME,+ (CIT+ROCH+BNL) ERRICH 72 PRL 28 1147 +ETKIN,GLODIS,HUGHES,KONDO,LU,HORI+ (YALE) 32 T MASS (MEV) S LHANNEL NBAR N 2190. 10. ABRAMS 70 CNTR S CHANNEL NBAR N 1/73* SER AS BUMP IN I=1 STATE. SEE ALSO COOPER 68. BRICMAN (69) SEES NO BUMP, SPIN LESS THAN 5 IS SO EXCLUDED (2190.0) KALBFLEIS 69 HBC O S-CHANNEL PBARP 7/69 SEEN IN PBAR P TO RHOO RHOO PIO. IG=1-, NOT SEEN BY DONALD 72. COHEN 72 CNTR S CHANNEL PBAR P 12/72* M N N N N N N N N N ввккк U(2360) 33 U (2360, JPG=) I=1 2195. 5. COHEN 72 CNTR S CHANNEL PBAR P 12/72* 2195. 5. COHEN 72 CNTR S CHANNEL PBAR P 12/72* 2194.0 4.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) REGION THIS ENTRY CONTAINS THE BROAD BUMP OBSERVED IN THE S CHANNEL NOAR N, AND VARIOUS OTHER PEAKS, NOSTLY CONTROVESIAL OWNITED FROM TABLE. FOR REVIEW SEE ASTBURY 72, DIEBOLD 72. AVG PEAKS FROM PRODUCTION EXPERIMENTS (2195.0) (15.0) CHIKOVANI 66 MMSP - 12.0 PI-P NOT SEEN BY BOWEN 72. 12/72* N N T SEEN BY BOWEN 72. 2207. 13. ALLES-BOR 67 HBC 0 5.7 PBAR P 12/66 ALLES-BORELLI 67 SEE NEUTRAL MODE ONLY (PI+PI-PIO) 2190.0 10.0 CLAYTON 67 HBC +- 2.5PBAR,A2+OMEGA 10/67 2207.0 22.0 CASO 70 HBC - 11.2PI- P,NOTE C. 5/70 SEEN IN RHO- PI+ PI- (OMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM) 5/70 SIST.0 10.0 KRAMER 70 HBC + 13.1 PI+ P,2PI 11/70 HAS 1G6-1+ FROM ABSENCE OF PI+PI+ PEAK. THUS JP=(ODD)-. 11/70 33 U(2360) MASS (MEV) A
 S CHANNEL NBAR N
 RING
 69 HBC
 O S-CHANNEL PBARP 11/71

 (2370.0)
 (10.0)
 RING
 69 HBC
 O S-CHANNEL PBARP 11/71

 NDT CONFIRMED IN EXTENSION OF THE EXP..SEE CHAPMAN 71.
 11/71
 11/71

 2350.
 10.
 ABRAMS
 70 CNTR
 S CHANNEL NBAR N
 11/73*

 (2360.0)
 (250)
 0H
 70 HDBC
 -OPBAR(P,N),K*K2PI
 1/73*

 ND EV IDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71
 1/73*
 1236.3
 (2)
 1/73*

 1205.71
 COHEN
 72 CNTR
 S.CHANNEL PBAR P
 1/73*
 ***** R С D A AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (MEV) PEAKS FROM PRODUCTION EXPERIMENTS (2382.0) [24.0] CHIKOVANI 66 MMS - 12.0 PI-P NOT SEEN BY BOHEN 72 S CHANNEL NBAR N S CHANNEL NBAR N SE NOTE B UNDER T(2200) MASS ABOVE. BETWEEN 20 AND 80 MEV KALBFLEIS 69 H8C 0 S-CHANNEL PBARP 7/59 95. 15. COHEN 72 CNT S CHANNEL PBARP 12/728 PEAKS FROM PRODUCTION EXPERIMENTS (13.0) OR LESS CHINGVANI 66 MMSP - 12.0 PI-P 2/66 12.0 J 2. ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 12.0 S2 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 12.0 S2 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 12.0 S2 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 12.0 S2 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 13.0 J 0.5 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 15.0 S2 ALSS-BOR 7 H8C 0 5.7 PBAR P 12/26 15.7 DBAR P 12 ANT 15.2 PI-P, NOTE C .5770 13.1 PI+P, 2PI 11/70 HS IG-1+ FROM ABSENCE OF PI+PI+ PEAK. THUS JP=(00D)-. 11/70 NOT
 (2382.0)
 124.10)
 CLATCIN 67 HBC
 127724

 (2324.0)
 (20.0)
 CLATCIN 67 HBC
 127724

 (2324.0)
 (20.0)
 CLATCIN 67 HBC
 125.268.424

 MAY BE DIFFERENT SALECT. VALUE QUOTED IN HEIDELBERG PROC. OF

 2370+10
 MISTAKE-... PRIV. QOMM, FRGN MUIREAD.

 2370+10
 11 MISTAKE-... PRIV. QOMM, FRGN MUIREAD.

 2370+10
 12 MISTAKE... PRIV. QUMM, FRGN MUIREAD.

 3(2374-1)
 ATHERTON 71 HBC
 0 5.7 PBAR P
 B B K 2370. 17. (2420.0) (25.0) 73(2374.) (4.) 1/71 2/73* Ν _____ C D D 33 U(2360) WIDTH (MEV)
 S CHANNEL NBAR N
 ABRAMS
 67 CNTR
 S CHANNEL PBAR N
 1/73*

 (1400.)
 OR LESS
 RING
 69 HBC
 0 S-CHANNEL PBAR N
 1/73*

 NOT CONFIRMED IN EXTENSION OF THE EXP. SEE CHAPMAN 71.
 11/71
 11/71
 11/71

 (60.0)
 OR LESS
 0H
 70 HDC
 70 PBAR PN J) K+X2P1
 11/71

 NO EVIDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71
 11/71
 11/71
 11/63.)
 11/5.)
 COHEN
 72 CNTR
 S CHANNEL PBAR P
 1/73*

 ISOSPINS 0 AND 1 NOT SEPARATED

 73*
 150
 100
 100
 222233 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) N 32 SIGMA (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR S CHANNEL NBAR N 1/71 CS A CS A CS (5.5) FOR I=1 NBAR N 2.25 0.08
 PEAKS FROM PRODUCTION EXPERIMENTS (30-0) OR LESS
 CHIKOVANI 66 MMS
 12.0 PI-P

 NOT SEEN BY BOWEN 72 (80.0) OR LESS
 ANDERSON 69 ASPK - 16 PI- BKSCA JOHNSON 70 HBC - 12.0 PF-P
 22.0 PF-P

 13 (24.) OR LESS
 ATHERTON 71 HBC 0 5.7 PBAR P
 COHEN 72 CNTR S CHANNEL PBAR P 1/73* M M 12/72* 11/69 1/71 2/73* ******* ********* ******** ANDERSON 69 ASPK - 16 PI- BKSCAT JOHNSON 70 HBC - 12.0 P++ P ATHERTON 71 HBC 0 5.7 PBAR P REFERENCES FOR T CHIKOVAN 66 PL 22 233 FOCACCI 66 PRL 17 890 ALSO 69 CASO ABRAMS 67 PRL 18 1209 ALLES-B0 67 PKL 18 1209 ALLES-B0 67 PK 50 A 776 CANTON 67 HEIDBG.CONF.P.57 COOPER 68 PRL 20 1059 CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL)
ALLES-BORELLI,FRENCH,FRISK,+ (CERN-BONNIG=
+MASON,MUISHEAD,FILIPAS+(LIVERODL+ATHENS)
+HYMAN,MANNER,HUSGRAVE,VOYVODIC (ANL) 33 SIGMA (MB) FOR FORMATION BY NUCLEON ANTINUCLEON CS A (3.2) ABRAMS 70 CNTR S CHANNEL NBAR N 1/71 CS A FOR I=1 NBAR N CS I (2.0) (0.07) COHEN 72 CNTR S CHANNEL PBAR P 1/73* CS I ISOSPINS O AND 1 NOT SEPARATED

 HTITAN FAMILY:
 (IPN+LIVP)

 BAUBILLIER.DUBDC,HURIAUX,+
 (IPN+LIVP)

 HFERRO-LUZZI,BIZARD,+
 (CERN+CAEN+SACL)

 +CONTE,BENZ,+
 (GEND+DESY+HANBHILL+SACL)

 G. KALBFLEISCH,K.STRANO,V.VANDERBURG
 (BNL)

 L.MONTANET, RAPPORTEUR
 (CERN)

 BAUBILLI 69 LUND PAPER 87 BRICMAN 69 PL 29 B 451 CASO 69 NC 62 A 755 KALBFLEI 69 PL 29 B 259 MONTANET 69 LUND CONF.P.189 REFERENCES FOR U(2360)
 ABRAMS
 70
 PR D
 1
 1917
 +COOL,GIACOMELLI,KYCTA,LEONTIC,LI,+
 (BNL)

 CASO
 70
 N.C. 3
 707
 +CONTE,TOMASINI,CORDS+(DENO+HAMB HIL4+SACL)

 ALSO
 9
 CASO
 -KALBELEI
 TO
 PHILAD.CONF.P.409
 G.KALBELEISCH AND D.NILLER REVUES
 (BNL)

 KAMER
 70
 PRI Z
 BARTON,GUTAYLICITHAN,HILLER,+
 (UPROUE)
 CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) CHIKOVAN 66 PL 22 233 FOCACCI 66 PRL 17 890 ABRAMS 67 PRL 18 1209 CLAYTON 67 HEIDBG.CONF.P.57 ALSO 71 PRIV.COMM. +COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL) +MASON,MUIRHEAD,FILIPPAS+(LIVERPODL+ATHENS) W.MUIRHEAD (LIVP) +BUTTERWORTH,MILLER,PHELAN,+ (RHEL+LIVP) +COOPER,RHINES,ALLISON (ANL+OXF) +BARISH,CAROLL,LOBKOVICZ+ (CIT+BNL+ROCH) BACON 71 NP B 32 66 FIELDS 71 PRL 27 1749 YOH 71 PRL 26 922 ANDERSON 69 PRL 22 1390 BRICMAN 69 PL 29 B 451 CASO 69 LNC 3 707 RING1 69 MICH PREPRINT RING 69 +BLESER, BIRNBAUM, EDELSTEIN, + (BNL+CARN) +FERRO-LUZZI, BIZARD, + (CERN+CARN+SACL) +CONTE, BEXZ, + (GEN+DESY+HAMB+MILA+SACL) +CHAPMAN, CHURCH, LYS, MURPHY, VANDERVELD (MICH) JOINT PREPRINT COMBINES RING! AND OH 70
 YOH
 TI PRL 26 922
 +BARISH, CAROLL, LUBKOVILC+
 (CII+ENH+RUCH)

 ALEXANDE 7, 20 PB 45, 22 PA
 ALEXANDE 7, 20 PL 45, 20 PL 45
 ABRAMS
 70
 PR
 D
 1
 917

 JOHNSON
 70
 UH
 511
 77
 70

 LYS
 70
 PREPRINT
 70
 PREPRINT
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70< +COOL, GIACOMELLI, KYCIA, LEONTIC, LI, + +PETERS, STENGER, YEE (BNL) (HAWAII) (MICH) J.LYS +PARKER, EASTMAN, SMITH, SPRAFKA, MA G.A.SMITH (MSU) (MSU) ATHERTON 71 CERN PHYS.71-18 CHAPMAN 71 PR D4 1275 FIELDS 71 PRL 27 1749 YOH 71 PRL 26 922 +CELNIKIER,CLAYTON,FRANEK,FRENCH,+ (CERN) +GREEN,LVS.HURPHY,RING,+ (MICH) +COOPER,RINES,ALLISON (ANL+0XF) +BARISH,CAROLL,LOBKOVICZ+ (CIT+BNL+ROCH)

 TUM
 71
 PRL 26
 922
 BARLSH, CARULE, LUBROVIC2
 (CIT+BML+RUCH)

 ASTBURY
 72
 CERN 72-10
 A.ASTBURY REVIEW AT CHEXBRES 72
 (RHEL)

 BONEN
 72
 PREF.NUB 2167
 FARLES, FAISLER, GARELLGK, GETNER, * (NESE)

 DIEBOLD
 72
 PHIL-CONF.PROC.
 K.J.COMEN
 (RUTGERS)

 DIEBOLD
 72
 BATLSCONF.PAP2.265
 INTENNAT.COLLABORATION
 (LIVP+)

 ASTMAND
 72
 BAT.SCONF.PAP2.265
 INTENNAT.COLLABORATION
 (LIVP+)

 KIENZLE
 7.0
 PN B<51.2</td>
 9
 *NING MA.OH.PARKER, SMITH, SPRAFKA
 (MSU)

 WING MA
 7.0
 PD F.77
 +EASTMAN, OH.PARKER, SMITH, SPRAFKA
 (MSU)

 WOHLMUT
 72
 BAT.CONF.PAP2.75
 *YEE, JOHNSON, PETERS, STENGER
 (HA WAII)

 ρ(~2275) 52 RHO (2275, JPG= +) I=1 REGION NICHOLSON 69 SUGGEST IG=1+, JP=5- FROM ANALYSIS OF DIFFERENTIAL CROSS-SECTIONS FOR PBAR PI -- 2PI. NOT SUPPORTED BY EHRLICH 72. OHITED FROM TABLE. 52 RH0(2275) MASS (MEV) 2260.0 18.0 ANDERSON 69 MMS - 16 PI- P.BACKW 8/69 (2290.) NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/69

Data Card Listings

For notation, see key at front of Listings.

Mesons $N\overline{N}_{I=0}(2375), X(2500-3600), K^{\pm}, K^{0}, K^{*}(892)$

NN _{I=0} (2375)	41 N NBAR (2375,JPG=) I=0
	EVIDENCE FOR RESONANCE PRELIMINARY. OMITTED FROM TABLE.
41 N NB	BAR(2375) MASS
M 2375. 10. M I (2360.) (5.) M I ISOSPINS O AND 1 NOT	ABRAMS 70 CNTR S CHANNEL NBAR N 1/73 Cohen 72 CNTR S Channel PBAR P 1/73 Separated
41 N NB	ЗАR(2375) WIDTH
W (190.) W I (163.) (15.) W I ISOSPINS O AND 1 NOT	ABRAMS 70 CNTR S CHANNEL NBAR N 1/73 Cohen 72 CNTR S Channel PBAR P 1/73 F SEPARATED
41 N NB	BAR(2375) SIGMA (MB) FOR FORMATION BN
CS (2.5) CS I (2.0) (0.07) CS I ISOSPINS 0 AND 1 NOT	ABRAMS 70 CNTR 1/73 COHEN 72 CNTR S CHANNEL PBAR P 1/73 SEPARATED
***** ******** ******* *	******** ******** ******** ************
BRICMAN 69 PL 29 B 451 ABRAMS 70 PR D 1 1917 COHEN 72 PHIL.CONF.PROC. EASTMAN 72 NP B 51 29 MING MA 72 NP B 51 77	KEPENENCES FUK N NOAK (2375) +FERRO-LUZZI, BIZARD, + (CERN+CAEN+ SACL) +CODL, GIACOMELLI, KYCIA, LEONT IC, LI, + (BNL) K.J.COHEN HING MA, OH, PARKER, SMITH, SPRAFKA (MSU) +EASTMAN, OH, PARKER, SMITH, SPRAFKA (MSU)
****** ********* **********************	******** ********* ******** **********
X(2500-3600)] 46 ×(2500-3600)
/	PEAKS, OMITTED ERON TABLE.

The high mass region is covered nearly continuously by evidence for peaks of various widths and decay modes (see figure). As a satisfactory grouping into particles is not yet possible, we list all the Y = 0bumps with M > 2400 MeV together by increasing mass. Note that ANTIPOV 72 ($\pi^{-}p \rightarrow pMM^{-}$ at 25 and 40 GeV/c) see no narrow bumps.

- -----

			46 X12500-360	0) MASSES AND	WIDTHS	(MEV)	
M		2500.0	32.0	ANDERSON ANDERSON	69 MMS 69 MMS	- 16 PI- P,BACKW9 - 16 PI- P,BACKW9	8/69 8/69
MW	60	5 2613. 5 (90.)	7. OR LESS	ATHERTON	71 HBC 71 HBC	0 5.7 PBAR P 0 5.7 PBAR P	2/73* 2/73*
M W	55 55	0 2620. 0 85.	20 • 30 •	BAUD	69 MMS 69 MMS	- 810. PI- P - 810. PI- P	9/69 9/69
MW		2676.0	27.0	CASO CASO	70 HBC 70 HBC	- 11.2PI- P,NOTE C - 11.2PI- P,NOTE C	5/70 5/70
W M W	64 64	0 2800.	20.	BAUD BAUD	69 MMS	- 810. PI- P - 810. PI- P	9/69 9/69
M W	C 1	5 2820. 5 50.	10. 10.	SA BA U SA BA U	71 HBC 71 HBC	+ 8. PI+ P + 8. PI+ P	11/71 11/71
W M	C 23	SEEN IN 0 2880.	(K KBAR PI PI)+	BAUD	69 MMS	- 810. PI- P	9/69
W M W	Y 4	3 3013. 3 (40.)	5. DB LESS	YOST	71 HBC 71 HBC	+ 11.PI+ P,P(8PI)+ + 11.PI+ P,P(8PI)	9789 11/71 5/71
й м	Ŷ	4.3 S.D 3025.0	• EFFECT • DECA 20.0	Y TO 7 PIONS BAUD	70 MMS	- 10.5-13 PI- P	11/71 5/70
W M		(25.0)	APPROX .	BAUD	70 MMS 70 MMS	- 10.5-13 PI- 7 - 10.5-13 PI- P	5/70
W M	D	(25.0)	APPROX.	BAUD AL EXANDER	70 MMS	- 10.5-13 PI- P	5/70 1/73*
W	D D D	220. ECAYS TO	70. 3PI+ 3PI-	ALEXANDER	72 HBC	0 6.94 PBAR P	1/73*
M W		3145.0 (10.0)	20.0 OR LESS	BAUD	70 MMS 70 MMS	- 10.5-15 PI- P - 10.5-15 PI- P	5/70 5/70
M	D D D D	3370. 150. ECAYS TO	10. 40. 4PI+ 4PI-	ALEXANDER ALEXANDER	72 HBC 72 HBC	0 6.94 PBAR P 0 6.94 PBAR P	1/73* 1/73*
M	D D D D	3390. 220. ECAYS TO	20. 100. 3PI+ 3PI-	ALEXANDER ALEXANDER	72 HBC 72 HBC	0 6.94 PBAR P 0 6.94 PBAR P	1/73* 1/73*
M W		3475.0 (30.0)	20.0 APPROX.	BAUD	70 MMS 70 MMS	- 14-15.5 PI- P - 14-15.5 PI- P	5/70 5/70
M W		3535.0 (30.0)	20.0 APPROX.	BAUD BAUD	70 MMS 70 MMS	- 14-15.5 PI- P - 14-15.5 PI- P	5/70 5/70
M W	D	3600. 140.	20. 20.	ALEXANDER ALEXANDER	72 HBC 72 HBC	0 6.94 PBAR P 0 6.94 PBAR P	1/73* 1/73*
**	U U **** **	ECAYS ID *******	4PI+ 4PI- ******** ******	** ******	*******	* *****	
			REFE	RENCES FOR X(2500-360	0)	
AN BA	DERSON UD	69 PRL 22 69 PL 30	1390 +COL B 129 CERN	LINS,+ BOSON SPECTR	DMETER G	(BNL+CARN) CCERN)	
BA CA	UD SO	70 PKL 2: 70 PL 31 70 LNC 3	B 549 CERN 707 +CON	BOSON SPECTR	DAL, GRONN DMETER GI DRDS+(GEI	ROUP (CERN) NO+HAMB+MILA+SACL)	
AT SA YO	HERTON BAU ST	71 CERN 71 LNC 1 71 PR D 3	PHYS.71-18 +CEL 514 +URE 642 +MOR	NIKIER,CLAYTO TSKY RIS,ALBRIGHT,	N,FRANEK BRUCKER,I	,FRENCH,+ (CERN) (BUCH+ANL) LANNUTTI (FSU)	
AL	EXANDE	72 NP B 4	-5 29 ALEX	ANDER, BAR-NIR	, BEVARY ,	DAGAN,+ (TELA)	
**	**** **	*******	*********	** *********	*******	* ********** ******** * ********	
	K [±]		10 CHARGED K	(494,JP=0-) I	= 1/2	(
**	**** **	** ** * * * *	SEE STABLE PAF	TICLE DATA CA	RD LISTI	NGS * ******** ******	
**	v 0	** ** * * *	*****	*** *******	******	* ******** *****	
l	<u>r</u>		11 NEUTRAL K	(498, JP=0-) I	=1/2 RD IST	NGS	
**	**** **	** ** ** *	****	** *******	******	* ******** ********	
	K*(8	392)	18 K* (892.JF	P=1-) I=1/2			
		́					
	CHARGE		18 K*(892) M/	SS (MEV)	T 481 E		
M	387	898.0 0 891.0	5.0 1.0	CHADWICK WOJCICKI	63 HBC 64 HBC	+ 1.5 K+P - 1.7 K-P	
M M M		889.5 895.0 895.	3.0	GELSEMA BOMSE	65 HBC 65 HBC 67 HBC	- 1.5 K-P - 1.5 K-P + 2.3 K+P	6266 7/67
M		891. 892.5 898.	2. 2.5 4.	DE BAERE DE BAERE SALLSTROM	67 HBC 67 HBC 67 HBC	+ 3.5 K+P (K0 PI+) + 3.5 K+P (K+ PI0) + 3. K+ P (K0 PI+)	7/67 7/67 7/67
M		883. 890.	5.	SALLSTROM BARLOW	67 HBC 67 HBC	+ 3. K+ P (K+ PIO) +- 1.2 PBAR P	7/67
M M		896.0 893.	5.0 4.	CONFORTO	67 HBC 68 HBC	+- 0. PBAR P - 10 K- P	9/67
M M		891. 887. 890.0	4. 3. 5.0	FICENEC1 FICENEC1 FICENEC2	68 HBC 68 HBC 68 HBC	- 1.3 K-P (K-PIO) - 1.3 K-P (KOPI-) - 2.7 K- P(K-PIO)	9/67 9/67 2/69
M		892.0	3.0	FICENEC2 SCHWEINGR	68 HBC	- 2.7 K- P(KOPI-) - 4.1 K-P	2/69
MM		884.0 891.0	5.0	KANG CRENNELL	68 HBC 69 DBC	- 4.6 K- P - 3.9 K-N (KOPI-)	7/69
M		892.0	٥.٥	EKWIN	OA HRC	- 3.3 K+ P	3/69

Mesons K*(892)

M	2886	(894.)	(2.)		FRIEDMAN	69 HBC	Ξ.	2.45 K	-P (380Y)	2/12
м	3229	(892.)	(i.)		FRIEDMAN	69 HBC		2.6 K	-P (3BDY)	2/72
м	1027	(892.)	(1.)		FRIEDMAN	69 HBC	- :	2.7 K	-P (3BDY)	2/72
M		895.	2.		LIND	69 HBC	+	9. K+	P	9/69
M	4404	892.2	1.5		AGUILARI	71 HBC	-	3.9,4.	6 K- P	11/71
M	AVG	891.71	0.50	AVERAG	E (ERROR	INCLUDES	SCALE	FACTO	R OF 1.0)	
м	NEUTRAL	ONLY. BUT	WE DONT	USE THIS	FOR MASS	DIFF	SEE T	YPED N	ΟΤΕ	
М	70	897.0	10.0		COLLEY	62 HBC	0	2.0 PI	-P	
M	200	892.0	2.0		CMITH	63 HBC		2.3 K+	P 	
M	190	899.	4.		BARLOW	67 HBC		1.2 PB		11/66
м		897.	4.		BARLOW	67 HBC	ŏ	1.2 PB	AR P	11/66
м		889.0	5.0		CONFORTO	67 HBC	ō	0. PBA	RP	9/67
м		894.7	1.3		DAUBER	67 HBC	: 0	2.0 K	- P	12/66
М		892.0	4.0		GEORGE	67 HBC	0	5.0 K+	P	11/67
M	-	893.	3.		DE WIT	68 DBC	0	3. K-		9/69
M	F E	895.	4.		FICENECI	68 HBC		2.7 K-	P(K-PI+)	11/69
M	F FICENE	C FRROR R	ATSED	SEE TY	PED NOTE	00 1100		2 K		11/0/
м		896.0	4.0		SCHWEING	R 68 HBC	. 0	4.1 K-	Р	9/67
M		903.0	4.0		SCHWEING	R 68 HBC	. 0	5.5 K-	Р	9/67
м		899.0	5.0		KANG	68 HBC	0	4.6 K-	P	7/69
M	10700	893.7	2.0		DAVIS	69 HBC	0	12. K+	P	9/69
M	0 2000	E88085				VSORT(N)	. SEE	TYPED	NOTE.	9769
M	4000	895.0	1.0	5 51 55 1	HABER	70 DBC	0	3. K-N		5/70
м	2934	897.9	0.8		AGUILAR1	71 HBC	. o	3.9,4.	6 K- P	11/71
м	5362	898.0	0.5		AGUILAR1	71 HBC	0	3.9,4.	6 K- P	11/71
м	D 1700	898.4	1.3		BUCHNER	72 DBC	04	•6 K+	N,K+ PI-P	12/72
m M	AVG	896.57	0.65	AVERAG			SCALE	FACTO	R DE 2.01	
			(SEE	IDEOGRAM	BELOW)					
	,		WEIGH" +	ED AVE ERROR 	RAGE = SCALED 	B96.57 BY 2.0 JCHNER GUILAR GUILAR ABER E BAER	± 0.1 72 1 71 1 71 70 E 69	65 DBC HBC HBC DBC HBC	CHISQ 2.0 8.2 2.8 2.5 27.6	<u>I</u>
			+		· · · · Df	AVIS	69	нвс	2.1	
				+ 	••••KI	ANG	68	HBC		
				11+-	·s(CHWEIN	GR 68	HBC	2.6	
			+	+ + · · ·	· · · · · st	CHWEIN	GR 68	HBC	0.0	
					· · · · · F:	CENEC	2 68	HBC	1.2	
				44	F	CENEC	1 68	HBC	0.2	
				[]			60	nec	1 4	
	1		· ^				00	UDC	1.7	
			17.1			URGE	67	HBC	1.3	
			/+V	• • • • • •		TOBER	67	HBC	2.1	
		d	+ ·		· · · · · CI	JNFORT	0 67	нвс		
			- F	++-+	• • • • • • • • • • • • • • • • • • •	ARLOW	67	HBC	0.0	
			\sim –		••••Bf	ARLOW	67	HBC	0.4	
				\	· · · · · KI	RAEMER	63	HBC	5.2	
		-		\sim		JLLEY	62	HBC	512	
										-
	_					*****			59.5	
	88	0 E		900	910	9:	20		59.5 (CONLET	ı
	88		,	900 MASS	910 (MEU)	9:	20		59.5 (CONLEV =0.000	1

Note on K*(892) Masses and Mass Difference

1) All mass values listed above come from physical region fits of Breit-Wigner functions. However, a recent K π phase shift analysis (BINGHAM 72) indicates that part of the K^{*}(892) peak may be due to a large S wave (see note "S-wave K π interactions"). Because the S-wave phase shift is ambiguous ("up" and "down") in the K^{*}(892) region, BINGHAM 72 find two solutions for the P wave:

"up" solution $m \approx 900 \text{ MeV}, \Gamma \approx 48 \text{ MeV}$ "down" solution $m \approx 895 \text{ MeV}, \Gamma > 48 \text{ MeV}.$

2) <u>Impossibly small errors</u> are reported by some experiments. We use simple "realistic" tests for the minimum errors on the determination of mass and width from a sample of N events:

$$\delta_{\min}(m) = \frac{\Gamma}{\sqrt{N}}, \ \delta_{\min}(\Gamma) = 4 \frac{\Gamma}{\sqrt{N}}.$$

Data Card Listings For notation, see key at front of Listings.

(For detailed discussion see the April 1971 edition of this note.) We have increased some unrealistic errors and scaled up some errors that are inconsistent.

3) There are two more difficulties in measuring a mass difference $m(K^{*0}) - m(K^{*\pm})$ of ~ 7 MeV when the half-width $\Gamma/2$ of the K^{*} is 25 MeV:

a) The two charges of K^{*} have different topologies; this introduces differences in the measuring and fitting of the events, which can also produce mass shifts.

b) Interferences between the resonant amplitude and background can in general shift the peak in the mass spectrum by some fraction of $\Gamma/2$.

Some reactions (symmetric under reflection of I_z) are immune to this difficulty. Thus compare the mass of K^{*0} produced in

 $\begin{aligned} \pi^{-}p &\rightarrow \Lambda \pi^{-}K^{+} \\ \text{with the mass of } K^{*+} \text{ in the I}_{z} \text{-reflected reaction} \\ \pi^{+}n &\rightarrow \Lambda \pi^{+}K^{0}. \end{aligned}$

The final-state amplitudes of each will contain not only the $|K^*\rangle$ with I-spin 1/2, but also an interfering I = 3/2 P-wave, which we can call $|K^*_{3/2}\rangle$. But I_z symmetry forces $\langle \pi^- p | \Lambda K^{*0} \rangle$ to equal $\langle \pi^+ n | \Lambda K^{*+} \rangle$; and similarly for the two $K^*_{3/2}$ amplitudes, so that the shifting of the K^{*} peak is the same in both reactions. Nobody has published a mass difference exploiting this fact.

Mesons K^{*}(892), κ

19 K PI S WAVE, CALLED KAPPA(750-1700 MEV)

S-wave $K\pi$ Interactions in the Region 750-1700 MeV

κ

...Ota NEUTRAL ONLY. 70 60.0 200 50.0 33. 44. 58. 52. 50.0 48.0 51.0 1 53.2 1 0 56.0 1 53.2 1 0 56.0 4.2 48.5 2.2 51.4 5 51.7 COLLEY 62 HBC 0 2.0 PI-P KRAEMER 63 HBC 0 2.3 K+P BARLOW 67 HBC 0 1.2 PBAR P 11/66 BARLOW 67 HBC 0 1.2 PBAR P 11/66 DAUBER 67 HBC 0 1.2 PBAR P 11/66 DE WIT 68 DBC 0 3. K-0 P 12/66 DE WIT 68 HBC 0 3. K-0 P 12/66 FICENEC1 68 HBC 0 1.3 K-0 (K-PI+) 2/69 FICENEC2 68 HBC 0 2.7 K-P(K-PI+) 2/69 SCHWEINGR 68 HBC 0 5.5 K-P 9/67 DAVIS 69 HBC 0 12. K+ P 9/67 DAVIS 69 HBC 0 12. K+ P 9/69 DE BAERE 69 HBC 0 3. K-N 5/70 0 4*6AMMA/SQRT(N). SEE TYPED NOTE. HABER 70 ND. 3.944.6 K-P 11/711 BUCHNER 72 DBC 0 4.6 K+ N,K+ PI-P 12/72* 10.0 C 5.0 K 13. 8 8. 8 4. 00 12. F 8.0 K 11.0 S 1.6 0 5.0 U US TO 3.0 H US TO 3.0 H 3.4 51.7 AVG 1.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) 18 K*(892) PARTIAL DECAY MODES DECAY MASSES 493+ 139 493+ 139+ 139 493+ 0 K*(892) INTO K PI K*(892) INTO K PI PI K*(892)+ INTO K+ GAMMA P1 P2 P3 ------18 K*(892) BRANCHING RATIOS K*(892) INTO (K PI PI)/(K PI) (P2)/(P1) 0 (0.002)OR LESS WOJCICKI2 64 HBC - 1.7 K-P. R1 R1 K*(892)+ INTO (K+ GAMMA)/TOTAL (UNITS 10**-3) (P3) (1.6) OR LESS CL=.95 BEMPORAD 72 CNTR + 10.-16. K+ A,COH 1/73* R2 R2 REFERENCES FOR K*(892) ALSTON,ALVAREZ,EBERHARD,GOOD,GRAZIANO+(LRL) ALEXANDER,KALBFLEISCH,MILLER,G SMITH (LRL) D COLLEY,N GELFAND + (COLUMBIA+RUTGERS) ALSTON 61 PRL 6 300 ALEXANDE 62 PRL 8 447 COLLEY 62 CERN CONF 315 CHADWICK 63 PL 6 309 GOLDHABE 63 ATHENS CONF 92 KRAEMER 63 ATHENS CONF 130 SMITH 63 PRL 10 138 CHADWICK,CRENNELL,DAVIES,BETTINI+(OXF+PADO) SULAWITH GOLDHABER (LRL) R KRAEMER L MADANSKY + (JOHNS HODFKINS) SWITH,SCHWARTZ,MILLER,KALBFLEISCH,HUF+(LRL) WOJCICKI 64 PR 135 B 484 STANLEY G WOJCICKI (LRL) ADELMAN 65 ATHENS 527 FERRO-LU 65 NC 36 1101 FERRO-LU 65 NC 39 417 GELSEMA 65 THESIS WANGLER 65 PR 137 B 414 STUART LEE ADELMAN (CAVENDISH) FERRO-LUZZI, GEORGE, HENRI, JONGEJANS (CERN) FERRO-LUZZI, GEORGE, COLDSCHMIDT-CLE* (CERN) E-S.GELSEMA (SEE ALSO PL 10 341) (AMSTERDAM) ANGLER, FEMIT, MALKER (MISCONSIN) SAKASH'K LRSCH, MILLER, TAN (COLUMBIA) +MORTANET, D'ANDLAU+ (CERN+CDEF+IEAD+LIVE) +MORENSTEINNOTALESPIE+ (JAHN: NORVINS) +MORENSTEINNOTALESPIE+ (JAHN: NORVINS) -SCHLEIN, SLATER, TLCHCKCDEF+IEN+LIVERVOL +GOLDSCHHIDT-CLERNONT, HERRI+ (BRUX+CERN) +GOLDSCHHIDT-CLERNONT, HERRI+ (CERN+BRUX) SALLSTROM+OTTER+EKSPONG (STOCKHOLM) +DEUTCOMMUNE BARASH 67 PR 156 1399 BARLOW 67 NC 50 A 701 BOMSE 67 PR 158 1298 CONFORTO 67 PR 158 1298 CONFORTO 67 PR 153 1403 DE BARRE 67 NC 51 A 401 PRENCH 67 NC 424 442 GEORGE 67 NC 49A 94 ADERHOLZ 68 NP 8 5 567 DE WIT 68 THESIS FICENECI 68 PR 169 1034 FICENEC2 68 PR 175 1725 KANG 68 PR 176 1587 SCHWEING 68 PR 166 1317 +DEUTSCHMANN+ (AACH+BERL+CERN+LDIC+VIENNA) S. DE WIT (AMSTERDAM) +HULSIZER+SWANSON+TROWER (ILL) FICENEC, GORDON, TROWER (ILLINDIS) S. DE WIT +HULSIZER+SWANSON+TROWER FICENEC, GORDON, TROWER FICENEC, Y.W.KANG SCHWEINGRUBER,DERR ICK, FIELDS+ (IOWA) (ANL+NWES)
 CRENNELL
 69
 PRL
 22
 487

 DAVIS
 69
 PRL
 23
 1071

 DE
 BAERE
 69
 NC
 61
 A
 397

 ERNIN
 69
 NC
 61
 A
 397

 ERNIN
 69
 NC
 61
 A
 397

 JUHALA
 69
 NC
 64
 140
 1

 JUHALA
 69
 NP
 B
 14
 1
 +KARSHON,LAI,ONEALL,SCARR (BNL) +DERENZO,FLATTE,ALSTON,LYNCH,SOLMITZ (LRL) +OGLDSCHHDT-CLERMONT,HENRI,+ (BELG+CENN) +WALKER,GOSHAH,WEINBERG (WISC+PRINY WAND) J.FRIEDMAN,PHP.D. THESIN,LIBBY+ (ISU+COLO) +LEACOCK,RHDEF,KOPELMAN,LIBBY+ (ISU+COLO) +LEACOCK,FIRESTONE,FU,GOLDMABER (LRL) JP ATHERTON 70 NP B 16 416 DE BAERE 70 CERN PHYS 70 41 HABER 70 NP B 17 289 +FRANEK, FRENCH, FRISK, BEDNAR+ (CERN+PRAG) +DEBAISIEUX,DE WOLF,DUFOUR,+ (BELG+CERN) +SHAPIRA,ALEXANDER+ (REHO+SACL+BGNA+EPOL) AGUILAR 71 PRL 26 466 AGUILAR1 71 PR D 4 2583 BARNHAM 71 NP B 28 171 BUCHNER 71 NP B 29 381 CORDS 71 PR D 4 1974 MERCER 71 NP B32 381 YUTA 71 PRL 26 1502 +BARNES, BASSAND, EISNER, KINSON, SAMIOS (BNL) +EISNER, KINSON (BNL) +EISNER,KINSON (BNL) +COLLEY,JOBES,GRIFFITHS,HUGHES,+(BIRN+GLAS) +DEHN,GOEBEL,GOLDSCHMIDT,+ (MPIN+CERN+BELG) +CARMONY,ERNIN,MEIER,+ (PURD+UCC+IUPU) +ANTICH,CALLAHAN,CHIEN,COX,+ (JOHN HOPKINS) DERRICK,ENGELMANN,HUSGRAVE (ANL+EFI) TOERAICATENSELDAMIN, MOSGAAFE ABRANOVICH-(FALQUEVA.CHUNG, HLIPETT, + (CERN + (INTERNATIONAL K+ COLLABORATION) +BEUSCH, FREUDENREICH, + (CERN+FIT4-LOIC) +DANYSZ, GOLDSACK, + (COBF+SACL+LOIC+LOWC) -DEHM, CHARRIERE, CORF, + (CERN+BELG) GOEDN, CHARLERE, CORF, + (CERN+BELG) -GORDON, KWAN-WU LAI, SCARR, GUE DEUTSCHMANN, + KORCLAN, WUNGSARY, FORMAN, + (LANL+EFI) -VOIDAU, MOLTE, DE BRIDN, + (FYOLABORATION) +VIDEAU, MOLTE, DE BRIDN, + (FYOLASCH) ABRAMOVI 72 NP B 39 189 BINGHAM 72 NP B 41 BEMPORAD 72 NP B 51 BRUNET 72 NP B 37 114 BRUCHNER 72 NP B 45 333 CHARRIER 72 NP B 51 317 CHARNELL 72 NP B 51 317 CRENNELL 72 PR D 61220 DEUTSCHM 72 PR D 82 2162 ROUGE 72 NP B 39 596

 K_{π} interactions in the $I(J^{P}) = 1/2(0^{+})$ wave can be described by the elastic phase shift δ_0^1 from the $K\pi$ threshold (~630 MeV) up to at least 1100 MeV (BINGHAM 72). The first inelastic S-wave thresholds are $K\pi\pi\pi$ and $K\eta$, neither of which is known to be important below 1400 MeV. Apart from the inelastic thresholds, the S-wave $\pi\pi$ and $K\pi$ interactions are reminiscent of each other. Thus, the remarks in the $\pi\pi$ section about the meaningfulness of resonance parameters apply.

There are two intrinsic ambiguities in the solutions plotted below:

- Any phase shift can be shifted modulo 180° . 1)
- If one amplitude is dominant [e.g., the P wave 2) near $K^{*}(892)$ or the D wave near $K^{*}(1420)$], then the observed S-P or S-D interference can be explained by two ambiguous S-wave solutions, known as "up" and "down". Readers unfamiliar with the origin of the ambiguity can find a graphical explanation in our 1972 edition.

The combination of these two sorts of ambiguities leads to the multiple paths plotted in the figure. Simplicity favors the most slowly varying ("down") solutions, but where the authors give both, we plot both.

The figure displays the δ_0^1 solutions of four experimental groups:

BINGHAM 72 (an international K⁺ collaboration), 1) using data on $K^+p \rightarrow K\pi\Delta^{++}$ up to 12.7 GeV/c, find two solutions for δ_0^1 , neither of which is a priori preferred:

• "up", a resonant K with m ~890 MeV, $\Gamma \leq 30 \text{ MeV}$ (this requires δ_1^1 to be resonant near 900 MeV with ~48 MeV width). Note, however, the evidence of CHUNG 72 against a narrow-width S-wave state in the K^{*}(892) region; in addition, the more recent partial-wave analysis of MATISON 72 (see 5, below) seems to rule out the "up" solution.

• "down", a slowly rising δ_0^1 reaching ~70° at about 1100 MeV (requiring δ_1^1 to be resonant at about 895 MeV). Note that the up-down ambiguity is limited to the region 850-920 MeV. Above

 $\kappa, K_{A,I=3/2}(1175)$

- 920 MeV the "up" solution joins the "down" solution, since all phase shift values are determined only modulo 180°.
- MERCER 71, using the first half of the data of BINGHAM 72, give phase shifts up to 1230 MeV, ignoring possible inelasticity.
- 3) YUTA 71, using 5.5 GeV/c K⁻p → KπN, agree with the solutions of BINGHAM 72, their "down" solution agreeing also with MERCER 71, ignoring possible inelasticity up to 1250 MeV.
- 4) FIRESTONE 71 and 72, using 12 GeV/c $K^{\dagger}n \rightarrow K^{\dagger}\pi^{-}p$, have continued $K\pi$ partial wave analysis up to 1700 MeV. They find that δ_{0}^{1} crosses 90° just below the K^{*}(1420, 2⁺), and, indeed, near 1420 MeV, shows the "up-down" ambiguity mentioned above. Their unique solutions are plotted as solid crosses, their ambiguous ones as pairs of dashed crosses joined by dashed vertical lines.
- 5) MATISON 72 has performed a recent analysis of 12 GeV/c K⁺_P→ K⁺π⁻Δ⁺⁺ (the same reaction as studied by the International K⁺ Collaboration, and with comparable statistics, but all at 12 GeV/c). Matison's analysis was similar to that of the Collaboration, except that she added two important constraints to impose internal consistency:

i) The P wave in the K* region was determined by a Breit-Wigner fit to the Y_2^0 moment. (This yielded $m_{K*} = 896$ MeV, $\Gamma_{K*} = 47$ MeV.) ii) $\sigma_{K\pi}$ (tot) was included in the overall fit. She was then able to resolve the ambiguity in favor of the "down" solution.

Meanwhile several groups have attempted to clarify the situation around 1370 MeV. CORDS 72, FRATI 72, and ROUGE 72 give some support to the resonant S-wave interpretation of FIRESTONE 71. The other groups (AGUILAR 72, BUCHNER 72, CRENNELL 72, ENGELMANN 72) agree that the S wave is important but not necessarily resonant. In analogy with the $\pi\pi$ case, where a possible ϵ pole is located several hundred MeV below the observed $\pi^0\pi^0$ peak and quite far from the real axis, the 1370 bump could also be caused by a quite distant κ pole.

Data Card Listings For notation, see key at front of Listings.

S-wave K π phase shift. The "up-down" ambiguity now seems resolved by MATISON 72, who performs a partial-wave analysis of K π moments extrapolated to the pion pole. In addition, CHUNG 72 imposes positivity on physical region K π moments, and finds a narrow resonance most unlikely.

KAJ2 (1265, JP=) I = 3/2 EVIDENCE NOT COMPELLING. ONITTE FOR A DISCUSSION SEE ROSENFELD

EVIDENCE NOT COMPELLING. OHITTED FROM TABLE. FOR A DISCUSSION SEE ROSENFELD 60. REFERENCES FOR KA3/2(1265) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRH) A.H.ROSENFELD (LRL) HOERRICK.JOHNSON,MUSGRAVE,+ (ANL+NWES+KANS)

Q

REGION, $K\pi\pi(1240-1400)$

28 Q REGION I=1/2

The main effect in the Q region is a broad bump in the K $\pi\pi$ spectrum between 1200 and 1400 MeV, i.e. not far above K^{*}(892) π threshold, produced by K beams without charge exchange. In particular, it has been observed in coherent K[†]d intereactions (FIRESTONE 72) and in coherent interactions on heavy nuclei (BINGHAM 73). The dominant J^P assignment throughout the whole region is 1[†] and I = $\frac{1}{2}$. In addition, evidence for narrower states in the Q region has been reported from non-diffractive reactions (π^-p , $\bar{p}p$).

The following points are relevant to the rather complex situation in the Q region: $\label{eq:complex}$

• The broad Q peak does not have a simple Breit-Wigner shape. It can be fitted at all energies by a superposition of two Breit-Wigner amplitudes [FIRESTONE 70, BARNHAM 71, BOWLER 71].

• The Q bump was observed with a similar shape in the backward direction by FIRESTONE1 72.

• In addition to the dominant modes $K^{\pi}\pi$ and $K\rho$, there is some evidence for a $K\pi\pi$ mode, with the $\pi\pi$ system in an S wave. [ALEXANDER 69, BARNHAM 71, DAVIS 72].

• Analyses of the interference between the K^{π}_{π} and K ρ modes show the relative magnitude and relative phase of the two amplitudes varying with K $\pi\pi$ mass. This is suggestive of the presence of two $J^{P} = 1^{+}$ resonances coming possibly from a mixing between the strange members of the $J^{PC} = 1^{++}$ ("A₁") and 1^{+-} (B) nonets [GOLDHABER 67, BARNHAM 71, BOWLER 71, GARFINKEL 71, FIRESTONE 72]. The K $\pi\pi$ mass spectra and the relative magnitudes of the K $^{*}\pi$ and K ρ amplitudes may be understood from the mixing hypothesis; the relative phase variation has not been explained yet [BOWLER 72].

		2	28 Q	REGION MA	SS (MEV)			
M M M	PRODUCED 12 A THIS	BY BEAMS 42.0 S THE C	9.0 MESON	R THAN K M 10.0	ESONS ASTIER	69 HBC	O PBAR P	• 9/69
M	45(13 40(13	800.) 800.)			CRENNELL	67 HBC 72 HBC	0 6 PI- P,LK2PI 0 4.5PI-P,LK2PI	7/67 12/72

Mesons K_{A,I=3/2}(1265), Q

Q, K_N(1420)

	28 Q REG	ON BRANCHING RATIO	5		1
	PRODUCED BY BEAMS OTHER TH	AN K MESONS			
R1 R1 R1	75.0 10.0 DOMINANT	ARMENTERO O CRENNELL	54 HBC 0	0.0 PBAR P 4.5PI-P,LK2PI	6/66 12/72*
R 2 R 2	Q REGION INTO (K* PI)/1 25.0 10.0	OTAL (UNITS OF 10** ARMENTERO (×−2) (P1) 54 HBC	0.0 PBAR P	6/66
R3 R3	Q REGION INTO (K+ PI-) (0.2) or LESS (/ (K+0 PI0+ PI-) CL=.90 CRENNELL (57 НВС 0	6.0 PI-P	7/67
R4 R4	Q REGION INTO (KO PI+) (0.1) OR LESS (PI- PIO) / (K+O PIO- CL=.90 CRENNELL (PI-) 57 HBC 0	6.0 PI-P	7/67
	PRODUCED BY K BEAMS				
R10 R10 R10	Q REGION INTO (K PI) / (0.8) OR LESS Q REGION INTO	(K*(892) PI) SHEN (K*(892) PI AND K R	(P3). 6 HBC 4 10 (OVERLAPP	(P1) •6 K+P, 5 BODY ING BANDS)(P1+P	11/67
R10	70 (1.0)	SHEN	6 HBC +	4.6 K+P	8/66
R11 R11	Q REGION INTO (K OMEGA) (0.1) OR LESS	/(K*(892) PI) SHEN ((P5). 6 HBC +	/(P1) 4.6 K+P	10/66
R12 R12	Q REGION INTO (K PI) / (0.30) OR LESS	(K*(892) PI) SHEN ((P3) 6 HBC +	/(P1) 4.6 K+P	10/66
R13 R13	Q REGION INTO K*(892) F	I AND K RHO (OVERL)	PPING BANDS) P2)	
R13	200 (1.0)	BERLINGHI (57 HBC +	12.7 K+ P	7/67
R14 R14 R14	Q REGION INTO (K PI) / (0.02) OR LESS (0.02) OR LESS (TOTAL BERLINGHI (L=.95 BARTSCH	(P3) 57 HBC + 58 HBC - 1	12.7 К+ Р 0.0 К- Р	11/67
R15 R15	Q REGION INTO (K ETA) / (0.02) OR LESS	' TOTAL BERLINGHI d	(P4) 57 HBC +	12.7 K+ P	11/67
R16 R16 R16	Q REGION INTO (K OMEGA) (0.02) DR LESS 12 0.01 0.005	J TOTAL BERLINGHI & BARTSCH &	(P5) 57 HBC + 58 HBC -	12.7 K+ P 10.0 K- P	11/67 9/68
R17 R17 R17 R17	Q REGION INTO (K RHO) / 0.91 0.25 701 0.4 0.1	(K*(892) PI) BERLINGHI (BARTSCH ((P2) 57 HBC + 58 HBC - 1	/(P1) 12.7 K+ P 0.0 K- P	11/67 9/68
R17	AVG 0.47 0.18	AVERAGE (ERROR INC	LUDES SCALE	FACTOR OF 1.9)	
R18 R18	Q REGION INTO (K PI) / (0.21) OR LESS	(K*(892) PI) DE BAERE	(P3) 57 HBC +	/(P1) 3.5 K+ P	11/66
R19 R19 R19 R19 R19 R19	Q REGION INTO (K PI PI) 201 0-22 0-08 S POSSIBLY SEEN S POSSIBLY SEEN S WITH THE (PI PI) SYSTE	/ TOTAL BARTSCH & ALEXANDER & DAVIS M IN S-WAVE	(P6) 58 HBC - 1 59 HBC 72 HBC + 1	0•0 K- P 9•0 K+ P 2• K+ P	9/68 2/73* 1/73* 1/73*
		REFERENCES FOR Q RE	GION		['
	PRODUCED BY BEAMS OTHER	THAN K MESONS			
ARME	NTER 64 DUBNA CONF 1 577 ALSO 64 DUBNA CONF 1 617	ARMENTEROS, EDWARDS, R ARMENTEROS (RAPPO	D-ANDLAU +	(CERN+CDEF)	
CREN	ALSO 66 PR 145 1095	BARASH, KIRSCH, MILLI +KALBFLEISCH, LAI, SC	R , TAN CARR , S CHUMAN	(COLUMBIA) N (BNL)I	
AST	ER 69 NP 8 10 65	+MARECHAL, MONTANET	+ (CDEF+CE	RN+IPNP+LIVP)IJP T+(PADO+PISA)I	
0.11					
	TOA 46 DI 14 104			DRSONT (CAVE)	
SHEN	10A 65 PL 16 184	+BUTTERWORTH, FU, GOL	DHABERS, TRI	LLING (LRL)	
	ALSO 66 (PRIVATE COMMUN)	ERSON GOLDHABER		(LRL)	
BASS	OMPI 67 PL 26B 30 INGH 67 PRL 18 1087	BASSOMPIERRE, GOL DSO BERLINGHIERI+FARBER	CHMIDT+ (CE	RN+BRUX+BIRM)IJF MAN (ROCH)IJF	
DEE	AERE 67 NC 49A 374	+DEBAISIEUX+FAST+F	LIPPAS+	(CERN+BRUX)	
GOL	HABE 67 PRL 19 976	G.GOLDHABER		(LBL)	
BAR1 BOMS DENE	SCH 68 NP B8 9 E 68 PRL 20 1519 GRI 68 PRL 20 1194	+COCCONI,+ (/ +BORENSTEIN,CALLAH/ +CALLAHAN+ETTLINGE	ACH+BERL+CE AN,COLE,COX, COLE,COX,	RN+LOIC+VIEN) + (JOHNHOPK) 1 (JOHNHOPK) 1	:

Data Card Listings For notation, see key at front of Listings.

+HALPERN, HARGIS, SNAPE, CARNAHAN, + (PENN+CINC) +ARNOLD, HAGUENAUER, + (BERG+STRB+EPOL+MADR) RATI 72 PR D 6 2361 HAATUFT 72 NP B 48 78 BINGHAM 73 NP B (TO APPEAR) +FARWELL,+ (LBL,ORSAY,BNL,SACLAY,MILAN)

KN(1420) 22 KN (1420, JP=2+) I=1/2 JP = 3- IS UNLIKELY BUT NOT YET COMPLETELY RULED OUT. 22 KN(1420) MASS (MEV) FOR DIFFICULTIES IN MEASURING MASS DIFFERENCE, SEE TYPED NOTE UNDER K*
 CHARGED ONLY, WITH FINAL STATE K PI

 1440.
 24.0
 40.
 DE BAERE 67 HBC
 + 3.5 K+P (K+ PIO) 10/66

 1423.
 21.
 ADERHOLZ 68 HBC
 - 10 K- P (K PI) 6/68

 1401.0
 20.0
 SCHWEINGR 68 HBC
 - 4.1 K- P (K PI) 6/68

 1401.0
 20.0
 SCHWEINGR 68 HBC
 - 5.5 K- P (K PI) 9/67

 1425.0
 15.0
 BISHOP
 69 HBC
 - 3.5 K+ P (K PI) 9/67

 1425.0
 15.0
 BISHOP
 69 HBC
 - 3.9 K-N (KOPI-) 7/67

 1436.10.0
 CRENNEL
 60 BBC
 - 3.9 K-N (KOPI-) 7/67
 14/50

 1440.120.0
 3.1
 LIMOM
 60 HBC
 - 3.9 (K-KPI) 1/71

 1400 14/20.0
 3.1
 AGUILARI T1 HBC
 - 3.9 (K-KPI) 1/72

 1200 14/25.
 6.
 BARNHAM T1 HBC
 + K+ P,KO PI+ P
 1/72
 2.3 AVG 1421.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 CHARGED ONLY, WITH OTHER FINAL STATES

 1400.0
 20.0
 BADIER
 65 HBC
 - 3. K- P (K*PI)
 10/66

 20 1440.0
 20.0
 DUBAL
 68 MMS
 - 11.5 K- P
 6/68

 8 240 1396.
 6.
 BASSOMPIE 69 HBC
 + 5 K+P (K 2PI)
 11/69

 (1411.)
 (7.)
 FRIEDMAN 69 HBC
 - 2.7 K-P (K 2PI)
 2/72
 24 (14-AVG 1399.7 CHARGED AND NEUTRAL 1404.0 15.0 1430.0 30.0 1430.0 10 в AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5)
 FOCARDI
 65 HBC
 -0 3.
 K-P (K PI)
 10/66

 SHEN
 66 HBC
 + 0 4.6 K+P (K PI)
 10/66

 SHEN
 66 HBC
 + 0 4.6 K+P (K PI)
 10/66

 BASSAND
 67 HBC
 -0 4.6 K+P (K PI)
 10/66

 BASSAND
 67 HBC
 -0 4.6 K+P (K PI)
 10/67
 4.7 1421.2 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 Avg
 1+11.2

 NEUTRAL
 0NLY

 1445.0
 1425.0

 1405.0
 1405.0

 9
 1397.0

 8
 420.1422.

 B
 BASSOMP.

 2200
 1421.1

 1600
 1416.

 1100
 142.1

 7.9
 DAHL
 67 HBC
 0 4.PI- P (KPI)
 10/66

 15.0
 KANG
 68 HBC
 0 4.6 K-P
 7769

 18.0
 SCHMEINGR 68 HBC
 0 4.1 K-P (K PI)
 9/67

 19.0
 SCHMEINGR 68 HBC
 0 5.5 K-P (K PI)
 19/67

 5.
 BASSOMPIE 69 HBC
 0 5.5 K-P (K PI)
 11/69

 20.4
 DAVIS
 69 HBC
 0 12.4 K-P (K PI)
 19/67

 3.7
 AGUILARI
 71 HBC
 0 3.94.6 K-P II/71
 6.
 CORDS
 71 DBC
 0 9.4 K+ N,K+P PI-P 12/72*

 3..
 BUCHMER
 72 DBC
 0 4.6 K+ N,K+P PI-P 12/72*
 2.5
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.6)
 AVG 1422.8 WEIGHTED AVERAGE = 1422.8 ± 2.5 ERROR SCALED BY 1.6 CHISQ · · · · · · BUCHNER 2.0 72 DBC CORDS 71 DBC •AGUILAR1 71 HBC 1.0 · · · · · DAVIS 69 HBC 0.4 BASSOMPIE 69 HBC 0.0 ·SCHWEINGR 68 HBC · · · SCHWEINGR 68 HBC ·KANG 68 HBC · · ·DAHL 67 HBC <u>8.7</u> 13.3 (CONLEV =0.020) 1360 1400 1440 1480 NEUTRAL KN(1420) MASS (MEU) ____ 22 KN(1420) WIDTH (MEV)
 CHARGED ONLY, WITH FINAL STATE K PI
 ADERHOLZ
 68 HBC
 - 10 K- P (K PI)
 6/68

 175.
 57.
 BISHOP
 69 HBC
 + 3.5 K+ P
 9/69

 90.
 18.
 LIND
 69 HBC
 + 9. K+ P
 9/69

 90.
 20.0
 ABRANS
 70 HBC
 + 2.5-3.2 K+ P, K2PI 11/70
 1400

 1400
 94.7
 15.1
 12.5
 AGUILARI 71 HBC
 - 3.94.6 K- P
 11/71

 200
 115.
 2.0
 BARNINAM
 11 HBC
 - 3.09.46.6 K- P
 11/71
 ****** ••• a.i ' 99.1 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 CHARGED
 ONLY, WITH
 OTHER
 FINAL
 STATES

 105.0
 30.0
 BADIER
 65
 HBC
 3.0
 K-P
 6/66

 8
 240
 110.
 25.
 / 8ASSOMPTE
 69
 HBC
 5.K+P
 (K 2P1)
 11/69

 43.1
 (13.)
 FRIEDMAN
 69
 HBC
 2.7 K-P
 (K 2P1)
 2/72

108.0

19.2

AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)

AVG

BASSUMPT BERLINGH DE BAERE ALSO GOLDHABE	67 67 PR 67	PL 208 30 PRL 18 1087 NC 49A 374 IVATE COMMUNICATION PRL 19 976	BASSONFIERE;SOLDSCHMIDTY (CENYDROAFDING) BERLINGHERIFFARBEH*FERBEL+FORMAN (ROCH) +DEBAISIEUX+FAST+FILIPPAS+ (CERN+BRUX) W BY B. JONGEJANS G.GOLDHABER (LBL)	I JP I JP
BARTSCH BOMSE DENEGRI ALSO	68 68 68 70	NP B8 9 PRL 20 1519 PRL 20 1194 ANTICH	+COCCONI,+ (AACH+BERL+CERN+LOIC+VIEN) +BORENSTEIN,CALLAHAN,COLE,COX,+ (JOHNHOPK) +CALLAHAN+ETTLINGER+GILLESPIE+ (JOHNHOPK)	1+ 1+
ALEXANDE ANDREWS BARBARO BISHOP CHIEN CHUNG CCULEY ERWIN FRIEDMAN WERNER	69 69 69 69 69 69 69 69	NP B 13 503 PRL 22 731 PRL 22 1207 NP B 9 403 PR 182 1443 NP 182 1443 NC A 59 519 NP B 9 364 UCRL-18860 PR 188 2023	G.ALEXANDER,FIRESTONE,GOLDHABER,+ (LRL) +LACH,LUDLAM,SANDWEISS,BERCER,+ (YALE+LRL) BARBARO-GALTIERIDAVIS,FLATTE,+ (LRL) +GOSHAM,FRHIN,MALKER (MISC) +MALANDD,MELLEMA,RUDNICK,SCHLEIN+ (UCLA) +ELSNER+BALI+LUERS (MISC+DET+RHEL) +EASTWOOD,+ (BIRN+CLAS+LOIC+HMIH+OXFH) J.FRIEDMAN,PH-D.THESIS (LRL) +AMMAR,DAVIS,FKOPAC,YARCER,CHO,+ (INES+AANL)	1+
ABRAMS ANTICH BOWLER FARBER FIRESTON	70 70 70 70 70	PR D 1 2433 NP B 20 201 PL 31 B 318 PR D 1 78 PHILAD.CONF.P.229	+EISENSTEIN,KIM,MARSHALL,O-HALLORAN,+ (ILL) +CARSON,CHIEN,COX,DENEGRI,ETTLINGER,+ (JHU) M.G.BOMLEN +GENBEL,SLATTERY,YUTA (ROCH) A.FIRESTONE REVIEW (LRL)	1+ 1+
8 ARNHAM BOWLER DENEGRI FORMAN GARFINKE SLATTERY	71 71 71 71 71 71 71	NP B25 49 BOLOGNA CONF.PROC NP B 28 13 PR D 3 2610 PRL 26 1505 UR-875-332(PREP)	+COLLEY, GRIFFITHS, ALPER, + (BIRM+GLAS+OXF) M.G.BOWLER INTRODUCTORY TALK (DKFORD) +ANTICH, CALLAHAN, CARSON, CHIER, COX, + (JHU) +GELFAND, LEARY, MOSER, SEIDI, MOLFSON (EFI) GARFINKEL, HOLLAND, CARMONY, LANDER +(PURD+UCD) P. SLATTERY, A REVIEW OF STRANGE MESONS(ROCH)	1+ 1+
ANDERSON BINGHAM BRANDENB BRANDENB CRENNELL DAVIS FIRESTON FIRESTON	72 72 72 72 72 72 72 72	PR D 6 1823 NP 8 48 589 NP 8 45 397 PR 2 8 932 PR D 6 1220 PR 0 5 2688 NP 8 47 348 PR D 5 505	+FRANKLIN.GDDEN.KOPELMAN.LIBBY.TAN (GOLO) +FISANKLIN.GARD.HEADLT.+ (CIENTATIN,GARD.HEADLT.+ BRANDENBURG.BRODY.JOHNSON.LEITH.LOOS+(SLAC) BRANDENBURG.JOHNSON.LITHITH.LOOS-LUST+(SLAC) +GORDON,KMAN-HU LAI.SCARR ALSTON,BARBAGP.FLATF.FRIEDMAN.LYMCH+(LE) A.FIRESTONE FIRESTONE.GOLDHABER.LISSAUER.TRILLING (LE)	

Data Card Listings

For notation, see key at front of Listings.

Mesons K_N(1420), K_N(1660)

N CHARGED AND NEUTRAL FOCANDI 65 HBC -0 3.0 K-P (K PI) N 92.0 14.0 FOCANDI 65 HBC -0 3.0 K-P (K PI) N 75.0 25.0 SHEN 66 HBC + 04.6 K+P 8/66 N 60.0 20.0 SHEN 66 HBC - 04.6 K+P (K PI) 8/66 N 60.0 20.0 GOLDHABER 67 HBC - 9.0 K+P (K PI) 0/67 N 107.0 20.0 SCHWEINGR 68 HBC - 04.1+5.5 K-P 9/67 N AVG 85.9 8.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) N NEUTRAL ONLY 61.0 24.0 DAHL 67 HBC 0 3.8-4.2 PI-P 9/66 116.0 17.0 KAMGAMA/SGRTININ. SEE K FVED NITE. 11/69 B 420 10.2 21. BASSOMPIE 69 HBC 0 3.6+4 K P P 11/69 H 420 10.3 15.5 ACUILARI 11/60 O 3.6+4 K P P 11/71 H 22. COROS TI DEC O 3.4+ N KK PI P P 2/72	R9 KN(1420) INTO (K RHO) / (K*(892) P1) (P3)/(P2) R9 (0.39) OR LESS BASSOMPIE 67 HBC + 5. K+ P R9 (0.39) OR LESS CL=.90 PIELD 67 HBC + 5. K+ P R9 (0.39) OR LESS CL=.90 PIELD 67 HBC + 3.8 K- P 6/67 R9 FIT 0.313 0.095 FROM FIT (P4)/(P2) (P4)/(P2) R10 (0.10) 10.04) FIELD 67 HBC - 3.8 K- P 6/67 R10 (0.10) 10.04) FIELD 67 HBC - 3.8 K- P 6/67 R10 (0.01) 10.04) FIELD 67 HBC - 3.8 K- P 6/67 R10 F1 0.061 FROM FIT FIELD 67 HBC - 3.8 K- P 6/67 R11 KN(1420) INTO (K ETA) / (K*(892) P1) (P5)/(P2) 6/67 6/67 R11 0.067 0.069 FROM FIT FIELD 67 HBC - 3.8 K- P 6/67 R11 C.067 JO R LESS GL=.95 AGUILAR T0 HBC 3.5 K+ P 9/69 R12 10.02 JO R
22 KW(1420) PARTIAL DECAY MODES DECAY MASSES P1 KN(1420) INTO K PI 493+ 139 P2 KN(1420) INTO K 4(892) PI 493+ 139 P4 KN(1420) INTO K 4(892) PI 493+ 703 P5 KN(1420) INTO K CA 493+ 703 P5 KN(1420) INTO K ETA 493+ 548 FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS The matrix below is derived from the error matrix for the fitted partial decay mode branching fractiona, P, as follows: The diagonal elements are $P_1 \pm 0P_1$, where $\delta P_1 = \sqrt{(\delta P_1 \delta P_2)}$, while the <u>off-diagonal</u> elements are the normalized correlation coeffi- cients $(\delta P_1 \delta P_2)/(\delta P_1, \delta P_2)$. For the definitions of the individual P, see the listings above: only those P ₁ appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. P1 - 59550274 P22293 2945+.0247 P339503255 .0023+0241 P424432458 -1182 .0440+0166 P54097244207870502 .0197+.0200	R Q TO THE NEARBY Q REGION. R Q TO THE NEARBY Q REGION. REFERENCES FOR KN(1420) BADIER 65 PL 19 612 BADIER, DEMOULIN, GOLDBERG+(EPOL+SACL+ZEEMAN) CHUNG 65 PRL 15 325 +DAHL, HARDY, HESS, JACOBS, KIRZ, MILLER (LR.) FOCARDI 65 PL 16 351 FOAHL, HARDY, HESS, JACOBS, KIRZ, MILLER (LR.) FOCARDI 65 PRL 17 726 +BUTTENWORTH, FU, GOLDHABERS, TRILLING (LR.) ALSO 66 (PRL 17 726 +BUTTENWORTH, FU, GOLDHABERS, TRILLING (LR.) BASSAND 67 PRL 19 968 +GULDBERG, GOLDHABER, TRILLING (LR.) BASSAND 67 PRL 19 968 +GULDBERG, GOLDSGHNUT, (CENNPARX) BASSOMFI CPL 268 00 BSSOMFIERE, GOLDSGHNUNG (LR.) CRENNELL 67 PRL 19 968 +GOLDBERG, GOLDSGHNUT, (CENNPARX) BASSOMFI CRENC, GOLDSGHNUT, (CENNPARX) GRENNELL 67 PRL 19 968 +GOLDBERG, GOLDSGHNUT, (CENNPARX) BASSOMFI CRENC, GOLDSGHNUT, (CENNPARX) GRENNELL 67 PRL 19 968 +GOLDBERG, GOLDSGHNUT, (CENNPARX) GRENNELL 67 PRL 19 970 G.GOLDHABER, FIRESS, KIRZ, MILLER (LR.) ALSO 65 PRL 14 401 HARDY, HESS, KIRZ, MILLER (LR.) ALSO 65 PRL 14 401 HARDY, HESS, KIRZ, MILLER (LR.) ALSO 66 PL 22 357 BARTSCH, POLTECHNIAN, (CR.) GOLDHABE 67 PRL 21 1842 +GLABAS +HENDRICKSPICICINIAN ANRISON + (LAGLLIC) ALSO 66 PL 22 357 BARTSCH, POLTSCHNANN, (AACL+BERL+CENN+LOIC-VIENNA) ALSO 66 PL 22 357 BARTSCH, POLTSCHNANN, (CR.) (ICL) ANTICH 68 PRL 21 1842 +CALLAHAN, CARSON, COX, DENGERI, +
L2 KN(1420) INTO (K PI)/TOTAL (P1) R1 KN(1420) INTO (K PI)/TOTAL (P1) R1 R (0.37) (0.19) R1 R (0.37) (0.19) BASINO 67.166 R1 R (0.37) (0.19) BASINO 67.166 - 4.6, 5.0 K-P 10/67 R1 R WE CANNOT USE THIS STATISTICALLY REDUNDANT RATID. AUTHORS RI R MEASUREMENTS OF OTHER RATIOS. R1 R MEASUREMENTS OF OTHER RATIOS. (10.14) BADIER 65 HBC 3.0 K-P 6/66 R2 (KN1420) INTO (K+(892) PI) / TOTAL (P2) (P2) (P2) (P2) R3 C (0.41) (0.10) BASSANO 67 HBC 3.0 K-P 6/66 R3 Q (0.14) (0.01) BASSANO 67 HBC 3.0 K-P 10/67 R3 C (0.14) (0.01) BASSANO 67 HBC 3.0 K-P 10/67 R3 Q (0.14) (0.02) A.22 FIC 10/67 R3 Q (0.14) (0.02) A.22 FIC 10/67 R3 Q	ALSD 64 0E BAERE ALSD 64 0E BAERE ALSD 70 DE BAERE BISHOP 169 PRL 22 407 +GOSHAW,ERWIN,WALKER (WISC) DAVIS 69 PRL 23 1071 +OERADO,FLATTE,ALSTON,LYNCH,SOLMITZ (LRL) DAVIS 69 PRL 23 1071 +OERADO,FLATTE,ALSTON,LYNCH,SOLMITZ (LRL) DE BAERE 69 NC 61.A 37 +GOSHAW,ERWIN,WALKER (WISC) ALSD 70 DE BAERE 69 NC 61.A 37 +GOSHAW,PH-D. THESIS (LRL) (LRL) ALSD 70 PR D 1 2433 +EISENSTEIN,VILME,MARKHEN RI,+ (BELG+CERN) ARMAN 70 PR D 1 2433 +EISENSTEIN,VILME,MARAMALL,O'HALLORAN,+ (ILL) ABRAMS 70 PR D 1 2433 +EISENSTEIN,VILME,MARAMALL,O'HALLORAN,+ (ILL) BIRNINGH 70 KIEY CONF. ASUILAR 70 PR D 4 2583 +EISNER,VILNGH MARAMAL,O'HALLORAN,+ (ILL) BARMHAN 70 KIEY CONF. ASUILAR 70 PR D 4 1974 +DEBAISIEUX,OE WOLF, DUFOUR,+ (BELG+CERN) AGUILAR 71 PR D 4 2583 +EISNER,NINSON (BILTH-GLAS+VER) AGUILAR 71 PR D 4 1974 +CARMONY,ERNIN,WIERER,F. (PURP+UCD+IUPU) SLATTERY 71 UR-875-332(PPEP) P.SLATTERY,A REVIEW 0F STRANGE MESONSIROCH) BUCHNER 72 NP B 45 333 +DEHM,CHARRIERE,CORNET,+ (MPIM+CERN+BRUX) CHARRIER 72 NP B 51 317 CHARRIER, CRIJARD DE BAERE,+ (ICERN+BRUX) CHARRIER 72 NP B 51 317 CHARRIER, CRIJARD DE BAERE,+ (ICERN+BRUX) CHARRIER 72 NP B 30 30 PHOMEDA,KIN,MISCRAF, FORMA
R7 FIT 0.080 0.031 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R8 KN(1420) INTO (K RHO) / (K PI) (P3)/(P1) (P3)/(P1) R8 0.093 OR LESS CHUNG 65 H6C + 0 3.9-4.2 P1-P 8/66 R8 0.26 0.16 SCHWEING K8 H8C 0 4.1+5.5 K + P 10/67 R8 10.21 OR LESS BASSOMPIE 69 H8C + 5 K + P 9/69 7/69 R8 10.31 OR LESS BASSOMPIE 69 H8C + 5 K + P 9/69 R8 0.16 0.055 AGUILARI 71 H8C 3.9,4-6 K - P 11/71 R8 0.169 0.048 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R8 FIT 0.168 0.048 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	27 KN(1660) PARTIAL DECAY MODES P1 KN(1660) INTO K PI 4934 139 P2 KN(1660) INTO K PI 4934 139 P3 KN(1660) INTO K PI PI 4934 139 P4 KN(1660) INTO K*(1822) PI 8914 139 P4 KN(1660) INTO KN(1420) PI 1421+ 139

$K_N(1660), K_N(1760), L(1770), K_N(1850), K^*(2200)$

Data Card Listings For notation, see key at front of Listings.

