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Photoabsorption and Charge Oscillation of the Thomas —Fermi
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The complications of calculating the photoabsorption cross section of atoms for frequencies in the far

ultraviolet and soft x-ray regions motivate an analysis of this problem on the basis of the Bloch

semiclassical model of hydrodynamic charge oscillation in the neutral Thomas-Fermi atom. The

hydrodynamic modes of oscillation of the neutral Thomas —Fermi atom have a continuous frequency

spectrum. The resulting photoabsorption cross section is a continuous function of frequency which scales

with atomic number Z and in this sense is a universal cross section, approximately applicable to a11 heavy

atoms. Numerical solutions of the normal mode functions of dipole charge oscillation are used to calculate

the photoabsorption cross section in a range of photon energies 0.816 Z eY& h~ ( 272 Z eV, the range

where the model is expected to be most realistic. In this range the semiclassical hydrodynamic cross

section agrees with experimental data for the noble gases as well as could be expected for a cross section

applicable to all atoms. The model cross section, extended to zero and infinite frequencies by analytical

calculation, checks the sum rule to within 2%; but give:s a value I = 4.95 Z eV for the logarithmic mean

excitation energy of stopping power formulas. The unrealistically low value of I /Z results because the

Thomas —Fermi atom exaggerates the number of electrons which absorb at low frequencies. Use of the

hydrodynamic cross section in the approximate range of vabdity of this model h~ )0.816 Z eV gives

I= 12.4eP Z eV, where P depends upon the oscillator strength below hm = 0.816 Z eV which cannot

be satisfactorily determined from the Bloch model. Used within its limitations the Bloch model of
hydrodynamic oscillation in the statistical atom provides a useful method of estimating photoabsorption

cross sections and could possibly be applied to other atomic processes.
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1. INTRODUCTION

Of all the features of atomic physics. none does more
than the photoabsorption cross section as a function of
frequency, o(ce), to reveal in compact compass the
principal feature of the electronic binding; and of all
domains of the frequency ~ in none is the mechanism
of absorption more clearly a many-electron process
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than in the range between the bindings of the outer-
most electrons and the bindings of the innermost elec-
trons,

me'/A'«co«Z'tee'/fP.

At high frequencies (S~~Z' times 13.6 eV) the char-
acteristic E and L absorption edges take their origin
in only a sma11 number of electrons and are susceptible
to simple theoretical analysis. At low frequencies (ha&

of the order of and less than 13.6 eV) in the optical
part of the spectrum, the photoabsorption is again due
to only a few of the many atomic electrons. The bind-
ing of these electrons varies from element to element,
reQecting the 611ing of different electron shells and
subshells. It is impossible to describe the absorption in
the optical region, even approximately, by a simple
formula valid for all atoms. At both high and low
frequencies there are evidently windows in the absorp-
tion spectrum —regions of reduced or zero cross section.
The contrary is true of the region of intermediate fre-
quencies (of the general order of Z times the Rydberg) .

Copyright 1973 by the American Physical Society
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FIG. 1. The universal atomic photoabsorption cross section
calculated from the Bloch hydrodynamic model of the Thomas-
Fermi atom. The abscissa is the photon frequency plotted in
dimensionless units fl = (Photon energy in eV)/(27. 2Z eV), where
Z is the atomic number of the absorbing atom. The solid dots are
the numerical values computed in this paper. The open circles
are pre»manary results calculated by two of the authors LWheeier
and Fireman (1957)j.The dashed line is an analytical form of the
cross section which is asymptotically valid at high frequencies;
cf. Appendix B.

Here the eGects due to the individual electronic groups
overlap and at each frequency many electrons con-
tribute to the photoabsorption. Accurate calculations
of the photoabsorption in this region require a con-
siderable extension of the usual methods for analyzing
the spectroscopic terms of a few-electron system. The
complexities of calculating atomic photoabsorption at
these intermediate frequencies may be appreciated by
consulting the comprehensive review article of Fano
and Cooper (1968).One finds it necessary to consider
among other complications such eGects as intrachannel .

interaction, core relaxation, double excitations, and
gross eGects of spectral repulsion.

These complications suggest that a statistical treat-
ment of the photoabsorption in this intermediate range
of frequencies would be appropriate and useful, even

though such a treatment of necessity might be only of
an approximate character. Such an approach is pro-
vided by Bloch's (1933) hydrodynamic treatment of
the Thomas-Fermi model of the statistical atom. Al-
though models of photoabsorption based upon the
statistical atom have been investigated before, ~ the
original idea of Bloch, advanced many years ago, has
never previously been worked out. In this article we
solve Bloch's hydrodynamic equations for the charge
oscillations of the neutral Thomas-Fermi atom and
apply the solutions to the calculation of the atomic
photoabsorption cross section predicted by this model.

Aside from the foregoing considerations, we took up
the theory of the absorption properties of the statistical
atom for another reason. Atomic physics is so com-
pletely unified by quantum mechanics that one wishes
to see this unity displayed in the form of general ex-
pressions for energy release and transition probabilities
for all the important processes of atomic physics. Many
of these quantities when considered with all accuracy
depend upon the atomic number in a complicated
manner. Consequently one is ordinarily content for
survey purposes to know the transition energy or cross
section under consideration for the two limiting cases
of hydrogen, as the simplest atom, and the Thomas—
Fermi atom, as the statistical representative of all
heavier atoms. Apart from atom-atom collisions which
entail structural complexities of the combined system
that are far from simple, this level of knowledge has
been attained in the case of most elementary atomic
processes. One of the most striking exceptions to date
to this standard of analysis has been up to now the
absence of an overall picture of the photoelectric eGect
for heavy atoms at intermediate frequencies.

The results of our calculation of the photoabsorption
predicted by the Bloch model appear in Fig. 1 and are
tabulated in Table I. It is not surprising that this
analysis yields a photoabsorption cross section that is
a smooth function of frequency. Such a smoothed out
statistical absorption curve omits reference to all the
special details of the electronic structure of any one
atom. The curve can be expected to apply in about the
same degree of approximation to- all heavy atoms by
simple change of scale. In this sense it constitutes a
universal curve for the photoelectric cross section of
many-electron atoms. It is important to emphasize,
however, the approximate nature of this curve. Indeed
today for many elements far more accurate cross sec-
tions have been determined, both experimentally and

' Similar considerations have motivated other authors to
describe the atomic abso+tion in this frequency range by means
of the statistical atom. See, for example, Lindhard (1954).
Brandt and Lundqvist (1965, 1965a) do not solve the Bloch
equations for the global response of the atom, but extend the
treatment of Lindhard by treating the response in terms of the
local electron density within the atom and then introduce cor-
rections for the density gradients. Their results are qualitatively-
the same as ours.
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theoretically. Our entire analysis of atomic hydro-
dynamic oscillation is based upon the neutral Thomas—
Fermi atom in its original and simplest form. As dis-
cussed below in more detail many of the unrealistic
features of the photoabsorption curve of Fig. 1—espe-
cially its behavior at low frequencies —can be traced
to defects inherent in this simple Thomas-Fermi model.
Many improvements have been added to the original
(Thomas, 1926; Fermi, 1928) Thomas —Fermi atom

TABLE I. Atomic photoabsorption cross section calculated
from the Bloch model of hydrodynamic oscillation of the statistical
atom.

Frequency 0'
Dipole integralb

D(Q)
Cross section

o(Q) in 10 '() cm'

0.06

0.1 to 3(10) 'e
3(10) e to 0.03'
0.03
0.05
0.07
0.10
0.15
0.25
0.35
0.50
0.70
1.00
i.50
2.00
4.00
$.00'
7.SQ'

9.00'
10.00'
12.00'
Very large&

3.30+0

0.0831
0.1234
0.1554
0.1975
0.2503
0.3272
0.3775
0.4357
0.4851
0.5325
0.5908
0.6239
0.6884
0.575
0.8158
0.788
0.6475
0.6623
0.805

207.5
207.5

3.84/Q('()(s)

14.78
ii.73
9.487
7.509
5.360
3.290
2.240
1.462
0.9245

. 0.5459
0.2986
0.1873
0.05702
0.02SS
0.02278
0.01476
0.008026
0.005864
1.24/Q'

Integrated value o 0 40=3.95 10 "cm'
0

& Frequency parameter Q= (photon energy in eV) /(2/. 2 2 eV) .
b D(Q) is proportional to the dipole moment of the spatial

distribution of charge in a n,ormal mode. The cross section is
given by

o (Q) = (3~no()'/Qs) { D(Q) $',

where a is the 6ne structure constant and ~ is the Bohr radius;
cf: Appendix A.' Analytical result, cf. Appendix B.

~ Region of 0 so low that the bulk of absorption takes place
in far out region of electron cloud, where @=144/ze; hence same
result assumed here for o(Q) as clsculsted at zero frequency.' Simplest interpolation that is at the same time qualitatively
reasonable; no other justincation.

&Calculated cross sections at these frequencies may be in
error by 15%.

