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Methods for constructing states of good total orbital angular momenta of E identical, free, structureless particles
through the use of the orthogonal and unitary groups are developed. The first part of the paper reviews the existing
literature, particularly for the. three-particle problem. New results include the discrete symmetry properties of the SU(3)
states vectors of the three-particle problem. The general E-particle problem is approached through the use of the sub-

group property O(e) QU(n). An imbedding of O(n) in U(n) is given which greatly simplifies the study of the O(n)
subgroup of U(n). Particular applications of this imbedding are: (1) an explicit constructive procedure for obtaining
all the single-valued irreducible representations of O(n), and (2) an explicit constructive procedure for obtaining all
N-particle states of good angular momenta up through the degree four solid harmonics.
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I. INTRODUCTION

The method of E harmonics was introduced by
Zickendraht (Zi65) and Simonov (Si66) as a viable
technique for determining the wave functions and bind-
ing energies of the three-nucleon system. Since then the
method has undergone extensive applications (Si67,
Ba67, Br70) and developments (Ba66, Si68, Zi69, Ri69,
Ba70) toward the goal of developing a calculational
scheme applicable to arbitrary nuclei.

*Work supported in part by the U.S. Atomic Energy Com-
mission and the National Science Foundation.

$ Sections VII and VIII of this work are extensions of ideas
developed in a thesis submitted by H. W. Galbraith, National
Science Foundation Predoctoral Fellow, to the Department of
Physics of the University of Pennsylvania in partial fulfillment
for the Ph.D. degree (1971)~
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The basic formulas of the E harmonic method are
derived from an exparision of the A nucleon nonrela-
tivistic wave function in terms of the spherical harmon-
ics on the 3A —3 sphere. The construction of such
spherical harmonics is basic to the technique.

The spherical harmonics which occur in the E har-
monic method are, of course, just the angular functions
which occur in the solution of Schrodinger's equation
for the relative motion of E identical noninteracting
particles, i.e., they are solutions to Laplace's equation
on the (31V 3)-sp—here (1V=A for the nuclear problem).
In place of the spherical harmonics, we can choose the
solid harmonics which are then characterized as being
homogeneous polynomials of degree p (=E) in the
3Ã—3 relative coordinates which one introduces to
describe the motion of S identical noninteracting par-
ticles relative to the center of mass.

In the present work, we consider the problem of
obtaining polynomial solutions to Laplace's equation
in (31V—3)-space in considerable detail. The principal
physical motivation for this study is the basic role of
the solid harmonics in the E harmonic technique for
investigating the properties of actual X-particle sys-
tems. From a mathematical viewpoint, this seemingly
simple problem presents a natural and physical frame-
work, rich in structure, to which the more. recent tech-
niques in orthogonal and unitary group theory are
applicable. We would like to view this aspect of the
problem not so much as one more application of abstract
group theoretical results, but rather as an opportunity
to give such results a concrete realization in terms of a
physically meanirigful problem.

It is simple enough to obtain a basis for the solid
harmonics in arbitrary e-space. The di%culties begin
when one requires that this basis Lin (31V—3)-spacej
contain exp/icitly each state of sharp total (relative)
orbital angular momentum of the system of X particles.
The properties of the basis solid harmonics under inter-
changes of identical particles are also important, and
one would like to deal optimally with this aspect of the
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II. ORTHOGONAL AND UNITARY GROveS
In this section, we discuss certain aspects of the

orthogonal and unitary groups which are required for
our later work dealing with X-particle state vectors.
We lay the background for finding solutions to Laplace's
equation in e-space. Here e is unspecified, and the
coordinates need not relate in any fashion to particle
coordinates. Particular choices of e which do relate to
the E-particle problems are made in subsequent sec-
tions. The techniques used are significant for all the
subsequent developments.

A. 'Orthogonal Groups

We use the notation O(n) to denote the group of
nXn real orthogonal matrices (n= 2, 3, ~ ~ ~ ):

O(n) = IR:RR=I„,R real). (2.1)

problem. The methods of implementing these properties
into the basis solid harmonics comprise the main theme
of this paper.

In Secs. II—V, we present the conceptual framework
for the subsequent developments. These sections are self-
contained and comprise a review of existing literature.

The 3-particle problem is considered in Sec. VI.
Here the global role of the unitary group SU(4) is
emphasized. The discrete symmetries of the SU(3)
state vectors are given in detail. We believe these results
to be new. The multiplicity problem is discussed from
a different viewpoint.

The E-particle problem is discussed in Sec. VII from
a viewpoint which is compatible with the standard
angular momentum coupling methods, but which is
particularly well adapted to the 4-particle problem.

In the last and most dificult section, Sec. VIII, we
realize the imbedding of the orthogonal group SO(n)
in the unitary group U(n) in a way which reveals the
full structure of all the single-valued irreducible repre-
sentations of SO(n) . This same imbedding is then used
to give explicit formulas for constructing all solid
harmonics up to degree four which arq labeled by good
orbital angular momentum quantum numbers for an
arbitrary number of particles.

We emphasize again that the construction of solid
harmonics of good total orbital angular momentum is a
first, but nontrivial, step toward the solving of actual
physical problems. For the detailed methods of imple-
menting these functions into the three- and four-nucleon
wave functions, we refer the reader to the following
papers: Three nucleons; Badalyan and Simonov (Ba66),
Simonov and Bads, lyan (Si6/), Brayshaw and Buck
(Br70). Four nucteons; Badalyan et al. (Ba67), Beam
(Be67), Galbraith (Ga72).

The vast amount of literature relating to Laplace's
equation, the orthogonal groups, and the unitary groups
prohibits us from referencing all but those works which
we have found to be most directly related to the methods
presented in this paper.

The notation SO(n) denotes the subgroup of O(n)
whose elements have determinant equal to +1.

All irreducible matrix representations of the Lie
algebra of O(n) were given by Gel'fand and Zetlin
(Ge50). More detailed derivations of their results and
the development of related concepts have been the basis
of several subsequent investigations (Lo60a, Pa67,
Wo67) .

Our interest in the orthogonal groups derives from
the fact that the Laplacian operator in Euclidean e-
space, R", is invariant under orthogonal transforma-
tions; hence, the study of the orthogonal groups is
pertinent to any investigation of the solutions to
Laplace s equation. In this section, we discuss in detail
only the simplest aspects of the orthogonal groups,
introducing more elaborate and related techniques as
they are needed in the later sections. We introduce and
discuss the general Gel'fand —Zetlin notation for the
abstract basis vectors of an abstract carrier space of
an (irreducible representation) IR of O(n). This nota-
tion is not utilized until Sec. VIII, but is included here
for completeness of presentation, and, more signifi-
cantly, because the conceptual structure of these general
vectors can be easily comprehended as extensions of
properties which are explicit in the basis which is given.

I,et x denote a vector which has components relative
to a Cartesian basis of R" given by (xi, x, , ~ ~ ~, x„).
We find it convenient to associate with each such point
of E." a column matrix x:

x=col (xi, x2, ~ ~ ~, x„). (2.2)

(2.4)

The first thing we would like to do is to make 2„
into a Hilbert space, i.e., to define a scalar product

(f ~

f') for each pair of functions belonging to 2„,
Conventionally, we do this by defining the scalar prod-
uct as

(f I
f') = f d Sf*(x)f'(x), (2 5)

where the integration is carried out over the unit e-
sphere. t Despite the fact that f has well-defined values
on all finite regions of R", the scalar product (2.5) is
defined in terms of the values which the functions have
on the unit sphere. ) However, there is another defini-

We are interested only in polynomial solutions to
Laplace's equation (the analog of the solid harmonics
'JJ~ (x) in 3-space), and will accordingly impose this
restriction (although many results have a larger domain
of validity). Indeed, we will be even more specific. We
begin by introducing the space Z„of complex poly-
nomial functions f which are homogeneous of degree p
in x, and which solve Laplace's equation:

2„=( f:f(Xx) =X"f(x), V'„'f(x) =0I, (2.3)

where V' '- denotes the Laplacian in n-space, i.e.,
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for f(x) given by

f(x) = g a()x ' ~ x
(gg)

(2.8)

Thus, this differential operator acts on f'(x) in the right-
hand side of Eq. (2.6) to produce a new polynomial
which is evaluated at x= (xi, xs, ~ ~ ~, x„)= (0, 0, ~ ~ ~, 0),
thus yielding the complex number ( f, f') .

It is easily verified that definition (2.6) satisfies all
the requirements of a scalar product. We can use this
definition of scalar product to make the space 2„ into
a (finite dimensional) Hilbert space. Observe that 8/Bx,
is now the oPerator which is Hermifiars conjugate to x,.
We denote this Hermitian conjugate by a bar:

tion of scalar product which is of considerable utility
when one is dealing with polynomial spaces. We intro-
duce this scalar product now, and discuss later why it
is useful. Let f and f' be arbitrary polynomials. We define
the complex number ( f, f') by

(f f') = Lf*(8/Bx)f'(x) j o -(2 6)

where f*(8/Bx) is the digererlfial operator defined by

f (8/Bx) = g a& &*(8/Bxt) ' ~ ~ ~(8/Bx„) " (2.7)

T,; (y) = Tit, , (q ),
then the generator 2;; is defined to be

(2.13)

ikdT—' ((p)/dpj =s (2 14)

(The complex number i is not to be confused with
index i ).

The explicit calculation of the generators proceeds as
follows:

(&' f) (*)=I i —fLx'(~)) ='
I

—f(x)
j'. d, . dx'((p) & 8

tip p=p tfp l p=p Bx

(2.15)
where x'(y) is the column matrix

x'((p) =R,; (y) x,

and 8/Bx is the column matrix

(2.16)

parameter subgroups of SO(e).' The standard basic
set of such subgroups is given by

R;;(y) = (e;,+e;,) cos y—(e;;—e;,) sin io (2.12)

for i&j= 1, 2, ~ ~ ~, e, where e,, is the nate matrix unit
(it has 1 in row i and column j and 0 elsewhere) . If we
dedne

x, =8/Bx, . (2.9) 8/Bx= col (8/Bx„ ~ , 8/Bx„).

We will find it very convenient in the subsequent sec-
tions to use the scalar product (2.6). It will be amply
demonstrated in this section that in constructing poly-
nomial solutions to I.aplace's equation it makes no
essential difference which scalar product we use.

There is nothing mysterious about the scalar product
(2.6). It is clearly just the adaptation to real va, riables
of the customary scalar product for bosons. Indeed,
under the mapping x,—+a;, x,~a;, where a; and a; are
boson creation and annihilation operators, respectively,
we have

(f,f') = &0 Ife(u) f'(o)
I 0), (2.10)

where
I 0) is the vacuum tet. The scalar product in

this form has been used by other authors (Su67) .
Next, let us see how we obtain an operator represerrta

fioe of the group O(N) on the space 2„. For each
Rg 0(e), we define the linear operator TIt, on the space
Z„by the rule as follows:

(T&f) (x) =f(Bx), VfE Z„, (2.11)

i.e., Trt f denotes the function which has for its value
at point x the value of f at the point Rx. It is not
difficult to show that: (a) Tit is a unitary operator;
(b) the correspondence R—+Tit is a representation of
O(e) on the space Z~ by a group of unitary operators
{Trr.'REO(e) I. LThese statements are valid for either
scalar product, Eq. (2.5) or (2.6).]

One obtains the Lie algebra of the representation
R +Trr by calculating the i—rsfrrsitesimal operafors or
generators which correspond to a basic set of one-

Noting that

[dx'(s ) /dye„=s = -x(e,,—e, ,), (2.17)

we obtain the following concise matrix form of the
generators:

(Z,;f) (x) = i/x(e—,; e;;) (8—/Bx) jf(x) (2.18)

for i(j=1, 2, ~ ~, e. Equivalently, this result is ex-
pressed as

(2,,f) (x) = i(x, (8/Bx;) —x;(8/Bx—,)jf(x)
i (x,x, x,—x;)f(x) .—. (2.19)

It is convenient to dedne 2;,=0 and 2;;=—2;, for
i&j=i, 2, ~ ~ ~, e, r'emembering, of course, that we
actually have only m(e —1)/2 generators.

It follows immediately from Eq. (2.19) that the

'Even though we consider global O(n) transformations, the
infinitesimal transformations are "close" to the identity, i.e.,
using the generators alone, we can only "generate" SO(n)
transformations. j The Lie algebra which obtains explicitly on
the polynomial spaces considered in this paper will always be
that of generators of sfngle vo4ed represen-tations of SO(s,).]
However, once the explicit (polynomial) basis of the carrier
space of an irreducible representation (IR) of SO(e) has been
obtained, we can consider its properties under global O(n)
transformations. We simply state the results which will obtain:
If n is odd, the carrier space of an IR of SO(n) is the carrier
space of an IR of O(n); if n is even (n=2r), then the carrier
space of IR {lr„,q ~ ~ ~ l2„„x0 } of SO(2r) Ls, ee Eq. (2.44) j is the
carrier space of an IR (of the same labels) of O(2r); if /~„,„&0,
the carrier space of IR jim', l f2', g f } imp p}} of O(2r) is the
sum of the two spaces which carry IR's jl&, ,&

~ ~ l2, , } and
jim, $ imp, p} of SO (2r) .
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La= &23, L,=Z», L3——Z,g2 (2.21)

are the usual orbital angular momentum operators. The
standard basis of the space 2i (p= l) is the well-known
set of solid harmonics, which we note explicitly:

'gi (x) =L(2l+1) (l+m)!(l—m)!/kr]'t'

&(Q, (2.22)
( xi —ix2)—'~ (x, ix2)—"xs'

2'"+"(0+m) !k!(l—m —2k) !

where for each l=o, 1, ~ ~ ~ the values of m are no=
/, 3—1, ~ --, —I. These standard solid harmonics are
orthonormalized in the usual way on the 3-sphere'

(2.23)

They are the simultaneous eigenvectors of the IIernzitiae
operators I' and Le, where the Hermiticity property
now refers to the scalar product (2.5).

But now recall that the orthogonality property of the
solid harmonics depends, in fact, only on the Hermitian
property of the operator L, i.e., the fact that L' and L3
are Hermitian is what guarantees the orthogonality.
But the Herrnitian property has already been demon-
strated on the space Z„when equipped with the scalar
product (2.6): The solid harmonics (2.22) are also
orthogonal in the sense of the scalar product (2.6)

('gv, 'JJi ) =&iovi& (2.24)

The orIly thing which carI, charge is the over-all eormaliza-
tion (Mo69).

This feature will be recognized by the reader to be
very general and applicable in the more complicated
structures to follow, and will not require further detailed
comment. The practical advantages to using the scalar
product (2.6) are many: (a) One need not worry about
introducing polar coordinates in n-space (this can be
done in the final state vectors, if desired); (b) orthog-
onality can be checked by a glance for simple eigen-
vectors; and (c) many results in unitary group theory
using bosons become imrriediately significant for the
orthogonal groups. (We exploit this later. )

We emphasize that introducing the scalar product
(2.6) is to be considered as a useful device for dealing

generators are Hermitian operators on the space Z„when
equipped with the scalar product (2.6). {They are, of
course, also Hermitian with respect to the scalar product
(25)]:

(2.20)

where the dagger denotes Hermitian conjugation (as
does the over bar) .

We are now in a position to explain why we can use
the scalar product of Eq. (2.6) in place of the scalar
product of quantum mechanics, Eq. (2.5), without
altering the form of the basis vectors which we obtain.
The simple case n=3 is sufhcient to make the whole
general process clear. In this case, the operators

with polynomial spaces —it in no way replaces the
physically defined scalar product of quantum mechanics.
Having made clear the role of the scalar product (2.6),
we now continue the discussion of the orthogonal groups.

The generators defined by Eq. (2.19) satisfy the
commutation relations as follows:

(&;;, &w]=i(&a&;i+&;«v —&;a&a—&'«v, ) (225)

for i, j, k, l= 1, 2, - ~, n,. They also satisfy the relations

&'$7 l=~'gkl &—'k&, i+&,A'l= 0— (2.26)

for i' /kN/ Th. e commutation relations (2.25) are
general, i.e., a set of Hermitian operators (on some
abstract Hilbert space) satisfying these relations may
be taken as a basis of the (abstract) Lie algebra of
SO(n); relation (2.26) is particular to the realization
on the space 2„, and already forecasts that the repre-
sentations of O(n) which can be obtained on the space
Z„will also be particular.

In so far as the representations of O(n) are concerned,
we consider the properties of the I ie algebra as a useful
means of introducing a basis into the space Z,„through
the standard techniques of quantum mechanics, i.e.,
by using complete sets of commuting Hermitian operators
Once this basis is completely labeled, we go back to the
global definition (2.11) to obtain a matrix representa-
tion of the group by letting the operators IT+{ act on
the basis vectors. This viewpoint allows one to sidestep
a,ny parametrization of R, and similarly avoids the
complicated considerations of evaluating matrix ele-
ments of "exponentiated" infinitesimal operators. One
can, of course, use this technique only when the carrier
or representation space, e.g. , 2„, is explicit, and likewise
when the operator representation is explicit.

A complete set of independent commuting Hermitian
operators whose simultaneous eigenvectors span each
irreducible representation (IR) space of SO(n) is
known abstractly, i.e., the construction (LO60a) is
based only on the commutation relations (2.25) and the
assumption that there exists a Hilbert space on which
the generators are Hermitian operators. As remarked
earlier, the matrix elements of the generators on this
basis are completely known.

Fortunately, we need not yet enter into the general
theory alluded to above. It su%ces to remark that on
the space Z~ the identical vanishing of the operator
2;,s& of Eq. (2.26) has the effect of reducing the number
of independent commuting operators to n—1. { In the
general abstract realization this number is r' and r(r+ 1),
respectively, for SO(2r) and SO(2r+ 1) .]The operators
which remain are quadratic in the generators, and are
given explicitly by

(2.27)

for k= 2, 3, ~ ~ ~, e. For k= 2 we use the operator 2~2 in

place of its square.
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It is remarkably simple to give the explicit construc-
tion of the homogeneous polynomials of degree p which
satisfy Laplace's equation and simlltaneolsly diagonul-
ised»and A&2, k=3 4 ~ ~, n. We call any homogeneous
polynomial which satisfies Laplace s equation in n-space
a solid harmonic on the n sph-ere LT.he phrase "on the
n-sphere" is a slight misnomer since the coordinates
(xix2 ~ ~ ~ x ) need not satisfy xP+xP+ ~ ~ ~ +x„'=1,
but when this condition is imposed we obtain spherical
harmonics on the n-sphere, and the phrase "on the n-
sphere" is intended to remind us of this fact.] Let us
indicate how this construction proceeds.

Observe that the solid harmonics of Eq. (2.22) have
the form

'Jjt„(x) = (xi+i») f1„(x4)f2) (2.28)

for m) 0, where f2 (xP——+x22)/4. (A similar form
obtains for m(0. ) Notice that the first factor solves
Laplace s equation in 2-space. This factorization into
a product is quite general. Thus, in 4-space, it must be
possible to solve Laplace's equation by a product func-
tion (Lo60, Ca65).

't!1~(xix1xs)f) 1(x4, l 4), (2.29)

where f1= (xP+x2'+xP)/4, and where f„1 is of degree

p—l in (x&x&x&x4), i.e., l can have any value 0, 1, ~ ~ ~, p.
Furthermore, since

we easily And the condition that the product function
(2.31) satisfies Laplace's equation in k-space to be

P(&/»a)'+i 4 1(-~/~t1 1)'

+ (lk—1+2k —2) (~/~f i-1)]f(x1), l 4 1) = o (2 34)

The polynomial solutions to this equation which are
homogeneous of degree l&

—ll, & are easily found;

(X4) 1k—Lk 1 24( ——
f'4 1) 4

(l),—li 1—2s)!s!(s+l) 1+-'k—-')!'

(2.35)

where u!= I'(a+1) for half-integral a, and where the
sum is over all values of s for which the factorials are
non-negative. Since l, 1 is integral (non-negative), ll, is
any integer such that l), )l4 1. Replacing f(x)„ l4 1) in
Eq. (2.31) with the explicit functions (2.35), we obtain
the solutions to Laplace's equation on the k-sphere
which are homogeneous of degree ly, where we note
that for prescribed l, =0, 1, 2, ~ ~ ~, the values of iq 1

areo, 1, 2, ~ ~ ~, l~.
The eigenvalue of A1,

2 is obtained as follows. By direct
algebraic manipulations, we establish the identity

(h4'f) (x) = $ 4l &r)'I, '—+s„(64+k 2) ]f(—x), (2.36)

where 8~ is the homogeneous Euler operator

g (2l+1) = (p+1)'=dim g„,
L=O

(2.30)

where
f(x4) fk—1)f4, (»x2' ' 'x4-1) )

It —1

fk—1 .2

(2.31)

(2.32)

Since f1, , solves Laplace's equation in (k—1)-space,
and since

(2.33)

we see that the basis functions of the form (2.29) must
span g~(m=4). That the form of each basis vector
must be that given by Eq. (2.29) follows from the fact
that the 'g1 (x) are the simultaneous eigenvectors of
the commuting operators Z» and 432, formed from the
subalgebra I 812, 211, 211I:The only functions which can
multiply the 't!1„(x) in 4-space are functions which are
ineariunts with respect to this subalgebra, i.e., poly-
Iiomials in x4 and W3. We now follow through with this
observation for arbitrary n.

Assume that we have solved the problem of con-
structing the solid harmonics of degree l~ ~ on the
(k—1)-sphere which simultaneously diagonalize 212 and
h, m (s=3, 4, ~ ~ ~, k —1). Denote an arbitrary one of
these functions by f4, (x&x2 ~ ~ x4, 1). Then each solu-
tion to Laplace's equation on the k-sphere, which simul-
taneously diagonalizes 211 and hP (s =3, 4, , k),
must have the form

The Euler operator has eigenvalue l~ on a homogene-
ous function of degree ll, . Thus, we have

(h42f) (x) = l4(l), +k—2)f(x) (2.38)

X g f44, (x4, l4 1), (2.39)
It=4

where for prescribed l„=o, 1, ~ ~ ~, the remaining labels
can assume all integral values consistent with

)l 1) )l3)
~

l') ~)0 (2.40)

in which m has now been renamed Q.
The eigenvalues of the complete set of commuting

Hermitian operators which characterize the basis (2.39)
are

and
hk'~14 (l),+k 2)—

&n~b1.

(2.41)

(2.42)

The basis vectors themselves are orthogonal in the labels

for each fF Z4.
Iterating the preceding construction upward from

Eq. (2.29), i.e., by taking k=4, 5, ~ ~ ~, e, in turn, we
obtain the following general eigenvectors as a basis of
the solid harmonics of degree l on the n-sphere:

54&t&-1'''4( ) (+44-1'''&)) 84&1(x&»x&)
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(l„l 1 ~ .lz) in either definition of scalar product, Eq.
(2.5) or Eq. (2.6).

The very method of constructing the basis vectors of
Kq. (2.39) assures that they span the space 2(„. We
note, but do not derive, the formula for the dimension
of the space Z„(p=/ ):

The basis (2.39) is the carrier space for the simplest
type of representation of O(rz) —the IR denoted by
{l„0~ ~ ~ 0}. The representation matrices themselves
are obtained directly from the transformations of the
normalized basis:

(T"JJ(.(1)) (*)='t{(.(~) (R*)

where

2p+„2 (p+~—3)
dim Z„=

zz 2— { )
(2.43)

= Z D'"«)(o(R)'t{(.«)(z) (248)
(iI)

where (l) = (l„ il„' z ~ ~ lz). The set of matrices

{D'"(R), RQ O(rz) } (2.49)

and satisfy
{lzr, llzr, 2' ' ' lzr, r} (2.44)

l,„,,&l„,,&" &l,„,„,&i i,„„i&0;
l

for I=2r+1, these integers are similarly denoted by

(2.45)

denotes a binomial coefricient. One easily checks the
dimension formula for simple cases by counting the
number of labels which satisfy Eq. (2.40).

We have not bothered to normalize the basis vectors
(2.39) explicitly because we will not make direct use
of them. Our purpose in giving them has been: (a) to
point out the simplicity of their derivation; (b) to
emphasize their orthogonality under the scalar product
(2.6); and (c) to have available at least one complete
orthogonal basis of the space 2„—the principal subject
of this paper. LOne can, of course, go further and obtain
quite easily the matrix elements of the generators 2;;
on the (normalized) basis of Eq. (2.39). These par-
ticular results have, however, been noted previously
(Lo60,60a) .

It is important to understand the subgroup structure
of the basis (2.39). One can then comprehend quite
readily the subgroup structure of the abstract basis
vectors which are generalizations of this particular
basis, and one can understand why this basis (and its
abstract generalization) fails to be the complete answer
for many of the applications in physics.

Since 4„'has the single, fixed eigenvalue l (l +I 2)—
on the space ZE„, this space is the carrier space for an
IR of O(zz) .' This IR is labeled by the single integer l„,
and is of dimension dim 2&„. More generally, an IR of
SO(rz) is labeled by a set of ordered integers, ' r in
number for either zz=2r or rz= 2r+1: For zz=2r, these
integers are denoted by

7

0
R'C O(m —1), (2.50)

[0" 0 1J

it is clear that the sum over (l') in Kq. (2.48) becomes
a sum over (l') =(l -il z' lz'), since the O(zz —1)
invariant functions f(„1„,(x„,f„,) do not participate
in the restricted transformations. Correspondingly, each
matrix in the IR (2.49) reduces into a direct sum of
matrices

D'(R)~ P 0+D™-1(R'), (2.51)

where the sum is over /„~=0, 1, ~ ~ ~, /, and where, for
each / ~, the set of matrices

{D'=~(R'): R'g O(zz —1)} (2.52)

is an IR of type {l 10 ~ ~ ~ 0} of O(zz —1) . {The dimen-
sion of these matrices is obtained from Eq. (2.43) upon
setting P = l„ 1 and replacing zz by zz —1.$

We continue the restriction procedure by letting
R'-+R"0+1, where R"F O(zz 2). Th—en each matrix IR
(2.52) in turn reduces into a direct sum of matrix IR's
of O(zz —2), each such IR being labeled by /„z for
0&l z&l„ 1 (each value in this interval occurring
exactly once). It thus becomes clear that the labels

(l„ 1 l„z ~ ~ ~ iz) are just the labels of the IR's of the
subgroups in the chain

is a unitary matrix representation, designated by
{l 0 ~ ~ ~ 0},of the group of orthogonal matrices.

The subgroup structure of the basis (2.39) is dis-
played vividly by Eq. (2.48): If we consider R to be
of the restricted form

0

and. satisfy
( lzr+l, lizr+l, z' ' ' l2r+l, el

izr+1, 1& lzr+1,2»' ' ' lzryl, r& 0.

(2.46)

(2 4'I)

O(rz) QO(N —1)Q ~ ~ ~ QO(3) &SO(2) (2.53)

which arise through the chain of subgroup restrictions
of the form (2.50), and which we symbolize by writing

O(rz) —+0 (rz —1)-+ ~ .~O (3)-+SO(2) . (2.54)
'The abstract algebra (2.25) also admits half-integers, but

these correspond to the so-called double-valued representations
of SO(n) and do not occur in this paper.

Let us now see how one generalizes this structure.
Gel'fand and Zetlin (Ge50) realized that an abstract



546 REVIEWS OF MODERN PHYSICS ' JULY 1972

13r-l, l lzr-1, 2 ~2r—l, r—1

(2.55)

l4g ~42

For SO(2r+1), one simply includes the row (2.46)
directly above the top row of the displayed pattern.

The Weyl branching laws for the orthogonal groups
are stated as follows: (a) On restricting SO(2k+1) to
SO(2k), the IR {l33+I,l l33+I 3 ~ ~ ~ 133+1,k{ of SO(2k+1)
reduces into the (direct) sum of all those representa-
tions {i33,1 l33,3 ~ ~ ~ 133, ,1, { of SO(2k) for which

lzl+I, I& ized, 1& ill+1,3& 133,3& ' '

& 133.3-1&lzz+1.3&
I 133 „I)0, (2.56)

each of these constituents appearing exactly once; (b)
on restricting SO(2k) to SO(2k —1), the IR {131.,1 133 3
~ ~ ~ &1,,1,{ of SO(2k) reduces into the sum of all those
representations {l33 1,1 131, 1,3 ~ ~ ~ 133 1,3 II of SO(2k —1)
for which

lzl;, I& izlr —1,1&1212&lzkr—1,2& ' ' '

&13,3-1&l ~-I 3-1&
I l33,k I

& 0~ (2 57)

each of these constituents appearing exactly once.
For a prescribed top row of a Gel'fand pattern, the

labels in the remaining rows can assume just those
values which accord with the Weyl branching laws.

We denote an SO(n) Gel'fand pattern by (l) and the
corresponding abstract basis vector by I (l) ). As previ-
ously remarked, the complete set of commuting
Hermitian operators which characterize this basis is
known; furthermore, the matrix elements of the ab-
stract generators are also completely known on this
basis.

basis of the carrier space of each IR of SO(n) could be
characterized completely by the sets of labels which
are associated with the IR's of the (proper) subgroups
which occur in the chain (2.53). The Weyl branching
lux then provides the constraints which these labels
must satisfy. Thus, an abstract basis vector is labeled
by n —1 rows of labels of the types (2.44) and (2.46):
the bottom (first) row comes from (2 44). with r=1,
the second row from (2.46) with r=1, the third row
from (2.44) with r=2, ~ ~ ~, the top row (row n 1)—is
either (2.44) with 2r=n [for SO(2r)] or (2.46) [for
SO(2r+1) j.The resulting GePfand pattern is displayed
below for SO(2r):

lzr, l l2r, 2

The solid harmonics of Eq. (2.39) are labeled in the
Gel'fand —Zetlin notation by the pattern which has
l21 —lz lzl /3 ' ' ' 12,1 /2, (n= 2r), 13,+1,1=13 +1 (n
2r+1), all other l,, being sero

The abstract basis
I (l) ) is completely characterized

by the highest weight vector, and it is known (Pa67,
Wo67) how to generate the remaining vectors in the
basis by the application of lowering operators. The
highest weight vector is the one whose Gel'fand pattern
has all the l;; chosen as large as possible. In particular,
the highest weight vector in the space 2„ is the one
having lz= lz ——~ ~ ~ ——l„=—p, i.e.,

(xl+ixz) I' (2.58)

One can, in principle, generate the basis (2.39) from
the vector (2.58) by using the lowering operator
technique.

We conclude this section by noting why the classi6ca-
tion of the basis vectors of 2„ through the subgroup
chain (2.53) is not directly useful for many physical
applications. The SO(3) subgroup in this chain is not
the physical SO(3) group corresponding to the total orbital
angular momentum of a set of particles (This. statement
will be made more explicit in Sec. IV.) We are accord-
ingly forced to consider alternative techniques for
solving Laplace's equation, i.e., for ending a basis of
the space Z„which is labeled by the total angular
momentum quantum numbers LM (among others).
We will, however, see in Sec. IV that the orthogonal
groups make their appearance in the X-particle problem
in still another context, and in this context the classi6ca-
tion of basis vectors through the chain (2.53) can be
used.

U(n) = {U: UtU=I. I. (2.59)

The notation SU(n) denotes the subgroup of U(n)
whose elements have determinant equal to +1. We
will not attempt to reference the large number of
researches relating to the unitary groups, but rather
note a recent review (LO70) where many such refer-
ences are given.

Our interest in the unitary groups in this paper
derives from the particular fact that SU(4) is homo
rnorphzc to SO(6), and from the general fact that 0(n)
is a subgroup of U(n). The unitary groups thernsehes
can scree as a useful starting point for the construction of
solutions to Laplace's equation, and we wish to formulate,
in its simplest context, the manner in which this prop-
erty can be made explicit.

