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The moment of inertial 9 of deformed nuclei increases with increasing angular momentum 7 in the
ground-state rotational band. Recent energy measurements of rare-earth nuclei show that while the increase
is smooth at low angular momenta, at about spin 14-16 in a number of nuclei there is a sudden substantial
rise in the moment of inertia. In some cases g rises faster than / so that the rotational frequency w =1I/g
actually decreases with increasing I producing a characteristic backbending g vs w curve. A singular
behavior at about these spin values was predicted over ten years ago by Mottelson and Valatin as a
Coriolis antipairing effect. The present article will discuss the experimental data and describe calculations
of the nuclear moment of inertia. Calculations made both before and after the recent experiments will be

considered.
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I. INTRODUCTION

During the last two years, E2 gamma transitions have
been observed in (e, 2%, v) and heavy ion (HI, xn, v)
reactions from states as high as /=22 in deformed
even—even nuclei. The pioneering work of Morinaga
and co-workers (Morinaga and Gugelot, 1963; Mori-
naga and Lark, 1965; Lark®'and Morinaga, 1965)
showed that a relatively clean spectrum corresponding
to a stretched E2 cascade down the ground-state rota-
tional band could be obtained up to about the 10+
level.

Then Diamond and Stevens and co-workers in a
series of papers (Diamond et al., 1964, 1969; Stephens
et al., 1964, 1965; Ward et al., 1967; Newton et al.,
1970; Nordhagen et al., 1970) were able to push the
top spin observed to about 18+ and in addition de-
duced many interesting properties of the ground band
and the way it was fed at the top in the reactions. First,
the observed energy spacing of the 04, 24, 4+, etc.
members of the ground band increased less rapidly

than the form Er=#2I(I+1)/(29) expected for a con-
stant moment of inertia, 4. This was interpreted as
some sort of centrifugal stretching causing the moment
of inertia g to increase smoothly with angular momen-
tum up to the highest spins seen. As will be shown, it
is now thought that Coriolis antipairing effects are
more important in increasing 9.

F1G. 1. Schematic level diagram. The thickness of the arrows
indicate the observed gamma intensity.

Second, it was noted that even though the com-
pound nucleus probably has I>>20 after the capture of
the o particle or heavy ion and the neutron emission,
nonetheless only v’s from I~18 or lower were observed
as lines. Thus the v¥’s leading from the high starting
spin down to /~18 must follow several tracks (5-10
tracks being enough so that individual lines would not
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F16. 2. E vs I plot for the level diagram of Fig. 1. That portion
of the yrast line (lowest energy for each spin) which is concave
downward corresponds to the “backbending” region in d vs w?
plots such as Figs. 5-9. The dashed curve could result from an
unprojected cranking model calculation (see Sec. IVG4).

be seen) ; also there must be some selection rule keeping
each nucleus in its track to avoid rapid decay to the
yrast line (state of lowest energy at each spin). From
I~18 to the 0+ ground state, the main transitions
observed are those down the ground-state rotational
band with relatively little side feeding, as shown in
Figs. 1 and 2. The lowest transitions of the band are
thus strongest, with gradual weakening toward the
higher spins, and then a rapid drop to invisibility
about 7~18-20.

The entire cascade time (including the unseen 7v’s)
is fast, corresponding to enhanced E2 transition rates,
each of an energy corresponding to a smooth E vs I
dependence. The yrast line (lowest energy state for
each 7 value) must be a monotonically increasing func-
tion of I as no isomers are seen. If, for example, the
lowest 7=16 state lay below the lowest 7=13, 14, 15
states, it could decay only by E4 transition and would
thus have a long enough lifetime to be observed as a
time-delayed isomer.

The recent measurements, first from Stockholm
(Johnson 1971, 1972), and subsequently from other
places (Buescher et al., 1972; Lieder et al., 1972;
Sunyar et al., 1972; Thieberger et al., 1972; Warner

et al., 1972) study in detail the weak transitions at the
top of the ground-state rotational band. By the use
of (a) vy time coincident spectra, (b) angular distri-
butions, and (c) excitation functions, it has been
possible to assign uniquely each observed line to a
definite transition I, I—2 as high as 7=22 in one case.

The three techniques mentioned above use the facts
that:

(a) All transitions in time coincidence with the 7,
Iy—2 line and having smaller I must have the I, state
as a parent and thus will have the same intensity
(aside from the energy dependence of instrument sensi-
tivity). The feeding into the band may occur at any
I>1I, so that these higher transitions will fall in inten-
sity in the same fashion as in a singles spectrum taken
from either one of the two v detectors alone.

(b) The nucleus following (HI, xn) is aligned and
the alignment decreases in time as the v’s go down the
band, giving the lower transitions more constant angu-
lar distributions than the higher ones.

(c) Higher incident HI energy Increases the initial
average angular momentum and thus pushes the side
feeding higher up the band causing a measurable change
in the intensity ratios of the +’s.

Figure 3 shows the singles spectrum in ¥?Er of
Johnson et al., in which it is seen that the 18, 16 and
16, 14 transitions lie below the 12, 10 transition. Tran-
sitions corresponding to higher spins are weaker. The
corresponding time coincident spectra are shown in
Fig. 4 in which it is seen that transitions for spins
below the gate are of equal intensity while those above
are weakened as in the singles spectrum. The sequence
of the transitions is uniquely determined by this meas-
urement.

The v intensities were measured for 39- and 41-MeV
a particles incident on *'Dy. The higher energy spec-
trum has a changed v intensity ratio with the ¥’s
assigned as coming from higher up the band having
the greater intensity increase. This confirms the as-
signment of spins.

Finally, the angular distribution of each line is meas-
ured relative to the incident « direction with the result
that the characteristic E2 shape is found with the
strongest angular distribution observed at the top of
the band, with gradual smoothing for the transitions
lower down corresponding to the gradual loss of align-
ment.

By these methods unique spin assignments can be
made. It is also clear that at least at these high spins,
a spin assignment based on the regularity of energy
spacing is completely invalid.

The result of these measurements is that, for a num-
ber of rare-earth nuclei, the weak transitions near the
top of the observed band do not increase smoothly in
energy with increasing I (corresponding to a constant
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Fic. 3. Singles gamma-ray spectrum with transitions assigned to the ground state band in ¥2Er. The 7=20 to /=18 transition has
now also been identified as shown on Fig. 6(a) (Sunyar, 1972). [Taken from Johnson ef af. (1972)].

or slowly increasing moment of inertia, 9), but may be
very close to each other in energy or even momentarily
decrease in energy with increasing I corresponding to
a very rapidly increasing moment of inertia at about
spin 14-16. The effect can be dramatic, corresponding
to a near doubling of the moment of inertia over a spin
change interval of only 4-67 units.

This sudden increase in 4 was ascribed to the Mottel-
son—Valatin Coriolis antiparing effect (the CAP effect)
(Mottelson and Valatin, 1960). It is the purpose of
this article to present the background for descriptions
of nuclear rotation, and to review both the detailed
calculations which were made before the recent ex-
perimental results, and the calculations motivated by
these results.

II. PHENOMENOLOGICAL DESCRIPTION
OF THE DATA

The observed quantity is the transition energy
AE;,(1—9) for each even I value. For a perfect rotor we
have

Er=121(I+1)/(28) =1*/ (29) ¢)
so that

AE;,q-5=1*(2I—1)/9. (2)

For the deviations from this behavior, the form first

suggested was an expansion
Er=AI(I+1)+BII+1)PHCIIT+D)E. (3)

It is well known that convergence is poor for this form,
even for low spins. That is, if A and B are chosen from
AE;oand AE, and C=0, Eq. (3) is valid only through
about AFg 4. The inclusion of C makes Eq. (3) reason-
able only to about AEj,s.

The work of Harris (1965) and later the variable
moment of inertia (VMI) model of Mariscotti, Scharff-
Goldhaber, and Buck (1969) suggested an expansion
in powers of the square of the angular velocity of rota-
tion w instead of the angular momentum I. Classically,
I and w are continuous variables with the relation

I=9dw 4)

and Hamilton’s equation relates w to the energy by

dE/dl = w. ©)

Observe that if the derivative in Eq. (5) is approx-
imated by AEr,a—s/(2%), the rotation frequency w is
just half the frequency of the emitted v ray, as would
be expected for a deformed nucleus with reflection sym-
metry such that a rotation through = degrees brings
the system back to its initial shape. Equation (5) is
clearly satisfied for the perfect rotor Eq. (1).
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If g is not held constant, but may depend on some pansions:
parameters (e.g., deformation and pairing parameters) 1 . L
indicated by A, the energy is ‘ E=%u(90+3Cu+5Dui++ ) (11)
I=wI=w(9o+2Ce?*+ 3D+« +) (12)

Er=I*/[29(8) 4V (4), (6)

where V (A) is an intrinsic energy. Equation (6) is to
be minimized at fixed I to determine 9 and V. Thus
Eq. (5) still follows, and furthermore

dV/dI=%w*(dg/dI), )

(8)

The two-parameter variable moment of inertia
(VMI) model, which is highly successful up to about
I~14 in many cases, uses a specific dependence of the
intrinsic energy V on 4, namely:

V(g) =Vo+ (8C)_1(5—50)2
so that Eq. (8) gives
9=9o+2Co?,

so that
w?=2dV/dg.

©)

(10)

a simple linear dependence of the moment of inertia
on angular velocity squared. An equivalent result is
obtained by keeping just two terms in the Harris ex-

which also satisfy Eq. (5). The model is completed by
the substitution I—[7(I+1) ]2 Thus two terms in

" the «? expansion of the energy give good results up to

I~14 in contrast to the I? expansion previously de-
scribed. The reason for the apparently more rapid con-
vergence (at low spins) in «?is not yet understood.

Of course, the recently observed transitions corre-
sponding to decreasing AE with increasing I imply,
according to Eq. (5), that w first increases and then
decreases (and finally increases again) with increasing
I, making all quantities double-or triple-valued func-
tions of w and thus implying a limited radius of con-
vergence for any expansion in powers of «?. As can be
seen from Eq. (5), this backbending in w corresponds
to the region of decreasing slope near the top of the
ground-state band as shown in Fig. 2.

A. The g vs «*? Plot

Because of the success of the VMI model and since
the angular velocity w and moment of inertia J are



easy to visualize, it has become customary to plot the
AE data in the form d vs w?. In the two-parameter
Harris or VMI model, this plot would be a straight line.
Since the data consist of AEr, 1 for discrete even I
values only, there is a minor ambiguity as to how the
plot should be made. In order that each transition
should (by itself) generate a point on the plot, and in
order to give the expected result in the pure rotor

limit, Eq. (2), 9 is taken to be
29 /2= (4I—2) /AEr, 1. (13)

The ambiguity arises in obtaining w from Eq. (5). The
simplest method would be to use

(ﬁw) simp192 = [AE[,(I_z)/ij.

