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This paper reviews various results related to the single-particle structure in spherical and deformed nuclei, discussed
from the viewpoint of the so-called shell-correction method. This method stresses the importance of large-scale non-
uniformities in the energy distribution of the individual particles especially near the Fermi energy. The way in which
these nonuniformities affect in an essential way many nuclear properties, such as the shape stiffness, the spatial density
distribution, the total mass of the nucleus, the mass and inertia of the nuclear shape variations, etc. is also discussed.
Against this background, the behavior of the nuclear deformation energy is described, in particular for larger distortions
relevant to the fission process. In this connection, some qualitative singularities of the phenomenological liquid-drop
deformation energy at large shape distortions are pointed out, and their possible implications for fission are discussed.
As the problems considered cover a wide range of nuclear properties, this paper is not a review in the narrow sense of
the word. Comparison with other approaches as well as historic references are given majnly to clarify specific points,
because a complete review would be a monumental undertaking.
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I. INTRODUCTION

The problems involving bulk properties of nuclei such
as nucleon density distributions, nuclear masses, and
nuclear deformation energies constitute some of the
most pertinent problems of modern nuclear physics.
They have been and are still being attacked from many
different angles.

Simple models have been developed in the past to
accentuate different aspects of the problem. For
instance, the saturation property and low compres-
sibility of nuclear matter have early suggested an
analogy with a liquid droplet (Bohr and Kalckar,
1937). A model of this kind has formed the basis of
many semiempirical mass formulae, as, e.g., the well-
known Bethe-Weizsicker approximation to nuclear
masses (von Weizsiicker, 1935; Bethe and Bacher,
1936). The generalization of these phenomenological
models to include the case of deformed nuclei led to the
so-called liquid-drop model (LDM) for the nucleus,
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which was used in the first theoretical descriptions of
the fission process (Bohr and Wheeler, 1939; Frenkel,
1939).

Since then, the main field of application of the LDM
has been to the description of average properties of the
nuclear masses and deformation energies. Attempts
have also been made to extend the analogy between the
nucleus and a liquid droplet still further, e.g., by
assuming a kind of irrotational and incompressible
collective motion in the nucleus. These attempts have
not been very successful and, at present, it is not
generally believed that the LDM correctly represents
the dynamic properties of nuclear matter. Against this
background, it should be remembered that, whenever
in the present paper we refer to the LDM, we take it
only as a classical phenomenological expression for the
total mass of the nucleus considered as a function of its
shape and the nucleon numbers.

As an illustration of the quality of the LDM fit to
nuclear masses, we show in Fig. I-1 the results obtained
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T16. 1-1. (a) Experimental nuclear masses as compared with
the LDM fit used by Myers and Swiatecki (1966a). The figure
is taken from that reference. (b) The total shell-correction energies
to the nuclear ground-state masses, as calculated in Strutinsky
(1967), are compared to the deviations of experimental masses
from an LDM mass law referring to spherical nuclei (Seeger
and Perisho, 1967).
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F1c. I-2. Fission threshold energies versus the mass number
A obtained by an analysis of the observed fission cross sections
(Androsenko et al., 1969). Circles mark doubly even, squares
odd 4, and triangles doubly odd nuclei. The lines represent the
LDM predictions for (Z2/4) it equal to 48 and 60.

by using one of the recent versions, namely the liquid-
drop model of Myers and Swiatecki (1966a).

When, in 1939, the fission process was discovered
(Hahn and Strassmann, 1939), it was immediately
related to the disintegration of a uniformly charged
droplet (Meitner and Frisch, 1939). In the classic
papers by Bohr and Wheeler (1939) and by Frenkel
(1939), the deformation energy provided a guide to
the understanding of the mechanism of the process.
This original picture, however, is insufficient in many
respects. As an example, we show in Fig. I-2 the
fission threshold energies obtained by an analysis
of the observed fission cross sections (Androsenko
et al., 1969). The experimental values are almost
constant for the actinide nuclei. The liquid-drop
model, however, predicts a rather sharp decrease
of the fission barrier with increasing value of the
fissility parameter x= (Z2/A)/(Z%/A)ei. It would
require a value of (Z2/4)is=060 to fit the observed
weak variation, while the general trend of the barriers
in a broader region of nuclei, and especially the fit
to nuclear ground-state masses, lead to a wvalue
(Z2%/ A) ritr045-48 ( Goeppert—-Mayer and Jensen, 1955).
Since the fission barriers are determined as the energy
difference of two stationary shapes, namely, the
ground and theshold state, this discrepancy does not
depend on the still poorly understood dynamic features
of the fission process. Thus, the conclusion is rather
straightforward, and may be taken as a serious warning
that the LDM does not correctly represent these
quantities, indicating that something essential is
missing in that model.

