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Natural orbitals are a particularly e%cient choice of single-particle states for use in construction of electronic wave
functions. This review discusses the general properties of the natural orbitals. Natural orbitals are compared to Hartree-
Fock orbitals and relative merits are presented. Methods of determining and using natural orbitals in construction of
electronic wave functions are presented.
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I. INTRODUCTION

Most theories of the electronic structure of systems
with more than four electrons are based on the expan-
sion of the wave function in a series of determinants
(antisymmetrized products of one-particle functions).
In any such theory there are three crucial steps: (1)
selection of one-particle functions (called orbitals by
chemists), (2) selection of determinants, and (3) cal-
culation of expansion coefficients. Natural orbitals arise
from a particular method for carrying out the first of
these steps.

Natural spin orbitals were first defined by I owdin
(1955). Soon after that, Lowdin and Shull (1956)
showed that natural orbitals could be used to express a
two-electron wave function in a simple canonical form.
This form required the fewest determinants in the
expansion of the wave function. Shull and I-owdin
(1955, 1959) applied this theory to the ground state of
the helium atom. Shull (1959) converted most of the
extant hydrogen molecule (H2) ground-state wave
functions to natural orbital form. This early work has
inspired most of the interest in natural orbitals.

For several electron systems (3—100 electrons), the
simplicity introduced for the two-electron system by
use of natural orbitals does not appear. Only for certain
restricted classes of wave functions are the number of
determinants reduced. Nevertheless, there have been a
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steady stream of papers, beginning with that of
Hurley (1960),reporting the natural orbitals for several-
electron systems, Some of the earlier of these results
have been reviewed by Smith (1968),McWeeny (1960),
and Lowdin (1959).

The gross features of atomic and molecular structure
and spectroscopy can be described with sufhcient
accuracy by a Hartree —Fock single-determinant wave
function (or a simple linear combination of determinants
with coefFicients determined by symmetry). For such a
wave function, the natural orbitals can be chosen to
coincide with the Hartree —Fock self-consistent field

(SCF) occupied orbitals so that nothing is gained by the
introduction of natural orbitals. At the other extreme,
a free electron gas wave function described in a plane-
wave basis set will have the plane wave basis set as
natural orbitals, so that again nothing is gained from
natural orbitals.

The concept of natural orbitals is, however, extremely
important if one wants better than SCF accuracy for
atoms and molecules. The SCF error in the dissociation

energy of a molecule or in the energy of a line in the
spectrum of an atom is usually about 1—3 eV. Quite
frequently this error is of the same magnitude as the
energy change being considered so that an independent
particle (SCF) description makes no useful prediction.
Dipole moments of diatomic molecules tend to be
wrong by &0.3 D in the SCF approximation. For large
moments this is of no consequence, but for molecules

such as CO, this error exceeds the dipole moment.
Transition probabilities are also usually wrong by a
factor of two at the SCF level, and the dipole deriva-
tives entering the theory of vibrational spectroscopy
maybe an order of magnitude in error. The electron spin
resonance spectra of an atom such as boron or fluorine is

expected to show no Fermi contact interaction in SCF
theory so this whole eRect is due to electron correlation.
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For a system containing a large number of independent
nonoverlapping atoms such as a dilute gas of helium
atoms, the electronic wave function for a fixed con-
figuration of the nuclei has nearly zero overlap with the
SCF wave function Lthe overlap is (0.996)N, where N
is the number of helium atoms j.The concept of natural
orbitals is useful in this context in explaining why the
charge density is given so accurately by the SCF
charge density.

The unique advantage of natural orbitals is that they
reduce the number of determinants required for any
fixed accuracy in the wave function compared with
most other techniques for selecting orbitals )excepting
multiconfiguration self-consistent-field (MCSCF) and
psuedonatural orbital techniques]. The most important
of these determinants makes possible a simple inter-
pretation of correlation effects. This occurs because the
natural orbitals are localized in the region of space
where the correlation error is large.

The correlation error in the wave function is large
where the wave function is large. While this fact may be
regarded as trivially obvious, it seems to have been
overlooked by many people. In many-body perturba-
tion theory, theor'y of Van der Waals forces, as well as
in qualitative discussions of correlation e6ects, there is a
tradition of basing explanations on Rydberg and con-
tinuum orbitals which have their charge densities far
from the region of error in the wave function. Vse of
localized correlation orbitals rather than continuum
orbitals gives much more rapid convergence and greater
physical insight. Use of SCF virtual (unoccupied)
orbitals, while it-has the advantage of making many-
body perturbation theory possible, is really an in-
appropriate description of electron correlation in
ground-state wave functions of atoms and molecules.
For more than four electrons, wave functions built
from natural orbitals are of much higher accuracy than
.wave functions obtained by conventional methods.
This is precisely because the natural orbitals resemble
particle-in-a-box wave functions for a box the size of
the molecule (i.e., a box containing 99% of the charge
density) .

II. GENERAL PROPERTIES

Every particle may be described by a three-dimen-
sional position vector r, and a discrete spin variable g.
For convenience, the four-vector x will be used for
(r, $), and f dx will be used for +if dr. Then the first-
order reduced density matrix may be defined (in
Lowdin's normalization) as

D(x; x') =Nf@(x, x„~ ~ ~, XN)

X+*(x';x„~~, XN) dx2 ~ .dxiv. (1)
The motive for defining this quantity comes from

Hartree —Fock theory and from the analogy between the
equations for the average values of an operator in
quantum theory and in classical electricity. For a
closed-shell atom or molecule, the single determinant
built from orthonormal orbitals which give the lowest

where
FA =~A» ( J&&)

F;=bye —y;.
The virtual (uncoupied) orbitals, on the other hand,
nearly satisfy

where
F=h+g.

This is intuitively wrong since the virtual orbitals in
this definition are calculated in the field of E instead of
)"It —1 electrons. Modified virtual orbitals calculated
from F~ are frequently used as these show a Rydberg
series due to the net +1 charge of the potential used
111 Fg.

