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A Theory of Isobaric Analog Resonances”
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A theory of analog resonances is reviewed which makes use of projection operators. The Hilbert space is divided into
three parts: a continuum or open-channel space, an analog-state space, and a compound space. The phenomena are
discussed in terms of the dynamical coupling of these spaces. The parameterization of the T matrix is discussed in detail,
and equations are presented for various cross sections. The commutator [H, T_], where 7_ is the isospin-lowering
operator, plays an important role in the theory, and the various terms which contribute to this commutator are dis-
cussed. The energy splitting of the isospin multiplet, i.e., the Coulomb displacement energy, is discussed in detail. The
importance of the analog resonance phenomena for the extraction of spectroscopic information is stressed, and it is shown
how such information may be obtained. Various processes which contribute to the escape amplitude of the analog state
are classified, and some numerical estimates are given. For several regions of the Periodic Table, graphs are presented
for the various theoretical escape amplitudes, continuum energy shifts, asymmetry phases, and optical phase shifts,
etc. Spectroscopic factors are calculated and compared with those obtained in other experiments.

CONTENTS

1. Introduction......... ... ... i 49

2. Projection Operators and a Reaction Theory for Analog
Resonances...................ooiiiiiiiiiiiiL, 51
2.1 The Analog'States..................ccovuun.. 51
2.2 Wave Functions for the Continuum Space........ 52
2.21 The Continuum Space..................... 52
2.22 Coupled Optical Equations................. 52

2.23 Orthogonality of the Continuum and Analog
SPACES. . .\ 53
2.3 The T Matrix for Analog Resonances............ 54
2.31 Formal Derivation of the 7" Matrix......... 54
2.32 Definition of the Resonance Parameters...... 55

2.33 Coordinate Space Equations for the Analog
Resonance.............................. 56

2.4 The Compound Nucleus Space and Statistical As-
SUMPLIONS. . . ... 56
2.41 The Optical Hamiltonian. . ................ 57

2.42 Matrix Elements between the Analog State
and the Compound States.................. 57
2.43 Doorway States........................... 58
2.5 Average and Compound Nucleus Cross Sections... 59
2.51 Average Cross Sections and Polarization. . ... 59
2.52 The Compound Nucleus Cross Section.. .. ... 60
3. The Isospin-Violating Parts of the Hamiltonian........ 61
3.1 Electromagnetic Interaction.................... 61
3.11 The Coulomb Potential.................... 61
3.12 The Finite-Size Effect..................... 61
3.13 Vacuum Polarization. ..................... 61

3.14 Relativistic Corrections and Magnetic Inter-
ACtiONS. . ... 02
3.2 Isospin Violation of the Nuclear Hamiltonian. . ... 63
3.21 The Proton—-Neutron Mass Difference. . .. ... 63

3.22 Charge Dependence and Charge Asymmetry
of the Nuclear Force...................... 64
33 Summary.............oiiii 64
4. The Norm. . ... 64
5. Displacement Energies.............................. 66
5.1 The Coulomb Displacement Energy.............. 66
5.11 The Direct Part of the Coulomb Energy.. ... 67
5.12 The Exchange Term....................... 68
5.13 The Effect of Finite Proton Size............ 69
5.14 Vacuum Polarization. ..................... 69
5.15 The Short-Range Correlations. ............. 69

*This work is supported in part through funds provided by
the 5—\tomic Energy Commission under Contract AT(30-1-
2098).

T Part of this work was performed while these authors were
at the State University of New York at Stony Brook, Stony
Brook, New York 11790.

1 Present Address: Department of Physics and Astronomy,
Tel-Aviv University, Tel-Aviv, Israel.

§ Present Address: Physik Institut der Universitit, 78 I'reiburg
(Breisgau), Germany-.

il Present Address: Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106.

48

5.2 Isospin Mixing in the Parent State. . ... e
5.21 Evaluation of AE, in a Single-Particle Model.

5.22 Alternative Approach to the Evaluation AE;.

5.23 Total Contribution of the Isospin Violation to

the Displacement Energy..................

5.24 Estimates of Energy Shifts Caused by Isospin
Mixing. . ..o

5.3 Configuration Mixing in the Parent State.........
5.31 General Effects of Configuration Mixing. . ...

5.32 Estimate of Configuration Mixing Effects.....

5.4 Other Isospin Violating Parts of the Hamiltonian. .
5.41 Electromagnetic Spin—-Orbit Effects..........

5.42 The Proton-Neutron Mass Difference. . . . ...

5.43 The Charge-Dependent and Charge-Asym-
metric Nuclear Force......................

5.5 Summary of Formulas. ........................
5.6 Models for the Excess Neutron Density..........
5.7 State Dependence of the Displacement Energies. . .
58 Summary......... ... .

. Escape Amplitudes and Spectroscopic Factors.........

6.1 Direct and Compound Escape Amplitudes........
6.11 Direct Escape Amplitude. .. ...............

6.12 The Compound Escape Amplitude...........

6.2 The Direct Escape Amplitude, Spectroscopic
Factors and the Single-Particle Escape Amplitude.

6.3 Calculation of the Single-Particle Escape
Amplitude. . ............. ..o

6.31 The Charge-Changing Coulomb Iorce—
Ve

6.311 Direct and Exchange Terms. .........

6.312 Finite Proton Size, Vacuum Polariza-

tion and Short-Range Correlations. .. ..

6.32 Other Isospin Violating Parts of the
Hamiltonian. . .......... ... ............

6.4 Application of the Elementary Single-Particle
Escape Amplitude. . ...................... ...,

6.41 Elastic Escape Amplitude for Single-Particle
Parent......... .. ... ... ...

6.42 Inelastic Amplitudes to Particle-Hole Final
States. . ...

6.43 Cases With Simple Fractional Parentage. . . ..

6.44 Valence Particle Escape....................

6.45 Pairing Effects.............. ... ... ... ....

6.5 Calculation of the Rearrangement Escape
Amplitude. .. ............ ..o

6.6 Nonstatistical Contributions to the Compound
Escape Amplitude. . .......... .. ... ... ...

6.61 Configuration States.......................

6.62 Giant-Isovector Monopole. .. ........... ...

6.7 Channel Coupling Contributions to the Escape
Amplitude. ........... ... o

6.71 Distorted Wave Born Approximation........

6.72 Deformed Nuclei..........................

6.8 The Asymmetry Phase.........................
6.81 The Optical Asymmetry Phase.............

6.82 The Unitarity Limit ................... ...

6.83 Estimates of the Optical Asymmetry Phase. .

6.84 The Compound Phase. ....................

70
70
71



AvkrsacH, HUFNER, KERMAN, AND SHAKIN A Theory of Analog Resonances 49

6.9 Iorbidden Transitions......................... 95
6.91 Possible Mechanisms. ..................... 96
6.10 Summary........... . ... 97
7. Compound and Continuum Widths and Energy Shifts.. 97
7.1 The Compound Mixing......................... 98
741 Sum Rules. ............ .. ... 98
712 DOOrWaYS. .. .o ooo i 98
7.2 The Continuum Mixing. ....................... 100
7.21 The Continuum Mixing Proper and the Ab-
sorption Width. ................ . ... ... 100
7.22 Independent Single-Particle Channels vs
Channel Coupling......................... 101
8. Application to Various Regions of the Periodic Table
and Extraction of Spectroscopic Factors.............. 102
8.1 Introduction..................... . ... 102

8.2 Energy Dependence of the Resonance Parameters. 103
8.3 Isobaric Analog Resonances in the Lead Region... 104

8.31 The Structure of the Lead Region........... 104
8.32 Analog Experiments in the Lead Region. . ... 104
8.33 Calculation of Resonance Parameters........ 106
8.331 The Single-Particle Escape Width. .... 106
8.332 The Continuum Absorption Width.... 107
8.333 The Continuum Shift................ 107
8.334 The Optical Phase, Scattering Phase
Shift and Absorption Parameter.... ... 107
8.34 Comparison of the Calculated Parameters with
Experiments................. ... ... ... 109
8.341 Escape Widths and Spectroscopic
Factors. ................ ... . ... 109
8.342 Partial Absorption Widths............ 110
8.343 Total Widths. . ..................... 111
8.4 Analog Resonances in the Region of the Closed
Neutron Shell N=82........................... 112
8.41 Introduction. ................... .. ... ... 112
8.42 Escape Widths. .. ........................ 114
8.43 The Asymmetry Phase.................... 115
8.44 The Total Width. . ....................... 115
8.5 Isobaric Analog Resonances in the Region of the
Closed Neutron Shell N=50.................... 115
8.51 Introduction. ............................ 115
8.52 Escape Widths. ... ....................... 117
8.53 The Optical Asymmetry Phase............. 118
86 Conclusions....................iiii.. 119

Appendix 1. The Continuum Space and the Optical Model. 119
Al.1 The Continuum Space Projection Operator... 119
Al1.2 The Optical Model........................ 121

A1.3 Modification of the Continuum Space Wave
Functions................... ... ... ... 121

Appendix 2. Normalization Conditions for the Short-Range
Correlation Function...................... 123

1. INTRODUCTION

The recent application of the isospin concept in nu-
clear physics is a remarkable example of a common
occurrence in physics; often some of the older ideas
that seemed to have exhausted all of their applicability
and context come back to life with more variety and
deeper meaning.

When introduced in the thirties by Heisenberg
[He32] and then developed by Wigner [Wi37], the
concept of isospin seemed useful only for light nuclei.
It was believed that as soon as the number of protons
was increased considerably, the Coulomb interaction
would break the isospin symmetry and there would be
no physical correspondence between the actual nuclear
states and the representations of the SU, group in
isospin space. This was mainly thought to be the case
because the increase in the Coulomb splitting of the
isospin multiplet with Z would eventually place
members of the multiplet at such high excitation

energies that they would actually be in the continuum
and not yield any observable consequences.

The discovery of isobaric analog resonances in the
charge-exchange (p,#) reaction by Anderson et al.
[An61; 62a,b] and the observation of the same
resonances in elastic proton scattering by Fox et al.
[Fo64], led to a “renaissance” of the isospin concept in
nuclear physics. It was realized that members of the
multiplet in the continuum were identifiable [Ané61,
62a,b], and theoretical discussion was generated
[La62a-d; Ro65a]. The resonances being observed in
the system (Z4-1, N—1) were interpreted as the second
member, with quantum numbers (7,7T—1), of a
(2T41) multiplet. The first member of the multiplet,
with quantum numbers (T, T), is a low-lying bound
state of the neighboring nucleus (Z, N) ; this nucleus is
termed the parent nucleus and its states the parent
states.

If there were no isospin-violating forces, the analog
state! would be degenerate with the parent as well as
the other members of the multiplet. Only those parts
of the Hamiltonian which do not commute with the
generators of rotations in isospin space, T, will cause
the breaking of the multiplet. The most important of
these forces, the Coulomb interaction between the
protons, shifts the analog state upward in energy and
into the continuum. The analog state is imbedded in a
vast spectrum of states of lower isospin; however, the
long-range nature of the Coulomb force causes the
coupling to the neighboring states to be weak. Therefore
the presence of the analog state is able to affect scatter-
ing phenomena only over a narrow energy range. It is
then observed as a narrow resonance in cross sections
with intermediate energy resolution. (Indeed, this
phenomena provides an excellent example for the theory
of intermediate structure [Fe67]).

A large number of resonance experiments have been
performed since the early discovery, because it was soon
realized that the analog resonances provide a powerful
tool for studying the properties of the parent states.
The partial widths deduced from elastic proton scatter-
ing provide information about the relationship be-
tween the parent state and the target ground state. This
type of information is not unique to the isobaric analog
studies. Similar information may be obtained from
various transfer experiments such as (d, p), (d,1),
(a, ) etc. A unique and outstanding advantage of the
isobaric analog experiments is the possibility of studying
the relationship between the parent states and the
excited states of the target. Once the resonance is
excited (say by scattering of protons or by charge
exchange) it may decay to the low-lying target excited
states. By observing these decays and determining
their partial widths, parentage information is obtained.

The aim of this work is to review the phenomenon of
the isobaric analog resonance in one consistent, self-

! See Sec. 2.1 for a precise definition of the analog state.
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contained theoretical framework. We will not try to
review all of the theoretical work [La62a-d; Ro65a;
Ma66c; We66; Ma67; Me67; Web7a,b; Bu68; Me68;
Ma69a; Ta69; Bu70; Fa71]. However, we have at-
tempted to discuss and calculate all of the parameters
which characterize the resonance. Our description is
based on a unified theory [Fe58,627 of nuclear reac-
tions. The specific features associated with isobaric
analog resonances were given in [Pi67; Ke68]. In the
present review we demonstrate how these methods can
be expanded to provide a complete description of the
phenomenon. We show which essential physical quan-
tities enter into the calculation of each of the resonance
parameters and how the spectroscopic information may
be extracted. In carrying out this program we discuss a
significant portion of the data. However, a review of the
experiments is beyond the scope of this work.

The literature dealing with analog resonances and
related physical phenomena is very extensive. Many of
the theoretical results obtained in this work have been
derived by other authors using different reaction
theories. The reader who wishes to obtain an overview
of the various theories that have been employed will
do well to consult the theoretical references listed above
as well as the three books listed below:

1. Isobaric Spin in Nuclear Physics, edited by J. D.
Fox and D. Robson, (Academic, New York, 1966).

2. Nuclear Isospin, edited by J. D. Anderson, S. D.
Bloom, J. Cerny, and W. W. True (Academic, New
York, 1969).

3. Isospin in Nuclear Physics, edited by D. H.
Wilkinson (North-Holland Publ. Co., Amsterdam,
1969).

The first two of these books represent conference
summaries. The third is particularly valuable in that it
contains a series of review articles that treat subjects
that we have only touched upon, and which also discuss
the phenomena using reaction theories other than that
used here.

The advantage of the approach used here is the
natural separation of the problems associated with the
bound state structure of the parent and target states
from the problems of the reaction theory. This separa-
tion allows us to make use of the empirical information
obtained from optical model and coupled channel
studies. It also allows us to unambiguously incorporate
various models for the structure of the bound states.

In Sec. 2 we begin by defining the analog states in
terms of the parent state and the isospin-lowering
operator. We then go on to define the orthogonal open-
channel (continuum) space by making use of projection
operators. The rest of the Hilbert space is termed the
compound space. It contains all of the very complicated
states giving rise to compound-nucleus statistical effects
as well as some simple modes which are not conveniently
included in the open channel space. Having all the com-

plicated modes in one subspace facilitates the introduc-
tion of statistical assumptions.

Although the definition of the “open-channel space”
is not unique, this feature is more of an advantage than
a disadvantage. The flexibility in defining the open-
channel space allows one to choose the channels in a
way dictated by the actual physical situation. Channels
may be pulled out from the open-channel space and put
into the compound space and vice versa, depending on
whether these channels have some particular physical
interest. Whether a certain degree of freedom is in the
channel space or included in the compound space does
not change the final result provided no approximations
are made in the calculation of the quantities involved.
The reaction theory formalism is also generalized to
include direct channel coupling of any number of
channels.

Using this formal structure we derive the resonance
expressions for appropriately energy averaged scatter-
ing amplitudes. This allows us to define the resonance
parameters in terms of specific matrix elements. Indeed,
it is seen that all important couplings of the analog
state to the channel or compound spaces are given
in terms of the commutator of the Hamiltonian with
the total isospin lowering operator.

Expressions are also given for the cross sections. In
addition, there is some discussion of the statistical
treatment of the compound space and the introduction
of the “doorway’ concept.

Section 3 contains a discussion of all of the contribu-
tions to the commutator [H, 7-7. In addition to the
important contribution of the Coulomb interaction
between the protons, we also include nuclear isospin
violations and various magnetic effects.

In Sec. 4 we introduce some of the notation and tech-
niques by discussing the calculation of the simple
matrix element which determines the norm of the
analog state. This leads to a preliminary discussion of
isospin violations in the parent nucleus.

We go on in Sec. 5 with a discussion of the magnitude
of the energy splitting of the multiplet, which is defined
as the displacement energy. We give formulas accurate
enough to estimate the effects of all of the terms dis-
cussed in Sec. 3. This leads to an assessment of our
ability to use information about the displacement energy
to determine the neutron distribution.

The important escape amplitudes, which determine
the partial widths, are defined and discussed in Sec. 6.
The expression of the analog state in terms of the parent
allows us to discuss “escapes from the parent” in terms
of a charge-changing “interaction” defined by the
commmutator. This simplifies the discussion because the
parent is one of the primary objects of spectroscopic
attention.

The escapes are classified in terms of the complexity
of the process involved. The simplest process is the
direct escape of a neutron in the parent into the profon
continuum. This escape is mediated by the charge-
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changing Coulomb interaction mentioned above, aver-
aged over the protons in the parent. This is a single-
particle field which leads to a simple integral defining an
elementary single-particle escape amplitude. The com-
plete amplitude may be expressed in terms of this
amplitude multiplied by spectroscopic factors, plus
amplitudes for more complex processes. These include
rearrangement effects which are not expressible in
terms of a single-particle field, channel coupling effects,
and escapes which proceed via the compound nucleus.
Estimates of all of these effects (including the smaller
isospin violating terms of Sec. 3) are given. In general
the complex processes are very small, so that experi-
mental determination of partial widths can lead to
spectroscopic information.

Section 6 ends with a discussion of forbidden escape
amplitudes using all of the same methods as above.

A discussion of the physics associated with the total
width of the resonance is presented in Sec. 7. As usual
this carries along with it the concept of an energy shift.
In general, the contributions arise from both the coup-
ling to the compound modes as well as from continuum
coupling. The compound terms can be estimated using
a doorway approach, including the anti-analog and
the giant-monopole modes. The particular separation
of compound and continuum effects is strongly in-
fluenced by the treatment of the channel coupling.
(This coupling might lead to a giant-monopole reson-
ance in proton scattering.)

Finally, in Sec. 8, we present sample calculations of
all of the resonance parameters, for various regions of
the periodic table. Comparison with the experimental
partial widths for several closed-shell regions is carried
out to show how the theory can be used for extracting
spectroscopic information. Where it is possible, we also
make comparison with transfer experiments.

2. PROJECTION OPERATORS AND A REACTION
THEORY FOR ANALOG RESONANCES

In this chapter we wish to review and expand upon
the theory of analog resonances as formulated in [Pi67].
Central to the approach presented there is a division of
the complete Hilbert space of the scattering problem
into three orthogonal subspaces. The projection opera-
tors for these spaces are denoted by P, 4, and ¢. On
occasion we will refer to these spaces as the continuum
space, the analog space, and the compound-nucleus
space, respectively. The complete state vector of the
problem is written in the projection operator formalism
as

| )=P[¥)+4 | ¥)+q|¥).

The projection operators will be defined below.

(2.1)

2.1 The Analog States

In the study of analog resonances via a projection-
operator formalism, certain special features arise which
affect the precise definition of the continuum space.

Therefore it is advantageous to define the analog space
before specifying the continuum space in detail.
Following [Pi67], the analog states with Z+1 protons
and N—1 neutrons are defined as follows. We consider
states of the parent nucleus with Z protons and N
neutrons, and denote these states as | 7;). These states
are the actual eigenstates of the total Hamiltonian, i.e.,

H\w)=E;|m). (2.2)
The analog states are then
| Ai)=T_|m:)/(my| T T [ wi)'?
=T_|m)/ (N, (2.3)

where 7Ty, 7T_ are components of the total isospin
operator.?

The analog states embedded in the continuum of H
give rise to analog resonances through their coupling to
the continuum and the compound nucleus modes. This
point will be clarified in Sec. 2.3 where we discuss the
T matrix for analog resonances.

We should point out that the states | 4;) have the
same spacial character as the parent states. Unlike the
parent states, the analog states are not eigenstates of H.
The Hamiltonian would be diagonal in the space
spanned by these states if isospin-violating terms were
absent. In general, the states | 4;) are not mutually
orthogonal. However, we are able to define the pro-
jection operator for the analog space as

A= A4y ud; ], ny=(4; | 4;),

where the sum contains the analog states of interest.

Equation (2.3) provides a natural definition for the
analog states.? We may list the various properties which
follow from this choice:

(2.4)

(i) The definition is model independent as the parent
| 7) is an eigenfunction of H. This definition has the
valuable feature of separating the structure problem
for the parent state from the formulation of the reac-
tion theory. After the development of the theory,
various models for the parent state may be introduced
and their consequences explored. Of course, the isospin
operator 7 is independent of the description chosen for
the parent state.

(i1) In the absence of isospin-violating terms in H,
the analog states, as defined, are eigenfunctions of H,
part of an isospin multiplet.

(iii) The matrix elements coupling the analog states

2 The magnitude of the normalization factor, (r;| T, T- | mi)=
N, is 2T=N—Z if isospin is a good quantum number for the
state | 7; ), and is only slightly larger if isospin is violated weakly.
See Sec. 4.

3 The analog siates are auxiliary quantities in the theory of
isobaric analog resonances and are not directly observable.
Therefore other definitions for these statés are possible. The
calculated T matrix for the isobaric analog resonances should be
the same, independent of the definition chosen; however, the
calculation required could be quite different if other definitions
are made.
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to the P and ¢ spaces may be written in terms of the
isospin-violating parts of H. This is of great advantage
since this part of the Hamiltonian is small and well
known (cf. Sec. 3). For example, let us consider the
matrix elements of H taken between an analog state
and a state ® which is either in the continuum or in the
compound nucleus space. This matrix element may be
written

(@[ H|A)=1/NP)(@| VO [x); VO=[H T]

(2.5)

where the result follows from the fact that | ) is an
eigenfunction of H and that the states of the P and ¢
spaces are orthogonal to | 4) by construction. In the
following we will make extensive use of Eq. (2.5).

(iv) The main isospin violation arises from the two-
body Coulomb force acting between protons, and there-
fore the coupling between the analog state and the P
and ¢ spaces is weak. Other sources of isospin violation
are discussed in Sec. 3.

(v) Finally, it should be pointed out that we need
not make the assumption that | 7) has good isospin.
The question of isospin purity of | 7) is taken up in
Secs. 4 and 5.

2.2 Wave Functions for the Continuum Space

Several definitions of the P space are possible and one
has the option of choosing the definition most ap-
propriate to the problem under consideration.

(i) For a study of elastic scattering, the P space
may be defined as including only the elastic channel.

(i) In the case that there are only a few open chan-
nels for the energies of interest, one may include all of
these in the P space.

(iif) If many channels are open, it is possible to define
the P space to include the elastic channel and those
channels strongly coupled to it.

In general, it is desirable to avoid solving coupled
equations in the description of the P-space propagation.
This is possible if a DWBA treatment of the direct
coupling between the various open channels provides a
good approximation. The treatment of scattering from
deformed nuclei where a perturbative approach to the
coupling between the open channels is least adequate is
a more difficult computational problem.* The numerical
results which we will present in Sec. 8 are limited to
analog resonance phenomena in spherical nuclei.

2.21 The Continuum Space

The detailed definition of the P-space projection
operator is peripheral to our main interest. Therefore
it has been relegated to Appendix I. It is useful, how-
ever, to summarize those results which are particularly
relevant to the calculations reported here.

¢ However, use of the adiabatic approximation which neglects
coriolis coupling can be used to partly simplify this problem
[Ch57; Ke71].

In the Appendix we have defined a set of channel
vectors | 7, ¢) describing a proton created at a distance r
from a target state \5:

[7,0)=r,[( %) jI]IM, \)
= Conjarnd™ @t 1y jm; (r) | N\, IM ). (A1.7)
M

mj,
The angular momentum (/)7 of the particle is coupled
to the angular momentum 7 of the target to form a total
channel angular momentum, JM. The single label ¢
then stands for the coupling scheme {[ ({3)77]TM, A}.
The set | 7, ¢) is not orthonormal and an orthonormal
set | 7, ¢) is introduced via an appropriate® transforma-
tion (Eq. A1.13).
In terms of the vectors |7, ¢), we may define the
projection operator [Ke66],
P= Z/ |7, ey dr{r, c]. (A1.15)
¢ Yo
This projection operator does not define a space orthog-
onal to the analog space. However, it is useful for
discussions of the optical model presented in the next
section and in Appendix A1.2. The continuum projection
operator P appropriate to the theory of analog reson-
ances, will be discussed further in Sec. (2.23).

2.22 Coupled Optical Equations

It is useful at this point to discuss the projection
operator treatment of the optical potential [Fe58; Fe62]
(cf. Appendix A1.2).7 One defines the operator Q=1—P.
We may write the total wave function as |¥)=
P|¥)+Q | ¥), and the Schrédinger equation H | ¥)=
E | ¥) as two coupled equations

(E—Hpp)P | ¥)=HpoQ | ¥),
(E=Hqq)Q | ¥)=HqpP | ¥).

By eliminating Q | ¥), an equation for P | ¥) may be
written

[E—Hpp—Hpo(EM —Hqq) 'Hqpe JP | ¥)=0.
(A1.21)

The solution of (A1.21) will describe the full complica-
tion of the compound nucleus through the energy
dependence in the propagator (EW—Hqq)™!. Never-
theless, we are able to define a single-particle amplitude,

(A1.18)

5 When using equations from the Appendix, we will always
give the equation number as given there.

6 Notice that the distinction is made by using round and
angular brackets: | 7,¢) and | 7, ¢).

7 This form is easily generalized to include any number of analog
states, in which case there would be a sum of resonant terms in
T, obtained from the analysis of the expression

Toe=Tere®t+Z (P | Hpa | A4)
1,7
(4i | (E®D—Haa—HapGpPHpa) 1| 45)
(A;| Hap| &),



AuersacH, HUFNER, KERMAN, AND SHAKIN A Theory of Analog Resonances 53

W, (r), through the relation
<1,C’ l ‘I’c(+)>E‘I’cc'(+)(T)

or
Py ®)=> /w | 7,6 YW oD (7)1 dr.  (AL1.22)
e Yo

The subscripts refer to the boundary conditions for
the equations determining ¥, (7); the asymptotic
form of this amplitude has incoming waves only in
channel ¢, and outgoing waves in the other channels ¢’
(including ¢’=c). With the definition

heo (7, 7") = (r, ¢ | Hpp+Hpq(EP —Hqq)'Hape | 7', '),
(A1.23)

we may reduce the Eqgs. (A1,21) to a set of coupled
equations for ¥, (7)

S| hero(r, 7)Y D ()2 dY = EV /P (7).
c Jo

(A1.25)

The solution of Eq. (A1.25) describes many com-
pound nucleus resonances. However, we are concerned
here only with obtaining the energy averaged 7" matrix.
As pointed out in Sec. 2.4 and the Appendix, the energy
averaging procedure leads to a definition of the optical
Hamiltonian in terms of an energy averaging parameter
I. This prescription has been extensively discussed in
[Fe67] and [Pi67], and we will not go into it here
except to say that it corresponds to an average over
the compound nuclear resonances with a Lorentzian
weight factor. Thus from (A1.23) we are led to intro-
duce

heoOFYT (7, 7') ={r, ¢ | Hpp

+HPQ(E*HQQ+1:I/2)_1HQP l 7,, C’), (A127)
and an optical wave function ... () which is obtained
from the solution of coupled optical equations

Z hr15 OFT (7, # ) o D (7 ) "2 dr=Eecr (7).

e Yo .

(A1.28)

In general, the optical Hamiltonian, 4°F7T, is a nonlocal
one-body operator which may couple the various
channels of the P space. In the case that the P space
contains only the elastic channel, we may obtain some
information about %Z°PT from the many phenomeno-
logical potentials (usually of the Saxon-Woods form)

which reproduce the energy averaged elastic scattering
T matrix [Pe62,63; Ro65b; Ho67b; Sa67; Be69].

In several cases, phenomenological optical Hamil-
tonians are also available which include channel
coupling to collective states [Ta65; Gl687]. For the
calculations reported here we have chosen /. °FT to be
diagonal in the channel indices, that is, we neglect
direct interactions. Therefore, we may discuss the
simpler form,

/w BOPT (7, ¢\ ()12 dr' = B (7).  (A1.29)
0

Here o may denote the quantum numbers /, 7, and E
of the continuum wave function. The neglect of direct
interaction is not a fundamental restriction and can be
removed [Pi697]. At many points in our development
we will write our formulas so that they are valid in the
case this coupling is not neglected.

2.23 Orthogonality of the Continuum and
Analog Spaces

We now return to the theory of analog resonances.
The analog space has already been defined in Sec. 2.1.
As discussed in detail in the Appendix, it is necessary to
construct the continuum space projection operator P
such that the P and A spaces are orthogonal. The
orthogonality requirement arises from the fact that
sometimes | w) contains a bound neutron coupled to a
core. The corresponding analog state will then contain
a component with a proton coupled to the core. This

" feature leads to a lack of orthogonality between the P

and A spaces which is removed by the following pro-
cedure described in more detail in Appendix 1.
We define a new projection operator [see (A1.33)],

P=P— 3 P|A4:)(p™):{4;| P, (2.6)
pi=(4:| P| 4;), (2.7

so that the continuum space defined by the new pro-
jection operator 2 is orthogonal to the analog space.

We have also found it useful to introduce the bound
functions

Ua ()= <7: 4 ! A>=N‘1/2<1’, 4 ‘ T_ 1 1I'> (A1.34)

representing that part of | A) which is in the space
| 7, ¢). These functions as well as the solutions of Eq.
(A1.28), Voo™ (r), may be considered as column
vectors whose components are labeled by channel
indices. Introducing the Green’s function G, (7, 7")
for %...°FT(r,7"), we may write wave functions for the
P space:

P (r) =y (r) — (/w G (7, r')u4(r’) r'2dr’ /m ua (7)Y (r) 72 dr / /w/w 72 drua (r)GD (r, v Yua(r') 72 dr’),
0 0 0 Yo

(2.8)
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Here G is taken to be a matrix with respect to the
channel indices and appropriate summations over
channel labels are implied. The first subscript of
Yoo (7) just gives information specifying the incoming
channel and is not summed. Equation (2.8) implies
immediately that

Jo P (r)ua(r)r? dr=0. (2.9)

The function ™) (r) is actually the scattering solu-
tion of a projected optical Hamiltonian. Schematically,
we have

hpOPT= (1— | ua)(ua |)RO¥T(1— | ua){ua|), (2.10)

where | #4) is the normalized one-body state vector
corresponding to #4 (7). The one-body Green’s function
for h,OFT is related to G by

GrP =GP =G | ug)((wa | GP | ua)) M ua | GD.

(2.11)

Again in Egs. (2.10)-(2.11), we have suppressed the
coordinate variables as well as the summations over
channel labels. Some elementary computational pro-
cedures for the construction of the functions o™ (7) are
given in Appendix 1.3.

We wish to use the ome-body scattering states just
defined to construct many-body scattering states. This
may be done by appropriately combining the wave
functions ¢ (r) of Eq. (2.8) with the channel vectors
defined above. For example, consider the case with no
channel coupling. The desired vectors are then

189)= [(Ir oS mra. (.12)

0

In the simple case in which a target with 7=0 is
described in terms of a single Slater determinant for 4
particles and the P space contains only one channel, the
coordinate representation of | ®.®), Eq. (2.12), is a
Slater determinant of (4+1) particles where the addi-
tional orbital is given by Eq. (2.8). In the case that
direct interaction between the P-space channels is
included, Eq. (2.12) is generalized to

|2@)= % [ 15, )o@t dr, (2.13)

e Yo

where the boundary conditions are such that ¢, @ (7)
has incoming waves only in channel ¢, and outgoing
waves in channels ¢’ (including ¢’=c¢).

We remark again that the state vectors of Egs. (2.12)
or (2.13) do not span the entire P space. If we use the
definition of Eq. (2.8) for ¢, we do not include the state
vector D of |7, c)ua(r)r2dr. Its effect is of course
partly included in the analog state | 4 ). The remainder
is usually discussed in connection with the compound
space. .

In the approach used here, where the effects of the

analog state are treated explicitly, the projected optical
Hamiltonian (2.10) should be used. The difference
between the potential scattering obtained from /,°FT
and 4OFT is small and is always taken into account.
Finally, we note that for most calculations, in addition
to choosing the optical Hamiltonian to be diagonal in
the channels, it is taken to be local and channel inde-
pendent. The actual phenomenological forms used will
be discussed in later sections.

2.3 The T Matrix for Analog Resonances

Thus far, the continuum and analog spaces have been
defined. Formally, the projection operator for the com-
pound-nucleus space is therefore g=1—P—A. After
the formal expressions for the 7" matrix are obtained and
the physical quantities are identified, we will present a
more detailed discussion of the ¢ space.

2.31 Formal Derivation of the T Matrix

We have written the total wave function in terms of
its projection onto the three orthogonal subspaces

| O)=P | ¥)+A|V)+q|T). (2.14)

Starting from the Schrodinger equation H |¥)=
E | ¥), we use the projection operators to obtain the
coupled equations,

(E—Hpp)P | ¥)=HpsA | ¥)+Hpyg | ¥)
(E—Hgy)g 1 ‘I’>=HqAA \ ‘I’>+HqPP l \I/),
(E—Hsa)A | ¥)=Haq | ¥)+HapP | ¥), (2.15)

where Hpp=PHP, Hp,= PHgq, etc. The theory for the
energy-averaged scattering amplitude is most easily
developed if a formal elimination of the ¢ space is made.
This procedure leads naturally to the definition of

H(E)=H+H[g/(E—H,)1H. (2.16)

In terms of this effective Hamilionian the equations
become

[(E—Hpp(E)]P | ¥)=Hpa(E)A | ¥),
[E—Has(E)JA | ¥)=Hip(E)P|¥). (2.17)

These equations give rise to rapidly fluctuating cross
sections with many resonances due to the g space modes
in H. Because we wish to obtain energy-averaged cross
sections rather than discuss the fine structure of the
analog resonances, we replace the variable E in Eq.
(2.16) by E+%(iI), which corresponds to an average
over the resonance with a Lorentzian weight function
as in Sec. (2.22).

The effective Hamiltonian appropriate to the cal-
culation of the energy-averaged T matrix is then

H[E+L(iI)]=H+H{q/[E—Hy+5GI) J}H.
(2.18)
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The matrix elements of this operator in the P space
lead us to the optical equations in Sec. (2.22).
We then derive the T matrix from the equations,

{E—Hpp[E+3 (1) } P | ¥)=Hpa[E+3(iI)]4 | ¥),
{E—Haa[E+5 (i) A | ¥)=Hae[E+3 (D) IP | ¥),

(2.19)

as follows.

We may write an integral equation for P | ¥) using
Eq. (2.19). If there are incoming waves in channel ¢,
we have

Plw)= | 3.®)
+ (E®Y—Hpp) "Hpa (E —Haa) THypP | ¥, D),
(2.20)
where | &) is a solution of
(E—Hpp) | 2.P)=0.
The formal solution of Eq. (2.20) is
P|¥®)y= | &)+ (ED—Hpp)~'Hpa
X{1/[EP—Haa—Hap(EP —Hpp)'Hpa ]}
XHap | 8.5). (2.22)

(2.21)

The T" matrix is readily found to be
Toe=Ty O+ (D, | Hpa
X{1/[ED —Ha—Hap(EDP —Hpp)~'Hpa 1}
XHap | 2P, (2.23)

where ¢ and ¢’ denote the various channels of the P-
space and 7',,OPT is the T matrix for scattering due to
pr.

In Eq. (2.23) the adjoint vector ($. | is defined by

(8, |(Hppt—E) =0 (2.24)

where Hpp' is the Hermitian conjugate of Hpp.

2.32 Definition of the Resonance Parameters

For a single analog resonance, the energy-averaged
T-matrix, Eq. (2.23), takes the form

Top= T 0T
N (B, | Hpa | ANA | Hap | 2.P)
(E— (A |H| A)—(4 | HapGpPHpa | A))’
(2.25)
where we have defined the Green’s function,
GpP =1/[ED—Hpp(E+il/2)].  (2.26)

The second term of Eq. (2.25) represents the analog
resonance part of the T-matrix, which we denote T',A.

The energy, Eg, of the analog resonance is given by
Er=Re[(4 |Haa|4)

4 (4 | HapGp™ (Er)Hpa | 4)] (2.27)
and the total width, T', by
I'=—2Im[{(4|Haa| 4)

+(4 | HapGp™® (Er)Hpa | 4)]. (2.28)

These quantities are discussed in Secs. 5 and 7.