	REFERENCES FOR KN(1660)		23 L BRANCHING RATIOS	
	$ \left[(1760) \right]_{00}^{Y} = 0 $		R1 L INTO (KN(1420) P1) / (K P1 P1) (P2)/(P1) R1 LARGE DEMEGRI 68 DBC - 12.6 K + D R1 (1.0) BARBARO 69 HBC + 12.0 K + D R1 0.2 0.2 AGUILAR TO HBC - 4.6 K - P R1 LESS THAN 1.0 BARBARO 69 HBC + 12.0 K + D R1 LESS THAN 1.0 COLLEY T1 HBC 10. K + P R1 LESS THAN 1.0 COLLEY T1 HBC 10. K + P R1 PRODUCED IN CONJUNCTION WITH D* FIRESTONE 72 DBC + 12. K + D R1 R LESS THAN 1.0 SETABLISHED. R R CAN JISCOND DF THE EXPERIMENTAL EVIDENCE ON OTHER DECAY	1/71 1/71 1/71 11/71 12/72* 12/72*
	FAVORED JP IS 3- , I=1/2 .		KI K MUDES SEE HUGHES 11,5LATERT 11 •	11//1
			REFERENCES FOR L(1770)	
м с	50 KN117601 HASS (MEV) 76(1753.) (12.) CARMONY 71 DBC 0 9. K+ N	11/71	BARTSCH 66 PL 22 357 +DEUTSCHMANN,+ (AACH+BERL+CERN+LDIC+VIEN) BERLINGH 67 PRL 18 1087 BERLINGHIERI+FARBER+FERBEL+FORMAN+ (RCOCH)I JOBES 67 PL 268 49 +BASSOMPIEREF_DE BARER + (BIRM+CERN+BRUX) DENEGRI 68 PRL 20 1194 +CALLAHAN+ETTLINGER+GILLESPIE+	
	60 KN(1760) WIDTH (MEV)		ANDREWS 69 PRL 22 731 +LACH-LUDLAM-SANDWETSS.BERGER.+ (YALF+LRL)	
W C W C	76 (60.) [20.] CARMONY 71 DBC 0 9. K+ N DISAGREEMENT BETWEEN THE FIT AND DATA ON BOTHES OF THE SIGNAL	11/71 11/71	BARBARO 69 PRL 22 1207 BARBARO-GALTIERI,DAVIS,FLATTE,+ (IRI) COLLEY 69 NC A 59 519 +EASTWOOD,+ (BIRM+GLAS+LATC+MPINOXF+RHEL) AGUILAR 70 PRL 25 54 AGUILAR-BENTEZ, BARNES, BASSAND,CHUNG,+(BNI)	
	60 KN(1760) PARTIAL DECAY MODES Decay Masses		BARTSCH 70 PLI33 B 186	
P1 P2 P3 P4 P5	KN(1760) INTO K PI 493-139 KN(1760) INTO K*(892) PI 891+139 KN(1760) INTO K 493+770 493+770 KN(1760) INTO KN(1420) PI 1421+139 KN(1760) INTO K N(1420) PI 1421+139		COLLEY 71 NP B 26 71 +JOBES,KENYON,PATHAK,HUGHES,+ (BIRM+GLAS) DENEGRI 71 NP B 28 13 +ANTICH,CALLAHAN,CARSON,CHLEN,COX,+ (JUHU) HUGHES 71 BOLGONA COMF.PROC I.S.HUGHES,TALK AT BOLGONA CONF. (GLASGON) SLATTERY 71 UR-875-332(PREP) P.SLATTERY,A REVIEW OF STRANGE MESONS(ROCH)	IP
	60 KN(1760) BRANCHING RATIOS		ANDERSON 72 PR D 6 1823 +FRANKLIN,GODEN,KOPELMAN,LIBBY,TAN (COLU) BLIEDEN 72 PL 39 B 668 +FINOCCHIARD,BOWEN,FARLES,+ (STON-NEAS) CHARRIER 72 NP B 51 317 CHARRIER,DRIJARD,DE BAERE,+ (CERN-BELG) FIRESTON, GOLDHABER,LISSAUET,RTRILLING (LBL)	
R1 81 F	KN(1760) INTO (K PI)/(K*(892) PI + K RHO) (P1)/(P2+P3)	11/71	****** ********************************	
R2	KN(1760) INTO (K*(892) PI)/(K PI PI) (P2)/(P5)		TZ (1050)	
R2 E 83	(0.40) (0.15) CARMONY 71 DBC 0 9. K+ N KN(1760) INTO (K RHO)/(K PI PI) (P3)/(P5)	11/71	$K_N(1850)$ (1 KN (1850, JP=)	
R3 E	(0.60) (0.25) CARMONY 71 DBC 0 9. K+ N	11/71	\rightarrow	
R4 R4 E	KN(1760) INTO (K*(892) PI + K RHO)/(K PI PI) (P2+P3)/(P5) (1.) (0.12) CARMONY 71 DBC 0 9. K+ N	11/71	STRUCTURE IS SEEN IN THE K PI SCATTERING ANGULAR DISTRIBUTION AT MASSES NEAR 1850 MEV.THE MOST SIMPLE EXPLANATION INVOLVES	
R5 R5 E R5 E	KN(1760) INTO (KN(1420) PI)/(K PI PI) (P4)/(P5) (0.06) OR LESS CARMONY 71 DBC 0 9. K+ N DIFFICULT BACKGROUND SUBTRACTION . ERRORS STATISTICAL ONLY .	11/71 11/71	A RAPIOLY INCREASING F-WAVE AMPLITUDE,POSSIBLY INDICATING PRESENCE OF A JP=3 RESONANCE. NEEDS FURTHER CONFIRMATION. OMITTED FROM THE TABLE.	
*****	******** ********* ********************			
	REFERENCES FOR KN(1760)		M I (1850.) APPROX. FIRESTONE 71 DBC 0 12.K+ N.K+ PI-P	11/71
*****	Y /I PKL 2/ II60 +CURDS,CLUPP,EKWIN,MEIERE,+ (PURD+UCD+IUPU)			
*****	********** ********* ******************		61 KN(1850) WIDTH (MEV)	
L(1770) 23 L (1770, JP=) I = 1/2 FOR REVIEWS SEE HUGHES 71,SLATTERY 71 .		W I (300.) APPROX. FIRESTONE 71 DBC 0 12.K+ N,K+ PI-P W I APPARENT INTERFERECE WITH OTHER AMPLITUDES PRECLUDES W I PRECISE DETERMINATION.	11/71 11/71 11/71
M M B M M M X M X	2011780.) BERLINGHI 67 HBC + 12.7 K+P (1760.0) (15.0) JOBES 67 HBC + 5. K+P 11785.0) (12.0) BARTSCH 68 HBC 10.0 K~ P INCLUDED IN BARTSCH 70 BARTSCH 68 HBC 10.1 K~ P 1745.0 20.0 AGUILAR 70 HBC - 4.6 K~ P 1745.0 LJOLAN 70 HBC - 10.1 K~ P 1765.0 40.0 COLLEY 71 HBC + 10.K+P,K 2PI SYSTEMATIC ERRORS ADDED CORRESP: TO SPREAD OF DIFFERENT FITS.	7/67 1/73* 11/71 11/71 6/70 1/71 1/73* 1/73*	REFERENCES FOR KN(1850) FIRESTON 71 PL 36 B 513 FIRESTONE, GOLDHABER, LISSAUER, TRILLING (LBL) K*(2200) 40 K* (2200, JP=) ENHANCEMENT SEEN IN (ANT HYPERON-NUCLEON) MASS	
M M M P M P	(1740.0) DENEGRI 71 DBC - 12.6 K-D,K 2PI D 1767. 6. BLIEDEN 72 MMS - 1116. K-P 306 1730. 20. FIRESTONE 72 DBC + 12. K+D PRODUCED IN CONJUNCTION WITH D*	5/71 12/72* 1/73*	NEAR THRESHOLD.INTERPRETATION UNCERTAIN. OMITTED FROM TABLE.	
M M AV	G 1764.6 6.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3)		40 K*(2200) MASS (MEV)	
	23 L WIDTH (MEV)		M 20 2240. 20. LISSAUER 70 HBC 9. K+ P M C (2200.) APPROX. SLATTERY 71 RVUE 8-13 K+ P M C COMPILATION DE (ANTIHYPNUCLEON) MASS IN K+ P.813. GEV/C	11/71 11/71
W W	20 (80.) BERLINGHI 67 HBC + 12.7 K+P (60.0) (20.0) IDEES 67 HBC + 5 K+P	7/67		
W B W B	(127.0) (43.0) BARTSCH 68 HBC 10.0 K- P INCLUDED IN BARTSCH 70	11/71	40 K*(2200) WIDTH (MEV)	
2 X X	100.0 50.0 AGUILAR 70 HBC - 4.6 K- P 138.0 40.0 BARTSCH 70 HBC - 10.1 K- P (50.0) (40.0) (20.0) LUDLAM 70 HBC - 12.6 K- P	6/70 1/71 1/73*	W 20 80. 20. LISSAUER 70 HBC 9. K+ P W C (200.) APPROX. SLATTERY 71 RVUE 8-13 K+ P W C (200.) APPROX. SLATTERY 71 RVUE 8-13 K+ P	11/71
W X W X	90. 70. COLLEY 71 HBC + 10.K+P,K 2PI SYSTEMATIC ERRORS ADDED CORRESP. TO SPREAD OF DIFFERENT FITS.	1/73*	****** ******** ******** *************	11//1
W W P	100. 26. BLIEDEN 72 MMS - 1116. K- P 306 210. 30. FIRESTONE 72 DBC + 12. K+ D	5/71 12/72* 12/72*	REFERENCES FOR K*(2200)	
W P W	PRODUCED IN CONJUNCTION WITH D*		ALEXANDE 68 PRL 20 755 ALEXANDER,FIRESTONE,GOLDHABER,SHEN (LRL) LISSAUER 70 NP B 18 491 +ALEXANDER,FIRESTONE,GOLDHABER (LBL)	
	S 20101 20102 AVERADE LEKKUK INCLUDES SCALE FACTOR OF 1.5)		CARMONY 71 PRL 27 1160 +CORDS, CLOPP, ERWIN, MEIERE, + (PURD+UCD+IND)	
P1	23 L PARTIAL DECAY MODES L INTO K PI PI	****** ******** ******** *************		
P2 P3 P4 P5 P6 P7	- INTO 9/97 + 13/4 + 13/4 - INTO 9/97 + 13/4 + 13/4 - INTO 19/1 PI PI - INTO 19/1 PI PI - INTO 16/80 + 13/4 - UNTO 16/80 + 13/4	, . ,	· · · · · · · · · · · · · · · · · · ·	
			1	

PARTICLE DATA GROUP Review of Particle Properties S105

Data Card Listings For notation, see key at front of Listings.

[K*	(2800) 62 K* (2800, JP=) NEEDS FURTHER CONFIRMATION.OMITTED FROM THE TABLE.									
		62 K*(2800) MASS (MEV)									
м	н	59(2800.) HUGHES 71 HBC + 10.K+P,P MMS+ 11/7	1								
W	н	59 (40.) OR LESS HUGHES 71 HBC + 10.K+P,P MMS+ 11/7	1								
w	н	PROBABLY DECAYS INTO (3 CHARGED + 2 OR MORE NEUTRAL) PARTICLES 11/7	1								
***	***	******** ********* ******** ***********									
REFERENCES FOR K*(2800)											
HUGI	HES	71 PREPRINT +MC≠CORMICK, PROCTER, TURNBULL (GLASGOW)									
:	*** ***	****** ********* ********* *********									

Mesons K*(2800)

Baryons

N's and Δ 's

Note on Speed Plots

In the discussion which follows, we use the term "speed plot" to indicate a plot showing the variation with C. M. energy m of the derivative |dT/dm| of a partial-wave amplitude T. (See section IV C of the main text.) In principle such plots are a very sensitive and useful means of searching for a resonance. A rapid increase in speed followed by a rapid decrease is certainly a good indication of the presence of a resonance. In practice these plots must be judiciously used because:

1) The values of dT/dm are sensitive to variations in T. It is difficult enough to determine T(m); finding its derivative is necessarily more difficult.

2) Once the speed plot tells us that a resonance is present, the determination of precise parameters from such a plot requires additional considerations:

 a) the maximum of the speed is not necessarily at the resonance mass,

b) the width cannot simply be obtained by the relation $\left|dT/dm\right|_{m=M}$ = 2x/ Γ .

Consider for example the P_{33} partial-wave amplitude in $\pi\text{-N}$ scattering. Since its elasticity (x) is one, we have

$$T(m) = \frac{\Gamma(m)/2}{M-m - i\Gamma(m)/2} .$$
 (1)

If we let $\Gamma'(m) = d\Gamma/dm$, then we find that

"Speed" =
$$\left|\frac{dT}{dm}\right| = \frac{2}{\Gamma} \frac{1+(M-m)\Gamma'/\Gamma}{1+4(M-m)^2/\Gamma^2}$$
 (2)

To estimate where Eq. (2) is maximum, we let $m = M + \delta$ and find that for small δ ,

$$\frac{\mathrm{d}}{\mathrm{d}\mathrm{m}} \left| \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\mathrm{m}} \right| = -\frac{16}{\Gamma^3} \left(\frac{\Gamma\Gamma'}{8} + \delta \right) + \mathcal{O}(\delta^2) \,. \tag{3}$$

Since all reasonable parametrizations of $\Gamma(m)$ agree that $\Gamma' \ge 0$, we may conclude that the "speed" will have its maximum value at an energy about $\Gamma\Gamma'/8$ less than the resonant value, m=M.

This effect is illustrated in Fig. 1, which is taken from UCRL-20030 $\pi N.^{1}$ For the P₃₃ partial wave, the CERN experimental and CERN Kirsopp solutions indicate the instability of |dT/dm| in the region of a resonance (the other solutions are "smooth" by the nature of the analysis). In addition, each of the plots, quite consistently, gives $2/\Gamma \approx 16 \text{ GeV}^{-1}$ at a resonant mass of ~1236 MeV. This corresponds to a width at resonance of ~125 MeV. The speed, however, peaks

Data Card Listings For notation, see key at front of Listings.

Fig 1. Speed plots as computed from four solutions compiled in Ref. 1. (\sqrt{S} = m = c.m. energy in MeV)

some 10 to 15 MeV lower in mass and at a value of ~18.5 GeV⁻¹. Hence, were we to estimate the mass and width of the 33-resonance from the maximum speed, we would get M \approx 1220 MeV and Γ = 108 MeV. For additional discussion on the mass and width of this resonance, see the mini-review at the beginning of the Δ (1236) listings.

Reference

 D. Herndon, et al., "πN Partial-Wave Amplitudes, a Compilation," UCRL-20030 πN, Feb. 1970.

Note on N's and Δ 's: Partial-Wave Analyses

There now exist complete partial-wave analyses performed by two groups after the beginning of 1970. The older analysis, AYED 70, is an update of the previous Saclay analyses. These are essentially energyindependent solutions selected on the basis of various energy "smoothness" criteria. A more recent analysis, ALMEHED 72, is a continuation of the "CERN group" program, which uses "smoothness" criteria supplemented by constraints from partial-wave dispersion relations. For a discussion of earlier partialwave analyses see Refs. 1 and 2.

For the purposes of comparison, we show Argand plots of the solutions in Figs. 1 and 2. The arrowheads on the lines connecting points at discrete energies are 5 MeV long, and are spaced at 20 MeV intervals. The AYED 70 analysis extends in c.m. energy from 1400 to 2450 MeV; the ALMEHED 72 analysis, from 1100 to 2200 MeV. We have indicated the energies where AYED 70 and ALMEHED 72 claim resonances, and in the case of ALMEHED 72 we have also indicated the grade, A through D, assigned to each of their resonances by this group. In addition, we also show in Figs. 3 and 4 plots of δ and η versus c.m. energy (\sqrt{s}) for the same two solutions.

The Saclay group has presented preliminary results on a new πN phase-shift analysis in an unpublished report to the 1972 Batavia conference. This analysis includes recent data, and improves some of the methods of the earlier analysis. These improvements include checking the final results for smoothness in energy of invariant amplitudes at fixed t and the unmeasured charge exchange polarization Legendre coefficients, as well as a qualitative check of the final results for consistency with an unsubtracted forward dispersion relation for the B amplitude. The main differences between the resonance parameters extracted from this new analysis (AYED 72) and those of ALMEHED 72 are summarized below. None of the states listed below were reported by AYED 70 except the P_{11} with M = 1461, Γ = 164, and x = 0.56.

	ALMEHED 72			AYED 72		
Wave	<u>M</u>	<u> </u>		M	<u> </u>	x
S ₁₁	2100	200	0.5	2195	280	0.173
P ₁₁	1470	220	0.65	1427 1530	236 65	0.524 0.120
D ₁₃				1730	130	0.1
D ₁₅	2100	150	0.2	2055	170	0.09
F17	2000	200	0.15	2048	183	0.058
G ₁₉				2130	250	0.08
D ₃₅	2200	600	0.25	1870	160	0.095

Of particular interest are the new results on the P_{11} and D_{13} partial waves. Previous partial-wave analyses have seen a single fairly elastic (x \gtrsim 0.5) $P_{11}(1470)$ resonance in the mass range 1440-1500 MeV, while many production experiments have observed a bump in the invariant mass distribution tending to be some-

Baryons N's and Δ's

what narrower and at somewhat lower mass than that obtained from partial-wave analysis. The Saclay group now claims two states. As for the D_{13} , the quark model predicts an inelastic resonance in the neighborhood of 1700 MeV, and the existence of such a state is now indicated by isobar model fits to $\pi N \rightarrow \pi \pi N$ (see the mini-review on this subject) and by AYED 72. The effect now claimed by AYED 72 to be the $D_{13}(1700)$ is visible in both the ALMEHED 72 and AYED 70 solutions (see Figs. 3 and 4) in the 1700 MeV region.

The remaining new results listed above are five high mass resonances, four of which were seen by ALMEHED 72, but none by the earlier Saclay analysis. In the case of the D_{35} it may well be that ALMEHED 72 and AYED 72 are reporting completely different effects.

Spread in Values of Resonance Parameters

Values of masses, widths, and branching ratios can be obtained only from phase-shift analyses. In production experiments, in fact, it is seldom clear which of the many states at similar masses is being observed. In addition to the two complete phase-shift analyses discussed above, we have other analyses, done by using somewhat incomplete data, by several different groups, but we are quite far from having reliable masses and widths derived therefrom.

There are essentially two problems in obtaining reliable resonance parameters. First there is often disagreement as to just what the values of the phase shifts (η 's and δ 's) are. This problem is obviously related to the quality and quantity of the data and to the procedures used to determine or choose the phase shifts. Secondly, even if smooth curves were available for the phase shifts, there would still be some ambiguity in deciding what the resonant parameters are. We might hope that some sort of energy-dependent fit to the smooth phase shifts would yield unique parameters. Unfortunately, however, a sufficiently clever combination of background and/or resonances could fit the phase shifts, satisfy elastic unitarity, and still yield the wrong parameters. (See the Comments on the Mass and Width of $\Delta(1236)$, below.)

We list the values of M, Γ and x quoted by the various authors with a comment on the method used to derive such parameters. We now discuss briefly the different methods used. AYED 70 analyze their

Baryons

N's and $\Delta's$

Data Card Listings For notation, see key at front of Listings.

Fig. 1. πN Argand plots from the solution of ALMEHED 72. The bases of the arrowheads are $\overline{20 \text{ MeV}}$ apart; the end point is at ~2200 MeV. The numbers are the resonant masses claimed by ALMEHED 72, and the letters indicate their evaluation of the resonance.
Data Card Listings

Baryons N's and Δ's

For notation, see key at front of Listings.

Fig. 2. πN Argand plots from the "minimum surface" solution of AYED 70 [Phys. Letters 31B, 598 (1970)]. To conserve space, we arbitrarily do not show the "minimum path" solution; it is not significantly different. The bases of the arrowheads are 20 MeV apart; the last point is at ~2400 MeV.

Baryons

N's and Δ 's

Fig. 3. δ and η versus c.m. energy (in MeV) from the πN partial-wave analysis solution of ALMEHED 72. \times denotes δ (right-hand scale), \diamondsuit denotes η (left-hand scale).

Baryons N's and Δ's

Fig. 4. δ and η versus c.m. energy (in MeV) from the πN partial-wave analysis "minimum surface" solution of AYED 70 [Phys. Letters <u>31B</u>, 598(1970)]. \times denotes δ (righthand scale), \Diamond denotes η (left-hand scale).

Baryons N's and ∆'s

phase-shift results with an energy-dependent background and Breit-Wigner amplitudes. (This analysis appears only in the unpublished Kiev Conference report of AYED 70, not in their Physics Letter.) BAREYRE 68 uses two methods: 1) cross-section method - the energy where the total cross section is maximum; 2) speed method - the energy where the speed of variation of the amplitude in the Argand plot is maximum. CERN, as well as ALMEHED 72, quotes only one method, usually where the absorption is maximum. The Glasgow group (DAVIES 70) uses Breit-Wigner parametrization; their solutions A and B differ in the starting values of the minimization (CERN I solution was used for solution B). Only the parameters from solution A are included in the listings. For some states no parameters have been quoted by the authors.

At the beginning of the Data Card Listings for N's and Δ 's, we present a table giving our evaluation of the N and Δ resonances based on information contained in the Listings. In the Table of Particle Properties, we do not quote values and errors for parameters, but only give ranges for masses and widths in order to emphasize that in some cases these parameters are quite poorly determined.

Availability of Partial-Wave Analyses and Data

All the solutions mentioned in this note, including AYED 70 and ALMEHED 72, are available on tape from the Particle Data Group. This tape is essentially an updated version of the one corresponding to the compilation of Ref. 2. In addition, the extensive input data used by ALMEHED 72 (courtesy of C. Lovelace) are also available on tape from the Particle Data Group.

References

- Particle Data Group, Rev. Mod. Phys. <u>43</u>, No. 2, Part II, S1 (1971).
- D. J. Herndon, A. Barbaro-Galtieri, A. H. Rosenfeld, UCRL-20030 πN (Feb. 1970).

Data Card Listings For notation, see key at front of Listings.

Note on N's and \triangle 's: Isobar Model Fits

In the figure below we show the inelastic Argand plots of Herndon 72.¹ These plots are the result of a partial-wave analysis, using the isobar model, of $\pi N \rightarrow \pi \pi N$ data in the c.m. energy range 1300-2000 MeV. The partial waves are labeled

where L is the incoming (πN) angular momentum, and L' is the outgoing angular momentum between the isobar R [ρ , ϵ (= $\pi\pi$ I=0, S wave), Δ] and the remaining hadron (π or N); as usual I and J are the isospin and total spin ($\vec{J} = \vec{L} + \vec{S} = \vec{L'} + \vec{S'}$) respectively. Also indicated on these Argand plots are the locations (in MeV) of known or suspected resonances from $\pi N \rightarrow \pi N$ partial-wave analyses.

Clear circular behavior is observed in many of these plots. Perhaps the most interesting among these are the $DP_{13}(\epsilon)$ and $DS_{13}(\Delta)$ partial waves. While all the D_{13} waves show evidence for the wellknown N(1520), these two indicate some effect in the 1700-1800 MeV region-perhaps the long sought after $D_{13}(1700)$.

In order to estimate the inelastic coupling of the resonances indicated in these plots, we measured (with a ruler!) the diameters of "interpolated" circles. Recall that

$$A = \frac{\sqrt{xx'}}{\epsilon - i}, \quad \epsilon = \frac{2(M-E)}{\Gamma_{tot}}, \quad x = \frac{\Gamma_{e1}}{\Gamma_{tot}}, \quad x' = \frac{\Gamma_{inel}}{\Gamma_{tot}};$$

thus, at resonance ($\epsilon = 0$) the circle diameter is $\sqrt{\mathbf{x}\mathbf{x}^{1}}$. The amplitudes at resonance thus estimated are given in the following table. The spread in values represents our guess as to the range in resonance circles consistent with the data.

Reference

 D. J. Herndon et al., LBL-1065 Rev. (1972), submitted to Phys. Rev.

$\begin{array}{c} Baryons \\ N's \text{ and } \Delta's \end{array}$

Fig. "Isobar" model Argand plots from Herndon 72. The bases of the arrowheads are 20 MeV apart. The solution covers the energy interval 1300-2000 MeV. See the mini-review text for partial-wave notation.

Baryons

N's and Δ 's

Data Card Listings For notation, see key at front of Listings.

Amplitude at resonance, $\sqrt{xx^{1}}$, as estimated from Argand plots of Herndon 72. ¹ A dash indicates coupling cannot exist or is essentially zero.									
N' s	x (PDG)	πN→ρN	πN→ €N	πN→π∆	Δ's	x (PDG)	πN→ρN	πΝ→π∆	
S ₁₁ (1535)	. 35	.0709	small		S ₃₁ (1650)	. 28	. 15 21	. 27 30	
s ₁₁ (1700)	.60	.2030	. 39 44	 _ /////////////////////////////////	P ₃₁ (1910)	.25	.0820	.1020	
P ₁₁ (1470)	.60		. 18 22	. 35 42	P ₃₃ (1680) ^a	~.10		. 29 4 5	
P ₁₁ (1780)	. 20		. 48 55	.4350	D ₃₃ (1670)	.15	small	.1821	
P ₁₃ (1860)	. 25	.4351			F ₃₅ (1890)	. 17	.3135	small	
D ₁₃ (1520)	. 50	. 31 35	.0510	. 28 34 ^b . 11 15 ^c	F ₃₇ (1950)	.45	. 19 23	. 25 29	
D ₁₃ (1700)	~. 10	small	. 29 35	.0913 ^b small ^c					
D ₁₅ (1670)	. 40			.4549					
F ₁₅ (1688)	.60	. 29 31	. 27 28	. 27 28					
^a Not in m	^a Not in main Baryon Table. ^b DS ₁₃ . ^c DD ₁₃ .								

Note on N's and Δ 's: Photon Couplings

In this edition we start to quote results on the couplings of baryon resonances to the γN system. They can be studied in reactions like

 $\gamma N \rightarrow N^* \rightarrow \pi N$, $K\Delta$, $K\Sigma$, $\pi\Delta$,...

A partial-wave analysis of these formation processes is the standard technique to determine the coupling strengths, $g(N^*N_Y)$. Up to now almost all results are derived from analyses of pion-photoproduction. In the following we therefore outline the formulation of pion-photoproduction and define the conventions in which results will be quoted.

The process $\gamma N \rightarrow N^* \rightarrow \pi N$ for a specific intermediate resonance can be symbolically described as

$$<\pi N |H_{\pi}| N^{*} > < N^{*} |H_{\gamma}| \gamma N > .$$
 (1)

The first term is measured in strong interactions, e.g. by partial-wave analysis of mN elastic scattering. A common feature of almost all analyses of pion-photoproduction is a strong reliance on the knowledge of resonance parameters from πN phase-shift

analyses. Very few attempts are made to determine new πN resonance parameters, partly because of lack of precise enough data, partly because photoproduction is complicated by the fact that the photon has spin states ±1 and can react as an isoscalar or isovector. Consequently in general, several couplings for $N^* \rightarrow \gamma N$ (2 for \triangle , 4 for N) have to be determined.

Isospin Decomposition

We ignore possible isotensor components and treat the electromagnetic current as having isoscalar and isovector components only, while the final πN state has isospin 1/2 and 3/2 components. Therefore three independent isospin amplitudes describe the 4 reactions

$$\gamma p \rightarrow \pi^+ n, \pi^0 p$$

 $\gamma n \rightarrow \pi^- p, \pi^0 n.$

They can be chosen as the isoscalar transition to final state I=1/2, isovector transition to final state I=1/2 and isovector transition to final state I=3/2.

We define amplitudes A^{Δ} , A^{p} , and A^{n} such that they are naturally related to the excitation of the physical states \triangle , N^{*+} and N^{*0} . Ignoring spin labels, a transition amplitude $A(\gamma N \rightarrow \pi N)$ is described by

$$A(\gamma p \rightarrow \pi N) = C_{\pi N}^{3/2} A^{\Delta} + C_{\pi N}^{1/2} A^{P},$$

$$A(\gamma n \rightarrow \pi N) = C_{\pi N}^{3/2} A^{\Delta} + C_{\pi N}^{1/2} A^{n},$$
(2)

where $C_{\pi N}^{I}$ is the C-G coefficient for the coupling of

isospin I to the specific πN state under consideration. An alternative set of amplitudes A^{V3}, A^{V1}, and A^S is used by Walker¹ with the relations

$$A^{V3} = A^{\Delta},$$

$$A^{V1} = \frac{1}{2} (A^{n} - A^{p}),$$

$$A^{S} = \frac{1}{2} (A^{n} + A^{p}),$$

(3)

where $A^{V\,3}$ refers to isovector transition to final state I=3/2, and $A^{V\,1}$ and A^S refer to isovector and isoscalar transitions to final state I=1/2 respective-1v.

Partial Waves

The S-matrix element for pion-photoproduction $(\gamma N_1 \rightarrow \pi N_2)$ is written in the form

$$S_{fi} = i(2\pi)^5 \delta^4 (P_f - P_i) W(k \omega E_1 E_2)^{-1/2} A$$
 (4)

where P_{f} and P_{i} are the total 4-momenta in the final and initial state, k, ω , E₁, and E₂ denote the c.m. energies of photon, pion, initial and final nucleon, and W is the total c.m. energy.

For a partial-wave analysis it is convenient to decompose A into helicity amplitudes². Choosing the x-z plane as the scattering plane, the z-axis along the photon direction, and θ as the c.m. scattering angle between photon and pion, we define helicity amplitudes $A_{\mu\lambda}(W,\theta)$ (ignoring isospin labels). Here μ and λ denote the total final and initial helicities, $\mu = \lambda_{\pi} - \lambda_2$, $\lambda = \lambda_{\gamma} - \lambda_1$. Since $\lambda_{\gamma} = \pm 1$ and $\lambda_{1,2} = \pm 1/2$, we have a set of 8 helicity amplitudes. Because of parity conservation² only 4 are independent, which we choose by fixing $\lambda_v = \pm 1$. We thus consider $A_{\pm 1/2, 1/2}$ and $A_{\pm 1/2, 3/2}$. They are normalized such that the differential cross section is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \frac{\mathrm{q}}{\mathrm{k}} \sum_{\lambda_{\flat},\mu} \left| \mathrm{A}_{\mu\lambda} \right|^{2}$$

Baryons N's and Δ 's

Each of these is expanded in the usual way²

$$A_{\mu\lambda}(W,\theta) = \sum_{j} (2j+1) A_{\mu\lambda}^{j}(W) d_{\lambda\mu}^{j}(\theta)$$
 (5)

into partial wave amplitudes $A^{j}_{\mu\lambda}(W)$ of total angular momentum j (but mixed parity) and the Wigner rotation functions.

We define amplitudes of definite parity by

$$C_{\lambda}^{\ell+}(W) = \frac{1}{\sqrt{2}} \left[A_{1/2\lambda}^{j}(W) + A_{-1/2\lambda}^{j}(W) \right]$$

$$C_{\lambda}^{(\ell+1)-}(W) = \frac{1}{\sqrt{2}} \left[A_{1/2\lambda}^{j}(W) - A_{-1/2\lambda}^{j}(W) \right]$$
(6)

where $\lambda = 1/2$, 3/2. The superscripts $l \pm$ refer in the usual notation to states with pion orbital angular momentum l and total angular momentum $j = l \pm 1/2$.

Unitarity of the S-matrix imposes a phase condition on the C amplitudes known as Watson's theorem. It states that in the elastic region the phase of each $C_{\lambda}^{\ell^{\pm}}$ is equal to the scattering phase of the corresponding πN -partial wave.

Since we are interested in intermediate resonances, we approximate the energy dependence of $C_{\lambda}^{\ell \pm}(W)$ by a Breit-Wigner form

$$C_{\lambda}^{\ell\pm}(W) = s \left\{ \frac{\Gamma^{\lambda}(N^{*} \rightarrow \gamma N) \Gamma(N^{*} \rightarrow \pi N)}{k \cdot q} \right\}^{1/2} \frac{W}{W^{2} - m_{R}^{2} - iW\Gamma}$$
(7)

where s is the sign of the amplitude, m_R the resonance energy and k, q the c.m. momenta in the initial, final states. At resonance ($W = m_p$)

$$C_{\lambda}^{\ell \pm}(m_{R}) = s \left\{ \frac{\Gamma_{\gamma}^{\lambda} \Gamma_{\pi}}{k \cdot q \cdot \Gamma^{2}} \right\}^{1/2}$$
(8)

A dominant feature in pion-photoproduction is the Born approximation which contains the nucleon pole in the s- and u-channel and the pion pole in the t-channel. It reproduces, e.g., the experimentally observed forward peak in charged pionphotoproduction. In partial-wave analyses the sign

factor s is well determined relative to the Born terms.

Introducing helicity amplitudes $A_{\lambda}^{j^{P}}$ for the decay $N^{*}(j^{P}) \rightarrow (\gamma N)_{\lambda}$ (where j^{P} labels spin and parity of the N^{*}), we can calculate the radiative width $\Gamma_{\gamma}^{\lambda}$ ³ at resonance energy $W = m_{p}$

$$\Gamma_{\gamma}^{\lambda} = \frac{k^2}{\pi} \frac{m_{\rm N}}{m_{\rm R}} \frac{1}{2j+1} \left| A_{\lambda}^{j^{\rm P}}(m_{\rm R}) \right|^2 \tag{9}$$

Baryons

N's and Δ 's

where \boldsymbol{m}_N is the nucleon mass. Introducing this expression into eq. (8) we find

$$C_{\lambda}^{\ell\pm}(m_{\rm R}) = \left\{ \frac{1}{(2j+1)\pi} \frac{k}{q} \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \right\}^{1/2} A_{\lambda}^{jP}(m_{\rm R}).$$
(10)

We quote results of partial-wave analyses in terms

of the amplitudes A_{λ}^{j} in units of GeV^{-1/2}. The total radiative width Γ_{γ} and the contribu-tion σ_{T}^{jP} of the partial waves $C_{\lambda}^{\ell\pm}$ to the total cross section are given by

$$\Gamma_{\gamma} = \sum_{\lambda=-3/2}^{3/2} \Gamma_{\gamma}^{\lambda} = \frac{k^2}{\pi} \frac{m_{N}}{m_{R}} \frac{2}{2j+1} \left\{ \left| A_{1/2}^{jP} \right|^{2} + \left| A_{3/2}^{jP} \right|^{2} \right\}$$
(11)

Data Card Listings For notation, see key at front of Listings.

$$r_{\rm T}^{\rm jP} = (C_{\pi\rm N}^{\rm I})^2 2 \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \left\{ \left| A_{1/2}^{\rm jP} \right|^2 + \left| A_{3/2}^{\rm jP} \right|^2 \right\}$$
(12)

Information in this Edition

The Baryon Table contains the branching fractions $\Gamma_{\rm v}/\Gamma$ for 13 resonances.

Many partial-wave analyses have been performed over the last years using different methods and different data sets. R. Crawford⁴ has averaged the results and tried to estimate the certainty of the parameters. His table is included in this minireview.

The Data Card Listings contain the results of the analyses by Moorhouse and Oberlack $^{\rm 5}$ and Metcalf and Walker⁶ which use the most recent data set

Photon co	ouplings o	f baryon	resonan	ces as	compiled	by R. Cr	awford. ⁴		
State	W (GeV)	Г (GeV)	x	λ	$\begin{array}{c} A^p_{\lambda} \\ (GeV)^{-\frac{1}{2}} \end{array}$	$\frac{A_{\lambda}^{n}}{(GeV)^{-\frac{1}{2}}}$	$\begin{array}{c} A_{\lambda}^{V1} \\ (GeV)^{-\frac{1}{2}} \end{array}$	$\stackrel{A^{S}_{\lambda}}{(GeV)^{-\frac{1}{2}}}$	References
P'11	1.470	0.200	0.55	1/2	04 ^c	~0	+.02	02	1, 5, 9, 10, 11, 12, 13
D' ₁₃	1.520	0.120	0.50	1/2 3/2	03 ^b +.17 ^a	08 ^b 13 ^a	03 15	06 +.02	1, 5, 9, 10, 11, 12, 13
s' ₁₁	1.530	0.080	0.35	1/2	+ . 07 ^b	07 ^b	07	0	1, 5, 9, 10, 11, 12, 13
D' ₁₅	1.670	0.145	0.45	1/2 3/2	+.01 ^d +.02 ^c	+.01 ^d 03 ^c	0 03	+.01 01	1, 5, 10, 12
F ' 15	1.690	0.125	0.60	1/2 3/2	01 ^c +.12 ^b	+.02 ^c ~0	+.02 06	+.01 +.06	1, 5, 10, 12
s''_	1.700	0.200	0.65	1/2	+. 07 ^c	07 ^c	07	0	5
P''_11	1.750	0.300	0.25	1/2	+. 03 ^d	+.03 ^c	0	+.03	5
					$\begin{bmatrix} A_{\lambda}^{\Delta} = A_{\lambda}^{V3} \\ (GeV)^{-\frac{1}{2}} \end{bmatrix}$		`		
P' 33	1 . 2 36	0.120	1.00	1/2 3/2	14 ^a 24 ^a		\searrow		1, 5, 7, 8, 10
s ₃₁	1.650	0.160	0.25	1/2	+.09 ^c			\backslash	5
D ₃₃	1.650	0.220	0.15	1/2 3/2	+.07 ^c +.02 ^d				5

^a The uncertainty of the coupling is less than 20%.
 ^b The uncertainty of the coupling is less than 50%.
 ^c The sign of the coupling is probably established, but its size may be uncertain by up to 100%.
 ^d The sign of the coupling is not clearly established.

and cover a large energy region (up to the 4th resonance region).

Moorhouse and Oberlack quote their results in terms of the $A_{\lambda}^{j^{\mathbf{P}}}$ introduced above. Metcalf and Walker follow the conventions of Walker.¹ Their amplitudes $A_{l\pm}$, $B_{l\pm}$ are related to the A_{λ}^{jP} by:

$$A_{\ell\pm}(m_{\rm R}) = \pm \begin{cases} \frac{1}{(2j+1)\pi} \frac{k}{q} \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \end{cases}^{1/2} C_{\pi{\rm N}}^{\rm I} A_{1/2}^{j{\rm P}}(m_{\rm R}) \quad (13)$$
$$B_{\ell\pm}(m_{\rm R}) = \pm \begin{cases} \frac{1}{(2j+1)\pi} \frac{k}{q} \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \end{cases}^{1/2} \\ \times \left\{ \frac{16}{(2j-1)(2j+3)} \right\}^{1/2} C_{\pi{\rm N}}^{\rm I} A_{3/2}^{j{\rm P}}(m_{\rm R}) \quad (14) \end{cases}$$

A more comprehensive collection of results and of the relationships between conventions used in different analyses will be included in the next edition. (H. Oberlack, LBL)

References

- 1. R. L. Walker, Phys. Rev. 182, 1729 (1969).
- 2. M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
- 3. L. A. Copley, G. Karl and E. Obryk, Nucl. Phys. B13, 303 (1969).
- 4. R. Crawford (Glasgow), private communication.
- 5. R. G. Moorhouse and H. Oberlack, Phys. Lett. 43B, 44 (1973).

R. G. Moorhouse, H. Oberlack, and A. H. Rosenfeld, LBL-1590 (1973).

- 6. W. J. Metcalf and R. L. Walker, private communication of preliminary results of a phenomenological analysis of pion photoproduction data, CALTECH, Jan. 1973. Model, conventions and units as in ref. 1.
- 7. F. A. Berends and D. L. Weaver, Nucl. Phys. B30, 575 (1971).
- 8. W. Pfeil and D. Schwela, Nucl. Phys. B45, 379 (1972).
- 9. Y. C. Chan, N. Dombey, and R. G. Moorhouse, Phys. Rev. 163, 1632 (1967).
- 10. R. L. Walker, Proc. 4th Int. Symp. on Electron and Photon Interactions at High Energies, Liverpool, p. 23 (1969).
- 11. R. G. Moorhouse and W. A. Rankin, Nucl. Phys. B23, 181 (1970).

Baryons N's and Δ 's, p, n, N(1470)

12. W. A. Rankin, DNPL/R15, 1.

13. A. Proia and F. Sebastiani, Let. al Nuovo Cimento 3, 483 (1970).

CODE EVENTS QUANTITY ERROR+ ERROR- REFERENCE YR TECN SIGN COMMENTS DATE BACKGROUND

STATUS OF N* RESONANCES THOSE WITH AN OVERALL STATUS OF *** OR *** ARE INCLUDED IN THE MAIN BARYON TABLE. THE OTHERS AWAIT COMFIRMATION.

Baryons N(1470)

61 N* M (1370.0) M (1380.0) M 1 (1470.0) M 3 (1465.0) M 6 (1461.0) M 6 (1462.0) M 7 (1462.0) M 7 (1470.) 61 N* W 1 (255.0) W 3 (211.0) W 6 (164.0) W 4 (391.) SEE THE NOTES ACCOM	1/2(1470) MASS (MEV) BRANDSEN 65 RVUE ROPER 65 RVUE SS SECTION IS GREATEST - EYEBB ANEYRE 68 RVUE AYED 70 IPWA DAVIES 70 RVUE ALMEMED 72 IPWA DAVIES 68 RVUE BAREYRE 68 RVUE AYED 70 IPWA AVENT 70 IPWA DAVIES 70 RVUE ALMEMED 72 IPWA AVIES 70 RVUE AVEED 70 IPWA AVIES 70 RVUE AVEED 70 IPWA AVIES 70 RVUE AVEED 70 IPWA AVIES 70 RVUE AVEED 70 RVUE AVEED 70 RVUE	PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHASE-SHIFT ANAL P-S ANAL SOL A P-S ANAL SOL A	9/66 9/66 11/67 6/68 1/71 8/69 2/72 11/67 6/68 1/71 8/69 2/72	AYED70KIEVCONFRAYED,PBAREYRE,GVILLET(SACL)1JPDAVIES70NPB21359ADAVIES(GLAS)DIEM70KIEVCONF.+SMADJA, CHAVANON, DELER, DOLBEAU+(SACL)SAXON70PR D21790SAXON, MULVEY, CHINOKSKY(DXF,LRL)MAKAROV71SJMP13510,GASILOVA, NELYUDIN,**(IOFFE INST)1JPMICKENS71NC707FHOVELACE(LUND,RUTG)1JPOBERLACK72PL43844H-OBERLACK.R.G.MOORHOUSE(LUND,RUTG)1JPOBERLACK73NC18059+1AZZASUSINNO,+(ROMA,FRAS,NAPL,PAVIA)IJPALSO71LNC2183CARBONARA,FICKE++(NAPL,FRAS,PAVIA,ROMA11DPALSO71DEPUB.R.L.WALKER,H.M.J.METCALF(CIT)PAPERSNOTREFERRED TO IN DATACARCAN,JULPTLSACLAY,CAN)JJDALTZ65PL1834+BRICMAN,SITIRLING,VILLET, +(SACLAY,ACAL)JJDANSKOK67UCL-17683THESTOS NOT(EL)(DONNACHLE, RRIRSOPP(GLAS+EDIN)JOHNSON67UCL-17683THESTOSN(EL)(SACLAY)BEARPOR(SACLAY)BERARDO70PR24413ADONNACHLE, RRIRSOPP(GLAS+EDIN)ODINACH67PL24413+HADDOCK,NEFKENS,PARSONS+(UCLAHLEL)BERARDO70PR2441
61 N* P1 N*1/2(1470) INTO P1 P2 N*1/2(1470) INTO N P3 N*1/2(1470) INTO N P4 N*1/2(1470) INTO N P5 N*1/2(1470) INTO A P6 N*1/2(1470) INTO A P8 N*1/2(1470) INTO GA	N PARTIAL DECAY MODES N PSILON 9/211236) PI PI PI MMA N HP, HELICITY=1/2 M N, HELICITY=1/2 1/2(1470) BRANCHING RATIOS	DECAY MASSES 139+ 938 938+ 600 1236+ 139 938+ 139+ 139 0+ 938 938+ 770 0+ 938 0+ 938 0+ 939		THE FOLLOWING ARE THEORETICAL PAPERS CONCERNING THE N $^{1/2(1470)}$ RESNICK 66 PR 150 1292 L RESNICK (NIELS BOHR) SCHWARZ 66 PR 152 1325 J H SCHWARZ (UCLA, UCLA, ULLA, UCLA, UCLA, UCLA, UCLA, UCLA, UCLA,
R1 N*1/2(1470) INTO (P R1 1 (0.68) R1 3 (0.653) R1 6 (0.554) R1 4 (0.49) R1 A (0.67) R1 A (0.67) R1 A (0.58) R1 A (0.50) R1 A (0.53) R1 A (0.53) R1 B (0.50) R1 B (0.53) SEE THE NOTES	I NJ/TOTAL BAREYRE 68 RVUE DONNACH1 68 RVUE AYED 70 IPWA DAVIES 70 RVUE 80 SAXON 70 HBC SAXON 70 HBC THE 2 BEST SOLUTIONS. ANALYSIS ONLY P1, P2 AND P3 DECAYS PR ALMEHED 72 IPWA PANYING 1THE MASSES QUOTED.	(P1) P-S ANAL SOL A AT 1400 MEV IS DONE ON THREE ESENT.	11/67 6/68 1/71 8/69 6/70 6/70 2/72	RESONANT STATE. DIFFRACTION SCATTERING SEEMS TO BE THE DOMINANT FRATURE IN THIS MASS REGION-SEE GELLERI 66, WALKER 68 AND CLEGG 68 FOR DISCUSSION OF THIS POINT. WE LIST VALUES OF MASSES AND WIDTHS FEADERIMENTS FOR THE READER'S CONVENIENCE- THE LIST MAY NOT BE COMPLETE. THE CATE AND SPAR LEYPERIMENTS SEE A JUMPI IN THE MISSING MASS PLOT. THE HAC EXPERIMENTS SEE SHAMACEMENTS MAILY IN THE P PI FI MASS PLOT. PRODUCTION OF THIS STATE IN GAMMA-P OR GAMMA-D IS VERY SMALL, SEE ALBERI 68.
R2 N*1/2(1470) INTO (N R2 DOMINANT INELAS: R4 ASSUMINA R1=0 R4 AND & GORRESPOND TO R3 N*1/2(1470) INTO (N: R3 A (0.03) (0.2) R3 R (0.20) R3 R (0.20) R4 N*1/2(1470) INTO (N: R4 N*1/2(1470) INTO (N: R5 N*1/2(1470) INTO (N: R5 N*1/2(1470) INTO (N: R5 N*1/2(1470) INTO (N: R6 N*1/2(1470) INTO (G: R6 E TOTAL WITH GENE	EPSILON)/TOTAL TIC DECAY THURNAUER 65 RVUE TIC DECAY NAMYSLONS 66 RVUE TIC DECAY NORGAN 68 RVUE 11C DECAY 11C DEC	(P2) ISOBAR MODEL 3 BODY ANALYSIS IN R1. (P3) 3 BODY ANALYSIS IN R1. 0 PI- P TO PI PI N 435 MEV. (P5)/(P1) 0 GAM N TO PI-P (P6) 3 BODY ANALYSIS (P5) THEORETICAL EST.	11/67 11/67 6/68 1/71 6/70 6/70 1/71 6/70 6/70 3/72 2/73* 2/73* 1/71 10/71	91 NP1/2(1470) MASS (MEV) (PROD.EXP.) M (1400.) APPROX COCCONI 64 CNTR + PP 3.6-12 GEV/C M (1425.) APPROX ADELMAN 65 HBC + KP 1.45 GEV/C 7/4 M (1426.) APPROX ADELMAN 65 HBC + KP 1.45 GEV/C 7/4 M (1430.) APPROX ANKENBRAN 65 CNTR + PP 7.1 GEV/C 7/4 M (1400.) APPROX GELLETIN 65 SPRK + PP, 6-30 GEV/C 7/4 M (1400.) 15.1 SLAIR 66 CNTR + PP 2.4-7.9 GEV/C 7/4 M (1400.) 13.1 SLAIR 66 GNTR + PP 4.6-30 GEV/C 7/4 M (1400.) APPROX GELL 64 GNT + PP 4.5-0 GEV/C 7/4 M (1400.) APPROX LAIR 66 GNTR + PP 4.5-0 GEV/C 7/4 M (1400.) APPROX LAIR 60 GNTR + PP 1.5-7 GEV/C 7/4 M (1400.) APPROX LAIR 60 GNTR + PP 1.5-7 GEV/C 7/4 M (1400.) APPROX LAMSA 68 BC PITO PIP, 8.6 GEV/C 7/4
61 N*: FOR DEFINITION 0 FG REVIEW PRECEDING THE A1 N*1/2(1470) INTO GA A1055 - 00 A2 - (-073) A2 N*1/2(1470) INTO GA A2 +002 - 00 (+058) ****** ******************************	L/2(1470) PHOTON DECAY AMPLIGE SAMMA-NUCLEON DECAY AMPLITUDES BARYON LISTINGS. 4 P, HELICITYEI/2 (GEV**-1/2) 00ERLACK 72 DPWA WALKER 73 DPWA MALKER 73 DPWA ************************************	V**-1/2) , SEE MINI- PI N PHOTO-PROD PI N PHOTO-PROD PI N PHOTO-PROD PI N PHOTO-PROD ************************************	2/73* 2/73* 2/73* 2/73*	91 N#1/2(1470) WIDTH (MEV) (PROD. EXP.) W (100.) BELL 68 HBC PI+-P AND PP 676 W S 175 (198.) (40.) SHAPIRA 68 DBC 100 W S 1155.1 GA TAN 68 DBC 100 W 120 (10.) 15.1 ANDERSON PH-P P2 2GEV/C 100/4 W (100.) GA ANDERSON PH-P P1 P-P

Baryons N(1470), N(1520)

91 N*1/2(1470) BRANCHING RATIOS (PROD. EXP.)	R2 N*1/2(1520) INTO (N*3/2(1236) P1)/TOTAL (P4) R2 0.20 0.05 K1RZ 66 HBC 0 ASSUMING R1=0.72 9/66 R2 0.20 0.05 K1RZ 66 HBC 0 ASSUMING R1=0.72 9/66
RI N#1/2(1470) INTU (PI N)/TOTAL (PI) RI (+66) TAN 68 HBC PP TO PIP, 6+1 10/	K2 DUMINANT INCL DECAY OLSSUN 66 KVDE PIP TO PIP IN 9786 59 R2 D (0.40) OIEM 70 IPWA 3 BODY ANALYSIS 1/71 R2 D ASSUMING R1= 0.5 1000000000000000000000000000000000000
R2 N≉1/2(1470) INTO (N≉3/2(1236) P1)/TOTAL (P3) R2 PROBABLY SEEN JESERSEN 68 HBC PP 22 8EV/C 11/ R2 PROBABLY SEEN LAMSA 68 HBC PI-P 8 BEV/C 11/	58 R3 N*1/2(1520) INTO (N*3/2(1236) P1)/(N P1 P1) (P2)/(P3) 88 R3 LARGE THURNAUER 65 RVUE - 11/67 R3 LARGE NAMYSLOWS 60 RVUE - 11/67
R3 N*1/2(1470) INTO (N PIPI(J,I=0))/TOTAL (P2) R3 MAIN DECAY MODE MORSE 71 HBC + PI-P 7,25 GEV/C 3/	R3 LARGE ROBERTS 67 RVUE - 11/67 72 R3 LARGE ROSENFELD 67 RVUE - 11/67 83 LARGE MORGAN 68 RVUE TSOBAR MODEL 6/68
****** ******** ***********************	R4 N*1/2(1520) INTO (N EPSILON)/TOTAL (P7)
REFERENCES FOR N*1/2(1470) (PROD. EXP.) COCCONI 64 PL 8 134 +LILLETHUN,SCANLON,STAHLBRANDT, + (CERN)	R4 PRUSABLY PRESENT MURGAN 68 KVDE ISUBAR MUDEL 6768 R4 D (0.02) DIEM 70 IPWA 3 BODY ANALYSIS 1/71 R4 D ASSUMING R1= 0.5 3
ADELMAN 65 PRL 14 1043 S L ADELMAN (CAMBRIDGE(CERN)) AMKENBAR 65 NC 35 1052 ANKENBARANT.(LYDE,CORK,KEEFE,KERTH+ (LRL) BELLETTI 65 PL 18 167 BELLETTINI.COCCONI,DIDDENS + (CERN) ANDERSON 66 PRL 16 855 +BLESER,COLLINS,FUJII+ (BNL,CARN) BALIR 66 PRL 16 789 +TAYLOR,CHAPMAN,+ (HARWELL,QUEENMARY,RHEL)	R5 N*1/2(1520) INTO (N ETA)/TOTAL (P6) 11/67 R5 D (0.006) APPROX DAVIES 67 RVUE 11/67 R5 DAVIES 67 RVUE SOUTES 567 REPORTING ON INPUT DATA. ALL ARE SMALL R5 B 10.014) BOTKE 69 MPMA T POLEF. RESON. 10/67 R5 B (0.003) (D.001) DEAMS 69 MPMA T POLEF. RESON. 5/70
FOLEY 67 PRL 19 397 +JONES,LINDENBAUM,LOVE,OZAKI+ (BNL) ALMEIDA 68 PR 174 1638 +RUSHBROOKE,SCHARENGUIVEL+ (CAVE,DESY)	R5 B (0.00210R 0.004 CARREAS TO MPWA T POLE+ RESON. 5/70 R5 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING
DESERSE 60 PRL 20 10* ********************************	R6 N*1/2(1520) INTO (N RHO)/TOTAL (P8) R6 D (0.000 ASSUMING R1= 0.5
ANDERSUN 70 PRL 25 599 +BLESER, BLIEDEN, CULLINS++ (BNL, CARN) BALLAM 71 PR D4 1946 +CHADWICK, GUIRAGOSSIAN, JOHNSON, ++ (SLAC) I	62 N#1/2(1520) PHOTON DECAY AMPL(GEV#*-1/2)
BEKETOV 71 SJNP 13 605 ,ZOMBKOVSKII,KONOVALOV,KRUCHININ,++ (ITEP)IJ BOESEBEC 71 NP B33 445 BOESEBECK,GRAESSLER,KRAUS,+++ (ABBCHLV) I MA 71 PDI 26 333 +COLTON	FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- Review preceding the baryon listings.
MORSE 71 PR D4 133 +OH-HALKER, CARROLL, LYNCH + (NISC-TNIDIJ RUSHBROO 71 PR D4 3273 RUSHBROOKE, WILLIAMS-BAREFORD++ (CAVE, LOIC) J EDELSTEI 72 PR D5 1073 EDELSTEIN (CAPILADI)	A1 N*1/2(1520) INTO GAM P, HELICITY=1/2 (GEV**-1/2) A1 -05 Observatory PIN PHOTO-PROD 2/73* A1 (007) WALKER 73 DPWA PIN PHOTO-PROD 2/73*
GAGE 72 NP 846 21 W GAGE_E COLTON.H CHINONSKI MANTIOLANI (IB.) KARSHON 72 NP 837 371 +*PKUTIELIYAFFE;HAPTRA.RONAT,+ (REHO) 1 RONAT 72 NP 838 20 40. +EISENBERG,LYONS,SHAPIRA.TOAFF+ (REHO) YEKUTIELIYAFFE,SHAPIRA.RONAT,+ (REHO)	A2 N*1/2(1520) INTO GAM P, HELICITY=3/2 (GEV**-1/2) A2 +194 -031 OBERLACK 72 DPWA PI N PHOTO-PROD 2/73* A2 (+.176) WALKER 73 DPWA PI N PHOTO-PROD 2/73*
PAPERS NOT REFERRED TO IN DATA CARDS	A3 N*1/2(1520) INTO GAM N, HELICITY=1/2 (GEV*+1/2) A3085014 OBERLACK 72 DPWA PI N PHOTO-PROD 2/73* A3 (043) WALKER 73 DPWA PI N PHOTO-PROD 2/73*
GELLERT 66 PRL 17 884 +SMITH, MOJCICKI, COLTON, SCHLEIN + (LRL, UCLA) ALBERI 68 PR 176 1631 +APPEL, BUDNIT, CHEN, DUNNING, GOITEIN+ (HARY) CLEGG 68 PREPRINT A B CLEGG 172, CHEN, DUNNING, GOITEIN+ (HARY) AMIKER 68 PRL 20133 +THOREGN, BARGETSIN, DH., LEF, HARTING, (LINC)	A4 N*1/2(1520) INTO GAM N, HELICITY=3/2 (GEV**-1/2) A4124 .013 OBERLACK 72 DPWA PI N PHOTO-PROD 2/73* A4 (116) HALKER 73 DPWA PI N PHOTO-PROD 2/73*
	REFERENCES FOR N*1/2(1520)
$N(1520)$ 62 N*1/2(1520, JP=3/2-) I=1/2 D_{13}	SEE A PREVIOUS EDITION (RMP 37, 633, 1965) FOR EARLIER REFERENCES.
FUK UISCOSSIUN CUNCERNING RESUNANT PARAMETERS, SEE NUTE PRECEDING N#1/2(1470).	BRANDSEN 65 PR 139 B1566 +000NNELL, M00RNDUSE (DURHAM, RATL)]JP ROPER 65 PR 138 B190 LD ROPER,RM WRIGHT,BT FELD (LRL-LVMR,MITIJP THURNAUE 65 PRL 14 985 P G THURNAUER (ROCH)
62 N+1/2(1520) MASS (MEV) M (1530.0) BRANDSEN 65 RVUE PHASE-SHIFT ANAL 9/	KIRZ 66 PRIVATE COMM J KIRZ (LRL) NUMBER EXTRACTED FROM DATA DISCUSSED IN KIRZ 63. Z 63. NAMYSLOW 66 PR 157 1328 NAMYSLOWSKI,RAZMI,ROBERTS (STAN,EDIN,LOIC) O LOSSON 66 PR 157 1329 M G OLSSON,G B YODH (WISC,UMD)
M (1536.0) ROPER 65 RVUE PHASE-SHIFT ANAL 9/ M 1 (1510.0) BARYRE 68 RVUE PHASE-SHIFT ANAL 1/ M 1 WHERE CROSS SECTION IS GREATEST - EYEBALL FIT DONNACH1 66 RVUE PHASE-SHIFT ANAL 6/	66 77 DAVIES 67 NC 52A 1112 A T DAVIES, R G MOORHOUSE (GLASGOW, RHEL) ROBERTS 67 PREPRINT R G ROBERTS 8 ROSENTEL 67 IRVINE CONF A H ROSENFELO, P SODING (LRL)
M 6 (1523-0) 17 M 6 FKOM ENER, DEP. FIT OF ARGAND DIAGRAM M 4 (1512.0) DAVIES 70 RVUE P-S ANAL SOL A 8/ M 7 (1520.) ALMEHED 72 IPWA 2/	1 BAREYRE 68 PR 165 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP 100NMACH1 68 PL 268 161 A DONNACHE, R G KIRSOPP, C LOVELACE (CENNIJF 2 ALSO 68 VIENNA 139 DONNACHE RAPPORTEUR, S TALK (GLAS) ALSO 68 VIENNA 139 DONNACH 68 PR 166 1731 D MORGAN (RHEL)
62 N*1/2(1520) WIDTH (MEV)	BOTKE 69 PR 180 1417 J C BOTKE (UCSB) DEANS 69 PR 185 1797 S DEANS, J WODTEN (UNIV S ELORIDA)
W 1 [125.0] BAREYRE 68 RVUE 11/ W 3 (149.0) DONNACH1 68 RVUE 6/ W 6 (131.0) AYED 70 IPWA 1// W 4 (166.0) DAVIES 70 RVUE P-S ANAL SOL A W 7 (120.1) AIMEHED 72 IPWA 27	AT AVED TO KIEV CONF R AYED, P BAREYRE, G VILLET (SACL)IJP 10 CARRERAS TO NP 168 35 B CARRERAS, A DONNACHIE (DARE,MCHS) 10 AVIES TO NP 821 359 A DAVIES (CAS) 10 DIM TO KIEV CONF. + SMADJA, CHAVANON, DELER, DOLBEAU+ (SACL)
SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	ALMEHED 72 NP 840 157 +LOVELACE (LUND, RUTG)IJP OBERLACK 72 PL 438 44 H.OBERLACK R.G.MODRHOUSE (LLBL) WALKER 73 <to be="" pub-<="" td=""> RL.WALKER, W.J.METGALF (CIT)</to>
62 N#1/2(1520) PARTIAL DECAY MODES	PAPERS NOT REFERRED TO IN DATA CARDS.
P1 N±1/2(1520) INTO P1 N±1/2(1520) INTO P3 P1 P3 P3 P3 P1/2(1520) INTO P3 P1 P3 P3 P3 P1/2(1520) INTO P1 P3 P3 P1 P3 P3 P1/2(1520) P1 P3 P4 P3 P4 P3 P3 P4 P4 P3	KIRZ 63 PR 130 2481 J KIRZ, J SCHWARZZ, R D TRIPP (LRL) BAREYRE 65 PL 18 342 + BRICHAN, STIRLING, VILLET (SACLAY)IJP CROUCH 65 DESY CONF 11 21 + (BROWN, CEA, HAR VARO, MIT, PADOVA, WEIZMANN) DERADO 65 A THENS CONF 244 + KENNEY, LAMSA, + (NOTRE DAME, KENTUCKY) MERLO 66 P ROY SOC 289 49 J P MEALO, G VALLADAS (SACLAY) THE ABOVE PAPERS DISCUSS INELASTIC CHANNELS NEAR THE REONANCE. JUHNSON
P8 N*1/2(1520) INTO N RHO 938+ 770 P9 N*1/2(1520) INTO GAM P, HELICITY=1/2 0+ 938 P10 N*1/2(1520) INTO GAM P, HELICITY=3/2 0+ 938 P11 N*1/2(1520) INTO GAM N, HELICITY=3/2 0+ 939	DEANS 69 PRL 177 Z623 S R DEANS (UNIV S FLORIDA) DONNACHI 69 NP 108 433 A DONNACHIF, R KIRSOPP (GLAS+EDIN) AYED 70 PL 318 598 +BAREYRE+VILLET (SACLAY)
P12 N+1/2(1520) INTO GAM N, HELICITY=3/2 0+ 939	****** ********** ********** ********* ****
62 N#1/2(1520) BRANCHING RATIOS	
R1 N*1/2(1520) INTO (PI N)/TOTAL (P1) 11/ R1 1 (0.54) BAREYRE 68 RVUE 11/ R1 3 (0.509) DONNACHI 68 RVUE 6/ R1 6 (0.593) AYED 70 IPWA 1/ R1 4 (0.453) DAVIES 70 IPWA 1/ R1 7 (0.58) DAVIES 70 IPWA 2/ R1 7 (0.58) ALMEHED 72 IPWA 2/ R1 THE NOTES ACCOMPANYING THE MASSES QUOTED. 2/ 2/ 2/	7 8 1 9 2
RI RI ALMOST THE ENTIRE INELASTICITY IS IN N PI PI (ONLY N ETA COULD COMPETE, RI AND IT DOESNI). THE N PI PI SEEMS TO BE MAINLY N#3/2(1236) PI. IN BOTH	
	•

Baryons N(1535)

[N((1535) 63 N*1/2(1535, JP=1/2-) I=1/2 S'11 FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N*1/2(1470).		BAREYRE 68 PR 165 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP DONNACHIE A.SO 68 VIENNA ADONNACHIE, R G KIRSOPP, C LOVELACE (CENT)IJP ALSO 68 VIENNA 139 OONNACHIE RAPPOATEUR.S TALK (GLAS) ALSO 68 VIENNA 139 CONNACHE (GLAS) (GLAS) DEANS 69 PR 185 R G KIRSOPP (UNI Y) FLORIDA DELOURT 69 PR 157 S DEANS VHOTEN (UNI Y) FLORIDA DELCOURT 69 PL 298 75 DELCOURT, LEFRANCOIS, PEREZ-Y-JORBA, + (ORSA)
		63 N*1/2(1535) MASS (MEV)		AYED 70 KIEV CONF R AYED,P BAREYRE, G VILLET (SACL)IJP CARRERAS,70 NP 168 35 B CARRERAS, A DONNACHIE (DARE,MCHS) DAVIES 70 NP 821 359 A DAVIES (GLAS) DIEM 70 KIEV CONF. + SMADJA, CHAVANON, DELER, DOLBEAU+ (SACL)
M	N N 1	(1519.0) HENDRY 65 RVUE ETA N + S11 PI N (1570.0) MICHAEL 66 RVUE FITS BARRYRE S11 (1557.0) OR 1565.0 UCHIYAMA-66 RVUE FITS N ETA DATA FITTING GIVES THO SOLUTIONS, PROBLEMS MATCHING PI P PHASE SHIFT (1535.0) BARRYRE 68 RVUE PHASE-SHIFT ANAL	9/66 7/66 9/66 11/67	ALMEHED 72 NP 840 157 +LOVELACE (LUND,RUTG)IJP DEANS 72 PN 3 217 +JACOBS, LYDNS, HICKS (U S FL TAMPACARAN) DOBERLACK 72 PL 438 44 H.OBERLACK,R.G.MODAHOUSE (LBL) WALKER 73 TO BE PUB. R.L.WALKER,M.J.METCALF (CIT)
M M	1 3	WHERE CROSS SECTION IS GREATEST - EYEBALL FIT (1591.0) DONNACH1 68 RVUE PHASE-SHIFT ANAL (1595.0) (10.0) DELCOURT 69 CNT PHOTOPRODUCT.	6/68 8/69	PAPERS NOT REFERRED TO IN DATA CARDS. BAREYRE 65 PL 18 342 + BRICMAN, STIRLING, VILLET (SACLAY)IJP
M M M	6 6 4 7	(1534.0) AYED 70 IPWA FROM ENER, DEP. FIT OF ARGAND DIAGRAM (1502.0) DAVIES 70 RVUE P-S ANAL SOL A (1500.) ALMEHED 72 IPWA	1/71 8/69 2/72	BRANDSEN 65 PR 139 81566 + ODDONNELL, MODRHOUSE (DURHAM, RHEL)IJP BASIS OF NUMBERS WE QUOTE FROM HENDRY 65. (LR.) JOHNSON 67 UCRL-17683 THESIS C H JOHNSON (LR.) LOVELACE 67 HEIDELBERG C. 79 C LOVELACE (CERN)IJP DONNACHI 69 NP 108 433 A DONNACHIE, R KIRSOPP (CLAS*EDIN) AYED 70 PL 318 578 + DAREYRE*VILLET (SACLAY)
W W W	N	63 №1/2(1535) WIDTH (MEV) (130-0) HENDRY 65 RVUE (130-0) MICHAEL 66 RVUE (136-0) OR 144-0 UCHITANA- 66 RVUE SEE NOTE ON MASS	9/66 7/66 9/66	THE FOLLOWING ARTICLES DEAL WITH THE REACTIONS PI- P TO ETA N AND GAMMA P TO ETA P NEAR THRESHOLD. THE DATA AND THE THEORETICAL ARTICLES ARE USEFUL IN UNDERSTANDING THE BEHAVIOR OF THE SII AMPLI- TUDE AS DETERMINED IN PI P PHASE-SHIFT ANALYSES. FURTHER REFERENCES MAY BE FOUND IN THEM.
2 2 2 2 3	1 3 6 4 7	L125.07 BAKETKE 68 KVUE [268.0] APPROX DONACHI 68 KVUE [120.0] DELCOURT 69 CNTR PHOTOPRODUCT. (96.0] AYED 70 IPWA [36.0] DAVIES 70 RVUE P-S ANAL SOL A [36.0] DAVIES 70 RVUE P-S ANAL SOL A [50.1] ALMEHED 72 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	6/68 8/69 1/71 8/69 2/72	MAINLY EXPERIMENTAL BULOS 64 PRL 13 496 + (BROWN, BRANDEIS, HARVARD, MIT, PADOVA) I BACCI 66 NC 45A 983 +PENSO, SALVINI, MENCUCCINI, + (ROMA, FRASCATI) IJP JONES 66 PRL 23 597 + BINNIE, DUANE, HORSEY, MASON, + (LOIC, RHEL) RICHARDS 66 PRL 16 121 + CHIJ, FANDH, HELMMOLZ, KENNEY, + (LAL, HAMAII) JJ PREPOST 67 PRL 18 82 R PREPOST, D LUNQUIST, D QUINN (STANFORD) BLOOM 68 PRL 21 100 +HEUSCH, PRESCOTT, ROCHESTER (CIT)
		63 N*1/2(1535) PARTIAL DECAY MODES		BULOS 69 PR 187 1827 +LANDU,BORKONER,BASTIEN+IBOST+HARV+MIT+PENNI HEUSCH 70 PRL 25 1381 +PRESCOTT,ROCHESTER,WINSTEIN (CIT) MAINLY THEORETICAL (CIT)
P1 P2 P4 P5 P6 P7 P8		DECAY MASSES N*1/2(1535) INTO PI N 139+ 938 N*1/2(1535) INTO N ETA 939+ 548 N*1/2(1535) INTO N PI PI 938+ 139+ 139 N*1/2(1535) INTO N FFSILON 938+ 600 N*1/2(1535) INTO N FFSILON 938+ 600 N*1/2(1535) INTO N RAJ2(1236) PI 1236+ 139 N*1/2(1535) INTO N RAD 938+ 770 N*1/2(1535) INTO GAM P, HELICITY=1/2 0+ 938 N*1/2(1535) INTO GAM P, HELICITY=1/2 0+ 938	*	DGBSON 66 PR 146 1022 PN DDBSON (HAMAII] HINAHI 66 PR 147 1123 SHINAHI (DSAKA) DEANS 67 PR 151 1466 SR DEANS, W G HOLLADAY (VANDERBILT) LOGAN 67 PR 153 1634 R K LOGAN, F UCHTYAMA-CAMPBELL (ILL) MENCUCCI 67 PR 153 1634 R K LOGAN, F UCHTYAMA-CAMPBELL (ILL) MENCUCCI 67 PR 162 1619 SHINAHI (DSAKA) MOSS 67 PR 163 1785 T A MOSS (ISAKA) MOSS 67 PR 163 1886 S R DEANS, N G HOLLADAY (VANDERBILT) PAL 68 PR 167 1350 B K PAL (NPL NEW DELHI) PALL 69 PR 177 2257 * GARGASHAW (UCLAPUCI)
		63 N#1/2(1535) BRANCHING RATIOS		
R1 R1 R1 R1 R1 R1 R1 R1 R1	N 3 6 4 7	N*1/2(1535) INTO (PI N)/TOTAL (P1) 10.49] HENDRY 65 RVUE 10.32] MICHAEL 66 RVUE 10.71J OR 0.28 UCH1YAMA- 10.31 OR 0.43 DAVIES 10.31 OR 0.45 DAVIES 10.31 OR 0.45 DAVIES 10.331 OR 0.49 PIP TO N ETA,6,C 10.3371 DELCOURT 69 CNTR 10.3971 10.361 DAVIES TO RVUE P-S ANAL SOL A 10.251 ALMENED TO RVUE P-S ANAL SOL A	9/66 9/66 9/66 11/67 6/68 8/69 1/71 8/69 2/72	N(1520) BUMPS THIS INFORMATION REFERS TO EITHER THE DI3 OR THE S11 STATE SEEN AT THIS MASS FOR SPIN-PARITY ANALYSIS OF THIS MASS REGION, SEE JOHNSTAD 72.
R2 R2 R2		N*1/2(1535) INTO (N ETA)/TOTAL (P2) Dominant inel decay Hendry 65 RVUE (0.68) Michael 66 RVUE	9/66	B N*1/2(1520) MASS (MEV) (PROD. EXP.) M 1507.0 6.0 A-BORELLI 67 HBC 0 PBAR P 5.7 GEV 10/71
R2 R2 R2 R2 R2 R2 R2 R2	N B B	(0.29) OR 0.71 UCHIYAMA- 66 RVUE SEE NOTE ON MASS (0.69) OR 0.45 DAVIES 67 RVUE PIP TO N ETA,BLC (0.4) (0.1) DEANS 69 MPWA TOLE+ RESON. (0.66) DELCOURT 69 MPWA (0.69) OR 0.696 CAREFAS 70 MPWA T POLE+ RESON. PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING DAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING DAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING	9/66 11/67 5/70 8/69 5/70	M 1001 0.1 ANDCRSUM TO HAS - PIP FIGTPEND 2/1 M 1500.0 10.0 ANALDI 71 CURR P PAT 24 GEV 10/71 M 1512.0 2.0 ELLIS 71 CURR P PAT 24 GEV 10/71 M 1501.0 5.7 EDELSTEIN 72 MMS + PP 6 TO 30 GEV 1/734 M 4VG 1510.8 3.4 M 1501.0 3.4 AVERAGE LERROR INCLUDES SCALE FACTOR OF 1.8) M 1 (1500.1) 0H 72 DBC 0 PI-N TO PI-PI-P
R2 R3		N#1/2(1535) INTO (N#3/2(1236) PI)/TOTAL (P5)		M I DETERMINE J= 5/2,013 PRUDADLE 2/154
R3 R3	D D	(0.07) DIĘM 70 IPWA 3 BODY ANALYSIS ASSUMING R1= 0.34	1/71	8 N*1/2(1520) WIDTH (MEV) (PROD. EXP.) W 55.0 15.0 A-BORELLI 67 HBC 0 PBAR P 5.7 GEV 10/71
R4 R4 R4	D D	N*1/2(1535) INTO (N EPSILON)/TOTAL (P4) (0.26) DIEM 70 IPWA 3 BODY ANALYSIS ASSUMING R1= 0.34	1/71	H 120. 10. ANDERSON 70 MHS - PI- PTO PH- MMS 2/71 H 118.0 20.0 AMALDI 71 CNTR P AT 24 GEV 10/71 H 88.0 2.0 ELLIS 71 CNTR PMS 27.7 GEV/C 10/71
R5 R5 R5	D	N*1/2(1535) INTO (N RHO)/TOTAL (P6) (0.20) DIEM 70 IPWA 3 BODY ANALYSIS ASSUMING R1= 0.34	1/71	W 140.0 43.0 EDECSTEIN 72 MMS + PP 6 10 30 GEV 17/3* W AVG 88.1 2.0 AVERAGE (EKROR INCLUDES SCALE FACTOR OF 1.0)
R 6 R 6		N*1/2(1535) INTO N GAMMA 0.004 0.001 DEANS 72 MPWA N ETA PHOTOPROD.	1/73*	8 N≉1/2(1520) PARTIAL DECAY MODES (PROD. EXP.)
		63 N*1/2(1535) PHOTON DECAY AMPLIGEV**-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW DEFENING THE ABAYON I ISTINGS.		DECAY MASSES DECAY MASSES P1 N+1/2(1520) INTO PI N 139+ 938 P2 N+1/2(1520) INTO N=3/2(1236) PI 1236+ 139 P3 N+1/2(1520) INTO N=1/2(1236) PI 938+ 139 P3 N+1/2(1520) INTO N=1/2(1236) PI 938+ 139 P4 N+1/2(1520) INTO N=1/2(1236) PI+ 938+ 139
A1 A1		N*1/2(1535) INTO GAH P, HELICITY=1/2 (GEV**-1/2) +.053 .020 DBERLACK 72 DPHA PI N PHOTO-PROD	2/73*	P6 N#1/2(1520) INTO N ETA 939+ 548 P7 N#1/2(1520) INTO N PIPI(J,I=0) 939+ 139+ P8 N#1/2(1520) NTO N PIPI(J,I=0) 939+ 139+
A1 A2 A2 A2		(++++++++) WALKER T3 DPWA PI N PHOTO-PROD N*1/2(1535) INTO GAM N, HELICITY=1/2 (GEV**-1/2) PI PHOTO-PROD 046 .021 DBERLACK 72 DPWA PI N PHOTO-PROD (050) WALKER 73 DPWA PI N PHOTO-PROD	2/73* 2/73* 2/73*	8 N*1/2(1520) BRANCHING RATIOS (PROD. EXP.) R1 N*1/2(1520) INTO (N PI)/TOTAL (P1)
***	***	* ********* ********* ********* *******		R1 N*(1520) INTO (N PI)/TOTAL PRODUCTION EXPERIMENTS R1 0.78 0.24 BASSOMPIE 67 HBC + K+P TO K* N* 11/68
HEN	IDRY	REFERENCES FOR N#1/2(1535) 65 PL 18 171 A W HENDRY, R G MOORHOUSE (RHEL)		R2 N*1/2(1520) INTO (NEUTRON PI+)/(P PI+ PI-) (P4)/(P5) R2 0.77 0.45 ALEXANDER 67 HBC + PP 5.5 BEV/C 9/66
MIC	RE EX HAE	VIEWS EARLY PHASE-SHEFT-ANALYSIS RESULTS AND PI- P TO ETA N PERIMENTS. WE TAKE NUMBERS FROM THE SOLUTION USING BRANDSEN 65. L 66 PL 21 93 C MICHAEL (0XF)		R3 N*1/2(1520) INTO (N PI)/(N PI PI) (P1)/(P3) R3 1.25 0.44 0.71 A-BORELLI 67 HBC 0 PBAR P 5.7 BEV/C 9/66
DAV	IES	MA OO PK 149 1220 F UCHIYAMA-CAMPBELL, R K LOGAN (ILL)IJF 67 NC 52A 1112 A T DAVIES, R G MOORHOUSE (GLASGOW,RHEL)		R4 N#I/2(1520) INTO (N#3/2(1236) PI)/(N PI PI (P2)/(P3) R4 0.00 0.09 A-BORELLI 67 HBC 9/66