The Brookhaven group ‘‘improves” the denominator
by using

(14a)

AE;, (19
TI+1)12-[I—-1)(I-2)]"

The Stockholm group further “improves” the denomi-
nator to allow for curvature by the use of

A[I(I+1) 2= {d[I(I+1) ]¥?/dI (I+-1) }AI (I+1)
=(2I-1)/(P—I+1)", (15)
and thus plots
(fiw) *=[AEr,q—/(2I-1) F[I*—I+1]. (14c)

All these forms are similar numerically for I values
above I~06, but there are significant differences for
the lowest point or two, particularly if 9o of Eq. (10)
is small. In particular, the Brookhaven g vs w? plot
using Eq. (14b) gives more nearly a straight-line be-
havior at small I for actual data while Eqs. (14a) and
(14c) curve down as shown on Fig. 5. The data do fit
VMI well at low spin so this down curving must be an
artificial consequence of the method of plotting the
data with Eqs. (14a) and (14c).

The data should most reasonably be plotted in such
a way that a perfect two-parameter VMI nucleus will
produce a straight line. By requiring that each data
point produce one 9 vs w? point, this can be achieved
in two limiting cases: (a) when C of Eq. (10) vanishes,
and (b) when 9, of Eq. (10) vanishes. Case (a) is the
perfect rotor, and although case (b) may seem strange
it is known that VMI fits some transition nuclei very
well even with negative (Mariscotti, 1970; Scharff-
Goldhaber and Goldhaber, 1970) values for the pa-
rameter 9.

The straight (horizontal) line for case (a) is assured
by the use of Eq. (13). For case (b) we have

(hw) B*= { }2. (14b)

(16)

9=au?,

where ¢ is a constant. This yields the peculiar energy
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F16. 5. 9 vs w? curves for 156Er and 158Er. The four curves a,
b, ¢, and d correspond to different definitions of (fw)? in terms
of the data as defined by the “simple” formula Eq. (14a), the
“Brookhaven” formula Eq. (14b), the “Stockholm” formula
Eq. (14c), and the VMI formula Eq. (14d). In each case 9 is
given by Eq. (13). The lowest dot is the =2 to O transition;
next the 4 to 2 etc.

form

Er= (3/4a)[I(I+1) PP, (17)

as can be seen at once by checking that w=
dE/d[I(I+1) ]2 and [I(I+1) J"*=wd. Then calculate
w as

fiw=AEr,a-/f(I), (18)

where f(I) is so defined that if AE is computed from
Eq. (17) and g from Eq. (13) a perfect straight line 4
vs w? plot results with the correct large I limit f( ) =2.
The resulting form is

(hiw) vur*= [AEr,apP(2I—1)
vMI AT+ PP—[(I—1) (I—2) P33
(14d)

Numerically the coefficients in Eq. (14d) are much
closer to those of the Brookhaven form [Eq. (14b)]
than to either the simple form [Eq. (14a)] or the
Stockholm form [Eq. (14c)]. All the forms converge
at the higher spins.

The use of Egs. (13) and (14d) will produce a
straight line plot for a perfect two-parameter VMI nu-
cleus for 9o=0 or for C=0 of Eq. (10), and do a
reasonable job for intermediate cases as well. If C of
Eq. (10) is small, but not zero (more precisely if C/9¢*
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F1G. 6. (a), (b), (c). 9 vs w? curves of the rare-earth region. The

data are plotted with the use of Egs. (13) and (14d).




is much less than one), then it can be shown that the
Stockholm form [Eq. (14c)] should give the best fit
to VMI, but in such cases there are relatively small
differences between the different formulas. By com-
paring these formulas with the actual transition energy
data over the entire rare-earth region, it is found that
in about 809, of all cases the Brookhaven form (14b)
or the new form (14d) are superior to the form (14c)
in producing a straight line fit to the lowest three tran-
sition energies.

B. The Data

Figure 6 shows plots of 9 vs w? for the rare-earth
region taken from a compilation prepared by the Stock-
holm collaboration (Saethre, 1972). It is seen that

. sharp increases in g are observed in a number of nuclei
from Dy to Os (66<Z<76) with neutron numbers
from the lower edge to almost the end of the region
(90<N<106). The break occurs at about I=14-16.
Backbending (S-shaped curves) occur for some Er, Yb,
Hf, and Os isotopes. Whether or not the same behavior
occurs for the lighter deformed ¢sGd and ¢Sm isotopes
is not known since the high spin states, 7> 14, have
not been observed. However, a sharp backbending has
been observed in §5'%Ceys (Taras et al., 1972). Concern-
ing the heavier W, Os, and Pt deformed nuclei, the
situation is not clear. The sudden increase in moment
of inertia thus seems to be a rather general phenomenon
in the rare-earth region, with the detailed picture of
the N and Z dependence of the degree of singularity
beginning to emerge. While there are sudden jumps for
all Z values, it seems that the curves for Na98, 100
are smoother than those for larger or smaller N values.
Further experimental work is still needed.

For one of the strongly backbending nuclei, ®Er,
the recoil distance “plunger” technique has been used
to determine the lifetimes and thus the B(E2) values
for each transition up to the top of the band at spin 18
(Ward et al., 1973). The results are shown in Table I.
All the transitions are seen to be of the order of en-
hanced rotational collective rates, but the I=14-12
transition in the backbending part of the curve has a

TasrLE I. B(E2) values for %8Er from Ward ef al. (1973).

Transition B(E2)/ROT
20 1
4-2 1.10+0.05
64 1.31340.27
86 1.1740.40
10-8 1.20+0.56
12-10 g1
14-12 0.80+0.19
16-14 1.4040.35
18-16 >0.6
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rate which is clearly reduced from the average of the
neighboring rates by about 20 to 409,. Some such re-
duction is expected where the nucleus is changing its
structure as will be discussed in Secs. IVG2 and V.

For the construction of models of the process, it
would also be valuable to have more information about
the transitions preceding the observed lines of the
ground-state band. In addition to the short times al-
ready known (Diamond et al., 1969), the Brookhaven
group (Sunyar ef al., 1972) has made a beginning by
estimating the average number of 4’s from a study of
the background.

III. THEORETICAL DESCRIPTIONS

The theoretical description of this phenomena has
been made on three different levels. First there have
been phenomenological semiclassical models in which
a few parameters are introduced with little attempt at
connection with a microscopic theory. Such calcula-
tions will be discussed below. Then there have been
microscopic calculations which will be discussed at
length in the sections following the presentation of the
cranking model. Finally, there are mixed calculations
in which a few of the nucleons are treated explicitly
while the rest form a rotating core with which they
interact. Such calculations will be discussed at the end
of the paper.

The success of the VMI model (before the recent
experiments) prompted picturesque descriptions of
these results. Trainor and Gupta (1971) ascribe the
increasing moment of inertia to a geometrical picture
of a deformed nucleus in which an inscribed sphere of
nuclear matter is not rotating at all, and the outer
deformed shell is rotating rigidly. The separation of
the nucleus into nonrotating and rotating nucleons with
a sharp geometrical slippage surface seems absurd, but
the microscopic models also have some slippage due to
the superconducting (superfluid) nature of the nuclear
matter. Other modifications of the VMI model have
also been treated (Satpathy and Satpathy, 1971;
Gupta, 1971).

The sudden rise in 9 and the backbending «?, how-
ever, require a more significant change in the VMI
parameterization. The addition of another term in the
Harris »? expansion to make a three-parameter VMI
fit (Sathre et al., 1972) can only help a little, below
this singularity. Wahlborn and Gupta (1972) obtain
good fits to low and high spin data with a parameter-
ized formula specifically designed to resemble the VMI
at low spin, but capable of reproducing the S-shaped
g vs w? plot. Molinari and Regge (1972) consider alge-
braic forms related to possible singularities in the com-
plex angular momentum plane.

Thieberger notes that the sudden rise in 9 can be
described within the VMI model in terms of an intrinsic
energy function [see Eq. (9)] V(9) which rises some-
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what less rapidly than quadratically in 4 —do. He points
out that ¥V (9) can be obtained directly from the ex-
perimental 9 vs «? data by integrating Eq. (8) to get
(Thieberger, 1972b)

V()= Ls%(ﬁw)zd(%’).

0

(19)

Draper (1972) fits the backbending data (but not the

full S curve) by a specific choice for the replacement of
Eq. (9). He replaces the quadratic form [(9—9,) /9,
with the more slowly varying form

V(9) =Vo+ConstX[In (9/90) ]2 (20)

As can be seen from the expansion of In about argu-
ment unity, it is clear that this will approximate the
usual two-parameter VMI model until /9, is signifi-
cantly greater than unity, and then produce the more
rapidly rising moment of inertia.

The phenomenological models just described do not
really specify the physical change under rotation. Does
the nucleus stretch, become unpaired, or change its
shape or interparticle correlations in some other way
as it rotates? To answer these questions, the model
must be described in terms of the particles to be corre-
lated and thus must be a microscopic theory.

IV. THE CRANKING MODEL

Nearly all of the fully microscopic theories of nuclear
rotation are based on or related to some version of the
cranking model of Inglis (1954).} A readable deriva-
tion is given by Villars (1957). In view of its importance
it is appropriate to give a derivation here.

An elementary presentation follows in which the
derivation of the ‘“‘cranking model”” moment of inertia
is compared step by step with the analogous ‘“pushing
model” formula for the mass. The basic assumption of
the simplest form of the cranking model (pushing
model) is that the nuclear many-body system in its
rotation (translation) can be described in terms of in-
dependent. noninteracting particles contained in an ex-
ternal potential well which is rotating (translating).
This assumption has been modified and tested, as will
be discussed later, but on this simple basis the problem
is to calculate the energy of the system as a function
of the angular velocity w (linear velocity ») with which
the potential is moving. The energy should increase
with w(v) quadratically, at least at small angular ve-
locities, and the coefficient in E=%90? (E={M1?) is
identified as the moment of inertia 9 (mass M).

1 Although Inglis’ formula for the moment of inertia and much
of his discussion in the 1954 paper was correct and most illuminat-
ing, his derivation of the cranking formula was wrong, but cor-
rected by the author in the appendix of a later paper (Inglis,
ggg)@ The error is also pointed out and corrected by Valatin

Thus the time-dependent Schrédinger equation

H(O)Yy=1h) (21)
must be solved, where the Hamiltonian
H(t)=p*/2m+V (¢) (22)

is time-dependent since the potential of fixed shape is
moving in space with a constant angular (linear) ve-
locity. For the pushing case, if at =0 the potential is
V(0) =g(=, v, %), and the potential is translating in the
+2z direction with velocity v, the time-dependent form is

V(t) =g(x) Y, Z—?)l). (23P)

For the cranking case, for rotation about the z axis,
the time-dependent form is

V(t) =h(7’, o, ¢_wt)7 (230)

where the ¢=0 potential shape must have a dependence
on ¢, that is, it must be a deformed nonspherical po-
tential.

