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A new formulation is presented for the angular distribution and the polarization of light excited by atomic
and electronic co11isions and modulated in time by the action of internal and external fields. The
formulation disentangles geometrical and dynamical effects and stresses the extraction of data on the
alignment and orientation of radiating atoms from observations of the emitted light. The treatment is set in
the context of recent experimental and theoretical literature and points to new avenues of research.
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I. INTRODUCTION

Excitation of an atom or molecule by collision in a'

gas, or by passage through a foil, leaves it generally in
an anisotropic state. Light emitted in the subsequent
decay manifests this anisotropy through its angular
distribution and polarization. Measurements of the
angular distribution and/or polarization of emitted
light have been used since the '20s (S26, SA27) to
determine the anisotropy of the source atom or mole-
cule. The recent emphasis on this type of analysis
(PS58, K69, MJ71), and the introduction of techniques
for observing variations of the anisotropy during the
light emission (HN65, A70, BH71, BS71, LDAF71)
prompt us to review the theoretical connection between
the radiated pattern and the relevant source
parameters.

These parameters consist normally of an orienta-
tioe vector proportional to the average angular mo-
mentum of the source atom, (J), and of an alt'gvtvnevtt
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tensor whose components are proportional to the
mean values of quadratic expressions in J„J~,J„such
as (f,'-f ').

The theory will be articulated from an operational
point of view to show, in the first place, just what
characteristics of the radiating atoms are determined
by observing the intensity and the polarization of the
light emitted in various directions. In a second step
the dynamical aspects of the emission process will
be disentangled from the geometrical aspects. That is,
we will show how the emission averaged over all direc-
tions depends on dynamical factors such as the line
strength, while the anisotropy and polarization depend
only on the alignment and orientation of the excited
atoms. Then it will be shown how the number of
independent nonzero alignment and orientation param-
eters is often restricted by the geometry of the exciting
collision. Finally, we shall develop the theory of the
time dependence of alignment and orientation in the
interval between excitation and emission. It will
emerge that the action, of external 6elds duping this
interval may perturb the alignment and orientation
of excited atoms to the extent of interlinking them
with other parameters such as octupole or hexadecapole
moments induced by the collision. Internal fields, on
the other hand, yield reversible exchanges of orienta-
tion and alignment among orbits and electronic or
nuclear spins. We shall thus endeavor to present a
unified, geometrical picture of the phenomena, il-
lustrated by experimental results and pointing to the
limits of current advances and to opportunities for
developing new theories and experimental 'designs.
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In our problem, as in many others involving the
angular distribution of reaction products, one faces
considerable difhculty in directing attention to the
main geometrical observable features of the phe-
nomenon without resorting to unfamiliar formalisms.
Most current treatments still proceed by summing or
averaging explicitly over all unobserved magnetic
quantum numbers; this method is elementary but,
laborious and furthermore fails to interpret the simplic-
ity of the results. Compact formulations of the theory
have existed since the early 1950's but they rely on
somewhat abstract formulations using density matrices
and extensive applications of Racah algebra (see, e.g. ,
Chap. 19 of FR59, Sec. 3 of FS68). In this article
we strive for a transparent formulation without
explicit use of density matrices; to this end we shall use
a minimum of Wigner —Racah algebra, introducing it
by qualitative discussion where it becomes essential.

The connection between the anisotropy of the radia-
tion source and the collision process from which it
arises will be illustrated by outlining the theory of
alignment by electron collision. Particular mention
will be made of the striking loss of alignment which
often occurs over a narrow energy band above thresh-
old.

In the interest of brevity we are excluding from
our subject several of its interesting aspects. Among
these are the important inhuence of successive photon
emissions by the same atom and the effects of magnetic
resonance upon light emission. We also deal only with
light emitted in electric dipole processes even though
extension to other processes would be straightforward.
This paper refers to "atoms" as the sources of light
but is meant to apply, in essence, also to radiation
by molecules and, in fact, by nuclei as well.

The first part of this article deals with light emitted
in transitions between two sharply defined energy
levels, that is, with light observed by high resolving
power spectroscopy. Sharp definition of the energy
levels requires, of course, that the time of emission
be determined with correspondingly low resolution.
The second part will consider the phenomena that
occur, e.g., under the conditions of beam foil spectros-
copy (B67) or when photons are detected in delayed
coincidence with a colliding particle (M69, A70,
IR71, McJ71, MJ71). Sharper definition of the time
interval between a collision and the following light
emission implies here a lower spectral resolution in
determining the initial energy of the radiating atom.
The observed light originates then typically from a
nonstationary state and is modulated in time as rep-
resented by the coherent superposition of excited
stationary states with different, unresolved energy
eigenvalues. Our formulation will yield directly the
modulation of the several alignment and orientation
parameters.

Historically, the development of this subject has

proceeded along two converging lines. On the one
hand, the emission of light from nonstationary states
has been extensively studied in connection with the
Hanle effect (H23, Br33), optical pumping (H72),
and level crossing experiments. Since the states are
usually excited by optical radiation, the early theoreti-
cal developments (Br33, F61) treated the entire process
of absorption and emission from the point of view of
the quantum theory of radiation without reference to
orientation or alignment of the atoms. On the other
hand, measurements of static properties of radiation
fields, such as their polarization and angular distribution
have been used mainly to detect or verify simple source
properties of collision excited atoms (S26, SA27, PS58).

Later experiments were aimed at demonstrating
modulated decays following collision excitation. A
direct observation of the modulation following excita-
tion by a pulsed electron beam was made by Hadeishi
and Nierenberg (HN65), but equivalent results had
been obtained previously by Pebay-Peyroula and by
Aleksandrov through modulation of the electron beam
(PP63, A64) and by Series and co-workers through
optical excitation (CS64, DKW64). Determination of
source parameters was not emphasized in these experi-
ments. Correspondingly, the theory of Franken (F61)
and Kelly (K66) dealt mainly with the modulation
aspects of impulsively excited line radiation.

The theory of light modulation was concerned
initially, in this and other work (e.g. , DS61, S67),
with atoms in magnetic fields. With the advent of
beam foil spectroscopy and coincidence techniques
(IR71, McJ71) interest focused on emission from
atoms in field-free regions and on the determination
of source parameters (M69, A70, BH71, IR71,
LD AF71, McJ71, MJ71) . The theory related to such
measurements essentially combines the treatment of
modulated decays with the theory of angular correla-
tions, and closely resembles the theory of perturbed
angular correlations of nuclear physics (KMS64,
FS68). Owing to the known dipole nature of most
atomic transitions and to the simple vector coupling
nature of fine and hyperfine interactions, the extrac-
tion of source parameters from data becomes an
exercise in angular momentum recoupling, and can
be carried out in a rather complete fashion. In addition,
atoms respond to external magnetic fields in a way
that provides additional information on the excited
state populations.

A time dependence of the anisotropy and polarization
of the emitted light occurs also when the source atoms
interact appreciably with one another or with other
atoms during the emission process. Typically the
polarization of light emitted by a suKciently dense
medium following a pulsed excitation relaxes exponen-
tially, whether or not it is also modulated by the
mechanics of single atoms. The relaxation effects have
been reviewed in (H72) and are not included in the
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present article which deals only with emission by
isolated atoms, i.e., by gases in the low-pressure limit.
We note, however, that the treatment of relaxation
centers, like ours, on the orientation and alignment of
the source atoms —or on the equivalent dipole and
quadrupole moments —because such tensorial quantities
relax independently of one another in isotropic media.
In particular, Barrat (859) showed. that the linear
polarization of light emitted by an optically pumped
dense gas decays faster than the total light intensity;
the intensity depends, of course, on scalar properties
of the source atoms while the polarization depends on
their tensor alignment. The difference of relaxation
rates of different tensorial parameters has been empha-
sized in more recent studies (DP65, 065, HS67) which
represent the excited state of the source atoms by a
density matrix expanded into irreducible tensor com-
ponents (F57).

Our review concentrates on recent developments
and emphasizes their potential for measuring the
source parameters of collision excited atoms. Ac-
cordingly, we do not review the quantum theory of
radiation from nonstationary states, but use its
results. We stress instead the extraction of source
parameters from data and their interpretation in a
more direct manner than has been done previously.

C= e toy;4/2~ceR2 (2)

incorporates the light frequency ~f;, the detector's
distance from the source atom 8, and the other factors
required to express I as a power Qux.

Equation (1) warrants some discussion. Its main
element is the average value of a physical quantity,
that is, the mean or quantum mechanical expectation
value of that quantity. The average pertains to the
excited state generated. by the collision. The notation
allows this state to be represented by the coherent

II. LIGHT EMISSION IN THE DECAY OF A
STATIONARY STATE

The intensity J measured by an ideal detector
sensitive to light with the polarization vector 4 is
proportional to P,()(f ~

e~ r ~i) ~'), where r is the
transition dipole operator of the atom, P, indicates
summation over all values of the final state magnetic
quantum number tmf, and ( ) indicates averaging
over the initial m;. The average is weighted by excita-
tion amplitudes whose values are regarded here as
unknown parameters, to be determined by measuring
the light intensity I. Circular and elliptical polariza-
tions are represented by complex vectors C. We express
I more precisely in the form

~=C 2-f ((~'
I

&.r'
I f) (f I

g'r
I e)), (1)

where one of the r and one of the i have been primed
to distinguish the integration variables and quantum
numbers of the two matrix elements. The factor

superposition of states with different magnetic quantum
numbers, m;, m . Circumstances will be pointed out
later in which this superposition becomes essential,
but actually we need not concern ourselves here with
it or, more generally, with the calculation of the average
starting from collision theory. On the contrary, this
paper concentrates on the averages themselves. That
is, we deal with their determination from observa-
tional data, with the restrictions imposed on their
values by experimental symmetries, and with theoreti-
cal relations between the averages of diferent physical
variables.

