
REVIEWS OF MODERN PHYSICS VOLUME 45, NUMB ER 4 OCTOBER 197'3

Percolation ancl Conduction

Scott Kirkpatrick
I

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 21 March 1973)

Extensions of percolation theory to treat transport are described. Resistor networks, from which resistors
are removed at random, provide the natural generalization of the lattice models for which percolation
thresholds and percolation probabilities have previously been considered. The normalized conductance, G,
of such networks proves to be a sharply defined quantity with a characteristic concentration dependence
near threshold which appears sensitive only to dimensionality. Numerical results are presented for several
families of 3D and 2D network models. Except close to threshold, the models based on bond percolation
are accurately described by a simple effective medium theory, which can also treat continuous media or
situations less drastic than the percolation models, for example, materials in which local conductivity has a
continuous distribution of values. The present calculations provide the first quantitative test of this theory.
A "Green's function" derivation of the effective medium theory, which makes contact with similar
treatments of disordered alloys, is presented. Finally, a general expression for the conductance of a
percolation model is obtained which relates 6 to the spin-stiffness coefficient, D, of an appropriately
defined model dilute ferromagnet. We use this relationship to argue that the "percolation channels"
through which the current flows above threshold must be regarded as three dimensional.
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. I. INTRODUCTION

This paper concerns itself with theories of, and models
for transport in inhomogeneous conductors, especially
those exhibiting a percolation threshold. . Possible ex-
amples of such systems could be compacted mixtures of
conducting and nonconducting materials or homogene-
ous two-phase systems in which one phase is much more
conductive. In addition, the numerical methods and
most of the analytic results presented. can also be used.
to study materials with more modest inhomogeneities.
However, in this paper we shall focus attention on the
percolation limit, partly because of its inherent interest,
and partly because it provid. es the strictest test of any
analytic theory of the e8ects of inhomogeneities and
permits a clear statement of the limits of viability of
such theories.

Percolation thresholds were erst studied formally
by Broadbent and Hammersley (1957) (see also Ham-
mersley (1957)), who introduced lattice models for the
Qow of a Quid through a static random medium, and
showed rigorously that no Quid will Qow if the concen-
tration of active medium is smaller than some nonzero
threshold value. They also introduced the notion of a
percolation probability, which is the likelihood that any
given region of the medium is sufFiciently well connected
to the rest to be available for conduction. This work,
its generalizations, and some experimental evidence of
percolation threshoMs in classical systems are sum-
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marized in Sec. II. For more detail, the. reader is re-
ferred to the available review papers (see, e.g. , Frisch
and. Hammersley, 1963; Fisher, 1964; Shante and. Kirk-
patrick, 1971; Essam, 1973).

A major cause of recent interest (Shante and Kirk-
patrick) in percolation theory has been the suggestion,
due to several workers, that percolation effects may
play a role in the metal —semiconductor transitions seen
in some disordered systems, or in the unusually low
mobilities associated with free carriers in amorphous
materials. The "semiclassical" arguments by which
the connection to percolation theory may perhaps be
made for these obviously quantum-mechanical systems
are also reviewed in Sec. II.

In an elegant table-top experiment, Last and
Thouless (1971) recently demonstrated that the theory
reviewed in the above references is incomplete, as it
does not describe transport processes near threshold.
In Sec. III, a class of random resistor networks is
introduced and shown to be capable of simulating the
details of transport in mixtures, both near and far
from a percolation threshold. In addition, the network
models prove amenable to both numerical (Monte
Carlo) and analytical study. We feel that such re-
sistor networks provide the natural extension to
treat transport processes of the existing lattice models
for percolation.

Numerical results obtained. over a wid. e range of
concentrations in three simple network models are
presented in Sec. IV. Near threshold, a similar power
law dependence of the network conductivity upon con-
centration is found in all three models. Ke argue that
this behavior should be a general feature of transport
near a percolation threshold in continuous media
as well.

The conductivity far from threshold is sensitive to
details of the model considered. In Sec. V we develop a
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self-consistent effective medium theory which gives
good agreement with the Monte Carlo data far from
threshold and can be generalized to treat transport
processes more complex than our simplified percola-
tion models.

Two derivations of this theory are given in Sec. V.
The first is essentially an extension of an old theory of
conduction in mixtures (Bruggeman, 1935; Landauer,
1952),while the second is more formal, and makes contact
with self-consistent treatments used in the study of alloys
(Soven, 1967; Velicky, 1968). The effective medium
transport theory is applicable to an extremely wide
class of systems. The Monte Carlo data reported here
provides the first quantitative confirmation of its ac-
curacy. From the formal treatment we obtain estimates
of the conditions under which this simple theory will
be valid.

We have also obtained a general expression for the
conductivity at arbitrary concentrations for one of the
resistor network models studied, using a response func-
tion analysis recently developed by Brenig e& al (1971).
to treat hopping conduction among localized states.
Although this result, described in Sec. VI, does not
seem too useful for explicit calculation, it does give some
insight into the nature of transport in the critical region,
and permits us to establish a connection between the
present calculations and certain properties of simple
models of disordered magnetic materials.

In Sec. VII we comment brieQy on the applicability
of both the specific numerical results for the conduc-
tivity, and the efI'ective medium theory for conductivity
and more complex transport coe%cients to real systems
exhibiting a metal —semiconductor transition.

Several preliminary descriptions (Kirkpatrick, 1971,
1972a) and partial reports (Kirkpatrick, 1973b) of
this material have now appeared. A second paper is in
preparation, in which the results of this paper are used
to study the role of the percolation threshold in hopping
conduction, and to provide a microscopic theory of the
prefactor terms in the conductivity. A summary of the
latter work is found in Kirkpatrick (1973b).

rI. BACKGROUND

Observations of conduction thresholds in mixtures
of conducting and nonconducting materials are scat-
tered throughout the literature of materials science.
Gurland. (1966), for example, stud. ying compacted mix-
tures of silver balls and Bakelite powder, reports a
pronounced threshold when 30% by volume of the
compact is metallic. LThe later work of Malliaris arid
Turner (1971)has shown that the value of the threshold
concentration is sensitive to preparation methods. )

Microscopic examination of these compacts shows
that all dimensions of the conducting regions are much
greater than the room-temperature mean free path of
conduction electrons in a metal such as Ag. Therefore,
when metallic, these are essentially classical systems, as

far as the effects of disorder on transport are concerned.
The electrons can be treated as a Quid subject to the
constraints of classical electrostatics, while disorder
enters through the contorted boundary conditions which
the equilibrium current distribution must satisfy.

The first mathematical formulation of the classical
threshold was that of Broadbent and Hammersley
(1957). They introduced a simplified "lattice percola-
tion" model for the Qow of a Quid through a porous
medium and were able to show rigorously that their
model possessed a threshold. This model requires Quid
to Qow through the "bonds" which connect nearest
neighbors in a regular lattice of "sites." Disorder may
be introduced in a variety of ways. The most common
statistical assumptions are known as the "bond per-
colation" and "site percolation" models (Frisch and
Hammersley, 1963; Fisher, 1964; Shante and Kirk-
patrick, 1971; Essam, 1973). In the first, some known
fraction of the bonds, distributed at random, are missing
from the lattice, and Quid cannot Qow through them. In
the second, a known fraction of sites are assumed to be
missing. The absence of a site implies that no current
can Qow through any of the bonds which join that site
to its neighbors.

