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Introduction to the Renormalixation Group
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Department of Physics and Institute for Pure and Applied Physical Sciences, University of California at San

Diego, La voila, Caiifonia 92037

The basic idea of the renormalization group is introduced and illustrative examples are presented. Emphasis

is put on the application to the theory of critical phenomena. This article is prepared for pedagogical
purposes. It is written at a level that a second-year graduate student in physical sciences can understand.

No previous knowledge of critical phenomena or field theory is needed. We make no attempt to survey the

field or cover a wide range of subjects. On the contrary, we limit the scope to the most basic aspects. We
choose to elaborate at length to make the basic idea clear and the definitions precise, and to go through

the examples very carefully. We feel that once these basic aspect are understood, there wi11 be no difficulty

in confronting the rapidly expanding literature on this subject.
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I. INTRODUCTION
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renormalization group idea appeared in relativistic
field theory $Gell-Mann and Low (1954)j and in the
theory of critical phenomena LKadanoff (1966)).
More recently, Wilson (1971-1973)has made important
progress in bringing the idea into useful and concrete
concepts and successfully applied them to diferent
areas of physics. So far the most successful application
has been to the theory of critical phenomena. Existing
knowledge of critical phenomena has been very helpful
in understanding the renormalization group as well.
Work in this area has been expanding very rapidly.
However, the name 'renormalization group' together
with the mathematical complexity going with it has
made the subject appear mysterious to many people.
The purpose of this article is not to review what has
been done. We attempt to introduce this subject at a
very elementary level. We shall elaborate only on the
most basic ideas and o8er simple examples. A more
complete coverage at an advanced level does exist
LWilson and Kogut (1972)]. Complete references on
the renormalization group can be found there and will

not be given here. At the end of this article, we shall

give a short guide to the more recent work on this sub-

ject.
The conventional formulation of the renormalization

group in relativistic field theory (see Bogoliobov and
Shirkov (1959), for example] will not be discussed
here. The picture and formulation introduced here is
based on that put forth by Kadanoff and Wilson. The
basic idea behind the two formulations is the same and
justifies the same name, even though the two appear
very different. The latter is more general and more
easily visualized, in our opinion.

We want to do two things in this article. First, we
introduce the basic idea and give a precise definition of
the renormalization group. Second, we go through two
examples. The basic idea is simple and a precise defini-
tion is not difficult although it takes a lot of words. The
real difficulty is that the properties of the renormaliza-
tion group are completely unclear from the definition
and no classification scheme or rigorous theorem is
available. Our general understanding is rather poor at
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present. The only way that the reader can see some
qualitative features is to go through examples in which
everything is worked out explicitly. We shall first tell
what to expect and then present the examples. The first
example, the infinitely-many-component system or
spherical model, requires only patience. The second, the
small e case Le=4-dimensional)], is simpler if one
knows graph techniques, which we shall explain also.
These are the simplest ones that are available.

Our discussion will be within the framework of
classical statistical mechanics centered around the
theory of critical phenomena. Before giving the outline,
it should be helpful to mention a basic ingredient of the
renormalization group and to review some qualitative
aspects of the theory of critical phenomena.

A. The Role of a Minimum Length

A basic ingredient of the renormalization group is
based on the following observation of the role of a
minimum-length, which we denote by h. ' (A is thus the
maximum wave number or simply the ento+ wave
number) in describing a given set of physical phe-
nomena. The role of A. ' is characterized by the facts:

(a) the length scale of the physical phenomena of
interest is much larger than A ',

(b) the form of the equations and parameters in the
equations describing the physical phenomena
are defined with respect to A ', and

(c) these parameters summarize the relevant infor-
mation concerning motions over a scale smaller
than A '.

An example will clarify these vague statements.
Consider a dilute gas of uranium atoms. In describing
the motion of the electrons, i.e., atomic phenomena, the
scale of interest is the atomic size, which is much larger
than the nuclear size, i.e., h. ' nuclear size a few
fermis. The Schrodinger equation or the Heisenberg
equation for the electrons contain parameters such as
the total nuclear charge and moments. These are the
relevant parameters for phenomena over a scale larger
than the nuclear size. They depend on the motion of the
238 nucleons over a scale less than the nuclear size.
Note that most of the information concerning the
details of the nucleon motion is not relevant for atomic
phenomena. Only the over-all features of charge and
moments matter. For this A. ', the nucleus is a point.
Now let us shift our interest to macroscopic phenomena.
Suppose we want to describe sound propagation in this
uranium gas. The relevant lengths are much larger
than the mean free path of the atoms. Thus, we have
A ' a few mean free paths microns. The equation of
interest is the sound-wave equation and the parameters
appearing include the compressibility and the vis-
cosity. These parameters can be calculated by studying
the motion of atoms over scales less than a few mean
free paths. Therefore, we see that when A ' changes

from a few fermis to a few microns the equations of
motion and the parameters change drastically.

The above observations (a), (b), and (c) thus seem
too obvious.

Now we ask the nontrivial question of whether we
could change A. ' continuously from a few fermis to a
few microns and determine how the Schrodinger equa-
tion or the Heisenberg equation together with the
parameters change continuously with A ' into hydro-
dynamic equations with compressibility and viscosity
appearing as parameters. This appears to be an utterly
dificult question and seems pointless, because A ' in
this example is only a qualitative concept and new
equations are constructed everytime a A ' is given.
However, there are examples where the above observa-
tions can be generalized and A ' becomes a qlaetitutive
concept and can be varied continuously. By studying
the change of parameters as functions of A ', we can
actually learn something. Let us imagine a model of
spins on a crystal lattice. We have some coupling
parameters describing interactions between neighboring
spins. These parameters are defined for A '= one lattice
spacing. If we are only interested in spin fluctuations
over distances much longer than a lattice spacing, we
can introduce a "spin density, " which is some kind of
average value of spins over a block of size A '. A '
can be chosen as 7 or 50 or 350 or any number of lattice
spacings as long as it is much less than the length scale
we are interested in. The coupling parameters de-
scribing the interaction between spin densities on
neighboring blocks will depend heavily on A ' and the
above observations (a), (b), and (c) will apply. The
dependence of coupling parameters on the block size
A. ' was studied qualitatively in Kadanoff's theory of
critical phenomena. This spin block picture of Kadanoff
serves as a starting point of Wilson's formulation of the
renormalization group. In short, the renormalization
group is a set of transformations of the coupling
parameters under changes of A and some other changes.
Why such transformations are relevant to physics is,
of course, the subject we shall explain and illustrate.

To define such transformations in a precise and
useful manner is not easy even though the basic idea is
simple. For a given block size A, we are thinking of all
the spins within each block as behaving like one unit.
Each unit interacts with neighboring units. While it is
easy to define nuclear charges and moments, the
"average spin" over a block and the effective interaction
parameters for neighboring blocks are not easy to
obtain. The formal definition for the renormalization
group introduced here will be based on that of Wilson
(1971).It is a bit lengthy, but the qualitative features
are just those given above, and should be kept in mind
as the discussion becomes formal.

How can we learn anything by changing the block
size? We simply get a new set of parameters and in
general we do not gain anything. However, there are
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cases where the change of parameters has a tractable
pattern and we can then get somewhere. In applications
to critical phenomena, for example, a simple pattern
does seem to emerge.

B. Some Quahtative Features of Critical
Phenomena and the Scaling Hypothesis

If the reader is already familiar with the general
features of critical phenomena and scaling arguments,
he can go directly to Sec. IC. For a complete review, see
the works of Kadanoff ef al. (1967) and Fisher (1967).

Let us imagine a sample of an isotropic ferromagnetic
material. If the temperature T is below its critical
temperature T„there is a spontaneous magnetization.
Right above T„there is not. There are large Quctuations
in magnetization for T near T,. As the temperature T.

approaches T„the magnetic susceptibility and some
other measurable quantities diverge. For example, the
susceptibility diverges like (T—T,) ~, for T)T„
where y, one of the critical exponents, is observed to be
near 1.3 for many materials exhibiting a critical point.
There are many other critical exponents describing the
divergence of other quantities at the critical point. The
theory of critical phenomena has the task of explaining
these divergences.

These divergences are believed to be consequences of
the large Quctuations of magnetization. Also, the ob-
served universal (i.e., independent of materials)
character of these divergences suggests that only the
large scale behavior, not the detailed microscopic
interactions, is relevant in a correct explanation.

The scaling hypothesis plays an important role in the
theory of critical phenomena. This hypothesis says that
there is a correlation length $ (which may be thought of as
measuring the average distance over which the Quctua-
tions of magnetization are correlated) which is the
longest and the only relevant length in explaining
critical, phenomena. Other lengths, such as the inter-
atomic distances, are too short to play a role. The
hypothesis says also that $, diverging like

~

T T,
~

", —
v)0, accounts for the dominating temperature de-
pendence near T, of all quantities, In other words,
physical quantities depend on T—T, only through their
dependence on $. For example, it leads to the following
very important consequence. If we increase the unit of
length by a factor s, then in the new unit, the system
appears shrunk by a factor s. The correlation length now
becomes $/s under this scale change. Since the correla-
tion length is proportional to

~
T T,

~

", a decrease in-
correlation length corresponds to an increase in

~

T T. ~. Therefore, nea—r T, the temperature de-
pendence of a physical quantity can be deduced from the
way it behaves under a change of scale. The simplest
example applying this idea is the following. The free
energy per unit volume F($) becomes s"F($) when the
volume of the system is shrunk; d is the dimension.
Therefore we have F(g/s) =s"F($). Since s is arbi-

trary, we set s= ). We then have

F(~) =s 'F-([/s) =PeF(1)
~

T T—, ~", (1.1)

since $ ~
~
T T,

~

—". Such arguments do not sound too
convincing. Later, we shall be more critical. Another
important consequence is that in the limit T-+T„f
becomes infinite and there is no longer any length
parameter. Thus the system wouM look the same if a
change in length scale is made. There are many im-
portant consequences of the scaling hypothesis as well
as many ambiguities. It is clear that this hypothesis is
very powerful but that its origin is not clear. A more
fundamental understanding is needed. We shall see how
it can be understood in the light of a renormalization
group analysis.

C. Outlkne

The first half of this article (Secs. I—III) is devoted to
the explanation of basic ideas of the renormalization
group and to its formalism. The other half oGers
illustrative examples. Our discussion will be centered
around the statistical mechanics of an n-component
classical field in a d-dimensional space. Usually the
dimension of physical interest is d=3. The number of
components n is 3 if the classical field is to describe the
magnetization in a ferromagnet. Near the X transition of
liquid 4He, the quantum amplitude of the 4He atoms is
expected to be describable as a classical field of n=2.
(The amplitude is a complex number, which has two
real components, namely the real part and the imagi-
nary part. )

Two examples will be illustrated here, the case of
large I (Sec. IV), which is equivalent to the spherical
model Lsee Stanley (1968)j, and the case of small
4—d—=c LWilson and Fisher (1972)) (Sec. VI). The
unphysical condition of large n or small e is necessary to
simplify the mathematics.

In Sec. V, an elementary introduction to graph ex-
pansion will be given. The small e case in Sec. VI will be
discussed with the help of graphs. A great deal of use of
gr'aph expansion has been made in recent works on this
subject. That is why we introduce it here for those who
have not been exposed to it before. However, we want
to emphasize that one of the most valuable features of
the renormalization group formalism is that it is free
from any perturbation theory. The graph expansion,
which is a perturbation expansion, is not essentiaL to the
renormalization group, in spite of the fact that it is
helpful in some cases. All of our discussion on the basic
ideas, the formulation, the illustration of the large n
case (Secs. II—IV), will be completely free from graphs.
If the reader understands the material all the way up
to where the graphs start, he has understood the essen-
tials which we want to present.

We should point out that the formulation 'of the
renormalization group is by no means unique. There is a
great deal of Qexibility which is unexplored so far. Our
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emphasis on critical phenomena in this article does not
imply that the renormalization group applies only to
critical phenomena. There are many areas of physics
where the renormalization group can be useful.

In Sec. VII, the basis for perturbation expansions of
critical exponents is discussed. Existing expansions are
those in powers of e and those in powers of 1/n.

Some general remarks are made in Sec. VIII, and a
brief guide to recent literature on renormalization group
is included.

II. THE RENORMALIZATION GROUP DEFINED

A renormalization group can be defined for any large
system such as a thermodynamical system or a quantum
field. We shall define a renormalization group for a
model thermodynamical system anal. yzed in the frame-
work of classical statistical mechanics. But before we
proceed with our dehnitions, we would like to remind the
reader of some truly trivial facts concerning probability
distributions.

A. Digression on Trivial Observations

Let P(yi, y2, y3) be the probability distribution func-
tion for the random variables —~ &y&, y2, y3& . To
calculate the average value of any function f(yi, y2, ya)
of these random variables, for example, f=y&y&, we
simply do the integral

(fir (yy )r f=~y ~y=~ y+ybyy, y). , iy. y)

We notice that for those f which do not depend on y8,
we can obtain an equivalent distribution function
P'(yi, y2) by integrating out the variable ya from
P(yi, y~, ya), i e,

want to get the average of y2 over P. This sounds too
trivial, but must be remembered.

