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We present a review of rigorous results on scattering amplitudes at low, intermediate, and high energies. The emphasis
is on constraints that can be compared with experiment. Some new results are presented, in particular the existence of
absolute boun s for inelastic processes, constraints for odd pion —pion waves, and a lower bound for scattering amplitudes
at positiveI"t. ost of the results rest only upon unitarity and what is popularly known as axiomatic analyticity, but
there are a ew cases where larger analyticity domains are needed.

Gif-sur- Yvette (September 1971). The emphasis in both
cases (and this is reflected in these notes) was on
results that can be proved rigorously and are directly
related to phenomenology. Ke have preferred to
give a few typical proofs in detail, rather than a long

647 list of sketchy discussions.
These notes coritain some new results as well as648

others that, although probably known to specialists,
have never been published in detail. Among such

65p results, let me quote the positivity bounds for odd
651 rrx waves (and the ensuing justi6cation of Weinberg's

linear approximation) (Sec. 2.2), the existence of
653 absolute bounds for inelastic processes (Sec. 3.4), and
654 the lower bounds for scattering amplitudes at positive

values of the momentum transfer (Sec. 4.1).
A bibliographical note and a fairly complete list of

references is given at the end.
658
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1. PRELIMINARIES

1.1. Intxoduction

Copyright Qc 19/2 by the American Physical Society

4.1. l.ower Bounds at Fixed t. . . . . . . . . . . . . . . . . . . . . . . . Since the pioneering .work of Froissart (F1), and
4.2. Large Angle Bounds, . . . . . . . . . . . . . . . . . . . . . . . . . . . through the many improvements and extensions of it5. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . ~. . .
5.1. Finite Range of Strong Interactions. . . . . . . . . . . . . . carried on mainly by Martin and his school, it has
5.2. Sizes of Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . become obvious that the analyticity that follows

Appendix —Some Recent Developments. . . . . . , . . . . . . . . . .
Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rigorously from, say, axiomatic Geld theory, can be
Bibliographical Note. . . . . . . . . . . . . . . . . . . . . . . . ~. . . . . . . . . used effectively, when combined with unitarity, to put

fairly strong constraints on scattering amplitudes at
low, medium, and high energies. The bounding art,
described at times as applied Geld theory, and at other

This review has grown out of lectures given by the times as telling what a sensible 5-matrix cannot be,
author at the G.l.F.T. meeting in Barcelona (June has come now to a state such that meaningful compari-
1970) and at the School in Elementary Particles at sons with experiment can be made. To the rejoicing of
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the faithful, Goldberger's statement at the 1961
Solvay meeting ("The predictive power of axiomatic
field theory is less than any positive 4, however small" )
has been proven wrong —even if, many times, the
predictions are still an order of magnitude' too coarse.
What is perhaps better, the output of the bounding
game has already found applications to phenomenology.
To quote just an example, of the several solutions of
Iliopoulos unitarized current algebra calculations of
low energy m~(I1), all but one can be discarded on the
basis of the crossing constraints of Martin and col-
laborators (M6; ABMM1) .

Since these notes are about bounds, let me begin by
bounding the notes. Among the many topics that shall
cot be discussed here are the actual applications of the
limitations obtained Lsee the reviews of Wanders (W1)
and references therein); what may be described as
"high energy theorems, " although this is more and
more becoming of the rigorous-bound-type (KK1;
AKM1; GY1; SR2 for multiple references) and, finally,
I will not discuss the very interesting work of Atkinson,
Kupsch, and collaborators, who, by making the Mandel-
stam iteration procedure work, threaten us with explicit
construction of the exact S-matrix, thereby killing the
goose that lays the golden eggs. Also, there are up-to-
date reviews (A1; A2) of this work.

Then comes the point of what is to be our input. We
have unitarity, of course, and analyticity. With respect
to the last we shall consider three di6erent possibilities:
First, we have what may be called axiomatic analy-
ticity, namely, the analyticity that can be proved
rigorously from axiomatic field theory. Perhaps it is not
necessary to remark that by axiomatic field theory one
need not stick to the old Wightman framework in which
one needed such difhculty justifiable assumptions as
temperedness; temperedness disappears altogether,
locality simply means that measurements separated by
spacelike intervals do not interfere, if these intervals
are large enough, and the concept of interpolating fields
can be dispensed with. This generalization has been
completed recently L(EGM1) and references therein).

Second, we may assume quasiaxiomatic analyticity.
This means that one assumes for any process the
analyticity corresponding to that rigorously proven for
nx or mE. Quite likely, quasiaxiomatic analyticity will

be, after all, also a consequence of axiomatic field
theory. Let me note that quasiaxiomatic analtyicity
seems to hold to all. orders of Feynman perturbation
theory (KLOP1). The third possibility is to assume the
full Mandels tarn representation. Surprisingly enough,
and with only one major exception, the last two
hypotheses are seldom any help.

Uniess we state the contrary, we will use oe/y
axiomatic analyticity. A brief description of this
analyticity can be found in Sec. 1.2; for more complete
discussions we refer. to (S3; M'I).

Finally, I will mention that, as is unfortunately
always the case in rigorous treatments, we shall have to

neglect weak and electromagnetic interactions and
restrict the word "particle" to mean "stable hadron. "

3P=pp, "2—p2 =P2

The scattering amplitude for such process will be
denoted by

(Pl~le P2"2
~
+ I pl ~1 j P2 4) ~xgxu:xa'x2' (s&1 tyfg) y

where

Z54(pg+P2 —pg —p2)Z" S—1

s= (P'+P2)', t= (P. P')', -I= (P P')'. -
These three variables are not independent but satisfy
the relation

s+t+N=ilP+M"+pz+p 2'

which makes it possible to drop whichever of them that
may be irrelevant for each particular problem con-
sidered.

Here T can be extended to complex values of the
arguments. In particular, the same function will
represent the scattering amplitudes for diGerent
channels; this is the celebrated crossing symmetry,
and is a rigorous consequence of axiomatic field theory
(BEG1). These "channels" correspond to diferent
ways of looking at Fig. 1. They are traditionally
denoted by

s channel: A+B +A'+B', —

I channel: A+B~A'+B',

t channel: A+A~B+B,
where X is the antiparticle of X. All other possible
reactions can be obtained from these three by use of
TPC.

FIG. 1. The scattering process A+B—+A'+B'.

1.2. Review of Kinematics, Analyticity and Unitarity

A. EAiemutics

We will consider scattering processes such as that in
Fig. 1. Here p and X denote the four-momenta and
helicities of- the various particles; their masses will be
denoted by
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Next, we give the expressions for various physical
quantities; in view of the applications, we shall con-
sider the case A=A', B=B'.Then, we have

q„2=X(u M', t22)/4s cos8.=1+t/2q, s

q 2=X(u M' t22)/4s; cos8„=1+t/2q„',

q22= t/4 ts' —Q2= t/4 —M';
2

cos 8,= (s+q, yg, )/2q, ()

(g ~}'-t
Up Sp

0

M (M+p, }

Here )t is Kallen's quadratic form, X(x, (t2, bt) =
Lx—((t+b)2)Lx-((t—b)'j, 8', is the c.m. energy in
channel x, cos 8 the scattering angle, q,~„ the c.m.
momentum in channel s/u, q, /Q, the c.m. momentum
of particle 8/A (respectively) in channel t We s.hall
also use the laboratory energy of the projectile (particle
8) in the s channel, E= (s—M' —t22)/2ts.

2)22-2M2

"o & =So
2

~ d2JCL 2
2

So -. 4M

B. Amalyticity

T),2),2,),2 )„"s"n(s,. t, u) may have kinematical or
dynamical singularities. We shall show how to dispense
with the 6rst in amoment; as to the last, we remark that:
(i) For fixed s (we drop u now, and forget temporarily
about spin), T(s, t) is analytic in what may be called
the Lehmann-Mandelstam-Martin (LMM) ellipse'
which, in the variable cos 8„has foci at cos 8,= &I and
right extremity at cos 8,=1+to/q, 2; to depends on the
particular process under consideration. For 8=octet
meson, A =octet baryon, to=4@2; for B=octet baryon,
A =octet baryon, to =t22 (ts =mass of pion here) .
(ii) For t fixed inside the LMM ellipse, T(s, t, u) has
cuts starting at so ——(Mal+Ms))' and running to +~,
and starting at uo= (Mtt+M t)2 and runni'ng to +De.
Here C, D (respectively: E, F) are the particles with
lowest mass such that the process A+8—2C+D
(respectively: A+8—28+8) is possible, physically or
virtually. Also, T has poles at every s=M+2 (respec-
tively: u=Mst') if there exist single particle states,
G(respectively: H) that couple to A+8 (respectively:
A+8). (iii) In addition there may exist a finite but
eventually large region of possible nonanalyticity (the
Bros—Epstein —Glaser region) referred to in the jargon
as the potato, which is attached to the existing un-
physical cuts. The best way to see this is pictorially as
shown in Figs. 2 and 3 (p. 652). Quasiaxiomatic ana-
lyticity then means that the potato isn't really there.
May I perhaps remark that the overwhelming majority
of the results we wIll present are potato independent.
(iv) Two variable analyticity. We refer to the review
of Sommer (S3) and remark that enough has been
proved (BEG1) to show that one can get, within the
region of analyticity of T, from the physical region of
any of the three channels to the physical region of any
other one. If we denote by T& ~) to the continuation of T
from channel x to channel y, this result implies the

' We could throw in still another M if we recall that the extension
to spinning particles involved also G. Mahoux.

Fxo. 2. (a) Singularities for 2rllr scattering. (b) Singularities for
NN scattering.

gtr+t2(s~ t) 12 if jt+j2——integer

= Ls—(M+ts)'j'+st, if jt+j2Winteger,

is free from kinematical singularities in all three channels
(MM2), (CMN1).

famous property of crossing symmetry, valid for any
process A+BE'+B'
T$2$2i)L1.)L2 ($2 t2 u) Zrkltu (X&o)dpi)L2 ()(oo)

XTX2L2;Xt'X2' (s2 t& u) (F2'gr' ()(go) F2'g2' (Xgo) 2 (1 1)

where T&» stands for the physical amplitude in channel
y j& ~ j2' are the spins of A, ~ ~ ~ B', the d& the well-
known Wigner functions, and y„, the so-called crossing
angle. Here x,„depends on the s, t, u, and the masses of
the particles; its explicit form can be found in (MM1;
CMN1) .

Equation (1.1) does not take care of internal quan-
tum numbers; these will give rise to other, now numeri-
cal, crossing matrices: if we denote by I, the quantum
numbers in channel. s, we have

(* o) —g rr T (o)

Ifl '

Now we turn to kinematical singularities. The
helicity amplitudes are plagued by them. Very general
ways of removing them are described in (CMN1)
I see also (81)j. Here we shall only construct one
amplitude free from kinematical singularities; this will
be sufhcient for our purposes. -Again considering the
case A=A', B=B', it can be shown that

P(s, t, u) —=L) (s, M', t22) ft2+t2&t, +t2(s, t)

X g T),)„., ) 2)„(')(s, t, u), (1.2)
XgI)t p

where
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Absf), ) s(s) = Z (B, A&). ;s, J I
&

I n;s, ~)

X (B, A&) '; s, J
~
Z

~
n; s, J)*(2q,/s") .