Actually, already by considering the LDM mass fit
in Fig. I-1, one observes the occurrence of some syste-
matic deviations, especially pronounced in the so-called
magic nuclei. While, on the average, the deviation does
not exceed a few MeV, the magic nuclei can be nearly
13 ‘MeV more bound than predicted by the LDM
average fit. These deviations of the nuclear binding
energy from the smooth average defined by the liquid
drop were early taken as evidence for the existence of
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shell structure in nuclei, similar to that found in atoms
(see, e.g., Feenberg, 1955). This special aspect of
nuclear structure is stressed in the shell or independent-
particle model based on the idea that the nucleonic
interactions create a field, which in the lowest order
approximation is common to all nucleons; the latter are
considered as moving independently of each other in
this average field, and their energies and wave functions
are found by a solution of the corresponding one-
particle problem, with the potential determined on an
empirical basis.

It was indeed a great success when the shell model,
after introduction of the spin—orbit force (Haxel et al.,
1949; Mayer, 1949), predicted the gaps in the single-
particle level structure corresponding to the magic
numbers . . .50, 82, 126, reflected in the increased
binding energy of the magic nuclei. The model has also
provided a basis for discussions of the properties of
excited nuclear states and for the development of
microscopic theories, which describe the collective
excitations found in nuclei as coherent motion of the
shell-model particles. Furthermore, the shell model in
its extension to nonspherically symmetric average fields
(Nilsson, 1955) correctly predicted the ground-state
spins and the low excitation spectrum for most of the
even—odd nuclei. It was also successfully applied to the
evaluation of the nuclear ground-state deformations
(Mottelson and Nilsson, 1959), where the nuclear
energy as a function of deformation was estimated from
the sum of single-particle energies, as given by the
Nilsson model, with the constraint of constant volume
for the potential. This approach and the closely related
treatment based on a quadrupole interaction between
the nucleons (Kumar and Baranger, 1968) were further
developed with the inclusion of pair correlations by
various authors. Attempts were also made to extend
such a treatment to large distortions occurring in the
fission process, particularly in connection with the
problem of asymmetry of the fragment distribution;
see, e.g., Johansson (1962). Such studies became
especially intensive after the discovery in 1962 of the
spontaneous fission isomers (Polikanov et al., 1962);
see, e.g., Gustafson ef al., 1966; Malov, Polikanov, and
Soloviev, 1966.

Analyses of this type, based entirely upon the single-
particle model, cannot be expected to adequately
describe the nuclear deformation energy. Although they
work reasonably well for moderate quadrupole de-
formations of the order of those occurring in the ground-
state deformations, it is essential for larger quadrupole,
or for other more complex deformations, to properly
incorporate the bulk properties of the nucleus, in
addition to the single-particle structure.

In general, one may also say that large distortions of
the average field, which are bound to occur in fission,
remains a very difficult but challenging testing ground
for any nuclear theory. Thus it seems that both ap-

proaches—the phenomenological classical approach
represented by the liquid-drop model as well as the
summation of levels based on the single-particle model—
are unable to provide a reliable picture of all essential
properties; they existed peacefully side by side without
links between them, each with its own virtues. Recently,
a method has been developed, in which the liquid-drop
and the single-particle aspects were given their balanced
role (Strutinsky, 1966-68). In this method, the smooth
part of the total energy of the nucleus is extracted and
replaced by the phenomenological liquid-drop model
expression. One tries only to evaluate the remaining
oscillations (the so-called shell corrections) due to
nonuniformity of the phase-space distribution of the
nucleons. As it has proved successful in many applica-
tions, we shall in the following limit ourselves to
consideration of this method. However, it should be
stressed that many other methods have been suggested
for treating the problems connected with large nuclear
distortions and the fission process.

