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Methods for constructing states of good total orbital angular momenta of N identical, free, structureless particles
through the use of the orthogonal and unitary groups are developed. The first part of the paper reviews the existing
literature, particularly for the three-particle problem. New results include the discrete symmetry properties of the SU(3)
states vectors of the three-particle problem. The general N-particle problem is approached through the use of the sub-
group property O(n) CU(n). An imbedding of O(n) in U(n) is given which greatly simplifies the study of the O(n)
subgroup of U (xn). Particular applications of this imbedding are: (1) an explicit constructive procedure for obtaining
all the single-valued irreducible representations of O(xn), and (2) an explicit constructive procedure for obtaining all
N-particle states of good angular momenta up through the degree four solid harmonics.
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I. INTRODUCTION

The method of K harmonics was introduced by
Zickendraht (Zi65) and Simonov (Si66) as a viable
technique for determining the wave functions and bind-
ing energies of the three-nucleon system. Since then the
method has undergone extensive applications (Si67,
Ba67, Br70) and developments (Ba66, Si68, Zi69, Ri69,
Ba70) toward the goal of developing a calculational
scheme applicable to arbitrary nuclei.

* Work supported in part by the U.S. Atomic Energy Com-
mission and the National Science Foundation.

T Sections VII and VIII of this work are extensions of ideas
developed in a thesis submitted by H. W. Galbraith, National
Science Foundation Predoctoral Fellow, to the Department of
Physics of the University of Pennsylvania in partial fulfillment
for the Ph.D. degree (1971).

The basic formulas of the K harmonic method are
derived from an expansion of the A nucleon nonrela-
tivistic wave function in terms of the spherical harmon-
ics on the 34—3 sphere. The construction of such
spherical harmonics is basic to the technique.

The spherical harmonics which occur in the K har-
monic method are, of course, just the angular functions
which occur in the solution of Schrédinger’s equation
for the relative motion of NV identical noninteracting
particles, i.e., they are solutions to Laplace’s equation
on the (3N —3)-sphere (N =4 for the nuclear problem).
In place of the spherical harmonics, we can choose the
solid harmonics which are then characterized as being
homogeneous polynomials of degree p (=K) in the
3N—3 relative coordinates which one introduces to
describe the motion of N identical noninteracting par-
ticles relative to the center of mass.

In the present work, we consider the problem of
obtaining polynomial solutions to Laplace’s equation
in (3N—3)-space in considerable detail. The principal
physical motivation for this study is the basic role of
the solid harmonics in the K harmonic technique for
investigating the properties of actual N-particle sys-
tems. From a mathematical viewpoint, this seemingly
simple problem presents a natural and physical frame-
work, rich in structure, to which the more recent tech-
niques in orthogonal and unitary group theory are
applicable. We would like to view this aspect of the
problem not so much as one more application of abstract
group theoretical results, but rather as an opportunity
to give such results a concrete realization in terms of a
physically meaningful problem.

It is simple enough to obtain a basis for the solid
harmonics in arbitrary n-space. The difficulties begin
when one requires that this basis [in (3N —3)-space]
contain explicitly each state of sharp total (relative)
orbital angular momentum of the system of IV particles.
The properties of the basis solid harmonics under inter-
changes of identical particles are also important, and
one would like to deal optimally with this aspect of the
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problem. The methods of implementing these properties
into the basis solid harmonics comprise the main theme
of this paper.

In Secs. II-V, we present the conceptual framework
for the subsequent developments. These sections are self-
contained and comprise a review of existing literature.

The 3-particle problem is considered in Sec. VI.

Here the global role of the unitary group SU(4) is

emphasized. The discrete symmetries of the SU(3)
state vectors are given in detail. We believe these results
to be new. The multiplicity problem is discussed from
a different viewpoint.

The N-particle problem is discussed in Sec. VII from
a viewpoint which is compatible with the standard
angular momentum coupling methods, but which is
particularly well adapted to the 4-particle problem.

In the last and most difficult section, Sec. VIII, we
realize the imbedding of the orthogonal group SO(n)
in the unitary group U(#) in a way which reveals the
full structure of all the single-valued irreducible repre-
sentations of SO(%). This same imbedding is then used
to give explicit formulas for constructing all solid
harmonics up to degree four which are labeled by good
orbital angular momentum quantum numbers for an
arbitrary number of particles.

We emphasize again that the construction of solid
harmonics of good total orbital angular momentum is a
first, but nontrivial, step toward the solving of actual
physical problems. For the detailed methods of imple-
menting these functions into the three- and four-nucleon
wave functions, we refer the reader to the following
papers: Three nucleons; Badalyan and Simonov (Ba66),
Simonov and Badalyan (Si67), Brayshaw and Buck
(Br70). Four nucleons; Badalyan ef al. (Ba67), Beam
(Be67), Galbraith (Ga72).

The vast amount of literature relating to Laplace’s
equation, the orthogonal groups, and the unitary groups
prohibits us from referencing all but those works which
we have found to be most directly related to the methods
presented in this paper.

II. ORTHOGONAL AND UNITARY GROUPS

In this section, we discuss certain aspects of the
orthogonal and unitary groups which are required for
our later work dealing with N-particle state vectors.
We lay the background for finding solutions to Laplace’s
equation in #-space. Here » is unspecified, and the
coordinates need not relate in any fashion to particle
coordinates. Particular choices of # which do relate to
the N-particle problems are made in subsequent sec-
tions. The techniques used are significant for all the
subsequent developments.

A. Orthogonal Groups

We use the notation O(n) to denote the group of
nXn real orthogonal matrices (n=2, 3, -

O(n)={R.RR=I,,,RreaI}. (2.1)

The notation SO(%) denotes the subgroup of O(n)
whose elements have determinant equal to 4-1.

All irreducible matrix representations of the Lie
algebra of O(n) were given by Gel’fand and Zetlin
(GeS0). More detailed derivations of their results and
the development of related concepts have been the basis
of several subsequent investigations (Lo60a, Pa67,
Wo67).

Our interest in the orthogonal groups derlves from
the fact that the Laplacian operator in Euclidean #-
space, R*, is invariant under orthogonal transforma-
tions; hence, the study of the orthogonal groups is
pertinent to any investigation of the solutions to
Laplace’s equation. In this section, we discuss in detail
only the simplest aspects of the orthogonal groups,
introducing more elaborate and related techniques as
they are needed in the later sections. We introduce and
discuss the general Gel’fand-Zetlin notation for the
abstract basis vectors of an abstract carrier space of
an (irreducible representation) IR of O(#). This nota-
tion is not utilized until Sec. VIII, but is included here
for completeness of presentation, and, more signifi-
cantly, because the conceptual structure of these general
vectors can be easily comprehended as extensions of
properties which are explicit in the basis which is given.

Let x denote a vector which has components relative
to a Cartesian basis of R™ given by (%1, %2, **+, %a).
We find it convenient to associate with each such point
of R* a column matrix x:

x=col (%1, 2%z, *++, %n). (2.2)

We are interested only in polynomial solutions to
Laplace’s equation (the analog of the solid harmonics
Y (x) in 3-space), and will accordingly impose this
restriction (although many results have a larger domain
of validity). Indeed, we will be even more specific. We
begin by introducing the space £, of complex poly-
nomial functions f which are homogeneous of degree p
in #, and which solve Laplace’s equation:

={f: f(\) =Nof(x), V2f (2) =0, (2.3)
where V,? denotes the Laplacian in n-space, i.e.,
n 9 2
Val= Z( ) . (2.4)
=1 \0%;

The first thing we would like to do is to make £,
into a Hilbert space, i.e., to define a scalar product
{(f1f") for each pair of functions belonging to £,.
Conventionally, we do this by defining the scalar prod-

uct as
(fLf=]aSf*(x)f (x),

where the integration is carried out over the unit n-
sphere. [Despite the fact that f has well-defined values
on all finite regions of R”, the scalar product (2.5) is
defined in terms of the values which the functions have
on the unit sphere.] However, there is another defini-

(2.5)
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tion of scalar product which is of considerable utility
when one is dealing with polynomial spaces. We intro-
duce this scalar product now, and discuss later why it
is useful. Let f and f” be arbitrary polynomials. We define
the complex number ( f, f*) by

(L) =L1*(0/02)f () Jemos (2.6)
where f*(9/dx) is the differential operator defined by

f*(9/0x) = (2): B *(0/021) - - - (3/0xn) = (2.7)
for f(x) given by

flx)= (Z): QayX1®te » » 2,0, (2.8)
Thus, this differential operator acts on f’(«) in the right-
hand side of Eq. (2.6) to produce a new polynomial
which is evaluated at = (xy, 2, +++, x,) = (0,0, -+, 0),
thus yielding the complex number ( f, f/).

It is easily verified that definition (2.6) satisfies all
the requirements of a scalar product. We can use this
definition of scalar product to make the space £, into
a (finite dimensional) Hilbert space. Observe that 3/9x;
is now the operator which is Hermitian conjugale to x..
We denote this Hermitian conjugate by a bar:

&=0/0x%. (2.9)

We will find it very convenient in the subsequent sec-
tions to use the scalar product (2.6). It will be amply
demonstrated in this section that in constructing poly-
nomial solutions to Laplace’s equation it makes no
essential difference which scalar product we use.

There is nothing mysterious about the scalar product
(2.6). It is clearly just the adaptation to real variables
of the customary scalar product for bosons. Indeed,
under the mapping x;—a;, £;—d;, where a; and d; are
boson creation and annihilation operators, respectively,
we have

(L) =0]f*@f (a) | 0), (2.10)
where | 0) is the vacuum ket. The scalar product in
this form has been used by other authors (Su67).

Next, let us see how we obtain an operator representa-
tion of the group O(n) on the space £,. For each
R€O(n), we define the linear operator Tx on the space
&£, by the rule as follows:

(Trf) () =f(Bx), Vf€eL,, (2.11)

i.e., Tg f denotes the function which has for its value
at point x the value of f at the point Bx. It is not
difficult to show that: (a) T% is a unitary operator;
(b) the correspondence R—T% is a representation of
O(n) on the space £, by a group of unitary operators
{Tr: REO(n)}. [These statements are valid for either
scalar product, Eq. (2.5) or (2.6).]

One obtains the Lie algebra of the representation
R—Tr by calculating the infinitesimal operators or
generalors which correspond to a basic set of one-

parameter subgroups of SO(xn).! The standard basic
set of such subgroups is given by

Rij(<p) = (ei,--l-e,-]-) COos o— (ei,--— e]-i) sin @ (212)

for i<j=1, 2, -+, n, where ¢;; is the #)X» matrix unit
(it has 1 in row ¢ and column j and O elsewhere). If we
define

Tij(¢) = TRii (‘f’)y (213)
then the generator £;; is defined to be
Li;=1[dT+;(¢) /dep Jpmo. (2.14)

(The complex number ¢ is not to be confused with
index 1.)

The explicit calculation of the generators proceeds as
follows:

@@ =(i i) _=i{(Z2) 2],

dga =0 ox
(2.15)
where «’(¢) is the column matrix
' (¢) =Rii(0)x, (2.16)
and 9/dx is the column matrix
3/dx=col (8/0x1, +++,9/0%,).
Noting that
[z’ (¢) /dpJpmo= —T(eij—e;i), (2.17)

we obtain the following concise matrix form of the
generators:

(£4f) (x) =—i[ZF(eij—e;0) (9/0x) ] f(x) (2.18)

for i<j=1, 2, - -+, n. Equivalently, this result is ex-
pressed as

(£4;f) (%) = —i[x:(0/0;) —x;(8/9x:) 1f ()

It is convenient to define £;=0 and £;;=—L,; for
i<j=1, 2, -+, n, remembering, of course, that we
actually have only #(n—1) /2 generators.

It follows immediately from Eq. (2.19) that the

1 Even though we consider global O(n) transformations, the
infinitesimal transformations are ‘“‘close’” to the identity, i.e.,
using the generators alone, we can only ‘“generate’” SO(n)
transformations. [The Lie algebra which obtains explicitly on
the polynomial spaces considered in this paper will always be
that of generators of single-valued representations of SO(n).]
However, once the explicit (polynomial) basis of the carrier
space of an irreducible representation (IR) of SO(x) has been
obtained, we can consider its properties under global O(n)
transformations. We simply state the results which will obtain:
If » is odd, the carrier space of an IR of SO(%) is the carrier
space of an IR of O(n); if » is even (n=2r), then the carrier
space of IR {la,1 *** lor,r1 0} of SO(27) [see Eq. (2.44) ] is the
carrier space of an IR (of the same labels) of O(2r); if Iy, ,50,
the carrier space of IR {le1 ** lor,ra, | lorr|} Of O(2r) is the
sum of the two spaces which carry IR’s {lo1+<+lorr} and
”21‘,1 e ‘lzr,r} of SO (27')
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generators are Hermitian operators on the space £, when
equipped with the scalar product (2.6). [They are, of
course, also Hermitian with respect to the scalar product
(2.5)7:

(L) =24, (2.20)

where the dagger denotes Hermitian conjugation (as
does the over bar).

We are now in a position to explain why we can use
the scalar product of Eq. (2.6) in place of the scalar
product of quantum mechanics, Eq. (2.5), without
altering the form of the basis vectors which we obtain.
The simple case #=3 is sufficient to make the whole
general process clear. In this case, the operators

L= Lo3, Ly= La1, L;=Lp (2.21)

are the usual orbital angular momentum operators. The
standard basis of the space £; (p=1) is the well-known
set of solid harmonics, which we note explicitly:

Yom(x) =[(20+1) (I4m) L(I—m) | /4 ]2

X2 (—x1— 1) 7 (a0y — ip) B 2%
w2t (ktm) k1(l—m—2k) |

where for each [=0, 1, --- the values of m are m=
l, I—1,+--, —1. These standard solid harmonics are
orthonormalized in the usual way on the 3-sphere’

<(yl'm' ] (ylm>= 6l’lam’m- (2.23)

They are the simultaneous eigenvectors of the Hermitian
operators L* and L;, where the Hermiticity property
now refers to the scalar product (2.5).

But now recall that the orthogonality property of the
solid harmonics depends, in fact, only on the Hermitian
property of the operator L, i.e., the fact that L? and Ls
are Hermitian is what guarantees the orthogonality.
But the Hermitian property has already been demon-
strated on the space £, when equipped with the scalar
product (2.6): The solid harmonics (2.22) are also
orthogonal in the sense of the scalar product (2.6)

(Yom'y Yim) = N1dv 16mm. (2.24)

The only thing which can change is the over-all normaliza-
tion (Mo69).

This feature will be recognized by the reader to be
very general and applicable in the more complicated
structures to follow, and will not require further detailed
comment. The practical advantages to using the scalar
product (2.6) are many: (a) One need not worry about
introducing polar coordinates in #z-space (this can be
done in the final state vectors, if desired); (b) orthog-
onality can be checked by a glance for simple eigen-
vectors; and (c) many results in unitary group theory
using bosons become immediately significant for the
orthogonal groups. (We exploit this later.)

We emphasize that introducing the scalar product
(2.6) is to be considered as a useful device for dealing

(2.22)
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with polynomial spaces—it in no way replaces the
physically defined scalar product of quantum mechanics.
Having made clear the role of the scalar product (2.6),
we now continue the discussion of the orthogonal groups.

The generators defined by Eq. (2.19) satisfy the
commutation relations as follows:

[Liy, Loi]=1(8aLjit0Lau—dnLu—ulin) (2.25)

fori,4, k&, 1=1, 2, .-+ n. They also satisfy the relations
Lipni=LijCu—Laljit+LiLa=0 (2.26)

for 17 j# k1. The commutation relations (2.25) are
general, i.e., a set of Hermitian operators (on some
abstract Hilbert space) satisfying these relations may
be taken as a basis of the (abstract) Lie algebra of
SO(n); relation (2.26) is particular to the realization
on the space £,, and already forecasts that the repre-
sentations of O(%) which can be obtained on the space
£, will also be particular.

In so far as the representations of O(n) are concerned,
we consider the properties of the Lie algebra as a useful
means of introducing a basis into the space £, through
the standard techniques of quantum mechanics, i.e.,
by using complete sets of commuting Hermitian operators.
Once this basis is completely labeled, we go back to the
global definition (2.11) to obtain a matrix representa-
tion of the group by letting the operators {Tr} act on
the basis vectors. This viewpoint allows one to sidestep
any parametrization of R, and similarly avoids the
complicated considerations of evaluating matrix ele-
ments of “exponentiated” infinitesimal operators. One
can, of course, use this technique only when the carrier
or representation space, e.g., £,, is explicit, and likewise
when the operator representation is explicit.

A complete set of independent commuting Hermitian
operators whose simultaneous eigenvectors span each
irreducible representation (IR) space of SO(n) is
known abstractly, i.e., the construction (LO60a) is
based only on the commutation relations (2.25) and the
assumption that there exists a Hilbert space on which
the generators are Hermitian operators. As remarked
earlier, the matrix elements of the generators on this
basis are completely known.

Fortunately, we need not yet enter into the general
theory alluded to above. It suffices to remark that on
the space £, the identical vanishing of the operator
L5n1 of Eq. (2.26) has the effect of reducing the number
of independent commuting operators to #—1. [In the
general abstract realization this number is 72 and r(r+1),
respectively, for SO(2r) and SO(2r4-1).] The operators
which remain are quadratic in the generators, and are
given explicitly by

k
A?=% 2 (L)* (2.27)
i,7=1
for k=2, 3, -++, n. For k=2 we use the operator £ in
place of its square.
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It is remarkably simple to give the explicit construc-
tion of the homogeneous polynomials of degree p which
satisfy Laplace’s equation aend simultaneously diagonal-
1ze £12 and Ay k=3, 4, - - -, n. We call any homogeneous
polynomial which satisfies Laplace’s equation in #-space
a solid harmonic on the n-sphere. [ The phrase “on the
n-sphere” is a slight misnomer since the coordinates
(%122 +++ x,) need not satisfy x>4wx?+---Fa,2=1,
but when this condition is imposed we obtain spherical
harmonics on the n-sphere, and the phrase “on the #-
sphere” is intended to remind us of this fact.] Let us
indicate how this construction proceeds.

Observe that the solid harmonics of Eq. (2.22) have
the form

Yim (%) = (21+122) "f 1 (%3, $2) (2.28)

for m>0, where (o= (22+x:?)/4. (A similar form
obtains for m<0.) Notice that the first factor solves
Laplace’s equation in 2-space. This factorization into
a product is quite general. Thus, in 4-space, it must be
possible to solve Laplace’s equation by a product func-
tion (Lo60, Ca65).

Yo (%1209%3) fp1 (%3, $3) (2.29)

where {3= (¥2+x22+x52) /4, and where f,; is of degree
p—1in (wyxex3%4), i.€., [ can have any value 0, 1, - -+, p.
Furthermore, since

> (2+1) = (p+1)2=dim £,,

=0

(2.30)

we see that the basis functions of the form (2.29) must
span £,(n=4). That the form of each basis vector
must be that given by Eq. (2.29) follows from the fact
that the Ym(x) are the simultaneous eigenvectors of
the commuting operators £12 and Ag? formed from the
subalgebra { £, £23, £31} : The only functions which can
multiply the Y (x) in 4-space are functions which are
invariants with respect to this subalgebra, i.e., poly-
nomials in x4 and {5. We now follow through with this
observation for arbitrary #.

Assume that we have solved the problem of con-
structing the solid harmonics of degree /,_; on the
(k—1)-sphere which simultaneously diagonalize £, and
A2 (s=3, 4,---, k—1). Denote an arbitrary one of
these functions by fi,_;(%:1%s¢ « %4—1). Then each solu-
tion to Laplace’s equation on the k-sphere, which simul-
taneously diagonalizes £12 and A2 (s=3, 4, -+, k),
must have the form

Sy So1) fromy (waae + - 241) (2.31)
where
B—1
Cra=% D xl (2.32)

=1
Since fi,_, solves Laplace’s equation in (k—1)-space,
and since

Vi2= (/9% >+ Vi_1%, (2.33)

we easily find the condition that the product function
(2.31) satisfies Laplace’s equation in k-space to be

[(8/0%x)2+$5—1(8/8¢-1)?
+ (s +3k—%) (8/9¢k-1) :lf(xk, 1) =0. (2.34)

The polynomial solutions to this equation which are
homogeneous of degree ;—J;— are easily found:

_ (xk) lk—lk—-x—%(_g‘k_l) 8
Frtems (3 $1) = Z (b=l —25) s | (sl + 16— 3) IV

(2.35)

where a¢!=T(a+1) for half-integral ¢, and where the
sum is over all values of s for which the factorials are
non-negative. Since /., is integral (non-negative), I is
any integer such that >/_1. Replacing f(«%, {%—) in
Eq. (2.31) with the explicit functions (2.35), we obtain
the solutions to Laplace’s equation on the k-sphere
which are homogeneous of degree /;, where we note
that for prescribed 1,=0, 1, 2, ---, the values of l;_;
are 0, 1,2, -+« L.

The eigenvalue of A;?is obtained as follows. By direct
algebraic manipulations, we establish the identity

(A*f) (x) =[ =45V -9, (9+k—2) ] f(x), (2.36)

where 9 is the homogeneous Euler operator

k
(9if) (%) =[22 %:(8/9x:) 1 (). (2.37)
=1
The Euler operator has eigenvalue % on a homogene-
ous function of degree /.. Thus, we have

(M) (%) = b (Be+-k—2) f ()

for each f€ £y,.

Iterating the preceding construction upward from
Eq. (2.29), i.e., by taking k=4, 5, ---, n, in turn, we
obtain the following general eigenvectors as a basis of
the solid harmonics of degree /, on the n-sphere:

Yutae oo 15(%) = (N 11,0 300-10) 7Y 152, (w1%2%5)

(2.38)

X T1 futes (6, Gma),  (2.39)

k=4

where for prescribed 7,=0, 1, - - -, the remaining labels
can assume all integral values consistent with

Li2laa> 202> |20, (2.40)

in which » has now been renamed /.

The eigenvalues of the complete set of commuting
Hermitian operators which characterize the basis (2.39)
are
and

L. (2.42)

The basis vectors themselves are orthogonal in the labels
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(Labn—s < b2) in either definition of scalar product, Eq.
(2.5) or Eq. (2.6). o

The very method of constructing the basis vectors of
Eq. (2.39) assures that they span the space £;,. We
note, but do not derive, the formula for the dimension
of the space £, (p=1x):

_ofpF+n—3
dim £,= %( ) (2.43)
- ?

()

(44

denotes a binomial coefficient. One easily checks the
dimension formula for simple cases by counting the
number of labels which satisfy Eq. (2.40).

We have not bothered to normalize the basis vectors
(2.39) explicitly because we will not make direct use
of them. Our purpose in giving them has been: (a) to
point out the simplicity of their derivation; (b) to
emphasize their orthogonality under the scalar product
(2.6); and (c) to have available at least one complete
orthogonal basis of the space £,—the principal subject
of this paper. [One can, of course, go further and obtain
quite easily the matrix elements of the generators £;;
on the (normalized) basis of Eq. (2.39). These par-
ticular results have, however, been noted previously
(L060,60a).

It is important to understand the subgroup structure
of the basis (2.39). One can then comprehend quite
readily the subgroup structure of the abstract basis
vectors which are generalizations of this particular
basis, and one can understand why this basis ‘(and its
abstract generalization) fails to be the complete answer
for many of the applications in physics.

Since A.? has the single, fixed eigenvalue I, (£,+n—2)
on the space £;,, this space is the carrier space for an
IR of O(n).! This IR is labeled by the single integer /,,
and is of dimension dim £;,. More generally, an IR of
SO(n) is labeled by a set of ordered integers,? 7 in
number for either z=2r or n=2r+1: For n=2r, these
integers are denoted by

where

{br,ll%,?' M 'l2r,r} (2-44)
and satisfy
l21',12 l2r.22 s 2l2r,r—12| l?r,r |20; (245)
for n=2r+1, these integers are similarly denoted by
{l‘21‘+1,1l2r+1.‘2' M l2r+1,r} (2'46)
and satisfy
byry112> lorg1,202> 0 o 2 lopy1,, 2 0. (2.47)

2 The abstract algebra (2.25) also admits half-integers, but
these correspond to the so-called double-valued representations
of SO(n) and do not occur in this paper.
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The basis (2.39) is the carrier space for the simplest
type of representation of O(n)—the IR denoted by
{l,0--- 0}. The representation matrices themselves
are obtained directly from the transformations of the
normalized basis:

(TeYnm) (%) =Yu,a (Rx)
= %D’"a')(n-(R)‘th(l') (%), (2.48)

where (1) = (l,—iln—2°+ - L»). The set of matrices
{D"(R), REO(n)} (2.49)

is a unitary matrix representation, designated by
{1, 0 -+ 0}, of the group of orthogonal matrices.

The subgroup structure of the basis (2.39) is dis-
played vividly by Eq. (2.48): If we consider R to be
of the restricted form

R 0

R— .|, Recomn—1), (2.50)
0
o «-- 0]1)

it is clear that the sum over () in Eq. (2.48) becomes
a sum over ()= (l,alns'+--L’), since the O(n—1)
invariant functions fi,1,_;(%n, {a—1) do not participate
in the restricted transformations. Correspondingly, each
matrix in the IR (2.49) reduces into a direct sum of
matrices

D»(R)— 2. ®D"*(R'),

In—1

(2.51)

where the sum is over /,_1=0, 1, -+ +, /,,, and where, for
each 7,_;, the set of matrices

{D1(R): R'€O(n—1)} (2.52)

isan IR of type {l,_10+++ 0} of O(r#—1). [The dimen-
sion of these matrices is obtained from Eq. (2.43) upon
setting p=1I,_1 and replacing #» by n—1.]

We continue the restriction procedure by letting
R'—R"®1, where R”€0(n—2). Then each matrix IR
(2.52) in turn reduces into a direct sum of matrix IR’s
of O(n—2), each such IR being labeled by /,—» for
0<1l,2<l,1 (each value in this interval occurring
exactly once). It thus becomes clear that the labels
(laeilns +++ b)) are just the labels of the IR’s of the
subgroups in the chain

O(n)D0(n—1)D-- -‘30(3)350(2) (2.53)

which arise through the chain of subgroup restrictions
of the form (2.50), and which we symbolize by writing

0(n)—0 (n—1)—>+ - —0(3)—50(2). (2.54)

Let us now see how one generalizes this structure.
Gel’fand and Zetlin (Ge50) realized that an abstract
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basis of the carrier space of each IR of SO (%) could be
characterized completely by the sets of labels which
are associated with the IR’s of the (proper) subgroups
which occur in the chain (2.53). The Weyl branching
low then provides the constraints which these labels
must satisfy. Thus, an abstract basis vector is labeled
by n—1 rows of labels of the types (2.44) and (2.46):
the bottom (first) row comes from (2.44) with r=1,
the second row from (2.46) with r=1, the third row
from (2.44) with r=2, - - the top row (row n—1) is
either (2.44) with 2r=# [for SO(2r)] or (2.46) [for
SO(2r+1)7]. The resulting Gel’fand paitern is displayed
below for SO(2r):

bey  lre br,r1 bor,r
brag  hrae b1,
I s (2.55)
M ls
I
n Iy ]

For SO(2r+1), one simply includes the row (2.46)
directly above the top row of the displayed pattern.

Thé Weyl branching laws for the orthogonal groups
are stated as follows: (a) On restricting SO(2k+1) to
SO(2k), the IR {lyy1,1 boktr2 * =+ bpgr et of SO(2%+1)
reduces into the (direct) sum of all those representa-
tions {lo,1lok,2 * + * b it of SO(2k) for which

bry1,12 b 12> br 1,02 log g2 0+ ¢
2> bt g1 by, | b e 1220, (2.56)

each of these constituents appearing exactly once; (b)
on restricting SO(2k) to SO(2k—1), the IR {1 Lo 2
<o Ikt of SO(2k) reduces into the sum of all those
representations {ler—1,1bk—1,2 * * * lot—1 51} of SO(2k—1)
for which

‘l‘lk,lz l2k—1,12 l2k,22 l2k-—1,22 ce

> bote g1 b1 512> | b [0, (2.57)

each of these constituents appearing exactly once.

For a prescribed top row of a Gel’fand pattern, the
labels in the remaining rows can assume just those
values which accord with the Weyl branching laws.

We denote an SO (%) Gel’fand pattern by (7) and the
corresponding abstract basis vector by | () ). As previ-
ously remarked, the complete set of commuting
Hermitian operators which characterize this basis is
known; furthermore, the matrix elements of the ab-
stract generators are also completely known on this
basis.

The solid harmonics of Eq. (2.39) are labeled in the
Gel’fand—Zetlin notation by the pattern which has
bi=1y, lsx=ls, coey bpi=bh (n=2r), l2r+1,1=l2r+1 (%=
2r+1), all other 1;; being zero.

The abstract basis | (7)) is completely characterized
by the highest weight vector, and it is known (Pa67,
Wo67) how to generate the remaining vectors in the
basis by the application of lowering operators. The
highest weight vector is the one whose Gel’fand pattern
has all the /;; chosen as large as possible. In particular,
the highest weight vector in the space £, is the one
having b=L=---=L,=p, i.e.,

(x1+ix2) P,

One can, in principle, generate the basis (2.39) from
the vector (2.58) by using the lowering operator
technique.

We conclude this section by noting why the classifica-
tion of the basis. vectors of £, through the subgroup
chain (2.53) is not directly useful for many physical
applications. The SO(3) subgroup in this chain is not
the physical SO(3) group corresponding to the total orbital
angular momentum of a set of particles. (This statement
will be made more explicit in Sec. IV.) We are accord-
ingly forced to consider alternative techniques for
solving Laplace’s equation, i.e., for finding a basis of
the space £, which is labeled by the total angular
momentum quantum numbers LM (among others).
We will, however, see in Sec. IV that the orthogonal
groups make their appearance in the N-particle problem
in still another context, and in this context the classifica-
tion of basis vectors through the chain (2.53) can be
used.

(2.58)

B. Unitary Groups

We use the notation U(#n) to denote the group of
nXn unitary matrices (=2, 3, +--)

Un)={U:UTU=1I,}. (2.59)
The notation SU (%) denotes the subgroup of U(n)
whose elements have determinant equal to +1. We
will not attempt to reference the large number of
researches relating to the unitary groups, but rather
note a recent review (Lo70) where many such refer-
ences are given.

Our interest in the unitary groups in this paper
derives from the particular fact that SU(4) is homo-
morphic to SO(6), and from the general fact that O(x)
is a subgroup of U(n). The unitary groups themselves
can serve as a useful starting point for the construction of
solutions to Laplace’s equation, and we wish to formulate,
in its simplest context, the manner in which this prop-
erty can be made explicit.

Let z denote a vector which has components relative
to a Cartesian basis of the complex space C* given by
(21, 22, * =+, 2,). We associate the column matrix z with
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this point. We next introduce the space 3¢, of complex
polynomials F which are homogeneous of degree p in z:

3C,={F: F(\z) =N\?F(2) }. (2.60)

This space can be made into a Hilbert space by intro-
ducing the following scalar product [in analogy to

Eq. (2.6)]:
(F, F') =[F*(3/32) F'(2) ], (2.61)
where F*(9/9z) is the differential operator defined by

F*(3/d2) = X a(™*(8/021)1+ -+ (39/822)%» (2.62)
()

for F(z) given by

F(z) = 2 a@z® - 2,%". (2.63)
()
Observe that the Hermitian conjugate to z; is
2;=9/9z;, (2.64)

and that again this is just the adaptation to complex
variables of the familiar boson scalar product, Eq.
(2.10).

We obtain an operator representation of the group
U(n) on the space 3¢, as follows: For each U€ U(n),
we define the linear operator Ty by the rule

(TuF) (z) =F(Uz). (2.65)

Then: (a) Ty is a unitary operator on the space 3C,;
and (b) the correspondence U—TYy is a representation
of U(n) on the space 3¢, by a group of unitary operators
{Tu: U€U(n)}.