Baryons N(1535), N(1670), N(1688)

R 5 R 5	N*1/2(1520) INTO (N PI PI)/TOTAL (P3) (0.08) OR LESS BASSOMPIE 67 HBC + K+P TO K* N*	11/68	A3 N*1/2(1670) INTO GAM N, HELICITY=1/2 (GEV**-1/2) A3 +.010 .040 OBERLACK 72 DPWA PI N PHOTO-PROD 2/73* A3 (.00) WALKER 73 DPWA PI N PHOTO-PROD 2/73*
R6 R6	N*1/2(1520) INTO (N ETA)/TOTAL (P6) 0.22 0.14 BASSOMPIE 67 HBC + K+P TO K* N*	11/68	A4 N#1/2(1670) INTO GAM N, HELICITY=3/2 (GEV##=1/2) A4035 -014 OBERLACK 72 DPMA PI N PHOTO-PROD 2/734
R7 R7	N*1/2(1520) INTO (PI N)/(PI N*3/2(1236)) (P1)/(P2) (0.42) OR LESS LEE 67 HBC PI-P 3.6 GEV	/C 11/67	A4 (+00) WALKER 73 DPWA PIN PHOTO-PROD 2/734
****	** ******** ********* ******** ********	***	****** ********* ********* ************
4-90	REFERENCES FOR N*1/2(1520) (PROD. EXP.)		REFERENCES FOR N*1/2(1670)
ALEX	ANDE 67 PR 154 1284 ALEXANDER, BEANDER, ALEXANDER, ALEX	5	TRIPP 67 NP B3 10 + LEITH, + (LRL, SLAC, CERN, HEID, SACLAY)
LEE ANDE AMAL ELLI	67 PR 155 +MOEBS,ROE,SINCLAIR,VANDER VELDE (MICF (RSON 70 PRL 25 699 +BLESER,BLIEDEN,COLLINS++ (BNL,CARR) (DI 71 PL 348 435 +BIANCASTELI,BOSIO,+ (I SANITA ROMACENES) (S) 71 PRL 27 442 +MAGLICH,NOREM,SANNES,SILVERMAN (RUTC		BAREYRE 68 PR 165 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP DONNACH 68 PL 268 161 A DONNACHTE, G KIRSOPP, C LOVELACE (CERNIJP ALSO 68 VIENNA 139 DONNACHTE RAPPORTEUR,S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP DUKE 68 PR 166 1448 + JONES KEMP,MURPHY,THRESHER, + (RHEL,OXF)IJP INSIGHTFUL QUALITATIVE RAGUMENTS CONCERNING EXISTENCE AND IJP.
EDEL JOHN OH	STEI 72 PR D5 1073 EDELSTEIN, CARRIGAN, HIEN, MCMAHON, + (CARN+BNL ISTAD 72 NP 842 588 +MOLLE RUD++JACOBSEN(BOHR, HELS, OSLO, STOF 72 NP 428 497 +FUNG, KERNAN, POE, SCHALK, SHEN (UCF))) IJP)IJP	RUSH 68 PR 173 1776 J E UNIV ALABAMA BOTKE 69 PR 180 1417 J C BOTKE (UCSB)
****	*** ***********************************	***	DEANS 69 PR 185 1797 S DEANS, J WOOTEN (UNIV S FLORIDA)
Б			CARRERAS 70 NP 16B 35 B CARRERAS, A DONNACHIE (DARE,MCHS) DAVIES 70 NP 821 359 A DAVIES (GLAS)
Ľ	FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NO	TE	BRODY 71 PL 34B 665 +CASHMORE++HERNDON+ (SLAC+LRL) WAGNER 71 NP B25 411 F WAGNER, C LOVELACE (CERN)
·	PRECEDING N*1/2(1470).		ALMEHED 72 NP B40 157 +LOVELACE (LUND,RUTG)IJP OBERLACK 72 PL 438 44 H-OBERLACK,R.G.MOORHOUSE (LUND,RUTG)IJP WALKER 73 TO BE PUB. R.L.WALKER,W.J.METCALF (CIT)
	64 N*1/2(1670) MASS (MEV)		PAPERS NOT REFERRED TO IN DATA CARDS.
M	(1650.0) APPR0X BRANDSEN 65 RVUE PHASE-SHIFT A (1680.0) BAREYRE 68 RVUE PHASE-SHIFT A 1 WHERE CROSS SECTION IS GREATEST - FVEBALL FIT 3 (1678.0) DONNACHI 68 RVUE PHASE-SHIFT A 1 (1674.0) DUNKE 68 CNTR PHASE-SHIFT A 6 (1675.0) AVED 70 IPHA	NAL 7/66 NAL 11/67 NAL 6/68 6/68 1/71	BAREVRE 65 PL 18 342 + BRICMAN, STIRLING, VILLET (SACLAY)IJP DUKE 65 PRL 15 468 + JORES,KEMP, MURPHY, PRENTICE, + (RHEL, 0XF)IJP JOHNSON 67 URL-17683 THESIS C H JOHNSON (LRI) DEANS 69 PRL 177 2623 S R DEANS (UNIY S FLORIDA) DONACHI 69 NP 106 433 A DONNACHIE, R KIRSOPP (LAS+EDIN) AYED 70 PL 316 598 + BAREVRE+VILLET (SACLAY)
M	6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM 4 (1669-0) DAVIES 70 RVUE P-S ANAL SOL 7 (1683-1) AIMEHED 72 IPWA	A 8/69	******* ********* *********************
			N(1688) F15
	64 N≠1/2(1670) WIDTH (MEV)		FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE
¥	1 (135.0) BAREYRE 68 RVUE 3 (173.0) DONNACH1 68 RVUE 4 (163.0) AVED 70 IDVA	11/67 6/68	PRECEDING N*1/2(1470).
w W	4 (115.0) DAVIES 70 RVUE SOL A AND B 7 (150.) ALMEHED 72 IPWA	8/69 2/72	
	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.		65 N#1/2(1688) MASS (MEV) M (1680.0) BRANDSEN 65 RVUE PHASE SHIFT ANAL 7/66
	64 N*1/2(1670) PARTIAL DECAY MODES		M 1 (1690.0) BAREYRE 68 RVUE PHASE-SHIFT ANAL 11/67 M 1 WHERE CROSS SECTION IS GREATEST - EYEBALL FIT M 3. (1687 0) DORMACH 68 RVUE PHASE-SHIFT ANAL 6/68
P1	DECAY MASSE N≭1/2(1670) INTO PI N 139+ 938	s	M (1682.0) DUKE 68 CNTR PI-P EL + POL 6/68 M 6 (1682.0) AYED 70 IPWA 1/71
P2 P3 P4	N#1/2(1670) INTO LAMBDA K 9394546 N#1/2(1670) INTO LAMBDA K 1115+ 497 N#1/2(1670) INTO N#3/2(1236) PI 12364 139		M 6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM M 4 (1685.0) DAVIES 70 RVUE P-S ANAL SOL A 8/69 M 7 (1688.) ALMENED 72 IPWA 2/72
P5 P6	N*1/2(1670) INTO N PI PI N*1/2(1670) INTO GAM P, HELICITY=1/2 N*1/2(1670) INTO GAM P, HELICITY=1/2 0+ 938		
P8 P9	N#1/2(1670) INTO GAM N, HELICITY=3/2 0+ 939 N#1/2(1670) INTO GAM N, HELICITY=1/2 0+ 939 N#1/2(1670) INTO GAM N, HELICITY=3/2 0+ 939		65 N*1/2(1688) WIDTH (MEV)
			W 1 (110.0) BAREYRE 68 RVUE 11/67 W 3 (177.0) DONNACH1 68 RVUE 6/68 H 6 (100.0) AVED 70 TPMA 1/71
	64 N*1/2(1670) BRANCHING RATIOS		W 4 (104-0) DAVIES 70 RVUE P-S ANAL SOL A 8/69 W 7 (140.) ALMEHED 72 IPWA 2/72
R1 R1 R1	N*1/2(1670) INTO (PI N)/TOTAL (P1) 1 (0-41) BAREYRE 68 RVUE 3 (0-391) DONNACH1 68 RVUE	11/67	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.
R1 R1	6 (0.392) AYED 70 IPWA 4 (0.50) DAVIES 70 RVUE P-S ANAL SOL	1/71 A 8/69	65 N#1/2(1688) PARTIAL DECAY MODES
R1	7 (0.45) ALMEHED /2 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	2712	DECAY MASSES P1 N*1/2(1688) INTO PI N 139+ 938
R2 R2	N*1/2(1670) INTO (N ETA)/TOTAL (P2) (0.02) OR LESS TRIPP 67 RVUE 0 (0.010) RVUE 60 NOVA T ROLE 4 RESC	8/67	P2 N*1/2(1688) INTO N ETA 939+548 P3 N*1/2(1688) INTO LAMBDA K 1115+497 P4 N*1/2(1688) INTO M#2/2(1236) PI
R2 R2	B (0.006) (0.004) DEANS 69 MPWA T POLE + RESC B (0.006) DR 0.012 CARRERAS 70 MPWA T POLE + RESC	N. 5/70	P5 N#1/2(1688) INTO N PI PI 938+ 139+ 139 P6 N#1/2(1688) INTO GAM P, HELICITY=1/2 0+ 938
R2	B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING		P7 N*1/2(1688) INTO GAM P, HELICITY=3/2 0+ 938 P8 N*1/2(1688) INTO GAM N, HELICITY=1/2 0+ 939 P9 N*1/2(1688) INTO GAM N, HELICITY=3/2 0+ 939
R3 R3	(0.01) OR LESS TRIPP 67 RVUE B (0.00) OR LESS RUSH 68 MPWA T POLE + RESC	8/67 N. 8/69	P10 N#1/2(1688) INTO N EPSILON 938+ 600 P11 N#1/2(1688) INTO N RHO 938+ 770
R3 R3	B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING (0.00) OR LESS CL=.63 WAGNER 71 IPWA PI-P TO K LAN	IB 1/71	
R4 R4 I	N*1/2(1670) INTO (N*3/2(1236) PI)/TOTAL (P4) 12600 0.63 0.1 BRODY 71 HBC PI-P2PI N.F	WA 6/70	65 N#1/2(1688) BRANCHING RATIOS
	SEE NOTE PRECEDING THE N#1/2(1688) INELASTIC DECAY MODE MEASUREMENTS.		R1 1 (0.64) BAREYRE 68 RVUE 11/67 R1 3 (0.560) DONNACH1 68 RVUE 6/68
.			R1 6 (0.593) AYED 70 IPWA 1/71 R1 4 (0.54) DAVIES 70 RVUE SOL A AND B 8/69 R1 7 (0.65) ALMENED 72 IPWA 2/72
			SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.
	64 N#1/2(16/0) PHUTUN DECAY AMPL(GEV##=1/2)		BUDE INCUMPATION ON THE INCLASITE DELAT MODES OF THE 1090 MEV
	FOR DEFINITION OF GAMMA-NOLLON DECAY AMPLITUDES, SEE MINI- Review preceding the baryon listings.		BUMP, AS SEEN IN PRODUCTION EXPERIMENTS, MAY BE FOUND BELOW
A1 A1 A1	FOR DEFINITION OF GAMMA-NUCLEON DECAT AMPLIGEV**1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE GARYON LISTINGS. N*1/2(1670) INTO GAM P, HELICITY=1/2 (GEV**-1/2) +.011 .012 DBERLACK 72 DFWA PI N PHOTO-PF (+.010) WALKER 73 DFWA PI N PHOTO-PF	OD 2/73* OD 2/73*	BUMP, AS SEEN IN PRODUCTION EXPERIMENTS, NAY BE FOUND BELOW R2 N+1/2(1688) INTO (N ETA)/TOTAL (P2) R2 (0,015) OR LESS BOTKE 67 RVUE R2 (0,0004) BOTKE 69 MPMA T POLE + RESON, 19/59
A1 A1 A1 A2 A2	FOR DEFINITION OF GAMMA-NUCLEON DECAT AMPLIGEV**1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAT AMPLIGEV**1/2) REVIEW PRECEDING THE BARYON LISTINGS. N*1/2(1670) INTO GAM P, HELICITY-1/2 (GEV**-1/2) +.011 .012	OD 2/73* OD 2/73*	BUMP, AS SEEN IN PRODUCTION EXPERIMENTS, MAY BE FOUND BELOW R2 N*1/2(1688) INTO (N ETA)/TOTAL (P2) R2 (0.015) OR LESS BOTKE 69 MFWA R2 B (0.0004) BOTKE 69 MFWA POLE + RESON. 10/69 R2 B (0.003) (0.002) DEANS 69 MFWA POLE + RESON. 5/70 R2 B (0.003) IO.001) CARRERAS 70 MFWA POLE + RESON. 5/70 R2 B (0.0005) IOR.001) CARRERAS 70 MFWA POLE + RESON. 5/70 R2 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING NORED NOT DOUBLE COUNTING 5/70

Baryons N(1688), N(1700)

R3 N*1/2(1688) INTO (N ETA)/(PI N) R3 (0.027)OR LESS HEUSCH	(P2)/(P1) 66 RVUE + PIO, ETA PHOTO	9/66	W	66 N*1/2 (240.0)	(1700) WIDTH (MEV) MICHAEL	66 RVUE		7/66
R4 N*1/2(1688) INTO (LAMBDA K)/TOTAL R4 (0.00) OR LESS TRIPP R4 0.001)OR LESS RUSH R4 0.001)OR LESS RUSH R4 0.001)OR LESS RUSH	(P3) 67 RVUE 68 MPWA T POLE + RESON. 8 OF DOUBLE COUNTING	8/67 5/70	W 1 W 3 W 6	(260.0) (300.0) (104.0) (15.0) (166.0)	BAREYRE DONNACH1 ORITO AYED	68 RVUE 68 RVUE 69 RVUE 70 IPWA		11/67 8/69 8/69 1/71
R4 (0.001)OR LESS CL=.63 WAGNER R5 N*1/2(1688) INTO (N*3/2(1236) P1)/TOTAL	71 IPWA PI-P TO K LAMB	1/71	W 4 W 4	(404.0) SOL B GIVES 121 MEV (99.0)	DAVIES	70 RVUE	P-S ANAL SOL A	8/69 2/73*
R5 E 12600 (0.13) (0.04) SOLNAA BRODY R5 E 12600 (0.39) (0.10) SOLNAB BRODY R5 E ASSUMES ELASTIC BRANCHING RATIO 0.62	71 HBC PI-P2PI N/PWA 71 HBC PI-P2PI N/PWA 2+-0.06	6/70 6/70	W A W 7	(110.0)OR(140.0) (120.) SEE THE NOTES ACCOMPAN	WAGNER ALMEHED IYING THE MASSES QI	71 IPWA 72 IPWA UOTED.	PI-P TO K LAMB	1/71 2/72
65 N#1/2(1688) PHOTON DECA				66 N*1/2	(1700) PARTIAL DEG	CAY MODES		
FOR DEFINITION OF GAMMA-NUCLEON DECAY A REVIEW PRECEDING THE BARYON LISTINGS.	AMPLITUDES, SEE MINI-		P1 P2	N*1/2(1700) INTO PI N N*1/2(1700) INTO N ETA			DECAY MASSES 139+ 938 939+ 548	
A1 N*1/2(1688) INTO GAM P, HELICITY=1/2 (G A1008 .004 DBERLACK A1 (+.009) WALKER	;EV**-1/2) 72 DPWA PIN PHOTO-PROD 73 DPWA PIN PHOTO-PROD	2/73* 2/73*	P3 P4 P5 P6	N*1/2(1700) INTO LAMBE N*1/2(1700) INTO N GAM N*1/2(1700) INTO GAM P N*1/2(1700) INTO GAM N	A K MA HELICITY=1/2 HELICITY=1/2		1115+ 497 938+ 0 0+ 938 0+ 939	
A2 N*1/2(1688) INTO GAM P, HELICITY=3/2 (G A2 +.100 .012 OBERLACK A2 (+.135) WALKER	EV**-1/2) 72 DPWA PIN PHOTO-PROD 73 DPWA PIN PHOTO-PROD	2/73* 2/73*	P7 P8 P9	N*1/2(1700) INTO N PI N*1/2(1700) INTO N EPS N*1/2(1700) INTO N RHC	PI ILON		938+ 139+ 139 938+ 600 938+ 770	
A3 N*1/2(1688) INTO GAM N, HELICITY=1/2 (G A3 +.017 .014 OBERLACK A3 (.00) WALKER	;EV**-1/2) 72 DPWA PI N PHOTO-PROD 73 DPWA PI N PHOTO-PROD	2/73* 2/73*			(1700) BRANCHING (RATIOS		
A4 N*1/2(1688) INTO GAM N, HELICITY=3/2 (G A4005 .018 OBERLACK A4 (.00) WALKER	;EV**-1/2) 72 DPWA PI N PHOTO-PROD 73 DPWA PI N PHOTO-PROD	2/73* 2/73*	R1 R1 R1 3 R1 6	N*1/2(1700) INTO (PI N (1.0) APP (0.79) (0.642)	N/TOTAL ROX MICHAEL DONNACH1 AYED	66 RVUE 68 RVUE 70 IPWA	(P1)	7/66 8/69 1/71
****** ********* ******** ******** *****	*****		R1 4 R1 7	(0.56) (0.5)	DAVIES	70 RVUE 72 IPWA	P-S ANAL SOL A	8/69 2/72
REFERENCES FOR N* SEE A PREVIOUS EDITION (RMP 37, 633,	<pre>(1/2(1688) 1965) FOR EARLIER REFERENCES</pre>		R2 R2	N#1/2(1700) INTO (LAME 0.039 0.019	DA K)*(PI N)/TOTAL ORITO	69 RVUE	(P3*P1)	8/69
BRANDSEN 65 PL 19 420 +ODONNELL, MOORHC HEUSCH 66 PRL 17 1019 C A HEUSCH, C Y P TRIPP 67 NP B3 10 + LEITH, +	DUSE (DURHAM, RHEL)IJI PRESCOTT, R F DASHEN (CIT) (LRL,SLAC,CERN,HEID,SACLAY)	P	R2 A R3 R3 B R3 B	N*1/2(1700) INTO (LAME (0.028) APPR PARAMETRIZATION USED	WAGNER DA K}/TOTAL :DX. RUSH COULD BE IN DANGER	68 MPWA	(P3) T POLE + RESON.	8/69
BAREYRE 68 PR 165 1731 P BAREYRE, C BRIC DONNACHI 68 PL 26B 161 A DONNACHIE, R G ALSO 68 VIENNA 139 DONNACHIE RAPPOF	CMAN, G VILLET (SACLAY)IJI KIRSOPP, C LOVELACE (CERN)IJ RTEUR.S TALK (GLAS)	P P	R4 R4 B	N*1/2(1700) INTO (N ET (0.013)	A)/TOTAL BOTKE	69 MPWA	(P2) T POLE + RESON.	10/69
ALSO 68 THESIS R G KIRSOPP DUKE 68 PR 166 1448 +JONES,KEMP,MURPF RUSH 68 PR 173 1776 J E RUSH	(EDIN) 1Y,THRESHER, + (RHEL,OXF)IJI (UNIV ALABAMA)	P	R4 B R4 C R4 B R4 C	(0.03) (0.02) (0.19) OR 0.27 PARAMETRIZATION USED CARRERAS 70 USES REGO	DEANS CARRERAS COULD BE IN DANGER E POLES + RESONANG	69 MPWA 70 MPWA R OF DOUBLI CES, VALUE	T POLE + RESON. T POLE + RESON. E COUNTING S SUSPICIOUSLY LARG	8/69 5/70
BOTKE 69 PR 180 1417 J C BOTKE DEANS 69 PR 185 1797 S DEANS, J WOOTEN	(UCSB) 4 (UNIV S FLORIDA)		R 5 R 5	N*1/2(1700) FROM N GAM (0.002) DR LESS	MA TO LAMBDA K ORITO2	69 CNTR	SQRT(P3*P4) K LAM PHOTOPRO	10/71
AYED 70 KIEV CONF R AYED, P BAREYRE, CARRERAS 70 NP 16B 35 B CARRERAS, A DON DAVIES 70 NP 821 359 A DAVIES	, G VILLET (SACL)IJI INACHIE (DARE, MCHS) (GLAS)	P .	R5 R5	(0.0072) (0.006)	SCHORSCH DEANS	70 DPWA 72 MPWA	K LAM PHOTOPRO.	10/71 1/73*
BRODY 71 PL 34B 253 +CASHMORE++HERN WAGNER 71 NP B25 411 F WAGNER, C LOVEL	NDON+ (SLAC+LRL) LACE (CERN)			66 N*1/2	(1700) PHOTON DEC	AY AMPLIGE	/**-1/2}	
ALMEHED 72 NP 840 157 +LOVELACE DBERLACK 72 PL 438 44 H.OBERLACK,R.G.MC WALKER 73 TO BE PUB. R.L.WALKER,W.J.ME	(LUND,RUTG)IJ DORHOUSE (LBL) ETCALF (CIT)	P		FOR DEFINITION OF GAM REVIEW PRECEDING THE BA	MA-NUCLEON DECAY A RYON LISTINGS.	AMPLITUDES	, SEE MINI-	
PAPERS NOT REFERR	ED TO IN DATA CARDS.		A1 A1 A1	N*1/2(1700) INTO GAM F +.066 .042 (+.011)	, HELICITY=1/2 (GE OBERLACK WALKER	72 DPWA 73 DPWA	PI N PHOTO-PROD PI N PHOTO-PROD	2/73* 2/73*
CROUCH 65 DESY CONF II 21 + (BROWN, CEA, HA DERADD 65 ATHENS CONF 244 +KENNEY, LAMSA, + DUKE 65 PRL 15 468 +JONES, KEMP, MURPH MERLD 66 PROY SOC 289 489 J P MERLD, G VALL	<pre>IR VARD,MIT,PADOVA,WEIZMANN)</pre>	Ρ	A2 A2 A2	N*1/2(1700) INTO GAM N 072 .066 (015)	, HELICITY=1/2 (GE OBERLACK WALKER	EV**-1/2} 72 DPWA 73 DPWA	PI N PHOTO-PROD PI N PHOTO-PROD	2/73* 2/73*
ROBERTS 67 PREPRINT R G ROBERTS BANNER 68 PR 166 1347 +DETGEUF,FAYOUX,H THE ABOVE PAPERS DISCUSS INELASTIC CHANNEL	(DURHAM) HAMEL, + (SACLAY,CAEN) S NEAR THE BUMP.		*****	******* ******	****	*****	****	
BAREYRE 65 PL 18 342 + BRICMAN, STIRLI DEANS 69 PRL 177 2623 S R DEANS DONNACHI 69 NP 108 433 A DONNACHIE, R KI	ING, VILLET (SACLAY)IJ (UNIV S FLORIDA) (RSOPP (GLAS+EDIN)	Ρ			REFERENCES FOR N	*1/2(1700)		_
AYED 70 PL 318 598 +BAREYRE+VILLET	(SACLAY)		MICHAE	EN 65 PL 19 420 L 66 PL 21 93	C MICHAEL	JUSE	(DURHAM, RHEL)IJ (OXF)	Р
N(1700) 66 N*1/2(1700, JP=1/2-) I=	1/2 S["]11		BAREYR DONNAC AL	E 68 PR 165 1731 H1 68 PL 26B 161 SO 68 VIENNA 139	P BAREYRE, C BRIG A DONNACHIE, R G DONNACHIE RAPPOR	CMAN, G VII KIRSOPP, G RTEUR.S TAL	LET (SACLAY)IJ CLOVELACE (CERN)IJ .K (GLAS)	P P
FOR DISCUSSION CONCERNING R PRECEDING N#1/2(1470).	RESONANT PARAMETERS, SEE NOTE		RUSH	SO 68 THESIS 68 PR 173 1776	R G KIRSOPP J E RUSH		(EDIN) (UNIV ALABAMA)	
66 N*1/2(1700) MASS (MEV)			DEANS ORITO ORITO2	69 PR 180 1417 69 PR 185 1797 69 LNC 1 936 69 INS J 113	J C BOTKE S DEANS, J WOOTEN S ORITO,S SASAKI S ORITO (THESIS)	N	(UCSB) (UNIV S FLORIDA) (TOKYO-OSAKA) (TOKYO)	
M (1695.0) BRANDSEN M (1700.0) MICHAEL M 1 (1710.0) BAREVRE M 1 WHERE CROSS SECTION IS GREATES	65 RVUE PHASE-SHIFT ANAL 66 RVUE FITS BAREYRE S11 68 RVUE PHASE-SHIFT ANAL 57 - EYEBALL FIT	9/66 7/66 11/67	AYED CARRER DAVIES SCHORS	70 KIEV CONF AS 70 NP 168 35 70 NP 821 359 CH 70 NP 825 179	R AYED, P BAREYRE, B CARRERAS, A DOM A DAVIES +TIETGE, WEILNBOED	G VILLET WNACHIE	(SACL)IJ (DARE,MCHS) (GLAS) (MPIM)	Р
M 3 (1710.0) DONNACH1 M (1705.0) (10.0) DRITO M 6 (1689.0) AYED	68 RVUE PHASE-SHIFT ANAL 69 RVUE K LAMBDA PS ANAL 70 TPWA	8/68 8/69	WAGNER	71 NP B25 411	F WAGNER, C LOVEL	LACE	(CERN)	
6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM M 4 (1766.0) DAVIES M 4 (1678.0) SCHORSCH M 4 (1685.0) WAGNER	70 RVUE P-S ANAL SOL A 70 DPWA K LAM PHOTOPRO. 71 IPWA PI-P TO K LAMB	8/69 10/71 1/71	ALMEHE DEANS OBERLA WALKER	D 72 NP B40 157 72 PN 3 217 CK 72 PL 43B 44 73 TO BE PUB.	+LOVELACE +JACOBS, LYONS, H H.OBERLACK,R.G.MO R.L.WALKER,W.J.ME	HICKS (U DORHOUSE ETCALF	(LUND,RUTG)IJ S FL TAMPA+CARN) (LBL) (CIT)	р
M A THERE ARE 3 SIMILAR SOLUTIONS M 7 (1670-) ALMEHED	72 IPWA	2/72			PAPERS NOT REFERE	RED TO IN C	DATA CARDS.	
			BAREYRI JOHNSO DEANS DONNACI AYED	E 65 PL 18 342 N 67 UCRL-17683 THESIS 69 PR 177 2623 HI 69 NP 108 433 70 PL 318 598	+ BRICMAN, STIRLI C H JOHNSON S R DEANS A DONNACHIE, R KI +BAREYRE+VILLET	ING, VILLET	(SACLAY)IJ (LRL) (UNIV S FLORIDA) (GLAS+EDIN) (SACLAY)	P
			*****	********* ******** ** ********* ********	******	* ** ** ** ** * ** ** **	*****	

Data Card Listings

For notation, see key at front of Listings.

Baryons N(1700)

_			20 N*1/2(1700) WIDTH (MEV) (PROD. EXP.)
	N(1700) IB N#1/2(1700, JP=3/2-) I=1/2 D'13 POR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N#1/2(1470). A NEW, PRELIMINARY ENERGY DEPENDENT ANALYSIS BY AVED 72 INDICATES THE RESENCE OF THIS STATE. IN ADDITION AN ISDEAM MODEL ANALYSIS BY HENNON 72 SHOWS EVIDENCE FOR THIS STATE IN THE SIGMA N AND DELTA PI HANNELS. SEE THE N# MINI REVIEW.		N (70.0) (22.0) A-BORELLI 67 HBC 9/69 N (140.0) (57.0) ALMEIDA 68 HBC 9/69 N (140.0) (57.0) ALMEIDA 68 HBC 9/69 N (170.0) (15.0) GALLDWAY 68 HBC 9/69 N (105.0) (15.0) BARNES 69 HBC K-P TD K-P 2PI N A (105.0) IEANNES 69 HBC P2 2 GEV/C 10/69 N B 190 (235.1) (50.1) RHODE 69 HBC P2 2 GEV/C 10/69 N 130.1 (10.1) ANDERSON TO MMS - P1 - P TO P1 - MMS 2/71 H 102.1 440.1 CINBAS 70 HBC + P1+P, 47.5 GEV/C 2/71 N 102.1 440.1 CONPELIT OT HBC + P1+P, 5.5 GEV/C 2/71 1/71 N 50 (130.0) (30.0) CRENNELLI 67 HBC - P1-P, 4 GEV/C 2/71 N A 00 (220.1) (17.0) HC - P1-P, 4 GEV/C 2/71
M M M M	18 N*1/2(1700) MASS (MEV) 3 (1730.) DONNACH2 68 RVUE PHAS.SHIFT-CERN1 3 (1680.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 3 WHERE MAX. ABSORPTION IS -DONNACH1, 2, KIRSOPP EYEBALL FIT CERN 1 4 (1780.0) 4 -013 RESONTES ONLY IN ONE OUT OF 3 POSSIBLE SOL.	10/69 10/69 10/69 1/71	N (152.0) (15.0) AMALD1 TINTR P P AT 24 GEV 100 W (120.1) (50.1) BALLD1 TINTR P P AT 24 GEV 2/72 W (57.1) (15.1) BOESEBEC TINTE PP.PTP-PAT 16GEV 2/72 W (57.1) (15.1) BOESEBEC TINTE PP.PTP-PAT PAT 24 GEV 2/72 W (102.0) (9.0) ELLIS TI CATR MMS P 3.7 GEV/C 10/71 W 80<(94.0)
	18 N*1/2(1700) WIDTH (MEV)		W 2 (2000) APPROVA. LANSA 72 HBC PIP 10:50 EV(127/2) W 2 (120.) [40. 0H 72 DBC 0 PI-N TO PI-PI-P 2/73 W (60.) [40.) RONAT 72 HBC PI+P TO 3PI P 2/73 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED
P1 P2	18 N*1/2(1700) PARTIAL DECAY MODES DECAY MASSES N*1/2(1700) INTO PIN 139+ 938 N*1/2(1700) INTO LAMEDA K 11)54 407		20 N*1/2(1700) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES
P3 R1 R1	N*1/2(1700) INTO N GAMMA 938+ 0 	1/73*	P1 N*1/2(1700) NTO P1 N 139+ 338 P2 N*1/2(1700) INTO N P1 P1 938+ 139+ 139 P3 N*1/2(1700) INTO N*3/2(1236) P1 938+ 139+ 139 P4 N*1/2(1700)+ INTO N*3/2(1236) P1 939+ 139 P5 N*1/2(1700)+ INTO N*10N P1+ 939+ 139 P6 N*1/2(1700)+ INTO N*10N P1+ 938+ 139+ 139 P6 N*1/2(1700)+ INTO N*10(236)+ P1- 1236+ 139 P7 N*1/2(1700) INTO N*1A 939+ 548 P8 N*1/2(1700) INTO LANEDA K 1115+ 497
****	** ******** ***************************		
DONN	REFERENCES FOR N*1/2(1700) ACH2 68 VIENNA 139 DONNACHIE RAPPORTEUR.S TALK (GLAS)		R1 N*1/2(1700) INTO (PI N)/(PI N*3/2(1236)) (P1)/(P3)
K IRS WAGN DEAN	DPP 68 THESIS R G KIRSOPP (EDIN) ER 71 NP 825 411 F WAONER, C LOVELACE (CERN) S 72 PN 3 217 +JACOBS, LYDNS, HICKS (U S FL TAMPA+CARN)		K1 (0.77) UK LESS LEE 67 HBC P1-P 3-6 GEV/C 11/67 R1 A (9.0) OR MORE BENVENUTI 69 DBC 0 5770 R2 N*1/2(1700) INTO IN ETA)/(N PI + N PI PI) (9.0) C 5770 R2 N*1/2(1700) INTO IN ETA)/(N PI + N PI PI) (9.0) C (9.7)/((1+P2))
AYED	PAPERS NOT REFERRED TO IN DATA CARDS. 72 BATAVIA CONF R AYED,P BAREYRE, Y LEMOIGNE (SACL)		R2 (0.023/UR LESS KARMER 64 UBC + PIH) 1.2 R2 (0.042)OR LESS CL=.95 A-BORELLI 67 HBC + PBAR P 5.7 BEV/C 9/69
HERN ****	DON 72 BATAVIA CONF +ROSENFELD+CASHMORE+ (LBL,SLAC)		R3 [0.034]0R LESS ALEXANDER 67 HBC PP 5.5 BEV/C 11/67 R3 (0.07) OR LESS CLE3.95 CIRBA 70 HBC PI+P AT 5 GEV/C 2/71
Ē	I(1700) BUMPS ²⁰ N*1/2(1700, JP=) I=1/2 PRODUCTION EXPERIMENTS		R4 N*1/2(1700) INTO (LAMBDA K)/(N PI + N PI PI) (P8)/(P1+P2) 8/67 R4 (0.013) GR LESS CL=+05 A-BORELLI 67 HBG + 8/67 R4 (1.010) GR LESS CL=+05 A-BORELLI 67 HBG + 8/67 R4 1.5EEN CHINOSKY 68 HBG PTO K+ Y N 6/68 R4 1.5EEN 0.025 TO 0.01 BARNNELL 6 HBG K-P TO K-P 201 7/70 R4 25 0.025 TO 0.01 BARNNELL 6 HBG + P1 7/70 6/70 R4 25 SEEN. CONS. WITH J=1/2 WORSE 71 HBG 0 P1-P 7 GEV/C 3/72
	PARTIAL WAVE ANALYSIS REQUIRES AT LEAST FOUR I=1/2 STATES IN THE 1670 T 1760 REGION (D15, F15, S11, P11) AND AT LEAST ONE I=3/2 STATE (D33). OBVIOUSLY,DIFFERENT EXPERIMENTS ARE SEENED DIFFERENT STATES AND OFTEN I		R5 N*1/2(1700) INTO (N PI)/(N PI PI) (P1)/(P2) R5 (1.26) OR LESS CL=.95 A-BORELLI 67 HBC + 8/67 R5 0.025 0.13 CRENNELL 70 HBC + 1/71
	IS NOT CLEAR WHAT ISOSPIN STATE IS BEING OBSERVED. NO EFFORT WAS MADE TO SEPARATE THESE EXPERIMENTS ACCORDING TO UP, SINCE NORE OF THE REPORTED UP IS FIRMLY ESTABLISHED. WE LIST ALL THE INFORMATION HERE, BUT WE HAVE NOT USED IT IN THE BARYON TABLE.		R6 N*1/2(1700) INTO (N*3/2(1236) P1)/(N PI P1) (P3)/(P2) R6 NO EVIDENCE A−BORELLI 67 HBC + 8/67 SEE MERLO 66 FOR A REVIEW. 8/67
	POR SPIR-PARIT ANALTSIS OF THIS MASS REGION, SEE JUHNSTAU /2 AND LAMSA 72. 		R7 N*1/2(1700) INTO (NEUTRON PI+)/(P PI+ PI-) (P4)/(P5) R7 0.67 0.40 NEXANDER 67 HBC + PP 5.5 BEV/C 11/67 R7 0.47 0.25 A-BORELLI 67 HBC PBAR P 5.5 GEV/C 7/70 R7 0.45 0.25 A-BORELLI 67 HBC PBAR P 5.5 GEV/C 7/70 R7 0.53 0.21 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
м м м м м м м м м м м м м м м м м м м	(1695.0) (9.0) A-BORELLI 67 HBC + PBAR P 5.7 BEV/C (1734.0) (21.0) ALMEIDA 68 HBC + PP 10 BEV/C (1730.0) (18.0) GALLOMAY 68 HBC + PP 10 BEV/C 1 (1712.0) (6.0) BARNES 69 HBC K-P T0 K-P 2PI 1 (167.0) (5.0) BENVENUT 69 DBC PI-D 2.2 GEV/C 1 (167.0) (5.0) BENVENUT 69 DBC PI-D 2.2 GEV/C 1 (161.0) (16.1) RHODE 69 HBC PI-D 2.2 GEV/C 1 (161.0) (16.1) CIBAR T0 HBC PI-P T0 DP-3PI 3 (173.0) (12.0) COPNELL PI-P T0 PA-SPI 3 (173.0) (12.0) COPNELL PI-P T0 PA-SPI 3 (173.0) (16.0) WILLMANN T0 HBC PAPAR K PRODE 4 (173.0) (16.0) MALLAN T1 CHTR P I-P 71 PK-FAPARD 4 (173.0) (2.0) BALLAN T1 HBC PI+P P1 10 GEV (171.1)<	8/67 9/69 8/69 7/70 5/70 2/71 2/71 2/71 2/71 2/71 2/71 2/71 2/71	R8 N*1/2(1700) INTO (N*(1236)++ PI-)/(P PI+PI-) (P6)/(P5) R8 0.74 0.14 LKXNDER 67 HBC + PP 5.5 BEV/C 11/67 R8 0.74 0.14 LKXNDER 67 HBC + PP 5.5 BEV/C 11/67 R8 0.74 0.13 LKXEIDA 68 HBC + PP 5.5 BEV/C 11/67 R8 1.0 3 KAYKADA 68 HBC + PP 5.5 BEV/C 11/68 R8 1 LESS THAN 0.15 BARNES 69 HBC K-P TO K-P 2271 11/68 R8 1 LESS THAN 0.15 CRENNELL 70 HBC + 171 11/67 11/67 R8 NO EVIDENCE CL=.95 CIR6A 70 HBC + PT 03 PI P 6/70 1670 1670 R8 (1.0) OR MORE CL=.95 BEKETOV 71 HBC + PT 03 PI P 6/70 3712 78 0.75 005556EC 71 RVUE PP,P1-P,F-P PROD 372 R8 0.35 0.20 RUSHBROUKE71 HBC + PT 0 P2 1 166CV 2/72 78 R8 0.35 0.20 RUSHBROUKE71 HBC + PT 0 P2 1 166CV 2/72 78 R9 N=1/2(1700) INTO (SIG K)/(LAMB K) PROD. EXP. 78 400 0.66 0.10 AVERAGE (ERROR 'IN
M C M M M	(1720.) (15.) RONAT 72 HBC PI+P TO 3PI P ANALYSIS GIVES JP = 5/2+ 2 DETERMINE J=5/2+TI5 PROBABLE 3 JP IS PROBABLY 5/2 1 JP CONSISTENT WITH SIL(1700) OR PI1(1780) IN FORMATION A J CONSISTENT WITH 5/2 OR 7/2	2/73* 2/73*	ALEZANUCE 07 KM 124 1284 ALEXANUCEN, BENARY, CZAPEK, + (ME 12 MANN(CERN)) A-BORELL 67 NC 47 232 ALESANDEN, BENARY, CZAPEK, + (ME 12 MANN(CERN)) LEE 67 PR 159 1156 +MOEBS, NGE, SINCLAIR, VANDER VELDE (MICH) ALMEIDA 68 PR 174 1638 +RUSHBROOKE, + (CAVE, DE SY(CERN)) CHINOMSKY, KNSEY, KLEIN, + (LRL, SLAC) GALLOWAY, ALYEA, CATITENDEN, PRICKETT, + (IND) KAYAS 68 NP 85 169 GOLYADEN, YUNAY, ALYEA, CATITENDEN, PRICKETT, + (IND)
			1

Baryons N(1700), N(1780), N(1860)

BARNE BENVE RHODE	S 69 PRL 23 1516 +BASSAND+CHUNG+EISNER+FLAMINTO+KINSON (BNL)IJ NUT 69 PR 187 1852 BENVENUTI, MARQUIT, OPPENHEIMER (MINN,COLO) 69 PR 187 1844 RHODE, LEACOCK, KERNAN, JESPERSEN,+ (ISU)		14 N#1/2(1780) PHOTON DECAY AMPL(GEV#*-1/2) For definition of gamma-mucleon decay amplitudes, see mini- review preceding the baryon listings.
ANDER CIRBA COOPE CRENN KUZNE WILLM	SON TO PRL 25,699 +BLESER, BLEDEDR., COLLINS++ (BNL, CARN) TO NP B23,533 +VANDERHAGEN+ (FOL, DURH, NI, TORI, BONN) R TO NP B23,505 +HANNER, MUSGRAVE, POLLARD, VOYVODIC (ANL) ELI TO PRL 25 187 +LAI, LOUIEF, SCARR, SIMS (BNL) TSOVTO SJNP 10,332 +HELNIKOV, RVLTSEVA, CHADRA, BALINTP (JINR) NN TO PRL 24, 1260 +LAMSA, AGIDOS, EZELL (PURD)IJ		A1 N*1/2(1780) INTO GAM P, HELIGITY=1/2 (GEV#*-1/2) A1 +.026 .028 OBERIACK 72 DPHA PI N PHOTO-PROD 2/73* A1 (061) WALKER 73 DPHA PI N PHOTO-PROD 2/73* A2 N#1/2(1780) INTO GAM N. HELIGITY=1/2 (GEV##-1/2)
AMALD BALLA BEKET	I 71 PL 348 435 +BIANCASTELLI,BOSIO,+ (I SANITA ROMA+CERN) M 71 JPR D4 1946 +CHADWICK,GUIRAGOSSIAN,JOHNSON,++ (SLAC) I V 71 SJNP 13 605		A2 +.027 +.027 OBERIACK 72 DPMA PI N PHOTO-PROD 2/73 A2 (+.052) WALKER 73 DPWA PI N PHOTO-PROD 2/73
BOESE ELLIS MA MORSE	BEC 71 NP B33 445 BOESEBECK,GRAESSLER,KRAUS,+++ (ABBCHLV) I 71 PRL 27 442 +MAGLICH,NOREM,SANNES,SILVERMAN (RUTG) 71 PRL 26 333 +COLTON (MSU+16L) I 71 PRL 46 133 +OH,MALKER,CARROLL,LYNCH + (HISC+TNTO) I		****** ********* ********* ********* ****
EDELS JOHNS	RAD 71 PR D4 3273 RUSHBRODKE,WILLIAMS+BAREFORD++ (CAVE,LOIC) I. TEI 72 PR D5 1073 EDELSTEIN,CARRIGAN,HIEN,MCHHON, +CARN+BNL) TAD 72 NP B42 588 +MOLLERWOH+JACOBSEMISOHR,HELS,OSLO,STOH) I.	JP	DONNACHI 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C LOVELACE (CERNIJP ALSO 68 VIENNA 139 DONNACHIE ARPPORTEUR.S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP RUSH 68 PR 173 1776 J E RUSH (UNIV ALABAMA)
LAMSA OH RONAT	T2 NP B37 364 +WILLMANN+GO, BISMAS+ (PURD, NDAM) I. T2 PL 428 497 +FUNG, KERNAN, POE, SCHALK, SHEN (UCR)IJI T2 NP B38 20 40. +EISENBERG, LYONS, SHAPIRA, TOAFF+ (REHO)	JP P	BOTKE 69 PR 180 1417 J C BOTKE LUCSB DEANS 69 PR 185 1797 S DEANS, J JOOTEN (UNIV S FLORIDA) ORITO 69 LNC 1 93 S ORITO, S SASAKI (TOKYO-OSAKA) ORITO 69 INS J 113 S ORITO (TOKYO)
MERLO	PAPERS NOT REFERRED TO IN DATA CARDS. 66 P ROY SOC 289 489 J P MERLO, G VALLADAS (SACLAY)		AYED 70 KIEV CONF R AYED,P BAREYRE,G VILLET (SACL)IJP CARRERAS 70 NP 168 35 B CARRERAS, A DONNACHIE (DARE,MCHS) DAVIES 70 NP 821 359 A DAVIES (GLAS)
*****			SCHORSCH 70 NP B25 179 +TIETGE,WEILNBOECK (MPIM) WAGNER 71 NP B25 411 F WAGNER, C LOVELACE (CERN)
N	(1780) 14 N*1/2(1780, JP=1/2+) I=1/2 [Pi1] FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N*1/2(1470).		ALMEHED 72 NP 840 157 +LOVELACE (LUND,RUTG)IJP DEANS, 72 PN 3 217 +JACOBS, LYONS, HICKS (U S FL TAMPA+CARN) DBERLACK 72 PL 438 4 H-DBERLACK,R.G.MOQRHOUSE (LBL) WALKER 73 TO BE PUB. R.L.WALKER,W.J.METCALF (CIT)
	14 N*1/2(1780) MASS (MEV)		PAPERS NOT REFERRED TO IN DATA CARDS.
м 3 м	(1751.0) DONNACH1 68 RVUE PHASE-SHIFT ANAL (1640.0) (70.0) DRITO 69 RVUE K LAMBDA PS ANAL	8/69 8/69	DONNAG 66 PN 11/2023 S K DEAMS I DONNAGH 66 PN PLOB 433 A DONNAGHE, R KIRSOPP (GLAS+EDIN) AYED 70 PL 31B 598 +BAREYRE+VILLET (SACLAY)
M 6 M 6	(1700-0) URITUZ 69 CMTK K LAM PHUTUPRU (1645-0) AYED 70 IPWA FROM ENER, DEP. FIT OF ARGAND DIAGRAM	1/71	****** ********************************
M A A	(1100-01) DAVIES TO RVDE P-S ANAL SOL A (1805-0)DR(1740-0) SCHORSCH 70 DPWA K LAM PHOTOPRO. (1665-0)DR(1740-0) WAGNER 71 IPWA PI-P TO K LAMB THERE ARE 3 SIMILAR SOLUTIONS	10/71 1/71	$N(1860) = 15 \text{ N*1/2(1860, JP=3/2+) I=1/2} P_{13}$
M 7	(1720.) ALMEHED 72 IPWA	2/72	PRECEDING N#1/2(1470).
	14 N*1/2(1780) WIDTH (MEV)		
W 3 W W 4	(327.0) DONNACH1 68 RVUE (310.0) (50.0) ORITO 69 RVUE (210.0) ORITO2 69 CNTR K LAM PHOTOPRO	8/69 8/69 10/71	M 3 (1860.0) DONNACH1 68 RVUE PHASE-SHIFT ANAL 6/68 M X (1860.0) APPROX LEA 69 CNTR PI-P ELASTIC 8/69
W 4 W 4 W A	(445.0) ATED TO IPWA (445.0) DAVIES TO RVUE SOL A (280.0) SCHORSCH 70 DPWA K LAM PHOTOPRO. (160.0)08(220.0) WACKEP 71 JPWA PL-D TO K LAMB	8/69 10/71	M X SEE ALSO APLIN 71 M 6 (1766.0) AYED 70 IPHA 1/71 M 6 FROM ENER, DEP. FIT OF ARGAND DIAGRAM
ŵ 7	(160.) ALMEHED 72 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	2/72	M A (1800.0) UAVIES 70 KVUE PFS ANAL SUL A 8769 M A (1800.0) UAVIES 70 KVUE PFS ANAL SUL A 8769 M A (1800.0) UAVIES 70 KVUE A 1711 M A P13 RESONATES ONLY IN ONE OUT OF 3 POSSIBLE SOLUTIONS M 7 (1850.) AUMPHED 72 FVA 2272
	14 N*1/2(1780) PARTIAL DECAY MODES		
P1	DECAY MASSES N#1/2(1780) INTO PI N 139+ 938 N#1/2(1780) INTO LANDA K 139+ 607		15 N#1/2(1860) WIDTH (MEV) W 3 (296-00) DDNNACH1 68 RVJE 8/69
P3 P4 P5	N*1/2(1780) INTO LARDOA 11157 49/ N*1/2(1780) INTO N ETA 9394 548 N*1/2(1780) INTO N GAMMA 9384 0 N*1/2(1780) INTO GAM 0, MELTOTY-1/2 0, 020		W 6 (182.0) AYED 70 IPWA 1/71 W 4 (449.0) DAVIES 70 RVUE SOL A 8/69 W 4 SOL B GIVES 307 MEV 2/73
P6 P7 P8 P9	N#1/2(11780) INTO GAN N; HELICITY=//2 0+ 939 N#1/2(1780) INTO N; H 151 N#1/2(1780) INTO N; FSILON 938+ 600 N#1/2(1780) INTO N; FSILON 938+ 600 N#1/2(1780) INTO N; FNO 938+ 770		W A (220.0) WAGKER 71 IPWA PI-P TO K LAMB 1/71 W 7 (300.) A MARKER 71 IPWA 2/72 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED
			15 N*1/2(1860) PARTIAL DECAY MODES
R1	14 N*1/2(1780) BRANCHING RATIOS N*1/2(1780) INTO (PI N)/TOTAL (P1)		DECAY MASSES P1 N#1/2(1860) INTO PI N 1394 938 P2 N#1/2(1860) INTO LAMBDA K 11154 497
R1 3 R1 6 R1 4	(0.32) DONNACH1 68 RVUE (0.149) AYED 70 IPWA (0.43) DAVIES 70 RVUE	8/69 1/71 8/69	P3 N*1/2(1860) INTO N ETA 939+ 548 P4 N*1/2(1860) INTO N PI PI 938+ 139+ P5 N*1/2(1860) INTO N GAMA 938+ 0
R1 7 R2 R2	(0.2) AREHED /2 IFWA N*1/2(1780) INTO (LAMBDA K)*(PI N)/TOTAL**2 (P2*P1) 0.004 0.003 ORITO 69 RVUE	8/69	P6 N#1/2(1860) INTO N RHO 938+ 770
R2 A R3	. (0.025)OR 0.043 WAGNER 71 IPWA PI-P TO K LAMB N#1/2(1780) INTO (LAMBDA K)/TOTAL (P2)	1/71	15 N*1/2(1860) BRANCHING RATIOS R1 N*1/2(1860) INTO (PI N)/TOTAL (P1)
R3 B R3 B R4	(0.003)TO 0.065 RUSH 68 MPMA T POLE + RESON. PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING N#1/2(1780) INTD (N ETA)/TOTA) (P3)	8/69	R1 3 (0-21) DONNACH1 68 RVUE 8/69 R1 6 (0-149) AYED 70 IPMA 1/71 R1 4 (0-40) DAVIES 70 RVUE SOL A 8/69
R4 B R4 B R4 B R4 B	10.19) 10.09) (0.05) DEANS 69 MPMA T PDLE + RESON- 10.01510R 0.035 CARRERAS 70 MPMA T PDLE + RESON- PARAMETRIZATION USED COULD EE IN DANCER OF DOUBLE COUNTING	10/69 5/70 5/70	R1 J Colored Almene J2 IPWA 2772 R2 N*1/2(1860) INTO (LAMBDA K)/TOTAL (F2) (F2)
R5 R5 R5	N*1/2(1780) FROM N GAMMA TO LAMBDA K SQRT(P2*P4) (0.0027) ORITOZ 69 CNTR K LAM PHOTOPRO (0.0068) SCHORSCH 70 DPWA K LAM PHOTOPRO.	10/71 10/71	R3 N*1/2(1860) INTO (N ETA)/TOTAL R3 B (0.0364) B3 B (0.031) (0.003) BOTKE 69 MPMA T POLE + RESON. 10/69 R3 B (0.003) (0.003) BOTKE 70 MPMA T POLE + RESON. 10/69
R5	(0.0104) DEANS 72 MPWA	1/73*	R3 B 10.0301 DK 0.094 CARREAS 70 MPMA T POLE + RESUN. 5770 R3 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING
			R4 N*1/2(1860) INTO (LAMBDA K)*(PI N)/TOTAL**2 (P2*P1) R4 A (0.015) WAGNER 71 IPWA PI-P TO K LAMB 1/71
			R5 N#1/2(1860) FROM N GAMMA TO LAMBDA K SQRT(P2*P5) R5 (0.008) DEANS 72 MPWA 1/73*
			· ******* ********* ******************

Baryons N(1860), N(1990), N(2040), N(2100)

	REFERENCES FOR N*1/2(1860)		1					[]]		
DONNACH1 68 PL 26B 161 ALSO 68 VIENNA 139 ALSO 68 THESIS RUSH 68 PR 173 1776	A DONNACHIE, R G KIRSOPP, C DONNACHIE RAPPORTEUR.S TAU R G KIRSOPP J E RUSH	LOVELACE (CERN)IJP K (GLAS) (EDIN) (UNIV ALABAMA)		N()	\rightarrow	16 N*1/2(FOR DISCUS PRECEDING	2040; JP=3/2-) I= SION CONCERNING R N*1/2(1470).	ESONANT PA	3 RAMETERS, SEE NOTE	
BOTKE 69 PR 180 1417 DEANS 69 PR 185 1797 LEA 69 PL 29B 584	J C BOTKE S DEANS, J WOOTEN LEA,OADES,WARD,COWAN,+ (RH	(UCSB) (UNIV S FLORIDA) HEL,BRISTOL,DARE)	-			16 NW1/2/	2040) NASS (MEV)			
AYED 70 KIEV CONF Carreras 70 NP 168 35 Davies 70 NP 821 359	R AYED,P BAREYRE, G VILLET B CARRERAS, A DONNACHIE A DAVIES	(SACL)IJP (DARE, MCHS) (GLAS)	, N	43	(2057.0) (2030.)	10 11-17-21	DONNACH1 DONNACH2	68 RVUE 68 RVUE	PHASE-SHIFT ANAL PHAS.SHIFT-CERN1	6/68 10/69
WAGNER 71 NP B25 411	F WAGNER, C LOVELACE	(CERN)		43 43	(2040.) WHERE MAX. (2030.0)	ABSORPTION	IS -DONNACH1, 2	,KIRSOPP E	YEBALL FIT CERN 1 PI-P ELASTIC	10/69 8/69
ALMEHED 72 NP 840 157 DEANS 72 PN 3 217	+LOVELACE +JACOBS, LYONS, HICKS (U PAPERS NOT REFERRED TO IN ((LUND,RUTG)IJP. S FL TAMPA+CARN)	Ň	ч х ч 7	SEE ALSO APL (2075.)	.IN 71	ALMEHED	72 IPWA		2/72
DEANS 69 PR 177 2623	S R DEANS	(UNIV S FLORIDA)				16 N*1/2(2040) WIDTH (MEV)			
AYED 70 PL 318 598	+BAREYRE,VILLET	(SACLAY)		W 3 W 3	(293.0) (290.) (240.)		DONNACH1 DONNACH2 KIRSOPP	68 RVUE 68 RVUE 68 RVUE	PHAS.SHIFT-CERN1 PHASE SHIFT ANAL	8/69 10/69 10/69
APLIN /I NP 832 233	******* ******** *******	********* *******	'	W 7	(150.) SEE THE NOTE	ES ACCOMPANY	ALMEHED ING THE MASSES QU	72 IPWA JOTED.		2/72
	······································	**********	•							
N(1990) 17 N*1/20	(1990, JP=7/2+) I=1/2					16 N*1/2(2040) PARTIAL DEC	AY MUDES	DECAY MASSES	
AYED 72 NO	UW FINDS THIS STATE. SEE TH			P1 P2 P3 P4 P5	N*1/2(2040) N*1/2(2040) N*1/2(2040) N*1/2(2040) N*1/2(2040)	INTO PI N INTO N PI P INTO N ETA INTO LAMBDA INTO N GAMM	I K		139+ 938 938+ 139+ 139 939+ 548 1115+ 497 938+ 0	
M 3 (1983.0)	DONNACH1 68 RVUE	PHASE-SHIFT ANAL								
M 3 (1995.) M 3 WHERE MAX. ABSORPTION M X (2000.0) APPF	KIRSOPP 68 RVUE ISDONNACH1, 2 ,KIRSOPP B ROX LEA 69 CNTR	PHASE SHIFT ANAL 1 YEBALL FIT CERN 1 1 PI-P ELASTIC	.0/69 .0/69 8/69			16 N(1/2(2040) BRANCHING R	ATIOS		
M X SEE ALSO APLIN 71 M 7 (2000.)	ALMEHED 72 IPWA		2/72	R1 R1 3 R1 3 R1 7	N*1/2(2040) (.26) (.15) (0.3)	INTO (PI N)	/TOTAL DONNACH2 KIRSOPP ALMEHED	68 RVUE 68 RVUE 72 IPWA	P1) PHAS.SHIFT-CERN1 PHASE SHIFT ANAL	10/69 10/69 2/72
17 N*1/2	(1990) WIDTH (MEV)			R2 R2 B	N#1/2(2040) (0.)	INTO (N ETA DR 0.009)/TOTAL CARRERAS	70 MPWA	P3) T POLE + RESON.	5/70
W 3 (225.0) W 3 (250.) W 7 (200.)	DONNACH1 68 RVUE KIRSOPP 68 RVUE ALMEHED 72 IPWA	PHASE SHIFT ANAL 1	8/69 8 0/69 2/72 8	R2 B R3	PARAMETRIZ: N*1/2(2040)	ATION USED C FROM N GAMM	OULD BE IN DANGER IA TO LAMBDA K	CF DOUBLE	COUNTING QRT(P4*P5)	
				R3 *****	(0.00)	7) ******* ***	DEANS	72 MPWA	*****	1/73*
17 N*1/2	(1990) PARTIAL DECAY MODES						REFERENCES FOR N	1/2(2040)		
P1 N*1/2(1990) INTO PI N P2 N*1/2(1990) INTO N PI F P3 N*1/2(1990) INTO N ETA	91	DECAY MASSES 139+ 938 938+ 139+ 139 939+ 548		DONNACI DONNACI KIRSOPI	H1 68 PL 26B H2 68 VIENNA P 68 THESIS	161 139	A DONNACHIE, R G DONNACHIE RAPPOR R G KIRSOPP	KIRSOPP, C RTEUR.S TAL	LOVELACE (CERN)IJI K (GLAS) (EDIN)	p
P5 N*1/2(1990) INTO LAMBD/ P5 N*1/2(1990) INTO N GAMP	4 K 1A	938+ 0		LEA	69 PL 29B	584	LEA, OADES, WARD, CO	WAN;+ (R)	EL, BRISTOL, DARE)	
				CARRER.	AS 70 NP 168 D 72 NP 840	35	+LOVELACE	NACHIE	(LUND, RUTG)IJ	Р
17 N*1/2	(1990) BRANCHING RATIOS			DEANS	72 PN 3 2	17	+JACOBS, LYONS, H	HICKS (U	S FL TAMPA+CARNJ	
R1 N*1/2(1990) INTO (PI N) R1 3 (.09) R1 7 (0.15)	I/TUTAL KIRSOPP 68 RVUE ALMEHED 72 IPWA	PHASE SHIFT ANAL 1	0/69	DONNACI	HI 69 NP 108	433	A DONNACHIE, R KI	IR SUPP	(GLAS+EDIN)	
R2 N#1/2(1990) INTO (N ET/ R2 B (0-02) (0-02)	AJ/TOTAL DEANS 69 MPWA	P3) T POLE + RESON.	5/70	AYED APLIN	70 PL 31B 71 NP B3	598 2 253	+BAREYRE,VILLET +COWAN,GIBSON,GIU	LMOR E++	(SACLAY) (RHEL;BRISTOL)	
R2 B PARAMETRIZATION USED (COULD BE IN DANGER OF DOUBLE	COUNTING		******	********* *	******** ***	****** ******	********	********* *****************************	
R3 N*1/2(1990) FRUM N GAM/ R3 (0+003)	MA TU LAMBDA K DEANS 72 MPWA	QR((P4*P5)	1/73*	N((2100)	04 N*1/2(2100, JP=1/2-) I:	-1/2 S	111 ·	
****** ********* *******	******* ******************************	****			\rightarrow	A NEW, P AYED 72 NO	RELIMINARY ENERGY	CEPENDENT	ANALYSIS BY	
DONNACH1 68 PL 26B 161	A DONNACHIE, R G KIRSOPP, G	LOVELACE (CERN)IJP				ABOUT 2200	MEV. SEE THE N	* MINI REV:	(EW.	
KIRSOPP 68 THESIS DEANS 69 PR 185 1797	R G KIRSOPP S DEANS, J WOOTEN	(EDIN) (UNIV S FLORIDA)	<i>i</i> .							
LEA 69 PL 298 584	LEA, OADES, WARD, COWAN,+ (R)	EL, BRISTOL, DARE)		м	(2070.)	04 N*1/2(ROYCHOUD	71 DPWA		3/72
DEANS 72 PN 3 217	+JACOBS, LYONS, HICKS (U	S FL TAMPA+CARN)		м 7 	(2100.)		ALMEHED	72 IPWA		2/72
DEANS 69 PR 177 2623	S R DEANS	(UNIV S FLORIDA)				04 N*1/20	(2100) WIDTH (MEV	}		
AYED 70 PL 31B 598 APLIN 71 NP B32 253 AYED 72 BATAVIA CONF	+BAREYRE,VILLET +COWAN,GIBSON,GILMORE++ R AYED,P BAREYRE, Y LEMOIGN	(SACLAY) (RHEL, BRISTOL) (E (SACL)		W 7	(200.)		ALMEHED	72 IPWA		2/72
****** ********* **********************	****** ******** ********	*****				04 N*1/2	(2100) PARTIAL DE	CAY MODES		
				P1	N*1/2(2100)	INTO PI N			DECAY MASSES 139+ 938	
			-							

Baryons N(2100), N(2175), N(2190)

04 N+1/2(2100) BRANCHING RATIOS R1 7 N+1/2(2100) INTO (PI N)/TOTAL ALMEHED 72 IPWA ***********************************	2/72	N(21	90)	71 N*1/2(ROYCHOUDHUI THIS REGION NANT NEAR	2190, JP=7/2 RY 71 FIND S N.BRANSDEN 7 THIS MASS.	2-) I=1/2 G SOME INDICATIO 1 ALSO FIND P	17 N OF P11 AND F17 IN 11,F15,AND G19 RESO-	
ALMEHED 72 NP 840 157 +LOVELACE (LUND,RUTG)IJP				71 N*1/2(2190) MASS ((MEV)		
AYED 72 BATAVIA CONF R AYED, PAREYRE, Y LEMOIGNE (SACL) $N(2100)$ 05 N*1/2(2100, JP=5/2-) I=1/2 D_{15}^{\prime} A NEW, PRELIMINARY ENERGY DEPENDENT ANALYSIS BY		M M M M M M 6 FRI M M	(2190.0) (2210.0) (2190.0) (2265.0) (2000.0) 2180. (2158.0) OM ENER. [(2260.0) (2160.0)	APPRI 25. DEP. FIT OF (50.0)	DIDD HOHL OX YOKC DON OX LEA ANDE AYEE ARGAND DIAC HULL AMAL	DENS 63 CNTR LER 64 RVUE DSAWA 66 CNTR AGCHI 68 RVUE 69 CNTR 69 FRSON 70 MMS DRAMA 70 MPWA LDI 71 CNTR	PI+- P TOTAL DATA + DISP REL PI- P DSIG + POL PHASE-SHIFT ANAL PI-P ELASTIC - PI- P TO PI- MMS SMALL ANGLE PI-P P P AT 24 GEV	7/66 6/68 8/69 2/71 1/71 1/71 1/71
ABOUT 2005 MEV. SEE THE N* MINI REVIEW.		M M 7 M	(2200.) (2225.) (2190.)		RDYC ALME OTT	CHOUD 71 DPWA EHED 72 IPWA 72 MPWA	O PI-P BKWD ELSTC	3/72 2/72 2/73*
05 N*1/2(2100) MASS (MEV) M 7 (2100.) ALMEHED 72 IPWA	2/72		(200.0)	71 N*1/2(2190) WIDTH DIDC	(MEV) DENS 63 CNTR		
05 N≈1/2(2100) WIDTH (MEV) W 7 (150.) ALMEHED 72 IPWA	2/72	W 3 W 6 W 6 W 7	(220.0) (228.0) 275. (325.0) (239.0) (150.)	APPRI 70.	DX YOKO DOM ANDE AYEE HULL ALME	DSAWA 66 CNTR NACHI 68 RVUE ERSON 70 MMS D 70 IPWA EHED 72 IPWA EHED 72 IPWA	- PI- P TO PI- MMS SMALL ANGLE PI-P	7/66 6/68 2/71 1/71 1/71 2/72
05 N*1/2(2100) PARTIAL DECAY MODES DECAY MASSES P1 N*1/2(2100) INTO P1 N 139+ 938				71 N*1/2(2190) PARTIA	AL DECAY MODES		
05 N+1/2(2100) BRANCHING RATIOS R1 N+1/2(2100) INTO (PI N)/TOTAL (P1) R1 7 (0.2) ALMEHED 72 IPWA	2/72	P1 N*1. P2 N*1. P3 N*1. P4 N*1.	/2(2190) 1 /2(2190) 1 /2(2190) 1 /2(2190) 1	INTO PI N INTO LAMBDA INTO N PI P INTO N GAMM.	K I A		DECAY MASSES 139+ 938 1115+1765 938+ 139+ 139 938+ 0	
******* ********* ********* ********* ****				71 N*1/2(2190) BRANCH	HING RATIOS		
ALMEHED 72 NP B40 157 +LOVELACE (LUND,RUTG)IJP PAPERS NOT REFERRED TO IN DATA CARDS. AYED 72 BATAVIA CONF R AYED,P BAREYRE, Y LEMOIGNE (SACL)		R1 N*1. R1 R1 3 R1 6 R1 R1 7 R1 R1 7	/2(2190) 1 (0.3) (0.3) (0.349) (0.150) (0.09) (0.35) (.25)	INTO (PI N). Appro Appro)	VTOTAL OX OIDO OX YOKO DONN AYEO HULL ALME OTT	DENS 63 CNTR DSAWA 66 CNTR NACH1 68 RVUE D 70 IPWA - 70 MPWA EHED 72 IPWA 72 MPWA	(P1) SMALL ANGLE PI-P O PI-P BKWD ELSTC	7/66 7/66 6/68 1/71 1/71 2/72 2/73*
N(2175) See the NOTE ON N'S AND DELTAS PRECEDING THE BARYON DATA CARD LISTINGS.		R2 N*1. R2 ****** *** DIDDENS 6	/2(2190) + (0.016) ****** *** 3 PRL 10 2	FROM N GAMM. ******* ***	A TO LAMBDA DEAN ****** ***** REFERENCES F +JENKINS, KN	K NS 72 MPWA ***** ******** For N*1/2(2190 /CIA, RILEY	SQRT (P2*P4) * ********* ********) (BNL) I	1/73*
06 N#1/2(2175) MASS (MEV)		HOHLER 6 YOKOSAWA 6	4 PL 12 14 6 PRL 16 1	49 714	G HOHLER, J +SUWA,HILL,E	GIESECKE STERLING, BOD	(KARLSRUHE) I TH (ANL;CHIC) J	P
M 7 (2175.) ALMEHED 72 IPWA	2/72	ALSO 6	8 VIENNA 1 8 THESIS	139	A DUNNACHIE DONNACHIE P R G KIRSOPP	APPORTEUR.S T	ALK (GLAS) (EDIN)	P
06 N*1/2(2175) WIDTH (MEV)		LEA 6	9 PL 29B 5	584 i	LEA,OADES,WA +BLESER,BLTE	ARD,COWAN,+ (RHEL, BRISTOL, DARE)	
W 7 (150.) ALMEHED 72 IPWA	2/72	AYED 7 HULL 7	0 KIEV COM 0 PR D2 11	NF 783	R AYED,P BAF J HULL, R LE	REYRE, G VILLE EACOCK	T (SACL)IJ (ISU)	Ρ
06 N*1/2(2175) PARTIAL DECAY MODES DECAY MASSES		AMALDI 7 BRANSDEN 7 ALSO 7 ROYCHOUD 7	1 PL 34B 1 NP B26 5 0 NP B16 4 1 NP B27 3	435 511 461 1 125 1	+BIANCASTELL ,OGDEN ROYCHOUDHUR1 R K ROYCHOUD	.I,BOSIO,+ (I /,PERRIN,BRANS DHURY,B H BRAN	SANITA ROMA+CERN) (DURH)IJ DEN (DURH)IJ SDEN (DURH)IJ	Р Р Р
PI N*1/212175) INTO PI N 1394 938 P2 N*1/212175) INTO LAMBGA K 11154 497 P3 N*1/212175) INTO LAMBGA K 938+ 0		ALMEHED 7 DEANS 7 OTT 7	2 NP B40 1 2 PN 3 217 2 PL 428 1 2 MCGILL 1	157 7 133	+LOVELACE +JACOBS, LYC +TRISCHUK,VA	DNS, HICKS (AVRA,RICHARDS,	(LUND,RUTG)IJ U S FL TAMPA+CARN) + (MCGI,STLO,IOWA)IJ (MCGI) .	р Р~ Р
06 N≭1/2(2175) BRANCHING RATIOS					PAPERS NOT F	REFERRED TO IN	DATA CARDS.	
R1 N*1/2(2175) INTO (PI N)/TOTAL (P1) R1 7 (0.25) ALMEHED 72 IPWA	2/72	AYED 7	0 PL 318 9	598	+BAREYRE,VIL	LET	(SACLAY)	
R2 N+1/2(2175) FROM N GAMMA TO LAMBDA K SQRT(P2+P3) R2 (0.002) DEANS 72 MPWA	1/73*	BARGER 64 CARROLL 64 CARROLL 64 ERRATU	QUANTUM 6 PRL 16 2 6 PRL 16 2 6 PRL 17 1 M CHANGING	NUMBER DET 913 288 1274 3 THE RATHE	ERMINATIONS V BARGER, D +CORBETT,DAM +CORBETT,DAM R WEAK DETER	NOT REFERRED CLINE MERELL, MIDDLEM MERELL, MIDDLEM RMINATION OF J	TO IN DATA CARDS. (WISC) P AS, + (RHEL,OXF)J- AS, + (RHEL,OXF)J- -L TO +1 (2.)	L
REFERENCES FOR N*1/2(2175) ALMEHED 72 NP B40 157 DEANS 72 PN 3 217 +JACOBS, LYONS, HICKS (U S FL TAMPA+CARN)		KUKMANYO 6 BUSZA 6 ****** *** *****	0 PKL 16 7 7 NC 52A 3 ****** ***	109 331 - ******* ***:	NUKMANYUS,KF +DAVIS,DUFF; ****** *****	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	 (MICH,ANL) P (LOUC,WESTFIELD) ************************************	
****** ******** ******** ********* *****								

Baryons N(2220), N(2650), N(3030), N_?(3245)