As an incidental remark, we also note that the
exponential decay of light intensity following the
collision has been omitted from Eq. (1) for simplicity.
This decay should be integrated over if the time
resolution of the experiment were much longer than
the mean life of the excitation. Similarly, Eq. (1)
pertains to emission by a single excited atom and should
be multiplied by an appropriate factor, including,
e.g. , a collision cross section, whenever it is to rep-
resent the light received from a macroscopic source.

The expression (1) is to be transformed so as to
separate its dependence on the direction and polariza-
tion response of the detector from the anisotropy of
the excited state expressed by the averaging
((i'

~

~ ~ ~ ~i)). The transformation consists of three
steps of increasing complexity: (a) taking explicit
advantage of the isotropy that results from the summa-
tion over the unob'served 6nal states, (b) disentangling
the dependence of (1) on the direction of (8, e")
from its dependence on (r, r') by recoupling these
vectors, and (c) applying the Wigner —Eckart theorem
to replace the dependence on (r, r') by the more
familiar expressions of alignment and orientation as
mean values of angular momentum operators.

(a) The sum over projections onto the several
degenerate states of the final energy level, indicated
by p, ~ f) (f ~, constitutes a single projection operator
Pf(r, r) which is a scalar, i.e., is invariant under
joint rotation of r and r. With this notation, Eq. (1)
takes the form

I=C((i'
~

g r'PI(r', r) e* r
~
i) ).

(b) The product of scalar products e r'e* r can
be recoupled into the form Q~Q&"&(g, e~) Rt"'(r', r),
such that each factor Q&"& can be pulled out of the
matrix element (3). Here t't represents the degree of
an irreducible tensor, that is, k=o indicates a scalar,
k=1 a vector, and k=2 a quadrupole moment. The
recoupling can be performed in our problem by ele-
mentary vector algebra, without resorting to more
general procedures, since the polarization vector ~ is
restricted to the plane perpendicular to the direction
of observation. We take this direction as the )axis'
of a "detector frame" of coordinates (P, g, t ). We also
take the $ axis of this frame along the major axis of
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the general elliptical polarization selected by the
detector and represented by ~. In this frame we can
then set 8—= (cos p, i sin p, 0), whereby p= 0 represents
selection of linear polarization and P=xvr selection of
right circular polarization. I

When the polarization
analyzer consists of a Nicol prism, . or an analogous
linear polarization filter, and of a ~-wavelength plate,
P is the angle between optical axes of Nicol and plate,
see, e.g., (F49) .$ These definitions yield

8 r'c* r= f$ cos' p+g'q sin' p i ($'q—q'$) s—in p cos p.

The last term of Eq. (4), which peaks at P=&i4x
and therefore represents the dependence of I on circular
polarization, is proportional to the f component of
the vector product r'xr. The other terms can be
rearranged so as to separate a contribution that does
not depend on the polarization parameter p as well as
contributions that depend separately on scalar and
quadrupole moment combination of r' and r. This
rearrangement transforms Eq. (4) into'

& r'&'r=-'L(A+A)+(A —A) c» 2p

i ($'q —q'$) s—in 2p]
', r' r —,'(3.t'g——r' r)—+-', ($'f q'g) c—os 2P

+-',i 'r'x r f sin. 2p. (5)

Substituting this expression into (3) we obtain

I=C-,'I ((i'
I

r' r Pr(r', r) I i))
——:((i'I(3f'f r' r)—Pf(r', r) li) )

+l((i' I(&'& A)P—f(r' r)
I i) ) cos 2P

+2 ((i'
I
i '(r' x r) t Pf(r', r) I i) ) sin 2p}. (6)

The first term in the braces of Eq. (6) depends on
the matrix elements of a scalar operator and there-
fore has the same value for all degenerate states

I i);
in fact it coincides with the Condon —Shortley "line
strength" parameter to within a factor e'(2j;+&).
This term represents the average emission over all
directions and polarizations and will be called S. The
second term depends on the direction f of the detector
and represents the anisotropy of emission, still averaged
over the polarization. The third and fourth terms
represent the anisotropy with linear and with circular
polarization, respectively.

Each term of Eq. (6) is proportional to the mean
value of an operator of the irreducible tensor type
which may be indicated by a two-index symbol S'~&~.

Thus we shall indicate by S+0 the scalar operator
r' rP~ with the mean value (S+o)=S. Similarly,
i 'r'xr fPy is the f component S"io of a vector
operator, whose index k=1 indicates "vector" while
q=0 indicates "invariance under rotations about the
f axis." Further, (3t't r' r)Pr S"—'o is the axially——

symmetric component of a quadrupole moment tensor
and ($'$ g'g—)P~ S"—'—2+ is another component of the
same tensor that transforms like cos 2y under rotations

. about f
Real tensor components S&»,~——Ei„~LS'»,&S&»,),

with q&0, are used in this article in preference to
the complex components S~~', commonly used in
analytical work. Here N is a normalization factor
which we adjust to simplify the final expressions even
though this entails nonunitary transformation matrices
for coordinate rotations. The definitions of S"'o and
S"'2+ given above imply 1V2Q/1V22+ ——6'I'. In the follow-
ing we shall express the matrix elements and the mean
values of S~'&o, S~"0, and S~"2+ in terms of the matrices
and mean values of corresponding tensor components
that are functions of the angular momentum operator

(c) The mean values of the squared-dipole operators
in expression (6) depend on the one hand on the
alignment and orientation of the excited state generated
by the collision and on the other hand on the dynamics
of the dipole transition and, through it, on char-
acteristics of the final state. These two dependences
will be sorted out, using the fact that the mean values
of any two tensorial operators S'~'~ and T'~'~ with the
same indices k and q depend equally on the alignment
and orientation of the excited atom. Specifically the
Wigner —Kckart theorem states that. the ratio of
matrix elements (i'

I
S&»,

I i) and (i'
I

T&»~ I i) is
independent of the magnetic quantum numbers m
and m;; indeed this ratio equals the ratio of "reduced
matrix elements" (i II

S~»
II i) and (i I I

T~»
II i), each

of which is wholly independent of m, m;, and of q.
the (unknown) alignment and orientation of the
state i determine what averaging should be taken over
m; and m, '; since this averaging is the same for the
matrices of any two S~~', and T~~', we can write

((' I
s~ ~, I'))=((i I

T~ ~,

x(i II
s&»

II i)/(ill T&»
II i). (7)

The structure of Eq. (7) is designed to sort out the
anisotropy of the excited atom from the dynamics of
light emission. On its left-hand side the operators
S'~', will be the functions of r, r' and Pf whose averages
must be entered in Eq. (6); these averages depend
both on the state of the excited atom and on
the emission process. On the right-hand side we
shall enter operators T&~&~ constructed as products of
the angular momentum components Jg, J„J~,because
each of these components is a constant of motion of
an isolated atom, such that their averages de-
pend only on the state of the excited atom and not
on the dynamics of light emission. The averages
((s'

I
T~»,

I
i) ) in Eq. (7) will then depend on align-

ment and orientation only, while the ratios of reduced
matrix elements will depend on the dynamics of
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dipole transitions irrespective of alignment or orienta-
tion. Equation (7) is particularly convenient because
it allows us considerable freedom in de6ning the
operators S'~~, and T'~', insofar as normalization
factors cancel out in this equation; normalization
factors matter only in the application of coordinate
transformations.

Notice now that the dynamics of light emission
expresses itself through the dipole transition matrix
elements (f I

r
I i), and that the matrices of all tensors

S'~&, in our problem are expressed in terms of the
same (f I

r li). The tensors 5'"', with different k
and q differ only in the coupling of the vectors r'
and r to form a scalar, a vector, or a tensor. Hence
the dependence of reduced matrix elements on k
involves only the coupling of vector operators, that
is, geometrical considerations, and can be worked out
by Racah algebra in terms of 6j coefFicients.

The relevant tensorial considerations can be sketched
as follows. The matrix element (f I

r
I i) of the operator

r (which is a vector; i.e., an irreducible tensor with
k=1) is constructed with wave functions of angular
momenta jf and j;; we indicate this tensorial structure
by the 3-digit symbol (jfj,)1 which may be read jf a"nd

j; coupled to k= i."The construction of the matrix of a
tensor S'~' of degree k, as the product of r' and r with
the matrices (i'

I
r'

I f) and (f I
r

I i), is then indicated
by the composite symbol $(j,j f)1(Z'&j;)1)&+. On the
other hand, we want to obtain the matrix of S&~'

between states (i'
I and

I i) after coupling the final
states into the scalar I'f (with k=0); this second
construct is indicated by the composite symbol

I (j j;)k( jtjf) 0]&+. The transformation from the first
to the second of these alternative tensorial constructs
is indicated in Racah algebra by a "recuupling co-
eKcient" which is an element of an orthogonal trans-
formation matrix and is indicated by

((j'j')k(ifJf)o l(j'it)1( j j')1)'".
The reduced matrix element (i II

S'"'
ll i) depends on

k exclusively through this recoupling coefficient,
whose value is usually expressed in terms of the
standard 6j-coe@cient

j, j, k

LThe relevant expression is given by Eq. (15.15) of
(FR59) or Eq. (7.1.1) of (E57).] The same con-
siderations apply to the reduced matrix elements
(i II

T&"& lli), except that the tensors T'~' are con-
structed with the vector operators J whose matrices
(i"

I J I i) are diagonal in the quantum number j;.
Therefore j; replaces jf in the recoupling coe@cient
applicable to T&~&. Thus one obtains the dependence
on k of the ratio of matrices of S&~& and T'~& in the

form

(i II
s'"'

ll i)

( j, j,
(—1)"-~'I

('ll s«i II')
( II

2'"'
ll )

'

= kt»(j, ,j,) (ill s&» Ili)/(ill Ti» Ili). (8)
The dependence of this ratio on the quantum number

jf of the final state reQects the loss of angular and
polarization dependence which results from summing
over nzf. The values of the 6j coefFIcients are tabulated
in (RBMW59). The phase normalization factor
(—1)" '~ is required for (8) to hold identically for
k= 0.

