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The applications, most of which have been developed in the last decade, of the Hellmann-Feynman (H—F) theorem
in molecular quantum mechanics are reviewed. In general, the forces (on the nuclei of molecules) calculated with the
use of this theorem provide great qualitative insight into the nature of the phenomena investigated; outstanding examples
of these are in the concepts of chemical binding and molecular shapes. However, there are serious limitations in quantita-
tive applications of the H—F theorem with approximate wave functions, since the calculated forces are extremely sensitive
to small inaccuracies in the wave functions, especially near the nuclei of interest. Nevertheless, in view of the fact that
it is dificult to discern general qualitative features in very accurate or ab initio molecular calculations, the H—F theorem
is likely to be a highly useful tool for developing much needed qualitative chemical models which will be based on firm
quantum mechanical foundations and will also remain open to quantitative extension, at least in principle.

CONTENTS derived independently. However, as we shall see
below, direct consideration of the forces on the nuclei
in molecules can yield outstanding qualitative chemical
information; for example, a consistent pictorial under-
standing of molecular shapes and chemical binding.
Unfortunately, however, we shall also see that the
quantitative possibilities of the force concept are some-
what limited at present.

A practical way of calculating the force on a nucleus
in a molecule, when the former suffers arbitrary dis-
placements from the equilibrium position, is provided
by the Hellrnann Feynrna—n (H F) theorem —(Hellmann,
1937; Feynman, 1939). In this article we shall attempt
to deal with the various chemical applications of this
theorem, most of which have been developed in the
last decade. The discussion falls into two parts: molecu-
lar structure and reactivity. The structural discussion
will consist mainly of investigations on chemical
binding and molecular geometry. However, there has
been little application of this approach to the 6eld of
chemical reactivity, apart from some qualitative and
semiquantitative discussions of intermolecular forces.
Some extensions and modifications of the H—F theorem
are also mentioned.
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1. INTRODUCTION

2. THE HELLMANN-FEYNlVfAN THEOREM AND
ITS CONDITIONS OF VALIDITY FOR

APPROXIMATE WAVE FUNCTIONS

The Hellmann —Feynman theorem states that if P
is an exact (unnormalised) eigenfunction of a Hamil
tonian H, and F is the corresponding energy eigenvalue,
then, if X is any pararrteter occurring in H,

aF/W, Q i P )= Q i
aH/aI i P).

In other words, for a norrnalieed wave function, the ftrst
derivative of the energy with respect to a parameter is equal
to the expectati on value of the corresponding ftrst derivative

of the Harniltonian. A simple proof of this theorem will

follow shortly. Depending on the physical nature of the
parameter X (e.g. , it may be an internuclear distance, a
semiempirical parameter in an approximate theory, a
nuclear charge, a nuclear coordinate, and so on) one

In molecular quantum mechanics there are two
distinct approaches, namely those of energy and force,
for understanding chemical processes. The' energy
approach looks at a molecular system in terms of the
behavior of its total energy or, where detailed insight
into a chemical phenomenon is desired, in terms
of the behavior of appropriately partitioned components
of the total energy. The force formulation, on the other
hand, views molecular processes through the net forces
or, when necessary, appropriately partitioned com-
ponents of the net forces on the nuclei in a molecular
system (see Slater, 1963).

Of these two alternative approaches the force concept
ie chenzistry has not received the attention it deserves.
This is mainly because the forces are not quantum-
mechanical constants of motion as they do not commute
with the corresponding Hamiltonians. Consequently,
during the evolution of quantum chemistry and
molecular spectroscopy, forces were looked upon
merely as gradients of appropriate potential energy
functions rather than as quantities capable of being

22



B. M. Dzs The Force Conceptin Chemistry 23

can obtain much valuable information about variations
in the energy of a molecular system with the help of the
above theorem. If X is taken as the x coordinate, X„say,
of the pth nucleus in a molecule then, in the framework

of the adiabatic approximation (see Slater, 1963), the
H—F theorem leads (Feynman, 1939) to the following
expression for the x component, F„„of the force
acting on the pth nucleus

F„.=Z,PP (Z,/R„,') (BE„,/BX„)

-fp(r) (x„/r„') dr], (2)

where Z„ is the nuclear charge of P, R„, an internuclear
distance, and p(r) is the total one elect-ron density at the
point r; the integration in (2) is to be carried out in the
one-electron space and x„, r„are position coordinates in
space measured from the pth nucleus. In order to obtain
the y and s components of the force on p, one replaces
the x coordinates in Eq. (2) by the y and s coordinates,
respectively.

Equation (2) has sometimes been called the electro
static Hermann-Feynman theorem. It tells us that the
force acting on a nucleus in any system of nuclei and
electrons can be interpreted solely in terms of classical
electrostatics, once the electronic charge density or the

first order densit-y matrix has been obtained by a quantum
mechanica1 procedure. Such a force on a nucleus is
simply the resultant of the classical electrostatic forces
due to the other nuclei and to the surrounding elec-
tronic distribution. These nuclear forces can then be
integrated, if necessary, to obtain the energy of a
molecular system (relative to separated atoms) in
terms of the first-order density matrix. ' If the latter is
known for various nuclear configurations of a molecule,
then the corresponding forces on the nuclei may be
obtained, and the equilibrium molecular geometry
determined as the configuration where the net force on
any nucleus vanishes. This obviously corresponds to
the energy minimum. Thus, within the range of validity
of the adiabatic approximation, the force and energy
pictures are equivalent insofar as corresponding
stationary properties of the latter are concerned, pro-
vided one has available the exact single-particle density.

Apart from being conceptually attractive, the force
picture has distinct computational advantages: If one
chooses to work within the adiabatic approximation,
then interelectronic distances and nuclear coordinates
are mutually independent; hence the troublesome inter-
electronic terms automatically drop out of consideration
when one di8erentiates the energy to obtain the force. '
Therefore, the integration in Eq. (2) involves only one-

'It should be remembered that an accurate single-particle
density includes correlation effects due to the Coulomb and Pauli
repulsive forces between the electrons.

~In the case of vibronic coupling, the force on a nucleus
has a less simple meaning since the interelectronic terms in the
Hamiltonian cannot be omitted when calculating forces on nuclei
&see Eq. l 19)j.

electron operators and if a single-determinantal LCAO-
MO wave function is used to obtain the single-particle
density p(r), then no force integrals involving more
than three centers are required. There are now four
available methods (Deb, 1971; Flygare, et al. , 1966),
none of which is completely satisfactory, for evaluating
such 3-center force integrals numerically, seminumeri-
cally, and analytically. However, the H-F theorem
which obviously holds good for an exact wave function
need not be valid for an approximate solution to the
wave equation. As we shall see later, this theorem is in
fact very sensitive to inaccuracies in the wave function.

