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The introduction of a low concentration of defects into a magnetic insulator modifies the spectrum of the magnetic
excitations. In general the spectrum consists of a set of impurity modes associated with the defect and its immediate
neighbors. Impurity modes that occur outside the band of host excitations are localized in the neighborhood of the defect
and at the same time perturb the host band, while modes lying within the band lead to resonant behavior of the excita-
tions of the host. In recent years, optical, neutron scattering, and nuclear magnetic resonance techniques have been used
to study mixed crystals of antiferromagnetic transition metal Quorides. Many of the features may be understood by
using the molecular field or Ising model for the excitations. An improvement on this form of the theory is to use a cluster
model to describe the excitations near to the defect. Some features may however be described only when the excitations
of the host are treated adequately; this requires the use of Green's function theories that have been developed for anti-
ferromagnets containing defects. A detailed comparison is presented of the predictions of the various theories with the
experimental results. Although the theory is fairly satisfactory for a low concentration of defects and low temperatures,
considerable complexities arise in extending it to higher temperatures and large concentrations.
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I. IÃTRODUCTION

The introduction of substitu tional defects into crystals
modifies the spectrum of the elementary excitations.
It is the purpose of this review to discuss the experi-
mental and theoretical results which have been obtained
for the modifications in the magnetic excitations which
occur when one transition metal Auoride is mixed with
another. A large body of work has now been performed
which has established at least the qualitative features of
the changes in the spectrum as a result of the introduction
of a few defects. In some cases, the introduction of
defects gives rise to the possibility of excitations whose
characteristic frequencies lie outside the band of the
excitation frequencies of the host crystal and whose
wave functions are localized in the neighborhood of the
defect. These are the localized defect modes. In other
cases, the frequencies of the excitations lie within the
band of the excitation frequencies of the host crystal:
these excitations are not localized but give rise to a
"resonant" perturbation of the excitations of the host
crystal.

The theory of these effects is very similar for different
types of systems as demonstrated in the review by
Izyumov (1965) for electrons, phonons, and magnons.
The effects of both the localized modes and the resonant
perturbations have been observed in many different
systems. In the phonon case, the localized modes have
been observed by optical techniques (Schafer, 1960)
and by neutron scattering techniques (Nicklow et al. ,

1968), while resonant modes have been studied by

thermal conductivity (for example, Baumann et al. ,
1967), optical techniques (Kirby et ul. , 1968) and
neutron scattering (Svensson et al. , 1965).

In view of these successes, one may well question the
usefulness of pursuing a similar study for magnetic
systems. First, there is the obvious requirement to
corifirm the theory for a very difkrent system. Second,
we obtain information about the exchange constants
between difI'erent ions. These provide a test of the
theory of exchange constants which is quite diferent
from that provided by measurements on pure crystals.
A more important reason, however, is that it is possible
to make a more detailed comparison of theory and
experiment for magnetic systems than is possible to
make for either the phonon or electron systems. The
introduction of a defect atom of very different mass into
a crystal inevitably produces changes in the neighboring
force constants and also considerable local strain. It is
diScult to allow for these features adequately in theoret-
ical calculations. In the magnetic case, however, atoms
which have very similar masses and very similar
chemical properties may have quite di6erent magnetic
properties. As we shall see below, Mn'+ and Fe2+ are
very di6'erent magnetically but the substitution of one
for the other in a crystal produces a minimum of
mechanical strain. In practice, theoretical calculations
therefore depend on fewer arbitrary parameters and
thus permit a direct quantitative check of the theory.

In the case of electrons, a detailed comparison of
experiment and theory is impossible because existing
observational techniques do not provide su%ciently
detailed information about the electronic excitation
spectrum. For magnons and phonons on the other hand,
the excitations can be studied by optical and neutron
spectroscopy.

A further feature of this similarity in the chemical
properties is that it permits the preparation of speci-
mens with a very large number of defects. For example,
MnF2 and CoF2 are soluble for all concentrations, even
though their magnetic properties are very different,
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but crystals containing large concentrations of atoms of
very diferent mass are frequently impossible to produce.
Either the constituents are insoluble except for very
low concentrations or else the atoms order so as to give
rise to a new crystal structure. The magnetic systems
therefore would seem to be the most suitable ones to
test the recent theories on very concentrated systems
for which even the qualitative features of the excita-
tion spectrum are uncertain (Anderson, 1958; Mott,
1967; Ziman, 1968a, b; and Lloyd, 1969).

In this review, we shall restrict attention to the
magnetic systems formed by mixing the transition
metal (Mn'+, Fe'+ Co'+ Ni'+ Zn'+) fluorides of the
rutile and perovskite structures, Fig. 1. Since we are
concerned with as close a comparison between theory
and experiment as possible, we begin the review with a
discussion of the magnetic properties of these different
ions, and of the magnetic excitations in the pure
materials.

Most of the review is concerned with those aspects
which are well understood: the excitations at low tem-
peratures in materials which have a small concentration
of defects. In Sec. III the excitations in these systems
are described by initially using the single-ion Ising
approximation and then extending it to incorporate the
interactions between the neighboring cluster of ions.

The properties of these materials have been in-
vestigated by a large number of different experimental
techniques. In particular, there have been detailed
optical measurements using far-infrared spectroscopy,
Raman scattering, and fluorescence, as well as neutron
scattering and nuclear magnetic resonance measure-
ments. In Sec. IV we review the information which may
be obtained with the aid of these diferent techniques.

Although the molecular field and cluster models are
able to give a remarkably good account of the results,
some features can only be obtained by the use of more
complex theories. The usefulness of applying Green's
functions to defect problems has been apparent since
the work of Lifshitz (1943) on the analogous phonon
problem. Similar techniques were applied to ferro-
magnets by Wolfram and Callaway (1963), and by
Takeno (1963). It has been only relatively recently
(Tonegawa and Kanamori, 1966) that similar theories
have been used for antiferromagnets because of the
greater complexity involved. In Sec. V we describe the
application of these techniques to antiferromagnets, by
extending the work of Tonegawa (1968, 1969) and
Lovesey (1968) for isolated defects to obtain results
which are correct to terms linear in the concentration
of defects, analogous to the workof Klliott and Taylor
(1967) for the phonon problem. In Sec. VI, the pre-
dictions of the Ising, cluster, and Green's function
theories are compared with experimental results. A
remarkably consistent account of the experimental
results is obtained.

The excellent agreement between theory and experi-
ment obtained in Sec. VI for the dilute alloys enables us

RUTILE -MnF~, CoFz

FIG. 1. The rutile and
perovskite crystal struc-
tures. Other transition
metal Ruorides have
similar chemical struc-
tures apart from certain
small distortions, and
most, but not all, have
the same spin structure.

oF
~ Mn, Co

PEROVSKITE- KMnF~ KCoF~

o. K
OF
~ Mn, Co

to go forward to discuss two aspects which are far less
well understood theoretically and which as yet have
been less studied experimentally. In Sec. VII are
described the difhculties encountered in extending the
theory to high temperatures. Despite these difhculties,
many of the experimental results may be understood.
On the other hand, extending the theory to large
concentrations is even more difIicult, and as explained
in Sec. VIII, it is by no means certain which features are
the most important.

II. THE PURE MATERIALS

The crystal field theory of the ions is summarized in
Fig. 2. The ground state of the free Mn'+ ion has orbital
angular momentum L=O and spin angular momentum
5= ~~. It is therefore not influenced to a good approxi-
mation by either its crystal field environment or by the
spin —orbit interaction. It is adequately described in
both the rutile and perovskite structures by a spin
Hamiltonian with an effective spin equal to the actual
spin 5=2 and with negligible single ion anisotropy.
The anisotropy in MnF2 arises largely from the magnetic
dipolar interactions.

Iie'+

The atomic ground state of the free Fe2+ ion has L= 2

and 5=2. In the octahedral cubic crystal Geld this is

1. Crystal Field Theory

It is impossible to discuss the magnetic properties
of the transition metal ions without first describing the
e8ect of the crystal fields on these ions. There are many
excellent accounts of crystal Geld theory available
(for example, Low, 1960; Hutchings, 1964), and we

may restrict our discussion to a presentation of the
relevant results
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TABLE 1. The efFective spin, S', and its relationship to the true spin, S, and orbital angular momentum for the di8erent ions. Pro-
portionality factor between L and l is az, .

S=+psS' L=+py.s'

Mn'+ Fe'+ Co2+ Nj2+ Zn

s'
ps
pI

5/2
1

0

Perovskite structure

1

5/3
—(1/2)nz,

1/2
5/3

—(2/3)nr,

S'
ps
pr.

5/2
1

0

Rutile structure

1/2

Model

0.39
0.51

Co'+ p is not isotropic and has values

ps ps~ pr+ pg

1.44 2.05 —0.31' —0.3', —0.31az,
1.56 1.78 —0.42' —0.41', —0.26ay.

Ref.

~ Gladney (1966). Martel, Cowley, Buyers, and Stevenson (private communication).

split into a doublet, E, and a triplet, T2, with a separa-
tion in frequency of 300 THz. Throughout this paper,
frequencies are quoted in these units (1THz=33
cm '=48'K). The orbital angular momentum within
the lowest tripet state may be described by an effective
angular momentum /= 1, and the matrix elements of L
within the T2 manifold are minus those of t (Griffith,
1961). In the perovskite structure, the spin-orbit
interaction splits the 15-fold degenerate state into a
triplet, quintet, and septet. Within the ground triplet
state the transitions may be described by an effective
spin S'=1, and the relationships between the matrix
elements of the real L and S and those of the effective
S' are listed in Table 1. These relationships will,
however, be changed in practice because the exchange
6eld is large enough to cause appreciable mixing be-
tween the lowest S=1 triplet and the excited states
which lie only 4 THz higher in frequency.

In the rutile crystal structure, the T2 orbital state
is split by the orthorhombic distortion to give three
orbital singlets. The separation between the lowest two
states is 33 THz (Stout et al. , 1968).The ground state
then has an effective spin equal to the real, spin 5= 2,
but the spin —orbit interaction is sufFiciently large to
give rise to a single ion anisotropy by mixing the A&

state with the 8' and 82 states. The form of the anisot-
ropy is

~AN(') = —D~*(~)'+~I~.(~)'—~w(~)'j, (21)
where D=0.21 (Tinkham, 1956; Hutchings et at. ,
1970a), while E 0.10.

Co'+

CUBIC CRYSTAL
PEROVSKITE

DSTORTIONS+SPIN- F IELD SPIN —ORBIT
ORBIT

S S
2+

52 Mn
5]2

B~
33

A

300

I
T~

Fe

225
co'+

5t

250

lowest within which the matrix elements of L may be
described in terms of those of an effective orbital
angular momentum /= 1. The proportionality constant
L—+upi is —1.5 when the mixing with an upper state is
neglected, and is estimated by Gladney (1966) to be
—1.42 in practice. In the perovskite structure the spin-

~ ~

and S= ~. The octahedral crystal Geld gives a T& triplet units of THz, and S is the efFective spin of the ground multiplet.
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orbit interaction gives a doublet state, S'= —„lowest.
The matrix elements of S and L in terms of those of S'
are listed in Table 1. Exchange fields are, however,
frequently large enough to give rise to appreciable
mixing of this ground state with the upper states
(Buyers et t2l. , 1971a).

The orthorhombic crystal 6eld and the spin-orbit
interaction in the rutile structure give rise to six
Kramers doublets. The lowest state is described by an
effective spin S'=-,'. For ions other than Co, the pro-
portionality constants between the matrix elements of
the effective spin operators, S', and the spin, S, and
angular momentum, I., operators have been deter-
mined by symmetry. For cobalt, they are dependent
on the parameters of the crystal 6eld interaction which
are not well known. In Table 1 we list two different
sets of constants, one derived from the crystal field
parameters of Gladney (1966) and the other from those
of Martel, Cowley, Buyers, and Stevenson (private
communication) .Once again exchange interactions may
give rise to appreciable mixing of the lowest two
doublets.

The atomic ground state of Ni2+ has I.=3 and S= 1.
The cubic 6eld gives a singlet state A as the lowest state
giving rise to an effective spin equal to the real spin
S= 1 in both structures. In the rutile structure there are
sufficient crystal field distortions that mixing of the
states gives rise to single ion anisotropy. Its form is the
same as that given by Eq. (2.1), but with D= 0.13 and
E=0.05 (Peter and Moch, 1960; Hutchings et ttl. ,
1970b).

The Zn'+ ion is nonmagnetic.

2. The Spin %'aves in the Pure Materials

The exchange interactions between the ions in the
pure materials cause the magnetic moments to align
antiferromagnetically at low temperatures and give
rise to the spin wave spectrum. Measurements of the
spin waves have been made by optical, anti-ferro-
magnetic resonance and neutron scattering techniques.
In all cases, the results at low temperatures for the
excitations of lowest frequency may be interpreted in
terms of an effective spin Hamiltonian which may be
written

H= —P S.(2)H&P~+2 Q I(ij)S(i) S(j), (2.2)

where P; is +1 and —1 for up and down sites, and
where II& is the sum of the single ion anisotropy a,nd the
magnetic dipole-dipole interactions which are ap-
proximately independent of wave vector. When the
exchange is not isotropic as in CoF2, the transverse part
is included in I(ij) and H~ then contains a term pro-
portional to the difference between the longitudinal and
transverse parts of the exchange constant. We omit the
prime on the effective spins. If we neglect the small

corrections due to spin —wave interactions (Oguchi,
1960) the spin-wave frequency for wave vector q may
be written for all the materials except NiF2 as (Kittel,
1963)

co(q) —
LA (q)2 Il(q)2]1/2 (2.3)

where

A (q) = Hz+5 g I(ij){expr eq. R(ij)$—1I+Sg I(ij),
j=L

B(q)=SKI(ij) expLiq R(ij)],
j=A

j=A

(2.4)

(2.5)

and Hg represents the effect of both the single ion and
dipole —dipole anisotropy, R(2j) is the distance between
the ions i and j, while gt=L and g; z represent sum-
mations over like and antiferromagnetic neighbors
respectively.

In Table 2 are listed the best sets of parameters for
the anisotropy fields, H&, and for the exchange constants
I(1), I(2), and. I(3) between the three nearest neigh-
bor pairs of ions. In the rutile structure, the nearest
neighbors are ferromagnetically aligned, and the second
nearest neighbors have the strong antiferromagnetic
coupling. Throughout the paper we quote exchange and
anisotropy constants in THz.

In the case of NiF2, the magnetic structure is more
complex than are those of the other Quorides. The spins
do not align along the c axis but align in the a/b plane
with a slight canting. There are then two branches of
the dispersion relation but this can be described by the
single ion anisotropy Eq. (2.1) and isotropic exchange
interactions which are tabulated in Table 2.

The authors are unaware of any direct measurements
of the spin wave spectrum of KFeF3.

The effective exchange constants listed in Table 2
are identical with the exchange constants between real
spins except for the two Co salts. Likewise, except for
the Co salts, the size of the anisotropy is consistent with
the anisotropy arising from the single ion anisotropy,
Eq. (2.1), and the dipole —dipole anisotropy. In principle,
for the Co salts, it is possible to work back from the
effective exchange constants to the exchange between
real spins with the aid of Table 1.In practice, this is not
satisfactory because of the mixing between the levels
but the true exchange constants with due allowance
made for the mixing are listed in Table 2. In KCoF3 the
exchange is found to be between nearest neighbors with
negligible anisotropy. In CoF2 (Martel et t2/. , 1968)
there is appreciable nearest and next nearest-neighbor
exchange. The latter has been assumed to be anisotropic
(Martel, Cowley, Buyers, and Stevenson, private
communication) to account for the anisotropy in CoF2.

nr. CLUSTER MODELS OF A DEFECT

1. Ising Approximation

In the preceding section the spin-wave spectrum was
obtained for a pure material with an effective spin, S,
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Perovskite structure

KMnF3 KCoF3 KNiF3

TABLE 2. The anisotropy and exchange constants in THz
which describe the pure crystal spin waves within the effective

spin approximation. The Co parameters are also shown treating

the ions in terms of "true" spins. The anisotropy for the canted
antiferromagnet NiF2 is not given since it is more complex in

form.

sites. The magnetic excitations are now localized on
particular sites, and for the site 0 the excitation fre-

quency is
=H '—Z I'(Oj) (S,( j))

where (S,( j) ) is the expectation value of the spin on the
jth site. If we take the ground state to be the Neel state,
the frequencies of the excitations in the perovskite
structure are for the defect

5'

I(&)
I(2)
Ref.

2.5
0.00097
0.151
0.0

a

MnF2

0.5
0.07
2.34
0.04

b

1.0
0.052
2.125

FeF2 CoF2

Rutile structure

NiF2

ppg) =H~'+6SI'(1),

and for the neighbors of a defect

(3 2)

(o~=Hg+SSI(1)+S'I'(1). (3.3)

The neglect of interactions beyond nearest neighbors is
a good approximation for perovskites.

In the rutile structure, the results neglecting inter-
actions between neighbors more distant than second are

s'

i(1)
I(2)
I(3)
Ref.

2.5
0.0222
0.0132
0.0744
0.0018

d

2.0
0.603

—0.0015
0.1092
0.0057

0.5
0.376

—O. 060
0.370

1.0

—0.006
0.416
0.024

Cobalt salts

CoF2
KCoFg

—0.018
0 ' 622

I (2)

0.151

J..(2)

0.115

Ref.

and effective exchange constants, I(ij). If a single
defect is introduced at the origin, up site, with an effec-
tive spin S', and exchange interaction I(0j), the spin-
wave modes will be modified in the neighborhood of the
defect. In all the cases considered here, the spin direction
of the impurity atom is the same as that of the host
atom if it was at the same site. The simplest approxi-
mation with which to discuss the modes is the Ising
approximation in which the transverse parts of the
exchange interaction are neglected. The full Ising
Hamiltonian is

IIp
—Q H~S, (i)P;—Hg'S, '(——0)Pp

i+0

+'Z I(ij)S*(i)S*(j-)+Z I'(Oj)S='(0)S*(j), (31)
i, jp-'0 jy-0

where P; is +1 for i on up sites, and —1 for i on down-

~ Pickart et al. (1966) with the anisotropy modified so as to give agree-
ment with resonance measurements of Heeger et al. (1961) which are con-
sistent with the neutron scattering measurements of the magnons near the
zone centre made by Coombs, Svensson, Holden, and Buyers (private
communication) .

Buyers et al. (1971a).
Chinn et al. (1970) and Richards (1963).

d Okazaki et al. (1964) and Nikotin et al. (1969).
~ Hutchings et al. (1970a).

Martel et al. (1968).
~ Hutchings et al. (1970b) .
"Martel, Cowley, Buyers, and Stevenson (private communication).

2A gg+ Ep+ Ti„. (3.7)

The two A1g modes correspond to excitations that are
partly on the defect and partly distributed equally on
all the neighbors. The doubly degenerate E, modes and
triply degenerate T&„modes describe excitations on the
neighbors. Other authors (Takeno, 1963; Tonegawa,

ppg) = Hg' —2SI'(1)+SSI'(2), (3.4)

pp~g H~ SI——(1)——S'I'(1)+SSI(2), (3.5)

pp~2= H~ 2SI (1)+7S—I(2)+S'I'(2). (3.6)

These results show that if the introduction of a defect
alters the spin or exchange interactions, then the excita-
tion frequencies of its neighbors are also altered. A

change of spin is therefore analogous to a change of
force constant in the phonon problem.

If these frequencies fEqs. (3.2)—(3.6)j lie outside
the band of the spin —wave frequencies of the host
crystal, then local modes associated with either the
defect or its neighbors may result.

2. Symmetry

When the transverse part of the exchange interactions
is added to the Hamiltonian Eq. (3.1), the magnetic
excitations are no longer confined to single sites. It is
therefore useful to classify the modes in the neighbor-
hood of the defect by their symmetry. If we restrict
attention to the cluster of atoms around each defect and
the form of interactions which were discussed above,
the classification may be performed directly with the
aid of standard group theoretical techniques (Heine,
1960). The Hamiltonian is invariant under a space
group, G. This group is the space part of the spin-space
group introduced by Brinkman and Elliott (1966), and
its elements operate only on the lattice and not on the
spins. For the perovskite structure, the seven excitations
associated with the defect and its six neighbors may be
classified by the irreducible representations of the group
m3m as
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1968; Lovesey, 1968) have labeled these modes as s, tf,

and p modes, respectively, using so and s& for the A&o

modes th.at are mainly on the defect A&, (D), and mainly
on the neighbors A&o(X), respectively.