Fact Z: P', obtained from P by relabeling the random
variables, is equivalent to P provided that when
average values are computed we relabel the random
variables of interest accordingly. Finally, if n is a
positive constant and

P'(yi, y~, ya) =—~'P(~yi, ~y2 W'~) (2.4')

then P' clearly says nothing new. Any average cal-
culated over P' is easily related to that over P. For
example we have

(yi)~= ~(yi)~, (2.5)

Therefore, let us remember
Fact 3: P', obtained from P by, changing random

variables by a constant factor, is equivalent to P pro-
vided we multiply the random variables of interest by
the same factor when average values are computed.

B.Model and Notation

Imagine a d-dimensional crystal lattice of volume L",
where L is measured in units of lattice spacing. At each
lattice site x, there is an n-component vector "spin"
Q(x) —= Lit i(x), q4(x) ~

'

q4(x) j. Let it y, denote the
Fourier components of gati(x):

We list these three trivial observations so that it will
be easier for the reader to understand the more com-
plicated, but basically the same, procedures later. A
transformation in the renormalization group essentially
transforms a given probability distribution to an
equivalent one by the above mentioned three steps:
integration, relabeling, and multiplication of random
variables by a constant.

&'iy|, y)-=f ~y~riyi, y, y) (2.2) @,(x) =L @'Q jb;i, exp(ik x), . (2.6)

Therefore, let us remember

Fact 1:P', obtained from P by integrating out certain
random variables, is equivalent to P provided we are
not interested in these integrated variables. Next, we
observe that if we obtain a new probability distribution
P'(y2, y4, ye) from P(yi, y2, y3) by changing the name of
the random variables, we won't get anything new. For
example we have

P'(y„y4,y, )
—=P(y„y4,y,), (2.3)

i.e. , replacing 1, 2, 3 in P (y, , y, , y, ) by 2, 4, 6. The only
thing we must watch out for is that when we calculate
averages we must change labels accordingly. For
example we have

(y, )i = f dy, dy, dy, P(y„y„y3)y2,

=f dy2dy4dy&'(y2 y4 ye) y4

= (y )-, (2.4)

i.e., we must calculate the average of y4 over P' if we

where the sum over wave vectors k is taken over the
L" discrete points in the first Brillouin zone. The
density of points, L"(2 )yr", is very large since L is a
very large number. Each ito, is regarded as a random
variable. There are eL" of them. The probability dis-
tribution for these random variables is given by

Pmicro ~ exp ( &micro/T) y (2. 7)

—f d~x4yi(x) H (2.9)

where T is the temperature and H;„,is the Hamil-
tonian which is assumed to be a given function of all
the random variables. We assume that H;„,is in-
variant under rotation in the n-dimensional spin
vector space and under translation in x space.

The correlation function G(k) is defined as

G(k) b;; = f d'x Q, (x) sty;(0) ) exp( —ik x),

(2.8)

where the average ( ~ ~ ~ ) is taken over P;„,as given
by (2.7). If a term
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is added to the Hamiltonian, i.e., when a "magnetic
field" H is turned on in the 1 direction, w'e can define
the susceptibility as

egg)/aH. (2. 10)

It is very easy to show that the susceptibility is just
G(0). Other quantities of interest will be defined later.

Since the probability distribution is assumed to be
invariant under rotation in spin space, we expect G(k)
to be independent of i if there is no external field. How-
ever, a rotationally invariant probability distribution
can still produce average values which are not rota-
tionally invariant. This happens below T„where one of
the components, say P&, has a nonzero average even
when H—+0. In our discussions, we shall always assume
that H=O unless otherwise specified.

C. The Idea of an Effective Hami1tonian

What we are interested in is the behavior of long-
wavelength fluctuations, i.e., that of Pl, with small k.
The Hamiltonian is usually given by nearest-neighbor
interactions. Since we expect the characteristics of long
wavelength fluctuations to be independent of the
microscopic details, we should be able to obtain an
eRective Hamiltonian with these irrelevant details
removed. In other words, this eRective Hamiltonian
should not involve any P& with large k. Of course, the
eRective Hamiltonian must lead to the same results as
the original Hamiltonian would have when averages
involving 4tq's with small k are calculated. How do we
find this eRective HamiltonianP It is very easy in
principle. Remember the trivial Fact 1 mentioned at
the beginning of this section: We may simply integrate
out the irrelevant random variables. Thus, I';„„as
given by (2.'7), is equivalent to, apart from a normaliza-
tion constant,

f dye, exp (—H;„,/T)
~,k&k

=exp $ H(A)/T5, (2. 11)— .

where the multiple integral is taken over all Qg, 's
with alii = 1 ~ ~, m and all k larger than A. The cutoR A
is taken to be much smaller than the inverse lattice
spacing but still much larger than the small range of k
which is of ultimate interest. H(A) de6ned by (2.11)
is the desired eRective Hamiltonian. Note that we set A
this way to leave the pk's in the intermediate k range
unintegrated. This is because, besides the random
variables in the small k range themselves, those in the
intermediate k range also play an important part in
determining the small k behavior. The effective Hamil-
tonian H(h. ) tells us about the interactions down to a
minimum distance A '. The finer details beyond this
distance are averaged out. The multiple integrals in
(2.11) will not be easy to carry out explicitly. However,
we expect that H(A) in general will look very different.
For example, if the microscopic Hamiltonian has only
quadratic and quartic terms in 4t, the multiple integral

of (2.11) will generate all powers of P for H(h). T. his
will become more evident later. The important point to
remember is that the cutoR A is an inseparable part of
the definition of a Hamiltonian. The fluctuations over a
distance less than A ' play a role in determining the
structure of H(A).

The ultimate task is to derive singular behavior of
physical quantities such as the correlation function near
the critical point from a generally nonsingular H@mil-
tonian. Constructing H(A) does not seem to help in this
task. No singularity is expected in H(A) since we
smeared out fluctuation only over very short distances.
If we are now to study critical behavior starting from
H(A), then the task would appear to be. much worse
than before because H(h. ) would look far more com-
plicated than the microscopic Hamiltonian. However,
we will be able to see the major characteristics of the
critical behavior, which are independent of the details of
the details of H (A), by examining how H(A) would
behave under the renormalization group, which is a set
of transformations and will be defined shortly.

The quantity A ' plays the role of the size of the spin
block discussed in the Introduction. Of course, we are
not constructing spin blocks explicitly as was said there.
We are simply integrating out Ructuations of wave-
lengths shorter than A '. Mathematically this is a
simpler procedure than is constructing block spin
variables. The effect is the same.

D. The Parameter Space

We shall now be more general and consider a large
class of probability distributions for p, z. We forget about
our spin model introduced above and regard the P;q's
just as a set of random variables. But we still want the
label k to range over discrete points in a sphere of
radius A in k space. The density of points is L"(2 )4r".
Of course, we have 1&i&e, as before.

Any probability distribution for these random
variables can be specified by a set of parameters. I.et us
imagine that each set of parameters is a point in a
parameter space, so that any probability distribution P
is represented by a point p, in this space. Let us consider
a simple example of a parameter space. We write

8~exp (—3'.)

X=f d'x/a(Vy)'+ting+ ', u4y'5, (2. 12)-

where we use the abbreviation

@4=(y2)u
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Equation (2.12) is the so-called "Landau —Ginzburg"
form for the probability distribution. In terms of pp,
we can write K as

all possible p, ,

ti—:(Bp) Q4, Qp, ' '). (2.19)

K= -, g ~
y, p ~' (to+ ak') +-'L

X Q Qu4$;mQap a4;„P;p-.
It:,q, y i,j

(2. 14)

All wave vectors are restricted to less than A.. The
quantities u, to, and u4 are our coupling parameters and
our parameter space is a three-dimensional space of
triplets:

ti= (a, tp) N4) . (2. 15)

Namely, given a point in this space, there corresponds
a probability distribution via (2.12). Note that the
factors ipthrown into (2.12) and (2.13) are purely a
matter of convention, which can be changed at any
time for whatever reason. Of course, not all points in
the parameter space we just defined are allowed. For
example, if u4 is negative, the probability distribution
could not be integrated and therefore would be meaning-
less. It turns out that this 3-dimensional parameter
space is large enough for a nontrivial realization of the
renormalization group transformations only for small ~,

i.e., for d very close to 4. Otherwise, this parameter
space is not big enough. In other words, under a re-
normalizatiori group transformation, the transformed
3C, which will be defined later, will in general have more
terms than the Landau —Ginzburg form gives. For
example, there may be terms such as (P')', (P')', etc.
We have to enlarge our parameter space. The qualita-
tive features are already in the space defined via Eq.
(2.15). All that is needed is a straightforward general-
ization. We write

g L—(m—1)d

P ppexp (—X),

&1~1 ~2~2 ~2pn~2tn

ae= g g f d'xi" d'x, „@,,(x,)y, ,(x,) ~ y, ,„(x,)~
vPL~l i1,i2 ~ ~ ~ i2m

Xpp„(xi—xp~, xp —xp~ ~ .xp„ i—xp„), (2. 17)

~here w2 are related to N2 via
2m —1

Np„=f g (d~yt exp ( ik& yi)7—

Xpp (yi, y2' ' 'y2 —i) . (2.18)

We shall assume that ~2 represents short range inter-
actions (i.e., p, ~0 if one or more of the y's becomes
large) so that Np can be expanded in powers of k.

We now define our parameter space as the space of

XNp„+constant, (2. 16)

where kp~= —(ki+kp+ +kp —i), and pip is a
function of kl, k2 ~ k2 l and of il, i2 ~ .i2 . Or, in the
coordinate representation, we have

This is the generalization of (2.15). Note that each of
the entries in (2.19) can contain more than one parame-
ter. For example, the parameters a, tp of (2.15) are con-
tained in pip of (2.19), i.e.,

Np ———', (tp+ ak') 5;„,
Now the parameter space is enormous. Again, not

all of the space is of interest. Also, further generalization
may still be necessary. Symmetry considerations will
limit the allowable range of the N2 's. An external field
will necessitate the inclusion of odd powers of P in 3'. as
well. In any case, further restrictions and adjustments
can always be made when necessary. For qualitative
discussions, we can simply think in terms of (2.15).
For more formal discussions, we must use (2.16)-
(2.19).

We do mant to emphasize that A, the cuto8 in k

space, is, unless otherwise specified, always fixed for all
probability distributions. The coupling parameters are
meaningless unless A is fixed. Another important point
is that L, which tells us how many random variables
there are, is not included as a parameter. This is because
we are interested in the limit of infinite L. Averages of
interest are always L-independent in this limit. In fact
we shall write p, =p, ' as long as N2 =N2 ' for all m
even if L&L'.

Finally, to those readers who are too used to sta-
tistical mechanical terminology, we want to emphasize
that K, defined by (2.16), is not to be thought of as
"energy divided by temperature. " It is just the loga-
rithm of the probability distribution. As far as our
parameter space is concerned, the concepts of energy
and temperature are irrelevant. They enter only in
(2.11) as inputs in determining a particular probability
distribution corresponding to a particular point in the
parameter space.

E. The Renormalizaton Group

Consider the following transformation which takes a
probability distribution P to another probability dis-
tribution P'. We want to represent this transformation
as

(2.20)

which transforms the point p to p,
' in the parameter

space. Of course, p and y' represent P and P', respec-
tively. This transformation E, is defined implicitly by
P' pp exp (—X')

II f dy;p exp (—Se) 7p„,p„, (2.21)

where sk means s times k. Equation (2.16) defines ti,
and p,

' is to be extracted from 3C' by writing K' in the
form of Eq. (2.16) and identifying the coefficients of
products of random variables. Three steps are involved
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RssR8I p, =Ra~op,

for any p, we must demand

nsn8' = nate' ~

(2.24)

(2.25)

We shall so restrict our choice of n, Equation (2.2. 5)
is a severe restriction. It requires that

ns= s", (2.26)

where y is a constant. If we regard the substitution

A~s"Q, i (2.27)

in (2.21) as a scale change, then y can be interpreted as
the dimension of P~ in units of length. The dimension of
P& can be defined by the microscopic Hamiltonian.
However the dimension so defined is not useful.

in (2.21). First, we integrate out those gq with k'

between A/s and A. Second, we relabel the random
variables by enlarging the wave vectors by a factor s.
Third, we multiply all random variables by a constant
factor n, . The three trivial facts listed at the beginning
of this section imply that P' is equivalent to P as far as
random variables P~ with k&4/s are concerned and
provided that proper relabeling and multiplying by n,
are done when averages are computed. For example we
have

(2 22)

If we define G(k, p) = (~ @;z ~')i, Eq. (2.22) says

G(k, ti) =n,2G(sk, R.,p). (2.23)

Note that the number of random variables in I" is
smaller by a factor s " than that in P owing to the
multiple integral in (2.21). The change of scale kiosk
makes the density of points in k space smaller by the
same factor. These simply mean that the volume of the
system described by P' is L'"=—s "L", i.e., shrunk by a
factor s ~. To identify p' from K' given by (2.21) we
must write BC' in the form of (2.16) with I.' replacing I.;
the density of points in k space is now I.'"(2m) ". As
was mentioned earlier, L' or L plays no role in calcu-
lating quantities of interest and is not included as a
parameter. The set of R„1&s(~,will be called the
"renormalization group. "We did not define the inverse
of R„thus it is not quite a group.