Various authors have examined the conditions of
validity of the H—F theorem for an approximate wave
function. If, for an approximate (unnormalized) wave
function f, we write

E= &4 I
H

I 4 &/&0 I 4 &, (3)

(H E)Q=O— (5)

so that one obtains Eq. (1). For a diatomic molecule
with internuclear separation R, let us write Eq. (1) as

(aE/aR) Q I y&=Q I
BH/aR

I P&,

with P =f($;, rt, , p;; Xq, X2, ~ ~ ~, X ), where $;, rt;, @;are the
spheroidal coordinates for the ith electron, and the P s
are a set of parameters which may be functions of R.
Hurley (1954, 1956) has shown that the H-F theorem
is satisfied by "Qoating

"4 wave functions' obtained by
requiring that all X, be independent of R, since by
putting BP/BE=0 in Eq. (4) we obtain Eq. (6).
Following Hall (1961), one can then demonstrate that
the wave functions obtained by optimizing all the
above parameters X; will satisfy the H—F theorem:
Since we have

BP/8R= Q (BP/BX;) (dX,/dE),

'For a single determinantal LCAO —MO wave function, we
have

p(r) = ~ m'0" (r)

where p; is a real MO with occupation number g;.
4 An orbital is said to be "floating" when the distance of its

centroid from a reference point is itself a parameter to be opti-
mized.

'Shull and Ebbing (1958) are of the opinion that, for H2+
and H2 molecules, at least, the introduction of floating orbitals
provides an energy improvement too small to justify the extra
computational labor involved.

then by differentiating Eq. (3) with respect to the
parameter X and by making use of the hermiticity of H,
one obtains (Hirschfelder and Coulson, 1962)

(BE/») Q I lb) —Q I
BH/N

I f&

= &(~4/») I
H —R

I 4)+ &(~4/») I
H —&14&' (4)

For an exact P, this gives
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Eq. (4) takes the form

(&E/») Q Ia& Q—
I
»/» I&&

= Z (d) /dR) (~E/»') O'I &&

where

(~E/»')8 I4&=&(~4/~)') IH —Elk&

+ ((~4/»') I
H—E

I 0 &*, (g)"
assuming that the parameters ), do not occur explicitly
in the Hamiltonian. Hence, Eq. (6) is satisfied if either
c)E/»;=0, or d&,/dR=O; that is, if either )I„'s de-
pendent on E are optimized at the given E, or if all X;
are independent of R. Thus Hurley (1954, 1956, 1964),
Hall (1961), and Stanton (1962)'" concluded that
Hartree —Fock wave functions obtained by optimizing
all parameters will satisfy the H—F theorem. Further,
let us write

8$/c)), =iA WQ+ BP, (14)

where A and 8 are functions of X, A is real, and 5' is a
function of coordinates and momenta. We take t/V to be
a Hermitian operator which may or may not contain
the parameter &. Using Eq. (14) and the Hermitian
character of W and H, we can write Eq. (4) as

(»/») &e I O&
—g I

&H/»
I a&

='A &0 I CH, Wj
I 0& (»)

' (a) Equations (9)-(13) are included in Footnote 6(b) .
(b) The same conclusion is made by Coulson (1971) who uses

Brillouin's theorem to prove the H—F theorem for a nonexact
normalized wave function |Itp. For such a wave function we can
write Eq. (4) as

&&Is'x= &it'0 I
s&Is&

I po )+ &sg'ale&
I
II

I
it'o &

+ O'o
I
&

I
sA/sx & (9)

so.that the H-F theorem is satisfied only if

&wo/s& I
&

I i4)+ &A I
II

I
sA/s&)=o (to)

Now, let otto be a closed-shell function (real, say) represented by
the single determinant

00= Idion&4~42 Incan I,

where the bar denotes p spin. The set of orbitals &1, @2, ~ ~ ~, @
may be made complete by adding another set of functions
("virtual" orbitals) x„+1, x +2, ~ ~ ~ etc. One can then show (see
Coulson, 1971) that

Bfp/ex= Z c;f;, (12)
s&p

where all the f s represent singly excited conf', glrations only; i.e.,
configurations obtained by replacing one of the p orbitals in
(11) by one of the x orbitals. Thus, we have

&sko/» I
&

I 0o&= & c'0* I
II

I 0o&
s&p

and
&A I

It
I seto/s&)= & 'fool &

I kf& (t3)
'&o

Now, if the original orbitals in Eq. (11) are chosen to satisfy
Hartree-Fock equations, then, according to Brillouin's theorem,
IJ has no nonvanishing matrix element between fp, and any singly
excited wave function. Thus, the right-hand sides of Eqs. (13)
vanish, and the H—F theorem is satisfied. The above proof can
be extended (Coulson, 1971) to general Hartree-Fock excited
states.

3.EXTENSIONS AND GENERALIZATIONS OF THE
HELLMANN-FEYNMAN THEOREM

Some generalizations of the H—F theorem are worth
mentioning. Kerner (1959) has extended it to outside
the framework of the adiabatic approximation by
assuming that the nuclei move classically while the
electrons move quantum mechanically. If x„(t) repre-
sents the coordinate of the pth nucleus of mass M„,
then Eq. (2) becomes Kerner's "dynamical Feynman
theorem" (see also Clinton, 1960)

II/I„x„= (c)W~/c)x„) fq(t) (BV/c)x„)—dr, (19)

where W& is the nuclear repulsive energy, and c)V/Bx„
represents the instantaneous electronic force on the pth
nucleus due to the electronic density p(t). Hayes and
Parr (1965) have derived more general time-dependent
H—F formulae of which Eq. (19) is a special case.
I.owdin (1959) has also derived a general expression

7 (a) Equations (16)-(17) are in Footnote 7(b).
(b) The Hypereirial Theorem: If

hatt
is a bound-state eigenfunction

of a Hamiltonian II, and W is a hermitian time-independent
operator involving coordinates and momenta, then we have

Since
&P& w3&= Q I I&, w)

lit�

&=o

d &W )Idt =t/5 ([H, Wj)

(16)

(»)
Equation (16) means that the expectation value of S', for a
stationary state tlt, is independent of the time. The hypervirial
theorem Eq. (16) is so named because it can be regarded (Hirsch-
felder, 1960) as a generalization of the usual virial theorem.

where [H, W] is the commutator of H and W, given by
[H, W]=HW W—H.

Hirschfelder and Coulson (1962) have used Eq. (15)"
to show that, for a diatomic molecule, the H—F theorem
is satisfied at a given E if the set of hypervirial rela-
tions~b (Hirschfelder, 1960; Epstein and Hirschfelder,
1961; Coulson, 1965) corresponding to all the parame-
ters X;

&~ ILH, W;jl~&=0, (Ig)

where t/V; is a Hermitian operator, is simultaneously
satisfied. These authors discuss the possibility of
calculating the potential energy curve of a diatomic
molecule (relative to the separated atoms) by ob-
taining c)E/c)R for a range of R, from wave functions
chosen at each R (by applying the above hypervirial
criterion) to satisfy the H—F theorem. Hirschfelder and
Coulson's work is consistent with that of Frost and
Lykos (1956) who showed that if the kinetic and the
potential energy parts of the Hamiltonian of a diatomic
molecule are aBected di6erently by a variation in X,
Eq. (1) will lead to the virial theorem. Tuan (1969)
has further shown that Eq. (1) is valid for multi-
configuration self-consistent-held energies and wave
functions, as well as for both closed- and open-shell
systems. Goddard (1968) demonstrated that the H—F
theorem is also applicable to certain other wave func-
tions which are not of Hartree —Fock type.
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(20)

respectively, both S and H being self-adjoint. One can
then obtain (Lowdin, 1959)

(gg/@, ) g i P)= g i
(cjoy/cjoy, ) —g(g$/gy) i P), (21)

a generalized H-F theorem. Levine (1968) has further
extended the theorem (21) to forms involving func-
tions of the Hamiltonian, while Epstein (1967) dis-
cusses a generalized H—F theorem in curvilinear co-
ordinates for both exact and nonexact "Aoating" wave
functions. Numerical applications of the above gen-
eralizations have not been made.