In the rutile structure, we consider two nearest
neighbors and eight second nearest neighbors around
each defect. The group is 4/ntntnt and the corresponding
irreducible representations are

Since we have included the transverse part of the inter-
action only between the defect and its neighbors, the
interactions within the cluster are treated exactly thus
far, while the remaining interactions are approximated
by the Ising theory.

The equations of motion for the spin operators give

-idS~'(0)/dt= PHg), Sp'(0)]

3A io+2Asu+Ao+Ao+&o+&o (3.8) = —H 'S '(0)—I (1)S '(0) P S,(')

The three A», modes correspond to excitations on the
defect and to excitations on the neighbors and next
nearest neighbors. The A2„modes are excitations on the
nearest and next nearest neighbors, while the 8»„, B~„
and the doubly degenerate E, and E„modes are entirely
associated with the next nearest neighbors of the defect.
Lovesey (1968) denotes the A&o mode localized mainly
on the defect as so, while that localized mainly on the
next nearest neighbors is s». The A2„and E modes are
denoted as p, and the doubly degenerate p, and p„,
while Eo and It&o are d modes labeled by (xs), (ys), and

(xy), respectively, and 8&„ is denoted as an f mode.

3. Excitations in a Cluster Model

The transverse part of the exchange interaction is

—I'(1)S,'(0) g S (i),

idS—(i)/dt=(Hg), S (i)]
=PH~+5SI(1)]S (i)

+I'(1)S (i)S,'(0)+I'(1)S,(i)S~'(0). (3.12)

These equations are solved by replacing S,'(0) and
S,(i) by their expectations in the ground state, which
are S' and S since the Neel state is assumed. These
approximate equations are then linear in the operators
S+'(0) and S (i) and can be solved by an extension of
the methods described by Walker (1963).Pseudoboson
creation operators for the spin excitations (n) are
written as either

J(ij)LS (i)S ( j)+S (i)S ( j)] (3 9) ex'+ (2S ) Cn(0)S—(0)+(2S) P Cn( L) S+($)'p

lg

S,~—S„ S+-+S , S-~S+ (3 1o)

The Hamiltonian for a nearest-neighbor cluster in the
perovskite lattice may now be written in terms of the
defect-host exchange constants I' and J' and the
transformed operators as

Hg) Hg'S, '(0) g——LHg+5—SI(1)]S,(i)—
i=»

where I(ij) is equivalent to the longitudinal effective
exchange constant, I(ij), for all pairs of ions except
when one of the ions is a Co'+ ion as discussed in Sec. II.
The excitations of the cluster may be calculated in a
way analogous to the spin —waves of a pure crystal. The
spin operators on the "up sites" are unchanged but the
operators on the "down sites" are reversed by a canoni-
cal transformation which leaves the commutation
relations unchanged; for the down sites we make the
replacements

(3.13)
or alternatively

~+=(2S') '"C.(o)S+'(o)+(2S) "'Z C.(i)S-(i),

(3.14)

where the appropriate choice between Eqs. (3.13) and
(3.14) will be made later, and the equations for the
annihilation operators are identical except for an inter-
change of the S+ and S operators.

The eth eigenvector is assumed to have a time
dependence exp Lice(rt)t], and the annihilation operator
to be exp $ ioo(n)t], so —that the co(rt) are eigenvalues
and the C„(i) eigenvectors, which may be obtained
from the matrix of coeKcients on the right-hand side of
Eqs. (3.12).The choice between the eigenvectors (3.13)
and (3.14) is made on the basis of normalization. If the
n+ (n) and n(rt) obey the normal commutation relations
and the spin operators do so likewise, then the co-
eiticients in Eq. (3.13) must satisfy

—I'(1) Z S.'(0)S.(')
C„(0)'—Q C„(i)'=—1, (3.15)

whereas if Eq. (3.14) is appropriate then the require-
ment is

+27'(1) Z I S(+)0S(i+)+S '(0)S (i)] (3.11).
i=»

C„(0)'—Q C„(i)'=1. (3.16)
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The right-hand side of Eq. (3.12) is then written in matrix form as

—J'S' —~'S' —~'S' —J'S' —J'S' —J'S'

+J'5' +~N

+ J'5 0

+J'5 0

+J'5 0

+J'5 0

[yJ'5 0

0

0

+~N I

The matrix is diagonalize d and the eigenvectors
examined. If they satisfy Eq. (3.15) then Eq. (3.13) is
the correct choice for the creation operator and the
eigenvalue is associated with ar (22). If on the other hand
the eigenvectors satisfy Eq. (3.16), then Eq. (3.14)
gives the creation operator and its eigenvalue is
associated with —~(22). In a stable system, ar(22) must
be positive.

When this theory is applied to the perovskite lattice
and the eigenvectors are classified by their irreducible
representations the results are

In addition to the frequencies of the modes, it is also
possible to deduce the coefFicients C„, explicitly. For
example, in the perovskite structure the A~, mode
localized mainly on the defect has an approximate
probability amplitude,

~», (1)/~», (0) = —LJ'(1)5'/(~n+~N)»

of being on any one neighbor of the defect. A similar
result is obtained for the A I, mode in the rutile structure
and results may also be obtained for the other modes but
will not be listed explicitly.

(V(E) =(o(T1)=(uN, (3.17) 4. Perturbation Theory

while the frequencies of the A& modes are given by the
modulus of the three eigenvalues of the matrix

(SSS') Z'(2) (2SS')'"S'(1))—(SSS')"'J'(2) —[(oN2+ S J (1)]

(2SS')'"J'(1) 25J(2)

—25J(2)

(3.22)

while the frequencies of the two A& modes are given by

~(~1)= l2 (~D—~N) ~4[(~D+~N)' —655'J'(1)')'"
~i

(3.18)

where ~N and &o1) are given by Eqs. (3.2) and (3.3).The
degeneracy of the E and TI modes occurs because of the
extra symmetry inherent in our simple model.

The results for the rutile structure are more complex,
in part because of the lower symmetry, but also because
the cluster involves both nearest and next nearest
neighbors. - The results have however been obtained by
the same techniques and are

(d(E) =(u(82) =(oN2+SJ(1), (3.19)

~(B1)=(oN2 —SJ(1), (3.20)

40(~2) ( 2 ((IsN2 ~N1)~ f 4((dN2+&N1) 4[SJ(2)] I

(3.21)

An alternative approach to the calculation of the
frequencies of the excitations of the cluster is to use the
eigenstates of the Ising Hamiltonian, Eq. (3.1), as a
basis and then to treat the transverse part of the
Hamiltonian, Eq. (3.9), as a perturbation. As before,
we label the longitudinal exchange I to distinguish it
from the transverse part J. This approach, which will
be most successful if J&&I or H~, has the advantage
that the frequencies are obtained without the use of the
pseudoboson technique. Results of perturbation theory
have been used by Dietz et (2t. , (1970) and we give the
basis of the method here. Initially we consider the
influence of the perturbation on the ground state of the
cluster, treating the interaction of the neighbors of the
defect with their neighbors within the Ising approxima-
tion. The perturbation, Eq. (3.9), mixes into the ground
state excited states containing pairs of excitations, one
of which is on the defect and the other of which is on
its neighbors. The frequency within the Ising approxi-
mation of this state is &oo+~N —I'(1), where ~2) and &oN

are given by Eqs. (3.2) and (3.3). The ground-state
energy may now be obtained by second-order per-
turbation theory as

Eg —30S'I(1)—655'I'(1)———65'—5'Hg'

—6SS'J'(1)2/[(uD+(oN —I'(1)). (3.23)

In a similar manner the eGect of the perturbation on the
excited states may be calculated. If the spin at the
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defect is excited, the perturbation mixes this state with
one in which there are two excitations on the defect and
one on a neighbor. If S'=-'„ then no more than one
excitation is permitted on the defect and the perturba-
tion is not able to alter the energy of the excited state.
The energy of this excited state for all values of S' is

ED = 30S—'I (1) 6SS—'I'(1) 6SH—g S'H—~+»
—6S(2S'—1)J'(1)'/[»+con —2I'(1)]. (3.24)

The excitation frequency E&—Eg is then given by
(3.24—3.23)

~LA, (D)]=»—6SJ'(1)'
2S-1 S'

~l ( 5)
(cog)+coN —2I'(1)»+con —I'(1)j

The perturbation theory may also be applied to the
excitations on the neighbors. The results are

co(E) =co(Ti) =
choir

—S'J'(1)'

xi 65—1 6S
(3.26)

(Go/)+co& —2I' ( 1)»+coir —I' ( 1) J

~LAi(X)]=~ir —S'I'(1)'

12S—1 6S
X 327

kcoD+coN 2I'(1) osD+—osrr I'(1)j—
Similar results may be derived for the rutile structure;

we shall not present them, however, as they are very
cumbersome because of the necessity of including both
sets of neighbors.

It is of interest to compare these results with Eqs.
(3.17) and (3.18) obtained by the pseudoboson
techniques. Even in the limit J((I these results differ.
Since the perturbation theory is then correct, we must
conclude that the pseudoboson technique is in error in
this limit. If we consider the mode associated with the
defect, Eq. (3.18) predicts that its frequency is given
when J«I, by

coLA i(D)] =»—6SS'J'(1)'/(»+tetr)
which is the same as Eq. (3.25) if S and S are infinite.
In fact if S'= —'„Eq. (3.25) shows that the frequency
coLA&(D)] is increased by the perturbation. The error
of the boson technique is not limited to J«I as pointed
out by Thorpe (1970). Consider a system of two spins,
5& and 52, interacting antiferromagnetically with the
Heisenberg interaction JS~- S2. The lowest two
states of this system are separated in frequency by
J(S&—Si+1) if Si(S,. The boson technique does not
give this result. The frequencies of the excited states are
0 and J(Ss—Si), from the aligned ground state. We
may therefore conclude that the boson technique
underestimates excitation frequencies for all ratios of
I and J. This difhculty arises because the ground state
is not the Neel state as assumed by the boson tech-

ni.que and because the boson technique permits an
arbitrarily large number of excitations on each site.

~D+D ~N+N (3.28)

where we have assumed that the anisotropy energy is
described adequately by H&S, . (L—ater we shall
discuss Ni in MnF2 where this is not a good approxima-
tion. )

If one excitation is situated on the neighbors and
another on the defect there will however be an interac-
tion which for perovskites is

bo+n ———I'(1). (3.29)

In the rutile structure the results are more complex
because of the nature of the cluster. There is an inter-
action between excitations on the defect and its nearest
neighbors,

&D+m = —I'(1),
and its next nearest neighbors,

bn+~s ———I'(2),
while there are further interactions between neighbors
separated by (&a/2, &a/2, &c/2) of

bm+irs = —I(2)

and between neighbors separated by (0, 0, &c) of

b~s+irs ———I(1).
There results show that the pair excitations involving
antiferromagnetic coupling are reduced in frequency by
the interaction. The effect is similar to that of magnon-
magnon interaction in pure antiferromagnets in that it
modi6es the two-magnon spectrum as discussed by
Elhott et aL (1968) and demonstratedbyFIeury (1968)

(b) Perturbatiort Theory

The results of the previous section may be improved
bv inclusion of the effect of the transverse part of the

S. Pair Excitations

(a) The Ising Model

Optical measurements of the properties of defects
frequently give the frequencies of pairs of excitations
as well as the frequency of single excitations. The
reason for this will be discussed in detail in Sec. IV.
If the excitations were strictly independent of one
another the frequency of the pair would be the sum of
the frequencies of the individual excitations. The
excitations are not, however, independent and the
frequencies differ from the sum of the frequencies by an.
amount b. In this section, we calculate 8 by various
different techniques.

In the Ising approximation pairs of excitations
localized on the same atom are permitted provided that
the effective spin is greater than -', . Furthermore, they
do not interact with one another so that we have
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exchange Hamiltonian, Eq. (3.9). The calculation of
the energy of a pair of excitations proceeds in a similar
manner to that already described for the single excita-
tions. If two modes are localized on the defect, the
energy is

Eg)+g) ———305'I (1)—65(S'—2)I' (1)—6SIIg

—(S'—2)II~' —18J'(1)'S(5'—1)L(3),
where the function L(n) is

L (n) = 1/L(oD+u)~ —nI'(1) ].
The interaction energy between two modes on the defect
is then

ba+a AD+D ——Ea 2—o) (D—),
where ce(D) is given in Eq. (3.25) and is the perturbed
single excitation. The result is then

BD+g) =65J'(1)'L—S'L (1)+(4S'—2)L (2)
—(35'—3)L(3)]. 5') -'. (3.30)

If we neglect. the difference between the different L(n)
functions, this result shows that 8D+~ is positive or that
the interaction between two modes on the defect is
repulsive.

In calculations for the other pairs of modes the only
cases of importance are those in which one of the excita-
tions is localized mainly on the defect. In the perovskite
structure we find

bD+z =bg)+r, = —I'(1)+J'(1)'[—(65—1)(2S'—1)L(3)
—(—18$S'+65+S')L(2) 6SS'L (1)j, —(3.31)

while

ho+a, = —I'(1)+J'(1)'(655'L(—1)
—(12S—1)(25'—1)L(3)

+ (24SS'—6S—S')L(2)—6SS'L(1)] (3.32)

The calculations may also be evaluated for the rutile
structure but are not listed here as they give rise to very
lengthy expressions.

(c) Spin 8'awe 3ppr-oximation

1t is more dificult to calculate the interaction between
the modes in the spin-wave approximation, and in
general this problem has not been solved. Thorpe (1970)
has developed a simple prescription which appears to
be successful for combination modes when one of the
modes is highly localized on the defect. The prescription
is that we neglect the extent to which the defect mode
spreads onto its neighbors. The frequency of the pair
of modes is then calculated by initially exciting the
defect mode and then calculating the energy needed to
excite the additional mode in the presence of the defect
mode. The operators 5,'(0) in the equations of motion
for the spin operators, (3.12), are then replaced by
(5'—1). The frequencies of excitation of the modes in
the presence of a defect mode are then given by Eqs.
(3.17) to (3.22) but with 5' replaced by (5'—1).

The differences in the frequencies between the excita-
tion of a pair of modes and the excitation of two single
modes are then, for the perovskite structure,

bD+g) =65J'(1)'L(1), (3.33)

(3.34)

(3.35)

bn+s =bD~r, = I (—1),
bDyg&= —I (1)+65J (1) L(1),

where we have expanded the results in powers J'(1)/&oD.
It is readily seen that the expression for bD+D is identical
with the results obtained by the cluster model Eq.
(3,30), if the difference between the L(n) factors is
ignored. This is the result to be expected for a spin-wave
theory. On the other hand, the expressions for 8D+z
and 5Q+QI are not the same in this limit. Because the
defect mode spreads onto its neighbors to order J'(1)/a&~,
the b will be reduced by this effect to order J'(1)'/&oD.
Allowing for this effect by perturbation theory replaces
I'(1) in Eqs. (3.34) and (3.35) by

I'(1)[1—6J'(1)'SS'L(0)']
which, on neglecting Bg' and co~ with respect to co~,

reduces to
I'(1)—5'J'(1)'/(og&.

When this is substituted into Eqs. (3.34) and (3.35)
for I'(1), they are seen to become identical with the
perturbation theory results I Eqs. (3.31) and (3.32)]
when the differences between the L(n) and 1/~D are
ignored.

IV. EXPERIMENTAL TECHNIQUES

1. Oytical Techniques

There are a number of different optical techniques
which may be used to study magnetic defects. The two
most useful approaches are far infrared spectroscopy
in which the absorption of radiation by the crystal is
measured as a function of its frequency, and Raman
scattering in which the inelastic scattering of the
radiation by the specimen is observed. Unfortunately,
the detailed theory of the interaction between radiation
and magnetic excitations is still not well understood.
The simplest process is the infrared absorption by a
single excitation. This is believed to arise from a coupling
of the magnetic field of the electromagnetic wave, H~,
to the spins through the Haniiltonian,

IIrNT= —g IIa ~n, (4.2)

IIrNT= teZZ I-I' Se(—)i-g e( )i (41)
rxP i

where g e(i) is the "g"factor of the atom at the ith site,
and p~ is the Bohr magneton. Since the electromagnetic
wave has a wavelength much greater than the inter-
atomic spacing, it is permissible for most purposes to
omit the wave vector dependence of the interaction
from Eq. (4.1).

It is convenient to rewrite Eq. (4.1) in terms of the
magnetic dipole moment operator of the crystal, M,
when
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where
~-= ZZt pg-p(')~p(t) . (43)

p i

The susceptibility of the crystal at frequency ~ may
then be calculated by conventional second-order
perturbation theory as

p„co „(rt I
M.

I
rrt)(rrt [ Mp ] rt)

5(co '—co')

(4 4)
where v is the volume of the unit cell, S the number of
unit cells, the initial state of the crystal is n with
probability p„, and m is the 6nal state, while ~ „is the
difference between the energies of the excited and
initial states.

We now wish to apply this formalism to the cluster
model developed in Sec. III. When the eigenvectors of
the excitation of the cluster model are substituted into
thematrix element (n

~

M
I

rrt) of Eq. (4.4), itis found
that the only nonzero terms are those arising from the
modes of A&, symmetry. The same result follows from
group theory.

In addition to the absorption by single excitations,
there is also a strong absorption in antiferromagnets by
pairs of excitations. This is believed to arise as shown
schematically in Fig. 3(1). The electric field of the
incident radiation induces a virtual transition in one
atom which then interacts with its neighbors through an
exchange interaction (Tanabe et a/. , 1965). In practice
the interaction may be written (Elliott and Thorpe,
1969) in terms of the electric dipole moment as

~-= Z Z A-pv~p(&)~Y( j)
Py

where the coe%cients A p~ depend on i and j. Since
exchange interactions are usually of short range, it
seems reasonable to restrict the summation over i and j
to nearest neighbors. Even with this restriction however
there are seven arbitrary constants needed to specify the
A 's for the nearest-neighbor interaction around a defect
in the perovskite structure. It is therefore usual to
further assume that the exchange interaction is of the
Heisenberg form, and to write

M.=A Q R.(ij)S(i) S( j), (4.5)

where R(ij) is a unit vector specifying the direction
between the ionsi and j, and the interaction is restricted
to nearest neighbors. In the perovskite structure the
defect modes which give rise to absorption are then
Ai,+Ti„, and E,+T». In practice, however, not all of
these pairs are observed. Since the interaction couples
most strongly ions that are nearest antiferromagnetic
neighbors the impurity absorption arises from pairs
of modes one of which is normally localized mainly on
the defect, and the other of which is localized on the
neighbor. The only such pair in the perovskite structure
is Aio(D)+Tlu, where Ai, (D) denotes the Ai, mode,
localized mainly on the defect. In the rutile structure
these pairs are Ai, (D)+E„and Aio(D)+B». Far-
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FIG. 3. Schematic diagram of processes occurring in absorp-
tion and scattering of light which take the crystal from its ground
state, g, to excited states, e, on one or more sites, i,j, via a virtual
state, e. The interactions inducing the virtual transition involve
either E, the electric vector of the light and/or J, the exchange.

from which it is convenient to define a polarizability of
the crystal so that

+INT g I apEa Ep
eP

infrared absorption therefore permits measurement of
the frequencies of some of the modes associated with the
defects, and also of some of the pair modes. In both of
these experiments, identification of the magnetic
character of the mode and the value of its g factor is
obtained by applying a magnetic field and observing the
splittings of the lines.