Let z denote a vector which has components relative
to a Cartesian basis of the complex space C" given by
(sl, sz, ~ ~ ~, s„). We associate the column matrix s with

B. Unitary Grauys

We use the notation U(n) to denote the group of
rzX n unitary matrices (n = 2, 3, ~ ~ ~ )
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this point. Ke next introduce the space 3'.„of complex
polynomials F which are homogeneous of degree p in z:

K„=IF:F(Xz) =X"F(z)I. (2.60)

where

(~~F) (z) = (Z z'z*) F(z), (2.'l1)

This space can be made into a Hilbert space by intro-
ducing the following scalar product Lin analogy to
Eq. (2.6)j:

(F, F') = $F*(8/Bz) F'(z) j.=p, (2.61)

where F*(ct/Bz) is the differential operator defined by

F*(8/Bz) = Q a( )*(c)/Bzi) ' ~ ~ ~ (8/Bz„) " (2.62)
(I)

for F (z) given by m +m»+4~ +m»)0 (2.73)

i.e., d~ is the homogeneous Euler operator in the vari-
ables z», s2, ~ ~, sg,

The corresponding orthonormalized basis of X„can
be set down immediately:

tl ( (z ) wl~tsg I—F...—., ()= III
ii=1 5 mk mi —i ~J

in which mo—=0 and m„=p, and the labels can assume
any integral values consistent with

F(z) P a )z ag. . .z ae

(a)

Observe that the Hermitian conjugate to s; is

z; = c)/c)z, ,

(2.63)

(2.64)

The dimension of the space 3'„ is

t
t'p+~ —1)

dim K„= (2.74)

(8;,F) (z) =z,z,F(z) (2.66)

for i, j=1, 2, ~ ~ ~ e. These generators have the prop-
erties

(8,,)'=8... (2.67)

I 8't, 8k if = tI,Ã, i—&,)8),, (2.68)

8')8) t 8'i8i;; = &,I 8'i—&)—.t8';. (2 69)

The first two of these relations are general, i.e., are the
relations satis6ed by the Acyl generators of any
(abstract) unitary representation of U(e) —hence,
define a basis of the abstract Lie algebra of U(u).
Relation (2.69) is Particular to the realization of these
generators on the space K„.

Relations (2.69) imply (Lo65) tha. t a complete set
of commuting Hermitian operators whose simultaneous
eigenvectors characterize a basis of K„ is given by the
set

{8), . k = 1, 2, ~ ~ ~, )i}, (2.70)

and that again this is just the adaptation to complex
variables of the familiar boson scalar product, Eq.
(2.10).

Ke obtain an operator representation of the group
U(n) on the space K„as follows: For each UC U(e),
we define the linear operator T~ by the rule

(T~F) (z) =F (Uz) . (2.65)

Then: (a) TU is a unitary operator on the space BC~;
and (b) the correspondence U~T~ is a representation
of U (e) on the space K„by a group of unitary operators
{T&.Uq U(n) }.

The procedure for calculating the infinitesimal opera-
tors or generators of a representation of U(e) has been
reviewed in detail (Lo70) . Here we need only note that
the Weyl generators of the representation (2.6S) take
the very simple form as follows:

The eigenvalues of 8'I, are given by

dy~mg —
mA-, » (2.75)

for A=i 2 ~ ~ ~ 6
The significance of the labels (m m i ~ ~ ~ mi) is

induced from the chain of subgroups

U(n) Q U(e—1)Q ~ Q U(1)

in exact parallel to the procedure used for the orthog-
onal groups, Eqs. (2.48)—(2.54). Under the subgroup
restriction U-+U'0+1, O'C U(e—1), the IR of U(e)
labeled by m„reduces into a sum of the IR's of U(u —1)
labeled by m„», where 0(m„»&m„, each such repre-
sentation of U(e —1) occurring exactly once, etc.

Again Gel'fand and Zetlin (GeSOa) recognized tha. t
one could label an abstract basis of a carrier space of
each IR of U(ri) by employing the sets of IR labels
associated with each IR of the subgroups in the chain
(2.76). Each IR of U(k) is characterized by a set of
ordered integers (positive, negative, or zero)

(2.76)

m»A, & m2g& ~ ~ ~ & mA, g (2.77)

m»3 m23 m33 (2.78)

m»2

Once more the Weyl branching law (We31) provides
the constraints on the entries in this array: On restrict-

A U(n) Gel'fand pattern is a triangular set of integers
of e rows, the integers in row k being a set of IR labels
of U(k):

min m2n ' ' ' m



548 REVIEWS OP MODERN PHYSICS ' JULY 1972

ing U(k) to U(k 1—) the IR [mik msk ~ ~ ~ mkk] of U(k)
reduces into the sum of all those IR's Lmtk imsk i ~ ~ ~

m,' ik i] of V(k —1) for which

ik& mlk —1&msk& msk —1»' mk —1k—1&mkk, (2 79)

each of these representations appearing exactly once.
Thus, for prescribing V(N) labels in the top row, the

remaining labels can assume all values consistent with
the Weyl branching law.

An abstract basis vector is denoted by
~

(m) ). The
complete set of commuting Hermitian operators,
n(rk+1)/2 in nutnber, which characterize this basis is
known (Lo65), including their eigenvalues (Lo70,
Lo70a); furthermore, the matrix elements of the ab-
stract Weyl generators are also completely known on
this basis (Ge50a, Lo70a).

In terms of the Gel'fand —Zetlin notation, the basis
vectors (2.72) are denoted by the Gel'fand pattern
which has mn=m~, m~2 ——m2, ~ ~ ~, m~ =no, all other
m;; being zero.

Despite the simplicity of the basis (2.72), one can,
upon replacing m by n', i.e., by considering the IR space
[mi„& 0 ~ ~ 0] of U(jss), obtain not only a basis of a
carrier space for IR Lmt„ms„~ ~ ~ m„„] (m„„&0) of
U(N), :but one can obtain the IR matrices themselves
(Lo70). This structure has been the source of many
developments in unitary group theory (Lo70a, Bi67, 68) .
(The analogous result for SO(js) is developed in Sec.
VIII.]

The abstract basis
~

(m) ) is completely characterized
by, the highest weight vector, and it is known how to
generate the general basis vector from the highest
weight by applying known lowering operators (Na65).

Let us now see how, in the simplest case, the unitary
group can provide us with solutions to Laplace's equa-
tion. The basis vectors (2.72) are well-defined for all
complex values of the variables zk (k = 1, 2, ~ ~ ~, js) . In
particular, we can restrict these variables to be real:
s~—+x~. If at the same time we switch to the scalar
product (2.6), then the polynomials

F(-.-. "-)(z) (2.80)

remain orthonormalized in the labels (m„m i ~ mi),
and they span the space of all complex polynomials in
x which are homogeneous of degree p =m„. In particular,
the space Z„must occur as a subspace. We can, however,
do much better. We can restrict the complex variables
sI, to the form

still remain orthonormal ur(der the scalar product (2.6),
since the s's are related to the x"s by a unitary trans-
formation (the familiar boson property). But now
observe that the highest weight vector in the space 3C„
[mi-——ms= ~ ~ ~ =m =p in Eq. (2.72)] takes the form

(xi+ixs) s (2.85)

(1 2 " jV )
Qj Ng ' ' Qg

(3.1)

where o,~, o;~, ~ ~ ~, o~ is a rearrangement of 1, 2, ~ ~ ~, X,
be defined by

p r' —sr~1 r2~r~2 (3 2)

It is convenient to consider the position vectors as the
elements of a 1&(E row matrix, Lr' r' ~ ~ ~ r~]. Then
the transformation I' can be described by

p: [r' r' ~ ~ ~ r v]—+Lr~& r~s ~ ~ ~ r~)»] = [r' r' ~ ~ ~ rkj]D(p),

(3 3)

where D(P) is the jV)&X real orthogonal matrix defined
by

D(P) =[e.& e" " e.~], (3.4)

under the restriction (2.81)—(2.83), i.e., the highest
weight vectors of the space Z„and K„coincide. Using
this highest weight vector, which is obtained from BC„
by restricting the domain of definition of the variables,
we can now proceed to generate the basis (2.39) of Z~
by using the lowering operators appropriate to SO(js) .

Wong (Wo69) has observed that the above property
generalizes to a certain class of vectors from a U(js)
representation space. ' We consider this structure in
greater detail in Sec. VIII.

We next turn to the task of implementing the con-
cepts of this section into the physical problem of V
identical particles in 3-space, beginning with a discus-
sion of the center of mass coordinate problem and
related properties of the symmetric group.

III. RELATIVE POSITION VECTORS

Let r', r', ~ ~ ~, r~ denote, respectively, the position
vectors in Euclidean 3-space of X identical particles
labeled 1, 2, ~ ~ ~, X, each vector being referred to a
common origin. Let the permu tatior. operator I',
denoted by

ZQ X'jI
y

The resulting functions

(js odd).

P(-.-. "-!(z)

ssj—1 (+2j—1+sosj) /V~&

ssj= (jets; a sxs;) /'&/2&-—
for j= 1, 2, ~ ~ ~, js/2 or (js—1) /2, and

(2.81)

(2.82)

(2.83)

(2.84)

P-+D(p), VPF S~ (3.5)

' Wong's analysis is, however, incomplete from a structural
viewpoint —it is the subgroup property U {n)QO(n) which
underlies his construction Lsee Sec. VIII).

in which e (n= 1, 2, ~ ~ ~, E) denotes the X&(1 column
matrix having 1 in row n, and 0's elsewhere. One now
easily verifies that the correspondence
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is a representation of the group of permutations, S~,
by the set of X&&1V orthogonal matrices, {D(P)}.

The problem of defining a set of relative position
vectors for E identical particles is closely related to the
problem of reducing the matrix representation of S~
given by Eq. (3.5) into its irreducible constituents. To
see how this comes about, let us hrst give a precise
meaning to the term "relative position vector" in the
general case of arbitrary masses.

Let the vector R defined by
N

MR= P m r, M= g m, (3.6)

denote the center of mass vector of Ã particles, where
m is the mass of particle o..

Definition 1: A vector in the set {y', y', ~ ~ ~, y~ '} is
called a relative position vector (with respect to R) if
and only if the set of vectors {y', y', ~ ~ ~, y~ ', XR}
(X a real nonzero number) is related to the set of
position vectors {r', r', ~ ~ ~, r~} by a real nonsingular
linear transformation of the following general form

[yl y2 yN 1 $R]—[rl .r2 rN]C (3 /)

where (a) C is an XXE real nonsingular matrix; (b)
the Xth column of C is (X/M) col [mi m2 ~ ~ in~]; and

(c) the remaining columns of C, column 1 to column
lV —1, are perpendicular to the column matrix,
col [1 1 ~ ~ ~ 1].

Remark. A relative position vector y is rot, in
general, the position vector of particle 0. as seen from
the center of mass. Rather, the term "a set of relative
position vectors" refers to any set of real vectors which
together with a multiple of the center of mass vector R
can be used to replace (by the invertibility of C) the
actual position vectors in the description of the motion
of the particles. Furthermore, we insist that in the
description by the new set of vectors the center of mass
motion should "separate oR." This means that the
kinetic energy, the linear momentum, and the angular
momentum of the system of particles should each
assume the generic form A =A, +A' under the trans-
formation [r' r2 ~ ~ r&]= [y' y2 ~ ~ ~ y~ ' XR]C ' where

A, denotes the value of the particular physical quan-
tity associated with the center of mass motion, and A'
is a function only of the vectors y", y', ~ ~ ~, y~ ' (and
their time derivatives). A' is then appropriately called
the value of A relative to the center of mass. Condition
(c) on the matrix C is the necessary and sufhcient
condition that the center of mass motion separates oR.
(We omit the elementary proof. )

Using the definition of relative position vectors given
above, we can now prove:

Lemma 1. Each set of relative position vectors
{y', y', ~ ~ ~, y~ '} can be written in the form

[y' y' ~ y'v ' XR]= [x' x' x"]Co, (3.8)

where x~—= (X)'i'R, and where {x' x' ~ ~ ~ x'v—'} is u

[xi x2 " x&]= [ri rm " r&]A. (3.10)

It will be noted that transforrnations of the type,
Eq. (3.10), leave invariant the form of the kinetic
energy and angular momentum of the system of identical
particles. We henceforth will also consider only the case
of identical particles.

Next, we examine the transformation properties of a
set {x', x', ~ ~ ~, x~ '} of relative position vectors under
the action of the permutation operators, I'Q S~, given
by Eq. (3.3). First, let us note an easy consequence of
Eqs. (3.3) and (3.4): Namely, the character (trace) of
the matrix D(P) is given by

Tr D(P) =n, (3.11)

where 0. is the number of cycles of length j. in the cycle
notation (Ha62) for the permutation P. We can now

prove (Le66):
Lemma Z. Each specified set of relative position vec-

tors {x',x', ~ ~ ~, xN '} of a set of identical particles is a
basis for an irreducible representation I'(P) of the group
of permutations {P}of the type associated with parti-

new set of relative position vectors of a very particular
type

[x' x' ~ ~ x~]= [r' r' ~ r~]DA. (3.9)

In these relations, Co is a nonsingular lower triangular
matrix having Eth column given by

col [0 0 " 0 X/($) ii2],

D is a diagonal matrix having Am /M for its ath
diagonal element, A is a proper, real orthogonal matrix
having Sth column given by col [11 ~ ~ ~ 1]/(1V)'i'.
Finally, the matrices Co and A are independent of the
masses.

Proof. Given any matrix C of the type prescribed in
Eq. (3.7), it can be decomposed into the form C=
DACO. A specific technique for eRecting this decomposi-
tion is to form the matrix C'=D 'C and then perform
the Schmidt orthonormalization procedure on the col-
umns of C', starting with the Xth column and proceed-
ing across the columns from right to left. The result of
this procedure is to decompose C' into the form C'=
ACO, where the columns of A are the new columns
obtained from the Schmidt process. Then A and Co will
have the properties described above (A can always be
made proper by an appropriate choice of normalization
signs) .

Since an arbitrary set of relative position vectors can
be obtained from a set {x', x', ~ ~ ~, x~ '} by an appro-
priate transformation of type Co, we henceforth restrict
our attention to sets of relative position vectors defined

by Eq. (3.9), where A is ae arbitrary real, proper orthog
olcl matrix, the Xth colgmn, however, always hei'
specified to be col [1 1 ~ ~ ~ 1]/(g)'i2. In particular, in
the case of equal masses, D becomes the identity matrix,
and we have



0
c ~(~)

AD(P) A = 0

'(0 " 0

O'P Q S~, (3.14)

in consequence of the fact that the Eth column of A is
col [1 1 ~ ~ ~ I]/(E) "' Furthermore, I'(P) is real
orthogonal and has trace equa. l to u —j,. Thus, the set
of matrices, {F(P):Pg S~}, is a representation of S~
of dimension X—1 having character set {n—1}.It is
therefore an IR of type [.V—1 10 ~ ~ ~ 0]. Finally, we
have the result

P [x' x' ~ x~—']~[»' x' x"—']I'(P)
To prove the converse, we must find the set of all proper,
real orthogonal matrices, {A}, having /th column
given by col [11 ~ ~ ~ ]/(1V)"' such that Eq. (3.14)
holds, where each I'(P) is specified. At least one such
A must exist since D(P) is real orthogonal, I'(P) is
real orthogonal, and {D(P)}and {I'(P)0+1} are equiv-
alent representations of S~. Assume there exists a
second member, A', of the set {A}. Then the product
AA' has the form
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tion [E 1—1 0 ~ ~ ~ 0]
P' [xi x& ~ ~ x i]~[xi »2 ~ x+ i]V(P) (3 12)

where I'(P) is real orthogonal. Conversely, if {I'(P):
Pg SN} is an arbitrary, but specified, real orthogonal
IR of S~ of the type [E 11—0 ~ ~ ~ 0], there exists a
set of relative position vectors {x', x', ~ ~ ~, x~ '} which
undergoes the transformation, Eq. (3.12), and this set
is unique for X even, and is unique up to & sign for
E odd.

Proof. Under the action of PF S~ specified by Eq.
(3.3), we have

P: [x' x' ~ ~ x~]~[r' r' ~ r"]D(P)A

= [x' x' ~ ~ x~]AD(P) A. (3.13)

But one easily proves that AD(P) A ha.s the form

The essential contents of this section are contained
in Definition 1 and I emmas j. and 2 which set forth
the definition and significant properties of relative
position vectors. We refrain from introducing any
specific set, but note that the Jacobi coordinates are a
popular choice (Kr66) .

IV. THE GRGUP GF THE SCHRGDINGER
EQUATION

An alternative title of this paper could be: The Wave
Functions of a System of X Identicat, Eoninteracting,
Structureless I'articles ie ae Angular Momentum j3csis.
This title indeed describes precisely the problem we are
attempting to solve through the use of group theoretical
techniques. (We have preferred a less specific title
because of the more general usefulness of these same
functions. ) Despite the fact that this problem is one of
the simplest and most fundamental which can be posed
for many-particle systems, its general solution has yet
to be given in aoything like a fully satisfactory form.
In this section, we examine the general properties of
Schrodinger s equation for this simple system, and
describe the manner in which various orthogonal groups
make their appearance.

Under the transformation, Eq. (3.10), Schrodinger's
equation for a system of E free spinless particles
separates into a part describing the center-of-mass
motion and a part describing the motion relative to the
center of mass, the latter equation being (in units with
ti= 1)

N—l—P (V ~ V )4'(x' x' ~ ~ ~ x~—')
a=1

= 2m&I (x' x' x~—'), (4.1)

where V is the gradient operator corresponding to the
vector x .

It is useful a,t this point to introduce a right-handed
Cartesian coordinate frame in Euclidean 3-space. In
such a frame, the vector x is represented by three
components (x, x~" x3 ), and we choose to let the
notation x denote the column matrix

0
x =col (xi x2" xa ). (4 2)

0

where I"(P)B=BI'(P), VPF SN. Therefore (Schur's
lemma), we have B=bI~ i, where b is real. Further-
more, 8 is proper, and we must have b= j. for X even,
and b= ~1 for X odd. Thus, we have A'= A for E even,
and

It is also convenient to introduce the column matricesI; defined by

X;=col (x,'x, 2 ~ ~ ~ x,~—').

There a,re two instructive ways of organizing the
collection of 3.V—3 components of the E—1 vectors
', x', x', ~ ~ ~, x" '}. In the first arrangement, we associate
an (F 1) X3 matrix X w—ith the components:

A'=A X odd.
x—=[x,x, x,]. (4.4)

0 ~ 0 ~ 0
This arrangement is particularly suitable for displaying
the properties of the particle coordinates under the
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permutation operators I'

I"X-+I'(E)X.

In the second arrangemeot, we define

&3(a-1)+2—&2

(4.5)

(4.6)

The group of the Schrodinger equation, Eq. (4.8),
is now identified to be 0(31V—3); the group is realized
on the invariant subspace Z„by the unitary operators Tz

(Tg f) (x) =f(Rx), VRQ0(31V—3), VfgZ~

(4.16)
fori=i, 2, 3, and a=1, 2, ~ ~ ~, S—1. With these com-
ponents, we associate the column matrix x having
3E—3 elements:

Various properties of this IR of 0(31V—3) were dis-
cussed in Sec. II. In particular, a set of infinitesimal
operators of the representation is given by

x—=col (xi x2x3 ' ' ' xan —3). (4.7) (2„,f) (x) = i/—x, (8/Bx, ) x, (8/—Bx;)5f(x) (4.17)

f(Xx) = h&f(x), (4.11)

72f(x) =0. (4.12)

Equation (4.8) now reduces to the radial differential
equation

I (~/~ )t'+L(2p+»V 4)/t 5(~/~—o)+2m~} g(t ) =o

(4.13)

We shall not consider the solutions to Eq. (4.13),
although they are readily written out. Our concern is
with the polynomials f which satisfy Eqs. (4.11) and
(4.12). It is these polynomials which comprise the
elements of a 6nite dimensional Hilbert space of the
type discussed fully in Sec. II—these are the solid
harmonics on the (31V 3) sp—here-:

Z~= I f:f(Xx) =X"f(x), V'f(x) =0} (4.14)
aIld

(p+31V—6)
dim 2„=p(2p+31V —5) /(31V —5) 5~

k 3~-6 )
(4.15)

The transformation properties of the state vectors 0'
under REO(31V—3) are carried fully by the poly-
nomials f.

This form is particularly suitable for displaying the full

symmetry properties of Eq. (4.1), which we now write
as

—P+(x) =2mB+(x), (4 8)

where V' is the Laplace operator in a Cartesian space
of dimension 3S—3.

The Laplace operator V' is invariant under real
orthogonal transformations x'= Rx, RE- 0(31V—3),
where 0(31V—3) denotes the group of real orthogonal
matrices of dimension 31V—3. Accordingly, Eq. (4.8)
separates further into a part which is invariant under
orthogonal transformations, RF0(31V—3), and a part
made up of homogeneous polynomials of some fixed degree,

say p, uihich are solutions to Laplace's equation, :

+(x) =g(t )f(x), (4.9)
where

3N—3

(4.10)

fori, j=1, 2, ~ ~ ~, 3X—3, where Z;;= —Z;;.
As already pointed out in Sec. II, a basis for the

solid harmonics on the (31V—3)-sphere is completely
characterized by specifying that each basis solid har-
monic is a simultaneous eigenvector of the set of
quadratic Casimir operators and Zi~. In this classi6ca-
tion scheme, the eigenvectors in the basis for IR
Ip 00 ~ ~ ~ 0} of 0(31V—3) are labeled completely by
the Gel'fand scheme, i.e., by the labels of the irreducible
representations of the subgroups which appear in the
chain of subgroup restrictions

0 (31V—3)—+0 (31V—2)—+ ~ ~ ~ -+0(3)~0 (2) . (4.18)

Observe that the 0(3) which appears in this chain is
just the set of orthogonal transformations on the vector,
x', and this is not the 0 (3) which has the total (relative)
orbital angular momentum of the system of particles
for its infinitesimal operators.

Thus, while the Gel'fand scheme gives a complete
labeling of a basis of Z„, these basis vectors are not
eigenvectors of sharp orbital angular momentum quan-
tum numbers. One is thus led to consider subgroup
decompositions of 0(31V—3) which are alternative to
Eq. (4.18).Let us see how the orbital angular momen-
tum operators come into the problem. Reverting to the
particle index notation of Eq. (4.6), we can enumerate
the set of infinitesimal operators I2,;:i, j=1, 2, ~ ~ ~,

31V—3} in the form

I A&p~: n, P = 1, 2, , 1V—1;i,j = 1, 2, 3}, (4.19)

where

(h;; ef) (x) = iP. x; (ct/Bx—,&) x,J'(8/Bx, )—5 f(x),

22 22

(4.20)

(4.21.)

N—1

I.,;= g A,,«.
, i,j =1, 2, 3. (4.22)

a=1

The global origin of the in6nitesimal operators, Eq.
(4.22), is easily found. It is clear that the SO(3) which

has the orbital angular momentum as its infinitesimal

~ ~L ~

V

The components of total relative orbital angular
momentum (Li, L2, L3) = (L23, L3i, Li2) are now easily
identi6ed:
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(n~„,f) (X) =f(R~ iX). (4.24)

Then the correspondence R~ ~
—+Sg„, is a representa-

tion of 0(N—1) by unitary operators on the space 2~.
Og.e observes trivially that

Dg,Sii, X)ii„,D~——„VR360(3), VR~ i60(N 1). —

(4.25)

The infinitesimal operators of the representation,
Eq. (4.24), are easily calculated by the technique of
Sec. II. They are:

3

n, P = 1, 2, , cV 1. —

(4.26)

Each operator in the set {Ls: cx(P= 1, 2, ~ ~ ~, 1V—1{
commutes with the orbital angular momentum, as
expected from Eq. (4.25).

The relation between the transformations Dg,r)g„,
and T~, RE 0(31V 3), is esta—blished as follows:

We have

(Sg„,Dg, f) (X) =f(R~ iXRg). (4.27)

But it is a simple exercise in ma. trix algebra to verify
that the matrix transformation

X'=R~,XZ3 (4.28)

is precisely the same as the column matrix transforma-
tion

x (RN—i3R3) xp (4.29)

and conversely, where designates the direct product
of matrices. Thus, we have

++N-1D+3 &N-133'

The set of product operators

(4.30)

operators is the one which rotates all the vectors
x', x', ~ ~ ., x+ ' simultaneously, i.e., as a rigid body.
This characteristic is best exhibited by using the nota-
tion of Eq. (4.4). Thus, for each R3CO(3), we define
the unitary operator Dg, by

(Dg, f) (X) =f(XR3). (4.23)

Then the correspondence E3—+Dg, is a representation of
0 (3) by unitary operators on the space Z~. Furthermore,
the three infinitesimal operators of the representation
are precisely those given by Eq. (4.22).

Now observe that one can make a second type of
orthogonal transformation on the matrix X: Namely,
for each R~ & F 0(N —1), we define the unitary operator
++N-1 by

C 0(3N—3). (4.32)

The SO(3)LO(3) in this subgroup has the orbital
angular momentum as its infinitesimal operators.

Note the special cases of Eq. (4.30):

DR 3 ~lN 1 83)

T&N—1 f3~8'

(4 33)

(4.34)

One technique, then, for getting X-particle states of
sharp total orbital angular momentum quantum num-
bers into the state vector labeling problem is to find
those invariant subspaces of Z„with respect to which
the product operators {D~,X)~„,I are irreducible, i.e.,
decompose the space 2„,which is a carrier space for IR
{p 0 ~ ~ ~ 0{ of 0(3Ã—3), into a direct sum of perpen-
dicular subspaces such that each subspace is the carrier
space for an IR of 0(Ã—1) XO(3) . We can, of course,
still use the subgroup restriction chain

0(1V—1)~0(N —2)—+ ~ ~0(3)—+0(2) (4.35)

to label the basis vectors of the carrier space of IR)s of
the group 0(N—1).

The difhculty, of course, with this approach is that
the group 0($—1)XO(3) is not multip/icity free in
0(3N —3): there will, in general, be several perpendic-
ular subspaces of 2„, each of which is the carrier space
for the same IR of 0(N —1)XO(3). The group of
operators, {Dii,X)~„,I, does not distinguish between
such subspaces, and this implies that we cannot induce
a complete labeling scheme of a basis of Z„by using
only properties of the subgroup of operators, {Dz,Sii,. ,I .
Thus, the labeling scheme induced by the subgroup
restriction chain as follows is necessarily incomplete

0(3N—3)—+0(N —1)0(3) —+0(1V—2) 0(3) —+ ~ ~ ~

~0(2) 0(3) . (4.36)

Equivalently stated: The angular momentum quantum
numbers L,M together with the Gel'fand —Zetlin labels
of the basis vectors of the IR spaces of 0(1V—1) con-
tained in Z„are, in general, insufficient to label a basis
of 2„.

Nonetheless, we will see later (Sec. VIII) that the
chain (4.36) is a useful way to view the problem.

Next, let us see how the permutation operators I' of
the symmetric group are realized on the space 2„.
Comparing Eq. (4.5) with Eq. (4.24), we obtain P~
sl(&) is a representation of S~ on the space z„by
unitary operators. Note also from Eq. (4.34) that we
can write

product group

O(N 1)—XO(3)
= {R~ iR3. R~ i&0(N 1)—) R3CO(3) {

{S~„,Dig, . R~ i&0(Ã—1), R3C0(3) {, (4.31)

is a unitary representation on the space Z„of the direct
where

+I'(~) ~0(I') )

0(P) —=r(P) @I,.

(4.37)

(4.38)
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~B~o(P) ~o(P) TR) V.PQ S~, (5.1)

i.e;, we must find the set of {R}such that

RO(P) =O(P)R, VPF S~, (5.2)

where O(P) is given by Eq. (4.38).
We make use of the general matrix identity as follows:

I et A3 and B~ 1 be arbitrary matrices of dimensions 3
and E—1, respectively. Then we have

+0(A38+N-1)RO +N 1SAB-(5.3)

where Ro is the real orthogonal matrix defined by

Ro [eleNe2N i e2eNyle2N ' ' ' eN —1e2N 2e3N S] (5 4-)— —

and where e, (i= 1, 2, ~ ~ ~, 3X—3) is the column matrix
of length 3X—3 having 1 in row i and 0's elsewhere.
We omit the proof, noting only that the similarity
transformation by Ro simply effects the necessary row
and column operations required to reorder the factors
in the direct product.

Using Eq. (5.3), we now transform Eq. (5.2) to the
form as follows:

The group of matrices {I'(P):PF S~} is a subgroup
of O(X—1), arid the group of matrices {O(P):PF S~}
is a subgroup of O(3X—3).

V. DEMOCRATIC SUBGROUPS

In the previous section, we have introduced two sub-
group chains, Eqs. (4.18) and (4.36), which arose in a
rather natural way from the study of the orthogonal
transformations of the relative coordinates. The first
subgroup chain, Eq. (4.18), may be used to label com-
pletely a basis of the space 2„. However, from a
physical viewpoint, this basis is inappropriate because
the basis states are not states of good angular momen-
tum. The second subgroup chain, Eq. (4.36), seems to
possess the desired properties with respect to angular
momentum, but is, in fact, deficient because it affords
us no means of dj.stinguishing between several perpen-
dicular subspaces of Z„which carry the same repre-
sentation of O($—1) &(O(3) .

For these reasons, one is led to seek new schemes
which are ig. some sense more appropriate. We now
wish to establish four Lemmas (3, 4, 5, 8) which will

subsequently have an important bearing on this prob-
lem. Levy —Leblond (Le66) arrived at results which are
less specific but nonetheless equivalent to these lemmas,
and Dragt (Dr65) obtained the generators of the
unitary group of Lemma 5. A closely related discussion
has also been given by Galbraith (Ga71a).

Lemma 3. The operators in the group {Tg. RF
0 (3Ã—3) } which commute with the subgroup of opera-
tors {To~p&. PF S~ } are those contained in the subgroup
{Dg,. R3C0(3) }.

Proof We seek. the set of RF O(3X—3) such that

where
(5.6)

Next, the matrix R' is partitioned into block matrices
of dimension X—1, i.e.,

R ' R21

R12 R13

R' R'

R, ' R,'
(5.7)

Equation (5.5) now yields the set of conditions,

R,,'I'(P) = I'(P) R;,', VI'Q S~. (5.8)

Pj.

where h is the number of elements in class 8, and a is
the number of cycles of length one in class 6. We obtain
A'=A for cx/1. Thus, AI'(P) =I'(P)A, VPF Air
implies

AI'(P) =I'(P)A, VPC S~, P$6i,

Since {I'(P):PC S~} is an IR of S~, we must have
(Schur's lemma)

Rg'=a;;I~ 1, (5.9)

where a;; (i,j= 1, 2, 3) is a real number. Thus R' has
the form R3I~ 1, where R3 is the 3X3 real orthogonal
matrix with arbitrary elements a;,. Using the definition,
Eq. (5.6), and another application of Eq. (5,3), we
conclude that each R which satisfies Eq. (5.2) has the
form

R=I~ iRg, R3C0(3). (5.10)
t

Since these are precisely the matrices which define the
transformations D~„ the lemma is proved.

For S&4, Lemma 3 can be refined:
I.ensue 4. For E&4, the operators in the group

{T~. RF O(3X—3) } which commute with the subgroup
of operators {To~p~'. PF AN}, where A~ is the alternating
subgroup of S~, are those contained in the subgroup
)'Ds, . R3C0(3) }.

Proof. For E&4, the representation of Air, {I'(P):
PF A~}, is irreducible. Hence, the proof follows in the
same manner as the one given for Lemma 3.

Let us sketch a proof that {I'(P): PF Air} is an IR
of A& for X&4. The proof follows immediately if we
can show that A I'(P) = I'(P) A, VPF A~ implies
AI'(P) =I'(P)A, VPF S~, since then we must have
A =XI~ 1. To show that this is the case, let I'1, P2$ S~,
but Pi, P2(A~. Then, we have Pi ', P2F.AN and
I'(Pi)AI'(Pi) = I'(P2)AI'(P2). In particular, if Pi and
P2 belong to the same class 6, we see that I'(Pi) A I'(Pi) =
A', where A' is independent of the class 8, i.e., A I'(Pi) =
I-'(Pi)A'. Now sum this relation over all PiC 6, using

R'[I8 I'(P) ]= [Iag I'(P) ]R', VPF Sir, (5.5) where 61 is a class not in A& which has exactly one



$54 REvIEws oF MGDERN PHYsics ' JUr, v 1972

cycle of length one. To show that also

AI'(PI) = I'(Pi)A, VPI& 8I, S&4,

we must proceed diGerently. This step of the proof
hinges on the peculiar fact that for E&4 each P&g 6&

can be written as a product, Pi ——QQ', where neither Q
nor Q' belongs to a class of type 61 (we omit the
proof). Therefore, we have Ai'(Pi) =AI'(Q) I'(Q') =
r(Q) I (Q')A=i (P,)A, VP, C e„X)4.