Because of the very simple time dependence of Egs.
(23), a simple but time dependent unitary transforma-
tion can be found to eliminate the time dependence of
the transformed Hamiltonian. It is

U=exp (ivlp./H) (24p)
U=exp (iwtL,/#). (24¢)

Then rewrite Eq. (21) as
UH () Ut U=k Uy. (25)

Since Eq. (24) is a rotation (translation) operator
Ug(z) Ut=g(z+m), (26p)
Uh(¢) U™'=h(¢+wt), (26¢)

the original time-dependent Schrédinger equation be-
comes

H(0) Uy=1#tUYy, (27)

where H(0) is time-independent and equal to H(?) at
t=0. Then define

Yr=Uy (28)
so that Eq. (27) becomes
H(0)Yr=ifipr—ifi UY. (29)

The partial differentiation of U gives, after rearrange-

ment,
LH(0) —vps Wr=ififr (30p)
[H(0) —wL, Jr=1ifir. (30c)

Equation (30) is a time-dependent Schrédinger equa-
tion, but with an explicitly time-independent effective
Hamiltonian. Thus it can be solved as an eigenvalue
problem in the standard way. The Inglis formula re-
sults from a perturbation treatment based on eigen-
functions of H(0) with w(v) assumed to be very small.



1natis

H(0) |$)=E:® |4),

and for the ground state
¥r=2 | 010 3 (G | o | O)/(BEO—E)]14),  (32p)
= | 0)+w Z L] L. | 0)/(E:«¥—Ey®)] | 4), (32c)
B BO—# 5 | 6|2 0) [/ (BO—Ei®),  (33p)
ET%Eo“’)—wz; | G| L. 0) P/ (EO—E®);  (33c)

(31)

the | 0) expectation for L.(p,) vanishes and the first
correction to the energy comes in second order.

The quantity Er of Eq. (33) is the ground-state
energy of the effective Hamiltonian on the left side of
Eq. (30). But, the energy to be associated with the
rotational (translational) inertia is the energy associ-
ated with the original time-dependent Eq. (21) , namely,

E=Q|H®) |¢)=r | H(O0) | ¢r). (34)

This can be written
E=Er+o{yr | p: | ¥r) (35p)
E=Er+w(yr | L. | ¥r). (35¢)

If Eq. (32) is used to evaluate ¥r in Eq. (35) the
result is

E=BO+1 5 | (i < 0) [/ (B0~ E®) = BO+3M 1,

(36p)
E=EO+u? T | (] L: | 0) )/ (B~ Es®) = Eo®+dc?,

(36¢)
giving the cranking formula for the moment of inertia

9=22| G| L | 0) "/ (EO—E®).  (37c)

With the inclusion of spin, L, should be replaced by J,,
the total angular momentum operator.

A. The Pushing Model Result

The formula [Eq. (37c) ] must be treated with great
care as will be seen, so it is fortunate to have the
parallel discussion of the pushing model for which the
exact result is known as a test case. In the pushing
model, if H(0) is simply the sum of particle kinetic
energies and a potential energy depending only on co-
ordinates (no velocity dependence), then it is not neces-
sary to use perturbation theory as in Egs. (32) and
(33), and an exact solution of Eq. (30p) is easily
obtained. This exact result (to all orders in v) is iden-
tical with the perturbation result of Eq. (36p) ; namely

M=23| (] p:|0) [/ (BO—E®). (3Tp)
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It is encouraging that Eq. (37p) is in fact an exact

and correct result as can be seen from the commutator
relation
[p2, Z]=—2ifip, (38)
so that
[H(0), Z]=—i(%/m)p, (39)

for each particle.
Then Eq. (37p) becomes, for the many-body case
represented by the particle number index a and 8,

M= % 2 Z O pe 1 0)i | pog | 0)/ (ESO— E,©®)
= %ﬁ) (2im/%)
X Z O peo | )| CH(0), Zg] | 0}/ (ES®— E,®)
= % (4m/%i) [{O | pzZs | 0)— {0 | Zgp., | 0)]
= X miu= T m.

There is no analogous result for the cranking case
both because (37c) is a perturbation result and not
exact in that case, and because there is no operator
whose commutator with H(0) is L, as there is in the
pushing case of Eq. (39).

Since the pushing result [Eq. (40) ] depends only on
the commutation relation Eq. (39), it is clear that it is
correct also in the case of the particles interacting with
each other as well as with the moving potential; that
is, H(0) need not be an independent particle Hamil-
tonian. In contrast, the particle-particle interactions
play a vital role in the cranking case.

Observe that in the derivation as presented here, the
effective Hamiltonian on the left side of Eq. (30) does
not represent the Hamiltonian as seen from a moving
coordinate system. The time-dependent unitary trans-
formation U of Eq. (24) is a transformation to moving
coordinates, but the corresponding transformation to
new momenta was not made. Indeed, had the full
Galilean transformation to a moving coordinate system
been performed, including transformation of the mo-
menta, the effective Hamiltonian for the pushing case
would have been H(#) at {=0 without the extra term
—up., as there are no new inertial effective forces pro-
duced by a uniform translation.

However, there are effective inertial forces in the
case of rotation, namely Coriolis and centrifugal forces.
If a complete transformation to rotating coordinates is
made including transformation of the momenta, the
Hamiltonian as seen in the rotating system and in
terms of the new coordinates and momenta is

H,=H(0)—wL,,

(40)

(41)

the same form as Eq. (30c). In this expression the
term —wlL, generates both the Coriolis and centrifugal
force of the rotating coordinate system. This is the
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interpretation of the term —wL, given by Inglis (1956),
Valatin (1956), and Brown (1964).

Equation (41) can be directly derived from the well-
known expressions for the Coriolis and centrifugal
forces (Corben and Stehle, 1950) :

FGoriolis= —2mw x i (42)

(43)

For constant o in the z direction the centrifugal force
is described by a potential

Vo= —3mup’, (44)

where p is the cylindrical coordinate. The Coriolis force
is equivalent to the presence of a uniform magnetic
field in the z direction with B=2mw which can be de-
scribed with an appropriate vector potential A={B xr
so that

Fgentrifugal= —m® X (0@ XT).

(45)

Then the kinetic plus inertial forces operator becomes

A=mo xr.

T=2m) Y (p—mw x1)2+V,. (46)
The «? terms cancel and the result is
T=(p*/2m)—w-L, (47

which gives Eq. (41). The ground-state eigenvalue of
Eq. (41) is of course not the lab energy required in
Eq. (35) and instead the wave functions resulting
from Eq. (41) must be transformed back to the lab
system and the energy calculated in that system. The
result is the same as before, namely Eq. (37¢). Al-
though the rotating coordinate system interpretation
of Eq. (41) can give helpful physical insight for its
eigenfunctions, the transformation back to the lab to
obtain the energy Eq. (36¢) is not so obvious.

B. Interpretation of the Cranking Formula

A valid use of the cranking formula must answer the
fundamental question of just what is the rotating po-
tential of Eq. (22), but first the early discussions will
be outlined as they show some of the subtlety of the
evaluation of Eq. (37c).

The cranking model was first used by Wick (1948)
to calculate the electronic flow in a rotating molecule.
In this case the slowly rotating potential in which the
electrons move is generated in large measure by the
heavy nuclei and the cranking approximation should
be good. The result is that the electrons do not rigidly
follow the rotation of the nuclei. In fact they slip
somewhat, thus producing a smaller current in the lab
than that implied by a rigid rotation. In particular,
Wick showed that for a single electron in its ground-
state wave function (with no nodes) the flow is irrota-
tional independent of the form of the potential.

Inglis (1954) found furthermore that the moment of
inertia calculated according to Eq. (37c) gives the

irrotational flow value for a many-body system con-
sisting of nucleons moving in an anisotropic (deformed)
harmonic oscillator potential

H(0) =p*/2m+3 (o™ +wy+wle?),  (48)

with w,7w,5w,, and quantum numbers of occupied
states corresponding to full spherical shells, i.e., all
states occupied to principal quantum number N,

ny=mn,=n,=N/3. (49)

The #,, n,, n. are the usual one-dimensional harmonic
oscillator quantum number for the x, y, and z degrees
of freedom. The resulting irrotational moment of in-
ertia is proportional to 8? or to (wy,—w,)? the square
of the deformation parameter (cranking about the «
axis as is conventional).

To be precise we have

(50)

9 trrot = Irigia€,

€= (Rmaior“ Ruinor) /&%0.95{3. (51)

Since the experimental moments of inertia are four
to five times the irrotational value there was some
effort to increase the theoretical value by considering
residual interactions, departures from the oscillator
shape, etc., but Bohr and Mottelson (1955), who were
the first to recognize the vital importance of treating
the nuclear shape self-consistently, showed that the
simple cranking model in fact yields the rigid value for
the moment of inertia, which is two to three times bigger
than the experimental values. These results were dis-
cussed and amplified by Inglis (1956) and by Moszkow-
ski (1956).

For a general configuration of occupied states in the
deformed harmonic oscillator potential, the cranking
model moment of inertia Eq. (37c) is easily computed
to be (Bohr and Mottleson, 1955)

9= (‘ﬁ/Zw,,wz) {[(wy_“’z) 2/(“’3/"“02) 1= (ny+n.41)
+L(wytw:)?/ (wy—w:) ] X (n—n,) b, (52)

where the sums are over the occupied state quantum
numbers. The first term gives the Inglis irrotational
result of Egs. (49)-(50), but for the closed-shell con-
figuration of Eq. (49) the self-consistent nuclear shape
(solution of the Hartree-Fock equations) is spherical
and there is no deformed potential to crank.

For any other configuration, with one or more par-
ticles beyond the “spherical” closed shells represented
by Eq. (49), the equilibrium (self-consistent) shape is
deformed. For small numbers of particles outside of
closed shells the deformation is proportional to that
number. Specifically, Mottelson showed that the re-
quirement that the particle density deformation equal
the deformation of the potential of Eq. (48) leads to
the result that the total nuclear deformation is pro-
duced half by the extra particles (outside of closed

where



shells) and half by the core of closed-shell particles
(Mottelson, 1962).

Thus, for one or two particles outside closed shells,
while > (#,—n,) is small, the deformation and thus
(wy—w.) is also very small so that the second term of
Eq. (52) is large and more important than the first
term. Careful calculation shows that for any number
of particles beyond closed shells the second term of
Eq. (52) is just large enough, if the «’s are calculated
for a self-consistent deformation, so that the resulting
calculated moment of inertia is exactly the rigid value,

Irigia= 2, mi(y2+22), (83)

where the sum is over all the particles including those
of the “spherical closed-shell” quantum numbers.

This result, which is exact for any number of extra
core particles for the harmonic oscillator potential, is
expected to hold for independent particles in any po-
tential in the #—o0 limit (Bohr and Mottelson, 1955)
and to be approximately valid for finite #. The crucial
importance of self-consistency is seen from the fact
that Eq. (52) can be made to yield any value from
irrotational to even larger than the rigid moment of
inertia if the deformation and configuration may be
chosen independently. The pushing model (for linear
motion) does not involve the type of self-consistency
just discussed; its moving well may be either self-
consistent or externally imposed so that a comparison
of the pushing and cranking models cannot help to
clarify this particular point.