In the particular case of k=0, that is, for scalar
operators, inspection of Eq. (6) identifies the scalar
S~'0 as the operator r' ~ rI'f, whose nonzero matrix
elements have been called S and are independent of
m;. The corresponding scalar T'»o constructed with J is
J', whose nonzero matrix elements equal j,( j;+1) for
all states

I
i) . Hence we can write

(i II
s"'

ll i)/(i II
2'»

ll i) = s/j;(j'+1) (9)

and substitute this ratio in (8) .
In the final application to Eq. (6) we replace each

component of the vectors r' or r by the corresponding
component of J and I'I by 1, compensating for this
substitution by the factor kt~'S/j;( j;+1). Thus we
obtain

I=-:CSI1--'k (j; jt) L(('13Jt'—J' I'))/j. (J'+1)]
+oat@(j;,j f) L((i'

I Jp J„'
I i) )/j;( j,—+1)]cos 2p

+-,'ko&( j;,j I) [((i' I Jt I i) )/j;( j;+1)]sin 2(I, (10)

where the formula i 'J& J=J has been used. The
second term in the braces shows that the anisotropy
of emission is proportional to the alignment of the
emitter along the direction of emission. The third
and fourth terms show the linear and circular polariza-
tion to be proportional to the alignment within the
plane of polarization ($, q) and to the component of
the orientation (J) in the direction of emission, re-
spectively.

Experimental analysis of the variation of light
intensity as a function of the detector's direction t'

determines the dependence of the alignment parameter
((i'

I
3Jtm —J'

I i) ) on t and thus reconstructs the
direction and magnitude of the axes of the alignment
teesor. The same result is achieved, often with higher
sensitivity, by determining ((i I

Jtm —J„'
I i) ) through

measurements of the intensity variation that accom-
panies the rotation of a linear polarization analyzer,
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that is, the rotation of the $ axis, for two 6xed directions

t j.IIeasuremeet of the circular Polarization observed as
a function of the direction f determines instead the
various components of the orientation iiector ((i'

~ J ~
i) ).

To simplify the notation we introduce in the detector
frame two alignment parameters

and one orientation parameter

(13)

The most familiar type of polarization experiment
deals with light excited by collisions that produce only
alignment along a single axis 9, as described in the
following paragraphs. Light is observed at 90', that
is, in a direction f perpendicular to.z, with a linear
polarization filter, that is, setting P=O. One sets the
f axis alternately parallel and perpendicular to z
thus obtaining two intensity measurements I} ~

and
I& and defines the degree of polarization as P=
(I[[ IJ )/(I~ ~+Ii) . In the notation of Eq. (14), I~~
di6'ebs from Ii by sign reversal of A2+~". This gives

I()—I& 3hi i (j;,j f) Ai+ '"
P=

I((+Ii 2—l'ii" ( j, jr)AO~" '

with reference to $ parallel to z.

(15)

II.1. Alignment and Orientation by Collision

The radiator's anisotropy is represented in Eq. (14)
by components of the alignment tensor and of the
orientation vector in the detector frame ($, g, f).
The collision process determines, of course, the com-
ponents of this tensor and vector in a "collision frame"
(x, y, z), whose z axis usually coincides with the direc-
tion of an incident particle beam. Components of
the alignment tensor in this frame will be denoted by
A col

In the simplest cases (e.g. , an unpolarized particle
beam incident on gas molecules without detection
of scattered or recoil particles, or an ion beam emerging
perpendicularly from a foil surface) the experimental
arrangement identifies only this 9 axis and has
cylindrical symmetry about it. Under these circum-
stances, the alignment tensor has a single nonzero
component, namely Ao . Only in this familiar, but
simple, case—or under equivalent circumstances —does
symmetry require the excited state to.be representable
as the incoherent superposition of pure states

whereby Eq. (10) takes the form

I= iSCS{1—xih"' ( j;,jr) Ao "+s3hi'& ( j,, jr) Ai+ "cos 2P

+ 32hoi ( j;,jf)00~" sin 2p}. (14)

with diferent magnetic quantum numbers m;. Here we
have

Ao"' ——P,.{ 3m, '—j,(j,+1)]a(m~)/j, (j,+1)g,o(m;),

(16)

where 0(m;) indicates the partial cross section for
excitation of the state

~
j;m, ) .

From the value of Ao"' we obtain the parameters
Ao "and A2+ ' in the detector frame by a coordinate
transformation. LOne must allow here for our non-
standard normalization of tensor components. The
appropriate transformation formulas can be obtained
by transforming separately each Cartesian component
of J in the expression of A.]The result is

A~d" ——Ao"'-', (3cos' 8—1),

Ai ~"——Ao"'-', sin'8 cos 2f, (17)

where cos 8=) 9 and tP is the angle between the
detector's axis $ and the plane (fz). In this same case
the orientatiou vector ((i

~ J ~
i) ) vanishes altogether,

because it is an axial vector (pseudovector) and no
such quantity can be identi6ed in a frame characterized,
by a single incidence vector z, unless the incident
particles have nonzero helicity.

Equation (17) contains two well-known results.
The source anisotropy has no eRect upon the
light intensity emitted at the "magic angle" 8=
arc cos (-', )"'=54'44', where Ao~" vanishes. That is,
intensity measurements in this direction are inde-
pendent of alignment. On the other hand, the polariza-
tion vanishes in the forward or backward directions,
8=0' or 180', under the condition of symmetry about
the collision axis, irrespective of the source alignment.

The collision frame loses its axial symmetry when
the scattering direction (or a recoil direction) z' is
observed in coincidence with the light emission. In
beam foil excitation, the state of an atom emerging
from the foil depends presumably on its interaction
with the surface layers of the foil and hence on the
orientation of this surface; therefore one can spoil
the axial symmetry by tilting the normal to the foil,
z', away from the beam axis 8.

When an axis z'~z is thus singled out we may lay
the x axis in the plane (zz') and the collision identifies
the axial vector z)&z' parallel to j. The orientation
parameter Oi ' ' ~ &(i'

~
J„~i) ) is now generally uoesero

and there occur two additional nonzero alignment
components, namely, A&+"'~ ((i'

~
J,'—J„'

~
i) ) and

Ai~"' ——&(i'
~
J,J,+J,J

~ i))/j, (j,+1). (It is just the
occurrence of such nonzero components which implies
coherent superposition of states with different m; values. )
The residual symmetry still causes all other components
of orientation and alignment to vanish. A frame trans-
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formula (14) gives then

Oo "——Oi "'sin 8sing, I=CS sin'8P(1+cos 2')], (19)
Aodet —Aoeoll (3 cos2 8 1)+Ai eo13 sin 28 cos Q

+A2+"'32sin' 8 cos 2@,

At "——A "'2 sin'8cos 2P+Ai ee'(sin 8cos P sin 2'
+sin 8 cos 8 sin P cos 2$}

+A2~"' I a (1+ cos' 8) cos 2P cos 2zP

—cos 8 sin 2Q sin 2' I, (18)

where $ is the angle between the planes (zx) [i.e.,
(zz')] and (zf). That is, 8 and P are the polar co-
ordinates of the light detector while zP is the third
Euler angle, required to identify the orientation of a
linear polarization analyzer. Other components of
0 '~ and 4 ' are not given here, being irrelevant to
light observations.

The several components of the orientation vector
and alignment tensor are independent parameters in

the sense that the value of any one of them may be
changed by a change of the excitation process while

the others remain fixed. There are, however, upper
limits to the sum of their squares. Such an upper
limit is reached for example for the pure state identified

in a given frame by m;=j, . In this event we have

(i ( J,
~
i) =j; and (i

~

3J,2—J'
~ i) =j,(2j,—1) but all

other components of 0"' and of A"' vanish. One can
also see directly that full circular polarization would

imply total absence of any linear polarization, and
vice versa.

For purposes of illustration we consider some simple
cases which have been studied experimentally and
treated successfully by earlier procedures, reformulat-

ing their treatment in the language of this article.
In one example, the scattered particle is detected
after collision in coincidence with the emitted photon,
but just in the direction of incidence, i.e., at 0' de-

Rection. This arrangement was suggested by Imhoff
and Read (IR71) to test detailed theoretical predic-
tions of (PS58) and was then successfully applied
(KAR72). The arrangement implies not only that
the P. axis coincides with P., thus restoring axial sym-

metry, but also that the collision imparts to the atom
no angular momentum component parallel to the i
axis (except for possible spin exchange). If the target
atom was initially in a 'S state, without any angular
momentum, the collision will then leave it in a state
with zzt;= 0 and, therefore, with (3J.'—J')= —j,( j;+1)
and Ao"'= —1. Light emission by decay to any final

state with jj——0, which occurs by a dipole process
when j;=1, has then full linear polarization according
to (PS58). In the present formulation the same result
is retrieved by settin. g Ao-' ———1 in Eq. (17), j,=1
and jf——0 in (8) which yields h"&(1, 0) = —2, and
P=0 for detection of linear polarization. The intensity

which is the result expected for a linear polarization
detector placed along f, i.e., at an angle 8 with respect
to a radiating dipole parallel to z, and with its $ axis
at an angle zP with respect to the (ls) plane. The
degree of polarization I' given by Eq. (15) reduces
now to cos 2zP, and more specifically to 1 when f lies
in the (f's) plane, i.e., when zP=O, as assumed by the
definition of I'.