Here we will consider the numerator of Eq. (2.25)
and discuss the wave functions which appear in | )
and (&, |. We recall that we had written

[80)= 2 [ 1r, YD (I dr, (2.13)
¢ Yo

with the boundary condition that only channel ¢ has in-
coming waves. It is useful to extract a phase factor from
@cr™® (7) and define the functions ¢ (r) by

‘Pcc’(+) (7) = exp (iéc_nc) (pw,(()) (1’) . (2 . 29)

Here 6, and 7. are the real and imaginary parts of the
phase shift® in channel ¢ such that

10 (r)~ (k/TE)'?

r-so

X sin [kr—3(wl) —n In 2kr+6,+14n. ). (2.30)
We also need the adjoint vector
@ | =3 [ g r N rdri, |, (2.31)
e Y
and the relation
Geer F(r) = e P (7). (2.32)
We write
(A | Hap | 89)= exp (i8)740  (2.33)

where we have defined the complex escape amplitude,

Y4..= exp (—n.) Z/ G () V A(r)rtdr. (2.34)

0

In Eq. (2.34) we have introduced a complex analog
state form factor for channel ¢ by®

VA(@r)={(A |Hap |7, ¢)={r,c|Hpa | 4). (2.35)

The analog state form factor is complex because of the
replacement of E by E41iI/2 in H. The escape ampli-
tude is complex since both VA(#») and ¢.@(7) are
complex.

8 Note that §, includes the Coulomb phase o;. -
® The equality in Eq. (2.35) follows from the relation

HY(E4-41/2) =H(E—il/2)

and the time reversal invariance of H.
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Similarly, we define

(8. | Hpa | A)= exp (id.)ve,s,  (2.36)
and easily derive the simple result
Ve A=A (2.37)

In terms of the quantities just defined, the analog
resonance part of the 7" matrix may be written
ToA= exp (48.)v4a,cva,c exp (48.) /[E— Er+%(iT) ].
(2.38)
As an example we may consider the elastic channel
T matrix for a target with 7=0. Denoting the elastic
channel by ¢=0, and suppressing the indices (I, ), we
have
ToOPT= —7"lexp (i6—n) sin (6-+1n). (2.39)
The analog resonance part of the 7" matrix is then ‘

roa 5P (200) (vao)®
T E—FEp+il'/2

_exp (2i8) exp (2igo) Ty
 2r  E—Fpt+il/2"

(2.40)

Equation (2.40) defines the escape width To (which is
real and positive), and the asymmetry phase ¢, for the
elastic channel. The phase ¢ appears because the
amplitude 40 is complex; it gives rise to asymmetries in
the shape of the resonant cross section.

The energy averaged .S matrix for this case is there-

\I’cc’ S (7’) = ‘pcc'(+) (1’) + (

fore
. 1 exp (2igy) I‘o]
S= 248 —2)— —————— 2.41
exp (2 )[eXp( m) F—Entir/2)’ (2.41)
which is the expression for this quantity presented in

[Pi67].
More generally, we may define an escape width for
channel c,

exp (2i¢,) I'a,c=2m(v4,.)% (2.42)

2.33 Coordinate Space Equations for the
Analog Resonance

Equations (2.19) to (2.22) can be written in an
alternate form if we use the channel vectors |7, ¢)
introduced above. For simplicity we consider the case
of only a single analog state | 4). We define

B.=(A4 I\I’c(+)>y (243)

and
Es=(A4 |Haa(E+iI/2)| 4). (2.44)

Using these definitions and Egs. (2.10), (2.35), and
(A1.22), we may write the coupled equations (2.19) as

E\I/CG,(+)<,») — Z / [hpOPT(r, 7/)]D’CH\I,M,,(+)(1,/)’/2(Z’,/

ot Jg

=B Ve (r), (2.45)

(E—EB.= X f CVA() P () dr. (2.46)

¢ Yo

The solution for the function ¥,..?(7) is then

Z / d?"(?’/2> [GP(+) (1’, 1’/) ]c’c"vc”A (7,) YAc €XP (160) )
o’ Yo

X (E—EA— > /:/: dr(P)V AR [Gp(r, 7') Joer Ver A () 7' dr’>_l (2.47)

elel!

which is the coordinate space form of Eq. (2.22).
Here ¢...® (r) is the solution of the projected optical
equation

B D)= 5 [ dr 0¥, 1) D) =0

e/ Jg

(2.48)

with incoming waves only in channel ¢. The solution of
this equation has been discussed in Sec. 2.23 [Eq.
(2.8)]. The Green’s function for the projected optical
Hamiltonian, Gp", has been given in Eq. (2.11) in
terms of the unprojected Green’s function G™.

Finally, we note that inspection of the asymptotic
form of Eq. (2.47) will yield the T matrix whose formal
expression is Eq. (2.23).

2.4 The Compound Nucleus Space and
Statistical Assumptions

The ¢ space contains a very large number of states,
which in general are very complicated. One tries to make
statistical assumptions concerning matrix elements
involving these states.

In the theory presented in the previous sections, the
¢ space appeared only in the effective Hamiltonian of
Eq. (2.18), H=H+W, with

W= {H|q)g|H/[E-E+3GI) ]} (2.49)

and Hy | ¢)=E,| ¢). It is worth noting that H,, has
both a discrete and a continuous spectrum. The exact
structure of this spectrum depends on the choice of the
P space. Recall that the P space was defined in terms of
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target states | ). We denote the energies of these states
by Ex. For each of the states | ) not included in the con-
struction of the P space, Hg, has a continuum of solu-
tions starting at Ey. If for some energy, E, there are
some open channels not in the P space, E is in the
continuum of Hg,.

2.41 The Optical Hamiltonian

The operator W projected on the P space is part of
the optical Hamiltonian. In general, a number of
channels will be important and Wep will have diagonal
and nondiagonal matrix elements between these chan-
nels. The matrix elements of W taken with respect to
the channel vectors |7,¢) contribute to the optical
potential:

W“,OPT(,,’ 1") — 2 <f, ¢ | H l q)(‘] [ H | f’, GI)
q [E—E+3(i)]
Note that the operator W,.9PT is nonlocal in general
and contributes both to the real and imaginary parts
of the coupled-channel optical potential. We do not
attempt to calculate W..OPT; rather, we identify the
full operator %..9FT (of which W,OPT is a part) with
the optical Hamiltonian experimentally determined from
the elastic (and inelastic) scattering!® away from the
analog resonances. If the experimental results indicate
that the optical Hamiltonian is approximately diagonal
in the channels ¢ and ¢, we will choose %..°FT appro-
priately. Otherwise, %...°FT describes the direct channel
coupling.

Present experiments seem to be compatible with a
local optical potential. It is clear from (2.50) that the
optical potential is nonlocal in general. The real part of
the optical potential is nonlocal due to the nonlocality
of WOPT (7, 7"), and also due to the proper treatment of
exchange. The latter nonlocality may be more important
than that due to WOFT (7, #') which is expected to be
small for r sufficiently different from #’. This follows if
one uses a statistical argument in forming the sum in Eq.
(2.50). Then only for r=7", c=¢" will we completely
avoid cancellation of the sum on ¢ due to randomness
of the matrix elements (r,c| H|q¢). For simplicity,
one often chooses to use local optical potentials, but
one must keep in mind that matrix elements involving

(2.50)

10 By contrast, in the shell-model theory of nuclear reactions
[Ma69a] statistical assumptions are made concerning the matrix
elements between continuum states and the states g, e.g.,

(ZVeqVerg) < 8ecr.
e
Also for matrix elements involving the analog state one assumes
<EVAqch)=0.
q

Here, the brackets denote an ensemble average and V. (Vq4) the
matrix elements between the compound states and the continuum
(analog) states. The T matrix is not a quadratic function of the
matrix elements V 44 or V.. Ensemble averaging of the T matrix
necessitates the evaluation of averages of terms of higher order
in these matrix elements. The statistical assumptions made in
this work are of a different nature, and we avoid some problems
inherent in other approaches.

the optical wave function inside the nucleus will depend
somewhat on this choice [Pe62].

2.42 Matrix Elements between the Analog State
and the Compound States

There are two types of matrix elements of W where
coupling of the analog to the compound states occurs.

(i) The compound mixing denotes the matrix element
(A|W[A)=2X(A| H|g)g|H|A)/[E-=E+3(i)]

= ACOMP___%(,I:I‘COMP) .

(2.51)

No assumptions of random sign can be made here, since
the matrix elements (4 | H | ¢) appear quadratically.
The quantities ACOMP and T'COMP gre then the shift and
width due to coupling of the analog state to the com-
pound nucleus modes.

(ii) The coupling of the analog state | 4) with the
continuum channels via {¢g} appears in matrix elements
of the type

(ryc|W|4)
=2 {rclH|q)q|H|A)Y[E—-EA+3GN] (252)

Such matrix elements are needed in the calculation of
the escape amplitude [Eqs. (2.33-2.35)] as well as in
the continuum shift (see Sec. 7). We might make the
assumption that the matrix elements (¢ | H | A) have
random signs for the set {¢} and are uncorrelated to
the matrix elements (r, ¢ | H | ¢). It follows that

{r,c| W | 4)~0. (2.53)

To this approximation we may then replace H by H in
all calculations.

One can make a crude estimate of the actual magni-
tude of the left side of Eq. (2.53) by considering a par-
ticular escape amplitude calculation. We calculate the
absolute square of the term arising from the matrix
element of W in (2.36). This leads to an expression
which is a double sum on ¢. The randomness of the
complicated compound-nucleus matrix elements then
suggests that only the squared terms in the sum will not
cancel, and we obtain

T4, P= 3 {(4] H | ¢PT/[(E—E)*+3I"]},

a

(2.54)
where
Ty=2x l Ya.c P; (2-55)

with
exp (i8e)yq..= (¢ | H | 2F)

0

E ‘Pcc’(+) (1’) <7’ 4 l H l Q>72 dr.
o Yo .

(2.56)

I
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The quantities T'y are close to the actual compound
nucleus widths of the states | ¢), except for the fact
that ¢ (7) does not come from exactly the correct
optical potential (which should be real).

Apart from fluctuations in T, this expression is
really very close to T'OMP defined in (2.51). Thus we
can see that

5T 4, @~ T, TCOMP /] (2.57)

with T, some average of the compound nucleus widths.
In general the averaging interval I must be at least as
large as T'COMP The latter quantity seems to be one of
the smaller contributions to the total analog resonance
width. Therefore,

5T4,.® <T, (2.58)

is a small quantity. However there will be cases where
even this small value cannot be ignored.

We have not looked at the interference term 6I'4 ,®
between H and W which would arise in the evaluation
of Eq. (2.42) because (2.53) indicates that this is zero.
When we come to more specific models for the g space,
the interference term will actually be the only important
one. Here we can see that this term might be of the
order of magnitude

0T 4,P =2 cos ¢(T4,0T4,.2)"2, (2.59)

where cos ¢ is random and varies from —1 to —+1.
Thus we find .
0T 4,0 < (Ta,.Tp) Y2 (2.59a)

2.43 Doorway Stales

In some cases the assumption of random matrix
elements is inadequate. There may be a few states in
the ¢ space that play an important role in the evaluation
of W because they have significant couplings to the
analog or the continuum spaces. Let us consider the
matrix elements (4 | H | ¢). As noted above these de-
pend on the isospin-violating force, that is, predomin-
antly on the long-range Coulomb potential. Therefore
these matrix elements will be significant for those
compound states | ¢) containing the same configura-
tions as in | 4 ). Most of these states | ¢) have dominant
components with isospin quantum numbers one unit
less than that of the analog state. States of this type
which appear in a shell-model description of the analog-
state structure have been termed ‘“‘configuration states”
in the literature [La62c]. Among these is the antianalog
state which is known to have significant coupling to the
analog state [see Sec. 6]. In addition to the configura-
tion states, we may consider those states remaining in
the ¢ space which are describable as particles coupled
to a vibration. Indeed, if one considers a multipole
expansion of the isospin-violating force which affects
the coupling between the 4 and g spaces, the configura-
tion states will be important for the coupling via the
monopole component, states including a collective
dipole mode will be important for the dipole term

of the multipole expansion, etc. We also note that the
particle plus vibration states will be important for the
escape matrix elements (g | H | ®) describing the
transition from the g space to the continuum.

With these points in mind we may divide the ¢ space
into two parts:

Class I. The configuration states, particularly the
antianalog. Also those collective modes (particle plus
vibration) which are not removed to the P space.! We
denote states of Class I by | d), and the corresponding
projection operator as d. The states | ) may be thought
of as a kind of “doorway” into the compound space
from the A4 space.

Class I1I. States of more complex configurations. The
projection operator for Class II is ¢’=¢—d. By defini-
tion, the random-phase argument should be valid for
the states of Class IT, and the matrix elements (¢’ | H | 4)
should be small.

The coupling of the 4 and P spaces through the ¢
space may be indicated as the Fig. (2.1a). On the
assumption that the states |d) act as ‘‘doorway”
states, this coupling may be described as in Fig. (2.1b)
where the direct coupling between the 4 and ¢’ spaces
and between the P and ¢’ spaces has been neglected.
In order to make these considerations more precise,
we use the projection operator relations given in [Pi67 ]
to write

d[1/(E—H+3(iI)) 1d
= d{E—Hau+3(I) — Hag[E—Hy g+ (GI) T H pa)1d.
(2.60)

Finally, assuming that the doorways are not strongly

B}

Fel
<
|

(a) (b)

F16. 2.1. The decay of the analog state into the continuum via
the compound states. Figure 2(a) shows the general case, Eq.
(2.52), the dashed line representing an isospin violating force,
the solid one a nuclear force. Figure 2(b) depicts the doorway
hypothesis, Eq. (2.63), where the coupling of the doorway
states d to the remaining compound states ¢’ mainly lead to a
spreading width.

11 For example, if a channel consisting of a neutron coupled
to the analog of the target state is placed in the P space, one
would have equations similar to those of Lane [La62d] describing
the P-space scattering. This choice is not particularly suited to
our microscopic theory, because part of the analog state is then
in the P space.
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coupled to each other through ¢’, (which follows from a
random-sign assumption for the matrix elements
(¢’ | H|d)), we may write Eq. (2.60) as

d[E*H+%(i1}]"d= Zd: | OLE—Ea+3(iTa) 1A |,
(2.61)
with
Eq—5(Ty)=(d| H| d)
+ %: {(d|H|q)qg | H|d)/[E-Ey+3(I) 1},

(2.62)
so that (2.52) may be written
(r,c|W1]A4)
= % {(r,c|H|d)(d| H|A)/[E—Ea+3(iTa) ]}
(2.63)

Similarly, the compound-mixing term Eq. (2.51) is, in
this approximation,

“|wia)
&EI {(4|H|d){d|H|A)/[E—-Eat}(ila) 1}

(2.64)

These equations are very similar to (2.52) except that
we hope to make specific statements about the doorway
matrix elements.

The role of the doorway states in the calculation of
the various physical quantities will be taken up again
in Secs. 6 and 7.

2.5 Average and Compound Nucleus Cross Sections

In this section we present some useful formulae for
the average differential and polarization cross sections
and discuss the compound nucleus cross section in the
statistical approximation.

2.51 Average Cross Sections and Polarization

The differential and polarization cross sections for a
transition from the target state A angular momentum I,
to the target state A’ angular momentum I’ may be
written in terms of the channel 7' matrix defined in
Sec. 2.3. Thus [Ke61], we have

(l'-cr)\)\f/d9= (47r3/k)2) [2(2I+ 1) ]_1
X2 T | Vel e ) ey (|| Vil a)PL(6)

cc’cict/ L

(2.65)

and
P(0) dow/d2= (473 /l2) [(21+1) T
X 2 Te* || Yur |l e )Teer e || Y|l a)

X G/LL(L41) T2 PO (6),  (2.66)

where P1(0) is the Legendre polynomial, and Pr®(6)
is the associated Legendre polynomial. The reduced
matrix elements are given in terms of our angular
momentum coupling scheme [Eq. (A1.7)] as

el Yrllea)
=((I5)FNIT || Y || (h3) 71 (M) I 111,80,

= (—1) JrHI+L

y <(2J+1) (27,41) (2j41) (2541 (2L+1))1/2

(2.67)

4
J 7 Ilfi L 5
X 3[4 (1) HE+u],
jl ]1 L '12‘ 0 _%
(2.68)
and
<C[|YL1LH61>

=((B)FNIT || Yoz || (35) (M) 1T 181,60
— (2L 41) (—1) J-HHIHLH
5 <6(21+ 127 4+1)(25+1)(25:+ 1)(Zl+1)(211+1))%

4
I 3 7
J 4 I|lfl L 4
Xih 3 5 ‘ (2.69)
71 J1 LJ\O 0 O
(L 1

The tensor operator in (2.66) and (2.69) is defined
in general as (we use only K =L here)

Yiux.= Y, (L1Ku | Lm1v)Y (6, @) o1, (2.70)
with
010=02

o= (0'2:{:’50',,) /\/_2—;

(2.71)
(2.72)

in terms of the Pauli matrices.

When the T matrix is dominated by a single analog
resonance with angular momentum J the expressions
are simpler. Then we have

(doxn/dQ) res= (4n* /) [2(21+1)
X[(E—Egp)*+1(TH) ] LZ T NT(NT M) PL(D),

(2.73)
where
M) = Z exp <_i60)'YA,c*<C H Y. H €)Y,
170171

X exp (#6,,) (2.74)

depends on the resonance parameters of (2.33). The
channels ¢, ¢; in the sum (2.74) all have the same
values of (ALJ), and therefore are summed only on

(lj) a.nd (l1j1)~
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The polarization cross section has a similar form
P(0)dox/d0=473/k2) (2I41)[(E— Eg)?+312]!
X 22 TrM ()T M) [L(L41) TH2PLD(8),
L

(2.75)
with
I‘LlL)‘I(]) =1 Z exp(*iac)’YA,c*@ H Yo || Cl)’YA.cl

(233

X exp (18,). (2.76)

Because of the symmetry relation
el Yo || e)= (=1) 7=/ E (g || Yo || ¢),
(2.77)

the quantities T'/M(J) and Tz M (J) are real.

Before making use of Eq. (2.65) in the case of elastic
scattering, it is necessary to separate the 7" matrix into
a Coulomb scattering part and a nuclear part. The
analog resonance affects the elastic cross section mainly
through the interference terms between the nuclear
and Coulomb 7" matrices since the purely nuclear term
is smaller. Thus we have

do do (da) (da)
(& had ) (2.78
dQ (dQ>COUL + dQ/xvcL + dQ/nr ( )

The Coulomb term is given as usual by

((lo’/dQ)CQUL= Ifc |2, (2 79)
with
' fe(6) = (n/2k)[sin(6/2) ]2 exp{2iago— 2in In sin (6/2)},
(2.80)
where
n/2k=Ze*/AE, E=n%2/2u, (2.81)
and oy is the /=0 Coulomb phase.
The interference term is given by
(do/dQ)nT=2 Re { f*4M}, (2.82)

where AoM(6) is the spin independent part of the
nuclear elastic scattering amplitude from state A\,

AN (0) = (x/R)[2(21+1) ] 123 (2T+1) TePo(8).

(2.83)
We recall that ¢ stands for [(i3)7(\)1J].
Finally, we write the interference term for the
polarization cross section

[P(8) (do/dQ) Tinr=2 Re { f*4,M}, (2.84)

with
AM(6) = (W/k)[i/2(21+1)]§ (2T41) Tou(—1) i

1 11
X

) }[6(21+1)/l(l+1)]1/2P,<1>(0). (2.85)

1
2 J 2

In both (2.83) and (2.85) it is understood that the
nuclear amplitude includes the usual Coulomb phase
factor exp (2ioy). If T, is dominated by a single analog
resonance with angular momentum J the expressions
(2.83) and (2.85) simplify accordingly.

2.52 The Compound Nucleus Part of the Cross Section

The derivation of the energy averaged T matrix has
been the subject of the previous sections. Furthermore,
the cross section associated with the energy averaged
T matrix has been given in Eq. (2.65). Experiments
performed with an energy resolution less than the width
of the isobaric analog resonance yield the energy-averaged
cross section which is not identical with the cross sec-
tion'? of Eq. (2.65). The difference originates from the
fluctuations. Usually, one identifies the fluctuation part
of the cross section with the compound nucleus cross
section and derives it in a statistical model [Fe60].
There one introduces the transmission coefficients P, (E)
associated with a channel ¢ by*

P(E)=1— 3| S.(E)]% (2.86)
where ¢ stands for the quantum numbers [ (13)7(\) 17 7].
The compound nucleus cross section for the target to
go from state Al to state \'I’ is then

(dow/dQ) o= (v/RH) [2(21+1) T ; [Ps(E) I
X 2 PLM(E) PN (E)PL(6), (2.87)

with
PrM(E) = ZI:Pc(E) el Yelle), (2.88)

and
Pr(E)= X2 P.(E),
I
where the sum on ¢ in (2.89) runs over al/ open channels
with fixed E and J.

Since the diagonal reduced matrix elements in (2.88)
vanish for odd values of L, the compound nucleus cross
section is symmetric around 90°. The compound nu-
cleus polarization cross section vanishes identically
because {c || Yz || ¢)=0.

If we use the property

(BT || Yo ||(13)j1T)=[(2T+1) /4= ]2,
the total compound nucleus cross section becomes
UXCNE Z fdﬂ(dd)\)\//dﬂ) CN
NI/

= (/) 2L+ 1) TS (27+1) Po(E).

jJ

(2.89)

(2.90)

2 The interference terms (2.82-4) are correctly averaged
except for the slow energy dependence of f.(9).

13 The original discussion of the transmission coefficients did
not include the consideration of direct channel coupling. In
Eq. (2.86) we have extended the definition to include this feature.
The ‘‘transmission coefficients” are to be interpreted as the
probability for the formation of the compound nucleus.
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If the neutron channels dominate the sum in Eq.
(2.89), the total compound nucleus cross section is the
cross section for the total p—n reaction.

For those channels, which are not directly coupled
to the isobaric analog resonance either because of spin
selection rules or because of a very small coupling matrix
element, the transmission coefficients are calculated
from an optical potential,

POPT(E)=1— | exp [2i(6,+1in.) ] |?
=1— exp [_477¢(E) ],

at the channel kinetic energy. All the optical trans-
mission coefficients [Eq. (2.91)] will show a smooth
energy behavior over the range of the isobaric analog
resonance. Well below the Coulomb barrier the trans-
mission coefficients for charged particles will be small
compared to those for neutrons.

For those channels coupled significantly to the analog
resonance the transmission coefficients are given by a
resonant expression

PA(E) =1
— | exp (—2n.)— {iT4, exp (2i¢.) /[E— Er+3(iD)]} |2,

(2.91)

(2.92)
=[1—exp (—4n.)]
XA{[(E—Er—A,)*+B.J/[(E—Ep)*+1I"]}, (2.93)
where
A,=(T4,/2) (sin 2¢,/sinh 27,), (2.94)

and
B,= (T'4,2/4 sinh? 27,)
X [cos 2¢.+ exp (29.)+(T/T4,c) sinh 27, ]
X[cos 2¢,— exp (29.)+ (T'/T4,) sinh 29.]. (2.95)

The resonant transmission coefficient has the following
properties [Ro65a]:

(i) If E is not near Eg, we have PA(E)~P.OPT(E).

(ii) There is a characteristic asymmetry with A,
positive.

(iii) Since PA(E)>0, we must have B,>0. As the
first bracketed term of Eq. (2.95) is positive, we have
the condition

cos 2¢.> exp (29,) —(I'/T4,.) sinh 29.. (2.96)
Because cos 2¢.<1, it follows that
T/T4,.>[exp (29.) —1]/sinh 29,> 1.

(iv) If the equality holds in Eq. (2.96), then B,=0.
In that case, PA(Er+A.) vanishes.
(v) In the limit 7—0 ¢,—0 we see that P,°PT—0 and

PA(E)>T4,(T—Ta,.)/[(E—Er)*+1T7] (2.98)

(2.97)

which has a maximum value of unity when I'=2I4.
For the scattering of protons in the neighborhood of

the analog resonance, we may then neglect the proton
transmission coefficients in all nonresonant channels.
We expect an enhancement of the fluctuating part of
the cross section in the neighborhood of the analog
resonance, because of the resonant form of (2.93). At
low energies, where the sum in (2.89) is not too large,
this contribution may interfere seriously with a reliable
extraction of the resonance parameters, since a knowl-
edge of do® /dQ presupposes a knowledge of the reson-
ance parameters of P4 in Eq. (2.92-3).

3. THE ISOSPIN-VIOLATING PARTS OF
THE HAMILTONIAN

We have seen that the interesting quantities asso-
ciated with isobaric analog resonances are given in
terms of the isospin-violating parts of the Hamiltonian.
It is possible to distinguish between isospin-violating
forces which are directly related to the electromagnetic
interaction and those effects which are less directly
related, such as the p-» mass difference or the isospin-
violating parts of the strong interaction. In the follow-
ing we shall examine all of these effects.

3.1 Electromagnetic Interactions

The electromagnetic interactions are dominated by
the Coulomb repulsion of the protons, but there are
several other effects associated with the nucleon mag-
netic moments and the nucleon finite size.

3.11 The Coulomb Potential

The dominant part of the isospin-violating force is
the well-known Coulomb potential
Ve=1 2 (¢¢/| ri—1j|) (1—7.%) (1—19).
>j
This force is rather weak compared to the nuclear forces,
has a long range, and is spin independent. The com-
mutator,

VOVl I=t Z (/| ri=ri)
X[A=rAri+(1—7d)r], (3.2)

where r_=7,—1r,, is a two-body force which changes a
neutron—proton pair into a proton—proton pair.

3.1)

3.12 The Finite-Size Effect

The Coulomb potential, Eq. (3.1), is derived for
point charges. In order to incorporate the finite charge
extension of the proton, we use a Coulomb potential
modified at short distances. Basically, this modification
may be deduced from electron—proton scattering experi-
ments. The results of these experiments can be sum-
marized in an empirical formula for the proton form

factor [Go67]
G,o(?) = (14+197,7") 2 =1—3rl¢*+ (r,*¢*/48) ++ -,
(3.3)
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gf(r)
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F16. 3.1. The function gF(r) which provides the correction for
finite proton size—see Egs. (3.7) and (3.9).

where the root-mean-square radius has the value
7= 0.83f. (3.4)

In the momentum representation, the Coulomb poten-
tial for point charges is given by

V(g) = (4m)7[ exp (iq-rt) (e*/r) &r=e?/¢

The modified Coulomb interaction, which includes the
finite proton size for both protons is then

VI (q) =Gp(¢) (¢/¢1) Gy(¢h) = (¢8/q%) — (er,2/3) - - -.
(3.6)

(3.5)

In the coordinate representation we define a function
g¥(r), such that

VE(r)=(e/r)[1+g"(r)]. (3.7)
Using Egs. (3.6) and (3.7) we find
g=>2 [T G -11 3.8)
T q

The integral may be performed analytically to yield
gF (%) = —e [ (484 33x+9x2+%) /48], (3.9)

where
x=(12)"2(r/rp).

Since gF(x) is of short range compared to the size of
the nuclear wave functions, we sometimes use the
approximation

gr (r)~=—(r?/3)[8(r) /7]

The actual function g¥(7) is exhibited in Fig. 3.1.

(3.10)

3.13 Vacuum Polarization

To lowest order in the fine structure constant the
vacuum polarization corresponds to a small spreading
of the charge of the proton over a range of one-half the

electron Compton wavelength. The virtual emission
and absorption of an electron-positron pair gives rise
to a repulsive potential V.1, which has to be added to
the Coulomb repulsion €?/r of two protons. One finds
[Fo54,55; Du57; He60],

Vear= (2a/3m)I(r) (¢/7),

a=¢e/te~1/137, (3.11)

with

I(r)= /w dx exp (—2krx) [(1/a2) 4+ (1/2x%) J(a2—1) 102,
1 (3.12)

The characteristic length which determines the range of
I(7) is the Compton wavelength of the electron divided
by 2w, x'=#/m.c=386.2f. For values of 2«kr small
compared to 1, the function 7(r) can be expanded to
give

1) =[=7+814 | 1n ()| +4(6mer)
+O[ (k1)

with Euler’s constant y=0.5772. For two protons
inside a nucleus, the expansion given in Eq. (3.13) is
good. Equations (3.11-3.13) refer to point protons. By
transforming Eq. (3.11) to momentum space and in-
troducing the proton form factor as in Eq. (3.6) the
singularity of Vo1 at r=0 may be removed. Some nu-
merical estimates of the contribution of the vacuum
polarization to Coulomb displacement energies are
given in Sec. 5.14. The electron—proton scattering ex-
periments which are used to determine the proton form
factor have a vacuum polarization correction [Ch 567].
In the analysis of these experiments one corrects for
the vacuum polarization and certain other radiative
diagrams before the nucleon form factor is extracted.
Therefore, no double counting occurs if one takes into
account both the vacuum polarization and the proton
form factor in calculating Coulomb energies and escape
amplitudes.

There is one effect on the vacuum polarization which
has not been estimated but which we would like to
point out here. This refers to the fact that the two-body
polarization potential (3.11) is calculated in free space.
In fact all the rest of the protons are present within
nuclear distances so that the vacuum polarization takes
place in the presence of the strong (Z) nuclear Coulomb
field. This will distort the wave functions of the virtual
electron—positron pairs and should affect the potential
even at short distances.

krl (3.13)

3.14 Relativistic Corrections and
M agnetic Interaction

To obtain the isospin-violating terms in the nuclear
Hamiltonian which are of order (v/c)? we may consider
the reduction of relativistic two-particle wave equations
to this order [Sc50; Ba55]. Consider a collection of
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nucleons with charges

er=e(1—7,%)/2 (3.14)
and magnetic moments
wi={wl (1=7.9) /2]+u},  wmo=efi/2Mc, (3.15)

where u;’ are the anomalous moments. We have,

M= {ﬂn%(l_l"rzi) +up%(1—7'zi)}ﬂ(), (316)

where u,=—1.913, and 'u,=2.793.
€;€; g
YMAG=1 { 2M2] 2 [pi*7s ' pitper Tij(7i®) 7y P;]"*‘ﬂzlij[ 3
ij

€;6; (2153 €ilk; i
_.4 .
Ald [M%? <2Mc+2Mc>]6( i) =

with

(r’L] xp’) - _el_

The total many-body Hamiltonian including the
lowest-order relativistic corrections is derived to bel

pit
- Z <2M YL

€i€;

+ 'VNUCL+ VMAG’

Vij

)+zz

(3.17)

where VNUCL contains the strong-interaction terms and
VMAG contains isospin-violating terms not considered
previously. We have [C1707]

(o 155) (050 145)

1,0]
_3
z] ’ij

—%Wai'aja(rif)]

(15 Xp])

2 1—7, 3.1
v TPAG— (20— pok ( T)]}( 8)

t,;=1;,—T1; and Yij= ]r,-—rj].

Equation (3.18) contains five terms which we may
discuss in order:

(1) The first term provides an additional (momen-
tum-dependent) proton—proton interaction. If we esti-
mate the effect of such a term in the Fermi-gas approxi-
mation, we see that the direct terms vanish. The ex-
change terms yield a small contribution to the displace-
ment energies (Sec. 5) of the order (Ze?/R)-(N\,/R)?,
where A, is the reduced Compton wavelength of the
proton. This term is therefore of the order of 0.2%, of the
displacement energy.

(ii) The interaction between the magnetic moments
is a tensor operator in the spins and will tend to average
to zero. Small effects will remain due to unsaturated
spins in those shells that are not closed in the sense of
L~S coupling. We neglect this term.

(iii) The contact terms may be neglected if we as-
sume that the nucleon—nucleon interaction is strongly
repulsive at short distances.

(iv) These terms represent the interaction of the
magnetic moments with the local magnetic field due to
the motion of the other particles. In the Fermi-gas
approximation the direct terms average to zero and the
exchange terms are very small.

(v) Finally we have the spin-orbit terms for which
we may make the standard approximations [Sc69a]
for the direct term. Averaging over the particles with
coordinate label 7, we may write an equivalent one-body
interaction

VSPIN—ORBIT — (;L()/MC) Z I:% ( 1 —"Tg'i) (#p__%

+paz (147.7) :]o-j' lj("j)wl[‘{ Ve(r)) //‘[rj]r (3.19)

where V.(7;) is the Coulomb potential of the system
cvaluated at the position of the jth particle.

The commutator
() = [ /SPIN-ORBIT T 7]

= (efi/4M*) 2 (up—pn—
XAV (7)) /driJoj1r7

will be used in Sec. 5 where we consider the contribution
of this term to the displacement energy.

VSPIN—ORBIT

Bt

(3.20)

3.2 Isospin Violation of the Nuclear Hamiltonian

The p-» mass difference and the isospin violation of
the nuclear interaction make up the isospin-violating
parts of the nuclear Hamiltonian. These terms are also
of electromagnetic origin; however, they arise in a more
indirect way and are not fully understood at present.
We will treat them in a purely phenomenological way.

3.21 The Proton-Neutron Mass Difference

The Hamiltonian of the nucleus depends in a static
and in a dynamic way on the mass difference between
protons and neutrons. The static effect arises since the
Hamiltonian includes a term which represents the total
mass of all nucleons of the nucleus. Because of the pro-
ton-neutron mass difference, this term violates isospin.
Its commutator with 7 is (M,—M,) T—, independent
of position and spin and therefore does not contribute
to the escape amplitude but only to the displacement
energy. We expand the kinetic energy term to first
order in the p—» mass difference

Hygin= Z (p&/2M) (1—%(AM/M)7.7]

7

(3.21)

“ The neutron-proton mass difference is taken up in Sec. 3.21.
Effects of finite size and vacuum polarization in modifying
the Coulomb interaction have already been discussed and are not
considered in Eq. (3.17)
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with
Mz%(Mn"i—Mp); AM:Mn_Mm

AM/M=0.14X10"2,

By taking the commutator of Eq. (3.21) with 7, we
find

(Hiw, T-1=5(AM/M) X (p/2M) . (3.22)

3.22 Charge Dependence and Charge Asymmetry
of the Nuclear Force

When discussing the isospin properties of nuclear
forces one makes a distinction between charge symmetry
and charge independence. One calls a force charge sym-
metric if there is no difference between the p—p and
n-n interactions. A force is charge independent if the
p—p and the n-n interactions are equal to the T=1,
n—p interaction. For this state we write the interaction
as

VNUCL(1,2) = V,,7=1(1, 2)+ VCA(L, 2) T,

+(VeP(1, 2)T.2, (3.23)
where
T=[r.(1)+7.(2)]/2,
VoA=[(Vu— %) /21 (3.24)
and
VOP=[(VpptVun) /2— V., 0=1]. (3.25)

Then charge independence requires VP = V¢A=0, while
for charge symmetry V¢ must be zero.

After having taken account of the effects of the p-»
mass difference, the Coulomb potential, the vacuum
polarization, the magnetic forces, there is little evidence
for a violation of charge symmetry which implies a=0.
However, the charge dependence of nuclear forces is
well established (V¢T#0). That is, the purely nuclear
parts of the p—p force and the T=1, n—p force differ
from each other. The major effects which lead to a
charge dependence of the nuclear forces are [He66,69a ]:

(i) The mass difference of the mesons exchanged
between the nucleons, especially the mass difference
between the charged and the neutral = meson.

(ii) Radiative corrections, especially to the pion—
nucleon coupling constant.

(iii) Mixing of meson states of different isobaric
spin but with the same spin and parity, e.g., the =°
meson and the » meson.

We consider separately the charge dependent part,
VD) and the charge asymmetric part, VCA | of NUCL

Vop™=[V, T_]= -3V (1, 2)
X[r.(D) 7 (2)+7-(1)7.(2)]  (3.262)
Vea® =[VCA T_].

and
(3.26b)

An analysis of the scattering length and the effective
range of the p—p and n—p scattering leads to the esti-
mate [He66a ],

| (Vpp_‘ Vn:oT=l)/Vpp I 52(70’

the interaction between protons and neutrons in 7'=1
states being more attractive than the force between
protons. Also

| (Van=V )/ Vip |<1%, (3.27b)

with V,, more attractive [He69a]. Since the nuclear
forces depend strongly on the spin, the relative orbital
angular momentum, and the total angular momentum,
we also expect the forces, V°P and VA, to be com-
plicated.

As we will see the charge dependent and charge
asymmetric part of the nuclear force contributes only
a small part to the energy of the analog resonance and
the escape amplitude. However, these forces may domi-
nate in cases where the Coulomb matrix element is
small, e.g., when several nucleons change their orbits.
This is the case in isospin forbidden decays or rearrange-
ment amplitudes (Sec. 6).

(3.27a)

3.3 Summary

As we have seen previously [Eq. (2.5)], the com-
mutator VO=[H, T_] plays a central role in the
calculation of various matrix elements which appear in
the theory of a analog states. In this chapter we have
discussed various contributions to this commutator
and may now write

VO =V.O4+VepD+Voa D+ VuacW+ Viin™,

(3.28)
where
Vo=V, T,
Ve =[V°eP, T_],
Vea) = I:VCA, T_],
VaacO =[VMAG T 7 (3.29)
and
Ve =[Hx, T—]. (3.30)

The effects of proton finite size and vacuum polariza-
tion are now included in the definition of V..