C. The Effect of Residual Interactions

Since the rigid value is two to three times larger than
the experimental moments of inertia, the problem was
thus to find some effects to Jower the theoretical value.
Bohr and Mottelson (1955) correctly indicated that
residual two-body interactions not included in the one-
body Hartree-Fock field would lower the moment, and
that correlations of the pairing type would be the most
important. :

Calculating the change in moment of inertia due to
two-body interactions is not simple, as shown by
Amado and Brueckner (1959). In this paper it is
shown that for particles in plane wave states with
periodic boundary conditions in a cubic box, the crank-
ing formula Eq. (37¢) gives the rigid moment of inertia
in the #—oo limit. The importance of self-consistency
is not mentioned but is, of course, automatically satis-
field for such a ‘“‘nuclear matter” type wave function.

It is then demonstrated that the addition of any
two-body interaction, including one which would alter
the level density, has no effect on the cranking moment
of inertia to first order in the added interaction. The
effect of the changed denominators in Eq. (37¢) is
cancelled by a compensating effect in the L, matrix
elements to first order. Rockmore (1959) then showed
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that the same result, namely unchanged rigid moment
of inertia, holds to all orders of the random phase
approximation (RPA) treatment of the particle-hole
part of the added two-body interaction.

D. Moment of Inertia with Pairing

This is not the case for pairing correlations (Rock-
more, 1960). In fact, Belyaev (1959) showed explicitly
that residual interactions of the pairing type (particle-
particle scattering to hole-hole states) denoted by BCS
(Bardeen, Cooper, and Schrieffer, 1957; Bogoliubov,
1958, 1958a, 1958b; Valatin, 1958) do indeed lower the
moment of inertia from the rigid value. There are two
effects both working in the same direction to lower the
value of Eq. (37c). First, the energy denominator
E;®—E,®, which is simply the particle-hole excitation
energy e,— €, becomes for the paired system

E®— E®=F, 4y, (54)

where
E,=[(e,—N\)2+A2]2 (55)

is the quasiparticle energy, thus implying an increased
energy denominator if the gap parameter A is non-
vanishing. The second effect is a reduction of the L,
matrix element by the factor (U,V,—U,V,) which
appears squared in the numerator of Eq. (37c). The
quantities A and V' are the Fermi energy and occupa-
tion probability parameters of pairing theory (Bés and
Sorensen, 1969) and U?=1—V2,
The resulting moment of inertia formula

g=2 Z; U (]s) 124 iz/(Ev+EV’) ]( UvVV'_ V,,U,,')z (56)

was evaluated for realistic nuclear parameters by
Griffin and Rich (1960) and by Nilsson and Prior
(1961). In these calculations, the all important self-
consistency is put in by use of the Nilsson model
(1955) (see also Mottelson and Nilsson, 1959), single-
particle energies. This is a modified deformed harmonic
oscillator model which includes a deformation depend-
ence of the average oscillator parameter to simulate
nuclear volume conservation under deformation. With
parameters chosen primarily to fit odd mass nuclear
levels, the model gives self-consistent deformations for
even deformed nuclei in reasonable agreement with
observed B(E2) values. The self-consistency involves
a minimization of the sum of occupied single-particle
energies as a function of deformation, which is thought
to be equivalent to a Hartree (Fock) self-consistency
for the special case of an harmonic self-consistent po-
tential form. The calculation of the moment of inertia
is not precisely self-consistent, however, since the de-
formation B used is taken to fit the experimental B(£2)
value for each nucleus. Likewise the pairing parameters
are not derived from a two-body force, but chosen to
fit experimental data particularly concerning odd-even
mass differences.
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The result is a remarkable agreement with the ex-
perimental values. The fine structure of variation from
nucleus to nucleus is well reproduced for both the rare
earth and the actinide nuclei, but the “best’’ choice of
parameter values leads to slightly too small values for
the theoretical moments of inertia. That is, the pairing
produces a little too much lowering from the rigid
moment.

This lowering of the moment of inertia corresponds
to a superfluid slippage of some fraction of the nucleus
as the nucleus rotates (Migdal, 1959, 1959a). Since
the neutrons and protons are paired separately for
heavy nuclei the fractional slippage may not be the
same for each, so that the gyromagnetic ratio gg, which
is a result of the proton current, might differ from Z/A4,
the value obtained assuming spins to be paired and
protons and neutrons moving together. Experimentally,
gr for 2+ rotational excited states is somewhat less
than Z/A, a result in general good agreement (Nilsson,
1961; Migdal, 1959) with the observation that the
pairing in deformed nuclei is somewhat stronger for
protons than for neutrons (A,> A,,) as observed in the
experimental odd-even mass differences.

The success of these calculations which finally pro-
duced semiquantitatively correct moments between the
far too small irrotational value and the too large rigid
value is convincing evidence that our picture of rota-
tional nuclei as deformed, superfluid many-body sys-
tems is qualitatively correct.

E. The Mottelson-Valatin Effect (Basic Idea)

The new data of interest in this article concern the
change in the moment of inertia as a function of angu-
lar momentum or angular velocity rather than its
value at w=0 which has been the topic of discussion
in this section up to this point. The self-consistency
problem for the variation of the moment of inertia is
clearly much more difficult than that for the w=0 case.
While in the latter case it was possible to almost com-
pletely avoid the self-consistency problem by the use
of other experimental information concerning deforma-
tions and the strength of pairing, little or no such
direct data concerning the change in deformation and
pairing exists for high angular momentum states, and
in fact it should be the aim of the calculation to predict
such changes as well as the changes in the moment of
inertia. Even for small changes in the ground-state
parameters (and the measured high spin states must
involve large changes in some parameters since the
moment of inertia changes by a factor of two and more
in some cases) a simple higher order perturbation treat-
ment would not be valid, and at the very least an
appropriate self-consistent perturbation theory must be
applied.

At this point, Mottelson and Valatin (1960) made
their observation that at a sufficiently high angular

velocity the nuclear pairing correlations should be re-
duced to zero, in analogy to the destruction of super-
conductivity in the presence of a sufficiently strong
magnetic field, the Meissner effect. The analogy with
superconductivity in a magnetic field arises from the

‘fact that the Coriolis force as seen in the rotating

coordinate system, Eq. (42), is equivalent to the im-
position of a magnetic field as noted in Eq. (45).

The physical origin of the Coriolis antipairing effect
is as follows. For a nucleus described as a nonrotating
deformed potential, the single-particle orbits occur as
degenerate time reverse pairs. The attractive pairing
force has large matrix elements for pairs of nucleons
occupying (or scattering between) such time reverse
paired orbitals. When the nucleus or potential is rotat-
ing, the individual nucleons feel (in a coordinate system
rotating with the potential) not only the deformed
potential, but also centrifugal and Coriolis forces. The
Coriolis forces break the time reverse degeneracy, low-
ering those states with angular momentum pointing
toward the rotation direction relative to those pointing
away. This tilting of the single-particle orbits tends to
break the pairs favored by the pairing force and to align
the individual particle angular momenta in the direc-
tion of rotation. For sufficiently rapid rotation, the
pairing correlations should disappear.

At the time of this prediction of the Mottelson—
Valatin Coriolis antipairing CAP effect, there was no
data to sufficiently high spin to test the idea. By con-
sidering the competition between the binding energy
gain due to the pairing correlations in the rotating
coordinate system, and the loss of binding (or increase
in rotational energy) owing to the reduced moment of
inertia caused by pairing, Mottelson and Valatin were
able to estimate the spin value I, above which the self-
consistent pairing should vanish. At higher spins they
predicted a moment of inertia equal to the rigid value
in accordance with the rather general cranking result
in the absence of pairing correlations, and furthermore
predicted a rather sudden change in the wave function
at I~I,from the correlated to uncorrelated form which
would cause the ground-state band, as seen in multiple
Coulomb excitation, effectively to terminate at I=1,.
Their estimate was I,=12 for 4=180 and I.,=18 for
A =238, in remarkably good agreement with the pres-
ently observed sudden increases in moments of inertia
of a number of rare-earth nuclei beginning at about
spin 14-16. '

F. Theory of Rotation

During this period there were a number of attempts
to discuss nuclear rotation from first principles, without
resorting to the cranking model. Peierls and Yoccoz
(1957) (Yoccoz, 1957) performed an approximate vari-
ational calculation based on the Hill-Wheeler (1953)
(Griffin and Wheeler, 1957) generator coordinate idea.



They minimize the Hamiltonian expectation for a linear
combination of deformed axially symmetric independ-
ent particle wave functions &, 4(x), the linear combina-
tion corresponding to different orientations of the
direction 6, ¢ of the symmetry axis. The trial wave
function is thus

Y(x) = [ d0 déx (8, $) Bs,4(xX) (57)
The variational condition
SE=5( | H |¥)/ ¥ |¢) =0 (58)

in this case is equivalent to deformed projected Hartree—
Fock, and the weight function x is proportional to
Yis (0, ¢). For large deformations and thus small over-
lap between deformed wave functions corresponding to
different orientations it is shown that the resulting
energy is of the form

Eyn=Ey+cl(I4+1)

allowing a definition of the moment of inertia. The
actual evaluations with nuclear forces were not done
self-consistently, an impossibly difficult job at the time,
but furthermore this formulation was known not to
give the correct result for the-pushing model, a very
serious failing.

The method needed to find agreement between this
sort of theory and the pushing model result, and at the
same time to justify the Inglis cranking formula was
given by Gross (1959).

Instead of taking for the trial wave function one
corresponding to a linear combination of states with
different orientations of the symmetry axis (different
positions in the pushing case), thus projecting to a
definite angular (linear) momentum, one takes a trial
function corresponding to a linear combination of states
with different angular (linear) velocities. The wave
function can be forced to satisfy the condition that the
expectation value of the angular (linear) momentum
take on a fixed value. The wave function resulting from
the variational condition Eq. (58) may in addition be
projected to a definite angular (linear) momentum.

The result for the case of linear momentum is

E=Eyt+ (P*/2mA),

(59)

(60)

where P is the momentum expectation and A4 the num-
ber of particles. The correct mass is obtained whether
or not the final projection to definite linear momentum
is performed, although of course a lower E, results
from projection. The resulting wave function for the
moving system is just exp [(mv/%) X x.] times the
translation invariant function for P=0.

In the rotational case it is shown that

E=E\+(1?/29),

W7 [¥)=1,

(61)
where
(62)
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the fixed angular momentum expectation value, and in
the case of no projection to definite angular momentum
the moment of inertia 4 is given by the Inglis formula
[Eq. (37c)]. ,

The connection with Hartree-Fock theory is care-
fully worked out by Thouless (1960), Thouless and
Valatin (1960, 1962), and Peierls and Thouless (1962).
The problem is to determine what Slater determinant
¢ will minimize the nuclear Hamiltonian H=3" T,+
2 Vag with the constraint that (¢ |J, | ¢)=1 is satis-
fied. The unconstrained solution | ¢y) must of course
have a deformed shape, and will have (¢ | J. | ¢0)=0.