Significant insight has for example been obtained in
the so-called statistical theory of fission (see Fong, 1969,
and references herein). More recently there have been
attempts to develop a theory, in which properties of
complex nuclei are deduced from nucleon-nucleon
interactions. Important progress in this approach has
lately made it possible to calculate with a relatively
high precision the nucleon binding energies in a number
of heavy nuclei, and has also made possible a quantita-
tive description of some other properties (see, e.g.,
Negele, 1970). However, it seems that still higher
accuracy is required for the description of the nuclear
fission process (see Bassichis ef al., 1971). Here, one is
dealing with a significant reconstitution of the whole
nucleus, and the theory should be able to predict the
total binding energy of the nucleus with an accuracy of
at least a few MeV. The development of a purely
microscopic theory capable of meeting this requirement
is undoubtedly a tremendous undertaking, in which one
meets very serious theoretical and practical difficulties.
One may even doubt that such an approach will ever
result in a manageable theory of nuclear fission, where
the evaluation of the energy variations in itself is only
part of the problem involving also dynamical features of
a distorted piece of nuclear matter.

Similar studies, as the ones presented in later sections
of this paper, have recently been done by several other
groups (see e.g. Nilsson et al., 1969; Andersen et al.,
1970; Mosel et al., 1971; Bolsterli et al. 1971; for a
complete list of references see the latter reference).
Though they all apply the same methods, i.e., the shell-
correction approach presented below, they differ among
themselves and from this presentation mainly by the use
of different types of average potentials in the single-
particle models. They all arrive at qualitatively similar
results, which can be understood from the arguments
presented below.



BrACK, DAMGAARD, JENSEN, PAuLi, STRUTINSKY, AND WONG The Shell-Correction A pproach to Nuclear Shell Effects 323

In this paper we have not tried to give a complete
review of all the different approaches, mainly for
reasons of space. We rather report on the extensive
investigations of different aspects of shell structure in
nuclei, undertaken at the Niels Bohr Institute in the
years 1968-1970. So without being a proper review, it is
the aim of the present paper to show that the presence
of shells interpreted as large-scale nonuniformities in the
distribution of single-particle states is a common feature
of independent-particle models, and that this grouping
of levels manifests itself in many important ways in
deformed as well as in spherical nuclei. In Sec. II, we
shall collect some qualitative arguments indicating that
the bunching of levels is not so much a feature of
spherical nuclei, but rather a kind of residual effect
of the quantization of the single-particle motion.
Therefore it may occur at any deformation of the
average field. This implies necessarily a generalized
concept of the shell structure as well as of nuclear
magicity. The way in which the existence of such shells
is connected with a contribution to the total energy,
and how this shell-correction energy can be calculated
from existing single-particle models, is presented in
detail in Sec. IV, together with a discussion of the forces
arising due to a nonuniform density distribution of the
nucleons. We discuss, in Sec. ITI, how far it is justified,
from a microscopic point of view, to divide bulk proper-
ties like the total energy into a shell contribution and a
slowly varying background energy, which may be
treated in a simple phenomenological way, and whether
the suggested approach is self-contained.

In fact, the shell structure is almost exclusively
decisive for the nuclear ground-state deformations,
while residual interactions like the pairing correlations
are of comparatively minor importance (Sec. V).
However, they manifest themselves, for instance, in
fluctuations of the ground-state masses. Although no
new fit to these masses has been attempted in this
paper, some conclusions (Sec. VI) are drawn, in
particular concerning the nuclear masses around lead-
208.

In the second part (Secs. VII-IX), we confine our-
selves to a discussion of the nuclear deformation energy
at larger distortions, and in particular its implications
for the fission process and for the stability of the
hypothetical superheavy nuclei. In this context, the
shell-correction method has especially interesting
applications. Large and unusual deformations of the
nucleus are characteristic of fission, and the way in
which we treat both the single-particle and the liquid-
drop models in these cases may be found in Sec. VII.
An important part of our investigation deals with the
influence of asymmetry in the nuclear shape at large
distortions (Sec. VIII). In the same section, we con-
sider the possible existence of isomeric states in strongly
deformed nuclei, a possibility which is confirmed by the
growing body of experimental data.