The procedure for calculating the infinitesimal opera-
tors or generators of a representation of U(n) has been
reviewed in detail (Lo70). Here we need only note that
the Weyl generators of the representation (2.65) take
the very simple form as follows:

(&4F) (2) =2:2;F (2) (2.66)

for 4, j=1, 2, -+, n. These generators have the prop-
erties

(8i) =8, (2.67)
[8:), 8ki]=8ju8:1— 8:1Ekj, (2.68)
8&:8k1— 8181 = k11— Ok18ij. (2.69)

The first two of these relations are general, i.e., are the
relations satisfied by the Weyl generators of any
(abstract) unitary representation of U(n)—hence,
define a basis of the abstract Lie algebra of U(n).
Relation (2.69) is particular to the realization of these
generators on the space 3C,.

Relations (2.69) imply (Lo65S) that a complete set
of commuting Hermitian operators whose simultaneous
eigenvectors characterize a basis of 3¢, is given by the
set

{9 k=12, -+ n}, (2.70)

where

k
(9:F) (2) = (X 2:2:)F (2), (2.71)
=1
i.e., 9x is the homogeneous Euler operator in the vari-
ables 21, 2, ***, 2.
The corresponding orthonormalized basis of 3C, can
be set down immediately:

Fonmesomn (2) = TI (ﬁw) . (272)

k=1
in which m,=0 and m,=p, and the labels can assume
any integral values consistent with

M > Mip 12>+ '.>_m12 0. (2'73)
The dimension of the space 3C, is
p+n—1
dim 3¢,= . (2.74)
?
The eigenvalues of gy are given by
I—my— My (275)
fork=1,2 +++ n.
The significance of the labels (#, 7,y «++ m;) is
induced from the chain of subgroups
Un)DUn—1)D---DU(1) (2.76)

in exact parallel to the procedure used for the orthog-
onal groups, Eqgs. (2.48)—(2.54). Under the subgroup
restriction U—-U'®@1, U'€ U(n—1), the IR of U(n)
labeled by m, reduces into a sum of the IR’s of U (n—1)
labeled by m,_i, where 0<m,_,<m,, each such repre-
sentation of U(n—1) occurring exactly once, etc.

Again Gel’fand and Zetlin (GeS0a) recognized that
one could label an abstract basis of a carrier space of
each IR of U(n) by employing the sets of IR labels
associated with each IR of the subgroups in the chain
(2.76). Each IR of U(k) is characterized by a set of
ordered integers (positive, negative, or zero)

(2.77)

A U(n) Gel'fand pattern is a triangular set of integers
of n rows, the integers in row % being a set of IR labels
of U(k):

My Mo >+ * * > Mk

Min M2n Mnn

(m) = M3 V(X 33 (278)

M2 e

mu

Once more the Weyl branching law (We31) provides
the constraints on the entries in this array: On restrict-
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ing U(k) to U(k—1) the IR [my map « -+ myp | of U(k)
reduces into the sum of all those IR’s [y mgp_y »+ +
m,‘g_.yc_l:} of U(k‘“ 1) for which

My M1 2> Mgt > Mo 12>+ * * > Myt 2> M, (2.79)

each of these representations appearing exactly once.

Thus, for prescribing U (%) labels in the top row, the
remaining labels can assume all values consistent with
the Weyl branching law.

An abstract basis vector is denoted by | (m)). The
complete set of commuting Hermitian operators,
n(n+1) /2 in number, which characterize this basis is
known (Lo065), including their eigenvalues (Lo70,
Lo70a); furthermore, the matrix elements of the ab-
stract Weyl generators are also completely known on
this basis (Ge50a, Lo70a).

In terms of the Gel’fand—Zetlin notation, the basis
vectors (2.72) are denoted by the Gel’fand pattern
which has myy=my, mye=ms, «++, M, =m,, all other
m;; being zero.

Despite the simplicity of the basis (2.72), one can,
upon replacing # by #? i.e., by considering the IR space
[#1220 -+« 0] of U(n?), obtain not only a basis of a
carrier space for IR [, Mon »+* Man]| (M2n>0) of
U(n),-but one can obtain the IR matrices themselves
(Lo70). This structure has been the source of many
developments in unitary group theory (Lo70a, Bi67, 68).
[The analogous result for SO(#) is developed in Sec.
VIIL]

The abstract basis | () ) is completely characterized
by the highest weight vector, and it is known how to
generate the general basis vector from the highest
weight by applying known lowering operators (Na65).

Let us now see how, in the simplest case, the unitary
group can provide us with solutions to Laplace’s equa-
tion. The basis vectors (2.72) are well-defined for all
complex values of the variables 2z, (k=1, 2, -+, n). In
particular, we can restrict these variables to be real:
Zr—xy. If at the same time we switch to the scalar
product (2.6), then the polynomials

F tnmn— 1oeemp) () (2.80)

remain orthonormalized in the labels (w1, 1+« +m;),
and they span the space of all complex polynomials in
x which are homogeneous of degree p=m,,. In particular,
the space £, must occur as a subspace. We can, however,
do much better. We can restrict the complex variables
2, to the form

#aja= (i1 id;) V2, (2.81)
Za7= (Xoj_1—1%2;) /V2, (2.82)
forj=1,2,+-+,n/2 or (n—1)/2, and
Zn=Xn, (nodd). (2.83)
The resulting functions
Fmm,1eemp (2) (2.84)

still remain orthonormal under the scalar product (2.6),
since the 2’s are related to the #’s by a unitary trans-
formation (the familiar boson property). But now
observe that the highest weight vector in the space 3¢,
[m=ma="+--=m,=p in Eq. (2.72)] takes the form

(214-125) 7 (2.85)

under the restriction (2.81)—(2.83), i.e., the highest
weight vectors of the space £, and 3¢, coincide. Using
this highest weight vector, which is obtained from 3¢,
by restricting the domain of definition of the variables,
we can now proceed to generate the basis (2.39) of £,
by using the lowering operators appropriate to SO(#n).

Wong (Wo69) has observed that the above property
generalizes to a certain class of vectors from a U(%)
representation space? We consider this structure in
greater detail in Sec. VIII.

We next turn to the task of implementing the con-
cepts of this section into the physical problem of N
identical particles in 3-space, beginning with a discus-
sion of the center of mass' coordinate problem and
related properties of the symmetric group.

III. RELATIVE POSITION VECTORS

Let 1, 1% -+, 1¥ denote, respectively, the position
vectors in Euclidean 3-space of N identical particles
labeled 1, 2, .-+, N, each vector being referred to a
common origin. Let the permutatior operator P,

denoted by
1 2 ... N
P= ,
ap ay ctcoay

., o is a rearrangement of 1, 2, +-+ N,

(3.1)

where oy, O,y **
be defined by

P:rora rPore ... rNopen,

(3.2)

It is convenient to consider the position vectors as the
elements of a 1XN row matrix, [r'12--- r¥]. Then
the transformation P can be described by

P:lrir?.. tV][rar= ... rov]=[rlr2... fN]D(P),

. (3.3)

where D(P) is the NXN realvorthogonal matrix defined
by

D(P)=[ex e+ ], (3.4)

in which e* (a=1, 2, -++, N) denotes the N X1 column

matrix having 1 in row «, and 0’s elsewhere. One now
easily verifies that the correspondence

P—D(P), VPCSy (3.5)

3 Wong’s analysis is, however, incomplete from a structural
viewpoint—it is the subgroup property U(n) DO(n) which
underlies his construction [see Sec. VIII].
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is a representation of the group of permutations, Sw,
by the set of N XN orthogonal matrices, {D(P)}.

The problem of defining a set of relative position
vectors for V identical particles is closely related to the
problem of reducing the matrix representation of Sy
given by Eq. (3.5) into its irreducible constituents. To
see how this comes about, let us first give a precise
meaning to the term “relative position vector” in the
general case of arbitrary masses.

Let the vector R defined by

. N N
MR= Y m,re, M= 3" mq,

a=1 a=1

(3.6)

denote the center of mass vector of V partlcles, where
Mg is the mass of partlcle a.

Definition 1: A vector in the set {y!, y% «-+, y¥V 1} is
called a relative position vector (with respect to R) if
and only if the set of vectors {y', y% ---, y¥, AR}
(A a real nonzero number) is related to the set of
position vectors {r', 2, «-- 1V} by a real nonsingular
linear transformation of the following general form

[y'y?--- y¥IAR]=[r'1r*--- r¥]C, (3.7)

where (a) C is an N XN real nonsingular matrix; (b)
the Nth column of C is (\/M) col [m m -+ my]; and
(c) the remaining columns of C, column 1 to column
N—1, are perpendicular to the column matrix,
col[11---17.

Remark. A relative position vector y* is #of, in
general, the position vector of particle & as seen from
the center of mass. Rather, the term ‘“‘a set of relative
position vectors” refers to any set of real vectors which
together with a multiple of the center of mass vector R
can be used to replace (by the invertibility of C) the
actual position vectors in the description of the motion
of the particles. Furthermore, we insist that in the
description by the new set of vectors the center of mass
motion should “separate off.” This means that the
kinetic energy, the linear momentum, and the angular
momentum of the system of particles should each
assume the generic form 4= A4,.m.+ A4’ under the trans-
formation [ 12 ... ¥ |=[yl y2 ... y¥1AR]C, where
A¢.m. denotes the value of the particular physical quan-
tity associated with the center of mass motion, and 4’
is a function only of the vectors y*, y2, « -+, y¥! (and
their time derivatives). A’ is then appropriately called
the value of 4 relative to the center of mass. Condition
(c¢) on the matrix C is the necessary and sufficient
condition that the center of mass motion separates off.
(We omit the elementary proof.)

Using the definition of relative position vectors given
above, we can now prove:

Lemma 1. Each set of relative position vectors

{y,¥% -++, y¥¥ 1} can be written in the form
[yl yz cee yN——l )\R]= [xl X2 .o XN]CO, (3.8)
where x¥=(N)?R, and where {x!,x2 -+ x¥} is a
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new set of relative position vectors of a very particular
type

[xtx2--. x¥]=[r'r2..- tV]DA. (3.9)

In these relations, Cy is a nonsingular lower triangular
matrix having Nth column given by

col [00--- 0N/(N)12],

D is a diagonal matrix having Nm./M for its ath
diagonal element, 4 is a proper, real orthogonal matrix
having Nth column given by col [11--- 17]/(N)V2,
Finally, the matrices Cyp and 4 are independent of the
masses.

Proof. Given any matrix C of the type prescribed in
Eq. (3.7), it can be decomposed into the form C=
DAC,. A specific technique for effecting this decomposi-
tion is to form the matrix C’=D~'C and then perform
the Schmidt orthonormalization procedure on the col-
umns of C’, starting with the Nth column and proceed-
ing across the columns from right to left. The result of
this procedure is to decompose C’ into the form C’=
AC,, where the columns of A are the new columns
obtained from the Schmidt process. Then 4 and C, will
have the properties described above (4 can always be
made proper by an appropriate choice of normalization
signs).

Since an arbitrary set of relative position vectors can
be obtained from a set {x!, x «-., x¥!} by an appro-
priate transformation of type Cy, we henceforth restrict
our attention to sets of relative position vectors defined
by Eq. (3.9), where A is an arbitrary real, proper orthog-
onal matrix, the Nth column, however, always being
specified to be col[11 -+ 17/(N)Y2 In particular, in
the case of equal masses, D becomes the identity matrix,
and we have

[(xtx2... xN]=[rlr2... ¥ ]A. (3.10)

It will be noted that transformations of the type,
Eq. (3.10), leave invariant the form of the kinetic
energy and angular momentum of the system of identical
particles. We henceforth will also consider only the case
of identical particles.

Next, we examine the transformation properties of a
set {x!, X% - -+, xV71} of relative position vectors under
the action of the permutation operators, P€ Sy, given
by Eq. (3.3). First, let us note an easy consequence of
Egs. (3.3) and (3.4) : Namely, the character (trace) of
the matrix D(P) is given by

Tr D(P) =« (3.11)

where « is the number of cycles of length 1 in the cycle
notation (Ha62) for the permutatlon P. We can now
prove (Le66):

Lemma 2. Each specified set of relative position vec-
tors | x!, X2, - - -, XV} of a set of identical particlesis a
basis for an irreducible representation I'(P) of the group
of permutations {P} of the type associated with parti-
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tion [N—110--- 0]
P:[xtx?-cc xV U ][x! x? ... XV UIT(P),

where I'(P) is real orthogonal. Conversely, if {T'(P):
Pc Sy} is an arbitrary, but specified, real orthogonal
IR of Sy of the type [N—110 ... 0], there exists a
set of relative position vectors {x!, x2 «-+ x¥~1} which
undergoes the transformation, Eq. (3.12), and this set
is unique for IV even, and is unique up to == sign for
N odd.

Proof. Under the action of P€ .Sy specified by Eq.
(3.3), we have

P:[x'x%.-« xVN][rir2--- IV ]D(P)A
=[xtx?... xN]JAD(P)A. (3.13)
But one easily proves that AD(P)A has the form

(3.12)

0
r(p) :

AD(P)A= 0§, VPcSy, (3.14)
0 .+« 0 1

in consequence of the fact that the Nth column of 4 is
col[11.--1]/(N)Y2 'Furthermore, I'(P) is real
orthogonal and has trace equal to a—1. Thus, the set
of matrices, {T'(P): P€ Sy}, is a representation of Sy
of dimension N—1 having character set {a—1}. It is
therefore an IR of type [N—110 ..+ 0]. Finally, we
have the result

P:[xtx?... x¥]>[x! g2 ... XN (P).

To prove the converse, we must find the set of all proper,
real orthogonal matrices, {4}, having Nth column
given by col[11---7/(N)¥? such that Eq. (3.14)
holds, where each T'(P) is specified. At least one such
4 must exist since D(P) is real orthogonal, T'(P) is
real orthogonal, and {D(P)} and {I'(P)@1} are equiv-
alent representations of Sy. Assume there exists a
second member, 4’, of the set { 4}. Then the product
AA’ has the form

0
B :

Ad'= 0},
0O ... 011

where I'(P)B=BT(P), YPE Sy. Therefore (Schur’s
lemma), we have B=>5bIy_;, where b is real. Further-
more, B is proper, and we must have b=1 for N even,
and b= =1 for NV odd. Thus, we have 4’=4 for N even,
and

0
+In, :

A'=4 01, Nodd
0 .- 01

The essential contents of this section are contained
in Definition 1 and Lemmas 1 and 2 which set forth
the definition and significant properties of relative
position vectors. We refrain from introducing any
specific set, but note that the Jacobi coordinates are a
popular choice (Kr66).

IV. THE GROUP OF THE SCHRODINGER
EQUATION

An alternative title of this paper could be: The Wave
Functions of a System of N Identical, Noninteracting,
Structureless Particles in an Angular Momentum Basis.
This title indeed describes precisely the problem we are
attempting to solve through the use of group theoretical
techniques. (We have preferred a less specific title
because of the more general usefulness of these same
functions.) Despite the fact that this problem is one of
the simplest and most fundamental which can be posed
for many-particle systems, its general solution has yet
to be given in anything like a fully satisfactory form.
In this section, we examine the general properties of
Schrédinger’s equation for this simple system, and
describe the manner in which various orthogonal groups
make their appearance.

Under the transformation, Eq. (3.10), Schrédinger’s
equation for a system of N free spinless particles
separates into a part describing the center-of-mass
motion and a part describing the motion relative to the
center of mass, the latter equation being (in units with
fi=1)

N1
— E <Va, V“)‘I’(Xl x2... XN—])

a=1

=2mE¥(x'x? ... ¥, (4.1)

where V< is the gradient operator corresponding to the
vector x®. .

It is useful at this point to introduce a right-handed
Cartesian coordinate frame in Euclidean 3-space. In
such a frame, the vector x* is represented by three
components (x* %% x3*), and we choose to let the
notation x* denote the column matrix

(4.2)

It is also convenient to introduce the column matrices
X; defined by

X¢=C01 (xil xﬁ oo xiN—l) .

x*=col (xl"‘ o DC3°‘) .

(4.3)

There are two instructive ways of organizing the
collection of 3V—3 components of the N—1 vectors
{x, %% -+ xV1} . In thefirst arrangement, we associate

an (N—1) X3 matrix X with the components:
X—=—[X1 Xz Xg]. (4.4)

This arrangement is particularly suitable for displaying
the properties of the particle coordinates under the
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permutation operators P

P: X—T'(P)X. (4.5)
In the second arrangement, we define
H(a—))+i= Xi® (4.6)

fori=1, 2,3, and a=1, 2, -+ -, N—1. With these com-
ponents, we associate the column matrix x having
3N—3 elements:

(4.7)

This form is particularly suitable for displaying the full
symmetry properties of Eq. (4.1), which we now write
as

w=col (4 %y x5+ Xzn_3).

— V2 (%) =2mEY (x), (4.8)

where V2 is the Laplace operator in a Cartesian space
of dimension 3N —3.

The Laplace operator V? is invariant under real
orthogonal transformations x'=Rx, REO(3N-3),
where O(3N—3) denotes the group of real orthogonal
matrices of dimension 3N—3. Accordingly, Eq. (4.8)
separates further into a part which is invariant under
orthogonal transformations, REO(3N—3), and a part
made up of komogeneous polynomials of some fixed degree,
say p, which are solutions to Laplace’s equation:

Y (x) =g(p)f(x), (4.9)
where
3N-3
o= ( Z=:1 x2) 12 (4.10)
fOw) =M1 (), (4.11)
V¥ (x) =0. (4.12)

Equation (4.8) now reduces to the radial differential
equation

{ (8/3p)*+[(2p+3N—4)/p](8/3p) +2mE} g(p) =0.
(4.13)

We shall not consider the solutions to Eq. (4.13),
although they are readily written out. Our concern is
with the polynomials f which satisfy Eqgs. (4.11) and
(4.12). It is these polynomials which comprise the
elements of a finite dimensional Hilbert space of the
type discussed fully in Sec. II—these are the solid
harmonics on the (3N —3)-sphere:

Lp={ f: f(\x) =M*f(x), V*f(x) =0}

p+3N—6
dim £p=[(2p+3N—5)/(3N—5)]< )
3N—6
(4.15)

The transformation properties of the state vectors ¥
under REO(3N—3) are carried fully by the poly-
nomials f.

(4.14)
and
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The group of the Schriodinger equation, Eq. (4.8),
is now identified to be O(3N—3); the group is realized
on theinvariant subspace £, by the unitary operators Tr

(Tef) (x)=f(Rx), VREO(3N—3), Vfce&,
(4.16)

Various properties of this IR of O(3N—3) were dis-
cussed in Sec. II. In particular, a set of infinitesimal
operators of the representation is given by

(L4 f) (x) = —1i[x:(8/9x;) —x;(3/dx:) ] f (x)

for i, j=1,2,+.-, 3N—3, where £;;= —£;..

As already pointed out in Sec. II, a basis for the
solid harmonics on the (3N—3)-sphere is completely
characterized by specifying that each basis solid har-
monic is a simultaneous eigenvector of the set of
quadratic Casimir operators and £, In this classifica-
tion scheme, the eigenvectors in the basis for IR
{p00--- 0 of O(3N—3) are labeled completely by
the Gel’fand scheme, i.e., by the labels of the irreducible
representations of the subgroups which appear in the
chain of subgroup restrictions

O0(BN—=3)—0(3N—2)—> - —0(3)—0(2). (4.18)

Observe that the O(3) which appears in this chain is
just the set of orthogonal transformations on the vector,
x!, and this is #of the O(3) which has the total (relative)
orbital angular momentum of the system of particles
for its infinitesimal operators.

Thus, while the Gel’fand scheme gives a complete
labeling of a basis of £,, these basis vectors are not
eigenvectors of sharp orbital angular momentum quan-
tum numbers. One is thus led to consider subgroup
decompositions of O(3N—3) which are alternative to
Eq. (4.18). Let us see how the orbital angular momen-
tum operators come into the problem. Reverting to the
particle index notation of Eq. (4.6), we can enumerate
the set of infinitesimal operators {£;: 4, j=1, 2, < -,
3N—3} in the form

{Ay*®:0,8=1,2,+--, N—1;4,5=1,2,3}, (4.19)
where .
(As8f) (%) = —i[x(8/9%F) — % (3/9x:) 1 f (%),
(4.20)
(4.21)

The components of total relative orbital angular
momentum (Li, Ly, L3) = (Los, Ly, L12) are now easily
identified:

N-1
L= Zl A,

The global origin of the infinitesimal operators, Eq.
(4.22), is easily found. It is clear that the SO(3) which
has the orbital angular momentum as its infinitesimal

(4.17)

Ai,ﬁa = Ajiuﬁ.

Li=—Lj, 1,j=1,2,3. (4.22)
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operators is the one which rotates all the vectors
xY, x% ..., x¥! simultaneously, i.e., as a rigid body.
This characteristic is best exhibited by using the nota-
tion of Eq. (4.4). Thus, for each R;€0(3), we define
the unitary operator Dg; by

(Drqf) (X) =f(XRs). (4.23)

Then the correspondence Ry—Dg;, is a representation of
O(3) by unitary operators on the space £,. Furthermore,
the three infinitesimal operators of the representation
are precisely those given by Eq. (4.22).

Now observe that one can make a second type of
orthogonal transformation on the matrix X: Namely,
for each Ry_1€ O(N—1), we define the unitary operator
Dry-, by

(SDRN—lf) (X) =f(RN_1X) .
Then the correspondence Ry_1—®ry_, is a representa-

tion of O(N—1) by unitary operators on the space £,.
One observes trivially that

DR3:DRN—1=®RN—-1DR3? VR3¢ 0(3)7 VRy€ 0<N_ 1) .
‘ (4.25)

The infinitesimal operators of the representation,
Eq. (4.24), are easily calculated by the technique of
Sec. II. They are: ’

(4.24)

3
Laﬂ= ZAH“B, L8a=__LaB’ a,ﬁ——-l, 2, "',N—l.
i=1

(4.26)

Each operator in the set {L%¥: a<f=1, 2, -+, N—1}
commutes with the orbital angular momentum, as
expected from Eq. (4.25).

The relation between the transformations Dg Dr,_,
and Tg, REO(3N—3), is established as follows:

‘We have

(DrvrDasf) (X) =f(ByaXR).  (4.27)

But it is a simple exercise in matrix algebra to verify
that the matrix transformation

X'=Ry_1XR; (4.28)

is precisely the same as the column matrix transforma-
tion

&' = (Ry1® By)x, (4.29)

and conversely, where ® designates the direct product
of matrices. Thus, we have

Dry-1Drs=Try_ 0k (4.30)
The set of product operators
{Dry-1Drst Ri€O(N—1), Rs€0(3)1, (4.31)

is a unitary representation-on the spac‘e £, of the direct

product group

O(N—1)X0(3)
={RNa®Rs: Ry 1€0(N—1), R;€0(3)}
CO(3N-3). (4.32)

The SO(3)CO(3) in this subgroup has the orbital
angular momentum as its infinitesimal operators.
Note the special cases of Eq. (4.30):

(4.33)
(4.34)

One technique, then, for getting N-particle states of
sharp total orbital angular momentum quantum num-
bers into the state vector labeling problem is to'find
those invariant subspaces of £, with respect to which
the product operators {Dg,Dg,_,} are irreducible, i.e.,
decompose the space £,, which is a carrier space for IR
{p0--- 0} of O(3N—3), into a direct sum of perpen-
dicular subspaces such that each subspace is the carrier
space for an IR of O(N—1) XO0(3). We can, of course,
still use the subgroup restriction chain

O(N—1)—0(N—2)—---—0(3)—0(2) (4.35)

to label the basis vectors of the carrier space of IR’s of
the group O(N—1).

The difficulty, of course, with this approach is that
the group O(N—1)XO0(3) is not multiplicity free in
O(3N—3): there will, in general, be several perpendic-
ular subspaces of £,, each of which is the carrier space
for the same IR of O(N—1)XO(3). The group of
operators, {Dg,Dr,_,}, does not distinguish between
such subspaces, and this implies that we cannot induce
a complete labeling scheme of a basis of £, by using
only properties of the subgroup of operators, { Dz, Dry_,}-
Thus, the labeling scheme induced by the subgroup
restriction chain as follows is necessarily incomplete

0(BN—3)—0(N—1)@0(3)—0(N—2) @0 (3)—+ - -
—0(2)®0(3).  (4.36)

Equivalently stated: The angular momentum quantum
numbers LM together with the Gel’fand—Zetlin labels
of the basis vectors of the IR spaces of O(N—1) con-
tained in £, are, in general, insufficient to label a basis
of £,.

Nonetheless, we will see later (Sec. VIII) that the
chain (4.36) is a useful way to view the problem.

Next, let us see how the permutation operators P of
the symmetric group are realized on the space £,.
Comparing Eq. (4.5) with Eq. (4.24), we obtain P—
Drp) is a representation of Sy on the space £, by
unitary operators. Note also from Eq. (4.34) that we
can write

DRz= TIN—1®Raa

Dry-1=Try, ®Is

Drpy=Towry, (4.37)

where

O(P)=T(P)®I. (4.38)
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The group of matrices {I'(P): PE€ Sy} is a subgroup where

of O(N—1), and the group of matrices {O(P): P€ Sy}
is a subgroup of O(3N—3).

V. DEMOCRATIC SUBGROUPS

In the previous section, we have introduced two sub-
group chains, Eqs. (4.18) and (4.36), which arose in'a
rather natural way from the study of the orthogonal
transformations of the relative coordinates. The first
subgroup chain, Eq. (4.18), may be used to label com-
pletely a basis of the space £, However, from a
physical viewpoint, this basis is inappropriate because
the basis states are not states of good angular momen-
tum. The second subgroup chain, Eq. (4.36), seems to
possess the desired properties with respect to angular
momentum, but is, in fact, deficient because it affords
us no means of distinguishing between several perpen-
dicular subspaces of £, which carry the same repre-
sentation of O(N—1) XO0(3).

For these reasons, one is led to seek new schemes
which are in some sense more appropriate. We now
wish to establish four Lemmas (3, 4, 5, 8) which will
subsequently have an important bearing on this prob-
lem. Lévy-Leblond (Le66) arrived at results which are
less specific but nonetheless equivalent to these lemmas,
and Dragt (Dr65) obtained the generators of the
unitary group of Lemma 5. A closely related discussion
has also been given by Galbraith (Ga71a).

Lemma 3. The operators in the group {Tr: R€
O(3N—3)} which commute with the subgroup of opera-
tors {Topy: PE€ Sy} are those contained in the subgroup
{Dry: Rs€0(3)1}. S

Proof. We seek the set of REO(3N—3) such that

TeTowy=TowTr,  VPESw, (5.1)
i.e., we must find the set of {R} such that
RO(P)=0(P)R,  VPCSy, (5.2)

where O(P) is given by Eq. (4.38).

We make use of the general matrix identity as follows:
Let A5 and By_; be arbitrary matrices of dimensions 3
and N—1, respectively. Then we have

Ro(A3® By—1) Ry=By_1® 43,

where Ry is the real orthogonal matrix defined by

(5.3)

(5.4)

and wheree; (i=1, 2, «++, 3N—3) is the column matrix
of length 3N—3 having 1 in row 7 and 0’s elsewhere.
We omit the proof, noting only that the similarity
transformation by R, simply effects the necessary row
and column operations required to reorder the factors
in the direct product.

Using Eq. (5.3), we now transform Eq. (5.2) to the
form as follows:

R[L,®T(P)]=[L®T(P)IR, VPeE Sy, (5.5)

R,E R()RR(). (56)

Next, the matrix R’ is partitioned into block matrices
of dimension N—1, i.e.,

Rlll RIZ, Rl3l
R'=| Ry Ry Ry (5.7)
Ry’ Ry’ Ry
Equation (5.5) now yields the set of conditions,
Ri/T(P)=T(P)Rif, VPESy.  (5.8)

Since {T'(P): PE€ Sy} is an IR of Sy, we must have
(Schur’s lemma)

/
Rij'=aily,

(5.9)

where a;; (i, j=1, 2, 3) is a real number. Thus R’ has
the form R;® Iy_i, where R; is the 3X3 real orthogonal
matrix with arbitrary elements a;;. Using the definition,
Eq. (5.6), and another application of Eq. (5.3), we
conclude that each R which satisfies Eq. (5.2) has the
form

R=Iy.®Rs;; RycO(3). (5.10)

Since these are precisely. the matrices which define the
transformations Dg,, the lemma is proved.

For N>4, Lemma 3 can be refined:

Lemma 4. For N>4, the operators in the group
{Tr: REO(3N—3)} which commute with the subgroup
of operators { Tocpy: PE€ Ay}, where A is the alternating
subgroup of Sy, are those contained in the subgroup
{D}zst Rge 0(3) } .

Proof. For N>4, the representation of Ay, {T(P):
P¢ Ay}, is irreducible. Hence, the proof follows in the
same manner as the one given for Lemma 3. ;

Let us sketch a proof that {T'(P): P€ Ay} is an IR
of Ay for N>4. The proof follows immediately if we
can show that AT(P)=T(P)A, VPEAy implies
AT (P)=T(P)A, YPE Sy, since then we must have
A =X y_;. To show that this is the case, let Py, P:€ Sy,
but P;, P4 Ay. Then, we have P!, P:€ Ay and
T(P) AT (Py) =T (Py) AT (P,). In particular, if P; and
P;belong to thesame class @, wesee that T(P;) AT(Py) =
A’  where A’ is independent of the class €, i.e., AT(Py) =
T'(P,)A’. Now sum this relation over all P;€ @, using

; I(Py) =[h(a—1)/(N—1) Iy,

where % is the number of elements in class €, and « is
the number of cycles of length one in class €. We obtain
A'=A for a¥#1. Thus, AT(P)=T(P)A, VPcAy
implies

AT(P)=T(P)A, VYPeSy, Pée,

where C; is a class not in Ay which has exactly one
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cycle of length one. To show that also
AP(P1)=P(P1)A, VP1€G1,

we must proceed differently. This step of the proof
hinges on the peculiar fact that for V>4 each P;€ @,
can be written as a product, P1=QQ’, where neither Q
nor Q' belongs to a class of type C; (we omit the
proof). Therefore, we have AT'(Py)=AT(Q)T'(Q") =
r(Q)Ir(Q)A=T(P1)A, YP,EC,, N> 4.

Remark. Lemma 4 is not correct for N =3. Its failure
for N=3 is attributed to the fact that the A; repre-
sentation {T'(P): PE€ As} is reducible. This fact itself
can be attributed to a distinguishing structural property
of S3, namely: No element in the class

{(1)(23), (2) 31), (3) (12)}

can be written as the product of two elements not in
the class, whereas in Sy (N> 3) each element in a class
©; which contains precisely one cycle of length one can
be written as a product QQ’, where neither Q nor Q'
belongs to a class of type C;.

The distinguishing feature of s discussed above per-
mits a completely new structure, the unitary group
U(3), to enter into the 3-particle problem.

Lemma 5. The operators in the group {Tz: REO(6)}
which commute with the subgroup of operators
{Tow): PE A3} are those contained in the subgroup
{Tr: REGY, where GCO(6) is the group of proper,
real orthogonal matrices of the following form

G={REO(6): R=AMA},

N>4,

(5.11)
where

1 1
A=U,R1;, Uo=(\/2-)—]( ' .), (512)

Ul o
M={— ,
0| U*

i —1
in which U is an arbitrary 3X3 unitary matrix, i.e.,
UcU(3). G is isomorphic to U(3).
Proof: G is the subgroup of real orthogonal matrices
defined by

G={Rc0(6): RO(P)=0(P)R, YPE As}. (5.14)

The general results, Egs. (5.1)-(5.8), are valid when
particularized to N=3 and P€ A;. We must therefore
determine the set of 2)X2 matrices R;/ (¢, =1, 2, 3)
which satisfy

Ri/T(P)=T(P)R:f, VPCAs;  (5.15)

where {T'(P)} is a real orthogonal 2X2 matrix IR of
Ss having character set {2, —1, 0}. In particular, if we
let P1=(123), then the elements of Az are { Py, P:?, P3=
identity}. Thus, Eq. (5.15) reduces to the single condi-
tion

(5.13)

Ri/T(P))=T(P)R;/, P1=(123). (5.16)

We do not specify explicitly the representation
{T'(P): P€.S;} other than requiring it to be a real
orthogonal IR of S having character set {2, —1, 0}.
The properties

TrT(P)=—1, detT(P)=1 (5.17)

then necessarily follow. (Lemma 5 is not particular to
the choice of relative position vectors.)