The method of Lagrange multipliers is used to en-
force the constraint condition, so that

H=H—u, (63)
must be minimized where w is the Lagrange multiplier.
Observe that the auxiliary Hamiltonian H’ has the
same form as that of Eq. (30c). For small w and thus
small 7, the second term of Eq. (63) may be treated
in perturbation theory using |¢o) and particle-hole
excited states based on |¢) as basis states. | ¢) is
written as

| ¢)=II (14Crias'a:) | o),

,n

(64)

where #, m are unoccupied and 7, j occupied states of
| o) and C,; the particle-hole admixture coefficients.
The Hartree-Fock unperturbed single-particle and hole
energies are e, and e;. The perturbation equations deter-
mining the admixture coefficients C,; are not the usual
ones of ordinary perturbation theory since the un-
perturbed variation giving |¢o) is equivalent to the
well known self-consistent problem. That is, the one-
body Hartree-Fock Hamiltonian Y %, giving the €, €,
as eigenvalues contains the one-body part of H, namely
the kinetic energy > f,, but it also contains the self-
consistent potential which depends on the occupied
state wavefunctions. Thus extra perturbation terms
arise from variation of the wave functions (Y and ¢¥)
from the self-consistent potential. The result is (Brown,
1970)

(en—€) Cnit 22 [(Vimni—Vim,in) Cuj
nn

+ (an,ij— an,ji)cni*]z w(jz)""i

and its complex conjugate. The naive perturbation re-
sult would be obtained by omitting the terms containing
V. If these terms are omitted, it is easily seen that the
Inglis cranking formula follows.

The constrained variation requires the solution of

(X ha—wJ5)¢=Eup. (66)

From second-order perturbation theory using as basis

states | 1),
2 hal|i)=¢i|4)

(65)

(67)
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it follows that

Eo=3 ei— Z‘gf”. (68)
But the nuclear energy is
| Er=(¢| Tha| $)=Eutois | J.1¢)
- Satey el (69)

which is equivalent to Eq. (37c), the cranking result.

The extra terms of Eq. (65) correspond to the fact
that the nucleus must be allowed to respond self-
consistently to the perturbation caused by the rotation.
Without a serious calculation it is difficult to estimate
the relative size of the terms containing V and the
primary perturbation term on the right side of Eq.
(65), but the importance of the nuclear spectrum is
clear.

The similarity between Eq. (65), the linear inhomo-
geneous equation for the perturbation amplitudes, and
the linear homogeneous equations whose solution gives
the random phase approximation (RPA) amplitudes
is no accident. In fact the use of the usual perturbation
formulas, but with Tamm-Dancoff Approximation
(TDA) eigenstates and energies as basis states essen-
tially corresponds to the inclusion of the VXC term
of Eq. (65) while the use of RPA states and energies
is equivalent to. the full Eq. (65) with both ¥ XC and
VXC*. Thus these self-consistent corrections to the
cranking formula will be important if the residual nu-
clear interactions are such as to greatly alter the energy
and matrix element of (14 ) states connected to ¢ by
the J; operator from their Hartree-Fock values.

For velocity-independent forces, it is shown that
this self-consistent correction to the cranking formula
comes entirely from the exchange part of the inter-
action.

It is also shown that the same results can be derived
from the time-dependent Hartree-Fock (TDHF) equa-
tions. In addition the formalism is readily extended to
include pairing correlations by use of the extended
Hartree-Fock or Hartree-Fock-Bogoliubov (HFB)
method, thus justifying the results of Griffin and Rich
(1960) and Nilssen and Prior (1961) to the extent
that self-consistent effects of the type described above
can beignored. The additional terms due to the particle-
particle and hole-hole parts of the force have recently
been calculated and indeed give a small total effect
(Meyer, Speth, and Vogler, 1972).

The Peierls—Yoccaz (1957) projection method can
also be made to give the correct pushing result by
making the projection to good angular momentum
before performing the variation of Eq. (58) with re-
spect to the unprojected wave functions. (Zeh, 1965;
Rauhaninejad and Yoccoz, 1966; Kamlah, 1968;
Onishi, 1968).

It was also shown that some corrections to the
Belyaev formula [Eq. (56) ] are required in a properly
invariant self-consistent perturbation treatment of the
pairing part of the problem (Katz, 1961; Katz and
Blatt, 1961; Prange, 1961). As before, the “pushing”
problem was used as a guide to the correct formulation,
which is analogous to a gauge invariant treatment of the
Meissner effect. Although the original Belyaev formal-
ism gives the wrong answer for the mass in the “push-
ing” problem, it can be formally brought into agreement
(Belyaev, 1961) with the correct Mlgdal form, and the
numerical difference is small.

G. The Mottelson~Valatin Effect (Detailed
Calculation)

The decrease to zero of the pairing gap A with in-
creasing angular velocity (Mottelson—Valatin CAP ef-
fect) was first discussed at length in lectures by Valatin
(1962).

1. Perturbation Calculations for Low Spin States

An extensive program of calculations was undertaken
by Marshalek (1965, 1967). In these papers the effects
of rotation on the pairing gap, on the extent of deforma-
tion, and on the quasi-particle motion are all considered.
The pairing plus quadrupole model (Bés and Sorensen,
1969) is used for the calculation. In order to obtain
the change of moment of inertia with angular velocity
Marshalek derived the appropriate expressions for the
self-consistent perturbation of the HFB (Hartree-
Fock-Bogoliubov with pairing) equations beyond first
order in the wave functions and second order in the
energy required for the usual cranking type of formula.
With -wJ . as perturbation he carried out the calculation
self-consistently to fourth order in the energy.

Thus, in an expansion of the type

E=AT(I+1)+BI{I+1)P+CIUI+1) J+---,
(70)

he determines 4 and B, while in
9=9p+be?+cw*+- - (71)

9o and b would be determined. Since in this calculation
all quantities e.g., A, etc. are expanded in powers of
the angular velocity w, the method is not suitable for
studying the large angular momentum region for which
the gap has changed from its w=0 value all the way
down to zero. The rotation must be slow enough that
all nuclear properties have changed only a little.

In the calculation, the usual approximations to the
pairing plus quadrupole two-body force model are
made; namely,

(1) The quadrupole force contribution to the pairing
potentials is ignored, and

(2) The exchange contribution of the quadrupole
force to the self-consistent deformed field is ignored



With these approximations, 9o of Eq. (71) and thus 4
of Eq. (70) is given by the Belyaev formula [Eq. (56) ].
In particular, the self-consistent field corrections from
Eq. (65) vanish since the exchange contribution of the
quadrupole force is ignored, and also the self-consistent
deformed field is essentially of the Nilsson type so 9, is
as calculated in (Griffin and Rich, 1960; Nilsson and
Prior, 1961) except for some parameter adjustments.

The results of the calculation are expressed in terms
of the B parameter of Eq. (70) The calculated (and
experimental) B values are negative corresponding to
a positive b in Eq. (71) or a moment of inertia increas-
ing with increasing angular velocity, as expected from
either the CAP effect or from a centrifugal stretching
effect.

The calculations indicate that for the well deformed
nuclei of the rare earth and actinide regions, the cen-
trifugal stretching effect, due to an increasing self-
consistent deformation with rotation, is only a small
fraction of the total effect changing the moment of
inertia. Only for the lightest rare-earth nuclei is the
stretching important.

The calculated (—B) parameters for the actinide
nuclei agree reasonably well with the experimental
values as determined from the 04, 2+, 4+, or 0+,
2+, 4+, and 6+ level energies, while the calculated
values for the well deformed rare-earth nuclei are
about a factor of two too large. The calculated B values
have about equal contributions from two sources. The
first arises from extending the ordinary independent
quasiparticle cranking model as Belyaev did to fourth
- order in w keeping the deformation and gap parameters
A fixed. The second comes from the change in A with
angular velocity, i.e., the CAP effect in perturbation
theory. Similar calculatlons have been made by Ma
and Rasmusson (1970).

The same formalism was also used by Marshalek
(1968) to compute the isomer shift, the change of
RMS nuclear radius of the rotational 2+ state com-
pared to the 04 ground state. For rare-earth nuclei
the 24 state is a little larger than the ground state of
order AR/R~ 1075, The shifts for the transition nuclei

(light Sm and Gd) are larger, and in a few cases for -

heavier nuclei small negative shifts are observed. The
calculated shifts are the right order of magnitude, but
tend to be too large by a factor of 2-3. While the main
causes of the change in moment of inertia are the
Coriolis quasiparticle effect and the CAP effect,. the
change in radius comes mainly from the centrifugal
stretching effect. Recent calculations including hexa-
decapole B; deformations give good agreement with
experiment (Sano and Wakai, 1972). .

2. Calculations for High Spin States

The first detailed calculations of the CAP effect valid
up to the high spin at which A goes to zero were made

R. A. SorRENSEN Nuclear Moment of Inertia at High Spin 367
by Chan and Valatin (1964, 1966). They were followed
by a number of increasingly sophlstlcated but basically
similar calculations by various authors (Sano and
Wakai, 1965, 1967, 1972; Chan, 1966; Udegawa and
Shehne, 1966 Bés, 1968 Krumhnde 1968, 1971; Ring,
Beck, and Mang, 1970 Wakai, 1970 Kuma.r 1972)

The idea of these calculatlons is that the self-con-
sistency regarding the pairing gap and the deformation
magnitude should be treated exactly, that is, no power
series expansion is assurmed for A(w). The deformation
and gap to, be selected are those which minimize the
energy for fixed expectation of the angular momentum.
But the calculation of the energy for fixed deformation
and energy gap is done by treating —wJz in second
order perturbation theory, leading to Eq. (56) for the
moment of inertia. This procedure may be valid even
for an angular momentum large enough to destroy the
pairing gap as long as the energy from —wJy is small

compared with the quasiparticle excitation energy of
the HFB equations. The pairing plus quadrupole force
model with the usual approximations has been used in
all the calculations for heavy nuclei.

The calculation made by Krumlinde, his method A,
can be described as follows: The energy consists of a
rotational part involving the usual Belyaev moment
of inertia expression [Eq. (56)] and an intrinsic part
which 2iso depends on the pairing and quadrupole
deformations 8 and A. The total energy E(B, A, I) is
then minimized for each I by varying 8 and A where

E(ﬁa A, I) = [I(I+1)/25(67 A)]+ Z 2€vVv"
_G(Z U,V,,)Z—GE Vv4+ECoulomb(.8)

repur-o (-1 )
+ (Ex(Vao)— m( iI(I;Dz—Z) (72)

The first term is the rotational energy, and the next
four terms the usual intrinsic energy in the presence of
pairing and the Coulomb energy. The last two terms
take account of the fact that the moment of inertia
should be calculated for the deformations of the particles
rather than those of the fields. It is easy to show that
minimization of Eq. (72) leads to the modified pairing
gap equation of Chan and Valatin (1966), namely:

2/G= 2" E,4-w?(39/0A2). (73)

Calculations have been done in which A,, A,, 8., and B4
have all been varied.

The calculations of Bés ¢t al. ( 1968) and Krumlinde’s
(1968) method B neglect the last two terms of Eq.
(72), and the calculations of Kumar (1972) attempt
a better treatment of the self-consistency problem.

One weakness of these calculations is that while they
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TasirE II. Critical angular momenta for rare-earth nuclei for the
neutron and proton CAP effect from Sano and Wakai (1972).