& Analytical result, asymptotically valid at high frequencies;
cf. Appendix B.

by various authors (see, for example, March, 1951;
Gombas, 1956); corrections for electron exchange and
for electron correlation, corrections for large potential
gradients near the nucleus, and grouping of electrons
by angular momentum. A hydrodynamic analysis based
upon these more realistic models of the statistical atom
would perhaps yield a more accurate photoabsorption
curve. However all the improved statistical models
destroy the original Thomas-Fermi model's unique
property of scaling with the atomic number Z in a
simple way. The present analysis of the hydrodynamic
oscillation of the statistical atom sacrifices some degree
of detail and accuracy, but preserves this valuable
scaling property.

The approximate universal cross section for photo-
absorption in the far ultraviolet and soft x-ray region
which we have just discussed evidently has applica-
tions in radiation physics, astrophysics, aeronomy, and
plasma physics. It provides an approximate photo-
absorption cross section in those cases where more
accurate cross sections are lacking. In particular, a
knowledge of the dependence of absorption on fre-
quency also allows one to estimate the logarithmic
mean excitation energy, I, which enters into the stand-
ard equation'' for the stopping power of matter for
swift charged particles,

lnI= On% ), = f (—1n&a) ( ) t)n j n(n) dn.
0 0

Bloch's original work with the hydrodynamic model of
the statistical atom was concerned with this problem.
It is a striking feature of this average that much of the
contribution in the case of heavy atoms comes from
the intermediate frequencies where any detailed treat-
ment of atomic absorption is most complicated, and
where on the other hand a statistical treatment is most
appropriate. The predictions of the cross section of
Fig. 1 for this quantity, I, are examined at the end of
this article.

2. HYDRODYNAMIC OSCILLATIONS OF THE
THOMAS-FERMI ATOM

The starting point of the present analysis of the
photoelectric e6ect at intermediate frequencies is

s A general review of stopping power is given by Fsno (1963).
Inokuti (1971) contains an up-to-date discussion of stopping
power in the context of recent atomic physics.

3 The average rate of loss of energy per ur6t path via collision
with electrons, excitation, and ionization in a medium contai~i~g
N electrons of mass m per unit volume, by a heavy particle of
velocity v and charge e is

dF/dz = (4eNe4/mes) {In{2mss—/I (1—es/cs) g—(e /cs) l

according to Bethe ('1930, 1933).The conditions for the validity
of this often misquoted expression and the literature on these
conditions are summarized by Wheeler and Ladenburg (1941).
For a deeper treatment of the theory of stopping power see ¹

Bohr (1948), A. Bohr (1948), and Lindhard and ScharfF (1953).
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Bloch's (1933) hydrodynamic theory of the character-
istic oscillations of the statistical atom model (cf.
Thomas, 1926; Fermi, 1928; Gombas, 1956; March,
1951).We are not concerned with the physical reality
of such atomic plasma oscillations but will consider
them solely as a model for atomic excitation. 4 Bloch
treats the electrons as a degenerate Fermi gas endowed
with a characteristic pressure-density relation

tron gas must satisfy the relations:

(Poisson's equation)

V'V = —4me'e,

(Continuity equation)

Bn/r)t= V LnVUj,

p = (PP/5ns) (3/8Ir) I'n'~ (2) (Newton's second law)

Here e is the number of electrons per unit volume.
This gas is capable of existing in an equilibrium condi-
tion that is familiar from the work of Thomas and
Fermi,

(potential energy of one electron)

Vs (r) = —(Ze'/r) q (x),

(number density of electrons)

ns(r) = (32ZS/9E ) (nres/As) 'Lcp(x) /x]s~s,

r = (PP/nte') (9s'/128Z) '~'x.

n(r) =no(r)+nt(r),

V(r) = Vo(r)+ VI(r),

U(r) =0+UI(r) . (4)

To analyze these oscillations Bloch found it suK-
cient to use the well-known laws of hydrodynamics
together with the characteristic pressure density rela-
tion of a degenerate electron gas. The oscillating elec-

4 The physical reality of atomic plasma oscillations, apart from
their use in this paper solely as a model, has been controversial,
although some collective efFects undoubtedly influence the ab-
sorption spectra of atoms in the far ultraviolet and soft x-ray
region. We are indebted to U. Fano for a personal memo on the
history of this matter. Atomic plasma oscillations were at one
time proposed to account for some features of inelastic atom-ion
collisions by Afrosimov et al. (1964). A general discussion of
these plasma oscillations, concluding against their existence, is
given by Kirzhnits and Lozovik (1966). Recently an analysis
of the damping of the hydrodynamic modes of oscillation of the
Thomas-Fermi atom has been published by Sen and Harris
(1971). A short discussion of atomic plasma oscillations from
the viewpoint of microscopic quantum theory appears in Weidner
and Borowits (1966).

The universal Thomas-Fermi function q(x) is that
solution of the differential equation d'ts/dx'=ysl'/x'"
which equals one at x=0, and for a neutral atom ap-
proaches zero as x goes to infinity. However, the gas
is capable of oscillations about this steady state. Bloch
introduces a velocity potential function U, which gives
an irrotational Qow velocity of the electron gas by the
relation v= —VU. Departures from the equilibrium
state are then expressed in the form

"(r) dP n
aU/at= ', (VU)-s+ ~ I -+

~

—~. (5)
n

Bloch neglects terms of second and higher order in the
departures from equilibrium, uses the properties of the
equilibrium state, and obtains linear equations for the
oscillating quantities,

V'Vg = —4me'eg,

Bnr/Bt=V (n,VU, j,
mt) UI/t)t = nI (n 'dP/dn) „,+VI. (6)

2.1. Normal Modes of Oscillation

Evidently the problem of evaluating the energy
transfer falls into two distinct parts: (1) What are the
characteristic modes of oscillation of the hydrodynamic
atom model'? (2) How much excitation does any given
mode experience as a result of the external perturba-
tion? There exists also a third question: (3) What is
the relation between the hydrodynamic treatment and
the machinery of standard quantum theory' This third
question has been well explored for the case of a degen-
erate electron gas of uniform density, infinite in extent,
which is neutralized by a uniform positively charged
background (Nozieres and Pines, 1958; Goldstone and

The gas departs from steady-state pressures and densi-
ties by an amount that can be expressed as a linear
superposition of eGects. Each elementary disturbance
is due to a single normal model of vibration. Any given
normal mode is characterized by its frequency and by
indices l and m that tell to what spherical harmonic
I"&„(8,y) the density and pressure variations are pro-
portional. The amplitude of the vibrations associated
with a single normal mode remains constant in time
except as inQuenced by possible external disturbances
such as the electric field of a passing particle or of a
beam of radiation. In particular, the amplitude of every
mode is zero for the unexcited hydrodynamic atom
model. After the passage of the radiation or particle,
the amplitude has increased to a finite amount. The
atom has taken up energy. The amount of the uptake
of a single oscillating mode provides a simple measure
of a part of the stopping power or of all of the photo-
electric cross section of the atom, as the case may be.
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Gottfried, 1959). The situation is less clear with re-
gard to atomic plasma oscillations. ' These questions
are not central to our interest here. Instead we are
concerned with obtaining de6nite predictions of the
photoabsorption cross section from the Bloch hydro-
dynamic model.

Stopping power was Bloch's prime point of concern;
even more speci6cally he focused on showing that the
logarithmic mean excitation energy I LEq. (1)j varies
from atom to atom in proportion to the atomic num-
ber Z. No attempt was made at that time explicitly to
integrate Kqs. (6) numerically to determine the con-
stant of proportionality in the formula I~ Z. Still less
was any attempt made to give a general expression for
the photoabsorption cross section or to calculate it.
Moreover, the very existence of a curve for photo-
absorption cross section as a function of frequency
implies a continuous distribution of characteristic fre-
quencies. In contrast, at the time Bloch carried out his
pioneering analysis the spectrum of characteristic fre-
quencies of the statistical atom was envisaged as dis-
crete.

Only an explicit analysis of the boundary conditions
permits one to say whether the spectrum is discrete or
continuous. To carry out this analysis is an essential
6rst part of the present work. It leads to the conclusion
that the spectrum for a neutral atom is continuous
(contrary to the tacit assumptions of early work) .

That the spectrum for the neutral atom is continuous
is only revealed by a detailed examination of the ampli-
tudes of the normal modes of oscillation at large dis-
tances. Were these amplitudes to go to zero sufficiently
rapidly with increasing r, the disturbance would be
con6ned to what is eGectively a 6nite volume, as in the
case of an ion Lwhere the Thomas-Fermi function q (x)
vanishes at a finite x value), and the spectrum would
be discrete. Quite in contrast to this conceivable out-
come is the actual situation for the neutral Thomas-
Fermi atom, for which at large distances the Thomas-
Fermi function decreases'as x '. In these conditions we
find (Appendix A) the asymptotic form of the radial
part of the disturbances in number density of electrons
and velocity potential and potential energy per electron,

rsvp(Q, x) x ' sin (const+ f' (%3stQx dx/2') j
Ug(Q, x)~x sin I const+ f* (v3'stQx' dx/2') j
Vq (Q, x)~—Q 'x ' sin I const+ f~ (V3ssQx' dx/2') j.