It will sometimes be useful to define the operators
which are adjoint to those appearing in Eq. (3.28),

V= [V(—)]T= [T-H H]:

V= [Vc(‘)]}r = [T+) Vc]; (3 ~31)
etc.

4. THE NORM

Since the normalization constant (zr | 7.7—_| =) in-
troduced in the definition of the analog state | 4)
appears in various theoretical expressions, a separate,
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though short, section is devoted to its evaluation. Some
of the notation and techniques used in later sections
will be introduced here.

We assume the parent state | 7) to be normalized
and to be an eigenfunction of 7, although not neces-
sarily an eigenstate of T2 Then by commuting 7'y and
T—, we obtain

(r| ToT— | 7)=2T+(w | T-T4 | v,

where 27'= (N—Z). The second quantity in Eq. (4.1),
the norm of the state 7 | 7), is always positive and
vanishes if and only if the parent state is an eigenfunc-
tion of T2 with 7,=T. One can estimate the correction
term in Eq. (4.1) in fwo different ways.

(4.1)

(i) The parent state is expanded into states of good
isospin

|m)=Q1=)"| T, T)+e| T+1,T),

where € is the coefficient of the isospin impurity for this

expansion. For simplicity we restrict ourselves to the

admixture of states with isospin 7+1. Inserting Eq.
(4.2) into (4.1) we find

(v | ToT- | 7y=2T+ (2T+2)e.

(4.2)

(4.3)

The parameter e has been estimated using a collective
model for the state | 741, T'). For this model it is found
that [Bo67]

&=5.5%10"7285/(T+1). (4.4)

(ii) A more detailed approach proceeds through the
introduction of creation operators for neutrons (b,7)
and protons (a,') and corresponding destruction opera-
tors, b, and a,. The operators 7'y and 7_ may be ex-
pressed in terms of the &’s and @’s:

Ti= 2 b.'as, T =3 a,'ba, (4.5)
where {a} denotes any complete set of single-particle
functions. In general the expression

(r| T-Ty | m)= Z; (m | aa"babg'ag | 7)  (4.6)

cannot be simplified further. However, we assume | 7)
to factorize into a function containing only protons and
one which contains only neutrons. Then Eq. (4.6) is
reducible to a product of one-body densities for protons
and neutrons,
(m| T-Ty|m)= Zﬁ (r | ao’ag | w)(m | bads" | ).
(4.7)

The factorization in Eq. (4.7) corresponds to the neglect
of p-n correlations in the parent state | 7). Equation
(4.7) holds trivially, if |7) is a Slater determinant.
The same factorization follows also from the assump-

tion that in the sum over intermediate states | #)
(r| T-Ty|[m)= X2 Zﬂ (r | aa'ag | n)(n | bads" | 7),

(4.8)
the parent state exhausts most of the sum.
We introduce the single-particle density matrices

pap?= (7 | as'ag| ),

and
pag”=(m | ba'bs | 7). (4.9)
Then Eq. (4.6) is
(@ T-Ts | m)= 2 pug? (Gus = pse”)
(4.10)

=Z— 2 pas®Ppa’
aff

which may be written as'®
(r | T-T | m)=] dx[p?(x, x) — [ dyp? (%, ¥)p"(¥, %) ]
=[I(x) dx, (4.11)

where we have defined the isospin impurity function,
I(x),

I(x) =p?(x, X) = [p"(X, y)p"(y, %) dy (4.12)

in terms of the coordinate representation of the proton
and neutron density matrices. We can see from Eq.
(4.10) or Eq. (4.12) that if the product of the proton
and neutron density matrices yields the proton density
matrix, the parent state | r) has good isospin. Different
models of isospin impurity will give different forms for
I(x). Of course, we have

JI(x) dx>0,
since this integral represents the norm of the state

T+ ' 7l'>. . .
In the special case that | 7) is a Slater determinant

(4.13)

such that
p? (X, ¥) = 2 ¥uP* (X)¥a?(y) (4.14)
and
pn(x’ Y) = % \bﬂn*(x)#/ﬂn(y):
we have
I(x) = 2 ¢ (X)¢a” (x) — Zﬂ Yo" (%)
X (e (D)™ (7)) dy) s (%), (4.15)

where the sum goes over the occupied states. Finally,
we have

(w| T-Ty|m)=2— Xﬁi | [a* (x)¥5" (x) dx [*. (4.16)

15 If there are short-range neutron—proton correlations, we may
use a nuclear correlation factor [1+4¢¢(x—y)] multiplying the
second term of (4.11) to suitably generalize the isospin impurity
function I(x).
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We note that expression Eq. (4.16) vanishes if the
occupied proton orbits are equal to the corresponding
neutron occupied orbits. Equation (4.16) may also
vanish when there is no one-to-one correspondence. If
the occupied proton orbits can be fully expanded in the
occupied neutron orbits, the right-hand side of Eq.
(4.16) is zero, and the Slater determinant has good
isospin. In other words, the detailed shape of the
occupied neutron orbits is relatively unimportant. Iso-
spin purity requires only that they form a complete set
for the occupied protons orbitals. Therefore, an increas-
ing number of excess neutrons leads to increasing iso-
spin purity. The only approximation entering the treat-
ment of the Model (ii) is the neglect of p—n correla-
tions. Such correlations may change the isospin impurity
of nuclear states. A recent investigation [Bo67] shows
that collective p—# correlations tend to reduce the iso-
spin impurity of nuclear states by an order of mag-
nitude compared with a single-particle estimates
[S165; Ma55,56].

5. DISPLACEMENT ENERGIES

The position Eg of the isobaric analog resonance is
given by

Ee=(A|H|4)
+ Re (4 | H{g/[En—HoA3GD) 11 H | 4)

+{4 | HapGp™Hpa | 4)). (5.1)

The first term in Eq. (5.1) is the dominant one and the
difference between it and the energy of the parent will
be called the displacement energy (see Fig. 5.1)

EqtOT= Eg—Ey={(A | H| A)— (x| H| =)

=N | 7,[H, T-]| ), (5.2)
where the definitions [Eqgs. (2.2)-(2.3)] have been
used.

The displacement energy deduced from isobaric
analog resonance experiments is useful for the study
of the distribution of the (N—Z) excess neutrons in
nuclei because the bulk of the displacement energy
arises from Coulomb matrix elements between the
wave functions of the protons and excess neutrons and
is sensitive to the excess neutron distribution [No67;
Beb68a,b; Au69a; No69a,b; Sc69a,b]. However, in order
to draw conclusions about the charge and matter dis-
tribution in nuclei, it is necessary to understand all of
the different effects that contribute to the displacement
energy.

Experimentally, the position of the isobaric analog
resonance is measured. Therefore, in order to obtain the
displacement energy it is necessary to calculate the
shift due to the coupling of the analog state to the
compound and continuum states as exhibited in the
last two terms of Eq. (5.1). The first shift is of the order
of a few keV while the coupling to the continuum

contributes between tens and hundreds of keV. These
shifts are dependent upon the specific reaction theory
of isobaric analog resonances and are treated separately
in Sec. 7.

The main contribution to the displacement energy
comes from the two-body Coulomb force. In the ac-
curate calculation of this main term we have to con-
sider the influence of the Pauli and nuclear correlations,
vacuum polarization, and finite proton size. Configura-
tion mixing and isospin impurity in the parent state are
considered in Secs. 5.3 and 5.2.

The other isospin violating parts of the Hamiltonian,
the magnetic interactions, the #n—p mass difference, and
the charge-dependent nuclear force, contribute about
100-200 keV to the displacement energy. We will dis-
cuss these effects as they contribute to the displacement
energies in Sec. 5.4.

We will not review here all of the work on the
Coulomb energy as such since this is slightly afield of
our subject. But we will try to isolate all of the small
correction terms which are necessary for an accurate
calculation of the displacement energy.

5.1 The Coulomb Displacement Energy

The Coulomb force, written in second quantization
and including finite-size effects and vacuum polarization
is

Vc:% Z (aB l Ve ’57>AaafaBTava5 (5.3)
afyd
with
v:(r) = (¢/r)[1+ (2a/3m) I (r)+g" ()], (5.4)

as discussed in Sec. 3. The creation operators in Eq.
(5.3) refer to protons. The representation of the single-
particle states {a} is arbitrary and the subscript 4
means that antisymmetrization is taken into account,
(e | v | 6y )a=(aB | v. | by)—(aB | 2. | 7d).

Equation (5.2) may be rewritten in terms of an ex-
pectation value of a double commutator, and an
additional term

EJTOT= E;+AE,, (5.5)
where

Eq=N"Yr | [Ty, [H, T-1]| ), (5.6)

————— -—— Ea la>

Egsossssss559% 1AR

E.dTOT
Ex | 7>
(N,Z) (N-1,Z2+1)

F16. 5.1. Schematic representation of the relation of the dis-
placement energy E,T0T=FE4—E, and the observed energy of
the isobaric analog resonance, Eg.
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and
AE;=N"Yr |[H, T_]T, | 7). (5.7)

The term AE, vanishes in the case in which isospin is
conserved, since in that case T |m)=0. For states
where isospin is approximately conserved this term is
very small; we will return to the consideration of this
term in Sec. 5.2. In this section we consider the first
term, Eq. (5.6), and approximate thenorm (r | T, .7_ | 7)
by 2T.

Using the isospin lowering and raising operators 7'_
and 7', in second quantized form, Eq. (4.5), we eval-
uate the single and double commutators and find

[V, T-]=% X (aB| v | 6v)aasag’abs  (5.8)
afyd
[Ty, [V, T-1]= 828 (B | v | v)a
afy
X (baTaﬁ*aVb —%aa*ag"aa,aa) . (5 . 9)

Thus, the displacement energy depends on the two ex-
pectation values,

(| botagTabs | 7) and (w | a.tasta,as | 7).

1If the wave function of the parent is well described by a
Slater determinant with definite V and Z, these matrix
elements factorize

(m | ba'ag'aybs | 7)=pas”psy?
and
(5.10)

(| aatagta,as | T)= pas”ppy” — Pas”pss”-
Thus Eq. (5.7) reads
Ea= (2T)™ X (B | v | 67)a(pas"— pas”) "

afyd
=27)7[ dx dy{[p*(x) —p"(x) Jo.(| x—y |) p?(y)
—3[o"(x, y) —p?(x, y) Ju(| x—y ) p?(x, ¥)},
(5.11)

where p(x, y) is the density matrix in coordinate space,
and p(x)=p(X, x). The second term in (5.11) is the
exchange term, and the factor 3 in this term arises from
the assumption that the density matrix is independent
of spin.

In general, proton—neutron correlations and proton—
proton correlations will modify Eq. (5.11). Therefore,
we introduce spin-dependent correlation functions
2,:°5(] x—y|) and g.,%(| x—y|) describing the short-
range proton-proton and 7'=1 neutron-proton corre-
lations, and defer discussion of long-range correlations
(i.e., configuration mixing) to Sec. 5.3. Then Eq. (5.11)
may be written

Eq= 2T)7Yf[ dx dyv.(| x—y |)S=20:1(2S+1)/4

XA[14gm(| x—y )]
X[ (x) o7 (y)+ (= 1)5p" (%, y)p*(x, ¥) ]
—[1+g," (| x=y )]

X[or(x)pr(y)+(—=)%?(x, y)pr(x, y) 1} (5.12)

where g (] x—y |) refers to the triplet and singlet part
of the correlation function for S=1, 0 respectively. It
has been assumed here that the density matrices are
spin independent. In the more general case, not con-
sidered here, we have

p(X, y)=po(X, y)+0- (X% ¥)p.(X, y),

where o is the Pauli spin operator. If we admit spin
dependence of the density matrices, Eq. (5.12) takes
on a more complicated structure which we do not pre-
sent here. We note that the spin-dependent vector term
only contributes to exchange integrals. In addition we
expect the vector part p, to be small since it only receives
contributions from nonclosed shells in the sense of L-S
coupling. We usually assume that

[gpncsd =y |)P"(x) _gm)cs(l X—y l)PP(x)]
' = g% (|x—y]) Lo (x) —p?(x) ]

which implies that the core part of the np and pp
correlations are equal, and defines g% (| x—y|) as the
correlation of the excess neutrons with the core protons.
Then Eq. (5.12) simplifies to

Eq=(21)7'f dx dy % 1(25+1) (1+¢%5(lx—y )

XA{Lo"(x) —p?(y) Jo?(y) +(—)8
X[ (x, y)—p?(x, y) Jo?(x, ¥) Jo.(| x—y |). (5.13)

5.11 The Direct Part of the Coulomb Energy
The dominant term in Eq. (5.13) is
E£OV= (&/27) [ dx dy[p"(x) —p*(x)]
X1/l x=y Der(y).

In order to evaluate this term, which contributes
more than 909, to the displacement energy, we take
the proton density as determined from other ex-
periments and parameterize the function [p*(x) —p?(x)]
which we call the excess neutron distribution. Elastic
electron scattering from nuclei and muonic x-ray
experiments probe the charge distribution in nuclei.
The distributions resulting from these experiments are
usually expressed in terms of two or three parameters
[El67; Ho67a7]. The two parameter form is of the Fermi
type:

peheree(7) = constant/{1-+ exp [4 In 3(r—¢) /t]}.
(5.15)
Using a three-parameter charge distribution does not
change the result by more than 100 keV.
The nuclear charge distribution determined from

electron scattering or muonic atoms includes the effect
of the proton finite size, i.e., in momentum space,

peharee (g2) = p? (¢7) G (g?), (5.16)

where p?(¢?) is the Fourier transform of p?(r), the dis-

(5.14)
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tribution of point protons, and G,(¢?) is the form factor
of the proton.® The charge density appearing in Eq.
(5.14) is for point charges indicating that the finite-size
effect has been removed from the experimental charge
distribution using Eq. (5.16).

Now, the only unknown quantity in Eq. (5.14) is the
excess neutron density [ p*(x) — p?(x) ]. By parameteriz-
ing [p"(x)—p?(x)] and fitting the experimental dis-
placement energy we obtain information about the
excess neutron distribution. In naive calculations the
excess neutron distribution is often represented by the
wave functions of the excess neutrons, i.e.,

N
Lo (x) —p?(x) 1= EHI%(X)P, (5.17)

where wave functions ¢,(X) are obtained by solving a
single-particle Schrédinger equation with a Saxon-
Woods potential. The sum in Eq. (5.17) runs over the
shell-model orbits occupied by the excess neutrons. The
depth of the potential and the diffuseness is always
chosen to fit the experimental binding energies of the
excess neutrons. The only free parameter is the radius
of the potential. Including all the corrections discussed
below, the radius is chosen so that a fit is obtained to
the experimental energy of the analog resonance. The
change of the radius of the potential well is only a
device for varying the extension of the neutron distri-
bution, and, in general, the displacement energy will
determine the relation between the parameters charac-
terizing the differences in shapes of the proton and
neutron distributions.

5.12 The Exchange Term

The next largest contribution is the exchange term
defined by

EfXCH— — (2T) %[ [ dx dy
X[o"(x, y) —po(x, y) J(1/| x—y [)p*(x, ¥).

Again, the single-particle model can be used to ap-
proximate the density matrix of the excess neutrons

(5.18)

N
P (X, y)—p"(X, y) = }7‘;1 e (X)e(y), (5.19)

where the sum runs over the orbits occupied by the
excess neutrons. In a similar way we have to param-
eterize the proton density matrix p?(X, y), since elec-
tron scattering or muonic atom experiments only yield
information concerning p?(x). The parameters of a
proton well are chosen such that p?(x) agrees with
experiment. The proton wave functions of this well
are used to construct the proton density matrix,

16 Strictly, the nuclear charge form factor as measured experi-
mentally is p(g?) =p?(g%)Gp(g?) +0"(g?) Gn(q?), where p? and p»
describe the distributions of point protons and point neutrons,
respectively, and G,(¢?) and G,(g?) are the charge form factors of
protons and neutrons. Since G,(0) =0, and p"(q?) goes to zero
rapidly with increasing ¢?, the term with p® may be neglected.

p?(x, y), and the exchange term, Eq. (5.18), is cal-
culated.

The ratio of the exchange to direct terms is not very
sensitive to the exact form of the proton wave function.
Because of this feature we can accurately determine
this ratio from infinite matter [Be36; Be68b]. We
define a Pauli correlation function gP(x, y) by the use
of the following equation

%Pp(x; Y) [p"(xa Y)_Pp(xy Y>:]

=p*(x)[o"(y) —p*(¥) Jg¥(x, y). (5.20)
Thus Eq. (5.18) becomes
E,PX = — (¢/2T) [ dx dy[p"(x) —p?(x) ]
X(Ix=yD7(¥)g"(x, y). (5.21)

In infinite matter the correlation function g?(x, y) is
translationally invariant and is given by

kp? kg™
dkr [ dk»
&

0 FP

1
gP(lx*YD:i

kp kg
ik f
kp?

0

n

-1
)

(5.22)

X exp [i(k"—k») - (x— ) ](

Here, k" and kg? are the Fermi momenta of the neu-
trons and protons respectively. The integration limits
in the second integral reflect the fact that we integrate
only over the excess neutrons. Integration over the
angles of k? and k* is implied. If we introduce the nota-
tion z=Fkp? | x—y| and AN=Fkg"/kp?, the integral in
Eq. (5.22) is evaluated to be

1 A
P _ =_g A —1)-1 o 2 d 0(v'2)y'2 dy'
gP(lx—y ) =5( )/0](3’2)3’ yflﬂyz)y Y
=3(N—1)"1225,(2) (N1 (A2) —fa(2) ],

(5.23)

where the 7; are spherical Bessel functions. This function
differs from the usual nucleon—nucleon correlation
function [Bo697] since it only describes the Pauli

1.0~
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T
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3

er af.i(z2)

A

1 J |
o] 1.0 2.0 3.0 4.0

z

F16. 5.2. A comparison of the correlation functions
2P (2) =9j12(2) /222 and P (2) =35e(2)51(z) /22.
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correlations between core nucleons and nucleons near
the top of the Fermi sea. The usual average correlation
function is obtained from the A=0 limit of g?(x)

g7 (2)=gF(A)rs0=(9/22) [ js(2) . (5.24)

A comparison of gF(z) for A\=1 and the usual proton-
proton correlation function g?(2), is made in Fig. 5.2.

Assuming that the Pauli correlation function is
translationally invariant (as in the case of nuclear
matter) and using the fact that this function is of short
range (kp~1.4F71), we may write

E,FXCH~— (¢2/27) [ ds dx
X Lo (x) —p7 (%) I 7" (x+5) g7(5)
~—(¢%/2T) [ dx[p"(x) —p?(x) Jo?(x)

Xdr f ® s1gP(s)stds, (5.25)
0

where we have dropped derivatives of p?(x). The first
factor of (5.25) can be estimated by assuming that p?
and p* have square shapes. The integral on s can be
performed to yield

F EXCH — ?Z 32 1 <)‘2+>‘+2
16 R~ (kpR)2\N+H2141
where R is the nuclear radius.

Using the fact that A==Fkp*/kp?=(N/Z)'® and ex-
panding to first order in (N—Z)/Z we have

9Ze 1 < N—Z)' (5.27)

EdEXCH._’Ef—" - —_—
12Z

4 R (krPR)?

), (5.26)

Finally, we recognize that the integral on s in Eq.
(5.25) must be cut off before the nuclear radius. Using
the dimensionless cutoff value equal to V2ZkrR we have

EEXCH___Q_é__e2 1 ( __N—Z)
¢ 4 R (Eks*R)? 127
2
1— ) 4...
X ( A2/3(kppro)2) +

7
~ —900 " keV. (5.28)

This estimate agrees with the numerical result ob-
tained using the single-particle model (see Sec. 5.4).

5.13 The Effect of the Finite Proton Size

We consider now the term in Eq. (5.13) which con-
tains the effect of the finite size of the protons. Including
the exchange contribution, we define

EJ"=(¢/2T) [ dx ds[p"(x) —p"(x) ]
Xs7ig" (5) p7 (x+8) [1—¢"(s) 1.

Again using the short-range expansion, we may write

(5.29)

Eq. (5.29) as:
Ef = (e*/27T) [ dx[p"(x) —p?(x) Jo»(x)
X Jds[g"(s)/s][1—g"(s)] (5.30)

We may obtain a rough estimate of E4F by expanding
gP(s) to second order in (ks?s) and taking the A=1
limit

g7 (s)~h— 25 (Bes)". (5.31)
We find in the nuclear matter limit,
Eff'=—(Z¢*/R) (rs/ R)*[3+% (rskp?)*]
~(—250Z/4) keV. (5.32a)

In Eq. (5.32a), R is the nuclear radius and 7, (defined
in Sec. 3.12) is equal to 0.83F. Detailed calculation of
Eq. (5.30) for finite nuclei confirms an approximately
constant value of E;F~—100 keV.

We may also estimate the effect of the finite charge
distribution of the neutron using the neutron mean
square radius. To this same order only the Coulomb
interaction of the neutron with the proton point charge
enters, and the result is

E ' meutron= 4 L(N—7) (¢2/R) (r,/R)?<1 keV.
(5.32b)
5.14 Vacuum Polarization

As we saw in Sec. 3.13, the additional potential due to
vacuum polarization is given by Egs. (3.11)-(3.13).
As noted there the logarithmic singularity for small »
in the function 7(r) would be removed if we were to
correct for finite proton size following the procedure
used previously for the Coulomb interaction itself
(Sec. 3.12).

To obtain an estimate of the vacuum polarization
correction it is sufficient to use I(r) evaluated for a
mean value of the distance r~7,=1.2F. Then In (k)=
5.6, and a factor of 2 change in 7, changes In (k7) by
only +0.7. (Note that »>¢, where ¢ is the hard-core
radius). The correction corresponds to an increase of €?
by about 0.6% when calculating the Coulomb displace-
ment energy. Expressing this vacuum polarization
correction in terms of Z and A we have

EROL=85(Z/A413) keV. (5.32¢)

5.15 Short-Range Correlations

The term in Eq. (5.13) arising from the short-range
spin-independent correlations is”

Ef=(&/2T) [ dx dsg®(s) [p"(x) —p? (%) Js~'p? (x+s5)
X[1+g"(s) M1—g"(s) ] (5.33)

17 When g€(s) is spin dependent as in Eq. (5.13), we obtain
the same form with g¢(1—gP) replaced by

g°(1~g”)——>§%(25+1)g“(1+(—1)*"2g")-
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F16. 5.3. The product of nuclear correlation g¢(s) and the
Pauli correlation function as taken from the work of Di Toro,
Nunberg, and Riithimaki [Di70]. Curve A refers to the Tabakin
potential, and curve B to the Kerman-Rouben-Riihimaki
potential.

Making the short-range expansion, we find

2
Ef=x 1 [ o0 - (0] ()
SEIGHD)
- 4 70 A ) ’
where

L= | [ dsg®(s)s7[1—g"(s) J1+g"(s) ] |.

The integrand of Eq. (5.35) is composed of the short-
range nuclear correlation, the Pauli correlation function,
the finite size correction, and a factor 1/s arising from
the point Coulomb interaction. The sign and the value
of the correlation correction, Eq. (5.34), depend sen-
sitively on the form of the nuclear correlation function.
This correlation function must satisfy the normalization
condition (see Appendix 2),

J dsg®(s)[1—g"(s) ]=0,

which holds in the same short-range approximation
used in the previous discussion. We see that the inte-
grand of Eq. (5.36) will contain oscillations which
influence the size of E4°.

The short-range correlation correction has been
calculated [Di70] for two different nucleon-nucleon
forces. The quantity s?[1—gP(s)]g¢(s) as obtained by
these authors for a semirealistic two term separable
interaction [Ta64] and a modified realistic form
[Ro69a,b] with a local tail is shown in Fig. (5.3). In

(5.34)

(5.35)

(5.36)

Table 5.1 we present the results for £, obtained by
these authors [Di70] with and without the proton
finite-size correction. We see that the separable potential
yields positive corrections as it exhibits attraction at
short distances where the Coulomb interaction is
strongest. For the more realistic interaction there is a
short-range repulsion followed by an attractive region
so that it is harder to guess the sign of the correlation
correction. Indeed the sign of the result changes as
one includes the finite size correction. Using the finite
size results from Table 5.1 (KRR potential,) we may
write Eq. (5.34) approximately as

EL~60(Z/A) keV. (5.37)

5.2 Isospin Mixing in the Parent State

In this section we are concerned with the effects of
isospin mixing on the displacement energies. Some of
the effects have already been included in the calcula-
tion of E, using phenomenological charge densities.
An additional effect is contained in the term AE,,
Eq. (5.7). This term vanishes in the case of no isospin
mixing and is small otherwise. We first discuss the cal-
culation of AE,; in a model which neglects correlations.
This is reasonable as AE,; is a small correction term.
We then go on to discuss AE, using an expansion of the
parent in states of good isospin.

In Sec. 5.23 we discuss a model which treats the
entire contribution of isospin mixing to the displacement
energy without separating these contributions to Eq4
and AE,. Finally in Sec. 5.24 we consider some estimates
for the shifts due to isospin mixing.

5.21 Evaluation of AEq in a Single-Particle Model

Thus far we have only considered the quantity Eq4
given by Eq. (5.6). We now turn to a consideration of
the term AE,, Eq. (5.7), which vanishes if there is no
isospin mixing and is otherwise small.

It is important to note that the whole effect of isospin
mixing is not isolated in AEy since we have used phe-
nomenological densities in evaluating Eq. The isospin
violation, as it affects the densities, has been included
in Ed.

TaBLE 5.1 Short-range correlation correction to the displace-
ment energy [Di70].

E,°(keV)
Ca48 SrSS Pb208

Tabakin Potential [Ta64]

Point charge 71 79

Finite size 45 44 27
KRR potential [Ro69a,b]

Point charge —2 —-13

Finite size 22 26
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We recall the form taken by AE;

AE;=N"Yr |[H, T_]T | =). (5.7)
In second quantization we find
AE;=N7"3 3 (aB|v.|07)a
afyde
X (| astagta,bsblac | v). (5.38)

Since this is a small term we evaluate this last matrix
element neglecting correlations

AE;=N"1 Z (5&‘— Pe&") (Pﬂ*{ppmp— Pﬂ!ppvap) (aﬁ | Ve 1 67)

afyde
(5.39)
=N— ;s (Iaﬁpﬂ'y”'—lﬂépvap) <0‘B [ Ve | oy ); (5 .40)
afy
where
(5.41)

laB = pas’ — Z Pse"Pea’.
€

We may also write Eq. (5.40) in configuration space
as

AE;=N7[[I(x)v.(| x—y )pr(y) dxdy—N~*

X JJ1(x, y)v(| x—y Dpr(x, y) dxdy (5.42)
where's

[(x, y)=p"(%, y)—Jp"(X, 2)p*(2, ¥) dz,

and I(x) =1(x, x). This latter function has been intro-
duced previously in Sec. 4 as the isospin impurity
function [Eq. (4.12)7]. Various models for the proton
and neutron densities allow us to calculate AE; via
Eq. (5.39) or (5.42).

(5.43)

5.22 Alternative A pproach for the Evaluation of AE4

We consider the parent state | 7) to be expanded in
states of good isospin

l 7r>= Z €n I T+7l, T))

n=0

(5.44)

the first term being the main term of the expansion.
Substituting Eq. (5.44) in the expression for AE,;, we
have

AE=N7S (o | [H, 7| T+n, T+1)

Xe[n(2T+n+1) 2
~NY (Ex—Erpnrp) r | T— | T+n, T+1)
n=1
Xe[n(2T+n+1)T2,  (5.45)

where we have assumed that H is approximately
diagonal in the states of good isospin

H | T+n, T+ 1)~Ep,nrn | T+n, T+1). (5.46)

18 We consider the variables x and y to include the spin. When
the densities are spin independent, the variables x and y can be
taken as pure space variables if a factor 1/2 is inserted in the
second term of (5.43).

Again, using Eq. (5.44), we obtain

AE~— > [#(2T+n+1) /N]e%E,, (5.47a)
n=1
where
SE.=Erinry1— "rzET-y—n,T—]—l—ET,T- (5.47b)

If we assume that the main contribution to Eq. (5.47a)
comes from the admixture of a single state with 741 in
Eq. (5.44) we have

AE~—e2[(T+1) /T BE,. (5.48)

In the models we consider (see Sec. 5.23) the quantity
dE, will be positive. Approximations for this quantity
and &2 will also be given in Sec. 5.24.

5.23 Total Contribution of the Isospin Violation to
the Displacement Energy

In the last two sections we have considered the cal-
culation of AE; which is a part of the displacement
energy, E;fT=E;+AE,;. We note again that isospin
violation also modifies the value of E4 It is useful,
therefore, to have a model in which the fotal contribu-
tion of isospin violation is considered rather than having
its effect present in two different terms. We consider
such a model in this section.

Assume that the parent state with isospin 7" and
z component 7,=T contains admixtures of states with
isospin 741 with total probability, €

|m)=|T,T)(1—e&)*4 | TH+1,T) (5.49)

Inserting Eq. (5.49) into Eq. (5.2) and using the
properties of T, and T, we have
2T(1—) E,S T4 2e(2T+1) E,THT

2T+e2(T+1)

ETOT=
L [(i*_(z_TT‘tl_))l/z(T, T—1|H|T+1,T—1)

(3T+1)
T

@, 71 8| 7+1,7)], (550
where we have introduced the displacement energy of a
state with pure isospin (see Fig. 5.4)

EfT=(T,T,—1|H| T, T.—1)—(T, T.| H| T, T.),
(5.51)

and have neglected some terms of higher order than €.
With the definition of &

[(T—1)/(2T+1) Jo= (B, T—E"T), (5.52)
we obtain
ETOT= E,T.T4 E,T-TMP,

(5.53)
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F16. 5.4. A diagrammatic representation of the energy differ-
ences between multiplets of good isospin. The various quantities
defined appear in Egs. (5.47b), (5.51), and (5.55). The admixture
of the state (7+1, 7) into the state (7, T) is assumed to be the
main source of isospin impurity of the latter state.

where
ETMP=([4Q2T+1)/T T, T—1 | H | T4+1,T—1)

—[BT+1)/TUT, T |H| T+1, T)}+e6[(T—1)/T].
(5.54)

The quantity §(7—1)/(2T41) of Eq. (5.52) repre-
sents the difference of the displacements of two states
with pure isospin and is of the same order as the shifts
due to the state dependence of the Coulomb energies,
i.e., of the order of a few tens of keV or less.

In order to obtain E," 7P the total contribution to
the displacement energy from isospin impurity, we
need to evaluate the first term in Eq. (5.54). To treat
this term we decompose the interaction into spherical
tensors in the isospin space. These consist of scalar,
vector and tensor terms, the main contribution being
from the Coulomb interaction. The most important
term will be the isovector part V.® of the Coulomb
interaction, since this term contains the field effects
affecting the matrix elements off-diagonal in isospin.

The amplitude ¢, in first-order perturbation theory, is

e=—(T+1,T|V.® | T, T)/AE

=—{1/[(T+1) 2T+3) T*(T+1|| V.® || T)/AE,
(5.59)

where use has been made of the Wigner—Eckart
theorem, and AE is the excitation energy of the center-
of-gravity of the 741 excitations with respect to the
ground state (see Fig. 5.4).

Again using the Wigner-Eckart theorem in Eq.
(5.54) and using Eq. (5.55), we obtain

ES-MP— [ (T—1)/TJ(AE+5)  (5.56)

As we shall see in the next section AE is of the order of
several tens of MeV so that § may be neglected in Eq.
(5.56).

Since the state | 741, T—1), [see Fig. (5.4) ], is part
of the ¢ space, it also contributes to the compound
mixing discussed in Secs. 2 and 7. We find an energy
shift, ‘

ESOMP—= —[1/T(2T+1) JAE

which should be added to E*°T.
Adding Eq. (5.56) (neglecting §) and Eq. (5.57), we
finally find,

EdTOTE EdTOT+EdCO MP — EdY',T'+Ed7'—IMI’+EdCO MP

=EST—&[(2T—1)/2T+1)JAE.  (5.58)

(5.57)

We recall the calculation of AE, in the previous sec-
tion resulting in Eq. (5.48), It can be shown that to a
good approximation the same compound correction,
Eq. (5.57), should be added so that we may also write
E;T0T of Eq. (5.58) as

ETOT= gt AEAE0MP, (5.59)
where E;OMP is given by Eq. (5.57).

Now we may relate E;and Eg7T by comparing the two
expressions for E,TOT using Eq. (5.48), and noting that
AE=0E,~+E,; (see Fig. 5.4). Thus, we find that

Ea~EL T+ (2¢/T)[AE—3(T+1)EST], (5.60)

neglecting & and higher order terms in é.

Recall that Es7-T was calculated for states of good
isospin and E,, Eq. (5.6), contained the effects of iso-
spin impurity in modifying the densities. Therefore,
the last term in Eq. (5.60) contains the isospin impurity
correction to the displacement energy due to density
modifications.

5.24 Estimates of Energy Shifts Caused by
- Isospin Violation

We now use the results of a model for isospin mixing
in low-lying states of nuclei introduced by Bohr,
Damgaard, and Mottelson [Bo67] to estimate AE
and €. In this model the isospin impurity in the | T, T')
state is due to a single collective state, | T, +1,T)
composed of strongly correlated particle-hole pairs with
T=1. Treating the nucleus as a two-fluid system of
protons and neutrons Bohr et al. are able to derive
expressions for the amount of isospin impurity and for
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the excitation energy:

€=5.5X10"7283/(T+1) (5.61)
and

AE=1704"1% MeV. (5.62)

Due to the correlations, AE is about twice as large
as the energy expected from a single-particle model.
Also the nondiagonal matrix element (7' || V,® || T+1)
is smaller in the calculations of Bohr ef al. than it is in an
independent-particle model. The isospin impurities in
the collective model are therefore of order of magnitude
smaller than in those that would be obtained from an
elementary shell model.

Finally, using Eq. (5.48), with e¢=¢, Eq. (5.61),
Eq. (5.62), and E;~(AE—E,T'T), we find®

AE,= — (Z8/3/ AV3) (N — Z)=1(0.19—1.52X 10~%) keV.
(5.63)

This quantity is to be added to our.calculated values of
E,. It amounts to a few tens of keV.

5.3 Configuration Mixing in the Parent State

Part of the correlations in the parent state have been
taken into account explicitly by introducing a short-
range correlation function g¢(| x—y|). In the present
section we consider configuration mixing in the parent
state which may be looked upon as correlations of a
long-range nature. :

Since we have used the empirical proton densities in
the calculation of the Coulomb displacement energies,
we must carefully separate configuration mixing con-
tributions which contribute to density modification
from the true correlation terms. The situation is some-
what different for the neutron density as this quantity
is not directly measurable. In this case, a model of the
density must be employed and neutron density modifica-
tions due to configuration mixing may be considered as
well as true correlation terms.

5.31 General Effects of Configuration Mixing

The effects of configuration mixing on the displace-
ment energy may be studied in several ways. First let
us assume that the parent state is expanded in various
configurations | ¢;):

|m)= 2 ai| i)

k3

(5.64)

Equations (5.2) and (5.64) may be combined as
Ed= Z l a; |2£":di-|-N_l Z oy
i ij
X(‘Pi | I:T-h [H’ T—]] 1 ‘PJ'>
= E | ol |2Edi+ Z aiajEd”, (565)

=]

19 To obtain Eq. (5.63), we have used the rough approximation,
E,;T'T~1.4Z/A"S. Empirically determined expressions for
(Er— E.) may be found in [No69b].

where we have defined
Ei'=N"e:| [Ty, [H, T-1]| ¢;). (5.66)

Here Es'=E," is the displacement energy for the ith
configuration,® and isospin impurity is neglected.

We may now calculate the contribution from the
the displacement energy arising from the proton and
excess neutron densities of the parent. The difference
between the result of Eq. (5.65) and the calculation
made in terms of the densities will represent the long-
range correlation effect on the displacement energy.
For simplicity we will consider only the direct term of
Eq. (5.11).

We have for the proton and excess neutron densities

PP (X) = 2 auerj(e: | @' (%) a(X) | @)= T auajpi? (%),

(5.67)
and
poxe(x) = Z i pi" (X) —pi? (X) ]

= 2 awafpi(x) ]. (5.68)

Thus, from Eq. (5.11), we have (neglecting exchange)
E~N"1Y aajopaf[ dx dy

ikl
Xpijexc( x)z)c(| X—y |)Plcll‘(Y)
=N | e [*f] dx dypi(X)ve(] x— ¥ [)pii?(¥)

FN130 (1—8i8dk1) s [ [ dx dy

idbl
Xpi (%) ve(| =y [) pr” ().