Therefore, if we define

f)) (s) —= (s' '/2q, ) f)) (s),
we shall have the relations

(1.4a)

Abs f),), s(s) = g o.), (n) o.), *(n), (1.4b)

0& g ~ fq )s(s) ~'& Im f)),(s) = Abs fqq(s) &1. (1.4c)
nfl

The equality holds between
~ f ~' and Im f in the elastic

region. In writing Eqs. (1.4) we have assumed in-
variance under time reversal; this is not necessary for
anything that follows, but simplifies the writing.

Then we introduce the important notion of positi()ity.
This was first introduced by A. Martin (M5) for spin-
less particles, and generalized by Martin and Mahoux
(MM2; M2) for arbitrary spin. We will say that the
amplitude

F (s, t, u) = Q C&,&o;), )), (s, t) T&&,;&, ), (s, t) u),
{XJ

has positi()ity (MS) if it is free from kinematical
singularities and, both in the s and I channels, we can
write

Im F= g a„cosn8,
n

c„&0in the physical s and I regions. It may be shown
(MM2) that F, as defined in (1.2), possesses such
positivity. Other amplitudes with positivity have been
given by Bell (B1).

One fundamental consequence of positivity is. the fact
that

8"/Bt" ImF(s, t))0 for 0&t&t, n=0, 1, 2, ~ ~ ~ .
This follows by explicit differentiation, and noting that

(8/8t) cos n8= g b„„cosn'8,
n~

with b „)0, so that the derivatives of Im F(s, t) have

C. UnitariIt'y

Ke now turn to the ever-useful partial wave expan-
sions whose main interest (for us) lies in that they
diagonalize unitarity. Because we will mainly work with
pions and nucleons, we shall assume that only particle A
has spin, j.Also only s-channel expansions will be given
now; some I- and t-channel expansions shall be pre-
sented later. In this situation one has (JW1)

T (s, t) = Q (2s+1)d), ~ (8,)f), (s), (1.3a)

where f are the partial waves, with total angular
momentum J:
f)), s(s) =s'"/2q, (B, AX; s, J

~
X

~
B, A&),'; s, J), (1.3b)

with obvious notation. Unitarity then gives

the same structure as Im F(s, t) itself. This property
(8"/Bt" Im F)0) is also referred to as (weak) positivity
It shall be used repeatedly in all that follows.

Finally two points of notation must be mentioned.
For spinless particles, F=T; the amplitude will be
denoted by Ii. Ke will use T without helicity labels
when we consider particles that may eventually have
spin, but whose spin we are temporily ignoring. Second,
we shall denote by F,(T,) the absorptive (= imaginary)
part of F(T) in channel x.

F(+&(s, t, u) =a(t)+b(t)s

(s si) (s so) F (+)(s' t)
(s' —si) (s'—so) (s'—s)

(s—si) (s—so) ", F (+&(u', t)
) ) '

or (~+)))o (s si) (s so) (u —u)

(1.6b)

Now, cos 0& is a linear function of s: hence, if l&2, the
subtraction polynomial will give no contribution if we
insert Eq. (1.6b) into Eq. (1.6a). Furthermore, as all
integrations are convergent, we may exchange orders of
integration so that

f((+&(t) =x—'
(M+y)2

+1
ds' F,'+&(s', t) — d cos 8)

2

XP~(cos 8)). . . +Lou] . (1.6c)
(s si) (s—so)

s si s so s —s

Then, one uses Neumann's formula:

+1 co+cix+ ' '+c)xdxP((x), (z—x)—'= Q((s),
2 i co+ois+ '+o(s

to integrate the first term in Eq. (1.6c). It is not
necessary to integrate the second (s+-+u) because, as
cos 8) oo (s—u), the exchange s~u amounts to ex-
changing cos8) with —cos8). since Q( —s) =Q(s) X
(—1) '+', it follows that the (s~) term has only the

1.3. The Froissart-Gribov Reyresentation

One of the most useful tools for squeezing information
out of unitarity and analyticity is the Froissart-Gribov
representation (F2; G1). This is obtained as follows:
sit in the t channel, in the unphysical region (0&t&to,
we are again considering A =A', B=B') . Taking spin-
less particles, to begin with, one can write

l
f((+)(t) = — d cos 8,P((cos 8))F'+& (s, t, u), (1.6a)

2

where we have altered slightly the notation f(=foos=', —
and F'+'(s, t, u) = F(s, t, u) +F(u, t, s) . In this t region,
F satisfies fixed t dispersion relations; we shall prove
below (Sec. 1.4) that these are at most twice sub-
tracted. Hence we have
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eGect of killing odd waves and doubling even ones.
Wraith all this, we obtain the Froissart-Gribov formula,

ft(+)(t) =(srq, Q&)
' dsIP, (s, t)+F„(s, t) I

(M+Jg)2

N' is integer, also holds in the analyticity ellipse with
right extremity t0. We will now determine the value of
iV, starting from

I T(s, t) I
&Cs~, «t.. {1.8)

I$
+qP+QP'I

2q~Q~ ) ' l= even &2. (1.7)

As usual we begin by neglecting spin. Then, using the
partial wave expansion, (1.8) can be rewritten as

Where will this formula be valid' Clearly, until Eq.
(1.6b) breaks down, i.e., up to t= to.

The incorporation of spin is trivial; all that we must
do is to use P as given by Eq. (1.2), and substitute f)
by appropriate projections as, e.g.,'

+1
k)(+) (t) = d cos H~P)( e) (cos 8~)P(s, t);—1

Neumann's formula is substituted by

2 —1 cp+cls+ ' ' '+cls
=Q

where ee and P depend on the spins involved. For ex-
ample, for mN scattering, we Gnd

, .()
'-"' It~+q'+Q'&I'
2Q~qg ( 2q~Q~ i

G pQ o))( +qt +Qt
2q,Q;

Cs~)
I T(s, tp) I & T,(s, tp) = g (2l+1)Pt(cos HP&)

0

X Im f)(s))(2l+1)P)(cos 8,( &) Im ft(s);
cos 8~—:cos Hg(t= to) =s+ (tp/2q~ ) &

i.e.,

I Im f)(s) j)/'

( (2q, ) "C"sN/'/s"P(2l+ 1)P)(cos 8,'")j'/'.

On the other hand, for t physical, we have
I P) (cos 8,) I

&
1: therefore, for t physical now,

2qs—„;I T(s, t) I

=
I Z (21+1)P)(cos8)f)(s) I

& g (2l+1) I f)(s) I
& g (2l+1)PImf)(s) j'/'

0 0

L(tt) co

(&+ Z ) (2l+1)Limf, (s)
0 L(tt)+1

L(s)
& g (2l+1)+ Q (2l+1)Dm f)(s) J/'

+(sq~Qi) ' dsIP, (s, t)+P„(s, t)j
(M+gs)2

+ '+Q' ' „„+'+Q't
2q,Q, & 2q,Q,

The Grst term in the right hand side comes from the
contribution of the nucleon pole. The k)(+)(t) are related
to the usual helicity waves, gs(+) (t) by

2t)/' l+1 ]1/2

a,(+)(t) =
qg'/sQP/P 2l+3

g)(+) (t) g~p(+) (t)—
2M

))/P (1+P )IP

For details, see (Ci; CV2).

1.4. Polynomial Bounds on Scattering Amplitudes

We said that, from axiomatic Geld theory, one can
prove that

I T(s, t) I
(C'sN', J)l' independent of t, if t is

physical. Furthermore, Jin and Martin (JM1; MS)
have proven a theorem which shows that the same
bound, except perhaps increased by one power of s, if

' For the definitions of the special functions, Pl(~), Q~(+@, etc.,
~e follower (MOSi).

(LL(s) j'+2L(s)+1+ g (2l+1) I Im f, (s) j'/p
I (e)+1

we have used the unitarity constraints, Eq. (1.4),
0&

I ft I'& Im f)&1, and the above result is valid for
any L.Then, one remembers (MOS1) that P&(cos 8,('&))
C' expIC"1/s'/'$: therefore, taking L(s) =. rts'/' logs,
and using both inequalities together, we get (t physical)

I T(s, t) I
&se's log' s+C'"s" Q (2l+1)'"

nS1/'2 log 8

X expI —C"l/s'/'3.

The second term can be summed explicitly; it behaves
as s "~0+~1, so that it is negligible if e is large enough.
Thus, we have

I T(s, t)'I & (constant) s log' s. (1.9)

This is the original Froissart bound (Fi); it will be
elaborated further on. As we have derived it, it holds

only for s positive. However, exchanging the roles of
particles 8 and 8, it will, due to crossing symmetry,
still hold for I positive, i.e., for s negative. Then, the
Phragmen-Lindelof theorem tells us that, in fact, (1.9)
is valid along any direction in the complex s plane.
Therefore, we have only to apply the Jin-Martin
theorem to find that the Jq of (1.8) was indeed equal to
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2. Actually, one can prove more: one can show that and the partial wave expansions

ds s '
I T(s, t) I

(
or

I T(s, t) I
(Cs' ', p)0, for t&tp. (1.10}

The inclusion of spin is fairly simple. One substitutes
T by F as given by Eq. (1.2), and the bounds

Pi(cos 8,&P&) &C' expLC"l/{s) '"g

by corresponding bounds for the diaz s(8,); the rest is
similar. The result is that one finds (1.9) for any
Tq,q, q;q, , and (1.10) is replaced by

00 2t
F(s, t) = g (2l+1)Pi I 1+ fi(s),l~ s—4

f~(s) =Ls/(s 4)—j"ft(s). (2.2)

Due to the statistics of the pions, we have fi(s) =0 if
i=odd; we shall understand that all sums over l run
over even values of l only. Then, we will use a result
that will be proven in the following section

0( at+p& (1/16) L(l+1) (l+2) /(l+ Pp) (l+ Pp) ]a(. (2.3)

Using well-known properties of the Legendre poly-
nomials (MOS1) and (2.3), one sees at once that

I F(s, t) I
&Csp &n+»&s»'t»s e)0, for t& to, r(l+-;)

F(4, 2, —2) =ap+z-'I'Q (2l+1)2' '
ag

(1.11)
' ' = I'(l+1)

where

if ji+jp ——integer

if ji+j,&integer.

We refer to (MM1; M1; 81) for details.

where
& ap+Eap, (2,4a,)

16 "
Q (2l+2)2 ' g . (2.4b)I'(l+1) t-4 ~'—4

2. LOVf-ENERGY BOUNDS AND CONSTRAINTS

2.1. Absolute Bounds inside the Mandelstam
Triangle for xm Scattering

a(—= lim fi(s)/qP ', (2.1)

By repeated use of analyticity, crossing, and unitarity,
supplemented with reaned minimization techniques,
Lukaszuk and Martin (LM1) obtained a set of absolute
bounds on the xn scattering amplitude, F(s, t, u),
inside the Mandelstam triangle: s&0, t&0, n&0.
Although these bounds are valid only in unphysical

'
regions, they are very interesting for two reasons:
Grst, from a purely theoretical point of view, they show
that the xx forces have a saturation point, i.e., they
cannot be made arbitrarily strong. This is perhaps best
understood by recalling that a bound on

I F(s, t, I) I

inside the Mandelstam region implies a bound on the
four-pion coupling constant defined as' (CM2) X4 —=

F (~, ii, ~) I. Second, it will be obvious that bounds on
F(s, t, I) I imply bounds on the S-wave scattering

length, which are certainly useful for phenomenological
analyses of ms scattering (I1).