Here 0 is the quantum energy A~ in units of Z times
27.2 eV, and x is the Thomas-Fermi distance param-
eter of Kq. (3) . The problem of hydrodynamic oscilla-
tion may be formulated entirely in terms of these two

' Plasma oscillations in an inhomogeneous plasma, particularly
near a 6xed charge singularity, are examined in Sziklas (1965).

dN/dQ= 3 "'2~xb,„o' (9)

When the boundary is moved to infinity, to correspond
to the actual case of the neutral Thomas-Fermi atom,
the eigenvalue spectrum evidently becomes continuous.

If one takes the normal modes of oscillation to be of
the form

rtg ———ooN„t„(r) sin (tot+8)

U~ ——U„t (r) cos (cot+h)

Vg rsvp»V t„(r) sin (tot+5——), (10)

then by Eq. (6) the spatial parts of the normal modes
are the solutions of the set of coupled equations:

7'V„t„=(4sre'/rrt) N„t~
—oo'N„t„=V (ttoVU„t )

—U„t„= N t„(trt 'rt 'dP/—drt) „,+V„t„. (11)

dimensionless parameters. Calculations done in terms
of these parameters scale in a simple way with the
atomic number Z and thus may be applied to all atoms.

The unperturbed electron density of the neutral
Thomas-Fermi atom behaves asymptotically as x '.
Consequently at large distances the perturbation of
the number density becomes larger than the number
density itself. Clearly at these large distances the linear
approximation is of doubtful applicability. The validity
of the linear approximation is a physical question of
importance if the physical results depend upon the
behavior of the normal mode functions at large dis-
tances. Such is not the case for the intermediate fre-
quency regime in which we are primarily interested.
As discussed below, the photoabsorption cross section
is largely determined by the behavior of the normal
mode function in the vicinity of its principal (first)
maximum. At intermediate frequencies the principal
maximum falls at intermediate radial distances. We
therefore focus attention upon the well-defined mathe-
matical problem of the frequency spectrum of normal
modes of the linear equations.

We first replace the boundary at in6nity by an
arti6cial grounded spherical boundary at a large radial
distance. The requirement that both the potential en-

ergy per electron and the normal flow velocity vanish
at this boundary determines the boundary conditions:

Vg(Q, x) ~b,„„g——0,

dUt(Q, x)/dx )b,„,o ——0.

These boundary conditions can be satis6ed if the phase
of the sine function of Eq. (7) has a certain specific
value, 8—a value which it is unnecessary to calculat"
or this value plus any integral multiple of m, thus,

const+ssQ3 't 2 exb,„~ee=J+Ns..

This eigenvalue condition immediately determines the
density of characteristic frequencies,
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These equations we shall solve later by the method of
separation of variables followed by numerical integra-
tion. The set of three coupled equations immediately
reduces to a set of two second-order equations coupling
the normal mode of the number density. and the normal
mode of the velocity potential. Bloch was able to show
that the normal mode functions exhibit an orthog-
onality property, a feature which facilitates the calcu-
lation of the photoabsorption. The functions N„~ and
U„~ are not the Hermitian conjugates one to the
other; rather, one is said to be "dual" to the other.
Moreover the functions N„~ are not orthogonal among
themselves, nor are the functions U„~ orthogonal
among themselves. Rather the functions N„~ and
U„~ are biorthogonal, in the sense that the product
of the two kinds of functions has to be taken and inte-
grated over volume to give any meaningful scalar
product. This scalar product automatically vanishes
when the two functions have different spherical har-
monic indices I and m. In addition, the radial boundary
conditions suKce to show biorthogonality when fre-
quency indices differ; thus,

fU( (a), r)NI.„.(cv', r) dr=kbIp, .b„„.b(ar 2). (1—2)

The integration goes over the entire volume of the
atom. Here we have written the frequency as a con-
tinuous index to reflect the continuous spectrum of
eigenfrequencies. The constant k is fixed by the den-

sity of characteristic frequencies and by the normaliza-
tion of the functions,

k
—'= lim (dN/dpd)/fN~ (~, r) U~„(~, r) dr. (13)

"bound~

The normalization of the functions N ~ (~, r) and
U~ (~, r) is determined by their asymptotic behavior,
Eq. (7). Both numerator and denominator in the ex-

pression for k increase as rb, „„d, resulting in a finite
value for k. Biorthogonality expresses the linear inde-

pendence of normal modes of different frequency and
angular dependence. In the following we make the
additional assumption of completeness, which together
with biorthogonality, allows any well-behaved function
to be expanded in terms of either the normal modes of
number density or of the normal modes of velocity
potential.

2.2. Oscillation Energy and the Photoabsorytion
Cross Section

The energy of the oscillating atom is described in
terms of the amplitudes of i'ts normal modes of free
oscillation. The total energy of the hydrodynamic atom
is the sum of three parts: (1) the kinetic energy of the
average Sow velocity, (2) the electrostatic potential
energy, and (3) the pressure energy, which is really the
kinetic energy of electrons in the degenerate Fermi

gas; thus,

1E= — nm(VU)'dr+ — nV dr
2 2

n

+ f d m [p(e")/I"'] dn~.
0

This relation is expanded to second order in the de-
partures from equilibrium, nI, VI, and UI of Eq. (4).
The zeroth-order terms furnish the. energy of the static
Thomas —Fermi atom. The sum of terms linear in the
departures from equilibrium vanishes, as it must, since
we expand about the equilibrium state. The second-
order terms represent the additional energy of hydro-
dynamic oscillation. The boundary conditions, the
equations of motion, and the pressure-density relation
enable the energy of hydrodynamic oscillation to be
recast into a convenient form,

E2——-', mf dr/nI(BUI/Bt) —UI(8nI/p3t) j. (14)

A general state of free oscillation of the atom is a super-
position of the normal modes of Eq. (10) with ampli-
tudes c& (co) . The biorthogonality of the normal modes
(with number density dual to velocity potential) in-

sures that each normal mode contributes independently
to the energy. Consequently the total energy of free
oscillation can be written

Z, =-', mk g f~'c,„'(~) d~,

a result which is independent of time.
In order to calculate the photoabsorption cross sec-

tion one must consider the manner in which the normal
modes are excited by the electric field of a plane wave.
For wavelengths of radiation large in comparison to
atomic size the potential energy per electron of a plane
wave polarized in the s direction is

l
I

V„=es8 sin coot,

where 8 is the constant electric field amplitude of the
plane wave. This additional potential energy must be
introduced into the equations of motion, Eqs. (6), of
the oscillating quantities, it enters the third equation
but not the first, since its Laplacian is zero. The per-
turbing potential has dipole symmetry and only excites
modes of angular dependence cos 6 (m = 0, l = 1) . More-
over it is clear that the perturbing forces are irrota-
tional, which justifies the use of a scalar velocity po-
tential. V/e seek as a solution for the response of the
atom a superposition of normal modes of this symmetry
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with time-dependent coeScients,

s]= gm cd) $ NM Gl) I 4al)
0

Ug= hgp (o, t Ugp o), r do),
0

Vg= leap co, t Vga o), r des.
0

(16)

In addition it is convenient to employ the biorthog-
onality relation to expand the spatial part of V„ in
terms of normal modes of velocity potential,

V&=sin(oaf 'vjo co UM N) I'

0

The expansion coe%cient, a function of frequency alone,
is then given by the relation

vxo(oo) = (eg/k) fsXio(oo, r) dr.

Substitution of Eqs. (16) and (17) into the equations
of motion LEqs. (6)g results in equations of motion for
the time-dependent coeScients. One finds l~o= —agio,
gyo= —GPkyp and

gxo(oo, t) +& gxo(oo, t) = —(cu /rrt) vxo(co) sin orot. (19)

The amplitude of each normal mode responds as an
harmonic oscillator driven by an oscillating function
of frequency coo. The strength of the driving function is
determined by the function vxo(oo), an integral propor-
tional to the dipole moment of the spatial distribution
of charge in the mode. The entire coupling of the
hydrodynamic atom with the radiation field of a plane
wave is embodied in this integral. We now imagine
the potential of the plane wave to be switched on at
t=o and then switched o8 after a time t large in com-
parison to the period of the plane wave. Initially the
amplitude of the normal modes of both velocity poten-
tial and number density is zero. These initial conditions
require the solution of Kq. (19) to be

vxo (oo) oroor sin &ot co' sin orot-
gm(~, t) = (2o)

m GP—{'do

After the potential is switched off the state of the atom
will be given by a superposition of free oscillations. The
amplitude of free oscillation at time t and subsequently
is determined by comparison of Eq. (20) with Eqs.
(10), with the result,

oo'cxo'(oo) =gxo'(&o, t) +gxo'(or, t) /or'.

The total energy which the atom has absorbed at a
time t is given by the integral of Kq. (15), an integral
over all frequencies. The resonance behavior of the
integrand has the consequence that at large times essen-
tially all the absorbed energy has gone into the resonant

normal mode. At time t the model atom has absorbed
an energy,

+(t) = (srk/4tN) vxo (oro) orooft (s—in 2orot/2or, ) r.