We next observe that an arbitrary proper, real orthog-
onal 2)X2 matrix is diagonalized by the unitary matrix

1 1
Up= (V2)~1 . (5.18)
i =1
In particular, for arbitrary I'(P;), we have
e 0
U()TF(.PI) Uo= y (519)
0 &

where €4e+1=0 and &= 1. Transforming Eq. (5.16)
by the similarity transformation, Eq. (5.19), we easily
find that the most general real R;; which satisfies
Eq. (5.16) is

R =UM Uy, (5.20)
where
Ui 0
Mij, = y (52 1)
0 u,»,-*,

in which #%;; is an arbitrary complex number. Thus, we

have
R'=(LQUy)M' (I, U,"), (5.22)

where M’ is the 6X 6 matrix constructed from the 2)X2
matrices M, in the manner of Eq. (5.7). Using Egs.
(5.6) (for N=3) and (5.3), we find that R has the form
given in the lemma, where U is the matrix with elements
(#:;). The requirement that R be orthogonal implies
that U is unitary. Indeed, we see that R is proper, real
orthogonal.

To complete the proof, we note that U, of Eq. (5.18)
is unique up to arbitrary phase factors of its columns,

i.e., the matrix
e« 0
Uy=U,
0 ¢#

also diagonalizes I'(P;). However, defining A’ in terms
of Uy by Eq. (5.12), we see that A’M (A")1=AMA*,
i.e., we get the same group G independent of the choice
of Uy. Finally, it is clear that G is isomorphic to U(3),
since g1,

The matrix group G contains the group {I,® Rj;:
R;€0(3)1 as a subgroup, since R=1,Q® R; implies U;=
Rs, and conversely. Thus, G is a subgroup of O(6) with
the property

0(6) DGO {,QRs: Rz€ 0(3) 1.

(5.23)

(5.24)
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Thus, for N=3, we have obtained a subgroup scheme
which is alternative to that of Eq. (4.36) for labeling
a basis of £,. Furthermore, we will see in considerable
detail in a later section that the IR spaces of G arise
in a multiplicity free way on the space £,, i.e., at the
level of G, a basis of £, is completely labeled by the
quantum numbers which label the basis vectors of the
IR spaces of G.

Note that the group G has the following simple
properties with respect to the subgroup {O(P): P€ Ss}
of 0(6)

O(P)RO(P) =R, VPEA; (5.25)
O(P)RO(P)EG, VPE S  (5.26)

As a consequence of these properties, Dragt (Dr65)
termed the group G a democratic subgroup of O(6).
Encouraged by the enormous simplifications which
occur in the 3-particle problem, Lévy-Leblond and
Lurcat (Le65S) undertook the task of generalizing the
notion of a democratic subgroup to the N-particle
problem. The consequences of this generalization are
disappointing. The concept of a democratic subgroup
is elegant, but the structure of the symmetric group is
. too tight to let any dramatic new structures through.
Let us see how this comes about.
Definition 2: A subgroup GCO(3N—3) is called
democratic if RE G implies

O(P)RO(P)EG,  VYPESy. (5.27)

This definition is clearly an appropriate generaliza-
tion of the one introduced by Dragt. However, two
lemmas, proved by Lévy-Leblond (Le66), forecast the
limited structure of O(3N—3) which will be unveiled.

Lemma 6. Let G be a democratic subgroup of
O(3N—3). Then the permutations belonging to the
set of permutation operators { P} which satisfy

RO(P)=0(P)R, VREG (5.28)

are the elements of an invariant subgroup of Sn. -
Lemma 7. Let { P} denote the set of elements of an

invariant subgroup of Swy. Then the real orthogonal

matrices belonging to the set {R} which satisfy

RO(P)=O(P)R, VPc|{P} (5.29)

are the elements of a democratic subgroup G of
O(3N-3).

Lévy-Leblond has given the simple proofs of these
lemmas, and we will not repeat them.

Since each democratic subgroup of O(3N—3) has an
invariant subgroup of Sy associated with it (Lemma 6),
one can clearly find all such democratic subgroups
which contain {Ix_1®@R;: R;€0(3)} by systematically
determining the various groups G associated with the
various invariant subgroups of Sy (Lemma 7). It is
precisely here where the properties of Sy limit the
implications of the democracy concept. For N4, the

VREG,
VREG,

only invariant subgroups of Sy are the identity, 4y,
and Sy itself. But for N>4, Lemmas 3 and 4 already
show that the democratic subgroup associated with
either Sy or Ay is simply

L={In1®R;: Rs€O(3)}. (5.30)

For N=3, Lemma 3 again shows that the democratic
subgroup associated with .S; is L; however, now one
rediscovers Dragt’s democratic subgroup G associated
Wlth Aa.

The only structure, possibly new, which the general-
ized democracy concept points out (in addition to
giving Dragt’s result a general setting) is the demo-
cratic subgroup associated with the extra invariant
subgroup VC 44 which S; possesses. The precise nature
of this democratic subgroup is given by the next lemma.

Lemma 8: The operators in the group {Tr: RE0(9)}
which commute with the subgroup of operators { Tow):
PE U} are those contained in the subgroup {Tr: RE G},
where GCO(9) is the group of real orthogonal matrices
of the following form:

G={Rc0(9): R=AMA}, (5.31)

where
A=S®1;, (5.32)

in which Sy is a 3X3 proper, real orthogonal matrix
which depends on the choice of relative position vectors;

R 0 0
M=l o R 0 |, (5.33)
0 0 Ry

where R;, Ry, R’ €0(3).
Proof. G is the subgroup of real orthogonal matrices
defined by

G={REO(9): RO(P)=0(P)R, VPEDV}. (5.34)

The general results, Egs. (5.1)—(5.8) are valid when
particularized to N=4 and PCV. We must therefore
determine the set of 3X3 matrices R (3, j=1, 2, 3)
which satisfy

R,/T(P)=T(P)R;, VPcv, (5.35)

where {T'(P)} is a real orthogonal 3X3 matrix IR of
Sy having character set {a—1}={3,1, —1,0, —1}.
The elements of U are

V={E, P=(12) (34), P,=(23) (14), Ps=(13) (24)}.

(5.36)

Note that P2=E (i=1, 2, 3), and P;P;= Py for (ijk)
any arrangement of (123). These relations imply that
the 3X3 real orthogonal matrices T'(P;) .(i=1, 2, 3),
which have TrI'(P;)=—1, are also symmetric and
proper [ the proper condition is implied by the fact that
each T'(P;) is similar to the diagonal matrix with
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diagonal elements (1, —1, —1)7]. The most general
forms for the T'(P;) are given by*

I'(P;) = —I3-+2a:ds, (5.37)

where each a;=col (a1:02:03;) 1s a column matrix, and
G;0;=0;, i.e., (@, au, az;) are the components of a
triad of unit vectors which are mutually perpendicular,
and which can be chosen, without loss of generality, to
be a right-handed triad. Then {I3, T'(P;),i=1, 2, 3} is
a representation of U, and it is the most general repre-

i=1,2,3,

sentation which can be obtained from {T(P): P€ .S4},"

where as always I'(P) is an IR [3100] of Sy which is
real orthogonal. The proper, real orthogonal matrix Sy
defined by

So=[a1 a: a;] (5.38)
now diagonalizes each T'(P,)
Sol'(P:) So=D(P;), i=1,2,3,  (5.39)

where
D(Py) =diag (1, —1, —1). D(P;) =diag (—1, 1, —1),
D(P;) =diag (—1, —1,1).

Here So is unique up to (3) signs of its columns, and
these signs are irrelevant (see the proof of Lemma 5).

Following the steps analogous to those in going from
Eqgs. (5.19)-(5.22) in proving Lemma 5, the proof of
Lemma 8 is easily completed, and we omit these details.

Let us observe that by a simple redefinition of rela-
tive position vectors, we can always get rid of the
matrix 4 in Eq. (5.31). Thus, suppose we have chosen
a particular set of relative position vectors, call them
[y'y2y*]. Then, under permutations, these vectors
undergo the transformation

P:[y'y*y* -y y* y*IU' (P), (5.40)

where {T'(P): P€ .Sy} is a specific IR [3100] of Ss;. We
can then determine ay, a2, and a3 (up to irrelevant signs).
We then define a new set of relative position vectors
[x! x2x%] by

[x' x* x*]=[y' y* y*]S.. (5.41)
Then we have ‘
P: [x'x2 x3]-[x! x2 x31V(P), (5.42)
where N
I(P) = 8T (P) S,, (5.43)

and, in particular, IV (P;) = D(P;), i=1, 2, 3, where the
D(P;) are the diagonal matrices following Eq. (5.39).
Indeed, the relative position vectors [x!x2x3] are

*In the correspondence of the points of the solid ‘sphére in
3-space onto the elements of SO(3), the points on the surface
of the sphere map, two-to-one, onto the symmetric elements of
S0(3). Equation (5.37) is simply the most general form of a
symmetric element of SO(3).

uniquely determined (Lemma 2) to be as follows:
x'= (r'4-r?*—r¥—r4) /2,
x2= (r24-r’—r'—r4) /2, (5.44)

X3=(r'4+r3—r2—r4) /2.

Finally, we can transform each R€0(9) by the
matrix 4 of Lemma 8

R'=ARA, A=5,I;. (5.45)
Then it is straightforward to verify that
(Tw f) (2) = (Trg) (y),  y=Ax,  (5.46)

where, for each given function g€ £,, the function f€ £,
is defined by

f@) =fAy)=(Taf) ) =g(y),  (547)

that is,

f=Tig. (5.48)

Thus, it is no restriction to use the relative position
vectors, Eq. (5.44), from the start. The group G of
Lemma 8 then becomes

R 0 0
G={Rc0®:R=| 0 R/ 0 . (5.49)
0 0 Ry

where Rs, Ry, Ry’€0(3). The transformation «'= Rx
in

(Tef) (x)=f(Rx), REG (5.50)
is easily identified in column matrix form to be
[x‘ x? xﬂ—)[l?sx‘, Rg’xz, Rgllx'?’]. (5.51)

Thus, the group G is the group O®(3)XO0®(3)X
0®(3), where SO®(3) is the real orthogonal group
whose infinitesimal generators are the orbital angular
momentum operators associated with the relative posi-
tion vector x°.

The group O®(3) XO®(3)X0OW(3) is, unfortu-
nately, not multiplicity free in O(9). In particular, the
quantum numbers (L ; lams; lsms) which label the basis
vectors of the IR spaces of this direct product group
do not label completely a basis of the space £,.

The concept of a democratic subgroup offers a sys-
tematic technique for determining subgroups of
O(3N—3) which have specific properties with respect
to the permutation subgroup

{O(P): PE Sy} CO(3N-3).
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The concept is, however, too limited to admit any

significantly new structural schemes for classifying N- -

particle states (V>>4). There exist, of course, subgroup
chains of O(3N—3) other than those brought out by
the democratic subgroup concept which conceivably
might be useful. However, such schemes necessarily
relinquish the property expressed by Eq. (5.27). It is
not our purpose here to pursue this point further; rather,
we now turn to the systematic development of what can
be learned about the classification of N-particle states
(N=3,4, --+) within the framework already discussed
in this paper.

VI. 3-PARTICLE STATES

The problem of constructing completely labeled total
angular momentum states on the 6-sphere has been
studied by many authors: Smith (Sm60, 62), Kramer
(Kr63, 65), Dragt (Dr65), Zickendraht (Zi65), Chacén
and Moshinsky (Ch65), Simonov (Si66), and Whitten
and Smith (Wh68). More recently, Castilho Alcards
and Leal Ferreira (Ca71), and Efros (Ef71) have con-
sidered this problem in great detail from various view-
points, often listing tables of specific state vectors.
What we offer is of a somewhat different nature.

First of all, we wish to make clear for the 3-particle
problem the role of the homomorphism of the group
SU(4) onto SO(6). This is accomplished in Secs. A
and B. [The isomorphism of the Lie algebras was dis-
cussed by Dragt (Dr65) and used extensively by
Chacén and Moshinsky (Ch65).]

In Sec. C we generalize our development to the group
U(4), thereby gaining a deeper insight into the under-
lying structure of the problem. The group U(4) is then
realized as a set of transformations on the space 3C, of
homogeneous complex polynomials of degree p defined
over C® The relation of the space 3C, to £, is discussed
extensively, and, in particular, it is noted how one
recovers a basis for the solid harmonics on the 6-sphere
from the explicitly given (Sec. D) Gel’fand state vectors
of U(4).

In Sec. E, it is demonstrated that by a simple change
of basis one can already diagonalize the z component
of the total orbital angular momentum. The discrete
symmetry properties of our general basis functions are
given in Sec. F.

With respect to the 3-particle problem, the results
of Secs. A-F may be summarized by the statement that
a basis of the solid harmonics of degree p on the 6-sphere
has been given which (1) is a basis of IR [pg0] of
U(3); (2) possesses sharp z component of total orbital
angular momentum; and (3) is classified ‘‘democrati-
cally” with respect to the permutations of identical
particles.

We still have not achieved the desired goal of obtain-

" ing a basis of £, which also has sharp angular momen-
tum L. This difficult problem is the subject of Sec. G.
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A. The Homomorphism of SU(4) onto SO(6)

The fact that the group U(3) enters into the 3-
particle problem could have been foreseen (Dr65) as a
consequence of the well known homomorphism of SU(4)
(the group of 4X4 unitary unimodular matrices) onto
SO(6), without the-aid of the democratic subgroup
concept. It would, however, be difficult to foresee the
precise way to establish this homomorphism if one did
not have available the specific result, Lemma 3.

The idea is to establish the homomorphism between
SU(4) and SO(6) in such a way that when SU(4) is
restricted to one of its U(3) subgroups there obtains
in a simple way the isomorphism between the U(3) of
Lemma 5 and the subgroup GCSO(6). To this end,
let V€ SU(4) be partitioned as follows:

V3 (¢4
v={——),
Bl

where Vsis a 3X 3 complex matrix, o and 8 are complex
column matrices,

(6.1)

a=col (a1 asa3), (6.2)

B=col (B18:8s),

and v is a complex number. We assert:

Lemma 9. Let VESU(4) and RE SO(6). The follow-
ing relation is a 2 to 1 homomorphism of SU(4) onto
S0(6):

R=AQAt, (6.3)
where
1 1 «
A=(\/7)'1< I, (6.4)
i —1
(N
Q0= ) (6.5)
QR O*

in which Q; and Q, are 3X3 complex matrices which
are related to V; specifically, we have

O1=7Vs—ap, (6.6)
Qo=T,V3, - (6.7)
0 —ag o
To=| & 0 —a |, (6.8)
—ay o 0

in which V3, , 8, and v are the quantities which appear
in the partitioning, Eq. (6.1), of V. '
-The proof of Lemma 9 is given in Appendices 1 and 2.
Remark. The content of Lemma 9 is simply this: For
each VE€SU(4), the matrix R calculated from the
definitions, Egs. (6.3)—(6.8), is proper, real orthogonal.
Conversely, for each R€ SO(6), one can find" exactly
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two unitary unimodular matrices which when used in
Eqgs. (6.3)—(6.8) will yield the specified R. Finally, the
property V—R, V'—R’ implies VV'—RR’ establishes
the fact that the rule, Egs. (6.3)—(6.8), for relating
elements of SU(4) to elements of SO(6) is a homo-
morphism. Note that V—R implies —V—R (the 2 to 1
correspondence of the homomorphism).

Now consider the subgroup G of SU(4) defined as
follows:

0
Vs |0

g= 1 Vs€ U(3), det Vs=o*,yy*=1
000y

(6.9)

Under the restriction of SU(4) to G, the matrix Q of
Lemma 9 becomes a matrix M of the type in Lemma 5,
where

U=~V U(3). (6.10)

Note, in particular, that we obtain the same U€ U(3)
from VEG and —V EG: The subgroup GCSU(4) is 2
to 1 homomorphic onto the subgroup GC SO(6).

It is of interest to determine which matrices of SU(4)
correspond to the permutation subgroup, {O(P) : P€ 45},
of SO(6). It issufficient to determine the elements 4V,
of SU(4) which correspond to O(P;), P1= (123) [see
Eq. (5.19)]. This simple calculation gives

0
613 0

Vi==+ (6.11)
00 0]1

The subgroup of SU(4) which commutes with V; is
then seen to be precisely the group G, defined by Eq.
(6.9), which maps to the democratic subgroup G of
S0(6).

There is another useful way (Es64) to realize the
homomorphism of SU(4) onto SO(6) given in Lemma
9. We define a 4X4 complex skew—symmetric matrix
Z, as follows:

0 il x3+ixs Xo— 1:965 x1+ix4
X3—1%g 0 —xtixs  Xatiws
Z,=(V2)~
- x2+ ixs X1— ix4 0 x.»,—!—ixs
—xl-—ix4 —x2—ix5 —xa—ixﬁ 0

(6.12)

[The column matrix x is used as a subscript on Z, to
make explicit the fact that the elements of the matrix Z,
depend on the elements of x.]

Lemma 105 Let V—R in the homomorphism of
Lemma 9. Then

Zi=VZV. (6.13)
The proof is given in Appendix 3.

The significance of the relation, Eq. (6.13), is that
through it we can make contact with some standard
results of unitary group theory; the significance of the
homomorphism in the form of Lemma 9 is the elucida-
tion of the relation of SU(4) to the democratic sub-
group GC SO(6).

B. The Significance of the SU(4)— SO(6) Homo-
morphism for the 3-Particle Problem

Now let us see how the group SU(4) arises in the
3-particle problem. It is convenient to make a change
in notation. We have previously seen the usefulness of
organizing the six components of the relative position
vectors X! and x?into a 2X 3 matrix X, or a 6X 1 column
matrix x=col (®1xxx3x4%525) , where (211 2! 51) = (23%9%3)
and (2% #,? w5?) = (x4%5%) . We now have a third way of
organizing these components, namely, in the manner in
which they appear in the definition of the 4X4 complex
skew—symmetric matrix Z,. It is now convenient to let
the notation f(Z.) denote the value of the function f
at the point (%1 %3 =+« %), i.e., f(Z;) =f(«x). The trans-
formation Tk on the space £,, previously described by
Eq. (4.16), is defined in terms of the new notation by

(Trf) (Z.)=f(Z8.), RESO(6). (6.14)

Next, consider any complex skew—symmetric matrix
Z of the form

0 —z* 2* 7
23* 0 —_ 21* Z9
Z= (6.15)
—_ Zz* Zl* 0 %3
—21 —2 —23 0

We can always identify the coordinates (1« %)
by the rule

x;=(z;+2%) V2,  xps=—1i(z;—2*)/V2 (6.16)

for j=1, 2, 3. The set of points of Euclidean 6-space is in
one-to-one correspondence with the set of 4X4 complex
skew—-symmetric matrices of the form (6.15):

(w25 o+ + %) 2. (6.17)
Quite generally, then, we use the notation f(Z) to

5 This method of realizing the homomorphism is patterned
after the results given by Esteve and Sona (Es64).
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denote the value of the function f at the point & which
corresponds to Z

f(Z)=f(x) (6.18)
We write Z, only when Z is considered to be explicitly
in the form of Eq. (6.12). (We can, of course, think of
x as a column matrix.)

With the above notational conventions, we can write
Eq. (6.14) as

for xZ.

(Trf) (Z:) =f(VZ.V), (6.19)

where V—R in the homomorphism of SU(4) onto SO(6)
(Lemma 10).

But now observe that, for each V€ SU(4), we can
define an operator Sy on the space £, by

(Svf)(Z)=f(VZV) for x=—Z.  (6.20)

One easily verifies that the set of operators {Sy: V€
SU(4)} is a group of unitary operators which is a repre-
sentation of SU(4) on the space £, under the corre-
spondence V—Sy. Furthermore, since, by definition,
Egs. (6.19) and (6.20) hold for each point x and each
fEEL,, we have the following operator identity on the
space £p:

Tr=Sy for V—R. (6.21)
Also, the operator identity
S_y=3Sy (6.22)

holds on £,, and the general homomorphism =V—R of
groups collapses on the space £, to the equality of operators.
The seemingly trivial identity, Eq. (6.21), is the expres-
ston of the basic structure of the 3-particle problem. Let us
examine its content. The space £, is a carrier space for
IR {p00} of SO(6). It is therefore also a carrier space
for an IR (yet to be identified) of SU(4). But now
instead of classifying a basis of £, by using subgroup
chains of SO(6), we can use the subgroup chain of
SU4):
SU)DUB)DU(2)DU(1).

But the canonically labeled basis vectors—the so-called
Gel’fand basis—of each IR space of SU(4) correspond-
ing to this chain are completely and generally known
(abstractly and specifically). The significant aspect of
the particular homomorphism we have given is that
under the restriction

(6.23)

0

V. 0
V—-V'= ’ ,
0

yt=det Vs, (6.24)

0 0 Of+«y

Vs
R—R'=4 <

0

we have

0
= At (6.25)
Y Vs
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The group of operators { Tr/} = { Sy} is just the unitary
representation on £, of the democratic subgroup G of
0(6). On the other hand, it is precisely the subgroup
restriction, Eq. (6.24), which leads to the assignment
of the U(3) subgroup labels of the SU(4) Gel’fand
basis vectors. In other words, the canonical Gel’fand
basis vectors already provide us with a completely
labeled basis of £, such that the subspaces of £, which
are spanned by those basis vectors having fixed U(3)
IR labels are the IR spaces of the democratic subgroup.
The identification of operators, Eq. (6.21), poinis out the
path to the solution of the 3-particle problem in terms of
standard resulls of unitary group theory.

C. Generalization to U(4)

We wish now to consider the group U(4) in place
of SU(4). It turns out that at the level of U(4), one
can understand fully the relation between the space of
homogeneous polynomials defined on six arbitrary com-
plex variables and the space £, of homogeneous poly-
nomials on six real variables which solve Laplace’s
equation. [Abstractly, this is the same problem (Dr65)
as extracting solutions to Laplace’s equation in 6-space
from the harmonic oscillator functions in 6-space.]
Quite aside from this important connection, the IR
spaces of U(4) which we thereby obtain are of con-
siderable interest in themselves.

In the generalization to U (4), it would 7ot be correct
to regard the matrix V in Eq. (6.20) as simply belonging
to U(4). The compatibility of the transformations on
the variables z; and z;* requires that V be unimodular
(see Appendix 3). If we let V belong to U(4), we must
at the same time let Z be of a more general form. The way
to do this is, however, quite obvious. We define the
complex skew—symmetric matrix W as follows:

0 =& om

{3 0 =& m

W= , (6.26)
— e $1 0 ns
—n —n2 —mnz O

where 7; and {; are arbitrary complex numbers. With
each such matrix W, we associate the point

(m1mems 182 $s)

of complex 6-space, C®. The matrix W corresponds to
a point of Euclidean 6-space, if we use the correspond-
ence, Eq. (6.16), if and only if {;=7.*, but we do not
impose this restriction.

The results given in Appendix 3 now show that the
transformation

w'=0wu, UcU@4), (6.27)
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is the same as the transformation

(<)

Q1 Qz*(det U)
Q0= ,
Q: Or*(det U)
in which Q; and Q, are defined exactly as before in terms
of the partition matrices of U, i.e., by Egs. (6.6)—(6.8)
for U written in the form (6.1).

Next, we introduce the notation F(W) to designate
the value of the function F at the point (5, {) of C®

F(W)=F(n,{). (6.30)

We also restrict ourselves to the set of polynomial func-
tions which are homogeneous of degree p

ge,= (F: F(\W) =\eF (W)]. (6.31)

Using the extended definition of scalar product dis-
cussed in Sec. IT, we make this function space a Hilbert
space.

For each U€ U(4), we now define the operator Sy
on 3¢, by

(6.28)
where®

(6.29)

(SuF) (W) =F(OWU). (6.32)
The set of operators { Sy: U€ U(4)} is then a represen-
tation of U(4) on the space 3¢, by unitary operators.
The calculation of the Weyl infinitesimal operators
of the representation, Eq. (6.32), now proceeds along
the lines described in (Lo70). A preliminary calculation
which simplifies these calculations is as follows: Let
U(t) € U(4) have the property U(0) =1, Then, from

(SvwF) W)=F[OU@OWU®],  (6.33)

we calculate straightforwardly (being careful to account
for the skew—symmetry of W) the result

L(dSy/dt) —oF (W)
=Tr {W[AU(¢) /dt]eo(3/3W)}F (W), (6.34)

where 9/dW denotes the matrix of the same form as W,
but with 5; replaced by 8/dn;, and {; replaced by 9/d¢;.
With this result, we obtain the following expressions
for the Weyl generators, {E;;} :

(EifF) (W) ="Tr [We;;(3/dW)JF (W), (6.35)

where e;; is the 4X4 matrix unit having 1 in row 7 and
column j and zeros elsewhere, and where 4, j=1, 2, 3, 4.

Equation (6.35) is a single, concise expression for the
Weyl generators:of the representation U—Sy of U(4).
To obtain these generators in a more explicit form, we

¢ Replacing Q of Eq. (6.5) by the Q of Eq. (6.29) does not
give a homomorphism of U(4) onto SO(6). To obtain such a
homomorphism, one must combine the mapping of U(4) onto
SU (4) and the homomorphism of Lemma 9.

must perform the matrix multiplication indicated in
Eq. (6.35) and take the trace. We note that on the
space 3, the Hermitian conjugates to 5; and ¢; are,
respectively, given by

#i=9/9n;, Ci=09/0¢s,

8/oW=W. ~ (6.37)

The following set of Wey! generators now obtains from
Eq. (6.35):

(EyF) (W) = (nifj—¢i5) F(W)
for i#£5=1, 2, 3;

(6.36)

ie.,

(6.38)

(Eul) (W) = (naii— il o+ é} S F(W) - (6.39)

fori=1, 2, 3;

(EuF) (W) = g W) FOV):  (6.40)
(EaF) (W) = (nfemnif) FOV),  (6.41)
(EuF) (W) = (Gxity— i) F (W), (6.42)

for 4, 7, k cyclicin 1, 2, 3 in Eqs. (6.41) and (6.42).
The generators E;; necessarily satisfy the following
commutation relations from the method of deriving
them:
[Eij, Elcl]= lecEil_ 6”Ek]', (6.43)
and

(Eij)T=E;. (6.44)

These properties can, of course, be verified explicitly.

The relations of the Weyl generators {E;:14,j=
1,2,3,4} of U(4) to the SO(6) generators {£: 4, j=
1,2,-.-,6} of Eq. (4.17) are obtained by restricting
W to Z, i.e, by introducing the constraint ¢;=n5*=
(x;—1x;43) /V2. We then have

F(W)={(Z)=f(Z.) =f(x) (6.45)
for W =Zsx. The relations follow:
Eii=508i41Li 13,543+ LijstL5iv3) (6.46)
for i#j=1, 2, 3; :
3
Ei=39+8i 05— % D Lhas (6.47)
=1
fori=1, 2, 3;
3
E44=%g+% z £h‘,k+3; (6.48)
=1
Eyi=5(i8p+ 1Ly, 515 Lrrs,j+Lh13), (6.49)
Eu=5(—iLp— 18113 543+ Lrrs,;+Lh.ias), (6.50)

for 4, 7, k cyclic in 1, 2, 3. The operator ¢ appearing in
these equations is
6
(9f) () =[X %:(8/9%:) 1 f (%), (6.51)
=1

i.e., is the homogeneous operator of Euler. It has fixed
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value p on the space £,. Note also that
29 =En+ En+Eg+Ey, (6.52)

i.e., 29 is the first-order Casimir invariant of U(4).

One should note very carefully the structure of Egs.
(6.46)—(6.50). They are actually expressions of the
isomorphism between the Lie algebra of SU(4) and the
Lie algebra of SO(6): These equations express invertible
relations among the fifteen generators of the unimodular
group SU(4), say, {Eij, i#j=1, 2, 3; E;—Ey, i=
1, 2, 3}, and the fifieen generators {£5,1<j=1,2, +++, 6}
of SO(6).

The representation and Lie algebra of U(4) which
we have obtained on the space 3¢, through the sequence
of results, Egs. (6.31)—(6.44),is of interest in its own
right in unitary group theory. It is of significance for
the 3-particle problem because upon restricting U(4)
to SU(4) and upon restricting the domain of definition
of the polynomials of 3C, in the manner of Eq. (6.45),
we are led precisely to the relation of SU(4) to SO(6)
which is relevant to the 3-particle problem.

Let us examine the relation of the spaces 3¢, and £,
more carefully. First consider the space 3¢, which is the
carrier space for a reducible representation of U(4).
The irreducible constituents are, however,.easily found
by determining the set of kighest weight vectors belonging
to 3C,. A highest weight vector is one which is anni-
hilated by all the raising generators E;;, 1<j=1, 2, 3, 4.
One easily verifies that each of the vectors

Fp(n, &) = (mrtmabetnsts) ¢s22/[v 1 (p—v) 1]V2
(6.53)

for =0, 1, 2,+++ p/2 or (p—1)/2 is a normalized
highest weight vector belonging to 3C,. The weight of
the vector F,, is the set of eigenvalues of the diagonal
generators E;;, 1=1, 2, 3, 4

(Eun, Es, Egs, Ew)—(p—v, p—v, v, v). (654)
Note that the factor (mfit+nefe+m3iz) is an SU((4)

invariant.

Highest weights are the partition labels which are
used to denote an IR of U(4), and, quite generally,
each IR of U(4) is labeled by a partition, [ A1 A2 A3 Ae],
of ordered integers \;1>Ne>N3>Ns. Thus, if we let 3C,,
designate the subspace of 3¢, which contains the highest
weight vector of Eq. (6.53), then 3¢, is the carrier
space for an IR of U(4) denoted by the labels
[p—v», p—v, v, v]. If we further note that (We31)

dim 3¢, = (p— 2v+1) (p—2v+2)2(p—2+3) /12,
(6.55)

P+5>
. (6.56)

> dim 3¢,,=dim J€p=<
v 5

it follows that the space 3C, decomposes into a direct
sum of the subspaces 3C,,, (since the spaces »=0, 1, «+ .
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are perpendicular) :

3= Y ®IC,,. (6.57)

Correspondingly, 3C, is the carrier space for the repre-
sentation
Z@EP"‘V: p—v, 7, V] (658)
of U(4).
To see what all this has to do with the space £,,
we introduce the operator £, defined on an arbitrary
polynomial G(», {) by

(£'G) (n,8) = (% ) G(n, §). (6.59)

Clearly, if £ does not annihilate a vector of 3C,, it
carries such a vector into a vector of 3¢, ». The reason
for introducing £' is quite transparent: Under the
restriction of Eq. (6.45), £' simply becomes the
Laplacian in Euclidean 6-space

(£7f) (x) =5V*f (). (6.60)

We can now understand fully the relation of the space
3¢, to £,. We observe that £' is an SU(4) invariant,
ie., it commutes with all the generators of SU(4).
Furthermore, £1 annihilates each vector belonging to the
space 3Cyp0, and it annihilates no vector belonging to the
spaces 3Cp,,, v>0. This statement requires proof.

