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The Dirac variation-of-constants method has long provided a basis for perturbative solution of the time-dependent
Schrédinger equation. In spite of its widespread utilization, certain aspects of the method have been discussed only
superficially and remain somewhat obscure. The present review attempts to clarify some of these points, particularly
those related to secudar and normalization terms. Secular terms arise from an over-all time-dependent phase in the wave
function, while normalization terms preserve the norm of the wave function. A proper treatment of the secular terms
is essential in the presence of a physically significant level shift that can produce secular divergences in the time-dependent
perturbation functions. The normalization terms are always important, although the formulation of a simple method
for including them is of greatest utility in applications requiring higher-order perturbation theory (e.g., nonlinear optical
phenomena), where difficulties have arisen in previous treatments. Although the Dirac perturbation technique includes
the correct secular and normalization terms when properly executed, it is convenient to reinterpret the perturbation
problem so that the secular and normalization terms can be factored from the wave function to all orders. It is shown
that an appropriate over-all multiplicative, time-dependent normalization and phase factor can be obtained, and that
it is simply the amplitude for finding the system in the unperturbed eigenstate at any time ¢. The regular part of the
wave function remaining after this factorization provides a complete description of the physical properties of the system
of interest and determines the over-all normalization and phase, as well. Most important, the regular function and its
perturbation expansion satisfy equations which are more convenient for computational applications than are the customary
Dirac equations, and, in contrast to the latter, they reduce directly to the familiar #ime-independent perturbation equa-
tions in the static limit. To illustrate the general development, the model problem of a linearly perturbed harmonic
oscillator and the static, harmonic, and electromagnetic perturbations of arbitrary quantum-mechanical systems are
treated explicitly. In the case of an adiabatically applied static perturbation, the familiar adiabatic theorem is recovered
with the over-all phase factor giving the perturbed eigenvalue, while in the case of an harmonic perturbation, the over-
all phase factor obtained includes the system level shift appropriate for a quasiperiodic state. For an electromagnetic
perturbation, compact expressions are obtained for various nonlinear optical susceptibilities in forms suitable for com-
putations. Time-dependent Hartree-Fock approximations are treated explicitly to demonstrate that difficulties can
arise when normalization and secular terms are not extracted prior to application of the perturbation formalism. Con-
nection is also made with other methods which can be employed to eliminate secular and normalization terms from the
wave function; these include a projection procedure and multiple-time-scales perturbation theory. The elimination of
secular divergences from the perturbation functions is shown to be important for the construction of a valid Fourier
transform. Secular and normalization terms also arise in connection with variational principles for the time-dependent
Schrédinger equation. By employing the Frenkel variational principle and an ansatz for the total wave function that
explicitly isolates the secular and normalization terms, a computationally convenient variational functional is obtained.
This form of the Frenkel principle provides a bound to the system level shift induced by an oscillatory perturbation
and is equivalent to the Ritz variational principle in the static limit. Explicit expressions for the variational functional
in the Hartree-Fock approximations are derived in forms suitable for computational applications to the interactions of
radiation and matter.
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quantum treatment of the interaction of radiation and matter
is generally attributed to Dirac (1926, 1927a, b). See also the
early papers of Born (1926), Schrédinger (1926a, b), and
Slatre (1927).
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solution of the time-dependent Schrédinger equation.?
His technique is ideally suited for the treatment of many
phenomena which require only the first- or second-order
interaction between a finite number of states of the
system of interest and an external perturbation,®# and is
particularly useful for the clarification of resonance or
transition phenomena. However, considerable attention
has been focused recently on the higher-order dispersive
and absorptive processes connected with nonlinear
optical phenomena which generally involve spectral
sums over infinite numbers of virtual intermediate
states when the Dirac approach is employed. The
Dirac expansion in terms of multiple sums over a com-
plete set of eigenstates, although correct in its essential
features, becomes rather cumbersome for such higher-
order interactions, and makes difficult the quantitative
determination of the associated nonlinear optical sus-
ceptibilities.® To avoid the consequent summation
difficulties, variation-perturbation methods have been
formulated for the time-dependent quantum-mechanical
perturbation problem.” These procedures have been
shown to be useful in recent computational applications®

2 An excellent review of the subject which cites many recent
computational applications is given by Dalgarno (1966).

3We refer particularly to the semiclassical interaction of
radiation and matter, described by Klein (1927) and Wentzel
(1927). More recent discussions of the range of validity of the
semiclassical approximation are given by Jaynes and Cummings
(1963), Buckingham (1965), Crisp and Jaynes (1969), Stroud
and Jaynes (1970), and Nesbet (1971a, b). See also Hameka
(1965) and the recent article by Scully and Sargent (1972).

* Applications of the semiclassical approximation in molecular
optics are given by Korff and Breit (1932), Breit (1932, 1933),
Condon (1937), Condon, Altar, and Eyring (1937), Kauzman,
Walter, and Eyring (1940), Moffitt and Moscowitz (1959), and
Moscowitz (1962).

5 Various aspects of nonlinear optical phenomena are reviewed
by Franken and Ward (1963), Bloembergen (1965), Minck,
Terhune, and Wang (1966), Pershan (1966), Kelley, Lax, and
Tannenwald (1966), Buckingham and Orr (1967), Peticolas
(1967), Suvoroy and Sonin (1967), and Rez (1968).

6 Explicit expressions for many of the nonlinear optical sus-
ceptibilities have been tabulated by Ward (1965), who employs
a diagrammatic technique to construct: the multiple sums over
virtual intermediate states. Extensions and corrections of this
technique are given by Orr and Ward (1971). Although Ward’s
expressions are not directly suitable for computational applica-
tions, they do provide the explicit frequency dependence of the
nonlinear susceptibilities and can be used in conjunction with
closure approximations, such as that suggested by Dawes (1968).
The accuracy of such closure techniques is somewhat difficult
to assess, however. See, for example, the discussion of Klingbeil,
Kaveeshwar, and Hurst (1972).

7 Variational techniques for perturbative solution of the time-
dependent Schrédinger equation have been devised recently by
Karplus (1962), Mavroyannis and Stephen (1962), Karplus
and Kolker (1963a), Yaris (1963, 1964), McLachlan (1964),
Gurtin (1965), Rebane (1966), Chang (1966), Deal and Kestner
(1966), Adamov, Orlov, and Rebane (1968), Epstein (1968a),
Kestner, Young, and Deal (1968), Robinson (1969a, b), Brous-
sard and Kestner (1970), and Chang (1971, 1972a, b). Moment-
theory approaches, which are closely related to the variational
techniques, can also be employed to circumvent the spectral sums
of the Dirac expansions for the optical and related properties
of atoms and molecules. See, for example, Langhoff and Karplus
(1967, 1969, 1970a, b, c), Gordon (1968), Langhoff, Gordon, and
Karplus (1971), Langhoff (1971a, b, ¢, 1972), Langhoff and
Yates (1972), and references cited therein.

8 Variational computations of linear and nonlinear optical
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and to provide concise expressions for nonlinear optical
susceptibilities.?

In spite of the widespread utilization of the Dirac
perturbation method and its variational analogs for
the study of the semiclassical interaction of radiation
and matter, certain aspects of the treatment have been
discussed only superficially in the literature and ap-
parently still remain somewhat obscure. Specifically,
the identification of an over-all time-dependent phase
in the wave function, its connection with physically
observable level shifts, and the particular form in which
such a phase factor appears in perturbative treatments
are topics that require clarification. It is well-known
that time-divergent terms arise in the perturbation
solution of the Schrédinger equation for an adiabatically
switched-on static perturbation, and that such ‘‘secular
divergences” result from the perturbation expansion
of an over-all phase in the wave function which contains
the system energy level shift.® Similar level shifts and
associated secular divergences also arise in the presence
of time-dependent perturbations; they appear, for
example, in second~ and higher-order in the presence of
an oscillatory radiation field,® and give rise to experi-
mentally observable ‘‘light shifts.””"* However, while
level shifts and their associated secular divergences are
familiar in the static case, and the second-order level
shift in a radiation field is well-known, a unified treat-
ment of the more general secular terms which appear in

and related properties of atoms and molecules are given by, for
example, Karplus (1964), Chan and Dalgarno (1965), Kolker
and Michels (1965), Victor, Browne, and Dalgarno (1967),
Johnson, Epstein, and Meath (1967), Chung (1968), Grasso,
Chung, and Hurst (1968), Sitz and Yaris (1968), and Kamikawai,
Watanabe, and Amemiya (1969).

9 The secular divergence problem is generally avoided in the
static case by first introducing an appropriate ansatz for the wave
function, ¥,(r, £) = (3O (1) +xsP (1) ++-+) exp [(3A)7! (EO+
E®+.-.)¢7], and subsequently employing time-independent
perturbation theory to determine the static perturbation func-
tions, x,™ (r), and energies, E,™. See, for example, Hirschfelder,
Byers-Brown, and Epstein (1964). The time-dependent perturba-
tion functions, ¥,(r,?) =¥,©@ (r,t) +¥,V (r,{) 4+« +, obtained from
the Dirac approach incorporate the expansion of the exponential
level shift factor. Consequently, the functions ¥, (r, ) contain
time-diverging secular terms of the form, ¥,® (r, ¢) =[x, (r)+
() O (1) B,D¢] exp [(GR)EOL], ¥,®(x, 1) =[x®(1)+
(#R) 2@ (1) Es®t+(65) " 1x® (1) ESDi+4-1/2(iR) 2 (EsW1) 2%, (1) 1X
exp [(¢A)1E®¢], ««+. Such secular divergences do not neces-
sarily lead to formal difficulties, however, since they do not
contribute to the expectation values of Hermitian operators and,
moreover, their origin is perfectly clear. Furthermore, the secular
divergent terms in the functions ¥, (r, {) are necessary to
insure that the time-dependent perturbation equations reduce to
the correct static counterparts for the x,™(r) and E,™. Intro-
ductory discussions of secular terms are given by Bohm (1951)
pp. 448-453, and Kramers (1957) pp. 209-223.

10 General theoretical treatments of the level shift which arises
in the presence of an oscillatory perturbation are given by, for
example, Born (1926), Weisskopf (1931), Heitler (1954) pp.
138, 172, Shirley (1965b), Bates (1967), Ritus (1967), Zel’dovich
(1967), and Young, Deal, and Kestner (1969).

U Theoretical discussions of those aspects of level shifts which
are related to recent experiments are given by Barratand and
Cohen-Tannoudji (1961a, b), Cohen-Tannoudji and Kastler
(1966), Kastler (1963), Pancharatham (1966), Happer and
Mathur (1967a), Bonch-Bruevich and Khodovoi (1968), Mathur,
Tang, and Happer (1968).
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the Dirac variation-of-constants solution for an arbitrary
perturbation is not available.’?

Although the question of secular terms is an old one
in quantum mechanics, confusion over its proper
resolution persists and periodically gives rise to ‘“‘new”
formulations of time-dependent perturbation theory.?
Apparent differences between the static limits of the
time-dependent perturbation equations and the cus-
tomary time-independent equations are related to the
presence of secular terms in the perturbation solution.?
The recent variational formulations of time-dependent
perturbation theory have refocused attention on the
secular terms.'* Difficulties from time-divergent terms
can also arise in the construction of a unified variational
principle for the time-dependent Schrédinger equation,'
and a proper interpretation of secular terms and their
source is essential for obtaining consistent and non-
paradoxical results for the first- and higher-order
transition rates induced by an applied perturbation.®

In addition to the apparent difficulties resulting from
the presence of secular terms in the perturbation
expansion of the wave function, its incorrect normaliza-
tion can also be a source of error. If the Schrédinger
equation is treated as an initial value problem and the
Hamiltonian is a continuous function of the time, the
Hermitian nature of the Hamiltonian insures that the
time-dependent wave function is normalized at all
times.”” Incorrectly normalized wave functions can
result, however, unless care is exercised in enforcing the
initial conditions, or unless the required normalization
terms are added in an ad koc manner. In order to avoid
this difficulty, it is convenient to identify the presence

12 The designation ‘““secular term” is used here to describe any
term, not necessarily time-divergent, which arises from the
expansion of an over-all time-dependent phase in the wave func-
tion and which, consequently, does not contribute to the expecta-
tion value of an Hermitian operator. For historical reasons, it is
apparently more common practice to associate this designation
with terms which are time divergent. Our usage of the word
secular is based on its meaning, “as opposed to regular”’; as we
shall see, the secular terms generally exhibit a time dependence
which, though not necessarily time divergent, differs from that
of the remaining regular part of the wave function.

13 Such alternative formulations, when properly executed; are
in fact equivalent to the original Dirac approach. See, for example,
the recent formulations of Ezawa (1963) p. 93, and Chung
(1967). The latter paper suggests that the customary Dirac
approach is invalid in the static case, and that the time-dependent
perturbation equations do not reduce to the familiar time-inde-
pendent equations in the static limit. This erroneous observation
is simply due to a failure to include the necessary secular terms
in the time-dependent perturbation functions, as indicated in
Footnote 9.

14 The interesting gauge transformation approach to time-
dependent problems described by Musher (1964) has emphasized
that the ansatz used in writing out explicit forms for time-de-
pendent variational wave functions can be incomplete unless the
appropriate secular terms are properly included.

1 A variational principle that provides a unification of
previously described variation-perturbation approaches has been
given recently by Heinrichs (1968a, b), who also deals success-
fully with features of the secular problem which arise in the
variational formulation.

18 A particularly clear account of the proper perturbative
t(rlegatg)xent of transition rates is given by Hammer and Weber

65) .

7 See, for example, Messiah (1966), Vol. I, p. 119, for discussion

of the conservation of the norm of the wave function.

of an over-all multiplicative, time-dependent normaliza-
tion factor in the wave function for a general perturba-
tion, and to separate it from the wave function to all
orders in perturbation theory. Such a normalization
factor can, in fact, be formally related to the presence
of secular terms and both aspects of the wave function
treated on a common basis.

Although variational formulations of time-dependent
perturbation theory suitable for computation have been
described previously, primarily on an order-by-order
basis,” there has been little discussion of their relation
to the general variational principle of Frenkel and
Dirac.’® As we shall show, the Frenkel variational
principle with a trial wave function in which the
secular and normalization terms are written out ex-
plicitly, can be employed to unify the different varia-
tional procedures. There results a variational expression
which, although not necessarily furnishing computat-
tional advantages over the order-by-order approach,
provides additional insights into the nature of the varia-
tional principles. In particular, the bounds to optical
susceptibilities obtained for an harmonic perturbation
from the order-by-order developments’8 are shown to
follow directly from the Frenkel principle. That is,
while the original Frenkel principle is not based on
setting the variation of a functional equal to zero, the
result we obtain from it has such a form and can furnish
a bound to the system level shift induced by an oscil-
latory perturbation.’® Further, the expression obtained
from the Frenkel principle with explicit secular and
normalization terms yields the familiar Ritz principle in
the static limit.

The general interest in time-dependent problems and
particularly the current concern with nonlinear optical
phenomena suggests that a review of certain features of
the Dirac perturbation method and its variational
analogs is in order. Most important, explicit considera-
tion of both normalization and secular terms appears to
be needed. For this purpose, we consider the behavior
of a nondegenerate system in the presence of an arbi-
trary time-dependent perturbation, focusing particular
attention on the nonresonant case, although the for-
malism is applicable to transitions as well, and will be
considered subsequently elsewhere. We demonstrate
that an over-all time-dependent factor incorporating
both the proper normalization and a phase factor arising
from the eigenvalue perturbation can be separated
multiplicatively from the total wave function. It is the
perturbation expansion of this combined normalization
and phase factor that gives rise to normalization and
secular terms in the perturbation functions obtained
from the Dirac variation-of-constant method. More-
over, we identify the normalization and phase factor as
the amplitude for finding the system in the initial un-
perturbed state at any time ¢, and show that it can be

8 The variational principle generally attributed to Frenkel
(1934) p. 253, is employed by Dirac (1930) in deriving the time-
dependent Hartree-Fock equations. Frenkel points out that the

principle first appeared in an Appendix to the Russian version of
Dirac’s well-known text.
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obtained separately from the remaining ‘‘regular”
portion of the wave function. The regular portion of the
wave function remaining after extraction of the normali-
zation and phase factor is expressed in a perturbation
expansion. The resulting perturbation equations, which
are distinct in form from the customary equations of
time-dependent perturbation theory, are ideally suited
for a variety of computational applications. As an
alternative, we also write an additional set of perturba-
tion functions which incorporate the normalization
terms in expanded form, but which retain the secular
terms in the over-all multiplicative phase factor.
Finally, the total time-dependent perturbation func-
tions, incorporating both secular and normalization
terms, are obtained by a simultaneous perturbation
expansion of the regular part of the wave function and
the normalization and phase factor. The three different
perturbation schemes are, of course, equivalent and if
correctly treated yield, as they must, the same expecta-
tion values for Hermitian operators. All three per-
turbation expansions for the wave function can be
obtained from the Dirac variation-of-constants method,
which provides a correct solution of the time-dependent
Schrodinger equation. Moreover, we emphasize that no
formal difficulties or convergence problems ensue as a
consequence of retaining the secular and normalization
terms in the time-dependent perturbation functions.
Our identification and extraction of such terms into
over-all multiplicative factors is motivated primarily by
the desire to correctly formulate a set of equations
suitable for computational applications, to clarify the
behavior of time-dependent perturbation theory in the
static limit, and to demonstrate that the Frenkel
principle provides a variational procedure which unifies
the previously described order-by-order variational
formulations, furnishing a bound to the system level
shift induced by an oscillatory perturbation.

The general formulation of the time-dependent
perturbation problem is presented in Sec. II. In Sec. I1T,
we present a number of illustrative applications of the
formalism. In the case of a linearly perturbed harmonic
oscillator, for which the Schrédinger equation can be
solved exactly in closed form, the resulting wave
function provides an explicit illustration of the presence
of an over-all multiplicative normalization and phase
factor. We also employ the general development for the
analysis of static, harmonic, and electromagnetic
perturbations, and derive the form of time-dependent
perturbation theory in the Hartree-Fock approxima-
tion.2 For a static perturbation, the equations for the
regular part of the wave function reduce directly to the
customary equations of time-independent perturbation
theory. In the important harmonic case, the perturba-
tion functions are given explicitly through third order
and compared with the results obtained directly from
the Dirac variation-of-constants method. This allows
the identification of the terms in the Dirac approach
which give rise to normalization and secular terms, and
reinforces the conclusion that the factoring procedure
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we introduce here is simply a convenient regrouping of
the variation-of-constants results. For the special
harmonic problem of an electromagnetic perturbation
in the uniform-electric-field approximation, we obtain
expressions for various nonlinear optical suceptibilities
which differ somewhat from earlier results which
neglected normalization terms.2® We compare our for-
mulation of time-dependent perturbation theory in the
uncoupled Hartree-Fock approximation with those
given previously in the literature and emphasize the im-
portance of extracting the secular terms in this applica-
tion.” In Sec. IV, connection is made with alternative
methods of dealing with secular terms in perturbation
theory, including a projection-operator technique, ad-
ditional time scales,?® and averaging procedures,? which
provide further insights into the nature of the secular
terms. We also indicate the suitability of the alternative
perturbation equations for solution employing a Fourier
analysis of the time-dependent perturbation. The unified
variational formulation is presented in Sec. V and ex-
plicit connection is made with order-by-order variational
formulations and with the Ritz principle in the limit
of a static perturbation. The general variational develop-
ment is applied to the Hartree-Fock approximation and
used to obtain expressions suitable for computational
applications. In the concluding discussion in Sec. VI,
we emphasize that a proper interpretation of the Dirac
variation-of-constants method and the Frenkel varia-
tional principle, including careful treatment of the
secular and normalization terms, provides correct and
convenient solutions of time-dependent perturbation
problems,

II. TIME-DEPENDENT PERTURBATION THEORY

In this section we review the customary time-
dependent perturbation theory and identify the
normalization and secular terms that appear in each
order of the Dirac variation-of-constants solution.
We show that such terms arise from the expansion of
over-all multiplicative, time-dependent normalization
and phase factors in the Schrédinger wave function.
These multiplicative factors are explicitly extracted from

¥ For discussion of the uniform-electric-field approximation,
see, for example, Goppert-Mayer (1931).

20 The so-called uncoupled Hartree-Fock approximation to
time-dependent perturbation theory is discussed by Karplus and
Kolker (1963b), Chung (1967), and Heinrichs (1968c).

21 The projection operator technique for eliminating secular
and normalization terms from the time-dependent perturbation
functions was suggested by Karplus and Kolker (1963a). For
similar use of a project ion operator in separating the “relevant”
and ““irrelevant” parts of an ensemble density in the Liouville
equation, see Zwanzig (1960).

2 Applications of the so-called multiple-time-scales perturba-
tion theory in statistical and quantum mechanics are given by
Frieman (1963), Sandri (1963a, b, 1965), Boldt and Sandri
(1964), Sandri and Sullivan (1965), Montgomery and Ruijgrok
(1965), Case (1966), Goldberg and Sandri (1967a, b), Lochak
and Thiounn (1969), Brooks and Scarfone (1969), Coffey and
Ford (1969), Sengupta (1970), Kummer (1971), and Orr and
Ward (1971).

2 Detailed general accounts of multiple-time-scales perturba-
tion theory and averaging procedures are given by Krylov and
Bogolyubov (1947) and Bogolyubov and Mitropolskii (1961).



606  Reviews oF MODERN Puysics » JuLy 1972
the wave function so that only the regular portion
remains to be determined by perturbation theory.

We begin with the time-dependent Schrédinger
equation

[HO(r)+H® (x, ) —i#i(3/9) J¥ (r, ) =0, (1)

where both the unperturbed Hamiltonian H® (r) and
the time-dependent perturbation Hamiltonian H® (r, ¢)
are Hermitian operators in the vector space of H® (r) 24
The vector r appearing in Eq. (1) and throughout is
used to represent all the spatial and spin coordinates of
the system. This notation is not meant to imply,
however, that the Hamiltonian operators are necessarily
simple multiplicative functions of coordinates and time.
Rather, they are generally operators which do not
commute with one another. The perturbation Hamil-
tonian H® (r, ¢) is written for convenience in the form

HO(r, ) =f(() VO (x, 1), (2)

where V®(r, t) describes the perturbation of interest
and f(#) is an appropriate switching function, chosen to
apply the perturbation in the desired fashion and to
satisfy the general requirement

HO(r, —— 0 )—0, (3a)

We assume that the system is originally (¢—— o) in a
particular nondegenerate, normalized eigenstate ¢ (r)
of the unperturbed Hamiltonian H® (r), with energy
EyO,

¥(r, t—— ) =¢o@(r) exp [(47) E,Of =¥ O (1, t),
(3b)

and that the perturbation Hamiltonian is sufficiently
smooth and continuous in time to insure that the per-
turbed wave function ¥(r, {) and its first time deriva-
tive are also continuous functions of the time.25 The
unperturbed wave function ¥©.(r, {) is normalized to
unity

WO [ g0)=1, (3¢)
so that ¥(r, ¢) is similarly normalized
| ¥)=1, all ¢, (4)

as a consequence of the assumed smoothness and

2 We assume that the perturbation Hamiltonian H® (r, £) is a
bounded operator in the separable Hilbert space of the un-
perturbed Hamiltonian H®(r), and restrict attention to the
perturbation of a bound state. For discussion of questions relating
to the existence of solutions of Eq. (1) and of the convergence
of the associated perturbation expansions, which are important
but not central to our development, see, for example, Friedrichs
(1966), and references cited therein.

% By enforcing the initial conditions of Egs. (3a) and (3b)
in the infinite past, #—»— =, we do not mean to imply that the
development is necessarily limited to the class of adiabatic
perturbations. On the contrary, the appropriate choice of switch-
ing function f(#) can provide a sudden perturbation, Pauli (1933),
an adiabatic pertrubation, Born and Fock (1928), or any situa-
tion in between these two familiar limits. Clearly, the solution
of Eq. (1) is generally dependent upon the specific switching
function employed.

Hermiticity of the total Hamiltonian.”-% The con-
ventional bracket notation in Egs. (3c) and (4)
implies integration over all spatial and spin coordinates,
but not over the time variable.