Detailed studies of percolation on lattices have been
carried out by both numerical (Dean and Bird, 1966,
1967) and analytical (Erdos and. Renyi, 1960; Fisher
and Essam, 1961) techniques. The analytical results
available apply only to rather special models. The
Monte Carlo studies of Dean and Bird, using the site
percolation model, encompass all the common 3D and
2D lattices. This work is not widely known, but its
extensive tabulations of cluster properties appear to be
quite accurate and should be useful in the quantitative
description of many local properties of random systems.

A general picture of what might be called the topo-
logical aspects of a percolation threshold has emerged
from the work of Dean and Bird, Erdos and Renyi and
Fisher and Essam and. other studies (Shante and Kirk-
patrick, 1971). To illustrate this picture, we shall
describe the stages of site percolation on a lattice
which contains E sites, with X a large number. Quan-
tities relevant to percolation are defined in the limit
E~~, and will depend upon x, the concentration of
"allowed" sites, and the geometry of the lattice.

When the concentration is low (x«x,), the allowed.
sites occur singly or in small isolated clusters of adjacent
allowed sites. As x increases, larger clusters occur, and
the mean size of a cluster increases monotonically. As
x approaches x, from below, the larger clusters begin
to merge, creating a few extremely large clusters, so
that in the limit X~~ the mean cluster size diverges
at x,. For any finite X this implies that there is a com-
pleted path of adjacent allowed sites crossing the sys-
teIn, and thus macroscopic Qow through the system
becomes possible.

As soon as x)x, it appears Lalthough no rigorous
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FIG. 1. Site percolation probability,
P(')(x), for three different 3D lattices,
plotted as a function of the fraction of
sites present. Circles represent Monte
Carlo data obtained (Kirkpatrick, 1973a)
on 3D simple cubic (sc) 30)&30&30 site
networks. Crosses indicate Dean and
Bird's (1966, 1967) calculations for sc,
body-centered cubic (bcc), and face-
centered cubic (fccl lattices. Each cross
represents an average over data from
twenty networks of approximately 60 000
sites each. Threshold concentrations,
those values of x, for which the power
law form (2.1) was best satisfied, were:
(sc) 0.312+0.002; (bcc) 0.248&0.003;
(fcc) 0.200&0.002.
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Thresholds of this type are not restricted. to nearest-
neighbor percolation on regular lattices, or even to
lattices at aB. The threshold also occurs for models in

proof exists (Shante and Kirkpatrick, 1971)j that if
/ is suKciently large only one large cluster remains,
along with many small ones. The ratio of the number
of sites in this "infinite cluster" to the number of sites
in the lattice tends to a sharply defined function of x
when E is made very large with x&x, held constant
(Broadbent and Hammersley, 1957; Hammersley,
1957). This ratio, which we shall term the "site per-
colation probability" P&'l(x), proves to be a natural
quantity to use in discussing transport, since it is the
fraction of the volume of the system in which dc con-
duction is possible. However, we caution that our
definition of P(x) differs by a factor of x from the
definition customary in the mathematical literature.

As x increases above x„ the infinite cluster grows
rapidly, absorbing smaller clusters. Correspondingly,
Pt'(x) rises sharply from zero just above threshold,
and goes asymptotically to x when x)&x„and isolated
clusters become rare. The numerical results of Dean
and Bird (1966, 1967) and Kirkpatrick (1973a) for
P&'&(x) on three common 3D lattices, which demonstrate
this behavior, are displayed in Fig. 1. P"(x) near
threshold can be characterized by a simple power law,

P&'&(x) ~ (x—x,)~, (2.1)

where s is approximately the same for all three lattices
(Kirkpatrick, 1973a)

which sites several lattice constants apart are con-
sidered to be connected (Shante and. Kirkpatrick, 1971).
For the bond percolation model, the mean number
e, of allowed bands per site on the lattice at threshold
proves to be an invariant property, determined almost
entirely by dimensionality and insensitive to the details
of the lattice studied. The relation (cf. Vyssotsky et al. ,
1961; Ziman, 1968)

N, ~d((d —1) (2 3)

is satisfied to within a few percent for all common 2D
and 3D lattices (Shante and Kirkpatrick, 1971). This
general rule must be at least approximately valid for
lattices lacking perfect translational symmetry.

A similar invariant construction has been used to
link site percolation to the properties of continuous
materials. By associating ari allowed volume with each
allowed site (the volume of a sphere with radius equal to
half the nearest-neighbor separation), Scher and Zallen
(1970) showed that the values of x, found for site per-
colation on various lattices correspond to an allowed
region which is 0.15 of the volume of the system in
38, and 0.45 in 2D. This result is accurate to a few
percent.

These numbers are not immediately relevant to the
problem of predicting threshold concentrations for per-
colation in a continuous medium. The allowed volume
in Scher and Zallen's canstruction consists of non-
overlapping spheres (or circles) whose centers are
constrained to lie on a regular lattice, and bears little
resemblance to the metallic portion of the compacts
studied by Gurland (1966) and Malliaris and Turner
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(19'/1). A continuum percolation model in which the
allowed volume consists of identical spheres (or circles
in 2D) permitted to overlap, with centers distributed
at random, has been studied numerically. The
threshold volume fraction, v„ for this model (Shante
and Kirkpatrick, 1971) is 0.29 in 3D and 0.68 in 2D.
Finally, we argue in the following section that v, =0.25
in 3D and V,=0.5 in 2D' may be the best estimate of
the threshold concentration for a compact whose
metallic and nonmetallic regions have, on the average,
similar shapes. The threshold. concentrations for most
real compacted mixtures should fall within the range
of these three estimates.

Abeles and Hanak (1970)have reported 3D composite
materials with threshoM. s at much higher metallic con-
centrations, e.g., with e, greater than 0.5. For this to
occur there must be a high degree of asymmetry be-
tween the characteristic shapes of the conducting and
the nonconducting regions. Consequently the results
of this paper will require modification before they can
be applied to such systems.

Several authors (Ziman, 1968; Eggarter and Cohen,
1970; 19'l1; Zallen and Scher, 1971) have appealed to
percolation theory in order to describe the electronic
states of systems which are disordered on a scale too
small to permit macroscopic treatment. The most
complete exposition of this line of argument is that of
Eggarter (1972).He considers the motion of an electron
injected into dilute He vapor, treating the He atoms
as'a gas of massive hard spheres, and replacing the hard
sphere potentials by a position- and energy-dependent
effective potential, V(x, E), calculated in a low-density
approximation. The eRective density of scatterers, and
consequently the eRective potential, fluctuates from
point to point, but only on a scale suKciently long for
the electron's response to it to be essentially classical.
Eggarter and Cohen (1970, 1971) and Eggarter (1972)
define such a local density, felt near a given point by an
electron with energy E, by averaging over a surround-
ing sampling region whose radius is approximately the
deBroglie wavelength L=h(2/mE)' '.

This eRective potential may be used for two types
of calculation. The density of states is given to a good
approximation by Eqs. (21) and (26) of Eggarter (1972)
as the spatial average,

p(E) =J d'xp~ $E V(x, E)], —(2.4)

where p"'(E) is the density of states in the absence of
any scatterers. Equation (2.4) and the arguments out-
lined above have been used to predict the form of the
tail in the density of states for several simple systems.
The results are in excellent agreement with accurate
numerical calculations performed for a model tight-
binding band in the presence of a high concentration of
short-ranged repulsive scatterers (Kirkpatrick, 1972b).