In Eq. (5.69) we may use the relations

Ef~N7[ dx dypie(x)v.(] x—y Dpur(y) (5.70)

and

(5.69)

2laillEi= 2 | ai P(1— ;lai [?) Eqt

=2 | i PEsi~ X2 | @i 2| a; [PEd’.
i .

J#

Thus comparing Eq. (5.65) and Eq. (5.69) we find that
the (long-range) correlation energy is

ESORR= 37 (1—5i;) [wietjEa®+ | i [* | @; PEq’]
i

- Z ( 1—5ij5jk6kl) aiajakalEd”“,
ikl

(5.71)

where we have defined
Ey#=N-1f[ dx dyp;=(x)v.(| x—¥ |) o:®(¥)

20 The various E4¢ will usually not be very different. For exam-
ple, if two configurations ¢ and ¢, differ by having # particles
excited from orbit & to 3, then | Es'— Ez2 |[~(n/2T) ({8 | V.| B8)—
{a| V.| a)), where the matrix elements are single-particle matrix
elements of the Coulomb field. Such differences are small, of the
order of 10 to 100 keV, and relatively smaller in heavy nuclei
where 27T is large.
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pO~~~~p

I16. §.5. Some contributions to the Coulomb displacement
energy assuming only neutron-neutron correlations in the
parent state. The dashed lines refer to the strong interaction and
the wavy lines refer to the various Coulomb matrix elements
appearing in Eq. (5.9).

These comments may be illuminated by diagrams rep-
resenting the contractions appearing in the evaluation
of the expectation value of the operator [T, [V,, T—1],
Eq. (5.9), in the parent state. We discuss a few ex-
amples:

(i) We assume here that the parent is a double-
closed shell with two-particle two-hole neutron ad-
mixtures. The diagrams for this case are shown in Fig.
(5.5). (Note that the operator [T+, [ V., T—]] does not
contain any neutron—neutron interaction terms.) The
wavy lines represent the matrix elements of the Coulomb
interaction and the dashed lines the neutron-neutron
strong interaction which is the source of the configura-
tion admixture. The terms with only a wavy line repre-
sent the interaction of the excess. neutrons with the
proton distribution. The other two terms represent
the modification of the neutron density due to the two-
particle two-hole part of the wave function. The sum of

pO~~—COp nO~~O p

{F Qe (Fi
(b)

—
)efe (o (o
(a)

n
nO;:Op T

F16. 5.6. Some of the diagrams which contribute to the evalu-
ation of the Coulomb displacement energy for the case of a
parent with proton-neutron correlations. The dashed lines refer
to the strong interaction.

(c)

all the diagrams, appropriately weighted, describes the
interaction of the excess neutron density (modified
because of the #—# interaction) with the proton density.
There are no correlation terms in this case.

(ii) We turn to the case where there is a strong force
giving rise to correlations between protons and neutrons.
Some of the diagrams arising in the calculation of the
displacement energy are shown in Fig. (5.6). The
modification of the proton density is described by the
diagrams of Fig. (5.6a) and the modification of the
neutron density by Fig. (5.6b). Some of the correlation
effects are included in the diagrams of Fig. (5.6¢c).

PO P N O P

n n{)w—Or»
PO Q

p
n n n

(a)

] p@p

F16. 5.7. Diagrams contributing to the Coulomb displacement
energy for a parent state consisting of a neutron outside a core.
The diagrams involving density modifications due to the strong
interactions (dashed lines) are shown in (a), while correlation
diagrams are shown in (b). See [Au69b].

(b)

(ili) Recently the mirror pair Ca*-Sc* has been dis-
cussed [Au69b]. In this case the admixture of a mono-
pole T'=1 core mode to the f7,» neutron wave function is
possible via the strong interaction. The resulting parent
state may be considered to have good isospin (7'=%).
The major effect on the displacement energies arises
from the modification of the neutron and proton
densities because of the T'=1 admixture. This effect
may be sizeable, of the order of several hundred kilo-
volts. The correlation effects are estimated to be much
smaller. In Fig. (5.7a) we have indicated some diagrams
involving densities and in Fig. (5.7b) some correlation
diagrams are shown.
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5.32 Estimates of Configuration Mixing E ffects

We include here some estimates of the correction
arising from the admixture of some two-particle one-
hole states to states of a single particle. To this end we
have calculated the quantity E;# of Eq. (5.66), where
configuration ¢ is a single neutron of angular momentum
7, and configuration £ is a neutron of angular momentum
7', (7'#4), coupled to a proton particle-hole state of
angular momentum 2*. The matrix element is of the
form

E;#=N"Y[0"]Jp,m; | [Ty, [H, T-1]
X | [01Pe;, P heo; ™5 7). (5.72)

We have considered orbitals appropriate to Sr¥, i.e.,
neutrons in the dss, 5152, and ds2 states, and have limited
ourselves to the contribution of the Coulomb force to
E;*. Some of the results for the matrix elements of
Eq. (5.72) are shown in Table 5.2a. They are quite
small; usually less than 3 keV.

TaBLE 5.2 The quantity E;* of Eq. (5.72) for single neutron
states admixed with two-particle, one-hole states (a) or with
particle-vibration modes (b). Configurations chosen are ap-
propriate to the strontium region. Note that E.* is related to the
matrix element listed by a factor (1/N)—see Eq. (5.72).

Matrix element Ey*(keV)
OF sua | Vel (pare ™ p1s2) st dsie) —-0.3
OF sz | Ve | (parz ™ pri) 2¥dare) —2.2

OF sz | Vel (forp1) 2t dsrn) 1.5

OF s12 | Ve | (S pua)atdsp) 1.6
O dspp | Ve | (par priz)2¥s12) —-1.2
(O dspz | Ve | (pariprre)2¥dsre) -1.5
(0% dsa | Ve | (fopum)ssu2) 0.9
(OF dsja | Vel (forprm)o*dare) 0.4
Ot dspa | Ve | (ps*prr)2sin) —~0.5
O darp | Ve | (parz™prr)2*dsse) -2.9
OF s | Ve | (for™pr) et sure) —1.0
O dyz | Ve | (for prs)o*dsre) —0.7
Ot dare | Ve | (Sfar 2prn)etdsr) —-0.7
OF sin| Ve| (2FXds) ) 6.0
(OF si2 | Ve (2¥Xdsp) ) 4.8
Ot ds| Ve | (2*Xsu) ) 3.5
O dse | V| (2¥Xds) ) 2.4
(Ot dsin | V| (27Xs12) ) —-3.4
O dsrp | Ve | (2 Xds) ) -3.0

We also consider the case of particle-vibration
coupling. The matrix element to the particle-core state
is proportional to the square root of the B(EN), where
N is the multipolarity of the collective core state.
Table 5.2b contains the values of E;* for Sr® with A= 2.
The values are somewhat larger than for the two-
particle one-hole case but are still small.

We conclude that correlations of this type make only
very small corrections to the displacement energies.
However, we have not considered the contribution of
the isospin-violating nuclear force to E;*. Although
this force is as weak as the Coulomb force, it has a short
range. Its nondiagonal matrix elements might be larger
than the nondiagonal Coulomb matrix elements.

5.4 Other Isospin Violating Parts of the Hamiltonian

In this section we consider all the smaller isospin-
violating terms of the Hamiltonian. Since these terms
are small, it is sufficiently accurate to calculate their
contributions to the displacement energy assuming pure
isospin and neglecting correlations. In evaluating the
displacement energy, we therefore only need to compute
the double commutator term E; in Eq. (5.6).

5.41 Electromagnetic Spin—Orbit Effects

We first consider the isospin-violating term arising
from the electromagnetic spin—orbit interaction derived
in Sec. 3. The commutator V™gp1n orprr is a single-
particle operator. For any single-particle operator K,
the commutator with 7_ is of the form,

KO=[K,T]= ¥ Ki. (5.73)

In second-quantized form we have

KO=Y (a| K| B)adbs (5.74)
a,p

Then we have
7, [K, T-]]= 2‘; (ba'bg—as"ag) (a | K | B), (5.75)

so that
EdK:N_l(” | [T-H I:K; T—]] I 7r>

=N-! Zs: (Pag™—pag®) {a | K | B).

In the approximation (5.17) where the excess neutron
density is given in terms of the wave functions of the
excess neutrons, we have

N
EX=N"1 3 (a|K|a)
a=Z+1

Here the summation is over the excess neutron states.
For the spin—orbit interaction, we have, from Eq.
(3.20), (recall 7—=2¢_),

K= (efi/2M2¢) (pp—pn—%) (1/7;) (dV./dr;)o i1,
(5.77)

(5.76)
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Thus we obtain, with N=2T,

(l‘p"#n"%) %

ESO—
? °T 2
- X ch . .
X % (el m D ) lo ) (5,78
a=z+1 r
where
le for ja=1Ilo+%

(jaloel]ja)="
—l,—1 forjo=1l,—%

The magnitude of ES° is readily estimated by using
for V,(r) the Coulomb potential of a sphere with radius
R.. In this case (1/7)[dV (r)/dr] is a constant inside
the nucleus, and since the nuclear wave functions vanish
rapidly outside, a reasonable approximation is,

{a| r1(AV,/dr) | a)~—Ze*/R5. (5.79)
Then
Zet (0.06) X . .
SO __ —14C . —1
Eq (2T) R A% a=ZZ:+1 (Ja |01 ju )i,

(5.80)

where the sum is again over the excess neutrons. The
excess neutrons often occupy both spin-orbit states
(7=143), so that the different matrix elements in
Eq. (5.80) will substantially cancel. Even if the can-
cellation does not occur, the quantity E;° is small, of
the order of a few tens of keV.

Since the electromagnetic spin—orbit correction de-
pends on the 7 and [ value of the particular state it may
produce considerable relative shifts in the isobaric
analog spectrum as compared with the parent spectrum
(see Sec. 5.7) [At69; Sc69a].

5.42 The Proton—Neutron Mass Difference

The proton—neutron mass difference also gives rise
to a single-particle term, Vg =[Hxm, T-], of the
form of Eq. (5.73) with K;=(AM/M)(p?/2M).
Using Eq. (5.76), we obtain the mass difference correc-
tion to the displacement energy, which is thus propor-
tional to the average kinetic energy of the excess neu-
trons. The kinetic energy of a nucleon near the Fermi
surface is essentially equal to the Fermi energy. Since
this kinetic energy depends weakly on the mass number
and the particular state of the nucleon, the mass
difference correction is given by

ESWo~ (AM /M) ep~40-50 keV.  (5.81)

5.43 The Charge-Dependent and Charge-Asymmetric
Nuclear Force

In this section we discuss the contribution of the
charge-dependent nuclear force to the displacement

energies. Eq. (3.26) when written in the second quanti-
zation formalism becomes

Vep =32 <043 I v°D | 8 )a
afyd

X (ao'agta bs— b agb,bs). (5.82a)
Similarly, we have
Vea@=—32 (@B | 1% [ v)a

afyd

X (aotagtbyas+ba"agtd,bs). (5.82Db)
Also,
(T4, Voo J=% 2 (@B [ 1% | 6y)a

afyd
X (4b,tagta,bs— an'asta,a5—b.T05"0,05), (5.83a)

[Ty, Vea©@J=—3 2 (@B | 2% | 6v)a

afyd

X (ba'bgtb,bs—aatagta,as).  (5.83b)

We now calculate the expectation value of the double
commutator, Eq. (5.6), assuming that the short-range
correlation function in the parent state vanishes. We
obtain

EP=—(21)7" Z5 (@B [ v°P [ v)a
afy

X (p8y"— 084") (pas™—pas?) . (5.84a)
EfA=—(2T)71 X (B | 04 [ 37)a
afys
X (pay" — psy?) (pas"+pas®)  (S.84b)

Again we may consider the approximation where
[Eq. (5.17-5.19)] the parent state is a single Slater
determinant, such that the proton orbits can be ex-
panded in the neutron orbits. Then we find

EfP=—2T)7 X (w10 [w)a (5.852)

EfA=—(2T)71 3 (uh | 2°A | uh)a, (5.85b)
I8

where u and » run over the excess neutron states, and A
runs over all nucleon states. Formula (5.85a) represents
the difference in the average 7'=1 interaction between
a proton and a neutron occupying each of the N—Z
excess states with the remaining N—Z—1 neutrons. An
analog state is a superposition of states where each of
the excess neutrons have been converted into protons in
the same orbital state. Since the p-» force is more
attractive than the n—n force, Eq. (3.27), the forces
2°D lead to a lowering of the energy difference between
the analog state and its parent. It is believed that ¢4
has an effect in the opposite direction [He69a].

As before we may include short-range correlations
and the Pauli effect by making the short-range approxi-
mation in evaluating the parent-state expectation value
of the double commutator, Eq. (5.83). In this approxi-
mation, and using a local charge-dependent force, we
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have
EfP=— 2Dl () —p (0 Fdx T 1(25+1)

X [osP(s) [14(—1)52¢7(s) J[1+¢%(s) 1 ds
(5.86a)

Efr=— QD) ([ (0 P-[ (0} dx T 1S+

X Jos®A(s)[1+4 (—1)5]gP(s) [14g°5(s) ] ds,
(5.86b)

where we have included the possibility of spin depend-
ence in 2°P and v%4 as well as in the average correlation
functions. These are different from one another in that
the first is an average correlation among the excess
neutrons and all the nucleons. We recall that in the
Coulomb case, Eq. (5.33), the correlation was between
excess neutrons and protons. One can obtain an approxi-
mate linear relation among these three average correla-
tions. .

We can crudely estimate E;P and E;CA using (5.85)
or (5.86) by noticing that they can be expressed in
terms of average fields associated with the excess
neutrons, or all of the nucleons, arising from 7°P and A,
In the case of 7°D we scale to an average arising from
all the nucleons by introducing the factor (27—1)/4.
Thus we have

ESP~—[(2T—1)/A1(V)  (5.87a)
ESA~— (VCA) (5.87b)

We may relate VCP and VA to the quantity V7=!
which is the average field due to the T’=1 nucleon-
nucleon interaction (~—25 MeV). Then we find

ESP~[(2T—1) /A(VT=1)X (0.02)
~—500[ (27—1) /A] keV,
EfA~— (V7T=1)%.01~~2250 keV,

(5.88a)
(5.88b)

where Eq. (3.27) has been used. This estimate of E;°P
is crude, as 9°P is strongly state dependent, and the
approximation of Eq. (3.27) refers only to low-energy
(S-state) properties of the interaction. Furthermore
the treatment of the excess neutrons as giving rise to an
average field due to the charge-dependent interaction is
inappropriate as such a field would also be strongly
state dependent. In particular, the excess neutrons
usually do not have saturated spin states. The spin-
dependent part of the density matrix becomes rela-
tively more important for the exchange matrix elements
which are latge in this case, as v°P is of short range. This
situation is unlike the case of the long-range, spin-
independent Coulomb interaction where a similar
analysis was successful. Actually, our estimate of E;%4
is more precise in this respect because we do average
on all of the nucleons.

For these reasons we find it necessary to make a more
precise evaluation of the contribution of the charge-
dependent forces. Some of the matrix elements appear-
ing in Eq. (5.85) were evaluated in the j—; representa-
tion using harmonic oscillator wave functions with the
Rouben force [Ro69a,b]. The ratios of the diagonal
matrix elements of #°P to the corresponding matrix
elements of v,, are found in the range of 29,-15%, and
the absolute values are of the order of 10-100 keV
depending on the particular state. The strong spin
dependence leads to positive as well as negative matrix
elements.

A detailed calculation of the charge-dependent effect
has been carried through by DiToro, Nunberg, and
Riihimaki [Di707]. They have considered two versions
of a nonlocal soft-core potential [Ro69a,b] and have
calculated E,CP from Eq. (5.85) as well as the term of
first order in both P and »NUCL, The latter term is a
correlation correction to the calculation of E4P. Their
perturbation procedure for g€ appears to be convergent
for one version of the soft-core potential in which the
short-range nonlocal core is taken as charge independ-
ent. The results obtained for this potential are shown in
Table 5.3. These results give the order of magnitude
of the charge-dependent effects; however, other
nucleon-nucleon potentials should be investigated so
that the dependence of these effects on the shape of the
potential can be determined.

Unlike the finite-size effect or the mass correction,
which are constant over the periodic table, EsP de-
pends on the excess neutron orbits. Furthermore, since
ESP depends quadratically on the excess neutron
density (Eq. 5.86), and is divided by the first power of
2T, we expect the charge-dependent force to give a
major contribution to the isotopic dependence of the
displacement energy. Because of its strong / and spin
dependence this force also strongly influences the state
dependence of the displacement energy. The relative
shifts of the different orbits due to °P are of the order
of 5-10 keV.

Additional studies using different phenomenological
potentials are necessary to evaluate the contributions
of the charge dependent nuclear forces to the displace-
ment energies.

TasLE 5.3 Contribution to the displacement energy due to
a charge-dependent force [Di70]. The first row corresponds to
Eq. (5.85), and the second row represents the correction due to
nuclear correlations as calculated in perturbation theory.

Ca®8(MeV) S8 (MeV)

ECP no correlations —0.093 —0.095
8E,CP correlation effect —0.050 —0.049
—0.143 —0.144

Total
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TaABLE 5.4 Summary of formulas for the displacement energy.

Term

Formula or designation

Numerical estimate

Direct Coulomb

Exchange

Finite size

Vacuum polarization

Short-range correlations

(see Table 5.1)
Isospin violation (partial) AE;=—¢&[ (T+1) /T BE,

Spin-Orbit
XC{(Ja | 61 4a) /2]

E ;XIN~ (AM /M) ep

ECP[Di70]

Neutron-proton mass difference

Charge-dependent and charge-
asymmetric nuclear force
E’l(‘,A

N
ES0=—(2T)7(Z¢*/R)[(0.06) /A**] Z

(see Table 5.3)

ELOUL= (¢/2T) [fdxdy {[o"(x) —p?(x) J/| x—y |}o?(y)  See Sec. 5.6
EEXCE=— (27/16) (¢/R)[Z/ (ks*R)*] —900Z/A keV
XL+ +2)/ (+2+1)]
A= (N/Z)w3
Eif == (Z&/R) (ro/R)[3+} (roks)?] ~—100 keV
E,POL=0.006E,CO UL 8.5Z /A3 keV
EyCm=(3/4m) (¢2/r0) (Z/4) (L/r0)? ~60Z/4 keV

(KKR potential)

— (283 418) (N—Z) ™1
X (0.19-1.5X1073Z) keV

(Variable)

a=Z+1

~40-50 keV
—500[ (27'—1)/4) JkeV

<250 keV

5.5 Summary of Formulas

In Table 5.4 we have summarized the various contri-
butions to the displacement energy as discussed in the
previous sections. In most cases we have given simple
approximations for each term obtained from Fermi gas
estimates or from more detailed calculations. The effects
of long-range correlations (configuration mixing) are
not included in the table as these small corrections
depend on the detailed features of the wave function
(see Sec. 5.3). The dominant term is the direct Coulomb
term which is sensitive to the model chosen for the excess

pLr) [ fm™3]
10 Ca 49
Protons
0.5
R Excess
Neutrons

1 ] L1 1

(0] | 2 3 4 5 6

r[fm]

F16. 5.8. Empirical charge distribution for calcium, and matter
distribution of the excess neutrons as calculated with Saxon—
Woods wave functions. (See text).

neutron distribution. The simplest model for this
distribution is considered in the next section.

5.6 Models for the Excess Neutron Distribution

As we have noted previously, information concerning
the proton density is available from electron scattering
experiments and from u-mesic atoms. This is not the
case for the excess neutron distribution and various
models for this distribution may be considered.

Simple shell-model densities have been considered
[Sc69a; Au69a]. It is possible to parameterize p?(x)—
p"(x) by single-particle wave functions generated by a
Saxon-Woods potential well with a standard diffuseness

(r)[fm™3
ol pPLI ] Sr89
i Protons
0.5 -
o Excess Neutrons
| | | | ] |
o] | 2 3 4 6 7 8

r{fm]

F16. 5.9. Empirical charge distribution of strontium and matter
density of the excess neutrons as calculated with Saxon-Woods
wave functions (See text).
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TasiE 5.5. The state dependence of the energy difference between isobaric analog resonance and parent states. The example chosen
is Sr®. All energies in keV are taken relative to the ds/; resonance at 5.00 MeV (5=0.9). The experimental values are taken from [Co68].
The continuum and compound shifts, SACOMT and §ACONP are discussed in Sec. 7.

Experimental
spectroscopic 8E, total
factors
Resonance S SE,COUL SE,LD SES0 SE,KIN SACONT 5AzCOMP Calc Expt
s12(6 MeV) 0.90 +12 —4 —4 +0.3 28. -2. 30 37
d3;2 (7 MeV) 0.45 +7 —12 —10 0.0 12. —-0.3 -3 16
gi2(7.7 MeV) 0.74 +1 —14 —-0.3 —18. +0.5 <-31 —34

parameter. The well depth may be adjusted in order to
reproduce the experimental binding energies of the
excess neutrons, and the radius of the well may be
varied until calculated and experimental resonance
energies agree. Within the uncertainties in the treatment
of the charge-dependent and charge-asymmetric inter-
actions, short-range correlations, compound and con-
tinuum shifts (see Sec. 7), and isospin impurities, this
simple model indicates that the radii of the neutron and
proton distributions are rather similar [Sc69a; Au69a].
In Figs. (5.8)-(5.11) are shown the distribions for
protons and excess neutrons for various nuclei. The
proton distributions are empirical (of Fermi type) with
parameters extrapolated from [El67; Ho67a] and cor-
rected for the proton finite size. The excess neutron
distributions is calculated from the Saxon-Woods poten-
tial whose radius has been adjusted to fit the displace-
ment energy with all its corrections.

It is of interest to consider the effects of special cases
of configuration mixing on the determination of the
excess neutron density. A step in this direction has been
taken by Auerbach ef al. [Au69b]. These authors
suggest that the T'=1 polarization of the core by the
excess neutrons may lead to a sizeable effect. More
studies of this type will be useful in helping to determine

plr)ltm™3)

Ba!3°

Protons

0.5
Excess Neutrons

4 5
r[tm]

F16. 5.10. Empirical charge distribution for barium, and matter
density of the excess neutrons as calculated with Saxon-Woods
wave functions. (See text).

the size of the neutron distribution from information on
displacement energies (see also Sec. 5.31).

5.7 State Dependence of the Displacement Energy

In most nuclei, one not only observes the isobaric
analog resonance which corresponds to the ground state
of the parent nucleus, but a whole sequence of reso-
nances which can be related to the sequence of excited
parent states. If the position of the resonances is meas-
ured very carefully, one finds that the energy differences
between two resonances Egr(A4:1)—Egr(As2) does not
exactly coincide with the energy differences of the
corresponding parent states E,,— E,. For medium and
heavy nuclei, the difference

8E4=[Er(4:) —Eg(43) ]—[Ex—E,] (5.89)

is of the order of a few tens of keV or less.

A priori, very little can be said about how the differ-
ence, Eq. (5.89), comes about and which effects domi-
nate in the evaluation of the state dependence of the
displacement energy. Therefore, a numerical study of
the effects which determine the displacement energy
has been made for several levels in #Sr. The results are
shown in Table 5.5. While the Coulomb displacement
energy, E;COUL dominates the absolute values of the
displacement energy, it plays a minor role in the state
dependence. This result is probably a feature of the
particular example, since all orbits, the 2dsp, 3sipe,
2d3)e, and the 1gss belong to the same major shell and
therefore are expected to have similar mean-square
radii. According to Table 5.5, the continuum shift and
the charge dependence of the nuclear forces contribute
most to the state dependence of the displacement
energy. While the continuum shift may be calculated
rather accurately, the values for the charge-dependent
forces have been calculated from a phenomenological
potential [Ro69a,b]. These values should be regarded
with caution since they depend strongly on the spin and
orbital angular momentum dependence of this force.
In the case of Sr® the effects of state dependence are
small and it is unlikely that we can extract useful
information, such as the neutron distribution or charge
radii of excited states, from the study of the state
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¥16. 5.11. Empirical charge distribution
for lead, and the excess neutron matter
density calculated with Saxon-Woods wave
functions. (See text).

p(r) [fm™]
Lo Pp20°
0.8
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0.6
04
0.2 Excess NEUTRONS
| | | ] | | I
(0] | 2 3 4 7 8 9
rlfm]

dependence. There are, however, cases where the state
dependent effects are larger and their study may help
in deducing certain nuclear structure information. As a
typical example we may note the case of Ca* and its
analog Sc#. The shift of the ps; orbit relative to the
fr2 indicates a large Thomas—Ehrman (or continuum)
shift.

Another differential effect that might be useful in
providing nuclear structure information or information
concerning the importance of various isospin-breaking
terms in the Hamiltonian is the isotope shifi of the
displacement energies; i.e., the change in the displace-
ment energy resulting from the addition of neutrons
to a nucleus with fixed Z.

Most of the terms collected in Table 5.4 show weak
isotopic dependence. This also holds for the main term,
E;®9UL which behaves essentially like 4~'3, Some
deviations of the isotope shift from the 4~/ behavior
have been attributed to the dependence of the proton
potential on the neutron excess [Pe66 ].

The isotope shift is not a subject of our study, and we
do not intend to review this topic [Sh67]. It is worth
pointing out, however, that in Table 5.4 there exists a
term which has strong functional dependence on the
number of neutrons, namely the term coming from
charge-dependent nuclear force is proportional to 27 =
N—Z. 1t is possible therefore that in certain cases the
main contributor to the isotope shift of the displacement
energy (or its deviation from the A4~'3 law) is the
charge-dependent nuclear force. In order to make defi-
nite conclusions about the shifts caused by the charge-
dependent nuclear force, it is necessary to obtain more
information about this force. Because of its complicated
nature, the contributions to the isotope shift may vary
in magnitude and size depending on the particular
regions of the periodic table. But there does remain the
possibility that from the isotope shift of the displace-
ment energy we may learn more about the matrix

elements of the charge-dependent part of the nuclear
force.

5.8 Summary

In this section we have discussed the calculation of
the displacement energy, E;T0T, defined in Eq. (5.2).
If supplemented by the shifts due to the analog-state
coupling to the compound and continuum spaces, see
Eq. (5.1), the knowledge of the displacement energy
enables us to calculate the position of the analog reso-
nance. In Sec. 5.1 the displacement energy was written
as the sum of two terms, Eq+ AE,, the latter vanishing
if isospin is conserved. The leading term, Eq4, is dis-
cussed in Sec. 5.1 and it is shown that the value of this
term is sensitive to the distribution of protons (pre-
sumably known) and neutrons in the nucleus. The
effects of short-range correlations, vacuum polarization,
proton finite size, etc. are discussed and numerical
estimates are given.

Section 5.2 contains a discussion of the term AEq,
resulting in the numerical estimate of Eq. (5.63). This
section also contains an estimate of the fofal contribu-
tion to the displacement energy from the isospin im-
purity, ET-™P [See Egs. (5.53) and (5.56) ].

The effects of configuration mixing (long-range corre-
lations) are discussed in Sec. 5.3, and some estimates are
given. Section 5.4 contains a discussion of the contribu-
tion to the displacement energy due to isospin-violating
parts of the Hamiltonian other than the Coulomb inter-
action.

Most of our results are summarized in the Tables
5.1-5.5.

6. ESCAPE AMPLITUDES AND SPECTROSCOPIC
FACTORS

In this section we discuss the calculation of the
escape amplitudes defined in Sec. 2.32 and indicate how
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the experimental determination of these amplitudes
yields spectroscopic information.

6.1 Direct and Compound Escape Amplitudes

We recall that we had defined the escape amplitude
Eq. (2.33) for the channel ¢ as,?

va,0= exp (—i5:) (2. | H[E+3(GEI)] | 4)

= exp (—1d.) (4 | HLE+3GI) ]| 8.P), (6.1)
where the effective interaction was given by
HLE+}(D) = H+H{g/[E—Ho +3GD A (6.2)

It is useful to discuss the contributions of the two
terms of the effective interaction separately. We define
a direct escape amplitude

va,.PTR= exp (—1d,) (&, |H| 4)

= exp (—id,) (4| H|2D).  (6.3)

This amplitude describes the emission of a particle from
the analog state directly into the continuum. The ampli-
tude which describes the transition of a particle to the
continuum via the ¢ space is called the compound
escape amplitude, ‘
v4,.°°MP= exp (—id,) (. | H
X{g/[E—Hot3GDBH [ 4). (6.4)

Thus we have

‘YA,c=‘YA,cDIR+'YA,cCOMP-

(6.5)
In most cases of interest we find y4 PIR>y, ,COMP,

6.11 The Direct Escape Amplitude

The direct escape amplitude may be written in terms
of a direct analog state form factor,

Vt(r)=(rc|[H,T_]| =)/N'", (6.6)

where we have again expressed the analog state in terms
of its parent, | 7). We find using Eqgs. (2.13) and (2.29),
that

Ya,PR= exp (—nc) E[ @oer O () Vel (r)rtdr,
c Yo

(6.7)

or if we neglect direct interactions, the last expression
takes the simpler form,

v PTE= exp (—n.) f " O (VAN P dr. (6.8)
0

1 Tt should be kept in mind that ¢ may refer either to an elastic
or inelastic channel, and that v4,. depends upon the energy. The
main energy dependence is contained in the continuum state
vector, (P |, or | &P ).

6.12 The Compound Escape Amplitude

The compound escape amplitude was defined in
Eq. (6.4). We shall find that the compound amplitude
is usually only a few percent of the direct amplitude
(see Sec. 6.6).

If we introduce the form factor for the compound state,

Ve(r)=(r,c|H|q), (6.9a)

and the escape amplitude for the compound state
Ya.e= €xp (—1c) 2 / @er () Ved(r)r* dr, (6.9D)
¢ Yo

and the matrix element describing the compound-
analog coupling,

Vat={(qg| H| A)=N""{{g|[H, T_]|m},
we may write
14,8 = 3 vq,cVa?/[E—E+3(iI)]. (6.11)

(6.10)

We have seen a statistical estimate for |~COMP |2
following Eq. (2.54).

As before, | ¢) are the continuum and discrete eigen-
functions of Hy,. In Eq. (6.10) we have indicated that
the coupling of the analog state to the ¢ space is ex-
pressible in terms of the isospin-violating parts of H.
This reduction is not possible for the compound state
form factors V,¢(r), and the calculation of the com-
pound state escape amplitudes require a specification
of the strong-interaction part of H.

Finally we may note the relation between the form
factors introduced in this section and the analog state
form factor of Eq. (2.35)

VA(r)=VAr)+ X Ve (r) Vay/[E—E+3 (i) ].
(6.12)

We will return to a further discussion of the com-
pound escape amplitude in Sec. 6.6.

6.2 The Direct Escape Amplitude, Spectroscopic
Factors, and the Single-Particle Escape Amplitude

We have seen that the calculation of the direct escape
amplitude involves the matrix elements of the isospin-
violating parts of H through the commutator [H, T_]
connecting the parent |7) to the continuum. This
amplitude has its main contribution from the two-body
Coulomb interaction contained in H, i.e.,

V.o = I:H) T—~:|
—4 T @/r) Ut (=) +H (1=r) e 1]
#j

(6.13)

As noted previously, this expression is a charge-chang-
ing two-body interaction involving the transformation
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of a neutron—proton pair into a proton—proton pair.?
It is known that matrix elements of a long-range force
such as the Coulomb force are small if two particles
change their orbits. Given a particular continuum
channel, the main contribution to v4,,°'™® is expected
to arise from that portion of the parent state | =) that is
simply related to that continuum channel. In this sec-
tion we will show how we may use this aspect of the
escape amplitude to obtain information about the struc-
ture of the parent state | 7).

Using Eqgs. (6.6) and (6.7) we may write the direct
escape amplitude as

exp (—1) E/’“’ oo (1)
o .

DIR —
YA,c -
b 1/2 o

X{r, ¢ |[H, T_]| m)y*dr. (6.14)

Now we note that, in general, the commutator [H, T_]
will contain a neutron destruction operator, and there-
fore this commutator may be put in the form

[H, T_]= 3" Oub.. (6.15)

For example, in the case of the Coulomb interaction we
have

Vo=V, T-1=3 2 (v8 | vc | ap)aay'as’a,ba  (6.16)
apys
so that, in this case,
Ou=%2" (vd | vc | aplaa,ias’a,. (6.17)

vop

It is now useful to make a decomposition of the state
formed when destroying a neutron in the parent, | ).
Thus we find

ba | )= 20 @ra” | A), (6.18)
A
where A is the complete set of target states. Note that
if « denotes definite single-particle orbital, #, (=
{n,1,j, m}), we may write

bnlij ("‘ 1) j+mbnlj—m

(6.19)
ean™= (MM | bpijm | mTM)
= (=17 Crt-ma [(AI || buis [| 7T )/ (2T41)117].
(6.20)
We also note that [Bo69; p. 86],
(AL || bgs || Y= (— 1) {x] || buyit || AI). (6.21)

% The contribution to the commutator from the isospin-
violating terms in the strong interactions will also change a
neutron—proton pair into a proton-proton pair. However, this
latter contribution will also change a neutron-neutron pair into
a neutron-proton pair and will thus contribute to the neutron
width of the analog state.

We may define a spectroscopic factor
Sua™= | (AL || ba; || 7T ) |7/ (2T +1)
= | (aJ || bais® || AT) [P/ (2T41)

for the orbit .2

In the case that « refers to the position (and spin)
coordinate we may also introduce a ‘“‘spectroscopic”
wave function

(6.22)

b(r)= X es"(r)] A), (6.18)
A

which is independent of the choice of any particular

set of single-particle orbitals. Clearly, we have

A" (1) = (A | b(r)| 7).

It will also be useful to divide the set | A) into two
groups of states, those used to form the channel states
| 7, ¢) and the rest. The former states have been denoted
by | A} (see Sec. 2.2). It is also advantageous to use a
less abbreviated notation for the channel states, |7, ¢).
We denote these |7,¢(\)) in this section, exhibiting
the label of the target state in the channel [see Eq.
(A1.7)]. We also write v4,coy for y4.,. and ¢.oy ey @ (7)
for ¢, (r), in case the extended notation is helpful.
With these modifications of notation we have

pir_ &P (—7) )

0
)
Peny,eran @ (7)
N2 (M), A ./(;

X 3 (r, (V)| On | AYA | b, | )2 dr. (6.23)

(6.19)

YA,

Upon inspection we see that the various terms of
(6.23) fall into two main classes and two subclasses:

I. Single-Particle Amplitudes (A=2X\")

The condition (A=N\’) implies that the form factor
(r,’(\)| 0. | ) will be large since it is a diagonal
matrix element in the target space. It includes a single-
particle transition from state # to the continuum;
hence, the name “single-particle” for this case. We can
divide these amplitudes into two classes.

(A) Diagonal in the channel coupling (A'=2)).
This amplitude is finite in the absence of channel
coupling. Amplitudes of this class yield contributions to
v4,.00P™® proportional to the spectroscopic amplitudes
(Sn,a") M2,

(B) Nondiagonal terms in the channel coupling
(\M#£\). This amplitude is zero if channel coupling is
neglected, and is generally expected to be small.

Z If A refers to the elastic channel, Eq. (6.20) specifies the
same parentage that one considers in stripping experiments.
Thus, when we determine the elastic channel spectroscopic fac-
tors we may compare our results with spectroscopic factors ob-
tained from analysis of stripping experiments. In addition, analy-
sis of inelastic scattering proceeding through analog resonances
provides us with spectroscopic information which is not obtainable
from stripping experiments.
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II. Rearrangement Amplitudes (A#)\")

The condition A7)\ requires that at least two par-
ticles change their quantum numbers. Amplitudes of
this type will generally be much smaller than single-
particle amplitudes. Again we divide these into two
classes.

(A) Diagonal in the channel coupling (A'3£)).
This amplitude is finite in the absence of channel
coupling.

(B) Non-diagonal in the channel coupling (A 5£)).
This amplitude is zero if channel coupling is neglected.
Rearrangement amplitudes of this class will be par-
ticularly small if the channel coupling is weak. If A=),
we have a rearrangement amplitude which is non-
diagonal in the channel coupling but yields contribu-
tions to vya,.yP'® proportional to the spectroscopic
amplitude (Sx,,")"2.