That £ annihilates each vector of 3C,, is evident
from the fact that the invariant n{1+mefetnss is
missing from the vectors of 3C,o. To show that £
annihilates no vector of 3¢,, (v>0), let £ denote the
Hermitian conjugate to £7 on the polynomial space
J@IC,D -+ +. Then L is just the operator defined by

(£G) (n,§) = (Zk: 1) G (1, §), (6.61)

which under the restriction, Eq. (6.45), simply multi-
plies f(x) by (2°;x:2)/2. Now consider the extended
version of the operator identity, Eq. (2.36) of Sec. II
for k= 6. It takes the following form on the space 3C;:

A= —4eLet4-9(9+4), (6.62)

where ¢ is the U(4) Casimir opérator of Eq. (6.52).
The significant point to note next is: The space 3Cp,y,
which is the carrier space for IR [p—v, p—v, v, v] of
U(4), is the carrier space for IR [p—2v, p—2v», 0, 0] of
SU(4). That is, the spaces 3Cp,, and 3Cps,,0 are carrier
spaces for exactly the same IR of SU(4), hence, of
SO(6). Since £ annihilates 3C, .0, we see from Eq.
(6.62) that A? has eigenvalue (p—2v)(p—2v+4) on
3Cp—2s,0, and since JCp,, and JCp_s, 0 yield the same IR of
S0O(6), this same eigenvalue of A? obtains on the space
3Cy,,,. We now apply Eq. (6.62) to an arbitrary vector
of 3¢,,, noting that the eigenvalue of 4 is p. The result is

LLIF=p(p—v+2)F (6.63)
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for each FE3C,,,. Thus, we have

S1F=0 (6.64)

if and only if FEJC,,0.
We have now proved: 3Cp,0 is the unique subspace of
JCp such that
Ip,0—Lp (665)

under the restriction
ni= (%+i%43) V2, §i=(xj—ixjy3) V2. (6.66)

What happens to the subspaces 3,,, (»>0) under the
restriction of Eq. (6.66)? The obvious answer is that
a function of 3C,,, simply becomes a solid harmonic on
the 6-sphere of degree p—2», multiplied by (3>_; x:%)?,
and one would remark that it is obvious that these
functions do not satisfy Laplace’s equation, unless the
factor (3 : #:%)” is removed. Why then all the seemingly
elaborate discussion of the full space 3C,? The motiva-
tion for this derives firstly from the satisfaction of
obtaining a better understanding of how the 3-particle
state vector space enters as a substructure into the more
general space of homogeneous polynomials of six arbi-
trary complex variables, this space providing a natural
setting for the group U(4). Secondly, quite aside from
this relation to 3-particle states, the space 3, is the
carrier space for quite general representations of U(3),
and this result is of interest in itself. Most of this struc-
ture would have been passed by had we restricted our
discussion to the space £,.

Finally, let us note where the Lie algebra of the
democratic subgroup G fits into the above scheme. This
Lie algebra generates the subgroup of SU(4) corre-
sponding to SU(4) matrices of the type, Eq. (6.24).
This algebra is identified as that of

[Eg,isj=1,2,3; Eu—Eu, i=1,2,3}, (6.67)

it being sufficient for the proof to note that this is the
algebra of traceless Hermitian matrices which generate
unimodular unitary matrices of the required form. One
readily confirms that the orbital angular momentum
algebra is contained as a sub-algebra of the algebra,
Eq. (6.67).

D. The Gel’fand Basis of 3C,

The general Gel’fand basis vectors of the subspace
3Cp,» can be obtained from the highest weight by the
application of known lowering operators (Na65). In
terms of the Gel’fand notation, the normalized highest
weight vector, Eq. (6.53), is denoted by

p—v

p—v v v

F . (6.68)

The lowering operators commute with the factor
mE1+nee+nss appearing in the highest weight vector,
and the relation between the normalized Gel’fand basis
vectors of 3C,,, and JCps, 0 is therefore given by

» p—v p—v v v
p—v q—v 14
F (W)
a—v B—v
Yy—v
—2p) 1\12
= (;%) (mErtmadetnsds)”
p—2v p—2v 0 0
p—2v q—2v 0
X F w). (6.69)
a—2v B—2v
y—2v

It is therefore sufficient to determine the Gel’fand basis
vectors of the spaces 3¢, ¢ for arbitrary p. The procedure
for generating these vectors from the highest weight
vector is given in Appendix 4. We state the result
here, and note some of its structural features:

pp0O0

M $2
=DEOP) 4 ai8) g tias®) Gpag(n, §),
n2 —{1

(6.70)

where the definitions of the functions D and G are
given fully in Appendix 4 [see Egs. (IV.14)—(1V.20)].

The factorized form of the basis vectors, Eq. (6.70),
presents a rather interesting structure. First of all, the
function Gag depends, in fact, only on the variables
13, {3 and on

m $e

det =— (m&1tms) . (6.71)
2 —§

From the explicit forms of the generators, one sees

immediately that the function G,ag is an invariant with
respect to the two commuting SU(2) subalgebras cor-
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responding to the generators

{Ep=J,, En=J_, 3(Eu—E»)=Js} (6.72)

‘a,nd

{E34=J—,, E43=J+’, %(E44—E33) =]3'} . (6.73)

This brings us to the second point. The transformation
of the basis (6.70) corresponding to the subalgebras (6.72)
and (6.73) are carried entirely by the D functions. We
will give these transformations explicitly. In order to
illustrate familiar aspects, it is convenient to introduce
new labels as follows:

j=3(a—B), m=y—3(atp), m'=—gt+i(atp),

(6.74)

where we note that j is either integral or half-integral,
and, for each prescribed 7, the range of m or m’ is
{7, 7—1, ++«, —j\. The canonical Gel'fand transforma-
tions become:

T D =L (= m) (Gtm+1) 12D,
J D=L (j4m) (j—m+1) FDi s,

oD =D (6.75)
J 4! Dy = [ (j—m") (j+m'+1) 12D g 11,
T Do =[(j+m') (j=m'+1) J2Dip s,
Js' Dipr =1/ Dipys. (6.76)

In order to understand fully the above infinitesimal
transformations, let us note briefly their global origins.
For this purpose, it is sufficient to consider transforma-
tions on the variables 91, 72, {1, {2. Define the matrix

N by
m (¢
N= ,
e —{1
and let g denote a polynomial whose values on the
variables 11, 73, {1, {2 is denoted by g(91). For each pair

U, U'€SU(2), we define commuting operators Oy and
@lul by

(6.77)

(0ug) () =g(On),
(0'yrg) () =g(RU’).

Each of the correspondences, U—0y and U'— 0"y, is
a unitary representation of SU(2) on the space of
polynomials (made into a Hilbert space in the standard
way). Furthermore, the sets of infinitesirnal operators
of these representations are given, respectively, by
(T J—, T3t and {J./,J_/, JJ} [the operators defined
by Egs. (6.72) and (6.73), respectively].

In particular, the operators Oy and Oy- transform

(6.78)
(6.79)
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the functions D, in the following manner:
OUDjmm' = Z D]Mm ( U) Djllm'r (6'80)
»
0"y Dl = Z Dju’m'(U’) Diyr, (6-81)
w!

in which Di,,.(U) and D%, (U’) denote precisely the
functions defined by Eq. (4.18) of Appendix 4, now
defined on the elements of a 2X2 unitary unimodular
matrix. In deriving Eqs. (6.80) and (6.81), we have
used several properties of the D functions, namely,

Di(A)Di(A") =Di(44"), (6.82)

Di(A)=Di(4), (6.83)
for A and A’ arbitrary matrices.

The set of product operators {Oy0'y:=0"y.0yp,
V pair U, U'€ SU(2)} is a unitary representation of
SU(2)XSU(2). The functions Dimr (m, m'=3, j—1,
.-+, —7) are the basis vectors of a carrier space for
the IR

Di(U)®Di(U")

of SU(2)XSU(2).

The full structure of the Gel’fand basis vectors of the
space 3C,0, given explicitly by Eq. (6.70), has now been
revealed: These basis vectors factorize into an SU(2) X
SU(2) invariant part and a part which comprises a basis
for the IR Di(U)®DI(U") of SU(2)XSU(2).

It is useful to rewrite these basis vectors in terms of
the notation of Eq. (6.74):

(6.84)

P p 0 0

P j—m'+B8 0
F W)
25+ B

j+m+B8

= Dy (9) G 254.8,8(n3, £3, det ). (6.85)

Observe that the SU(2) group associated with the
transformations (6.72) is isomorphic to the SU(2)
group which occurs in the Gel’fand chain, Eq. (6.23).
However, the SU(2) group associated with the trans-
formations (6.73) entails transformations on the U(3)
label g=j—m'4B in the Gel’fand pattern.

We have given explicitly the transformations of the
basis, Eq. (6.70), for certain of the U(4) generators
E;, i.e., relations (6.75) and (6.76). The transforma-
tions corresponding to the remaining U(4) generators
can be calculated from these given ones by use of the
commutation relations (6.43), the Hermitian conjugate
relation, Eq. (6.44), and the transformations of Es. For
completeness, we note this latter result and the eigen-
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values of the diagonal generators:

<2j+ﬁ B)
EyF
Jt+m+p
=[(j—m+1) (j4+m'+1) (p—2j—B) (2j+ﬂ+2)]”2
(25+1) (2742)

<Zj+1+[3 B)

XF

j+m+B

+[(j+m) (j—m') (p—B+1) (!3+1)]”2
2§(25+1)

2j+8  B+1
XF . (6.86)
jt+m+p

(En, Es, Ess, Ey)
(6.87)

The top two rows of the Gel’fand pattern have been
omitted in Eq. (6.86) for convenience of expression.

Finally, let us also note that the Gel’fand basis
vectors, Eq. (6.70), are homogeneous of degree p—g
in (11,75, 75) and degree g in ({1, &2, {3)

pp 0O
?q0

pp00

pq0
F (A, u§) =NP=9uF

a

(n,8).
af

Y Y
(6.88)

This result implies that the eigenvalues of the operators
91 and 9,, defined by

() (1, 6) = (En)F(n, ), (689)
(@) (3,6) = (6l F(,5),  (690)

are given, respectively, by
(91, 9)—>(p—1, 9) (6.91)

on the space 3C, . A further implication of this result
is that the U(3) Gel’fand invariants can be expressed
as simple polynomials in the operators 9; and 9,, while
the U(4) Gel’fand invariants are polynomials in 9;-95,
these statements applying, of course, to the particular
realization of these operators on the space 3¢,,0. Thus,
the two operators, 9; and 9, completely specify the

U(4) and U(3) transformation properties of the space
3Cp.0.

While the preceding results are of considerable in-
trinsic significance in the study of the unitary groups,
of particular interest here is the relation of these results
to the 3-particle problem which obtains through the
identification, Eq. (6.66). The Gel’fand basis vectors,
Eq. (6.70), then become solid harmonics on the 6-sphere
(span the space £,), and the SO(6) generators relate
explicitly to the SU(4) generators through Eqs. (6.46)—
(6.50). In particular, let us now see how the orbital
angular momentum operators come into the scheme.

Using Eq. (4.22), we identify the orbital angular
momentum operators as

Li=Los+Lss,
Ly=L51+Les,
L= L1+ Ls5. (6.92)

Using Eq. (6.46), we identify the orbital angular

~ momentum operators, in turn, with the U (3) generators

as follows: :

Li= —’L'(Ej/;—‘ Ekj), (6.93)
where 7, 7, k are cyclicin 1, 2, 3, i.e., the angular momen-
tum algebra is a subalgebra of the Lie algebra of the
democratic subgroup—a structural feature which was
assured intrinsically by our particular homomorphism
of SU(4) onto SO(6).

The Gel’fand basis vectors of £, do not, of course,
achieve the full goal of characterizing the basis of £,
through the angular momentum quantum numbers.
One must still reduce each of the U(3) IR spaces—the
subspaces of 3C,,0 spanned by the basis vectors having
fixed g—into its SO(3) irreducible constituents. It is
this part of the problem which is difficult to effect, in
general. It is, however, possible by a simple change of the
basis of the Lie algebra of SU(4) to bring L; to diagonal
form. This is the subject of the next subsection.

E. Change of Basis

We regard the relative position vectors x! and x* with
components (#1x5%3) and (x4¥s5%6) , respectively, as given,
and we do not wish to change their definition. Neither
do we wish to alter the explicit U(4) generators of
Egs. (6.38)—(6.42) and the corresponding Gel’fand
basis vectors of the preceding section (as expressed in
terms of 7 and {). Each of the goals is achieved by
changing the relation of , ¢ to x. This entails giving a
new homomorphism of SU(4) onto SO(6). However, in
the new homomorphism, we wish also to preserve the
structural relation between the U (3) subgroup of SU (4)
and the democratic subgroup G of SO(6). These strin-
gent conditions imply that we should consider trans-
formations of the group O(6) of the form R—R,RR,,
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VREO(6), where Ry is a fixed element of G, for then the
democratic subgroup is mapped onto itself.

We simply state and then verify that the following
relations between 7, {, and « satisfy the above criteria
in addition to bringing L; to diagonal form on the
Gel’fand basis of the last section:

=3[ (wrties) 44 (wot-is) ],
ne =3[ (1 ixs) — i (0ai5) ],
3= (V2) ™ (25 ixcs),

S1=3[ (1= is) — i (%0—1x5) ],
Co=3[ (21— %) +4 (23— 1is) ],

$a= (V2) 7 (25— i) . (6.94)

We re-emphasize the viewpoint that we have only
changed the relations of 7, { to x. We now define the
matrix W, to be the matrix obtained by the explicit
substitution of expressions (6.94) into Eq. (6.26).
Conversely, if W is any matrix of the form (6.26) with
¢i=n:*, we associate with it the point of Euclidean
6-space obtained by inverting Egs. (6.94). In this way,
we obtain a one-to-one correspondence between the set
of matrices of the type W (with {;=%.*) and the points
of Euclidean 6-space

(6.95)

Observe that this new correspondence is distinct from
the one given by Egs. (6.17) and (6.45). Furthermore,
we now let F(W,) denote the value of F at the point «
of the new correspondence

F(W,)=F(x). (6.96)

Starting with the generators of Eqgs. (6.38)-(6.39),
one now verifies directly the following relations for
W=W,:

(@125 «+» x5) W

Ey—Ep= £12+£45 = L3,
V2(Egp— Ei3) = (La+Ls6) +1(La1+Le1) = Ly,
\/?(Egg—Egl) =L (6.97)

where L= L;4-iL,. Thus, the assertion that L; is now
diagonal is verified. Indeed, the eigenvalue of L; on
the Gel’fand basis vector, Eq. (6.70), is just

L;—2m. (6.98)

We still must demonstrate that we have not upset
the democratic subgroup in the process of making the
identifications, Eqs. (6.94), i.e., that we have simply
established a new homomorphism of SU(4) onto SO(6)
which leaves the democratic subgroup invariant. To estab-
lish this fact, we first note that

Wo=Z302=VoZaVo, (6.99)

where Z, is the matrix of Eq. (6.12), R, is the proper
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orthogonal matrix
110 0 0O
00 0 1t —1 0
00vV2ZO0 0 0
Roy= (V2)! , (6.100)

00 0 1 1 O

-1 1 0 0 0 O

00 0 O 0 V2

and V, is either of the SU(4) matrices which corre-
sponds to Ry in the old homomorphism of Lemma 9:

12 1V2 0 0
iNZ —i/N2 0 0
+Vo=exp [1(i7)] (6.101)
1 0
0 0 0 —1
We further note that
R0=AM{)AT, (6.102)

where 4 is the matrix of Eq. (6.4), and M, is the matrix

Q O
M= ) (6.103)
0 Qo*
and where (Q is the unitary matrix
1 10
Q=(V2)""|i —i 0 (6.104)
0 0 V2

Thus, Ry belongs to the democratic subgroup G of
SO(6).

Next, let V now denote the SU(4) matrix which
corresponds not to R, but rather to RRR, in the old
homomor phism B

:EV—)R()RRO

Then, from Eq. (6.99), we obtain
Vva=VZ;ZQIV=Z(;?.0§R0)I}03:=Z;Eo;h:= W’I‘Zz,

that is, o
Wh=VW,V. (6.106)

Relation (6.106) is a new homomorphism of SU(4) onto
SO(6) which maps the matrix V directly to the matrix R:

V—R. (6.107)

Indeed, the new rule for relating SU(4) matrices and
SO(6) matrices is now given by

R=A(MQM,") A,

(6.105)

(6.108)
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where 4 is the matrix of Eq. (6.4). Here M, is the
matrix defined by Eqs: (6.103) and (6.104), and,
finally, Q is defined in terms of the partition matrices of
V just as in the old homomorphism, i.e., by Egs. (6.5)—

(6.8). Clearly,

V—R (new homomorphism) (6.109)

implies

Vo'VVe—R (old homomorphism). (6.110)

Our new homomorphism, expressed equivalently in
either the form (6.108) or the form (6.106), now leads
directly to a set of relations between generaiors of SU(4)
and SO(6) such that Eqs. (6.97) obtain. The complete
set of relations, analogous to Egs. (6.46)—(6.50), can,
of course, be obtained by making the identifications,
Egs. (6.94), in Egs. (6.38)—(6.42). [Note that Egs.
(6.19)—(6.22) remain valid upon replacing Z, by W..]
We regard the new homomorphism as changing the
matrices of SU(4) which correspond to specified
matrices R. For example, the subgroup {[.®R;: R;€
0(3)} is still generated by the orbital angular momen-
tum operators (Li, Lg, L3), just as before, but the new
homomorphism associates these generators with the
subalgebra of SU(4) given by Egs. (6.97). Similarly,
the democratic subgroup GCSO(6) is still the set of
matrices defined by Egs. (5.11)—(5.13), it being clear
that the new homomorphism merely effects a unitary
similarity transformation on the submatrix U of M.

Summary. When we identify the variables 5, ¢ in the
Gel’fand basis vectors, Eq. (6.70), with x through Eqgs.
(6.94), we obtain a basis of the space £,, the basis
vectors being enumerated by the U(3) Gel’fand pat-
terns just as before, but now the generator Ey—Es has
the significance of being the third component, Ls, of
the orbital angular momentum. The two matrices of
SU(4) which correspond to O(Py) =T (P1)®I; Pi=
(123), in the new homomorphism, Eq. (6.108), are
still given by Eq. (6.11). &V; commutes with the
group G of Eq. (6.9), this group still being the subgroup
of SU(4) which corresponds to the democratic sub-
group G of O(6). Furthermore, on £, we have the
operator identity T oy =Siv,=Sy,, and the operator
Sy, commutes with the set of generators of Eq. (6.67).
Accordingly, Sv, must be diagonal on each Gel'fand basis
vector, Eq. (6.70), which has fixed p and gq. We defer
giving the explicit diagonal form of Sy, until after
investigating the more general question of the discrete
symmetry properties of the Gel’fand basis.

F. Certain Discrete Symmetry Propertles of the
Gel'fand Basis of 3C,,0

There are three very simple symmetries of the D
functions defined by Eq. (18) of Appendix 4. These
are the symmetries associated with the following opera-
tions on the argument matrix 4: (a) interchange the
rows of 4; (b) interchange the columns of 4; and (c)
transpose A. (For our purposes, we define a discrete

symmelry operator to be an operator which carries a
D function into a single new D function, multiplied at
most by a numerical factor.)

For simplicity let us write 4 as

a b
A= .
c d

and let F(A4) denote an arbitrary polynomial defined
on the variables a, b, ¢, d. We define the operators
®, @, and J by the following rules, respectively:

a b c d

((RF)( >=F< ), (6.112)
¢ d a b
a b b a

(GF)( >=F< >, (6.113)
¢ d d ¢
a b a ¢
¢ d b d

One should note very carefully the product rule, e.g.,

a b b a b d
<esp>( >=<m( )F( ) (6.115)
c d d ¢ a ¢

The operators ®, ©, and J generate a group of order
eight, the elements of this group being

H={1,®, e, 3, RC=CR, IR = CJ, 3C=RJ, RC3},

(6.111)

(6.114)

(6.116)
where we note that
R2=e2=F=1,
JRC=TICR=RCI=CRY,
®RIC=CIR=17. (6.117)

[This group is clearly isomorphic to a subgroup of Ss;
a realization of the isomorphism is ®—(13) (24), €—
(12) (34), 5—(1) (4) (23).]

The action of the above operators on the D functions
is easily determined by direct use of the definitions and
the explicit form of the D functions

(RDjm,m’ =Dj—m,m'; (6.118)
eDjm,m":Djm,—m’; (6.119)
3Djm,m’ =Djm’ ,me (6.120)

On the basic D functions, the group of operators, H,
induces the eight transformations on the quantum labels
(m, m') corresponding to any number of sign changes and
transposition.”

7 The transposition symmetry (6.120) is closely related to
the Regge symmetry of the SU(2) Wigner coefficients [see
Bincer (Bi70)]. -
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There is still another operation of considerable impor-
tance—complex conjugation. However, we do not
necessarily mean complex conjugation in the literal
sense, but rather an operation on the space of poly-
nomials which in some sense has the properties of com-
plex conjugation, and, in particular cases, may even be
complex conjugation. Looking back at either of the
restrictions of the variables, Eq. (6.66) or Eq. (6.94),
we are led to associate an operation, which we call
conjugation, with the interchange (n1, 72) ({1, ¢2) . Fur-
thermore, comparing the form of the matrix 4, Eq.
(6.111), with the matrix 9T, Eq. (6.77), it is seen that
an appropriate definition of a conjugation operator X
which will be relevant to the 3-particle problem is

a b —d c
([K’,F)( )-:F( > (6.121)
c d b —a

Again to make clear the product rule, we give another
example

a b e ¢ —d b
(3RF) = (&XF) =F .
¢ d b . d ¢ —a
(6.122)
In particular, the function XD, . is easily verified tobe

JCDim,m'= (.__1)m+m/Dj_m,_m,. (6.123)

Remark. From the point of view of the representations
of SU(2), we can consider the restriction of the matrix
A to U€ SU(2). Then, Eq. (6.123) becomes

(KD ) (U) = (= 1)* [ Dl (U) T*,  (6.124)

and X is, except for an over-all phase, the operation of
complex conjugating an IR of SU(2) (Wi59). However,
in this work, the D functions arise as pieces of stafe
vectors and aredefined on arbitrary variables (91,12, {1,¢2) .
The definition of & which we have given is more
appropriate to this latter situation, and, in fact, is a
part of the operator (we still must consider the variables
3, 13) which complex conjugates a solid harmonic on
the six sphere.

We can now adjoin the operator & to the group H
of Eq. (6.116). The generators of the new group are now

®, C, 3, X, (6.125)
and a set of defining relations of the group is as follows:
RE=Cr=P=x2=1,

RC=CAR, ®RI=3C,
RRC=RCR, (RK)R=R(ARX)?
(BRR)2Ce=C(RXK)?, (RX)B=3(RK)?,

(RR)2K=K(RXK)>. (6.126)

A second set of defining relations is obtained by inter-
changing ® and € in the above relations.

CI=3R, KI=IX,
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The generators (6.125) satisfying relations (6.126)
generate a group of order thirty-two. The elements are
conveniently enumerated as follows:

K={H, H%, HX®, HX®x%}.  (6.127)

This enumeration clearly demonstrates that on the
basic D functions, we obtain a representation of the
group K which has the structure given by the set
equalities?:

{HR D'y } = (= 1) { HD e},
{HX®RD i} = (— 1) { HDlyp },
{HRRK D'} = (— 1) { HDlps } .
Observe that
(—1)m=(—1)2' = (—1)2%, (6.129)

since m and m' are integral or half-integral with j. Thus,
the transformations of the basic D functions corre-
sponding to the group K differ only by phases from
those of the group H. Nonetheless, the group K is the
smallest group which contains the elementary transforma-
tions R, C, and 3 together with the conjugation operator X.

Relations (6.126) can be used to write some of the
operators in K, as expressed by Eq. (6.127), in simpler
forms. Indeed, we find it useful to write out all thirty-
two elements of K:

K'={1,3, X, ®RC, 3K, RCJ, RCK, RKR, RKEC, RCIX,
RIKR, CIKR, (RK)?, CRAK, J(RK)?, (RK)IHRK)},

(6.128)

(6.130)
K—K'={®, €, ®3, 3, RK, X®, CX, K€, RIK, CIX,
KR, KR, KRK, KCK, IKRK, KRIK}. (6.131)
Then we have
K=K'U(K—K'). (6.132)

But now observe that K’ is an invariant subgroup of K.
The proof is very simple and follows immediately from
the fact that a transformation in K’ does not change
the sign of the determinant, det A=ad—bc, while a
transformation in K — K’ does change the sign of det 4.
(This fact will be of considerable importance later.)

There are additional discrete symmetries (in the
limited sense of our definition) of the D functions which
are identified with their general homogeneity properties.
Thus, for arbitrary (nonzero) complex numbers X, p,
and », we define the operator ®.,, on the space of
polynomials by

e b A uwb
(<PWF)< >=F< > (6.133)
c d Mc/u vd

8 These symmetries are closely related to the classical sym-
metries of the hypergeometric functions [see Whittaker and
Watson (Wh46)].
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In particular, on the D functions, the operator ®,,, is
diagonal

CPrs Dy = N ym—mlyi=mDi, L (6.134)

Furthermore, one easily verifies the following operator
identities:
®_1,1,.1=RCX,

®1,-11=RXKC,

P11, = (RK)2 (6.135)

However, none of the other ® operators (except the
identity) is in the group K. (This is easily seen because
the only sign changing generator of K is X, and it
effects sign changes only on diagonally opposite ele-
ments.)

One could, of course, adjoin certain of the ® operators
to K, but there appears to be little motivation for
doing so. ' .

The preceding properties of the D functions lead to
a rich structure of discrete symmetries of the Gel’fand
basis of 3C,,0. To see how this comes about, we must
still consider discrete transformations of the variable
pair (ns, {3). To this end, we introduce the group having

eight elements as follows:
{Eao, dzou, as, *as}, (6.136)

where « is the 2)X 2 identity matrix and

0 1 01 1 0
ay= ) Q= y o3= .
10 -1 0 0 —1

(6.137)
We then define operators 8., by the rule
(8+a:G) (ms, $3) =G (04, &5'), (6.138)
where
5’ 7
=+a; . (6.139)
¢s 3
The group of operators,
S={84a;:1=0, 1, 2, 3}, (6.140)

then comprises a representation of the group (6.136) on
the space of polynomial functions of two variables.
The idea now is to consider the direct product of the
groups K and S, where the variables of the D functions
are now identified to be a=mn, c=mn, b=(s, d=—{1.
(Observe that the two operator groups commute, since
they effect transformations on different variables.)
However, the Gel’fand basis vectors of Eq. (6.85) are
not quite product functions of the type DG, where G
is defined only on the variables 73, {3, since det 9T also
enters as a variable. This implies that the simple dis-
crete symmetries of the Gel’fand basis vectors do not
involve the full direct product group, but rather a sub-
group. Indeed, as already noted, the operators ® and ©
induce a sign change of det 91, whereas 3 and & leave

det 9 invariant. Accounting for this feature and the
induced shifts of the labels in the Gel’fand patterns,
we are led to introduce the subgroup of the direct
product group which is generated by the following four
elements:

RSy CSagy I8a;, KSay. (6.141)

The group D generated by the generators (6.141)
contains 128 elements as follows:

Dl~_— {K, (Siﬂm Sztal) };
D—D = { (K—K’) (S:taz; giaa) } )

(6.142)
(6.143)

where the notation means that each of the four elements
in ( , ) multiplies each of the elements in K’ or
K—K’, as indicated. Observe that the elements
(8£aoy 81+a;) comprise an invariant subgroup of S, so
that the elements (6.142) comprise an invariant sub-
group D’ of the group D,

D=D'U(D—D"). (6.144)

The finite group D is the only group which we can
construct from K and .S such that the elements of D
carry one Gel’fand state vector into a phase times
another. We now list explicitly the transformations on
the Gel’fand basis corresponding to the generators
(6.141) [omitting the fixed top row in Eq. (6.70)]:

»q0
RS F a B
0%
P ptg—a—8 0
=(_1)6F P_B P_a )
=
p¢q0
C8,,F a B
0%
P p—q 0
=(=1DFF| p—8 p—a 1},
p+y—a—8
2 q0
38e,F a
.
? P 0
=(=DrteFl p—8  p—a |,
p—q
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g0
XS$,F| a8
Y
p p—q¢ O
= (—1)ptatatbtrf p—R8 p—a (6.145)
=
Note that the operator X8, is
(X8, F) (0, §) =F (&, m), (6.146)

and is just complex conjugation on the 6-sphere.

There are sixteen distinct final Gel’fand patterns
associated with the transformations of the group D,
i.e., each of the final Gel’fand state vectors is labeled
by one of these sixteen patterns and a phase. Let us
note explicitly these patterns by giving the final values
(o/8'; ¢’v") which can occur in

For (&/8’) = (aB), we have the following set of values
for the labels (¢'v’):

(‘Z> 7)1 (7) Q); (q: a+ﬁ_7)y (OL+,3—'Y, q)y (a+ﬁ_q) 7))
(v,a+B—q), (a+g—g, a+B—7), (a+B—7,a+—9q).
' (6.147)

For (o/B) = (p—B, p—a), we have the following set of
values for the labels (¢’y’):

(0=4,p=7), (b=, 2—9), (p—g, p+rv—a—8),
(p+v—a=8,p—9q), (p+g9—a—8, p—7),

(=7, p+q—a—8), (p+g—a—B, p+y—a—8),
(p+v—a—B, pt+g—a—B). (6.148)

There are additional discrete symmetries of the
Gel’fand basis which are identified with their homo-
geneity properties. Thus, for arbitrary (nonzero) com-
plex numbers A, g, » and p, we define the operator P,
on the space of polynomials by

(®rnwoF) (nanamsgaseds) = F (Nnx, Nome/ s, pma, 51, ps2, Wa/p).
(6.149)
®nurp is diagonal on the Gel’fand basis and has the
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following eigenvalue:
pq0
(G’x,pr )| a8
Y
pq0
= \otb—qyatr—a—Byatb—yor—a—f a B (6.150)
Y

It is interesting to observe that each of the trans-
formations of D as well as the general operator ®yu,
carries the function

f(n, ©) = (mirtnele) /nsts (6.151)

into itself.

To each discrete symmetry of a Gel’fand basis vector
of 3C,.0, there corresponds a discrete symmetry of the
Gel’fand basis of £, which obtains through, say, the
restriction of Egs. (6.94). In particular, consider the
operator

@(123)E@e,e*,e*,e, (6.152)

where ¢ is the complex number occurring in Eq. (5.19).
(Note that e¥=e=¢"".) Then

2 q0 pgq0

ap |,

= ePtafd

G’(ug)F a B (6153)

Y Y
and under the restriction, Eqs. (6.94), we have
(6.154)

for Py=(123). Hence, Top, is diagonal on the space
£, as expected from its role in defining the democratic
subgroup.

In order to discuss the properties of the Gel’fand
basis vectors of £, under the remaining permutations
of S; (the permutation group associated with the
identical particles), it is convenient to introduce an
explicit set of relative coordinates:

x'= (rl_ rZ) /\/2_)
x2= (rl'4-12—2r%) /(6) 2 (6.155)

[Recall that x!' has components (wixexs), while X2 has
components (xs¥s).] Then we have

—13
, (6.156)

-1
2

Cueny—>Sv=Towy

1
2

1
2

(123) : [x'x* - x'x%] (

&

. -1 0
(12) (3) : [x'x*]—-[x'x?] ( ) , (6.157)
01 ‘
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so that
-3 —3V3
r'(P)= . P=(123), (6.158)
M -3

-1 0
I‘(P)=( ) P=(12)(3). (6.159)
0 1

Since .3 is generated by (123) and (12) (3), it is suffi-
cient to consider only these two elements.

Note that ¢ in Egs. (6.152) and (6.153) now becomes
the specific number [cf. Eq. (5.19)]

e=exp (4m3/3). (6.160)

The transformation (6.157) corresponds to the trans-
formation on the variables (4,{) of Eq. (6.94) as
follows:

(12) (3): (n, £)— (=82, —§1, — 3 =72, =M1, —n3).

(6.161)
Correspondingly, the operator

(6.162)

is the operator on 3C, o which represents the transforma-
tion (6.161). (This operator is not in the group D.)
Under ®ue ), a Gel’fand basis vector undergoes the
transformation as follows:

Caz)@=C—-1,-1,1,-1C8,

g0
(CaywF)| a8
v
p p—q 0
=(—1)F| p—p p—a (6.163)
p+y—a—8

Again, since ®uz s does not commute with the Lie
algebra [Eq. (6.67)7] of the democratic subgroup, we
find, as expected, that the action of ®ugs) on a basis
vector carrying SU(3) IR labels [p ¢ 07 is to carry the
vector out of the subspace (the new vector, of course,
must belong to 3C,,0). However, ®uz) s does commute
with the orbital angular momentum subalgebra (as do
all the permutation operators), and the angular momen-
tum content of a state vector must be preserved under
®a2 - Specifically, we see that each of the initial and
final states in Eq. (6.163) has Ly—2y—a—8.