In terms of our spin block picture discussed in the
introduction, what (2.21) does is just to increase the
size of a spin block from A ' to sA. ' and then change the
length unit so that the size of a spin block returns to A '
again. As a result, the parameters change from p to
p =Egg.

So far nothing has been said about the n, in (2.21).
The only role of n, is in the last substitution in (2.21) .
If we have two successive transformations R, and R, ,
then it is clear from (2.21) that they have the same
effect as a single transformation R„except that the
substitution is Qq~n, n, Q„q, and not Qi,~n„Q„i,
Thus, in order to observe

n, = s»-». (2.30)

We shall identify g as a critical exponent later. Equa-
tion (2.23) now takes the form

G(k, ti) = s' &G(sk, E,p), k(h/s. (2.31)

This formula will be used very often later.
More general correlation functions can be defined.

For example, let

G,„,;„(kp,ka k, p)
—=I d'x2d'xa ~ d"x„exp(—ik2 x2—~ —ik„x)

X(4'(0)4', ( )" 4'.(*-)),
=I.t"")" "(4 i 4 s" 0, a )i (2.32)

where k»= —k2 —k3—~ ~ ~ —k and none of the subsums
of the k's is zero. It is easy to generalize (2.31) to

G;,...;„(k2 ~ k ti) = s~~"&&~+' » "G ...; (sk2 ~ sk~, R,ti),

(2.33)
provided that ki, km, ~ ~, k~(A/s.

F. E,, as a Refined Scale Transformation

The transformation R, can be viewed as a scale
transformation. It tells how coupling parameters change
when the system is shrunk by a factor s. However, the
multiple integral and the determination of n, by a
fixed point equation make R, very different from a
naive change of scale. The multiple integral in (2.21)
is necessary to keep the cutoff A. fixed under R„i.e.,
it changes A to h./s and then lets the scale change
bring A/s back to h. . This is an extremely important
point. The coupling parameters are de6ned with re-
spect to a definite A. To compare two sets of coupling
parameters, we must make sure that they are defined

Instead, we shall determine y with respect to a fixed
point

A fixed point p~ in the parameter space is that
satisfying

(2.28)

It will play a major role in later discussions. Equation
(2.28) may be viewed as an equation to be solved for p*.
It is not expected to have a solution unless the y in
n, =s& is properly chosen. This seems reasonable if we
consider the case s—+~. We expect that all factors of s
(and hence y) must delicately balance to achieve
(2.28). In some sense (2.28) is an "eigenvalue equa-
tion" for the eigenvalue y and eigenvector p,*. Of
course, (2.28) is not a linear equation. We have no
theorem so far to tell us whether (2.28) has a discrete,
or a continuous set of solutions, or even any solution at
all. For the moment, we simply assume that there is at
least one solution. We shall concentrate on a particular
one with a de6nite y. We de6ne the quantity p for this y:

y= 1—
qg) (2.29)

then
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with respect to the same cutoff. Therefore, to define
a sensible scale transformation, it is necessary to keep
A fixed. The multiple integral is an unambiguous way.
Thus, R, can be viewed as a refined scale transforma-
tion keeping the cutoff fixed.

As was mentioned below (2.27), the quantity y can
be interpreted as the dimension of (t)i in units of length.
In (2.29) we have chosen y= 1—~ it to be an interaction-
dependent quantity based on the fixed-point equation
(2.28). Thus, the concept of dimension of a random
variable under our refined scale transformation be-
comes an interaction-dependent concept.

$=2 ) 1=0, 1, 2, 3, ~ ~ ~ (2.34)

so that R, is just applying R2 I times:

R.= (R2) '.

One then works out R2p, for a general p, . The result is
the recursion formula of Wilson. The renormalization
group is then obtained by repeated applications of the
recursion formula.

Note that regarding R, as R2 repeated l times is not
just a change of terminology. It exhibits the two dis-
tinctive features of R, of large s, i.e., first the trans-
formation R2, and second, the repetitious. It is the
large number of repetitions that will be directly related
to the singularities in critical behavior. R2 is the "gen-
erator" of the renormalization group.

Separating the tasks of obtaining and of repeating
R& also allows some flexibility in computing and making
approximations. For example, Wilson's approximate re-
cursion formula for R2 was obtained by using "wave
packet variables" as integration variables in the multi-
ple integral of (2.21). We shall briefly sketch the basic
idea which can be generalized for other applications.

The random variable (t)), denotes the fluctuating am-
plitude of a plane wave configuration exp (ik x), which
is spread over the whole volume. We expect BC to be
simpler when it is written in terms of more "localized"
fluctuations because the interactions are assumed to be
short range. Thus, it should be useful to introduce the
new variables (wave packet variables)

P(x„)=L d(' Q (t)), exp (ik x„)—, —(2.36)
)h&k&A

where the points x form a lattice. The spacing between
lattice points is such that the total number of variables
g(x ) is the same as the number of (t)(,'s with k in the

G. Wilson's Recursion Formula

The first explicit calculation with the renormaliza-
tion group as defined by (2.21) was carried out approxi-
mately by numerical means by Wilson (1971). We
shall outline some basic features of his method of
calculation.

It will be evident later that the transformation of
interest is R, with large s. The usefulness of the re-
normalization group is not affected if we restrict s to

H. Technical Remarks

1. Smoothed Cutog

We add a technical note, which will be important in
practical calculations, although it happens to be un-
important for our discussion of idealized cases.

The multiple integral in (2.21) implies a sharp cutoff
in k space. That is to say that for k immediately below
A/s, (t)i is not integrated but that it would be inte-
grated if k is immediately above A/s. This sharp cut-
off leads to undesirable mathematical features such as
nonanalytic behavior of the N2 "s as functions of the
wave vectors. One also expects oscillating tails in the
new coupling parameters of BC' in the coordinate repre-
sentation. This is analogous to the Friedel oscillation,
which comes from the sharp Fermi surface, in the
theory of Fermi gases. However, unlike the Friedel
oscillation, these undesirable features here are of purely
mathematical origin and will lead to no important
consequences. They simply introduce complications in
intermediate steps of the calculation. It is desirable to
remove the sharp cutoff by making the transition from
"integrated" to "unintegrated" smooth. This can be
done [Wilson and Kogut (1972)], but it is too cornpli-
cated to explain here. In the graphical representation
to be introduced later this can be done easily. What
we want to point out here is that the fixed point p,

*
will depend on how the cutoff is effected.

Z. Another Technica/ Remark

Because the spin dt)(x) is a real quantity, its Fourier
transform (t)i satisfies the relation

4d)d (t'i (d— (2.38)

Here the *means complex conjugate, of course. There-
fore P; I, cannot be regarded as a different random
variable from (td), . What we should do is to use Re dt;),

and Im it);), as two real random variables and realize
that

Thus the integrals in (2.21) must be taken a pair at
a time.

shell i~A(k(A. The new variable $(x ) represents the
fluctuating amplitude of the wavepacket configuration

L " g exp [ik (.x—x )] (2.37)
-'4&k&A.

centered around x . This is the "most localized" con-
figuration one can construct by superimposing plane
waves of wave vectors in the shell ~A(k(A. By
smoothing the wavepacket and using (t (x ) as integra-
tion variables in (2.21), Wilson worked out an approx-
imate formula, for R~p, , which is suitable for numerical
work and also as a basis for further approximations.
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III. BEHAVIOR AT LARGE s AND
CRITICAL EXPONENTS

Let p(T) be the point in the parameter space repre-
senting the canonical ensemble at temperature T.
Namely, p(T) represents the physical probability dis-
tribution. We shall argue that, if T is very close to
T„R,ti(T) will become close to the fixed point ti* for
very large s. Critical behaviors, in particular the
critical exponents, will then be related to the properties
of R, operating near the fixed point. Near the fixed
point, we can imagine a "linearized" R,. Since R„as
we have defined it, is a very complicated nonlinear
transformation, its qualitative features are not at all
easy to see. However, once it is linearized, our experi-
ence with linear operators and vector spaces will help
us to make a lot of guesses. In this section our discus-
sion will. still be formal. Some of the statements will
be unsubstantiated. Illustration by explicit calculation
will come in Secs. IV and VI.

A. The Linearized Equation

If p, is near p,*, we write formally

t =t*+&t, (3 1)

where bp, is small in some sense. The equation p, '=R,p,

can be written as

bp, '=R,imp (3.2)

since R.ti*=ti~, ti'= ti*+8p,' R,—~ becomes. a linear oper-
ator when O((Bti)') terms are dropped in calculating
Std' from (3.2). In principle, at least, we can construct
a matrix to represent R,~ in (3.2); and can determine
the eigenvalues and eigenvectors of this matrix. Sup-
pose that the eigenvalues are found to be X;(s) and
the corresponding eigenvectors to be e;, j=i, 2, 3,
~ ~, ~. We label the eigenvalues in the order X~&X2&

. Note that since R,R,.e,=R„e;,we have

X,(s) X,(s') = X, (ss')

.'. X;(s) =s», (3.3)

where y, are constants and yj&y2&y3. -, since s&1.
We write bp as a linear combination of the eigen-
vectors e;:

bti= g t;e;;
Jl

(3 4)

I. A Reminder

We want to emphasize that so far we have only de-
fined transformations R, in the parameter space. We
have not solved any problems. It is not even clear that
such transformations are relevent in any way to phys-
ics, not to mention critical phenomena. The definition
of R, is separated from the concept of averages, above
or below critical point, energy, temperature, etc. R,
simply takes one point in the parameter space to
another.

FIG. 1. Qualitative pictuI'e of a critical surface and a 6xed
point p,

* in the parameter space. The arrows point in directions
of motion of R,IJ. as s increases. The trajectory on the left is
Ijt(T) for a continuous range of T, and p(T,) is the intersection
of the trajectory and the critical surface.

then from (3.2) and (3.3), we have

gati
= g t;s»e;. (3 3)

Apparently, we have made no progress since we do not
know y; nor e;. But simplicity appears if it turns out
that only y&) 0, all other y s are negative. In this case
we have

8p =R, Bts= tis"'ei+O(s») (3.6)
I

if s is so large that the first term dominates but t~s»
is still small enough so that the linear approximation
for R, is valid. If t~=0 to start with, then R,~by,—+0
as s increases; i.e., p will be "pushed" toward the fixed
point by R,. Wilson calls tI a "rel.evant" variable and
the other 3 s "irrelevant. "

We can imagine that the eigenvectors e; span the
linear vector space which is the neighborhood of p,*.
The subspace defined by t&=0 will be called the "crit-
ical surface. " Points on the critical surface will be
pushed to the fixed point by R„andpoints not on the
critical surface will be pushed toward e& but away from
the fixed point as (3.6) indicates. LSee Fig. 1.j

The linear approximation for R, is expected to break
down when p, , p' are not very close to p*. But we expect
the general picture of a critical surface and the ap-
proach to the e~ axis of R,p for large s to remain valid.

B. Critical Exponents and the Correlation Length

So far no physical concept has appeared in our dis-
cussion of the re+.ormalization group. R, simply trans-
forms one probability distribution to another in a
peculiar way. Now we shall examine the effect of R,
on the probability distribution (2.11), which describes
fluctuations in a physical system at a definite temper-
ature. This particular probability distribution is repre-
sented by a certain point tj, (T) in the parameter space.
This point corresponds to a set of coupling parameters
which depend on the temperature T. They must be a
smooth function of T. Because we have integrated out

with k )A in the microscopic Hamiltonian Lsee
(2.11)$, H(A) would depend on T also. It is important
to note that the integrations are over pi with large k'
and that we would not expect any singular temperature
dependence of H(A) due to such integrals. If we vary
T continuously, we would trace out a trajectory in the
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where we have defined v by

1/v =yi.

Applying (3.7) to (2.31), we obtain, for large s,

(3.8)

G(k, ti(T)) =s' &(G(sk, ti*+A(T—T,)s't"ei+O(s») )j.
(3.9)

Consider first the case T= T,. Since s is arbitrary, we
choose it to be proportional to 1/k, say s=h/2k. We
then get from (3.9)

G(k, p(T ) )=k-'+&(A/2)' —
&(G(A/2, p*)+O((A/2k)») j.

(3.10)
In the limit of small k, this means

G(k, p(T, ) ) k '+& (3.11)

which is the equation defining the critical exponent p.
Thus, the critical exponent q is related to the fixed
point equation (2.28). The power law (3.11) for G(k)
at T, is seen as a consequence of the fact that R,ti(T, )
approaches p* for large s. How small must k be in
order for (3.11) to be a good approximation? Equation
(3.10) says that (2k/A)» must be small, much smaller
than 1/2, say; i.e.,

2k/A((2'I». (3.12)

Equation (3.12) is an estimate of the size of the critical
region ivy k space, namely the region in which (3.11)
holds. This size therefore strongly depends on y2. Recall
that s» is the second largest eigenvalue of R, in the
linear approximation, and y2 is assumed to be negative.