For times large compared to the period of the disturb-
ance the oscillating second term may be neglected in
comparison with the term that increases linearly with
time. The average rate at which energy is absorbed is
a constant. The rate of energy absorption divided by
the energy flux of the incident plane wave, eg'/Srr,
gives the atomic photoabsorption cross section as a
function of frequency,

o (or) = (2m'e'/rrrtc) (or'/k) $fslVxo(co, r) dr)'. (21)

This equation is the basis of our calculation of the
atomic photoabsorption cross section, Fig. 1, predicted
by the Sloch model of the oscillating Thomas-Fermi
atom. As suggested above, and as one might anticipate
upon physical grounds, the dipole integral (the quan-
tity in square brackets) determines the cross section.
This dipole integral is evidently the analog in the
classical hydrodynamic theory of the dipole matrix
element of standard quantum theory.

The form of Kq. (21) is not an exact analog of the
expression for the photoabsorption cross section in
standard quantum theory given, for example, by Eq.
(2.3) of Fano and Cooper (1968),

~(~) = (const) ~
I (~

I
s

I o) i'

However, it would be possible to alter the analysis
somewhat and exhibit a much closer analogy. There
are two points here: (1) the fluctuation in number
density of electrons in a normal mode is not X yp but
rather by Kq. (10) ooE„xo. Consequently the factor of
oro in Kq. (21) could be included in the square of the
dipole integral in order to obtain a quantity analogous
to the square of the dipole matrix element of standard
quantum theory; (2) The additional factor of or present
in the quantum formula outside the square of the
matrix element is absent in Kq. (21). This feature
results from our choice of a frequency-independent
normalization for the normal mode functions. The
normalization is fixed by the amplitudes of these oscil-
lating functions at large radial distances given by Eq.
(A7). One could choose these amplitudes to include
an additional factor of ~ '~', which perhaps would be
more conventional for a JWKB asymptotic approxi-
mation. In this case the constant k ' would be propor-
tional to the frequency ~. With these two changes
Eq. (21) would assume a form closely analogous to
the quantum expression.

3. NUMERICAL CALCULATIONS AND RESULTS
ON THE HYDRODYNAMIC MODEL

To evaluate the cross section requires knowledge of
the normal modes of free oscillation, quantities which
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are solutions of the coupled equations of motion, Kqs.
(11.) Although these equations are linear they depend
upon the charge distribution of the neutral Thomas-
Fermi atom for which there is no analytic form which
is both simple and accurate at all radial distance.
Therefore the solutions must be computed numerically.
Appendix A presents the procedure used in our nu-
merical calculation of the normal mode functions. We
note here, however, that the calculation contains some
unusual features. The two boundary conditions of Kq.
(8) are not sufhcient to determine a unique solution
of the two coupled second-order equations, which
possess four linearly independent solutions. A linear
combination of the four solutions must be chosen which
satisfies the boundary conditions at large distances
and which also gives physically reasonable behavior at
the origin. The desired solutions start at r=o with
zero tangent, rise quasiexponentially to a first max-
imum, and then start oscillating more and more rapidly,
eventually approaching the asymptotic behavior of
Kqs. (7) . Our calculation continues these rapid oscilla-
tions by a JWKB approximation which provides an
accurate extension of the numeri. cal solutions into the
region of rapid oscillation. The equations possess one
solution which increases without limit at large dis-
tances, an unstable solution which always appears in
the numerical computation owing to small errors in the
step-by-step integration. Only by following the solu-
tion into the asymptotic region is one able to choose
the linear combination which eliminates the unstable
solution and which fully satisfies the boundary condi-
tions both at the origin and at large distances.

The details of the numerical calculation of the dipole
integral are given in Appendix B. These calculations
do not evaluate the dipole integral directly from the
normal mode of number density. To do so is incon-
venient because (a) at large radial distances the inte-
grand increases in amplitude and oscillates more and
more rapidly and (b) the boundary conditions require
that the integration be stopped at a definite phase of
the oscillating function —a condition diS.cult to apply.
Wc use the equation of continuity and also the bound-
ary. conditions to re-express the dipole integral by an
equivalent expression written in terms of the normal
mode of velocity potential. For modes of dipole sym-
metry the relation is

fsXIo(co, I') dr=co 'f cos8UIs(u, r) (die/'dt') dr. (22)

The integral over the velocity potential is convenient
for numerical evaluation since the presence of the num-
ber density gradient for the neutral atom causes the
amplitude of the oscillating integrand to diminish
rapidly with distance. This behavior is illustrated in
Fig. 6 where a quantity proportional to this integrand
is plotted.

The rapid oscillations of the normal mode functions

)00

Eo )0

0

& ).00
(3
IJJ
M

0.0( I tel I I t i s»tl
).00.)

FREQUENCY Q

I

o
I I I I I~1 II

10.0

Fxe. 2. A comparison of the calculated universal atomic photo-
absorption cross section of Fig. j. with experimentally measured
cross sections of the noble gases. The smooth curves average
the measured values tabulated in the review article of Samson
(1966) and also given by Fano and Cooper (1968).The experi-
mental cross sections are plotted as a function of the frequency
parameter D= (photon energy in eV)/(2'7. 2Z eV). Consequently
a given value of 0 corresponds to diGerent photon energies for
elements of di8erent atomic number Z.

have the consequence that there is little contribution
to the dipole integral from distances larger than the
vicinity of the first maximum. At extremely low fre-
quencies the 6rst maximum is at large radial distance
and it moves inward as the frequency increases. This
behavior conforms with the rough qualitative idea that
the principal maximum is located at that radial dis-
tance for which the local plasma frequency (given by
the electron number density Ns) is the same as the
frequency of the mode. At very high frequencies the
first maximum is very near the nucleus. For neither
extremely low frequencies nor extremely high frequen-
cies can the hydrodynamic model be expected to give
good results. In both regions, near the nucleus and far
from it, the Thomas-Fermi statistical atom gives
grossly unrealistic electron charge densities. Moreover,
for physical reasons cited earlier, one does not expect
reliable predictions from the Bloch hydrodynamic
model at these extremes of frequency. However the
Bloch model does furnish good results for the photo-
absorption cross section at the intermediate frequencies
in which we are interested. At these frequencies the
cross section depends upon the behavior of the normal



J. A. BALL, J. A. WHEEzzR, ANn E. L. FrEEMAN Photoabsorptt'oN of the Thomas F-erms Atom 341

mode functions at intermediate radial distances, a
range in which the Thomas-Fermi model provides a
realistic number density of electrons.

3.1. Comparison vrith Experiment

In Fig. 2 our calculated photoabsorption cross sec-
tion for the intermediate frequency region is compared
with some experimental cross sections of the noble
gases. These elements are the only ones for which
reasonably complete data exist at the frequencies of
interest. %e have used the experimental measurements
reported in review articles by Samson (1966) and by
Fano and Cooper (1968). The experimental data for
each element are plotted as a smooth curve which ap-
proximately averages the experimental points and omits
narrow resonances and windows. All cross sections are
plotted as a function of the dimensionless frequency O.
Recall that eu=constZO. Thus a particular value of
the abscissa corresponds to diferent values of the
photon frequency according to which element is con-
sidered. The experimental cross sections exhibit a great
deal of structure which is not present in the smooth
curve of the cross section computed from the Sloch
model. The peaks and absorption edges of the experi-
mental cross sections are a consequence of the atomic
shell structure which is ignored in the Thomas-Fermi
model. The hydrodynamic model based upon the
Thomas —Fermi atom does, however, give a good esti-
mate of the absorption cross section of heavy atoms
which is certainly within an order of magnitude even
in the neighborhood of absorption edges. At low fre-
quencies O&0.1 the agreement of the hydrodynamic
model is more doubtful. There the experimental cross
sections Auctuate widely, but more important, the
calculated cross section seems too high to be a proper
average of the experimental cross sections. This situa-
tion can be traced to an overestimate of electron densi-
ties at large distances by the Thomas —Fermi model of
the neutral atom, contrasted with the actual rapid
decrease of electron density near the atomic boundary
of noble gases. For example, the hydrodynamic cross
section at 0=0.1 is largely determined by electron
densities at a radial distance of x 6. At this distance
the Thomas-Fermi model already gives an electron
density for argon which exceeds the electron density
given by Hartree-Fock calculations (Gombas, 1956).
This shortcoming of the hydrodynamic cross sections—
based upon the neutral Thomas —Fermi atom —at low
frequencies is brought out more clearly below in the
calculation of the logarithmic mean excitation energy.

3.2. Oscillator Strengths and Sum Rule

Sometimes one is less interested in the cross section
itself than in the number of equivalent harmonic oscil-
lators, df, to which one can ascribe the absorption that

occurs in a given range of circular frequency, da. The
two quantities are connected by the relation (Iireit
and Korff, 1932)'

o = (2 sr'e'/mc) (df/do&)

Comparing this with our expression for the cross sec-
tion we see that the hydrodynamic model predicts a
distribution of oscillator strength,

dj= (ra'/k) LfsEtp(co, r) dr)' dpo.

The integrated oscillator strength must obey the dipole
sum rule of Kuhn-Reiche-Thomas and equal the total
number of atomic electrons Z. The completeness prop-
erty of the biorthogonal set of functions S„& and
V„~ can be used to show that the oscillator strengths
predicted by the Bloch hydrodynamic model do indeed
satisfy the sum rule. The square of the dipole integral
may be written as the product of the two equivalent
expressions given by Kq. (22) . One of these equivalent
factors is the coeScient in the expansion of 2' in terms
of the functions U„~o, the other is the coeKcient in the
expansion of cos 8drtp/dr in terms of the functions

cu10 j 1.e.)
a(cv) =k-'fsX„gp dr,

s= fa(M) Uggtp dpoq

b(&u) =k 'f cos 8(drtp/dr) U„tp dr,

cos 8 drtp/dr = fb (po) X yp doo.