Another application of angular momentum and
other symmetry considerations is afforded by measure-
ments of Lyman-n excitation by charge transfer
collision of protons with helium. The experiment by
McKnight and Jaecks (JCMc70, McJ71) was designed
to measure a coincidence rate between photons and
scattered H atoms, which would be proportional to
the excitation cross section and independent of un-

known parameters such as the polarization of the
emitted light. The design utilized the invariance of
the collision process under reRection in the scattering
plane, (ss') —= (xs). Excitation of the p„state, odd
under this reRection, is then forbidden provided the
He+ ion is left in its even-parity ground state. Since
the excluded p„state has J„=O, the p state which is
actually excited must have J„'=1. This circumstance
was exploit'ed by placing the photon counter, i.e.,
the l axis of the detector frame, along the y axis of
the collision frame. Accordingly we substitute in

Eq. (11) (Jrt)=J„t=1 and J'=j,(j,+1)=2 and thus
obtain Ate" ——-'. Recalling that h&'&= —2 for a P—+s

optical transition and averaging Eq. (14) over P, as
appropriate to a counter insensitive to polarization, we

have finally

I=CS-,', (2o)

which is indeed independent of unknown parameters.

II.2. Excitation by Electron Impact

Basic experiments on light excited by electron im-

pact (S26, SA27) and their theoretical framework

(027) date from the mid-1920's. Theory provides
clear predictions both for high collision energies and
for energies very close to threshold. Interpolation
between the results valid in the two limits seems

plausible but the resulting prediction was soon found
erroneous. %e outline this development to illustrate
both the power and the limitations of simple geometrical
and dynamical 'considerations.

At high collision energies the Born approximation,
which treats a collision as an impulsive transfer of
momentum q by the incident electron, prevails; this
transfer provides for target excitation. The vector q,
which can be determined for each collision by observing
the direction and energy of the scattered electron, is.
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FIG. 1. Percent linear polarization of
mercury light observed at 90' from the
direction of incidence (SA27). Note the
sign reversal of the polarization at 80
eV and its disappearance near threshold.
The energy scale Pin leVl "c7 is non-
linear and the energy resolution not very
high.
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As+"' ———s[1—(0 i)']. (21)

Normally, the scattering direction remains un-
detected and an average must be taken over the direc-
tion j.Recalling that Aj+"' and A2+"' are proportional
to (JQ,+J,J,) and (J,'—J„'), respectively, and that
the orientation of the x and j' axes rotates about P.

in the course of averaging over q, we see that A~+"'
and A2+'."average out. We are thus left, as expected,
with a single nonzero parameter, namely,

Ao-'= —s[3((i.e) ')—13.

A 6nal step of the theory utilizes energy-momentum
considerations in the collision (I71) to predict that
q is predominantly transverse to i at very high impact
energies and parallel to 9 at lower energies. The re-
sulting sage reversal of Ao"' occurs as the energy
decreases through a range of the order of ten times
the threshold energy (Be33) . In the high-energy limit
we have ((j s)')—+0 and As'"—+-'

In the opposite, low-energy limit, i.e., just above
threshold, the electron must be scattered inelastically
into an s state; otherwise it would have to escape by
tunneling through a centrifugal potential barrier.
Hence the departing electron does not weigh on the
angular momentum balance, apart from spin exchange
which is often disregarded. Any nonzero alignment of
the excited atom reQects then only the contribution
of the incident electron, w'hose orbital momentum
component vanishes in the direction of incidence.
Setting thus (J, )=0, i.e., disregardilg spaz exchange,

the only collision parameter on which alignment and
orientation can depend. Since q is a polar vector, this
implies that no orieetation can occur in this approxima-
tion. Further, symmetry about the direction of q
implies that the only nonzero component of the
alignment tensor, in a frame with axis q, is Ao'=
((i

~
3(J q)' —J'

~ i))/j;( j;+1).Finally, the transfer
of momentum g cannot impart to the target any
nonzero value of J j, from which follows As&= —1.
Transformation to the collision frame, with 8 in the
direction of impact and x in the plane of scattering,
then yields

As-' ———-'[3(j s)'—1$
ccl 1~.,"[1 (~.,-)2jl/2

we have
(As-') 1h-.h = —1. (23)
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FIG. 2. Same as Fig. 1 for the 3889-A. line of helium (LMS7).
The scale is linear and greatly expanded with respect to Fig. 1.
Note the low minimum and the incipient rise toward the threshold
which lies at 23 eV.

Remarkably, this value coincides with the low-
energy limit of Eq. (22), since q must be parallel to
i at threshold. This coincidence may lead to the surmise
that Ao"' should interpolate smoothly, and that the
Born approximation result might hold uninter-
ruptedly —if only approximately —down to threshold.
Early measurements of the dependence of light polariza-
tion upon the velocity of incident electrons (SA27)
disproved this surmise. As shown in Fig. 1, the polariza-
tion seems to disappear when the incident energy drops
to within a few electron volts of threshold.

This remarkable drop of polarization near threshold,
in apparent disagreement with 3, clearcut theoretical
prediction, was studied in increasing detail between
1955 and 1970 through a sequence of experiments,
mostly on helium (LM57, McF64, HK67, McF67,
SFG67). Actually, none of these experiments could
measure the degree of light polarization at energies
sufficiently close to threshold to allow unequivocal
application of the argument leading to Eq. (23).
Note that since the scattered electron leaves the atom
in an excited, state with a radius of ~n' atomic units
(e is the principal quantum number of the state less
its quantum defect and e' its reciprocal binding energy
in units of 13.6 eV), the centrifugal barrier which
hinders its escape with orbital quantum number /&0
lies at radial distances larger than e' and peaks at
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Fn. 3. Polarization of the calcium
4227-L resonance line ('P~'—+'50) as a
function of the energy of exciting elec-
trons (EG73). Note the rapid drop from
the maximum at threshold and the un-
smoothness in the range of expected, but
unresolved, resonances.
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energies smaller than l(l+1) jzt4 a.u. Equation (23)
may then apply only within a fraction of 1 eV above
threshold. The experimental evidence provided, e.g.,
by the left-hand portion of the curve in Fig. 2, is thus
not inconsistent with Eq. (23). Similar evidence is
found in the recent data of (OHK72) on inercury.
In' other instances, particularly in the excitation of
the resonance lines of the alkalis and alkaline earths
(HKK65, EG72, EG73), the observed polarization
tends rather clearly to the appropriate threshold value,
as shown in Fig. 3.

Assuming then that Eq. (23) does hold at threshold,
the experimental data indicate that Ao"' drops in
many cases to a very low value shortly above threshold,
returning then to its Born approximation value only
at higher energies.

'

This drop has not been explained
in any detail but is probably related to the occurrence
of conspicuous resonances in inelastic electron —atom
cross sections near threshold. At resonance the colliding
electron and the one being excited in the atom remain
strongly correlated for a time interval sufhcient to
allow extensive exchange of angular momentum between
them, with a resulting decrease of Ao"'. The necessary
time interval is of the order of the reciprocal optical
frequency for transitions between excited states, i.e.,

&10 " haec. Various, albeit fragmentary, evidence on
hand points to the conclusion that such extensive
correlations occur normally in the process of excitation
by electron impact and persist in the spectrum over a
range &10 eV above threshold.

Indeed careful extensive studies of optical excitation
by highly monochromatic electrons might prove very
effective in establishing and re6ning our knowledge
of these correlations. The occurrence of resonances
near threshold, superimposed on a sriiooth dependence
of polarization on impact energy, has been demon-
strated clearly in a very recent experiment on the
excitation of the resonance line of Ba+ (CTD73).
As seen from these results, in Fig. 4, the resonances
fail in this case to reduce the average polarization to
a near zero value. Figure 4 also demonstrates a smooth
variation of polarization as a function of collision
energy (on a logarithmic scale) from 7 to 500 eV,
with sign reversal at an energy ~10 times threshold
in agreement with the crude rule indicated above.
The Ba+ data are quite analogous in this respect to
those of Ca (EG73) which extrapolate at high energy
to the M0% negative polarization limit predicted by
Eq. (15) with h"&= —2 and with the limiting value
Ao"~'2. By contrast, the Ba+ and Ca data differ in
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FIG. 4. Polarization of the 4554-A. Ba+ resonance line {'83~2'~
'S&i2) as a function of the energy of exciting electrons (CTD73).
Note the clearly resolved resonances and the smooth variation
and sign reversal of the polarization on the logarithmic scale.

that the polarization shown in Fig. 3 drops rapidly
from threshold to a region where barely resolved
resonances appear to exist.

1Vote added ie proof: Private communications have
been received regarding current experiments that extend
and. complement the material of this section. Each of
these experiments pertains to the polarization of helium
lines excited by electron collisions.

Heddle and collaborators (to be published in J.Phys.
8) have increased the resolution of incidence energy
to the point of detecting changes of polarization result-
ing from 0.01 eV step-ups in energy. The polarization
of the lines studied in this work drops sharply from
threshold over a few energy steps and then exhibits a
number of resonances within a few eV.

Resonances have also been detected in the helium
light polarization at much higher bombarding energy
by A. Defrance (University of Rennes, France). These
resonances occur near 58 eV and correspond to the
formation of triply excited He levels, whose presence
had been detected in several other processes since 1965.

Coincidence detection of photon and, scattered elec-
tron has been achieved by Kleinpoppen and collabora-
tors (Phys. Reo. Lett. (to be published)). The collision
energy was 80 eV, that is, suKciently low to yieM
departures from the predictions of Born approximation
theory. As explained above, Born approximation yields

an alignment tensor with axial symmetry about the
momentum transfer q and with a single nonzero com-
ponent Ao&= —1. Departures from this prediction may
be described in terms of changes of direction and,

magnitude of the principal axes of the alignment tensor
(MJ71). (A principal-axes coordinate frame is charac-
terized by g& nrinc g&+nrinc —g& nrinc O) The cojncj
dence experiment found a principal axis to depart from

q by about 8' in the plane of electron scattering. The
value of Hop""' also departs from —1. These initial
observations are confined to photon emission in the
scattering plane.

