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The current understanding of the theory of the atomic photoelectric eGect is reviewed for incident photon energies
above 10 keV, complementing the earlier review of Fano and Cooper (1968) at lower energies. The theoretical develop-
ments of the last two decades are of two types: (1) analytic results giving insight into many aspects of the photoelectric
process and (2) exact numerical cross sections calculated with high speed electronic computers. The basic assumptions .

underlying the photoe6ect calculations are described, and pertinent atomic models are discussed. In the energy range
considered, satisfactory results are obtained with the process described as the ejection of an electron mdving in a rel-
ativistic Hartree —Pock—Slater potential. Exchange, correlation, and other effects are discussed. Many features of the
process can be understood with the realization that the important regions in configuration space in the photoefl'ect matrix
element are of the order of an electron Compton wave length. This leads to the predictions that the photoeffect cross
section in a-sere|:ned potential can be obtained from a point-Coulomb result by a simple normalization, that angular
distribution shapes and polarization correlations are the same in the two cases, and that results for photoeffect from
different subshells of the same angular momentum are similarly related. The numerical methods, achieving total cross
sections accurate to 1%, are described and compared with experiment. Different self-consistent atomic models yield
cross sections which ditfer by 3%—8%; these agree with experiments of similar accuracy. New and more accurate cross
section tabulations that have recently become available are discussed and recommendations are made concerning their
use.
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1. INTRODUCTION AND NOTATION

1.1 Introduction

In the atomic photoeRect, an electron is ejected from
an atom as a result of the absorption of a photon. The
photoeffect, scattering, and pair production are the
three processes primarily responsible for the attenuation
of electromagnetic radiation in matter. Typically, for a
given element the photoeffect dominates at lour photon
energies, scattering at intermediate energies, and pair
production at high energies. This review paper is pri-
marily concerned vrith the photoelectric effect for
incident photon energies above 10keV. At these energies
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the ejected electron usually comes from a tightly bound
inner shell. Such electrons are well represented by
central-6eld wave functions of Hartree-Fock —Slater
type. At lower energies, and especially close to absorp-
tion edges, other effects, such as correlations among
electrons, become prominent. With high-resolution
experimental work, the structure resulting from such
effects has been measured, and the low-energy region
is now of considerable interest. However, it is beyond
the scope of this review', though some comments and
references are given in Secs. 2.1 and 3.2a; we refer the
interested reader to the review of Pano and Cooper
(1968).The data presented and discussed in this review
concern total cross sections, though for the sake of
completeness we give the general formulas for angular
distributions and polarization correlations.

The photoelectric effect has been known for some
time, although our present understanding is quite
recent. Hertz in 1887 noted that ultraviolet light
facilitated the passage of electric current across a
spark gap. In 1905 Einstein explained the main features
of the photoelectric effect with the hypothesis of
quantized radiation. With the advent of modern quan-
tum mechanics and radiation theory, a quantitative
calculation of the photoionization of atoms became
feasible. The main outline of the theory was established
in 1936 when the review article of Hall (1936) ap-
peared; little was added in the next two decades.

The books of Heitler (1954) and Bethe and Salpeter
(1957) provide a good summary of the theory up to
1957.Theoretical knowledge of the process and resultant
Tables of absorption cross sections were primarily
based on four pieces of work: (1) exact nonrelativistic
results in the point-Coulomb potential for ejection of
E and I.-shell electro-ns (Stobbe, 1930) (see Sec. 6.1);
(2) Sauter's relativistic Born result (Sauter, 1931a,b)
for the E shell in the point-Coulomb potential; (3)
Hall's high-energy limits (Hall and Rarita, 1934; Hall,
1936) for the E and l. shells in the point-Coulomb
potential; and (4) exact relativistic point-Coulomb
E-shell total cross sections obtained numerically for six
cases by Hulme, McDougall, Buckingham, and
Fowler (1935). Atomic-electron screening was taken
into account by considering cross sections as a function
of atomic number Z, and replacing Z by a Z.ff~gj~e
chosen to reproduce observed binding energies. Con-
tributions of higher shells to the total cross section were
accounted for by multiplying E-shell cross sections
by 5/4. LSubsequent work has shown that the Z, ff

approximation is poor and that Hall's result is incorrect
(Prat t, 1960a,b) . The numerical work of Hulme,
McDougall, Buckingham, and Fowler (1935) has been
veriied and the 5/4 rule has been found to be fair for
high Z but not for low Z.j

Renewed interest in the photoelectric process began
in the late 1950's. With the rapid development of
nuclear physics, knowledge of photoelectric cross sec-

tions was needed in order to establish various nuclear
properties (e.g. , experimental internal conversion
coefficients) and to perform calculations related to
radiation shielding and astrophysical problems (e.g. ,
opacity). On the other hand, some experimental im-
provements were introduced. Latyshev (1947) sug-
gested the use of P spectrometers, and later irnprove-
ments by Hultberg (1955, 1959) made possible meas-
urements of separate shell contributions and angular
distributions. Thus, more and better theoretical
predictions were needed. Renewed analytical work
corrected the high-energy limit results (Pratt, 1960a,b)
and extended the relativistic Born approximation
(Gavrila, 1959, 1961; Nagel, 1960) . But only with the
aid of modern electronic computers, beginning in the
1960's, has it become possible to obtain fairly precise
(1%—5%) quantitative predictions of photoelectric
cross sections, angular distributions, and polarization
correlations, at least for Z&13, k&10 keV. Photoelec-
tric cross sections are now available for all Z and for
energies from 1 keV to 100 MeV, based on description
of both the bound and ejected electrons with Dirac
wave functions in a relativistic Hartree —Fock—Slater
potential. The most complete theoretical Tables are
due to Storm and Israel (1970) and Scofieid (1972).

Simultaneous with the recent numerical work, it has
become possible to understand in an analytical fashion
the origins of many aspects of the photoelectric process.
Thus, the normalization screening theory, introduced
for the photoelectric process by Pratt (1960a), predicts
the dependence of cross sections on electron screening,
for energies away from threshold: (1) The main contri-
bution to the photoeffect matrix element comes from
regions in conhguration space of the order of one
electron Cotnpton wavelength, and not where the bound
wave function is largest. (2) At these distances, the
bound wave function has a hydrogen-like shape and
differs from a point-Coulomb wave function only by a
normalization factor. (3) At these energies, the kine-
matic factor pE of the photoeffect cross section cancels
the change in the normalization of the continuum wave
function. Consequently, the effect of screening on the
photoeffect cross section is simply to multiply it by the
square of the change in normalization of the bound state
wave function (Pratt and Tseng, 1972) . Another
consequence of the theory is that angular distributions
and polarizations correlations are nearly independent of
screening. For similar reasons, one may also predict
that the ratios of the cross sections of certain subshells
are independent of energy. Such subshells have the
same angular distribution shapes and polarization
correlations. Phenomena of this type are clearly not
peculiar to photoeffect, but will occur in any process
for which it can be argued that the small distance
region dominates. An obvious example is orbital
electron capture, discussed by Brysk and Rose (1958) .
Recently Band, Sliv, and Trzhaskovskaya (19'I)
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1.2 Notation

Here we provide a brief summary of the notation
used in this review. We generally follow the notation of
Relutit/istic QNttltlrtt Mecltunics by Bjorken and Drell
(1964). Unrationalized units are used throughout,
5= m, =c= 1, unless otherwise speci6ed. Here
6.582183&&10 " MeV sec is the (reduced) Planck's
constant, 224=0.5110041 MeV/c2 is the electron rest
mass, and c=2.9979250X10" cm/sec is the speed of
light (Taylor, Parker, and Langenberg, 1969). In this
system, the unit of length is the electron Compton
wavelength X,=A/rtt, c=3.861592)&10 " cm= 386.1592
F, time is measured in multiples of the interval in which
light travels one electron Compton wavelength,
5/tt4c2= 1.288088&(10 "sec, and the unit of energy is
the electron rest energy m,c'= 0.5110041 MeV.

=Fine-structure constant= e'/ftc= 1/137.03602,
where e= —4.803250)(20 '0 esu is the elec-
tron charge.

=Bohr radius of the hydrogen atom, trt2/ttt. e'=
0.52927725)&10 ' cm.

= Classical electron radius= e'/rtt, c2= 42&,= a2a, =
2.827939&20 "cm.

=Atomic number of target elements.
=ZA'.
= Initial photon energy and momentum, respec-

tively, in m,c' and m,c units in the labora-
tory system.

= Binding energy of the atomic electrons.

, p =Total energy and momentum of the ejected
electron in the laboratory system.

=Kinetic energy of electrons.
=Radius vector from the center of the atomic

nucleus.
= r/r.
= Complex unit vector for photon polarization

such that e*.a= 1, a-k=0, i.e., the radiation
gauge has been chosen.

te

have shown that the arguments are valid in internal
conversion. Tseng and Pratt (1971, 1972) have demon-
strated these effects in pair production near threshold.

We have attempted to keep this review relatively
self-contained. For this reason we discuss in some detail,
in successive sections, the basic theoretical assumptions,
atomic models, electron wave functions, and numerical
methods. The reader who is interested only in a dis-
cussion of present results may proceed directly to Sec. 6.
It should be noted that the list of references includes
many items not explicitly mentioned in the text. This
does not reQect on their quality, but on the desire to
hold the text to manageable length. We wish to call
attention to the comprehensive glossary which follows
this subsection; symbols are also delned when 6rst
introduced.

(i= 1, 2, 3) = Polarization parameters for initial
photons and ejected electron, respectively.

=Wave functions for the initial bound-state
electron and Gnal continuum state electron

=Quantum numbers for the orbital and total
angular momentum of the ejected electron,
and projection of j.

=Quantum numbers of the orbital and total
angular momentum of the initial bound
electron, and projection of J.

= Quantum number which combines jand parity,
24= W ( j+1/2) as j=1&1/2 (—=t'W1/2): In
spectroscopic notation, l (not an eigenvalue)
is used instead of parity. /4= —1, +1, —2,
+2, —3, ~ ~ ~ correspond to si/2 (abbrevia-
tion s), pi/2(p), p3/2(p) dt/2(d) d5/2(d)
states, respectively.

= Same as x but for bound electrons
=a'/2= the spin of electrons

(~2 tt2) 1/2

(Q2 122) 1/2

=(1—p2) "', with p=p/E
=y'A' —y A, where y„are y matrices in Dirac

equations and in spinor representation

4' 4»

l, j, m

L, J, M

K
S
Y
PB
Vp

y„A~

v=
I

Lo -1) E- 0)
with o the familiar 2&(2 Pauli matrices.

(0 o)
~

in spinor representation
I,e 0)

g.(r),f.(r) =Large and small components of Dirac
radial wave function of continuum state
electrons of ~-partial waves, satisfying the
equations,

dg/dr= (8+1—V)f 24g/r, —

df/dr = —(E—1—V) g+ xf/r,

n

where V(r) stands for the assumed atomic
central potentials.

GK(r), FK(r) =Same as g„and f„but for bound-state
electrons.

= Phase shift of z partial waves.
=The principal quantum number of bound elec-

trons.
31y, =Atomic photoeffect matrix elements between

initial and final states i and f.
dQ = sin 8 d8 df= element of solid angle in the

direction of p relative to k, in steradian
(abbreviation sr) units.

da/dO = Atomic photoeffect cross sections, differential
with respect to the solid angle in the direc-
tion of p relative to k, in b/sr-atom units
(1 barn= 10~4 cm') .
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a~„g2„r2„, 02„-, 0~, o.l, , 0~, 0. , 0 =Atomic photoeffect
total cross sections of the E shell, the LI
subshell, the LII subshell, the LIII subshell,
the X shell, the L shell, the M shell, the
shell with principal quantum number e, and
the atom of target elements, respectively.
Note that a~,=~~=ej.,
0,= g„a„. See for example, Bethe and
Salpeter (1957), p. 295.

C( ji jm j; tli~) = The Clebsch —Gordan coeflicient )we
follow the Condon —Shortley (1935) phase
convention).

F'~ (r) = Spherical harmonics
= g, a,x'= The two-component spinors with

a~(r) = g, C(l,j;m s, s—) I'~,~,(r) g' is the spherical
spinor.

v = aE/P.
XK = (GKr "~) o+ (FK=r ~) o'= Square of nor-

malizations of bound electron wave func-
tions with the quantum number K.

=The ratio of screened. to point-Coulomb bound-
state normalizations.

j&(x), y&(x) = Spherical Bessel functions of the first and
second kind.

HFS =Hartree —Fock—Slater (relativistic unless other-
wise specified).

HFS 2/3= Hartree —Fock—Slater with two-thirds Slater's
exchange (Kohn —Sham, relativistic unless
otherwise specifled) .

TF =Thomas —Fermi.
TFC =Thomas —Fermi modifled by Csavinsky (1968).
FAN = Fermi —Amaldi modified by Shalitin (1965).
iFi(a, c, s) =The confluent hypergeometric function,

i.e., the Kummer function.

2. BASIC ASSUMPTIONS AND GENERAL
FORMULATION

2.1 Basic Assumptions

The complete physical situation which we should
describe is the absorption of a beam of photons by a
material target, resulting in the ejection of electrons.
This complex process includes numerous effects. Here
we restrict our attention to the absorption of one photon
by an isolated atom, resulting in the ejection of one
electron. Once this basic cross section is known,
additional effects can be included. We furthermore use
a simplified model for the atom and for the absorption
process which, we will argue, is adequate for a wide
range of atoms and photon energies (particularly

above the keU range). In certain experimental situa-
tions (e.g. , with thin targets, see Sec. 6), the other
physical effects are minor and we can make direct
comparison with the predictions of this simplified
theory. In summary, our simplifying assumptions are as
follows:

(i) A single isolated atom is the target,
(ii) The target atom is neutral and in its ground state,
(iii) A central potential model describes the atom,
(iv) The process is treated as a one-photon, one-

electron, and one-vertex one.

In the following paragraphs, we briefly discuss each
of these assumptions:

(i) The first assumption concerns the neglect of
extended structure in the target, responsible for primary
molecular or solid-state effects in the photoelectric
process (e.g. , crystal structure, energy bands, etc.).
Usually, these effects are most pronounced for the
loosely bound electrons of the outer shells. The charac-
teristic binding energies of such electrons are of the
order of some tens of eV or less. We are considering the
photoelectric effect for much higher energies, never less
than 1 keV. The direct contribution of outer electrons
to the total atomic cross section is then very small, as
the photoeffect cross sections are largest for the most
tightly bound electrons which can be ejected with the
available energy. (Recall that energy-momentum con-
servation forbids transfer of energy to a free electron.
We will. show later that the important region contribu-
ting to the photoeffect matrix element is that for which
r 1. At these distances, contributions from inner shell
electrons predominate; molecular and solid state
effects are negligible. )

In the first few hundreds of electron volts on the
high-energy side of the absorption edge in a solid, fine
structure is observed in the cross section. Such structure
is seen also for noncrystalline matter (usually only
within tens of electron volts), and this phenomenon is
attributed to purely "atomic" origins. These problems
are beyond the scope of this review; we refer the reader
to Fano and Cooper (1968) and Azaroff and Pease
(1973). On the energy scale of concern in this review
such fine structure can hardly be seen. Thus, we are
justified in neglecting these effects.

Even though the primary process is influenced to a
very small extent by molecular and solid-state effects,
secondary effects exist, due to target thickness, which
complicate measurements of photoelectric cross sec-
tions. However, in our present discussion the target is
assumed to consist of a single, isolated atom.

(ii) The assumption of a neutral atom in its ground
state clearly eliminates consideration of temperature
and pressure effects, which may excite, ionize, or even
completely strip the atom. Excitation can also arise
from other causes. Such effects are important in stellar
matter and plasmas. The standard methods used to
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describe atomic models at zero temperature (see
Sec. 3) can be extended to handle finite temperatures
and pressures. At a finite temperature not all states g,re
filled; the Fermi —Dirac distribution indicates the proba-
bility that a state of given energy is occupied. Results
of this approach in the Thomas —Fermi model have been
obtained by Feynman, Metropolis, and Teller (1949)
(see also Gombas, 1949, 1956; and Latter, '1955) . More
recently, results for the Hartree —Fock—Slater model at
finite temperatures have been reported by Rozsnyai
(1972). Confining the atom to a specified volume by
imposing suitable boundary conditions on the potential
(e.g. , for a neutral atom the force dV(r)/—dr ~, it=0
at the preassigned radius R of the atom) is equivalent
to making a statement about density. Through thermo-
dynamic arguments, the pressure is then also deter-
mined. Rozsnyai's calculations, which were performed
for Fe and Rb, show that for zero temperature the
difference between binding energies calculated for
normal density (Do) and low density (0.1Do) is small.
His values of binding energies for low densities agree
well with those of Herman and Skillman (1963).At a
density of 20Do, binding energies change significantly
even for the L shell ( 30%) and one notices the dis-
appearance of bound levels in the M shell. The occupa-
tion numbers for the inner (E,L) shells are not affected.
The lowest finite temperature for which Rozsnyai
presents results is kttT= 100 eV (kit ——1.0/11604.85
eV/'K, the Boltzmann constant; and T is the
absolute temperature in 'K unit), where the binding
energies for the L shell increase by at most 20%,
whereas the occupation numbers are practically un-
changed. This is an extremely high temperature for our
purposes (at room temperature kit T 0.03 eV) .
Therefore, there is no need for us to consider effects
of this nature, nor those arising from thermal agitation
of the atoms, (We have assumed implicitly that small
changes in binding energies re8ect somewhat com-
parable changes in potentials and wave functions. )

(iii) For the purposes of this review we also assume
that the whole atomic system can be treated as a central
field in which a given electron (to be ejected) moves.
The central-field assumption is very reasonable, as long
experience with its use shows. Many atomic properties
(e.g., binding energies) calculated on this assumption
agree very well with experimental results. We discuss
in Sec. 3 the circumstances in which the use of a central
potential appears justified in photoeffect; if we are
satisfied with cross sections accurate to within 1%—5%
the assumption is satisfactory for incident photon
energies above 10 keV on targets with atomic numbers
13&Z& 100. In Sec. 3 we also give the details regarding
our description of the nucleus, the electranic inter-
actions, etc., which underlie the central field assump-
tion, and we discuss the resulting atomic models. It is
shown that, within the subclass of atomic models of
self-consistent type, there is at present no one choice
that is clearly superior. For illustrative purpose, we hive

therefore used the relatively simple relativistic Hartree-
Fock—Slater (HFS) potential, and assume that both
bound and continuum states see the same potential.

(iv) We describe electrons with solutions of the
Dirac equation; in Sec. 6 the rather limited situations
are noted in which a Schrodinger description would
suKce. We do not restrict ourselves to a perturbation
expansion for the final continuum states (Born ap-
proximation) in the strength of the potential tt=Zo. ,
because even at high energies such an approach is valid
only for light elements. In the upper part of Fig. 1, we
symbolically represent an electron by a double line,
indicating that, whether bound or continuum, it is in the
presence of the atomic field, considered as a central
potential. We do not use the series decomposition for the
continuum state into free-electron states and propa-
gators (shown in the lower part of Fig. 1), which yield
the usual Feynman diagrams. We apply perturbation
theory only to the basic quantum-electrodynamic
interaction of photons with electrons: We assume that
the total Hamiltonian H consists of contributions from
the electrons in the presence of the atomic field H, i
(H, i includes the atomic field as well as the free elec-
tron Hamiltonian), from the radiation field of photons
H„q, and from the interaction of electrons with the
electromagnetic field, H; ~. Hence, we have H=
H, i+H,~+H;„&. In this review we consider only the
first-order term in H;„&, i.e., we consider only the dia-
gram corresponding to the absorption of one photon by
one electron, as shown in the top of Fig. 1. This cor-
responds to neglecting radiative corrections and higher-
order quantum-electrodynamic effects.

For processes involving only continuum-state elec-
trons, such as bremsstrahlung and pair production,
radiative corrections have been discussed by Guzenko
and Fomin (1960), Fomin (1959), and recently Mork
and Olsen (1965, 1968). These radiative corrections
are important only in the high-energy region. However,
as indicated later, errors in theoretical photoelectric
cross sections in the high-energy region are already
larger than the effect of such radiative corrections.
Radiative corrections to processes involving bound
electrons are still an open question. Lamb-shift results
give no indication that such effects are unusually
large. (See for example, Desiderio and Johnson, 1971.)
Other higher-order quantum electrodynamic effects,
such as diagrams corresponding to the atom being
excited, also involve higher-order terms in H;„&. These
are normally small corrections, since the electromagnetic
interaction is comparatively weak.

2.2 General Formulation for the Absorption of a
Photon by an Electron in a Central Potential

Z.Ztt Foretu4tioe of Mutricc Eteeteet tted Cross Sectioe

With the basic assumptions indicated in the preceding
section, our formalism corresponds to Furry's extension
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photon /

/
/

I

continuum

nd
ctron

volume)
4(x) = g P~(r) exp (—iEt) 6

for bound electrons, and

@(x)= Q Lfg&+&(r) exp (—iEt) b

for free electrons;
+fg& & (r) exp (iEt) d tj (2.2.3)

Aoraa 0

A"e(x) = (24r/k) '"g )exp ( ik—x) aa(k, e)

+ 0 ~ 4

I

I
I

Fro. t. Furry diagram {upper) and Feynman diagrams (lower)
for atomic photoeGect.

(Furry, 1951) of the usual Feynman-Dyson formula-
tion (Feynman, 1949; Dyson, 1949) of quantum elec-
trodynamics, which includes the interaction of the
electrons with the atomic field in the unperturbed
Hamiltonian. The atomic field is considered as a central
potential in this work. Symbolically, the photoe6ect
process is shown in I'ig. 1.

The electrons in the atomic field and the photons are
described by operators 4(x) and A "e(x), respectively,
which satisfy the equations

$~(~„Vs) e(qQ—s) o' ' 1+(x—) =0 (2.2.1)

A"'(x) =0. (2.2.2)

Here Ac'"' is the vector potential describing the atomic
field

q„V'=go(a/at)+y V,

y»4&=yoAo —y A,

= (8/Bx„) (4)/Bx&),

p& are the Dirac matrices satisfying the anticommuta-
tion relations y„y„+y„y„=2g„„;and the metric tensor
g»=0 except goo=1, gu=gn=goo= —1. (The central-
potential approximation plus the assumption that we
are in the laboratory frame corresponding to an infinite-
mass nucleus, implies that only Aoc'"'WO. ) The solu-
tion of Eqs. (2.2.1) and (2.2.2) is written (see for
example, Kallen, 1958, 1962; Schweber, 1961; here we
deal with particle densities normalized to one per unit

+exp (ikx) a*at (k, e) g.

Here, b and d~ are annihilation and creation operators
for electrons and positrons, respectively; f(r) indicates
electron wave functions which are solutions of the
Dirac equation ( iot —V+P+ V (r) E)P(r) =—0, where
V(r) =eAoc'. "' is the central potential for the atomic
electron in question. The n and P matrices are related
to the y matrices by ex=goy, P=yo. In the spinor
representation we have

(0 a)
n=/

E«P
with 6' the familiar 2X2 Pauli matrices, and

(1 0)

EO -1)
(We are using a compact notation for 4)&4 matrices. )
The destruction and creation operators for photons
are denoted by u and a~. The photons are specified by
four-momentum (k, lr) and four-polarization (0, e).
Here the radiation gauge was chosen. We lose manifest
Lorentz and gauge covariance, in order that only the
two transverse degrees of freedom of the radiation Geld
appear in the formalism. The cross section in our
approximation is obtained from the matrix element of
the 5-matrix between the initial and final states Sf;.
S,,=(f [S ( ki)

=(f ~
1 ief d4x—..4 (x)A'"(x)+(x):

~
ki)

=ie(2x/k) '~'f d4mgf tot eP; exp (sk r)

&(exp L
—i(k+1—e—E) tj

i27rMr, 6 (k+1 e—E) . ——

Ke have used

5= T exp I ief d4x+—(x) (p„A&)"e(x)%(x)},
since the interaction Hamiltonian

H, =ef@(x)(y A&)" (x)% (x) d'r,

(see for example, Berestetsirii, Lifshitz, and Pitaevskii,
19'11, p. 132 and p. 243) . Here the matrix element is

3ff;= (24rrr/k)'"f dsnjrtot. eP; exp (i' r). (2.2.4)



R. H. PRATT, A. RoN, ANn H. K. TsENo Atorrtcc Pttotoetectrcc Pact Abooe 10 keV 279

In the matrix element, P; is the initial bound-electron
wave function, square-normalized to unity, with
binding energy c, i.e., J ( 11r; ~2 der=1; p1 is the final
electron wave function, asymptotically normalized to a
unit-amplitude plane wave of four-momentum (E, y)
and four-polarization (0, () plus an incoming spherical
wave. (See for example, Sommerfeld, 1939; Bethe,
Maximon, and Low, 1953; Mott and Massey, 1965.)
The transition probability per unit time between the
initial and final states is then

p (8,4'=o)

We can obtain the cross section by summing over the
energies of the final state and dividing by the Aux of
incoming particles (in this case, the velocity of the
photon is c= 1 relative to the atom) . As the density of
final states is given by

I"zo. 2. A convenient coordinate system centered at the atomic
nucleus with s axis 2 along k, j along kX p, and a in the (k, p)
plane for atomic photoefFect.

with

we obtain the cross section, after integrating over
energies E of the outgoing electron, as A'= 0,

do——(22r) spE
I M1, Is did (2.2.5) and

We now consider photon polarization. The wave
function of a photon with a definite momentum k
and a definite polarization is

subject to energy conservation

It+1 s E=0. —— (2.2.6)

This describes the transition between definite initial
and final electron spin states, resulting from the
absorption of a photon of definite polarization. To ob-
tain the observed cross section, we must perform a
suitable averaging over initial state, and summing
over final-state, polarizations. In Sec. 2.2b we will
choose a coordinate system for the calculations. We also
brieQy survey photon polarizations and electron
polarizations (see, for example, Tolhoek, 1956, for a
detailed discussion), and then in Sec. 2.2c discuss the
polarization dependence of the cross section. A qualita-
tive discussion of the matrix element is given in Sec. 2.3;
this leads to an understanding of some properties of the
photoelectric process, such as the nature of atomic-
electron screening eGects, the ratios for the cross
sections of certain subshells, etc.

