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Two-Photon Processes for Particle Production at High Energies"
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The literature of the past three years on the two-photon process for particle production e ~ + e e ~
++y*+e+y*-+e&+e +X(whereXisany C=+state) or p+p-+X, +y*+X~ +y*~X, +X~ + p + p

(where X, g~ are hadron states) is reviewed in some detail. Both the theoretical aspects and the experimental
feasibility of various processes are discussed especially for experimentalists' convenience.
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I. INTRODUCTIOH

This review article is addressed mainly to high-
energy experimental physicists who are concerned with
either particle production by electron —positron (or
electron-electron') colliding beams or massive lepton-
pair creation in hadron —hadron collisions at high
energies. We review' more than one hundred papers

' In the two-photon processes, the incident particles participate
only as suppliers of virtual photons. Thus, it is irrelevant whether
they are electrons or positrons. For simplicity we shall call them
both electrons throughout this paper unless specified otherwise.
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which have appeared in the literature during the last
three years on the two-photon process for particle
production. ' By the two-photon process we mean
processes of the type

e++e ~e++y*+e +y*~e++e +X (1.1)

in which electrons of both incident beams emit virtual
(spacelike) photons (p*'s), which in turn annihilate,
producing a final state X, where X may be a lepton
state such as e+e, p+y, or any possible neutral C=+
hadron state such as x+m, m+m x, m, q, E+X, etc.
LSee Fig. 1(a) .7 Another process of the type

p+ p~%+v'+&2+v*~%+%+v++@, (1 2)

where X& and X2 are arbitrary hadron states is also
called the (generalized) two-photon process. We shall
discuss the former process in the following thirteen
sections, leaving the latter for Sec. XV.

A few years ago, the importance of the two-photon
process for lepton and hadron production in electron-
electron colliding-beam experiments was emphasized by
three independent groups (Arteaga-Romero, Jaccarini,
and Kessler, 1969; Balakin, Budnev, and Ginzburg,
1970; Brodsky, Kinoshita, and Terazawa, 1970).
The cross section for the process (1.1) is obviously of
order a4 and is completely negligible at low beam en-
ergies (up to several hundred MeV) compared to the
cross section for the one-photon annihilation process'

e++e—~y*—+s.++m, etc. , (1.3)
which is of order n'. .

' A brief review talk on the two-photon process was given by
Brodsky (1972) at the 1971 International Symposium on Electron
and Photon Interactions at High Energies, Cornell, 1971; A brief
review of previous work may also be found in the paper by
Brodsky, Kinoshita, and Terazawa (1971b}.One of the main
purposes of the present paper is to bring up to date the review of
the work on the two-photon process. This includes many papers
which have been published since the Symposium. We basically
follow and even duplicate many parts of the above reference
(Brodsky, Kinoshita, and Terazawa 1971b) in writirig Secs.
II—VI, XVI, arid XVII of this review in order to make it self-
contained. Therefore, readers familiar with the contents of the
reference may skip these sections and start at Sec. VII. For a
comparison between the one- and two-photon processes, see also
the article by Pais (1972).' As for theoretical studies of the one-photon annihilation
process, see especially Cabibbo and Gatto (1961) and Gatto
(1965).References to recent works on this process may be found
in Pais (1971} and Bjorken (1972).
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FIG. i. The three types of diagrams which contribute to the

production process e++e=+e++e +X in e+e colliding-beam
experiments. The product states have positive charge conjugation
(C=+) in processes (a) and (c) and negative charge conjugation
in process (b). In the case of e e collisions, there is another
diagram in which the two 6nal electron lines in (a) are exchanged.

However, as the beam energy increases, two factors
operate to reverse the relative importance of these two
processes: (1) Whereas the cross section for the one-

photon process (1.3) will eventually decrease with the
beam energy Z as E ' (Bjorken, 1966; Gribov, Ioffe,
and Pomeranchuk, 1967), this energy factor is replaced
in the cross section for (1.1) by a constant m ', where m

is usually the threshold mass of the state X. This
exemphfies the observation by Cheng and Wu (1969,
1970a) that the asymptotic behavior of higher-order
terms may be completely difFerent from that of lower-
order terms. (2) In the process (1.1) both incident
particles are electrons which radiate photons so easily
that the corresponding cross section is enhanced by two
factors of ln (E/m, ) ( 7.6 for E= 1 GeV), in addition

to other possibly logarithmic terms which can be
inferred from the Cheng —Wu analysis of massive-

photon quantum electrodynamics. For these reasons,
the two-photon cross section for (1.1) behaves asymp-
totically4 as

o (E) ~ (cr4/m') [ln (E/m, ) ]'[ln (E/m)]" (1.4)

where e is a number &1 which depends on the high-

energy behavior of the cross section for &+y—+X. In the
case X=~+x, this cross section becomes comparable
to that of the one-photon cross section (o ~ n'E ') at an

energy per beam E~1.5 GeV, even if we treat pions as
pointlike (Brodsky, Kinoshita, and Terazawa, 1971b).
For higher energies, the two-photon process becomes
clearly the dominant one. This means, on the one hand,
that the magnitude of the two-photon cross sections at
high energy is large enough to open the way to a com-

plete exploration of the photon —photon annihilation
process including the production of C=+ hadron
resonances. On the other hand, these produced hadrons
would also form a serious background to other processes
of interest, especially the one-photon annihilation

process (1.3), and make these experiments more difficult

at high energies unless experimentalists set up ap-
propriate devices to detect at least one of the electrons
scattered predominantly forward and to discriminate
the two-photon process (1.1) from the one-photon
annihilation process (1.3). In any case, in order to be
able to extract interesting physics from the high-energy
colliding-beam experiments, it is imperative to under-

stand not only the qualitative but also the quantitative
characteristics of the two-photon cross sections. If they
are understood correctly, the value of the colliding-

beam facilities will be much enhanced, since they may
serve to investigate the two-photon process as wel. l as
the one-photon annihilation process.

The history of, the two-photon process can be traced
back to 1934 when Landau and Lifshitz (1934) and,
independently, Williams (1934) studied the production
of electron —positron pairs by two fast moving charged
particles. Around l960 when the colliding-beam
facilities were about to become available (cf. Barber,
Gittelman, O'Neilt, and Richter, 1966), the two-photon

process caught some attention. Calogero and Zemach

(1960) studied pion pair production in electron—
electron collisions. They calculated the difFerential cross
section for e+e~e+e+w++vr by assuming pointlike
pions in a special kinematical region where the pro-
duced pair of pions have identical energies and exactly
opposite directions in the center-of-mass system of the
incident beams. This kinematical situation turns out to
be useful, as it is related to the question of pion electro-
magnetic self-mass (see Sec. XI). Low (1960) cal-

' The term "asymptotically" means that the asymptotic con-
dition E', m'))m, ' is satisfied. We shall discuss in more detail
this asymptotic behavior of the cross section in connection with
the validity of equivalent-photon approximation in Sec. IV.
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q) = {q),W) )

~'etc.

Fxo. 2. Kinematics and notation p =(p E )
for the pair production of various par-
ticles by the two-photon mechanism.

8'
p ={p&,E)

w etc.

q&= {q&,W&)

culated the cross section for x' production by colliding
electrons, which he proposed as a means of measuring
the sro lifetime. In his paper the Dn (E/rn, ) 72 ln (E/sn )
energy dependence of the two-photon cross section is
clearly evident (see Sec. IV) . For nearly ten subsequent
years, however, the two-photon process attracted little
attention. This seems to be simply because the energies
available at the existing colliding-beam facilities were
too low for this process to be important and attention
was focused solely on the production of C= —reso-
nances by the e+e -annihilation process (1.3). In the
late sixties, we can only find the paper by DeCelles and
Goehl (1969) who studied some aspects of the process
(1.1) for o production in order to explore the feasibility
of experimental determination of 5-wave xx phase
shifts (see Sec. VIII for details).

As beam energies have steadily increased and new
data have begun to be reported (Alles-Borelli et aL,
19/0; Baldini-Celio et al. , 1970; Barbiellini et tt/. , 1970;
Bartoh et ttl. , 1970) the two-photon process has again
become a subject of intense investigation. Arteaga-
Romero, Jaccarini, and Kessler (1969), and Arteaga-
Romero et al. (1970, 1971a, b) have calculated the two-
photon cross sections for p+p, m+x, and E+E—
production at E=2 and 3 GeV and pointed out that
these cross sections are rather large and increase with
beam energy. Independently, two other theoretical
groups, one consisting of Balakin, Budnev, and Ginz-
burg (19/0; Budnev and Ginzburg, 1971a, b), and the
other of Brodsky, Kinoshita, and Terazawa (1970,
1971b) have investigated the two-photon process. The
latter group has paid particular attention to detailed
features such as angular distributions, angular correla-
tions, and mass distributions of produced hadrons which
would help to distinguish the two-photon process from
the one-photon process (see details in Sec. V). In all
these previous works, reported at the Kiev Conference
in 1970, calculations have been carried out in the
equivalent-photon approximation (Fermi, 1924; Weiz-
sacker and Williams, 1934; Landau and Lifshitz, 1934;
Curtis, 1956; Dalitz and Yennie, 1957), which. is useful
for an understanding of the main qualitative features.
In this approximation (see Sec. III for details), the

leading term for E/rn, ~~ of the cross section for the
process (1.1) when the scattered electrons are not
detected is given by (see Fig. 2 for notation and
Secs. III and IV for the proof)

dto1 dco2 (E +E1 ) (E +E2 )X GOy) G02

NyG02

. where da» x is the differential cross section for the
annihilation of two oppositely directed real unpolarized
photons of energy wj and +2 into a state X. For the total
cross section, we obtain Lnoting that Ir» « is a function
of s= (&1+02)'—44o14o2 only)

(~)2( E )2 4E

a--.«(E)=2
I

—
I I

» —
I

&sr/ I nt,/, S

($1/2II

Xf I I «(s), (1.6)
&2E)

""
as in Low's work (1960), where f(x) is given by

f(x) = (2+x')' ln (1/x) —(1—x') (3+x'). (1.7)

Substitution of the explicit form of the cross section, for
example,

o„, «(ins)"', (1.8)

where n' depends on the state X, leads to a result of the
form (1.4) with n=n'+2 if n'& —1 and n=1 if
n'( —1.

Thus, during 1970 it was qualitatively established
that the two-photon process becomes dominant in
colliding-beam experiments as the beam energy in-
creases above ~1 GeV. Much of the work done on -the

two-photon process during the following year was
devoted to two diferent aspects. Firstly, more quantita-
tive knowledge of this process is required. From
this point of view previous results are not completely
satisfactory because they have all been obtained by
means of the equivalent-photon approximation or
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variants thereof. Although this approximation will give
the leading logarithmic E/W, dependence of the cross
section, the reliability of the method at laboratory
energies of approximately a few GeV has not been
established. Brodsky, Kinoshita, and Terazawa (1971b)
have investigated how good this approximation actually
is (see Secs. IV and VI). Cheng and Wu (1971a) also
have looked into the same question and found that the
approximation can never be good in the differential
cross section for m+x production when the pair of
pions are detected in certain kinematical regions. How-
ever, there is no disagreement between these two exact
calculations (see Sec. VI).

The second question which has caught the attention
of many theorists during last two years is the following:
"What kinds of physics can be done by means of the
two-photon process?" or, more bluntly, "Is it useful at
all?" Over a hundred physicists have given various
answers to this question in their theoretical papers,
which we shall review in Sec. VII and the sequel.

At the International Symposium on Electron and
Photon Interactions at High Energies held in 1971,
exciting data on the first evidence of the two-photon
process were reported by both the Novosibirsk (Balakin
et al , 1971). and the Frascati (Bacci et a/, 1971, 1972)
experimental groups. The angular distribution of the
produced pair of electrons observed in the Novosibirsk
colliding-beam machine fits remarkably well the theo-
retical curve calculated by Baier and Fadin (1971a, b, c,
1972).

II. GENERAL KINEMATICS AND FORMULAS

Diagrams of the type shown in Figs. 1(a) and (b)
both contribute to the process e++e ~e++e +X. In
this paper, however, we shall concentrate on diagrams
of the first kind (two-photon diagrams) because (1) the
diagrams of the second kind will have fewer factors of
In (E/m, ), (2) the contributions of the first (C=+)
and second (C= —) kinds will not interfere (assuming
the C invariance of strong and electromagnetic inter-
actions) unless the charges of the produced particles are
distinguished, and (3) the contribution of the second
diagrams is found (Arteaga-Romero, Jaccarini, Kessler,
and Parisi, 1970, 1971a) to be negligible if electrons
are detected in the forward direction. In Sec. XVI
we shall give a brief discussion of diagrams of the type
of Fig. 1(b) for C= —states; an estimate of their con-
tribution will be given in Sec. XIII for the case of
electrons scattered at fairly large angles.

To facilitate the calculation further we shall omit the
Mfiller interference term t, e collisions. The e8ect of
interference of electrons in the final states in e e
collisions is clearly negligible since the amplitude for
both incident electrons to scatter backwards is very
small. In the case of e+e collisions we omit the con-
tribution of the Bhabha type diagram t Fig. 1(c)]
because it is undoubtedly small compared with the
others L(a) and (b) j (see XIII for the reasons).

Ideally speaking, it is desirable to detect scattered
electrons in addition to produced particles. In the
processes of interest most electrons are scattered into
very small forward angles L (m, /E) '" 1.3' for
E=1 GeV) and therefore it would seem to be hard to
separate them from the unscattered beams. However,
since the electrons which have lost their energies sub-
stantially (say by more than 5%%uo) after emitting virtual
photons are bent by the existing magnetic field in the
storage rings, they will eventually come out of the
rings and be detected by appropriate counters set up
along the storage rings. This method of detecting
scattered, electrons has already been adopted success-
fully at Frascati (Bacci et a/. , 1971, 1972). Of course,
the counting rate becomes smaller as one specifies the
final state more closely. We shall discuss in Secs.
III—X primarily those experiments in which scattered
electrons are not detected or in which scattering angles
of the electrons are limited to a certain region (e.g. ,0(8'(5' or 5'(8'(60'). In the case of e+e colliding
beams, however, this arrangement would make it
dificult to distinguish between the e+e annihilation
process and the two-photon process. To avoid this
problem it would be necessary to either measure the
moments of all produced particles accurately or detect
at least one of the scattered electrons in coincidence
with the produced particles. The latter approach may
not be too unreasonable since, in order to distinguish
these two processes, it suSces to detect the mere
presence of the scattered electrons. Of course more
quantitative information can be obtained (at the
expense of diminishing cross sections) if the energy
and/or the angle of the scattered electron is measured.
For the case where the energy (but not the angle) of the
scattered electron is measured, the cross sections can
easily be derived from the cross sections in this and
following sections by undoing the integration with
respect to the energy of the scattered electron. Neces-
sary modifications of the formulas for the case in which
electrons are detected scattering either into small for-
ward angles or between two small angles are discussed
at the end of Sec. III. The case in which at least one of
the electrons is scattered into large angles is treated in
Secs. XI—XIV.

We are now ready to write down the two-photon
cross section for the process (1.1) for the production of a
C=+ state X integrated over the scattered-electron
phase space (see Fig. 2 for the kinematics and notation):

2%2 P2 g&~g ~ P 2P 2

X (pi"pi'"+ pi'"pi"+ 2ki'g"")

x (p2 p2'+ p2"pP+ 2km'g')

X-',M„.~M„, dr,

~„„=ifd4g exp ( —ikix) (X
~

T*(J&(&),J.(0) )
~
0)~

dr = (2ir) 454(ki+ km
—~) dP, (2.1)
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where J„is the electromagnetic current,

dr=11;[p;dsq;(2~) 2]

is the invariant phase space of the state X [p;=
1/(2W, ) or srt, /W, according to whether the particle i
is a boson or a fermionj, and P is the energy —momentum
four vector of the state X. The symbol T* means that
all Schwinger terms are subtracted in M„„so that both
Lorentz covariance and gauge invariance are guar-
anteed. Throughout this paper we ignore, whenever
this is safe, the electron mass m, in comparison with the
electron-beam energy K In the following, we shall
refer to (2.1) as an exact formula (in contrast to
the equivalent-photon-approximation formulas) ev'en

though some approximations have been made.
In the limit in which the photons of momenta k~'

and k2 become real, the integrand of (2.1) satisfies the
relation

lim eM„ tM& df'= (2cor) (2co2) do» x, (2.2)
kP~0, kg ~0

where do-~~ x is the corresponding cross section for the
production of the state by two (oppositely directed)
unpolarized photons of energy m& and ~2, respectively.
In the applications, we shaH be interested in do/ds
where s is the invariant mass squared of the produced
system:

s= P'= (k,+k, ) '= r/tx2. (2.3)

8=GP g
=4MyG)2.

Then we can write (for rrt '«E' E")

8[(pr+ p2 —pr —p2 )'—s)

(2.4)

=8[g—2 (1+COS 8') (E2+ 248 Eos) —S$, (-2.—5)

where

COS 8' =p, ' p2' = —COS 82' COS 82'+ Sin 82' Sin 82' COS q '.

(2.6)

In the region where cos 8 1 (i =1, 2), which gives
the dominant contribution to the two-photon process,
we have 8 s and cv and q can be identi6ed as the energy
and momentum of the produced system X.

In terms of the new variables ar and 8, the 8 integra-
tion can be carried out immediately and the required

To exhibit the s dependence of the cross section, it is
convenient to rewrite (2.1) by introducing the factor
h[(kr+k2)2 —sj in its integrand and integrating the
result over the variable s.

Ke shall introduce the variables co, q, and 8 by

~,=E—E,'=-'2(~+q)

co2=E E2 = 2(co q)

invariant lepton phase space becomes

dpi dp2
8[(ps+ P2

—Pr' —P2')' —sh = 2~
2

with

E+s/4E d~ E sE s8(~2 8 )Z ', '
', , (2 7)

I q I 2-+i i
1—-'(1+cos 8') '

si=cos ~i y

I q I

= (co2—gp) '/2

i=i 2

(2 g)

da- e2 2K

dory de
dsdI' Sx'

E+s/4E d~ / 1 )2

Iq81/2

Er'E2'8(4o2 —gp)
X (22r) 484(kr+k2 —P) E' 1—-', 1+cos8'

X (ps"pr "+pr "pr"+ 2kr'g"")

X (p2™p2'e+P2'"p2e+2k2'g e) e~„u'~so. (2.10)

In practice, the four-dimensional integration can be
handled in a straightforward manner by numerical
integration.

So far, we have obtained the exact formula (2.10)
for the differential cross section do/dsdP expressed by
the integration with the directly measurable variables
x~, x2, y' and Low's variable cv, starting with the
manifestly covariant expression (2.1) . There is another
way to derive many useful formulas for the two-
photon cross. section. Many authors [Brown and
Muzinich (1971), Carlson and Tung (1971), Budnev,
Chernyak, and Ginzburg (1971), Terent'ev (1971c),
and Starke (1972)) have expressed the same cross
section in terms of helicity amplitudes. Their way of
doing this is the following: (1) Choose the "brick wall"
frame where kr = [0, 0, 0, (—kr ) '/'j and express the first
leptonic tensor (P,oP,'"+Pr'oPr"+-2'kPgo") in terms of
the O(2, 1) variables. (2) Proceed likewise for the
second leptonic tensor. (3) Decompose the central part
M„M„p into independent helicity amplitudes dered
in the center-of-mass system of the two virtual photons.
(4) Finally, combine these three pieces into one by

4 q= [ q [ or —
) q ~

depending on dr .

8'p ——[s+2(1+cos 8') (E'—Eco) j/[1 ——,'(1+cos 8') j.
(2.9)

The upper limit on u is determined by the condition
that Er' and E2' are positive (&rr4). Notice also tha't Rp

attains its minimum value s; =s for cos8'= —1 or
os= E+s/4E.

Apart from the omission of the MflHer interference
term (or the Bhabha term) and the approximation
m,2«E2, 8", the cross section for the production of
C=+ states by electron —electron collision is therefore
given by5
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making use of the O(2, 1) boosts. Their expressions for
the two-photon cross sections have two advantages.
The first is that it is easier to derive the equivalent-
photon approximation formula from them. The second
is that, in some cases, orie can more easily perform
additional integrations over the 0 (2, 1) variables
analytically. In fact, this turns out to be the case in
calculating the diGerential cross section for massive
muon-pair production in hadron —hadron collisions,
which we shall discuss in Sec. XV. Until then, we will
continue to use the more straightforward formulas
given in this section.

III. EQUIVALENT-PHOTON APPROXIMATION

The equivalent-photon method is a useful technique
for obtaining the leading high-energy behavior of
electroproduction cross sections in which the scattered
electron is either undetected or detected only if it is
scattered into small forward angles. This technique,
which can be traced to early work by Fermi (1924),
Weizsacker and Williams (1934), and Landau and
Lifshitz (1934), gives the general connection between
electroproduction and photoproduction cross sections.
A corresponding treatment in terms of Feynman dia-
grams has been given by Curtis (1956) and by Dalitz
and Yennie (1957). We shall briefly review the formulas
required for our present application.