Recently Parr (1964, 1965) proposed an interesting
method for calculating energy differences involved in
isoelectronic molecular processes such as changes in
molecular conformations (e.g. , those due to vibrations
and internal rotations), formation of molecules from
atoms, dissociation of molecules into atoms or ions,
molecular "transmutations" of the type CO—&N&,

intermolecular and scattering phenomena, x-ray spectra,
and so on, embracing a wide area of chemistry. This is
the so-called "integral Hellmann —Feynman theorem"
(see also Kim and Parr, 1964). If f~ and Pa are the
normalized wave functions of two systems, A and 8,
having Hamiltonians Hz and Hp, respectively, with Ez
and Ep, as the corresponding energy eigenvalues, then
one readily obtains

where

AE=Ea —E~ 5'Q~
i

AH
i Ps), ——

s=g, ip, ),

AH =HB —Hp.

(22)

(23)

Equation (22) has been called the "integral" H—F
theorem, since Eq. (1) can be looked upon as a differen-
tial form of it (Kim and Parr, 1964).

If the transition A—+3 is an isoelectronic process, then
by adopting the adiabatic approximation, one can
write (see Parr, 1965)

~a= ~v..+ g a'(i), (24)

where AV„„ is the change in nuclear repulsion energy
due to the transition, and H'(i) = V„,n(i) —V„,~(i) is
the difference in electron-nuclear attraction energy
for the ith electron. When Eq. (24) is substituted into
Eq. (22), the latter reduces (Kim and Parr, 1964)

which is a special case of the H-F theorem Eq. (1).
By choosing a complete set of basis functions, I@,I, one
defines an arbitrary wave function P, the overlap
matrix S, and the Hamiltonian matrix H as

4= ZcA'

to the one elec-tron, form

AE=hIV „+Jp~p(1)H'(1) dry, (25)

4. CHEMICAL APPLICATIONS OF THE
HELLMANN-FEYNMAN THEOREM

Except for certain diatomic molecules involving first-
and second-row elements or their hydrides present day
molecular wave functions are insufFicient for the H—F
theorem since they do not usually satisfy the validity
conditions mentioned above. However, in spite of its
limitations with approximate wave functions, this
theorem has been extensively employed in recent years
to understand molecular processes in terms of the
calculated forces. The inspiration to exploit the chemical
potentialities of the H—F theorem was provided mainly

where 68"„„is the change in nuclear repulsion energy
between B and A, H'(1) is the corresponding change
in the electron —nuclear attraction operator for electron
1, and p~n (1) is the normalized one-electron "transition
density" between f~ and PB, i.e.,

pea(1) =&S fP~Pa dr2 ~ ~ .&rN . (26)

It is clearly seen that Eq. (25), like Eq. (2), admits
rigorously a classical interpretation of the energy
change, within the adiabatic approximation, in terms of
a nuclear —nuclear and an electron —nuclear component.
Therefore, for reasons outlined previously with the
H—F theorem, it is tempting to use Eq. (25) in calcu-
lating energy changes in isoelectronic processes. How-
ever, as Parr himself (1965) has cautioned, to use
Eq. (25) with approximate wave functions is "fraught
with danger" (see also Allen, 1969). In the various
qlamtiIIative applications of the H—F and "integral"
H—F theorems cited below, we shall see that there
are important reasons for being wary. For example,
Rothstein and Blinder (1967) comment on the need for
modifying the "integral" H—F theorem to suit wave
functions of presently available quality. However,
Richardson and Pack (1964) have pointed out that
with an improvement in the wave function, hE,
obtained through Eq. (25), improves faster than does
the corresponding expectation-value difference. Epstein
et al (1967) h.ave given a detailed discussion of the
relative merits and demerits of the types of formulae
used in calculating energy changes accompanying
isoelectronic processes, viz. (a) the expectation-value
difference, (b) the H-F theorem and (c) the "integral"
H—F theorem. These authors show that if P~ and Pa
are chosen variationally from a 6xed basis set, the
three formulae give identical AE. On the other hand,
if each of P~ and Pa are thus chosen from a given class of
functions, as is the case when each is a Hartree-Fock
wave function, (a) and (b) give the same hE which

may be different from that calculated by (c). How-

ever, (c) may sometimes provide a better estimate of
AE than (a) (see also Lowe and Mazziotti, 1968) .
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(a) BINDING (b) ANTIBINDING

FIG. 1. Binding and antibiadingregionsin a diatomic molecule AS with nuclear charges Z, and Z~, respectively. In(a) anelectronic
charge at (x1, y1) leads to a net force of attraction between the nuclei; in (b) an electronic charge at (x2, y2) results in a net force of
repulsion between the nuclei. In (c) are indicated coutours of the boundary surfaces separating binding and antibinding regions in a
homonuclear diatomic molecule. The shaded area indicates the antibinding region, while the thick arrows indicate the directions of the
electron —nuclear forces LReproduced by permission from J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases
aud Liquids (Wiley, New York, 1964), pp. 935, 936].

by the imaginative work of Berlin (1951; see also
Hirschfelder, et al. , 1964) .

A. Berlin's Work: A Physical Picture of the
Chemical Bond

Berlin had divided the 3-dimensional space around a
diatomic molecule AB into binding and antibinding
regions. Any electronic charge in the binding region
would attract both nuclei until offset by the nuclear
repulsion; any charge in the antibinding region, on the
other hand, would tend to pull the nuclei apax't. Con-
versely, removal of elecfronic charge from the binding
region results in an increase in bond length, while charge
removal from fhe anfibinding region leads fo a shortening

of bond length (see Figs. 1(a) and 1(b). The boundary
surfaces separating the binding from the antibinding
region are defined by the relation

I fBE) (27)

B. A View of Chemical Binding through the Total
One-Electron Difference Density

where s is taken along the molecular axis, and fs., is the
2' component of the electronic-force on A. For homo-
nuclear diatomic molecules, the contours of the bound-
ary surfaces are hyperbolas [see Fig. 1 (c)] with
opposite asymptotes intersecting at the tetrahedral
angle, 109'28'. With an increase in the ratio Za/Zn
the surface at A flattens out and approaches a plane
perpendicular to AB, while the surface at 8 closes on to
itself forming a region that approaches a point as
Zg/Za —+~ (see Figs. 2(a) and (b) j.

r

wave functions' (to obtain single-electron densities) for
certain diatomic molecules involving first- and second-
row atoms, a fairly comprehensive view of bond forma-
tion, in terms of molecular one-electron density and the
one-electron difference density, has now emerged. The
contours of the total one-electron density itself, while
not particularly useful in discussions of chemical
binding, do nevertheless provide an estimate of the
bond length as well as an idea about the over-all
molecular size (Bader, et al , 1967a). .The 0.002 contour
(see Fig. 3) is useful in deciding the latter as 95 percent
or more of the total charge usually resides within this

I

(L I Na

Za
I Zb
I

I

I

//g ci
~j~iz.