Z.Zb A Conwnient Coordinate Systems, I'hoton
and Electron E'olarisations

One can calculate the matrix elements M~, in any
coordinate system in the laboratory frame, but a
judicious choice simplifies the calculation. In this
review, we take a coordinate system centered at the
atomic nucleus with s axis 8 along k, j along hxp,
and x in the (k, p) plane (the production plane) as
shown in Fig. 2. This choice leads to substitution rules
for the matrix element My;, to be discussed in Sec. 2.2c,
which simplify our consideration of the polarization
correlations.

A($) = (21r/k) ' ' exp (—ikx) s,

where e is a complex unit vector describing photon
polarization such that a* e= 1 and e k= 0. We describe
photon polarization with Stokes parameters

$1 Sl Sl S2 221 $2= 21S2 +&1 S2&

b= &(stes —s1 ss), (2.2. '7)

xIx=1
(1)
E0)

The two-component spinor g is the large component of
the asymptotic constant four-component spinor cor-
responding to an asymptotic free particle plane wave
state. The small component of the asymptotic spinor

where s=sti+ssy, with
~

s1 ~2+~ es ~2=1. In order to
specify the polarization completely, the three parame-
ters g must be determined, e.g., by polarization meas-
urements with respect to three linearly independent
bases. For these bases we could take: (1) two states of
linear polarization with perpendicular planes of
polarization, (2) two other states of linear polarization
making angles of 2r/4 with the planes of polarization in
(1), (3) the two states of left and right circular polar-
ized light.

We use the spinor representation for Dirac electron
wave functions. In this representation any matrix
element between four-component states can be reduced
to matrix elements between two-component spinors
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ti= h. (y x p)/I y x p I,

t2=( Zt,

t'2= ( 71

(2.2.8)

here (t 1, f2, ip) form a right-handed set.
The spin direction ( is determined from x by re-

quiring that x be an eigenstate of o (:

may be written as Lo p/(E+1))x. This leads to a
simple way to separate out the quantities depending on
polarization (see for example, Berestetskii, Lifshitz, and
Pitaevskii, 1971).The polarization state of the ejected
electron is specified by its spin direction ( in its rest
system, with

matrix element Mf; as

Mf, = (22m/J'p)12gf"Ot 2$; exp (zk r) d'r

=xf'M( )x'. (2.2. 12)

(Here we follow the argument of Nagel, 1960.) The
2X2 matrix M(e) is linear in 2 and is some linear
combination of the unit matrix and the Pauli spin
matrices o, i.e., M(e) = piM1+22M2, with Mi and M2
being linear combinations of 1 and o'. Under the time-
reversal transformation 3 (see pp. 72—73 of Bjorken
and Drell, 1964) the photoeffect matrix element Mf;
of Eq. (2.2.4) becomes

gMf 3—'= (22m/k) "2fdpr(Tpf*) tTtX* 2*T 'Tip, *
&.(x=x.

From Eq. (2.2.9) we have

(1—tr ()xx '= o.

(2.2.9) Xexp( —ik. r)

since T= iy'y'= T~ = T '= —T*, where the prime refers
to the substitutions

For normalized x, the solution clearly is

xxt = -', (1+a .(), (2.2. 10)

Z Zc I'olarisatio. n Dependence of Matrix E/ements
and Cross Sections

In this review our main concern is with the photo-
effect cross sections when initial and final polarizations
are not observed. However, for completeness we give
here a general discussion of all possible polarization
correlations between incident photon and ejected elec-
tron, assuming that only the polarization of the bound
electron is not observed. The specific formulas for these
polarization correlations in partial-wave expansion are
given in Sec. 5.1.

If we assume a J= 2 bound state, then (cf. Sec. 2.2b)
both the initial and final states of the electron are
specified by the large component two-spinors p, and xf
The four-component wave functions p; and pf are linear
in p, and pf, respectively. Hence, we can write the

permitting the determination of ( from x. Alternatively,
from Eq. (2.2.9) we also have xzo'(x= 1. In the rest
system, ( is the only vector available; so that

(2.2. 11)

The polarization state of the bound electron is
described by J„the -s component of the total angular
momentum J.However, if the bound-electron state is a
J= -', state, then it can also be specified by a large
component 2-spinor g;. In general, a state of complete
polarization of a bound electron with total angular
momentum J is described by 4J independent quantities,
corresponding to a linear combination, with complex
coefficients, of the (27+1) substates of different J„
subject to one normalization condition and one arbi-
trary phase. For J= 2, the two degrees of freedom can be
taken to correspond to y;, but for J&—', there are more
degrees of freedom.

(Plv 22)~( Plv +22) ~

In terms of ( and g these become

(2.2. 13b)

Thus, we have

1) 2) 3 ~ 1) 2) 3

1) 2) 3 + 1) 2) 3 ~ (2.2. 14)

xf (plM1+22M2)xv (ovxf) ( plM1+22M2)ovxvv

ol

Mp=fl (8)+za(8)a zt, .
Mi —iC(8)o (y x p)/~ y x p ~

+—iD(8)a"p (2.2.15)
where 8 is the angle between k and p and A, 8, C, D are
complex-valued scalar functions.

Substituting Eqs. (2.2.12) and (2.2.15) into Eq.
(2.2.5) and averaging over the initial electron spin
states, we find for the photoefrect cross section

I-', g gg„C„„(8)),
&d&Junpoi p, v~

with Cpp=1 $p =—1, and fp =1. (Note tha—t P„and i„are

(o„o)
(0

61) E2 ~ 61) 62 (2.2.13a)

As the potential V is invariant under the time-reversal
transformation, the transformed states Tie* and TP,*
are also physical states —TP,* corresponds to the
bound state with the same total angular momentum J
but opposite J„.while Tiff* corresponds to the con-
tinuum state asymptotically with opposite space mo-
mentum p and opposite spin. This implies the equiva-
lence of two matrix elements, in which the polarization
properties are related by
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not four-vectors. ) Here (do/dQ) „„iis the differential
cross section averaged over the initial photon and
electron polarizations and summed over the final
electron spins

with

and

(d0/dQ) zzzzppi XPDppz

Xp ——(2zr) ~pE,

(2.2. 17)

(2.2. 18)

C»- —(2DQQ)-i(l A IS+I B IP—
I
C IP—

I
D IP)

Cpi ——+Dpp ' Re (AC*—BD*),

Cpp=+Dpp ' Re (AD*+BC*),

Cm. =DQQ ' Im (AC* BD*), —

CQQ=DQQ i Im (AD++BC+),

Cpp= Dpp ' Im (AB*+CD*),

Cip= —Dpp ' Im (AB*—CD*). (2.2.20)

Although Eqs. (2.2.17)—(2.2.20) were obtained as-
suming complete polarization of the photon, i-.e., that
( g ~=1, it is easy to see that they are also valid for
partial polarization

~ g [&1 because any statistical
mixture can be obtained by incoherent superposition
of two appropriately chosen pure states. That the
only nonzero polarization correlations are as above
follows from the apphcation of Eqs. (2.2.14) to Eq.
(2.2.16). Although the discussion here has been
restricted to the case J=—'„ these conclusions regarding
nonvanishing correlations are true for general J, as is
Eq. (2.2.16). The speciffcation of C„„ in terms of
amplitudes A, 8, C, D depends on the assumption /= -', .
We note also that applying the time-reversal trans-
formation to the bound wave function zP, is equivalent
to changing the sign of M' for the bound wave func-
tion, except for an arbitrary phase factor. This means
that the change of the sign of the quantum number M
for a given J(&—,) is equivalent to the substitutions
given by Eqs. (2.2.13a) or (2.2.13b). Thus, if we do
not average the photoeffect cross section over initial
electron spins, we have

C„„(M)=+C„„(™')
for C„„=C00 C10 C31 C33 C21 C23 C02, aDd C12,

' and

C„„(M')= —C„„(—M')

otherwise, where

J,zp;= Mzp;.

Dpp= 2(l A IS+I B V+I C P+ I
D IP). (2.2. 19)

The real numbers C„„(tt), satisfying
~
C„„~&1 since

cross sections cannot be negative, are the polarization
correlations between the incident photon and ejected
electron. The nonvanishing polarization correlations are
given C00—:1 and

2.3 A Simple Model for PhotoeBect and
Consequences of the Dominance of Compton
Wavelength Distances

The calculation of the photoeffect in first Born
approximation, representing the ejected electron by a
plane wave, was attempted by Hall and Oppenheimer
(1931). Although this calculation gives the correct
leading order of Z dependence, terms of the same order
also arise from the second term in u—=Za of the con-
tinuum wave function. The correct result in leading
order of zt, the Sauter formula (1931),can be obtained
by iterating the plane wave; this is discussed in Sec.
6.1b. However, the simpler calculation does yield a
qualitative understanding of certain features of the
process.

For these qualitative purposes an even cruder non-
relativistic model suffices (Pratt, 1960a). Let us have
tit s= p e, zest exp (——ip r), and approximate the s wave
bound states as zP, cc b'" exp ( br), wit—h 8= Zct/zt, zt the
principal quantum number. Then the matrix element
3f&; is characterized by the integral

bet'f d'ry r. exp (—iq r—br)

= Szrbct'p s/(b'+q')'

= S~Ãt'pet sin 8/(b'+q')' (2.3.1)

where q=k —p is the momentum transfer to the atom.
Note that the matrix element is one order higher in 8

(or a) than its integrand, essentially because energy-
momentum conservation does not permit the process in
the absence of the external field. It is for this reason that
contributions to the lowest order matrix element can
come from the order a correction to the plane-wave
final state (Sauter, 1931a,b). The cross section for s
state photoeffect goes as u', with u3 coming from the
bound-state normalization; for the same reasons the
cross section for a general state of orbital angular
momentum I.goes as u'+'~

In addition to Z dependence, the model tells us
something about angular distributions. Here (p s)
vanishes in the forward or backward direction, where p
is along k, and it peaks when p is perpendicular to k.
The position of the peak is shifted by the denominator
(q'+P)' if q' is not necessarily small compared to 8'.
This is always the case in the energy region we are dis-
cussing, so that angular distributions peak fairly
sharply close to the forward direction. (The vanishing
forward cross section persists in the Sauter result but is
not exact; there is a nonvanishing forward component of
higher order in Z which becomes important in heavy
atoms. )

We can also use our simple model to estimate the
important regions of configuration space for the photo-
effect matrix element —this is crucial to our subsequent
discussion. The integral is cut off at large distances in
two different ways. The bound-state decaying expo-
nential provides a cutoff for r 1/8; the oscillating
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FIG. 3. Values of the minimum momen-
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momentum transfer factor exp (iq r) provides a cutoff
for r~1/g. In the energy range we are discussing,
the momentum cuto6' acts first, because there is a
nonzero minimum momentum transfer, q;„=p —h

(even for forward emission), leading to a cutoff at the
order of electron Compton wavelength distances, as
shown in Fig. 3. This means that the important region for
the photoelectric matrix element (for energies above 10
keV) is large compared to nuclear sizes and small corn

pared to atomic electron cloud dimensions. We emphasize:
the dominant contributions to photoe Sect do Not

come from the regions where bound state wave func-
tions are largest. We will discuss the consequences of
this below.

A similar method has been used to predict the im-
portant regions for high-energy bremsstrahlung and pair
production (Bethe and Maximon, 1954; Olsen, Maxi-
mon, and Wergeland, 1957) . Bethe and Maximon
found that for high energies the bremsstrahlung or
pair production cross section is only significant for q 1
and g~(1/E). From this Olsen, Maximon, and Werge-
land concluded that the important regions for these two
processesare: (1) p E, (z) E, and (2) p 1, Iz~ E
in the cylindrica1 coordinates p, s, P with s axis a1ong k.

Our model does not suKce to establish the energy
dependence of total cross sections. These are known to
decrease monotonically, falling steeply close to threshold
and decreasing as 1/h in the high-energy limit.

The behavior of screened electron wave functions
near but outside the atomic nucleus has been discussed
by Pratt and Tseng (1972) and is summarized in Sec. 4.
It was shown that point-Coulomb shapes persist to
quite large distances (r~5$„) for bound states and
also for continuum states. The screening effects on
continuum-state normalizations cancel the screening
effects on the lrinematic factor pF. in the photoeffect
cross sections. Thus, at distances important for the

photoeffect, the only effect of screening is a change in

bound-state eormalisations. We examine the validity of
this prediction in Sec. 6. A consequence of this nor-
malization screening theory is that shapes of angular
distributions and polarization correlations are inde
pendent of screening Previou. sly atomic screening was
taken into account by considering cross sections as a
function of Z and replacing Z by Z,« t,. „chosen to
reproduce observed binding energies. It was pointed out
by Pratt (1960a) that this "effective charge" method

'

fits the atomic wave functions over the regions which
give the main contributions to their normalization
integral, but at least for energies well above threshold
these are not the regions important for the photoeftect
matrix element.

These ideas can also be used to predict model- and
energy-independent ratios of cross sections from states
having the same angular momentum. This follows
(Pratt, 1960b) because in a given atom the bound-state
wave functions of the same angular momentum but
different principal quantum number e are proportional
to each other in the important region r j, and for the
point-Coulomb model the proportionality is nearly
independent of Z. Hence, angular distributions and
polarization correlations from such states are the same.

3. THE ATOMIC MODEL

3.1 Basic Atomic Model

3.1a Centra/ Field A pproximation-

A simple, solvable quantum-mechanical system is
that of a hydrogen (or hydrogenlike) atom. The single
electron moves in the electrostatic field of the nucleus,
which is assumed to be an infinitely heavy point mass.
As this is a spherically symmetric field the resulting
eigenfunctions, whether in the Schrodinger or in the
Dirac formulation, can be decomposed into products
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of a radial function and an angular (and spin) func-
tion. Though this so-called point-Coulomb potential is
the simplest possible atomic model, it turns out to
be very useful both because it gives qualitative results
and because through the normalization theory (see
Secs. 2.3 and 4.5) such results can easily be converted
into more exact predictions. For a many-electron atom,
there are additional interactions among all pairs of
electrons, g;&; (e2/r, ;). This problem can be handled
in the central-field approximation, which assumes that
each electron moves in a potential representing the
attraction of the nucleus and the spherically averaged
repulsive electrostatic interaction of the other electrons,
represented by their charge distributions. The inter-
action P;&; (e'/r, ;) is replaced by a central-field
potential g; U(r, ); the resulting eigenfunctions are
products of single-electron wave functions which can be
decomposed into radial and angular (and spin) parts.
One simple such approximate potential is the basis of
the well known Thomas —Fermi (TF) model. (The
derivation can be found in most textbooks on quantum
mechanics, especially Gombas, 1949, 1956.) Underlying
the TF model is a semiclassical and nonrelativistic
approach which statistically considers a gas that con-
sists of free electrons at zero temperature, obeying the
Pauli exclusion principle. The potential function derived
from this approach is universal for all atoms. There is no
exact analytic expression for this potential; its values
have been tabulated (see Gombas, 1949; Kobayashi,
Matsukuma, Nagai, and Umeda, 1955) .The semiclassi-
cal approximation becomes invalid for very small and
very large radii: for small r the charge density diverges
as (1/r) et' instead of being finite, and for very large r it
decreases as r~ instead of exponentially (Messiah,
1962, Vol. II, p. 618). The TF model describes the
electrostatic potential that an in6nitesimal test charge
sees in a given atom. It therefore includes the redundant
interaction of an electron, whose wave function we are
calculating, with itself. We mention two of the variants
of the TF model, aimed at correcting some of its short-
comings, which have been used in some photoeffect
calculations. The Grst is Shalitin's FAM model, a
modification of the Fermi —Amaldi model (Shalitin,
1965), which explicitly corrects for the self-energy of
the electron. The second (which we denote by TFC) is
Csavinsky's analytic expression for a TF model
corrected for its failure to decrease exponentially at
large distances (Csavinsky, 1968).Though this class of
statistical models is not the best at our disposal, such
models are nevertheless useful for illustrating certain
features of the photoelectric process.

3 1b Self Consi.stent F-ield Metho-d

The self-consistent field (SCF) method for calcu-
lating atomic orbitals suggested by Hartree (1928) is
based on an iterative procedure for the numerical
solution of a class of integrodi6erential equations

known generally as the Hartree —Fock (HF) equations.
One begins with a set of trial wave functions and
calculates potentials which in turn yield a new set of
functions. The new wave functions serve to start a new
computation. This iterative process is continued until. ,
for example, the values of the wave function or the
eigenvalue obtained agree to within a specified accuracy
(typically with relative errors about 3)&10 ' or 10 ')
with those of the former stage, and thus self-consistency
is achieved. We now outline the derivation of the HF
equation (of which Hartree's equation is a special case)
which presently appears to yield the optimal descrip-
tion of an atom as a potential. An excellent detailed
discussion is given by Slater (1960).

Before proceeding with this derivation a comment on
units is in order. As is customary in calculations of
atomic wave functions, atomic units are used through-
out Sec. 3 unless otherwise specified. In atomic units
we have, 5'= m, =

~

e
~

= 1; the unit of length is the Bohr
radius (a,=A'/ m,

'e0.529 X); and the unit of energy is
2R„(where R„ is the ionization potential of the hy-
drogen atom, R„= me'/M' ~13.6 05826eV) .

The total energy of the atomic system in a state Q is

($ ~
H

~ Q), where the Hamiltonian H, in the non-
relativistic Schrodinger form, is

&=—', Z~"-Z(&/")+Z(', )-', (31.1)
ig j'

and the summation extends over all electrons of the
atom. We approximate p by a Slater determinant con-
structed from single particle functions I;. We look for
functions that minimize the energy of the system,
subject to orthonormalization conditions, and obtain
the following set of equations:

u;(ri) —(Z/ri) u;(ri)

+ (Z Jut*(~2) (t12) uj(t2) d't2) u;(t'i)

—g b(m„m„) (fu, *(rm) (rie)-'u, (t e) d't 2) u;(t', )

= —Q X;;b(m„m„)u, (r ) . (3.1.2)

In some cases (e.g. , for closed shells, see discussion
below and in Sec. 3.2) there exists a unitary trans-
formation which diagonalizes the matrix );;.The only
change then in Eq. (3.1.2) is that the right-hand side
becomes —X,,u;(ri), which we call —e;u;(ri). We will
refer to this form as the modified Eq. (3.1.2). The
terms of the modified Eq. (3.1.2) have a simple physical
interpretation. The first term on the left-hand side
of Eq. (3.1.2) is the kinetic energy part; the second
term gives the potential energy due to the nucleus;
the third term (known also as the direct interaction)
represents the repulsive Coulomb interaction between
ail possible parts of electrons (the charge density of
each electron being proportional to u,*u,); the last
term represents the exchange interaction. We would
expect the ~; on the right-hand side of the modified
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Eq. (3.1.2) to be the single-particle binding energy.
Indeed, Koopmans (1933) showed the e, is the energy
required to remove the ith electron from the atom,
provided that the orbitals of the remaining ion are
the same as those of the neutral atom (this "frozen
orbitals" assumption will be discussed in Sec. 3.2c).
For i=j in Eq. (3.1.2) the exchange term cancels
the appropriate direct term and corrects the equation
for the fact that an electron does not exert a repulsive
interaction on itself. The problem of self-energy (men-
tioned in Sec. 3.1a) is automatically dealt with in

the HF formulation. Omitting the exchange (fourth)
term and the self-energy term from the left-hand side
of Eq. (3.1.2) leads to Hartree's formulation of the
self-consistent-field method.

Always assuming central-field-type solutions

N„,„=[G„,(r)/r]V, (8, y),
we can carry out the implicit angular integrations of
Eq. (3.1.2) and find the second-order integrodiffer-
ential HF (nonrelativistic) equation for the radial
wave function,

( 1 d' Z l, (l,+1) g$;+1) ~'——+ ' ' + g (41,+2)rg 'rp(n;l;, n;I;;rg) ~G„,.(,. (rg) —Zl
'

I
Z~'(l, o;l,o)

2 dr/ rq 2rP „;~;
'

J
' *

„;~; &21~+1j

&&rq 'v~(e;l, , m;l;; r&)G„,.(,.(r&) = —&;,G„,. (,. (r&) — Q (41.+2)X;,G~, ), (&&). (3.1.3)
a&i, Ls=li

The summation P„,.&,
. extends over all shells in the atom, each being characterized by e; and l;;

/

~1 00

vl, (e;l;, n, l, ; ri) = —
~ G, i, (r2)G, i,f(r2)r2 &r2+rP+' G, ~, (r2)G,. g,. (r2)r2 dr2'

rl 0 ~1

and the c~ are angular integrals over products of three
spherical harmonics tabulated by Condon and Shortley
(1935) and Slater (1960).

The full exchange term is nonlocal and so dificult
(though possible) to handle, even numerically. Making
a statistical approximation to this term, based upon
the properties of a free-electron gas, Slater (1951)
replaced it by the expression

V.„=—r '[81'�(r)/32'']'", (3.1.4)

where the radial charge density

N(r) =4mr'g I *(r)N (r) = g G'(r)

(rl) +j (r2) (~12) +j(~1)+1(~2) d ~2

N, *(rg) I;(rg)

This term will correct the direct term in Eq. (3.1.2)
for the interaction of the particle with itself, provided
that u; is one of the occupied orbitals (the case with
which we will deal). We can regard this term as repre-
senting the potential energy at position r& of the elec-
tron in question, due to a charge distribution at position

Thus, Slater achieved an equation of the central-field
type with the advantage that all electrons see the
same potential. %e denote this type of potential as the
(nonrelativistic) Hartree-Fock-Slater (HFS) potential.
To derive this expression, Slater rewrote the exchange
term in Eq. (3.1.2) as

r~ of magnitude

u;* ri u;* r2 u; rj u; r2

By integrating Eq. (3.1.6) over d'r& and using the
orthogonality relations of the u; and u;, we find that
only the term j=i contributes, and when integrated
gives one electronic charge. Therefore, the charge dis-
tribution of electrons of the same spin adds up to one
less than the total number of electrons of this spin.
The net charge density of electrons of this spin, cor-
rected for the exchange charge, goes to zero at r~,
where our electron is located, because for r~=r2 the
exchange charge density just cancels the total density
of all electrons of this spin [see Eq. (3.1.6) for rq=r2,
and the direct term of Eq. (3.1.2) j. It is as if the
electron whose wave function we were finding carried
with it a hole, centered on its position r~, such that an
electronic charge of that amount (one unit) is removed
from the immediate neighborhood of its position. If p
is the density of this charge, which is equal to the total
density of electronic charge of the same spin at the
given point, and R is the radius of the hole, we find
(4s/3) R'p= 1; therefore R ~ p '". As the potential
energy at the center of a uniformly charged sphere is
proportional to R '~ p't', one obtains the form for
V, in Eq. (3.1.5). (For more details see Slater, 1968.)
Slater notes that this approximation is particularly
inaccurate for very small and very large radii, there-
fore affecting X shell and outer-shell electron wave
functions calculated in such a potential.