Instead of giving the long and complicated general
proofs, we shall exemplify the methods by giving lower
bounds for F(4, 2, —2) and to the scattering length, ap,
for x'~' scattering, following a method suggested by
Martin and developed by Common and Wit (CW1).

To begin, we recall the de6nitions of the scattering
lengths,

The product g,=q' is dehned to be unity for l=2. X
can be computed numerically quite easily. Now,
numerical estimates using phenamenological estimates
for ap (ap~10 ') show that Sap is small; therefore we
neglect this term (later we will indicate the results one
obtains with an exact treatment, that is, without ne-
glecting ap). If we do so, (2.4a) becomes

(s' —1)F,(s', 2)

4 (s'—4) (s' —s) (s'+2) (s' —2+s)

Since F,(s', 2) )0 from positivity I cf. Eq. (2.2)j and
we have assumed F{4,2, —2) &0, it is clear from Eq.
(2.5) that F(s, 2, 2—s) has no zero in the cut s plane
and is convex between s= 1 and s=4, i.e.,

(d/ds) F(s, 2, 2—s) &0, 1&s&4.

Now take s=2; Eq. (2.5) yields the majorization,

16 ", (s' —1)F,(s', 2)

ap&F(4, 2, —2);

Therefore, a lower bound on F(4, 2, —2) implies a
lower bound on co.

To 6nd the bound to Ii w'e begin by assuming that
F(4, 2, —2) (0: this is no restriction because we are
looking for a lover bound. Then, we write a dispersion
relation for F(s, 2):

2(s+2) (s—4)F(s, 2, 2—s) F(4, 2, —2) =—

'Throughout Sec. 2.1 eye take units such that p=mass of
pion = I. The next step is to apply repeatedly Schwartz's in-
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equality to F; letting x= 1+4(s—4)—', we get

I F(s, o) I'=~& I(s'"/q. ) Z (21+1)ft(s) I'

& (s/4qdse) fZ(2l+1) I ft(s) I'Pd (x) }

X IZ (21+1)IPt(x)] '}
& (Sst'/2qe) F,(S, 2)ZL(2l+1) /Pl(X) ]

—= (s't'/2q, ) C (s)F,(s, 2),
2l+1

o PdL1+4/(s —4)]
Therefore,

I F(2, 2, 0)I16, 2q, (s'—1) I
F(s, o) I'

(s'—4) (s'—2) (s'+2) s'C (s') (s')"'
This can be rewritten as

(F(2, 2, 0)( '& (2e) ~ f dalr( )( F(ee' )~ , e(20e)

where
FId(e' ) =F(s, 0)/F—(2, 2, 0), (2.6b)

1+2m

2(1+s) (2+~)Z(21+1)/PtL1+2(s) —1) '] '

(2.6c)
w=—I 1—tan (2gg/2) ]'t'

and we have made the change of variables

t—I:(s—2)'/4 —1]'"
w= . , r=—IwI,i+L(s—2)'/4+1]'t' '

Again using the Schwartz inequality, (2.6a) gives

0.=—arg m.

(F(2, 2, 0)( '& Iexp (2e) 'f dalr(a)

exp 2x ' do log Pg e~o

Since F(s, 2, 2—s) has no zeros, we have

(2e)-'f dalog(Fe(e')('=2logre(ee 0). =

But w=O corresponds to s=2, so that using (2.6b)
gives log Fds(w =0) =0: we have proved

IF(2, 2, 0)l-'&emL(2 )-'f d )r(a).j.
Here W (n) is an explicit function; thus we can perform
(numerically. ) the integration in the right hand side
above getting

I
F(2, 2, 0) I

& 19; F(2, 2, 0) & —8.9;
the second if F(2, 2, 0) was negative. Due to the con-
vexity of F (s, 2, 2—s), we therefore obtain

-8.9&F (2, 2, 0) &F(4, 2, —2) &g) ..

these are the desired lower bounds. The analysis can.bc
much refined, and we give a list of what has been
obtained:

ao& —19 Lexact (LM1)],
ao& —4 Lexact (BV1)],
ao& —3.5 Lexact (M8) ],
ao& —1.15

I if (ts small (CW1)]; (2.7a)

for definite isospins one has, e.g.,
ao(o) & —7.5 (tots) & —7.1 Lexact (C3)]. (2.7b)

This is to be compared with the phenomenological
estimate (MP1) (to~.16. The constant improvement
with time is apparent. For the whole amplitude one
gets, for example,

I F(2, 2, 0) I
&8.5 Lexact (CW1)],

I F(3, 2, —1)
I

&75 Lexact (LM1) ],
—50&F(x, x, x) &8 Lexact (BV1)]. (2.8)

Apart from these bounds there is a variety of other
results that be proven for the S wave in the unphysical
region; for example, one gets fo(3.205) &f0(0.2134) &
fo(2.9863). In particular, these inequalities (which
include constraints for dfo/ds as well) imply that fo(s)
has a unique minimum inside 0&s&4; this minimum
must lie somewhere between 1.12 and 1.7. For further
details on these constraints, cf. (M6). Some others will
be presented in Sec. 2.3 here.

2.2. Positivity Constraints

Before we can really take profit from any constraints
derived on partial waves it is clear that one has to know
how many waves one has to take into account (for a
given accuracy). Certainly 5 and P waves are needed,
but when should one stops

The answer to this question is one of the important
consequences of the set of constraints that will be
described below.

The starting point in finding such constraints is the
Froissart-Gribov representation, Eq. (1.7). We will
begin with z'm' scattering, and generalize the result
afterwards.

Due to positivity, we have F.+F„&0 in the region of
integration of Eq. (1.7) . Furthermore, it can be provedg
that

(~/») LQ d. '~)(s)/Q (-e)(s) ]&o,
Now, in the region of integration of Eq. (1.7), we

have

2 (s+t/2 —2td') t+4td'
1

4p2 l 4p2

4 A general proof of the equation below may be found in (Y3),
Appendix A.
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f("' "(&) =(~lq I') ' d»"' "(~, &)
4p2

2s+t 414')—
Xe&

4
I,= odd &3.

Now, we have

P (Ig=l) IP(Is=0)~ &P(Is-I) SP(Is 2)
8 3 2 6

so that

I
p (I4 &&

I
(Lp (I~&+4.F (Iml)+0F (I 0)

((P 00+P 00) + (P +0+P +0) ~

therefore,

therefore,

"~ Ip.+F-}Ie .()/Q .(")-Q ()/e;(~) }&0,
4p2

so that one has the bounds

o&f "(~)& fe .["(~)l/e ["(~)3}f-(~I,
l,= even &2. (2.9a)

If the limit q&
—+0 is taken, this becomes

& (1/16) [(~+1)(&+2)/(~+-') (f+-') 3 ",
l,= even &2. (2.9b)

Many other relations can be obtained by relating Eq.
(1.7) to the so-called Hausdorff-like moment problems
(ST1); we refer to (C4; Y1; CP2). The generalization
of (2.9) is now simple. With respect to isospin, all we
need is that F,+F„bepositive; hence, (2.9) holds auto-
matically if replacing, e.g., f ~ =f~ an—d a~ by, respec-
tively, f(r'~& and u(r'~), or by f+0= (1/3)f(r4

1/3) f(r &='& and ~+0 (1/3) a(r,=o& (1/3) a(r &='&. To get
results for I&= 1 one must elaborate a bit further. First,
one notes that

p I+p 00 )p (r~)+—0F(r~0)

P M+ F ~=LP (r~))+ 4P(re 0)

Then, the Froissart-Gribov representation for f(r& '&

reads (note that F(r'='& is antisymmetric in cos 84)

0(a&+,(+&( I 1/[2y'(M+&4) )'}(&,, (+&,

where the a&&+) are given by

u((+& = [4n'M/2'y((3P —&4') ]n&(4'&

l= even &2,

—[24r')(4'Mc((/2'y((M' —p') ]n(

y( =—m'"l!/2'+'F (l+-0)

2l+1 +'
c(&—= „, dxP&'(x) P((x) x,

and the n&(+) are the standard helicity scattering lengths,

[-~"e /2q (qe)')q"'(~)
q ~-'+0

~&' '= »m L
—

Q "'/q"'(q~e4)'jg(' '(&)
qgM

The constraints for It,=1 odd waves can also be
generalized (Y3) .

Coming back now to 4r4r scattering, Eqs. (2.9) and
(2.10) tell us that, within an error of [Q3(s0) /Q2(s0) jX
(f0++fp), one can approximate any 4r4r scattering
amplitude by only the S, P and D waves in the t
channel. Since +m is fully crossing symmetric, this holds
true in all three channels, and hence we can write

F(s, t) =C0+C~t+C0s+C0P+C4s'+C0st, (2.11)

where the C's only depend on the isospin. From Kqs.

The extension to 4r~l&.E is trivial, and we leave it to
the reader. In respect to spin, one can generalize the
results for arbitrary spin (C1):however, since the only
case of interest is m~XX, we shall concentrate on
that. Also here the generalizations are trivial; all one
has to do (CY2) is to substitute in Eq. (2.9a) (say),
f&(~) by

&('+'()') = &&'+'(~) —[(~—
2& ')/2Q q 3

X I [(~'+qP+QP) /2q4Q(]' —1}

XG&)())& 'Q&(u) [(M'+q '+Q ') /2q, e,g

(the notation is that of Sec. 1.3), and Q„[z0(t)] by
Q ("&[(t+4)(4M)/4q4Q4j. Thus, Eq. (1.9b) becomes'

If"' "(~)l &( I q I') ' d [P. +P- He,
4'

+(~ I q dg[P,+0+.P +0]e&
4'

and, hence, reasoning as above, because now both
brackets are positive.

,(r 4-i) (t) I ( Ie&[so(t) j/Q0[so(t) j}[f0+ (t) +f000(t)g,

l= odd &3. (2.10a)

g K 1T, y////

I
I

Tt1 iK
1 I

II
/

l
I

ilm
I
I

In particular, for l=3, q&~0, we have

0'0"'& (2/9) ((r0~+aP) . (2.10b)

Before discussing the implications of (2.9), (2.10), I
will extend the analysis to particles other than x's.

(a)
FIG. 3. Lowest possible exchanges. (a) For x'E scattering.

(b) For XN scattering.

~ The bar over a quantity means that, just as for the k&, we
have subtracted the (explicitly known) contribution of the nu-
cleon pole.
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(2.9b), (2.10b) we expect the error to be typically
~20% (aa~+~oe). With the existing values for its

(MP1), this is a very small quantity. Of course one has
to bear in mind that these considerations hold rigorously
only inside the Mandelstam triangle and in a 6nite but
unspeci6ed neighborhood of it. However, one will expect
them to be true as long as the threshold expansion,
ft(t)—a&qP' is a good approximation, that is to say,
more or less up to the resonance region.

