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I. INTRODUCTION

This review article has two aims. The major aim is to
describe in a rather detailed manner the eigenchannel
method for treating nuclear continuum states and to
indicate the practicality of the method for actually
performing calculations. The second aim is to discuss
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the understanding of nuclear physics achieved by
extending the nuclear structure calculations from the
treatment of bound states to the treatment of con-
tinuum states. In other words, the first aim concerns
mathematical methodology, the second aim concerns
nuclear physics.

The need to combine these two aims into a single
article is rather compelling. Besides being the raison
d’étre for the development of the method, the nature of
the nuclear structure determines the mathematical
complexity which the method has to be able to handle,
and, on the other hand, a knowledge of the mathe-
matical limitations of the method is required to judge
the relevance of the obtained results to the interpreta-
tion of actual experimental data.

The present time seems to be an auspicious moment
to undertake this task. Namely, after a rather active
period during the later part of the sixties, a somewhat
gloomy mood seems to have descended because of the
rather disappointing quality of the obtained results.
We hope to show that, in fact, the mathematical
problems of treating one-particle continua have largely
been overcome and, that the problems now indeed
are those of nuclear physics.

The over-all organization of this article is such that
it begins with the most mathematical parts and
proceeds to the physical parts. So, we begin in Sec. IT by
describing briefly, in a general way, the mathematical
problems encountered in extending the shell model to
continuum states and show where the eigenchannel
method lies; i.e., what are its mathematical similarities
and differences compared with the other methods. This
description contains some historical notes. The detailed
description of the theory is given in Sec. ITI. In Secs.
II.A and I1.B the physical models which underly most
of the continuum calculations which actually have been
carried out are discussed.

The rest of this section contains the precise formula-
tion of the eigenchannel, the coupled channel, and the
RPA methods. It includes a discussion of the particular
problems encountered when applying the eigenchannel
method and the resolution of these problems.

Section IV is devoted to the review of actual calcula-
tions performed with both the eigenchannel and the



coupled channel methods. The results of these calcula-
tions are compared both with experiment and with
bound-state calculations. Certain characteristic agree-
ments and disagreements exist between experiment
and calculations. In particular, not all gross features of
the experiment are reproduced by the calculations.
This is the surprising and disappointing feature,
mentioned above, to emerge from all continuum calcu-
lations performed up-to-date.

A brief discussion of the present state of the field,
and some speculations about future developments, are
the topic of the concluding Sec. V.

II. DESCRIPTIVE SURVEY OF NUCLEAR
REACTION THEORIES

We will delimit nuclear reaction theory as the fol-
lowing-Nuclear structure physics, we assume, is con-
cerned with the interaction of nonstrange baryons,
where, by assumption, the interactions are to be dis-
cussed without explicit reference to meson or baryon
resonances. Hence all energies are necessarily non-
relativistic, and the interactions are typified by some
general (but a priori unspecified) heuristic potentials.
[We would like to mention that there is no assurance
whatsoever that this schematization is not a gross
distortion for certain important aspects of nuclear
physics. For example, the momentum distribution and
the electromagnetic moments in the deuteron appear
to require contributions from mesons and baryonic
resonances (cf. Kerman and Kisslinger, 1969).]

We shall explicitly assume that all three-body
channels are closed. Our notation is that of Wigner as
reviewed, for example, by Lane and Thomas (1958)
or by Biedenharn et al. (1963). We define an alternative,
denoted «, as a pair of bound nuclear states (possibly
excited); a channel, denoted ¢, consists of an alternative
a having relative kinetic energy corresponding to wave
vector k.; the channel spin, s, is the coupled spin
angular momenta of the alternative a. A bound channel
is one whose relative kinetic energy is negative; an
open channel, positive. The channel radius 7,, is the
relative coordinate of the pair comprising alternative a;
similarly, the angular momentum /, is the relative
orbital angular momentum of the alternative a.

Let us turn now to nuclear reaction theory proper.
The basic problem is to determine—from a specified
Hamiltonian—the N XN scattering matrix SV= (where
N denotes the number of open channels) at each energy
E, angular momentum J, and parity «. There is a
formal problem which precedes this: namely, to discuss,
for a general class of admissible Hamiltonians, the
properties of SY7 abstractly. This is the content of
(nuclear reaction) S-matrix theory. A complete
(formal) answer can be given for (nonrelativistic) one-
channel (potential) scattering, and has been discussed
in exemplary fashion in the monograph of Regge and
de Alfaro (1965). It is outside the scope of the present
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work to discuss this problem, but the formal answer for
1=0 spinless nucleons interacting with a potential
having a finite (cutoff) range is instructive. The
S-matrix is then the ratio So=fo(k)/fo(—%), where
fo(%) is an entire function of % with a finife number of
zeros [ =bound states] on the imaginary axis in the
upper half % plane and an infinity of zeroes (resonances)
in the lower half k-plane.

For the practical problem—i.e., to determine S/~
given H—there are a plethora of possible approaches.
It was the very great merit of Bloch’s (1957) work! to
demonstrate that all approaches to nuclear reaction
theory were variants of the same basic idea: ie., to
separate H into two parts; H=Hy+H’, and to develop
a formal answer for S in terms of the spectrum of H,.
This is of course an idea long familiar from perturbation
theory. Let us sketch now the way in which all reaction
theories fit into this pattern. The most important class
of theories, from our viewpoint, are those that impose
boundary conditions in each channel and at a finite
radius, @,. In the nterior region (r.<a,) we have a
Hermitian Hamiltonian, and since the space is finite,
the spectrum is discrete (the eigenvalues are complex if
the boundary conditions are complex). In other words,
theories which postulate boundary conditions at finite
channel radii are basically theories which discretize the
continuum. (Physicists should be aware of the long
history of this idea: spherical Hertzian waves were
analyzed in this fashion by Sommerfeld before the turn
of the century.)

Using Bloch’s idea it is easy to demonstrate this
point, in a heuristic fashion, to be sure. Define the
Bloch operator by

£(a,b)= 2| ¢)(B*/2m.)é(re—a.) (d/dr)
—[(6.—1)/r1(c |

where |c) are the surface channel ket vectors (a
function of all variables except the channel radius 7.),
and m, is the reduced mass of the alternative in chan-
nel c.

The Hamiltonian may be written then in terms of
H, and H’' as

(2.1)

H= H0+H’
Hoy=H+£(a,b)

H'=—g(a,b). (2.2)
The Hamiltonian H, has a discrete, denumerably
infinite spectrum which allows a resolution of the
identity in terms of eigenvectors {| A)} and the dual
space {(X\|}. The scattering problem is then solved,

1 This point of view was especially emphasized, and extended,
by Lane and Thomas (1958) and later Lane and Robson (1966,
1967). A subsequent paper by Robson and Robson (1969)
showed that the Lippmann-Schwinger equation also falls into
this formation.
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formally, by the integral operator
(H —E )'l’ = 07
v=(H+L—E)-'ey. (2.3)

Since the spectrum is discrete the operator (H4+£—E)™!
can be expanded as an (infinite) sum.

The outgoing wave boundary condition £,4t—as
discussed by Sommerfeld—plays a particularly im-
portant role in this development (see, e.g., Kapur and
Peierls, 1938). One can see this from observing that
Lout¥ contains only ingoing waves. Since the ingoing
waves are the “input data” in nuclear reactions, this
shows that Y= (H+Lous—E) Cou is indeed a
solution to the scattering problem (and not an integral
equation for the solution). All other choices for £(a, b)
may now be expressed in terms of the £,4¢ solution.

Let the operator (H+S£out— E)™! be called Gy, and
the operator [H+£(a, b)— E ] be called G. Then we
have

G0= {1—|—G|:£(a, b)—cﬁout]}_lG. (2.4)

If we define the eigenfunctions of the internal region by
(H—E)) | \)=0,

£(a, ) | M)=0, (2.5)
then we may express G as the series
G= ? | XN/ (Ex—E). (2.6)

This series is essentially Wigner’s R-matrix; in fact,
taking matrix elements at the channel surface (that is,
using | Ysurtace® )= (F2ac/2m, ) ?[6(r,—a.) /7] | ¢) one
finds

<'psurface(c) ] G I ‘!’surface(‘:l) >ER0(:' = ; I:'Y)\c'Y)\c’/ (E)\_E)];

o=\ | (Wac/2m) Py 5 (re—ac) [ ). (2.7)

This elegant derivation for the class of boundary con-
dition theories is taken from the papers of Lane and
Robson (1966, 1967). These boundary condition
theories all suffer from an obvious defect: They involve
an ad hoc radius in every channel and moreover an
arbitrary (boundary condition) parameter, &, for each
channel. The resultant S-matrix is, however, com-
pletely independent—in principle—of these parameters
{ac, b.}—although in fact the convergence and utility
of the series depends markedly on these parameters,
and if the series is truncated (as is necessary in prac-
tice) the dependence on {e, b} is very strong. Criticisms
of these theories (which for brevity we call R-matrix
theories) all stem from this source, for, it is pointed out,
a given Hamiltonian should lead to results dependent
only upon intrinsically defined quantities and not upon
superfluous auxiliary parameters (Rosenfeld, 1967,
1968).

It is useful at this point to recall that the boundary
condition theories were formal elaborations of more
accessible physical ideas. The original work of Breit

and Wigner was patterned after the (weak coupling)
model of atomic line widths. This was admittedly a very
insecure foundation, yet the results were spectacularly
successful. In 1947 Wigner accepted Fermi’s challenge
to give a sound proof, and successively developed, in
three papers, what is now the R-matrix theory. The
key physical idea, however, is in the first paper and has
more or less disappeared in the subsequent generaliza-
tions. The idea is very simple: A resonance means that
the nuclear system is, near the resonance energy,
describable approximately by a state vector whose
dependence on energy approximately factorizes
v({r:}, E)=2f(E)o({r:}). Green’s theorem (equiva-
lently flux conservation) extends this zeroth order
result to the next order, giving the Breit-Wigner
resonance shape.

Wigner’s physical idea makes quite obvious the
involved discussion of Mahaux and Weidenmiiller
(1965) on the strict (mathematical) applicability of the
one-level resonance formula. Clearly if a single state is
to give truly zero error at an energy E in the continuum,
then that state must completely dominate the wave
function in any energy strip AE which includes E no
matter how small AE is; in other words, it must be a
bound statein the continuum (Mahaux—Weidenmiiller’s
result). But this is patently an absurd result, for such
a state is then orthogonal to the continuum (zero
width)! One cannot then dispense with the approximate
nature of Wigner’s original idea. It follows that the
analysis of experimental data in terms of (observed)
resonance structures on limited energy intervals using
the R-matrix approach is certainly valid (but only to
some pre-assigned error). The question as to how to
handle large energy intervals, or Rosenfeld’s theo-
retical question as to the unique scattering solution for a
given fixed Hamiltonian constitute, however, genuine
criticisms of R-matrix theory.

Feshbach’s (1958, 60, 62; Feshbach, et al., 1967)
approach to this was to eliminate channel radii com-
pletely and develop a formal scattering theory based on
the distinction between open and closed channels.?
Introduce the two projection operators P and Q
defined by P4Q=1, PQ=QP=0, where P projects
onto the open channels; Q projects onto the closed
channels. The closed channels allow an expansion in
terms of (discrete) eigenstates of QHQ; resonances
arise through the coupling of these states to the open
channel continuum by H-QHQ. We shall not discuss in
any detail the several criticisms of such a formulation
(Lane and Robson, 1966, 1967).

Suffice it to say that the original formulation (Fesh-
bach, 1958) was incomplete for the construction of the

2 A more general concept, that of partitioning the scattering
matrix and the channel elimination procedure, had been intro-
duced earlier by Teichman and Wigner (1952). Thomas (1955)
applied this method to split the incident vs reaction channels
and define a complex (optical) potential [cf. also Sec. X, of
Lane and Thomas (1958) ].



projection operators P and Q (since the definition of
open vs closed channels is asymptotic, the projection
operators are not unique); a special difficulty concerns
the antisymmetrization requirement which, for the
Feshbach approach, requires careful treatment [con-
structive procedures are discussed by Feshbach (1962),
Kerman (1965), Friedman and Feshbach (1968)7].
It is worth mentioning that not all resonances arise
from this mechanism (closed channels)—the one-
channel formal result given earlier provides a clear
counter example.?

Feshbach’s approach has the great merit that it
leads very naturally to Weisskopf’s (1961) concept
(cf. Bloch, 1966) of a “nuclear state hierarchy” and
has led to many further developments which are
especially significant in discussing isobaric analog
resonances. A very different line of development led to
the currently important nuclear reaction theory problem
of extending the shell model into the continuum. The
shell model is, of course, by now the accepted founda-
tion for all nuclear structure calculations despite the
fact that this model is still heuristic and phenomeno-
logical. The success of this idea of single-particle excited
states in the continuum of the (finite depth) shell
model (optical) potential in accounting for the observed
giant-resonance structure in low energy neutron
scattering (optical model; “Mount Barschall”) led
Weisskopf in 1960 to propose that the model be taken
more seriously and extended to include, in addition,
particle-hole excitations. This is the basis of the hier-
archy of nuclear states: 1p, 2p-1k, 3p—2h, - -+ in which
the members of the hierarchy connect only to adjacent
members of the hierarchy (via residual two body inter-
actions) and the continuum couples essentially only
to the first member of the hierarchy. The members of
the hierarchy are given picturesque names; i.e.

2p-1k  ‘“doorway” states (Feshbach), ‘“dangerous
states,” (Migdal, cf. Bloch, 1966)
3p-2h “hallway” states (MacDonald)

These concepts have been very successful in the under-
standing of isobaric analog resonances (where the iso-
spin quantum number justifies in large part the hier-
archy concept); nevertheless, it should be noted that
the original starting point, the giant-resonance struc-
ture, for these concepts was based on a clear mis-
interpretation: the giant-resonant structure has nothing
to do with single-particle resonances per se—it is the
result of phase shifts falling (not rising) through 90°
which, by the Wigner theorem, necessarily give very
broad resonancelike maxima. (This important clarifica-
tion is due to McVoy (1965). One possible extension of
the shell model into the continuum can be sketched*

3 It was originally held that this distinction between resonance
mechanisms was an advantage, but this view was based on a
misinterpretation of the giant-resonance phenomena (see below).

4 This sketch is based on the Mahaux—Weidenmiiller (1969)
monograph.
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in the following way):

(a) The nuclear Hamiltonian is taken to be: H=
Hy+V, where Hy is a sum of single-particle operators

Ho= ¥ (i) = X [H0)+0()]

=1 =1

(one-body kinetic and potential energies), and

A A
V= Z 'U('L)])— Z 'U('i);

i<i i=j
i.e., the true two-body interaction minus the (model)
one-body potential. The one-body Hamiltonian, 4o(2),
is defined to have both a continuum and a discrete
spectrum (the one-body potential being based on the
observed nuclear charge distribution).

(b) The Hamiltonian H is diagonalized in a Hilbert
space defined by the eigenfunctions of Ho, truncated so
that at most only one nucleon is a scattering eigenstate of
ho(2). (The mixing of the continuum states, the open
channels, by the residual interaction presents particular
difficulties and must be handled carefully.)

(c) The essential physical idea in this approach is
similar to that of Feshbach: the particle-hole hierarchy
comprises in zeroth approximation a set of bound
states (=closed channels); the one-nucleon continuum
(=open channels) overlaps the bound state spectrum;
the two systems mix through the residual two-body
interactions.

This extension of the shell model into the continuum
is a very natural and reasonable development blending,
as it does, the ideas developed by Feshbach with the
microscopic shell-model approach. A very complete,
and accessible, account of this model has been given in a
monograph by Mahaux and Weidenmiiller (1969).

Let us note only that the structure of the underlying
calculational model [item (c) above] is precisely that
developed originally by Dirac (1927) and by Rice
(1933) and Fano (1935, 1961), and very extensively
treated since then [cf. Bloch (1966), Mahaux and
Weidenmiiller (1969), Bardsley and Mandl (1968).]
In the current terminology, the model considers as the
zeroth approximation a “Bound State Embedded in the
Continuum”’; the coupling between the discrete (bound)
state and the continuous part of the spectrum dis-
continuously perturbs this spectral resolution, pro-
ducing a sharp resonance. [Even this cursory descrip-
tion should convince the reader that mathematically
this model for resonances as BSEC is not trivial. It
seems to have been overlooked, however, that there
does exist a mathematically precise treatment of
Dirac’s model justifying, by and large, the heuristic
approach [cf. Friedrichs (1948), Brenig and Haag
(1959)]. The restriction in the Mahaux-Weiden-
miiller approach to one nucleon in the continuum is
rather severe (no such restriction is required in the
R-matrix approach for energies below the two-particle
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threshold, i.e., before the appearance of oper three-
body channels. In principle, the nuclear problem in the
inside region can be solved exactly by truncating the
Hilbert space at an arbitrarily high energy). To a
certain extent this restriction can be eliminated;
Dietrich (1966) in his Trieste lecture has indicated a
procedure for this. (This lecture is also a very fine
survey of the shell model in the continuum.)

Let us now turn to the eigenchannel approach. This
method is a development of the R-matrix theory and
requires the use of a separation into internal and
external regions. The two general properties of the
S-matrix, unitarity (conservation of flux) and sym-
metry (time-reversal invariance of H) are exploited in
the external region to write the external solutions in
diagonal form. (The details are given below.) The
physical significance of this eigenbasis is that an incident
(ingoing) eigensolution scatters into the same eigen-
solution, that is, all components of the many channel
wave function suffer the same phase shift. [It is a
natural question at this point to ask for the form
of the R-matrix theory expressed directly in terms of
these eigenphases and eigenvectors; this inverse prob-
lem has been solved by Willard and Biedenharn
(1958) and Biedenharn, et al., (1963).]

The eigenchannel method, developed by Danos and
Greiner, has a somewhat different motivation. It is
characteristic of the R-matrix approach that the Bloch
operator is singular; it follows that the expansion of the
physical wave function in terms of the R-matrix basis
functions, | A), is not uniformly convergent at the
boundary of the internal region. To put it differently,
the wave function is continuous through the boundary
but has a discontinuous derivative. The existence of
such a discontinuity adversely affects the rate of con-
vergence of the R-matrix expansion, and is, in fact, a
weakness of the R-matrix approach.® Many ways to
improve matters come to mind: one may use two sepa-
rated boundaries [ cf. Tobocman and Nagarajan (1967),
Garside and Tobocman (1968), Robson (1968)7] or,
as a more general version of the same idea, one may
smooth the Bloch operator into a volume operator
[which leads to a three region version (Phillips, et al.,
1960) of the R-matrix approach: interior-transition
surface-exterior |. Danos and Greiner (1966, 1967)
have suggested a technique which leads to an optimally
smooth joining onto the exterior solutions: this is o use
the eigenvectors and eigenphases of the open channels
themselves as the boundary conditions at the surface of the
interior region. We shall discuss this method in detail
in Sec. III.B below; for the moment, let us note only
that the eigenchannel method in effect develops an
exact solution to the scattering problem, valid at each
energy for which the eigenchannel boundary conditions
are applied and calculated. In this sense, the eigen-

5 Numerical studies of the practical significance of this difficulty
have been given by Buttle (1967).

channel method is not so much a development of
R-matrix theory as a practical procedure to treat a
many-body nuclear Hamiltonian. It is thus a method
rather similar in viewpoint to another practical pro-
cedure, the coupled-channels approach, which will be
examined in detail in Sec. III.C.

Let us conclude this descriptive survey by mentioning
a very different approach, which we shall call the
“Sturmian function” approach, following Rotenberg
(1962) who so named it when he revived the method
(for both nuclear and atomic problems, especially
three-body breakup.) This is a variant on the separation
of H into two parts, H, plus perturbation, but this time
(Hy—E) is so chosen that it has only a discrete spec-
trum but is not so singular at infinity as to preclude
expansion of scattering solutions of H in terms of the
eigenfunctions.

It is clear from the foregoing survey that practically
all approaches to scattering theory are attempts to
surmount the intractibility of the continuum by using
denumerable bases. (The harmonic oscillator basis of
the nuclear shell model would itself provide such a
basis, but this attempt founders on the fact that one
would then have to expand scattering functions finite
al infinity.) The Sturmian function basis, S.(7),
are the solutions of

2 d2 al(l+1
(- 2 ot B iV () Su= B
2m dr? 7’

(2.8)

Here E is a fixed energy and the eigenvalues pni(E)
are implicit functions of the energy. The boundary
conditions are taken to be S,:(0)=0 and Su(r)~
e* (E>0) or Sni(r)~0 (E<O0).

The functions S,; have been thoroughly investigated
(Ince, 1927). As a first orientation take V(r) to be
everywhere attractive (or zero) so that the potential
energy becomes increasingly negative as p,; increases.
In order to keep the energy, E, fixed, the kinetic energy
must increase. It follows (also in the general case) that
the S,; have an increasing number of nodes; there are
denumerably many p..(E), the ‘spectrum’ is discrete.

The Sturmian functions obey an orthonormality
relation

/ P drSur(r)V (1) Swrtr () = 8u,
0

which, it should be noted, is weighted by the potential
V(r). Except for regions in which the potential vanishes,
the Sturmian functions are complete.

(The eigenvalues p,; are the precise analogs to the
‘well-depth parameters’ introduced by Blatt in the
effective-range theory. It is a rather striking fact that
every concept of the effective-range approach has
afforded a useful generalization in scattering theory.)

We shall not discuss the Sturmian function approach



to scattering theory further. Critical evaluation of the
method has been given by Rotenberg (1963); see also
Gallagher and Wilets (1968). Independent of Roten-
berg, the Sturmian function approach was also given by
Herzenberg and Mandl (1963). The generalization to
(nonrelativistic) many channel resonance theory has
been given by Herzenberg, Kwok, and Mandl (1964).
It is probably worth mentioning that the same basic
idea as in the Sturmian function approach has been
applied, independently, by Weinberg (1963, 1964)
(who used the lowest Sturmian functions to construct
a Hilbert—-Schmidt kernel for the Lippmann-Schwinger
equation) and by Feshbach (1958, 1960, 1962) and
Feshbach, et al. (1967) (who constructed antisym-
metric projection operators using Sturmian functions).

III. THEORETICAL PART

In this section we describe in greater detail the
different reaction theories which have the aim of
extending the shell model to include the one-particle
continuum states. We shall be concerned mainly with
those formulations which have been applied in actual
numerical calculations. Almost all of these calculations
have been performed only up to 1p-1% excitations, i.e.,
up to the lowest member of Weisskopf’s nuclear state
hierarchy. Therefore we begin by a short description of
the 1p-1k excitations, before going on to the discussion
of the 1p-1/ continuum calculations.

A. One Particle-One Hole Nuclear States

The most prominent 1p-1% state in nuclei is the giant
dipole resonance. It was explained very early as a
collective excitation by the Goldhaber-Teller (1948)
description in which incompressible proton and nuclear
“fluids” vibrate in opposition [cf. Migdal (1945),
Jensen and Jensen (1950), Steinwedel and Jensen
(1950)]. This simple physical model fits very well
the essential facts; further elaboration of the basic
model has been given by Danos (1958, 1961), Danos
and Greiner (1964), and others [Le Tourneux, 1965;
Weber, et al., 1966; Drechsel, et al., 1967 ; Arenhdvel and
Greiner, 1969.] An alternative explanation in terms of
the shell model was advanced by Wilkinson (1956)
at the Amsterdam Conference. In this description the
giant dipole state is the result of 1p—1k, 1~ states ob-
tained by promoting a closed shell nucleon into the
next higher shell. (Recall that photon—nucleus inter-
action is described by a one-body operator, and thus
can excite only 1p—1% states.) The equivalence of this
shell-model explanation (for a purely harmonic oscil-
lator potential) to the collective picture has been
shown by Wild (1955) and Brink (1957). The con-
centration of the greater part of the electric photo-
absorption on a single mode can be interpreted in
terms of the single particle spectrum; however, the
observed frequency of absorption is appreciably greater
than the average single particle excitation (especially
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in heavy elements). This shift is interpreted in terms of
the residual two-particle interactions; namely, the
1p-1h states are coupled by the residual interactions
in a very characteristic way: most of the dipole strength
is concentrated on a single state, a “coherent” combina-
tion of the 1p-1/ states, which is shifted in energy ap-
preciably from its unperturbed (shell-model) energy.
(This is a misuse of the word “coherent’’; it means here
that all components enter with the same sign.) These
features of the coherent dipole state were elucidated
schematically by the work of Fallieros and of Brown
(c.f., Brown, 1966). It is found that this dipole state
exhausts an appreciable fraction of the dipole sum rule.