The second application is to transport. The eRective

' This estimate of the 2D case has also been obtained, by a
diferent line of reasoning, by Zallen and Scher (1971).

potential has been smoothed sufficiently that an elec-
tron's wave function will be extremely small in the
classically forbidden region where V(x, E))E, and the
electron will be largely confined to the allowed regions.
Thus when v(E), the fraction of the material which is
classically allowed to an electron with energy E, exceeds
the critical value for percolation, e„conduction becomes
possible. Eggarter and Cohen determine a mobility
edge, E„by

w(E,)= v, . (2.5)

Using Eq. (2.5) and an approximate calculation of the
mobility near E„they were able to give a good account
of the electron mobility as it decreases by 5 orders of
magnitude with increasing He vapor density.

Thus, the achievements of percolation theory up to
1971 are essentially twofold. The percolation threshold
has been shown to be a very general phenomenon,
relevant to systems without underlying regular struc-
ture, as well as to the lattice models on which numerical
work has been done. General features of the percolation
probability have also been observed, in particular its
appearance near threshold.

However, the connection between P(x) and the
conductivity of a system remains unclear. This was
demonstrated very eRectively by Last and Thouless
(1971), who measured the conductivity of a piece of
conducting paper as holes were punched in it at random
with approximately the statistics of site percolation.
The conductivity as a function of the fraction of the
paper remaining was observed to go to zero with zero
slope at approximately the critical concentration for
2D site percolation. Thus the threshpld is correctly
predicted by x„but the form of the conductivity near
threshold cannot come from P(x) alone, since P(x) (see
Fig. 1) has infinite slope at threshold. (The data of Fig.
1 describe a 3D model. %bile the exponent s in Kq.
(2.1) has not been accurately determined for any 2D
models, there exist general arguments which require
that s(2D)(0.5, and the available numerical data on
P(x) (Frisch e/, al. , 1962) suggests that s(2D)(s(3D).]

In the following sections we introduce and analyze
an extension of the basic percolation lattice mod. el which
makes it possible to consider conduction in the presence
of randomly distributed excluded volumes in three as
well as two dimensions, and under a variety of statisti-
cal constraints. In terms of this model, it is possible
to define a percolation conductance, G(x), which appears
to be of general use in describing transport near a
percolation threshoM.

III. RESISTOR NETWORK MODELS

Let us suppose that we know the detailed spatial
arrangement of the conducting and the nonconducting
materials in a composite system such as one of the
mixtures studied by Gurland (1966) or Malliaris and
Turner (19'/1). If all dimensions of the conducting
regions are large with respect to electronic mean free



578 REviEws QF MQDERN PHYszc, s ~ OcTOBER 1973

V j(r)=O (3.1)

for the voltage, V(r), and current, j(r), which result
when a field is applied. across the sample. Equations
(3.1) may be solved to any desired accuracy using a
finite diGerence approximation. By introducing a regu-.
lar cubic mesh of points Ir, I, with spacing Ar, one
obtains a system of linear equations for the voltages
v;= v(r, ),

Z~ g'~(v' —V~) =O

for all r, not at a surface, with

g' =~r [( '+;)/2j,

(3 2)

(3.3)

and i, j.neighboring sites on the mesh.
A natural lattice idealization of this problem is based

on the observation (Kirkpatrick, 1971) that Eq. (3.2)
is identical to the Kircho6 current law for a regular
network of random-valued conductances g;, , with V;
denoting the voltage at the ith node. In this paper we
shall construct and study several classes of random
resistor networks in which g, , is restricted to one of the
two values, 0 or T. The networks are interesting in their
own right, since clearly they will exhibit a percolation

paths, a local conductivity, 0.(r), can usefully be defined
by the bulk value of the conductivity for the material
found at the point r. We could then seek to calculate
the conductivity of the composite material, and deter-
mine to what extent this can be related to simple statis-
tical characterizations of the distribution of 0(r)'s in
the material.

The random arrangement of the material modifies the
conductivity of a sample in several ways. As noted in
the preceding section, isolated conducting regions can-
not contribute to transport, so that only the connected
part of the conducting material, a fraction P(x) of
the whole, is of interest. I et us suppose that the con-
nected region were arranged in regular layers parallel
to the applied field. This is clearly the optimal arrange-
ment and results in the ratio of the conductivity of the
composite to the bulk conductivity of the metallic part
being equal to P(x), an upper bound. Near threshold
in the actual composite, as Last and Thouless (1971)
have noted, this bound cannot be achieved, since much
of the connected part should consist of useless dead ends,
and the current will fIow predominantely through a
fraction of the sample which is significantly less than
P(x). Even when dead ends are not a problem, as for
example when the insulating regions are small and
isolated, the effects of the local fields necessary to guide
the current around obstacles must be considered. This
contribution is stressed in the e6'ective medium treat-
ments (Bruggeman, 1935;Landauer, 1952) which have
been applied to this problem (see Sec. V).

Given 0 (r), we can treat both effects exactly by solv-
ing the usual equations of electrostatics,

i (r) =0(r) V V(r),

threshold, and they can be related to real composite
materials by analogy to Eqs. (3.1)-(3.3). Since a cubic
mesh is both necessary and sufFicient for the finite-
difference expansion Lsee, e.g., Godunov and Ryabenki
(1964)] of Eq. (3.1), we shall consider only 3D simple
cubic and 2D square networks. The consequences of
various assumptions about the statistical distribution
and spatial correlation of the g, , have been explored,
in an attempt to learn which features of the conduc-
tivity are insensitive to such details. Three diGerent
percolation models will be distinguished:

(A) The bond percolation mode/ is the simplest case.
A fraction of the bonds are chosen at random and,
"removed, " i.e., assigned the conductance g;, =0. In
numerical, calculations, this is done by assigning to each
bond a random number uniformly distributed between
0 and 1, then removing all bonds whose numbers fall
into a selected interval. All properties are studied as a
function of p, the fraction of bonds which remain. By
the arguments used in deriving Eqs. (3.1)—(3.3) we
see that p corresponds to the fraction of the volume
which is conducting.

(B) In the site Percolation mode/, we assign a random
number to each node, or site, in the network, in order
to select a fraction of the sites to be removed from the
network. In this paper we shall use x to denote the
fraction of sites present, as distinguished from p, the
fraction of bonds present. Removal of a site means that
all bonds from that site to its neighbors are assigned
g;;=0. In this model there is a strong spatial correlation
in the presence or absence of nearby bonds, since if
a bond is absent, so are all of the bonds joined to it at
one or both of its endpoints.

(C) A correlated bond percolation model may be defined
as follows' . Each site is assigned a random number, 8;,
uniformly distributed between —1 and +1. Random
numbers E;; for the bonds are calculated from the
numbers characterizing the sites by the rule

&* =l(l &'I+ I
& I+ I

&'—& I). (34)

Finally, all bonds with E;, greater than some selected
limit are removed. There is a statistical correlation
between bonds in this model which is quite diferent
from that found in the site percolation model. A bond,
g;;, is present only if E;; is sufFiciently small, which
implies that

~
E,

~

and
~
E,

~

are also small. Thus, if a
bond is present, its neighbors have a greater than
average probability of also being present. In this model
the bonds remaining i' the network are clustered to-
gether, in contrast to the site percolation model in
which the missing bonds cluster.