There is an important exception to the preceding
observations. For p=2k (k integral) and g=k, the IR
subspace [2k k 0] of SU(3) is also a representation space
for the group Ss. These are the so-called self-conjugate
IR spaces of SU(3)—the IR spaces which are mapped
onto themselves under the action of the SU(3) con-
jugation operator, kere identified as KS.,. This subspace
of 3Co,0 enjoys the additional property that the basis

vectors can be further classified (by taking appropriate
linear combinations) as states having definite permuta-
tion symmetry with respect to the full group Ss. This
property is unique to the self-conjugate subspaces, i.e.,
it is impossible to obtain a complete basis of 3¢, o with
sharp SU(3) IR labels and definite permutational
symmetry with respect to S3; only the self-conjugate
subspace of 3Cy,0 enjoys this property.

Summary. We have obtained a large set of discrete
symmetries of a specific set of SU(3) state vectors,
some of which have been identified with a finite sym-
metry group D. There would seem to be little additional
information obtained by adjoining to D further opera-
tors of the diagonal type, since the important trans-
formations on the state vectors are those associated
with the set of sixteen new state vector labels of Egs.
(6.147) and (6.148). We believe this is the first time
that a reasonably complete discussion of the sym-
metries of SU(3) state vectors has been given. These
symmetries have been discussed because of their rele-
vance to SU(3) group theory, in general. As a particular
application, we obtain a large set of symmetries of the
solid harmonics on the 6-sphere, and have indicated
how the symmetric group S; fits into the scheme.

G. The Reduction Problem SO(3) CSU(3)

The problem of reducing an IR space, specified by
[ q0], of SU(3) into those subspaces which are IR
spaces for SO(3) has not been solved in a completely
satisfactory manner.

The difficulty is that no clear and general structural
principle has been given which suggests a satisfactory
resolution of the problem associated with the multiple
occurrence of an IR of SO(3) in SU(3). The final
solution to this problem may, indeed, entail the use of
an additional invariant (Ba60, 61; Ra62) which dis-
tinguishes those subspaces which carry the same SO(3)
representation, but one surely must take into account
the group of automorphisms of SU(3) (Bi69).

We wish to examine some of the aspects of this
problem as they relate specifically to the Gel’fand basis
of 3Cp,0. In particular, we suggest a new approach to the
multiplicity problem—one which has already had suc-
cess in a somewhat different, but related context
(Lo70a).

The recognition that the orbital angular momentum
operators [generators of SO(3)] can be related to the
U(3) generators through Egs. (6.97) and the restric-
tion (6.94) greatly simplifies the counting in the multi-
plicity problem. (We will use the notation Ls, Ly for
the operators on the left-hand side of Egs. (6.97) even
though we do #of restrict 7, { to x, this restriction being
irrelevant to the structure of the problem.) On a
Gel’fand basis vector, the eigenvalue spectrum of Ls is
then just the set of numbers {2y—a—g}, where «, 8,
and v run over all values consistent with their positions
in an SU(3) Gel’fand pattern specified by [p ¢ 0].
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One simply examines this set of numbers to deduce the
tables of allowed angular momenta L (Lo65, Ra49).

One then finds that, for prescribed [p ¢ 0], L always
has a value in the interval

0<L<p, (6.164)

and that it occurs with some multiplicity M (L), whick
may be zero.

We do not duplicate the tables for L, since 9 (L)
can be given in closed form, thus obviating the need
for tables.

Let L be any selected value in the interval (6.164)
and consider the SU(4) Gel’fand state vector (we will
always omit the top row of labels) '

P q 0

F a a—L—2q¢ (6.165)

a—ao

This state vector clearly has L; eigenvalue L for all «
and o consistent with the allowed entries in the Gel’fand
pattern, i.e., for

pazy,

g+L>a—2e>L. (6.166)

Furthermore, each Gel’fand basis vector having Ly—L
can be written in the form (6.165) [if there exist no «
and o satisfying Eqgs. (6.166) for a prescribed L, then
WM(L)=0].

We note, without giving the uninteresting proofs, the
following formulas for 9 (L). First, let N (L) denote the
number of Gel’fand patterns (6.165) having Ly—L for
0L L<Lp. Then we have

M(L)=N(L)—N(L+1). (6.167)

Second, let the numbers 9,(L) and ¢,(L) be defined
as follows:

MH(L) =[(p—L+2)/2, (p—L+1)/2],
0o(L)=[(¢—L)/2, (g—L+1)/2],  (6.168)
where the square bracket signifies that one is to choose
the integer from the set of two numbers. The multi-

plicity is one of the following four numbers depending
on the relation of L to ¢ and p—g:

L2q, L2p—q; IM(L)=M,(L),

L2gq, L<p—gq; IM(L)=M,(L)—0,—(L),

L<gq, L2p—gq; IM(L)=M,(L)—oq(L),

L<q, L<p—g; M(L)=M,(L)—0p—(L) —a,(L).

(6.169)

The standard procedure for reducing any space which
is invariant with respect to SO(3) into its irreducible
subspaces is to determine the set of highest weight
vectors which belong to the space. Here this is the
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problem of determining all vectors of the form
» q 0
Fppr=2Cl «a a—L—2¢
oa—ag
p q 0
XF o a—L—2¢ ,  (6.170)
a—ao
such that
L,F,01.=0, (6.171)
since F 4. already satisfies
LsF pg;.=LF ;1. (6.172)

Here L is, of course, any preselected angular momentum
value, 0<L<p. The SO(3) basis vectors Fgu are
then obtained by the standard lowering with L_.

Let us observe that when L, operates on Fpyy it
carries the Gel’fand vector in the summation to the
form

P q 0

o — (L+1)—2¢" (6.173)

o —0o

for certain new labels &/, ¢/, but in particular, the new
value of angular momentum is necessarily Z+41. How-
ever, the number of Gel’fand patterns of form (6.173)
is N(L+1), and all of these final state vectors will enter
into the new summation of Eq. (6.170) (after L, has
acted). This signifies that Eq. (6.171) will lead to
precisely N(L+1) relations among the set of coeffi-
cients, {C}, which contains N (L) coefficients. In con-
sequence of Eq. (6.167), there must be precisely 910(L)
coefficients in the set {C} which can be chosen inde-
pendently, thus determining 9 (L) linearly independent
highest weight vectors of the form (6.170). It is pos-
sible to prove that the set of coefficients

[ [?¢ ¢ 0

c P p—L—20 t0=0p—q(L), 0p—o(L)—1,

p—o

opa(L) =2, oy o(L)—IM(L)+1}  (6.174)

is such an independent set. (The proof is very com-
plicated, and we omit it, since we make no use of the
result here.)
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It is more instructive to consider special cases, there-
by gaining some insight into various aspects of the
multiplicity problem. For this purpose, as well as for
the general problem above, we note the following
generator transformations:

_ [(P~a) (a—g+1) (a+2) (v—6+1) }”2
(a—B+1) (a—B+2)
» g 0
XFl o+l 8
v+1

_[(a—v) (p—B+1) (¢—8) (B—H)]‘”
(a—B) (a—p+1)

? g 0

xF| a« g+t |, (6.175

v+1

_ [(P—ﬁ+2) (¢—B+DB0=p+1) ]1/2 s
(a—+1) (a—p+2)

(a—r) (p—at1)(a—q) (at-1) 2
+[ (a—B) (a—B+1) ]F
Y

(6.176)

Equations (6.175) and (6.176) are the relations
required to effect the application of L,/V2=Ezp—Fi;
to Eq. (6.170). Condition (6.171) then clearly leads
in the general case to a four-term recursion relation on
the coefficients, {C}.

Let us look at some special cases: (Additional unique
highest weight vectors are given in Sec. VIILE):

(1) L=p

The unique® highest weight is clearly
pq0

Fl po0 |, (6.177)

?

since this state is annihilated by Ej; and Es; separately.
(2) L=p—1 '
The unique (normalized) highest weight is easily
determined to be

pq0
Lp—q)/pTPF| p 1
P
P g 0
+Lg/p1?Fy p—1 0O (6.178)
p—1

(Observe that if g=p this vector becomes the zero
vector, since the coefficient of the first term vanishes,
and the second term vanishes in consequence of the
violation of the conditions on the entries of the Gel’fand
pattern—for ¢=p, we cannot have L=p—1.)

(3) L=p—2

The Gel’fand patterns which enter into the right-
hand side of Eq. (6.170) are

p g0 ? ¢ O

p—2 0 , (6.179)
p—1 )

and from Eq. (6.167) we see that there are two highest

weight vectors for ¢ in the interval 2<¢<p—2, and

one for ¢=0, 1, p—1, or p. The two general relations

among four coefficients resulting from condition (6.171)

are as follows:

pq0 p ¢ O
L2p(g—D)I2CL p 2 JH¢”Cl p O
b4 p—1
4 g 0
—L(p+1) (p—q)T2C| p—1 1 ]|=0 (6.180)
p—1

9 We use “unique” rather loosely to mean ‘“unique up to a
phase.”



J. D. Louck anp H. W. GALBRAITH Orthogonal and Unitary Group Methods and the N-Body Problem 573

for p>¢>1; and b4 p;—l 0
. p+1 1/2
? ¢ O Fyptip—2= <(P*—1) (2;7—1)) F p 2
[p—ql*C| » O p
p—1 . p p—10
2(p+1) (P~2)>1’2
UGN
p g 0 p(2p—1)
thaptnIec| p-1 1 .
' b4 p—10
p—1 2(p—2) ]w
—|————| F —1 1 , (6.184
. re=s s ! (6.158)
b4 q p—1
—[2p(p—g—1)J2C p—2 0 |]=0 (6.181) ppO
p—2 Fopinse=—[2p—1]1°F p 2
for p—12>¢2>0. P
Note that for ¢=0, 1, p—1, or p Egs. (6.180) and
(6.181) reduce either to a single equation relating two p v 0
coefficients or to two equations relating three coeffi- 2(p—1) ]2
cients. In each of these cases, the solution is unique, +[ 2p—1 ] 0 . (6.185)

and we list these four special solutions explicitly for
reasons which will soon become clear: p—1

We now turn to the discussion of the general solution

p 0 0 to Egs. (6.180) and (6.181), and begin by raising some

2(p—1)\12 questions. Can one introduce in an arbitrary manner
2p—1 > F P 0 any pair of solutions to these equations? Is there some
additional structure which indicates how these equa-

p—1 tions are to be solved? It seems to us that the answers

to these questions are no and yes, respectively, for the

P 0 0 following reasons. Suppose one does by some arbitrary

12 procedure, find two orthonormal solutions, say, Fpq;p—2®
) p—2 0 , (6.182) and F,g,2®. Then certainly for arbitrary 2<¢<p—2
there can be no ambiguities in these solutions, and they

p—2 would appear to be quite acceptable. But it is a meaning-

ful question to ask what happens to these solutions

» 10 when we set ¢=0, 1, p—1, or p in them, in which case,

5 ’ )\ we kn9w there is a uni‘que solution to the problem.
F, l'p—2=< (p+1) (p— )) b 0 Does either or both solutions become undefined ? Rather
w p(2p—1) than answering this question, we pose a more positive
p—1 problem. Does there exist a pair of orthonormal vectors

which solve Eq. (6.171), and which are defined for all

integral values 0< ¢< p, such that for ¢g=0, 1, p—1, or p
one solution becomes the corresponding unique solution
< 2(p—2) )1/2 . 1 of Eqgs. (6.182)-(6.185), the remaining one becoming
p(p—1) (2p—1) P the zero vector? Ves, as we shall demonstrate. The exist-
ence of such a property in the nontrivial special case

FD.O;P—2=<

p—1 - under study suggests that, despite the fact that p and ¢

. assume discrete values, there exists a sort of ““continuity”

P 10 principle on the state vectors, considered as functions

(p+1) 1/2 ) of p and ¢, which regulates their behavior under a
+(W1—)> p—2 0 , (6.183) suddenchangein the multiplicity, which, in our example,

is a jump from two to one when ¢ assumes the value
p—2 0, 1, p—1, or p. We believe this behavior to be an
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example of a general reduction principle which must be
reckoned with in dealing with the multiplicity problem.
We will state this principle precisely in a moment, after
giving the aforementioned solutions and discussing
them.

A pair of orthonormal vectors possessing the appro-
priate reduction properties is as follows:

pq0
Fpgips®= |:(P+U(P q) (p— ‘1“1)]1/2 p 2
Apg
p
p g O
1)V (f— g 2
R (o,
A/-fl
p—1
p g O
—_ 1/2
—{—I:S%M] F p—2 0 , (6.186)
p—2
g0
1 1/2
Fpg;p—2® —(3P 29— |:CI((1 )] F
0
2 1 — 1/2
+(p_2q)[ (r+ )q(p q)
2 T2
+Am[§——} a P 0 +(p+2¢—1)
p—1
p g O
- g 1/2
x[”———~(1’ qgf d U] Fl p—2 o |, (6187
p—2
where
l)q /’(P 1)2 ZQ(P—Q)J (6-188)
Bhg=pq(q—1) (3p—2¢—1)>+2(p+1)q(p—q) (p—29)*
+24,7+p(p—q) (p—q—1) (p+2¢—1)%  (6.189)
In particular, we have
Ap0=App=?(P_l)2a
Ap=A4ppa=(p+1)(p—1)(p—2),
B,,(,:Bm,:p?(p—l)”(Zp—l),
Bp=Bpp1=(p+1)p(p—1)2(p—2) (2p—1). (6.190)

Remark. The coefficients 4,, and B,, are, respec-
tively, the sums of squares of the numerators of the
coefficients appearing in Egs. (6.186) and (6.187).
However, only for 2<¢<p—2 are these factors the
norms of the vectors one would obtain by deleting 4,
and B,4 from F® and F®, This follows from the fact
that a Gel’fand basis vector may vanish, while its
coefficient does not.

We now observe that the vector defined by Eq.
(6.186) becomes the zero vector for each ¢=0, 1, p—1, p
(either the coefficient or the Gel’fand vector vanishes).
On the other hand, the vector defined by Eq. (6.187)
reduces for each ¢=0, 1, p—1, p to the appropriate
unique vector from Eqs. (6.182)-(6.185). Thus, there
exists a pair of orthonormal highest weight vectors

. possessing the reduction properties that we promised

to demonstrate.

Still another important property must be mentioned.
Noting that 4,;=A4p,,— and Byg= B, ,, and using the
property of the operator ®as ) given by Eq. (6.163),
we easily derive the following relations:

(6.191)
(6.192)

( l)pr P--q; p—2(1),

=(=1)""Fppqip—2?.

P2y F pgip—2"
Cu2y»F pa;p—2®

In particular, on self-conjugate states where p=2% and
g=~Fk, the operator ®z) ) is diagonal and has eigenvalue
+1 on the first vector, and eigenvalue —1 on the
second. For ¢=0, 1, p—1, or p, the properties expressed
by Eq. (6.192) are unique, since the vectors are unique.
What is remarkable is the fact that these same prop-
erties hold for arbitrary ¢ on our multiplicity two states.

This concludes the detailed discussion of the L= p—2
case, except for some general comments made later
relating to uniqueness. We have displayed a pair of
orthonormal highest weight vectors with some rather
intriguing properties. These properties suggest that
there exists an underlying structure in the multiplicity
problem of a very general nature, which we now discuss.

One point clearly emerges from the study of the pre-
ceding particular case. One learns nothing about the
structure of highest weight vectors by considering
isolated values of ¢—for prescribed p and L, one must
examine the behavior of highest weight vectors for the
full set of allowed values 0, 1, «+ -, p of ¢g. For this pur-
pose, it is essential to know how the multiplicity, which
we now denote by 9,,(L), varies with g. These results
are easily obtained from Egs. (6.169). For prescribed p
and L (0<L<p), we have the following multiplicities
of L associated with ¢:

(1) 2L>p
p—L<q¢<L; Nyo(L) =M, (L),
OSQSP_L; mﬂq(L) =f)Tl,,(L) _‘Tp—q(L);

L<q<p; My (L) =M, (L) —aqg(L). (6.193)
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(2) 2L<p
L<q<p—L;  Myo(L) =9M,(L) —0g(L) —0p—o(L),
0<¢<L; Mg (L) =IMy(L) —0p—(L),
p—L<q<p;  Mu(L)=M,(L)—0o(L).  (6.194)

For 2L2> p, M, (L) is clearly just the maximum multi-
plicity of L which can occur for any ¢ and does occur
for a particular ¢. Furthermore, as ¢ runs over the values
0, 1, -+, p, the multiplicity of L actually assumes one
of the values 1, 2, <+« , 9N, (L) for at least one value of .

For 2L<p, the maximum multiplicity is 9,(L) —
o,—r.(L), and again the multiplicity 9,,(L) assumes
each integral value from one to the maximum for
appropriate choices of ¢. In either case, 2ZL>p or 2L<p,
the maximum multiplicity always obtains for ¢=L, i.e.,
M,(L) is the maximum multiplicity of L for any
choice of ¢, and each multiplicity 1, 2, «++, 9, (L)
obtains for some choice of g.

We now conjecture that the following fundamental
result is valid, emphasizing that we have, in fact, not
proved it, in general:

Multiplicity Reduction Theorem. There exists a set of
highest weight vectors

{F:MZ:LO‘): >‘=17 2; ) mzlL(L) }}

with properties as follows: (a) The set is unambiguously
defined for each ¢=0, 1, -+, p; (b) for each particular
choice of ¢, the set contains 9N,z (L) —9M,e(L) zero
vectors and 9M,,(L) nonzero orthonormal highest
weight vectors; (c) each time the multiplicity is reduced
by one, in consequence of choosing ¢ to belong to the set
of ¢ values which yields the lesser multiplicity, a single
vector goes to zero and remains zero for all subsequent
g values which yield still smaller multiplicities.

This conjecture is just the assertion that there exists
a branching law in the multiplicity space: Each time the
multiplicity is reduced by one, a vector “splits off”” by
becoming (and remaining) the zero vector. (The
analog to subgroup reduction is obvious.)

It seems premature to initiate any discussion of
uniqueness until one can either affirm or deny the
general validity of the Multiplicity Reduction Theorem.
If it proves to be correct, then one can proceed to
introduce those additional concepts (Lo70a) which will
be essential to such a discussion.

Summary. The problem of reducing SU(3) into its
S0O(3) irreducible constituents has been formulated
precisely in terms of the Gel’fand basis. By considering
in some detail a special multiplicity two case, we have
been led to conjecture the existence of a Multiplicity
Reduction Law, which, if valid, signifies a rich structure
of the multiplicity space. In any event, the multiplicity
problem must be given careful thought, and the search
for a meaningful structure continued until it unfolds
fully.
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VII. N-PARTICLE STATES: COUPLING METHOD

In this section, we consider a construction of the
solid harmonics on the 3(N—1)-sphere which is par-
ticularly appropriate to the democratic subgroup struc-
ture of the 4-particle problem (Ga71) [see Lemma 8
and Egs. (5.31)-(5.51)7]. We carry through the con-
struction for arbitrary N =3, 4, - -+, since it requires no
more effort than does the particular case® N=4. (For
N =3 the technique is valid, but it is not particularly
useful for elucidating the democratic subgroup structure
of the 3-particle problem.)

Let x!, x2, --+ xV~! denote a set of relative position
vectors, and let fu(x)=f (X%, %% -+, x¥1), where
(B)=C(l, b, +++, Iy—1), denote a polynomial which is
homogeneous of degrees Iy, ls, ««+, Iy_, respectively, in
the position vectors X!, X%, ««« xV1:

Fay (X!, M%) oo, AyaXV)
=\ {\pl2e . .)\N_llN—lf(xl’ x2’ cee xN—l) .

(7.1)

We also require that f(;) be a solution to Laplace’s
equation:

A V¥ (%) =0, (7.2)
where
N—-1
Vi= ) Ve.Ve, (7.3)
a=1

For example, f;y may be a product of solid harmonics
of the form
N-1

fo= I Yiwme,

=1

(7.4)

where Yimg (Ma=1la,le—1, <+ +, —1,) is the set of simul-
taneous eigenvectors of L#+L* and L;*, where L is the
orbital angular momentum associated with relative
position vector x*. Here f,) may also be any arbitrary
coupling of the solid harmonics which preserves the
angular momentum labels Iy, s, -+ -, Iy—1, hence, the
homogeneity property (7.1).

The only polynomials in the x;# which commute with
the angular momentum operators L* (a=1, 2, .-,
N—1) are polynomials in the variables &, &, -+, év—1,

where
o= (x*-x%) /4. (7.5)

It follows therefore that it must be possible to span the
space £, [ the set of homogeneous polynomials of degree
$ which solve Laplace’s equation on the 3(N—1)-
sphere]] by basis vectors of the general form

(&) fy (%), (7.6)

where F)(£) is a polynomial which is homogeneous of
degree N in &y, &, + - -, En_a:

Pr(ukr, pbo, + =+, péno) =prin(Ey, &, o0, Eva) . (7.7)
Thus, the function (7.6) is homogeneous of degree p

10 The 4-particle problem has also been considered from the
viewpoint of the structure 0(9) DO0(3) X0(3) (Su67).



576  ReviEws oF MODERN Pmysics « Jury 1972

as follows in «
p=2+h+1l+- - +iya. (7.8)

The condition that the product function (7.6)
satisfies Laplace’s equation is

V() oy (%) =[ V2, Fx(§) Jfny () =0, (7.9)
where we easily calculate
. _ PR(E) &) s
7, B1= £ [t T 4 228 e .
(7.10)

Using the homogeneity property (7.1), we find that
F\(¢) must satisfy

2 [£a(9/082) 24 (la+3) (8/08) JFA(E) =0.  (7.11)
We proceed now to solve Eq. (7.11). We put
N1
Fr(§) = ?:) C(u)[I‘_I1 £/ (pa) Huatlat3) 1], (7.12)

where half-integral factorials are gamma functions a!=
I'(e+1), and where the sum is over all nonnegative
integral u, such that

wtpete e Fuv_=A (7.13)

The number of terms in Eq. (7.12), i.e., the number of
coefficients C(u) is therefore just

NN—2
n)\(N) = .
N--2
The requirement that F\(¢) solves Eq. (7.11) now

yields the followihg conditions on the coefficients:

ZC(/‘D L Tl TR “N—1)=0: (7-15)

(7.14)

where the relation is to be applied to all y, such that
> pe=A—1. (7.16)

Thus, we have n,_1(N) relations among 7\ (N) coeffi-
cients, and the number of independent solutions to
these equations is

(V) —m—a (V) =m(N—1). (7.17)
One can, for example, choose the following set of

m(N—1) coefficients independently:
N1

uN-1) 1 2 va=M\}.

=2

{C(()) V2, V3, ** (7.18)
Indeed, the zero in the coefficients in the set (7.18) can
be chosen to be in any fixed position.

Corresponding to the set of independent coefficients
(7.18), we have the following solution to Eqgs. (7.15):

ooy 1) = (—1)#1() !

X 22 [C(0, v, -, VN——l)/Aiil (va—ua) V], (7.19)

») a=2

C(l"ly M2, *

where, as usual, 1/ (vo—pa) |=0 for pe>va. One verifies
these results by substituting directly into Eq. (7.15).

We now choose all but one of the coefficients in the
set (7.18) to be zero, and we choose the value of the
nonzero coefficient to be []. (v.)!. Since there are
m(N—1) ways of making this choice, we obtain
(N —1) independent solutions to Eq. (7.11):

L (=8

Py (£) g} GThtD) ]

X X [lﬁl [ patlat3) 1T () savrﬂa] ,

(#) La=2 e
(7.20)

in which (u) = (uaus* * *un—1), and the sum on () is
over all nonnegative integral values such that, for each
s, we have D, poa=s. For each sei of nonnegative integers
(v) = (vovgs + *wn—1) Such that Y .ve=NX\, we oblain an
independent solution to Eq. (7.11).

We chose the coefficients (7.18) as the independent
set for the simple reason that the set of solutions (7.20)
contains as a subset, the complete set of (polynomial) -
solutions to Eq. (7.11) for N replaced by N—1. These
are just the functions from Eq. (7.20) which have
vy—1=0 and accordingly have no dependence on &y_;.

The number of independent polynomial solutions,
homogeneous of degree p, which we obtain by com-
bining the functions of Eq. (7.20) with f; [given, for
example; by Eq. (7.4) ] is

AN—3
2 (")

ND a N—3

2p+3N—5 (PHIN=6
_ 2pHIN=3 —dime,, (7.21)
where the sum is over all nonnegative integers \, /s, «+ -,
In—1 which satisfy

Dt Y la=p. (7.22)
These product functions comprise a basis for the solid
harmonics of degree p on the 3(N—1)-sphere. [While it
is reassuring that Eq. (7.21) checks for simple cases,
we need not prove it generally as a separate problem—
it must hold in consequence of the fact that we have
found a basis for all solutions to Laplace’s equation
which are homogeneous polynomials.] There are two
difficulties with this basis: (a) the physical significance
of the labels (v) is not clear; and (b) the basis functions
are not orthogonal, in general, for distinct labels (v)
and (v’). Despite these difficulties, there appears to be
no simple alternative to these solutions when one
attempts to find solutions to Laplace’s equation by
coupling single particle solid harmonics.

Let us note that the set of functions (7.20) has the
following simple property under permutations of the
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variables &, &, +« ¢, fx—a:

Fr;oyn (&) =Fx;onan(8), (7.23)
where

(&)= (Er&ir Eig v+ Einy),

(V,) = (Viz Vig*®** Vl'N—x)’

(ll) = (ll li2 lis e liN_l), (724)

in which 4323 «++ iy—1 is an arbitrary arrangement of
23 .-+ N—1. The permutations involving & induce a
transformation of considerably more complexity. [The
fact that & is singled out goes back to the selection of
the coefficients (7.18) as independent. If we had chosen
the zero in position p, then variable £, would have been
singled out.]

One can understand the origin of the complexities of
the democratic subgroup structure in the 3-particle
problem from an elementary viewpoint by examining
the present construction of solid harmonics. For N =3,
the solution (7.20) is completely specified by A; (hls),
i.e., there is no multiplicity:

[N —
_ (—&) (&)
Frauy (i) = £(8> Gt O s i D) 1
(7.25)

An orthogonal basis for the solid harmonics of degree p
on the 6-sphere which has the total angular momentum
L? and L; diagonal is given by

Fx;yarm (X1%2) = F; a9 (8182) fryrom (X'x%), - (7.26)
where
fuiw= 22 C(hbL; mymoM) YrymNYioms, (7.27)

my,m2

in which the coefficient is a standard SU(2) Wigner
coefficient, and the sum is over all m;, ms such that
my+me=M. The specification that the degree is p
requires

IAhtl=>, (7.28)

i.e., a basis of £, is enumerated by the set of labels
{(AMilo: 2\l +b=p} and the set of total angular mo-
mentum quantum numbers which is associated with
the various pairs (J1, /) by the angular momentum
coupling rules. _

This new basis spans, of course, the same space as
do the Gel’fand basis vectors of Eq. (6.70) [under,
say, the restriction (6.66)]. The trouble with the new
basis from the viewpoint of the democratic subgroup
structure is that the permutation operators correspond-
ing to the permutations in the invariant subgroup 43
are not diagonal. (The three identical particles are not
treated on an equal footing.) This will be the case only
for basis vectors which are homogeneous of degree p—g
and ¢, respectively, in the variables n: and ¢ of Eq.
(6.66). One might attempt to construct this basis by
diagonalizing the operator J» of Eq. (6.90) directly on
the basis (7.26) (91149 is already diagonal). One sees
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immediately, however, that this requires summing the
basis vectors (7.26) over the various (I, ») pairs which
can couple to a prescribed L(0SL<p). [d2 does not
commute with L' and L? individually.] In gaining a
single new label ¢, we lose the two labels /; and l,—the
multiplicity problem simply reappears in a form entirely
equivalent to that discussed in Sec. VI.E.

One can, of course, construct 3-particle states which
transform irreducibly under permutations of particles
by starting with the solid harmonics (7.26), using, for
example, the method described by Moshinsky (Mo069)
[see also Efros (Ef71)7. This method, however, relin-
quishes any attempt to describe the three particles on
an equal footing.

For N =4, the 9-dimensional solid harmonics obtained
by combining the functions (7.20) with an arbitrary
coupling of three ordinary 3-space solid harmonics do
diagonalize the permutation operators corresponding
to ‘the permutations in the invariant subgroup U of
Eq. (5.36). This follows immediately upon noting that
the relative position vectors of Eq. (5.44) undergo the
simple transformations x*—4x* (a=1, 2, 3) under the
permutation of U: The functions of Eq. (7.20) (for
N=4) are left invariant, while any coupled functions
which preserve the homogeneity in x!, x2, x* simply
undergo a transformation of phase.

The properties of this basis under the remaining
permutations belonging to .S; are quite complicated.
It turns out (Mo69) that this problem is equivalent
to the determination of the transformations of the basis
which are induced by the permutations of the relative
position vectors, i.e., by the elements of a permutation
group S;. Thus, as an ancillary task, one already en-
counters the nonstandard problem of constructing total
angular momentum states (by the coupling of three
solid harmonics Yi.,) in such a way as to exhibit a basis
which treats the three angular momenta on the same
footing, and, in particular, which is completely reduced
with respect to S; when all three angular momenta are
equal. Fortunately, this problem has been considered
in some detail (Le65a, Ch64). However, one must carry
out a corresponding construction on the U-invariant
functions [N =4 in Eq. (7.20) ], and the general aspects
of this problem remain open, although some progress
has been made (Ga71). )

Summary. We have obtained a general basis for the
solid harmonics of degree p on the 3(N—1)-sphere.
Using standard coupling techniques on the individual
solid harmonics Y m,, this basis can be made into one
of good total orbital angular momentum states. The
basis is nonorthogonal (for N>3), and its general
properties under permutations of identical particles
have not been studied (the 4-particle problem indicates
‘that nonstandard couplings may be appropriate). It is
the basis to which one is led rather directly via the
democratic subgroup concept in the 4-particle problem.
Its usefulness for N-particle states (IV>4) has not been
studied.
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VIII. N-PARTICLE STATES: UNITARY
GROUP METHOD

In this section, we consider the problem of obtaining
solutions to Laplace’s equation by using the property
O(n)CU(n).

In Sec. A, the properties of the unitary groups! are
reviewed and developed in a form suitable for the later
application to N-particle states. In Sec. B, we restrict
the particular realization of the group U(n) of Sec. A
to its orthogonal subgroup O(#) in such a way that the
diagonal generators of the (proper) orthogonal group
are given in terms of the diagonal generators of the
unitary group. This property is then abstracted to
obtain some new results (Sec. C) relating to the general
reduction problem SO(#) CU(n). These results are
then used in Sec. D to give a constructive determination
of all the single-valued IR’s of SO(n). -

The results of these first four sections are quite
abstract, but of considerable intrinsic interest from the
general viewpoint of group theory.

The results of Secs. A-C are also essential to our
discussion in Secs. E and F of a method for obtaining
N-particle states of good orbital angular momentum
which solve Laplace’s equation.

A. Representations of U (%)

In analogy to the matrix X of Eq. (4.4), we introduce
the complex matrix Z having p rows and # columns:

Z=(22), (8.1)

where a and ¢ are row and column indices,' respectively,
having the ranges a=1, 2, +++, p and 2=1, 2, -+-, n.
(We will later choose p=N—1 and #=3, but since it is
just as easy to consider general p and #, we do so.)

Next, we introduce the space 3C, of polynomials
which are homogeneous of degree p in the pn variables
(2), and we designate the value of such a polynomial
F at the point Z by F(Z). For each U€ U(#n) and each
VEU(p), we define the operators as follows:

(6vF) (Z)=F(ZU), UcU(n), (8.2)
(OvF)(2)=F(VZ), VEU(p). (83)

Then (a) The operators {Oy: U€ U(n)} and {0'y: VE
U(p)} are unitary operators on the space 3¢, [made
into a Hilbert space by introducing the scalar product
of type (2.61)7; (b) the correspondences U—0y and
V—0’y are, respectively, representations of U(n) and
U(p) by unitary operators.