The dynamic aspect of the special modes of collective
motion met in fission is a nearly untouched field. In
Sec. IX, we present our calculations of two important
quantities of a future dynamic theory, namely, the
mass and inertia tensors. In these quantities, we again
find a strong correlation with the grouping of levels
and sometimes pronounced ‘‘shell structure” as in the
total energy. Though a dynamic theory remains a
challenging problem, some success may be achieved in
the calculation of spontaneous fission lifetimes by
simple estimates of penetration probabilities. These
are described in Sec. IX.

We consider also the moments of inertia' of the
rotating nucleus for a varying degree of the excitation
characterized by the nuclear temperature (Sec. IX).
Here, one can see that the shell effects in the single-
particle level distributions become less important in
excited nuclei.

II. QUALITATIVE CONSIDERATIONS

This section is devoted to a qualitative description
of the simple physical picture arising from our calcula-
tions concerning the correlations between different
shell-correction quantities. The precise definition of
these quantities will be found in the next sections along
with a detailed description of the results.

In this section, we also try to explain why the shell
structure may be expected to be a common feature of
nearly any independent-particle model.

1. Definition and Origin of the Shells

In the framework of the single-particle model, the
distribution of energy levels found in nuclei is tradi-
tionally described in terms of shells, subshells, etc.
Adapted from atomic structure, the notion of a shell is
often used as just another denotation of a degenerate
single-particle state in a spherical nuclear field.

As will be explained in the following, a somewhat
broader and more specific definition seems, however,
necessary.

We shall define a shell as a large-scale nonuniformity
in the energy distribution of the individual particle
states. This crude definition will become more explicit
in the course of this section. So, in the specific case of a
spherical field, instead of a degenerate single-particle
state, we would rather interpret large distinct groups of
such states as shells.

For the nuclear binding energies the level distribution
near the Fermi energy is of special importance. Con-
sidering this region, we have tried to illustrate the
connection between the variation of the local density of
single-particle states near the Fermi energy and the
nuclear binding energy in Fig. ITI-1. From this figure, it
is seen that, compared to the case of uniform density of
states, the nucleus is expected to be more bound if the
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level density is smaller, because then the nucleons
occupy deeper and more bound states. Conversely, the
nucleus is less bound if the level density is increased
near the Fermi energy.

This effect of the variation of the single-particle level
density in the vicinity of the Fermi energy on the
nuclear binding energy is, in fact, a particular example
of the general rule that, in quantal systems, degeneracy
leads to reduced stability. This is so because even an
infinitely small perturbation of a degenerate system
produces a finite response in the system due to re-
arrangement of many close states. In nuclei, the bunching
of levels expresses, of course, only an approximate
degeneracy and, therefore, it requires a finite though
small perturbation to reveal this feature of the de-
generacy. In all other respects, the situation is analogous
to the one met in some problems of molecular and solid
state physics; see, e.g., the Jahn—Teller rule in the
theory of molecules (Landau and Lifshitz, 1959):

The nuclear ground state, as well as any other
relatively stable state, should thus correspond to the
lowest possible degeneracy or, in other words, the
lowest density of states near the Fermi energy. From
this, a new definition of a “magic” nucleus (or, more
generally, of a shell closure) follows: it is the one, which
is the least degenerate, i.e., which has the lowest density
of intrinsic states at the Fermi level, among its neigh-
bors. It should be noted that neither this definition nor
the concept of shells introduced above involves any
assumption concerning the nuclear shape. As the shell
distribution is also a function of the nuclear shape, and
pronounced shells appear in deformed nuclei, one also
has to generalize somewhat the concept of “magicity”.
Instead of being connected only to definite nucleon
numbers, “magicity”’ should be characterized by botk
the nucleon number and some characteristic deforma-
tion of the nuclear shape at which the shell closures
occur. A magic nucleus need not be spherical and, in
addition to the familiar magic numbers of nucleons
for spherical nuclei, one can also speak of magic
deformed nuclei connected to other nucleon numbers.
In the same way as, e.g., the presence of the familiar
shell closures for Z=82, N=126 in a spherical shape
nucleus is responsible for the increased stability of
spherical shapes in nuclei around lead-208, the deformed

shape shell closures appearing for some other nucleon
numbers (e.g., N=100, 152) are responsible for the
increased stability of distorted shapes (corresponding
to quadrupole distortions with 8, equal to 0.2 or 0.3)
for the rare-earth and actinide nuclei. Confirmation
hereof can be found in some empirical data. Here one
should mention an observation by W. D. Myers and
W. Swiatecki who in their analysis of nuclear masses
found systematic deviations in the middle of the rare-
earth region and, independently of the theoretical
results, found it compelling to introduce some kind of
magicity also for deformed nuclei. This observation led
them to improve their phenomenological shell correc-
tions in a direction consistent with the calculations
(Myers and Swiatecki, 1966a).