Let us take, as an example, the production of the
state I in e—p collisions. Then the electroproduction
cross section integrated over the final-electron phase
space can be written as

d p tv gap

2~2 EE'k2 k2

X (p~p"+ p"p.+ 'k'g~) 'M"'M«-I'-

contribution of the transverse-current terms to (3.1) is

(n/2n-') f (d'p'/EE') (1/k')'-', Q M;tM; dI'

which becomes
X (—-'k% "+2p.p.) (3 4)

d0 ey~ex' (0) (de/oi) iV((o) do „x(io), (3.6)

where co= E—E' and

iV(io) =, (2ir) , 2io'E' ti'1 &'

E &k')

( E2EI2
X

I

——i."+ sin'e')
k2

n E'+E" ( E (E—E')'
~

ln ———',

E' ( m,
' 2E2

2E' (E+E') ' 2E'

E E' 2E—' E+E'

in the limit m,«E. The origin of the leading ln (E/m, )
contribution is the logarithmic dependence of the 0'

integration near 8' 0, where

X L
—-', k'+ (E'E"/k') sin' 8') (3 5)

when average over the azimuthal angle y' of p'; cos 8'=
p p'. If we approximate ~ g; ~

M; ~'dI' by its value
(3.2) on the photon mass shell (k'=0) and ignore the
longitudinal contribution, then we obtain the
equivalent-photon-approximation result (Curtis, 1956;
Dalitz and Yennie, 1957)

dl'= (2n.)484(k+ p —P) dI', (3.1)
—k' 2EE'(1—cos 8') +Lm '(E E') '/EE' j. —(3.8)

where p, p' are the initial and final electron momenta,
k is the photon momentum, and I' the total momentum
of the state X. In this and the following formulas we
ignore the electron mass m, whenever it is safe to do so.
For k'= (p—p') 2—+0 we can identify

lim (—i,M„tM"dI') =2(Ao„o x, .
k2~0

(3 2)

where der» ~ is the corresponding photoproduction
cross section for real unpolarized photons of energy u
directed along the electron beam direction.

It is convenient to perform the photon polarization
sums in the radiation (Coulomb) gauge. Thus we shall
make the following substitution in (3.1):

gp./k'~( go.go./k') Z— (g'pg*.ik'—) (3 3)
i=1,2

The polarization directions i are orthogonal to k. The

Note that the leading ln (E/m, ) contribution arises
only from (3.6) and not from the Coulomb excitation
(scalar photon) term or the remainder terms of the
transverse cross section which are not singular at k'= 0.
Therefore, unless the Coulomb excitation current is
anomalously large or the transverse cross section has an
anomalous dependence on k2, the equivalent-photon
contribution dominates for ln (E/m, )))1.

Although we have found the Coulomb gauge the most
convenient for our purpose, the same result can of
course be obtained in any gauge.

We shall now apply this equivalent-photon method
to the two-photon cross section do /see (2.1)j. Ac-
cording to the method reviewed above, the leading con-
tribution to do can be obtained by (1) performing the
photon polarization sums in the radiation (Coulomb)
gauge, (2) retaining only the transverse-current con-
tribution, and (3) approximating the transverse current
and the phase space df' by their values at ki'=k/=0,
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gg' =82' =0:

Z (2P 'P ' l~—'a") (2P 'f'" l~-'C'-)
i,j,l,m 1,2

d~(o}—where we have averaged over the azimuthal angles
pl', 2'2', and do.» x is delned by (2.2). Under these
approximations the phase space d I' loses all terms
correlating the variables 81', yl' and 82', 2'2'. )The sup-
pression of this correlation is an unavoidable feature
in the simultaneous application of the equivalent-

M] G)2

as the leading approximation to the C=+ cross section,
where s=4~1~2 and X(&v) is given by (3.7).

If we introduce the variables &a, q Lsee (2.4) 7, we ob-
tain from (3.10) (putting B=s)'

photon method to both electrons. It introduces an
additional complication in this method whose effect is
hard to evaluate. (See Sec. VI for a more detailed dis-
cussion on this possible defect of the method. ) 7 The

Ifp'pl" »n 81', ,lI integrand of (2.1) also reduces to a product of two

kp
2 '

i factors, one a function of 81' and the other a function of
82'. The integrations over the angles (81', 2'1') and

I/p'y2" sin' 82', ,'I ( )
(82', q2') of the scattered electrons can thus be carried

dGgy dGDg

X(s)l)E(cu2) do» x(s) (3.10)

where
E+'t~ d(u fE'+El 2'1 E'+E2"&

lt2 I fl & E' i E' i
= (2+v') ' » (1/&) —(1—v') (3+v')

E+s/4E d" ~+E I2

IqI E' e(E2')+term with 1~2,

f(v) =

dsdr, „2 I q I
dr

n ' E,'l2 «» x(s)» ——l I f('r)+» ——l Ig(v)+&(v) s-'
m, ] dry

(3 ~ 11)

t&y d$2

8(~ —Bo) p pl S1I1 81 t'p p2 siI182

1—2 1+ cos 8' kP & k22

E+8t|4E

k(r) = e(EI') n(E2'), (3 ~ 12)

and r=s't2/2E. Here N(E') denotes the last two terms in the square brackets of (3./) and vanishes for E'—+E.
The result (3.10) gives the relationship between the electron —electron collision and two-photon collision cross

sections for the production of C=+ states in the equivalent-photon approximation. The remainder of the cross
section /from the difference of (2.1) and (3.10)7,'

n' E+tt/4E d p ~g I
y 2

d'0 (1} L(Pl Pl +Pl Pl+2~1 g ) (P2 P2 +P2 P2+2~2g )
,i(2 I q I

~ 4'42

can yield only a single power of ln (E/442, ) since the
surviving contribution /from Coulomb excitation
(scalar-longitudinal current contribution) and deviation
of the transverse cross section from its value at k~' =
k2'=0, 81' ——82' ——07 is not singular when both kP and
k22—+0. Thus the equivalent-photon term do.~o} dominates
for large E/m, provided there are no anomalous
enhancements from the scalar current or variations of
cross section with photon mass. The approximation

(4212/ E 12 4E ds

kiri & srt,i,4R s

X „x(s)f(s"'/2E) (3.14)

is thus justified to order Lln (E/m. )7 ', where slh

is the threshold value of s, and f is defined in (3.12).
We shall now discuss the angular spread of emitted

(virtual) photons and scattered electrons. For this
purpose we have to go back to the stage prior to (3.10)
in which the integration over the angles 8~' and 8~'

of the scattered electrons has not yet been carried out.
It is easy to see that, for the small angular region, the
di flerential cross section depends on the photon emis-
sion angle 8~ or the electron scattering angle 8' as

dylan

8 2+(~/E)" 82+LE.(E—E )/EE 72
' (3.15)
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respectively. LAlthough the second formula seems to
lead to a ln (E—E') singularity, it is actually sup-
pressed in the complete expression. See Eq .(3.7).)
Thus, roughly one half of the cross section comes from
the angles

8„8'&(m, /E) '", (3.16)

and roughly three quarters comes from 8», 8'& (m, /E) 't',
etc. This spreading of the virtual photon beam is
expected to introduce errors of order (m,/E)'" in the
angular distribution of produced particles, Thus the
dominant contribution to the process e+e~e+e+X
can be represented as photon —photon collisions of two
oppositely directed bremsstrahlung beams each of
virtual radiator strength 1V (2n/tr) ln (E/m, ) and
beam angular divergence (m, /E) 't2.

It is easy to extend our considerations to the case in
which either or both electrons are detected scattering
into the small forward angles

8,', 8,'&8, , (m,/E) '«8, '«1. (3.17)

In the equivalent-photon approximation, the cor-
responding cross section is given by the formula (3.10)
if We replaCe 1V(to) by

n E'+E" t' E8 .„
lV (to~ 8m on

(e2g.s»») 2=42rI'. s „/m ', (4 2)

where m is the mass of the x', I" o„yp=7 o ' is the
~o~y decay width, and

o» o 8»r2(P o ——»/m )8(s m') —(4.3)

is the narrow-width production cross section of ~'
production at k12= k22 =0. LIn the case of spin-J
production there is an additional factor of 2J+1 in
Eq. (4.3)). Thus the leading term of the total cross
section for e+e-se+e+n' in the equivalent-photon
approximation is (Low, 1960; Parisi, 1970),

16m'I' o ~~ E
o i'&=, '

ln ——-',
l f(y)

me

order to see how well the equivalent-photon approxima-
tions are justi6ed in practice. We take as the e6ective
Lagrangian for'the m yy coupling

Z.s»» ———(e2g.s»/2!) y.se"s"F„„F„„, (4.1)

where @ o is the neutral-pion field and F„„is the electro-
magnetic 6eld strength. The interesting problem of how
to determine the coupling constant g theoretically will
be reviewed in Sec. VII. However, g can easily be deter-
mined experimentally by

(E—E')' f 2E' ! (E+E')'ln, 1E E, &I 2E,

2e
Xln

D E E')2+EE'8— 3.18

which is obtained by restricting the domain of integra-
tion to 0&8'&8, in (3.7) (Brodsky, Kinoshita, and
Terazawa, 1971b) . In the case 8;„&8'&8,
L(m./E)'«8; 2), lV(to) should be replaced by
1V(co, 8, ) —1V(co, 8;„).Note that the correction term
doul given in (3.13) vanishes as O(8,„2). Thus, the
equttalertt photort result ap-proaches the exact cross section
in the case +here both scattered electrons are detected
2oithirt smail forloard artgles L & (m, /E) 't2~1.3' for
E=1 GeV). Of course we have assumed here that the
scalar-longitudinal current contribution is not ab-
normally large:

8msx l ~long l &&l &trans l

The effects of the kinematical cutoff H,„on effective
cross sections in experiments have been investigated in
detail by Arteaga-Romero, Jaccarini, Kessler, and
Parisi (1970, 1971b) .
IV. TEST OF VALIDITY OF EQUIVALENT-PHOTON

APPROXIMATION IN NARROW'-
RESONANCE PRODUCTION

The simplest example of hadron production by
electron-electron collision is the narrow-resonance
meson production of a single vr, g, g', etc. We shall first
consider the case of ~ -production in some detail in

k12k22+1 4+22+ m 2/3

131 (4pl p2
—2pl k2 —2p2. kl+——kl. k2) + (kl'k2)'

—kg'k '—16m,4,

B2—(pl p, ) (kl.k2) —(pl k2) (p2. k—l),
83—kl (2p, .k, —kl k, ) '+ k,'(2p2 ' kl —kl k2) '

+4m, '(kl. k2) '. (4.6)

64o.'I 0 E &' 2g
ln —

l
ln —+, (4.4)

m~' mi m

from (3.11) and (4.3) where y=m /2E. The g(y) and
h(y) terms contribute less than 0.5% (Grammer,
1972) at E=2 GeV and can be neglected. The result
using I' o »=7.8 eV is plotted in Fig. 3, see also
Table I. It should be noted that the present experi-
mental error in P o „„ is &0.9 eV (Particle Data
Group, 1972) .

This equivalent-photori approximation result can be
compared to the exact fourth-order calculation
(Brodsky, Kinoshita, and Terazawa, 1971b). The
quantity

(pl pl +pl pl+2kl g ) (p2 p2 +p2 p2 +2k2 g )

X M„~tN„pdI"

in the integrand of (2.1) can be written in this case as

2(e'g ~ )'
l
F l'8&(22r8L(kl+k2)2 —m '), (4.5)

where
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TABLE I. The total cross sections for the colliding-beam production of m, p, p+p, e+e, ~+~ . Exact, f.f., and e.p. refer to the cross
sections calculated without form factor, with the form factor (4.9), and in the equivalent-photon approximation, respectively. All the
values have been taken from Brodsky, Kinoshita, and Terazawa (1971b) except for the H values which are slightly changed by the
new experimental data for F &». The values in ( ) are the recently improved results of Grammer and Kinoshita (1972) and those in

[ g and { } are the exact results of Brown and Lyth (1973) and of Bonneau and Martin (1973), respectively.

E(GeV)

Process 0.5 1.0 1.5 2.0 2. 5 3.0

O~t, g(10 "cm')

ee~eew (exact}

ee—+eel (f.f.)
ee—+eel (e.p.)
ce~eert (exact)

ee-+eel (f.f.}
ee-+eeq (e.p.)
epee@,+p (e.p.)

.ee~eew+m (e.p.)

ee~eee+e (e.p.)
e+e ~p+p
e+e ~~+~ (pointlike)

0.30

0.28
0.25
0.067

(0.068)
0.062
0.086
8. 1

{5.3}
0.46

5.5X106
87
22

0.57
(0.54)
0.54
0.48
0.32

(0.29)
0.27
0.32

18.7
{15.4}

1.37
[0.97)

7.3X10'
22
5.4

0.80

0.71
0.63
0.56

0.46
0.54

29

2.2

8.4X106
9.7

2.4

0.96
(0.7/)
0.86
0.77
0.77

(0.62)
0.63
0.70

38
{32}

2.9
[2.1]

9.5X106

1.36

1.12

1.00
0.87
0.98

0.79
0.89

45

3.5

1.02X10'
3.5
0.87

1.25
(0.91)
1.07
0.97
1.16

(0.95)
0.92
1.00

50

4. 1

1.09X107
2.4
0.60

FIG. 3. The total cross sections for the
colliding-beam production of m' and g.
EXACT. , F.F., and K.P. refer to the
cross sections calculated without the form
factor, with the form factor (4.9), and in
the equivalent-photon approximation, re-'

spectively. All the curves have been taken
from Brodsky, Kinoshita, and Terazawa
(1971b) except for the ~ curves which
are slightly changed by the new experi-
mental data for F &».
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OI—

e'e
(PO

E.P. )

ACT)

0.5 I.O l.5 2.0 2.5 3,0

E (GeV)
FIG. 4. The total cross sections for the colliding-beam produc-

tion of x0, y, m+m, and p+jg . The cross sections for ~ and g are
exact and without form factors. The two-photon cross sections
for 2i-+71- and p.+p, are calculated in the equivalent-photon ap-
proximation. All the curves have been taken from Brodsky,
Kinoshita, and Terazawa (1%11) except for the mo and q curves
which are taken from Grammer and Kinoshita (1972) and slightly
changed by the new experimental data for r.o ».

(a) F=1
and

(4.8)

(b) F= (1—kt2/m ') '(1—kr2/m ') ' (4.9)

as suggested by p dominance. It is seen that the
equivalent-photon approximation underestimates the
total cross section by 20-30% for 1&E&3 GeV.
However, the exact result is reduced considerably when
the effect of the form factor (4.9) is taken into account.

The discrepancy between the equivalent-photon and
exact calculations can be traced to the contribution to
the total cross section of relatively large electron scat-
tering angles. Note that for 8„)(m,/E)'~4 ( 12' for
E=1 GeV), which still contains approximately 25%
of the total cross section (see Sec. III),

l

k'
~

is larger

The factor F is included in (4.5) to represent a possible
form-factor dependence of the cross section on the
photon masses:

F=F(kt2 k22) with F(0, 0) =1. (4.7)

The theoretical interest of this form factor will be
discussed in detail in Sec. XIV.

In Fig. 3 (see also Table I) we have plotted the
result for 0„,. o obtained by numerical integration of
(2.10) with (4.5), assuming the cases

than m '. The equivalent-photon approximation is not
expected to work well in this region since, roughly
speaking, it can be regarded as an expansion in k'/m '
as well as in k'/E'. For the same reason this approxima-
tion is more reliable for the production of more massive
states such as rt and rf'. The exact (with and without
form factors) and approximate total cross sections for rt

production are shown in Fig. 3, see also Table I. We
have used m„= 0.549 GeV and P„»=1.0 keV (Particle
Data Group, 1972).

Thus, as far as present predictions of C=+ hadron
production by electron —electron collisions are con-
cerned, the equivalent-photon approximation is ade-
quate since errors due to lack of knowledge of coupling
constants, form factors, etc. , are much more serious. Of
course, the detailed fitting of the decay width and the
possible determination of form factors and longitudinal
current contributions (from large-angle electron scat-
tering) to resonance production will require the com-
plete result. For the latter purpose, however, it is
strongly recommended that both scattered electrons be
detected and that k~' and k2' be measured for each
event (see Sec. XIV).

Another possible explanation of the discrepancy
between the equivalent-photon and exact results,
which cannot be dismissed at present, is that, whereas
the leading Pln (E/m, )j' term is given correctly by the
equivalent-photon method, the exact cross section con-
tains a contribution linear in ln (E/m, ) with a large
coefficient, e.g. , Lln (E/m ))', and/or a contribution
cubic in ln (E/m ), which cannot be evaluated by the
equivalent-photon method; Bonneau, Gourdin, and
Martin (1973),in their recent paper, have shown that a
term containing Dn (E/mx) j' always appears even in
the transverse-transverse (T—T) contribution to the
cross section for fixed mx (=s'~2). Their result for
do„,.x /TdsTis proportional to

2 4E')' t' 4E' ' s 'I

+ ~

ln ~(ln, ), (4. 10)

in which they find that the leading Lln (4E'/s) ja term
for 4E'/s&)s/m, '))1 has a coeKcient am instead of the 1
which the leading Dn (4E'/m ') ]' ln (4E'/s) term has
for 4E'/m, m&)4E'/s»1. However, this does not mean any
contradiction with the equivalent photon approx-imation
in which the latter condition 4E'/mP»4E'/s»1 is
always assumed. In fact, after rearranging their result
(4.10) into'

Pln (4E/m ') jLln (4E'/s) j—atfln (4E'/s) j', (4.11)

we can clearly see that it is consistent with the equiva-

' The author is indebted to Dr. G. Grammer and Professor T.
Kinoshita for discussion on this point.
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lent-photon result when the condition 4E'/m, '»
4E'/s»1 is satisfied. Furthermore, the equivalent-
photon condition 4E /m, '))4E /s&&1 is more practical at
present accelerator energies than is their condition
4E'/s)&s/m, s))1. The second term in (4.11) is less
than 4% of the first term for E= 1 GeV in the case of
srs production (s=m ').

Recently Grammer and Kinoshita (1972) have im-

proved the numerical calculation of the total cross
section for m' and q productions and found that agree-
ment between the exact and equivalent-photon ap-
proximation results is much better ( &10%%uo) .We quote
their results in Table I and Fig. 4.

See also a latest work by Subbarao (1973) who refined
the approximate formula (3.11) up to the single
logarithm in E/m„ including the longitudinal —trans-
verse components.

Very lately Bonneau and Martin (1973) have
greatly improved the equivalent photon approximation,
including both the longitudinal —transverse and longi-
tudinal —longitudinal contributions. Their almost exact
results for the total cross sections for x and q produc-
tions agree with the previous exact results by Brodsky,
Kinoshita, and Terazawa (1971b) remarkably well.

A further discussion on narrow-resonance production
by the two-photon process, especially concerned with
its theoretical aspects will be given in Secs. VII and
XIV.

V. TWO-PHOTON CROSS SECTIONS FOR ~+~
AND p+p, PRODUCTION IN THE

EQUIVALENT-PHOTON
APPROXIMATION

e+e~e+ e+ tt++ ts (5 2)

by colliding electron beams. The analysis of x produc-
tion described in Sec. IV shows that the important
features of the sr+sr (or ts+ts ) production cross section,
except for the coplanarity of pion (muon) pairs to be
discussed in Sec. VI, can be investigated with reasonable
accuracy by means of the equivalent-photon method.
We shall therefore restrict ourselves here to this
approximation, leaving the exact calculation to the
following section.

A. Total Cross Sections

Calculation of the two-photon total cross section for
muon pair production is straightforward in the equiva-
lent-photon approximation. We simply have to sub-
stitute the total cross section for the p+p, pair creation

In this section we shall discuss the two-photon
production of a x+x or p+p, pair

e+e~e+ e+ sr++ sr (5.1)
or

by two y's, '

4srns (
„+„-(s)= i 2+

s

8m„' 16'„4
s s

into the formula (3.14). The result of the numerical
calculation (Brodsky, Kinoshita, and Terazawa, 1971b)
is plotted in Fig. 4 (see also Table I) . This cross section
exceeds the one-photon cross section 0,+; „+„-,which
is equal to

(srn'/3E') $1—(m '/E') j'"tt1+ (m '/2E') ]
for E &1 GeV. For very large E/m, we have~

o„„„+„(E)(11-2n'/9sr) (1/m„')

X Lln (E/m, ) j' ln (E/m„). (5.4)

Note also that in the energy range shown in Fig. 4,
the ts+ts -production cross section (for both one-photon
and two-photon processes) is an order of magnitude
larger than any process of hadron production. Since the
muon is pointlike as far as has been tested experi-
mentally, this cross section is undoubtedly the most
reliably known of the cross sections shown in Fig. 4.

The evaluation of the total cross section for pion-pair
production is not as simple as is that of the muon case
because of the strong interaction in the final state. In
fact, the reaction (5.1) is the ideal process for studying
the interaction in C=+ states such as the o. and f
resonances. However, we shall postpone the considera-
tion of hadron physics until Sec. VII and, for illustra-
tion, first treat x+ and m as pointlike charged particles
without strong interaction. There are two reasons for
doing this: (1) Such a calculation serves as a reference
point of hadron physics because the eBect of strong
interaction in the final state can be determined as the
deviation of the cross section from the one calculated
here. (2) For E around 1 GeV, our calculation will in
fact give a reasonable estimate of the actual cross
section for x+m production. This is because the small-s
region near the threshold is not too far removed from
the threshold region of the elastic photon-pion scat-
tering, where the exact value of the cross section is
determined by the low-energy theorem for Compton
scattering, and because the contribution of o» + -(s)
to the integral (3.14) is heavily weighted towards the
low-s end.