In general, single-particle amplitudes will be shown
to be much larger than rearrangement amplitudes.
However, for any given parent state, the relative impor-
tance of single-particle escape or rearrangement escape
depends upon the magnitude of the spectroscopic
factors. In general, amplitudes diagonal in channel
coupling will be larger than those which are nondia-
gonal. However, in the case of deformed nuclei, re-
arrangement amplitudes and channel coupling effects
may become large and should not be neglected.

In Fig. 6.1 we have schematically indicated ampli-
tudes of various classes described above. Of these, the
simplest process is depicted in Fig. (6.1a). In this case a
neutron in orbital » escapes directly to the proton
continuum, this escape being mediated by the charge-
changing field V. averaged over the proton orbits of
the parent. We will now concentrate on these diagonal
single-particle escapes and define a single-particle
escape amplitude. This amplitude is defined as the co-
efficient of (Sy,™)'? in the direct amplitude, Eq. (6.23),
for the special case A=\ =\. When the parent state is
composed of a neutron in the orbit #, coupled to a
state | A), so that,

ba | m)=|N\) (6.24)

and S),"=1 the single-particle escape amplitude is
exact. Thus, we define

(Vn.c0)sp= E(I)T(;M : eean @ (1)
X{r,c(N)| On | N2 dr.  (6.25)
We also introduce a single-particle form factor
Ve (r) ={r, c(\)| O | N)/NY2, (6.26)

and write

('Yn,c()\) ) sp= €Xp (— 770) f Pen) © (f) Vn,c()\) (f) 72 dr.
0

(6.27)
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¥iG. 6.1. Various escape amplitudes leading to the channel c.
Double lines refer to continuum proton orbits; solid hori-
zontal lines refer to direct-interaction coupling between channels
and wavy lines to the charge-changing interaction V.. The
crossed “bubbles” indicate states of the target system other
than that found in channel c.

This amplitude may be calculated for various simple
models as discussed in the next section. In many
cases, channel coupling amplitudes (Class IB), direct
rearrangement amplitudes (Classes ITA and IIB), and
the compound escape amplitude will be quite small, so
that

COMP~y , o\ DIR

(6.28)

Ya,e0 = Y4, e B+ V4,000
E(S)\,,.") 12 ('Yn,cO\))sp-

In this case a theoretical calculation of (7ya,c0))sp
supplemented by an experimental measurement of
Y4009 allows one to determine Sy ™. This simple result
clearly does not hold in more general cases. For example,
if we continue to neglect rearrangement and compound
amplitudes, but include direct channel coupling we
have

o0
Ya,cPR= exp (—n) X / Pen,eran® (1)
cd/W\),n g

XVn,cl()\l) (1’)7’2 (lr(}\’ I b, | ‘ll'>.

We will not discuss in detail any amplitudes involving
channel coupling, i.e., only amplitudes of classes IA
and ITA will be considered [(see Fig. (6.1a) and
Fig. (6.1c)].

(6.29)

6.3 Calculation of the Single-Particle Escape
Amplitude

In this section we are interested in calculating the
single-particle escape amplitude (vn,co)sp defined in
Eq. (6.25). This amplitude was given in Eq. (6.27) as
an integral of the single-particle form factor Va,co)(7)
with the complex wave function ¢.)@ (7). As in the
case of the Coulomb displacement energy, we will
discuss the role of the various isospin-violating parts of
H which contribute to this amplitude.
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6.31 The Charge-Changing Coulomb Force VO

The main contribution to (vz,.0)sp Comes from the
matrix elements of the charge-changing Coulomb force
V. given in Eq. (6.16). We now consider the calcula-
tion of the single-particle form factor V.o (r) [Eq.
(6.26) ] for this case. We have, using Eq. (6.17),

Ve (r) =N7123 37 (r, 6()‘)! a.tagla, I A)

afy

X {aB | ve | myda.  (6.30)

For simplicity we will assume that the state A has zero
angular momentum. Also, because of the fact that v.isa
long-range, spin-independent force, it is useful to work
in configuration space, so that

Vaeoy(r) =N-124{ [ dr’ dr”
X[{r, cN)] @t (1) at (r")a(x") | Nve(| ¥'— 1" [)eu(T)
—{r,c(N)] a' (1) a' (1) a(r") | Moo (| £'— 1" [ (2") 1}
(6.31)

where ¢, (7’) is the neutron wave function for the orbit,
n. Now we recall that the states | 7, ¢) were related to
the states | 7,¢) by Eq. (A1.13) and further that the
states | 7, ¢) are simply related [see Eq. (A1.2)] to the
states®

| £, \=al(r)| N). (6.32)
Thus we may discuss the form factor,
Var(r) =N-123[[ dr’ dx”

XL a(r)a’(r)a’ (1) a(2”)| Noe(| £'— 1" [)en(r')

— (M a(r)a’(r)a’ (") a(1)| Moo (| ¥'— 1" en(r')].

(6.33)
Now we use the Hartree-Fock factorization,
(N a(n)et(r)a" (") a(r")[N)
=[6(r—r)—p (1, 1) Jor (1)
—[o(r—1")—p (1", 1) Jor(r’, 1), (6.34)

where the p\’s are the density matrices for the state A,

o (1) =\ [ af(F)a(r)| N,

() =N a'(n)a(n)| M), (6.35)

etc. Noting that the second term of Eq. (6.33) just
doubles the first, we have

Var(r) =N72{[ dr'[s(r— 1) —pa (1, 1) JVo(1) u(T)
—[fdr" dr"[6(r— ) = (17, )]
Xvo(| I'=x" a2, 1) eu (")},  (6.36)

(6.37)

with
Vo(r)=[ dr'u(| r'—1" ) (x).

% We are suppressing the spin index, o, and the angular mo-
mentum designation {7, M} for the target state | \).

Here V(') is just the average Coulomb field of the
target state N\. Exchange processes are contained in the
second term of Eq. (6.36). Again, we obtain a simple
result if we use a Hartree-Fock description for the state
[ A). In this approximation the (1—p) terms are just
projection operators for the orbitals unoccupied in
| A). If the continuum waves ¢g®(r) are constructed
such that they are orthogonal to the occupied orbits, we
find for the escape amplitude, Eq. (6.27),

(Yn.e) =N exp (=) {Jor® (1) V(1) eu(r) dr
—[fer®(D)p(x, r')v(| 1—1" Jou(r') drdr'}.

(6.38)
Alternately we may write Eq. (6.38) as

('Ynlf)sv“_‘N_l/z exp (—nli) % (Vﬁ I Ve I nﬁ>A, (6'39)

where v refers to the labels of the continuum orbit,
v={E, 1l 7, m;}, and n refers to the bound neutron
orbit, n={n, [, j, m;}. The sum in Eq. (6.39) is over the
quantum numbers of the occupied proton orbits,
denoted by 8.

We will call (yai)sp, defined in Eq. (6.39), the
elementary single-particle escape amplitude. Note that
(vn17)sp 1s the amplitude for the escape of a neutron
[orbit ¢,:;() ] to the continuum proton orbit, ¢g,; (r),
in the case that the parent state consists of the neutron
coupled to an I=0 core. We will discuss more compli-
cated cases of angular momentum coupling in Sec. 6.4.

We have not discussed the details involved in
obtaining the form factor V.o (7) from V,a(r). The
distinction between these form factors (other than
rather straightforward questions of angular momentum
coupling) involves the proper treatment of the Pauli
principle. This feature of the theory may be expanded
upon by using the formalism of Appendix 1. In the
Hartree-Fock approximation we avoid these complica-
tions. We will continue to use the Hartree-Fock ap-
proximation and leave the question of (long-range)
ground-state correlations and their effects on escape
amplitudes for further study.

0.311 Direct and Exchange Terms. The direct and
exchange contributions to (7y.;)s are depicted in Fig.
(6.2). The direct part is given by

(Ynii)sp="[exp (—Ny;)/N*]
X Jor, i () Ve(r)on;(r)r dr

Ve(r)=J dr'(| 11 )p(r).

It is found that the exchange term is only a few per-
cent of the direct term. The dominance of the direct
term has the consequence of reducing the theoretical
uncertainty in the calculation of v, since this term
depends on the charge density which may be deter-
mined from the analysis of electron scattering experi-
ments or from the study of muonic atoms. The empirical
density has been used in the calculation of the direct

(6.40)
with
(6.41)
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TaBLE 6.1. Comparison of v,,P!® calculated with projected and unprojected continuum wave functions. The parent nucleus is Sr®.
The amplitudes are in units of [MeV V2.

Neutron orbit 2dss

3s172 2dss

(vspPIR) (Projected)

(vspP™R) (Unprojected)

0.0452—0.0042
0.0338+-0.003:

0.1128—0.0095:
0.0874+0.00117

0.146—0.0123:
0.1124-0.0018:

term, while the smaller exchange term has been cal-
culated using proton orbitals, ¢s(7), obtained from a
Saxon—Woods potential. This potential is chosen such
that the resulting ¢g(r) reproduce the empirical charge
density.

We again consider the specific case of a Sr® target.
In Fig. 6.3 we have exhibited the wave function for the
2dsj, neutron in Sr® and the direct and exchange contri-
butions to the form factor Vag,,,(7). Asin the case of the
Coulomb energy calculations, the exchange contribu-
tion is small. It contributes about 4%, in the calculation
of the escape amplitude.

The ds;2 bound neutron orbit has also been obtained
from a Saxon—Woods potential. The binding energy of
this orbit is chosen to agree with the neutron separation
energies for Sr® and the radial extension of this orbit is
compatible with the Coulomb displacement energy
calculation. This phenomenological treatment of the
neutron bound state leads to a small uncertainty in the
value of (Ynij)sp.?

Finally we may comment on the continuum wave
functions ¢g,;;” () which enter in the calculation of
(vn1;)sp- Recall that these wave functions were modified

p p
p
n
n
—v\\. =‘¥j‘
] .
| |
1 1
1
P n p n
Direcr EXCHANGE

I'16. 6.2. Two schematic representations of the direct and
exchange contributions to the elementary single-particle escape
amplitude. The double line indicates the continuum proton
orbit, and the wavy line the charge-changing Coulomb interaction.

% If comparison is to be made for spectroscopic factors ob-

tained from analog resonances and stripping processes, one

should use the same neutron wave functions in each case to ob-
tain meaningful comparisons.

due to the orthogonality requirement between the P
and A spaces [see Eq. (2.8) ]. We have investigated the
effect of this projection on the calculation of the escape
amplitude. Table 6.1 contains the results for a calcula-
tion of the (va1;)sp With projected and unprojected
continuum wave functions. We see that the projection
is an important feature of the calculation.?

P2ds,,(r)
| L l | |
2 4 *6 8 0 rlfm]l
Vads,, (1)
EXCHANGE (X 10)
! |
2 4 ) 8 10 r[fm]

F16. 6.3. The bound state 2ds» neutron wave fun_ction for Sr%
and the direct and exchange contributions to the single-particle
form factor. The nuclear radius is indicated by an arrow.

2 Expressions for single-particle escape amplitudes may also be
obtained from the Lane equations either in terms of the symmetry
potential, U;(r), or the quantity [ V.(r) —A], where V¢(r) is the
one-body Coulomb potential, and A is the displacement energy.
In these expressions one requires the unprojected continuum wave.
The appearance of A in the expression for the escape amplitude
is related to the absence of an explicit projection procedure in
the Lane equations.
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Real Part of
Wave Function

UNPROJECTED

PROJECTED

F16. 6.4. The 2ds» bound state neutron

wave function for Sr8? and the real part

of the continuum wave function ¢g 52 (r)

(not to scale). Both the projected and un-

1 projected continuum wave functions are

/~— BounD STATE

In Fig. 6.4 we have exhibited the bound 2ds/s neutron
wave function and the real part of the projected proton
continuum wave function (not to scale). The Coulomb
barrier and the projection causes the continuum wave
function to be small in the nuclear interior. Further
reduction of the continuum wave in the “nuclear in-
terior” would probably result if account is taken of the
Perey effect; however, this point has not been investi-
gated. We have studied the relative importance of the
“nuclear interior” to the evaluation of the integral
appearing in Eq. (6.40). The form of the various terms
of the integrand is important for values of 7 both inside
and outside the nucleus and no further simplification
of the calculation of the escape amplitude seems possible.

6.312 Finite Proton Size, Vacuum Polarization and
Short-Range Correlations. The effects of finite proton
size and vacuum polarization are readily included in
the calculation of the escape amplitude by using

shown.

2.(| x—vy]|) of Eq. (54) in Eq. (6.39). We saw that
the effect of vacuum polarization could be reasonably
taken into account by a small renormalization of the
electron charge (see Sec. 5.14). Some of the finite size
effects have been calculated and are shown in Table
(6.2). These lead to about a 1-2 percent reduction in
the escape amplitude.

As we have seen in Sec. 5.15, the effects of short-range
correlations are small and dependent on the details of
the strong interaction. We have not estimated the effect
of short-range correlations on the escape widths but it
is clear that this effect will provide only a small correc-
tion.

6.32 Other Isospin Violating Parts of the Hamiltonian

The contribution of the electromagnetic spin-orbit
force and the proton—neutron mass difference to the

TABLE 6.2. Various contributions to the single-particle escape amplitude (as a percentage of the direct term).

Ca41 Sr89 Bal39 Pb209
bar S12 dse Jar i gor2 si2
Parent State (2MeV) (TMeV) (TMeV) (10MeV) (10MeV) (15MeV)  (15MeV)
Coulomb Force
Direct 100 100 100 100 100 100 100
Exchange —4.1 —2.8 —3.2 —2.5 —-2.3 —-1.7 —1.5
Finite size —2.0 —1.3 —1.5 —1.2 —1.0 —1.6 0.7
Vacuum polarization 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Nuclear Force
9CD 0.02 0.7 1.0 0.8
7CA 5.0 4.0 2.0 2.0
Spin-orbit —0.5 0.0 —0.6 —0.7 +0.4 —-0.7 0.0
Dynamic p—» mass difference +1.2 0.9 1.0 +0.8 —+0.7 +0.7 +0.6
Isospin Impurity —0.04 —-0.1 —0.1 —0.2 —0.2 —0.4 —0.4
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escape amplitude is readily estimated. As these are
single-particle operators, the operator O, of Eq. (6.15)
has a simple structure,

O0a= 2 (8| k| adag", (6.42)
B

and the contribution to the single-particle escape ampli-

tude is just (for « local in coordinate space),

e\p ( ’71])

('Yn(-]') sp= N1/2

‘PE‘,ZJ'(O) () k() onij(r) 72 dr,
0

(6.43)

where ¢,,(r) is the bound neutron wave function dis-
cussed previously.

The specific forms for the operator k are given in
Secs. 5.41 and 5.42. The contributions to the escape
amplitude of these single-particle terms are given in
Table 6.2.

We now consider the contribution of the charge-
dependent nuclear force to the single-particle escape
width. We recall Eq. (5.82a)

Vep© =13 (aB | 1P | 8y)a(au’ s abs— ba'as'b,bs).

aPyé
(5.82a)
From this expression we find
0,°P=3 2 (aB | v°° | ny)a(as"ag"a,—btas'd,).
aly
(6.44)

Therefore, the contribution to the single-particle escape
amplitude from the charge-dependent nuclear interac-
tion is

(v1i°?) sp=[exp (—mni;)/N'*] ﬁZ (B | 9°P | my)a

X (PBVP—PM”) ) (6 . 45)

where
ps"={0 ag'a, | 0),

psy"= (0| bs'dy | 0). (6.46)

In Eq. (6.45), v stands for the quantum numbers of the
continuum orbital, »={E, I}, and n={nlj} for the
quantum numbers of the bound neutron wave function.

We will make a very rough estimate of v,,°P. First
we write

P="[exp (—m,)/N"I(Z—=N)/AL | VP | n),
(6.47)

where VCP is the average isospin violating nuclear field.
Now from the analysis of low energy nucleon-nucleon
scattering we expect | VOP | =0.02 | V7=!|, an estimate
we have used previously in Sec. 5. Further, if we assume
VT=1~—25 MeV, we can compare this to the matrix
element of the average Coulomb field. These considera-

Vs DC

tions lead to the approximation
Yo P3[(Z—N) /ZA* ]Lexp (—m;) /N1 | Ve | m).
(6.48)

The usefulness of the last estimate lies in the fact
that the escape amplitude is usually expressed as a
matrix element of the one-body Coulomb potential
taken between the neutron bound state and the proton
continuum orbit. Thus we have

Yo PG (Z—N) /ZA* Jyep. (6.49)
Similarly, we have
')’spcA < (A1I3/4Z)'Ysp- (6. 50)

We stress that this is a crude estimate, particularly if
the charge dependent nuclear force is strongly depend-
ent upon spin. However v,,°P and v,,%4 are certainly
more than a few percent of vyqy.

6.4 Application of the Elementary Single-Particle
Escape Amplitude

In the last section we defined an elementary single-
particle escape amplitude, (yni;)sp (for class IA transi-
tions). The single-particle elastic and inelastic escape
amplitudes may be written in terms of this amplitude.
We first present a general formula and then go on to
some simple specific cases.

Starting from Eq. (6.23) we apply the condition for
no channel coupling and no rearrangement (A=A=X\").
Using the definitions, (6.15), (6.17), and (6.25) and
taking account of the angular momentum algebra we
obtain an expression for the single-particle escape
amplitude,”

Ya,(apsrrm PR = (27 +1) 712

X X N by || 7Y (vmii)sp - (6.51)

in terms of the elementary single-particle amplitude
(6.39) and a reduced spectroscopic matrix element
defined by

(\M [ butjm | 7T M= (—1)77C pr—mm’ T
XN || b || 7T Y/ (204 1) 12,

We can calculate the reduced spectroscopic matrix
element by expanding both the parent state and the
target into configurations where the orbit #lj is singled
out. Thus we have

| TT M) =

kJrJo

(6.52)

| 7#(Te) T MYarre™ (nliT),  (6.53)

2 Here we have assumed that the average field in (6.39) is
spherically symmetric so that » and » have the same angular
momentum quantum numbers. The generalization is straight-
forward.
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and

[(NIM)= X |/

k,Jr~1J0

1 (Jr1)JoIM )ﬁka-lJo)‘ (”ljl) ’

(6.54)

where £ and £—1 are the number of neutrons in the
orbit #lj in a given configuration for the parent or the
target, respectively. The quantum number J, stands
for the occupation and quantum numbers of all the rest
of the particles (neutrons and protons).

We then obtain the expression for the single-particle
escape amplitude where a particle /j escapes in the
channel [(i3)7(\)1J].¥ Thus we have

va i PR = 30 (—1) Tt
kJkJ k—1J 0
Jea Jo I
X[L(2I+1) (27:+1) T2
J Tk

XL 7o (Tim) 3T | 1546 ]
Xawrro™ (7) Berssrs* (LG (Ynii)sps

where the quantity in square brackets is a standard
[De63] fractional parentage coefficient.

The expression (6.55) shows us that, to the extent
analog resonance widths are dominated by the direct
single-particle amplitude, they are sensitive to the
makeup of the parent and the target wave functions
and can be used to test models for the amplitudes «
and 8. It is of course not always convenient to make the
particular expansion we have performed here. For
example, if pairing is an important feature it may be
useful to make the usual quasiparticle transformation on
ba1; in the reduced matrix element of (6.51). If the
nuclei are very deformed it is convenient to calculate
(6.51) in the intrinsic frame [Ke70]. In the following
subsections are presented some simple examples of the
use of (6.55).

(6.55)

6.41 Elastic Escape Amplitude for
Single-Particle Parent

The elastic channel single-particle amplitude is
depicted in Fig. 6.2. There is no complication due to
angular momentum coupling as the bound neutron
orbit has the same (/, 7) as the continuum proton orbit.
We have I=J,=0, k=1, Jy=j, Jr1=0. The single-
particle escape amplitude depends on the energy and
the quantum numbers / and j and is equal to the ele-
mentary single-particle escape amplitude (v.1;)sp [see
Eq. (6.39)].

0.42 Inelastic Amplitudes to Particle-Hole
Final States

If (nlj) is one of the core orbits we obtain the escape
amplitude to various particle-hole excitations. Any one
of the core neutrons (nlj) can escape to become a con-

tinuum proton leaving behind a neutron hole in the
(nlf) orbit. This process is depicted in Fig. 6.5 using the
same scheme as that for Fig. 6.2.

For this case, the parent state is simple because the
(nlj) orbit is completely filled. We find

(6.56)

where we now label the extra odd particle as jim;. The
single-particle escape amplitude will then only pick out
of the target state that part which is a hole in the (nlf)
orbit coupled to the extra odd particle

| NIMD = | 7%9( ) s TMB5 (5T) +rest.  (6.57)

The part1a1 parentage coefficient for k=2j-+1 is unity,
and the six-j symbol is simple because Jr=0, Jy1=7,
Jo=71. The result is then

yPIRsp=[(214-1) / (271+1) 1%8,5, ( 5I) (Ynti) sp-
(6.58)

Of course this result can be obtained more directly from
the original expression. It is an example of a class of
simpler forms treated in the next section.

| mjim) = | 727%1(0) 1 jima),

0.43 Cases with Simple Fractional Parentage

There are some special cases where the fractional
parentage coefficient is particularly simple:

1. A particle escapes from closed shell, ie., k=
2§41, J,=0, Jx1=4, Jo=J. Then we have

yPIRsp = (21+1) /(2T +1) 1*%0;( 47)Bir (5I) (Yu1s) sp-
(6.59)

2. A particle escapes from orbit with only one
particle, i.e., k=1, Jy=74, Jx-1=0, Jo=1. Then we have

PR = (= 1) P50 G7)Bor( 1) (Yais)upe (6.60)

ll

ET i
H
i I
)

p n p n

Direct EXCHANGE

F16. 6.5. Two schematic representations of the direct and
exchange contributions to the escape amplitude leading toaneutron
particle-hole state. The particle is in state 7, and the core neutron
which escapes has angular momentum j. The neutron particle-hole
pair is indicated as coupled to a total angular momentum I.
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3. A particle escapes from an orbit with two par-
ticles, i.e., k=2, Jr1=7, Jy=Js, and we have

APIR P =V (— 1) JotHAIHH[ (21 +1) (2J5+1) ]2

i Jo I
X

, ar510( 3)Biro( 5I) (Ynis)sp.  (6.61)
J i T

4. An escape when k=24, Jy=74, Jy1=J; where we
have
,YDIR.sp= — (2]) 1/2(_ 1)Jo+I[(2I+1) (2j+1)]1/2

Jo Jo I

X a.B('Ynli)sp- (6'62)

J 7 J

A simplification in another direction is seen in the next
section.

6.44 Valence Particle Escape

If the parent has a closed (Jo=0) core plus % valence
neutrons in the (#/f) orbit and one of these escapes we
get just the fractional parentage coefficient. Thus we
have ]k=], Jk_1=I and

yPIRer =R FN(I)ST 154 1Bro(mlfT) (vaii) sp-

When k=2 the fractional parentage coefficient is unity
and we have

(6.63)

yPIR52 =2 (1) opB( 7), (6.64)

where 8( 7) is the amplitude in which the final state is
pure single particle. This is a special case of Eq. (6.61).

6.45 Pairing E ffects

Finally we consider Eq. (6.51) for the nuclei for
which pairing is a good first approximation. It is easy to
see from the usual quasiparticle transformation that

| b || 7T )= Vars M ] sy || 7T

F+ Ui\ || o™ || ),  (6.65)

where @ and a' are the quasiparticle annihilation and
creation operators. We consider the simple cases where
the parent and target states have zero, one, or two
quasiparticles. These are proportional to either V or U.
Thus we have

APIRSD = V(o ni) sps 1qp—0qp  (6.66a)

or

(6.66b)

,yDIR.SD= Unlf(’Y’ﬂlj)SD) O qp_)l qp

for the simplest cases which have no angular momentum
coupling.
When two quasiparticles are involved we have sta-

P \kp \\p
n pr 'p p nt 1p n nl Tn
(a)

P
:\ 23"
(p)

F1c. 6.6. (a) Diagrammatic rePresentations of some rear-
rangement escape amplitudes. V. only contributes to the
first of the three processes shown. (b) Rearrangement amplitude
involving a neutron coupled to a vibration.

tistical or phase factors
yPIEEr = (= DTV 01i(Yni)sps

yPIep=[(2I41) /(27 +1) 1P*Unt;(vn15) vy
1gqp—2qp (6.67b)

2qp—1qp (6.67a)

6.5 Calculation of the Rearrangement Escape
Amplitude

We now turn to a discussion of the amplitudes of
Class II. The contribution to the direct escape ampli-
tude from this class is given by

exp (—ne) ®
DIR = BT @y orn @ (7)
N V), AN Y g

X 3 (r, ' (N)| On | A2 dr(A | bo| 7). (6.68)

RZeN]

By construction, this amplitude describes processes
in which at least two particles change their orbits.
Amplitudes involving transitions of this type have been
termed rearrangement amplitudes.

Consider again the simple model in which the target
is a doubly closed shell core. In this case the states
| A) may contain one-particle one-hole states, or vibra-
tions. Thus a typical term contributing to the rearrange-
ment part of vy4,.°'® comes from a term in the parent
which consists of a particle coupled to a vibration.

For purposes of orientation some of these diagrams
were calculated for the force V. and for orbitals
appropriate to the parent Sr®. The Sr® core was taken
to be doubly closed. The results are exhibited in Table
6.3. Relative to the magnitude of (v.i;)sp the diagrams
of Fig. 6.6a are much less than 1%. If we consider the
possibility of collective enhancement (Fig. 6.6b) we
find that contribution to the amplitude is still only about
19, in Sr. In the latter case the experimental B(E2)
values were used to estimate the matrix elements be-
tween the core and the collective 27 state in the particle
core model. For deformed nuclei these contributions
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TaBLE 6.3. Some rearrangement escape amplitudes for the parent Sr*®. The computation is made for the emission of an sy/» proton,
and the results presented have been divided by the magnitude of the elementary single-particle escape amplitude. Only the contribu-

tion of V. is included.

[yPIR(Rearrangement) / | vsp | 1X 100

Direct matrix

Exchange matrix

Present State element element Total
C(puapan™) s Jua+ 0.34—0.001¢ 0.30—0.03: 0.04-+-0.0032
C(praparn™) zvdarnJuser 0.25—0.002;  —0.06+0.005; 0.31—0.0074
L (prafsiz™) s+dsr Juat —0.28—0.003: —0.04—0.01z —0.24-0.002:
C(puafss™) r+dars Ju+  —0.20—0.001; —0.21-0.004: 0.01-+0.0032
[ (collective) s+dssz Ju/z+ 0.654-0.001¢ 0.65+0.0012
[ (collective) y+ds/s 12+ 0.47+0.002¢ 0.47+0.002;

will be larger as the 2% state is more collective than in
the case of Sr.

The isospin violating terms of one-body character
such as the spin-orbit term and the AM correction do
not contribute to the rearrangement amplitudes. Con-
tributions to [H, 7_] from the two-body nuclear term
have not been calculated. These two-body charge-
changing forces are of short range and are expected
to yield contributions to rearrangement amplitudes of
the same order as V. or possibly somewhat larger.
The inclusion of direct interactions (Class IIB) can also
yield important contributions.

Finally we note that the rearrangement amplitudes
of Table 6.3 may be used for an estimate of the inelastic
escape amplitudes for a single-particle parent going to a
final particle-hole state or to a final collective state in
the absence of direct interaction effects. The result is
very small, an amplitude of the order of 1072y, in the
case of strontium.

6.6 Nonstatistical Contributions to the Compound
Escape Amplitude

We recall that the compound escape amplitude was
defined by Eq. (6.4) [see Eq. (6.11) 7], and a statistical
estimate has been given following Eq. (2.54). The
application of the random-phase argument used in the
statistical estimate is limited by the possibility of having
some states | ¢) which have significant coupling to the
analog state and the continuum channels. This situation
has already been discussed in Sec. 2.43 where we intro-
duced the concept of doorway states in the ¢ space.

0.01 Configuration States

In this section we will discuss the contribution to the
compound escape amplitude of the configuration states
considered as doorway states.

We again consider a simple parent state which is a
neutron coupled to a doubly closed core. For this dis-

cussion it is useful to introduce the following notation.
Let | O) denote the core and | A) its analog. The analog
state is then

| 4)=2T)7"[[ $,0)+ [¥nA)(2T—1)'] (6.69)

where ¢, is a neutron orbit, and ¥, represents a proton in
the same orbit.?® An interesting state with the same
configurations is the so-called antianalog state defined
by (Sec. 2.43)

| D)= (27) 7] ,0) (2T~ 1)V2— | Y,A)].

Applying the doorway analysis we have a contribu-
tion to v4,.°°M? due to the antianalog state (see Egs.
2.52 and 2.31-35).

(6.70)

,CCOMP(Z)
=yi (A |H|A)/{E—Ei+3[iTi(E)]}, (6.71)

where

YA

i~ Fp~Fy,
and

yie= exp (—i0.) (B | H|A).  (6.72)

The matrix element (A | H | A) can be expressed in
terms of the commutator V© in the usual manner
[Eq. (2.5)]. The dominant contribution arises from the
Coulomb force which leads to

(A |H|4)=[(2T—1)"?/2T]
XL | Ve | W)= | Ve | Y],

where V.=V, ,(r) is the one-body Coulomb potential
and (¥ | V.| ¥&) wis the average of the Coulomb matrix
element over the excess neutron orbitals. In Eq. (6.72)

(6.73)

28 For this model, we see that ¥, (7) is just the function #4,.(r)
defined in Eq. (A.1.34) and used in Sec. 2.23.
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we have neglected exchange and isospin-violating terms
other than those arising from the Coulomb potential.?

The first factor in y4,,C9MP, which is the coupling of
the antianalog to the continuum, can be estimated by
writing

| Ay=| A)(2T—1)"2— | A (2T—2)/(2T)*2].

(6.74)
Then we can see that
7Z,c=[(2T_ 1)/2T:|112 €xp ("‘776)
X Jer® () {Ve(r) — (T—1) Us(7) W (r) 2 dr, (6.75)

where we have neglected exchange terms; Ui (7) is the
symmetry potential arising from the off-diagonal
matrix element,® i.e.,

(¢®O | H | ¢nA)=[(2T—1)"?/2]

X [o@ (r) Ur(r)¥n(r)r2 dr. (6.76)
In terms of Ui(r) we also have
Ei—E3=T/[ |2 | Ur(r)r* dr
—[2(T—1)/(2T—1)"* (A | H | A). (6.77)

hndlly we see that by applying Eq. (2.62) to the state
| A) we have _ _

Ti=2{(A | Wg|A4). (6.78)
If we require that the operator W is isospin conserving,
the equation analogous to (6.76) leads to the approxi-
mate result

Ti=21Im [ | ¢u(7)|2Wg(r)s? dr, (6.79)
where we have assumed that W is local. The real part of
Wg(r) leads to a small correction to Ui(r) which is of
course included in the usual phenomenological equa-
tions.

We can now write the total result for v4, in terms of
the total form factor V4 .(7) including the anti-analog,
ie.,

V.o ()2 (2T) 712, (7)
X{Vo(r)+[{A | H| AY2T—1)"2/(E—Ei+iT4p)]
X[V, (r)—(T—1)Usi(r)]}. (6.80)

The expression in curly brackets is a kind of “effective”
Coulomb potential for escape (also for continuum
mixing).

For the strontium example, the ¢, denote the neu-
tron orbits, 2dss, 35172, and 2dsjs. The other excess neu-
tron orbits, Y, are the 1g9» and 2p1/. In Table 6.4 we

2 There are cases where the Coulomb terms (6.72) happen to
cancel more than usual. In those cases the nuclear charge-de-
pendent forces must be included.

% We note the cancellation which occurs between the V. and
U, terms of this expression. This implies that the nuclear escape
width of the antianalog is not large.

present the results of a calculation of exp (2i¢,) T4,
which includes the effect of the antianalog. The optical
model parameters of Auerbach et al. [Au66] were used.
The escape width T'4,. differs from the single-particle
width T, by only one or two percent.

In addition to the antianalog we have also considered
the influence of the other configuration state, in this

case, _ _
| A1)= [ ¢aA), (6.81)

where | A) is the antianalog of the target | O). These
configuration states can be considered as monopole
excitations of the core without change in radial quantum
number. While the matrix element (4, | H|A) can
again be reduced to a difference in single-particle
Coulomb energies (here, between ggo and p12), the
escape width has to be computed from a microscopic
model. If we assume an effective isospin-dependent
two-body interaction of the form

1)12=66(1'1—r2)t1't2, (682)

we can determine the constant ¢ from the “macroscopic”
potential Ui(r) given by

U1<r)=ci (2j+1)| i PT)72. (6.83)
In terms of the same constant, the potential for the
decay of | 4,) is

Ur(r) =c[(2j+1) (2 1) I
X[ () P= [4a(n[I2T) 712

Here y1(r) and y,(r) are neutron orbits, gy and pipe.
As the strength of the isospin-dependent single-particle
potential U;(7) is reasonably well determined by many
experiments, we know the constant ¢ in Eq. (6.82).
Because of the form of Eq._(6.84) compared to Eq.
(6.83) the escape width of | 4,) is smaller than that of
IA) The contribution of | 4;) is about 20% that of
| A) as seen in Table 6.4.

The strontium example seems to be atypical in that
(Ay| H| A)islarger than (4 | H | A) by a factor of 2-3.
In this case, a specific, coherent linear combination of
| A) and | 4;) considered as a doorway may increase
the value of yCOMP() Even in this case of coherent
mixing of | A) and | 4;), y©°MP@ only contributes
2-49, to the escape width, I's ..

(6.84)

6.62 Giant-Isovector Monopole

We have illustrated the role of the configuration
states as doorways in y®OMP, These do not exhaust all
of the monopole strength. It is certainly necessary to
consider the =1, monopole collective excitation dis-
cussed in Sec. 5.24. In the microscopic description this
is a coherent linear combination of J=0, neutron-hole
proton-particle states, where the partlcle has only its
radial quantum number different from the hole [Bo67 ].
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TaBLE 6.4. Contributions of the anti-analog to the escape width of the analog state.

dsi2 at 4.98 MeV sz at 5.95 MeV d32 at 6.95 MeV
T4pPIR exp (2hep PIR) = 277 (7ap) ? 7.16+0.25; 76.10+4.9; 46.98--2.4i keV
[ v.e/ven | 0.65 0.55 0.57
(A|H|A) —91.4 —163.9 —112.7 keV
E,—Ei+iTi/2 6838-+1195; 6335411007 68251187 keV
Ta.c exp(2ige) =2m(v4.0)? 7.04-+0.264 73.96+5.0; 46.11+42.44 keV
[ vZre/vA.e | 0.06 0.05 0.08
[ (A|H|A))/(A|H|A)| 3.2 1.8 2.6

Just as in the case of the anti-analog we have a
contribution

Y4, COMPID =~ (M| H| A)/[Ea—En+3(iTar)],
(6.85)

where M refers to the collective giant monopole state.
This state is actually split by symmetry effects in the
same way as the giant dipole [Fa65], but it has three
members with isospins 741, T, and 7—1 in the com-
pound nucleus. These arise from the coupling of the
7=1 monopole isovector with the isospin (7") of the
(excess neutron) core. The matrix elements to the
monopole can be estimated by calculating the sum of
the squares of the matrix elements of the Coulomb field
V.2 to the proton—particle neutron-hole states
[Me70b]. Thus we have

(M| H| A)=QT)"2M | V. | 7)  (6.86)

and
(M |H|AyY~Q2T){T1TyT—1|TT,1—1)?
X 2 (nl| Ve | nt11)?

nlm

~0.16 (1_'%)6<_2._1.1— 1) £ A48
T\ /\2T+1/ 2T
X 22 (n+i+3) (n+1) (MeV)?,

nilm

(6.87)

where 7o is the charge radius parameter in Fermis and
we have used oscillator wave functions. The vector
coupling coefficient is about 1 for Ty=T7T—1 and of
order (1/T) for the other modes, so that we need only
carry the case of Ty=T—1 to a first approximation.
What is more, the other two modes have higher energies
because of the symmetry splitting and this further
reduces their effect. This leads to the estimate

(M| H| AY~4(MeV)? (6.88)

in nuclei with 4 290. However the collective nature of
the state must be taken into account more carefully
because of the energy weighted sum rule. Since the
state is pushed up about a factor of two from the

particle-hole energy, the squared matrix element should
be reduced by about the same factor. The hydrodynamic
model [Bo67], which takes account of this effect, leads
to a value

(M| H| Ay~(2T)

X[(2T—-1)/(2T4+1)](Z2%/100) (MeV)? (6.89)

corresponding to the energy given by Eq. (5.62). For
the Ta=T—1 mode this energy must be reduced by the
symmetry splitting to obtain (Ey—E,) in Eq. (6.85).
An estimate for this energy difference is then

Ey— E4~(170/4%3) —[110(T+1) /4] MeV. (6.90)

Because this energy difference is rather small (especially
for the case of Pb®) | it is somewhat uncertain and the
estimates are probably unreliable. This remark also
applies to the matrix element. Nevertheless, we use
these estimates for orientation purposes. They lead to

2 | 4, COMPAD 2=TY, /150, (6.91)
Tare=2m | var. 2 (6.92)

for the case of Pb¥. We expect that I'sy . will not be
much larger than (T4 .)sp itself, so that the correction
due to (6.91) will be small. This is so, even though T .
is a nuclear escape, because the collective monopole
contains only a small fraction of the channel ¢. In addi-
tion, the escape must be calculated at the energy E4
rather than Ej which brings in additional small Cou-
lomb penetrability factors.