Solution of Eq. (1) is facilitated by introducing the
wave function in the interaction picture ¥;(r, ()
according to the transformation?

Y (r, 1) =R(r, ) ¥ (1, 1) (Sa)
with

R(r, t)= exp [(¢h)THO (r)¢]. (5b)

Substituting Eq. (5a) into Eq. (1) gives the Schrodinger
equation in the interaction picture

CHW (x, §) —ih(9/9) Wi (r, ) =0,  (6a)
where

HO(r,6) =R'(r, )H®(r, )R(r,1)  (6b)

is the transformed perturbation Hamiltonian and we
employ the customary notation, R'(r, ¢), for the adjoint
of R(r, ). A.formal solution of Egs. (6) can be written
in the form

Vi (r, ) =U(r, ) ¥ (1, —0 ) =U(r,)$® (1), (7)

where U (r, t) is the time evolution operator,? satisfying
the initial condition

U(r,—o)=1 (8a)
and the unitary requirement
UNr, YU (r, t) =U(r, ) U (r,t) =1, (8b)

with 1 the identity operator.

In certain instances, U (r, ¢) can be obtained in closed
form as an integral or differential operator, in which case
the Schrédinger wave function is given directly by
Egs. (5) and (7).28 More generally, an iterative per-
turbation approach, which is conveniently formulated
in terms of the matrix elements of the time evolution
operator in a particular basis set,’ must be employed.

% The nature of the switching function employed is critical
in this regard. For example, adiabatic switching carried out over
a long but finite interval, such as that discussed by Bohm (1951)
Chap. 18, does not give rise to the necessary normalization terms
and, consequently, is unsatisfactory. See, for example, Sitz and
Yaris (1968), where such switching is used to establish the
adiabatic theorem in the static case, resulting in the secular
terms explicitly to second-order, but omitting the normalization
terms entirely and, consequently, violating Eq. (4). The step
function switching originally employed by Dirac (1926) can be
introduced in this approach as the limit of an initially continuous
switching function. In this manner, sudden switching is achieved
and the normalization of the wave function is insured, as well.
Further discussion of specific switching functions is given in Sec.
II1.

% See, for example, Roman (1965) p. 49, for discussion of the
interaction picture. -

% A particularly convenient form for the time evolution
operator, that automatically preserves unitarity and in terms of
which most solvable problems can be expressed, is given by
Magnus (1954), and is discussed particularly clearly by Pechukas
and Light (1966).

» Perturbation theory can also be formulated directly in terms
of the time evolution operator. See, for example, Dyson (1949),
Feynman (1951), and Roman (1965), p. 49. It is worth noting
that in certain instances the time evolution operator may exist
but its expansion in terms of matrix elements in a particular
basis set may not necessarily converge.
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A. Variation of Constants

Explicit expressions for the elements of the time
evolution operator are provided by the customary Dirac
variation-of-constants procedure.! This technique in-
troduces the spectral expansion

0

‘I’[(r, t) = Z ak(t) d’k(o) (I‘),

k=0

)

where the functions ¢;,@ (r) are the orthonormal eigen-
states of the unperturbed Hamiltonian.?® Employing
the expression [Eq. (9)] in the Schrédinger equation
[Egs. (6) ] gives the familiar result

da(1) /3t= (i) 13 (5@ | H® | :@Dan(t), (10a)
=0

t oo

a(t) =+ (4h) ! / > @ | HiV | @ )au (1) at,

—c0 1=0

(10b)

for the expansion coefficients ax(f), where we have
introduced the initial conditions of Eqs. (3). These
coefficients are the desired matrix elements of the U-
matrix operator, since we have

a() = (& | V)= (@ [U]®)  (11)

from Egs. (7) and (9). It is an immediate consequence
of Eqgs. (10) that

0 S lmp=0,

12
n (12a)

and the initial conditions of Egs. (3) insure that

[Eq. 4]

> lan(®)z=1. (12b)
k=0
Equation (12b) also follows from Eq. (11) employing
closure, the unitarity of U(r,?), and the fact that
0@ (r) is normalized to unity.

Following the customary development, Eqs. (10)
are solved employing the perturbation expansion

a(f) =2 a™ (1), (13a)
n=0
with the requirements
@ © (£) = 8z, (13b)
@™ (t>—0)=0,  n#0, (13c)

which insure that the initial conditions [Egs. (3) ] can
be satisfied independently of the strength of the per-

3 The completeness of this set in the vector space of the total
Hamiltonian in the case of quantum electrodynamic interactions
has been questioned by Dirac (1965). We no not consider such
a question here but, rather, assume the necessary completeness
and the convergence of the expansion in Eq. (9).
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turbation. We obtain the familiar coupled equations
80 (1) [a1= ()1 3 (4 | H® | 4,9)a0=0 (1)
1=0

n>0, (14a)

o0

. t
a@ @) =) [ 3 6O | B0 | 4,0)a0m0(2)
—o0 I=0

==

n>0, (14b)

which can be employed to determine the a;(f) co-
efficients to arbitrarily high order by carrying out the
indicated quadratures, starting with the first approxi-
mation in Eq. (13b).
It is also convenient to introduce the perturbation
functions
o0
Y (r, ) = 3 ™ ()¢ (r), (15)
k=0
in terms of which the wave function in the interaction
picture is given by the perturbation expansion

Vy(r, f) = 3 W00 (x, £).

n=0

(16)

The corresponding functions ¥ (r, £) in the Schrédinger
picture are

YO (1, ) =R (1, ) ¥;® (1, {)
= 3 6™ ()6 (r) exp [(iH)HOL,  (17)

and the complete Schrodinger wave function ¥(r, ¢) is
given by the perturbation expansion
(1, t)= 3 ¥ (r,1). (18)
n=0

The time-dependent perturbation functions, ¥® (r, ¢),
are solutions of the equations

[CH® (r) —i%(3/9t) ¥ (x, 1) =0, (192)
[HO (1) —i%(8/3) T¥® (x, 1)+ HO (x, () ¥@=D (r, 1) =0
n>0, (19b)

and, if an appropriate switching function is employed,

satisfy identically the normalization conditions
> I® [ e-DY=0 >0, (19¢)
k=0

as a consequence of Eqgs. (3) and (4).

In obtaining the perturbation functions ¥®(r, ?)
[Eq. (17)], we have employed here the spectral
expansion of Eq. (9) and the subsequent perturbation
expansion of Egs. (13). Alternatively, we can insert the
perturbation expansion of Eq. (18) into Eq. (1) in
order to obtain the sequence of perturbation equations
satisfied by the ¥® (r, #) [Eqgs. (19)7], without recourse
to a spectral expansion. The two procedures are, of
course, identical, and subsequent substitution of ex-
pansions in the form of Eq. (17) into Eqs. (19) results
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in the a;™ (¢) of Egs. (14). Itis important to recognize,
however, that the spectral expansion is not necessary
for a perturbative solution of the Schrédinger equation.

The foregoing formal procedure is complete and well
known and there is nething additional required for its
implementation, other than an examination of its
convergence  for specific perturbations3 To clarify
certain complications that can arise, however, it is useful
to extract from the perturbation functions ¥ (r, {) of
Eq. (17) the terms which insure that the total wave
function [Eq. (18)] is correctly normalized and those
which arise from the expansion of an over-all time-
dependent phase in the wave function. The presence of
terms in the perturbation functions which insure that
the complete wave function is correctly normalized to
each order in the perturbation is suggested by Eq. (19¢),
while the appearance of secular terms in the ¥®(r, {)
of Eq. (17) is expected, in part, on basis of the form
which the perturbation functions take in the limit of a
static perturbation.® The secular terms, which need
not necessarily be time divergent, can also be identified
by an order-by-order treatment of Eqs. (14) and (17),
although such a development becomes tedious in higher
orders.® In this connection, it is helpful to recognize that
in the static case it is customary to extract the secular
divergences in the form of an overall phase factor
involving the perturbed energy eigenvalue, thus by-
passing Egs. (19). We can anticipate that a similar
procedure will be successful in extracting the more
general secular terms that arise from a time-dependent

31 The boundedness of H® (r, ¢) is generally required to insure
convergence. See, for example, Kato (1949), Hammer and Weber
(1965), Sasakawa (1966), and Simon (1971), where questions
of convergence are explicitly examined.

2 It is a simple matter, however, to identify the secular terms
which appear in the lower-order functions. From Egs. (14) and

(17), we see that the first-order perturbation function can be
written in the form

t
WO (x, £) =[4 (x, ) + (i) f B | Hy® [ 9o ) a¥

Xo® (1) Jexp [ (i) 1 Eo4],

where ¢W(r, #) is a function comprising all the terms in Eq.
(17) [n=1] orthogonal to ¢¢@(r). Since the term in ¥®(r, ¢)
proportional to ¢o@(r) is a purely imaginary (secular) term, it
is clear that the complete wave function, to first order, can be
written in the form

(1, ) =[$@ (r) +D (r, £) +++ - J exp [ (7)1 (E®¢
¢
+/:w (Bo@ | Hy® | @ )dt'4-+++) .

Moreover, in the limit of a static perturbation, the second term
in the exponential becomes the first-order level shift factor
(th) 7L E;W¢, and ¢D(r, ) becomes the first-order static perturba-
tion function x,®(r). Similarly, in second order the secular
terms can be picked out of the solution of Egs. (14) and (17)
and also combined into an over-all, time-dependent phase factor,
as we shall demonstrate explicitly in Sec. IIL.C. In this connec-
tion, it is important to recognize that although the development
of Egs. (9)-(19) results in a unique time-dependent phase
factor in the wave function, it is always possible, by the addition
of an arbitrary real constant to the phase, to obtain a modified
wave function that is also a solution of the Schrédinger equation.
The connection between this familiar “gauge invariance” and
an apparent indeterminancy in the time-dependent perturbation
functions—the possibility of adding an arbitrary (constant)
imaginary multiple of the unperturbed wave function to the
solution of Eq. (19b)—is discussed in Sec. II.C.

phase in the wave function for an arbitrary time-de-
pendent perturbation. Such secular terms, since they
arise from the expansion of an over-all phase, will not
contribute to the expectation values of physical
observables, cancelling identically in each order of
perturbation theory® The normalization terms, which
do contribute to expectation values, can be written
most conveniently in a form which makes explicit their
presence and insures that they are included correctly.
When the secular and normalization terms have been
explicitly extracted, it is possible to focus attention on
the remaining regular part of the wave function.

B. Secular and Normalization Terms

Our development is predicated on the isolation of a
multiplicative time-dependent factor in the total wave
function [Eq. (18)] that contains an over-all phase
factor and a term providing for the correct normaliza-
tion of the wave function. We can accomplish this most
directly by writing the wave function in the interaction
picture in the form

Wr(1, £) = ao(8) [ (1) + g b(D$O ()], (20a)

where

bi () = ax(£) /ao (). (20b)
This particular factoring of the coefficients a;(f) is
legitimate as long as ao(¢) is well behaved, and does not
limit the generality of our procedure. Moreover, in
view of the initial condition of Eqgs. (3b) and (13b), the
coefficient @o(f) is the only one that can be factored
from the wave function and give well-behaved 8(¢) in
the limit /——c. The Schrodinger wave function now
takes the form

Y(r, 1) =ao(t)p(x, £) exp [(1h)E,®1], (21)
where we have introduced the function
&(1, ) =@ (1) + 2 b (1) @ (1)
k0
X exp [ (i) 1 (EO—E©®) ], (22)

which satisfies the ‘‘intermediate” normalization con-
dition3*
($o® [ p)= (@ | $@)=1, (23)

with ¢@(r) the unperturbed eigenstate. From Egs.
(21) and (23) we see that ao(¢) has the form

ao(1) = (¥ [ ¥), (24)

% For any operator A(r, {) not containing time derivatives,
it is clear that (¥ |4 |V )= (0| A|6) when ¥(r, t) =0(r, t) X
exp [4g(#)], where g(¢) is real. The time derivative /¢ is not
an Hermitian operator in the space of functions ¢x© (r), and its
expectation value (¥|9/0t|¥)=3g(¢)+ (0| 9/0t]|8) involves
the phase factor g(#). However, the Hermitized form T'(¢)=
3[(8/0t)4(8/0t)1] where the adjoint (9/9¢)T satisfies
(W | (8/08)F | W)= (T | /0| ¥)*, clearly gives (¥|T|¥)=
(0| T'| 6). Similar results apply to the higher-order time deriva-
tives. Consequently, the expectation values of Hermitian operators
containing time derivatives are also independent of the phase
factor g(2).

# The function ¢(r, ¢) is evidently the portion of the wave
function which satisfies intermediate normalization, similar to
that introduced in the static case by Bloch (1958a, b).
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which we identify as the amplitude for finding the
system in the initial unperturbed state at any time 2.
In view of the form of the function ¢(r, ) [Eq. (22)],
it is perfectly clear that any over-all multiplicative,
time-dependent factor in the wave function must be
incorporated in the amplitude ao(¢) of Eq. (24).

It is a simple matter to demonstrate that the multi-
plicative factor of Eq. (24) incorporates the secular and
normalization terms in the static limit, with H® (r, ¢)
independent of ¢ for t—-- 0. In this case, the adiabatic
theorem is used to show that for #—- the time-
dependent wave function is of the form?®

W, (r, t) =x:(r) exp [(47) LE,], (25)
where x;(r) is the normalized eigenfunction of the total
Hamiltonian, H9(r)+H® (r), obtained from ¢® (r)
using time-independent perturbation theory for the
perturbation H® (r), and the quantity E; is the cor-
responding perturbed eigenvalue. From Egs. (24) and
(25) it follows that for -4« we have

ao(t) = (VO | W)= (b | xs) exp (i) 7 (Es— Eo®) £].
(26)

Consequently, in the static limit the partitioning
[Eq. (21)] is equivalent to the customary ansatz
[Eq. (25) ] for isolating the phase factor that arises from
the system level shift. Moreover, in the static case, the
function ¢(r, ¢) is of the form

6:(1) = x.(r) (G | xo)™* (27)
from Egs. (21), (25), and (26), which we recognize as
the static wave function in intermediate normalization.
Consequently, the proper normalization factor (@ | x,)
is contained in ao(¢) [Eq. (26) 7], as well.

To investigate the nature of the factoring of the wave
function for a general time-dependent perturbation, we
substitute Eq. (21) into Eq. (1), multiply by ¢o© (r, £)*,
and integrate over the coordinates. This procedure
gives separate equations for ao(f)

day(t) /dt= (1h)TAE(¢) ap(2), (28a)
and for ¢(r, ¢)
[HO(r) — Ey©—i#(9/0t) Jg(r, t)
+[H®(r,1) —AE(4) J¢(r, £) =0, (28b)
with
AE(t) = (6@ | H® | $), (28¢)
or
EO+AE(t)= (¢ | HO+HD—i#(d/dt) | ¢)(¢ | &)
(28d)

Equation (28a) can also be obtained from Egs. (10)
for £=0, employing the definition of the function
o(r, 1) [Eq. (22)]. Making use of the initial condition
a(t—>—»)=1 from Egs. (3), we can integrate Eq.
(28a) to obtain

a0(1) = exp ((m)—l /_ ; AE(Y) dl’). " (29)

% See, for example, Messiah (1966), Chap. 17, Secs. 10-13, for
discussion of the adiabatic theorem.
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Equations (28c) and (29) show that ay(¢) is obtained
from the function ¢(r,?) as, consequently, is the
complete time-dependent wave function ¥(r,?) [Eq.
(21) 13 The quantity AE(f) defined in Eqgs. (28c)
and (28d) is, in general, both complex and time-
dependent. From Eqgs. (24), (28), and (29), it follows
that AE(Z) can also be written in the forms

AE(f) =ifi(3/0t) (In (¥© | ¥))
=(TO[HO[¥)/(TO[¥),  (28e)

We now show that the imaginary part of AE(%)
insures that the wave function of Eq. (21) is properly
normalized for all # and that the real part of AE(¢)
gives rise to an over-all phase factor that contains the
system level shift. Multiplying Eq. (28b) by ¢(r, £)*,
integrating over the coordinates, and subtracting the
complex conjugate of the resulting equation from the
equation itself, we find

7(3/00) (6| 6)=—2(6 | 6) Im AE().

This expression can be integrated to give

(30)

(| o) 2= exp ((ﬁ)‘l /_; Im AE(Y) dt') , (31)

where we have made use of the initial condition,
(¢ | ¢)—1, t>—, obtained directly from Egs. (3).
Thus we find

ao(t) = (T | ¥)

= exp ((m)—l /_ ; AE(Y) dt’)

= (¢ | p) "2 exp ((iﬁ)“‘ /_; Re AE(Y) dt’) (32)

and see that the total wave function [Eq. (21) ] has the
form

Y(r,t)=¢(r, 1) (¢ | o)
X exp[(iﬁ)—l <E0<°>t+ / " Re AE(Y) dt’)]. (33)

Equations (31)—(33) demonstrate that Im AE(?)
does indeed insure that the total wave function is
properly normalized for all {, since the phase factor
appearing in Eq. (33) is purely imaginary. Moreover,
from Egs. (31) and (32) we have

[aof= [v0 W)= exp (200 [ 1m aB(e) ar)

=(o|e)™, (34)

¥ To emphasize that Eq. (21) is simply a particular rearrange-
ment of the variation-of-constants solution [Eqgs. (5) and (9)],
we note that the solution of Eqgs. (28) in the form of a spectral
expansion, when employed in Eq. (21), recovers the Dirac solu-
tion [Eqs. (5) and (9)7], with ax(¢) given by Egs. (10). The
particular advantages that derive from the factoring of the wave
function employed in Eq. (21), which results in Eqgs. (28), will
become clear from the subsequent discussion of the solution of
Eq. (28b).
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emphasizing the intimate connection between the
modulus of (¥@ | ¥) and the normalization of the wave
function. We can also obtain Eq. (34) directly from the
normalization condition of Egs. (12) and the definition
of ¢(r,1) [Eq. (22) ].

In order to determine the physical significance of
Re AE(t), we employ Eqgs. (28¢c) and (28e¢) to obtain

Re AE(1) = Re (6o | HO | )
= Re [(¥® | HO | )/ (O [¥)], (35)

which is analogous to the familiar level shift expression
in the static case® It is easy to see, however, that
E,®+ Re AE(?) is generally not the expectation value
of the total time-dependent Hamiltonian for the total
wave function. To demonstrate this, and to examine
the consequences, we introduce the function

Il

x(r,0)=o(r, 1) (d | ¢)72 (36)
which satisfies the normalization condition
x[x)=1. (37)
From Egs. (23) and (36) we have
(@@ | x)= (o [ )72 (38)
and, consequently, ¢(r, {) can be written as
o (r, 1) =x(r, £) (@ | x)7, (39)

analogous to the static wave function in intermediate
normalization [Eq. (27)]. The complete wave function
[Eq. (33)] when written in terms of x(r, ) is simply

¥ (r, 1) =x(r, 1)
X exp [(iﬁ)-l (Eg(‘”t—i— f " Re AE(Y) dt')]. (40)

We obtain a differential equation for x(r,#) by sub-
stituting Eq. (36) into Eq. (28b), or, equivalently,
substituting Eq. (40) into Eq. (1). This procedure gives

[HO (r) — Ey®—1%(9/9t) Ix (r, 1)

+[H®(1,¢)— Re AE(1) Jx (r, 1) =0, (41a)
with
Re AE(f) = ((x© [ H® | x)—ih{x® | 9x/dt))
X{x@[x)™'. (41b)

The equivalence of Eq. (41b), which is obtained from
Eq. (41a) by multiplying by x©@ (r)*[ = ¢©@ (r)*] and
integrating over the coordinates, with Eq. (35), can be
demonstrated by employing the definition of x(r,¢)
[Eq. (36)]. An alternative expression for Re AE(t) is

obtained from Eq. (41a) by multiplying by x(r, £)* "

and integrating over coordinates, giving
E©®4- Re AE(t) =(x | HO4+H®—i%(3/3t) | x) (42)

where we have employed the normalization condition
of Eq. (37). Alternatively, Eq. (42) results from
substituting Eq. (39) into Eq. (28d) and isolating its
real part.
Since the Hamiltonian operator is Hermitian, we
3 See, for example, Goldstone (1957).

have®

(x | HO+HO | x)= (¥ | HO+HO | ),
and Eq. (42) becomes
E©+ Re AE(1) = (¥ | HO+H® [ ¥)—ifi(x | dx/at)

=ih(¥ | 0% /0t)—ifi(x | Ix/0t), (44)

demonstrating that E®+ Re AE(?) is, in general, not
the expectation value of the total time-dependent
Hamiltonian.® However, for a simply periodic per-
turbation, H® (r, t) = H®(r, {+7), or for the individual
Fourier components of a more general time-dependent
perturbation, we anticipate that Eq. (44) will incor-
porate a time-independent term, AE, which can be
interpreted as the mean energy level shift of the
system.!® That is, for a simply periodic perturbation, we
can expect solutions of the Schrédinger equation to take
the form of quasiperiodic states,?

(43)

Y(r, t) =x(r, t) exp ((ifi)“[(Eo“”—i—AE)t

+ / " (Re AE(¢)—AE) dt’])
=0(r, ¢) exp [ (i) (E,©+AE) ], (45)

3 This serves to emphasize that the solutions of Eq. (41a)
are generally not the instantaneous eigenstates introduced by
Born and Fock (1928). However, in the special case of an adi-
abatically switched-on static perturbation, when the time deriva-
tive in Eq. (41a) can be neglected, the solutions do become the
Born—Fock eigenstates.

# This form of wave function [Egs. (45) and (46) Jis analogous
to the familiar Bloch waves which arise in electron band theory
for a spatially periodic potential. Shirley (1965a) has recently
emphasized that the solutions of Eq. (1) for a periodic Hamil-
tonian H(r, t+7) =H(r, ¢) in a finite dimensional Hilbert space
are also of the form ¥ (r, ¢) =0(r, ¢) exp [(¢%)1E:], where Eis a
real constant, and 6(r, t47)=6(r, ), as a consequence of the
Floquet theorem. Such states are designated quasiperiodic by
Young, Deal, and Kestner (1969), who give further discussion
in the more general case of an infinite dimensional Hilbert space.
For such quasiperiodic states, it is clear that the over-all phase
factor in Eq. (40) must contain the level-shift term and, con-
sequently, x (r, ¢) will be periodic. That is, aside from the periodic
phase factor,

t
exp [(iii)‘lf_ (Re AE(Y)—AE) at'],

the functions 6(r, #) and x(r, £) of Eq. (45) are identical. An
alternative argument for the existence of solutions of Eq. (1)
in the form of Eqs. (45) and (46) can be made by recognizing
that the Schrédinger operator, T'(r, ¢)=[H(r, ¢)—ih(d/dt)],
for a periodic perturbation is linear and Hermitian in the Hilbert
space ax(#)px®(r), where the ax(¢) are square-integrable func-
tions defined over the finite interval 0<¢<r. Consequently, we
can expect spectral solutions [7'(r, ¢) — Ex 0x(r, ) =0 and as-
sociated functions Wi (r, £) =6i(r, {) exp [(4h)1Ex] to exist,
where the 6;(r, ¢) and related functions ¢i(r, £) or xi(r, ) are
of necessity periodic to insure the single valuedness of the wave
function. The W(r, #) so defined satisfy the Schrodinger equa-
tion T'(r, )¥x(r, t) =0 and provide an orthonormal set of states
which describe the system’s steady-state response to an external
periodic perturbation. Moreover, under appropriate conditions,
the “eigenstates” W;(r, ¢) can be placed in one-to-one correspond-
ence with the ¥;@(r, #) of the unperturbed system and provide
a natural generalization in the time-dependent case of the more
familiar static eigenfunctions. This particular perspective, based
on square-integrable functions in the time domain, has been
adopted by Okuniewicz (1972), who investigates in detail ques-
tions pertaining to the existence of solutions of the Schrodinger
in the form of Eqs. (45) and (46). We thank Dr. Okuniewicz
for correspondence and discussion and for providing us with
results prior to publication.
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where 6(r, ) satisfies
[HO (r)+H® (r, 1) —ifi(9/9t) 10 (x, 1)
= (ES"+AE)0(r, 1), (46)

and is a periodic function of the time, 8(r, £) =6(r, i+7).
In order to clarify the physical significance of the level
shift, AE, appearing in the phase factor of Eq. (45), we
introduce an explicit perturbation parameter X into the
development and write the Hamiltonian H (r, {; \) and
the wave function ¥(r, £; \) as explicit functions of this
parameter. The time-dependent Hellmann-Feynman
theorem can now be employed in the form*

@) [H® [®(N) y=17(3/01) (X (N)[ 0¥ (N) /o) (47)
to establish the physical significance of AE(N). In-
troducing Eq. (40), with x(r,¢;A) and Re AE(#;)\)
explicitly dependent on X\, we obtain from Eq. (47)
(9/0N) Re AE(t; N) = (N[ H® [¥(N))

—ih(3/9) (x(\)| ax(N) /or).  (48)
We recognize the first term on the right-hand side of
Eq. (48) as the expectation value of the perturbation
Hamiltonian, which provides the physical “response’”
of the system.*! In the case of a system with a periodic
Hamiltonian, it is appropriate to introduce a time
average over one period in order to isolate the mean
energy level shift AE(N) in the phase factor Re AE(¢; M) ;

AE(N) = {Re AE(; V) = (1/5) f‘“ Re AE(V;\) d.