In order to illustrate our point of view, we present in
Fig. II-2 a schematic fingerprint of single-particle level
distributions in a deformed nucleus, where the magic
shell closures as the regions of a locally low level density
are indicated by circles. In real nuclei, these regions
expose an anomalous stability depending on specific
shapes and nucleon numbers.

As we shall explain later, the shell distribution is
expected to change appreciably with even a relatively
small variation of the nuclear shape of the order of
A713209, and, consequently, a nucleus can have
more than one shape where the condition of the lowest
degeneracy is locally fulfilled. Thus, one can also speak of
magic nuclei in connection with a second shell closure in
a strongly deformed nucleus. An important example is
found at V=146, where the nucleus becomes magic for
a strongly distorted shape. A pronounced potential well
develops in the nuclei around this nucleon number at a
deformation characterized by the ratio of the two
nuclear axes equal to 1.8-2.0.

In fission, the nucleus may be caught into this other
well and stay there for a relatively long time. In this
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way, the spontaneous fission isomers discovered recently
(Polikanov ef al., 1962) are explained (Strutinsky,
1966). It also influences the fission process in nuclei
around *°Pu, and there one finds many experimental
results in support of the quasistationary state in the
strongly distorted nucleus, in addition to the spontane-
ous fission isomers: the grouping of the neutron fission
resonances, broad collective resonances, and some
anomalies in the angular distribution of the fission
fragments, etc. (see, e.g., Bjgrnholm and Strutinsky,
1969; Vienna Symposium, 1969).

In this paper, we describe a method which allows a
quantitative evaluation of the shell-structure effects in
the nuclear binding energy; the correlation between
the increased binding and the shell closures mentioned
above will appear as a systematic qualitative result.
This connection has earlier been used in a phenomeno-
logical way; see, e.g., Swiatecki, 1963; Myers and
Swiatecki, 1966a. However, considerable arbitrariness
arises in connection with the phenomenologically defined
shell corrections of these authors, and, furthermore,
their assumption that the shells disappear for large
deformations was not justified.

The latter assumption was, in fact, very common at
the time. Only in a few earlier attempts to explain the
asymmetry of the mass distribution of fission frag-
ments, has it been suggested that shells in strongly
distorted fragments might be partly responsible for this
asymmetry, as e.g. in Geilikman, 1960. The arguments
were based on a consideration of the axially symmetric
deformed harmonic oscillator field in which degeneracy
appears for the ratios of the frequencies equal to 1/1,
1/2, 1/3, etc. However, the pure harmonic oscillator
was too much of a special case, and no such degeneracy
was expected for realistic potentials. It was, therefore,
usually assumed that the pronounced shell structure is a
characteristic of spherical nuclei and disappears at
relatively small deformations when levels of adjacent
shells cross (Swiatecki, 1963; Myers and Swiatecki,
1966a, b; Geilikman, 1965; Geilikman and Khlebnikov,
1968; Strutinsky, 1966). This assumption seemed to
find support in the rather chaotic level distribution
resulting from the Nilsson scheme at medium deforma-
tions, where it is indeed not easy to detect any special
structure on brief inspection. However, closer examina-
tion, having in mind the quantitative definition of the
shell structure, still clearly reveals shell structure there,
as well as in other single-particle potentials, cf. Fig. II-3.