A more careful estimate could be carried through if
we knew the monopole escape form factor V(7). Then
the total form factor (6.80) would have an additional
contribution

6V, M= (2T) %, (7)
X{UM | VO | m)/[Ea—Eu+35(iTu) 1} Va(r),
(6.93)

where,

Yar,e=Jor @ (r) Vo (r) ¥ (r)r? dr. (6.94)
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This same form factor enters into the discussion of
(i) monopole mixing effects in the Coulomb energy
(Sec. 5.31); (ii) absorption widths and shifts (Sec. 6),
and (iii) various other nuclear characteristics such as
the isotope shift, the optical model, etc. These modes
will be taken up again in Sec. 7. The role of higher multi-
pole doorways (for example the giant dipole plus par-
ticle) should also be considered [Fa66] including the
effect of nuclear isospin violating terms.

6.7 Channel Coupling Contributions to the
Escape Amplitude

In the weak-coupling limit, where the channel
coupling may be treated in perturbation theory, we
expect the influence of the other channels on the escape
amplitude to be small, except in the case that y, PI®,
calculated without channel coupling, is itself small. This
special case occurs if the spectroscopic factor for the

channel ¢ is small.
We define

Ya,HANNEL= exp (—id) 2 [(4 | H |7, ¢")

o/ ¢

X@eer 52 (r) 7% dr. (6 . 95)

(Note that without the restriction, ¢’s%¢, the right side
of Eq. (6.95) would just equal v, PR.)

6.71 Distorted-Wave Born A pproximation

In most cases we may treat the channel coupling in
perturbation theory so that for ¢’s%¢, we have

o -]
<Pcc'(+) (r) = / f Gc,c,(+)(,,’ r’) (r’, c I H I ru, c)
0 Y0

Xop P2 dl &' (d5c), (6.96)

where ¢g P (7) is ¢ P (r) with the energy dependence
explicitly put in evidence. If we now write

Gerot ™ (7, 7")

= [[owr o (Mg o O (#') dE'/ (E—E'—Eo+ie)],
i (6.97)
we 11n
'YA,cCHANNEL
5 [0 ) a ML VIAEB)
ol e E— E —E,+1e
(6.98)

In Eq. (6.97) and (6.98), E. is the threshold for the
inelastic channel, ¢’

o 0
Ty PWBA= / f exp (—=ne)ep « (), ¢ | H| 1", c)
0“0

Xeg, Q") exp (—n.)r'>'"2dy’ dr'”, (6.99)

and
yaoP0= exp (=) [ (A H |7,
0 v
Xeop @ (r)r2dr (6.100)
has the usual definition.

As noted above, v4,.PI® will be large for those states
with large spectroscopic factors for particle emission
to the channel ¢’. If we neglect the imaginary potential,
the @ (r) are real and therefore yCHANNEL hag only real
contributions from the closed channel (Ec'<E) For
the open channels (E> E,) we find

Im v, CHANNEL— o S~ T, DWBA(E_F,_, F)
c/#e

Xv4,0PR(E—E,) (¢’ open). (6.101)

The calculation of the real part of v ,HANNEL jg some-
what more difficult. In general we write

Y4,PR= (y4. L ®)we+va LHANNEL - (6.102)

where (v4,.P"®)nc denotes the direct amplitude cal-
culated without channel coupling.

6.72 Deformed Nuclei

For the case of strongly deformed nuclei, the channel
coupling between states in the rotational band of the
target is especially strong. For this case one would like
to avoid the distorted-wave Born approximation. This
can be done in a useful way by introducing the adiabatic
approximation which neglects rotational energies
[[ChS77]. Then the escape amplitude can be seen to obey
rotational intensity rules. For example, in the case of
an even—even nucleus [Ke70], we have

N
VA (ILIM) = YUK, (6.103)
K 0 K
with
j I J
=[(2I+1)/(2T+1) J/2v21
K 0

X[(jRIK | KO)+ (—1)#I(jRI—K | —K0Y],
(6.104)

where the parent state can be any state of the rota-
tional band (KJM) and the target state is any member
of the K=0 band with angular momentum I. The
intrinsic escape amplitude ;& can be easily calculated
if we neglect compound couplings and intrinsic rear-
rangement terms. We then have an elementary intrinsic
single-particle amplitude which can be written as a
three-dimensional integral (actually two dimensional
due to axial symmetry),

viig®®= (2T)12[ B rAYE (1) V.(r)xx (1), (6.105)
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where xx(r) is the Nilsson orbital with projection K,
V.(r) is the deformed Coulomb field (we have ne-
glected exchange) and 4K (r) is the scattering solution
in the intrinsic frame with incoming waves in the
channel /jK. It is understood that the variable r
includes spin. Equation (6.105) can be evaluated by
expanding in the /j representation, in which case we
obtain a double sum of single integrals. This includes a
sum on Nilsson coefficients a;;x. In the limit of small
deformation, a single coefficient may suffice if we
neglect the deformation of V.(r) and the intrinsic
channel coupling. Then [Ca69] we have

(6.106)

Y1ir~=a1x (Y 1;°™®) sp

which is calculated in a spherical basis.

6.8 The Asymmetry Phase

In the many-channel case, the resonant part of the
T matrix has the general form, Eq. (2.38),

Tot= exp (10c)va,0v4.c €xp (40c) /[E—Er+3(:T) ],

(2.38)
where the escape amplitudes

Ya,c= exp (—d,) (4 | H| D)
= exp (=) 2 _/ i e @ (1) Ve (r)r2dr  (2.34)
el Yo

are complex numbers. The phase of these amplitudes
originates:

(i) from theimaginary part in the form factor Vo4 (7)
[see Egs. (2.18) and (2.35)], and

(ii) from the use of imaginary optical potentials,
and which make ¢, @ complex, and

(iii) from the fact that the scattering functions,
¢, are complex (even for a real optical potential)
if there are several open channels and direct coupling is
included in the calculation.

[T cos 2¢s— T exp (21.) T+ {[T cos 2¢.—T'a . exp (2n.) T2 sin? 2¢, }1/2

In the presence of direct channel coupling, these
effects are especially difficult to disentangle. In any
case the analysis of experimental data should be carried
out by parameterizing the complex escape amplitudes
Y4,.in Eq. (2.38) in terms of an asymmetry phase ¢, as
defined by Eq. (2.42). The presence of ¢, leads to
characteristic asymmetries in the cross sections (see
Sec. 2.52). We now turn to a more detailed discussion of
the asymmetry phase.

6.81 The Optical Asymmetry Phase

Recalling the separation of the escape amplitude into
a direct part, v4,P'®, and a compound part, v4,°OMP,
we define the optical phase ¢.°FT by

'YA,cDIR: exp (i¢cOP’1‘)l ’YA,cDIR '

The phase of the direct amplitude originates from the
imaginary part of the optical potential and from the
direct channel coupling [items (ii) and (iii), above].

It is also useful to define the difference between the
phase of v . and v .P*®. We call this difference d¢, and
write

(6.107)

5¢c=¢c_¢cOPT- (6 108)

In most cases ¢.°FT is not large and we may note that
¢, will also be small if | y4,.°OMP | K | v4, PR |, which
is true for most cases of interest. This implies that ¢,
can have important contributions from both terms.

0.82 The Unitary Limit

We recall that the consideration of unitarity for the
elastic .S matrix, Eq. (2.41), in the form | S(E)|?2<1 for
all E, led to the condition

c0s 26:> exp (2n.) — (T/Ta..) sinh 2q,, (2.96)
which in the limit »,—0, yields
¢cZSﬂc[(F“ I‘A ,c)/PA.c]- (6 109)

Now one finds that | S(E)|?> has a maximum at the
energy

(6.110)

Eyax=Egr+

As long as the phase ¢, lies in the interval 0<¢,<w/2
one finds Eyax>Eg. Since the p-n cross section is
proportional to [1— | S(£)|*], the minimum of this
cross section occursat the energy Eyax. Experimentally,
one. observes Eyax> Ep and this is therefore in agree-
ment with the general result for the calculated optical
phases (Sec. 8), that they are positive and less than
/2.

6.83 Estimates of the Optical Asymmetry Phase

We recall the expression for the direct escape ampli-

2 sin 2¢,

tude in the absence of channel coupling,
v4,P = exp (—n.) / O (r)VA(r)rrdr. (6.8)
0

Here the form factor is real, and the phase of the direct
escape amplitude ¢°F7T is due to the fact that the wave
function ¢, (7) is complex.

For isobaric analog resonances which occur well
below the Coulomb barrier, the treatment of the
imaginary part of the optical potential, W, in Born
approximation is indicated [Hii69]. Then to first order
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TaBLE 6.5. The different contributions to the asymmetry phase in radians. Direct channel coupling is neglected, and only the
anti-analog state is considered for 8¢. The results are given for the analog states in Y® (parent Sr®).

3¢ [Eq.(6.112)]

Unitarity limit

State (energy) $OFT eyt oy Total ] (6.109)
ds2 (5.00 MeV) +0.018 +0.0027 —0.0006 +0.002 0.020 0.03
ds2 (8.22 MeV) +0.028 +0.0022 —0.0006 +0.0016 0.030 0.07
sz (5.99 MeV) +0.031 +0.004 —0.001 0.003 0.034 0.05
dy2 (6.98 MeV) 0.025 +0.003 —0.001 0.002 0.027 0.045
g2 (8.40 MeV) 0.020 +0.001 —0.0003 0.001 0.021 0.04

in W we find (tangCPT~¢OrT)

¢ OFT= /E/w G. P (r, YW (1)@ (r') VA(r) ' dr dr’ / [/w 2O (r)VA(r)r? dr] . (6.111)
0 Y0

In the equation . (r) and the principle value
Green’s function, G.‘P) (7, '), are evaluated with W=0;
these are real quantities.

According to Eq. (6.111), the phase ¢.°FT does not
show a rapid energy dependence, since the penetration
effects appearing in the wave function &, divide out.
As an example, we show some optical phases in Table
6.5. One observes that ¢,OFT is positive and small in all

cases.
6.84 The Compound Phase

The contribution of the compound escape amplitude
to the compound phase difference d¢. [Eq. (6.108)]
can be simply expressed in terms of the doorway
quantities if

y4 ., COMPL oy, DIR

and all the phases are small. Then we have

o= Zd: (d| H| AY/[(Ea—Ea)*+3T4]

X (Ta,o/Ta,PLIR)V2(pa+paB—OPT)  (6.112)
with
2mya,*=Tac exp (2iga) (6.113)
yCOMP
y .
yDlR
YCHANNEL
D
oPT
R
i Y RC

F16. 6.7. The composition of the escape amplitudes considered
as complex vectors. The phase of y4,.PIR is $OPT, and the phase
of va.c is ¢pe=¢- PT+8¢.. [See Egs. (6.95), (6.102), (6.107),
and (6.108) J.

0

and
¢dR§I‘d/2(EA—Ed) .

In Table (6.5) we show the contribution to é¢. for
Sr® arising from the antianalog state | A). These
contributions are very small. It is expected that con-
tributions from the isovector monopole are larger.

Figure 6.7 summarizes the various amplitudes and
their phases. Very few reliable experimental determina-
tions of the asymmetry phase are available at present.
Therefore it is not clear to us whether the optical phase
accounts for most of the value of ¢, or whether the com-
pound part contributes considerably. In general one
can say that the ratio of the imaginary part to the real
part is much larger for the compound part of the escape
amplitude than for the direct part v4,P™®. Therefore,
whenever y4,P™® is particularly small, e.g., because of a
small spectroscopic factor, the influence of the com-
pound amplitude and direct channel coupling may be
first seen in a modification of the asymmetry phase.

6.9 Forbidden Transitions

As we have seen from all of our previous discussion,
the phenomenon of the isobaric analog resonance has
its origin in isospin violations. The analog state energy
shifts into the continuum and a particle escapes as a
result of the average Coulomb field effects. Nevertheless,
the normal escape amplitudes do have AT =0 as well as
AT =1 parts because the isospin of the final configura-
tions is not unique. The average Coulomb field, which
mediates the escape, contributes to both these ampli-
tudes. In this section we would like to discuss escapes
which are weak due to the additional hindrance effect
which arises when there must be a change in isospin
during the transition. These are usually defined as
forbidden transitions. There are three different kinds of
forbidden escapes which are interesting to discuss.

(i) Neutron escape from a low-lying resonance. In
this case the final nucleus always has dominant isospin
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(2)
T+1,T=1 I A>T+|
T+, T 1a>m,
T,T-1 IA)T
>,
T+, T4 T+
T 17>
—lgs>
T=1,T-1 g
(a) (b) (c)

I'16. 6.8. Schematic representations of the multiplets containing
the analog and the double analog. In (c) we indicate the ground
state of a nucleus, an analog state and a double analog, denoted
| @4 Ypy1. In (b) we show the parent of the analog and a member
of the multiplet containing the double analog. Finally in (a) we
indicate the state of the double-analog multiplet with maximum
T.. In this figure we denote only the member of the multiplet
with maximum 7', by the symbol «. As usual the state obtained
by a single application of the operator T- to a state | 7 ) is written
without a superscript, as | 4 ).

of (I"=T—3%) which cannot be obtained by coupling
the neutron isospin (1/2) to the analog state isospin
(7). Neutron widths for such escapes in light nuclei
have been seen in (v, #n) reactions [Be70] and with
transfer reactions using He? beams [Ad69; Mc70].

(ii) Proton escape from a ‘“‘double analog resonance”.
These arise from analog states which can be obtained by
applying (7-)? to a neutron rich parent with isospin
T+1 (see Fig. 6.8). Except for the special case of
T+1=3%, the double analogs have an isospin which is fwe
units greater than the ground state of the same nucleus.
When the proton escapes to a low-lying state of the
final nucleus with isospin (7'=7—%), we once more
have a forbidden transition. Cases like this have been
observed in light nuclei with 7=$% and T=2 [Ad69;
Ha69a; Mc69; Te69; Mc70].

(iii) Escape of composite particles with low isospin.
When we consider the deuteron or alpha particle width
of an analog resonance, we are always dealing with a
forbidden transition because the isospin of the emitted
particle is zero and the analog state has one unit of
isospin more than the final nucleus. These have been
seen in (d, p), (¢, p), and (p,d) reactions [Ha67b;
Ar68; Be68c; St68b] and in « decays following various
transfer reactions in light nuclei. A survey is given in
[Mc69].

0.91 Possible Mechanisms

We can see that possible mechanisms for all of these
forbidden decays are already available in the general
scheme of this section.

(4) Direct Rearrangement [ Sec. 6.2]

The dominant mechanism for the allowed escape was
the action of the averaged (single-particle) charge-
changing field. This allows a neutron to escape as a
proton [Fig. 6.27]. Clearly this mechanism cannot be
used to emit a neutron or a composite particle. The
matrix element which can lead to the emission of a
neutron must come from the isospin-violating nuclear
force which leads to a two-body charge-changing force,
V). The effect of V¥ is to turn two neutrons into a
neutron (which escapes) and a proton (which is
bound). Note that this mechanism will not allow for
deuteron escape because the final (np) deuteron is
space and spin symmetric while the initial (n#xn) pair
must be antisymmetric.

For the case of proton escape from a double analog,
the two-body matrix element which enters is a double
charge-changing force which turns two neutrons in the
neutron rich parent [recall the role of (7)%] into two
protons. In general this leads to a small amplitude
because it is not proportional to Z and in most cases fwo
particles change orbit. This is so even though there are
contributions to this amplitude from the Coulomb force
as well as from the nuclear isospin-violating force. In
fact, the two-body Coulomb matrix elements are much
smaller than the nuclear ones because of the smooth
nature of the poini-charge Coulomb force. The finite-size
effect in the Coulomb force will lead to an effect like
that of a weak, charge-asymmetric nuclear force. Some
calculations of the Coulomb matrix elements have been
carried out [Ar69; Au71] and they lead to very small
escape widths (~1eV) compared to the experimental
ones (50 eV—2000eV). As expected, the nuclear charge-
asymmetry matrix elements give much larger numbers
(~50 eV) but they are probably still too small [Au71;
Mi71] to explain the magnitude of the experimental
widths. The finite-size effect deserves further investiga-
tion.

(#t) Compound Escape

Forbidden transitions take place naturally through
the compound escape mechanism because the dominant
compound coupling matrix element always changes the
isospin from T to T'—1 [see Egs. (6.12) and (6.6)].
For example, we may go through the configuration
states or other 7—1 compound modes. Nucleons can
then escape by isospin-conserving nuclear mechanisms.
For example, the configuration states can emit a
neutron via an ordinary two-body nuclear matrix
element. In the case of a double analog, the correspond-
ing configuration states can emit a proton through a
nuclear matrix element.

For the T=% multiplets it has been found that
this mechanism is large enough to account for the
forbidden nucleon escapes [Au717]. Some of the strength
associated with the monopole has been investigated in
[Ar697] and shown to lead to a similar contribution;
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however, collective effects in the monopole could reduce
the result by an order of magnitude.

(#12) Channel Coupling

Forbidden escapes can occur very generally through
the mechanism of channel coupling. We think of the
following sequence. First an allowed proton escape
occurs virtually, followed by an appropriate reaction
amplitude for the virtual proton to produce the final
state. This amplitude can be a (p, ) or (p, @) amplitude
to produce a deutron or « particle, or a (p, ) or (p, p’)
reaction amplitude for the other forbidden reactions.
The general expressions for this kind of mechnaism
have been given in Sec. 6.7. They have been used
[Pi69] for estimating deuteron widths with some
success.

6.10 Summary

In this section we have studied the escape amplitude,
Y4, writing it as a sum of a direct and a compound
term. In Sec. 6.2 we classified the various transitions
that contribute to the direct amplitude, va PR,
introducing single-particle and rearrangement ampli-
tudes. (It is shown that the single-particle amplitudes
are much larger than the rearrangement amplitudes,
unless the relevant spectroscpic factors are particularly
small).

Particularly important is the elementary single-particle
escape amplitude, (yn1;)sp of Eq. (6.39). Of central
importance for spectroscopic studies is the approximate
relation,

YA ,chRE ( S)\,nr) 12 ('Ynl]') spe

The calculation of v4,.P™ for parent states expanded in
elementary configurations is taken up in Sec. 6.4. It is
related there to (v.1;)sp the elementary single-particle
amplitude, for various elastic and inelastic transitions
[see Eq. (6.51)]. The discussion of spectroscpic factors
continues in Sec. 8.

Some further discussion of the rearrangement ampli-
tudes is given in Sec. 6.5, and some results for these
amplitudes are given in Table 6.3. The compound escape
amplitude is discussed in Sec. 6.6, and the importance of
the giant isovector monopole is stressed (see Sec. 6.62).

Some comments on channel coupling are made in
Sec. 6.7, and the asymmetry phase is discussed in Sec.
6.8. Forbidden transitions are the topic of Sec. 6.9.

7. COMPOUND AND CONTINUUM WIDTHS
AND ENERGY SHIFTS

In this section we are concerned with those effects
which determine the position and width of the isobaric
analog resonance. In Sec. 2 the general formula for
these quantities was derived, Eqgs. (2.27-2.28),

Ep—i(T/2)=(A |H|A)+{4 |HGpPH| 4). (7.1)
In Eq. (7.1), H=H+W, with W given by Eq. (2.49).

The larger term in Eq. (7.1), (4 | H | A), appeared in
the definition of the displacement energy, ET0T=
(4| H| A)— E., and was extensively discussed in Sec. 5.
The other terms in Eq. (7.1) may be classified as
follows. We define the compound mixing as

(A | W | 4)= ACOMP_;TCOMP /)
=X {({41H|g)g| H|A)/[E=EA3GDT, (7.2)

and the continuum mixing as

ACONT_jT'CONT /9= (4 | HGp*PH | 4). (7.3)
The fotal skift and total width are then
A= ACOMP+ ACONT, (7 . 4)
and
['=['COMP_| ['CONT (7.5)

There is some similarity between what we call
“compound mixing” and Robson’s “internal mixing”,
[Ro652], and also between the “continuum mixing”
and his “external mixing”. In R-matrix theory, the
matching radius, which is somewhat larger than the
nuclear radius, divides the configuration space into an
internal region and an external one. In the shell-model
theory of nuclear reactions [Ma69a] and in the for-
malism used here, the distinction is not made in con-
figuration space but in Hilbert space. One distinguishes
compound states {g} and continuum states {P}. The
states of {g} in the energy region of interest (near the
analog resonance) are essentially non-zero only in the
“internal region” of R-matrix theory. Furthermore, in
the case of analog resonances, the proton scattering
states are well below the Coulomb barrier and hardly
penetrate the internal region. Therefore a correspond-
ence exists between compound and internal mixing on
one hand and between continuum and external mixingon
the other. There is some ambiguity in the separation
into the two subspaces ¢ and P. Although the important
open channels should always be found in P and the
compound states always in g, closed channels may be
put either in ¢ or in P, This ambiguity does not have
any effect on the sum of the contributions from com-
pound and continuum mixing which is the only observ-
able quantity. In general, we will also have in P those
channels which are closed at the particular energy we are
considering but which have a threshold not too far
away and are therefore of importance.

In some situations it is convenient to separate out
components from the P space which are essentially
bound, such as true bound states or single-particle
resonances of 4(rr’). These bound state components
must then be added to the g space and this modifies the
definition of ‘“‘compound” and “‘continuum”.

This procedure is especially useful if these com-
ponents are important in forming specially correlated
states. We have already seen this in the case of the
antianalog [Sec. 6.6] which involves the component
#a,.(r), projected from the analog state itself.
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Another important example of such a correlated
state may be the giant isovector monopole collective
mode constructed from neutron-hole proton-particle
states in the parent. These have been discussed in
Secs. 5.24 and 6.62. If the monopole strength is con-
centrated in a collective state at high excitation energy
it may be necessary to project these components from
the P space and include them in the compound space
as special doorways.

7.1 The Compound Mixing

The compound mixing, Eq. (7.2), may be represented
as in Fig. (7.1). The coupling of the analog state and
the compound states takes place through the isospin-
violating parts of H, so that Eq. (7.2) may be written

ACOMP _ j'COMP /9 — N1
XZA@ | VD g)g| VO | m)/[E—EA3GD Y,

(7.6)
where VO =[H, T_], etc.

7.11 Sum Rules

Various methods may be used to estimate the size of
ACOMP gnd TCOMP For example one may write

4| W]|4)y=N"
X | VOV | m)/[E—E+3GD) ]}, (7.7)

where F£—iT'/2 is a suitable complex average energy de-
fined such that closure is possible for the sum appearing
in Eq. (7.6). When using closure in Eq. (7.6) special care
has to be taken, since the closure (x| VOV |x)
would not only contain the effect of all states in ¢ but
also those in P and A. The P space has a complexity
similar to the parent state and large single-particle
matrix elements connect | ) with P. The states | ¢)
(with few exceptions) are much more complex and
lwo-body matrix elements connect | 7) and | ¢).

If most of the matrix element strength arises from the
monopole collective mode it may actually be sensible to
include P and g together in a single space orthogonal to
A. Then the total mixing is actually contained in the
compound term. This can be done independent of how
the breakup is made for the escape amplitudes.

_ As usual in this kind of problem, the average energy
E—14T is difficult to estimate and usually one obtains a

rough upper limit on the desired quantities. The
method of sum rules has been used by Wigner [Wi66 ]
and recently by Mekjian [Me70a] to evaluate the
compound mixing.

7.12 Doorways

An alternative approach to the calculation of Eq.
(7.6) is possible through the use of a shell-model
description of the states | ¢} and | ). Special attention
has to be paid to the requirement that the states | ¢)
are eigenstates of the model Hamiltonian and that they
are orthogonal to the analog state. Preferentially the
states | ¢) would be obtained by diagonalizing suitable
classes of states like 3p— 2k, 4p—3h, etc. A first step in
using the shell-model approach has been made by Beres
[Be68d7]. However, this approach seems unnecessarily
complicated because we only require statistical informa-
tion about the major part of the g space.

Probably, fairly reliable estimates of the compound
mixing may be made if one uses the method of “doorway
states” discussed in Sec. (2.4). One assumes that among
the compound states | ¢), which are very complicated,
there exist certain states, | d), which couple strongly to
the parent state, | ) (see Fig. 7.2). In this approxima-
tion, one has

ACOM[’_iI‘COMP/2=N—1
> {@| VO [d)d| VO | 7)/[E~Eat3(Ta) ]},
(7.8)

where the doorway-state approximation leads to the
width I'q in the denominator of Eq. (7.8). The position
Eq4 and the width I'q of the doorway states can some-
times be observed experimentally in reactions leading
to the formation of | d) as a final or as a compound
state. However, I'q is a function of the energy. In the
expression (7.8), I'¢(E) should be taken near E=FEpg
and not at the doorway energy Eq4. In general E will be
rather different from Er and therefore the observed
width T'4(E) and the one needed for the evaluation of
Eq. (7.3) may be rather different. However, as long as
T'a(Eg) is comparable in magnitude to | Ea— Eg |, the
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NS K16, 7.2. Diagrammatic rep-
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mixing using the doorway
P d hypothesis.
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T'aBLE 7.1. The magnitude of the compound mixing, Eq. (7.9), arising from the anti-analog, the circuit term in Eq. (7.16), and the
continuum mixing proper, Eq. (7.21), are shown. The example chosen is Zr®! at E=5 MeV with the channel indicated in Column 1

assumed to be open. All quantities are in keV.

Compound mixing

Circuit term

Continuum mixing proper

ACOMP (F)  TCOMP (E) ACIR (E) TCIR (E) ACONT (E) [icoNT (F)  ['ABS (E)
s172 1.4 0.6 2.8 —0.6 —62.7 40.6 7.6
dare 0.6 0.2 1.6 +1.6 —40.7 14.5 4.6
sz <0.1 <0.1 0.5 <0.1 —34.6 9.2 5.45
gure <0.1 <0.1 —0.5 <0.1 —14.0 2.1 1.97

compound width

TCOMP = N—1 E Pd
d

X{a | VP [d)d | VO | 7)/[(Er—Ea)*+ (3Ta)*]}
(7.9)

is rather insensitive to T'q. Each term in the sum Eq.
(7.9) has a very broad maximum as a function of Tq at
the value Tq=2 | Eg—Eq|. Using this maximal value
for T4, Eq. (7.9) reduces to

['COMP < N1
X Zd: [l [ VP [@)d | VO | x)/| Er—Ea |l (7.10)

If the doorway states | ) have strong single-particle
components, their spreading widths are of the order of
several MeV, and Eq. (7.10) should be a good ap-
proximation. The problem in the doorway-state ap-
proach consists in finding the right doorway states,
i.e., those which exhaust most of the strength of the
interaction of | =) with | ¢). In their study of the com-
pound mixing in Sr¥, de Toledo Piza et al. [Pi66 ]
found the important doorway states to be the anti-
analog state, the other configuration states, and the
giant-dipole resonance. The doorway-state technique
has also been used to estimate the compound mixing
from isospin-violating nuclear forces [Me69]. These
contributions have all given rather small values for the
upper limit, TCOMP~1—35 keV. Some values for ACOMP
and T'9OMP ohtained from including only the anti-
analog state as an important doorway are given in
Table 7.1. The results presented in this table are for
parent states of single-particle character.

However it is likely that a very important contribu-
tion arises from the giant-monopole doorway referred to
above. The construction of this doorway requires
important components of the P space because these P-
space states are of the character of proton—particle,
neutron-hole states in the parent. Therefore it probably
is the best strategy to include everything orthogonal to
4 in the discussion of the monopole. In this case the
estimate of the complex energy, Eq. (7.1), is completely

given by the (T—1) monopole | M), i.e.,
A—i(T/2)~(2T)"
X{ | VD | MYM | VO | x)/[Ea— En+3 (iTu) I}

(7.11)
Using Eq. (6.87) and (6.90) we have
T 2T—1
Amiy e (2 T+1)
150(22/4)
X 70/ AP il (Ea)/2) F LHO(TH /AT
(7.12)

where we have used the approximate form

Q2T) 1Y (n+1+3) (n+1)~3.54¥  (7.13)
nlm

which is good when T is large.
Using the fact that T'»<<2(Ey—E,) we have

150(22/A)

2T—1
A (ZT—I—l) [royam—rroa+n/ag <V
(7.14)
and
2T—1
X 150(2%/4) keV. (7.15)

{(170/41%)—[110(T+1)/A T}

It is expected that T'y(E4) is approximately constant
throughout the periodic table just as in the case of the
gaint-dipole resonance. However T'y(E4) will tend to
increase because the analog is moving closer to Ej as
we go through the perodic table. For example, in
Sr88 A~—80keV, I'~2.7Ty(E4) keV, and in Pb?8, we
have A~—300 keV and T'~16Ty(Es) keV, where
T (E4) isin MeV. It is difficult to be sure of the values
of Tx(E4), but if a reasonable value of 4 MeV is taken
for Sr® we have I'~10 keV. To obtain the correct total
width for Pb2® we would need a value of T'y(E4)~
12 MeV which seems somewhat large. The hydrody-
namic estimate [Bo67] for the matrix element would
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reduce these results further (possibly by a factor of 2)
so that it is probably necessary to take some explicit
continuum effects into account. This is especially true
for the odd nuclei where the properties depend on the
state of the last particle.

7.2 The Continuum Mixing

Even though there is not a unique choice as to which
part of the space (orthogonal to 4) is most profitably
included in the continuum (P space), the general
structure of the continuum mixing is similar. The formal
expressions of this section do not depend on this choice;
however, the physical approximations which can be
made do depend on the separation. For example, if the
monopole is dominant, this implies strong channel
coupling between the various (J/=0) proton—particle
neutron-hole channels. If this channel coupling is
neglected, the continuum mixing leads to very large
shifts and widths (Sec. 8). Explicit channel coupling
can be sometimes avoided by projecting from the P
space that part which is involved in the coupling and
transferring it into the ¢ space. The remainder of the P
space would then exhibit weak channel coupling. An
example of this procedure is to include only the elastic
channel in the P space when dealing with odd isotopes.

This procedure assumes that the dominant contribu-
tion to the total width from the inelastic channels, in
an odd nucleus, is that calculated in Sec. (7.12) for the
monopole. Then the rest of the total width comes from
the continuum mixing of the last particle.

In general, the continuum mixing defined in Eq. (7.3)
is somewhat complicated as it contains the interaction
of the analog state with the scattering states as well as
the modification of the analog state due to the com-

pound states. In coordinate space, the effect of the

compound nucleus is included in the complex analog
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state form factor, Eq. (2.35), so that
ACONT_,:(I‘CONT/Z) — Z f72 d,f,,lz dr'

XVA) G P (r,r)VoA(r)  (7.16)
where

VA(r) =VA(r)+VACOME (), (7.17)

Equation (7.17) in conjunction with Eq. (6.12) defines
the compound form factor. Using this definition, we may
decompose the continuum mixing into three parts
which are independent of, linear in, and quadratic in
VACOMP(7) | respectively. The three terms are rep-
resented in Figs. 7.3-7.5. We will call these terms, the
continuum mixing proper, ACONT—i['CONT/2  the con-
tinuum circuit mizing, ACR—iTCIR/2 and the con-
tinuum round-trip mixing, A®T—iT®T/2 These terms
are presented in order of descending importance.

To estimate the size of the second two terms we may
again use the doorway hypotenesis for the ¢ space. The
doorway escape form factors and the direct analog form
factors are not very different in magnitude [Egs. (6.80)
and (6.93)]. Therefore, each of the successive terms in
Eq. (7.16) is smaller than the previous by the ratio

A
\ Fic. 7.5. Diagrammatic rep-
W\ resentation of the round-trip
AN continuum mixing. The solid
N lines indicate coupling through
\ . .
AN the strong interaction.
P q

(A | H|d)/(Ea—Eq+iTq/2), which may take values
between about one-tenth to one-one hundredth. Since
the circuit term is already rather small (see Table 7.1)
we need not discuss the round-trip term.

7.21 The Continuum Mixing Proper and Absorption
Width

We define the continuum mizing proper by
ﬁcom_if‘com/zz (A I H(E+—Hpp)'H l A)
=3 [rrdrfr?dr

XVA(7) Geor P (rr" ) VA(r').
It is useful to divide T'CONT into two parts

[ICONT— [ABS_| S~ T, DIR

(7.18)

(7.19)

where T'4 PR is the direct escape width for channel ¢
defined in analogy to Eq. (2.42),

exp (2ipLPT) Ty LPIR =21 (4 DIR)2, (7.20)

In Eq. (7.20) use has also been made of the optical
phase defined in Eq. (6.107). The sum in Eq. (7.19) is
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over the open channels, elastic or inelastic, which one
decides to include in the P space. The quantity I'ABS | as
defined, goes to zero with the imaginary part of the
optical potential. This quantity represents the effect
of the compound nucleus on the continuum width and
describes absorption into channels which have not been
explicitly included in the P space. Expressions for I'ABS
and the sum of the direct escape widths may be ob-
tained by separating the Green’s function of Eq. (7.18)
into a principal value part (PV) and an ‘“on-shell”
part. This represents a separation into real and imag-
inary parts of the Green’s function only in special
circumstances since the presence of an imaginary term
in the optical potential will cause the principal value
integrals to be complex. In this manner one finds

[ABS= 37 T4 > exp(2nc) cos 2¢.07T—1]

—2Im Y [PV /wfw VA(~r)

e’ 0 o
X G D (7, ) Vo A(r)rir'2 dr (lr’] . (7.21)

If we again neglect channel coupling, the double channel
sum in Eq. (7.21) reduces to a single sum and in this
case we have

[aBS= 3" 'y ABS, (7.22)

In an entirely similar fashion one may also write
AconT— ° ALONT (7.23)

and

feoNT = $° i coNT (7.24)
with the obvious definitions for A, CONT and I[',CONT Tt is
also worth noting that the expression for the continuum
mixing, Eq. (7.13)), has the same form as Eq. (7.18)
except that H is replaced by H.

7.22 Independent Single-Particle Channels vs Channel
Coupling

In almost all cases of interest many channels are
open and a detailed description of the inelastic processes
requires a knowledge of the structure of: the residual
nucleus in its excited states.

We may attempt to understand how the inelastic
channels contribute to the continuum mixing by using a
simple model. We start with the even—even parent and
assume the channel processes involve the escape of a
neutron without rearrangement. This escape leaves the
system in a neutron-hole state of angular momentum 7.
We make the simplifying assumption that the hole
strength is concentrated at the shell model position. In
this simple-model the contributions of the channels to
the continuum widths, shifts and absorption are readily
calculated in terms of single-particle parameters defined

by
fz]'CONT = f‘szBS+ T'yep. (7 . 25a)
The single-particle escape width is defined as
exp (2i¢y,°FT) T =2m (y1;)%p, ~ (7.25b)

with a single-particle absorption width

fleBS = I‘l,-“’[:exp(ij) COs 2¢UOPT—‘ 1]

-2 Im I'PV / / anj(r) Gli(+) (7’, 1’/)
» 0“0

X Vi ()72 27 dr'] , (7.26)

and a single-particle continuum shift

Ay CONT=3T;° exp (2q1;) sin 2¢,,°°7

+ Re [PV /w/w Vnii(r) Gy (r, 7')
0o

X Vuij(r')r2r'? dr dr'] . (7.27)

Here V,.i;(r) is the single-particle form factor, Eq.
(6.26), and G4 (7, 7’) is the P space Green’s function
calculated in the absence of direct-channel coupling.
In this case, the total continuum shift is
RoONT(By) = 5 (25'+1) Ky ONT(BVY),
P

2

(7.28)

and the total absorption width is
[ABS(Eg) = 3 (27'+1) TwpABS(EVY). (7.29)
1t
Here EV¥ is the escape energy for the hole state (V' ")

in the target,
EV¥=Ep— EV'?, (7.30)

and E,¥# is the excitation energy of the hole state.
We shall see in Sec. 8 that this sum (7.29) gives a
very large value for the total width of analog resonances
in closed-shell nuclei. We have already remarked in
Sec. 7.11 that the probable solution to this lies in the
fact that there may be large channel coupling between
these neutron-hole channels leading to collective states
like the giant monopole.®* As mentioned previously, it
may be a better first approximation to place the
collective mode in the ¢ space. However, for the case of
parent nuclei with a few valence neutrons it is probably
more appropriate to carry the channels corresponding to
valence neutron escape in the form of continuum mixing
effects. This is in fact the basis of the calculations for
escape amplitudes in Sec. 6. There the coupling of the

31 This would show up as a giant resonance in the J =0 channel
and should be measurable in the proper experiments. For exam-
ple, this mode would show up as a resonance near 35 MeV in the
excitation function of the (p, et¢~) process on Pb?”. The mono-
pole transition producing the (e*e™) pair would go to the analog
islate of Pb2®in the compound Bi*8 with an energy (Ey— E4)~=20

eV.
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valence neutrons to the “core’” monopole was included
in the compound escape.