(49)

Employing such a time average over Eq. (48) gives
(0/0N) {Re AE(; M) } = { (XN [ H® [¥(N))}  (50)
since the time average over one period of the second

term on the right-hand side of Eq. (48) vanishes.
Consequently, from Eqgs. (49) and (50), we have

AB={Re AR} = [ (@O HO %)} dy, (1)
0

and have identified the energy level shift appearing in
Eq. (45) as equal to the time average of the system
response, integrated over the strength of the perturba-
tion. The quantity AE corresponds to the energy of
induction associated with the application of an oscil-
latory perturbation to the system and provides the
physically significant level shift.%

4 See, for example, Hayes and Parr (1961), and references
cited therein.

“1In the case of a nonresonant electromagnetic perturbation
applied to a molecular system, the expectation value of the
perturbation gives the induced electric and magnetic moments,
which contain the various electromagnetic susceptibilities. These
susceptibilities describe the physical response of the system to
the applied perturbation. A general discussion of response theory
is given by Peterson (1967).

“]In the case of a nonresonant electromagnetic perturbation
in the uniform-electric-field approximation, the right-hand side
of Eq. (51) corresponds to the energy of induction associated
with the application of the external oscillatory electric field.
In essence, the nonzero mean-square electric field performs a
finite amount of work on the polarization vector during the
course of its induction, identifying AE in this case as the ac
Stark shift. For a simplified discussion of this level shift see, for
example, Pancharatham (1966).

Itis important to recognize that the expressions given
for ¥(r,t) in Egs. (33) and (40) have been obtained
from the general ansatz [Eq. (21)] as a consequence
only of the Schrodinger equation [Eq. (1)] and the
initial conditions [Egs. (3)]. We do not introduce
either Eq. (33) or (40) as an ansatz, but rather derive
their forms from the Schrédinger equation and the
assumed Hermiticity of the total Hamiltonian® It is
clear that the regular function ¢(r, ) satisfying Eq.
(28b) and the intermediate normalization convention
[Eq. (23)] is the essential part of the wave function.
That is, a¢(#), which furnishes a time-dependent phase
in the wave function and the system level shift, as well as
the normalization factor, is determined by Eq. (29), and
the complete wave function is consequently determined
by Egs. (21) and (33).

In certain instances it is possible to obtain an exact
solution of Eq. (1) for the total wave function ¥(r, ¢)
by determining closed form expressions for the a;(¢) of
Eq. (9). The factoring of the wave function we have
introduced in Egs. (20)-(33) will then be apparent,
and explicit expressions for the &,(f) [Eq. (20b)] are
obtained. No particular advantage results from solving
Egs. (28) rather than Egs. (1) or (10) in such cases,
and it is important to recognize that both approaches
result in the same wave function, emphasizing that the
development of Egs. (20)-(33) merely provides a
convenient rearrangement of the Dirac variation-of-
constants solution?® In most applications, however,
exact solution of the Schrodinger equation is not
possible and we are interested in perturbative approxi-
mations to the wave function. The development of
Eqgs. (20)-(33) is more convenient in this case than is
the original Dirac approach [Egs. (9)-(19)] upon
which it is based. This is because the wave function of
Eq. (33) provides concise expressions for the normaliza-
tion and phase factors, whereas in the Dirac approach
they appear in expanded form. It remains only to
determine a perturbation solution for the regular func-
tion ¢(r,t) of Egs. (28), from which the associated
perturbation approximations to x(r,{) and ¥(r,{) are
then obtained.

% A wave function in the form of Egs. (33), (40), and
(45) also arises in connection with transition phenomena, which
are somewhat outside our range of interests here. It is implicit,
for example, in the lineshape and level-shift theories of Dirac
(1927c) and Weisskopf and Wigner (1930) and in the more
recent work of Lin and Bersohn (1966). Moreover, the form of
Eqgs. (33) and (40) is essential for obtaining the correct long-
time behavior of the wave function in the transition case. In
this connection, see the closely related work of Brooks and
Scarfone (1969), who employ the multiple-time-scales formalism
we discuss in Sec. IV.B for the dispersion case, or the more
recent related discussion of Salzman (1971, 1972). Absorption
and dispersion profiles in the neighborhood of resonances can
also be approximated by employing S-matrix theory, as dis-
cussed, for example, by Shore (1967). Nevertheless, the particular
form of Egs. (33) and (40) is implicit in such developments,
as well. Wave functions for magnetic resonance problems of the
Rabi or Bloch-Siebert type are also similar to Egs. (33) and
(40) in that the secular terms which arise from a level shift are
incorporated into an overall phase factor by introducing a trans-
formation to a rotating frame of reference. See, for example,
Slichter (1963) p. 26.
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C. Perturbation Theory

To solve Egs. (28), we introduce the perturbation
expansions

o(r,0)= 3 ¢(z,1), (52a)
n=0
AE()= 3 E®(), (52b)
n=1
which results in the sequence of equations
[HO () — E®—ifi(2/00) 6 (x, 1
+LH® (x,() B9 () J6u® () =0, (3a)
[HO () — B®—ifi (0/00) 16 (x, 1)
+LH® (1, )~ EO () 0 (x, )
= S EO@)ee(r,0),  w>1, (53b)
k=2
with the conditions [Eq. (23)]
(9@ | ™ )=0 n>0. (33¢)
The complex quantity E® (¢) is given by
E® (1) ={¢® [H® [ $D)  #>0, (53d)

which insures that the linear inhomogeneous perturba-
tion equations [Egs. (53a) and (53b)] possess non-
trivial particular solutions.* Equations (53) correspond
in form to the equations of time-independent perturba-
tion theory in the intermediate normalization con-
vention® and are suitable for solution by a variety of
procedures. In subsequent sections we shall discuss
specific applications of Eqgs. (53) to particular per-
turbations.

It is instructive to consider in detail the alternative
function x(r,#) [Eq. (36)] and its perturbation
approximation, which incorporates the normalization
factor of Eq. (33) but not the secular terms. Introducing
the perturbation expansions

x(r, ) = 3 x® (x, 1), (54)
B B)=14 3o 3 arnig | gm),  (55)

n=1 m=1
and that of Eq. (52a), into Eq. (36), where the per-
turbation parameter \ is employed for convenience, we
obtain explicit expressions for the x™ (r, ¢),

x@(r) =@ (1), (56a)
xW(r, 1) =P (r, 1), (56b)
x®(r, 1) =¢@ (1, 1) =3 (6@ [ $©)eps™ (1), (56¢)
x® (1, 1) =@ (1, 1) =5 (6@ | 6 )¢ (1, 1)

—3((@® [ 9©)+ (oW | @) (1), (56d)

x™(r, 1) = ZZ; (/1) [ (8N (@ | ¢ )2 o0 (1, 0).
(56¢)

% This is by no means self-evident from Eqs. (53) and must
be demonstrated explicitly for each specific perturbation. We do
so for the harmonic perturbation considered in Sec. III.C.

The x™ (1, t) of Egs. (56) satisfy differential equations
which are obtained most directly by substituting Eq.
(54) into Egs. (41). There results the sequence of
equations

[HO (1) — E® —ifi (9/0t) ] (x, 1)
+LH®D (r, 1) —Ez® (1) ]x© (1) =0,

Er®(8) = x© | H® | xO)—ifi{x'® | ax 0 /at), (57a)
[HO (1) — Eg©—17i(9/0t) Ix™ (r, 1)
+LH® (r, t) — Eg® (1) Ix"(r, 1)
= 3 B ()x0P(r,1),  w>1, (STb)
k=2
with
Ex® (£) = (x© | HO— Ep® | x@—1)
n—1
— 20 ErW (1) (x© [ x"™) =il (x @ | o0x™ /ot)  n>1,
k=2
(57¢)
and
i X® | x®)y=0  #>0. (57d)
k=0

We recognize that Eqs. (57) are similar in form to the
equations of time-independent perturbation theory
employing the normalization convention of Eq. (37).
The functions x™(r, ) are not uniquely specified by
Eqgs. (57); that is, they are arbitrary with respect
to the addition of imaginary time-independent multiples
of x®(r), since the normalization conditions [Eq.

.(57d) ] specify only the real parts of such multiples. If

these imaginary multiples are set equal to zero, in
correspondence with the standard phase convention of
time-independent perturbation theory,® the solu-
tions of Eqs. (57) are identical with the functions
x™(r,t) of Egs. (56). Moreover, in this case, the
Ex™(t) of Eq. (57c¢) are equal to the Re E®(f) of
Eqgs. (35) and (53d);

Ep™ ()= Re E™({)= Re (p© | HV | D), (57e¢)

If this phase convention is not adopted,* the additional
(arbitrary) terms that appear in the functions x® (r, ¢)

 See, for example, Condon and Shortley (1963) pp. 30-34,
and Epstein (1968c), for discussions of this aspect of time-
independent perturbation theory.

 The importance of adopting the standard phase convention
in the solution of Egs. (57) has been somewhat misunderstood
in the literature. Equations (57) have been previously obtained
by Chung (1967), who apparently did not recognize the in-
determinancy in their solutions and obtained incorrect results
in their application to the Hartree-Fock approximation (see
Sec. IILE). This feature of Chung’s development has been
noted by Heinrichs (1968a), who also derived Eqgs. (57). Hein-
richs makes the proper phase choice, on the basis of convenience,
and therefore obtains correct results in his applications. How-
ever, the reason for employing the standard phase choice of
time-independent perturbation theory is made completely clear
only by identifying the function ¢(r, ) and its relations to
¥(r, ¢) through the development of Egs. (20)-(51). Perturba-
tion approaches based on Egs. (57) have also been discussed
previously by Van Hove (1955a, b) and Ezawa (1963) p. 93.
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" can be incorporated into an over-all phase factor as in
the static case and, consequently, the solution differs
from that of Egs. (36) and (56) only by this over-all
time-independent phase factor.® The Er™ (f) of Eq.
(57¢c) are, in this case, not equal to the Re E™ () of
Eq. (57¢). Consequently, in order for the solutions of
Egs. (57) to be equivalent to the Dirac variation-of-
constants results and to those of Egs. (56), it is necessary
to enforce the customary phase convention of time-
independent perturbation theory. By contrast, in
solving Egs. (53) it is necessary to insure that the

YO (1, 1) =xO(r) exp [(4h)LEOL],
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simpler orthogonality condition of Eq. (53c) is satisfied.
Thus, Egs. (53) are somewhat more suitable for com-
putational application than Egs. (57) because of the
inclusion in the latter of the redundant normalization
terms.

Having introduced the additional perturbation func-
tions x™(r, {), which incorporate the normalization
but not the secular terms, we next consider the com-
plete time-dependent perturbation functions ¥ (r, f)
of Egs. (19). From Eq. (40), by expanding the ex-
ponential factor, we obtain

(58a)

¥O(r, 1) = [x(”(r, 1)+ (ih)! /t Re EO() dt’x“’)(r)] exp [ (i%) ~1E,©¢], (58b)

YO (r, t)= [X(”(l‘, 1)+ (i)~ /t Re ED(¢) dt'x™ (x, £) + (i) ! /t Re E®(¢) di'x® ()
t 2
3 ([ RemO@) at) o <r>] exp L) —E01], (58¢)
Y& (r, 1) = [X<3)(1', )+ (ih)~? /t Re EO(1') dt'x ™ (r, t) + (i)~ /t Re E@ (V') d'x® (r, 1)
t t 2
+ (i) f Re E® (1) dt’x(°>(r)+%(iﬁ)—2< / Re EO (1) dt’> X0 (x, £)

(i) ( f_ ; Re B0 (¢) dt’)( /_ ; Re £ (1) dt’) XO (£) -1 (i) ( f_ ; Re EO(¢) dt')sx@ (r)] exp [(iF)—LE,O1],

(58d)

l

IO (r, 1) = 3° (1)) [—a— exp ((m)—l f " Re AE() dt’)] X (x, 1) exp [ (i) E01], (58¢)
=0 — A=0 ‘

IN

where the perturbation parameter A in Eq. (58e) is introduced for convenience, as in Eq. (56¢). That the functions
given by Eqgs. (58) are the correct perturbation solutions of the Schrodinger equation can be seen by substituting
them into Egs. (19), resulting in the perturbation sequence of Eqgs. (57) satisfied by the x™ (r, £). The functions
Y™ (1, t) expressed in terms of the x™ (r, ) show explicitly the presence of secular terms which do not contribute
to the expectation values of Hermitian operators. Of the terms appearing in Eqs. (58) for order #, only the first one,
x™(r, 1), contributes to an expectation value. The others, which arise from the expansica of the phase factor of
Eq. (40), yield contributions which cancel identically in each order of the perturbation expansion.® Further, it is
evident that the time integrals in Eqgs. (58) do not necessarily result in simple linear, quadratic, etc., time de-
pendences (secular divergence) but, rather, can give rise to more general secular behavior. The customary Dirac
variation-of-constants solutions, Egs. (9)—(19), can also be “rearranged’’ into the form of Eqs. (58), although it
is somewhat complicated to “uncover” the secular terms following such a procedure.® By contrast, the develop-
ment of Egs. (20)-(40) performs the extraction of both secular and normalization terms in a direct and concise
manner,

To relate the ¥™ (r, ) to the basic functions ¢ (r, £), it is possible to simply introduce the expressions for
x™(r, £) in terms of the ¢ (r, {) [Eqgs. (56) ]. It is also instructive, however, to see explicitly how the normaliza-
tion terms arise in the perturbation functions ¥ (r, ) from expansion of the factor a,(¢). To demonstrate this, we
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return to Egs. (21) and (29) and expand the complete complex exponential factor, ao(£), to obtain

YO(r, 1) =@ (1) exp [(i#) " E 1],

¥O(x, 1) = [¢<1><r, D+ [ B0 @) dz'¢o<°><r>] exp [(i) 7 EL],

w01, 0= [0 0+ [ B0 a0 i+an [ B a0

—o0

w5, 0= 400+ [

+ny [ mow) atsow+san ([ Bow) ar)eo i,

+n= ([ Bow) dt’)( [ @ @) w0+ ([ mow) dt'>3¢o(°)(f)] exp (i) Eo®1],

(59)
(59b)
3 (iR) ( [ Eow dl’)2¢o(°) (r)] exp [(iH)EOr], (59)
E'D(t’) dt,¢‘(2)(r7 t)-l— (,iﬁ)fl /l E(2)(tl) dl’d’(l)(r; t)
(594)
(59¢)

YO (1, )= 3 (I)L(0Y/aN) ao() o (5, 1) exp (i) 1],
=0

once again introducing the parameter \ for convenience. To make clear which of the terms in Egs. (59) provide for
the proper normalization, the integrals appearing there are written

t t t
/ E (1) dt’=f Re B (¢) di/+i / Tm E® (1) dt,

(60)

where the Re E® (1) are given by Eq. (57¢). To evaluate the terms involving Im E® (¢), which in fact provide the
proper normalization, we make use of the perturbation expansion of Eq. (30) and obtain [Im E®(¢) =0]

it f_ ; Im E@ (') dt'=—5{@" | ), (61a)
it [ T EOW) at= =500 [+ 6 | 60)), (61b)
i [ B ) = =69 | 491+ [ 690+ G0 | 699~ [ @0 [60) IO @) ar, (610
[ mEo@) =1 F o g T Y [ @ e m o @ a2e (610)

Inserting these expressions into Egs. (59), we rederive
Eqgs. (58) but with the x™(r, ) replaced by their
expansions in terms of the ¢® (r,¢) [Egs. (56)7]. This
procedure avoids explicit expansion of the normalization
factor [Egs. (54)—(56) ] and makes direct use of the
perturbation expansion of Eq. (30). Of course, the two
methods give identical results for the total time-
dependent functions and their convergence properties
are equivalent.

The perturbation functions ¥® (r, ¢) given in Egs.
(58) and (59) show how both the normalization and
secular terms are introduced explicitly by expansion of
the multiplicative time-dependent factor of Eq. (32).
Since the customary perturbation theory treatment

based on the Dirac variation-of-constants method
results in the expanded form of the normalization and
phase factor, it is clear that the conventional perturba-
tion approach [Egs. (9)-(19)] glves rise to the secular
and normalization terms appearing in Egs. (58) and
(59). It is important to emphasize, however, that the
expectation values of physical properties obtained with
the Dirac solution of Egs. (9)-(19) or with solutions in
the form of Eqs. (33) and (52), or (40) and (54) are
the same. That is, from Egs. (33) and (40) we have

TA[¥)=(x[A[x)=(s]4|e){¢]|¢)7, (62)

for A an Hermitian operator representing a physical
observable.®® Since the secular terms do not appear in
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Eq. (62) or its perturbation expansion, they cannot
introduce difficulties, and it is thus erroneous to con-
clude that Eq. (13) or the expansion of Eq. (62) is
invalid due to their presence. On the other hand, the
rapidity of convergence of the expansion of Eq. (62)
is a separate matter which depends upon the nature of
the perturbation and is not considered here.

Our introduction of the ¢™(r,¢) is motivated
primarily by the fact that they provide a convenient
means for exhibiting the normalization and secular
terms in the perturbation expansion of the complete
wave function. They also provide for the formulation
of a set of equations suitable for computational pur-
poses and for clarifying the behavior of the time-
dependent perturbation equations in the static limit.
The distinct advantages of the equations satisfied by
the ¢ (r, {) over those for the ¥™ (r, {) and x™ (r, £)
will be further clarified by the applications given in the
following section (Sec. IIT) and in our subsequent
discussion of variational procedures (Sec. V).

III. APPLICATIONS

To illustrate the general formulation of the previous
section, it is instructive to make comparisons among the
three sets of perturbation functions, o™ (r, £), x™ (1, t),
and ¥®(r,¢), obtained for specific perturbation
problems. We consider first the model problem of a one-
dimensional harmonic oscillator perturbed by a poten-
tial for which the Schrodinger equation can be solved
exactly. We then treat general static and harmonic
perturbations, and apply the latter development to the
determination of the nonlinear dipole polarization of a
molecule by an oscillating uniform electric field. The
form of the uncoupled Hartree-Fock equations in the
presence of a general one-particle time-dependent
perturbation is then derived to illustrate the importance
of extracting secular and normalization terms from the
wave function prior to computational applications.

A. The Linearly Perturbed Oscillator

The one-dimensional harmonic oscillator perturbed
by an arbitrary time-dependent potential linear in the
oscillator coordinate provides an instructive example of
the factoring of the secular and normalization terms
from the wave function described in Egs. (20)-(33).
The unperturbed Hamiltonian

HO(2) =— (#2/2m) (82/022) +3Kz2, (63a)

appearing in the time-independent Schrédinger equation
[HO(2) —EOJ$@(2) =0, k=0,1,2,--- (63b)

gives rise to the well-known spectrum [E,9, ¢,© (2) ],
where )
E© = (k+3) fin,

wo=(K/m)'*,  (63c)

and the ¢;@(z) are the familiar harmonic oscillator
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eigenfunctions.” The perturbation we consider is written
in the form

HO (3, 1) =2g (1) (64)

where the function g(#) is arbitrary, within the con-
ditions on H®(z, ) specified in Sec. IT. Exact solution
of Eq. (1) is obtained in this case,*® providing explicit
expressions for the a,(¢) of Eq. (9) in the form

a(8) = ao(2) (k1) 2LX (1) T, (65)

where
t
X (1) = — (2micog) 2 [ expliwe Jg(¢) V', (66)

and a,(?) is given by [Eq. (29)]

ao(l) = exp ((m)—l /_ ; AE(!) dt’)

exp [ (2mficy) V12

X f " exp [—iwd Je(X) X (¢) dt’]. (67)

The factoring we have introduced in Eq. (20) is ex-
plicitly illustrated by Eq. (65) and we identify, for the
perturbation of Eq. (64),

bi(8) = (RD)~2LX (2) J. (68)
To demonstrate the normalization of the wave function
[Eq. (31)], we consider Im AE(¢) in Eq. (67) and
find, from Egs. (22), (28c), and (68), that

exp [(f»—l [ 1 am() dt’] — exp[—3 | X,

(69)
and

@] 6)= z D)2 XOPRr= esp [| XO)[]. (70)

Equations (69) and (70) provide an explicit example
of how the correct normalization of the wave function
is insured by an over-all multiplicative factor [Eq.
(31)]. Finally, Re AE(?), which incorporates the
system level shift, can be evaluated from Egs. (66)
and (67) for specific perturbations g(¢).

As a preliminary to the general static and harmonic
perturbations considered below (Secs. ITL.B and IT1.C),
we examine here the harmonic perturbation

g(®) =f(t) cos wt, (71)

47 See, for example, Pauling and Wilson (1935) p. 65, who
provide a particularly detailed discussion of the quantum me-
chanical harmonic oscillator. ‘

48 See, for example, Feynman (1948), Husimi (1953), Kerner
(1958), and Pechukas and Light (1966).



616 REevIEWS OF MODERN Puysics « Jury 1972

where f(f) is an appropriate switching function.®® In
the case of ideal adiabatic switching, we find [Eq. (66) ],
for t——+ o0,

X (8) = (31) (2miicsy) 12
exp [i(wotw) ]
% { (ort)
and [Eq. (67)]

exp [i(wo—w)t]} ()

(wo—w)

ao(t) = exp {— (1/4) (2mficop) 1

X [% (wotw) 7?43 (wo—w)

cos 2wt 72w0 sin th)]}
— 7
+ (wi—o?)  (wd—o?) (H' 20 , (73)

with the @, () given by Eq. (65). When expressed in
the form of Eq. (33), the over-all wave function is seen
to be highly compact, whereas the customary per-
turbation functions ¥®(z, ¢) [Egs. (59)] contain the
secular and normalization terms which arise from
expansion of Eq. (73). We note that both diverging and
oscillatory secular terms arise from the expansion of the
phase factor.?

In the static limit, w—0, Eqgs. (72) and (73) become

X () = (i/wo) 2mbic) 2 exp (int)  (74)
ao(t) = exp {— (1/2) (2mAicn) [ 1/eos—(2/c00) L]} .
(75)

The wave function and level shift given by Eqs. (74)
and (75) are in agreement with the results obtained
from the time-independent Schrédinger equation and
are, therefore, consistent with the adiabatic theorem 35
It is important to note that the oscillatory part of the
phase factor in Eq. (73) contributes to the static level
shift [Eq. (75)] in the limit v—0. Consequently, in
order to insure uniform passage to the static limit, it is

® A variety of switching functions can be employed, ranging
from the sudden to the adiabatic forms. The simple piecewise
function f(f) =exp [8t], ¢<0; f(¢) =1, t>0, with 6 real has a
discontinuous first derivative, but is adequate for our purposes.
Taking 6w, we obtain the case of sudden switching, while
for 6wy we have the case of adiabatic switching. Employing
this switching function, we find that ao(#) [Eq. (67)] for the
harmonic perturbation of Eq. (71) contains a phase factor
~1/6 which diverges in the adiabatic limit 6—0. This divergent
factor can be avoided by employing a sufficiently smooth and
continuous switching function, as discussed, for example, by
Musher (1964). An alternative justification for deleting the
divergent portion of the phase factor is that the “physical”
level shift is given by Eq. (35), wherein the divergent phase
cancels out. See, for example, Gell-Mann and Low (1951), for
discussion of this point. In the following we assume the possibility
of “ideal” adiabatic switching, for which the level shift is taken
to be independent of the switching function by deleting the
divergent phase.