(b)

FIG. 2. Contours of the boundary surfaces separating binding
from antibinding regions in heteronuclear diatomic molecules
AB. (a) Sodium chloride molecule, Zo/Zs=17/11, (b) Hydrogen
chloride molecule, Z /Zs = 17. (Reproduced by permission
from J. O. Hirschfelder, C. F. Curtiss, and R. B.Bird, JI/Iolecular
Theory Of Gases aud Liqusds (Wiley, New York, 1964), p. 936$.

Berlin's ideas about binding and antibinding regions
in diatomic molecules have been extensively exploited by
Bader and his co-workers (Bader and Henneker, 1965;
Bader„et al. , 1967a, b; Bader and Chandra, 1968;Bader
and Bandrauk, 1968a, b; Bader and Preston, 1969;
Cade, et al. , 1969). Through their use of sophisticated

' Figure 4 shows that, with the wave functions for H2, at R&2.3
a.u. the agreement between the calculated and empirical forces
is very good. Clinton and Hamilton (1960) had previously pro-
posed use of force curves, instead of potential energy curves,
for discussing certain excited states of diatomic molecules.
Goodisman (1963) also uses force curves, rather than potential
energy curves, for evaluating the force constants in diatomic
molecules.
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FrG. 3. Contours of the total molecular one-electron densities for the first-roar homonuclear diatomic molecules. Values are in atomic
units LReproduced from R. F. W. Bader, W. H. Henneker, and P. E. Cade, J. Chem. Phys. 46, 3343 {1967)J.
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FIG. 4. Theoretical (dotted hne), and experimental (sohd
line) force curves for the H& molecule. (Reproduced by permission
of the National Research Council of Canada, from R. F. W.
Bader, and A. K. Chandra, Can. J. Chem. 46, 955 (1968)).

contour. The difference density, on the other hand, is
obtained by subtracting, from the molecular density
at a given R, the superimposed individual atomic
densities at the same R. The contours of this difference
density reveal the redistribution of charge which
accompanies the formation of a chemical bond (see
subsequent figures). The usefulness of this quantity in
discussing bond formation lies in the fact that, like the
total single-particle density, the difference density is
invariant with respect to unitary transformations of the
wave functions although, for approximate wave func-
tions, its quality depends on the nature and size of the
basis set adopted.

The mere overlap of superimposed atomic densities in
the binding region is not sufFicient to balance the
nuclear repulsion. A stable molecule must have a charge
build-up in the binding region which will "cement" the
two nuclei. For the first-row homonuclear diatomic
molecules, more than fifty percent of the total elec-
tronic charge lies within the binding region, the most
effective build-up occurring on the bond axis; for H2 the
electronic density in the binding region has a seventy
percent increase over that resulting from the overlap
of atomic densities. It is, however, clear that in balanc-
ing the forces of nuclear repulsion both the extent of
charge buildup and its distribution are significant; for

instance, ever u little charge comceetrufion oe the axis
betweem the mmclei is eery effective im bimdimg them.

However, the surprizing fact emerges that there is also
a charge build-up behaved the nuclei; i.e., in the anti-
binding region (see Figs. 5 and 6) . The reasons for this
unexpected buildup, which can sometimes exceed that
in the binding region (this may still be sufficient to
bind the nuclei), are not clear (see also Bader and
Beddall, 1972) .

There are significant differences between the charge
buildup distributions in H~ and in A2 and AH mole-

cules, ' where A is a first-row atom (see Fig. 7). Such
differences arise from the involvement of 2P orbitals in
bonding for A2 and AH molecules. In such cases the
charge increase in the po component appears to be a,t
the expense of the p~ component of the density as well

as of the s density at nucleus A. In the equilibrium
configurations for H2 and AH molecules, the difference
density plots do not indicate any depletion of charge
at the position of the proton.

The difference density maps for stable molecules
such as H2 and unstable ones such as He2 (compare
Figs. 5 and 8) reveal their dkgeremces im chermical bimdimg

fo be those of degree rather tham of kimd In the ca. se of He~

there also occurs a charge increase in the binding region,
but this is not sufhcient to overcome the forces of
nuclear repulsion.

A comparison of the density difference contours in
LiF and in A2 molecules helps to point out the differ-
ences in ionic and covalent binding (see Fig. 9). In
ionic binding, the two nuclei are bound by the charge
localised on one nucleus (on F in case of LiF), whereas
in covalent binding the nuclei are bound by a charge
build-up in the binding region which is shared equally
between them and is sufFicient to balance the nuclear
repulsion.

The difference density is also likely to provide a
useful qualitative insight into the nature of electron
reorganization during the progress of a chemical
reaction.

C. Calculation of the Molecular One-Electron Density
Using the Criterion of Electrostatic Equilibrium

From the above discussion, the total one-electron
density emerges as a quantity of high significance for
the discussion of the formation of bonds in terms of the
nuclear forces. One might well ask if the Hartree —Fock
density would be su%cient for this purpose; that is,
will the neglect of electron correlation in one-electron
density lead us into misinterpretations about chemical
binding. Bader and Chandra (1968) have shown,
in the case of H&, that the Hartree —Fock density
underestimates the charge density near the nuclei and

9 Bader and Beddall ($972) have said that the density distribu-
tion and the binding in H& and H&+ molecules are not typical
of homonuclear diatomic molecules and that these systems are
not satisfactory for a general discussion of the chemical bond.
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overestimates it in the binding region by only about one
percent. Consequently, no serious error is likely to be
caused by employing the Hartree —Fock densities to
obtain the difference density and corresponding forces.
Further, at least for closed-shell molecules, electron
correlation introduces only a second-order correction
into the Hartree-Fock density (Kern and Karplus,
1964).

In a series of papers dealing with HF, H20, and NH3,
Bader and Jones (1961, 1963a, b, c) demonstrated that,
starting from a minimum basis set of Slater-type
orbitals, it is possible to obtain fairly satisfactory one-
electron distributions by requiring that the resultant
electron —nuclear attractive forces on the nuclei exactly
balance those of nuclear repulsions (the criterion of
electrostatic equilibrium). Such density distributions
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can yield expectation values of certain one-electron
operators such as diamagnetic susceptibility, nuclear
shielding constant, nuclear quadrupole coupling con-
stant, etc. that are in as good or better agreement with
observed values than the corresponding values pro-
vided by SCF wave functions (Bader and Jones,
1963a). The criterion of electrostatic equilibrium as
well as the orthogonality requirement of the MO's
yields a number of constraining relations (Bader and
Jones, 1963b) which determine the values of the
required LCAO-coeKcients. Another useful constraint
for this purpose is a quantity, e.g. , the observed dipole
moment, which characterizes the over-all electronic
distribution in a molecule. The resultant one-electron
densities can then be employed, in principle, for
interpretations of chemical binding as discussed above.
In the future, it might also be possible to compare
such calculated one-electron densities with the cor-
responding experimental values obtained through such
studies as single-crystal x-ray diffraction measure-
ments.