2.3. Crossing Constraints

There are two types of constraints imposed by
crossing symmetry: those that follow from crossing
alone, and ones that also contain some positivity. The
6rst are in the form of integral constraints, while the
second are point-wise.

A. Pere Crossing Constraints

All the constraints of this type mere contained in the
work of Balachandran and Nuyts (BN1), and it is only
because of the group-theoretic sauce with which this
paper was dressed that it took some time for people to
realize that. The rough idea behind these constraints
is the following: inside the Mandelstam region partial
wave expansions converge in all three channels, so it is
obvious that crossing symmetry must give consistency
conditions among the partial waves. I will refer to the
original papers (BN1; R1; BCM1) for the (impressive)
list of results, and just discuss a simple case, following a
method suggested by Nussinov and developed by
Roskies (Ri).

Take x m' scattering. If 6 denotes the Mandelstam
triangle, one has (tt= 1)

ff ds dt(s+t+u 4)F(s, t, u) =—0.

This formula is obvious, as s+t+u=4. However,
since F is symmetric, one can replace s+t+u 4by-
3s—4 so that

complete set of constraints giving necessary and
suKcient conditions for crossing. Here one starts with
f dsf dtp(s, t, u)F(s, t) =0, p any polynomial anti-
symmetric in s and t or t and I, and one gets, for
example,

dsI (4 s) s—L&fo"'(s) 5fo—"'(s)]

(M+Itt)

dsq eI [(3P+q s)'»+3f] [f»»&'»& (s)—f»&P»&{s)]
(M 8)2

L(~'+q ')"' tM']Lft —v~""'(s) —ft—v~"»'(s) ]}=0,

(2.12c)

where we use the notation fr, s 1&r', L= orbital angular
momentum, I,= isospin, J= total angular momentum,
for the mS waves.

B. Crossing Plls Positieity Constraints

Crossing conditions that include positivity go back
to the work of Martin (M6; M7), for n s' scattering.
They were then extended to include isospin (ABMM1)
and have been further improved recently (B3). The
method is both astute and simple. Working with x x,
one uses a twice-subtracted dispersion relation,

2 cps'0
F(s, cos8,) =C(s)+ F,(s, s)

ee(e) s(s —cos 8~)

(2.13)

and the Froissart —Gribov representation for l= even &
2

+3(4 s)f—~&"(s) ] =0, etc. (2.12b)

Also, one can extend the results to any process. As an
illustration, we show one of the simplest constraints
for nlV~X (BCM1):

f ds(3s —4) f dtF(s, t, u) =0.

ds2q, '(3s—4) d cos 8,F (s, t, u) =0,

Writing then dt=2q, 2d cos H„we get
4 +1

00

ft(s) =—
zp(e)

we have changed variables,

dsgt(s) F,(s, s); (2.14)

and, since

F(s, t, u) = g (2l+1)Pt(cos 8,)ft (s)

(s, t)—+Ps, z= (s—4+2t)/(4 —s)],

so(s) = (s+4)/(4 —s).

and

dxPt(x) =28to,

Equations (2.13) and (2.14) will be taken for 0(s(4.
(We are setting tt = 1 throughout this section) .Then one
uses the Darboux —ChristoRel formula

this gives at once

ds(4 —s) (3s 4)fP(s) =0. —(2.12a)

Kith extra mork, this method can be extended to a

Es(s' —x')] '= + (2l+1)Qt(s)Pt(x)
0

zPr, (x)Qz g(s) —xPz, g(x) Qr.(s)
L

Z2 —g2
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putting it into Eq. (2.13), one gets

2 cos28, ~2
F(s, cos 8,) = ' g (2l+1)

l=2

dsQ1(s) F,(s, z) P1 (cos 8,)
gp(tr)

2L
dsF(s, s)

(zp) s

X
sQy 1(s)Pz, (cos 8g) —(cos 8g) Qz, (s)PI 1(cos 8e)

cos ~s

Note that the contribution from the term /=0 from
Eq. (2.15) cancels the C(s) in Kq. (2.13). Using then
Eq. (2.14) this becomes

I—2

F(s, cos 8.) —g (2l+1)P1 (cos 8.)fi (s) =Rz (s, cos 8,),
lM

2L
Ez(s, cos 8,) —= — dsF, (s, s)

Zp

zQz 1(s)Pz(cos 88) —(cos 8g)Qz(z)Pz 1(cos 8g)

cos ~s

(2.16)

zQz 1(z)Pz, (cos 8,) —(cos 8,)Pz 1(cos 8,)Qz(z)

is positive/negative inside the region of integration.
Actually, since Qz, &(s)/Qz(s) is an increasing function
of s, it is easy to see that sign Deft hand side of Eq.
(2.16))=slg11 Pz(cos 8~) 1f

so(s) Qz 1(z,) /Qz (so) )(cos 8,)Pz 1(cos 8,) /Pz (cos 8,') .
For example, with L=4, we have

F g(2l+1)P1(cos 8,)—f1(s)

&0 for 0.8640(
i cos 8. i &1(a),

for 0.3439(
~

cos 8,
~
(0.8611(b) (2.17)&0

Since Il is fully symmetric, we can, in all that has been
said above, exchange s and t. Hence, we find following
the above example, that

F g(2l+1) P1(cos 8,)f1{t—)
0

&0 for 0.8640(
~
cos 8,

~
(1(c)

for 0.3439& I cos 8& I
&0.8611(d) (2.17')&0

F is the same in both. Taking then the intersection of
the region (a) in (2.17) with the region (d) in (2.17'),
and subtracting (2.17') from (2.17) the F drops out

Now, we have F,(s, s) /(s' —cos' 8,))0 in the region of
integration, so that the sign of the left hand side of
Kq. (2.16) is +/ —wherever

and we have,
2

g (2l+1) tP1Lcos 8«, (s=sz) )f1(t1)
0

1Lcos 8,=.,(t=t,) )f1(s,) I )0, (2.18)

where (s1, t1) are any values of s, t such that

0.8640&
i
cos8, „(t=t1)i &1

0.3439(
~

cos 8~=&,(s=s1)
~
(0.8611.

This method can obviously be extended to any L and
then optimized (finding the particular values of s1, t1

that give tighter bounds). It may also be proved that
the ensuing inequalities will give necessary and suf-
ficient conditions for crossing symmetry (and some
positivity of F„ too). Furthermore, one can improve
the results by taking into account isospin and by
using the fact that not only F, (s, cos8,), but also
(8/8 cos 8.)F,(s, cos 8,) is positive. Thus, for example,
one gets

f0&0& (s1) —f0&'& (s1)+ (0 0843)f o. & (s1)

) zfop1(sm) +—fpo1(s2) + (46476)f1~ 1(s2)
& (2.19)

With S1——03650, Sz= 1.'755'7.

Still other constraints can be obtained by mixing the
positivity constraints of Sec. 2.2 with the purely crossing
contraints of the beginning of this section. The problem
of course, is very involved, and we refer to the original
papers: (PW1; R2; BB1;Pi; CP1).

What is the moral of all this? To me it seems to be
that given any model for mx scattering one has a simple
way of checking its consistency. In particular, in the
very low energy region, using Eq. (2.11) together with
the crossing constraints tells us that once one knows one
of the two scattering lengths a0 or e& by some inde-
pendent method Las current algebra (W2) for ao or p
dominance for u&) and the fact that ~ is small, every-
thing gets fixed within fairly narrow errors. For ex-
ample, this explains why the Veneziano (V2) and
Weinberg (W2) models are practically equal at very
low energy in spite of their radical dissimilarities at the
resonance region.

3. MEDIUM AND HIGH ENERGY BOUNDS

The bounds and constraints developed in Sec. 2
are useful in the very low energy region. We are now
going to describe bounds and relations whose range of
application extends to larger energies, in particular to
the important regions of asymptotic s and the resonance
region.

3.1. Bounds without Analyticity

Somewhat surprisingly it turns out that it is possible
to write bounds without analyticity if one does not
insist on getting pointw'ise bounds, but rather considers
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averages of the form

(cos 8,"—cos 8,')
Cos&, ' '

d cos 8,T(s, t) = t—(s, t) .

Now, we may expand y in a I.egendre series
00

y(lr) =y(8) = Z (2l+1)Pt(cos 8)pt,

if we substitute P& by its expression in terms of I'p s,
we see immediately that

dQ—
I ~(lr) I'= Z (21+1)

I v I'
4n p

and also

Im T(s, cos 8,) = Z (21+1) Im ft(s) I yt I',
p

so that the unitarity bound on the Im ft gives us

I
Im T(s, cos 8,) I&s't'/2q, . (3.3a)

To see more clearly what this means, let us use that
T(s, cos 8,) is continuous (actually we know it is even
analytic) in 8, for physical 8,. Then, one can apply the
mean value theorem so that Eq. (3.2) gives

)2
Im T(s, cos 8,) = e' Im T(s, cos 8,) de(8) I

.
0

Taking then the simplest possible choice for q, viz.

y(8) =1/28, 0(8&8
=0 elsewhere,

C088tt~

(3 1)
W'e will discuss later what one gains and loses by so
doing, and turn now to the proof, due to Glaser and
Martin (unpublished). Disregarding spin, we write,
with obvious notation,

T(s, t) = &piP2 I
& I

pi'P2'&—= &lr' I &
I ltd&,

where k,'/f represents the c.m. relative momenta of the
incoming/outgoing particles. Let me denote by 8 the
angle of k with the s axis; taking then a wave function,
y(lr) =y(8), one defines the average for, e.g. , Im T, as

Im T(s, cos 8,) =—J (dQ;/4s. ) (dQt/4s. )

Xv'(lr') &lr' I & I kf&v (kf) (3 2)

If one assumes y normalized to unity, we then have

J(dQ/4~) I ~(k) I'=1.
Im T is the quantity which is closer to what one really
measures experimentally, viz. , I

7' I'. Then one has the
well-known summation formula

4~ +~

Pt(cos8t, ,gr) = Z Ft~(Q;) Fp(Qt)*;
2t+1

putting this into the partial wave expansion of T, and
substituting the result into Eq. (3.2) gives

Im T(s, cos 8,)
=4 ZZ I J(dQ/4 )v(lr) I' t"(Q) I'Imft(s).

-1+6 l-5 E

-l +l

I
I

zo

Fro. 4. The s plane.

we obtain finally

Im T(s, cos 8,) & 2s't'/8'q 0&8,&b. (3.3b)

It is not dificult to extend this to fixed t or to Re T; we
refer to (M8; M10) for details.

It is surprising that (3.3a) and (3.3b) are in some
respects better than what one (gets) using analyticity;
there one has for, e.g., 7' scattering (cf. Sec. 3.3 here)

I
T (s, cos 8,) I

&CLlog'" (s/so) /sin' 8,),
even using the Mandelstam representation. Further
advantages of (3.3a) and (3.3b) are that they give
absolute bounds, i.e., are valid at all energies and
without unknown constants, and that they occur in
quantities directly measurable. Of course, the price to
pay for this is that if one takes averages over too narrow
regions (i.e., with high precision) the bounds blow

up as is evident from (3.3b). Therefore, for practical
applications both types of bounds (these bounds and
the bounds using analyticity that will be described
below) should be used in conjunction.