If we accept this picture as a first approximation,
then o» + — can be calculated from the Born (in-

7 See Akhiezer and Berestetskii (1965), p. 450.' This result is larger by a factor of 3/2 than the result of
Akhiezer and Berestetskii (1965), pp. 454 and 484.
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Fto. 5. The cross section d0./dQ~ for
the process e+d—+e+e+m++m calcu-
lated in the equivalent-photon approxi-
mation for E=1,2, and 3 GeV (Brodsky,
Kinoshita, and Terazawa, 1971b). For
comparison, the one-photon cross section
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GeV.
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eluding seagull) diagrams and is given bys

22ra2 4m ' "2( 4m 2&

~„.-. .-(s) = 1—
I
1+

s s 1 s

8m~2 / 2m~'l s'" f s
+Is ( s j 2m &4m '

In Fig. 4 (see also Table I) we show the energy de-
pendence of the total cross section for the colliding-
beam production of the x+x pair calculated from
(3.14) and (5.5) in the equivalent-photon approxima-
tion. For the pointlike pions and for E& 1..5 GeV, this
cross section exceeds the usual one-photon cross section
a, +,— + —,which equals

(1ra'/12E') L1—(m~'/E2) 721'.

For very large E/m. we have

o„„+-(E)~(16a'/92r) (1/m. ')

X I
ln (E/m, ) 7' ln (E/m ) . (5.6)

B.Angular Distributions

%e shall now discuss the angular distribution of the
produced pair (Brodsky, Kinoshita, and Terazawa,

9 This expression is smaller by a factor of 2 than that in Akhiezer
and Berestetskii (1965), P. 844 LE1i. (60.7) g.

X
(1—m '/Wt') sin' 81 cos' 81+m '/W12

L1—(1—m /wts) cos 817

and

s W' —4
(5 7)

1 (1 m 2/W12) co$2 81

do». /d01 .(a'/2s) -L1——(—4m '/s) 7'"G (W1, 81),

2m'f m'l

sin' 8
(5 g)

Ll —(1—m '/W12) cos'817'

where W1 is the energy of i1+ (or 2r+), and 81 is the angle
between one of the incident photons and an outgoing p+

'0 See Akheizer and Berestetskii (1965), p. 843. The last term
in G„which disappeared in the center-of-mass system of two
photons should be kept here.

"See Akhiezer and Berestetskii (1965), p. 450.

1971b). For this purpose we need the differential cross
SeCtiOnS far y+y —+p++It2 "and y+y —+2r++2r

do» „+„/dQ& (a2/2s) -L1———(4m„'/s) 7'"G„(W1, 81),
m2

G„(W, 8) =2+4 (~—
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IQ

Fro. 6. The cross section do/dQ|d8,
for the process e+e-+e+e+~++~ calcu-
lated in the equivalent-photon approxi-
mation for E=j GeV and 81——5.7', 30',
and 90' (Brodsky, Kinoshita, and Tera-
zawa, 197ib) .

O

CU

E

tO
I

D

CV

Csa

10 2.

I Q
0

I

30
I

60
I

90
82 (deg)

'~

I

120
I

150 I SQ

(or sr+) in the photon —photon center-of-mass system.
Before we substitute these cross sections into (3.11),we
have to transform them from the photon —photon center-
of-mass system to the electron —electron center-of-mass
system. For this purpose it is useful to note that
G„(Wr, 8r) and G (Wr, 8r) are form-invariant under the
Lorentz transformation along the beam direction. Thus

we have only to reinterpret Wi and 8r in G„(Wi, 8r) and
G (W&, 8&) as the energy and angle of ts+ (or sr+) in the
laboratory frame (i.e., the electron —electron center-of-
mass system) . In this way we can derive various differ-
ential cross sections from (3.11).Of particular interest
are [the superscript (0) refers to the equivalent-photon
approximation as in (3.10)j

do„„„+ "& 8n E&-' ~' ds o dq (E'+Et") (E +Es")
In —

I

— —G (Wr,8r), (5.9)
dQy 7I 558) 4~ 2 S — Gl 4E4 [s'—4m s(cos—q' cos' 8r) )'" '

with

q =E—s/4E M —(qs+ s) 1/2

sq cos 8&+oo[s' 4m '(co'——q' cos' 8&) J't'

2 (co'—q' cos' 8&)
Wr=(I qr I'+m ')"' (5.10)

«-..-.--&'& 4~' & E &'
'

ds (E'+Er")(E'+E")
I q. I'

I q. i »n (8.—8)
, I

ln —
I —,G.(W„8,)

&rd8s srs & m, i e .s s' 4E4 q[&oWr sin'8r+&oWs sin'8s —WrWs sin' (8s—8r)j '

(5.11)
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Fro. 7. The cross section do/dO&des
for the process e+e—+e+e+m++x calcu-
lated in the equivalent-photon approxi-
mation for E=2 GeV and 8~ ——5.7', 30,
and 90' (Brodsky, Kinoshita, and Tera-
zawa, 1971b).
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for 8~&82 with,
at= Lstn Ht/stn (8s—Ht) )', as= Lstn Hs/stn (8s—Ht) )',

2{at ass' —m 'La +as —(ar —as) ')s+m~'}'"—(at+ as—1)s—2m '
g

=
4atas —(at+ as —1)'

qt I

= q sin Hs/sin (Hs 8&) I qs I

= q sin Hr/sin (Hs —Hr),

~s= (I qs Is+m s)»s 2

8~ and 82 are the angles of x+ and ~ with respect to the
electron beam direction. Other notations are defined
in Fig. 2. We can use the symmetry property
do (s.—Ht, s —Hs) = do (Ht, Hs) in order to obtain the cross
section for Hr) Hs from (5.11).Cross sections for muon
pair production (5.2) are obtained by replacing
G (Wt, Ht) with G„(8't, Ht) in (5.9) and (5.11).

In Fig. 5 (see also Table II) we show the cross section
do„„+ -ts~/dQt calculated from (5.9) for E= 1, 2, and
3 GeV. lt is clearly seen that the pions are produced
predominantly in the beam direction. For comparison,
the one-photon cross section da, +.— + -/dQt is also
shown for E= j. GeV. What should be emphasized

here is the following: Suppose we detect produced
pions at E=1 GeV and 8~=30' without observing any
coincidence. Then we can expect to find as many pions
coming from the two-photon process as from pion-pair
creation through the one-photon annihilation even if
pions are assumed to be pointlike. In practice, we can
ignore pions pair-created by the one-photon process at
this energy in this type of experiment and, instead, have
to worry about pions from multiple-particle production.
However, one can set up appropriate counters to detect
the mere presence of the scattered electrons without
losing the large cross section (do,. „+ -/dOt 10 "
cm'/sr) .This is one of the simplest experiments to Gnd ev-
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10

10 I

Fxo. 8. The cross section dr/dDId82
for the process e+e-+e+e+m++m calcu-
-lated in the equivalent-photon approxi-
mation for E=3 GeV and 01 ——5.7', 30',
and 90 (Brodsky, Kinoshita, and Tera-
zawa, 197lb) .
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idence of hadron production by the two-photon process.
In Figs. 6-8 (see also Table III) we show the cross

section do„„+~-&o&/dQId8s calculated from (5.11) for
combinations of 8~——5.7, 30', and 90' and E= 1, 2, and
3 GeV. One observes a strong tendency for the pion
pairs to be produced with a rather narrow opening angle

(8I+sr—8s) . That is, the pion pairs tend to emerge in a
strongly noncollinear fashion. This is in contrast to the
pion pairs produced in the one-photon process, which
must be exactly collinear.

For comparison we also show in Fig. 9 do„,.„+„-fsl/dQI
and do„„„+„-&sI/dQId8s in Fig. 10 for E= 1 GeV which

TABLE II. The cross section do/dQ& for the process e+e~e+e+s'+s calculated in the equivalent-photon approximation for 8= 1, 2,
and 3 GeV (Brodsky, Kinoshita, and Terazawa, 1971b) .The one-photon cross section do,+,— + —&"~'»~'/dQ& is also given for E= 1 GeV.

81 (deg)

(GeV) 1.0 5.7 17.2 22. 9 30 60- 90

do„„+-/d01 (10 '4cm'/sr)

1.0
2.0
3.0

15.2
85

191

10.3
37
49

5.6
13.6
21

3.6
7.6

10.6

2.3
4.6
6.4

1.62
3.1

4.2

0.58
1.02
1.28

0.44
0.75
0.93

1.0 2.0X10 '
do, +,—,+ —(pointlike) /d'Q& (10 ucm'/sr)

0.065 0.26 0.57 0.99 1.62 4.9 6.5
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FIG. 9. The cross sections d~/dQ~ for
the process e+e+p.++p calculated in the
equivalent-photon approximation for
E=1, 2, and 3 GeV (Brodsky, Kino-
shita, and Terazawa, 1971b). For com-
parison, the one-photon cross section
do.+; „+„—/dfh is also shown for
E=1 GeV.
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show a similar peaking in the beam direction. For
details see also Tables IV and V."

C. Bias Factor

The figures for the various cross sections shown above
are somewhat misleading because they do not take

explicit account of the diminishing phase space as the
pions approach the beam direction. In order to evaluate
this effect and also to exhibit some of the features of
these cross sections more clearly, let us examine the
cross section (Brodsky, Kinoshita, and Terazawa,
1971b)

da; „+ f'& t'2a. ls (-E ' s- dq (E'+Et's) (Es+Es's)
ln — —8 s' —4m~' rs' —q' cos'8

dsdQ, &s. i ( m, ,„n 4E'

)& 1—4sis ' s -'~'„do» + —
I sq cos 9+a $s' 4m '(( —' q' cos' 8—) /Is}'

5.13
dQi s(to' —q' cos' 8)'Ls' —4m~'(re' —q' cos' e)$"'

This expression becomes considerably simpler in the and
region

q;~&&m 2) i=j 2 (5.15)
oP«E2, (5.14)

where we can ignore the complications from the pion's
velocity. Then do» + -/dQi becomes isotropic in the
photon —photon center-of-mass system and hence
I-independent for fixed s, where u=q/to is the velocity
of the photon-photon center-of-mass system as seen in
the laboratory frame (namely the center-of-mass

where we can simplify the virtual-photon distribution,

'~ We wish to thank Dr. Ronald Madaras for calling our atten-
tion to errors in Tables IV and V and Figs. 15—18 in the pre-
liminary version of Brodsky, Kinoshita, and Terazawa (1971b).
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Fxo. 10. The cross section der/d01d82
for the process e+e—+e+e+p++p, cal-
culated in the equivalent-photon ap-
proximation for E=1 GeV and 81——5.7',
30', and 90' (Brodsky, Kinoshita, and
Terazawa, 1971b).
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system of incident beams). Thus Eq. (5.13) reduces to produced at large angles, we can define a bias factor

d„.... (f2 ))
dsdQi k n i nt. i

Gtitt(s) = d0 ee~eex'
dQ

zo dsdQ

daee~eex' +fl
5.17

ds 4n
'

X
p„(1—u cos tt) ' dDi

f2 ~'( E ~ 2

En& ( m4i s —xone cos 84xp 0(xp& 1, (5.18)

which gives the ratio of the e%ciency of detecting
events in a given solid angle AQ compared to the
eKciency of detecting events in AQ if the events were
isotropic in the laboratory. For the usual experimental
arrangement with symmetry in the p coordinate, and
for

s der
X

1—I 2cos28dQg
4~ p&&s&&4Ep rS 16) the efficiency ratio for the cross section (5.16) will be

dx

where u =(1 s/4E')/(1+s/4E') is t—he maximum
velocity allowed kinematically. It is seen from (5.16)
that the angular distribution is peaked along the beam
direction, with the peaking becoming more pronounced
as the mass s of the system decreases.

In order to understand how this peaking affects
experiments which are usually only sensitive to particles

Xoi—Asst X &f—I 2@2

, ln L(1+u xp) /(1 —u zp) ]
ln L(1+u ) /(1 —u )j

We note that for s large and comparable to 4E' (u «1)
Gtio(s)~1 —iu '(1—.xp') (5.20)
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which is a negligible bias. For s/4E'«1, I
1—2(s/4E') we have

ln [(1+x0)/(1—x0)]
G~a(s)~

x0 ln (4E'/s)
(5.21)

For example, we find

Gzii(s) —0.53 for x0 ——(-;)''(~ 8 ~(45'),
s/4E' = 1/100. (5.22)

Thus, if do.» + —were isotropic in the photon —photon
center-of-mass system, the bias factor is only a loga-
rithmic effect and does not give worse than 50% loss
in the counting rate. Actually, the nonisotropic part
of the cross section for x+m production will be rela-
tively small, as is seen from (5.8), and the above
estimate will not be a6ected too much. For the produc-
tion of the p+p pair, however, the cross section is
strongly nonisotropic and the bias factor would be much
smaller than the above estimate. In both the m+m and
p+p cases, the exact value of the bias factor can be ob-
tained easily by numerical integration.

VI. DEGREE OF NONCOPLANARITY OF
THE x+w PAIR

Brodsky, Kinoshita, and Terazawa (1970) have
pointed out that the m+s. (or p+p ) pair produced by
the two-photon process is approximately coplanar with
the incident beam. This is a simple consequence of the
circumstance that the virtual photons are emitted pre-
dominately in the beam direction and hence the produc-
tion plane defined by the momenta of the photons and .

pions (or muons) also contains the original electron
momenta. However, this kinematical restriction is not
very strong because of the angular spread of order
(m, /E)'~ of the photon beam [see (3.16)]. As we
shall see, the statement that the two-particle production
process (e.g. , e+e~e+ e+s++s. ) produces events
"coplanar" with the electron-beam direction is only
approximate. This approximate coplanarity has been
closely examined by the authors mentioned above
(1971b).

In order to examine this problem let us introduce the
total momentum q of the produced system X:

il = hali+ il~ = lti+ lt2 = —pi —p2 . (6.1)
b"I8

O
~ W

Q

V
V

M

O O

O

O
The angle 0 of g measured from the initial beam direc-
tion is given by

cos tt= II pi'
I
c» ei' —

I
pm'

I
cos e2' I/I il I

0&e&-,~,

(6.2)

where as before cos Hj'= p~-pI.
' and cos 82'= p2. p2'. %e

shall call 8 the "photon-photon axis angle" in the fol-
lowing. We shall also define the "coplanarity angle P"
between the two planes, one determined by q& and pI
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TABLE IV. The cross section do/dQ& for the process e+e—+e+e+ts++ts calculated in the equivalent-photon approximation for P = 1, 2,
and 3 GeV (Brodsky, Kinoshita, and Terazawa, 1971b) . The one-photon cross section do;+,—„„+~-/dO& is also given for E= 1 GeV.

E
(Gev) 1.0 5.7 11,5

0 (deg)

17.2 22. 9 30 60 90

do„„„„+„—/de (10 "cm'/sr)

1.0
2.0
3.0

22
121
290

15.7

52
82

8.6
20
28

5.5
10.8
13.8

3.5
6.4
8.3

2.3
3.8
4.9

0.75
1.28
1.56

0.55
0.89
1.13

1:.0 2. 6 2.6

do.+;„„+„-/d01(10 "cm'/sr)

2. 5 2.4 2.3 1.62 1.30

and the other by p2 and p2, by

(q, xpl) (q, xp, )cos
I
qlx711 I I

qsxus I

(6 3)

Although the coplanarity angle 1P can be defined only
for two-particle productions, the photon —photon axis
angle 8 is general to a/I of the C=+ production cross
sections, including production of a single hadron such
as m or g. It is, therefore, instructive to see how the
cross section for x' and g production depends on 8
(Brodsky, Kinoshita, and Terazawa, 1971b) . In
Table VI we give the ratios of these cross sections
evaluated using the exact formula under the restriction
8&8;„for various cutoff angles 8; to the total cross
sections. It is seen that approximately & of the total
cross section still comes from 8 larger than (re./E)'t'
even though -', of the emitted photons fall in the much
narrower angular region 8~( (rrt, /E)'t', as is seen from
(3.16). It is not dificult to understand this result
qualitatively: In (6.1) the longitudinal components
(parallel to the electron beam) of kl and k2 tend to

cancel each other whereas the transverse components,
which are of order E(214/E)'t2, may add up, leading to
the result 0))0~. Furthermore, since this 0 dependence
of the cross section arises from the spreading of the total
momentum kl+ k2 of the two-photon system, it will be
rather insensitive to the nature of the produced state X.
Thus we may expect to find a similar situation in the
case of x+x or p+p, production.

Ke shall now examine the degree of noncoplanarity
of the m+x pair. For this purpose we have to calculate
a cross section such as do/d|P. Clearly we have to carry
out such a calculation without using the equivalent-
photon approximation since the information on the lp

dependence is completely lost in this approximation
Lsee (3.9) and the remarks which follow j.To facihtate
the computational problem, Brodsky, Kinoshita, and
Terazawa (1971b) have actually calculated the cross
SeCtiOn do/d COS Hid COS 82@, Where 81 and 82 are angleS
which the ~+ and m make with the electron beams.

The cross section do/d cos 81d cos 82dlfr is obtained by
evaluating the matrix elements M„of (2.10) in
perturbation theory. This leads to

do . sr fez'l'
dWI dW2

d COS Hid COS HsdlP 2E (sr j I

where

pl (kl—2ql) ps (kl —ql+qs)
2kl ql —kls

i ql+qs i
S1I181+2S1I181 Sill&pl+21 ~1 (kpks)

pl (kl —2qs)ps (kl+ql —q2)
'

2k'. qg
—kg'

(6.4)

(kl ql) p2' (kl ql+q2)
2k ~ —k'

(kl —2ql) ps ~ (kl+ql —
qs)

'
2k'. q2

—kg'

(kl ql+ q2) pl ' (kl 2ql)
4 2 Pl

2k' qg
—kg'

4(kl —2ql) ~ (kl —ql+ qs)

2k'' gy
—ky

(kl+ql —qs) pl (kl —2qs) '
2k' '

g2
—ky

(kl —2q, ) '(kl —ql+ qs)
'

(2kl ql —kl')'

4(kl+ql q2) ' (kl 2q2)

2kj qp
—kg'

(kl+ql q2)'(kl —2qs)' 2(kl —2ql) ~ (kl —2qs) (kl —ql+q2) '(kl+ql qs)

(2kl qr
—kl')' (2kl ql —kl') (2kl qs

—kl')
(6.5)
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TABr E V. The cross section der/d01dB. for the process e+e~e+e+ p++p calculated in the equivalent-photon approximation for B&
——5.7',

30'. 90, and E= 1 GeV (Brodsky, Kinoshita, and Terazawa, 1971b).

BI

(«g) 11.5 17.2 35.7 60

B2 (deg)

120 144.3 151.4 157.1 162.8 177, 1

do-„„„+„—/dQ~dB2 (10 "cm'/sr rad}

5.7 4.0
30 0.133
90 0.0123

6.9 6. 1

0.49 0. 79
0.066 0.27

4.9 2.9 1.71
0.79 0.60 0.46
0.27 0.21 0. 144

1.78 2. 7

0.45 0.59
0.124 0. 144

5. 7 6.8
0.98 1.20
0.21 0.23

10.0 15.4
i.41 1.71
0.25 0.27

61
0.70
0.066

Wi, W2 are pion energies defined by (5.10), (5.12), and

p (q+q)
I pi II qi+ q. I

'

cos P

(2E—Wi —Wp) —
I qi+ qp I'—2Ei'(2E —Wi —W2)

2
I

pi' ll qi+q~ I

cos P cos Hi cos Hi+2
cos p»+g =

sin g» sin g»+2

(2E—Wi—Wg)' —
I qi+q2 I'I

2L2E—Wi —Wi+
I qi+q~ I

cos (Hi'~Hi+~) j
(6.6)

The summation in (6.4) is over the possibilities b=+1
and —1 in

, &I qi I'»n'Hi+
I qi+ q. I'»n' 8,+,—I q, I' sin'82)

2
I qi I

sin Hi
I qi+ q2 I

sin H,~i

, I q~ I'»n'Hi+
I qi+ q2 I'»n'Hi+~ —

I qi I'»n'Hi&
~

~

~ ~

&
I

sin 8&
I qi+ q&

I

s'n Hi+&

(6 7)

where q» and y2 are the azimuthal angles of q» and q2,
respectively, with respect to the plane containing p»'

and the incident beams.
In Fig. 11 and Table VII we show the P dependence of

the cross section do/d cos Hid cos Hid/ for typical angles
8»=90, tI2=60') 0»=30') 82=120') 0»=5.7 ) 82=157')

0»= 5.7', 8~ = 174.3' all at E= 1 GeV. It is seen that all
these curves behave approximately as P ' for large P
I )2' (m,/E)'I'j. Similar behavior is likely to be ob-
served for other combinations of 8» and 82. If we integrate
this cross section do/d cos Hid cos 82' over P, the
result can be compared with do. ioi/dQidHi of (5.11)
obtained in the equivalent-photon approximation
where the superscript (0) refers to the equivalent-
photon approximation as in (3.10) . Note that the P i

behavior for (m,/E)'I'&/ &1 leads to a logarithmic
factor ln (E/m, ) in f (do/d cos Hid cos Hid/) dg. Note
also that the relation between this integral and
dai"/dQidHi is not straightforward because a certain
averaging over the azimuthal angles has to be made in
deriving the latter

I
as is seen from (3.5)j. Neverthe-

less this integral and (2m./sin Hi) da. &'&/dQid82 are expected
to be of the same order of magnitude. The results are
shown in Table VIII. The exact results are in fact in
rough agreement with (although somewhat smaller
than) the equivalent-photon results.

The most significant feature seen from Fig. 11 and
Tables VII and VIII is that pion pairs produced by the
two-photon process are much more noncoplanar than
what is implied by the quantity (m,/E)'I'. Although
results for only four sets of 8», 82 are given, the strong
deviation from coplanarity seems to be a general feature
judging from the almost identical shape of curves of
Fig. 11 for different values of 8» and 82. It is not difficult
to understand this if we recall that the largeness of the
coplanarity angle is closely related to (and in fact more
or less determined by) the largeness of the photon—
photon axis angle 8 described earlier.