The use of nuclear forces as constraints, in order to
obtain the charge density, has also been advocated by
Kern and Karplus (1964), because the criterion of
electrostatic equilibrium is a rather stringent condition
for a molecular wave function to satisfy. These authors,
however, suggest the use of Hartree —Fock, rather than
Slater-type, AO's as basis functions in order to obtain
more realistic charge densities. Salem and Alexander
(1963) point out the highly significant role played by
the atomic forces" (single-center) in deciding the
electronic force on a nucleus. The atomic forces,
especially those involving inner shells, are extremely
sensitive to polarization and small density changes near
the nucleus involved. Consequently, using a basis set
of STO's (which do not describe adequately the
electron density near the nuclei) instead of the more
accurate Hartree —Fock AO's to describe the molecular
wave function, is likely to result in quite unrealistic
electronic forces, and vice versa (see Coulson and Deb,
1971). Bader (1964a) has, from the contours of the
difference density for H90, shown that using Hartree-
Fock AO's instead of STO's results only in minor
variations in the difference density. Nevertheless, since
such variations might easily occur in the vicinity of
the nuclei, it would be better to employ Erartree —Fock
AO's in the basis in future works of this kind.

E(n) = (2X) '(csc —,'n —1)+ Q g,w'(n),

E(180') = 0, (28)

where the first term arises from the proton —proton
repulsive force, and the second from the electron—
proton forces. The index i refers to an MO, and w'(n)
is given by

w'(n) = Xffi' dn, (29)

becomes more apparent when we turn our attention to
the geometry of molecules. A correct understanding of
the phenomenon of molecular shapes, that is, how a
number of atoms, in the course of molecule formation,
arranges itself into a specific geometric pattern and not
into any other, is essential if we wish to explain and
correlate the various physical, chemical, and biological
properties of substances. The model of molecular shapes
which has been most stimulating and which has
received the greatest attention from theoretical
chemists is that due to Walsh (1953).Walsh expressed
in an angular correlation diagram (called the Walsh
diagram) the effect of increasing valence angle on the
one-electron "binding energies" of the various MO's.
Using such diagrams he demonstrated how the gross
equilibrium shapes of whole classes of molecules can be
predicted by simple numerical rules, depending on the
number of valence electrons, for their ground and some-
times for their first excited states as well. In the last
eleven years, considerable effort has been made to find
a quantum-mechanical basis for %alsh's largely
empirical approach so that one might understand the
nature of the ordinate in a Walsh diagram Lsee Coulson
and Deb (1971) for a critical discussion of such works;
see also Takahata and Parr (1969)].The most success-
ful of these attempts, which retains the simple qualita-
tive elegance of Walsh's original approach, resulted
from an application of the H—F theorem (Coulson
and Deb, 1971):

Consider an AH2 molecule of HAH angle o. and
A—H length X. If we imagine that the bending of the
molecule is achieved by symmetric transverse motions
of the hydrogen atoms, in the molecular plane, keeping
X and the atom A fixed, then the total molecular
energy (E) is given as a function of n by the relation
(Coulson and Deb, 1971)

D. Interpretations of Molecular Shapes: The Walsh
and Jahn-Teller Effects

The gain in physical insight that results from
applying the force approach to chemical problems

'0 The atomic force on a nucleus results from a polarization of
its orbitals due to molecule formation. The atomic force integral
due to ].s polarization is usually about 2.5 times that due to 2s
polarization.

where the transverse component of the electron—
nuclear force fi', on a proton due to the one-electron
density in an occupied MO may readily be obtained
Lsee Eq. (2)].The quantity w'(n) represents the work
done in bending a molecule against the electron —nuclear
aQractive forces generated by the single porkicle density iv-
an occupied MO and has been employed to construct a
Walsh-type angular correlation diagram (Fig. 10) .
Similar treatments hold for NH3 (Fig. 11), and H202
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(Fig. 12) molecules, taking the dihedral angle for the
last molecule as its angular variable. It is clear from
Figs. 10 and 11 that the resulting diagrams for H2O
and NHS agree, in general patterns of MO behavior,
with the corresponding Kalsh diagrams except that the
latter predict an opposite trend of behavior for the
lowest bonding valence MO. The reason for this

discrepancy has been attributed to the unrealistic
nature of %alsh's postulates. This work also explains
why, for ntany ntolecules, a ptot of Hartree Foe& eigen-
values against a valence angle can be used for geometrical
interpretations. The above physical interpretation of the
%alsh ordinate does indeed provide a basis for a new
model for molecular geometry (Deb, 1972, to be
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)Z~2

FIG. 13. The static Jahn —Teller effect in VC14, using (a) metal
d,& AO and (b) metal d, m ~2 AO. The arrows on ligand atoms
indicate the directions of distortion. Arrows 1, 2 and 3, 4 lie
in the planes defined by the metal z axis, and the relevant V—Cl
bonds.

this theorem appears to have been used somewhat
indiscriminately in the past Lsee Smith (1970) for a
discussion of this point], applying it even to cases
where no orbital degeneracy is expected Lan example,
ClF3, is given by Ali (1960)j.

Clinton and Rice (1959) have provided an alternative
approach to the static JT effect in terms of forces. Their
technique is very useful for molecules in which de-
generacies may arise from excitation or ionization. The
conceptual simplicity of this formulation may be demon-
strated" with an illustrative example such as VC14
(Coulson and Deb, 1969). The case history of this
molecule typihes the frustrating situation one usually
encounters while studying the JT effect in molecules.
VC14 differs from the hvpothetical VC14+, a closed-shell
tetrahedral molecule, only in the presence of one
electron which may be considered as occupying a non-
bonding MO with e symmetry (see Coulson and Deb,
1969). The E representation is spanned by the orbitals
d, ~ and d, 2 „~ of the vanadium atom (see Fig. 13).
Until 1968, neither theoretical nor experimental
studies could definitely establish whether the introduc-
tion of an e electron in the VC14+ tetrahedral framework
would result in a Qattened or an elongated tetrahedron
(see e.g. , Ballhausen and de Heer, 1965) . If we assume
that the single-particle density in VC14 differs from that
in VC14+ only in the presence of the e electron (the
invariant MO assumption), then" the resultant force
on a chlorine nucleus in tetrahedral VC14 is given by

fci=&c&f(&*farci/rcpt) dr, (30)

where Zcq is the "effective" nuclear charge (see Coulson
and Deb, 1969) of chlorine, rc~ is the vector position

"For more applications of the Clinton-Rice formulation see
Coulson and Strauss (1962).