		PAPERS NOT REFERRED TO IN DATA CARDS.
N(2220) 90 N*1/2(2220, JP=9/2+1 I=1/2 FOR DISCUSSION CONCERNING RESONANT PRECEDING N*1/2(1470).	A19 PARAMETERS, SEE NOTE	BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE,ORSAY)J-L DOLEN 68 PR 166 1768 R DOLEN, D HORN, C SCHMID (CIT) WAHLIG 68 PR 168 1515 M A WAHLIG (A MANNELLI (MIT,PISA) FINAL VERSION OF DATA USED IN WAHLIG 64. IN CONFUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTERING AMPLITUDE AT 0 DEGREES.
90 N#1/2(2220) MASS (MEV) M (2200.) APPROX. BUSZA 67 OSP M 6 (2221.0) AVED 70 IPM M 6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM M (2245.0) HULL 70 MPM	K LEG.POLYN.ANAL. 2/71 A 1/71 A SMALL ANGLE PI-P 1/71	BRANSDEN 71 NP B26 511 , GOBEN (UURH) JP ALSO 70 NP B16 461 ROYCHOUDHURY, PERRIN, BRANSDEN (DURH) JP ROYCHOUD 71 NP B27 125 R K ROYCHOUDHURY, B H BRANSDEN (DURH) JP ************************************
90 N#1/2(2220) WIDTH (MEV) W 6 (258.0) AYED 70 IPW W (329.0) HULL 70 MPH	A 1/71 A SMALL ANGLE P.I-P 1/71	
90 N+1/2(2220) PARTIAL DECAY MODE P1 N+1/2(2220) INTO PI N P2 N+1/2(2220) INTO PI FTA	S DECAY MASSES 139+ 938 939+ 548	73 N#1/2(3030) MASS (MEV) (PROD. EXP.) M (3080.0) HOHLER 64 RVUE DATA + DISP REL 7/66 M (3030.0) CITRON 66 CNTR PI FORM MASS 1000000000000000000000000000000000000
90 N≉1/2(2220) BRANCHING RATIOS R1 N≉1/2(2220) INTO (PI N)/TOTAL	(P1)	73 N*1/2(3030) WIDTH (MEV) (PROD. EXP.) W (400.0) CITRON 66 CNTR 7/66
RI 6 (0.140) AYED 70 JPW RI (0.15) HULL 70 MPM ******* ******** ******** ******** REFERENCES FOR N*1/2(222	A 1/71 A SMALL ANGLE PI-P 1/71 ** ******** ********	73 N+1/2(3030) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 1054 936 P1 N+1/2(3030) 11394 936 P2 N+1/2(3030) INTO PI N 938+ 139+ 139
BUSZA AYED 67 NC 52A 331 70 KIEV CONF HULL +DAVIS,DUFF,HEYMANN,NIMM R AYED,P BAREYRE, 6 VILL JULL, R LEACOCK NAVED 70 PL 318 598 +BAREYRE,VILLET N(2650) BUMPS 72 N*1/2(2650, JP= -) I=1/2 P ROYCHOUDHURY 71 CLAIM F15(2400) AN POSSIBLE RESONANCES. BRANSDEN 71 F RESONANT CANDIDATES S11(2520) AND	DN + (LDUC+LOWC) CT (SACL)IJP (ISU) DATA CARDS (SACLAY) ** ********* RRODUCTION EXPERIMENTS D 619(240) TO BE IND THE POSSIBLE H19(2590).	73 N*1/2(3030) BRANCHING RATIOS (PROD. EXP.) 73 N*1/2(3030) BRANCHING RATIOS (PROD. EXP.) R1 N*1/2(3030) INTO (PI N)/TOTAL (P1) R1 N*1/2(3030) INTO (PI N)/TOTAL (P1) R1 DNLY (J*1/2)*(PI N/TOTAL) (P1) R1 B (0.088) (0.016) BARGER 66 RVUE TOTAL + CH EXC. 11/67 R1 B (CITRON 66 CHTR TOTAL ROBANSEC: 11/67 R1 B (STRON 66 CHTR TOTAL ROBANSEC: 11/67 R1 B USES REGE AMP-RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE R1 B USES NONACES TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGREES R1 D USES NANCES TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGREES REFERENCES FOR N*1/2(3030) (PROD. EXP.) MCMLER 64 PL 12 149 G HOMLER, J DISECKE (KARLSQUHE) 1 MADEEE 64 PL 12 149 G HOMLER, J DISECKE (KARLSQUHE) 1
72 N*1/2(2650) MASS (MEV) (PROD. M (2700.0) ALVAREZ 64 CNT M (2600.0) HOHLER 64 RVU M (2600.0) APPROX WAHLIG 64 OSP M (2630.0) BARGER 64 FI M 2649.0 10.0 CITRON 66 CNT	EXP.) R PI PHOTOPROD E DATA + DISP REL E DATA + DISP REL K 0 PI-P CH EX TOTAL + CH EX 11/67 R PI+- P TOTAL 7/66	DARDER 66 PR 141 1123 V DARDER, M ULSSUM CITRON 66 PR 144 1101 + 64.DRAITH, WCISALEDNIC, PHILLIPS, + (HSL) I BARGER 67 PR 155 1792 V BARGER, D CLINE (MICH) DIKMEN 67 PRL 18 798 F N DIKMEN PAPERS NOT REFERRED TO IN DATA CARDS KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, + (MICH, ANL) P DOLEN 68 PR 166 1768 R DOLEN, D HORN, C SCHMID (CIT)
72 N*1/2(2650) WIDTH (MEV) (PROD. W (100.0) ALVAREZ 64 CNT W (200.0) HOHLER 64 RVU W (425.0) BARGER 66 FIT W 360.0 20.0 CITRON 66 CNT	EXP.) R 7766 TOTAL + CH EX 11/67 R 7766	Nor(3245) BUMPS BUMPS BUT T4 N*/2(3245, JP= +) PRODUCTION EXPERIMENTS EXISTENCE NOT CONCLUSIVELY ESTABLISHED. I-SPIN NOT DETERMINED, BUT THE NARROW MIDTH PRECLUDES IDENTIFICATION WITH THE N*3/2(3230). ONITIED FROM TABLE.
72 N#1/2(2650) PARTIAL DECAY MODE P1 N#1/2(2650) INTO PI N P2 N#1/2(2650) INTO LAMBDA K P3 N#1/2(2650) INTO N PI PI.	S (PROD. EXP.) DECAY MASSES 139+ 938 1115+ 497 938+ 139+ 139	
72 N*1/2(2650) BRANCHING RATIOS (R1 N*1/2(2650) INTO (PI N)/TOTAL R1 ONLY (J+1/2)*(PI N/TOTAL) MEASURED FOR THIS STA R1 0.4250 (0.018) MEASURED FOR THIS STA R1 0.436 (0.028) CITRON 66 CMT R1 0.430 (0.028) CITRON 66 CMT R1 0.530 DIARGER 67 RVU R1 B USES REGGE AM9.+RESON. TO CALCULATE DIF. CROSS DIARGER 67 RVU R1 D O.0240 DIKNEN 67 RVU N1 USES ONLY RESONANCES TO CALCULATE DIF. CROSS DIARGES COLLEGAS 55	PROD. EXP.) (P1) TE E TOTAL + CH EXC. 11/67 R TOTAL CROSS-SEC. 11/67 E USES KORMANYOSG 11/67 SECTIONS AT 180 DECREE USES KORMANYOSG6 11/67 CIONS AT 180 DECREE	74 N* /2(3245) WIDTH (MEV) (PROD. EXP.) W (35.0) DR LESS KORMANYOS 67 CNTR 6/68 74 N* /2(3245) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES P1 N* /2(3245) INTO PI N 139+ 938
AL VAREZ 64 PRL 12 710 REFERENCES FOR N#1/2(265 ALVAREZ 64 PRL 12 710 +BAR-YAM,RK,ENN,LUCKSCN,FACK HOHLER 64 PRL 12 10 +BAR-YAM,RK,ENN,LUCKSCN,FACK MAHLER 64 PRL 12 10 +BAR-YAM,RK,ENN,LUCKSCN,FACK CITRON 64 PRL 12 10 +MANNELL,SOLECKSCN,FACK CITRON 66 PR.14 101 +CALBRAITH,VCCIN FOR DIKMEN 67 PR.155 1792 V GARGER, G.LINE CLINE DIKMEN 67 PR.164 1661 KORMANYOS, KRISCH, OFALL	<pre>PI-P AT 100 UE0. 11/6/ ** ********* 0) (PROD. EXP.) 0RNE, * (MIT,CEA) LER,WARD, * (MIT,C) ,PHILLIPS, * (BNL) I (MISC) P (MISC) P (MISC) P (MICH,ANL) P</pre>	74 N* /2(3245) BRANCHING RATIOS (PROD. EXP.) R1 N* /2(3245) INTO (PI N)/TOTAL (P1) R1 J IS NOT KNOWN. FOLLOWING IS (J+1/2)*(PI N)/TOTAL (P1) R1 J IS NOT KNOWN. FOLLOWING IS (J+1/2)*(PI N)/TOTAL 6/68 ******* ******** ******** REFERENCES FOR N* /2(3245) (PROD. EXP.) KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, * (MICH, ANL) P ******* ********

S128 Reviews of Modern Physics · April 1973 · Part II

Baryons

N(3690), N₂(3755), $\Delta(1236)$

N(36 BUM	90) PS	75 N¥1/2(A BUMP SE CATED STA A NEW RESI IN TABLE.	3690, JP= EN IN THE INV TE (N + SEVEN ONANCE IT IS) I=1/2 PR ARIANT MASS PIS), SO AS NOT CONCLUSI	ODUCTION EXP OF A VERY CO EVIDENCE FO VE. NOT INC	ERIMENTS MPLI- R LUDED
м	3690.0	75 N*1/2() 10.0	3690) MASS (M BARTK	EV) (PROD. E E 67 HBC	XP.) + PI+P 8 P	RONGS 876
w	50.0	75 N*1/2(30.0	3690) WIDTH (BARTK	MEV) (PROD. E 67 HBC	EXP.)	8/6
P1 N*1.	/2(3690),	75 N*1/2(INTO N + 7	3690) PARTIAL PIS	DECAY MODES	(PROD. EXP. Decay) MASSES
***** ***	***** **	***** ***	****** ****** REFERENCES FO	*** ******** R N*1/2(3690	* **********) (PROD. EXP	******* •)
BARTKE 6	7 PL 248	118	+CZYZEWSKI,DA	NYSZ,+	(CRACOW,	ORSAY) I
N _? (3' BUMI	755) PS 	76 N* /2() A SMALL P 8.4 BEV/C FOR A NEW FROM TABL	3755, JP= EAK IN THE (P PI+ P TO PI+ RESONANCE IT E.) PR P PBARJ INV P P PBAR EV IS NOT CONC	ODUCTION EXP ARIANT MASS ENTS. AS EV LUSIVE. OMI	ERIMENTS FROM IDENCE TTED
м	3755.0	76 N≉ /2(. 8₊0	3755) MASS (M EHRLI	EV) (PROD. E CH 68 HBC	XP•) + PI+ P P	PBAR 6/68
₩	40.0	76 N* /21	3755) WIDTH (MEV) (PROD. CH 68 HBC	EXP.)	6/61
P1 N★	/2(3755)	76 N* /2()	3755) PARTIAL P PBAR	DECAY MODES	(PROD. EXP. DECAY 139+ 938+) MASSES 938+ 938
*****	*****	*****	******* ******	*** *********	* ********	******
FHRLICH A	8 PRL 20	686	R EHRLICH.R .	PLANG.J R W	HITTAKER (RU	• , TGERS)
*****	***** **	****	*****	*** ******	* *****	****
*****	***** **	****	*****	***	* *******	* *****

Comments on the Mass and Width of $\Delta(1236)$

In our last edition, we presented an exhaustive discussion of the relative "uniqueness" of the pole position. On the basis of that study we have entered the pole position in both the Table and the Data Card Listings. We remind the reader of our conclusions.

1) Over a reasonable energy interval on the real axis, <u>all</u> parametrizations of the amplitude are equally good provided:

- a) they fit the data,
- b) they are unitary and have sensible "cut" features (e.g., $\delta_{\ell} \propto q^{2\ell+1}$).

2) For good fits to the same data, the resonance mass and width on the real axis depend upon the parametrization used (background + BW, different BW's, etc.). Indeed, we found that the fitted mass parameter

Data Card Listings For notation, see key at front of Listings.

ranged from 1230 to 1235 MeV, and the width from 109 to 124 MeV. Clearly, it is meaningless for us to

average masses and widths corresponding to either different parametrizations or significantly different sets of data.

3) For good fits to the same data, the pole position is essentially independent of the parametrization.

[∆(1236)	33 N*3/2(1236 CARTER 71 REPO MENTS FOR PI+F COMBINES TOTAL	5, JP=3/2+) I PT NEW PRECI PT-P AND CH CROSS SECTIO A (USED EDE	= 3/2 P	B3 ECTION MEASURE- NGE. THEIR ANALYSIS TH THE PHASE SHIFTS	
	THE CHARGE EXCH OLSON 65 HAS PHASE SHIFTS WI SEE THE ACCO DELTA(1236)*.	IANGE DATA WERE N DONE A SIMILAR TH A FREE OVERAL DMPANYING NOTE,	ANALYSIS ON L NORMALIZAT COMMENTS ON	DLDER DATA ION. THE MASS A	, USING ROPER 65 ND WIDTH OF	
		33 N*3/2(1236) MASS (MEV)		
M M++ M++ M++ M++	(1234.) (1235.) 1236.0 1230.0 AVERAGE MEANIN	0.55 0.6 Igless (scale fac	ROPER ALMEHED OLSSON CARTER	65 DPWA 72 IPWA 65 RVUE 71 MPWA	++O PHASE SHIFT AN. ++ TOTAL-SIGMA DATA ++ PI+P SIG. TOTAL	2/72 1/71
MO	1236.45	0.65	OLSSON CARTER	65 RVUE 71 MPWA	0 0 PI-P SIG. TOTAL	1/71
MO MO	AVERAGE MEAN IN	IGLESS (SCALE FAC	TOR = 4.0)			
		33 N*3/2(1236	5) WIDTH (MEV	,		
W	(120.)	2.0	ROPER ALMEHED	65 DPWA 72 IPWA	++O PHASE SHIFT AN.	2/72
W++ W++	120.0	2.0	CARTER	71 MPWA	++ ++ PI+P SIG TOT.	1/71
W++	AVERAGE MEANIN	IGLESS (SCALE FAC	CTOR = 2.0)			
WO WO	119.6 114.7	2.4 3.0	OL SSON CARTER	65 RVUE 71 MPWA	0 O PI-P SIG TOT.	1/71
WO	AVERAGE MEANIN	IGLESS (SCALE FAG	CTOR = 1.3)			
REF	(1211.)	33 N*3/2(123)	BALL PART	0F POLE PO 72	SITIUN(MEV)	2/73*
REE	P 1211.6 P ERROR EST.	0.7 FROM FITS WITH	PDG SOMEWHAT VAR	72 YING ASSUM	FIT DELTA 33 PTIONS	2/73*
				- 4		
TME		33 N*3/2(123)	5) IMAG PART	OF POLE PO	SITION(MEV)	
IME	P 49.5	33 N*3/2(1230 1.8	5) IMAG PART PDG BALL	OF POLE PO 72 72 72	SITION(MEV) FIT DELTA 33	2/73* 2/73*
I ME	P 49.5 (50.)	33 N*3/2(123) 1.8	5) IMAG PART PDG BALL	OF POLE PO 72 72 FEERENCE (SITION(MEV) FIT DELTA 33	2/73* 2/73*
D. D. D. D. D. D.	R (0.42 R (2.93 R REDUND/	33 N*3/2(123) 1.8 33 (N*0) - (1 5) (0.85) (0.85) INT WITH DATA IN	5) IMAG PART PDG BALL (*++) MASS DI OLSSON CARTER MASS LISTING	OF POLE PO 72 72 FFERENCE (65 RVUE 71 MPWA	SITION(MEV) FIT DELTA 33 MEV) PI+- P SIG.TOT.	2/73* 2/73* 2/71
і ме D D	R (0.42 R (0.42 R (2.91 R REDUND/	33 N*3/2(123) 1*8 33 (N*0) - (1 33 (N*0) - (1 33 (N*5) 10.85) INT WITH DATA IN 	 5) IMAG PART PDG BALL PDG BALL PDG BALL PDG BALL PDG BALL PARTIAL DE 	OF POLE PO 72 72 FFERENCE (65 RVUE 71 MPWA	SITION(MEV) FIT DELTA 33 MEV) PI+- P SIG.TOT.	2/73* 2/73* 2/71
I ME D D D D D P1 P2 P3 P4 P5	R (0.45 R (0.45 R (2.97) R REDUND/ N#3/2(1236) N#3/2(1236) N#3/2(1236) N#3/2(1236)	33 N*3/2(123) 1.8 33 (N*0) - (1 5) (0.85) 10.85) 10.85) 10.85) 10.85) 10.85) 10.85	5) IMAG PART PDG BALL (*++) MASS DI OLSSON CARTER MASS LISTING 5) PARTIAL DE DN, HELICITY= DN, HELICITY=	OF POIE PO 72 72 FFERENCE (65 RVUE 71 MPHA	SITION(MEV) FIT DELTA 33 	2/73* 2/73* 2/71
D. D. D. D. D. D. D. D. D. D. D. D. D. D	R (0.45 R (0.45 R (2.9) R REDUND R REDUND N#3/2(1236) N#3/2(1236) N#3/2(1236)	33 N*3/2(123) 1.8 33 (N*0) - (1 5) (0.85) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95) 10.95 1	5) IMAG PART PDG BALL (*++) MASS DI OLSSON CARTER MASS LISTING CARTER MASS LISTING CARTER MASS LISTING CARTER MASS LISTING S) PARTIAL DE S) BRANCHING S) BRANCHING	0F POI E PO 72 72 FFERENCE (65 RVUE 71 MPMA CAY MODES 1/2 3/2 RATIOS	SITION(MEV) FIT DELTA 33 MEV) PI+- P SIG.TOT. DECAY MASSES 938+ 139 938+ 139 938+ 139 0938+ 139	2/73* 2/73* 2/71
IME D. D. D. D. D. D. D. D. D. D. D. D. D.	R (0.44 R (2.9) R REDUND/ N*3/2(1236) N*3/2(1256) N*3/2(1256) N*3/2(1256) N*3/2(1256) N*3/2(1256) N*3/2(1256) N*3/2(1256) N*3/	33 N*3/2(123(1.8 33 (N*0) - (1 5) (0.85) (0.85) 10.85)	 S) IMAG PART PDG BALL V*++) MASS DI OLSSON CARTER MASS LISTING S) PARTIAL DE DN, HELICITY= DN, HELICITY= S) BRANCHING ((N P1) (PERC DALITZ BERENDS 	ор РОІ Е РО 72 72 72 65 RVUE 71 МРНА	SITION(MEV) FIT DELTA 33 	2/73* 2/73* 2/71 2/71 7/68 10/71
1 ME 0 0 0 0 0 0 0 0 0 0 0 0 0	R (0.4 R (2.9) R REDUND/ N*3/2(1236) N*3/2(1256) N*3/2(1266) N*3/2(1266) N*3/2(1266) N*3/2(1266) N*3/2(1266) N*3/2(1266) N*3/2	33 N*3/2(123(1.8 33 (N*0) - (1 5) (0.85) (0.85) 10.05) 10.05) 33 N*3/2(123(11NTO N GAMAA 11NTO GAM NUCLE(11NTO GAM NUCLE(11NTO GAMA), 33 N*3/2(123(11NTO GAMA), 0.025 20.0316 AV(S) IMAG PART PDG BALL PDG BALL PDG BALL PDG BALL PASS LISTING S) PARTIAL DE PARTIAL DE PARTIAL DE S) BRANCHING ((N P1) (PERC BERENDS PRAGE (ERROR 	0F POI E PO 72 72 72 72 72 72 FFERENCE (65 RVUE 71 MPHA 65 RVUE 71 MPHA 71 MPHA CAY MODES 3/2 72 RATIOS 66 RVUE 71 IPWA 106 RVUE 71 IPWA 71 IPWA	SITION(MEV) FIT DELTA 33 	2/73* 2/73* 2/71 2/71 7/68 10/71

Baryons Δ(1236), Δ(1650), Δ(1670)

Baryons Δ(1670), Δ(1690), Δ(1890)

***	3 6 4 7	10 N+3/2(1670) WIDTH (MEV) (269.0) DONNACH1 68 RVUE (258.0) AYED 70 IPWA (188.0) DAVIES 70 RVUE (260.1) ALMEHED 72 IPWA (260.1) SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	SOL A	8/69 1/71 8/69 2/72	R2 R2 1 R2 1 R2 1 ****	N*3/2(1690) (.0000 ASSUME MODEL U	I INTO (K SIG D2)OR LESS MASS, WIDTH, JSED MAY DDUE	GMA)/TOTAL FEUERBACH X(ELAST) OF DONN SLE COUNT. ******* ********** REFERENCES FOR N*	(H 70 RVUE NACHIE 68 **********	P2) PI P TO K+ SIG+	7/70
		10 N*3/2(1670) PARTIAL DECAY MODES			DONNAC KIRSOP	H2 68 VIENNA P 68 THESIS	139	DONNACHIE RAPPOR R G KIRSOPP	RTEUR'S TAL	K (GLAS) (EDIN)	
Р1		N#3/2(1670) INTO PI N 1	DECAY MASSES		AYED	70 KIEV C	ONF	R AYED, P BAREYRE	G VILLET	(SACL)IJP	•
P2 P3		N#3/2(1670) INTO N PI PI N#3/2(1670) INTO K SIGMA N#3/2(1670) INTO CAN NUCLEON DELICITY-1/2	38+ 139+ 139 93+1189		ALMEHE	D 72 NP 840) 157	+LOVELACE		(LUND,RUTG)IJP	•
P4 P5 P6		N*3/2(1670) INTO GAM NOCLEON, HELICITY=3/2 N*3/2(1670) INTO GAM NUCLEON, HELICITY=3/2 N*3/2(1670) INTO N*3/2(1236) PI 12	0+ 938 0+ 938 236+ 139					PAPERS NOT REFERE	RED TO IN D	ATA CARDS.	
					AYED BOWLER	70 PL 318 70 NP 178	3 598 3 331	+BAREYRE, VILLET +CASHMORE		(SACLAY) (U. OXFORD)	
		10 N*3/2(1670) BRANCHING RATIOS	,		*****	*******	*****	*****	******	****	
R1 R1 R1 R1	3 6 4 7	10.14) DONNACH1 68 RVUE 10.217) AYED 70 IPMA (0.12) DAVIES 70 RVUE (0.16) ALMEHED 72 IPMA	SOL A	8/69 1/71 8/69 2/72	Δ(1890)	11 N*3/2(1890, JP≂5/2+) I=	-3/2 F 3	5	
R2 R2 R2 R2	1 1 1	N*3/2(1670) INTO (K SIGMA)/TOTAL (P3 (.00002)DR LESS FEUERBACH 70 RVUE ASSUME MASS, WIDTH, X(ELAST) OF DONNACHIE 68 MODEL USED MAY DOUBLE COUNT.) PI P TO K+ SIG+	7/70			PRECEDING	SSION CONCERNING F N*1/2(1470).		RAMETERS,SEE NOTE	
					м з	(1913.0)	11 N*3/2(1890) MASS (MEV)	68 8VUE	PHASE-SHIFT ANAL	8/69
		10 N*3/2(1670) PHOTON DECAY AMPL(GEV**	-1/2)		M 6 M 6	(1837.0) FROM ENER.	DEP. FIT OF	AYED ARGAND DIAGRAM	70 IPWA		1/71
	1	REVIEW PRECEDING THE BARYON LISTINGS.	CE MINI-		M 4 M 7 M	(1875.) (1890.0)		ALMEHED MEHTANI	70 RVUE 72 IPWA 72 DPWA	P-S ANAL SUL A PI+P TO D1236 PI	8/69 2/72 1/73*
A1 A1		N*3/2(1670) INTO GAM NUCLEON, HELICITY=1/2 (GEV**-1/ +.068 .042 OBERLACK 72 DPWA	2) PI N PHOTO-PROD	2/73*							
A2 A2		N*3/2(1670) INTO GAM NUCLEON, HELICITY=3/2 (GEV**-1/ +.022 .052 OBERLACK 72 DPWA	2) PI N PHOTO-PROD	2/73*	w a	(350.0)	11 N*3/2(1890) WIDTH (MEV)	68 PV/1E		9/40
***	****	********** ****************************	*****		W 6	(198.0) (136.0)		AYED DAVIES	70 IPWA 70 RVUE	SOL A	1/71 8/69
DOM	INAC	HI 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C L	OVELACE (CERN)IJ	P	Ψ,	(300.0) SEE NOT	ES ACCOMPANY	MEHTANI YING MASSES QUOTED	72 DPWA 72 DPWA AS FOR N*	PI+P TO D1236 PI 1/2(1910)	1/73*
	AL AL	SO 68 VIENNA 139 DONNACHIE RAPPORTEUR'S TALK SO 68 THESIS R G KIRSOPP	(GLAS) (EDIN)								
DAV FEL	ED /IES JERB.	70 KIEV CONF R AYED,P BAREYRE, G VILLET 70 NP B21 359 A DAVIES AC 70 NP 16B 85 FEUERBACHER+HOLLADAY	(SACL)IJF (GLAS) (VANDERBILT)	•			11 N*3/2(1890) PARTIAL DEC	AY MODES	DECAY MASSES	
AL		0 72 NP 840 157 +LOVELACE	(LUND, RUTG) I JA	P	P1 P2	N*3/2(1890) N*3/2(1890)	INTO PI N INTO N PI P	1		139+ 938 938+ 139+ 139	
		PAPERS NOT REFERRED TO IN DAT	A CARDS.		P4 P5	N*3/2(1890) N*3/2(1890)	INTO N*3/20 INTO GAM NU	1236) PI JCLEON, HELICITY=1	1/2	493+1189 1236+ 139 0+ 938	
DOM AYE BOM	INACI D ILER	HI 69 NP 10B 433 A DONNACHIE, R KIRSOPP 70 PL 31B 598 +BAREYRE,VILLET 70 NP 17B 331 +CASHMORE	(GLAS+EDIN) (SACLAY) (U. OXFORD)		P6 P7	N*3/2(1890) N*3/2(1890)	INTO GAM NU INTO N RHO	JCLEON, HELICITY=3		0+ 938 938+ 770	
***	****	******** ******************************	****				11 N*3/2(1890) BRANCHING F	RATIOS		
*** Г	***		******* ********		R1 R1 3	N*3/2(1890) (0.16	INTO (PI N)	/TOTAL DONNACH1	68 RVUE	P1)	8/69
Ľ	Δ(1690) 19 N*3/2(1690, JP=3/2+) I=3/2	3		R1 6 R1 4 R1 7	(0.14 (0.20 (0.18	97) 93 93	AYED DAVIES ALMEHED	70 IPWA 70 RVUE 72 IPWA	SOL A	1/71 8/69 2/72
	_	FOR DISCUSSION CONCERNING RESONANT PARA PRECEDING N*1/2(1470).	METERS,SEE NOTE		R2 R2 1	N*3/2(1890) (0.00	INTO (K SIG	MAJ/TOTAL FEVERBACH	1 70 RVUE	P3) PIPTOK+SIG+	7/70
		19 N*3/2(1690) MASS (MEV)			R2 1 R2 1	ASSUME MODEL U	MASS, WIDTH, JSED MAY DOUE	X(ELAST) OF DONN BLE COUNT.	ACHIE 68		
м	3	(1690.) DONNACH2 68 RVUE	PHAS.SHIFT-CERN1	10/69	R3 .R3	N*3/2(1890) (.00	INTO (SIGMA 16)OR LESS	K)*(PI N)/TOTAL≮ KALMUS	**2 (1 70 DPWA	P3*P1) PI+P TO K+ SIG+	1/71
M	3	WHERE MAX. ABSORPTION IS -DONNACH1, 2 ,KIRSOPP EYEB (1801.0) AYED 70 IPWA	ALL FIT CERN 1	10/69 1/71	R4 R4	N*3/2(1890) (0.23	FROM PIN	TO D(1236) PI MEHTANI	T2 DPWA	2RT (P1*P4)	1/73*
M	7	(1680.) ALMEHED 72 IPWA		2/72							
		19 N*3/2(1690) WIDTH (MEV)					11 N*3/2(1890) PHOTON DECA	AY AMPLIGEV	**-1/2)	
W	3	(281.) DONNACH2 68 RVUE	PHAS.SHIFT-CERN1	10/69		REVIEW PRECE	DING THE BAR	YON LISTINGS.			
W. W	6 7	(598.0) AYED 70 IPWA (220.) ALMEHED 72 IPWA	THASE SHITT ANAL	1/71 2/72	AL	(+.04	14)	WALKER	73 DPWA	PI N PHOTO-PROD	2/73*
					A2 A2	N*3/2(1890) (02	INTO GAM NU 7)	WALKER	73 DPWA	PIN PHOTO-PROD	2/73*
		19 N*3/2(1690) PARTIAL DECAY MODES	DECAY MASSES		*** ***	********	******	******* ******************************	*********	******	
P1 P2		N*3/2(1690) INTO PI N 1 N*3/2(1690) INTO K SIGMA 4	39+ 938 93+1189			H1 68 PL 268 SO 68 VIENNA	161	A DONNACHIE, R G	KIRSOPP, C	LOVELACE (CERN)IJP	
					AL	SO 68 THESIS		R G KIRSOPP	0 WILL 07	(EDIN)	
R1 R1 R1	3 3	N*3/2(1690) INTO (PI N)/TOTAL (.10) DONNACH2 68 RVUE (.08) KIRSOPP 68 RVUE	} PHAS.SHIFT-CERN1 PHASE SHIFT ANAL	10/69 10/69	DAVIES FEUERB KALMUS	70 NP B21 AC 70 NP 168 70 PR B2	359 85 1824	A DAVIES FEUERBACHER+HOLLA G KALMUS, G BORRE	DAY ANI, J LOU	(SACLJIJP (GLAS) (VANDERBILT) IE (LRL)	
R1 R1	6 7	(0.135) AYED 70 IPWA (0.1) ALMEHED 72 IPWA		1/71 2/72	ALMEHE MEHTAN WALKER	D 72 NP B40 I 72 PRL 29 73 TO BE	157 1634 PUB.	+LOVELACE +FUNG, KERNAN, SC R.L.WALKER,W.J.ME	HALK, + TCALF	(LUND,RUTG)[JP (UCR +LBL) (CIT)	

Baryons Δ(1890), Δ(1910), Δ(1950)

	PAPERS NOT REFE	RRED TO IN DATA CARDS.		I.		83	N*3/2(1950) WIDTH (ME	v)		
AYED ******	70 PL 31B 598 +BAREYRE+VILLET	(SACLAY) * *******		W W W 1	(170,0) (200.0) (180.0)		APPROX	DUKE YOKOSAW BAREYRE	65 CNTR 66 CNTR 68 RVUE		7/66 7/66 11/67
Δ(1910) 12 N*3/2(1910, JP=1/2+) For Discussion concerning preceding N*1/2(1470).	I=3/2 P31 RESONANT PARAMETERS, SEE NOTE		W 3 W 6 W 4 W W W 7 W	(221.0) (197.0) (221.0) (300.0) (227.) (200.) (269.0) SEE THE NOT	(60 (12 TES ACC	0.0) 2.) (30. COMPANYING	DONNACH AYED DAVIES KALMUS MEHTANI ALMEHED MEHTANI THE MASSES	1 68 RVUE 70 IPWA 70 RVUE 70 DPWA 71 MPWA 72 IPWA 72 DPWA QUOTED.	SOL A PI+P TO K+ SI ++ PI+P TO (1236) PI+P TO D1236	6/68 1/71 8/69 5+ 1/71 PI 2/72 2/72 PI 1/73*
M 3 M 6 M 6 M 4 M 7	12 N#3/2(1910) MASS (MEV (1934.0) DONNACH (1783.0) AYED FROM ENER. DEP. FIT OF ARGAND DIAGRAM (1914.0) AVIES ALMEMED) 1 60 RVUE PHASE-SHIFT ANAL 70 RVUE P-S ANAL SOL A 72 IPHA	8/69 1/71 8/69 2/72	P1 P2 P3 P4 P5 P6	N*3/2(1950) N*3/2(1950) N*3/2(1950) N*3/2(1950) N*3/2(1950) N*3/2(1950)	83 INTO INTO INTO INTO INTO INTO	N*3/2(1950 PI N SIGMA K N*3/2(123) Y*1(1385). N*3/2(1236) N*3/2(1236) N*3/2(1236)) PARTIAL D 5) PI K 5) RHO (+ PI+	ECAY MODES	DECAY MASSE: 139+ 938 1189+ 493 1236+ 139 1384+ 493 1236+ 770 939+ 139+ 139	5
W 3 W 6 W 4 W 7	12 N+3/2(1910) WIDTH (ME (339-0) DONNACH (308-0) AVED (290-1 DAVIES 1200-1 ALMEHED SEE NOTES ACCOMPANYING MASSES QUOT	V) 1 68 RVUE 70 IPWA 70 RVUE SOL A 72 IPWA ED	8/69 1/71 8/69 2/72	P7 P8 P9 P10	N*3/2(1950) N*3/2(1950) N*3/2(1950) N*3/2(1950) N*3/2(1950)	INTO INTO INTO INTO 83	N*3/2(123 GAM NUCLEO GAM NUCLEO N RHO N*3/2(1950	5) PI PI (NO DN, HELICITY DN, HELICITY 	T RHO) = 1/2 = 3/2 	1236+ 139+ 139 0+ 938 0+ 938 938+ 770	
P1 P2 P3 P4 P5	12 N*3/2(1910) PARTIAL D N*3/2(1910) INTO PI N N*3/2(1910) INTO N PI PI N*3/2(1910) INTO K SIGHA N*3/2(1910) INTO N*3/2(1236) PI N*3/2(1910) INTO N*3/2(1236) PI N*3/2(1910) INTO N*3/2(1236) PI	ECAY MODES DECAY MASSES 139+ 98 938+ 139+ 139 493+139 1236+ 139 =1/2 0+ 98		R1 R1 R1 1 R1 3 R1 6 R1 4 R1 7	N*3/2(1950) (0.41 (0.57 (0.36 (0.46 (0.45 (0.45 (0.45 (0.45 (0.41 SEE THE NOT	INTO 1) 7) 86) 96) 1) 1) TES ACC	(PI N)/TO APPROX COMPANYING	TAL DUKE YOKOSAW BAREYRE DONNACH AYED DAVIES ALMEHED THE MASSES	65 CNTR 66 CNTR 68 RVUE 1 68 RVUE 70 IPWA 70 RVUE 72 IPWA QUOTED.	(P1) VERY ENERGY D	EP 7/66 7/66 11/67 6/68 1/71 8/69 2/72
P6	N*3/2(1910) INTO N RHO 12 N*3/2(1910) BRANCHING N*3/2(1910) INTO (PI N)/TOTAL	938+ 770 	874.9	R2 R2 R2 1 R2 1 R2 1 R2 1 R2 R2	N*3/2(1950) SEE (0.00 ASSUME MODEL U 0.00 N*3/2(1950)) INTO EN D4) (1 MASS, USED MA D81 (1) ERD	(SIGMA K) 0.008) WIDTH, X(AY DOUBLE 0.0013 M PI N TO	<pre> *(PI N)/TOTA BORREAN FEUERBA ELAST) OF DO COUNT. KALMUS D(1236) PI</pre>	L**2 I 68 HBC CH 70 RVUE NNACHIE 68 70 DPWA	(P2*P1) PI+P 1.35-1.6 PI P TU K+ SI PI+P TO K+ SI SQRT(P1*P3)	8 10/69 G+ 7/70 G+ 1/71
R1 6 R1 4 R1 7 R2 R2 1 R2 1	(0.128) AYED (0.18) DAVIES (0.33) ALMEHED (0.33) ALMEHED (0.008)OR LESS FEUERBA ASSUME MASS, WIDTH, X(ELAST) OF DO	70 IPHA 70 RVUE SOL A 72 IPWA (P3) CH 70 RVUE PI P TO K+ SIG+ NNACHIE 68	1/71 8/69 2/72 7/70	R3 R3 R3 R3 R3 A	0.23 0.24 (0.44 VG 0.23 ORE INFORMAT	3 4 8) 38	0.04 0.01 0 	FUNG MEHTANI MEHTANI ERAGE (ERROR DECAY MODES	68 HBC 71 MPWA 72 DPWA INCLUDES OF BUMPS,	++ PI+P TO PI+PI ++ SCALE FACTOR OF 1 SEEN IN PRODUCTI	0 P 11/68 2/72 1/73* .0) ON
A1 A1	12 N*3/2(1910) PHOTON DE FOR DEFINITION OF GAMMA-NUCLEON DECAY REVIEW PRECEDING THE BARYON LISTINGS. N*3/2(1910) INTO GAM NUCLEON, HELICITY (027) WALKER	CAY AMPL(GEV*+-1/2) AMPLITUDES, SEE MINI- =1/2 (GEV*+-1/2) 73 DPWA PI N PHOTO-PROD	2/73*	A1 A1 A2	FOR DEFIN REVIEW PREC N*3/2(1950 (0) N*3/2(1950)	83 ITION EDING) INTO 59)) INTO	N*3/2(195 OF GAMMA-N THE BARYON GAM NUCLE GAM NUCLE	D) PHOTON DE JCLEON DECAY LISTINGS. ON, HELICITY WALKER ON, HELICITY	CAY AMPL(G AMPLITUDE (=1/2 (GEV* 73 DPWA (=3/2 (GEV*	EV**-1/2) S, SEE MINI- *-1/2) PI N PHOTO-PR *-1/2)	 0D 2/73≉
	REFERENCES FOR	N*3/2(1910)		A2 *****	(0)	89) ******	*** *****	WALKER	73 DPWA	PIN PHOTO-PR	OD 2/73* ***
	H1 68 PL 26B 161 A DONNACHIE, R SO 68 VIENNA 139 DONNACHIE RAPP SO 68 THESIS R 6 KIRSOPP	G KIRSOPP, C LOVELACE (CERN)IJ ORTEUR'S TALK (GLAS) (EDIN)	Р				REF	ERENCES FOR	N*3/2(1950)	
AYED DAVIES FEUERB ALMEHE WALKER	70 KIEV CONF R AYED, P BAREYR 70 NP 621 359 A DAVIES 70 NP 168 85 FEUERBACHER+HOL 0 72 NP 840 157 +LOVELACE 73 TO P P NB. MAKER, H.J.	E, G VILLET (SACL)IJ (GLAS) LADAY (VANDERBILT) (LUND,RUTG)IJ METCALF (CIT)	P P	DUKE YOKOS BAREY BORRE DONNA	65 PRL 1 AWA 66 PRL 10 RE 68 PR 16 ANI 68 UCRL CH1 68 PL 26 LSO 68 VIENN	5 468 6 714 5 1731 18350 B 161 A 139	+JO +SU BO A D DON	NES,KEMP,MUR WA, HILL, ES AREYRE, C BR RREANI,KALMU ONNACHIE, R NACHIE RAPP	PHY,PRENTI STERLING, B RICMAN, G V JS G KIRSOPP, PORTEUR'S T	CE, + (RHEL,OXF DOTH (ANL,CHIC VILLET (SACLAY (LRL C LOVELACE (CERN ALK (GLAS)IJP)IJP)IJP))IJP)
CARYAN A AYED	PAPERS NOT REFE N 65 PR 138 B433 CARAYANNOPOULOS PARTIAL WAVE ANALYSIS OF P1+P TO SIGMA* TO PL 318 598 +BAREYRE+VILLET	RRED TO IN DATA CARDS. ,TAUTFEST,WILLMANN (PURD) .K+ (SACLAY)		FUNG AYED DAVIE FEUEF KALMU	LSO 68 THESI 68 VIENN 70 KIEV 55 70 NP B2 8BAC 70 NP 16 15 70 PR D2	S A CONF CONF 1 359 B 85 1824	R G FUN R A A D FEU G K	KIRSOPP G, KERNAN, K YED,P BAREYR AVIES ERBACHER+HOL ALMUS, G BOR	CALMUS, BIR RE, G VILLE LLADAY RREANI, J L	(EDIN GE (RIVERSIDE,LRL T (SACL (GLAS (VANDERBILT OUIE (LRL) j)IJP)))
Δ(1950) 83 N*3/2(1950, JP=7/2+) FOR DISCUSSION CONCERNING	I=3/2 F37		MEHTA ROYCH ALMEH MEHTA WALKE	NI 71 AMSTE HOUD 71 NP B2 HED 72 NP B4 NI 72 PRL 2 R 73 TO BE	RDAM C 7 125 0 157 9 1634 PUB.	0NF• +FU R K +LO +FU R•L	NG,KERNAN,WI ROYCHOUDHUR VELACE NG, KERNAN, •WALKER,W.J.	SCHALK, +	SIRGE,++ (UCR,LBL ISDEN (DURH (LUND,RUTG (UCR +LBL (CIT)IJP)IJP)IJP))
M M M 1 M 3 M 6	FUK DISLOSSION CURCERNING PRECEDING N#1/2(1470). B3 N#3/2(1950) MASS (MEV (1920.0) DUKE (1920.0) DUKE (1920.0) APPROX WHERE CROSS SECTION IS GREAT 1976.0) (1975.0) APPROX WHERE CROSS SECTION IS GREAT 19940.0)	65 CNTR PI-P EL + POL 65 CNTR PI-P EL + POL 66 CNTR PI-P DSIG + POL 68 RVUE PHASE-SHIFT ANAL EST - EYEBALL FIT 1 68 RVUE PHASE-SHIFT ANAL 70. IPWA	6/68 7/66 11/67 6/68 1/71	HOHLI LAYSO AUVII HELL/ HOHLI HOLLJ JOHNY AYED	R 63 NP 48 NN 63 NC 27 64 NC 33 NN 64 PR 13 R 64 PL 12 OAY 65 PR 13 SON 67 UCRL- CHI 69 NP 10 70 PL 31	470 724 473 4 B106 149 9 B134 17683 B 433 B 598	PAP GH WP A 2 +DE GH B WG THESIS CH A C +BA	ERS NOT REFE OHLER, G EBE UAYSON UVIL, C LOVE VLIN,HAGGE,I OHLER, J GII HOLLADAY I JOHNSON ONNACHIE, R REYRE+VILLET	ERRED TO IN EL ELACE LONGO, MOYER ESECKE KIRSOPP T	I DATA CARDS. (KARLSRUHE (CER (CER (CER (LR (KARLSRUHE (VANDERBIL) (LR (CLAS+EDIN (SACLA)) I) IJ) IJ) IJ) IJ)))
M 6 M 4 M M M 7 M	FROM ENER. DEP. FIT OF ARGAND DIAGRAM (1935.0) DAVIES (1950.0) (30.0) KALMUS (1930.1) (20.1) MEHTANI (1930.1) (20.2) MEHTANI (1930.2) LANGHER ROYCHOL (1920.2) ALMENEE MEHTANI	70 RVUE P-S ANAL SOLA 70 DPWA PI+P TO K+ SIG+ 71 MPWA ++ PI+P 1.8-2.1 GEV 10 71 DPWA 72 IPWA 72 DPWA PI+P TO D1236 PI	8/69 1/71 2/72 3/72 2/72 1/73*	****	** ********	*****	*** *****	***	** *****	<i>«******</i> ** *****	***
			· .	1.5.5							

Baryons

W W W J

MMMM

P1 P2 P3 P4 P5 P6 P7

 $\Delta(1960), \Delta(2160)$

70 N*3/2(1950) BRANCHING RATIOS (PROD. EXP.) Δ(1960) N*3/2(1950) INTO (PI N)/TOTAL (P1) (0.57) (0.12) DEVLIN 65 CNTR 13 N*3/2(1960, JP=5/2-) I=3/2 R1 R1 A NEW PRELIMINARY ANALYSIS BY AYED 72 FINDS EVIDENCE FOR THIS EFFECT AT 1870 NEV. SEE THE N* MINI REVIEW. R2 R2 N*3/2(1950) INTO (SIGMA K)/(PI N) (P2)/(P1) 0.059 0.024 CHINOWSKY 68 HBC ++ PP TO P SIG K 11/68 N*3/2(1950) INTO N*3/2(1236) PI PI (NOT RHO) (P7) SEEN CHINOWSKY 68 HBC ++ PP TO (P 3PI) N 11/68 SEEN BOGGILD 70 HBC PP TO N3PI(NTRL) 6/70 R3 R3 R3 N 3/2(1950) INTO (PI N)/(N*3/2(1236) PI) (P1)/(P3) (0.55) OR LESS LEE 67 HBC PI-P 3.63 BEV/C 11/67 13 N#3/2(1960) MASS (MEV) R4 R4 (1954.0) DONNACH1 68 RVUE PHASE-SHIFT ANAL 6/68 (1970.1) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 (1950.0) APPROX LEA 69 CNTR PI-P ELASTIC 8/69 JEE ALSO APLIN 70 WHERE MAX. ABSORPTION IS -DONNACH1, 2 KIRSOPP EYEBALL FIT CERN 1 10/69 2/72 (1824.0) ALMEHED 72 IPHA 2/72 N*3/2(1950) INTO ((PI N)*(NEUTRON PI+ PI+)/TOTAL**2 (P1*P6) 0.05 0.013 GALLOWAY 68 RVUE ++ PI+P TO N 2PI+ 6/68 3 3 X X 3 7 R5 R5 R5 SEE N*3/2(1950) INTO (Y*1(1385) K)/(PI N) (P4)/(P1) 0.035 0.015 CHINOWSKY 68 HBC ++ PP TO P LAM K PI 11/68 R6 R6 2/72 PI+P TO D1236 PI 1/73* N*3/2(1950) INTO (N*3/2(1236) RHOJ/(PI N) (P5)/(P1) (0.45) APPROX CHINOWSKY 68 HBC ++ PP TO (P 3P1) N 11/68 THIS INCLUDES CORRECTION FOR UNSEEN DECAY (ISPIN FACTOR 5/3). R7 R7 R7 13 N*3/2(1960) WIDTH (MEV) R 8 R 8 R 8 N*3/2(1950) INTO (N*3/2(1236) RHO)/TOTAL (P5) SEEN YOON 67 HBC + 8/67 NOT SEEN BUGGILD 70 HBC PP TO N3PI(NTRL) 6/70 DONNACH1 68 RVUE KIRSOPP 68 RVUE ALMEHED 72 IPWA MEHTANI 72 DPWA (311.00) 3 3 7 8/69 PHASE SHIFT ANAL 10/69 (400.) (600.) (138.0) 2/72 PI+P TO D1236 PI 1/73* REFERENCES FOR N*3/2(1950) (PROD. EXP.) 13 N#3/2(1960) PARTIAL DECAY MODES * R COOL, O PICCIONI, D CLARK (BNL) I +DETOEUF,FALK-VAIRANT,VAN ROSSUM,+ (SACLAY) I T J DEVLIN,J SOLOMON,G BERTSCH (PRINCETON) I +MOEBS,ROG,SINCLAIR,VANDER VELDE (MICH) +BERENYI,KEY,PRENTICE, + (TORONTO, HISC) COOL 56 PR 103 1082 BRISSON 61 NC 19 210 DEVLIN 65 PRL 14 1031 LEE 67 PR 159 1156 YOON 67 PL 24B 307 DECAY MASSES 139+ 938 493+1189 1236+ 139 N*3/2(1960) INTO PI N N*3/2(1960) INTO K SIGMA N*3/2(1960) INTO N*3/2(1236) PI P1 P2 P4 CHINOWSKY,CONDON,KINSEY,KLEIN,* (LRL,SLAC) S U CHUNG,DAHL,KIRZ,MILLER (LRL) K F GALLOWACOBSEN* (BOHR+ HELS*OSLO+STOH) +KOREA-AHD+JACOBSEN* (BOHR+ HELS*OSLO+STOH) C COLTON, A KIRSCHBAUM (LBL) CHINOWSK 68 PR 171 1421 CHUNG 68 PR 165 1491 GALLOWAY 68 PL 268 334 BOGGILD 70 NP 816 503 COLTON 72 PR 06 95 ------13 N#3/2(1960) BRANCHING RATIOS N*3/2(1960) INTO (PI N)/ TOTAL (.154) DONNACHI 68 RVUE PHASE SHIFT ANA. 10/69 (.12) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 (0.25) ALMEHED 72 IPWA 2/72 R1 R1 3 R1 3 R1 7 9 N*3/2(2160, JP=3/2+) I=3/2 P^{#//}33 N*3/2(1960) INTO (K SIGMA)/TOTAL (0.013) (0.01) FEUERBACH 70 RVUE PI PTO K* SIG+ 7/70 ASSUME MASS, HIDTH, XIELAST) OF DONNACHIE 68 MODEL USED MAY DOUBLE COUNT. R2 R2 1 R2 1 R2 1 R2 1 **∆(2160)** ROYCHOUDHURY 71 FIND POSSIBLE EVIDENCE FOR P31,D33,AND D35 RESONANCES IN THIS MASS REGION. IN A SIMILAR AMALYS BRANSDEN 71 FOUND SOME EVIDENCE FOR S31,D33,AND 035 RES NANCES INTHIS REGION. VON SCHLIPPE 72 SUGGESTS A G39. N*3/2(1960) FROM PI N TO D(1236) PI SQRT(P1*P4) (0.19) MEHTANI 72 DPWA R3 R3 1/73* REFERENCES FOR N*3/2(1960) 9 N*3/2(2160) MASS (MEV) DONNACH1 68 PL 26B 161 KIRSOPP 68 THESIS A DONNACHIE, R G KIRSOPP, C LOVELACE (CERN)IJP R G KIRSOPP (EDIN) KIRSOPP 68 RVUE ROYCHOUD 71 DPWA ALMEHED 72 IPWA PHASE SHIFT ANAL 10/69 3/72 2/72 (2160.) (2120.) (2150.) М З М М 7 LEA 69 PL 298 584 LEA, OADES, WARD, COWAN, + (RHEL, BRISTOL, DARE) FEUERBAC 70 NP 16B 85 FEUERBACHER+HOLLADAY (VANDERBILT) -----+LOVELACE (LUND,RUTG)IJP +FUNG, KERNAN, SCHALK, + (UCR +LBL) 9 N*3/2(2160) WIDTH (MEV) ALMEHED 72 NP 840 157 MEHTANI 72 PRL 29 1634 KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 ALMEHED 72 IPWA 2/72 W 3 W 7 (260.) PAPERS NOT REFERRED TO IN DATA CARDS. A DONNACHIE, R KIRSOPP (GLAS+EDIN) +BAREYRE+VILLET (SACLAY) DONNACHI 69 NP 10B 433 AYED 70 PL 31B 598 APLIN 71 NP 832 253 AYED 72 BATAVIA CONF +BAREYRE+VILLET (SACLAY) +COWAN,GIBSON,GILMORE++ (RHEL,BRISTOL) R AYED,P BAREYRE, Y LEMOIGNE (SACL) 9 N#3/2(2160) PARTIAL DECAY MODES DECAY MASSES 139+ 938 P1 N*3/2(2160) INTO PI N ----- ------- ------ ------ -----**∆(1950)** 9 N*3/2(2160) BRANCHING RATIOS 70 N*3/2(1950, JP=) I=3/2 PRODUCTION EXPERIMENTS R1 N*3/2(2160) INTO (PI N)/TOTAL (P1) R1 3 (-25) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 R1 7 (0-3) ALMEHED 72 IPWA 2/72 BUMPS REFERENCES FOR N#3/2(2160) 70 N*3/2(1950) MASS (MEV) (PROD. EXP.) (1922.0) APPROX COL 56 CNTR PI+ P TOTAL 7/66 (1912.0) (15.0) BRISSON 61 CNTR PI+ P TOTAL 7/66 (1900.0) (15.0) DEVLIN 65 CNTR PI+ P TOTAL 7/66 (1900.0) (12.0) DEVLIN 65 CNTR PI+ P TOTAL 7/66 (1200.0) (12.0) YODN 67 H8C + 3 3 BEV/C PI-P 8/67 THIS BUMP IS NOT SEEN BY CHUNG 68 AT 3.2 GEV/C IS2 GEV/C I/73+ (1860.0) COLTON 72 H8C + + PP TO PI PI+PN 7GEV 1/73+ KIRSOPP 68 THESIS R G KIRSOPP (EDIN) ROYCHOUD 71 NP B27 125 R K ROYCHOUDHURY, B H BRANSDEN (DURH) LIP N N ALMEHED 72 NP 840 157 +LOVELACE (LUND, RUTG) I JP PAPERS NOT REFERRED TO IN DATA CARDS. -----A DONNACHIE,R KIRSOPP (GLAS+EDIN) ,OGOEN (DURH)IJP ROYCHOUDHURY,PERRIN,BRANSDEN (DURH)IJP VON SCHLIPPE (LOWC)IJP DONNACHI 69 NP 108 433 BRANSDEN 71 NP 826 511 ALSO 70 NP 816 461 VON SCHL 72 LNC 4 767 70 N*3/2(1950) WIDTH (MEV) (PROD. EXP.) (256.0) (39.0) 40.0 20.0 (180.0) DEVLIN 65 CNTR YOON 67 HBC + 8/67 Colton 72 HBC ++ PP TO PI+PN 7GEV 1/73* 70 N*3/2(1950) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES DECAY MASSES N*3/2(1950) INTO PIN 139+ 938 N*3/2(1950) INTO NE3/2(1236) PI 1236+ 139 N*3/2(1950) INTO NE3/2(1236) PI 1236+ 139 N*3/2(1950) INTO NE3/2(1236) RIO 1236+ 703 N*3/2(1950) INTO NE3/2(1236) RIO 1236+ 770 N*3/2(1950) INTO NE3/2(1236) PI PI 99+ 139+ 139 N*3/2(1950) INTO NE3/2(1236) PI PI (NOT RHO) 1236+ 139+ 139

,

Data Card Listings For notation, see key at front of Listings.

Baryons Δ(2420), Δ(2850), Δ(3230)

	REFERENCES FOR N*3/2(2420) (PROD. EXP.)
$ \Delta(2420) $	DIDDEMS 63 PRL 10 262 +JENKINS, KYCIA, RILEY (ANL) I ALVAREZ 64 PRL 12 710 +BAR-YAM, KERN, LUCKEY, OSBORNE, + (MIT, CEA) (MIT, CEA) HOHLER 64 PL 12 149 GAHDHLER, JGIESECKE (MIT, CEA) WAHLIG 64 PRL 13 103 +MANNELLI, SODICKSON, FACKLER, WARD, + (MIT) BARGER 66 PR 151 1123 V BARGER, M OLSSON (MIS, CIN) GITTON 66 PR 154 1123 +GALBATH, KYCIA, LEONTIC, PHILLIPS, + (BNL) I
	BARGER 67 PR 155 1792 V BARGER, D CLINE (WISC) P DIKMEN 67 PR. 18 798 F N DIKMEN (MIGH)
M 6 (2312.0) AYED 70 IPWA 1/	KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, + (MICH,ANL) P GALLOWAY 68 PL 26B 334 K F GALLOWAY (INDIANA) I
M 6 FRUM ENNER, DEP. FIT OF ARGAND DIAGRAM M (2400.) BRANSDEN 71 DPWA 3/ M (2400.) ROYCHOUD 71 DPWA 3/	PAPERS NOT REFERRED TO IN DATA CARDS. PAPERS NOT REFERRED TO IN DATA CARDS. Y72 BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE, ORSAY)J-L
M (2440.) OTT 72 MPWA O PI-P BKWD ELSTC 2/	773* DOBROWOL 67 PL 248 203 DOBROWOLSKI,GUSKOV,LIKHACHEV, + (DUBNA) P DOLEN 68 PR 166 1768 R DOLEN, D HORN, C SCHMID (CIT) WANITC 68 PR 166 1515 M AWHITG, I MANNELI (MIT.PISA)
84 N*3/2(2420) WIDTH (MEV)	FINAL VERSION OF DATA USED IN MAHLIG 64. IN CONJUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES
W 6 (347.0) AYED 70 IPWA 1/	/71 CUMPLEX ELASTIC SCHITERING ANFLITUDE AT 0 DEGRESS.
84 N#3/2(2420) PARTIAL DECAY MODES	Δ(2850)
P1 N*3/2(2420) INTO PI N DECAY MASSES P2 N*3/2(2420) INTO SIGMA K 1197+ 493	BUMPS 85 N*3/2(2850, JP= +) I=3/2 PRODUCTION EXPERIMENTS
84 N#3/2(2420) BRANCHING RATIOS	
R1 N#3/2(2420) INTO (PI N)/TOTAL (P1) R1 6 (0.113) AYED 70 IPWA 1/	85 N*3/2(2850) MASS (MEV) (PROD. EXP.) /71 M (2870.0) HOHLER 64 RVUE DATA + DISP REL
R1 7 (94) OTT 72 MPNA 0 PI-P BKWD ELSTC 2/	773* M (2700.0) APPROX WAHLIG 64 OSPK 0 PI-P CH EX M (2850.0) BARDADIN 66 HBC ++ N*TO P + 3 PIS 7/66 9 2850.0 12.0 CITRON 66 (NTR PI+P TOTAL 7/66
REFERENCES FOR N*3/2(2420)	
AYED 70 KIEV CONF R AYED, P BAREYRE, G VILLET (SACL)IJP BRANSDEN 71 NP 826 511 - DGDEN (DURH)IJP	85 N*3/2(2850) WIDTH (MEV) (PROD. EXP.)
ALSO 70 NP B16 461 ROYCHOUDHURY, PERRIN, BRANSDEN (DURH)IJP ROYCHOUD 71 NP B27 125 R K ROYCHOUDHURY, B H BRANSDEN (DURH)IJP OTT 72 PI 428 133 + TO ISCHWIGH, VAVYAR, BI (HARDS)- (MCGLSTD, DURH)IJP	W (150.0) BARDAUIN 66 HDC +++ //66 W 400.0 40.0 CITRON 66 CNTR 7/66
ALSO 72 MCGILL THESIS J. VAVRA (MCGI) JP	85 N#3/2(2850) PARTIAL DECAY MODES (PROD. EXP.)
BELLAMY 67 PRL 19 476 +BUCKLEY,DOBINSON, + (WESTFIELD,LOUC) JP	DECAY MASSES P1 N*3/2(2850) INTO PI N 139+ 938
AYED 70 PL 31B 598 +BAREYRE+VILLET (SACLAY)	P2 N#3/2(2850) INTO P PI PI PI PI PI 938+ 139+ 139 P3 N#3/2(2850) INTO N PI PI 938+ 139+ 139
****** ********* ********* ******** ****	
	85 N*3/2(2850) BRANCHING RATIUS (PROD. EXP.)
Δ(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS	R1 N#3/2(2850) BKARUHING KATLUS (PKU). EXF.) R1 N#3/2(2850) INTO (PI N)/TOTAL MEASURED FOR THIS STATE R1 ONLY (J+J/2)+ PI N/TOTAL) MEASURED FOR THIS STATE R1 BARGER 60 FVUE R1 0.2241 (0.016) BARGER 60 FVUE TOTAL + CH EXC. 11/67 R1 0.2241 (0.046) BARGER 67 FVUE USES KORMANVOS66 11/67 R1 B (0.40) BARGER 67 FVUE USES KORMANVOS66 11/67 R1 B FOR CRITICISM OF THIS METHOD, SEE DOLEM 68.
Δ(2420) BUMPS 69 N+3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N+3/2(2420) MASS (MEV) (PROD. EXP.)	N#3/2(2850) INTO (PI N)/TOTAL (P1) R1 ONLY (J+1/2)*(PI N)/TOTAL) BAGGER 66 RVUE R1 0.2241 (0.016) BAGGER 66 RVUE TOTAL CROSS.SEC. 11/67 R1 0.2261 0.048 CITRON 66 CNTR TOTAL CROSS.SEC. 11/67 R1 B (0.40) BAGGER 67 RVUE USES KORMANYDS66 11/67 R1 B USES REGE AMP.+RESON.TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRE R1 C (0.49) DIKMEN 67 RVUE USES KORMANYDS67 11/67 R1 C (0.49) DIKMEN 67 RVUE USES KORMANYDS67 11/67 R1 C 130 DEGREES R1 C (0.39) DOBROWOLS 67 CITONS AT 180 DEGREES R1 0 DEGREES R1
Δ(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2360.0) (2360.0) (2360.0) ΔΙΟΔΕΝΣ 63 CNTR PI+ P TOTAL (2360.0) ΔΙΟΔΕΝΣ 63 CNTR PI+ P TOTAL (2360.0) (40.0) ΔΙΟΔΕΝΣ 63 CNTR PI+ P TOTAL (2360.0) (40.0	B5 N#3/2(2850) BKANCHANG KAILUS (PKU). EXF.J R1 0NLY (J+L/2)*() 10/10/L1) MEASURED FOR THIS STATE (P1) R1 0NLY (J+L/2)*() 10/10/L1) MEASURED FOR THIS STATE (P1) R1 0.421 10/10/L1) MEASURED FOR THIS STATE (P1) R1 0.2241 10/10/L1) MEASURED FOR THIS STATE TOTAL + CH EXC. 11/67 R1 0.2241 10/040 BAGER 67 RVUE TOTAL CRSS.SEC. 11/67 R1 B (0.40) MAGER 67 RVUE USES KORMANYDS60 11/67 R1 B FOR CRITICISM OF THIS METHOD, SEE ODLEN 68. TORAL CRSS.SECTIONS AT 180 DEGRES R1 G (0.49) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 C (0.49) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 C (0.49) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 C (0.49) DIKMEN 67 RVUE USES ROMANYDS61 11/67 R1 C
Δ(2420) BUMPS 69 N*3/2(2420), JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420), MASS (MEV) (PROD. EXP.)	B5 N=3/2(2850) BKANCHING KAILUS (PKU). EV.J R1 N=3/2(2850) BKANCHING KAILUNC KAILUS (PKU). EV.J R1 ONLY (J+1/2)*(P1 N/TOTAL) MASSURED FOR THIS STATE (PI) R1 ONLY (J+1/2)*(P1 N/TOTAL) MASSURED FOR THIS STATE (PI) R1 ONLY (J+1/2)*(P1 N/TOTAL) MASSURE 60 FVUE TOTAL + CH EXC. 11/67 R1 O.2241 O.040) BARGER 67 RVUE USES KORNANYOS60 11/67 R1 B (0.40) BARGER 67 RVUE USES KORNANYOS60 11/67 R1 B FOR CRITICISM OF THIS METHOD, SEE DOLEN 68. R1 10 DEGRES R1 C (0.49) DIKMEN 67 RVUE USES KORNANYOS67 11/67 R1 C (0.49) DIKMEN FORS SCITONS AT 180 DEGRES R1 R1 C (0.49) DOBRONDLS 67 CHTR P1+P AT 180 DEG 11/67 R1 C (0.39) DEAST CHANAYSE 70 <
Δ(2420) BUMPS 69 N*3/2(2420, JP=) 1 =3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) 1 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2320.0) (40.0) DIDDENS 63 CNTR PI+ PTOTAL M (2320.0) (40.0) DIDDENS 64 CNTR PI+ PTOTAL M (2320.0) (40.0) AUAREZ 64 CNTR PI+ PTOTAL M 63 CSS REGGE AMP.+RESON. TO CALCULATE DIF. GROSS SECTIONS AT 180 DEGREM B FOR CRITICISM OF THIS METHOD, SEE DOLEN 68. 2423.0 10.0 CITRON 66 CNTR PI+ PTOTAL 7/	B5 N#3/2(2850) EXAMCHANG KATIUS (PKUD. EXF.) R1 N#3/2(2850) INTO (PI N)/TOTAL (P1) R1 ONLY (J+1/2)*(PI N)/TOTAL (P1) R1 DNLY (J+1/2)*(PI N)/TOTAL (P1) R1 DNLY (J+1/2)*(PI N)/TOTAL (P1) R1 DNLY (J+1/2)*(PI N)/TOTAL (P1) R1 B (D.224) (D.016) B SECOND COLDATE (D.7 NUE R1 B (D.224) (D.016) BARGER R1 B (D.224) (D.016) BARGER (D.7 NUE R1 B (D.224) (D.048) CITRON 66 CNUE USES REGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRER R1 B FOR CRITICISM OF THIS METHOD, SEEVEN CROSS SECTIONS AT 180 DEGRERS RI R1 C USES REGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRERS RI C R1 C USES SONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRERS RI C R1 C USES SONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRERS
Δ(2420) BUMPS 69 N*3/2(2420, JP=) 1=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2350.0) (2520.0) (40.0) DIODENS 63 CNTR PI+ P TOTAL HURE 64 RVW DATA + DISP RED HURE 64 RVW DATA + DISP RED BARGE 66 RVW TOTAL + CH EX BARGE 66 RVW TOTAL + CH EX BARGE 66 RVW TOTAL + CH EX B USES REGGE ANP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M 5 FOR CRITICISM OF THIS METHOD, SEE DOLEN 68. M 2423.0	B5 N#3/2(2850) BKARULING KATUS (PKUD. EXF.) R1 N#3/2(2850) INTO (PL N/TOTAL (P1) R1 ONLY (J+J/2)*() PL N/TOTAL BAGGER 66 RVUE TOTAL + CH EXC. 11/67 R1 D (24) 10.048 BAGGER 67 RVUE TOTAL (CDS.S SEC.11/67 R1 B (0.40) BAGGER 67 RVUE USES KORMANYDS60 11/67 R1 R1 B (0.40) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 B (0.40) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 G (0.49) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 C (0.49) DIKMEN 67 RVUE USES KORMANYDS61 11/67 R1 C (0.49) DORONOLS 67 CNTR <pi+p 180="" a1="" deg<="" td=""> 11/67 R1 C (0.10) KORMANYD 67 CNTR<pi+p 180="" a1="" deg<="" td=""> 12/72* R1 D (0.60 OR LESS</pi+p></pi+p>
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS M (2360.0) M (22400.0) AUAREZ 64 CNTR PI P DTOTAL M (2400.0) APPROX MAHLIG 64 CSPK 0 PI-P CH EX 11/1 M B USES REGOE AMP.*RESON. TO CALLOATE DIF. CROSS SECTIONS AT 180 DEGRE M M GOUSTION OF THIS METHOD, SEE DOLEN 68, CITRON 66 CNTR PI P TOTAL 7/ 69 N*3/2(2420) MIDTH (MEV) (PROD. EXP.) M (200.0) DIDDENS 63 CNTR	B5 N=3/2(2850) BKARULING KATUS (PKUD. EXF.) R1 N=3/2(2850) INTO (PI N)/TOTAL (P1 N) R1 ONLY (J+J/2)+! P1 N/TOTAL (PE N)/TOTAL (P1 N) R1 ONLY (J+J/2)+! P1 N/TOTAL (PE N)/TOTAL (P1 N) R1 ONLY (J+J/2)+! P1 N/TOTAL (PE N)/TOTAL (P1 N) R1 O.2241 O.046) B4AGER GR FWE TOTAL + CH EXC. 11/67 R1 0.2261 O.048 CITRON 66 CNTR TOTAL CROSS.SEC. 11/67 R1 B (0.40) BARGER 67 RVUE USES KORMANYOS60 11/67 R1 B (0.40) DIKMEN 67 RVUE USES KORMANYOS61 11/67 R1 B (0.49) DIKMEN 67 RVUE USES KORMANYOS61 11/67 R1 C (0.49) DIKMEN 67 RVUE USES KORMANYOS61 11/67 R1 C (0.49) DOBRONDLS 67 CNTR P1+P A1 180 DEG R1 (0.39) DOBRONDCS 67 CNTR P1+P A1 180 DEG R1 0.0101 REAST 74 ALL 7
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2250.0) (40.0) M (24400.0) M (24400.0) M (2400.0) M (2400.0) M B USES CRITICISM OF THIS METHOD, SEE DOLEN 63 CNTR PI+ P TOTAL CALLDARGE FF. 66 RVUE TOTAL + CH EX M B USES CRITICISM OF THIS METHOD, SEE DOLEN 64 CNTR PI+ P TOTAL M CALLOANCE FF. 66 RVUE TOTAL + CH EX M B USES CRITICISM OF THIS METHOD, SEE DOLEN 66 CNTR PI+ P TOTAL M CALLOANCE FF. 66 RVUE M CALLOA	B5 N=3/2(2850) DEKAMUTING KATUS (PK00. EXF.) R1 N=3/2(2850) DEKAMUTING KATUS (PK00. EXF.) R1 ONLY (J+1/2)*(P1 N/TOTAL MEASURED FOR THIS STATE (P1) R1 ONLY (J+1/2)*(P1 N/TOTAL MEASURED FOR THIS STATE (P1) R1 O.2241 (O.040) BARGER 60 FVUE TOTAL + CH EXC. 11/67 R1 B (O.40) BARGER 67 RVUE USES KORNANYOS66 11/67 R1 B (O.40) BARGER 67 RVUE USES KORNANYOS66 11/67 R1 B CO.40) DIKMEN 67 RVUE USES KORNANYOS61 11/67 R1 B CO.40) DIKMEN 67 RVUE USES KORNANYOS61 11/67 R1 C (O.49) DIKMEN 67 RVUE USES KORNANYOS61 11/67 R1 C (S.49) DOBRMOUS COT CHTR P1+P A1 180 DEGREES R1 C (S.59) CHTRS P1+P A1 180 L/772* R1
A(2420) BUMPS 69 N+3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N+3/2(2420) MASS (MEV) (PROD. EXP.) 69 N+3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) M (2320.0) (40.0) M (2320.0) (40.0) M (2320.0) (40.0) M (2320.0) (40.0) M (2452.0) M (2452.0) M B (2452.0) M C CRITICISM OF THIS METHOD, SEE DOLEN 68. CITRON 66 CNTR PI+ P TOTAL M B (245.0) M (200.0) M (2452.0) M (242.0) M (24	B5 N#3/2(2850) BKARCHANG KATLUS (PKUD. EXF.) R1 ONLY (J+1/2)*() IN/TOTAL (P1) R1 0.261 IO/TOTAL (P1) R1 0.261 IO/TOTAL (P1) R1 0.261 IO/TOTAL BAGGER CONTA TOTAL + CH EXC. 11/67 R1 0.261 0.048 CITRON 66 RYUE USES KORMANYD366 11/67 R1 B USES REGGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRES R1 C (0.49) DIKMEN 67 RVUE USES KORMANYD360 11/67 R1 C USES SONACES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES R1 COSCOMANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES R1 10.010 KORMANYDS 67 CNTR <p1+p 180="" at="" deg<="" td=""> 11/67 R1 C USES ONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES R1 D UPPER LIMIT ON ELASTICITY.ALSO FIND J=9/2 OR NORE. 12/72* R1 D UPPER LIMIT ON ELASTICITY.ALSO FIND J=9/2 OR NORE. P1 P AT 180 DEG</p1+p>
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS M (2360.0) DIODENS 63 CNTR PI+ P PTOTAL M (2360.0) (40.0) ALVAREZ 64 CNTR PI+ P PTOTAL M (2400.0) APPROX MAHLIG 64 CNTR PI+ P CTTAL M B USES REGGE AMP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M 120 CEGRE M M B CATTOCTOR OT CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M 7/4 CHARAGE 66 M USES REGGE AMP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M B CATTOCTOR 62 NTA	B5 N=3/2(2850) BKARUTING KATUS (PKUD. EXF.) R1 N=3/2(2850) INTO (PI N)/TOTAL (P1) R1 ONLY (J+J/2)*! P1 N/TOTAL (P1) R1 DOLY (J+J/2)*! P1 N/TOTAL (P1) R1 D1/2241 IO.0480 BARGER 6 G RVUE TOTAL + CH EXC. 11/67 R1 B (0.224) IO.0480 CITRON 66 CNTR TOTAL COSS SECTIONS AT 180 DEGRES R1 B FOR CRITICISM OF THIS METHOD. SEE DOLEN 684. R1 CO.103 DOROWOLS 67 CNTR P1+P AT 180 DEGREES R1 (0.39) DOBROWOLS 67 CNTR P1+P AT 180 DEG 11/67 R1 D UPPER LIMIT ON ELASTICITY-ALSO FIND J=9/2 OR NORE. 12/72* R1 D UPPER LIMIT ON ELASTICITY-ALSO FIND J=9/2 OR NORE. 12/72* R1 G.0601 OR LESS CL=95 HALDORSE 72 LBC PP 19 GEV/C 12/72* R1 D UPPER LIMIT ON ELASTICITY-ALSO FIND J=9/2 OR NORE. 11/67 R1 G.0601 OR LESS CL=95 HALDORSE 72 LBC PP 19 G
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2250.0) (40.0) M (2250.0) (40.0) M (2250.0) (40.0) M (22400.0) M (2400.0) M (2423.0) M (2252.0) M	B5 N=3/2(2850) BKARUTING KATUS (PKUD. EXF.) R1 N=3/2(2850) INTO (PL N)/TOTAL (P1) R1 ONLY (J+1/2)*(P1 N)/TOTAL (PE N)/TOTAL (P1) (P1) R1 ONLY (J+1/2)*(P1 N)/TOTAL (PE N)/TOTAL (P1) (P1) R1 O.2241 (O.046) BARGER 6 RYUE TOTAL (CDS.S.EC. 11/67 R1 B (O.401) BARGER 6 RYUE USES KORMANYOS60 11/67 R1 B (O.40) BARGER 6 RYUE USES KORMANYOS61 11/67 R1 B (O.40) DIKMEN 67 RYUE USES KORMANYOS61 11/67 R1 B (O.40) DIKMEN 67 RYUE USES KORMANYOS61 11/67 R1 C (O.49) DIKMEN 67 RYUE USES KORMANYOS61 11/67 R1 CUSES ONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES R1 R1 (O.49) DURMEN 57 CENS 52 CITONS AT 180 DEGENTI/67 R1 (O.39) DOBRONUS 7 CHTR P1+P AT 180 DEG R1 (O.39) DOBRONUS 7 CHTR P1+7 AT 180 DEG R1 UPPER LIMIT ON ELASTICITY.ALSO FIND 37/2(2850) (PROD. EXP.) 12/72* R1 UPPER LIMIT ON ELASTICITY.ALSO FIND 37/2(2850) (PROD. EXP.) 12/72* R1 UPPER LIMIT ON ELASTICITY.ALSO FIND.FACKLER,WARD, + (MIT)
A(2420) BUMPS 69 N+3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N+3/2(2420) MASS (MEV) (PROD. EXP.) M (2320.0) (2320.0) (40.0) DIDDENS LUAREZ (2420.0) 63 CNTR PI+P TOTAL LUAREZ (2420.0) PI+P TOTAL PI+DTOPROD T/ AUREZ (2420.0) 7/ PI+P TOTAL PI+P TOTAL PI+P TOTAL LUAREZ (2420.0) 7/ PI+P TOTAL PI+P TOTA	B5 N=3/2(2850) BKARCHANG KATLUS (PKUD. EXP.) R1 ONLY (J+L2)2+! [D //TO/LL) (FASURED FOR THIS STATE R1 ONLY (J+L2)2+! [D //TO/LL) (FASURED FOR THIS STATE R1 OA241 IO.0040 B1 O.2241 IO.0040 B1 O.241 IO.0040 B1 O.2401 O.0400 B1 O.2401 O.0400 B1 B1 O.2401 B1 O.4001 BARGER GT RVUE B1 B1 OB400 B1 B1 OB5000 R1 B1 OB50000 R1 B1 OB5000000 R1 C (0.49) D1 D000000000000000000000000000000000000
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS M (2360.0) DIODENS 63 CNTR PI + P TOTAL M (2360.0) HONLER 64 CNTR PI + P TOTAL CHTOTOPROD M 6 (2400.0) APROX MAHLIG 64 CNTR PI + P TOTAL CHTOTOPROD M B USES REGEC ANP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M 100 CITRON 66 CNTR PI + P TOTAL CH M B USES REGEC ANP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE M 7/2 M C200.0 DIODENS 63 CNTR PI + P TOTAL CH M (2200.0) DIODENS CA CNTR PI + P TOTAL </td <td>$\begin{array}{c} \text{BS} N=3/2(2350) \text{ BKARCHARG KATLUS (PKUD. EXP.)} \\ \text{R1} N=3/2(2350) \text{ INTO} (DF IN)/TOTAL (P1) \\ \text{R1} ONLY (J+J/2)*! P1 N/TOTAL BASURED FOR THIS STATE (P1) \\ \text{R1} ONLY (J+J/2)*! P1 N/TOTAL BASURED FOR THIS STATE (P1) \\ \text{R1} O.2241 (O.016) BARGER 6 G RYUE TOTAL + CH EXC. 11/67 \\ \text{R1} O.2241 (O.016) BARGER 6 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B (O.240) BARGER 67 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B CO.400 BARGER 67 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B & USES REGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRES \\ \text{R1} C (O.49) DIKMEN 67 RYUE USES KORMANYOS61 11/67 \\ \text{R1} C & USES ONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES \\ \text{R1} (O.39) DOBRONGLS 67 CNTR P1+P AT 180 DEG \\ \text{R1} (O.30) DOBRONGLS 67 CNTR P1+P AT 180 DEG \\ \text{R1} D & UPFRE LIMIT DN ELASTICITY.ALSO FIND J=9/2 OR MORE. \\ \end{array}$</td>	$ \begin{array}{c} \text{BS} N=3/2(2350) \text{ BKARCHARG KATLUS (PKUD. EXP.)} \\ \text{R1} N=3/2(2350) \text{ INTO} (DF IN)/TOTAL (P1) \\ \text{R1} ONLY (J+J/2)*! P1 N/TOTAL BASURED FOR THIS STATE (P1) \\ \text{R1} ONLY (J+J/2)*! P1 N/TOTAL BASURED FOR THIS STATE (P1) \\ \text{R1} O.2241 (O.016) BARGER 6 G RYUE TOTAL + CH EXC. 11/67 \\ \text{R1} O.2241 (O.016) BARGER 6 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B (O.240) BARGER 67 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B CO.400 BARGER 67 RYUE USES KORMANYOS60 11/67 \\ \text{R1} B & USES REGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRES \\ \text{R1} C (O.49) DIKMEN 67 RYUE USES KORMANYOS61 11/67 \\ \text{R1} C & USES ONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES \\ \text{R1} (O.39) DOBRONGLS 67 CNTR P1+P AT 180 DEG \\ \text{R1} (O.30) DOBRONGLS 67 CNTR P1+P AT 180 DEG \\ \text{R1} D & UPFRE LIMIT DN ELASTICITY.ALSO FIND J=9/2 OR MORE. \\ \end{array}$
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) (PROD. EXP.) M (2360.0) (22400.0) AUARE2 64 CNTR PI P PTOTAL PI PHOTOPROD 7/ HOULER M (22400.0) APPOX MAILIG 64 CNTR PI P PTOTAL PI PHOTOPROD 7/ HOULER M B USES REGOGE AMP-RESON, TO CALCARED IF. 66 RVUE TOTAL + CH EX 11/ HOULER 67 NVUE TOTAL + CH EX 11/ HOULER 69 N*3/2(2420) WIDTH (MEV) (PROD. EXP.) 69 N*3/2(2420) WIDTH (MEV) (PROD. EXP.) M (200.0) DIODENS 63 CNTR FI 7/ HOULER 69 N*3/2(2420) NTO PI N 130+ 93 130+ 93 130+ 93 130+ 93 130+ 93 130+ 93 69 N*3/2(2420) INTO PI N 130+ 93 130+ 93+ 139 130+ 93 133+ 93+ 139 130+ 93 133+ 139 F1 N*3/2(2420) INTO NEURON PI+ PI + PI 93+ 139+ 139 139 F4	$ \begin{array}{c} \text{BS} N=3/2(2850) \text{ BKARCHARG KATLUS (PROJ. EXP.)} \\ \text{R1} N=3/2(2850) \text{ INTO (FN IN/TOTAL (F))} \\ \text{R1} ONLY (J+J/2)*(P1 N/TOTAL (F)) \\ \text{R1} ONLY (J+J/2)*(P1 N/TOTAL (F)) \\ \text{R1} O.2241 (O.16) \\ \text{R1} O.255 (O.170 (O.16) \\ \text{R1} O.255 (O.170 (O.16) \\ \text{R1} O.255 (O.170 (O.16) \\ \text{R1} O.256 (O$
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) M (2400.0) M B (2400.0) M 6 M (2420.0) M (2420.0) M (2420.0) M (2425.0) M (2420.0) M (2420.0) M (2420.0)	$ \begin{array}{c} B_{2} & N=3/2(2850) \text{ BKARCHARG KATLGS (PK00- EXP.)} \\ R_{1} & N=3/2(2850) \text{ INTO TAL} (P1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (P1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (J+1/2)*(P1 N/TOTAL) MEASURED FOR THIS STATE (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGREES (C1) \\ R_{1} & ORLY (RESONANCES TO CALCULATE DIF. (RESCENANCE) (RESCENANCE) \\ R_{1} & ORLY (RESONANCES TO CALCUNANCES TO RESCENANCE (RESCENANCE) (RESCEN$
A(2420) BUMPS 69 N+3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N+3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2320.0) (40.0) (2320.0) (40.0) (40.0) (2320.0) (40.0) (40.0) (2320.0) (40.0) ($ \begin{array}{c} B_{2} & N=3/2(2350) \text{ BKARCHARG KATLUS (PROD. EXP.)} \\ R_{1} & ONLY (J+J/2)*! P1 N/TOTAL (P1) \\ R_{1} & ONLY (J+J/2)*! P1 N/TOTAL BASURED FOR THIS STATE (P1) \\ R_{1} & ONLY (J+J/2)*! P1 N/TOTAL BARGER FOR THIS STATE (P1) \\ R_{1} & O.261 (O.046) BARGER FOR THIS STATE (P1) \\ R_{1} & O.261 (O.046) BARGER FOR TOTAL COSS.SECTIONS AT 180 DEGREES (P1) \\ R_{1} & State State State State State Difference (P1) \\ R_{1} & State Stat$
A(2420) BUMPS 69 N*3/2(2420, JP=) I=3/2 PRODUCTION EXPERIMENTS 69 N*3/2(2420) MASS (MEV) (PROD. EXP.) M (2360.0) (2260.0) (40.0) M (2260.0) (40.0) M (2260.0) (40.0) M (2260.0) (40.0) ALVARE2 64 CNTR PI PHOTOPROD 7/ M (2400.0) APPROX MARLIG 64 OSPK 0 PI-P CH EX B (2400.0) APPROX MARLIG 64 OSPK 0 PI-P CH EX B (2402.0) 10.0 CLLCUATE DIF. CROSS SECTIONS AT 150 DEGRE M B USES REGGE ANP.*RESON. TO CALCULATE DIF. CROSS SECTIONS AT 150 DEGRE M CATICLISM OF THIS METHOD. SEE DOLN 66. M 2423.0 10.0 CLTRON 66 CNTR PI+ P TOTAL 7/ CONTRACT 10.0 CLTRON 66 CNTR 7/ M 1294 938 130.0 20.0 CLTRON 66 CNTR 7/ CONTRACT 10.0 SIGMA K 11394 939 1394 1394 139 P1 N*3/2(2420) INTO PI N 1294 938 1394 1394 139 CONTRACT 100 SIGMA K 11394 939 1394 1394 139 CONTRACT 100 SIGMA K 11394 939 1394 1394 139 CONTRACT 100 SIGMA K 11394 139 CONTRACT 100 SIGMA K 1130 1172 117 CONTRACT 100 SIGMA K 1172 117 CONTRACT 1	$ \begin{array}{c} BS & N=3/2(2850) \text{ BKARCHARG KATLUS (PROD. EXP.)} \\ R1 & N=3/2(2850) \text{ INTO (PL N)/TOTAL (P1)} \\ R1 & ONLY (J+J/2)+(P1 N/TOTAL) MEASURED FOR THIS STATE (P1) \\ R1 & O.2241 (O.016)) & BARGER 6 RYUE TOTAL + CH EXC. 11/6T \\ R1 & O.2261 0.048 & CITRON 66 CNTR TOTAL CROSS.SEC. 11/6T \\ R1 & O.261 0.049 & BARGER 6T RVUE USES KORMANYOS60 11/6T \\ R1 & USES REGGE AMP.+RESON. TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRES \\ R1 & G C & (0.49) & DIKMEN 6T RVUE USES KORMANYOS61 11/6T \\ R1 & OUSES ONLY RESONANCES TO CALCULATE DIF. CRUSS SECTIONS AT 180 DEGRES \\ R1 & (0.39) & DOBRONOLS GT CNTR P1+P AT 180 DEG \\ R1 & (0.30) & DOBRONOLS GT CNTR P1+P AT 180 DEG \\ R1 & (0.30) & DOBRONOLS GT CNTR P1+P AT 180 DEG \\ R1 & OUPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & D UPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & D UPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & D UPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & D UPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & D UPPER LIMIT ON ELASTICITY-05 MALDONSE TZ HGC PP 19 GEV/C 12/T2* \\ R1 & MANALELS SOLOS OF LOND FACULER, WARD, + (MIT) \\ BARDADIN 66 PR 121 397 & BARDADIN-OTWINOWSKA, DANYSZ, + (WARSAM) \\ BARCER 66 PR 149 1101 + GALBRAITH, KYCIALEGNTIC, PHILLIPS, + (BNL) I \\ BARDADIN 66 PR 149 1101 + GALBRAITH, KYCIALEGNTIC, PHILLIPS, + (BNL) I \\ DIKMEN 67 PR 164 1765 & M DODGNOKSKI, GUSKOV, LIKHACHEV, + (DUBAN) P \\ KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALON, + (MICH, ANL) P \\ HALDORSE 72 NC 10A 468 HALDONSEN, JACOBSEN (CSCHMID (CTTI MICH) FIS) \\ HALDORSE 72 NC 10A 468 HAUDONSEN, MALESKI, CSCHMID (CTTI MICH) HITH FIS) \\ MNHL (R G3230) \\ B46 N*3/2(3230) MASS (MEV) (PROD. EXP.) \\ M1 (3230.0) & GARSA SUSED N MASS (MEV) (PROD. EXP.] \\ M1 (3230.0) & CITRON 66 CNTR PI+P TOTAL 7/66 \\ M1 (3230.0) & CITRON 66 CNTR PI+P TOTAL 7/66 \\ M1 (3230.0) & CITRON 66 CNTR PI+P TOTAL 7/66 \\ M1 (3230.0) & CITRON 66 CNTR PI+P TOTAL 7/66 \\ M1 (3230.0) & CITRON 66 CNTR PI+P TOTAL 7/66 \\$