From Table VIII it is seen that 40—50% of all pion
pairs are emitted with a cop1.anarity angle greater than

TABLE VI. The ratios of the ~ and q production cross sections calculated with the cutoff B&B;,where B is the proton —photon axis

angle de6ned by (6.2), to the corresponding total cross sections (Brodsky, Kinoshita, and Terazawa, 1971b}.E=1 GeV.

B;.(rad)

m,/E=0. 511&(10 ' (m /E)"'=0.0226 (one/F) '"=0.150 (m, /E) "'=0.388

1.00
1.00

0.98
1.00

Oee~eeX (B+Bxnin) /Oee~eeX

0.78
0.83

0.48
0.52

0.30
0.33
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FIG. 11. Dependence of the cross
section do/d cos H1d cos H2dp on the co-
planarity angle P for typical angles H&

——

90', H2=60'; Hj, =30') H2=120') H1-—5.7',
82=157', H1. =5.7', H2=174.3' (Grammer
and Kinoshita, 1972). E=1 GeV.

O
L

GJ

E

I

O

b o
I

D

O
O
U

IO
IO

I I IIII

IO 2
I I I I I I III

Mme/E = l.5' p lrad)

12'. If we assume that this result holds for other pairs of
tIi and 82 as well, then a sizable fraction of the non-
coplanar two-charged-particle events which tend to be
classified as multiple production events from the one-
photon annihilation process may actually have to be
regarded as pion (or muon) pairs produced by the two-

photon process. Experimentalists should be increasingly
cautious not to mistake some two-photon events for
one-photon annihilation events as the beam energy
increases beyond 1 GeV.

Cheng and Wu (1971a) have also calculated numeri-
cally the di6'erential cross section for x+m -pair produc-

TABLE VII. The cross section do/d cos H&d cos H2dtt for the process e+e—+e+e+x++~, where/ is the coplanarity angle defined by (6.3)
(Grammer and Kinoshita, 1972). E= 1 GeV.

(H„H,)
(«g) 0. 1 0.5 1.0

P (deg)

5.0 12 30 60

dr„„„+-'*a«/dcos H1 dcos H2 + {10"crn'/rad)

(5.7, 174.3)
{5.7, 157.1)
(30, 120)
(90, 60)

1000.
69.
5.6
1.7-

990.
53.
3.4
0.86

790.
43.
2.3
0.64

270.
16.
0.61
0.20

130.
7.0
0.30
0.086

39.
2.8
0. 12
0 ~ 032

15.
1.4

0.013
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TAnLE VIII. The cross section f {d~/d cos 8&d cos 82@)@for the process e+e—+e+e+rr++s obtained by graphical integration of
the curves of Fig. 11 where P is the coplanarity angle defined by (6.3) . F.= 1 GeV. Integrations are carried out for P&0' and P&12'.
For comparison the cross sections d&r/d cos 8&d cos 8r calculated in the equivalent-photon approximation are also shown. All values

have been taken from Grammer and Kinoshita (1972).

(5.7, 174.3) (5.7, 157.1) (30, 120) (90, 60)

do;.~ + —/d cos 8,d cos 8ri 10 "cm')

Exact
Exact (P&12')
e.p. approx.
Exact (P&12') /Exact
Exact/e. p. approx.

130.
52.

170.
0.40
0.76

8.5
4. 5
8.6
0.53
0.99

0.32
0.18
0.28
0.57
1.14

0.100
0.041
0.094
0.40
1.06

tion by the two-photon process and found that the
equivalent-photon approximation is never valid in a
certain kinematical region. Their

differential

cross
section do./dqtdqs contains all the kinematical variables
with respect to the produced pion-pair, certainly in-
cluding the coplanarity angle f. As we have seen in the
exact calculation of do/d cos Otd cos ere, the relation
$~0 which is implied by the equivalent-photon picture
is fairly strongly violated in the sense that the average P
is roughly (m, /E) '~4 instead of (m, /E) '~s. It is therefore
not surprising that their criterion for the validity of the
equivalent-photon approximation, which is somewhat
too restrictive, is never satisfied except in special
instances. Thus we find some consistency between these
two calculations (Brodsky, Kinoshita, and Terazawa,
1971b;Cheng and Wu, 1971a) rather than contradiction.
We believe that the equivalent-photon results given in
Sec. V, which do not involve the coplanarity angle f,
would not be changed much by exact calculations.
See the recent paper by Budnev, Ginzburg, Meledin,
and Serbo (1972b) for more detailed discussion on this
point.

Recently Grammer and Kinoshita (1972) have im-

proved the numerical calculation of do/d cos etd cos Hsdf.

We quote their results in Tables VII and VIII and in
Fig. 11.They have also calculated the differential cross
section for e+e—+e+e+p++p . The details are found
in their paper.

Brown and Lyth (1973) have also made an extensive
numerical calculation of the cross sections for e+e~
e+e+m++tr . Their conclusion is that the equivalent-
photon approximation is very good if both electron
scattering angles are less than 0.1 rad, but is 20%—40%
too big if either angle is integrated over. See the details
in their paper.

Bonneau and Martin (1973) calculated both the
differential cross section da/ds and the total cross sec-
tion for e+e—+e+e+p++p, almost exactly in their
analytical way. Their result is between the approxi-
mated results of Brodsky, Kinoshita, and Terazawa
(1971b) and of Baier and Fadin (1971c). They con-
cluded that the approximation of Baier and Fadin is

e+e—+e+e+M, (7 1)

where 3I is any C=+ meson such as s', rl, ri' (or Xs),
e (or &r), etc.

A. Measurement of the 3f—+yy Decay Widths

Over ten years ago, Low (1960) proposed the process

e+ e +e+e+rrs— (7.2)

as a means of measuring the xo lifetime. Since, as we
have seen in Sec. IV (see (4.4) j, the cross section for
this process is proportional to m' —+2& decay width in the
equivalent-photon approximation, a measurement of
the cross section gives the m' lifetime directly but
approximately. The present experimental error for the
me~&p decay width is 12% (Particle Data Group,
1972) while the theoretical error lying in the equivalent-
photon approximation is greater than 10% (see
Table I). Therefore, in order to improve the present
accuracy of the s' lifetime via the experiment (7.2),
the original proposal by Low should be modified in the
following way: Detect the scattered electrons within a
small forward angle 8,„L& (m,/E)'I'«1j and compare
the observed cross section with the corresponding cross
section calculated from (3.10), (3.18), and (4.3) .
Since the smallness of O,„guarantees that kj 2'~0 and

not very good at low energy although it becomes better
and better as the energy grows. On the other hand, the
equivalent-photon result of Brodsky, Kinoshita, and
Terazawa is about 20% larger than theirs in a range of
energy up to 100 GeV.

VII. MORE ON SINGLE-MESON PRODUCTIONS

In the previous sections we have reviewed the
various (rather kinematical) features which are
common to every two-photon process. In this and the
following seven sections we shall discuss several theo-
retical aspects of dynamical features which are charac-
teristic for an individual two-photon process.

The simplest of all hadron productions by the
two-photon process is the single-meson (or meson
resonance) production
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do"&~do, we can then suppress the theoretical error
in this way as much as we wish. Experiments of the
mi.ssing mass type

e+e-+e+ e+ (missing mass) (7.3)

cross section of the process

e+e-+e+e+rt'

sr++sr +sr++sr +sr', etc, . (7 9)

= (2.5X10 "cm') XP&», (7.4)

for E=1 GeV, and with F„.„» in keV. On the other
hand, we have the inequalities

may be useful for identifying the produced state as
trD, st, rt', e {ortr), etc. It does not seem to be too difficult
to obtain better experimental values (or upper bounds)
fOr the rt vyy—, rt' (Or XD)—gyp, e (Or o)~y deCay
widths from this type of experiment. It will be in-
structive (Brodsky, Kinoshita, and Terazawa, 1971b)
to derive an upper limit of the partial decay width

F„» from the multiple-particle production data
reported by the Frascati groups (Bacci et u/. , 1971,
1972) . In analogy with (4.4) we obtain

tr„, 16n'I'„. „Dn (8/rtt, ) j'f (rn„ /2E) srt,

of approximately the same magnitude at E&1.2 GeV
as that of the q-meson production shown in Fig. 4.
An anomalously large coupling of the p' to two photons
compa~ed with (7.8) could yield a substantial number
of events with four charged-particle tracks even at
the present Frascati energy.

B.Low-Energy Theorem on the xoyy Vertex

An absolute determination of the coupling constant
of the pseudoscalar mesons to two photons has been
of much theoretical interest during the last several
years. Let us define the troop vertex function F(q', k')
by15, 16

M„„(q, k) =iI dx exp (—iqx) {F
~
T*(J„(x),J„(0)) ~

0)

+ + + — prree~eetmze ee&. &ee~eer'~~r'~sr r Ru~r e e. (7 ~ 5)
= eseupq 7e F(q I k ) (7.10)

and

I'„r~~„&500&200 keV. (7.7)

This value is much larger than the upper limit derived
from the present particle data, P„»((72&12) keV.
This is of course not surprising since the Frascati
experiment has not been performed to pick up any
information on F, 2~. A prediction of the decay rate
from broken SU(3) is (Baracca and Bramon, 1967;
Chan, Clavelli, and Torgerson, 1969; Suura, Kalsh,
and Young, 1972)'4

re-vv= '

6 keV for the fractionally charged
quark model

(7.8)

treeeeee+e +neutrals+ O'eeriest' (RD'-err +r Re~neutrsls

+R„„~eR„+ e+R„e,R—
o

+ ), (7.6)-
R being various branching ratios of the p' and p decays.
Using the data from Frascati, " Op p 2~ +@„y&@z$z'@]s——

(8.5+4) X10 " cm' and oe+e — tr'+s»«tr«e= (8.5+
3) X10 "cm' for F= 1 GeV, the present particle data
(Particle Data Group, 1972), and Kqs. (7.4)—(7.6),
w'e obtain the upper limit

In this section and in Sec. XIV we shall call the photon
momenta q and k, for convenience, instead of k1 and k2

as defined in Sec. II. F is the pion momentum (F=
q+k). From (4.2) and g e»=F(0, 0)/4, the sro-+yy

decay width is given by

P o »——
L~

e' F( 0, 0) )' /64 sr) em s. (7.11)

In 1967 Sutherland (1967) and Veltman (1967)
showed that the ordinary PCAC hypothesis (Nambu,
1960; Gell-Mann and Levy, 1960) and the algebra of
currents (Gell-Mann, 1964) lead to the low-energy
theorem

F(0, 0) ~P =D (7.12)

This means that the mo~p decay constant g„p»=
F(0, 0)/4 Lsee (4.1)j vanishes in the limit rrt '-+0.
Since F(0, 0) ~Pe e is finite experimentally and rrt '
is small, this theorem was a puzzle until Bell and
Jackiw (1969), and Adler (1969) found the PCAC
anomaly" in the triangle diagram with a charged-
fermion loop for the axial-vector A„vertex function.
They have shown that the ordinary PCAC should be
modified by adding the anomalous term which is of
order e':

25.6 keV for the Han —Nambu (inte-
grally charged three triplet) model.

B„A s=f rrt sp + (e S/16sr') e e~s. Fu~F&e: (7.13)

Even the smaller value leads to a prediction for the
where f is the pion-leptonic-decay constant (f ~95
MeV) and S is the anomalous constant. In the quark

"Ke are considering the possibility that some of two-photon
events might be mistaken for one-photon events without detecting
the scattered electrons in the experiments.

'4 These two predictions which diBer much from each other
should be subjected to experimental checks.

'5 This vertex function differs from the form factor de6ned
in Sec. IV only by its normalization /see (4.'/) j.

'6 The electromagnetic current J„is de6ned here by the usual
J„divided by e {electric charge) ."See also Schwinger (1951).
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models S is predicted to be'

1/6 for the original Gell-Mann —Zweig
(fractionally charged single triplet)
quark model

1/2 for

(7.14)
the original Sakata (integrally

charged triplet) model, the
Han-Nambu (integrally
charged three triplet) model
(1965), and the fractionally
charged three triplet quark
model.

C. Predictions for the cry' Coupling Constant

The coupling constant of 0 or e (700) and two photons
is theoretically as interesting as the m'~p decay
constant. In order to measure the former, it is desirable
to do either the experiment of (7.3) type or the one of
the type

e+e-+e+e+z++z. (7.16)

in which both pion momenta are measured in order to
find the broad 0 (or e) enhancement in the mass squared
of the pion pair. It should be noticed here that the oyy
coupling constant can be directly measured in the
experiment (7.3) while what can be measured in the
experiment (7.16) is the product of the any and
0m+m coupling constants but not the ryy coupling
constant alone. Theoretical predictions for the product

"A detailed comparison of the effective values for S predicted
in various models can be found in the papers by Okubo (1969),
by Suura, W'alsh, and Young (1972), and by Bardeen, Fritzsch,
and Gell-Mann (1972).

The low-energy theorem (7.12) must be replaced by
(Bell and Jackiw, 1969; Alder, 1969)

E(0, o) I
p*=o= ~/(2~'f-) (7 15)

Thus, if we assume the existence of the Bell—Jackiw-
Adler anomaly, the x ~p decay-puzzle is solved
completely. The present experimental data (Particle
Data Group, 1972) P o „=7.8&0.9 eV give S—0.5,
which favors the Han —Nambu and fractionally charged
three triplet quark models. Recently, Crewther (1972)
has shown that the anomalous constant S is deter-
mined by a product of high energy electroproduction
and electron —neutrino annihilation cross sections, by
assuming Wilson's theory of broken scale invariance
(1969).

The anomaly also aHects the low-energy theorem
on the p~p decay. However, the low-energy theorem
is less practical in this decay than in the m'~&p decay
because the extrapolation needed to reach the physical
constant for P'= nz,' is much more demanding.

More precise measurements of the decay width of
pseudoscalar mesons are extremely interesting and may
possibly be performed by the two-photon process
e+e-+e+e+z', g, g' etc. (see Sec. VIIA above) .

of these coupling constants and their consequences will
be discussed in Sec. VIII.

Predictions for the o-yy coupling constant have
been made by reasoning in parallel with the m'~p
decay constant argument. We can play the same game
as in Sec. VIIB above by replacing PCAC by PCDC
(Partially Conserved Dilation Current) (Mack, 1968;
Carruthers, 1971). Kleinert, Staunton, and Weisz
(1972) showed that if the 0(700) meson dominates
the trace of energy momentum tensor 8„&, then the ~pp
coupling constant g» defined by

( geary/ l) 4'eFpvp " (7.17)

( E 1& fm, (m.+ I
» ———IgI —'

+@I—'
(7 21)

m, 2j E2E &2E

D. Other C=+ Mesons

Any other mesons with positive charge conjugation
can also be produced in the two-photon process ('7.1).
They include the A&(1070), f(1260), A, (1320), and
so on. The decay widths of these mesoos into two
photons are of great theoretical interest and will be
measured in the near future. In the production of
these mesons we can also use formula (4.4) as an
approximation, or, more precisely, the combination of
(3.10), (3.18), and (4.3) in order to obtain the decay
widths from the measured cross sections. Notice that
we should multiply the right-hand side of (4.3) by
2J+1 in the case of spin-J-meson production. The
f~p decay width has been predicted by Renner
(1971) in his model for vector —vector —tensor meson

should vanish in the soft-meson limit. However,
Crewther (1972) and, independently, Chanowitz and
Ellis (1972) have recently pointed out that the PCDC
anomaly (Callan, 1970; Symanzik, 1970) affects the
low-energy theorem on the coupling and that g,»
does not vanish. Furthermore they have predicted the
coupling constant to be

g.„—R/(1 2z'f.), (7.18)

where R is the asymptotic ratio of a(e+e=+hadrons)
to 0.(e+e=+p+p ) at high energies and f, is defined by

(018„(0)I 0)=m.'f.. (7.19)

From this result Chanowitz and Ellis (1972; 1973)
estimated the 0-~& decay width to be

F,„» 0.2 R' keV,
for

m,~ /00 MeV and f,~150 MeV. (7.20)

This can be checked by the two-photon process (7.3)
whose cross section is given in the equivalent-photon
approximation by Lsee (4.4)j

16 r. „r E 11 (m.'I
m, ' & m, 2j (2Ej
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vertices. The two-photon cross sections for production
of various C=+mesons other than sre and rt have
been calculated by Bramon and Greco (1971) and in
the equivalent-photon approximation.

VIII. STRONG-INTERACTION MODIFICATIONS
OF y+y —+Is++sr

A. General Features and Measurement of the xm

Scattering Phase Shift

One of the most basic processes which can be studied
by electron —electron collisions is p (kI) +& (k&)~
sr+(qI) +sr (qz) . In general, the full Compton amplitude
for k~', k2' spacelike and

s= (kI+ks)'= (qI+qs)') 4m ' (8.1)

can be studied. In this section we shall concentrate on
the case of (almost) real photons, postponin. g the case
of highly virtual photons to section XI.

In the Born approximation (no strong interactions)
the amplitude for y+y~++sr is e e„(kI)ME»"e„(ks),

E. EBeets of the Form Factor

After the M~p decay widths have been measured
precisely by the two-photon process e+e~e+e+M in
which the scattered electrons are detected within a
small forward angle, interest will turn to the effects
of the M&p form factors. The best way to detect this
effect is to detect both scattered electrons and also
measure their momenta at a considerable cost of the
large cross section in order to find the virtual-photon
masses in each meson production. This experiment
will be discussed in Sec. XIV. There is, however, an
indirect way of doing this without losing the largeness
of the cross sections. Since the M~p decay width
is supposed to be known very accurately by the previous
experiment (say within 1%), we can calculate exactly
the cross section within a few percent accuracy by
assuming that the form factor is constant, i.e.,
F (kIZ, kzs) = 1 [see (4.8)].Any deviation of the observed
cross section from the calculated cross section implies
an effect due to the form factor, i.e., F(kIZ, kss) W 1 for
k~'/0 or k2'&0. Since, as we have seen in Sec. IV, the
cross section calculated with the form factor suggested
by p dominance [see (4.9)] is smaller roughly by
10% than the cross section without the form factor,
this way of detecting the form-factor effect will be
practical, though not the most desirable. Young
(1970) has proposed this method together with the
other method of direct measurement of the form factor
in the process e++e ~e+y. A detailed numerical
calculation of the cross sections for x' and q production
has been made by Parisi and Kessler (1971, 1972)
for various form factors with different k~', k22 de-
pendence.

Im Ii~„~Ii~~ FJac Jg J (8 4)

This relation holds for each amplitude PJ of given
angular momentum J (in the photon —photon center-
of-mass system) and isotopic spin if s is in the region
of srsr elastic scattering (4m '&s& 16m ') . Accordingly,
the 5-wave parts of A and 8, both of which contribute
to the J=0 amplitude, each contain the factor

f s " 5o(s') ds'
I

exp ~(-,', I, (8 &)
(sr 4~ ss s s

where 8o can be identified with the S-wave mx phase
shift in the elastic region. In general, however, the A
and 8 amplitudes can be further multiplied by entire
functions and still satisfy the unitarity condition (8.4) .

We also note that the general amplitude will contain
additional contributions from all even-l resonances in
the x+m system as well as t and I channel exchange
contributions. Since y+y-+sr++sr is now readily
measurable in e+e~e+e+sr++sr, this process
promises to be an ideal new testing ground for various
models of hadronic interactions and the search for
structure in the m+m system.

In terms of the A and 8 functions we have

4x dr~& ~+—

s(1—4m '/s) '" dQ. .m.

= (2srns/s') [(1—2r+2r') ( 8 P

+s'
I

A I' —2rs Re (A*8)], (8.6)
where

r=mr'(ka kz)/2(kI qI)(ks. qz)=m 'S/(t —m ')(u —m ').

(8.7)

where

(2q,»—kI») (2q,"—k,")
Me»"= —2g»"+ 2'.kg

(2q,"—k,") (2q,»—kI»)
(8.2)

2/2' ky

In the general case (including strong interactions),
gauge invariance, parity conservation, and time-reversal
invariance limit the complete structure to two inde-
pendent amplitudes. A convenient parametrization is
(Brodsky, Kinoshita, and Terazawa, 1971b)

(1/e') M»"= MII»"B (s l u)

+4(g»"kI k,—k,"k,») A(s, l, u), (8.3)

where t= (kI—qI)'= (k&—qs)' and u= (kI—qs)'=
(ks —qI)'. This form has only the explicit poles dictated
by the Born contribution. The Thomson limit for
forward Compton, scattering demands B(0, m ', m z) =
1, of course. In addition to the usual conditions follow-
ing from crossing symmetry (A and J3 are even under
t4-tu), unitarity to order e' requires
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ial 1972; Khleskov, 1972; Schierholz and Sundermeyer
1972; Carlson and Tung, 1972; and Yndurain, 1972.
All these authors have presented elaborate numerical
results, which readers will find in the original papers,
for the cross sections.

OJ

E
O

lO
lO

O

B.The fT-Contribution

There is a particular interest in understanding the
J=O partial-wave contribution to the y+y —+w++w
process since this can yield information on
scattering lengths and s-wave resonances, especially
the broad 0- or e enhancement near 700 MeV. We
shall dehne the coupling constant g, in terms of the
effective Lagrangian

&r~~= —g.~~4» 4~4 ~. (8.8)

I

3.0
l

2.5)
0-I I I I

i 0 ~5 2 0
E (Gev }

FIG. 12. Effects of hadronic interaction on the total two-photon
cross sections. These curves Ltaken from Brodsky, Kinoshita,
and Terazawa (1971b)j are given for (a) the Born cross section,
(b) a completely isotropic (J=0) contribution from the 0-pole
term plus an isotropic part of the Born amplitude (i.e., 8=1)
with m, =700 MeV, I', =400 and 600 MeV, and (c) estimated
cross sections for multihadron production with assumed threshold
s~s= (3m )' and (4m )'.