Now we consider the case T—T,)0, 0 =0. We choose
s= ti-". Here we write ti for A (T T.). Equation (3.9)—
gives

G(o t (T)) =ti " "'"LG(0 t "+ei)+O(ti ""')3. (3 13)

In the limit of small t1, i.e., small T—T„wehave

G(o, (T)) (T—T.) ',
v=v(2 n)- (3.14)

(3.15)

Equation (3.14) is the definition of the critical expo-
nent y and Eq. (3.15) is a "scaling law" relating the

parameter space. This trajectory should be very
smooth, and hits the critical surface at a special tem-
perature T, as shown in Fig. 1. At a temperature T
which is very close to T, and assuming p(T) to be
close to ti*, the distance from tj, (T) to the critical
surface, which is tj, is then proportional to T—T„.
i.e., t~ is a function of T and can be expanded as

ti(T) =A (T T,) +—B(T T,) '+—~ ~ ~ .

We assume that AWO. Let us assume that ti(T) is
close to ti*. If we write ti(T) =ti~+t'i'(T), then (3.6)
reads

R zhti(T) =A (T T,) s'I—"ei+O(s») (3.7)

exponents y, it, and v. Equation (3.14) holds when
ti "» is much smaller than order unity, say 1/2, as
(3.13) indicates. This means that

tq«21/v» (3.16)

R,ziti= (s/$) ""ei+O(s») . (3.18)

The eGect of R, is thus to decrease the correlation
length by a factor s. If we ignore the O(s"') term, we
would then arrive at the scaling hypothesis discussed
in the Introduction. Thus the scaling hypothesis is
valid if R„in its linear approximation near y, is
dominated by one eigenvalue for large s.

What about the case where T—T,(0? In this case,
ti(0, we can simply set s= ( —ti) "and replace (3.13)
by

G(o, t (T)) =(—t) 'LG(o, t*—e)+o((—t) ""')7.

(3.19)

This is a correct statement but, in this case, it contains
no information because G(0, ti) = ~ for ti(0 Lsee
Brezin, Wallace, and Wilson (1973)j. We shall not
discuss G for the case t~&0 in this article.

The assumption that p must be near p* can in fact
be relaxed. The critical surface can be taken as a sur-
face extending away from p,*.Any p, on this surface has
the property that

lim R,/J, =/J, . (3.20)

For s large enough, R,p will be in the neighborhood
of p,*, and the linear approximation will then apply.
It is clear that if p is not close to p* but is very close
to the critical surface, then there is some range of s
for which R,p is not far away from p*. There is no
need to find all the eigenvectors and eigenvalues of
R,z. All we need to know is 1/v and y2, which should
be regarded as specifying the leading s dependence of
R,p for large s.

In a way similar to (3.12), (3.16) estimates the size of
the critical region in T T,.—Equations (3.12) and
(3.16) are oversimplified to exhibit the role of y2. Many
other parameters will generally enter in determining
the size of the critical region. In other words, instead
of 21/™,we should have a complicated model dependent
constant raised to the power 1/y&. The relevant ques-
tion to answer for determining the size of the critical
region is how large s must be so that R,ti(T) is well
approximated by ti*+tis't "ei. Intuitively, we expect
that the farther away p(T) is from p", the larger an s
is required, and hence the smaller the critical region
becomes. We shall have an opportunity to examine
this point more explicitly later.

We now define the quantity $ as

(3.17)

which we shall call the "correlation length. " Then
(3.7) reads
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Therefore, the qualitative conclusion above shouM
hold for tc(T) close to the critical surface; i.e. for
T—T, very small, but not necessarily close to the
fixed point.

C. The Free Energy

So far we have focused our attention on the correla-
tion function of a small wave number. Our conclusions
rely heavily on formula (2.31).Similarly, using (2.33),
we can obtain critical behaviors for more complicated
correlation functions of type (2.32). Note that these
correlation functions involve only averages of etc;),'s of
small k. There are quantities of interest which involve
@,c,

's of large k. For example, the free energy cannot
be expressed as an average of the type (2.32). Vari-
ables ctc;& of all k are involved. What can we say about
such quantities from what we know about E,P The
following study of the free energy will give a qualitative
answer.

First, we want to derive a formula similar to (2.31)
for the free energy. Let us start from the beginning.

The free energy per unit volume F(T) is defined by

exp [ L~F(T)/—T]= g f dctcc; exp [ H(tt)/T—].
0&k~&h

F(T) =&(t (T) )T.
We obtain from (3.27)

(3.28)

We have applied the definition (2.21) for exp (—K').
The constants A and Ao are defined by

exp (—L"A) =[ g f dctc, exp (—K)]c„=o, (3.25)

where ctcc„0(k(A/s, the unintegrated variables, are
set to zero, and

exp ( LdA—O) = g 0)c",
0&k&h/e

1.e.)

Ao —— L eg—N-(1 —-', ct)lrcs (3.26)
k&h/e

since n, =s' &/'. The additive constant A would be
just 5 if all ctc), with 0(k(h/s were set to zero. Ao
is to compensate for the change of the size of the phase
space produced by the substitution Itc~n, ctc. We have
therefore

p(tc) =s—ep(tc')+A+AD (3.27)

from (3.24). Now if H(h)/T is represented by tc, (T),
the free energy is

(3.21) &(P(T) )—&(tc(T.) )=e [&(P (T) )—&(tc'(T.) )]
For simplicity of notation, we shall not write out the
component indices i explicitly. Clearly an additive
constant in H(A) will make a difference in F. To apply
the renormalization group to the study of the free
energy, one must specify the additive constant in X
so far ignored. %e shall adopt the rule that the additive
constant is always written occt explicitly and that sym-
bols such as 3'., BC' mill contain eo additive coestaet;
i.e., K, R' are zero if etc=0. We now define F=P(tc) by

exp ( Lc'c) = g f dcici—exp (—3C) . (3.22)
0&k&h

Similarly we define P'=P(cc') by replacing in (3.22)
3C by 3C', L S by L'"5' and keeping in mind that the
density of points in k space over which the product g
runs is changed to L'"(2 )cd. To relate S' to F, we
separate the multiple integral in (3.22) into two and
write

exp (—FLe) = g f dctcc, g f dctcc,. exp (—K).
0&k&h/e h/e&kt'&h

(3.23)

We then make the substitution cIcc,~n, etc,c, for the second
(the left) set of variables and obtain

exp ( PL") = g f dc', in, —
0+eIt:&h

X[ g f d4c ~ exp ( —K)].
h/s&kI&h

f ~c, exp (—Se')
0&1)'&h

X exp [ Le(A+AD)], —
= exp [ L'"f' (A+AD) L"].— (3—.24)

+A(T) —A(T,). (3.29)

For large s, p, '(T,) approaches the fixed point tc*. If
T—T, is very small, we choose

T T, I-, —(3.30)

as was done in (3.13) and obtain from (3.29)

&() (T) )—&(t (T.) )
=

I
ti I""[~(t*~ei)—~(t ')+o(I t I-""*)]

+ (A (T) —A (T.) ).=Ic )-", (3.31)

where, in the argument of 5(tc*&ei), the + and-
signs correspond to the cases t~&0 and t~&0, respec-
tively. In the small T—T, limit, we have

F(T) F(T,) ac
I
T T.

I

"e+—"less sin—gular terms"

(3.32)

provided that the last two terms of (3.31) are truly
less singular. Note that P(tc*+ei) is expected to be
different from F(tc~—ei) . Therefore the proportionality
constant in front of

I
T T, I"" in (3.32) f—or T) T, is

diBerent from that for T& T,.
Equations (3.31) and (3.32) are similar to (3.13)

and (3.14). Here we cannot say very much about the
less singular terms. We shall assume that they are
indeed less singular. This assumption is correct in
many cases but incorrect in some. Qualitatively speak-
ing, the term

I
T T, I"" in (3.32) com—es directly from

the spin fiuctuations with small k's (smaller than $ ')
and the other term comes from ctcc, with large k's

(larger than $ ').



600 REVIEWS OF MODERN PHYSICS ' OCTOBER 1973

HL«s' «@, = 'H' L'(«y-»)

H'= s)("—»+iH

(3.36)

(3.37)

Recall that a, =s' 1~', sL'=L. We can therefore write

(II', p,') = (H', R,ti), (3.38)

with H' given by (3.37) and R,&(i defined as previously,
as the renormalization group transformation in the
extended parameter space. The average "magnetiza-
tion" M is given by

M(H, ti) = Qi(x) )i =L—"t'(y»)i, (3.39)

where P of course denotes the probability distribution
represented by (H, ti). We know that

(4'»)i —s «Q»)» (3.40)

where P stands for the probability distribution repre-
sented by (H', ti'). LIf (3.40) is not obvious, please go

I

The specific heat exponent o. is defined by

O'—F/OT'~
~

T T,—
~

+less singular terms. (3.33)

From (3.32), we then obtain the scaling law

(3.34)

Besides the free energy, there are many other quantities
of interest which involve pp with large t't's in an essen-
tial way as well as small k's. One must carefully derive
relations like (3.29) from the beginning before apply-
ing scaling or renormalization group arguments.

D. Nonzero Magnetization

The average value of p, (x) is zero as a result of the
assumed rotation invariance in the n-dimensional spin
vector space of the probability distribution and the
assumption that p is above the critical surface. This
average value becomes nonzero when an external field
H Lsee (2.9)) is turned on. It remains nonzero also
when p lies below the critical surface even when H is
turned off. In the latter case, we have the rather strik-
ing phenomenon th'at a rotationally symmetric prob-
ability distribution produces apparently nonsymmetric
average values. This is, of course, the most conspicuous
feature'of a phase transition. In a manner similar to
the above conclusions concerning the correlation func-
tion and the free energy, we can also say something
about the average of Q.

In defining the parameter space )see (2.12) and
(2.16)g, odd powers of P were excluded. Now we intro-
duce one more parameter H by adding to BC a term

Hf dd*@,(*)=HL«Py», (3.35)

where p» means (pip)&, p. The parameter H can be
identified as proportional to a uniform external field
in the 1 direction. (It should not be confused with a
Hamiltonian. ) It is easy to find out how H changes
under R, through (2.21) . Since p» is never involved in
the multiple integral, the only thing happening is the
replacement f»~a,$». Thus, in BC', there appears a
term

back to the three trivial facts discussed at the begin-
ning of Sec. II. See (2.5) in particular. ) Substituting
(3.40) in (3.39), we obtain an equation analogous to
(2.31):

M(H ) I~ ~tPs «—'s' —pt'(

=M(H', ti') s '*("+&)+'

—M(Hsi(d —p)+1 &i&) s~(d+p)+1 (3 41 )
Before we proceed further, let us emphasize that as

long as 3f and H are uniform, the renormalization
group transformation p'=E,p discussed previously is
not affected, regardless whether p is above, on, or
below the critical surface.

If p, =ti(T,) is a point on the critical surface, p, will

approach &i* for large s. If H is small enough (i.e.,
weak external field), we can choose

s=H &'&" »+
E (3.42)

so that (3.41) becomes

M(H, ti(T.) )=H"M}1,ti*+O(II »(l(e &)+'& —')}—
(3.43)

where
O= (d+2 —n)/(~ —2+v).

In the limit of small H, we have

M ~ H'~'

(3.44)

(3.45)

which is the equation defining the exponent b.
If H=O, and rM, is below the critical surface, we

choose s=
~

ti
~

" and obtain from (3.41)

M(&(() =
~
t,

~

M(ti*—e,+O(~ t, )

—"p') ), (3.46)
P=-',

& (d—2+&t). (3.47)

The exponent P is defined by M~
~

T T, ~e in the-
limit of small

~

T T,
~

below T,. —
At this point we would like to remind the reader

that E, only transforms the parameters, and that all
the above conclusions are consequences of the assumed
properties of E, for large s near the fixed point. The
over-all pattern is governed by three exponents in the
above discussion, namely, », 1/& =yi, and yp. If O(s»)
is neglected, the results we have are just those obtained
from the scaling hypothesis. Details of &M(T) do not
appear in the exponents, and this fact is called 'uni-
versality of exponents. '

Just by looking at the renormalization group, we of
course cannot tell what average values the probability
distribution will produce, since E, involves no attempt
to calculate any average value. In particular, we can-
not tell if M is zero or not. In (3.46), we simply assume
that M is not zero if t~&O.

E. Remarks on the Status of Qualitative
Conclusions

I et us review the basis of all the qualitative conclu-
sions about critical behavior obtained so far.

We have the picture of a parameter space in which
there is a fixed point p,

* of E,. The fixed point sits on
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a critical surface. R, drives any point on this surface
toward p,*. For a point not on the critical surface but
suKciently close to it, R, will first drive it toward p,

*
and then drive it away in a direction which we call e&.

This picture is purely mathematical; i.e., no reference
to physics is made. If the probability distribution de-
scribing a real physical system happens to be repre-
sented by a point very close to or on the critical surface,
then this purely mathematical picture becomes useful
in explaining critical phenomena in this system, as we
have shown with the aid of identities such as (2.31)
or (3.41).Therefore, the important question is whether
this mathematical picture actually exists or is just a
fiction. We have given no proof that it exists. In fact,
there is no rigorous theorem telling us under what
condition such a picture can emerge. There are cases,
as we shall illustrate in the following sections, where
it turns out to be real. In fact, such a picture is believed
to be only one of many possible pictures. It may hap-
pen that, for example, y2, as well as y&, is positive.
Such cases are useful in explaining tri-critical phe-
nomena )Riedel and Wegner (1972)). It might happen
that there is more than one fixed point, or that there
are important complex eigenvalues for R, in the linear
approximation. Diferent possibilities in the behavior
of R, are expected to be consequences of different
symmetry restrictions and other features of the param-
eter space. It is desirable to have more rigorous work
done so as to classify various possibilities. The difhculty
is in the mathematical complication, not in the prin-
ciple. In principle, the renormalization group is well
defined and can always be carried out approximately
by numerical means.