In treating the properties of simple mixtures it is
usually assumed that the conducting and nonconduct-
ing regions can and should be treated on an equal
footing (Bruggeman, 1935; Landauer, 1952). That is,
interchanging the conducting and nonconducting
regions in a sample with a fraction x of its volume



ScoTT KIN KpATRIcK Percolate on and Conduction 579

I.O
30S
BOND

0.8—

0.6—

C3

CL

0.4- (b)
P (p

0.2 —
/
/

I
l
I

I I I I I

t 30 40 50 60 70 80 90 IOO

p-FRACTION OF BONDS PRESENT (%)
FIG. 2. Percolation probability, P(p) (dashed line), and con-

ductance, G(p) (data points), for bond percolation on 3D simple
cubic network. G(p) is normalized to unity at p= 1.The networks
studied ranged in size from 15&(15)&15to 25)&25)&25. The solid
line indicates the prediction of the effective medium theory de-
veloped in Sec. (V). The arrow indicates the position of the
percolation threshold p, .

conducting shouM. yield an equally plausible sample
with conducting fraction 1—x. The bond percolation
model also has this symmetry between bonds present
and bonds missing. Therefore its threshold concentra-
tion provides our best estimate for the critical volume
fraction of a random mixture, if we identify, following
Eqs. (3.1)-(3.3), bond concentration with volume frac-
tion. The critical concentrations for bond percolation
on cubic lattices, 0.5 in 2D and 0.25 in 3D, provide the
estimates of v, cited in Sec. II.

IV. NUMERICAL STUDIES
In the numerical studies reported below, the net-

works have a finite number of sites. Dimensions of the
networks from which particular sets of data were ob-
tained are indicated in the appropriate figure captions.
The conductivity of each random network was obtained
by setting the voltage at each node on one end surface
of the cubic mesh equal to zero, assigning a constant
voltage to all the nodes on the opposite end, and solving
Eq. (3.3) on a computer to obtain the current flow
between them. Cyclic boundary conditions are imposed
by connecting pairs of mesh points on the opposite free
faces through an extra layer of random conductances.
Thus the samples are essentially infinite in the directions
perpendicular to the applied voltage. For the analytic
methods discussed in the following sections we shall
assume that the sample is infinite. Since the mesh is
cubic, the conductivity is isotropic. For convenience we
shall always calculate it along a cubic axis.
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FIG. 3. Results for bond percolation on 50)&50 site 2D square
networks. Labelling conventions same as in Fig. 2. The threshoM
concentration for this lattice is p, =-,', an exact result.

Conductance data for the bond percolation model
are presented in Figs. 2 (3D model) and 3 (2D). The
conductance G(x), normalized so that G(1)= 1, is
plotted as a function of the bond fraction, p. For com-
parison, P'~&(p), the percolation probability in the bond
problem, has been sketched in, following the numerical
results of Frisch, Hamrnersley, and Welsh (1962). In
Fig. 2, the two quantities appear to have the same
threshold concentrations, with an uncertainty of less
than 0.01, but the difference in their concentration
dependences near threshold is unmistakable, in agree-
ment with Last and. Thouless's (1971) observation.
Two domains of concentration are apparent in Fig. 2—
a critical region in which G(p) increases from zero with
initially zero slope, and a high concentration regime in
which the concentration dependence appears simpler.
The effective medium theory to be described in Sec. V
(solid. line) gives a very accurate prediction of G(P) in
the high concentration regime for this model.

Variations in G(p) among samples with the same
concentration were more severe in 2D than in 3D, so
only the simplest possible 2D model, the bond percola-
tion model, was studied. The data for all samples
studied are plotted in Fig. 3. Again, P(p) and G(P)
appear to have the same threshold, but the critical
region for the 2D model seems to be confined to too
small a range of concentrations for accurate numerical
study. As in the preceding case, the effective medium
theory (solid line) is in good agreement with the data
far from p, .

Data obtained on the 3D site percolation model are
plotted against the fraction of sites present in Fig. 4.
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Fn. 4. Percolation probability and conductance data for site

percolation on 20)&20&(20 site simple cubic networks, plotted
against the fraction of sites present. The solid line labelled razor
is the "low-density" (of missing sites) approximation (6.22).

numerical and analog (real resistors) means. Their
results appear to agree with Fig. 4. The differences
between the bond and site models are much less ap-
parent if t" for the site model is plotted as a function
of the fraction of bonds present, as in Fig. 5. In this
model, the fraction of bonds present is the square of
the fraction of sites present, since a bond is present only
if the sites at both ends are present.

G(p) for the correlated bond percolation model,
plotted in Fig. 6, closely resembles the results for the
site model of Fig. 5, despite the diferent character of
the statistical correlations between bonds in the two
models. The threshold concentration for the correlated
bond model was found to be p, =0.103&0.1 (by looking
for the appearance of the 6rst completed path, in ten
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FIG. 5. Site percolation data, plotted against p, the fraction of

bonds present, rather than x, the fraction of sites present.

Again the onset of conduction occurs with zero 6rst
derivative, but the high concentration region of Fig. 4
looks much droopier than the same region in Fig. 2.
In its concave appearance, Fig. 4 is similar to the
experimental results of Last and Thouless, who simu-
lated site percolation in the way they punched their
holes. Recently, Adler et al. (1973) have studied the
conductivity of the site percolation model by both

I.O

0
I ~ I I

0 I 0 20 30 40 50 60 70 80 90 IO0

p FRACTION OF BONDS PRESENT (%)

Fro. 6. Conductance of 25)&25)(25 site correlated bond per-
colation networks, prepared as described in the text for model C.
There are no data available on the percolation probability. The
solid line, as in Fig. 2, represents the effective medium theory
prediction.

30&&30 samples), but no data on the percolation proba-
bility is available.

The conductances observed for the three models
diGer considerably in the high concentration regime.
The correlated bond model data have the same slope
near p= 1 as does the simple bond percolation model,
and hence agrees with the prediction of the effective
medium theory. However, as p decreases G(p) for
the correlated bond percolation model curves upwards,
lying above the eGective medium result. The site
percolation model results (Fig. 5) have a smaller initial
slope than is seen in Figs. 2 and 6. Explanations for
these difterences are obtained in the next two sections.

Near threshold, the curves in Figs. 2, 5, and 6 are
strikingly similar. For all three cases, a power law form,

G(P) "(p p.)'—(4.1)

was observed to hold over a range of concentrations
extending 0.2 or more above the respective threshold
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concentrations. The values of t found for the three
models were mutually consistent:

&=1.6a0.1

I,= 1.5&0.2

(bond percolation)

(site and correlated bond percolation).

(4 2)

As is commonly found in the study of critical phe-
nomena, these diferent 3D models aH have similar
behavior suKciently close to the critical concentration.
The dimensionality of the system appears more impor-
tant than the details of the lattice or cluster statistics.
Although results for a 2D model (Fig. 3) may have been
flawed by the use of too small a sample, the exponent
appears to lie between 1 and 1.3.

In Sec. II we noted that the threshold condition for
bond percolation can be stated in a form which is in-
variant for 3D lattices with arbitrary coordination num-
ber, s: The mean number of bonds present at any site
of the network n, =sP, =1.5 at threshold. We shall now
construct a similar invariant for the correlated bond
percolation problem (model C), and use it to relate G
and p, for this model to the corresponding properties
of the bond percolation model.

For a given realization of model C, we need only
consider the sites with energies

~
E;

~
&6, where 6 is

a cutofF energy, since according to Eq. (3.4) only these
sites can be part of the network of bonds selected by
the criterion E;;&A. Thus only a fraction, 6, of the
sites are relevant, and the number of bonds open at
each relevant site is given by

N(a)=sp(a)/a,

where for the correlated bond model,

p(A) =3lV/4 if 6& 1.