3.2. Froissart Bounds and . Imyrovements. (i) A
Simple Version for ~x

In Sec. 1.4 we gave a quick proof of the Froissart
bound, Eq. (1.9). As stated there, the result presents
some ugly features. First, the constant in front of the
bound was at 6rst unknown. This problem was solved

by Lukaszuk and Martin (LM1) who showed that it
actually equals 4s./to, to being, as usual, the right ex-
tremity of the Lehmann —Mandelstam-Martin ellipse
(to= 4tt' for so, sr% ES ~ ~ to tt' for EE). Th——is 'looks

nice because it corresponds to the possible exchanges of
particles (Fig. 4) and because 7r/tt~60 mb which is
only twice the experimental value for mE total cross
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sections, but there is still some work to be done before
meaningful comparisons with experiment can be done;
in fact, (a) there is an unknown scale factor in the log of
Eq. (1.9) which should actually be written as log' (s/so),
so unknown; (b) the bound is only valid asymptotically,
i.e., as s~, but no indication is given about when we
are in asymptopia, and (c) the bound is only valid in
the mean, that is, strictly speaking, Eq. (1.9) may be
violated in isolated intervals provided that averages of
the type

16
ds's' 2F, (s', t =4/42)

15m 4„2
(3.7)

Expanding the right hand side in Legendre polynomials,
and noting that P(cos 8&2&) increases with l and de-
creases with s

I
here cos 8, '2&= cos 8,(t=4/42)] one has

the chain of inequalities

scattering length, and the asymptotic behavior of
Legendre functions (MOS1), Q2(s) ~(2/15) s ' as
s—+Do, we find that in the limit /I, -+0, Eq. (1.7) becomes

(28)
(1+5)8

ds o'«4(s ), 8&0 fixed,

satisfy it.
It turns out that it is possible to solve all these

problems at the same time by using t channel informa-
tion through the Froissart-Gribov representation. I
will now show how this is done, following, with slight
modifications, the original work (Y2) (in spite of the
fact that it can be greatly improved) because it shows
very clearly the mechanism at work.

To begin, one defines convenient averages

Ã+ 1
o4 4( &(s) = ds'(s' —4/4') "o„„(s'). (3.4)

(S 4/42) n+1
4 2

The advantages of using Eq. (3.4) are that as n—+Do,

o«2'"&(S)~a«2(S) and, if o«2 dOeS nOt OSCillate tOO

muCh, alSO aS S-+oo, o«4/"& (S)~a«4(S) fOr any 22 (GY1) .
Then, one writes the partial wave expansion' of o&,&

22+ 1 s (S~ 4+2) n—1/2

(s 4p ) 4@2 s /'1/2

oO ao

/22') ds's' g (2l+1)P1(cos 8,/ &) Im f1(s')
15m 4„2 0

X g (2l+1) Imf1(s').
0

We will split the sum into two pieces: one up to

l= I-(s) =&r(s 4/ '—) //"]'"—»g (sl/") 1, (3 5)—
where E will be fixed in a moment, and the other piece
from l=l.(s)+1 on. In the first half we majorize Im f/
by its unitary bound, Ls/(s —4/4') ]'/'. hence,

22+ 1
o «4&"& (s) (162r S& (S~ 4/42) n—1

(S 4~2) F1
l

L(tt)
22 1

X g (2l+1)+162r ds'
0 (S 4~2) n+1

(S~ 4+2) n—1/2 aa

X „, g (2l+1) Im f1(s'). (3.6a)
L(s)+1

The first term in the right hand side of (3.6a) can be
summed explicitly giving

16 ¹L(I+1)/22/ '] log' (s/l ') (3 6b)

Next, one recalls the Froissart-Gribov representation,
Eq. (1.7) (M=/4 now). Using the threshold behavior,
f2(t) (t—4/t42)2422', where 422' is the t-channel D wave-

'To avoid complications due to identity of particles, we con-
sider 7t'x+ scattering.

16
ds's' ' g (2l+1)P/(cos 8,&'&) Im f1(s')

15m 4„2

16PI+1(cos 8, /2&)

15m

8: (S~ 4+2) n-1/2
// —3

4 2 s"/'

s~l/2X, , „,Q (2l+1) Imf/(s')

L+1 s16Pz 1(cos 8."')
1 52rs2+1/2 (s 4~2) n-1/2

(Si 4+2) n,—1/2

ds s"/'

152r2 (5+1)s'/'

(s—4/4 ) / pr~1L1+8/4 /(s —4/42) ] (3.8)

Since we know from the work of t.ukaszuk and.
Martin that one cannot improve upon

o «4 & (2r//4') log' (s/so),

we take lt/=1/4; this makes (3.8) an absolute bound,
valid at all energies and with no unknown constants.
A more explicit form of the bound, valid for s'/') 0.42
GeV/c can easily be obtained taking 22= log (s//42),
and using the asymptotic form of the Pr, Lcf. (A1) for.
a simple discussion] getting

, s x s 15m' s
o «4(s) ( —log' —+ —log —+

p2 p2 p2 p2 . K2 S 4+2

s ~'/2 //, S ~2/2

X log —
I +Iiog —

I

~2j I, 2)

X exp .. . (3.9)
2/4»g (s//4')

s—4@2 '

o«4(s)-+o«. (s) as s~~.
The first term in the right hand side of (3.9) gives the
usual Froissart bound, and the rest is the correction to

X g (2l+ 1) Im f1 (s') .
L+1

Comparing this with (3.6), it gives at once that:

24+1 S
o«4'"& (S)(162r¹,lOg' —,

Sp



F. J. YNDURAIN Cortstratuts, Bounds, arid Retateous for Seatteriug Amplttudes 657

Combining this with (3.11) we find thatit that allows the whole bound to be valid at finite
energies. ( X(tt, M', tt')

P,(, t)+P„(, t) &3.3. Froissart Bounds. (ii) General Treatment

Before improving the analysis of Sec. 3.2, I will

show how one can extend it to the general case. It will

be noted that one can generalize the method to any
scattering process; however, except in favorable situa-
tions, an unknown constant will be introduced. We will

only consider here such "favorable" situations, referring
to (MM2; CY1) for details about the "unfavorable"
situations.

From the analysis of the previous section we see that
the ingredients we need to obtain absolute bounds are
the following: analyticity in t up to the first t-channel
threshold; positivity of It' in both s and I channels
[in particular, this makes the method unsuitable for
processes like Ep that possess unphysical regions
without positivity (M1; M3)]; and the fact that we
can write

P, (s, t)+P„(s, t)

& g (2l+1)Ci(cos8,) Im gent(s), (3.10)

X g (2J+1) g d»s(8, ) [Im f»s(s) 1 Im f» (s)].J
This satisfies requisite (3.10) as the d»s(8, ) decrease
with s and increase with J, and f, f fulfill the unitarity
bounds, Eqs. (1.4) . Thus, one can again use the
Froissart-Gribov representation, Eq. (1.7), and every-
thing happens as before, using that, from Eq. (1.7),

828&=M, ds{P,(s, t)+F„(s, t) I
is+»2

' ' (s+/' M')' —'
~&+) being as in Sec. 2.2.

Now we will turn to the announced improvements on
the rather gross majorizations carried on up to now.
We shall carry over the discussion giving pertinent
references, but no detailed proofs. We shall do so
because the methods are totally similar to those we
will use later to put bounds on differential cross sections
for elastic (Sec. 3.5) and inelastic (Sec. 3.4) processes.

First of all, in the original work of Froissart (Fi) and
in the subsequent discussions of I.ukaszuk and Martin
(LM1) one found bounds not only on o;„(s),but also
on do/dQ. Certainly, this will also be true in our case:
it is not dificult to extend the analysis to find absolute
bounds not only on Im T(s, 0), but also on

~
T(s, t) ~,

t physical. This has been done by Common (C5), who
has obtained the optimum bounds on this quantity.
For finite energies, Common's bounds can only be found
numerically; their form for large s, however, can be
computed explicitly giving (for, e.g., use scattering)

( 2 s[log (s/so) ]' '
( ) I

( )i/2 [ 4(4 Q)3 ]i/4 P 9 ( )

where
0( Im q t(s) (s'/. '/2q„

2s'/ [log (s/so) ]'/'
i F(s, cos8, ) i ( 3(4tt')'"(n sin 8,)'" '

—1( cos 8,(+1. (3.12b)

Ci(cos8, ) increases with l, and decreases with s. In
the previous situation, we had pi fi, Ct——Ft and the-—
equality sign held in (3.10) .

As already hinted by the notation, the answer will be
furnished by P as given by Eq. (1.2) .Let me prove this
is so; to be definite, only the case j2=0, j&=integer=—j
will be considered.

As shown by Mahoux and Martin (MM1), P is
free from kinematical singularities, and has positivity
in both s and I channels. Hence, if the process under
consideration has no unphysical cuts, the two first
requisites above will be satisfied. As to the last, con-
tinuing It to the I channel gives

Pt'-"&(s t) =P, (s M2 tt')]'Q d/, i, /(2x, „)T»'»(I t)
XX~

we have used the results described in Eqs. (1.1) and
(1.2) . Expanding in partial waves, we get

P, (s, t) +P„(s, t) = P.(s, M', tt') ]'g (2J+1)
J

X{+d»~(8, ) Im f»s(s)

+ Q P.(I M' tt') /7 (s, M', tt') ]td/, q, '

X(2xs~)d i, (8.) Abs f» (s) I, (3.11)

where f are the I channel waves. Now, it is not hard to
check, using explicit expressions for the d's and for x
that, in the region of interest for us [t&0, s& (M+tt)']
one has the relation

g dg gt(27', „)d/, / (8,) Abs f/, / (s)

& exp (—2jl x. I) Zd»'(8) Imf»'(s).

where

8s
so= (si'/'/Sts) log 3(si'/4tt')'" log (s/si)

'

si ——e/3(b' tt'a2

valid respectively, for the fixed I, and fixed cos8,
amplitudes. This is one of the few cases in which a
bound can be improved by using the Mandelstam
representation; if we assume it, then (3.12b) is iin-
proved to (KLM1)

Dog (s/») ]'"
F s, cos8, (C

sin' 8,

The constants C, so are unknown and the bound only
holds asymptotically. As yet, nobody has been able to
cure these diseases of the last bound.

Secondly, some people may feel unhappy that the
bounds contain the quantity ~'. Personally, I think
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step towards solving the first problem was taken by
Common (C5) but much more remains to be done as
recent investigations (S4; R4) show. In particular,
one would expect improvement by using the techniques
developed by Blankenbecler and Einhorn (BE1)
and, indeed, the preliminary results referred to L(S4;
R4); see also (R3)j give bounds only slightly above
"experiment" for urn in the resonance region. (Fig. 5.
See also the Appendix for the best available high energy
bounds. )

3.4. Bounds on Inelastic Processes

The methods just described can easily be generalized
to give absolute bounds for inelastic processes. Inelastic
processes can be classified into two categories: (a)
"conversion" processes, of the type 2+8-+C+D; and
(b) "production" processes, of the type 2+8—+

C+D+X+ ~ ~ .+Z. One can find bounds for both, but
only conversion processes will be considered here: we
will take the particular case EiY~m, as it exhibits all
relevant features.