Therefore the integrated oscillator strength takes the
form

fdf= kfa(t—o) b(to) de.

By the completeness relation, the analog in our formal-
ism of the Parseval relation of Fourier analysis, this
integral over. frequency of the product of the two
expansion coefficients equals the integral over the
atomic volume of the product of the two functions
which are expanded

fdf = —fs cos8(dttp/dr) dr = Z.

An integration by parts reduces the volume integral
to an integral over volume of the number density of
electrons in the Thomas-Fermi atom at equilibrium,
thus verifying the sum rule.

3.3. Limits of Cross Section at Extremes
of Frequency

At very high frequencies and at very low frequencies
simplifying features are present which enable the photo-
absorption cross section to be calculated analytically.
These calculations, which are presented in Appendix B,
give asymptotic estimates of the cross section at very

6 See also Kq. (2.3) and discussion in Fano and Cooper (1968).



3.4. Check of Sum Rule

In terms of the parameter 0 the sum rule predicts
an integrated cross section,

r 0 (Q) dQ=2m'(e'/Ac) (A'/me')'=4 02(10.) "cm'
0

(24)

We explicitly evaluated the same quantity using for
the cross sections:

Range of 0 Cross section in cm'

0(Q(3(10) ' 207.5(10) " (low-freq. limit)
3(10) 5&Q(0.03 3.84(10) ' /Q "~ (interpolation)
0.03(Q& 10.0 Values of Table I (numerically

computed)
10.0(Q( e& 1.24(10)-"/Q' (high-freq. limit).

The result is

fo(Q)dQ=3. 95(10) "cm' (25)

which checks the theoretical sum rule to within 2%.
Approximately 80% of the contribution to the integral
comes from the intermediate frequency range where
numerical values of the cross section were computed
and within which the hydrodynamic model is most
accurate.

3.5. The Logarithmic Mean Excitation Energy

The mean excitation energy of Eq. (1), written in
terms of the parameter 0, is

ln I= ln (Zms4/A')

+ f (0) ln 0 dQ f (0) dn . (26)
0 0
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high and at very low frequencies

0(Q)~L1.24(10) 's cm'j/Q', Q&10,

0(Q) 207.5(10) ' cm' Q&3(10) '. (23)

Again 0 is the frequency parameter previously intro-
duced. The photoabsorption cross section approaches
a constant at. zero frequency and at high frequencies
decreases as the inverse square of the frequency. Al-
though neither of these limiting results can be expected
to apply to the real physical problem, they are useful
to round out and complete the analysis of what the
oscillating Thomas-Fermi atom predicts for the photo-
absorption cross section. In particular these limiting
forms permit calculation of two quantities which de-
pend upon the integral of the cross section over all
frequencies: (1) the sum rule for total oscillator
strength, and (2) the logarithmic mean excitation en-

ergy of Eq. (1).

Divide the cross section rr(Q) in the numerator by the
integrated cross section in the denominator (integral
known from the sum rule). Multiply by ln Q and inte-
grate over 0, with the following contributions:

0 from 0 to 0.03
0 from 0.03 to 10
0 from i0 to ~

—0.924
—0.884
+0.102

Total —1.7'06

Resultant ln I= ln (Zme'/A')+in Lexp (—1.706) g

Resultant I=0.182Zme'/4'= 4.95Z eV. (27)

~ See, for example, Pano (1963).

The proportionality of the logarithmic mean excita-
tion energy to the atomic number was one of the most
important results obtained by Bloch in his original
work and follows directly out of the scaling properties
of the Thomas —Fermi statistical atom. The new result
of the present calculation is the constant of propor-
tionality, 4.95Z eV. This result is too low by a factor
of 2 to accord at all with observation. It is true that
experimental values of I based upon an unsophisticated
application of an over-simple stopping power formula
(no correction for the inability of a slow moving
charged particle to excite deeply bound electrons)
sometimes gives values as low as 8.0 eV at low energies
and 16.0 eV at high energies. However, when correc-
tions are made for these and other effects the constant
of porportionality I/Z as determined experimentally
is found to lie in the range 9.5 to 16.0 eV,~ twice as
high as the calculated value. The reason is not far to
seek. The universal photoabsorption curve is being
used outside its range of validity. It is (falsely) making
a very large contribution to (inca), in the range of
low frequencies (outermost several electrons) where a
statistical picture is completely inappropriate. The di-
rection of the error is clear and two features of the
statistical atom contribute to it. First, the electron
distribution of the simple Thomas-Fermi atom model
falls to 1/100 of the central density at values of r
much larger than those for the real atom. In conse-
quence the number of electrons that absorb at low
frequencies is wildly overestimated. This feature is al-
ready apparent at values of 0 0.05, as can be seen
in Fig. 2, where the universal photoabsorption cross
section is compared with measured cross sections of
the noble gases. Second, the hydrodynamic model of
the neutral atom puts all the oscillator strength in the
continuum and extends the continuum down to zero
frequency. By contrast, real atoms have a lowest exci-
tation energy and the continuum starts at the 6rst
ionization energy.

No simple modihcation of the calculation corrects
these difhculties. Take Xe (Z=54) as an example. The
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lowest excitation lies at 8.4 eV, There is zero electron
number to be assigned to the photoabsorption cross
section below this point $Q=8.4 eV/54(27. 2 eV) =
0.00572j. The universal photoabsorption curve (as
interpolated between the numerically computed points
and the analytically computed point at Q=O) gives
for the electron number in this region

0.00572

g(Q) dQ f ~(Q) dQ=3.33:
0

If we take these 3.38 effective electrons whose absorp-
tion is so unrealistically treated and move all their
absorption, for example, to a single "line" located at
the first ionization potential of Xe, 12.1 eV, leave all
the rest of the "universal photoabsorption curve" un-
changed, and recompute the logarithmic mean excita-
tion energy as given by the new distribution of absorp-
tion, we 6nd

I/Z= 5.69 eV. (28)

This calculation corrects the logarithmic mean absorp-
tion energy in the right direction, but not nearly enough
to agree with experimental measurements. Evidently
the Bloch model predicts a photoabsorption cross sec-
tion which is too large not only at very low frequencies
(Q&0.01) but also at somewhat higher frequencies
(0.01&Q&0.1) .

The fact that the universal photoabsorption curve
does not apply at these low frequencies in no way
impairs its usefulness for estimating the contribution
to the logarithmic mean excitation energy at higher
frequencies where it is approximately correct. One may
use the photoabsorption curve for frequencies greater
than 0=0.03, provided the cross section below this
frequency can be obtained by other means (either
measurement or calculation). We separate the contri-
bution to the logarithmic mean excitation energy into
these two parts and obtain

ln I= ln (Z()Ne'/A') +P—0.782.

Here the number,

say about the logarithmic mean excitation energy and
provides the formula

I= 12.4d'Z eV, (29)

where the negative parameter P takes into account the
oscillator strength at low frequencies. The proportion-
ality of I to the atomic number is only approximate
and is true only insofar as the logarithmic mean excita-
tion energy depends upon the excitation at intermediate
and high frequencies.

4. CONCLUSION

In summary, the Bloch hydrodynamic model of the
Thomas-Fermi atom provides a reasonable model for
atomic excitation which, although approximate, never-
theless gives a reasonable estimate of the atomic
photoabsorption cross section at intermediate frequen-
cies. In this frequency region (0.03&Q&10.0) which
for heavy atoms ranges from the ultraviolet to the soft
x-ray region, the Bloch model does as well as could be
expected in providing a global photoabsorption curve,
applicable to all atoms. The classical concept of atomic
hydrodynamic oscillation is undoubtedly a limiting
factor in the applicability of this model, but a more
severe limitation appears to arise from the defects of
the statistical Thomas-Fermi atom itself. This situation
becomes especially clear at low frequencies where the
inaccuracies of the hydrodynamic photoabsorption
cross section are directly traceable to the exaggeration
of electronic charge densities at large radial distance
by the Thomas-Fermi model.

None the less the conceptual simplicity of the Bloch
hydrodynamic model is attractive and it offers an ap-
proach which probably hy, s never been properly ex-
ploited. Numerical computations based upon it furnish
fair approximations. Although up to now its use has
been limited to the photoabsorption problem treated
here, there exists the possibility that it could be applied
to other atomic processes for which standard methods
are unable to yield useful results.