Remark. Lemma 4 is not correct for %=3. Its failure
for /=3 is attributed to the fact that the A3 repre-
sentation {I'(P):PQAp} is reducible. This fact itself
can be attributed to a distinguishing structural property
of S3, namely: No element in the class

{(1)(23) (2)(31) (3)(12)}

Uo=(~2) 'I (5.18)

In particular, for arbitrary I'(Pi), we have

We do not specify explicitly the representation
{I'(P):PC Sp} other than requiring it to be a real
orthogona/ IR of Sp having character set {2,—1, 0}.
The properties

Tr I'(PI) =—1, det I'(PI) =1 (5.17)

then necessarily follow. (Lemma 5 is not particular to

the choice of relative position vectors. )
We next observe that an arbitrary proper, real orthog-

onal 2)&2 matrix is diagonalized by the unitary matrix

0)
Up'I" (P,) U', =can be written as the product of two elements not in

the class, whereas in SN(X) 3) each element in a class
6& which contains precisely one cycle of length one can
be written as a product QQ', where neither Q nor Q'

belongs to a class of type C~.
The distinguishing feature of S3 discussed above per-

mits a completely new structure, the unitary group
U(3), to enter into the 3-particle problem.

Lemma 5. The operators in the group {TE. RC O(6) }
which commute with the subgroup of operators
{To(p) ~ PC Ap} are those contained in the subgroup
{TE.RQG}, where GC O(6) is the group of proper,
real orthogonal matrices of the following form

(5.19)

where p'+p+1=0 and p'= 1. Transforming Eq. (5.16)
by the similarity transformation, Eq. (5.19), we easily
6nd that the most general real R,,' which satisfies
Eq. (5.16) is

R; =UM, ,'U~, (5.20)
where

(5.21)

G= {RQO(6) R=AMAt}
in which I,; is an arbitrary complex number. Thus, we

(5 11) have
where

A = Up}SI3,

(5.13)

in which U is an arbitrary 3&(3 unitary matrix, i.e.,
UC U(3). Gisisomorphic to U(3).

Proof: G is the subgroup of real orthogonal matrices
dehned by

R'= (Ip Up) M'(Ip Upt), (5.22)

where M' is the 6&(6 matrix constructed from the 2&(2
matrices M; in the manner of Eq. (5.7). Using Eqs.
(5.6) (for lV= 3) and (5.3), we find that R has the form
given in the lemma, where U is the matrix with elements
(u,,). The requirement that R be orthogonal implies
that U is unitary. Indeed, we see that R is proper, real
orthogonal.

To complete the proof, we note that Up of Eq. (5.18)
is unique up to a.rbitrary phase factors of its columns,
i.e., the matrix

G= {RCO(6):RO(P) =O(P)R, VPgA, }. (5.14) (e" 0)
Uo'= Up (5.23)

The general results, Eqs. (5.1)—(5.8), are valid when
particularized to /=3 and I'&A3. We must therefore
determine the set of 2X2 matrices R,,' (i, j=1, 2, 3)
which satisfy

R; I"(P) =1'(P)R.;, VPCA, , (5.15)

where {I'(P) } is a real orthogonal 2X2 matrix IR of
Sp having character set {2, —1, 0}.In particular, if we
let Pi (123), then the elem——ents of Ap are {Pi, PI', Pi'
identity). Thus, Eq. (5.15) reduces to the single condi-
tion

also diagonalizes I'(Pi). However, defining A' in terms
of Up' by Eq. (5.12), we see that A'M(A') t=AMAt,
i.e., we get the same group 6 independent of the choice
of Up . F111slly 1't 1s cles, l that G Is isomorpkt cto U(3)'
since I6~13.

The matrix group G contains the group {IpRI.
RpC O(3) } as a subgroup, since R=IpRp implies Up=
Rp, and conversely. Thus, G is a subgroup of O(6) with
the property

R;,'r(P, ) =r(P, )R;, Pi (123) . (5.16)—— O(6) QGQ {IpRp. RIF0(3) }. (5.24)
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RO(P) =O(P) R, VRg G (5.28)

are the elements of an invariant slbgrossp of Sn.
Lemma 7. Let {P}denote the set of elements of an

invariant subgroup of S~. Then the real orthogonal
matrices belonging to the set {R}which satisfy

Thus, for X=3, we have obtained a subgroup scheme
which is alternative to that of Eq. (4.36) for labeling
a basis of Z~. Furthermore, we will see in considerable
detail in a later section that the IR spaces of G arise
in a multiplicity free way on the space 2„, i.e., at the
level of G, a basis of 2„ is completely labeled by the
quantum numbers which label the basis vectors of the
IR spaces of G.

Note that the group G has the following simple
properties with respect to the subgroup {O(P):PF Ss}
of O(6)

0(P)RO(P) =R, VRg G, VPg As, (5.25)

O(P) RO(P) Q G, VRQ G, VPQ Ss. (5.26)

As a consequence of these properties, Dragt (Dr65)
termed the group G a democratic sgbgrogp of O(6).

Encouraged by the enormous simplifications which
occur in the 3-particle problem, Levy-Leblond and
Lurcat (Le65) undertook the task of generalizing the
notion of a democratic subgroup to the Ã-particle
problem. The consequences of this generalization are
disappointing. The concept of a democratic subgroup
is elegant, but the structure of the symmetric group is
too tight to Iet any dramatic new structures through.
Let us see how this comes about.

Definition Z: A subgroup GQO(3X—3) is called
democratic if RQ G implies

O(P) RO(P) g G, VPg Sn. (5.27)

This definition is clearly an appropriate generaliza-
tion of the one introduced by Dragt. However, two
lemmas, proved by Levy-Leblond (Le66), forecast the
limited structure of O(3X—3) which will be unveiled.

I-ennea 6. Let G be a democratic subgroup of
O(31V—3). Then the permutations belonging to the
set of permutation operators {P} which satisfy

only invariant subgroups of S& are the identity, A&,
and S~ itself. But for S&4, Lemmas 3 and 4 already
show that the democratic subgroup associated with
either S~ or A~ is simply

L= {I~ gRs. Rsg O(3) }. (5.30)

For X=3, Lemma 3 again shows that the democratic
subgroup associated with S3 is I-; however, now one
rediscovers Dragt's democratic subgroup G associated
with A3.

The only structure, possibly Dew, which the general-
ized democracy concept points out (in addition to
giving Dragt's result a general setting) is the demo-
cratic subgroup associated with the extra invariant
subgroup 'UQA4 which S4 possesses. The precise nature
of this democratic subgroup is given by the next lemma.

Lemma S:The operators in the group {Tn. Rg O(9) }
which commute with the subgroup of operators {Tots~.
PC "U } are those contained in the subgroup {TIr, .' R6 G},
where GQO(9) is the group of real orthogonal matrices
of the following form:

G= {R&O(9) R=AMS} (5.31)
where

A =SoIS, (5.32)

in which So is a 3+3 proper, real orthogonal matrix
which depends on the choice of relative position vectors;

E3 0 0

M = 0 R3' 0

0 0

(5.33)

where Rs, Rs', Rs"QO(3).
Proof. G is the subgroup of real orthogonal matrices

defined by

G= {RQO(9):RO(P) =O(P)R VPF'U} (5 34)

The general results, Eqs. (5.1)—(5.8) are valid when
particularized to %=4 and PQ'U. We must therefore
determine the set of 3X3 matrices R; (i, j=1, 2, 3)
which satisfy

RO(P) =O(P) R, VPQ {P} (5.29)
R; F(P) =F(P)R;,', VPQ'U, (5.35)

are the elements of a democratic subgroup G of
O(3X—3) .

Levy-Leblond has given the simple proofs of these
lemmas, and we will not repeat them.

Since each democratic subgroup of O(3$—3) has an
invariant subgroup of SN associated with it (Lemma 6),
one can clearly find all such democratic subgroups
which contain {I~~Rs. RsgO(3) } by systematically
determining the various groups G associated with the
various invariant subgroups of S~ (Lemma 7). It is
precisely here where the properties of S~ limit the
implications of the democracy concept. For %44, the

where {F(P)} is a real orthogonal 3X3 matrix IR of
S4 having character set {n—1}={3,1, —1, 0, —1}.

The elements of 'U are

'U = {E, Pg = (12) (34), P2 = (23) (14), Ps = (13) (24) }.

(536)

Note that P, =E (i =1, 2, 3), and P;P;=Pz for (ij h)
any arrangement of (123). These relations imply that
the 3X3 real orthogonal matrices F(P;) (i=1, 2, 3),
which have Tr F(P~) =—1, are also symmetric and
proper [the proper condition is implied by the fact that
each F(P,) is similar to the diagonal matrix with
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diagonal elements (1, —1, —1)]. The most general
forms for the I'(P;) are given by'

I'(P;) = I,+—2rJ;a;, z 1 2 3 (5.37)

Sp = [rrr rip &p] (5.38)

where each a, =col (err;rip;rip;) is a column matrix, and
a~a, =5;;, i.e., (ar;, ai;, ap;) are the components of a
triad of unit vectors which are mutually perpendicular,
and which can be chosen, without loss of generality, to
be a right-handed triad. Then {Ip, I'(P;), i=1, 2, 3} is
a representation of 'U, and it is the most general repre
segtation which can be obtained from {F(P):PQ54{,
where as always I'(P) is an IR [3100]of 54 which is
real orthogonal. .The proper, real orthogonal matrix $0
defined by

uniquely determined (Lemma 2) to be as follows:

x'= (rr+r2 —rP —r4) /2,

x'= (r'+r' —r' —r4) /2,

x'= (x'+r' —r' —r4) /2.

(5.44)

R' =BRA, A = SoI3. (5.45)

Then it is straightforward to verify that

(Trr f)(*)= (Tire) (X), y= Ax, (5.46)

Finally, we can transform each RQO(9) by the
matrix A of Lemma 8

now diagonalizes ea, ch I'(P;)

Spi'(P;) Sp ——D(P, ), i=i 2 3

where, for each given function gQ 2„, the function fF 2„
(5 39) is defined by

where

D(P,) =diag (1, —1, —1). D(Pp) =diag (—1, 1, —1),

D(Pp) =diag (—1, —1, 1).
that is,

f(x) =f(Ay) = (T~f) (X) =g(y),

f= TAg.

(5.47)

(5.48)

P: Ly' y' y'] Ly' y' y']I'(P), (5.40)

Here Sp is unique up to (&) signs of its columns, and
these signs are irrelevant (see the proof of Lemma 5).

Following the steps analogous to those in going from
Eqs. (5.19)—(5.22) in proving Lemma 5, the proof of
Lemma 8 is easily completed, and we omit these details.

Let us observe that by a simple redefinition of rela-
tive position vectors, we can always get rid of the
matrix A in Eq. (5.31).Thus, suppose we have chosen
a particular set of relative position vectors, call them
[y' y' y']. Then, under permutations, these vectors
undergo the transformation

R3 0

G= ~ RQ0(9): R= 0 Rp' 0 (5.49)

0

where Rp, Rp', Rp"F 0(3). The transformation x'=Rx
in

(Trr f) (x) =f(Rx), RgG (5.50)

Thus, it is no restriction to use the relative position
vectors, 'Eq. (5.44), from the start. The group G of
Lemma 8 then becomes

where {I'(P): P g 54 { is a specific IR [3100]of 54. We
can then determine a, , rip, and ap (up to irrelevant signs) .
We then define a new set of relative position vectors
[x' x' x'] by

is easily identified in column matrix form to be

[xr x' x']~[R x' R 'x' R "x'] (5.51)

Then we have

[x' x'x']= [y' y' y']5, . (5.41)

where

P: [x' x' x']—+[x' x' x']I"(P), (5.42)

' In the correspondence of the points of the solid sphere in
3-space onto the elements of SO(3), the points on the surface
of the sphere map, two-to-one, onto the symmetric elements of
SO(3) . Equation (5..37) is simply the most general form of a
symmetric element of SO(3) .

I"(P) =S,r(P) S„ (5.43)

and, in particular, I"(P,) =D(P;), i=1, 2, 3, where the
D(P, ) are the diagonal matrices following Eq. (5.39).
Indeed, the relative position vectors [x'x'x'] are

Thus, the group G is the group 0&"(3) XO'"(3) X
0&1(3), where 50r" (3) is the real orthogonal group
whose infinitesimal generators are the orbital angular
momentum operators associated with the relative posi-
tion vector x'.

The group 0"i(3) X0''-i (3) XOr" (3) is, unfortu-
nately, not multiplicity free in 0(9). In particular, the
quantum numbers (limi, l~m&, lpmp) which label the basis
vectors of the IR spaces of this direct product group
do not label completely a basis of the space 2„.

The concept of a democratic subgroup offers a sys-
tematic technique for determining subgroups of
0(3X—3) which have specific properties with respect
to the permutation subgroup

{0(P):PC 5~{CO(3& 3)—
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The concept is, however, too limited to admit any
significantly new structural schemes for classifying Ã-
particle states (1V)4) . There exist, of course, subgroup
chains of O(31jjr—3) other than those brought out by
the democratic subgroup concept which conceivably
might be useful. However, such schemes necessarily
relinquish the property expressed by Eq. (5.27). It is
not our purpose here to pursue this point further; rather,
we now turn to the systematic development of what can
be learned about the classification of X-particle states
(V=3, 4, ~ ~ ~ ) within the framework already discussed
in this paper.

VI. 3-PARTICLE STATES

The problem of constructing completely labeled total
angular momentum states on the 6-sphere has been
studied by many authors: Smith (Sm60, 62), Kramer
(Kr63, 65), Dragt (Dr65), Zickendraht (Zi65), Chacon
and Moshinsky (Ch65), Simonov (Si66), and jjVhitten
and Smith (Wh68). More recently, Castilho Alcaras
and Leal Ferreira (Ca71), and Efros (Ef71) have con-
sidered this problem io great detail from various view-
points, often listing tables of specific state vectors.
What we oGer is of a somewhat different nature.

First of all, we wish to make clear for the 3-particle
problem the role of the jttontontorpjttt'snt of the group
SU(4) onto SO(6). This is accomplished in Secs. A
and B. (The isorrtorphism of the Lie algebras was dis-
cussed by Dragt (Dr65) and used extensively by
Chacon and Moshinsky (Ch65).j

In Sec. C we generalize our development to the group
U(4), thereby gaining a deeper insight into the under-
lying structure of the problem. The group U(4) is then
realized as a set of transformations on the space X„of
homogeneous complex polynomials of degree p defined
over O'. The relation of the space BC„ to 2„is discussed
extensively, and, in particular, it is noted how one
recovers a basis for the solid harmonics on the 6-sphere
from the explicitly given (Sec.D) Gel'fand state vectors
of U(4).

In Sec. E, it is demonstrated that by a simple change
of basis one can already diagonalize the s component
of the total orbital angular momentum. The discrete
syrrnnetry properties of our general basis functions are
given in Sec. F.

With respect to the 3-particle problem, the results
of Secs. A—F may be summarized by the statement that
a basis of the solid harmonics of degree p on the 6-sphere
has been given which (1) is a basis of IR (pj10j of
U(3); (2) possesses sharp s component of total orbital
angular momentum; and (3) is classified "democrati-
cally" with respect to the permutations of identical
particles.

We still have not achieved the desired goal of obtain-
'

ing a basis of g„which also has sharp angular momen-
tum I.. This difFicult problem is the subject of Sec. G.

A. The Homomoryhism of SU(4) onto SO(6)

The fact that the group U(3) enters into the 3-
particle problem could have been foreseen (Dr65) as a
consequence of the well known homomorphism of SU(4)
(the group of 4X4 unitary unimodular matrices) onto
SO(6), without the aid of the democratic subgroup
concept. It would, however, be difFicult to foresee the
precise way to establish this homomorphism if one did
not have available the specific result, Lemma 5.

The idea is to establish the homojmorphism between
SU(4) and SO(6) in such a way that when SU(4) is
restricted to one of its U(3) subgroups there obtains
in a simple way the isomorphism between the U(3) of
Lemma 5 and the subgroup GQSO(6). To this end,
let VC SU(4) be partitioned as follows:

(6.1)

where
R=AQAt, (6.3)

A = (v2) (6.4)

(Q Q.*)
Q=l

EQ2 Qi*)
(6.5)

in which Qi and Q, are 3X3 complex matrices which
are related to V; specifically, we have

Qi 7V3 Ap

Q2=1' Ve,

(6.6)

(6.7)

t' o

0 (6.8)

in which Ve, cx, P, and y are the quantities which appear
in the partitioning, Eq. (6.1), of V.

The proof of Lemma 9 is given in Appendices j. and 2.
Remark. The content of Lemma 9 is simply this: For

each VCSU(4), the matrix R calculated from the
definitions, Eqs. (6.3)—(6.8), is proper, real orthogonal.
Conversely, for each

RUSSO(6),

one can find' exactly

where Ve is a 3X3 complex matrix, n and P are complex
column matrices,

P = col (Pi Pe Pjj), (6.2)

and y is a complex number. We assert:
Lemma tt. Let Vg SU(4) and RC SO(6) . The follow-

ing relation is a 2 to 1 homomorphism of SU(4) onto
SO(6):
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two unitary unimodular matrices which when used in
Eqs. (6.3)—(6.8) will yield the specified R. Finally, the
property V~R, V'~R' implies VV'+RR' establishes
the fact that the rule, Eqs. (6.3)—(6.8), for relating
elements of SU(4) to elements of SO(6) is a homo-
morphism. Note that V—+R implies —V—+R (the 2 to 1
correspondence of the homomorphism) .

Now consider the subgroup g of SU(4) defined as
follows:

0

: V6C U(3), det Vs=y*, yy*=1 ~ .

,0 0 0

(6.9)

Under the restriction of SU(4) to g, the matrix Q of
Lemma 9 becomes a matrix M of the type in Lemma 5,
where

U=yV6F U(3). (6.10)

Note, in particular, that we obtain the same UF U(3)
from VFQ and —VFg: The subgroup K.SU(4) is 2
to 1 homomorphic onto the subgroup GQSO(6).

It is of interest to determine which matrices of SU(4)
correspond to the permutation subgroup, I 0(P):PF As I,
of SO(6) . It is sufficient to determine the elements +Vi
of SU(4) which correspond to 0(Pi), Pi= (123) Lsee
Eq. (5.19)j.This simple calculation gives

0

LThe column matrix x is used as a subscript on Z, to
make explicit the fact that the elements of the matrix Z,
depend on the elements of x.j

Lemma 10.' Let V—+R in the homomorphism of
Lemma 9. Then

Zg, ——VZ, V. (6.13)

The proof is given in Appendix 3.
The significance of the relation, Eq. (6.13), is that

through it we can make contact with some standard
results of unitary group theory; the significance of the
homomorphism in the form of Lemma 9 is the elucida-
tion of the relation of SU(4) to the democratic sub-
group GQSO(6).

B. The Significance of the SU(4)~SO(6) Homo-
moryhism for the 3-Particle Problem

Now let us see how the group SU(4) arises in the
3-particle problem. It is convenient to make a change
in notation. We have previously seen the usefulness of
organizing the six components of the relative position
vectors x' and x' into a 2)&3 matrix I, or a 6)& 1 column
matrix x= col (xixsxsx&$5$6), where (xi' xs' xs') = (xtxsxs),
and (Xis Xss $66) = ($4$5$6) . We nOW haVe a third Way Of

organizing these components, namely, in the manner in
which they appear in the definition of the 4&4 complex
skew —symmetric matrix Z, . It is now convenient to let
the notation f(Z, ) denote the value of the function f
at the point (xi xs ~ ~ ~ x,), i.e., f(Z,)

—=f(x) . The trans-
formation Tz on the space 2„, previously described by
Eq. (4.16), is defined in terms of the new notation by

(Tgf) (Z,) =f(Za.), RF SO(6). (6.14)

6I3
(6.11)

Next, consider any complex skew —symmetric matrix
Z of the form

0 —S3* S2 Sj

$3+6$6 Xs 6$5 Xr+6$4

Z.=(v2)-'
Ã3 ZX6 x]+1$6 xs+6$5

,0 0 0 1,

The subgroup of SU(4) which commutes with Vi is
then seen to be precisely the group g, defined by Eq.
(6.9), which maps to the democratic subgroup G of
SO(6) .

There is another useful way (Es64) to realize the
homomorphism of SU(4) onto SO(6) given in Lemma
9. We define a 4)&4 complex skew —symmetric matrix
Z, as follows:

3] 82

0 S3

(6.15)

(X, Xs ~ $6)+-+Z. (6.17)

—3, —s~ —S3 0,
We can always identify the coordinates (xi xs ' ' ' $6)
by the rule

x, = (s,+s;a)(v2, x;+,———i(s,—s,*)/K2 (6.16)

forj = 1, 2, 3. The set of points of Euclidean 6 spaceisin-
one to one corresponden-ce -with the set of 4X4 complex
skew symmetric matrices of the fo—rm (6.15):

Xs+6$5 S] $$4 $6+6$6
Quite generally, then, we use the nota, tion f(Z) to

—gy —4' —Ã2 ZX5 +3 ~+6 0
5 This method of realizing the homomorphism is patterned

(6.12) after the results given by Esteve and Sons (Es64).
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Tg= Sy for V~R.

Also, the operator identity

S y ——Sy

(6.21)

(6.22)

holds on Zv, and the general homomorphism +V~R of
groups collapses on the space 2„to the equality of operators.

The seemingly trivial identity, Eg. (6.21), is the expres
sion of the basic structure of the 3 particle -problem. Let us
examine its content. The space 2„is a carrier space for
IR {p00} of SO(6). It is therefore also a carrier space
for an IR (yet to be identified) of SU(4). But now
instead of classifying a basis of Z„by using subgroup
chains of SO(6), we can use the subgroup chain of
SU(4):

SU(4) Q U(3) Q U(2) Q U(1) . (6.23)

But. the canonically labeled basis vectors —the so-called
Gel'fand basis —of each IR space of SU(4) correspond-
ing to this chain are completely and generally hnown

(abstractly and specifically). The significant aspect of
the particular homomorphism we have given is that
under the restriction

denote the value of the function f at the point x which
corresponds to Z

f(Z) =f(x) for x~Z. (6.N)

We write Z, only when Z is considered to be explicitly
in the form of Eq. (6.12) . (We can, of course, think of
x as a column matrix. )

Kith the above notational conventions, we can write
Eq. (6.14) as

(T~f) (Z*) =f(VZ*V) (6 19)

where V~Rin the homomorphism of SU(4) onto SO(6)
(Lemma 10) .

But now observe that, for each V&SU(4), we can
define an operator Sy on the space Z„by

(Srf) (Z) =f(VZV) for x~Z. (6.20)

One easily verifies that the set of operators {Sr.'VQ
SU(4) } is a group of unitary operators which is a repre-
sentation of SU(4) on the space Z„under the corre-
spondence V—+S&. Furthermore, since, by definition,
Eqs. (6.19) and (6.20) hold for each point x and each
fC Zv, we have the following operator identity on the
space 2„:

The group of operators I To }= {Si } is just the unitary
representation on Z„of the democratic subgroup 6 of
O(6). On the other hand, it is precisely the subgroup
restriction, Eq. (6.24), which leads to the assignment
of the U(3) subgroup labels of the SU(4) Gel'fand
basis vectors. In other words, the canonical Gel'fand.
basis vectors already provide us with a completely
labeled basis of Z„such that the subspaces of Z„which
are spanned by those basis vectors having fixed U(3)
IR labels are the IR spaces of the democratic subgroup.
The identification of operators, Ecl. (6.21), points out the

path to the solution of the 3 particl-e problem in terms of
standard results of unitary group theory.

0 —i3

i3 0 tl 92

0 rt3

(6.26)

where rt, and t', are arbitrary complex numbers. With
each such matrix 5', we associate the point

(ni n2 rt3 f i i 2 i 3)

C. Generalization to U(4)

We wish now to consider the group U(4) in place
of SLr(4). It turns out that at the level of U(4), one
can understand fully the relation between the space of
homogeneous polynomials de6ned on six arbitrary corn-

plex variables and the space Z„of homogeneous poly-
nomials on six real variables which solve Laplace's
equation. LAbstractly, this is the same problem (Dr65)
as extracting solutions to I aplace's equation in 6-space
from the harmonic oscillator functions in 6-space. j
Quite aside from this important connection, the IR
spaces of U(4) which we thereby obtain are of con-
siderable interest in themselves.

In the generalization to U(4), it would not be correct
to regard the matrix V in Eq. (6.20) as simply belonging
to U(4). The compatibility of the transformations on
the variables s; and s';* requires that V be unimodular
(see Appendix 3). If we let V belong to U(4), we must
at the same time let Z be of a more general form. The way
to do this is, however, quite obvious. We define the
complex skew —symmetric matrix 8" as follows:

0

[0 0 0

y*=det V3,

(&V, 0 )R~R'=A
I }

At.
gV g

(6.24)

(6.25)
W=Uwv, Ug U(4), (6.27)

of complex 6-space, C. The matrix S" corresponds to
a point of Euclidean 6-space, if we use the correspond-
ence, Eq. (6.16), if and only if i,=q,*, but we do not
impose this restriction.

The results given in Appendix 3 now show that the
transformation
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is the same as the transformation

(~l

&~)
'

where'

fQI Qs*(det U))

(Qs Q*(de«))
(6.29)

in which QI and Qs are defined exactly as before in terms
of the partition matrices of U, i.e., by Eqs. (6.6)—(6.8)
for U written in the form (6.1).

Next, we introduce the notation F (W) to designate
the value of the function F at the point ()1, l ) of C'

must perform the matrix multiplication indicated in
Eq. (6.35) and take the trace. We note that on the
space X~ the Hermitian conjugates to rj; and f, are,
respectively, given by

47, =8/8)7, , $,= ij/Bt;, (6.36)
i.e.,

(E"F)(W) = (~'~' M'—+Z M )F(W) (6 39)

rl/BW =W. (6.37)
The following set of Weyl generators now obtains from
Eq. (6.35):

(E',F) (W) = (~'~;—l.,i;)F(W) «.»)
for i/j=1, 2, 3;

F(W) =F(&, f.). (6.30)
fori=1, 2, 3

We also restrict ourselves to the set of polynomial func-
tions which are homogeneous of degree p (6.40)(E44F) (W) = (Q rjs@)F(W). ;

k=l

(E;F) (W) =(.l---"hF(W),
(E;4F) (W) = (Psrj; t,rjs) F(I—4'),

gC = IF F(ZW) =7 ~F(W) I. (6.31)
(6.41)

(6.42)
Using the extended definition of scalar product dis-
cussed in Sec. II, we make this function space a
space.

For each Ug U(4), we now define the opera
on K„by

(SIIF) (W) =F(UWU) .
! E;,Es)j= "DjsE'I f)i)E8;, —(6.43)

Hilbert
for i,j, k cyclic in 1, 2, 3 in Eqs. (6.41) and (6.42) .

tor 5'U The generators E;; necessarily satisfy the following
commutation relations from the method of deriving

(6.32) them:

The set of operators I SU. Ug U(4) I is then a represen-
tation of U(4) on the space K~ by unitary operators.

The calculation of the Weyl infinitesimal operators
of the representation, Eq. (6.32), now proceeds along
the lines described in (LO70) . A preliminary calculation
which simplifies these calculations is as follows: Let
U(l) Q U(4) have the property U(0) =I4. Then, from

(SU())F) (W) =FLU(j) WU(t) $, (6.33)

and
(E')'=E (6.44)

These properties can, of course, be verified explicitly.
The relations of the Weyl generators IE;;:i,j =

1, 2, 3, 4} of U(4) to the SO(6) generators IZ;j:i,j =
1, 2, ~ ~ ~, 6I of Eq. (4.17) are obtained by restricting
W to Z, i.e., by introducing the constraint lj=
(x; ixj4.3)/v2. We the—n have

we calculate straightforwardly (being careful to account
for the skew —symmetry of W) the result

F(W) =f(~) =f(Z.) =f(x)
for lV=Z~x. The relations follow:

(6.45)

L(de(4)/dl) =oFj(W)
=Tr I W/dU(t)/dl j)=8(ij/BW) IF(W), (6.34)

Kj= 3 (saCij +ski+3,j+3+@i,j+3+@j,i+3) (6.46)
for i/j=1, 2, 3;

where 8/BW denotes the matrix of the same form as W,
but with )1; replaced by rl/Bq, , and f', replaced by ij/rjl',
With this result, we obtain the following expressions
for the Weyl generators, IE,,I:

(E,,F) (W) = Tr /We;, (ij/BW) jF(W), (6.35)

fori=1, 2, 3;

3

E"=3&+&','ys —
3 Q &8,8+3

It,'=1

3

E44= 3&+3 Z &',8+3)
Ic=l

(6.47)

(6.48)

where e;, is the 4)(4 matrix unit having 1 in row i and
column j and zeros elsewhere, and wherei, j= 1, 2, 3, 4.

Equation (6.35) is a single, concise expression for the
Weyl generators of the representation U—+Sr) of U(4).
To obtain these generators in a more explicit form, we

E4 ' —3 (i@is+i+84-3,j+3++8 8 I++8,j+8), (6 49)

E,4
', ( iZjs ias+3, j+3——+—Z),—+3,,+Z—s,;„3), (6.50)

for i, j, k cyclic in 1, 2, 3. The operator 8 appearing in
these equations is

6 Replacing Q of Eq. (6.5) by the Q of Eq. (6.29) does not
give a homomorphism of U(4) onto SO(6). To obtain such a
homomorphism, one must combine the mapping of U(4) onto
SU(4) and the homomorphism of Lemma 9.

(&f) (*)= LZ x'(~/»') l f(*),
i=1

(6.51)

i.e., is the homogeneous operator of Euler. It has fixed
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value p on the space Z„. Note also that

2& =Eii+E22+E33+E44) (6.52)

are perpendicular):

3C„= g 0+BC„,„. (6.57)

i.e., 2d is the first-order Casimir invariant of U(4).
One should note very carefully the structure of Eqs.

(6.46)—(6.50). They are actua. lly expressions of the
isomorphism between the Lie algebra of SU(4) and the
Lie algebra of SO(6): These equations express zneertible
relations among the fifteen generators of the unimodular

grouP SU(4), say, {E;;,i/j=1, 2, 3; E;, E44,—i=
1, 2, 3{,and the fifteen generators {2,;, i(j= 1, 2, ~ ~ ~, 6I
of SO(6).

The representation and Lie algebra of U(4) which
we have obtained on the space K„through the sequence
of results, Eqs. (6.31)—(6.44), is of interest in its own
right in unitary group theory. It is of signihcance for
the 3-particle problem. because upon restricting U(4)
to SU(4) and upon restricting the domain of definition
of the polynomials of BC„ in the manner of Eq. (6.45),
we are led precisely to the relation of SU(4) to SO(6)
which is relevant to the 3-particle problem.

I.et us examine the relation of the spaces 3C„and 2„
more carefully. First consider the space 3C„which is the
carrier space for a reducible representation of U(4),
The irreducible constituents are, however, , easily found
by determining the set of highest weight vectors belonging
to K„. A highest weight vector is one which is anni-
hilated by all the raising generators E;;,i(j= 1, 2, 3, 4.
One easily veri6es that each of the vectors

E.,(~, )f=(~t-+~t.+~i-) l. " '"/L l(-p )]"—'
(6.53)

for v=0, 1, 2, ~ ~ ~ p/2 or (p—1)/2 is a normalized
highest weight vector belonging to SC„. The weight of
the vector F„„is the set of eigeovalues of the diagonal
generators E;;,i = 1, 2, 3, 4

(E„,E2z, Ez3, E44)~(p v, p —v, v, v) .—(6.54)

Note that the factor (rtifi+ztzt2+zt3$3) is an SU(4)
invariant.