Thus on the simple cubic lattice, we have

~(a) = M,/2.

(4.3)

(44)

(4.5)

Setting 0,=1.5 in Eq. (4.5) we find 6,= 3, and P,=—,';,
in reasonable agreement with the numerical results,
6,=0.39 and P, =0.103&0.01.Thus e(A), when delned
with respect to the relevant portion of the lattice only,
may be an invariant of this generalized bond percola-
tion problem.

The results for G(p) can also be rephrased in
terms of n and n, . For model A, the data were fitted
by the expression G(p)~3.2(P—p,)",which is equiva-
lent to 0.18(e—I,)".The corresponding result for
model C can be transformed, using Eq. (4.5), into
G(n) 0.12(e—e.)i 6, if we assume that the same ex-
ponent applies. There is a simple explanation for the
difference in coeScients. Since only 6,=0.39 of the
sites participate in the correlated bond network near
threshold, the mean distance between relevant sites
exceeds the nearest-neighbor distance. Thi.s scale change
should reduce the bulk conductivity of model C by a

factor of I/L=(0.39)'~'=0. /, which is in good agree-
ment with the actual ratio, -„of the two coe%cients.
Therefore we propose that

G(m) 0 18(n—n )"/L (4.6)

will be a general result for all sorts of bond percolation
near threshold, accurate to perhaps 20%. This expres-
sion proves useful in the treatment of hopping conduc-
tion (Kirkpatrick, 1973b).

The exponents quoted in Eqs. (4.2) were obtained
from the slopes of log—log plots of G(p) versus (p —p,).
The errors given are subjective confidence limits, and
reQect the effects on such plots of Auctuations in the
data and uncertainties of a percent or so in the value
of p, . (The latter uncertainty is a problem in 3D only;
for bond percolation on the 2D square network, p, =

2

is an exact result. )
The percolation model data of Figs. 2—6, for networks

in which g;,= 1 or 0, were obtained by a limiting process
of solving erst for the voltages in a network in which
g;;= 1 or n, with 0. typically —'„ then using that solution
as a starting point for solving the same network with
0.= 4, and so forth until n was made small enough that
no further changes in the conductance occurred. From
six to eight steps were required to reach u='10 ', which
was usually taken to be zero. Changes in G(x) resulting
from further decreases in n were estimated or observed
to be less than 0.01 in all cases.

At each step Eqs. (3.2) were solved by direct itera-
tion of the inverted form,

I'*=Z~g' I"/Z a'. (4 &)

No attempt at over- or under-relaxation was made.
For the 2D cases, where convertence proved to be much
slower, an implicit iterative algorithm due to Stone
(1968) gave a slight improvement. ' In all cases it proved
desirable to do the calculation in double precision
arithmetic. Solution of a 3D network of 15)&15)&15
sites, using 50 iterations, on an IBM 360—65 computer
required about 5 sec.

2 Stone's method normally provides a factor of 50 to 100 im-
provement in computational efficiency over direct relaxation
schemes in solving finite-difference transport equations in compli-
cated finite systems. The cyclic boundary conditions employed
here apparently nullify this advantage.

V. ANALYTIC RESULTS: EFFECTIVE
MEDIUM TREATMENT

Outside the critical region, one can obtain an accurate
analytic calculation of G, at least for the two bond
percolation models. The effective medium theory that
we shall develop in this section is, in some of its guises,
quite ancient, yet it has features in common with the
most recent theories of excitations in substitutional
alloys. We shall begin by giving a derivation of this
result that follows the lines of the classical theory of
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conduction in mixtures (cf. Bruggeman, 1935; Land-
auer, 1952; Brown, 1956; Kerner, 1956).'

The distribution of potentials in a random resistor
network to which a voltage has been applied along one
axis may be regarded as due to both an "external field"
which increases the voltages by a constant amount per
row of nodes, and a Auctuating "local 6eld, " whose
average over any suKciently large region will be zero.
We shall represent the average effects of the random
resistors by an effective medium, defined as that
medium in which the total 6eld inside is equal to the
external field. Such a medium must be homogeneous.
For simplicity we shall consider it to be made up of a set
of equal conductances, g, connecting nearest neighbors
on the cubic mesh. As the criterion to 6x g, we require
that the extra voltages induced; i.e., the local 6elds,
when individual conductances g;; replace g, in this
medium should average to zero.

Consider one conductance oriented along the external
field, surrounded by the effective medium [Fig. 7(a) ],
and having the value g~B=go. The solution of the
network equations (3.2) in the presence of gz& which
reduces to a uniform field far from g~B is constructed by
superposition. To the uniform field solution, in which
the voltages increase by a constant amount, V, per
row, we add the effects of a fictitious current, io, intro-
duced at A [in Fig. 7(a) ]and extracted at B.Since the
uniform solution fails to satisfy current conservation at
A and 8, the magnitude of io is chosen to correct for
this:

&m(gm —go) =&0 (5.1)

The extra voltage, Vo, induced between A and 8, can
be calculated if we know the conductance GgB' of the
network between points A and 8 when g~B is absent

' Two useful references for further reading in the classical
transport literature are Krumhansl (1973) which has references
to work on other-than-electrical problems, and Miller (1969)
which has a variational calculation to determine when the volume
fraction is the dominant parameter in transport.

(b)
FIG. 7. Constructions used in calculating the voltage induced

across one conductance, go, surrounded by a uniform medium.

[see Fig. 7(b)]:
l 0 &0/(go+GAB ) ~ (5 2)

For a binary distribution, we have

f(C) =p~(g 1)+(1 —p)~(a ~—); (5 5)

as is appropriate to the percolation network models,
Eq. (5.4) reduces to a quadratic equation for g:
( /2 —1)g '+ {( /2) p —1

+n[s/2 (1—p) —1]}g„—n =0. (5.6)

The relevant root of Eq. (5.6)

,g =
I (s/2) p—1+a[s/2(1 —p) —1]}/(s—2)

+ ({(2s) p —1+~[as(1—p) —1]}'
+ (&—2)~)'"(s—2) ' (5 7)

has a simple limiting form when o.~0:
g„(a=0) = 1—(1—p)/(1 —2/s), (5.8)

a straight line in which g goes to zero when p=2/s.
Equation (5.8) is the prediction plotted in Figs. 2, 3,
and 6.

The numerical results of the preceding section show
that the effective medium theory (5.8) is surprisingly
accurate for the bond percolation model (Figs. 2 and 3),
and for the correlated bond model (Fig. 5) when
p&80%. Furthermore, it was shown in Kirkpatrick
(1971) to be accurate to within a few percent at all

' The existence of this percolationlike solution to the effective
medium theory was first pointed out in the context of the con-
tuinum problem by Landauer (1971).