The expression p(xi, X2) can be shown to be equiv-
alent to Eq. (1) if a single determinant is substituted
for +.If one wishes to evaluate the average value of any
one-body operator

8= Q o(i),
i=1

N

(8)= Q f%' o(I)%' dxidx2' ' de

energy contains orbitals obeying the equation

F;=e;P,,
where the Fock operator F is known to be

F=h+oI X. —
The operator h. includes the kinetic energy and the one-
body nuclear attraction forces acting on the electron.
The operator g is defined by

y(ri) = fp(r2) ris ' dr2,
where

N

p(r ) = Z Z 4'(x )4'*(x )
2,=1

and X is the number of electrons.
Similarly X is defined by

X(xi)f(XI) = fp(x» X2)f(x2) dx»
where

N

p(xi, x2) = g p;(XI)p,*(X2).
i=1

By analogy to classical electricity, p(r) may be regarded
as the charge density in the molecule, and g is the total
electrostatic potential of this charge density. The
exchange operator X is nonclassical. Fortunately X is
small except for one term when acting on any g;.
Within qualitative accuracy, we have

(i&&),
( j&x),

where g; is the electrostatic potential due to the charge
density g» ~ p, ~'. Hence the occupied p, almost satisfy
the intuitively reasonable Hartree conditions
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can be simplified by the change of variables x&~xi to
N

(8)= g f@*(i,2, 3, ~ ~, 1, ~, X)o(1)

then we find

D(x; x') = P g;(x) g *(x') (+ I a& a; I
4 ), (4)

or
D(x; x') = g d ~g (x) gA*(x') . (5)

If g is any arbitrary orbital, and ut is the associated
creation operator, the expected number of particles in
orbital g (the' "occupation number" of g) is just

iV, = (O'
I
a a

I +)= fg*(x)D(x; x') g(x') dxdx'. (6)

The sum of X, over any complete orthonormal set is the
trace of D (which by definition is ill') .

Now suppose D is regarded as the kernel of an
integral operator Q,

Sf= fD (x; x')f(x') dx'. (&)

From this viewpoint X) is easily seen to be Hermitian
and nonnegative. The rank r of X), defined as the
number of nonzero eigenvalues, may be 6nite or in-
finite. The eigenfunctions x; of X), defined by

X)y;=) iy;,

are called the natural spin orbitals (NSO's) of %.
. Clearly Xi is just the occupation number of p;, and
hence

0&Xi& t. (9)

)(%($) 21 3) '
y 11 ' '

1 7) dxi ' 'de.
Since

+(i, 2 3 ~ ~ 1 ~ ~ ~ X) = —+(1 2 ~ ~, i, ~ ~, S),
we have

(6)=Xf[o(1)4(1, ~ ~, N) ]P(1, ~ ~ ., 7)dxi ~ der.
Now all integrations dr~ ~ -dx~ can be carried out once
and for all (independent of o) if one keeps track of
which x1 comes from +, and which from +*. This is
done in Eq. (1).Using this equation, we have

(6)= fo (x)D(x; x') I, , dx.

Note that if o is a spin-free multiplicative operator o (r),
then we 6nd

(6)=fo(r)p(r) dr,

where the charge density is just Q~D(x, x).
In terms of the field annihilation operator 4 (x), and

the creation operator Ct(x'), Eq. (1) is simply

D(x; x') = (4
I

C t(x') 4 (x) I
4). (2)

If C is expanded in an orthonormal set of orbitals g, (x)
with associated annhilation operators aj as

@'(x)= Z g'(x)a' (3)

The x; de6ned in this way have certain optimum
properties which give rise to their utility. Coleman
(1963) and Kobe (1969) have recently reviewed many
of these properties. If 4 is constructed from a 6nite
number E. of basis orbitals, then r&R, and each y; is a
linear combination of the basis orbitals. Conversely, if
r is finite, + may be rewritten exactly using only the x;
with nonzero );.

The NSO's offer the most rapidly convergent series
approximation to D. That is to say, among all expres-
sions of the form

O'= P P $;;f,(x)k;(x')

for fixed K, I., the series
inf(K, L)

D'= Z l;x'(x)x,*(x') (10)

one has
«)= Z&'(x', x').

This diagonal form for 8 prevails for all 8, whereas use
of the eigenfunctions of 6 would make only that one 6
diagonal. In particular it should be noted that the
expectation value of the Fock operator is diagonal in
either Hartree —Fock or natural orbitals.

The natural orbitals also give the most rapidly
convergent approximation to %. That is to say, among
all expressions of the form

K L
+'= Q Q a;;f, (xi)F;(xs ~ xsr)

i=1 j=1

for 6xed E, L, the series
inf(K, L)

g x, (x,) fx,*(x,)e(x," x~) dx, (12)

minimizes the least-squares error

f I
+—+' I' d»" d». (13)

Also, if + is expanded in a set of determinants as

+= g Csc+sr, (14)

minimizes the least-squares error,

f I
D D' I'dxdx-'.

As a consequence, for natural orbitals, the total
occupation of the 6rst K orbitals is a maximum, and the
net occupation for all orbitals beyond the first E is a
minimum. If a pseudoFermi surface is de6ned by E=X,
this set of orbitals gives the lowest net number of
particles above the Fermi surface.

The natural orbitals simplify the formula for the
expectation value of any one-electron operator
Instead of

(8)= g d,A(g, , os) = fo(x) D(x; «') I„=„dx,

In the following discussion, it will be assumed that the
I, are numbered in order of decreasing occupation
(X;)X;+i) .

where
+«= (& ) 'ls D«{S', ",g~.l,

E= {ki(ks( ~ ~ ~ (k„I, (15)
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then the occupation number of g~ is

N, = g [C ['. (16)
{X{keKJ

Thus, becuase the x; have maximum occupation
numbers, each successive y; makes a maximum con-
tribution to the wave function in the sense that the
sum of the squares of all coefficients involving that y;
is a maximum. This does not mean that the least-squares
error using only p(r of the NSO s is a minimum since

x; does not reach its maximum contribution X; until all
determinants (and hence all other orbitals) are in-
cluded.

None of these ways in which the NSO's form an
optimum set of orbitals deals directly with the crucial
ways in which a set of orbitals should be optimum. . A
good set of orbitals should (a) be easy to construct,
(b) be complete enough to give the desired accuracy
for physical properties of interest, (c) facilitate selection
of the important determinants, (d) facilitate calcula-
tion of the expansion of the wave function in those
determinants, and (e) facilitate physical interpretation
of the results. In the following discussion an attempt will
be made to show how the natural orbitals succeed in
some of these respects and fail in others.

A. Perturbation Comparison of SCF and NSO

The effect of electron correlation on the density
matrix has been discussed extensively (see, for example,
McWeeney, 1960; HirschfeMer, Brown, and Epstein,
1964;Davidson, 1968;March, Young, and Sampanthar,
1967) . The effect on the resulting NSO's is not so widely
recognized (Hirschfelder, Brown, and Epstein, 1964;
Shull and Lowdin, 1955) . If e is some relevant measure
of the size of the perturbation effect where 0'g~F
(Hartree —Fock self-consistent field wave function) is
used as 0'0, then the wave function may be expressed in
a perturbation expansion as

@=@soF+$@&&y$ @& i+ ~ ~ ~ (17)

By Brillouin's theorem, 4&" consists only of double
excitations from% gyp, while +&" includes all excitations
up through quadrupole.