'4 It is, however, known that the invariant MO assumption,
which is also incorporated in Koopmans' theorem, is not justified.
Considerable reorganization of the remaining electrons occurs on
ionization or excitation. Coulson and Deb (].969) have, neverthe-
less, argued in favor of Eq. (30).

from it, and P is the odd-electron orbital, either d, ~

or d, ~ „~ metal AO; f~i is a linear combination of force
constants, each multiplied by an appropriate. linear
combination of chlorine displacements. Equation (30)
tells us that in passing from VC14+ to VC14 the force
on a chlorine nucleus is one of electron —nuclear attrac-
tion due to the odd electron. In view of this, an exami-
nation of Figs. 13(a) and (b) allows us to res.ch the
following conclusions, without much diKculty: (a) The
odd t,' electron will cause a totally symmetric decrease in
the V-Cl bond lengths (relative to VC14+); this, by
itself, will not reduce the molecular symmetry; (b) The
JT distortion, whether a flattening or an elongation of
the tetrahedron, will occur only in the plane defined

by the metal s-axis and the relevant V—Cl bond; this
follows also from symmetry properties of the integral in
Eq. (30); (c) If the odd electron is in the d, ~ orbital
LFig. 13(a)], then the circumscribing cube would be
elongated in the z-direction (obviously, there will be
three such equivalent distorted forms) whereas if it is
in the d, ~ „~ orbital LFig. 13(b)) the cube will be
flattened; and (d) Since the two orbitals, d, m and
d ~ „2, lead to opposite types of distortion, the odd
electron is more likely to be in either of them than in a
linear combination of the two; clearly, the latter
situation would result in less stabilization energy due to
a JT distortion. Numerical calculations (Coulson
and Deb, 1969),however, do not indicate any preference
of the odd electron for one orbital or the other. This
means that, according to the simple approach out-
lined here, both the Qattened and elongated tetrahedra
are equally likely for VC14. This conclusion agrees very
well with recent esr experiments of Johannesen, et al.
(1968) who interpret their results in terms of a VCl4
ground state consisting of 58 percent Qattened and
42 percent elongated forms. A similar line of reasoning
may readily be applied to the case of excited or ionized
benzene where, using naive Huckel MO's, one could
predict the elongation or Qattening of the ground
hexagonal framework, depending on the occupancy
of one or the other of the doubly degenerate MO's
Lfor experimental studies on the JT effect in benzene
see Asbrink, et al. (1970)).

Clinton (1960) has also tried to give a force formula-
tion to the dynamic JT effect. However, because of the
presence of vibronic coupling, the treatment becomes
considerably difficult. Clinton, like Kerner (see Eq.
19), assumes that while the electrons move quantum
mechanically, the nuclei move classically, and that the
effect of vibronic coupling is to give rise to time-
dependent perturbation terms in the electronic Hamil-
tonian, corresponding to a time-dependent wave func-
tion f(r, t). Considering the case of a planar D~q
molecule, where a doubly degenerate electronic state
interacts with a doubly degenerate vibrational mode,
Clinton showed that, under certain heuristic assump-
tions, f(r, t) may be regarded as a rotating vector in the
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plane of the molecule. No further application or exten-
sion of Clinton's work seems to have been attempted in
the last ten years.

E. Calculation of Energy Differences: Mechanisms
of Internal Motions

A comparison of molecular energies calculated via
the appropriate forces with those obtained by varia-
tional methods shows (Hurley, 1962) that unless the
approximate wave functions satisfy the validity condi-
tions mentioned previously, the forces will generally
result in inaccurate energies. Bader (1960) had earlier
shown that for certain simple systems the LCAO —MO
forces can yield fairly reasonable estimates of molecular
energies provided the orbital exponents are treated as
functions of the internuclear separation, according to
an empirical relation which duplicates very closely the
optimized values for these parameters. However, as
Salem and Wilson (1962) have remarked, one must
exercise caution in choosing a wave function for
estimating small interactions by this method since the
calculated energies, because they are obtained from the
forces, are generally correct to only the same order as the
wave functions employed. On the other hand, if the
error for variational wave functions is of the order 6,
then that for the variational energies has order d'
(Brown, 1966), whereas in perturbation calculations
knowledge of an eth-order wave function implies
(2m+1) th order accuracy in the energy. " Therefore,
except for their simplicity, the force calculations can
hardly be recommended for obtaining numerical
estimates of energies and energy differences. However,
we shall describe below some of the efforts made in
calculating certain energy differences.

Schwartz (1966) has shown that the correlation
energy (E.„,) for D», H3+ at 8=1.65 a.u. may be
predicted to be in the range 0.042—0.046 a.u. by using
H—F theorem and E„„data for two two-electron sys-
tems, HeH+ and H~. This argument also yields a simple
explanation of why E„„in many two-electron systems
happens to be in this range. Tuan (1969) has also found
that "correlation energies should be nearly constant
with respect to the change of any one-electron parame-
ter, which is independent of symmetry and exclusion
effects, of the zeroth order Hamiltonian. "

Goodisman (1966) proposes a method for obtaining
the barrier to internal rotation in a molecule by cal-
culating the torque tending to produce internal rotation
at one end of the molecule due to the other end. This
approach is said to have certain advantages over the
conventional method of obtaining the barrier as the
energy difference of the two conformations involved,

'~ Yaris (1963), however, shows that in some less general cases
where the parameter ) does not occur in an unperturbed Hamil-
tonian but appears only in the perturbation term, the nth order
wave function determines the force to order n+1 and, in some
cases, even to order 2n+1.

provided one knows the required one-electron density
to a high degree of accuracy, These advantages are:
(a) Use of a one-electron density for only one nuclear
configuration, and (b) Electron correlation is likely to
play a minor role in hindered rotation since the changes
in the single-electron density due to changes in nuclear
configuration should provide an effect large compared
to that produced by changes in electron correlation.
However, unless the wave function employed takes
adequate account of electron polarization around the
nucleus on which one calculates the force, the resultant
single-particle density is useless in calculating barrier
heights due to inversion and rotation, and hence is
unable to provide a detailed mechanism for such in-
ternal motions (Coulson and Deb, 1971). Ruedenberg
(1964) has also employed the H-F theorem to explain
why, for many ethane-like molecules, the barrier (hE)
to internal rotation is given by

aE=0.6aV... (31)

where AV„ is merely the difference in nuclear repulsion-
energy between the staggered and eclipsed forms.