I

0.5

Notice that at threshold (s=4m ', r= 1) the cross
section (8.6) is proportional to

~

8 sA ~s. This reflects-
the fact that at threshold the 8 term yields contribu-
tions only to the equal-helicity c.m. amplitude
M &1 & ', which is the entire contribution of the A
term. This amplitude corresponds to an oppositely
directed angular momentum and is the helicity ampli-
tude which can contribute to the J=O state. At high
energies where s)&4m '/sin' 0, , i.e., r((1, the inter-
ference of the A and 8 terms disappears since then
the 8 term contributes only to the unequal-helicity
c.m. amplitude My1=

By inserting the formula (8.6) into Eq. (3.11) or
the formula (8.3) into Eq. (2.10), we can express the
differential cross section do., „+ /dsdt in term-s of
the A and 8 amplitudes. Thus we can measure these
amplitudes and, consequently, the x —w scattering
phase shift by the two-photon process e+e—&e+e+
w++ir . This interesting method of measuring the
phase shift, which was originally proposed by DeCelles
and Goehl (1969), has been more closely investigated
by Brown and Lyth (Lyth 1971; Brown and Lyth,
1972; Cheng and Wu (1971b); Goble and Rosner,

Obviously, only the A term in (8.3) receives the o.

contribution. What is relevant to the two-photon
process e+e~e+ e+w++z. is not the coupling constant

g» alone but the product g,»g of coupling con-
stants, as has been noted in Sec. VIIC. This product
was first estimated by Sarker (1970) using a super-
convergent (or finite-energy) sum rule for the helicity-
flip amplitude of pion Compton scattering (Abarbanel
and Goldberger, 1968). Taking account of contribu-
tions from cr and higher resonances, Sarker obtained a
result 2g,»g, & —2.1&0.6. (His definition of g,»
differs from ours by a factor of 2.) Parisi and Testa
(1971), and Schrempp-Otto, Schrempp, and Walsh
(1971) have predicted diferent values of g»g,
starting with the same superconvergent sum rule.
The reason for this is that the estimated values of
g,»g, strongly depend on the way in which the
sum rule is saturated. This can best be illustrated by
the following example (Brodsky, Kinoshita, and
Terazawa, 1971b). If one takes only the o. resonance
into account in the superconvergent sum rule, one
Ands 2g»g = —4, which is by a factor of 2 different
from Sarker's result. This result can also be obtained
simply by requiring that the forward differential
cross section fall faster at high energy than either
the Born contribution or the o. contribution (A term)
alone. Since r= 1 for 0=0, this means that we require

firn (8 sA) = lim I1—-', (—g„—,g. .)
=0)

XLs/(s —m.'+im. i'.)j I

(8.9)

which leads to g,»g, = —2. Very recently Lyth
(1972) has estimated the same product g»g to be
five times smaller than this value from S-wave
unitarization and claimed that the a. contribution is
so small that the cross section for y+y~++vr may
well be approximated by the Born diagrams for small
values of s.

Because of the ambiguities in the predicted values
for g,»g and because of the difhculty in estimating
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higher-resonance contributions, we would rather take
a naive model and give representative examples of
hadronic interactions on the total ee—&eem+m cross
section in Fig. 12. Curves are given for (a) the Born
cross section using Eqs. (3.14) and (5.5), and (b) a
completely isotropic (J=0) contribution from the

'O.-pole term as defined above plus an isotropic part
of the Born amplitude (i.e., 8=1). The results are
shown for the simple form

2srn' / 4ttt ''I' t' m4

s & s / (s—rtt.') '+ rrt, 'P.' '

(8.10)

assuming m, = 700 MeV, F,=400 MeV and 600 MeV.
As is seen from Fig. 12, the cross section including the
0-resonance efFect may be larger than the Born cross
section by a factor of about 2. A similar conclusion on
the strong-interaction effect (the t-channel exchange
effect instead of the s-channel resonance effect men-
tioned above) has been obtained by Manassah and
Matsuda (19/1) using a harmonic-oscillator model
for hadrons (Nambu, 1970; Susskind, 1970).

More definitive information on the y+y —rsr++sr
process, however, will require measurements of the
s dependence (by pion-energy measurements or tagging
the scattered electrons) and the angular distributions
of the pion pair (see Sec. VIIIA). Some features of
these distributions as seen in the laboratory have been
discussed in Sec. V. Goble and Rosner (19'/2) con-
jectured that the maximum of the 0 enhancement is
shifted to about 450 MeV due to the various constraints
on the s-wave amplitude in the low s region.

The phase-shift analysis of p+y~o+sro was also
proposed by Lyth (1971) and others although the
experiment e+e—+e+e+sro+sre is more difficult to carry
out than is the e+e~e+e+sr++sr one.

The eGect of electromagnetic interactions in the
sr+sr final state has been considered by Nandy (1972),
especially from the interesting view point of pionium
(the sr+ —sr electromagnetic bound state as a resonance
in photon —photon scatterings) .

Isaev and Khleskov (1972b) have investigated the
process y+y~IC+E and estimated the cross section
0;, „~g to be 3.5)(10 3~ cm for Ii=1 GeV.

IX. PRODUCTION OF AN ODD NUMBER
OF SOFT PIONS

In this section we shall discuss the production of an
odd number of pions by two real 'photons

y+y~++sr +sr', 3rr' etc., (9.1)
in which all the pions are soft (their momenta are
small) .There is a great difference between the dynamics
involved in this process and that in the two-photon
production of an even number of charged soft pions

y+y—e7r++rtrr'-, rt= 1, 2, 3, ~ ~, (9.2)
which will be discussed in Sec. X. In the process (9.2)
the ordinary PCAC relation and the algebra of currents

lead to meaningful results with nonvanishing amplitudes
while in the process (9.1) the PCAC anomaly (see Sec.
VIIB) affects the results seriously and, therefore, must
be taken into account.

Aviv, Hari Dass, and Sawyer (1971) first found
that the amplitude for the process y+y-+3sro vanishes
in the soft-pion limit (p ~0) and that the amplitude
for y+y —rsr++x. +sro in the same limit is related. to
the PCAC anomaly (Alder 1969; Bell and Jackiw,
1969) and, therefore, cari be written solely in terms
of the m'—+yy amplitude. Their 6rst result: the vanishing
pp—+3+' amplitude was conhrmed by Abers and Fels
(1971) and by many others. However, their second
result was controversial for some time. For example,
Yao (19/1) obtained a different result for the yy~
++& +' amplitude. This problem was 6nally solved by
Terent'ev (1971b),'Wong (1971),Adler, Lee, Treiman,
and Zee (1971), Bacry and Muyts (1972), and Hari
Dass (1972), who pointed out that the amplitudes
for y+y~++~ +sro written in the previous papers
are not gauge-invariant. The conclusion of these
various authors is the following: (1) Both of the
amplitudes for y+y~++~ +~a and 3sr' vanish when
that x momentum vanishes, while the charged-pion
momenta are on the mass shell, (2) The amplitude
for y+y~++sr +n' can be expressed in terms of
those for m'—+y+y and y~++sr +sro, and (3) the
latter two amplitudes are simply related by Ii o »——

f 'F7 + oLwhere —F o » F(0, 0) ~p—~—=e defined in

(7.10) and F~ + „o is defined -by the soft-pion pro-
duction amplitude OR(p(k) +ir'+sr+(P) +sr (q) ) =
ie/t etp&q e tt~sF~ + o)I, due to —the gauge invariance
of the former amplitude. The proof of (3) in the
presence of the PCAC anomaly has recently been
given by Terent'ev (1971b; 1972b) and Adler, Lee,
Treiman, and Zee (1971) although the relation between
sr'~y and &—+is++sr +sr' was, approximately derived

by Kawarabayashi and Suzuki (1966) several years
ago, neglecting the anomaly. A closely related discussion
can be found in the paper by Wess and Zumino (1971).
With the corrected version of the amplitudes for
y+y —en++sr +sr' and 3sr', actual calculations of the
cross sections for e+e-+e+e+sr++sr +sr' and e+e-+
e+e+3sr' have been done by Pratap, Smith, and

Uy (1972), by Koberle (1972) who included hard-pion
terms, and by Zee (1972) . Unfortunately, these
predicted cross sections are small ( 10 " cm' for
E= 1 GeV) in the soft-pion region Ls~(3rw )'] where
these soft-pion results should be tested. The result of
Koberle (1972) shows, however, that the hard-pion
cross section for these processes calculated from vector
meson dominance may be large enough (~10 " cm'
for e+e~e+e+sr++sr +sr at E= 1 GeV and ~10 ss

cm' for e+e-+e+e+3sr' at E= 2 GeV) to be measured
in the near future. Terent'ev (1972a), Zee (1972), and
Smith and Stanko (1972) have also calculated the
cross section for x+ production of m+m' in the Couloumb
field sr++Z~Z+sr++sr' to test the soft-pion results.
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f
—2(—3)" 'LII 2 .;(2 )'2 .;(2 )'j '"f='"I

soft pion i=1

XL(0 I T(v;(*)v, (o) ) I o)
—(0 I

T(A2"(x)A2"(0)) I 0)], (10.2)

where f (~95 MeV) has been defined in (7.13). Using
the spectral representations of the propagators given
by Das, Gurlnik, Mathur, Low. , and Young (1967),
we obtain the following expression for the matrix ele-
ment M"" for y+y~rr++nrr .

3f~"=z d'xe-"& ex+ m- q

2 (p'+q') =k+k
I
T(J"(&)J"(0))

I o)
i~1

2(—3)" 'LII2 .;(2 )'2 .;(2 )'j '"f '"
soft pion i=1

X dm', . gs"+pv(ms) —p~(m') k2"kt"'t

k, ks+m2 se —m' i

, p, (m') —p~(m')—g&g"0 dm2

k2~k1"
f 2 +gssgkof 2

k1-k2 —z~
(10.3)

The author thanks Professor A. Zee for his comments
on this section of the manuscript.

X. PRODUCTION OF EVEN NUMBER OF
CHARGED SOFT PIOUS

In the production of an even number of charged soft
pions by two photons

y+y +e—2r++n2r (10.1)

which is more practical experimentally than the process
discussed in the previous section, we need not worry
about the PCAC anomaly. Instead, there are a few
ambiguities (Alder and Weisberger, 1968) in
taking the soft-pion limit and in extrapolating the
off-pion-mass-shell amplitude to the physical one.
However, Terazawa (1971) has taken gauge invariance
and the Thomson limit for forward Cornpton scattering
as guiding principles to obtain a consistent result.

The successive application of the PCAC hypothesis
(Nambu, 1960; Gell-Mann and Levy, 1960), the
soft-pion technique, and the algebra of currents
(Gell-Mann, 1964) makes it possible to reduce a pion
pair (of momenta p and q) in the final state of the
amplitude for (10.1) in the soft-pion limit p, q

—+0.
Repeating the same procedure, we can express the
amplitude in terms of the propagators of the vector
and axial-vector currents, V„and A„, in the limit

p'~ q'~ ":
(nir+(p;), nir-(q;)

I
T(J&(x)J"(0) ) I 0)

where k1 and k2 are the momenta of the photons,

Lki+k2= Q (p,+q,)~
in the soft-pion limit j, and pv and p~ are the spectral
functions of the vector and axial-vector currents,
respectively. It is clearly seen in expression (10.3)
that not only Lorentz covariance but also gauge
invariance is maintained in the soft-pion limit if, and
only if, Weinberg's first sum rule (Weinberg, 1967),

1' dm2Lpv(m') —pg (m') 7/m2= f.' (10.4)

is valid. Therefore we shall assume the validity of the
sum rule hereafter. Then we have the soft-pion theorem:

n

2(—3/f-')" 'LII2 .;(2~)22 .;(2 )sr"'
soft pion i=1

XI g""—(k "ki'/ki k2)]F(kt k2) (10 5)
and

F(Q') = (1/f '.)J dm2Lpv(m2) —p~(ms) j/(Q'+m' ie)—

with F(0) = 1Lsee(10.4) j, (10.6)

which give a correct Thomson limit for e=i when
ki and ks vanish. This relation (10.5) has also been
obtained by Terent'ev (1971a) for n=1" and has
been confirmed by Goble and Rosner (1972) for 22= 2
and in the limit k1 and k2—+0.

We can now apply the relation (10.5) to various
processes y+y +nrr++22rr, -e+e~e+e+nrr++nrr, and
e++e=+m++ Nrr +y. .

A. y+y- —&222.++222

The differential cross section for y+y~7r++m.
is given by

« -- --=I:(4 ~)2/s(~')23(3/f ')"" "I:F(s/2)3'

X II2 2,*2
* 2, (2 )'~IF—~ (p, +q

1

(10.7)

where F= (s'I', 0, 0, 0) and s is the total energy squared
in the center-of-mass system of the two photons. For
n=1, the integration of phase space can be easily
carried out. The total cross section for y+y~++2r is

o„.+.-= (22rns/s) I
1—(4m 2/s) O'"LF (s/2) ]2 (10 8)

Obviously this result is valid only for values of s close
to the threshold value (2m )' If we take s= 0.1 GeV'=
(2.25m )', for example, then 0»„+ -=4.8X10 si

Cm2 20

For e larger than 1, it is dificult to perform the
phase-space integration exactly. There is, however, a

'9 The relation for I=1 is contained essentially in the work of
Das, Gurlnik, Mathur, Low, and Young I'1967}.

'0 For numerical calculations we have taken the pole dominance
Li.e., pv(ra') =g 'him' —ra ') and p~(rN') =gag(ra' ra~'), where-
ra, '=Q.59 Gev' and mg' =1.14 GeV'g, and the result of Weinberg's
second sum rule Pi.e., g,'=gg'=2ra, 'f,sj See Weinberg (1967.).
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method developed by Bjorken and Brodsky (1970)"
to approximate the integration. Following their method,
we obtain

2srtrs (2rt —1) (3s/16srsf s) st~-»

[st!(2rt —1) !j'
X[F(~s) ]s, rt) 2. (10..9)

This simple result must be taken as a rough estimate
of the cross section because the last approximation
taken may not be reliable in the region of interest
(I p; (

and
~ q; i&&rrt ). Equation (10.9) gives a predic-

tion of the cross sections for y+y-+2sr++2sr and
p++~3sr +3sl, e.g.,

o'» s +s =2.1X10 s'cm' at s= (6ttt )'
and

orr 3 +3 ~0.54X10 s' cms at s= (8srt )s. (10.10)

Notice that the cross section for two-pion-pair produc-
tion is two orders of magnitude larger than that for
sr+sr sre production [ 10 " cm' at s= (4tn )'j (see
Sec. IX). More detailed and precise numerical results
for e=2 can be found in the paper by Goble and
Rosner (1972).

B.e+e ~e+e+rtsr++Nsr

within the equivalent-photon approximation we can
estimate the cross sections for e+e-+e+e+rtsr++stsr,
using Eqs. (3.14), (10.8), and (10.9). Since the low-s
region dominates the total cross sections (see Sec. VA),
the soft-pion results give a reasonable estimate for
these processes. As a few examples, we 6nd

gee ee + -mft pion f 3$g]0-33 cm
and

0' + +s =3.5X 10 s cm (10.1

at the beam energy 8= 1 GeV. These numbers should
be compared with either

g + ~&»= ].37' g0-" cm'
or

o + — + -"' "'"'=5.4X10 "cm' (10.12)

at the same energy. It is remarkable that the soft-
pion cross section for n= 1 is very close to the cross
section for e+e—+e+e+sr++sr obtained by using the
Born diagrams for y+y~++sr . The reason is that
the factor P(s/2) which depends upon the spectral
functions in (10.8) simulates the effect of the inter-
ference between the isotropic and anisotropic parts of
the Born cross section (5.5) for small values of s.

Other applications of the relation (10.5) will be
found in Sec. XI, the paper by Terazawa (1971)
(e++e —+rtsr++nsr +p), and the papers by Buchl and

"Since we take our results seriously only in the region where
all the pion momenta! p;! and! q;! are small compared with the
mass nz, we do not introduce u priori a factor which suppresses
large-momentum components.

Nigam (1972a, b) (e++e=+Nsr++Nsr and e+y-+
e+rtsr++ttsr ) .

ki+ks= 0, qg= q2= 0. (11.3)

From this unphysical point one must extrapolate to
the nearest physical point, namely, the production
threshold

and, therefore,

or

qi= ps= (srt, 0, 0, 0),

.ki+ks ——(2rN, 0, 0, 0)

(11.4)

Gdy= M2= 8$ and kg= —kg. (11.5)

In addition to k»' and k2', there are two invariant
variables available in the process (11.2), namely,
s= (ki+ks)'= (qt+qs)' and ki qi. These two quantities
vary from zero to 4m ' and nz ', respectively, in the
minimum extrapolation. As a consequence of the
spacelike nature of the two virtual photons, the range
of extrapolation for s and k& q& from the unphysical
point (11.3) to the threshold (11.4) is only of order
m s and is independent of the virtual-photon squared
masses k~'= k2'. Therefore, the usual smootheness
assumption of PCAC suggests that the amplitude at
the unphysical point (11.3) should be a good approxi-
mation to the amplitude at the physical threshold
(11.4) .

Thus, Yan (1971) has found that the soft-pion
amplitude (10.5) derived by Terazawa (1971) for
real photons (kis=kss=O) can be extrapolated into
the threshold amplitude for any highly virtual photons
(kis=kss&0) without losing the validity of soft-pion
approximation. He has also found that a gauge-
invariant generalization of (10.5) to ki+ks/0 is
unique if terms quadratic in the pion momenta are
neglected. The threshold amplitude for (11.2) is finally
given by

M&"= [2/(2sr) '(2Wi2Ws) '"j[g&"—(ks&ki"/ki. ks) ]F(Q')

(11.6)

XI. PION ELECTROMAGNETIC MASS
DIFFERENCE

In this section we shall discuss the possibility of
determining the pion electromagnetic mass difference,
a quantity of great theoretical interest, by the two-
photon process

e(pi)+e(ps)~e(pi')+e(ps')+7'(ki)+7" (ks), (11 1)

y (ki)+y*(ks) ~+(qi)+sr-(qs), (11.2)

where the momenta of the various particles are des-
ignated in parentheses following the particle symbols.
This has been proposed by Yan (1971) whose paper
we shall follow here. As we saw in Sec. X, the PCAC
hypothesis and the algebra of currents determine the
amplitude for (11.2) at the unphysical point
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where Q2= —kin= —kP&0 and the function F(Q2) has
been defined in (10.6). The differential cross section
for e+e~e+e+vr++m with the special kinematics of
Calogero and Zemach (1960)

pl+ p2 ~1+It2 pl +p2 (11.7)

can now be given in terms of F(Q') (Yan, 1971)

da (n' ' /4E' ' x=(8-)- I-
I

dEg dogdF 'do 'E x i g') (Q'+-', s)

X I
1—

i
[l(1+*')'+*' o 'l&][F(Q')]',

4m '~'"
S

(11.8)

where 4E'= (pi+p2)', Ei'=E2' E' are t—h—e energies of

the two final electrons, Q~ and 02 are the solid angles
of the two final electrons, 8 is the angle between y~
and pi', and x=E'/E. Sy comparing experimentally
observed cross sections for e+e~e+e+ir++m with
the formula (11.8), we can readily measure F(Q') as a
function of Q', which is by itself of great threoetical
interest.

On the other hand, Das, Guralnik, Mathur, Low,
and Young (1967) have derived an expression for the
electromagnetic mass difference of the pions based on
the same assumptions that lead to (11.6) . It is given by

3N
m +~—m 0= — dQ2F (Q2) . (11.9)

4x 0

Combining (11.8) and (11.9), Yan (1971) has arrived
at a sum rule:

30! ~ (da/dEi' dQi dE2' d02) (ee~eevr+sr ) ~»+~~».+». 0m~+' —m~o'= — dQ' lim
4 2 (8 ) '( '/ )'(4E'/Q')'[x/(Q'+-'s)]'[1 —(4m„'/s)]'"[—'(1+x')'+*' cos'-'e]

(11.10)

This sum rule is reminiscent of Cottingham's formula
(1963), except that the pion mass difference is ex-
pressed in terms of the virtual Cornpton scattering
ampIitude in the crossed channel; its validity depends
on the reliability of PCAC and Weinberg's first spectral
sum rule (10.4) . It should be noted that the algebraic
sign of the pion mass difference is not determined
theoretically by the sum rule (11.10) .

To give a rough idea of the order of magnitude
involved in this experiment, Yan (1971) has presented
the following numbers. If s= (Z.Sm )', Q'=0.5 GeV',
and E=3 GeV, then (11.8) gives do/dEi'doidE2'dDI—
0.7X 10 "[F(Q')]' cm'/GeV' and F(Q') =0.4 assuming
p and A~ dominance, Weinberg's second spectral sum
rule, and the KSRF relation (Kawarabayashi and
Suzuki, 1966; Riazuddin and Fayyazudin, 1966) .
Suppose dE~'=dE2'=50 MeV, dQj.=d02=0.1, then we
have d0.=2)&10 "cm', where a factor of 2x has been
included by integrating over the common azimuth of
both final electrons. This is too small to be measurable
at presently available colliding-beam facilities. If
Q'=0. 1 GeV' with other conditions unchanged, then
F(Q') =0.8 and da——3&(10 " cm', which should be
within experimental reach in the near future.

This experiment is extremely interesting, although
it seems to be rather difFicult at present, for the follow-
ing two reasons: (1) a measurement of the function
F(Q') is of great theoretical interest because it may
answer such questions as the convergence of Weinberg's
second sum rule, the behavior of the spectral function
of the axial-vector current, and so on. (2) The origin
of the pion mass difference is not known. Most people
may believe that it is electromagnetic. We think,
however, that it is still an open and interesting question
whether the pion mass difference is really and entirely
electromagnetic or not. We hope that the future

colliding-beam experiments will give an answer to this
question.