The density matrix arising from this expansion to
second order is

D — DsoF+ED
where

D~'&= (4&'&
[

CtC
[ +&'&)+(+scF

[
CtC

[ + oi)

+(+Hi'i
[

C' C'
[ +scF),

and 4', ~') represents the singly excited part of 0 (".The
matrix elements d,'j of D are given to second order by

dg=1+e (%oi
[ u, ta; [4'i'i) z, j(N (19a)

=~'(4'" [a,'a, [+"i) ij )N (19b)

=e'(+scF
[

~&"a, [ C'. (2) ) j&N, i)N. (19c)

The eigenvectors of D give the coefficients for the

expansion of the NSO's in the SCF orbital basis. Since
D to zeroth order is degenerate (diagonal with N
diagonal elements equal to unity and the rest zero),
degenerate perturbation theory must be used to find
its eigenvectors. Hence the correct zeroth order NSO's
are not the SCF orbitals. The zeroth-order transforma-
tion is determined entirely by the the 6rst-order cor-
relation correction to the wave function. Such an
effect is not surprising since the SCF wave function is
invariant under a unitary transformation of the
occupied or virtual orbitals (as long as the two sets are
not mixed) . It should be noted, however, that the Fock
operator is nondiagonal in the NSO basis, and hence
perturbation theories which assume that single deter-
minants almost represent true excited states may fail
to work in the natural orbital basis.

The first X zeroth order NSO's have occupation
numbers within e2 of unity and are obtained by a
unitary transformation of the occupied SCF orbitals.
The remaining zeroth order NSO's have occupation
numbers of magnitude e' and are a transformation of
the virtual SCF orbitals. In practice it is found that,
for atoms and small molecules, this transformation
converts the continuum virtual orbitals into a discrete
set of quite localized natural orbitals. There is no
resemblance at all between any one of the virtual
orbitals and the NSO's. In addition to this large
zeroth-order effect, there will be a further change of the
same type in first order due to the higher-order terms in
the wave function. Thus, approximate natural orbitals
for the exact ground state of a system are dificult to
compute because they are quite sensitive to correlation
effects.

The coupling of occupied and virtual orbitals occurs
only in second order. The determinant using the first X
natural spin orbitals is called the first natural con-
figuration, O'FN&. This determinant differs only in
second order from +sgF. Further, this second-order
difference is exactly +,& ' so that singly excited (particle—
hole) corrections to @i;No first appear in third order.

Tr y = I dry(r, r) = 1. (22)

Bingel (1960) and Kutzelnigg (1963a,, b, c) have also
shown that p and y are independent of M within a set of
states +8,&& connected by S~.

3. Spin Dependence

The spin dependence of the NSO's is relatively simple
if + is an eigenfunction of S and S„with eigenvalues
S(5+1) and M. In this case D may be written as

D= 1/2[~(&) ~*(l')+P(f)&*(t')jp(r, r')

+~[-(r)-*(t-')—~(i-)~*(t')jv(, '), (20)

where a and P are the usual spin eigenfunctions for. spin
one-half, p is the charge density matrix, and p is the
spin density matrix [See McWeeny (1960) for a dis-
cussion of this term). It is easily shown that

Tr p= f drp(r, r) =N=N +Np, (21)
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Jp(r, r') g;(r') dr'=ts;g;(r). (23)

Clearly the g; give the best approximation to p since

The natural spin orbitals of %g,~ can be chosen to be
eigenfunctions of S,. The spatial dependence of the
NSO's is then computed from the integral kernel
p+2My for ee spin, and p —2M& for P spin. Only if
M =0, will the space parts of the n NSO's coincide with
the space part of the P NSO's. For many purposes this
is an inconvenience. A still greater inconvenience is that
the NSO's will be different for each value of M so that
the simple relation between +~,~ and +g,~+~ will be
completely obscured.

For these reasons, most workers tend to use natural
orbitals (NO's) rather than NSO's for open shell
systems. Natural orbitals may be defined as n or P times
the eigenfunctions g;(r) of p,

For the free electron gas, each plane wave state
corresponds to a different irreducible representation.
Hence for the free electron gas, the plane wave states
are natural orbitals. This important result shows that
natural orbitals have no particular advantage over SCF
orbitals for infinite uniform systems.

III. TWO-ELECTRON WAVE FUNCTIONS

Wave functions for two-electron systems are an
important special case in the theory of natural orbitals
because the wave function assumes a simpli6ed form.
If 0 is a two-electron wave function, then the minimum
of

K,L

J dzidzs i%' —2 '"p ts;;f, (XI)t,*(X&)i'
s I a7

is achieved if (Carlson and Keller, 1961)

p= g p,g, (r)g,*(r').

C. Symmetry Proyerties and

V J+*(XI, X&)f;(Xi) dXI ——Its,*t&(X&),

%2'�(XI,X&) t, (X&) dXS ——ts, f, (XI),

(25a)

(25b)

There have been many papers on the symmetry
properties of density matrices and natural orbitals
(Bingel, 1960, 1962, 1970; Bingel and Kutzelnigg, 1968,
1970; McWeeny and Kutzelnigg, 1968). The basic
result is that, if 0' beongs to a nondegenerate irreducible
representation of a point group, then the NO's and the
NSO's can be chosen to be symmetry adapted. That is,
they can be chosen to belong to definite irreducible
representations. All partner functions for a natural
orbital in a degenerate representation will also be
natural orbitals with equal occupation numbers.

If 0' is degenerate due to symmetry, then the NO's
generally cannot be symmetry adapted. Either they will
individually be of mixed symmetry, or else the partner
functions of a natural orbital in a degenerate representa-
tion will not also be natural orbitals. For example, in
the 1s2p'P state of helium with tttt = 1, and 2p I and 2pe
orbitals related to the 2pi natural orbital through 1.
are not themselves natural orbitals.

Most practical calculations are done in the spirit of
the Hartree atomic calculations with forced equivalence
of partner orbitals in degenerate representations. This is
partly for computational advantage as use of different
radial parts for 2pi, 2po, and 2p I would complicate
construction of L' eigenfunctions. As with spin equiv-
alence, there also is a conceptual advantage to using the
same set of orbitals for each%' in a degenerate family of
states.

The appropriate symmetry-constrained natural or-
bitals (SCNO's) are generated by diagonalizing a
symmetrized density matrix. This matrix may be
regarded, equivalently, as the totally symmetric part of
D for any one of the degenerate 4 or as the ensemble
average of D over all of the degenerate %. Although it is
often not explicitly mentioned, many open shell cal-
culations actually use SCNO's and refer to them as
NO's or NSO's (Bender and Davidson, 1969a) .

p;;=0 (i&i). (26)

JD(x» xi')f;(xi') dxi' ——
i tt; i'f,(xi),

in verification of Eq. (12). Similarly, we find

(28)

JD(x» xi') t;(xi') dxi' ——
i ts, i't, (xi') (29)

so that both I f, I and It, } are sets of NSO's. In the
usual event that some of the

i
ts, i' are degenerate, the

NSO's are somewhat arbitrary. Any choice of the p;
may be used for the f, provided the corresponding t;
are computed from (25a). Generally the t, will cor-
respond to a different choice for the natural orbitals
and will not coincide with the f,.