The 1p-1% model has in the meantime undergone
considerable development and refinement. We shall
describe the work and give references to it below at
appropriate points. We refer here only to a recent
review by Spicer (1969) [cf. also Firk (1970)7]. Still,
it must be emphasized that the limitations imposed
upon the nuclear model by the restriction to 1p-14
states are rather severe. They will be discussed in some
detail below in Sec. ITI.I. At any rate one can hope to
describe by the 1p—1% model only the simplest nuclei,
and even there one can at best hope to describe the
gross features of the experimental data. Therefore we
shall restrict our discussion to the nuclei #C, %0, and
“Ca.

B. Limitations of the 1p-1% Nuclear Model

As has been pointed out, in the eigenchannel treat-
ment as described in this paper at energies below the
appearance of open two-particle channels the only
error of principle is the improper treatment of the
center-of-mass motion. However, in practice this error
is overshadowed by the limitations resulting from the
truncation of the Hilbert space. The 1p—1% description
clearly represents an extremely primitive and restrictive
nuclear model. We shall now discuss briefly the conse-
quences of the simplifications, and describe certain
attempts to improve the nuclear model. We shall
follow the customary procedure and discuss separately
the two related subjects; viz. the influence of the
2p-2h states, and the impurity of the ground state.

The number of 1p-1% configurations is in general
much too small to even begin to allow a description of
the fine structure observed in the cross sections.
The next members of the nuclear hierarchy, viz., the
2p-2h states, can be excited from the 1p-1k states
via the nuclear two-body force: either the particle or
the hole of the 1p-1k state can undergo an inelastic
scattering process with one of the other nucleons, lifting
it above the Fermi level. This state is a genuine 2p-2k
state; it does not arise in the RPA treatment. The two
resulting particle-hole pairs can have a variety of
angular momenta. For the giant resonance a par-
ticularly important case is that in which one of the
pairs is coupled to 1=, and the other to 2*. As a next
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step, any of the four members of the 2p-2k state can
undergo an inelastic collision and generate a 3p-3%
state. Again, each of these resulting particle-hole pairs
can be coupled to any angular momentum so long
as the three angular momenta can be coupled to the
required total angular momentum, i.e., 1= for the
dipole state. (In a RPA state each of the particle-hole
pairs is coupled to the angular momentum of the
considered state, i.e., 1= for the dipole state.) This
way all the higher members of the nuclear hierarchy
can be reached. Of these, the ones of particular im-
portance, besides the 2p-2/ states, are the 4p—4# states,
since they are required for the description of the «
emission, and the 5p-5k states, since they would be
needed for the coupling of the giant resonance to the
low-lying 4p—4#h states (e.g., the Ot state at 6.06 MeV
in *¥0). However, no treatment of these effects is in
sight.

The influences of the 2p-24 states can be grouped
roughly into splitting (introduction of structure) and
damping. We begin by considering the bound-state
treatment. The 2p-2/ states acquire a dipole moment
only through mixing with the 1p—14 states (the photon
interaction is described by a one-body operator).
Since, in general, every state becomes a mixed state
upon diagonalization of the Hamiltonian matrix, the
number of resonances becomes equal to the total
number of states and the dipole states may spread over
a larger energy region. The number of 2p-24 con-
figurations is very much larger than the number of
1p-1k configurations. Therefore one in practice will
have to radically restrict the number of 2p—2% configura-
tions which one wants to add to the Hilbert space. A
very useful criterion by which to select the retained
states can be taken from the collective model, where the
most important states are those which arise from mixing
the giant dipole oscillation with the collective surface
vibrations. In a microscopic picture, the surface modes
are given by linear combinations of 1p-1% positive
parity 7'=0 states (for =0 nuclei). One thus is led to
the following models: collective dipole mode, collective
surface mode (Weber, et al., 1966; LeTourneux, 1965);
microscopic dipole-collective surface (Drechesel, ef al.,
1967); microscopic dipole-microscopic surface. Until
now, the first two models have been quite successful;
the last, being more fundamental, has not given as good
results, mainly because of the difficulty of describing
the low energy spectra.

One may think that the only change between the
bound-state structure and the case in which the 1p-14
states are continuum states is a widening of the sharp
peaks into broader resonances. This would be true in
an inverse case; i.e., where the quasibound states carry
the strength, and the continuum states carry no
strength. However, matters here are not as simple. As
has been shown in detail by Fano (1935, 1961), a
2p-2h state that is in a 1p-1% continuum in general

will lead only to a modulation of the cross section.
Only under certain circumstances will this modulation
have the shape of a resonance line.

Up to this time, only one nuclear physics calculation,
that of Gillet, ef al. (1967), has been published in which
2p-2h states were admixed to the 1p-1% continuum.
Inspired by the observation that a certain resonance
(Suffert and Feldman, 1967) of the MN(d,v,)*%O
reaction coincides with a pronounced dip in the
BN (p, ¥0)¥O cross section, Gillet, et al. (1967) per-
formed the following continuum calculation. They
assumed that the peak in the (d, v,) cross section was
due to a quasibound (2p-2k) state. Thus they added
bound (2p-2k) configurations to the (1p-1%) con-
tinuum configurations. Only those coherent (2p-2k)
configurations were taken into account which, as a
result of the residual force, coincide energetically with
the giant-resonance region. These 1p-1% configurations
were obtained by combining two diagonalized 1p-1k
states of different /7, one having T=0, the other T=1.
This is, in fact, a kind of microscopic description of the
giant-resonance—(surface) phonon coupling. Figure 1
shows the result of this calculation. As a consequence
of an interference effect between the (1p-1#) structure
and the (2p-2k) state which lies in the minimum at
22.7 MeV there occurs a peak at 23 MeV which has
roughly the experimentally observed width. Also, one
sees that diverse shapes occur in the structure, and that
the average cross section remains the same upon
addition of the 2p-2/ states; the strength is not shifted
to other energies.

A detailed agreement between this schematic calcula-
tion and experiment is not to be expected. After all,
many more 2p-2/k states exist and, also, above 24 MeV
the 3p-3k configurations should become important
(Puttaswamy and Kohler, 1966). [The influence of
3p-3h configurations on the O giant resonance has
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Fic. 1. Theoretical total photoabsorption cross section of 160
obtained in a continuum treatment by Gillet, ef al. (1967). The
solid curve gives the result for inclusion of certain coherent quasi-
bound 2p-2/ states.



recently been investigated by Shakin and Wang
(1971).] At any rate, the merit of this calculation lies
in the fact that it illustrates the effect of the higher
configurations on the cross section.

The damping mechanism is easy to understand in a
time-dependent description. In general not only the
considered 1p-1% channels are open, but, e.g., one or
several a-particle channels as well. Thus, after having
been excited by the absorption of a photon, the 1p-1%
configuration excites a 2p—2k configuration, etc., until
the, say, 5p—5k configuration, describing the a channel,
has been reached. The emission of the a particle is
reflected as an additional width on the original 1p-1%
state, and no shifts of absorption strength or any other
effect is expected to be associated with this process.

We now turn to the other implicit consequence of the
restriction of the Hilbert space to 1p-1k excitations,
viz. the assumption of a pure ground state. This
assumption is, perhaps, even more restrictive than the
one discussed above. Namely, as soon as the ground
state has, say, a 2p—-2k component, many more states
are reached directly by the action of the one-body
photon operator. This then not only leads to additional
structure, but, more importantly, it also shifts absorp-
tion strength out of the giant-resonance region. In fact,
this feature is responsible for the failure of all bound-
state calculations in light nuclei to give the correct
photon absorption cross section, and, at the same time,
leads to the quasideuteron process. Nothing definitive is
known at this time about possible further consequences
of the ground state impurities.

C. The Eigenchannel Procedure in Detail

It is helpful in understanding the eigenchannel
method to note that there are two distinct ideas, both
of which are related to the concept of eigenchannels,
involved in the method. This concept, as is well-known,
derives directly from two general properties of the S
matrix: unitarity (conservation of flux) and symmetry
(time-reversal invariance of the Hamiltonian). That is,
in symbols, S*=S-1 and S=S. These two relations
together imply that S may be written in the form

S=Veray-1, (3.1)
where V is real and orthogonal, and A is real and
diagonal. Both ¥ and A (and hence S) are NXN
matrices, where IV is the number of open channels at
energy E. The orthogonal matrix ¥V may be considered
as made up of IV eigenchannel vectors V®, where v=1,
2, +++, N denotes the individual vectors. (Alternatively,
one may parametrize V by a Cayley transform to intro-
duce the mixing parameters, ¢, but this is not particu-
larly useful for the present paper.)

The advantage of this procedure is that it enables one
to parametrize the S-matrix in terms of the minimal
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number of real parameters. Application to nuclear
reactions of this parametrization has been given by
Blatt and Biedenharn (1952); we will repeat the
relevant parts of this in Secs. ITL.D and IIL.E.

The above definition of the eigenchannels as the set of
numbers V,® (eigenchannel vectors) is rather abstract.
In order to obtain a better understanding of the physical
significance of the eigenchannels, we construct them in
configuration space; that is, we construct the cor-
responding Schrédinger wave functions. Consider,
therefore, the most general wave function ¢ in the
asymptotic region; i.e., far from the scattering center
(all 7,> a, with suitably chosen radii a,)

Y~ 2 [Aclo(kere)+BOo(kere) Woe (3.2)
where ¢, are the channel wave functions containing the
hole wave function and the angular parts of the par-
ticle wave functions; 7, and O, are the incoming and
outgoing radial wave functions

Ic*<kcrc) = Oc(kch)
={Gi(ke)+iFi(kre)} exp (—ia)

< exp [1(ks.—5imr—nclog 2k 7+ ], (3.3)

where F; and G, are the regular and irregular solutions
of the radial differential equation (i.e., Coulomb func-
tions in the case of protons, and the spherical Bessel
and Neumann functions multiplied by &7, for neutrons).
The Sommerfeld parameter . and the Coulomb phase
shift o;, are given by

ne=Ze%/hv, ce=arg T (IH+1+in.). (3.3a)

Let us consider for simplicity neutrons only. Then the
asymptotic form of (3.2) can be obtained with .=
exp [—i(ks.—1/2lr)]=0*. The amplitudes of the
outgoing waves are defined via the S-matrix in terms of
the amplitudes of the incoming waves by

Be=—3 Sedo. (3.4)
o

Let us also denote explicitly the equation for the eigen-
values of the S-matrix

SV =V (3.5)
where the eigenvalues are of the form
| €= exp (2i5), (3.5a)

with §® necessarily real, as they are the diagonal ele-
ments of the matrix A defined in Eq. (3.1). The V®
are the eigenchannels.

Perform now the following “ Gedanken experiment’:
assume that the incoming amplitudes 4. are identical
with the components of an eigenchannel, e.g., 4.=
V.®. It follows from Egs. (3.4), (3.5), and (3.5a)
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that B,=— exp (2:6®)V.® and therefore, (3.2) be-
comes the representation of an eigenchannel in 7
space

YO = > V. O[I,— exp (266?20,
~ > V.9 exp (i69) sin (ker,—3ir+6P). (3.6)

for neutron channels. In the case of protons, (3.6) is
only slightly more involved. We have thus obtained the
important result that en eigenchannel corresponds in
r space to a standing Schrodinger wave consisting of a
superposition of standing waves in all experimental
channels with a common phase shift 6. (Note that 6
is independent of c.)

This result will be the starting point for the practical
calculation of eigenphases and eigenchannels. Namely,
we construct those solutions of the Hamiltonian which
have asymptotically precisely the form (3.6). The
common. phase shifts for which such solutions exist
are then the eigenphases; the amplitudes with which
the experimental channels are contained in ¥ are
essentially the eigenchannel components V,®. If all the
Schrédinger wave functions for the total energy E of
the system have been constructed, that is, if the eigen-
phases 6®(E) and eigenchannel components V,*(E)
are known, then the S-matrix is obtained according
to (3.1) as

Seer (E)= 22 VP (E) exp [2669(E) Vo (E). (3.7)

This formula is exact and describes in principle all types
of resonances with all possible shapes.®

The second distinct idea in the eigenchannel method
is the use of the scattering eigenchannels to define
“natural boundary conditions” for applying the
R-matrix theory of nuclear reactions. The principle
behind the method (we discuss the practical details
below) is straightforward: in the usual R-matrix
procedure, one generates solutions X, with energy FEy
of the complete Hamiltonian H obeying fixed boundary
conditions (logarithmic derivatives) b, at each channel
radius @.. The eigenchannel method poses an iteration
loop: an assumed S-matrix at energy E yields the
boundary conditions b, at r=a, in all open channels;
in general, no one of the E, is equal to E. The assumed
S-matrix is then changed, and the loop repeated until
for one E, we have E=E,. This, in effect, determines
the S-matrix precisely at the energy E, and hence
the eigenchannel method represents an alternative (numeri-
cal) procedure to direct integration of the Hamiltonian.

Our main interest lies in employing the eigenchannel
method as a technique for treating the shell model in
the continuum. For this we make the basic assumptions

¢ A more detailed discussion of the S-matrix, and especially of
the R-matrix, expressed in terms of eigenphases and eigenchannels
was given by Biedenharn, et al. (1963).

that:

(i) The nuclear Hamiltonian H is written as the sum
of a one-particle operator %(¢) and a residual two-body
interaction H'

H=Hy+H', (3.8a)

where

A 4
Ho= X h(i)= 2 [t(4)+v()].

t=1 =1

(3.8b)

Here #(7) is the kinetic energy operator of ith nucleon,
and v(7) is a suitable shell-model potential. [The %4(%)
should be chosen as (localized) Hartree-Fock po-
tentials. ] Since the shell-model potential is a potential
of finite depth, %(%) has both a discrete and a continuous
spectrum. The residual interaction H’ in principle
would have the form

A A
H'= % V(i,j)— X (),

i<j i=1

(3.8c)

where the v(4, ) are the true two-body nucleon-nucleon
residual interaction potentials. We shall, however,
employ less general forms, namely, the schematic delta
function interaction.

(ii) Itis assumed that all potentials are zero beyond a
separation distance a;, (=channel radius) of any two
fragments (except, of course, for the centrifugal and
Coulomb potentials).

(iii) The problem of spurious states arising from the
lack of translational invariance (common to all current
treatments of the shell model in the continuum) is
neglected. [It is known from bound-state calculations
that the spurious (center of mass) states in mirror
nuclei have T=0 and occur at an excitation energy of
roughly 6-8 MeV. Since we are interested mainly in the
T'=1 states and in the energy region above ~15 MeV,
no appreciable error arises here in our neglect of the
spurious states. |

(iv) The calculations are to be carried out in a
truncated Hilbert space. The actual calculations which
we shall discuss in this article have considered only
shell-model configurations of the 1p-1i-type. One-
nucleon scattering and exchange processes, as well as
photo- and electronuclear reactions can be treated
within this limitation of the basis space. As is usual,
photon channels are introduced by a perturbation
procedure.

Having sketched the basic ideas underlying the
eigenchannel method let us now turn to the task of
filling in the details. To do so we must specify the
nuclear Hamiltonian on which the states of the internal
region are to be based. As is customary in nuclear
structure, we base this construction on the shell model.
We shall see below that there are characteristic ad-
vantages in the eigenchannel procedure as contrasted
to the shell model in the continuum based on Dirac’s



approach (cf. Mahaux and Weidenmiiller, 1969) and
to the coupled channels approach (discussed below).

The ground state of the closed shell 4-nucleon system
has quantum numbers J7=0%, and its wave function
is taken to be a determinant of single-particle functions
which should be calculated by means of the usual
Hartree-Fock equations. It is assumed that the A4
particles occupy the lowest 4 levels of the self-consistent
potential. The energy of the highest occupied single-
particle level of the nuclear ground state defines the
Fermi surface. The levels below the Fermi surface will
be called unexcited states, while single-particle levels
above the Fermi surface will be referred to as excited
states.

The self-consistent Hartree-Fock equations for the
wave functions of the unexcited states can be written
in the form

[T1+ Vur Jba(r1) = €ata(r1), (3.9)

where ¢, is the single-particle energy, 7; the kinetic
energy operator, and Vur the potential energy operator.
The arguments of the functions denote the space, spin,
and isospin coordinates of a particle. Explicitly we have

Varde(r1) = Vo(71)ba(r1)

—f dfg(](fl, 72)¢a(72), (3. 10)

where

VWﬁ=§fmwwanmmmx<&n>

mmm=§wmwmmwm.wu>

The quantity V(r, r;) is the effective two-body inter-
action. The states ¢; in Egs. (3.11) and (3.12) are
themselves eigenfunctions of Eq. (3.9) and the sums
are taken over the A unexcited levels which are all
occupied in the nuclear ground state. Suppose now that
the Equations above have been solved self-consistently
for the ¢, so that the potential Vur may be evaluated.
This potential can then be used to define other single-
particle functions which are not necessarily restricted
to be below the Fermi surface. In general, then we have

[T+ VarJoy(7) =eypy (7). (3.13)

The set of functions {¢,} includes the unexcited states
determined from the Hartree-Fock equations and also
the excited states which are solutions of Eq. (3.13)
and represent bound or unbound single-particle levels
not occupied in the nuclear ground state. All the wave
functions for the unbound single-particle states are
assumed to satisfy the same boundary conditions at the
channel radii (this will be discussed in more detail);
hence the extended group of functions ¢, can be
chosen to form an orthonormal set and we assume that
this set is complete.
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The quantum numbers labelling a single-particle
state consist of the energy and angular momentum
eigenvalues together with the isospin projection. For
unexcited and excited states we write y= (e, I, j, m, 7),
respectively, where [ is the orbital angular momentum,
j=1£1/2 is the total angular momentum, and m is
the z projection of j. The quantity 7 is the z projection
of isospin of a nucleon and is +1/2 for a proton and
—1/2 for a neutron. Explicit forms for the wave func-
tions are

Dy(r)= )‘Z (fiie/7) (&4, 7) (I\sp I]m>

X{ VA (r)} Xs#X . (3.14)

From Eq. (3.13) and the orthonormality of the single-
particle functions, one obtains

&by =& | T |¥)+&" | Var|v).  (3.15)

Using Egs. (3.11) and (3.12) one may write this
expression in the form '

&by =" | T |7v)

+ 2 [l Viva)- el Vien)], (3.16)

where
@|T|j)=1 dre#(r)Te;(r), (3.17)
(@ | V| kl)y= [ dry drsp*(r1)e;*(r2)
XV (ry, ra)pr(ri)da(r2).  (3.18)

(Note that the energy of the nuclear ground state is
given by

Ea= 3 [l | T]a)

a=1

N

+1

al:

3 {{ad | V] )—{ad’ | V] da)}]) (3.19)

I

The sums over « or &’ in Egs. (3.16) and (3.19) refer
only to the unexcited states.

Our basic approximation for the dipole resonance
states of the 4-nucleon system is to represent them by
linear combinations of particle-hole wave functions.
This implies that each component of the approximate
total wave function may be written as a determinant of
single-particle functions in which one particle occupies
an excited state above the Fermi surface, while all the
other nucleons are in unexcited states. This clearly
determines a hole state of the core nucleus with (4—1)
nucleons. (We are assuming, of course, that the excita-
tion of a particle above the Fermi surface does not
greatly alter the effective single-particle potential
Var, so that the particles in the core nucleus can still
be regarded as occupying the unexcited basis states ¢ar.)

A hole state of the core nucleus with (4—1) particles
is defined in terms of the quantum numbers of the
missing particle. It is customary at this point to
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transcribe these equations into the language of second
quantization, but this is of no particular usefulness for
the eigenchannel method and will be omitted. (See,
however, Sec. ITII.C.)

Consider now the problem of defining the shell-model
(Hartree-Fock) basis functions in the continuum. It is
essential, for computational reasons, to ‘‘discretize”
the system, and there are almost as many prescriptions
as there are authors. One may, for example, use the
Weyl eigendifferentials, i.e., simply replace “strips”
of the continuum by points, as has been done by Bloch
and Gillet (1965; see also Gillet and Bloch, 1965).

In the eigenchannel approach, the continuum is
made discrete by applying the natural boundary
conditions at a radius of nuclear dimensions (the
dimensions of the internal region of Wigner’s R-matrix
theory).

In order to carry out this step in detail, it is first
necessary to recouple the Hartree-Fock functions
(above) into the j—j form. Second, we shall now use
explicitly the simplification of a contact (delta func-
tion) residual force (see Sec. IV.B). This yields the
residual interaction energy matrix

Vaemror= (Vo/4m) (— )*V[(2L+1) (21+1)
X (2L'+1) (2r+1) (21+1)(27+1) (2I'+1) (27" +1) ]
X > >, (LI00 | AO)(L'P00 | AO)gs™ (25+1)

[L % 1] (L' % I']
Xll 3 J !l' 3 7t
L

o0
Xf ULTUnh L e Unre? 2 A7, (3.20)
0

where U,. and Ups, are the radial functions of the
particles and holes respectively [these radial functions
are defined similar to the f;,() in Eq. (3.14)]. The
exchange terms are

(3.20a)
(3.20D)

gO"I = (2 - 671' )aO'_ 361'7'047;
gl"l == 617’00_!_ (2+511’ )aa-

Here ao and a, are the strengths of the direct and spin-
dependent parts of the residual forces. The last step
is a truncation of the space of the Hartree-Fock basis
functions.

We now recall that the correctly normalized »th
eigenchannel wave function in the asymptotic region
(r>a) is given by

Yo "= 3 02V I we (v ), (3.21)
c

where ¢, is the channel function of channel ¢, V7 is

the »th eigenchannel (column vector of the S™ matrix),

7, denotes the relative velocity of the particle in this

channel, and
(3.22)

The ingoing and outgoing radial functions 7, and O,
were defined in Eq. (3.3). From this equation follows
that Eq. (3.22) can be rewritten in the form

w.”(r)=G,(ker) sin (87,7 —a,)
+Fc(kcr) Cos (BJT(V)—UC). (322/)

The radial parts in Eq. (3.22’) are real and the eigen-
channel functions are standing waves in all experi-
mental channels. They thus resemble a superposition of
single-particle radial functions for a real potential. The
wave numbers k. can be obtained from

kc=[2Mc(E“Qc)/k2JI/2: (3-23)

where Q, is the threshold energy in channel ¢ for a
given excitation energy E of the compound system.

Up to this point we have considered only the 1p-1%
states. Almost all calculations have been done within this
restricted basis. If one wants to enlarge the configura-
tion space, one may simply add an arbitrary number of
particle-hole or more particle-more hole states as long
as they are bound states, i.e., if their wave functions
are sufficiently small at the matching radius @, (The
question of what constitutes “sufficiently small” will
be discussed in Sec. III.I.) This would lead to an
enlargement of the Hamiltonian matrix, i.e., one
would have to add diagonal terms and potential
energy matrix elements analogous to Eq. (3.20).
The calculation of these matrix elements is the standard
problem of bound-state nuclear physics. Certain
problems of defining orthogonal functions in the
interior arise if more than one particle simultaneously
occupies states belonging to the continuum. This
point has been discussed for the case of two particles by
Danos and Greiner (1967) and Grauel (1971).