So far, we have described the nonrelativistic case.
The same steps are followed to achieve a relativistic
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treatment. This relativistic HF treatment has been
described by Swirles (1935) and developed by Grant
(1961)and others. (An excellent review and a complete
list of references are given by Grant, 1970.) One begins
with the Dirac relativistic Hamiltonian which, in
atomic units, has the form

ic—ot, V,+P, 'c—(Z/r, ) j+ g r, „—', (3.1.7)

where ex and P are the Dirac matrices.
The state g is constructed from a determinant of

single-particle wave functions of the relativistic central-
field-type

( ÃK(r)/rhfl~(r) )
yK~(r) —

I (3.1.8)
(LiF (.)/r]n (r))

where the quantum number E and the function
QicM (r) are as defined in Sec. 4.2b. The next step is to
minimize the expectation value of this Hamiltonian,
with respect to these functions, subject to the ortho-
normalization conditions; this leads to the relativistic
HF equations (HF). Again for closed shells, one can
diagonalize the matrix X, prove Koopmans' theorem,
and carry through Slater's approximation to the
exchange term (HFS). A detailed description and
formulas are given by Grant (1961, 19'70) and Coult-
hard (1967). The recommended theoretical photoeffect
cross sections of Sec. 6 are based on relativistic HFS
potentials obtained with a computer program provided
by Dr. D. Liberman LLiberman, Cromer, and Waber
(1971)g.

3.2 Validity of the Basic Atomic Model

3.2a. Exchange and Correlation sects
We have described the HFS potential used for tabu-

lations presented. in this review. We now discuss
alternatives to the HFS approximation which lead to
a more accurate treatment of the consequences of the
Hamiltonian Eq. (3.1.7). We will also subsequently
discuss modifications of the Hamiltonian.

Our first remark concerns the spherical symmetry
problem. Generally, except in the case of closed shells,
the solutions of the HF equation (whether in the
nonrelativistic or the relativistic form) do not yield
central-field-type (or spherically symmetric) eigen-
functions, due to the nonlocal exchange term. Ob-
viously, by omitting the exchange term and the self-
energy term (and getting the Hartree equation) or
by approximating it by any spherically-symmetric
expression (as in the HFS case), one regains central-
field-type wave functions. In Hartree's case one does
not impose the antisymrrietrization of the wave func-
tion p required for identical particles (electrons),
and P is a product of single-particle functions. In
the HF case, antisymmetry is imposed, and for
closed shells p is a single Slater determinant, whereas

in the general case it is a linear combination of such
determinants. In the energy range of concern in this
work, the dominant contributions come from inner
shells which are filled; for the inner shells, the devia-
tions from central-field-type wave functions, due to
only partially filled outer shells, are small. In the re-
stricted HF formulation one simply assumes that the
functions have the central-field form. The variation is
then carried out with respect to the radial function
(and not to the complete wave function) . Thus,
spherical symmetry is imposed. The fact that such
approximations are usually not serious, combined with
the difhculties of handling the general HF scheme,
account for the lack of strict HF computations.

Now let us mention some modifications of the HFS
potential which were examined in the course of our
investigation. Gaspar (1954) and Kohn and Sham
(1965) obtained an expression for the effective ex-
change term which is 2/3 of Slater's value. We denote
this HFS2/3. In this derivation, the statistical approxi-
mation for the exchange term is made before performing
the variational calculation, rather than afterwards as
done by Slater. Physically, this means that the value
is taken at the Fermi surface, rather than the average as
in Slater's derivation. The argument supporting this
procedure is that density adjustments come about
by redistribution of the electrons near the Fermi
surface. More recently, Rosen and Lindgren (1968)
have approached this problem in a semiempirical.
fashion. They write the approximation to the exchange
term in the form

V,x = —(C/r) L81r"n (r)~/32~'j't'

Here C, nz, and e are adjustable parameters. Slater's
approximation corresponds to the choice C=m=. e= 1;
the HFS2/3 case corresponds to the choice C= s
and m= n= 1. Rosen and Lindgren have recommended
choices of C, e, m as functions of Z. We have denoted
by RL, photoeGect cross sections which we calculated
using their recommended potential parameters.

The HFS-type potentials do not behave asymp-
totically as —(e'/r) as they should. When the potential
is artificially corrected to behave properly this is usually
referred to as the Latter modification or tail correction.
Liberman (1970) suggested an additional correction
term in the variational equation to account for this
deficiency. Thus, the correct asymptotic behavior of
the wave function is achieved and so are the required
ionic potential forms suitable for photoelectric calcula-
tions. Whenever we refer to an ionic potential we mean
this type. Comparisons of photoelectric cross sections
calculated by using these alternative potentials are
made in Sec. 6, but no strong case can be made for any
particular choice.

The full HF procedures yield a proper treatment of
exchange. However, it is generally believed that, when
a full treatment of exchange e6'ects is needed, so is a
treatment of electron correlations not contained in the
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found that correlation effects are important for the
higher shells but not for the inner shells. This suggests,
therefore, that correlation effects tend to be small at
higher energies and that we are justified in disregarding
them in this review.

(a) (b)

FIG. 4. 'Diagrams of the second-order scattering matrix 5&2) as
given by Eq. (3.2.1).

HI' procedure. The electron correlations represent the
difference between quantities calculated by means of
the exact solutions of Eqs. (3.1.1) or (3.1.7), corre-
sponding to the nonrelativistic or relativistic case, and
the respective HF equations. The neglect of these
correlations is inherent in the single-particle model
which assumes that the electrons move independently
of each other, even though the HF model does take
into account some correlation between electrons having
the same spin via their exchange interaction. It is well
established by now that correlation effects play an

- important role in affecting photoionization cross
sections at low energies close to absorption edges.
Intricate methods (e.g. , intrachannel effects, close-
coupling, and many-body perturbations) have been
suggested and applied to calculate detailed structures for
such cases (e.g. , Chang and McDowell, 1968; Conneely,
Smith and Lipsky, 1970; Kelly, 1969; Manson and
Cooper, 1968; Starace, 1970, and references therein).
We do not attempt to review this subject or give a
complete list of references for two reasons: (1) These
calculations are still in their early stages and are not
yet ready for further review (the latest review of this
problem is that of Fano and Cooper, 1968); (2) These
calculations deal with energies which are usually below
our range of interest. Some calculations in fact were
performed for higher energies (up to 30 keV) with
these methods (e.g. , Manson and Cooper, 1968;
Kelly and Ron, 1972) . In these calculations relativistic
effects were neglected and the dipole approximation
was used; the main purpose was to test the methods
and numerical procedures. Comparison of results
for aluminum and iron from these methods with the
FAM results of Rakavy and Ron (1967) shows differ-
ences of 3%—6% in the 5—30-keV energy range. As noted
by Kelly and Ron (1972), preliminary calculations
showed that in the keV range, when the inner-shell
contributions to the cross section were dominant,
the correlation correction was small. This can be
understood by noticing that in a perturbation treat-
ment the relative contribution of the correlation
correction, for a given matrix element, decreases
roughly as 1/k. Similarly, Rosen and Lindgren (1968)

Si'i = ——,e'f T[j&(x)j"(y) )Tgd„(x)A „(y)) d4x d4y,

(3.2.1)

where T is the time-ordering operator, j„is the p com-
ponent of the current operator (j„=:py„f:), and
A„ is the v component of the radiation field vector
potential. Diagramatically, the scattering matrix S('i
is shown in Fig. 4. LFigure 4(b) is the exchange term
corresponding to Fig. 4(a).) The evaluation of S('&

is straightforward, and a detailed description is given
in Akhiezer and Berestetskii (1965), Secs. 37, 38.
Writing the time dependence as

it~(x) =P~(ri) exp (—ie~~ti),

where fz(x) is the solution of the Dirac equation and
similarly for B, C, D, switching over to the transition
matrix I which in our case reads S= 2niUB(&o—~+
~s—&oc—con)), and using cv~c=cog —roc, etc. one finds

UAB:I = fyc*(r&)yg)*(r2) ((1—ni n2) /I ri —r2 I)

Xexp (i I s&~c II ri —r~ I/c)i/~(ri)&Ps(r2) dri dr2, (3.2.2)

where ni operates on P~(ri), while n2 operates on
fs(r2).

The presence of the retardation factor

exp (i I ~~, II r, r, I/c)—
prevents the introduction of a general operator for the
interaction between two electrons, because Eq. (3.2.2)
depends explicitly on the initial and final energies of
the system. Expanding the retardation factor in
powers of % (using ~=cope (4j)s) we find, for an
expansion up to and including v'/c',

exp (ioor/c), oo=r '+i ———r.
c 2c

(3.2.3)

We refer the reader to Akhiezer and Berestetskii
(1965) for the demonstration that U~s., cia is a matrix
element of the operator

U= (r~) —'——',Lni n2+ (ni ri2) (n2 ri2)/r„)
—= (» )-'+~(1, 2). (3.2.4)

3.Zb Magnetic and Retardation Interactions

These problems involve investigation of the complete
interaction between two charges (electrons in our case)
which do not lead to emission or absorption of (real)
photons. The subject has primarily been investigated
in the context of obtaining corrections to binding
energies. The lowest nonzero order of perturbation for
such a process is the second order of the scattering
matrix. '



R. H. PRarr, A. RoN, ANn H. K. TsENG AtotnkPhotoelectric Egect Above 10 heV 287

Here we have r~=l r~ —r2 I and r is the unit vector in
the r direction, and 8(1, 2) is the so-called Breit
operator (Breit, 1929, 1930, 1932). The leading term
in the expansion is the Coulomb interaction, and the
Breit correction is of order s'/c' relative to the Coulomb
term (as the matrix elements of tx are s/c) . The expan-
sion is valid when s/c«1, which implies a light atom.
For heavy atoms some use Eq. (3.2.2), which depends
on the initial and final states.

An alternative way of deriving the same result is
given by Bethe and Salpeter (1957), starting from the
semirelativistic Dirac equation for two electrons,

LE—H(1) —H(2) —(rn) '1/=0, (3.2.5)
with

H(i) =N;(cP;+A(r;) )+P;c'—Ao(r;),

The calculation of the energy E, due to the exchange
of a virtual photon between the two electrons, is
carried out in the framework of ordinary perturbation
theory. In the denominator- there appears the quantity
k+E„Eo, where k i—s the photon energy, E„ is the
energy of an intermediate state, and Eo is the given
energy of the initial state. When one neglects E„—Eo
with respect to k (which amounts to saying that Zn&&1),
one finds that hE is just the expectation value of the
Breit operator over the initial state wave function.
However, one obtains erroneous results by either
trying to solve exactly the equation

LE—H(1) —H(2) —(r~) ')/=8(1, 2)tP (3.2.6)

or by treating B(1, 2) in perturbation calculations in
orders higher than first. This stems from the fact that
when both electrons in the intermediate state n are of
negative energy, the quantity k+ E„—Eo~—2m,c'
is not small, and the result is a diferent operator,
smaller by an order of /hmcr& than the Breit operator.
(For more results, the reader is referred to Bethe
and Salpeter, 1957). Thus, one should use the Hamil-
tonian (3.1.7) with magnetic and retardation effects
treated as a perturbation instead of including the
Breit operator in the unperturbed Hamiltonian.

Desiderio and Johnson (1970) and Mann and
Johnson (1971) (who give a detailed discussion of
this problem) carried out a calculation including
quantum electrodynamic corrections to binding ener-
gies of X electrons in heavy atoms (Z= 74-90). They
find that the contribution of the Breit interaction is
less than 0.4%. These results suggest that, in view of
our claimed accuracy, we are justified in disregarding
such effects. However, if such corrections to photo-
electric cross sections are carried out, one should con-
sider carefully the consistency problems discussed
above.

3.Zc Atomic Eearrangements

Under this heading we include various problems
which arise as a result of possible changes occurring
in an atom after the removal of one of its electrons.
We are thus led to questions concerning the relations
existing between eigenvalues (which result from
theoretical calculations) and theoretical binding ener-
gies, the interpretation of experimental data, and com-
parisons between theoretical and experimental binding
energies. LSee for example, Rosen and Lindgren (1968),
Manne and Aberg (1970), Kohler and Lin (1971)
and especially Meldner and Perez (1971).j

So far we have neglected any possible rearrange-
ment e6ects. Both the boun4 and continuum states mere
calcnlated in the same potential corresponding to the
extreme case of "frozen" orbitals (method A in Rosen
and Lindegren, 1968). The binding energy is given
by the difference between the total energy of the
atom and that of the ion having the same orbitals
(thus, only one SCF calculation is needed) . Intuitively,
this corresponds to the case of a long relaxation time
(sldden approximation for the ejection of the electron) .
Under this assumption, the HF method yields Koop-
mans' theorem, identifying this binding energy with
the eigenvalue. The theorem is not exactly valid for
approximate HF methods, where a correction term
to the one-electron eigenvalue should be added in
order to find the binding energy. The other extreme
assumption (method B in Rosen and Lindgren, 1968)
maintains that the relaxation time is short and readjust-
ment occurs. In order to find the binding energy in
this case, the total energy of the ion is to be calculated
in a separate SCF computation. Intermediate situations
could also exist. The difference in binding energies
predicted in these two modes of calculation is relatively
small (though observable) for the inner shells and
becomes 10%—15% for the outer shells of medium and
heavy atoms. It is assumed that the eigenvalues
have been corrected for the nonvalidity of Koopmans'
theorem, the correction being ~100 eV for E shells in
medium-heavy and heavy elements. Rosen and I ind-
gren find that binding energies calculated by method
3 agree better with experiment for inner shells than
those of method A (in particular for light and medium
elements). For the outermost electrons on the other
hand, method A seems to yield better results. Meldner
and Perez (1971) refute this in their more complete
analysis and indicate that detailed measurements of the
spectrum are needed in order to determine rearrange-
ment times.

This problem directly enters our calculation when we
wish to determine the value of the binding energy
to be used in Einstein's equation, Eq. (2.2.6). In
some computations (e.g. , Storm and Israel, 1970)
the experimental binding energy was used. There are
some advantages to this procedure. The absorption
edges are exactly at the proper place and no scaling is
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needed when comparing theory with experiment.
Also, the kinematics of the process is well dealt with
and the continuum wave function is calculated with
the correct kinetic energy. A possible drawback to this
procedure is the destruction of model consistency.
Using the experimental binding energy might be equiva-
lent to including implicitly various corrections without
consistently making them in the bound and continuum
wave functions. As we show in Sec. 6, the use of either
experimental binding energies or calculated eigen-
values, for a given potential, causes the cross section to
differ by about the same amount that this cross sec-
tion differs from one calculated with a different po-
tential. For high energies, the difference becomes small
and unimportant. Unfortunately, we are not yet in a
position to decide which procedure to foll.ow.

The problems discussed in this section, which are
important not only in atomic physics but in other
fields as well (e.g., nuclear physics), still remain open.

3.Zd Nuclear sects
As stated in Sec. 3.1a, we assume the atomic nucleus

to be an infinite-mass point charge. This assumption
eliminates effects stemming from the finite size of the
nucleus. It was shown in Sec. 2.3 that the main con-
tribution to the photoelectric matrix element is from
distances r q ', where q is the momentum transfer.
Thus, we expect that the effect of the finite size of the
nucleus will be significant for momentum transfers that
yield small values of r. Indeed, for heavy atoms, high
photon energies, and back-angle scattering, we may
anticipate some effect: A 2-MeV photon ejecting an
electron in the backward direction will impart a
momentum transfer of q 9',c to the nucleus, yielding
r 0.1A,„still large compared to the uranium nuclear
radius ( 0.02K,). But for 20 MeV, the corresponding
distance is r~0.022K„and one could begin to see
nuclear effects at back angles. However, the contribu-
tion of such back-angle terms to the total photoelectric
cross section is negligible in all cases (see also Sec.
2.3) . Nuclear magnetic moment effects, important
in back-angle bremsstrahlung . at higher energies
( Goldemberg and Prat t, 1966) similarly are not
expected to be important here.

We have also assumed that the nucleus can absorb
momentum in the photoeffect reaction without ab-
sorbing energy, yielding a recoilless process. Thus,
Eq. (2.2.6) is considered to be exact. The energy of a
backward scattered photoelectron ejected by a 2-MeV
photon from an aluminum atom, the mass of which is
considered infinite, differs from the correct result by
at most 0.0015%, and the error is insignificant for
heavier atoms. However, the same assumptions ap-
plied to hydrogen yield an error of 0.4%. Thus, one
shouM be careful when applying this assumption to
light elements and very high energies. But in such
circumstances, photoelectric cross sections become small

and unimportant in comparison with other processes.
A consequence of this effect is line broadening, but this
is far smaller than the natural width (which is about
0.07% in gold) and even that is always neglected
compared with other causes of line broadening. Tucker,
Roberts, Nestor, Carlson, and Malik (1968) and Rosen
and Lindegren (1968) find that finite-nuclear-size
corrections to binding energies are negligible (if cor-
rections for the invalidity of Koopmans' theorem are
considered) and also corrections to wave functions
are small outside the nuclear volume. The change of the
binding energy of a 1s electron in Hg due to the finite
size of the nucleus is less than 0.1%.

4. ELECTRON WAVE FUNCTIONS

4.1 Introduction

To calculate the photoeffect matrix element and
cross section under the assumptions previously outlined
we need electron wave functions in the central po-
tential V. In this review we describe electrons with
solutions of the Dirac equation, as for large Z, rela-
tivistic effects can be of some importance even at low
energies. However, for qualitative discussions, we will
often use Schrodinger wave functions, which more
simply display certain features of the process. We will
discuss in Sec. 6 the circumstances in which Schrodinger
wave functions can be used for quantitative photo-
effect calculations.

The major computational problem is that of obtain-
ing continuum wave functions. We note three general
methods for calculating such functions in a given
potential:

(1) Partial-wave series: Many terms are generally
required, but with present computers numerical
calculations are feasible if fewer than 100 partial
waves are required.

(2) Born approximation: Based on a perturbation
expansion in V, calculations are hard to handle beyond
lowest order in Z and generally converge poorly, except
in the lightest elements.

(3) Approximate high-energy wave functions: These
are useful for special purposes and have been used to
obtain the high-energy limit of the photoeffect.

Much work has been done on the point-Coulomb
potential, which is sometimes a useful approximation.
Nonrelativistic bound and continuum wave functions
for the point-Coulomb potential may be written in
closed form. For the relativistic case the bound states
can be given in closed form; for continuum states the
coeKcients of the partial-wave series are known and
there is also an approximate high-energy wave function
in closed form —the Furry —Sommerfeld —Maue wave
function. (See, for example, Furry, 1934; Sommerfeld
and Maue, 1935). The failure to obtain a relativistic
closed-form expression is connected with the fact that
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the Dirac equation for an electron in the point-Coulomb
potential can be separated only in spherical coordinates.

In Sec. 4.2, we briefly summarize the general for-
malism for electron wave functions in central potentials
which fall off more rapidly than the point-Coulomb
potential at large distances. For the point-Coulomb
potential, a brief discussion of the analytic expressions
is also given. Section 4.2 gives the partial-wave for-
malism for continuum electrons used in most present
photoeffect calculations. The two other methods for
describing continuum electrons, the Born approxi-
mation and the high-energy approximation, are dis-
cussed in Sec. 4.3. In Sec. 4.4, we examine screening
effects on bound- and continuum electron wave
functions and determine radius at which deviations
from the point-Coulomb shape become important.
V/e show that point-Coulomb shapes persist to quite
large distances (r 5K,) for bound states and con-
tinuum states (Pratt and Tseng, 1972). We consider
also the small-distance behavior of bound-state elec-
tron wave functions of different shells in the point-
Coulomb potential; when combined with the screening
analysis this leads to a simple prediction of ratios of
photoeffect differential cross sections of given orbital
angular momentum L, neglecting terms of relative
order of a' (Pratt, 1960b).

4.2 General Formalism

4.Za Xoerelutivistic Bound-State cmd Coetiellns
t/I/ ave FNectioes

The states of an electron in a central potential are
described by the Schrodinger equation with Hamil-
tonian

H= —V'/2+ V(r).

Since the orbital angular momentum operator L com-
mutes with the Hamiltonian H, one can construct
simultaneous eigenfunctions of B, L', and L„where
L, is the s component of L. Such solutions of the
Schrodinger equation He=Tip, where T is the energy
of the electron, are of the form

negative values of the energy T. For such bound states,
the radial wave functions are normalized by requiring

f E'r' dr = 1.
0

(4.2.4)

R(r)~(pr) ' sin (pr lrc/2 jbt+—ap ' ln 2pr). (4.2.5b)

The phase shift 8& depends on the energy T and is
determined uniquely by the differential equation for 8,
Eq. (4.2.3), and the requirement that R be regular at
the origin. For only a few potential models, such as
point-Coulomb or square well, can the radial wave
function E and the phase 8& be obtained in analytic form.
In general, either approximation methods or numerical
methods must be used.

For the point-Coulomb potential V(r) = —Za/r=
—a/r, the solutions of Eq. (4.2.3) regular at the origin
are

R (r) =N tr' exp [—(—2T) 't'r]

XiFiP+1 a( 2T) 't' 2l+2 2( 2T)'I'r], (4.2.6)

where ~F~ is the conAuent hypergeometric function,
and E~ is a normalization constant. For bound states,
i.e., T=——&&0, the requirement that E not grow at
large distances requires that [L+1—a(2e) 't'] be
either a negative integer or zero, i.e., that

e = a2/2n2 (4.2.7)

At large distances, the radial bound-state wave function
R decreases exponentially as exp [—(—2T) 't'r] (apart
from polynomials in the point-Coulomb case). The
continuum wave functions are normalized to the asymp-
totic forms

R(r) ~(pr) ' sin (pr l~—/2+St) (4.2.5a)

for screened potentials, where the momentum p=
(2T)'t', and bt is the phase shift for the lth partial
wave. For the point-Coulomb potential, due to its
long-range character, the asymptotic form of the
continuum radial wave function is

tp(r) =R(r) Yt„(r), (422) If the radial bound-state wave function R„r. is nor-
malized using Eq. (4.2.4), w'e have

where the spherical harmonics Ft„(r) are the eigen-
states of L' and L„and the radial wave functions
R(r) satisfy the equation

R"+2r 'R'+2(T V)R—/(1+1)r—~R=O. (4.2.3)

If the potential V(r) is finite everywhere except at the
origin and lim„or'V(r) =0, we can require that the
wave function P also be 6nite in all space. We choose
the solution of Eq. (4.2.3) which behaves as r' near
the origin. (See for example, Secs. 32 and 35 of Landau
and Lifshitz, 1965) . If the potential V(r) (0 and
lim„„V(r) =0, it is possible to constrain the electron
to move within a limited volume of space, for discrete

R„l,(r) =N z,r exp (—ar/n)

XiFi(L+1—n, 2L+2, 2ar/n), (4.2.8)
where

N„z [(n+L)!/2n (n ———I.—1)!]it'

X (2a/n) +et'/(2L+1)!. (4.2.9)

For continuum states, i.e., T&0, we have the nor--

malized radial wave function regular at the origin

Rot(r) =N„ir' exp ( ipr)—
XiFi(l+ 1+ia/P, 2l+2, 2iPr), (4.2.10)



290 REVIEWS OP MODERN PHYSICS ~ APRIL 1973 ~ PART I

with

(2—p)' exp (a~/2p) I r(i+1 iu—/p) I/(2l+1) t

(4.2.11)

orbital angular-momentum operator and s=o/2 the
spin operator, commutes with the Dirac Hamiltonian

II= m—V+P+ V (r) .

The phase in this case is

S(——argr (l+1—ia/p) . (4.2.12)

Instead of the continuum state wave functions,
Kq. (4.2.2), which correspond to stationary states
with definite energy T=p'/2, orbital angular momentum
l, and projection thereof m, we often use for the con-
tinuum states another system of functions which
describes states with a definite energy and a definite
linear momentum p rather than a definite orbital
angular momentum. These states can be written as
superpositions of the partial wave states:

&'-(r)

A ~(r) .

= g (2l+1)i' exp L{W I i8~jR(r) Pq(p. r/pr),
lM

(4.2.13)

where f; and P,„t are asymptotically normalized to
unit amplitude plane waves (or distorted plane waves
in the point-Coulomb case) plus an incoming or out-
going spherical wave. (See, for example, Sec. 134 of
Landau and Lifshitz, 1965).If we are interested in only
the total photoelectric cross sections, we can use either
set of continuum wave functions. (Also one can use
either f; or P,„q.) However, if we are also interested in
angular distributions (i.e., dependence on momentum
direction of the outgoing electrons), we should use
Kqs. (4.2.13) for the continuum electron wave func-
tions, and for the photoeffect case we should use P;„
in Kqs. (4.2.13) for the final-electron wave function.

For the point-Coulomb potential, the electron wave
functions P, and ff needed for the photoelectric matrix
element are thus given by the analytic expressions

y;=E„pre exp (—ar/n)

X, F( L+1 n, 2L+—2, 2ar/n) Yl,~(r), (4.2.14)

Pf ——g (2l+ 1)i' exp ( ib~) 1V~~»' exp ( ——iPr)

X,F,(l+1+ia/p, 2l+2, 2i pr) P&(p r/pr),

=exp (mu/2p) F(1+iu/p) exp (ip.r)

XqFq( ia/p, 1, ipr —ip r), (4.2.—15)—
where E„z, E„q, and Bq are given by Kqs. (4.2.9),
(4.2.11),and (4.2.12) . Note that in this nonrelativistic
case the partial-wave series for the continuum wave
function may be summed in closed form.