III. EMISSION BY ATOMS IN
NONSTATIONARY STATES

Light emission by excited atoms has been studied
widely in recent years under conditions of high time
resolution, which determine the time interval between
excitation and emission to within 10 " or even 10 "
sec (H67). When the atoms travel in a beam of known
velocity, this time interval is determined by the distance
between the point of collision and the field of view of
the light detector. Alternatively one may time the
collision by detecting a scattered particle and the
emitted light by photon counting in delayed
coincidence.

Sharp definition of the time of excitation requires
the collision to be of short duration and hence capable
of populating coherently a range of energy levels.
Similarly, a sharp definition of the time of emission
within an interval ~r prevents the spectral analysis
of the light from resolving levels spaced much closer
than A/Ar. The observed light originates then from a
nonstationary state represented by the coherent
superposition of stationary states with different, un-
resolved, energy eigenvalues. We discuss in this second
part how the intensity, anisotropy, and polarization
of the emitted light are modulated in accord with the
coherent superposition of radiation with diferent,
unresolved frequencies.

As in Sec. II we will express the anisotropy and
polarization of light in terms of the alignment and
orientation of the excited states. The time modula-
tion of these parameters provides information on both
the energy and eigenfunctions of the unresolved levels
as well as oo their superposition generated initially
by the collision. The energy splittings of the unresolved
levels are due in general to hyperfine interactions,
spin —orbit coupling, or the action of external fields.
The time modulation of atomic orientation and align-
ment may be interpreted as due to oscillations or
precession of electron orbitals under inQuence of the
interactions.

A typical collision excites the orbital motion of
electrons leaving the electronic and nuclear spins
unaffected. (Collisions with electron exchange or
rearrangement are exceptional in this respect, since
they may introduce an initial spin polarization. ) We
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deal here, then, with the alignment and/or orientation
of the orbital motion which is responsible for the sub-
sequent light emission by electric dipole transitions.
By contrast, spin —orbit interactions and external
6elds have the effect of disturbing the initial align-
ment and orientation. The observations of light with
high spectral resolution, considered in Sec. I, display
the mean orbital orientation and alignment in individual
hyperfine or 6ne structure levels. The observations
with high time resolution to be considered in this
part display instead the time dependence of the orbital
anisotropy.

It should be noted that spin —orbit interactions and
external fields affect only the anisotropy of the orbital
motion, but do not affect the rate of light emission.
Therefore the variations of alignment and orientation
to be considered here merely modulate the anisotropy
of the exponential decay. This decay is normally
characterized by a single constant I', pertaining to
the, unresolved multiplet. Exceptional in this respect
are the experiments where levels with different orbital
classi6cation also remain unresolved, because these
levels radiate at intrinsically different rates. The decay
constant I" then becomes a matrix. The hydrogenic
systems provide an outstanding example of this effect
because their orbitals with equal n and different l
quantum numbers are nearly degenerate. Normally,
however, the interactions that change the orbital
classification are so strong as to yield easily resolved
term splittings. The resulting modulations of light
emission are then too fast for resolution by current
techniques.

The theory of the modulation phenomena is still
fragmentary. We present here a general formulation
and develop it analytically for a few simple examples.
We shall also indicate where complications arise in
other problems and how they may be treated. The
analytical approach to be followed here utilizes the
shortcuts to Racah algebra introduced in Sec. II but
its physical substance and its main results are common
to the theory of perturbed angular correlations
of nuclear radiations, as presented, e.g., in Sec. 9 of
(FS68) .

III.1. General Approach

The anisotropy and polarization of electric dipole
radiation are related by Kq. (6) to the mean values
of irreducible components 5'~&, of the tensor

r'Er(r', r)r=r'Pt [f) (f [ r, (24)

where f represents the quantum numbers of the final

state of the radiating atom. We have seen in Sec. II
how the Wigner —Eckart theorem relates the mean
.values of S'~&, to those of the irreducible tensor com-
ponents T'~', constructed as products of angular
momentum operators. The mean values (T'"&,) con-
stitute alignment and orientation parameters of the
excited atom. The following treatment of nonstationary

states deals explicitly with the time dependence of the
mean values of S'~&, but the relationship to the mean
values of T&~', remains unchanged. This relationship
insures that the modulation of the emitted light de-
pends only on (T&~',), and hence on the state of the
excited atoms, and not on the emission process itself.

To study the time dependence of the anisotropy
and polarization of the emitted light, we evaluate the
mean values of S&~&, at the time t of emission. Recall,
in this connection, that the averaging process indicated
in Kq. (6) by ((i' ~ i) ) pertains to the state of excita-
tion generated by the collision process at the initial
time t=0. Under these circumstances it appears con-
venient to introduce the time dependence using the
Heisenberg representation. This is done by replacing
each of the parameters of Eq. (6) according to the
prescription

((~'
I
~'".

I e) )~&(~'
I
exp (iHt/&) ~'"'o

)& exp ( iHt/A—) ~
i)), (25)

where II is the Hamiltonian operator of the atom.
)Note that one arrives at the same prescription in
the Schrodinger representation by regarding the states
(i'

~
and

~
i) as time-dependent, the dependence

being represented by exp (&iHt/A), respectively. )
From this point of view, the original formula (6)
pertains to the case where (i' I and

~
i) are stationary

states with same energy eigenvalue E;. In that event
the operator 8 may be replaced by E;; the two factors
exp (&iZ,t/6) cancel then in Eq. (25) and (5&'&,)
becomes time independent. Our task consists of evalu-
ating the time dependence introduced in Eq. (25)
when (i'

~
and j i) are not stationary. More specifically,

we shall express the right-hand side of Eq. (25) in
terms of its value for t=O which has been discussed
in Sec. II.

The modulations which we consider result from
interactions that are not only weak but also of little
relevance to the initial excitation by collision. This
is why we relate the initial excitation to states

~
i)

that would be stationary only in the absence of weak
interactions. In fact, these states differ from the
eigenstates

~
n) of the complete Hamiltonian with

energy levels E„.The evaluation of the time-dependent
parameters in Eq. (25) requires us then to take into
account not only the level splittings but also the
connection between the stationary states

~
I) and the

nonstationary states
~
i) .

We consider particularly atomic excitations in which
the states of both sets,

~ i) and
~
tt), are fully identified

by specific —although different —sets of angular mo-
mentum quantum numbers. Stationary states of
hyperfine structure are thus identified as

~

FMt ),
where F is the constant resultant of two coupled
momenta, namely, I of the nucleus and J of the elec-
trons. On the other hand, I and J are uncoupled in
the

~
i) states which may thus be labeled by the
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magnetic quantum numbers of the separate nuclear
and electronic states, I MzMz) . Similarly, the stationary
states of an atom in an external field are classified by
their magnetic quantum number in a frame with its z
axis parallel to the field, whereas the

~
i) states are

naturally identified in the collision frame introduced
in Sec. II. In this class of problems the connection
between the sets of stationary and nonstationary
states is fully determined by angular momentum
theory or by other general considerations independent
of dynamical details. We single out this class because
it is amenable to analytical treatment, thus provid-
ing a framework for the introduction of more complex
phenomena.

The interactions which modulate the light emission
fall into two broad types, namely, interactions among
internal orbits and spins and interactions of the atom
with external fields. As noted above, the light emission
depends on the orientation arid alignment of electron
orbits. Its modulation by internal couplings reRects
then reversible exchanges of angular momentum
between orbits and spins, and the accompanying
exchange of alignment and orientation. Usually the
exciting collision leaves the spins unpolarized. In this
event the spins can only draw from the initial alignment
and orientation of the orbits, thus reducing it albeit
reversibly without contributing any input. Moreover,
the scalar character of the initial spin distribution and
of the interaction Hamiltonian leaves unchanged the
tensorial character of each S&~~, operator of the orbits.
Therefore, in this case the interaction merely
modulates the magnitude of each separate parameter
&S'",).

In contrast, the presence of an external field intro-
duces a new reference frame and thus tends to inter-
link the modulations of the different parameters
(S'~',). We shall deal first with the simple case of a
weak field Zeeman effect, where the modulation may
be represented as a precession of the collision frame
about the field direction z.

We have emphasized that the modulation of light
emission reQects the nonstationary character of the
excited state. However, the evaluation of the param-
eters (S~~&,) must also take into account that observa-
tions with low spectral resolution generally detect
simultaneously light emitted in transitions to different
final states. These different emissions are superposed
incoherently, barring separate observations of the final
state. Their existence is included in the theory by
specifying that the sunnnation in the definition of the
operator Fz in Eq. (24) extends to include all un-
resolved final states.

By way of illustration consider transitions leading
to unresolved hyperfine levels

~ IJzFzMzz). The sum
over final states runs here over both Fy and 3fpf af
fixed Jy. This set of states spans the same Hilbert
space as the set of uncoupled states

~
IMzJf3EJf).