IV. THE RENORMALIZATION GROUP IN THE
LARGE e CASE (SPHERICAL MODEL)

Having gone through the formal definitions and
qualitative conclusions, it is desirable to see explicitly
in an example what R, really looks like and to verify
that the fixed point and all that actually emerge from
calculations. In this section, we study the case of large
e and work out everything. The large e limit is directly
related to the spherical model studied by Stanley
(1968), and by Berlin and Kac (1952). Discussions
and references on the spherical model can be found in
Stanley's book (1971).Here we are interested in how
the renormalization group looks explicitly. No previous
knowledge concerning the spherical model is assumed
here.

The major mathematical task is to evaluate the
multiple integral in (2.21), which defines E.. For large
ri, the integrand turns out to have a sharp maximum.
The integral can be approximately evaluated by locat-
ing the maximum. Let us digress brieQy on this point.
Consider an integral

exp L—)f(x)) dx,

where f(x) is assumed to be real and bounded below.
We also assume that f(x)~~ as

~
x ~~~ . Then the

contribution to I comes dominately from near the
maximum of the integrand which is very sharp for
large X. The location x of the maximum is obtained by
setting the derivative of f to zero:

f'(x) =o.

Then, near the maximum of the integrand we have

f(x) f(x)+g'f" (x) (x—x)'

I exp L
—Xf(x)) exp P

——,'X(x—x)'f"(x)) dx,

= exp P—Xf(x))(2ir/Xf" (x))'I'
= exp L

—(Xf(x)+O(ln X) )).
Thus, to firid the logarithm of I to the leading order
in X, all we have to do is to find x and the approximate
answer for lnI is simply —Xf(x). The error is of O(in'~).
This procedure is the same as those in the methods of
stationary phase and steepest descent. In our case, the
large parameter corresponding to t will be m. Instead
of a single integral, we shall have a multiple integral.
The determination of the location of the sharp maxi-
mum will lead to a nonlinear equation familiar in
Hartree approximations in many-body theory. R, can
then be obtained by solving such an equation.

The hd point and related objects discussed in
Sec. III will then follow. We shall find that the mathe-
matical picture assumed in Sec. III does emerge. We
shall see that q=0, y&

——d —2, y2=d —4 for 2&d&4;
and g=0, y~

——2, y~=4 —d for d)4. The fixed point
for d&4 will be trivial but for 2&d&4 it will be more
complicated. Our procedure vill not be applicable if
d&2. The results in this section have been reported
by Ma (1973b, c).

What follows is some "straightforward but tedious
algebra, " which requires some patience to go through.
For a reader who wants to see the answers first, we
suggest that he go through the definition of the param-
eter space $(4.1)—(4.4)) first, then jump to (4.34)
and (4.35), take them for granted, and read on. He
should later return to what he skipped to find out
what approximations have been made.

A. The Parameter Space

We shall not need the general parameter space
defined. by (2.16)—(2.19).We need a parameter space
just a bit more complicated than that defined by the
Landau —Ginzburg form (2.12) and (2.15).We write

P~ exp (—3'.)
~= f d"x(~(&e)'+ U(0') ), (4 1)

where (&g)' and P~ are defined in (2.13) and U(P') is a
power series in Q'. The first two terms are includ. ed, in
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(2.12). The parameter space is thus the space of

t4= (II, tp, N4, Np, ' ). (4.2)

The function U specifies all the parameters to, N4,

Np, ~ ~ ~ which are coefficients of the powers of $2 in
V(&2). The abbreviations (2.13) apply here. Since any
additive constant in U would not be counted as a
parameter, the derivative

d ~(42) /F2= t (42—) (4.3)

specifies all the parameters to, N4, N6, ~ ~ ~ . We can there-
fore simply write

44= (II, t). (4.4)

The parameter space is the product space of the real
numbers and the space of all power series. We require
that P be integrable. This means that t must be such
that V(It2)~~ as qP~pp

3. The Multiple Integral

The most important ingredient of the renormalization
group is the multiple integral as given in (2.21).
Unfortunately, to perform the integral is a very
dificult task. We shall make approximations to simplify
it.

We shall introduce the following notation to simplify
writing

A/e&k«A

P,'(x) =I;+2Q' y;2. exp (ik' x), . (4.6)

and the rest, which contains 4t4;2 which will not be
integrated, will simply be called ItI, (x) again (to avoid
introducing more notation); i.e.,

g, (x)~4tI, (x)+P (x) (4.7)

)
A/e&k«A

(4.5)
k&4/e

In terms of the Fourier components Iti;2, we can separate
IiI, (x) into two pieces; one piece is the sum over A/s(
k(A, which we shall call ItI (x):

permissible for very large e. Intuitively, the reason is
the following. Since n is large, the first two terms,
being sums of e positive quantities, are large. The last
term, sometimes positive and sometimes negative,
tends to cancel as we sum over i. It will be more evident
later that the probability distribution sharply peaks at
the average values of random variables owing to
the large n. Dropping the last term of (4.10) makes an
error of O(1/22) .We shall make one more approximation
on the last term of (4.11):

kt' k« i 1

)&exp Li(k' —k") xj
I. "Q'1V2 (4.12)

d (2Q, ) I/2 (LQ2„,) II2j2m I—

where X& is defined by (4.9). Namely, we keep only
terms 0"=O'. Again, the intuitive reason is that, when e
is very large, the sum over absolute squares in Ek is
expected to be much larger than the terms dropped. A
more detailed examination would show that the ap-
proximations in (4.11) and (4.12) are equivalent. The
qualitative picture is the following. We have a spin
vector ItI(x) of many components. While each com-
ponent can Auctuate a great deal, the length of the spin
vector (2ItI2 is the square of this le22gtk) being a large
quantity is expected to fluctuate around its mean value
over a very small fraction of its mean value. The above
approximations effectively regard ItI2 as a constant.

Now we can write the K in (4.1) as

K= f dna(VItI)2+ p' ak"lV2.

+f d"xU(I. "Q' AT2+I|I2). (4.13)

All the variables ItIg, , A/s(k'(A, to be integrated over
appear through Sk. Therefore, we shall change the
integration variables to X2 . We write, following (2.39),

n n 0Q

d(Re&, )d(Img, )
i=1 i~1 -ce

The gradient term in (4.1) becomes simply

f d"xa(VQ)'+a g' k"Ep.
where

&2 =—
2 g ~

4,2 ~'.

We have, squaring (4.7) and summing over i,
n

4'(x) l Z (4 "(x)+0'"(x)+24'(x)4''(x) )

(4 g)

(4.9)

(4.10)

de.Sk."—' (4.14)
0

The proportionality constant in (4.14) can be ignored
since it can only introduce an additive constant to X'
in (2.21). Such additive constants play no role. Equa-
tion (4.14) follows from the fact that, by (4.9),
(2&&)I12 is the length of the 222 component vector
(Re ItII2, Re +2, ~ ~,. Re $„2, Im @g„~~ ~, Im 4tI~2).

Then the multiple integral in (2.21) is

=4'(x)+-' Z 4'"(x). (4.11)
i~1

We have dropped the last term in (4.10). This is

dX21V2" ' exp (—K). (4.15)
0

In the product half of the points k' must be excluded
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since each dNk, takes care of dktkk; and d42 i, as (4.14)
shows. This is just a technical point. All we need to fix
up is a factor 1/2 somewhere later.

If n is very large, an approximate evaluation of the
integral is not diS.cult. This is because, for large n,
the factors ÃI, " ' grow very rapidly for large XI... and
meanwhile exp (—K) falls to zero very sharply. As a
result, the integrand has a very sharp maximum and the
contribution to the integral comes dominantly from the
neighborhood of this sharp maximum. I.et us write the
integrand of (4.15) as

P'Nk, " 'exp (—K)

terms in the exponent which are of O(n) and W is
given by (4.17) with Nd, replaced by N2, .

se'= D d'x(a(vy)'+W)7„

with a,=s' I~'. Then, we are able to write X,' as

(4.25)

(4.26)

C. Formu1a for R,
Now what is inside the bracket of (2.21), i.e., the

multiple integral. , is given by (4.24). We can read
o6 3C'.

t'(y )2= d U'/dqP, (4.27)

f d„L- (v&),+W7I (4 16)
where the volume is now L' =s "L".W—e are then able to
di6'erentiate U' to obtain

W~L "Q' ( 2n—ln Nd, +ak "Ny, 7

~here
p'= L~ Q' Nk—. (4.18)

+ U(p'+4') (4 17)
and get finally our td' = (a', t') =E.td. Le—t us go through
these steps. The substitution ktk~~dtk, d,

s' «s leads to

We have used (4.13) for 3C. The factor —', in W follows
from the remark below (4.15), and (n —1) lnNi is
replaced by n ln XI, since n»1 is assumed. The maxi-
mum of the integrand can be located by setting BW/BN2, .
to zero for all k' in the shell A/s(k'(A. Let the solu-
tion of BW/BN2, =0 be Nd, . We obtain from (4.17)

(BW/BN2, .)~ id —(n/2Nk;. ——)+ak"+ t(p'+ $')

ktk, (X)-+S +'+' «'ktk;(X/S)

~s' (4.28)

f d"x~s~f d"x, X S~X. (4..29)

Since the new f d"x means integrating over a smaller
volume L'"=s "L", we must make the replacement

=0, A/s(k'(A, (4.19)

where p' is obtained from (4.18) by setting Nz Nz-—
and t is the derivative of U by definition (4.3). There-
fore, we have, from (4.19) and (4.18),

Nk, .———,n(ak"+t(p'+ktk') ) ', (4.20)

namely

and that
a'=us ~,

U'(ktk') =s"W(Nk;, s' ~~ktk'),

It then follows that

f d~xa(V&)' —+f dias ~(Vktk)' (4.30)

(4.31)

(4.32)

Note that Nk, depends on ktk' (now s' " &ktk'), via (4.20) .
In spite of this, the condition BW/BN2, .=0 at Nk,

——NK.
allows us to obtain from (4.32)

p'= 22nEg dk'k-'" '(ak"+t(p'+d-k') )-' (4.21)
A/s

The sum over k' has been replaced by an integral
t'( t)k=kd U'/ddt",

d 'Q' = f Pd'k /(2 ) j K'g d'k =k" ;(4.2'2)'
A/s

= (BU'/B4') ~",
S2 kkt (p2+ S2-ki—2')— (4.33)where E~ is (22r) ~ times the area of a unit sphere in

the d-dimensional Euclidean space:
The last step comes from the fact that only the last
term. of (4.17) depends on ktk2 exphcitly. Of course, t

is the derivative of U. Therefore, given tk= (a, t), we
can find td'= (a', t') from (4.31) and (4.33) by solving
(4.21) . In order to have a fixed point with a finite and
nonzero value of a, me must choose

Eg 2 ~+'2r ' '/II'(-', —)——d. (4.23)

This formula makes sense for d =positive integer. Here
we simply use it as our definition of nonintegral dimen-
sions.

Those who are familiar with many-body theory would
recognize that (4.20) and (4.21) are the kind of equa-
tions which often occur in the Hartree approximation or
the "self-consistent-field" approximation.

In view of our discussion at the beginning of this
section, the integral (4.15) is just

exp L
—f d"x(a(Vktk) '+W)—C7, (4.24)

(4.34)

where C is of O(ln n) and is small compared to the other

as (4.31) implies. If 2t is chosen positive, and if there is a
fixed point (a*, t*), then a* must be zero. Some algebra
will show that t* would either be in6nite or lead to a
nonintegrable probability distribution. If q is chosen
negative, u* would be in6nite. We shall keep to the
interesting case of g=o. %e now summarize our 6nal
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the constant

dkk" '/k'

'nE-gA" '/(d 2)— (4.36)

and s' "P'-+0 as long as d)2. Thus, if 8 is finite,
(4.35a) demands that

ti= t(N,—) =0. (4.37)

This is therefore a necessary condition for t being on
the critical surface. It also shows that if t is close to or on
the critical surface, the argument of t in (4.35a) must
be close to X,. This suggests that we introduce the new
notations N and f:

N—=p'+s' ~P'—= (1+i/s') N, . (4.38)

Writing p' in terms of i and g' in (4.35b), and doing a
little rearrangement, (4.35b) becomes

y'/N = 1+fs"~ (d——2) A'-" dpp' '

&&L(t'+ p')-' —(p')-'j (4 39)

where p=—k/s, and we have divided the whole equation
by N, s' ~. N, is given by (4.36). Now, if ti ——0, then,
for large but finite s, (4.35a) gives

2 2
(Nc

FIG. 2. Plot of t*(p') for d =2.2, 3, and 3.8. See (4.42) . The unit
N, is given by (4.36) and depends on d. where

t'=s't(N, (1+f/s') )
=mg+O(s —'),

I,=N, (dt(N)/d—N)~ ~,

(4.40)

(4.41)
formula for R,p =p'.

tl (y2) g2t (-&+g2 dy2)—

p = 2fSEd/ 1

A/e

is assumed to be positive. ' Important results are evident
(4.35a) now from (4.39) and (4.40).