4.Zb Relativistic Boued-State arsd Contiellm
8'ave Functions

For the relativistic electron case the angular-mo-
mentum operator J=L+s, where L=rXp is the

Here we have

(0 ~) (1 0)
and P=lI«) E0 -1)

in the spinor representation (u stands for the famjhar
2X2 Pauli matrices). Therefore, one can construct
simultaneous eigenfunctions of H, J2, J'I, and parity.
Such solutions of the Dirac equation Hp=Fp, where
F.=1+7 is the total energy of the electron, can be
written as

(g (») 0-(»))
|l" (r)=» 'I

(&f (r) fL. (»))
(4.2.16)

where the symbol ~ is a quantum number which
combines j and parity:

«=W( j+-', ) as j=lW-', (or j=l'W-', ). (4.2.17)

(4.2.19)

(We see that the relativistic wave function P is not
an eigenstate of L'; the l used in spectroscopic nota-
tion is the eigenstate of the large component and
actually indicates the parity of f.) The quantity
C( jq ja j; mq»n2) is the Clebsch-Gordan coefficient Lwe
choose the Condon —Shortley (1935) phase convention(.
The radial wave functions g and f satisfy the equations

dg„(r)/dr= (F+1—V(r) )f„(r) «g„(r)/r, —
df, (r)/dr = —(F.—1—V (r) )g„(r)+«f„(r) /r. (4.2.20)

(See for example, Sec. 35 of Berestetskii, Lifshitz, and
Pitaevskii, 1971.) We will consider only V(r) (0, and
V~ a/r as »~0, where u—=Z—n. In order to interpret
I f I' as a probability density, one chooses the solutions
of the Dirac equation HP=FP for which f ~ r& ' near
the origin, with y = («'—u')'I' If a )«' the wave func-
tions oscillate when r—A. However, because of the
finite size of the nucleus, the existence of atoms with
larger values of Z()137) is possible. The problem
has been investigated by Popov (1971).

We next consider normalization of the radial wave

In spectroscopic notation, l (not an eigenvalue) is
used instead of parity: «= —1, +1, —2, +2, —3, ~ ~ ~

corresponds to s&~2 (abbreviation s), p& (2p), ps'(p),
day(d), d~~2(d), ~ ~ ~ states. The spherical spinor

0„„(r)= g C(Pj; »n —s, s) Y&,„,(r)x' (4.2.18)
s=+1/2

is an eigenstate of J' and L':
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functions. The bound-state wave functions are normal- and
ized by requiring 1—(1—e) '= a'/S'. (4.2.2/)

(Gtre+Fgtm) dr= 1,

where we replace g, and f„by G& and F& for bound
states. The wave functions of the discrete spectrum
(E(1) again decrease exponentially as r—+~. The
continuum wave functions are normalized such that at
large distances

g~[(E+1)"'/2E]p ' sin (pr —hr/2+t'z„+Q(r) ),
f~[(E 1)"'/—2Ejp ' cos (p —l~/2+&*+Q( ) ).

(4.2.22)

Here Q(r) 0 for screened potentials, and Q(r) =v ln

2pr with v=aE/p for the point-Coulomb potential,
again due to its long-range character (see Sec. 5.2b for
more detailed discussion). Now p= (E'—1)'" is the
momentum of the electron; 8„ is the phase shift for the
partial wave ~. The phase shift depends on the energy
E and is determined uniquely by the di6erential
equations for g and f, Eqs. (4.2.20), and the require-
ment of small-distance behavior. In general, the radial
wave functions g and f and the phase b„cannot be
obtained in analytic form. Either approximation
methods or numerical methods are required. The
analytic approximations will be discussed in Sec. 4.3
and the numerical methods in Sec. 5.2.

For the point-Coulomb potential, there are analytic
expressions for the radial wave functions. For bound
states, i.e., for E= j.—&&1, the condition that the
wave functions not grow at infinity requires that
7tz aE(1 E~) —'~' be ei—ther a negative integer or zero,
i.e., that

1—e= [1+a'(y +n') '] '" (4.2.23)

For continuum states, i.e., for E= 1+T) 1, the
normalized radial wave functions g, and f„can be
written (see for example, Perlrnan and Robson, 1959)

with

g = [(E+1)/2E j"'(R+R~),

f= i[(E—1)/2E j'"(R—R*), (4.2.28)

y= (~'—a'), v = aE/pq

"'=
I.(~—)p+ia(1 —E)I/I'2(E —1) (E —7) ( —7)I"',

(4.2.29)
and

zt. = —tc/I ~ I.

The asymptotic forms of the radial wave functions for
the point-Coulomb potential are given by Eq. (4.2.22)
with Q(r) = v ln 2pr and

8„=$—arg F(y+iv)+ (1+1—y)zr/2. (4.2.30)

We may use for the continuum states another set of
functions which describes states with definite energy
and definite momentum p, just as in the nonrela-
tivistic case, instead of the system of continuum state
wave functions, Eq. (4.2.16) corresponding to
stationary states with definite energy E= (1+p')'t',
total angular momentum j, projection thereof m, and
parity. The states with definite energy and definite
momentum can be written as superpositions of partial
waves,

(y+iv)I F(y+iv)Ie "t'
E=

2pr (27+1)
Xe'&(2pr)re ' vF(p+1+i,v2y+1, 2ipr),

Here we have Ytz
——(E' a')"' n'=n —

I El, and n i—s
the principal quantum number. If the radial wave
functions Gz and Fz are normalized according to Eq.
(4.2.21), then we have the normalized radial Dirac
eigenfunctions (see for example, Sec. 14 of Bethe and
Salpeter, 1957)

'y;. (r)

.4".z(r)
=4&& Lfl '(P)x(0ji'

X exp (IW Iib„)P„(r), (4.2.31)

Ftr = —[e/(2 —e) JtmW(z) [n'pe( —n'+1, 2ytz+1, x)

+ (X—E)kg( —n', 2ye+1, x) j, (4.2.24)
with

g (*)= [r (2v,+ 1)j-
&& [(2—e) I'(2p +e+n1) /4X(E X) (n'!)$'"—

)& (2a/E) 't' exp (—x/2) x"zz, (4,2.25)

x= 2ar/E,

S= [n' —2n'(I E I
—ye) j"' (4.2.26)

Gtc= W(x) [—n'z, Fg( —n'+1, 2ye+1, x)

+ (X—E) zF g( —n', 27tz+ 1, x) j,

where P„(r) is given by Eq. (4.2.16) . We have

x= g a,y' with xtx=i,

(0)

Ei)
The wave functions zP;„and P,„z are asymptotically
normalized to unit-amplitude plane waves (or distorted .

plane waves for the point-Coulomb case) plus an
incoming or outgoing spherical wave. [See for example,
p. 207 of Rose, 1961. If we choose p along the s axis,
then Eq. (4.2.31) gives Darwin's solutions (Darwin,
1928) of the Dirac equation. ) The relativistic electron
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wave functions needed for photoeGect calculations are

(' Galls~(r) )
(iso xM(r))

for the initial bound state and

6=4« ' Z L0-'(p) x(()ji' exp( —ih.)

(4.2.32)

for the 6nal continuum state, i.e., the |P;„of Eqs.
(4.2.31). (However, if one is interested in only the
total cross section, the P,„» of Eqs. (4.2.31) can also
be used. ) The boundary conditions are given by Eqs.
(4.2.21) and (4.2.22), which say that

f I &~ I
'd3r=1, (4.2.34)

4.3 Approximate Wave Functions

4.3a Relativistic Bore Approxireatioe

The Born approximation method is a series expansion
of the wave function in powers of the interaction
potential. Beyond lowest order, this method cannot
be directly applied to the point-Coulomb potential
because each term of the Born series contains infrared
divergences arising from the long-range character of
the point-Coulomb potential. The difhculty can be
avoided by replacing the point-Coulomb potential
by a screened one, for example, V(r) = —a exp (—Xr)/r,
for which the successive Born series terms are covergent.
The higher order terms in a matrix element remain
singular in the limit X~O, but correspond only to an
infinite phase factor, so that the square modulus of a
matrix element remains finite in the limit. (See for
example, Dalitz, 1951; Gavrila, 1959, 1961; Gorshkov,
1961; Weinberg, 1965.)

The Born approximation has been studied both in
configuration space and in momentum space. We can
simply Fourier transform to get one result from the
other, but the momentum space form is often a more
convenient starting point.

The configuration space approach is described in
detail by Mott and Massey (1965). The wave function
P is expanded in powers of a, namely, tP=P0+a»Pi+
a+2+ ~ ~, where»PO represents the electron undisturbed
by the field, i.e., the plane wave, and Pi, P2, ~ ~ ~ consist
only of incoming or outgoing waves at infinity. For an
electron of energy E in the potential V(r), the Dirac
equation has the form

(E V—p+in V)|p=0. —(4.3.1)

and»pt is asymptotically normalized to a unit-amplitude
plane wave (or distorted plane wave for the point-
Coulomb case) plus an incoming spherical, wave with
a definite momentum p.

Multiplying Eq. (4.3.1) on the left with the operator
(E V+—P in V) we obtain the iterated equation

[V'+p' 2E—V+in. (VV)+ V']/=0. (4.3.2)

with
n ("+P)F (r p)}»» (433)

Fi(r, p) = (iE/p) exp (ip. r) LEi(iw) —ln wj,

F2(r, p) =exp (iy r) (e*'"—1)/2w,

w =pr —pr—, (4.3.4)

Ei (x) denoting the exponential integral function
(Erdelyi, Magnus, Oberhettinger, and Tricomi, 1953,
and I the free-particle Dirac spinor.

Now let us consider the momentum space approach.
The wave function with a definite momentum p in
momentum space q, P, (q), is defined as the Fourier
transform of the wave function with a definite momen-
tum p in configuration space r, |p~(r) . That is, we have

f», (q) = (2') 'fd'r exp (—iq r)|P~(r). (4.3.5)

In configuration space the Dirac equation for an
electron in the central potential V(r) has the form

(iy„V' y, V(r) —1)|P,(—r)e ' '=0 (4.3.6)

with y„V'I"=go(B/Bt)+y V', E= (1+p')'t' the energy
of the electron. Fourier transformation of Eq. (4.3.6)
gives

(~.V"—1)4.(q) = —f dYV(q —q') v W.(q'), (4.3.7)

with

and
Ppg +0(0 $ gy gp= E)

V(q —q') =—(2»r)-'fd'r exp I
—i(q —q') r]V(r) .

(4.3.8)

Expanding |P~(q) in power series in a for V(r) =
—a exp ( Xr)/r, just as we did in—the configuration
space case, we have the wave function in momentum
space to first order in a

4.-'(q) a y„q"+1= ~(q —p)+~; (q)
2n'p' —qmI&}i»t

, N(y) (439)y»+$2

Linearizing Eq. (4.3.2) in the expansion parameter a,
we have (using V(r) = —a exp (—Xr)/r, letting &—~0,
and suppressing the in6nite phase factor) the Born
series of the wave function»p to first order in a as (see
Scheck and Stingl, 1968)

P. »= I exp (ip r)+aLF1(r, y)+ n (r p) F2(r—, p) ]}I,
and

&-= Iem Liy r)+a}Fi'(r, —p)
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Here u(p) is the momentum space spinor of a free
electron of momentum p, and q is an infinitesimal
positive real quantity introduced to circumvent the
poles. (See for example, Sec. 9P of Bethe and Salpeter,
195'l.)

4.3b A pproocirrtate High Ene-rgy IvVaee Functions for
Continuum States

For an electron of energy E in the potential V(.r)
we have the iterated equation (4.3.2). Substituting
zp=exp (ip r)Fu, where u is taken as a free spinor,
we have

[V'+2iy. V 2EV—+iot (V'V)+ V']Fu=O, (4.3.10)

which is still exact. When S is large, F may be chosen
as a solution of the differential equation

[2ip. V+ V' 2EV]F=—0. (4.3.11)

This choice leads to the Furry —Sommerfeld —Maue wave
functions for V= —a/r,

zp;„=P(1+iv) exp (zrv/2) exp (ip r) [1—(i/2E)tx V]
)&iFi(—iv; 1; ipr ip —r)u(—y),

)P,„&——F(1 iv) —exp (m/2) exp (iy r)

X[1—(i/2E)n V']iFi(iv;1;ipr —iy r)u(p),
(4.3.12)

where v =aE/p, and u(p) is the spinor of a free electron
with momentum p. The Furry-Sommerfeld-Maue wave
function can also be obtained by approximating p-=
(zc'—a' )'t' by ~ zc ~

in the partial wave series. (See for
example, Bethe and Maximon, 1954; Johnson and Deck,
1962.) The Furry-Sommerfeld —Maue wave function is
thus a good approximation for- all energies provided
a'/I zc l((1 and screening is small.

For some high-energy problems, such as the photo-
effect, an even simpler function suKcies. This is
obtained by solving Eq. (4.3.11) without the factor
V' (Pratt, 1960a)

(iy V EV)F=0. — (4.3.13)

Let the z axis be along the direction of the momentum

y, then Eq. (4.3.13) becomes

ipctF/8z= EVF, (4.3.14)

which leads to the modified plane wave approximation

F= expl V(t z') «'I, (43»)]'
where so can be determined from the boundary condi-
tions. For short-range potentials the boundary condi-
tions require that F=1 at —o() or +op, giving the
solutions

F'."'1 = exp' V(t, z') «'
I (43 16)(

F,„,'t (—&

&p+.
F;„is the solution needed for the photoeffect.

S= 1 [a/(l+1) jrz(- ~ ~ .— (4.4.2)

The r' term is dependent on T and Vo but not on V~
where we normalize S such that S(0)= 1. Hence
until the r' term becomes significant S is the same
as in the point-Coulomb case. This also shows that for
a given / the shape of the wave function is independent
of n for bound states or of the energy E for continuum
states. We find that

)P= (N/tV, ) )P,[1+[(i( Viz
~
i)/(2l+3) ]r'+ ~ ' ],

(4.4.3)
where X/X, is the ratio of screened to point-Coulomb
normalizations. (The definition of the normalization is

For a point-Coulomb field, V(r) = —a/r, the integrals
in Eq. (4.3.16) diverge at Woo, corresponding to the
well-known fact that for such a long-range field it is
not correct to impose plane waves as a boundary condi-
tion. Instead, the incoming (outgoing) electron near
—~ (+ op ) should be described by the distorted plane
wave

exp [iy raiv ln (primp r)], (4.3.17)

with v=aE/p. In other words, for a point-Coulomb
field the desired solutions are

")=exp (T !e (prTZ. r)]. (43 1t!)/F, „,
(~in

Comp«ing V'F/EVF at high energies, the additional
condition for the validity of these wave functions is
that pr+y r be large. Indeed, Eq. (4.3.18) may be
obtained as the limit of the confluent hypergeometric
functions of the Furry —Sommerfeld-Maue solution for
pr&y r large. (Prange and Pratt, 1957.) For the
atomic photoeffect at high energies we need a wave
function valid in the region for which both p 1, s
(Pratt, 1960a) . The modified plane wave Eq. (4.3.18)
is accurate in these regions, as well as in the region
p E and s E, one of two important regions in high-
energy bremsstrahlung (Olsen, Maximon, and Werge-
land, 1957) .

4.4 Behavior of Electron Wave Functions at
Compton Vfavelength Distances

We have argued that small distances r~1 are im-
portant for the photoeffect. I,et us see what we can say
about the behavior of electron wave functions at such
distances. In the small r region let us describe bound
and continuum wave functions, apart from normaliza-
tions, by the first few terms of a power series in r,
and examine the dependence of these series on screening
by a potential with a similar expansion.

Consider the Schrodinger radial equation, Eq.
(4.2.3) . Taking out a function r' with R= r'S gives

—',S"+(l+1)r 'S'+ (T V) S=0. (4—.4.1)
For the central potential V= —(a/r+Vp+Vtt) with
Vp a constant and VN(r=O) =0, the expansion of S
in r begins
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TAsLE 4.1. Square of the ratio of screened to point-Coulomb
bound-state normalizations for states E, Lz, Lzz, and Lzzz, where

—=lim~ oG'(r)/G'(r) =lim, p F'(r)/F'(r). (Here G and F are

the normalized bound-state wave functions. )

(2) 8T=oTrr,

&/& =(N/N ) {1+L&~ I V~
I i)/(2i+3) jr'I

~~(N/N, ) {1+$(3ns 1—,(1.+]))/2(2l+3) )V),srsf

Potentials Lr Lzr Lrzr (4.4.5)

13

92

Ionic
HFS2/3
HFS
TFC
TF

Ionic
HFS2/3
HFS
TFC
TF

0.9659
0.9286
0.9479
0.9065
0.8823

0.9905
0.9819
0.9868
0.9915
0.9897

0.5257
0.4996
0.5260
0.4546
0.4633

0.8895
0.8829
0.8905
0.9127
0.8866

0.3319
0.3025
0.3360
0.2355
0.2461

0.8370
0.8251
0.8378
0.8860
0.8344

0.3306
0.3012
0.3346
0.2346
0.2452

0.7999
0.7899
0.8011
0.8508
0.8019

given in Sec. 5.2.) Further terms can be obtained
(Pratt and Tseng, 1972). The magnitude of deviation
from point-Coulomb shape can be estimated using the
exponential model V= —ae ""/r, with )I,= 1.13crZ'Is,

to be approximately sr $(3ns —l(l+1) ) /(2l+1) jn'Zs~srs.

Thus for small distances, r~1, the shape is indeed
close to point-Coulomb and screening enters only in
N/N. .

How is this analysis modified for continuum states)
For the low-energy case we may use our previous
analysis. The only difference is how we specify BT-=
T—T„ the change in kinetic energy between point-
Coulomb and screened calculations. Since T is no
longer calculated from the expectation value of bV=—

V—V, for continuum states, one would expect bT=O.
(For a bound state, bT can be calculated from the
expectation value of bV with perturbation techniques:
BT —(i

~
BV

~
i)= —Vp —(i

~
V~

~
i).) But in fact

this is not the correct physical choice. For example,
in atomic photoe6ect with a given incident photon
energy, if the bound-state energy is shifted bT& due to
screening, the ejected continuum electron will also
have an energy shift bT=bT& and in fact its wave
function will have a shape considerably closer to the
Coulomb shape at small distances than for bT=O.
A shape even closer to point-Coulomb results from the
choice oT= —Vp, for the r' term in f/P, then vanishes.
(Numerical results show that these features persist
to higher energies. )

We may summarize the lowest order results for
P/P, in these three cases for V= —(a/r){1+Vrkr+
Vs(kr)'+ ~ ~ g:

(1) BT=O,

P/f. (N/N. ) {1—LVp/(21+3) jr'I

= (N/N, ) {1—LVrah/(2l+3) jr'I (4.4.4)

TAsrz 4.2. Values of ( ') Hvs for Z= 13-92.

Lr Lrr LIII

13
20
26
29
42
47
50
60
74
79
82
92

0.9479
0.9615
0.9686
0.9713
0.9784
0.9801
0.9810
0.9832
0.9853
0.9859
0.9861
0.9868

0.5260
0.6509
0.7133
0.7354
0.7968
0.8128
0.8211
0.8443
0.8689
0.875/
0.8794
0.8905

0.3360
0.4928
0.5790
0.6112
0.7016
-0. 7254
0.7377
0.7717
0.8072
0.8170
0.8223
0.8378

0.3346
0.4899
0.5745
0.6058
0.6915
0.7134
0.7244
0.7540
0.7824
0.7892
0.7927
0.8011

with E, L continuum, and bound orbital quantum
numbers;

(3) bT= —Vp,

f/f. ~ (N/N, ) {1 {—V ask'/3 (l+2) 5rs } (4.4.6)

The relative orders of the deviations are as c, X, and
aXr, respectively.

Our conclusion is that deviations from point Coulo-mb

shapes remain rather small out to several Compton wave

lengths because they are characterised not by ar or (ar)'
but by (a'Z'I'r'). A similar analysis for the coupled
radial wavefunctions of the Dirac equation verified
that relativistic effects do not change the conclusion
that deviations from point-Coulomb shape are small
at these distances. The algebra is considerably more
complicated and we shall not reproduce it here.

So far we have discussed the shape of electron wave
functions. A second related question concerns the
normalization of electron wave functions. Although
we shall not discuss the theory of these normalization
constants, for completeness we will make a few com-
ments. For continuum wave functions at high energies
the deviations of N/N, from 1 is small. For low-lr

partial waves, except at very low energies, E= (pE) 'IsN—
is equal to E;= (P,E,)'IsN, —for the case with energy
shift, where T and X, are the normalizatio~ of the
wave functions for screened and point-Coulomb
potentials, respectively (Prat t . and Tseng, 1922) .
At high energies even for high-~ partial waves we
have E=N, with or witho'ut energy shift. The worst
cases are for high ~ at low energies, which are not of
concern in most processes. For photoeffect, the low-~
partial waves dominate the cross section for low
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photon energies. Therefore, we may conclude that
for photoeffect Eis 'equal to S;. This is important
since in photoeffect and other similar processes the
matrix element is multiplied by (PE)z/2 for each
continuum electron. Consequently, except at very
low energies screening e6ects on continuum wave
functions may be neglected.

For bound states, we present values of the square
of the ratio of screened (s) to point-Coulomb (c)
bound-state normalization for states E, Lz, Lzz, and
Lzzz in Table 4.1 in five different potentials, i.e.,
the ionic HFS2/3 (ionic), the Kohn-Sham (HFS2/3),
the Hartree-Fock —Slater (HFS), the modified Thomas—
Fermi (TFC), and the Thomas —Fermi (TF) potential
models. This shows that for low Z the choice of the
model is quite important. For high Z the difference is
less than 1% for the X shell, less than 3.5% for the
Lz shell, and less than 8% for the Lzz, and Lzzz shells.
Finally we tabulate values of the square of the ratio

of the HFS to point-Coulomb bound-state nor-
malizations for E, Lz, Lzz, and Lzzz shells in Table 4.2
for elements Z=13—92. We see that the screening
effect is more important for low Z and much more
important for higher, shells —1% to 4% for the E shell
over the same range of Z, and 10%-70%for the L-shell.

So far we have considered the deviation of screened
electron wave functions from the point-Coulomb wave
functions at small distances. Now we will consider
the sznall distance behavior of electron point-Coulomb
wave functions of the same L but different I (See.
Pratt, 1960b). For simplicity let us again examine
the nonrelativistic case. For bound states, on expansion,

the radial wave functions for general (e, I.), Eq.
(4.2.8) to relative order tt is, as already shown,

C(N, L) (2«) ~L1—«/(L+1) ), (4.4.7)
where

C(rt, L) = L(2L+1)!j zp(N+L)!/22t(rt —L—1)!j'"
X (2G)"'~ ""+" (4 4 8)

the e dependence appears only as a constant of pro-
portionality. Thus at small distances, wave functions of
the same L but diferent e are similar in shape.

The same conclusion is obtained for the Dirac
wave function. Direct expansion of the radial parts,
neglecting relative order of e', gives

(G) (1-«/(L+1) )
I
=C(rt, L) (2«)'I (4.4.9)

l —G/2(L+1) )
for E(0, Li.e., 1=L+12, L= —(E'+1)), and

r 1(
)
=C(n, L) (2«)z-z

lF)
(/t2 (2L+ 1)/2L+ 2« 2(«) 2/ (L+—1))

!xi
l a (2L+ 1)—2tt2r

(4.4.10)

for E)0 (i.e., 1=L—'„L=E), where —Eqs. (4.2.24)
have been used. This property of the wave function
may be demonstrated directly from the coupled
differential equations for G and F, Eqs. (4.2.20).

5. NUMERICAL FORMULATION AND METHODS

5.1 Numerical Formulation

Consider calculation of the matrix element Mz; defined by Eq. (2.2.4) . By inserting the expressions for P' and
P~ from Eqs. (4.2.32)-(4.2.33), we may obtain M/; in terms of the integrals over initial and final radial wave
functions G», F», g„,f„:

~/;(~) =4n (22rzz/k) / i~ g LQ„ t(p)Z]t eXp (2!!,)L~(m)+2+R (m)], (5.1.1)

where e+= &~%i@, and

R~(m) = (—i)'+ 'f d're' *r 'fg.F»C;t +CD, tz Yi, pz/2*(r) Yz, ,tz+1/2(r)

GK fgCjvm CJLiv z', m+1/2 ( ) I,tr'+1/2(r) j (5 1 2)
Here we have C;i +=C(l1/2j; m—&1/2, &1/2), ie.