Calculation of G~B' is a classic student problem. We
first obtain the conductance GgB between A and 8 in
the uniform e6'ective medium, since G+s —G+s +g„.A
symmetry argument is useful: Express the current dis-
tribution in Fig. 7(a) with go ——g as the sum of two
contributions, a current io, introduced at A and ex-
tracted at a very large distance in all directions, and an
equal current, introduced at in6nity and extracted
at B. In each case, the current Qow'ing through each of
the s equivalent bonds at the point where the current
enters is ip/s, so that a total current of 2ip/s flows
through the AB bond. This determines the voltage
developed across AB, and from that follows the result,
Gz& ——(s/2) g~, or Gz&' ——(s/2 —1)g . Using Eqs. (5.1)
and (5.2), we obtain

(5.3)

valid in both 2D and 3D.
If the value of a bond, g;;, is distributed according to a

probability distribution f(g} (which may be either
continuous or discrete), the requirement that the
average of Vo vanish gives a condition determining g:
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concentrations whenever a)0.1 for the bond percola-
tion model. However, for the site percolation model
(Fig. 5), it gives the wrong slope at high concentration
(small concentrations of missing sites) . To see why this
is so, we shall cast the resistor network problem into a
slightly more formal notation, and re-derive Eq. (5.4)
by what amounts to a Green's function theory of
resistor networks. Some interesting connections between
the network problem and other well-known problems in
disordered materials emerge from this analysis.

Rewriting Eq. (3.2) as a matrix equation, we obtain

WV= 8, (S.9)

while
W= Z li)(4Z g'~ g'~)(j I

— (5 11)
k

and S is zero, except at the two ends of the sample. The
voltages and subsequently the current Row can be ob-
tained if we can solve

where V is a vector of node voltages, expressed in a
bra-and-ket notation as

(5.10)

These definitions are useful in evaluating the series
expansion for W ',

W '.=W 'g [(Q 8w, ;P;,)W ']", (5 20)
n=0 ('g)

since all terms involving repeated powers, of a given
bm, ; can be simplified and collected by introducing a
t-matrix (Edwards, 1961), t;;, for the bonds:

(5.21)

involving only the matrix element of W which is
projected out by P;;:

The series (5.20) is resumed in terms of the t,,'s by
standard methods

W '=W„'+W~ 'Q t,,W '+W„'Q t;,W
(si) (ii)

tj, iW„—'+ ~ ~ ~ . (5.23)
(& &) 4(&i)

From the sum (S.23) we see that the "best" choice of
g is that which makes

V=W—'S (5.12) (~;,)=0; (5.24)

so (W ') contains the information necessary to deter-
mine the average conductivity.

To calculate W ', we separate W into a homogeneous
part, W, whose inverse is presumed known, and a
fluctuating part, which we may expand whenever W is,
in some sense, not too s'maB:

where
W=W„—AV, (5.13)

where
bw;, =Re;;P;;,

~~' =2(a-—g'),

(5.17)

(S.18)

and P;; is a projection operator for the ijth bond:

W.= g I
')g„( b;,—s,;)(q I, (5.14)

and 6;;is unity if sites i and j are nearest neighbors, zero
otherwise. The normalized conductivity of the uniform
medium characterized by W is g .

It proves useful to separate bW into contributions
from different bonds (ij),

hW= g bw;, , (5.15)
(~i)

where the contribution of the bond (ij) is

Bw;, = (g —g;;) (I i&(i I+IX')(j
I

—
I i&(i

I

—
I j&(il). (5 16)

Although bw,; has four matrix elements in Eq. (5.15),
it only aff'ects the diff'erence in voltage between nodes
I
i) and

I j).To show this, we factor Eq. (5.16) into

Since 8" ' is real, we have

(5.26)

which, with translational invariance and cubic point
symmetry, implies that all matrix elements of W
between nearest neighbors are equal. Thus for i, j
adjacent, we have

F;,= (i
I

w„-'
I
i & (i

I
w —-'

I j),
= 1/(«a-)

Therefore, we have

(5.27)

(5.28)

t' = P* «g-(g- —a' )/I:g'+ («/2 —1)g-], (5 29)

and the equation (t,, )=0 [Eq. (5.24) ] is equivalent to
Eq. (5.4).

Study of higher-order contributions to W ' explains
why the eff'ective medium theory works so well for the
bond percolation model. As long as there is no correla-
tion between bonds, we have

since then (W ') is given by W ', with corrections of
(t;,tA, ~) or higher order, and g will be a good approxima-
tion for G(x), suitably normalized.

In general, matrix elements of W ' can only be
expressed in terms of exotic integrals (Morita and
Horiguchi, 1971), but the F;; needed here is an excep-
tion. By taking the (il Ii) matrix element of the equa-
tion W 'W =1, using Eq. (5.14), we obtain

(5.25)

P' =l(l i&—
I j))((i I

—(j I) (5.19) (t',t') = (t' )(t~i) =o, (5.30)
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of spin excitations in certain dilute magnetic systems'
(Kirkpatrick, 1973a). We shall exploit this connection
to obtain some insight into the topology of the "infinite
cluster" through which the current Rows.

KirchoR's law, the basis of the network equations
(3.2), is simply the requirement that charge p is
neither created nor destroyed at the nodes;

dy(t) /dt =WV= 0. (6.1)

FIG. 8. Alternating current modification of the basic resistor
network model, in which each node is connected through a capaci-
tance C to an external potential U; which may vary in time and
position.

whenever (ij) W (kt). Just as in the simplest models of
electrons in disordered alloys, the first contribution to
(W ') comes from terms involving (t4), and is propor-
tional to (1—p) '. For the correlated bond model
(Fig. 5), Eq. (5.30) fails by a small amount, and the
first corrections to (W ') are of order (P), but again
proportional to (1—p) '.

For the site percolation model, corrections of order
(t') are also found, but they are proportional to (1—p),
since defects, even in lowest order, involve the removal
of s neighboring bonds. Thus the slope of G(p) near p = 1

in Fig. 5 disagrees with the eRective medium theory re-
sult. In order to include all effects of order (1—p) in a
calculation of (W ') for this problem, it is necessary to
deal with t-matrices describing the scattering from
-absent sites, rather than the t; s. %hile this can be
done (Izyumov, 1966), the structure of the resulting
approximations to (W ') is more complex, and G(x)
can no longer be obtained "by inspection", i.e., by
exhibiting g . In the next section, we shall derive a
general expression for G(x), valid in the critical region
as well as outside, and then reconsider the site percola-
tion problem.

VI. GENERAL EXPRESSION FOR G(x) i RELATION
OF RESISTOR NETWORKS TO

DISORDERED FERROMAGNETS

Explicit expressions for G(x) in terms of certain
general properties of the operator (W ') will now be
derived. The procedure used is to solve an ac generaliza-
tion of the network problem at a finite frequency u,
then take the limit co—+0. The ac system to be solved is
somewhat arbitrary, as it need only reduce to the
resistor network of interest in the limit u—+0. Our ac
generalization is similar to a construction suggested by
Pollak for treating ac hopping conduction. The deriva-
tion of a general expression for G(x) follows rather
closely the treatment of hopping conduction by Brenig
et at. (1971),but special simplifications are possible for
the percolation models studied here. In addition, the
analysis reveals an interesting connection between con-
duction in these resistor networks and the propagation

We will make Eqs. (3.2) into an ac problem by modi-
fying the network so that p/0. A construction with
this eRect is sketched in Fig. 8. At each vertex is added a
capacitive shunt C and an external voltage generator,
U;, which may be thought of as due to an ac external
field, and

dp, (t) /dt= Cd(V, U;) /d—t. (6.2)

U=
~
k)U(k, cv) exp (—4&t), (6.3b)

where

(i
~
k) = (N) '" exp ( —k r;) (6.4)

and Ã is the number of sites in the lattice. The Fourier
transform of the network equations becomes

WV= —io)C(V—U)+ S, (6.5)

which is formally equivalent to the kinetic equations
governing hopping conduction. In the limit co—+0, the
original equations (3.2) are recovered. Henceforth we
shall take the limit of a large sample and disregard S.