In Raman scattering experiments, light is inelastically
scattered by the magnons. The theory of the Raman
scattering in pure crystals has been reviewed in detail
by Fleury and Loudon (1968). We shall merely take
over the main points of their argument to crystals
containing defects. The one-magnon Raman scattering
arises as shown in Fig. 3(2). The electric field of
incident light E~ excites a virtual electronic transition
which then decays to a state with a diferent spin from
the original state by the emission of light described by
the electric field E8. The Hamiltonian for the interac-
tion between the light and the S component of the
spins is then found to be

HiNT= Q F(i)(EEE —E E )Sa(i),
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FIG. 4. Principle of fluorescence
measurements illustrated for Ni'+
in KMnF3. The ratio of the main
electronic transition to the ground
state splitting is reduced in the
drawing for clarity. The states
with S,=O and —1 are the states
containing one and two A1, excita-
tions on the defect (after Johnson
et al. , 1966).

when
J'.,= g r(i)Ls, (')~..—s.(i)~,.]. (4 6)

Sy substituting the eigenvectors for the cluster models
into the matrix elements for the polarizability, we can
readily see that only modes of A&, symmetry give rise
to single excitation Raman scattering.

Two-magnon Raman scattering occurs with the aid
of the process, shown in Fig. 3(3), which is closely
similar to that giving rise to two-magnon infrared
absorption. The polarizability is

I'.p gZ B.
——
p~ s(i)s~( j),

which even for very symmetric structures contains a
large number of parameters. It is usual to approximate
P p by assuming only nearest-neighbor interactions and
further to assume that the S's enter with a Heisenberg
form. The polarizability is then, for the perovskite
structure,

where

r,, =B&R (ij )Ap(ij )+(B2—-,'B&)h p. (4 g)

Terms in 8~ and 8~ belong to particular representations
(Elliott, et al. , 1968). This gives rise to scattering by
pairs of modes one of which is localized on the defect,
for the same reasons as already described for the far
infared absorption. The possible pairs in the perovskite
structure are Aig(D)+Ai, (X), and Aig(D)+E, . These
pairs can be distinguished because the scattering of the
former is isotropic while that of the latter is anisotropic.

In the rutile structure, the possible pairs of modes are
-'&i, (D)+Ai, (X),Ai, (D)+B2„and Ai, (D)+E„which
can all be distinguished by polarization studies. Raman
scattering may therefore be used to measure the fre-
quencies of the modes localized on the defects and also
of pairs of modes. Infrared and Raman studies together
provide particularly detailed information about the
frequencies of localized modes and also of pairs of

The scattering cross section for Raman scattering is
then defined by the Raman tensor (Born and Huang,
1954) in terms of the initial, n, and final states, m, as

I-p.~= Z p-&n
I
&-p I ~&(~ I »~ I

n»(~ —~--) (4 7)

modes, one of which is localized mainly on the defect
while the other is mainly associated with its neighbors.
Further information about the g factors of the modes
may be found by applying a magnetic held to the crystal
while the optical measurement is in progress.

Two other optical techniques have been used to
study modes around defects. One of these is the Quores-
cence which occurs when the impurity ion is excited to a
new state and then decays by emission of a photon to
either the ground state or one of the low-lying excited
states. The process is shown schematically for Ni'+ in
KMnF3 in Fig. 4. The technique has the advantage tha, t
whereas the other techniques, infrared spectroscopy
and' Raman spectroscopy, can be used to study modes
where the change in spin 5 at any site is ~i from its
value in the ground state, no such restriction occurs in
the case of fluorescence. The spin state of the excited
state may be quite diGerent. The disadvantages of the
technique are twofold. First, the basic mechanism of
fluorescence is uncertain so that it is dificult to make a
detailed comparison between experiment and theory, and
second, the excited state must be well localized, which
implies that there must not be excited states of the host
with energies close to those of the excited states of the
defect. The technique is therefore very good for studying
the localized modes of ions where excited states lie
within an energy gap of the host material. In practice,
the technique has been mainly used for Ni'+ in various
Mn'+ hosts (Johnson et a/, 1966).

It is also possible to study localized modes by study-
ing the sidebands on optical transitions. The process is
essentially that of fluorescence in reverse except for the
fact that both the exciton and localized mode are
created simultaneously. The localized mode is localized
predominantly on the defect. The disadvantage of this
technique is that there will be an interaction between
the localized mode and the exciton in an analogous way
to the occurrence of an interaction between the pairs of
defect modes discussed in Sec. III. Since this interaction
is usually unknown it is dificult to disentangle informa-
tion about the pure-defect mode from that obtained
about the pair of exciton and defect modes.

2. Neutron Scattering

The magnetic scattering cross section of slow un-
polarized neutrons for a wave vector transfer Q, and
frequency transfer co, is given for magnetic system by

(4.9)

where e and m, are the electronic charge and mass, g is
the neutron gyromagnetic ratio, and k' and ko are the
wave vectors of the scattered and incident neutrons,
respectively. The form factor of the ions F(Q) is
assumed to be the same for all ions, and for a system at
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absolute zero in the small Q approximation (Schwinger,
1937),

S.,(Q, )= Zt„(n I Z LS.(i)+-;L.(i))

X expkiQ R(i) ll m) &m
l Z LSt (i)+s4(i)j

'e

&( expL —iQ R(i))~ N)if(co co —„), (4.10)

FORM FACTOR OF LOCAL MODES IN

PEROVSKITE STRUCTURE

A, (O)

A, fN)

where
~
m) is the excited state of the system, and co „the

excitation frequency of that state from the initial state
f
st).
It is usually possible to rewrite the spin and orbital

angular momentum variables in terms of the effective
spin operators S',

S+,'L =b S'-,

where the coefFicients b may be found from Table I.
The intensity of the scattering from a particular excita-
tion, m, of a cluster may then be expressed in terms of a
reduced structure factor at low temperatures so that

S.,(Q, ~) = g F.(Q/m)Ft, (Q/m)'b(~ ~„),—

in which

F (Q/m) = (0
~ g b (i)S (i) exp(iQ R(i) j~ m),

(4.11)

where
~
0) is the ground state, and we have again

neglected the prime on the effective spin variable.
From these results it is clear tha, t inelastic neutron
scattering enables the frequencies of the modes of a
cluster to be determined. In addition, there is a variation
of the intensity with wave vector transfer Q, as il-
lustra, ted in Fig. 5, where

~
F,(Q/m) ~' is shown for the

different modes of the nearest-neighbor cluster in the
perovskite lattice. The behavior of the intensity is
clearly quite different for the A&„E„and Th„modes
and in principle allows each to be identified experi-
mentally.

In principle, two-excitation scattering may be
observed through the S,.(Q, ro) part of the cross
section. This arises because it is possible to excite two
A&, modes; one mode predominantly localized on the
defect and the other localized on its neighbors, without
altering the total spin of the crystal. Since however
the cross section for this process is very weak, it has not
been observed, and is unlikely to be of much practical
use.

Neutron scattering may therefore be used to deter-
mine the frequencies and to identify the modes around
defects. It has less frequency resolution than the optical
techniques. It has, however, the advantage that by
measuring the wave vector dependence of the intensity
it is possible to obtain not only the symmetry of the
mode but also, as shown in Fig. 5, the eigenvectors of
the modes when these are not entirely determined by
symmetry. This latter information cannot be directly

L-
CO

4JI-
X

[goo]

determined by optical techniques. In the sense that the
mode form factors allow the transverse exchange
J'(1) to be deduced, the information is similar to that
which is obtained by studying the two excitation proc-
esses optically. The other main advantage of the
neutron technique is that it may be used to determine
the host magnons. It is not possible to discuss the
effect of the defects on the magnons of the host within
the cluster model and so we shall therefore postpone
its discussion until Sec. V is reached.

3. Other Techniques

There are a number of other techniques which may
in principle be used to give further information about

magnetic defects. Measurements of the NMR fre-
quency of both the defect, its nearest neighbors, and the
host give information about the behavior of the
magnetization at each of these sites as a function of
temperature. This may then be analyzed to give in-
formation about the exchange constants between the
defect and the host (Butler et al. , 1970).Unfortunately,
the theory is very di%cult (see Sec. VII) and further-
more is uncertain because there is no reliable theory for
the temperature dependence of the magnetization of
pure materials.

Mossbauer measurements may also be used to deter-
mine the magnetization of, particularly, Fe'+ ions as a
function of temperature (see Wertheim et a/. , 1969).

7. THEORY OF DEFECTS USING
GREEN'S FUNCTIONS

1. Formalism and the Perfect Crystal

One of the most powerful theoretical methods which
has been applied to the problem of defects is that of
Green's functions. Unlike the cluster model, the theory

0 0.5 0,25
REDUCED WAVEVECTOR f = aq/2~

I'ro. 5. The form factor of the localized modes of the nearest
neighbor cluster in the perovskite structure for wavevector
transfer Q along three symmetry directions. The results for the
four modes, n, whose group theoretic labels appear on the right,
are given for both magnetic (solid lines) and nuclear (dashed
lines) zones.
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where p„ is the probability of the system being in a
state I n), and co „is the energy of excitation to the state
! m). Zubarev (1960) shows that this correlation func-
tion is related to a Green s function, G, which is analytic
over the whole complex frequency, co, plane.

[G((o+ie)—G(a)—ie))[n((o)+1)=—2siF(u), (5.1)

where n(a&) is the Bose occupation number

e(co) = 1/[exp(ar/k pT) —1)
and we are putting 5= 1 throughout.

In the upper half of the complex + plane, G is the
Fourier transform of the retarded Green's function

where

G&(AB, t) = itt(t) ([A (t), B(0))),

e(t) =1 t&0

=0
and in the lower half ~ plane it is the Fourier transform
of the advanced Green's function

G. (AB, t) = —ie( —t) ([A (t), B(O))).
The properties of G can, for our purposes, be obtained
from the equation

(uG(AB, (u) =b(t)([A(t), B(0)))+G([A, H)B, co).

enables us to treat the host crystal exactly and further
to solve the problem for isolated defects in great detail.
One of the advantages in using Green's functions lies
in the way in which they are very directly related to
experimental measurements. In Sec. IV, we found that
the physical properties of systems can frequently be
expressed in terms of correlation functions of pairs of
operators of the form

F(AB, ~) = g p„(e!A! m)(m! B!N)B((o—co „),
where, provided that we are not discussing Co++ ions
in the rutile structure, P~ and P4 are nonzero only if i
and j belong to the same sublattice, while for P2 and P3
i and j belong to different sublattices.

The equations of motion can be written using Eq.
(5.2); for example

(up&(ij, ra) = S '(S,(i))h;,

+(2S) 'QI('k)[G(s (k)S,('), S ( j); )

—G(s*(k)s+(i), s-( j);~))
+(2S) 'g I(ik)[G(S (k)S,(i), S ( j);~)

+G(S,(k)s~(i), S ( j);(u))+HgPr(ij, a)).

These equations of motion are solved at low tempera-
tures by making use of the decoupling procedure of
Tyablikov (1959)

(2S) 'G[s+(k)s*(i), s-(j); )=(s*(i))p (kj, )

and
&s,(i))=s.

The equations of motion may then be written in a
matrix form

g )crib, ), D(ik))P(k—j, (a) =8;,K, (5.3)

calculations later. We introduce four Green's functions
for the perfect crystal

p~(ij, ~) = (2S) 'G(s+(i) s-( j), ~)

p(~i, )=(2S) 'G(s-(i)s-(j), )

p(ij, )=(2S) 'G(s+(i)s+(j), ),

P4(ij ~) = (2S) 'G(s-(i) S+(j), ~),

(5.2)
where

Initially, we introduce the canonical transformation
of the spin operators on the down sublattice already
described by Eq. (3.10). The perfect crystal Hamil-
tonian is then [cf. Eq. (2.2)) unchanged for the intra,
sublattice interactions I.

0)

&0 1)

0)

EO -1)

L

H~= —Q Hgs, (i)+-', Q I(ij)S(i).S(j),
s.1

but for the inter sublat tice terms A, becomes for
isotropic exchange

A

H2=-', Q I(ij)[-,'(S+(i)S+(j)
+s (')s (j))—s, (i)s,(j)),

where the total Hamiltonian is H= Hq+H~.
In applying this formalism to the antiferromagnet,

we shall follow the work of Lines (1964),but rewrite his
results in a form which is more amenable to the defect

and

where

EP. P)

Dg Dg)

D. —D,)—
D, (ik) = SI(ik), kAi but on the same lattice,

Dg(ii) = —S g I(ik)+S Q I(ik)+H~,
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P(q, &o) = g P(ij, &o) exp[iq R(ij)],

where the summation is over a single sublattice.
The equation of motion (5.3) then becomes

(5.4)

[~l—D(q))P(q, ~) =K, (5 5)

where, in the notation of Sec. II, Eqs. (2.4) and (2.5),

( A(q) B(q) r

D(q) =I
k—Il(q) —A (q))

Using these results we can obtain detailed expressions
for Ps(q, co) and Ps(q, co) as

Ps(q, ) =[ +A (q))/I: '— (q)'), (5 6)

while

P (q, )= —Il(q)i[ '— (q)') (5.&)

where ~(q) is the frequency of the magnon of wave
vector q, Eq. (2.3).

We shall need the limits of these expressions as
os—+co+ie in order to calculate the scattering properties.
These are given by

Re[P, (q, ~))= [2~(q))-&

xl +foo(q)+A (q) &o(q) —A (q)
& [~—~(q))o [~+~(q)).

Im[P&(q ~))=[ sr/2+(q)) t[~(q)+A (q)]
x~[ —~(q))+[~(q)—A(q))h[ —(q)) },

while

while

D, (ik) = SI(ik) if k and i are on different lattices.

These equations are solved by introducing Fourier
transforms

frequencies co lying within the band of the host fre-
quencies and zero outside.

2. The Green's Functions for an Isolated Defect

Suppose that a defect is introduced into the lattice
at the site labeled 0. As already discussed in Sec. III,
this may give rise to changes in the elective spins,
exchange, and anisotropy constants. Although in
practice these may all be of importance, we neglect the
changes in the anisotropy constants, and the possibility
of more complex exchange constants than anisotropy
along the s axis. Although the theory may be readily
extended to include these features, it adds considerably
to the complexity of the equations. The terms in the
Harniltonian which involve the defect are then

Z {J'(Oj)LS*'(o)5*(j)+S.'(o)5..( j))
j=L

+I'(Oj)5,'(0)S.( j)}

+ Z fI'(Oj) [l5+'(0)5+( j)+lS-'(0)5( j)1
—I'(Oj)S,'(0)S,( j)}.

With these terms in the Hamiltonian, the equations of
motion for the Green's functions are modified. As with
the pure crystal, it is useful to define four Green's
functions. For example, we have

G, (ji, &u) = ,[S(i)-S( j))- ' G[5+(i)5 ( j), co),

where

5(i) =5 if i/0, and 5' if i=O

The equations of motions for these Green's functions
may then be obtained in a way similar to those for the
pure crystal. The result analogous to Eq. (5.3) is

g f~lha, D(ik))G(k—j, co) =b,,K+ g C(ik)G(kj, co),

«[P-(q, ))=—[~(q)/2 (q))
x I[~—~(q)). '—[~+~(q)). '}

Im[Ps(q, (o))= +[8(q) sr/2co(q) )
x f~[~—~(q))—&[~+~(q))} (5.g)

We can also show from these results that

where
f' C, Cs)

!C= I

(—Cs —Csg

Ci(Oj) = (5'5)'"I'(Oj) —(5'/5')'"I(Oj)

(5.9)

and
Ps(q, co) =Ps(q, —(o)

P4(q, ~) =Ps(q, —~).
The original Green s functions in real space [P(ij, &g))

can be obtained from these by the inverse transforrna-
tion to Eq. (5.4)

P(ij, co) =N P P(q, co) exp[—iq R(ij)].

These functions have then both real and imaginary
parts: the imaginary parts being finite over the range of

Ci( jo) = (5'5)'"LJ'( jo)-I(jo))
C,(00) = —5 g I'(Oj)+S P I'(Ok) —Hz

j=I, k=A

+SQ I(Oj) —5 Q I(Ok)

C ( jj)= ~5'I'(Oj) ~SI(Oj)

upper, lower j sign for j=A, I
C, (Oj) = (SS') I'(Oj) —(S /5') I(Oj)
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and

c,( jo) = (s's) "LJ'(jo)—I( jo)], j=A
where the index j refers to a neighbor of the defect.

In Eq. (5.9), the left-hand side and the first term on
the right-hand side are identical with those of Eq. (5.3)
for the pure crystal. The second term of the right-hand
side represents the perturbation introduced into the
crystal by the presence of a single defect. The equation
can be solved by making use of the solutions of the pure
crystal problem found in the preceding section. Using
Eq. (5.3) to give the inverse matrix to fa&lb;, D(—ik)]
gives

G(ij, &o) = P(ij, co)+ g P(iki, s&)KC(kik2)G(k2 j, &o).
klk2

(5.10)

This equation gives the exact solution to the single
impurity problem. Since the k indices are restricted to
the defect or the relatively few neighbors with which it
directly interacts, the solution is quite tractable. The
presence of the G on the right-hand side shows that the
exact solution includes multiple scattering of the spin
excitations by the defect. If this G is replaced by an
unperturbed Green's function P, then the solution gives
only the effect of the defect in first order perturbation
theory. The complete solution may be rewritten as

G (ij, a)) = p (ij, a))+ Q p (ik, a)) X (kik2, a&) p (kg j, (o),
kyk2

(5.11)
Ls'I'(oj) —SI(oj)]& 'where

shall discuss how the matrix X may then be inverted to
calculate the scattering from the localized modes.

We may see from this discussion, however, that the
frequencies at which the ReLM] is singular play an
essential role in the theory of magnetic defects. They
may be quite directly compared with the excitation
frequencies given by the cluster models of Sec. II. In
the present case, these frequencies have been calculated
incorporating the host in a far more satisfactory way
than was achieved by a cluster model. The approxima-
tions made in these calculations for the form of the
ground state are equivalent to those of the pseudoboson
technique described for the cluster models in Sec. III.
The results are not, therefore, necessarily better than
those of the cluster models. In fact, we may expect the
perturbation treatment (III.4) to work best' for
systems with small spin and for frequencies well away
from the band of frequencies of the host crystal. Con-
versely, if we are interested in effects with frequencies
lying within or close to those of the pure crystal, we
expect the Green's function treatment to give superior
results.

The matrix M(ij, a&) is of very similar structure to the
self-energy matrix of the cluster models. In particular,
it is possible and frequently advantageous to make use of
symmetry to block diagonalize the matrix in a way
similar to that used for the cluster models. When this is
done the expressions become particularly simple for the
E, and T~„modes of the perovskite structure. For the E
modes, the matrix M(ij, &a) reduces to

where

X(kikg, co) = g KC(kik3)M '(k3k2, a&)) (5.12)

M(ij, &u) = IB,,—Q P(ik, o))KC(kj). (5.13)

&& Z IIcos (&~)—cos(S~)t( +~(q))/I '— (q)'jI —1,
q

and for the T~, modes, it reduces to

Ls'I'(oj) —sl(oj)]x-
This solution is now a complete description of the for-
malisrn. The matrix M(ij, a&) is of size 2(I+1)&&2(v+1)
where e is the number of neighbors with which the
defect interacts directly. In the perovskite structure it
may reasonably be taken to be a 14&&14 matrix. The
unperturbed Green's functions and therefore the matrix
have real and imaginary parts.

There will clearly be a large perturbation of the
Green's functions if the matrix I is large. This will
occur when the M matrix is singular or nearly singular.
Since for co within the band of host excitation fre-
quencies the matrix has both real and imaginary parts,
there is no difhculty in performing the inverse for all
frequencies co lying within the band of the host spin
wave frequencies. We expect X will be la,rge, however,
for those frequencies for which the Ret M] is singular.
These frequencies are known as resonant frequencies.
Outside the band of host frequencies, there is no
imaginary part to M and singularities in M must be
treated more carefully. These frequencies correspond to
the frequencies of the localized modes. In Sec. V.4, we

&& Z I2 '(V. )L +~(q)]/L '— (q)']I —1

The frequencies of the E, and T1„modes are given by
the frequencies co for which these expressions are zero.
Similar expressions may be written for the A&, modes
and for all the different modes of the perovskite
structure, but several of them are considerably more
complex and will not be given in detail.