Nucleus A I I»

Sm 152 22 40
154 22 36

Gd 154 22 44
156 18 42

158 18 42

) 160 14 42
Dy 156 32 46
158 28 42

160 18 34

162 14 32

164 18 32

E 160 32 44
162 24 36

164 16 32

166 20 32

168 22 30

170 12 28

Yb 164 30 36
166 20 28

168 24 26

170 22 32

172 12 30

174 16 28

176 16 20

Hf 170 16 36
172 18 36

174 12 34

176 14 38

178 12 28

180 12 24

w 172 22 50
174 22 48

176 18 42

178 14 40

180 10 38

182 10 32

184 18 28

186 18 30

do include the Coriolis antipairing CAP effect and the
centrifugal stretching effects to all orders in w/,, they
treat the direct effect on the quasiparticle only to
second order, although Marshalek (1965, 1967) found
that at small angular momentum the fourth order
effect on the quasiparticles was comparable to the CAP
effect. Thus the low spin results of these calculations
is certainly suspect. It may be, however, that at high
spins, where the Coriolis antipairing is clearly a large
effect, the higher order quasiparticle effect may be
small enough to be ignored.

Chan and Valatin showed that at increasing spins
the gap parameters become smaller and then go sud-
denly to zero. Further, they found (as confirmed by
all the other authors) that the neutron gap goes to
zero at a lower spin than does the proton gap. If the
A, B, and C coefficients of Eq. (70) are fitted from the
low spin application of the theory, agreement with ex-
periment for 4 is good to about =159, as previously
mentioned. For B the agreement is also rather good,
to about 409, for the rare-earth nuclei. Of course
that agreement may be fortuitous since it is the omission
of Marshalek’s quasiparticle contribution that cuts
down the value to about the correct size. The C coeffi-
cient is in error by an order of magnitude compared
with the experimental result.

The critical angular momentum 7, at which the neu-
tron pairing vanishes is somewhat higher than the
original estimate of Mottelson and Valatin. Table IT
(Sano and Wakai, 1972) shows that the values of I,
range from as low as 12 to as high as 32 in the rare-earth
region. Krumlinde (1971) who included hexadecapole,
quadrupole, and pairing deformations finds less varia-
tion with 16 27,220 for nearly all rare-earth nuclei
and 20<I,<25 for actinides.

Although changes in deformation usually have a
small effect on the energy at low spin, there are cases
in the calculations which include deformation effects,
in which significant increases in deformation occur at
higher spin. At low spin when the pairing is still impor-
tant the shell effects are somewhat smoothed, and the
energy as a function of deformation is a smooth curve
with one minimum at the equilibrium deformation. At
higher spins the pairing decreases, the shell effects be-
come more pronounced, and the energy as a function
of deformation may take on more structure as, for
example, by developing two minima with a barrier be-
tween them.

As the spin increases the larger deformation becomes
more stable relative to the smaller, so that at some
value of angular velocity the nucleus may make a
sudden transition to a larger deformation and thus to
a larger moment of inertia. Such effects are seen in
some cases in the calculations of Sano and Wakai and
also of Krumlinde. Such a sudden increase in the mo-
ment of inertia might produce a discontinuity in the
ground-state rotational band much like that caused by
the disappearance of pairing.

One interesting result of the fact that the neutron
pairing vanishes before that of the protons is that the
gyromagnetic ratio factor gg for states of the ground-
state band should be a decreasing function of spin up
to I.. The experimental value of gr for the 24- states
is a little less than Z/A, the value expected for a rota-
tion of the neutrons and protons together. The reason
it is less than Z/A is because the proton pairing and
thus the proton slipping during rotation (giving the
reduction in moment of inertia from the rigid value) is



a little larger than that of the neutrons. Thus the
charge to mass current ratio under rotation is a little
less than Z/A (Nilsson and Prior, 1961).

As the rotation is increased the pairing decreases,
particularly for the neutrons up to spin .. Thus the
excess of proton pairing (and slippage) over that of
the neutrons increases and gg decreases accordingly
until at I, the neutrons are rotating rigidly and con-
tributing their rigid value to the moment of inertia
while the protons are still paired and not rotating as
much. At higher spins yet the protons become unpaired
and rotate rigidly so that the gr factor should rise
again to the simple value gg=Z/A. Sano and Wakai
show a curve for Er for which gz drops from about
0.3 to about 0.1 at /=18 and then rises again.

Kumar finds other interesting changes occurring at
the angular momentum at which the neutron pairing
is dropping rapidly to zero. So much moment of inertia
increase is caused by the drop of neutron pairing that
it is favorable for the nucleus at the same spins (16-18
for Dy) to both increase its proton pairing and de-
crease its deformation with increasing angular momen-
tum to partially offset the effect of the neutron pairing.
Unfortunately, it will be very difficult in the near future
to measure experimentally the magnetism, deforma-
tions, and pairing of the high spin states.

As mentioned earlier, however, the B(E2) values for
the high spin transitions have been determined in one
case (see Table I in Sec. IIB2). It is interesting to
estimate whether the ~309, decrease in B(E2) ob-
served in the backbending region can be reasonably
explained on the basis of the CAP effect of a reduction
in neutron pairing gap.

If two neighboring spin states 7, 7—2 have different
gap parameters A and A’, the corresponding transition
should be retarded by the square of the overlap integral

R= | (BCS(A) | BCS(A")) |
The overlap integral
(BCS(A) | BCS(A) )=TI(U;U/+V.V{)

is easily calculated for a model with uniformly spaced
single-pair degenerate levels of an energy density cor-
responding to the rare-earth region (three levels per
MeV). The result shown in Table III is for 20 levels,
but changing to 30 levels makes no difference.

From the experimental data it is clear. that the
‘“‘phase transition” to A=0 is not completely sharp,
but takes place over several angular momentum units
even in the sharply backbending cases. This may be
due to the finite number of particles involved. Although
it is not yet possible to calculate in detail the shape of
the S curves from microscopic theory as will be dis-
cussed in the next sections, the A value for each spin
may be roughly estimated from the energy data. To
make the simplest possible estimate for the S-shaped
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TasLE III. Overlap integrals (BCS(A) | BCS(A')) for 20 levels
with 3 levels per MeV, and 20 particles.

A\4a' 0.0 0.1 0.2 0.3 0.4 0.5
0.0 1.00. 091 0.76 0.64 0.54 0.46
0.1 1.00 0.96 0.88 0.79 0.72
0.2 1.00 0.98 0.93 0.87
0.3 1.00 0.99 0.95
0.4 1.00 0.99
0.5 1.00

curves, assume that the moment of inertia ¢ at spin I
is to be taken from the plots of Fig. 6 by averaging the
I, I—2 and the I4-2, I points. Then assume that 9(A)
is a linear function of A with A=0 at 9maximum and
A=0.8 MeV for 9o the moment of inertia at 7=0. This
estimate gives for ¥ Er A=0, 0.09, 0.28, 0.46 MeV for
I=16, 14, 12, 10, respectively. Table III may then be
used to determine that the I=16-14 and I=12-10
transitions should be retarded by about 10-159%,, and
the /=14-12 transition should be retarded by 20-309
relative to the higher and lower ones, in reasonable
agreement with the experimental results (Ward et al.,
1973). A similar estimate for the smoother %Dy sug-
gests retardation of only about 109, at most. These
rough estimates should not be taken too seriously as
they include only one effect, but they may give the
order of magnitude of the expected effect.

Work has continued in efforts to justify a higher order
cranking model since for heavy nuclei at high spins
any other type of treatment is still too involved calcu-
lationally (Marshalek and Weneser, 1969, 1970). A
number of other fundamental discussions of rotation
have been presented (Klein and Kerman, 1965; Klein
et al., 1968; Onishi and Yoshida, 1966; Kammuri, 1967;
Belyaev and Zelevinskii, 1970).

3. The Shape of the Singular Behavior at High Spin

Because of the recent experiments showing a sudden
rise in moment of inertia at about spin 16 and the sug-
gestion that this is indeed the Mottelson—Valatin CAP
effect, there is renewed interest in determining in more
detail the predicted shape of the ground-state band in
the vicinity of the singularity.

The CAP calculations indicate a moment of inertia
which rises with increasing angular momentum until
the neutron gap vanishes at which point the moment of
inertia stops at a value corresponding to the rigid mo-
ment (for the neutrons). It would be expected to rise
again until the proton gap vanishes and then remain at
the full rigid value. In the calculations using the BCS
formalism a discontinuity in the slope of the 9 vs I
curve will occur when A,=0. Since d=1/w=1/(dE/dI),
such a discontinuity implies only a discontinuity in the
second derivative of the E vs I curve. Since the data
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F16. 7. The first 9 vs w? curve as inferred from graphs of Chan
and Valatin (1964, 1966).

are for discrete I values it would be difficult to prove
the existence or nonexistence of that discontinuity from
experiment.

In fact, this discontinuity at A=0 is an artificial
feature of the BCS approximation associated with the
failure to require conservation of the number of par-
ticles. Many suggestions have been made concerning
exact and approximate number projection schemes to
improve the BCS equations. [See for example Ref. 27
of Bés and Sorensen (1969).] A particularly simple
method (Sorensen, 1972) was suggested by the author.
Instead of the usual BCS wave function

yr=II (Uj+V;ai'e;") | 0), (74)

the wave function
v=II (Ui+Viai'a;") | 0)x II (U;—Viaitas") | 0)
7 i
(75)

is used as a trial function. While | BCS) Eq. (74)
contains all numbers of pairs, Eq. (75) contains only
even/odd numbers of pairs of particles. This gives a
much improved energy, especially near A=0, and elim-
inates the singularity in the second derivative of E, vs
G, where E; is the ground-state energy of a pairing
force with strength G (this singularity is closely related
to the E vs I singularity just discussed). This method
is used for discussion of the moment of inertia by
Sorensen (1971).

It is also used in recent calculations by Faessler ef al.
(1972). Calculations have been made for rotational
levels to high spin (84-) in Light nuclei (Satpathy
and Nair, 1968; Beck et al., 1970; Gunze and Khadkikar,
1970; Sandhya et al., 1970; Goeke and Faessler, 1971;
Goeke et al., 1972; Grin and Leinson, 1972; Marshelek,
1972; Parikh, 1972). These are not cranking calcula-
tions, but use a wave function of the Hartree-Fock-
Bogoliubov type projected to definite angular mo-

mentum. ‘“‘Realistic” forces have also been used rather
than the schematic pairing plus quadrupole type. These
calculations with the projection to definite angular mo-
mentum made before that variation which determines
the pairing correlation give rather good results for s, d
shell nuclei and show an antipairing effect with in-
creasing spin.