The eigenchannel procedure involves an iteration
loop. With (trial) initial values of the boundary condi-
tions at fixed energy E, specified by assuming a trial
value, say 8, for the eigenphase the single-particle
functions of the truncated basis can all be calculated.
These functions determine the energy matrix

an,n'c’ = Bnn’acc’[enc+Qc]+ Vnc.n'a’-

This matrix is now diagonalized, and one determines
the eigenvalues F)(E, §) and the eigenvectors Ay(E, ),
both implicit functions of the (trial) boundary conditions.
One now compares the energies E, of the eigenvectors
determined from diagonalizing the basis set in the
internal region with the fixed energy E used in com-
puting the boundary conditions, and closes the itera-
tion loop by changing the assumed value for the eigen-
phase 6 in Eq. (3.22a). The iteration is continued until
the energy of one of the internal solutions of Eq. (3.24)
agrees with the externally fixed energy E.

In other words, the eigenphases and eigenvectors are

w,(r)=%1 exp (—10;-®)1,—%i exp (187=7)0..

(3.24)



obtained as solutions of the transcendental consistency
equation
I[E\(E, 8)—E]=0. (3.25)

The amplitudes V/** can be determined by equating,
in the asymptotic region at r=g, the form (3.21) of
the nuclear wave function to that obtained by diago-
nalization of the nuclear Hamiltonian (3.24). The
nuclear wave function obtained in the interior space by
diagonalization will now be written as

l‘l,lr,v>= Z A l nc))(v).
Here the | #c)) denote the j—j coupled 1p-1k basis
functions. Explicitly, we have

[ne))y= 2 (=) (G I M+m—m|JM)| I M+m)*

(3.26)

X| imyn urre () e (r) | tir)* | 7). (3.27)

The index » on the particle-hole functions in Eq. (3.26)
indicates that the particle states obey the boundary
conditions of the »th eigenchannel.

Figure 2 gives an example of the behavior of E, as a
function of the phase 6. We show a plot for the 1~
states in 2C. Here E is equal to 25 MeV and at this
energy six 1~ channels are open. It is obvious from the
figure that there are six eigenphases.

-3
>
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Fic. 2. Example of the behavior of the 1~ eigenvalues (F,)
of the nuclear Hamiltonian of 2C as a function of the common
phase shift 3, which, together with the excitation energy, E, (in
this case E=25 MeV) determines the boundary conditions for
the particle states.
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Fic. 3. Energy dependence of the logarithmic derivative of
the sy radial state in a square well potential as specified in the
text.

The ‘“kinematics” of the plot (Fig. 2) is the fol-
lowing: Since the logarithmic derivative is a periodic
function of & with a period , the topology of the plot is
that of a cylinder. The eigenvalue curves are thus
interlaced helices which do not cross as they “wind
their way up.”” This is simply a consequence of Wigner’s
no-crossing theorem: At any fixed value of 6 the
problem is of the usual Sturm-Liouville type and thus,
with an overwhelming probability, the eigenvalues of
the Hamiltonian are nondegenerate. Therefore, a no-
crossing theorem holds also for the eigenphases with the
same kind of validity as for the eigenvalues of any
Hamiltonian. The number of the eigenvalue lines equals
the number of open channels, as can be seen by tracing
each line “backwards.” This is most transparent before
switching on the residual interactions. Then each
channel consists of a particle in the continuum together
with an unperturbed residual nucleus in some discrete
state. The unperturbed energy of such a system then
consists of the fixed energy of the hole state plus the
energy of the free particle, which can be read off a
plot of the type of Fig. 3 as a function of the logarithmic
derivative. Each open channel then disappears at a
particular phase shift. Switching on the residual inter-
action shifts the energies somewhat and removes the
level crossings.

Plots of the type shown in Fig. 2 may be used to
locate the position of the bound states embedded in
the continuum before the start of the phase iteration
procedure. (See Barrett and Delsanto, 1971.) As
intermediate structure in the cross section results from
the BSEC, one thus knows a priori where this structure
is likely to be found, and a considerable reduction of the
required computational effort is achieved.

As an example of the energy dependence of the
eigenphase, we consider the 170 compound system
(Fig. 4) assuming the parameters which are given in
Sec. V.A. It is obvious from the figure that in realistic
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cases the situation may become rather complex. The
“step width” used in the numerical computations is
indicated in the plot.

We have not yet discussed the choice of the matching
radius “@”. The larger one chooses @, the larger the
required numerical effort, both because the integration
value increases and because the level density at positive
energies increases. Thus, if one wants to truncate the
Hilbert space at some higher energy, one has to enlarge
the number of states. On the other hand, too small a
matching radius leads to certain inaccuracies in the
calculation. We shall discuss these points in Sec. IIL.I.

Another point concerns the difference between the
dimensionality of the Hilbert space of the outside and
inside regions. First notice that the normalizations of
Egs. (3.21) and (3.22) are different, because Eq.
(3.26) contains open as well as closed channels and the
particle radial functions are normalized to unity within
0<r<a, while (3.21) contains only the open channels,
and the radial parts are normalized to unit flux. To
obtain continuity of the nuclear wave function at r=a,
we replace [in Eq. (3.21)] in V7" by unnormalized
coefficients C,/**. By equating the modified expression
(3.21) with the expression (3.26) at r=g, and inte-
grating over all coordinates except 7, we obtain the
matching condition

v CTw (@)= 20 And ™ Ua’ (). (3.28)

Finally, the amplitudes V.7 of Eq. (3.21) are obtained
by normalization to give

Vch‘.v= Cch,v/NJT,"
Ny 2= 3 (CI™)2. (3.29)

The error involved in this step is discussed in Sec. IIL.I.

22 23 24 25 26 27 28 29 30
E (MeV)

D. The Coupled-Channel Method and the Random
Phase Approximation

The Hartree-Fock approximation for the single-
particle motion is also the basis for these two closely
related approaches to nuclear scattering theory. Both
approaches have the added advantage of providing a
self-consistent treatment. As has been emphasized by
Villars (1967), the average field that scatters the
incident nucleon turns out to be (or is believed to be)
the Hartree-Fock potential, which in turnis deter-
mined by the same nuclear (two-body) interactions
that lead to the formation of the bound and resonant
states. )

It is most economical to begin with Eq. (3.14), and
transcribe it into the language of second quantization.
Denote the Hartree-Fock orbitals by

oy(r)={r|7);

Fermion operators, a,* and a,, (satisfying the usual
anticommutation relations) will be defined as those
which create or destroy the states denoted by the index
v, which expressed more completely, denotes nijmr.
The state obtained by filling the lowest 4 orbitals will
be denoted by | g)=ma,* | 0), which plays the role of
the Hartree-Fock vacuum. It is at this point that the
two approaches differ in a minor way: in the coupled-
channels method (Buck and Hill, 1967; Marangoni and
Saruis, 1967, 1969) the continuum is made discrete by
imposing fixed boundary conditions at a “large”
radius. The random phase approximation (RPA)
procedure (Lemmer and Veneroni, 1968; Dietrich and
Hara, 1968; Hahne and Dover, 1969) works directly
with the continuum by letting the index v (more
precisely #) have both a discrete and continuous range.

Although it is standard to adapt the notation to

(3.30)



accord with the state | g) as the “vacuum,” it proves
simpler for the work to follow not to define a separate
“hole” creation operator. [In angular momentum
coupling, involving destruction operators (hole opera-
tors), a it is necessary to adjoin the phase (— )+
denoted by (— )]

The Hartree-Fock Hamiltonian, defined on the basis
{(x|v)}, then takes the usual form

H=3 (| T|j)aite;
%

+3 > (7| V| kaitaitaar.

15kl

(3.31)

[The matrix elements have been defined in Egs.
(3.17) and (3.18).] In this language a typical particle-
hole excitation of the A-particle system can be repre-
sented in the form

lpr h»Ela,ﬁ)Edaf"dﬁ[g)- (332)

Since this state in general does not have sharp angular
momentum, it is useful to couple the two operators
[aatXag]s™M. In a fully explicit, but tiresome, notation
these particle-hole creation operators are given by

AMIM; (nljr)o(n'V5'n 1]
= Z (— )a(]‘]‘lmml I JM)anljmr+an’l’j'm'1'- (3 . 33)

For brevity this operator will be denoted by 4 s+ (ph).
Note that there are an infinity of these particle-hole
operators and that » may have a continuum part.

The objective is now to construct an approximate
eigenfunction of H in the space of these particle-hole
operators. The most direct procedure would be to
construct a general linear combination over this space,

that is,
Bt= 3 far Aot (p, k), (3.34)

and to determine the variables, f,s}, by requiring that
the state vectors

[N=F*|g) (3.35)

be an approximate eigenfunction of H having energy Ej.
Since the operator H does not preserve the number of
particle-hole pairs, one cannot require that H | \)—
Eyx | \), but rather only the weaker condition resulting
from projection onto the particle-hole space; ex-
plicitly

(8| A(TM; ph)HFx* | g)=Ex(g| AFx* | g). (3.36)

This requirement leads to an infinite set of algebraic
equations for the coefficients f,»*. These equations are
actually of almost no interest since the scattering
problem does not directly concern states [\), but
rather deals with the asymptotic properties of the
particle wave functions ia configuration space.

Thus a change of representation is desirable; the
most useful representation is a mixed one treating the

BARRETT ET AL.

Eigenchannel Method for Nuclear Reactions 57

particle states in coordinate space, but leaving the hole
states in occupation number space. The appropriate
changes are easily accomplished. The particle creation
operator becomes

aljmf+(r) = Z Rnljr (7)anljmr+; (3 . 37)

the particle-hole creation operator accordingly becomes
A*(TM; (nhjr)p(n'Vj'c )= 22 (=)
mm/

X (jj,mml | ]M)alfmf+(r)al’j'm'r’ (T). (3.38)

Just as before we seek the most general linear combina-
tion over this 1p—~1% space to define approximate eigen-
functions; the required form is now

Bxt= 3 fal(r)Asut (ph). (3.39)

This (compressed) notation is rather vague; to be fully
explicit let us write this as

FrNJM)= 3 [P drf D\, (nhjn)s(n'V5'n' )]

liynt U §!
XAY(ITM; (nljr), (V5’7" ). (3.40)

This formidable appearing operator has a simple
physical interpretation: the state vector Fy* | g) con-
sists of a linear combination of all possible particle-hole
systems having sharp J and M, and (as will be shown)
the total energy E. The function f(---), above, plays
the role of a particle radial wave function for each
allowed p—% system of the vector | ). More accurately,
it is the projected function f(-++) which is the effective
(particle) radial wave function, since the antisymmetry
of the operator {a,} automatically projects out all
components in Fxt which are common to the ground
state | g).
The projected function ¢(--+) is then

o[\, T, (rlgr)p (W57 1= [ (r')? dr'[(r—7") /7]

—pii(r, V)N T, () p(n'V5' e s '], (3.41)

where

pli(’; r,)E Z Rnlj(r)Rnlj(7"). (342)

n € occ

It remains now to derive the integrodifferential equa-
tions satisfied by ¢,. This is accomplished by projecting
the energy eigenvalue equation onto the 1p-1% subspace,
as indicated earlier. Using the operator A[JM, (nlj1),,
(w'l'§'7' )], denoted by A, to accomplish this projec-
tion, we have the equation

(| AHF\ | g)=Ex(g| AF\|g).  (3.43)

The reduction of this equation is simple in principle, but
tedious; this reduction uses the result

(¢l aata Hastan | g)
—_ eur°°°ea{°°"( 1— eaocc) (l_eaocc)
X {8a%0a*[E(g)+E(e')—E(a)]

+{ad |V |[a]l)}. (3.44)
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The notation is
@BV [[v])=(aB |V [v5)—{aB |V |sv)
ea‘m:c'E 1

=0

if @ € occupied state
if not

E(a)=energy of HF orbital a
E(g)=3 X [T(a)+E(a)]

@ € oce
Introducing this result into the eigenvalue equation, we
find that—aside from the interaction matrix element
(ad | V | [[&/a]])—the delta functions are sufficient to
yield a simple result

[Ei—E(g)—E(e/)—Hur]
X¢[]7 >‘; (ﬂl]'T)z,, (n,lljl'r,)h]= W¢; (345)

where W is the interaction term given below. Here
Hypr denotes the Hartree-Fock Hamiltonian, Eq.
(3.31), in the coordinate representation.

The interaction term is rather complicated, largely as
a result of the fact that the interaction matrix element
has not been put in a form in which the angular momen-
tum restrictions are explicit. This interaction term has
the form

W= 32 (=)= (jj'mm’ | TM) (jj'mm’ | TM)
Xf(\ T, (nljr)p, (n'F5'7")n)
X (nlgr | 7){r | nljr)
X €ar°%qr°(1—€,°%) (1—€,2®) {a’ | V | /) (3.46)

[the sum is over (mm'n), (rnljm), (#'l'j'm’)]. The
structure of this integrodifferential equation for ¢
is clear: ¢y obeys the Hartree-Fock differential operator
appropriate to an orbital function with the effective
energy [Ex— E(g)— E(hole) ], with, however, an inter-
action term W which is an integral operator. The radial
function, fj, in this integral operator is projected [by
(1—e€,°) ] into ¢ ; similarly there is a second projection
operator acting on the other (particle) variable a.
The net result of the (1p-1%) approach (the Tamm-
Dancoff approximation) is to yield effectively one-
particle equations; the desired channel wave functions
must be obtained by integration, and from the asymp-
totic behavior the scattering properties are obtained for
each channel. These technical considerations are
standard, and can be discussed equally well in the eigen-
channel procedure.

This (TDA) eigenvalue equation for the effective
radial wave functions is very complicated; in practice
no solution has yet been attempted without gross
approximation. In the work of Buck and Hill (1967),
who were among the first to derive and apply Eq.
(3.45), the following approximations were made:

(a) The two-body interaction V (¢, j) was schema-
tized by a contact (delta function) interaction;
(b) The exchange terms [the terms (indicated by

the [ T) introduced by the Pauli principle in both Vir
and in W] were omitted’; and

(c) The (nonlocal) Hartree-Fock potential Vur was
approximated by a local interaction.

It is necessary to mention that in the derivation of
Eq. (3.45) above, the orbitals were defined relative to a
fixed origin. This has the effect of neglecting the center
of mass restriction (spoils translational invariance) and
introduces spurious states. As argued earlier, this
limitation is not too serious for the 7'=1 states con-
sidered by Buck and Hill (as well as the work reported
below). One other approximation used by Buck and
Hill should be mentioned: the term Vur was not only
taken to be local, but also to be a complex (optical)
potential. This heuristic approach was necessary in
order to obtain widths of the proper (experimentally
observed) size.

Let us sketch briefly the ideas behind the random
phase approximation, which extends the (1p-1k)
treatment given above. The essential idea is that the
operators Fy, which, acting on |g), generated the
approximate eigenstates | \), are to be generalized to
destroy, as well as create, particle-hole pairs

Fxt— 30 [ fo Aot (ph) — gt Asa (ph) .

Correspondingly, the ground state | g) is generalized to
the state | o) defined by

F, I l//0>=0-

The new ground state thus contains particle-hole
states; expressed differently, | yo) contains long-range
correlations generated by the “backward going graphs.”
Lemmer and Veneroni (1968) have given an elegant
derivation of the coupled integrodifferential equations
(not, however, in the angular momentum representa-
tion) for f» and g*; we shall not go into this further,
since these formidable equations have, to date, not been
applied numerically.

One particularly nice feature of the work of Lemmer
and Veneroni is that they discuss in detail the applica-
tion of their equations to the schematic model of Brown,
et al. (1966) and show how the continuum contributions
effectively renormalize the particle-hole matrix ele-
ments between bound pairs.

E. Particle-Particle Reaction Cross Sections

In this section we give the expressions of angular
distributions, partial, and total cross sections for
particle-particle reactions in terms of the eigenphases

7 For negative parity states in 60 (the case considered by Buck
and Hill (1967) only the occupied 1sy/» level would contribute to
the error in this approximation. This level lies at ~—35 MeV,
and, according to Buck and Hill, would cause no serious error.
In fact, in Fig. 13(b) we show that the effect of approximation
(b) consists mainly in an energy shift of the giant resonance.
This has been verified in a simplified case in the calculations of
Raynal, ef al., (1967). Approximations (a) and (b) were not
made in the calculation.



and the eigenvectors of the S-matrix. We closely follow
the treatment of Blatt and Biedenharn (1952). Let us
first recapitulate the case of elastic scattering of a single
spinless particle by a central force (potential scat-
tering). There the particle cross section do is

do=|f(¢) | d2, (3.47)
with the following scattering amplitude:
F@)=imhR 3 (2012
1=0
X[1—exp (2i8:) JV1o(8). (3.48)

Here §; are the scattering phases which here are simply
the eigenphases of the one-dimensional S-matrices, one
for each angular momentum /, and X denotes the wave-
length of the scattering particle. By applying the
addition theorem for spherical harmonics, one obtains

do/dQ2=2%2 Y BrPr(cosd), (3.49)
L=0
with
© +L
Br=3 > (24+1)(2r41)[(r00 | LO)P
1=0 U/=|1~L|
X sin §; sin 6r cos (8:—dr). (3.50)
Then the integrated cross section is given by
00=41l'>\2Bo. (351)

The cross sections can be readily calculated if the
eigenphases (scattering phases) of the S matrices are
known. In the general case of interacting channels,
the cross section is given by an analogous expression
which, besides the eigenphases, also contains the
amplitudes V.®.

In deriving the cross-section formulas for the general
case, we need a wave function in which the N orthogonal
eigenchannel functions, (3.21) and (3.26), respectively,
have been superposed in such a way that they asymp-
totically represent an incoming plane wave plus out-
going spherical waves. For well-known reasons it is
advantageous to do this in the channel spin representa-
tion. Thus we introduce the channel spin s by coupling
the spin ss4 of the scattering nucleon to the target
spin I

brv= T (=)o (T uto o | su)
X | I pto)*|3e). (3.52)

The channel spin then can be coupled to the angular
momentum / of the particle to give the spin J of the
compound system (for sake of notational simplicity
we will, in the following, drop the parity index =)

YorMt= 2, (Is M—pp | IMW*Yi—_u(R). (3.53)

If the internal function of the (4 —1) system is denoted
by ¢r, the basis functions (3.27) can be rewritten in the

BARRETT ET AL. Eigenchannel Method for Nuclear Reactions 59
form
| ne))= 2 krai’YnMorrun(r),  (3.54)
where
kam,J= (_ )s+1+r'+-l[(2j+ 1 ) (ZS-I-I)]”Z
s I %
X . (3.54b)
it J

The recoupling coefficients K fulfill the orthogonality
relations
> Krai? Krag? =8;p,

ZKIaljJKIs'lszass'- (3.55)
7

The different possible particle cross sections are defined
by an experimental situation in which an incoming wave
exists only in one experimental channel, and outgoing
waves exist in all channels. The situation can be charac-
terized by the quantum numbers Isu. Here p is the
projection of the channel spin s. Asymptotically, for
large 7, the properly normalized wave function which
describes the process is given by

Y=0,"12 exp (tke2)¥r*'**¢1
+ (t/ker) 20 07010, 170w (B, @)1
Isp

X exp (tkr)Yrtdr. (3.56)

By expanding the incident particle wave in terms of
asymptotic eigenchannel functions (3.21), one obtains
for the scattering amplitude

01,8".[,3,‘“: Z Z E ,’:ll—lwll2(2l/+1)l/2

J W m
X (Ismu | Jm~+p) (Vs'Ou' | Tu')
x[311’633'6”’_SIsl,I’S’l'J]YI"L*(l’; ‘P), (3'57)

where 87 denotes the SY matrix in the channel spin
representation

S5’ =2 Kpovi? S Kray?,
it
and the dependence of S..’/ on the eigenchannel parame-
ters 6 and V7 can be seen from Eq. (3.7). The partial
cross section for the reaction I's’—Is follows from
do’I,,[rsl/dQ= [xﬂ/ (25’+ 1 )]
X Z l ahu.l's'y’ (1}, §0) IZ. (359)
pp!

(3.58)

Using the proper statistical weights, one obtains, for a
process where the channel spin is not observed,

d0'11r= E E(28/+1)/(25A,+1)(21,+1)]d0'h,1’s’-

(3.60)

Inserting Egs. (3.7), (3.57), (3.58), and (3.59) in
Eq. (3.60) and expanding the angular distribution in
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terms of Legendre polynomials, one finally obtains
dorrr A2
e  (2s4/+1)(2I'+1)

Am!,
X > X Ba(Is, I's")Pa(cos &),

A=0 38/

(3.61)

where s4’=% and

S Bus, I's)= 3 T (27141) (272+1)

a8/ J1J 2 viva

X sin 67,%7 sin 67,¢? cos (85,90 —68,,0?)
XTA(I, ]1V1,J2V2)TA(I/,]1V1,]21/2) (362)
Ta(I, Jn, Jor) = (— )12 37 3 ghthh

L l2j2
X[(2h+1) (2+1) (23+1) (27,+1) ]2
X (hl00 | AOYW (J1J 2 j1j2; AT)

XW(lllzjl]Z, A%) Vcljl” V02J2v2. (3 N 63)

The sums over »; and v, go independently over all
eigenvectors of the S-matrix. Equation (3.61) gives
the angular distribution for a process I'L'+'—ILr,
i.e., it gives the elastic scattering cross sections and the
various particle-particle reaction cross sections.

By integrating Eq. (3.61) over the solid angle, one
obtains

s Th2(2T+1)
orr =
= & s/ +1) (2I'+1)
X 22 | drrbuwrdip— Seer” |2

7oug

(3.64)

Summing over the final target states leads to the total
cross section for the bombardment of an initial target
state I'L'7’

Y Y B I')
(2sa+1) 20+ 1) f 5 0 )

22
T A2+ 5
2mA 2
= 2 1
@@y & H
X Y [1— X (VJ7)2 cos 26,97].
lj v

o=

2 (U+1) E [1—Re Se.7],

(3.65)

F. Calculation of the Photonuclear Cross Sections

As mentioned earlier, the photon channels can be
treated by perturbation methods. Thus, photon emis-
sion and absorption processes are described as transi-
tions between, say, the ground state of a nucleus and a
particular eigenchannel state. A transition involving a
linear combination of eigenchannel states, e.g., the
process ¥O(y, P;)N, is then described by a suitable
superposition of the matrix elements for these eigen-

channels. Thus, we want to compute
ox= (2n/h)pr(2mhiwe?/c) | D 2 (3.66)

for the absorption cross section. Here, the subscripts ==
refer to the photon polarization and, specializing to
electric dipole transitions,

D= (4m/3)"(f | 1V | ), (3.67)

where the state | f) is, say, an eigenchannel state of the
form (3.2). In Eqs. (3.66) and (3.67) the density of the
final states pr and the normalization of the final-state
wave function | f) must be defined together in a con-
sistent manner. We do this by using the eigendifferen-
tial method of Weyl. According to that method a
continuum state is made normalizable to unity by
integration over a finite but small energy interval AE.
We shall denote such a state by | f). Then the density
of states is simply

pr=1/AE. (3.68)

As long as AE is very small the radial wave function is
modified only at very large radii. Thus the modification
of the wave function needed for convergence of the
normalization integral is confined to extremely large 7,
say to #>b, so that all calculations for the matrix
elements and the diverse matchings to be discussed can
be performed with the nonmodified form of the wave
function. In the asymptotic region, but before the
Weyl modifications set in, the final-state wave function
has the form
D= 1N=N"T o Vawe(r)}fc  r<b (3.69)
which, differs from Eq. (3.21) only in having the
normalization constant N.
For the Weyl function we introduce the notation
E+AE
Bo(r) =W, f dEw(r).  (3.70)
B
Here the normalization constant W, is chosen such that
for the nonmodified region of the Weyl function there
holds
W (r)=w,(r) for r<b. (3.71)

Then | f) goes over to | f) upon replacing w, by @, in
Eq. (3.69). The normalization condition for the wave
function Eq. (3.69) thus becomes

(71 Hy=N=23 v (V) i, | ®e)=1,

This completes the general formulation. We now go on
to the details. We begin with Eq. (3.70). In the region
r=b, the function w.(r) already has the completely
asymptotic form w,(7) = sin (ksr=+3—3%Ir)/r. The addi-
tion of the logarithmic Coulomb phase in the case of
charged particles is of no importance in the present
context. We therefore can do the matching of Eq.
(3.71) using this asymptotic form of w.(r). This then
leads to the equation

Wo= M/ (vi2k) = 1/AE.