C;t~+=2/„L(l +r/. m+ 2) /(2l+1) ]1/2

C;i = L(l—r/„m+-,') /(2l+1) j'/'

r/. =——
tz// /z f. (5.1..3)

If we use the Wigner-Eckart theorem, the only nonvanishing terms require m=M&1 for R~. Since (see for
example, p. 63 and 81 of Edmonds, 1957)

e~*= g L4n (2K+1)g'/2i"jz(kr) Yq,2(r),
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and

we have

f
(/2 4 /) ( /2 4

I"„„*(r)F,, „(r)F,0(r)dQ= (—) "L(2/g+1) (2/g+1) (2/+1)/4m5'"!
(0 0 0) (—u u 0)

Ry(m) = P (—i) ~+~" ~6~,~~&(—)~+'12 drj z(kr)
X=O 0

X f gP'xC;t~+Csz, ~+D2/+1) (2L,'+1)j'i'T (/ L' /I, Ma1/2)

where
Gx—AC, ( ~+Csz sr+) (2/'+1) (2L+1)$'12T(/', L, X; M~1/2) I,

(5.1.4)

From the definition and the symmetry properties of the 3-j symbol of Wigner (see Edmonds, 1957, p. 46) we
have T(/, L', X; M&—,') = 0 unless! / —L'!(X&/+L' and /+L'+X is even This .restricts X to the values! / L'!, —
! / L'!+2, ~ ~—~, l+L'. Similarly, we have T(/', L, X; M+-', ) =0 unless! /' —L! &X&l'+L and /'+L+X is even
Changing the summation index from X to e by defining k(e) =l+L' —2n for m=0, 1, 2, ~ ~, n = (l+L'
! / L'!)/2, —and N(n) =l'+L 2rI, for e—=0, 1, 2, ~ ~, m,„=(l'+L !

l' L!—)/2, w—e have

00 (l+L')

Q (—i) '+~ " 'j), (kr) T(/, L', X; M&1/2) = —rl„p' jz(kr) P2+(M),
X-[l-u~

(l'+L)

Q (—i) '+~" 'j),(kr) T(l', L, X; M&1/2) = —
qg Q' j),(kr) Pg+(M),

X=( li—L(

where g' denotes a summation index running in steps of 2, gx= —E/! E!,y„= —~/! ~!;and

Deine

Pg+(M) = (—) &"+~ "&I'T(/', L, X; M+1/2),

Pm+(M) = (—) &'+~' "&"T(/, L', X; M&1/2) .

Ql+(M) = ~ (—) +"'L(2/'+1) (2L+1)y"C l sryl+&ZLM+,

Q2+(M) = —m( —)~+'"L(2/+1) (2L'+1) ]"C~mgi+Czi sr+,

(5.1.5)

(5.1.6)

drj&(kr) Gxf„,

$2= drj ),(kr) g„Fx. (5.1.7)

Then we have

Rg (nz) =B,~~g Q Q "g' P„+s . (5.1.8)

The index X runs from! /' L! to' (l'+L) in steps —of two for n= 1, and from! l L'! to (l+L') in step—s of two
for e= 2. The s integrals s~ and s2 are the basic integrals to be obtained numerically, and we discuss their calcula-
tion in Sec. 5.2.

To obtain the photoe6ect cross section it is necessary to calculate the absolute square of the matrix element
Mr; given by Eq. (5.1.1):

I Mf, (M) I'=16n'(2vrn/k) Q 0„-„-+(p)-,'(1+( o)0 (p) exp Li(b„—8„-)j
X((1+$)R3(m+)~( )+m(Q+ig~)R(m+)R (m)+((~—i/2)R (m)R+(m)+(1 —ps)R (m)R (tg) j. (5.1.9)
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In terms of the polarization parameters discussed in
Sec. 2.2b, the photoeffect differential cross section has
the form

and

J
Dop= g cos 8 g {A++A+++A +A. +

KrK M=1/2

d (M, g, g)/dQ=(d /dQ)„„,.{—,
' Q $„t;8„,(M) j,

where
(5.1.10)

J
go= 1, p Q &oo(M) =1,

M~J
and (do/dQ)„„q is the differential cross section from
unpolarized photons, summed over all allowed values
of 3f for the given subshell, and summed over Anal

electron spins. Our interest is in the cross section
summed over all allowed values of M for the given
subshell. Thus we have the photoeBect cross section

3

do(g, ()/dQ=(der/dQ)„, p,){', Q -go{„C„„(8)j, (2.2.16)
glpv 0

with Coo =—1. As mentioned in Sec. 2.2c, the matrix
element My, is invariant under the substitutions of
Eqs. (2.2.14) and consequently the only nonzero
polarization correlations are C10 C31 C33 C21 C23 C02,

C12,' and C00=—1.
De6ne

A++(M) =Ctt.or+~"Ft,tt+~+~to(P) R~+(M)1

Ay (M) =Ctt, pr t,+Ft,~ gpgto(p)R„(M), (5.1.11)

+A~ A+ +A:A:j. (5.1.18)

A++ is obtained from A~+ in Eqs. (5.1.11) by replacing
z by w, 8—=5„—8„-. The nonvanishing polarization cor-
relations between the incident photon and the ejected
electron are C00 =—1,

J
Cgp=Dpo 'Q cos8 Q {A++A+ +A +A:

KK M=1/2

+A+—A+++A:A +j,

J
Co~ ——Dpp ' g cos 8 g {Apt cos 8+Aoo sin 8j,

KK M=1/2

J
Coo=Doo g cos 8 g {Aoy sin 8—App cos 8j,

«K M=1/2

J
Cpq= Dop ' g sin 8 g {A» cos 8+A~o sin 8j,

KK M~1/2

J
Coo=Dpp 'Psin8 g {A»sin8 —Atocos8j,

KK M=1/2

J
Cop= Dpp 'Q sin 8 g {A +A+++A A~

KK M=1/2

where
and

—Ap+A +—A+ A:j, (5.1.19)

R„+(M)= g Q + Q' P "s . (5.1.12)
n=l

J
C»=Dpo 'Q sin 8 Q {A:A+++A +A~

Then by using the symmetry of 3-j symbol T(j &, j»
jo, —tt) = (—)

'+ ' '

T( j»j o, j» tt) and Eqs. (5.1.3),
we have with

KK M=1/2

—A+ A +—A++A:j,

which leads t.o

P +(—M) =P +(M),

Q„+(—M) = —g„grcQ„+(M), (5.1.13)

where

(da/dQ) „„).=)pDpp,

Xp ——16'PEn/k,

(5.1.16)

(5.1.17)

R„+(—M) = rt„rttrR„+(M). — (5.1.14)

Since Ft~(8, &= 0) = (—) ((21+1)(l—rrt)!/4or(3+ m) ~|'t'
XPt (cos 8), we have Ft, (8, @=0)= (—) Ft,~(8,

qh =0) . Then from Eqs. (5.1.11) we have

A +(—M) = (—) +'t'rttcAp (M). (5.1.15)

Using Eqs. (2.2.5), (5.1.9), (2.2.15), and (5.1.15)
we obtain the unpolarized photoe ffect differential
cross sections and the photoeffect polarization cor-
relations as .follows:

A»=A++A ++A +A++—A~ A:—A:A~-,
Aoo=Ap A~ +A +A. +—A:A:—A++A~+,

A» ——A++A:+A +A+ —A+ A +—A:A++,
A»=A+ A+++A +A:—A:A +—A++A~ . (5.1.20)

To obtain the unpolarized total photoeGect cross
section for a given subshell, average Eq. (5.1.9) over
the incident photon polarizations, sum it over the
final electron spins and all allowed values of M for the
given subshell, and integrate it over dQ, to find

J
c'~no&»=~oZ Z {{:R+(M)7+tR (M) j j (5 1 21)

K M 1/2

where R„+(M) is given by Eq. (5.1.12).
The final form of these formulas has consequences

for the programming of the numerical calculations.
In the formulation just described, which was used by
Pratt, Levee, Pexton, and Aron (1964) and Schmickley
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and Pratt (1967), the summations left are over i/:

and M. This way it is easier to correct results for
truncation errors in case too few ~ values have been
considered. However, the computation of angular
distributions is more complicated. In other formula-
tions (Ailing and Johnson, 1965; Rakavy and Ron,
1967; Byrsk and Zerby, 1968) the final result is given
in the form

(do/dQ)»„i= g B„P„(cos8). (5.1.22)
n~0

(P„ is the Legendre polynomial and n=0 corresponds
to the case of a total cross section). Here we have

B„=(8rraPE/l/) g ( 1)' '/—'+'+'+-~r
X,X,a, a,h, h

Xcos [b,—h„+-,'~(l —l+X—K)]

X[(2~+1) (2K+ 1) (2l+1) (2l+ 1) (2j+1) (2g+ 1)]'/'

XC(lln; 00)C(X1A; 01)C(K1A; 01)

XC(AAn; 1 1)W(A—Ajg; nJ) W(lljg; n2)

X{( K II 5+" II E)f Girj&, (kr)f .dr

—(~ II ~~" II E)f F xi—~(&r) g. -«I

x {(—~ II ~~" II E) fbi rPr)f= «
—(~ II ~~" II

—E) fF-xi r(&r) g- «I,
where

( —~ II ~~" II E) = (—1)'[(3/8~) (2j+1)

X (27+1) (2K+1) (2l+1) (21-+1)]'"
1

XC(ll.li; 00)X l -' j

elements and cross sections, such as Legendre poly-
nomials, Clebsch-Gordan coefBcients, etc. %e will
describe the numerical methods employed for each
component.

5.Zc The BourId-State 8'ave FNection

Putting E=E&—1—e —in Eqs. (4.2.20) gives the
equation for the bound state, where E& is the total
energy of the bound electron, and c)0 is the binding
energy. These two coupled diGerential equations
constitute an eigenvalue problem. The standard proce-
dure for solving this system of equations is based upon
"outward" and "inward" integrations which are then
matched. This method utilizes certain boundary condi-
tions, which the solutions must satisfy, and we will
discuss these before describing the method in detail.

Making the substitution

F=Gr~s
7

F=Fr'~ (5.2.1)

and assuming that our potentials have a point-Coulomb-
like behavior near r=0, we find

aF (0) —(yo+E) G(0) =0,

aG(0)+ (Tii —E)F(0)=0. (5.2.2)

+ (E2 g2) 1/2 (5.2.3)
The positive sign is chosen in order to obtain a
physically acceptable wave function.

The asymptotic behavior of Eq. (4.4.20) is

A necessary and suRicient condition for the existence of
a nontrivial solution is that the determinant of the
coefficients in Kqs. (5.2.2) be zero, yielding

(Ei,+1)F—(dG/dr) =0,

(Ei,—1)G+ (dF/dr) =0. (5.2.4)
[See Eq. (4.2.17) for the relations between ~, l, andj.] ~ith this second formulation the computation of
angular distributions is easier, but to correct for
truncation errors requires repeating the entire calcula-
tion. Also, the truncation in n of Eq. (5.1.22) should
be handled carefully, especially for forward and back-
ward photon angles where more terms are needed
(assuming that the needed B„'s can be calculated
with sufficient accuracy).

5.2 Numerical Methods

As discussed in Sec. 5.1, the problem of computing
photoelectric cross sections has been reduced essentially
to the numerical evaluation of the s-integrals [given
by Kqs. (5.1.7)]. These integrals involve threefold
products of a bound wave function, a continuum wave
function, and a spherical Qessel function. Both the
bound and continuum wave functions are solutions of
the radial Dirac equation (4.2.20). Other factors are
combined with the radial integrals to obtain matrix

If we disregard the physically unacceptable solution
corresponding to a growing exponential, the asymptotic
solution of Eqs. (4.2.20) is

G(r)~Ci(r) exp (—Xr),

F(r) C, (r) exp( —Xr), (5.2.5)

where lI. =+ (1—Ei,') '/' Ei,(1. Ci(r), Cm(r) have
generally the form of 6nite powers of r; for point-
Coulomb and screened potentials (which we assume to
be falling faster than 1/r) we have

C2(r) /Ci(r) ~—[(1—Ei,)/(1+ Ei,) ]'/'. (5.2.6)

(See Rose, 1961, Secs. 28 and 29.)
Since the equations are linear and homogeneous, one

can choose G(0) arbitrarily, and F(0) is then deter-
mined by either of Eqs. (5.2.2). One assumes that
this ratio of F(0)/G(0) holds for small ro (e.g., ro 10 '.
In practice we have r0= ro(Z) which is larger the lower
the atomic number Z.) . This was checked numerically
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for values in the range 10 '—10 and no appreciable
deference was found. Making a first rough guess for
~, one can begin integrating the differential equations
from this value of «o and for any given potential V(«) .
The Runge —Kutta —Gill Le.g. , Ralston and Wilf
(1962)] integration scheme was used; comment on it
will be made in the next subsection. The "outward"
integration is continued until a radius R is reached
(generally a distance at which the correct number of
maxima and minima of the wave function have already
occurred). Then choosing a point Er)E Darge enough
so that the asymptotic conditions (5.2.5-6) can be
assumed to be satisfied —a numerical criterion is given
later) one can begin integrating "inward" from E~ to
E with an arbitrary choice of G $F is taken from the
ratio F/G given by Figs. (5.2.5—6) ].The next step is
to match these two solutions, which we label "out"
and "in", respectively. This is achieved by a method
analogous to that described by Hartree (1957) for
the Schrodinger equation. Varying the electron energy
by a small amount bE& will cause a small change bG

and bIi in the wave functions. Imposing the condition

F/G
I -~+~(F/G) I-e= FIGI '-+&(F/G) I'-

to insure the continuity of the functions and their
derivatives yields the following interative scheme

This method is very stable even if the first guess for a

is rough. The convergence is rapid and few iterations
are needed.

5.Zb The Continllm Wane ENnctioe

The diGerential equations to be solved in this case
are Kqs. (4.2.20) with 1+T=E&1.They then con-
stitute an initial value problem and E is determined
by Kq. (2.2.6). The same boundary conditions (5.2.2)
exist at the origin. The continuum wave functions
g„(«) and f„(«) are normalized by requiring that
asymptotically they are given by Kqs. (4.2.22) as we
discussed in Sec. 4.2b, which correspond to modified
phase-shifted free-field solutions. The exact free-field
solutions are given in terms of spherical Bessel functions
(see Rose, 1961, Chapt. V). Outside the range of the
potential (which need not require asymptotic values
of «) the functions (unnormalized) are therefore linear
combinations of the regular and irregular solutions

g.(«) =«L(E+ 1)/2E]'"I:A'(p) j.(p) —A. (p) y. (p) ]
f.(«) =«L(E—1)/2E]'"

XI A,+(p)j,—(p) —A, (p)y„(p)], (5.2.10)
with

p= p«i—
or

»"+"=E "'+ I—fF F
IG,„g G j g= L( + )/ E]'"A (p)

XLeos f) (Pj)(P)—»». (p) y. (P)]ao )—1

F' Gs d«F' Ge d«

(5.2.7) Xcos l&„(p)j„1(p)—sin 8„(p)y„1(p)], (5.2.11)

Here G;, G, t, F;„, F,„t are the values of the (un-
normahzed) Dirac functions at the matching point
R and I' is the iteration number. The iterations are
considered to have converged if

with
A. (p) = ALA.+(p)]'+LA. (p)]')'"

l&.(p) =tan '
I A„(p)/A„+(p)]

(e( +'&—e( &)/e( +'&(10 ' (or, better, 10 '). (5.2.8)
if A,+(p) &0.

= tan ' LA„(p)/A„+(p)]+s'
In order to insure that Ry was chosen large enough,
the ratio IG(Rt)/G, I (where G,„ is the maximal
value of the function) is checked. lf it is bigger than
10~ then Ry is increased and the inward integration is
repeated until this and criterion (5.2.8) are met. When
the solution is accepted, it is normalized by

for r&R,

if A+(p) (0, A„{p))0;
=tan 'LA. (p)IA.+(p)]

if A„+(p) (0, A, (p) (0. (5.2.12)

Here j„and y„are spherical Bessel functions of the
first and second kind. Using the asymptotic expres-
sions for j„and y„ in Kqs. (5.2.11) we obtain the
unnormalized wave functions asymptotically as fol-
lows:

where

for r&R, (5.2.9) g.(«)-A.p 'L(E+1)/2E]'" »n (p« —«ls'+b. )

f.(«)~A p 'L(E—1)/2E]&" cos (p« —«-', or+8„),

(5.2.13)
1 R

g—2—
Gone2 p

1
(P'+O') dr+, I (P'+O') dr.

Gin' R

with
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b„=8„(l—«)—,'7r- (5.2.14)

The numerical calculation proceeds as follows:
Assigning any nonzero value to g„(0), one fixes the
value of f„(0) by the choice

»m I:f.(r)/g. (r)1= (7+«)/~, (5.2.15)

Comparing Eqs. (5.2.13) with Eqs. (4.2.22), we see
that the solutions should be multiplied by a normaliza-
tion constant X„=A„', and that the phase shift
B„can be determined by

investigate the behavior of the exact solutions. It is
well known $e.g. Rose (1961)) that the point-Coulomb
potential causes a distortion in the phase-shift with a
r-dependent term (aE/p) ln 2pr Si.milarly we introduce
the r-dependent functions A (p) and B(p) such that the
unnormalized wave functions g and f are given by

g=P 'L(&+1)/2&j"'A. (p)»n Lp «l~—+8.(p)+Q(p)],
f= p '((8—1)/2Ej'"A„(p)

&& cos L& « '«+8 (P)+Q(P) j (5 2 16)

with

g(r) =r&—g(r) and f(r) =rvf(—r).

where p= pr, and Q(p) is the phase correction integral
defined by

(5.2.17)
Assuming that Eq. (5.2.15) holds also for small values
of r (e.g. , ro ——10 ') one can proceed from ro with the
Runge —Kutta —Gill method. This version contains
an automatic error control so that the steps are not
constant but vary according to preassigned error
limits that we impose. Such types of computations
were carried out by Rakavy and Ron (1967). A diffi-

culty arises when trying to solve numerically these
differential equations with a constant step grid utilizing
the Euler or Runge —Kutta schemes. As Pratt, Levee,
Pexton, and Arori (1964) show, unless the integration
starts at a radius r„=nb (h is the constant step)
such that n&y, errors will propagate and increase. In
order to avoid the singularity exhibited at r=0, they
employed power-series solutions for values e&j™p
and used the functions thus determined to start the
integration .by the Runge —Kutta method at ~;. When
the potential is not given analytically it is approxi-
mated by a power-series expansion of the form V(r) ~—(a/r)+bo+bir+bur'+ ~ ~ ~ which usually gives good
results for the values of V(r). However one should
avoid applying this method in the quite rare cases
when the result is sensitive to the choice of the co-
eKcients b;, which cannot be made uniquely. Both
procedures yield functions with the proper shapes.
The over-all normalization must still be set and the
phase shifts determined. We can calculate them from
Eqs. (5.2.10) and (5.2.12), where g and f are the
unnormalized values at r=E„, and we denote the
normalization constant and the phase shift by
LA „(p„)j ' and B„(p„)+ (l—«) ~ x with p„—=PR . This
assumes that the normalization radius R is suKciently
large so that we are in the free-field region. Physically
no such region exists for the ejected electron since it
since it leaves a singly ionized atom. Similarly, in
some of the mathematical models there is no true free-
field region. For computational purposes such a 8
generally exists, but often it is too large, thus con-
suming much computer time in integration of the
wave function and therefore making the method
impractical.

In order to devise a better procedure let us first

The boundary conditions imposed on this function
are that for a point-Coulomb potential

Q= (aE/p) ln 2p. (5.2.18)

For screened potentials asymptotically we have

so that
Q(p) -o, (5.2.19)

and Q=0 for free fields (see further discussion below).
We have asymptotically the unnormalized solutions:

g-P 'L(&+1)/2&3'"A. »n (p «k~+—b.),
f~P '$(E 1)/2E]"'A„—cos (p «2s+b„). —(5.2.20)

and
«(p) = «{1+} r V(r) /«p) }imam

8(p) =8(p)+(«/2
~

« ~) tan '
~
rV(r)/«p ~,

we get the following equations:

d~. ( )/~ = —
L ( )/ j»n28( ),

dA. (p)/dp «(p)
cos 28(p

A„p P

For large values of p, we expect b„(p)+Q(p) to vary
insignificantly with respect to p. Therefore we may
assume 8(p) p+slowly varying functions of p. Then
sin 28(p) is almost periodic with a period s/p on the

LNote that in the point-Coulomb case one would add
Q as defined in Eq. (5.2.18).$ Thus we have asymp-
totically

A„(p) A„

Inserting Eqs. (5.2.16) into Eqs. (4.2.20) will yield
two first-order differential equations for b„(p) and
A„(p). Denoting the argument of the trigonometric
functions in Eqs. (5.2.16) by 8(p), recalling Eq.
(5.2.17), and using the definitions
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r axis. Likewise e(p) is almost constant over short
intervals of p. Thus for large values of p we have

dh, (p)/dp —(a/p) sin 2p,

dA. (p) /dp ~~ —cos 2p,
A„p p

which yields asymptotically

b, (p) o„+(x/2'p) cos 2p,

ln A„(p)~ln A„+(e/2p) sin 2p. (5.2.21)

These functions oscillate with a period ~ about the
asymptotic limit and with an envelope which decreases
as 1/p. Averaging over one period gives

(8.(p) ) 8„—(tc/4ps) sin 2p+order of p ',

(» A„(p) ), ln A„—(tt/4p') cos 2p+order of p-'.,
that is, by averaging over a period we reduce the error
of approximating the limit values by a factor of (2p) '.

This investigation of the character of the asymptotic
behavior of the exact functions A (p) and 8(p) suggests
the following improved procedure for calculating the
numerical coeKcients A„(p„) and b„(p„) with p„=pR„:—
starting at R„one calculates, as shown above, A„(p„)
and 8„(p„) but also for a series of points R„+oR„
over one period. The resulting values are then averaged
over this period by means of a tenth order Newton-
Cotes formula (Abramowitz and Stegun, 1965) .
The point R„ is chosen from the semiempirical formula

R~= 57.6(ZE/p)@'E"' (MeV) L0.5+ (I x I't'/Zj

for E (MeV) (0.95 MeV;

=40 (I ~ I" z t'/P) c1+(0.6Z "/I x
I
E (Mev)'"j

for E (MeV) &0.95 MeV,

which has been estimated by Tseng (1970) to be valid
for the point-Coulomb potential. It may be used for
kinetic energies of the electron down to 1 keV for low-Z
elements and to 20 keV for heavy elements. Obviously
it is an overestimate for screened potentials.

Before concluding this subsection let us mention
some other methods of normalizing the continuum
wave functions. One way is to use Eqs. (5.2.16),
which we call the trigonometric method, rather than
using Eqs. (5.2.10) or (5.2.11), the spherical Bessel
function method which we have described. Schmickley
(1966) demonstrated that the latter method yields
more accurate results for a given E„.Another method
was followed by Brysk and Zerby (1968) who nor-
malized the continuum wave function by utilizing the
WEB method. Though better known for the Schro-
dinger equation (e.g. , Messiah, 1961) it can be applied
straightforwardly to the Dirac equation (Rose, 1961).
We will not reproduce the standard formulas but note
two steps in the derivation of Brysk and Zerby which

are particular to photoeffect cases: (1) They noted
that the normalization factor is in practice not constant
but varies with R„.Considering its exact r dependence
they imposed the condition that the extra terms
which appear as a consequence in the newly derived
r-dependent expression and cause it to deviate from
its original r-independent form should cancel. (2)
In the final expression for the normalization factor
there appears the third derivative of the potential.
For potentials known only numerically this type of
computation is unreliable. Brysk and Zerby overcame
this problem by taking the ratio of the screened to
the nonscreened potential, which is nearly exponential,
and differentiated the analytic result they fitted.
Finally let us point to another possibility that, to our
knowledge, no one has applied to photoelectric com-
putations. That is to normalize the continuum wave
functions by matching them to point-Coulomb wave
functions with Z=1. This hts the physical situation
as the process results in a singly ionized atom; it is
also the correct approach for some of the mathematical
models. -In view of the remarks that have been made
above we would not expect this method to yield ap-
preciable changes in total cross sections calculated by
the standard methods.

5 2c Oth.er Related QNantities

The bound and continuum states are needed for
computing the s integrals (5.1.7). These integrals were
calculated with Simpson's rule due to the fact that the
mesh used was not an equidistant one. (More sophis-
ticated methods are probably available. ) Another set
of quantities which appear in these integrals, as well as
in the expressions for the normalization factors and
phase shifts, are the spherical Bessel functions. These
functions can be computed utilizing their standard
recursion formulas (e.g. , Morse and Feshbach, 1953).
In order to avoid numerical divergencies, one has to
compute the spherical Bessel function, e.g. , jt(x),
from a large value /=A. and downwards to l,=0 and
then normalize the results when x(l+2. A similar
method using recursion formulas for ratios of spherical
Bessel functions is described in detail by Corbato
and Uretsky (1959). It is suitable for use in computers
for which the exponent cannot be taken sufficiently
large. The use of recursion formulas is very desirable
in our case as it yields simultaneously the functions
at a desired radius r for all needed t' values.