% The wave function obtained from Egs. (72) and (73) is
an illustration of the quasiperiodic state discussed in Footnote
39. The level shift term in Eq. (73) evidently exhibits a fre-
quency dependence similar to that of the dynamic polarizability
of the system first described by Kramers and Heisenberg (1925).

necessary in the time-dependent case to extract into a
phase factor not just secular divergent terms, but also
secular terms which become divergent in the static
limit. The development of Egs. (20)—(33) performs the
extraction of both secular and normalization terms
concisely and the specific example considered here
provides an explicit illustration of the procedure.

B. Static Perturbations

In the case of an adiabatically switched-on static
perturbation (we use the subscript s to designate the
static case)

H®(r, 1) = HD (1) f (1), (76)

the adiabatic theorem assures that for f—- o the
solution given in Eqgs. (33) and (40) takes the form

\I’S(r: t) =¢8(r) <¢s { ¢‘s>_1/2 €xp [(iﬁ)—l(Eo(o)-l-AEs) t]
=xs() exp [ (i) (B4 AE,)1]. (77)

Here, AE, is the static energy level shift [Eqs. (35)
and (41b) ]

AE;= <¢0k0) I H,® [ d’s)

= O TH® [ x0)/ X | xs)

— (WO [ HO W)/ |¥).  (78)

It is important to recognize that Eqs. (77) and (78a)
are valid in the limit /—--, subsequent to the re-
quired ideal adiabatic switching interval. Within the
switching interval, the wave function [Eq. (33) ] and
level shift [Eq. (35)] depend on the particular switch-
ing function employed. To emphasize the requirement
of an infinite switching interval, we can write the level
shift in the alternative form, based on Eq. (28e) and
familar from ‘“many-body”’ theory,5

AE,= lim (t—+ ) [i#(8/3t) In(T©® [¥)]. (78b)

In Egs. (77) and (78), ¢s(r) and x,(r) are the static
limits of ¢(r, t) and x(r, £), respectively. The functions
¢.(r) and x,(r) thus satisfy the time-independent forms
of Eqgs. (28) and (41), respectively, and the associated
time-independent perturbation functions, ¢, (r) and
x:™ (1), satisfy the static limits of Eqgs. (53) and (57),
respectively. We recognize that the distinction between
the functions ¢;® (r) and x;™ (r) is due to the differ-
ence in the normalization conventions [Eqgs. (53c) and
(57d)], both of which are used in time-independent
perturbation theory.?*4 In obtaining solutions of the
time-independent form of Egs. (57),itis alsonecessary to
enforce the phase convention of sequentially neglecting
arbitrary imaginary multiples of x, (r) in the functions
xs( (r), since they are not uniquely specified by the
normalization requirement. This procedure insures

® From Eq. (30) we see that ImAE(¢)—0 in the limit i—4 o,
since ¢(r, #)—¢;(r). Consequently, the level shift of Eq. (78b)
is real. For an alternative discussion of Eq. (78b) see, for example,
Mattuck (1969) Appendix C.
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that the correct phase factor [Eq. (77)] will result,
whereas including arbitrary nonzeroimaginary multiples
of x,@(r) in the x,™ (1) is equivalent to introducing an
additional time-independent phase factor into the wave
function. In solving the time-independent form of
Egs. (53), by contrast, we need insure only that
Eq. (53c) is satisfied, since the correct normalization

VO (1, £) =x,O (1) exp [(ih)1E,O1],

T, (x, 1) =[x (1) + (i) EPtx, @ (r) ] exp [ (i) E©1],
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terms and phase factor are automatically introduced
by the form of Eq. (77).

While the functions ¢®(r,¢) and x®™(r,#) are
time-independent in the static limit, such is not the case
for the ¥®(r,{). The latter functions remain time-
dependent; from Eqgs. (58) or (59), they have the form
(t—+ )

(79a)
(79b)

V0 (1, 1) = D6 (5) + () 7Ot (1) + (i) B0 (1) +3 ) (BN, () T exp L) EOL],  (79¢)
T (1, 1) = Di® (1) + () B0t (1) + () "B O (1) + () "B O (1) -3 (i) (B0 2, (1)

(i) 2(E01) (E,20) x,® (x) +3 (i) (D)0 (x) ] exp [(#) 01,

n

V@(r, )= % (1)7{(8Y/aN) exp [(i#)AEdThroon (x) exp [(R)EO1],

=0

with

AE8= Z )\nEs(n)

n=1

(79f)

in Eq. (79e).

It is evident from Eqgs. (79) that the expansion of the
exponential [Eq. (77)] gives rise to time-divergent
terms (secular divergences) in the perturbation func-
tions ¥,™ (r, ¢). Such terms do not lead to divergence
in expectation values for physical observables, however,
since the contributions from the secular terms cancel
in each order of perturbation theory. Their presence in
the perturbation functions ¥, (r,¢) is necessary to
insure that the x,™(r), or the ¢,™(r), satisfy the
proper time-independent perturbation equations; i.e.,
substitution of Egs. (79) into Egs. (19) leads directly
to the static limits of Egs. (57). It is customary to by-
pass the ¥,™(r ¢) in the time-independent case by
introducing Eq. (77) as an ansatz, which leads directly
to the static limit of Egs. (53) or (57). From the
present development it is clear that the ¥, (r,¢)
of Egs. (79) are the correct solutions (#—-4) of
Eqgs. (19) for a static perturbation introduced adia-
batically.

Consideration of the static limit makes possible a
connection with the better known formulations of time-
independent perturbation theory. This clarifies the
nature of the three different conventions [Eqs. (19),
(53), and (57)] introduced above into time-dependent
perturbation theory and reinforces the conclusion that
all of the conventions must yield the correct answer if
properly executed.

C. Harmonic Perturbations

Since harmonic perturbations play a fundamental
role in the semiclassical treatment of the interactions
between radiation and matter, we here apply the general
development to an adiabatically switched-on harmonic

(79d)

(79¢)

perturbation. Introducing the switching function f(¥)

~ previously employed,* we write the harmonic perturba-

tion in the form
HO(r, ) =h®(r)[exp (iwt)+ exp (—iwt) Jf(t), (80)

where the spatial portion of the perturbation, 2®(r),
which is considered real for simplicity, is not specified at
this point.

In the switching interval the complete wave function
and the solutions of Eqgs. (53) for the adiabatically
applied harmonic perturbation [Eq. (80) ] depend upon
the specific choice of switching function. However, for
t—-} o, when the steady state has been established, the
solutions ¢™ (r, f) can be made independent of f(f) by
employing a sufficiently smooth " (ideal) function.
Further, since all of the secular terms have been
collected in the phase factor of Eq. (33), the correct
solutions of Egs. (53) should be periodic in time,?
similar to the result obtained for the perturbed har-
monic oscillator in Sec. ITI.A [Egs. (72) and (73)].
To clarify this, we write Eqgs. (53a) and (53b) in the
form

[HO (1) — E®—i#(3/81) J6 (, ) =0@ (1, 1) n>1

(81)
where 6™ (r,f) is the inhomogeneous part of the
equation, involving only known lower-order functions

¢®(r, t) (k<x). The definition of E™(t) [Eq. (53d)]
assures that

(9@ [ 6®)=0, (82)
and, consequently, from Eq. (81) we have
(8/98) (9@ | ™)=0,  n>1. (83)

Since Eq. (83) is satisfied for all ¢, the initial conditions
(0@ | ™ )—0, (t—— o), n>1, insure that the correct
solutions of Egs. (81) will satisfy the normalization
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conditions of Eq. (53c). Thus, no multiples of the un- with [Eq. (82)]
perturbed eigenfunction ¢@(r) will appear in the (6@ | 6™ )=0, (86)
correct solutions of Egs. (81). Moreover, for -+«
the inhomogeneous terms 6™ (r, t) are seen from Egs.
(53) to be periodic functions of time for an harmonic
perturbation, if the lower-order functions ¢® (r, £) (k<)
are periodic. The first-order function ¢®(r, ¢) is easily . .
shovgn to be periodic and, consequently, all t’he 6 (1, 1) ¢ (1), W}}lle in the case k=0, Eq. (86).15. the necessary
are periodic by induction. This, and the normalization 21d ,SUﬂiCI(eI)’t condition _that Ig)ntrlvxal particular
condition of Eq. (53¢), insures that the ¢™(r,#) of §olut10ns b0 (1) .of Eq. (85) exist. The nonuniqueness
Egs. (81) are periodic functions of the time. in the solution [i.e., the possibility of adding an arbi-
Introduction of solutions of the form (t—+ ) trary multiple of ¢?(O)(r)] is resolved by the require-
- ment of our normalization condition that

oM (1, t) = Zk: ¢k<">(r)\exp (thwt) (84) ($0© | o )=0 [Eq. (53¢)]5

where the contributing % values and the functions
6. (r) are determined order-by-order from the in-
homogeneous terms 6 (r, #). Equation (86) for £0
insures that the ¢:™(r)(k5£0) are orthogonal to

into Eq. (81) results in the equations For the harmonic perturbation, we find from Eq.
(84) that the functions ¢™ (r, ) through third order,
LHO (1) — Eg©+ ki J¢r™ (r) =60, (r), (85) subsequent to the switching interval, are

PO (1, 1) =632 (x) exp (ist) 61 (x) exp (—iwl), (87a)
B (1, 1) =612 (x) exp (i21) +652(x) exp (—i2et) +oe (1), (87b)
89 (1, 1) =¢45® () exp (i36f) +64 (1) exp (—id0) +6:110 (1) exp (iwt) +91 (1) exp (—iw)], (870)
where the spatial functions satisfy
[HO (r) = Ey@=7i6 T (1) +[5O (1) 0] () =0, D= (G [ KO 4,®),  (88a)
[HO (r) = Eo® =27 (1) + D5 (1) =0 Tpa ® (1) = 4o (1),
esa®= (4 | K0 | $14), (88b)
[H® (x) = E® Ju® () + [0 (1) =0T () F61® (1) J= e®o® (1),
€@ =€,@+e_y®, (88¢)
[HO (r) = EgO 301645 (1) +ThO (1) — e Jp5® (1) = e1sPpn® (1) +e250 (1),
exs®= (40 | 10| $,5®), (88d)
[H® (x) = O£ Hua® (1) +ThO (1) = e Tbs® (1) 60 (1) 1= e4a@m () 6D (1) F-e11@ (1),

en®@=6®O+en®,  @®=($® | kD | @),  (88e¢)
and we have made use of the expressions ({—+ )

E® (1) = ($® | HD | ¢ )=eD[exp (iwt) + exp (—iwt)], (89a)
E® (1) = (¢o® | HO | ¢®)=e,5® exp (i2f) +er® exp (—i2wf) +e®, (89b)
E® () = (@ | HD | ¢®)=¢,4® exp (i3wt) 5@ exp (—i3wt) +en® exp (i) +es® exp (—iwt). (89¢)

To complete the evaluation of the wave function for a harmonic perturbation, we require explicit expressions for

% See, for example, Coddington and Levinson (1955).

%1t is important to recognize that Eq: (85) is a second-order linear, inhomogeneous differential equation and, consequently,
the two linearly independent solutions of the associated homogeneous equation can appear in the general solution. For 30
and kfiw 7 (E;%—E,®) there are, however, no square-integrable homogeneous solutions. Consequently, for the perturbation of
a bound state at applied frequency away from resonances, the homogeneous solutions cannot appear in the general solution.
For k=0, ¢o®(r) is a square-integrable homogeneous solution, but our normalization convention [Eq. (53c)] requires that
it does not appear in any of the ¢ (r, £). In all cases, therefore, we need concern ourselves only with the particular solutions of
Eq. (85) which contain no multiples of the homogeneous solutions. The homogeneous solutions of Eq. (85) in the case of
atomic hydrogen are discussed by Alexander and Gordon (1971).
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the integrals appearing in Egs. (59). From Egs. (89) and (61) we find (t—>+ ) 5
t 2 sin wt
iy [ B0 () ar= (i) 2 (90a)
—0 w
: in 2t
Gy [ B @) ar= (i (1 S22) —30 |40 (90)
—c0 W
‘ in 3wt in ot
(@)= [ BOW) af = ()M es®+ea®) T2 () en®+ea®) TF —3 (60| 601+ 6 | 60)).
—o0 [} w
(90c)
Inserting Egs. (90) into Egs. (59), we obtain, to third order,
YO (1, 1) =@ (1) exp [(1h)1E,OF] (91a)
YO (r, ) =[¢D(r, £) + (i#) €D (2 sin wt/w) $o®@ (1) ] exp[ (%) ~1E, ¢ ] (91b)

VO (r, 1) =[6 (1, £) =1 | $)o () -+ (i) e (2 sin wt/e0) ¢ (x, £) + (i) @[t (sin 2t/2) Tu® ()
41 (%) 2@ (2 sin wi/w) ]5¢0<°) (r) ] exp [(##)1E©¢], (91c)
TO (1, £) =[69 (, 1) — 36D | $D )6 (1, 1) =3 (6D | $2)4 (62 | $D)) s (r)

+ () 7€ (2 sin wt/w) [ (1, 1) =5 (S | §©)bo® (r) ]+ (7) ~e®[1+- (sin 2wt/ 2w) J (r, 1)
+ (i7) " (e45®+-€5®) (sin 30t/3w) o ® (1) + (i) (1P +-€1®) (sin wt/w) do® (1)
+3(i%) ~2[e® (2 sin wt/w) Po® (r, £) + (i7)~2[e® (2 sin wt/@) Jo® 1+ (sin 20t/20) Joo® (r)
+5 (i) [V (2 sin wt/w) Fo® (r) ] exp [(#A) EO].  (91d)

Equations (91) explicitly exhibit both the normalization and secular terms that arise in the Schrédinger perturba-
tion functions for harmonic perturbations. We write them out in detail here in order to facilitate subsequent
comparison with the Dirac approach, whereas it is generally convenient to incorporate the secular terms appearing
in Egs. (91) into an overall phase factor, as in Egs. (33) and (40). The complete wave function, through third

order, then takes the more compact form

Y (r, t) = {g@ (1) +D (1, 1) +¢P (1, 1) —=5(dD | ¢D )o@ (1) +-¢® (1, £) —5{d® | ¢ )pD (1, 1) =5 ({p® | ¢©)
(D | $D V)o@ (1) + -} exp (1) E®t-+€0 (2 sin wt/ew) +e@ [+ (sin 20t/2) ]

4 (e—s®4-€45®) (sin 3wl/3w) + (1@ +€1®@) (sin wt/w) ++++}),

where we have retained the expansion of the normaliza-
tion terms by making use of Eq. (40) rather than Eq.
(33). We see that both linear and oscillatory time-
dependent terms appear in the phase factor of Eq. (92).
In the expansion of this phase factor [Egs. (91)], the
former produce secular divergent terms while the latter
result in oscillatory secular terms in the functions
¥ (r,t). In the static limit, w—0, the oscillatory
terms become linear in ¢ (i.e., secular divergent) and,
consequently, their incorporation in the phase of Eq.
(92) is essential for a uniform passage to the time-
independent case in which the correct static energy
shift is obtained. If only the secular divergent terms in
Egs. (91) (i.e., those involving &®1) were incorporated
into a phase factor for w0, and then the limit w—0
were taken, an incorrect static energy shift would
appear in the phase factor. Further, secular divergent
terms would be present in the perturbation functions
[Egs. (91)7; i.e., in the limit w—0, part of the static

(92)

energy shift would appear as a phase factor and part
in expanded form as secular divergent terms. Moreover,
it is important to recognize that the oscillatory terms in
the phase factor of Eq. (92) arise from cancellations
between individual terms; e.g., sinwi/w arises from
exp (iwt)/w and exp (—iwt)/w. In the static limit w—0,
the individual terms diverge and produce the secular
divergent behavior only when properly combined. Since
finding the proper combinations becomes somewhat
involved in higher-order, it is well to isolate such terms
once and for all in the phase factor of Egs. (33) or
(40) ; this avoids any possibility of an irregular wave
function for w—0.

Solutions of Eqs. (88) can be obtained by variational
techniques or by expanding the perturbation functions
in the complete set of eigenfunctions of H®(r) (see

% We employ the switching function of Egs. (72) andb(73)
discussed in Footnote 49.
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Appendix A). The expressions resulting from the latter
approach are in a form suitable for comparison with the
perturbation functions obtained using the Dirac
variation-of-constants method [Egs. (14) and (17)].
Such a comparison makes it possible to identify the
sources in the Dirac method of the normalization and
secular terms explicitly exhibited in Egs. (91) and

a® (1) = ()7 | B | ¢o@ ) ({exp [i(wtwr) £/ (wrotw) } +{exp [—i(w—wr) t/ (wro—w) }),

serves to emphasize that these solutions are merely a
particular grouping of the variation-of-constants results.

To obtain the Dirac variation-of-constants solution,
we introduce the adiabatically switched-on harmonic
perturbation of Eq. (80) into Egs. (14) .5 Restricting
attention to the time interval subsequent to switching
(t—>+ ), we obtain from Egs. (14) for n=1

(93)

valid for all k. Inserting this result into Eq. (17) for n=1 gives an expression for the first-order perturbation
function. Comparison of this function with Eqgs. (87a) and (91b) shows that

@ (1) =— ()" X2

k0

= (gp© | BD | ¢o®)

6@ (1), (94)

(wko:tw)

which is in agreement with the solution of Eq. (88a) given in Appendix A [Egs. (A1) and (A8)]. Further, the
a® (¢) value obtained from Eq. (93) is seen to be in agreement with Egs. (90a) and (91b).
Proceeding to the second-order case, we find that Eqs. (14) for #=2 give the results, valid in the limit t—-+ o0,

exp [(2w+wio) ]

exp [—1(2w—wko)t]

@@ (1) = (7))~ i (60 | BD | .0 ) (@ | hD | @) (
=0

(2w+wz-0) (w+wlo)

n exp (twrot)

(20—wro) (w—wip)

[(wtwn) 11— (w—wzo)"l]) ) k#0 (95a)

WEo
© p (i2wt)  exp (—12wt) it it
@ (f) = (F)-2 O | 5D | go© 2(exp _
@ (1) = (%) ;Z;%) [ | ‘4)0 ) 2w (w+wi) 20 (w—wp) (wtwiw) (w—wi)

— 3 (0twi)2—3 (w—wzo)_z) . (95b)

Use of these expressions in Eq. (17) for n=2 yields the second-order function and comparison with Egs. (87b)
and (91c) permits one to identify each of the terms in ¥® (r, ). The /=0 term in Eq. (95b) gives

(7)2/ 262 [{$o® | 1O | 0@ )PLexp (i26f)+ exp (—i2wt) —2]=1(ik)=* ( [ Bow dz')

2
)

(96)

the coefficient of the last term in Eq. (91c) [see Eq. (90a) ], while the rest of the sum in Eq. (95b) leads to the
remaining terms proportional to ¢o®(r). Separating these into real and imaginary parts, we have

—%<w+wm>—2—%<w—wlo>—2)

i 120t) exp (—12wt) it it
7)) © [ JD | go@ )2 < exp (i -
B2 B 1@ Lh 8 otrem) T 2atomam T akon) ~ (o—an)
0 ) 1) 1 [
i) 210 | {1 : | D [ o @)[2 <t+ sin Zwt) CL)2 3 [(i® | B | @)
1540 (w?—wio?) 2w 10

X ((w+wzo)“2+ (0—wi0) 2~

= (i) @[+ (sin2wt/ 20) T— 3 (® | $0)

¢
= (i) f E®) dt,

cos 2wt

[ (eo-com) =+ <w~wzo>—1])

w

(97)
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from Eq. (90b), with
0@ = ($©@ | AD |y @)+ (@ | AD | p_,®)
) (RN ICRFRONP
) wn | (91 2| : | @)l . (98)
10 (wlo —w )

The part of @ (r, {) orthogonal to ¢, (r) arises from Eq. (95a), which can be rewritten

= 2 0 1 0 0 1 exp [1(20+awr)t] | exp [—i(20—w) L]
B 2()= [ 025 0 |10 [ 6000 | 10 | o) (GEECt )] | o L=Comon)
+ TR )= () T) — (B2 || @) 0 0 ) (ST e )i]

n exp [—1(2w—wro) £] — g~ [ (w—copo) "1 — (w-}—wko)”l])] + [(ﬁ)‘2(¢k(°) | D | 0@ Y o® | AD | @)

(2w—wro) (w—wro)

exp [2(2w+wio) £]
X { w(w+wro)

w (w—wko)

It can be seen that the term in the first large square
bracket corresponds to ¢ (1, ¢), while thatin the second
gives rise to the third term in Eq. (91c), in agreement
with Egs. (87b), (A2), (A3), (A9), and (A10).

From the foregoing analysis, it is clear that the
functions of Egs. (91b) and (91c) are particular
groupings of the Dirac variation-of-constants solutions
which make evident the presence of secular and normal-
ization terms. Although this is perfectly clear in general
from the development of Sec. IT, it is reassuring to make
explicit comparisons in first- and second-order. Cor-
responding comparisons in the third- and higher-order
cases can also be carried out, although the expressions
become somewhat unwieldy and are not reproduced
here. However, the spectral solutions of Eqs. (88) are
given in Appendix A for convenient reference.

D. Electric Dipole Polarization

We apply the results obtained for an adiabatically
switched-on harmonic perturbation to a system per-
turbed by monochromatic radiation in the uniform-
electric-field approximation.’® The appropriate per-
turbation operator is (F— )

N
HO(r,f)=—e Y r;-E® cos wt,

=1

(100)

which can be rewritten

HO (7, £) =M (r) [exp (iwl)+ exp (—iwt) ], '(101)

+ exp [—1(2w—wro) £] _exp [zwkot] [ ()4 (w—wko)_‘]H, E£0.  (99)

with
A= (E@/2) (102a)
N
O (r)=—e> rira=—er-a. (102b)
=1
Here, N is the number of electrons in the system,
E@= | E® | is the (constant) amplitude of the electric
field, a is a unit vector in its polarization direction, e is
the (negative) electronic charge, and the perturbation
parameter X is introduced for convenience. When the
perturbation equations [Eqs. (88)7] are solved for the
perturbation of Eq. (102b), the resulting time-de-
pendent functions ¥® (r,¢) are given by Egs. (91),
modified to include the perturbation parameter A, and
the complete wave function through third order is given
by Eq. (92).5
The induced electronic dipole moment

p()=e(@|r|¥) (103)
can be obtained to third-order from Eqgs. (91) and (92).