Denoting by T+, T, the helicity amplitudes
7+1/2, +1/2;0, 0 T+1/2, —1/2;0, 0 we shall get absolute bounds on
averages

I
T~'"' I; this implies absolute bounds on the

differential cross-sections

~&xg ~~+ /did

which are proportional to
I T~ I'. We shall, for definite-

ness, take the w's to be in isospin zero and, to be con-
sistent with the rest of these notes, take Ml~m to be
the t channel (cf. Sec. 1.2.A).

The partial wave expansions of T+ are (JW1)
FIG. 5. Low energy ~'m+ cross section and bound, using only

the D wave scattering length. The average taken was

e )-1 e

a(s) =I ds'g, s' ~
I

ds'q, s' ~/2u(s').

k4 i 4

that this is good because physically ~' is a very trans-
parent measure of the strength of the interaction;
furthermore, in all cases where ~' can be estimated
(s'ir, ~IF, ~E) it turns out to be rather small so that
good bounds obtain. However, just as a matter of
principle, let me mention that, at least for xm scattering,
one can use the Froissart —Gribov representation not at
t=4y2, but somewhere between 0 and 4'. there one
has absolute bounds on

I P(s, t) I
and hence on f2(t),

which depend only on the pion mass Lcf. Eqs. (2.8)
here). Therefore, one can get absolute bounds analo-
gous to Eq. (3.9), but depending Only on the pion mass.
This was rioticed by the author (seminar given at
Orsay, February 1970, unpublished) and independently
by Common (C5) who worked out the details.

Thirdly, it is obvious that the bounding procedure
used in Sec. 3.2 is quite poor, as one is throwing away
a lot that should be taken better care of. Also, one
should allow freedom in the choice of the averages;
Eq. (3.4) is satisfactory for large s, but one can use
diferent averages to optimize at each value of s. A 6rst

T+(s) t) = g (2J+1)J'g(cos 8,)gg&+&(t),

T (s, t) = Q (2J+1)/LJ (J+1)j' '

X sin e~P~'(cos t/, )g~& '(t). (3.14)

The partial waves gz are given by Lcf. Eqs. (1.3),
(14)j

gg&+) (t) = (ti/2/2q i/2g i/2)g (6) (t)

g~'+'(t) =(~~; t, J I
&

I &, —:;8,(a1/2); t, J),
the notation being as in Sec. 1.2.C.

Now, if we denote by fz the msgr waves with isospin
zero, we have, for t&43P, (S1; S2)

Im fg(t) = (2g,/t'/') Im fz(t)
= (2i)-'(~~; t, J I Z —g+

I ~~; t, J)
= g I (;t,J IXII;t, J) I'

& I (;t, J I z I x, -,'; x, -'„ t, J) I'

+ l(~~;t, J itis, —;;Ã,—-', ;t, J) lm

=
I
g~'+'(t) I'+

I
g~' '«) I'+ If~«) I'

This is an expression of the obvious fact that when
using completeness for xx we sum over all intermediate
states —in particular, if t&43P, over XX states. The
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above relation then gives the unitarity constraints, valid
for t&4%2,

~ g &+&(t)
~

(tI/2/4q'/2Q '/2

gj&+& (t) } ( (tI/4/4/2Q41/2) jIm fs (t) —LIm fs (t) js}I/2

(3.f5)

We can obviously write for, e.g., the (+) choice,

I 2'+(S, t) I
& Z (»+ f) t Ps(COS 84) I t gs'+&(t) I,

so that, if we deane

1 tI/2

I
q'+&"&(s, t) I

—=
(t

'

4+2) 44+lq 1/2Q I/2

(2J+1) dt' „„Imf, (t'),

COS 84&'& = 1+8/42/(t —4/}42) .
Taking now

L=I:2q/(1 —«)/3»g (t//'),

and using the majorization

Q L2J+1/Ps(cos 81"')1'/'
L+2

In the last inequality we have used again (3.1$).
From (3.16), on the other hand, we see that, for any
J&L+2,

16Ps(c
15~q

t

X dt'(t' 4/')"—, „,I 2 (s, t') I,t'

we can apply to this the minimization. procedure of
(C4), using the relation

16$s- dt't' 2F4(s=-4/. 2 t') & a, , (3.16)
15m

q,r.(2N exp t —(1—
&op) L/4/2q, ],

PV'0

p0 arbitrary between 0 and 1, it is a matter of substi-
tuting all of it into the bound for RL, to find the bound

+" ( ' ) ~ 2(1 )2 2,1/2Q, I/2

where ~', b2', Il refer to xx scattering. However, and
again to show clearly the mechanism at work, we shall
not use minimization techniques but rather give a simple
dhscusshon.

Just as in Sec. 3.2, we write

rs 1 t'/'
T&"&

(t 4~2) 41+lq 1/2Q 1/2

t'~2q,+ log-
(f «2 )/sq 1/2Q 1/2 ~2

, , log —,; 3.17
«o(1—«o)/' & grs & Q41/2

we have replaced

1—L(43P—4/42) /(t —4/42) j2 f.t ,1/2 ,1/2

X dt'(t' 4/42)"—(t')'" At high energy, the 6rst term in (3.17) dominates
and we haveL Oo

X{+(2J+1) ( Ps(cos84) ( ~

gs&+&(t') (+ g (same) }.
0 1+2

In the 6rst sum, we use the unitary bound, and, in both
sums, since we are being crude, that, for cos 8g physical

~
Ps(cos 81)

~
& 1;hence, using the Schwartz inequality

for the +~2" term,
t'» /'4M' —4/42& "+I

X (L'/2+ L) +RI, (t)

I
&+'"'(s, t) I

& (t/4/')»g' (t//'),

which is equivalent to a Froissart bound. This is the
result one also 6nds by other methods (AM1; LMV1;
TT1) . Using optimization techniques, we expect (3.1'7)

to be improved by a factor of 5 to 10. Although the
result is quite poor at high energy, where Regge theory
makes one expect

~

2'+&"& (cos 81=0, t) (
~ (constant) to/}/&2&,

4&&/r(0)~ 0 3, —.
Equation (3.17) (or its improved version) should be
reasonably tight up to t~4 GeU2 because experimentally
the cross sections SX~~ are fairly large there. A
detailed analysis with numerical results may be found
in (CY3) . One has, for example, 4r„-„+-(20 mb for a
laboratory momentum of 0.5 GeV.

Finally, we refer to (AM1; LMV1; TT1; R3) for
asymptotic bounds on processes of the type A+8-+
C+D+X ~ +Z.

(22+1) (t) '/'

(t 4 2) 44+1 1/2Q 1/2

(f 4~2) 214 1/2

dt'
au2 t'/4 —/4'

co g I l/2

X g dt'(2J+1)' [
gs&+&(t') (2

I+2 4M2 t'

3.5. Relations Involving Diffraction Peaks, Elastic
Cross Sections, etc.

All bounds and constraints discussed so far have one
merit in common, namely, they require only the masses

1/2

X Q (2J+1)
tP112

&n+1}&1}'" 14M' 44')' +'—"
4(I)1/2q 2+1/2Q 1/2

& t 4+2
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of the particles involved and, at times, one extra
parameter, generally a scattering length. -Apart from
such results, it turns out that a richness of further
relations can be obtained to link diferent measurable
quantities among themselves. (The word "bounds" is
also used for such results, but we believe "relations"
to be a more appropriate term. ) Some of them, in
particular the impressive amount recently discussed by
Singh and Roy, are extremely tight and, at times, even
able to kill theoretical models, as the isospin triangular
inequalities for ~X polarization recently discussed by
Dass et al. LCERN Preprint TH. 1367 (1971)].We will
not here aim to present a complete list of such relations
Lcf. the recent review of Roy (R3)); instead, two
examples will be discussed in some detail. Also we shall
neglect spin throughout, noting however that all the
results can be generalized to arbitrary spin with the
help of standard techniques.

A. Bounds on the Diffraction Peak

The width of the diGraction peak may be con-
veniently de6ned as

(8/N) T.(s, t)

T,(s, t)

This amounts to writing T, (s, t) = exp a, (t). In a
Regge model, a,'(0) ai'(0) log s, ni'(0) being the
slope of the Pomeranchuk trajectory.

A lower bound on (3.18) is very simple to obtain
(MM1). Clearly, making a partial wave expansion of
T„we have

a,'(0) = (g (2l+1) (l+1)l Im fi(s) )

X (4q,'Ig (2l+1) Im fi(s)+ Im fo(s) I ) ',
1

and we have used that Pi'(1) = l (i+1)/2. Now, we have

4m "
o;.,= —,Q (2l+1) Im fi(s).

q,'
This suggests that we define L(s) to be the maximum
integer such that

L (s) 2

g (2l+1) & —' otot(s) —Im fo(s) . (3.19)
4m

Using by now familiar arguments, we can verify. that
CO s'I
Q (2l+1) (l+1)l Imfi(s) & C(s)

1 2qtt

S't' L(')
(2l+1) (l+1)l

2qs

Lwe have used (1.4) and (3.9)] and hence that

a, '(0) &sI (s) /q, 'oi «(s) . (3.20)

This is an absolute bound, valid, at all energies. At
intermediate energies it is just a few times the experi-
mental value for ~E, EE; for medium-heavy nuclei,

(3.20) is only about 50% too high. To see what happens
at high energies, we assume that asymptotically
ot,i) constant; then, 4L(s) )sot i(s)/s]'I', I (s)~
s'Lot„(s)]'/32'', and (3.20) becomes 2a, '(0) &ot,i/Sn.
This bound is only a factor of log s short of the Regge
value if we have constant total cross sections, and is
saturated if the Froissart bound was saturated or if we
had a Rat Pomeranchuk.

To get an upper bound on a,'(0) we proceed diGer-
ently (B2; K2; K3). We define now L(s) =ns'" log s;
recalling the crude version of the Froissart bound given
in Sec. 1.4, we notice that we had

Im fi(s) (Cs'/(2l+1) PiL1+ (2ti'/q, 2) ].
Summing explicitly, it follows from this that, if n is

large enough, we have

(2l+1) (l+1)l Im fi(s) (C's ""
L(tt)+1

with v large at will provided that e be suSciently
large. Thus, for asymptotic s, we can neglect, in the sum

Q (2l+1) (l+1)l Im fi(s),
1

all terms from L(s)+1 onward. Hence we have
L

a,'(0) g (2l+1) (l+1)l Im fi(s)/mrs'ot, ,i(s)
0

L

& g (2l+1) (l+1)l/s-s'ot, q(s)~n'Llog' s/2mot, „t(s))
This can be refined, Using minimization techniques,
Lsee, e.g., (BE1;R3) $, to read

a, '(0) (C log' s/oi, .i(s) . (3,21)

Again we fall one logs oG Regge theory, but this
bound is also saturated if the Pomeranchuk theorem
was violated (AKM1; EK1) or if the Froissart bound
was saturated (E1).

The best bounds on diGraction peaks involve also
elastic cross sections, and can be found in (SR1), (R3) .