It is of interest to compare these results with those
obtained in Sec. III. If we make Ising model approxima-
tion

A (q) =(u(q) =6SI(1)+Hz,
the both of the above results give zero when co=co~

LEq. (3.3)].
The frequencies at which the matrix M(ij, or) is

singular have been calculated for various different sets
of parameters by a number of authors. Parkinson (1969)

' Cluster models work well for highly localized modes and the
difference between the perturbation and quasiboson technique
is greatest for small spin.
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has discussed the perovskite structure. He assumes that
all the exchange interactions are of the Heisenberg type
between nearest neighbors, J'=J', and that the anisot-
ropy of the host is negligible. His results for the fre-
quencies of the E, and T&„ local modes are shown in
Fig. 6 for increasing values of the parameter

p= (S'I'/SI) 1, —

and compared with the predictions of the Ising model.
He also calculates the frequencies of the A„E„and T&„
modes for S'/S= 1.2 and various values of I'/I.

The rutile structure has been considered by Lovesey
(1968),Tonegawa (1968), Shiles and Hone (1970) and
Walker' (private communication). Lovesey and Tone-
gawa discuss the rutile structure with Heisenberg
exchange interactions only between nearest neighbors
of opposite magnetic moment.

In Fig. 7 we show Lovesey's results for the frequency
of the A~, mode localized predominantly on the defect
atom as a function of the exchange I'/I. The anisotropy
was taken to be that appropriate for MnF2. The Ising
model predictions are essentially identical to those for
S'/S=0. 1.Lovesey and Tonegawa present calculations
of these modes for a variety of different parameters.
Shiles and Hone extend the calculations to include
firstly the effects of nonzero exchange between the
ferromagnetic neighbors at &(00c) and secondly to
allow for anisotropic exchange. The parameters in their
calculations are chosen to be appropriate for Fe'+ and
Ni'+ in MnF2.

2,0

D
E
3
3

& 1.0
LIJ

LLI
K
LL

I
I'

I

0.5 10 15
EXCHANGE {J '/J)

2.0

FIG. 7. The frequency of the AI, mode localised principally on
the defect as calculated by Lovesay (1968) for the rutile lattice
as a function of the Heisenberg exchange (J=1). Different
values of 5'/S are indicated on the curves. co,„ is the maximum
frequency of the host spin-wave band.

that the concentration is small enough that we may
neglect the interference between different defects, or,
alternatively, in the sense of Sec. VIII, we shall expand
the results in powers of the concentration of defects and
keep only those terms which are linear in the con-
centration.

Initially, Eq. (5.10) must be extended to include the
effects of many defects at the site labelled by d. The
equation may then be written schematically as

3. The Se1f-Energy of the Excitations
G= P+ Q PKC(d)G, (5.14)

The analysis of the preceding section was applicable
when only a single defect was present in the crystal.
fn practice, experiments are performed with a large
number of defects, which we shall denote by a concentra-
tion c. In this and the next two sections we shall assume

0
E
3

3 1.2

FREQUENCIES OF Ti 8 E

MODES IN PEROVSKITES
I

I
I

(3
LLI
CC

I.O
1.0

p ~ 2.0

FIG. 6. Dependence of T&„and Eg modes in perovskites (Park-
inson, 1969}according to Ising theory (broken line) and Green's
function theory. The fractional increase in the interaction, IS,
between defect and host is denoted by p and co .„,is the maximum
frequency of the host spin-wave band.

' Calculations have been done for Zn, Fe, and Ni in MnF2.

G= P+ Q PX(d)G. (5.15)

This equation di{fers from Eq. (5.11) in that it permits
scattering in succession at different defects, but it is
approximate because the multiple scattering at a single
defect d~ is included in X(d~) and hence the next
scattering can occur not at any defect but only at
defects other than d&. Equation (5.15) therefore over-
counts the scattering. This subject will be further dis-
cussed in Sec. VIII and until then it is sufhcient to note
that the error in Eq. (5.15) is only of order cm.

Equation (5.15) may now be averaged over the
randomly distributed defects. The terms in the equation
are then translationally invariant so that the averaged
Green's function becomes

G(q, co) = P(q, &o)+cP(q, co) X(q, &o) G(q, or), (5.16)

where the summation is over all the cX defects. In the
preceding section, we have seen that the solution to the
one defect problem incorporates the multiple scattering
of the spin excitations at the defect. We therefore look
for a solution to the above equation which includes all
the multiple scattering at a single defect but the scatter-
ing at different defects only correct to terms linear in
the concentration of defects. This then leads us to
rewrite the equation in the approximate form
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Mn F& ..Zn
I
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[q = OOt]
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In Fig. 8 we show calculations of the shift and width
functions h(q, cp) and F(q, &c) for zinc impurities in
MnF2. The results are shown only for those values of co

close to the frequencies of the spin excitations a&(q) of
pure MnF2. The width functions have a peak at about
1.3 THz corresponding to several resonant modes of
various symmetries at about this frequency. There is a
corresponding marked change in the shift functions at
about the same frequency. Provided that the concen-
tration of defects is small, so that cA and ci' are con-
siderably smaller than pp(q), it is frequently permissible
to represent the functions by constants, A[q, pp(q)]
and F[q, &p(q)], where pp(q) is the solution of the
equatloIl

(q)= (q)+c~[q, (q)]

-2.0— 0.3

I i
04

0.5 I.O I.5
FREQUENCY ~ (THz)

2.0

where

X(q, o&) = g X(ij, pp) exp {iq [R(i)—R( j)]I.
ej1

This equation may be rewritten to give

[ ~
—o(q) —c~(q, )]G(q, )=K (5.17)

where the self-energy matrix is given by

Z(q, cp) =KX(q, cp)

and may be shown to be of the form

FIG. 8. The width shift functions of band magnons with
wave vectors of the form q= (00&)2~/c in MnF2 containing Zn'+
impurities. The value of g is shown beside each curve and also
beside the arrows which give the frequencies of unperturbed
modes in pure MnF2.

In this approximation, the imaginary part of the
Green's function is represented by a Lorentzian centered
about ~(q) and of half-width cF[q, pp(q)]. In Fig. 9, we
show the calculated form of the imaginary parts of the
Green's functions using the shift and width functions of
Fig. 8, and assuming c=0.05. The results show that for
q= (0, 0, 0.2) (2pr/c), the curve is very close to a
Lorentzian in shape but at larger wave vectors there are
marked asymmetries which can only be understood on
the basis of the full frequency dependent width and
shift functions. The nonLorentzian character of the
results increases as the concentration of defects in-
creases.

In Fig. 8 it is noticeable that the magnitude of both
the shift and the width increase as the wave vector
increases. This behavior arises because unlike the
single mass defect problem, 6 and F depend not only on
co, but also on wave vector q. The increase with in-
creasing wave vector is not always the case as shown by
similar curves for Ni'+ impurities in MnF2 in Fig. 10.
In this case, the eHects are largest for small wave

Equation (5.17) is the basic equation for the Green's
functions of the spin excitations in an antiferromagnet
containing a few defects. It plays an essential role in the
theory through the remainder of this section.

If we assume that the self-energy is small compared
with the unperturbed energies of the spin excitations,
then the energy denominators in the Green's functions
may be written (&p—+&p+ie) by analogy with Eq. (5.8)
in the form

M
Z'.
UJ
I—
z'

0,5

cp&[cp(q)+cd(q, pp)+icF(q, cc)], (5.18)

where the shift in frequency h(q, pp) is the real part, and
F (q, &p) the imaginary part of

[1/2 (q)]{[~(q)+ ]~ (q, )+[~(q)—]~t(q, — )

+&(q)[~ (q )+& (q, — )]I. (5 19)

I

O.e
I g I, I I, {

I.O I,O I.2 1.4 I.6
FREQUENCY cu (THz)

FIG. 9. The imaginary parts of the Green's functions in
Mnp. ggZnp ppFg for different reduced wavevectors f[q= (00/i 2pr/c]
calculated from the frequency dependent width and shift functions.
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vectors, and smallest for large wave vectors. The
magnitude of the width function is also nearly an order
of magnitude less than for a zinc impurity. The origin of
these differences lies in the diferent pattern of the
resonant mode frequencies in the two materials. In the
zinc case, there are fairly well-defined resonant modes
at frequencies of about 1.3 THz, but in the nickel case
these resonant modes occur near the peak of the host
density of states (1.6 THz). Thus they are not well
defined and have little influence on the host modes.
The width function is therefore considerably larger for
the zinc impurities than for the nickel impurities.

Lastly, we should remark that the expressions for cA
and cF are only valid provided that they are small
compared with to(q). Close to a localized mode or an
exceptionally well-defined resonant mode, the more
accurate complete expressions for G(q, &o) given by
Eq. (5.15) are necessary.

4. Neutron Scattering

0.2

OI—

x
0

6(q, ta}

-I 0-

Mn Fq:Ni q = [$,0,0] 2w/a

0.3

.4

0.5

,5

In Sec. IV.4, the theory of the neutron scattering
cross section for a magnetic material was discussed.
The cross section for a momentum transfer Q and
frequency transfer or depends essentially on the func-
tions S e(Q, co), Eq. (4.10). This function is of similar
form to the spectral function introduced at the beginning
of this section

S p(Q, oo) =F(AB, to)

with the operators given by Eq. (4.11)

A= Z b (i)s (i) exp[iQ. R(i)],

where b (i) is a proportionality constant, and 8=A*.
The neutron scattering is then known once the Green's
functions, G(ij, to), are known in detail.

Initially, suppose we consider. a pure crystal. The
constant b (i) may be written as b. When the indices cr

and P are taken as x, using S+=S,+is„we find

S„(Q,to) = —[n(&o)+1](b'S/2sr)

X Z Im I[Pi(ij, to)+P4(ij, co)

+Ps(ij, ~)+P,(ij, &o)] exp iQ ~ [R(i)—R( j)]I.
Now performing the summations over i and j and noting
that P& and P4 are nonzero only for i and j on the same
sublattice, while P2 and P3 are nonhero only on diferent
sublattices, we find

S-(Q, )= —Ln( )+1](b'S/ )X

X Im IPi(q, co)+P4(q, co)

+ exp (iv R)[Ps(q, co)+Ps(q, &o)]}h(Q—q), (5.20)

where v is a reciprocal lattice vector and A(Q —q)
means that

-2.0—
s ~ s a I a ~ s s I s I I s I s

0.5 I.O 1.5
FREQUENCY (T Hz)

FIG. 10. The width and shif t funt. tions of band magnons
with q= (i, 0, 0)2 /aein MnFs doped with ¹'+calculated for
several values of g.

lattices. Substituting in the equation for P&, P2, P3, and
P4 yields

This is the well-known (Nagai and Yoshimori, 1961)
result for the scattering cross section for an antiferro-
magnet. In order to extend the result to a crystal
containing defects, there are two difhculties. In the
first place, the dynamics of the spin are altered. This
may be incorporated by replacing the P of Eq. (5.18) by
the G(q, to) deduced in the preceding section. In the
second place, the scattering of the defect is altered so
that the coeKcients b (i)S (i) for the defects may be
di6erent from those of the host atoms. Suppose the
defects have a coeKcient (b+hb)(s/S')' ', then the
cross section for a defect crystal may be written as the
sum of three terms:

S**'(Q,~) =k(b'S) Z Z C" (5.21)

S„'(Q, co) = —,
' (bib S) Z Z C'tt, (5.22)

S„(Q,to) = [n(co)+1][ESsb'/co(q)]

X[A(q) —exp (i& R)&(q)]

X I [b( — (q)]—&[ + (q)]}~(Q—q).

Q =&+q,

while R is the vector distance between the two sub-
S..'(Q, to) =-'(~b'S) Z Z C"s (5.23)
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where the function 4;j is

C,,= —(2x) '[m (co)+1]Im ([Gi(ij, (0)

+G2(ij, so)+Gs(ji, oi)+G4(ij, or)]

X exp {iQ [R(i)—R( j))}).
The first of these terms gives the scattering if there is

no change in the scattering length. The sums over i and

j run over all the atoms of the crystal and may be re-
written in terms of the G(q, oi) functions obtained
in the previous section. By analogy with Eq. (5.18) for
the pure crystal, the result is

S..'(Q, o~) = —[e(oi)+1](b'SN/~) Im {gi(q, oi)

+64(q, M)+ exp(iv R)[6,(q, oi)+63(q, oi))}

X~(Q—q). (5 24)

The second term arises from the interference between
the scattering of the pure crystal and the change in the
scattering produced at the defect. The appropriate
Green's functions for this scattering are defined by

GD(q, ~) =N ' P g G(ij, o~) exp {iq [R(i)—R( j)]},
i=d j

(5.25)

where the summation over i is restricted to only the
defect sites. In terms of these Green's functions the
scattering function is given by

S .'( q, (o) = —[n(o&)+1]2bhbN

X Im {CP(q, o~)+G4D(q, oi)

+«p(i~ R)[& (q, ~)+&~ (q, ))}~(Q—q)

(5.26)

The calculation of this term in the scattering reduces
therefore to the calculation of Go(q, o&). The basic
equation for the Green's functions was written schemati-
cally in Eq. (5.14). If we rewrite this equation in more
detail, it becomes

G(ij, or) = P(ij, oi)+ g g P(ik, co)KC(kd)G(dj, or)

+ g g P(ik, oi)KC(ke)G(ej, a&),

where d is a su%x which runs over all the defect sites,
and n runs over all the neighbors of the defects with
which they directly interact. This equation may now be
averaged over all configurations of the defects and
Fourier transforms taken to obtain

G(q, o~) =P(q, o~)+P(q, oi)KCo(q)Go(q, oi)

+P(q, ~)KC"(q) G (q, ~),
where

Co(q) = g C(kd) exp {iq [R(k)—R(d))},

and C~ and G~ are defined in a similar manner to CD

and G but with the restricted summations over the
neighbors rather than the defects. If this equation is
compared with the earlier result we obtained for
G(q, ao) in Eq. (5.16), then we obtain with the aid of
Eq. (5.12) for X(q, or),

Go(q, oi) = cLD(q, oi) G(q, co), (5.27)

where the matrix

Lo(q, co) = gM '(id, oi) exp {iq [R(i)—R(d)]},

and the matrix M is defined by Eq. (5.13), while M '
denotes its inverse. Collecting the results of Eq. (5.27)
and (5.26) then enables us to obtain the contribution to
the scattering S„'(Q, co).

The third contribution can be obtained in a similar
manner. We introduce Green's functions of the form

G (q, oi)=N 'g QG(ij, &u)
J=d

X exp {iq [R(i)—R( j)]}.
Now within the low-concentration approximation, we

may neglect the correlations between the defects when
this reduces, on averaging over all configurations of
defects, to

Goo(oi) = cG(dd, (a) (5.28)

which does not depend on the wave vector, q, and
furthermore has nonzero components only for Gx and
G4 . The contribution to the scattering is then

S»'(Q, o~) = (Ab)'S Im [Gi (&o)+G4 (oi)] (5.29)

which is also independent of the wave vector transfer Q.
The calculation of GDn(~) is most readily performed

from Eq. (5.10). Equation (5.10) may be written as

G(id, oi) = P(id, &0)+ Q P(ik, (a)KC(kik2)G(k2d, oi).
kgkg

If we consider the index i to take on values appropriate
to the defect and its e neighbors, these equations form a
2(v+1) set of coupled equations. The solution is

formally

G(id, (u) = Q M
—'(ik, (u) P (kd, oi),

where M ' is the matrix inverse of the matrix of Kq.
(5.13). The required Green's functions are then
obtained from

G(dd, oi) = QM '(dk o~)P(kd o~)

when the scattering is obtained from Eqs. (5.28—
5.29).

Now that the scattering cross section has been ob-
tained formally, let us discuss the form of the scattering
in practice. When the scattering occurs within the band
of frequencies of the host crystal, the largest con-
tribution arises from the contribution S, (Q, &o) of
Eq. (5.24) and is peaked around the frequencies of the
host lattice o0(q). If the shift and width of the peaks are
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small, then the expected form of the scattering is a
Lorentzian peak centered on &o(q) =to(q)+cA[q, co(q)]
and of half-width I'[q, co(q)]. In practice this seems to
be a very adequate approximation to the scattering of
systems containing only a low concentration of defects.

A more accurate representation of the scattering is
obtained by using the full frequency dependent self-
energy X(q, &o) of Eq. (5.17). The peaks in the imagi-
nary parts of the Green's functions G&, 62, 63, and G4

may not then be of I.orentzian shape and also may be
diferent for each of the different Green's functions.
The numerators in the expressions for the individual
Green's functions may diGer. Furthermore since the
scattering, Eq. (5.24), depends on Im (Gq+G2+Ge+G4)
for a nuclear reciprocal lattice point and

Im (Gg+G4 —G,—Ge)

for a magnetic reciprocal lattice point; the detailed
shape of the scattering for different wave vector
transfers Q, but the same wave vector q, is in principle
di6'erent. In practice, however, this difterence is small
as shown by the detailed calculations of Fig. 11 for the
scattering function S„'(Q, co) for these two different
types of wave vector transfers in MnF2 containing 5%

20—

IO—

60—

40—

20—

K Co Mn g q=(0.5,0,0}2n/a

NEUTRON SCATTERING FROM

Mn Fa/Z n q=(0, 0, 0.5}2w/C
050 5,5 60

FREQUENCY (THz}

0
FIG. 12. Neutron scattering from KCo(}.7~Mn0, 28F3 at wave

vector q=(0.3, 0, 0)2x/g in nuclear (E) and magnetic (M)
zones. The total scattering (solid lines) divers appreciably from
the host contribution S '(Q, co) (broken lines) only in nuclear
zones.
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FIG. 11. Neutron scattering from Mno 9~Zno osF2 for q=
(0, 0, 0.3)2m/c in nuclear (E) and magnetic (3f) zones. The
lo~ver part shows the host contribution S ' (Q, ~) and the upper
part shows the host-defect interference term S '(Q, co).

of Zn. The intensity of the two peaks is different, but
their shapes are very similar.

The interference term S„'(Q, &o) depends on the
Green's functions Go(q, co) through Eq. (5.26). From
Eq. (5.27) we have

Im [G~(q, to)]=c Re [LD(q, &o)] Im [G(q, &)]

+c Im [Lo(q, (o)] Re [G(q, &o)].

This result shows that there will be one contribution
proportional to the Re[G(q, co)], which is likely to be
asymmetric about the frequency co(q) at which the
imaginary part is a maximum. This latter term will

tend to alter the shape of the scattering and more
especially tend to alter the frequency at which the
scat tering cross-section peaks.

In practice these terms appear to be small a,s shown
in Fig. 11. The contribution to the scattering from a
particular wave vector q=(0, 0, 03)2 /sc for 5% of
zinc impurity in MnF. is less than 4% of the total
scattering. For wave vector transfers close to a magnetic
lattice point the contribution is peaked in a manner
very similar to that of S„'(Q, to), but near nuclear
lattice points it is much smaller in magnitude and tends
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the matrix M(ij, co) is singular at a frequency a& lying
outside the band of frequencies of the host spin system.
In Fig. 14, we show the qualitative behavior of the
eigenvalues of the matrix M(ij, co) for Ni defects in a
5=2.5 perovskite host as a function of or. The fre-
quencies of the local modes are found by the intercepts
of the eigenvalues with the zero line. Near the region of
the singularity we assume that the matrix M '(ij, &o)

may be written as

N (sj, col.)serb(&o &»z, )—

The matrix N (ij, ao) may be found by diagonalizing the
matrix M(ij, co) to give eigenvalues f(X) and eigen-
vectors e(X). The matrix inverse is then given by

ZCe'() )s'(~)/f()t)],

I'IG. 13. The defect contribution S '(Q, co) to the neutron
scattering for Ni'+ and Zn2+ impurities in MnF2. Comparison
to the density of states curve for the host crystal, Im (P(dd,
c») j, is shown.

to be asymmetric about the peak frequency. In practice
however, the effects of these terms on the cross section
are negligible. In order to illustrate the effects in more
detail Fig. 12 shows S' and the total scattering com-
puted for a crystal of K Coo.»Mno. »F3. Although the
theory is not expected to be valid at these concentra-
tions, the results do show some interesting predictions.
Near the magnetic lattice point there is little difference
between the total scattering and the contribution
S„'(Q, &o). On the other hand, near a nuclear lattice
point the total scattering is markedly different from
that predicted for scattering near a magnetic lattice
point.