For example, for the SCF approximation to the ground
state of helium,

4'=1s(1)1s(2) (nips —pins)/V2,

the x, are best chosen to be 1sn and 1sP. But then we
have t.=fi ——xi and ti ——

f&
——x&. This choice is not unique,

however, since ts= ixi is e—qually acceptable (the
phases of f; and t, are arbitrary) as is ti=fi ——xi ——

1s(a.+if)/V2 and ts fs xs 1s(n iP)/——W2.——In——most—
cases there is a convenient choice of the f; which gives
maximum conceptual simplicity.

A. Construction of Natural Orbitals

There are three main methods of obtaining natural
orbitals for two-electron systems. The first of these is to
construct a wave function as a finite linear combination

In this case, 0' is expressable as

+= P ts; f, (xi) t,*(xs) .
It is this diagonalization of 0' which makes natural
orbitals particularly appropriate for two-electron
systems.

Substitution of Eq. (25a) into Eq. (25b) yields
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of determinants built from an-arbitrary basis set and
then to solve Eqs. (28) and (25a) for the exact natural
orbitals, f;=x;, and cofactors t, .

For wave functions containing the interparticle
coordinate r» explicitly, the rank is infinite and this
simple approach will not work (Nazaroff, 1968) .
Instead, the natural orbitals may be expanded in an
arbitrary finite basis set. If this expansion is sub-
stituted into the expression for the error in approxi-
mating 0' and the coefficients are varied, the result is a
finite matrix approximation to Eq. (25),

mality constraints gives

'Yk G kg k= Z "Ikg;,

where
Gk=h+ Qy, yk 'X;, (39)

gkgk = &kgk, (41)

X,gk
——f dr2g, *(2)g, (1)rkk-'gk(2),

and the );, are Lagrangian multipliers. If the X,, are
eliminated, these equations may be written as

l

~'(x) = (~, ~, ~ ~ ~ ), (30) where

f'(x) = Zf A (x) =f''0 (x), (31)

t;(x) = P t,,p;(x) =t, p(x), (32)

S= f44 dr, (33)

+= fp*(xI)@(xI,x2)p (xk) dx1dx2, (34)

%24 tf, = II,;*St;,

%2% t, = Ik;Sf;.

(35a)

(35b)

then we have

H=h(1)+h(2)+rkk ', (37)

where

and

Z= &e [
a

[ e)= g ~,~,L2h, ,r,,+Z;,],

h, ,=&g,
~

h
( gI&,

E,;=fg,*(1)g;(1)rkk 'g,*(2)g,(2) dr1dr2.

Variation of E with respect to g; subject to orthonor-

The first of these methods gives exact natural orbitals
for what are usually relatively crude wavefunctions.
The second method gives approximate natural orbitals
for much better wave functions. Both methods fail to
give any insight into the basic physics involved.

A third approach is to find a differential equation for
the natural orbitals which does not explicitly involve
the wave function. Lowdin (1955),Kutzelnigg (1963a),
Reid and Ohrn (1963), and Nazaroff (1968) discuss
coupled integrodifferential equations for the NO's.
Linderberg (1964) and Reinhardt and Doll (1969)
have discussed the direct calculation of natural orbitals
by many-body perturbation theory. Of these ap-
proaches, only Kutzelnigg has pursued his procedure to
obtain results of meaningful accuracy.

An approach similar to that used by Kutzelnigg
probably makes the basic physics clearest. For a closed
shell ground state of a two-electron system, 4 can be
written as

'P = Q y;g;(rI) g;*(r2) (IYIt4 —pIII2) /v2, (36)

where the y, are real and
~
y,

~

)
~
y;+I ~. For atomic

ions, p& is nearly unity while the remaining p, are small
and negative.

If the Hamiltonian is written as

gk ~kI h+VIVk 'XII~k

for k= i.
(47)

(48)

Hence to the lowest order in p,/&I, g1 is just the SCF
orbital. Variation of the y; and expansion to lowest order
in y, /yI gives,

—EI,(e,—eI) ' for i)1 (49)

so y; is negative. Hence the gk (h) 1) are bound not
only by the nuclear potential in h, but also by the very
negative exchange potential

gk h (kk 61)+Ik X1~ (50)

As k increases so does eJ,. Hence the potential felt
by the higher natural orbitals is much more attractive
than that for the lower ones. As a consequence, the
NO's remain strongly localized in the region of space
occupied by the SCF orbital. Since the exchange. term
in gk dominates for large h, the higher natural orbitals
have no resemblance to the eigenfunctions of h or of gI.
Because the gk are so different from one another, the
effect of PI, is also large and the eigenfunctions of GI, are
very different from those of gk.

An interesting mathematical question regarding
completeness can . be raised at this point. There
is no particular physical reason to believe that the
natural orbitals for the ground state of helium form a
complete set of functions. The form of the equations
for the natural orbitals does not obviously lead to a
complete set since each orbital is taken from a different

gk = ~k I Gk —Qk I &k, (42)

~k=1—Z (43)
i(k

Qk=Vk 'Z V''I
I g'&&g' I

G'+G' I g')&g' II (44)
s&k

&= g Vk'(~k+hkk), (45)

"=&g IB lg &=&g IG lg & (46)

Thus each g; is the eigenfunction of a different one-
body operator gk. The operator Pk preserves orthog-
onality of gk to all g,"(i(h), and the small correction Qk
modifies the effective potential to allow for the relaxa-
tion in gk caused by the g; (i)h) .

For &I near unity, gk can be conceptually approxi-
mated by
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equation. The general appearance of the known ap-
proximate natural orbitals does not indicate that they
would be complete since they remain quite localized
instead of spreading over all of space as k increases.

The difference between g~ and gg~F has been dis-
cussed by several authors (Nazaroff and Hirschfelder,
1963). From Eq. (42), to the first order in p,/yi, we
have

Ih+xi+ Q y;x;}gi——eigi. (51)
x+1

Since y;X; is most negative near the nucleus, g~ would
be expected to be contracted relative to gs~F. This
effect is small, however, as g~ and gs~F have an overlap
larger than 0.9999 for helium.

Figure 1 illustrates these results for helium. The 1s
SCF orbital is indistinguishable on this scale from the
is NSO. The 2s orbital from the is2s'5 Rydberg state
and the 2p orbital from the 2s2p'P state are shown for
comparison with the first s- and p-type correlation
XSO's. This illustrates the localization of the NSO'. s
in the regions where is' is largest. Clearly even the
lowest Rydberg orbitals have a small overlap with this
region.

c4

10 2sNSO

0.2-

1pNSO

~1sNSO

2sRyd

B.Results for Helium

There have been numerous natural orbital calcula-
tions of the ground state of the helium isoelectronic
series. For this state, 4' may be written as

+= Q y, t Q g, t ~(1)g; ( „(2)(~ttSo —Pieeo) /K2, (52)
-i, Z m

0
0 4

r (Bohr radii)

where
FIG. 1. Radial dependence of the natural orbitals and Rydberg

orbitals of helium.