In fact, the presence of shells appears to be a rather
general phenomenon. Conversely, the absence of shells,
i.e. a uniform random distribution of the single-particle
states, must be considered an exception. Actually, in all
investigated single-particle potentials, a similar pattern
of the shell distribution is found with the shells only
relatively more pronounced in the spherical case. This
point has been checked in a number of calculations, e.g.,
with the deformed square well and the harmonic

oscillator potentials, the Nilsson model with arbitrary
values for the u and k parameters (Strutinsky, 1968),
and with the Woods—-Saxon potentials of various nuclear
shapes, including those with a distinct waist, or with the
spin—orbit force artificially increased so much that even
the spherical magic numbers were significantly moved
from their usual positions. Nor does the shell structure
seem to have much to do with special features of the
harmonic oscillator, whose shell structure appears to be
only a specific case of a more general phenomenon.
This may be clear, for instance, from the finding that
even stronger shells appear in the Nilsson model than in
the original deformed haromic oscillator, in spite of the
fact that the spin—orbit force and the /2 term spoil the
degeneracy related to special rational ratios of the
frequencies. It seems that only one feature is common to
all the investigated cases, namely that an average
potential of a certain size and depth is considered.
Thus, a plausible explanation seems to be that the large-
scale fluctuations in the level distribution emerge as a
residual effect due to quantization of the single-
particle motion in a finite size field. The quantization
imposes some restrictions on the available nucleon
phase space and results in a certain statistical correla-
tion of the spacings between the individual levels in a
few-dimensional case. In order to explain this argument
in more detail, let us start by considering first an
arbitrary one-dimensional potential which has a certain
definite size R. From Bohr’s quantization rule, we find

(I1.1)

where $(8&) = (26m)V2 is the momentum of the particle,
and m is the nucleon mass. The estimate in Eq. (I1.1)
gives a spacing between the levels approximately equal
to

p(8r) Romihi,

AQ=8n 11— 8, (fi/R) [ (28,/m) ]2, (11.2)

with much smaller and larger distances not allowed.

If we equate the kinetic energy & with the Fermi
energy N and use the familiar relation R=7,4"3 the
elementary energy quantum in Eq. (IL.2) is given by

#QA1.3(\/ A13)~5-10 MeV. (I1.3)

In Eq. (I1.3), we have further made use of the Fermi
momentum

p(\) = (3m)13(7i/r0) =1.52(%/70)

taken from the Fermi gas assumption.

Of course, in actual cases, the distance between the
energy levels deviates from the estimate above. How-
ever, these model-dependent deviations are small
compared to the mean distance between the states given
by #Q (I1.3). Thus, in a quantal problem the distribu-
tion in no instance looks like a random distribution with
the mean distance 7#Q. Instead, the positions of the
individual levels are always strongly correlated.

(11.4)
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corresponding nucleon numbers are indicated.

Turning now to two- or more-dimensional cases, we
first notice that, in these cases, the level distribution
may be considered approximately as a result of com-
bining a number of one-dimensional distributions.

This leads to the familiar estimate of the mean level
density in a three-dimensional potential well:

gN=E(A/N).

In a heavy nucleus this estimate corresponds to 5-6
levels per MeV. Thus, had the individual levels been
randomly distributed, any large-scale fluctuation of the
number of particles in energy intervals of the order of a
few MeV would have only a very small chance to occur.
The essential point, however, is that the three-dimen-
sional case will reflect the correlations found above in
the one-dimensional distributions, with the order of
magnitude of the correlation length given by Eq.
(11.3).

(I1.5)

Consequently, each shell contains as many as

GO\ QA28 (1I1.6)
individual states.

Because the actual energies always deviate somewhat
from the regular spacing in each dimension, the more
dimensions the system has, the less distinct the cor-
relations become. However, the three dimensions met in
reality are hardly sufficient to wash the correlations out.
So, the shell structure in the level distribution may be
expected to be a general phenomenon, which is present
in any shell-model field, provided that it has a finite size
and a significant depth.

The above remarks concerning the origin of shell
structure in finite-size potentials are only intended to
give an indication of the lines along which this problem
may be discussed in a way consistent with our experi-
ence. Probably, one should look for more quantitative
arguments by studying the correlations in a statistical
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distribution which has the described properties. As a
step in this direction, it may be helpful to consider
average fields which possess some special symmetries,
because in these fields the arguments often have a more
transparent meaning; see, e.g., the analysis of level
distribution by Bloch and Balian (1969). It should be
kept in mind that the presence of such symmetries in
itself does not appear to be a necessary condition for the
establishment of shells and also that the shells are large
groups, containing as many as AQj=A%3 individual
levels. The symmetry results often in a degeneracy on a
smaller scale.