5 The total wave function through third order [Eq. (92)]
includes a second-order term M® in the phase factor which
represents a shift of the unperturbed energy level (see Footnote
10). We recognize this as the dynamic Stark shift (see Foot-
note 11), proportional to the dynamic (frequency dependent)
polarizability [a(w)=e®], which is given by the familiar
Kramers-Heisenberg formula [Eqgs. (98) and (102a)7]. Such
light shifts in optical transitions apparently have been observed
by Aleksandrov ef al. (1966). See also, Bonch-Bruevich and
Khodovoi (1968). Related light shifts in pumping experiments
have been investigated by Arditi and Carver (1961), Cohen-
Tannoudji (1961), van der Ziel, Pershan, and Malmstrom (1965),
Pershan, van der Ziel, and Malmstrom (1966), Happer and
Mathur (1967b), and Khadjavi, Lurio, and Happer (1968).
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We find®®

(T | 1| ¥)=P@+P,VE® cos wi+Py®@ (E®@)24 Py, @ (E@)2 cos 2w+ P,® (E@)3 cos wi-+P3,® (E@)3 cos 3wt,

where, with all functions real,
Po@= (@ | 1| @)
PO= (G [ | 6a®)+ (4 [ 2] 4®)

(104)

(105a)
(105b)

Py®@ =4[ (0@ [ 1 | 0@ )+ (3@ [ 1 | @)+ (2@ | T | 1)+ (1P [ 1| 61 @)
— (0@ | 1] @) ({p11® | 12 )+ (1@ [ $21®))]  (105¢)

Py ®=3[{$0® | 1| 122 )+ (b2® [ T [ @)+ ($1® | T | p1a®)— (@0 | 1| 9o Yo | 6:1V)],

(105d)

PO =3[(5@ | 1| 6:1®)+(61® | 1| $@ )+ (b1® | 1| 642D+ ($o® [ 1] 61®)
F(0o® | 1| ¢a®) (1@ [ 1| $o@)— (B0@ | T | $o@) ({1 ® | 2@ )4 (2@ | o1 ®)
+{b? | pa@ )+ (1P [ $o@)) — ({p12® | 1 [ $o©@ )+ (0@ | T | 61 P)) ({¢1® | pa®)

+ (1 [ 90 )+ (@1 [61P) ] (105€)

Py @ =31[{0® | 1 [ $45® )+ (@@ [ 1| @)+ (b1® [ 1| 612 )4 (2@ [ 1| $12®)— (5@ | 1| @) ({2® | 512 D)

F (@D | ¢42@)) — (1P | 61D ) (0@ | T |- 2@ )+ (D@ | 1| @) ].

The terms appearing in Egs. (104) and (105) have
simple physical interpretations and can be compared
with previously obtained results.2®® The first and
second terms in Eq. (104) are the static and first-order
induced dipole moments, respectively, with the linear
dipole polarizability given by Eq. (105b).2 The third
term in Eq. (104), a static moment quadratic in the
field, gives rise to optical rectification or a.c. polariza-
tion.” The expression for Py® in Eq. (105¢) is in dis-
agreement with the previous results of Ward,® and
Dalgarno,? due to the presence of the last term in
Eq. (105¢), which arises from the second-order nor-
malization and appears to be missing from their
formula®; this term evidently vanishes if the static
moment is zero. The fourth term in Eq. (104), quadratic
in the field, is responsible for second-harmonic genera-
tion.®® Our expression for Py, ® [Eq. (105d)] is the
same as that of Ward and Dalgarno but their induced
moment is out of phase with the external electric field

% The induced electric dipole moment of Egs. (104) and
(105) is appropriate for a single isolated system, with E® the
strength of the effective perturbing field. We do not consider
here questions related to the determination of internal fields
in condensed matter. Moreover, the perturbation Hamiltonian
of Egs. (100)-(102) is appropriate only for a single mono-
chromatic incident wave as are, consequently, the susceptibilities
of Egs. (105). When two or more waves are present, it is of
course necessary to specify their frequencies, amplitudes, polariza-
tions, and relative phases in the perturbation Hamiltonian. In
such cases,. the susceptibilities of Eqgs. (105) are replaced by
more complex expressions involving cross terms which depend on
various wave combinations and are not reproduced here.

(15;652(;6] for example, Bass, Franken, Ward, and Weinreich

% Concerning modification of the expressions obtained by
Ward (1965), see also, Bogaard, Buckinghdm, and Orr (1967),
Sitz and Yaris (1968), Dana (1969), and - Orr and Ward (1971).

% See, for example, Boyd, Ashkin, Dziedzii, and Kleinman
(1965), Rez (1968), and Sitz and Yaris (1968).

(105f)

while the present calculation gives a moment that is in
phase, in agreement with an earlier result.® The fifth
term in Eq. (104), cubic in the field, is responsible for
the field dependence of the polarizability.® The co-
efficient P,® [Eq. (105c) 7], which is the dipole hyper-
polarizability, is in disagreement with the Ward and
Dalgarno result due to their improper normalization.
Finally, the last term in Eq. (104), cubic in the field,
is responsible for third-harmonic generation®; our co-
efficient, Eq. (105f), is in agreement with Ward and
Dalgarno.%

The susceptibilities of Egs. (105) are appropriate for
computation employing variational procedures to
determine the required functions ¢;™ (r) [Eqgs. (88)].%
By contrast, the expressions that result from Eqs. (105)
when the customary spectral sums are introduced for
the functions ¢, (r) (see Appendix A) are somewhat

% See, for example, Armstrong, Bloembergen, Ducuing, and
Pershan (1962).

61 See, for example, Boyle, Buckingham, Disch, and: Dunmur
(1966), Boyle and Coulson (1966, 1967), and Bogaard, Bucking-
ham, and Orr (1967).

8 See, for example, New and Ward (1967), Dawes (1968),
Sitz and Yaris (1968), and Ward and New (1969).

8 The failure of Ward’s procedure (Footnote 6) to produce
the proper normalization terms is apparently related to the
fact that the Lippmann-Schwinger equation, upon which his
diagrammatic analysis is based, does not provide a normalized
wave function in the presence of a level shift. See, for example,
Roman (1965) p. 342, for discussion of this point. We thank
Professor Ward for informing us that the diagrammatic technique
can be reinterpreted, and the proper normalization terms thereby
obtained, along the lines suggested by Orr and Ward (1971).

6 Following the development of Dalgarno (1966), the second-
order functions appearing in Egs. (105¢) and (105d), and the
third-order functions in Egs. (105¢) and (105f), can be eliminated
in favor of new first-order functions satisfying Eq. (91b) with
+7w replaced by 0, +27iw, and 37w, respectively. This result
is in accord with the general 2#-+41 theorem discussed by Epstein
(1969), which we further consider in Sec. V.B.
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cumbersome. The latter expressions, however, make
explicit the frequency dependence of the susceptibilities
and can be evaluated approximately by employing
closure procedures. We tabulate the susceptibilities of
Eqgs. (105) in the customary forms of infinite sums in
Appendix B for convenient reference and for comparison
with previous results.?

E. The Uncoupled Hartree~Fock Approximation

To illustrate the significance of the general develop-
ment in computational applications of time-dependent
perturbation theory, we consider here the proper
formulation of the so-called uncoupled form of Hartree—
Fock perturbation theory and contrast our results with
those previously obtained.?:10:%

In the Hartree-Fock approximation, the unperturbed
eigenfunction is written as a single Slater determinant®

Bax® (r) = (V) det | 1g® (1)1 (1) - - -y® (1) |
(106)

composed of IV unperturbed orthonormal Hartree-Fock
spin—orbitals #;® (r;) . This function satisfies the zeroth-
order Hartree-Fock equation

[Hur® (r) — Ear® J¢ur® (r) =0, (107)

where .
N N

Hur®(r)= 2 [h° (r:) =3 2 w:Ou® | (&/ri;)
=1 =1

X (1=Pij)| ui®u®)], (108a)
and ’

N N
Fux®= 3 [6®—3 T (@ |(¢/r5) (1P

i=1 =1
X | u:®u;®)]  (108b)

are the zeroth-order Hamiltonian and energy, re-
spectively, and Ps; is the permutation operator for the
coordinates of electrons 7 and j. We employ the standard
notation for the two-electron integrals appearing in
Egs. (108), which are introduced to insure that the
Coulomb repulsion energy between electrons does not
appear twice in the total Hartree-Fock energy, and
that the latter equals the expectation value of the
(Coulombic) Hamiltonian over the Hartree-Fock wave
function.®® For an N-electron atom with atomic number
Z, the Fock operator 2@ (r;) is

KO (1:) = — (72/2m) V2— (Ze2/r:) +0® (12)

where

(109a)

v (r;) = 41{-‘4 (u; O | (e/rs) (1—Psj)| ui®) (109b)

is the nonlocal Fock potential. The Hartree-Fock

65 See Dalgarno (1959, 1962), and references cited therein, for
discussion of the analogous approximation in the case of a static
perturbation. ]

% For a discussion of Hartree—Fock theory applied to the elec-
t(rlogrgg)structure of atoms and molecules see, for example, Slater
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spin—orbitals #;© (r;) satisfy the equations
[AO (1) — € Jus® (15) =0,
with the Hartree-Fock orbital energies given by
6O = (u; 0 | hO | 4;®), (110b)

The uncoupled Hartree-Fock approximation to the
equations of time-dependent perturbation theory is
obtained by replacing the unperturbed wave function, *
Hamiltonian, and energy in Egs. (53) by their zeroth-
order Hartree-Fock counterparts [Egs. (106) and
(108) 1;

(110a)

¢ @ (1) —>¢ur® (1), (111a)
Hy® (r)—>Hur® (1), (111b)
EO—Ene®. (111¢)

The first-order perturbation equation [Eq. (53a)]
becomes

[Hur (1) — Eur®— 1% (3/9t) J¢® (r, 1)

+LHD (1, ) —ED (1) Jenr (1) =0, (112)

where
N
I:HHF(O) (I') _EHF(U):]= E Eh(o) (l'i) _fi(o)] (113)
i=1

from Egs. (108). Restricting attention to a perturba-
tion in the form of a sum of one-electron operators,®

N
H® (l‘, t) = Z g“)(ri’ t) ’

=1

(114)

we see that E®(¢) is
E® () —>Eup® (1) = (pur® | H® | ¢ur®)

= % (@ | g® | 0,0 )= % & (1).

=1 =1
(115)

Since the N-electron operators in Eq. (112) are sums of
one-electron operators, a separation, or uncoupling,
of Eq. (112) can be effected in this approximation by
introducing the ansatz

N
6O (1, )—>pur® (1, £) = 3 U (r, 1)

=1

(116)

with
U (r, 1) = (N1)=-12
X det | 1@ (11) 1 (12 + + +24:1© (Tiy)
wi® (13, i1 @ (Cigr) <+ oun @ (xw) | (117)

We recognize Eq. (117) as the Slater determinant
obtained from ¢ur®(r) by replacing #:;® (r;) with the
first-order spin—orbital #;®(r,#). In terms of these
spin—orbitals, the orthogonality requirement [Eq.

67 This particular form of perturbation Hamiltonian is especially
appropriate for the interaction of radiation and matter [Eq.
(100)]. A corresponding formalism can also be developed for

a two-electron perturbation Hamiltonian, although we do not
treat this case here.
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(53¢c), n=1]
(@ | ¢®)—>(bur® | pur®)=0, (118)
becomes
N N
> Apur®@ | Ui®)= > (u: @ | u,0)=0. (119)

i=1 =1
Substituting Eq. (116) into Eq. (112), we find that the
latter will be satisfied if we require the first-order spin—
orbitals to be solutions of

[ (r;) — eV —i7(8/0t) Jui® (x4, 8)

L0 (15 £) = (1) Ju® (£:) =0, (120)
This is the canonical form of the differential equation
to be satisfied by the first-order perturbed spin—orbital,

;" (15, 1) . It is an immediate consequence of Eq. (120)
that

1%(9/0t) (u:® | w0 )=0, (121a)
and
i71(0/0t) [/ | i ® )+ (@ | )]
= (0 —e”) [ [ 0P )+ (@ [ us®)].  (121b)

From Eq. (121a) we see, since %" (r;, {) =0 initially,
that (u;| 2;©) will vanish for all # and thus Eq. (119)
will be satisfied by the solutions of Eq. (120). Further,
we see from Eq. (121b) that since (u;® | u:V)+
(u;® | u;9) vanishes initially, it will also vanish
for all ¢ and, consequently, the spin—orbitals %; (r;) +
u;(r5,1), for =1 to N, are an orthogonal set. In
contrast to the zeroth-order case, there is no self-
consistency requirement to be satisfied in Eq. (120),
resulting in the designation of this perturbation treat-
ment as the ‘“uncoupled” Hartree-Fock approxima-
tion.%® Similar uncoupled expressions can be written for

% The uncoupled time-dependent Hartree-Fock approxima-
tion was first obtained by Karplus and Kolker (1963b) for the
case of an harmonic perturbation, and more recently by Hein-
richs (1968c), for an arbitrary time-dependent perturbation.
Their procedures are slightly different from our own, and, con-
sequently, their resulting orbital equations differ somewhat
from Eq. (120). Nevertheless, the functions ¢ar®(r, ) [Egs.
(116) and (117)] obtained from their procedures are identical
with our canonical results. To make this clear, we designate the

left-hand side of Eq. (120) as X;(r, ¢) and note that Eq. (112)
can be written as

N
2 det | @ (1)« + 2250 (10) X (15, 1)
i=1
i1 @ (r51) <+ cuxy@ (rn) | =0.
The general solution of this equation is
N
Xi(ri ) = Z Ny (Du; O (1),
. =1
with the \;;(#) arbitrary for 7 ¢ but with
N
i=1
Our Eq. (120) corresponds to the formally simplest choice
i (£) =0 for all ¢ and j whereas Karplus and Kolker, and Hein-
richs choose nonzero A;;(#). The solutions of their orbital equa-
tions, however, differ from our canonical results only by multiples
of the 2;® (r;), which clearly make no contribution to ¢gr® (r, £)
of Egs. (116) and (117) so long as
¥
2 Ni(8) =0,
i=1

a condition satisfied by their choice of A\;;(¢). In their computa-

the second- and higher-order perturbation equations
[Egs. (53)] although we do not reproduce the results
here.%®

IV. COMPLEMENTARY TREATMENTS OF
SECULAR AND NORMALIZATION TERMS

In this section we introduce a simple order-by-order
projection procedure that provides an alternative
method for isolating the secular and normalization
terms in the Dirac perturbation functions and gives
further insight into their structure.” We consider also a
number of additional approaches to the secular diver-
gence problem which have been suggested by workers in
the field of nonequilibrium statistical mechanics, as well
as in the more classical areas of nonlinear electrical,
fluid dynamical, and mechanical systems.??? These
methods can be employed toisolate the secular behavior
of perturbation solutions to a wide class of linear and
nonlinear differential equations, and provide additional
physical insight into the source of the secular terms that
arise in the perturbation solutions of the time-de-
pendent Schrodinger equation. Finally, we consider the
difficulties that can arise due to the presence of secular
terms in the Fourier analysis of perturbation approxima-
tions to the complete wave function and demonstrate
that these difficulties are circumvented by utilization of
the regular part of the wave function.

A. Projection Procedure

We have seen that secular and normalization terms
can be extracted from the wave function by factoring
out the Dirac coefficient @¢(¢), which determines the
amplitude for finding the system in the unperturbed
state ¥©(r 7). Since the perturbation equations
[Egs. (19)] are of the linear inhomogeneous type, this
suggests that the secular and normalization terms can
also be dealt with by means of a procedure which
projects out of the time-dependent perturbation
equations any contribution to the perturbation func-
tions which is proportional to ¢o® (r). We see from

tional applications, Karplus and Kolker replace the nonlocal
Fock operator of Egs. (109) with a local approximation, thereby
simplifying the analysis and eliminating an undesirable feature
inherent in the uncoupled Hartree—-Fock approximation. This
point is discussed in detail by Langhoff, Karplus, and Hurst
(1966). Following an alternate derivation, Chung (1967) has
derived a set of uncoupled Hartree-Fock perturbation equa-
tions which contain spurious coupling terms between first-order
orbitals. His result is a consequence of not focusing attention on
the regular part of the wave function and thereby including
noncontributing secular and spurious normalization terms in
the computational procedure. Specifically, the last term on the
right-hand side of Eq. (53) in Chung’s development gives the
spurious coupling terms between first-order orbitals. These terms
arise from the third from the last term on the right-hand side of
his Eq. (52) which was incorrectly included due to his failure
to realize that the first-order perturbed function must be orthog-
onal to the unperturbed function, from both the normalization
requirement and the necessary phase convention discussed in
our Footnote 46. Further discussion of this point is given in the
variational formulation of Sec. V.C.

% The higher-order uncoupled Hartree-Fock equations ap-
propriate for a static single-particle perturbation are discussed by
Langhoff (1965).
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Eqgs. (58) and (59), however, that some of the secular
and normalization terms are not proportional to
6@ (r) and can not be projected out directly this way.
Consequently, in the application of the projection
technique, it is useful to anticipate the structure of the
perturbation functions ¥® (r, ¢) as given in Egs. (58)
and (59). When this is done, the nature of the projection
procedure is clarified and the development provides
additional insight into the structure of the perturbation
functions.
We introduce the standard projection operator™

Qo=1— | @ ){ho® | (122)

and apply it to the first-order equation [Eq. (19b),
n=1]1n the presence of a general perturbation H® (r, {)

[HO (r) —ifi(8/0t) ] (1, {) + HO (r, ) ¥ O (x, ) =0,
(123)

Utilizing the fact that ¢,®(r) is an eigenfunction of
HO®(r), we obtain

Qo{[H® (1) —i7i(3/04) ] ® (r, 1) +H® (r, H ¥ (1, 1) }
=[H®O(r) —i7i(9/01) JO¥ ® (1, 1)

+[H®O (r, ) —E® (1) O (r, ) =0, (124)
where
E® (t) = <¢0(0) ‘ H® ‘ ¢0(0) >. (125)
From Eq. (39b) we see that
Q¥ (r, ) =¢®(x, 1) exp [(4A)EOL], (126)

and, consequently, Eq. (124) can be written in the form
[H® (1) — By —1#i(3/0t) o (r, 1)
+[H® (r, ) —E®(2) 1@ (r) =0.  (127)

From Egs. (124)-(127) we see that application of the
projection procedure to Eq. (123) yields the correct
perturbation equation for ¢®(r,#) given in Eq.
(53a). To obtain the complete solution ¥® (r, ¢), the
proper multiple of ¢@ (r) must be added to ¢®(r, £)
asin Eq. (59b). In the first-order problem it is a secular
term, which does not involve the normalization require-
ment.”

As we have pointed out in Sec. II, the secular terms
do not contribute to expectation values. Nevertheless,
they must be included in order to obtain the correct
higher-order equations, as we shall now demonstrate in
the second-order case. Substituting Eq. (59b) for
YD (7, £) into the second-order equation [Eq. (19b),
n=2]

CHO (1) —ifi(8/98) TP (x, £) +HO (1, £) T D (r, £) =0,

(128)
gives

CHO (r) — A (6/0) T¥ (x, ) +-HO (x, 1
x {qsw(r, o+ [ Eo) dt'¢o<0><r>}
X exp [(i%) " Es®]=0. (129)

In order to investigate the nature of the terms which
arise in ¥®(r, {) due to the presence of the last term
on the left-hand side of Eq. (129) (the secular term),
we note from Eqs. (123) and (59b) that

HO(r, ) ¥O(r, 1) = —[HO (r) —#i(9/0t) T¥V (x, )

= —{[HO (1) — E®—i%(3/3t) Jp® (r, £) — ED (1)o@ (1) } exp [ (i%)~E,®¢].

(130)

Consequently, using Eq. (130), the last term on the left-hand side of Eq. (129) can be written

(sh)1 /—t EO(t") d/H® (1, 8) %O (1, ¢) ={—— <H(°)(r)—E0(°>~if2 %)[(iﬁ)—l '/j EO(t") dt'¢pD(x, t)

+(if) ( [ mow dt')zfﬁo((’)(l‘)] _ B0 ()¢, t)} exp [(i)~EOf).  (131)

Substituting Eq. (131) into Eq. (129) and writing ¥®(r, {) in the form

YO (1, 1) =69 (r, ) exp [ (ih)E,O 1],

we find

(132)

(zo @ —mo—in LY oo s, - [ zo@) areo w0 ~1m= ([ mo@) ar)sw ]

+[HO (1, t) —ED (1) Jo® (r, £) =0. (133)

Equations (129) to (133) demonstrate that the secular term in ¥ (r, ) [Eq. (59b)] gives rise to the last two
terms in the large square bracket in Eq. (133) and to the factor £D (¢)¢® (r, ), as well. Since this latter factor

™ See, for example, Messiah (1966) p. 260, and Lowdin (1966) p. 268.

"t See Footnote 19, p. 1496 of Karplus and Kolker (1963a), which describes the projection operator technique. The state-
ment there that any contribution of ¢o©®(r) to¥®(r, ), ¥®(r, ¢), -++ can be accounted for by “renormalization” is misleading;
the secular terms proportional to ¢¢® (r), which do not affect expectation values but are required to obtain the correct higher-
order equations, should be included as well.
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gives rise to terms in the second-order wave function which contribute to expectation values, it is clear that if the
secular term is not included in ¥ (r, #) in Eq. (129), the correct equations for the second-order functions ¥®(r, £)
and ¢® (1, {) are not obtained.

To complete the development, we project on Eq. (133) with Qo and obtain

(o0 —mo—inZ 0w @0 -1 [ BOW) atew (e, i) +LHO 5,0~ EO () 165, 1)

=E® ()@ (1), (134)
where
E®(f) = (¢® [ H® [ o). (135)
We recognize Eq. (134) as the second-order perturbation equation [Eq. (53b), #n=27]. Therefore, we have
t
06%(x, 0= (i) [ BO() dee™ (x,1) =4 (x, 1), (136)
and from Eq. (132)
t
0 (5,0)= (625, 0+ 1) [ BOW) 0o (5,)) exp [(i0)E01] (187)

in agreement with Eq. (59¢).

From Eq. (137) we see that the secular terms in ¥®(r, #) are not all multiples of the unperturbed wave function
YO (r, t). Consequently, the projection procedure when applied to Eq. (128) does not isolate only the regular
part of the wave function ¢®(r, ), but also the additional secular term of Eq. (137). That is, projecting with Q,
on Eq. (128) gives

[HO®(r)—i#(8/88) JO¥® (1, ) +H® (1, ) ¥ D (1, £) — (@ | HD | T D)@ (1) =0, (138)
In order to isolate the regular function ¢®(r, ), and thereby avoid the possible irregular behavior of a secular

term, it is necessary to anticipate the structure of Eq. (137); that is, substituting Eq. (137) for Qo¥® (r, {) into
Eq. (138) and Eq. (59b) for ¥™ (r, ¢) gives

[HO (1) — E@—ifi(3/0) 16 (x, ) +[HO (xr, ) = E® () 6O (x, ) = B () 4 (1),

E®@ (1) ={($® | H® [ ¢®), (139)

the second-order perturbation equation [Eq. (53b),
n=2].

It is a simple matter to demonstrate that the projec-
tion procedure provides a similar result for the higher-
order perturbation equations. Thus, solution of the
projections of Egs. (19) will result in the portions of
the ¥® (r, t) orthogonal to ¢y (r). In order to isolate
the regular contribution ¢ (r,?) in each order, it is
necessary to anticipate the presence of the secular terms
in Eqgs. (59) which are orthogonal to ¢@(r), and to
substitute the appropriate expressions [e.g., Eq. (137) ]
into the projected perturbation equations. The resulting
equations will then agree with the alternative perturba-
tion equations [Egs. (53)].

B. Multiple Time Scales

The procedure we have followed in Sec. II in ex-
tracting secular and normalization terms from the time-
dependent perturbation functions involved mathe-
matical manipulations performed without consideration
of the physical interpretation of the source of secular
behavior. To gain some physical understanding of what
is involved, it is instructive to consider the multiplicity
of time scales in the perturbation problem. In addition
to the very fast time scales corresponding to the
reciprocals of the unperturbed atomic transition fre-
quencies, the external perturbation (e.g., radiation

field) establishes a slower time scale (~1/w) with
which the observed response (e.g., polarization) of the
system is associated. This latter time scale may still be
fast compared to the very slow time scale corresponding
to the reciprocal of the small level shift of the zeroth-
order energy induced by the field [Eq. (92)]. The level
shift is the physical source of secular divergence, as is
evident from the fact that the divergent terms arise
from the perturbation expansion of the exponential
factor of Eq. (29), as shown in Egs. (59). Such qualita-
tive considerations suggest that the secular behavior
can also be eliminated by a perturbation theory ap-
proach that provides for the introduction of a set of
conveniently chosen time scales in addition to the
fundamental time variable ¢.

A number of formalisms which have been developed
to avoid the appearance of secular terms in other
disciplines are applicable to the equations of time-
dependent perturbation theory. These procedures
explicitly introduce an additional set of time scales
chosen in a manner designed to eliminate the secular
terms. While the utility of the techniques, such as the
methods of extension? and time averaging,® is better
exhibited in application to problems in nonequilibrium
statistical mechanics and nonlinear dynamics, it is of
interest to examine their connection with the develop-
ment of Sec. IL.
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To illustrate the use of additional time scales, we
consider as an example the equation

af(t)/dt=—N();  f(0)=1,
with the solution
f(t)= exp (—N).