If we define a response function I., relating the in-
duced charge to the external potential V, by

bp(k, ~) = L(k, (o) U(k, cg), (6.6)

then a standard result of linear response theory (Kad-
anoff and Martin, 1963), requiring only that this
response be causal, relates the conductivity to I.:

G= lim lim i(qL (k, (v) /k'.
co~0 k~0

(6 7)

L can be identified by solving Eq. (6.5) for V, and
using Eqs. (6.1) or (6.2):

L(k, a)) =C(k
~
W/(W+icuC)

~
k). (6.8)

From Eq. (6.7) and the real part of Eq. (6.8), the
dissipative part of the conductance is obtained

G= lim lim (&v2C~/k') (k
~

W(/W'+&u' C)
~
k). (6.9)

co~0 &~0

Equation (6.9) may be evaluated formally by intro-
ducing a set of exact eigenvectors,

~
a), of the con-

' This connection has been independently noticed by Last and
Thouless (private communication) and is alluded. to briefly in
Last (1972).

%e shall assume that the driving field has only one
Fourier component, i.e.,

U, (t) ~ U(k, cv) exp (ik r, isn't), — (6.3a)
or
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ductance matrix P":

W
~
n)=X.

~
n),

in terms of which Eq. (6.9) becomes

G= lim lim (aPC'/k')

(6.10)

X Q ~
(k

~

n) ~') /(X '+co'C'). (6.11)

For the percolation conduction networks studied here
the sum in Eq. (6.14) can be evaluated. (In the more
complicated hopping conduction problem (Brenig et at. ,
1971), it cannot, in general. ] The eigenvectors P~, as
k~0, are just uniform shifts of the voltages on all sites
of the infinite cluster. Thus V0(i) is constant on those
sites, and zero elsewhere, and normalization implies that

Some of the eigenfunctions of W will be localized with
nonvanishing values of X and an overlap matrix element

~
(k

~
n) ~' of order k' or smaller. Taking the limit

k—+0 in, Eq. (6.11) leaves a quantity proportional to co'

for the contribution of such states. Only extended eigen-
functions of W with small eigenvalues contribute to 6
in the dc limit. From the structure of W one can show
(Brenig et at. , 1971) that there are eigenstates near the
bottom of the spectrum for which k becomes a good
quantum number, and that such eigenfunctions may be
expanded in powers of k:

(i
~
P&)=exp (ik.r;) [V'(i)+k. V'(i)+8(k')]. (6.12)

The eigenvalue associated with a state such as (6.12)
will be dominated by a term proportional to (ka)',
where a is the distance between adjacent nodes:

) i, =Dk'a'+8(k'). (6.13)

Inserting Eqs. (6.12) and (6.13) into Eq. (6.11)
yields, upon taking the two limits,

. (6.14)

If p&0.7, Eq. (6.17) is close to unity, and G(p) is
simply proportional to D(p).

We can gain, some feeling for the nature of D by
showing that the spin excitations of a simple class of
random magnetic systems are simply related to the
eigenstates of W. That is, the spin stiGness of such
systems is proportional to D.

Suppose that a spin 5; is located at each node of the
regular network. and that the interaction energy of two
spins is J;;8,'8, . The equations of motion for a spin-
lowering operator, in linearized form,

i~~,-(t)/«=2~ Z J;;L~;-(t)—~;-(t) j, (6.1g)

are essentially identical to the time-dependent form
Eq. (6.1) of the network equations (3.2), if each con-
ductance g;; is equal to 2SJ;;.The low-lying spin wave
modes given by Eq. (6.18) have energies

E(k) =Dk'a', (6.19)

where D is the quantity defined by Eq. (6.13), once
this identification is made. Equation (6.19) is a com-
mon definition of a spin-stiffness coe%cient.

The site percolation model, model 8, corresponds in
the above sense to the classic picture of a dilute ferro-
magnet (Morgan and Rushbrooke, 1961, 1963; Rush-
brooke, 1970; Rushbrooke et a/. , 1972), a regular array
of spins with nearest-neighbor interactions from which
some fraction of the spins, on randomly chosen sites, are
missing. Model A, the bond percolation model, cor-
responds to a more unusual dilute magnetic system, in
which some of the J, s chosen without regard to whether
their neighboring bonds are also absent, are missing.
Such a situation might occur, for example, in insulating
magnetic systems in which indirect exchange is domi-
nant and sensitive to the identity of the anion. We can
state the relation between the spiri stiffness in these
systems and the conductance of the corresponding
resistor networks in a simple normalized form:

~ Q V'(i) ~'=8&'&, (6.15) G(x) =Et'&(x) D(x) /D(1) . (6.20)

where P&'~ is the fraction of the sites in the material
which lie in the infinite cluster. Thus Eq. (6.14) be-
comes

G= u'DP&'~. (6.16)

P&'& for the site percolation problem was plotted in
Fig. 1. When most of the sites are present, P&'~ is
approximately equal to the fraction of sites remaining
in the sample. P~' for the bond percolation models A
and C has a different form, since sites are not separated
from the infinite cluster until-bonds on all sides have
independently been removed. For model A, the simple
bond percolation model, where P is the fraction of
bonds present, the leading terms in P&') are

(P) =1 (1 P) 6P(1 P) '(3Db
percolation, szMpLE cUMc lattice) . (6.17)

Several useful consequences follow from Eq. (6.20).
First, a knowledge of any two of the quantities, G,
P&', or D, is sufhcient to predict the third. For example,
a calculation of D for the dilute ferromagnet which is
exact in the limit of a few missing sites (Izyumov,
1966) gives

D(x)/D(1) = 1—1.52(1—x)+ 8L(1—x)']. (6.21)

The corresponding approximation to G(x) is (using
P&'(x) x]

G(x) =x—1.52x(1—x)+ 8L(1—x) 'j, (6.22)

which gives the solid line labelled "rHEolv" in Fig. 4.
Alternately, one can use Monte Carlo values for P&'&

and G to calculate D numerically over the whole range of
concentrations from x. to 1. Values of D(x)/D(1) ob-
tained in this way for the site percolation model are
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FIG. 9. Monte Carlo calculations of conductance G(x} and
the normalized spin-stiifness coeKcient, Dlz)/D(1), for site
percolation on simple cubic networks. G was obtained directly,
and D calculated from Eq. (6.20}, using interpolated values of
P~'& from Pig. i. The straight line indicates the prediction of
Izyumov (1966} for D, derived. from concentrations near x= l.
The arrow indicates the percolation threshold.

e(E) ot: E'~', (6.23)

at low energies. These facts can be used to check some
hypotheses about the topology of the infinite cluster.

Oguchi (1969), for example, has speculated that the
effects of disorder on various properties of dilute mag-
netic systems, of which the Inost intriguing is the con-
centration-dependence of certain thermodynamic criti-

plotted in Fig. 9. The deviation of the numerical results
for D(x)/D(1) from the low-density theory is small for
all x&0.6. These calculated points provide the only
direct test of theories of the disordered magnetic
system (Harris and Leath, 1973) which attempt to go
beyond the low-density approximation.

Equation (6.20) can also be used to put an end to the
speculation (see Kirkpatrick, 1973a for a brief history)
that D(x) for the dilute ferromagnet might vanish at
some concentration x* significantly greater than x,.
P&'& (x) and G(x) for model 8 appear to have a common
threshold at x,=0.312, and quite different critical
behavior near x„which implies that x*=x,. The data
appear suKciently reliable to rule out any discrepancy
between x* and x, larger than 0.01. Finally, D&0
implies a density of spin excitations

cal exponents, can be accounted for by the statement
that the infinite cluster has an "effective dimen-
sionality" which decreases monotonically from 3 to 1
as x decreases from 1 to x,.