TAaz, E I. CoefFicients in the natural expansion of helium.

Davidson
(1963)

Ahlrichs,

Kutzelnigg,
and

Bingel
(1966a)

Shull
and

I,owdin

(1959)

Banyard
and

Baker
(1969)

1$

ip
2$
18
2p
3$

1f
2d

3p
4$

0.99599
—0.03563
—0.06148
—0.00566
—0.00638
—0.00786
—0.00169
—0.00178
—0.00180
—0.00197

0.99622
—0.03467
—0.06003
—0.00545
—0.00552
—0.00681
—0.00161
—0.00148
—0.00134
—0.00144

0.99595
—0.03603
—0.06163
—0.00597
—0.00652
—0.00747
—0.00133
—0.00130
—0.00164
—0.00216

0.99598
—0.03574
—0.06163
—0.00566
—0.00643
—0.00790
—0.00169
—0.00174
—0.00189
—0.00192

Table I gives the values of some of the y; ~ from
approximate calculations. The results of Davidson
(1963) are based on the second method mentioned
above and are in good agreement with the results
Banyard and Baker (1969) obtained from the first
method. The early results of Shull and Lowdin (1955,
1959) are based on the first method applied to a much

less complete wave function. The results of Kutzelnigg
(1963b), Ahlrichs, Kutzelnigg, and Bingel (1966a), and
Cressy, Miller, and Ruedenberg (1969) are surprisingly
quite diferent even though their energy is close to the
correct answer. This difference seems to arise because
they applied the third method but with the approxi-
mations of Eqs. (47)—(50), rather than the exact
Eqs. (41)—(45) .

For other ions (see Brown and Nazaroff, 1967) with
nuclear charge Z, the coe%cients y, ,~, except for the
first one, are nearly proportional to Z '. Wang (1970)
has reported the results of expanding the gi and y, in
powers of Z '. These results compare favorably with the
calculations of Ahlrichs, Kutzelnigg, and Bingel (1966a)
for Z= i-8.

The correlation effects introduced by the various
g; & in Eq. (52) may be visualized by considering their
e6ect on the two-particle distribution function. To
first order in p,/&1, the spatial distribution is just

P(ri, r2) = gi, o'(r1) gi,o'(ro)f,
where the correlation factor f is given by

f=1—2(2i+1) g ~
v, , t ~(g;tlglo) (g ,l/gl, o). ,

&(Pt (cos811). (55)



458 REvIEws 07 MoDERN PHYsIcs JULY 1972

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

1

FIG. 2. Contribution of g2, 0 {r) to the in —out correlation. Plot
shows contours of constant —2

~ y ~ (g~, o/gi, o)~&(gs, o/gi, o)~s

large coefFicient of 1s' into falsely assuming that
E(rt, rs) is given accurately by this simple wave
function.

Table II shows the convergence properties for various
operators of interest. It is frequently argued on the
basis of Eq. (18) that the SCF values for one-electron
operators should be accurate. Data such as that shown
in Table II for (r ') are used to substantiate this claim.
Actually, however, s' is about 1% for helium, so that
1% corrections to &8) would be expected. The fact that
for 8 (r) the corrections are generally less than this is a
reflection of the fact that the density from the
higher natural orbitals is similar to that for the first

(&g;, i I
t)

I g' t) &gt,o I
6

I gis)), and Eq. (11) has no
interference (nondiagonal) terms. In momentum space
the situation is quite different since localization of
g, ~ in Cartesian space leads to large changes in kinetic
energy. Thus the one-electron property, kinetic energy,
shows the expected convergence properties and (r ')
must be regarded as anomalously good.

TABLE II. Atomic properties of helium from truncated
expansions. '

Last term
added (b(r~s) ) (rn ')

SCF 1.02578 1.68729 1.43084
is 0.19158 1.02640 1.68987 1.43572
ip 0.18464 0.98819 1.68787 1.44066
Zs 0.15802 0.95787 1.68842 1.44918
id 0, 15778 0.95449 1.68832 1.44978
2p 0.15595 0.95127 1.68830 1.45051
3s 0.15205 0.94972 1.68834 1.45097
exact 0.10636 0.94579 1.68831 1.45186

—2.86168
—2.86165
—2.88200
—2.89743
—2.89922
—2.90089
—2.90169
—2.90372

Davidson {1963).

For /=0, the dominant s-type correlation has a radial
node near the r value for which r'gt, ss(r) is a maximum.
If ri and r, are both inside (or both outside) the node,
this term makes a negative contribution to f, while if the
electrons are on opposite sides of the nodal surface, f
is increased. For this reason, this term is referred to as
in—out or radial correlation. For /=1, r'g~, ~' is very
similar to r'gt, ss. Hence f is increased if His is greater than
90, and decreased if 8~~ is less than 90', For this reason,
this term is referred to as angular correlation. Beyond
these first two terms the convergence of 4 (and E) is
slower with many terms required to represent the
detailed shape of the Coulomb hole.

Figure 2 illustrates the effect of g2, 0 on the in—out
correlation. This large (10%—20%) correction to f
arises from the seemingly small coefficient (—0.06148)
in Table I (0.4% of the wave function) because the
correction is linear in the coefficients y, . The ratio
gs, o/gt, o lies in the range &2 for values of r for which

g&,0 is large. Thus one should not be deceived by the

TABLE III. Convergence of molecular properties of H2.

Last term
added (~(r~s) )

SCF
10.g
10'tg

im„

20g

1xg
30'g

20'tg

ia,
im.„
exact

0.0432
0.0440
0.0357
0.0314
0.0273
0.0265
0.0260
0.0252
0.0247
0.0239
0.0234
0.0170

0.6584
0.6627
0.6295
0.6094
0.5957
0.5943
0.5933
0.5924
0.5915
0.5904
0.5898
0.5874

—1.1336
—1.1335
—1.1519
—1.1628
—1.1699
—1.1707
—1.1712
—1.1717
—1.1722
—1.1727
—1.1730
—1.1744

Chemists have also investigated the natural orbitals
for several two-electron molecules. Numerous papers
have been written on the ground (Eliason and Hirsch-
felder, 1959; Hirschfelder and Lowdin, 1959, 1965;
Shull, 1959; Davidson and Jones, 1962a, b; Hagstrom
and Shull, 1963; Ahlrichs, Kutzelnigg, and Bingel,
1966b; Das and%ahl, 1966;Rothenberg and Davidson,
1967; Konowalow, Barker, and Mandel, 1968) and
excited states (Davidson, 1961; Rothenberg and
Davidson, 1966, 1967) of H~t, and the ground states of
Hess+ (Shull and Prosser, 1964), HeH+ (Anex and Shull,
1964), and Hs+ (Shull, 1964; Kutzelnigg, Ahlrichs,
Labib —Iskander, and Bingel, 1967; Banyard and Tait,
1968; Christofferson and Shull, 1968) . The results from
these papers are qualitatively the same as for helium
with the exception that p,jest, is not always negative for
excited states or for large nuclear separations. This is
not unexpected since, in these cases, the zeroth-order
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wave function cannot be represented in the form (36)
with a single large coeKcient, and hence approximation
(49) is not valid.