Similar calculations using the pairing plus quadru-
pole force model have now been reported for the rare-
earth nuclei Dy and **Er (Faessler ef al., 1973). The
number projection is done using the simple method de-
scribed above. The angular momentum projection to
high spin requires a fine mesh of integration points and
is still only feasible if the deformations are restricted
to being axial. In the calculations reported, only one
gap parameter is varied, the other quantities (e.g., the
deformation parameter B) being held fixed at some
appropriate value. The calculations, with parameters
chosen to fit the low-frequency part of the spectrum,
do resemble the experimental results at high spin. How-
ever, it is not clear that very good results should be
expected from such a calculation based on a projection
of the small components of high spin from an HFB
wave function with zero expectation value for this spin.
For heavy well-deformed nuclei, the high spin rotating
state may look very little like the high spin component
of a nonrotating axially deformed state. -

4. The S-Shaped Curves

While the existence or nonexistence of a discontinuity
in the second derivative of E vs I might be difficult to
verify, the fact that in some cases (eight to date) the
moment of inertia rises so rapidly with angular mo-
mentum that the angular frequency w=1/9 decreases
momentarily is easily seen in the data, and appears as
an S-shaped curve in the g vs ? plot. This backbending
occurs in the work of Chan and Valatin as seen in Fig.
7, and in the subsequent work and depends on the
strength of the pairing force and the distribution of
single-particle levels. In particular, the stronger the
pairing force relative to the critical value at which
pairing just begins, the stronger is the backbending
tendency due to the CAP effect. Such backbending for
a schematic two-level cranking model with pairing is
shown in Fig. 8.

While the experimental backbending is certainly real
enough, none of the microscopic calculations performed
so far can be trusted in this backbending region. As long
as the backbending is not too sharp (only one w for
each angular momentum) all portions of the curve
should correspond to rotations stable against small
oscillations in the moment of inertia. Thus, the picture
of the,nucleus as having a reasonably sharp angular
velocity as well as sharp angular momentum right
through the points on the S portion of the curve may
be correct.
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Fi1c. 8. Curves of g vs w?as a function of
the strength of the pairing force for the
two-level model. G critical is the mini-
mum pairing force strength at which
there is pairing at w=0 in the BCS ap-
proximation. The two levels each have
pair degeneracy 2=8. The dashed curve
uses the equations of Krumlinde’s (1968)
method A while the solid curves use an
improved pairing approximation (Soren-
sen, 1971). Only the pairing degree of
freedom is considered.

.8
Ceritcat GENERATOR
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So the cranking model of the nucleus, with particles
moving in a rotating deformed potential and having
pairing interactions, may be able to give a satisfactory
description of the spectrum. This is much more difficult
than the usual pairing problem since the one-body
force, with the Coriolis term —wyj, included, has eigen-
states none of which are time reverse pairs. With the
use of these one-body eigenstates as basis states, the
pairing force has the usual pairing matrix elements
connecting pairs in states which were time reverse
pairs at w=0, but with a reduced, state dependent
coupling constant G.i<G. In addition there are new
off-diagonal matrix elements for pairs of particles in
pairs of states which do not become time reverse pairs
at w=0.

The original estimate of I critical of Mottelson and
Valatin (1960) ignored the off-diagonal terms which
tend to push 7 critical to somewhat higher values. The
more recent calculations include both the usual reduced
pairing terms and the off-diagonal terms in an ap-
proximate way. All of these calculations involve a per-
turbation treatment of the angular velocity w at some
stage, e.g., in the calculation of the one-body states
and energies, and the calculation of the effective pair-
ing force parameters. An exact diagonalization of the
HFB equations in the presence of the Coriolis force has
not yet been presented. A cranked HFB calculation
projected to definite angular momentum and definite
number of particles is still more difficult.

The cranking model as it has been used for heavy
nuclei only requires the expectation value for angular
momentum to be fixed. For a backbending 9 vs o?
curve, the E vs I curve (the yrast line) has an identa-
tion or concave downward portion as in Fig. 2 since
the decreasing w corresponds to a decreasing slope. The
cranking procedure minimizes the energy, with the

angular momentum constraint, for a certain class of
wave functions, namely HFB functions. But, an exact
solution of the cranking problem (minimize (H) for
fixed I'=(j,)) must follow a curve like the dashed line
of Fig. 2 and would thus have no backbending. A state
of good angular momentum 7/ on the solid curve in the
backbending region can be changed so as to lower its
energy expectation while still retaining I for (). This
will be the case if the state is changed to a linear com-
bination of a good I state from the top and one from
the bottom of the dashed line of Fig. 2. The exact
cranking procedure without angular momentum pro-
jection thus eliminates backbending by producing a
variational wave function with a large angular momen-
tum spread. Thus backbending obtained in unprojected
approximate cranking procedures must be considered
spurious or at least unreliable.

It is possible to imagine cases in which ¥ of Egs.
(6-9) is so irregular that some intermediate values of
9 between 9y and 9z are unstable so that the 9 vs ?
curve would actually have a break or a missing section.
But at each angular momentum 7, there will be a state
of lowest energy. Thus missing angular momentum
states as discussed by Sano, Takemasa, and Wakai
(1972) must be a spurious result owing to the use of an
inadequate variational wave function.

For a believable microscopic calculation avoiding
spurious singularities, the wave function must have
both the correct angular velocity (cranking), and the
right angular momentum (projection), and the right
number of particles to a degree of approximation thus
far unavailable for calculation of heavy nuclei. But it
may be that the difficult angular momentum projection
can be accomplished (for a cranked wave function,
which already has the correct average angular mo-
mentum) with sufficient accuracy by the use of just a
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few wave functions in analogy to the scheme described
for approximately projecting the particle number in
Eq. (75). Other approximate projection techniques
have been discussed recently (Bishari, 1971; Lee and
Cusson, 1972; Pradhan ef al., 1972; Ullah, 1972).

It has also been suggested that the angular momen-
tum may be sharpened by including extra constraint
conditions, e.g., (J%), {(J3) etc., in addition to the crank-
ing constraint that (J,)=I (Wahlborn, 1972). An
algebraic method for calculations in a j shell model has
been given by Vallieres ef al. (1972).

5. Tri-Axial Nuclei

Another weakness of the microscopic calculations
made to date is that only axially symmetric deforma-
tions have been considered. While at low spin well-
deformed nuclei are mostly axial, at very high spin
they are almost certain to be tri-axial. It is easy to see
that the centrifugal force on a nucleus rotating about
an axis perpendicular to its symmetry axis will be such
as to try to increase the moment of inertia about the
rotation axis. Likewise the Coriolis force on individual
orbits in the rotating nucleus acts to tilt or deform
the orbit so that the particle angular momentum points
toward the direction of rotation. This also acts to make
the nucleus tri-axial.

Bohr (1970) and Mottelson (1971) have suggested
that above 120 the character of the low levels may
be that of an asymmetric rotor. Such a motion is sug-
gested as a possible explanation of the several tracks
of transitions required to explain the termination of
the line spectrum at I=20. The yrast line at these
high spins would correspond to rotation about the nu-
clear axis with the largest moment of inertia. Other
tracks will occur parallel to and with small equidistant
spacings above the yrast line, corresponding to rota-
tions with the rotation axis tilted in small steps away
from the largest moment of inertia axis. These higher
tracks correspond classically to motions with increasing
amounts of wobble of the symmetry axis.

Solutions of the tri-axial rotor problem show selection
rules enhancing gamma transitions along one of these
tracks over transitions across tracks down to the yrast
line (the lowest track). Thus different nuclei of the
ensemble will follow different tracks, rather than all
going at once to the yrast line at high spin and produc-
ing the unobserved lines.

6. State-Dependent Energy Gap

All the microscopic theories used so far describe the
pairing correlation in terms of a single parameter such
as A the pairing gap, which is driven to zero by the
Coriolis coupling. In contrast, the detailed rotor plus
valence calculations of Stevens and Simon (1972), re-
ferred to later as SS, suggest that the first “singular”
effect of the rotation is to decouple only a single high

spin pair of particles. The microscopic theory can
neither confirm nor deny that idea unless the micro-
scopic wave function used has enough freedom to choose
whether just one pair shall first be decoupled or whether
the entire paired nucleus will move to the normal
nonsuperconducting state. Such a decoupling of one
pair at a time has been suggested by Birbrair (1971,
1972) to be the consequence of the nuclear Meissner
effect. Explicit predictions are made that the decoupling
should occur at the lowest spin values for N=90 and
N=112(110) in no particular agreement with the ex-
perimental results. '

V. PARTICLES PLUS ROTOR MODELS

To avoid the delicate and difficult problems of self-
consistency discussed at length in the preceding sec-
tion, there have been several calculations of the high
spin states using a model of several particles coupled
to an axial rotor whose only degree of freedom is its
rotation.

In these calculations the particles mutually interact
with two-body forces, and also with the rotor in such a
way as to conserve the total rotor plus particle angular
momentum. Thus both the self-consistency and angular
momentum projection problems are eliminated in the
model, but at considerable expense in believability. If,
in the model, the number of particles is small (two or
four), the unchanging parameterized rotor may be a
reasonable approximation, but many-body effects will
be absent or mistreated. On the other hand, if the
number of particles is large (the last oscillator shell or
two) then the many-body effects may be well repre-
sented, but it is unreasonable that the rotor not change
its deformation and/or pairing in the presence of a
significant change of the particle wave function. An-
other weakness of the theory is that 9 at /=0 cannot
really be calculated since the rotor moment of inertia
dr is an ad hoc parameter.

A. Krumlinde~Szymanski (KS) Calculation

However, within the model, the calculations can and
have been done in reasonable detail and with good ac-
curacy. Krumlinde and Szymanski (1971, 1972, 1972a)
have exactly solved the rotor plus particles model for a
particularly simple schematic case with the use of group
theory.

The Hamiltonian is the sum of rotor kinetic energy
T and the particle Hamiltonian H, which is described
in terms of the intrinsic coordinate system tied to the
rotor. The total angular momentum 7 is the sum of
the rotor R and particle 7, angular momenta. For two
dimensions (rotations about the x axis perpendicular
to the symmetry axis z) the total Hamiltonian is

H= (I_-]z) 2/(291?,) +Hm (76)

where the first term is the rotor kinetic energy. The
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intrinsic particle Hamiltonian H, is taken to be the
sum of two terms Hy, and Hp,ir. The single-particle
part Hs, is taken to be just two multiply degenerate
levels looking, for example, like a set of Q@==13/2
doubly degenerate Nilsson-type states all at one energy,
and an equal set of @=11/2 states at another energy.
The j, operator is assumed to connect each state at the
one energy with one state at the other energy with a
state-independent matrix element. The two-body force
H,,ir is the usual pairing force which has a constant
matrix element connecting a 4= pair from one of the
energy levels with every other = pair from that level
or from the other energy level.

The problem represented by the Hamiltonian Eq.
(76) is then solved exactly with results similar to those
previously described. While I=R+-j, is a constant of
the motion and is thus simply a ¢ number in Eq. (76),
J= is not, and the resultant states are not eigenstates
of jz.

For I=0, the ground state will have (4,)=0. For
I>0, the ground-state wave function will change in
order to reduce the rotational energy somewhat by

making ( j.) positive. When I is very large, the particles
will be completely a.hgned to maximum j, with no
pamng correlations remaining, and further increases
in I will just increase the rotational energy Wlth no
change of the particle wave function.