The third term in the cross section S„'(Q, t») is
independent of the wave vector Q, and is illustrated in

Fig. 13 for both zinc and nickel impurities in MnF2. If
the effect of the defect in the M(dk, cu) matrix of Eq.
(5 30) is neglected then Im LG(dd, s&)]= Im P (dd, ~)];
the scattering is independent of the properties of the
defect, and represents a density of magnon states of the
host crystal. In Fig. 13 we show Im $P(dd, ~)] as the
pure crystal result, and it may be seen that the calculated
S,,'(Q, cg) are similar in shape but markedly different
in detail. The shape of this term in the scattering does
therefore depend on the nature of the defect. The
magnitude of this term is very small. The calculations
for MnF2 containing zinc impurities predict that the
peak in the contribution S„'(Q, co) is only 0.03 jo of the
height of the peak from the scattering shown by the
S, '(Q, t») curve in Fig. 11.

The expressions for the scattering within the band of
host lattice frequencies have shown, for small con-
centration of defects, that the contributions S,'(Q, ca)

and S„'(Q, &v) are in practice small compared with
that of S '(Q, t»). In the case of the scattering from a
local mode this is not the cae. A local mode arises when

where the summation is taken over all those modes
which are degenerate and singular at cv=coL, . The
scattering cross section may then be deduced by sub-
stituting this expression into the equations for the

I
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~ »»
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~ »»
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FREQUENCY

FIG. 14. The eigenvalues f(P ) of the defect matrix M(ij, co)
as a function of frequency for Ni'+ in an S=-.', perovskite host
(schematic). Strong singularities occur above the band when
Bf(X)/Bco is small and f(P) crosses zero. The AI(D) mode is not
shown as it occurs at a much higher frequency. Numbers 1, 2, 3,
give the degeneracies of the modes.

where T denotes the transpose operation to a left
eigenvalue, since the original matrix M is not symmetric.
If we consider this expression close to the frequency coL,

at which the matrix M(ij, ra) is singular, then one or
more of the eigenvalues is singular so that f(X)=
az(~r, —cv) . When we permit r» to have a small imaginary
part then we have

(5.30)
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scattering cross section and extracting the parts
proportional to 8(to to—t, ) It.is, however, easier to obtain
the contributions to S„'(Q, to) and S„'(Q, co) directly,
bv calculating the cross section for a crystal containing
a single defect and then multiplying the result by the
number of defects. This procedure enables us to use
Eq. (5.11) for the Green's function and to write

Im (G(ij, tot) j= Q P(ikg, tot)srN(k~ks, tot)P(ksj, tot).

INTENSITY OF LOCAL MODE IN Mn F~/Ni

I I I

[(oo] .--. ... ', [oog]
/

(5.31)

We can then obtain the imaginary part of G(q, cot,)
by summing over the indices i and j and taking the
appropriate Fourier transform, which when averaged
over all the defects gives

Im [G(q, co&)j=csrP(q, tot)N(q, co&)P( —q, tor),

V)
Z',

I

Z',

S2 /
2S

I
--

I

where
(5.32) 0 0.25 05 0.25 0 0.25 0.5 ' 0.25 0

$ =aq/2~ WAVEVECTOR $ =cq/2n

N(q, ~i) = Z N(st', ~~) exp Iiq I:R(')—R(j)1].

The Green's functions required for the interference
term are Gn(q, tot, ). These can be obtained by taking
the index i to be the defect site, summing over all the j
sites with appropriate exponentials, and averaging over
the diferent defect configurations to obtain

Im LGo(q, co&)j=csrNo(q, ») P (q, to&),

FIG. j.s. The intensity of the local mode in MnI'2 containing
Ni'+ impurities. Results for wave vectors in magnetic (M) and
nuclear (S) zones are shown, and the contributions to the
scattering are the host scattering, S', the host defect interference
term, S', and the defect scattering, S'.

where

Nn(q, toL, ) = Q P(dk, oot, )N (kj, toL, )

within the band of host frequencies but not for the local

(5 33) mode scattering. This approximation might well fail if a
resonant mode occurred at a frequency where the
density of states of the host lattice is very small. The
effect of the S' and S' contributions to the scattering
would then be relatively enhanced at those frequencies.

X expfiq LR(d) —R(j)j}.
The third contribution arises from G (to) and is given
by

Im [.G (tot,)j=c~ Q N(dk, (ot,)P(kd, toL,). (5.34)

When Eqs. (5.32)—(5.34) are substituted into Eqs.
(5.24), (5.26), and (5.29), respectively, the total
scattering from the localized modes is obtained.

Unlike the case of the scattering at frequencies lying
within the band of frequencies of the host crystal, all
three contributions are now of comparable size. In Fig.
15 we show the scattering calculated for the local mode
produced when Ni impurities are introduced into MnF2.
The curves 1-3 give the three contributions to the
scattering at different wave vectors within the magnetic
and nuclear Brillouin zones. Contribution 3 is inde-
pendent of wave vector as expected.

In conclusion it is noted that the scattering depends
on P(q, tor, ). These terms will be especially large if
&ot, oo(q) is small, s—o that we may expect the scattering
to be largest when the local mode and band modes have
similar frequencies.

We have suggested that it is permissible to neglect
all the scattering except the S,'(Q, to) contribution

S. Infrared and Raman Scattering

y„p(to) = (1/Est)G(M Mp, to), (5.35)

where the dipole moment operators are defined in
Sec. IV, Eq. (4.3), as

M =tsar Q g p(i)Sp(i),

and e is the volume of the unit cell. The "g" factor may
be taken as a scalar for all ions other than Co'+, and
hence we shall neglect these complexities. Thus the
susceptibility may be written in terms of the Green's

(a) The Sirtgle Excitatiorts

The form of the interaction between the incident
electromagnetic waves and the spin excitations of a
crystal was discussed in Sec. IV. The Green's function
theory of the interaction with the single excitations is
very similar to that already presented for the neutron
scattering. The expression for the susceptibility of the
crystal, Eq. (4.4), may be rewritten in terms of the
Green's function
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functions as

x**(~)=(tp'/2») Z S(i)"'g(i)S(j)"'g(j)

X Q Gi(ij, co). (5.36)

For a crystal containing defects this may be written in
terms of the Green's functions G, G, and 6 to give

x**( )=(Sg'/~) ZG (o, )+(2Sg~g/~) ZG"(0, )

+S(~g)'Z g~' («) (537)

The g factor of the host crystal is written as g, and for
the defect the g factor is (g+hg)(S/S')'I'. Similar
expressions for the Co'+ ion are more complex in form
but not in physical content.

The Raman scattering may also be expressed in
terms of these Green's functions. The expression for the
Raman tensor, Eq. (4.7), for suitable geometry is
equivalent to a function F(PP+, cv) where the operator
P is defined by Eq. (4.6).

The Raman tensor for one magnon scattering then
becomes

I„„((s)= —Pn (a) )+I /m ]1V

X Im LSF' g 6~(0, &a)+2SFEF g G~D(0, u)

+SAF2 Q GPo(0, (o)j, (5.38)

where F is the Raman scattering coupling coefFicient for
the host and (F+3F) (S/S')'I' is the coefFicient for the
defect.

These results show that the predicted forms of the
infrared absorption and of the one-magnon Raman
scattering cross section are very similar to those pre-
dicted for the neutron scattering. In many cases, how-
ever, the two magnon Raman cross section, which has a
different form, dominates the spectrum. The optical
results are limited in that measurements may only be
performed for Q=o, but have the advantage of greater
resolution and sensitivity.

The main features of the observed spectrum are the
band modes with a shift in frequency and increase in
width over those of the pure crystal, and an interfer-
ence term which modulates the scattering particularly
in the neighborhood of the band modes. This modula-
tion depends on the ratios of hg/g, AF/F, and Db/b for
the different experiments. The detailed shapes of the
susceptibility or cross sections will therefore be different.
All three cross sections may show localized modes, but
for certain symmetries of localized modes the cross
sections are zero for the optical experiments. At fre-
quencies well away from the frequencies of band or
localized modes, the cross section is dominated by the
GoD(0, &o). No measurements of this type of scattering
have as yet been reported.

(b) Two Ex-citatioe Processes

In Sec. IV on the experimental techniques, it was
shown that optical measurements provide information
about the energy needed to excite pairs of excitations.
The electromagnetic field then couples with pairs of spin
deviation operators on neighboring sites. In principle
the contributions to the susceptibility or Raman
scattering from these processes may be calculated by
use of the Green's-function techniques. The results
depend not on the Green's functions already obtained
such as G(S+(i)S ( j), &o) but on Green's functions of
the form G(S+(i)S (i'), S+(j)S ( j'), ~), wherei and
i' and j and j' are neighboring sites. Although in
principle the technique that may be used to calculate
these Green's functions is similar to that described for
the simpler ones obtained above, in practice it is by no
means so easy. DifFiculties arise in the choice of a
decoupling scheme for the higher order Green's func-
tions which arise in the equations of motion, and no
attempt to solve this difFiculty has been reported.

Thorpe (1969, 1970) has used a very convenient
approximate way to calculate these Green's functions.
Initially he notes that the pair modes of most impor-
tance experimentally are those consisting of an excitation
which is very much localized on the defect together
with an excitation which is almost entirely localized on
the neighbors of the defect. His calculation of the pair
Green's function then proceeds by assuming that the
excitation localized on the defect has a frequency co&

and is entirely localized at the defect site. He then
calculates the Green's function G(S+(i)S ( j), co)

assuming that the aforementioned localized excitation is
already present in the crystal. In other words he then
uses the same techniques for calculating the Green's
function as already described except that in the
decoupling procedure (S,(i) ) is written as S when i is a
host atom but as S'—1 when i is a defect. The only
difference in the equations for the Green's function
then arises in the matrix C, Eq. (5.9), where the ele-
ments Ci( jj) become

c (jj)= w(s' —1)1'(oj)~sl(oj)
with upper, lower signs for j=A, L. (5.39)

The frequency transfer in the experiment 0 is then
given by Q=&o+ion.

Since, within the low-concentration approximation,
there is no interference between the defects, the infra-
red absorption or the Raman scattering from the pair
modes is proportional to

c g Fo;Fi); Im G(ij, 0—coo),

where the coefIIcients I"D,, I'D; are the infrared, Kq.
(4.5), or Raman scattering, Eq. (4.8), coefFicients
describing the matriz elements between the defect and
its near neighbors i and j. These expressions were
evaluated by Thorpe for Ni'+ ions in both KMnF» and
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also in MnFs. The results are shown in Figs. 16 and 17.
In Fig. 16 is also shown the difference between the
results calculated by Thorpe's modided decoupling
scheme and by neglecting the interaction between the
excitations.

VI. COMPARISON BETVfEEN EXPERIMENT
AND THEORY

In this section we are concerned with collecting the
available experimental and theoretical work on the
various different defect systems. We shall restrict
attention to systems containing only a small concentra-
tion of defects and to results obtained at low tempera-
tures. Of particular interest is a comparison of the exper-
imental results with the various different theoretical
predictions when both are available.

ISO I60 I 70 I 80
FREQUENCY (cm ')

15O 160 170 I 80

EREQUENCY {cm I)

Fra. 17. Raman scattering in Ni:MnFa from the A»(D)+Be
modes (left part), and the A1, (D}+Bmg mode (right part). The
theory of Thorpe (broken lines) is compared with the Raman
results of Moch et at (1968). .

BIO 520
FREQUENCY (cm ')

FIG. 16. Raman scattering in Ni: KMnF3 from the A1(D) +E,
pair mode. In the absence of interactions the 8-function shown
at the sum of the A1(D) and L&' mode frequencies is expected.
The theory of Thorpe (1970) (broken lines) is compared with
unpublished results of Moch et al. referred to by Thorpe.

The neutron scattering measurements gave the
frequency of the Ai, (D) mode and approximate values
for the Ato(X), Zo, and. Tt„modes. Unfortunately in
the experiment it was not possible to identify these
individual modes. In addition the frequencies of the
band modes were measured as shown in Fig. 19. The
results are collected in Table 3.

Theoretical calculations of Ni'+ impurities in KMnF3
were first performed by Misetich and Dietz (1966) who
found that a cluster model explained the behavior of
the Ai, (D)+Ai, (D) mode Cluste. r models have been
further used by Thor pe (1970),whose model is identical

180-

1.KMnF3. Ni

Experimentally this system has been studied by
fluorescence measurements (Johnson et al. , 1966), by
Raman scattering, (Parisot et al , 1971), a.nd by
neutron scattering (Holden et al. , 1971a). In the
fluorescence measurements, Fig. 18, the frequency of
the A»(D) mode and also the frequency of the pair
mode Aro(D)+Are(D) were obtained. The other peaks
occurring in the spectrum were assigned as host mag-
nons or phonons from measurements at different tem-
peratures, and from polarization and absorption
spectroscopy. The frequency of the pair mode is greater
than the sum of the two Ai, (D) modes by 0.36 THz.
The Raman scattering measurements of Parisot eI, al.
(1971) give the frequencies of the Ato(D)+So pair
modes as shown in Fig. 16.
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(Johnson et al. , 1966).
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FIG. 19. Sand modes and shell modes in KMnQ. 97NiQ Q3F3

measured by neutron scattering (Holden et ul. , 1971a). In the
experiment the local modes occurring near the top of the band
were not resolved.

to ours and by Parisot et al. (1971a) who took clusters
that are somewhat larger and who took account of both
nearest and next-nearest neighbor exhange. Thorpe
(1970) and Holden et al. (1971)have used the Green's
function technique (Table 3). In all of the calculations
I' was found by fitting the theory to the observed A i(D)
mode, and then that value of I' used to predict the other
frequencies. All of the calculations predict that the
frequency of the E„T», and A»(X) modes lie im-
mediately above the top of the band of pure KMnF3,
2.28 THz. They therefore give rise to three localized
modes which are presumably the origin of the band
observed in the neutron scattering experiment with a
frequency of 2.17%0.15 THz. The frequency of this
band appears to be slightly less than predicted by the
theories.

The effect of finite concentration (3%%uq), on the other
hand, should be to raise the shell mode frequencies
since I'5&IS. Nonetheless, when the possible effects of
interaction between the shell modes at 3% concentra-
tion are considered, it is possible for a frequency of 2.17
THz to be observed at the zone center and a frequency
higher than 2.28 THz to exist at the zone boundary
where the shell modes and the host band modes are
not resolved. Interaction will be most important in
systems such as the present one where the frequencies
of the localized shell modes lie so close to the band that
they may be expected to spread out over many Mn'+
ions around each Ni'+ ion.

As explained in the previous section, Thorpe (1970)
has calculated the frequencies of the pair modes. %hen
an Ai(D) localized mode is present on the defect the
frequency of the other localized modes is reduced to
below the top of the KMnF3 band. The Raman scatter-
ing from the Aig(D)+E, pair mode then has a finite
width which cannot be accounted for by the Ising and
cluster models. Figure 16 shows that Thorpe's calcula-
tions account for the width very satisfactorily. The
frequencies of the pair modes are also accounted for by
the cluster models of Parisot et al. (19/1).

TABLE 3. The frequencies (THz) of the modes in KMnF3. Ni
obtained from experiment and from calculations on di6'erent

models.

KMnF3. Ni

Mode
Green's

Observed Ising Cluster function

A 1Q(D)

Eft
~1e
AIQ(N)
EA~. (&) +A~. (&))"~

—2A1g(D)
a1g(D) +E,
I'(1)

7.68~0.01' 7.68
2 17~0 15b 2 41
2. 17~0.15b 2.41
2 17~0 15b 2.41
0.35%0.028 0.0

7.68
2.42
2.42
2.37
0.40

7.68
2.37
2.36
2.33
0.42

9 50c 9.58 9.58 9.51
0.512 0.513 0.53

Johnson et al. (1966).
Holden et al. (1971a).' Parisot et al. (1971).

Green's function calculations have also been per-
formed of the shift and width of the band modes for a
3% nickel sample. The results. which are shown in Fig.
20 predict very small shifts and widths which are
qualitatively in accord with experiment. Quantitatively
the comparison shown in Fig. 20 suggests that the ex-
perimentally observed frequencies of the band modes are
larger than the theoretical prediction. It should, how-
ever, be noted that the neutron groups of the modes
with t greater than 0.3, 0.2, and 0.15 in the L1007,
L110j, and (111j directions, respectively, contain
scattering from the localized modes above the band and
hence the center frequency of the groups will not give a
reliable estimate of the frequencies of the band modes.
No experimental shift is shown for /=0 because of the
diSculty of measuring a zone center mode of very low
frequency.

The intensity of the neutron scattering from the four
localized modes is shown in Fig. 2I. A comparison of the
calculated intensities with those of Fig. 5 for the cluster
model shows considerable differences. These differences
are largest for the modes of the neighbors and arise
largely because these modes spread out to large dis-
tances around each defect. Unfortunately the fre-
quency resolution in the neutron experiment is in-
adequate to separate the intensity from the different
localized shell modes, or to separate the intensity of the
shell modes near the zone boundaries from that arising
from the band modes. It is therefore not possible to
make a detailed comparison of theory and experiment
at present.

In conclusion, those experimental results that are
available for KMnFs/Ni are in accord with the theory.
The value of the Mn —Ni exchange parameter differs in
the different theoretical treaments by a small amount
but in all cases is quite close to the square root of the
product of exchange parameters of KMnF3 and KNiF3,
0.566 THz.
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FIG. 20. The width and shift of band
modes in KMn0. 97Ni0. Q3F3 as calculated
from Green's function theory (solid
lines), and as measured by neutron
scattering (full circles) (Holden et al. ,
1971a).
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STRUCTURE FACTOR FOR LOCAL MODES OF KMnF /Ni
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FrG. 21. The structure factor for local modes in Ni:KMnF3
in magnetic (solid lines) and nuclear (broken lines) zones. Note
that of the modes that are close to the band, the intensity is
largest for modes that are entirely on the neighbors.

Measurements have been made in the similar system
RbMnFs'. Ni by Johnson et al (1966.) and by Parisot
et al. (1971).In the latter Raman experiment, the single
E mode was not observed although Oseroff et al. (1969)
claim to have observed this mode at 2.19 THz with
different crystals. The results are very similar to the
KMnF3 system and the calculations by Parkinson
(1969) and Thorpe (1970) are in good agreement with
experiment. We shall not therefore discuss these results
in detail.

2. KMnF3. Fe

No measurements or calculations on this system have
as yet been made.

3. KMnF3'. Co

This system has been studied with neutron scattering
techniques by Svensson et al. (1969a). The results
showed a localized mode with a frequency of 6.55%0.15
THz, and band modes which were very similar to those
of pure KMnF3 as shown in Fig. 22. The latter result
was particularly surprising in view of the large con-
centration, 20%, of cobalt ions present in the specimen.

The interpretation of the results in this system is
complicated by the need to allow for the mixing of the
cobalt levels by the exchange fields of the surrounding
ions. The mixing of the levels has been calculated by the
same techniques as those applied to KCoF& (Buyers
et a/ , 1971), with. the molecular field chosen to be that
appropriate for Co ions in KMnF3. The results are that
the ground state g and 6rst excited state e have the
matrix elements:

It is then straightforward to extend the Ising model

to allow for these matrix elements. When this is done it
is found that the localized mode Ai(D) gives a nearest-
neighbor exchange interaction I' of 0.306&0.020 THz.
The large error results primarily from the uncertainties
in the matrix elements. The model predicts the fre-

quencies of the other defect modes to be

(Ai, ) = (T,) = (E)= 2.26 THz,

which is below the top of the KMnF3 band. They do not
therefore give rise to additional localized modes as were
found in the Ni case, nor were any observed in the
experiment.
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In order to perform cluster model or Green's function
calculations, a form must be assumed for the transverse
part of the exchange interaction. Although there is no
theoretical justification for a Heisenberg form, neutron
measurements of the magnons in KCoFs (Holden et al. ,
1971b) are consistent with Heisenberg exchange and
we have used it in the calculations. The results of a
cluster model calculation are not then significantly
diferent from those of the Ising model except that they
do predict the dependence on momentum transfer Q
of the intensity of the scattering from the localized
mode. This is shown in Fig. 23 and corresponds to a
probability amplitude for spreading (III.3) of 5'Po

compared with the 8% probability observed.
As usual, the Green's function calculation was per-

formed by fitting the exchange constant to the local
mode frequency found by Svensson et al. (1969a).
This exchange constant was within error the same as
that obtained by the Ising model, while the frequencies
of the other zeros of the M matrix were very similar to
those of the cluster model. The change in the frequency
of the band modes was calculated and is shown in Fig.
22. The theory agrees with experiment, in that the
changes are very small even for a 20% concentration
but they are larger than the experiment near the zone
center. The intensity of the scattering from the localized
modes was also calculated and is compared in Fig. 23
with that obtained experimentally. The agreement
between experiment and both the Green's function and
cluster model theories are very satisfactory. This
suggests that the assumed Heisenberg form for the
exchange interactions is a reasonably good approxima-
tion, even though theory suggests that the interaction
to be of a more complicated form. Better experimental
results may show that a more complicated form is
needed.