Baryons Δ(3230), EX(1640), Z^{*}'s

86 N*3/2(3230) WIDTH (MEV) (PROD. EXP.) (440.0) CITRON 66 CNTR 7/66 __ ____ 86 N#3/2(3230) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES P1 P2 N*3/2(3230) INTO PI N N*3/2(3230) INTO N PI PI 139+ 938 938+ 139+ 139 86 N*3/2(3230) BRANCHING RATIOS
 N#3/2(3230) INTO (PI N)/TOTAL
 (P1)

 R1
 DNLY (J#1/2)#(PI N/TOTAL) MEASURED FOR THIS STATE
 (P1)

 R1
 D(0.03) (0.01)
 BARGER
 66 RVUE
 TOTAL + CH EXC. 11/67

 R1
 B
 (0.03) (0.01)
 BARGER
 66 RVUE
 TOTAL + CH EXC. 11/67

 R1
 B
 (0.03) TO 0.1
 BARGER
 67 CNTR
 USES KORMANYDS66 11/67

 R1
 B
 (S0.03) TO 0.1
 BARGER
 67 CNTR
 USES KORMANYDS66 11/67

 R1
 B
 (S0.03) TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE
 R2
 B FOR CRITICISM OF THIS METHOD, SEE DOLEN 68.

 R1
 D
 USES ONLY RESONANCES TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGREES
 T180 DEGREES
 ***** ****** REFERENCES FOR N*3/2(3230) (PROD. EXP.) V BARGER, M OLSSON +GALBRAITH,KYCIA,LEONTIC,PHILLIPS, + (BNL) V BARGER, D CLINE F N DIKMEN 66 PR 151 1123 66 PR 144 1101 67 PR 155 1792 67 PRL 18 798 (WISC) (MICH) PAPERS NOT REFERRED TO IN DATA CARDS KORMANYOS, KRISCH, OFALLON, + (MICH,ANL) P R DOLEN, D HORN, C SCHMID (CIT) KORMANYO 67 PR 164 1661 DOLEN 68 PR 166 1768 EXOTIC NUCLEON THIS IS NOT A COMPLETE LIST. WE WILL TABULATE EXOTICS FROM NOW ON EX(1640) 92 EX(1640, JP=) I=5/2 AMMANN 71 AND JOHNSON 71 WITH COMPARABLE (OR BETTER) STATISTICS AND AT MOMENTA NEAR 4.91 ARGUE STRONGLY THAT THE EFFECT SEEN BY PRICE 70 IS A STATISTICAL FLUCTUATION. IN A MISSING MASS EXPERIMENT, PI+ P TO PI- X+++, BIRULEV 71 FIND NO EVIDENCE FOR EXOTIC (1=5/2) RESONANCES IN THE MASS INTERVAL 1.2 TO 2.2 GEV. -----92 EX(1640) MASS (MEV) A 29(1627.) (12.) A FOUR S. D. EFFECT PRICE 70 DBC -- K-D AT 4.91GEV/C 3/71 92 EX(1640) WIDTH (MEV) B 29 (30.) OR LESS CL=.90 PRICE B CROSS SECTION 13.0+-3.9 MICROBARNS 70 DBC -- PI-PI-N BUMP 3/71 W 92 EX(1640) CROSS SECTION LIMITS (MICROBARN) CS B (40.) OR LESS BANNER 70 OSPK +++ PI+P,1.9 GEV/C 7/70 CS B I=5/2 LIMIT GIVEN ABOVE IS FOR MASS RANGE 1540-1750 MEV ***** REFERENCES FOR EX(1640) BANNER PRICE

 BANNER
 70
 NP B15 205
 +CHEZE;HAMEL,TEIGER;ZACCONE +
 (SACLAY)

 PRICE
 70
 PL 330,533
 +BERG,SALANT,WATERS,WEBSTER,WEINBERG (VAND)

 PAPERS
 NOT REFERRED TO IN DATA CARDS

 AMMANN
 71
 PL 34B 533
 +CARMONY,GARFINKEL,GUTAY,MILLER,YEN (PURD)

 BIRULEV
 71
 SJMP 12
 536
 +VOVENKO,GUSKOV,DOBROVOLSKII,++

 JOHNSON
 71
 PL 34B 428
 D JOHNSON
 (ANL)

Note on Possible Z^{*}'s

Although much work has been done on the strangeness +1 reactions during the past few years, it is not yet clear whether the peaks seen in total KN cross sections near 1 GeV/c are resonances; see Fig. 1. Since positive-

Data Card Listings For notation, see key at front of Listings.

strangeness baryons cannot be made from three quarks, it is very important to find out if these peaks are resonances.

(a) I = 0 System. New $K^{\dagger}p$ total cross section data have been reported by the Arizona group in the 0.57 to 1.16 GeV/c region (BOWEN 73) and by the BNL group (CARROLL 73) in the 0.4 to 1.06 GeV/c region. The cross-sections of both groups fail to exhibit the dip at 0.7 GeV/c previously reported. The absence of the dip is also observed in the K⁺p elastic data reported by ADAMS 72. A curve through the K⁺p total cross section data as drawn by CARROLL 73 is shown in Fig. 1. The new K⁺d cross section data around 0.7 GeV/c also show smoother behavior than before, and both effects result in the I = 0 cross section shown in Fig. 1. The data points after unfolding and the smooth curve drawn by CARROLL 73 are shown in Fig. 2a. The double humped structure reported by ABRAMS 69, COOL 70, and DOWELL 70 now looks more like a shoulder and a bump, which is associated with the rapid increase in the inelastic cross section.

Fig. 2a shows large disagreement at low momenta between BOWEN 73 and CARROLL 73 points. However, only part of this disagreement is due to a difference in the measured K^+d cross sections (for P > 0.8 GeV/c, there is no systematic difference between the two sets of data); the rest can be attributed to differences in the unfolding procedures.

There is, however, no doubt about there being a large broad peak in the isospin 0 <u>elastic</u> cross section. The inelastic cross section increases smoothly until the K^{*}N threshold at 1.08 GeV/c is approached where, as shown in Fig. 2b, the K^{*}N cross section comes in strongly (HIRATA 70). The total KN π and KN $\pi\pi$ cross sections are shown in Fig. 1 as eyeball curves drawn through the data (GIACOMELL1 72). Subtracting these from the total cross section one gets σ_0 (elastic) also shown in Fig. 1. The resonance (if it

Data Card Listings

For notation, see key at front of Listings.

Fig. 1. KN total and partial cross sections. Subscripts indicate isospin. Total cross sec-tion curves from CARROLL 73, which uses new data of BOWEN 73 as well as previous data. Elastic I=1 curve is hand-drawn through new and old elastic data. I=0 inelastic curves taken from GIACOMELLI 72. Isospin 1 inelastic curves taken from LOKEN 72.

 K^{+} beam momentum (GeV/c)

2. Fig. (a) Unfolded I=0 cross sections as quoted by the various authors discussed in the Z^* minireview:

- δ BOWEN 73 σ_{T} \Box BUGG 68 σ_{T} (as unfolded by CARROLL 73) ∇ CARROLL 73 σ_{T}

- \triangle COOL 70 σT \checkmark GIACOMELLI 72 σ(πKN)
- GIACOMELLI 72 σ(ππKN)

(b) Energy dependence of the isospin 0 and isospin 1 cross sections for the reaction $KN \rightarrow K^*N$ (HIRATA 70).

Baryons Z*'s

Baryons Z^{*}'s

exists) would have a mass $M \sim 1780$ MeV, would be very wide, and would be very elastic because the inelastic cross section is small at the peak. If J were greater than 1/2, the resonant peak would exceed the observed height of $\sim 4\pi \lambda^2$. This fixes the spin as 1/2, and means that there is little cross section left over for other partial waves. Of course it is quite possible that in fact the peak is not caused by a resonance at all.

Differential cross section data on the elastic charge exchange have been reported by HIRATA 71 (5 momenta in the 0.87 to 1.59 GeV/c region) and by GIACOMELLI1 72 (13 momenta in the 0.64 to 1.51 GeV/c region). More recently GIACOMELLI2 72 reported data on the $K^{\dagger}n \rightarrow K^{\dagger}n$ elastic scattering in the 0.6 to 1.6 GeV/c region, and ARMITAGE 72 has reported very preliminary data of $K^0 p \rightarrow K^{\dagger}n$. Attempts to perform partial-wave analyses for the I = 0 system have also been reported recently. HIRATA 71, which does not include the most recent elastic and total cross section data, finds a large P_{01}^{l} partial wave which does not go through 90° as expected for an elastic resonance. WILSON 72 report energydependent and energy-independent analyses, which did not include the K⁺n elastic data. S, P, and D waves only were included in the fit and six classes of solutions were found. The addition of the K⁺n data has reduced the solutions to four with two being favored over the others (called C and D).¹ Solution D shows a resonant-like P01 partial wave which crosses the imaginary axis at P = 1200 MeV/c and turns back in toward the center of the Argand plot. The other solution also has a large P_{01} partial wave, but it does not look resonant. Note, however, that very little polarization data have gone into these analyses; therefore a conclusion on the existence of $Z_0^{*}(1780)$ must await more data.

(b) <u>I = 1 System.</u> As discussed above there are new elastic cross section data reported by ADAMS 72 (0.4 to 0.9 GeV/c) and new K^+p total cross section measurements by BOWEN 73 and CARROLL 73. Elastic cross section results

Data Card Listings For notation, see key at front of Listings.

have also been reported by CHARLES 72 (0.9 to 1.9 GeV/c). For the inelastic channels new data have been reported by LOKEN 72. Fig. 1 shows smooth curves drawn through the new total cross section data, the new elastic data, and the inelastic data of LOKEN 72.

Many partial-wave analyses have been performed on the K^+ p data since the I = 1 bump first appeared in 1966. We mention here only the most recent ones and refer the reader to our previous edition for a review of the others.² MILLER 72 has reported an analysis which uses a new method, ACE (accelerated convergence expansion), in which high partial waves are included through conformal mapping as suggested by CUTKOSKY 70. The results of ACE are then compared with the two solutions obtained by the same group through conventional partial-wave analysis. CUTKOSKY 72 is a new analysis by the same group with energy smoothing added to a more extensive random search. CHARLES 72 have performed a comparison of their data to existing phase-shift analysis and find that the ALBROW 71 α , β , γ solutions are the preferred ones, although they cannot choose among them. EHRLICH 72 have reported an analysis of data between 1.3 and 2.3 GeV/c employing the ACE method. Then they use the shortest path method to link the energy-independent solutions and find 25 least path solutions, some resembling previously published solutions, in addition to new ones. Another new analysis has been reported by Martin and Miller (MARTIN 72), who use an energy-dependent parametrization based on partial-wave dispersion relations. As a starting point the ALBROW 71 solution γ is used and they obtain a new solution which is not very different from the starting one.

In conclusion the new analyses, as the old ones, yield more than one solution to choose from, which indicates that the data are not good enough to eliminate some of the possibilities. More data of the conventional type, measurements of the R and A parameters, and the simultaneous analysis of elastic and

Data Card Listings

Baryons

For notation, see key at front of Listings.

Fig. 3. Argand plots for the P13 partial wave as obtained in partial-wave analyses performed by the authors indicated. (CARRERAS-1 70 plotted by us from η , δ .)

Baryons Z^{*}'s, Z₀(1780), Z₀(1865)

inelastic channels (copious inelastic data are desirable at the moment) could improve the understanding of this system.

The P_{13} amplitude still remains the best candidate for a resonance in the K⁺p system. The preferred P_{13} Argand plots obtained by some of the groups are shown in Fig. 3. Each analysis in one way or another gets at least one solution with a counterclockwise P_{13} amplitude. Resonant P_{13} is preferred by REBKA 70, GIACOMELLI 70, and ALBROW 71; the results of the other analyses are not so clear cut.

<u>Threshold effects.</u> An alternative way to describe the P_{13} amplitude would be in terms of a coupled-channel threshold effect: the KN amplitude becomes rapidly absorptive as it feeds the rapidly increasing K Δ channel. The main question still remains: Is it also a resonance? If it is, its elasticity is small (≈ 0.2) and it decays mainly into K Δ . Partial-wave analyses in this channel do not seem to favor the resonant hypothesis at this time. See BLAND 67, BLAND 70, and GRIFFITHS 72. But a definite conclusion has yet to be made and awaits much more data.

<u>Production experiments.</u> One more comment on exotic resonances is that, as pointed out by ERNE 70, the present upper limits for the cross sections for production of broad exotic resonances are not very small; that is, they are of the same order as cross sections for Y^* or N^* production.

References

A description of the new WILSON 72 analysis as well as an excellent review of recent work on the Z^{*}'s can be found in: J. D. Dowell, "The Search for Z^{*}'s", Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).
 Particle Data Group, Physics Letters 43B, No. 1 (1972).

33333

WWW

Baryons $Z_0(1865), Z_1(1900), Z_1(2150), Z_1(2500)$

A K-MATRIX ANALYSIS OF SOME OF THE EARLY K+P DATA ---HITE 67 THESIS G E HITE REFERENCES FOR Z*0(1865) (ILLINOIS) A A CARTER (CAVENDISH) HIRATA, HOHL, GOLDHABER, TRILLING (LRL) COLIGIACOMELLI,KYCIA,LEONTIC,LI + (BNL) +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY, + (BNL) ASRAMS,COLI,GIACOMELLI,KYCIA,LI + (BNL) CARTER 67 PRL 18 801 HIRATA 68 PRL 21 1485 COOL 70 PR D1 1887 ALSO 66 PRL 17 102 ALSO 69 PL 308 564 REGGE-POLE ANALYSES --CARRERAS 70 NP 'B19 349 B CARRERAS, A DONNACHIE (DARESBURY, MCHS)

 EXPERIMENTS MAINLY ABOUT INELASTIC CHANNELS --- (LRL)

 BLAND 68 UCRL-18131 THESIS R M BLAND (LRL)
 (LRL)

 BLAND 70 PP B15 555 + BOWLER, BROWN, KADYK, GOLDHABER, + (LRL)
 (LRL)

 BLAND 69 AND BLAND 70 REPLACE BLAND 7 AND BLAND 68.
 (LRL)

 HIRATA-1 71 NP B33 445 + GOLDHABER, HALL, SEEGER, TRILLING, WOHL (LBL)
 GRIFFITH 72 NP B33 345 + GOLDHABER, HALL, SEEGER, TRILLING, WOHA, TRSTIJJP

 LOKEN 72 PR D6 2346 + BARISH, GOMEZ, DAVIES, SCHLEIN, + (CIT, UCLA)

 PAPERS NOT REFERRED TO IN DATA CARDS +GOLDHABER,SEEGER,TRILLING+WOHL (LRL) +AMADO+SILBAR (NEAS,PENN,LASLIJ) +GOLDHABER,HALL,SEEGER,TRILLING,WOHL (LBL) GIACOMFLI + (BCNA+GLAS+RCMA+TRST) +GRIFFITHS,HIRATA + (BCNA+GLAS+RCMA+TRST) HIRATA 70 DUKE 429 AARON 71 PRL 26 407 HIRATA-1 71 NP B33 445 GIACOMEL 72 NP B37 577 WILSON 72 NP B42 445 LOKEN 72 PR DG 2346 +BARISH, GOMEZ, DAVIES, SCHLEIN, + (CIT, UCLA) THE MAIN ELASTIC SCATTERING AND POLARIZATION EXPERIMENTS --CARROLL 68 PRL 21 122 +FISCHER, LUNDBY, PHILIPS, + (BNL, ROCH) ANDERS-1 69 PL 208 611 ANDERSSON, DAUM, ERNE, LAGNAUX, + (CERN) ANDERS-2 69 PL 308 56 ANDERSSON, DAUM, ERNE, LAGNAUX, + (CERN) ANDERS-2 69 PL 308 56 ANDERSSON, DAUM, ERNE, LAGNAUX, + (CERN) ASBURY 69 PRL 23 194 +DUWELL, KATO, LUNDQUIST, NOVEY, +(ANL, UMO) BARDER 70 PL 328 518 R N BLAND, 6 GLUMABER, G H TRILING (LRL) BARDER 70 PL 328 514 + BLAND, 6 GLUMABER, G H TRILING (LRL) BARDER 70 PL 328 514 + BLAND, 6 GLUMABER, G H TRILING (LRL) BARDER 70 PL 328 514 + BLAND, 6 GLUMABER, TRILING (LRL) BARDER 70 PL 24 160 + BLAND GOLDHABER, TRILING (LRL) BARDETT 71 PR 24 655 +LASSANEN, STEINBERG + (UMD+ANL+NNE5+NAL) BARNETT 71 PR 23 052 + HASSANEN, STEINBERG + (UMD+ANL+NNE5+NAL) HHITMORE 71 PR 03 1092 +ABRAMS, EISENSTEIN, KIM, ONDALLORAN, + (ILL) CADAMS 72 NAL PAPER 324 +COWAN, EDWARDS + (BRIS, RHEL, SHMPI) ALSOT 21 NAL PAPER 227 +COWAN, EDWARDS, HOMELS, HARLES + (BIRM+RHEL) DANYSZ 72 NV PBER 287 +COWAN, EDWARDS + (BRIS, RHELE, SHMPI) DANYSZ 72 NV PSZ 29 +PENNEY, STEWART, THOMPSON, + (LDIC, CDEF, LOWC) PHASE SUET ANNYSES Z₁(1900) 97 Z*1(1900, JP=) I=1 THIS EFFECT IS STRONGLY ASSOCIATED WITH THE K N* THRESHOLD. IF A RESONANCE, THE SPIN-PARITY IS ALMOST CERTAINLY 3/2+ SEE THE MINIREVIEW PRECEDING Z*O 97 Z*1(1900) MASS (MEV)

 97
 2*1(1900) MASS (MEV)

 (1932.0)
 AYED
 70 IPMA
 P13,SOL.I

 12930.0)
 AYED
 70 IPMA
 P13,SOL.I

 12930.0)
 AYED
 70 IPMA
 P13,SOL.II

 12930.0)
 DECRED
 TO IPMA
 P13,SOL.II

 14990.0)
 AYED
 70 IPMA
 P13,SOL.II

 14900.0
 DECREASING SIGNIFICANCE
 1.50L.III

 1490.0
 DECREASING SIGNIFICANCE
 1.50L.III

 1490.0
 DERMETT
 70 IPMA
 P13,SOL.VED

 1800.0
 DERMETT
 70 IPMA
 P13,SOL.VED

 1900.0
 DLO
 DARNETT
 70 IPMA
 P13,SOL.VED

 1800.1
 ALBROW
 71 IPMA
 SOL. GAMMA
 11890.1

 1800.1
 KATO
 71 IPMA
 SOL IIFIT BW)

 KATO
 T1 IPMA
 SOL IIFIT BW)
 FULLER WATER

 PUBLISHED IN MILLER 72.
 VATOT PLASS SHIFTS
 PUBLISHED IN MILLER 72.

 6/70 6/70 6/70 PHASE SHIFT ANALYSES CARRERAI TO NP 823 525 ALSO TO DUKE 447 LEA 71 NP 826 413 LOVELACE TI NP 826 413 EHALICH 72 NAL PAPER 410 CUTKOSKY 72 NAL PAPER 210 MARTIN 72 PREPRINT B CARRERAS, A DONNACHIE (DARE)IJP +DONNACHIE,KIRSOPP (DARE+MCHS+ EDIN) +MARTIN,HOMPSON (RHEL,LUDC)IJP +MARTNE, HOMPSON, (RHEL,LUC)IIP +MARTNE, HOMPSON, (CARNIE) +HICLA,KIEL VSIHH,JOHNSON CARN+ILLAANL B.R.MARTIN, C.E.MILLER (LOUC) 1 2 2 2 7/70 1/71 10/71 10/71 10/71 3/72 3/72 EARLIER ANALYSES THAT DO LEA 68 PR 165 1770 MARTIN 68 PRL 21 1286 CUTKOSKY 70 PR D1 2547 NOT INCLUDE RECENT POLARIZATION DATA --LEA, MARTIN, OADES (RHEL,BNL,CERN) B R MARTIN R E CUTKOSKY, B B DEO (CARNEGIE-MELLON) I LATEST REVIEW TALKS LEVISETT 69 LUND CONF 341 GOLOHABE 70 DUKE 407 DOWELL 72 NAL REVIEW LOVELACE 72 NAL REVIEW 97 Z*1(1900) WIDTH (MEV) R LEVI SETTI (RAPPORTEUR) G.GOLDHABER (REVIEWER) REVIEW TALK IN BARYON SESSION RAPPORTEUR'S TALK (CHICAGO) (LRL) (BIRM) (RUTG)
 Image: Strate Strate
 Strate Strate
 Strate Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 Strate
 <thStrate</th>
 Strate
 Stra (520.0) (397.0) (557.0) (80.0) (240.0) (190.) (280.) 6/70 6/70 6/70 1/71 10/71 10/71 10/71 1 1 1 2 Z1(2150) 93 Z*1(2150, JP=) I=1 SEE A SMALL BUMP IN TOTAL CROSS SECTION AT PK=1.8 GEV/C 97 Z*1(1900) PARTIAL DECAY MODES DECAY MASSES 493+ 938 1236+ 493 Z*1(1900) INTO K N Z*1(1900) INTO N*3/2(1236) K P1 P2 93 Z#1(2150) MASS (MEV) 20. ABRAMS 70 CNTR ++ K+P TOTAL 2150. 10/71 97 Z*1(1900) BRANCHING RATIOS
 Z*1(1900)
 INTO (K N)/TOTAL
 (P1)

 (0.10)
 OR LESS
 CATTER
 67
 THEO
 DISPERSION REL.

 (0.10)
 OR LESS
 CATTER
 67
 THEO
 DISPERSION REL.

 (0.10)
 OR LESS
 TO TPHA
 TO TPHA
 TO TPHA

 (0.17)
 AYED
 TO TPHA
 TO TPHA

 (0.09)
 BARNETT
 TO TPHA
 THEO

 (0.12)
 (ASSUMING J=3/2)
 COL
 TO CHTR ++ K+P TOTAL

 (0.15)
 ALBROW
 TI TPHA ++ SOL. GAMMA
 GOLZI

 (0.22)
 KATO
 TI TPHA SOL II(FIT BW)
 SOL II(FIT BW)
 R1 R1 1 R1 1 R1 1 R1 2 R1 R1 R1 K R1 K -----------8/67 6/70 6/70 7/70 1/71 10/71 10/71 10/71 93 Z*1(2150) WIDTH (MEV) (175.) ABRAMS 70 CNTR + K+P TOTAL 10/71 ------93 Z*1(2150) PARTIAL DECAY MODES DECAY MASSES 493+ 938 P1 Z*1(2150) INTO K N SEE NOTES ACCOMPANYING THE MASSES QUOTED. Z*1(1900) INTO K N*3/2(1236) MAIN INELASTIC DECAY BLAND 67 HBC ** NO EVIDENCE, SPEED HAS MINIM- GRIFFITHS 72 HBC K+P .9-1.5 GEV/C 3/72 _____ R2 R2 R2 93 Z*1(2150) BRANCHING RATIOS Z*1(2150) INTO (K N)/TOTAL (P1) J IS NOT KNONN, THE FOLLOWING IS (J+1/2)*P1 (0.04) ABRAMS TO CNTR + K+P TOTAL R1 R1 R1 REFERENCES FOR Z*1(1900) 10/71 ***** +BOWLER, BROWN, G+S GOLDHABER, SEEGER, + (LRL) A A CARTER (CAVENDISH) BLAND 67 PRL 18 1077 CARTER 67 PRL 18 801 A A CARTER (CAVENDISH) +BAREYRE, FELTESSE, VILLET (SACLAY)IJP +GOLDMAN,LAASANEN,STEINBERG (MARVLAND)IJP +GIACOMELLI, KYCIA, LEONTICI, LI, + (BNL) I COOL,GIACOMELLI, KYCIA,LEONTICI, LI + (BNL) REFERENCES FOR Z*1(2150) AYED 70 PL 32B 404 BARNETT 70 DUKE 443 COOL 70 PR D1 1887 ALSO 66 PRL 17 102 ABRAMS 70 PR 01 1917 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI + (BNL) ALSO 67 PRL 19 257 ABRAMS,COOL,GIACOMELLI,KYCIA,LEONTIC+ (BNL) ALBROW 71 NP B30 273 ALSO 70 DUKE 375 KATO 71 H.E.PHEN.,MORIOND ALSO 70 DUKE 367 ALSO 70 PRL 24 615 +ANDERSON,ALMEHED,...,UDO,WAGNER (CERN)IJP ERNE,SENS,WAGNER (CERN)IJP KACEHLER...,YCNGSAMA+BURLESON (ANL,NWES)IJP A. YCNGSAMA KATO,KOEHLER.NOVEY,YCKOSAWA+ (ANL,NWES)IJP Z1(2500) 94 Z*1(2500, JP=) [=1 A SMALL BUMP IN TOTAL CROSS SECTION AT PK=2.7 GEV/C GRIFFITH 72 NP 838 365 MILLER 72 NP 837 401 +HIRATA,HUGHES + (BGNA+GLAS+ROMA+TRST) +NOVEY,YOKOSAWA,CUTKOSKY + (ANL+CARN+NWES)IJP PAPERS NOT REFFERED TO IN Z*1 DATA CARDS TOTAL-CROSS-SECTION EXPERIMENTS ---BOGG 68 PR 166 1466 +GILMORE,KNIGHT, + (RHEL,BIRM,CAVE) I BOGEN 70 PR D2 2599 +CALDWELL, DIXMEN, JENKINS, KALBACH,+(ARIZ) I BOYEN 73 PR D7 22 +JENKINS,KALBACH,PETERSEN + (ARIZ+MICH) CARCUL 73 BNL PREFRINT +KYCIALI,MICHAEL,MOCKETT (BNL) 94 Z*1(2500) MASS (MEV) 2500. 20. ABRAMS 70 CNTR ++ K+P TOTAL 10/71

Baryons $Z_1(2500)$, Λ 's and Σ 's

94 Z*1(2500) WIDTH (MEV) (160.) ABRAMS 70 CNTR ++ K+P TOTAL 10/71 94 Z*1(2500) PARTIAL DECAY MODES DECAY MASSES 493+ 938 Z*1(2500) INTO K N Ρ1 94 Z*1(2500) BRANCHING RATIOS **1(2500) INTO (K N)/TOTAL (P1) J IS NOT KNOWN, THE FOLLOWING IS (J+1/2)*P1 (P1) (0.03) ABRAMS 70 CNTR ++ K+P TOTAL R1 R1 R1 10/7 ******** ******** ******* ****** REFERENCES FOR Z#1(2500) ABRAMS 70 PR D1 1917 ALSO 67 PRL 19 257 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI + (BNL) ABRAMS,COOL,GIACOMELLI,KYCIA,LEONTIC+ (BNL) Z, CROSS SECTION LIMITS SEE MINIREVIEW PRECEDING Z*0 CS UNITS MICROBARNS 10/69 10/69

0.5						<i>-</i> 0+				A 330P	F 4 G	00	1100		NTF	10	4TT P1T	10/03
CS A	LE	SS	THAN	.2		+.3		~.1	A	NDERS	ON	69	ASPK	+	PI-I	р то	K-Z*+	10/69
CS /	1		ABOV	E LI	INT	FOR	M=	1.2 T	D 1.	4 GEV	-	CI =	99	P.C				
CS F	I I E	SS	THAN	11.4		+1.9		5	Δ	NDERS	กท	69	A SPK	+	PT-1	• TO	K-7*+	10/69
ČŠ E	3		ABOV	EL	іміт	FOR	M= (L. 5 TI	J 2.	5 GEV		•••			••••			10/0/
****	** *	***	****	* * *	****	** * *	***	*****	* **	****	** :	****	****	* *	****	***	* ******	
							1	REFER	ENCE	S FOR	Z *3	1 CR	055	SEC	TION	LIM	ITS	
BASSO	DMP I	68	PL	27B	468		1	BASSO	MPIE	RRE,	+				CERN	BRU	XELLES)	
ANDEF	SON	69	PL	29B	136		,	BLES	ER,	BLIED	EN,	COL	LINS	, +	(BNI	L, CA	RNEGIE	
							1	PAPER	s no	T REF	ERRI	ED T	O IN	DA.	TA CA	ARDS		
TYSO		67	PRL	19	255			GREE	VRFR	с.нис	HE S.		MINE	HAR	r. MO	ат .	(YA1 E)	
MORT		68	PL	28B	152		4	GREE	ABER	G. HUG	HES.		ROTH	BFR	G. +		(YALE)	
MORI		69	DB	185	1 68	7		CDEEL	REP	G	CUE	c. 1	11. M	TME			(VALE)	
	MOD	٠ <i>٤</i>	ດ່ຄະ	01.00				AND		2010	one.	5, L	0, 1	THE	MANT		TALCI	
	NON	1 0	3 16	FLAG	.= 3	1130	101	AND I	1061	00 ·								
*****	* *	***	****	* **	***	****	***	*****	* **	****	** :	****	****	* *:	****	x at at at	******	
****	* *	***	****	* **	***	****	***	****	* **	****	** *	****	****	* *:	****	****	*******	

Note on Y^{*}'s

The number of known or suspected Y^{*} states has increased considerably in the last few years, following closely a similar increase in the number of N^{*} states. Just as the recently discovered N^{*}'s are only weakly coupled in the $\pi N \rightarrow \pi N$ reaction, so also are the recently discovered Y^{*}'s only weakly coupled in the $\overline{K}N \rightarrow \overline{K}N$, $\overline{K}N \rightarrow \Lambda \pi$, and $\overline{K}N \rightarrow \Sigma \pi$ reactions. For this reason the newer Y^{*} s are more difficult to uncover; they usually appear as small peaks in invariant mass distributions or make no appearance at all. Rather when the 2-body reactions are partial-wave analyzed, some of the amplitudes are found to traverse resonance-like counterclockwise circles. Clearly the results of partial-wave analysis give the J^P information, whereas a peak seen in an invariant mass distribution or a total cross section often cannot be analyzed for its quantum numbers. We will keep information coming from formation experiments and from production experiments separate, whenever necessary.

Production experiments. These types of experiments are often difficult to analyze. Informa-

Data Card Listings For notation, see key at front of Listings.

tion on I = 0 states is possible only when there is no I = 1 state at similar mass. The main controversies at the present time concern resonances in the 1600 to 1700 MeV region. See the mini-reviews on $\Sigma(1620)$ and on $\Sigma(1670)$ in these Listings. A good review is given by MILLER 70.¹ Also, the branching ratios of $\Sigma(1915)$ F₁₅ as measured in formation and productions experiments do not agree. This is probably due to two facts: 1) the elasticity is small, 2) the nearby D₁₃(1940) may contribute to production experiments.

Formation experiments. Partial-wave analyses have been performed on $\overline{K}N$, $\Lambda\pi$, $\Sigma\pi$ and ΞK channels. Given the present accuracy of the data it is not possible to perform a completely energyindependent analysis, that is, solve for the partialwave amplitudes at each energy in a modelindependent way. Usually many solutions are found and even when it is required that solutions at neighboring energies join smoothly, it is not possible to select a unique overall solution. To overcome this, one specifies the form of the energy dependence of some or all of the partial-wave amplitudes. Analyses in which the energy dependence of all the amplitudes is specified are called energy dependent. When referring to results of this type of analysis, the technique listed is DPWA. Thus an amplitude known to resonate will be given a Breit-Wigner form, whereas an amplitude not a priori known to resonate may be tried alternately with a resonance form and with some simple nonresonant form, the choice between these then being made by comparing the goodness-of-fit for the two fits. Analyses in which the energy dependence of most of the amplitudes is left unspecified are called (not quite correctly) energy independent. These may involve some fixed input resonances in some of the partial waves and/or some method for selecting solutions that join together smoothly as functions of energy. The technique used for these analyses is listed as IPWA.

Three recent analyses have attempted to fit data on three channels ($\overline{K}N$, $\Sigma\pi$, and $\Lambda\pi$) at lab momenta below 1226 MeV/c. ARMENTEROS 70 (CH) fit each channel separately. They first fit Legendre series to the available data at each momentum in the range 436-1200 MeV/c, and then obtained smooth curves through the Legendre coefficients by fitting a polynomial in

 p_{lab} to each coefficient. Finally, the partial wave amplitudes were fit to the smoothed Legendre coefficients (or reconstructed smoothed angular distributions in the case of $\overline{K}N$), and the continuity of the "data" was used to enforce continuity of the amplitudes. With a few exceptions the S and P waves were varied freely, while the higher waves were fixed as sums of Breit-Wigners (BW's) with no background, representing some well known resonances. Single channel inelastic unitarity was imposed during the fitting, and the results were checked against the three-channel unitarity constraint

Im
$$T_{\overline{KN}} \ge |T_{\overline{KN}}|^2 + |T_{\Sigma\pi}|^2 + |T_{\Lambda\pi}|^2$$
 (1)

for each isospin. Resonance parameters were estimated visually.

KIM 71 (K) fit data from threshold to 1226 MeV/cusing the Ross and Shaw² effective-range expansion of the inverse multi-channel K-matrix. The data in each of seven energy intervals bounded by 0, 534, 658, 806, 916, 1022, 1117, and 1226 MeV/c, were fit with a constant effective-range matrix. An extra channel was included for each isospin to approximate the effects of three-particle final states. The parameters for these extra channels were constrained by information on the total three-particle cross sections. Only the F_{45} (1915) was fixed to a BW form, all other waves included being parametrized by the K-matrix formalism. Resonances were identified on the basis of loops in the Argand diagram correlated with a peak in the speed plot and a pole in the K-matrix. The radius of the loop, the speed criterion, and the residue of the K-matrix were used to determine resonance parameters.

LANGBEIN 72 (LW) performed single energy fits at 40 momenta between 436 and 1226 MeV/c. The partial waves at each energy were parametrized in a form that automatically satisfied Eq. (1), and that could easily be specialized to a BW form by setting one of the parameters to zero. This capability was used to constrain the $D_{03}(1690)$, $D_{15}(1765)$, $F_{05}(1815)$, and $F_{17}(2030)$ to pure BW forms in the range $|E-M_R| < \Gamma$. The resonant parameters were fit to known values. Approximately 90 acceptable single-energy fits per energy were generated and were used in shortest path searches over two regions, 1536 to 1700 MeV and 1700 to 1900 MeV. Several candidates for acceptable shortest paths were generated, and a preferred path was

Baryons Λ 's and Σ 's

chosen by rejecting those that failed to reproduce known resonance behavior. Resonances in this solution were identified by loops in Argand diagrams correlated with peaks in the \geq 3-body final state cross section. Resonance parameters were then extracted by fitting BW's with both multiplicative and additive background.

Partial-wave amplitudes from these three analyses are shown in Figs. 1-3. These analyses show, in addition to the well-established states (which we have classified with three or four stars in Table II at the end of this note), other states which we report in Table I. The table includes effects which show as a clear signal in at least one of the analyses (i.e., this is a list of promising "rookies").

Table I. Comparison of recent Y^* claims. Notation is mass (MeV)/width (MeV)/strongest two-body channel; CH = CERN-Heidelberg, K = Kim, LW = Langbein and Wagner.

	0		
Wave	CH	K	LW
s ₀₁		1780/40/KN	1830/70/KN
P ₀₁		1570/50/?	1620/60/?
P ₀₁	1750/70/∑π 1800/30/KN	1755/35/KN	1780/120/ K N
P ₀₃			1850/125/KN
S ₁₁		1620/40/Λπ	1630/65/∑π
s ₁₁	1730/80/Λπ	1790/50/KN	1790/100/KN
P ₁₁	$1500 - 1600/50/\Sigma\pi$	$1670/50/\Sigma\pi$	
P ₁₃			$1840/120/\overline{K}N$

Although a certain amount of qualitative agreement is apparent, there are many quantitative discrepancies. Some of these effects have been seen elsewhere, and there is also considerable disagreement with some of these other observations. The branching ratios into $\overline{K}N$, $\Sigma\pi$, and $\Lambda\pi$ are particularly poorly determined (this is also true of some of the better established resonances).

In addition to analyses which treat all of the channels $\overline{K}N$, $\Sigma\pi$, and $\Lambda\pi$, there have been a number of energy-dependent analyses of a single channel. We will describe three of the most recent of these. CON-FORTO 71 fit data on the $\overline{K}N$ channel between 777 and 1226 MeV/c. The procedure was to parametrize each wave as a term linear in the lab momentum plus (possibly) BW's with adjustable phase. The data were first fit with BW's representing only known resonances. Three more re**s**onances were then added, one at a time,

Baryons

 Λ 's and Σ 's

Data Card Listings For notation, see key at front of Listings.

Fig. 1. I=0 partial wave amplitudes for the reactions $\overline{K}N \rightarrow \overline{K}N$ and $\overline{K}N \rightarrow \Sigma \pi$ from the analyses of ARMENTEROS 70 (CH), KIM 71 (K), and LANGBEIN 72 (LW). The K laboratory momenta are indicated.

Baryons Λ 's and Σ 's

Fig. 2. I=1 partial wave amplitudes for the reactions $\overline{KN} \rightarrow \overline{KN}$ and $\overline{KN} \rightarrow \Sigma \pi$ from the analyses of ARMENTEROS 70 (CH), KIM 71 (K), and LANGBEIN 72 (LW). The \overline{K} laboratory momenta are indicated.

Baryons

 Λ 's and Σ 's

Data Card Listings. For notation, see key at front of Listings.

Fig. 3. Partial wave amplitudes for the reaction $\overline{K}N \rightarrow \Lambda \pi$ from the analyses of ARMENTEROS 70 (CH), KIM 71 (K), and LANGBEIN 72 (LW). The K laboratory momenta are indicated.

to the waves where they had the most effect on χ^2 . Best results were obtained by adding a $D_{05}(1830)$, P03(1883), and S11(1757). KANE 72 reported an analysis of bubble chamber cross section and polarization data on the $\Sigma\pi$ channel between 870 and 1694 MeV/c. Legendre coefficients obtained from this data were used to fit an energy-dependent background + BW form for each wave, and the results were checked against the angular distributions from this experiment and against a compilation of Legendre coefficient data. In addition to known resonances, signals for a $F_{05}(2141)$, $F_{15}(2057)$, and a $D_{13}(1985)$ were seen. VAN HORN 72 fit data on the $\Lambda\pi$ channel Legendre coefficients over the range 1537-2215 MeV, including new bubble chamber data between 1865 and 2106 MeV. An energy dependent parametrization similar to KANE 72 was used for the fitting; the 20 best solutions indicate (in addition to established resonances) the probable resonances

 $S_{11}(1697)$, $D_{13}(1949)$, $P_{11}(1668)$, and four possibilities in other waves. VAN HORN 72 also used the Barrelet³ method to generate ambiguous solutions that correspond to the same cross sections and polarizations as the best energy-dependent solutions. Seven ambiguous solutions were found that preserved the established resonance behavior of the $D_{13}(1670)$, $D_{15}(1765)$, $F_{15}(1915)$, and $F_{17}(2030)$, but with varying couplings for these resonances to the $\Lambda\pi$ channel, and with widely different resonant structures in the lower waves.

Errors on masses and widths. Often the quoted errors are only statistical, but the values of masses and widths can change well above these errors when a new parametrization is used. For this reason we report the values of M, Γ , and x_i obtained by different authors even if they analyze the same data. The spread of these masses and widths is certainly a better estimate of the uncertainties than the statistical errors.
Data Card Listings For notation, see key at front of Listings.

Recently it has become the custom to quote errors as obtained by inspection of various fits done with different hypotheses [see for example BERTHON 70 and GALTIERI 70 under $\Sigma(1915)$]. These errors are probably more realistic. On the other hand, the value of the parameter itself may be consistent with other determinations and often may even be the best available value. In such circumstances we put only the error in parentheses to remind the reader of the additional uncertainty due to model dependent assumptions. For two states, $\Lambda(1820)$ and $\Sigma(1765)$, there is enough data available to perform an overall fit of the various x; of the type discussed in the main text (section VC). In this case we are forced to use the errors, however small they may be, but we warn the reader that the final errors are not to be taken seriously.

In conclusion, we chose not to give errors on masses and total widths determined in partial-wave analyses, but, whenever necessary, we give a range of values. As for the branching ratios, we use the errors when needed to perform an overall fit, but we caution the reader.

<u>Conclusions</u>. Table II is an attempt to evaluate the status of the various $Y^{*'}$ s. The evaluations are of course partly subjective. A blank indicates that there is no corresponding evidence at all. This may mean either that the relevant couplings are small or that the resonance does not really exist. The Baryon Table includes only the well-established resonances. It seems clear, however, that whereas any particular one of the questionable resonances may disappear with the next analysis, there definitely are many new resonances underlying those we are more familiar with.

References

D. H. Miller, in Proceedings of the Duke Conference on Hyperon Resonances (1970), p. 229.
 M. Ross and G. Shaw, Ann. Phys. (N. Y.) <u>13</u>, 147 (1961).

3. E. Barrelet, N.C. 8A, 331 (1972).

4. A. Barbaro-Galtieri in Proceedings of the Duke Conference on Hyperon Resonances (1970), p. 173.

Baryons Λ 's and Σ 's, Λ , Λ (1330)

TABLE II. STATUS OF Y* RESONANCES THOSE WITH AN OVERALL STATUS OF **** OR **** ARE INCLUDED IN THE MAIN BARYON TABLE. THE OTHERS AWAIT CONFIRMATION.

STATUS	AS	SEEN	110 -	-

PARTICLE LIJ	DVER AL L STATUS	TUTAL≠ CR. SEC.	KBAR N	LAM PI	SIG PI	OTHER CHANNELS
LAM(1115) PO1	****					
LAM(1330)	DEAD					WEAK TO N PI
LAM(1405) S01	****	****	****	F	****	
LAM(1670) SO1	****		****	R	****	LAMZPI,LAM GAM LAM ETA
LAM(1690) D03	****	***	****	B	****	LAM2PI, SIG2PI
LAM(1815) F05	****	****	****	۰ D	****	SIG(1385) PI
LAM(1830) D05	***	**	***	D	****	
LAM(1870) SO1	**		**	c	∾ N *	
LAM(2010) D03	**		*	F	*	LAM OMG
LAM(2100) G07	****	***	****	Ř	***	XI K,LAM DMG
LAM(2110)	*	****	*	8	*	LAM OMG
LAM(2585)	***	***	*	b		
SIG(1190) P11	****					UELK TO N AT
SIG(1385) P13	** **			****	** **	WEAK TO N PI
SIG(1440) PE SIG(1480) PE	DEAD					
SIG(1620) S11	**		**	*	*	
SIG(1620) P11 SIG(1620) PE	**		**	*	**	
SIG(1670) D13	** **	**	***	****	****	SEVERAL OTHERS
SIG(1670) PE	**		**	**	**	SEVERAL OTHERS
SIG(1750) S11	***	*	**	**	*	LAM 2-PI SIG ETA
SIG(1765) D15	****	***	****	****	***	SEVERAL OTHERS
SIG(1880) P11	**		*	**	*	
SIG(1915) F15	****	***	***	****	* **	
SIG(2000) S11	***		*	***	**	
SIG(2030) F17	****	****	****	****	**	XIK
SIG(2080) P13	**			**	*	
SIG(2100) G17	**			**	**	
SIG(2455)	***	***	*	*	*	
SIG(2620)	***	***	*			
ATTRIBUTED ATTRIA	TO THE S	TATE CLOSI	EST TO WH	HERE THE C	ROSS SEC	TION PEAKS.
Λ	18 L	AMBDA (1)	115,JP=1/	(2+) I=0		
******	300 3	HOLE PARI	ICCE DAT	A CARD LI	STINGS	
*****	******	* ********	** ******	**** *****	**** ***:	*****
1(1220)	1					
11(1000)	87 Y	*0(1330, J	(P=)	I = 0	PRODUCT	ION EXPERIMENTS
BUMPS	SEE T	HE MINT-RE		HE START		
£	1			IL JUAN		- 113111403.
WAS TAKEN AS ETA, WITH THE THIS INTERPRE BILLITY OF THE BUT DEFER SER SHOULD SUC (MISSING MASS) A SEARCH F TAN 69. NOME ANOTHER SE	A PEAL TRUM BUBELI INDIRECT ETA DEC, TATION H, RE BEING IOUS COM H A RESOI J. DAHL OR A NEW WAS FOUM ARCH BY N	K IS SEEN IN THREE P EV 67, AND EVIDENCE AYING TO T AS BEEN RU A Y*0(133 SIDERATION NANCE EXIS 67 FOUND Y*0 NEAR ND. MAYEUR 70	NEAR 133 I- PROPA BOZOKI FOR THE WO GAMMA LED OUT. O) WITH OF IT U T, IT SH NO EVIDE THE LAMB REVEALED	O MEV IN NE EXPERI 68). IN Y*O(1670) S. IN TH BOZOKI A NARROW NTIL THER OULD BE SI NCE FOR I DA OR SIGN	THE LAMBI MENTS (YU THE FIRST DECAYINC E THIRD E 68 MENTIC WIDTH (<2 E IS MORE EEN IN PI T. MA MASS W NCE FOR T	DA GAMMA SPEC- JNG-CHANG 64, I TWO, THIS S TO LAMBDA EXPERIMENT N THE POSSI- 25 MEV), E DATA. L- P TO KO + MAS MADE BY THIS STATE.
*****	*******	* *** ****	* *****	*** *****	**** ****	*****
		REFER	ENCES FO	R Y≭0(1330) (PROD.	EXP.)
Y-CHANG 64 DUBNA 3UBELEV 67 PL 24 DAHL 67 PR 16 3OZOKI 68 PL 28 FAN 69 PRL 2 AAYEUR 70 PL 33	CONF I 6 8 246 3 1377 8 360 3 101 8 441	15 YUNG- +CHAD DAHL, +FENY T H T +VAN	CHANG, I RAA, CHU HARDY, VES, GEM AN BINST-WT	N, KLADNI [*] VILO, + HESS, KIR; ESY, +	TSKAYA, + (JINR,BUC 2, MILLER (BUD	- (DUBNA) HAREST, CERN) (LRL) APEST, DUBNA) (SLAC)

Baryons Λ(1405), Λ(1520)

	PAPERS NOT REFERRED TO IN DATA CARDS
A(1405) BUMPS 37 Y*0(1405, JP=1/2-) I=0 PRODUCTION EXPERIMENTS THIS RESONANCE CAN BE IDENTIFIED WITH THE VIRTUAL BOUND STATE IN THE KBAR-N SYSTEM FOUND IN THE ANALYSIS OF LOW ENERGY K-P INTERACTION. WE LIST SUCH EXPERIMENTS SEPA- RATELY BELOW. WE USE ONLY PRODUCTION EXPERIMENTS FOR AVERAGING OF MASSES AND WIDTHS.	ABRAMS 65 PR 139 B455, G S ABRAMS, B SECHI-ZORN (UMD)IJP DDNALD 66 PL 22 711 + EDMARDS, LYS, NISAR, MOORE (LIVERPOOL) KADYK 66 PRL 17 599 + OREN, G+S GOLDHABER, TRILLING (LRL)IJP FIT SOLUTIONS GIVING AN 140 SI ABRAMS 65, KADYK 66, AND DONALD 66 SUPPORT THOSE EFFECTIVE-RANGE- DALITZ 67 PR 153 1617 DALITZ, MONG, RAJASEKARAN (OXFORD, BOMBAY) DALITZ 70 DUKE-HR 70 03 R D DALITZ (OXFORD, BOMBAY) CLINE 71 PR 126 1194 D CLINER LAUMANN, J MAPP (MISC) MARTIN 71 PL 26 1194 D CLINER LAUMANN, J MAPP (MISC) MARTIN 71 PL 35B 62 A D MARTIN, B R MARTIN, ROSS (DURH+LOUC+RHEL) DOBSON 7Z PR 165 265 P N DOBSON, R GLEHANEY (MANA)
37 Y*0(1405) MASS (MEV) (PROD. EXP.)	GALTIERI 72 LBL 555 A.BARBARO-GALTIERI (LBL)
M (1405.0) ALSTON 61 HBC K-P 1.15 BEV/C M (1405.0) ALSTON 62 HBC FI-P 2.2 SEV/C M (1410.0) ALSTON 62 HBC FI-P 2.2 SEV/C M (1382.0) (8.0) ENGLER FS HBC FD-P 2.2 SEV/C M (1382.0) ENGLER FS HBC PI-P 1.2 SEV/C FS HBC M 1400.0 24.0 MUSGRAVE FS HBC PBAR P 3-4 BEV/C M 1400.0 5.0 DIRTINENA 66 HBC K-P 3.5 S M 120 1405.0 5.0 GALTIERI 68 DBC K-D 2.1-2.7BEV/C M M AVG 1402.4 3.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	7/66 7/66 7/66 7/67 7/67 7/68 7/67 7/69 7/67 7/69 7/67 7/69 7/67 7/777 7/77 7/77 7/77 7/77 7/77 7/77 7/77 7/77 7/77 7/77
37 Y*0(1405) WIDTH (MEV) (PROD. EXP.)	DF Y#0(1520) IO THE UVERALL LAM PI PI CRUSS SECTION. BURKHARDT 71 (PRODUCTION), WITH MUCH LESS STATISTICS,
I20.01 ALSION 61 HBC 35.0 5.0 ALEXANDER 62 HBC 150.01 ALSTOR 62 HBC 150.01 ALSTOR 62 HBC 160.01 ALSTOR 62 HBC 170.01 BUSKRAVE 5 HBC 180.01 CO BUSKRAVE 180.01 CO BUSKRAVE 180.01 CO BUSKRAVE 120 35.0 8.0 120 38.1 3.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	7766 FIND A AUCH LUWEK BRANCHING KAITU. 7766 38 Y*0(1520) MASS (MEV) 9/67 9/67 9/67 145 1517.2 9/67 1519.4 2.0 MATSON 63 HBC K 1519.4 2.0 MATSON 63 HBC K 1519.4 Y 1519.0 Y 15.0 M 291510.01 M 201510.01 M 201510.01 M 201510.01 M 201510.01
37 Y*O(1405) PARTIAL DECAY MODES (PROD. EXP.)	M B 1517.2 1.2 BURKHARDT 69 HBC K-P.8-1.2 GEV/C 10/69 M B QUOTED ERROR INCREASED TO ACCOUNT FOR DISAGREEMENT BETWEEN
DECAY MASSES	M B TWO MEASUREMENTS DONE BY SAME AUTHORS (K-P AND SIGMA PI) M (1519.) KIM 71 DPWA K-MATRIX ANAL. 3/71
****** ********* **********************	M AVG 1517.85 0.95 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
REFERENCES FOR Y*0(1405) (PROD. EXP.)	
ALSTON 61 PRL 6 698 +ALVAREZ, EBERHARD, GCOD, GRAZIANO, + (LRL) I ALEXANDE 62 PRL 8 447 ALEXANDER, KALBFLEISCH, HILLER, SMITH (LRL) I ALSTON 62 CERN CONF 311 +ALVAREZ, FEMRO-LUZZI RADG, + (LRL) I ENGLER 65 PRL 15 224 +FISK, KAREMER, MELITZER, WESTGARD, + (CARABALL) I MUSGARVE 65 NC 35 755 +FETHEZAS, + (BIRN, CEN, FEDL, LOIG, SACLAY) BIRNINGH 66 PR 152 1148 BIRMINGHAM, GLASGOW, LOIC, OXFORD, RUTHERFORD GALTIERI 68 PRL 21 573 BARBARD-GALITERI, CHADDICK + (LRL, SLAC)	38 Y¥O(1520) WIDTH (MEV) W 16.4 2.0 WATSON 63 HBC 7/66 W 129.01 (19.0) MUSGRAVE 65 HBC 7/66 W 30 (50.01 (10.01 B) BARINGHA 66 HBC K-P 3.5 9/65 W 10.01 LESS BUJKHAROT 97 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 99 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 89 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 80 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 80 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 1.8 BUJKHAROT 80 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 HBC K-P .8 BUJKHAROT 80 HBC K-P .8-1.2 GEV/C 10/69 W 14.7 HBC K-P .8 BUJKHAROT 80 HBC K-P .8 BUJKHARO
****** ********* ******** ******** *****	W AVG 15.5 1.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
Λ(1405) 24 <u>yeo(1405, J=1/2-)</u> 1=0 S ₀₁	38 Y*O(1520) PARTIAL DECAY MODES
EXTRAP. See NOTE IN Y#011405) PRODUCTION EXPERIMENTS -THE DIF- FICULTIES IN EXTRAPOLATING FROM THE PHYSICAL REGION TO	PI Y*0(1520) INTO KBAR Output P2 Y*0(1520) INTO SIGMA PI 197+939 P3 Y*0(1520) INTO SIGMA PI 1197+139 P3 Y*0(1520) INTO SIGMA PI 1197+139
THE RESUMANCE LUCATION ARE DISCUSSED BY DALITZ 6'. THE QUESTION ON WHETHER Y*(1405) IS A KARA-N BOUND STATE OR A COD POLE (DALITZ 70) MAS BEEN INVESTIGATED BY CLINE 71,	P4 Y*0(1520) INTO LAMBUA GAMMA 1115+ 0 P5 Y*0(1520) INTO SIGMA O GAMMA 1192+ 0 P6 Y*0(1520) INTO SIGMA PI PI 1137+ 139+ 139 P7 Y*0(1520) INTO SIGMA PI PI 1334+ 139
THAT THE DATA CANNOT TELL THE DIFFERENCE.	
	FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS
M 1410.7 (1.0) KIM 65 HBC 0-EFF-RANGE FIT	The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where
M 1409.6 (1.7) SAKITT 65 HBC 0-EFF-RANGE FIT DATA OF SAKITT ARE USED IN FIT BY KITTEL.	7/66 $\delta P_i = \sqrt{\langle \delta P_i \delta P_i \rangle}$, while the <u>off-diagonal</u> elements are the normalized correlation coeffi-
M 1401.5 (1.2) KINEL 66 HBC DEFFERANCE FIL M 1403.0 (3.0) KIM 67 HBC K MATRIX FIT(KP) 4 M 1416.0 (4.0) MARTIN 69 HBC CONST. K MATRIX 10	above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and 0/69
M (1421.0) MARTIN 70 RVUE CONST. K MATRIX (6/70 are thus constrained to add to i. P1 P2 P3 P4 P5 P6
24 Y*O(1405) WIDTH (MEV)	P 1 $+502^{+0039}$ P 2 7405 $+4115^{+0092}$ P 3 2227 3403 -1004^{+0054}
W 37.0 (3.2) KIM 65 HBC	P 4068906470324 .0080+0014 7/66 P 51739163308190095 .0199+0035
W 20.2 (4.1) SARIII OD HOU W 34.1 (4.1) KITTEL 66 HBC W 50.0 (5.0) KIM 67 HBC K MATRIX FIT(KP)	7/66
W 29.0 (6.0) MARTIN 69 HBC CONST.K MATRIX 10 W (20.0) MARTIN 70 RVUE CONST.K MATRIX (0/69 6/70
****** ********************************	38 Y*O(1520) BRANCHING RATIOS
REFERENCES FOR Y*0(1405) (FROM EXTRAPOLATIONS)	R1 Y*0(1520) INTO (SIGMA PI)/(KBAR N) (P2)/(P1) R1 1.72 .78 MUSGRAVE 65 HBC 8/67
NIM 09 MKL 14 29 J K KIM ICOLUMBIALIJP SAKITT 65 PR 139 B719 + DAYSGLASSER, SEEMAN, FRIEDMAN, + (UMD, LR, J IJP KITTEL 66 PL 21 349 W KITTEL, G OTTER, I WACEK (VIENNA)IJP KIM 67 PRL 19 1074 J KIM (YALEJ)P MARTIN 69 PR 183 1352 B R MARTIN, M SAKITT (LOUC+BNL)	K1 U.90 U.2U DAHL 67 HBC PI-P 16-4 6EV/C 9/64 R1 0.73 0.11 DAUBER 67 HBC K-P A12.6EV/C 3/67 R1 1.06 .14 SCHEUER 68 DBC 0 K-N 3 GEV/C 10/69 R1 0.422 0.08 BURKHARDT 69 HBC K-P .8-1.2 GEV/C 10/69 R1
HARTIN 70 NP B16 479 A D MARTIN, G G ROSS (DURHAM)IJP	R1 AVG 0.851 0.064 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) R1 FIT 0.914 0.036 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)

Data Card Listings

For notation, see key at front of Listings.