—0.782= o(Q) lnQdQ o(Q) dQ,
0.03 0

is provided by the universal photoabsorption curve.
The parameter P depends upon the absorption cross
section below 0=0.03 and is given by

0.03 OO

I3= f g(Q) )DQdQ f g(Q) dQ.
0 0

If experimental values of the- cross section are used to
evaluate P, the scaling introduces a dependence upon
the atomic number. Thus P is a negative parameter
which varies from atom to atom and takes into account
the behavior of valence electrons. This separation in-
corporates all that the Bloch model can realistically
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APPENDIX A: NUMERICAL SOLUTION OF THE
COUPLED HYDRODYNAMIC EQUATIONS

Before proceeding to @n analysis of the solutions of
the coupled hydrodynamic equations, it is convenient
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UI(Q, x) = (5/N) (G/(xq')"'jP (cos tt),

VI (Q, x) = (A'/II4) (H/x) P I (cos 8) . (A2)

The particular forms of Eqs. (A2) are chosen to elimi-
nate the 6rst derivative term from the coupled equa-
tions, a feature which greatly facilitates the analysis.
Substitution of Eqs. (A2) into the coupled equations
for normal modes, Eqs. (11), gives a set of coupled
equations for B and G in which the 6rst derivatives are
absent; i.e.,

G"= (GG) G+ (GH) H

H"= (HG) G+ (HH) H. (A3)

The coeKcients in this equation are

(GG) =Ll(l+1) —3/16jx '

3 fq') 3 fp''t 3 fp)t i' 27II 0' x
8* kp ) 16 (y & 4 l,xi 256 y

'

(GH) = —(27''O'/256) (x/p) 'I4

(HG) =k(x/e)"',

(HH) =D(~+1)/x'3+ 2 (~/x) "'. (A4)

The boundary conditions, Kq. (8), furnish the bound-
ary conditions of G and H,

(dldx) (G/(xq ') 114jb,„s——P,

LH/x]bound =

Asymytotic Forms of G and H

(AS)

At large radial distances, x&f00, the asymptotic
form of the Thomas-Fermi function y=144/x' may

to express both the dependent and independent vari-
ables in terms of dimensionless quantities appropriate
to the neutral Thomas-Fermi atom. Thereby one not
only eliminates physical constants from the pure mathe-
matical analysis, but also obtains results which are
applicable to atoms of all atomic numbers Z by a
simple change of scale. The radial distance r and the
circular frequency co are expressed in terms of the
parameters x and 0, respectively,

r = (A'/rwe') (9m'/128Z) '"x

40 = (IIIe'/A') ZQ. (A1)

Similarly the equilibrium number density of electrons
in the neutral Thomas —Fermi atom is written in terms
of the universal Thomas-Fermi function p(x)

r40(x) = (32Z'/94r ) (rwe'/fi')'(y/x)' ' (3)

With these substitutions the normal mode functions
can be expressed in terms of two new dimensionless
radial functions: GI(Q, x) the velocity potential factor,
and HI(Q, x) the potential energy factor;

m'e' (2'Z')Ii' G q
II'H

XI(Q, x)=, i i . ..+ „PI(cos8),
Ir4' &3IrI 1 X'y 'I'

be used. This substitution, in which only the dominant
terms in the coe%cients are retained, leads to a form
of the coupled equations which is asymptotically valid
at large distances,

G"= —(34r'Q'x'/4') G—(3"'m'Q'x/2') H
Hi'= (3I~2x/4) G+ (2P/g2) H. (A6)

We expect a solution which is a linear combination of
four independent solutions. let us 6rst assume that
the function G is dominant: G drives H but H does not
drive G. This assumption seems justified by the rela-
tive magnitude of the coeKcients at large distances.
Under these conditions the JWKB analysis gives for G,

GI2 ——(2'/3I14n'I'x) sin t const+ f* (43IrQx'/2') dgj

with the corresponding solution for B,
HI2 ——( 2"/3'—I'm'"Q'x') s111 /const+ I* (v3s.Qx'/2') dxg.

These are two independent solutions since the sine and
the cosine are both equally acceptable.

To obtain two other independent solutions we as-
sume that H is dominant. This implies that in spite of
the relatively small magnitudes of (GH) and (HH) in
the asymptotic region, H is large enough to drive G
and G is so small that it does not drive H. These condi-
tions give the two solutions,

H —g(1/2)+(1/2) [1+4(l +i+18)]1'~

G — 38/228g —(5/2)+(1/2) [1+4(l +i+18)]&I& ~

g(1/2) —(1/2) [I+4(l + l+»8)]i/2,
7

G — 38/228g —(5/2) —(I/2) [I:+4(l +i+18)]&1'~

Solution three must be excluded since H8 increases
at large distances in such a way that the boundary
condition on the potential can never be satis6ed. The
solutions B», B2, and H4 are acceptable since they do
satisfy the boundary condition when the boundary
surface moves to infinity. Therefore, at large distances
the asumptotic solution G is also a linear combination
of the three solutions G», G2, and G4. The oscillating
solutions for G decrease more slowly than any of the
other solutions. We establish a canonical normaliza-
tion for the functions G and H by requiring that at
large radial distance G and H approach the normalized
asymptotic form,

G~ = (2'/3'I IrI~ x) sin /const+ (m6x /v32') j,
HN = (—213/331 Ir I'O'x ) sin /const+ (IrOx /4$2') g,

(A7)

which is independent of the angular index E. These
canonically normalized functions G~ and B~ deter-
mine the asymptotic behavior of the physical normal
modes of number density, velocity potential, and po-
tential energy per electron which are given by Eq.
(7) . In the limit as the boundary moves to infinity the
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boundary condition on H of Kq. (A5) is automatically
satis6ed. However the boundary condition on G of
Eq. (A5) requires —even in the limit of a boundary at
in6nity —that the phase of the sine function have a
de6nite value. This consideration leads directly to the
expression for the density of normal modes given by
Kq. (9), and also to the conclusion that the eigenvalue
spectrum of the normal modes of a neutral Thomas-
Fermi atom is continuous.

The constant k which appears in the biorthogonality
relation between normal modes of velocity potential
and normal modes of number density, Eq. (12), is also
evaluated by use of the normalized asymptotic func-
tions. Here one needs to calculate the normalization
integral in the denominator of Eq. (13), the definition
of the constant k. We imagine that the volume integra-
tion is done out to some large but finite radius xo which
is in the asymptotic region. The remainder of the
integration, out to the boundary, can be carried out
using the asymptotic normalized functions G~ and HN.
In terms of the parameter x the integral becomes

%to(oo, 1') Uyp(4o, r) dr= finite part

wound G2 GH

~p SP X cP

where A is a collection of numerical constants. The
second term in the integrand decreases rapidly enough
so that its integral will be 6nite in the limit as the
boundary goes to in6nity. We simply add this con-
tribution to the finite part already present. Substitu-
tion of the asymptotic function G~ in the remaining
6rst term of the integrand gives an integrand of the
form sin' (@+as) ds, where s=x'/3. We include the
contribution from the lower limit with the "finite part, "
take the average value of the square of the sine as -'„

and obtain

f%o(4o, r) U'io(4o, r) dr=finite part+A'xb«~oo, (AS)

where A' is another, slightly diGerent, collection of
constants. This expression, inserted into Eq. (13),
gives

(fie/me'Z) (xb.„.go/2W3)
lim

finite part+A'xb«„q

In the limit as the boundary goes to in6nity the "6nite
part" of the denominator can be neglected and we
obtain a 6nite ratio for k '. Its value after the numer-
ical constants are reduced is

k '=L'(2l+1)/42r7(m/AZ2to) (342r4/2')'to (A9)

a result which is independent of Q. The dependence
upon l is a consequence of our use of unnormalized
Legendre functions. This feature imposes no difhculty

in our problem since we deal only with modes having
dipole symmetry. If the angular dependence of the
normal mode functions were expressed in terms of
normalized spherical harmonics the constant k would
be the same for all modes.

sin
o„=~-«~~ ~f ~(~& 4.

(cos)
(A10)

With this type of solution the amplitude is slowly
varying so that to a good approximation we may write

G12 ~ G12j H12 — A, H]2 ~

Inserting these relations for the second derivatives into
the set of coupled equations for G and H, Kq. (A3),
we obtain

L~(x) 7'= —-', (GG) ——;(HH)

+2 I L(GG) —(HH) 7+4(GH) (HG) }"'
=—(GG)+ f (GH) (HG) /L(HH) —(GG) 7}.

(All)

To find the corresponding solutions H1~ we solve the
equation of forced vibration,

H12 (HH) H12 (HG) G12)

and obtain a 6rst approximation of H12,

H12 ———P (HG/X'+ (HH) 7G12.

(A12)

The coefficients of Eq. (A12) depend upon position
so we must add to the 6rst approximation a correction
term which will be out of phase with G. We assume a
better approximation for H;

H12 ——( —(HG) /pP+ (HH) 7}G12+ (correction),

insert it into Eq. (A12), and take the second derivative
explicitly. Only terms containing the first derivative
of the amplitude are retained, which gives an equation

JWKB Solutions at Intermediate Distances

The asymptotic functions for G and H at large dis-
tances consist of the sum of a slowly varying function
and a rapidly oscillating function. Eventually we shall
integrate numerically the coupled second-order equa-
tions for G and H, starting at the origin and proceeding
outward. As the integration proceeds G oscillates more
and more rapidly. This behavior occurs well before the
asymptotic region is reached. These rapid oscillations
of G suggest that a good approximation to the solutions
at intermediate distances can be obtained by using the
JWKB method. The functions G and H are represented
by a slowly varying amplitude function multiplied by a
sine or cosine whose argument is given by an integral.
In this type of solution G dominates. We assume for G
the form,



The derivatives of the oscillating functions are con-

sidered, in the spirit of the JWKB method, to 'be ex-

pressible in terms of the oscillating function itself,
multiplied by a power of ). Thus the corrected H is

given by

—(HG) X-»2 (sIn)
ls 2+ (HH)

I
~

( )
cos)

2X»' d (HG) ) (x) dx.
'+(HH) d '+(HH)

(A14)

So far we have obtained only two independent solu-

tions in the intermediate region, those for which G is

dominant and rapidly oscillating. The other two solu-

tions are those for which H is dominant and has an
exponential character. We again employ the JWKB
method, only now using solutions of exponential type
for H. We assume that H may be expressed in the
form

H44 ——h—»'exp)a j h(x) Cxj, (A15)

where again the second derivatives of G and H may be
approximated as

H34"=O'H34, G,4"=h2G,4.