If 2(d(4, the term fs" ~t*/u, s~ ~0 ass—+~ and
dkk& —i/(km+ t&/z2) (4 35b) (4.39) gives a nontrivial fixed point t*:

Since c remains always the same, we simply set it
equal to 1. Generalization to u/1 is trivial: just write
P for (a)'I'P. Equation (4.35b) is just (4.21) with t
written as t'/sm as permitted by (4.35a). These equa-
tions also show that R, is a very complicated nonlinear
transformation in this case.

D. The Critical Surface and the Fixed Point

We shall see how the critical surface, the fixed point,
and other concepts discussed in Sec. III all come out of
(435).

Since we have set the fixed parameter e to 1; i.e., now
p= (1, t), the parameter space is simply equivalent to
the space of power series t (P') .We shall speak of t and p
as the same object.

If t is on the critical surface, t' will approach a fixed
point 8 as s—+~. Let us determine the critical surface.
First, we observe that, for s~~, (4.35b) approaches

y'/N. =1 (d 2) A' '—dpp—"-
&&Dt*+p')-'-(p')-'j

This equation defines t* as a function of P2. Thus, we
have shown that f will be driven to the fixed point t~

as long as tj=0 and N, &0. The condition t&=0, given by
(4.37), defines a hyperplane in the parameter space.
The critical surface is just this hyperplane excluding
the region in which N, &0. We have thus completed our
determination of the fixed point and the critical surface
for 2&d&4.

A plot of t*(P') vs P' can be worked out numerically
without difficulty. Figure 2 shows I,* for d=3.8, 3, 2.2.
The probability distribution described by the fixed

' This assumption is not obviously necessary, but turns out to
be important,



SHANG-KENG MA Iritroducti ori to the Reeonmalizatzoe GrouP 605

point is
I' ~ exp (—3'.*),

SC*=f d'x[(vy) e+ V*(y2) ],

dxt*(x) .

(4.43)

(4.44)

member that tj=O means p, is on the critical surface.
See (4.37) .]With t~/0, (4.40) becomes

t' = s'tq+ u.f'[1+0(t /s') ]
s't—i/u, [1+0(ti)]+0(s '). (4.50)

Subtracting (4.42) from (4.39), we obtain

t's" 4=0(1). (4.45)

Thus, for s~~, we have t'~t*=0. Thus, for d&4 the
fixed point is the "trivial fixed point" and the cor-
responding X,* is simply

X*=f d"x(vy)', (4.46)d&4.

If d is exactly 4, all terms in (4.39) are of 0(1), plus a
t' ln s term coming from the integral. Letting s—+, the
conclusion is still that

We have plotted Ue vs (tP in Fig. 3.
For d&4, the conclusion will be quite different. The

term use
' in (4.39) becomes large for large s. Note that

the integral in (4.39) contains a term proportional to
t's" 4. Since t'~u. t by (4.40), (4.39) becomes, for
large s,

-(d-2) &'-' dp»" '[(t'+-p') ' (t-"+-p') ']-

yy= d —2

y2= d—4.

(4.53)

(4.54)

It can be easily shown that y3= d—6, y4= d —8, and so
on. Clearly, only y& is positive and the rest are negative.
The critical exponents follow:

= (s" 'ti/u, ) (1+0(tg) )+0(s" 4). (4.51)

If t' —8 is small compared to A.', we obtain

t' —t* t s" '(1+0(tg) )+0(se '), (4.52)

which means, in the language of Sec. III [see (3.6)]

t'-+t*~ lim (lns) '=0, (4.47)
1/) =y& ——d —2,

i.e., a trivial fixed point.
We shall not draw any conclusion for d&2.
When d&4 but is very close to 4, t* will be very close

to zero. Equation (4.42) can be expanded in powers of
8 first and then t~ can be solved in powers of e. Let us
write te as a power series in Q'.

(4.55)y2
——d —4.

These are true for 2&d&4.
For d&4, we showed that 8=0 [see (4.45) ].
For small t', we substitute (4.50) in (4.39) to obtain

set& ) t' d —2—=1+ ——+0(s ') is" '+-
S. I, j A' d —4

X (s"-4—1) . (4.56)

(4.57)t'~tgs'+0(s4 "), d&4,

t*((t)') = Q ue(„+g)((t)') (4.48)
m=O

[ue(~+1) here is actually (m+1) times the ue(IN+1) Solidi„g for
given by (4.2) and u2 ——t().]

One finds
ue = —(eA.'/2) +0 (e')

u4 ——(16s'e/n) A.'+0 (e')

ue(mal) = (eye/2) [—(16gr e/'s) 4-2+a]m

)( (yg —1)
—'+0(e~+e) e)s&1. (4.49)

We put the ~ term in the power of A. to remind the
reader of the fact that ln A. will appear if we expand in
powers of e even though it does not appear to the lowest
order in e [us, u4 are of 0(e) while ue 0(e'), u——e=
0(e4), etc.]

E. Large s Behavior of E, and Critical Exponents

Since we have an explicit formula for E, for any s,
the large s behavior can be extracted directly from
(4.35), or, equivalently and more easily, from (4.40)
and (4.39) . There is no need to linearize and then look
for eigenvalues.

Let tj be nonzero but very small and consider s to be
large but not too large so that t' is still of 0(1). [Re-

.'. g=0,

1/) =2,

y2=4 —d) (4.58)

for d&4. For d=4, the last term of (4.56) would be
proportional to ln s. It is left as an exercise.

F. Remarks

The above explicit calculation shows that the picture
put forth in Sec. III is completely realized in the limit of
large n for d&2. The most conspicuous feature of our
results is the crucial dependence on the dimension d.
The exponents q, y&, y2, ~ ~ ~ depend on nothing but d.
(Of course, m~00 here, that is why we do not see the u
dependence. ) In view of the arguments in Sec. III, we
see that the universality of critical exponents is true
for the large e limit.

In Sec. III, we introduced the notion of a critical
region [see (3.12) and (3.16)], which is the region in k
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d= 2.2

V. GRAPH EXPANSIOÃ

Up to this point our discussion has been completely
free of perturbation theory. As was emphasized in the
Introduction, the renormalization group, in principle
and in practice, is designed for nonperturbative analysis.
This point must not be forgotten even though in
some cases a perturbation expansion turns out to be
helpful, and has been used extensively in the literature.

In the language of graphs, perturbation theory
becomes a useful device. However, a trouble with a
language is that it takes some time for one to become,
Quent even though one understands the rules im-
mediately.

We shall first introduce the rules for graph expansion.
Then the renormalization group defined in Sec. II will
be expressed in graph language. In the next section,
the renormalization group will be analyzed using graph
language for the case of small e.

A. Introducing Graphs

The integrations over a virtually infinite number of
random variables P& are very dificult except when most
of these random variables are statistically independent;
i.e., when P is a product of distributions each involving
only one or two random variables. The graph expansion
starts by separating 3C into two pieces

where
K=iX0+Kig (5.1)

iNc

FIG- 3. U~ (p~) for d =2,2, 3, and 3.8. See (4.44) .

space or the temperature range in the neighborhood of
T, in which the leading power of k or T—T, dominates
the behavior of the correlation function or other
singular quantities. The size of the critical region
depends not only on the exponent y2, but also on some of
the details of IJ, (T) . The criterion is based on how large
an s is needed to get E,p (T) close to p~. The larger the s,
the smaller the critical region.

To show that certain features of p, are more important
than others in determining the size of the critical
region, we work out more details of the O(s" 4) term
in (4.51). It takes some algebra to find for ti=o that

~'-~*= IN.—L(4-~)/(d-2) j(&"/&.) I

)&constant s~ '+O(s ') (4.59)

where the "constant" depends on the fixed point, not
on p. The quantity u, is defined by (4.41) and is a
property of p. Equation (4.59) shows that I, is a
crucial property. If I, is adjusted so that the coe%cient
of s"—4 vanishes, then the critical region will be deter-
mined by the O(s~ ') term, which is expected to be
much smaller. Thus the critical region will be much
larger.

=Go(&), (5.3)

where f dp;q ~; q means integrating over the complex
@g, plane. Note that P;k*——P; ~ Lsee (2.38) and (2.39)].
Ke shall always denote such Gaussian averages by the
subscript 0.

Now we write

exp (—K) = exp ( —Xp) exp (—Ki), (5.4)

and any average (A ) over the full distribution becomes

&A) = & ~ (-~.)A.)/&-p &-~.) ).
oo n~ oo nI

= Z „&~r"'A)o Z „&~."')o (5 5)„(~mf nI=O

Let us assume that A, as well as 3C~, are sums of
products of the p~'s. Since the Gaussian average of a

X,=-,' P ( y„[G (u) (5.2)
k, i

is the m =1 term in (2.16). We shall assume ~=
g 8 '1,GO '. The rest of 3C are included in Xq. If Kq
is ignored, P ~ exp (—~) is a product of independent
Gaussians since BCO is a sum of quadratic terms. Aver-
ages are easily computed. For example, we have
(4u)0=o,

&4a4P t)o= f dk'i @''—i P&xp (—( 4 a )
—/Go(&) )j

&&I &*~ I'Ef d&'~~0' ~exp (—14'~ I'/Go(&) )j ',
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product of go's is a product of pairwise averages
[each p,o has to pair with a p; o to give (p;op; ~)o

Go(k) ], the numerator and the denominator of (5.5)
are complicated sums of products of Go(k)'s. To intro-
duce graphic representations, it is more convenient to
use the random variables P(x) [see (2.13)], instead of
the @s's, because the coordinate space is easier to
visualize. The Gaussian average of a product of
oI(x)'s (with difFerent x's in general) is a sum of
products of pairwise averages since P(x) is a linear
combination of ps s. Each pair gives, if we write
(2s) f d"k for L "go&a,

Q;(x)P, (x') )o ——(2~) ef dekGo(k) exP[ik (x—x')]8,;,

r]

Go(x —x') 8,;,— (5.6)

which can be represented by drawing a line between x
and x'. Various averages can then be represented by
graphs. As an illustration, suppose that

(A)=(4'(y)4'(o))=G(y) (5 7)

Kt ——-', u4 f d"x[y'(x) ]' (5 g)

where P' is given by (2.13), and Xt is just the last
term of the Landau —Ginsburg form (2.12) . Then (5.5)
is a power series in u4. To zeroth order in u4, we simply
have G(y) =Go(y) . To 6rst order, we have an additional
term

u4(ore+1) f d"x'Go(y —x') Go(x' —x') Go(x') (5.9)

as represented by Fig. 4(a). We use a dashed line for
u4 only to separate the two Q'(x) factors in (5.8).'
The second-order terms are given in Fig. 4(b). Those
readers who are not familiar with graphs should write
out the second-order terms explicitly. Note that dis-
connected graphs appear in both the numerator and
denominator of (5.5) . The net result is that only con-
nected graphs contribute to (A). Note also that if A
is of the form A~A2 ~ A then there will be disconnected
graphs of the form (A&As. ~ A~)(A~+i ~ ~ A ) provided
that neither of the two averages vanish. The coordinate
representation is useful only for visualization. In
practice, the wave vector representation is more con-
venient. Any random variable A to be averaged over is
regarded as a product of ps's. So are powers of 3Ci.

Every line in a graph will be labeled by a wave vector.
The sum over wave vectors is now a w'ell-defined

integral. in k space. In each graph, those lines whose
wave vectors are integrated over will be called internal
lives Those lines .with wave vectors 6xed by the po's in
A will be called exteruaI, limes

Of great importance is the "linked cluster theorem, "
which says that

(exp (—3'r) )o= exp ([exp (—Xr) —1])oc, (5 ~ 10)

'By this we mean the following. Ke imagine that the two
factors of p~ are P(x)qP(x+5). The dashed line then joins x
and x+8. The displacement 8 is in6nitesimal.

)
\ g

/

I

FIG 4. Examples of graphs for G: (a) O(N4) terms, (b) O(N4o)
terms.

We shall also write (2.16) as a sum:

sc—=x(@)+ac(y,p) (5.13)

for the R in (2.21). Here BC(g) is the part depending
only on P, and K(@,$) is the part depending on both @
and $. More explicitly, K(P) is given by (2.16) with all

where the subscript c denotes the sum of connected
graphs only. The disconnected graphs are generated by
exponentiation. The proof is left as an exercise in
counting graphs. We shall make some use of this
theorem shortly.

A frequently occurring phrase is the "self-energy" Z
defined by

G—'(k) =Go '(k)+Z(k). (5.11)

The self-energy graphs are simply those graphs of
G(k) with Go lines of wave vector identical to k dropped.

What we have just gone through is the same as the
Wick's theorem and Feynman graph expansion in
field theory, if the time variable there is taken as
imaginary and counted as a space dimension.