Y*0(1520) INTO (LAMBDA PI PI)/(KBAR N) (P3)/(P1) 0.17 0.05 DAHL 67 HBC PI-P 1.6-4 GEV/C 9/66 0.21 0.18 DAUBER 67 HBC P.A 2.6EV/C 8/67 .19 .04 SCHEUER 68 DBC 0 K-N 3 GEV/C 10/69 0.22 0.03 BURKHARDT 69 HBC K-M 3 TRIX ANAL. 3/71 (0.2) KIM 71 DPMA K-MATRIX ANAL. 3/71 R2 0.202 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.223 0.014 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG FIT R3 Y R3 R3 R3 R3 R3 R3 AVG R3 FIT Y*0(1520) INTO (SIGMA PI)/(LAMBDA PI PI) 4.5 1.0 ARMENTERO 65 HBC 3.3 1.1 BIRMINGHA 66 HBC 3.9 1.0 UHLIG 67 HBC (P2)/(P3) K-P 3.5 7/66 K-P 3.5 9/67 K-P .9-1.0 BEV/C 9/66 3.94 0.59 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 4.10 0.27 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R4 R4 R4 R4 Y*0(1520) INTO (LAMBDA GAMMA)/TOTAL (PERCENT) 238 0.80 0.14 MAST 68 HBC 0 USING ELAST=.45 11/68 FIT 0.80 0.14 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) Y*0(1520) INTO (SIGMAO GAMMA)/TOTAL (PERCENT) (P5) S 2.0 .35 MAST 68 HBC SEE NOTE S RATIOS CALCULATED FROM FALASSUMING SU(3). NEEDED TO CONSTRAIN S ALL THE Y*0(1520) BRANCHING RATIOS TO BE UNITY. FIT 1.99 0.35 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R5 R5 R5 R5 R5 R5 10/69 FIT Y*0(1520) INTO (KBAR N)/TOTAL 0.29 0.05 .447 .018 0.47 0.03 (0.45) (P1) WATSON 63 HBC (P ALL CHANNELS 10/71 GALTIERI 69 HBC (K - P .28-.45 G/C 10/69 COLLEY 71 DBC (K - M 1.5 GEV PROD 10/71 KIM 71 DPWA (K - M 1.4 AWAL 3/71 R6 R6 R6 R6 R6 R6 R6 0.439 0.033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.3) 0.4502 0.0089 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG Y*0(1520) INTO (SIGMA PI)/TOTAL (P2) 0.55 0.09 WATSON 63 HBC K-P ALL CHANNELS 10/71 0.418 .017 GALTIERI 69 HBC 0 K-P .28-.45GEV/C 6/69 0.43 0.03 COLLEY 71 DBC K-M 1.5 GEV PKD (0.46) KIM 71 DFMA K-MAIRIX ANALA. 3/71 R7 R7 R7 R7 R7 R7 R7 R7 0.424 0.015 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.415 0.0092 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG FIT R8 R8 R8 R8 Y*0(1520) INTO (SIGMA PI PI)/TOTAL (P6) .010 .0015 GALTIERI 69 HBC 0 K-P .28-.45GEV/C 10/69 0.0100 0.0015 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) FIT Y*0(1520) INTO (Y*1(1385) P1)/(LAM PI P1) (P7)/(P3) NORE THAN 0.10 CLINE 69 DBC K-D TO 2PI LAM N 9/69 0.39 0.10 BURKHABDT 71 HBC LAM 3PI PROD. 3/71 C (1.0) CHAN 72 IPWA K-P TO LAM 2PI 2/73* 0.82 0.10 MAST 73 IPWA K-P TO 2PI LAM 12/72* B CENTEAL BIN(1514-1524) GIVES .74+-10 -- OTHER BINS LOWER BY 2-5516 C ONLY THE Y*(1385)DSO3 SEME TO CONTRIBUTE M BOTH Y*(1385)DSO3 SADD SIGMA (PI PI)DPO3 CONTRIBUTE R9 AVERAGE MEANINGLESS (SCALE FACTOR = 3.0) R10 R10 Y*0(1520) INTO (Y*1(1385) PI)/TOTAL 0.041 0.005 CHAN (P7) 72 HBC K-P TO LAM 2PI 3/71 R11 R11 R11 R11 R11 AVG R11 FIT Y*0(1520) INTO (LAMBDA PI PI)/TOTAL 0.10 0.02 COLLEY 0.11 0.01 MAST (P3) 71 DBC K-N 1.5 GEV PROD 10/71 73 IPWA O K-P TO LAM.PIPI 1/73* 0.1080 0.0089 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.1004 0.0054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) REFERENCES FOR Y*0(1520) CALTIERT 42 DL 4 204 A BARBARO-GALTIERT A HUSSAIN PD TRIPP (LDL)

******	****	***** *******	******** *********** ******** *********
BERLEY	70	PR D1 1996	+YAMIN,KOFLER,MANN,MEISNER+ (BNL,MASA,YALE)IJP
			PAPERS NOT REFERRED TO IN DATA CARDS
MAST	73	PR D7 5	+ALSTON-GARNJOST, BANGERTER, + (LBL) IJ
CHAN	72	PRL 28 256	+BUTSHAFER,HERTZBACH,KOFLER++ (MASA, YALE)
AL SO	70	DUKE 161	J. K. KIM (HARV)IJP
KIM	71	PRL 27 356	J K KIM (HARV)IJP
COLLEY	71	NP 831 61	+COX,EASTWOOD,FRY+ (BIRM+EDIN+GLAS+LOIC)
BURKHARD	71	NP 827 64	+FILTHUTH,KLUGE,OBERLACK++ (HEID+CERN+SACL)
, ALSO	70	DUKE 95	R D TRIPP (LRL)
GALT IERI	69	LUND 352	BARBARD-GALTIERI, BANGERTER, MAST, TRIPP (LRL)
CLINE	69	LNC 2 407	+LAUMANN+MAPP (WISC)
BURKHARD	69	NP 814 106	+FILTHUTH+KLUGE+ (HEID+EFI+CERN+SACLAY)
SCHEUER	68	NP B8 503	SABRE COLLAB. (SACL+AMST+BGNA+REHO+EPOL)
MAST	68	PRL 21 1715	MAST, ALSTON, BANGERTER, GALTIERI+ (LRL)
UHLIG	67	PR 155 1448	+CHARLTON, CONDON, GLASSER, YODH, + (UMD, NRL)
DAUBER	67	PI 248 525	+MALAMUD-SCHIETN-SLATER-STORK (UCLA)
DALL	67	PR 152 1148	DAWL, HARDY, HESS, KIRZ, MILLER (LRI)
DIDNINCH	44	00 152 1140	
MUSGRAVE	65	NC 35 735	+PETMEZAS,+ (BIRM,CERN,EPOL,LOIC,SACLAY)
ARMENTER	65	PL 19 338	AR MENTEROS, F-LUZZI, + (CERN, HEID, SACLAY)
ALMEIDA	64	PL 9 204	S P ALMEIDA, G R LYNCH (CERN)
WATSON	63	PR 131 2248	M B WATSON, M FERRO-LUZZI, R D TRIPP (LRL)IJP
GALTIERI	05	PL 0 290	A DARDARUTGALITERIJA HUSSAINJRU TRIPP (LKL)

Baryons Λ(1520), Λ(1670)

$\Lambda(1670) \xrightarrow{40 y \neq 0(1670, \ JP = 1/2 -) \ I = 0} \underbrace{S_{01}''}_{\text{See the MINI-REVUE AT THE START OF THE Y* LISTINGS.}$	
(SEE THE NOTE FOR THE Y*O(1330)).	
M M (1666.010R(1675.0) BERLEY 65 HBC 0 K-P TO LAM ETA 7/ M M THE FIRST VALUE ASSUMES THE BRANCHING RATIO INTO LAMBDA ETA IS M SMALL THE SECOND THAT IT IS LARGE. BECAUSE THE RESONANCE IS NEAR M THE LAMBDA ETA THRESHOLD, ITHE BRANCHING RATIO AFFECTS THE MOMENTUM M DEPENDENCE OF THE TOTAL MIDTH, AND THUS ALSO THE RESONANCE PARA-	'66
M 1665.01 3.0 ARMENT-1 68 HEC 0 ELASTIC, CH ECH 11/ M N (1678.0) 12.01 ARMENT-2 68 HEC 0 K-P 10/ 11/ M N 1674.01 12.01 ARMENT-3 69 HEC 0 MLPT I/L 11/ 11/ M A 1674.0 15.01 ARMENT-3 69 HEC 0 MLDT I/L HAL 11/ <td< td=""><td>'68 '69 '69 '69 '70 '70 '71</td></td<>	'68 '69 '69 '69 '70 '70 '71
M N THE APPARENT DISCREPANCY BETWEEN THESE RESULTS IS PROBABLY NOT M. SERIOUS. THE ERKORS GIVEN ARE JUST STATISTICAL. THE SYSTEMATIC M. ERKORS THAT RESULT FROM THE RESTRICTIVE PARAMERIZATION FORCED ON M THE PARTIAL-WAVE AMPLITUDES ARE NUT INCLUDED, AND CAN BE LARGE.	.03
40 Y*0(1670) WIDTH (MEV)	
W M (22.010R(15.0) DERLEY 65 HEC 0 SEE NOTE M ADOVE 77 W N (26.0) ARMENT-1 68 HEC 0 SEE NOTE M ADOVE 17 W N (26.0) (5.0) ARMENT-2 60 HEC 0 SEE NOTE M ADOVE 17 W N (26.0) (13.0) ARMENT-2 60 HEC 0 SEE NOTE M ADOVE 117 W A (23.0) (13.0) ARMENT-3 69 HEC 0 ELAST 4CH ECK 50 97 W N 38.0 (15.0) ARMENT-4 69 HEC 0 K-P TO SIG APILED 16.0 W 33.0 BERLEY 69 HEC 0 K-P TO SIG APILED 67 W 35.0 (5.0) GALTIERI 70 HEC 0 K-P TO SIG APILED 67 W 35.0 SEE TO SIG APILED 12.0 MANDELED 12.1 W 35.0 KIM 71 DPWA K-MATRIX ANAL. 37 W 35.0 LANGOEL TO ZIPAM 12.4 36.0 20.0) LANGOEL TO ZIPAM 12.4	/66 /68 /69 /69 /70 /70 /71 /72*
40 Y*0(1670) PARTIAL DECAY MODES	
DECAY DECAY MASSES P1 Y*0(1670) INTO KBAR N 4977-939 P2 Y*0(1670) INTO LAMBDA ETA 1115-548 P3 Y*0(1670) INTO SIGMA PI 1189+139	
R1 Y*0(1670) INTO (KBAR N)/TOTAL (P1) (P1) R1 P (0.14) 0.04) ARMENT-1 68 HBC 0 UDD DATA 11/ R1 P (0.14) 10.04) ARMENT-3 69 HBC 0 UDD DATA 11/ R1 P (0.17) ARMENT-3 69 HBC 0 UDD DATA 9/ R1 A (0.76) ARMENT-3 69 HBC 0 NEM DATA 9/ R1 A (0.35) CONFORTO 71 HBC NEM DATA 3/ R1 0.28 KIM T1 PDWA K-MATRIX ANAL 3/ R1 0.35 (0.06) LANCOBETO 71 HBC NE-MATRIX ANAL 3/ R1 0.35 (0.60) LANCOBETO 72 HPM PULTICHANNEL 12/ R1 A AFFECT FILOW REGION ANALYZED. VALUE OF .18 DDES NOT RI A AFFECT FILOW REGION ANALYZED. VALUE OF .18 DDES NOT RI A R1 A DEFECT FILOW REGION COTHER PARAMETERS. RI P THIS IS THE DIAMETER OF THE CIRCLE IN THE ARGAND PLOT. IT IS <td>'68 '69 '70 '71 /72*</td>	'68 '69 '70 '71 /72*
R2 Y*0(1670) FROM KBAR N TO LAMBDA ETA SQRT(P1*P2) R2 M (0.20) DR 0.23 DERLEY 65 HBC 0 SEE NOTE M ABOVE 7/ R2 (0.26) ARMENT-3 69 HBC 0 9/ R2 (0.26) ARMENT-3 69 HBC 0 9/ R2 (0.24) KIM 71 DPWA K-MATRIX ANAL. 3/ SEE THE NOTES ACCOMPANYING MASSES QUOTED COUTED COUTED COUTED COUTED	/66 /69 /71
R3 Y*0(1670) FROM KBAR N TO SIGMA PI SQRT(P1*P3) R3 (-0.25) (0.06) ARMENT-2 68 HBC O LD DATA R3 -0.27 ARMENT-3 69 HBC O LD DATA 99 R3 -0.27 ARMENT-4 69 HBC O LD DATA 99 R3 -0.27 (0.03) ABERLEY 69 HBC O LD DATA 99 R3 -0.27 (0.03) ABERLEY 69 HBC O K-P TO SIGMA PI 6/ R3 -0.29 (0.03) GALTIERI 70 HBC O SIG PI-LEPNA 77 R3 -0.28 KIM 71 DPWA K-MATRIX ANAL. 3/	/69 /69 /70 /70 /71
****** ********* ********* ************	
REFERENCES FOR Y*0(1670) BERLEY 65 PRL 15 641 +CONNOLLY, HART, RAUM, STONEHILL, + (BNLIJP ARMENT-1 68 NP B8 195 ARMENT-2 68 NP B8 223 ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY) JP ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY) JP	
ARKENT-3 69 LUND PAPER 229 ARKENTERGS, BAILLON, + (CERN, HEIDEL, SACLAY)IJP VALUES ARE QUOTED IN LEVI SETTI 69. ARKENT-4 69 RN B14 91 ARKENTERGS, BAILLON, + (CERN, HEIDEL, SACLAY)IJP BERLEY 69 PL 308 430 + HAT, RAHN, WILLIS, YAAMANTO (BNL)IJP CONFORTO TI NP B34 91 ARKENTERGS, BAILLON, + (CERN, HEIDEL, SACLAY)IJP GALTIERI 70 DUKE 173 A. BARBARG GALTIERI (BNL)IJP CONFORTO 71 NP B34 91 + ASTR RAHN, WILLIS, YAAMANTO (BNL)IJP (HARV)IJP KIM 71 PRL 27 356 J K KIM (HARV)IJP (HARV)IJP ALNGBEIN 72 NP B47 477 + MAGNER (MRV)IJP PADERS NDT SEEDERD TO IN DATA CADE PADERS NDT SEEDERD TO IN DATA CADE	
BIRMINGH 66 PR 152 1148 (BIRMINGHAM, GLASGON, LOIC, DXFORD, RUTHERFD)	
744742 74044924 74044742 7404775111 (144540416041 (14117960)	

Baryons Λ(1690), Λ(1750)

	D%2		ARMENT-4 69 NP B14 91 BERLEY 69 PL 30B 430 BERTANZA 69 PR 177 2036	ARMENTERÖS, BAILLÖN, + (C + HART, RAHM, WILLIS, YAM +BIGI,CARRARA,CASALI, +	ERN, HEIDEL, SACLAY)IJP IAMOTO (BNL)IJP (PISA, BNL, YALE)IJP
A(1690) SEE THE MINI-REVU THIS RESONANCE I	S WELL ESTABLISHED.		GALTIERI 70 DUKE 173 CONFORTO 71 NP B34 41 KIM 71 PRL 27 356 ALSO 70 DUKE 161 LANGBEIN 72 NP B47 477.	A. BARBARO GALTIERI +LEVI SETTI,LASINSKIOBE J K KIM J. K. KIM +WAGNER	(LRL)IJP RLACK++ (EFI+HEID)IJP (HARV)IJP (HARV)IJP (MPIM)IJP
55 Y*0(1690) MAS	(MEV)			PAPERS NOT REFERRED TO IN	DATA CARDS
M (1696.0) (3.0)	ARMENT-1 68 HBC O FLASTIC, CH	XCH 11/68	PREVOST 71 AMSTERDAM C	ONF + CHS COLLABORATION	(CERN+HEID+SACL)
M (1681.0) (2.0) M 1681. (8.)	ARMENT-3 68 HBC O K-P TO SIGMA BARTLEY 68 DBC O K-P AND K-D	PI 11/68 ATA 11/68	****** ********* ******	*** ********* *************************	* ********* **************************
M 1695.0 (4.0) M M (1697.0) (2.0) M A 1691.0 (2.0) M A 1688.0 (2.0) M A 1688.0 (2.0)	BUGG 68 CNTR 0 K-P, D TOTAL CONFORTO 68 HBC 0 ELASTIC, CH ARMENT-4 69 HBC 0 ELAS,CH EXC.+ ARMENT-4 69 HBC 0 K-P TO SIGM BERLEY 69 HBC 0 K-P TO SIGM	7/68 XCH 11/68 D 9/69 •ED 9/69 PI 6/70	Λ(1750) 77 SEE	Y*0(1750, JP=1/2+) I=0	THE Y* LISTINGS.
M 1680.0 (5.0) M 1688.0 (3.0) M 1690. (20.0) M 1690.4 (20.0) M THE Y#011690 15.AT THE EDGE M THE Y#011690 IS.AT THE EDGE M COMPORTOL THE SAME DATA AS ME M ENERGIES ARE INCLUDED IN ARMEN M ANALYSIS INCLUDES OLD AND NE M A PROPABLY NOT SERIOUS- THE ERR.	GALTIERI TO HBG O SIG PILEOPA CONFORTO TI HBG O K-PJELASTICE KIM TI DPWA K-MATRIX ANA LANGBEIN TZ IPWA MULTICHANNEL OF THE ENERGY REGION ANALYZED BY LL AS OTHERS EXTENDING TO LOWER WIDTA OF CHS COLLAB42-8 GEV/ WEEN THE SIGMA PI AND OTHER RESULT ORS GIVEN ARE JUST STATISTICAL. T	7/70 6/70 3/71 12/72* 10/69 5 IS	THE WAS NO D PARAMETRIZED AS PARAMETRIZED AS A RE GROUND, A BROAD RESC ESSENTIALLY THE SAME STRAINED, SUGGESTED TERDS 701. A WIDER AND MORE	EVIDENCE FOR THIS STATE IS SOME FIRST SUGGESTED IA A PARTIAL WA ITA BY THE BEHAVIOR OF THE POL A A TWO-STRAIGHT-LINE BACK GPOUND- SONANCE SUPERIMPOSED ON A ONE-S DNANCE RESULTED (ARMENTEROS GA). E DATA, BUT THIS TIME WITH THE P A MUCH NARROWER RESONANCE AT HI ELASTIC POL RESONANCE AT ABOUT	WHAT CONFUSED. IT VE ANALYSIS OF KOAR MPLITUDE WHEN IT . WHEN IT WAS RE- TRAIGHT-LINE BACK- A REANALYSIS OF '01 AMPLITUDE UNCON- IGHER ENERGY (ARMEN- THE SAME MASS IS
M A SYSTEMATIC ERRORS THAT RESULT M A OF THE PARTIAL-WAVE AMPLITUDES	FROM THE RESTRICTIVE PARAMETRIZATI ARE NOT INCLUDED, AND CAN BE LARG	DN •	SUGGESTED BY THE ANA DATA THAN THE ARMENT PARAMETERS FOR THE C ARMENTEROS 70, GA PO1 STATE IN THE SIG	ALYSIS OF BAILEY 69. THIS USES TEROS ANALYSES. FOR THIS REASON DTHER PARTIAL WAVES OBTAINED IN ALTIERI 70, AND KIM 71 PRESENT E MA PI CHANNEL. IN ADDITION THE	CONSIDERABLY LESS WE DO NOT QUOTE ANY THIS ANALYSIS. VIDENCE FOR A ANALYSES OF KIM 71
55 Y*0(1690) WID	TH (MEV)	11.440	AND LANGBEIN 72 INDI LIST THESE EFFECTS T	ICATE A SECOND POSSIBLE PO1 STAT FOGETHER.	E.WE TENTATIVELY
W (35.0) (7.0) W (85.0) (7.0) W 48. (15.) W 40.0 (7.0)	ARMENT-1 68 HBC 0 ULD DATA ARMENT-3 68 HBC 0 OLD DATA BARTLEY 68 DBC 0 K-P AND K-D I BUGG 68 CNTR 0	11/68 11/68 ATA 11/68 7/68		Y*0(1750) MASS (MEV)	
W A 31.0 (7.0)	CONFORTO 68 HBC O SEE NOTE M AL ARMENT-4 69 HBC O ELAS, CH EXC.I	D 9/69	M O (1745.0)	ARMENTERO 68 HBC	0 ELASTIC, CH EXCH 11/68
W 57.0 W 28.0 (8.0)	BERLEY 69 HBC 0 K-P TO SIGMA BERTANZA 69 HBC 0	PI 6/70 9/69	M (1800.0) M (1750.0)	ARMENTERO 70 HBC	0 ELASTIC, CH EX 6/70 0 SIGMA PI 6/70
W 85.0 (10.0) W 64.0 (5.0)	GALTIERI 70 HBC O SIG PI,EDPWA CONFORTO 71 HBC O K-P,ELAST,CE:	7/70 6/70	M N (1690.0) (10 M N ERROR STATIST.	0.0) GALTIERI 70 HBC ONLY- NO ERROR DUE TO PARTICULA	O SIG PI,EDPWA 7/70 AR P.W.ANAL. INCLUDED 1/71
W 55. W 40.0 (10.0)	KIM 71 DPWA K-MATRIX ANAU LANGBEIN 72 IPWA MULTICHANNEL	· 3/71 12/72*	M (1755.) M 1 (1570.)	KIM 71 DPWA KIM 71 DPWA	K-MATRIX ANAL. 3/71 K-MATRIX ANAL. 3/71
			M B 1780.0 (20 M A AND B CORRESPOND TO	LANGBEIN 72 IPWA LANGBEIN 72 IPWA 2 DIFFERENT RESONANCES IN PO1	MULTICHANNEL 12/72
55 Y*0(1690) PAR	TIAL DECAY MODES	s	M 1 POSSIBLE EFFECT I M 0 OLD ANALYSIS, USI	IN SIGMA PI AND KBAR N CHANNELS. ING OLD DATA.	
P1 Y≭0(1690) INTO KBAR N P2 Y≭0(1690) INTO SIGMA PI	497+ 939 1189+ 139		77	Y*0(1750) WIDTH (MEV)	
P3 Y*0(1690) INTO LAMBDA PI PI P4 Y*0(1690) INTO SIGMA PI PI P5 Y*0(1690) INTO Y*1(1385) PI	1115+ 139+ 139 1189+ 139+ 139 1384+ 139		W (147.0) W (300.0) W (30.0)	ARMENTERO 68 HBC BAILEY 69 DPWA ARMENTERO 70 HBC	0 0 ELASTIC, CH EXCH 10/70 0 ELASTIC, CH EX 6/70
55 Y*0(1690) BRA	NCHING RATIOS		W (70.0) W N (22.0) W (35.)	ARMENTERD 70 HBC GALTIERI 70 HBC KIM 71 DPWA KIM 71 DPWA	0 SIGMA PI 6/70 0 SIG PI,EDPWA 7/70 K-MATRIX ANAL. 3/71 K-MATRIX ANAL. 3/71
THE SUM OF ALL THE QUOTED BRAN TWO-BODY RATIOS ARE FROM PARTIAL I	CHING RATIOS IS MORE THAN 1.0. THE WAVE ANALYSES, AND THUS PROBABLY AF	E	W A 60.0 (10 W B 120.0 (10	D.O) LANGBEIN 72 IPWA LANGBEIN 72 IPWA LANGBEIN 72 IPWA	MULTICHANNEL 12/724 MULTICHANNEL 12/724
MORE RELIABLE THAN THE THREE-BODY BUMPS IN CROSS SECTIONS. OF THE I MORE SIGNIFICANT (THE ERROR GIVEN	LATIOS, WHICH ARE DETERMINED FROM LATTER, THE SIGMA PI PI BUMP LOOKS	IN-	SEE THE NOTES /	ACCOMPANYING MASSES QUOTED	
REASONABLY SMALL). HARDLY ANY OF Y*1(1385), FOR THEN NINE TIMES AS	THE SIGMA PI PI DECAY CAN BE VIA MUCH LAMBDA PI PI DECAY WOULD BE		77	Y*O(1750) PARTIAL DECAY MODES	
REQUIRED.					DECAY MASSES
R1 Y*0(1690) INTO (KBAR N)/TOTAL R1 (0.18) (0.03)	(P1) ARMENT+1 68 HBC 0	11/68	P2 Y*0(1750) INTO S	BAR N IGMA PI	1197+ 139
R1 (0.23) R1 M (0.22) (0.03)	BUGG 68 CNTR 0 ASSUMING J=3/ CONFORTO 68 HBC 0 SEE NOTE M AR	2 7/68 OVE 11/68			
R1 0.18 (0.02) R1 0.28 (0.04) B1 N (0.34) (0.02)	ARMENT-4 69 HBC 0 NEW DATA BERTANZA 69 HBC 0 CONFORTO 71 HBC 0 K-P.FLAST.CF	9/69 9/69 6/70	77	Y*0(1750) BRANCHING RATIOS	
R1 0.22 R1 0.15 (0.05)	KIM 71 DPWA K-MATRIX ANAL LANGBEIN 72 IPWA MULTICHANNEL	· 3/71 12/72*	R1 Y*0(1750) INTO () R1 (0.4)	(BAR N)/TOTAL ARMENTERO 68 DPWA	(P1) A O ELASTIC, CH EXCH 11/68
R1 N EFFECT IS AT END OF REGION ANAL R1 FROM ALL ABOVE WE ESTIMATE X	LYZED. THIS COULD AFFECT VALUE OF > =0.20	3/72	R1 (0.55) R1 (0.15)	BAILEY 69 DPWA ARMENTERO 70 DPWA	A O ELASTIC, CH EXCH 10/70 O ELASTIC, CH EXCH 10/70
R2 Y*0(1690) FROM KBAR N TO SIGMA R2 (-0.33) (0.02)	PI SQRT(P1*P2) ARMENT-3 68 HBC 0 OLD DATA	11/68	R1 (0.30) R1 A 0.25 (0 R1 B 0.36 (0	0.15) KIM 71 UPWA LANGBEIN 72 IPWA LANGBEIN 72 IPWA	A MULTICHANNEL 12/72 MULTICHANNEL 12/72 MULTICHANNEL 12/72
R2 -0.36 (0.02) R2 -0.27	ARMENT-4 69 HBC O NEW DATA BERLEY 69 HBC O K-P TO SIGMA	9/69 PI 6/70	R2 Y*0(1750) FROM K	BAR N INTO SIGMA PI	SQRT(P1*P2)
R2 -0.31 (0.03) R2 -0.40 R2 0.26 (0.07)	GALTIERI 70 HBC O SIG PI,EDPWA KIM 71 DPWA K-MATRIX ANAL	7/70 3/71	R2 (+0.20) R2 N (-0.13) (0	ARMENTERO 70 DPW/ GALTIERI 70 DPW/ KIM 71 DPW/	A O.K-P TO SIGMA PI 6/70 A O.K-P TO SIGMA PI 7/70 A K-MATRIX ANAL 3/71
R3 Y*0(1690) FROM KBAR N TO LAMBD	A PI PI SQRT (P1*P3)	12712	R2 A 0.28 (4 R2 B 0.01 DR (LANGBEIN 72 IPWA	A MULTICHANNEL 12/72 A MULTICHANNEL 12/72
R3 B (0.25) (0.02) R3 B ONLY CROSS-SECTION DATA USED.	BARTLEY 68 HDBC O LAM 2PI CROS ENHANCEMENT NOT SEEN BY PREVOST 7	SEC 11/68 • 3/72	SEE THE NOTES	ACCOMPANYING MASSES QUDTED	
84 Y+0(1690) FROM KRAR N TO STOMA	PT PT \$000000000000000000000000000000000		*****	*** ******* **************************	** ******
R4 (0.21)	ARMENT-2 68 HDBC OK-N TO SIG PI	PI 11/68	ARMENTER 68 NP B8 195	ARMENTEROS, BAILLON, + (C	CERN, HEIDEL, SACLAY)IJP
****** ******** ******** *******	******	***	BAILEY 69 THESIS UCRL- ARMENTER 70 DUKE CONF 1	-50617 DAVID SAAL BAILEY 23 ARMENTEROS, BAILLON, +	(LRL LIVERMORE)IJP (CERN, HEIDEL)IJP
DAVIES 67 PRL 18 62 +DDWFLL	, + (BIRM.CAVE.RHE) I	KIM 71 PRL 27 356 ALSO 70 DUKE 161	J K KIM J. K. KIM	(LRC)IJP (HARV)IJP (HARV)IJP
REPLACED BY BUGG 68. ARMENT-1 68 NP B8 195 ARMENTEI	ROS, BAILLON, + (CERN,HEIDEL,SACLA'	IIJP	LANGBEIN 72 NP 847 477	+WAGNER	(MPIM)IJP
ARMENT-2 68 NP B8 216 ARMENT-1 ARMENT-3 68 NP B8 223 ARMENTE BARTLEY 68 PRL 21 1111 +CHUJDU BUGG 68 PR 168 1466 +GILMOR CONFORTO 68 NP B8 265 +HARMSEI	ROS, BAILLON, + (CERN,HEIDEL,SACLAN ROS, BAILLON, + (CERN,HEIDEL,SACLAN WD,GREENE,+ (TUFTS,FSU,BRANDEI E, KNIGHT, + (BIRM,CAVE,RHEL N, LASINSKI, + (CHICAGO,HEIDEI) I)IJP) I) I)IJP	****** ******** ******	*** ********* ******** ******* *** ******	14 ************************************

Data Card Listings For notation, see key at front of Listings.

Baryons Λ(1815), Λ(1830)

Y*0(1815) INTO (SIGMA PI PI)/TOTAL (P4) NO CLEAR SIGMAL ARMENT-4 68 HDBC 0 K-N TO SIG PI PI 11/68 THERE IS A SUGGESTION OF A BUMP, ENOUGH TO BE CONSISTENT WITH WHAT IS EXPECTED FROM SIGMA PI DECAY OF THE Y*1(1385) -- ABOUT 0.02.
 R5
 Y*0(1815) INTO (SIGMA PI PI)/TOT

 R5
 P
 NO CLEAR SIGNAL

 R5
 P
 THERE IS A SUGGESTION OF A BUM

 R5
 HHART IS EXPECTED FROM SIGMA PI D

 R5
 FIT
 0.081

 0.054
 FROM FIT
 F'05 Λ(1815) 39 Y*O(1815, JP=5/2+) I=0 SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THIS STATE IS WELL ESTABLISHED. MOST OF THE QUOTED ER-RORS ARE STATISTICAL ONLY. THE SYSTEMATIC ERRORS DUE TO THE PARTICULAR PARAMETRIZATION USED IN THE P.W.A. ARE NOT INCLUED. FOR THIS REASON WE DO NOT CALCULATE WEIGHTED AVERAGES FOR MASS AND WIDTH. REFERENCES FOR Y*0(1815) BIRGE 65 ATHENS CONF 296 +ELY,KALMUS,KERNAN,LOUIE,SAHOURIA, + (LRL)IJP ARMENT-1 67 PL 24B 198 ARMENTEROS, F LUZZI, + (CERN,HEIDEL,SACLAYIJIP ARMENT-2 67 7ELT PHYS 202 486 ARMENTEROS, F LUZZI, + (CERN,HEIDEL,SACLAYIJIP BELL 67 7RL 19 936 R B BELL 1000 AF 2000 ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAYIA) ARMENT-4 68 PR 166 1466 +GILMORE, KNIGHT, + (NEL+GIRM-CAVE) I BUGG 68 PR 166 1466 +GILMORE, KNIGHT, + (NEL+GIRM-CAVE) I 39 Y*0(1815) MASS (MEV)
 1813-0
 (2.0)
 ARRENT-1
 67 HBC
 0 K-P TO SIGMA PI
 8/67

 1813-0
 (4.0)
 BELL
 67 HDBC
 0 K-N TO SIGMA PI
 11/67

 1817.0
 (2.0)
 ARRENT-3
 68 HBC
 0 ELASTIC, CH EXCH 11/68
 1817.0

 1817.0
 (2.0)
 ARRENT-3
 66 HBC
 0 ELASTIC, CH EXCH 11/68
 1819.0
 64.0)
 BUGG
 68 CNTR
 0 K-P, D TOTAL
 6/68

 1825.0
 (1.0)
 BRICMAN
 70 DFMA
 SIGTOT, ELAS, CHEX
 1/71

 1830.0
 (10.0)
 COL
 COLTR
 K-P, D TOTAL
 6/68

 1800.0
 (10.0)
 BRICMAN
 70 DFMA
 SIGTOT, ELAS, CHEX
 1/71

 1830.0
 (10.0)
 COL
 COLTR
 K-P, D TOTAL
 10/70

 1800.0
 (10.0)
 COL
 COLTR
 K-P, D TOTAL
 10/70

 1800.0
 (2.0)
 CALTERT
 TDPMA
 CLAS, CHEN
 1/71

 1810.0
 (2.0)
 KINGENT
 TDPMA
 K-P TO PI SIG
 10/71

 1812.0
 (2.0) (4.0) (2.0) (4.0) (1.0) (1.0) (10.0) (10.0) (2.0) 2 2 2 2 2 2 BRICMAN 70 PL 31B 152 BRICMAN1 70 PL 33B 511 COOL 70 PR 01 1887 GALTIERI 70 DUKE CONF 173 +FERRO LUZZI, PERREAU,+ (CERN,CAEN,SACLAY) +FERRO-LUZZI,LAGNAUX (CERN) +GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL) I A BARBARO-GALTIERI (LRL)IJP CONFORTO 71 NP 834 41 KIM 71 PRL 27 356 ALSO 70 DUKE 161 +LEVI SETTI,LASINSKI..OBERLACK++ (EFI+HEID)IJP J K KIM (HARV)IJP J. K. KIM (HARV)IJP N N N N KANE 72 PR D5 1583 LANGBEIN 72 NP B47 477 D F KANE +WAGNER (LBL)IJP (MPIM)IJP PAPERS NOT REFERRED TO IN DATA CARDS 39 Y*O(1815) WIDTH (MEV) THE FOLLOWING PAPERS ARE NOW OF ONLY HISTORICAL INTEREST --
 87.0
 (15.0)
 ARRENT-1
 67 HBC
 0
 8767

 64.0
 (12.0)
 BELL
 67 HDBC
 0
 11/67

 71.0
 (4.0)
 ARMENT-3
 68 HBC
 DELASTIC, CH EXCH 11/68

 75.0
 (7.0)
 BUGG
 68 CNTR
 0 K-P, D TOTAL
 66/63

 80.0
 (6.0)
 BRICMAN
 70 CNTR
 0 TOTAL
 67/60

 79.0
 (3.0)
 BRICMAN
 70 CNTR
 0 TOTAL
 67/00

 100.0
 C20.0)
 COLL
 70 CNTR
 N TO TOTAL
 10/70

 100.0
 (220.0)
 CALTIERI
 70 DPMA
 0 K-P TO TO SIGMAP 1
 10/70

 970
 (4.0)
 KINEGTO
 70 DPMA
 0 K-P TO SIGMAP 1
 3/71

 104.0
 (16.0)
 KANE
 72 DPMA
 K-P TO PI SIG
 10/71

 104.0
 (16.0)
 KANE
 72 DPMA
 K-P TO PI SIG
 10/71

 104.0
 (5.0)
 LANGGEIN
 72 IPMA
 MULTICHANNEL
 12/72*

</tabur>
</tabur>
</tabur> CHAMBERL 62 PR 125 1696 GALTIERI 63 PL 6 296 SODICKSO 64 PR 138 B757 HOLLEY 65 UCR.-16274 THESIS BIRMINGH 66 PR 152 1148 COOL 66 PRL 16 1228 GELFAND 66 PRL 16 1228 GELFAND 66 PRL 17 1224 ARMENTER 67 NP B3 592 LASINGKI 60 PR 163 1792 HASINGKI 60 PR 163 1792 CHAMBERLAIN, CROWE, KEEF, KERTH, + (LRL) I A BARBARO-GALTIERIJA HUSSAIN, RD TRIPP (LRL)IJ SODICKSON, MANNELLI, FRISCH, WAHLIG (MIT(BNL)J) J SN R HOLLEY HGIACOMELLI, KYCIA, LEONTIC, LUNDBY + (BNL)I HARMSEN, LEVISETIT, REDAZIZH (CERNIELD SAGLAY) LA ARMETHENS, FENSULUZI+ (CERNIELD SAGLAY) LA ARMETHENS, FENSULUZI+ (CERNIELD SAGLAY) LA ALSINSKI, LEVISETIT, PREDAZIZH (LASINSKI, LEVISETIT, PREDAZIH (CASING), CENSIEN (CERNIELD SAGLAY) LA + GAS COLLABORATION (CERNIHELD SAGLA) NNNN N D'05 Λ(1830) 56 Y*0(1830, JP=5/2-) I=0 39 Y*O(1815) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1189+ 139 1384+ 139 1192+ 139+ 139 1115+ 139+ 139 SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. Y*0(1815) INTO KBAR N Y*0(1815) INTO SIGMA PI Y*0(1815) INTO Y*1(1385) PI Y*0(1815) INTO SIGMA PI PI Y*0(1815) INTO LAMBDA PI PI P1 P2 P3 P4 P5 THE BEST EVIDENCE FOR THIS RESONANCE COMES FROM THE SIGMA PI CHANNEL. IT APPEARS TO BE WELL ESTABLISHED. -----56 Y*0(1830) MASS (MEV)
 >56
 Y#0(1830) MASS (NEV)

 N
 1827.0
 (13.0)
 ARMENTERD 67 HBC
 0 K-P TO SIGMA PI 8/67

 N
 1837.0
 (11.0)
 BELL ENG 67 HBC
 0 K-P TO SIGMA PI 11/67

 N
 1837.0
 (11.0)
 BELL ENG 67 HBC
 0 K-P TO SIGMA PI 11/67

 N
 1837.0
 (11.0)
 ARL TERI 70 HBC
 0 K-P TO SIGMA PI 11/67

 N
 1830.0
 (15.0)
 ARL TERI 70 HBC
 0 K-P TO SIGMA PI 11/67

 1830.0
 (15.0)
 ARL TERI 70 HBC
 0 ELASTIC, CH EXCH 11/68

 1830.0
 (5.0)
 KIM 71 DPWA
 CLASTIC, CH EXCH 6/70

 1832.0
 (5.0)
 KIM 71 DPWA
 K-MATRIX ANAL. 3/71

 1832.0
 (5.0)
 KANE 72 DPWA
 NULTICHANNEL 12/72*

 K POSSIBLE EFFECT MAINLY IN SIGMA PI. NOT CLEAR IF UNCORRELATED
 12/72*

 K WITH THE 1830 EFFECT
 NULT CHANNEL 132
 12/72*

 N ERROR STATIST. ONLY- NO ERROR DUE TO PARTICULAR P.W.ANAL. INCLUDED 1/71
 171
 FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS MMMMMMMMMMM The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{\langle \delta P_i \delta P_2 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients of the state cients $\langle \delta P_i \delta P_j \rangle / (\delta P_i \cdot \delta P_j)$. For the definitions of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. P 1 P 2 P 3 P 4 P 2 - .545 .1138+.0084 P 3 0. 0. .2000+..550 P 4 -.5638 .0992 -.9224 .0812+..0542 56 Y*O(1830) WIDTH (MEV)
 75.0
 (9.0)
 ARMENTERO
 67 HBC
 0
 K-P
 TO
 SIGMA PI
 8/67

 74.0
 (18.0)
 BELL
 67 HBC
 0
 K-P
 TO
 SIGMA PI
 8/67

 123.0
 JARNENTERO
 68 HBC
 0
 K-LSTIC, CH
 EXCH
 18/67

 123.0
 JARNENTERO
 68 HBC
 0
 K-P
 TO
 SIGMA PI
 8/67

 104.0
 (32.0)
 GALTIERI
 70 DPMA
 0
 K-P
 TO
 SIGMA PI
 7/70

 80.
 (35.0)
 CONFORTO
 71 DPMA
 K-MATRIX ANAL.
 3/71

 120.1
 KIM
 71 DPMA
 K-MATRIX ANAL.
 3/71

 88.0
 (10.0)
 KANE
 72 DPMA
 0
 K-P
 TO PI SIG
 10/71

 60.0
 (220.0)
 LANGERIN
 72 IPMA
 MULTICHANNEL
 12/72*

 SEE
 THE NOTES ACCOMPANYING MASSES QUOTED
 MULTICHANNEL
 12/72*
 39 Y*O(1815) BRANCHING RATIOS ERRORS QUOTED BY EXPERIMENTERS DO NOT INCLUDE UNCERTAINTY DUE TO PARAMETRIZATION USED IN THE P.W.A. THEY SHOULD BE INCREASED. Y*0(1815) INTO (KBAR N)/TOTAL 0.62 0.02 (P1) R1
 (P1)

 ARMENT-3
 68 HBC
 0 ELASTIC, CH EXCH 11/68

 BUGG
 68 CNTR
 0 K-P, D TOTAL
 6/68

 BRICMAN
 70 CNTR
 0 TOTAL AND CH EX
 6/70

 BRICMAN
 70 DPHA
 SIGTOT, ELAS, CHEX
 1/71

 CODL
 70 CNTR
 N-P, D TOTAL
 10/70

 CODL
 70 CNTR
 N-P, D TOTAL
 10/70

 CONFORTO
 71 DPHA
 0 ELASTIC, CH EXCH
 3/71

 LANGBEIN
 72 IPWA
 MULTICHANNEL
 12/724

</tabu/> 0.62 (0.72) 0.65 0.58 0.02 56 Y*0(1830) PARTIAL DECAY MODES (0.8) 0.63 (0.52) 0.47 DECAY MASSES 497+ 939 1189+ 139 1384+ 139 0.01 Y*0(1830) INTO KBAR N Y*0(1830) INTO SIGMA PI Y*0(1830) INTO Y*1(1385) PI 6/70 3/71 12/72* P1 P2 P3 0.02 0.605 0.027 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 3.8) 0.024 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 3.4) AVG FIT -----56 Y*O(1830) BRANCHING RATIOS
 KBAR N INTO SIGMA PI
 SQRT(P1*P2)

 0.01
 ARMENT-1
 67 DP4A 0
 K-P TO SIGMA PI

 0.025
 BELL
 67 DP4A 0
 K-P TO SIGMA PI

 0.033
 GALTIERI TO DP4A 0
 K-P TO SIGMA PI

 0.027
 KIN
 TO DP4A 0
 K-P TO SIGMA PI

 0.027
 KIN
 TO DP4A 0
 K-P TO SIGMA PI

 0.027
 KIN
 TO DP4A 0
 K-P TO SIGMA PI

 0.027
 KIN
 TO DP4A 0
 K-P TO SIGMA PI

 0.023
 LANGBEIN TZ IPHA
 MULTICHANNEL
 Y*0(1815) FROM R2 0.27 0.23 -0.26 8/67 11/67 7/70 3/71 10/71 12/72*
 (P1)

 ARMENTERO 68 HBC
 0 ELASTIC, CH EXCH 11/68

 BRICMANI 70 DPWA
 SIGTOT, ELAS, CHEX 1/71

 CONFORTO 71 DPWA
 0 ELASTIC, CH EXCH 6/70

 KIM
 71 DPWA
 VAMATRIX ANAL. 3/71

 LANGBEIN
 72 IPWA
 MULTICHANNEL
 Y*0(1830) INTO (KBAR N)/TOTAL 0.09 (0.01) 0.03 (0.02) 0.05 (0.02) R1 R1 R1 R1 R1 R1 (0.26) -0.268 0.25 (0.24) 0.10 0.2634 0.0081 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.2624 0.0081 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) (0.03) AVG MOD FIT Y*0(1830) FROM KBAR N INTO SIGMA PI 0.15 (0.02) ARMENTERO 67 DPMA 0 K-P TO SIGMA PI 0.19 (0.01) BELL 67 DPMA 0 K-P TO SIGMA PI 0.19 (0.03) GALTIERI 70 DPMA 0 K-P TO SIGMA PI 0.15 (0.03) GALTIERI 70 DPMA 0 K-P TO SIGMA PI 0.15 (0.018) KIM 71 DPMA (0.000 K-P TO PI SIG 0.27 (0.07) LANGGEIN 72 DPMA 0 K-P TO PI SIG R2 R2 R2 R2 R2 R2 R2 830) FR 0.15 0.19 -0.16 0.15 -0.138 0.27 8/67 11/67 7/70 3/71 10/71 12/72* R3 R3 R3 R3 Y*0(1815) FROM KBAR N INTO Y*1(1385) PI SQRT(P1*P3) (0.3) (0.05) ARMENT-2 67 HBC O K-P TO LAM P+ P+ A A (0.3) (0.05) AF Y*0(1815) INTO (Y*1(1385) PI)/TOTAL (P3) 0.20 0.05 BIRGE 65 HBC 0 K-P TO LAM PI PI 7/66 R4 Y R4 R4 R4 FIT ****** ***** 0.200 0.050 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)

Baryons Λ(1830), Λ(1860), Λ(1870), Λ(2010)

REFERENCES FOR Y*0(1030) ARMENTER 67 PL 248 198 ARMENTEROS, F-LUZZI, + (CERN, HEIDEL, SACLAY)IJP BELL 67 PRL 19 936 R B BELL ARMENTER 64 NP 88 195 ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY)IJP CONFORTO 68 NP 88 265 HARMSTER, LASINSKI, + (CHICAGO, HEIDEL)IJP IS SUPER SEDE 08 Y CONFORTO 71. BRICMANI 70 PL 338 511 BAILONN 70 PL 338 511 +FERRO-LUZZI, LASNAUX (CERN) GALTIER 170 DUKE CONFITS A BABRAMO-ALITERI	A(1870) 36 Y*0(1870, JP=1/2-) I=0 THE SO1 AMPLITUDE SHOWS A SECOND RESONANCE BEHAVIOR AT ABOUT 1800 HEV IN 3 ANALYSES. THE ELASTICITY OF KIM 71 IS SURPRISINGLY LARGE.
COMFORTO 71 NP B34 41 +LEVI SETTI,LASINSKIOBERLACK++ (EFI+HEID)IJP KIM 71 PRL 27 356 J K KIM (HARV)IJP ALSO 70 DUKE 161 J. K. KIM (HARV)IJP KANE 72 PR D5 1553 D F KANE (LBL)IJP LANGBEIN 72 NP B47 477 +WAGNER (MPIM)IJP	36 Y*0(1870) MASS (MEV) M (1872.0) (10.0) BRICMAN 70 DPWA TOT, ELAS, CHEX 1/71 M (1780.) KIM 71 DPWA K-MATRIX ANAL. 3/71 M 1830.0 (20.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72*
PAPERS NOT REFERRED TO IN DATA CARDS PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID+SACL)	36 Y*0(1870) WIDTH (MEV) W (100.0) (20.0) BRICMAN 70 DPWA TOT, ELAS, CHEX 1/71 W (40.) KIM 71 DPWA K-MATRIX ANAL. 3/71 W 70.0 (15.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72*
THE JP=3/2+ ASSIGNMENT IS CONSISTENT WITH ALL AVAILABLE DATA (INCLUDING POLARIZATION) AND RECENT PARTIAL WAVE ANALYSES. THE DOMINANT INELASTIC MODES REMAIN UNKNOWN.	36 Y*0(1870) PARTIAL DECAY MODES DECAY MASSES P1 Y*0(1870) INTO KBAR N 497+ 939 P2 Y*0(1870) INTO SIGMA PI 1197+ 139
60 Y*0(1860) MASS (MEV) M A F07 1864.0 2.0 ARMENTERD 68 DWPA 0 ELASTIC, CH EXCH 11/68 M N 1870.0 5.0 BUGG 68 CNTR 0 CLAIL AND CH EX 6/70 M P03 1870.0 6.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 M P03 1870.0 6.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 M P03 1870.0 6.0 CONFORTO 71 DPWA 0 ELASTIC, CH EXCH 6/70 M P03 170.0 CONFORTO 71 DPWA 0 ELASTIC, CH EXCH 6/70 MI DPWA 0 ELASTIC, CH EXCH 6/70 M 1903 1710. KIM 71 DPWA 0 ELASTIC, CH EXCH 1/71 MITICHANNEL 12/72* M A THESE TWO ANALYSES GAVE THE F07 ASSIGNMENT, THEY HAVE TO BE 1/71 M SIGCARDED IN VIEW OF CONFORTO 70 AND BRICHANNI 70 M DUE TO PARTICULAR PARAMETERIZATION USED ERROR CAN BE LARGE 1/71 M M DUE ED PARTICULAR PARAMETERIZATION USED ERROR CAN BE LARGE 1/71 M N DUE EFFECT MAINLY IN SIGMA PI. WE THATIVELY LIST IT HERE.	36 Y*0(1870) BRANCHING RATIOS R1 Y*0(1870) INTO (KBAR NJ/TOTAL (P1) R1 (0.18) (0.02) BRICMAN 70 OPMA R1 (0.18) (0.02) KIM 71 OPMA R1 (0.10) KIM 71 OPMA K-MATRIX ANAL. 3/71 R1 0.35 (0.15) LANGBEIN 72 IPWA MULTICHANNEL 12/72* R2 Y*0(1870) FROM KBAR N TO SIGMA PI SQRT(P1*P2) 3/71 R2 10.24) KIM 71 DPWA K-MATRIX ANAL. 3/71 R2 TOR SQRT(P1*P2) SQRT(P1*P2) 3/71 R2 NOL124 SQRT(P1*P2) 3/71 R2 TOR SQRT(P1*P2) 3/71 R4 FREFERENCES FOR Y*0(1870) SQRT(P1*P1) 3/71 R1 GRICMAN TO PL 33B 511 C BRICMAN FRRO-UZ2ZI, J P LAGNAUX(CERN)IJP ALSO 70 DUKE 161 J K. KIM (HARV)IJP ALSO 70 DUKE 161 J K. KIM (HARV)IJP (HARV)IJP SQRT(P1*P1*P2)
60 Y*0(1860) WIDTH (MEV) W A F07 39.0 7.0 ARMENTERO 68 DWPA 0 ELASTIC, CH EXCH 11/68 W N 40.0 10.0 BUGG 68 CNTR 0 K-P TOTAL 7/68 M F07 24.0 15.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 W P03 37.0 10.0 BRICMAN 70 DPMA 0 SIGTOT.FLAS.CHEX 1/71 N P03 80.0 20.0 CONFORTO 71 10 PMA 0 ELASTIC, CH EXCH 6/70 W 1 P03 20.0 LANGGEIN 72 10 PMA 0 ELASTIC, ANAL. 3/71 M 125.0 (20.0) LANGENIN 72 1PMA MULTICHANNEL 12/72* SEE THE NOTES ACCOMPANYING MASSES QUOTED	(A(2010)) = (A(2010)) = (A(2010), A(2010), A(2010), A(2010)) = (A(2010), A(2010),
60 Y*0(1860) PARTIAL DECAY MODES DECAY MASSES P1 Y*0(1860) INTO KBAR N 497+ 939 P2 Y*0(1860) INTO SIGMA DI 1800	89 Y*0(2010) MASS (MEV)
60 Y*0(1860) BRANCHING RATIOS	M (1971.0) BRANDSTE 72 DPNA 6 K-P TO LAM.OMEGA 1/73*
R1 Y+0(1860) INTO (KBAR N)/TOTAL (P1) R1 A FO7 0.12 0.02 ARMENTERO 68 HBC 0 ELASTIC, CH EXCH 11/68 R1 (1+1/2)P1= 0.40 BUGG 66 CNTR 0 7/68 R1 A FO7 0.07 0.02 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 R1 P03 0.14 0.02 BRICMAN 70 DPMA 0 SIGTOT, ELASTIC, CH EX 1/71 R1 P03 0.25 0.03 CONFORTO 71 DPMA 0 SIGTOT, ELASTIC, CH EXCH 6/70 R1 N 03 0.25 0.03 CONFORTO 71 DPMA 0 LANGERIN 72 IPMA MULTICHANNEL 12/72* SEE THE NOTES, ACCOMPANYING MASSES QUOTED SE THE NOTES, ACCOMPANYING MASSES QUOTED MULTICHANNEL 12/72*	89 Y*0(2010) WIDTH (MEV) W (130.0) (50.0) GALTIERI 70 DPWA 0 K−P TO SIGMA PI 7/70 W (180.0) BRANDSTE 72 DPWA K−P TO LAN.OMEGA 1/73* 89 Y*0(2010) PARTIAL DECAY MODES DECAY MASSES
R2 Y*0(1860) INTO SIGMA PI (P2) R2 P PROBABLY SEEN GALTIERI 68 DEO K × N TO SIG PI PI 11/68 R2 0.03 OR LESS LANGBEIN 72 IPMA MULTICHANNEL 12/72* R2 P POSSIBLY THIS BUMP SEEN AT 1840+-10 MEV WITH A WIDTH OF 35+-10 MEV RITH A WIDTH OF 35+-10 MEV R2 IST HE *%0(1830), WHICH DECAYS STRONGLY TO SIGMA PI. HOWEVER THE R2 NARROW WIDTH HERE ARGUES FOR ITS BEING THE Y*0(1860).	P1 Y*0(2010) INTO KBAR N 497+ 939 P2 Y*0(2010) INTO SIGMA PI 1197+ 139 P3 Y*0(2010) INTO LAMBDA OMEGA 1115+ 783 89 Y*0(2010) BRANCHING RATIOS
ARMENTEROGB NP B8 195 ARMENTEROS, BALLON, + (CERN, HEIDEL, SACLAY)IJP BUGG 68 PR 168 1466 +GILMORE, KNIGHT, + (RHEL, BIRM, CAVE) I GALTIERI 68 PR 121 573 BARBARD-GALTIERI, MATISON, + (LRL, SLAC) BRICMAN 70 PL 338 511 +FERRO LUZZI, PERREAU,+ (CERN, CAEN) COMFORTO 71 NP, 834 41 +EVISINIL-LAGNAUX (CERL)	R1 Y*0(2010) FROM KBAR N TO SIGMA PI SQRT(P1*P2) R1 (-0.20) (0.04) GALTIERI 70 DPWA O K-P TO SIGMA PI 7/70 R2 Y*0(2010) FROM KBAR N INTO LAMBDA OMEGA SQRT(P1*P3) 1/73* R2 (0.254) BRANDSTE 72 DPWA 1/73* ******* ********* ********* ******** REFERENCES FOR Y*0(2010) *******
ALSD 70 DUKE 161 J.K. KIN (HAPN)13P LANGBEIN 72 NP 847 477 +WAGNER (HAPN)13P PAPERS NOT REFERRED TO IN DATA CARDS ARMENTER 67 NP 83 592 ARMENTEROS, F-LUZZI, + (CERN,HEIDEL,SACLAY)13P REPLACED BY ARMENTEROS 68 AND CONFORTO 68. CONFORTO 68 NP 88 265 ++HARMSEN, LASINSKI, + (CHICAGO,HEIDEL)13P SUPERSEDED BY COMFORTO 71. LEVISET 60 LNND 399 R.LEVI SETTI (RAPPORTEUR) (EFI) ALBROW 71 NP 829 413 +ANDERSON,BOSNJAKOVIC,DAUM,ERNZ,+ (CERN)	UALIERI IV UURE UUMF I/3 A BARBANU-GALIERI BRANDSTE Z NP B33 BRANDSTETTER BUTTERNORTH,+ (RHEL+CDEF+SACL)

Data Card Listings For notation, see key at front of Listings.

Baryons

Λ(2020), Λ(2100), Λ(2110)

A(2020) ====================================	ERVED AT SOMEWHAT WOREVER, LITCHFIELD	R2 Y*0(2100) FROM KBAR N INTO SIGMA PI SQRT(P1*P2) R2 (+0.16) (0.02) BERTMONI 70 DPMA 0 K-P TO SIGMA PI 10/70 R2 +0.06 (0.03) GALTIENI 70 DPMA 0 K-P TO SIGMA PI 7/70 R2 0.16 (0.053) GALTIENI 70 DPMA K-P TO SIGMA PI 10/71 R2 +0.06 (0.037) LITCHFIE 71 DPMA K-P TO SIG PI 10/71 R3 Y*0(2100) FROM KBAR N N O XI K SORT(P1*P3) SORT SORT
RESTS SOLELY ON A POSSIBLY INCONSISTE MEASUREMENT AT 1.784 GEV/C.	NT POLARIZATION	R3 (0.05) TRIPP 67 RVUE 0 K-P TOXIK 8/67 R3 B (0.09) (0.01) BURGUN 68 DPMA 0 K-P TOXIK 10/69 R3 (0.003) MULLER 69 DPMA 0 K-P TOXIK 3/72 R3 0.035 0.018 LITCHFIE TI DPMA K-P TOXIK 3/72 R3 B BURGUN 68 UPDATED BY <litchfield< td=""> TI MAKES SOLUTION COF BURGUN 3/72</litchfield<>
27 Y+0(2020) MASS (MEV) M (2020.0) (20.0) GALTIERI 70 DPWA M (2100.) (30.) LITCHFIE 71 DPWA	0 K-P TO SIGMA PI 7/70 K-P TO KBAR N 10/71	R4 Y*0(2100) FROM KBAR N INTO LAMBDA OMEGA SQRT(P1*P4) R4 (0.053) BRANDSTE 72 DPWA 1/73* SEE THE NOTES ACCOMPANYING MASSES QUOTED
27 Y*O(2020) WIDTH (MEV)		REFERENCES FOR Y+0(2100)
W (160.0) (30.0) GALTIERI 70 DPWA W (120.) (30.) LITCHFIE 71 DPWA	0 K-P TO SIGMA PI 7/70 K-P TO KBAR N 10/71	WORL 66 PRL 1/107 C G WORL, F I.SULMITZ, M L STEVENSOM (ILL) TRIPC 67 MP B3 107 + LEITH, H (ILL)SCA(JCRN, HEIDEL, SACLAY) BURGIN 68 MP B3 107 + EFTEN, PAULI + SLACLAY, COLFRANCE, SREL DAUGNON 68 MP 317 - ESTIMATE AUX, SENS, STEUER, UD0 (CERNI)P
27 Y*0(2020) PARTIAL DECAY MODES	DECAY MASSES	MULLER 69 THESIS,UCRL 19372 R A MULLER (LRL) BERTHON1 70 NP B24 417 +VRANA, BUTTERWORTH, + (CDEF, RHEL, SACLAY)IJP
P1 Y*0(2020) INTO KBAR N P2 Y*0(2020) INTO SIGMA PI	497+ 939 1197+ 139	GALTIERI 70 DUKE CONF 173 A BARBARO-GALTIERI [LR.J.JP LITCHFIELT INP B30 125 LITCHFIELO,+LESQUOY,+ (RHEL+CDEF+SACL)IJP BRANDSTE 72 NP B39 13 BRANDSTETTER++TALLINI (RHEL+CDEF+SACL)IJP KANE 72 PR D5 1583 D F KANE
27 Y*0(2020) BRANCHING RATIOS		****** ********* ******* ********* *****
R1 Y*0(2020) INTO (KBAR N//IUTAL (R1 (0.05) (0.02) LITCHFIE 71 DPWA P2 Y*0(2020) EPOW KAAR N TO STONA DT	P1) K-P TO KBAR N 10/71	$\Lambda(2110)$ 35 Y*0(2110, JP=5/2) I=0 F_{05}'' or D_{05}''
R2 (-0.15) (0.02) GALTIERI 70 DPWA	0 K-P TO SIGMA PI 7/70	BERTHON1 TO FIND EITHER FOS OR DOS POSSIBLE IN THE SIG PI CHANNEL, WITH FOS SLIGHTLY PREFERRED. IN THE KBAR N CHANNEL, LITCHFIELD TI (SAME GROUP) FIND ONLY DOS, AS USUAL, THE STATISTICS ARE MUCH BETTER IN THE EASTIC CHANNEL.
GALTIERI 70 DUKE CONF 173 A BARBARD-GALTIERI LITCHFIE 71 NP 830 125 LITCHFIELD,+LESQUOY,+	(LRL)IJP (RHEL+CDEF+SACL)IJP	WIDTH MAY INVALIDATE A RESONANT INTERPRETATION.
****** ********* ********* ********* ****	*****	35 Y*0(2110) MASS (MEV)
Λ(2100) 41 Y*0(2100, JP=7/2-) I=0 G ₀₇		M (2110.) (10.) BERTHUMI 70 DPWA - K-P TO SIG PI 1/71 M (2140.) (40.) LITCHFIE 71 DPWA - K-P TO KBAR N 10/71 M FO5 2034.0 BRANDSTE 72 DPWA K-P TO LAM.OMEGA 1/73*
SEE THE MINI-REVIEW AT THE START OF T THIS ENTRY ONLY INCLUDES RESULTS FROM	HE Y* LISTINGS.	M A RESONANCE OUTSIDE RANGE OF DATA.
ANALISES. PARAMIERS OF PEAKS SEEN I NO INVARIANT-MASS DISTRIBUTIONS AROU GIVEN IN THE NEXT ENTRY. EVENTUALLY THE PARTIAL-MAVE GIVE THE BEST RESULTS, AS THEY ISOLATE THE GOT MAVE. IS, HOWEVER, PROBABLY NOT YET ATTAINED, AND WE RELY O FOR PARAMETERS GIVEN IN THE MAIN BARYON TABLE.	N CROSS-SECTIONS IND 2100 MEV ARE ANALYSES SHOULD THIS SUPERIORITY IN BOTH ENTRIES	35 Y*0(2110) WIDTH (MEV) W (185.) (30.) BERTHONI 70 DPWA - K-P TO SIG PI 1/71 W (120.) (40.) LITCHFIE 71 DPWA K-P TO KBAR N 10/71 W (154.0) BRANDSTE 72 DPWA K-P TO LANA.0MEGA 1/735 H A (556.0) (10.0) KANE 77 DPWA 0.00 TO PI SIC 10/73
M (2120.0) WOHL 66 HBC M A (2080.0) (10.0) BURGUN 68 DPWA M L (2130.0) (20.0) BERTHONI 70 DPWA	K-P CH EX 7/66 0 K-P TO XI K 10/69 0 K-P TO SIGMA PI 10/70	35 Y*0(2110) PARTIAL DECAY MODES DECAY MASSES
М 2110-0 (20.0) GALTIERI 70 DPWA M 2100. (15.) LITCHFIE 71 DPWA M (2113.0) BRANDSTE 72 DPWA M (2113.0) BRANDSTE 72 DPWA	0 K-P TO SIGMA PI 7/70 K-P TO KBAR N 10/71 K-P TO SIG PI 10/71 K-P TO LAM-OMEGA 1/73* 0 K-P TO PI SIG 10/71	P1 Y*0(2110) INTO KBAR N 497+ 939 P2 Y*0(2110) INTO SIGMA PI 1197+ 139 P3 Y*0(2110) INTO LAMBDA OMEGA 1115+ 783
M A BURGUN 68 SEE A RESONANCE-LIKE EFFECT IN THIS R REACTION K-P TO XI K. HOWEVER, AS THEY POINT OUT, MHETHER IT IS MAINLY THE GOT Y*0(2100) OR INSTEAD	EGION IN THE IT IS NOT CLEAR A SO FAR OTHERWISE	
M UNDESERVED RESUMANCE WITH A SPIN LESS THAN 172. M L LITCHFIELD 71 IS AN UPDATE OF BERTHONI 70	3/72	R1 Y*0(2110) FROM KBAR N TO SIGHA PI SQRT(P1*P2) R1 (*.17) (.03) BERTHONI 70 DPNA - K-P TO SIG PI 1/71 R1 (*0.156) (0.013) KANE 72 DPNA 0 K-P TO PI SIG 10/71
41 Y*0(2100) WIDTH (MEV)		R2 Y*0(2110) INTO (KBAR NJ/TOTAL (P1) R2 (0.14) (0.04) LITCHFIE 71 DPWA K~P TO KBAR N 10/71
W (145.0) WURL 00 HBC W A (80.0) (10.0) BURGUN 68 DPWA W 140.0 (15.0) BERTHONI 70 DPWA W 60.0 (25.0) CALTERI 70 DPWA	0 K-P TO XI K 10/69 0 K-P TO SIGMA PI 10/70 0 K-P TO SIGMA PI 7/70	R3 Y*0(2110) FROM KBAR N INTO LAMBDA OMEGA SQRT(P1*P3) R3 (0.152) BRANDSTE 72 DPWA 1/73*
W B (170.) TO 300. LITCHFIE 71 DPWA W B LARGER VALUE CORRESPONDS TO PURE B.W. LOWER VALUE W L 1400 (50.0) (30.0) LITCHFIE 71 DPWA	K-P TO KBAR N 10/71 , TO B.W. + BCKGRD K-P TO SIG PI 10/71	****** ********* ********* ***********
W (208.0) BRANDSTE 72 DPWA W 144.0 (26.0) KANE 72 DPWA SEE THE NOTES ACCOMPANYING MASSES QUOTED	K-P TO LAM.OMEGA 1/73* 0 K-P TO PI SIG 10/71	BERTHON1 TO NP B24 417 +VRANA,BUTTERWORTH,+ (CDEF,RHEL,SACLAY)IJP LITCHFIE 71 NP B30 125 LITCHFIELD,+LESQUOY,+ (RHEL+CDEF+SACL)IJP BRANDSTE 72 NP B39 13 BRANDSTETTER,BUTTERWORTH,+ (RHEL+CDEF+SACL)IJP KANE 72 PR D5 1583 D F KANE (LBL)IJP
41 Y*0(2100) PARTIAL DECAY MODES		***************************************
P1 Y*0(2100) INTO KBAR N P2 Y*0(2100) INTO SIGMA PI	DECAY MASSES 497+ 939 1197+ 139	A(2100) 25 Y*0(2100, JP=) I=0 PRODUCTION EXPERIMENTS
P4 Y+0(2100) INTO LAMBDA OMEGA	1115+ 783	BUMPS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SEE THE NOTE TO THE GOT Y*0(2100), WHICH PRECEDES THIS
41 Y*0(2100) BRANCHING RATIOS R1 Y*0(2100) INTO (KBAR N)/TOTAL (1 0.25) NDHL 66 HBC	P1) 7/66	ENTRY, HERE WE LIST ONLY PARAMETERS OF PEAKS IN CROSS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS. THE CROSS- SECTION PEAKS ARE AT LEAST DOMINANTLY ASSOCIATED WITH THE Y*(02100), BUT MAY CONTAIN A SMALL CONTRIBUTION FROM THE SUGGESTED BUT NOT ESTAB- LISHED OTHER RESONANCES IN THIS REGION.
R1 D (0.33) DAUM 68 CNTR R1 0.30 .03 LITCHFIE 71 DPMA R1 D DAUM 68 ASSUMES (J+1/2)*X VALUE SEEN IN TOTAL CRO	K-P ELA,POL,SIGT 7/70 K-P TO KBAR N .10/71 ISS SECTION.	

Data Card Listings

 $\Lambda(2110), \Lambda(2350), \Lambda(2585), \Sigma^+, \Sigma^-, \Sigma^0, \Sigma(1385)$ For notation, see key at front of Listings.

		25 Y*0(2	100) MASS (MEV) (PROD. EXP.)		REFER	ENCES FOR Y*0(2350) (PROD. EXP.)
M M M M	(2097.0) 2100.0 2121.0 2107.0 (2135.0)	(7.0) (5.0) (10.0) (20.0)	BUCK BUGG BRICMAN COOL LU	65 HBC 68 CNTR 70 CNTR 70 CNTR 70 CNTR	K-P+ D TOTAL O TOTAL AND CH EX K-P+ D TOTAL O GAMMA P TO K+ Y*	6/68 6/70 10/70 1/71	UGG 68 PR 168 1466 +GILM AUM 68 NP 87 19 +ERNE RICMAN 70 PL 318 152 +FERR OOL 70 PR D1 1887 +GIAC U 70 PR D2 1846 +GREE	ORE,KNIGHT, + (RHEL,BIRH,CAVE) I ; LGGNAUX, SENS,STEUER, UDO (CERN)JP O LUZZI, PERREAU,+ (CERN,CAEN,SACLAY) OMELLI,KVCIA, LEONTIC, I, + (BNL) I :NBERG, HIGHES, MINHART, MORI,+ (YALE)
							PAPER DOL 66 PRL 16 1228 +GIAC	S NOT REFERRED IN DATA CARDS OMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) I
w	(24.0)	(14.0)	(24.0) BOCK	65 HBC	INTO KBAR N (PI)	7/66	SUPERSEDED BY COOL 70. ASINSKI 71 NP B29 125 T A L	ASINSKI (EFI)IJP
W	140.0 147.0	(15.0) (15.0)	BUGG BRICMAN	68 CNTR 70 CNTR	O TOTAL AND CH EX	6/68	***** ********* **********************	** ********* **************************
W	(40.0)		LU	70 CNTR	O GAMMA P TO K+ Y*	1/71	A(2585)	
		25 Y*0(2	100) PARTIAL DECA	Y MODES (P	ROD. EXP.)		BUMPS SEE THE MINI-RE	VIEW AT THE START OF THE Y* LISTINGS.
P1 P2	Y*0(2100) IN Y*0(2100) IN	TO KBAR N TO KBAR N	PI		497+ 939 497+ 939+ 139			
P3 P4	Y*0(2100) IN	ITO LAMBDA	DMEGA		1115+ 548		7 Y*0(2585) N	ASS (MEV) (PROD. EXP.)
							(2530.0) (25.0)	LU 70 CNTR 0 GAMMA P TO K+ Y* 1/71
R1	Y*0(2100) IN	25 T*0(2	/TOTAL	ITTUS (PROD	(P1)			
R1 R1	THESE VAL 0.305	UES OF ELA	STICITIES ASSUME BUGG	J=7/2 68 CNTR		6/68	(300.0)	ABRAMS 70 CNTR K-P, D TOTAL 10/70
R1 R1	0.24	(0.02)	COOL	70 CNTR	K-P, D TOTAL	10/70	(150.0)	LU 70 CNTR 0 GAMMA P TO K+ Y* 1/71
R2 R2	Y*0(2100) IN Se	ITO KBAR N	BOCK	65 HBC	(P2)		7 Y*0(2585) F	PARTIAL DECAY MODES (PROD. EXP.)
R3 R3	Y≭0(2100) FR (0.09)	OM KBAR N OR LESS	INTO LAMBDA ETA FLATTE 2	67 HBC	SQRT(P1*P3) O K-P TO LAM ETA	6/68		DECAY MASSES
R4	Y*0(2100) IN	TO LAMBDA	OMEGA)/TOTAL		(P4)		1 Y*0(2585) INIU KBAR N	497+ 939
K4 *****	(U•I) *********	UR LESS	+LAIIL 1	. 67 HBC : ********	0 K-P TU LAM UMEGA	8767	7 Y*0(2585) E	RANCHING RATIOS (PROD. EXP.)
			REFERENCES FOR Y	*0(2100) (PROD. EXP.)		1 Y*0(2585) INTO (KBAR N)/TOTA J IS NOT KNOWN. THE FOLL	L (P1) .OWING IS (J+1/2)*P1.
BOCK	65 PL 17 1	66 1517	+CODPER, FRENCH, K	INSON, +	(CERN, SACLAY)		1 (1.0) 1 C (0.12) (0.12)	ABRAMS 70 CNTR K-P, D TOTAL 10/70 BRICMAN 70 CNTR TOTAL AND CH EX 10/70
FLATT	2 67 PR 163 68 PR 168	1441 1466	S M FLATTE, C G +GILMORE,KNIGHT,	WOHL +	(LRL) (RHEL,BIRM,CAVE) I		1 C RESUNANCE AT END OF REGION	ANALYZED NO CLEAR SIGNAL.
BRICM	N 70 PL 318	152	+FERRO LUZZI, PE	RREAU,+ (CERN, CAEN, SACLAY)		REFER	ENCES FOR Y*0(2585) (PROD. EXP.)
LU	70 PR D2 1	.846	+GREENBERG, HUGH	IES, MINEHA	RT, MORI,+ (YALE)		BRAMS 70 PR 1D 1917 +COOL BLCMAN 70 PL 31B 152 +EEBB	., GIACOMELLI, KYCIA, LEONTIC, + (BNL) I D LU771, PERFAUL+ (CERN, CAEN, SACLAY)
	((00) 1(1 2 2 0	PAPERS NOT REFER	RED TO IN	DATA CARDS		U 70 PR D2 1846 +GREE	NBERG, HUGHES, MINEHART, MORI,+ (YALE)
S	PERSEDED BY C	00L 70.	VOIACOMELLI I KICI	A, LEONTIC,	CITCONDETT TONET I		PAPER	S NOT REFERRED TO IN DATA CARDS
*****	* ********* **	*******	******* *******	* ********	****		***** ******** ************	* ********* ******** *****************
Λ	(2350)	42 Y*0(2	350, JP=) I=0	PRO	DUCTION EXPERIMENTS		***** ********* ***********************	* ******** ******** ******* ********
В	UMPS	SEE THE M	INI-REVIEW AT THE	START OF	THE Y* LISTINGS.		Σ^+ 19 SIGMA+ (118	9, JP=1/2+) I=1
L		DAUM 68 F	AVORS JP=7/2- OR	9/2+. BRIC	MAN 70 FAVORS 9/2+.		SEE STABLE PART	ICLE DATA CARD LISTINGS
		LASINSKI	1 SUGGESTS THREE	STATES IN	THIS REGION		***** ********* ******** *******	* ******** ********* ******** *******
			Shekon + Kesonand				Σ- 20 SIGMA- (119	8, JP=1/2+) I=1
		42 Y*0(2	350) MASS (MEV) (PROD. EXP.	1		SEE STABLE PART	ICLE DATA CARD LISTINGS
M M	2340.0 2358.0	(7.0) (6.0)	BUGG BRICMAN	68 CNTR 70 CNTR	K-P, D TOTAL O TOTAL AND CH EX	6/68 6/70	***** ********* ***********************	* ********* ********* ******* *********
M M	2344.0 (2360.0)	(15.0)	LU	70 CNTR 70 CNTR	K-P, D TOTAL O GAMMA P TO K+ Y*	10/70 1/71	Σ ⁰ 21 SIGMAO (119	3, JP=1/2+) I=1
							SEE STABLE PART	ICLE DATA CARD LISTINGS
	140.0	42 Y*0(2:	350) WIDTH (MEV)	(PROD. EXP	.)		***** ********* ***********************	* ******** ****************************
w w	324.0 (190.0)	(30.0)	BR I CMAN COOL	70 CNTR 70 CNTR 70 CNTR	O TOTAL AND CH EX K-P, D TOTAL	6/70 10/70		P'12
W	(55.0)		LU	70 CNTR	O GAMMA P TO K+ Y*	1/71	$\Sigma(1385)$ FOR DISCUSSION	OF INCONSISTENCY OF ERRORS AND OUR
		42 Y*0(2	350) PARTIAL DECA	Y MODES (P	ROD. EXP.)		MODIFICATIONS,	SEE NOTE ON K*(892)
					DECAY MASSES		ATTEMPTS TO DE WIDTHS. SEE F	WE USE UNLY THE UNSTARRED DATA, WHICH TAIN THE SEPARATE CHARGE-STATE MASSES AN IOWEVER THE IDEOGRAMS INSERTED IN LISTING
	Y#0(2350) IN				497+ 939		THESE INDICATE SERIOUS SYSTEMAT FECTS THAT CHANGE WITH PRODUCTI	ICS, PERHAPS ARISING FROM INTERFERENCE E ON MECHANISM AND BEAM MOMENTUM.
		42 Y*0(2	350) BRANCHING RA	TIOS (PROD	. EXP.)			
R1 R1	Y≭0(2350) IN J IS NOT	TO (KBAR N KNOWN. TH	/TOTAL FOLLOWING IS (J	+1/2)*Pl.	(P1)		43 Y*1(1385) M	ASS (MEV)
R1 R1	(0.57) 1.1	0.25	BUGG BRICMAN	68 CNTR 70 CNTR	K-P, D TOTAL O TOTAL AND CH EX	6/68 6/70	141(1384.0) (1385.0) 38(1384.0)	ALSIUN 60 HBC +- K-P 1.15 BEV/C BERGE 61 HBC +- K-P .4-85 BEV/C MARTIN 61 HBC +0 K20 P .98 BEV/C
*****	(1.0)	*****	COOL	.70 CNTR	K-P, D TOTAL	10/70	(1392.0) (7.0) (1389.0) (3.0)	COLLEY 62 HLBC -O PI- PRP 2. BEV/C BALTAY 65 HBC +- PBAR P 3.7 BEV/C 7/66
							(1392.0) (10.0) 0 106(1381.0) (4.0)	MUSGRAVE 65 HBC +-OPBAR P 3-4 BEV/C 7/66 CURTIS 63 OSPK 0 PI-P 1.5 BEV/C

Data Card Listings

For notation, see key at front of Listings.

Baryons Σ(1385)

Y#1(1385) - WIDTH (MEV)

Baryons

Σ(1385), Σ(1440), Σ(1480), Σ(1620)

Data Card Listings For notation, see key at front of Listings.

Note on Σ(1620)

This state was first suggested by the BNL-CCNY collaboration (CRENNELL 68) who presented evidence for it in the reaction $K^-n \rightarrow \Sigma(1620)^{\pm}\pi^{\mp}\pi^{-}$ with $\Sigma(1620)^{\pm}$ decaying into $\Lambda\pi^{\pm}$. Since then there have been conflicting reports about this state. A good review of the production experiments has been recently given by MILLER 70. We summarize here the situation.