Thus we expect the expressions for single-particle
continuum mixing effects Egs. (7.25) to (7.29) to be
useful with the appropriate restrictions on the summa-
tions (/7). In an odd neutron parent we might include
only the term from the single odd neutron, which would
then appear without the factor (25+4-1). In Table 7.1
we have given some values for the single-particle valence
orbits in Zr%, including the small effects of the circuit
correction due to the anti-analog only.

We note at this point that the evaluation of the single-
particle quantities in this model requires the knowledge
of the optical model parameters in the energy region,
0<E<ZEg. There is a further difficulty in that the
phenomenological optical model parameters are usually
obtained for the case in which the P space contains only
the elastic proton channel. Our approximations there-
fore lead to a significant uncertainty in the specification
of the optical model parameters, particularly for the
imaginary part of the potential. An additional un-
certainty arises from the coupling of the valence
particles with the neutron holes which renders the
channel energy for the simple model somewhat un-
certain.

8. APPLICATION TO VARIOUS REGIONS OF THE
PERIODIC TABLE AND EXTRACTION OF
SPECTROSCOPIC FACTORS

8.1 Introduction

In this section we will discuss some applications of
the theory given in the previous sections. In Sec. 5
we have discussed the effects which determine the
displacement energy and have seen how knowledge of
this quantity enables us to obtain information concern-
ing the distribution of excess neutrons. Here we will
present examples of calculations of other resonance
parameters: the escape widths, absorption widths,
continuum shifts, asymmetry phases, etc. We will
compare the calculated and experimental quantities
and extract spectroscopic factors for some states. The
spectroscopic factors will be compared to those ob-
tained from stripping or pickup reactions. These are not
intended to be the ultimate calculations, but should be
understood as an exploration of the scheme itself and
as an examination of the sensitivity to various param-
eters.

The extraction of spectroscopic factors requires
accurate values of the single-particle escape widths. In
a number of papers, the escape widths defined in other
approximations have been considered and the reliability
of the extraction of spectroscopic factors from isobaric
analog experiments has been investigated [Za67;
Bu68, 70; Ha68a, b; Th68; Ha69b]. The situation is
not quite clear and single-particle escape widths as
calculated according to the different prescriptions differ

considerably [Ha69b7. (Most authors stress the role of
the optical potential as a major source of uncertainty in
the extraction of spectroscopic factors). Before pre-
senting results for this quantity it is valuable to note
the various approximations used in our calculations,

The results presented in this chapter include those for
the single-particle escape width, Ty, defined by Eq.
(7.25b) in terms of the single-particle escape amplitude
extensively discussed in Sec. 6. We neglect all isospin-
violating forces other than the Coulomb force and we
also neglect direct channel coupling. Thus (vi)sp 1S
given by Eq. (6.38) or Eq. (6.39) and includes direct
and exchange contributions. The direct contribution to
Eq. (6.39) is the dominant one and is expressed by the
simple one-dimensional integral of Eq. (6.40)

exp(—ny) [
(Yn3)so= ———= | 0.1 Q(r) Ve(r) ouij(r) 72 dr.
3/ 8p (2T)1/2 0 J J

(6.40)

In the evaluation of this expression, the one-body
Coulomb field, V.(r), is determined from the empirical
charge density of the target nucleus. The continuum
wave, og,1;;”(r), is determined from an empirical local
optical potential.** The bound neutron wave function,
©n1;(7), is obtained from the Saxon-Woods potential,
the depth of the potential being chosen to reproduce the
binding energy of the orbit. The radius of the neutron
potential well is fixed by using information obtained
from the study of displacement energies.

Spectroscopic factors are obtained from the relation

Siy=T1704/ Ty, (8.1)

where the single-particle widths are calculated with the
approximations discussed above and include both direct
and exchange Coulomb contributions. Various im-
provements on this calculation could be made. For
example, corrections due to proton finite size and
vacuum polarization may be included. Also, the various
isospin-violating terms considered in the calculation of
the displacement energy contribute to the escape
widths. These corrections were calculated in some cases
and the results presented in Table 6.2. As we have seen,
they are always small.

We may also note that for the results presented in
this section, we neglect the compound contribution to
the escape amplitude. As noted before, these contribu-
tions may be important for those states having partic-
ularly small spectroscopic factors. The modification of
the escape width and spectroscopic factors due to the
inclusion of the compound amplitude arising from the
coupling of the analog state to special doorway states
was discussed in Sec. 6.6 and some results given in
Table 6.4.

% The continuum optical wave function is made orthogonal
to the neutron bound states using the procedure discussed in
detail in Appendix 1 and summarized in Sec. 2. It should also

be orthogonal to the proton occupied states. This latter point
was checked and the corresponding corrections were very small.
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In general, we may say that the uncertainties
introduced by the use of the empirical optical model and
the neglect of direct channel coupling® are probably
greater than those arising from the neglect of compound
amplitudes and from isospin-violating forces other than
the Coulomb interaction. We note, however, that the
strong channel coupling to the monopole components
has usually been included in the compound term, and
this is probably the largest effect there (Sec. 6.6).

In addition to the single-particle escape widths, we
have also included in this section numerical results for
the other quantities defined in Sec. 7.2. These include
the optical phase, ¢,;°°T, [Eq. (7.25b)7], the single-
particle continuum shift A, CONT, [Eq. (7.27)], and
the single-particle absorption width T';ABS, [Eq.
(7.26)7]. In the evaluation of the principal value
integrals we have again only considered the contribu-
tions to the form factors from the Coulomb force. We
must be careful to include in the single-particle form
factors, Vn.i;(r), the density matrix factors, (1—p),
which appeared in Eq. (6.36). If these factors are
neglected we obtain some spurious contributions to the
principal value integral due to propagation in occupied
bound orbitals. In the simplest approximation® we
therefore write for the single-particle form factors

) — !
V=0 [*[X20 - 5 s

0 rr e

XVe(r) ‘Pnlj(’l)"’z dr'(1—aexen), (8.2)

where the sum on #’ is over the occupied bound proton
orbits. In Eq. (8.2) the small exchange contribution to
the form factor has been included approximately by a
coefficient, aexen, which is the ratio of the exchange
term to direct term as found in the calculation made for
the escape widths. The form factors of Eq. (8.2) are
used in the evaluation of A;€ONT and TI',CONT. In
practice one obtains I';ABS from [';;CONT by subtracting
Ty [Eq. (7.25a)].

Some results are given for nuclei with N=350, N =82,
and NV =126. The information is contained in a set of
figures (Figs. 8.2-8.33); these figures may be used for
neighboring nuclei® by correcting the factors Z2 and
(2T)~* and considering Coulomb barrier effects.

After a brief section concerning the comparison of the
energy-dependent resonance parameters contained in
the theoretical expressions to the experimental (con-

stant) ones, we discuss in some detail the regions with
N=126, N=82, and N=50.

3 Recent calculations indicate that the neglect of channel
coupling to quadrupole vibrations is a very good approximation
for vibrational nuclei such as strontium [Co707].

% The expression in square brackets in Eq. (8.2) represents
the density matrix factor (1—p) in the approximation that the
target state is a single Slater determinant. In this case we have
the well known relation p?’=p, so that (1—p)?=(1—p). This
allows us to use (1—p) in Eq. (8.2) instead of the factor (1—p)/2
which appears in the exact expression.

% Of course we must also keep track of the dependence of these
quantities on the radius of the single-particle potentials used for
on1i(7) and ogi;@.

8.2 Energy Dependence of the Resonance
Parameters

In the general reaction theory presented here, the T
matrix is given in terms of energy dependent param-
eters. For example, for elastic scattering we have from
Eq. (2.40),

_exp [2i8(E)] exp [2igo(E) JTo(E)

2r E—Er(E)+i[LT(E)]"
Now, experiments are usually analyzed using a T
matrix of the same form as Eq. (8.3) but with constant
resonance parameters., In this section we wish to
relate the experimentally obtained resonance param-
eters to the energy-dependent ones we have used in
formulating our theory. To do this we make a linear
approximation [Bu70]

To(E) =To(Eg) +el'y (Er),

¢0(E) =do(Er) +ed’' (Er),

Er(E) =Eg(Er)+¢E'(ER),
T'(E)=T(Er)+el'(Er), e=(E—Egr), (8.4)

where the prime indicates the derivative with respect to
energy. We will assume that the energy dependence of
8(E) and TOPT(E) is taken into account in the experi-
mental fitting procedure. Thus the 7" matrix used in the
fit to experimental data would have the form

To™t=ToOPT(E)+ {exp [266(E) ]/ 27}
X {exp (2i¢o) To/[E—Er+3(iT) ]}, (8.5)

where ¢, T'o, Er, and T' are constants.? To lowest order
in the primed quantities, we find the following relations
between the parameters of Egs. (8.3) and (8.5):

I'~T (ER) [1+ER'<ER) :l, (86)

ERﬁER(ER) -—'I‘(ER) P'(ER) /4, (87)

do~¢o(Er) —1[T"(Er) J— [T (Er) J[To' (Er) /To(Er) ],
(8.8)

To# (8.3)

and
To~To(Er)[1+¢'(Er)T(Er)+Er' (Er)]. (8.9)

As an example, we estimate the corrections for the
go/2 resonance in Pb¥8(p, p) Pb*8. We have

Ty (Ep)~4X10-3
TV ( Eg)~10-2
ER’(ER)§25X 102
&' (Eg)~0.05[MeV—1].
3% When one converts the energy-dependent Breit—Wigner
term, Eq. (8.3), into an energy-independent one like Eq. (8.5),
there appears a term which is constant in energy. Although it
depends on the resonance parameters, it is usually lumped into

the background 7 matrix, T(°PT, computed by an optical po-
tential.

(8.10)
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F16. 8.1. Proton and neutron orbits in the regions, N =150,
N =82, and N=126. The shaded areas denote the filled orbits,

The corrections are
T~ (1+0.02) Ty (Ez),
I'~(14-0.03)T'(ER),
~Fr(Eg)—0.4[keV],
© ¢ (Er) —0.01,

which are all small.

(8.11)

8.3 Isobaric Analog Resonances in the Lead Region

We have already emphasized that the elastic and
inelastic scattering of protons has become a powerful
tool in studying the nuclear structure of the parent
state. An important advantage of the isobaric analog
studies over other reactions (such as stripping or
pick-up) is the possibility of determining the parentage
relations between the parent state and various target
states.¥ This feature of the TAR experiments has been
widely exploited in the lead region. From the experi-
mental results and the knowledge of the parent state
wave function, it has been possible to study and some-
times construct the wavefunctions of the various target
states [An66; Br66; Ka66; Mo67a; Za67; Bo68; Gr63;
Le68; Ri68; St68a, b; Za68; Fi69; Ma6t9b; Ri69; St69].

In order to perform such delicate analyses it is
necessary to know the theoretical parameters deter-
mining the isobaric analog resonance, in particular, the

# In reactions such as stripping or pickup, only the parentage
of the ground state of the target and the parent system are studied.

single-particle escape width. In the present section, we
exhibit the parameters characterizing the analog
resonances in the lead region. We then make use of the
calculated parameters to show how spectroscopic
information is extracted from the experimental data.

8.31 The Structure of the Lead Region

The nuclei in the lead region may be described with
respect to Pb?®, This nucleus is a good example of a
doubly closed shell. The 44 excess neutrons occupy the
following single-particle states: lhg/g, 2f7/2, 11'13/2, 3?3/2,
2fss2, and 3pye (see Fig. 8.1). The low-lying excited
states of Pb?® are of 1p-1% nature.

The low-lying states in Pb?® form a “good” single-
particle spectrum. The positive parity states 2ggs,
141170, 3dsse, 4512, 2g19, and 3dse have spectroscopic
factors close to one. The exception is the 1755/ state, the
only one with negative parity, for which Sis significantly
smaller than 1, about 0.5 or 0.6 [Au 69c, Ig 69b]. The
single-particle ji52 state is most probably mixed with
particle-plus-core states obtained by coupling a positive
parity single-particle state to the =3~ vibrational
state, At energies above 5 MeV one expects to see the
single-particle states of the next shell (NV>184) of
negative parity, namely the 112, 2k, etc. This single-
particle strength is probably significantly spread
because of the dense spectrum of compound states
appearing at these energies.

The low-lying spectrum of Pb?7 is of single-hole
nature [Mu627]. Except for the 43/, state, all the holes
are of negative parity. Other low-lying states of positive
parity include a doublet, J=7/2+ and J=5/2*, at
about 2.6 MeV. These two states have been described
in terms of a py12 hole coupled to the 3= (2.76 MeV)
vibrational state in Pb*® [Ha67a]. At somewhat higher
energies many other states are observed. Most of them
are of more complicated nature, such as 2k-1p or
3h-2p etc. Some of these may be described in simpler
terms as particles coupled to vibrational states. Among
these there are states which have large components
| Pb?6,.®4) where 7 stands for the single-particle states
Zos2, sz, etc. of the 126<N <184 shell. The spectro-
scopic factors obtained in (d, p) or (p, p) experiments
for these levels are considerably smaller than one. The
spreading of the single-particle strength is due to the
proximity of other 2k-1p states, in particular the
particle-plus-core states such as | 2t®;7) [Au68a].

8.32 Analog Experiments in the Lead Region

The elastic scattering Pb*® (p, p) Pb*® clearly shows
seven single-particle isobaric analog resonances whose
parents are states in Pb*®, From these experiments the
escape width, T';;, and total width, I, have been
extracted [see Table 8.1]. The extraction of these
parameters from experiment is usually difficult in this
region because of the large total width of the resonances
as compared with their spacings, and because the
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TaBLe 8.1. Escape widths and spectroscopic factors for the particle and hole states in Pb%8, The analog resonances are observed at
proton energies Ep and have an escape width I';;. The single-particle values, I';;*?, are read from the graphs, Figs. 8.2 and 8.3. The
calculated spectroscopic factors, Sy, =T;/T'1;*, are compared with those from (d, p) and (¢, d) reactions.

i ERI:MCV]“ Ty [keV]b Iy [keV] Spp Sap © Sap d S e
Particles
d/a 17.48 4615 64 0.72+0.25 1.1 0.99 0.83
8112 17.43 3615 33 1.1+0.5 1.0 1.04 0.90
S1/2 16.96 48 74 0.65 1.0 0.97 0.86
dsp2 16.50 58410 62 0.94+0.15 1.0 1.06 0.86
Jsiz 16.34 (1) 1.2 (0.8) 1.2 1.38 0.60
/e 15.72 24+1.6 0.8 2.542 1.2 1.52 1.05
8or2 14.92 19.6+0.8 20.5 0.96-+0.04 0.9 0.88 0.93
4 Egp [MCV]‘ I'y; [keV]" Ty [keV]i Tyt Ty Spp Sar &
Holes

j20) 11.49 33 2544 28.0+1.4 27 1.04+40.05 1.06
Sor2 10.92 3 <3 4.240.5 4.7 0.9040.11 1.10
parz 10.59 11 103 15.84+0.9 16.5 0.96+0.06 0.91
1’13/2 9. 74« cee cee coe <0.001 cee 0.98
Jare 9.15 see see 0.640.1 0.53 1.140.2 0.76
hora 8.06% . oo <0.001 oo 1.0

& [Whe8]. f [Br68].

b [Za68], [Ma69b], [Fi69]. & Extrapolated values using [Mu67].

¢ [Au69c] this reference gives averaged values from [Cr68], [Mu62], h [An66].

and [Mu67]. ! [Le68].
4 From subCoulomb stripping [DDo67]. i Calculated with the I';; from [Br68].
¢ [Ig69b]. k [Mu67].

precise determination of the parameters necessitates the
analysis of the interference with the background. For
these reasons, very good statistics are needed and the
experimentally determined I';; have large uncertainties.
The isobaric analog resonances in Bi?*® have partial
widths for emitting a proton with the quantum numbers
of the excess core neutrons leading to particle-hole
states in Pb%®, This process is indicated in Fig. 6.5.
Each single-particle analog will decay to all those
particle-hole states in Pb?® possessing configurations
which contain that particle. This process was discussed
in Sec. 642, and Eq. (6.58) provides the relation
between the amplitude for the escape to the particle-
hole final state and the single-particle escape amplitudes
for the core neutrons. In a series of inelastic proton
scattering experiments, the excitation function to the
different excited states of Pb*® (target) have been
measured. The target states which are expected to have
large components [( 7, pys™) 1, (4, pss ™)z or (7, fss™)1]
indeed show prominant resonance behavior in their
excitation functions, Penetrabilities of the outgoing
protons, in some cases, are too small to observe the
corresponding hole configurations (e.g., kg™, t1327%).
Some of the experiments were thoroughly analyzed and
an attempt has been made to determine the wave
function of the core states [Bo68; Wh68; Ri69].
Another possibility for studying the excited states in
Pb¥® is to find their analogs by means of elastic and
inelastic scattering on Pb?”, For example, in the elastic

channel one studies the (p157!, 7) configurations in
Bi28, (The case of odd-neutron targets has been dis-
cussed in Sec. 6.43.) This possibiity has been exploited
by a few experimental groups [e.g., Le68]. Some of the
inelastic channels are of two-hole one-particle nature
because of the escape of one of the core neutrons. These
include target states which can be described as one hole
coupled to a particle-hole vibration. Again, because of
the penetrability, only escape of the 3py2, 2fs2, 332
particles was observed.

In addition, if the particle-hole states in the parent
are mixed (for example, the 3~ vibration), we can have
inelastic scattering to the single-hole states by emission
of go2, f1s;2, and 4y, particles, The isobaric analog
resonances have proved to be especially useful in
establishing the validity of the particle-plus-core model.
The (p,p’) experiments in the N=50 and N =282
region have revealed that certain states in even—odd
nuclei may be described in terms of a weak coupling of
particle to a core state. The experiments in the lead
region are even more striking in this respect. In partic-
ular, excitation functions of the collective octupole
state /=3 in Pb2%® Pb26 and Pb** all show a very
similar spectrum corresponding to a weak-coupling
model based on this state. The particle-core coupling
model has also been used for states built upon the
quadrupole vibrational state (I=2%) in Pb*S, A general
result emerging from the isobaric analog studies is that
the first 7=2+ vibrational state is most responsible for
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F16. 8.2. The single-particle escape widths for the neutron
(hole) orbits of lead. The optical potential used is that of Bec-
chetti [Be69].

the fragmentation of the low-energy single-particle
strength [St68a; St697].

8.33 Calculation of Resonance Parameters

In order to determine the structure of the nuclear
states from the study of isobaric analog resonances it is
essential to have precise theoretical values of various
quantities which parameterize the 7" matrix. In partic-
ular, in order to determine the amplitudes of various
configurations, it is necessary to know  the single-
particle escape width [defined in Eq. (7.25b)]. As we
have seen, (Sec. 8.1), this quantity depends on the
choice of the neutron bound-state wave function and
the optical potential used to determine the continuum
wave. The neutron wave functions are calculated in a
Saxon-Woods potential whose radius is determined
from the study of the Coulomb displacement energies.
In the case of the optical potential, it would be desirable
to have a potential appropriate to the nucleus being
studied and determined at the appropriate energies.
In most cases such a potential is not available and in
the calculations reported here we have used the potential
of Becchetti and Greenlees [Be69]. This potential is
obtained by fitting a wide range of nuclei, 40< 4 <210,
in the energy region 10< E<40 MeV. It is characterized
by an energy dependent strength

Vr=54.0—0.32E404Z/A134-240(N—-2) /A,

with radius and diffuseness parameters of 7g=1.17 and

ar=0.75. The imaginary part is of volume plus surface
type. The strength of the volumn term is Wr=0.22E—
2.7 or 0, whichever is greater. For the surface term we
have Wgsp=11.8—0.25E4+12.0(N—Z)/A or zero,
whichever is greater. The potential also has a spin-
orbit term of the usual form.

We emphasize that this potential is an average one
and it does not provide an exact fit to the off-resonance
data in Pb?, This deficiency introduces significant
uncertainties in the calculation of some of the param-
eters, particularly those which are sensitive to the
imaginary part of the potential. (The latter is only
poorly determined in the usual optical model analysis.)

8.331 The Single-Particle Excape Width. The single-
particle escape widihs have been calculated for most of
the neutron orbits in lead. The escape widths for the
hole orbits are presented in Fig. 8.2 and those for the
particle orbits in Fig. 8.3. The results are presented as
a function of the escape energy, E. The widths exhibit a
characteristic behavior, increasing with energy as the
Coulomb and centrifugal barriers are penetrated and
decreasing after that point. The figures may be used to
obtain escape widths for both elastic and inelastic
decays. For example, if we consider the lowest isobaric
analog resonance in Bi*® (the g2 resonance at about
15 MeV), then Fig. 8.3 will provide the single-particle

Pb 208 4+ p

100~

TP [kev]

Fi1c. 8.3. The single-particle escape widths for the neutron
(particle) orbits of lead. {Potential: [Be69]}.
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widths (modified by appropriate coupling factors) for
the decay to excited 1p—1% states in Pb®® up to about
9 MeV excitation.

8.332 The Continuum Absorption Width. The single-
particle width was defined in Eq. (7.26) and has been
calculated for the particle and hole orbits in lead. The
results are shown in Fig. (8.4) and Fig. (8.5). The
measurable quantity is the total width given by Eq.
(7.1). This quantity is composed of the compound
width and the continuum width, as in Eq. (7.5).

Wehave noted that the particular separation into con-
tinuum and compound parts depends on the importance
of the monopole mode. We have seen in Sec. 7.2 that it
is probably only useful to use the single-particle con-
tinuum absorption width for a few extra particles or
holes relative to the closed shell at Pb*3, The total
width is then approximated by that for Pb*® plus
(or minus) the continuum contribution from the
particles (or holes).

8.333 The Continuum Shift. The continuum shift,
ACONT - was defined in Eq. (7.3). Of course the same
remarks apply here as for the width. We present the
single-particle continuum shift, defined in Eq. (7.27),
for the hole and particle orbits in lead [Fig. (8.6) and
Fig. (8.7)].

As a function of energy, the single-particle continuum
shifts exhibit similar behavior in all the regions studied.
The shifts are negative well below the Coulomb barrier
and become positive at higher energies. The zeros of
Ay;CONT correspond roughly to the maxima in the single-
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Fic. 8.4. The single-particle absorption widths for the neutron
(hole) orbits of lead. {Potential: [Be697]}.
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I'1c. 8.5. The single-particle absorption widths for the neutron
(particle) orbits of lead. {Potential: [Be697]}.

particle escape widths and are shifted to higher energies
with increasing /.

Superficially, T';CONT and A;;€ONT exhibit resonance
behavior with a large width. This seems to be roughly
at the right energy for the next shell of proton single-
particle orbits, although there are large shifts. How-
ever, inspection of the behavior of the phase shift and
the proton wave function inside the nucleus does not
show any simply interpretable resonance behavior.
This is probably a result of the combined effects of the
Coulomb barrier penetration and the large imaginary
potential,

8.334 The Optical Phase, Scattering Phase Shift, and
Absorption Parameter. In addition to the parameters
discussed thus far in this section, we have also calculated
the optical phase defined in Eq. (6.107). It is in most
cases the dominant part of the asymmetry phase ¢.
The optical phase is directly related to the magnitude
of the imaginary part of the optical potential and
uncertainties in this imaginary part reflect themselves
in uncertainties in ¢°PT. Results for the optical phase
are given in Figs. (8.8) and (8.9) for lead.

The scattering phase shift, 8,4, defined in Eq.
(2.30), has also been calculated. The results are
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Fi16. 8.6. The single-particle continuum shift for the neutron
(hole) orbits of lead. {Potential: [Be697}.

presented for the nuclear phase, §;;NU°L'=§;;—g;, where
the Coulomb phase, g;, has been subtracted from §;; to
define §;NUCL, Figures (8.10) and (8.11) exhibit this
quantity for lead.

Finally, the imaginary part of the phase shift due to
the optical scattering, 7;;, has been obtained. The
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¥16. 8.8. The optical phase for the neutron (hole) orbits of lead.
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results are presented for the quantity [1— exp (—2y) ]
in Figs. (8.12) and (8.13) for lead. As in the case of
T';;ABS and ¢,;,°FT, the values of 7;; are uncertain due to
significant uncertainties in the determination of the
imaginary part of the optical potential.

8.34 Comparison of the Calculated Parameters with
Experiments

In spite of the very large number of isobaric analog
experiments performed in the lead region, the number
of resonant parameters determined from the experiment
is rather limited. The large total width as compared
with the resonance spacings does not always allow for
unambiguous determination of parameters such as the
escape widths and total widths.
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FiG. 8.10. The nuclear optical phase shift, §;;NUCL=§,;—q, for
the neutron (hole) orbits of lead. {Potential: [Be697]}.

8.341 Escape Widths and Spectroscopic Faclors.
Parameters known with quite reasonable accuracy are
the escape widths of the pys, fsj2, p1j2, and fr2 orbits in
Pb™ at certain energies. The measurements of the
different experimental groups are very consistent and
the values obtained are nearly the same. The experi-
ments consist in elastic and inelastic proton scattering
on Pb*, The resonances excited are the analogs of the
ground and excited states of Pb?8, Looking at the
analog of the ground state of Pb?® and its elastic and
inelastic decays to the low-lying states of Pb?7, the
single-particle escape widths are deduced. The assump-
tion made is that the ground state of Pb*® is a good
closed shell and that the low-lying states of Pb%7 are
pure single-hole states. This assumption is very con-

109

TaBLE 8.2. A comparison of various ratios of escape widths
for the decay of the analog of the Pb®® ground state. The experi-
mental values are taken from [Ig69a7]. The calculated values as-
sume factors proportional to (2j+1) as in Sec. 6.43.

Ratio Experiment Theory
Tss2/Tpin 0.3640.04 0.52
Tpar2/Tp 12 1.143-0.07 1.22

(Ts s2+Tpa) /Tpape 1.504-0.08 1.74
Ty 52/Tp 32 0.3240.04 0.43
Tya2/Tp 1 <0.08 0.08

sistent with other experiments and theoretical investiga-
tions. The experimental results are given in Table 8.1
and compared with our calculations. The spectroscpic
factors which are calculated using the theoretical single-
particle widths are in all cases compatible with a
spectroscpic factor of unity. This is also found to be the
case in the (d, ¢) reaction [Mu67]. Since the errors are
of the order of 109, (except for f2), the agreement is
quite satisfactory. In Table 8.2 several ratios of escape
widths for the decay of the analog of the Pb?*® ground
state are listed. The experimental values have rather
small errors, and for some of the ratios the theoretical
values lie definitely outside the experimental errors.
Part of this disagreement may be due to the spectro-
scopic factors not being unity. However, there is some
disagreement (outside the error) between the measure-
ments of [Br68] and [Ig69a].
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Fic. 8.11. The nuclear optical phase shift, §;;NVCl=4;_o;, for
the neutron (particle) orbits of lead. {Potential: [Be69]}.
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F16. 8.12. The absorption parameter for the neutron (hole)
orbits of lead presented in the form [1—exp(—2n;)]. {Po-
tential: [Be69]}.

The escape widths for the particle orbits have been
measured in the elastic scattering of protons on Pb?%,
Here the experimental situation is much less favorable
and the values obtained for the escape widths have
large errors. This is especially true of the almost
degenerate ds» and g7» resonances at energy of about
17.5 MeV. For these reasons a comparison of the data
with the theoretical results is not conclusive. Neverthe-
less, the experimental and theoretical spectroscopic
factors in Table 8.1 are not inconsistent. The experi-
mentally well established value for the gy resonance
agrees very well with the calculation. More experi-
mental work is required in order tomake amore meaning-
ful comparison.

Within the assigned errors, and within the errors in the
spectroscopic factors as determined from the (d, p)
and (¢, d) reactions, the spectroscopic factors from
analog experiments are compatible with unity as well as
with the results of other experiments.

8.342 Partial Absorption Widths. The total width of
an isobaric analog resonance can be measured rather
accurately, especially by considering inelastic reactions
proceeding through the resonance. The total widths for
the resonances in Bi?® are given in the second column

of Table 8.3. The third column gives the experimentally
determined escape widths for the elastic channel.

Now we may use experimental knowledge of the total
width of the analog resonance in Bi?®, whose parent is
the ground state of Pb*® [T'(Pb?® gs) =230410 keV
[Br687], to extract partial absorption widths for the
various particle orbits.®® According to the discussion in
Secs. 7.22 and 8.332 we use the expression

T'(Pb¥9; Ij) = T'y;4T',,ABS-T (Pb*%; gs),  (8.12)

where (Ij) refers to the valence nucleon. In Eq. (8.12)
we have identified the core contribution to the total
widths of the Bi?® state (parent: Pb*®) with the total
width of the Bi?® state (parent: Pb?%, ground state).
Thus the partial absorption widths as extracted from
the experimental data, are

1,438 = T (Pb™; j) — T,/ — T'(Pb*%; gs).  (8.13)

In these equations we are assuming that the spectro-
scopic factors are unity, so that escape widths and the
partial absorption widths are identified with the
corresponding single-particle quantities. The partial
absorption widths obtained in this simple way are
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F1c. 8.13. The absorption parameter for the neutron (particle)
orbits of lead presented in the form [1—exp(—2qy)] {Po-
tential: [Be697]}.

38 Tn this section we will label the total widths, T, by the parent
of the analog state giving rise to the resonance.
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compared in Table 83 with the theoretical single-
particle absorption widths. Within the rather large
experimental uncertainties there is rough agreement
between theoretical and experimental values for the
partial absorption widths, Since the absorption width is
essentially proportional to the imaginary part of the
optical potential, the magnitude of the imaginary
potential used [Be69] seems reasonable (to within
factors of 2 or 3) at the energies at which the theoretical
1',AB8 have been determined, about 15-20 MeV.

8.343 Total Widths. We now turn to a discussion of
the total width of the analog state in Bi?® (parent:
Pb?8, os). Now the total width, as well as the escape
widths associated with the various excess neutron orbits,
are known experimentally. Therefore we may determine
the total absorption width by subtracting from the total
width the sum of the experimentally determined escape
widths taken with their appropriate statistical weights.

In order to show that the channel coupling between
the proton—particle, neutron-hole channels is really
important we have calculated the total absorption
width by summing the single-particle terms for ail the
excess neutron holes [see formula Eq. (7.29) ]. We refer
to this as the independent channel calculation. The
result of the calculation is presented in Table 8.4. The
calculated total absorption width, T¢a12BS=659 keV,
exceeds the one extracted from the experimental data
(TexptABS~80-420 keV) by about a factor of 8. We also
recall that this calculation of I'BS involved rather
specific assumptions, especially in the assignment of the
energy arguments for the escape widths of the excess
neutron orbits [see Eq. (7.30)]. Clearly, our choice of
the inelastic channel energies introduces some uncer-
tainty in the calculation of T'“BS, The actual one-
particle one-hole strength is spread over a certain

TaBLE 8.3. Comparison of experimental and calculated values
for the partial absorption width I';;ABS for the analog states in
Bi2®. The experimental values for I';;ABS are obtained from

[ABS=T—T,;— T (Pb¥s; gs),

where T' is the observed total width for each analog level (Jj)
and I'(Pb%8 gs) =2304-10 [Br687] is the observed width of the
lowest analog resonance in Bi?®. (All widths in keV).

Experiment
Calc
lj ER[MeV] a Ta Iy b f‘leBS f‘leBS
dsre 17.48 280420 4615 <30 46
g2 17.43 290420 3615 25425 30
S1/2 16.96 320415 48415 40425 53
ds2 16.50 31015 58410 20415 28
Jsre 16.34 20025 ~0 <25 7
/2 15.72 220420 2+1.6 <25 5
o2 14.92 250410 19.6+0.8 <15 23
& [Wh68].

b See Table 8.1.
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k1. 8.14. The dependence of the optical phase, single-particle
absorption width, and the absorption parameter on the strength
of the imaginary part of the optical potential, W. The zero
subscripts refer to the values obtained for the optical potential
of Becchetti [Be69].

energy interval. However, in order to reduce the cal-
culated width, T'ABS by even a factor of 2 it is necessary
to place a considerable amount of 1p-1%4 strength at
very high excitation energies. Such spread of strength is
rather inconsistent with various measurements. Theo-
retical calculations also indicate that the spread of the
1p-1k strength is not large enough to make it possible
to reduce the absorption width significantly.

It is possible to reduce the independent channel
absorption width by changing of the imaginary part of
the optical potential. We have already mentioned that
the optical potential used here is an average one, chosen
to reproduce only the general features of the scattering
data for a wide range of nuclei and energies. This
particular calculation of I'ABS is sensitive to W and
requires an accurate knowledge of the optical potential,
particularly at low energies.

We have investigated the dependence of the param-
eters T;ABS, ¢,°PT and [1— exp (—29;)] on the
strength of the imaginary part of the optical potential.
The results are shown in Fig. (8.14). There the quanti-
ties with subscript zero refer to the values calculated
with the imaginary part of the optical potential as given
by Becchetti [Be69]. The shape and the energy
dependence of the Becchetti potential were kept fixed
and only the strength of the imaginary part was varied
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TaBLE 8.4. Independent channel calculation of the total absorption width for the ground state resonance in Bi®8. The proton escape
widths I';; are taken from experiment (Table 8.1). The values for the calculated partial absorption widths are read from Fig. 8.4. Since
the experimental total width of the Pb%8 resonance is I'=2304-10 keV [Br687], the total experimental absorption width is I'AB8=
I'—3XgI';;=80+20, which has to be compared with a calculated value of 659 keV. All widths appearing in the Table are in keV.

Holes Statistical _

Iy Ep[MeV] Iy T;AB8  weight, g g Ty g-T'aB8
b2 11.49 28.041.4 50 2 56+2.8 100
Jor2 10.92 4.240.5 24 6 25.243 144
V2 10.59 15.840.9 42 4 63.24+4 168
1372 9.74 <0.001 2.5 14 eee 35
Jare 8.15 0.6+0.1 19 8 4.841 152
hora 8.06 <0.001 6 10 60
Sum 14946 659

from Becchetti’s value (Wy). The results represented in
the figure are for the sy» and go» analogs of Pb*®
parents evaluated with continuum (escape) energies of
6, 12, and 18 MeV. The calculated parameters depend
approximately linearly on the strength of the imaginary
potential.

By reducing the strength of the optical potential, it is
possible to achieve agreement between the calculated
and experimental total widths. On the other hand, the
reduction of the imaginary potential required to do this
is excessive.®® We are thus led to prefer the calculation
of Sec. 7.12 based on the monopole mode in spite of our
lack of information on its position and width.

E [ Mev]

F16. 8.15. The single-particle escape widths for the neutron orbits
of barium. {Potential: [Wi67]}.

¥ In contrast, the escape width depends on W mainly through
the factor e At the energies considered, this factor is close to
unity, and reduction of 5 by a factor of 2 will change I';;** by
only a few percent.

8.4 Analog Resonances in the Region of the Closed
Neutron Shell N =282

8.41 Iniroduction

There are a number of stable nuclei which have
N =82 and proton numbers from Z=54 to 62: ;;Xeg!*,
s6Bag™, 55Ceg2!, oNdgs'*?, and ¢Smge™4. All these nuclei
have been used as targets in isobaric analog experiments
to form the analog states of the N =83 parents. The
energy spacings and angular momenta of these reso-
nances remain basically the same for all the above
mentioned nuclei from Z=54 to Z=62 (cf. [Mo69b]
or Table 8.5), At around 10-MeV proton energy a

100+

E [ Mev]

F1G. 8.16. The single-particle absorption widths for the neutron
orbits of barium. {Potential: [Wi67]}.
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I'1c. 8.17. The single-particle continuum shifts for the neutron
orbits of barium. {Potential: [Wi677]}.

series of resonances appear, whose quantum numbers
have been determined by polarization measurements
where doubtful [Ve67,687]. These are given as frs, P32,
P12, and fsje. This sequence is expected from the single-
particle shell model (see Fig. 8.1). Unlike the case of

1.00

o
3
o
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0.50

0.25

E [ Mevl

Fi16. 8.18: The optical phase for the neutron orbits of barium.