More detailed calculations of the cross section for
this experiment can be found in the paper by Isaev
and Khleskov (1972a) .

XII. DEEP INELASTIC ey SCATTERING

In the previous sections we have discussed the two-
photon processes e+e~e+ e+X in which X is identified
with a particular particle state with positive charge
conjugation such as ~', p, &', p+p, ~+~, m+x 'x',
net=, etc. These two-photon processes are classified
as "exclusive. " In this and the next sections, we shall
consider the "inclusive" processes e+e—+e+e+X in
which the hadronic state X is not specified but both of
the scattered electrons are detected, their momenta
being measured so that we can specify the following
three invariants: the squared masses of the virtual
photons, k&' and k2', and the squared mass of the final
state X, (ki+k&)'. In the typical arrangement of
colliding-beam experiments in which all charged hadrons
emitted at large angles are detected, there would be
no particular complication in detecting one or both of
the elctrons scattered into large angles in addition to
the produced hadrons. Although the cross section
do, x is small for large k 2= (p;—p, ')' for any specific
hadron state (see Sec. XI), it might be large enough
to be observable if it is summed over all possible final
states X.Furthermore, from the cross sections observed
in the inclusive reactions e+e~e+e+X we shall be
able to obtain completely different and even more
interesting information on the hadronic structure of
particles.

From such points of view, Brodsky, Kinoshita, and
Terazawa (1971a), Carlson and Tung (1971), Kunszt
and Ter-Antonyan (1.971) and Walsh (1971), have
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independently pursued the study of deep-inelastic
electron —photon scattering, the analogy of the in™
elastic electroproduction in which the target is a photort
rather than a nucleon:

e(p)+y(P)re(p')+any hadrons. (12.1)

Let us first consider the inelastic scattering of an
electron of momentum p on a boson target 8 of mass
3f and momentum I'. In parallel with the electron—
proton case, we shall define the inelastic form factors

~B and g 2B by

2Po P (P ( J (0) (
rt ) (rt ~ Je(0)

~

P ) (2n') e8 (q+P —P„)

[g-e —(q-qe/—q') jW~'(e', p)

+LP-—( q-/q') rPP —( qe/q') lW" (Q', ), (12.2)

where J is the electromagnetic current of hadrons,
q(= p —p') is the momentum transfer of the electron,
Q'= —q', v=q P, and averaging over the target spin
is assumed. Then the cross section for the process
e+8-+e+any hadrons can be written as

will give us information on the hadronic structure
functions Ii~& and Iip of the photon.

In practice it is hard to find a suitable free-photon
target. However, we have already seen that e e or
e+e colliding beams are wonderful suppliers of virtual
photons. We shall therefore examine the feasibility
of using the two-photon process e+e—+e+e+ any
hadrons in order to measure the hadronic structure
functions of the photon.

If we consider the situation in which the incident
electron 1 of energy 8 is scattered into an angle 8
with energy 8' while the incident electron 2 is scattered
into a small angle ((8,„), emitting an almost-real
photon of energy E~, the corresponding cross section
in the laboratory frame of colliding beams can be
written in general (i.e., before the Bjorken limit is
taken) as

do SmcPEE'

dE d cos 8dE„(ez)z
Q2 2

&& W.(e', )(1-y)+W(e', )
d&e+B~e+ any hadrons 2%A

(e) where the equivalent-photon method is applied to the
electron 2 and

( yzez~z) yeechX W,B(ez, p)11—
y—,I+W, (e', p), ~ E+(E—E,)z (E8.,~4v' 1 N(E„8,) =-

E' (2est 1 2
(12.3)

lim pWzr(e', p) =Fp((o),
v~eo, cu fixed

(12.4)

where co2 /Qv'(&1+ sr/tQ') and Ft"r and Fzr are
dimensionless functions of o. and are implicitly of order
a. Then for large v and fixed co we have the simple
formula

where P'=M' and y=v/p P. We have neglected the
electron mass compared with the incident energy. We
have defined 8'j and W2 in such a way that we do
not encounter any difhculty in passing to the limit
M= 0. From now on we shall regard 8 as a real photon.
Of course in this case the rest system of the target no
longer exists.

We now consider large-Q' and. large-v regions and
assume that the Bjorken scaling limit (Bjorken, 1969)
exists for the hadronic structure functions of the
photort:

lim Wt'r(e', v) = Fs&(to),
~co, cu fi~ed

e
t2 („e'e, ))—

v= 2E,[E E' cos' (8/2) $&v;.,
—

Q'=4EE' sin' (8/2) &Q;„', (12.8)

for an appropriate choice of v;„and Q;„e, the cross
section (12.6) can be reduced to the form

(2E—E~)' 2 (E E„)—
ln 1'72E' [E '+E(E E)8—

for (est,/E)'((8, '(&1 [see (3.18)j. In the case 8;„(
8(8,„[(rN,/E)'«8;„'j, N(E~, 8, ) in (12.6) should
be replaced by N(E~, 8,„) N(E~, 8;„). Notic—e
that the equivalent-photon method applied to the
electron 2 can be taken as an extremely good approxima-
tion if the condition (sN, /E)'(&8,„'«1 is actually
satisfied.

In the deep inelastic region, which may be defined by

da e+y e+any hadrons 2%ex

p(Q')'

do 4srcezEE'N(E„8, „)
dE'd cos 8dE~ (Q')z[E—E' cos' (8/2) gE~

&[F."( )(1—y)+F "( )(y'/ )1 (12 9)

X Fz"(~)(1—y)+Fs'(t )— and
y= 1—(E'/E) cos'(8/2) . (12.10)

This shows clearly that electron —photon scattering If we do not measure the energy of the electron 2
experiments in the deep inelastic kinematical region scattered into forward angles but only specify the
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upper bound of its energy to be E—E;„so that the
deep inelastic kinematics is guaranteed, it is more
useful to integrate (12.10) over E~:

do' 4ncPEE'

dE'd cos 8 (Q')'LE —E' cos' (8/2) ]
dE~

X '
&(E„8mnn) LF2'(~) (1—y)

Ev

+FP((u) (y'/co) ], (12.11)

where E; =22; /$2(E —E') cos' (8/2)].
In the ep case the scaling region seems to start at

i~several GeV' and Q'~0. 5 GeV'. Thus Q;„' for ep
scattering is less than ~ of the threshold value for the
2rp continuum. If a similar situation prevails in the ee

scattering as well, Q; ' will be close to the threshold
of a few-pion system and will probably be of order
0.1 GeV'. We may choose 2;„~1 GeV' in the same
analogy. Of course we do not know whether such an
argument is correct: After all these are quantities to
be determined by experiment.

In order to estimate the magnitude of the cross
sections (12.9) and (12.11), let us assume the parton
model with spin ~ constituents. Then we have the
relation (Callan and Gross, 1969)

Fi'(~) = 2~F2"(~). (12.12)

We shall further make use of the very rough estimate

F2'r(co)~(a»/o») F2"(id) (1/300)—X0.3~1X10 ~

(12.13)

based on factorization, where o-» and 0-» are the total
yp and pp cross sections. Then, for typical values
E= 2.5 GeV, E'= 1.0 GeV, 8= 15', E~= 0.5 GeV,
8,„=5.7', the cross section (12.9) becomes

do/dE'd cos 8dE„~4.2X10 "cm'/GeV'. (12.14)

(The values of other quantities are 2 = 1.5 GeV',
Q'=0.17 GeV', co=18, y=0.61.) For the same values
of E, E', 8, 8,„,and E;„=0.5 GeV (hence 2) 1.5 GeV'),
we obtain from (12.11)

do/dE'd cos 8~3.3X10 "cm'/GeV (12.15).
Integrating (12.11) over E' and cos 8 in the deep
inelastic region we obtain

4' I ne., ( E'tl
2W)

Qmin ~ ~e k Emin ~ ~ 2'min

XF2'r 5.4X10 "cm', (12.16)

for E=2.5 GeV, v; =1.5 GeV, E;„=0.5 GeV, and
Q; '=0.17 GeV. From these examples we see that
the deep inelastic scattering on a photon target will
provide a 'practical and exciting opportunity for the
new high-energy, high-luminosity colliding-beam faci-
lities at SLAC and DESY.

We can give an additional argument to support

the assumption (12.13) (Brodsky, Kinoshita, and
Tarazawa, 1971a). If we follow the Bjorken —Paschos
(1969) interpretation of the structure function, we
anticipate the co dependence of Fp(&v) to be similar
to that of F2"(a&). However, the magnitude of F22'(&u)

will depend on two factors: (1) the probability of
6nding the hadronic state in the target photon which
is of the order of e'/g' if we adopt the vector-dominance
model with the universal coupling constant g(g2/42r
2.0); (2) the factor depending upon the structure of
the hadronic state of the photon which is di6erent
from that of the nucleon. If we take the fractionally-
charged-quark model in (2), we find the sum rule of
the Bjorken —Paschos —Drell —Levy —Yan type (Bjorken
and Paschos, 1969; Drell, Levy, and Yan, 1969, 1970)

F22'(a&)d(&u ')~(2/9) (e'/g') 8~X 10 4, (12.17)
0

which is consistent with (12.13).
At E=2.5:GeV and 8=15', the Bhabha scattering

cross section do(e+e=+e+e )/d cos 8 is about 20 pb,
which is roughly 10' times larger than the cross section
obtained from (12.15) by integration over E'. However,
since the produced hadrons are to be detected simul-

taneously, no serious background problem arises from
Bhabha scattering and its radiative corrections. The
background due to hadrons produced in C= —states
by the bremsstrahlung of virtual photons in ee col-
lisions Lsee Fig. 1 (b)] appears to be strongly sup-
pressed in the deep inelastic region. Fujikawa (1971a)
has estimated such a background as well as the structure
functions of the photons by assuming that in the
inclusive hadron production by two photons, one real
and the other highly virtual, y*+y-+any hadrons, can
be approximated by the muon-pair production y~+y —+

y++iti . One of his conclusions is that the C= —back-
ground process may contribute substantially (say a
few times 10%) to the deep inelastic ey scattering in
some kinematical region. See also the discussion on
the same background given in Sec. XIII.

If we detect both the scattered electrons and measure
all the kinematical variables, including the coplanarity
angle of the electrons, we shall be able to determine
six combinations of the eight independent structure
functions involved in the imaginary part of forward
virtual photon —photon scattering (Brown and
Muzinich, 1971; Carlson and Tung, 1971). Although
such a determination of more than two structure
functions requires more dificult experiments, the
questions of what scales and how it scales in the limit
of Bjorken's type are interesting by themselves. Cheng
and Zee (1972) have given an answer to these questions
in the quark model for the light-cone algebra of currents
(see Sec. XIII).

A more speciic inclusive experiment was proposed
by Roy (1971) who has shown that the reaction

e+e-+e+e+2r (soft) +anything (12.18)
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is useful for picking up information on possible scaling
of the matrix element of the axial-vector current com-
mutator between real photon states. He has used the
theoretical technique developed by Pais and Treiman
(1970) for the inclusive one-photon annihilation process
e++e ~(soft)+anything.

Recently Walsh and Zerwas (1973), in an argument
based mainly on the parton picture, have conjectured
that the structure functions of the target photon do
not scale (or do but only approximately) in the Bjorken
limit in contrast with the structure functions of hadrons.

See also Fujikawa (1971a) and Buchl (1973).

XIII. TEST OF THE ALGEBRA OF
BILOCAL CURRENTS

In the previous section we discussed the inclusive
two-photon process e+e~e+e+any hadrons in which
—ki' is large, kP 0, and (ki+kz)' is also large with
the fixed ratio co=1+(ki+k&)'/( —kp). This is
Sjorken's scaling region. In this section we shall
investigate the same inclusive process in the diA'erent
kinematical region where all three invariants, k~2, k22,

and (ki+kz)', are finite and large.

A. Various Scaling Limits

Since we have more than two invariant variables,
we have several choices for the ratio to be fixed in the
scaling limit. In fact, many authors have already
invented different scaling limits.

Efremov and Ginzburg (1971), Shabel'skii (1971),
Kingsley (1972), and Perlovskii and Kheifets (1972)
have, independently, proposed "the super-scaling, "
which means that the amplitude for

y"(ki)+y~(kz)~X, s= (ki+kz)' (13.1)

is a function of only the one variable sso/kPkP when
both —k~2 and —k2' are large and comparable to
(sso)''. The arbitrary dimensional constant so ( 1
GeV') appears in the first two papers because the
authors have assumed Regge-type behavior for the p p
total cross section $i.e., so»(s) (s/so)a) in addition
to the factorization Li.e. o»(s, kp, kp) =o»(s, kp) X
cr»(s, kp)/o»(s) 5 and the scaling law 0 e , so»(s, .k'.)
f(s/k')). Kingsley has conjectured the same scaling
from his analysis of the imaginary part of the Feymman
diagram with a fermion loop drawn for the forward
photon —photon scattering. Matveev, Muradyan, and
Tavkhelidze (1970) have proposed a different scaling
for the same amplitude in an analysis similar to
Kingsley's Their conjecture is that the amplitude for
(13.1) scales as a function of the two ratios kP/kP
and s/kP when all the three invariants, kP, kP, and
s—&ao, have the ratios fixed. Skobelev (1972) has also
investigated the yy forward scattering amplitude o6
the mass shell in the limit of s, —k~2, —k2'~~ with
s/ —kP, s/ —kP fixed, but large in the multiperipheral
Amati —Bertocchi —Fubini —Stanghellini-Tonin model.

However, these conjectures of the scalings may not
be strongly convincing since neither the reliability
of the factorization assumption for such a large value
of k&' and k2' nor the relevance of the Feynman diagram
in such a limit as k~', k~', and s—+~ has been made
clear as yet. In contrast, another scaling for the
amplitude (13.1) in the limit, —kP and —kP—&m

with kP/kP and s 6xed, proposed by Gross and Treiman
(1971b), is based on a more formal and mathematical
basis, the algebra of bilocal currents. We shall briefly
review this currently popular mathematical tool and
one of its consequences, the Gross-Treiman scaling,
in Sec. XIIIB and discuss the experiment proposed
by many authors as a 'test of the algebra of bilocal
currents in Sec. XIIIC.

A general consideration of kinematics for large —k~',
—k2', and s can be found in the paper by Choban and
Shekhter (1971).

ie„„eIA—e(x, y)+A~(y, x) )I, for (x—y)'~0,

and
Savae gaag e+ gaveg agavvgae&

D(x) = e(xo) B(x') /2~.

(13.2)

The bilocal currents V„and A„are defined by

and
V.(* y) = k(x)v.QV(y)

A.(*,y) = P(x)»~.QV(y), (» 3)

where P(x) is the quark field and Q is the quark charge
(matrix) . Thus the study of bilocal currents with light-
like separation has become an interesting subject in
particle physics. Moreover, Fritzsch and Gell-Mann
(1971) and also Gross and Treiman (1971a) have sug-
gested the physical significance of the commutator of
the light-cone commutators in which the separations
of all four space-time points are lightlike. For the vector

B.The Algebra of Bilocal Currents

Since the SLAC—MIT experiments revealed Bjorken's
scaling phenomena (1969) in deep-inelastic electro-
production, two ideas have attracted theoretical
attention. One is the parton model (Feynman, 1969)
and the other is the light-cone dominance of current.
commutators (Ioffe, 1969; Brandt, 1969; Jackiw,
Van Royan, and %Vest, 1970; Lewtwyler and Stern,
1970; Frishman, 1970; Brandt and Preparata, 1971).It
has been assumed that the algebra of current com-
mutators on the light cone possesses the structure ab-
stracted from the free-quark model (Fritzsch and Gell-
Mann, 1971) or the gluon-quark model (Cornwall and
Jackiw, 1971; Gross and Treiman, 1971a). For the
electromagnetic currents in the free-quark model, for
example, we have

L~.(*),J.(y))=~ D(x—y)

X Is„„eLV (x, y) —V (y, x))
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for

currents in the free quark model, we have centrate on the kinematical region where the two
virtual-photon mass squared, —k&~ and —k2', are very
large compared to, say, the pion mass squared but still

—P(y) p„p p„~(x)8 D(z u—), much smaller than 4E', 4EEi', 4EE2', 4E,'E2', i.e.,

m '« —ki' k2'«—4E' 4EEi', 4EE2', and 4Ei'E2'.
(I—x) '~ (u —y) '~ (I—z) '~ (x—y) '~ (x—z) '

=(y—z)'=0 (» 4)

It is important to propose as many tests of this algebra
of bilocal currents as possible because it is quite un-
familiar and therefore should be subjected to experi-
mental checks. To do this, Gross and Treiman (1971b)
have considered the process Lsee Fig. 1(c)7

e++e=+p++ p +any hadrons. (13.5)

They stress the importance of the ordered limits. First
they introduce the scaling limit

q'~~ co=q'/P q, and P' fixed, (13.6)

where q= (1+k)/2, P=l k, and i—and k are the total
momenta of the incident electron pair and the final
muon pair, respectively. After this limit, they take the
second limit P'—+ with co fixed and find the striking
result that one can determine the complete u de-
pendence of the cross section for this process by using
the algebra of bilocal currents (13.4). Unfortunately,
their cross section is too small to be measurable in the
near future. " More practical tests of the algebra of
bilocal currents would be highly welcome.

C. Tests by Means of the Two-Photon Pxocess

Many authors LTerazawa (1972a), Walsh and Zerwas
(1972), Lee, Yand, and Yu (1972), Kunszt (1972),
Kunszt and Ter-Antonyan (1972), and Chernyak
(1972)j have proposed the inclusive two-photon pro-
cess

e(pi)+ e(p~) ~e(pi') +e(p2')+X(P) (13.7)

as a test of the algebra of bilocal currents. The momenta
of the leptons are indicated in the associated parentheses
and I is an arbitrary hadron state with positive charge
conjugation and with momentum P. Detection of at
least one produced hadron as well as measurement of the
momenta of both scattered electrons is required experi-
mentally. I.et E, E, E&', and E2' be the energies of
leptons 1, 2, j.', and 2', respectively. We shall con-

q = -', (ki—k2) arid P=ki+ k2. (13.10)

There are two different sets of three independent and
invariant quantities (q', P q, P') and (ki', k2', P') whose
relations are

q'=-', (ki2+kz2 —~zP') &0 and P q=-', (ki2—k22).

(13.11)

In the physical region of this process the scaling variable
u=q'/P. q is constrained by

i
o) i) (1+P'/4q') ') 1. (13.12)

After summing all the final hadron states with the
total momentum P fixed, we find the vacuum expecta-
tion value of the commutator of the current commuta-
tors:

(13.8)

In the e+e colliding beams we have two graphs,
Figs. 1(a) and (c), which contribute to the production
of hadron states with positive conjugation. The graph
of Fig. 1(c),however, can be ignored completely under
the conditions (13.8) because the ratio of the amplitude
Fig. 1(c) to that of Fig. 1(a) has roughly the magnitude
of (ki2k22)/L(p&+pm)'(pi'+pm')'j. On the other hand,
in the case of e e colliding beams we can ignore the
interference between the graph of Fig. 1(a) and the
graph in which the two final electron lines are ex-
changed, due to the fact that the backward scattering
would correspond to a much higher momentum transfer
than the momentum transfer involved in the forward
scattering.

Therefore, we may restrict ourselves to the graph
of Fig. 1(a) . For this graph, all the physics is contained
in the tensor

M„„=iJ d4x exp ( —iqx)

X(X
~

T (J„(-,'x), J„(—-', x))
~
0), (13.9)

where J„is the electromagnetic current (divided by e)
and q is redefined by

Mez, „„Q(2n)'8(P P. x——)MaztM„. . —

=f d4x d4y d'z exp ( iqx+iqy iPz—)e(xo) e(yo—)

X(0
~ LP (-', (y+z)), Jz(-', (—y+z)) jt, LJ„(-',(x+z)), J,(-', (—*+z))gj

~
0). (13.13)

"For examples, de~10 "cm' for 8=3 GeV, q'=1.5 GeV', co =1.8, and P'=1 Ge&. Their final results for the structure functions
g, and gp seem to have a wrong normalization by 2(271.)4. The author thanks Professor D. J. Gross and Professor S. B. Treiman for
correspondence on this point.
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Following Gross and Treiman (1971b), in the 6rst limit of —q'—&" with a& and. P'6xed, we see that M„„is deter-
mined by the singularity of the product of two currents on the light cone (z'=0) and that the tensor structure
of M p.„„is identical to that of M p.,„, appearing in the single scalar and pseudoscalar productions by the two
virtual photons. Therefore, M p.,„„canbe expressed in terms of two structure functions g8 and gP as follows:

lim (P q)'M P.,„„=gz(~,P')e-P~se»„&P&P"q q"
g ~~,co and P2 fixed

+gs(~, P') O'-Pp" (P—-qp+q-Pp)+(P q) g-prP. P~ (P—.q+q P )+(P q) g'.3 (13 14)

lim gs(~, W) =gs(s))
P2~~ cu fixed

and

' dz z'(1 —z')= (Q')
—12~(Ms z2)s

One of the most important points here is that the
functions gq and gP thus introduced scale as a function
of & when q'~ —~ with op and P' fixed. Furthermore,
by assuming the algebra of bilocal currents (13.4),
Gross and Treiman (1971b) have shown that in the
ordered limits: q'—+—~ with u and P' 6xed followed

by P2~~ with ~ fixed; M z.,„, becomes identical to
what one can obtain in calculating the pair creation of
massless quarks' by the two virtual photons. Thus we
can determine the co dependence of the structure func-
tions in the asymptotic limit of P'~~.