While one could argue that the correlation error in
helium is only 5%%uo of the ionization energy, and hence
doesn't rnatter, the corresponding correlation error in
H2 is responsible for 24%%uo of the binding energy. For
larger molecules the change in correlation energy upon
binding often exceeds the binding energy, so that a
description of this energy becomes essential to even a
qualitative understanding of the origin of chemical
binding.

Table III illustrates the convergence of a few proper-
ties of H2 with NSO expansion length. Here again the
correlation factor is approximately given by

f 1—2 g ) y; )Pxg(1)/xl(1) ggx;(2) /XI(2) ].

Since 10„has a nodal plane perpendicular to the
molecular axis, o„/o, tends to increase the probability
of 6nding electrons at opposite ends of the molecule, and
decrease the probability of finding them at the same end
(left—right correlation). The 1sr„orbital has a mirror
plane containing the molecular axis so that it keeps
electrons on opposite sides of the bond axis (angular
correlation). The 2o.e orbital has an elliptical node and
introduces in—out correlation. Clearly the 20., eGect may
be regarded as a distortion of the 2s eGect in helium,
while o.„and sr arise from the 1p orbital of helium.

Rothenberg and Davidson (1966) have published
extensive Tables of the natural orbital expansions of the
excited states of H2. They have also (1967) examined the
effect of correlation on the transition moments of H2.
For the X IZo+—+1s2p ID transition, electron correla-
tion causes a 10%—20% increase in, the oscillator
strength. This was caused mainly by the ix„' term in the
ground-state wave function which interacts strongly
with the leading 1oe1s.„term of the Ill wave function.

Hirschfelder and Lowdin (1959, 1965) have examined
the problem of H2 at large internuclear separations. The
traditional theory of Van der Waals interaction treats
electron correlation at large R by an expansion in excited
states of the atom to derive the R ' coefFicient. Once
again, this is an inappropriate expansion since the error
in 0' is localized in the region where + is large. Hirsch-
felder and Iowdin have shown that a term of the form

—& 'Lp.*(1)pe*(2)+p"(1)per(2)+ p-(1)pb. (2)

+pe (1)p„(2)+pe„(1)p,„(2)+pe,(1)p„(2)j,
with p orbitals the same size as the 1s orbitals, will
reproduce the coefficients of R ' and R ' to better than

0

the natural orbital results for two-electron systems. For
more than two electrons there is no simpli6cation in the
form of the wave function when natural orbitals are
used. , so the only advantage is that the expansion in
determinants is rapidly convergent.

There are several ways of using natural orbitals in
wave function calculations. One may calculate natural
orbitals from existing wave functions as an aid in
interpretation and in spotting deficiencies in the basis
set. This may also suggest the form which should be
assumed for configurations in a multiconfiguration SCF
calculation. Pseudonatural orbitals from an inde-
pendent-electron-pair calculation may be used as a
basis for a full variational calculation. Natural orbitals
from one wave function may be used as a basis set to
generate a better wave function in an iterative manner.

All of these methods are based on variational wave
functions with a finite expansion in determinants. No
one, as yet, has used natural orbitals as the basis for a
perturbation calculation beyond second order. In many
cases, perturbation theory based on natural orbital
determinants would fail to converge because the off-
diagonal matrix elements III,g of the Hamiltonian H
between excited con6gurations are often similar in
magnitude to the diagonal elements H~, z

—Eo. This
occurs because, although +FN~ is near the true ground-
state wave function, the "excited" configurations are
not at all similar to the true excited states. As a con-
sequence, the series for P/(H Ee) which —occurs in
most versions of perturbation theory will not converge
if the off-diagonal elements are treated as a perturba-
tion Lexpansion of P/(H —Eo) requires that Hrs &(
(&II Eo) (IIz—s Eo) j. The seco—nd-order energy for
small molecules (Siu and Davidson, 1970) is often in
error by as much as 50%.

Analysis of existing wave functions has been limited
since very few good wave functions have been generated
without incorporating natural orbitals from the begin-
ning. Hurley (1960) reported the natural orbitals for
carbon monoxide. Barnett, Linderberg, and Shull (1965)
analyzed several beryllium atom wave functions and a
LiH wave function. D. Smith and Fogel (1965) reported
an analysis for beryllium. V. Smith (1967) analyzed
Boys' function for carbon. V. Smith and Larsson (1968)
computed natural orbitals for a lithium atom wave
function with explicit rI, dependence. Macias (1968)
has studied a wave function for Hs . Olympia (1970)
reported natural orbitals for the first excited states of
beryllium. Olympia and Fung (1970) published some
results for CH3, NH3, and OH3+.

The work of Allen and Shull (1962) supported the
idea of Hurley, Lennard-Jones, and Pople (1953) that
the beryllium atom wave function can be approximated

IV. SEVERAL-ELECTRON WAVE FUNCTIONS

There are now numerous calculations for light atoms
and molecules. Most of the calculations which have gone
beyond the SCF limit have been strongly inQuenced by

+=&gI(1, 2) gs(3, 4),

where g& and g2 are strongly orthogonal geminals,

fgI*(1, 2) gs(1, 3) drI =0,

(56)

(57)
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as localized as possible, are still strongly interpenetrat-
ing so that interpair correlations are comparable to
intrapair correlations.

Kutzelnigg (1964) and Ahlrichs and Kutzelnigg
(1968a) have developed an algorithm for finding
approximate geminals based on their previous method
of.direct calculation of natural orbitals for two-electron
functions. Besides Be and LiH, their method has been
applied (Ahlrichs and Kutzelnigg, 1968b; Ahlrichs,
1970; Jungen and Ahlrichs, 1970) to BeH~, BH3, CH4,
BeH, BH2+, BH, BeH4, and B3H6. For most of these
molecules, independent-electron-pair [Nesbet —Bethe—
Goldstone (Nesbet, 1968)j calculations were made for
each of the IV(X—1)(2 pairs by using equations similar
to (47—50) to find the best g;; in natural orbital form for
the wave function.

(59)

Fxo. 3. The 2o natural orbital of HF {nearly 2sg).

and 8 is the antisymmetric projection operator. The
error in such an approximation seems to be about 10%
of the correlation energy.

Since g& and g2 are two-electron functions, they have
natural expansions of the form (36). Arai (1960) has
proven that the natural orbitals of g& are disjoint from
(orthogonal to) the natural orbitals of g~ if gi and g2 are
strongly orthogonal. The natural orbitals of + are the
union of these two disjoint sets. This very important
result also holds for the general form

+=«I(1, 2)gm(3, 4) g~t2(AT —1, Ã) (58)

known as an antisymmetrized product of strongly
orthogonal geminals (APS G) .