Usually the other required quantities in the photo-
effect calculation do not pose numerical difIiculties.
The Legendre functions are calculated by using their
standard recursion relations (e.g. , Morse and Feshbach,
1953). The Clebsch —Gordon and Racah coefficients
are calculated by using. standard explicit formulas
(see e.g., Edmonds, 1957; Rotenberg, Bivins, Metro-
polis, and Wooten, 1959).
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TABLE 5.1. Relative error of continuum normalizations. The number p represents the radius
at which the normalization is calculated numerically.

+20

Z= 26

Z=92

0.5
0.5
5.0
5.0

0.5
0.5

0.5
0.5
5.0
5.0

50
235
50

235

50
235

50
235

50
235

0.008
0.008
0.002
0.009

&0.003
0.012

0.Oi 1

0.006
0.008
0.008

0.007
0.013

&0.001
0.009

0.002
0.010

0.032
0.005

&0.001
0.009

0.004
0.008
0.002
0.007

&0.004
0.007

0.025
0.008

&0.004
0.007

0.031
0.026
0.038
0.029

0.016
&0.004

0.002
Q. 012
0.005
0.Oi 1

5.3 Accuracy of the Numerical Computations

There are two complementary methods for esti-
mating the errors in the final result obtained in photo-
eGect calculations. One method is to use estimates of
errors in the various numerical methods employed in
calculating the various components and in some reason-
able way combine these into a single estimate of an
over-all error. The second method is to compare some
analytic formulas with final numerical results which
can be reproduced by the computer program. We
illustrate the first method with the error analysis of
Pratt, Levee, Pexton, and Aron (1964), Schmickley
(1966), and Schmickley and Pratt (1967) and the
second method with the analysis of Ron (1966) and
Rakavy and Ron (1965, 1967).

The accuracy of the program which calculates
the bound-state wave function can be tested for the
point-Coulomb potential by comparison with analytic
results. The relative accuracy obtained is better than
10 ~10 ', depending on the type of calculation and the
tolerance demanded.

The major errors involved in the numerical com-
putation of the continuum wave functions arise from
inaccurate normalization. The numerical results can be

compared with the analytical results of the point-
Coulomb potential. As Table 5.1 taken from Schmickley
(1966) shows, these errors are less than S&(10 '. They
depend on E, ~, and Z and are higher for large ~, small
E, and high Z. They vary also with the radius of
normalization if it has been chosen to be too small.
The error in the normalization also increases rapidly
as the threshold energy is approached. However, this
type of error is insensitive to the grid size and may
be attributed to the very long periods of low-energy
continuum states. Errors in Bessel functions, Legendre
polynomials, Clebsch —Gordan coeKcients, etc. are com-
pletely negligible as these functions are computed
with an accuracy better than 10 ~10 '.

The errors in the partial wave radial integrals, which
are calculated by Simpson's rule, are due first to the
errors of the component programs and second to the
errors of the integration procedures. More refined
methods might reduce this kind of error. The errors
which arise from the choice of R, the upper limit of
the integration, are summarized in Table 5.2 repro-
duced from Pratt, Levee, Pexton, and Aron (1964).
It indicates the distance in r which it was necessary

TABLE 5.2. Regions contributing to partial-wave integrals.
TABLE 5.3. Values of

~
x

~

needed for accuracy to one part in 10".

(MeV) +1 +5 +9
k (MeV) 3 4 5 6

50
92
84

82

0.354 84
1.131 58.5
0.354 41
0.208 19
0.354 20 .

1.131 22
1.1368 21.5
2.0 19.5
2. 754 22. 5

80
63
45
28. 5
26
25
23
25
24. 5

108 (does not contribute)
78.5 89.5
50 (does not contribute)
35 (does not contribute)
31.5 (does not contribute)
27 31
27 28.5
26 27
25 25.5

0. 140
0.200
0.279
0.354
0.400
0.662
1.131
1.1368
2.0
2. 754

2
3
3
4
4
5
7
8

11
14

3 4
4 5
4 6
5 7
6 8
8 10

12 15
13 16

=17

4
6
7

9
9

13

5 5
7 8
8 9

10 12
11 13
14
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to integrate to in order to reduce the residual con-
tribution to less than one part in 10'. Various grid
sizes were used to check the accuracy of the final
integration. The errors of the results generally fluctuated
by about 0.1% for the grids tested (ttt= 0.005 to 0.10).
For a few cases they were higher ( 1%). One may
say that most of the integrations are accurate to
& 1%, probably 0.5%.

The other source of errors is the so called truncation
errors caused by the fact that the number of partial
waves which are taken into account is limited for various
practical reasons. Table 5.3 of Pratt, Levee, Pexton,
and Aron (1964) gives the number of partial waves
needed to calculate the total cross section to a specified
accuracy. However subsequent experience indicates
that the numbers cited in Table 5.3 for the higher
energies should be slightly higher. In most calculations
the. truncation error was &0.1%. For high energies,
expecially when a limit of

~
k

~
=20 was in effect, the

error increased to )0.5%.
The combined eGects of all errors yield the following:

Errors associated with the magnitude h, the grid step,
are small ( 0.1%) except for a few cases. The esti-
mate of the errors in the radial integration and the
information on the contribution of each ~ to the cross
section enable us to estimate the total error in the cross
section. This estimate varies with Z and k; (for details
see Pratt, Levee, Pexton, and Aron, 1964) . The
main conclusion is that the total cross sections are
accurate to &0.8% (with most of them accurate to
&0.5%) and the angular distributions and polarization

correlations are accurate to 1%.
The checks according to the second method were as

follows: Making no approximation beyond replacing
the final electron state by a plane wave and the bound
state by an eigenstate in a point-Coulomb field, a
closed formula was derived for the angular distribution
(for details see Ron, 1966). This analytic formula
could be reproduced by the computer program by tak-
ing the bound state in a point-Coulomb field while the
potential for the calculation of the free wave function
was set to zero. The plane wave was written as an
expansion in partial series and 26 partial waves were
taken so that truncation errors were negligible. The
check was performed at k=354 keV for uranium.
The difference between the two sets of results never
exceeded 0.5%. The error in total cross sections was
even better than 0.5%. Additional checks were per-
formed for a low photon energy of 100 eV for one elec-
tron in the 1s, 2s, 2p subshells of hydrogen. This choice
of the energy and element was made in order to elimi-
nate relativistic eGects. The numerical results for the
total cross sections were compared with analytic expres-
sions using the nonrelativistic, dipole, and Born approxi-
mations. The deviations were about 0.2%. Also, all the
results of Hulme, McDougall, Buckingham, and Fowler
(1935) were reproduced, thus covering the energy
range in which we are interested. We see that both

methods yield about the same estimate for the errors.
All studies agree'also as to the main sources of error:
the numerical integration of the radial integrals by
Simpson's rule and the normalization error. No effort
to reduce the errors seems to be needed at this stage
of the art in view of the approximate nature of the
potential model for wave functions used. The use of
different models changes the cross sections by more
than the numerical uncertainties. We may conclude
that improved wave functions and atomic models are
needed, and that when these are available more
careful integration schemes should be used.

6. RESULTS AND MSCUSSION

In this section we will review analytic and numerical
predictions for photoelectric cross sections and discuss
their validity and properties. This will lead us to a
recommended set of theoretical cross sections. We will
compare theory with experiment and will comment
on the accuracies of the various tabulations.

6.1 Analytic Results and Their Validity

Analytic results require various approximations
(expansions in tt, use of the point-Coulomb field,
etc.). Therefore they have a limited range of validity
(results are restricted to light atoms, neglect screening
effects, etc.). In spite of such limitations they have the
advantage of giving insight into the process. They also
yield a roughly correct dependence of cross sections
on the atomic number and photon energy. Thus such
formulas still remain useful even with the present
ability to carry out much more exact numerical calcula-
tions. We have previously (Sec. 4) discussed the ap-
proximate wave functions needed for such calculations
and presented the relativistic and nonrelativistic forms
of the matrix elements. Here we describe some of the
analytic results which have been obtained, selected
in view of their continued usefulness. In all these
analytic formulas screening is neglected.

6.1u The Xoerelutivistic Formllu

In deriving this formula one uses exact nonrelativistic
hydrogen-like wave functions for both the bound and
continuum states, together with the nonrelativistic
form of the matrix element (Eqs. (4.2.14), (4.2.15),
and (2.2.4) with a s replaced by p s]. If in addition
one makes the dipole approximation, replacing
exp (ik. r) by 1 (neglect of retardation), selection
rules reduce the infinite sum over. continuum l, m values
to a few terms. (Sommerfeld and Schur, 1930; see also
Bethe and Salpeter, 1957). In this way Stobbe (1930)
derived the formula for the total cross section from the
E shell

4v2Z'ce4 t'etr'l't' exp ( 4ni cot '—ni)
4o 2~

I

—
Ik't' Ek & 1—exp( —2mni)

(6.1.1)
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TABLE 6.1. Values of R(o) gas defined in Eqs. (6.1.7—8) j together with the high-energy limit of the 1s, 2s, 2p, and 2p cross sections
and their ratios with respect to 1$ cross section. {Symbols 1$, 2$, 2p, and 2p refer to E, Lz, Lzz, and Lzzz subshells, respectively. )

1$ 2$ 2s/1s 2p/1s 2p/1s

6
13
29
50
60
74
82
92

—0.0001349
—0.0003656
—0.0003348
—0.01241
—0.02302
—0.04223
—0.05397
—0.06868

0.8477
0.7103
0.4974
0.3391
0.2914
0.2433
0.2229
0.2029

0. 1057
0.08857
0.06201
0.04234
0.03654
0.03Q84
0.02851
0.02628

0.00004202
0.0001862
0.0008599
0.002558
0.003816
0.006327
0.008326
O. 01169

0.0001353
0.0005271
0.001744
O. Q03133
0.003591
0.004023
0.004179
0.004303

0. 1247
0. 1247
0. 1247
0. 1249
0. 1254
0. 1268
0. 1279
0. 1295

0.00004957
0.0002621
0.001729
0.007543
0.01310
0.02600
0.03735
0.05761

0.0001596
0.0007421
0.003506
0.009239
0.01232
0.01654
0.01875
0.02121

0. 1249
O. 1257
O. 1299
0.1417
O. 1508
0. 1693
0. 1840
0.2083

where
ei a/——p= [err/(k err—))'

and Ps——Bssrr 2=B2ras is the Thomson scattering cross
section. Stobbe obtained similar expressions for the I.
shell; results for higher shells are also available (Hall,
1936; Lewis, 1953; and Harriman, 1956). The first
factor of Eq. (6.1.1) (in curly brackets) is the cross
section which is obtained if the continuum wave func-
tion is replaced by a plane wave. It is invalid near
threshold as the condition for using the Born approxi-
mation, nj(&1, cannot th'en be met. The second factor,
in square brackets, represents the correction to the
Born approximation.

We should note that there exist so called exact
-nonrelativistic cross sections which do not neglect
retardation (Fischer, 1931a,b; and Sauter, 1931).
However they dier from Stobbe's result only by
quantities of order ps, and corrections of this order also
result from the use of the relativistic Dirac formulation.
One may consider Stobbe's cross sections as the pure
nonrelativistic result (see Bethe and Salpeter, 1957,
p. 311).

The nonrelativistic formula is expected to be valid,
apart from screening corrections, for light atoms and
low energies. Indeed the predictions for low photon
energies close to the E absorption edge, when compared
with the exact relativistic Coulomb results, are very
good for aluminum (k(5—10 keV) through tin (k&40
keV) and within 10% for heavy elements (e.g. uranium
for k=200 keV). However the agreement disappears
rapidly as the photon energy increases, even for light
elements.

6.1b The Relativistic Bore A pproximatioe Formulas

The first-order relativistic Born approximation
result was obtained by Sauter (1931a,b). In order to
sum the infinite partial-wave series which appears in
the matrix element he made the following approxi-
mations: (1) Replacement of VB by

~
E

~

and of V

by ~
a ~, thus neglecting terms of order a'; (2) Expan-

sion of the resulting expression in a/p, the expansion
parameter of the Born approximation. Though he did
not follow the usual Born approximation method, the

where

2VP(VP' 1)"'—Vp
—(VP' —1)"'&.

(1 ps) -i/2

In the nonrelativistic limit this formula reduces to
the expression in curly brackets of Eq. (6.1.1) as it
should; in the extreme relativistic limit it becomes

o.i,= (3Zsn4/2k) Ps. (6.1.3)

We see that for very high energies the decrease of the
cross section with energy becomes slower Lcompared
with k 212 in Eq. (6.1.1) for the nonrelativistic case).
This explains the experimental fact that the photo-
electric process still contributes to the total attentuation
coefficient at fairly high energies. Though the nature
of the approximations involved suggests that this
formula should be valid for light elements and high
photon energies we find on comparison with numerical
calculations that in the case of Al the Sauter cross
sections are high by 30%—70% in the energy range
300—2000 keV and are double the correct values for
k= 1—100 keV. For heavier elements and high energies
the error is even larger. The effective expansion
parameter appears to be ~u, and consequently the
Sauter formula is not too useful in practice.

Gavrilla (1959) performed the next order Born
approximation calculation. His result, correct to one
higher order in a, is

o„=-',(3Zsa') ghee'Vp'/(Vp —1)')
&( IM(p) L1—(2ra/p))+2raz(p) I, (6.1.4)

results are equivalent. (For an illuminating discussion
of this problem see Fano, McVoy, and Albers, 1959).
Here we face one peculiar feature of the photoeffect
mentioned in Sec. 2.3: to get a correct expression of
order e in u for the cross section one must carry out a
calculation in which the wave functions and other quan-
tities involved are correct to order e+1. Sauter's
result for the first nonvanishing order in u is

3Z cx 4 Vp(Vp 2)-
4o(VP'-1)"' -+

2k' 3 Vp+1
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TABLE 6.2. Error of the normalization screening theory (NT) based on the X-shell atomic-6eld photoeffect cross sections of
Sco6eld with HFS potential and of HNO with point-Coulomb potential (NE —Lo(NT) -o(Sco6eld) g/ o(Sco6eld)).

b (keV) QNEQZ

1
2
3
5
6
8

10
15
20
30
40
50
60
80

100
150
200
300
400

0.030
—0.002
-0.01
—0.01
—0.01
—0.01
—0.Oi
—0.009
—0.008

~ ~ ~

—0.004

13

~ ~ ~

0.030
O. 023
0.015
0.010
0.004
0.001

—0.002
—0.003
—O. 005
—0.004
—0.005
—0.004
—0.004
—0.003
—0.003
—0.002

29

~ ~ ~

Q. 013
0.008
O. 003
0.002
0.002
0.002

—O. 001
—0.001
-0.001
—0.002

50

~ ~ ~

~ ~ ~

0.11
0.01
0.01
0.01
0.005
0.004
0.002
0.001

~ ~ ~

~ ~ ~

0.008
0, 006
0.006

~ ~ 0

0.020
0.007
0.007
0.006

where M(P) is the expression in the square brackets of Expanding the integrand in powers of u gives the cross
(6.1.2), and section

1 t 4 34 63 , 25
~(~) = —v—p+— —~p-+ vp-—

P' [ 15 15 15 15

+ —'„-+"*"'+'l ' 't. (6.1.5)
2Pv p' 1+0J

This result is only directly useful for 2ra/p«1.

6.1c The High-Energy LAnk' Formula

The Born series techniques described above give the
energy dependence in the limit of small Z. By using a
distorted plane wave, Eq. (4.3.18), (Pratt, 1960a)
obtained the Z dependence in the limit of high energies
as

ot oeu2& Lexp (—2u cos ' u) ]$1—(42ru/15) +R(u) ],
(6.1.7)

where R(u) is defined by equating the right-hand sides
of Eqs. (6.1.6) and (6.1.7). The values of R(u) are
given in Table 6.1. Pratt combined his formula, the
correct Z dependence, with Gavrila's Eq. (6.1.4),
giving the correct energy dependence, to obtain a
composite formula which has been a basis for high-
energy cross section predictions:

or, ——oo(Psyps/k') as&M(P) exp t
—2(a/P) cos—' u]

X f 1+2raPX(P) /M(P) ]+R(a) I. (6.1.8)

As limp 2 $X(p)/M(p)]= —TB we see that in the
high-energy limit this reduces to the form (6.1.'7).

We should mention that the first high-energy limit
formula was derived by Hall (1934, 1936), who ob-
tained a closed expression by writing an approxima-
tion to a double integral equivalent to, though more
complicated than, (6.1.6a) (see Pratt, 1960B,). How-
ever his approximate formula missed the term
—42ra/15, which is not small.

ot, =ooF (a), (6.1.6)

where 00 is the high-energy limit of Sauter's formula
Eq. (6.1.3). F(u) is the following double integral,
which was calculated numerically (see Column 3 of
Table 6.1):

1 ' ' fi xl'—
F(a) =-L(2~+3)/26"'—

4 t t (1+xj

)(Pa+i(1—us) rtsXj &A+2&~ ~ ' (1—Xsy ) &+ L1+ (g/a) 2]

i$ f Plz
+2(1—y)(1—xsy)t —*—

~

—
I

x 1, („6,)a &uj J
'

where
1+(1 u2) 1/2

6.2 Screening EBects and Shell Ratios

6.Za Range of Validity of Xorntulisation Theory

The normalization screening theory predicts that
the only e6'ect of atomic-electron screening on photo-
e8ect cross sections results from the change in
normalization of the bound-state wave function. The
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h (keV) R(2s/1s) R(2p/1s) R(2p/1s) (o'e/osr) Hrs

5
10
20
40
60

100
200
300
500

1000
1500

0.862
0.917
0.952
0.971
0.980
0.990
1.000
1.002
1.004
1.003
1.003
1.000

48. 1

26. 6
14.5
8. 13
5.92
4. 15
2.82
2.38
2.00
1.60
1.39
1.00

33.2
18.1
9.71
5.29
3.79
2.56
1.66 I
1.31
1.20
1.10
1.08,
1.00

1.077

1.075

(1.075)

0'2s 01' 0'2y &1s 0'2y 0'1s

=0.0692 =0.0000929 =0.000262

theory applies for photon energies not too near thres-
hold, because above threshold the minimum possible
momentum transfer to the nucleus q;„ is of order one
and the most important regions of configuration space
for the photoeffect matrix element are of the order of
the electron Compton wavelength. Contributions from
larger distances are cut off fairly sharply, perhaps
reaching the 1% level by 3 to Sr,„, where r,„=
q; '. Using the properties of electron wave function
shapes at small distances discussed in Sec. 4, Pratt
and Tseng (19/2) estimated the lowest energies for
which the normalization screening theory should be
believed. They concluded that the normalization
screening theory can be good to 1%for photon energies
more than 2.5 keV above the E-shell threshold in Be,
10 keV in Al, 30 keV in Cu, 60 keV in Sn, 150 keV in
Pb, and 200 keV in U.

These order of magnitude estimates are in good
agreement with actual numerical calculations. Using the
recent results of Scofield for the Hartree-Fock —Slater
(HFS) potential and the point-Coulomb results of
Hultberg, Nagel, and Olsson (HNO) (1962, 1968), we
show' the error of the normalization screening theory
(NT) in Table 6.2 for the E shell. We find that the
normalization screening theory is good to 1% for the
X shell for photon energies more than 2 keV above
the E-shell threshold in Be, 8 keV in Al, 25 keV in Cu,
30 keV in Sn, and 80 keV in U. For the LI subshell the
normalization screening theory was also verified in
calculations using the computer code of Rakavy and
Ron (1967).

6 Zb Energy .Dependence of Shell Ratios

Another consequence of the dominance of electron
Compton wavelength distances in atomic photoeffect

TABLE 6.3. Values of ratios R(s/is) =—(0';/0'») /(0';/o») s, with
i=2s, 2p, 21z, and 0 /asr for the HFS potential for 2=13. (Sym-
bols is, 2s, 2P, and 2p refer to E, Lz, Lzz, and Lzzz subshells,
respectively. )

TABLE 6.4. Same as Table 6.3 except for Z=82.

h (keV) R(2s/1s) R(2p/1s) R(2tz/1s) (o,/ox) HFa

100
150
200
300
400
500
600
800

1000
1500
2754

0.893
0.935
0.971
1.01
1.03
1.04
1.04
1.05
1.05
1.04
1.03
1.00

1.63
1.39
1.27
1.14
1.07
1.02
0.980
0.935
0.901
0.869
0.873
1.00

3.17
2.44
2.08
1.70
1.51
1.38
1.30
1.19
1.13
1.05
1.003
1.00

1.262
1.244
1.237
1.224
1.226
1.223
1.221
1.217
1.215
1.211
1.209

(1 21)

0'2e/01s 0'2g 0]g 0'sy/&te
=0. 114 =0.0311 =0.0151

is that cross sections from bound states of the same
orbital angular momentum L but different principal
quantum number e are related. This follows from our
previous remark that dependence on e (i.e., n) only
enters beginning with the r' term of a wave function
expansion for small r. Thus at small distances the
dependence on m only enters through the wave func-
tion normalization. (The agreement in shape between
wave functions of different subshells in the same
potential is not as close as between point-Coulomb and
screened wave functions for the same subshell. The
magnitude of deviation of the ns (n/1) wave function
from the 1s wave function shape is of order of Z'a'r'
compared with a Z'~'a'r' deviation of screened wave
functions from the point-Coulomb shape. It should
also be noted that for low photon energies the important
values of r for different subshells for the photoeffect
matrix element are different. ) This agreement in
shape explains why nearly energy independent ratios
of cross sections are observed for photon energies well
above the threshold. As an example we show the
ratio (os./oz, )/(os, /oz, )z „—=R(2s/1s) in Tables 6.3
and 6.4 for the HFS potential, where the normaliza-
tion screening theory has been used to obtain the
high-energy limit (o&,/az, )& „ for the HFS potential.
The effect of the energy dependence is less than 5%
for photon energies more than 2 keV above the threshold
in Be, 20keV in Al, 140 keV in Sn, and 150 keV in U.
This is to be contrasted with the behavior of R(2p/1s)
and R(2p/1s), also shown in Tables 6.3—6.4 (symbols
2p and 2p refer to Lzz and Lzzz subshells), which
approach their high-energy limits more slowly. As
further shown in Table 6.4, although the 2p and 2p
cross sections are smaller, for high-Z elements their
deviations from high-energy values are such that the
ratio / ooizscnearly energy independent. One does
not see this combined effect of cancellations for low-Z
elements for which 2p and 2p are almost negligible,
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TAzzLE 6.5. Photoelectric cross sections o of aluminum for h =5 keV (in b/atom) . Experimental value: 8814.
(Symbols 1s, 2s, 2P, 271, 3s, and 3p refer to K, Lz, Lzz, Lzzz, Mz, and Mzz, respectively. )

Potential

Ionic
Ionic-
expt HFS HFS2/3 RL

HFS2/3- B2/3-
expt ionic' FAM

0'1s 8261.
471.8
34.80
67.58

(574.2)
36.94
i.784

(38.72)

7996.
468.9
34.30
66.62

(569.8)
36.78
i.780

(38.56)

7995.

(581.4)

7725.
449.0
31.74
62.00

(542. 7)

(33.87) (33.55)

7698.
451.9
32. 23
62. 59

(546. 7)
31.89
i.410

(33.30)

7880.
450. 2

31.83
61.81

(543.8)
32. 13
1.363

(33.49)

7344.
443.0
31.12
60.44

(534.6)
32.03
1.355

(33.39)

7162.
409.5
25. 52
49.60

(484.6)
19.71

7862.
430. 2
27.96
54. 65

(512.8)

(19.71) ( 28)

Atom 0&

Ratio e.,/ozr

8874.

i.074

8604.

i.076 i.077 1.075 i.075

8611. 8301. 8278. 8457.

1.073

7912 '

i.077

7666.

1.070

' Bound wave function calculated with HFS2/3 potential whereas the continuum function is calculated with an ionic potential.

but the ratio o /ozr reaches the high-energy limit at
even lower photon energies than in high Z cases.

TABLE 6.6. Same as Table 6.5 except for copper with k = 2 keV
(in b/atom) . Experimental value: 247 400. (Symbols 371, 3d, 3d,
and 4s refer to Mzzz, Mzv, Nv, and Ez, respectively. )

Potential

TF RL HFS2/3 HFS

4'2e

03@

0'3p

&3e+0327+0 3y

Atom o,

Ratio r,/0L,

0'4e

Atom 0.