Highest weights are the partition labels which are
used to denote an IR of U(4), and, quite generally,
each IR of U(4) is labeled by a partition, P.i X& X3 X4],
of ordered integers X~) X~&XS&X4. Thus, if we let K„,„
designate the subspace of K„which contains the highest
weight vector of Eq. (6.53), then BC„,„ is the carrier
space for an IR of U(4) denoted by the labels

{ p —v, p —'v, v, v]. If we further note that (We31)
dim BC„,„=(p —2v+1) (p —2v+2) '(p —2v+3) /12,

(6.55)
(p+ 5)

g dimBC„, „=dimBC„=ik5) (6.56)

it follows that the space BC„decomposes into a direct
sum of the subspaces BC„,, (since the spaces v =0, 1, ~ ~ ~

Correspondingly, 3'.„is the carrier space for the repre-
sentation

QO+{p—v, p —v, v, v] (6.58)

of U(4).
To see what all this has to do with the space 2„,

we introduce the operator Z~, dehned on an arbitrary
polynomial G(zt, f') by

(~"6)(., t-) =(2 ~.i.)G(~, t) (6.59)

Clearly, if Zt does not annihilate a vector of K„, it
carries such a vector into a vector of 3'.„2.The reason
for introducing Zt is quite transparent: Under the
restriction of Eq. (6.45), 2 simply becomes the
I aplacian in Euclidean 6-space

(Ztf) (x) = ,'Vzf(x)- (6.60)

which under the restriction, Eq. (6,45), simply multi-
plies f(x) by (P, x,2)/2. Now consider the extended
version of the operator identity, Eq. (2.36) of Sec. II
for /~= 6. It takes the following form on the space 3C„:

X&= —4ZZ t+S(~+4), (6.62)

where p is the U(4) Casimir operator of Eq. (6.52).
The significant point to note next is: The space BC„,„
which is the carrier space for IR Lp —v, p —v, v, v] of
U(4), is the carrier space for IR t p —2v, p —2v, 0, 0] of
SU(4) . That is, the spaces BCv, „and BC„z„,, are carrier
spaces for exactly. the same IR of SU(4), hence, of
SO(6). Since Zt annihilates 3C„2„,0, we see from Eq.
(6.62) that A.' has eigenvalue (p —2v) (p —2v+4) on
3C„2„,0, and since BC„,„and K„&„,0 yield the same IR of
SO(6), this'same eigenvalue of A' obtains on the space
BCv;„. We now apply Eq. (6.62) to an arbitrary vector
of BCv, , noting that the eigenvalue of 8 is P. The result is

gZ tP =v(p —v+2) Ii (6.63)

We can now understand fully the relation of the space
BC„ to 2v. We observe that Zt is an SU(4) invariant,
i,e., it commutes with all the generators of SU(4).
Furthermore, Zt aeeihi/utes each vector belomgAzg to the

space BCv,o, and it annihilates no vector belonging to the
spaces 3C„,„, v) 0. This statement requires proof.

That Z~ annihilates each vector of 3C„O is evident
from the fact that the invariant itgi+rtzl, +it,f', is
missing from the vectors of 3'.„,0. To show that Zt
anirihilates no vector of BC„,„(v)0), let g denote the
Hermitian conjugate to Z~ on the polynomial space
BCOO+BCiO+ ~ ~ ~ . Then 2 is just the operator defined by

(&G)(~, f) =(Z~ i )G(n, r), (661)
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for each PQK„,„.Thus, we have

a~I'=0

if and only if FQBC„,p.

We have now proved: BCV,O is the unique subsPace of
K„such that

The lowering operators commute with the factor
gg~+q2i2+2t2$2 appearing in the highest weight vector,
and the relation between the normalized Gel'fand basis
vectors of X,„,„and 3C„2„,p is therefore given by

V

under the restriction
3'.„,p~Z„ (6.65)

P—V

P—V

(6.68)

g, = (x,+ix;+2)/K2, f';= (x, i—x;42)/V2 .(6.66)

What happens to the subspaces Kv, , (v) 0) under the
restriction of Kq. (6.66)? The obvious answer is that
a function of K„,„simply becomes a solid harmonic on
the 6-sphere of degree p —2v, multiplied by (g, x,')",
and one would remark that it is obvious that these
functions do not satisfy Laplace's equation, unless the
factor (g; x,2)" is removed. Why then all the seemingly
elaborate discussion of the full space K„P The motiva-
tion for this derives firstly from the satisfaction of
obtaining a better understanding of how the 3-particle
state vector space enters as a substructure into the more
general space of homogeneous polynomials of six arbi-
trary complex variables, this space providing a natural
setting for the group U(4). Secondly, quite aside from
this relation to 3-particle states, the space X„ is the
carrier space for quite general representations of U(3),
and this result is of interest in itself. Most of this struc-
ture would have been passed by had we restricted our
discussion to the space Z„.

Finally, let us note where the Lie algebra of the
democratic subgroup G fits into the above scheme. This
Lie algebra generates the subgroup of SU(4) corre-
sponding to SU(4) matrices of the type, Eq. (6.24).
This algebra is identified as that of

IE;,,i' =1, 2, 3;E,,—I'44, i=1, 2, 3I, (6.67)

it being sufficient for the proof to note that this is the
algebra of traceless Herrnitian matrices which generate
unimodular unitary matrices of the required form. One
readily confirms that the orbital angular momentum
algebra is contained as a sub-algebra of the algebra,
Kq. (6.67).

D. The Ge1'fand, Basis of BC„

The general Gel'fand basis vectors of the subspace
3C„,„can be obtained from the highest weight by the
application of known lowering operators (Na65). In
terms of the Gel'fand notation, the normalized highest
weight vector, Kq. (6.53), is denoted by

P P P P P V

( (p 2V) l
&/2

(rl~h+n2f2+n2| 2)"

p —2P p —2v 0

A —2v
(IV). (6.69)

It is therefore sufficient to determine the Gel'farmed basis
vectors of the spaces BCP,O for arbitrary P. The procedure
for generating these vectors from the highest weight
vector is given in Appendix 4. 1A"e state the result
here, and note some of its structural features:

'p p00

p q0

(ni 12)
det

~ gl 1 'g2 2 ~

g2 l

(6.71)

From the explicit forms of the generators, one sees
immediately that the function G„p is an ieeariaet with
respect to the two commuting SU(2) subalgebras cor-

Ak(a —P) '( +(2) —+k"(—+P)l Gp.s(n, 0),
'g2 f1

(6.70)

where the definitions of the functions D and G are
given fully in Appendix 4 )see Eqs. (IV.14)—(IV.20) j.

The factorized form of the basis vectors, Eq. (6.70),
presents a rather interesting structure. First of all, the
function G„p depends, in fact, only on the variables
g2, f2 and on
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responding to the generators

{Eiz ——J~, E21——J, -', (Eii—E22) =Jz{ (6.72)

and

{E34=J, E43=J+, 2(E44 E33)—=Jz'I. (6.73)

the functions D' ~ in the following manner:

8oDs = QDj (U)Dse

8'o D'- = Z D"- (V') D'-',

(6.80)

(6.81)

j=2(~ P)—m= y——,'(cz+P), m'= —q+-'2 (n+P),

(6.74)

where we note that j is either integral or half-integral,
and, for each prescribed j, the range of m or m' is

{jj , 1—, ~ ~ ~, j)I—. The canonical GePfand transforma
tions become:

J4.D'„„=P(j nz) (j—+m+1) 1 DI'„,+„I.,

J D'„=L(j+m) (j—m+1)]'t2D~'„ I „...
J3D mm' mD rnm' j

J+'D' =
{ (j—m') (j+m'+1) ]'12Dt„„.+„

J 'D'- = E( j+m-') (j —m'+ 1)j"'D' .
J'D' =m'D„, .

(6.75)

(6.76)

In order to understand fully the above infinitesimal
transformations, let us note briefly their global origins.
For this purpose, it is sufficient to consider transforma-
tloIls oil thc val'1ablcs 'g1 rl2 f 1 i 2. Define tllc illa tI'1x

%by

This brings us to the second point. The transformation

of the basis (6.70) corresponding to the slbalgebras (6.72)
and (6.73) are carried entirely by the D fztnctions. We
will give these transformations explicitly. In order to
illustrate familiar aspects, it is convenient to introduce
new labels a,s follows:

in which D'„„(U) and D'„„(U') denote precisely the
functions defined by Eq. (4.18) of Appendix 4, now
de6ned on the elements of a 2)&2 unitary unimodular
matrix. In d.eriving Eqs. (6.80) and (6.81), we have
used several properties of the D functions, namely,

Ds(A) D& (A') = D''(AA'),

D'(A) =D'(A),

(6.82)

(6.83)

for A and A' arbitrary matrices.
The set of product operators {8Ir O'Ir = O'Ir 8o,

g pair V, U'&SU(2) I is a, unitary representation of
SU(2) &&SU(2). The functions Ds (m, m'=j, j—1,
~ ~, —j) are the basis vectors of a carrier space for
the IR

D'( V) D'(U') (6.84)

'p 0 0

j—m'+P 0

of SU(2) XSU(2).
The full structure of the Gel'fand basis vectors of the

space 3C, ,o, given explicitly by Eq. (6.70), has now been
revealed: These basis oectors factorise into an SU(2) )&

SU(2) invariant part and a part which comprises a basis

for the IR Ds(U) D'(U') of SU(2) &&SU(2).
It is useful to rewrite these basis vectors in terms of

the notation of Eq. (6.74):

(ni
x=/

'Q2 I

(6.77)
j+m+p

and let g denote a polynomial whose values on the
variables rti, rt2, f'I, 12 is denoted by g(K). For each pair
U, U'6 SU(2), we define commuting operators 8II and
O'U by

(8.g) (~) =g(U~),

(8''g) (~) =g(~V').

(6.78)

(6.79)

Each of the correspondences, V~8p and U'—+O'U, is
a unitary representation of SV(2) on the space of
polynomials (made into a Hilbert space in the standard
way). Furthermore, the sets of infinitesimal operators
of these representations are given, respectively, by
{J+,J,JzI and {J+', J ', Jz'{ Lthe operators defined
by Eqs. (6./2) and (6.73), respectively).

In particular, the operators 8~ and 8'~ transform

=Ds „(X)G~,2;+e,e(rtz, iz, detK). (6.85)

Observe that the SV(2) group associated with the
transformations (6.72) is isomorphic to the SU(2)
group which occurs in the Gel'fand chain, Eq. (6.23).
However, the SU(2) group associated with the trans-
formations (6.73) entails transformations on the U(3)
label q=j—m'+P in the Gel'fand pattern.

Ke have given explicitly the transformations of the
basis, Eq. (6.70), for certain of the U(4) generators

E;;, i.e., relations (6.75) and (6.'/6). The transforma-
tions corresponding to the remaining U(4) generators
can be calculated from these given ones by use of the
commutation relations (6.43), the Hermitian conjugate
relation, Eq. (6.44), and the transformations of E22. For
completeness, we note this latter result and the eigen-
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values of the diagonal generators:

(2j+O e)
E„P~

t, j+m+p j
(j m+—1) (j+m'+1) (P—2j P) (—2j+P+2)

(2j+1)(2j+2)

(2j+1+a e)
XRi

( j+m+p )
(j+m) (j m') (p —13+1—) (0+1) "

2j(2j+1)

(+11 +22 ~33 +44)

(2j+e v+1)
XR

~ ~, (6.86)
& j+ +p )

'

pp00

pq0
p (z~, t l-) =z~ pPF

'p p00

bq0

This result implies that the eigenvalues of the operators
8& and 8&, defined by

—&(j+myp, j m+—p, p —j—m' —p, p j+—m' p).—

(6.87)

The top two rows of the Gel'fand pattern have been
omitted in Eq. (6.86) for convenience of expression.

Finally, let us also note that the Gel'fand basis
vectors, Eq. (6.70), are homogeneous of degree p —

q
in (rtI, 112, rtz) and degree q in (f I, 12, |'3)

U(4) and U(3) transformation properties of the space
Ky, po

While the preceding results are of considerable in-
trinsic significance in the study of the unitary groups,
of particular interest here is the relation of these results
to the 3-particle problem which obtains through the
identification, Eq. (6.66). The Gel'fand basis vectors,
Eq. (6.70), then become solid harmonics on the 6-sphere
(span the space 2„), and the SO(6) generators relate
explicitly to the SU(4) generators through Eqs. (6.46)—
(6.50). In particular, let us now see how the orbital
angular momentum operators come into the scheme.

Using Eq. (4.22), we identify the orbital angular
momentum operators as

Ll @23+~56)

L2 @31+@64)

L3 @12+@45~ (6.92)

Using Eq. (6.46), we identify the orbital angular
momentum operators, in turn, with the U(3) generators
as follows:

L; = —i (E;3 E5,), — (6.93)

where i, j, k are cyclic in 1, 2, 3, i.e., the angular momen-
tum algebra is a subalgebra of the Lie algebra of the
democratic subgroup —a structural feature which was
assured intrinsically by our particular homomorphism
of SU(4) onto SO(6).

The Gel'fand basis vectors of ~ do not, of course,
achieve the full goal of characterizing the basis of Z„
through the angular momentum quantum numbers.
One must still reduce each of the U(3) IR spaces —the
subspaces of 3C~,O spanned by the basis vectors having
fixed q

—into its SO(3) irreducible constituents. It is
this part of the problem which is dificult to eRect, in
general. It is, however, possible by a simple charzge of the
basis of the Lie algebra of SU(4) to brirzg Lz to diagnrzal
form. This is the subject of the next subsection.

(~ P) (~, 1-) = (Z ~.~.)R(., r), (6.89)
E. Change of Basis

(~ F) (~, t-) = (Z C.l..-) F(~, t), (6.90)

are given, respectively, by

(&I &2)~(p—
q q) (6.91)

on the space K„,o. A further implication of this result
is that the U(3) Gel'fand invariants can be expressed
as simple polynomials in the operators d& and 82, while
the U(4) Gel'fand invariants are polynomials in 81+412,
these statements applying, of course, - to the particular
realization of these operators on the space 3'.„,0. Thus,
the two operators, 8& and 82, completely specify the

We regard the relative position vectors x' and x' with
components (xix2x, ) and (x4xpxp), respectively, as given,
and we do not wish to change their de6nition. Neither
do we wish to alter the explicit U(4) generators of
Eqs. (6.38)—(6.42) and the corresponding Gel'fand
ba.sis vectors of the preceding section (as expressed in
terms of rt and f'). Each of the goals is achieved by
changing the relatio&z of rt, f to x. This erztails givirzg a
new homomorphism of SU(4) orzto SO(6). However, in
the new homomorphism, we wish also to preserve the
structural relation between the U(3) subgroup of SU(4)
and the democratic subgroup G of SO(6). These strin-
gent conditions imply that we should consider trans-
formations of the group O(6) of the form R~RpRRp,
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VRQ 0(6), where R5 is a fixed element of G, for then the orthogonal matrix
democratic subgroup is mapped onto itself.

We simply state and then verify that the following
relations between rt, i, and x satisfy the above criteria
in addition to bringing L3 to diagonal form on the
Gel'fand basis of the last section:

1 1 0 0 0 0

0 0 0 1 —1 0

0 0 K2 0 0 0
)t, =-', L(x,+ix4) +i(x2+ix5) ],
)t2 ——-', ((xi+ix4) i (x2—+ix5) ],
ztz

——(V2) '(x3+ix5),

f', =-2, L(x,—ix4) —i(x,—ix,) ],
f'2 ———',[(xi—zx4) +i (x2 ix—5) ],
f'3 ——(v2) '(x3 ix,—). (6.94)

R3——(v2) '
0 0 0 1 1 0

—1 1 0 0 0 0

(6.100)

0 0 0 0 0 v2,

and V5 is either of the SU(4) matrices which corre-
sponds to R3 in the old homomorphism of Lemma 9:

1/K2 1/v2 0 0

We re-emphasize the viewpoint that we have only
changed the rela, tions of rt, 1 to x. We now define the
matrix R', to be the matrix obtained by the explicit
substitution of expressions (6.94) into Eq. (6.26) .
Conversely, if W is any matrix of the form (6.26) with

f,=zt, , we associate with it the point of Euclidean
6-space obtained by inverting Eqs. (6.94) . In this way,
we obtain a one-to-one correspondence between the set
of matrices of the type W (with f,=zt,*) and the points
of Euclidean 6-space

~Vp ——exp [-'4 (izr) ]
i/v2 i/v—2 0 0

(6.101)
0 0 1 0

0 0 0 —i,
We further note that

Rp= AMpA t, (6.102)

where A is thematrix of Eq. (6.4), and Me is the matrix

(xi x2 ~ ~ ~ x5) ~W. (6.95)

Observe that this new correspondence is distinct from
the one given by Eqs. (6.17) and (6.45). Furthermore,
we now let F(W,) denote the value of F at the point x
of the new correspondence

1 0

and where Q3 is the unitary matrix

'1

(6.103)

F(W,) =F(x). (6.96)

Starting with the generators of Eqs. (6.38)—(6.39),
one now verifies directly the following relations for
8'= 8', : 0 0 v2,

Qp
——(K2) ' i i 0—(6.104)

E11 E22 +12+@45 L3)

v2 (E32 E13) (&23+255) +z(&31+ec54) L+)

V2 (E,—E31) =L, (6.97)

where L~= L~~iL2. Thus, the assertion that L3 is now
diagonal is verified. Indeed, the eigenvalue of L3 on
the Gel'fand basis vector, Eq. (6.70), is just

(6.105)&V~RpRRp.

Then, from Eq. (6.99), we obtain

Thus, Rp belorigs to the democratic subgroup G of
50(6) .

Next, let V now denote the SU(4) matrix which
corresponds not to R, but rather to RpRRp in the old
homomor phism

L3—+2m. (6.98)
~ xV= QZg Px V=Z(2i!0gR 0) ~0@=ZR 0Rx ~Bey

We still must demonstrate that we have not upset
the democratic subgroup in the process of making the
identifications, Eqs. (6.94), i.e., that we have simply
established a new homomorphism of SU(4) onto 50(6)
whzch leaves the democratic subgroup invariant To estab-.
lish this fact, we first note that

H/" =Zg, ——f~pZ Vp,

where Z, is the matrix of Eq. (6.12), R3 is the proper

that is,
Wg, =VV V. (6.106)

V—+R. (6.107)

Indeed, the new rule for relating SU(4) matrices and
SO(6) matrices is now given by

R=A (M5QM53) A z, (6.108)

Relation (6.106) is a new homomorphism of SU(4) onto

50(6) which maps the matrix V directly to the matrix R:
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where A is the matrix of Eq. (6.4). Here Mo is the
matrix defined by Eqs: (6.103) and (6.104), and,
finally, Q is dined in terms of the partition matrices of
Vjust as in the old homomorphism, i.e., by Eqs. (6.5)—
(6.8) . Clearly,

symmetry operator to be an
D function into a single new
most by a numerical factor. )

For simplicity let us write

operator which carries a
D function, multiplied at

2 as

implies

V-+R (new homomorphism) (6.109) (6.111)

Vs VV0~R (old homomorphism) . (6.110)

Our new homomorphism, expressed equivalently in
either the form (6.108) or the form (6.106), now leads
directly to a set of relations between generators of SU(4)
and SO(6) such that Eqs. (6.97) obtain Th.e complete
set of relations, analogous to Eqs. (6.46) —(6.50), can,
of course, be obtained by making the identifications,
Eqs. (6.94), in Eqs. (6.38)—(6.42). LNote that Eqs.
(6.19)—(6.22) remain valid upon replacing Z by W, .]
We regard the new homomorphism as changing the
matrices of SU(4) which correspond to specified
matrices R. For example, the subgroup }ISSRS'. RSC

O(3) } is still generated by the orbital angular rnomen-
tum operators (I.i, I.z, I.z), just as before, but the new
homomorphism associates these generators wi:th the
subalgebra of SU(4) given by Eqs. (6.97). Similarly,
the democratic subgroup GQSO(6) is still the set of
matrices defined by Eqs. (5.11)—(5.13), it being clear
that the new homomorphism merely effects a unitary
similarity transformation on the submatrix U of M.

Summary When. we identify the variables zt, f in the
Gel'fand basis vectors, Eq. (6.70), with x through Eqs.
(6.94), we obtain a basis of the space Z„, the basis
vectors being enumerated by the U(3) Gel'fand pat-
terns just as before, but now the generator E~~—822 has
the significance of being the third component, L3, of
the orbital angular momentum. The two matrices of
SU(4) which correspond to O(FI) =I'(FI) SIS, FI=
(123), in the new homomorphism, Eq. (6.108), are
still given by Eq. (6.11). &VI commutes with the
group g of Eq. (6.9), this group still being the subgroup
of SU(4) which corresponds to the democratic sub-

group G of O(6). Furthermore, on 2„we have the
operator identity T0(p1) Spry Sp'1 and the operator
Sr, commutes with the set of generators of Eq. (6.67).
Accordingly, Sr, nzust be diagonal on each Gel'fand basis
vector, Eq. (6.70), which has axed p a&zd q. We defer
giving the explicit diagonal form of Sy, until after
investigating the more general question of the discrete
symmetry properties of the Gel'faod basis.

F. Certain Discrete Symmetry Properties of the
GeVfand Basis of SC„,O

There are three very simple symmetries of the D
functions defined by Eq. (18) of Appendix 4. These
are the symmetries associated with the following opera-
tions on the argument matrix A: (a) interchange the
rows of A; (b) interchange the columns of A; and (c)
transpose A. (For. our purposes, we define a discrete

and let F(A) denote an arbitrary polynomial defined
on the variables a, b, c, d. We define the operators
(R, 6, and 3 by the following rules, respectively:

o b, c d

(caF) =F
I

c d

( b (b
(~F)

Ed )
a b (a c)

(»)
c dj

(6.112)

(6.113)

(6.114)

One should note very carefully the product rule, e.g.,

&b .l
(eSF) i= (aF) =F . (6.115)

)
The operators (R, 6, and 3 generate a group of order

eight, the elements of this group being

II= I 1, 61, e, S, 6te= e61, Oe. = eS, ac=on, 5teo},

(6.116)
where we note that

g2 62 —Q2 —$ )

3%6=36(R=%63=6(RD,

%36=6M=3. (6.117)

eD, =D

6D m, m' D m, —m'p

GD~, =D~

(6.118)

(6.119)

(6.120)

On the basic D functions, the group of operators, II,
induces the eight transformations on the quantum labels

(m, m') corresponding to any number of sign changes and
transposition. '

'The transposition symmetry {6.120) is closely related to
the Regge symmetry of the SU'{2) Wigner coefficients )see
Bincer {Bi70)g,

LThis group is clearly isomorphic to a subgroup of S4,
a realization of the isomorphism is 61—+(13) (24), t'~
(12) (34), 5~(1) (4) (23) .j

The action of the above operators on the D functions
is easily determined by direct use of the definitions and
the explicit form of the D functions
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There is still another operation of considerable impor-
tance —complex conjugation. However, we do not
necessarily mean complex conjugation in the literal
sense, but rather an operation on the space of poly-
nomials which in some sense has the properties of com-
plex conjugation, and, in particular cases, may even be
complex conjugation. Looking back at either of the
restrictions of the variables, Eq. (6.66) or Eq. (6.94),
we are led to associate an operation, which we call
conjugation, with the interchange (t)t, tn)~(t t, fi). Fur-
thermore, comparing the form of the matrix A, Eq.
(6.111),with the matrix X, Eq. (6.77), it is seen that
an appropriate definition of a conjugation operator X
which will be relevant to the 3-particle problem is

(6.121)

Again to make clear the product rule, we give another
example

(~X~)l I= (XI")I
di' Ib d)

(6.122)

In particular, the function XD&', ~ is easily verified tobe

XD&„, = (—1) + 'D&, . (6.123)

Remark From .the point of view of the representations
of SU(2), we can consider the restriction of the matrix
A to UQ SU(2). Then, Eq. (6.123) becomes

and X is, except for an over-all phase, the operation of
complex conjugating an IR of SU(2) (Wi59) . However,
in this work, the D functions arise as pieces of state
sectors and are defined on arbitrary variables (tt t, tt&, t &, f&) .
The definition of X which we have given is more
appropriate to this latter situation, and, in fact, is a
part of the operator (we still must consider the variables
f&, tt&) which complex conjugates a solid harmonic on
the six sphere.

Ke can now adjoin the operator X to the group B
of Eq. (6.116).The generators of the new group are now

(R, 8) 3) X) (6.125)

and a set of defining relations of the group is as follows:

g2 (o2 g2 X2

XtRe= tRex, (tRX)'tR=6t(tRX) ',

(tRX)'e= e(6tx)', (tRX)'S =S(6tx)',

(tRX) 'X = X(tRX) '. (6.126)

A second set of defining relations is obtained by inter-
changing (R and | in the. above relations.

{HX~RXD„„}= ( —1)'~'{HD~ }.
Observe that

(6.128)

( 1)oy/ ( 1)gg/I ( 1)gj (6 129)

since m and m are integral or half-integral with j.Thus,
the transformations of the basic D functions corre-
sponding to the group K diGer only by phases from
those of the group H. Nonetheless, the group E is the

smallest group which contains the elementary transforma
tions (R, 6, and 3 together with the conjugation operator X.

Relations (6.126) can be used to write some of the
operators in E, as expressed by Eq. (6.127), in simpler
forms. Indeed, we find it useful to write out all thirty-
two elements of E:
E'= {1, S, X, ~Re, SX, tRea, tRex, tRXtR, ~RXe, tReSX,

OnxtR, mX~R, (tRX) ', extRX, S(tRX)', (tRX) S(tRX) },
(6.130)

E—E'= {tR e MRS eS tRX XtR ex Xe tR&X mX

SXtR, MRS, XtRX, Xex, axtRX, Xanx}. (6.131)

Then we have

E=E'U(E —E'). (6.132)

But now observe that E' is an invariant subgroup of E.
The proof is very simple and follows immediately from
the fact that a transformation in E' does not change
the sign of the determinant, det A =ad —bc, while a
transformation in E—E' does change the sign of det A.
(This fact will be of considerable importance later. )

There are additional discrete symmetries (in the
limited sense of our definition) of the D functions which
are identified with their genera/ homogeneity properties.
Thus, for arbitrary (nonzero) complex numbers X, ti,
and v, we define the operator '6'q„„on the space of

polynomials by

'These symmetries are closely related to the classical sym-
metries of the hypergeometric functions I see Khittaker and
Watson (Wh46) g,

The generators (6.125) satisfying relations (6.126)
generate a group of order thirty-tzvo. The elements are
conveniently enumerated as follows:

E= {H, HX, HXtR, HX(RX}. (6.127)

This enumeration clearly demonstrates that on the
basic D functions, we obtain a representation of the
group E which has the structure given by the set
equalities'.

IHXD' }= ( —1) '+"{HD' }

{HxtRD~ „.}= (—1)m™{HD~'„„j,
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+xpvD mm' =~ p & D mm'- (6.134)

Furthermore, one easily verifies the following operator
identities:

(P y, y, y=RCX,

(Py, y, y
=RX6)

(P—I,—I,—I= (S.x) (6.135)

However, none of the other 6' operators (except the
identity) is in the group E. (This is easily seen because
the only sign changing generator of E is X, and it
effects sign changes only on diagonally opposite ele-
ments. )

One could, of course, adjoin certain of the 6' operators
to E, but there appears to be little motivation for
doing so.

The preceding properties of the D functions lead to
a rich structure of discrete symmetries of the Gel'fand
basis of 3'.~,0. To see how this comes about, we must
still consider discrete transformations of the variable
pair (gp, |p) .To this end, we introduce the group having
eight elements as follows:

j +CKp) Wali &IXpi &CKSI.1

where 0.0 is the 2)&2 identity matrix and

(6.136)

In particular, on the D functions, the operator (Pq„„ is
diagonal

detX invariant. Accounting for this feature and the
induced shifts of the labels in the Gel'fand patterns,
we are led to introduce the subgroup of the direct
product group which is generated by the following four
elements:

(RSrx2) eSrE2) 3srx] ) XS~)~ (6.141)

The group D generated by the generators (6.141)
contains 128 elenseets as follows:

D'= I &'(S+-o, S+-.) I, (6.142)

D =D'u(D D') . — (6.144)

The finite group D is the only group which we can
construct from E and S such that the elements of D
carry one Gel'fand state vector into a phase times
another. We now list explicitly the transformations on
the Gel'fand basis corresponding to the generators
(6.141) )omitting the fixed top row in Eq. (6.70) $:

D—O'= I (E—E') (S~.„S~.,) }, (6.143)

where the notation means that each of the four elements
in (, ) multiplies each of the elements in E' or
E—E', as indicated. Observe that the elements
(S~ „S~,) comprise an invariant subgroup of S, so
that the elements (6.142) comprise an invariant sub-
group D' of the group D,

We then define operators' S~,. by the rule

(S+-;G) (np, ip) =G(np', fp'),
where

t1 0)

l.0 -1)
(6.137)

(6.138)

(RS,F
(p vp)

(6.139)

The group of operators,

S= ISg, i=0, 1, 2, 3I, (6.140)

6S,F a P

then comprises a representation of the group (6.136) on
the space of polynomial functions of two variables.

The idea now is to consider the direct product of the
groups E and S, where the variables of the D functions
are now identified to be a=I7I, c=gp, b=f'p, d= fi-
(Observe that the two operator groups commute, since
they effect transformations on different variables. )
However, the Gel'fand basis vectors of Eq. (6.85) are
not quite product functions of the type DG, where G
is defined only on the variables gp, ip, since det X also
enters as a variable. This implies that the simple dis-
crete symmetries of the Gel'fand basis vectors do not
involve the'full direct product group, but rather a sub-
group. Indeed, as already noted, the operators R and 8
induce a sign change of det X, whereas 3. and X leave

(t~p)

= ( ] ) Ij+~+SP

p)
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following eigenvalue:

(» o)
(6,„„F) ~ p

1)v+2+ +t&+2F p p p (6.145)
(6.150)

Note that the operator XS, is

(XS-,F) (~, f) =F(f, ~),
It is interesting to observe that each of the trans-

(6 146) formations of D as well as the general operator (Pl,„„,
carries the function

and is just complex conjugation on the 6-sphere.
There are six/eee distinct final Gel'fand patterns

associated with the transformations of the group D,
i.e., each of the hnal Gel'fand state vectors is labeled
by one of these sixteen patterns and a phase. Let us
note explicitly these patterns by giving the Anal values
(n'P'; q'v') which can occur in

(p &'o

pv

f(21 t ) = (alt l+n2l2)/1202 (6.151)

+(128) +6
& c &

8*
& 6) (6.152)

where c is the complex number occurring in Eq. (5.19).
(Note that 2*=22=2 '.) Then

into itself.
To each discrete symmetry of a Gel'fand basis vector

of 3C„,O, there corresponds a discrete symmetry of the
Gel'fand basis of Z~ which obtains through, say, the
restriction of Eqs. (6.94). In particular, consider the
operator

For (&2'p') = (&2p), we have the following set of values
for the labels (q'v'):

qO qO

(P&l22)F &2 P =2"+"F ~ o; a P (6.153)

(q, v), (v, q), (q, ~+P v), (~+0—v, q), (~+P—
q, v), —

(v, ~+P q), (~+p —
q, ~+P v)—, (~+P —v, ~+I q)—. —

(6.147)

For (&2'P') = (P.—P, P —n), we have the following set of
values for the labels (q'v'):

(P q, P v) (P -v, P -q), (P -q, P—+v ~ P)-, ——

(P+v ~ P, P q), —(P+—q ~ —P, P v), —— —

(P v, p+q ~ p),—(p+q—~—p, p+v —~ —p), ——

and under the restriction, Eqs. (6.94), we have

@23) ~VI ~0(Py) (6.154)

for Pl (123). Hence——, To&v» is diagonal on the sPace
Z„as expected from its role in defining the democratic
sub gro.up.

In order to discuss the properties'of the Gel'fand
basis vectors of Z„under the remaining permutations
of 52 (the permutation group associated with the
identical particles), it is convenient to introduce an

explicit set of relative coordinates:

(P+v ~ P, P+q —~——P)—. (6.148)
x'= (r' —r') /V2,

x'= (r'+r' —2r')/(6)'". (6.155)
There are additional discrete symmetries of the

Gel fand basis which are identified with their homo-
geneity properties. Thus, for arbitrary (nonzero) corn-
plex numbers X, p, v and p, we define the operator (Pq„„,
on the space of polynomials by

(5 X»vpF)( gl 9292$lt2$2) ='F'(X''gl, XV/2/p& p'g8& Vi 1& pf 2& XVl 2/p).

(6.149)

6'q„„, is diagonal on the Gel'fand basis and has the

[Recall that x' has components (xlx2x2), while x' has
components (x4xoxo) .j Then we have

(——;

(123):[x'x2]~[x'x2)
~ ~, (6.156)

t' —1 0)
(12) (3):[xv'x2]—+I x'x'j

I I (6 157)
l, o 1)'



f 1—0)
F= (») (3). (6.159)(01)

Since S3 is generated by (123) and (12) (3), it is suK-
cient to consider only these two elements.

Note that e in Eqs. (6.152) and (6.153) now becomes
the specific number Lcf. Eq. (5.19)j

e=exp (4iri/3). (6.160)

The transformation (6.157) corresponds to the trans-
formation on the variables ()), t) of Eq. (6.94) as
follows:

(12) (3): (it, i)~(—f'3, &I,——i'3, —rti, —))I, —3)3).

(6.161)
Correspondingly, the operator

+(12)(3)=+—i,—I,l,-l~e2 (6.162)

is the operator on 3C„,o which represents the transforma-
tion (6.161). (This operator is not in the group D.)
Under 5'(~2)(3), a Gel'fand basis vector undergoes the
transformation as follows:

(+II3)13)F)

= ( 1)P+YF p p

0)
p a.—(6.163)

Aga», since 6'(~2)(3) does not commute with the Lie
algebra )Eq. (6.67)j of the democratic subgroup, we
6nd, as expected, that the action' of 5'g@(3) on a basis
vector carrying SU(3) IR labels $p q 0j is to carry the
vector out of the subspace (the new vector, of course,
must belong to BC„,3). However, P(13)(3) does commute
with the orbital angular momentum subalgebra (as do
all the permutation operators), and the angular momen-
tum content of a state vector must be preserved under
6'(j~)(3~. Specifically, we see that each of the initial and
final states in Eq. (6.163) has L3—+2y —a —P.