It follows immediately from

(0'yOuF) (Z)=F(VZU) (8.4)
that the two groups of operators commute:
0’y Oy =0y 'y. (8.5)

1 See (Lo70) for a listing of those papers most directly related
to this approach.
2 This is opposite to the convention used previously (Lo65):

Furthermore, in analogy to Eqgs. (4.28) and (4.29),
we find that the transformation

Z2'=VZU (8.6)
is the same as the column matrix transformation
= (Vel)s, (8.7)

where z (and analogously z’) is identified in terms of
the elements of Z as follows:

z=col (2122 *** Zpm), (8.8)
where
Zn(a—1)+i= 2% (8.9)
Thus, Eq. (8.4) is equivalently written as
(0'vOuF) (z) =F[ (VX 0)z]. (8.10)

Comparing with Eq. (2.65) (with #» now replaced by
pn), we obtain the following operator identity on the
space JC, of homogeneous polynomials in pz complex
variables:

0vou=Treu, (8.11)
where VQUE U(pn).
The group of product operators
{O’VOU:VE U(p), UE U(’ﬂ)} (812)

15 a unitary representation on the space 3C; of the subgroup
U(p) XU(m)CU(pn). (8.13)

But we have already observed in Sec. II.B that the
space 3C, is the carrier space for the IR of U(pn) which
is specified by the set of labels [p O -+ 0] containing
pn—1 zeros. The space 3¢, is the carrier for a reducible

_ representation of U(p) X U(n). However, we know

precisely how this reduction occurs (Lo65): Eackh IR
[0+ 0]of U(pn) reduces into a (direct) sum of IR’s

[mln Man *** Man 0--- 0]®|:mln Maon mnn] (8.14)

of U(p)XU(n) (for p>n), where each representation
such that
manm%nZ" 'Zmnnzo; (8-15)

MintMant -+« + My =P (8.16)

occurs exactly once. (A similar statement obtains for
p<n.)

The normalized highest weight vector belonging to
3¢, which determines the basis of the carrier space for
the IR of U(p) X U(n) which is specified by the labels
(8.14) is known explicitly. It is given as follows:

M12([m]) I1 (za2...612 %) mem—metim (8.17)
k=1

where #,,1,,=0, and 2p...;** is the determinant of
the 2X k matrix formed from (z:#) for e, i=1, 2, «++, k.
Here 9 ([m]) is a normalized factor which we need

not note explicitly (Ba63).
The basis vectors of the carrier space for the IR
(8.14) of U(p)XU(n) may be classified by the IR
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labels of the subgroups in the fwo subgroup chains
Un)DU(n—1)D---DU(1), (8.18)
U(p)DU(p—1)D---DU), (8.19)

i.e., by a pair of Gel’fand patterns.

We next note the notation for the general basis vector
in the carrier space specified by the labels (8.14), i.e.,
the space having highest weight vector (8.17), the basis
vectors being classified according to the two chains
(8.18) and (8.19). It is convenient to let [# ], denote
the set of U(n) IR labels, [m =10 Moy * ** Mpn ],
and also to let (m) denote the triangular array of n—1
rows of the form (2.78), i.e., a U(n) Gel’fand pattern

is now written as
()
(m)

in order to display explicitly the labels [#],. It is also
convenient to introduce inverted Gel’fand patterns. By
the notation (8.20), we designate a normal (uninverted)
pattern of the form (2.78), whereas we use the notation

((M) )
L],
to designate the same pattern (8.20) turned upside
down.

Consider first the case p=#n. The notation for a

normalized Gel’fand basis vector of the carrier space
specified by [m],®[m], is

(8.20)

(8.21)

(m')
(m)
in which the two Gel’fand patterns
() ()
) (8.23)
(m) [m].

share the same IR labels [7],, but otherwise (m) and
(m’) run independently over all sets of values which
accord with the Weyl branching law (the so-called
lexical patterns). We arbitrarily associate the lower
patterns with the transformations of type (8.2) and the
upper patterns with transformations of the type (8.3).

The highest weight vector (8.17) is the one designated
by the notation

(max)
F I:m]" (Z))

(max)

Z is nXn, (8.24)

where (max) denotes that the entries in (m) and (m’)
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are taken to have their largest values, i.e., m;;=m';;=
Min.

It is a remarkable (and simply proved) fact (Lo70)
that when we restrict the #? variables in Z (for p=n)
to be the elements of a unitary matrix, i.e., Z—U€ U(n),
then the functions '

(m’) (m’)
D| [m]. J(U)=m2([m])F| [m. |(U) (8.25)
(m) (m)

are the elements of a unitary matrix IR of U(n). More
precisely, if we let
D= (1)) (8.26)

denote the matrix whose rows are enumerated by the
patterns (m'), and whose columns are enumerated by the
patterns (m),'* then

U—Dnin(T7) (8.27)

is an IR of U(n) by unitary matrices.
Next, consider the case p>%n. We introduce the
notation

[ Ja[0Jo—n= L1 12 + -

to designate a set of IR labels of U(p) containing p—n
zeros. The Gel’fand basis vector belonging to the carrier
space specified by [7],[0],—»® 7], and having highest
weight vector (8.17) is denoted by

- Mn 00 -+ 0] (8.28)

(m")
F{ [m]. [0)— (8.29)
(m)
The pattern
([m:ln>
(8.30)
(m)

is a U(n) Gel’fand pattern associated with transforma-
tions of the type (8.2), and the pattern

(e 0.
(e (0]

is an inverted U(p) Gel’fand pattern associated with
transformations of the type (8.3). Here (m’) is any
arbitrary pattern containing p—1 rows which is com-
patible with the set of IR labels which contains p—n
zeros. The highest weight vector (8.17) is denoted by

(8.31)

(max)
Fl [m]. [0]— }(2), Zis pXn. (8.32)
(max)

The general vectors, either those of Eq. (8.22) or
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(8.29), can be obtained, in principle, by a double
application of the lowering operators of Nagel and
Moshinsky (Na65).

The lowering operators are polynomials in the genera-
tors of the representations (8.2) and (8.3). The Weyl
generators of the representations of U(n) and U(p)
given by Eqgs. (8.2) and (8.3), respectively, are easily
calculated by the technique of Louck (Lo70):

(EuF)(Z) = (2 202 F(2), (8.33)

(E“F)(Z) = (X 22f)F(Z), (8.34)
where 7, 7=1,2,+++ nand @, B=1,2, -+, p. The sum
over o is from 1 to p, while the sum over 7 is from 1 to #.
The generators E;; induce transformations on the lower
labels (8.30) in accordance with the standard Gel’fand-
Zetlin matrix elements, while the generators E*® have
the analogous role with respect to the upper patterns
(8.31).

The case p<# is obtained simply by replacing # by p
in the highest weight vector (8.17) and interchanging
the structure of the upper and lower patterns in (8.29),
letting also 7¢>p in the IR labels (Z is, however, still
of dimension pX#).

Let us note, in particular, the case p=N—1 (N>4)
and n=23. The highest weight vector in the carrier space
for IR [:m:ls[o:]N—4® [:m:|3, [m]3= [mlgmz3m33:|, of
UN—-1)XU(@3) is

[ (s 2) mast1) 1(mgg) | ],_1/2
(maz— mgz+1) (maz—mgz—~+2) (mas— mgz+1)

X ( 211) m13—m23 ( 21212) m23-m33( 2123123) m33, ( 8.35)
The general vector in this basis is denoted by
(m)
miz Mz mgz 0 .eo 0
F (2), Zis (N—1)X3,
Mmiz M2
mu
(8.36)
where the upper pattern (m') is given by
m'y )
m'ye 'y
m'y3 a3 m'ss
(m) =
m'y a4 m'3y 0
m'l,N—2 m’z.zv—2 m'3,N—2 o --- 0
(8.37)

For N =23, the highest weight vector is obtained from
Eq. (8.35) by setting ms;=0. The general vector in the
carrier space for IR [mgmes |® [misma0] of U(2) X
U(3) is denoted by

!
m 11
13 mez 0

F (2),
M1z Mo

Zis 2X3. (8.38)

mu

B. The Orthogonal Subgroups

We obtain a unitary operator representation of the
group O(p) XO(n) on the space 3¢, simply by restricting
U—Re0(n) and V—S€0(p) in Egs. (8.2) and (8.3),
respectively. We may at the same time restrict Z to be
a real pX# matrix X and switch to the scalar product
of type (2.6). However, we choose to restrict Z to the
following form:

Z—A,XA4,, (8.39)

where 4, is the X% unitary matrix defined as follows.
Let Uy denote the 2X2 unitary matrix

1 1
Uy= (\/7.)—1< ) )
T —1

Let [#/2] denote 1#/2 (n even) or (n—1)/2 (n odd).
Then 4, is the unitary matrix which has U, repeated
[#/2] times along the principal diagonal with zero
elements elsewhere, except for # odd in which case 1 is
the nn element. 4, has precisely this same structure.
Thus, if x* denotes the element in row « and column %
of X, then the element 7 in row « and column i of X4,
is given by

(8.40)

Noj—1®= (X2j—1®+1x9) /V2, (8.41)
Ne®= (Xaj—1®—1%9;,%) /V2, (8.42)

forj=1,2, -+, [#/2], and
Nn® = Xn%, (n odd) (8.43)

fora=1,2, - -+, p. The element z;% in row a and column ¢
of A, XA, is similarly expressed in terms of the 7
variables by

2= (92 14in28) /V2, (8.44)
228 = (n 21— in28) V2, (8.45)

for g=1, 2, --+, [p/2], and
ZiP=nP, (p odd) (8.46)

fori=1,2,--+, n.

We next determine the relation between the genera-
tors of U(p) X U(n) and SO(p) X .SO(#) which obtains
upon making the restriction (8.39). Define f(X)=
F(A,XA,). Then the generators which correspond,
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respectively, to the transformations
(Trf) (X)=f(XR), VReO(n),
(T's) (X)=f(8X), VS€O(p),
are as follows:

(Li; f)(X) = =1 X (x2®o—wp2) f(X), (8.49)

(L) (X)=—1 Z (xexf—xfr)f(X), (8.50)

(8.47)
(8.48)

where,j=1,2, -+ nand o, =1, 2, - -+, p, and where,
as usual, Lj;=— L;; and LPr= — L[5,

We now restrict our attention to the Lie algebra of
SO(n) defined by the generators {L;;}, noting that
similar results also hold for the {L*#}. It is convenient
to define a new basis (essentially the Cartan basis) of
the algebra as follows!3:

K;» —i 1 1 1) [Lej—1,26—1
K_j,_k 1/ 1 1 —’L L‘zj,zk—l
=3 , (8.31)
K_j»x i 1 -1 1| | Loja,2%
K —i 1 =1 —i) Laym

for j<k=1,2, -+, /2], and for # odd we also define

Kj —1 1 L‘Zj—l,n
() (C)C) eo
K—f i 1 L‘Z]'.n

forj=1,2, +++, (n—1)/2. Including also the commuting
generators

=12, -+, [n/2], (8.53)

we obtain the desired new basis which is related to the
old basis by a nonsingular transformation. Note the
Hermitian conjugation relations as follows:

Loji 25,

(Kin)'=K_j 4,
(K_jx)"=K;j 4,
(K)t=K_;. (8.54)

The relations which obtain upon making the restric-
tion (8.39) in the U(#n) generators of Eq. (8.33) now
take the forms as follows:

Loj1,9;= Esj1,951— Eaje; (8.55)
for j=1,2, -+, [n/2],
K= Eyi1,0i— Esj1,2,
K_j 1= Esjon1— Eap 251,
Kj—v=Eap 27— Eaj1,2%-1,
K_j k= Esjo— Eo1,2j1, (8.56)

13 This basis is essentially the one given by Pang and Hecht
(Pa67).
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forj<k=1,2, -+, [n/2], and for # odd
K;=E, 25— Ezj 1,
K_j=FEs;j,—E,z2j1, (8.57)

forj=1,2,+++, (n—1)/2.

Relations of exactly the same forms, Egs. (8.51)—
(8.57) hold also for SO(p) CU(p), it being necessary
only to elevate the subscripts to Greek superscripts
and to change # to p.

The verification of Eqgs. (8.55)—(8.57) is most easily
accomplished by making the restriction of variables in
the right-hand side. The derivation is further simplified
by noting that one need only consider the part of the
transformation given by Egs. (8.41)-(8.43). This fol-
lows because the transformation (8.44)—(8.46) com-
mules with the E;; generators, i.e., the generators E;;
have the same form in the n variables as they do in the
z variables.

The advantage of relating Z to X in the particular
way, Eq. (8.39), is now apparent: The commuting
generators (8.55) of the Cartan basis of the Lie algebra
of SO(n) are already diagonal on the U(p) XU (n)
Gel’fand basis vectors (8.29). Indeed, this property
has been simultaneously realized for each orthogonal
group in SO (p) X SO (n).

We have established relations (8.55)—(8.57) by
making use of very particular realizations of the gener-
ators of U(xn) and SO (n). However, if {E;;} is a set of
abstract generators of U(n), then we can use relations
(8.51)—(8.57) to define a set of abstract generators { Li;}
of SO(n). Each abstract carrier space for an IR of
U(n) with Gel’fand basis | (m) ) is also a carrier space
for a representation of SO(#). The transformations of
the basis | () ) induced by the SO (%) generators {Li;}
may be obtained directly from relations (8.55)~(8.57).
We can now make use of this result to obtain some
insights into the general reduction problem .SO(n)C
U(n).1

C. The Reduction Problem SO (n) CU(n)

Any vector in the carrier space of a representation of
U (n) which simultaneously diagonalizes the generators
Ey, Eg, -+ +, En, defines a weight W. The weight W is
defined to be the row vector whose elements are the
eigenvalues wi, ws, *+*, W, respectively, of Eu, Ep,

vo, Epn:

W=[ww,; -

In particular, each U(n) Gel’fand basis vector | (m) )
[see Eq. (2.78)7] has associated with it the weight
(8.58) where

< W, ] (8.58)

—1

i
W= Z Mmji— z m; i—1

j=1 j=1

(8.59)

with w=mu;.

14 For a consideration of this problem from the viewpoint of
Young diagrams, see (Ha62), p. 399.
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Similarly, any vector in the carrier space of a repre-
sentation of SO(n) which simultaneously diagonalizes
the generators Lig, Lss, * * *, Loy—1,2- (r=[n/2]) defines a
weight Q. The weight Q is defined to be the row vector
whose elements are the eigenvalues wi, ws, ***, wp,
respectively, of Lig, Lgg, =« :

(8.60)

The SO(n) Gel’fand basis vectors associated with the
general Gel’fand patterns (2.55) do not define weights
since these basis vectors do not diagonalize Ly, Lgs, * « *

We observe, however, that each U(z) Gel’fand basis
vector | (m) ) in the carrier space for IR M=[m], of
U(n) is, in consequence of relation (8.55), a simul-
taneous eigenvector of Lig, Lgs, * - *;

Lemma 10. The U(n) basis vector | (m) ) has the
SO (n) weight

Q={w1w2 e wr}.

(8.61)

Q={w1w2 e wr},
where
(8.62)

W= Wei—1——Waq

fori=1,2 -+ 7.

Lemma 10 is the basic result which is needed to
generalize Eq. (6.167) of Sec. VI. We next derive this
generalized formula.

Let M =[m, mon **+ My, specify an IR of U(n),
and let L= {lu1lus *+* lnr} (r=[n/2]) specify an IR of
SO (n). Then, under the restriction of U (%) to SO(n),
the IR of U(n) reduces into a (direct) sum of IR’s L of
SO (n)

M=% ®m(L)L, (8.63)
L
where 9 (L) denotes the multiplicity of L in M.

The objective is to find a formula analogous to Eq.
(6.167) for the non-negative integers M (L).

Next, let N (Q2) denote the number of times an SO (%)
weight Q is repeated when we let the labels in the U(n)
basis vector of Lemma 10 run over the set of Gel’fand
patterns having IR labels M, i.e., when we let | (m))
run over the basis of the carrier space for IR M of U(n).
Observe that the numbers N (Q) are, in principle, known:
For each specified M, we can write out all the Gel’fand
patterns, calculate the U (%) weights, and finally calcu-
late the corresponding set of SO(n) weights contained
in M. [This procedure is, of course, substantially
sinplified when one accounts for the fact that equivalent
weights for either U(n) or SO(n) are repeated an equal
number of times. ] Then we must have

N(Q) = ;m(L)yL(Q), (8.64)
where v.(Q) is the number of times the SO (n) weight
Q is repeated in the carrier space of IR L of SO(n)
(inner multiplicity).

The inner multiplicities’® satisfy the following rela-

15 For a more complete discussion of the various multiplicity
formulas see (Gr70).

tion'®:
> 85vL(Q+R—SR) =4.g, (8.65)
S
where the sum is over all elements .S of the Weyl reflec-
tion group, and dg is the parity of the Weyl operation S.
Here R is given by

R={1’—%, 1’—%, "')%)%} (866)
for SO(2r+1), and by
R={r—1,7r—2,++,1,0} (8.67)

for SO(2r).

We now replace @ by @+R—SR in Eq. (8.64),
multiply by és, sum over S, and use property (8.65)
to obtain the following result:

> 8sN(Q+R—SR) =609 (L). (8.68)
S

[Note that > 1 M(L')ér-e=0 unless € is a set of IR
labels of SO (%) contained in M; 3 1 (L) 6ro=N (L)
for = L=a set of IR labels of SO(%) contained in M;
hence, the Kronecker delta is properly included in
Eq. (8.68).] If we define

then
M(Q)= > 6sN(Q+R—SR). (8.70)
S
Formula (8.70) will then automatically give 9 (Q) =0
unless Q is a set of IR labels L belonging to M.
The use of Eq. (8.70) is best explained by an example.
For n=4, Eq. (8.70) becomes

m(wl, wz) =IV(O)1, wz) +N(w1+2, (,O2)
*‘ZV(wl—’-l, w2+1)—N(w1+1, we— 1) (871)

Consider the reduction of IR [4200] of U(4) into its
SO(4) constituents. The U(4) dominant weights are
[4200], [4110], [3300], 2[3210], 3[3111], 3[2220],
4[22117], the multiplicity of each dominant weight being
easily found directly from the Gel’fand patterns. The
set of all weights of IR [42007] then consists of these
dominant weights together with their equivalents (the
distinct permutations of the dominant weights), there
being 126 weights in all (the dimension of the repre-
sentation). Using Lemma 10, we find that the only
possible dominant weights of SO (4) contained in [4200]
are {4, =2}, {4, 0}, {3, =3}, {3, =1}, {2, £2}, {2, 0},
{1, 1}, {0, 0}. The factors N (w1, w;) are next easily
calculated from the weights of [4200] and Lemma 10.
For example, the dominant weight {2, 0} can only come
from [42007, [3111], and [2022]; hence, there are
14-34-3=7 Gel’fand patterns yielding dominant weight
{2, 0}, ie, N(2,0)=7. In this manner, we easily
determine N (4, £2)=1, N(4, 0)=1, N(3, +3) =1,
N(3,21)=3,N(2,£2)=4,N(2,0)=7,N(1,+£1)=8,

16 Formula (8.65) is due to Racah (Ra62).
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N (0, 0)=10. Using these numbers in Eq. (8.71), we
find OM(4, +£2)=1, M(4, 0)=1, IM(3, =£3)=0,
M(3, 1) =1,90(2, £2) =1,9(2,0) = 2,90 (1, +£1) =
0, 9 (0, 0) =1. Thus, we have

[4200]=1{4,2}® {4, —2}®{4,0}®{3,1}® {3, —1}
@{2,2}®{2, —2}®2{2,0}®{0,0}. (8.72)

There is another significant result which obtains
from Lemma 10. In the (abstract) U(n) IR representa-
tion space specified by the labels [#1, 2y * * * M0 ],
consider the vector which has U(n) weight given by

(8.73)

for n=2r4-1, and by either of the following forms for
n=2:

(8.74)

(8.75)

where W_ differs from W, only by the interchange of
the last pair of numbers.

Since the weight [(8.73)—(8.75)] is just a permuta-
tion of the IR labels, it is equivalent to the highest
weight. The Gel’fand pattern corresponding to such a
weight is uniquely determined by the specification of
the weight. The resulting pattern is called an extremal
pattern.” For example, the pattern having weight
(8.73) for n=51is

W+= [mmmnn; MonMn—1,n5 **°; mrnmr-i—l,n];

W_= [’”hnmnn; MonMn—~1,n; **° 5 mr—}-l,nmrn]:

Mys  Maes M35 Mz Mss

Mis  Mes  Mas  Mss

s Mes  Mgs 5

Mmis  Mss

mis
for n=4, the pattern having weight (8.74) is

M1 e M3y My

Mis

Moy My

mis My

M4

We denote the unique Gel’fand basis vector in the
representation space [m ], which is determined by one
of the weights W, of Egs. (8.73)~(8.75) by

al
<<ext>i>> ’

where “ext” denotes extremal.

(8.76)

7 The properties of extremal patterns are discussed in greater
detail in (Bi68).
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The significance of the vector (8.76) is: it is the
highest weight vector in the carrier space for an IR of
SO(n) CU(n). The IR labels of this carrier space are
as follows: ‘

{lnl, lﬂ?; ) lnf}: (877)
where

, (8.78)

fori=1,2, -« 7 (r=[n/2]) for weight W,. For weight
W_ (n=2r), the label l, . in (8.77) is altered to

lni =Min— mn—-i+1 My

(8.79)

The proof of this result is very simple: The weight
(8.77) is just the SO(n) weight which is associated to
the U(n) weight of Eqgs. (8.73)—(8.75) by Lemma 10.
Furthermore, one easily sees from Lemma 10 that the
weight (8.77) corresponding to W is higher than any
other weight of SO(»n) CU(n); similarly, the weight
(8.77) corresponding to W_ is higher than any other
weight having l,.<0. Hence, the weight (8.77) is a
set of IR labels of a representation of SO(n) CU(n).
The highest weight vector in the carrier space of this
IR of SO(n) is the vector (8.76).

Thus, given the Gel’fand basis of any carrier space
for an IR [m], of U(n), we can always identify in that
space a unique U (%) extremal vector which is the highest
weight vector of the carrier space of the IR (8.77) of
SO(n).8 Using now the lowering operators of SO(n),
one can generate the general SO(%n) Gel’fand vector
classified by the chain O(#) DO(n—1)D---D0(2).
Observe that these lowering operators can be expressed
through Eqs. (8.55)-(8.57) in terms of the U(n)
generators. In this way, one obtains each abstract
SO (n) Gel’fand basis vector in the IR space carrying
the labels (8.77) and (8.78) as linear combinations of
the abstract U(n) Gel’fand basis vectors carrying IR
labels [ ],.

The preceding procedure is, of course, only the first
and simplest step in the general reduction problem
SO (n) CU(n). One must still find the carrier spaces of
those IR’s of SO (%) C U (%) which have IR labels which
are lower than the weight (8.77). Nonetheless, the
single step we have made in the reduction is significant:
Combining this abstract result with the explicit U (%) X
U(n) representation space of Sec. A (p=m), we can
determine all the single-valued IR’s of SO(%). This is
the subject of the next subsection.

D. The Single-Valued IR’s of SO(n)

l2r,r= Mrg1,20— mr.ZrS 0.

The results of the preceding section are abstract, i.e.,
must hold in any unitary representation of SO(#)C
U(n). Those results can now be taken over to the
explicit realization of SO(n)XSO(n) CU(n)XU(n)
of Secs. A and B (set p=#). We now demonstrate how
one may obtain all the single-valued IR’s of SO(%) by
the procedure already discussed for the unitary groups.

18 This is the full structure which underlines Wong’s results
(Wo69).
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First, we particularize the U(n) IR labels in Sec. C
to the form

[m]T[:O:'n—Tz [mln Mon *** My (VX 0] (88())
The SO(%) IR labels (8.77) then take the form
{0 e={lulnz *** Lnr}, (8.81)
where now
l,,,~=m,~,,, 1= 1, 2, e, (882)

for U(n) weight W, and where for O(2r) and weight
W_, the rth label is replaced by

lor,r=—m; 2, <0. (883)
Since the m., are arbitrary integers which satisfy
manMZnZ °ee meZO, (8.84)

we see that the labels (8.81) may assume all sets of
values which correspond to all the single-valued IR’s
of SO(n). .

Now consider the U(n) X U(n) Gel’fand basis vector
F which is labeled by the pair of extremal patterns of
the vector (8.76). It is given explicitly as follows:

(ext) 4+ (max)
Fl| m] [0]—r {(2)=G| {1} |©2
(ext) 4 (max)
T Cotpog® - 251) i,
- (8.85)
(ext)— (max)
F| [m] [0] }@)=G| {i}. |2
(ext)— (max)
X(218--10::—3,2r13“‘27_3’27)—12"', (8.86)

in which we have made the identification of labels given
by Eqgs. (8.82) and (8.83). The vector (8.85) is simul-
taneously a highest weight vector for each SO(n) in
SO(n) X SO(n) in the carrier space of IR {1},® {l},,
In,»>0; similarly, the vector (8.86) is the highest weight
vector in the carrier space of IR {1},® {l},, ls,,<O0, of
SO(2r) X SO(2r). These facts are denoted by intro-
ducing the SO(n) X SO(n) basis vectors G which are
labeled by a pair of SO(n) Gel’fand patterns, the upper
one being inverted in complete analogy to the U(n) X
U(n) notation. The notation (max) in Egs. (8.85)-
(8.86) then designates that the labels in the two
Gel’'fand patterns are chosen as large as possible for
the prescribed IR labels {/},. Quite generally,
Zigigeei 929t denotes the £X¢ determinant of the

matrix which has 2,2 (7, k=1, 2, +++, {) in row j and
column &.

We now apply the Pang and Hecht (Pa67) SO(n)
lowering operators [a set for each SO(n) in SO(n) X
SO(n)7] to the appropriate highest weight vector, Eq.
(8.85) or (8.86), to obtain the general basis vector

@)
Gl {1,

O

in the carrier space of IR {/},® {I}, of SO (%) X.SO(%).
We arbitrarily associate the upper patterns with the
first SO (%), hence, with the transformations generated
by the {L*#}. The lower patterns are then associated
with the second SO (%), hence, with the transforma-
tions generated by the {L}.

In generating the basis vectors (8.87), it is very
imporiant that we express the two sets of lowering
operators of SO(n)XSO(n) in terms of the U(n)X
U (n) generators through the use of Egs. (8.55)—(8.57)
and the identical set of equations which carry super-
scripts. We are then able, by using Egs. (8.33) and
(8.34), to generate the functions (8.87) directly in
terms of the #? complex variables 2% (o, 1=1,2, <+, %)
on which there are mo restrictions. Furthermore, the
lowering and raising operators entail the U(n) generators
only in the combinations of U(n) generators which occur
in Eqs. (8.55)—(8.57) in which the complex number i does
not appear. This implies: The functions G(Z) of Egq.
(8.87) are real functions of the n? complex numbers

[G(2) I*=G(Z). (8.88)

Furthermore, since the highest weight vector (8.85) or
(8.86) is invariant under the exchange of superscripts
and subscripts, and since the two sets of lowering
operators are also interchanged under the exchange of
superscripts and subscripts, we have the additional
important property

(2), ZisnXn (8.87)

() @)
Gl (5. {Z)=G| {1}, |(2). (8.89)
@) )

We emphasize again that Z is an arbitrary nXn com-
plex matrix in Eqs. (8.88) and (8.89).

The vectors (8.87) are orthogonal on the space 3C,
(Xilait]| - |=p) with the scalar product of type
(2.61). They are not normalized (but may easily be),
since we purposely did not normalize the highest weight
vector (8.85) or (8.86). [The vectors (8.87) do all
have the same norm which is just the norm of the
highest weight vector. ]

We emphasize again that the SO (%) X .SO(n) genera-
tors {L*#} and {L;;} have, even when expressed in
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terms of complex variables through our mapping of
SO(n) generators onto U(n) generators, the standard
Gel'fand—Zetlin matrix elements on the basis (8.87) [the
same set of matrix elements for either set of generators .
We can now consider the functions obtained from
Eq. (8.87) upon setting Z=4,X4, [see Eq. (8.39) ]:

) 3
fl . )X=c{ {1}, |(4.X4,). (8.90)
@ 0

The relations (8.55)—(8.57) between the SO(x)X
SO (n) generators (8.49) and (8.50) and the U(n) X
U(n) generators (8.33)—(8.34) now obtain explicitly.
TFrurthermore, the vectors are orthogonal in the scalar
product of type (2.6), and each vector has the norm
of the highest weight vector. The vectors (8.90) are a
basis of the carrier space of IR {1},® {l}, of SO(n) X
SO(n), and the SO(n) generators, now expressed in the
form of Egs. (8.49) and (8.50) have the standard
Gel’fand—Zetlin matrix elements on this basis.

While we will see in the next subsection that the
restriction of Z to the form in Eq. (8.90) is useful for
obtaining solutions to Laplace’s equation, we are com-
pletely free to relate Z in Eq. (8.87) to a set of real
variables in any manner that we choose. In particular,
we wish next to answer the question: What is the
significance of the functions (8.87) when we restrict
Z—Rc SO(n)?

To answer this question, we consider the representa-
tion of SO (7) X SO (%) on the space 3, defined, not by
transformation of the form (8.47) and (8.48), but
rather by the direct restriction of U and V to SO(n)
in Egs. (8.2) and (8.3):

(0rF) (Z)=F(ZR), (8.91)
(0'sF) (Z)=F(82), (8.92)

for each pair R, S€ SO (%). Clearly, R—0g and S—0'g
is a representation on the space 3¢, of SO (%) XSO ()
by unitary operators.

The generators of this representation of SO(n) X
SO(n) are easily verified to relate to the generators of
U(n) X U(n) given by Egs. (8.33)—(8.34) by the rela-
tions as follows:

L'yy= —i(Eyj—Ey), (8.93)
(I48)" = —i(B6— e, (8.94)

where 7, j, &, =1, 2, + -, n. [One simply replaces x by
z and f by F in Eqs. (8.49) and (8.50).]

The relations between the transformations (8.91)
and (8.92) to those of Eqgs. (8.47) and (8.48), extended
to Z, are determined as follows: The function f in Egs.
(8.47) and (8.48) with the extended domain of defini-
tion Z is related to F by f(Z) =F(A,ZA,), since for
Z=X we obtain the correct relation f(X) =F(4,XA4,).
Thus,.f= 0"4,04,F follows from Eqgs. (8.2) and (8.3).
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Using this relation and replacing X by Z in Eq. (8.47),
we obtain (T04,04,F) (Z)=(0'4,04,F)(ZR). Since
0’4, commutes with T and the operators are unitary,
this relation becomes (04,1T:04,F) (Z) =F(ZR), that
is,

Op= GA,.TTR@A,; (895)
Similarly, we obtain
O s=0"4 tT'504,. (8.96)

The representation (8.91)—(8.92) is unilarily equivalent
lo the one obtained by extending X to Z in Eqs. (8.47)—
(8.48). [It is, of course, this latter extension which led
us directly to the basis (8.87).]

Relations (8.93)—(8.96) are, of course, irrelevant to
the fact that the transformations (8.91) and (8.92)
are unitary representations of SO (n) X.SO(#), but we
have noted them for completeness. The functions (8.87)
are a basis for the IR {I},®{l}, of SO(n)XSO(n).
In particular, to the transformations (8.91) and (8.92)
of this basis there corresponds a unitary mairix IR of
SO (n) X .SO(n). These transformations take the follow-
ing forms®:

) ()
G| {i- (ZR)=(%)D‘”'u"xl)(R)G (. (2,
0 (")
(8.97)
) ")
G| (i} (SZ)=%})D(”'(l”)(z»(S)G {. (2,
O (D
(8.98)

in which the D function appearing in the second equa-
tion is exactly the same one appearing in the first equa-
tion [because the generators (L*f)’ induce the same
transformations on the upper patterns as do the genera-
tors L';; on the lower patterns despite the fact that the
matrix elements of these generators are #not those of
Gel’fand and Zetlin]. Then

R—DWr(R) (8.99)

is an IR of SO(#) by unitary matrices. The Gel’fand
patterns (I’) and (J) in Eq. (8.97) designate rows and
columns, respectively, of the matrix (8.99).