B.The Multiple Integral

The multiple integral in (2.21) is the first step in
defining R,. Let us denote those random variables to be
integrated over by $ and those not to be integrated by P.
To save writing, we shall introduce the notation

I b&-=II I d~'~' (5.»)
s,h/e&I ~&h
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wave vectors restricted to less than i1/s, and X(P, P)
is the rest. The graphicrepresentationof I 8P exp ( —X)
can be introduced as we did previously. Similar to
(5.1) and (5.2), we write

X(e, 0) =X (e)+X.(e, 0), (5.14)

Xo(4) —= Z 2 2 I »2 I'G0—'(k) (5 15)
h/8&0 &h. i=1

Ke then define the Gaussian average by dropping 3C&

as before:

(A )o—=f tiPA exp [—Xo(g) ]/J BP exp [—Xo($)].
(5.16)

magnitude less than A/s. In terms of graphs, Z, is the
self-energy; i.e., the sum of all graphs (connected, of
course) with two external lines, and u2 is the sum of all
graphs of 2n2 external lines. All internal limes of these

graphs have wave vectors in the shell A/s&k'(A, while
all external limes have wave vectors restricted to k(A/s.

The second step is to replace P& by P,&a. and write
sL' for L, s' 1& for c2. [see (2.30) 7 in (5.20) . We obtain

~
»„~2G I—i+ g L~—im—i&d

i,k m=2

X Z Z e, ,2, "»..2..~.' (5.»)
Icl' '~2222 —1 s1'' s2n2

The additional "bar" in the subscript of (~ ~ ~ )2 denotes
that the average is taken over the random variables P.
Then the multiple integral in (2.21) can be written as

Go' ' ——[G2 '(k/s)+Z, (k/s) 7s'—&

I S ( )8+m( g)

(5.22)

(5.23)

J g e~ L
—X(y) —X(y, P))
=exp L

—X(&)7(exp L
—Xr(» 4)])o

XI 8p exp [—X2($)7. (5.17)

The last factor is a constant independent of P. The
average in the middle of (5.17) can be expanded and
represented by graphs:

oa ( )n
(e~[—X.(»~)])-=Z, (X."(»&)&-

n-0

=exp (Iexp [—Xr($, $)]—1I )&, (5 18)

where the last line follows from the linked cluster
theorem (5.11).Remember that $ denotes the random
variables p2, with A/s(k'&A. Thus, the internal lines
in the graphs now have wave vectors ranging between
A/s and A in magnitude, i.e., wave vectors in a "shelV'
in k space. Now, if we substitute (5.18) and (5.17) in
(2.21), we obtain X' apart from an additive constant

X'= (X(4)—(Iexp [—X.(&, &)7—1I)s )4.--.4.'
(5.19)

This is then the graphic representation of (2.21).

C. The Change of Scale; E., De6ned Graphically

The quantity u2 given by (5.20) of course depends on
k, ~ .k2 i. In (5.23), it is understood that they are
replaced by ki/s ~ .k2 2/s, like the k in (5.22) . Now in
(5.21) the wave vectors range from 0 to A in magnitude,
but, as mentioned before, the density of points in k-space
is decreased from L"(2 )2r" to L' (e2 )2r". We now have
a system of a smaller volume.

From ti= (Go ', u4, u4, ~ ~ ), which defines X via
(2.16), we have arrived at (5.22) and (5.23) giving t4'

by carrying out (2.21). We have thus established
p, '=E,p, in terms of graphs.

D. The Exponent g and Self-Energy

In Sec. IIC we defined g with respect to a fixed point
p*.We shall now observe a simple relationship between g
and the derivative of the self-energy at the fixed point.
Since R,ti*=ti*, it follows from (5.22) that

G&* '(k) = [Ge* '(k/s)+Z, ~(k/s)]s'-'. (5.24)

We expand G2* '(k) in powers of k'.

Go* '(k) =t2*+ri*k2+r2*k4+ ~ ~ ~ . (5.25)

We can always choose the unit of k such that r&*=1.
Let us expand Z,*(k) also,

Z,"(k) = Z,*(0)+ (BZ */ak') 2~k'+ ~ ~ ~ (5.26)

and define
The new parameters ti' = (G2' ', u4', u4', ~ ~ ~ ) are now

available in (5.19). For clarity, we shall extract ti' in two
steps. First, let us write what is in the square bracket of
(5.19) as

Z,*—' = 1+(BZ,*/Bk2) 2-2.

Then (5.24) reads

t g+ k2+, , [t g+ g 4c (0)+k2s—2Z 4—i+. . .]s2—2

(5.27)

X(~)-(-p L
—X(~, ~)7-1)6.

——,g
~

»„~2(G —'+g )+ g L—i~—'&'

i,jt, m=2

X g g», 2, .~ »,„2,„u2„,(5.20)
~1' Ic2rr4 —1 &1 ''&2'

Thus, we have
(5.28)

Z,*=s 'f. (5.30)

[t 8++ 8(0) ]s2—2 (5.29)

i.e., we made an expansion in powers of unintegrated
random variables. The wave vectors in (5.20) all have

Therefore, 2t=0 if Z,*=1; i.e. , if Z,*(k2) is independ-
ent of k.
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(5.32)

or any function dropping from 1 to zero over a narrow
but finite region around x= 1.

VI. THE RENORMALIZATION GROUP FOR THE
CASE OF SMALL e

In Sec. IV, where we worked out R, for the case of
large e, it was clear that the fixed point for sma11
p=4 —d was of O(p); i.e., very close to the trivial fixed
point. This feature remains for arbitrary e, as was
found by Wilson and Fisher (1972), who worked out
the renormalization group for small e. Since their dis-
covery, a vast amount of literature has follow'ed using
the idea of expanding in powers 'of e. An extensive
treatment is included in Wilson and Kogut (1972).

In this section, we give the small-~ case as our second
example of working out R, explicitly. We shall examine
the fixed point and its neighborhood. In deriving R„
we shall make use of the graph expansion introduced in
Sec. V.

A. The Parameter Syace

We shall use the parameter space defined by the
Landau-Ginzburg form (2.12), which is sufhcient for
the lowest-order terms in e. Furthermore, the parameter
a in (2.12) will be fixed at unity. This is because a will
not change under R, in the following discussion, similar
to the case in Sec. IV. We therefore have, for the prob-
ability distribution,

P~exp ( —K),

where P', &4 are defined by (2.13). Leaving out the
parameter a in (2.15), we have a simple two-dimen-
sional. space of points

P= (tp, N4). (6.2)

As will be clear later, this parameter space is su%cient
for O(p) terms only. If one wants to go beyond the first
order in e, the task will be much more dificult, and this
simple parameter space will not suffice. One would have

E. Technical Remar'ks

In this section we have assumed that (P(x) )=0.
If there is an external field or in the case where p, goes
below the critical surface (ti(0), this would no longer
be true, and the graphs will have some additional fea-
tures which can be easily included.

The smoothed cutoff mentioned in Sec. II can be
done easily in terms of the graph language. There are
many ways to do it. For example, in calculating Z, and.

of (5.20), we replace Gp(k') for each internal line by

Gp(k') f(k"/A') [1—f(k"s'/A') ] (5.31)
where

to include parameters for the wave vector-dependent
terms of u4, for example.

B.Formulas for R„
We shall find p'= R,p, regarding tp and u4 as quantities

of O(p) . We do not have to go back to (2.21) because
now u4 is small and the forniulas (5.22) and (5.23)
from the graph expansion become useful. All we need
to do is to evaluate some lowest-order graphs.

To first order in p, the two graphs in Fig. 4(a) are
the only graphs for Z, . Since they are independent of the
external wave vector, we must have

(6.3)

in view of the conclusion below (5.30). Our Gp ' is
simply tp+k'. Thus, (5.22) says that

Gp =tp+k = (tp+Z )s+k . (6.4)

The two graphs for Z, give

A/s

where Eq is given by (4.23) . Remember that tp= 0(p).
We can expand (6.5) in p and substitute it in (6.4) to
obtain

t,' =s'tp+ (-',n+ 1) (N4 t8s') [-'A'(1 —s—') tp ln s]s'—
+N4pC+N4'D, (6.6)

where pC is a constant of O(p) resulting from the O(p)
terms of K4, and p' ', N4'D denotes second-order
graphs which we have not included. The reason for
writing the C and D terms in (6.6) is that they are of
O(p'), the same magnitude as the term proportional to
u4fp ln s. While the C and D terms play no part in our
final results, the u4tplns term does, as we shall see
shortly.

Following (5.23), we construct N4'. Besides N4

itself, we must include in u4 all first-order corrections,
which are shown in Fig. 5(a). If we ignore the de-
pendence of u4 on the external wave vectors, all of these
five graphs, except an additional factor 'n/2 for the
graph with a closed loop, give the same contribution.
This is easily seen by shrinking all the dashed lines to
points. Then all five reduce to the form of Fig. 5(b).
Before we write down (5.23) for N4', we must observe
the following. As was mentioned below (5.23), up

and ~ ' are functions of the wave vectors of external
lines. We can expand both sides of (5.23) in powers of
the external wave vectors. For each power, there will be
an equation. Thus, (5.23) is really a set of equations for
the coefficients of this power series expansion for ~
and u2 '. We shall keep track of only the first of these
equations for u4', namely, that for the constant term
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The s' term in (6.8) can be replaced by 1+e ln s. The
results (6.9) and (6.10) are consistent with the large n
results (4.49). The C and D terms in (6.6) contribute
only to the 0(e') terms in (6.10).

We proceed to linearize R, and find the eigen-
values, etc. of R, . I.et btp=tp —tp*, Qp =fp —fp*, etc.
The linearized version of (6.8) is

hu4' ——lu4L1 —(-', n+4) (2u~4/Sir') ln s]s'
= gu4$ (6.11)

FIG. 5. Lowest-order corrections to N4.

obtained by setting the external momerita to zero,

ddp
u4'=

I u4 —(ipn+4)u4' (to+P ) '
I

s~. (6.7)
gt, (2n.)~ j

The rest of the set of equations will not concern us. To
include them, our parameter space would have to be
enlarged, as mentioned earlier. Since the u4' term in
(6.7) is of 0(e'), we can set 4=4 and tp ——0. The integral
is trivial. We then have

u4' ——u4(1 —(-,'n+4) (u4/Sm') ln s]s'. (6.8)

Our determination of R,ti= (tp, u4') is thus complete:
given (tp, u4), (6.6) and (6.8) furnish tp' and u4' to
0(e'), apart from the unknown constants C and D in

(6.6) .
The reader may still question the consistency of the

above procedure. We are excluding parameters of higher
orders than 0(e); yet in (6.6) and (6.8) there are
terms of 0(e'). It is quite conceivable that we have
missed a parameter of 0(e') which would modify
(6.6) and (6.8) . The major cause of worry would be up,

which is expected to be of 0(e') and to modify (6.6)
and (6.8) linearly. But luckily this is not the case. One
piece of evidence is given by the large n result (4.49)
which says that up* is not of 0(e'), but is of 0(e')
instead. In fact, if we assume u6=0 to start with, then
R, will be able to generate a up' of 0(e') which is non-
zero only for very large external wave vectors over a
very small range, and the inclusion of u6 would not
affect our results (6.6) and (6.8). Showing this in
detail is left as an exercise, and is also given in Wilson
and Kogut (1972). Another parameter of 0(e') which
we are not keeping is the wave vector-dependent part
of u4. It will affect (6.6) and (6.8) only to 0(e') .

C. The Fixed Point and Eigenvalues of
the Linearized R,

To find the fixed point, we set ti =p'=ti*= (tp*, u4*)
in (6.6) and (6.8) . Solving for u4* and tp*, we find

u~/Sn'= L2e/(n+8) ]+0(e'), (6.9)

tp* ———(1+-',n) (u4*/Ss') ~ -'&V+ 0 (e')

L(n+ 2) /—(n+ 8) ]-'eh.'+0 (e') . (6.10)

= ht ps"'+ bu4A,

where yi ——2—(1+-,'n) u4*/Sn', and

(6.12)

A = (h.'/16m') (1+ipn) (s' —1)+0(e). (6.13)

Equations (6.11) and (6.12) have the matrix form
bIJt,

'= R,~by with

rs"' A )
E 0 sp')

(6.14)

The eigenvalues are obviously s» and s», with

1/i =—yi ——2—P(n+2)/(n+8)]e+0(e'), (6.15)

(6.16)

The corresponding eigenvectors are easily found:

(0)

a = —(1+-',n) (A'/16m') +0(e) . (6.18)

The critical surface here is thus the line passing through
the fixed point in the e2 direction. e~ and e2 are not
orthogonal since R,~ is not a symmetric matrix, and the
terms C and D in (6.6) appear in the 0(e) term of A in
(6.12) and (6.13).Although they contribute to (6.12)
to the same order as the u4* term in the coefficient ofkIIp,

they have no effect on our answers for y&, y2 and ej, e2

to the order of interest.
The meaning of (6.18) which defines the critical

surface may not be too clear. Let us go back to (6.6)
and write it as

tp'/s'=tp+u4(-", n+1) (A'/16pr') (1—s') (6.19)

The 0(ee) terms are dropped. If p= (tp, u4) is on the
critical surface, then, for s—+~, R,p, = p,

' must approach
the fixed point (that was our definition of the critical
surface), and we must have tp'/s'~tp"/s'~0. Thus,
(6.19) becomes

0= tp+u4(-,'n+1) (A'/16m'), (6.20)

where we have used (6.9) for u~4. From (6.6), we obtain

Np = htp/1 —(u4*/Sm') (-'n+ 1) ln s]s'+Bu4A
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pi ——(tp+k', u4, 0, 0, 0, ~ ~ ~ ), (7 3)

and defines the critical surface, a straight line whose
slope is given by (6.18).