Because of its simplicity, ease of interpretation, and
accuracy for beryllium, a great deal of effort has been
experided in finding APSO wavefunctions for other
systems. Ebbing and Henderson (1965) performed a
direct calculation of the APS 6 function for LiH.
Miller and Ruedenberg (1965, 1968) calculated the
APSG function for Be. Both of these calculations
proceeded by solving a complicated coupled set of equa-
tions for the natural orbital expansions of the g;. The
relatively high accuracy achieved in these two examples
has inspired calculations for systems with more elec-
trons. Hindsight has shown, however, that the good
results for LiH and Be resulted because the electrons
were localized in two nonpenetrating pairs, and not
because Eq. (58) is a particularly appropriate form for
the wave function. For larger rnolecules such as NH,
Ruedenberg and co-workers (Mehler et aL, 1970;
Silver et a/, , 1970a, b have found that the resulting
error in the correlation energy is nearly 80%. This
arises because this method accounts for only X/2 pairs
of electron correlations out of the total of X(X—1)j2.
For most molecules, the SCF orbitals, even when chosen

-3.0—
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FIG. 4. The 30 natural orbital of HF {bonding orbital).

Again the conclusion is drawn that, in aggregate,
interpair eGects are larger than intrapair effects for
most rnolecules.

In a somewhat similar approach, Edmiston and
Krauss (1966, 1968) and Sanders and Krauss (1968)
have found natural orbitals from factoring independent-
electron-pair wave functions of the form (59) obtained
variationally [a la Nesbet (1968)j. By repeating this
for each intrapair eGect and then merging and re-
orthogonalizing the set of leading natural orbitals, a
set of pseudonatural orbitals was developed which was
suitable as a basis for an ordinary variational calcula-
tion.

Sanders and Krauss used this procedure to study
LiH and BeH valence shell correlation. Edmiston and
Krauss applied this method to He2+ and H3. Their
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FIG. 5. The 40 antibonding natural orbital of HF.

results were within 10% of the experimental correla-
tion error. Further the results were limited more by the
choice of basis set than by the method of choosing the
pseudonatural orbitals. This is very encouraging since
determination of accurate NO's is quite costly. It would
appear that any reasonably complete set of localized
correlation orbitals will give good convergence.

Bender and Davidson -(1966) have developed an
iterative method for calculation of natural orbitals. In
this scheme an initial wave function is factored into
natural orbitals. These are then used as a basis set to
construct a better wave function which is again factored
into natural orbitals. Improvement in the energy (for a
fixed number of determinants) is usually dramatic for a
few iterations, although convergence usually does not
occur. This procedure has been applied by them
(Bender and Davidson 1967a, b, 1968, a, b, 1969b;
Matsumoto, Bender, and Davidson, 1967) to Be2,
HeH, LiH, HF, BeH, BH, CH, NH, OH, and He2,' by
Chan and Davidson (1968, 1970) to MgH and BeH;
and by Siu and Davidson (1970) to CO. It has also been
adapted to atomic calculations for carbon (A. Bunge,
1970) and beryllium (C. F. Bunge, 1968). Calculations
of this type are also being carried out by Schaefer
(1971).

The iterative natural orbital method is presently the
most flexible and most accurate method for construc-
tion of accurate molecular wave functions. Its success
depends in part on the ability to make good initial
guesses for the natural orbitals. The initial guess
to the natural orbitals can be made by the techniques
discussed previously and used without iteration by
Kutzelnigg and Krauss. Alternatively, second-order
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FIG. 6. The 17l- natural orbital of HF.

perturbation theory can be used with Roothaan-
Hartree —Fock virtual orbitals to obtain first-order wave
functions and their approximate natural orbitals. In
most of the calculations done by Bender and Davidson,
second-order perturbation theory for the energy was also
used to select the important doubly excited con-
figuration.

There is much to be learned from these papers about
the details of electron correlation in molecules and its
description by natural orbitals. In the pioneering paper
on this method, Bender and Davidson (1966) cal-
culated the energies of HeH and LiH at an internuclear
separation of 3.0 bohr. The binding energy of LiH
was in error by 10%,while the repulsive energy of HeH
was off by only 0.5%. The correlation effects in LiH
were very similar to those in Li+ and H . Several of the
natural orbitals resembled those of Li+. The 20. molec-
ular orbital (nominally 1s on H ), however, was
strongly polarized by the Li+ core. Further, although
the total correlation energy of the 2o' pair was about
the same as that of H, the contribution from individual
natural orbitals was quite different. For LiH, the con-
tribution to the energy from single, triple, quadruple,
or cross shell 1a 20- double excitations are all quite small.
The APSG form is a good approximation to this wave
function.

These results are a little misleading, however, since
this first paper failed to give an improved dipole
moment relative to the SCF result (p=5.83 D experi-
mentally, 5.95 in SCF, 5.97 in the NSO calculation).
In a later paper Bender and Davidson (1968b) pointed
out that this error arose from failure to include single
excitations in 4' even though they had negligible eGect
on the energy. Without single excitations, the highly
occupied iterated orbitals will always be a transforma-
tion of the SCF orbitals, and the first configuration will
always give the SCF dipole moment. When single
excitations were included in each iteration, a small
mixing between "occupied" and "unoccupied" orbitals
occurred which resulted in greatly improved molecular
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Fxo. 7. The 2~ natural orbital of HF.

properties. With single excitations included, the first
configuration built from NO's gave p, =5.89 and the full
wave function gave @=5.85 in good agreement with
experiment.

As a preliminary to the work on the HF molecule,
Bender and Davidson (1968b) did a pseudonatural
orbital calculation Lcf., Edmiston and Krauss (1966)j
for every inter- and intra-pair correlation in this mole-
cule. These results indicated clearly that the APSG
wave function was not appropriate for complex mole-
cules since (a) interpair effects are responsible for 2/3
of the correlation error in the dissociation energy. , and
(b) there were several orbitals which were important in
the corelation of several diGerent pairs. An iterative
NO calculation (Bender and Davidson, 1967a) gave a
39-configuration wavefunction representing 50%%u& of the
correlation energy. At the time of its publication, this
was the first result for the HF molecule below the SCF
limit.

This wave function showed one surprising feature.
Most chemists had assumed that the dominant error in
an SCF wave function was due to its incorrect form at
large internuclear separations. This could be corrected

by configurations of the form 8'—+A', where 8 is the
bonding molecular orbital (MO), and A is the anti-
bonding molecular orbital. In HF this was not the
leading error. The largest single energy contribution
came from Bm—+Ax'. This term represents an alterna-
tion between the bonding and m electrons near F which
enhances the probability of the bonding electron being
near H when the m electrons are closer than average to
F. Thus this correlation induces coupling at right angles
and is similar to the p,p„pair correlation of neon. This
effect contributes 0.4 eV to the dissociation energy D,.
In—out and angular correlations among the ~ electrons
were also more important than 8'—+A' although they
did not contribute to D,.