(3.72)

(3.73)



Here M .q is the reduced mass, and we have used the
abbreviation ¥y=AE My.q/(%?%?). It has the physical
meaning of defining the energy interval of the integra-
tion in Eq. (3.70) in terms of the momentum variable,
i.e., if the limits of the integration are %, and k,, then
ke=Fk1(1+~). With Eq. (3.8) we have for the nor-
malization of the Weyl functions

@, | Wo)= (wk*h?/2Mrea) (1/AE). (3.74)

Finally, we obtain for the over-all normalization
constant

N2=1x#2(1/AE). (3.75)

We now turn to the detailed form of the matrix ele-
ment (3.67). Because of the normalization (3.71), the
matrix element computed with the Weyl function
| F) is the same as that computed with the unmodified
function |f). Thus we can insert Eq. (3.69) into
Eq. (3.67) or, more precisely, the equivalent inside
solution Eq. (3.26) supplemented with the normaliza-
tion constant (NN,,)~. Here N, accounts for the
different normalization of the eigenchannel functions
for r<a and 7> a and is given by Eq. (3.29). This way
we finally obtain for the total dipole absorption cross
section

oy =4a*(¢*/hc) (hw) 2 | D, [, (3.76)

where, using the wave function (3.26), the matrix
element D, is given by

D,, — (4#/3)112[%1I'7L Z (CGJV)2]—1/2

X7 | 1V | 9).

We now turn to some examples of partial cross sections.
We begin with the differential cross section of a process
leading to a final state specified by 7. Writing ¢y’ for a
wave function (3.26) in which the summation over 7
has been omitted, and introducing the notation

‘//I= E Dl’ 1’

(3.77)

(3.78)

we have for the differential cross section

dor/dQ ey Myr= ZA: W1 | Palyr)Pa. (3.79)

For the coefficients of the angular distribution we obtain
qWr | Pa|yr)=m(e*/hc) (fiw)
X222 X cos (-"—8-0")

s Uy Ujtvt
X VD,V ™ (= ) HOR[3(2A+1) (25+1)
X (27'4-1) (204-1) (2/'4-1) T2 (00 | AO)
X314 (—)AJ(A101 | 11) (2541)W (I'sAL; 10)
XW (Isjl; $1)W (Vs5'T; 13).  (3.80)
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The constant g converts the angular distribution (3.79)
into an absolute cross section. The summation over the
channel spin s can be performed explicitly. This way the
product of three Racah coefficients in Eq. (3.80)
reduces to a product of two Racah coefficients. Inte-
grating over the solid angle we have, for the partial
cross section,

J(do/dQ) da=4mq 1 | Po | ¥1)

=4m?(e?/hc) (hw)
X 2| X exp (=) V™D, I

v

(3.81)

G. Nuclear Structure Information

The aim of any calculation of a reaction cross section
is to provide access to the nuclear interior. The experi-
ment can only give the integrated cross section and the
angular distributions associated with a particular
resonance. The extraction of nuclear information re-
quires a theory. Therefore the computation of the
observable cross sections is only the first step. The
payoff comes when the theory yields nuclear informa-
tion which is not accessible to direct observation.
Quantities of this kind are, e.g., spectroscopic factors,
configuration mixtures, correlations, etc. In the
analysis of photonuclear reactions the customary
quantities of interest are the configuration mixture
and the isospin purity of the states. In bound-state
calculations the configuration mixture is a well defined
quantity, and the calculations are usually performed
assuming isospin purity for the states. The problem of
defining a quantity analogous to the configuration
mixture when the continuum is included has been in-
vestigated by Barrett and Delsanto (1971). We shall
follow closely their treatment. The question of the
determination of the isospin purity in the continuum
has been clarified in great detail by Robson (1965).
We shall make only some brief remarks about this
problem after discussing the configuration mixing.

In a bound-state calculation, a diagonalization of the
shell-model Hamiltonian is performed on a basis of
particle-hole configurations. After diagonalization, an
eigenstate | v) of the Hamiltonian is represented by a
mixture of the basis configurations | ¢z ), i.e.,

| v)= 2 Xew* | cn), (3.82)
c,n

where X.,” is the amplitude of the basis state | cn),
¢ represents all quantum numbers except the radial
quantum number, and thus characterizes a configura-
tion and # is the radial quantum number. In general,
the states |») are non-degenerate; that is, no two
energy eigenvalues, E,, coincide.

The contribution of a given configuration ¢ to the
state | ») can be regarded as 3., X.,”* where we have
> > Xe=1 due to the normalization of the wave
function |»). The contribution of a configuration to
different states can be meaningfully compared because
the basis wave functions | cn) are the same for all states
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| »). Consequently one can immediately compute the
contribution of a certain configuration of a state
|») to any matrix element. Thus, for example, the
dipole strength of the state | ») is proportional to the
square of the dipole matrix element between the ground
state | 2) and the state |»); i.e., the dipole strength
of |v)
=G| D]i)]

= | = X en | D i) P, (3.83)
where D is the dipole operator.

In the continuum two complications arise. First,
for NV open channels the states are N-fold degenerate.
One therefore must first specify a classification scheme
to “break” this degeneracy. Each of these so classified
states will have a different configuration mixture.
Since we are here interested in the photonuclear process,
we specify the classification by asking for the configura-
tion mixture of the dipole state.

The second problem is associated with the usual
continuum problem of normalization, which here has
been resolved by discretization. In the eigenchannel
theory this leads to the specific difficulty that the
basis states of the different eigenchannels are different
as they obey different boundary conditions, and one
must consider all eigenchannels together since, in
general, they all contribute to the dipole state.

This difficulty can be resolved as follows: Consider
the 1p-1k basis state wave functions [see Eq. (3.27)].

| nana; jaja, TM))= 32 (=) 4 jo jaM+m —m | TM)

X | (laSa)jaM+m>*[ (lASA)jAm>’a——l
UnAlaja(ra)rA-‘lUnAlA].A(’A)

X | 7am,®)* | TamA).  (3.84)

(Uppercase subscripts or superscripts refer to particles;
lower-case subscripts or superscripts refer to holes.
The kets containing 7 characterize the charge of the
nucleon, and # is the radial quantum number.)

A variation of the boundary conditions at the
matching radius results in a different radial wave func-
tion for the particle, i.e., 747U, 24 ja(r4) is different
for different eigenchannels. The angular part of the
particle wave function, represented by | (lusa)jam)
in Eq. (3.84) is, however, unchanged. The basis state
wave functions are orthogonal. The orthogonality
between different branches of the same configuration,
i.e., between states | #4%4; 7, j4; JM )) which differ only
by the quantum number #,4 arises from the fact that
the radial wave function U, l4 j4(74) is an eigenfunc-
tion of the radial Schrédinger equation solved in the
inner region with the boundary conditions of the »th
eigenchannel applied at the matching radius. The
orthogonality between configurations; i.e., where any
quantum number other than n4 differs, arises from the
inherent orthogonality of the single-particle and

single-hole angular wave functions | (JaS4)jam),
| (¢aSa)jaM~+m)* and the single-hole radial wave func-
tions. This orthogonality is independent of the boundary
conditions applied at the matching radius.

If we simplify the nomenclature as before by letting ¢
represent all quantum numbers except 74, and letting
represent n4, we have the 1p-1# basis wave function
in the form | ¢n*). The v indicates the dependence of
| en”) upon the boundary conditions of the »th eigen-
channel. From the arguments of the last paragraph,
we have
(3.85)

The dipole cross section at a specific excitation energy is
given in the eigenchannel theory by

o=4n*(e*/fic)hw 3 | D, %,

©n | en’)=0cy {cn™ | cw’).

(3.86)

where
D,= (§w)[hwh T (Co )T n
X 2 Xt lew | r9rVipa | 1), (3.87)

The normalization of the basis wave functions to unity
inside the matching radius is arbitrary. Hence a
renormalization must be introduced to normalize the
eigenvector of the S-matrix to unit flux. This is repre-
sented by the factor ). (Cer)? in Eq. (3.87).

Let us define a vector

| M@)=D, > Xon | cn®). (3.88)
Comparing Eq. (3.86) with Eq. (3.82) we could choose
> n X to be the percentage contribution of the
configuration ¢ to the eigenchannel | »), and

ce=4m(e/hic)hio S (Mo | M) (3.89)
the total contribution of a configuration ¢ to the cross
section o at a given energy. Then we have o= ), o..
For this to be a meaningful definition, we must show
that > .| X |? is independent of the change of basis
produced by the changing boundary conditions at the
matching radius.
We have
| M)/ Dy= 3" X | cn”). (3.90)
We change the basis |cn’) to another complete set
| ¢'n'”) describing the same space by changing the
boundary conditions to those of the »’th eigenchannel
| M)/ D= 3 Xulc'n™ |cn)|c'n'") (3.91)
¢/n'n

= 2 [Z Xenlen™ | ew) ] en'). (3.92)

X'cw, the equivalent of x,, on the new basis is thus
given by

X'ow= 2 Xenlen™ | cn*). (3.93)



Similarly we have
(M |/Dv= > Xew*lem? | em’” Yem'” | (3.94)
m,m!

2| Xen P= (M | M7)/Dy?

= Z Z ch cm*<cmv l cm”')

nn! mm/

X en' | ew Y (em'™ | en’")

= Z,: [ Xenlen™ | en”)]
X[ Xem*{em” | cn'")
= 2| Xl

>n| Xen |2 is thus independent of any change in the
basis produced by the changing boundary conditions
at the matching radius, and we are justified in using
Eq. (3.89) to calculate the configuration mixing in the
eigenchannel theory.

We now turn to the question of the isospin purity.
As has been pointed out by Robson (1965) the main
source of isospin impurities is the external mixing. [A
corollary to that is that the nuclear bound states should
have very pure isospin. This has been borne out by
model calculations (Bohr, et al., 1967; Mohan, et al.,
1971).7] The central problem in turning this qualitative
statement into a quantitative theorem lies in the im-
possibility of making an unambiguous separation of the
space into an inside region and an outside region. This
circumstance has no effect on the calculation of cross
sections, etc., so long as the separation radius has been
chosen sufficiently large, i.e., large enough to ensure that
the wave function in the outside region has achieved
its asymptotic form with sufficient accuracy. For exam-
ple, except for computational difficulties, one could
let the matching radius become very large, say, 50
times the nuclear radius. This option is not available
if one wants to retain the physically very valuable
Robson concept of external vs internal isospin mixing.
In other words, the Robson classification changes the
separation radius from an intermediate mathematical
parameter into an important physical quantity. One
now must make a deliberate compromise: too small a
separation radius would include too much of the region
in which the particles tunnel through their respective
barriers (this difference of the barriers experienced by
the protons and neutrons is the source of the external
mixing).

In fact, taking all channel radii to be the same, the
isospin impurity of the internal region in general in-
creases monotonically with increasing separation radius
before reaching its asymptotic value; i.e., it does not
have a plateau. Therefore one must be guided by
general arguments in choosing a particular value for the
separation radius. In an eigenchannel calculation one is
thus free to choose the separation radius to be equal to
the matching radius in so far as one in general tries to

(3.95)
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use as small a matching radius as possible. Nevertheless,
one has to remember the ambiguity of this choice.

As a result of this choice, one now can simply evaluate
the expectation value of the operator T* for any eigen-
channel state by integrating over the internal region.
The same can be done for a linear combination of eigen-
channel states, corresponding to different experimental
conditions. For example, one may be interested in the
linear combination which describes the dipole state, or
that which describes the, say, proton scattering experi-
ment. One must here remember that there will be cross
terms between the different participating eigenchannels.
This is a consequence of the fact that the Hamiltonian
does not commute with T, since it contains the Coulomb
potential, and that the boundary conditions are not T°
invariant, since they are different for protons and
neutrons. In fact, this difference of the boundary condi-
tions is precisely the mechanism by which the external
mixing influences the internal nuclear wave function.

H. Related Numerical Treatments of the Shell
Model in the Continuum

One of the first of these calculations was that of
Lemmer and Shakin (1964), who treated the problem
of elastic neutron scattering on N. There are several
reasons why this problem is of theoretical interest.
First there is the simplification that one has to deal
with only one type of particle, namely, neutrons, which
reduces the number of 1p-1% configurations. Second,
one populates only T'=1 states, so it is reasonable to
expect that there will be no complications from spurious
center of mass states. Third, the lowest thresholds
in N are those for neutron emission and not a emis-
sion as in 0.

The treatment of Lemmer and Shakin was based on
Feshbach’s projection operator formalism (cf. Fesh-
bach, 1958, 1960, 1962; Feshbach, et al., 1965; Kerman,
1965; Friedman and Feshbach, 1968). This formalism,
as also the formal theory of MacDonald (1964), has
the advantage of displaying to a certain extent the
structure of the S matrix and emphasizing the dy-
namical origin of the resonances (in terms of closed
channels).

The projection operator P was defined to project
onto the elastic channels described as combinations
of standing wave eigenfunctions determined from
potential scattering and ground-state target functions
(1p12-hole functions). Within this approximation, the
antisymmetrization requirement, which is a source of
difficulty in the Feshbach treatment, did not cause any
complication.

The complementary projection operator Q was
assumed to project onto channels belonging to excited
target states (1psp-hole states). Here, the single-
particle functions were taken directly from the har-
monic oscillator model. Thus, the inelastic channels
were treated as closed channels. What is more im-
portant, however, is the simplifying assumption that



64  REVIEWS OF MODERN PHysICs + JANUARY 1973

was made for the residual interaction, namely that it
acts only between the inelastic-channel configurations
and does not couple the elastic channels.

Due to the coupling between the scattering func-
tions and the perturbed 1 particle-1(1ps;-hole) con-
figurations, relatively narrow resonances are produced
in the elastic scattering in addition to the ds» potential
scattering resonance. The omission of any coupling
between the open channels became necessary, because
this coupling makes difficult the application of the
formal theories of the shell model in the continuum
and requires the introduction of some heuristic ap-
proximation scheme. A more . reliable, numerically
testable approximation scheme was suggested by Bloch
and Gillet (1965). Their aim was to extend the diago-
nalization method used for discrete configurations to
scattering problems. The formal theory of nuclear
reactions which they applied is essentially Dirac’s
model, a method developed in more detail by Fano
for atomic problems, and applied by Weidenmiiller
(cf. Mahaux and Weidenmiiller, 1969), among others,
to nuclear reactions. The basic idea is the introduction
of two kinds of orthogonal subspaces depending
on whether all nucleons are in bound states or whether
one is in a continuum state, and the use of this basis for
expanding the solution of the Schrddinger equation.
Introducing the formal expansion into the Schrédinger
equation, one obtains a system of coupled integral
equations for ‘the energy dependent expansion coeffi-
cients. It becomes essential to study the singularities
of the energy-dependent coefficients, since they deter-
mine the asymptotic behavior of the wave functions,
and therefore of the S-matrix.

Bloch and Gillet then eliminated the continuum
problem by replacing the energy variable in the con-
tinuum by a discrete summation. This approximation
forces the coupled integral equations into the form of
systems of linear equations. This method has been used
by Gillet, Melkanoff, and Raynal (1967) for a realistic
calculation of the photo disintegration of O within the
1p-1h approximation, and also for studying the effect
of incorporating 2p-2k configurations. Raynal, Mel-
kanoff, and Sawada (1968) have performed extensive
test calculations for the example O in which they
compared the method with the coupled-channel pro-
cedure. They obtained excellent agreement when the
number of integral equations was not too large. This
gives confidence in both the iteration procedure used in
the solution of the coupled equations and in the
discretization of the continuous variable. Because of
the existence of a narrow single-particle resonance in the
ds3j2 channel, one has to use a small step width for the
discretization in the vicinity of the ds;, resonances.

In this context one should also mention the work of
Balashov, et al., who treated the photoabsorption process
in %0 as well as the N(un,# )N reaction. Their
formalism is based on the Lippmann-Schwinger equa-
tion and the introduction of separable integral opera-
tors. Little is known about the accuracy of this method.

Numerical work on the N(#,#')"N reaction has
been carried out by the Heidelberg group (Ebenhah,
et al., 1967a, b). This work is based upon the formal
investigations of the shell model in the continuum
developed by Weidenmiiller (1966a, b, 1967) and his
collaborators (Dietrich and Weidenmiiller, 1966;
Hiifner, et al., 1967; Mahaux and Weidenmiiller, 1967).
A comprehensive and very informative account of this
theory has been given by Weidenmiiller and Mahaux
(1969) in their monograph.

The application to the elastic and inelastic scattering
of neutrons on ¥N was carried out by Ebenhdh, et al.
(1967a, b) and by Glockle, et al. (1967). The residual
force used was of zero range and had a Soper-type
exchange mixture. A comparison between the resonance
energies and the energy eigenvalues of a corresponding
bound-state calculation shows that the energies of the
two calculations differ by up to several 100 keV. This
difference arises from several sources. First, the bound-
state single-particle wave functions are not exactly the
same. Second, the coupling between the bound states
embedded in the continuum and the continuum itself
introduces energy shifts. Finally, the interaction
between the different open channels also leads to a
shift. Thus, a bound-state calculation can give the
resonance energies, at best, within a few hundred
kiloelectronvolts. Beyond that, partial widths, in
general, can be obtained also only with very poor
accuracy from a bound-state calculation.

Buck and Hill (1967) reformulated the scattering
problem in terms of a system of coupled integro-
differential equations. (We have discussed the details
of this method above.) They applied their method to a
numerical calculation of the %0 T'=1, 1~ states. As
the widths of the resonances they obtained were
much too narrow, in order to remove this difficulty,
they introduced in the (diagonal) Hartree-Fock
potential a purely imaginary absorption potential.
This had the desired effect of increasing the widths and
lowering the peaks. The agreement between their best
calculated curves cross sections and the experimental
data can be viewed as satisfactory, although not out-
standing.

I. Sources of Inaccuracies of the Eigenchannel
and their Treatment

The eigenchannel method was derived in order to
remove one of the basic difficulties inherent in the
R-matrix theory, namely, the lack of uniform con-
vergence of the nuclear wave function. The eigenchannel
method certainly overcomes this difficulty; not only is
the wave function smooth across the boundary of the
interior region, but also the S-matrix itself reduces to a
single term (if but one channel is open) or to only
those eigenphases which are rapidly changing in the
case of many channel scattering. (It is exceptional if
just one eigenphase moves rapidly; if so, however, the
eigenchannel method reduces to a single term.)



The relevant question is, however; what is the
price for this advance? The major disadvantage of the
method lies in the fact that maeny diagonalizations are
required to achieve a self-consistent solution at any
given energy. This is to be contrasted to the R-matrix
approach, which achieves an approximation to the
S-matrix involving but a single diagonalization at each
energy. This is quite definitely a disadvantage for the
eigenchannel approach.

Weidenmiiller and Mahaux (1968) have recently
discussed in a very detailed way the pros and cons of the
R-matrix vs eigenchannel procedures. They drew
special attention to the fact that in both the R-matrix
and eigenchannel procedures, the use of (true) shell-
model bound-state eigenfunctions (with the boundary
condition y—0 at — ) and of shell-model eigenfunc-
tions discretized by fixed boundary conditions leads to
nonorthogonality and to redundant (cf. Danos and
Greiner, 1967) state functions. In the R-matrix
approach, these difficulties are not serious, in that one
may avoid the problem by choosing negative values for
the boundary parameters, b,. In the eigenchannel
approach, this option is unavailable since the boundary
conditions are zof arbitrary. [In fact, spurious structure
in all the early eigenchannel calculations (Wahsweiler,
et al., 1966, 1968; Delsanto, ef al., 1967) was associated
with this nonorthogonality.] A second important
criticism is that, because of the energy dependence of
the natural boundary conditions, the truncated
Hilbert space has different properties at different
energies. (This would not occur if, instead of truncating,
the full Hilbert space were used. The point is that at
different energies the functions have different radial
dependence, and the net overlap with the true wave
function may vary.) It was the conclusion of Weiden-
miiller and Mahaux, that these difficulties of the eigen-
channel procedure might be serious, and might cause
spurious energy dependence (spurious wiggles or
spurious resonances). We shall discuss each of these
difficulties in turn below, along with the other problems
of a technical nature that arose during the calculations.

Let us consider first the question of the proper choice
of the “matching radii,” @, which determines the
joining of the internal region onto the external,
asymptotic region. These radii serve to discretize the
continuum (open-channel) energy spectrum; clearly
the level spacing decreases as the matching radius
increases. On the other hand, the internal region must
be large enough to validate the asymptotic joining
condition; this latter requirement includes the condition
that no channel coupling via the residual interactions
occurs outside the internal region.

Since the hole wave functions are asymptotically
proportional to exp {— | & | 7}, their decay between the
nuclear and matching radii a. can be easily estimated.
Choosing @.=12 F, one obtains an amplitude ratio
less than 0.002 for the least bound hole in 0. Thus the
hole function can be normalized to unity inside the
matching radius without any sizeable error and, more-
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over, the effect of the channel coupling will be negligible
in the vicinity of the matching radius. The Hilbert
space of functions over which we expand in the internal
region is an implicit function of the matching radius,
as was pointed out by Weidenmiiller and Mahaux.
This question has been answered numerically for the
present calculations; and it has been found that in the
case of four radial quantum states per channel an
increase of 1 fm in the matching radii led to a change in
the eigenphases of less than 0.3° (Rabie, 1970). The
effect on the cross section is thus negligible.

The next question concerns the truncation of the
Hilbert space for positive energy states. Using an
exactly solvable two-channel model, one may estimate
the convergence of the cross section with respect to
the number of radial states (Delsanto, et al., 1969).
Asymptotically it was found that the error was propor-
tional to €, 2 in the limit of large radial quantum
numbers. Thus the convergence for large quantum
numbers is quite satisfactory. For small radial quantum
numbers, however, the convergence is not very fast and
even fluctuates. We have, however, found no indication
that spurious wiggles or spurious resonances result from
this cause. In the simplified two-channel model this
truncation gave rise only to a resonance shift as can be
seen from Fig. 5. We would like to emphasize that a
similar effect (a resonance shift only) was seen in the
R-matrix calculations of Buttle (1967). In our final
calculations, we used six radial states per channel for
12C, five for 0, and four for #Ca.

We turn now to the problem of the nonorthogonality
of the single-particle basis states belonging to different
boundary conditions—one of the main problems men-
tioned above. There are two different effects we may
single out as resulting from the nonorthogonality. The
first is the existence of cross terms in the energy
expectation values—this will be discussed shortly;
the second effect concerns the requirement that the
scattering channel wave function be orthogonal to all
occupied shell-model basis states of the same channel
(recall that the shell model boundary conditions are:
vanishing at 7= ). Our way of solving this problem is
closely related to the way in which the negative energy
single-particle states are treated; let us then discuss the
construction of radial single particle states in more
detail. ;

Figure 3 shows the logarithmic derivative of a radial
single-particle function versus energy. A given boundary
condition (vertical axis) defines a horizontal line,
whose intersections yield the eigenvalues of the single-
particle energy ex. In the region of negative energies the
curve is (see figure) essentially a parabola, except for
very narrow intervals in the vicinity of the shell-model
bound-state energies. Radial eigenfunctions defined by
a given boundary condition are, apart from states
belonging to the above intervals, of the form

Uno(r)=(2 | ko | )2 exp {| ko | (r—a)};  (3.96)

i.e., they are practically zero over the whole nuclear



66  REVIEWS OF MODERN PHYVSICS « JANUARY 1973

Otot,1

i

nt .