The practical applications of the "integral" H—F
theorem for calculating energy differences appear to
have been made mostly in the origin of barrier to in-
ternal rotation in niolecules and the mechanism of
dissociation of simple diatomic molecules. Wyatt and
Parr (1965, 1966) obtain the barrier in ethane as a
resultant of two terms favoring opposite conformations
and provide an orbital analysis of the electronic
component of the barrier. Their examination of electron
density maps reveals that this component arises from
the noncylindrical symmetry of the electron density, in
a staggered or eclipsed conformation, about the carbon—
carbon axis. The barrier may be interpreted as arising
mainly from regions of the "transition density" around
the protons; regions near the C—C axis do not con-
tribute significantly. For H202, the calculated barrier is
inferior (Rothstein and Blinder, 1967) to that obtained
by subtracting the SCF energies of the two forms in-
volved. Musher (1965) concluded that the "integral"
H—F theorem cannot be employed for calculating
rotational barriers ( 0.1 eV) or chemical bond
strengths ( 4 eV) from zeroth-order Hartree —Fock
wave functions. Marron and Parr (1970) also do not
advocate the use of this integral theorem as a primary
computational method for calculating energy differ-
ences. Their conclusions are based on results from
calculations of dissociation energies of H2+ and other
simple systems (Marron, 1970) . They showed that such
calculated dissociation energies depend strongly on the
mode of separating the atoms. Marron and Weare
(1968) derive a variational principle which adds two
correction terms to the integral H—F energy difference,
while Lowe and Mazziotti (1968) provide an error
analysis for this difference.
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AE~fhW. (33)

(c.f. Eq. 31), where the proportionality constant f can
be identified with an "effective" charge on each non-
axial nucleus at the fixed end (see also Lowe and
Parr, 1965) .

F. Calculation of Force Constants

The question which arises at this point is this:
Although the H—F theorem does not usually result in
good numerical estimates of energy differences, can it
be of any use in calculating force constants? For
example, Coulson and Deb (1971) demonstrate that
even Ellison and Shull's (1955) relatively crude wave
functions for H~O provide a good estimate of the
bending force constant. Hirschfelder and Eliason (1967)
have also been able to calculate accurately the force
constant for the long-range interaction of two hydrogen
atoms, by employing only a second-order correction to
an approximate wave function. There have been several
other efforts (Brown, 1958; Phillipson, 1963, 1966;
Salem, 1963; Benston and Kirtman, 1966; Schwende-
man, 1966; Bader and Bandrauk, 1968a, b; Gerratt
and Mills, 1968) to calculate second derivatives of the
energy, starting with the H—F theorem. Benston and
Kirtman (1966) demonstrate, in the case of H2, that
while the calculated forces are seriously in error the
force curves do have the desired shape near the equilib-
rium internuclear distance. Therefore, in this region at
least, the calculated force derivatives will nearly equal

Nevertheless, the qualitative usefulness of the
"integral" H—F theorem should not be underestimated,
although in numerical applications it generally does not
offer the accuracy obtainable in variational calculations.
For example, Lowe and Parr (1966;see also Lowe, 1966)
have designed a semiempirical model which provides
useful qualitative insight into the mechanism of the
barrier to internal rotation in molecules. A look at
Eq. (25) indicates that such a model should start by
partitioning the change in attraction between the
nuclei and the transition density into appropriate
physically meaningful components. By considering that
only one end of the molecule rotates while the other
end remains fixed in space, and by assuming that the
localized orbitals at the moving end follow perfectly
the respective nuclear motions, one can neglect con-
tributions from all fixed nuclei as well as from attrac-
tions between the moving nuclei and the transition
density at the moving end. Then the only remaining
term is the attraction between the moving nuclei and
the transition density (p„.) at the fixed end (x). The
barrier to internal rotation is thus given by

+ jfixed end
p (1)+ (1) dr (32)

For some molecules the two terms on the rhs of Eq. (32)
can be combined into a single term to yield

the corresponding exact derivatives. It may be re-
membered, however, that if the H-F theorem does not
hold for approximate wave functions of a diatomic
molecule AB, its force constants will depend on whether
the forces on nucleus A or on nucleus 8 were used to
calculate these constants (Pulay, 1969—1971). How-
ever, from a computational point of view, this may not
be as serious a drawback as might appear at first.
In view of what has been said before, it will be necessary
to determine whether Benston and Kirtman's con-
clusion remains valid for diferent nuclei in representa-
tive A2, AB, and small polyatomic molecules. "

The magnitude of the force constant and its varia-
tion in some isoelectronic homo- and heteronuclear
diatomic molecules can be interpreted in terms of a
relaxation of charge density which accompanies nuclear
displacements (Bader and Bandrauk, 1968b) . For
covalently bound molecules (see Sec. B), the charge
density relaxes to facilitate the motion of the displaced
nuclei. On the other hand, in a molecule with ionic
binding, the relaxation of the charge distribution
localized on the cation opposes the nuclear displace-
ment while that of the charge density on the anion
favors its nuclear displacement.

G. An Examination of the Pauli Repulsions Model
of Molecular Shapes

Based on a discussion of electrostatic forces, Bader
and Preston (1966) have provided a critical examina-
tion of the Sidgwick —Powell —Nyholm —Gillespie model
of molecular shapes (Gillespie, 1967) which has been
very successful from a qualitative point of view. This
model considers the molecular shape to be determined
primarily by Pauli repulsions between valence electron
pairs around the central (heavy) atom, in the absence
of bulky ligand groups. Bader and Preston point out
that for a system of iV electrons requiring a set of 1V/2 or
(1V+1)/2 orbitals, the Pauli principle is really an
orthogonality restraint in an!V/2 or (.7+1)/2 dimen-
sional space; to state that the Pauli Principle leads to
repulsions between filled orbitals in three-dimensional
space is not the same as requiring these orbitals to be
orthogonal in the multi-dimensional space defined by
the orbitals. Further, in the real space only the total
one-electron density has physical significance, not the
individual orbitals. By identifying Pauli repulsions
between filled orbitals with shifts in the one-electron
density from regions of low potential energy, these
authors demonstrate that interpretations of such
repulsions in terms of colliding orbitals in real space
can be misleading. Also, by considering the molecules
H,O and NH3, they show that: (a) the shifts in one-
electron density arising from the Pauli principle do not

"In case of I.i2, however, the theoretical and experimental
force curves seem to have quite different slopes near the equilib-
rium bond length (Chandra and Sundar, 1971).
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lead to a decrease in the "tetrahedral" bond angle in
H20 or NH3, (b) the electron distribution in these
molecules cannot be related to a tetrahedral set of
orbitals; and (c) the imferactions between bonding
orbifajs are larger fharr those irrnoleirrg tole pa-ir orbituis

H. Intermolecular Forces

A major difhculty in applying the H—F theorem to
the problem of intermolecular forces—although the
theorem holds a promise of conceptual simplicity —is
associated with the calculation of a reasonably good
single-particle density for intermolecular systems. Such
a single-particle density should contain the effects of
electron correlation as the latter plays a major role in
governing the nature of intermolecular forces (Hirsch-
felder and Meath, 1967). Bader (1964b), however, has
shown that the force may still provide an insight, for
example, into the nature of the hydrogen bond (Bratoz,
1967) as well as into the mechanism of proton transfer
reactions. Bader and Chandra (1968) and Hirschfelder
and Meath (1967) have discussed the long-range inter-
action of two hydrogen atoms. They conclude that the
origin of London dispersion forces lies in the simul-
taneous inward polarization of the atomic densities of
both due to their interaction (see Fig. 5, 8=8.0 a.u.).
Makin (1968, 1970) has also applied the H-F theorem
to: (i) the interaction of two hydrogen molecules,
(ii) the three-body repulsive forces between three
hydrogen and between three helium atoms, and (iii) the
interaction of a helium atom and a hydrogen molecule.
In the last instance the hydrogen basis AO's require
some p character to be incorporated, so that the force
on a helium atom is always repulsive as it approaches a
hydrogen molecule along the perpendicular bisector of
the H—H length.