Therefore the operator Py factors into two scalars,

E —Ay Bm (27)

where m; is the magnetic quantum number in a frame
with z axis parallel to B. The set of eigenstates

~
e)

of the Hamiltonian is identiled here as
~
j;m;), with j;

fixed.
In this case one may consider the tensor components

S&~&~ in the frame with axis S. The matrix elements of
the time-dependent operator are then easily evaluated
as follows:

( j;m;
~

exp (iHt/A') S&'I; exp (—~&t/A')
~ j;m;)

= expLi(E;/A' —y;Bm )t](j;m (
S&~&;

) j;m;)

)& exp [ i (E~/A y~Bm;)t]—
= expL —ip;B(m, '—m, ;)t]( j;m ~

S&"&y
~ j,m;). (28)

Since a selection rule on the matrices of tensorial

one operating on electrons and the other on the nuclear
spin,

F,= P,,~„~F,X~,) (F,M„~
= LE~, I

I~z) (I~z I]LZ~; I Iz~zz) (IzId'zz I].
(26)

The last factor of Eq. (26) represents a projection
oo the electronic final states with J=Jy and the
preceding one is simply the unit operator in the space
of nuclear states with the fixed spin I. The operator
Fz defined by Eq. (26) should be entered in Eq.
(24) together with the electron dipole operators r
and r'. Each of the resulting tensorial operators S'~&~

factors then into an irreducible tensor component
operating only on the electron variables multiplied by
the unit operator of nuclear spin.

In this example we would then construct the operator
T&~',. from components of J rather than from com-
ponents of F=I+J. Similarly, when 6ne structure
is also unresolved one should further factor the scalar
P~ of electronic variables into its orbital and spin
parts. Each tensor component S'~&~ would then factor
into a tensorial part operating on orbital variables
only, multiplied by the unit operator of electron spin.
The operators T'~'~ would be constructed from the
components of L rather than of J= L+S.

III.2. Weak Field EBect on Emission from a
Single Level

As an initial example, we consider here an excited
state which would be stationary, as in Sec. II, with
angular momentum quantum number j, except for
the action of a magnetic field B. The strength of B is
sufFiciently small for us to neglect any field-induced
coupling to other excited states; that is, the mean value
of the magnetic interaction is far smaller than the
separation of zero-field levels. The excited state has
then a definite gyromagnetic ratio p; and the Hamil-
tonian has the eigenvalues
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This equation represents the familiar result that the
field cannot alter the mean. value of any irreducible
tensor component in the z frame but merely causes
its complex phase to change in the course of time.
The phase change is the same as that which results
from a rotation of (x, y) axes about z at the rate of

y;8 rad/—sec.
Once this result is established, it becomes unnecessary

to consider the tensorial components S'~j~ in the z
frame explicitly. It is suflicient to consider the param-
eters (S'"',) calculated at t=0 in the collision frame,
as in Sec. II, and then to state that each of these
parameters remains constant in a rotating frame
which coincides with the collision frame at I,=O and
precesses about the field direction at the uniform rate
of y;8 rad/—sec. The effect of this precession can be
combined with the eventual transformation to the
detector frame represented by Eq. (18).

A direct demonstration of this Larmor precession
was provided by Hadeishi and Nierenberg's (HN65)
observation of the 3261-L line of Cd excited by a
pulsed electron beam in a magnetic field 8 of 0.88 G.
The electron pulse, lasting 2 nsec, excites the atoms
and starts the timing of the photon counting. The
time-resolved counts in Fig. 5 clearly show that the
light intensity reaching a counter placed at 90' from
B precesses at twice the Larmor frequency; this is
the result to be expected since the intensity depends
linearly on Ace" according to Eq. (14) and Ao~"
depends in turn on A;~ with g= &2 in the geometry

80—

c 70
0

60

o 50

40—
~ ~ y~

e~ ~ ~ ~ ~

0 I 0 20 50 40 50 60
t (delayed coincidence channels)

Fre. 5. Larmor precession in the decay of the 3261-L transition
in Cd excited by pulsed electrons, as observed by Hadeishi and
Nierenberg (HN65) .

operators requires the matrix element to vanish
unless m —m;=q, the time-d. ependent factors of Eq.
(28) depend only on tf, rather than on the separate
m and m;, and can be factored out of the mean value,
yielding

((i'
I

exp(iHt/A') S'"'; exp( —iHt/A')
I i))

= exp ( t'eIy—;Bt) ((i'
I

S&~';
I i) ). (29)

of this experiment. Similar modulations were obtained
by Dodd, Kaul, and Warrington (DKW64) using
pulsed optical excitation. Equivalent results have also
been obtained by periodic modulation of the primary
source of excitation, a procedure that is experimentally
easier although less direct than excitation by a single
pulse (BB61,K61, PP63, A64, CS64).

The result (29) has been derived by Ned. elec (N65)
for atoms excited by electron impact, using a density
matrix representation of the state of the excited. atom
equivalent to the treatment of the present paper. In
fact, density matrix treatments serve to obtain equiva-
lent results in various forms for any particle of interest
(see, e.g. , F57) and have also permitted the generaliza-
tion of the Larmor precession Eq. (29) to describe the
e8ects of nonuniform external fieMs of arbitrary multi-
polarity (F64) .

III.3. Modulation Due to Unresolved
Hyperfine Structure

The next example concerns the time dependence of
the alignment or orientation parameters

((i'
I

exp(iHt/A') S&"'o exp (—iHt/A')
I i)) (30)

which results from the coherent superposition of the
states of a hyperfine multiplet. In this case, both the
operators S&~', and the sets of states (i'

I
and

I i) to
be entered in Eq. (30) are defined with reference to
uncoupled states

I IMrJMg) whereas the Hamiltonian
II is diagonal in the basis of coupled states I IJFMt ) .
The evaluation of Eq. (30) will then proceed through
a sequence of transformations involving two reciprocal
changes of coupling. Starting from the matrix of
S'~'~ in the uncoupled representation we shall trans-
form it to the coupled representation I IJFMF) .
Next we shall multiply this matrix by the matrices
of exp (&iHt/A') which are now diagonal. The product
will be transformed back to the uncoupled representa-
tion and will then finally be averaged according to

~ ~ ~ Z

Our task is made easier by the invariance of the
interaction Hamiltonian under joint rotation of
electronic and nuclear coordinates. Owing to this
invariance, the product of each operator S~~~, by
exp (&iHt/A) is a new tensorial operator g~"~o with
the same indices k arid q. Moreover the calculation
of the matrix transformations and products can be
carried out independently of the magnetic quantum
numbers which pertain to a specific coordinate system;
therefore it is sufhcient to calculate in terms of reduced
matrix elements.

Recalling that the operator S'~&~ actually consists
of an electronic factor identical to that considered in
Sec. II multiplied by a unit operator of the nuclear
spin, we write its single nonzero reduced matrix element
in the uncoupled basis

(I II 1'»
ll I) (J II

s'"'
ll J). (31)
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X'
J J I

(32)

The result of the transformation is given by Eq.
(15.7') of (FR59) or (7.1.8) of (E57), taking into
account that (I II

1"'
ll I) has the standard value

(2I+1)'",
(IJF' ll

S&'1
II IJF)= (—1) +~+r'+'[(2F'+1)(2Fj1)]'~'

F' Il

X (J II
s'"'

ll J) (33)
J J I

This reduced matrix element may now be multi-
plied by the eigenvalues of exp (&iHt/A'), i.e., by
exp (iEr t/A) and exp ( iErt/—A) . Introducing the
oscillation frequencies

a&r r= (Er Er)/A, —
we have

(IJF' ll exp (iHt/A') S&" exp( —iHt/A) II IJF)

(34)

= exp (i~r rt) (IJF' ll
S&~&

II IJF). (35)

When the hyper6ne interaction has the simple mag-
netic form AI J (see, e.g. , p. 69 of A71), the frequencies
(34) take the explicit form

~ = (A/2A') [F'(F'+1)—F(F+1)j. (36)

For the purpose of evaluating the mean value in
Eq. (30) we must now transform Eq. (35) back to
the coupled basis. Since we are dealing with collisions
that leave the nucleus unpolarized, the operator of
interest is actually the average over nuclear spin states
of the operator exp (iHt/A)S«', exp (—iHt/A'). This
average, denoted by Trace„„,& f exp (iHt/A) S'~', X
exp (—iHt/A') }/(2I+1), is still an operator of the
electronic system. Its reduced matrix element
(J II

~ ~ ~
II J) is obtained from Eq. (35) using the

The transformation to the basis of coupled states
projects the single element (31) onto a whole reduced
matrix with many nonzero elements, nondiagonal as
vrell as diagonal in F. The transformation involves a
recoupling of wave functions and tensorial operators
analogous to that which led us to Eq. (8). The initial
product of matrix elements in Eq. (31) has a structure
represented by the coupling symbol [(II)0(JJ)k]'~';
the desired matrix of S&" in the neer basis has a struc-
ture represented. by [(IJ)F'(IJ)F]«'.The orthogonal
matrix that transforms tensor operator matrices
from the old to the new basis consists of recoupling
coe%cients expressed in terms of standard 6j co-
efIIcients by

((IJ)F'(IJ)F
I (II)0(JJ)k)&~

= (—1)'+ + '+'[(2F+1) (2F'+1)/(2I+1) ]'~2

'P' F k

(2F'+1) (2F+1)
+') J J I

~ cos or~ ~t

x(J II
s~'~

II J). (37)

This reduced matrix element simply replaces the
matrix element (J II

S'"&
ll J), used in Sec. II, for the

purpose of evaluating Eq. (30) .
Equation (37) contains the main result of our cal-

culation and deserves considerable illustration, inter-
pretation, and amplification. One of its essential
features lies in the fact that its right-hand side consists
simply of the time independent matrix element
(J II

S«&
II J) multiplied by the modulation factor in

the bracket. This factor equals unity at t=0 owing
to a sum rule of 6j-coeKcients rooted in the ortho-
gonality of the transformation matrix Eq. (32). At
all other times this factor remains no larger than
unity and constitutes the Fourier expansion of the
matrix of S,'~'. Modern measurements of the modula-
tion of emitted light have provided the input for
Fourier analysis by computer, which determines the
frequencies cop g and the Fourier coeScients as shown
in Fig. 8 below (BSPAWG73) . The modulation
factor resumes its initial value 1 periodically when
Eq. (36) holds, or anyhow when all frequencies cu»
have a common divisor. [The imaginary term of
exp (icor rt) drops out of the sum in Eq. (37) because
it is odd under permutation of F' and Ii, for which
cur r= —~rr .7 As we had anticipated, the time de-
pendence of Eq. (37) represents a multiply periodic
depolarization of the radiating atoms, i.e., a loss of
orientation for 0= 1 and a loss of alignment for k=2.
Equation (37) was derived by Alder (A52) in the
equivalent form pertaining to nuclear orientation and
alignment, that is, with I and J interchanged, as
detailed in (FS68) .