Thus for large I from Eq. (76) we have

Er=(I—j4.)% (29z)+C,

where 7, and C are constants. Then from Egs. (4) and
(5) we can calculate

w= (I_jw)/gR

(77)

(78)

and

g=I/w=[1/I—jz) I (79)
Thus, for large I the moment of inertia decreases to-
ward gz of the rotor with increasing I or w. If the pair-
ing is strong compared with the energy splitting of the
two single-particle levels, we have j.=0, and a good
quantum number for the low I states, and the 7=0
moment of inertia is also gz. That is, the particles are
superfluid and make no contribution to 9. For weaker
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pairing (compared to the single-particle splitting) 7, is
not a good quantum number, and at low I, the energy
Er increases more slowly with I since () can change
a little, decreasing the rotational energy. This corre-
sponds to §>9dz at I =0 so the particles are contributing
to the moment of inertia.

Thus 9 starts at or above 9g at I=0, increases to a
maximum, and then decreases with increasing I or w
back to the value 9z of the rotor alone. In the case of
strong pairing, the increase of g is sudden, leading to
an S-shaped curve of 9 vs «? while for weaker pairing
(or larger single-particle level splitting) the rise is
smoother with no backbending of the 9 vs w? curve as
shown in Fig. 9. The curves clearly resemble the ex-
perimental ones, and this is not changed by the exten-
sion to three dimensions or the inclusion of more than
two single-particle levels (Krumlinde and Szymanski,
1972) although both complicate the calculation.
Whether or not it will be practical to solve the equa-
tions for a “realistic” set of single-particle Nilsson-like
levels remains to be seen.

B. Stephens—Simon Calculation

The calculations of Stephens and Simon (1972) have
essentially the same physical starting point as those
just described, namely, they are based on the three-
dimensional version of Eq. (76). From that starting
point, the calculations diverge in a number of ways.

Krumlinde and Szymanski (KS) treat exactly a sche-
matic H, while Stephens and Simon (SS) attempt an
approximate treatment of a realistic H,. In the SS
calculation H, is a reasonable Nilsson one-body poten-
tial with pairing, and particular attention is paid to
levels originating from the neutron ¢ 13/2 level since
these have the largest Coriolis matrix elements and
would appear to be important in the rare earth region.
The pairing is treated in the quasiparticle approxima-
tion with fixed occupation parameters with only zero
and two quasiparticle states included in most cases
(inclusion of four quasiparticle states in a somewhat
restricted space did not make important changes for
I<20). This approximate treatment of pairing pre-
cludes the possibility of describing the Mottelson-
Valatin effect except to the extent that the two quasi-

particle state describes reduced pairing. The unpaired '

wave function would require many quasiparticles of a
paired basis for its description, if the pairing is strong.

Thus in SS it is emphasized that a new phenomenon
(not the Mottelson—Valatin CAP effect) is being dis-
cussed, namely, a decoupling of one ¢ 13/2 neutron
pair from the rotating core.

The rotor is also treated differently in the two cases.
While KS use a fixed dz for the rotor and thus make a
clean separation between rotor and particle degrees of
freedom, SS adds realism by allowing the rotor moment
of inertia 9z to depend on the state of the particles. In

particular, for two quasiparticle matrix elements dg
was taken to be about 159, larger than for zero to zero
or for zero to two quasiparticle matrix elements, to
simulate the fact that pairing is somewhat reduced in
the two quasiparticle state yielding a larger expected
moment of inertia. At this point, of course, it becomes
somewhat unclear just how many particles are supposed
to be represented by the core and how many by the
quasiparticles.

Both KS and SS exactly diagonalize the resulting
Eq. (76), KS by using the group theory necessary
since the particle space is large; and SS by using direct
matrix diagonalization with realistic j, matrix elements
from Nilsson states, which is possible since the particle
space is restricted to a small number of degrees of
freedom.

The result of the SS calculation is that the Coriolis
force from the cross term of the rotational energy in
Eq. (76)

H.=—(I/5%) j

[compare with the term —wL, of Eq. (41)] has the
effect of tilting the ¢ 13/2 particles orbits so that they
tend to point their angular momentum in the direction
of the rotor angular momentum. This tendency of the
Coriolis force to align the particle angular momenta in
the direction of the rotation, thus breaking the zero
angular momentum pairing, is the origin of the CAP
effect, but the SS wave functions allow only one pair
to be broken or decoupled. A related decoupled picture
has recently been observed by Stephens et al. (1972)
in some odd nuclei.

It is observed by SS that for the lighter rare-earth
nuclei, for which ¢ 13/2 contains only a few particles,
the nuclear force due to the deformed potential favors
the lowest Q@ values (projection of particle angular
momentum on the nuclear symmetry axis) for a pro-
late deformation, and the highest Q values for an oblate
deformation. The Coriolis force favors the orbit which
has its angular momentum in the rotor angular mo-
mentum direction, perpendicular to the nuclear sym-
metry axis. This state is made up predominately of
states of low Q. Thus for the actual case of prolate
deformations in the light rare earths, the tilted orbits
favored by the Coriolis force are not strongly disfavored
by the nuclear force, and the pair of 4=13/2 particles
may be decoupled at relatively low spin values.

For the heavy rare-earth nuclei for which the 7 13/2
orbit is nearly filled, the same argument shows that
only if the nuclei were oblate, could the pair be broken
at low spin values. Thus since the heavy rare earths
are, in fact, prolate, it is expected that the decoupling
of a pair at low spin will occur only for the light rare-
earth nuclei and not for the heavy ones.

With the use of “realistic” parameter values, SS ob-
tain results resembling the experiments in the vicinity
of the singular region near I=16. Their transition is

(80)



essentially one from the lower moment of inertia of the
no quasiparticle ground-state band at lower spins to
the higher moment of inertia of the two quasiparticle
band (which comes below the no quasiparticle band
for I 216) at higher spins. It should be noted, how-
ever, that for parameters chosen to fit the S-shaped
moment of inertia vs w? curves, the curve near w0 is
much more nearly constant than the experimental val-
ues, whose moments of inertia show a sizeable linear
term in the 9 vs w? plot. Thus this theory does not
account for the wave function changes occurring at
low spin.

The main feature distinguishing the SS calculation
from all the rest is its prediction that the singularity
for the heavy rare-earth nuclei will occur, if at all, at
much higher spin values than that of the light rare-
earth nuclei. This is in disagreement with the recent
data from Michigan (Warner and Bernthal, 1972)
which shows sudden increases in 9 for N =106 nuclei.
It does seem clear that, for N =98, the band is smoother
at high spin than it is for lower neutron numbers, in
agreement with SS. Whether or not this would be in
agreement with the CAP picture is not clear.

Concerning other properties, the SS model and the
CAP picture predict remarkably similar results. For
example, the CAP effect predicts a decreasing g value
with increasing spin, and so does the SS picture since,
as the ¢ 13/2 neutrons decouple, they make their con-
tribution to the moment; and the g factor for ¢ 13/2
neutrons is negative, thus subtracting from the posi-
tive (Z/A) value of the rotor.

The B(E2) values for transitions I, I—2 near the
singular (or band crossing) point are found in the SS
model to be only a little reduced (less than 109,) from
the rotational value. This is also in agreement with the
new data on 8Er (Ward et al., 1973a).

The similarity between the SS results and those of
the CAP effect is not so surprising since the difference
between those two pictures is not as great as might
appear at first sight. In the SS picture, the singular
behavior occurs upon the breaking of one pair of neu-
trons, while in CAP, as described in the BCS approxi-
mation with a state-independent gap parameter, it
occurs when the pairing correlations are completely
destroyed for all the neutrons. ‘

But the pairing in deformed nuclei is not very strong,
so that the number of neutrons whose wave functions
are changed by the pairing correlations is rather small
in the first place. A measure of the total pair degeneracy
close enough to the Fermi surface to be affected by
the correlations is A/G, where A and G are the pairing

gap and force strength. The number of pairs involved

in the correlations is about half this number. Using
typical values of G=0.13 and A=0.65, this indicates
that there are only two or three extra pairs due to the
pairing force, so that the loss of one pair as in the SS
picture goes a long way toward the complete destruc-
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tion of the pairing correlations. In both pictures it is
the neutrons which become unpaired first.

The long-range mass number dependence of the CAP
effect may be different from that of the single-pair
decoupling (Sheline, 1972). He predicts that while the
CAP effect is most important (has the smallest I
critical value) for lighter nuclei, the single-pair de-
coupling will come first for the actinides. The two
effects, if distinct, are competing in the rare-earth
region.

VI. CONCLUSIONS

The rotational states to high spin give a unique op-
portunity for the study of the response of a nucleus to
an almost continuously variable disturbance over a
wide range of strength, namely the Coriolis and cen-
trifugal forces. The sudden change in the spectrum at
I~16 shows that a small change in the ‘“force’ is
making a large change in the wave function at that
point.

The origin of the effect is semiquantitatively under-
stood as a competition between the pairing force, which
prefers pairs of like particles near the Fermi surface to
have opposite angular momenta ( 52) y—o, and the Cori-
olis force, which breaks the time reversal jm, j—m
degeneracy of the single-particle states, thus reducing
the pairing, and prefers particles near the Fermi sur-
face to be aligned with their angular momenta pointed
in the rotation direction. The importance of the Coriolis
antipairing CAP effect is clear, but the precise nature
of the singularity producing the observed sudden rise
in moment of inertia is not yet convincingly estab-
lished. It is not clear, for example, whether the BCS
pairs are all broken at once, or one at a time; whether
the change to nonaxial shape of the nucleus is impor-
tant; or whether sudden changes in nuclear deforma-
tion occur so as to modify significantly the basic picture.
Before such questions can be answered more difficult
calculations must be performed.

Additional experimental information would also be
of great value. In addition to the extension in the N, Z
plane of the detailed knowledge of high spin states of
the yrast line, some information on the second (and
higher) state of given high spin near the singularity
would be particularly useful. Since a small change in
Coriolis force causes a large wave function change, there
must be a near instability near the critical angular
momentum. This implies that the first excited spin 14
state must be close in energy to the lowest I =14 state.
If the origin of the singular behavior at I=¢14 is indeed
the CAP effect, the excited state should be of the
nature of a pairing vibration state which appears as a
low excitation whenever the pairing gap is about to be
lost. A :

No evidence is seen for such states above the yrast
line in the (HI, xn) experiments in which the ground
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band is populated at the top.? It is possible, however,
that in multiple Coulomb excitation experiments near
or just above the Coulomb barrier, such states might
be populated from below as the spin rises. The energy
favoring of decays to the yrast line, present in the
(HI, xn) case, do not play such a dominant role in
coulomb excitation and furthermore there is the pos-
sibility of a direct two particle transfer occurring at
high spin. In this way, direct evidence concerning the

2 An exception has just been presented by D. Ward, H. R.
Andrews, J. S. Geiger, and R. L. Graham (1973b) in which
levels of 15Dy are observed in (e, 3#) and (2C, 4x). The data are
interpreted as a “crossing”’ of the ground and beta bands at 7~16
and the two 7~16 states are only about 25 keV apart in energy.
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