The results are

papers by Suura, Walsh, and Young (1972) and by
Bardeen, Fritzsch, and Gell-Mann (1972).

For large —q' with 6xed. co and P', the differential
cross section for the process (13.7) is given by the
following simple formula (Terazawa, 1972a):

da 256a4

degd cos etdesd cos &st

E4E'E '(E—Eg')'(E —E2')'
F td)P

[P 2$ 2(P 2+$ 2)]2

for P'« —q'«4E', (13.17)

where e;=E /E (i= 1, 2), 0; is the scattering angle of
the electron, g is the angle between the plane containing
the first scattered electron and the incident beam and
the other plane containing the second scattered electron
and the beam, "

lim g~(&v, P) =g~(~)
P2~~, co fixed and

k's=4EE,' s—ins (8;/2), (13.18)

' dz oP(1—z')= (Q') —
, (13 15)

~2~ ((gs—zs)s '

where (Q4) is an effective value for the sum of Q' over
quarks. This constant (Q4) is predicted to be

F(~, P') =~'I:~'g (~, P')+g (~, P') 3 (13 19)

From Eqs. (13.15) and (13.19), we obtain the asymp-
totic form of the reduced structure function (Terazawa,
1972a):

2/9 for the original Gell-Mann-
Zweig (fractionally charged single
triplet) quark model

2/3 for the fractionally charged
three triplet quark model

lim
P2~~, co fixed

' dZ (o4(1—Z')

&2&(~2 z2)2

3(F4+1
I

co I+1
4 I~I'

3GD 1
(13.20)

F(-, ~) =F(-) =(Q')

(Q') =
~ 1 for the original Sakata (integrally

charged triplet) model (13.16)

2 for the Maki —Hara (integrally
charged triplet) model (Hara,
1964; Maki, 1964)

4 for the Han-Nambu (integrally
charged three triplet) model
(Han and Nambu, 1965).

In any event, it is a single parameter to be determined
by experiment and to discriminate between various
models. A detailed comparison of the effective values
for Q determined in various processes can be found in the

Since the maximum energy of the colliding-beam
machines which will be available within a few years is
3 or 3.5 GeV per beam, it is hard to test this result of
the algebra of bilocal currents (13.20) under the
extremely idealistic condition

«P «—q'«4E' (13.21)

However, if we assume that F(&v, P') will already be
close to the F (cv) given in (13.20) at relatively small

"To make the definition of p clear, note that

P'= 4(E—E1') (E—E2')

—2E1'E2'(1—cos81 eos8g+sin81 sin8g cosp) ~
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values for —q2 and P', 24 then we see that this test may be
feasible in rather early colliding-beam experiments.
Taking, for example, E=3 GeV, E~'=E2'=2.5 GeU,
g2 — 0 7 GeU2 ~ —1 75 and P2 0 4 GeV2 we find25

deid cos 8ide2d cos 82'
=2.9X10—"cm'

=1.3X10 "cm'
for (Q') = —,'
for (Q4) = 1. (13.22)

Vnder the condition (13.8) or (13.21), the experimental
phase-space volume deid cos 8idemd cos 82 ~ is roughly
10 4. Therefore, the effective cross section will be of
the order of 10 " cm' for (Q') =1 and of 10 '" cm' for
(Q')= f. A cross section of this magnitude can be
measured with future colliding-beam facilities if their
luminosities reach ~10"-10'4cm '/sec.

In order to make this test of the algebra of bilocal
currents more precise, Terazawa (1972a) has also
investigated the background contribution in detail. His
conclusion is that the C= —background contribution is
less than 17%of total events if (Q') =f and that it is at
most 4.3% if (Q')=1 at the same combination of
kinematical values used previously in (13.22). He has
also found that the background contribution disappears
at high energies where the condition (13.8) can be
better satisfied. For more details see Terazawa (1972a) .
See also the recent paper by Walsh (1972) for a com-
parison between the Regge and parton (or light-cone
algebra) pictures.

In conclusion, we should emphasize that the processes
(13.5) and (13.7) provide the only simple tests of the
algebra of bilocal currents that do not depend on any
further assumptions such as the distribution of partons.
It is to be hoped that future colliding-beam facilities
will have sufficiently high luminosities to make these
tests possible.

Recently Ferrara, Grillo, and Parisi (1973) have
applied the Crewther's short-distance analysis to
y~+y*—+X~*+y* and obtained the relation (Q4)=
16S'/3R, where S is the anomalous constant defined in
(7.13) and E is the high energy limit of ~(e++e=+

hadrons) /o (e++e=+p++ p ') . See also the paper by
Fritzsch (1972).

e+e~e+ e+X (14.1)

in which X is specified to be a single C=+ meson such

'4 This conjecture has a good chance to become true because
the SLAC—MIT experiments revealed Bjorken's predicted scaling
at surprisingly low momentum transfers and because the threshold
values of P for continuum states are much smaller than those in
deep-inelastic electroproduction.

"The angles 8&, 82, and p are 21', 9.4', and 111,respectively.

XIV. ASYMPTOTIC BEHAVIOR OF THE
VERTEX FUNCTION

In this section we shall return to the exclusive
process

as n', g, g', 0 (or e), f(1260), etc. Some general features
of this process have been discussed in Secs. IV and VII.
Here we shall concentrate on the asymptotic behavior
of the two-photon vertex function where at least one of
the (mass)' of the virtual photons becomes large.
Detection of the final electron scattered at large angles
as well as measurement of the momentum is required
experimentally in order to find the photon mass
squared. Naturally, the cross section will become very
small in this case. It is, however, one of the ultimate
physical interests to measure the vertex as a function of
the photon mass squared once the process (14.1) has
been observed.

To be more specific, let us take X=+' as an example.
The di6ererltial cross section for the two-photon
process e+e~e+e+w' at the c.m. energy of E is given
by (Terazawa, 1972b)

da

dEi d cos 8idE2 d cos 82dg

E'Ei'E2'(E —Ei') '(E—Eg') '
( 2k2) 2

»(~' —~ ')
I
F(q' k') I'

for m '« —q' —k'«4E' (14.2)

where we have used the same notations as in Sec.
XIII Lsee (13.7)) except for q' and k' which here
denote the mass squared of the virtual photons (q'= kim

and k'=k22) for convenience. The m'yy vertex function
has been defined in Sec. VII by

3II„„(q,k) =if d4x exp ( iqx)—

X(P I
T*(J„(x),J,(0)) I

0)

= e„„eq k~F (q', k') . (14.3)

Its normalization is given either by Lsee (7.11)]
I
F(0, 0) I

= (64m. i' '„„/e'm ') '"
= (2.7&0.2) X 10 4 MeV ' (14.4)

experimentally, or by Lsee (7.14) and (7.15))

F(0, o) I
'- = —~/(2 'f-)

=2.7X10 4 MeV ' for $=1/2
=0.89X10 ' MeV ' for 5=1/6 (14.5)

theoretically.
Several years ago, Cornwall (1966) showed that

&(q' k') decreases as fast as (k') ' when k'-++00 and
k'/q'~+1 if the q-number Schwinger term does not
exist, the Bjorken —Johnson-Low theorem (8jorken,
1966; Johnson and Low, 1966) is valid, and the space-
space component of equal-time current commutators is
defined as

P', (-,'x), J;(—-', x) ),~———2ieo;i&o&(0) 8(x), (14.6)
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where A @+ is an axial-vector current section of the one-photon annihilation process:

A ct»(x) = P(x) pepvQ'f(x) . (14.7) 1I(k') = k'o (e+e=+any hadrons) (k') /(16srens) . (14.12)

In the paper which was discussed in Sec. XIII, Gross
and Treiman (19'71b) have shown, in the gluon-quark
model for the light-cone algebra of currents (Cornwall
and Jackiw, 1971; Gross and Treiman, 1971a), that
q'F(q', k2) scales as a function of k'/q' in the limit
q'-+~ with k'/q' fixed. It will be extremely interesting
to check these predictions for the asymptotic behavior
of the vertex function experimentally because this
could rule out (or reveal) a few possibilities to ruin their
results: i.e., the existence of the q-number Schwinger
term, the failure of the Bjorken —Johnson —Low theorem,
and a divergent coefficient for the space-space com-
ponent of equal-time (or light-cone) current commu-
tators.

Since these results are not only model-dependent but
limited to the special kinematical region where both q'
and k2 are large with the ratio k'/q2 fixed, it is required
to find a less model-dependent and more widely
applicable prediction for the asymptotic behavior of
the vertex function. Terazawa (1972b) has discussed
this question by using the Schwartz inequality and
unitarity only, as we shall review in the following.

If we take q and k below and above the 2m threshold,
respectively, (i.e., q'(4m ' and k') 4m ') in Eq.
(14.3), the imaginary part of the M„„(—q, k) simplifies
and takes the form:

Im M„„(—q, k) =-', g (2~) S(P+q—P„)

X (P
I &„(0)

I
rt)(rt

I
J„(0)

I
0). (14.8)

Let us define the spectral function of the photon
propagator by

Z (2~) sS(k—P„)(0
I Z„(0) I

n&(n
I
Z„(0) 10

= ( k'g„„+k„k.)II(—k'), (14.9)

and the inelastic electroproduction form factors of x by

Z (2~)'~(P+q —P ) (P I ~.(0)
I
n)(n

I
I (0)

I »
Lg" (q'q /q') 7—Wi(q'—P q)

+[P„(Pq/q )q„7[P„(Pq—/q')q„7—
XW2 (q', P q), (14.10)

where me restrict n to states with, J=1. From Eqs.
(14.8)—(14.10), we obtain the Schwatz inequality for
the imaginary part of the vertex function:

I
Im F(q', k')

I

k2II(k2) W [q2 1 (k2 q2 m 2) 7 1/2

(k' —q')' —2m~'(k'+q')+m 4

for q'(4m '. (14.11)

It is well known that II(k') is related to the total cross

The total cross section is predicted to decrease as fast as
(k') ' (Bjorken, 1966; Gribov, Ioffe, and Pomeranchuk,
1967) or faster. In other words, we have

II (k') —+constant or zero as k'-+ oo . (14.13)

The following results will not be changed unless the
total cross section stays constant or increases as k'
goes up. On the other hand, Wi(q', v) is related to the
total cross section for the inelastic scattering of the
virtual, transverse photon on the mo target:

Wi(q', v)~var(q', v)/(2v'ce). (14.14)

Since the final state is restricted to have J= 1, unitarity
tells us that or(q2, v) decreases as fast as v ' or faster,
namely

Wi(qm, v)~constant or zero as vr~ with q' fixed.

(14.15)

From the inequality (14.11) together with (14.13) and
(14.15), we conclude that

I
Im F(q', k')

I
decreases not

slower than (k') '/' as k' increases while q is fixed.
Unfortunately, we do not know anything about the
asymptotic behavior of Re F(q', k'). We shall assume
that F(q', k') does not contain any polynomial in
k' or, in other words, F(q', k') decreases at all."
Then we can use the unsubtracted dispersion relation
for F(q', k') with fixed q' to obtain the following in-

equality sum rule:

I
F(q', k') I&2

00 de
4~ 2 ~'—k'

K211(K2) w [q2 i (K2 q2 m —2) 7 1/2

(K2 qs) 2 2m 2(K2+q2)+m 4

for q', k'(4m '. (14.16)

Now we can investigate the behavior of F(q', k') for
large —k' (or —q') with q' (or k') fixed at an arbitrary
value, whether it is spacelike, real or timelike (q', k'&
4m ') . Notice the purely mathematical fact that"

for « —T&0, (14.17)

if
I f(t) I&c't 'for 0(T'&t& ~, where c, c', T, T', and

a are some constants (c, c')0 and 0(a(1). In our
case, a=1/2 and, therefore, the integral in the right-
hand side of (14.16) is bounded by constant X ( —k') '/'

for large —k' and fixed q'. Consequently, we- conclude
that the vertex function decreases not more slowly than

(—k') '/' for any ftxed vattees of q' ((4mr') as —ka

~' The author thanks Professor N. N. Khuri for pointing out
the necessity of this assumption.

"The author thanks Professor V. Singh for suggesting this
mathematical point.
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X~{s~ ) X2(s2)
H

(a)
P(P2)

X)(s)) X2(s &)

function of k'/q' or vanishes for large —k' and —q'
with k'/q' fixed. The latter prediction is definitely
weaker but less model-dependent than that of Gross
and Treiman (1971b).

An inequality of the type (14.16) holds for arbitrary
single particle states X such as i/, iI', 0 (or e), etc. The
experimental determination and further theoretical
investigation of these vertex functions is of interest
since they can potentially be better probes to the
structure of hadrons than the ordinary form factors of
hadrons. Some other consequences of the inequality
(14.16) can be found in the recent paper by West
(1973).

How the PCAC anomaly affects the asymptotic be-
havior of the m'yy and axial-vector-vector-vector vertex
functions has been discussed by Terazawa (1973a).

XV. MASSIVE MUON-PAIR PRODUCTION IN
HADRON-HADRON COLLISIONS

p(p)) P (P2)

(b)

p(p)) p(p2)

One of the most intriguing experiments reported
recently in high-energy physics is the massive muon-
pair production in hadron —hadron collisions, p+
P (or e)-+/i++/i +anything, which was first per-
formed by Christenson, Hicks, Lederman, Limon, and
Pope (1970) with a uranium target. Drell and Yan
(1970) predicted a scaling behavior for the a' con-
tribution LFig. 13(a)) to the process

FIG. 13. The two different types of diagrams which contribute
to the process p+p~p, ++@ + anything. X, XI, and X2 are
arbitrary hadron states.

increases. The same conclusion can be reached for large
—q' with k' fixed because F(q', k') is symmetric with
the two variables. Since WiLq', -', (/~' —q' —m ')) for
6xed ~' vanishes quickly as —q' goes up, the main con-
tribution to the integral in (14.16) comes from the deep
inelastic region where both x' and —q' are large and
&u= (ii' —q')/( —q') )1. Introducing the Bjorken scaling
function (Bjorken, 1969) for Wi"

Wi(q', —', (/i' —q' —m ') )~Fi(cg)

—q'—+~ with co 6xed,

we transform the inequality (14.16) into

(14.18)

( 2 "d E(~—1)11(")Fi(~))'"
(—q')'" i ~L~—1+ (&'/q') )

for large —q'. (14.19)

This clearly shows that F(q', k') decreases not more
slowly than (—qm) '/' for any fixed values of k' ((4m ')
as —q' increases and that (—q')'/'F(q', k') scales as a

'8 Since 8'1 is the contribution of J= j. states to the usual in-
elastic form factors, F1(ou) is a part of the usual structure function.
Therefore, F&(cu) may vanish, in which case J'(q~, k') decreases
faster than (—q~)~In. Notice also that F1(co)—+constant or zero
as co—+~, which guarantees strong convergence of the integral
in (14.19).

p(pi)+p(p&)+/i++/i +anything (15.1)

at large and timelike values of Q' (the di-muon mass
squared or the virtual photon mass squared) with the
ratio p=Q'/s fixed where s= (pi+p2)' is redefined in
this section by the total energy squared of the incident
beams in the center-of-mass system. The differential
cross section per di-muon mass is predicted to be of the
form

d&/d (Q2) 1/2 —L~2/(Q2) 3/2)F (p) ( 5 )

However, the magnitude and detailed behavior of the
scaling function F(p) can not be unambiguously cal-
culated at this time. A different approach to the same
process is an analysis by Altar elli, Brandt, and
Preparata of the light cone singularity of products of
currents (1970; Brandt and Preparata, 1972). Such an
analysis predicts a nonscaling behavior with exponential
decrease of the di8erential cross section at large Q'.

Since the magnitude of the one-photon cross section
has never been predicted, there is no reason why we
should believe that the process (15.1) is dominated by
the one-photon process LFig. 13(a)) for any values of
Q' and s. In addition to the one-photon process, one
should also consider the two-photon contribution
t Fig. 13(b)) to the differential cross section for (15.1) .
The relevance of the two-photon process in p+p-+
/i++@,

—+anything has been emphasized by Budnev,
Ginzburg, Meledin, and Serbo (1970, 1972a), who
estimated the elastic contribution Xi——X,=p for the
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diagrams shown in Fig. 13(b) by means of the equiva-
lent photon approximation. As subsequently pointed
out by Brodsky, Kinoshita, and Terazawa (1971b), the
effects of proton form factors at the vertex p~p+ y* are
important and suppress the equivalent-photon result
very severely at high Q', where the minimum mornen-
tum transfers, q»' and q2', to the protons are not
negligible. This point was conirmed by a calculation of
the same elastic contribution to do/d(Q') '~2 by Fujikawa
(1971b), who still neglected some of the q' dependence
of the purely electromagnetic two virtual photons -to

muon pair amplitude.
It is important to know the full contribution to the

differential cross section given by the diagrams in
Fig. 13(b), where X includes both elastic and inelastic
states. Knowledge of this contribution is necessary for
an assessment of the background for the extraction of
the n' one photon process. Since amplitudes for the
one- and two-photon processes do not interfere in the
differential cross section, the two-photon contribution
will. also provide a lower bound to the expected cross
section for (15.1) . Furthermore, if the one-photon
process is small at large Q', which is a possibility with
the nonscaling predictions such as that of Brandt and
Preparata (1972), or if the scattering of a hadron is
coherent o6 a nuclear target, the two-photon contribu-
tion will be more important and reveal its own physical
significance. From quantum number consideration, it
can be shown that the muon pair produced directly
from one timelike photon and two spacelike photons
have different angular distributions (Terazawa, 1973b) .
More detailed measurements can thus separate these
two processes and use the muon pair production as a
signature to measure the electromagnetic structure of
other hadrons, for example, the pion form factor, in
the spacelike q2 region in hadron-hadron collisions

( Geshkenbein and Terentyev, 1971).
Recently, Chen, Cheng, Muzinich, and Terazawa

(1973) Lsee also Chen, Muzinich, and Terazawa
(1972)j calculated the full two-photon contribution
exactly. An outline of the details of their calculation is
the following: After squaring the amplitude and
integrating over the appropriate phase space variables,

'

the relevant differential cross section has the general
form

da 2rrs„2 f c2
' d'qi d'q2

d(Q2)1 2 LS($2rrS 2) jl 2 dsr2 (q 2q 2)2

x2(Q') '12&LQ' —(qi+q2) 'j

( q» Pi)~"'~(qi, q2) ~'-e( q2, P2) (15 3)—
where m„ is the proton mass, W„„is the gauge invariant
tensor for the absorptive part of the off-shell Compton
amplitude, which is given by the usual inelastic form

factors of the proton TV» and 8"2 as follows:

+'.(q, P) = Z (2 )'~(p+q P—.) (P I
J.(0) I

x (~
I
J„(0)

I p

Lr"— (q.—q lq') j~i(q', P.q)

+LP. (P —q/q')q. hLP. (P —qlq')q1

XW2(q2, P q), (15.4)

and A„» is the gauge invariant absorptive part of the
cP term in the purely electromagnetic amplitude
y(qi)+y(q2)~y(qi)+y(q2) with the muon loop and
can be calculated by Feynman rules.

The region of the integration over q» and q2 in
(15.3) is always confined in such a way that q,2&0 and
$;= (p,—q, )2&rrs„2, which is the same as that for the
electroproduction process e+p~e+anything for the
determination of lV„„. Therefore, we can use the
knowledge of the experimentally measured proton
inelastic form factors H/'» and 8'2. For the elastic con-
tribution, we can express t/V» and t/t/2 in terms of the
known elastic form factors G~ and G~ with the ap-
proximate dipole parametrization (1—q'/0. 71 GeV') '.
The inelastic contribution to H/"» and F2 is pararnetrized
by the fit of Bloom and Gilman (1971) to the scaling
region —

q &1 GeV', s; &2 GeV'. Since the integration
in (15.3) also includes the small —qi2 region, Chen,
Cheng, Muzinich, and Terazawa have modified the
formula of Bloom and Gilman by a factor —q;2/( —q;2+
0.15 GeV'), which correctly matches with the total
real photoabosprtion cross section at q,'=0. Low-
energy resonance electroproduction and background
contributions are taken into account in an average sense
by the fit of Bloom and Gilman. After elimination of the
8-function and a trivial azimuthal integration, the
expression in (15.3) can be written in terms of a six-
dimensional integral over the invariants q»', q&', s», s2,

si2 —(pi+q2)', and $»= (q2+qi)'. After a parametriza-
tion in terms of the O(2, 1) variables of the type in the
papers by Brown and Muzinich (1971) and by Carlson
and Tung (1971), subsequent integration over three
of these variables can easily be carried out analytically.
This is one of the advantages of using the O(2, 1)
variables mentioned in Sec. II. Thus the integral in
(15.3) is reduced to a three-dimensional integral
which is performed by a Monte Carlo program to an
accuracy of less than 1%%uz.

These results (Chen, M. , and T., 1972; Chen, C.,
M. , and T., 1973) are shown for both elastic and
total contributions in Fig. 14 and Table IX as functions
of (Q2)'~2. The total incident energies are chosen to
agree with the Brookhaven-Columbia experiments at
s= 56.3 GeV' and the future experiments at NAL, ISR,
and ISABELLE with s=1.000, 2500, and 10' GeV',
respectively.
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FIG'. 14. The two-photon cross section
do/d(Q')"' for the process p+p —+@++
y +X1+X2 as a function of (Q')'+ at
g=56.3, 1000, 2500, and 10' GeV'. The
solid line represents the total contribu-
tion and the broken line represents the
elastic contribution with X1——X2——p. The
upper right-hand corner exhibits the
s-dependence of the cross 'section at
lQ')'"=3 GeV. All the curves have
been taken from Chen, Muzinich, and
Terazawa (1972) .
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The results can be summarized by the following
comments:

(1) At s = 56.3 GeV', the two-photon contribution is
negligible compared to the experimental data of
Christenson et al. , (1970), which indicates that at this
energy there is very little background due to the two-
photon process.