Because the time modulation factors out of the
reduced matrix elements in Eq. (37), it also factors
out of the 6nal averaging process in Eq. (30). This
averaging bears only on the electronic magnetic
quantum numbers (Ms', cVs) of the states (i'

I
and

I i) since the averaging over the nuclear Mr is already

transformation matrix reciprocal to Eq. (32), which
has the same elements as (32) owing to orthogonality.
Thus we multiply each element (F'F) in the matrix
Eq. (35) once more by Eq. (32) and sum over F'
and F. We also divide by the normalization factor
(I II

1'"
ll I)= (2I+1)'" and obtain

(J II (2I+1)-~

XTrace„„.q f exp(iHt/A) S&~& exp (—iHt/A') I II J)
= gr. r ((II)0(JJ)k

I

(IJ)F'(IJ)F)«&e'~r'r'

X ((IJ)F'(IJ)F
I (II)0(JJ)k)'"'(J

II
S'"'

ll J)
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( 1)J+I+E+oL(2F+1) (2F +1)/(2 J+1) ]1&2

k

I I J
(38)

The rest of the calculation proceeds exactly as in the

included in Eq. (37), and is to be carried out exactly
as though the states (i' I and ~i) were stationary.
That is, one should perform the averaging by the
method of Sec. II, ignoring the existence of hyper6ne
interactions. The tensorial operators T'~'„whose
mean values constitute the actual orientation and
alignment parameters, are constructed in this case
with components of the electronic angular momentum

J, rather than of the total F, as noted in Sec. III.1.
Recalling that F=J+I is a constant of the motion,

while (J) oscillates according to Eq. (37), we see
that the periodic loss of electron orientation represented
by the oscillation of (J) must reappear as a nuclear
orientation (I) oscillating 180' out of phase with
(J). In essence .the initial orientation is conserved
and could be recovered completely by measuring the
nuclear spin polarization as well as the electronic
orientation.

A similar conservation rule holds for the alignment
which is represented by mean values of second rank
tensors. Because these tensors are quadratic in J,
the alignment branches into three terms, which rep-
resent, respectively, the purely electronic alignment,
a purely nuclear alignment, and a correlation of
nuclear and electronic properties. The complete align-
ment would be recovered by detecting the circular
polarization of the light in coincidence with the nuclear
spin polarization, so as to reconstruct both separate
alignments and a correlation of orientations.

The transfer of orientation or alignment from the
electrons to the nucleus may be illustrated by adapting
the derivation of Eq. (37) to evaluating, instead of
(30), the mean value of a nuclear multipole com-
ponent (exp (iHt/A') M'"'o exp (—iHt/&&z) ). The re-
duced matrix element (31) is then replaced by
(I

~ ~

M&"& II I) (I l~
1&o&

~[ J) . With regard to the trans-
formation coefficient (32), we note that it actually
represents only one row' of an orthogonal matrix
because one of its indices has the 6xed value zero,
corresponding to the scalar character of the
unit nuclear spin operator in (31). The general
element of this orthogonal matrix is represented by
((IJ)F'(IJ)F

~
(II)k„(JJ )k, )to&, where k„and k, indi-

cate the degree (i.e., the niultipolarity) of nuclear
and electronic tensorial operators. To transform
(I }[M&"& [[ I) (J }~

1& &

~}
J'), we set k„=k and k,=0,

thus replacing (32) by

((IJ)F'(IJ)F I (II)k (JJ)0)"&

derivation of Eq. (37) and yields

(J ~~
(2I+1)-&

XTrace„„,&Iexp (iHt/A) 3II~"& exp( —iHt/A) I ~} J)
= P..,((ss) 0(JJ)k ~(IJ)F (IJ)F)& &

)& exp (io» Ft) ((IJ)F'(IJ)F ~(II)k(JJ)0)to&,
I

&((I II M&"&
~~ I) (2J+1)'&2(2I+1)—'t'

(2F'+1) (2F+1)
2I+1

F' Il k F' Il k
X t

I I J
coscoF Jt

J I
X (I II

~t'&
ll I). (39)

This expression, the product of the emclear reduced
matrix element and of a modulation factor that vanishes
at /=0 for k/0, replaces the electronic reduced matrix
element in the calculation of Sec. II. It thus represents
the result we were seeking, namely, the induction of
nuclear spin polarization by the hyperfine interaction
following a collision which aligns or orients the electrons
rather than the nucleus itself.

This approach could be extended to calculate the cor-
relations between the alignments or orientations of elec-
tronic and nuclear states, represented by the mean values
of operator products exp (iHt/A') M&'"&,„S&",.X
exp (—iHt/A). It could also be extended to include
the effects of collisions that polarize the nucleus as well
as the electronic state.

The joint effect of electronic and nuclear polariza-
tions has been demonstrated recently by exciting
unresolved hyperfine components of the 7I'3/& state
of cesium by a pulse of polarized resonant laser light
(HPS73). The light source was sufficiently mono-
chromatic to excite only atoms in one of their ground
state hyperfine components; hence the initial align-
ment was shared between the excited electron and
the nucleus. The nuclear portion of the alignment
caused then a precession of the electron alignment
A expressed through out-of-phase modulations of its
various components.

Note, 6nally, that the values of the intensity ob-
served with various detectors and of the polarization
parameter I' may increase or decrease as the alignment
varies, depending on the sign of the relevant terms
in Eqs. (14) or (15) and in transformation formulas
such as Eq. (17). Therefore the modulation of these
values may be in or out of phase with that of the
alignment A, even when only the magnitude of A is
modulated and starts from a maximum value at
&=0.
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III.4. Urireso1ved Fine Structure

The fine structure splittings are small in the light
atoms and may remain unresolved, while the com-
plementary modulation of light emission due to beats
among the multiplet components is sufFiciently slow
to be resolved. The treatment of this phenomenon
follows from that of hyperfine modulation by straight-
forward generalization, if the hyperfine structure
remains much smaller than the fine structure, that
is, if the energy eigenstates have good quantum
numbers

I I(SL)JFNp). The operators S,'"' are now
constructed in the representation with basis states
I
IMrS3IsLMz), in which the nuclear and the elec-

tronic spins are decoupled from the orbital momentum.
The transformation of the reduced matrix elements
from this representation consists of two separate
factors, one for coupling S and L and one for coupling
I and J. The result, analogous to Eq. (37), is

(L II (2I+1) '(2S+1)
XTrace„„,~,,p;„f exp (iIIt/5) S&"& exp (—iII&/6) }I I L)

(2F'+1) (2F+1) (2J'+1) (27+1)
(2I+1) (2S+1)

E' F k ' J' J k '
X cos Mpigi, pg$

J' J I L L 5

X (LII S& &

II I-). (40)

As noted before, the tensorial operators T'~', should
now be constructed with components of L, instead of
J or F.

Previous treatments of the modulation of light
excited by collisions have incorporated the oscillatory
factor of Eq. (40), but have not separated it from the
averages that define the atomic alignment and orienta-
tion. The treatment by Franken (F61) and the later
more detailed discussion by Kelly. (K66) emphasize
that collision excitation is impulsive and that various
closely spaced levels of atoms, possibly split by external
fields, can be excited coherently. It follows that the
subsequent radiation is modulated; however these
papers do not perform the angular momentum algebra
necessary to obtain Eq. (40) .

This algebra had been performed by Percival and
Seaton (PS58), in their earlier theory of the polariza-
tion of line radiation excited by. electron impact, but
only for geometries with cylindrical symmetry. The
results thus obtained pertain only to the alignment
parameter Ao"'. The theory of (PS58) uses a time-
independent formulation wherein the light is con-
sidered as resulting from transitions between continuum
states of the electron —atom system and its intensity
is electively integrated over the whole time interval
after the collision. The results relate then to our Eq.

(40) multiplied by exp (—I' t) and integrated over
time, an operation that replaces the cosset factor by
P/(P'+co') . The resulting coefficient of the initial
alignment and orientation tensors simply represents a
constant depolarization due to the presence of internal
fields. An illustration of this result is found in experi-
ments by Kleinpoppen and collaborators (HKK65,
HK167, KN67) and in related calculations (FS67).

A calculation by Macek and Jaecks (MJ71) treats
light detected in coincidence with scattered particles
and gives expressions for the coincidence rate in terms
of four parameters, equivalent to the total cross section
and to the three time-dependent alignment param-
eters Ao' ' Aj+-', and A2+"'. Circular polarization
and orientation were not considered. The modulation
term of Eq. (40) was obtained in that calculation but
it was not explicitly factored from the initial align-
ment; the results were given in terms of nonreduced
components of the density matrix. Berry, Subtil, and
Carre (BSC72) formulated the theory of time-resolved
alignment measurements employing irreducible com-
ponents of the derisity matrix, a procedure substantially
equivalent to that of the present paper. They con-
sidered cylindrical symmetry only and consequently
discussed only Ao"'. Their results do factor. the modula-
tion term from the initial alignment as in Eq. (37) .