If we correspondingly in the G functions let upper
patterns and lower patterns label, respectively, rows
and columns of a matrix G, then Eqs. (8.97) and (8.98)
can be written as matrix equations as follows (IR labels

1Tt is essential here that we consider RE€ SO(n) (see Foot-
note 1).
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have been suppressed) :

G(ZR)=G(Z)D(R), (8.100)

G(82)=D(S5)G(Z). (8.101)
We put S=F in Eq. (8.101) and use D(R)=D*(R)
(unitary property) to obtain

G(RZ)=D*(R)G(Z). . (8.102)

We next set Z=1I, (unit matrix) in Eqgs. (8.100) and
(8.102) and take the complex conjugate of the second
result, using property (8.88). The result is

G(R)=G(,)D(R)=D(R)G(I,) (8.103)

for each R€ SO(%). Schur’s lemma requires that G(I,)
be a multiple of the unit matrix, but, in fact,

(max)

Gl (Y. |Tn)=1, (8.104)

(max)
so that G(I,) 7s the unit matrix. Thus, we have
D(R)=G(R); (8.105)
that is,
)

{1}
0

The basis functions (8.87) are precisely the elements of the
unitary matrix IR {l}, of SO(n) when evaluated at Z=
ReSO(n).

Furthermore, this representation is real [property
(8.88)]

DWranay(R) =G (R).  (8.106)

[Dll) T(R) ]*lel) r(R),

so that the representation is real orthogonal.

We emphasize that the preceding procedure obtains
all the single-valued matrix IR’s of SO(%) directly as
homogeneous polynomials in the elements R;; of a
proper orthogonal matrix R without any need for
parametrizing (any suitable parameters can be intro-
duced in the final IR’s, if desired).

Summary. We have given an explicit constructive
procedure for determining all the single-valued IR’s of
SO(n). The procedure utilizes the fact that it is possible
to identify in the carrier space 3¢, of IR [p 0 «++ 0] of
U(n*) DU(n) X U(n), an explicit vector which is the high-
est weight vector of the carrier space of IR {I},® {l},
of SO(n)XSO(n), where > ;loy1,:=p for O(2r+1),
and D ilar,i+|ler,r |=p for O(27). The general basis

(8.107)

vector in this IR space is then generated by using a

double (upper and lower) application of the SO(#n)
lowering operator technique. These general vectors are
defined on the #2 complex variables Z of the polynomials
of 3C,. The restriction of these variables to the elements

of a real, proper orthogonal matrix in the {I},® {l},
basis vectors then gives directly the real orthogonal
matrix IR {I}, of SO(%) in terms of the elements (R;;)
of the R€ SO (%) being represented.

E. SO(p) X SO(3) Basis Vectors

It was convenient for proving the important relation
(8.105) to introduce the representation of SO(n)X
SO(n) defined by Eqgs. (8.91) and (8.92). However,
it is the homogeneous polynomials of the x.& obtained by
restricting Z to the form (8.39) in Eq. (8.36) which leads
us most readily to solutions to Laplace’s equation— hence,
to N-particle states of good orbital angular momentum.
We henceforth consider only the representation (8.47)
and (8.48) of O(p) XO(3) which led to the relations
(8.55)—(8.57) between the generators of SO(p) X SO(3)
and those of U(p) X U(n). Explicitly, the generators of
SO(3) (total orbital angular momentum group) relate
to those of U(3) through Eqgs. (6.97) [Eqs. (8.55)~
(8.57) for n=23], while the generators of SO(p) relate
to those of U(p) through Eqs. (8.51)-(8.57) when we
evaluate all subscripts j, £ to superscripts «, 8 and
change # to p. We will always consider the SO(p) X
SO(3) generators to be expressed directly in terms of
the U(p) X U(3) generators, thereby obtaining SO (p) X
SO (3) basis vectors in terms of the complex variables
2% (no restriction). Only in the final results do we make
the implicit restriction Z=A4,X4; in which the » are
the relative coordinates of the N-particle problem (p=
N —1 hereafter). '

We write out again the notation for the general
U(p) XU(3) basis vectors [highest vector given by
Eq. (8.35)]:

(m')
myg Mgz mgz 0 ee+ O
F (Z), ZispX3.
My 33
"1
(8.108)

The procedure for constructing (p-+1)-particle states,
classified as basis vectors of the carrier space for an IR
of SO(p) X.SO(3) is threefold: (1) carry out the reduc-
tion SO(3)CU(3) on the lower patterns of the basis
vectors (8.108) (thus constructing basis vectors of good
orbital angular momentum L) ; (2) carry out the reduc-
tion SO(p)CU(p) on the upper patterns (thus con-
structing carrier spaces of reducible representations of
the permutation group S,1CO0,); (3) determine the
linear combinations of these SO(p) X .SO(3) basis vec-
tors which satisfy the Laplace equation. We deal with
the first two steps of this procedure in this section. It is
not as impossible to carry out for cases of practical
interest as it might appear.

First, consider the problem SO (3) C U(3). This prob-
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lem (lower labels) is abstractly the same as the problem
discussed in Sec. VI.G. Equations (6.175) and (6.176)
are valid on the abstract Gel’fand basis vectors

miz a3z M33

_—

mi1

(8.109)

mie

upon making the replacements p=m3—ms;, q=m—
Mm33, 0= M12— M33, ,3= Moo — M33, Y = M11— M33 throughout,
followed by adding ms; to each label appearing in the
basis vectors F. Thus, in general, one encounters all
the difficulties discussed in Sec. VI.G. We can, however,
make some practical progress.

The reduction of the abstract carrier space for IR
(13 mas mss ] of U(3) into its SO(3) IR subspaces can
be carried out explicitly for those general cases in which
there is no multiplicity (hence, these results may also
be used in Sec. VI.G). This is the case for the following
sets of IR labels:

[HNNN], L=k k=2, -+, 1or 0,

NN A=F], L=k, k—2,---,10r0,
[hMAE1,N], L=k, k—1, -+, 2,1,
[IMA—1,A—k], L=k k—1,++-,2,1.  (8.110)

The (un-normalized) basis vectors of the carrier space
for IR L of SO(3) are given in terms of the abstract
U(3) basis vectors as follows (these vectors are ob-
tained directly from the requirement that Es;— Eis
annihilate them): '

[EBY A
24, L+20+ A > (8.111)
” L+a+)
A A—Fk
> (—1)°4, A A—L—2 > (8.112)
q A\—0c
k42X A1
S Aeo L2042 A >
U L+o+\
k4 A1 A
+;A,,1 L+20+4+2+1 A1 >
L+o+2+1
(8.113)
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A1 A—Fk
2 (=140 N A-L-20 >
q p—
A A—1 A—Fk
+ (=141 || A1  A=L—20—1 > ,
6 A—o—1
(8.114)
where
A.=[2/{[(k—L)/2]—0}!]
X[(L+0) l(k—L—20) |/o kT2, (8.115)
Aoo=A/(L+20)"2, (8.116)

A,,1=A,,o[(k~L— 20) (L+20)/ (k+1) (L420+42) T2,

(8.117)
for k— L even,

Agn= Ao o[ (k+1) (L+20) / (k— L—20) (L+20-+2) ]2,
(8.118)

for k—L odd. In the definition of 4,, the quantity
[(k—L)/2])is (k—L)/2 (k—L even) or (k—L—1)/2
(k— L odd). Here k£ and \ are non-negative integers.

The way in which we use the abstract results, Egs.
(8.111)—(8.114), is as follows: First, consider the upper
pattern in Eq. (8.108) to be arbitrary, as indicated.
We then form the same linear combinations on the
lower patterns of the F’s as appear in Egs. (8.111)-
(8.114). Each of these vectors (four types) is then an
SO(3) highest weight vector having orbital angular mo-
mentum L. The sum of the U(3) IR labels appearing
in Egs. (8.111)-(8.114) now is identified as the degree
p of the functions F, e.g., p=k+3\ in Eq. (8.111). If
we now enumerate all U(3) labels such that s+ mes1-
maz=p<35, we find in each instance that [ a3 ms3 ]
is of the form of one of the sets of labels (8.110). For
Pp<5, there is no multiplicity of SO(3) in U(3). Indeed,
even for p=06, 7, we see that the only labels not of the
form (8.110) are [4207] and [520], respectively. [4207]
contains L=0, 2, 2, 3, 4; [520] contains 1, 2, 3, 3, 4, 5.
In the [4207] case, the explicit construction of the L=
4, 3, 2, 2 states was given in Sec. VI.G [the F of Sec.
VI1.Gis now to be replaced by the new F of Eq. (8.108) ],
and the L=0 state is easily constructed. Similarly, in
the [520] case, Sec. VI.G contains the explicit con-
struction of the L=35, 4, 3, 3 states, and the L=1, 2
states are easily constructed. Thus, we can claim to have
obtained all good angular momentum states which are
conlained in the spaces 3, for p=0,1,2, -+ 7) and for
arbitrary p.

We also have available one other general category of
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good angular momentum states: These are the states
having general U(3) labels [m3 a3 m33s] and having
L= my3—ms3, miz—mgz— 1, or myz—msz— 2. We need only
change the results of Eqs. (6.177)-(6.178), (6.182)-
(6.185), and (6.186)—(6.187) according to the rules
given in the paragraph containing Eq. (8.109) above.
We then form the same combinations of the U(p) X
U (3) state vectors (8.108).

The basis vectors of 3C, obtained by the preceding
methods are properly termed U(p) X.SO(3) basis vec-
tors, since the arbitrary upper patterns still enumerate
the basis vectors of the carrier space of IR

(115 o3 M35 0 =+ - 0]

of U(p). The explicit tabulation of the particular
U(p) X.SO(3) basis vectors considered in the preceding
paragraphs is entirely mechanical—it entails only the
working out of the relevant U(p) X U(3) Gel’fand basis
vectors by known procedures. [These U(p)X.SO(3)
states are also just the harmonic oscillator states of
good angular momentum when the 2z are properly
identified as the creation operators of the oscillator
states. ]

The next step toward obtaining N-particle states of
good angular momentum is to carry out the reduction
SO(p) CU(p). The problem now becomes more difficult.
We ignore the lower patterns in the vector (8.108) and
first consider only those upper extremal patterns which
are determined by the weights of Eqgs. (8.73)-(8.75).

We enumerate explicitly these extremal patterns:

(1) p=3 (N=4)

™3
iz Mss (8.119)
Mg Maz Mg
having SO(3) weight #13— mas.
(2) p=4 (N=5)
on M3
mz 0O myz 0
) (8.120)
iz mag O myz om0
miz ez mgz O myz ey gz O
having SO(4) weights
{ms, mas—maz}  and  {mg, mizs—mas}

respectively.

(3) p=5 (N=6)

13
miz 0
iz ey 0 (8.121)
miz  maey O 0
miz ey mgz 0 0
having SO(5) weight {3, mas}.
(4) p=6 (N=T)
mis
M3 0
miz  mez 0
miz ez O 0 ’
myz  mey mzz 0 0
miz mes mgz 0 0 O
Mg
M3 0
myz  mez 0O
, (8.122)
mg mez 00
miz mez 0 0 0
mg ey mgz 0 0 0
having SO(6) weights
{ms, mas, maz}  and {3, mes, —mas},
respectively. 4
(3) p>6 (N>T)
((F]
miz 0
miz ez 0
mis om0 0 (8.123)
miz My mgz 0 0
i3 WL2;, g3 0. 0 0
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having SO(p) weight {mus, mas, ms3, 0, <=+, 0}, (r=

[o/2]).

The basis vectors (8.108) which are labeled by the
extremal upper patterns (8.119)—(8.123) and which have
maximal lower patierns can be given explicitly [it is only
necessary to permute the upper indices in Eq. (8.35)7]:

(ext)

F Mg Mg Mgz 0 e+ 0 (Z)

(max)

= (le) m13—m23 (2121"‘) m-zs—mss(Zl%lﬂ'v) m33, (8. 1 24)

where the superscripts assume the following values for
the respective cases:

p=3, (aBy)=1(323), weight m3—ms;3;

p=4, (afy)=(334) for weight {my3, mez—ms;} and
(afBy) = (434) for weight {mus, msz—mas};

p=35, (aBy)=(335), weight {mus, mas};

p=6, (aBy)=(335) for weight {ms, ma3, ms;} and
(aBy) = (336) for weight {mus, maes, —mas};

0>6, (aBy)=1(335), weight {ms, mas, m33, 0 «++ 0}.

[The vector (8.124) is, of course, an SO(p) highest
weight vector having these various weights for its IR
labels.]

Next, we combine the preceding results for upper and
lower patterns. In order to give a precise description of
the procedure, it is convenient to introduce two special
notations for certain vectors belonging to the carrier
space of IR [m13 mo3 m33 0+« « 0@ [1m13 23 maz ] of
U(p) X U(3) [the space with basis vectors (8.108) ]:

F ({1 lpa Lys} / [omas mag mss ) , (8.125)
Fimysmasman ({1 Loz Lis} /L). (8.126)

The notation (8.125) designates® the highest weight
vector in the carrier space of IR {l,1/,27,30 +*« 0} ®
(13 maz maz] of SO(p) X U(3)CU(p) XU (3), where
{l1lp0l,30 - ++ 0} specifies an IR of SO(p) contained
in IR [#13 ma3 m33 0 «++ 0] of U(p). The vectors (8.124)
are of this type. The notation (8.126) designates the
highest weight vector in the carrier space of IR
{li1 21,50 «++ 0}® L of SO(p) XSO(3)CU(p) XU(3),
where {l,12,27,50 «++ 0} specifies an IR of SO(p) con-
tained in IR [m13 M3 m33 0 <+« 0] of U(p), and L speci-
fies an IR of SO(3) contained in IR [m43 a3 mas | of
U(3). For p=3, 4, or 5, the notation {l,1 ,2 1,3} must
be modlﬁed to l31= L’, {l41 l42} y and {151 l52} y respectively.

We will call the vectors (8.125) and (8.126) simply

. ¥ Only IR’s of SO(p) of the form {/,l,l,0 <+ 0} can occur
in an IR of U(p) of the type [, ma, 3,0+« 0] [see (Su67)
and (Br70a) ].
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SO(p) XU(3) and SO(p)XSO(3) highest weight
vectors, respectively.

In the 4-particle (p=3) case, we obtain the class of
highest weight vectors as follows: We replace the
abstract vectors in Eqgs. (8.111)-(8.114) by the F’s of
Eq. (8.108), leaving the upper U(3) labels arbitrary.
Now form from these vectors the linear combinations
(8.111)-(8.114) on the upper patterns (using an index
o’ and an angular momentum L’). For example, one
obtains

L'+o'+\
L'+20"4+) A
Z’ A Ao F | k+X A A
| L+20+) A
L+a+)

from Eq. (8.111). This is the SO(3) X.SO(3) highest
weight vector denoted by

Fypoan(L'/L).

Thus, we obtain the following set of SO(3)XS0(3)
highest weight vectors:

Fimigmogmaa (L'/L), (8.127)

where [m13 m23 ms3 ] is any one of the four types of IR
labels of the form (8.110). These four gemeral types
already vyield all SO(3) X .SO(3) highest weight vectors
contained in the U(3) X U(3) basis up to and including
degree 5 polynomials. There is no multiplicity of L'Q@L
inany U(3) X U(3) IR [m]® [m] for mig+maes+mas<S.

Using the constructions of Sec. VLLE, we can also
obtain the general vectors (8.127) corresponding to
L', L=my3—mgs, miz—mg— 1, miz—mg— 2.

For p>3, we cannot progress quite as far. It is clear
that the SO(p) X U(3) highest weight vectors (8.125)
are the key to solving the problem: Using the relatively
simple U(3) lowering operators on (8.125), we can
generate the U(3) basis vectors

F[{lpl bpo lp3}/(m)]; (8-128)

where

miz Mgy M33

(m) = Mg M ,

M1

and where for #ey1 = 1o = M3, m12= ez this vector is the
highest weight vector (8.125). The construction of the
SO(p) X.SO(3) highest weight vectors then proceeds
along the lines of Sec. VI.G.

We can, in fact, carry out the above construction
explicitly for the following cases:

(1)-Let the SO(p) labels in the vector (8.125) be
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identified as any of those following Eq. (8.124) so that
the vector (8.125) becomes the explicit highest weight
vector (8.124). It is easy to generate the particular
vectors (8.128) which occur in the linear combinations
which one must form (Sec. VI.G) to obtain L= m3— ms;,
miz—mz— 1, or miz—mg—2. Thus, with very little
effort, we can obtain the general SO(p) X.SO(3) highest
weight vectors (8.126) whenever {l, /2 l,5} is the
largest highest weight (of its type) contained in IR
[m13 me3 m330 LA O] Of U(p) and f()l‘ L=m13—'m33,
W13 — M3z — 1, or ml;;—ma;;—Z.

(2) Again let the SO(p) labels in the vector (8.125)
be identified as in (1), but now particularize further to
any one of the sets of U(3) labels (8.110). Once again
one can generate explicitly from the corresponding
SO (p) X U(3) highest weight vector (8.125) all those
vectors (8.128) which occur in the linear combinations
(8.111)—(8.114). Thus, we can obtain explicit expres-
sions for all SO(p) X SO(3) highest weight vectors of
the following types:

(a) Freoan({-++}/L),

(b) F[x.x,x—k]({'f'}/L)y

(©  Fraaan({-}/L),

(d) For—in—m({--+}/L), (8.129)
where the SO(p) labels {--+} can have the following
values:

S0(4): (a) {k+X,0}, (b) {N, £k}, (c) {4+, 1},
(d) {\ £(k—1)};

SO(3): (a) (kNN (B) A, (©) (kA A1),
(d) {\A=145

S0(6): () (A, E=(—R)},

(a) {4+ N, £},

For SO(p) (p>6):SO(p) labels coincide with the U(3)
labels. L can be any of the values given in (8.110).

We will not write out explicitly the highest weight
vectors (8.129). These results serve to indicate a some-
what general, but nonetheless limited set of highest
weight vectors. While the U(3) labels appearing in
(8.129) are sufficient to enumerate all cases up to degree
3, the reduction of SO(p) CU(p) is very limited—it
gives only those SO(p) labels of the largest highest
weight contained in U(p) [including the = sign of the
last label for SO(4) and SO(6)].

Clearly, if we are to make any useful progress, the
problem of reducing SO(p) CU(p) must be dealt with
more completely—we must find the full set of SO(p) X
U(3) vectors (8.125) up to some practical degree
P =my3+mas+mss, say, p=4 or 5. This we now do.

In order to construct highest weight vectors in the
reduction SO(p) CU(p), we must.be able to recognize

one. All the SO(p) generators

B = —1,2a__ —1,
Ka B — EZB 1,2a E2¢x Qﬂ’

Ka,—5=E2B,2a__E2a—l,23—l’ (8.130)
fora<f=1,2, -+, [p/2]=vr;
Ke=FEr2a—F2-1Ls  (podd) (8.131)

fora=1, 2, - -+, r increase the weight of an SO(p) basis
vector. A highest weight vector is thus partially charac-
terized by being annihilated by the set of above raising
generators. However, these raising generators can all be
obtained by the repeated commutation of the following
ones (7 in number) :

[FRet2.20__ F2a—1,2a+1 (8.132)
for =1, 2, -+, r—1 together with either

[r—1.2r—2_ Far—3.0r (8.133)
for SO(2r), or

212 fer—1,00+1 (8.134)

for SO(2r+41).

Thus, we arrive at the following result: The necessary
(and sufficient) conditions that a vector belonging to
the abstract carrier space for IR [my, me, «++ m,, ] of
U(p) is an SO(p) highest weight vector labeled by
{lalye -+ s} are two-fold: First, the vector must be
an eigenvector of the set of operators

2a—1,2a—1 _ Ji2c,2
Ec( a Ea a,

(8.135)

a=1,2, -7

and the set of eigenvalues must be /.1, [,2, «++, l,,, respec-
tively, where 7,1 >1,0> -+ >1,,>0 for p odd, and 7,;>
lpe> <+ 21, 1> 1, |>0 for p even. Second, the vector
must be annihilated by the raising generators (8.132)-
(8.134).

We now list explicitly some SO(p) X U(3) highest
weight vectors of the type (8.125), and then explain,
by example, how they were obtained [the notation is a
slight variation of (8.125) and is explained below ]:

S (Z2) ==,
f®(2) = 2 w7 'a’*+ (p odd) 3 (21°)?,
a=1

fuy™ (Z) = 210",

r

f[21]{1) (Z) — E (21211——12:121,2a+212ﬂzl21,2a-1)
a=1
-+ (p Odd)Zl”Zml”,
Frn MY (Z) = 2105,

fen® (Z) = X2 2™ b2+ (p odd) 5 (21517)?,

a=1
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2 Z (212201 ,2p— 121 2a—1,28
a<f=1

fen@ (Z) = X (ag 1)~
a=1

r
+Z122a—1,25—lzl22u,2ﬂ) _ (p Odd) 2 Z Zl22a——1,pzl22a,p’

a=1

4
f[211]“” (Z) = Z (21121053 201,20 — 53351 201 2a
a=1

— 221271953207 1) — (p odd) 21721057,  (8.136)

where p=4, 5, -+ -. Additional highest weight vectors
not in the above list which we require are:

S0 (4)
funtY(Z) =z,

fum ™ (Z) = 2108,
fem B (2) =zlams®H-2%205™; (8.137)
50(5)
fum ™ (Z) = 2125 (8.138)
S0(6)
Sum ™ (Z) = 215 (8.139)

The above vectors are SO(p) X U(3) highest weight
vectors of the type (8.125). We have merely regarded
the SO(p) and U(3) IR labels as superscripts and sub-
scripts, respectively, and at the same time adopted the
practice of omitting the unnecessary zeros in these IR
labels. For example, fio;'V is the highest weight vector
in the carrier space of IR {10 - - - 0} ®[2107] of SO(p) X
U(3), where IR {10 0} of SO(p) is contained in
IR [210 -+ 0] of U(p). The integer 7 is, as always,
p/2 for p even and (p—1)/2 for p odd. The notation
(p odd) preceding a particular term indicates that such
a term is included only when p is odd.

The calculation of, say, fren'! proceeds as follows:
First, we determine which Gel’fand patterns having
U(p) IR labels [210---0] give the SO(p) weight
{10--:0} (Lemma 10). The U(p) dominant weights in
IR [210.--0] are just [210---0] and 2[1110.--07.
Therefore, the weight {10---0} arises only from those
[210---0] Gel’fand patterns which have weights
[210---0], (p odd) [10---02], 2[10110---0],
2[1000110--+07], ---, (p even) 2[10---0117, (p odd)
2[10---1107. The 2 indicates that there will be two
Gel’fand patterns having the indicated weight. Next,
we work out the Gel’fand basis vectors (8.108) which
have IR labels [210--+07], are maximal in their lower
patterns, and which have upper patterns corresponding
to the preceding sequence of U(p) weights which yield
SO(p) weight {10-+-0}. We then determine the linear
combination of these vectors which is annihilated by
the raising generators (8.132)—(8.134). [This procedure
is simpler than it appears, since it is actually necessary
to work out the three Gel’fand basis vectors having
weights [210---07, 2[1110- - -0]—the remaining ones
are obtained by permuting the superscripts. ]
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One need not be too concerned with the derivation of
the results (8.136)~(8.139). It is easy to verify directly
that the given vectors possess the properties conveyed
by their labels.

We can now construct an enormous number of more
general SO(p) X U(3) highest weight vectors simply
by forming arbitrary products of the vectors listed
above. The IR labels of the resulting highest weight
vector is obtained simply by adding the individual IR
labels of each of the factors (since each factor is a
highest weight vector). We will now note explicitly a
set of SO(p) X U(3) highest weight vectors which is
sufficiently general to. include all cases for which
mis+mest+mgs<4. We now revert to the notation
(8. 125) droppmg, however, unnecessary zeros in {««-}
and

F({k=2s}/[k]) = (fu™ )2 (fin®)*
for s=0,1, ---, [k/2],
F({r1}/[E1]) = (fm™ ) Yuny ™,
F({k—2,1}/[F1]) = (fmy™ ¥ i@ frun "1,
F({k—1}/[F1]) = (fm™ )**frn™
F({&, 2}/[k2]) = (fm")*2( fun"™)3,
F({k}/[R2]) = (fu ™ )" fpon
F({k—2}/[k2]) = (fuy™ ) ¥y ©
F({k11}/
F({k—1,1

[R11]) = (fuy™ )y M,
/LR11]) = (fiy™ ) F2f oy ™ . (8.140)

In addition, we need the following results which are
particular to p=4, 5, 6 and which are not in the pre-
ceding list:

J
J

SO(4)
F({k, —1}/[F1]) = (frg™ )Yy 01
F({k—2, =1} /[F1]) = (fig™ )31 frayy 01,

F({k, —2}/[k2])=(

Sy M) e2(fan )2,

F({k}/[R11]) = (fuy™ )Y ™
F({k—1, —1}/[£11]) = (fmy" ) *fray 71 5 (8.141)
SO(5)
F({R1}/[R11]) = (fr™) ™5 (8.142)
SO (6)
F({k, 1, —1}/[*11]) = (fn™ ) Yy 071 (8.143)

The next step is to apply the U(3) lowering operators
to the vectors (8.140)—(8.143), thus generating the
U(3) basis vectors designated by the notation (8.128).
In the last step, we form the linear combinations of
these U(3) vectors which appear in Egs. (8.111)-
(8.114). We can, in fact, rewrite Egs. (8.111)-(8.114)
in a form which explicitly contains the required lowering
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operators,? acting on the highest weight vector. Adapt-
ing these abstract results to the present notations then
gives the following set of (un-normalized) SO(p)X
SO(3) highest weight vectors:

Frpan ({++}/L)=Q(k, LYF({+ -} /[k+X\, N\, \])

(8.144)
for L=k, k—2, -+, 1 0r 0;

Fooanam ({=++}/L) =A(k, L)F({---} /[N N A—E])

(8.145)
for L=k, k—2, -+, 10r0;

Frepoagan({-+ /L) = (k, LYF({+ -} /[=+XN1,)])

(8.146)
for L=1,2,---, k;

Foonanua({s-}/L) = A (k, L)F({- - -} /INN=1,0—£])

(8.147)

for L=1,2, - k.

In these equations, @ and A are operators to be
described. The F’s on the right-hand side may be chosen
to be any SO(p) X U(3) highest weight vector, where
{+ -} designates any SO(p) labels which are compatible
with the U(3) labels, i.e., {+++} is contained in IR
[-:,0---0]of Up).

The @ and A operators are described as follows:
Define

20(L+0) | Eggt—L—20 Fy kLo
(C(k=L)/2]=0) k!(k—L—0) !’

Q(k, L) = (8.148)
(=1)727(L+0) 1(h— L—2¢) | Ey? g+
(Lk—L)/2]—0) kla!(L+20) !
(8.149)
for ¢=0,1, 2, -+, [(k—L)/2]. Then we find
Qk, L) = 2. Q,(k, L),

Ao(k, L) =

(8.150)

Ak, L) =Y A,(k, L), (8.151)

Q(k, L)= 3 [Qolk, L)+Q,1(k, L)], (8.152)

A-l(k$ L) = Z [Ag}()(k, L)+Ad-1(k) L) ]) (8153)

! The must economical way to generate a general vector from
a highest weight vector is not always accomplished by using
the lowering operators of (Na65), and the lowering operators
appearing in Egs. (8.144)-(8.147) are not in these standard
forms.

where
Qw,o(k, L) =Q¢r(k7 L)Esz/(L+20),

Qo,1(k, L) = a(EssE1n— E13F20)Qpy1(k, L—1) Es,

(8.154)

(8.155)
Aoo(k, L) =As(k, L) (Eg)7, (8.156)
Asi(k, L) =b,(k, L)A,(k, L)
X[ Es1(Eu— Ese)+ EsoEo ]/ (L+20+2), (8.157)
in which
ap=1/(k+1) for k— L even
=1 for b—L odd,  (8.158)
bo(ky L)=1/(k+1) for k.— L even
=1/(k—L—2¢)  for k—L odd. (8.159)

[In Eq. (8.156), the factor (Es)~! is always preceded
by a term containing Es» to a power greater than zero,
and the notation is intended to denote symbolically the
reduction of the preceding power by one and has
nothing to do with inverse operators. ]

All SO(p) X.SO(3) (p=>4) highest weight vectors of
degree four or less can now be generated explicitly by
selecting the appropriate SO(p) X U(3) highest weight
vector from Egs. (8.140)-(8.143) and applying the
appropriate lowering operation from Eqs. (8.144)-
(8.147). There is no multiplicity in the reduction of
SO(p) XSO(3)CU(p) XU(3) for p<5. [We have not,
however, listed sufficient results in Eqgs. (8.140)—(8.143)
to include all p=35 cases. ]

The SO(p)X.SO(3) highest weight vectors con-
structed by the preceding procedure will, in general,
not solve Laplace’s equation. We next examine this
problem.

F. Solutions to Laplace’s Equation

The operator 2€" which reduces to the Laplace
operator in Euclidean 3p-space under the restriction
of Z to the form A4,XA4; of Eq. (8.39) is given by

(OQTF) (Z) —_ {Z (512a—1§22a+ 222a——1212a+ 2320:—123%)

+ (p odd) [21°2r+5(2:°) ]} F(Z),

where the sum over « is from 1 to [p/2].

The operator £ carries a vector belonging to the
space JC, into one belonging to the space 3C,—s. In
particular, if F[msmaesmss | denotes an arbitrary vector
belonging to the carrier space of IR [m13m93m330 + + + 0]®
[m13meymss ] [basis vectors given by Eq. (8.108) 7], then
we have

(8.160)

LTF[mygmogms; | = F[mis—2, mas, mss ]
+ F[ms, mas— 2, mag ]+ Fmas, mag, msz—2]
+Flmis— 1, mas— 1, mgs [+ F[muz— 1, mag, mzz— 1]
+F[ms, mas—1, mgs—17].  (8.161)
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Let us introduce the notation Lf[migmasms] to
denote the set of six (or less) shifted IR labels appearing
in Eq. (8.161). For example, £1310]= {[1107], [200]}.
We will say that L is contained in £f[muzmesma; ] if the
IR of SO(3) specified by L is a constituent of at least
one of the IR’s of U(3) specified by the set of labels
L [migmezmss |. Similarly, we will say that {I,1,2l,5} is
contained in £ mygmagmss ] if the IR of SO(p) specified
by {llsl,s} is a constituent of at least one of the IR’s
of U(p) specified by the set of labels £ [ mismasms; ].

Now consider an SO(p) X.50(3) highest weight
vector [notation (8.126)7]. Then we have

°eTF[m13m23mn] ( {lpllp2lp3}/L) =0 (8.162)

if either {1,1l,0l,3} or L is not contained in £ migmaozmas .

Property (8.162) follows from the fact that £ com-
mutes with the generators of SO(p)X.SO(3): If the
vector (8.162) were not the zero vector, it would be an
SO(p) X.SO(3) highest weight vector of degree mi3+
mas+msz—2, and both {la1l,el,3} and L would be con-
tained in L[ #eismasmss .

In general, it is necessary to form linear combinations
of SO(p) X SO(3) highest weight vectors in order to
satisfy Laplace’s equation:

2 APy ({Tadalps} /L), (8.163)
where the sum is over all sets of labels [m = [ mismasms; |
such that: (1) mygtmestmazs=p; (2) both {lulsl,3}
and L are contained in each [m]; and (3) both {Z,1/,0,3}
and L are contained in each £[m].