B. Relations among o,i, do/dD

We now present a bound on do/dQ, involving the
elastic cross section 0;~. We will follow the work of
Singh and Roy (SR1); this will exemplify the use of
minimization techniques, with which all bounds in the
preceding sections can be improved. 7

We begin by defining (we will carry over the. proofs
only for cos 8,=1)

s'12

( T(s, t=0)
~

&%(s)=——g (2l+1) [ fi(s) ~, (3.22a)
2qs p

s'~' " 2@2
T, (s, t=4ti') &G(s) =——g (2l+1)Pi 1+ —,

2q, p q
2

(3.22b)

A very complete survey of minimization techniques, rvith
applications, can be found in (BK1).



F. J. YNDURLIN Coastraiats, Boards, and Relations for Scatter&sr Aotptdtades 661

4n. ""()= —,Z (2l+1)lf ()I'.
ge 0

(3.22c)

years. The reader is referred to the review of Roy (R3)
for a comprehensive list and references.

C. Lover Bolnds on D 8'uses

L(s) —=-'(s/4t ') "' log (s/a. ) (3.25)

For arbitrary (physical) angle the corresponding
result is

do/dQ &(o,i/4n) {[L(s)+1)'[Pz,(cos8,))'
+ sin' 8,[Pr,'(cos 8,) )'),

I- as before. It will be noted that, up to logarithms, these
bounds are what one mould find if putting, naively,

do' 4n'
dQ —~- dt—

dQ 4q, 4~ 2 dQ

4n ' do kr ' dr m der
dt —& — dt —~——

s 42 dQ s 82 dQ 2sdQ ~~'

we have used that do/dQ is peaked at t= 0 to cut the
integral at —Stt' and take the average value of do/dQ to
be at t=0 when t is inside (—Stt', 0) .

The field of rigorous relations between diferent
physical quantities has swelled enormously in the last

Then, we define the functional

ft I)—= (2q,/sit~) e(s)+n(2q, /s'tm) G(s)

+P(q'/4 ) ~ (s)

The condition of extremum is 5k[I ft I)/8 I ft I
=0; one

can check that this extremum is, indeed, a maximum.
Substituting +, G, 0;~, this gives

1+2[nPt(1+2t '/q')+P)l ft I

i.e., with a= ——',n, b=P/n,

C
lf, (s) [

=mi 1. . .}. (3,23)

To get a and b we use the constraints (3.22b and c):

, " (2l+1)P (1+2t'/q') (~
[b+Pt (1+2t '/q ') )'

(2l+1)
o [b+Pt(1+2tt'/qP) )' 4n

These implicit relations give a, b and hence
I ft l~,x;

therefore, substituting Eq. (3.23) into the constraint
(3.22a) we get the desired upper bound on I

T (s, t =0) I,
hence on

da'/dQ1~~=1/s
I T(s, t=O) I'.

Equations (3.24) can only be solved numerically
[given T,(s, t=4tt')), for finite values of s. Asymp-
totically, however, it. is not difBcult to get c and b

explicitly obtaining the bound

do/dQ
I g~ & (o.i/4s) [L(s)+1)',

Although we shall work with me scattering, the
results can be generalized to the vrE system (CY2; Y3) .
Also, although we shall not put isospin indices explicitly,
the results will hold for the x'm', m'x+, or any positive
combination thereof.

The point is, that as was noted in (CY1; CY2), aa'

cannot be made too small or else the experimental ~~
cross sections will violate the absolute bounds (as given
in Sec. 3.2 here and references therein). Preliminary
computations were performed for mm and mfq in (CY2);
we shall present here a method' which is both simpler
and much more powerful. We begin by defining L(s),
and q(s) as follows: L(s) is the maximum integer such
that

4 L(8)

—,g (2l+1)«...(s).
g8 0

(3.26a)

g (2l+1)Pt(cos 8.&'&) Im ft(s)
0

L(tt)

& {g(2l+1)Pt(cos 8,~o&) +[2L(s)+1)
0

XPr, (~)+i(cos 8 "')g(s) j.
because Pt(cos 8,&o&) is an increasing function of l, and
Im ft(s) & 1. Therefore, we get the bound

16 to $1/2 I (8)

dss ' —{P(2l+1)Pt(cos 8.&'&)

15m' 4„2 2q,

+[2L(s)+1)Pz,(,)+i(cos 8,'o')p(s) I, (3.27)

this sets a minimum for a2 once a~,~(s) is given.
Preliminary calculations (R4; S4) show that (3.27)
is very tight —so tight indeed that some of the current
estimates for the width and mass of the o resonance, or
for ~' (MP1) are ruled out.

4. LOWER BOUNDS

Unlike the low, medium, and high energy upper
bounds we have discussed previously, lower bounds
based on axiomatic analyticity are very weak. How-
ever, the situation may improve a bit for fixed t bounds
if we postulate somewhat more analyticity and'very
interesting large t bounds are obtained if we assume the

8 We think S. M. Roy for discussions about this. We also thank
R. J. Eden for communicating some pertinent results prior to
publication.

where, again to avoid problems with identical particles
we take the s'm+ case, and q (s) is such that

4n.
—,[2L(s)+1)q(s))=op,g(s) ——,g (2l+1). (3.26b)
/~2 ge 0

Equation (3.26) fix uniquely L, g given ot,&(s). Now,
with cos 8,&o&=1+Stt'/(s —4tt'), we have
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Mandelstam representation. Both types of bounds will we see that
be described here.

4.1. Lower Bounds at 5'ized t

aioi" &0 i &Ci/s'log's,

"s&0 i"~&C /s'log's. (4.5)

F&+&(E) =&r—' „Im F&+&(E') .dE" „, . (4.1)
M+@)2

We are allowed to write (4.1) without subtractions
because we are looking for /Ower bounds. Let now
E=ir, r&0; (4.1) can be rewritten as

r'F&+&(ir) =m ' Im F&+&(E')
dE"

&~+.i' (E'/r)'+1

Due to unitarity, we have Im F&+&(E') &0, so that we
may take the limit as r—+ao inside the integral to find

dE" Im F'+& (E') . (4.2)
(M+p)2

The right hand side above may be finite or infinite, but
at any rate is positive. Therefore, there exists C&0
such that it is larger than C: hence, as r—+,

[
F&+&(ir)

~

)C/r'. (4 3)

Suppose now that one had
~

F&+&(E)
( &C/( E (' along

the real axis: then, the Phragmen —Lindelof theorem
(T1) would imply that

~

F&+&(s)
~

&C/( s )' along any
direction. Since this contradicts (4.3), we get the
bound

I
F'+&(E)

I &C/I E I' (4.4)

This bound, as all previous bounds, is to be understood
to hold in the mean. Disentangling (4.4), we see that
the sum of T"s~"s(s 0) and T" ~" (s 0) is bounded
from below by C's '; therefore, at least one of them
satisfies this bound. Take it to be T~ . Then, one
can still show that T" ""~)C"s '/log s. We shall not
prove this t cf. (JM1)).

This gives lower bounds on do/dQ, 0. If we recall the
fixed I bounds mentioned at the beginning of this
section, it is clear that 0,&(s}&Cos with some E.
Therefore, using this together with (4.4) and (3.25)

-For physical fixed t the best one ca,n do is to prove
that there should exist an integer, E, such that

i T(s, t)i &Cs—»'.

This result is due to Martin (unpublished). ' One fares
better when t=0. In this case, it is better to use the
variable E= (s—M2 —&ti')/2p (laboratory energy of the
projectile) because, under crossing s-+I, E goes over
—E. Neglecting spin, and for reactions without un-
physical cuts (this last restriction is essential), we can
write a dispersion relation for the symmetric amplitude

F&+&(E)—= -', IT(s, /=0)+T(N, 1=0) I,

These bounds were first obtained, using complicated
techniques of Herglotz functions, by Jin and Martin
(JM1) . It is quite possible that they can be improved;
some of the logarithms have been removed recently by
Cornille (C6) and it may be possible to go further.
Indeed, for positive t, the bounds described here imply
that

i T(s, t)i &Cs ' '

valid for any e&0 and where 4&is—B&t&4p' (l& is a
finite, but unknown number) . However, assuming
analyticity in t in a small neighborhood of t=4p2
(minus the cut) continuity in t at $=4p,' and poly-
nominal boundedness for T(s, t) in s when t is there,
one can show that

T,(s, t) &C's '&2 ' 41&i' 8&t&—4I&,', (4.7)

which is much stronger than (4.6) .
Let me prove (4.7). Assume it did not hold, and one

had T,(s, t) &Cs '&' ' for t=4p' and hence, due to
positivity, for all I,, 0&t&4IM, . First, by using the
Froissart-Gribov representation, one can interpolate
analytically f&(t) when t&4&i', Re l& some E.Take, for
simplicity, the case of n.s-scattering; then fi(t) satisfies
elastic unitarity, and we can write (AR1)"

S(l qi)=Ã(~ q~') —iqi'"e"")/LZ(& qi') —iqi'")

where S(X, q~) =1+if&, ii2(t) for X ~=even integer,
t&4p . Here Z is analytic in ), q&. Continuing back to
t&4 ' we see that, . since T,(s, t) &Cs '" ' the Frois-
sart —Gribov representation holds for all 'A with Re X&
——,': thus, there also, one has the above representation
for 5, valid now for Re) & ——,

' and O&t&4p2 In
particular, when A=integer, one can check (AR1)
that both numerator and denominator in the expression
for S vanish, and S is given by

S(l, qi) =1+»qi'"/L(~/») Z(~, q~) —2iq~'" «g qi).

Elastic unitarity requires S*(X*, qi )S(X, qi) =1; in
terms of Z, this becomes (we use that A=integer to set
X*=X)

(8/8X) Z(X, q,}+(8/8)i) Z*(), q,*)

2m qP"+—2iq,~Dog q, —(log q,*)*)
= —2'

Since, however, Z was analytic in q&2, one can write

00—Z(X q ') = Q &i2 q
'"

8X

' Although the proofs of {AR1) are in the framework of po-'It seems that it is now possible to calculate explicitly N tentialscattering, theyareformaland thus hold withoutchanges
{Cornille, private communication). in general; cf., e.g., {F3).
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Comparing, we see that (8/8X) Z=i +~gars qP" n—qP",
r2„= real. Thus, writing q&=ik, k= real positive, we
have

S(X) q,) =1+i{2mb "/PP (—1)"-"rs jP"—2)P" log P]}.

This gives for the quotient fi its(t)/k'" the value

2~/{g (—1)~"rs„u'"—2e»og a}

Let now &=0. On the one hand, letting q& (hence k)
tend to zero, we see from this result that

lim fi its(t)/k"=0.

On the other hand, however, the Froissart-Gribov
representation says that

lim fi its(t)/'"=n. ' dss 't'T (s t=4p')
kM 4@2

which, due to positivity, can only vanish if T',=—0, and
o"—=0. Thus we have reached a contradiction: QKD.

The proof of this result is classical in Regge pole
theory. The extension to the general situation was
achieved independently by Martin and the present
author (both unpublished).