A simpler, but more concrete hypothesis is the
visualization of the infinite cluster at concentrations
near threshold as consisting of "percolation channels"
which are locally one dimensional (Eggarter and Cohen,
1970, 1971; Coheri, 1971; Zallen and Scher, 1971;
Eggarter, 1972). It has been argued (Fritzsche, 1973)
that such channels may dominate conduction in a wide
class of glassy semiconductors with activated con-
ductivities, and also that hopping conduction in
amorphous Si and Ge occurs mainly along the "chan-
nels" of least resistance (Pollak, 1972). If the channels
are regarded as literally one-dimensional, quantitative
predictions for transport are obtained by, e.g., esti-
mating the average length and cross section of a channel
LCohen, quoted in Eggarter (1972)], or performing
averages along a typical chain (Pollak, 1972) of con-
nected sites.

From Eq. (6.23) and an argument due to Kumar and
Harris (1973), one can show that neither of the hy-
potheses involving reduced dimensionality is correct.
Kumar and Harris have argued that an infinite cluster
consisting only of nonintersecting one- or two-dimen-
sional pieces has a vanishingly small probability of
occurrence. More generally, excitations for which
8~k' in a space of dimensionality d give rise to a
density of states in which

n(E) o: E&" '&". (6.24)

A density of states characteristic of lowered dimen-
sionality would also result if D=O, and E~k' or k4.

But in deriving (6.23) we found that, except perhaps at
x„ this does not occur. This rules out Oguchi's (1969)
hypothesis.

In fact, further reQection suggests that the channels
are too densely cross-linked to be regarded as even
locally one dimensional. In the lattice percolation
models one can study cross-linking by estimating the
density of short cycles—closed connected paths along
allowed bonds in which no bond is repeated —in the
infinite cluster. Since the infinite cluster is formed by
agglomeration of smaller clusters, scarcity of short
cycles in the infinite cluster requires that the isolated
clusters also lack cycles. But this can be checked by
explicit enumeration, and is not so: for 3D site percola-
tion, for example, among isolated clusters of 4 or 5
allowed sites those containing cycles constitute several
percent of the total at concentrations near x„and this
fraction does not appear to decrease as the cluster size
increases. A density of cycles this great or larger in the
infinite cluster implies that even at threshold cross links
occur every two or three sites.

However, Eq. (6.23) and the arguments of Kumar
and Harris (1973) and the above remain insufficient to
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determine the topology of the infinite cluster, an in-
triguing question.

G(x) ~ (x—x,)"—" (7.1)

the rather sharp distinction between the critical region
and the domain of simple theories, and the success of
the effective medium theory in describing transport
outside the critical region. In addition, the numerical
technique of modelling the effects of disorder via ap-
propriately constructed Monte Carlo resistor networks
can be applied, to a wide range of situations. It has
recently been used to predict the special problems that
can arise when very fine inhomogeneous wires are used
as interconnections in silicon chip microcircuitry
(Kirkpatrick and Mayadas, 1973) .

Other transport properties besides the conductivity
are affected by inhomogeneities (Herring, 1960),
and each may have its own characteristic behavior at the
percolation threshold. In a previous paper (Kirkpatrick,
1973a) we drew upon some calculations and experi-
ments by Juretschke et al. (1957) and Goldin and
Juretschke (1958) to show that excluded volume
effects can enhance the Hall coe%cient, R, by as much
as an order of magnitude, and argued that, near
threshold,

R '~P(x). (7.2)

In deriving Eq. (7.2) it was assumed that the percola-
tion channels were quasi-one dimensional, so that
according to the results of Sec. VI the detailed de-
pendence of R upon concentration in Eq. (7.2) may be
incorrect. However, the conclusion that R should di-
verge at the threshold remains probable in 3D.

Precisely this behavior is observed in several systems
exhibiting metal —semiconductor transitions. The con-
ductivity decreases gradually and R increases sharply as
functions of the external parameters affecting the
volume over which the system is metallic. Plots (Kirk-
patrick, 1972a) of E ' and 0 against, e.g. , the molar
concentration of metal in metal-NH3 solutions, or the
density of a supercritical metal vapor look like Figs. 2,
5, and 6. Quantitative agreement is achieved for the
high-density impurity conductor Na, WO3 (Lightsey,
1972), for which the conductivity is observed to obey
an (x—x,)"power law.

It also seems likely that the energy dependence of
the low-temperature mobility p(E) of the electrons
moving in the band tail associated with a random
potential can be related to G(x) (Kirkpatrick, 1971;
Adler et a/. , 1973;Fritzsche, 1973).The discussion which

VII. CONCLUSIONS

Several of the results of this work should be of use in
calculating transport properties of real inhomogeneous
systems. These include the general character of the
threshold in G:

led to Eq. (2.5) also implies the relationship

~(&) "GE~(&)j (7 3)

giving rise to a "soft mobility edge. "Adler et af (1.973)
have demonstrated that the use of Eq. (7.3) in the
usual semiconductor transport formulas gives a
conductivity which can be mistaken for the hopping
form ln r ~ T 'I' if the band tail is suKciently wide.

%e should note two effects which may modify or
invalidate Eq. (7.3) . First, if the band tail is not much
wider than kT, thermally assisted processes may mask
the temperature-independent part of p(E). This ap-
pears to be the case in two highly disordered crystalline
systems, Ce2SS (Cutler and Mott, 1969) and EuS
(Thompson et al. , 1972), for which transport has been
analyzed in terms of a band tail. The band tails in these
materials extend over about 0.02 eV. Second, in
relating transport in an inhomogeneous medium to the
resistor network problem we tacitly assumed that all
conduction electrons see the same medium. Thus,
strictly speaking, Eq. (7.3) applies to a metallic
material with its Fermi energy at K It may be modified
when some of the electrons contributing to screening
and to the local fields around obstacles are more or less
confined than those with energy K

Finally, the numerical results presented showed that
the effective medium theory can be extremely accurate,
and that the critical region in which it fails covers only a
modest range of concentrations. This conclusion has
been underscored by Stinchcombe's recent exact solu-
tion of bond percolation resistor network models
defined on branching networks (Stinchcombe, 1973).
He finds a critical region narrower than ours, outside of
which G(p) is quite linear.

The effective medium theory is easily generalized to
treat situations in which the conductivity is a tensor
quantity everywhere, as must occur in the presence of a
magnetic field, or for compacts of noncubic materials.
Cohen and Jortner (1973) have recently derived
expressions for the Hall coe%cient of a two-phase
system by this procedure, and have applied them to
several liquid semiconducting systems. Their analysis
can be extended to predict the consequences of in-
homogeneities on other transport coe%cients, e.g. ,
thermopow'er, or magnetoresistance. Thus it appears to
be possible to use measurements of such related trans-
port properties to separate out inhomogeneity effects
from the results of disorder-induced phase incoherence
in electronic wave functions which Mott and Davis
(1971) have stressed. Various derivatives of transport
properties have recently been used by LeLieur (1973)
to make such a separation in metal —NH3 solutions.
He observes that the decrease in. a. under pressure is
incompatible with a uniform picture of the electronic
states, yet can be explained by the fact that the metallic
regions in these materials are more compressible than
the insulating regions.
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