Ratio 0. /CL,

42 220
47 160
90 150

(179 530)
6 618
4 780
9 135

(20 533)
200 Qoo

i. 114

44 420
50 930
97 420

(192 800)
7 197
5 309

10 120
(22 630)
215 400

i. 117

44 350
51 050
97 710

(193 110) (200 400)
7 225
5 344

10 180
(22 750)
215 860

i. 118

981.2
1 421

(25 152) (26 090)
171

218 262 226 700

1.130 1.131

6.Zc Poterttial Model Depertdertce of Shell Ratios

As relativistic calculations gave only the cross
section for the E shell (until the 1960's), and experi-
ments generally did not resolve the contributions of
higher shells, the traditional practice has been to
estimate the contribution of all higher shells by using

a certain ratio o /ozr, thus getting o, from the cal-
culated value o-~. When an experiment was carried
out, usually yielding 0. , the result was reduced by this
ratio to 0~ in order to compare experiment with
theory. The famous "law of ive fourths" simply claimed
that o,/a&=5/4. An improvement was introduced by
Davisson (1965) (see Sec. 6.5) who used Kirschner's
(1930) experimental ratios measured at the IC-shell
thresholds. The Z dependence of this ratio was found
to vary monotonically from j..09 for Al to 1.235 for U.
Later calculations by Rakavy and Ron (1965, 1967)
showed that the ratio is slightly energy dependent,
especially for lower energies. The analysis of Sec. 6.2b
gives some theoretical support for the empirical use
of this ratio and indicates to some extent the reason
for its success. We note that although o,/zrzz is slightly
energy dependent, it is almost independent of the
atomic model used in the calculation. We emphasize
that this model independence is rot rigorously correct
but exists within the numerical accuracies with which
we are dealing. (This may be another consequence of
normalization theory, for the difference in shape of
the screened wave functions is still smaller than the
difference between screened and Coulomb functions,
so that the theory is still applicable at lower energies
where larger distances contribute. ) We performed a
series of computations to check numerically this
assertion. A sample of our results is given in Tables
6.5—6.7. We also found that the assertion holds even
when energies are below the threshold of the E shell
and the ratio o,/oe, ; (where oe, ;„ is the cross sec-
tion of the dominant subshell) is considered. Whereas
the cross sections themselves differ by 3%—8% de-
pending on choice of model (see Tables 6.5—6.9),
the ratios do not differ by more than ~1%, which
is close to the claimed numerical accuracy of the cal-
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TABLE 6.7. Cross sections (in b/atom) of various atomic models for the Mz v—Qz subshells of uranium and the ratios a /asz.

Z= 92
HFS HFS2/3 TFC

Mrv
MV

&I
&II
&III
&IV
&v
&VI
&VII

I
Orr
OIII
Orv
Ov
OVI

I'I
&XI

&III
&IV

a'a/&sr

3.5793 keV

0
286 670

2.8467 X10'

4.8678X10'

1.698

4.0000 keV

3.6714Xio'

5.2174Xio'

1.421

3.5793 keV

0
284 056

2.8406 X10'

8 589
10 797
27 622
32 222
44 337
18 -531
22 957

i.6506Xio'

2 503
2 877
6 743
5 971
8 120
1 421

0.2764 X io~

517.8
500. 7

1 057.6
800.

0.0288 X10»

~50

4. 7969X105

1.689

4.0000 keV

151 762
208 458

3.6022 X 105

7 287
9 324

22 684
25 103
34 318
12 588
15 571

1.2688X105

2 087
2 433
5 492
4 657
6 280

981

0.2193X io~

429. 7
421.6
860. 2

~600.

0.0231X105

5. 1139X105

1.420

3.5793 keV

0
247 847

2.4785X10~

8 659
10 315
27 445
32 266
44 903
16 203
20 138

1.5993X 105

2 943
3 327
8 141
7 928

10 911
3 000

0.3625X10~

701.8
663.9

1 274. 4
1 000.

0.0364X10~

~100.

4.478 X10~

i.807

4.0000 keV

149 936
205 036

3.5497X1P

7 310
8 918

22 550
25 238
34 767
11 046
13 683

1.2351X105

2 440
2 811
6 625
6 192
8 445
2 079

0.2859X10

579.3
557.9

1 034.6
800.

0.0297 X105

~100.

5. 101X105

1.437

culations. We chose cases (low energies and light
atoms) for which the results are most sensitive to the
choice of potential.

0.3 Recommended Theoretical Cross Sections

6.3zz Cross Sections for the Range k = 1-1500 keV

We consider here tabulations based on theoretical
calculations. Tabulations which include a mixture of
theoretical and experimental data will be discussed in
Sec. 6.5. To judge given tabulations and choose among
them, there are several criteria available. What are
the merits of the atomic models used? How well
do theory and experiment agree? How complete
and how available are the data? How much effort
would improvements require?

By now sufhcient data is available in HI'S-type
atomic models that we will not consider older tabula-
tions based on point-Coulomb or cruder screening

models. The different plausible atomic models give
results which differ by 3%—8% and for those models
which we consider most suitable (of the HFS type),
the difference is closer to the lower limit, as can be
seen in Tables 6.5—6.9 and other Tables in this section.
These particular calculations were carried out at
energies for which there exist the most accurate
experimental data (e.g., Deslattes, 1958) and where
the errors in photoelectric cross sections are within
2%-3%. We observe that the difference of cross
sections originating from different models is about the
same as the experimental errors. Therefore no strong
case can be made as to which potential model to prefer
based upon the data for which Z &13 and k &10 keV.
However we observe that for lower energies and lighter
atoms the difference between cross sections calculated
with different atomic models exceeds 3%—8%, whereas
the experimental accuracy remains unchanged. It is
therefore probable that further theoretical and experi-
mental investigations of this type will enable one to
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TAnLE 6.8. Cross sections (in b/atom) of Al for diferent atomic models, with their deviation
(percentage deviation given in parenthesis) from experimental results PDeslattes (1958)j.

(Z=13)
b (keV)

Expt'
total 0'expt b &HFS 0 HFS2/3 &Ionic 0 HFS-expt 0 HFS2/3-exptd O'Ionic-expt

8.047

8.904

9.885

10.98

11.22

12.49

14.96

17.48

17.67

19.61

20.21

22. 16

2252

1662

1215

898.8

840. 6

610.8

362.0

228. 6

221.7

163.5

149.7

115.7

2214

1628

1184

870.9

813.2

585.8

341.4

210.9

204. 2

147.4

133.7

100.5

2181

(—1.5)

1619
(—0.6)

1186
(0.2)

865. 7

(—0.6)

811.6
(—0.2)

587.9
(0.4)

339.3
( —o 6)

210.6
(—o. 1)

203.8
(—o 2)

147.6
(0. 1)

134.5
(o 6)

101.0
(0.5)

2112
(—4 6)

1568

(—3.7)

1150
(—2 9)

839.9
(—3 6)

787. 7

(—3.1)

570.8
(—2.6)

329.9
(—3 4)

205.0
(—2.8)

198.3
(—2.9)

143.7

(—2 5)

131.0
(—2.0)

98.39
(—2. 1)

2237
(1.0)

1660
(2.0)

1216
(2.7)

886.0
(1.7)

831.5
(2.3)

601.6
(2.7)

346. 7

(1.6)

215.0
(1.9)

208.0
(1.9)

150.6
(2-2)

137.3
(2.7)

103.0
(2.5)

2187

(—1.2)

1623

(—0.3)

1189
(o.4)

867.5

(—0.4)

813.2
(0.0)

589.0
(0.5)

339.9
(—0 4)

210.9
(0.0)

204. 1

(—0.1)

147.8
(0.3)

134.7
(0.7)

101.0
(0.6)

2141
(—3.3)

1588

(—2.5)

1164
(—1 7)

848. 8
(—2 5)

795.7

( —2. 2)

576.3
(—1 6)

332.6
(—2 6)

206. 4
(—2. 1)

199.7
( —2.2)

144. 7

(—1.8)

131.8
(—1 4)

98.96
( —1.5)

2194
( —0.9)

1630
(0. 1)

1194
(0.8)

872. 6
(0.2)

818.7
(0.7)

593. 1

(i.2)

342. 5
(0.3)

212.7

(0 9)

205.9
(0.8)

149. 1

(1.2)

136.0
(1.7)

102. 1

(1.6)

e Total attenuation cross section.
b Total photoelectric cross section.
' For explanation of the ionic (here based on HFS2/3) model see Secs. 3.2a and 4.4.

Expt. means that the experimental value of the binding energy was inserted in Eq. (2.2.6) .

distinguish between the various models. In view of
the remarks of Sec. 3.2a one should be careful not to
attempt this for energies so low that the HFS-type
models are no longer adequate.

We know of two comprehensive theoretical tabula-
tions of photoelectric cross sections which are based
on the HFS-type atomic models. One has been given
by Storm and Israel (1970) (which we denote SI).
It is composed of cross sections derived from various
sources using a number of atomic models. In the range
of 1-100 keV (or 1-150 keV for Z= 13) they used the
Brysk and Zerby (1968) computer code with the
HFS2/3 potential (and for Z=2-13 they used a factor
between 2/3 and 1 to multiply the Slater exchange
term). Experimental binding energies were inserted in
place of the calculated eigenvalues. For the energy
range 150-3000 keV (or 200-3000 keV for Z=13)

they used the results of Schmickley and Pratt (1967)
and Rakavy and Ron (1967), and for energies above
3 MeV an application of the Gavrila —Pratt formula
(Pratt, 1960a; and Sec. 6.1c). The cross sections were
not calculated for all elements and interpolations were
made in order to tabulate values for Z= 1-100.

The second tabulation, by Scofield (1972), is a
complete calculation for Z= 1—100 in the energy range
1-1500 keV using throughout the HFS potential. In
view of the discussion in Sec. 6.2, Scofield's data can
be easily converted into an improved Table if some
other atomic model is established as superior, at least
for photon energies well above absorption edges. One
would have to recalculate only the bound E-shell wave
functions (which is very easy to do). However, com-
paring Scofield's results with the SI Table for Z=13,
50, and 92 (see Tables 6.10-6.12) we fmd that the
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TABLE 6.9. Same as Table 6.8 except for Cu.

(Z= 29)
u (WeV)

Expt.
Total 0'ezgt b OHFS 0 HFS2/3 0 Ionic

Expt.
b.e.

0 HFS2/3

Expt.
b.e.

0 Ionio

9.670 25 740 25 570 24 640

(—3.6)
24 300

( —S.0)
25 260

(—1.1)
24 770

(—3 1)
24 880

(—2. 7)
24 580

(—4 1)

9.885

10.55

24. 94

25. 27

28. 48

29. 19

23 950

19 940

18 190

1 933

1 866

1 325

1 237

23 780

19 780

18 040

1 870

1 804

1 271

1 185

23 290
(—2 1)

19 670

(—0.6)

17 720

(—1.8)

1 874
(o.2)

1 805
(0.1)

1 282
(0 9)

1 195
(Q. 8)

22 950,
(—3.5)

19 370
( —2. 1)

17 450

(—3.3)

1 845

( —1.3)

1 778

(—1.4)

1 263

(—0.6)

1 177

( —0.7)

23 960
(0.7)

20 190
(2. 1)

18 150
(0.6)

1 903
(1.8)

1 833
(1.6)

1 301
(2.4)

1 212
(2 3)

23 420

(—1.3)

19 770
(0.0)

17 810
(—1.3)

1 879
(0.5)

1 810
(o.3)

1 285
(1.1)

1 198
(1.1)

23 490
(—1.2)

19 800
(0.1)

17 830

(—1-2)

1 867
(—0.2)

1 798

( —0.3)

1 276
(0.4)

1 189
(0.3)

23 180
(—2 5)

19 550
( —1 1)

1/ 640

(—2.2)

1 8/4
(0.2)

1 806
(0. 1)

1 283
(1.0)

1 196
(o 9)

~ Total attenuation cross section.
b Total photoelectric cross section.
' For explanation of the ionic (here based on HFS2/3) model see Secs. 3.2a and 4.4.

Kxpt. means that the experimental value of the binding energy was inserted in Kq. (2.2.6).

difference is within the experimental errors (we
mention in passing that the bigger error for Al at k=
150 keV in Table 6.10 stems from the fact that the
Srysk and Zerby computer code, designed for lower
energies, begins to fail for energies higher than about
100 keV) . In view of space limitations and. the general
agreement with the SI values, we will not reproduce
the full Scofield tables here. For purposes of illustra-
tion we present in Tables 6.18—6.20 data for three
selected atoms, not only for comparison purposes but
also to show the contributions from the various sub-
shells, information which is usually not given.

6 3b Cross Se.ctions for the Range h) 1500 he V

The calculation of cross sections for very high
photon energies consumes a great amount of computer
time, and large and fast computers are needed to
carry out such a program. The photoelectric cross
sections for such energies are small and the photo-
electric process forms a tiny part of the processes
occurring at such energies. Therefore it is unclear
whether such an effort (and obviously experimental
work) is justified, at least at the present time. Thus
we resort to a semiempirical method in order to estab-
lish cross sections in this energy range.

As outlined in previous sections such a formula will
consist of three factors:

(1) The correct Coulomb E'-shell behavior
(2) The right choice of the ratio a,/os
(3) The normalization effect factor which corrects

for screening.

The normalization factor has been previously dis-
cussed and presents no problem. We must deal with
the first two factors.

(1) Coulomb E shell behavior. -Although there exist
quite extensive exact numerical E-shell Coulomb cross
sections due to Hultberg, Nagel, and. Olsson (1968)
the data is insufhcient for the construction of a complete
tabulation for all Z's and energies up to 100 MeV.
Therefore one must result to some analytic approxima-
tion. The best available formula for predicting Coulomb
E-shell cross sections at high photon energies is the
Gavrila —Pratt formula (Pratt, 1960a; and Sec. 6.1c).
I.et us mention again that this formula (6.1.8) is a
combination of the high-energy formula (believed to
be correct to order a'/h and giving the right Z de-
pendence of the cross section) and the second-order
Born approximation (believed to give the right energy
dependence for the limit a~). Comparison with the
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TAmz 6.10. Comparison between aluminum cross sections of
SI Tables and this work (Scoield's values for k&1500 keV, and
ours for k) 1500 keV) . Here e(~e) shall mean e&(10+".

Z= 13
u (keV)

Sl Tables
(b/atom)

This work
(b/atom)

(SI Tables/
this work)

(in %)

1.0
1.5
2.00
3.00
4.00
5.00
6.00
8.00

10.0
15.0
20.0
30.0
40.0
50.0
60.0
SO. 0

100.0
150.0
200.
300.
400.
500.
600.
800.

1000.
1.s(3)
2. (3)
3. (3)
4. (3)
5. (3)
6. (3)
S. (3)

10. (3)

5.250(4)
1.780(4)
1.020(5)
3.540(4)
1.600(4)
8.460(3)
5.020(3)
2. 170(3)
1.150(3)

329.
137
38.2
15.4
7.58
4.23
1.68
0.808
0.215
0.0881
0.0254
0.0108
0.00585
0.00365
0.00189
0.00117

~ ~ ~

5.300(4)
1.793 (4)
1.013(4)
3.524(4)
1.609(4)
8.612 (3)
5. 120(3)
2. 218(3)
1.146(3)

336.7
138.9
39.08
15.70
7.697
4.286
1.695
0.8245
0.2236
0.08970
0.02574
0.01112
0.006021
0.003764
0.001905
0.001184
5.562( —4)
3.48(—4)
1.94(—4)
1.32(—4)
1.00(—4)
8.02(—5)
5.72(—5)
4.44( —s)

—0.9
—0.7

0.7
0.5

—0.6
—1.8
—2.0
-2.2

0.3
—2.3
—1.4
—2.3
—1.9
—1.5
—1.3
—0.9
—2.0
—3.8
—1.8
—1.3
—2.9
—2. 8
—3 ~ 0
—0.8
—1.2

~ ~ ~

exact Hultb erg, Nagel, and Olsson (1968) results
shows this formula gives values which are 15%—20%
high for photon energies 1.5—10 MeV and heavy
elements. For light and medium elements (up to
about Z=50) the agreement is much better. Looking
for an empirical correction, we put

oat (corrected) = (psyes/k') a'&M(p)

X exp {—2(a/P) cos ' aI {1+s.aLX(P)/M(P)]

+It (a) L1—c(a, k) (a/k) )Io'o, (6.3.1)

where c(a, k) was chosen to match the Hultberg,
Nagel, and Olsson (1968) results and extrapolated for
other energies and elements. The results become
insensitive to the exact choice of c(a, k) the higher
the energy and the lower the Z. For low Z (Z &50),
we can put c(a, k) =0, but the correction becomes

TABLE 6.11.Same as Table 6.10 except for Sn.

Z=50
k {keV}

SI Tables
(b/atom)

This work
(b/atom)

(SI Tables/
this work)

(in %)

1.0
1.5
2.0
3.0
4.0
5.0
6.0
8.0

10.
15.
20.
30.
40,
50.
60.
80.

100.
150.
200.
300.
400.
500.
600.
800.

1000.
1500.

2- (3)
3. (3)
4. (3)
5. (3)
6. (3)
8. (3)

10. (3)
15. (3)
20. (3)
30. (3)
40. (3)
50. (3)
60. (3)
80. (3)

100. (3)

1.590(6)
6.430(5)
3.210(5)
1.180(5)
1.840(5)
1.650(5)
i.o3o(s)
4.810(4)
2.640(4)
8.690{3)
3.910(3)
7.870(3)
3.700(3)
2.010(3)
1.220(3)

543.
287.
89.7
39.2
12.5
S.71
3.21
2.06
1.06
0.663
0.305
0. )87
9.97(—2)
6.65(—2)
4.98(—2)
3.89(—2)
2. 72(—2)
2. 10(—2)
1.32 (—2)
9.55(—3)
6. 14(—3)
4. 55(—3)
3.61(—3)
2.98(—3)
2. 23(—3)
1.77(—3)

1.606(6)
6.483 (5)
3.268(5)
1.199(5)
1.841(5)
1.661(5)
1.035(S)
4.864(4)
2. 675(4)
8.835(3)
3.971(3)
7.968(3)
3.719(3)
2.025(3)
i.22S(3)

546.0
289. 1

89.97
39.33
12.52
5.746
3.231
2.065
1.068
Q. 6664
0.3081
0. 189

10.1(—2)
6.70(—2)
4.95(—2)
3.92(—2)
2.74(—2)
2. 10(—2)
i.32(—2)
9.57(—3)
6. 17(—3)
4.55(—3)
3.60(—3}
2.98(—3)
2 21(—3)
1."/6( —3)

—1.0
—0.8
—1.8
—1.6
—0. 1
—0.7
—0.5
—1.1
—1.3
—1.6
—1.5
—1.2
—0.5
—0.7
—0.4
—0.5
—0.7
—0.3
—0.3
—0.2
—0.6
—0.6
—0.2
—0.7
—0.5
—1.0
—1.1
—1.3
—0.7

0.6
—0.8
—0.7

0.0
0.0

—0.2
—0.5

0.0
0.3
0.0
0.9
0.6

important for the heavier elements and lower energies
in the few MeV region.

(2) Choice of the ratio o,/air. The next step is to
check for what energies and atomic numbers the
Coulomb results approach the high-energy limit. We
have already shown in Sec. 6.2b and Table 6.3 that
the separate ratios o;/ai, (where i=2s, 2p, 2p) coverge
relatively slowly (especially for higher Z's) to the
high-energy limit. However the ratio oz,/o&, converges
more rapidly, for high Z due to a cancellation, because
the ratios o.s,/oi, and o.s„/o.i, approach the limit from
opposite directions, and for low Z because the main
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TABLE 6.12.
'

Same as Table 6.10 except for uranium. values will cause an error of at most 2%-3% for
the heavy elements and much less for the light elements.

Z=92
k (keV)

SI Tables
(b/atom)

This work
(b/atom)

(SI Tables/
this work)

(in %)

Our 6nal result is

o =oaJ*(corrected)Zxs(o, /oa) . (6.3.2)

1.0
1.5
2.0
3.0
4.0
5.0
6.0
8.0

10.
15.
20.
30.
40.
50.
60.
80.

100.
150.
200.
300.
400.
500.
600.
800.

1000.
1500.

2. (3)
3-(3)
4 (3)
5. (3)
6. (3)
8. (3)

10. (3)
15.{3)
20. (3}
30. (3}
40. (3)
50. (3)
60. (3)
80. (3)

100. (3)

2.590(6)
1.310(6)
7. 170(5)
2.920(5)
5.190(5)
3.430(5)
2.430(5)
1.180(5)
6; 710(4)
2.360(4)
2.690(4)
1.540(4)
7.270(3)
4.020(3)
2.460(3)
1.130(3)

620.
941.
449.
160.
78.9
46.6.
30.8
16.5
10.5
4.79
2.88
1.48
0.968
0.716
0.557
0.383
0.295
0. 179
0.129
0.0830
0.0603
0.0485
0.0402
0.0291
0.0232

2 ~ 614
1.332 (6)
7.323 (5)
2.997(5)
5.213(5)
3.479(5)
2.452 (5)
1.202 {5)
6.860(4)
2.430(4)
2. 700(4)
1.566(4)
7.383(3)
4.092(3)
2.515(3)
1.161(3)

635.4
938.1

448.9
160.1

78.99
46.67
30.86
16.57
10.49
4.830
2.91
1.50
0.968
0.705
0.551
0.380
0.289
0.180
0. 130
0.0835
0.0615
0.0486
0.0402
0.0299
0.0238

—0.9
—1.7
—2. 1
—2.6
—0.4
—1.4
—0.9
—1.8
—2.2
—2.9
—0.4

1.7
—1.5
—1.8
—2. 2
—2. 7
—2 ~ 4

0.3
0.0

—0. 1
—0.1
—0. 1
—0.2
—0.4

0. 1
—0.8
—1.0
—1.3

0.0
1.6
11
0.8
2. 1

—0.6
—0.8
—0.6
—2.0
—0.2

0.0
—2. 7
—2.5

contribution of higher subshells stems from the 2s
subshelL Thus o,/o&, approaches the high-energy limit
relatively rapidly, since at these energies the main
contribution to the total cross section comes from the
E and I. shells. (Also note that the M shell is expected
to behave as the I.shell. ) Even for the heavier elements
(e.g. , U) only about 5% of the contribution comes
from the other subshells. Examining Schofield's and
other results, we see that o,/a.z is slowly varying as a
function of energy. In view of this, we can say that
choosing Scofield's o,/o& ratio for his high-energy

Values of "xs are given in Table 4.2, and a./ox for
aluminum, tin, and uranium can be computed from
values given in Tables 6.18—6.20. The c(a, k)'s used
are zero except for uranium for which it has the value
of —7.5 for k=2 MeV and decreases monotonically
to —80 for k=100 MeV. We believe our 6nal high-
energy estimate to be valid within 10/o, resulting from
the estimated errors in o o~, x', and o,/ox. Comparison
of our high-energy results, based on the method just
described, with those of the SI tables (see Tables
6.11-12) shows that for high energies the difference
between the two sets of calculations is also small.

6.4 Comparison Between Theory and Experiment

6' Scope and Types of Experirnentat Data

Most of the experimental photoelectric data available
is found in the range of 3—100 keV. The reason for this
is that at high energies (hundreds and a few thousands
of keV) measurements become more difficult. Also,
there is less motivation to do these experiments because
photoelectric cross sections in this region constitute a
small fraction of the total attenuation cross section.
Below 10 keV the measurements are more dificult
to carry out due to the dominance of secondary e6'ects
such as emission of Auger electrons. At still lower
energies good resolution is needed in order to examine
the complex structures which go beyond the description
of an isolated atom with the atomic 6eld treated as a
central potential (e.g. correlation effects, molecular
effects, etc.); however these are outside the scope of
this review.

As we do not attempt to review the experimental
aspects of the process, we refer the reader who is
interested in experimental techniques and more details
to the references we mention and the literature quoted
therein. We will just state the facts which are per eminent

to our discussion. Traditionally the experiments are
divided into two classes: (1) the total attenuation
experiments, (2) the "direct" experiments. In experi-
ments of the erst class one uses a narrowly collimated
beam source of radiation and the detector is also
narrowly collimated. This way one can assume the
exponential law for the intensity transmitted through
the thin target slab

I(x) =Is exp (—px),

where Io is the intensity of the source, x is the slab's
thickness, I(x) is the intensity detected, and p is the
"narrow beam" linear attenuation coefficient. When
conditions for "narrow beam thin slab" do not apply
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one has to consider corrections due to the geometry
of the experiment (depending essentially on the source
geometry) and the "build up factor" which takes into
account secondary photons produced in the absorber
which reach the detector. )For more details see Fano,
Spencer, and Berger (1959) and Colgate (1952);
references to such experiments are given by Veigele,
Briggs, Bates, Henry, and Bracewell, 1971.] From the
measured total absorption cross section one subtracts
the calculated cross sections of the competing processes
(coherent and incoherent scattering and pair produc-
tion for energies above 2m,c'). This so-called sub-
traction method thus yields results which depend on
the theoretical knowledge of cross sections for other
processes. At present we believe the theoretical knowl-
edge of photoelectric cross sections to be better than
for scattering. Ke will give some estimates in the
next section.