The square root of the product of the exchange

constants for KCOF~ and KMnF3 is 0.31 THz which is
only 10%%uq larger than that obtained for the exchange
between cobalt and manganese ions.

RbMnF3.'Co has been studied by Raman scattering
techniques (Moch et a/. , 1971).They observed a peak
at 7.68 THz which they assigned to the Arg(D)+E,
pair mode. Using this assignment they found that I'(1)
was approximately the product of the pure RbMnF3
and RbCoF3 exchange constants.

INTENSITY OF LOCAL MODE IN KMn F:Co
I I I I

Q = 2~/0 (.$, t'„2-f)
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FIG. 23. intensity of the local A&(D) mode in KMnp. 8Cop, 2F3.
The experimental results of Svensson et al. (1969a) (full circles)
are compared with the two theoretical calculations described in
the text. The wave vector transfer is Q, and the atomic form
factor of the magnetic electrons is f(Q).

09 I. O

4. KMnF3'. Zn

In this system, the zinc forms a vacancy in the
magnetic lattice so that there are no adjustable param-
eters in any calculation. Unfortunately no experiments
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FIG. 24. Width and shift in units
THz of the band modes in KMn0. 9~-

Znp. 05I'3 from Green's function theory.
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FIG. 25. Raman scattering observed in 1—2% Ni-doped MnF2
by Moch et al. (1968).The line near 167 cm ' is associated with
the pair mode A1g(D)+E„and the 164.5 cm ' line with A1,(D)+
82LI. The weak scattering at 185.5 cm ' is not understood.

150

have as yet been performed on this system. Calculations
have however been made using Green's function tech-
niques. No localized modes are predicted but a marked
shift and width is predicted for the band modes as
shown in Fig. 24 for a crystal containing 5% of Zn. The
large width and the anomalous shifts occur when the
band modes have frequencies equal to zeros of the M
matrix, Eq. (5.13), which correspond to a frequency of
about 1.4 THz. An Ising model gives a frequency of
I.9 THz for these modes showing a surprisingly large
change in the frequency between the results of an Ising
model and the better Green's function calculations.

S. MnF2. ¹

The experiments and the theoretical calculations for
the rutile structure matrials are more complex because
of the lower symmetry and also because there are two
exchange interactions of importance in the pure crystal.
Experiments have been performed on Ni impurities in
MnF2 with fluorescence techniques (Johnson et al. , 1966),
with infrared absorption (Dietz et al. , 1970), and with
Raman scattering techniques (Moch et al. , 1968;
Oseroff and Pershan, 1968). The Raman results are
shown in Figs. 25 and 26 and the small differences are
likely due to different concentrations. The frequencies
are listed in Table 4. Fluorescence gives the frequencies
of the Aio(D) mode and the Aio(D)+Aio(D) pair
mode, Raman scattering gives the frequencies and
widths of the pair modes Ato(D)+E„Aio(D)+Ao,
and infrared absorption gives the frequency of the
Aio(D)+Bi mode. The g values have also been ob-
tained for some of these modes (Dietz et al. , 1970).

The theory of Ni in MnF2 must take account of the
change in anisotropy at the impurity. This was dis-
cussed in Sec. II and was taken in the calculations to be
of the form

0.12(S,'(0)'—1).
In the Ising model calculations of Table 4 we have then
used the measured frequency of the A&o(D) mode to
calculate exchange constant, I2', between the nickel
and manganese ions assuming that Ij' is zero. The
results are in quite good agreement with the experi-
ment. The exchange constant deduced from the product
of the square root of the exchange constants in MnF2
and NiFS is 0.176 which is only 5% different from that
given by the Ising model. The frequency of the neigh-
bors ~N2 on this model is 1.57 THz which is below the
top of the band in pure MnF2 at 1.64 THz.
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Mn F~+.654/o Fe

~xy

26.5

Mn F&+ .13 /o Ni

formed of the frequencies and widths of the band modes
in MnF2 containing Ni impurities, Fig. 10, and also of
the intensity of the scattering from the local mode as a
function of wave vector transfer, Fig. 15.

6. MnF2'. Fe
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FIG. 26. Raman scattering in Fe:MnF2 and Ni: MnF2 measured
by Oseroff and Pershan (1968).The orgin of the lines at 185 cm ',
164 cm ', and 26.5 cm ' lines is not understood, while the
remaining lines are the pair modes A1, (D)+B2g for n „and

(D)+Z for ~„

A cluster model was used by Dietz et al. (1970).The
cluster was larger than that described in Sec. III,
taking explicit account of third neighbors of the defects:
these results are given in Table 4. They performed a
least-squares fit to the experimental data to find the
two exchange parameters I~' and I2'. Surprisingly, I1'
was quite large and antiferromagnetic. In view of the
success of the Ising model with Ij' zero and the ap-
proximations inherent in a cluster model, it is by no
means certain that this result is physically significant.
Somewhat similar results have also been obtained from
NMR results as discussed in Sec. VII.

Green's function calculations on the MnF2/Ni
system have been performed by Thorpe (1970) and by
Shiles and Hone (1970). Thorpe calculated the fre-
quencies of the pair modes by means of a calculation
which depended on the exchange constants only through
co(D) His results are. shown in Fig. 17, and they show
both there and in Table 4 good agreement with the
experimental results of Dietz et al. (1970). Shiles and
Hone (1970) have calculated the frequencies of the
zeros of the M matrix for a range of parameters of Ij'
and I2'. Unfortunately, since they only have or (D) with
which to compare their results, I1' and I2' cannot be
determined independently. Ke have listed the ap-
propriate value of I2' assuming I1' to be zero. Using this
value of the parameter, calculations have been per-

TAsI, E 4. The frequencies and exchange constants for MnF&. Ni
as observed experimentally and calculated theoretically. The
units are THz.

MnF2. Ni

Green's

Experimental Ising Cluster function

A1~(D)
Afg(D) +A1g(D) b

A 10(D) +Eg
A1g(D) +82g
A 1g(D) +81„
I1'
I2'

3.61'
0.40.

Oie

4 940

5 03c

3.61
0.12
5.00
5.00
5.00
0
0.185

3.61
0.40
5.00
4.94
5.03
0,066
0.204

3.61

5.00
4.93
5.02
0
0.198

Johnson et al. (1966).
The number given is the reduction in frequency of the pair mode by

interaction.
"' Dietz et al. (1970).

This system has been studied by infrared techniques

by Weber (1968) and by Johnson and Weber (1971)
to obtain the frequencies of the mode localized on the
defect, A~, (D), and also of the

A ~g(D)+B~„pair mode.
The Raman scattering results of Oseroff and Pershan
(1968) shown in Fig. 26 gave the frequencies of the
Aq, (D)+E, and Aq, (D)+Bq, pair modes. The results
are listed in Table 5 where they are compared with the
predictions of the Ising model. The anisotropy of the
Fe'+ ion was taken as 0.215,'(0)' as described in Sec.
III. The parameter, /2', was obtained from the fre-
quency of the A&, (D) mode and used to compute the
pair frequencies. The frequency of the modes on the
neighbors cd~ is 1.61 THz which, since it is below the
top of the MnF2 band, shows that these modes do not
give rise to additional localized modes. The exchange
constant obtained in this way is 20% larger than that
obtained from the square root of the product of ex-
change constants for pure MnF2 and FeF~.

Unfortunately there has not been much further
theoretical work on this system. Thorpe (1970) has
calculated the pair spectrum but does not exhibit the
results because they are very sensitive to the choice of
parameters. Johnson and Weber (1971) suggest that to
fit their results exactly a large value of J&' is required
but they also caution that this result is very sensitive
to the model and may result from a deficiency in the
model calculation. Shiles and Hone (1970) have cal-
culated the single mode frequencies for various values
of both I.' and II', but were not able to obtain the values
of the exchange constants appropriate to this system.
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TABLE 5. As for Table 4 but for MnF&'. Fe.

MnF2. Fe

Experimental Ising

A1g(D)
A1g(D) +Eg
A1g(D) +Bgg
A1g(D) +B1„
I2'

2.84~

4 29b

4.20b

4 35c

2.84
4.23
4.23
4.23
0.111

~ Weber {1968).
Osero6 and Pershan (1969).
Johnson and Weber {1971).

7. MnF2. CO

This system has been studied by both optical and
neutron scattering techniques. Infrared absorption
measurements of the frequency of the mode A&o(D)
localized mainly on the defect gave 3.72 THz (Weber,
1969). Raman scattering measurements (Parisot et al. ,
1970) yieMed a similar frequency. Both these experi-
ments were performed with specimens containing about
1/q of impurity. Neutron scattering measurements were
performed (Buyers et ct/ , 196.8) on a specimen containing
5% impurity and gave a somewhat lower frequency
3.57&0.05 THz. This possibly shows a concentration
dependence of the frequency. We prefer the optical
results as representing the more accurate low concentra-
tion frequency as shown in Table 6.

The frequencies of pair modes were obtained by
infrared techniques, A&o(D)+8&„, (Johnson and Weber,
1971), and also by Raman scattering techniques
Aqo(D)+B2o and Ato(D)+So (Parisot et ct/. , 1970).
The results are given in Table 6. The neutron scattering

TABLE 6. As for Table 4 but for MnF2. Co. The last two columns

are the Ising model using two descriptions of the Co'+ wave-

function.

MnF2'. Co

Experimental
Glad ney
(1966)

Martel
et al.'

A)o(D)
A, (D) +E
A1g(D) +B2g
A,o(D) +B,„
12

3.72b

5 08c
5.02'
5.1P

3.72
5.06
5.06
5.06
0.104

3.72
5.08
5.08
5.08
0.100

~ Martel, Cowley, Buyers, and Stevenson {private communication).
Weber {1969).
Parisot et at. (1970).

~ Johnson and Weber (1971).

A substantial part of the difference between the
energies of the ground and excited states arises because
of the anisotropy introduced into the ground state
doublet by the mixing of the higher excited states with

the exchange field.
Using these values of the parameters, the exchange

constant, I2', can be deduced from the frequency of the

Ato(D) mode. The results are shown in Table 6. The
square root of the product of the exchange constants of
MnF, and CoF2 (Table 2) is 0.093 or about 10% less

than the values in Table 6. The Ising model can also be
used to calculate the frequencies of the pair modes,
Table 6, which are in satisfactory agreement with the
measured results. The mode associated with the
neighbors cv» has a frequency in this model of 1.54

THz, within the band of pure MnF2. The difhculties

results also yielded measurements of the shift in
frequencies of the band modes as shown in Fig. 27 and
the variation in the intensity of the scattering from the
local mode with wave vector transfer as shown in Fig.
28.

Theoretical calculations for the Co'+ ion in the rutile
structure are dificult because of the uncertainties in the
wavefunctions of the Co ions. In Sec. II we discussed
this difhculty and also pointed out that in practice the
wavefunctions are further complicated by the mixing
of the ground-state doublet and higher excited states
by the molecular field acting on the ions. We have
obtained the wavefunctions of the lowest two levels of a
Co ion in the rutile structure for the molecular field
appropriate to a Co ion in MnF~. This has been done for
two different sets of the crystal field parameters, those
deduced by Gladney (1966) and those deduced by
Martel, Cowley, Buyers, and Stevenson (private
communication). The relevant matrix elements between
the ground state and the first excited state are listed in
Table 7.
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The experimental shifts (full circles) are derived from the work
of. Buyers et al. (1968) and are compared with the theoretical
calculations desdribed in the text (lines).
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Gladney
(1966)

Martel
et ul. ~

TABLE 7. The parameters of the ground state g and first excited
state e for Co in the molecular field of MnF2.

then related to the effective spin and cannot be strictly
compared with our results. They state that they are
able to obtain agreement with the frequencies of the
pair modes with the aid of this Hamiltonian and a
cluster model.

(g I s,
I g&

(eI s, I e)
(~ I

5'-
I g&

(~ I
5'+

I c&

(~ I
5'-+-:I--

I s)
(~ I

5'++21-+ I r)
jv, jV

1.34
—0.04

1.61
—0.33

1.92
—0.64

3.72

1.30
+0.054

1.66
0.45
2.01

—0.80
3.72

~ Martel, Cowley, Buyers, and Stevenson (private communication).

arise from the presence of the nonzero matrix elements
such as (e I 5+

~ g), Table 7. This necessitates an
extension to the cluster models described in Sec. III
and also to the Green's function theories of Sec. V.
In Fig. 28 we show calculations of the intensity of the
localized mode as a function of wave vector transfer
calculated with the cluster model which can be modified
in a straightforward manner.

The modifications required to the Green's function
formalism are more severe. The Green's functions G~

and G4 are now no longer zero if i and j belong to
different sublattices. The matrix C, Eq. (5.9), has terms
of the form Cr(0j), when j=A. Despite these complica-
tions, the averaged Green's functions 6» and 64,
Eq. (5.16), are still zero when' and j belong to different
sublattices. This arises because terms from different
sublattices cancel when the defect is permitted to be on
either the up or down sublattice. Unfortunately the
additional terms may not be neglected in calculating
the parts of Gi and 64 that come from i and j on the
same sublattice. Calculations have been made of the
variation in the scattered neutron intensity from the
localized mode, Fig. 28, and also of the shift and width
of the band modes, Fig. 27. The theory is in very good
agreement with the experimentally observed shift. The
local mode structure factor shows the maximum at non-
zero wave vector predicted by the theory. No Green's
function calculations have been reported for the shape
of the pair modes. The good agreement between theory
and experiment shows that the use of a Heisenberg
exchange interaction is surprisingly adequate to describe
the results.

Parisot et aL (1970) have used a somewhat different
description for the Co'+ ion in their cluster calculations.
Their work is based on the model of Lines (1965). He
uses an effective spin, S=2, model to describe the
lowest four states of CoF2. He then finds that they may
be described by an effective spin Hamiltonian of the
form

H= y($ ' Sy')+8SP. —

This approach has the defect that mixing can only be
taken into account between the ground state and first
excited state. The exchange parameter they deduce is
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FxG. 28. Structure factor of the local mode in Mno g5Coo.o~F2.
The intensity of neutron scattering result observed by Buyers
et al. (1968) has been divided by the form factor squared and the
factor (1+Q,2/Q') to obtain the experimental structure factor
(points} for comparison with the theoretical lines. The experi-
mental accuracy is approximately &10%.

I. 0

8. MnF2. Zn

This system has been studied by Misetich eI al.
(1968) using fluorescence measurements, and by
Svensson et al,. (1969b) using neutron scattering
techniques. The former measurements gave a frequency
of 1.3 THz, which was associated with the frequency
of modes associated with Mn ions which were neighbors
of a Zn defect. The latter were detailed measurements
of the change in frequency and change in width of the
neutron groups from MnF. . The results shown in Fig.
29, exhibit a characteristic resonant form, a marked
change in shift and increase in width, when the modes
have a frequency of approximately 1.3 THz, which
occurs for a reduced wave vector f equal to 0.35.

Theoretical calculations on this system are partic-
ularly attractive because the Zn ion is nonmagnetic and
so does not interact with the Mn ions. There are then
no unknown parameters. The Ising model predicts a
frequency for the Mn neighbors of the Zn ions, or» ——1.39
THz, which is somewhat larger than the frequency
from either the fluorescence measurements or the
resonance in the neutron scattering measurements.

Detailed Green's function calculations have been
performed to compare with the results shown in Fig.
29. The calculations were performed as described in
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Sec. U. It was found to be necessary to be extremely
careful about the treatment of the zinc ion to ensure that
there was identically zero interaction with the lattice.
The slightest amount of interaction introduced by
errors in the numerical calculations (the P's) or in the
treatment of the defect (neglect of I& or anisotropy)
leads to a localized mode below the band which totally
invalidates the calculations. The experimental resolu-
tion was folded with the results before comparing ex-
periment and theory. In Fig. 29 we show the calculated
form of the width and shift for the S%%u~ specimen used in
the experiments. The agreement is very satisfactory.
Errors arising from the nonLorentzian form of the
calculated curve as discussed in Sec. V have been
avoided by convoluting the full line shape with the
experimental resolution. The results for the line shape
itself are shown for two groups in Fig. 30 and compared
with the experimental results. The agreement with the
Green's function theory is most satisfactory.
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9. Other Magnetic Fluoride Systems

There are no measurements reported for low con-
centrations of defects for the systems described in this
section. Although several calculations have been made,
we shall not review them in detail but just point out
the most salient features.

In the KCoF&'. Mn system both the host —host
exchange constant (Buyers et al. , 1971a) and the
impurity —host exchange constant (Svensson et al. ,
1969) are known. Consequently we can calculate the
frequencies of the modes associated with a Mn impurity
in KCoF3. When the Ising model is used, the calculation
gives coD=2.0 THz which is within the band of pure
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The experimental results of Svensson et al. (1969b) are (crosses)
the full width at half-height and frequency shift of the neutron
groups in the doped specimen and also (full circles) the width
obtained for pure MnF2. The solid lines are the results of the
Green's function theory described in the text and include the
frequency dependence of the width and shift functions. For each
wave vector the distribution observed for pure MnF2 was folded
with the full theoretical line shape to obtain widths that included
instrumental resolution (Svensson, Cowley, Buyers, and Holden,
private communication) .
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FREQUFNCY (THz)

FIG. 30. Line shape of neutron groups in Mntl. »Zno pgFp. The
theoretical curves (solid lines). were obtained by folding the
theoretical line shape with frequency dependent width and shift
functions (broken lines) with the instrumental resolution. The
experimentally observed intensities (full circles) at two wave
vectors are shown with some typical error bars.

KCoFs, (Holden et al. , 1971b) and thus resonant
behavior of the band modes would be expected. When,
however, the Green's function method is used the
calculation gives co~=0.5 THz which is well below the
bottom of the band of KCoF3, 1.1 THz, and con-
sequently a localized mode is predicted. The marked
difference in frequency arises because the Ising model
treats all the host modes as having a frequency cor-
responding to the top of the KCoF3 band. Instead the
frequency of the localized mode is pushed down by a
strong interaction with the relatively few modes of low
frequency. Calculations have also been performed for
the scattered neutron intensity of the localized mode
and of the change in the frequency and width of the
modes of KCoFs by introducing 5'%%uo of Mn impurities.
The results are shown in Figs. 31 and 32. Note that
although the theory predicts a constant frequency
expected for a local mode the structure factor of Fig. 31
shows a large wave vector dependence. This is un-
doubtedly the result of the strong interaction with the
modes at the bottom of the host band, and is possibly
an indication that the mode is close to the boundary
between localized and propagating behavior (see
Sec. VIII). The frequency of the modes associated
with the Co neighbors of a Mn ion, co~, is just below the
top of the pure KCOF3 band and so these modes do not
give rise to any new localized modes.

In the CoF2'. Mn system a similar situation occurs.
An Ising model calculation taking account of the mixing
of the levels gives co~ = 1.0 THz which is just below the
bottom of the band in pure CoFs, 1.1 THz. (Martel
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FIG. 31. Theoretical local mode structure factor in
KCo0.9~Mn0. 05I'"3 in magnetic and nuclear zones.

et at. , 1968).A Green's function calculation again gives
a lower frequency of 0.9 THz; this is well below the
bottom of the band and thus a localized mode is ex-
pected. The modes associated with the Co neighbors of
the Mn ions have a frequency on the Ising model,
or~ ——2.12 THz, above the top of the band of frequencies
of pure CoF2 at 1.9 THz. In the Green's function cal-
culation the frequencies of the eight diferent modes on
the second nearest neighbors are split to give six modes
classified by the irreducible representations of Eq. (3.8).
The frequency of one of the modes, A&„ is decreased to
below the top of the pure CoF2 band but the other modes
have frequencies in THz of ~(E„)= 2.12, ar(B&,) = 2.18,
sr(A2„) = 2.22, a&(E,) = 2.26, and cv(Bi„)= 2.27. We
therefore expect localized modes to occur at these
frequencies.