(2) The cross section increases very rapidly with s at
fixed values of (Q')'t' between s=56.3 and 1000 GeV'
and gives observable values at s greater than 1000
GeVs even at (Q')'t'= 10 GeV. The cross section
asymptotically increases as (lns)s, which is expected
by the equivalent-photon method. Apart from this
logarithmic factor, it approximately scales in p=Q'/s
for large s. H one assumes that the n' one-photon
process has already reached the scaling limit in p,

'

then the two-photon process becomes comparable with
the one-photon process extrapolated to s= j.0' GeV2.
Therefore the two-photon process has a good chance to
be one of the main contributions at high s and very
important.

(3) At high s values the inelastic and elastic con-
tributions become comparable to each other and are
both observable. The inelastic contribution has a
substantial part coming from the Bjorken's scaling
region with large s; and —

q . Since in this region the

muon pair will have a sizable total transverse momen-
tum, this part can even be separated out to provide a
test of the scaling in Wi and vWs (v=p. q) in the
average sense at very high energies.

(4) At s= 1000 GeV' and (Q') 'ts &3 GeV, the elastic
contribution is large enough so that one may have a
good chance to do m, E coherent scattering on heavy
nucleus targets to measure the electromagnetic form
factors, as suggested by Geshkenbein and Terentyev
(1971).

One might worry that the angular distribution of the
lepton pair from the two-photon process might be for-
ward peaked in the beam direction to the extent that the
pair may not be well enough separated from the beam
to be observable. Although the angular distribution can
be straightforwardly calcula, ted, it is su%.cient to have a
qualitative estimation at the present stage. Since
each of the muons are preferentially emitted in the
direction of the muon pair total momentum Q=
(q&+qs), it is sufhcient to estimate the portion of the
cross section in which Q has a substantial opening angle
with respect to the beam. From the previous studies of
the two-photon process for x and q production in
Sec. VI, where the sr' (or tt) angle ("the photon-photon
axis angle" ) corresponds to the opening angle for Q,
only about half of the cross section is lost by making an
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angular out of (m/E) '('. This cut off is of the order of
15' even for X=200 GeV.

It is easy to extract the one-photon contribution
alone if we can perform both of the experiments

p+ p~p++)(( +anything and p+ p—+)((++p +anything
at the same values of s. Since not only the two-photon
contribution but also the contribution of parton-
antiparton clouds around the proton (or antiproton)
in the one-photon process to the pp collision Lin the
picture of Drell and Van (1970)$ is identical to those to
the pp collision, the difference between these two cross
sections can be interpreted as a contribution of
"valence" partons inside the proton (or antiproton) in
the one-photon process. In the picture of Altarelli,
Brandt, and Preparata (1970), we can interpret the
difference as a one-photon cross section from which the
Pomeranchukon contribution is subtracted. Another
way of extracting the two-photon contribution has been
recently pointed out by Soni (1973). For large s,
the two-photon cross section has an approximately
logarithmic dependence on the lepton mass, i.e.,
do/d(Q')'(2~in (Q'/mP), while the one-photon cross
section is independent of the lepton mass up to order
mP/Q'. A characteristic difference between the electron
and muon pair production cross sections is, therefore,
solely controlled by the two-photon process. The ratio of
the electron pair production to the muon pair produc-
tion in the two-photon cross sections is approximately

«(e+e )/d(P)" » (Q'/m') ~2.6
d (~+~-)/d(Q )' ln (Q /m„')

for (Q')'"=3 GeV. (15.5)

XVI. MISCELLANEOUS TOPICS

In this section we shall discuss various topics and
processes which are related to the two-photon processes.

A. Other Higher-Order Contributions

In .addition to the diagrams for the two-photon
process which produce C=+ 6nal states, the diagram
shown in Fig. 1(b) for C= —states will contribute
logarithmically increasing total cross sections in e+—e
collisions. The equivalent-photon method applied to one
electron leg gives the leading contribution for E/m, ))1:

I

GM
d&ee~eex(c= —) +(&) d&ye~ex(c= —)y (16 ~ 1)

where do~, ,~~~ ) is the differential cross section for a
real photon in collision with an electron to produce the
C= —state X. This cross section is 6nite for m,~0
(provided X is not the state e+e ) and hence the cross
section (16.1) is only singly logarithmic in E/m, . Of
course, the actual magnitude of this cross section must
be determined by an explicit calculation, a problem to be
settled before long. We note that, in principle, this
C= —production cross section can be completely

X(C= —), (16.2)

the two-photon annihilation (or two-photon exchange)
process ( Gatto, 1965; Sakurai, 1970; Lepetre and
Renard, 1972)'

e++e ~y*+y*~X(C=+), (16.3)

the e+e annihilation into two virtual photons which in
turn decay into hadrons separately (Cheng and Wu,
1972)

e++ e—~4 +

Xg(C= —) X2(C= —), (16.4)

and the one-photon annihilation into hadrons plus a
single photon (Cabibbo and Gatto, 1961; Gatto, 1965;
Creutz and Einhorn, 1970a,b; Kunszt, Muradyan, and
Ter-Antonyan, 1970; Gakh, 1971)

e++e ~*~+X(C=+). (16.5)

The last process (16.5) recently discussed by Creutz
and Einhorn (1970a,b) and by others is very closely
related to the two-photon process e++e=&e++e +
X(C=+). It is because what is measurable in the
process (16.5) is the y*(k~)~X(C=+)+y(k~) ampli-
tude for k~'&0 and k2'=0 while that in the two-photon
process is they*(kq)+y*(k2)~X(C=+) for kg&0 and
k2'&0. The same amplitude, but for the most special
case of k~'=k2'=0, can also be observed in the gen-
eralized Primako6 eRect proposed by Stodolsky
(1971; Juristic and Stodolsky, 1971; see also Brown,

"The terminology for this process has not been established
yet and is somewhat confusing. We should clearly distinguish
between this process and the two-photon process e++e ~e++
e +X(C=+).

calculated from the knowledge of the one-photon
process (1.3).

Arteaga-Rornero, Jaccarini, Kessler, and Parisi
(1970, 197la) have estimated the C= —total cross
sections for p+p, , x+m, and E+E production in the
equivalent-photon approximation (16.1) and found that
they are very small and negligible compared with the
corresponding C=+ total cross sections. Altukhov
(1971) has given general formulas for the C=—
process. An exact calculation of the C= —contribution
to the inclusive process e+ e—+e+e+ any hadrons can be
seen in the paper by Terazawa (1972a) .

Contributions of other higher-order diagrams for
hadron production in which the incident e+ and e
beams annihilate decrease with energy as in the one-
photon annihilation process (1.3). Examples are the
order-u radiative correction to e++e ~y*~X(C=—)
including the emission of hard photons (Litke, 1970;
Kunszt, Muradyan, and Ter-Antonyan, 1970; Bonneau
and Martin, 1971; Berends, Gaemers, and Gastmass,
1972) by one of the leptons, namely

e++e-~V* + V
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Muzinich, Roe, and Yao, 1972). Amazingly, another
special case of the amplitude for X=~+x x was a
current issue as its evaluation was desperately needed
in solving the Xl.'-+ts+tt puzzle (Christ and Lee, 1971;
Aviv and Sawyer, 1971;and many others).

B. Purely Leptonic Two-Photon Processes

Purely leptonic two-photon processes e+e~e+e+
e++e and e+e~e+e+tt++ts can serve as checks on
the fourth-order quantum-electrodynamics calculation
(analogous to the trident experiments) or as normaliza-
tion checks on hadron production by the two-photon
processes. They have to be understood especially well
because the large magnitude of their total cross sections
can cause serious background problems to other
colliding-beam processes if the sca'ttered electrons in the
6nal state are not detected.

There are three main factors that influence the ex-
perimental counting rates of these lepton-pair-produc-
tion processes:

(1) The experiment will set a threshold on the
minimum invariant mass s;,'~' of the lepton pair that
can be observed. Accordingly, the measured cross
sections are reduced by the substitution of s; for the
threshold value of the s integration in (3.14), for
example. Thus, the measured cross sections for the
case where the produced electron —positron pairs are
detected are of order

(cz'/s;„) Dn (E/m, ) j' ln (4E'/s;„)
rather than the theoretical total cross section

(n4/m ') Pln (E/m, )]'
(2) Some experiments will set a limit on the mini-

mum angle of the detected particles of the produced
system. As we have seen in Sec. V, this is not a par-
ticularly severe eA'ect when da»„~ is nearly isotropic in
the photon —photon center-of-mass system as is the case
X=tr+tr . However, in the case of ts+tt (or e+e )
production, the effect of the angular cutoff will be
considerable. In general, enhancement factors of
ln (4E'/s;„) are missing in the theoretical cross section
integrated over wide-angle phase space. In addition,
for the case of the electron pair-production processes,
e+e~e+e+e++e, e+e—+e+e+e++e +e++e, etc. ,
the requirement that at least one final-state electron be
detected at a wide angle 8)8;„&)m,/E eliminates the
inverse dependence of the total rate on m, '. We should
mention here that the sixth-order process e+e~e+ e+
e++e +e++e has closely been investigated by many
authors LServo (1970), Cheng and Wu (1970b),
Greco (1971), Parisi and Zirilli (1971), Lipatov and
Frolov (1971), and Kuraev and Lipatov (1972)j.

(3) As we have discussed in Sec. V, the two-particle
production cross sections are dominated by events in
which the produced particle pair is noncollinear but
roughly coplanar with the beam direction, In general, a

considerable fraction of the events are noncoplanar (see
Sec. VI) and thus this criterion is not suflicient to
distinguish the two-particle production through the
two-photon process and multihadron (n) 2) production
through the one-photon annihilation process. The large
event rates for e+e te+e+e++e and e+e~e+e+
tt++tt can make these processes an especially serious
background for multihadron production without com-
plete particle identification. In general, the necessity for
experimental arrangements which have provision for
detecting and possibly tagging the scattered electrons
seems to be unavoidable.

Recently Pesic (1973) has calculated the total cross
section for e++e ~e++e +W++W, the intermediate-
vector-boson pair production by the two-photon
process.

C. Total Cross Section for Hadron Production

In Secs. XII and XIII we considered the inclusive
processes e+e~e+e+any hadrons in which at least
one of the scattered electrons is detected at a large
angle. What has not been considered yet is the totally
inclusive hadron production by the two-photon process
e+e~e+e+any hadrons in which neither of the scat-
tered electrons is detected or in which the mere presence
of them is detected in order to discriminate the two-
photon process from the one-photon annihilation
process. Of course, no known theoretical model is
powerful enough to give a precise prediction for the
cross section for this process. It is, however, desirable to
have at least a rough estimate of the total hadron-
production cross section via the two-photon process.
Several authors (Budnev and Ginzburg, 1971a;Arteaga-
Romero, Jaccarini, Kessler, and Parisi, 1971a; Brodsky,
Kinoshita, and Terazawa, 1971b) have presented a
simple argument based on the equivalent-photon
method, local-duality, and the factorization of
&»-p any hadrons.

The general components of the total cross section
0»~any hagrons consist of

ssrmpt~ (o ssrmpt) s/tr sssmpt

=0.3 pb for large s. (16.6)

(a) the contribution of narrow C=+ resonances
(tro, rt, st', etc. ) described in Secs. IV and VII,

(b) two-pion production starting at the threshold
sth= (2m )' modulated by the even l resonances and
enhancements in the x-x system described in Sec. VIII,

(c) the contribution of C=+ resonances which
decay into other hadronic systems than the x-m

system,
(d) and, finally, a nearly flat asymptotic component

which may be estimated by factorization of the cross
section at high energy (universal Pomeranchukon
coupling) to be
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From a duality point of view we can consider

0yy~any hadron

as being essentially equal to

asympt0 yy~any hadrons

with the C=+ resonances modulating the asymptotic
value. Thus, very roughly, the multihadron cross section
might be expected to average out to 0.3 p,b starting
at a threshold s~q for s of order (3m )' or (4m )'. We
thus estimate (Brodsky, Kinoshita, and Terazawa,
1971b)

c++e +hadrons. As far as the multiplicity as a func-
tion of the energy E is concerned, we know at present
only a simply kinematical. bound ez (E) & 2E/rN&,
where mg is the mass of the particle A. We should,
however, pay attention to the interesting work of
Llewellyn Smith and Pais (1972) on the absolute
bound of the multiplicity of neutral pions, no, given
by the multiplicity of charged pions, n,h, provided that
the produced-hadronic state consists solely of pions
and that the total number of the pions, S, is odd.
Their bounds based on the isospin -conservation in
strong interactions for e+e-+e+e+Xs. are

&ee~ee+any hadrons but 2m
—',&no/rt. ~&11/4, for %=3

fa ' ( E)' 4~'ds ts'12

m,), s &2E

—2 (n/s. ) 'Pln (E/m, ) j'(0.3 pb)

&& I (ln yo)'+ (in yo) (3+2yo+-'yo')

+(1—yo) (V+syo) j, (16 7)

with yo= s&z/4E. The results for the total cross section
are plotted in Fig. 12. The cross section for producing
three or more hadrons is seen to be comparable in
magnitude to the two-pion production cross section
discussed in Sec. VIII.

We may also obtain a simple estimate of the cross
section for the process

e+c-+e+e+p'+ p'-+e+c+s.++s. +~++s. (16.8)

via p dominance. For s& (2m, )' we expect

o,—(e/g) o„, (1/300) (10 rnb) 0.1 pb.

(16.9)
This gives

o „» 2&(10 '4cm' at E=2 GeV (16.10.)

Comparing this estimated cross section (16.9) ( 10 "
cm~) for y+y~po+ po-+2s++2s. with the soft-pion
cross section given in (10.10) (~2X10 88 cm' at s=
(6m )'] for y+y~2s++2s, we can anticipate that
the cross section for p+y~2s++2s will increase very
rapidly as s starts at the threshold s= (4m )' and goes
beyond s= (2m, )'.

Gatto and Preparata (1973) have recently estimated
the total cross section for e+c~c+c+hadrons as well
as the inclusive cross section for e+c—+e+e+s.+any-
thing, considering the resonance production and dif-
fraction regions separately. For the details see their
paper which includes an interesting comparison between
one photon annihilation and the two-photon process
for higher energies up to E= 15 GeV.

D. MultipHcity of the Produced Particles

There has been very little work on the multiplicity
of hadrons produced in the two photon process e++e ~

4 &No/n, z & (3M+2) /(2/V —2), for 1V& 5 and odd.

Therefore, for all E&5 and odd we have
(16.11)

E. Other Application to Nonleptonc Collisions

The equivalent-photon formalism discussed in Sec.
III can also be used to obtain an estimate of the
magnitude of two-photon processes in high-energy
electron —hadron and hadron —hadron collisions. As
viewed from the center-of-mass frame. the dominant
high-energy contribution again is obtained from (3.10)
using the approximate equivalent-photon spectrum for
each incident charged particle. For the case of proton—
proton collisions, the dominant contribution to the
cross section for the process p+p —+p+y*+p+y*~
p+p+X suffers at least from a factor Lln(E~/m~)]'/
Dn (E,/m, ) $' compared to the corresponding electron—
electron-induced process. For the E~= 28 GeU available
at the CERN intersecting storage rings, this ratio is
about 1/6 compared to the electron —electron collision
at 8,=2 GeU. Aside from the production of low-
invariant-mass electron pairs (which in fact contributes
~1.5 mb to the pp total cross section), " the two-
photon processes are, in general, of negligible im-
portance in hadron —hadron collisions. However, it can
never be too much emphasized that the two photorc-
Process or, more gerteralty, the electromagnetic process
may Ptay ae important role in some hadron hadron—
collisions. One good example of this has already been
given in Sec. XU for m~ssive muon-pair production
in hadron —hadron collisions. Another example can be

'0 As pointed out by Brodsky, Kinoshita, and Terazawa
(1%1b), this cross section is not included in the present measure-
ments of the pp total cross section based on the transmission
technique wbich requires deflection of incident beam into angles
much larger than the typical angles involved in electron —positron
pair production by the two-photon process.

-', &eo/n. g& 17/8. (16.12)

These bounds will be useful experimentally if the
absence of kaons and mesons other than pions in the
6nal state of an event is confirmed and if an even
number of produced pions are excluded in some way.
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seen in the papers by Herman, Bjorken, and Kogut
(1971) and by Low and Treiman (1972), who have
pointed out the possibility that the electromagnetic
effect may become significant and competitive with
the purely strong interaction contributions in hadron
reactions for production of particles with suSciently
high transverse momentum.

In the case of inelastic e—p collisions, the two-
photon process producing lepton pairs corresponds to
the usual trident process

e+p—+e+e++e +p. (16.13)

Although total cross sections for electron tridents are
large and of order (Z'a4/m, ') Dn(E/m, ) j', the contribu-
tion to the differential cross section at normal wide
electron angles (—k'))m, ') has only a logarithmic
dependence on the electron mass m, and is a small
standard component of the radiative-correction analysis
in deep-inelastic e—p scattering experiments. A com-
parison of the trident contribution with do,~,„~,h; ~/
dE'dO with the SLAC experimental results has been
given in the paper by Brodsky, Kinoshita, and
Terazawa (1971b). The trident cross section was
obtained by numerical integration over the complete
di6'erential cross section computed by Brodsky and
Ting (1966). The contribution is negligible (&0.1%)
beyond tY,= 1.'5'.

KVII. CONCLUDING REMARKS

In this review we have discussed the production of
hadrons and leptons by the two-photon process in
high-energy colliding-beam experiments. This process
will provide efficient means for the study of C=+
hadronic states and will play a role equal in importance
and complementary to that of the one-photon an-
nihilation process in the case of the C= —states. In
order to extractinformationon C=+ and C= —states
from high energy colliding-beam experiments, however,
we must be able to separate and identify these states
experimentally. We shall examine this problem brieQy
in this final section (see Brodsky, Kinoshita, and
Terazawa, 1971b) .

Let us first discuss the x+m production in an e+e
collision. In this case pions may be produced by both
e+e -annihilation and two-photon processes. Pions
produced by the 6rst process carry the energy E of the
incident beam and are strongly constrained to be
collinear and coplanar. On the other hand, pions
produced by the second process have lower energies
and only few of them come out in a collinear fashion
as was shown in Sec. V. In the energy range 0.9&E&
1.2 GeV covered by the colliding-beam experiments at
Frascati (Alles-Borelli et al. , 1972; Bacci et al. , 1971,
1972) the latter pions, if any, therefore constitute a
small background which can be easily distinguished
by accurate energy measurements. Detection of
scattered electrons, although desirable, is not absolutely

necessary to separate the two processes. At higher
beam energies, which have already become available
at the CKA and SLAC e+e colliding-beams or will be
available at the DESY e+e colliding-beams, however,
the two-photon process will inevitably become the
dominant process. Collinearity of a pion pair will no
longer be a sufhcient criterion. For positive identi6ca-
tion of the two processes, besides accurate measure-
ment of energy and momentum of the produced pion,
detection of at least one of the scattered electrons is
highly desirable.

As far as the study of the C=+ state of z+s- (or
x'~') is concerned, the e e collision has an advantage
over the e+e collision in that it has no e+e annihila-
tion channel. In this case the m+m pair is produced
mostly by the two-photon process and the production
of x+x in the C= —state by the bremsstrahlung
process LFig. 1(b)) is expected to be a minor back-
ground. In this connection, we should recall that those
events in which both electrons are detected at small
angles L8&(m,/E"g allow a particularly clean inter-
pretation in terms of C=+production via the two
photon process since the contribution of the C=
—bremsstrahlung and contributions from nonzero
photon mass become negligible in this region. Of
curse, the last remark applies to the e+e collision
too.

The situation is enormously more complicated in
the case of multihadron production (n)3). Even in
the energy range 0.9&E&1.2 GeV in which the
Frascati experiments observed a surprisingly large
number of multiparticle production events, its inter-
pretation was by no means simple because forward-
scattered electrons in the 6nal state had been un-
detected and both identification and energy measure-
ment had not been accurate enough to eliminate
ambiguities. They apparently have made a large
eGort in making many cross checks to be convinced
that what they observed is really multiple-hadron
production by the one-photon annihilation process
(Alles-Borelli et al. , 1972; Bartoli et a/. , 1972).

In addition to complications from the copious
lepton pair production discussed in Secs. V and. XVIB,
the predicted rate for hadron production by the two-
photon process would exceed 3&10 "cm' at E= 1 GeV.
As was shown in Sec. VI, a substantial fraction of
these events can simulate multihadron production by
the one-photon process under the experimental condi-
tion without detecting the scattered electrons. Also,
additional background processes involving C= —pro-
duction /see Fig. 1(b) and Sec. XUIA) and the hard-
photon production process (see Sec. XUIA) have to
be take@, into account.

We believe that in most future e+e colliding-beam
experiments it will not be sufBcient to have accurate
measurement of only the energies and momenta of
produced hadrons. Detection of either or both of the
scattered electrons, in addition to the produced
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particles, will be required in order to identify and
separate the one-photon and two-photon processes.
There is no doubt that development of techniques for
detection and possibly energy tagging of forward-
scattered electrons is crucial fqr the success of e+e

colliding-beam physics. In conclusion, it should be
emphasized that the e+e storage rings such as the
DESK machine can separate the one-photon process
and the two-photon process very easily by performing
both i+e and e=e experiments because the former

process is absent in e e collisions while the latter is
common to both e+e and e e collisions.
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