I. Miscellaneous Other Applications of the H-F
Theorem

From the preceding discussion of the applications of
H—F theorem to various chemical problems it is clear
that we really do need very good wave functions" in

order to obtain satisfactory forces. One could, there-
fore, turn the problem about and employ the H—F
theorem to test and analyze calculated molecular wave
functions (Bader, 1963; Kern and Karplus, 1964) . The
conclusions emerge that: (a) one must be careful in the
selection of basis functions in large-scale molecular
computations, and (b) significantly different charge
distributions can result from alternative basis sets of the
same size (Kern and Karplus, 1964); such density
fluctuations from one basis set to another can be as
large as effects of chemical binding. It is also reasonably
certain that single-determinantal wave functions for a
given basis, obtained by accurately evaluating all the
necessary integrals, are unlikely to satisfy the criterion
of electrostatic equilibrium unless this condition is
employed as a pre-imposed constraint in the mathe-
matical procedure.

A constrained variational formalism has indeed been
developed by Loeb and Rasiel (1970). Their results on
LiH show that the imposition of the constraint of elec-
trostatic equilibrium, for either the proton or the Li
nucleus, results in only a small increase in the over-all
energy while the constrained wave functions yield
improved expectation values for a number of Gb-

servables.
Freed (1968) employed the H-F theorem to show

that in the Hartree —Fock theory the errors in equilib-
rium molecular geometry and the barrier to internal
rotation are of second order, like those of the one-
electron properties. Coulson and Deb (1969, 1971)
(a) demonstrated that Slater's rules are not adequate
for molecular calcula, tions with 3d AO's, and (b) rein-
force the view that the closed-shell "virtual" orbitals
in the Hartree-Fock procedure must be treated with
caution. Bader et al. (1967a) suggest that, for first-row
homonuclear diatomic molecules, the MO's can be
classihed as binding, non-binding, or antibinding,
according as f,&&1, respectively, where f„ is defined as
the force exerted on a nucleus by the ith occupied MO,
multiplied by R'. Mulliken (1966), however, concluded
that there is extremely poor correlation between the
computed force exerted by an electron in an MO and its

"It would, of course, be very nice if one could compute an
accurate single-particle density without the need to go through
the wave function itself; i.e., through the Schrodinger equation.
Unfortunately, this remains one of the great unsolved problems
in quantum mechanics. There seems to be two possible approaches
to this problem-: (i) Setting up a differential or an integro-dif-
ferential equation involving the first- or the second-order density
matrix. (The diagonal elements of these matrices are the single-
particle and two-particle densities, respectively. By integration
with respect to the coordinates of one particle, the second-order
matrix is reduced to the first-order matrix. ) (ii) Finding out
all the conditions which an accurate single-particle or two-particle
density matrix must satisfy and then incorporating these condi-
tions into a trial function. The prospects for either of these two
approaches are bleak. No progress has been made towards (i)
and, while not enough is known regarding rhe conditions in
(ii) for the first-order density matrix in order to develop a varia-
tional formalism, the second-order matrix has to satisfy so
many conditions that one can never incorporate all of these

into a trial function. However, as mentioned in Sec. 4.C, one
can compute approximate single-particle densities to suit certain
purposes lace Makin (1970) for the example of two interacting
helium atomaj. In a recent paper, Bader and Beddall (1972)
have proposed an interesting route towards obtaining the single-
particle density in a molecular system. Their analysis highlights
the possibility of the existence of a field relationship for the
single-particle density p(r), a relationship which might be ex-
pressed as some functional of the total virial field. This proposition
is based primarily upon two observations: (a) It is possible to
partition a molecular system into fragments in such a way that
the same virial relationship between the average kinetic and
potential energies observed for a total molecular system also
holds for each individual fragment. (b) In a series of molecules
having certain common fragments, the fragments which possess
nearly identical p(r) distributions also exhibit nearly identical
distributions of the total virial ~(r); this suggests that p(r) may
be related to the total virial of all th. forces exerted on each
element of the charge density.
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bonding power as judged by the so-called thermo-
chemical and equilibrium criteria of bonding, neither of
which, however, is infallible. In the case of a single
electron moving in the joint Coulomb field of two fixed
nuclei of charge Z, Cohen and McEachran (1968)
show that identification of MO s as bonding or anti-
bonding is not unique but depends sensitively on Z; a
change in the value of Z can make bonding orbitals
antibonding and vice versa.

Salem (1963) and Anderson, et al. (1969) show how
one can relate a vibrational force constant, obtained by
differentiating the force with respect to a nuclear
coordinate, to the corresponding field gradient tensor
for the electronic distribution, taking the particular
nucleus as origin. By resolving the molecular one-
electron density into two components, one which
follows nuclear motion and another which does not,
Anderson and Parr (1970) obtain a Poisson-type
equation for nuclear motion

V' 'W=4n-Z pp(n),

where 8' is the total electronic energy, Z is the charge
of nucleus n, and ps(u) is the sum of orbital densities
from all other atoms P.

There have also been several applications of the
H—F theorem in which the parameter P represents
quantities other than nuclear coordinates, e.g. , masses
(Pais and Epstein, 1949; McKinley, 1971), nuclear
charges (Wilson, 1962)," scale factors (Chen, 1963;
Pandres, 1963), radial quantum numbers (Epstein and
Epstein, 1962), etc.

S. CONCLUDING REMARKS

The theme of this article has been a realization that
there are pleasures as well as heartbreaks awaiting us if
we wish to employ approximate wave functions for the
purposes of the H—F theorem. However, the simple
concepts of chemical binding and molecular shapes pro-
vided by this little theorem, whose proof is almost
trivial, have been very satisfactory and one feels
unable to agree with Musher (1966) when he says that
the concept of force is not a useful one. To conclude,
therefore, we should do well to employ both the energy
and the force formulation in our studies of molecular
structure and dynamics. The former approach would
generally provide more accurate numbers, while the
latter should provide a simple unified basis for de-

"The case where X can be identified with a scale factor for
nuclear charges has an interesting consequence. In this case,
one can examine changes in e.g. , total energy and MO energies,
the nature of electron reorganisation etc. during molecular
"transmutations" of the type CO—+N2. This involves scaling
"up" of the carbon nuclear charge and scaling "down" of the
oxygen nuclear charge by unity. Unfortunately, at present one
does not have wave functions for intermediate values for the
two nuclear charges so that, apart from calculating the energy
changes (see Epstein, et a/. , 1967) involved in such isoelectronic
"transmutations", one cannot at present make a detailed study
of these processes.

veloping physical insights into different chemical
phenomena. Chemists have a need for simple concepts
and models (Coulson, 1970) for molecular shapes and
chemical reactivity which can withstand a searching
critical examination of their theoretical foundations
and are also open to quantitative extension, at least in
principle. The H—F theorem holds great promise as a
useful tool for such model building, especially for
explaining the mechanisms of chemical reactions.
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