In the second class of experiments, the photoeffect
cross section (photoelectrons) are directly measured.
The early experiments of this type (1920-1935) were
usually performed by tracing the photoelectrons in a
cloud chamber. This direct and visual method is
inadequate because of the lack of su%.cient statistics.
Latyshev (1947) suggested the use of P-spectrometers
and the method was later developed by Hedgran
(1952), Hedgran and Hultberg (1954), and Hultberg
(1955) (to which we refer the reader for technical
details) . In orde'r to obtain the true angular distribution
the experimental curves must be corrected for
geometrical distortion and for multiple scattering in
the converter, using Moliere's (1947, 1948) theory.
The shapes of the angular distributions were deter-
mined and from these ratios of cross sections of the
various subshells. Absolute values could not be obtained.
because of the difhculty in determining the absolute
radiation intensity. To solve this problem Hultberg
and Stockendal (1958) and Hultberg (1959) devised
a method giving a relation between the source intensity,
the photoelectric cross section, and the internal con-
version coeKcient. By assuming knowledge of the
internal conversion coeKcients, which have been cal-
culated by Sliv and Band (1956), Rose (1958), and
more recently by Hager and Sletzer (1968) and Raman,
Gunnick, Walkiewicz and Martin (1972), one could
obtain absolute cross sections. Another approach was
attempted by Titus (1959). Directly determining the
incoherent flux with a photomultiplier, he measured
the total intensity of the photoelectrons produced.
The resolution was. not good enough to distinguish
the photoeGect from incoherent scattering. Therefore
he subtracted the theoretical value for the latter in
order to get the photoelectric cross section. Clearly
the so called direct experiments depend on some
theoretical knowledge. However they have important
advantages over the total attenuation procedure: (1)
One can distinguish contributions from the diferent
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FIG. 5. Error estimates for experimental photoelectric cross
sections determined by the subtraction method. The ranges of
the error are designated as follows: Category A =2%-5% (white
areal, Cate ory 8=5%-15% (solid line) and Category C)15%
(dotted line .

subshells. (2) One can get angular distributions. (3)
For some energy regions these types of experiments
yield more accurate results than the subtraction
method. Also they serve as an independent check on
values of cross sections given by the total attenuation
measurements. Generally speaking the accuracies
claimed for both methods are in the range 2%-10o/o.
The new total attenuation experiments claim the
highest accuracy, but this cannot be entirely extended
to the photoelectric cross sections themselves.

6.4b ComPurison of Theory loith Tota/ AbsorPtion ond
'Direct' Meuslrements

The claimed accuracy of a total attenuation experi-
ment cannot be considered the claimed accuracy of the
photoelectric cross section. One must consider what
share of the total attenuation coe%cient is due to the
photoeBect and what share to the competing processes:
coherent and incoherent scattering and, for energies
above 2in,c, pair production. Uncertainties in cross
sections for competing processes will result in un-
certainties for photoelectric cross sections deduced from
attenuation experiments with subtraction methods.
From the data of McMaster, Del Grande, Mallett,
and Hubbell (1970) Sec. II', revision 1, one can get a
good estimate of the percentage contributions of the
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TABLE 6.13. Percentage contributions to the total attenuation coeKcient.

13 50 92

S (WeV}

Photo-
Coh. Incoh. effect

Photo-
Coh. Incoh. effect

Photo-
Coh. Incoh. effect

Photo-
Coh. Incoh. effect

20
29. 199
30
40
50
60
80

100
150
200
300
400
600

1000

6.3

10
13
14
14
11
8.5

13
27

53
71
80

77
60
46
37
18
11.5

3.2 95 1.8

4.0 89.7 1.8

4.6

7.0
8.6
9.4
8.9
7. 1

4. 5

2. 7 92. 7

8.3
17
28
53
70
86

84. 7
74. 4
62.6
38. 1

22. 9
9 5

0.3 97.9 5.9
9.7

1.7

0.4 93.7
1.3 89
0.2 98. 1

2.8 1.0 96.2

88. 1

75.5
62. 1

39.9
26. 1

12.9

5. 1 6.8
6.5 18
6.9 31
6. 1 54
4.9 69
3.1 84

3.9

4 0

0. 1 96

0.2 95.8

6.6 0.8 92.6

11 5.0 84
3.8 3.6 92.6
4.4 7.0 88.6
5.0 15 80
5 0 25 70
4.4 42 53.6
2.9 63 34. 1

various processes to the total attenuation cross section.
In Table 6.13 we reproduce the results for a sample of
elements (Al, Cu, Sn, and U) in an energy range of
20—1000 keV. This estimate utilizes results for the
scattering processes obtained with the approximate
form-factor approach. We have attempted to estimate
the accuracy of such theoretical cross sections by
comparing them with exact results of Brenner, Brown,
and Woodward (1954), Brown, Peierls, and Woodward
(1954), and Brown and Mayers (1955, 1957) and also
with an approximate expression which they give. The
form factor approach is best for low Z or for high
energies. The biggest possible error in the total attenua-
tion coefficient appears to be of the order of 4% for
50-keV photons scattered o6 uranium. Thus a more
accurate determination of photoeffect cross sections in
this region will require a better calculation of coherent

and incoherent scattering. In Fig. 5 we present what
we believe to bc the errors in the experimental deter-
mination of photoelectric cross sections obtained by
the subtraction method, taking into account both
experimental and estimated theoretical inaccuracies
involved in their determination. Estimates are given
for all elements up to Pu and in the energy range of
1—1000 keV.

Except for a very limited number of results which
perhaps may claim a slightly better accuracy (see Sec.
6.3a) we see that the accuracy is in the range of 2%%uq-

15/o. The larger errors are in the high-energy region
of each given atom (where "high energy" is relative
to the atomic number), as in these regions the photo-
electric effect constitutes a small fraction of the total
process (cf. Table 6.13). In such cases the subtraction
method gives large errors and should be avoided. This

TABLE 6.14. Comparison between theory (Scofield's HFS results) and experiment.

Photon
energy
(k.eV} Subshell

Experimental
cross section

(b/atom}

Theoretical
cross section

(b/atom)
Reference to
experiment

1332
1173

122
122
122

2754
1332
662
320

E
x
gb

5.4&0.3
7.2~0.5

360. &40.
79. ia7. 0
31.6a3.5.

0.93~0.03
3.24~0. 13

13.8~0.8
76.5+4.6

6.020
7.670

279.8
67. 71
23.48

0.8450
2.943

12.23
85.42

c
c
d

d
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TABLE 6.14 (Continued)

Photon
energy
(keV) Subshell

Experimental
cross section

(b/atom)

Theoretical
cross section

(b/atom)
Reference to
experiment

79

78

50

46

29

2620
662

662
412
320
208
158
145
123
105
50

2620
662
662
320
145

2620
662
320
145

662
662
320
208
158
145
123
105
50

662

662

662
208
158
145
123
105
50

0.74~0.06
11.62~0. 16

11.3+0.7
34.8+1.5
62.8+3.8

215.&6.
434. +10.
519.&52.
848. ~19.

1286.&28.
1983.+45.

0.47~0.05
8.55+0.14
8.25+0.5

76.5~4.6
421.&42.

0.11~0.03
1.5+0.09
1.02~0.6

102.&8.

1.198+0.028
1.12~0.07

10.2+0.6
27.8~1.0
60.2~1.7
80.+6.

123.~3.
198.&4.

1646.&34.

1.070~0.060

0.700~0.016

0.125~0.009
3.43~0.3
7.53~0.4

10.5&0.8
16.07+0.6
26. 7+0.8

239.&5.

0.9371
12.64

11.94
36.65
69.51

216. 1

451.4
568.3
880.9

1339.
2024.

0.661
8.90

52. 77
443. 5

0. 123
1.64

10.48
99.21

i.237

7.998
27.03
59.90
76.88

124.0
196.0

1617

i. 122

0.7425

0. 1348
3.271
7.517
9.764

16.14
26. 16

246. 4

f
J
k
J
J
l

J

J

J

h
1

f
k
1

g
J

J
m

J

J

J

m

J

J

Value computed from the experimental value of os and the experimental ratios / osanodsro / ~s+r. o(Here N+ means the N shell
and all the higher shells. )

b g means total atomic cross section.
& Hultberg and Stockendal (1959).
& Boyd, Brantley, and Hamilton (1965).
& Bleeker, Goudsmit, and DeVries (1962).
~ Parthasaradhi, Lakshminarayana, and Jnanananda (1964a).
s Parthasaradhi, Lakshminarayana, and Jnanananda (1966a).
b Titus (1965).
' Titus (1959).
& Parthasaradhi (1968).
"Parthasaradhi, Lakshminarayana, and Jnanananda (1966b).
' Parthasaradhi, Lakshminarayana, and Jnanananda (1965).
~ Parthasaradhi, Lakshminarayana, and Jnanananda (1964b) .
~ Rao, Parthasaradhi, and Jnanananda (1969).
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TABLE 6.15. Comparison between theory (Scofield's HFS results) and experiment,

(M+ means the N shell and all the higher shells) .

Photon energy
(keV)

Type of
ratio

Experimental
ratio

Theoretical Reference to
ratio experiment

92 1332
1332
1332
1332
662
662
662
662
412
412
412
412
411
167
159
159
158
158
158
135
122
122
122
103
103
84
81

265
136.2
121.2
86.6

411

878
412
412
412
412
412
411
298
140
81

411
140

K/L
K/M~
L/M+
~a/K
K/L
K/M~
L/IrI+
e/K
K/L
K/Mp
L/M+
a/K
K/I,
(Lx+Lzx) /Lzzz
(Lz+Lzz) /Lzzz
Ã+/M
K/L
K/(Lz+Lzz)
(Lz+Lzx) /Lzzr
(Lz+Lzx) /Lzzz
(Lx+Lzr) /Lzzz
L/M
M/N+
(Lz+Lzz) /Lzrz
L/M
{Lz+Lzz) /Lzzz
Lrz/Lzzz

{Lr+Lzz)/Lzzz
(Lz+Lzz) /Lzzz
(Lz+Lzz) /Lzrz
{Lr+Lzz)/Lrrx

K/L
K/L
K/Lz
(Lz+Lzz) /Lzzr
Lrz/Lr
Lzzz/Lz
K/L
K/L
E/L
Lzz/Lzzz

K/L
K/L

5.3+0.2
13.9+0.7
2.6+0.15
1.26+0, 02
5.3&0.2

13.9+0.7
2.6&0. 15
1.26~0.02
5.3~0.2

13.9~0.7
2.6+0. 15
i.26+0.02
3.2+0.2

3.9+0.5
3.8~0.4
1.4&0.4
5.0~0.4
6.3+0.5
3.9~0.4
3.3+0.6
3.1~0.35
4.55~0.44
2.5+0.3
3.03~0. 15
3.70&0.20
2.3+0.1

0.92+0. 15

5.0aO. 5
3.9~0.3
3.8&0.8
2.6~0.5

3.70%0.27

5.7+1.0
5.7&0.4
8.5+0.5
7.2~0.8
0.30+0.03
0. 18+0.02
3.85~0.30
5.6&1.0
4.35+0.30
0.89+0.15

7.7&1.0
7.2ai. 0

5.47
16.99
3.105
1.242
5.254

16.24
3.090
1.252
5.06

15.57
3.080
1.262
5.058
3.932
3.824
1.348
4. 572
5. 772
3.810
3.477
3.274
4. 133
2. 884
2.956
4. 126
2.608
1.127

5.460
3.803
3.548
2. 874

5.784

6.247
6.003
8.605
6.939
0.2530
0.1806
6.002
5.902
5.559
0.976

8.39
8.25

b
b
b
b
b
b
b
b
b
b
b
b
e
f
g

h
h
h
f
c
c
r.

1

1

d

~ g means total atomic cross section.
b Hultberg (1959).
0 Boyd, Brantley, and Hamilton (1965).
~ Jansen, Hultberg, Goudsmit, and Wapstra (1962).
e Marty (1952).
f Herrlander, Stockendal, and Gupta (1960).
I Ryde and Sujkowski (1962).
h Frey, Hamilton, and Hultberg (1963).
' Sujkowski (1961).
& Grigoryev and Zolotavin (1959).
& Bergkvist (1964).
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can be seen very clearly when comparing Scofield's
(1972) theoretical results with such experimental
results as given in the compilation of Veigele, Briggs,
Bates, Henry, and Bracewell (1971), as we will

discuss in Sec. 6.5 (cf. Tables 6.16-6.17) .
The second type of data is the so called "direct"

measurements. Recent and accurate data of this type
is quite scarce. We present the cross section data known
to us in Table 6.14 and the shell ratio data in Table
6.15 and compare this with Scofield's theoretical
values. The conclusions drawn for the subtraction
method remain valid. The claimed experimental errors
range from 4% to 15% and the difference between
theory and experiment is also within these limits
(except for one case). This is also generally true for
the measured ratios.

6.5 Validity of Previous and Present Tabulations

Most tabulations give total absorption cross sections
together with cross sections for the various processes
contributing to the total. Our comments mainly apply
to the photoelectric data. Though the early tabula-
tions we mention here (Davisson and Evans, 1952;

TABLE 6.16. Comparison between theoretical and experimental
(subtraction method) photoelectric cross sections of aluminum.

e~e shall mean u)&10~.

u (kev) Theory

Experiment

Kamano

1
2
3
4
5
6
8

10
15
20
30
40
50
60
80

100
150
200
300
400
500
600
800

1000

2.614+6
7.323+5
2 ~ 997+5
5.213+5
3.479+5
2.452+5
1.202+5
6.860+4
2 ~ 430+4
2. 700+4
1.566+4
7.383+3
4.092+3
2. 515+3
1.161+3
6.$54+2
9.381+2
4.489+2
1.601+2
7.899+1
4.667+1
3.086+1
1.657+1
1.049+1

2.899+6
6.822+5
2.886+5
4.281+5
3.257+5
2. 508+5
1.198+5
6.750+4
2 ~ 382+4
2 ~ 626+4
1.536+4
7.302+3
4.067+3
2.508+3
1.158+3
6.307+2
9.417+2
4.445+2
1.580+2
7.799+1
4.609+1
3.050+1
1.648+1
1.059+1

4.09+6
9.38+5
3.35+5
4.99+5
3.38+5
2.57+5
1.23+5
6.98+4
2.48+4
2.71+4
1.55+4
7.20+3
3.97+3
2.45+3
1.14+3
6.28+2
9.35+2
4.43+2
1.57+2
7.61+1
4.38+1
2.80+1
1.40+1
8.29+0

TABLE 6.17. Same as Table 6.16 except for uranium.

k (keV) Theorya LLLb Kamano

Experiment
Sco6eld (1972).

b McMaater, Del Grande, Mallett, and Hubbell (1970).' Veigele, Briggs, Bates, Henry, and Bracewell (1971).

1

2
3

5
6
8

10
15
20
30
40
50
60
80

100
150
200
300
400
500
600
800

1000

5.300+4
1.013+5
3.524+4
1.609+4
8.612+3
5. 120+3
2.218+3
1.146+3
3.367+2
1.389+2
3.908+1
1.570+1
7.697+0
4.286+0
1.695+0
8.245—1

2. 236—1

8.970—2
2. 574—2
1.112—2
6.021—3
3.764—3
i.905—3
1.184—3

5.263+4
1.032+5
3.608+4
1.649+4
8.814+3
5.224+3
2.246+3
1.151+3
3.330+2
1.359+2
3.784+1
1.517+1
7.453+0
4. 171+0
1.673+0
8.266—1

2.327—1

9.609—2
2.839—2
1.224—2
6.477—3
3.895—3
1.787—3
9.970—4

5.32+4
1.06+5
3.61+4
1.63+4
8.69+3
5.15+3
2.22+3
1.14+3
3 35+2
1.38+2
3.88+1
1.56+1
7.68+0
4.29+0
1.71+0
8.35—1

2.28—1

9.07—2
2.50—2
i.01—2
5.03—3
2.86—3
1.18—3
6.03—4

Scoaeld (1972).
b McMaster, Del Grande, Mallett, and Hubbell (1970).
o Veigele, Briggs, Bates, Henry, and Bracewell (1971).

Grodstein, 1957; and Davisson, 1965) are mainly of
historical interest, we find it appropriate to comment
on them for two reasons: (1) This review tries to cover,
at least to some extent, the developments of the sub-
ject since the early 1950's. (2) Some semiempirical
methods used in these tabulations can now be given a
theoretical justification whereas some are now known
to be wrong.

The tabulation of Davisson and Evans (1952) was
based on the following: For the energy range 10—350-
keV results of Sauter's formula (6.1.2) multiplied by
Stobbe's correction factor )square brackets in Eq.
(6.1.1)j or Stobbe's formula (6.1.1) were tabulated.
For the range 350—2000 keV Hulme's few values
served as a basis for the tables and for higher energies
Hall's formula (Hall, 1934, 1936) was used. The
total atomic cross section was obtained by applying
the "five fourths rule" to these X-shell results. All
these cross sections were plotted, the graphs "smoothed"
and final results were read from these graphs.

Grodstein (1957) followed a similar pattern, but
instead of using the 5/4 law she used the ratio

o~a~+/ ops calculated with Stobbe's and similar
formulas for the M shell, thus correcting cross sections
for the low-Z values for which 5/4 is an overestimate.
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She treated screening (incorrectly as we known now)
by using Z,«=Z—0.3 and also applied semiempirical
correction factors for the energy range 10-100 keV so
that the tabulated values become larger and closer to
the experimental values. Comparison of these Tables
with the latest tabulations shows that for medium and
heavy elements in the energy range of 0.1-1.0 MeV
the results agree to within 5%. However, the discre-
pancies increase for higher energies (40% for tin and
60% for uranium at 10 MeV) or when energies drop
below the E-shell threshold (35% for uranium at 10
keV). For aluminum the results given (for k=10-400
keV) are within 5%—10%.

Davisson's later Table (1965) used the interpolated
experimental data of McGinnies (1959) for the energy
range 10-50 keV, and a version of the Gavrila-Pratt
formula for the energy range 400-2000 keV. Another
improvement was the use of the ratios o,/ crtrwhich
were taken from Kirchner's (1930) experimental values
at threshold. Generally the same discrepancies exist
as in Grodstein's tables with the exception that for
high energies the discrepancies here are smaller (5%—
10%) because of the use of the Gavrila —Pratt formula.
Through not always su6iciently accurate these tabula-
tions gave a quite fair account of the process and were
extensively used in the fields of nuclear physics and
radiation shielding.

In Sec. 6.3 we have discussed the accuracies involved
in the theoretical tabulations of Storm and Israel
(1970) and Scofield (1972) and also compared them.
We will now discuss a second type of tabulations:
those which combine experimental and theoretical
values. One such tabulation (which evolved from the
NBS Report 8681, 2nd edition by Hubbell and Berger,
1966, is that of Hubbell (1969, 1971)]. It contains
photoelectric cross sections for 23 elements in the energy
range 10 keV—100 M;eV. For energies up to 100 keV
the results are purely those of the subtraction method
procedure and the scattering data are taken from Strom
and Israel (1967) except for uranium where the data
is taken directly from Rakavy and Ron (1967). For
higher energies they used Davisson's (1965) and
Hultb erg, Nagel, and Olsson's (1968) theoretical
values. The high-energy data are based upon the
Gavrila —Pratt formula. The computed E-shell cross sec-
tions were converted to total atomic cross sections by
using Kirchner's ratios and taking into account some
energy dependence of this ratio for the heavier elements
as deduced from the Rakavy and Ron (1967) results.
Hubbell also gives analytic expressions which fit the
data presented. More extensive 6ts of this type are
given by Higgs and Lighthill (1971).

McMaster, Del Grande, Mallett, and Hubbell
(1970) performed least-squares 6tting to an extensive
documented combination of theoretical values and
experimental data in the energy range of 1—1000 keV.
The experimental results were weighted according to
their assessed accuracy. Extensive use was made of
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the Schmickley and Pratt (1967) Tables. I. an-d M-
shell jump ratios were calculated from the theoretical
values of Rakavy and Ron (1967) and additional
theoretical data was used: i.e., Davisson (1965),
Hultberg, Nagel, and Olsson (1968), and Hall and
Sullivan (1966). The claimed accuracy is 2%—15%.
VVe have discussed this work in Sec. 6.4 and it is
represented in Fig. 5 for elements Z=1—94, and k=
1—1000 keV.

These last compilations were used to compose the
ENDF/B (Evaluated Nuclear Data File) photon
interaction cross sections library tape. Values up to 1
MeV were taken from McMaster, Del Grande, Mallett,
and Hubbell (1970), and values for energies ranging
between 1 MeV and 100 MeV were taken from Hubbell
(1969). Simmons and Hubbell (1971) compared the
ENDF/B compliation with that of Storm and Israel
(1970).The differences become bigger than about 5%
for elements Z&26 and photon energies in the range
of about 1—5 keV and again for energies in the MeV
range. The latter probably reflects the fact that dif-
ferent approaches to the Gavrila —Pratt formula and
the ratios 0,/aq. were taken.

The last compilation we mention is that of Veigele,
Briggs, Bates, Henry, and Bracewell (1971), who
gave cross sections for the elements Z=1—94 in the
energy range. of 0.1 keV to 1 MeV. These authors made
an extensive survey of the experimental data existing
from 1920 to 1970. Assumptions of smoothness in Z
and energy allowed then to go from discrete data
points to a uniform tabulation. The photoelectric
cross sections presented are solely based upon the
subtraction method, except for energies from 0.1 keV
to between 1 keV and 10 keV for which nonrelativistic
calculations, using nonrelativistic HFS potentials, were
performed. The discrepancy between Scofield's results
and this tabulation (Tables 6.16—6.17) is large for
the higher energies were photoeffect is a small com-
ponent of the total attenuation cross section (see
Table 6.12) and is a consequence of the use of the
subtraction method in that region. One should avoid
using such cross sections at these energies. There
exists also a large discrepancy for the lower energies
for uranium (Table 6.16) . It stems from the difference
in the total attenuation coefFicients which they use
and we have not traced the error. The claimed un-
certainties are similar to those of the other tabulation
and are 2%—20%.

7. CONCLUSIONS

In this review article we have attempted to sum-
marize our present understanding of the photoelectric
process for photon energies above 10 keV. Between
10 keV and 5 MeV, theoretical predictions accurate
within a few percent can be obtained with the aid
of modern electronic computers; these agree with
experimental results of similar accuracy. The theoretical

model needed for this purpose describes the process
as a first-order transition, due to the electromagnetic
field of the photon, between the initial bound and
final continuum state of a single electron in a central
potential determined self-consistently for the atom.
Both higher-order Coulomb and electron-screening
effects are important, and the accurate cross sections
can differ by almost an order of magnitude from simple
Born approximation predictions.

Considerable insight has been obtained from the
realization that throughout most of the energy range
considered here the momentum transfers to the nucleus
in the photoelectric process are of order unity. This
means that the important regions in configuration
space for the process are at electron Compton wave-
length distances, well inside the region for which
electron wave functions are large. At such distances
the shape of electron wave functions is independent
of electron screening, and the shapes of electron wave
functions of the same angular momentum but different
energy are similar. Consequently, screening enters only
through wave function normalization. A screened cross
section can be obtained from a point-Coulomb cross
section simply by changing the normalization; angular
distribution shapes and polarization correlations are
independent of screening. For the same reason the
ratios of cross sections from certain subshells (such as
I.q/E) are constant; in such cases the angular distribu-
tion shapes and polarization correlations are the same.

The circumstances in which our understanding of
atomic photoeffect is most deficient are at high energies
(above 5 MeV), at low energies (below 10 keV), and
for low Z (Z(13) at all energies. The problem at
higher energies concerns mathematical techniques for
calculating the consequences of the present model for
the process, while in the second and third circumstance
the problem is to extend the present model. High-energy
limit results are available for the photoeffect, but in
the range from 5 to 50 MeV where interpolation
techniques must now be used, considerable errors may
result. However, since such cross sections are small
and experiments have not been possible, there is no
present incentive for improving the high-energy pre-
dictions. Similarly, until considerably more accurate
experimental results are in prospect, there is no great
incentive to attempt to improve the numerical predic-
tions described here for the energy range 10 keV to 5
MeV. The situation is quite different below 10 keV,
where the claimed experimental accuracy remains
unchanged but the expected accuracy of the theoretical
predictions rapidly deteriorates, due to inadequacies

- of the effective central potential model. In addition,
for low-Z elements bound state normalization is more
sensitive to the choice of potential, so that the problem
persists at higher energies. In all cases at low energies
the importance of exchange and correlation eRects
remains to be established, and explanations are needed
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for the complex structures which develop near threshold.
Such subjects are not ready for review but rather are
the topics for further investigation.
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