10¢

— E(MeV)

F1c. 5. E.C. results for a simple two-channel model compared
to the exact solution (Delsanto, ef al., 1969) (full line). The E.C.
calculations were performed with various numbers of radial
states per channel; the different symbols represent 44, @6,
X7, O9 radial states. The channel coupling was relatively strong
(typical matrix elements ~5 MeV).

volume, and finite only in a small range close to r=a.
The behavior expressed in (3.96) gives rise to the
parabola in Fig. 3 at negative energies, since | k| ~
(e l)e.

On the other hand, the radial hole functions under
the integral in Eq. (3.20) represent bound shell-model
states which are concentrated inside the nuclear
volume and become extremely small at »=a for reason-
ably large values of a. Thus, low-lying basis states in
the expansion of the scattering functions

fr= 2 An"Upc® ()

n

(3.97)

will practically not be admixed to the nuclear wave
function, except if they “‘almost coincide” with a shell-
model bound state.

The question which now must be answered is:
which of the “almost coinciding” bound states of the
basis set can be replaced by the bound shell-model
states. This question is equivalent to the question of the
orthogonality of the bound basis set states to the posi-
tive energy shell-model states. (If the orthogonality
requirement is fulfilled, then the completeness of the
retained set of states is guaranteed. This can be seen
immediately when remembering - that both sets, i.e.

the shell model states and the basis states, form com-
plete sets of states.) The orthogonality would be exact
for a—. For finite ¢ the overlap integral can be
estimated in the following manner. The shell-model
bound state falls off exponentially with a characteristic
length (| € |)¥/2. The behavior of an “almost coinciding”
bound basis state is similar except for small region
around r=ga where it has a component which grows
exponentially with the same characteristic length. The
nonorthogonality thus has two contributions; first, the
omission of the integral for 7> a (the basis set function
is equal to zero in the outside region), and second, the
overlap integral of the continuum function with the
rising exponential for 7 < a. Both of these integrals are of
the order y(a)Ar« exp (—a|.€|?) | |2 This can
be made arbitrarily small by choosing a sufficiently
large value for g, or, given a value for @, replacing the
expansion states by the shell-model states only for
€< Emin; 1.€., by using the expansion states down to a
cutoff energy Emin<0. The first numerical calculations
using the eigenchannel method (Wahsweiler, et al.,
1968; Delsanto, et al., 1967) were partly in error
because of an improper choice of the cutoff energy.
The choice Enin=0 was made for convenience, but this
is not acceptable for a matching radius equal, or
smaller than 12 F. This error led to a spurious struc-
ture (“wiggles”) in the numerical results for 1°0 in the
region between 22 and 23 MeV. It was found in check
calculations performed by Rabie (1970) that these
erroneous results are eliminated when using a larger
matching radius (increased from 12 to 17 F), or (in a
separate calculation) when using a lower cutoff energy
(Emin=—15 MeV rather than Eni,=0) with ¢=12F,
No noticeable difference in the calculated results was
observed when the minimum energy was increased
from Epin=—15 MeV to Enin=—12 MeV. Figure 6
shows the results that were obtained with the increased
matching radius. (For completeness, we should state
that the increased radius decreased the energy spacing
so that the number of radial states per channel was
increased from 4 to 6 to compensate for this change.)

Let us turn now to the problem, also resulting from
the nonorthogonality, of the cross terms in the energy
matrices.

The energy expectation value will then contain
cross terms of the type

(det [¥*(1)2(2) - - ¢4 (4) | ; V(i,5) |

X det [¥®(1)¢1(2)- - -pa1(A4)]), (3.98)

where y®, ¢® are the nonorthogonal functions, and the
¢; denote the hole states with ¢; different from ¢4.
These states can be assumed to differ in their Jjr values.
The expression (3.98) can be rewritten as follows:

@(1)9a(2) | V[ [¥* (1) (2)])+ G© | @)
X 2 (#:(1)9a(2) | V| [6:(1)a(2)T)-  (3.99)



Here ¢ runs from 2 to (4—1), but can clearly be ex-
tended from 1 to 4 without altering the value of
(3.99). Introducing the HF field (3.10) into the second
term of (3.99) yields

WD | ¢®)(pa | Vur | ¢1).

If Vur is interpreted as a local spherical potential
(closed-shell nuclei), this matrix element vanishes.
Moreover, for the same reason, the shell-model part H,
of the nuclear Hamiltonian can contribute no off-
diagonal terms to the energy matrix.

Since the first term in (3.99) is the usual residual
force matrix element expected from the conventional
particle-hole formalism, the nuclear eigenvalue problem
of the 1p~1k E.C. (eigenchannel) treatment resembles
that of the conventional 1p-1% calculations, provided
the shell-model potentials of the hole states are chosen
in such a manner that they can be interpreted as local
HF potentials.

A discussion of the numerical accuracy of the eigen-
channel method would be incomplete without sketching
the precise way in which the single particle eigen-
energies are calculated. The eigenchannel method, as
applied in the present numerical treatment, actually
involves two distinct search procedures: (a) the search
(iteration loop) for the eigenphases, and (b) the
search procedure for determining radial states obeying
given boundary conditions. This latter search requires
much computer time and must be optimized or avoided
if possible. In both procedures the code has been con-
siderably improved over the original versions used in
earlier calculations. To optimize the second search,
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_F16. 6. Dependence of the E.C. photoabsorption cross sec-
tion in %0 on the matching radius, if emin is put equal to zero;
dashed curve: a=12 fm; solid curve: a=17 fm. (Note: F is used
to denote Fermi in text.)
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interpolation formulas for the ambiguous functions

e=funct (b,) (3.101)
were stored. These formulas, however, must be ex-
tremely accurate near bound states (above the Fermi
surface), since there may occur large amplitudes
(3.26): thus,
And™ U, may become sizeable at the matching
radius, because of the exponentially increasing part in
#ne. A slight error in e, could affect (3.26) and via
(3.21) the eigenvectors of the S-matrix. In the actual
calculations, the error in e,, was below 2 keV for
positive energies, and below 10 keV for negative energies
(but considerably less close to bound states).

Before concluding, we wish to add that at the end of
both search procedures a certain test of the accuracy
of the calculation is provided by the explicit calculation
of the scalar products

A”, — Z VcJ‘r,v‘Vch,v/'

c

(3.102)

These should be zero for v#»’ because of the unitarity
of the S7* matrix. In our calculations they were always
less than 0.01, a quite satisfactory result. However, the
formulae for the computation of the diverse cross
sections in terms of the S-matrix are derived under the
assumption that the S-matrix is indeed unitary; i.e.,
that the eigenchannels indeed form an orthogonal set.
It is therefore advantageous to orthogonalize the eigen-
channels so as not to introduce spurious, unnecessary
inaccuracies. Naturally, the orthogonalized S-matrix is
not more accurate than the original S-matrix; however,
it is a proper S-matrix. The rationale thus is the same
as that which one employs in renormalizing a wave
function after admixing some configurations by a per-
turbation treatment, which, as is well known, does not
preserve the normalization.

The procedure used to obtain an exactly unitary
S-matrix was to introduce the K-matrix

S= (1+iK)1(1—iK), (3.103)

which, in terms of the eigenchannels, is given by

Kee?*=— > V™% tan 85,0V 77, (3.104)

A diagonalization of this approximate K™ matrix leads
to orthogonalized eigenphases 8., and eigenvectors
Vcnr.v_

IV. APPLICATIONS OF THE REACTION
THEORIES

In this section we review briefly the experimental
situation and the bound-state calculations, and discuss
the available continuum calculations against this
background. We concentrate mainly on the calcula-
tions using the eigenchannel and coupled-channel
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methods. Some of the eigenchannel results have not
been published previously.

A. Giant Dipole Resonance in ?C; Experiment and
Bound-State Calculations

The range of nuclear excitation, E,, of interest in the
excitation of 1~ states in C runs from the proton
threshold at 15.96 MeV up to 30 MeV. Since the
(v, pn) threshold is at 27.4 MeV, and the (v, 2z)
threshold is at 31.8 MeV, there is some justification in
restricting oneself to the treatment of one-nucleon
reactions. Then the only threshold in the range
16 MeV<E,<30 MeV is the neutron threshold at
18.72 MeV.

The major experimental information comes from
photonuclear reactions (Firk, et al., 1962; Danos and
Fuller, 1965; Verbinsky and Courtney, 1965; Cook,
et al., 1966; Fultz, et al., 1966; Lochstet and Stephens,
1966; Frederick and Sherik, 1968; Wu, ef al., 1968),
UB(p, v)2C (Allas, et al., 1964) and inelastic electron

scattering experiments. (Dodge and Barber, 1962a;
Goldmann and Spamer, 1970). Experiments on the total
photodisintegration process have been performed by
Shevchenko and Yuden (1965) and by Wyckoff,
et al. (1965).

The experiments indicate two characteristic features,
namely (i) a main peak centered at 22.8 MeV which
seems to be composed of at least three components,
and (ii) a substantial peak on the high energy side of the
dipole resonance at 25.5 MeV which again shows
indications of some substructure. To illustrate we show
Figs. 7(a) and 7(b) (Cook, et al., 1966 and Frederick
and Sherik, 1968, respectively). The first figure shows
the analysis of a (v,#) bremsstrahlung yield curve,
together with the relative (v, #) yield found by Firk,
et al., (1962). The second figure shows a (v, p) brems-
strahlung result together with the inverse “B(p, v,)
cross section (cf. Allas, et al., 1964).

The photoproton cross section looks smoother than
the photoneutron cross section, in spite of the fact that
the effective resolution of the (v, p) experiment is 300



BARRETT ET AL. Eigenchannel Method for Nuclear Reactions

69
| )
60 SN a)Vinh - May and Brown
€ 40} 5
o ] \
< ! L
g J k% ‘V
w20 F .
Fan K o
\‘-f¢'~
0 20 25 30 35
E, (MeV)
e b) Nilsson et al.
N
60} ':' '
S ; \
S ot S
Fic. 8. Theoretical distributions of the ¢ ’ N,
dipole oscillator strengths in 2C com- & 20} / .
pared with the experimental results of - 7 Seee-
Allas, ef al. (1964). (a) Spherical 1p-1k TN I
basis (Vinh-Mau and Brown, 1962); (b) 0 \ I | . ,
permanently deformed potential 16 20 25 30 35
(Nilsson, et al., 1972); (c) microscopic . . Ey(MeV)
treatment of coupled dipole oscillations S, ¢) Kamimura et al.
and quadrupole vibrations (Kamimura, 60 '.’ .
et al., 1967); (d) particle-hole dipole : .
states are coupled to surface phonons I K |
(Drechsel, et al., 1967). i— 40} ! s
i) 3 oL
< , P
& . e’ ~
‘7) 204 , . .
ol N 1 1. l I —ad
0 .
20 25 3 35 Ex (MeV)
o~ d) Drechsel et al.
o} I
3 S
! ; [
o ‘ ]
P3 ‘4 [}
s ’:' VL. .
w 20} R
0 N I L . 1 l
20 25 30

keV i.e., finer than the spacing of the structure on top of
the main (v, #) peak in Fig. 7(a) (which is 800 keV).
Also, the (v, p) cross section has a peak at 22.5 MeV
where there is a dip in the (7, #) cross section.

The good agreement between the two experimental
results depicted in Fig. 7(b) indicates that the con-
tribution of nonground state protons in the (v, p)
result is less than 109, above 22.5 MeV, except from
24 to 25 MeV. On the other hand, the (v, #) result of
Firk, et al. [Fig. 7(a)] resembles closely the 6=90°

35 £ (Mev)

differential (v, n,) cross section found by Wu, et al.
(1968). Thus the most characteristic differences in the
shape of the photoneutron and photoproton cross
sections are not due to nonground state transitions, but
have already shown up in the ground-state transitions,
and are normally interpreted in terms of isospin
mixing (Hayward, 1964). The problem, however, is
not yet solved. The photonuclear process also shows fine
structure having 200 keV spacing on top of the 25 MeV
peak and on the low energy side of the main resonance.
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TasLE I. Comparison of [o dE in several energy intervals with the predictions of various calculations.

1p-1k
Bound-state Nilsson Kamimura Drechsel
Energy range Experiment? description® et al. et al. et al.
(MeV) (%) (%) (%) (%) (%)
16-25 47 74 57 53 69
25-30 29 0 21 22 15
30-40 24 26 22 25 16

a We refer to Cook, et al. (1966).

b The results of Vinh-Mau and Brown (1962) and Gillet and Vinh-Mau (1964) agree up to +1%,.

¢ Here we have replaced the limit 25 MeV by 24 MeV.

One particle-one hole shell-model calculations in a
spherical basis were performed by Vinh-Mau and
Brown (1962) for a contact force, and by Gillet and
Vinh-Mau (1964) for a finite range force. Both results
for the 1~ T'=1 states of >C look similar, in spite of the
difference in the residual force. This is due to the fact
that the j—j coupled 1p-1% basis states remain rather
pure after diagonalization. Only two levels are obtained
which carry an essential part of the dipole strength
[cf. Fig. 8(a)]. The level at about 23 MeV exhausts the
dipole sum to 759%,. This level explains the occurrence
of the observed main giant-resonance peak. It consists
of about 95% of a (1ds21pss™!) configuration and is
shifted with respect to the unperturbed energy by 5
MeV. This results mainly from the diagonal elements
of the residual force.

The state at 34 MeV which carries 25%, of the dipole
strength contains the configuration (1p1ls157!) to
about 959, and is shifted by 4 MeV. No experimental
evidence for a sharply defined state at 34 MeV has
been found (Reay, et al., 1963).

A major insufficiency of the 1p-14 calculation is that
it does not allow any explanation of the substantial
peak observed at 25.5 MeV. Some dipole strength can
be shifted to that energy region by employing a de-
formed single-particle potential and thus removing most
of the degeneracy of the spherical model. Nilsson et al.
(1962) performed a 1p-14 calculation for a static
deformed oblate spheroid potential with the rather small
nuclear deformation 8= —0.21 [Fig. 8(b)]. Since E1
transitions to states corresponding to rotational bands
with projection quantum number K=0 and K=1 are
possible, many more transitions are involved than in
the spherical case. The main giant-resonance peak
splits into three levels at 22.2, 23.0, and 23.7 MeV.

A different approach has been taken by Kamimura,
et al. (1967) who enlarged the spherical 1p-1% basis
by adding certain 2p-2% configurations. The latter
consist of a (1pyalpss™)27=0 1p~1k pair coupled to
some other 1p—-1% pairs having 7= 1. The (1p121p3271)2F
configuration is considered as a sufficient description of
the first excited state of 2C. Thus one may consider

this treatment as a microscopic approach to the
problem of simultaneously excited dipole oscillations
and quadrupole vibrations [Fig. 8(c)].

In a more phenomenological way this problem was
treated by Drechsel, et al. (1967) [Fig. 8(d)]. They
combined the 1p-14 doorway states with the collective
quadrupole surface phonons, following closely the
treatment of dipole excitations in the collective model
where the nuclear surface is allowed to perform slow
quadrupole oscillations (Danos and Greiner, 1964;
Weber, et al., 1966). This collective description was their
guide for constructing the interaction Hamiltonian.
The level spacing for the quadrupole oscillations was
put equal to the excitation energy of the lowest 2+ state
in 2C. The amplitude Bo=[5#%/(2Bsw;)]"? of the
quadrupole oscillations was determined from the
B(E2) value to be By=0.43. Many-phonon excitations
were allowed. From a comparison with Fig. 7 the
results of Drechsel, ef al. seem to explain the structure
of the dipole giant-resonance somewhat better. How-
ever, their state at 24.5 MeV should be shifted to higher
energies by 1 MeV. Nevertheless, the full structure seen
in the (v, #) experiment (Cook, ef al., 1966) cannot be
explained by any of these more sophisticated calcula-
tions.

For a more quantitative comparison of the different
approaches we have listed in Table 1 the contributions
of three different energy intervals to the integrated
cross section.

The Table shows again that only a sophisticated
description of the nucleus leads to a fair amount of
dipole strength in the 25.5 MeV region. In addition, the
more detailed approaches give the correct mean energy
of 22.8 MeV (Allas, ef al., 1964) for the energy range
16-28.8 MeV, while the mean energy of the pure 1p-1#
description is 1 MeV too low (Kamimura, 1967).

Finally, we must mention that the computed inte-
grated photon absorption cross section of the giant
resonance exceeds the experimental value by about a
factor of 2. This together with the experimental fact
that a large fraction of the photon absorption strength
lies at energies above 40 MeV indicates that a complete



description will have to include short-range correla-
tions (Danos, 1968).
That is outside the scope of the present article.

B. The Giant Dipole Resonances of *C in a
Continuum 1p-1% Calculation

For the C nucleus, there exists a coupled-channels
calculation by Marangoni and Saruis (1967), and
eigenchannel calculations using different single-particle
potential parameters performed by Delsanto and
Wahsweiler (1970), Antony-Spies (1972), and Mshelia
(1971). We begin by discussing the eigenchannel
calculations.

As described in Sec. III, one should begin the cal-
culation by obtaining a self-consistent nonlocal Hartree—
Fock potential for the particles and holes. In practice, a
local Saxon-Woods-type potential is always used
instead. It is found that a single local potential does not
allow one to reproduce the experimental single-parti-
cle energies, or, in other words, the experimental
threshold energies. The use of such a potential thus is an
unacceptable oversimplification, and one must com-
pensate for this in some manner later. Thus, the poten-
tial is assumed to have the form

V(r)=Vep(r)=Veo(1-0)r[dp(r)/dr], (4.1)

o(r)=[1+exp {(r—Ry)/d) T (4.1a)

The parameters of Eq. (4.1a) used by Delsanto and
Wahsweiler were chosen so as to agree with electron
scattering data (cf. Elton, 1961). This leads to Ry=2.3
F and d=0.45 F. The above referred to oversimplifi-
cation was here compensated for by allowing the
parameters of Eq. (4.1) to depend on the symmetry;
i.e., on ! and j, of the state, but not on the velocity.
The strength V,, of the spin—orbit force was taken from
a fit (Buck and Hill, 1967) for the p- and d-shell
neutron levels in 0. Then the depths V. of the central
potentials for the various single-particle states in 2C
were determined in such a way that the experimental
neutron hole and particle energies (Gillet and Vinh-
Mau, 1964) were reproduced. With respect to the ds,
state this means that the single-particle resonance
occurs at 3.39 MeV. Its theoretical width turns out to
be 1 MeV, which is fairly close to the experimental

with

TasBLE II. Well parameters and single-particle energies in 12C.

State & (MeV) V. (MeV) Veo(MeV)
1ds2 3.39 94.64 5.3
25172 —1.86 88.83
1ds2 —1.10 87.07 5.3
112 —4.95 68.13 9.6
1pss —18.72 74.82 9.6
1517 —35. 68.33 v
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TasLe III. 2C 1, T'=1.

Continuum calc

Gillet
Brown E E T Experiment
(MeV) % (MeV) (MeV) (MeV) E (MeV)
18.7 6.5 17.7 17.7 0.9 18.1
22.2 75 21.9 22.2 2.1 .
23.9 0.5 24.2 245 4 25.5

value (Willis, 1958). The various well depths and the
fitted single-particle energies e are listed in Table II.

For the protons, a Coulomb potential V¢ou of a
homogeneously charged sphere of radius Ry was added
to the expression (4.1). For f waves, which contribute
to the positive parity states of 12C, the same values V.,
were used as quoted for the p waves. The strength of
the spin-orbit potential Vo, however, was chosen to
be 5.3 MeV, i.e., the same as for the d waves. The
relatively large V, values for the d shell indicate that
the values for Ry and d used here are rather small from
the point of view of a nuclear structure calculation.

The following configurations were taken into account
for both protons and neutrons in calculating the 1~
states:

1

1= dspopsis; d3jopsis S12Ps2 .

As in the calculations of Vinh-Mau and Brown (1962),
a zero-range force with Soper exchange mixture was
used

V(1,2)=—V,[0.8654+0.135 61023 (r1—72). (4.2)

The strength V, was taken as Vo=—500 MeV F3
This brings the main peak of the nuclear dipole absorp-
tion cross section to 22.2 MeV, i.e., close to the experi-
mental value 22.8 MeV.

The strength V, used in the bound state calculations
of Vinh-Mau and Brown is given by

Vo/4nb*=8.50 MeV, (4.3)

where b denotes the range parameter of the %0 har-
monic oscillator model. From elastic electron scattering,
one deduces (Elton, 1961) 5=1.76 fm. This leads to
Vo=—>582 MeV fm—2. In spite of this larger value, the
position of the giant dipole resonance obtained coin-
cides with the peak of the continuum calculation. This
results from a smaller overlap in the diagonal elements
of the residual force for the oscillator model.

Quite different Woods-Saxon potentials and a
stronger residual force were used in the coupled-channel
treatment of the photodisintegration of 2C by Maran-
goni and Saruis (1969). Their results are in qualitative
agreement with those discussed here.

A more recent eigenchannel calculation was per-
formed for 1~ states by Mshelia (1971) who used the
same single-particle potential parameters as Marangoni
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Fic. 9. The total theoretical 1~ photodisintegration cross section of C from the 1p-1% continuum calculation described here (Del-
santo and Wahsweiler, 1970).

and Saruis and included the 1si57'1p12 configuration.
His results are in excellent quantitative agreement with
those of the coupled channels calculation.

Figure 9 exhibits the result of the 1p-1% continuum
calculation for the total 1~ photo-absorption cross
section of C between 16 MeV and 30 MeV nuclear
excitation performed by Delsanto and Wahsweiler
(1970). The peak at 17.7 MeV lies below the neutron
threshold (18.72 MeV). It is almost a pure s-wave
resonance and might be identified (Donnelly, et al.,
1968) with the peak seen at 18.1 MeV in the inelastic
electron scattering experiments of Goldenberg and
Barber (1964). The theoretical total width of 0.9 MeV
does not deviate too strongly from the experimental
result. The theoretical width of 2.5 MeV for the main
peak is too small by 1 MeV [see Figs. 7(a, b)]. This is
due to the neglect of the coupling to more complicated
configurations, and the neglect of the open a-particle
channels. It also depends to some extent on the single-
particle potential parameters and residual forces used.

The ratio of dipole strengths contained in the two
peaks is about 10 in agreement with the 1p-1% result of
Vinh-Mau and Brown (1962). In Table III the posi-
tions of the 1~ T'=1 levels of the bound state and the
continuum calculations are compared with the experi-
mental result. We have included the 24.5 MeV state

of the continuum calculation (see below) whose dipole
strength is too weak to show up as a separate peak in
Fig. 9.

The area under the vy-absorption cross section from
16 to 28.8 MeV in Fig. 9 is 159 MeV-mb. The experi-
ment of Wyckoff, et al. (1965) yields about 110
MeV-mb, in good agreement with what is expected
from Cook’s (1966) (v,7) data. The nonenhanced
classical dipole sum rule gives 180 MeV-mb. The mean
energy for this energy range is 23.1 MeV, i.e., larger
than the value from the more sophisticated bound-
state treatments of the 2C compound system.

In Fig. 10, we show the contributions of the different
configurations to the dipole state obtained from the
calculation by Mshelia (1971) when the 1pylsys™
configuration was included. They were computed
according to the prescription outlined in Sec. IIL.F,
and thus represent the wave function of the compound
nucleus, the nucleus inside the matching radius. Thus
the contribution of both open and closed channels is
represented. Note also that therefore the behavior of
the wave function in the asymptotic region cannot be
read off directly as it is modified by barrier penetration
effects. For example, the (v, p)/(v,#) ratio is not
directly given by the ratio of the heights of the respec-
tive curves in Fig. 10. Information of this kind is con-



tained directly in the S-matrix, as discussed in Secs.
ITI.D and IILE.