Formation Experiments. Several partial-wave analyses have found evidence for one or two fairly narrow (Γ ~ 50 MeV) I = 1, J = 1/2 states within ~ 50 MeV of the effect seen in production. It is not clear at present how many such states really exist. No one has reported a strong coupling of any of these states to $\overline{K}N$, but there is much disagreement about

Data Card Listings For notation, see key at front of Listings.

branching ratios into $\Lambda \pi$ and $\Sigma \pi$. We summarize below the results of several recent partial-wave analyses (see the note on χ^{*_i} s for a discussion of the methods of analysis).

S₁₁: Both KIM 71 and LANGBEIN 72 report an S₁₁ state near 1620 MeV with $\Gamma \sim 50$ MeV, but KIM 71 finds $\Lambda \pi$ to be the dominant two-body decay mode while LANGBEIN 72 finds the $\Sigma \pi$ mode dominant. ARMENTEROS 70 report no S₁₁ state in any channel in this mass region. VAN HORN 72 finds a 66-MeV -wide S₁₁ state at 1697 MeV in his energydependent fits to the $\Lambda \pi$ channel, and a 50-MeV-wide state at 1655 MeV in five out of seven of his Barrelet ambiguous solutions.

P₁₁: A 50-MeV-wide P₁₁ state in the 1500-1600 MeV mass region of the Σπ channel was reported by ARMENTEROS 70 with no corresponding effect in $\Lambda \pi$ and $\overline{K}N$. KIM 71 claims a P₁₁ state at 1670 MeV with Γ = 50 MeV, a dominant Σπ two-body decay mode, and vanishing coupling to $\Lambda \pi$. LANGBEIN 72 reports no P₁₁ resonance. VAN HORN 72 saw a very broad, Γ = 230 MeV, P₁₁ resonance at 1668 MeV in his energy-dependent fits to the $\Lambda \pi$ channel, but a fairly narrow, Γ = 60 MeV, resonance at about the same mass in all of his Barrelet ambiguous solutions.

Production experiments. Here the evidence is only in the $\Lambda \pi$ channel. The BNL-CCNY collaboration. with increased data, CRENNELL 69, still claim the effect in the $\Lambda\pi$ channel (no evidence seen in $\overline{K}N$ or $\overline{KN\pi}$). SABRE 70 studied the same reaction at 3.0 GeV/c with comparable statistics and do not see any evidence for it in the $\Lambda\pi$ channel; on the contrary, they believe it to be a spurious peak resulting from misidentified Σ^0 from the production of $\Sigma(1670)$ decaying into $\Sigma^0 \pi^+$. CRENNELL 69 give counter arguments to show that this is not the case in their data and the controversy goes on. AMMANN 70 studied the same reaction at 4.5 GeV/c and report a state at 1640 MeV, again decaying only into $\Lambda\pi$ (no evidence seen in $\Sigma \pi$ or $\overline{K}N$ channels). The closeness of this mass to 1670 MeV is suggestive that this effect may be related to what goes on in that region (see discussion below).

In conclusion, for $\Sigma(1620)$ we have to wait for more data and for a complete understanding of the entire mass region 1600 to 1700 MeV. The hope is

Baryons $\Sigma(1620)$

that the determination of quantum numbers for each of these effects for each decay mode may eventually clarify the situation.

Σ	(1620) 32 Y*1(1620,	JP=1/2-) I=1	S'1	1	
M	THE S11 STATE AT 1697 MEV ASS BETWEEN THE SIGMA(1620) NDER SIGMA(1750).	REPORTED BY V AND SIGMA(175	ANHORN72] 0). WE TE	IS INTERMEDIATE IN ENTATIVELY LIST IT	
	32 Y*1(1620)	MASS (MEV)	*******		-
M M	(1620.) 1630.0 (10.0)	KIM LANGBEIN	71 DPWA 72 IPWA	K-MATRIX ANAL. MULTICHANNEL	3/71 12/72
	32 Y*1(1620)	WIDTH (MEV)			-
W	(40.) 65.0 (20.0)	KIM LANGBEIN	71 DPWA 72 IPWA	K-MATRIX ANAL. MULTICHANNEL	3/71 12/72
	32 Y*1(1620)	PARTIAL DECA	Y MODES		-
P1 P2 P3	Y*1(1620) INTO KBAR N Y*1(1620) INTO SIGMA PI Y*1(1620) INTO LAMBDA PI			DECAY MASSES 497+ 939 1197+ 139 1115+ 134	
	32 Y*1(1620)	BRANCHING RA	TIOS		-
R1 R1 R1 A R1 R1 A	Y*1(1620) INTO KBAR N (0.05) 0.05 OR LESS 0.22 (0.02) K-MATRIX FIT(NEGLECTS 3-B	KIM WONG LANGBEIN ODY CHANNELS)	71 DPWA 71 DPWA 72 IPWA REQUIRES	(P1) K-MATRIX ANAL. K-+PLAM+PI MULTICHANNEL NO RESONANCE	3/71 10/71 12/72 10/71
R2 R2 R2	Y*1(1620) FROM KBAR N TO S (0.08) 0.40 (0.06)	IGMA PI KIM LANGBEIN	71 DPWA 72 IPWA	SQRT(P1*P2) K-MATRIX ANAL. MULTICHANNEL	3/71
R3 R3	Y*1(1620) FROM KBAR N TO L (0.15)	AMBDA PI KIM	71 DPWA	SQRT(P1*P3) K-MATRIX ANAL.	3/71
****	* *******	*** ********	*******	* *******	* .
KIM A WONG LANGB	71 PRL 27 356 J K LSO 70 DUKE 161 J. 71 NC 2A 353 N S EIN 72 NP 847 477 +WA	KIM K. KIM WONG GNER		(HARV)I (HARV)I (YALE)I (MPIM)I	JP JP JP JP
VANHO	PAP RN 72 LBL-1370(THESIS)	ERS NOT REFER	RED TO IN	DATA CARDS	JP
***** *****	* ********** ********* ****** * ********	*** ********* *** ****	*******	* ********* *******	*
Σ	(1620) 79 Y*1(1620,	JP=1/2+) I=1	P'_1	1	
	SEE THE MINI- THE PARTIAL-W ARMENTEROS 70 A SIGNAL IN B	REVUE AT THE AVE ANALYSIS SUGGESTS SUCH DTH KBAR-N AN	START OF T DF K- N TC H A RESONA D SIGMA PI	HE Y* LISTINGS. SIGMA PI BY NNCE. KIM 71 FINDS	
		MASS (MEV)			-
M M M	1500 1600. (1670.) 1668. (.25)	ARMENTER KIM VANHORN	70 HDBC 71 DPWA 72 DPWA	-0 K-N TO SIGMA PI K-MATRIX ANAL. 0 K- P TO LAM PIO	6/70 3/71 2/73
	79 Y*1(1620)	WIDTH (MEV)			-
W W W	(50.0) (50.) 230. (165.) (60	ARMENTER(KIM .) VANHORN	70 HDBC 71 DPWA 72 DPWA	-0 K-N TO SIGMA PI K-MATRIX ANAL. 0 K- P TO LAM PIO	6/70 3/71 2/73
P1 P2	79 Y*1(1620) Y*1(1620) INTO KBAR N Y*1(1620) INTO SIGMA PI	PARTIAL DECA	Y MODES	DECAY MASSES 497+ 939 1197+ 139	
РЗ 	Y≭1(1620) INTO LAMBDA PI			1115+ 139 	-
R1	79 Y*1(1620) Y*1(1620) FROM KBAR N TO S	BRANCHING RA	T1 0S	SQRT (P1*P2)	
R1 R1	(+0.2) (0.24)	ARMENTER	70 HDBC 71 DPWA	-O K-N TO SIGMA PI K-MATRIX ANAL.	6/70 3/71
R2 R2	Y*1(1620) INTO KBAR N (0.14)	KIM	71 DPWA	(P1) K-MATRIX ANAL.	3/71

Baryons Σ(1620), Σ(1670)

Y*1(1620) FROM KBAR N TO LAMBDA PI (0.0) KIM .12 (.12) (.04) VAN KBAR N TO LAMBDA PI SQRT(P1*P3) KIM 71 DPWA K-MATRIX ANAL. (.12) (.04) VANHORN 72 DPWA O K- P TO LAM PIO R3 R3 R3 2/73* 2/73* ***** **** REFERENCES FOR Y*1(1620) ARMENTER 70 DUKE 123 KIM 71 PRL 27 356 ALSO 70 DUKE 161 VANHORN 72 LBL-1370(THESIS) ARMENTEROS, BAILLON, + (CERN, HEIDEL)IJP (HARV)IJP J. K. KIM (HARV)IJP /LBL IJP $\Sigma(1620)$ 78 Y*1(1620, JP=) I=1 PRODUCTION EXPERIMENTS BUMPS SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS, SUMPS SEE THE MINI-REVUE AT THE START OF THE 'V LISTING', THIS RESUMANCE NEEDS CONFIRMATION. THE RESULTS OF COLLABORATION AT SENNELL GAOT 3.9 GEV/C ARE NOT CONFIRMED BY THE SABE COLLABORATION AT SENNELL GAOT 3.9 GEV/C ARE NOT CONFIRMED BY THE SABE SEANCHING RATIOS THEVE () GAORE VERY IN AN EXPERIMENT AT 1.5 GEV/C, ANNAIN 70 SEE A PEAK AT 1642 MEV WHICH ON THE BASIS OF BRANCHING RATIOS THEVE ON ONT ASSOCIATE WHICH ON THE BASIS OF THERE WAS AN INDICATION OF A YPI116101 IN AN EARLY PHASE-SHIFT ANALYSIS OF K-P TO LANDOA PI. HOWEVER MORE DETAILED ANALYSIS OF MORE EXTENSIVE DATA BY THE SAME (CERN, HEIDEBERG, SACLAY) GROUP FAILED TO CONFIRM THIS RESULT. THEY NON SEE IT IN THE SIGNA PI CHANNEL (SEE PREVIOUS ENTRY). (OLD LANDDA PI ANALYSIS LISTED AS ARMENTEROS 68, NEW ANALYSIS AS ARMENTEROS 70.) SABRE 78 Y*1(1620) MASS (MEV) (PROD. EXP.)
 (1616.0)
 (8.0)
 CRENNELL
 68 DBC
 →
 K-O
 3.9 BEV/C

 EVENTS OF CRENNELL
 68 ARE IN THE LARGER SAMPLE OF CRENNELL 69.
 20
 1618.0
 3.0
 BLUMENTEL 69 HBC
 + KOLONG + PROTON

 1619.0
 3.0
 CRENNELL 69 BBC
 + K → TO LAM 3 PI

 1642.0
 12.0
 ANMANN TO DBC
 K → F → 5 GEV/C
 11/68 N 3.8 1619.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) AVG 78 Y*1(1620) WIDTH (MEV) (PROD. EXP.) (16.0) 10.0 22.0 24.0
 CRENNELL
 68
 DBC
 ←
 SEE
 NOTE
 N ABOVE
 11/68

 BLUMENFEL
 69
 HBC
 +
 9/69
 9/69
 9/69

 CRENNELL
 69
 DBC
 +
 9/69
 9/69
 9/69
 6/70

 AMMANN
 70
 DBC
 K-P
 4.5
 GEV/C
 6/70
 (66.0) 30.0 72.0 55.0 20 15.0 ū 41.3 12.2 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) SEE THE NOTES ACCOMPANYING THE MASSES QUOTED AVG ----____ 78 Y#1(1620) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 1115+ 139 1384+ 139 1115+ 139+ 139 1197+ 139 1405+ 139 Y*1(1620) INTO KBAR N Y*1(1620) INTO LAMBDA PI Y*1(1620) INTO Y*1(1385) PI Y*1(1620) INTO LAMBDA PI PI Y*1(1620) INTO SIGMA PI Y*1(1620) INTO Y*0(1405) PI P1 P2 P3 P4 P5 P6 78 Y*1(1620) BRANCHING RATIOS (PROD. EXP.) Y*1(1620) INTO (LAMBDA PI PI)/(LAMBDA PI) (P4)/(P3) 14 (2.5) APPROX BLUMENFEL 69 HBC + R1 R1 Y*1(1620) INTO (KBAR N)/(LAMBDA PI) (P1)/(P2) (0.0) (0.1) CRENNELL 68 DBC + 0.4 0.4 AMMANN 70 DBC K-P 4.5 GEV/C R 2 R 2 R 2 6/70 CRENNELL 68 DBC +-R3 R3 Y*1(1620) INTO LAMBDA PI 11/68 Y*1(1620) INTO (Y*1(1385) PI)/(LAMBDA PI) (0.2) (0.1) CRENNELL 68 DBC (0.3) OR LESS CL=.95 AMMANN 70 DBC (P3)/(P2) +-K-P 4.5 GEV/C R4 R4 84 11/68 Y*1(1620) INTO (SIGMA PI)/(LAMBDA PI) (1.1)(95 PC UPPER LIMIT) AMMANN (P5)/(P2) K-P 4.5 GEV/C R5 R5 70 DBC 6/70 Y*1(1620) INTO (Y*0(1405) PI)/(LAMBDA PI) (P6)/(P2) 0.7 0.4 AMMANN 70 DBC K-P 4.5 GEV/C R6 R6 6/70 ****** ****** REFERENCES FOR Y#1(1620) (PROD. EXP.) CRENNELL 68 PRL 21 648 +DELANEY, FLAMINID, KARSHON, + (BNL,CUNY) I BLUMENFE 69 PL 29B 58 BLUMENFELD, KALBFLEISCH (BNL) I CRENNELL 69 UND PAPER 183 +KARSHON, LAI, ONEIL, SCARR, + (BNL,CUNY) I RESULTS ARE QUOTED IN LEVI SETTI 69. AMMANN 70 PRL 24 327 + GAREINKEL, CARMONY, GUTAY,+ (PURDUE, IND) PAPERS NOT REFERRED TO IN DATA CARDS ARMENTEROS,BAILLON + (CERN+HEID+SACL) R LEVI SETTI (RAPPORTEUR) EFINS R D TRIPP (RR) ARMENTEROS,BAILLON + (CERN+HEID+SACL) D H MILLER (REVIEW TALK) CABRE COLLAB. (SACL,AMST,BGNA,REHO,EPOL) ARMENTER 68 NP 88 183 LEVISETT 69 LUND CONF TRIPP 69 UCRL 19361 ARMENTER 70 DUKE 123 MILLER 70 DUKE 229 SABRE 70 NP 816 201

Data Card Listings For notation, see key at front of Listings.

Note on $\Sigma(1670)$

<u>Formation experiments</u> show the presence of only one I = 1 state in this energy region with major decay modes into \overline{KN} (7-10%), $\Lambda \pi$ (10-15%), $\Sigma \pi$ (30-50%), $\Sigma \pi \pi$ (5-15%), and some $\Lambda \pi \pi$ (the experimental situation here is unclear). Its quantum numbers are $J^{P} = 3/2^{-}$.

<u>Production experiments</u> are more confused. When determined, the most likely quantum numbers are also $3/2^{-1}$ [for $\Sigma\pi$ and $\Lambda(1405)\pi$]. The measured branching ratio R = $\Sigma\pi/\Sigma\pi\pi$ changes with the momentum transfer to the proton. This was first observed by EBERHARD 69 who suggested the existence of $2 \Upsilon_{1}^{*}$ with the same mass and quantum numbers; one object with a large $\Sigma\pi\pi$ [mainly $\Lambda(1405)\pi$] decay mode produced peripherally, and another one with a large $\Sigma\pi$ decay mode produced at larger angles. This observation has now been confirmed by AGUILAR-BENITEZ 70.

The other difficulty comes from the different $\Lambda \pi/\Sigma \pi$ branching ratios reported by the various experiments. Those experiments done with K⁻ beams below 2 GeV/c (HUWE 64 and BUTTON-SHAFER 68) report values for the $\Lambda \pi/\Sigma \pi$ ratio in agreement with formation experiments; the others report a higher $\Lambda \pi/\Sigma \pi$ ratio. Therefore, the possibility of a third Y_4^{*} state, referred to as $\Sigma(1690)$ in the Data Card Listings, with a large $\Lambda \pi/\Sigma \pi$ branching ratio still exists. This large branching ratio is the main justification for this hypothesis and needs confirmation. It relies on the separation between K⁻p $\rightarrow \Lambda \pi^{+}\pi^{-}$ and K⁻p $\rightarrow \Sigma^{0}\pi^{+}\pi^{-}$, which is experimentally difficult at high energy. These problems are reviewed by MILLER 70.

Two resonances of the same spin and parity have been hypothesized by EBERHARD 69 as the origin of much of the complexity observed in the 1600 to 1700 MeV region in production experiments. See also the note on $\Sigma(1620)$.

44 y*1(1670, JP=3/2-) I=1 D_{13} SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. SEE NOTE ABOVE

WELL ESTABLISHED RESONANCE. IT HAS BEEN SEEN IN BOTH FORMATION AND PRODUCTION EXPERIMENTS. HOWEVER THE BRANCHING RATIOS OBTAINED BY THESE TWO METHODS SHOW LARGE INCONSISTENCIES.

SEE LISTING OF PRODUCTION EXPERIMENTS BELOW AS FOR THE QUANTUM NUMBERS, THE ANALYSES OF LAMBDA PI CHANNEL (IN FORMATION EXP.) AS WELL AS THE SIGMA PI CHANNEL AGREE ON JP=3/2--

Data Card Listings

For notation, see key at front of Listings.

Baryons Σ(1670)

44 Y*1(1670) MASS (MEV)	PAPERS NOT REFERRED TO IN DATA CARDS
M 1660.0 BERLEY 64 HBC O K-P TO LAM PIO 7/66 M 1668.0 (5.) ARMENTER 68 HBC O K-P TO LAM PIO 7/66 M 1661.01 (2.0) ARMENTER 68 HBC O K-P TO SIGMA PI 11/68 M 1660.0 ARMENTER 69 HBC K-N TO SIGMA PI 11/68 M 1663.0 (2.0) ARMENTER 69 HBC K-N TO SIGMAPI 11/68 M 1665.0 (2.0) ARMENTER 70 HBC K-P TO SIGMAPI 5770 M 1660.0 (3.0) BRUCKER 70 DBC K-P TO SIG 7710 M 1662.0 (5.0) GALTIERI 70 DBC SIG FLEDENWA 7770 M 16656. (10.1) GALTIERI <td>BASTIENI 63 PRL 10 188 PL BASTIENI, J P BERGE (IRL) IJ REPLACED BY BASTIEN 2, BUT SIMILAR AND MORE READILY AVAILABLE. (IRL) IJ DASTIEN2 63 UCRL-10779 THESIS PL BASTIEN (IRL) IJ T-ZADEH 63 PRL 11 470 TAHER-ZADEH, PROMSE, SCHLEIN, SLATER, + (UCLA) JP SEE MOTE FOLLOWING SCHLEIN 66. SCHLEIN 66 UCLA-1016 SCHLEIN 66 UCLA-1016 P.E. SCHLEIN, T.G. TRIPPE (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 63 AND ALL PUBLISHED LAMBOA PI CROSS SECTION DATA IN THE LIGHT OF THE NOW KNOWN Y#1(1765). REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH 0N THE PREFERRE JP ASEIGNMENT (FROM 3 2+ TO 3 (2-1.) SMART 66 PRL 17 556 W M SMART,A KERNAN,G E KALMUS,R P ELY (IRL)1JP ARMENTERG 7N PB 352 ARMENTERG,FERRD-UJZI+ (CENN,HEID,SACLAY) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID+SACL) ************************************</td>	BASTIENI 63 PRL 10 188 PL BASTIENI, J P BERGE (IRL) IJ REPLACED BY BASTIEN 2, BUT SIMILAR AND MORE READILY AVAILABLE. (IRL) IJ DASTIEN2 63 UCRL-10779 THESIS PL BASTIEN (IRL) IJ T-ZADEH 63 PRL 11 470 TAHER-ZADEH, PROMSE, SCHLEIN, SLATER, + (UCLA) JP SEE MOTE FOLLOWING SCHLEIN 66. SCHLEIN 66 UCLA-1016 SCHLEIN 66 UCLA-1016 P.E. SCHLEIN, T.G. TRIPPE (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 63 AND ALL PUBLISHED LAMBOA PI CROSS SECTION DATA IN THE LIGHT OF THE NOW KNOWN Y#1(1765). REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH 0N THE PREFERRE JP ASEIGNMENT (FROM 3 2+ TO 3 (2-1.) SMART 66 PRL 17 556 W M SMART,A KERNAN,G E KALMUS,R P ELY (IRL)1JP ARMENTERG 7N PB 352 ARMENTERG,FERRD-UJZI+ (CENN,HEID,SACLAY) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID+SACL) ************************************
44 Y*1(1670) WIDTH (MEV) 60.0 DERLEY 64 HBC 0 7766 56. (18.) ARMENTER 68 HBC 0 K-P ELAS.+CH.EX 11/68 M 56. (18.) ARMENTER 68 HBC 0 K-P TO SIGMA PI 11/68 M 44.01 (4.0) ARMENTER 69 HBC 0 K-P TO SIGMA PI 11/68 M 47.0 ARMENTER 69 HBC 0 K-P TO SIGMA PI 11/68 5/70 M 49.0 (4.0) ARMENTER 70 HBC 0 K-P TO LAMB.PI 5/70 M 30.0 (10.0) BRUCKER 70 DBC - K-N TO SIG 2PI 10/71 M 46.0 (15.0) GALTIERI TO HBC 0 SIG PIED 40/A1 10/71 M 46.0 (15.0) GALTIERI TO HBC 0 SIG PIED 40/A1 10/71 M 46.0 (15.0) GALTIERI TO HBC 0 SIG PIED 40/A1 10/71 M 46.0 (15.0) GALTIERI TO HBC 3/71 3/71 M 46.0 (20.0) LANGBEIN 72 IPWA	S1 Y*1(1670, JP=) I=1 PRODUCTION EXPERIMENTS SEE NOTE PRECEDING Y*1(1670) PROBABLY THERE ARE TWO STATES AT SAME MASS WITH SAME QUANTUM NUMBERS, ONE DECATING INTO SIGMA PI AND LAMBDA PI, THE OTHER KIND Y*0(1405) PI. BRANCHING RATIOS NOT DISENTANGLED YET. WE LIST THEM TOGETHER FOR NON. 51 Y*1(1670) MASS (MEV) (PROD. EXP.) N (1665.0) ALEXANDER 62 HBC -0 PI-P 2-2.2 BEV/C 1 Y*1(1670) MASS (MEV) (PROD. EXP.) M (1665.0) ALEXANDER 62 HBC -0 PI-P 2-2.2 BEV/C M (1665.0) ALEXANDER 62 HBC -0 PI-P 2-2.2 BEV/C M (1665.0) BED GARNES OF DOR NEW ANALYSIS OF DOTATA (SI IMES MORE DATA) P TOIL661.1 PRIMER 06 HBC + K-P 1.51 BEV/C M (1665.0) P TOIL661.1 PRIMER 06 HBC + K-P 4.6-5. GEV/C 7/68 P TOIL661.1 P TOIL661.1 P TOIL661.1 P FILMER 06 FOR NEW ANALYSIS OF DOTATA (SI IMES MORE DATA) P TOIL661.1
44 Y*1(1670) PARTIAL DECAY MODES DECAY MASSES DECAY MASSES 2 Y*1(1670) INTO KBAR N 4977 939 2 Y*1(1670) INTO LAMBDA PI 1115+ 139 93 Y*1(1670) INTO LAMBDA PI 1115+ 139 139 94 Y*1(1670) INTO SIGMA PI PI 1137+ 139- 139 139 95 Y*1(1670) INTO SIGMA PI PI 1137+ 139- 139 139 26 Y*1(1670) INTO Y*1(1385) PI 1384+ 139 97 Y*1(1670) INTO Y*0(1365) PI 1405+ 139	H 1668.0 10.0 AGUILAR 70 HBC SIG-2P1 K-P 4GEV 5/70 H AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)
44 Y*1(1670) BRANCHING RATIOS X1 (10.02)	W SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. W 110.0 12.0 AGUILAR 70 HBC SIG.PI K-P 4 GEV 5/70 W 135.0 40.0 30.0 AGUILAR 70 HBC SIG.2PI K-P 4GEV 5/70 W 135.0 40.0 30.0 AGUILAR 70 HBC SIG.2PI K-P 4GEV 5/70 W AVERAGE MEANINGLESS (SCALE FACTOR = 3.4)
45.1 40.1 AMMENTER 70HBC KP.TO.LAMB.P1 5770 15 +0.09 (0.02) GALTIERI 70 HBC C.LAR.P1, EDPWA 7770 15 +0.09 (0.02) GALTIERI 70 HBC C.LAR.P1, EDPWA 7770 15 +0.65 (-0.1) BUDGEN 71 DPWA LAM PIO 1071 15 0.13 (0.03) LANOBEIN 72 IPWA K-MATRIX ANAL. 371 15 0.13 (0.03) LANOBEIN 72 IPWA MULTICHANNEL 12/72* 16 (+0.21) (0.01) ARMENTEZ 68 HBC 0 LAD DATA 9/69 16 +0.20 (0.01) ARMENTES 69 HBC 0 NEW DATA 9/69 16 +0.18 (0.01) ARMENTES 69 HBC 0 NEW DATA 9/69 16 +0.18 (0.06) GALTIERI 70 HBC 0 SIG 5/70 16 +0.18 (0.05) GALTIERI 70 HBC SIG 5/70 170 GALTIERI 70 HBC SIG <td>51 Y#1(1670) BRANCHING RATIOS (PROD. EXP.) R1 Y#1(1670) INTO (KABA N)/(SIGMA PI) (P1)/(P3) 1 0 (0.5) - 25 GM ADRE SMITH 63 HGC + K-P 1.15 BEV/C R1 (0.6) OR LESS LVAREZ 63 HGC + K-P 1.15 BEV/C R1 (0.6) OR LESS LUNONO 66 HGC + K-P 2.25 BEV/C 7/66 R1 (0.625) BUGG 68 CNTR 0 ASSUMING J-3/2 11/66 R1 (0.626) OR LESS PRINE 68 HGC + K-P 2.25 BEV/C 7/68 R1 (0.26) OR LESS PRINE 68 HGC + K-P 4.6-5. GEV/C 7/68 R1 (0.26) OR LESS AGUILAR 70 HBC R2 Y#1(1670) INTO (LAMB.PI)/(SIG PI) (P2)/(P3) R2 130 (1.20) ALVAREZ 63 HBC + K-P 1.15 BEV/C R2 0.6 0.7 SMIME 63 HBC -0 R2 0.6 0.7 SMIME 64 HBC + R2 0.6 0.7 SMIME 64 HBC + R2 0.6 0.7 SMIME 64 HBC - R2 0.6 0.7 SMIME 64 HBC + R2 10.70 0.400 MIME 70 HBC -</td>	51 Y#1(1670) BRANCHING RATIOS (PROD. EXP.) R1 Y#1(1670) INTO (KABA N)/(SIGMA PI) (P1)/(P3) 1 0 (0.5) - 25 GM ADRE SMITH 63 HGC + K-P 1.15 BEV/C R1 (0.6) OR LESS LVAREZ 63 HGC + K-P 1.15 BEV/C R1 (0.6) OR LESS LUNONO 66 HGC + K-P 2.25 BEV/C 7/66 R1 (0.625) BUGG 68 CNTR 0 ASSUMING J-3/2 11/66 R1 (0.626) OR LESS PRINE 68 HGC + K-P 2.25 BEV/C 7/68 R1 (0.26) OR LESS PRINE 68 HGC + K-P 4.6-5. GEV/C 7/68 R1 (0.26) OR LESS AGUILAR 70 HBC R2 Y#1(1670) INTO (LAMB.PI)/(SIG PI) (P2)/(P3) R2 130 (1.20) ALVAREZ 63 HBC + K-P 1.15 BEV/C R2 0.6 0.7 SMIME 63 HBC -0 R2 0.6 0.7 SMIME 64 HBC + R2 0.6 0.7 SMIME 64 HBC + R2 0.6 0.7 SMIME 64 HBC - R2 0.6 0.7 SMIME 64 HBC + R2 10.70 0.400 MIME 70 HBC -
3 SINS 66 USES ONLY CROSS-SECT. DATA. RESULT USED AS UPPER LIMIT ONLY 3/72 13 Y*1(1670) INTO (Y*0(1405)PI)*(KBAR N)/TUTAL**2 (P7PP1) 14 (0.03) DB LESS DERLEY 69 HGC 15 SIMS 66 USES ONLY CROSS-SECT. DATA. RESULT USED AS UPPER LIMIT ONLY 3/72 16 (0.03) DB LESS DERLEY 69 HGC 18 0.007 10.002.) BRUCKER 70 DBC - K-N TO SIG 2PI 10/71 18 B ASSUMING Y*0(1405) PI CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/71 18 B ASSUMING Y*0(1405) PI //(*11385) PI) (P7)/(P6) 19 Y*1(1670) INTO (Y*0(1405) PI)/(**1(1385) PI) (P7)/(P6) 19 0.23 (0.08) BRUCKER 70 DBC - K-N TO SIG 2PI 10/71	R2 P 0 (0.) PRIMER 68 HBC + K-P 3.9-5 GEV/C 10/69 R2 P RHMER 68 ASSUMED THIS DECAY TO BE ALL **(1600) - SEE BARNES 69 FOR R2 P NEM INTERPRATATION OF DATA.(3 TIMES MORE DATA) - R2 0.455 0.15 R2 AVERAGE MEANINGLESS (SCALE FACTOR = 1.5) R3 Y*1(1670) INTO (LAMB. PI PI)/(SIG PI) R3 90 (0.56) R3 (0.17) R3 (0.17) R3 (0.61) OR LESS LONDON 66 HBC + K-P AT 2.25 BEV/C 7/66 R4 VENDON 66 HBC + K-P AT 2.25 BEV/C 7/66
REFERENCES FOR Y%1(1670) SERLEY 64 DUBNA CONF I 565 REMENTER 68 NP 88 135 ARMENTEROS, BAILLON + (CERN+HEID+SACLAY)IJP REMENTER 68 NP 88 133 ARMENTEROS, BAILLON + (CERN+HEID+SACLAY)IJP REMENTEL 68 NP 88 123 ARMENTEROS, BAILLON + (CERN+HEID+SACLAY)IJP REMENTEL 68 NP 88 123 ARMENTEROS, BAILLON + (CERN+HEID+SACLAY)IJP REMENTES 68 PL 288 521 ARMENTEROS, BAILLON + (CERN+HEID+SACLAY)IJ REMENTES 68 PL 21 1413 SIMS ALBRIGHT, BARTLEY, MERE + (FSU, TUFT, BRAN) SIMS 868 PRL 21 1413 SIMS ALBRIGHT, BARTLEY, MERE + (FSU, TUFT, BRAN) SIMS 870 PB 149 1 ARMENTEROS, BAILLON, + INTER + (CERN+SACLAY) J REMENTER 50 NP 149 41 ARMENTEROS, BAILLON, + (CERN+HEIDELSACLAY) J RENET 69 NP 306 430 BERLEY HART, RAHH, WILLIS, YAMAMEDI (BNL) SRUCKER 70 DUKE 123 ARMENTEROS, BAILLON, + (CERN+EIDEL) SRUCKER 70 DUKE 155 ARMENTEROS, BAILLON, + (CERN+EID) SRUCKER 70 DUKE 155 ARBARA GALITERI (DANILTS, YAMAMDER++ (FSU)I SRUCKER 70 DUKE 123 ARBARAR GALITERI (DANILTS, YAMAMDELE++ (FSU)I SRUCKER 70 DUKE 123 ARBARAR GALITERI (DANILTE, (DANILTS, YAMANDELE++ (FSU)I <tr< td=""><td>R4 180 (0.56) ALVAREZ 63 HBC + K-P 1.15 BEV/C R5 Y91(1670) INTO (Y90(1405) P1)/(SIG P1) (P7)/(P3) R5 50 3. 1.6 LONON 66 HBC + K-P 2.25 BEV/C 7/66 R5 P17 (0.58) (0.20) PRIMER 68 HBC + K-P 4.6-5. GEV/C 7/68 R6 Y91(1670) INTO (SIGMA PI)/(SIGMA PI P1) (P3)/(P5) (P3)/(P5) (P3)/(P5) R6 0.30 0.15 LONDON 66 HBC + K-P 4.5-5. GEV/C 7/68 R6 0.30 0.15 LONDON 66 HBC + K-P 2.25 GEV/C 7/66 R6 A BETWEEN 2.5 AND 0.24 EBENHARD 69 HBC K-P 2.25 GEV/C 7/66 R7 Y91(1670) INTO (Y90(1405) P1)/(SIGMA PI P1) (P7)/(P5) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/Y1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/Y1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R9 Y91(1670) INTO (LAMB0A PI P1)/</td></tr<>	R4 180 (0.56) ALVAREZ 63 HBC + K-P 1.15 BEV/C R5 Y91(1670) INTO (Y90(1405) P1)/(SIG P1) (P7)/(P3) R5 50 3. 1.6 LONON 66 HBC + K-P 2.25 BEV/C 7/66 R5 P17 (0.58) (0.20) PRIMER 68 HBC + K-P 4.6-5. GEV/C 7/68 R6 Y91(1670) INTO (SIGMA PI)/(SIGMA PI P1) (P3)/(P5) (P3)/(P5) (P3)/(P5) R6 0.30 0.15 LONDON 66 HBC + K-P 4.5-5. GEV/C 7/68 R6 0.30 0.15 LONDON 66 HBC + K-P 2.25 GEV/C 7/66 R6 A BETWEEN 2.5 AND 0.24 EBENHARD 69 HBC K-P 2.25 GEV/C 7/66 R7 Y91(1670) INTO (Y90(1405) P1)/(SIGMA PI P1) (P7)/(P5) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/Y1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/Y1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R8 Y91(1670) INTO (Y90(1405) P1)/1(Y91(1385) P1) (P7)/(P6) * K-P 2.45 BEV/C 7/66 R9 Y91(1670) INTO (LAMB0A PI P1)/
LANGBEIN 72 NP B47 477 +WAGNER (MPIMIIJP /ANHORN 72 LBL-1370(THESIS) /LBL TJP	K9 0.35 0.2 BIRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67

Baryons Σ(1670), Σ(1690), Σ(1750)