An interesting approach to the appearance of shell
oscillations and their relation to the Hartree-Fock and
Thomas-Fermi approximations has been initiated by
Balian and Bloch (1970). They consider Hartree—Fock
quantities smoothed over energy, ¥ being the smoothing
width; and find that the smeared Hartree-Fock
quantities resemble those appearing in the Thomas—
Fermi approximation, provided v is large. When, on the
other hand, v is small, oscillations which resemble the
shell structure, and which in the classical limit are
related to classical periodic orbits, arise. A similar
connection between shell structure and classical periodic
orbits has also been considered recently by Swiatecki
and Myers (1970).

The intrinsic properties of the individual states which
belong to the same shell are rather accidental. Thus,
when the nuclear shape changes, some of them increase
their energy while others decrease it. Therefore, re-
distribution of shells takes place. The characteristic
distortion, at which new shells are formed, can be
estimated from the fact that the slopes of the single-
particle levels are on the average characterized by the
particle-to-surface coupling constant « of the order of the
Fermi energy A (see, e.g., Bohr and Mottelson, to
be published). With the energy distance between the
shells given by Eq. (I1.3), this amounts to a character-
istic increment of the shape variation equal to

ABRIAQ/ N A3,

i.e., to a deformation of 209,-309,.

So we find that the distribution of the shells is an
approximately periodic function of both the number of
nucleons and the shape variations with characteristic
increments equal to 4%3 and A~1/3, respectively. This is
qualitatively illustrated in Fig. I1-2.

Examples of single-particle level densities are shown
in Fig. IT-3; the energy levels were evaluated using a
Woods—Saxon potential for a number of nuclear shapes
along the so-called liquid-drop valley, which for larger
values of the shape-distortion parameter ¢ also includes
shapes with a significant neck-in. Both the local level
density, gm(8), obtained by averaging the single-
particle spectrum over an energy interval of about
1-2 MeV, and the average level density §(8&), obtained
by averaging over an interval of about 8 MeV, are

(1I1.7)

shown. Strong fluctuations of the local level density
around the average, though most pronounced in the
spherical case (c=1), are observed for all deformations.
In some special combinations of the energy value and
deformation, the shell closures are especially clearly
marked.

2. The Energy and Spatial Density Corrections
and the Forces Due to Shells

In Fig. I1.3, the level densities are shown as functions
of the special deformation parameter ¢. In the following,
we shall use the shorthand sign 8 to denote one or more
unspecified deformation parameters.

The difference between the two level densities shown
in Fig. I1-3,

68(87 :8) :gSh(g; ﬁ) _g(sy :8)7

gives a convenient measure of the fluctuations in the
level density (the shell structure). Thus, a negative
value of g(&,B) indicates a local density lower than
the average. The fluctuations in the level density lead,
as we have seen, to variations 6U (N, 8) in the total
energy. In 8U(N,B), we have replaced the energy
variable & by the nucleon number N, which in fact is
taken to be twice the number of levels found below the
energy &. Then, & and N are equivalent variables. We
also consider N as the nucleon number in real nuclei;
this is possible only insofar as the level distribution
does not change considerably in a number of neighbor
nuclei. We assume this throughout the paper.

The varying part of the total binding energy of the
nucleus 8U, due to shell structure, is called the shell-
correction energy or simply the energy correction.

As, later on, we shall consider other quantities which
are affected by the shell structure, we introduce the
following notation. The shell deviations (shell cor-
rections) are denoted by writing § in front of their
symbols: U, &g, 6Q, etc. Here ~ is used to denote the
averaged quantities U, §, @ defined for the renormali-
zation. These quantities, discussed here only qualita-
tively, are derived and explained in more detail in
Sec. IV.

There is a simple qualitative relation between
8U(N,B) and 6g(NV,B). Both are approximately
periodic functions of the nucleon numbers and the
shape variations, and both should have their local
minima and maxima at the same places. This feature is
observed in the actual calculations; see Fig. II-6 and
the more detailed discussion in Sec. IV.

We will show how one calculates the shell-correction
energy U (N, B8). It appears, however, that §U (N, 8)
depends on the shell structure only in a relatively narrow
energy interval of the order of #=(5-10) MeV around
the Fermi energy, while the contributions from more
distant single-particle states average out. This is an
important feature of the shell-correction approach,

(I1.8)
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because, at the present time, one can hardly have any

_confidence in the independent-particle model outside
this region. This feature also ensures that the energy
correction §U(N,B) as well as other corrections are
reasonably insensitive to changes in the single-particle
model used, and can be found in a unique way. This is in
marked contrast to the results obtained by summation
of the energies of all individual levels; cf. Sec. I.