D. Remarks

The reader may feel unhappy about our replacing
things like 1—e ln s by s '. This would be quite wrong
for large s. But isn't large s the very case of interest?
Quite right. In fact, the error is very large if s is very
large. Note that the form s&' for the eigenvalues of R,~
is general; i.e., it follows from the fact that R,R, =
R„.. What we have been able to do is to find y~, y2 and
the fixed point to 0(«). Of course, a small error in y;
will make a big error in s~' if s is very large.

Note also that y2= —e, which is very small if e is very
small; i.e., O(s») is not small unless s is exceedingly
large. In the language of Sec. III )see (3.12), (3.16)),
this means that the critical region is of the order 2 '~'

and is exceedingly small in general. This shows that, for
small ~, universal critical behavior will be masked by
nonuniversal model-dependent terms unless somehow
the latter terms can be separated or removed. This
point will come up again later.

our result here is correct for any n. The reader is
urged to compare it with those obtained in Sec. IV.

VII. THE BASIS FOR CALCULATION OF CRITICAL
EXPONENTS BY PERTURBATION THEORY

The renormalization group analysis tells us how
physical quantities such as the correlation function
G(k, p(T) ) should behave when T is very close to T„
and how scaling laws appear. It tells us that the critical
exponents appear as properties of R, near its fixed
point. We have seen explicitly how things work for the
case of large n and also for the cage of small e. Hope-
fully, when e becomes larger and n becomes smaller,
the qualitative results will remain and the only changes
would be quantitative changes in exponents and other
numbers. When such a view is taken for granted, it
becomes possible to compute the critical exponents by
perturbation theory as power-series expansions either in
1/n or in «, without studying the details of the re-
normalization group. Consider the following example.
Since we know from renormalization group arguments
that, at T=T„wehave

G '(k) k'~[1+0(k "')$, (7.1)

and we have found that, for large n, g=O(1/n) and
y2 d 4+O——(1—/n), then we can expand k & in powers
of 1/n:

G '(k) k ' ~ 1—g ln k+-,'q' in' k+ ~ ~ ~

+0 (k~, m
—'k~" ln k, ~ ~ ~ ) . (7.2)

Since this is true for any p on the critical surface, we can
pick the simplest one for the sake of computing y.
We can pick

namely, except ~ and N4, all other parameters are set to
zero in (2.19). We shall choose u4 ——O(1/n). Then we
can compute G(k) as a power series in 1/n by using a
perturbation expansion of any kind. The quantity to

can be chosen to each order in such a way that
G(0) '=0; i.e., chosen to make sure that p is on the
critical surface to every order we calculate. The calcula-
tion of G '(k) k ' will result in a power series of 1/n ln k
and g is then identified by comparison with (7.2) . The
coefficients of the powers of 1/n In k will not depend
on N4, which appears only in the O(k») term, as we
argued in Sec. III. Recall that the O(k "') term
rejects the approach to p* of R,p~ at a rate s»=
s" '+ &'f"~. This term is negligible in the critical region

P((2—1/(4—d) (7 4)

given by (3.12) . As long as d is not close to 4, the size
of the critical region is of O(1) . The above discussion is
the basis for the 1/rc expansion of critical exponents by
perturbation theory, which has been studied extensively.

Similar arguments apply to the e-expansion of critical
exponents by perturbation theory, where one also
starts with pi with 14=0(«). Troubles appear because
the rate of approach of R,p,~ to the fixed point p* is
s" 4=s ', for small «; i.e., y2= —«+0(«'). The O(k»)
term in (7.1), which has nothing to do with q, will also
contribute a series in oink, and one can no longer
extract p by examining the coe@cient of ln k. In other
words, the critical region vanishes in the small e limit
Lsee (IVD)]. One can get around this difficulty by
choosing a special N4 L= u«(«) of Wilson (1972)) so that
the s» term in R,p~ vanishes. Then R,p~ will approach p,

*
at a rate s» which is s" in the large n limit and the
small «and any n. With this choice, the O(k "') term
vanishes and the O(k"') =O(k'+ &') term will not give
rise to any ink. Effectively, the critical region is
extended to O(1). This was how Wilson (1972) was
able to compute critical exponents beyond the first
order in ~ by using perturbation theory. Note that the p&

so chosen is not the fixed point p*. It is a special point on
the critical surface so chosen that R,p~ approaches p,

*
at a rate s» for large s instead of at the rate s». It has
the nice feature that all entries but N2 and N4 are zero.
Note also that no such special choice of N4 is needed for
the 1/m expansion where the O(k"') term does not give
rise to confusing logarithms. The N4 will drop out auto-
matically in the results for exponents.

VIII. SUMMARY AND DISCUSSION

A. Summary of Quahtative Points

Having gone through some quantitative calculation,
we now make a brief summary of 'qualitative features.
Let us think in terms of the spin-block picture of
Kadanoff which we mentioned in the Introduction,
namely, a lattice of blocks of spins. The size of a block
isA '.
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The interaction among the blocks of spins is described
by a set of parameters p. We emphasi'zed in Secs. I and
II that p, is a function of A. The renormalization group
is a set of transformations R,. Two steps are involved in
R,.First, we change A to A/s. This is a "coarse graining"
procedure which increases the block size to sA. ' by an
averaging process. Second, we shrink the system by a
factor s so that the block size returns to A. . '. In short,
R, is a change of scale with no change of the "spatial
resolution, " which is the block size A. '. Under these
operations, the set of parameters p goes to a new set
p, '=R,p. It is important to remember that the prob-
ability distributions described by p, and p are equivalent
in the sense discussed in the beginning of Sec. II, and
formulas such as (2.31)

G(k, p) =s' &G(k, p') (8.1)

for the correlation function follow as a result of this
equivalence.

Clearly, carrying out R, simply changes one set of
parameters to another; i.e., replaces the old problem by
a new. one. It does not sol~e the problem at all. The new
one is just as difIicult to solve as the old one. There will
be applications where the new problem does become
simpler. However, the spirit here is that we try to gain
through R, without solving the problem. It is illustrated
in Sec. III that much about critical phenomena can be
said through a formula like (8.1) if R, has a fixed point
p*. If p(T) is the set of parameters given by the
canonical ensemble for the system at temperature T,
then R,p(T, ) will approach p,

"for large s. The fixed point
p,
* describes a spin-block system which will not change

under a scale change and coarse graining. Thus, a
physical picture of the system at T, follows. If we look
at a system at 1, through a microscope with suKciently
poor spatial resolution, it would look the same if the
magnification of the microscope were decreased.
Another conclusion from Sec. III is that, if T is slightly
above T„there is only one relevant parameter $, the
correlation length, describing how far p is from p* in a
special direction e~ in the parameter space. For large s
while not too far away from p,*, we have

R,il(T)~(s/$)'i"ei+O(s»), (8.2)

with &0-
~

T T,
~

". Shrinking —the system (increasing s)
thus effectively decreases the correlation length. The
scaling hypothesis follows when O(s"') is neglected.

Our analyses of the large e case and the small e

case are just illustrations of these qualitative features.
We emphasize that these are the simplest illustrations,
in which we have assumed short-range interaction and
maximum symmetry, in addition to the restriction of
large n or small ~.

B. Concluding Remarks

The formalism presented in this article is by no means
the unique formulation of the renormalization-group

idea. There is a great deal of flexibility in formulation.
The idea should be formulated according to the special
problem involved and according to what kind of
approximations one has in mind. The one given here is
just one possibility.

It should be emphasized again that, in dealing with
R„wetransform the coupling parameters and study the
patterns in the new parameters. The traditional
approach to statistical mechanical models of critical
phenomena is to solve them exactly with various
ingenious mathematical . tricks. Without these tricks,
one faces serious difhculties coming from various
singularities which are inherent in critical phenomena
owing to large scale fluctuations. The situation is that
one 6nds either the exact answer or no answer at all.
There are few ways to make approximations (apart
from numerical calculations and series expansions).
In the renormalization-group approach, one does not
try to solve the model. Instead, one deals with the
coupling parameters, which are nonsingular. The singu-
larities associated with the critical point are now
reflected through large s in formulas like (8.1). Since no
singularities are involved in R„wecan carry out the
calculation for R. approximately in more simple-
minded ways. This is a distinctive and valuable feature
of the renormalization-group approach.

Finally, we want to emphasize that the renormaliza-
tion group is a general scheme for studying large sys-
tems, not something designed just to calculate critical
exponents. The held is wide open.

C. Some Confusion of Terminologies

It might be helpful to clear up some confusion in
terminologies used by relativistic-field theorists and
those used by statistical mechanics and solid-state
physicists.

The term "to renormalize, " as originated in field
theory, means "to normalize again" not "to include
interactions. " Thus, for example, the exact correlation
function G(k, p) should be called "unrenormalized. "
The rerlormalised one is defined as

G), (k, p) =LG(k, p) /G(X, p) $A)„(8.3)

which is normalized to Aq at an arbitrarily chosen
reference point 'A. The parameter Az is also arbitrarily
chosen. More renormalized quantities and parameters
can be introduced for other kinds of correlation func-
tions. For a "renormalizable" theory, the original
parameters p can be eliminated for A~~ and only the
renormalized quantities and parameters like A &

remain. Eventually, these parameters will be fixed by
experimental data, which would then fix the physical
content of the theory.

The conventional renormalization group in rela-
- tivistic field theories is dehned as the transformations of
the parameters such as A &, under a change of X (keeping
the physical content fixed) . Thus, A & plays the role of p,
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and X plays the role of A in our discussion in this
article. This is a point where some confusion would
result if not clarified.

It has become a common convention for many in
solid-state theory and statistical mechanics that the
word "renormalized" means "with all e6ects of inter-
action included (without further normalization). " We
feel that the word "exact" is shorter and more ap-
propriate than the words "renormalized" or "un-
renormalized. "

The term "renormalization" would be better saved
for discussing changes of parameters in a theory under a
change of A, or X, or other references.

D. A Brief Guide to Some Recent Work

The scope of this article is very limited. Many
important areas have not been touched. An extensive
list of references can be found in Wilson and Kogut
(1972). In the following, we shall mention a few areas
where much work has been done recently, and where the
renormalization-group idea plays a role. This is not
meant to be a complete survey. Many of the references
are not published yet, and the ones we happen to know
may not be representative. Our purpose here is only to
give the reader some rough idea of the present status.

A. Nudzh. erical Investigation:
Wilson (1971),
Grover, Kadanoff, and Wegner (1972),
Golner (1972, 1973) .

We feel that this is a very important area where
much remains unexplored.

S. Long-Range Force Interaction:
Fisher, Ma, and Nickel (1972),
Sak (1973),
Suzuki (1972).

Dipole interaction:
Aharony (1973),
Aharony and Fisher (1973),
Fisher and Aharony (1973).

C. e Expansion of Critical Exponents:
Wilson and Fisher (1972),
Wilson (1972),
Wilson and Kogut (1972),
Nickel (1972),
Fisher and Pfenty (1972),

~Alfred P. Sloan Foundation Fellow.
tkesearch supported in part by the National Science

Foundation under Grant GP-38627X.
Abe, R., 1972, Frog. Theor. Phys. 48, 1414.
Abe, R., 1973, Prog. Theor. Phys. 49 (1), ,
Abe, R., 1973a, preprints, Tokyo University (1973).
Abe, R., and S. Hik~mi, 1973, Phys. Lett. A 42, 419.
Abe R., and S. Hike~i, 1973a, Prog. Theor. Phys. 49 (2), ,
Aharony, A., 1973, preprints, Cornell University (1973).
Aharony, A., and M. E. Fisher, preprint Cornell University

(1973).

Brezin, Le Guillou, Zinn- Justin, and Nickel
(1973).

Equation of State, and below T,:
Brezin, Wallace, and Wilson (1973).

D. 1/rt Expansion of Critical Exponents:
Abe (1972, 1973),
Abe and Hekami (1973),
Wilson (1972),
Ma (1972), (1973a),
Ferrell and Scalapino (1972),
Suzuki (1972, 1973).

Equation of State, and below T,:
Brezin and Wallace (1973).

E. Correction to Scaling I.aws, General Discussion:
Wegner (1972, 1973).

F. Application to Tricritical Phenomena:
Riedel (1972),
Riedel and Wegner (1972),
Wegner and Riedel (1973).

G. Nonspherical Symmetry:
Wallace (1973),
Aharony (1973).

H. Time-Dependent Phenomena at Critical Point:
Halperin, Hohenberg, and Ma (1972),
Suzuki (19/3b) .

I. There is a large literature on the conventional
renormalization group in 6eld theory, and more
recently the approach via the Callan —Symanzik.
equation. See references cited in Wilson and Kogut
(1972), and also the work of Brezin, Le Guillou, and
Zinn-Justin (1973) and Di Castro et aL (1973).

A model for which Wilson's recursion formula
becomes analytically tractable was discussed by
Baker (1972).

Soda (1970) discussed the realization of a re-
normalization group by summing parquet diagrams.
There is a rather large literature on the graph
summing approach to critical phenomena. See
Tsuneto and Abrahams (1973) and references cited
therein.
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