There is an important exception to the preceding
observations. For p=2k (k integral) and q=k, the IR
subspaee L2k k Oj of SU(3) is also a representation space
for the grouP S3. These are the so-called self-conjugate
IR spaces of SU(3)—the IR spaces which are mapped
onto themselves under the action of the SU(3) con-
jugation operator, here identified as XS,. This subspace
of BC»,0 enjoys the additional property that the basis
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so that
2 2(—-' —-'v3

I'(F)=i, F= (123), (6.158)

vectors can be further classified (by taking appropriate
linear combinations) as states having definite permuta-
tion symmetry with respect to the full group S3. This
property is uniqu. e to the self-conjugate subspaces, i.e.,
it is impossible to obtain a complete basis of 3C„,O with
sharp SU(3) IR labels and definite permutational
symmetry with respect to S3, only the self-conjugate
subspace of 3C&l, , o enjoys this property.

5umreary. %e have obtained a large set of discrete
symmetries of a specific set of SU(3) state vectors,
some of which have been identified with a 6nite sym-
metry group D. There would seem to be little additional
information obtained by adjoining to D further opera-
tors of the diagonal type, since the important trans-
formations on the state vectors are those associated
with the set of sixteen new state vector labels of Eqs.
(6.147) and (6.148). We believe this is the first time
that a reasonably complete discussion of the sym-
metries of SU(3) state vectors has been given. These
symmetries have been discussed because of their rele-
vance to SU(3) group theory, in general. As a particular
application, we obtain a large set of symmetries of the
solid harmonics on the 6-sphere, and have indicated
how the symmetric group S3 fits into the scheme.

G. The Reduction Problem SO(3) CSU(3)

The problem of reducing an IR space, specified by
$p q 0), of SU(3) into those subspaces which are IR
spaces for SO(3) has not been solved in a completely
satisfactory manner.

The difhculty is that no clear and general struc/ural
principle has been given which suggests a satisfactory
resolution of the problem associated with the multiple
occurrence of an IR of SO(3) in SU(3). The final
solution to this problem may, indeed, entail the use of
an additional invariant (Ba60, 61; Ra62) which dis-
tinguishes those subspaces which carry the same SO(3)
representation, but one surely must take into account
the group of autornorphisms of SU(3) (Bi69).

Ke wish to examine some of the aspects of this
problem as they relate speci6cally to the Gel'fand basis
of BC&,o. In particular, we suggest a new approach to the
multiplicity problem —one which has already had suc-
cess in a somewhat different, but related context
(Lo70a.) .

The recognition that the orbital angular momentum
operators (generators of SO(3) g can be related to the
U(3) generators through Eqs. (6.97) and the restric-
tion (6.94) greatly simplifies the counting in the multi-
plicity problem. (We will use the notation L3, L+ for
the operators on the left-hand side of Eqs. (6.97) even
though we do not restrict )1, f to x, this restriction being
irrelevant to the structure of the problem. ) On a
Gel'fand basis vector, the eigenvalue spectrum of J3 is
then just the set of numbers f 2p —a —PI, where a, P,
and y run over all values consistent with their positions
in an SU(3) Gel'fand pattern specified by LP g0j.
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F,t, Q——C a
Ii

~~
~I

t(6.164)0&L&p,

One simply examines this set of numbers to deduce the problem of determining all vectors of the form
tables of allowed angular momenta L (Lo65, Ra49) .

One then finds that, for prescribed Lp q 0], L always
has a value in the interval

and that it occurs with some multiplicity OR(L), which

may be sero.
We do not duplicate the tables for L, since OR(L)

can be given in closed form, thus obviating the need
for tables.

Let L be any selected value in the interval (6.164)
and consider the SU(4) Gel'fand state vector (we will

such that
always omit the top row of labels)

XF} a a

L+F„,1,=0, (6.171)

q o)
—L—2o, (6.170)

q 0

EX—L 20 (6.165)

since F~,.l, already satisfies

L3F„,-L, ——LF„,J..

This state vector clearly has L3 eigenvalue L for all a
and 0. consistent with the allowed entries in the Gel'fand
pattern, i.e., for

q+ L &a 2o&L. — .

Furthermore, each Gel'fand basis vector having L3—+L
can be written in the form (6.165) Lif there exist no a
and o. satisfying Eqs. (6.166) for a prescribed L, then
OR(L) =0j.

We note, without giving the uninteresting proofs, the
lollowing formulas for OR(L). First, let N(L) denote the
rturrtber of Gel'fartd patterrts (6.165) havirtg Le +L for-
0&L&p. Then we have

OR(L) =N (L) .V (L+1). (—6.167)

Second, let the numbers OR„(L) and o, (L) be defined
«,s follows:

OR„(L) =L(p —L+2)/2, (p —L+1)/2j,

.(L) =L(q—L)/2, (q —L+1)/2], (616g)

where the square bracket signifies that one is to choose
the integer from the set of two numbers. The multi-
plicity is one of the following four numbers depending
on the relation of L to q and p —q:

Here L is, of course, any preselected angular momentum
value, 0&L&p. The SO(3) basis vectors F„,z, it are
then obtained by the standard lowering with L .

Let us observe that when L+ operates on F~, I, it
carries the Gel'fand vector in the summation to the
form

g o)
' —(I.+1)—2o' (6.173)

for certain new labels a', 0-', but in particular, the new
value of angular momentum is necessarily L+1.How-
ever, the number of GeVfand patterns of form (6.173)
is cV (L+1), and all of these final state vectors will enter
into the new summation of Eq. (6.170) (after L+ has
acted). This signifies that Eq. (6.171) will lead to
precisely .V(L+1) relations among the set of coeK-
cients, ICI, which contains N(L) coeKcients. In con-
sequence of Eq. (6.167), there must be precisely OR(L)
coefFicients in the set IC} which can be chosen inde-
pendently, thus determining OR (L) linearly independent
highest weight vectors of the form (6.170). It is pos-
sible to prove that the set of coefficients

J)q,
I.)q,

L(q,
L&q,

L&p q;—
L&p—q;

L&p q-
L&p —q;

OR(L) =OR„(L),

OR(L) =OR, (L) o„,(L), —

OR(I.) =OR„(L) o,(L), —

OR(L, ) =OR, (L) —~„,(L) -~,(L).
(6.169)

C p p L 2o—— .: o=o„e(L),o„,(L) —1, .

a„o(L) 2, ~ ~ ~, a'e o(L) OR(I)+1 ' (6. 74)

The standard procedure for reducing any space which
is invariant with respect to SO(3) into its irreducible
subspaces is to determine the set of highest weight
vectors which belong to the space. Here this is the

is such an independent set. (The proof is very com-

plicated, and we omit it, since we make no use of the
result here. )
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It is more instructive to consider special cases, there-
'by gaining some insight into various aspects of the
multiplicity problem. For this purpose, as well as for
the general problem above, we note the following
generator transformations:

The unique' highest weight is clearly

) vo)
p 0 (6.177)

() v"
EisF n p

since this state is annihilated by E» and E» separately.
(2) L= p 1—
The unique (normalized) highest weight is easily

determined to be

(P ~) (—~—q+1) (~+2) h P+ 1)—'"
(~—p+1) (~ p+2—) [(P q) /8—'"F p1

q 0

XF ~+1 p () v

+[q/p]"'F p —1 0 . (6.178)

( —~) (p —p+1) (q —p) (p+1) 't'

( —p) ( —p+1)

0

P+ 1 i, (6.175)

() so)

I, )
P

(P p+2)(q-p+—1)p(~-p+1) "
F n p —1

( —o+&) ( 0+2) —

( )

q 0 q 0

P 2 P

q 0 q 01, p —2 0, (6.179)

.— )
p —1

(Observe that if q=p this vector becomes the zero
vector, since the coefficient of the first term vanishes,
and the second term vanishes in consequence of the
violation of the conditions on the entries of the Gel'fand
pattern —for q= p, we cannot have L=p 1.)—

(3) L=P 2—
The Gel'fand patterns which enter into the right-

hand side of Eq. (6.170) are

Pq
(&—~)(p —~+1)(~—q)(~+1) '"

p
(~—p) (~ p+1)—

o)
and from Eq. (6.167) we see that there are two highest
weight vectors for q in the interval 2&q& p —2, and
one for q=0, 1, p —1, or p. The two general relations
among four coefFicients resulting from condition (6.171)
are as follows:

() ~o) ()
+q"'C p 0

v

(6.176) [2p(q 1)j'i C p 2

— )
—L(P+1) (P q) j'"C P »— =o (6—»0)

Equations (6.175) and (6.176) are the relations
required to effect the application of L~/v2=F3a —Fi3
to Eq. (6.170). Condition (6.171) then clearly leads
in the general case to a four term recursion relatio-n on
the coeKcients, I CI .

Let us look at some special cases: (Additional unique
highest weight vectors are given in Sec. VIII.E):

(1) L=p
We use "unique" rather loosely to mean "unique up to a

phase. "
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for p&q&1; and

Lp —q]' 'C
(p

0

(p 0 0)

p i

(p —1) (0p—1)

p p —10
0(p+1) (p —1))'"

P(2P —I)
P p 0

+Lq(P+ I) ]"'C P I—

(p
—(2P (P—

q
—1) ]'t'C P —. 2 0 =0 (6.181)

p —I

p

2(P —2)

P(P —I) (2P—I)
1, (6.184)

~pop —2= [2P I] & P 2

for p —1&q&0.
Note that for q=0, I, p —I, or p Eqs. (6.180) and

(6.181) reduce either to a single equation relating two
coefFicients or to two equations relating three coe%-
cients. In each of these cases, the solution is unique,
and we list these four special solutions explicitly for
reasons which will soon become clear:

(p p 0)
+ F p 0 . (6.185)

(p 0 0

2(P—I) &'"

l — )
0 O)

)) x/2

+I
(2p —It

1 0)
p

(0(0+1)(p 0)'t"'—.
P(0P—1)

(
(,—.) - (

p —I
P(P —1) (0P—1)

1 0)

1 0)
0

0 j(
(p+1)

(P- I) (2P- I) i p —2

We now turn to the discussion of the general solution
to Eqs. (6.180) and (6.181), and begin by raising some
questions. Can one introduce in an arbitrary manner

any pair of solutions to these equations? Is there some
additional structure which indicates how these equa-
tions are to be solved? It seems to us that the answers
to these questions are no and yes, respectively, for the
following reasons. Suppose one does by some arbitrary
procedure, fjnd two orthonormal solutions, say, P„,.„2&')

(6.182) and F„,„2"'.Then certainly for arbitrary 2&q&P —2

there can be no ambiguities in these solutions, and they
would appear to be quite acceptable. But it is a meaning-
ful question to ask what happens to these solutions
when we set q =0, I, p —I, or p in them, in which case,
we know there is a unique solution to the problem.
Does either or both solutions become undefiried? Rather

r
than answering this question, we pose a more positive
problem. Does there exist a pair of orthonormal vectors
which solve Eq. (6.171), and which are defined for all

integral values 0(q& p, such that for q= 0, I, p —I, or p
one solution becomes the corresponding unique solution
of Eqs. (6.182)—(6.185), the remaining one becoming
the zero vector? I'es, as me shall demorlstrate. The exist-
ence of such a property in the nontrivial special case
under study suggests that, despite the fact that p and q
assume discrete values, there exists a sort of "corttirtlity"
prirtcip/e on the state vectors, considered as functions
of p and q, which regulates their behavior under a

(6.183) sudden change in the multiplicity, which, in our example,
is a jump from two to one when q assumes the value

0, I, p —I, or p. We believe this behavior to be an
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2P(q —1)(P—
q
—1) '",I' p —1

A fl(g

p —1

q 0)
0 ii, 6.186

('—2

Pqo
Pq(q 1) '"—

F„,„,(') = —(3p —2q —1) P p 2
j

(p+1)q((J—1) ')',
l

It p —2

&((+()!)(a !) '"„(—
1/2

+A„, (' ( 0 + (p+2q —1)

P(P—q)(P —
q
—1) "', '

X . Ii'
p —2

a„,

q 0)0, (6.187)

where
h „,= p(p 1)'—2q(p —q), — (6.188)

8„,= pq(q 1) (3p —2q —1)'+—2(p+1) q(p —q) (p —2q)'

+2Apq2+ p(p q) (P (I 1) (P+2—q
—1)~—. —(6.189)

example of a gerieral reduction pririciple which must be
reckoned with in dealing with the multipli:city problem.
We will state this principle precisely in a moment, after
giving the aforementioned solutions a,nd discussing
them.

A pair of orthonorrnal vectors possessing the appro-
priate reduction properties is as follows:

Pq0
(,) (P+1) (P q) (P—q 1—)

'—"
p ~(&)— P p 2

p

A„,

Remark. The coefFicients A~, and 8„~ are, respec-
tively, the sums of squares of the numerators of the
coefficients appearing in Eqs. (6.186) and (6.187) .
However, only for 2&q&p —2 are these factors the
norms of the vectors one would obtain by deleting A~,
and 8„,from F&'& and F~'). This follows from the fact
that a Gel'fand basis vector may vanish, while its
coefFicient does not.

We now observe that the vector defined by Kq.
(6.186) becomes the zero vector for each q =0, 1, p —1, p
(either the coefficient or the Gel'fand vector vanishes).
On the other hand, the vector defined by Eq. (6.187)
reduces for each q

=0, 1, p —1, p to the appropriate
unique vector from Eqs. (6.182)—(6.185). Thus, there
exists a pair of orthonormal highest weight vectors
possessing the reduction properties that we promised
to demonstrate.

Still another important property must be mentioned.
Noting that A„,=A„,„,and 8„~=8„,~, and using the
property of the operator (P(i~)(3) given by Eq. (6.163),
we easily derive the following relations:

(P(i2)(3)F„,;„2"'=(—1)"F„,„q...', (6.191)

6 (12)(3)FPl(;y—2 = ( 1) Fy, y g;y 2 ~ (6.19—2)—

In particular, on self-conjugate states where p= 2k and
q= k, the operator 6'(~2~(3) is diagonal and has eigenvalue
+1 on the first vector, and eigenvalue —1 on the
second. For q=0, 1, p —1, or p, the properties expressed
by Eq. (6.192) are unique, since the vectors are unique.
What is remarkable is the fact that these same prop-
erties hold for arbitrary q on our multiplicity two states.

This concludes the detailed discussion of the L= p —2
case, except for some general comments made later
relating to uniqueness. Ke have displayed a pair of
orthonormal highest weight vectors with some rather
intriguing properties. These properties suggest that
there exists an underlying structure in the multiplicity
problem of a very general nature, which we now discuss.

One point clearly emerges from the study of the pre-
ceding particular case. One learns nothing about the
structure of highest weight vectors by considering
isolated values of q

—for prescribed p and L, one must
examine the behavior of highest weight vectors for the
full set of allowed values 0, 1, ~ ~ ~, p of q. For this pur-
pose, it is essential to know how the multiplicity, which
we now denote by 9R„,(L), varies with q. These results
are easily obtained from Eqs. (6.169) . For prescribed p
and I (0&L&p), we have the following multiplicities
of I. associated with q:

In particular. , we have

A„o=A„„=p(p —1)',
A. =A.. =(p+1)(p—1)(P—2),
&.o= &-=P'(P —1)"(2P—1)

&. =&.,.-.= (p+1)P(P —1)'(P—2) (2P —1) (6»0)

(1) 2L&p

p —L&q&L;

0&q&p —L;

I.&q& p;

m„,(L) =mr, (L),

aR„,(L) =oR„(L)—0„,(L),

~„,(L) =gy.,(L) —&,(L). (6.193)
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(2) 2I&p

L&(l(p —L;

0&q&1.;

p L&—
V &p

5K„,(L) =5K„(I,) —o, (L)—o„,(L),

5R„(L)=5R„(L)-o„,(L),

5R„,(L) =5R„(L)—o, (L). (6.194)

with properties as follows: (a) The set is unambiguously
defined for each q=0, 1, ~ ~ ~, p; (b) for each particular
choice of (l, the set contains 5K„z(L) 5K„,(L) ze—ro
vectors and 5R„,(L) nonzero orthonormal highest
weight vectors; (c) each time the multiplicity is reduced
by one, in consequence of choosing q to belong to the set
of q values which yields the lesser multiplicity, a single
vector goes to zero and remains zero for all subsequent

q values which yield still smaller multiplicities.
This conjecture is just the assertion that there exists

a branchieg law in the multiplicity space: Each time the
multiplicity is reduced by one, a vector "splits o6" by
becoming (and remaining) the zero vector. (The
analog to subgroup reduction is obvious. )

It seems premature to initiate any discussion of
uniqueness until one can either afIirm or deny the
general validity of the Multiplicity Reduction Theorem.
If it proves to be correct, then one can proceed to
introduce those additional concepts (Lo70a) which will

be essential to such a discussion.
Summary. The problem of reducing SU(3) into its

SO(3) irreducible constituents has been formulated
precisely in terms of the Gel'fand basis. By considering
in some detail a special multiplicity two case, we have
been led to conjecture the existence of a Multiplicity
Reduction Law, which, if valid, signifies a rich structure
of the multiplicity space. In any event, the multiplicity
problem must be given careful thought, and the search
for a meaningful structure continued until it unfolds
fuHy.

For 2L&P, 5K, (L) is clearly just the maximum multi

Plicity of L which can occur for any (l and does occur
for a particular q. Furthermore, as q runs over the values
0, 1, , p, the multiplicity of L actually assumes one
of the values 1, 2, ~ ~ ~, 5K„(L) for at least one value of q.

For 2L, &p, the maximum multiplicity is 5Kp(L)—
a„r,(L), and again the multiplicity 5R~,(L) assumes
each integral value from one to the maximum for
appropriate choices of q. In either case, 2L& p or 2L& p,
the maximum multiplicity always obtains for q= I, i.e.,
5K„z,(L) is the maximum multiplicity of L for any
choice of (I, and each multiplicity 1, 2, ~ ~, 5R„z(L)
obtains for some choice of q.

%e now conjecture that the following fundamental
result is valid, emphasizing that we have, in fact, not
proved it, in general:

3Iultiplicity Reduction Theorem, . There exists a set of
highest weight vectors

I F„,, l,("):X = 1, 2, ~ ~ ~, K„r,(L) I,

VII. g-PARTICLE STATES: COUPLING METHOD

where
~'f«)(x) =0 (7.2)

(7 3)

For example, f(t) may be a product of solid harmonics
of the form

(7.4)

where'JJ(. . (m =l, l —1, ~ ~ ~, —l ) isthesetofsimul-
taneous eigenvectors of L L and I.s, where L is the
orbital angular momentum associated with relative
position vector x . Here f(t) may also be any arbitrary
coupling of the solid harmonics which preserves the
angular momentum labels l~, l2, ~ ~ -, lN i, hence, the
homogeneity property (7.1) .

The only polynomials in the x, which commute with
the angular momentum operators L (u = 1, 2, ~ ~ ~,

i7—1) are polynomials in the variables $i, $2, ~ ~ ~, $N i,
where

(„=(x~ x~)/4. (7 5)

It follows therefore that it must be possible to span the
space Z„Lthe set of homogeneous polynomials of degree

p which solve Laplace's equation on the 3(X—1)-
sphere) by basis vectors of the general form

F) (k)f(t) (x), (7.6)

where Fq($) is a polynomial which is homogeneous of
degree X in &i, &2,

~ ~ ~, &Aj. i.
F),(ub, t 6, ",t b -i) = t F) (6) b, ",br-i) (7 7)

Thus, the function (7.6) is homogeneous of degree p

"The 4-particle problem has also been considered from the
viewpoint of the structure 0(9)QO(3) )&0(3) (Su67).

In this section, we consider a construction of the
solid harmonics on the 3(Ã—1)-sphere which is par-
ticularly appropriate to the democratic subgroup struc-
ture of the 4-particle problem (Ga71) Lsee Lemma 8
and Eqs. (5.31)—(5.51)j. We carry through the con-
struction for arbitrary X=3, 4, ~ ~ ~, since it requires no
more effort than does the particular casern %=4. (For
%=3 the technique is valid, but it is not particularly
useful for elucidating the democratic subgroup structure
of the 3-particle problem. )

I.et x', x' ~ ~ ~ x~ ' denote a set of relative position
vectors, and let f(()(x) —=f())(x', x', ~ ~ ~, x'v '), where
(l) = (li, l2, ~ ~ ~, lA( i), denote a polynomial which is
homogeneous of degrees 3&, 12, ~ ~ ~, lN &, respectively, in
the position vectors x', x' ~ ~ ~ xN ':
f(t) (Xix', X2x ~ ~ ~ X~ x' ')

=X,'9. 'e" X~ 'u-~f(x' x2 " x~-'). (7.1)

We also require that f(t) be a solution to Laplace's
equation:



ui+ti2+ +w i=&. (7.13)

The number of terms in Eq. (7.12), i.e., the number of
coefTicients C(ti) is therefore just

(X+N —2)
!ng(&V) =!

1V—2
(7.14)

The requirement that F),($) solves Eq. (7.11) now
yields the following conditions on the coeKcients:

Q C(tii, ti2, ~ ~ ~, t( +1, ~ ~ ~, w i) = 0, (7.15)

where the relation is to be applied to all p such that

Q ti. = X—1. (7.16)

Thus, we have ni i(iV) relations among n), (N) coefti-
cients, and the number of independent solutions to
these equations is

n), (N) —ni i(iV) =ni(N —1). (7.17)

One can, for example, choose the following set of
n), (N 1) coefficients —independently:

{C(0)v2, v3) ~ ~, vt) i): Q v~=X}. (7.18)

Indeed, the zero in the coefFicients in the set (7.18) can
be chosen to be in any fixed position.

Corresponding to the set of independent coefIicients
(7.18), we have the following solution to Eqs. (7.15):
C(tii, ti2, ~ ~ ~

) t(y, ) = (—1) (ti, ) .
iV—1

X Z LC(0, v2, , v~ i)/II (v.—t.) .], (7.19)
(s) %=2
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as follows in x

p = 2&+1)+4+ .+4-i (7.8)

The condition that the product function (7.6)
satisfies Laplace's equation is

~'Fi(()f(i)(*)=L~', F~(()]f(i)(*)=o, (79)
where we easily calculate

E~', F.(~)]= Z ~. + ( - ~-+!) .~'Fi(k) ~F~(k)

(8$,)' 8$

(7.10)

Using the homogeneity property (7.1), we find that
F),(() must satisfy

Z 4-(~/~4)'+(1-+-') (~/~4)]F (k) =o (711)

We proceed now to solve Eq. (7.11). We. put
N—1

Fi(k) = zC(I )LII 4" /(t ) l(l +1-+2)!], (712)
(t(t) ex=1

where half-integral factorials are gamma functions a!=
I'(a+1), and where the sum is over a!1 nonnegative
integral p such that

(7.20)

in which (ti) = (t(2ti3 ~ ti))( i), and the sum on (ti) is
over all nonnegative integral values such that, for each
s, we have g ti = s. For each set of nonnegative integers
(v) = (v2v3 ~ v~ i) such that P v =X, we obtain an

independent solution to Fq. (7.11).
We chose the coeKcients (7.18) as the independent

set for the simple reason that the set of solutions (7.20)
contains as a subset, the complete set of (polynomial)
solutions to Eq. (?.11) for N replaced by N —1. These
are just the functions from Eq. (7.20) which have
v~ i=0 and accordingly have no dependence on $)i i.

The number of independent polynomial solutions,
homogeneous of degree p, which we obtain by com-
bining the functions of Eq. (7.20) with f, i) Lgiven, for
example, by Eq. (7.4) ] is

!~X+N—3
Z II (2l.+1)i

A, (l) a I V 3 )
2p+3tV ~ (P+3N —6)

!=dim Z„(7.21)

where the sum is over all nonnegative integers P, l~, ~ ~ ~,

lz & which satisfy

2~+ gt. =p. (7.22)

These product functions comprise a basis for the solid
harmonics of degree p on the 3(N 1) sphere. LWhile it--
is reassuring that Eq. (7.21) checks for simple cases,
we need not prove it generally as a separate problem-
it must hold in consequence of the fact that we have
found a basis for all solutions to Laplace's equation
which are homogeneous polynomials. ) There are two
difhculties with this basis: (a) the physical significance
of the labels (v) is not clear; and (b) the basis functions
are not orthogonal, in general, for distinct labels (v)
and (v'). Despite these difficulties, there appears to be
no simple alternative to these solutions when one
attempts to find solutions to Laplace's equation by
coupling single particle solid harmonics.

Let us note that the set of functions (7.20) has the
following simple property under permutations of the

where, as usual, 1/(v —ti )!=0 for ti )v . One verifies
these results by substituting directly into Eq. (7.15).

We now choose all but one of the coe%cients in the
set (7.18) to be zero, and we choose the value of the
nonzero coeKcient to be II (v )!. Since there are
nz(N —1) ways of making this choice, we obtain
n), (N —1) independent solutions to Eq. (7.11):

X ( p)s
x;(v)(l)($) Q

( ~i +i)
-Ã 1 Va

X Z II L(v.—t.+l-+l)!] '!
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variables $&, b, ~ ~ ~, b i.

where
PX;(Viil)($ ) +X;(V'i(l'i(5)1

iN I y

V' = P;, P~3 P4r

(7.23)

(l') = (li l, , f„~ ~ l,„,), (7.24)

in which i2i3 ~ ~ ~ i» is an arbitrary arrangement of
2 3 ~ ~ ~ 1V—1. The permutations involving fi induce a
transformation of considerably more complexity. [The
fact that $i is singled out goes back to the selection of
the coefficients (7.18) as independent. If we had chosen
the zero in position p, then variable $, would have been
singled out. J

One-can understand the origin of the complexities of
the democratic subgroup structure in the 3-particle
problem from an elementary viewpoint by examining
the present construction of solid harmonics. For %=3,
the solution (7.20) is completely specified by X; (lil2),
i.e., there is no multiplicity:

x f~) ( ])s(()x—s

~~~ ~(+~+-) (-+I+
(7.25)

An orthogonal basis for the solid harmonics of degree p
on the 6-sphere which has the total angular momentum
I.' and I.~ diagonal is given by

F~, i,i,l~ (x'x') =. Fx, (i„,i(&i&2)fi, i,lpi (x'x')1 (7.26)

where

f$ far M g C (lily L; mim2~) 'yi,„,'pi,„„(7.27)
my, mg

in which the coefficient is a standard SU(2) Wigner
coeKcient, and the sum is over all m~, m2 such that
mi+mi=M. The specification that the degree is p
requires

2X+li+l2 ——p, (7.28)

i.e., a basis of 2„ is enumerated by the set of labels
IVil2.'2X+li+l2= pI and the set of total angular mo-
mentum quantum numbers which is associated with
the various pairs (li, l~) by the angular momentum
coupling rules.

This new basis spans, of course, the same space as
do the Gel'fand basis vectors of Eq. (6.70) [under,
say, the restriction (6.66) j. The trouble with the new
basis from the viewpoint of the democratic subgroup
structure is that the permutation operators correspond-
ing to the permutations in the invariant subgroup A3
are not diagonal. (The three identical particles are not
treated on an equal footing. ) This will be the case only
for basis vectors which are homogeneous of degree p —

q
and q, respectively, in the variables p& and i& of Eq.
(6.66). One might attempt to construct this basis by
diagonalizing the operator 0& of Eq. (6.90) directly on
the basis (7.26) (@i+82 is already diagonal) . One sees

immediately, however, that this requires summing the
basis vectors (7.26) over the various (li, t2) pairs which
can couple to a prescribed L(0&L&p). [82 does not
Coiillllllte wltll L and L individually. f Ill gmillilg a
single new label q, we lose the two labels l~ and l2—the
multiplicity problem simply reappears in a form entirely
equivalent to that discussed in Sec. VI.E.

One can, of course, construct 3-particle states which
transform irreducibly under permutations of particles
by starting with the solid harmonics (7.26), using, for
example, the method described by Moshinsky (Mo69)
[see also Efros (Ef71)].This method, however, relin-
quishes any attempt to describe the three particles on
an equal footing.

For X=4, the 9-dimensional solid harmonics obtained
by combining the functions (7.20) with an arbitrary
coupling of three ordinary 3-space solid harmonics do
diagonalize the permutation operators corresponding
to the permutations in the invariant. subgroup 'Q of
Eq. (5.36) . This follows immediately upon noting that
the relative position vectors of Eq. (5.44) undergo the
simple transformations x —&Ax (n = 1, 2, 3) under the
permutation of 'U: The functions of Eq. (7.20) (for
X=4) are left invariant, while any coupled functions
which preserve the homogeneity in x', x', x' simply
undergo a transformation of phase.

The properties of this basis under the remaining
permutations belonging to S4 are quite complicated.
It turns out (Mo69) that this problem is equivalent
to the determination of the transformations of the basis
which are induced by the permutations of the relative
position vectors, i.e., by the elements of a permutation
group S3. Thus, as an ancillary task, one already en-
counters the nonstandard problem of constructing total
angular momentum states (by the coupling of three
solid harmonics 'gi ) in such a way as to exhibit a basis
which treats the three angular momenta on the same
footing, and, in particular, which is completely reduced
with respect to S3 when all three angular momenta are
equal. Fortunately, this problem has been considered
in some detail (Le65a, Ch64) . However, one must carry
out a corresponding construction on the 'U-invariant
functions [%=4 in Eq. (7.20) ], and the general aspects
of this problem remain open, although some progress
has been made ( Ga71) .

Summary. We have obtained a general basis for the
solid harmonics of degree p on the 3(X—1)-sphere.
Using standard coupling techniques on the individual
solid harmonics 'Jji „., this basis can be made into one
of good total orbital angular momentum states. The
basis is nonorthogonal (for X)3), and its general
properties under permutations of identical particles
have not been studied (the 4-particle problem indicates
that nonstandard couplings may be appropriate). It is
the basis to which one is led rather directly via the
democratic subgroup concept in the 4-particle problem.
Its usefulness for hr-particle states (E)4) has not been
studied.
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VIII. rV-PARTICLE STATES: UNITARY
GROUP METHOD

Z= (s' ), (8.1)

where a and i are row and cotumm indices, "respectively,
having the ranges +=1, 2, ~ ~ ~, p and i=1, 2, ~ ~ ~, e.
(We will later choose p=!V—1 and n= 3, but since it is
just as easy to consider general p and n, we do so.)

Next, we introduce the space 3'.„of polynomials
which are homogeneous of degree p in the pn variables
(s, ), and we designate the value of such a polynomial
F at the point Z by F (Z) . For each UQ U(n) and each
Vg U(p), we define the operators as follows:

(6rJF) (Z) =F(ZU), Ug U(n),

(8'rF) (Z) =F(VZ), VC U(p).

(8 2)

(8.3)

Then (a) The operators I8o. UC U(n) I and I8'r. VC
U(p) I are unitary operators on the space K~ Lmade
into a Hilbert space by introducing the scalar product
of type (2.61)]; (b) the correspondences U~8& and
V~8'r are, respectively, representations of U(n) and
U(p) by unitary operators.

It follows immediately from

(8're~F) (Z) =F(VZU) (8.4)

that the two groups of operators commute:

'vU = v'v. (8.5)

"See (Lo70) for a listing of those papers most directly related
to this approach.

"This is opposite to the convention used previously (Lo65).

In this section, we consider the problem of obtaining
solutions to I.aplace's equation by using the property
O(n) &U(n).

In Sec. A, the properties of the unitary groups" are
reviewed and developed in a form suitable for the later
application to X-particle states. In Sec. 8, we restrict
the particular realization of the group U(n) of Sec. A
to its orthogonal subgroup O(n) in such a way that the
diagonal generators of the (proper) orthogonal group
are given in terms of the diagonal generators of the
unitary group. This property is then abstracted to
obtain some new results (Sec. C) relating to the general
reduction problem SO(n) C U(n). These results are
then used in Sec. D to give a constructive determination
of all the single-valued IR's of SO(n).

The results of these first four sections are quite
abstract, but of considerable intrinsic interest from the
general viewpoint of group theory.

The results of Secs. A—C are also essential to our
discussion in Secs. E and F of a method for obtaining
E-particle states of good orbital angular momentum
which solve I aplace's equation.

A. Reyresentations of U(n)

In analogy to the matrix X of Eq. (4.4), we introduce
the complex matrix Z having p rows and e columns:

Furthermore, in analogy to Eqs. (4.28) and (4.29),
we find that the transformation

Z'= VZU

is the same as the column matrix transformation

z'= (VS U) s,

(8.6)

(8.7)

where s (and analogously s') is identified in. terms of
the elements of Z as follows:

where
s= col (si s2 ~ ~ ~ sp„),

~n(a —1)+i=~i

(8.8)

(8 9)

'veU = T'vg U,

where VSUQ U(pn).
The group of product operators

(8.11)

( 8'r8o. VQ U(p), UQ U(n) I (8.12)

is a unitary representation on the space K„ofthe subgroup

U(p) X U(n) Q U(pn) . (8.13)

But we have already observed in Sec. II.B that the
space X„is the carrier space for the IR of U(pn) which
is specified by the set of labels fp 0 ~ ~ ~ 0] containing
pe —1 zeros. The space X„is the carrier for a reducible
representation of U(p) X U(n) . However, we know
precisely how this reduction occurs (Lo65): Each IR
t p 0 ~ ~ 0] of U(pn) reducesinto a (direct) sum of IR's

Pm,.~." m„„O" 0]eLm,„~„"m„„] (8.14)

of U(p) X U(n) (for p&n), where each representation
such that

mi„& mz„& ~ ~ ~ &m„„&0, (8.15)

mln+mzn+ ' ' '+mnm P (8.16)

occurs exactly once. (A similar statement obtains for
p(n. )

The normalized highest weight vector belonging to
X„which determines the basis of the carrier space for
the IR of U(p) X U(n) which is specified by the labels
(8.14) is known explicitly. It is given as follows:

where m„+I,„—=0, and sl2. ..~"" ~ is the determinant of
the kXk matrix formed from (s; ) for u, i = 1, 2, k.
Here JR(Lm]) is a normalized factor which we need
not note explicitly (Ba63) .

The basis vectors of the carrier space for the IR
(8.14) of U(p) X U(n) may be classified by the IR

Thus, Eq. (8.4) is equivalently written as

(8,8.F) (s) =F((VXU) s]. (8.10)

Comparing with Eq. (2.65) (with n now replaced by
pn), we obtain. the following operator identity on the
space 3C„of homogeneous polynomials in pe complex
variables:
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in order to display explicitly the labels Cm]„. It is also
convenient to introduce inverted Gel'fand patterns. By
the notation (8.20), we designate a normal (uninverted)
pattern of the form (2.78), whereas we use the notation

( (m)

E.c-].)
(8.21)

to designate the same pattern (8.20) turned upside
down.

Consider first the case p = rI The notation for a
normalized Gel'f and basis vector of the carrier space
specified by [m]„8[m]„ is

labels of the subgroups in the Izo subgroup chains

U(N) Q U(e —1)Q ~ ~ ~ Q U(1), (8.18)

U(P)&U(P —1)& "DU(1), (819)

i.e., by a pair of Gel'fand patterns.
We next note the notation for the general basis vector

in the carrier space specified by the labels (8.14), i.e.,
the space having highest weight vector (8.17), the basis
vectors being classified according to the two chains
(8.18) and (8.19). It is convenient to let Cm]„denote
the set of U(N) IR labels, [m]„=[mi„~„~~ ~ m„„],
and also to let (m) denote the triangular array of e—1
rows of the form (2.78), i.e., a U(e) Gel'fand pattern
is now written as

(Cm]„I
(8.20)

are taken to have their largest values, i.e., m;, =m';; =
m1n.

It is a remarkable (and simply proved) fact (Lo70)
that when we restrict the I' variables in Z (for p=ri)
to be the elements of a unitary matrix, i.e. , Z—+UF U(e),
then the functions

D[m[n( U) (8.26)

denote the matrix whose roses are enlmerated by the
patterns (m'), and zvhose columns are enumerated by the

putterris (m)," then

U~D [m[ n ( U) (8.27)

is an IR of U(n) by unitary matrices.
Next, consider the case p) e. We introduce the

notation

[m]„[0], = [mi m2 ~ m 0 0 ~ 0] (8.28)

to designate a set of IR labels of U(p) contaimng p —&

zeros. The Gel'fand basis vector belonging to the carrier
space specified by [m]„[0],„ Cm]„and having highest
weight vector (8.17) is denoted by

( (m') ) ( (m') )
D [m] (U) —=9R'"([m])F [m]„(U) (8.25)

& (-) f & (-) )
are the elements of a unitary matrix IR of U(n) . More
precisely, if we let

((m') [m]„[0],„ (8.29)

(C ]-)
E. ( ))'

( (m')
I

(c-].)

F [m]„

((-) )
in which the two Gel'fand patterns

(8.22)

(8.23)

The pattern
(m)

([m]„)

E( ))
(8.30)

is a U(e) Gel'fand pattern associated with transforma-
tions of the type (8.2), and the pattern

share the same IR labels [m]„, but otherwise (m) and
(m') run independently over all sets of values which
accord with the Weyl branching law (the so-called
lexical patterns). We arbitrarily associate the lower
patterns with the transformations of type (8.2) and the
upper patterns with transformations of the type (8.3).

The highest weight vector (8.17) is the one designated
by the notation

(
Ec ]. co],—.)

(8.31)

is an inverted U(p) Gel'fand pattern associated with
transformations of the type (8.3). Here (m') is any
arbitrary pattern containing p —1 rows which is corn-

patible with the set of IR labels which contains p —m

zeros. The highest weight vector (8.17) is denoted by

((ma ) )
[m] (Z),

nlax

Z is e)(e, (8.24)
( (ma)

Cm]- Co].-- ~ (Z),

I (max) )
Z is PXe. (8.32)

whe~e (max) denotes that the entries in (m) and (m') The general vectors, either those of Eq. (8.22) or
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(8.29), can be obtained, in principle, by a double
application of the lowering operators of Nagel and
Moshinsky (Na65) .

The lowering operators are polynomials in the genera-
tors of the representations (8.2) and (8.3). The Wey!
generators of the representations of U(e) and U(p)
given by Eqs. (8.2) and (8.3), respectively, are easily
calculated by the technique of Louck (Lo70):

For %=3, the highest weight vector is obtained from.
Eq. (8.35) by setting m» ——0. The general vect.or in the
carrier space for IR [mi3m»]S[mi3m2i0] of U(2) X
U(3) is denoted by

/m]g

m]3 m23 0
(Z), Z is 2X3. (8.38)

(8;;F) (Z) = (Q s,'z, )F(Z), (8.33) m]Q m22

(8.34)

where i, j= 1, 2, ~ ~ ., e and a, P = 1, 2, ~ ~, p. The sum
over n is from 1 to p, while the sum over i is from 1 to e.
The generators E;, induce transformations on the lower
labels (8.30) in accordance with the standard Gel'fand-
Zetlin matrix elements, while the generators E & have
the analogous role with respect to the upper patterns
(8.31).

The case p& e is obtained simply by replacing e by p
in the highest weight vector (8.17) and interchanging
the structure of the upper and lower patterns in (8.29),
letting also e~p in the IR labels (Z is, however, still
of dimension pXe).

Let us note, in particular, the case p=X—1 (N&4)
and n= 3. The highest weight vector in the carrier space
for IR [m]3[0]~~ [m]3, [m]3= [mi3m»m33], of
U(X—1) XU(3) is

(mi3+2) !(m23+1) !(m33) !
(mi3 —m2, +1) (mia —m33+2) (m23 —m33+1)

X (s 1)mls—m23(s 12)m23—tN33(s 123)m33 (8 35)

The general vector in this basis is denoted by

(m')

Z—+A pXA„, (8.39)

where A is the e)(e unitary matrix defined as follows.
Let Uo denote the 2)&2 unitary matrix

z —z

(8.40)

Let [n/2] denote e/2 (e even) or (n —1)/2 (n odd).
Then A„ is the unitary matrix which has Vo repeated
[I/2] times along the principal diagonal with zero
elements elsewhere, except for e odd in which case 1 is
the ee element. A, has precisely this same structure.
Thus, if x; denotes the element in row 0, and column i
of X, then the element g,. in row o. and column i of XA„
is given by

B. The Orthogonal Subgroups

We obtain a unitary operator representation of the
group 0 (p) X0 (I) on the space K„simply by restricting
U~RCO(l) and V—+S&0(p) in Eqs. (8.2) and (8.3),
respectively. We may at the same time restrict Z to be
a real pge matrix X and switch to the scalar product
of type (2.6). However, we choose to restrict Z to the
following form:

m]3 m23 m33 0 ~ ~ ~ 0

m]2

m]]

(Z), Z is (S—1)X3,

'g2j i = (x2j i +zs2j )/v2,

q2; (x2; i —ix2,') /——K2,

forj =1, 2, ~ ~ ~, [n/2], and

(I odd)

(8.41)

(8.42)

(8.43)

where the upper pattern (m') is given by
Im]]

(8.36)
for cx = 1, 2, ~ ~ ~, p. The element s; in row n and column i
of A,XA„ is similarly expressed in terms of the p
variables by

(m') =
/m 13

Im ]2

/m 23
Im 33

,pP i= (rip —-i+imp)/g2

sP&= (gP& ' iitP~)/v2, ——
for P= 1, 2, ~ ~ ~, [p/2], and

(8.44)

(8.45)

Im]4 m 24
/m s;!'=g,!') (p odd) (8.46)

Im ],N—2
/m 2,N—2

/m 3,N—2 0 o ~ o 0

(8.37)

for z= 1, 2
We next determine the relation between the genera-

tors of U(p) X U(n) and SO(p) XSO(N) which obtains
upon making the restriction (8.39). Define f(X) =
F(A,XA„). Then the generators which correspond,
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respectively, to the transformations

(Tn f) (X) =f(XR), VRg O(n),

(2'.f) (X)=f(8X), ~5«(p),
(8.47)

(8.48)

for j(k= 1, 2, ~ ~ ~, [n/2j, and for n odd

+j ~n2j ~2j—1 np

+—j ~2j,n +n, 2j—1~ (8.57)

(L &f) (X) = z—Q (x,'x,e x,e—x, )f(X), (8.50)

where i, j= 1, 2, ~ ~ ~, n and n, P= 1, 2, ~ ~ ~, p, and where,
as usual, I,;;=—I;.and I.~ = —1.~&.

We now restrict our attention to the I ie algebra of
SO(n) defined by the generators {L;;},noting that
similar results also hold for the {Le}.It is convenient
to define a new basis (essentially the Cart;an basis) of
&.e algebra as follows":

&j,k

I'i f -I

Z L2j 12k 1

Kj, k
1=2

1 —z L»,zi i
(8.51)

z 1 —1 Lzs—1,2/'

,Kj, k,
for j(k= 1, 2, ~ ~ ~, [n/2], and for n odd we also define

(It; ) (—' 1) (L„,,„)
/= (v2) 'I I( I

(8.52)
E&-~) E ' 1) EL, - )

forj= 1, 2, ~ ~ ~, (n 1)/2. I—ncluding also the commuting
generators

L», ,», j= 1, 2, ",[n/2], (8.53)

we obtain the desired new basis which is related to the
old basis by a nonsingular transformation. Note the
Hermitian conjugation relations as follows:

(&t,~) "=&—s,—I,

(&-s,~) ' =&s,-i,

(E,)t=K;. (8.54)

The relations which obtain upon making the restric-
tion (8.39) in the U(&z) generators of Eq. (8.33) now
take the forms as follows:

are as follows:

(L;;f) (X) = i —Q (x,'x; xp—x,')f(X), (8.49)

for j=1, 2, ~ ~ ~, (n —1)/2.
Relations of exactly the same forms, Eqs. (8.51)—

(8.57) hold also for 50(p) C U(p), it being necessary
only to elevate the subscripts to Greek superscripts
and to change e to p.

The verification of Eqs. (8.55)—(8.57) is most easily
accomplished by making the restriction of variables in
the right-hand side. The derivation is further simplified

by noting that one need only consider the part of the
transformation given by Eqs. (8.41)—(8.43). This fol-
lows because the transformation (8.44) —(8.46) conz-

mltes with the Ji;, generators, i.e, , the generators 8;;
have the same form in the rt variables as they do in the
s variables.

The advantage of relating Z to X in the particular
way, Eq. (8.39), is now apparent: The commuting
generators (8.55) of the Cartan basis of the Lie algebra
of 50(n) are already diagonal on the U(p) XU(n)
Gel'fand basis vectors (8.29). Indeed, this property
has been simultaneously realized for each orthogonal
group in 50(p) X SO (n) .

We have established relations (8.55)—(8.57) by
making use of very particular realizations of the gener-
ators of U (n) and SO (n) . However, if {8;,} is a set of
abstract generators of U(n), then we can use relations
(8.51)—(8.57) to define a set of abstract generators {L„,}
of SO(n). Each abstract carrier space for an IR of
U(n) with Gel'fand basis

~
(nz) ) is also a carrier space

for a representation of 50(n). The transformations of
the basis

~
(nz) ) induced by the 50(n) generators {L,,}

may be obtained directly from relations (8.55) —(8.57) .
Ke can now make use of this result to obtain some
insights into the general reduction problem SO(n) Q
U(n) ."

C. The Reduction Problem SO(n) C'U(n)

Any vector in the carrier space of a representation of
U(n) which simultaneously diagonalizes the generators

811, E22, ~ ~ ~, 8 defines a +eight W. The weight W is
defined to be the row vector whose elements are the
eigenvalues w1, w2, ~ ~ ~, w„, respectively, of E», E22,

L2j—1,2j ~2j —1,2j—1 ~2j,2j (8.55)
IV= [zei zc) ~ ~ ~ zc j. (8.58)

for j= 1, 2, ~ ~ ~, [n/2),

+j,k ~2k—1,2j +2j—1,2k'

+—j,—k ~2j,2k—1 ~2k, 2j—1q

In particular, each U(n) Gel'fand basis vector
~

(nz) )
[see Eq. (2.78) 7 has associated with it the weight
(8.58) where

+j,—k ~2k, 2j ~2j—1,2k—1p

+—j,k ~2j,2k @2k—1,2j—lq (8.56)
with zv1 = m11.

1 i—1

w;= m;;— mj; 1
j=l j=1

(8.59)

'3 This basis is essentially the one given by Pang and Hecht
(Pa67) .

'4 f' or a consideration of this problem from the viewpoint of
Young diagrams, see (Ha62), p. 399.
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Similarly, any vector in the carrier space of a repre-
sentation of SO(e) which simultaneously diagonalizes
the generators Ii2, L34 L2r—i,gr (r = [n/2)) defines a
weight Q. The weight 0 is defined to be the row vector
whose elements are the eigenvalues ~~, cv2, ~ ~ ~,

respectively, of L», L34, ~ ~ ~ .

tion'6.

Q 4yr. (n+R S—R) = bi, n,
S

(8.65)

where the sum is over all elements S of the Weyl reQec-
tion group, and 68 is the parity of the Weyl operation S.
Here R is given by

(8.60) R={r—k, »—l, ",2, kf (8.66)

The SO(m) Gel'fand basis vectors associated with the
general Gel'fand patterns (2.55) do not define weights
since these basis vectors do not diagonalize L», L34, ~ ~

We observe, however, that each U(n) Gel'fand basis
vector

~
(m) ) in the carrier space for IR M=. [m]„of

U(N) is, in consequence of relation (8.55), a simul-
taneous eigenvector of L», L34, ~ ~ ~,.

Lemma 10. The U(e) basis vector
~

(m) ) has the
SO(n) weight

for SO (2r+ 1), and by

R={r—1, r—2, ~ ~ ~, 1, 0} (8.67)

Q &s1V (n+R SR)—=4aBR(L) (8.68)

for SO (2r).
We now replace n by n+R SR i—n Eq. (8.64),

multiply by 8s, sum over S, and use property (8.65)
to obtain the following result:

n= {~i~2 ~ ~ ~ ~, f, (8.61)
where

co;=B)2; y
—K2; (8.62)

fori =1, 2, ~ ~ ~, r.
Lemma 10 is the basic result which is needed to

generalize Eq. (6.167) of Sec. VI. We next derive this
generalized formula.

Let M=[m» m2„~ ~ ~ m„„] specify an IR of U(e),
and let L= {l„il„2~ ~ ~ i„„f (r=[N/2)) specify an IR of
SO(m). Then, under the restriction of U(e) to SO(e),
the IR of U(N) reduces into a (direct) sum of IR's L of
SO(~)

M= g 0+Sit(L)L, (8.63)

.v(n) = pm(L)q, (n), (8.64)

where yi, (n) is the number of times the SO(ri) weight
n is repeated in. the carrier space of IR L of SO(ri)
(inner multiplicity) .

The inner multiplicities" satisfy the following rela-

where OK(L) denotes the multiplicity of L, in M.
The objective is to find a formula analogous to Eq.

(6.167) for the non-negative integers OR(L).
Next, let 1V(n) denote the number of times an SO(e)

weight Q is repeated when we let the labels in the U(e)
basis vector of Lemma 10 run over the set of Gel'fand
patterns having IR labels M, i.e., when we let

~
(m) )

run over the basis of the carrier space for IR M of U(n).
Observe that the Numbers 1V(n) are, irl PrinciPle, known:
For each specified M, we can write out all the Gel'fand
patterns, calculate the U(n) weights, and finally calcu-
late the corresponding set of SO(e) weights contained
in M. [This procedure is, of course, substantially
sinplified when one accounts for the fact that equivalent
weights for either U(e) or SO(m) are repeated an equal
number of times. $ Then we must have

[Note that gr, 9R(L')61,.o=0 unless n is a set of IR
labels of SO(e) contained in M; Pr, 9R(L') 8i, ii=9K(L)
for n= L= a set of IR labels of SO(rt) contained in M;
hence, the Kronecker delta is properly included in
Eq. (8.68).] If we define

then
m(n) =s„m(L),

~(n) = Q 41v(n+R sR). —

(8.69)

(8.70)

Formula (8.70) will then automatically give 9R(n) =0
unless 0 is a set of IR labels L belonging to M.

The use of Eq. (8.70) is best explained by an example.
For n, =4, Eq. (8.70) becomes

5K((ui) co2) = 1V((ui, (vm) +1V(&vi+2, (u2)

—1V(o)i+1, o)2+1) —1V((vi+1, (v2 —1). (8.71)

Consider the reduction of IR [4200] of U(4) into its
SO(4) constituents. The U(4) dominant weights are
[4200], [4110], [3300], 2[3210], 3[3111],3[2220],
4[2211],the multiplicity of each dominant weight being
easily found directly from the Gel'fand patterns. The
set of all weights of IR [4200] then consists of these
dominant weights together with their equivalents (the
distinct permutations of the dominant weights), there
being 126 weights in all (the dimension of the repre-
sentation) . Using Lemma 10, we find that the only
possible dominant weights of SO(4) contained in [4200)
are {4,&2},{4,0},{3,&3},{3,&1},{2,&2},{2,0},
{1, &1},{0, 0 f . The factors 1V(~&, &u2) are next easily
calculated from the weights of [4200] and Lemma 10.
For example, the dominant weight {2,0} can only come
from [4200), [3111], and [2022); hence, there are
1+3+3=7 Gel'fand patterns yielding dominant weight
{2, Of, i.e. , 1V(2, 0) =7. In this manner, we easily
determine 1V(4, &2) =1, 1V(4, 0) =1, 1V(3, &3) =1,
.V(3, &1) =3, 1V(2, &2) =4, 1V(2, 0) = 7, 1V(1, &1)= 8,

"For a more complete discussion of the various multiplicity
formulas see (Gr70). "Formula (8.65) is due to Racah (Ra62).
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m15 m25 m35 m45 m55

m15 m25 m45 m55

m15 m25 m55

m15 m55

m15

for n=4, the pattern having weight (8.74) is

m]4 m24 m34 m44

m14 m24 m44

m14 m44

m14

We denote the unique Gel'fand basis vector in the
representation space [m)„which is determined by one
of the weights W~ of Eqs. (8.73)-(8.75) by

( [m]„)

E, (ext) )
where "ext" denotes extremal.

(8.76)

"The properties of extremal patterns are discussed in greater
detail in (Bi68).

iU(0, 0) =10. Using these numbers in Eq. (8.21), we
find 5R(4, &2) =1, BR(4, 0) =1, AR(3, &3) =0,
9R(3, &1)= 1, OR(2, &2) = 1,5R(2, 0) = 2, 9R(1, &1)=
0, 5K(0, 0) = 1. Thus, we have

[4200]= {4,2}0+{4,—2}0+{4,0}0+ {3,1}0+{3,—1}
0+ {2,2}0+{2,—2}0+2{2,0}0+{0,0} (8 72)

There is another significant result which obtains
from Lemma 10. In the (abstract) U(n) IR representa-
tion space specified by the labels [mi„mi„~ ~ ~ m„„],
consider the vector which has U(n) weight given by

[miammn j mmnmn —inj ' '
,
' j mrna mrs, n j mr+in],

(8.73)

for n=2r+1, and by either of the following forms for
s= 2r:

[minmnnj miami i,n j ' ' —' j mrnmt+l, n]q (8 74)

[minmmn j mimfllv4 l, n&
' j mr+—i,nmrn)q (8.75)

where 8' di6ers from 8"+ only by the interchange of
the last pair of numbers.

Since the weight [(8.73)-(8.75)) is just a permuta-
tion of the IR labels, it is equivalent to the highest
weight. The Gel'fand pattern corresponding to such a
weight is ueiquely determined by the specification of
the weight. The resulting pattern is called an exIremal
pattern. ' For example, the pattern having weight
(8.73) for n= 5 is

The significance of the vector (8.76) is: it is the
highest weight sector in the carrier space for an IR of
SO(n) Q U(n). The IR labels of this carrier space are
as follows:

(8.7'7)

where
l„;=m;„—m (8.78)

for i = 1, 2, ~ ~ ~, r (r = [n/2]) for weight W+. For weight
W (n=2r), the label l2, ,„ in (8.77) is altered to

~2r, r mr+1, 2r mr, 2f'+ 0. (8.79)

The proof of this result is very simple: The weight
(8.77) is just the SO(n) weight which is associated to
the U(n) weight of Eqs. (8.73)-(8.75) by Lemma 10.
Furthermore, one easily sees from I emma 10 that the
weight (8.77) corresponding to W+ is higher than any
other weight of SO(n) QU(n); similarly, the weight
(8.77) corresponding to W is higher than any other
weight having t2„,„(0.Hence, the weight (8.27) is a
set of IR labels of a representation of SO(n) QU(n).
The highest weight vector in the carrier space of this
IR of SO(n) is the vector (8.76).

Thus, given the Gel'fand basis of any carrier space
for an IR [m]„of U(n), we can always identify in that
space a unique U(n) extrema/ vector which is the highest

weight vector of the carrier space of the IR (8.77) of
SO(n). '8 Using now the lowering operators of SO(n).
one can generate the general SO(n) Gel'fand vector
classified by the chain 0(n) QO(n —1)Q ~ ~ ~ QO(2).
Observe that these lowering operators can be expressed
through Eqs. (8.55)—(8.57) in terms of the U(n)
generators. In this way, one obtains each abstract
SO(n) Gel'fand basis vector in the IR space carrying
the labels (8.77) and (8.78) as linear combinations of
the abstract U(n) Gel'fand basis vectors carrying IR
labels [m)„.

The preceding procedure is, of course, only the first
and simplest step in the general reduction problem
SO(n) Q U(n). One must still find the carrier spaces of
those IR's of SO (n) Q U(n) which have IR labels which
are lower than the weight (8.77). Nonetheless, the
single step we have made in the reduction is significant:
Combining this abstract result with the explicit U(n) )C

U(n) representation space of Sec. A (p=n), we can
determine all the single-valued IR's of SO(n). This is
the subject of the next subsection.

D. The Single-Valued IR's of SO(n)

The results of the preceding section are abstract, i.e.,
must hold in any unitary representation of SO(n) Q
U(n). Those results can now be taken over to the
explicit realization of SO(n) XSO(n)QU(n) &(U(n)
of Secs. A and 8 (set p=n). We now demonstrate how
one may obtain all the single-valued IR's of SO(n) by
the procedure already discussed for the unitary groups.

' This is the full structure which underlines Wong's results
(Wo69) .
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1„;= m;„, i=1, 2, ~ ~ ~, r, (8.82)

for U(n) weight W+, and where for 0(2r) and weight
lV, the rth label is replaced by

12„,„=—m„,2„&0. (8.83)

Since the m;„are arbitrary integers which satisfy

mg„&m2„& ~ ~ ~ & m„„&0, (8.84)

we see that the labels (8.81) may assume all sets of
values which correspond to all the single-valued IR's
of SO(n).

Now consider the U(n) X U(n) Gel'fand basis vector
Ii which is labeled by the pair of extremal patterns of
the vector (8.76) . It is given explicitly as follows:

ext + max

F Lm]„LO]„, '(Z) =G {l},

ext + max

(Z)

(Z
13.. .2k—1) l„k—l„,k+1,

It,'=1

( (axe)

m„o„z =6

(ext)

((max) )
{l }„(Z)

((max) )

(8.85)

(S 13...2k 1) l2r, k l2r, k+1—

X (s 13.. .2r—3,2r) l2„,„(886)—
in which we have made the identification of labels given
by Eqs. (8.82) and (8.83). The vector (8.85) is simul-
taneously a highest weight vector for each SO(n) in

SO(n) XSO(n) in the carrier space of IR {l}„S{l}„,
l„,„)0; similarly, the vector (8.86) is the highest weight
vector in the carrier space of IR {l},(3 {l}„,l2, ,„&0, of
SO (2r) XSO (2r) . These facts are denoted by intro-
ducing the SO(n) XSO(n) basis vectors G which are
labeled by a pair of SO(n) Gel'fand patterns, the upper
one being inverted in complete analogy to the U(n) X
U(n) notation. The notation (max) in Eqs. (8.85)—
(8.86) then designates that the labels in the two
Gel'fand patterns are chosen as large as possible for
the prescribed IR labels {l }„. Quite generally,

denotes the t&(t determinant of the

First, we particularize the U(n) IR labels in Sec. C
to the form

Lm]„I 0]„,= Lmk„mz„~ ~ ~ rn„„0 ~ ~ ~ 0). (8.80)

The SO(n) IR labels (8.77) then take the form

{l}„={l1l 2
~ ~ ~ l„,}, (8.81)

where now

matrix which has s,„&' ( j, h= 1, 2, ~ ~ ~, t) in row j and
column k.

We now apply the Pang and Hecht (Pa67) SO(n)
lowering operators I a set for each SO(n) in SO(n) X
SO(n)] to the appropriate highest weight vector, Eq.
(8.85) or (8.86), to obtain the general basis v ctor

(&') )
G {l}, (Z), Z is e)&e (8.87)

( (&') ) ( (&) )
(Z) =G {l} (Z)

((~) ) ((~))