The first observation which is made from inspection of
Fig. 10 is that it contains more structure, which is
hidden when all the contributions which yield the total
cross section are added up. This structure shows up
both in the form of peaks, and in the form of non-
Lorentzian shapes. Thus, for example, the ps;'dsp
proton configuration has a peak at 21 MeV and a peak
which is 10 times smaller at about 23 MeV, while the
shapes of the dominant pss'ds2 configurations are
different: the proton configuration has rather a Lo-
rentzian shape, while the neutron configuration has a
markedly non-Lorentzian shape. This immediately
brings up the question of isospin purity, which here
concerns the inside region. Recall however, that any
separation into inside and outside regions is somewhat
arbitrary. Statements of the isospin purity of continuum
states therefore of necessity have only qualitative
significance. Nevertheless, they can have very clear
informative value. Having made this caveat we can
proceed with the discussion.

The peak at 17.7 MeV is almost purely an s-wave
resonance. It has very pure isospin despite the fact
that it has a proton particle width of almost 1 MeV
while it lies below the neutron threshold, a very sur-
prising result. On the other hand, the p35'ds con-
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Fi6. 10. Contributions of the different 1p—1% configurations to
the dipole state in 2C (Mshelia, 1971).
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figuration shows very strong isospin breaking in the
region 19-24 MeV. This is evidently associated with the
difference of independent particle continuum reso-
nances of the ds protons and neutrons; i.e., the
differences in the spectra of H,. Thus the neutron
resonance which in the unperturbed spectrum lies at
3.4 MeV above threshold appears shifted higher by
only about 0.5 MeV. It appears to be able to “pull in”
the corresponding proton configuration only very
weakly; the resulting peak has only about 0.1 of the
neutron peak height, a rather surprising result in view
of the 17.7 MeV peak in the si»-configuration. The
converse holds for the peak at 21 MeV, which appears
only in the proton configuration.

An investigation by Mshelia (1971) of the configura-
tion mixing occurring when different single-particle
potential parameters are used, and when the 15171y
configuration is omitted reveals that the contribution of
the pss~'ds, configurations to the total cross section,
particularly in the giant-resonance region, depends
strongly on the particular parameters chosen. This
effect is not as pronounced with the other configura-
tions.

This seeming contradiction between the behavior of
the sy/2 and the dsj2 configurations can be understood as
follows: In this light nucleus, the isospin impurities
undoubtedly arise from external mixing. In the eigen-
channel formalism this manifests itself in different
boundary conditions for protons and neutrons [the
logarithmic derivative of w,, Eq. (3.22a)], can be quite
different for Coulomb functions and spherical Bessel
functions for the same value of §*. However, as long
as the proton energy does not exceed the Coulomb
barrier the influence of the boundary conditions is
attenuated by the barrier penetrability factors. This is
the case for the 17.7 MeV resonance. On the other
hand, at 22 MeV both protons and neutrons are above
the Coulomb and centrifugal barriers and differences in
boundary conditions directly induce differences in the
shapes of the radial wave functions. Consequently the
matrix elements of the residual two-body force have a
reduced value; i.e., the interaction between the protons
and neutrons is reduced. Hence we find a difference
between the 17.7 MeV region and the 22 MeV region.

The difference between the pss'ds;2 configurations
and the other configurations is further emphasized by
the fact that there exists no bound particle state for the
ds;2 configurations. The unperturbed configuration
energies and the radial wave functions of all branches
of these states depend strongly on the boundary condi-
tions, and therefore differ for neutrons and protons. The
other configurations have a bound particle state which
implies that the configuration energy and the radial
wave function of one of the important branches of all
those states remains essentially independent of the
eigenchannel boundary conditions. Isospin mixing is
thus likely to be most pronounced in the pss~'dsy
configurations.
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The p3;57'ds» configuration, the principal carrier of
the dipole strength, has a pure isospin in the region of
the peak. On the high-energy side, the isospin purity
deteriorates, evidently because of the difference
between the proton and neutron thresholds.

Finally, in the ps/s 512 configurations there seems to
be an indication of a broad peak at 24 MeV with a
width of about 4 MeV for both protons and neutrons.
Perhaps it contributes to the distortion of the shape of
the giant-resonance peak in the p3;~ds/s configuration,
and it may be also visible in the ps»*ds/» configuration.
The s1/57'p1/2 configurations contribute weakly and only
at higher excitation energies. Their strength is spread
over several MeV and does not result in a sharp peak
in the total cross section, as predicted by bound-state
calculations.

Recalling now the bound-state calculations, one
notices that essentially all their results carry over into
the continuum calculations, even though the bound-
state calculations were performed assuming exact
isospin purity. However, differences do exist on the
quantitative level. The most important difference
concerns the purity of the states: The configuration
mixing is more pronounced throughout. Thus, for
example, in the bound-state calculation, the main
giant-resonance peak contains 959, of the ps5'ds
configuration, while this peak contains only about 75%,
of this configuration in the continuum calculation.

C. Results for Other Multipole Excitations in 12C

Before we go into further details concerning the
1~ states of 2C, [i.e., discussions of the various partial
(v, n) and (v, p) cross sections and of the angular
distributions] we prefer to report on the results of a cal-
culation concerning the other angular momentum and
parity states of 2C. In contrast to the photon absorption
process, these states are important in particle reactions,
and also in the electroexcitation process.

In the calculations referred to (cf. Delsanto and
Wahsweiler, 1970; Antony-Spies, et al., 1970), the con-
figurations involving the excitation of the deep 1sy
hole were not retained since its influence on the states
in the considered energy range 16-30 MeV is likely to
be negligible, as is the case for the 1~ states. For the
additional negative parity states thus the following
neutron and proton configurations were retained:

0~ d3jepsa

2= dsjopsist, dsjopsis™, Siepse
3~ dsj2psist, dajapss™

4- dsjapass L.

The 0~ states are not excited in the lowest order in
electron scattering.

In the 1p-14 space, the positive parity states involve
“2hw” excitations. Thus sharp resonances can be
associated only with the 1py/s1p35~! configuration. That
means that the positive parity states mainly contribute

a direct reaction background only. The following states
were considered:

ot Papapast
1t Drapsis pssepsis Fsepss
2t pippss; fuspa™ Paspas forpbse

The potential and force parameters used in this calcula-
tion are those given in the preceding section.

We now turn to the transverse form factors in which
the same operators appear as in the transition matrix
elements of the photonuclear process. The definition
for the form factors used was essentially the same as
that given by de Forest and Walecka (1966). Since the
final target states are scattering states, the squares of
the form factors acquire the dimension 1/MeV.

Extensive graphs of transverse and longitudinal form
factors for inelastic electron scattering in 2C as a
function of momentum transfer and excitation energy
are found in the paper by Antony-Spies (1972).
Here, we restrict ourselves to a typical case, where the
momentum of the ingoing electron is k;=55.1 MeV/c,
and the scattering angle of the electron is =141°.
This corresponds to the kinematical data from a recent
Darmstadt experiment (Antony-Spies, et al., 1970; Gold-
man and Spamer, 1970). Then the momentum transfer,
corresponding to a nuclear excitation E,=23 MeV,
amounts to ¢g=82 MeV/c.

The momentum transfer is related to the momenta of
the incoming and outgoing electron by

@= (k2+kp—2kik; cos ). (4.4)

Through the energy interval 16 MeV< E, <30 MeV, ¢
does not vary more than =7 percent. Since E./(gc) <
[J(J+1)]2, the longitudinal form factors of the
electric transitions actually are larger than the cor-
responding transverse form factors (De Forest and
Walecka, 1966). On the other hand, we are still close
to the long wavelength limit, since ¢/ (k¢) $0.5. Thus,
in general, the longitudinal form factor shows an
energy behavior similar to the transverse one. The only
remarkable difference arises in the 1~ case, where the
transverse form factor shows an additional bump at
24.5 MeV.

The various transverse form factors as functions of
the excitation energy E, are represented in Fig. 11. The

Tasie IV. 2C 2~ T'=1.

Continuum calc

Brown Gillet Experiment

(MeV) (%) (MeV) (MeV) T (MeV)  (MeV)
18.1 6 18.2 18.2 0.3 18.12
19.2 72 19.4 19.4 0.3 19.1a:b
22.9 22 23.2 23.0 ~3

2 Goldmann and Spamer, 1970.
b deForest, 1965.
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(a)

Fic. 11. Calculated squared form
factors (in MeV~?) for inelastic electron
scattering on 2C versus the nuclear
excitation energy. The energy of the in-
coming electron is specified to be 55.1
MeV, and the scattering angle is 141°.
Excitations of the following multi-
polarities are considered: (a) 17; (b) 27;
(c) 3.

(b)

(e)

/ /B 20 22 24 26 28 30

energy dependence is in the first place due to the nuclear
wave function and is only slightly affected by the
dependence of ¢ [Eq. (4.4)] on the excitation energy E,.
From the curves of Fig. 11, one can, in principle, obtain
the required information on the position of the nuclear
levels, on the total particle escape widths, and on the
relative multipole strengths of the different levels.

The shift of dipole strength from 22.6 to 24.5 MeV
observed in Fig. 11 has been studied theoretically in a
continuum model calculation by Friar (1966). At
g=~80 MeV/c the upper level carried most of the
strength. Experimental evidence for the increasing

importance of the spin—flip mechanism at higher ¢
comes from the measurements of Goldenberg and
Barber (1964). A further increase of the momentum
transfer, however, drastically reduces the height of the
24.5 MeV state in comparison to that of the 17.8 MeV
state.

The most important 2~ resonance [Fig. 11(b)] is the
one at 19.4 MeV. For very small ¢ values, the con-
tribution of the 2~ states to the (e, ¢’) cross section is
negligible. However, at ¢g=6100 MeV/c it is already quite
large and the 19.4 MeV state should be noticeable in
the experiment. Indeed, for 65-MeV electrons, de Forest
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(1965) has observed a strong state at 19.2 MeV
which can be identified with the calculated ‘“giant
magnetic quadrupole state’” (Crannel, et al., 1967;
Buret, ef al., 1968) obtained theoretically at 19.4
MeV.

In Table IV we compare the positions of the 2= T'=1
levels for the range 16 MeV < E,<30 MeV obtained by
Vinh-Mau and Brown (1962), and by Gillet and
Vinh-Mau (1964) as well as the continuum calculation
and also quote the known experimental values.

In addition, the continuum calculation predicts
T=0 states at 16.6 MeV (I'=0.3 MeV) and 17.8
MeV (I'=0.2 MeV). These are the two lowest
2~ T=0 states. They are practically not shifted from
the unperturbed 1p-14 energies 16.9, and 17.6 MeV,
respectively. This is in accordance with the remark of
Vinh-Mau and Brown (1968) that the particle-hole
force is weak in the 7'=0 magnetic states because of
approximate compensation of the direct and exchange
matrix elements. The position of the third 2-7'=0
state should be roughly 22 MeV.

The relative weakness of the 7'=0 magnetic quadru-
pole transition reflects the isobaric spin selection rules
for these excitations (Warburton, 1966) at low momen-
tum transfer. These selection rules are due to the
approximate cancellation of the neutron and proton
magnetic moments.

In Fig. 12 we present the differential cross section
d%c/dQAE of the (e, ') reaction exciting 2~ states in 2C.
Next we turn to the 3~ states [Fig. 11(c)], for which
g~80 MeV/c. For ¢=120 MeV/¢c and E,=20 MeV,
one expects from Weisskopf estimates only a 19,
contribution to the (e, €’) cross section (de Forest,
1965). At about ¢=500 MeV/c¢ the importance of the
E3 excitations, however, strongly exceeds that of the E1
excitations (Antony—Sples 1972).

Figure 13(a) exhibits the total 3~ photoabsorptlon

cross section. The level at 20.7 MeV is T=0. There .

28 30

seems to be no strong collectivity for these octupole
states. The level positions are shown in Table V.

The total 2* photoabsorption cross section is depicted
in Fig. 13(b). The sharp peak (I'=0.3 MeV) at 17.2
MeV results from the bound 1 p1/2(1 p32) T =1 nuclear
state. The structureless increasing cross section above
18 MeV probably is too small to account for the E2
contribution expected from the measured (v, p)
angular distributions (Frederick and Sherik, 1968).

To conclude this section we present a survey of the
various integrated transverse form factors (Fig. 14).
Here the integration has been performed over E,
from 20 MeV to 26 MeV, keeping ¢ constant. Some
attention should be paid to the famous dip in the 1~
form factor for small momentum transfer, which is well
known from the work of Lewis and Walecka (1964).
It is remarkable, that in the continuum calculation this
dip appears for fixed E,, i.e., without the integration
procedure. Its occurence depends on the influence
of the spherical Bessel function jo(¢7) contained in the
transverse 1~ form factor.

Finally, we compare the sum of the various theo-
retical (e, ¢’) cross sections with the experimental data
of Goldman and Spamer, 1970) (Fig. 15). The gross
structure of the giant dipole resonance, including the
25 MeV peak, and the 19.2 MeV 2- state are nicely
reproduced.

TaBLE V. 2C 3~.

Continuum calc

Gillet Experiment
T (MeV) 9 (MeV) T (MeV) (MeV)
1 18.5 40 18.8 0.25 18.6
0 19.6 20.7 0.8 .
1 23.5 60 24.7 ~4
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F1c. 13. (a) Predicted contribution of electric octupole transitions to the total photodisintegration cross section in 2C. (b) The same
for electric quadrupole excitations.
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Momentum transfer k [frr?’]

F1c. 14. Integrated [20-26 MeV] squared transverse form
factors of 12C for different multipoles and their sum versus momen-
tum transfer. The experimental data are taken from Goldemberg
and Barber (1964) and Proca and Isabelle (1968).

D. Photonuclear Branching Ratios and Angular
Distributions in 2C

Barker and Mann (1957) deduced the following
formula for isolated states with single exit channels

o (v, £)/o(v, m)R(Pp/Pn) | (1+a0)/ (1—a0) . (4.5)

to relate the ratio of the (v, p) and the (v, #) cross
section to the relative amplitude ay of the 77=0 ad-
mixture in the 1~ wave function. Here P, and P, are the
proton and neutron penetrabilities, respectively. In
deriving Eq. (4.5) it is assumed that the transition
probabilities may be expressed in terms of reduced
widths and that the proton and neutron angular dis-

tributions are identical. This formula can also be
derived with the eigenchannel formalism (Rabie, 1970).
It has frequently been used in the analysis of experi-
ments (Segal, 1966; Wu, et al., 1968); Rabie, 1970). So,
Segel estimates ag20.06 for *C, while Wu, et al. give
a¢X0.1 except around 22.5 MeV where it reaches about
0.25.

As mentioned in Sec. IV.B a precise separation into
internal and external mixing is not possible. This
is of no importarce in computing branching ratios in a
continuum calculation. The results of the eigen-
channel calculations are here reported.

In Figs. 16(a) and 16(b) the calculated (v, p) and
(v, ») cross sections respectively are represented. The
s-wave peak at 17.7 MeV lies below the neutron
threshold and thus is seen only in the (v, p) cross
section. This s-wave resonance, however, seems to be
responsible for the slightly irregular behavior of the
(v, ») cross section just above its threshold.

A comparison of Figs. 16(a) and 16(b) with Figs.
7(a) and 7(b) shows immediately that only gross
structure appears in the calculated curves. This feature
is the same as in the case of the total cross section. Also,
the agreement between the corresponding experimental
and theoretical curves is of the same kind as in the case
of the total cross section.

Of particular interest is the ratio a(v, po)/a (v, 10).
The experimental curve for this ratio of Wu, et al.
(1968) is shown in Fig. 17(a). It is essentially flat from
very close to the (v,#) threshold on except for the
region around the giant resonance. In the flat region,
this ratio has the value =~1.6. On the other hand, the
theoretical ratio has a qualitatively different behavior
[c.f. Fig. 17(b) from the calculation of Mshelia (1971).]
First, the influence of the (v, »#) threshold is strong
and extends to rather high energies. It even seems to
delay the rise of the (v, #) cross section on the low
energy side of the giant resonance. Secondly, the
theoretical ratio continues to drop and reaches a value

c'te,e)
E,- =55,1 MeV
i 0 =141° F16. 15. Comparison of a calculated

differential cross section for inelastic
electron scattering on 2C (1=+27+3")
with data from a recent Darmstadt
experiment (Antony-Spies, e al., 1970).
The experimental results clearly indicate
the 2~ peaks which occur in the theoreti-
cal curve at 18.2 and at 19.4 MeV. The
theoretical peaks have been folded with
the energy width of the electron beams.
(A Gaussian distribution has been as-
sumed) No comparison can be done
between the absolute heights since the
experimental points only represent count-
ing rates.
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F16. 16. Calculated partial 1~ photo cross sections of 12C. Since it is assumed that single hole states can only be formed in the 1ps.
subshell, only the following partial photoreactions are possible: (a) the photoproton process leading to the ground state of B!; (b) the
photoneutron process leading to the ground state of C'%,

=1.1. This failure of the theoretical curve to reproduce model is inadequate in more ways than one would have
the experimental results is particularly surprising since guessed, and that this deficiency has to be taken
these features represent gross effects and not fine seriously. Its origin is definitely not understood at this
structure. Therefore, this discrepancy must be con- time.

sidered to be a strong clue that the 1-particle-1-hole It should be mentioned that Fig. 15 actually
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shows the ratio of the 90° differential cross sections.
But since the angular distributions remain relatively
constant above the giant resonance, as we will see below,
this is not important.

As long as only El transitions are important, the
angular distribution of the ejected nucleons is given
by

do/dQ= A 1+ a2P2(cos 6) ]. (4.6)
If the giant resonance were due to a single (dspops ;™) 1~
configuration, then we would have a;=—0.4. The
amplitudes taken from the bound-state 1p-1% calcula-
tions would yield a;=~—0.6. This is the value to which
the experimental data from the (v, o) reaction de-
crease between 19.2 MeV, where 20, and 22.4 MeV
[see Fig. 18(a)]. Between 22.4 MeV and 29 MeV
the experimental @, values remain in the range be-
tween —0.5 and —0.6, except in the vicinity of the
25-MeV peak where a» increases to —0.4. Within
a 1p-1k approximation, this would have to be explained
by a relative enhancement of the (dsppss?) 1~ con-
tribution (Frederick and Sherik, 1968). For a pure

X

dsepsst configuration, one obtains ay=+0.4. Actually
the interference terms of this configuration in the
general expression for @, are relatively small. It is the
incoherent contribution which counts.

The energy behavior of the coefficient a3 [omitted in
Eq. (4.6)] indicates that E2 transitions occur through-
out the region considered in Fig. 18(a), but contribute
only about one percent (Frederick and Sherik, 1968).
In principle M1 excitations could also occur. Restricting
ourselves to the pyapss configuration, M1 transition
strength is expected only at about 16 MeV (Vinh-Mau
and Brown, 1962). Experimentally a sharp 1t state is
observed at 15.1 MeV. Thus it seems most reasonable
to presume that the asymmetry (a;=+0.2, as~~—0.2)
observed in the experimental angular distributions is
due to E1-E2 interference.

The result of the 1p-1% continuum calculation for
the @, values in the (v, po) reaction is represented in
Fig. 18(b). In a fashion similar to the (v,#)/(v, p)
ratio, the angular distribution shows a behavior which
is qualitatively different from that of the experimental
curve in that it has clear trends with changing energy;
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Fic. 18. (a) Comparison of different experimental results (Dodge and Barber, 1962; Allas, et al., 1964; Frederick and Sherick,
1968) for the a. coefficients of the angular distributions of photoprotons from 2C. (b) The corresponding theoretical @, coefficients
assuming pure E1 transitions from the calculations of Mshelia (1971) including the s1/272p1/2 configurations. (c) The analogous theoretical

coefficents for the photoneutron process.

a, changes by a factor ~2 between 22 and 29 MeV.
In the same way, this discrepancy must be taken
seriously since the relative energy independence of a
even over regions where the absorption cross section
shows appreciable structure seems to be characteristic
for light nuclei (Allas, et al., 1964). This is not repro-
duced by the calculations.

E. Reaction Cross Section of 12C

We turn now to the nucleon-nucleus reactions.
Since “C is radioactive, only the proton induced reac-
tions have been studied experimentally. Furthermore,
we restrict ourselves to the charge-exchange reactions
UB(p, m)'C, since the Rutherford contribution to the
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F16. 19. Measured differential cross sections as a function of proton energy for the B (p, n) 11C reaction with 'C formed in its

ground state (Overley and Borches, 1965). The 0° curve is displaced from its origin by 10 mb/sr. The upper scale indicates the excita-
tion energy in 2C.
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F1c. 20. Theoretical integrated-over-angle 1B (p, ) 1C cross sections corresponding to the multipoles 0~ 1~ 2~ 3~ 4~ 0+ 1+ 2%+ and

their sum; the 1% cross section is too small to be seen in the scale used.
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scattering cross section is included in the calculation
of the S-matrices and thus a very large number of
S77-matrices would be necessary for the description of
the Rutherford scattering.

Overley and Borches (1965) performed time-of-flight
experiments for the (p, 7o) reaction which cover the
energy range 19.6 MeV<E,<26.5 MeV, ie., they
start 0.9 MeV above the neutron threshold. The
experimental excitation function is characterized by
peaks with roughly equal widths and fairly uniform
spacings. The positions of the peaks correlate with
the structure in the 'B(p, ¥)C reaction and with
some of the (v, nucleon) structure. However, there
occur 14 resonances in the (2, 7,) experiment between
19.6 and 26.5 MeV, and their widths are in general only
about 200 keV. Thus they cannot be associated with the
1p-1h states, and the result of the continuum calcula-
tion essentially can account for only the background
underlying the observed structure.

Moreover, no convergence is found in the theoretical
result for negative parities up to J=4. This indicates
that fairly large (probably up ~7-8) nuclear spins

TaBLE VI. Levels (E) and widths (T') in the range
16 MeV<E,<30 MeV from the 1p-1% continuum calculation.

T=0 T=1
J* E (MeV) T (MeV) (MeV) T (MeV)
0~ 23.8» ~3 ~24 3 ~3
1- 17.8 0.9
22.6 2.1
19,22 ~2 24.5 ~4
2- 16.6 0.3 18.2 0.3
17.8 0.2 19.4 0.4
22.62 1.2 23.0 ~3
3~ 18.8 0.25
20.7 0.8 24.7 ~4
4 20.32 0.4
2+ 17.2 0.3

2 From the 1B (p, n9) reaction.

contribute to that background. Indeed, the resonance
at E,=21.49 MeV (Overley and Borches, 1965) seems
to result from J>4, which confirms the statement on
the convergence. The J values of the numerous experi-
mental peaks could not be identified for any of these
levels.

In Fig. 19 we show the differential cross sections for
0° and 90° (laboratory angle) of the "B(p, n,) experi-
ment of Overley and Borches (1965). Contributions
from non-ground state neutrons should only be im-
portant above 21.5 MeV.

The computed integrated over angle cross section is
shown in Fig. 20. Both the contributions of the different
angular momenta and their sum are given. The 1+
cross section is too small to be seen in this scale. Clearly,
a detailed comparison with the experimental cross
section is not meaningful. Nevertheless, these various
theoretical cross sections are useful in the respect that
they supply us with information on levels which do not
show up in the photoabsorption or the (e, ¢’) reactions.
In the 0~ case, the distorted Breit-Wigner shape seems
to indicate two overlapping resonances centered
roughly at 23.8 and 24.3 MeV. One would expect the
lower one to be T=0 and the upper one to be I'=1.
The over-all width is 3.8 MeV.

For J7=1—, a T=0 level occurs at 19.2 MeV. Its

~ width is about 2 MeV. The peak associated with the

main giant resonance is shifted upward by 300 keV
and broadened by 1 MeV.