Introducing the customary perturbation theory ex-
pansion

(140)

(141)

OEPRSERID (142)
into Eq. (140) gives

f@@=(=0"/nl. (143)
Consequently, Eq. (142) becomes

= £ (144

the familiar exponential series. Equation (144) is
correct for any ¢ if a sufficient number of terms in the
sum are included. If only a finite number are used,
however, the expression diverges for large f; e.g. for
£>1/\, the first few terms do not yield a meaningful
result. Quite simply, the condition for rapid convergence
of Eq. (144) M1, can always be violated for large ¢
even if A1, We might suspect that the introduction of
A\t as an additional variable, or time scale, would allow
us to avoid this difficulty.

The method of extension when applied to Eq. (140)
seeks to avoid the convergence difficulty for large ¢ by
considering the extended function f(Z, A\f), where the
variable A is an additional time scale, in this case a
simple multiple of the time. Its introduction is sug-
gested by the fact that M<<1 is the condition for rapid
convergence of the perturbation solution to Eq. (140),
rather than N1. With this, the time derivative takes
the form

af(e, N af(e,\) | 9f(t, \) d(N)
a ot al\) ot

Introducing this expression and the expansion for

M)

(145)

0

FE, M) = 22N (4, M) (146)
n=0
into Eq. (140), we have, to first order in \,
Af O (¢, \t) /3t=0, (147a)

[8f® (2, \6) /0t TH[f@ (1, M) JA(N) T= —fO (4, M) .
(147b)

From Eq. (147a) we see that f©@ (¢, \¢) is independent of

£, but not necessarily of N[ f© (£, \)—f@(A)]. Con-

sequently, integration of Eq. (147b) with respect to ¢

yields

FOEN) = —t{ fON)+[f O (\) /d(N) T} +R(N),
(148)
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where 2(\t) is an integration constant with respect to
the ¢ integration. The function f®(f, ) evidently
diverges with #, as in Eq. (144), unless f@(\f) is
required to depend on M such that

fO(\) /() = —fO (M),

FON) = exp (—\). (149b)

We see that extending the function f(¢) by introducing
the additional variable N, together with the condition
Egs. (149) sums the perturbation expansion of Eq.
(142) so that the exact solution is obtained. Thus the
integration constant Z(\f) in Eq. (148) can be set equal
to zero. The similarity of this simple example to the
equations of time-dependent perturbation theory for a
static perturbation, where secular divergences result
from the expansion of an exponential factor [Eq. (26) ],
is evident.

As a second example of the use of additional time
scales, we consider the more general equation

af(t)/di=—n()f();  f(0)=1,  (150)

where g(f) is an arbitrary function of the time. The
solution of Eq. (150) is (1>0)

1= exp (- / ) ar),

and convergence difficulties for large ¢ corresponding to
those obtained from Eq. (144) can result from the
perturbation expansion of Eq. (151). We can avoid this
problem by introducing the additional time scale
A7 (%), which is at this point an arbitrary function of ¢,
and the extended function f(Z, A7) . The time derivative
now takes the form

af(t, ) 3t )
. at

(149a)

(151)

af (t, A7) a7 (t)
CIC S I

(152)

Employing this expression and the expansion of

f(t, M) itself [corresponding to that in Eq. (146)] in

Eqg. (150), we obtain in first order
af® (¢, A7) /3t=0,

DV (t,Nr) . ofO(¢, A1) 97(2) .
ot alzr) ot

(153a)

_g(t>f(0) (t) )\T) )

(153b)

equations similar to Eqgs. (147). Integrating Eq.
(153b) with respect to ¢, we find

JO ) =—100w) [ g(0) dt
0 .

_ OO ftar(t') dt', (154)

a(rr) PG

where we have made use of the fact that fO (A7) is
independent of ¢ [Eq. (153a)]. In order to avoid the
possible divergent behavior of f® (¢, A7) for large ¢, we
choose the arbitrary time scale A7 (£) so that it follows
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the time integrated behavior of g(¢) (time averaging);
ie.,
ar(t) /at=g(1), (155a)
or
t
()= f () dr'. (155b)
0
Using this result in Eq. (154), we see that we can
eliminate the ¢ dependence of f®(#, A7) entirely by
demanding that f@ (A7) depend on A7 (), such that

O \r)/d(N1) =—fO (A1), (156a)

or
FO(Nr) = exp<—>\ f o) dt’> (156b)

from Eq. (155b). The single additional time scale,
Eqs. (155), is evidently sufficient to obtain the exact
solution in this case.

In both of the preceding simple examples, which
correspond to Eq. (28a) for static and time-dependent
perturbations, respectively, the introduction of addi-
tional time scales was a trivial exercise. The original
equations in both cases were simply integrable and,
therefore, it is not surprising that the introduction of a
single additional time scale in the perturbation expan-
sion allowed summation of the entire series.

We can apply the methods of additional time scales
to the perturbation sequence of Eq. (19) by considering
the extended wave function ¥(r, ¢, 71, 73, «++), in terms
of which the Schrodinger equation becomes™

[H(O) (r) _l_H(l)(r’ t) —1ﬁ<d/dt) :I‘Il<r> l; Ty, Ty *° ') =0)
(157)

where we have written a total time derivative to
emphasize the implicit time dependence of the wave
function on ¢ through the functions 7:(¢), 72(¢), «--. To
illustrate the method, we determine the wave function to
first order, and introduce the single additional time
scale 7(¢), which we assume to be first-order in the
perturbation parameter, in analogy with the illustrative
examples. In Eq. (157) we now have

[d¥(x, ¢, 7)/dt]=[0¥(r, t,7)/t]

+[0¥(r, ¢, 7)/0r][0r(t) /ot], (158)
and introducing the perturbation expansion
W(r,4,7) =TO(r, £, 7) +UD (1, £, ) +-++, (159)
Eq. (157) gives to first order,
[H®(r)—ifi(8/0t) O (x,t,7) =0, (160a)

[HO (r) —ifi(9/3t) D (x, ¢, 7)+HD (1, ) ¥O (1, t, 7)
—iH[0WO (1, 1, 7) /o ][or(¢) /ot]=0. (160b)

( 7920;11' subsequent discussion closely follows that of Case
1966) .

_ ™ Corresponding applications of multiple-time-scales perturba-
tion theory to the Schrédinger equation are given by Brooks
and Scarfone (1969), in the transition case and by Orr and Ward
(1971), in the dispersion case.

The general solution of Eq. (160a) is

TO(r, t,7) =50 (7)o@ (1) exp [(ih)1E,®¢], (161)

where the integration ‘“‘constant” @ (7) is an arbitrary
function of 7(#). Introducing for convenience the

function 6V (r, ¢, ) of the form
YO (1, ¢, 7)=00(x,t, 7) exp [(45)E®L], (162)

and substituting this and Eq. (161) into Eq. (160b), we
obtain

[H® (1) — E9—3fi(a/0t) 19D (x, ¢, 7)
FHO (1, )60 () o0 (x)
—ih[8b© (7) /87 Jpe® (x) [97(£) /0¢]=0.

We now choose 7(f) and 5@(7) so that the possible
secular behavior of 60 (r, ¢, 7) is avoided. To make this
clear, we introduce the spectral expansion

(163)

00 (x4, 1) = 3 @ (1, )u (1)
k=0
X exp [(ih) (B0 —E®) (] (164)
into Eq. (163) and find
t
a,c(1>(¢’ T) = (.iﬁ)—lb(o)(T) / <¢k(o) l H® l ¢0<0)>

X exp [(i7) W (Ey®—E,@)¢]dl k=0, (165a)

t
a®(t,7) = B8O [ (| HO | 600)

bO(r) rt ar(t)
B or ./_w

- i, (165)

The particular exponential factors appearing in Eq.
(164) are introduced in order to simplify the resulting
Egs. (165). From Eqgs. (164) and (165) we see that
there is a possibility of 60 (r, ¢, 7) becoming unbounded
with #—-Fc due to the £=0 term, since there are no
exponential factors in the integrals of Eq. (165b). This
possibility can be avoided by choosing 5@ (7) and 7(¢)
in Eq. (165b) so that a® (¢ 7) vanishes for all ¢
similar to the development of Eqs. (150)-(156). The
requirements

07 (1) /0t= (o | H® | ¢o@)=E® (1), (166a)
O (7) /dr= (i) "B (7), (166b)

will insure that a,® (¢, 7)=0. Equations (166) are
sufficient to determine both 7(¢) and @ (r) and we find
that

(t) = f "B ar

(167a)

5O (r) = exp ((m)—1 f_ ; EO (1) dt’). (167b)

Inserting these results into Eq. (163) and noting that
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we can write 89 (r, ¢, 7) in the form [Eqgs. (164) and
(165a) ] : '

00 (1, 1, ) =5 (r) D (1, 1), (168)
we obtain
[HO (1) — B —ifi(3/3t) 6O (1, 1)
+LHO (1, 1) —ED (1) J6© (1) =0. (169)

Consequently, the wave function through first-order
[Eq. (159)]is

Y(r, t,7) =[$o@(r) +0P(r, )+ -]
X exp [(iﬁ)—l (Eo(")t—i— f " EOWY a4 )] . (170)

Thus, we see that the requirements of Egs. (166), which
insure that the wave function is bounded in ¢, lead to the
correct first-order perturbation equation [Eq. (169)]
and the correct first-order phase factor in the over-all
wave function [Eq. (170)7].

The foregoing procedure can also be applied to the
higher-order time-dependent perturbation equations to
reproduce the results of Sec. II. Some care must be
exercised, however, in the second- and higher-order
cases due to the presence of both secular and normaliza-
tion terms in the perturbation functions. By contrast,
the procedure of Sec. IT explicitly isolates both secular
and normalization terms in the wave function to all
orders in perturbation theory and thus appears to
obviate the need for application of the method of addi-
tional time scales to the Schrodinger equation.

C. Fourier Analysis

In the case of a general time-dependent perturbation,
Fourier analysis can be useful in obtaining solutions to
the Schrédinger equation. The alternative time-
dependent equation [Eq. (28b)7], and the associated
perturbation expansion [Eq. (53)], exhibit advantages
in this regard over the original Schrédinger equation.
In Eq. (1)

[H (r) —ifi(0/0t) N (x, 1) +H® (x, ) ¥ (r, 1) =0,
(171)
we are concerned with the Fourier analysis of the term
+ 00
HO(x, 0¥ (x, 1) = (27) 10 / K(r,0) exp (—iwf) do,

(172)

or its perturbation expansion. It is clear that the
Fourier transform

+ 00
K(r, 0) = (20)=112 f HO(x, 0)¥(r, ) exp (iwf) dt
(173)

™ See, for example, Morse and Feshbach (1953) Chap. 4,
Sec. 8, and Karplus and Kolker (1963a).

will not exist if the integral

+T
I=lim [ HO®(r,)%(r,1) dt

T->0 v—T

(174)

diverges.” One possible cause for a divergence in Eq.
(174) in a physically well-defined problem is the
presence of secular divergent terms in ¥(r,?). By
contrast, in the Fourier analysis of the corresponding
term of Eq. (28b),

[HO(r) — B9 —ih(3/90) Jo (x, 1)

+[H® (1, 1) —AE(1) Jo(1, 1) =0, (175)
we recognize that the Fourier transform
+o0
G(r,w) = (207 [ [HO(x, 0~ AB () To(r, 0
X exp (iwt) dt, (176)

or its perturbation expansion, cannot be ill-defined due
to secular terms, since they do not appear in ¢(r,{).
Consequently, the extraction of the secular terms from
the time-dependent wave function assures that the
Fourier analysis of Eq. (175) may be possible even
when a similar procedure is not valid in Eq. (171).

V. VARIATIONAL FORMULATION

In this section we employ the Frenkel variational
principle and a trial wave function in the form of Eq.
(33) to obtain a computationally convenient varia-
tional principle that provides a bound to the system
level shift induced by a periodic perturbation. This
form of the Frenkel principle is a unification of the
second- and higher-order variational formulations
described previously,” and yields the familiar Ritz
principle in the static limit. We also apply the general
development to determine the variational forms of the
uncoupled and coupled Hartree-Fock approximations
to time-dependent perturbation theory.

A. Unified Variational Formulation

Variational principles for the perturbation functions
of Egs. (88) have been described previously in the
literature and shown to be suitable for computational
applications. Although such an order-by-order pro-
cedure can give correct results, it is instructive to
develop a unified approach which does not depend on a
perturbation expansion. As we shall show, a bounded
variational formulation can be obtained from the well-
known Frenkel variational principle when the trial wave
function employed is written in a form similar to Eq.
(33), where the secular and normalization terms are
extracted to all orders.

The time-dependent variational principle given by
Frenkel is'®

(3¥ | HO+H®—i#(3/at)| ¥)=0, (177)

5 See, for example, Franklin (1949) p. 92.
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where ¥(r, ) is an approximate solution of Eq. (1),
and 6% (r,?) is an arbitrary variation about ¥(r, 7).
The validity of the Frenkel principle is, of course, not
restricted to the perturbation case of interest here but
applies to an arbitrary time-dependent Hermitian
Hamiltonian. Equation (177) is not in the form of
the variation of a functional set equal to zero. Con-
sequently, unlike the Ritz variation principle, which
‘can provide a bound to the total energy in the static
case, the Frenkel variational principle of Eq. (177)
appears not to furnish a bound to a property of physical
interest. A variational procedure which does furnish
such a bound, especially on the response of a system to
an external perturbation, would be highly desirable.’
The existence of a bounded variational principle is
suggested by previously described order-by-order
variational procedures, which can provide bounds to
optical susceptibilities in the case of an electromagnetic
perturbation.”-®

To investigate the possibility of obtaining a bound
from the Frenkel principle, we add Eq. (177) to its
complex conjugate and obtain

(¥ | HO+HO—ifi(0/0t)| ¥ )+i#(3/0f) (¥ | 6%)=0.
(178)

This form of the Frenkel principle is perfectly general
and provides the correct solution of the Schrédinger
equation if a sufficiently flexible trial function is
employed.”” We recall from the development of Sec. I1.B
that the correct solution of the Schrédinger equation
can be expressed entirely in terms of the regular func-
tion ¢(r,f) of Eq. (33). It is also possible to deal
explicitly with the regular portion ¢(r,¢) of any
approximate trial function ¥(r,{) employed in the
Frenkel principle [Eq. (178)7]. This is particularly
important for an harmonic perturbation, in which case
the regular function is periodic, ¢(r, t+7) =¢(r, ¢), but
the over-all wave function is only quasiperiodic [Eq.
(45)],* and satisfies the “Bloch condition”

Y(r, t+47)=¥(r,1) exp [ (1)U E,P4+AE)r]. (179)

As we shall see, for wave functions satisfying Eq. (179),
a time average over one period of Eq. (178) will provide
a variational principle for the level shift AE.

" A time-dependent minimum principle has been discussed
by McLachlan (1964). However, the bounded quantity in his
approach is not a property of physical interest and, in fact,
vanishes for the correct wave function.

""The Frenkel principle is sometimes written in the form of
Eq. (178) but with the second term on the left-hand side missing.
‘This form of the principle is generally incorrect, since carrying
out the indicated variation does not result in the Schrodinger
equation and its complex conjugate; i.e., —i7(9/d¢) is not an
Hermitian operator in the Hilbert space of H® (r), and the second
term on the left-hand side of Eq. (178) is required in order to
recover the Schrodinger equation and its complex conjugate
from the Frenkel principle. While in certain special cases, it is
possible to write an arbitrary variation W (r, ) of a trial func-
tion W (r, #) in such a form that (8/9f) (¥ | 8% )=0, it is never-
theless formally incorrect to neglect the second term on the left-
hand side of Eq. (178). A restricted form of Frenkel’s principle,
which requires that (¥ |sW )=0 and (¥ | H—4h(8/0t)| ¥ )=0,
has been discussed recently by Léwdin and Mukherjee (1972).

In order to isolate the secular and normalization
terms in the over-all trial wave function, we introduce
the ansatz

F(r,0)=(r, 1) exp [(m)—l [

t

K[4] dz'], (180)

where the functional K[ ¢] in Eq. (180) is given by
K[¢]1= (3| HO+HO—ifi(0/3)| $)(& | )7, (181)
and &(r,t) is a trial function satisfving the constraint
(¢ [ @)=1. (182)

This particular form for K[$] is suggested by Eq.
(28d)

EO+AE(t) = (¢ | HO+HD—i7(8/01) o) (o | $)7,
(183)

since at the solution point ¢(r, ) =¢(r, t) we have
K[¢]=EO+AE(l), (184)

and Eq. (180) becomes the correct wave function
written in the form of Eq. (33). Inserting the general
ansatz of Eq. (180) into the Frenkel principle [Eq.
(178) ], we obtain

SK[¢]+17(0/01) (& [ 5¢)( | ¢)7)=0.

Carrying out the indicated variation in Eq. (185) and
incorporating the normalization requirement of Eq.
(182) gives the correct differential equation for ¢ (7, ¢)
[Egs. (28)] when a completely flexible trial function
é(r,?) is employed. The functional K[ $] is generally
complex; separating it into its real and imaginary parts

(185)

K[¢]= Re K[¢]+i Im K[ 4], (186)
we have
Re K[$]=($ | HO+H®O [ §)(¢ | $)*
—(i%/2) ({ [(88/at) )—((8/01)| $)) (| &)
(187a)
Im K[¢]=—(%/2) ({$ [(3¢/d1))
+((0¢/30)[ ))(d| &)
=—(%/2)(8/8) (In (S | $)). (187b)

Consequently, Eq. (185) becomes

 Re K[ ¢ 45 Im K[ $1+17(8/01) (($ | 66 )(& | &)™)
=0 Re K[ ¢ 4% (0/9) ((¢ | 5¢){(& | &)™
—33In (¢ | ¢))
=08 Re K[¢]+(ii/2) (/o) [({$ | 6¢)
— ¢ [ ) (d| $)"]=0. (188)

In contrast to the original form of the Frenkel principle
[Eq. (178) ], the secular and normalization terms do not
appear in the variational principle of Egs. (185) and
(188).
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The development of Eqgs. (180)—(188) is clearly valid
for an arbitrary time-dependent Hamiltonian. In the
special case of a simple harmonic perturbation,” or for
the individual Fourier components of a general per-
turbation, for which a periodic trial function

¢(x, t+7) = (1, 1) (189)
is appropriate, a time average of Eq. (188) over one
period will eliminate the time derivative appearing
there. Carrying out the time average over one period in
Eq. (188) gives the desired form of the Frenkel varia-
tional principle

3{Re K[$]}=0 (190a)

where the bracket { } designates
t+r
{Re K[$])=(1/7) / Re K[&]df  (190b)
t

as in Eq. (49). At the solution point ¢(r, {) =¢(r, ),
we have [Eq. (49)]

{Re K[¢ ]} ={Re AE(t)}=AE (190c¢)
and, consequently, we identify Eq. (190a) as a varia-
tional principle appropriate for the physical level shift
of the system. As we shall show below, Eq. (190a)
provides a bound to the system level shift [Eq. (190c) ]
and a unification of previously described order-by-order
variational formulations.

It is also instructive to express the Frenkel principle
in terms of a trial function similar to x(r,?) of Eq.
(36). Introducing

(1, ) = $(r, ) (G| $)2, (191)

and Eq. (187b) in the form

e )1 [ mKC81a ] = (61 $m, (109

into the ansatz of Eq. (180), we obtain

Y(r, 1) =X(r, 1) exp[(iﬁ)“ fl Jx] dt'], (193a)

—

where [Eq. (191)]

(x %=1, (193b)

78 Variational principles for the time-dependent Schrédinger
equation are generally designed to determine the time dependence
of the wave function, as well as the spatial dependence. This is
emphasized, for example, in the approach of McLachlan (1964),
by his use of the variational function 6(r, ¢) =iA[ oW (r, #) /1],
which satisfies 6(r, ) =H (r, t)¥(r, ¢) at the solution point. By
contrast, we are here interested primarily in the spatial portion
of the wave function and specialize to the case of an harmonic
perturbation. Since the harmonic case is of considerable interest
in itself, due to its central role in the interactions of radiation and
matter, and in view of the general possibility of Fourier analyzing
an arbitrary time-dependent perturbation (Sec. IV.C), this
specialization is not a stringent limitation.

and
J[x1=(x | HO+HW—1i#(8/3t)| X)= Re K[ &].
(194)

Inserting Eq. (193a) into Eq. (178) gives the varia-
tional principle

8J[xI+1%(9/01) (x | 6%)=0. (195)

Carrying out the indicated variation in Eq. (195) and
incorporating the normalization requirement of Eq.
(193b) gives the correct differential equation for
x(r,2) [Egs. (41)] when a completely flexible trial
function %(r,?) is employed. In the case of a simple
harmonic perturbation, for which the trial function
x(r, t) satisfies

x(r, i47)=x(x,0), (196)

we employ a time average over one period in Eq. (195)

and obtain
8{J[x]}=0. (197)

This result is clearly equivalent to Egs. (190) [see
Eq. (194)7], where we employ the variational function
é(r, 1).

The variational principle of Eq. (197) has been
described previously in the literature without making
reference to its connection with the Frenkel principle.!
The implementation of Eq. (197) requires the trial
function ¥(r,?) to satisfy an explicit normalization
condition [Eq. (193b) ], which can be accomplished by
using the Lagrangian multiplier method or by choosing
x(r,?) in the form of Eq. (191). The latter choice
results in the variational principle given by Egs. (190).
The trial function ¢(r, {) appearing there must be con-
strained to be the sum of the unperturbed function
¢o@(r) and an orthogonal complement [Eq. (182)7],
which can be accomplished also by use of Lagrangian
multipliers. We recognize that, by contrast, the Frenkel
variational principle in its original form [Eq. (178)]
does not require an explicit normalization constraint.
That is, although the variation 6¥ (r, {) in Eq. (178) can
be carried out subject to a normalization constraint
[Eq. (4)], the Lagrangian multiplier introduced in the
customary manner to satisfy this demand can be set
equal to zero, since the Hermiticity of the Hamiltonian
and the resulting time-dependent Schrodinger equation
itself will insure that the correct solution has a constant
norm. Carrying out the indicated variations in Egs.
(190) and (197), however, does not result in the correct
solution of the Schrédinger equation [Eqs. (28) and
(41) Junless the normalization requirements [Eqs. (23)
and (37)7] are explicitly enforced. These requirements
arise because the forms of the functionals of Egs. (190)
and (197) have been obtained subject to the conditions
of Egs. (182) and (193b).

To determine the conditions under which the time-
averaged functional of Egs. (190) and (197) provides a
bound to the system level shift, we employ the complete
orthonormal set of solutions xx(r, ¢) of Egs. (41) for an
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adiabatically switched periodic perturbation,” and
introduce the expansion

00
y((ra t) = Z dkxk(ry l); (1983')
k=0
where the @ are time-independent variational co-
efficients which satisfy the normalization condition

[Eq. (193b)]
i | a@ [2=1.

k=0

(198b)

Substituting Eq. (198a) into the functional of Egs.
(190b) and (194), we find

UIx] = 3 | G P(EO+AL),

k=0

(199)

where AE; is the level shift associated with the periodic
function xx(r, £). It is clear from Egs. (198) and (199)
that when the level shift of the ground state of the
system satisfies AE<SAE; for all k, then

VI 2 U Ix)} =E+AE (200)

and a bounded variational principle obtains. However,
itis important to recognize that Eq. (200) is appropriate
for the ground state of the system only when the applied
frequency w is chosen to insure that transitions into
excited states cannot occur.®®

In the case of an adiabatically switched-on static
perturbation we have seen that the wave function takes
the form of Eq. (77). To determine the static limit of

" Demonstration of the existance of a set of quasiperiodic
solutions of Egs. (1), (28), and (41) for an adiabatically switched
harmonic perturbation is somewhat problematic in general. See,
for example, the discussions of Young and Deal (1970a, b) and
Adamov and Balmakov (1971), who establish an adiabatic
theorem for oscillatory Hamiltonians, and Epstein (1972), who
establishes a similar theorem for variational wave functions.
Here, we simply note that the more general choice of initial
condition in Eq. (3b), ¥(r, {—— ®)=¢;@ exp [(4%) 1EO¢]=
WO (r, 1), gives rise to a set of solutions of Eq. (1)

¢
Wi (1, t) =xx(r, ) exp [(iﬁ)‘l(Ek(")l-i—ﬁ Re AE(t)dt') ],

which we assume to be in one-to-one correspondence with the

unperturbed eigenstates ¥; @ (r, #). The Wx(r, ¢) are easily shown
to be orthonormal as a consequence of the orthonormality of
the unperturbed eigenstates from which they evolve when the
perturbation is applied. In the case of an adiabatically switched
harmonic perturbation, the W.(r, f) are quasiperiodic, with
associated level shifts AE; [Eq. (49) ], and describe the steady-
state response of the system to the harmonic perturbation.
The associated xx(r, ¢) satisfying Eqs. (41) [Re AE(f)—
Re AEx(t)] are periodic functions and are perfectly appropriate
for the expansion of Eq. (198a), with the a; time independent.