(8.89)

We emphasize again that Z is an arbitrary e)&e com-
plex n1atrix in Eqs. (8.88) and (8.89).

The vectors (8.87) are orthogonal on the space K„
(p;i„„+Il„„

I

= p) with the scalar product of type
(2.61). They are not normalized (but may easily be),
since we purposely did not normalize the highest weight
vector (8.85) or (8.86). LThe vectors (8.87) do all
have the same norm which is just the norm of the
highest weight vector. ]

We emphasize again that the SO(n) X SO(n) genera-
tors {Le} and {L;,} have, even when expressed in

in the carrier space of IR {l}„(3{l}„ofSO(n) XSO(n).
Ke arbitrarily associate the upper patterns with the
first SO(n), hence, with the transformations generated
by the {L'e}.The lower patterns are then associated
with the second SO(n), hence, with the transforma-
tions generated by the {L;,}.

In generating the basis vectors (8.87), it is very

important that we express the two sets of lowering
operators of SO(n) XSO(n) in terms of the U(n) X
U(n) generators through the use of Eqs. (8.55)—(8.57)
and the identical set of equations which carry super-
scripts. We are then able, by using Eqs. (8.33) and
(8.34), to generate the functions (8.87) directly in
terms of the n' complex variables s; (c2, i = 1, 2, , n)
oe which there are rIo restrictiorls. Furthermore, the

lowering and raising operators entail the U(n) generators

only in the combinations of U(n) generators which occur
izz Eqs (8 55) (8. 57—) in..which the comPlex number i does

not appear. This implies: The functions G(Z) of Eq.
(8.87) are real functions of the n' complex numbers s;

I
G(Z)]*=G(Z*) (8.88)

Furthermore, since the highest weight vector (8.85) or
(8.86) is invariant under the exchange of superscripts
and subscripts, and since the two sets of lowering
operators are also interchanged under the exchange of
superscripts and subscripts, we have the additional
important property
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( OoF) (Z) =F(ZR),

( 8'eF) (Z) =F(BZ),

(8.91)

(8.92)

for each pair R, SC SO(n) . Clearly, R~Ori and S—+8'e
is a representation on the space BC„of 50(n) X 50(n)
by unitary operators.

The generators of this representation of SO(n) X
SO(n) are easily verified to relate to the generators of
U(n) X U(n) given by Eqs. (8.33)—(8.34) by the rela-
tions as follows:

terms of complex variables through our mapping of
SO(n) generators onto U(n) generators, the standard
Gel'fand Z—etlin matrix elements. on the basis (8.87) [the
same set of matrix elements for either set of generators'.

We can now consider the functions obtained from
Eq. (8.87) upon setting Z=i'f„XA„[see Eq. (8.39)]:

((&') ) ((~') )
f {l }„(X)=G {l }„(A„XA.) . (8.90)

&(n )
The relations (8.55)—(8.57) between the 50(n) X
50(n) generators (8.49) and (8.50) and the U(n) X
U(n) generators (8.33)—(8.34) now obtain explicitly.
Furthermore, the vectors are orthogonal in the scalar
product of type (2.6), and each vector has the norm.
of the highest weight vector. The vectors (8.90) are a
basis of the carrier space of IR {l}„(3{l}„ofSO(n) X
SO(n), and the 50(n) generators, now expressed in the
form of Eqs. (8.49) and (8.50) have the standard
Gel'fand —Zetlin matrix elements on this basis.

While we will see in the next subsection that the
restriction of Z to the form in Eq. (8.90) is useful for
obtaining solutions to I.aplace's equation, we are com-
pletely free to relate Z in Eq. (8.8'/) to a set of real
variables ie arry marIrIer that we choose. In particular,
we wish next to answer the question: What is the
significance of the functions (8.87) when we restrict
Z~RC SO(n)?

To answer this question, we consider the representa-
tion of SO(n) X 50(n) on the space K„defined, not by
transformation of the form (8.47) and (8.48), but
rather by the direct restriction of U and V to SO(n)
in Eqs. (8.2) and (8.3):

Using this relation and replacing X by Z in Eq. (8.47),
we obtain (ToO'g„O~„F) (Z) = (8'~„O~„F)(ZR) . Since
O'A„commutes with Tz and the operators are unitary,
this relation becomes (O~„tTiiO~„F) (Z) =F(ZR), that

8 A„t TB6An

Similarly, we obtain

'S = 'A„tT'S'A„

(8.95)

(8.96)

(8.97)

G.' {l} (8Z) = P D "(i )(p) (5)G ' {l} (Z) &

( (~) ) (()) )
(8.98)

in which the D function appearing in the second equa-
tion is exactly the same one appearing in the first equa-
tion [because the generators (1.e)' induce the same
transformations on the upper patterns as do the genera-
tors I.';, on the lower patterns despite the fact that the
matrix elements of these generators are robot those of
Gel'fand and Zetlinj. Then

The representation (8.91)—(8.92) is zznitarily eqzzivalent
to the one obtained by extending X to Z in Eqs. (8.47)-
(8.48). [It is, of course, this latter extension which led
us directly to the basis (8.87) .$

Relations (8.93)—(8.96) are, of course, irrelevant to
the fact that the transformations (8.91) and (8.92)
are unitary representations of 50(n) X SO(n), but we
have noted them for completeness. The functions (8.87)
are a basis for the IR {l},3{l},of 50(n) X SO(n).
In particular, to the transformations (8.91) and (8.92)
of this basis there corresponds a unitary matrix IR of
50(n) X SO(n) . These transformations take the follow-
ing forms':

( (&') ) ( (&') )
{l}. (ZR) = Z D'""(i-)(i)(R)G {l} (Z)

L';;= —i(E;;—E,,), (8.93) R—+D(') ~(R) (8.99)

(L') '= z(E' E'), — (—8 94)
where i,j, o(, P= 1, 2, ~ ~ ~, n [One sim. ply replaces x by
s and f by F in Eqs. (8.49) and (8.50) .)

The relations between the transformations (8.91)
and (8.92) to those of Eqs. (8.47) and (8.48), extended
to Z, are determined as follows: The function f in Eqs.
(8.4'/) and (8.48) with the extended domain of de6ni-
tion Z is related to F by f(Z) =F(A„ZA„), since for
Z= X we obtain the correct relation f(X) =F(A„XA ) .
Thus, .f=8'&„8&„Ffollows from Eqs. (8.2) and (8.3).

is an IR of SO(n) by unitary matrices. The Gel'fand
patterns (l") and (l) in Eq. (8.97) designate rows and
columns, respectively, of the matrix (8.99).

If we correspondingly in the 6 functions let upper
patterns and lower patterns label, respectively, rows
and columns of a matrix G, then Eqs. (8.97) and (8.98)
can be written as matrix equations as follows (IR labels

' It is essential here that we consider

RUSSO(n}

(see Foot-
not"e 1).
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G {l}„(I„)=1,

( (maa) )
(8.104)

so that G(I ) is the unit matrix. Thus, we have

that is,
D(R) =G(R). (8.105)

D( )"&i )(i)(R) =G {l}„'(R). (8.106)

The basis functions (8.87) are precisely the elements of the
unitary matrix IR {l},of SO(n) when evaluated at Z=
Rg 50(n).

Furthermore, this representation is real Lproperty
(8.88)j

have been suppressed):

G(ZR) =G(Z) D(R), (8.100)

G(8Z) =D(S)G(Z). (8.101)

We put S=R in Eq. (8.101) and use D(R) =D*(R)
(unitary property) to obtain

G(RZ) =D*(R)G(Z) . (8.102)

We next set Z=I„(unit matrix) in Eqs. (8.100) and
(8.102) and take the complex conjugate of the second
result, using property (8.88). The result is

G(R) =G(I„)D(R) =D(R) G(I„) (8.103)

for each Rg SO(n) . Schur's lemma requires that G(I„)
be a multiple of the unit matrix, but, in fact,

( (maa) )

of a real, proper orthogonal matrix in the {1}„(3{l}„
basis vectors then gives directly the real orthogonal
matrix IR {l}„ofSO(n) in terms of the elements (R;;)
of the RQ 50(n) being represented.

E. 50(p) X SO(3) Basis Vectors

It was convenient for proving the important relation
(8.105) to introduce the representation of SO(n) X
50(n) defined by Eqs. (8.91) and (8.92). However,
it is the homogeneous polynomials of the x;" obtained by
restricting Z to the form (8.39) in Eq. (8.36) which leads
us most readily to solutions to Laplace's equation hen—ce,
to N par-ticle states of good orbital angular momentum.
We henceforth consider only the representation (8.47)
and (8.48) of 0(p) XO(3) which led to the relations
(8.55)—(8.57) between the generators of SO (p) X SO(3)
and those of U(p) X U(n) . Explicitly, the generators of
SO(3) (total orbital angular momentum group) relate
to those of U(3) through Eqs. (6.97) { Eqs. (8.55)—
(8.57) for n=37, while the generators of SO(p) relate
to those of U(p) through Eqs. (8.51)—(8.57) when we
evaluate all subscripts j, h to superscripts (x, P and
change n to p. We will always consider the 50(p) X
SO(3) generators to be expressed directly in terms of
the U(p) X U(3) generators, thereby obtaining SO(p) X
SO(3) basis vectors in terms of the complex'variables
s, (no restriction). Only in the final results do we make
the implicit restriction Z=.A,XA3 in which the x; are
the relative coordinates of the N-particle problem (p—=
.V—1 hereafter) .

We write out again the notation for the general
U(p) XU(3) basis vectors Lhighest vector given by
Eq. (8.35)j:

(m')

LD(i( r(R) j+—D(l( r(R) (8.107) mes m23 mps 0 ~ ~ ~ 0
(Z), Z is p&(3.

so that the representation is real orthogonal.
Ke emphasize that the preceding procedure obtains

all the single-valued matrix IR's of SO(n) directly as
homogeneous polynomials in the elements E;; of a
proper orthogonal matrix E. without any need for
parametrizing (any suitable parameters can be intro-
duced in the final IR's, if desired).

SNmmury. We have given an explicit constructive
procedure for determining all the single-valued IR's of
SO(n) .The procedure utilizes the fact that it is possible
to identify in the carrier space K„of IR Lp 0 ~ ~ ~ Oj of
U(n ) Q U(n) X U(n), an explicit vector which is the high-
est weight vector of the carrier space of IR {l}„S{l},
of 50(n) XSO(n), where g;i/a+i, a P for 0(2r+1),
and g, l~. .a+~ l2, , „~=p for 0(2r). The general basis
vector in this IR space is then generated by using a
double (upper and lower) application of the SO(n)
lowering operator technique. These general vectors are
defined on the e' complex variables Z of the polynomials
of 3'.„.The restriction of these variables to the elements

m/2 m33

mug

(8.108)

The procedure for constructing (p+ 1)-particle states,
classified as basis vectors of the carrier space for an IR
of 50(p) X50(3) is threefold: (1) carry out the reduc-
tion SO(3)( U(3) on the lower patterns of the basis
vectors (8.108) (thus constructing basis vectors of good
orbital angular momentum L); (2) carry out the reduc-
tion 50(p)QU(p) on the upper patterns (thus con-
structing carrier spaces of reducible representations of
the permutation group 5,+iC 0,); (3) determine the
linear combinations of these SO(p) XSO(3) basis vec-
tors which satisfy the Laplace equation. We deal with
the first two steps of this procedure in this section. It is
not as impossible to carry out for cases of practical
interest as it might appear.

First, consider the problem 50(3)Q U(3). Thisprob-
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lem (lower labels) is abstractly the same as the problem
discussed in Sec. VI.G. Equations (6.175) and (6.176)
are valid on the abstract Gel'fand basis vectors Q( —1) A. ,p

m]]

m] 3 m/3 m33

m(2 m2Q

)
(8.109)

+ Z(—1)'A. ,~ ) —L—2o.—1

[k+!,X, !),
[!,!,!—k),

L=k, k —2, ~ ~ ~, 1oro,
L=k, k —2, ~ ~ ~ 1 or 0,

[k+X, X+1, X), L= k, k —1, ~ ~ ~, 2, 1,

[X, X—1, X—k), L= k, k —1, ~ ~ ~, 2, 1. (8.110)

The (un-normalized) basis vectors of the carrier space
for IR L of SO(3) are given in terms of the abstract
U(3) basis vectors as follows (these vectors are ob-
tained directly from the requirement that E»—E»
annihilate them):

Q (—1)'A.

+&, x ), (sot)

I.+.+~

X—
k)

X—L—2a, 8.112

QA, ,p

X+1

)
r+.+x )

+ QA. , g L+2o+X+1 I+1 ),
)

(8.113)

upon making the replacements p=m~p —mpp, q=m2p-
mpp, n=m~p —mpp, p=mpp —mpp, y=mu —mpp throughout,
followed by adding m» to each label appearing in the
basis vectors F. Thus, in general, one encounters all
the difhculties discussed in Sec. VI.G. We can, however,
make some practical progress.

The reduction of the abstract carrier space for IR
[mqpmppmpp) of U(3) into its SO(3) IR subspaces can
be carried out explicitly for those general cases in which
there is no multiplicity (hence, these results may also
be used in Sec. VI.G). This is the case for the following
sets of IR labels:

(8.114)
where

A.= [2'/I [(k—L)/2) —o}!)
X [(L+o.) !(k—L—2o) !/cr!k ~J" (8.115)

A a, p Aa/(L+2o——) '", (8.116)

A. ,i= A. ,p[(k —L 2o) (L+—2o) /(0+1) (L+2o+2) ) ",
(8.117)

for k —L even,

A, ,&
——A,p[(k+1) (L+2o)/(k L 2o)—(L+—2o+2) J",

(8.118)

for k —L odd. ln the definition of A, the quantity
[(k—L)/2) is (k —L)/2 (k Leven) o—r (k —I.—1)/2
(k—j odd). Here k and X are non-negative integers.

The way in which we use the abstract results, Eqs.
(8.111)—(8.114), is as follows: First, consider the upper
pattern in Eq. (8.108) to be arbitrary, as indicated.
We then form the same linear combinations on the
lower patterns of the F's as appear in Eqs. (8.111)-
(8.114). Each of these vectors (four types) is then an
SO(3) highest weight vector having orbital angular mo-

mentum L. The sum of the U(3) IR labels appearing
in Eqs. (8.111)-(8.114) now is identified as the degree

p of the functions Ii, e.g., p = k+3K in Eq. (8.111).If
we now enumerate all U(3) labels such that m~p+mpp+
mpp ——p(5, we find in each instance that [m~p mpp mpp)

is of the form of one of the sets of labels (8.110). For
p&5, thereis no multiplicity of SO(3) in U(3). Indeed,
even for p= 6, 7, we see that the only labels not of the
form (8.110) are [420) and [520), respectively. [420)
contains L=O, 2, 2, 3, 4; [520) contains 1, 2, 3, 3, 4, 5.
In the [420) case, the explicit construction of the L=
4, 3, 2, 2 states was given in Sec. VI.G [the Ii of Sec.
VI.G is now to be replaced by the new P of Eq. (8.108)),
and the L=o state is easily constructed. Similarly, in
the [520) case, Sec. VI.G contains the explicit con-
struction of the L=5, 4, 3, 3 states, and the L=1, 2
states are easily constructed. Thus, xe can claim to have

obtained all good angular momentum states vehich are
contained in the spaces Xr, for p =0, 1, 2, ~ ~ ~, 7) and for
arbitrary p.

We also have available one other general category of
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good angular momentum states: These are the states
having general U(3) labels Lmq3m23m33j and having
L=m» —m», m» —m» —1, or m» —m» —2. We need only
change the results of Eqs. (6.177)—(6.178), (6.182)—
(6.185), and (6.186)—(6.187) according to the rules
given in the paragraph containing Eq. (8.109) above.
We then form the same combinations of the U(p) X
U(3) state vectors (8.108).

The basis vectors of X„obtained by the preceding
methods are properly termed U(p) XSO(3) basis vec-
tors, since the arbitrary upper patterns still enumerate
the basis vectors of the carrier space of IR

Lm)3 m23 m33 0 ~ ~ ~ 0]

(3) p=5 (iV=6)

m]3

mg3 0

my 3 m23 0

my 3 m23 0

m~3 m23 m33 0 0,

having SO(5) weight {m~3, m23}.

(8.121)

of U(p). The explicit tabulation of the particular
U(p) X SO(3) basis vectors considered in the preceding
paragraphs is entirely mechanical —it entails only the
working out of the relevant U(p) X U(3) Gel'fand basis
vectors by known procedures. LThese U(p) XSO(3)
states are also just the harmonic oscillator states of
good angular momentum when the s; are properly
identified as the creation operators of the oscillator
states. $

The next step toward obtaining E-particle states of
good angular momentum is to carry out the reduction
SO(p) Q U(p). The problem now becomes more dificult.
We ignore the lower patterns in the vector (8.108) and
first consider only those upper extremal patterns which
are determined by the weights of Eqs. (8.73)—(8.75) .

We enumerate explicitly these extremal patterns:

(1) p=3 (Ã=4)

m]3

m]3

mg3 m23 0

my 3 m23 0 0

m» m23 m33 0 0

m~3 m23 m33 0 0 0,

m/3

m]3

mg3 m23 0

mg3 m23 0 0

mg3 m23 0 0 0

(8.122)

mi3 m33

m] 3 m/3 m33

(8;119)
,m(3 m23 m33 0

having SO(6) weights

0 0,

having SO(3) weight m~3 —m33.

(2) p=4 (&=5)

m]3

j m13 m23 m33 } and j m13 m28 m33 }

respectively.

(5) p&6 (.V&7)

mi3

mg3 0

mg3 m23 0

,F3 m23 m33 OJ

having SO(4) weights

m(3 0

mg3 m33 0

,mg3 ~3 m33 0,

(8.120) mg3 0

mg3 m23 0

my 3 m23 0 0

my 3 m23 m33 0 0

(8.123)

{m~3, m23 —m33} and {m~3, m33 —m23},

respectively. ,mg3 m23 m33 0 0 s ~ o 0
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having SO(p) weight {m», m22, m», 0, ~ ~ ~, 0}„(r=
[p/2])

The basis vectors (8.108) which are labeled by the
extremal upper patterns (8.119)—(8.123) and which have
maximal lower patterns can be given explicitly [it is only
necessary to permute the upper indices in Eq. (8.35)]:

(ext)

l
F m» m22 m» 0 ~ ~ ~ 0 (Z)

(max)

—(s 1)mlz —mzz(s la)mzz —tnzz(s 1[zy)mzz (8 124)

where the superscripts assume the following values for
the respective cases:

p= 3, (aPy) = (323), weight mis —m»,.

p=4, (apy) = (334) for weight {m», m» —m33} and

(trpb) = (434) for weight {m», mss —m22};

p=5, (ozPy) = (335), weight {m», m22};

p=6, (apy) = (335) for weight {mrs, m22, mss} and

(crpy) = (336) for weight {mrs, m22, —m»};

p) 6, (trpb) = (335), weight {mrs, m22, mss 0 ~ ~ ~ 0}.
[The vector (8.124) is, of course, an SO(p) highest
weight vector having these various weights for its IR
labels. ]

Next, we combine the preceding results for upper and
lower patterns. In order to give a precise description of
the procedure, it is convenient to introduce two special
notations for certain vectors belonging to the carrier
space of IR [mis m22 m» 0 ~ 0]8[mrs m22 m»] of
U(p) X U(3) [the space with basis vectors (8.108)]:

F ( {l,i l,2 l,s}/[m» m22 m»]), (8.125)

F [zzz4 z ~2 4 ~4 4] ( {ipt ip2 lps }/L) (8 126)

The notation (8.125) designates" the highest weight
vector in the carrier space of IR {1»1» lp30 ~ ' ~ 0}
[mrs m22 m»] of SO(p) X U(3) [ U(p) X U(3), where

{l,tl,21,20 ~ ~ ~ 0} specifies an IR of SO(p) contained
in IR [mis m22 m» 0 ~ ~ ~ 0]of U(p). The vectors (8.124)
are of this type. The notation (8.126) designates the
highest m eight vector in the carrier space of IR
{l,il,21,20 .. 0}SL of SO(p) XSO(3) [ U(p) XU(3),
where {l, i l,2 l,s 0 ~ ~ ~ 0} specifies an IR of SO(p) con-
tained in IR [m» mssm220 ~ ~ ~ 0] of U(p), and L speci-
fies an IR of SO(3) contained in IR [mis mssm»] of
U(3). For p=3, 4, or 5, the notation {l,i l,21,2} must
be modified to l» ——L,', {i4t l42}, and {1st42}, respectively.

We will call the vectors (8.125) and (8.126) simply

"Only &R's of SO(p) of the form lt, zl»t, z0 ~ ~ ~ 01 can occur
in an IR of V(p) of the type Pzzzz, zzzz, zzzzp 0 ~ ~ ~ 0) /see (Su67)
and (Br70a) g.

L'+2o'+h

Q A,A. F k+X
a, e~

L+2o+X

from Eq. (8.111).This is the SO(3) X SO(3) highest
weight vector denoted by

F[2+i ] ] ] (L'/L) .

Thus, we obtain the following set of SO(3) XSO(3)
highest weight vectors:

F[-.- - ](L'/L), (8 127)

where [m» m» m»] is any one of the four types of IR
labels of the form (8.110). These four general types
already yield all SO(3) XSO(3) highest weight vectors

contained in the U(3) X U(3) basis uP to and including
degree 5 polynomials There .is no multiplicity of L'L
in any U(3) X U(3) IR [m][3[m]for m»+m22+m»&5

Using the constructions of Sec. VI.E, we can also
obtain the general vectors (8.127) corresponding to

Lr —m/3 m33, m~3 —m33 —1, m] 3 m33 2.
For p&3, we cannot progress quite as far. It is clear

that the SO(p) X U(3) highest weight vectors (8.125)
are the key to solving the problem: Using the relatively
simple U(3) lowering operators on (8.125), we can
generate the U(3) basis vectors

where
F[{4[421.2}/(m)]

m] 3 ~3 m33

(8.128)

(m) m12 m12

and where for m~~= m~2= my3, m~~= m23 this vector is the
highest weight vector (8.125). The construction of the

SO(p) XSO(3) highest weight vectors then proceeds
along the lines of Sec. VI.G.

We can, in fact, carry out the above construction
explicitly for the following cases:

(1)-Let the SO(p) labels in the vector (8.125) be

SO(p) X U(3) and SO(p) XSO(3) highest weight
vectors, respectively.

In the 4-particle (p=3) case, we obtain the class of
highest weight vectors as follows: We replace the
abstract vectors in Eqs. (8.111)—(8.114) by the F's of
Eq. (8.108), leaving the upper U(3) labels arbitrary.
Now form from these vectors the linear combinations
(8.111)-(8.114) on the upper patterns (using an index
o' and an angular momentum L'). For example, one
obtains

L'+o'+)t
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identified as any of those following Eq. (8.124) so that
the vector (8.125) becomes the explicit highest weight
vector (8.124). It is easy to generate the particular
vectors (8.128) which occur in the linear combinations
which one must form (Sec.VI.G) to obtain L= m» —m~;,

m» —m» —1, or m» —m» —2. Thus, with very little
e8'ort, we can obtain the general SO(p) X SO(3) highest
weight vectors (8.126) whenever {i,q l,m l,3} is the
largest highest weight (of its type) contained in IR
[m~3 m23 m33 0 ~ ~ ~ 0] of U(p) and for L= m» —m83,

nz13 —m33 —1, or m13 —m33 2.
(2) Again let the SO(p) labels in the vector (8.125)

be identified as in (1), but now particularize further to
any one of the sets of U(3) labels (8.110).Once again
one can generate explicitly from the corresponding
SO(p) X U(3) highest weight vector (8.125) all those
vectors (8.128) which occur in the linear combinations
(8.111)—(8.114). Thus, we can obtain explicit expres-
sions for all SO(p) XSO(3) highest weight vectors of
the following types:

(a) ~{{+},x, }}({' ' ' }/L),

(b) F{},,}„},-u} ( { ~ }/L),

(c) F{~+}„y+~,,] ({ "}/L),
(d) P{},}, r, } {}({~ ~ ~ }/L), (8.129)

where the SO(p) labels { ~ ~ ~ } can have the following
values:

SO(4): (a) {k+X,O}, (b) {X,+k}, (c) {k+X,&1},

one. All the SO(p) generators

Qa, P @2P—1,2a +2a—1,2P
7

+a,—p —jap, 2a +2a—1,2p—1

for n(P=1, 2, ~ ~ ~, [p/2]=r;

(8.130)

Qn g p, 2a +2a—1, p (p odd) (8.131)

for a= 1, 2, ~ ~ ~, r increase the weight of an SO(p) basis
vector. A highest weight vector is thus partially charac-
terized by being annihilated by the set of above raisirlg
gerIerators. However, these raising generators can all be
obtained by the repeated commutation of the following
ones (r in number):

+2a+2, 2a +2n—1,2a+1

for 0, = 1, 2, ~ ~ ~ r—1 together with either

J'f2r—1,2r—2 +2r—3,2r

for SO(2r), or

+2r+1,2r g2r —1,2r+1

(8.132)

(8.133)

(8.134)

for SO (2r+ 1) .
Thus, we arrive at the following result: The necessary

(and suflicient) conditions that a vector belonging to
the abstract carrier space for IR [m},m2, ~ ~ ~ m»] of
U(p) is an SO(p) highest weight vector labeled by
{l,ql» ~ ~ ~ t„} a,re two-fold: First, the vector must be
an eigenvector of the set of operators

2a—1,2a—1 +2a,2a8 a=1, 2, ~ ~ ~, r (8.135)
SO(5): (a) {k+X, l{.}, (b) {X,l{.}, (c) {k+l{., X+1},

SO(6): (a) {k+X,X, aXj, (b) {X,X, a(X—k) j,

(c) {k+k,X+1,aX}, (d) {X,X—1, +(l}.—k) }

For SO(p) (p&6): SO(p) labels coincide with the U(3)
labels. L can be any of the values given in (8.110).

We will not write out explicitly the highest weight
vectors (8.129) . These results serve to indicate a some-
what general, but nonetheless limited set of highest
weight vectors. While the U(3) labels appearing in
(8.129) are sufficient to enumerate all cases up to degree
5, the reduction of SO(p) { U(p) is very limited —it
gives only those SO(p) labels of the largest highest
weight contained in U(p) [including the & sign of the
la, st label for SO(4) and SO(6)].

Clearly, if we are to make any useful progress, the
problem of reducing SO(p) { U(p) must be dealt with
more completely —we must find the full set of SO(p) X
U(3) vectors (8.125) up to some practical degree
p=m»+eh&+m», say, p=4 or 5. This we now do.

In order to construct highest weight vectors in the
reduction SO(p) { U(p), we must. be able to recognize

fp}}'"'(&) =s»",

f {}}(Z) Q (s 2a—ls 1,2a+s 2as 1,2a—1)

f{up {"'}(~) = &us'

+ (p odd) sy s»

f{2n" (Z) = Z r»" '&»".+(p odd)2(s»")'

and the set of eigenvalues must be 1p1 lp2 lp, respec-
tively, where l»&l»& ~ ~ ~ &lp„&0 for p odd, and l»&
l,2& ~ ~ ~ &l, „~&

~
i» ~&0 for p even Second. , the vector

must be annihilated by the raising generators (8.132)—
(8.134) .

We now list explicitly some SO(p) XU(3) highest
weight vectors of the type (8.125), and then explain,
by example, how they were obtained [the notation is a
slight variation of (8.125) and is explained below]:

f{q ' (Z) =s}
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f » (8] (g) —p (»2«-1,«)2—2 p (s»«, »-1»22&—1»
a=1 a(p=I

+s 2a—1,2((—ls 2n, ») (p odd) 2 p»22a —1,&»22a, p

a=1

C {11) /'ZX ~ /'Z 1Z 3,2a—1,2a Z 3Z 1,2a—1,2aJ [211l 4 f ~ 4 1 123
' ' 1 123

'

SO(5)

SO (6)

f[211]
' (+)»»28 +»»28 j

f(111] "(z)=»28 j

f[1u]"" " (z) =»28»'

(8.137)

(8.138)

(8.139)

The above vectors are SO(p) X U(3) highest weight
vectors of the type (8.125). We have merely regarded
the SO(p) and U(3) IR labels as superscripts and sub-
scripts, respectively, and at the same time adopted the
practice of omitting the unnecessary zeros in these IR
labels. For example, f[21](" is the highest weight vector
in the carrier space of IR {10 ~ ~ 0}3[210)of SO (p) X
U(3), where IR {10~ ~ ~ 0} of SO(p) is contained in
IR [210 ~ ~ ~ 0] of U(p). The integer r is, as always,
p/2 for p even and (p —1)/2 for p odd. The notation

(p odd) preceding a particular term indicates that such
a term is included only when p is odd.

The calculation of, say, f[21]'" proceeds as follows:
First, we determine which Gel'fand patterns having
U(p) IR labels [210 ~ 0] give the SO(p) weight
{10 ~ ~ 0} (Lemma 10). The U(p) domir(a28t weights in
IR [210 ~ ~ 0] are just [210 ~ 0] and 2[1110 " 0].
Therefore, the weight {10.~ 0} arises only from those
[210~ ~ 0) Gel'fand patterns which have weights
[210 ~ 07, (p odd) [10 02], 2[10110 ~ ~ 0],
2[1000110. 07 (p even) 2[10 ~ 011], (p odd)
2[10 ~ ~ 110]. The 2 indicates that there will be two
Gel'fand patterns having the indicated weight. Next,
we work out the Gel'fand basis vectors (8.108) which
have IR labels [210~ ~ 0], are maxima/ in their lower
patterns, and which have upper patterns corresponding
to the preceding sequence of U(p) weights which yield
SO(p) weight {10 ~ 0}.We then determine the linear
combination of these vectors which is annihilated by
the raising generators (8.132)—(8.134) . [This procedure
is simpler than it appears, since it is actually necessary
to work out the three Gel'fand basis vectors having
we(ghts [210 ~ 0], 2[1110 ~ 0]—the remaining ones
are obtained by permuting the superscripts. ]

—2»«»28"' ') —(p odd) s1's»8 ) (8.136)

where p =4, 5, ~ ~ ~ . Additional highest weight vectors
not in the above list which we require are:

SO(4)

f(1n" "(~)=»2",

f(111] (+)»28

One need not be too concerned with the derivation of
the results (8.136)-(8.139). It is easy to verify directly
that the given vectors possess the properties conveyed
by their labels.

We can now construct an enormous mlmber of more
general SO(p) XU(3) highest weight vectors simply
by forming arbitrary products of the vectors listed
above. The IR labels of the resulting highest weight
vector is obtained simply by adding the individual IR
labels of each of the factors (since each factor is a
highest weight vector). We will now note explicitly a
set of SO(p) XU(3) highest weight vectors which is
suSciently general to include all cases for which
m(8+m28+m88& 4. We now revert to the notation
(8.125) dropping, however, unnecessary zeros in { ~ ~ ~ }
and [

F({k—2s}/[k)) = (f[n'" )" "(f(2]"])'
for s=0, 1, ~ ~ ~, [k/2],

F({k1}/[k1))= ( f[1]('])'—'f[n]("],

F({k—,}/Lk ])= (fn]'")" 'f(2]"'fun'"'

F({k—1}/[k1))= ( f[1]('])8—'f(2,][']

F({k 2}/[k2)) = (f[1]('])8—'( f[,]("])'
F( {k }/[k2)) '= (f[1]

(1] )8—2f[22]
(2]

F({k—2}/Lk2]) = (An'" )" 'f(22]"' i

F({k11}/[k11))= ( f[1]"])8 'f[1n]'"']

F({k—1 1}/Lk11))= (A1]'" )" 'f[2n]("] (8 140)

In addition, we need the following results which are
particular to p=4, 5, 6 and which are not in the pre-
ceding list:

SO(4)

F ( {k, —1}/Lk1])= (An "])' 'f[n]" "
~

F({k—» —1}/Lk1])= (f[n"')' 'f(2]"'f(1n ' "
F({k,—2}/Lk2]) = (f[1]"')' '(f[1n" '])'

F({k}/[k11))= (f[n "])" 'fn(n"'

F({k 1, —1}/[k11])—= (f[1](")"2f[211]" ", (8.141)

SO(5)

F({k1}/[k11])= ( f(n'" )" 'f(1(n'"' j (8.142)

SO(6)

F({k,1, —1}/[k11])= (f(n "])" 'f[111]"' ". (8.143)

The next step is to apply the U(3) lowering operators
to the vectors (8.140)-(8.143), thus generating the
U(3) basis vectors designated by the notation (8.128).
In the last step, we form the linear combinations of
these U(3) vectors which appear in Eqs. (8.111)—
(8.114).We can, in fact, rewrite Eqs. (8.111)—(8.114)
in a form which explicitly contains the required lowering
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(8.155)

(8.156)
Py+y, &, &~ ( {~ ~ ~ }/L) =Q(k, L)F({~ ~ ~ }/[&+X, X, !i])

A~, a(k) L) =A~(k, L) (E»)
(8 «4) A. , (k, L) =k.(k, I.) A. (k, I,)

fol L=k) k —2~ ''q 1 ol Oj
XLE3i (Eii—E») +E»Egi)/(L+ 2a+ 2) ) (8.157)

operators, "acting on the highest weight vector. Adapt- where
ing these abstract results to the present notations then Q. ,a(k, L) =Q.(k, L) Ea,/(L+2a), (8.154)
gives the following set of (un-normalized) SO(p) X
50(3) highest weight vectors:

F[y,y, y i~ ( {' ' ' }/L) = A (k, L)F({ }/P, , li, X—k]) in which

for L= k, k —2, , 1 or 0;
(8.145)

ag ——1/(k+1)
1
2

for k —L even

for k Lodd—, (8.158)

F~p+i, y~i, y]({' ' '}/L) =Q'(k, L) P({' ' '}/Lk+X, !i+1, X])

for L= 1, 2, k.
(8.146)

2~(L+~) |E k—I—2aE k L 0——
Q, (k, L)=,(8.148)

([(k—I)/2] —a)!k!(k—L,—a)! '

(—1) '2'(I+a) !(k —L—2a) !E~i'E»~'
A, (k, L, ) =

(L(k—L) /2] —a)!k!a!(L+2a) !

(8.149)

Pp„x—i,&,—~~({ ' ' }/L) =A'(k, L)F({ }/P,, X—1, 3 —k])

(8.147)

for L=1,2, k.
In these equations, 0 and A are operators to be

described. The F's on the right-hand side may be chosen
to be any 50(p) X U(3) highest weight vector, where

} designates any 50 (p) labels which are compatible
with the U(3) labels, i.e., {~ ~ ~ } is contained in IR

0 ~ ~ ~ 0] of U(p)
The 0 and A operators are described as follows:

Define

for k —L even

= 1/(k —L—2a) for k Lodd.—(8.159)

LIn Eq. (8.156), the factor (E») ' is always preceded
by a term containing E» to a power greater than zero,