In the 2~ case, there occurs a resonance at 22.6 MeV
whose width is only 1.2 MeV. It can hardly be identified
with the broad T'=1 resonance at 23 MeV occurring in
bound-state calculations. Therefore we infer that it
results from the missing 7'=0 state.

For J*=3—, no new level occurs. However, the 24.7
MeV T=1 state is shifted upward by 0.5 MeV and is
slightly broadened.

In the 4~ case, one observes just one narrow resonance
(I'=0.4 MeV) at 20.3 MeV, which is due to the bound
d5/2p3/2_1 T=1 state.

For positive parity (J*=0%, 1+, 2%), only a smooth
direct reaction structure arises.

Summarizing our results for the (p, ) process we
state that the 1p-1% calculation yields only two reso-
nances in the 19.6-26.5 MeV range whose widths are
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less than 1 MeV. These are the 3~ state at 20.7 MeV,
and the 4~ resonance at 20.3 MeV. Thus this 1p-14
continuum calculation can certainly not explain the full
experimental structure (Fig. 19).

We collect the results of the 1p—1% continuum calcula-
tion for the level positions and the single-particle
" widths in Table VI.

F. The Giant Dipole Resonance in !0, Experiment
and Bound-State Calculations

Some of the most important thresholds in O are:

(i) single nucleon thresholds: 12.21 MeV (py2*
proton), 15.67 MeV (15 neutron), 18.35 MeV (ps2*
proton), 21.81 MeV (327! neutron);

(ii) thresholds for composite particles: 7.16 MeV
(a particle, 2Cg.4.), 20.74 (deuteron ¥N.) 22.79 MeV
(*He, 8Cq.s.);

(iii) two-particle threshold: i.e., beginning of the
double continuum: 22.95 MeV (p, #; ¥Ng.s.).

A perusal of this list shows that a 1p-1% treatment is
clearly very far removed from reality. On the other
hand, the ground state of O is presumably better
represented by a simple shell model than is that of any
other nucleus, except the 1s shell nuclei, and, perhaps,
in a certain sense, 22Pb. One therefore should view the
1p—1k calculation as a source of information concerning
the deficiencies of the 1p—14 model, and, perhaps, look
at agreements with experiment with a certain surprise.

A very large amount of experimental information on
160 has been accumulated. We shall give only a cursory
review of it here.

Figure 21 shows the measured excitation function of
Tanner, et al. (1964) for the N (p, vo) reaction at 90°,
This cross section is well established with 200 keV
resolution and, taking this into consideration, the agree-
ment with the high-resolution (v, po) results of Thomp-
son and Baglin (1969) is perfect. Their net resolution is
about 50 keV.

Wu, Firk, and Phillips (1968) performed time-of-
flight (v, 7o) measurements at 90° and compared their
result with a combination of the (p, vo) data of Tanner,
et al. (1964) and of the (v, p) data of Morrison, et al.
(1965). In contrast to the situation in 2C, the agree-
ment of (v, po) and (v, 7o) is excellent, except for the
limited energy range between 19 and 21 MeV. Therefore
Wu, et al. (1968) and Hayward 1964 concluded that in
160 the major dipole states have a high degree of isospin
purity. As is to be expected, more fine structure appears
in the cross sections of O than in those of C. One
observes a triple peak on top of the 22-MeV resonance
(Morrison, et al., 1965; Baglin, 1967; Black, et al.,
1967; Baglin and Thompson, 1969). The 23-MeV peak
shows duality. In this case the components have a
width of about 200 keV. Some of the fine structure
peaks have a width of only 40 keV or less. This seems to
indicate the influence of highly complex configurations.
It is questionable whether ¥O already has a sufficient



level density at that energy, in order for this observed
structure to be classified as statistical.

The as coefficients turn out to be in general different
from zero (Earle and Tanner, 1967; Baglin and Thomp-
son, 1969) in the energy range between 20 and 25 MeV.
Thus there must be a sizable contribution of E2 excita-
tions throughout this interval. From the (1p-1k)
calculations of the even parity states in %0 by Spicer
and Eisenberg (1965) it follows that there are about
twelve 2+-levels per MeV near the 22 MeV excitation.
This could account for some of the observed structure.
Finally, we present the results obtained by Caldwell,
et al. (1967) concerning the photon cross sections
leading to the ps2 hole states in the daughter nucleus;
i.e., to the state at 6.18 MeV in 0 and to that at
6.33 MeV in ®N (Fig. 24).

The experimental (v, p3) cross section shows no pro-
nounced structure at 19.5 MeV, but there is again the
not completely understood resonance at 21 MeV as
in Fig. 21. Between 22 and 24.5 MeV, the experi-
mental (v, p3) and (v, po) results show similar struc-
ture, except for the fact that the 23-MeV peak has
grown considerably in the (v, ps) case.

Since the inelastic neutron threshold lies in the
center of the main dipole resonance there is little to be
said about the (v, #3) cross section.

The structure seen in the less resolved result of Fig. 21
is richer than one would expect from the 1p-1% calcula-
tions. Such calculations predict the existence of two
main peaks at 22.3 MeV and at 24.3 MeV (Fig. 22).
The first state is predicted to be mainly (dsspse™)
and should carry about two-thirds of the total dipole
strength and the second state should be mainly
(dsj2p3s™) and carry about 1/3 of the dipole strength.
Indeed, Earle and Tanner (1967) confirmed from
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F1c. 23. Comparison of results for BN (p, vo) 0 (Tanner,
et al., 1964). 2C (a, vo) %0 (Larson and Spear, 1964; Suffert and
Feldman, 1967). “N (d, vo) O (Suffert, 1965). 2C (a, o’ v4.43) 2C
(Mitchell, et al., 1964), and 2C (e, #) 0 (Suffert and Feldman,
1967). [From Suffert and Feldman (1967) ].
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F16. 24. Theoretical integrated-over-angle cross section ob-
tained in the 1p—1% continuum calculation for the %0 photoproton
process leading to the ground state of 1°N. .

angular distributions of the photoprotons that in
accordance with the shell-model predictions the protons
of both levels are emitted predominantly as d waves.
In addition, the 1p-1%4 shell-model calculation yields
T=1 levels at about 14 MeV, 18 MeV, and 20 MeV,
which should be predomina.ntly (Sl/zpl/z_l), (da/gpl/g-l)
and (sy2p3571), respectively. From its angular distribu-
tion, the first state can be identified with the experi-
mental level at 13.1 MeV, and the second state can be
identified with the broad resonance at 17 MeV (I'=1.5
MeV). The 19-MeV T'=1 dipole state cannot be
uniquely identified - (Spicer, 1966) with one of the
experimental peaks in this region. Here E2 and M1
excitations seem to play an important role as is con-
cluded from (e, ¢’) experiments (Bishop and Isabelle,
1962; Barber, et al., 1963). The level at 19.1 MeV
is 2t (cf. also Earle and Tanner, 1967) and the level
at 19.5 MeV is probably 1+.

There is no certain assignment for the asymmetric
peak at 21 MeV. From the rapid variation of the a»
coefficient, Greiner (1963) concluded that this peak is
not due to one simple state.

Since the 1p-14 model is clearly inadequate, several
attempts have been made to enlarge the considered func-
tion space, i.e., to include 2p-2k configurations. Since
even in 0 there exists an unmanageably large number
of such states, a certain selection is unavoidable.
Recently the model of coupling of surface vibrations to
the giant resonance has been used as a guide. One
of the earliest calculations of this kind for *O was per-
formed by Boeker (1966). As a microscopic model for
the surface vibrations he used 1p-1% states which in LS
coupling have T=0 and S=0, and adjusted the cor-
responding excitation energies to mimic the core
polarization effects; i.e., the effects of many-particle-
many-hole excitations. Other attempts (Boeker, ef al.,
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TasLE VII. Single-particle energies and well parameters in 160.

Protons Neutrons
State & (MeV) V. (MeV) Ve (MeV) & (MeV) V. (MeV) Ve (MeV)
1d3/s 4.50 54.36 5.27 0.94 54.94 5.27
2512 —0.10 55.91 . —-3.27 56.82 ..
1dsse —0.60 54.36 5.27 —4.14 54.94 5.27
1p12 —12.11 57.95 9.89 —15.65 57.39 9.64
1p32 —18.44 57.95 9.89 —21.81 57.39 9.64

1964; Seaborn, 1969) have used a phenomenological
collective model for the surface vibrations, which were
allowed to interact with the 1p-1/ states. The spec-
trum obtained in this way is richer than the 1p-1%
spectrum, and the collective treatment of Seaborn
seems to be better correlated with the experimental
structure than Boeker’s microscopic treatment. A
recent attempt at an explanation of the %O inter-
mediate structure has been made by Wang and Shakin
(1971) involving the coupling of 3p—3% configurations
to the 1p-1/ doorway states.

A fruitful approach to the problem of collective inter-
mediate structure is to look at various experiments such
as ¥N(d, vo), 2C(a, 7o) (see Fig. 23), or ¥O(y, a),
%0 (v, *He), etc. and try to detect a connection with the
structure in the %0 photoabsorption cross section. In
this way, one can try to guess whether any peak in the
absorption cross section is due to interference of 1p-1%
configurations with a certain cluster state (or with more
particle-more-hole states).

An experiment of this kind was performed by Suffert
and Feldman (1967). They found a peak in the

a(mb)

30

20

10 |

UN(d, v,) reaction (see Fig. 21). An explanation of this
effect was given by Gillet, ef al. (1967) which we have
discussed in Sec. III.I. The (v, *He) process shows
resonances at 24.1 and 25.1 MeV, where the latter peak
should correspond to a 3He cluster state. Thus it seems
plausible that the 23-MeV peak is due to a (2p-2k)
state.

With respect to the structure at 21.7 MeV indicated
by the asymmetry in the (p, vo) excitation curve, it
should be noticed that the 2C(a, v)¥0 reaction
(Suffert and Feldman, 1967) (Fig. 23) has a strong and
narrow 1~ resonance at 21.05 MeV. Therefore it seems
suggestive to assume that quartet states (Danos and
Gillet, 1971) are responsible for the structure at 21.7
MeV. The O(y, «) measurements indicate that
quartet structure may also be evident near 25.3 MeV.

Another type of information comes from experi-
ments which measure the reactions leading to other
than the ground state of the daughter nucleus. Of
particular interest here is an experiment performed by
Caldwell, et al. (1967; Caldwell, 1967) with mono-
energetic photons produced by annihilation in flight of

17 0" ty.no)

F1G. 25. The same as in Fig. 24, but for
the photoneutron process.

L A -t

26 28 30
E (Mev)
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Fic. 27. Experimental and theoretical total photoproton cross section of 0. (a) Experiment (Denisovi et al., 1968) ; 1, cross section
(v, p0) ; 2, cross section (y, p3) ; 3, cross section (v, p1,2) for formation of ®N in the first and second excited states; 4, the sum of cross
sections 14-2=3; the dot-and-dash curve gives the cross section o, for emission of protons with energy 3.4-30 MeV. (b) Result of the

1p~1# continuum calculation.

fast positrons. They observed the deexcitation v rays
from the residual nuclei and separated the (v, pv’)
and (v, #nv’) events. By combining the (v, #y’) relative
cross section with information from earlier experiments
(Caldwell, et al., 1965), an absolute scale for the partial
cross sections integrated up to 28.7 MeV has been ob-
tained. The data of Finckh and Hegel (1961), Dodge
Barber (1962), Tanner, et al. (1965) furnished informa-
tion on the O (v, po)N reaction. In this way Caldwell
et al. (1965) found that the sum of the 3~ (ground state)
and the $— (third excited state) 0 and ¥N final state
cross sections is 78289, of the total decay cross
section integrated up to 28.7 MeV. The greatest part of

the remaining 229 of the total decay strength is split
between the O and N (3, +) doublet and the (3t)
final states. Under this aspect the omission of the
(2p—2h) configurations which would enable transitions
to the positive parity states of the mass-15 system
seems not to be dangerous.

G. The Giant Dipole Resonance of ®O in a
Continuum 1p-1% Calculation

A large number of (1p-1%) continuum calculations
for %0 have been performed (Eichler, 1964; Buck and
Hill, 1967; Raynal, et al., 1967; Wahsweiler ef al., 1968;
Weiss, 1968; Saruis and Marangoni, 1969). The results
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F1c. 28. Experimental and theoretical total photoneutron cross sections of 0. (a) Experiment (Caldwell, et al., 1965) (b) 1p-1%
continuum calculations.

of the various calculations are very similar. In the
following we discuss an eigenchannel calculation
(Delsanto, et al., 1970) in which the same potential
parameters were used as in the coupled-channel cal-
culation of Buck and Hill (1967) (but without an
imaginary part in the average nuclear potential). As
usual, the following (1p-1%) neutron and proton con-
figurations are taken into account in calculating the
160 1~ states:

1~ dspapai™: dajapays™; s1apae™;
dapaprys™; suppre

The analytical form of the self-consistent potential is
given by Eq. (4.1). The potential radius is relatively
large (Elton, 1961), namely Ry=3.09 F, ie., Ry=
- 1.25(15)13) and the diffuseness d=0.53 F (Buck and
Hill, 1967). This value for d was obtained from an
attempt to fit the position and width (90 keV) of the
d3/2 neutron resonance simultaneously with the position
of the bound 1d5,2 neutron level by varying the central
and spin-orbit depths and the diffuseness parameter.
For the proton levels the same spin-orbit force was
used as for the d-shell neutron states. Then the re-
" maining d- and s-wave central potentials were deter-
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Total photonuclear total photodisintegration cross
i sections of 0. (a) Measured
cross section data of Burgov, et al. (1963).
(b) 1~ result of the 1p-1%
100F — eigenchannel calculation continuum calculation.
-—-— Marangoni and Saruis
50+
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mined. For the p shell, a simultaneous fit for the central In the case of protons, a Coulomb potential Vgou for a
and spin—orbit potential was made separately for homogeneously charged sphere of radius R, was added
neutrons and protons. The various well depths and the to the expression (4.1).

fitted single particle energies are listed in Table VII. The two-body force was taken to be of the form (4.2);

TaBLE VIII. Comparison of the 1~ T'=1 levels of %0 with bound-state and continuum calculations.

Brown (1961) Continuum calc Experiment
Gillet (1964) Main
(MeV) %’ (MeV) (MeV) T (MeV) configuration (MeV) T' (MeV)

13.7 1 13.6 13.3 " 0.2 DrieSire 13.1 0.15°
17.6 1 8.1 17.4 0.4 Diadar 17.0 1.5
20.0 1 19.6 19.5 0.3 Darsuie 21.0, perhapse

22.2 68 22.7 21.9 1.1 Dsjads/2 22.3 0.8
25.0 29 25.4 24.3 broad Daradsz 24.3 0.8

a Tanner, ef al. (1964).
b Earle and Tanner (1967).
¢ Hayward (1964).



i.e., the same as that used for *C. Its exchange character
differs somewhat from that used by Buck and Hill
(1967). However, the same strength was used as by
Buck and Hill, with Vo= —650 MeV fm?. This value is
about 109, larger than the value that corresponds to
(4.3) which was employed by Brown, ef al. (1961).
The result of the 1p-1% continuum calculation for the
integrated-over-angle cross section of the photoproton
reaction leading to the ground state of N is presented
in Fig. 24. The analogous cross section of the photo-
neutron reaction leading to the ground state of O is
exhibited in Fig. 25.

Comparing Fig. 24 and Fig. 21 one realizes that the
general shape of the curves does not agree well. Not
only are the effects of the higher order configurations
missing, but there is also the overpronounciation of the
22-MeV peak relative to the 24.3-MeV peak in the
continuum calculation, which is disappointing. Buck
and Hill (1967) improved this ratio by introducing an
energy dependent absorptive surface potential whose
strength at the nuclear edge is about 1-MeV in the
main giant-resonance region. This was a device for
approximately taking account of the reaction channels
which were not explicitly included in the 1p-1%4 con-
tinuum calculation. Continuum calculations including
such composite particle channels are very much called
for.

In Fig. 26 we present the theoretical (v, #n3) cross
section leading to the third excited state in %0, i.e. the
§~ level at 6.18 MeV, and the corresponding (v, ps)

20+
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F16. 30. Contribution of the different 1p-14 conﬁguratlons to
the dipole state in 10.
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Fic. 31. (a) Ratio of the measured differential cross sections
Wu, et al., 1968 o (v, po) and o (v, no) at 90°. (b) The corre-
sponding theoretical result from Figs. 20 and 21.

result; i.e., the ®N($~) 6.33-MeV final-state cross
section. The total (v, ) and (v, %) cross sections are
shown in Figs. 27 and 28, respectively. The total photon
absorption cross section is shown in Fig. 29, together
with the results of the coupled channel calculation of
Saruis and Marangoni (1969). We collect the informa-
tion concerning the main peaks in Table VIII.

The level positions and widths of the present con-
tinuum calculation agree with the results of Saruis and
Marangoni (1969), except for the positions of the peaks
at 22 MeV and 24.3 MeV. These resonances are
shifted upward in Saruis and Marangoni’s results by
about 400 keV due to the partial omission of the exclu-
sion principle in that calculation. This effect can already
be observed in Fig. 12 from the theoretical study of
Raynal, ef al. (1967). The results of Saruis and Maran-
goni and of Buck and Hill (1967) differ from each other
practically only by the peak-height-reducing effect of
the absorptive potential.

The difference between the level positions of the
bound-state calculation of Brown, ef al. (1961) and the
continuum calculation (Table VIII) amounts to
(0.44-0.2) MeV only.

With respect to the s-wave resonance at 13.3 MeV,
it should be mentioned that its position and height
depend quite sensitively on the model parameters, as it
is very close to the proton threshold. Its width agrees
well with the experimental value. The corresponding
peak in the total proton-induced reaction cross section
is almost completely accounted for by the (p, ap)
process (Schardt, et al., 1952; Hebbard, 1960) which
indicates isospin mixing.

In the same way as for 2C, the individual contribu-
tions of the different configurations to the photon
absorption cross section (Fig. 30) reveal much more
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structure than is evident from both the summed curves 10
and the partial cross sections. The behavior of the ]
inside wave function is much more complex than one 73 N"(p.n)0"
notices in the asymptotic region. Perhaps the most 3 ¢ "~
£ #=0°
o(mb) ,,_. S o
;] @ N"(p,njo" S
- b
10 ! -
1 2 |
o S
w2
1 <
61 e
] T T T T T T T T T
‘ 12 14 16 18 20 22 24 26 28 30
B E (Mev)
Fic. 34. Theoretical prediction for the differential 0° cross
2 section of the N (p, #) reaction.
A Striking result is the extreme isospin impurity above
2. 14 16 18 20 22 24 26 20 30 about 21 MeV. Thus, the isospin partners of the
&™) principal configuration, dsjepss!, have, in addition to
olmb) 10 different behavior of the high-energy tails, very different

(b) peak heights. The threshold in the neutron channel
5 5 seems to have no noticeable effect. On the other hand,
o] N™p.ny)0 the same threshold has a very pronounced effect on the
1"~ d3japss neutron channel, and it seems also to have a
strong indirect influence on the isospin partner, the
61 proton dgpepsst channel. Similar striking differences
exist in the sy2pss* configuration. A very narrow non-
Lorentzian peak lies in the neutron channel at 22.4
“ MeV. The corresponding peak in the proton channel is
] much stronger and shifted down by 0.4 MeV, and has a
rather more Lorentzian shape. Strong differences are
also evident between the isospin partners in the
T d3/2P1/2—1 conﬁguration.
: ———— At lower energies, the situation does not look as
2 14 18 w® 20 2 2% 2 2 3 dramatic. Except for the striking difference between the
EMe  partners of the dyppys™ configuration at the 17.3-
MeV peak the behavior of the states is rather sym-
(c) metric.
N'%(p,py) NS" Finally, the mixing of the states is more pronounced
1- in the continuum calculation than in the corresponding
states of the bound-state calculation.

It is instructive to compare the configuration mixing
curves in Fig. 30, which describe the wave function in
the inside region, with the (v, po), (v, 7o) and (v, ps),
(v, n3) curves of Figs. 24, 25, and 26(b, c) which are
associated with the wave function at asymptotically
large distances from the nucleus. For example, the
ground-state transitions; i.e., (v, po) and (v, no), are
associated with the p12 hole. As one can see, the p;;!

41—  configurations play only a secondary role in the inside
2 14 . 18 2 22 2 2 2 30 region for the giant-resonance peak at 22 MeV, while
&M% the decay goes mainly through the ground-state

F1e. 33. Calculated 1~ contribution to (integrated-over- channels. Nevertheless, the ratio of the proton and

angle) particle reaction cross sections in %0, (a) The ™N (5, )0 1 oytron contributions survives this transfer from one

process. (b) Contribution of the third excited state in 150 to the . . .
(p, n) cross section. (c) The inelastic proton scattering process. to the other channel essentially without sufferlng a

a(mb) 35
30
25
20
15—

10
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Fic. 35. The experimental inte-
grated-over-angle (p, #) cross section
of Barnett and Thomas (1964).

14

change. The opening of the inelastic neutron channel
does not seem to have a noticeable effect on the open
channels in the asymptotic region. On the other
hand, there exist features which are not transferred
from one configuration to another. Thus, the peak at
19.5 MeV in the si2ps2~! configuration is most promi-
nently seen in the (¥, p3) channel, and the peak
at 17.3 MeV of the dsppys™ neutron configuration
shows up almost exclusively in the (v, #,) channel.
The origin of this differing behavior clearly is rooted in
the different boundary conditions for the different
states, and in the continuum-continuum interaction;
the mechanisms of the individual cases have, however,
not been investigated in detail. The area under the
y-absorption cross section of the present continuum
calculation [Fig. 29(b)] (from 12.2 MeV to 28.7 MeV)
amounts to 286 MeV-mb. This value has to be com-
pared with the experimental value of Wyckoff, et al.
(1965) of 13616 MeV-mb for the total photoabsorp-
tion cross section integrated to 28.7 MeV.

The reasons for this discrepancy are presumably the
same as those in 2C: the quasideuteron absorption
process shifts some of the strength to higher energies,
and the short-range correlations responsible for this
process are not included in the 1p—-14 model.

H. Photonucleon Branching Ratios and Angular
Distributions in %0

We now discuss the branching ratio (v, o)/ (v, #0),
which has been studied experimentally by Wu, Firk,
and Phillips (1968). Their ratio of the 90° cross sections
is shown in Fig. 31(a). It is remarkably constant at a
value of unity for energies above 21 MeV. Again, as in
the case of 2C, this value is achieved about 1 MeV
above the neutron threshold, and undergoes variations
only over a very limited region of the giant resonance,
viz. about 19-22 MeV. This is so in spite of the pro-
nounced structure in the absorption cross section. In
contrast to this, the theoretical integrated-over-angle
o (%, po)/o(vv,m) ratio has both more pronounced

26
E,(MeV)

fluctuations, and a long term trend [Fig. 31(b)].
This kind of behavior one would, in fact, expect. It
definitely is not understood which mechanism is
responsible for the surprising features of the experi-
mental results. Or, in different words, it is not at all
evident how to improve the nuclear model so as to
reproduce the experimental data.

The continuum calculations yield a second sensitive
tool for investigating details of the nuclear model,
namely, the photonucleon angular distributions. The
(p,v0) measurements of Earle and Tanner (1967)
showed sizable g, values, as well as a; values of com-
parable size about 18 MeV, suggesting that there is
E1-E2 interference (rather than E1-M1 interference).
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Fic. 36. Differential cross section at 90° for the 3K (p, v) #Ca
reaction measured by Hiéfele, et al. (1964). The ordinate on the

left gives the relative cross section, and the ordinate on the right
gives the estimated absolute cross section.
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However, the E2 strength is only of the order of 19,
of the E1 strength.