8 In the subsequent development we shall employ a perturba-
tive approach to determine the level shift of Eq. (200). It will
emerge there that when a trial function to first order in the
perturbation is employed, the range of validity of Eq. (200) is
limited to the normal dispersion frequency region, wherein the
photon energy 7w is insufficient to satisfy the Bohr condition
for a transition to the resonance state. In second order, the range
of validity of Eq. (200) is found to be limited to one-half the
normal dispersion interval, and is further reduced in each order
of perturbation theory. Consequently, in the case of an intense
perturbation, for which high-order perturbation theory is required,
we can 1anticipate that Eq. (200) will be limited to a low-frequency
interval.

our variational principle, we let ({—+ ) and &(r, {)—
&.(r). The time integration in Egs. (190) factors out in
this case, resulting in

o Re Ksl:&s]:(s((‘gs I H(O)'i‘Hs(l) l $S><$s l $8>_1) =0;
(201)

the Ritz principle for the total energy. For the ground
state of a system, we obtain the familiar result

Re K[ 1> Re K[ ¢, ]= EO+AE,, (202)

from Eq. (200), where ¢;(r) is the solution of the time-
independent Schrodinger equation and AE, the as-
sociated static level shift.

B. Variation-Perturbation Theory

To demonstrate that the variational principle of
Egs. (190) and (197) provides a unification of the
previously given order-by-order variational formula-
tions in the case of an harmonic perturbation, we
proceed sequentially and first write the trial wave
function in the form

¢(r, ) =@ (1) + ¢V (1, 6) + -+, (203)

where ¢ (r) is the unperturbed solution and ¢®(r, ¢)
is a trial perturbation solution which is orthogonal to
¢@(r). That is, the variation of ¢®(r,?) must be
consistent with the orthogonality condition [Eq.
(182)7]. From Eq. (87a) we see that the trial function
é®(r,¢) for the harmonic perturbation of Eq. (80)
can be written in the form (t—+ )

0 (r,8) = ¢ @ (r) exp (i) + 1@ (r) exp (—iwt).
(204)

Substituting Egs. (203) and (204) into {Re K[$]}
[Eq. (187a) ] and retaining terms through second-order,
we find for the perturbation of Eq. (80) (¢ )8

(Re K[3]) = EO-+{ KOO ++--,  (205)

where

{(KO[O ]} =K1 P[uO]+K P[4 D] (2006)
and
Ku®[gu®]=($u® | HO®—EO+iiw | §,0)
F(Ea® [ AV [ ¢ @)+ {po@ | AV | g, ©V).  (207)

In Egs. (205)-(207) the functional {ReK[$]}
through second order is expressed in terms of only the
first-order trial functions ¢ (r) and ¢_(r). In
carrying out the variation of the functional {Re K[ &}
we can insure that the orthogonality condition [Eq.

81 At first sight it would appear inconsistent to employ Eq.
(203) and yet retain terms in the functional to second order.
However, if we employ the trial function @(r, £) =¢¢® (r)-+
¢ (r, t)+¢@®(r, )+ +-- in the functional and retain terms to
second order, we find that the second-order trial function ¢® (r, 7)
does not contribute, provided that ¢¢©®(r) is the correct un-
perturbed eigenfunction.
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(182) ] is satisfied to first order by requiring that
(61® [ $®)=0.

Following the standard procedure, we employ La-
grangian multipliers A;;® and introduce the functionals

L®[én®]=Ku®[$u®T+ Aa®)*@® | §u®)
FAn@(Eu® | ¢®). (209)
The variational conditions
8L ®[$V]=0
then give the equations
[HO (1) — Ey©® i ] ¢ ® (1)
A (1) @ Te®@ (1) =0 (211)

for the functions ¢11V(r). From Egs. (211) and the
requirement that ¢.;?’(r) be orthogonal to ¢o@ (1) at
the solution point [Eq. (208) ], the Lagrangian multi-
pliers are found to be

A ® = — ($@ | AD | @ )= — e,

Consequently, we recognize Eqs. (211) as identical with
the equations for ¢.1®(r) [Eq. (88a)] obtained in
Sec. III directly from the Schrédinger equation.8

The variation conditions [Eq. (210) ] insure that the
functional {Re K[ $]} is stationary to second order
and guarantee that the orthogonality condition of Eq.
(208) is satisfied at the solution point. The functionals
[Eq. (209)] are identical with those previously
obtained in the literature by simply constructing
functionals whose stationary condition results in Egs.
(211). Here we have shown that Egs. (209) arise from
the perturbation expansion of the unified variational
principle for the system level shift [Eqs. (190) ], which,
as we have demonstrated above, is a particular form of
the Frenkel variational principle.

The level shift functional at the solution point
DV (1, ) =@ (r, t) becomes

(Re K[6]} = E®+ (KO[4O T} + -
= B@ 4+ K ;@[ O+ K @[04+ +
(213)

8 In obtaining Eqs. (211) we have employed the variational
principle of Egs. (190), which requires the orthonormality condi-
tion of Eq. (182). If instead we were to employ the variational
principle of Eq. (197), without the specific choice of Eq. (191)
for X(r, 1), the norm (X | X ) would, in general, not be constant
in time unless measures were taken to insure its constancy, such
as the introduction of a Lagrangian multiplier. If the required
measures are not taken, the development resulting from the
use of Eq. (197) is invalid. This is the case in the computations
of Chung (1968), who employs Eq. (197) without taking into
account the necessary normalization demand. That his numerical
results are nevertheless accurate is a consequence of the fact
that the first-order trial function X® (r, £) he employs is orthogonal
to x@(r) and so the norm deviates from unity only in second-
order. Presumably, the convergence difficulties Chung experi-
enced in the neighborhood of the helium resonance frequency
might be avoided by proper treatment of the normalization
condition, since near resonance the first-order functions will
grow large and (X | %)= (X® | X® ) will eventually diverge as
WIwig.

(208)

(210)

(212)

from Eq. (206). Employing Egs. (207) and (211), this
can be written as

{Re K[¢]} = By (@ | 1V | $.20)
F (D | BD | @)+
=EO+e® -+ - (214)

and, consequently, the level shift is determined to
second order. Moreover, the variation-perturbation
expression in Eq. (214) is in agreement with the level
shift appearing in the wave function of Eq. (92),
obtained directly from perturbative solution of the
Schrodinger equation. The second variations of the
functionals K ;[ ¢, ] are found to be positive at the
solution points for w<wi, where wy is the resonance
frequency. Consequently, we obtain the bounding
relation

[KO[FOT]} > (KO[¢D ]} = @ (215)

and the range of validity of Eq. (200), when the level
shift is determined to second-order by perturbation
theory [Eq. (214)7], is evidently limited to the normal
dispersion frequency interval

To investigate the physical significance of the
second-order term in the level shift of Eq. (214), we
note from the time-dependent Hellmann-Feynman
theorem [Eq. (51)] that (+—+ )

@ = (KO[GOT =3 (@O | V [¥0)+ @O | V] 50},
(216)

w<w10,

where
V(r,t) =h(r)[exp (iwt)+ exp (—iwt)]. (217)

In the special case of the uniform-electric-field perturba-
tion [Eqgs. (102)], we find, employing Eqgs. (91b),
(104), and (105b), that Eq. (216), modified to include
the perturbation parameter A [Eq. (102a) ], becomes

t+7
%eom(E(‘*’))?:(l/r)/ oL (') - E@ cos wt’' dt', (218)
t

where
o () = E@P,® cos wi (219)

is the first-order contribution to the induced dipole
moment [Eq. (104) ] in phase with the electric field.
The second-order level shift [Eq. (218) ] in the case of
an oscillating uniform electric field is found, therefore,
to be simply the energy associated with the work done
by the electric field on the polarization vector during
the course of its induction (a.c. Stark shift).® In the
static limit w—0, Eq. (219) becomes the induced static
moment and Eq. (218) is the familiar Stark shift Lo F2,

8 The functional K,1®[$1P] has a positive second variation
at the solution point for all applied frequencies. It is the

K ®[¢_1®] functional that limits the range of validity of
Eq. (215) to the normal dispersion region. A variety of procedures
can be employed to extend the frequency interval over which
Eq. (215) applies and to construct complementary lower bounds.
See, for example, Adamov, Orlov, and Rebane (1968), Kolker
(1968), and Robinson (1969a, b).
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where « is the static dipole polarizability and E is the
static electric field strength 3

Assuming that ¢ (r, £) has been determined exactly,
we can proceed to the evaluation of the second-order
function ¢® (r, ¢). Employing the ansatz

é(1,0) =@ (1) +¢@ (r, ) +¢@(r, ) +---  (220)

in Egs. (190) gives, retaining terms through fourth
order,®

{Re K[ ]} = E @+ 6@+ {KO[$®]

—E@(1) (¢ [ ¢V)}+---, (221)

where

(KOLE®T) = (39 | HO—E©—ifi(a/a1)| )

H(E9 [ HO—EO [ 40)4 (60 | HO—EO | g0},
(222)

From Eq. (87b) we see that the appropriate form for the
trial function ¢@(r, ¢) is

B2 (r, ) = 2@ (1) exp (12wt)

+G_o@ (1) exp (—i2wt) + @ (1). (223)
Employing Eq. (223) in Eq. (222) gives
(KOL39]) = Kaa®[ G+ K064
KGR, (220)

where
K12®@[¢12P]=($42® | HO— EfOt2F0 | $12®)
F{(B12® | BD— €D | by ® ) (bya® | hD — D | Fr0®),

(225a)
and

K0(4)E<50’2)]= (d;o(z) | HO _ F,© | $o®)
+ (G0 [ O —eD | 1104440
@O+ [ Ve [ §®). (225b)

The functional {Re K[¢1}, through fourth order,
depends only on the trial functions ¢.2®(r) and
0@ (r), which are subject to the second-order orthog-
onality constraints [Eq. (182)]

(2@ | 9@ )=0, (226a)
(60 | 0@ )=0. (226b)

8 A variety of recent computational applications have employed
the procedures of Egs. (203)-(219) for determinations of the
dynamic and static polarizabilities, P,®, and related level shifts,
«®, of simple atoms and molecules. See, for example, Karplus
(1964), Chan and Dalgarno (1965), Kolker and Michels (1965),
Kolos and Wolniewicz (1967), Victor, Browne, and Dalgarno
(1967;, Chung (1968), and Kamikawai, Watanabe, and Amemiya
(1969).

8 As remarked in Footnote 81, it might appear at first some-
what inconsistent to employ Eq. (220) and yet retain terms to
fourth order in the functional. However, if we enter the func-
tional of Eqs. (190) with the trial function ¢ (r, £)=¢o® (r)+
dW (1, 1) +¢O (1, ) +FD (r, £)+¢@ (r, £)++ -+, and retain terms
to fourth order, Eq. (221) is nevertheless obtained, provided
that ¢o@ (r) and ¢@® (r, ) are the correct solutions of the static
eigenvalue problem and of Egs. (204) and (211), respectively.

Following the standard procedure, we introduce
Lagrangian multipliers A4® and A\® and the func-
tionals

Ly®[¢2®]=K12®[$22® ]+ (A12®) *($0® | $.2?)
FA®($12® | $0 ), (227a)
Li®L¢o® = Ko®[$® I+ (N®) * (o | Fo®)

FN@(Be® | $@).  (227D)

The variation conditions
5L¢2(4) [$i2(2)]= 0,
then give the equations

[HO (5) = Ey®= 27011 (1)+ 5O (1) — 0 T a ()

8Ly W[ $®]=0  (228)

FA2@P@ (1) =0, (229a)
[H0 (1) — E® 1 ()
DA (1) — €O T (1) +-94® (1) ]
FAPh@ (1) =0. (229b)

From the requirements that ¢.2®(r) and G (r) be
orthogonal to ¢®(r) at the solution point, the La-
grangian multipliers are

M@= — (@ | AV | @)= —;p®,

N®@ = —eos®—e @ = —g?,

(230a)
(230b)

Thus, Egs. (229) are identical with the equations for
¢+2? (1) and ¢®? (r) [Egs. (88b) and (88c)] obtained
in Sec. III directly from the Schrédinger equation.

The level-shift functional at the solution point
@ (r, 1) =¢®(r,1) takes the form

{Re K[d):]} = E0(0)+60(2)
+KO[pO]—E® GO | 40)] -

= FyO 4@ 4@+ -+, (231)

where {K®W[¢®7]} is given by Eq. (224) with
K 2@[¢2®]= (@ ® | 10— | ¢12®), (232a)
Ko®[o®]= (b2 @+ ® [ hO—e® | ¢o@),  (232b)

and where
(ED @0 | 90N = (D | o)+ (@1 | $40)) e
F {1 @ | 1D Ye s®@+ (P, ® [ 11D Yeo®.  (232¢)

Equations (232a) and (232b) are obtained from Egs.
(225) by making use of the fact that Eqs. (229) are
satisfied at the solution point, and Eq. (232¢) is
obtained using Egs. (87a) and (89b). The second varia-
tions of the functionals K 2@[ 2@ ] and Ko®[ ¢®]
are found to be positive at the solution points for
2w<wy, where wy is the resonance frequency. Con-
sequently, we obtain the bounding relation

(KOLFO]—ED (1) (¢ | o)} > (KO[42]

—E® (1) (¢® | p®)} =@, (233)

20w < w10,
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and.the range of validity of Eq. (200) is now limited to
one-half the normal dispersion interval3 Equation
(231) evidently provides a perturbation approximation
to the level shift through fourth order, even though the
wave function is known only to second order. This
result is a special case of the general “2n--1" theorem
for time-dependent perturbation theory.¥

To investigate the physical significance of the fourth-
order level shift &®, we note from the time depend-
ent Hellmann-Feynman theorem [Eq. (51)] that
(t=t),

P =1{(TO |V | ¥} (IO | V| ¥O)
F O | V[ FO) (@O | V| T0)],  (234)

where V (r, f) is given by Eq. (217). In the special case
of a uniform-electric-field perturbation [Egs. (102)7],
we find

+7
L (E@) 4= (1/7) / 1a® () -E@ cos o’ df', (235)
&

where
Po® (£) = (E@)3P,® cos wt (236)

is the third-order contribution to the induced moment
[Eq. (104)] that is in phase with the electric field.
Consequently, the fourth-order ac Stark shift in a
uniform electric field is similar in form to the second-
order shift of Eq. (218) .58 Similarly, in higher-order the
level shifts also correspond to the time average of the
scalar product of the applied electric field with the
component of induced moment that is in phase with the
field. Thus, the complete level shift in this case is simply
the energy acquired by the system due to the work done
by the external electric field on the electric dipole
moment during the course of its induction.

8 As in the case of Eq. (215), the restriction of Eq. (233)
to half the normal dispersion region, 2w<wiy, is due to the

K_s®[¢_,®7] functional, which has a positive second variation
only in this interval.
87 If the wave function is known to order » in some perturba-

tion parameter A[(r, £) =@ (r, £) +0(A\*)], then it is clear that
since the functionals of Eqgs. (190) and (197) are stationary to
second order in the error in the wave function they are known

to order 2n+1[ {Re K[¢]}={Re K[$1}4+0N*1)7]; that is,
the variational principle of Eqs. (190) and (197) insures the
existence of a “2n+41’’ theorem for the variational functionals,
similar to that for the energy in the static case. Consequently,
from the time-dependent Hellmann-Feynman theorem [Eq.
(51)7], we see that the response of the system {(¥|H® |[¥)}
is known to O(A?**) if the wave function is known to order #.
Further discussion of the 2z-+1 theorem for time-dependent
perturbation theory is given by Epstein (1969). For related
discussion of the static case see Epstein (1968b). Although cor-
rect in its essentials, this latter paper perhaps does not make it
sufficiently clear that the 2x4-1 theorem applies to any varia-
tional calculation whatsoever. For clarification of this point see
Epstein (1971). The 2n-+1 theorems in the static and time-
dependent cases also imply the existence of “interchange” theo-
rems for variational calculations. For discussion of these corollary
theorems in the case of exact wavefunctions, see, for example,
Hirschfelder, Byers-Brown, and Epstein (1964), Sec. 1X.B.

8 Variational calculations of nonlinear optical susceptibilities,
P.® and Py, @, and the associated level shift of Eq. (235), which
employ the development of Egs. (220)-(236) are given, for
example, by Sitz and Yaris (1968) and Grasso, Chung, and
Hurst (1968).
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C. Hartree~Fock Approximations

The development of the preceding section for an
harmonic perturbation can be employed in the Hartree~
Fock approximation to obtain variational equations
suitable for computational applications.

Uncoupled Hartree-Fock Theory

A variational formulation of the first-order uncoupled
Hartree-Fock approximation described in Sec. III is
obtained from the development of Eqs. (203)-(219) by
introducing the trial functions

N
u® (1) =3 U0 (1), (237)
=1

where, in the notation of Eq. (117),
T (r) = (N )2 det | ,® (11) @ (1) - - -
Xty (Ticg) Ui P (1) %1 @ (Fig) » « @ (1) | .
(238)

We employ the unperturbed Hartree-Fock Hamiltonian
and energy [Eqgs. (108) ] in place of the correct zeroth-
order Hamiltonian and energy, respectively, and in
accordance with the remarks following Eqs. (121), we
will require without loss of generality that

(i | 0, W)=0 i=1,2,+++, N, (239a)

and
(35 | O | 25)=0 ij=1,2, -+, .
(239b)

Equation (239a) clearly insures that the orthogonality
requirement [Eq. (118)] is satisfied. Introducing Egs.
(237) and (238) and the Hartree-Fock Hamiltonian
and energy into the Ki1®[$11] functionals [Eq.
(207)] for the perturbation of Eq. (80), and incor-
porating the orthogonality requirements of Eqs. (239)
by means of Lagrangian multipliers \i;®V (=), gives

N
Ly®[¢u®]= > Liy®[a@:, V], (240)
=1

where

L @[ ]= (@00 | hO— @i | 4, 0)
+ @ix® | BOFN:® ()| @)
+ (@ | BOFN D () * | Gy @)

N
+ 3 (i) [ | 1,9 M ()
=1

FAi® () * (0 | 0O )Flio | (2 | 0, ©)2]. (241)

Here, 79 (r;) is the unperturbed Fock operator [Egs.
(109) J and AV (r;) is the spatial part of the one-particle
harmonic perturbation [Eq. (114)7]. The variational
conditions [Eq. (210) ]

SLn®P[$V]=0 (242)
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are satisfied by the individual requirements

0L O[a;,V]=0 i=1,2,---,N, (243)
which give the equations,
[7A9 (1;) — e i [P (14)
+[7D(r;) — e, Ju; @ (r;) =0, (244)

where we have introduced the choice of multipliers
N (k) =— (u;@ | h® | 4,0 )= —¢;®, (245a)
Ny (£) = £hio ;@ [ ui®). (245b)

We see that the orthogonality requirements of Egs.
(239) are an immediate consequence of Eq. (244).

It is clear that Eq. (244) is in agreement with the
equation obtained from Eq. (120) in the case of an
harmonic potential, employing the time-dependent
spin—orbital

w D (1i, 1) =1, D (1:) exp (iwt) +ui®(1;) exp (—iwt).
(246)

Consequently, the variational conditions of Eq. (243)
are equivalent to the uncoupled Hartree-Fock equations
[Eq. (120)] for an harmonic perturbation, and insure
that the resulting orbitals satisfy the orthogonality
condition of Egs. (239) at the solution point.® More-
over, from Egs. (214) and (237) we have

N
enr®= {Kur@[pur® T} = 3 (@@ | 2D | 4:,®)
=1

i [ B0 | w®))  (247)

and from the second variation of the functionals of
Eq. (241) at the solution point we obtain

{Kur®@[ furP ]} > { Kur®[¢ur®]} = enr®

w<w10,

(248)

8 The functionals of Eqs. (241)-(245) do not agree with
those obtained previously by Karplus and Kolker (1963b) and
Heinrichs (1968c) since they do not employ our choice of multi-
pliers [Eqs. (245)7]. However, if this choice is introduced into
their developments, which does not limit the generality of the
procedure, the results of Karplus and Kolker and of Heinrichs
are identical with Egs. (241)-(242). Alternatively, if the
orthogonality requirements of Egs. (239) are satisfied in our
development by Schmidt orthogonalizing the trial spin—orbitals
;10 (r;) to all the unperturbed orbitals, the functional of Eq.
(241) becomes identical with that of Karplus and Kolker. Related
discussion of this point in the static case is given by Langhoff
and Hurst (1965). Consequently, our development is essentially
identical with those of Karplus and Kolker and of Heinrichs, as
discussed in Footnote 68. The functionals of Chung (1967)
however, disagree with our results in an essential way. Chung
obtains spurious coupling terms between first-order orbitals in
his Eq. (53) due to the failure to identify the secular terms in
his functional of Eq. (52). In particular, the third term from the
last on the right-hand side of Eq. (53) can only arise from a
secular term in the first-order wave function and its inclusion
is inconsistent with his preceding development, which is designed
to extract such terms.

where wy is the resonance frequency of the Fock
operator. Thus, the functionals of Eq. (241) provide
computationally convenient expressions that lead to a
bound on the uncoupled Hartree-Fock approximation
to the second-order level shift.%

Coupled Hartree—Fock Theory

The uncoupled functionals of Eq. (241) are computa-
tionally convenient and avoid the necessity of finding
a self-consistent solution in first-order. More accurate
results are provided by the coupled Hartree-Fock
approximation,® which entails a first-order self-con-
sistency requirement, as in the familiar Hartree-Fock
approximation to the unperturbed wave function.

The coupled Hartree-Fock equations are con-
veniently derived from the Frenkel principle [Eq.
(178) ] employing a trial function in the form of the
Slater determinant

Ve (r, ) = (N )72 | @y (11, )@ (L, £) + - i (T, )],
(249)

containing N trial spin-orbitals @:(r:, #) which satisfy
the customary orthonormality requirement
(@i | 4;)=6b4,

i,j=1,2,--+,N.  (250)

Substituting Eq. (249) into Eq. (178), written for an
N-electron atom in the Coulomb approximation, with
the perturbation Hamiltonian given by Eq. (114), we
find ’

8(¥ur | HO+H®—i%(3/01)| Firp)
+i#(8/0t) (Wur | 9Vur)

= }I_vj ((0: | A+g0—ifi(3/08)| w:)

=1

=+ complex conjugate). (251)

9 The Fock operator [Eqgs. (109)7] for a neutral atom or
molecule generally has no bound excited states. See, for example,
Kelly (1963) and Epstein (1964) for discussion of this point.
Consequently, we might suspect that the uncoupled Hartree—
Fock approximation will give a poor approximation in certain
instances to the excitation spectra, or related physical properties,
of atoms or molecules. This is illustrated by the beryllium atom
computations of Levine and Taylor (1964), who obtain a dynamic
polarizability that exhibits a continuous behavior in the fre-
quency region of experimental resonances. This unsatisfactory
aspect of the uncoupled Hartree-Fock approximation has led to
the introduction of a variety of alternative uncoupled approxima-
tions to both static and time-dependent perturbation theory,
similar to the original approximation of Karplus and Kolker
(1963b) discussed in Footnote 68. For intercomparisons of these
approximations in the closely related static case, see, for example,
Langhoff, Karplus, and Hurst (1966), Caves and Karplus (1969),
and Sadlej and Jaszunski (1971), and references cited therein.