These results must be considered as very tentative
because they were obtained by assuming that the spin
waves in the CoF& host are adequately represented by
an effective spin S= ~ Hamiltonian. Detailed calcula-
tions with this model have been made of the scattered
neutron intensity from these localized modes and also
of the shift and width of the band modes.

Similar conclusions may be arrived at by the study of
the FeF&.Mn system. The band of frequencies of pure
FeFg lies between 1.58 and 2.37 THz (Hutchings et al. ,
1970a). The Ising model predicts the frequency of
excitations of a Mn ion as 1.80 THz, and of a Fe
neighbor to the Mn ion as 2.45 THz. We have taken the
Fe—Mn exchange identical to that found for Fe im-
purities in MnF2. This system has been discussed using
Green's function techniques by Tonegawa (1968).
Using the a,ppropriate ratios for I'(2)/I(2), his cal-
culations show that the mode localized mainly on the
Mn ion has a frequency below the bottom of the FeF2
band, while for the modes associated with the neighbors
the 3&, mode has a frequency within the band, but the

others are localized modes above the top of the FeF2
band.

It is interesting to note that for these three systems
there are marked discrepancies between the predictions
of the Ising model and those of the Green's function
model. In each case the Ising model predicts that the
mode associated with the defect will give rise to either
resonant or weakly localized behavior of the band
modes, while the Green's function technique predicts a
localized mode well below the band of the host crystal.
It would be very interesting to perform an experiment
to test these conclusions.

Although no localized modes below the band have
been observed in materials of the type discussed here,
measurements (Date et al. , 1965, 1968) of Fe'+ and
Mn'+ in FeC12 by electron-spin resonance have found
that these systems give localized modes below the bot-
tom of the FeC12 band. It would however, take us too far
away from our present subject to discuss these results
in detail because FeC12 divers in crystal structure and
magnetic properties from the Quorides discussed here.
For similar reasons, the luminescence of Eu'+ ions in
KMnF3 which has exhibited the presence of a resonance
mode within the band of the pure material (Hirano and
Shionoya, 1970) will not be discussed.

VD. TEMPERATURE DEPENDENT EFFECTS

In the earlier sections we discussed the properties of
magnetic defects at low temperatures. Considerable
difhculties arise when we attempt to extend these
theories to elevated temperatures. In part these dif-
ficulties arise because the theoryof magnetic excitations
at high temperatures is very difficult even for pure
crystals and, despite a large amount of work, still not
completely convincing. The greatest di%culties, how-

ever, arise in the treatment of the defects themselves
even if the properties of the pure material are assumed
to be known. In this section we shall be concerned, not
with the pure crystal difhculties, but with the additional
difhculties which arise in the defect crystal. In order to
achieve this end we treat a very simple model in the
f][rst section, discuss the experimental results, and
finally review more satisfactory theories.

II= Q IS,(i)S,(i+1), (7.1)

where i is the index of the spin along the chain. The
solution of this Hamiltonian within the molecular field
approximation is given by the self-consistent equation

(7.2)

1. A Simple Model

We consider a simple model of a linear chain of spins
with nearest-neighbor Ising interactions, and solve the
model within the molecular-field approximation.

The Hamiltonian of the pure system is
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Hg) =I'[S,( 1)+S—,(1)jS,'(0).

%ithin the molecular field approximation

&S.( )&=& (PH*),
where

(7.4)

and

H'= IL&S.('+1))+(S.('—1))j
Hg= I(S,(2) )+I'(S,(0))

Hp=2I (S (1)).
Suppose the introduction of the defect causes a small

perturbation in the expectation value of the spin so that

&S.(') )= &S&+~'

Treating Eq. (7.4) by perturbation theory yields

~,+,—nZ, +~;-,=0
) i

~

&2 (7.S)
with

n '= [&&&—&S&'jIP.

Equation (7.5) is a standard recurrence relationship
whose solution is given by

(7.6)

with P = [n&(n' 4)"j—/2
Since n is always greater than 2, the solution (7.6) is

real; the positive sign corresponds to a value greater

where the Brillouin function is

88(x) = g S, exp (xS,)/g exp (S,) (7.3)
S S

andt =1/ksT.
Now suppose we introduce a spin S' into the chain at

the origin and that it has an exchange interaction with
its neighbors I'. The terms in the Hamiltonian involving
the defect are

K
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FxG. 33. Decay of spin distrubance round an impurity as a
function of temperature. The perturbation in average spin de-
creases by the factor X for every step made along the chain away
from the defect,

2.0

than one, and the negative sign to a number less than
one. Since we are interested in a solution which de-
creases as the distance from the defect increases, the
latter is the desired solution. The behavior of X is
shown in Fig. 33 as a function of temperature. A small
value corresponds to a rapidly attenuated disturbance
of the spin around the defect and a value near to one
gives a disturbance extending a long way from the
defect. Figure 33 shows that the disturbance is of
longest range near the transition temperature. The
coeKcient A and the solution for (S.'(0)) can be
obtained by solving Eq. (7.4) explicitly to give

&S.'(0))=& [2''(A+&S))j
(S)+A =Its[8(I(&S)+A&)+I'&S*'(0)&)j.

Once we have obtained the expectation values of the
spins the excitation frequencies may be obtained
directly

SHIFT AND WIDTH OF KCooss Mnoos F3
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FIG. 32. Width and shif t of band modes in KCop.psMnp. p5F3.

=I'&S,'(O) &+I &S,(2) &,

co; = I(S,(i 1))+I(S—,(i+1)).
In Figs. 34 and 35 we show the temperature de-

pendence of (S,'(0)), h~ and As as functions of tem-
perature when S= ~ for S'=

~ and 2, respectively. The
values of I' were chosen so that the frequency of the
neighbors, co~, at low temperatures was: greater, A;
equal to, 8; or smaller than, C, the frequency of the
host in the pure crystal at low temperatures. The
results show that (S,'(0)) is much less temperature
dependent than the host spin (S) for all the cases where
S'= s'. This is because co~ is much greater than 2I(S) so
that the probability of thermally produced excitations
on the defect is much less than that of excitations on
the host spins. The spin deviation of the neighbors
increases with increasing temperature for A and B, but
initially decreases for model C. This decrease is because
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temperature range of stable clusters will be closer to T~
by an amount of the order of 2Th/s. It is not then
surprising that no experimental evidence has yet been
found to support the existence of these clusters.

2. Experimental Results
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FrG. 34. Temperature dependence of the magnetization round
a defect with S'=~~ in a host having S=-,'. Results when the
nearest neighbor frequency is greater than (A), equal to (8),
or less than (C), the host frequency are shown. The two lower
sections show the spin perturbation on nearest, h1, and next
nearest, A2, neighbors of the defect (solid lines) ~ The same
quantity is shown in the middle section when the average spins
on second and higher neighbors are constrained to be equal to
the host tnagnetisation (S,) (broken iines).

the frequency cu& is less than 2I(S) thus increasing the
probability of spin deviations. At higher temperatures
with S'= —,', As'begins to increase because (S.'(0) ) is not
decreasing with increasing temperature as fast as (S)
and ~s thus becomes greater than 2I(S).

The calculations were also performed with ) =0
prohibiting the spin deviations on next nearest neigh-
bors. The results for hj which are shown by the dotted
curves are negligibly different from other curves for
T/T&(0.6. For any )I, , 6s is negligible for /TT~( 50.

Close to the phase transition, the results showed an
interesting phenomenon illustrated in Fig. 36, for the
case S'=st. The defect spin (S.'(0)) decreasedas T~.
was approached, but at the transition there was a
discontinuity in slope with both (S, (0)), (S,(1)), and
(S,(2)) being constant until at some considerably
higher temperature they fall to zero. This corresponds
to the occurrence of stable clusters around each defect
above T&. The exchange is su@ciently strong near the
impurity that it polarizes the neighboring ions so as to
form a stable cluster. This cluster then breaks up at
some higher temperature when the thermal entropy is
sufhcient. This higher temperature is dependent upon
the exchange constants. The same effects occur for
larger values of S', but the critical exchange, I'/I, for
the clusters is then smaller.

One may speculate that in three dimensions the

2.0
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FIG. 35. The same as Fig. 34 but for a defect with S'=2 in a
host having S=~.

The temperature dependence of the excitation
frequencies has been studied by both neutron and
optical scattering techniques. The most straightfor-
ward results to analyze theoretically are those of the
frequency of the localized mode associated with the
defect. This has been measured with neutron scattering
by Holden et al. (1969) in MnFs'.Co as shown in Fig. 37.
It has also been obtained by Johnson and Weber (1971)
in MnF2. Fe. Both results show that the temperature
dependence of the excitation is less than that of the
sublattice magnetization of the pure crystal.

These results are consistent with the simple model
calculations shown in Figs. 34 and 35. For both Co'+
and Fe'+ in MnF2 the excitations on the neighbors
have frequencies close to those of the pure crystal and
therefore correspond to case 8 of the simple model. The
excitation frequency on the defect is proportional to
(S,(1)) which is less temperature dependent than (S).
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The prediction of the model that the range parameter
) of the spin perturbation increases with temperature
is borne out by the measured intensity of the local Co
mode in MnF& (Holden and Buyers, private com-
munication). Figure 38 shows that the intensity falls
with temperature much faster than the population of the
Co'+ ground state as might be expected for a mode
which is becoming increasingly spread out with tem-
perature.

Raman scattering measurements have been reported
on the temperature dependence of pair modes in

Fio. 36. The average spin near the Neel point on the defect
and on its first two neighbors as a function of temperature for
three ratios of exchange. Here S=-'„S'=—',, and I= J.

FIG. 38. Temperature dependence of the local mode intensity
in Mnp. p5Cop. p5F& (full circles) measured by neutron scattering.
The solid line is the population of the Co'+ ground state taking
into account the variation of local mode frequency as measured
in the experiment (Holden and Buyers, private communication) .

MnF2'. Ni (Oseroff and Pershan, 1968; Moch et al
1968) and in MnF2'. Fe (Osero6 and Pershan, 1968).
The results show that the temperature dependence of
the pair modes is less than either that of the sub-lattice
magnetization or that of the pair modes in pure MnF2,
as shown in Fig. 39. This is to be expected for a pair
mode where one member of the pair is localized above
the band and therefore weakly temperature dependent.
Similar results were obtained with infrared absorption
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FIG. 37. The temperature dependence of the cobalt local mode
frequency in Mnp. 95Cop.p5F2 iiieasui'ed by Holden et ul. (1969).
The frequencies are normalized to the results at helium tem-
peratures.
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FIG. 39. Temperature dependence of pair modes observed in
Raman scattering (Osero6 and Pershan, 1968). The results for
MnF&.'Ni (crosses), and MnF2.'Fe (triangles) fall more slowly
with temperature than the pair modes of pure MnF2 {full circles).
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for the pair mode A~, (D)+T& in MnF~.'Fe (Johnson
and Weber 1971). These latter results are especially
interesting in that they show that the pair mode is less
strongly temperature dependent than the local mode.

One of the techniques which gives the most detailed
information about the temperature dependence of
defect systems is NMR. Butler et aL (1970) have
studied the F" resonance in MnF2'. X with X=V, Fe,
Co, Ni, and Zn, and have analyzed their data to obtain
the magnetization of the defect and its nearest and
next nearest neighbors. Their measurements were all
taken at temperatures below 0.5T~, and were inter-
preted assuming that the magnetization of those neigh-
bors further away from the defect than second nearest
neighbors was identical with that of the pure host. This
approximation is, as we have seen in Sec. VII.1, in
principle inadequate but the results of Figs. 34 and 35
suggest that the error is small. At 50%%uo of T~, t4 is no
more than 0.01.With the aid of this approximation they
were able to obtain the magnetization of the defect
and its two nearest neighbors as functions of tempera-
ture. Their results for MnF2. Zn are shown in Fig. 40
and for MnF~. Ni, and MnF2. Fe in Fig. 41. The
magnetization on the Fe site in MnF2'. Fe shown in
Fig. 41 is taken from Mossbauer measurements of
Fe'7 by Wertheim et al (1969). The .results show that
the magnetization of the defect is considerably less
temperature dependent than that of the host, while
that of the neighbors may be either more or less tem-
perature dependent than the host. This is again in
qualitative agreement with the behavior predicted in
Sec. VII.j..

Butler et al. (1970) interpret their results in more
detail. In MnF2. Zn, the magnetization of the nearest
ferromagnetic neighbors, Fig. 40, is identical with that
of the pure host, whereas that of the next nearest anti-
ferromagnetic neighbors is considerably more tem-
perature dependent. They interpret this result as
evidence that the deviation in magnetization is very
localized near the defect, and furthermore is only

significant if there is a strong direct interaction between
the defect and the neighbor. Noting that for pure
MnF2

~

I~
~

&(
~

I~ ~, this interpretation leads them to
conclude that the deviations of the magnetizations of
the nearest neighbors in MnF~'. Ni and MnF2. Fe result
from large antiferromagnetic and ferromagnetic Ii'
couplings in these materials.

This result is clearly of interest considering the
analysis of theory and experiment presented in Sec. VI.
In that section we showed that the low temperature

$.00
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FIG. 41. Temperature dependence of the normalised magnetiza-

tion on atoms on and near the defect in MnF2. Ni and MnF2.'Fe
(Butler et el. , 1970). The NMR results for the defect are shown
as full circles, for the nearest neighbors as triangles and for the
next nearest neighbors as open circles. The magnetization on
the Fe site in MnF2. Fe (broken line) is taken from the Moss-
bauer study of Wertheim et al. (1969).The solid line is the host
magnetization.
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experiments could be interpreted in terms of I2' alone,
and concluded that the small discrepancies could well
be due to inadequacies in the theory. In terms of the
simple model (Sec. VII.1) the analysis of Butler et at.
(1970) can be shown, for the case, B, in which the low
temperature defect and host frequency are the same, to
be equivalent to setting A =0 (no spin change on the
neighbors) at all temperatures. At 0.5Ttr, this gives an
error in ((S,'(1))(S) of 0.012 for S'=

a and 0.004 for
5'=2. Since the deviations in magnetization between
one neighbor and another found by Butler et ttt. (1970)
are about 0.005, their interpretation is open to doubt.
On the other hand, our model of necessity gives

~
&2

~
(

I t41 whereas they6ndI ~2
I

&
I

t1t
I

for hot" MnFs:»
and MnF2'. Fe. The present authors therefore feel that
I&' is likely important in these systems but that its
magnitude is probably considerably smaller than has
been suggested. Further work is needed to find the
value of E»' which is consistent with experiment when
the spin deviations occurring around the defect are
derived self-consistently.

3. Theoretical Calculations

There have been only a few attempts to calculate the
temperature dependence of magnetic defect systems.
Holden et al,. (1969) used a cluster model, solved the
self-consistent equations with the molecular field theory
and found fair agreement (Fig. 42) with experiment
for the frequency of the A&o(D) mode of Co in MnF&.
This model is a generalization of the model of Sec. 1
to three dimensions but with the added assumption
that the magnetization is that of the pure crystal for
atoms beyond third nearest neighbors of the defect.
The ordinate in Fig. 42 corresponds to (1+hq)/(S)) of
Sec. VII.1. Johnson and Weber (1971) applied the
model of Holden et ttl. (1969) to Fe in MnFs and found
good agreement for the temperature dependence of the
Ato(D) mode, but too large a dependence for the
Aqo(D)+Tt pair modes. In view of the present failure
of theory to explain the temperature dependence of pair
modes in pure crystals (Fleury, 1970), this latter
failure is perhaps not surprising. It seems probable,
however, that as the local mode becomes more spread
out with increasing temperature, the attractive interac-
tion between the Ato(D) mode and T~ mode decreases.
The small temperature dependence may therefore be
partially a result of the decrease in the binding as
suggested by Fleury (1970) for pair modes in pure
crystals.

A more precise theory could be obtained if it were
possible to solve the Green's function theory of Sec. V
at finite temperatures. Unfortunately even in pure
crystals this problem has not been solved but some
progress has been made. In Sec. V the Green's functions
were decoupled so as to give

SPIN ENHANCEMENT ON NEAREST
NEIGHBOURS OF THE Co IMPURITY
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Pxo. 42. The spin enhancement on the nearest antiferro-
magnetic neighbors of the Co impurity in MnF2.'Co (Holden
et a/. , 1969).

In a pure material, (S,(i) ) has the same value (S(T))
or —(S(T)) for all ions. The equations for the Green's
functions can then be obtained in the same way as
Eq. (5.3) except that in the expressions for D(ik),
(S(T)) replaces S. The Green's functions are then
dependent upon (S(T)), which must itself be calculated
by the theory. This can be achieved by considering the
definition of the Green's functions from which it is seen
that

(S,(i))= S. Im I G/S+(i), S (i); col}dto. (7.7)

The solution for the Green's functions must then be
obtained self-consistently in that the value of (S.(i))
obtained from Eq. (7.7) must be the same as that used
to calculate the Green's functions in the first place.

In practice it is somewhat easier to obtain (S,(i))
from an equation obtained by Callen and Shtrikman
(1965) but we need not discuss this in detail. The
expression involves an integral over the same Green's
function so that the self-consistency problem is un-
changed.

The same theory may be applied to the defect crystal.
The main difhculty arises in the form of the defect
matrix on the right-hand side of Eq. (5.9). Since the
introduction of a defect alters not only the exchange
interactions but also the expectation values of the spins
of, in principle, every site in the crystal, the defect
matrix is of infinite order because it contains the ex-
pectation value of the spin on every site in the crystal.
It is clearly impossible to solve the complete self-
consistency problem or to obtain a solution to the single-
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defect problem even if the S spins were given. Solutions
have only been obtained by assuming that far enough
away from the defect (5,(i) = (5(T)).This reduces the
defect matrix, C, to a tractable size and reduces the
number of self-consistency conditions. Watarai and
Kawasaki (1970) have used a severe form of this type
of approximation to describe the excitation frequencies
of MnF2. Ni as a function of temperature. In their
model they replace (5,(i)) by their values in the un-
perturbed system for all i except the defect for which it is
assumed that (5,'(0))/(5(T)) = S'/S. These approxi-
mations remove the self-consistency problem alto-
gether. The results must, however, be regarded as only
tentative because the temperature dependence of the
magnetization on and near the defect is known (Figs. 40
and 41) to be different from that of the pure host.

To date the only attempt at a self-consistent solution
has been made by Hone, Callen, and Walker (1966)
for the Heisenberg ferromagnet. They performed cal-
culations in which they treated the magnetization
(5,'(0)) of the defect correctly and that of the nearest
neighbor approximately. Hone and Walker (1971)have
performed similar calculations for MnF2.'Zn using a
model with only nearest antiferromagnetic neighbors for
MnF~ and allowing for the deviation of the magnetiza-
tion of the nearest neighbors. The result for the mag-
netization on these neighbors are compared with experi-
ment in Fig. 40; the agreement is very satsifactory.

Despite this undoubted success it is difficult to extend
the theory to higher temperatures. At higher tem-
peratures the range of the spin correlations becomes
longer and the problem more difficult to solve with
these techniques. It seems as if there is still further
scope for use of simple cluster models to understand the
range of the spin deviations further before embarking
on more detailed calculations.

No theoretical work has been reported on the tem-
perature dependence of the frequencies for pairs of
excitations. This is not surprising in view of the failure
as yet of the theory to describe the temperature de-
pendence of two-magnon processes in pure crystals.

VIII. FINITE CONCENTRATIOÃS

difficulty in extending the results beyond 2% of Ni,
but found that for RbMnF&.'Ni the frequencies varied
linearly with concentration in that range;

BMQ/Bc= 0.069 THz/% 8~ii/Bc= 0.132 THz/%.