4.2. Large Angle Sounds

Large angle bounds using only axiomatic analyticity
have been obtainedby Ciulli andby Van Hieu /see, e.g. ,
(V1; C2) J.We refer there for the results. Here we shall
describe the original lower bound of Cerulus and
Martin (CM1). The assumptions are that it is possible
to continue T(s, z= cos 8,) inside the domain D, of
Fig. 4, where zo ——1+2''/qs (also shown there is the
axiomatic ellipse, E) and that T(s, z) is bounded ins as

I T{s,z) I
(Cs~, X independent of s and z. This is

certainly weaker- than the Mandelstam representation,
but not much is gained or lost by assuming the latter to
hold.

We begin by assuming that, inside the segment
(—1+8, 1—8), 8&0,

IT(s, z)I(e—t'&, (4.8)

and we will show that, if q is too large, we shall get a
contradiction with (4.4), i.e., at z=1(t=0) .. To do so,
we first map D, into Dr (Fig. 6a) by defining

f=(«/z) Lz —(«'—z')'"~

&u are the images of ~1, f' the images of ~(1—5).
Then, one changes variables again writing

"="+ 'C'+(P "+')-'t'j-
This maps Dr over the disc D (Fig. 6b), the segment
(—a, +aj over the circle C„and the segment D', g+~
over the circle C~. We will denote by r&, r, r& ——1- to the
radii of D„, C, C&, respectively.

The next step is to recall Hadamard's three circles
theorem (T1) whichstates that, if

I T(s, m) I is bounded

(b)
Fio. 6. (a) Mapping onto f plane. (b) Mapping onto w plane.

by M& on the boundary of D„, and by M& on C&, then,
on C,
I T(»") I (~s~nL{log rn —log r,) (log r ) j/log'mr.

(4.9)

It now remains only to compute. From (4.8) we
know that, for z inside L

—1+8, 1—Bj, I T(s, z) I (
expL —y(s) g; from our original assumptions, we have
that I T(s, z) I

(Cs~, z on the boundary of D, : making
the change of variables z~f"w this gives Me, M~,
(4.9) gives an explicit bound for

I T(s, w) I
when w is

in C,. Transforming back, w—+g-+z, we get an explicit
upper bound on

I T(s, z) I
for —1&z&1.In particular,

for z= cos8, =1, and large s (so that, e.g., we can
replace log r,/log rn by 1—Co/q, ), this reads

I T(s, cos 8.= 1)I(exp{—Cy(s) (2y/q, )

+&(logs) I-1—(2"C/q) 3}, (4 1o)

where C is a positive constant that depends only on 8.
Now, if j(s))C' ''+s't(any e)0), (4.10) gives

I T(s, cos8.=1)
I

& exp( —C"s'), C")0,
which contradicts (4.4). Therefore we have proven that
IT(s, cos8,)I & exp{—C's'"+'}: this is the desired
lower bound. A more refined analysis (K1) gives the
bound

I T(s, cos 8,) I & expI- —C(8,s)'" log sj, C)0,
—1(cos8,(1. (4.11)

Although not directly related. to our main topic in these
notes, we shall mention that a bound similar to (4.11)
can be proved for form factors. In fact, using only
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axiomatic analyticity, Martin (M4) has proven that

~
F(t) ( & exp[—C(t)'i'] C&0. (4.12)

Both bounds (4.11) and (4.12) have been on and off
saturated by experiment. The present status seems to
be that they are compatible with experimental results,
although a few years back phenomenological fits (in
particular Orear's fit) saturated them and left ground
for believing in violation of (4.11).

5. DISCUSSION

In the next two sections we shall try to explain the
physical reasons why we have all the bounds described
so far for hadron interactions.

5.1. Finite Range of Strong Interactions

Here I will try to give physical (i.e., intuitive)
arguments why we have bounds for scattering ampli-
tudes. Of course the reason is the 6nite range of strong
interactions: if we take an impact parameter model, then
the distance r of the projectile to the target is related to
the momentum by q,r /. Now, we will have interaction
if projectile and target come close enough so that they
can exchange something. The lightest object a pion and
a nucleon can exchange (cf. Fig. 3) is a two-pion pair,
and for two nucleons a pion (for example). Hence, we
will have interaction if l(L=q, ro, with ro ——1/to'I',
to

——4p' for mX, t~= p,
' for XN. Actually, we shall have

interaction even farther because we must take into
account the tail of, for example, a Yukawa potential.
Since the interaction will then decrease exponentially,
this means that we shall have interaction if /(I. =
L log (q,ro) . Because of the strength of the interactions,
we expect that 2 Im f&(s)~s'i'/q, if l(L, but, for
l&E the particle will altogether miss the target and we
will neglect the corresponding waves. Thus, we have

4m ~ 4x, s
oi i —,g (2l+1) —log' —,.

gg 0 ~2

This is the Froissart bound. In this model one can
understand the improvement of Sec. 3.2: the ~' gives a
limit on the contribution of the neglected waves, l& L.
All other bounds of Secs. 3.2 to 3.5 can be similarly
understood by neglecting waves with l&L.

Harder to understand are the crossing constraints of
Sec. 2.3; however, the positivity constraints of Sec. 2.2
are quite simple: dimensionally, a&=Lmassj ". The
typical mass being that of the lightest exchanged
object (a two-pion pair for both ~m-+1@1K and sr-+n. ir),
we would expect ai L2pj " and hence ai~2&L2pj ai.
As for the absolute bounds of Sec. 2.1, they are a
reAection of the fact that, if the four-pion forces were
too strong, they would give rise to bound states.
Actually, this is one of the reasons why one cannot
extend the results to xN or NN because there bound
states do exist.

5.2. Sizes of Particles

Concentrating on Froissart-like bounds, one can also
say that bounds on o&,& simply mean bounds on the
sizes of the particles involved. To show this clearly, I
will discuss an amusing application. Consider xA
scattering, A a nucleus with atomic number A. Assume
temporarily that one had to=4@2,' we shall come to this
at the end. In the absolute bounds of Sec. 3.2, a2'(A)
(with obvious notation) enters linearly, but in the
improved version of Common (C5) it turns out that
only log ~'(A) appears. Here ~'(A) may be computed
by saturating the t-channel D wave with the contribu-
tion of the nuclear "resonance" corresponding to N33*,
that we shall denote by A*, for the left-hand cut, and
the f' for the right-hand cut. Hence a2'(A) is propor-
tional to the coupling constants g~*~ ' and g~~f . Now,
all known coupling constants of nuclear physics scale:
hence, we take g~*~»' A'g~334+ gggf —Agggf p

so
that ~'(A)~A'ii2(ms —+EN). Since ~i2'(A) enters only
logarithmically in the bounds, the bounds to 0.~,&

(sA-+ all) will be log A times the bounds for &ri,t
(wE~all). Experimentally, however, we have ot, t
(sA~ all) —A'I'ot, t (7'—+ all), so that we shall have
a violation of the bound if A is large enough. In fact, a
detailed calculation (CY1) gives violation for A &20.

What then is wrong here? Clearly, it is the assumption
that $0=4@'. Now, one can prove that fp cheuys equals
4ii' except if one has anomalous thresholds in the t
channel. Denoting by 8 the binding energy of a nucleon
in A, if can be shown that one has anomalous thresholds
if, and only if, 8( j.0 MeV: therefore, we are predicting
that, for A&20, 8 is less than 10 MeV, to be compared
with the experimental figure of 8 MeV. Few detailed
nuclear physics calculations would give such a good
estimate. Since the size of a nucleus is inversely
related to the binding energy, we see that Froissart
bounds measure with fairly good accuracy the sizes of
the objects involved.
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APPENDIX —SOME RECENT DEVELOPMENTS

In this section we will present very quickly some of
the results that have been obtained since this review
was originally written (December 1971). The references
will be found at the end of the list of references.

The problem of merging positivity and crossing
constraints (Secs. 2.2, 2.3) has been developed by
Roskies and Yen (RY1-A), who have been able to fmd
conditions necessary and sufhcient to have full crossing
symmetry plus the requirement Im f&&0. Grassberger
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(G2-A) has been able to take into account the non-
linear part of positivity, 0& Imft&1. The constraints
,are so stringent that no model for xm scattering seems
to satisfy them (PY1-A). The meaning of this last
result is not clear, however. Indeed, crossing constraints
(for example) such as those in Eqs. (2.12) give relations
between integrals of polynomials in s times partial waves
over the s-channel unphysical region, and this means
that what one is testing are derivatives of ft(s) with
respect to s. It is not surprising that admittedly rough
models fail to reproduce such fine details as the con-
straints are testing. Other crossing plus positivity
constraints which involve one single wave (the D wave,
for example) have been found by Common and Pidcock
(CP1-A). For this, one uses a set of relations found by
Roy (R1-A) which give Ref&(s) for 4ts'&s&60ts' in
terms of the absorptive part of the scattering amplitude
in the physical region only. In the same paper, Roy has
produced crossing constraints that involve integrals over
F,(s, t) for s physical. These results are very useful
for consistency checks of xm partial wave analyses.
Finally, Grassberger (G3-A) has improved the con-
straints on the ~o~o 5wave by showing that de(s) /ds(
0 for s(1.21895~2.This is an optimum result, as Mahoux
and Martin (MM1-A) have found examples saturating
it.

It is known that one cannot remove the logarithm in

the Froissart bound for, e.g., xx,

o (st) ( (~/ts') log' s/s . e

However, what one can do is to swell the scale factor, so.
This is the case if to the constraints given by ~'=

lim f&(t)/q, ' Lrecall Eq. (3.7) j one adds the require-
ment that both

»m (d/«) t f2(t)/V'3, »m (d'/d') Ef (t)/V'3 (A1)
qgmo

should also be finite, as follows from elastic unitarity
in the t channel. Then one can show (Y1-A) that
this gives so=log s; numerically, this gives practically
constant bounds up to ISR energies. In Fig. 7 we
have shown the best bounds at high energies, using
also the constraints (A1) (Fig. /).

On the other hand, if one is willing to make the
asslrrtptiort o„&(s)(C, then one can apply the methods
of Sec. 3.2 to get bounds on C (BS1-A).These bounds
are quite reasonable (of the order of a few dozen
millibarn). Alternatively, one can improve the bounds
of Secs. 3.2—3.3 by using minimization techniques.

Lower bounds which are better and more complete
than those in Sec. 4 have been developed by Cornille
and Martin (CM1-A), but it is hard to give details as
the work is still unpublished.
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valid directly from positivity for massless or massive
particles and physical energies and scattering angles.
A complete treatment together with references can be
found in (DR1-A). Finally, very tight phenomeno-
logical bounds on scattering amplitudes have been
discussed by Hahn and Hodgkinson I (HH1-A); cf.,
also the lecture notes of Eden (E1-A)j, while in-
equalities that bound inclusive, multiparticle, etc.
cross sections in terms of elastic ones have been
recently discussed by many people (TT1-A), (DKS1-
A), (R3).

BIBLIOGRAPHICAL NOTE

A comprehensive survey of the field of high energy
collisions is presented in Eden's treatise (E1) and
review (E2), supplemented by (AKM1; EK1) for
high-energy theorems, and the review of Roy (R3) for
high-energy bounds. Low-energy constraints are sur-
veyed by Wanders (W1) . For the proofs of the required
analyticity, we recommend (M10; S3) for axiomatic
results, and (ELOP1) for perturbation and "pure"
5-matrix analyticity.
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