These solutions are substituted into the coupled equa-
tions (A3) to give

h'= (4x') '+-', (GG)+s (HH)

+l f I:(GG)—(HH) j'+4(GH) (HG) j"'
=(4x') '+(HH)+I(GH) (HG)/L(HH) —(GG)lj

where we have added a term 1/4xs. This term is sug-

gested by experience with JWKB solutions of the expo-
nential type. For example, the JWKB approximation
to the exact solution of the second-order equation,

x'y"—l (k+1)y =0,

is much improved if f(1+1) is replaced by (f+-,')'.
For the H dominant type of solution G is small and

varies only slowly. We can therefore neglect the second
derivative of G and obtain for the solutions G34 corre-
sponding to H34,

G44= j
—(GH)/(GG) jhe»p(x& f h(x) dx). (A16)

This set of four independent JWKB solutions, Eqs.
(A10), (A14), (A15), (A16) provides a way calculat-
ing G and H in the region of intermediate and large
distances where the rapid oscillations of the functions
make accurate numerical integration dificult. We use
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for the correction term,

(/J'/dx') (corr. ) —(HH) (corr. )

2GI& (d/&x) E(HG)/~'+ (HH) j (A13)

for G and H at intermediate distances a linear combina-
tion of these four solutions which (1) its smoothly onto
H and G as integrated outward from the origin, and
(2) reduces at large distances to the normalized asymp-
totic forms of G~ and HN.

Numerical Integration of H and G Outward from
the Origin

Near the origin there is no convenient analytic ex-
pression for the Thomas —Fermi function. The coefijj.-

cient (GG) changes sign, producing a turning point, so
that the JWKB procedure is awkward. There is no
alternative but numerical integration, at least for inter-
rnediate values of the frequency parameter Q. Of the
four boundary conditions needed to specify a unique
solution, two boundary conditions have already been
used to 6x the behavior of H and G at large distances.
The other two boundary conditions must be applied at
the origin and must be chosen to give physically reason-
able behavior there. We therefore consider the behavior
of H and G at very small distarice where the set of
coupled equations, Eqs. (A3), becomes

G"= ( D (l+ 1)/x'g —(3/16x') jG—(274r'0'x"4/256) H,

H"=-,'x' 'G+ [ j l(l+ 1)/x'g+ (3/2x'/') jH (A1/)

Here we have used the limiting value y(0) = 1 for the
Thomas-Fermi function at the origin. To ind the lead-

ing term of a power series expansion about the origin
we take G~x and H~x~. Firat assume that G is
dominant —G drives H but H does not drive G. In this
case the second of Eqs. (A17) requires that b =/4+9/4, .

and the 6rst of Eqs. (A17) determines a and b,

The opposite assumption that H is dominant requires
that a= b+9/4 and that

a= Es—l, ~s+ (k+1)

b= l, f+1. —
The general solution near the origin can thus be

written as a linear combination of four solutions,

G = eIx ' +ax~ ' —e43.33/Q x"4—e40.075360 x'~

H = eI0 1125x"~+es3..6355x'SI4+e x '+e4x'.

Here we have explicitly used the value l= j.. For each
of the four independent solutions the driving equation
determines a deinite ratio of the constants of propor-
tionality in the power law approximation of G and H.
These ratios appear above as numerical coeflicients of
the subdominant functions.

In order clearly to see which of the linearly inde-

pendent solutions represent physically acceptable be-
havior near the origin we examine what each implies
for the physical normal mode functions n~, U~, and V~.
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1.0 ,0 4.0 50 60 7.0 Bj.O

RADIAL DISTANCE (THOMAS-FERMI UNITS} X

Fzo. 3. A plot of the normalized velocity potential function, Gi(a, Q), for the dipole mode (1=1) of oscillation of the Thomas-
Fermi atom. Here and in Fig. 4 each function is represented by a series of vertical cross sections through a two-dimensional surface
whose height is a continuous function of g and n. The radial distance x is in Thomas —Fermi units where g = (mes/7is) (128Z/9ss) r.
The frequency 0= (Le eV) /(27. 2Z eV) .The frequency is plotted on a logarithmic scale in the oblique direction. Each curve is a numeri-
caHy calculated frunction at a given frequency, plotted without distortion.

Tax II. Behavior at small radial distance of the four inde-
pendent solutions of the coupled equations which determine the
dipole modes of oscillation; cf. Appendix A, Eq. (A17) tf. Radial
distance is proportional to g.

Behavior of
Gand H

Behavior of physical
normal mode functions

Table II summarizes the situation for the mode of
dipole symmetry /=1 in which we are interested. The
solution G~, H~ must be discarded because it leads to a
n~~mber density of electrons near the origin which di-
verges more strongly than the equilibrium number den-

sity ~. The assumption that the normal mode is a
small Quctuation breaks down near the origin for this
type of solution. We must also discard the solution Ge,
H~ since it leads to a potential energy per electron near
the origin which behaves as x ', a more rapid divergence
than the coulomb potential. We exploit the fact that
one of the two acceptable solutions is a 6 dominant
type while the other acceptable solution is an H domi-
nant type. Explicitly, we have

G=eix' "'—e40.075360'x'm

H =ei0.1125x"m+e4x'.

G D(pninant

Q Dominant

g (Xg1.03814

goal fXg4.18814

Q fXgM.N814

gg~ a g1.81888

H8aCg '

G4~+I4
H4fXg8

~1fXg1.18614+gR.68814

Ul a g1.68814

P'1 ~g8.188l4

Nl a.g-1.68614+~.18814

Ul ~g-).18614

Pl (g gO+81888

Ul fxg
Vl tX:g~

I +gi/
Ula-g4

Vl kg

At small distances the terms with numerical coe@cients
fall o6 so much faster than the terms without numerical
coeKcients that one can neglect them and write

g~gg g1.988 II e4x'.

G —g1.936M

G =x""'4 (A18)

For our purposes it proves more convenient to take as
two basic solutions in the small-x regime, not the solu-
tions given by (ei=1, e4——0) and (ei=0, e4=1), but
the following linear combinations thereof,

For the equiTibrium Thomas-Fermi atom: sseccx-els, ir, ccrc i, The final normalized solutions for Htr and GN will be
U8=0. some linear combination of + and —solutions which
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Q, = 0.50

0.4
FIG. S. A typical example of the 6tting

between numerical solutions and JWKB
solutions, illustrated for the case of the
dipole mode (t=1) of frequency 0=0.S.
The abscissa is radial distance x in 0.0
Thomas-Fermi units.
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-0.4
-0.6
-0.8
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linear combination of JWKB solutions which continues
the numerical solution. For example, to continue the
+ solution we solve the set of equations,

G+(xi) = g c,+G;(xi),

G+(xs) = Q ct+G;(xs),

I f%I
I'

6.0 ( 7.0
]

8.0

KB SOLUT ION

ME R ICAL SOLUTIO N

L(k+ci++k ci
—)'+ (k+cs++k cs

—)'j' '

A 6nal condition on the k's is the requirement that
the oscillating part of the JWKB solution have the
same amplitude at very large distances as the asymp-
totic form of Eq. (A7). This condition, which fixes the
normalization, is

H+(xi) = Q c'+H'(xi)

H+(xs) = g ct+H;(xs),

=P.(x) ]'t'2'/3't's'x =0't'.
lim

(A21)

for the four unknown coeKcients c;+, where i = 1, 2, 3,
4. An analogous set of equations is solved for the four
unknown coeKcients c; which determines the linear
combination of JWKB solutions that continues the-
type of numerical solution into the JWKB region. In
the JWKB region the normalized solution will thus be
the linear combination,

GA = g (k+c~++k c; )G;

Hsr = g (kqc;++k c; )H;,

k+cs++k cs ——0. (A20)

where the constants k+ and k have yet to be deter-
mined.

One of the JWKB solutions Hs, Gs is an unstable
one, exponentially increasing with distance, which can
never satisfy the boundary condition at in6nity. Fur-
thermore this solution continues in the JWKB region
the unstable part of the numerically integrated func-
tions, a part which unavoidably appears because of
small errors in the step-by-step numerical integration.
We satisfy the boundary condition at in6nity and simul-
taneously eliminate the unstable part of the numerical
solution by setting the coeKcient of B3 and Ge equal
to zero; i.e.,

Equations (A20) and (A21) suKce to determine the
k's and thus to determine the normalized functions G~
and H~ both near the origin and at large distances.
The normalized functions G~ and Hsr for the dipole
mode of oscillation are plotted in Figs. 3 and 4, which
show their behavior for several values of the frequency
parameter in the range 0.03&0&4.0. For clarity only
the 6rst few oscillations of the functions are plotted.