and the notation is intended to denote symbolically the
reduction of the preceding power by one and has
nothing to do with inverse operators. ]

All 50(p) XSO(3) (p&4) highest weight vectors of
degree four or less can now be generated explicitly by
selecting the appropriate 50(p) X U(3) highest weight
vector from Eqs. (8.140)—(8.143) and applying the
appropriate lowering operation from Eqs. (8.144)—
(8.147). There is no multiplicity in the reduction of
SO(p) X SO(3) Q U(p) X U(3) for P &5. { We have not,
however, listed sufhcient results in Eqs. (8.140)—(8.143)
to include all p= 5 cases.)

The 50 (p) XSO (3) highest weight vectors con-
structed by the preceding procedure will, in general,
~~ot solve I.aplace's equation. Ke next examine this
problem.

F. Solutions to Laplace's Equation

The operator 2Z~ which reduces to the Laplace
operator in Euclidean 3p-space under the restriction
of Z to the form A,XA& of Eq. (8.39) is given by

for a=0, 1, 2, ~ ~ ~, L(k —L)/2). Then we find

Q(k, L) = g Q, (k, L,), (8.150)

(ZtF) (Z) = {P(z '~ 'z'~+z'~ 'z'~+z '~ 'z '~)

+ (p odd) fziI'z&I'+ ,'(zgI') '7}F(Z)-, (8.160)

(8.151)
where the sum over n is from 1 to Lp/27.

A(k, L) = Q A, (k, L), The operator Z~ carries a vector belonging to the
space 3C„ into one belonging to the space 3C„. 2. In

(k L)+Q (k L)) (8 152) particular, if FLmi~m23mq3] denotes an arbitrary vector
belonging to the carrier space of IR jmi3m23m33 0 0)8
fm&3m~3m33) /basis vectors given by Eq. (8.108)), then

A (k, L) = g [A,p(k, L) +A~ i(k, L) ], (8.153) we have

2"FLmi3mg3m;3] =F{mi3 —2, m23, m33]

"The must economical way to generate a general vector from
a highest weight vector is not always accomplished by using
the lowering operators of (Na65), and the lowering operators
appearing in Eqs. (8,144)-(8.147) are not in these standard
forms,

+Pgm», m» —2, m»7+FLm&3, m23, m~3 —27

+FLmia —1, m23 —1, m»)+FLmii —1, m23, m» —1)

+FLmi3, m23 —1, m„3—1]. (8.161)
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Let us introduce the notation 2 [mipmppm») to
denote the set of six (or less) shifted IR labels appearing
in Eq. (8.161). For example, 2"[310]=f [110],[200]}.
We will say that L is contained in Zt[mipm»mop) if the
IR of 50(3) specified by L is a constituent of at least
one of the IR's of U(3) specified by the set: of labels
2 [m»m»m»). Similarly, we will say that {i»l»l„p} is
contained in Zt[m»m»m») if the IR of 50(p) specified
by {i,,l,,l,p} is a constituent of at least one of the IR's
of U(p) specified by the set of labels 2 [m»m»m»].

Now consider an 50(p) X50 (3) highest weight
vector [notation (8.126)).Then we have

[~44i444~44](f ui p& pp}/ ) = ( ~ )

if either f l,il,pl, p } or L is not contained in 2 [m»m»mop).
Property (8.162) follows from the fact that 2" com-

mutes with the generators of 50(p) XSO(3): If the
vector (8.162) were not the zero vector, it would be an
50(p) XSO(3) highest weight vector of degree mip+
mop+mop —2, and both {l,il,pl, p} and t. would be con-
tained in 2[m»mppmpp).

In general, it is necessary to form linear combinations
of 50(p) XSO(3) highest weight vectors in order to
satisfy Laplace's equation:

Q A[„]F[.„]({lilail, p}/L), (8.163)

where the sum is over all sets of labels [m] = [m»m»m»)
such that: (1) m»+mp, +m»=p& (2) both {l»l,plop}

and L are contained in each [m); and (3) both f t,il,pl, p}
and L, are contained in each 2[[m).

Using Eqs. (8.162) and (8.163), we can now list
the form of the solutions to Laplace's equation through
degree four:

=1:
F[ioo] ( f 1}/1);—2

for X=O, 2 and L=O, 2 but X=L&0.
F[rip] ( f 11}/1);

3 ~

F[pop] ( f ~ }/L)
for A, =1, 3 and L=1, 3 but A, =L&1;

F[ o](of[21}/L) L= 1, 2,

F[pro] ( f 1 }/2),
GF[ppo] ( {1}/1)+bF[pipl ( f 1}/1);

for f
~ ~ ~ }= f 2} in SO(4), f 21} in SO(5), f 2, 1, &1}in

SO (6), and {211} thereafter;

4iF [4op] ( f ]4 }/L) +bF [&&pl ( f ]4 }/L)

for X=O, 2 and L=O, 2 but X=L&2;

4[F[pio] ( f 11}/1)+bF[pii]( f 11}/1),

aF[4ppl ( f 2}/2)+bF [pip] ( f 2}/2)+cF[»p] ( f 2}/2).

The preceding list gives the form of all 50(p) XSO(3)
highest weight vectors of degree four and less which
solve Laplace's equation for p&4. For p=4, one simply
includes those 50(4) IR labels which have a negative
sign on the second label, i.e., f 1, —1} wherever f 1, 1}
appears, etc.

The occurrence of two constants a and b in this list
means that a unique linear combination of the respec-
tive vectors will solve Laplace's equation; the occur-
rence of three constants a, 6, and c means that two
independent linear combinations of the respective vec-
tors will solve Laplace's equation. Thus, the highest
weight vector labeled by ({2}/2) occurs with multi-
plicity two. This vector is the only one having a
multiplicity in the set of all states up to degree four.

The explicit listing of these solid harmonics up to
degree four is now entirely mechanical: Using the
formulas of Sec. E, we work out the various 50(p) X
SO(3) highest weight vectors and determine, in those
few cases where required, those linear combinations
which are annihilated by Zt. 'The explicit tabulation of
these vectors for arbitrary p is entirely feasible.

One must still classify the states with respect to their
properties under the permutations of the particles. It
appears that this procedure should be carried out for
each p separately, and we have not attempted to do this.

APPENDIX 1. PROOF OF LEMMA 9

The purpose of this Appendix is to prove that the
relation between matrices of SU(4) and SO(6) stated
in Lemma 9 is a homomorphism.

Let Vg U(4). We first show that the matrix R of
Eq. (6.3), which is defined in terms of V through the
sequence of relations, Eqs. (6.3)—(6.8), is proper, real
orthogonal. That R is real follows from the form of Q
and the explicit expression for A. Thus, RC 50(6) if
Q is unitary unimodular, i.e., if det Q=1 and the
matrices Qi and Q& satisfy

F[4po]({]}/4)
F[4oo] ( f 4 }/L)

F[uo] ({31}/L)
F[pio] ( f 11}/L)
F[810]( f 2 }/L)

F[»o]({22}/L)
F[pn](f'''}/1)

X=O, 2, 4,

L=O, 2,

123
L=2, 3,

L=1, 3,

L=O, 2,

QiQi'+Qp*Qp = Ip,

QiQp'+Qp*Qi = 0

(A1.1)

(A1.2)

We must demonstrate that these relations are indeed
satisfied by Qi and Q& of Eqs. (6.6)—(6.8) for Vg U(4) .
(The restriction to SU(4) is not necessary at this
point. )

Since we are assuming that Vg U(4), the unitary
condition VV~ = I4 implies the following relations among
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the partition matrices appearing in Eq. (6.1):
VSV3t+ant = Ia,

V P*=—y*a

pU~t-

Pp*+vv*= 1.

(A1.3)

(A1.4)

(A1.5)

(A1.6)

The dificult, part of the construction is contained in
an ancillary result which we state, deferring the proof
until later (Appendix 2):For det Q= 1, the matrix Qi in
Eq. (A1.11) is such that the Hermitian positive semi
definite matrix Qigit has ei genvalues 1, I y I',

I y I', where

I y I'=—
I
—1+Tr (Qpgit)]/2&1. (A1.16)

QiQi' = VV*I3+nn',

Using these relations, definitions (6.6)—(6.8), and
the property I' n=o, we easily establish the following
identities:

(A1.7)

This is the key property which allows us to carry
through the proof.

Recall that a 3X3 Hermitian matrix is related to its
orthonormal eigenvectors (column matrices) vi, v2, v3

and its real eigenvalues X~, 'A2, X3 by
Qg*Q2 ——r *r = (ntn)I3 nnt, —

QiQ2'= —vr *,

g,*g,=~r.*.

(A1.8)

(A1.9)
where

(A1.10)

H= gX,vv, t,

g v,v,'=Ia.

(A1.17)

(A1.18)

where

t'Qi Qu*)

Ee. g*)
(A1.11)

Qi ——LRii+Rgg+i(Ri2 —Rmi) ]/2, (A1.12)

Q =tLR R+'(R +R )]/2, — (A1.13)

in which each R;, is a 3&3 real matrix which comes
from partitioning R. Since Q is unitary unimodular, the
matrices Qi and Q2 necessarily satisfy

QiQi'+ (Qggm") *=I3,

e.e"+(ge")*=o.
(A1.14)

(A1.15)

Given the two matrices Qi and Q2 and the properties
det Q=1 and Eqs. (A1.14) and (A1.15), the problem
is to find V3, n, P, and y such that: (a) Eqs. (6.6)—(6.8)
yield Qi and Q2, and (b) the matrix V defined by Eq.
(6.1) belongs to U(4) . We now give the complete and
general construction of V3, n, p, and y such that these
properties obtain.

Noting that U being unitary also implies ntn+yp*= 1,
we obtain Eqs. (A1.1) and (A1.2) from those above.

Nowhere in deriving the above results have we
required V to be unimodular For ea. ch VC U(4), the
equations of Lemma 9 define a real orthogonal matrix
Rg 0(6) . We still must prove that det R= 1, i.e., that
det Q=1. This result follows from the matrix lemma
given in Appendix 2 (since Qigit has eigenvalues 1,
I v I',

I ~ I') .
We have thus proved: For each VQ U(4), the equations

of Lemma 9 define a uni que Rg SO(6) .
To show that the equations of Lemma 9 give a

mapping of U(4) onto 50(6), it must be demonstrated
that each R&50(6) is the image of at least one VC
U(4) . Stated less precisely: Given RP SO(6), we must
be able to "solve" the equations of Lemma 9 to find a
Vg U(4) . This we next do.

Let R&SO(6). Then the matrix Q=AtRA is unitary
Unimodular, and has the form

n' +I ~ I'=1 (A1.20)

(This is always possible, since 0&
I y I'&1.)

Equations (A1.16) and (A1.19) are the basic rela, —

tions which allow us to obtain the inverse solutions to
Eqs. (6.6)—(6.8). Let us describe the construction of
these solutions, verifying subsequently that they are
solutions. First, we select any p satisfying Eq. (A1.16) .
Second, we determine the column matrix OI, up to an
over-all phase from

, ;*=(g g ),,—~ I'S;,. (A1.21)

Third, we form the skew —symmetric matrix I' of Eq.
(6.8) and 6x the phase of n by requiring

(A1.22)

(We must show that this is possible. ) Finally, we define
p and V3 as follows:

p= —Qia*, (A1.23)

U, =~*g,—r.*g,. (A1.24)

We must demonstrate that: (a) the y, a, P, and U3

given above solve Eqs. (6.6) and (6.7); and (b) the
matrix V, now defined by Eq. (6.1), belongs to U(4).

First, we verify (a):
~v —-p=lvl'e —~r.*e.+ 'g

=(l~l'+ ' )Q+r.*(r.g —vg.)

=Qi, (A1.25)

where we have used the identity

nat= (ata)Ig+r *r (A1.26)

in the second step, and where Eqs. (A1.20) and (A1.22)

Using this result, we now deduce the form of Qigit.

Qigit ——
I y I'I3+nnt, (A1.19)

where n is the eigenvector of Qigit having eigenvalue 1
and normalized such that
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have been used in the last step,

r„v,=~*r.g,—r.r.*g,

0.'= ne'& to obtain

ra'Ql vg2. (A1.38)

=(I7 I'+~'~)I =I
by using Eqs. (A1.14), (A1.20), and (A1.26);

(A1.30)

V P*= —(v*g —r-*Q)Q' = —v* (A131)

since Qigi~a=n and Q~gita= —Qi*Q2n=0;

8~*+1~ I'= 'g e '-+I y I'= ' +I ~ I'=I (A1 32)

We still must demonstrate that 0. can be chosen such
that Eq. (A1.22) is satisfied. The relation

(r-Q ) (r-Q ) '= I y I'r-r-'=
I ~ I'Q Q

' (A1 33)

is established by multiplying Eq. (A1.19) from the left
by F and from the right by F ~, noting that F 0;=0.
Equations (A1.26) and (A1.14) are then used to prove
r r =Q2Q2 . If y=0, then we obtain I' Qi ——0 from
Eq. (A1.33) and Eq. (A1.22) is therefore correct. (Note
that for y =0, the column matrix n is determined only
up to a phase. ) If y/0, then the matrix Qi is non-
singular. Furthermore, the relation

I. I Q -'=g '(I.--') (A1.34)

follows from Eq. (A1.19) and the property Qi '~=
gita. Since Q2gito. =0, we obtain

I y I'Q.g.-'=Q.e" (A1.35)

The matrix Q2Qi is skew —symmetric Lproperty (A1.15)7,
and n is an eigenvector having eigenvalue 0. The form
of Q2Qit therefore must be

Qggit ——ar (A1.36)

for some complex number a. Hence,

r-Q =
I y I e., (A1.37)

and Eq. (A1.33) requires I
a

I

=
I p I. We put a =&*e'",

=(I v I+-'-)e.--*=e.=g., (A1.27)

in consequence of Eq. (A1.20) and the property agm ——0
LThe property Q&n = 0 is an easy result of the definition
of n and relation (A1.14)7.

Second, we verify (b) I by showing that Eqs. (A1.3)—
(A1.6) are satisfied7. The following preliminary rela-
tions simplify the proof:.*Q.g"r-=-.r-*g.g"=I. I (Q.g")*, (A1.28)

r ~Q2Q2tr = r„*r —r *Qi~Qir

=r-*r-+I v I'(Q.e")* (A1.29)

These relations follow quite simply from Eqs. (A1.14)
and (A1.15) and property (A1.22). Then

v,v, '+ ~ =I & I'g,Q,t —r„*g,g,tr.
+~*gg"I.-~r.*e.g '+-

=
I y I Lg Q"+(e.e")*7-r.*r.+- '

Thus, we can always satisfy Eq. (A1.22) by an appro-
priate choice of phase of the column matrix 0..

Observe that the matrix F, hence o., is determined
directly by

r-= (v*) 'Q2Qi' (A1.39)

for y/0. (We have, however, been careful to formulate
the construction of an inverse solution such that it is
valid even for y= 0.)

The results, Eqs. (A1.25)—(A1.38), prove that for
each y deteiinined by Eq. (A1.16), and for a, P, and V&

given by Eqs. (A1.21)-(A1.24), we obtain a VQ U(4)
which maps to the proper orthogonal matrix E whose
elements determine Q, and Q& by Eqs. (A1.12) and

(A1.13): The equations of Lemma 9 are a mapping of
U(4) onto SO(6).

Note that the arbitrary phase of 7 (or the arbitrary
phase of n if y=O) can always be chosen such that
Vp SU(4).

While Lemma 9 gives, in fact, a mapping of U(4)
onto SO(6), this mapping need not be a homomorphism
of U(4) onto SO(6). Indeed, the elements of U(4)
which are mapped to the identity I6 of SO(6) are of

the form

0

(A1.40)

,0 0 0 e'~

for 0&@&2+.But these elements are not the elements

of an invariant subgroup of U(4) —hence, the mapping
cannot be a homomorphism of U(4) onto SO(4) . How-

ever, if we restrict to SU(4), then we have

&I4—+I6, (A1.41)

and since {Ii, I, I are the ele—ments of an invariant

subgroup of SU(4), the mapping of Lemma 9 may be
a homomorphism of SU(4) onto SO(6). That this is

the case, we now prove.
The mapping of Lemma 9 is a homomorphism if it

can be demonstrated that V—+R, V'—+R' implies VV'—+

RR' This ma.pping is a homomorphism if and onty if
VQ SU(4) . (We have already established the "only if"
part. )

The proof that we have a homomorphism is not as
trivial as one might think. Taking V to be of the form

of Eq. (6.1) and V' tobe

(A142)
v')

'
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we obtain C;, in row i and column j of C is the cofactor of the
element in row i and column j of V3. The relation

(A1.43) between C and Vt is

where
Cvb= V3C= (det V3)IS. (A1.56)

Vs"= Vsvs'+aP',

a"= Vbn'+7'n,

p"= Vs'p+vp',

V"=Pn'+VV' (A1.44)

r.*V,*r..= —V,r&r...
r„.V, =~*V,*r.—n*pIF...

where we have used the relation

n'P=FpF +(Pn')Ib

(A1.49)

(A1.50)

(A1.51)

in obtaining Eq. (A1.49).
Condition (A1.50) can be reduced still further upon

noting that
VV,*=I, ppt, —(A1.52)

(A1.53)

(These relations follow from Vt V= I4.) Multiplying
Eq. (A1.50) from the left by V3 now yields

Var

v3a�'
V3 p ra' ~ (A1.54)

Since each side of this equation is skew —symmetric, we
can equate the (23), (31), and (12) elements and
obtain a column matrix relation. The result is

CV3a.'= y*n', (A1.55)

where C is the cofactor matrix of V3, i.e., the element

The product QQ' =Q" is again of the form, Eq. (6.5),
where

1 1 1 2 2) (A1.45)

Q."=Q.Q '+Q.*Q '.

To establish the homomorphism, it must be demon-
strated that Eqs. (A1.45) and (A1.46) are identically
satisfied when QI, Qs, QI', Q2', QI", Qs" are expressed in
terms of the respective partition matrices of V, V', V",
where we can use the relations (A1.44) between these
partition matrices. These substitutions lead to the
following results. Equations (A1.45) and (A1.46) are
satisfied identically if and only if the following relations
hold identically:

r.*v,*r..v, '= (p~') v,v, '—v, 'pv, ', (AI.47)

rr„vb Vb'= 7*vjj*r„vs'—n*Pt F Vs'. (A1.48)

[In obtaining Eq. (A1.48), we have used two properties
of skew —symmetric matrices of the type r„namely,
F,b= —Fba and F,4b F+F——b for arbitrary a= (aia2a3)
and b= (bibsb3). j Since these equations must be iden-
tically satisfied, the conditions that our mapping be a
homomorphism are reduced to

Equations (A1.49) and (A1.55) must hold for
arbitrary a'. Thus, we finally obtain: The accessary md
sugcient conditions for the mapping of Lemma 9 to be a
homomorphism are

y*=det Vg

(A1.57)

(A1.58)

for each V in the map. We assert: These relations are
satisfied for each Vg SU(4).

To prove the above assertion, we start with the
unitary relation

V*=V-'= (det V)-I8, (A1.59)

where 8 is the cofactor matrix of V [see the definition
preceding Eq. (A1.56)j. By direct examination of the
cofactors of V, written in the form of Eq. (6.1), we find
the following identities:

&,,= yC, ,+ (F,Vb I'p), , i j=I 23
row [84I t'4s 64b] = nC, —

col [CI4 8$4 834j— Cp,

644= det V3. (A1.60)

(det V)n*= —CP,

(det V)p*= —Cn,

(A1.62)

(A1.63)

y* det V=det V3. (A1.64)

From Eq. (AI.64), we obtain the result: det V= 1

implies y*=det V3.
Next, we multiply Eq. (A1.61) from the right with

I'p*, noting that

r.v,r,r,*=r.v, (p*p—ptpI, )

= r. ( v'nP P'PV, )— —

= —(p'p) r-v,
CI'p*=y*(det V) vs*re*.

Thus, we obtain

r.V,= —(det V) V,*FP. (A1.65)

We can now conclude: det V= 1 implies r *V3*=
—Varp.

The proof that our mapping of U(4) onto SO(6) is
a homomorphism if and only if V E SU(4) has now been
completed. Note that the kernel of the homomorphism

Writing V* in the form of Eq. (6.1), there obtains the
following relations for each VP U(4):

(det V) Vb* ——7C+F Vbrp, (A1.61)
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is

The homomorphism is thus 2 to 1.

APPENDIX 2. A MATRIX LEMMA

(A1.66)

(A2. 1)

The following matrix lemma is proved in this Appen-
dix: Each unitary matrix, QF U(6), which is of the form

Note that 0&a'&1/4 in consequence of the fact that
the largest value of a' occurs for X= ~. Thus, the roots
of Eq. (A2.7) always belong to the interval LO, lj.
Note also that if X~ is a, root of Eq. (A2.7), then the
other root is 1—Xq.

Ke divide the remaining portion of the proof into
three parts: (a) Q~ is nonsingular; (b) Q~ is nonsingular;
and (c) Qq and Q~ are singular.

(a) Q~ is Eonsingular. If Q~ is nonsingular, we can
write

either has det Q=+1 or det Q= —1. If det Q=+1,
then Q~Q~" has ei genvalues 1, X, Xfor some X in the interval
0&X&1, and conversely; if det Q= —1, then Q&Q&t has
eigenvulues 0, X, X for some X in the interval 0&lb, &1,
and con~ersely.

The proof that the homomorphism of Lemma 9 from
SU(4) to SO(6) is onto depends crucially on the
validity of the above result in the case det Q= 1. LNote
that the subgroup of U(6) with elements of the form
(A2.1) is then isomorphic to O(6), the isomorphism
being given by I|.'=AQAt, where A is de6ned by
Eq. (6.4).)

To simplify the notation in the proof, we define the
3&3 matrices as follows:

S=Q2Qi', H=Q~Q~' &= (Q~Q2')* (A2 2)

(A2.8)

where
B=Q~Q~ ' (A2.9)

0 —bj (A2.11)

(A2.10)

The second identity in Eq. (A2.10) follows easily upon
multiplying Q&tQ&+Q2tQ2=I from the left by Qz and
from the right by Q~ '. Since 5 is skew —symmetric and
H is Hermitian and nonsingular, it. follows from Kq.
(A2.10) that B is skew —symmetric

Then H and E are Hermitian positive semidefinite, and
5 is skew —symmetric.

The conditions that Q be unitary are now expressed as

H+E=I, 8= —S.

Evaluation of det Q from Eq. (A2.8) now gives

det Q= (1+b')'det H,

b'=
I b~ I'+I bm I'+I b3 I' ~

(A2.12)
(A23) where

Next, from Eq. (A2. 10), we obtain

BtB=H 'St5H ' (A2.13)H(I—H) =StS (A2.4)
so that

The first of these relations implies that each eigenvalue
(necessarily real) of H is in the interval LO, 1j. The
relation

0 —ug (A2.5)

is also easily establishing upon using the relation
Q~ Q2 ——I—

Q~ Q~. Furthermore, since S is skew —sym-
metric, it has the form

o

2b'=Tr (BtB)=Tr (StSH ') (A2.-14).

The unitary transformation which diagonalizes St5
and H carries St5 to the diagonal form diag (0, a', a')
and H to the form diag (1, X, p) . Evaluating the trace
of the right-hand side of Eq. (A2.14) now yields the
relation

2b2 a2( j2+u2) /$2u2 (A2.15)

The eigenvalues of StS are 0, a', a', where a'=
I

aq I'+
Qg C3

Next, we observe from Eq. (A2.4) that H and StS
commute. Consequently, these two Hermitian matrices
can be simultaneous1y diagonalixed by a unitary matrix.
Again using Eq. (A2.4), we deduce the following result:
Each eigenvalue of H belongs to the set

det Q=1. (A2.16)

Corresponding to the set (1, X, 1—X), we obtain the
value of det Q to be

Since H is nonsingular, its eigenvalues are necessarily
either (1, X, X) or (1, X, 1—X), where X is a root of
X(1—X) =a'. Corresponding to the set (1, X, X), we
obtain the value of det Q to be

(0, 1, X, 1—XI,

where 'A is a number which satisfies

~(1—X) =a2.

(A2.6)
det Q= 1/4X(1 —'A). (A2.17)

Since Q is unitary, its determinant must have absolute
(A2.7) value 1. Therefore, the possible eigenvalue set
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Hug = uy)

Hu2= 0,

Hu3= Aug)

Lug=0,

Eu2 = u2)

Eus ——(1—X)us. (A2.19)

But, from Eq. (A2.4), we obtain StSui ——0, StS~=O.
However, StS necessarily has eigenvalues (0, a', a'),
and the only way that two can be zero is for three to
be 0, and therefore S is the zero matrix

(1, X, 1—) ) must be excluded unless X=1/2 in which
case it is of the form (1, 1/2, 1/2). Thus, Qi nonsingular
implies that det Q=1 and that H=QiQit has eigen-
values (1, X, X) for some X in the interval Lo, 1j.

(b) Q2is Nonsingular. We use the following relation
and apply the results of Part (a)

f'»I(Q Q*l m Q*l
I=Q' (A2 18)

4 o) 'e Q.*) kQ Q.*)
Since Q is unitary and Q2 is nonsingular, we must have
det Q'= 1 and the eigenvalues of QsQ2t are (1, 1—X, 1—l1)
for some X in the interval

I 0, 1].Therefore, the eigen-
values of QiQit are (0, X, X), and det Q= —1 follows
from Eq. (A2. 18).

(c) Qi and Q~ are Singular. Both H and IC are singu-
lar. Hence, each possesses an eigenvector having eigen-
value 0. It follows from Eq. (A2.3) that the ortho-
normal eigenvectors, u&, u2, and u3 of H satisfy

Thus,
det I'= (det Q) *=

I
det I'1 I'= 1. (A2.27)

The cases X=O or i are characterized by Tr H=i
or Tr H = 2, respectively. Thus, Qi and Q& singuhr imply
Tr II= 1 or Tr H = 2. Here Tr H = 1, in addition, imp/i es
that det Q= 1 and that H has eigenvalues (1, 0, 0) (from
the results of the preceding paragraph).

Finally, we must consider the case ) = 1 (Tr H= 2).
In this case column 2 of A is col (0, 0, 0), while columns
1 and 3 of 8 are col (0, 0, 0) . We can now repeat the
argument leading to Eq. (A2.26) replacing I4 by the
improper orthogonal matrix Lei eq e3 e4 e2 e6$. The con-
clusion is: Qi and Q2 singular and Tr H=2 imply that
det Q= —1 and that H has the eigenealues (0, 1, 1) .

Since all possible properties of the submatrices of Q
have been covered in Parts (a), (b), and (c), the
matrix lemma stated at the beginning of this Appendix
is proved. It should be remarked that one can write
out explicit matrices of the type Q which exhibit the
properties considered in each of the parts, (a), (b),
and (c).

APPENDIX 3. PROOF OF LEMMA 10

An alternative form of the homomorphism of Lemma
9 is given in this Appendix.

Let Z denote the following skew —symmetric matrix:

0 —s3 s2* sg

5=0. (A2.20)

Hence, X in Eqs. (A2.19) is either 0 or 1, and H is
idempotent: 0

(A3.1)

H'= H. (A2.21)

Let U denote the 3&&3 unitary matrix whose columns
are the eigenvectors of H:

V= Lui u, u3j.

,—sg —s2 —s3 0,
Let Z, denote the matrix Z when s~, s2, s3 are introduced
explicitly in the form

Then s, = (x,+ix;~,) /v2, j=i 2 3 (A3.2)

(Ut 0) (v o
I (A

Q'—=
I I

Q'
I

I=
I I, (A2 23)

t, o U) (0 v") (Il A*)

where

The transformation

x'=Rx= (A*QA) x

can be written as

(A3.3)

A= V1QitV,

8= UQ2U.

(A2.24)

(A2 25) tllat is,
(Ax') =Q(Ax), (A3.4)

0)I'= Q'&o=IE».*)
(A2.26)

where we note that I' is unitary, berne, P& is unitary.

Now consider the two cases, X=0 or 1, taking X=0
first. It follows easily from Eqs. (A2.19) that columns
2 and 3 of A are col (0, 0, 0), while column 1 of 8 is
col (0, 0, 0). Multiplying Eq. (A2.23) from the right
by the proper orthogonal matrix Eo = Lei eq e6 e4 e2 eaj
now gives the. form

(A3.5)

Zg™,= VZ.V

for V—+E is transcribed to the proof that

Z'= VZV

(A3.6)

(A3.7)

for V-+Q, where Vg SU(4).
To prove Eq. (A3.7) it is necessary to show explicitly

where s is the column matrix col (si s2 si). Thus, the
proof that
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that the transformation from s to s' contained in Kq.
(A3.7) is precisely Eq. (A3.5) when Ql and Q2 are
expressed in terms of the partition matrices of V
according to Eqs. (6.6)—(6.8) .

Since Z' and Z are each skew —symmetric, it is sufFi-

cient to examine the elements ij, i &j, of Eq. (A3.7):
&,,'= +41 (VVVb' —Vbl Vl') &bt (A3 8)

k&l

It is just a question of looking at the various elements
of this equation to deduce that the transformation is:

s'= (yV2 —Pa) s—(V21' ) s*, (A3.9)
s'*= (r&V, ) s+Cs*, (A3.10)

where C is the cofactor matrix of V3 introduced in
Appendix 1. Noting the relations, Eqs. (6.6)—(6.8),
we see that Eq. (A3.9) agrees with that obtained from
Eq. (A3.5).

To demonstrate the agreement of Eq. (A3.10) with
(A3.5), we note two results which are valid for VE
U(4)

pqO
(W)= ' "'"'"".

(A4.3)
Dp q) q—]'"

The transition to the general basis vector may now
be accomplished by the application of the operator as
follows (Lo65):

p poo

These matrix elements have been noted in various
places, (Lo65, Ge50a, Ba63) and we will not repeat
them. It is fairly trivial to go from the U(4) highest
weight of Eq. (A4.1) to a U(3) highest weight, this
step requiring the application of E22 P—

q times followed
by the application of E42 P—

q times (with phase and
normalization appropriate to these operators):

p p00

I'eV2 ——(det V) Q2t, (A3.11)
C= (det V) Qlt. (A3.12)

The first relation follows from the Hermitian conjugate
of Eq. (A1.65) and the definition of Q2. The second
relation follows from Eq. (A1.3) upon multiplying by
C from the left and using Eqs. (A1.56), (A1.63), and
(A1.64), together with the definition of Ql. In particular,
for det V=1, i.e., Vg 5U(4), we obtain the required
agreement between Eqs. (A3.10) and (A3.5).

APPENDIX 4. GEUFAND BASIS VECTORS

pq0
g 1/2+21 ~~32~

X$E»(E„E„)+E„E„]=—Z

p p00

Pqo
(A4.4)

The explicit form, Eq. (6.70), of the Gel'fand basis
vectors of the spa, ce K„,o is derived in this Appendix.

We have already observed that 3C„,0 is the carrier
space for IR Lp p 00] of U(4) and that the unique
highest weight is

PPoo

where

(7 P)!(P)!—
(~-v) (~—P) (q —&) 'q.

(A4.5)
(~—0+1) !(~—q)!(~+1)!

(P 0+1) '(p —~—) (p —
q) (p+1) '

PPo
(1V) =lb"/(P )'"

To facilitate the application of the operators in Eq.
(A4. 1) (A4.4) to the state vector of Eq. (A4.3), it is con-

venient to define

A =Ebl(E11 E22) +E22E21 ) (A4.6)

It is now simply a question of using the generators,
I E;;I, to generate the general basis vector from the
highest weight. This procedure requires explicit knowl-
edge of the canonical matrices of certain of the genera-
tors on a general basis vector of the form

'~ 't-"(~ r+ "f )'
a!b!c!d!(a+d+1) ! ' (A4.7)

where a, b, c, d are non-negative integers. We defblM

F g, g to be zero if any one of the integers c, b, c, or d
becomes negative. Then we have

pp00 F.,b„,b(g, 1) =pl i2'/a!c!(a+1)!. (A4.8)

p qO
(A4.2)

Using the explicit forms of the generators given by
Eqs. (6.38)—(6.42), we derive the following identity:

&~I abed (b+ 1)~a—1,b l,c,4(dd+ 1)~a—lb, a—l,d+l. (A4 ,9)

Using this identity, we now establish the following



REVIEWS OF MODERN PHYSICS ' JULY 1972

result by induction:

(A'/e!) F, p, p
——Q (—1)"F. .. p, , d p, (A4.10)

where the sum over d can be considered as running over
all integral values 0, 1, 2, ~ ~ ~ .

The next relation is obtained directly upon expanding
(r/3gp fp—f 3) / by using the binomial theorem and letting
the result act on F 3 j(Y/ l ):
E(F»'If )F.p"3(~ &)

(—1) / '(b+s) !(a+I—s)! s.„,, „,,&,(&, c).
s!(f s)!b—!(a+4+1)!

(A4. 11)

The next step is to operate on Eq. (A4. 10) with E33
and use Eq. (A4. 11) to evaluate the right-hand side.
The double sum which occurs in the resulting expres-
sion can be reduced to a single sum by putting r = d —s
and replacing the summation over d by a summation
over r. The summation over s then gives a numerical
coeffi.cient:

g I s!(f s)!(e r—s)!(a e+—r+—s+—1)!7 '

= (a+f+1) ILf'(a+1) .(e—r) '(a+f+r e+1) .'&. —

(A4. 12)
The result of this calculation is

e!(a+f+1) !
L(F- 'A)F. ".7(., l-) =.

(a+ 1) !(a—e) !

(—1)""(r+1).
X Q. . . Fp.. .,. / ...()), f'). (A4. 13)

It is convenient at this point to write out the par-
ticular basis vectors having y=n in Eq. (A4.4). This
result is contained in Eq. (A4.13) upon identifying
f=q p, e=p —a, —a=p —

q, e=q and inserting the
appropriate normalization factors. %e write the result
in the following form:

p poo'

pqo

a —P) ( &/3

X
(~—q) (q —P).

v~t(~+p) 3+l (~+p—) I
(A4. 1))

4. —i-)'
where the D function is the standard one which occurs
in the representations of SU(2), the domain of defini-
tion now being extended to the space C:

11 12

21 22

=
I (j+m) !(j—m) !( j+m') !(j—m') !]'"

xg 11 21 12 22

( j+m' —s)!s!(m—m'+s)!( j—m —s)!
(A4.18)

The notation for the argument of D&' indicates that
the P;; are the elements of an arbitrary 2X2 complex
matrix A:

11 12

21 22

(A4.19)

Under the restriction A —+Up SU(2), these D functions
become the elements of the unitary matrix D'(U)
which corresponds to U in the standard matrix repre-
sentation U~D'(U) of SU(2).

Combining Eq. (A4. 17) with Eq. (A4. 14), we obtain
the final form of the Gel'fand basis vectors:

I'p poo'

where

& ( +1) '( —0+1) (P—) (p . 0—+1) .
(p+1) l( —0)!

(A4.16)

In the final step, we must apply E» repeatedly to
Eq. (A4.14). Note, however, that E3) annihilates G„p.
Thus, we need to apply E» only to the first factor in
Eq. (A4.14). The following result is obtained directly
upon expanding the operator on the left-hand side by
using the binomial theorem:

(v —~)!
( ) (( ) (

())3))1 flf2)

((3—P) l
(/3 F

'13' pG:p(n, t), (A4 14)

pqo

where

G, p()t, f) = (—1) PA'/'

( ) '93 f 3 ())ll 1+g2l 2)
((a—p+r+1)!(p n r)!(P—)! !'——

=D- —,;.,p, ;.,p I , I=,-p(~, l)k(~-P)

(A4.20)
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Ba60

Ba61

Ba63

Ba66

Ba67

Be67
Bi67

Bi68

Bi69
Bi70
Br70

Br70a

Ca65

Ca71

Ch64

Ch65

Dr65
Ef71

Es64

Ga71
Ga71a
Ga72

Ge50a

Gr70
Ha62
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