R10 Y*1(1670) INTO (LAMBDA PI)/(SIGMA PI PI) (P2)/(P5)	11/67	REFERENCES FOR Y*1(1690) (PROD. EXP.)
R11 Y*1(1670) INTO (LAMBDA PI)/(LAMBDA PI + SIG PI) (P2)/(P2+P3)	11/0/	COLLEY 67 PL 24B 489 (BIRM,GLAS,LOIC,MUNICH,OXFORD,RHEL) I DERRICK 67 PRL 18 266 +FIELDS, LOKEN, AMMAR, (ARGONNE,NORTHWEST) I
R11 (0.6) OR LESS AGUILAR 70 HBC	5/70	REPLACED BY MUTT 69. PRIMER 68 PRL 20 610 +GOLDBERG, JAEGER, BARNES, + (SYRACUSE, BNL) I SIMS 68 PRL 21 1413 +ALBRIGHT, + (FSULTUFTS, BRANDEIS) I
51 Y*1(1670) QUANTUM NUMBER DETERMINATION (PROD. EXP.)		BLUMENFE 69 PL 298 58 B J BLUMENFELD, G R KALBFLEISCH (BNL) I
Q1 JP=3/2+ LEVEQUE 65 HBC INTO Y*(1405)+PI 03 FREPHAPD 67 HBC + INTO Y*(1405) PI	11/68	MUTT 69 PR 177 1966 +AMMAR, DAVIS, KROPAC, +(NORTHWEST, ARGONNE) I
Q4 400 JP=3/2- BUTTON-SH 68 HBC +- INTO SIGZERO+PI	11/68	AGUILAR 70 PRL 25 58 AGUILAR-BENITEZ, BARNES, BASSANO+ (BNL+SYRA)
****** ********************************		******* ******** ******* *************
ALEXANDE 62 CERN CONF 320 ALEXANDER, JACOBS, KALBFLEISCH, MILLER, + (LRL) I		
ALVAREZ 63 PRL 10 184 +ALSTON,FERRO-LUZZI,HUWE, + (LRL) I SMITH 63 ATHENS CONF 67 G A SMITH (LRL)		$\Sigma(1750)$ 57 Y*1(1750, JP=1/2-) I=1 511
HUWE 64 PR 180 1824(1969) D O HUWE (LRL) EBERHARD 65 PRL 14 466 +SHIVELY,ROSS,SIEGAL,FICENEC, + (LRL,ILL) I		THERE IS NOW EVIDENCE IN THREE CHANNELS FOR AN S11 RE-
BIRMINGH 66 PR 152 1148 BIRMINGHAM,GLASGON,L.C.Y OXFORD,RUTHERFORD LONDON 66 PR 143 BIAN,SANIOS,YAMAMOTO,GOLDBERG,+ (BINL,SYRA) BUGG 68 PR 168 1466 +GILMORE,KNIGHT,DAVIES+ (BIRM,CAVE,RHEL)I BUTON-5 68 PRL 21 132 J BUTTON SHAFER (BIRM,CAVE,RHEL)I PRIMER 68 PRL 20 610 +GOLDBERG, JAEGER, BARNES,DORNAN + (SYRA,BNL)	J	SONANCE NEAR THIS ENERGY. INTERPRETATION OF THE SIGMA TA THRESHOLD BUMP ON ITS OWN MERITS IS NOT CONCLUSIVE (CLINE 67) MORE DATA ARE NEEDED. BUT BY AMALOGY WITH THE SIMILAR N ETA AND LAMBOA ETA THRESHOLD EFFECTS, WHICH ARE ALMOST CERTAINLY RE- SONANCES, IT SEEMS VERY LIKELY THAT THIS TOO IS A RESONANCE. SEE THE RAPPORTEUR TALKS OF FERRO LUZI 66 AND MEYER 67 FOR DISCUSSIONS.
BARNES 69 BNL 13823 +CHUNG,EISNER,FLANINIG+ (BNL,SYRA) EBERHARD 69 PRL 22 200 +FRIEDNAN,PRIPSTEIN,ROSS (LRL) AGUILAR 70 PRL 25 58 +BARNES, BASSANO, CHUNG, EISNER,+(BNL,SYRA)		IN THE ENERGY-INDEPENDENT PARTIAL WAVE ANALYSIS OF K- N TO LAMBDA PI, THE 511 AMPLITUDE APPEARS TO RESONATE (ARMENTEROS 69). IN 1968 IT APPEARED TO RESONATE NEAR 1650 MEV (ARMENTEROS 68), AND WAS LISTED HEREIN AS A SEPARATE STATE. NOW IT HAS MOVED CLOSE ENDUGH TO THE
PAPERS NOT REFERRED TO IN DATA CARDS		OTHER EFFECTS TO BE TENTATIVELY LISTED WITH THEM, BUT THE SIZE OF THE CHANGE IN THE MASS SHOULD BE A HEALTHY MARNING THAT THE PARAMETERS CIVEN FOR BECONNECSS IN LONGED RATIAL HANGES FORM SUCH ANALYSES ADD
LEVEQUE 65 PL 18 69 + (SACLAY, EPOL, GLASGOW, LOIC, OXF, WHEL) J LEE 66 PAL 17 45 Y LEE, D D REEDER, R W HARTUNG (MISC) J EBERHARD 67 PR L63 1446 +PRIPSTEIN, SHIVELY, KRUSE, SMANSON (LRL, ILL) IJ	p p	GIVELE CUR RESUMANCES IN LUMER FARIAL MAYES FROM SUCH ANALYSES ARE SUBJECT TO LARGE CHANGE. LARMENTEROS TO, FROM MULTO THE RESONANCE PARAMETRS LARGE QUDTEDY IS A SLIGHT UPDATING OF ARMENTEROS 09.1 PARAMETRE LISTERAR EXT DENCE FOR THIS RESONANCE IN AN EMERGY-OFENDENT SATTAR LISTERAR EXT SCHORE FOR THIS RESONANCE. IN AN EMERGY-OFENDENT
****** ********** *********************		FORTO 71). KIM 71 IN A MULTICHANNEL ANALYSIS FINDS A SURPRISINGLY LARGE
Σ(1690) 58 y*1(1690, JP=) I=1 PRODUCTION EXPERIMENTS		ELASTICITY (.8), AND SMALLER AMPLITUDE IN THE LAMBDA PI CHANNEL. VANHORN 72 FINDS A STATE SOMEWHAT BELOW THE SIGMA ETA THRESHOLD IN AN ANALYSIS OF THE LAMBDA PI CHANNEL.
BUMPS SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.		IN VIEW OF THESE DISCREPANCIES WE DO NOT QUOTE ANY VALUES FOR THE BRANCHING RATIOS.
SEE NOTE PRECEDING Y*1(1670) LISTINGS, SEEN IN PRO.		
		57 Y*1(1750) MASS (MEV)
		M NEAR SIGMA ETA THRESHOLD CLINE 67 DBC - K-N TO SIGMA ETA 9/66 M About 1750.0 Meyer 67 RVUE 9/69 M About 1730.0 ArmENTERO 70 HDBC -0 K-N TO LAMBDA PI 6/70
M 30(1715.0) (12.0) COLLEY 67 HBC + K-P 6 GEV/C	8/67	M (1757.0) (10.0) CONFORTO 71 DPWA O ELASTIC, CH EXCH 6/70 M (1790.) KIM 71 DPWA K-MATRIX ANAL. 3/71
M P 60(1694.0) (24.0) PRIMER 68 HBC + K-P 4.6-5 GEV/C M N (1700.0) (6.0) SIMS 68 HBC - K-N TO LAM PI PI N (1700.0) (6.0) SIMS 68 HBC - K-N TO LAM PI PI	7/68	M (1790.0) (15.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72* M (1697.) (20.) (10.) VANHORN 72 DPWA O K- P TO LAM PIO 2/73*
M 4011682-00 (2:00) BLUMENFEL 69 HBC + K0 LUNG + PROTON M (1700-0) (20-0) MOTT 69 HBC + K-P 5-5 GEV/C M P SEE Y*1(1670) LISTING-AGUILAR 70 WITH THREE TIMES THE DATA OF	9/69	
M P PRIMER 68 SHOW THAT THEY HAVE NO EVIDENCE FOR Y*(1690) M N THIS ANALYSIS, WHICH IS DIFFICULT AND REQUIRES SEVERAL ASSUMPTIONS		57 Y*1(1750) WIDTH (MEV)
M AND SHOWS NO UNAMBIGUOUS Y*III6901 SIGNAL, SUGGESIS JP=5/2*. SUCH A M Y* WOULD LEAD ALL PREVIOUSLY KNOWN Y* TRAJECTORIES.		W ABOUT 80.0 ARMENTERO 70 HOBC -O K-N TO LAMBDA PI 6/70 W (55.0) (10.0) CONFORTO 71 DPWA O ELASTIC, CH EXCH 6/70
		W (50.) KIM 71 DPWA K-MATRIX ANAL. 3/71 W (100.0) (20.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72*
58 Y*1(1690) WIDTH (MEV) (PROD. EXP.)	8/67	W (66.) (14.) (12.) VANHORN 72 DPWA 0 K- P TO LAM PIO 2773*
W 60 (105.0) (35.0) PRIMER 68 HBC + W N (62.0) (14.0) SIMS 68 HBC - SEE NOTE N ABOVE	7/68 11/68	57 Y*1(1750) PARTIAL DECAY MODES
W 46 (25.0) (10.0) BLUMENFEL 69 HBC + W (130.0) (25.0) MOTT 69 HBC + SEE THE NOTES ACCOMPANYING THE MASSES DUDTED	9/69 9/69	DECAY MASSES
		P2 Y*1(1750) INTO SIGMA ETA 1197+ 548 P3 Y*1(1750) INTO LAMBDA PI 1115+ 134
58 Y*1(1690) PARTIAL DECAY MODES (PROD. EXP.)		P4 Y*1(1750) INTO SIGMA PI 1197+ 139
DECAY MASSES P1 Y*1(1690) INTO KBAR N 497+ 939		57 Y*1(1750) BRANCHING RATIOS
P2 Y*1(1690) INTO LAMBDA PI 1115+ 139 P3 Y*1(1690) INTO SIGMA PI 1197+ 139 P4 Y*1(1690) INTO Y*1(1385) PI 384+ 139		R1 Y*1(1750) INTO (KBAR N)/TOTAL (P1) R1 (0.12) (0.05) CONFORTO 71 DPWA O ELASTIC, CH EXCH 6/70
P5 Y*1(1690) INTO LAMBDA PI PI (INCLUDING P4) 1115+ 139+ 139		R1 (0.8) KIM 71 DPWA K-MATRIX ANAL. 3/71 R1 (0.45) (0.05) LANGBEIN 72 IPWA MULTICHANNEL 12/72*
		R2 Y*1(1750) FROM KBAR N INTO SIGMA ETA SQRT(P1*P2) R2 SFEN CIINE 69 DBC – THRESHOLD BUMP 9/69
R1 Y*1(1690) INTO (KBAR N)/(LAMBDA PI) (P1)/(P2)		R3 Y*1(1750) FROM KBAR N INTO LAMBDA PI SQRT(P1*P3)
R1 18 0.4 0.25 COLLEY 67 HBC + 6/30 EVENTS R1 (0.2) OR LESS MOTT 69 HBC +	8/67 9/69	R3 (+0.25) ARMENTERO 70 IPWA -0 K-N TO LAMBDA PI 6/70 R3 (0.09) KIM 71 DPWA K-MATRIX ANAL. 3/71 R3 (0.30) (0.05) LANGREIN 72 IDWA MULTICHANNEL 12/72#
R2 Y*1(1690) INTO (SIGMA PI)/(LAMBDA PI) (P3)/(P2) R2 0.3 0.3 COLLEY 67 HBC + 4/30 EVENTS	8/67	R3 (13) (.04) VANHORN 72 DPWA 0 K- P TO LAM PIO 2/73*
R2 (0.4) OR LESS CL=.90 MOTT 69 HBC +	9/69	R4 Y*1(1750) FROM KBAR N TO SIGMA PI SQRT(P1#P4) R4 (0.16) KIM 71 DPWA K-MATRIX ANAL. 3/71 R4 (0.13) (0.02) LANGREIN 72 IPWA MULTICHANNEL 12/72*
R3 (0.5) OR LESS MOTT 69 HBC +	9/69	****** ********************************
R4 Y≭1(1690) INTU LLAMBDA PI PI}/(LAMBDA PI) (P5)/(P2) R4 0.5 0.25 COLLEY 67 HBC + 15/30 EVENTS R4 2.0 0.6 BLUMENFEL 69 HBC + 31/15 FVFNT<	8/67 9/69	REFERENCES FOR Y#1(1750)
R4 AVG 0.72 0.53 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.3)		CLINE 67 PL 25B 41 CLINE, OLSSON (WISCONSIN)IJP MEVER 67 HEIDELBERG C 117 J MEYER (RAPPORTEUR) (SACLAY)IJP ADMENTEDRS DAVIEN
R5 Y*1(1690) INTO (Y*1(1385) PI)/(LAMBDA PI PI) (P4)/(P5) R5 SMALL COLLEY 67 HBC +	8/67	CONFORTO 71 NP B34 41 +LEVI SETTI,LASINSKIOBERLACK++ (EFI+HEID)IJP KIM 71 PR 27 356 J K KIM
R5 LARGE SIMS 68 HBC - K-N TO L2PI	11/68	ALSO 70 DUKE 161 J. K. KIM (HARV)IJP LANGBE IN 72 NP 847 477 + WAGNER (MPIN)IJP VAMHORY 72 IBL 370 (THETS) (MPIN)IJP
~~~~~ ~~~~~***************************		

## Data Card Listings

### For notation, see key at front of Listings.

## Baryons Σ(1750), Σ(1765)



S160 Reviews of Modern Physics · April 1973 · Part II

## Baryons

R6 R6 R6 R6

R7 R7

R9 R9 R9 R9 R9 R9

M

WW

P1 P2 P3

R1 R1

R2 R2

R3 R3 R3

 $\Sigma(1765), \Sigma(1840), \Sigma(1880), \Sigma(1915)$ 

#### Y*1(1765) INTO (LAMBDA PI)/(KBAR N) 0.33 0.05 UHLIG (P2)/(P1) 67 HBC 0 K-P,.9 GEV/C 9/66 $P_{11}''$ Σ(1880) FIT 0.321 0.042 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.4) 67 Y*1(1880, JP=1/2+) I=1 Y*1(1765) INTO (Y*0(1520)PI)/(KBAR N) (P3)/(P1) 0.28 0.05 UHLIG 67 HBC 0 K-P,.9 GEV/C SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. 9/66 SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAVE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE EVIDENCE, WE OMIT THIS STATE FROM THE MAIN BARYON TABLE. R7 R7 FIT 0.381 0.080 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.1) R8 Y*1(1765) INTO (Y*1(1385)PI)/(KBAR N) (P4)/(P1) R8 0.25 0.09 UHL16 67 HBC 0 K-P.*9 GEV/C R8 FIT 0.250 0.091 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) Y*1(1765) INTO (Y*1(1385)PI)/(KBAR N) 0.25 0.09 UHLIG 9/66 -----67 Y#1(1880) MASS (MEV) Y*1(1765) INTO (SIGMA PI PI)//TOTAL (P7) P (0.12) ARMENT-2 68 HOBC -O K-N TO SIG PI PI 11/68 P FOR ABOUT 3/4 OF THIS, THE SIGMA PI SYSTEM HAS I=0 AND IS ALMOST P ENTIRELY Y*0(1520). FOR THE OTHER 1/4, THE SIGMA PI HAS I=1. THIS P IS ABOUT MHAT IS EXPECTED FROM THE KNOWN RATE Y*1(1765) TO Y*1(1385) P PI, AS SEEN IN LAMBDA PI PI. SMART 68 DPWA -0 K-N N ICA PI 7/68 BAILEY 69 DPWA 0 ELASTIC, CH EXCH 10/70 ARMENTERO 07 IPWA 0 ELASTIC, CH EXCH 10/70 GALTIERI 70 DPWA 0 K-N TO LAM PI 7/70 LAME 12 DPWA -0 K-N TO LAM PI 7/70 GALTIERI 70 DPWA -0 K-N TO LAM PI 7/70 GALTIERI 70 DPWA -0 K-P TO LAM PI 2/73* VANHORN 72 DPWA 0 K-P TO LAM PI 2/73* 1882.0 40. (1850.0) 48.00 A800T 1850.0 1950.0 50. 1920.0 30. (1772.0) 1985. 50. 50. 40.0 50.0 30.0 50. M 1925.6 19.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG REFERENCES FOR Y*1(1765) - ----- GALTIERI 63 PL 6 296 A BARBARO-GALTIERI,A HUSSAIN.RD TRIPP (LRL)IJ ARMENTER 65 PL 19 338 ARMENTEROS, + (CERN.HEIDEBERG,SACLAY)IJP BELL 1 66 PRL 10 203 R B BELL, R W BIRGE, Y-L PAN, R T PU (LRL)IJ BELL 2 66 UCRL-16936 THESIS R B BELL R B BELL, R W BIRGE, Y-L PAN, R T PU (LRL)IJP ARMENTER 67 PL 246 198 ARMENTEROS, FERRO-LUZZI+ (CERN.HEID,SACLAYI)P ARMENTER 67 PL 246 198 ARMENTEROS, FERRO-LUZZI+ (CERN.HEID,SACLAYI)P ARMENTE 67 PR 155 1448 +CHARLTON,CONDON,GLASSER,YODH,+ (UMD,NRL) 67 Y*1(1880) WIDTH (MEV) SMART 68 DPWA -0 K- N TO LAM PI 7/68 BAILEY 69 DPWA 0 ELASTIC, CH EXCH 10/70 ARMENTERO 70 IPWA -0 ELASTIC, CH EXCH 6/70 GALTIERI 70 DPWA -0 K- N TO LAM PI 7/70 LITCHFIEL 70 DPWA -0 K- N TO LAM PI 6/70 KANE 72 DPWA K-P TO SIGMA PI 1/73* VANHORN 72 DPWA 0 K- P TO LAM PI0 2/73* 222.0 15 (200.0) ABOUT 30.0 200.0 5 170.0 4 (80.0) 220. 14 150.0 50.0 40.0 ARMENT-1 68 NP 88 195 ARMENT-2 68 NP 88 216 BUGG 68 PR 168 1466 SIMS 68 PRL 21 1413 SMART 68 PR 169 1330 ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAY)IJP ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAY) I GOLUNGE,KUNGHT,DAVIES (DIRN,GAVE,RHEL)I SIMS,ALBRIGHT,BARTLEY,HEER+ (FSU,TUFT, BARN) W M SMART 140. 185.0 29.9 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) BRICMAN1 70 PL 33B 511 COOL 70 PR D1 1887 GALTIERI 70 DUKE CONF 173 +FERRO-LUZZI,LAGNAUX (CERN) +GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL) I A BARBARO-GALTIERI (LRL)IJP 67 Y*1(1880) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1115+ 134 CONFORTO 71 NP B34 41 KIM 71 PRL 27 356 ALSO 70 DUKE 161 +LEVI SETTI;LASINSKI..OBERLÄCK++ (EFI+HEID)IJP J K KIM (HARV)IJP J. K. KIM (HARV)IJP Y*1{1880} INTO KBAR N Y*1(1880) INTO LAMBDA PI P1 P2 -----(EFI) IJP BARLETTA 72 NP 840 45 KANE 72 PR D5 1583 LANGBEIN 72 NP 847 477 VANHORN 72 LBL-1370(THESIS) W.A. BARLETTA D F KANE +WAGNER 67 Y*1(1880) BRANCHING RATIOS (LBL)IJP (MPIM)IJP /LBL IJP Y*1(1880) INTO (KBAR N)/TOTAL (P1) (0.22) BAILEY 69 DPWA O ELASTIC, CH EXCH 10/70 (0.20) ARMENTERO 70 IPWA -0 ELASTIC, CH EXCH 6/70 R1 R1 R1 PAPERS NOT REFERRED TO IN DATA CARDS FENSTER 66 PRL 17 841 +CELFAND;HARMSENL-SETTI,+ (CHIC,ANL(CERN))IJP -- FENSTER 66 IS SUPERSEDED BY BARLETTA 72 CONFORTO 64 NP 88 265 +HARMSEN, LASINSKI, + (CHICAGO,HEIDEL)IJP SUPERSEDED BY CONFORTO 71. HARRISON 70 FSU-HEP 70 3 1 W.C. HARRISON (THESIS) (FSU) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID+SACL) Y*1(1880) FROM KBAR N INTO LAMBDA PI -0.11 0.03 SMART 66 DPNA -0 K-N TO LAM PI -0.09 0.04 GALTIERI 70 DPNA -0 K-N TO LAM PI -0.14 0.03 LITCHFIEL 70 OPNA -0 K-N TO LAM PI +.05 .07 .02 VANHORN 72 DPMA 0 K-P TO LAM PIO R2 R2 R2 R2 R2 7/68 7/70 6/70 2/73* R 2 R 2 AVG MOD 0.107 0.017 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) ****** ******* ******* Σ(1840) 01 Y*1(1840, JP=3/2+) I=1 REFERENCES FOR Y*1(1880) $P_{13}''$ SMART 68 PR 169 1330 W M SMART BAILEY 69 THESIS UCRL-50617 DAVID SAAL BAILEY ARRENTER 70 DUKE COMF 123 ARENTEROS, BAILLON, + GALTIERI 70 DUKE COMF 173 A BARBARD-GALTIERI LANE 7 PR 55 1533 D A TOLFFIELD VANHORN 72 LBL-1370(THESIS) (LRL)IJP (LRL LIVERMORE)IJP (CERN, HEIDEL)IJP (LRL)IJP (RUTHERFORD)IJP SEE THE MINI-REVIEWS PRECEDING THE Y*0'S. FOR THE TIME BEING, WE LIST THESE TWO CLAIMS TOGETHER. (LBL) /LBL IJP 01 Y*1(1840) MASS (MEV) Σ(1915) 46 Y*1(1915, JP=5/2+) 1=1 F'15 1840.0 (10.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72* 1925. (200.) VANHORN 72 DPWA 0 K- P TO LAM PIO 2/73* SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THIS RESONANCE WAS FIRST SEEN IN THE TOTAL-CROSS-SEC-TION MEASUREMENTS OF COOL 66. IN THIS ENTRY, HOMEVER, WE LIST ONLY THE RESULTS FROM PARTIAL-MAVE ANALYSES. SEE THE NEXT ENTRY FOR THE PARAMETERS OF PEAKS SEEN AROUND 1900-1950 HEV IN CROSS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS. WE MAKE THIS SEPARATION BECAUSE ONLY THE PARTIAL-MAVE ANALYSES ISOLATE THE FIS WAVE GOMPLICATED AND POORLY UNDERSTOOD AND THE PEAKS MAY CONTAST REDION S GOMPLICATED AND POORLY UNDERSTOOD AND THE PEAKS MAY CONTAST REDION S JUST THE Y=1(1915). SEE ALSD THE NOTE TO THE NEXT ENTRY. 01 Y*1(1840) WIDTH (MEV) (10.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72* (50.) (20.) VANHORN 72 DPWA O K- P TO LAM PIO 2/73* 120.0 01 Y*1(1840) PARTIAL DECAY MODES DECAY MASSES 497+ 939 Y*1(1840) INTO KBAR N Y*1(1840) INTO SIGMA PI Y*1(1840) INTO LAMBDA PI 1197+ 139 1115+ 134 46 Y*1(1915) MASS (MEV) 1902-0 11-0 20-0 ВЕКТНОМ 70 РРА -0 К-N TO LAMBDA PI 7/68 1910-0 20-0 ВЕКТНОМ 70 РРА 0 К-Р TO LAMBDA PI 7/70 1900-0 15-0 ВЕКТНОМ 70 РРА 0 К-Р TO LAMBDA PI 10/70 1936-0 (3.0) ВЕКТМАМ 70 РРА - К-Р TO SIGHA PI 10/70 1935-0 10-0 ССХ 70 РРА - К-N TO LAMBDA PI 6/70 1095-0 30-0 GALTIEN 70 РРА - К-N TO LAMBDA PI 6/70 1095-0 10-0 LITCHFIEL 70 РРА - К-N TO LAMBDA PI 6/70 1095-0 10-0 LITCHFIEL 70 РРА - К-N TO LAMBDA PI 6/70 1095-0 10-0 LITCHFIEL 70 РРА - К-N TO LAMBDA PI 6/70 1095-0 10-0 LITCHFIEL 70 РРА - К-N TO LAMBDA PI 6/70 1950-0 LITCHFIEL 70 РРА - К-Р TO LAMB AN 10/71 1925-0 8-0 КАМЕ 72 РРА 0 К-Р TO LAM 10/71 1920- 15 - 20 VAMORN 72 РРА 0 К-Р TO LAM 10/71 1920- 15 - 20 VAMORN 72 РРА 0 К-Р TO LAMD 10 2/73* ERROR STATIST. ONLY- NO ERROR DUE TO PARTICULAR P.H.ANAL. INCLUDED 1/71 1902.0 1 1910.0 2 1900.0 1 N 1936.0 ( 1903.0 1 1905.0 5 1895.0 2 B (1985.0) (2 B DISCREPANCY DUE 01 Y*1(1840) BRANCHING RATIOS Y*1(1840) INTO (KBAR N)/TOTAL (P1) 0.37 (0.13) LANGBEIN 72 IPWA MULTICHANNEL 12/72* Y*1(1840) FROM KBAR N INTO SIGMA PI SQRT(P1*P2) 0.15 (0.04) LANGBEIN 72 IPWA MULTICHANNEL 12/72* Y*1(1840) FROM KBAR N INTO LAMBDA PI SQRT(P1*P3) 0-20 (0-04) LANGBEIN 72 IPMA MULTICHANNEL +.06 (.0-4) VANHORN 72 DPMA 0 K - P TO LAM PIO N AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) ***** REFERENCES FOR Y*1(1840) LANGBEIN 72 NP B47 477 +WAGNER VANHORN 72 LBL-1370(THESIS) (MPIM)IJP /LBL IJP

## Data Card Listings For notation, see key at front of Listings.

## **Baryons** Σ(1915), Σ(1940)

46 Y*1(1915) WIDTH (MEV)	29 Y*1(1920] WIDTH (MEV) (PROD. EXP.)
A         (50.0)         (20.0)         AAMENTER: ST DPMA         OF ELASTIC: CH EXCH 11/67           H         52.0         SAMENTER: ST DPMA         OF ELASTIC: CH EXCH 11/67           H         52.0         SERTHON         70 DPMA         OF AND API         7768           H         75.0         20.0         BERTHON         70 DPMA         OF AND API         7776           H         135.0         12.0         BERTHON         70 DPMA         K-P TO LAMBDAPI         7770           H         77.0         27.0         COX         70 DPMA         K-N TO LAMBDAPI         7770           H         70.0         20.0         GALTIERI         70 DPMA         K-N TO LAMBDAPI         7770           H         70.0         20.0         GALTIERI         70 DPMA         K-N TO LAMBDAPI         7770           H         70.0         15.0         LITCHFIEL TO DPMA         K-N TO LAMBDAPI         7770           H         105.0         15.5         LITCHFIEL TO DPMA         K-N TO LAMBDAPI         7770           H         106.0         22.0         KANE         TO DAMBDAPI         773           H         106.0         22.0         KANE         TO DAMBDAPI         7734 </td <td>W       CROSS-SECTION PEAKS       BUGG       68 CNTR       11/66         0.0       10.0       BRICHAN       70 CNTR       0 TOTAL AND CH EX       6/70         0.0       12.0       COUL       70 CNTR       0 TOTAL AND CH EX       6/70         10/00       10/00       FAKS       10 CNTR       K-P, D TOTAL       10/70         10/00       10/20       10/10       FEAKS       10 CNTR       K-P, D TOTAL       10/70         10/00       12.0       DOCK       65 BBC       AGUILAR       70 HBC       3.9-4.6 GEV/C K-       5/70         10/00       20.0       20.0       AGUILAR       70 HBC       4.9-9-4.6 GEV/C K-       5/70         10/10       14.       DADO       72 HBC       0 K-P ELSTC DCS       2/73*         110       AVERAGE MEANINGLESS (SCALE FACTOR = 1.1)      </td>	W       CROSS-SECTION PEAKS       BUGG       68 CNTR       11/66         0.0       10.0       BRICHAN       70 CNTR       0 TOTAL AND CH EX       6/70         0.0       12.0       COUL       70 CNTR       0 TOTAL AND CH EX       6/70         10/00       10/00       FAKS       10 CNTR       K-P, D TOTAL       10/70         10/00       10/20       10/10       FEAKS       10 CNTR       K-P, D TOTAL       10/70         10/00       12.0       DOCK       65 BBC       AGUILAR       70 HBC       3.9-4.6 GEV/C K-       5/70         10/00       20.0       20.0       AGUILAR       70 HBC       4.9-9-4.6 GEV/C K-       5/70         10/10       14.       DADO       72 HBC       0 K-P ELSTC DCS       2/73*         110       AVERAGE MEANINGLESS (SCALE FACTOR = 1.1)
W AVERAGE MEANINGLESS (SCALE FACTOR = 1.9)	29 Y*1(1920) PARTIAL DECAY MODES (PROD. EXP.) Decay masses
46 Y*1(1915) PARTIAL DECAY MODES	P1         Y*1(1920)         INTO KBAR N         497+ 939           P2         Y*1(1920)         INTO LAMBDA PI         1115+ 134           P3         Y*1(1920)         INTO SIGMA PI         1117+ 139
DECAY MASSES P1 Y#1(1915) INTO KBAR N 497+ 939 P2 Y#1(1915) INTO LAMBDA PI 1115+ 139	
	29 Y#1(1920) BRANCHING KATUS (PRUD. EXP.) R1 Y#1(1920) INTO (KBAR N)/TOTAL (P1)
46         Y*1(1915)         BRANCHING RATIOS           R1         Y*1(1915)         INTO (KBAR N)/TOTAL         (P1)           R1         A         (0-12)         (-01)           0         10.12)         (-01)         BRICMANI         70 DPMA           0         10.03)         CONFORTO 71 DPMA         SIGTOT_FLAS, CHEX 1/71           R1         0.11         (0.03)         CONFORTO 71 DPMA         SIGTIC, CH EXCH 6/70           R1         0.15         (0-04)         LITCHFIE         71 DPMA         K-P TO KBAR N         10/71	R1         THESE VALUES OF ELASTICITIES ASSUME J=9/2            R1         0.06         BUGG         66 CNTR         ASSUMING J=5/2         6/68           R1         0.07         0.02         BRICMAN         TO TOTAL AND CH EX         6/70           R1         0.07         0.02         BRICMAN         TO CNTR         K-P, D         TOTAL         AVC           R1         1         THIS ELASTICITY ASSUMES J=7/2         COL         70 CNTR         K-P, D         TOTAL         2/73           R1         .62         .08         DADO         72 HBC         K-P ELSTC DCS         2/73*           R1         AVE         0.13         AVERAGE (ERROR INCLUDES SCALE FACTOR OF 6.7)         FACTOR
R2 Y*1(1915) FROM KBAR N INTO LAMBDA PI SQRT(P1*P2) R2 -0.08 (0.02) SMART 68 DPMA -0 K-N TO LAMBDA PI 7/68 -0.1 (0.02) PEPTUDN 70 DPMA 0 K-P TO LAMBDA PI 7/68	R2 Y*1(1920) INTO (KBAR N)/(SIGMA PI) (P1)/(P3) R2 (.37) OR LESS BARNES 69 HBC + 1 STAN. DEV. 10/69
R2         -0.1         (0.02)         OEX         TO DFMA         CAT         TO LAMBDA FI         ///O           R2         -0.09         (0.02)         COX         TO DFMA         K-TO LAMBDA FI         //O           R2         -0.11         (0.03)         GALTIERI         TO DFMA         K-TO LAMBDA FI         //O           R2         -0.07         (0.015)         LITCHFIEL         TO DFMA         K-TO LAMBDA FI         //O	R3 Y*1(1920) INTO (LAMBDA PI]/(SIGMA PI] (P2)/(P3) R3 (.28) OR LESS BARNES 69 HBC + 1 STAN. DEV. 10/69
R209 .02 VANHORN 72 DPWA 0 K- P TO LAM PIO 2/73* R3 Y*1(1915) FROM KBAR N INTO SIGMA PI SQRT(P1*P3)	****** ********* ********* ***********
R3         A         (0.00)         (0.01)         ARMENTERO 67 DPMA 0 K−P TO SIGMA PI 11/67           R3         -0.13         (0.03)         DERTHONI 70 DPMA 0 K−P TO SIGMA PI 10/70           R3         -0.06         (0.03)         DERTHONI 70 DPMA 0 K−P TO SIGMA PI 17/70           R3         0.0.06         (0.02)         ISLAM 71 DPMA 0 K−P TO SIGMA PI 17/70	BOCK 65 PL 17 166 +CCOPER,FRENCH,KINSON, + (CERN,SACLAY) I COOL 66 PRL 16 1228 +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) I SUPERSEDE BY COOL 70.
R3 -0.137 (0.015) KANE 72 UPWA 0 K-P 10 P1 516 10771	BUGG 68 PR 168 1466 +61LMORE,KNIGHT, DAVIES+ LBIRM,CAVE,KHELJI BARNES 69 PRL 22 479 +FLAMINIO,MONTANET,SAMIDS + (BNL+SYRA)
REFERENCES FOR Y+1(1915) ARMENTER 67 PL 248 198 ARMENTEROS,FERGO-LUZZI+ (CERN,HEID,SACLAY) Armentel 67 NB 83 69 ARMENTEROS,FERGO-LUZZI+ (CERN,HEID,SACLAY)	AGUILAR 70 PRL 25 58 AGUILAR-BENITEZ, BARNES, + LBNL,SYRAJ BRITMAN OPL 31B 152 +FERROLUZZI, PERREAU,+ (CERN,CAEN,SACLAY) COOL 70 PR DI 1887 +GIACOMELLI, NYCIA, LEONTIC, LI, + (BNL) I DADD 72 PRL 29 1695 +BIRMAN,GOLDBERG,WEISS (HALFJJP
SMART 68 PR 169 1330 W N SMART ((RL))	PAPERS NOT REFERRED TO IN DATA CARDS
BERTHON TO NP B24 417 +VRANA, BUTTERNORTH, + (CDEF, RHL), SACLAVIJJ BRITOMNI TO NP B24 417 +VRANA, BUTTERNORTH, + (CDEF, RHL, SACLAVIJJ BRITOMNI TO PL 33B 511 +FERRO-LUZZI,LAGNAUX (CERN) COX TO NP B19 61 +ISLAM, COLLEY, + (BIRM, EDIN, GLAS, LOICIJJP GALTIERI TO DUKE CONF 173 A BARBARO-GALTIERI (LRL)JP	PRIMER         68         PRIMER         Collder(R) JACCER JARNES, DURMAN + ISTRA JARLJ           SUPERSEDED         BY BARNES         69 AND AGUILAR-BENITEZ         70.           *******         ********         ********         *******         *******           *******         ********         ********         ********
LITCHFIE 70 NP B22 269 P J LITCHFIELD (KUTHERFUKUTJP CONFORTO 71 NP B34 41 +LEVI SETTI,LASINSKIOBERLACK++ (EFI+HEID)IJP ISIAM 71 PLSKI 14 305 +CGNLCDIEFV.HEATHCOTE (BIRM) IJP	$\Sigma(1940)$ 98 Y*1(1940, JP=3/2-) I=1 $D_{13}''$
PAKISTAN J. SCI. IND. RES. LITCHFIE 71 NP B30 125 LITCHFIELD,+LESQUDY,+ (RHEL+CDEF+SACL)IJP KANF 72 PR D5 1583 D F KANE (LBL)IJP	SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.
VANHORN 72 LBL-1370(THESIS) /LBL IJP PAPERS NOT REFERRED TO IN DATA CARDS	PARTIAL-WAVE ANALYSES ACROSS THIS REGION. UNTIL THERE Is more evidence, we omit this state from the main baryon table. This effect is perhaps associated with
SMART 66 PRL 17 556 W M SMART, A KERNAN, G E KALMUS, R P ELY (LRL)IJP	THE BUMPS SEEN IN PRODUCTION EXPERIMENTS NEAR THIS MASS. SEE THE PRECEDING ENTRY.
CONFORTO 68 NP 88 265 + HARMSEN, LASINSKI, + (CHICAGO, HEIDEL) SUPERSEDED BY CONFORTO 71.	
****** ********** ********* ******** ****	M 1940-0 50-0 GALTIERI 70 DPWA K- N TO LAM PI 7/70
Σ(1920) 29 Y*1(1920, JP= ) I=1 PRODUCTION EXPERIMENTS	Π         1970.0         70.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<
BUMPS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.	M AVG 1941.4 19.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
IMMEDIATELY PRECEDE AND FOLLOW THIS ENTRY. MERE WE LIST ONLY PARAMETERS OF PEAKS SEEN IN CROSS SECTIONS AND INVADIANT MESS DISTINUTIONS THE CONSESSECTION BEAKS ARE ALMOST	
CERTAINLY ASSOCIATED WITH THE FIS Y#1(1915) SEEN IN PARIAL HAVE ANALYSES. THE INVARIANT-MASS PEAKS SEEM MORE LIKELY TO BE ASSOCIATED	98 THILIGHT HET TO DENA K- N TO LAM PI 7/70 W 200.0 50.0 GALTIERI 70 DENA K- N TO LAM PI 7/70
WITH THE NUT-CUMPLETELT-ESTABLISHED UIS 1+1(1940).	W 200.0 50.0 GALTIERI /0 DWA K-P TO DI SIGMA PI 7/70 W 208.0 40.0 LITCHFIEL 70 DPWA K-N TO LAM PI 7/70 W 208.0 (22.0) KANE 72 DPWA 0 K-P TO PI SIG 10/71
29 Y*1(1920) MASS (MEV) (PROD. EXP.)	M 160. 70. 40. VANHORN 72 DPWA O K- P TO LAM PIO 2773* W AVG 220.9 26.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1)
M 1905-0 5-0 BUGG 68 CNTR K-P, D TOTAL 11/6 M 1905-0 6-0 BRICMAN TO CNTR K-P, D TOTAL 11/6 M 1902-0 6-0 COL 70 CNTR K-P, D TOTAL 10/70	98 Y*1(1940) PARTIAL DECAY MODES
Inversion         Inversion <t< td=""><td>DECAY MASSES P1 Y#1(1940) INTO KBAR N 497+ 939 P2 Y#1(1940) INTO LAMBDA PI 1115+ 139 P3 Y#1(1940) INTO SIGMA PI 1197+ 139</td></t<>	DECAY MASSES P1 Y#1(1940) INTO KBAR N 497+ 939 P2 Y#1(1940) INTO LAMBDA PI 1115+ 139 P3 Y#1(1940) INTO SIGMA PI 1197+ 139
M AVERAGE MEANINGLESS (SCALE FACTOR = 1.9)	

## Baryons Σ(1940), Σ(2000), Σ(2030)

98 Y*1(1940) BRANCHING RATIOS	47 Y*1(2030) PARTIAL DECAY MODES
R1         Y*1(1940) FROM KBAR N INTO LAMBDA PI         SQRT(P1*P2)           R1         -0.12         0.04         GALTIERI         TO DPMA         K- N TO LAM PI         7/70           R1         -0.14         0.03         LITCHFIEL TO DPMA         N TO LAM PI         7/70           R1         -0.5         .03         LOT CHFIEL TO DPMA         N TO LAM PI         7/70           R1         -0.5         .03         .02         VANIGNN         72         DPMA         N TO LAM PI         2/73*	DECAY MASSES         DECAY MASSES           P2         Y*1(2030) INTO KBAR N         497+ 939           P2         Y*1(2030) INTO LAMBDA PI         1115+ 134           P3         Y*1(2030) INTO SIGMA PI         1197+ 139           P4         Y*1(2030) INTO XI K         1321+ 497
RI AVG MUD 0.093 0.030 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) R2 Y*1(1940) FROM KBAR N INTO SIGMA PI SQRT(P1*P3)	
R2 -0.12 0.03 GALTIERI 70 DPWA K-P TO SIGMA PI 7/70 R2 -0.093 (0.006) KANE 72 DPWA 0 K-P TO PI SIG 10/71	47 Y*1(2030) BRANCHING RATIOS
******* *******************************	R1         (0.25)         HOHL         66 HBC         0 K-P CH EX         7/66           R1         D         (0.11)         DAUM         68 CNTR         K-P ELA, POL, SIGT         7/70
REFERENCES FOR Y*1(1940)	R1         0.17         0.04         CAMPBELL         71 DBC         -         K -         NEUTRON ELAST         1/71           R1         0.18         0.02         LITCHFIE         71 DPWA         K-P         TO KBAR N         .10/71
GALTIERI 70 DUKE CONF 173 A BARBARD-GALTIERI (LRL)IJP LITCHFIE 70 NP B22 269 P J LITCHFIELD (RUTHERFORD)IJP	RI D DAUM 68 ASSUMES (J+1/2)*PI VALUE SEEN IN TOTAL CROSS SECTION.
VANHORN 72 LBL-1370(THESIS) /LBL IJP	R2 Y*1(2030) FROM KBAR N INTO LAMBDA PI SQRT(P1*P2)
****** ********* ********* ******** ****	R2         (0.20)         WOHL         66         HBC         0 K-P         TO LAMBDA PI         7/66           R2         +0.21         0.01         SMART         68         DPWA         -         K-N         TO LAMBDA PI         6/68
	R2         +0.2         0.02         BERTHUN         10 DPMA         -         FO LAMBDA P1         1770           R2         +0.19         0.01         COX         70 DPMA         -         K-N TO LAMBDA P1         6/70           R2         +0.16         0.03         GAITIERT         70 DPMA         0 K-P TO LAMBDA P1         7/70
	R2         +0.20         0.008         LITCHFIEL         70 DPWA         -0 K-N         TO LAMBDA PI         6/70           R2         .20         .01         VANHORN         72 DPWA         0 K-P         TO LAM PIO         2/734
$\rightarrow$	R2 R2 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)
02 Y*1(2000) MASS (MEV)	R3 Y*1(2030) FROM KBAR N INTO SIGMA PI SQRT(P1*P3) R3 L (-0.09) (0.02) BERTHON1 70 DPWA 0 K-P TO SIGMA PI 10/70
M 2004. 40. VANHORN 72 DPWA 0 K-P TO LAM PIO 2/73*	R3         -0.052         0.010         GALTIERI         70 DPWA         0 K-P TO SIGMA PI         7/70           R3         -0.10         0.03         LITCHFIE         71 DPWA         K-P TO SIG PI         3/72
	R3         -0.086         0.014         KANE         72 DPWA         0 K-P         TO         PI         SIG         10/71           R3         -0.086         0.014         KANE         72 DPWA         0 K-P         TO         PI         SIG         10/71
02 Y*1(2000) WIDTH (MEV)	R3 AVERAGE MEANINGLESS (SCALE FACTOR = 1.6)
W 116. 40. VANHORN 72 DPWA O K-P TO LAM P.IO 2/73* ;	R4 Y*1(2030) FROM KBAR N INTO XI K SQRT(P1≵P4) R4 (0.05) OR LESS TRIPP 67 RVUE 0 K→P TO XI K 8/67 24 (0.05) OR LESS BURGIN 68 DPMA 0 K→P TO XI K 10/69
02 Y*1/2000) PARTIAL DECAY MODES	R4 (0.023) MULLER 69 DPWA 0 7/70
DECAY MASSES	****** ******** ***********************
P1 Y*1(2000) INTO KBAR N 497+ 939 P2 Y*1(2000) INTO LAMBDA PI 1115+ 134	REFERENCES FOR Y*1(2030)
	TRIPP       67 NP B3 10       + LEITH, + (LRL,SLAC,CERN,HEIDEL,SACLAY)         BURGUN       68 NP B8 447       +MEYER,PAULI,TALLINI + (SACL+CDEF+RHEL)
02 Y*1(2000) BRANCHING RATIOS	DAUM 68 NP B7 19 + ERNE,LAGNAUX,SENS,STEUER,UDO (CERNJJP CONFIRMS THE SPIN-PARITY ASSIGNMENT.
RI 9#1120007 FRUM KBAR N INTO LAMBOA PI 50(1(11+72) RI .07 .02 .01 VANHORN 72 DPWA 0 K-P TO LAM PIO 2/73*	MULLER 69 THESIS, UCRL 19372 R & MULLER (LRL)
****** ********** ********* ***********	BERTHON 70 NP B20 476 +RANGAN, VRANA, +(COL FRANCE, RHEL, SACLAY)IJP BERTHON1 70 NP B24 417 +VRANA, BUTTERWORTH, + (CDEF, RHEL, SACLAY)IJP
REFERENCES FOR Y*1(2000)	GALTIERI 70 DUKE CONF 173 A BARBARO-GALTIERI (LILL)JP LITCHFIE 70 NP B22 269 P J LITCHFIELD (RUTHERFORD)JJP
****** ********* ********* ********* ****	CAMPBELL 71 NP B25 75 +MORTON, NEGUS, GOYAL, MILLER (GLAS, LOIC)IJP
	LITCHFIE 71 NP B30 125 LITCHFIELD,+LESQUOY,+ (RHEL+CDEF+SACL)IJP KANE 72 PR D5 1583 D F KANE VANHORN 72 LBL-1370(THFSIS) / BL
$\Sigma(2030)  47  Y^{\pm 1(2030, JP = 7/2+)} I = 1  F_{17}$	****** ******** ****** ******** *******
SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.	****** ********* ********* ************
ANALYSES. PARAMETERS OF PEAKS SEEN IN CROSS-SECTIONS ANNINYARIANT-MASS DISTRIBUTIONS AROUND 2030 MEV ARE	$\Sigma(2030)$ 28 y*1(2030, JP= ) I=1 PRODUCTION EXPERIMENTS
GIVEN IN THE NEXT ENTRY. EVENTUALLY THE PARTIAL-WAVE ANALYSES SHOULD GIVE THE BEST RESULTS, AS THEY ISOLATE THE F17 WAVE. THIS SUPERIORITY	BUMPS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.
IS, HOMEVER, PROBABLY NOT YET ATTAINED, AND WE RELY ON BOTH ENTRIES For parameters given in the main baryon table.	SEE THE NOTE TO THE F17 Y*1(2030), WHICH PRECEDES THIS ENTRY. HERE WE LIST ONLY PARAMETERS OF PEAKS IN CROSS
	SECTIONS AND INVARIANT-MASS DISTRIBUTIONS. THE CROSS- SECTION PEAKS ARE AT LEAST DOMINANTLY ASSOCIATED WITH THE Y*1(2030),
47 Y*1(2030) MASS (MEV)	BUT MAY CONTAIN A SMALL CONTRIBUTION FROM THE SUGGESTED BUT NOT ESTAB- LISHED OTHER RESONANCES IN THIS REGION.
M 2032.0 6.0 SMART 68 DPWA + K-N TO LAMBDA PI 6/68 M 2030.0 10.0 BERTHON 70 DPWA 0 K-P TO LAMBDA PI 7/70	
M 2035.0 10.0 BERTHON1 70 DPWA 0 K-P TO SIGMA PI 10/70 M 2027.0 6.0 COX 70 DPWA - K-N TO LAMBDA PI 6/70	28 Y*1(2030) MASS (MEV) (PROD. EXP.)
M 2010.0 15.0 GALITERI 70 DYNA 0 K-P TO LAMBDA PI 7/70 M 2000.0 20.0 GALITERI 70 DYNA 0 K-P TO SIGMA PI 7/70 M 2022.0 4.0 LITCHFEE 70 DYNA -0 K-N TO LAMBDA PI 6/70	M 2020-0 7.0 BUGG 68 CNTR K-P, D TOTAL 6/68 M 2049-0 4.0 BRIGMAN 70 CNTR 0 TOTAL AND CH EX 6/70
M 2025. 15. LITCHFIE 71 DPMA K-P TO KBAR N 10/71 M 2034.0 14.0 KANE 72 DPMA 0 K-P TO PI SIG 10/71	M 2025.0 10.0 COOL 70 CNTR K-P, D TOTAL 10/70 M (2025.0) (20.0) LU 70 CNTR 0 GAMMA P TO K+ Y* 1/71
M 2042, 11. VANHORN 72 DPWA 0 K-P TO LAM PIO 2/73*	M AVERAGE MEANINGLESS (SCALE FACTOR = 2.8)
47 Y*1(2030) WIDTH (MEV)	28 Y*1(2030) WIDTH (MEV) (PROD. EXP.)
W (170-0) WOHL 66 HBC 0 7/66 W 160-0 16-0 SMART 68 DPMA - K-N TO LAMBDA PI 6/68	W 130.0 10.0 BUGG 68 CNTR 6/68 W 126.0 11.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70
W 165.0 30.0 15.0 BERTHON 70 DPWA 0 K-P TO LAMBDA PI 7/70 W 150.0 20.0 BERTHON1 70 DPWA 0 K-P TO SIGMA PI 10/70	W         165.0         CGOL         70 CNTR         K-P, D         TOTAL         10/70           W         (80.0)         LU         70 CNTR         0 GAMMA P         TO K+         Y*         1/71
w         158.0         16.0         COX         70         DPMA         -         K-N         TO LAMBDA PI         6/70           W         115.0         15.0         GALTIERI         70         DPMA         0 K-P         TO LAMBDA PI         7/70           W         100.0         40.0         GALTIERI         70         DPMA         0 K-P         TO LAMBDA PI         7/70	W AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)
W 170.0 15.0 LITCHFIE 70 DPMA -0 K-N TO LAMBDA PI 6/70 W 200. 30. LITCHFIE 71 DPMA K-P TO KBAR N 10/71	
W         118.0         12.0         KANE         72 DPWA         O K-P TO PI SIG         10/71           W         178.         13.         VANHORN         72 DPWA         O K-P TO LAM PIO         2/73*	28 Y*1(2030) PARTIAL DECAY MODES (PROD. EXP.)
W AVERAGE MEANINGLESS (SCALE FACTOR = 1.6)	P1 Y*1(2030) INTO KBAR N 4977+939 P2 Y*1(2030) INTO KBAR N PI 4977+939+139

PARTICLE DATA GROUP Review of Particle Properties S163

## Data Card Listings For notation, see key at front of Listings.

i

Baryons Σ(2030), Σ(2070), Σ(2080), Σ(2100), Σ(2250)

		28 Y*	1(2030) BRA	NCHING RAT	TIOS (PROD.	• EXP•)		1				R	EFERENCI	ES FOR Y*	1(2080)		
R1 R1 R1	Y*1(2030) THESE V 0.1	INTO (KBA ALUES OF 31	R NI/TOTAL ELASTICITIE	S ASSUME J BUGG	1=7/2 68 CNTR	(P1)	6/68	COX LITO	CHFI	70 NP B E 70 NP B	19 6 22 2	1 + 69 P	FISLAM, O J LITCH	COLLEY, +	(BIR	M, ED IN, GLAS, LOIC) I (RUTHERFORD) I	JP JP
R1 R1	0.2	7 (0.0 2	2)	BRICMAN COOL	70 CNTR 70 CNTR	O TOTAL AND CH EX K-P, D TOTAL	6/70 10/70	****	***	*******	* ***	*****	***** **	******	********	********** ******* ********* **********	*
R2	S ******	EEN	****	BOCK	HBC	****		[	Σ(2	2100)	)	26 Y*1(210	00, JP=7,	2-) I=1	G ₁	7	
BLANP COOL	IED 65 PRL 1 66 PRL 1	4 741 6 1228	REFEREN +GREENE +GIACON	NCES FOR Y* BERG, HUGHES MELLI, KYCIA	1(2030) () ,KITCHING	PROD. EXP.) ,LU,+ (YALE(CEA)) LI,LUNDBY,+ (BNL) I				$\rightarrow$	,	SUCH A RESO PARTIAL-WAV IS MORE EVI BARYON TABL	DNANCE IS VE ANALYS IDENCE, N	S SUGGEST SES ACROS NE OMIT T	ED BY SOM S THIS RE HIS STATE	E BUT NOT ALL GION. UNTIL THERE FROM THE MAIN	
BUGG	UPERSEDED BY 68 PR 16	COOL 70. 8 1466	+GILMOF	E,KNIGHT,	+	(RHEL,BIRM,CAVE) I											-
BRICM COOL LU	AN 70 PL 31 70 PR D1 70 PR D2	8 152 1887 1846	+FERRO +GIACON +GREENE	LUZZI, PER MELLI, KYCI MERG, HUGHE	REAU,+ (0 IA, LEONTIO ES, MINEHAR	CERN,CAEN,SACLAY) C, LI, + (BNL) I RT, MORI,+ (YALE)		м		(2060.	0)	26 Y*1(210	DD) MASS	(MEV) Galtieri	70 DPWA	O K-P TO LAMBDA P	1 7/70
*****	* *********	******** ***	*****	******** ****	********	******** ******* ********* ********		M 		(2120.	0) 	(30.0)		GALTIERI	70 DPWA	0 K-P TO SIGMA PI	- 7/70
Σ	(2070)	34 Y*	1(2070, JP=	5/2+) I=1	$F''_1$	5		u.		(70.	0)	26 Y*1(210	17GIW (00	H (MEV) GALTIERI	70 DPWA	0 K-P TO LAMBDA P	1 7/70
	$\rightarrow$	THIS S WAVE A	TATE HAS BE NALYSIS ACF	EN SUGGEST	ED BY ONL	Y ONE PARTIAL NEEDS CONFIRMATION		W 		(135.	ō;	(30.0)		GALTIERI	70 DPWA	O K-P TO SIGMA PI	7/70
		THE RE BE USE	SONANCE PRO D AS EVIDEN	IPOSED BY K	CANE IS TO	D BROAD TO						26 Y*1(210	DOJ PARTI	AL DECAY	MODES		
	(2070.)	34 Y* (10.)	1(2070) MAS	BERTHON1	70 DPWA -	- K- P TO SIG PI	1/71	P1 P2 P3		Y*1(2100) Y*1(2100) Y*1(2100)	INT INT INT	O KBAR N O LAMBDA PI O SIGMA PI				DECAY MASSES 497+ 939 1115+ 134 1197+ 139	
												26 Y*1(210	0) BRANG	CHING RAT	IOS		-
w	(140.)	34 Y* (20.)	1(2070) WIE	BERTHON1	70 DPWA -	- K- P TO SIG PI	1/71	R1 R1	,	Y*1(2100) (-0.	FRO 07)	M KBAR N TO (0.02)	LAMBDA	PI GALTIERI	70 DPWA	SQRT(P1*P2) O K-P TO LAMBDA P	1 7/70
W 	(906.0	) 		KANE	72 DPWA	K-P TO SIGMA PI	1/73*	R2 R2	1	Y*1(2100) (+0.	FR0 13}	M KBAR N TO (0.02)	SIGMA F	ALTIERI	70 DPWA	SQRT(P1*P3) O K-P TO SIGMA PI	7/70
		34 Y*	1(2070) PAF	TIAL DECAY	MODES			****	¢:\$4.1\$	*****	***	***** **** R	EFERENCE	******** S FOR Y*	********** 1(2100)	*****	•
P1 P2	Y*1(2070) Y*1(2070)	INTO KBAR INTO SIGM	N A PI			497+ 939 1197+ 139		GALT	TIER:	I 70 DUKE	CON	F 173 A	BARBAR	-GALTIER	I *******	(LRL)I	JP ★
		 34 Y*	1(2070) BRA	NCHING RAT					*** *	*****	***	*****	****	******	*****	****	*
R1 R1	Y*1(2070) (+.1	FROM KBAR 2) (.0	N TO SIGMA	BERTHON1	70 DPWA -	SQRT(P1*P2) - K→ P TO SIG PI	1/71		Σ() BU	ZZ5U MPS	7	48 Y*1(225 SEE THE MIN	iO, JP≕ II→REVIEW	) I=1 AT THE	PRO START OF	DUCTION EXPERIMENT THE Y* LISTINGS.	S
*****	(+0.1 * ****	04) *******	*****	KANE *****	72 DPWA	K-P TU SIGMA PI	1773*					THE PHASE-S WARRANT SEP	HIFT-ANA ARATING	LYSIS RE THEM FRO	SULTS ARE M THE PRO	TOO WEAK TO DUCTION AND CROSS-	
BERTH	DN1 70 NP 82	4 417	REFEREN	ICES FOR Y*	*1(2070) [H,+ ((	CDEF,RHEL,SACLAY)IJ	p		POSS	SIBILITY	FROM	POLARIZATIO JP= 5/2+- ANHORN72 CI	TO JP= 1	DAUM 68	COULD NOT R THIS ST	EXCLUDE ANY ATE. BRICMAN 70	
KANE ****	72 PR D5	1583 ******	D F KAN	IE *****	******	(LBL)			LASI + RE	INSKI 71 ESONANCES	SUGG MOD	ESTS TWO RE	SONANCES	IN THIS	REGION U	SING A POMERON	
5	(2080)	*********** <b>1</b>	******	******	P"	********** ***********											-
4		SEE TH	E MINI-REVI	EW AT THE	START OF 1	THE Y* LISTINGS.		M		(2245.	0)	48 Y*1(225	O) MASS	(MEV) (P	65 CNTR	GAMMA P TO K+ Y	*
		SUCH A PARTIA IS MOR	RESONANCE L-WAVE ANAL E EVIDENCE	IS SUGGEST YSES ACROS	ED BY SOME SS THIS REG THIS STATE	E BUT NOT ALL GION. UNTIL THERE FROM THE MAIN		С М М М		2250. 2280. 2237	0	7.0	8 4	UGG GUILAR	65 HBC 68 CNTR 70 HBC	K-P; D TOTAL + K- 3.9-4.6 GEV/	6/68 5/70
		BARYON	TABLE.					M M M	v	2255. (2250. 2251.	ő,	10.0 (20.0) 30.	20. V	U U	70 CNTR 70 CNTR 72 DPWA	K-P, D TOTAL O GAMMA P TO K+ Y O K-P TO LAM PIO	10/70 * 1/71 2/73*
		88 Y*	1(2080) MAS	S (MEV)				M M M	V AV EF	VANHOR RAGE MEAN	N72 INGL	ESS (SCALE	A DPWA T FACTOR =	HAT FIND	S JP=5/2+	•	
M	(2082.0 (2070.0	) (4.0) (30.0	)	COX LITCHFIEL	70 DPWA - 70 DPWA -	- K- N TO LAM PI -0 K- N TO LAM PI	6/70 6/70						`~_			******** *******	- '
		88 Y*	1(2080) WI	TH (MEV)				W		(150.	0)	48 Y*1(225	O) WIDTH	LANPIED	65 CNTR	.) GAMMA P TO K+ Y	¢.
W W	(87.0 (250.0	) (20.0 ) (40.0	)	COX LITCHFIEL	70 DPWA - 70 DPWA -	- K- N TO LAM PI -0 K- N TO LAM PI	6/70 6/70	333		230. 100.	0	20.0 20.0 50.0	21.0) E	UGG	68 CNTR 70 HBC 70 CNTR	K-P, D TOTAL + K- 3.9-4.6 GEV/ 0 TOTAL AND CH EX	6/68 C 5/70
		 88 Y*	 1(2080) PAF	TIAL DECAY	MODES			W W W	v	(170. (125. 192.	0) 0)	30.	 	OOL U ANHORN	70 CNTR 70 CNTR 72 DPWA	K-P+ D TOTAL O GAMMA P TO K+ Y O K-P TO LAM PIO	10/70 * 1/71 2/73*
P1	Y*1(2080)	INTO KBAR	N			DECAY MASSES		W W	AVG	169. S	5 66 T	33.4 HE NOTES AC	AVERAGE COMPANYI	(ERROR I NG THE M	NCLUDES S ASSES QUO	CALE FACTOR OF 2.7 TED	)
P2	Y*1(2080)	INTU LAMB	UA PI			1115+ 139											-
R1	Y#1(2080)	88 Y*	1(2080) BRA	NCHING RAT	TIOS	SORT(P1*P2)		P1		/*1 ( 2250)	TNT	40 Y¥1(225	UJ PARTI	AL DECAY	MUDES (P	DECAY MASSES	
R1 R1 *****	(-0.1 (-0.0	6) (0.0 9) (0.0	3) 3) ********	COX LITCHFIEL	70 DPWA - 70 DPWA - *********	- K- N TO LAM PI -0 K- N TO LAM PI ********* *******	6/70 6/70	P2 P3 P4	1	(*1(2250) (*1(2250) (*1(2250) (*1(2250)	INT	O LAMBDA PI O SIGMA PI O KBAR N PI				497+ 939 1115+ 134 1197+ 139 497+ 939+ 139	
****	* ******	******	******	*****	******	*****		·									_

# BaryonsData Card Listings $\Sigma(2250), \Sigma(2455), \Sigma(2620), \Sigma(3000), EX. HYPE.$ For notation, see key at front of Listings.

54 Y*1(2620, JP= ) I=1 PRODUCTION EXPER

48         Y*1(2250)         BRANCHING RATIOS (PROD. EXP.)           R1         Y*1(2250)         INTO (KBAR N)/TOTAL         (P1)           R1         J IS NOT KNOWN. THE FOLLOWING IS (J+1/2)*PI.         (P1)           R1         10-471         BUGG         66 CNTR           R1         10-121         BRICMAN         TO CNTR         6/68	Σ(2620) BUMPS54 Y*1(2620, JP= ) I=1 PRODUCTION EXPERIMENTS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.
KI         LOL-2/         CLOUL         DOLAR         CAL         LANDO           R2         Y+1(2250)         FROM KBAR N TO LAMBDA PI         SQRT(P1*P2)         SQRT(P1*P2)           R2         THE FOLLOWING ASSUMES JP=9/2 DATA INSUF. FOR DETERN. THIS AMP.         GALTIERI TO DPWA         K-P TO LAMBDA PI 10/70           R2         (-0.18)         GALTIERI TO DPWA         K-P TO LAMBDA PI 10/70           R2         V         -16         -03         VANHORN 72 DPWA 0 K-P TO LAM PI 02/73*           SEE THE NOTES ACCOMPANYING THE MASSES QUOTED         SEE THE NOTES ACCOMPANYING THE MASSES QUOTED         SCRT COMPANYING THE MASSES QUOTED	54 Y*1(2620) MASS (MEV) (PROD. EXP.) M 2620.0 15.0 ABRAMS 70 CNTR K-P, D TOTAL 10/70
R3         Y*1(2250) FROM KBAR N TO SIGMA PI         SQRT(P1*P3)           R3         THE FOLLOWING ASSUMES JP=9/2 DATA INSUF. FOR DETERM. THIS AMP.           R3         (+0.07)           GALTIERI 70 DPWA         K-P TO SIGMA PI 10/70           R4         Y*1(2250) INTO (KBAR N)/(SIGMA PI)	54 ¥*1(2620) WIDTH (MEV) (PROD. EXP.) W (175.0) ABRAMS 70 CNTR K-P, D TOTAL 10/70
R4         (0.18) OR LESS         BARNES         69 HBC         + 1 STAN DEV LIMIT 10/69           R5         Y*1(2250) INTO (LAMBDA PI)/(SIGMA PI)         (P2)/(P3)           R5         (0.18) OR LESS         BARNES         69 HBC         + 1 STAN DEV LIMIT 10/69	54 Y*1(2620) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSE5 P1 Y*1(2620) INTO KBAR N 497+ 939
REFERENCES         FOR Y*1(2250)         (PROD. EXP.)           BLANPIED         65         PRL 14         741         +GREENBERG, HUGHES, KITCHING, +         (YALE(CEA))           BOCK         65         PL 17         156         +CODPER, FRENCH, KINSON, +         (CERN, SACLAY)           BUGG         66         PR 168         68         PL 22         14         +GREENBERG, HUGHES, KITCHING, +         (RHEL, BIRM, CAVE)           BARNES         69         PRL 22         24         +FLAMINIO, MONTANET, SAMIOS         (BNL-SYRA)           AGUILAR         70         PRL 25         8         AGUILAR-BENTEZ, BARNES, +         (BNL-SYRA)           RBIGMAN         70         PRL 25         8         AGUILAR-SENTEZ, TARN, VIA, LEONTIC, LI, +         (BNL, SYRA)           GAUTIERI         70         PRL 23         152         +FERO LUZZI, PERREAU, +         (CEN, SACLAY)           GAUTIERI         70         DUKE CONF 173         A BARBARO-GALTIERI, TO DUKE CONF (LI, KYLIA, LEONTIC, LI, +         (BNL) I           LU         70         PR 22         21876         FERMENCENCETIENT, MORE, +         (TALE) I	54 Y#1(2620) BRANCHING RATIOS (PROD. EXP.)         54 Y#1(2620) BRANCHING RATIOS (PROD. EXP.)         R1 Y*1(2620) INTO (KBAR NJ/TOTAL         R1 J IS NOT KNOWN. THE FOLLOW ING IS (J+1/2)*P1.         R1 0.320         ABRAMS 70 CNTR         REFERENCES FOR V*1 (2620) (PROD. EXP.)         REFERENCES FOR Y*1 (2620) (PROD. EXP.)         REFERENCES FOR Y*1 (2620) (PROD. EXP.)
VANNUKN 72 EUL-13JOTHESISJ       PAPERS NOT REFERRED TO IN DATA CARDS         COOL       66 PRL 16 1228       +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) I         SUGESTS 479/2 RESONANT BEHAVIDR IN SIGMA- PI+, BUT APPEARS       inconsistent with parameters of cool 66.         DAUM       66 NP B-19       + Erke, LAGNAUX, SENS, STEUER, UDD       (CERN)JP         LASINSKI 71 NP B29       125       T A LASINSKI       (EFI)JJP	ABARAS DO ROL 19 010       CUOLDIGUE VALUELLIA VUCLALEUNILL, [1, + (BRL)         SUPERSEDED BY ABRANS 70.       CUOL, GIACOMELLI, KYCLA, LEUNILC, [1, + (BRL) I         ABRANS 70 PR 10 1917       +COOL, GIACOMELLI, KYCLA, LEUNIC, + (BRL) I         BRICHAN 70 PL 13 152       +FERRO LUZZI, PERROLUZ, + (CERN, GAEN, SACLAY)         ************************************
Signature       53 Y#1(2455, JP= ) I=1 PRODUCTION EXPERIMENTS         State He MINI-REVIEW AT THE START OF THE Y* LISTINGS.         THIS MASS REGION FROM THE REACTION GAMMA + P TO K+ + MISSING MASS         Stee GREENBERG 68.         53 Y#1(2455) MASS (MEV) (PROD. EXP.)         M       2455.0         7.0       BUGG 68 CNTR         K-P, D TOTAL       6/68         M       2455.0         10.0       ABRAMS 70 CNTR       K-P, D TOTAL       6/68	ENLANCEMENT IN LAMBDA PI AND KBAR N INVARIANT MASS SPECTRA AND IN MISSING MASS OF NEUTALS RECOLLING AGAINST KO. EVIDENCE NOT CONCLUSIVE. OMITTED FROM TABLE.         59 Y*1(3000) MASS (MEV) (PROD. EXP.)         M       (3000.0)         EHRLICH 66 HBC 0 PI-P 7.91 BEV/C 9/66         59 Y*1(3000) PARTIAL DECAY MODES (PROD. EXP.)         DECAY MASSES
M AVG 2455.0 5.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 	P1         Y*1(3000) INTO KBAR N         497+ 939           P2         Y*1(3000) INTO LAMBDA PI         1115+ 139           ******         ********         ********           REFERENCES FOR Y*1(3000) (PROD. EXP.)         EHRLICH 66 PR 152 1194         R EHRLICH, W SELOVE, H YUTA (PENN(BNL)) I
53 Y*1(2455) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES P1 Y*1(2455) INTO KBAR N 497+ 939	EXOTIC HYPERON CROSS SECTION LIMITS THIS IS NOT A COMPLETE LIST. WE WILL TABULATE EXOTICS FROM NOW ON
53         Y#1(2455)         BRANCHING RATIOS (PROD. EXP.)           R1         Y#1(2455)         INTO (KBAR NJ/TOTAL         (P1)           R1         J IS NOT KNOWN. THE FOLLOVING IS (J+1/2)*P1.         (P1)           R1         (0.3)         BUGG 68 CNTR         6/68           R1         0.39         ABRAMS TO CNTR N-P, D TOTAL 10/70         10/70           R1         C         (0.05)         BRICMAN 70 CNTR O TOTAL AND CH EX 6/70         6/10           R1         C         FIT OF TOTAL CROSS SECTION GIVEN BY BRICMAN 70 IS POOR IN         6/70         10/70	CS         UNITS MICROBARNS           CS         G         (20.)         OR LESS         GALTIERI         68 DBC         K-N TO SG-PI-PIO         7/70           CS         G         ADOVE LIMIT FOR MASS < 2.15 GEV AND GAMMA < 60 MEV- [2.1 GEV/C K-1)
REFERENCES FOR Y*1(2455) (PROD. EXP.) BUGG 68 PR 168 1466 +GILMORE,KNIGHT, + (RHEL,BIRM,CAVE) I ABRAMS 70 PR 10 1917 +COOL, GIACOMELIJ, KYCIA, LEONTIC, + (BNL) I BRICMAN 70 PL 31B 152 +FERRO LUZZI, PERREAU,+ (CERN,CAEN,SACLAY)	****** ******** ******** ********* *****
ABRAMS 67 PRL 19 678 SUPERSEDED BY ABRAMS 70- GREENBER 68 PRL 20 221 GREENBERG, HUGHES, LU, MINEHART, + (YALE)	

## Data Card Listings For notation, see key at front of Listings.

#### $\Xi$ Resonances

The  $\Xi$  resonance situation has long been and will probably long remain unsettled. This is because 1) they can only be produced as part of a final state,  $K^+p \rightarrow \Xi^{*+}$  others, and 2) they are so produced with very small cross sections (<50 µb). Thus the numbers of events available are small, and the analysis is more complicated than if direct formation were possible. Only the  $\Xi$  (1530) is really well established. There are at least two  $\Xi$ states in the 1800-2000 MeV region and there are indications of several more above 2000 MeV, but the situation is very unclear. We are forced to group together rather disparate observations and. await new results. Figures in the listings point out disagreements among various experiments. The table following this note gives our evaluation of the status of the  $\Xi$  resonances, based on the meager data available at this time.

STATUS OF X1* RESONANCES THOSE WITH AN OVERALL STATUS OF *** OR *** AR EINCLUDED IN THE MAIN BARYON TABLE. THE OTHERS AWAIT COMFIRMATION.

PARTICLE	LIJ	OVERALL STATUS	XI PI	LAM K	SIG K	XI* PI	OTHER CHANNELS
XI(1320)	P11	****					WEAK TO LAM PI
XI(1530)	P13	** **	****				
XI(1630)		**	**				
XI(1820)		* * *	***	***	**	***	
XI(1940)		***	***			***	
XI(2030)		**		**	**		3-BODY DECAYS
XI(2250)		*					3-BODY DECAYS
XI(2500)		**		**	**		3-BODY DECAYS
						***	

#* GOOD, CLEAR, AND UNMISTAKABLE.
 #** GOOD, BUT IN NEED OF CLARIFICATION OR NOT ABSOLUTELY CERTAIN.
 ** NEEDS CONFIRMATION.
 * WEAK.

****** ******** ****** *******	******** ******************************
<u>=</u>	22 XI- (1321, JP=1/2 ) I=1/2
	SEE STABLE PARTICLE DATA CARD LISTINGS
****** ******** ****** ********	******** ********* ********************
ΞO	23 XIO (1314, JP=1/2 ) I=1/2
	SEE STABLE PARTICLE DATA CARD LISTINGS
****** *********	******** ********* ********************
$\Xi(1530)$	49 XI*1/2(1530, JP=3/2+) I=1/2 P13
-(1000)	THIS IS THE ONLY REALLY WELL-ESTABLISHED XI*. THE QUANTUM NUMBERS 3/2+ ARE FAVORED BY THE DATA.
WE DO NOT STATE UNLESS AND RESOLUTI	USE DETERMINATIONS OF THE MASS AND THE WIDTH OF THIS THEY ARE ACCOMPANIED BY SOME DISCUSSION OF SYSTEMATICS N.



S166 REVIEWS OF MODERN PHYSICS · APRIL 1973 · PART II

## Baryons E(1630), E(1820)



## Data Card Listings

### For notation, see key at front of Listings.

### Baryons E(1820), E(1940), E(2030)



S168 Reviews of Modern Physics  $\cdot$  April 1973  $\cdot$  Part II

## Baryons $\Xi(2030), \Xi(2250), \Xi(2500), \Omega^{-}$

		68 XI*1/2(2030)	PARTIAL DECAY MODE	S		<b>. . .</b>								
P1 P2 P3 P4 P5	XI*1/2(2030) XI*1/2(2030) XI*1/2(2030) XI*1/2(2030) XI*1/2(2030) XI*1/2(2030)	INTO XI PI INTO LAMBDA KBAR INTO SIGMA KBAR INTO XI*1/2(1530 INTO LAMBDA (OR	) PI Sigma) kbar Pi	DECAY MASSES 1321+ 139 1115+ 497 1197+ 497 1533+ 139 1115+ 497+ 139		Ŀ		99 X IT IS DISAG SEEIN	GUITE REE AB G DIFF	2500, POSSI OUT TH ERENT	JP= } I BLE THAT T IE MASS AND XI*S. FOF	THE REASC WIDTH I NOW, HO	IN THE EXPERIMENTS S THAT THEY ARE WEVER, WE GROUP	
		68 XI +1/2(2030)	BRANCHING RATIOS					99 X	(I*1/2(	2500)	MASS (MEV)			
R1 R1	XI*1/2(2030) (0.30)	INTO (XI PI)/(MO	DES P1 TO P4) ALITTI 69 HBC	(P1)/(P1+P2+P3+P4) - 1 STD DEV LIMIT	9/69	M M M	30 2430.0 45 2500.0	20. 10.	.0		ALITTI BARTSCH	69 HBC 69 HBC	- K-P 4.6-5 GEV/C -0 K-P 10 GEV/C	9/69 9/69
R2 R2	XI*1/2(2030) 0.25	INTO (LAM KBAR)/ 0.15	(MODES P1 TO P4) ALITTI 69 HBC	(P2)/(P1+P2+P3+P4) -	9/69	M 	AVERAGE MEANING	GLESS (	SCALE	FACTOR	= 3.1)			
R3 R3	XI*1/2(2030) 0.75	INTO (SIG KBAR)/ 0.20	(MODES P1 TO P4) ALITTI 69 HBC	(P3)/(P1+P2+P3+P4) -	9/69		150.0	99 X	(1*1/2)	2500)	WIDTH (ME)	/)		
R4 R4	XI*1/2(2030) (0.15)	INTO (XI* PI)/(M OR LESS	ODES P1 THRU P4) ALITTI 69 HBC	(P4)/(P1+P2+P3+P4) - 1 STD DEV LIMIT	9/69	WW	150.0 59.0	27.	.0	40.0	BARTSCH	69 HBC 69 HBC	-0	9/69
R5 R5,	XI*1/2(2030) SEEN	INTO LAMBDA (OR	SIGMA) KBAR PI Bartsch 69 HBC	(P5)	9/69	w 	AVERAGE MEANING	GLESS (	SCALE	FACTOR	= 1.6)			
*****	**** ***	****** *****	*****	* ****				99 X	(1*1/2(	2500)	PARTIAL DE	CAY MODE	S	
		REFERE	NCES FOR XI*1/2(203)	n 1									DECAY MASSES	
ALITTI BARTSC	69 PRL 22 H 69 PL 28B	79 +BARNE +39 +	S,FLAMINIO,METZGER, (AACHEN, BERLIN, CI ********* *******	+ (BNL,SYRACUSE) I ERN, LDIC, VIENNA)		P1 P2 P3 P4 P5	XI*1/2(2500) XI*1/2(2500) XI*1/2(2500) XI*1/2(2500) XI*1/2(2500)	) INTO ) INTO ) INTO ) INTO ) INTO ) INTO	XI PI LAMBDA SIGMA XI*1/2 LAMBDA	KBAR KBAR (1530) (OR S	PI Igma) kbar	R PI	1321+ 139 1115+ 497 1197+ 497 1533+ 139 1115+ 497+ 139	
*****	******	******	*****	* *****	1	P6	XI*1/2(2500)	) INTO	XI PI	ΡI			1321+ 139+ 139	
三(	(2250)	22 XI*1/2(2250, THE EVIDENCE FOR A BUMP OF NOT MU	JP= ) THIS STATE IS WEAK CH STATISTICAL SIGN:	. BARTSCH 69 SEE IFICANCE IN LAMBDA-			XI*1/2(2500)	99 X	(I*1/2( (XI PI	2500)	BRANCHING	RAT IOS	(P1)/(P1+P2+P3+P4)	
	$\rightarrow$	KBAR-PI, SIGMA-K GOLDWASSER 70 SE HIGHER MASS, PE	BAR-PI; AND XI-PI-P E A NARROWER BUMP IN RHAPS THEY ARE THE :	I MASS SPECTRA. N XI-PI-PI AT A Same State, Perhaps		R1 R2	(0.5) x1*1/2(2500)	OR LE	LAM K	(BAR)/(	ALITTI MODES P1 T	69 HBC	1 STD DEV LIMIT (P2)/(P1+P2+P3+P4)	9/69
		THET AKE NUL.			-	R2	0.5				ALITTI	69 HBC	-	9769
		22 XI*1/2(2250)	MASS (MEV)			R3	0.5	0.	2 (X1* D		ALITTI	69 HBC	(P3)/(P1+P2+P3+P4)	9/69
M M	35 2244.0 18 2295.0	52.0 15.0	BARTSCH 69 HBC GOLDWASSE 70 HBC	K-P 10 GEV/C - K-P 5.5 GEV/C	9/69 10/70	R4	(0.2)	OR LE	ISS .		ALITTI	69 HBC	1 STD DEV LIMIT	9/69
M AV	ERAGE MEANING	ESS (SCALE FACTO	R = 1.0)			R5 R5	SEEN	1 1010	(LANDO	ALUK	BARTSCH	69 HBC	(P5) -0	9/69
		22 XI*1/2(2250)	WIDTH (MEV)			R6 R6	XI*1/2(2500) SEEN	) INTO	(XI PI	PI}/T	BARTSCH	69 HBC	(P6) -0	9/69
W W	130.0 LESS THAT	80.0 1 30.0	BARTSCH 69 HBC GOLDWASSE 70 HBC	- K-P 5.5 GEV/C	9/69 10/70	***1	*** ******** *'	*****	****	*****	******	*******	* ******** ******	
								70			CES FOR AL	+172(2)0		
		22 XI*1/2(2250)	PARTIAL DECAY MODE	5		BART	TSCH 69 PL 28B	439	+	BARNES	(AACHEN, E	BERLIN, C	<pre>+ (BNL, STRACUSE) 1 ERN, LOIC, VIENNA)</pre>	
P1 P2 P3	XI*1/2(2250) XI*1/2(2250) XI*1/2(2250)	INTO XI PI PI INTO LAMBDA KBAR INTO SIGMA KBAR	PI PI	DECAY MASSES 1321+ 139+ 139 1115+ 497+ 139 1197+ 497+ 139		****	*** ***********************************	******	*****	*****	******	*******	* ********* ********	
*****	**** ***** **	******	******	* ******** *****										
		REFERE	NCES FOR XI*1/2(225	0)		6	5-1	24 OM	MEGA-()	1675, .	JP=3/2+) I	= 0		
BARTSCI GOLDWA	H 69 PL 288 SS 70 PR 1D 1	39 + 60 ELGO	(AACHEN, BERLIN, CO LDWASSER, P F SCHUL	ERN, LOIC, VIENNA) FZ (ILLINOIS)		Ŀ	<u>*</u>	SEE ST	TABLE F	PARTIC	E DATA CA	RD LISTI	NGS	
*****	********	******	******** *******	* ********* ********		****	*** ********** **	******	* *****	***** *	********	******** ******	* ******** *******	

#### Appendix I

### TEST OF $\triangle I=1/2$ RULE FOR K DECAYS

The quantities of interest for making tests of theoretical predictions regarding the  $\Delta I=1/2$  rule for K decay are usually partial decay rates for single channels or special sums of channels. It is not possible to compute the errors on sums, differences, and ratios of partial decay rates from the information given in the Table of Stable Particles because of the presence of off-diagonal terms in the error matrix. For this reason we give some of these quantities in Table I. Throughout this Appendix, italics are used to indicate that a quantity has changed by more than one (old) standard deviation since our previous edition, and S gives the scale factor included in the quoted error because of inconsistencies in the data (see footnote at end of Stable Particle Table for definition of S).

Table I. (000) or (+-0) refer to the sign of the pions into which the K_L decays.  $\frac{\Gamma_{k_{J3}^{+}}}{\Gamma_{k_{e3}^{+}}} = \frac{\Gamma_{k_{\mu3}^{+}}}{\Gamma_{\mu3}} = \frac{(6.542 \pm .083) \times 10^{6} \text{ sec}^{-1}}{(5.542 \pm .083) \times 10^{6} \text{ sec}^{-1}} = 0.668 \pm .024 \text{ S} = 2.2 \text{ S} = 2.2 \text{ S} = 3.223 \pm .090 \text{ S} = 3.233 \pm .090 \text{ S} = 3.233$ 

1. Leptonic decay rates

he 
$$\Gamma$$
 rates are useful in testing the  $K_{\ell 3}$ 

leptonic  $\Delta I = 1/2$  rule in the way suggested by Trilling.¹ The predictions are

$$\Gamma_{K_{\ell_3}^0} / 2\Gamma_{K_{\ell_3}^+} = 1.012$$
, a phase-space factor, ² and

$$K_{\mu3}^{0} / \Gamma_{K_{e3}^{0}} = \Gamma_{K_{\mu3}^{+}} / \Gamma_{K_{e3}^{+}}.$$

From Table I,

г

$$\Gamma_{K_{\ell_3}^0} / {}^{2\Gamma}_{K_{\ell_3}^+} = 0.969 \pm .017$$

and 
$$\frac{\Gamma_{K_{\mu3}^{0}}}{\Gamma_{K_{e3}^{0}}} \left[ \frac{\Gamma_{K_{\mu3}^{+}}}{\Gamma_{K_{e3}^{+}}} \right]^{-1} = 1.039 \pm .050$$
.

These results seem to show a less than  $2\sigma$  disagreement with the predictions, but the errors should be regarded with caution in view of the internal disagreements in the data. (Note the ideograms in the data listing for the charged K meson.)

#### 2. Three-pion decays

We follow here the tests done by Mast et al.,³ based on the general analysis of K decays suggested by Zemach.⁴ Both decay rates ( $\Gamma$ ) and slopes (g, the energy dependence of the Dalitz plot distributions) are used. The  $\Delta I = 1/2$  rule predicts that the following test quantities are all equal to zero:



The  $\phi_i$  are phase-space factors which have been calculated as described in Mast et al.³ by use of a relativistic formulation and the masses and slopes from this compilation. The factors labeled UDP are the relative areas of the Dalitz plots, assuming a uniform distribution. The NUDP include the observed slopes (see below). The CNUDP have been calculated by including the final-state Coulomb interaction. The values are:

		Method	
	UDP	NUDP	CNUDP
$\phi_1(000) =$	1.489	1.489	1.444
$\phi_2(+-0) =$	1.221	1.294	1.279
φ ₃ (++-) =	1.000	1.000	1.000
$\phi_4(+00) =$	1.247	1.183	1.147

For convenience, we repeat the slope parameters tabulated in the Stable Particle Table. They are as follows:

#### S170 REVIEWS OF MODERN PHYSICS · APRIL 1973 · PART II

$$g_{K_{\tau}^{+}} = -0.214 \pm 0.005 \qquad S=1.7$$

$$g_{K_{\tau}^{-}} = -0.214 \pm 0.007 \qquad S=2.7$$

$$\overline{g}_{K_{\tau}^{+}} = -0.214 \pm 0.004$$

$$g_{K_{\tau}^{+}} = 0.523 \pm 0.023 \qquad S=1.4$$

$$g_{K_{\tau}^{0}(+-0)} = 0.604 \pm 0.023 \qquad S=2.7$$

A difference in the  $\tau^+$  and  $\tau^-$  slopes would be an indication of CP violation in this decay. Since no difference is observed at this time, we average the two and use this value in Test 4.

We use the CNUDP factors and the rates and slopes reported here to compute the five test quantities which the  $\Delta I=1/2$  rule predicts to be zero. The results are:

Test 1 = 0.010  $\pm$  0.048 Test 2 = -0.076  $\pm$  0.026 Test 3 = 0.190  $\pm$  0.025 Test 4 = 0.048  $\pm$  0.012 Test 5 = 0.128  $\pm$  0.026

The three-pion final state can be in isospin states I = 1, 2, 3. Tests 1 and 2 test the existence of isospin I = 3 in the final state. Since the rate tests (Tests 1, 2, and 3) could differ from zero by as much as 0.1 owing to the mass differences and the occurrence of big slopes⁵, no evidence for I=3 is found. Test 4 is related to the I=2 amplitude in the final state and indicates the presence of I=2. Tests 3 and 5 give information on the  $\Delta I = 3/2$  part of the I=1 amplitude relative to the  $\Delta I = 1/2$  part. Both tests indicate the presence of  $\Delta I = 3/2$ .

#### References

1. G. Trilling, K-Meson Decays, UCRL-16473, (updated from Argonne Conference Proceedings, 1965, p. 115).

 N. Brene (CERN), private communication. In our Jan. 1968 edition we had erroneously used 1.04.
 T. S. Mast, L. K. Gershwin, M. Alston-Garnjost, R. O. Bangerter, A. Barbaro-Galtieri, J. J. Murray, F. T. Solmitz, and R. D. Tripp, Phys. Rev. 183, 1200 (1969).

 C. Zemach, Phys. Rev. <u>133</u>, B1201 (1964).
 C. Bouchiat and M. Veltman, Topical Conference on Weak Interactions, CERN 69-7 (1969), p. 225.

#### <u>Appendix II</u> A. SU(3) CLASSIFICATION OF BAR YON RESONANCES

There are a few multiplets that have been studied and we report here the results.

Exact SU(3) symmetry predicts that all the members of a multiplet should have the same mass and the same couplings for decays into other multiplets. It has been found, however, that the members of the octet of Stable Baryons lie within 20% of their mean mass; therefore a symmetry breaking interaction has been introduced by GELL-MANN 62 and OKUBO 62 independently. In addition, for the isospin-0 vector mesons ( $\omega$  and  $\phi$ ) an additional symmetry-breaking interaction had to be introduced (SAKURAI 62) to take care of octet-singlet mixing. The relevant formulae for masses and decay rates are given below.

#### Mass Formulae

3roken SU(	3) gives:		
Decuplet	$\Delta - \Sigma = \Sigma - \Xi^* = \Xi^* - \Omega$	GMO	(1)
Octet	$2(N + \Xi) = 3\Lambda + \Sigma$	GMO	(2)
Octet- Singlet	$\sin^2 \theta = \frac{\Lambda - M_8}{\Lambda - \Lambda'}$	Mixing angle [†]	(3)
mixing	$M_8 = \frac{2(N+\Xi) - \Sigma}{3}$	GMO	(4)

Here GMO stands for the Gell-Mann-Okubo formula; the particle symbol indicates its mass. The formulae would be the same if squared masses were used. For the nonet case,  $\Lambda$  is the "mostly-octet" particle,  $\Lambda$ ' is the "mostly-singlet" particle.

#### Decay Rates

In terms of a relativistically invariant matrix element T, the decay rate for two-body decay of a resonance of mass  $\rm M_{R}$  is

$$\Gamma \propto \frac{|T|^2 R_2}{M_p}, \qquad (5)$$

where  $R_2 = k/M_R$  is the two-body phase space factor. Since the numerator is an invariant, and since  $\Gamma$  must transform as 1/E, we introduce the denominator  $1/M_R$  (see FEYNMAN 62).

For <u>meson</u> decays (see below) the rates are calculated according to Eq. (5); for <u>baryon</u> resonance decays into  $1/2^+$  baryons and  $0^-$  mesons, one next takes into account the fact that spin sums in  $|T|^2$  introduce another factor  $M_R$ , cancelling the  $4/M_R$ . We are then left with

$$\Gamma = \frac{|\mathbf{T}|^2_k}{M_R} M_N, \text{ for baryons}$$
 (5')

$$= \frac{|\mathbf{T}|^2_k}{M_R^2} M_N^2, \text{ for mesons}$$
(5")

The powers of the nucleon mass  $M_N$  or  $M_N^2$  have been introduced so that we can treat |T| as dimensionless.

which we call  $B_{\ell}$ . We then have

Decuplet } \Gamma = (cg)^{2} B_{\ell}(k) \frac{M_{N}}{M_{R}} k (6)  
Octet 
$$\Gamma = (c_{D}g_{D} + c_{F}g_{F})^{2} B_{\ell}(k) \frac{M_{N}}{M_{R}} k$$
 (7)

(7)

Si

Octet-  
Singlet { 
$$G_8 = \Lambda \cos\theta - \Lambda' \sin\theta$$
  
mixing  $G_1 = \Lambda \sin\theta + \Lambda' \cos\theta$  (3)

with 
$$G_8 = c_D g_D + c_F g_F$$
  
 $G_1 = c_1 g_1$ . (9)

Here  $c_i$  are the SU(3) coefficients with the sign convention adopted in this article [see note preceding the table of SU(3) isoscalar factors and Fig. 2 in the text].  $\,\,M_{\rm N}^{}\,\,{\rm is}$  the nucleon mass,  $M_{\rm R}$  is the resonance mass for which  $\Gamma$  is calculated, k is the center-of-mass momentum for the channel being considered, g; are the relevant couplings. For the case of singlet-octet mixing, formula (8) has to be used in conjunction with (6) and (7).  $G_8$  and G1 represent the couplings for the multiplet, and  $\Lambda$  and  $\Lambda'$  represent the couplings for the physical states.

The relation between  $g_D$ ,  $g_F$ , and the parameter  $\alpha$  is

$$\alpha = \left[1 + \frac{\sqrt{5}}{3} \quad \frac{g_F}{g_D}\right]^{-1} , \qquad (10)$$

Exact SU(3) predicts that the couplings g for all the members of a multiplet are the same; however, since the symmetry is broken for the masses, it is probably broken for the widths. In the case of the  $3/2^+$  decuplet, for broken SU(3) a sum rule has been derived by BECCHI 64 and by GUPTA 64 independently. It relates the g; for the members of the decuplet by the relation

$$2(\Delta + \Xi) = 3\Sigma * (\Lambda \pi) + \Sigma * (\Sigma \pi), \qquad (11)$$

where  $\Sigma^*(\Lambda \pi)$  is the coupling for the  $\Sigma(1385)$  $\rightarrow \Lambda \pi$  decay and  $\Sigma * (\Sigma \pi)$  is the coupling for the decay  $\Sigma(1385) \rightarrow \Sigma \pi$ .

#### PARTICLE DATA GROUP Review of Particle Properties S171

As mentioned in the text (Sec. IV D) the determination of the relative signs of resonant amplitudes can be useful in making an SU(3) assignment of resonances. In fact the resonant amplitude  $T \propto \sqrt{x_e x_i} \propto G_e G_i$  where the subscript e refers to the elastic channel and the  $G_{p}$ ,  $G_{i}$ are the couplings of Eqs. (6) through (9). Assuming that all g_i are positive, the sign of the G_i are dependent upon the sign of the Clebsh-Gordon coefficients c. Once a sign convention is adopted (we use the LEVI-SETTI 69 convention, see Fig. 2 in the text) and the sign for a  $\Sigma$  state (I = 1) and a  $\Lambda$  state (I = 0) of known SU(3) assignment have been chosen for reference, the signs of all the other amplitudes can be useful in determining multiplet assignments. For exact SU(3) all the decays of members of a decuplet have the same sign. For octets the relative sign depends upon the value of  $g_D/g_F$  and the mixing angle, as seen from Eqs. (7) through (9).

#### Fits to the Data

Fits of baryon decay rates within SU(3) can be found, among others, in TRIPP 68 and 69, LEVI SETTI 69, SAMIOS 70 and PLANE 70. The most recent fits were made by BARBARO-GALTIERI 72.

In fitting the data a choice for  $\mathbf{B}_{\not{l}}$  has to be made. PLANE 70 tried two forms for  $B_{\rho}$ :

(a) The form  $B_{\ell} = (kr)^{2\ell} D_{\ell}(kr), r$  being the radius of interaction and  $D_{\ell}$  the polynomials in kr given by BLATT-WEISSKOPF 52. Usually r is taken to be 1 fermi (TRIPP 68).

(b) The form  $B_{\ell} = k^{2\ell}$ . However, for their final results they used form (b). A discussion of the differences among these two forms can be found in BARBARO-GALTIERI 71. It turns out that not only the values of the couplings, g, depend upon the form used for  $B_{\ell}$ , but also the value obtained for the mixing angle. For the  $3/2^{-1}$ singlet,  $\Lambda(1520)$ , and isospin-0 member of the octet,  $\Lambda(1690)$ , the mixing angles obtained in the two cases are

 $\theta_{a} = (-16.1 + 1.4)^{\circ}, \quad \theta_{b} = (-27.5 + 3.6)^{\circ}, \\ -3.4)^{\circ},$ in disagreement by a few standard deviations. It turns out that if a radius of interaction of r = 0.15 fermi is used for form (a), the two values of  $\theta$  agree. This value of r does not fit resonance shapes when used in the Breit-Wigner resonant form.

#### S172 Reviews of Modern Physics · April 1973 · Part II

Table I is a summary of the fits made by BARBARO-GALTIERI 72 using the barrier factor form (b) and exact SU(3). A few comments follow.

### $\frac{1}{2}$ - Nonet (Baryon - Eta Resonances)

For this nonet Eq. (7) was multiplied by the factor

$$\left(\frac{M_{R} - M_{B}}{\overline{M}_{R} - \overline{M}_{B}}\right)^{2}$$

where  $M_B$  is the decay baryon and  $\overline{M}_R - \overline{M}_B =$ 564 MeV is the difference of the mean  $1/2^-$  and  $1/2^+$  baryon octet masses. This kinematic factor comes from PCAC arguments (i.e., the assumption that axial vector current remains an octet in presence of symmetry breaking) and it was advocated by Graham et al. (GRAHAM 67). For the  $1/2^-$  nonet it has been used in this form first by Gell-Mannet al. (GELL-MANN 68).

 $\frac{3}{2}^{+}$  Decuplet

The agreement among the coupling constants obtained for the four rates in this decuplet is very bad. The fit made using form (b) for  $B_{\ell}$  has  $\chi^2=50$  for 3 Degrees of Freedom; the one made with form (a) for  $B_{\ell}$  has  $\chi^2=24/3$ DF. The broken SU(3) relation (11), however, is very well satisfied.

#### B. SU(3) CLASSIFICATION OF MESON RESONANCES

All of the discussion above applies, except that for Bosons the GMO formula is usually applied to the <u>square</u> of the masses, as opposed to the first power for fermions. Thus for example, Eq. (2) becomes

$$4\hat{\mathbf{K}} = 3\hat{\eta} + \hat{\pi}.$$
 (2')

The symbol  $\hat{K}$  was introduced by Glashow and Socolow[†] for the square of the K mass, etc.

Because of the difference between Eqs. (5') and (5"), there is also an extra factor of  $(M_{N'}/M_R)$  in Eqs. (6) and (7). The three established nonets (0⁻, 1⁻, 2⁺) and their mixing angles are listed at the bottom of the Meson table.

#### Footnotes and References

[†]The formula has been calculated from analogy with the formula for mixing of meson states, first put in this form by S. L. Glashow and R. H. Socolow, Phys. Rev. Letters <u>15</u>, 329 (1966). For the baryon formula see A. Barbaro-Galtieri, Phenomenology of Resonances and Particle Supermultiplets. UCRL-17054 (1966).

[‡]This is an updated version of the fits by Flaminio et al., BNL report 14572.

A. Barbaro-Galtieri, Lawrence Berkeley Laboratory LBL-555, lectures given at the 1971 Erice School on Subnuclear Physics (to be published by Academic Press).

Table I. SU(3) baryon multiplets with two or more known members. Values of  $\theta$  and  $\alpha$  [defined by Eqs. (8) and (10)] are the results of fits made by BARBARO-GALTIERI 72 to all the measured two-body decay rates of each multiplet.

JP		Octet m	embers ^a		Singlet	$\theta(\deg)^{b}$	α
1/2-	N' (1535)	$\Lambda(1670)$	$\Sigma(1750)$	[Ξ(1825)]	Λ(1405)	8±3	1.2±.1
3/2-	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	[王(1815)]	$\Lambda(1520)$	-23±4	.34±.09
5/2-	N(1670)	$\Lambda$ (1830)	$\Sigma(1765)$				<b>1.13±.05</b>
5/2+	N(1688)	$\Lambda(1815)$	$\Sigma(1915)$				.62±.04
		Decuple	t members		g10		
3/2+	Δ <b>(</b> 1236)	$\Sigma(1385)$	王 (1530)	Ω-		1.78 - 2.29	$\chi^2 = 50/3 DF$
7/2+	$\Delta(1950)$	$\Sigma(2030)$					· · · · ·

^aMasses in parentheses are the nominal masses used in the Baryon Table. The  $\Xi$  members have masses as calculated by using formulae (1) and (2) with the mixing angle  $\theta$  derived from the decay widths. ^bSee text for a discussion of the  $3/2^-$  mixing angle. A. Barbaro-Galtieri, Lawrence Berkeley Laboratory LBL-1366. To be published in Proceedings of the 16th International Conference on High Energy Physics, Chicago-Batavia (1972).

C. Becchi, E. Eberle, and G. Morpurgo, Phys. Rev. <u>136B</u>, 808 (1964).

J. M. Blatt and V. F. Weisskopf, <u>Theoretical</u> <u>Nuclear</u> Physics, Wiley, New York, 1952.

R. P. Feynman, <u>Theory of Fundamental Pro-</u> cesses, W. A. Benjamin, Inc., New York, 1962.

M. Gell-Mann, Phys. Rev. <u>125</u>, 1067 (1962).
M. Gell-Mann, R. Oakes, and B. Renner, Phys.

Rev. <u>175</u>, 2195 (1968).

R. Graham, S. Pakvasa, and K. Raman, Phys. Rev. <u>163</u>, 1774 (1967).

V. Gupta and V. Singh, Phys. Rev. <u>135B</u>, 1442 (1964).

R. Levi Setti, in <u>Proceedings of the Lund Inter</u>national Conference on Elementary Particles (1969).

S. Okubo, Prog. Theoret. Phys. (Kyoto) <u>27</u>, 949 (1962).

D. E. Plane <u>et al.</u>, Nuclear Physics <u>B22</u>, 93 (1970). Also J. Meyer and D. E. Plane, Nuclear Phys. B25, 428 (1971).

J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).

N. P. Samios, in Proceedings of the 15th International Conference on High Energy Physics, Kiev, p. 187 (1970).

R. D. Tripp, in <u>Proceedings of the 14th Inter-</u> national Conference on High Energy Physics, Vienna 1968, p. 173.

R. D. Tripp, in <u>Proceedings of the 3rd Hawaiian</u> <u>Topical Conference on Particle Physics</u>; UCRL-19361 (1969).

## $\frac{Appendix III}{TEST OF \Delta I=1/2 RULE FOR HYPERON DECAYS}$

O. E. Overseth University of Michigan

1. Nonleptonic Decay Amplitudes

In this edition we are adopting a new convention for the amplitudes A and B. Some theorists have suggested that dimensionless amplitudes are more useful to them than the ones appearing in the literature. Berge (1966) used a convention, which we adopted last year, with A and B in units of  $\sec^{-1/2}$ . Samios (1965) used a convention which gave A and B in units of (MeV-sec)^{-1/2}. Following is the convention suggested by Jackson (1973), which gives dimensionless A and B, which we will adopt in this edition.

The effective Lagrangian density for nonleptonic hyperon decays  $(B_1 \rightarrow B_2 + \pi)$  can be written

$$\mathcal{L}_{\rm eff} = G \mu_c^2 \left[ \overline{\psi}_2 \left( A + B \gamma_5 \right) \psi_1 \right] \phi_{\pi},$$

where G =  $10^{-5}$  m_p⁻² is a coupling constant characteristic of first-order weak decays,  $\mu_c$  is the charged pion mass, and A and B are <u>dimensionless</u> complex numbers giving the relative amplitudes of the parityviolating and parity-conserving decays, respectively. The matrix  $\gamma_5$  is to be taken in the Pauli form,  $\gamma_5 = ( \begin{pmatrix} 0 & -I \\ -I & 0 \end{pmatrix}$ . The invariant amplitude for the decay is

$$\mathcal{M} = G\mu_{c}^{2} \left[ \overline{u}(p) (A + B\gamma_{5}) u(P) \right],$$

where P is the 4-momentum of the decaying hyperon of mass M, and p is the 4-momentum of the baryon decay product of mass m. With the normalization convention,  $\overline{u_i}u_i = 2m_i$ , the Pauli form of the matrix element in the rest frame of the decaying hyperon is

$$\mathcal{M}_{=} \operatorname{G\mu}_{c}^{2} \langle \chi_{2} | \sqrt{2M(E+m)} A + \sqrt{2M(E-m)} B \vec{\sigma} \cdot \hat{q} | \chi_{1} \rangle,$$

where E is the total energy of the final baryon and  $\hat{q}$  is a unit vector in the direction of motion of the final baryon. Comparison with Section IV H shows that the amplitudes s and p defined there are proportional to A and B:

$$\frac{\mathrm{p}}{\mathrm{s}} = \left(\frac{\mathrm{E}-\mathrm{m}}{\mathrm{E}+\mathrm{m}}\right) \frac{\mathrm{B}}{\mathrm{A}} = \sqrt{\frac{\left(\mathrm{M}-\mathrm{m}\right)^2 - \mu^2}{\left(\mathrm{M}+\mathrm{m}\right)^2 - \mu^2}} \quad \frac{\mathrm{B}}{\mathrm{A}}$$

Here  $\mu$  is the mass of the pion entering the decay. The parameters  $a,\beta,\gamma$  can therefore be expressed in terms of A and B, rather than s and p, if desired.

The decay rate for  $B_1 \rightarrow B_2 + \pi is$ 

$$\Gamma = \frac{G^{2} \mu_{c}^{4}}{8\pi} q \left\{ \frac{\left[ (M+m)^{2} - \mu^{2} \right]}{M^{2}} \right] |A|^{2} + \left[ \frac{(M-m)^{2} - \mu^{2}}{M^{2}} \right] |B|^{2},$$

where q is the c.m.s. momentum of the decay products. For reference, the dimensionless constant in this expression has the value  $(G_{\mu_{c}}^{2} 4/8\pi) = 1.9488 \times 10^{-15}$ .

To convert numbers for A and B of Table I, Appendix III, April 1972 edition to the new dimensionless num bers, multiply old values by  $0.98124 \times 10^{-5} sec^{1/2}$ . This is the value of

$$\frac{\sqrt{\hbar} 10^{5}}{G\mu_{c}^{2}\sqrt{\mu_{c}}} = \sqrt{\frac{65.822}{0.13958}} \left(\frac{0.93826}{0.13958}\right)^{2} \times 10^{-13} \times 10^{5} \times 10^{5} \text{sec}^{1/2}$$

$$A_{\text{new}} = 0.98124 \text{ A}_{\text{old}} \times 10^{-5} \text{sec}^{1/2}$$

$$B_{\text{new}} = 0.98124 \text{ B}_{\text{old}} \times 10^{-5} \text{ sec}^{1/2}.$$

Table I summarizes the amplitudes A and B for the nonleptonic decays of the  $\Lambda$ ,  $\Sigma$ , and  $\Xi$  hyperons. These amplitudes have been calculated by using the experimental data for mean lives, branching ratios, and the decay asymmetry a given in the Stable Particle Table of this review. Time-reversal invariance is assumed and final-state interactions are neglected, so A and B are taken to be relatively real and  $\beta = 0$ . The subscript on the hyperon refers to the sign of the decaying pion. The statistical correlation coefficient

$$C_{AB} = \frac{\langle \Delta A \Delta B \rangle}{\sqrt{\langle \Delta A^2 \rangle \langle \Delta B^2 \rangle}}$$

is also given. The absolute signs of A and B have been assigned, using the following convention. Taking  $A(\Lambda ^{0})$ as positive, the other S-wave decay amplitudes are chosen to give an approximate fit to the triangular relationships

$$\sqrt{2}A(\Sigma_0^+) + A(\Sigma_+^+) = A(\Sigma_-^-) \text{ and } \sqrt{3}A(\Sigma_0^+) + A(\Lambda_-^0) = 2A(\Xi_-^-).$$

The signs of the B amplitudes relative to those of the corresponding A amplitudes are determined by the sign of the appropriate a decay parameter.

		Table	I.	
М	→ m + µ	A	В	C _{AB}
Λ <b>°</b> _	→ p + π	1.50±0.01	10.28±0.25	-0.264
$\Sigma_{+}^{+}$	$\rightarrow$ n + $\pi^+$	0.06±0.02	19.04±0.16	0.003
$\Sigma_0^+$	$\rightarrow$ p + $\pi^0$	1.46±0.06	-12.22±0.70	0.945
Σ	→ n + π ⁻	1.93±0.01	-0.65±0.08	-0.030
Ξ0	$\rightarrow \Lambda + \pi^0$	1.54±0.03	-5.12±1.24	0.362
臣 ⁰	→Λ + π ⁻	2.03±0.02	-6.86±0.52	0.207

## Tests of the ΔI=1/2 Rule (a) Λ Decay

For  $\Lambda$  decay the  $\Delta I = 1/2$  rule predicts that  $\Gamma_0/\Gamma_-$ = 0.50 and  $\alpha_0 = \alpha_-$ . In order to determine the magnitude of possible  $\Delta I = 3/2$  amplitudes present we write the linear expressions [Overseth and Pakvasa (1969)] for the  $\Delta I = 3/2$  S- and P-wave amplitudes in terms of  $\Delta \alpha$ , where  $\Delta \alpha$  is the measured value of  $\alpha_0/\alpha_-$  minus the predicted value, and in terms of  $\Delta \Gamma$  similarly defined. Evaluating these we find

$$\begin{split} & \Delta \alpha = - \ 1.54 (\mathrm{S}_3/\mathrm{S}_1) + 1.61 (\mathrm{P}_3/\mathrm{P}_1), \\ & \Delta \Gamma = - 1.84 (\mathrm{S}_3/\mathrm{S}_1) + 0.26 (\mathrm{P}_3/\mathrm{P}_1). \end{split}$$

Here the  $\Delta I = 3/2$  amplitudes are expressed relative to the  $\Delta I = 1/2$  amplitudes. The numerical values of the coefficients depend on the ratio P/S. The uncertainties in the coefficients are small compared to the uncertainties in  $\Delta \alpha$  and  $\Delta \Gamma$ . Final-state  $\pi$ -N interactions have been included in these relations but have a very small effect. From the Stable Particle Table,

 $\Delta \alpha = 0.006 \pm 0.066$ ,  $\Delta \Gamma = 0.058 \pm 0.012$ , and hence

 $(S_3/S_1) = 0.027 \pm 0.008$ 

and

$$(P_3/P_1) = 0.030 \pm 0.037.$$

The possible 3%  $\Delta I = 3/2$  S-wave amplitude is due to the disagreement of decay rates with prediction. At this level the results are sensitive to electromagnetic corrections. However, in  $\Lambda$  decay the phase space correction and the other radiative corrections appear to be about equal in magnitude and have opposite signs [Belavin and Narodetsky (1968), and Intemann (1973)], and hence cancel each other in the correction to the decay rates.

(b)王 Decay

The analysis for  $\Xi$  decay is very similar to that for  $\Lambda$  decay. If the  $\Delta I = 1/2$  rule is valid,  $\Gamma_0 (\Xi^0)/\Gamma_1 (\Xi^-) = 0.50$  and  $\alpha_0 = \alpha_1$ . For this case the expressions linear in  $\Delta I = 3/2$  S- and P-wave amplitudes are [Overseth and Pakvasa (1969)]

$$\begin{array}{l} \Delta \alpha \,=\, 1.37 ({\rm S_3/S_1}) \,-\, 1.37 ({\rm P_3/P_1}), \\ \Delta \Gamma \,=\, -\, 1.44 ({\rm S_3/S_1}) \,-\, 0.06 ({\rm P_3/P_1}). \end{array}$$
 From the Stable Particle Table,

 $\Delta \alpha = -0.040 \pm 0.234, \quad \Delta \Gamma = 0.061 \pm 0.025,$ 

and we find

 $(S_3/S_1) = -0.042 \pm 0.018$  and

 $(P_3/P_1) = -0.013 \pm 0.164.$ 

(c)  $\Sigma$  Decay

The traditional test of the  $\Delta I = 1/2$  rule in  $\Sigma$  decay is that the amplitudes satisfy the relationship  $\sqrt{2} \Sigma_0^+ + \Sigma_+^+ - \Sigma_-^- = 0$ . Graphically this is equivalent to closing the  $\Sigma$  triangle when the amplitudes are plotted on A, B axes. Including  $\Delta I \ge 3/2$  amplitudes in  $\Sigma$  decay analysis, the " $\Sigma$  triangle" relationship becomes

$$\sqrt{2} A_0 + A_+ - A_- = -3\sqrt{\frac{2}{5}} A_3 + \frac{2}{\sqrt{15}} A_5,$$

where  $A_3$ ,  $A_5$  are  $\Delta I = 3/2$ , 5/2 amplitudes, respectively. There is a similar equation for the B amplitudes. From Table I,

$$\sqrt{2} A_0 + A_+ - A_- = 0.19 \pm 0.11$$
  
and  $\sqrt{2} B_0 + B_+ - B_- = 2.41 \pm 1.23$ .

If we neglect the  $\Delta I = 5/2$  amplitudes and assume all amplitudes to be real we can solve for possible  $\Delta I = 3/2$  amplitudes. The result is

$$\frac{A_3}{A_-} = -0.052 \pm 0.029$$
$$\frac{B_3}{B_-} = -0.067 \pm 0.033$$

and

Thus for hyperon decay, present experimental data limit  $\Delta I = 3/2$  amplitudes to less than about 5%.

3. The Lee-Sugawara Relation

From Table I the Lee-Sugawara [Lee (1964) and Sugawara (1964)] relation  $\sqrt{3} \Sigma_0^+ + \Lambda_- 2\Xi_- = 0$  is satisfied to  $-0.03 \pm 0.15$  for the A amplitudes, and to  $2.83 \pm 2.50$  for the B amplitudes.

#### References

- A. A. Belavin and I. M. Narodetsky, Yadern. Fiz. <u>8</u>, 978 (1968) [Soviet J. Nucl. Phys. 8, 568 (1968)]
- J. P. Berge, in <u>Proceedings of the 13th International</u> <u>Conference on High-Energy Physics, Berkeley,</u> <u>(1966)</u> (University of California Press, Berkeley, 1967), p. 46.
- G. W. Intemann, Bull. of Am. Phys. Soc. <u>18</u>, 26 (1973).
- J. D. Jackson, private communication (1973).
- B. W. Lee, Phys. Rev. Lett. 12, 83 (1964).
- O. E. Overseth and S. Pakvasa, Phys. Rev. <u>184</u>, 1663 (1969). The expression for  $\Gamma_0/\Gamma_{-}$  for  $\Lambda$  decay should read

$$\frac{\Gamma^{0}}{\Gamma^{-}} \approx \frac{1}{2} \left\{ 1 + 3\sqrt{2} \\ \times \left( \frac{\left[ S_{11} S_{33} \cos(\delta_{1}^{-\delta_{3}}) + P_{11} P_{33} \cos(\delta_{11}^{-\delta_{31}}) \right]}{S_{11}^{2} + P_{11}^{2}} \right) \right\}$$

- N. P. Samios, International Conference on Weak Interactions, Argonne (1965), p. 189.
- H. Sugawara, Prog. Theor. Phys. <u>31</u>, 213 (1964).



CROSS SECTION PLOTS







 $[\]sigma_{\rm tot}(\gamma p) \; {\rm and} \; \sigma_{\rm tot}(\gamma d) \; {\rm as} \; {\rm compiled} \; {\rm by} \; {\rm G}.$  M. Lewis, Glasgow.