The JWKB approximation gives a very accurate ex-
tension of the numerically computed functions. In the
region of overlap the JWKB solutions coincide very
well with the numerically integrated functions, only
departing signi6cantly near the 6rst maximum of. G
and H. This behavior is illustrated for a typical set of
coupled functions in Fig. 5. Throughout our analysis
we have systematically separated the solutions into a
G dominant and an H dominant part. The behavior of
the coeKcients of the coupled equations permits this
and thus enables the JWKB procedur" normally ap-
plicable only to a single second-order differential equa-
tion —to be applied to the system of two coupled second-
order equations. In turn the existence of the JWKB
solutions permits the solutions near the origin to be
connected to the asymptotic solutions. Only in this
manner can we determine a unique solution which
satis6es the boundary conditions both at the origin
and at in6nity.
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FIG. 6. Illustrating the rapid conver-
gence of the dipole integral, Eq. (82).

»&0& f=a &.&(e~&-~ te-~& a..
The integrand is plotted as a function of x
in Thomas-Fermi units. The amplitude
of the oscillating integrand decreases
rapidly. The principal contribution to the
dipole integral comes from the vicinity of
the 6rst maximum of G~.
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APPENDIX B: EVALUATION OF THE
DIPOLE INTEGRAL

Intermediate Frequencies

Once the normalized functions HN and G~ are ob-
tained, they are used to evaluate the dipole integral
which determines the photoabsorption cross section.
The dipole integral over the fluctuation in number den-
sity of electrons is more easily evaluated when it is
written in terms of the fluctuation of the velocity po-
tential. The normal mode of the velocity potential is
given by the dimdnsionless velocity potential factor
GIY. Thus, by Kqs. (22) and (A2), we have

EXo(o&, r) dr=0 '(4'joe') (%P/me') (4j3SZ)21'

The integrand in the above expression oscillates with
rapidly decreasing amplitude. Its behavior for a typical
frequency is shown in Fig. 6. The value of the dimen-
sionless integral in Kq. (B1) above is calculated by the
following procedure. The integral is done numerically
out to some node of the integrand. The succeeding
positive and negative loops of the integrand are then
integrated separately. In this manner we can write the
dimensionless integral, which we denote by D(0), as

nodB

D(0) = (V+) "'GN(*) (V *V')&*—
0

+it iI+ia ~—~ ~, (B—2)

where the i's represent the contribution of each suc-
cessive loop to the total integral. The Euler sum proce-
dure is then used to sum the convergent alternating
series of the i's. Only the 6rst several i's are needed to
obtain an accurate sum of the series.

The dimensionless integrals D(0), together with the
value of the normalization constant k computed in
Appendix A are substituted into Kq, (21) to obtain
our 6nal formula for the photoabsorption cross section,

o (0) = (3saa»'/0') PD(0) j' (B3)

0.07
0.0/01
1.50
1.501
4.00
4.01

0.1554
0.1520
0.591
0.577
0.688
0.798

2.2

2.4

16.0

We conclude that within the range 0.03&0&4.0 the
dipole integral is affected no more than 2.5% by a
change in the interval of integration. Therefore the
computational error of the photoabsorption cross sec-

where 0. is the 6ne structure constant and ao is the Bohr
radius.

In this way we have calculated the universal photo-
absorption cross section of Fig. 1.The solid dots indicate
the points which were computed numerically. The val-
ues of the cross sections are also listed in Table I.

In order to estimate the accuracy of the computed
cross sections it is necessary to examine the integration
procedure which was used. The single most important
factor is the length of the interval of radial distance,
4x, which was used both for the numerical integration
of the differential equations and for the evaluation of
the integrals of the functions. In order to determine
the eGect of diferent intervals hx at diferent frequency
ranges, we calculated the dipole integral D(0) at pairs
of values of 0 which were close together but between
which the computer program in use changes the integra-.
tion interval by a factor of at least two in all cases. The
situation is summarized by the following table:

% Difference of D(0)
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tion in this range is estimated not to exceed about 4%.
At higher frequencies the calculated cross section is
much less accurate. At these frequencies, 4.0(Q(12.0,
the functions oscillate rapidly and rise steeply from the
origin. The irregularity of the cross sections may be
due either to the use of too large an interval of integra-
tion or to the inadequacy of using only a single term
in the power series to obtain starting values of the
functions near the origin. Consequently we conclude
that the values of the cross section listed. in Table I
for the frequencies 4.0(0(12.0 may contain a com-
putational error of about 15%.

A 6nal check on the accuracy of the photoabsorption
cross section is provided by the dipole sum rule which
should be exactly satis6ed for our model. Here we 6nd
that the integrated cross section checks the theoretical
sum rule value to within 2%.

Limiting Forms of the Cross Section at Extremes
of Frequency

When we pass from medium values of the frequency
parameter 0 to very high and very low frequencies we
6nd the desired hydrodynamic solutions more readily
by analytic means than by numerical calculation. We
are interested not so much in the solutions themselves
as in what they predict for the photoabsorption cross
section. The dipole integral for photoabsorption Kq.
(32) will be dominated by the contribution from val-
ues of x which lie near the 6rst maximum of G. Conse-
quently we have to determine correctly the course of
the solution, not everywhere, but only near the 6rst
maximum. This maximum lies in the region of the atom
where the Thomas-Fermi function y is known only
numerically so long as Q is in the realm of intermediate
frequencies. But at very high frequencies the maxi-
mum moves in close to the origin, where y 1; and at
very low frequencies the principal maximum lies ex-
ceedingly far out, where (ty 144/x'. Both expressions
for p permit us to obtain G in closed analytic form.

Near the origin at high frequencies, the coupled equa-
tions for G and H of index l = 1 may be written

f 29 222r'0'x) 222r'0'x'"

256 ~~ 256

H"= —'x"4G+ (2/x') H.

The coefficient (GG) is dominant, so neglecting other
terms, we can obtain an approximate equation for G
alone

G"+ L(2'72r202x/256) —(29/16x') jG= 0 (84)

Only the function G is required in order to evaluate the
absorption cross section. %e introduce a new inde-
pendent variable,

y = (3"22rQx'/2) /2',

has the solution

(35)
where g= (33)'/2/6. This Bessel function is regular at
the origin and thus satis6es the boundary conditions
there. In order to normalize this solution we compare
it with the normalized asymptotic solution G~. At
intermediate distances and at high frequencies a JWKB
solution for G which reduces to the canonically nor-
malized G~ at large distance is

G~= 8/(3"'~"') j(4'"x)
Xsin Lconst+ f* (32/22rQ/24) (x/y'/2) dxj

Very near the origin this transitional solution becomes

Gtr = t('4/(3'/ yr'/2x'/2) j sin (const+ (3'/22(Qgst /2 ) g.

(86)
Comparison of Eq. (86) with the asymptotic form of
the Bessel function solution Eq. (35) furnishes the
proper normalization. For the normalized G at high
frequencies we obtain

G&(x) = (22r'/ 0'/ /3'/2) y'/~Jo(y) . (82)
This solution peaks at y 1 and for large y oscillates
with ever decreasing amplitude. Thus the contribution
to the absorption comes only from y values approx-
imately equal to 1, or only from x values of about
z~Q 'f'. Thus for high frequencies one can replace
(yx2) '/4(y —x(ty') in the interaction integral Eq. (82)
by x 'I' and have the integral reduce to the limiting
form

o(o)= f LoN(~)/y'"]~*
0

= (25II/yll ) f y III' (y)4y=O 441
0

We substitute this result into Eq. (33) and obtain the
limiting form of the cross section at high frequencies

a (0) =L1.242(10) "/0'j cm' (38)

In the opposite case of extremely low frequencies the
6rst maximum lies at extremely large x, where y=
144/x . The differential equations for H and G take the
limiting form

G//
L (8/g2) (3~202x4/212) jG (32/2g202x/29) H

H"= (3'"x/4) G+ (20/x') H.

Again the coeKcient of G in the 6rst equation dominates
and G drives itself and is influenced very little by H.
We neglect this small coupling and consider only the
equation for G,

G"+P(32r202x'/212) —(8/x') jG=0. (89)
which reduces Eq. (34) to a Bessel equation which The JWKB solution for G& in the asymptotic region
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suggests the change of variable,

y= (EQx')/(3'"2'),

which reduces Eq. (89) to a 8essel equation with the
acceptable solutign,

G(x) =y'I J (y).

Again we have g= (33)"'/6. We compare the asymp-
totic form of this Bessel function with the normalized
solution GN. This procedure furnishes the normalized
solution at low frequencies

G+(E) = (yrQx/6)'I'J L(yrQz )/(3'I'2') ]. (810)

Inserting this solution into Eq. (82), and using the
asymptotic form of q, we obtain

D (//) (///)y//2/3//4) f y 3/2y (y) dy (//0/3//4) (4 3//)
0
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