{Potential: [Wi67]}.

138
3 Ba  +p

B E [ mevl]
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F16. 8.19. The nuclear optical phase shift, §;;NVCL =§;,—q¢,, for
the neutron orbits of barium. {Potential: [Wi67]}.

lead, the spectroscopic factors of the levels with N =283
are considerably smaller than 1 (cf. Table 8.5).

All the analog resonances decay strongly to the first
excited 2+ state of the target nucleus (which appears in
all the N =82 targets at about 1.3-1,6 MeV excitation

8|/2

Ba +p
0.7+

91/2 »P f5/2
fu,

E [ Mevl

Fi6. 8.20. The absorption parameter for the orbits of barium
presented in the form [1—exp(—27;)]. {Potential: [Wi67]}.
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TasLE 8.5. Comparison of experimental and calculated values for the escape width I';; and the asymmetry phase ¢ for the analog
resonances in proton scattering on nuclei with N =382. All widths in keV. All angles in radians.

iy Er (MeV) Ty (keV) T (keV) Spp Sip Gead®™®Pt  PragOFT
Xe‘“—}-p
fare 10.19 20.3» 21 0.97 0.68p 0.20
P 10.79 26.3 61 0.43 0.49 0.15
y20) 11.17 19.4 63 0.31 0.34 0.14
Sorz 11.50 9.9 28 0.35 0.24 0.22
o2 11.72 6.1 30 0.20 0.16 0.23
Balss4p
Sz 10.02 15.5¢  17.04 21 0.74 0.81 0.76¢  0.52¢  0.70= 0.16b 0.19
Dare 10.65 27.8 26.0 69 0.40 0.38 0.49 0.24 0.32 0.35 0.14
pue 11.11 24.5 22.5 74 0.33 0.30 0.40 0.22 0.27 0.22 0.13
Jsr2 11.46 16 9.2 31 0.52 0.30 0.24 0.17 0.20 0.09 0.21
forz 11.73 13.0 32 0.40 0.24 0.11 0.14 0.23
Ce14°+p
S 9.75 12i 18 0.67 0.89¢ 0.10b 0.18
Dar 10.40 22 75 0.29 0.42 0.30 0.14
2% 10.88 20 81 0.25 0.38 0.29 0.13
Sor2 11.25 7 30 0.23 0.30 0.32 0.21
fsre 11.49 7 32 0.22 0.38 0.22
Nd“2+4p
Jir 9.50 10.5i 17 0.62 0.83¢ 0. 66k 0.10b 0.17
bare 10.23 23.5 81 0.29 0.40 0.40 0.22 0.14
pin 10.80 23. 89 0.26 0.25 0.37 0.24 0.13
T2 11.05 5.9 29 0.20 0.24 0.21 0.26 0.20
Sml“—i—p
T 9.30 7! 16 0.44 0.58m 0.61h 0.0h 0.16
pare 10.19 22 80 0.28 0.34 0.39 0.21 0.14
(p112) 10.93 10. (?) 98 0.10(?) .- 0.48 0.13
(for2) 10.97 4 34 0.12 0.11 0.06 0.20
& [Mo69b]. b [Ha68b].
b [Mo68]. I [Wu69].
¢ [Se70]. i [C168] and [Gr70].
4 [wi70]. k [Ch67].
e [Wi67]. ! [Ma66a].
f [Eh70] calculation with no cutoff. m [Jo66].

& [Eh70] calculation with cutoff.

energy), and therefore it is probable that the neutron
single-particle states have a considerable admixture of
states of a particle coupled to this collective 2+ state.
Above the 2+ state a rather dense spectrum is observed
in the decay of the analogs, and its structure has been
only partly unravelled. It has been proposed [Wu69]
that one interpret the strength in these final states as
arising from neutron particle-hole configurations
coupled to the vibration. Formally, we represent this
structure as bg | ) where | 7) is an exact eigenstate of an
N =83 nucleus, including admixtures of the 2+ state, for
example. Using this picture, it has been possible to
extract some information about the location and the
escape widths of the hole states. Their sequence is
ds/a, S1/2, M1yj2, dsjs, and grje. Because of penetration effects
~ one expects to observe only the ds»! and s1/,7! strength.

8.42 Escape Widths

The single particle quantities for the barium region
are presented in Figs. (8.15-8.20). Table 8.5 presents a
comparison between spectroscopic factors as determined
from isobaric analog resonances and stripping experi-
ments. (A similar comparison for the nuclei discussed
here has been made by [Ha68a,b7]). The spectroscopic
factors as determined from the stripping experiments
differ considerably [Eh707], partly because of the use of
different optical potentials and partly because different
form factors have been assumed for the single-particle
orbits. Therefore, we do not expect the comparison to
be meaningful with an accuracy of better than 10%-

20%.
For our calculations, the Saxon-Woods potential in
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which the neutron single-particle wave function is
generated has a radius of R=1.1542F. The optical
potential is that of [Wi67], i.e., in the notation of
Becchetti [Be69],

Vi=624—04E [MeV],

Rp=1.25A48F az=0.67F
Vso=5.0 [ MeV], Rso=Rg,
aso=ar, Wy=0,

Wsr=10.0 [MeV],
R;=1214F a;=0.69F (8.14)

This potential has been obtained by fitting various
proton scattering experiments in this region. The
imaginary part is appropriate for an energy around
Ep~10 MeV; an energy dependence has not been
determined for the imaginary part.

Although the trends of the (d, ) spectroscopic
factors (Sap) are well reproduced, the agreement of the
absolute values is only fair. In general S,, is smaller
than Sq, by as much as 109%,-309%,. The uncertainty in
the experimental value of T; is usually not available.
However, estimates of an error of 109,159, for the
f1/2 and ps)e resonance in Sm'#4-p, and an error of 209~
309 for the other two resonances are available [Ma66 ].
Since the error in Sy, is also not known, it is hard to
estimate the degree of discrepancy. However, there may
be a systematic discrepancy due to the smaller radius of
the potential in which the neutron wave function has
been generated. [e.g. we use 7o=1.15F while the authors
of [Wi67] use 7o=1.23F]. Since we use the additional
Coulomb energy information, which favors a smaller
value of 7, our value for the spectroscopic factor may
be more correct. However, the values for the escape
widths for the neutron holes, Table 8.6, are also not
reproduced too well. They are very sensitive to the
optical potential, and to the assigned energy, E, of the
particle-hole final state. A change in £ by 0.5 MeV
changes I';;*? by a factor of 2.

8.43 The Asymmetry Phase

The asymmetry phase ¢ is a quantity which cannot be
very accurately extracted from proton elastic scattering
data. The quantity which is the only observable in the
experiment is the phase a(6), the relative phase between
the resonance term and the background scattering
amplitude. We may write the background scattering
amplitude as fs(8) =|fn(6) | e#®. This amplitude is
a superposition of many partial waves and therefore
its phase ¢(6) will generally vary with angle. Therefore
the observed phase difference, a(f), may be written

a(8) =¢(8) —2(8;NUCL4-g,) —2¢;;.  (8.15)

Usually one calculates ¢(8) from an optical potential;
if the potential is chosen properly, the difference

TaBLE 8.6. Single-particle widths for neutron holes in Cel4,
The experimental values have been obtained by studying the
decay of the f/2 and ps/2 resonances in proton scattering from Cel40,

Expt Calc
E (MeV) (keV) (keV)
2 Ty 12°P 44 Ty 3250 5.95 8.5 17.6
T 312% 6.0 0.4b 0.9
T's 1259 6.0 3.5¢ 7
2 [Wu69].
b [He69b].

¢ Calculated from (a) and (b).

a(0) —¢(8) should be independent of the scattering
angle. Then one subtracts from a(6) —¢(8) the optical
potential scattering phase shift 2(§;;NVCL+4¢,) (which
includes the Coulomb phase shift ¢;) and obtains the
asymmetry phase. Such an analysis has been performed
by [Ha68b], and the results are shown in Table 8.5. We
have also included the results for ¢°FT taken from Fig.
8.18. We have not calculated the effects of channel
coupling or compound effects [Sec. 6.87] because they
are expected to be small. The error attributed to the
values ¢***t is of the order of 0.2 rad. One sees that
theoretical and experimental values certainly agree
within this error. However, this does not provide a very
stringent test. It only indicates that the absorptive part
of the optical potential has the right order of magnitude.

8.44 The Total Width

The independent channel calculation for the total
absorption width has also been carried through for one
resonance in Ba, and, just as in the Pb region, one
observes a discrepancy of a factor of 7. The total width
of the fy2 resonance in Ba®+p is T'=69 keV [Se70].
The elastic width is 16.5 keV and the sum of the
inelastic widths is 12.8 keV [Mo67b7], which gives
I'ABS~42 keV. The sum of the I';;*BS leads to a value
of 290 keV.. We have already discussed the reasons for
this discrepancy, and indicated the correct procedure.

8.5 Isobaric Analog Resonances in the Region of the
Closed Neutron Shell N =50

8.51 Introduction

The situation in the region of N =50 is similar to that
in the N =82 region. A number of nuclei with V=50 can
serve as targets: spSrso®, 10715, 2Mos’. Extensive
studies of isobaric analog resonances have been made
using Sr®® and Zr% as targets [Co68a, b; Li68; Sc69c;
Wi69]. The observed spectra of the isobaric analog
resonances are rather similar. The expected sequence
of single-particle levels is dsp2, Si2, dsj2, gia. Of these
only the dy;, strength is considerably fragmented over
a number of levels, while the other orbits are relatively
pure (see the spectroscopic factors in Tables 8.7 and 8.8).
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TasLE 8.7. Escape width, single-particle escape width, and spectroscopic factors for analog resonances in Sr8(p, p) Sr®. All widths
are in keV. The large spectroscopic factor for the g2 orbit (>1) probably arises from the choice of a rather.small radius for the neutron
potential well (see Table 8.9). The same remark applies to Table 8.8. For comparison, a theoretical calculation of the spectroscopic
factors is shown in the last column.

Ep [MeV]® ljr rye Tyt Ty e Iyjep d Spp® Sipt S'theory ®
5.00 ds/2 8 4 5 5 1.6 0.8 0.79 0.91
5.99 S1/2 46 52 48 0.9 0.90 0.93
6.91 ds/2 11 5 27 24 0.4 0.2 0.09 0.05
6.98 d32 23 28 38 35 0.60 0.75 0.45 0.40
7.42 ds2 18 22 43 39 0.42 0.51 0.34 0.40
7.70 g 4.0 4 3.0 2.7 1.3 1.3 0.74 0.80
8.10 dy/ 5.6 7 51 46 0.11 0.14 0.08 0.11
8.22 dss2 3.0 1.5 42 36 0.07 0.04 0.043 0.001
Sum rule: ZSp, dsi2 1.04 0.92 0.97
dar 1.13 1.40 0.87 0.91
8 [Co68a]. € Spp =T1;/T1;%° with I';; from [Co68a] and from [Wi69], respectively.
b [Wi69]. T';;%P is calculated with Potential (II).
¢ Read from Fig. 8.21 for Potential (II). f [Co68b].
d Read from Fig. 8.21 for Potential (I). & [Hu69].

TaBLE 8.8. Escape widths, single-particle escape widths, and spectroscopic factors for analog resonances in Zr®(p, ) Zr%. The values
of I'y;*° are calculated for Potential II—see text. (All widths are in keV).

Er (MeV) ) ry;e Ty Ty Sppd Sap® Stheory f
4.67 dsie see 4.0+0.5¢ 3.5 1.140.1 0.89 0.98
6.22 a3 <1 (X 25 <0.04 0.03 0.004
6.78 dar 15 18 38 0.40(0.48) 0.45 0.81
6.99 g2 2.5 oo 1.7 1.4 0.52 0.88
7.27 S1/2 1743 eee 70 0.24 0.24 0.005
7.63 d3/2 10 2 45 0.22(0.04) 0.08 0.006
7.82 dsn 8 8 46 0.18(0.18) 0.11 0.15
8.04 d3/2 8 6 50 0.16(0.12) 0.15 0.02
8.41 das <S S 54 <0.1(0.1) LX)
Sum rule 2.5y, for di2 <1.1(0.92) 0.82 0.98

a [Li68]. d Calculated with I';; from [Li68]; those using I';; from [Wi69] are

b [(Wi69]. given in brackets.

¢ [Sc69c]. € [Co63].

f [Ra64] Spectroscopic factors obtained from a shell-model calculation.

TaBLE 8.9. The dependence of the resonance parameters on the shape of the wave function of the parent state (Sr®4-p at 7 MeV).
The single-particle wave function of the extra neutron has been changed by changing the radius (R=7,4'3) of the well. The well depth
has been adjusted to obtain the experimental single-particle binding energy for the neutron orbit. The nuclear phase shift (56-47)
depends on 7, through the fact that the bound neutron orbit is projected from the scattering solution as discussed in Sec. 2.23.

7o I 1;0PT A,jCONT fleBS 8,;NUCL 1—

State (fm) (keV) (rad) (keV) (keV) (rad) exp (—2m;)
Si2 1.15 77.3 0.031 —49.8 10.0 —0.261 0.034
.1.2 75.7 0.034 —44 .4 9.3 —0.293 0.038
ds2 1.15 25.6 0.043 —38.4 7.85 —0.0181 0.019
1.25 27.7 0.037 —37.9 6.46 —0.0355 0.019
712 1.15 1.16 0.027 —14.7 2.74 -+0.0024 0.0014
1.25 1.65 0.017 —16.5 2.40 +0.0013 0.0014




AuerBACH, HUFNER, KERMAN, AND SHAKIN A Theory of Analog Resonances 117

In the quantitative analysis of the experimentally
observed excitation functions a new feature appears in
this region. In the case of lead and barium, the energy
of the isobaric analog resonances is already so high that
many neutron channels are open, and, therefore, com-
pound nuclear levels will predominantly decay via
neutron emission (which is favored by the absence of a
Coulomb barrier). In Zr*(p, ) Zr® the lowest ds
resonance is below the first neutron channel and the
compound contribution to the elastic scattering cannot
be neglected [Sc69c].

8.52 Escape Widths

The single-particle quantities for the strontium
region are presented in Figs. (8.21-8.26). Although the
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F16. 8.21. The single-particle escape widths for the orbits of
strontium. (Potentials: (I) [Be697, (II) [El69]).

isobaric analog resonances are well separated in most
cases, the analysis of different excitation functions
leads to rather different values for the escape widths,
often differing by a factor of 2 or more. This situation
leads to a large uncertainty in some of the calculated
spectroscopic factors. '
For the case of strontium, we considered two different
optical potentials and calculated all resonance param-
eters with both potentials. Potential (I) is that of
Becchetti [Be69] while Potential (II) has been ob-
tained from a fit to proton scattering from strontium
and also provides a fit to the polarization data [E169].

=== POTENTIAL (I)
—— POTENTIAL (IT)

88
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PO Thev]

E [ Mev]

F16. 8.22. The single-particle absorption widths for the neutron
orbits of strontium. {Potentials: (I) [Be69], (IT) [El69]}.

The parameters of Potential (II) are
Vr=55.0—0.3E [MeV],

Rp=1.287A4'F, ap=0.666F
Vso=6.5[MeV], Rso=1.054'3F, A50=0g,
Wy=0, Wsrp=12.0 MeV,
R;=13014'3F, a;=0.512F,
tior E [ Mev]
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F1c. 8.23. The single-particle continuum shift for the neutron
orbits of strontium. {Potentials: (I) [Be69], (II) [E169]}.
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Fi16. 8.24. The optical phase for the neutron orbits of strontium.
{Potentials: (I) [Be69], (II) [E169]}.

The differences in the escape widths are small for the
two potentials for those energies well below the Coulomb
barrier, but become larger with increasing energy. This
deviation mainly arises from the difference in the
factors ¢2" which multiply the transition matrix
element. The main difference between potentials (I)
and (II) appears to be in the imaginary potential, and

i E [ Mev]

[ Radians ]

NUCL
5,

88
-6 Sr +p

-—— POTENTIAL (I)
—— POTENTIAL (IT)

sl/z

-'9 -

F1c. 8.25. The nuclear optical phase shift, § ;;NUCL=6;;—a;, for
the neutron orbits of strontium. {Potentials: (I) [Be69], (II)
[El69]}.

therefore those quantities most sensitive to this
quantity, such as I';ABS) ¢,,0PT n,; show the greater
differences.

Within the deviations of the experimental values for
the escape widths, and considering an estimated error of
~209, for the spectroscopic factors extracted from the
stripping analysis, there exists no obvious contradiction

(except for the g2 resonance) between analog spectro-

scopic factors and those of the stripping theory.

The deviations for the gz2 resonance, both in
Sr¥8(p, p) Sr® and Zr*(p, p) Zr® seem to be significant.
Because of the strong centrifugal barrier, /=4, the escape
width is very sensitive to the details of both the proton
continuum wave functions and the neutron form factor.
The effect of changing the size of the neutron wave
functions has been studied and some of the results are
given in Table 8.9. As may be seen there, the gy
escape width is by far the most sensitive to the details of
the neutron wave function.
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¥ic. 8.26. The absorption parameter for the neutron orbits
of strontium presented in the form [1—exp(—2n;)]. {Potentials:
(I) [Be69], (I1) [EL69]}.

8.53 The Optical Asymmetry Phase

The optical asymmetry phase is sensitive to the
strength of the imaginary part of the optical potential.,
In Table (8.10) we have compared the optical phase,
corrected for energy dependence of the resonance
parameters (see Sec. 8.2), with the experimental value
for the asymmetry phase. This comparison neglects
any contributions to the asymmetry phase from direct-
channel coupling or from the compound escape ampli-
tudes. As may be seen from the table, the results of this
comparison show no significant disagreement between
theory and the phases extracted from the experimental
data for the states with large spectroscopic factors. It is
expected that all of the small effects such as rearrange-
ment, channel coupling, and compound escape are
important for the other states. This is probably the
reason for the disagreement in sign.
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TABLE 8.10. Comparison of experimental asymmetry phase and the calculated optical phase for Zr®(p, p) Zr®. The experimental
numbers are taken from [Sc69c] for the ds/» resonance and from [Wi697] for the other resonances.

Er (MeV) b pexvt $OFT (ER) =i’ —ir(TY/To) $OFT [Eq. 8.8]
4.67 dssa 0.125 0.06* 0.09® —0.002 —0.005 +0.052 +0.08b
6.81 daps 0.1 0.07 0.1 —0.01 —0.015 0.05 0.08
7.67 ds2 0 0.09 0.115 —0.01 —0.05 0.07 0.1
7.85 dsp2 —0.2 0.09 0.115 —0.01 —0.02 0.06 0.08
8.09 dsp —0.2 0.1 0.12 —0.01 —0.025 0.07 0.09
8.47 dsr2 —0.25 0.105 0.125 —0.01 —0.025 0.07 0.09

8 Calculated with Potential (II).

8.6 Conclusions

In the previous parts of this section, a comparison
has been made between experimental and calculated
resonance parameters. This comparison is not complete:

(i) We have not attempted to collect and present all
the experimental data which are available at present.

(if) We have not re-analyzed all experimental curves
in order to obtain a set of resonance parameters which
are determined by the same method. Such analyses
would be valuable in order to determine the uncertain-
ties in the parameters; these uncertainties seem to be
rather large.

(iii) For our calculations we have not attempted to
find the best optical potentials, but have used those
available in the literature which seemed appropriate for
the region under investigation. Because of our poor
knowledge of the optical potential, the theoretical
resonance parameters have rather large uncertainties.

We summarize some of our conclusions with respect
to the various parameters:

(i) The single-particle escape width:

We estimate that the uncertainty in the optical
potentials leads to an uncertainty of the order of 109 or
more in the escape widths and therefore in the spectro-
scopic factors, even at energies below the Coulomb
barrier® Above the Coulomb barrier the energy de-
pendence of the escape width is strongly influenced by
the factor e727, hence by the imaginary potential whose
strength is only poorly known. There is a further un-
certaintly due to the monopole shielding effect arising
from the compound escape, Eq. (6.93), since the param-
eters of the monopole are all but unknown experi-
mentally.

(ii) The asymmetry phase and the partial absorp-
tion width:

The partial absorption width for the elastic channel
and the asymmetry phase depend on the imaginary

4 The analysis of stripping at energies below the Coulomb
barrier is fairly insensitive to the optical potential since the short
range of the interaction between the deuteron and the stripped
neutron ensures that the process happens well outside the nuclear
center. For isobaric analog resonances, the interaction V. has
a long range, and therefore the matrix element for the escape
width receives about equal contributions from the “inside” and
‘““outside” of the nuclear volume.

b Calculated with Potential (I).

potential only at the energy of the resonance. These
quantities should be predicted with reasonable confi-
dence except for questions concerning the energy
dependence of the imaginary part of the optical
potential. Unfortunately, the asymmetry phase and the
partial absorption width are obtained only with rather
large uncertainties, as is the magnitude of the imaginary
potential. Within these uncertainties, the calculation
provides a representation of the data that is not grossly
in error,
(iii) The total width and shift:

We conclude that the total width and shift should #zo?
be calculated in the independent channel approximation.
The best estimates would seem to be those of Sec. 7,
where it is seen that the giant monopole is the dominant
feature. It is possible that large changes in what we
believe the imaginary part of the optical potential to be
would change this conclusion somewhat.
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APPENDIX 1. THE CONTINUUM SPACE AND THE
OPTICAL MODEL

In this appendix we wish to indicate how the projec-
tion operator for the continuum space may be con-
structed. In this connection we shall review the theory
of the optical model. The modifications of the con-
tinuum-space wave functions and projection operator
necessary for the theory of analog resonances are also
discussed.

Al.1 The Continuum Space Projection Operator

Our aim in this subsection is to construct a set of
states which form a basis for the continuum space and
which have orthonormality properties such that we
may define the projection operator in terms of these
states. We begin with a definition of channels for the
scattering problem and introduce certain channel
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vectors. An integral operator is then constructed which
allows for the transformation of the original set of
channel vectors to a new set which has the desired
orthornormality properties. The formalism as presented
allows for any number of channels in the continuum
space. We note that some of the channels defined to be
in this space may be closed at the energy of interest for
the scattering problem. This feature does not modify the
analysis,

Let us turn to the definition of the channels and
introduce some useful operators.

Let af(r, 6) be the creation operator for a proton at
point 7 with spin projection o¢. If a(r, o) is the cor-
responding destruction operator we have, as usual

{a'f(r, ‘7): d(r', U’) } =5(r“r')3¢,',
{a'(r, o), a' (1", ) } =0,
{a'(r, 0), a(r', a")} =O. (A1.1)

We introduce the operator @y m;7 () via the following
relations

al(r,0) = X2 aapim;’ (1) Yim; (7, 0), (A1.2)
ljm;

or
aapim; (1) = 2 [Yapm; (7, 0)al (r,0) d2  (A1.3)
where
Ylimj(?'; ”) = Z me’mjl%jylmz(?) Xg,,:(o') . (Al -4)
mio’

Here Y,,(7) is a spherical harmonic, and x(o) is a
spinor, The commutation relations of these operators are

{aasim;T (1), @y jmy (r') } =[8(r—17") /71" 16100818 pm;7
{aapim; (1), @y jmy (r')} =0, etc. (A1.5)

We denote the states of the target as | A\, IM ), where
A=0 denotes the ground state, A\=1 the first excited
state, etc. The target state has angular momentum 7 and
projection M. We may add to a target state a particle
with orbital angular momentum I, total angular
momentum j, and projection ;. If we require that this
particle be created at a distance r from the origin of the
coordinate system, we define

| 7, (13)jm,IM, \) = aapm;* ()| N, IM ).

It is also useful to couple 7 and I to a total channel
angular momentum J and projection M. We define,

|7, CBIIIM, N) = 2 Cojaema™ aayyim; T (1) | X, IM ).
miM

(A1.7)

The indices [ (37)7]JM,\ will be denoted by the channel
label ¢, so that our channel states are designated |7, ¢)
in an abbreviated notation.

The orothonormality properties of the states |7, ¢)
are such that they are not appropriate for the definition
of a continuum space projection operator. We now
proceed to the definition of a new set of fundamental

(A1.6)

channel states | 7, ¢) which have more desirable ortho-
normality properties.

For the following discussion, let ¢ denote the channels
(open or closed) to be included in the continuum space.
The orthonormality relation for the channel states
| 7, ¢) involves a channel density matrix, p.(,7’),
such that

(ryc| 7, c¢)y=8[(r—7")/rr" Voo —peer (r, 7). (A1.8)

The construction of the projection operator requires
the eigenfunctions of this channel density matrix. One
assumes that the solutions of the eigenvalue problem

Z/ pect (7, 7 )16 @ (") ' dr' =nuc™ (r), (A1.9)

cr Yo

> / uD*(r)u ()2 dr=>6,, (A1.10)
e Yo
are available. The completeness relation for the eigen-
functions is
2w (1)1 @ (1) =8cd (r—1') /rr'],
1
where the sum runs over all 7 and includes all degenerate
eigenfunctions. The solution #,™(r) can be used along
with (A1.8) to show that <1 (see for example [Ke66;
Fr67,687]). From these solutions we construct the
matrix

Fou(r,r)= 2 [ () us®(r')/(1—n)"2],  (A1.12)
71 '

(A1.11)

where the sum is over all the eigenvectors with %1,

The operator F.. (7, r") may be used to introduce new
channel vectors which have the desired orthonormality
properties. The channel vectors are

lr,e)=2 | |7,c)Fuo(r,r)r'2dr', (A1.13)
¢/ Yo

and satisfy the normalization condition
(ryc|?,c¢Y=[8(r—7") /17" Poor— > uP(P)ue™(r").
7=1

(A1.14)

In terms of the vectors | 7, ¢) the projection operator
for the continuum space is
P= Z/ | 7, ) drr, c |, (A1.15)
¢ 0
where the summation is over the channels defined to be
in this space. It is readily seen that P satsifies the
projection operator relations, P?=P, PT=P. The

projection operator for the closed channels and those
open channels not included in P is

Q=1-P. (A1.16)
In the next section we use the operators P and Q to

discuss the scattering problem and define a many-
channel optical model Hamiltonian.
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A1.2 The Optical Model

In this section we wish to review the formal theory of
the optical model. If we use the projection operators of
the previous section, the Schrédinger equation

H|¥)=E|V¥) (A1.17)
mav be written,
(E—Hrp)P | ¥)=HpqQ | ¥),
(E—Hqq)Q | ¥)=HqeP | ¥),  (A1.18)
where
| ¥)=P | ¥)+Q|¥),
Hoq=QHQ, Hpo=PHQ. (A1.19)
Using the formal solution
Q[ ¥)=[1/(E®P—Hqq) JHereP | ¥), (A1.20)

where E® =E-ie we may write an equation deter-
mining the scattering in the P space:

(E— Hyp— Heq[1/(E® — H)qqHeer) P | ¥)=0.
(A1.21)

We wish to reduce the complicated many-body
equation, (A1.21) to a matrix equation in a single
variable. This may be done with the-aid of the channel
vectors | 7, ¢) defined in the previous section. We write

P|¥M)=3 |7, ¢ YW ou® (r)r2dr, (A1.22)
e Yo

where the boundary conditions are such that one has
incoming waves only in the channel ¢. We also define the
operator,

Boot (1, 7)) = {r, c| {pr
+Hpo[1/(E—Hqq) Hap} | 7, ¢').

If we impose the subsidiary condition

(A1.23)

S uaD ()P ()2 dr=0 (A1.24)
ct Yo
for n=1, we obtain®

o
EV ./ (7) = E herror (7, rl)\I,cc,(—('-)(rl)rm dr'.
c’ 0

(A1.25)

In the case in which the P space contains only the
elastic channel, this equation reads

EY (r) = / Br, )T (772 dy', (A1.26)
0
and the wave function ¥ (7) contains all the informa-
tion necessary to describe the elastic scattering.
As we have not introduced an energy averaging
procedure, the P-space scattering will contain many
resonances due to the influence of the Q space modes. An

Il ¢ ¥, (r) is obtained as the solution of (A1.25) the condi-
tion (A1.24) is automatically satisfied.

energy averaged T matrix may be obtained via the
introduction of the operator

hcc’OPT (f; rl) bt <7’, ¢ l {HPP
+Hpo[ E—Hoq+5(3I) T Hae} | 7/, ¢').

One therefore requires the solution of

(A1.27)

0 .
hc”c’OPT (1’, f’) 'J’cc’ “ (f’) v dr’
0

EYeon® (") = Z

(A1.28)
or

EYyD (r) = f ) HOPT (7, ¢ )Y ()72 dr'  (A1.29)
0

in the single-channel case. Further, if one approximates
KOPT (7, ') by a local optical-model Hamiltonian
HOPT (7, ") =[8(r—7") /rr'JhOPT(r), (A1.30)

one has
HOPT (£) D (r) = B (r).

The P-space vectors may now be written

(A1.31)

1y, W@ ()12 dr, (A1.32)

P [\I[c(+)>_—. E
¢! Yo

where again the index ¢ specifies the boundary condi-
tions for Eq. (A1.28). ,

There have been very extensive studies of phenomeno-
logical optical models (mostly local). Since the deter-
mination of 2°PT (7, #’) from first principles is a formid-
able task, we will use the phenomenological optical
potentials to determine the continuum wave functions
for our study of analog states. However, the require-
ment of orthogonality between the continuum and
analog spaces requires that we modify the solution of
Eq. (A1.28) or Eq. (A1.31). This modification is
discussed in the next subsection.

A1.3 Modification of the Continuum Space
Wave Functions

As we have discussed in Sec. 2, the reaction theory
for analog resonances requires the introduction of three
projection operators P, 4, and ¢. The analog states,
| 4;) are constructed via the application of the charge
raising operator to a set of parent states, | ;). The
analog state projection operator is defined as a projec-
tion operator onto the space spanned by the analog
states. For simplicity, let us assume for the moment
that the continuum space is defined as including only
the elastic channel. In general, a parent state | =) will
contain a component which may be described as a
neutron coupled to the ground state of the target
system. The application of the charge raising operator
to the parent state will define an analog state, part of
whose wave function will contain a proton in a neutron
orbit coupled to the ground state of the target. This
part of the analog state will give rise to a nonorthog-
onality between the analog space and the continuum
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space. This difficulty may be avoided by explicitly
removing the nonorthogonal component from the
continuum space.

Recall that we had defined the projection operator

P=3 /w | 7, ¢y drlr, c | (A1.15)
¢ Yo

We now introduce the projection operator?

P=P—[P|A)4|P/{4|P|4)]

1 0
=P—-—> | 7, cYua,c(r)r dr

PA cer Yy

X / saw () (7, ¢ | 72 dr, (A1.33)
0

where
wa,(r)={r,c|A)=N"2{r ¢|T_|7), (A1.34)
and
pa={4|P[4)
=2 /w ua,2(r)r* dr. (A1.35)
e Jo

The space defined by the new operator P is orthogonal
to the analog space.

In analogy to the procedures of Sec. Al.2 we in-
troduce the P-space wave function ¢.™ (r) through
the definition

P120)= % [ 17, doP ()2 dr. (A1.36)
0

¢/

We also need the projected optical Hamiltonian
[hpOF (7, 7') Jow={r, ¢ | {Hpp

+Hpo[q/ (E—Hogtil/2) JHop} [ 7'¢’).  (A1.37)
The functions ¢, (r) are determined by the equation

0
[ZpOFT (7, 7") Jor o eer» P (#') 1'% dr' = Eoe P (7))

et Yo

(A1.38)
and will satisfy the orthogonality condition,

S| wae (e (r)r2dr=0. (A1.39)
c! 0

The latter relation is the coordinate space version of
(4| P|®P)=0. (A1.40)

It is useful to exhibit the terms arising from the
projection procedure in a more explicit form. To this
end we define

[EOPT(": ') Joor= {1, ¢ l {Hpp

g Hpl |7,¢) (Al.41)

H -
FHr E—H,+il/2

# In Sec. 2.23 we have written the general expression for the
case of many analog states | 4;).

which differs from ACFT(r,7’) introduced in (A1.27)
because the ¢ space does not contain the analog states,
while the Q-space does. Using (A1.33) to compare
(A1.37) with (A1.41), we find the relation

pOPT = (1_ | 94)(ua l) fopT (1_ | wa)(ua |) ‘
P4 P4
(A1.42)
In (A1.42) we have introduced a matrix notation for

the coordinates 7, 7’ and the channel indices ¢ and ¢’. In
this notation we may rewrite (A1.38) and (A1.39):

hpOFT | o D) =E | ¢ P), (A1.43)
(ua | 9sP)=0 (Al1.44)
If we use (A1.42), Eq. (A1.38) becomes
(E~T0P)| )=~ | ea)pa e [BOPT | ),
(A1.45)

Equation (A1.45) is readily solved in terms of the
Green’s function for #°PT, and the wave functions
| 9 defined as follows,

(E—FoPT)GH =1, (A1.46)
(E—hOPT)| ¢, H)=0, (A1.47)
We easily find
| )= | )
=GP (| wa)(a | YD)/ (ua | GD | ua)). (A1.48)

Note that the solution (A1.48) is independent of the
constant ng=(4 | P | 4). We also define the Green’s
function for /p°FT,

(E—hpOPT)GpP =1, (A1.49)
We find,
GpP=GHD—GD | ug)((wa | GD | ua)) N ua | GD.
(A1.50)

In principle there is some difference between ACFT
(A1.27) and A°PT (A1.38). Phenomenological studies
may be said to provide information concerning A°FT
since the analog states are not separated from other
compound modes in any conventional optical model
analysis, We will neglect the very small difference
between these operators and assume that we have
sufficient information to parameterize A°PT and obtain
the solution of Eq. (A1.47).

For the work discussed here we have neglected direct
coupling and identified the functions w#4,(r) with
neutron bound state wave functions obtained from a
single particle potential, The Green’s function, Eq.
(A1.46), was obtained for the optical Hamiltonian and
the wave functions ¢ (7) of Eq. (A1.48) were con-
structed. With the neglect of direct coupling these wave
functions depend only on the energy and the quantum
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numbers / and 7. In this case one has

01 (1) =9, (7)

—f Gu(+)(f,")Mnu(f’)flzdf'f u,.z:'(f')'l/tj“)(f)f?df/f/ Ui ()G (7, )ty (r )22 dr dy’,  (A1.51)
0 0 0 Yo

where #,;;(7) is the bound neutron wave function.

Although the above discussion displays an explicit
and general form of the solution to the orthogonality
problem, it may be advantageous for computational
purposes to note the following method. After solving the
homogeneous equation (A1.47), we also solve the in-
homogeneous equation

(E—=ROPT)| fo)=— | u4).
Then the wave function | ¢,) is given by
l ‘Pc(+)>=>‘[‘ Yo H)— lfc>(<“A | $eP)/ Cua | fe)) ],
(A1.53)

where the constant M is determined by requiring that
| ¢4) have the usual asymptotic normalization.

(A1.52)

APPENDIX 2. NORMALIZATION CONDITIONS
FOR THE SHORT-RANGE CORRELATION
FUNCTION

In Eq. (5.36) we indicated that the short-range
correlation function satisfied the relation

[ dsge(s)[1—gP(s) ]=0.

In this section we present a short derivation of this
result.

Consider | 0) to represent a state of Z protons. Then
if a*(x) is a proton creation operator, we have, includ-
ing the short-range nuclear correlation function

Olaf(y)at(x)a(x)a(y)|0)
~[pP ()" (y) —p® (xy) p® (%, y) JL1+g¢(x—y) ]
(A2.2)

Integrating the left-hand side of Eq. (A2.2) over x and y
leads to the factor Z(Z—1). If the density matrix
pP(X,y) is well approximated through a Slater deter-
minant, we have p?=p so that the term independent of
g¢ on the right hand side leads to the same result,
Z(Z—1). Therefore we have

[T dx dy (o7 (x)p?(y) —p?(%,5) 07 (xy) ) g°(| x—y |) =
(A2.3)

Approximating the exchange term by the usual Pauli
factor we have

JJ dx dypr (x)p?(y)[1—g?(| x—y |) Jg°(| x—y |) =O0.
(A2.4)

(A2.1)

In the short-range approximation, we have

0= dx dyp?(x)p*(y) [1—¢"(| x—y D Jg¢(| x—y )
~ [ dxpr(x)p?(x) [ ds[1—g"(5) 1g€(s), (A2.5)
so that Eq. (A2.1) follows.
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