Jacobs (J72) has recently developed the theory of
atomic photoionization measurements including
measurements of light emitted by the residual ion.
This theory is formulated quite generally in terms of
irreducible components of the density matrix of the
excited ion, incorporating both the modulation term
and the angular momentum algebra necessary to
separate the modulation factor from the initial align-
ment. ln these respects the results of Jacobs and of
Berry et al. are similar to those presented here. We
emphasize, however, the interpretation of the align-
ment and orientation in terms of expectation values of
angular momentum operators, thereby tracing the
modulation to a reversible exchange of angular mo-
mentum between internal degrees of freedom.

This interpretation applies even to measurements
with no time definition, where the unobserved modula-
tion results in a depolarization of the light. In the
example of e'P—2'5 emission by helium, the loss of
circular polarization due to fine structure implies that
the metastable '5 atoms are partially spin polarized
to precisely the degree necessary to compensate for
the loss of initial light polarization. This spin polariza-
tion could be calculated by means of Eq. (39) .

Several recent experiments illustrate various aspects
of Eqs. (37) and (40). The advent of time-of-flight
analysis following beam-foil excitation provides the
time resolution necessary to observe zero-field modula-
tions. Macek (M69, M70) suggested that the modula-
tions could be observed. Their direct observation was
first accomplished by Andra (A70). The decay of the
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FIG. 6. Zero-field modulations in
the decay of foil-excited 3 'P states of
helium (upper three curves) and
hydrogen (lower four curves) ob-
served by Andra (A70).
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3889-L helium line excited by collisions of He+ ions
with a thin carbon foil, shown in Fig. 6, exhibits
dehnite modulations at the 6ne structure frequency.
Since it is the alignment term with k=2 in Eq. (40)
which oscillates, these results also show that the foil-
excited atoms are partially aligned.

All of the modulation factors in Eqs. (37) and (40)
start out at unity at t=0, and subsequently decrease,
recovering their initial value periodically. The zero
value of the initial phase of oscillation reflects the
assumed random orientation of the electronic and
nuclear spins. Since the modulation represents the
reversible transfer of alignment from orbital to spin
coordinates, and since the spins are initially random,
the transfer of alignment takes place initially from
the orbital to the spin coordinates; this is why Eqs.
(37) and (40) predict. an initial decrease of orbital

alignment. On the other hand, if the spins were partially
aligned in the collision, exchange of alignment could
result in an initial increase of orbital alignment; more
generally, the initial phase of the modulation would
be nonzero. Burns and Hancock (BH73) demonstrated,
by precise measurements of the initial phase of oscilla-
tions in the 3889-A. helium light, that the polariza-
tion and the alignment start at their maximal value
at t=O and subsequently decrease, recovering their
initial value periodically. Their data are shown in
Flg. 7.

These measurements, and earlier ones (BH71), also
show that it is the alignment rather than the total
intensity which oscillates. Setting 8= 90' and
54'44' in Eq. (17) and P=O' in Eq. (14) gives an
intensity independent of Ap . The corresponding
decay curve then does not oscillate. Measurements
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formation coefficient is thus defined by-

((ISL)n'F'(ISL) nF i(II)0(SS)0(LL) ft)&'l

= P(2I+1) (2S+1)1 '"
X QMrlkteerr, 'urer ~31 ~ (—1) '+

X (F'F&q
~

F' Mp-', FMp)

X ((ISL)nFM p
~
IMr, SMs, LMr, )

X ((ISL)n'F' —Mp'
~
I Mr, S—-Ma, L -M r, ')

X (I.-M;, LM,
~ LLuq), (43)
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and is to be calculated for each specific problem.
The modulation factor which should replace that of
Eq. (40) is then

Q~. p. ,» p[((II)0(SS)0(LL) k
~

X (ISL)n'F'(ISL) nF "')]'

~ ~
~0 ~ ~

~ ~~ ~
~0 ~~e

&r ~ ~ ~ ~ 1r ~ ~
~0 ~ ~ ~ ~~ ~~ A

~+ ~

I

4
I I

2 3
TIME nsec

~ ~
~ N ~ ~+ 0+0 ~

X cos (oo~~p~, ~pt). (44)

Studies of the hyperfine interaction in excited ions
represent a recent notable application of time
resolved alignment measurements. Two experiments
(BSPAWG73, TAW73) demonstrate that hyperfine
coupling constants of useful accuracy can be extracted
from measurements of the zero-field modulations sub-
sequent to beam-foil excitation. In both instances,
Eq. (44), which incorporates a dynamical calculation
of the Fourier amplitudes rather than the simpler but
approximate Eq. (40), applies. The measurements of
the 5485-A. transition in 'Lirr by Berry et ai
(BSPAWG73) illustrate the technique. Their measured
decay curve with the superposed modulations is shown
on the upper graph in Fig. 8, while its Fourier transform
is shown on the lower graph. Five frequencies stand
out clearly. Numerical calculation of the coefficients
and frequencies with the hyperfine coupling constant as
a fitting parameter gave A =0.091&0.001 cm '.

III.6. Combined Effect of Internal Couyling and
External Field

We have seen how the action of a weak field causes
a simple precession of the alignment and orientation
of atoms in an otherwise stationary state. We have
also seen how hyperfine or fine structure interactions
cause a simple modulation of each separate alignment
or orientation parameter. It will now be shown how
the combination of the two actions has a much more
drastic effect.

As in Eq. (28), we consider the time dependence
of the matrix elements of a tensor component S'~&;,
where the index g pertains to coordinates with axis z
parallel to a magnetic field B. Here, however, we deal
with atoms whose unresolved fine structure levels
correspond to coupled eigenstates

~
IJFMp), with Mp

pertaining to the axis z. Each matrix element of
S'~j; between two states of this set may be expressed,
according to the Wigner-Eckart theorem, as the
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FxG. 8. Intensity decay curve and its Fourier transform for
the 3684-A. transition in I iu measured by Berry et al.
(BSPAWG73) .

product of a reduced matrix element and of a standard.
3j coefficient, thus permitting us to use the reduced
matrix elements given by Eq. (33) . Thus we have

(IJF'Mp
~ exp (iIIt/A) S'"'; exp (—iIIt/A')

~
IJFMp)

= exp (i (Ep pp BMp 5) t/A—](IJF' ((
S&~&

() IJF)

( F
1)P~-~p~

(—Mp q Mp)

X exp $—i (Ep —ypBMp5) t/A']. (45)

The time dependence in this formula differs decisively
from that of Eq. (28), because Eq. (28) involves a
single gyromagnetic ratio p, while Eq. (45) contains
two ratios, pp and pp, which coincide only for E'=F.
Owing to &p Wpp the oscillation frequency of Eq. (45)
depends not only on the difference of quantum numbers
3fJ: —3fp=g, but also on the separate values of Mp
and 3fg. In other words the phase variation of Eq.
(45) in the course of time cannot be interpreted as
the effect of a coordinate rotation on a tensor com-
ponent S'~';. A further and more important consequence
is that the time-dependent matrix elements of Kq.
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(45) no longer belong to the matrix of a single
irreducible tensor component S'~~,. This result is not
surprising because the Hamiltonian no longer has
spherical invariance in the presence of the field B.

Formally one verifies this result through a calcula-
tion designed to invert the signer —Eckart theorem.
If Eq. (45) represented the matrix element of a single
irreducible tensor component, the reduced matrix
element of this tensor would be obtained by multiplying
Eq. (45) by the 3j coeflicient

F' O' F
I

(—1)'™"
~

y M~)

summing over MJ and Sf' and applying a closure
property of the 3j coefficients. The essential step of
this procedure consists of calculating the double
summation

Fl
Mp'Mp

3IIp g 3II—r )
X exp [i(Er. yF B3IIr A—Er+yr BMr A—)t/A7

u

X I ~

(2k'+1}. (46)
Mr. q Mp—)

If we had yg =yp, the time-dependent factor would
reduce to exp )i (Er Ee yrIBA) t/A—7 and—factor out,
after which the summation would reduce to 81, ~, thus
yielding the desired reduced matrix element with
k'=k. In fact, we have yp /yp, the exponential does
not factor, and Eq. (46) has a nonzero value, in
general, for several values of k' other than k.

Physically, this means that the time-dependent
operator exp (iHt/A') S&"';exp ( iHt/A) spl—its into a
number of tensor components S'~'&; with the same value
of q but with different k . As we know, light emission
depends directly only on the alignment and orientation
parameters (S'"',) with k= 2 or 1; we find here that
the value of these parameters observed at t/0 may
depend on the value at t=0 of different parameters
S'~'&~ with k'&2. This remark extends the range of
data on excitation by collision which can be obtained,
in principle, from studies of light emission in the
presence of external fields. The opportunity for this
extension has been mentioned previously (W72) but
remains to be exploited experimentally and
theoretically.

More specifically, an excited atom with angular
momentum j; can display 2~'-pole moments with all
values of k'&2j;. For j;=1 this means just a dipole
and a quadrupole moment, represented by the orienta-
tion 0 and alignment A which are determined by
analysis of the emitted light. For j;&1, the atom may
have additional nonzero moments (octupole, hex-
adecapole, etc.) which are not normally observed

through optical emission. However, the presence of
an external field causes the time-modulation of each
multipole moment to depend on the multipoles of
different orders. The determination of 0 and A at
time t may thus provide evidence on the 2~'-pole
moments with k'&2 generated by collision at t=0.

An illustration of this principle has been treated
theoretically and verified experimentally by I,ombardi
(L69), though under different circumstances. Atoms
were excited and aligned —but rot oriented —by electron
impact and subjected to an inhomogeneous electric
field acting, in effect, crosswise upon their quadrupole
moment. The emitted light was found to be circularly
polarized, thus showing a nonzero orientation 0 to
have arisen from the coupling of an initial alignment A
with a quadrupolar field.

*Work supported in part by the U.S. Atomic Energy Commis-
sion, Contract No. COO-1674-73, and in part by the National
Science Foundation.
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