Hughes (1971)studied the antiferromagnetic resonance
of Co in Mno by infrared absorption, but the line
became too broad to follow beyond 6%.For fluorescence
studies, the concentration limit is even lower, of the
order of 10, because of broadening of the exciton lines

by crystal field eGects.
Neutron scattering results are available for large

concentrations in the CoF~/MnF2 and KCoF3/KMnF3
systems (Buyers et al , 1971.b). The results, Figs. 43
and 44, for the crystals of Cop.p Mnp. 3F2 and KCop.7I-

Mnp. 2gF3 are of particular interest in that they show
two branches both of which have a significant band-
width; the frequencies change significantly with wave
vector. Furthermore, the experimental results showed
that both of these branches were well defined excitations
in that their width was much less than their frequency
although significant width was observed in the upper
branch of Coo.7Mno. &F2. Both of the Mn/Co systems
therefore show qualitatively similar behavior. The
introduction of a small amount of Co into the Mn salt
gives rise to a local mode well above the band of the
pure host excitations. At least in the case of KMnF3.' Co,
this local mode exhibits a negligible bandwidth even
when the concentration of Co ions is 0.20. However at
some concentration as yet unknown, the bandwidth of
the Co modes begins to increase, while the bandwidth
of the Mn excitations decreases. If we accept the
theoretical results of Sec. VI, at some concentration
less than 29% of Mn ions the lower branch exhibits
negligible bandwidth, and becomes a localized branch
below the bottom of the Co band. Further work is,
however, needed to establish the critical concentration
at which the modes become nonlocalized. Presumably
this arises when the localized modes overlap with one
another sufficiently. This is expected to be at a much
higher concentration for Co ions for which the local
mode is of small spatial extent, than for Mn ions, for
which the localized mode is spread over many neighbors.

1. Experiments 2. Cluster Models

Since the magnetic Auorides we have been discussing
have very similar chemical properties, it is possible to
obtain single crystals with large concentrations of both
constituents. They therefore provide excellent systems
on which to study the properties of crystals containing
large numbers of defects.

Unfortunately it is very difhcult to obtain optical
measurements on high concentration systems. Parisot
et al. (1971)have studied the concentration dependence
of the frequency cog of the host pair modes, and the
frequency &as of the Rig(D)+E, pair modes in Ni-doped
KMnF3 and RbMnF3. They found considerable

As always in this subject, the simplest model is a
cluster model. In the case of crystals containing a large
concentration of defects, this model may be solved
within the single atom or Ising approximation. In this
section, it is convenient to modify our notation, because
with crystals containing many defects it is not ad-
vantageous to treat one as host and the other as a
defect. %e shall now consider a system conposed of two
spins; a concentra, tion c of S~, and (1—c) of Ss.
These spins interact only with their nearest neighbors
with exchange constants I~, IB, and I~B representing the
interactions between pairs of A spins, pairs of 8 spins,
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and an A and a 8 spin. The form of the interaction is
taken to be of the Ising form. The calculation of the
spectrum of elementary excitations at low temperatures
then proceeds by considering the probability that a
given spin has certain numbers of A and 8 neighbors.
The excitation frequency is then given by the molecular
field approximation. For example, the probability that
an atom has r A neighbors and s—r 8 neighbors is

pl I= c"(1—c)* ".
r t s—r f

«IASA+ (s—r)IAESAE

and for a 8 spin is

rIAESA+ (z r) IrtSE. —

(8.1)

(8.2)

The scattering cross section may then be calculated
as a series of delta functions at these excitation fre-
quencies with the intensities given by

For an A spin, the excitation frequency for this con-
figuration is

[oo~]
I I I

/
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I I I I
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Fxo. 44. Frequencies corresponding to the peaks in the neutron
scattering from magnetic excitations in KCo1 Mn, F3 for c=0.29
and c=0.80. The broken lines show the dispersion relations of
the pure crystals.

("I
cb'Ap

l

if the A spin is considered or

(r)
(1—c)b' pin

(»

for the 8 spin. For b~ or bg, we substitute the scattering
length of the A or 8 spins for the appropriate probe

which for neutrons is the square of the matrix element
of (I~+2S+) between the ground and first excited
state.

Calculations of this form have been made (Buyers
et al. , 1971b) for the Co/Mn systems discussed in
Sec. VIII.t. with the use of exchange constants known
from work on the pure materials or from crystals
containing only a few defects. For Co'+ modes, the
variation of exchange mixing w'ith configuration is
accurately approximated by rewriting Eqs. (8.1) and
(8.2) in the form

v (Mn) = v(Mn'. zMn) r/s+ v(Mn'. sCo) (s—r)/s (8.3)

I

[$00] Cop 7 Mnp pF2 toO (]

and

v(Co)=v(Co.'sMn)r/s+v(Co'. sCo)(s —r)/s. (84)
~ (00 I) ZONE (MAGNET IC)
x (100) ZONE (MAGNETIC)
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FIG. 43. Frequencies corresponding to the peaks in the neutron
scattering from magnetic excitations in Coo.7MnQ, 3' (Buyers
et el. , 197jb) . The arrows show the predictions of the Ising
model for the Mn2+ frequency (lower arrow) and cobalt fre-
quency (upper arrow) .

The v(A:sB) are the excitation frequencies of atoms A
surrounded by a full complement s of neighbors 8 and
are as given in Sec. VI by the Ising model when proper
account is taken of the mixing. The results are shown in
Figs. 43 and 44 by arrows and the cluster spectrum is
shown in Fig. 45. A surprisingly good account of the scat-
tering observed at zone boundaries is obtained, includ-
ing the larger width of the upper mode in Coo.7Mn0, 3F2.
The model does not include any wave vector dependence
so it fails quite badly at the zone centers. It is remark-
able that such a simple model seems to account for the
results obtained at zone boundaries in both pure and
very concentrated defect systems.

The same techniques may also be applied to pair
modes. The average molecular field on the spin A is

HA =s(clASA+ (1 c)IA'QSis)



REvIEws 07 MoDERN PHYsIcs APRIL 1972

ISING THEORY
I I I

0.7I 629 3

FOR HIGH CONCENTRATIONS
I

Coo.v Mno. s F

[t olj
I

~I

l

I

I

I

t
~Q

/

~ /~
/

~ Pj$0

( =0.25

I
i

I

I

l
i

if
&-2—

CfJ

UJI- I—
Z

i

~C

0 2
i I

4 6 8 0
FREQ UENCY (THz)

I

4

FIG. 45. Neutron scattering at zone boundaries in KCo.71-
Mn0. 29 F3and Cop. 7Mno. 3F2. The experimental results of Buyers
et al. (1971) (broken lines and full circles) are compared with
the results of the Ising theory (solid lines). The solid lines have
been drawn smoothly through the results of the Ising theory
which predicts a series of discrete frequencies for each atom.

Using these results we can calculate that

BMI3+B/Bc= 2(s—1 ) (I»hA IBSB), —
while

BMA+B/Bc= (s 1)[ (IA+IAB)SA (IAB+IB)SB)

For Ni in RbMnF3, these results yield 0.013 THz/%
and 0.055 THz/%, much less than the observed values
of 0.069 THz/% and 0.132 THz/% (Parisot et al. ,
1971).Presumably the discrepancy arises because the
modes on the near neighbors of a defect have fre-
quencies very close to those of the propagating band
modes. Thus they spread out signi6cantly and are not
well described by an Ising model. They are therefore
disturbed by defects which are much further away than
those included in our simple model. Parisot et al. (1971)
have carried out a similar calculation for Bco/Bc and
obtain better agreement with experiment than we have.
The present authors, however, cannot reproduce their
expressions in detail and prefer the expressions given
above. The above theory for pair modes further shows

and on the spin 8 is

IIB z(cIABSA+——(1—c)IBSB ) .

Now consider a pair mode in which two neighboring 8
spins are altered. On a simple spin model the frequency
18 given bv

suB+B ——2 (z—1)(cIABSA+ (1—c)IBSB)+IB(2SB—1).

If a pair mode consists of neighboring A and 8 spins,
then we have

~A+B ——(s—1)pc(IA+IAB) SA+ (1—c) (IAB+IB)SB]

+IAB(SA+SB 1)—

that many diferent modes can occur whose frequencies
depend upon whether both spins are of type A, or type
3, or a mixture, and upon the con6guration of the sur-
rounding spins. It would be interesting to look for these
additional modes with optical techniques.

3. Green's Function Theories

The application of Green's function theories to
systems containing large numbers of defects has been
discussed by many authors. Most of the work has been
concerned with the application of these techniques to
the analogous phonon and electron problems in which it
is assumed that either the mass or one-electron energies
vary from site to site while the force constants or
electron hopping probabilities are independent of the
type of atoms involved. In this section, we shall take
over their work to our situation but point out the
places at which difhculties are likely to occur.

The analysis begins by further study of the exact
equation for the Green's functions in the crystal,
Eq. (5.14), which is shown schematically in Fig.
46(a). ln Sec. V we showed that it was essential to dis-
cuss the scattering from infinite-order perturbation
theory in order to be able to obtain the results from
even a single defect correctly. We therefore in Eq.
(5.15) made a partial summation to incorporate the
scattering at a single site, as shown in Fig. 46(b). The
result is unsatisfactory for two reasons: First, it permits
the successive defects to be the same even though we

have summed all the multiple scattering at a single

(a)
P C G

0 0 ~ ~+

dl d2t
(c)

FIo. 46. Diagrams corresponding to the equations for the
Green's function in a crystal containing defects. The exact
equation for G is shown in (a) in terms of the perfect crystal
Green's function P, and the defect matrix C caused by the inter-
action (broken line) with defects d. An approximation that
includes multiple scattering at a single defect is shown in (b).
In the term shown in multiple scattering (c) the summation
over d2 should be restricted to values not equal to d1. Terms cor-
responding to scattering that occurs between different multiple
scatterings from d~ are shown in (d).
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defect; in the term shown in Fig. 46(c) the summation
over Q should be restricted to only those values not
equal to di, whereas Eq. (5.15) does not have this
restriction. This difhculty was discussed by Elliott and
Taylor (1967) who showed that inclusion of the terms
d2=d~ adds additional terms to the right-hand side of
Kq. (5.14), the 6rst of which is schematically

c'C (d) P (d) C(d).

K Coo 71 Mn 0.29 F~
I I I I

[Oo(]

6—
N

These terms may be incorporated to give a result
accurate to c', if in Kq. (5.12) for X(d) the matrix M is
given by

M(ij, oo) =Lib; —(1—c) P P(ik, co)KC(kj)). (8.5)

The second approximation in Fig. 46(b) is the neglect
of scattering occurring between the diferent multiple
scatterings at a single defect as shown by the terms of
Fig. 46(d). These additional terms may be incorporated
by replacing the unperturbed propagator in Eq. (8.5)
by the appropriate propagator in the perturbed crystal
which we shall write as G~(ik, &o). The simplest ap-
proximation for G~(ik, co) was used by Davies and
Langer (1963) and is to put it equal to the total per-
turbed propagator G(ik, &o). This theory is also un-
satisfactory because G(ik, co) includes the scatter-
ing from all the defects, whereas G~(ik, to) should
include the scattering from all the defects except the
one being considered. This problem was considered by
Leath and Goodman (1966), Leath (1968), and Aiyer
et at. (1969).The solution is most readily obtained by
noting that G~ is the Green's function obtained
omitting the scattering at the site. It therefore treats the
site as if it were a host atom rather than a defect site.
Using the definition of a defect Green's function G~,
we obtain the result that

G~=G —GD

G~(ij, co) = g [by, l cLD(ik, co)1—G(kj, to), (8.6)

where Lo(ik, co) is the matrix inverse of M(ik, &o) of
Eq. (8.5), but with G~ replacing P. Since G~(ik, co)
depends on M(ik, co) which further depends on G~(ik, co),
the solution must be obtained self-consistently. This
solution is then equivalent to the self-consistent theories
of Taylor (1967) for the lattice dynamical problem,
and Soven (1967) and Yonezawa (1968) for the electron
problem. In the theory, the single-site scattering is
included self-consistently, but the theory still fails to
include the scattering by pairs and larger clusters,
although the theory might be developed along the
lines taken by Aiyer et al (1969). .

As yet, little progress has been made in applying the
theory to magnetic systems. Calculations have been
made using Eq. (8.5) for M(ij, co) for several systems.
In the case of KCoF~'. Mn the results are shown in Fig.
47; they surprisingly accurately reproduce the behavior
of the upper band of excitations but totally fail to de-

Oz 4—
LIJ

(3
bJ
K

p
II ~ 0

Or5 0
REDUCED WAVE VECTOR $=oq/2sr

I'"ro. 47. The theory to order c' for magnetic excitations in
KCo0.71Mno. pgF8 (solid lines), and the experimental results of
Buyers et al (1971b) .(full circles).

scribe the lower band. In the model the lower band is
split into two with the upper part very weak. This is
possibly because the model describes the behavior well
within the band of the host frequencies but fails outside
at large concentrations. In the other two systems to
which the theory has been applied, the results are far
less satisfactory. In CoF2. Mn the upper band shown in
Fig. 43 is outside the band of frequencies of pure CoF2.
The model cannot then predict either its behavior or
that of the lower band correctly. The model was also
applied to MnFs'. Zn containing only 5% of zinc. In
this case inclusion of the (1—c) factor in the expression
for M(ij, eo) alters the frequency of excitations, so that
the pole of M(ij, co) ' at to=0 appears at a finite fre-
quency. Since the zinc is nonmagnetic, this result is
entirely nonphysical and spurious. We conclude there-
fore that Eq. (8.1) provides little advantage for cal-
culations over Kq. (5.13). It possibly enhances the
agreement for the change in the frequencies of band
modes, but the changes produced in the frequencies of
localized modes may well be spurious.

There are several considerable difhculties which
arise when one attempts to apply the more general
formulae to magnetic systems. Both of the simple
models used extensively in phonon and electron
problems have a 1)&1 defect matrix. There is then only a
simple function of frequency which needs to be made
self-consistent. In our problem the defect matrix is
14X14 or larger, so that the self-consistency problem is
far more serious.

This difIiculty brings up yet another complexity.
The analysis we have been describing so far assumes
that each defect is surrounded by only host spins. At
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finite concentrations this is not the case as emphasized
in the cluster model of Sec. VIII.2. It is therefore not
adequate to apply the self-consistent theory in the
simple way we have been describing. A more satis-
factory approach would be to calculate the defect
matrix C for each possible cluster and then to average
them all by the probability of their occurrence. The
self-consistency problem would then require an enor-
mous amount of work. Elliott (private communication)
has suggested that the problem might be simplified
suKciently to be tractable if only the Ising part of the
self-energy were treated in this way and the difference
in the transverse part of the exchange neglected.

The special symmetry of the Green's functions and
self-energy for a two sublattice antiferromagnet,
aamely,

&4(—~) = —&i(~)

then reduces the self-consistency condition to a scalar
equation with real and imaginary parts. Preliminary
results of Buyers, Pepper, and Elliott (private com-
munication) indicate that the theory correctly predicts
two branches of excitations both with significant
band width at high concentration. The results are in
reasonable agreement with experiment.

4. Localization at High Concentration

Even in the case of the simpler phonon and electron
problems there is evidence to suggest that the single site
scattering approximation may not be adequate to
discuss problems of localization (Thouless, 1970). In
our case, we would expect a single site approximation
to be even more suspect because the Ising energy at one
atom depends on the configuration of neighbors. The
Ising energies on pairs of neighboring atoms are there-
fore intrinsically correlated. We must expect the single
site self-consistent theories, if we could solve them, to
fail especially in the neighborhood of the concentrations
where localization begins to occur.

Anderson (1958) first discussed in a general way the
conditions for excitations in alloys to be localized or
propagating. For quasibinary alloys such as the
materials of Sec. VIII.1, the probability of propagation
increases as the transverse exchange energy (hopping
integral for electronic alloys) becomes comparable with
the di6erence in single site energies of the two types of
atom. A form of the criterion for localization suggested
by Buyers et al. (19'71b) for antiferromagnets is

x(~) = )1,
Wg(1 —c)+cWs

where TV~, S'~ are the bandwidths of the pure materials
and co&, co& are the centers of the bands. This is clearly
an oversimplification as it does not make allowance for
the fact that the molecular field single site energy for an
antiferromagnet is close to the zone boundary energy
rather than to the center of the band, and further the
dependence of Ising energy on the neighbors, as we

The properties of magnetic defects have been
described with particular emphasis on mixed crystals of
the transition metal Quorides. These systems provide
particularly clean examples of the defect phenomena
through which experiment and theory may be compared
in a more complete way than is possible with many
other systems. The primary reason for this is that it is
possible to perform very detailed experiments on the
nature of the excitations in these systems with optical
and neutron spectroscopy. Far less detailed information
is available for the analogous electron problem. Further-
more, since all of the transition metal ions have very
similar sizes and chemical properties, the mixed crystals
show little tendency to order, and may be grown as
large single crystals with large concentrations of both
constituents. Since the magnetic properties are not
directly correlated with the atomic sizes, large magnetic
defects may be introduced without appreciably strain-
ing the crystals as so often happens with mass defects.
Experimentally therefore they provide an excellent
system to study defect properties.

Theoretically there are advantages and disad-
vantages of antiferromagnetic systems. The dis-
advantages result largely from a change in spin altering
the excitation frequencies on all of the neighboring ions
so that a single defect causes a perturbation at several
sites, unlike the simple mass defect problem. In part,
these additional complexities are purely of a computa-
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FIG. 48. Heisenberg exchange constants (J=l) in units of
THz for transition metal Auorides of the rutile and perovslote
structure. The host is always the manganese salt.

have said, is not explicitly included. Nevertheless, in the
(Co, Mn)F2 and K(Co, Mn)F&, system, this criterion is
surprisingly accurate in predicting for the crystals
studied to date whether a branch is localized or propaga-
ting. For the upper branch in Coo.VMn0. 3F~, however,
localized character is predicted. It is to be noted that for
this branch the character of the branch is not un-
ambiguously determined by the measurements since the
variation of frequency with wave vector is less than the
width of the excitation. These modes may in fact be
local in agreement with the criterion, ' and possibly
consist of a random structure of discrete poles as
described by Anderson (1970).

IX. CONCLUSIONS
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tional nature but as such they seem to prohibit any
attempt at self-consistency in a way whi. ch is tractable
in simpler models. However, these additional com-
plexities may also give rise to more localized modes and
resonant effects than occur in the simple models. The
main advantage of magnetic systems is that the ex-
change constants between constituents may be deter-
mined from low-concentration experiments, and ex-
pected to be valid for all compositions because of the
small strain.

Experiments and theory have now demonstrated
many of the features of low-concentration systems.
The frequencies and spatial extent of localized modes,
the frequencies and widths of pairs of excitations, and
the perturbation of the excitations of the host have all
been studied and the results found to be in reasonable
accord with theoretical calculations. From these
results the effective exchange constant for various
different interactions has been deduced and it is found,
as shown in Fig. 48, to be similar to that given by the
square root of the product of exchange constants of the
pure materials. This is to be expected from the simple
theory of superexchange (Anderson, 1950) but is rather
surprising for the ions containing unpaired orbital
angular momentum for which the exchange is expected
to be more complicated (Elliott and Thorpe, 1968).

One aspect of this work which needs further clarifica-
tion is the magnitude of the exchange between the
ferromagnetically aligned nearest neighbors in the
rutile structure. There are indications in the analysis of
optical measurements and NMR measurements that
these interactions are much stronger in defect crystals
than in pure crystals. However, both of these inter-
pretations are based on approximate theories and are
needed to explain data very precisely, so that further
work is required to con6rm these results.

The present theories enable a large number of predic-
tions to be made about systems containing only a few
defects. It is to be expected that over the next few years
many of these predictions will be worked out theoreti-
cally in detail and tested experimentally. Of particular
interest is the prediction of localized modes below the
band of Co host frequencies when Mn impurities are
introduced.

Further developments will probably include theoreti-
cal and experimental work on the temperature depend-
ence of the excitations and also on the effects occurring
at large concentrations. The theory for both of these
is very much more

dificult

than that of low-temperature
dilute systems, but promises to be very rewarding. The
work at high temperatures may provide insight into
suitable ways of discussing the temperature dependence
of spin waves in pure materials, while of even more
interest is the possibility of testing the theory of
excitations in disordered systems in detail. This latter
study may well help to answer the dificult questions
posed by the theories of localization in the treatment of
the conductivity of alloys.
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