9 The time-dependent Hartree~Fock theory was first discussed
by Dirac (1930), and subsequently in perturbative form by
Dalgarno and Victor (1966), and Heinrichs (1968c). The method
is also designated as the random phase approximation with
exchange. See, for example, Thouless (1961), McLachlan and
Ball (1963), and Rowe (1968), and references cited therein.



P. W. LancHOFF, S. T. EpsTEIN, AND M. KARPLUS

In Eq. (251), k(s t) is the Fock operator

h(rs, t) = — (B2 2m)VE— (Ze2/r:)+o(ri, 8), (252a)
with the nonlocal Fock potential
N
o(rs, £) = El (@[ (¢¥/r:5) (1—Pyj)| 15), (252b)
=

and g®(r;, ) the one-electron perturbation operator
[Eq. (114)7. We insure that the variations §@:(rs, ) in
Eq. (251) are consistent with the orthonormality
constraints by introducing Lagrangian multipliers,
\i;(£), chosen to satisfy Egs. (250). Setting the right
hand side of Eq. (251) equal to zero and incorporating
the orthormality requirements, we obtain

[h(xs, t) 459 (x:, t) —i7(0/98) Jai(x, )

-+ % )\ij(t)aj(r,-, t) =0. (253)

=1

These are the general time-dependent Hartree-Fock
equations for the spin—orbitals @:(rs, £).

Various choices for the Lagrangian multipliers
\i;(¢) which insure that Egs. (250) are satisfied can be
made. The particularly simple choice

)\’UU)EO i,j,’—" 1)2: "':NJ (254)
results in the canonical time-dependent Hartree-Fock
equations

[h(ri, 1) +g® (ri, 1) —i%(8/08) Jui(ri, £) =0.  (255)
That the choice of Eq. (254) satisfies Egs. (250) at the
solution point follows from Eq. (255) and the Hermitian
nature of the Fock operator and the perturbation
Hamiltonian; we find, from Eq. (255) that
(8/01) {m;j | us)=0 (256)
and, consequently, Eqs. (250) are satisfied at all times
if they are satisfied initially (t——0).

Equations (255) are similar in form to the complete
time-dependent Schrédinger equation [Eq. (1)7], aside
from the self-consistency requirement implied by the
form of the Hermitian operator of Egs. (252). We can,
therefore, apply the development of Sec. II.B to
eliminate the normalization and secular terms that arise
in the perturbation solution of Eq. (255). Following
the development of Sec. IT, we find that the solutions
ui(r;, t) of Eq. (255) take the form

wi(ri, 1) = ¢i(ri, ) {bi | pi)™

X exp ((iﬁ)—l /_ ; Re () dt’), (257)
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where
&(t)=(¢:0 | h+g® | pr)=eV+Aei(d), (258)
(9@ [ $1)=1, (259)

and the regular part of the spin-orbital, ¢i(r;, 1)
satisfies

[A(xi, ) —e @ —1i7i(9/01) Jbi(rs, ©)

+[gW(rs, 1) — Aes(£) Jpi(ri, 1) =0.  (260)
Introducing the perturbation expansions
Bilrs, )= 3 ¢ (xs, 1), (261a)
n=0
Aei(t) = 3 e (1), (261b)
n=1
into Eq. (260) gives, through first order,
[]Z(O) (rf) —ei(o)]d)i“’) (I‘l) =0 (2()2&)
[A9(1:) —e;@—ifi(8/31) Jpi® (13, 1)
+Lg® (ri, 0) oD (13, 1) —e P (1) Jps@ (r:) =0 (262b)
where
hO (1)) = — (72/2m)VE— (Ze/7s)
v
+ 2 & [(e/ri)) (1—Pij) | ;7))  (263a)
=1
N
v® (15, 1) = 2 (6@ [(¢2/ri;) (1—Piz) | 6,7)
=1
+{&;® [(¢&/ri;) (1=Pij)| ¢:V)), (263b)
and
& (1) = (¢ [ v +-gD | ¢:@). (264)

We recognize Eq. (262a) as the familiar unperturbed
Hartree-Fock equation in canonical form, and Eq.
(262b) is the first-order, time-dependent, coupled
Hartree-Fock equation. Evidently there are coupling
terms between first-order orbitals in Eq. (262b) due to
the presence of v®(r;, £) [Eq. (263b)]. This introduces
the necessity of a first-order self-consistent solution and
results in the designation of this approximation as the
“coupled” Hartree-Fock approximation. By contrast,
the first-order equations in the uncoupled approxima-
tion [Eq. (244)7] do not entail a self-consistent solution.
The higher-order coupled Hartree-Fock equations are
obtained by including additional terms in the expansion
of Eq. (260) %

%2 The higher-order coupled Hartree-Fock equations are
discussed and employed, for example, by Langhoff, Lyons, and
Hurst (1966), Lyons, Langhoff, and Hurst (1966), Klingbeil,
Kaveeshwar, and Hurst (1971), and Sitter and Hurst (1972).
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It is of interest to note that the canonical choice of
Lagrangian multipliers [Eq. (254) ] employed to obtain
Eq. (255) gives rise to an over-all phase factor in the
Hartree-Fock wave function that is different from the
phase factor we have identified in the exact wave
function [Eq. (33)]. That is, from Egs. (249) and
(257), we have,

Yur(r, t) = (V)72 det | x1(ry, 1) xa(12, £) « - *xwv (1w, 1) |

N t
xm{%wzf;mqmwl(%a

where

Xi(Ti, 1) = di(xi, 1) {bi [ )72, (266)
It is clear that the phase factor of Eq. (265) is distinct
from that in the correct wave function [Eq. (33)]. In
particular, for the unperturbed problem, Eq. (265)
becomes

Yir® (1, £) = (V)72 det | ¢1 @ (11) @ (12) * + <5 @ () |
N

X exp [(#7)71 > «©F], (267)
=1

and the resulting phase factor differs from the Hartree-
Fock energy [Eq. (108b)] by including the Coulomb
repulsion integrals twice.

Although it has no practical consequences as far as
expectation values are concerned, it is perhaps more
pleasing to have a Slater determinant in which the
phase is related to the total energy. Moreover, in order
to apply the variational principle of Egs. (190) and
(197) for an harmonic perturbation in the ‘Hartree—
Fock approximation it is necessary to demonstrate that
the trial wave function can be written in the form of
Egs. (33) or (40). To accomplish this and in no other
way alter the development resulting in Eqs. (262), we
can use the arbitrariness of the Lagrangian multipliers
in Eq. (253).

The appropriate choice of non-zero Langrangian
multipliers is introduced by writing

Nij(£) = Ni(£) 845, (268)
where the \:(¢) are arbitrary real functions of the time.
With this choice we obtain from Egs. (250) and (253)

Ch(ri, 1)+ (re, ) +Ni(8) —i7(8/98) Jui! (1:, 1) =0,
(269a)

wi (i) ) =ui(r;, £) exp (— (i) f_; () dt’) ,
(269b)

for the new orbital equation, with #;(r;, ¢) the solution

of the canonical equation [Eq. (255)]. That is, in-
troduction of the nonzero real Lagrangian multiplers
[Eq. (268) ] merely alters the spin-orbital solutions by
the phase factor in Eq. (269b). Consequently, any
choice of the A;(f) that is real will satisfy the ortho-
normality conditions [Eq. (250)]. The new Hartree—
Fock wave function, employing the multipliers \(¢),
becomes

Yur(r, ) = (N )71 det | x1(11, £) xa(r2, £) « » o xv (T, 1) |

N t

X exp ((iﬁ)‘l}: [Re e () —Ni(t) ] dt’) , (270)

i=1 J—

and clearly differs from Eq. (265) only by an over-all
phase. We now choose the arbitrary real functions \;(¢)
so that

% [Re () =X(0) 1= x| HO+-HO—i5(2/00)| o)

(211)
where

xur(r, £) = (N )2 det | xa (11, £) xa (12, £) « + - xav (v, £) .
(272)

The complete Hartree-Fock wave function [Eq. (270) ]
is, therefore,

t
Torw (r, £) = xaun (5, ) exp ((im—l [ Guee | HOm0

4]
ik ’ 2
ih Py | xmr) dt) (273)

similar to Eq. (40), where the spin—orbitals x:(rs, ) in
Eq. (272) are given by Egs. (260) and (266).

To complete the development, it is useful to derive a
variational equation for the spin—orbitals ¢V (r., ) of
Eq. (262b) in the case of an harmonic perturbation.
This can be accomplished by inspection of the form of
Eq. (262Db), although it is perhaps more instructive to
follow the general development of Sec. V.A. We employ
a trial Hartree~-Fock wave function in the form of Eq.
(273) and the variational principle of Eq. (197);

8{/[Xur]} =0, (274)
where

Jlxur]= (xur | HO+H®—i#(3/3t)| Xur), (275)
Xue(r, £) = (NV!) 72 det | X1(11, £) Xa(rs, 2) - - X (1w, 1) |,
(276)

and the perturbation Hamiltonian is given by Eq. (114)
where the one-particle operator g®(r;#) has an
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harmonic time dependence. The appropriate form of the
spin—orbital X;(r;, £), to first order, is [Eq. (266) ]

Xi(Ts, 1) =i (1:) + O (x5, )+, (277)

where
G0 (15, 8) = §i1® (1) exp (iwt) +$i-P (1:) exp (—iwt).
(218)

In Eq. (277), ¢:9(z;) is the solution of Eq. (262a),%
and the ¢ @ (r;) satisfy the orthogonality require-
ments

(¢i(0) I $i:h(1)>=0 1=1,2,-+-, N, (2793')
(&j:}:(l) ‘ ¢i(0>>+ <¢i(0) l ‘51'?(1)):0 i)j= 17 2) % N:
(279b)

which insure that the Xi(rs;, {) [Eq. (277)] are ortho-
normal to first order. Retaining terms through second
order, we obtain from Eq. (275)

{(J[xur]} = Ear®+ {Kar®[Xarl}+- -,

where

(280)

N
(K@ xus]) = T (662 | O —O+o | §1.)

=1

4 {Fi® | BO — ;@ —Fiy | $i®)
@0 | O30 [ $ 0 (Fi4® | O
309 [ i) (@i | KO+30, D | §iV)

(D [ B0+ | 4:©)], (281)
and %®(r;) is the spatial portion of the one-particle
perturbation g®(r;, ¢) [Eq. (114)7]. In Eq. (281) we
have introduced the first-order self-consistent potentials

02D (1:) = {.:1 (($#P | (&/7i;) (1—Pij)| ;)

+ (6 [(e/ri;) 1—=Piy)| $:.2)), (282)

which clearly depend on the unknown solutions
$ix®(r;). The functional of Eq. (281) is made. sta-
tionary with respect to variations of all the trial
spin—orbitals ¢ ®(r;) [Eq. (274)7], subject to the
orthogonality requirements of Egs. (279). We note that

9 Accurate solutions of Eq. (262a) can be obtained for atoms
and ions but only approximate variational solutions, which do
not satisfy Eq. (262a), are available for molecules. In the latter
case an alternative variational formulation of the first-order
Hartree-Fock equations, which does not assume that Eq. (262a)
is satisfied, can be carried out, although we do not consider
this case explicitly here. A formalism similar to that of Lipscomb
(1969) is conveniently employed.
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the canonical choice of Lagrangian multipliers
Nij () D=2 Dé;; (283)

can be employed to satisfy Egs. (279) since, as we shall
see, they will be satisfied automatically as a consequence
of the resulting differential equations for & @ (r).
Introducing the multipliers [Eq. (283)7], we obtain
from Egs. (274) and (281) the variational equations

N
SL{ Kur®[Xurl} 4+ 2= Mz O{$iy® | :©)

=1

+ s ®) B0 | GO AN OGO [ 1)

+ (0 | ) ]=0. (284)
Carrying out the indicated variations gives the dif-
ferential equations

[A©(1:) — &P i g P (1:)
H[2O (1) +o4 O (1) FXe O Jps@ (1) =0 (285)

and from the requirement that Eq. (279a) be satisfied
at the solution point, we find

Nis® = — (i@ | BO 40, D | $;®). (286)
We see that Eq. (279b) is an immediate consequence
of Egs. (285) and (286) and, consequently, the
canonical choice of multipliers [Eq. (283)] is satis-
factory, involving no loss of generality. Equations
(285) and (286) are identical with Eq. (262b) in the
case of an harmonic perturbation, for which Eq. (278)
is appropriate. Consequently, we have obtained a
variational formulation of the first-order time-dependent
Hartree-Fock equations for the regular part of the
spin—orbital in the form of the functional in Eqs. (284)
and (286).

At the solution point we find

N
ér{F(2)= {KI{F(2)[XHF]} = Z (<¢i(o) I h® i ¢i+(l)>

=1
e | KO | $:0))

similar to the result of Eq. (247). Here, however, the
first-order spin—orbitals are determined from the
coupled Hartree-Fock equations, whereas the un-
coupled Hartree-Fock spin-orbitals ‘are employed in
Eq. (247). From the second variation of the functional
[Eq. (281)] at the solution point we have

(287)

{Kur®[ Xur ]} > { Kur®[xar ]} = ear® w<wio,

(288)

where wp is the coupled Hartree-Fock resonance
frequency and, consequently, a bounded variational



640  Reviews oF MODERN Puysics « Jury 1972
principle for the coupled Hartree-Fock approximation
to the second-order level shift is obtained.*

VI. CONCLUDING REMARKS

In this review we have drawn attention to the
presence of normalization and secular terms in the Dirac
variation-of-constants perturbative solution of the
time-dependent Schrédinger equation. While the Dirac
solutions are perfectly correct and do not result in
formal difficulties, it is nevertheless convenient and
instructive to isolate the normalization and secular
terms that arise into over-all multiplicative normaliza-
tion and phase factors, and to employ the remaining
regular part of the wave function in perturbation or
variational developments. The extraction of the secular
terms into an over-all phase factor is particularly
important when the perturbed system exhibits a
physically significant level shift. Since it is difficult to
extract the individual secular and normalization terms
from the wave function on an order-by-order basis, we
have employed a method for extracting them once and
for all to all orders in perturbation theory, and have
demonstrated that the resulting normalization and
phase factors are determined by the regular part of the
wave function. It is the power series expansions of the
normalization and phase factors, combined with the
perturbation expansion of the regular function itself,
that give rise to the customary Dirac variation-of-
constants perturbative solutions. The perturbation
expansion of the regular function results in a sequence
of equations that bear strong resemblance to the time-
independent perturbation equations and reduce to the
latter in the static limit. This contrasts with the Dirac
expansion, where the static limit is somewhat obscured.

Our applications in the cases of the linearly perturbed
oscillator, for which the exact wave function is obtained,
and the static, harmonic, and electromagnetic perturba-
tions, where approximate perturbative solutions are
obtained, serve to emphasize that the procedure we
have followed is essentially one of regrouping the Dirac
solutions in a form that makes apparent the presence of
over-all normalization and phase factors. In the case of
an adiabatically applied harmonic perturbation, the
over-all multiplicative phase factor obtained includes
both oscillatory terms and terms linear in the time that
describes the system level shift in the presence of an
oscillating field. In the limit of a static perturbation, the

% The coupled Hartree-Fock approximation has been em-
ployed in a variety of computational determinations of the
dynamic polarizabilities and related excitation spectra of simple
atoms and molecules. See, for example, Altick and Glassgold
(1964), Dalgarno and Victor (1966), Sengupta and Mukherji
(1967), Victor (1967), Dunning and McKoy (1967, 1968),
Kaveeshwar, Chung, and Hurst (1968), Mukerjee, Sengupta,
and Mukherji (1969), Epstein (1970), Epstein and Lipscomb
(1970), Jgrgensen and Linderberg (1970), Langhoff and Karplus
(1970a), Moitra, Mukherjee, and Sengupta (1970), Jamison
(1971), Bhattacharya, Sengupta, and Mukherji (1972), and
Moitra and Mukherjee (1972).

over-all phase factor reduces to the customary static
level shift factor, in agreement with the well-known
adiabatic theorem. By contrast, the Dirac functions,
which include the perturbative expansion of the level
shift factor, contain time diverging secular terms in the
case of an adiabatically applied static perturbation.

The relative simplicity enjoyed by the use of the
regular functions, in contrast to the Dirac expansion,
is clearly exhibited by the compact expressions we have
obtained for various nonlinear optical susceptibilities.
Our treatments of the uncoupled and coupled time-
dependent Hartree-Fock approximations have also
illustrated the importance and convenience of com-
puting only the regular portion of the wave function
and underline some of the possible pitfalls encountered
when normalization or secular terms are retained.

Methods other than our simple extraction procedure
can also be employed for eliminating normalization
and secular terms from the wave function. We have
considered a projection procedure and methods of
extention and averaging familiar from nonlinear
mechanics and nonequilibrium statistical mechanics.
In contrast to the latter problems, where the long time
behavior of the system is the essential element, the
presence of secular terms in quantum mechanics offers
no fundamental formal difficulties and they can perhaps
be most conveniently treated by our simple extraction
procedure. In the Fourier analysis of a general time-
dependent perturbation, we have noted that the extrac-
tion of secular terms from the wave function is necessary
to insure that a valid Fourier transform is obtained.

Finally, in considering the variational formulation of
time-dependent perturbation theory, we have found it
of the utmost importance to employ the regular portion
of the wave function. By writing a trial wave function
in a form which explicitly exhibits the normalization
and secular terms, we have shown that the Frenkel
variational principle provides a computationally con-
venient functional which can provide a bound on the
system level shift induced by an oscillatory perturba-
tion. This form of the Frenkel principle furnishes a
unification of previously described order-by-order
variational techniques and reduces to the familiar Ritz
principle in the static limit.

In conclusion, the Dirac variation-of-constants
method and the Frenkel variational principle, when
properly interpreted and applied, provide correct and
convenient solutions of the time-dependent Schrédinger
equation. It is of considerable importance, however, to
deal carefully with the secular and normalization terms
in order to avoid spurious difficulties in the use of
these techniques.
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VII. APPENDIX

A. Wave Functions in an Oscillating Field

The solutions of Egs. (88) for the spatial portions of the perturbation functions [Egs. (87) and (91)] in an
oscillating field can be written in terms of the spectral expansions,

B (1) = 3 BO(£1) 6,0 (x), (AD
k=0
2@ (£) = X Br®(£2) e @(1), (A2)
)
$o®(r) = 3 5@ (0) @ (1), (A3)
k=0
8149() = 3 BO(23) (1), (A
k=0
o ®(r)= 3 b®(£1)$@ (7). (43)
k0
Employing the notation, \
ha® =1 | 1O | i), (49
=1 (Ey®@—E©®), (A7)
we find
bie® (1) = — o™ (wroztw) ™, (A%)
bi® (2£2) = — ho® oo™ (wnom=200) 7 (wroztw) 74 20 { i@ hao® (wroz=200) 7 (wiokw) 71, (49)
=0
0@ (0) = — 2/uoPhoo® (wre*—w?) 74 30 { 2k PP osrgeone™ (win?—w?) 71, (A10)
10

b, ® ( :l:3) = — T30 Tgo® hrgo® (wkq:t 3(.0) -1 (wk():i: Zw) -1 (wkozbw) 14 Z { Tio® hoy Dl (wko:izsw) -1 (ka:I:w) -1 (wzo:lzw) -1
10
+hk1(1)klo(l)hoo(1) (w10+wko:I: 4(.0) (wkoﬂ: 3(.0) _l(wko:f: 20.)) -1 (w 0=k 20.3) -1 (wm:l:w) —1}

— 2 2 P R D e ® (wroz=30) "N (winz 20) " (wmew) 1}, (All)
150 m0 :

by ® (:I: 1) = - hko(l)hoo(l)hoo(l) [2 (wkozl:w) -1 (wk02-w2) 14 (wko:bw) -2 (wk(,:!: Zw)—l:]

+ Z {hkl(‘)hlo(l)hog(l)[(wk0+wzo:l:4w) (wkoﬂ: 200)"1 (wzo:l:Zw)—l (wrokw) ™t ((:Jzo:l:(.r.))_'1
=0

+2(1+wiowii ™) (wromzw) " (wit—w?) 7 ] @@ [ 2w (@rotw) " (wiP—w?) 7 (wnte) 7 (ol —w?) 7]}

0 0

— 2 2 { PR P Rno® (w02 w) " 20mew10 (et — ) T4 (wmokw) Hwn2w) 1]}, (A12)

1#0 m=0
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B. Nonlinear Optical Susceptibilities

The wave functions of Appendix A are employed in the susceptibilities of Egs. (105) to obtain expressions in
terms of spectral sums over virtual intermediate states. In the uniform-electric-field approximation, the perturba-
tion operator appearing in the matrix elements 7. of Appendix A is given by [Eq. (102b)]

hO(r) = —er-a, (B1)
with a the polarization vector, and we introduce the notation,
ta={($:® | 1| $®), (B2)

for the matrix elements of the dipole moment operator. Employing Egs. (B1) and (B2), and the convention that
the notation =4 implies summation over both 4+ and — terms, we obtain

0

P, V= — 3" {rrohie® (wrotw) ™}, (B3)
k#0

Py@=— (1/4) > {2r0hr0®hooPwr ™! (wroz=w) ~ 4 Toohor Pl ® (wrow) ~2}
k>0

+(1/4) 22 3 {2rohri P i@ eng ™ (wintw) o1 ® (wrw) Hwpdo) ),  (B4)

k=0 1540

Po,@=—(1/2) X {rouhro®Phoo® (wro==20w) " (wrozzw) ~ + Tookos @ lro® (wro? — w?) 71}
k=0

+(1/2) i i {Torlni @™ (wro=t 20) 7 (wio=tw) AoV Lrihie® (wrotw) ~H(w—w) 1},  (BS)

k%0 140

P,®=—(1/4) 2 {[rorlxo® oo™ oo™+ Tooktor o™ oo™ 1[2 (woromtw) 7 (wro?—w?) 7'+ (wrozkw) 72 (wrot=20) 7]}
k=0

+(1/4) LZ;) zZ:o {200l P It P hao® [ (wrozkw) ™ (wromk 20) " (wip=k w) ~ 4 20 10wiko ™ (wkozze) 7L (w2 —w?) 1]
+ 2o P L@ oo [ (wrozzew) 7! (win=t2w) 7 (winztw) T2 (wkozw) 7! (wi? — w?) 1]
+ Tortr P @ hoo [ (wrotwina=4w) (wrot=2w) " (wine 20) 7 (wrozzw) L (wipkw) !
+2(14-wiwre™) (wromzw) 7! (wio?—w?) ~! ]+ Torhro ot o™ [ 2w (wro=w) ~2 (wig?—w?)

4 (wint=w) 7 (wid — w?) 74 2010 (wre —00?) 7 (wig?—w?) 1420k (wre* —w?) "Hwikw) 2]}

—(1/4) > 2= >° {[ronkni®hin® umg® 4 ok P2 1m P g [ (wro£0) " (w102 200) 7 (wmow)
it

120 120 mt0
42 (wrot=w) oomewisH (wm—w?) 1]}, (B6)

&~
S

P, ®=—(1/4) 3 {Toehuo®hos® oo™ (wrom= 30) ~* (wro= 20) ™ (wrozzw) ™
k%0
~+ Toohar® hro® oo® (wrozk ) 7! (wroF 2) 7 (wroTFw) 7}

+( 1/4) Z Z { Tookor P k1Pl (wro= 200) ™ (wreF 2w) "N wieTF ) ~ Ao o P L iik10® (wroFw) " (wiot=20) " (wipw) ™1
k=0 120

+ Toeltro @ hor PR [ (wroz=3w) 7 (wrotw) " (winztw) 714200 (wket— w?) " (wid—w?) 1]
+ F100 P Tor iy P o[ (wrozz 3w) H (wio=t 2w0) M (winw) 1 (wroz=3w) "L (wio20) 7 (wiotw) 71}

—(1/4) 2 X 2 {xohri®him® hme® (wrozt3w) 7 (wipm 20) 7 (wmozkew) 7
k20 1520 m0
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