Figures 3—8 show contour maps for the most im-
portant natural orbitals of HF. Table IV gives a list of
the first few configurations. The contour maps for
m.~m~ orbitals would have a nodal plane containing the
molecular axis although

I

n. I' is the same in all planes,
Similarly 6&6* has two nodal planes at right angles
intersecting in the molecular axis. The correlation
effects produced by these configurations can always be

TABLE IV. A few configurations from the HF wave function.

Configuration
CoeKcient

squared Energy

1o'2a'3o'4-'17l-'
ix'171~27'l 2'
17' bf~ibig
3o 17'.—+4a 2'.

3o'~4o'

0.97226
0.00370
0.00217
0.00514
0.00232

—100.0486
—100.07575 0.0271
—100.09383 0.0181
—100.12706 0.0332
—100.13761 0.0106

x (f, ,+' f, ,+"f,,+'f,-,;),

interpreted similarly to Eqs. (54)—(55). For a closed
shell molecule, we have

N/2

&(r~ r2) = & I g'(1) I'
I g'(2) I'f"+k Z I g'(» I'

I g~(» I'

-2.0—

-I.O—

0.0-

F

where 3'f, , denotes the correlation factor for the electron
pair g,ng, n (3 shows that the spin is triplet, 1 shows that
S, is one). These triplet factors ' ~f, ,; each contain a
factor

I1—
Lg (1)/g'(1) jLg'(2)/g (2) jI

which is zero at r~ r2 (this describ——es the Fermi —hole).
In addition, each f contains a factor of the form

1—2 Z I
t-"' -~~ ILg~(1) /g'(1) 3(g~(2) /g (2) )

I.O
-2.0 -1.0 0.0 I.O

Fzo. 8. The ib orbital of HF.

I

2.0

which comes from configurations formed by the excita-
tion gig, ~gkg&. Each configuration in Table IV may be
interpreted in this manner. For example, the interpreta-
tion of 3o le-+4o2~(Bn&A~') given p.revious. —ly is based
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on noticing that 4o./3o is of constant sign near F, but of
opposite sign near H. Similarly 2m./1sr is of one sign
near F, but of opposite sign further out perpendicular
to the bond.

In the culminating paper in this series, Bender and
Davidson (1969a) reported calculations for all of the
hrst-row diatomic hydrides at their equilibrium separa-
tions. Not. only the total, but also the Nesbet independ-
ent-pair wave functions were computed. Generally it
was found that the independent-pair energy exceeded
the believed limit of the basis set by up to 20%. In
order to achieve improved accuracy, this paper used
1000—3000 configurations in evaluating the energy and
other molecular properties. The molecular properties
obtained were much improved over the SCF results.

Probably the most significant aspect of this work on
hydrides was the discovery that certain types of correla-
tion persisted throughout all of the molecules. As
expected the B'~A' excitation (left-right correlation of
the bonding pair) was always important. In—out and
angular correlations among the m electrons were large.
Coupling at right angles between the x electrons and the
2o and 30. electrons was also important. This latter
effect has a large effect on the dissociation energy.

The discovery that every pair in the valence shell is
strongly correlated (not just the intrapairs) negated
much of the previous work on APSG and MC—SCF
wave functions. Although the multiconfiguration SCF
method was easily adapted to include interpair excita-
tions, its original formulation and applications had
generally been based on the assumption that in an
NSO basis, ouly intrapair excitations wouM matter.

V. CONCLUSIONS

The unique advantage of natural orbitals is that they
reduce the number of determinants required for an
accurate wave function. Those determinants required
make possible a simple interpretation of correlation
effects. For molecular calculations based on variational
methods, this is a great advantage over use of an
arbitrary or an SCF orbital basis.

A serious disadvantage of natural orbitals for several
electrons is that they are relatively expensive to obtain.
Part of this disadvantage may be overcome by use of
one of the methods, such as pseudonatural orbitals, for
obtaining good first approximations. Also, perturbation
theory can be used to select important configurations,
even though it is too inaccurate to use for quantitative
results.

Other methods such as diagonalization of the
exchange integrals between occupied and unoccupied
orbitals (Bender and Davidson, 1967b; Chan and
Davidson, 1968) to obtain an initial set of orbitals are
relatively more expensive and not greatly more ac-
curate. Probably the cheapest initial guess for the
natural orbitals is found by diagonalizing the density
matrix formed from the first-order wave function

Lsee Eq. (19)].The first few orbitals found in this way
tend to span the useful part of the basis set vector space
even though they are rather far from being natural
orbitals.

The use of SCF virtual orbitals in many-body
perturbation theory (Kelly 1963) for atomic calcula-
tions has some advantages. The virtual (continuum)
orbitals are easily computed, and certain nice con-
vergence patterns make possible extrapolations of
perturbation sums. These simplifications will not
appear in molecular calculations. For molecules, con-
tinuum orbitals are exceedingly difficult to obtain and
no regularity is expected which would allow extrapola-
tion of various partial sums based on only a few terms.

Use of perturbation theory within the Roothaan-
Hartree —Fock set of orbitals obtained by approximately
expanding the SCF orbitals in an arbitrary finite basis
is, of course, possible for atoms and molecules. In this
case there is no continuum, although some virtual
orbitals may have positive energies. Generally the basis
set in such a case is chosen only to give the occupied
orbitals with no regard for the virtual orbitals. Never-
theless, with proper care, a meaningful many-body
perturbation calculation could be carried out in the same
6nite basis set in which the natural orbitals could be
expanded. The results would probably rival those
obtained with natural orbitals both in accuracy and
cost. Even in this case, .however, the natural orbitals
from the wave function would offer a much more
physical description of the correlation effects than wouM
the virtual SCF orbitals.

Natural orbitals have not been used extensively to
generate excited state wave functions. This is partly
because they have been too expensive to use for a large
range of states and nuclear positions. They are most
useful, quantitatively, in obtaining good molecular
properties for the ground state. Some work on excited
states has been done, however, and there seems to be
no practical difficulty in using the iterative natural
orbital scheme for the lowest state of any symmetry. For
higher states of a given symmetry, the excited state
variational principle guarantees only that the Xth root
of the secular determinant is above the true Nth state.
Some practical difficulties were encountered since the
iterative natural orbital method was too good and
sometimes eliminated orbitals necessary to represent the
V—1 lower states. In this case, the desired wave func-
tion would appear as a lower root, and no variational
principle would hold. This difficulty is easily overcome
in practice by keeping the orbitals required for lower
roots. Generally speaking, the lack of results for higher
excited states is due to a lack of interest in finding
results of this accuracy for some one state.
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