Using Egs. (8.162) and (8.163), we can now list

the form of the solutions to Laplace’s equation through
degree four:

p=1:
p=2:

F[mo]({l}/l);

Fraon ({A}/L)
for A\=0, 2 and L=0, 2 but A\=L0;

Fro ({11}/1);

Fraon ({N\}/L)
for A=1, 3 and L=1, 3 but A=Ls#1;
Fao({21}/L)  L=1,2,
Fro ({1}/2),
aFso0 ({1} /1) +bF g ({1} /1)

p=3:

! Fro ({\}/4) A=0, 2,4,
Fraoo ({4}/L) L=0,2,
Fra0 ({31} /L) L=1,2,3,
Fao({11}/L)  L=2,3,
Fro ({2}/L) L=1,3,
Fra ({22}/L)  L=0,2,
Fom ({--+}/1)
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for {++-}={2} in SO(4), {21} in SO(5), {2,1, =1} in
S0(6), and {211} thereafter;

aF ooy ({N}/ L) +bF a0y ({\} /L)
for \=0, 2 and L=0, 2 but A= L52;
aF 0 ({11}/1) +0F p ({11}/1),
aF ooy ({21/2) +0F 13101 ({2}/2) +cFraan (2} /2) .

The preceding list gives the form of all SO (p) X SO(3)
highest weight vectors of degree four and less which
solve Laplace’s equation for p>4. For p=4, one simply
includes those SO(4) IR labels which have a negative
sign on the second label, i.e., {1, —1} wherever {1, 1}
appears, etc.

The occurrence of two constants ¢ and & in this list
means that a unique linear combination of the respec-
tive vectors will solve Laplace’s equation; the occur-
rence of three constants ¢, b, and ¢ means that two
independent linear combinations of the respective vec-
tors will solve Laplace’s equation. Thus, the highest
weight vector labeled by ({2}/2) occurs with multi-
plicity two. This vector is the only one having a
multiplicity in the set of all states up to degree four.

The explicit listing of these solid harmonics up to
degree four is now entirely mechanical: Using the
formulas of Sec. E, we work out the various SO(p) X
SO(3) highest weight vectors and determine, in those
few cases where required, those linear combinations
which are annihilated by £."The explicit tabulation of
these vectors for arbitrary p is entirely feasible.

One must still classify the states with respect to their
properties under the permutations of the particles. It
appears that this procedure should be carried out for
each p separately, and we have not attempted to do this.

APPENDIX 1. PROOF OF LEMMA 9

The purpose of this Appendix is to prove that the
relation between matrices of SU(4) and SO(6) stated
in Lemma 9 is a homomorphism.

Let VEU(4). We first show that the matrix R of
Eq. (6.3), which is defined in terms of V through the
sequence of relations, Egs. (6.3)-(6.8), is proper, real
orthogonal. That R is real follows from the form of Q
and the explicit expression for A. Thus, R€ SO(6) if
Q is unitary unimodular, i.e., if detQ=1 and the
matrices Q1 and Qs satisfy

Q101 T+ Q5* Qo =15,
0102 T+ Q2*Ql =0.

We must demonstrate that these relations are indeed
satisfied by O and Qs of Eqs. (6.6)—(6.8) for VE U(4).
(The restriction to SU(4) is not necessary at this
point.)

Since we are assuming that V€ U(4), the unitary
condition V'V =TI, implies the following relations among

(A1.1)
(A1.2)
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the partition matrices appearing in Eq. (6.1):

ViViitaat=1I;, (A1.3)
ViB* = —v*a, (A14)
BV3t=—vat, (A1.5)
BB*+yy*=1. (A1.6)

Using these relations, definitions (6.6)-(6.8), and
the property I'ya=0, we easily establish the following
identities:

Q10 =yv*I+-aat, (AL7)
Q*Qe=To*T,= (ata) [1—aal, (A1.8)
Q10T =—7To*, (A1.9)

Q¥ Q1=7T*. (A1.10)

Noting that V being unitary also implies afa+vyy*=1,
we obtain Eqgs. (A1.1) and (A1.2) from those above.

Nowhere in deriving the above results have we
required V to be unimodular. For each V€ U(4), the
equations of Lemma 9 define a real orthogonal matrix
Rc0(6). We still must prove that det R=1, i.e., that
det Q=1. This result follows from the matrix lemma
given in Appendix 2 (since Q:Q:" has eigenvalues 1,
[y 15 v D).

We have thus proved: For eack V€ U(4), the equations
of Lemma 9 define a unigue R€ SO(6).

To show that the equations of Lemma 9 give a
mapping of U(4) onto SO(6), it must be demonstrated
that each R€ SO(6) is the image of at least one V€
U(4). Stated less precisely: Given R€ SO(6), we must
be able to “solve” the equations of Lemma 9 to find a
Ve U(4). This we next do.

Let R€ SO(6). Then the matrix Q= ATRA is unitary
unimodular, and has the form

(o o)

Q= ) (A1.11)

Q2 Or*

where :
Q1=[Ru+Ropt+i(Re—Ru)]/2, (A1.12)
Qe=[Ru—Rort+i(Ro+Rx) /2, (A1.13)

in which each R;; is a 3X3 real matrix which comes
from partitioning R. Since Q is unitary unimodular, the
matrices Qr and Q2 necessarily satisfy

QO - (0 T) *=1T5, (A1.14)
Q01"+ (01Q:) *=0. (A1.15)

Given the two matrices Q and Q: and the properties
det Q=1 and Eqgs. (Al1.14) and (A1.15), the problem
is to find V3, @, 8, and v such that: (a) Egs. (6.6)—(6.8)
yield Q1 and Qz, and (b) the matrix V defined by Eq.
(6.1) belongs to U(4). We now give the complete and
general construction of V3, «, 8, and v such that these
properties obtain.

The difficult part of the construction is contained in
an ancillary result which we state, deferring the proof
until later (Appendix 2) : For det Q=1, the matrix Q; in
Eq. (A1.11) s such that the Hermitian positive semi-
definite matriz Q1Q1" has eigenvalues 1, | v |2, | v |2, where

|7 =~ 14+Tr (Q@NY/2<1. (ALI6)

This is the key property which allows us to carry
through the proof.

Recall that a 3)X3 Hermitian matrix is related to its
orthonormal eigenvectors (column matrices) 1, v, v3
and its real eigenvalues Ay, N, A3 by

H= Z }\i‘l)q;'vq'f, (A117)

where

Z'Ui'UiT=I3- (A1.18)

Using this result, we now deduce the form of Q:0:%:
Q1Q]_T= | Y ]U;;—{-—aaT, (Al.lg)

where a is the eigenvector of 010" having eigenvalue 1
and normalized such that

ata+| vy 2=1.

(This is always possible, since 0<| v [2<1.)

Equations (A1.16) and (A1.19) are the basic rela-
tions which allow us to obtain the inverse solutions to
Eqgs. (6.6)-(6.8). Let us describe the construction of
these solutions, verifying subsequently that they are
solutions. First, we select any v satisfying Eq. (A1.16).
Second, we determine the column matrix @ up to an
over-all phase from

i = (101 ") s—| v 264 (A1.21)

Third, we form the skew-symmetric matrix T of Eq.
(6.8) and fix the phase of a by requiring

I‘quz’Ysz. (A122)

(We must show that this is possible.) Finally, we define
B and V3 as follows:

(A1.20)

B=—Q*, (A1.23)
Vs=7*01— L'u*Qs. (A1.24)

We must demonstrate that: (a) the v, @, 8, and V3
given above solve Egs. (6.6) and (6.7); and (b) the
matrix V, now defined by Eq. (6.1), belongs to U(4).

First, we verify (a):

vYVs—aB=|v "O1—7To*Qet0a’Qy
= (| v 4a'a) Q1+ To* (TaQ1—7Q2)
= Qu,
where we have used the identity
aa’= (ata) I3+ T*Ty (A1.26)
in the second step, and where Egs. (A1.20) and (A1.22)

(A1.25)
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have been used in the last step,
PﬂlV3= 'y*PaQ.l_ I‘aI‘a*Q2
= (|7 +ata) Qe—a*aQe=0s, (A1.27)

in consequence of Eq. (A1.20) and the property &Q:=0
[The property Qea=0 is an easy result of the definition
of a and relation (A1.14)].

Second, we verify (b) [by showing that Egs. (A1.3)-
(A1.6) are satisfied]. The following preliminary rela-
tions simplify the proof:

Y0105 Ta= —vT*Q:0i = v Q1) *, (A1.28)
I‘a*Q2Q2TI‘a = I‘a*I‘u - I‘a*Ql*QII‘a
=T *Tut| v [2(Q0:1)*.  (A1.29)

These relations follow quite simply from Egs. (A1.14)
and (A1.15) and property (A1.22). Then

VsVaJr’*‘OIOIf = | Y ]2Q1Q1T" I‘a*QZQ2TPa
Fv* 010 T — ¥ T * Q01 1+ aat
=| v PLOQO + (Q:0:") *]— To*Totaat

=(|v Haa) ;=1 (A1.30)
by using Eqgs. (A1.14), (A1.20), and (A1.26);
Vip*=— (v*Q1— Ta*Q2) Q1= —7*a, (A1.31)
since 0101fa=a and QxQ:fa= —Qr*Qra=0;
Bs*+| v P=a'QiQifat| v P=alat|y [2=1. (A1.32)

We still must demonstrate that o can be chosen such
that Eq. (A1.22) is satisfied. The relation

(TaQ1) (ToQ1) T=| v PTalat = v PQ:0:7  (A1.33)

is established by multiplying Eq. (A1.19) from the left
by TI'sx and from the right by T.', noting that Taa=0.
Equations (A1.26) and (A1.14) are then used to prove
T.To'=0Q,". If y=0, then we obtain I'eQ1=0 from
Eq. (A1.33) and Eq. (A1.22) is therefore correct. (Note
that for y=0, the column matrix « is determined only
up to a phase.) If y#£0, then the matrix @ is non-
singular. Furthermore, the relation

|y POrt= 01t (15— aa®) (A1.34)

follows from Eq. (A1.19) and the property Qi la=
Orte. Since Q:Q17e=0, we obtain

| v Q2011 = Qa1 (A1.35)

The matrix Q2Q:" is skew—symmetric [property (A1.15) ],
and « is an eigenvector having eigenvalue 0. The form
of Q.01 therefore must be

Q01" =0T, (A1.36)
for some complex number a. Hence,
aTuOr=| 7 Qs, (A137)

and Eq. (A1.33) requires | a |=|v |. We put a=~v*¢’,

o’ =ae* to obtain

ToQ1=7Qe. (A1.38)

Thus, we can always satisfy Eq. (A1.22) by an appro-
priate choice of phase of the column matrix a.

Observe that the matrix T, hence «, is determined
directly by

T'y= ('y*)“QgQ{f (A139)

for y#0. (We have, however, been careful to formulate
the construction of an inverse solution such that it is
valid even for y=0.)

The results, Eqs. (A1.25)-(A1.38), prove that for
each y determined by Eq. (A1.16), and for a, 8, and V3
given by Eqgs. (A1.21)-(A1.24), we obtain a V€ U(4)
which maps to the proper orthogonal matrix R whose
elements determine Q; and Q. by Egs. (A1.12) and
(A1.13): The equations of Lemma 9 are a mapping of
U(4) onto SO(6).

Note that the arbitrary phase of ¥ (or the arbitrary
phase of & if y=0) can always be chosen such that
VeSU®4).

While Lemma 9 gives, in fact, a mapping of U(4)
onto SO(6), this mapping need not be a homomorphism
of U(4) onto SO(6). Indeed, the elements of U(4)
which are mapped to the identity Is of SO(6) are of
the form

0

e—i“’[:s 0
—/ (A1.40)

0

0 0 0]e*

for 0< < 2. But these elements are not the elements
of an invariant subgroup of U(4)—hence, the mapping
cannot be a homomorphism of U(4) onto SO (4). How-
ever, if we restrict to SU(4), then we have

+ 11, (A1.41)

and since {Ii, —I.} are the elements of an invariant
subgroup of SU(4), the mapping of Lemma 9 may be
a homomorphism of SU(4) onto SO(6). That this is
the case, we now prove.

The mapping of Lemma 9 is a homomorphism if it
can be demonstrated that V—R, V'—R’ implies VV'—
RR'. This mapping is a homomorphism if and only if
VESU(4). (We have already established the “only if”
part.)

The proof that we have a homomorphism is not as
trivial as one might think. Taking V to be of the form

of Eq. (6.1) and V' to be
al

<V3,
=
B’I

(A1.42)
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we obtain
V3I/ all
v VV’=<—— —-), (A1.43)
B’// ’Y”
where N
Vs"= V3V3’+aﬁ',
o=V +va,
ﬂ//= 73,18"{'7,3’:
v =Ba'+vy'. (A1.44)

The product QQ'=Q"" is again of the form, Eq. (6.5),

where
)= Q10+ Q%0 (A1.45)
Q"= Q01"+ Q1*Qy. (A1.46)

To establish the homomorphism, it must be demon-
strated that Eqs. (A1.45) and (A1.46) are identically
satisfied when Q1, Q2, O, Q2', Q1”/, Q2 are expressed in
terms of the respective partition matrices of V, V', V",
where we can use the relations (A1.44) between these
partition matrices. These substitutions lead to the
following results. Equations (A1.45) and (A1.46) are
satisfied identically if and only if the following relations
hold identically:

TV T V' = (B! ) ViV — Va/BVS', (A1.47)
I‘Vm' Vs Va’ = ’Y*Vs*ra' Vgl— a*,BJ’ Fal Va,. (Al.48)

[In obtaining Eq. (A1.48), we have used two properties
of skew—symmetric matrices of the type T, namely,
Twb=—Tsa and Toyp=T,+4 T} for arbitrary e= (a102a;)
and b= (bidsd;).] Since these equations must be iden-
tically satisfied, the conditions that our mapping be a
homomorphism are reduced to

T V§*Tw = — V3T w, (A1.49)
Tsa Vs=v*Vs*To— a8 o, (A1.50)

where we have used the relation
o/B=TsTo+ (Ba') Is (A1.51)

in obtaining Eq. (A1.49).
Condition (A1.50) can be reduced still further upon
noting that
VsVs*=I,—ggt, (A1.52)

Vo= —v*8. (A1.53)

(These relations follow from VV=1,) Multiplying

Eq. (A1.50) from the left by V3 now yields
Vil'vyar Vs=7*Tar. (A1.54)

Since each side of this equation is skew—symmetric, we
can equate the (23), (31), and (12) elements and

obtain a column matrix relation. The result is
CVsa =v*d, (A1.55)

where C is the cofactor matrix of V3, i.e., the element

C;; in row ¢ and column 7 of C is the cofactor of the
element in row ¢ and column j of V3. The relation
between C and V3 is

CYV3= V36= (det V3) Is. (A156)

Equations (A1.49) and (A1.55) must hold for
arbitrary o’. Thus, we finally obtain: The necessary and
sufficient conditions for the mapping of Lemma 9 to be a
homomorphism are

T*V3*=—V,T, (A1.57)
y¥=det V3 (A1.58)

for each V in the map. We assert: These relations are
satisfied for each VESU(4).

To prove the above assertion, we start with the
unitary relation

V¥=T-"1=(det V)@, (A1.59)

where € is the cofactor matrix of V [see the definition
preceding Eq. (A1.56)7]. By direct examination of the
cofactors of V, written in the form of Eq. (6.1), we find
the following identities:

Cii=vCi+ (ToV3Ig) 45 1,7=1,2,3,
row [Cy Cp Cy]=—aC,
col [Cu Cos Gz |=—CB,
Cu=det Vs, (A1.60)

Writing V* in the form of Eq. (6.1), there obtains the
following relations for each V€ U(4):

(det V) Vi*=yC+T.V,T, (A1.61)
(det V)a*=—CB, (A1.62)
(det V)g*=—Ca, (A1.63)
v*det V=det Vs. (A1.64)

From Eq. (A1.64), we obtain the result: det V=1
implies y*=det V3.

Next, we multiply Eq. (A1.61) from the right with
T's*, noting that

ToVsTels*=T.Vs(8*3—B'615)
=Ta(—7*f—B'8V3)
=—(8"8) TV,

CTg*=v*(det V) V3*T's*.
Thus, we obtain

ToVs=—(det V) Vg*I'g*. (A1.65)

We can now conclude: det V=1 implies To*V3s*=
— V3.

The proof that our mapping of U(4) onto SO(6) is
a homomorphism if and only if V€ .SU(4) has now been
completed. Note that the kernel of the homomorphism
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is

+1—T (A1.66)

The homomorphism is thus 2 to 1.

APPENDIX 2. A MATRIX LEMMA

The following matrix lemma is proved in this Appen-
dix: Each unitary matriz, Q€ U(6), which is of the form

(e o)
Q—-_—

. Or*
either has det Q=-+1 or detQ=—1. If detQ=-1,
then Qi1 has eigenvalues 1, \, \ for some \ in the interval
0<A<L1, and conversely; if det Q= —1, then Q101" has
eigenvalues 0, N\, N for some \ in the interval 0<A<1,
and conversely.

The proof that the homomorphism of Lemma 9 from
SU(4) to SO(6) is onto depends crucially on the
validity of the above result in the case det Q=1. [ Note
that the subgroup of U(6) with elements of the form
(A2.1) is then isomorphic to O(6), the isomorphism
being given by R=A4QA', where A is defined by
Eq. (64).]

To simplify the notation in the proof, we define the
3X 3 matrices as follows:

S=0:01",  H=0:0if, K=(Q:0:N* (A22)

Then H and K are Hermitian positive semidefinite, and
S is skew—symmetric.
The conditions that Q be unitary are now expressed as

H+K=I, S=-S5. (A2.3)

The first of these relations implies that each eigenvalue
(necessarily real) of H is in the interval [0, 1]. The
relation

(A2.1)

H(I—H)=S'S (A2.4)

is also easily establishing upon using the relation
Q:'Qa=I—01'Qs. Furthermore, since S is skew-sym-
metric, it has the form

0 —as Qs
(A2.5)

— Qs a1 0

The eigenvalues of ST.S are 0, a2, a2, where a*=| a; |+
| a2 [*+] as |2.

Next, we observe from Eq. (A2.4) that H and StS
commute. Consequently, these two Hermitian matrices
can be simultaneously diagonalized by a unitary matrix.
Again using Eq. (A2.4), we deduce the following result:
Each eigenvalue of H belongs to the set

{0, 1, \, 1=2}, (A2.6)
where A is a number which satisfies
A1—=))=a (A2.7)
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Note that 0<a?<1/4 in consequence of the fact that
the largest value of a? occurs for A=4%. Thus, the roots
of Eq. (A2.7) always belong to the interval [0, 1].
Note also that if A; is a root of Eq. (A2.7), then the
other root is 1—M;.

We divide the remaining portion of the proof into
three parts: (a) Q1 is nonsingular; (b) Qs is nonsingular;
and (c) Qr and Qs are singular.

(a) Q1 is Nonsingular. If Qy is nonsingular, we can

write
I BY\/O. O
Q= ’ (A2.8)
B I 0 O
where
B=0Q01™, (A2.9)
and
S=BH=H*B. (A2.10)

The second identity in Eq. (A2.10) follows easily upon
multiplying Q1'Q1+Q2"Q2=1 from the left by Qs and
from the right by Qs Since S is skew-symmetric and
H is Hermitian and nonsingular, it follows from Eq.
(A2.10) that B is skew—symmetric

0 —by b
B=| & 0 —b (A2.11)
—be b 0
Evaluation of det Q from Eq. (A2.8) now gives
det Q= (1+0%)2det H, (A2.12)
where
b= b "+ bo [*+] bs [
Next, from Eq. (A2.10), we obtain
BtB=H-1STSH, (A2.13)
so that
2=Tr (B'B)=Tr (STSH-2).  (A2.14)

The unitary transformation which diagonalizes StS
and H carries STS to the diagonal form diag (0, a?, a?)
and H to the form diag (1, A\, u). Evaluating the trace
of the right-hand side of Eq: (A2.14) now yields the
relation

202 = a?(\2+-p?) /N2, (A2.15)

Since H is nonsingular, its eigenvalues are necessarily
either (1, \,\) or (1,\,1—)\), where X\ is a root of
M(1—X)=a% Corresponding to the set (1,\,\), we
obtain the value of det Q to be

det Q=1. (A2.16)

Corresponding to the set (1,\, 1—\), we obtain the
value of det Q to be

det Q=1/4N(1—N). (A2.17)

Since Q is unitary, its determinant must have absolute
value 1. Therefore, the possible eigenvalue set
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(1,\, 1—X) must be excluded unless A=1/2 in which
case it is of the form (1, 1/2, 1/2). Thus, Q; nonsingular
implies that det Q=1 and that H=Q:Q:" has eigen-
values (1, A, \) for some X in the interval [0, 1].

(b) Q2 is Nonsingular. We use the following relation
and apply the results of Part (a)

Or*

G oG

I 0/ \Q: O 01 *
Since Q’ is unitary and Qe is nonsingular, we must have
det Q’=1 and the eigenvalues of QsQ, are (1,1—X\, 1—2))
for some X in the interval [0, 1]. Therefore, the eigen-
values of 01Q:f are (0, \,\), and det Q= —1 follows
from Eq. (A2.18).

(c) Q1 and Q. are Singular. Both H and K are singu-
lar. Hence, each possesses an eigenvector having eigen-
value 0. It follows from Eq. (A2.3) that the ortho-
normal eigenvectors, uy, #s, and u; of H satisfy

>=Q’. (A2.18)

Hu1=u1, KM1=O,
HM2 = 0, Ku2= Uz,
HM3=)\M3, K’M3= (1—>\)M3. (A2.19)

But, from Eq. (A2.4), we obtain STSu;=0, STSu,=0.
However, STS necessarily has eigenvalues (0, a?, a?),
and the only way that two can be zero is for three to
be 0, and therefore .S is the zero matrix

5=0. (A2.20)

Hence, N in Eqs. (A2.19) is either 0 o7 1, and H is
idempotent:

m=H. (A2.21)

Let U denote the 3)X3 unitary matrix whose columns
are the eigenvectors of H:

U= [u1 us 13 ]. (A2.22)
Then
Ut o U o 4 B*
O'= _)of = , (A2.23)
0 U 0 U* B A*
where
A=U'Q,'U, (A2.24)
B=UQ,U. (A2.25)

Now consider the two cases, A=0 or 1, taking A=0
first. It follows easily from Eqgs. (A2.19) that columns
2 and 3 of 4 are col (0, 0, 0), while column 1 of B is
col (0,0, 0). Multiplying Eq. (A2.23) from the right
by the proper orthogonal matrix Ro=[e; €5 €5 €1 €3 €3
now gives the form

Py 0
P= Q ,Ro = y
0 P

where we note that P is unitary, kence, Py is unitary.

(A2.26)

Thus,
det P=(det Q)*=|det P, 2=1. (A2.27)

The cases A=0 or 1 are characterized by Tr H=1
or Tr H=2, respectively. Thus, Qy and Q; singular imply
Tr H=1o0r Tr H=2. Here Tr H=1, in addition, implies
that det Q=1 and that H has eigenvalues (1,0,0) (from
the results of the preceding paragraph).

Finally, we must consider the case A=1 (Tr H=2).
In this case column 2 of 4 is col (0, 0, 0), while columns
1 and 3 of B are col (0,0,0). We can now repeat the
argument leading to Eq. (A2.26) replacing Ry by the
improper orthogonal matrix [e; e e; ¢4 €3 €5]. The con-
clusion is: Q1 and Q, singular and Tr H=2 imply that
det Q=—1 and that H has the eigenvalues (0, 1, 1).

Since all possible properties of the submatrices of Q
have been covered in Parts (a), (b), and (c), the
matrix lemma stated at the beginning of this Appendix
is proved. It should be remarked that one can write
out explicit matrices of the type Q which exhibit the
properties considered in each of the parts, (a), (b),
and (c).

APPENDIX 3. PROOF OF LEMMA 10

An alternative form of the homomorphism of Lemma
9 is given in this Appendix.
Let Z denote the following skew—symmetric matrix:

0 — 23* 22* 21
Zg* 0 —21* 29
7= (A3.1)
"‘"232* Zl* 0 23
— %1 — 22 —23 0

Let Z, denote the matrix Z when 21, 22, 23 are introduced
explicitly in the form

2= (witixia) V2, j=1,2,3.  (A3.2)
The transformation
&' =Rx=(4*QA)x (A3.3)
can be written as
(Ax") =Q(Ax), (A3.4)
that is, L
Z/ Q1 Q2 2
= , (A3.5)
s QzT QIT o*

where z is the column matrix col (z; 22 23). Thus, the
proof that

Z7:=VZ,V (A3.6)
for V—R is transcribed to the proof that
Z'=Vzv (A3.7)

for V—Q, where VE SU(4).
To prove Eq. (A3.7) it is necessary to show explicitly
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that the transformation from z to 2’ contained in Eq.
(A3.7) is precisely Eq. (A3.5) when Q1 and Q. are
expressed in terms of the partition matrices of V
according to Egs. (6.6)—(6.8).

Since Z’ and Z are each skew-symmetric, it is suffi-
cient to examine the elements ij, <j, of Eq. (A3.7):

k<l
It is just a question of looking at the various elements
of this equation to deduce that the transformation is:

2= (yV3—Ba)z— (V3Ia)2*, (A3.9)
%= (TpVy) 24-C2, (A3.10)

where C is the cofactor matrix of V; introduced in
Appendix 1. Noting the relations, Egs. (6.6)—(6.8),
we see that Eq. (A3.9) agrees with that obtained from
Eq. (A3.5).

To demonstrate the agreement of Eq. (A3.10) with
(A3.5), we note two results which are valid for V¢
U4) B

TsVi=(det V)Q,f, (A3.11)

C=(det V) Q1. (A3.12)

The first relation follows from the Hermitian conjugate

of Eq. (A1.65) and the definition of Q.. The second

relation follows from Eq (A1.3) upon multiplying by

C from the left and using Eqs. (A1.56), (A1.63), and

(A1.64), together with the definition of Q1. In particular,

for det V=1, i.e.,, V€SU(4), we obtain the required
agreement between Eqgs. (A3.10) and (A3.5).

APPENDIX 4. GEL’FAND BASIS VECTORS
The explicit form, Eq. (6.70), of the Gel’fand basis
vectors of the space 3C, 0 is derived in this Appendix.
We have already observed that 3C,, is the carrier
space for IR [p p00] of U(4) and that the unique
highest weight is

pp 00

pp 0
F (W) =2/ (p1)'.
pp

(A4.1)

4

It is now simply a question of using the generators,
{Ei;}, to generate the general basis vector from the
highest weight. This procedure requires explicit knowl-
edge of the canonical matrices of certain of the genera-
tors on a general basis vector of the form

pp0O0

2 ¢q0
F . (A4.2)
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These matrix elements have been noted in various
places, (Lo65, Ge50a, Ba63) and we will not repeat
them. It is fairly trivial to go from the U(4) highest
weight of Eq. (A4.1) to a U(3) highest weight, this
step requiring the application of Esy p— ¢ times followed
by the application of Ey p—gq times (with phase and
normalization appropriate to these operators) :

pp 0O
2 q0

F W)=
?q
P

The transition to the general basis vector may now
be accomplished by the application of the operator as
follows (Lo65):

(—m)?9($3)

—q) lg! "

[ (A4.3)

pp00
?¢q0
F = N2 Eg Vgt F
a B
Y
pp00
pq0
X[ Es1 (En— Ez)+ EgpEgy J—F , (Ad4)
?q
b4
where
o CEU LT
T Lla=7) l(a—pB) 1(g—8) lq!
(a—B+1) {a—q) l(at1)! ]
X . (A4.5
(s il 49

To facilitate the application of the operators in Eq.
(A4.4) to the state vector of Eq. (A4.3), it is con-
venient to define

A= Ey(En— Es)+ EsFs,

11%052¢ 8 (M1t neda)
alblcld!(a+d+1)! ’

where a, b, ¢, d are non-negative integers. We define
Fapca to be zero if any one of the integers @, b, ¢, or d
becomes negative. Then we have

Fa,[),c'()(’r), g‘) =7]1“§'3°/(l 'Cy(d*‘i“l) N

Using the explicit forms of the generators given by
Eqgs. (6.38)—(6.42), we derive the following identity:

AFapea= (b4+1)Foctpi1,c.0— (A1) Foy b 1,041 (A4.9)
Using this identity, we now establish the following

(A4.6)

Fabcd(ni g‘) = (A4'7)

(A4.8)
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result by induction:
(Ae/eI)Fa.O,c,O'—‘ Z (_' 1) dFa—e,e~d,c—d,d, (A4-10)
d

where the sum over d can be considered as running over
all integral values 0, 1, 2, =« -.

The next relation is obtained directly upon expanding
(nsfia—§23) 7 by using the binomial theorem and letting
the result act on Fopca(n, §):

[(E32f/f!)Fubcd](77a f)

_ (=1)/=(b+s) (at+d—s)!
_w‘?[ s f—s) bl (a+d+1)!

]Fa,b+s,c—f+s,d—s(77) g‘)'

(A4.11)

The next step is to operate on Eq. (A4.10) with Esf
and use Eq. (A4.11) to evaluate the right-hand side.
The double sum which occurs in the resulting expres-
sion can be reduced to a single sum by putting r=d—s
and replacing the summation over d by a summation
over r. The summation over s then gives a numerical
coefficient:

> Lsi(f—s) lle—r—s) (a—e+r+s+1) 1!
= (a+f+1) V[ fl(a+1) l(e—7) la+f+r—e+1) 1]

(A4.12)
The result of this calculation is
ella+f+1)!
EsfA) Fapon](n, ¢) =| ——— 212" 1 amerys
[(Ex'A%) Fap,c0l(n, §) [(a—{—l)!(a—e) !]771 (¢

XX

r

(=) (r+1) 1
[(a—{—f—f—r—e—i—l) !:l Foerosrr(n,§). (A4.13)

It is convenient at this point to write out the par-
ticular basis vectors having y=a in Eq. (A4.4). This
result is contained in Eq. (A4.13) upon identifying
f=q¢—8, e=p—a, a=p—q, c=q and inserting the
appropriate normalization factors. We write the result
in the following form:

pp0O0
2 ¢0
F (w)
ap
a
—B)! 1/2
{(’J%‘x] MK P Gpap(n, €),  (A4.14)
where
Gpag(n, §) = (—1)78412
X E ('—"1)7"7]31’—01-—r§-38—r(771§-1+7]2§-2)r (A4.15)

- (a—B+r+1) l(p—a—r) (B—r) ]’

where
Az[ﬁl(a+l) l(a=B+1) I(p—a) I(p—B+1) l]
(p+1) H{a—p) ! '

(A4.16)

In the final step, we must apply E» repeatedly to
Eq. (A4.14). Note, however, that E,; annihilates Gpag.
Thus, we need to apply Ea only to the first factor in
Eq. (A4.14). The following result is obtained directly
upon expanding the operator on the left-hand side by
using the binomial theorem:

(=B T
[m] (i —{182)

(aB) ]/ e
[<a—q>!<q—m1 g

m o e
=DMy s asp) —atitats) , (A4.17)
n2 —§1

where the D function is the standard one which occurs
in the representations of SU(2), the domain of defini-
tion now being extended to the space C*:

&1 e
En &

=[(j+m) {(j—m) |(j+m") | (j—m') ]
( 511) Fm!=s ( 521) ¢ ( 512) m—m!+s ( fgz) j—m—s

X g (j4+m' —s) sl (im—m'+5) 1 (j—m—s) ! :

(A4.18)

The notation for the argument of D7, indicates that

" the &;; are the elements of an arbitrary 2)X2 complex

matrix A4:

(Eu fu)
A= . (A4.19)
En
Under the restriction A—U€ SU(2), these D functions
become the elements of the unitary matrix D(U)
which corresponds to U in the standard matrix repre-
sentation U—Di(U) of SU(2).

Combining Eq. (A4.17) with Eq. (A4.14), we obtain
the final form of the Gel’fand basis vectors:

(ppooO

pq0
F (W)
a B

v )

1 o
=D¥ B taif) —gtiatP) Gpap(n, §).
2 —1

(A4.20)



Ba60
Babl
Ba63
Ba66
Ba67

Ba’70

Be67
Bi67

Bi68
Bi69
Bi70
Br70
Br70a
Ca65
Call
Cho4
Ch65

Dr65
Ef71

Es64
Ga’7l
Ga7la
GaT72

Ge50

Ge50a

Gr70
Ha62
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