Tanner has pointed out that if one assumes 1009,
d-state E1 excitation, then the as/a; ratio will be —6 if
the interfering E2 absorption involves p-wave nucleon
emission, but only —0.4 for f-state emission. The experi-
mental data favor the assumption of interfering 2+
nuclear states involving f-state nucleons. Since, how-
ever, no detailed continuum calculations for the %0 2+
states have been performed, we restrict ourselves to
formula (4.6) with @, coefficients for pure E1 excita-
tions. The effect of the E2 admixture on the a; values

G.E. Brown et al,

80+
60}
40

(a)

20 +

15 20 25 g (MeV)

%

V.V.Balashov et al.

8ot
60t
40

(b)

20}

will be small, and therefore one finds approximate
agreement with the a» coefficients of Buck and Hill
(1967) who allowed for nonresonant direct quadrupole
emission in their calculation of angular distribution
At 15.25 and 19.1 MeV, Earle and Tanner observed
narrow 2t states. Also, there exist other narrow 1-
and 1t states (cf. Bishop and Isabelle, 1962; Barber,
et al., 1963; Tanner, e al., 1964b; Earle and Tanner,
1967).

The experimental a, values of Earle and Tanner are
presented in Fig. 32(a). Figures 32(b) and 32(c) give
the theoretical a, coefficients of the (v, po) and (v, #,)
reactions, respectively. These calculated coefficients
for (v, po) and (v, n) look very similar. Evidently,
their structure is correlated with the (1p-1%) resonances
listed in Table VIIL. There is a minimum at the position
of the 22-MeV giant-resonance peak, and a local maxi-
mum at 24.3 MeV. Above 20 MeV, the a, coefficients
oscillate about —0.5; i.e., about the a; value for pure
d-wave nucleon emission. This occurs in the theoretical
as well as in the experimental results. The experimental
structure, however, is more concentrated than the
theoretical one.

The calculated s-wave resonance at 19.5 MeV has no
counterpart in the a, coefficient obtained from experi-
ment. Indeed, there is a large discrepancy between
theory and experiment in the range between 16 and 20
MeV. One striking disagreement occurs at 17 MeV,
where the experimental data indicate a steep positive
slope. From the large negative a» values below 17 MeV
it can, however, be concluded that the broad 17 MeV

.
15 20 25 Ey(MeV)
%

Gillet and Sanderson

60
40

()

20 |

state contains predominantly d-wave configurations.

At the 13-MeV peak one again observes good agree-
ment. Both angular distributions are almost isotropic
in that region. A careful investigation, however, shows
that this peak actually is not purely s wave but contains
substantial d-wave contributions (Earle and Spicer,
1967). Nevertheless, the theoretical angular distribu-
tions seem to reproduce the experimental data much
better than is the case for the branching ratios. The
reasons for this are not clear.

10 15 20

Fic. 38. Theoretical distributions of dipole oscillator strengths
in °Ca from different j—j coupling 1p—1% bound state calculations:
(a) Brown, et al. (1961), (b) Balashov, e al. (1961), (c) Gillet
and Sanderson (1967).

25 Ey(MeV)

I. Reaction Cross Sections of 60

The theoretical contributions of the J*=1— channels
to the total BN (p, #), the N (p, #5) and the N (p, ps)
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cross sections are exhibited in Figs. 33(a), (b), (c).
The total (p, #) cross section is the sum of o (p, #,) and
G(P L) n3) .

There is a remarkably close correspondence between
the shape of Fig. 33(b) and the theoretical (v, #3) cross
section of Fig. 26(b), and also between Fig. 33(c) and
the (v, p3) result of Fig. 26(c). In the (p, #3) case only a
single broad peak at 24.3 MeV appears with a very
steep slope on the low-energy side. This shape does not
cause any additional structure with respect to the
total (p,n) cross section, but manifests itself as a
smooth contribution above 24 MeV.

The inelastic proton scattering cross section o (9, 3)
consists of three peaks. Besides the particularly pro-
nounced s-wave resonance at 19.5 MeV there are 21.9-
and 24.3-MeV levels. All these states are very little

shifted. In the (p, 3) reaction the 24.3 MeV resonance
is clearly separated from the background and has a
width of only 1.7 MeV. The widths of the two other
peaks agree with the entries of Table VIII.

In the total (p,n) cross section [Fig. 33(a)], the
resonances are shifted by 200 to 300 keV from the
positions given in Table VIII. Since, in this reaction, a
strong resonance occurs at 16.6 MeV, it is confirmed
that the small peak seen in the photoabsorption process
at 16.9 MeV is due to a T=0 state. From Fig. 33(a)
one sees that the width of this state is 0.6 MeV. In the
(p, n) process it is again found that the 19.5-MeV
resonance does not show up for outgoing neutron
channels. However, all the other 1~ T'=1 levels are seen.

In Fig. 34 we present the calculated differential
1=(p, ») cross section at 0°. This 17(p, #) result of the
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continuum calculation may be compared with the
experimental integrated-over-angle result of Barnett
and Thomas (1964) (Fig. 35) or with the 0° cross
section of Jones, ef al. (1958). The latter authors
extended their measurements only up to about 18 MeV.
They found eight levels per megaelectronvolt. Most of
the spins of these levels could not be identified (cf.
Ajzenberg—Selove and Lauritsen, 1959). Since all these
resonances have a width which is smaller than 250 keV,
they can hardly be associated with the structure ob-
tained in a 1p-1% continuum calculation.

J. The Giant Dipole Resonance in *Ca, Experiment
and Bound-State Calculation

The giant resonance in #Ca essentially consists of
several peaks concentrated between 18 and 21 MeV.
The total width of the gross structure amounts to about

TasLe IX. Single-particle energies and well parameters in #Ca.

Protons Neutrons

State & Ve & Ve
1fsr2 >0. 49.83 —2.86 49.83
2Pz >0. 53.07 —4.23 53.07
2pa2 —0.04 55.00 —6.29 53.86
112 —1.63 50.93 —8.36 50.34
1ds2 —8.34 49.62 —15.73 59.72
25172 —10.84 54.38 —18.20 54.38
1dsse —14.25 53.00 —21.86 53.43

20 22 24 26 28
E, (MeV)

3 MeV. In Fig. 36 we show the 90° differential cross
section for radiative proton capture with ground-state
v emission that has been measured by Hifele, et al.
(1964). The general shape of the fine structure is in
excellent agreement with the experimental results of
Feldman, ef al. (1967) and of Tanner, et al. (1964a) for
the same process. In the range between 18 and 21
MeV, six fine structure peaks are observed (Feldman,
et al., 1967). In their recent high-resolution (p,~)
experiment, Bartko and Thwaites (1968) find 18(p, o)
peaks in the range between 12 and 14 MeV. These
resonances can only be due to 17, 1+, and 2+ excitations.
The widths of these resonances are 20 keV or less. The
explanation of this result is clearly far beyond the
capabilities of a (1p-1%) calculation.

Similar fine structure is also seen in the photoneutron
reaction (Min, ef al., 1963; Baglin and Spicer, 1964;
Firk and Rae, 1972). In Fig. 37, we show the (v, n)
data of Baglin and Spicer (1964). In this context it is
noteworthy that the photoneutron emission is limited to
(v, m) transitions below the inelastic neutron threshold
at 18 MeV. Therefore, photoneutron emission to the
ground state of ¥Ca probably predominates throughout
the giant resonance, since its center lies only slightly
above that threshold.

In Fig. 38, we exhibit the relative dipole strengths
from 1p-1% bound-state calculations of Balashov,
et al. (1961), Brown, et al. (1961), and Gillet and
Sanderson (1967). All these calculations predict a
concentration of dipole strength in the vicinity of 19
MeV; however, they give no indication of the rich
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pronounced fine structure observed in that region.
Gillet and Sanderson allowed in their bound-state
calculations for isospin mixing. They obtained nearly
the total 7'=1 strength at the 18 MeV level. In their
more recent work the precise position of this level is
18.76 MeV. Its predominant components are: frsdss!
(51%), f5/2d3/2_1 (24%) and Ps/zdﬁ/z_l (12%). These

three configurations are T'=1. There is only a very
small 7=0 admixture at this energy. Most of the T'=0
strength is in the spurious center-of-mass state at about
3 MeV. Finally, they predict only four states between
12 and 14 MeV, in contrast to the 18 peaks found
experimentally by Bartko and Thwaites (1968).

The effect of enlarging the configurational space by
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TasLE X. Comparison of bound-state and continuum calculations of the 1~ states of Ca.

Brown (1961) Gillet Continuum calc 1p-1% Components
(1967)
(MeV) % (MeV) (MeV) (MeV) T=1 T=0
10.2 0 10.1 10.2 0.15 paredsre™?
12.9 0 12.0 12.1 0.3 Priadsre™Y; parasiet
13.4 0 13.3 13.4 0.2 paresiet Sordsiz™; faradset
13.8 14.0 0.2 H Dasdse ™t
15.4 0 14.3 15.0 0.3 Ssndss™Y; presie™; faedset  small components
16.8 1 15.1 15.6 0.2 Srradsie™Y; foredais™; presy2s small components
17.8 0 16.8 16.8 0.4 Mo Pardsie™t
19.2 55 18.8 17.5 0.5 H Jursis™Y; faradae™t
22.2 19.2 0.3 Soredsist
20.6 4 22.0 21.8 1.3 SsrdsiY; foradae™

surface quadrupole phonon excitations can be found in a
recent paper by Seaborn (1969). The concept of
collective intermediate structure (Drechsel ef al., 1967)
seems to be one of the most promising concepts for the
explanation of the main substructure of the giant
resonances. Also it is known from pick-up experiments
(Bock, et al., 1965; Cline, ef al., 1965; Glashausser,
et al., 1965; Hinds and Middleton, 1966; Hiebert,
et al., 1967; Seth, 1967) that the “Ca ground state
exhibits large deviations from a simple doubly closed
shell nucleus. Calculating the ground state wave func-
tion for ©¥Ca within the hypothesis of the quasiboson
approximation (RPA) Gillet and Sanderson (1967)
found that it was only 309 a pure shell-model state.
Because of all these reasons, the agreement between a

a(mb)

400 |

F1c. 42. Theoretical result
for the total 1~ photoproton 300
cross section of ©Ca.

T

200 F

100 r

1p—1h treatment and experiment certainly must be
expected to be worse for “¥Ca than for *C and 0.
Nevertheless there should be some interest in com-
paring the structure of a 1p~14 calculation with less
resolved experimental data to find out up to what
extent the experimental structure can be understood
within a 1p-1/ description.

The various single-particle thresholds are located as
follows: 1d3»!: 8.3 and 15.6 MeV for protons and
neutrons, respectively (Hiebert, et al., 1967; Lewis,
et al., 1968); 2s157': 10.8 and 18.1 MeV, respectively.
The dy,'-state, however, is spread over a range of
about 3 MeV. The values 14.3 and 21.8 MeV seem to be
in reasonable agreement with the centers of gravity
(Hiebert, et al., 1967). The uncertainty of the accurate

1- Ca"’('y, p)

26 28
E (MeV)

16 18 20 22 24
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—
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position of this level is rather unpleasant, since the
various (1p—-1%) 1~ basis configurations are mixed more
strongly in “Ca than in %O or 2C. Therefore the 1~
wave functions and the relative dipole strengths are
more dependent on the model parameters.

K. The Giant Dipole Resonance of ‘°Ca in a
Continuum 1p-1% Calculation

In 1p-1# calculations for the 1~ state of *Ca, the
following configurations for neutrons and protons are
taken into account:

170 fue(Udspa) ™5 pae(Ldsia)™; fore(1dsia) ™5
D312(2512) 75 prja(2512) 7Y
P32(1da2)™; prp(1dae)™; fsjp(1dae) ™.

For the continuum treatment presented here (Delsanto
and Wahsweiler, 1970), the parameters of the Woods—
Saxon potential have been taken from an analysis by
Divadeenam (1969). The spin-orbit force, the diffuse-
ness parameter, and the potential radius were chosen in
accordance with %0 fits and then a search for well
depths was performed to fit the experimental single-
particle levels. The various parameters are: Ry=
1.281(39)1/3=4.35 F, d=0.5 F, and V,;,=5.4 MeV.
The last value corresponds to the d-shell values quoted
in Table VII. As for %0, the nuclear potential radius is
larger than one would expect from electron scattering
(Frosch, et al., 1968). For ¥Ca, however, the radius of
the nuclear potential and the radius of the homogeneous
charge distribution were not set equal, but the latter
radius was assumed five per cent larger. This is in

22 24 26 28

E,(MeV)

accordance with the fact that the neutrons are more
tightly bound than the protons in #Ca.

The well depths and the corresponding single
particle energies are listed in Table IX. Some of these
single-particle energies deviate from the values obtained
by Gillet and Sanderson (1967) in their analysis of
experimental data. In particular, it may be noticed that
the psjo-proton resonance is replaced by a weakly bound
state and that the mass difference between #Sc and *¥K
has not been reduced by 0.5 MeV as was done by
Gillet and Sanderson to account for the diagonal
Coulomb effect. The two-body force is of the Soper-
type as in Eq. (3.2). The strength was chosen to be
—1000 MeV fm3. This value is about 109, less than the
strength of the zero-range force employed by Brown,
et al. (1961), but about 209, more than the force used by
Marangoni and Sarius (1969) in their recent coupled-
channel treatment of the photodisintegration process in
9Ca. The latter authors have also partly used an
absorptive optical potential W to account for the effect
of those configurations which are not included in a 1p-1k
description. W was assumed to be linear in E,. As far
as their calculations were done for W=0, they obtain
essentially the same result as the one which we are going
to discuss here.

We show the theoretical cross section of the photo-
proton ground-state reaction in Fig. 39(b). The cor-
responding 90° differential cross section derived by
Hifele, et al. (1964) from their experimental (p,Yo)
data by detailed balance is depicted in Fig. 39(a).
The theoretical (v, #o) result is presented in Fig. 40.
It may be compared with the experimental cross section
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F16. 44. Comparison of experimental and theoretical total photodisintegration cross sections of #Ca. (a) photoabsorption cross section
measured data of Dolbilkin, ef al. (1965). (b) 1~ result of the 1p~1# continuum calculation.

shown in Fig. 37. The continuum calculations give a
height of the main dipole resonance which is about five
times too large when no absorptive potential is em-
ployed.

From a comparison of Figs. 39(b) and 40, it is seen

that the (v, po) process contains considerably more
dipole strength than the (v, 7) reaction. This is con-
firmed by experiment (Segal, 1966). In a recent paper
Wu, et al. (1969) calculate the ratio [o(v, o)/
o (v, ) Joo° to have an almost constant value of 2.2.
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F16. 45. Theoretical prediction for as-coefficients in the angular distributions of ground state photoprotons from “Ca assuming pure
E1 transitions.

Consequently, using the Barker and Mann (1957)
formula they infer a ratio of the T=0 to T=1 ampli-
tudes of 0.2.

In Table X the level positions from the bound state
and the eigenchannel-continuum calculations are com-
pared.

In addition, we give the predominant 1p-14 =1 and
T=0 configurations at the resonance peaks which were
determined by Marangoni and Saruis (1969) by
looking at the components of their dipole transition
matrix elements. The main configuration we have
quoted for the 10.2-MeV state was taken from Gillet
and Sanderson (1967). One should keep in mind, how-
ever, that these results are quite sensitive in respect
to the model parameters.

The levels found by Gillet and Sanderson (1967) at
12.4 and at 14.0 MeV are not included in Table X.
Actually, it is surprising that the 12.4-MeV state does
not show up in a continuum calculation in spite of the
fact that it is essentially 7'=1.

The main dipole resonance of the continuum calcula-
tion occurs at 17.5 MeV. That is rather low. This is
partly due to the fact that in the present calculation the
fa=ds2 proton level spacing is 1 MeV less than that
found by Gillet and Sanderson (1967) and Marangoni
and Saruis (1967). Also there might be an additional
upward shift in the coupled-channel result caused by
the omission of the occupied 1p-shell (partial neglect
of antisymmetry—See Sec. II1.C). Thus, in the present
calculation, the 16.8-MeV level and the main resonance

have moved together, while the spacing between the
main resonance and the subsequent T=0 level has
increased. This change in the relative spacings leads
to an obvious difference in shape between the present
(v, mo) result and the (v, %) curve of Marangoni and
Saruis (1967). Nevertheless, the main configuration of
the 16.8-MeV state is the configuration given in Table
X, since this level turns out to be relatively more pro-
nounced in the (v, p1) than in the (v, po) reaction,
which indicates that it results to a large degree from a
resonance in the inelastic sy2™' proton channel. A
similar statement holds for the 14-MeV state which
only shows up in the (v, $1) reaction. The cross section
of this process which leads to the (2si2)™! ¥K state is
exhibited in Fig. 41(a). The corresponding (v, #1)
result is shown in Fig. 41(b).

Figure 42 represents the total theoretical (v, p),
and Fig. 43 the total (v, ») cross section. These cross
sections have been obtained by summing up the con-
tributions for the final d3;57, 5127 and d5»~* channels.

Finally, Fig. 44(b) represents the sum of a(¥, p)
and o (v, »n); i.e., the total theoretical photodisintegra-
tion cross section of #Ca. The experimental data of
Dolbilkin, et al. (1965) are depicted in Fig. 44(a).
The area under the theoretical curve [Fig. 44(b)]
below 28 MeV amounts to 725 MeV-mb. This must be
compared with the experimental value of 920100
MeV-mb. The unmodified classical sum rule gives 600
MeV-mb.

The discrepancy in the calculated and measured
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factor of five in “Ca. The analogous factor for %0 was

three, and for 2C two. This is consistent with the fact The @, coefficient of the (v, po) angular distribution
that the number of open channels not taken into near 20 MeV has been determined from bremsstrahlung
account in the 1p-1% approximation increases with mass  experiments (Johansson and Forkman, 1962) to be
number. : about —0.38. Tanner (1965) quotes a value —0.3
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F1c. 47. Calculated 1~ contribution to the total cross section of the ¥K (p, #) #Ca reaction.

for #Ca in his survey on average a, coefficients in the
giant resonances of various nuclei.

The theoretical prediction (Fig. 45) for the energy
dependence of the a» coefficients does not contradict
these experimental values. Figure 45 resembles closely
the corresponding result of Marangoni and Saruis
(1967).

M. Reaction Cross Sections of 4Ca

We conclude the discussion of the giant resonance
in ®Ca by presenting some proton-induced reaction
cross sections which proceed through the Jr=1-
channels.

Figures 46a, b show the integrated-over-angle 1~
cross sections of inelastic proton scattering which
populate the (2s12)™! and the smeared-out (1ds;s)™
state of ¥K, respectively. The latter channel is denoted
by a double prime. The level positions and widths which
can be obtained from these curves are in accordance
with the entries of Table X. Actually, there is even no
contradiction to the configurations listed in Table X.
The relative importance of the 13.4- and 16.8-MeV level
in Fig. 46(a) supports the expectation that the pre-
dominant configurations of these states contain a
2s12-hole. The equal importance of the three upper
states in Fig. 46(b) seems to confirm that they mainly
contain 1ds»-hole configurations. Inelastic proton
scattering experiments on 3K were performed by
Sperduto and Buechner (1958). However, these meas-
urements yield information only on the excited states of
the final ¥K nucleus. Finally, we present the 1~ (p, »)

cross section in Fig. 47. Almost no (p, n) experiments
on ¥K have been performed (cf. Endt and van der Leun,
1967; Tai, et al., 1958).

V. CONCLUSIONS AND OUTLOOK

From the material presented in this review, one may
draw the conclusions that there exist several methods
for the treatment of one-particle continua, which have
been used successfully in actual numerical calculations.
They yield the same results when applied to the same
model and when they are done in the same approxima-
tion (the coupled-channel calculations tend to treat
incompletely the antisymmetrization). In other words,
the mathematical and numerical techniques have indeed
been tested and proven out, and this seems to be in
satisfactory condition, at least for situations which
are not too involved. In fact, Barrett and Delsanto
(1971) very recently applied the eigenchannel method
to the calculation of the giant dipole resonance in
28Pb. This case corresponds to 31 coupled channels.
In Fig. 48, we present the results of the E.C. calculation
for the 1~ photoabsorption cross section for 26Pb in the
1p-1k model. For comparison, the experimental (v, »)
cross section (Beil, et al., 1969) is shown, together with
the results of a bound-state calculation by Kuo, et al.
(1970). The results of the E.C. calculation for 2°Pb
have been discussed in detail by Barrett and Delsanto.

As far as the practicability of the eigenchannel
method is concerned, the computed time needed to
calculate the complete S-matrix at one energy requires,
on a Univac 1108 computer, for a system of the com-
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plexity of *O about 3-5 min, and for 2¥Pb about 25-30
min. In the simpler case, the coupled-channel method is
faster; for 2°Pb no comparison is possible as no calcula-
tions of equivalent complexity employing any other
method have been reported.

On the other hand, the calculations have revealed
that in light nuclei, the 1p—1% model is disappointingly
inadequate, even as far as the reproduction of the gross
features of the experimental results is concerned. We
refer to the intermediate structure in the photon
absorption process, to the angular distributions of
certain partial cross sections, and to the proton to
neutron branching ratio. The surprising aspect here is
evident from the result that in the experimental absorp-
tion cross section there is more structure than in the
theoretical, while, at the same time, in the experimental
angular distributions there is less structure than in the
theoretical. Even more surprising is the uncanny

08t (b)

6-(yn) barns
o
=

o
~

o
L
L
+

o (WU)
Q

—~

(2]

A

[
o
T

ground state transition probability
S
o

" J‘ | .

0 5
Excitation energy (MeV)

o
-
.
-

F1c. 48. (a) Total photo-absorption cross section of 28Pb
calculated from the eigenchannel reaction theory (Barrett and
Delsanto, 1971). (b) Experimental photoneutron cross section
of 28Pb due to Beil, ez alp (1969). (c) Results of a bound-state
calculation (including RPA) for 28Pb photo-absorption cross
section by Kuo, et al. (1970).
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constancy in the (v, po)/ (v, 1) branching ratio. What
would have been expected would be more structure
in the experimental values than in the theoretical for all
these quantities. This evidence suggests that the
“dipole state” is a very strong structure indeed. In
contrast to the theoretical result in which in, %0 say,
there are two dipole states within the 1p-14 states,
which thus have different configuration mixtures and
consequently different angular distributions, it seems
that there exists essentially only one dipole state in the
1p-1# hierarchy, and that the orthogonal 1p-1/ states
have very small absorption strength. The splitting into
two major parts, and the fragmentation into fine
structure, seems to leave this dipole state intact. The
separation of this dipole state from the orthogonal
1p-1h states (which are also continuum states and
which have different angular distributions) seems to
remain weak even though the interaction with the
fragmentation states is evidently strong. These effects
seem to require for their explanation the assump-
tion that the cross links between the different 1p-14
states are located in the 4p—4% and higher members of
the hierarchy, and that they are damped by the
a-particle channels. At any rate, this is only a specula-
tion, and is intended to indicate the extent to which the
1p-1h model seems to be inadequate to explain the
seemingly contradictory experimental findings. To
re-emphasize, these findings include so-called gross
structure which supposedly should be explicable within
the 1p—-14 model.

As for future development, one should consider
two directions separately. The first concerns the
development of practical methods to treat two-particle
and many-particle channels. There exist proposals for
it in the frame work of the eigenchannel theory
(Grauel, 1971), and naturally, there exist the Fadeev
equations. However, no reasonably realistic nuclear
(as contrasted with three-body) problem has been
treated as yet.

The other direction is the development of more
realistic nuclear models. This is meant in the sense of
adding more closed channels; i.e., quasi-bound states,
to the nuclear model. As we tried to indicate, the
addition of some 2p-2k configurations must be only a
very first step. In fact, we believe that some invention
will have to take place before progress in the under-
standing of the physics becomes possible. From the
point of view of nuclear physics this second direction
seems to be the more pressing of the two.
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