As will be shown, the ground-state equilibrium
shapes are very accurately determined by the position
of the minima of §U (N, 8). Furthermore, the value of
8U(N,B), evaluated for the ground-state shape, can
be compared to the empirical shell corrections to the
nuclear masses.! The results (Strutinsky, 1967; Seeger,
1967; Nilsson, Thompson and Tsang, 1969) agree rather
well with the empirical data, especially in the deformed
nuclei. The mean deviation of the calculated masses is
not worse than in the best (and very complicated)
phenomenological fits, as can be seen by comparing the
theoretical curves in Fig. I-1(b). A more detailed
discussion is to be found in Sec. VI, where additional
data are presented.

The shell effects in the deformation energy may also
be described in terms of restoring or distorting forces
due to the shell structure. As the energy correction
depends, in particular, on the parameters (31, B2, ** *, Bn,
specifying the shape of the average nuclear potential,
the shell forces restoring—or stretching—the nuclear
shape are given simply by the partial derivatives of the
shell correction energy

5‘33‘:65[](]\], B1, B2, * =+, Bﬂ)/aﬂi

Moreover, the shell forces are closely related to undula-
tions, dp(r, B), in the spatial density as a function of
deformation, and such density variations entail naturally
fluctuations in the density moments, as, e.g., in the
quadrupole moment

3Q(8) = Jdrgop(x, B),

(11.9)

(I1.10)

! For simplicity, in this section we ignore some less important
contributions to energy variations, such as the pairing correla-
tion energy (see Secs. IV-VI).

due to the shell structure. The quadrupole restoring
force 6F, is proportional to §Q, and, in general, analogous
relationships are found; see Sec. IV.2 For the sake of
simplicity, we shall in this section only consider the
shell correction to the quadrupole moment Q.

Thus, the four shell corrections, dg, 6U, §F, and 8Q,
are intimately connected. In a smoothed density dis-
tribution §p=0 and, in this case, the shell force éF turns
to zero. According to Eq. (IL.9), this situation cor-
responds to an extremal value of the energy correction
8U, i.e., as far as the nuclear interior is concerned, it
should be a stationary state of the nucleus.

The relationship between the force arising from the
shell structure and the spatial density fluctuations is
illustrated in Fig. II-4, which recalls the original ideas
of Rainwater, 1950, and of Bohr and Mottleson (Bohr,
1952; Bohr and Mottelson, 1953) concerning the origin
of nuclear equilibrium deformations: the restoring
(‘“alignment””) force tends to distort the nucleus in the
direction of maximal nucleon density. Note, however,
that, in the present context, 8Q describes the undulations
of the nuclear density related to the nonuniformity of
the energy distribution of single-particle states and is
generally different from the ‘“quadrupole moment of the
extra nucleons” in the unified model (Bohr and Mottel-
son, 1953).

When the nucleus is deformed, variations of the
nucleon spatial density are paralleled with the re-
distribution of the energy shells. As a result, 6Q is an
oscillating function of the deformation, in the same way
that the other shell corrections are. This is indicated
schematically in Fig. II-5.

At deformations where the shell-correction energy

ENERGY

DEFORMATION

Fi1c. II-5. Schematic picture illustrating the connection be-
tween the total deformation energy and the quadrupole moment
8Q. The curve represents the deformation energy (LDM+-8U)
as a function of deformation, oscillating around the slowly varying
LDM part (dashed curve). The qualitative value of 8Q is indicated
in different regions.

2 This is only true in the case of small distortions’of a harmonic
oscillator potential. Similar results are obtained in all investigated
cases.
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U (N, B) and the level density §g(&, 8) have their local
extrema, 8Q and, as a result of the nucleon redistribu-
tion, the restoring force change their signs there. An ex-
ample of the results obtained with a realistic shell-model
potential is shown in Fig. IT-6. The oscillating behavior
is a typical feature of all other cases, too. In the instance
shown, Z=282, the stability of the spherical shape is
increased due to a ‘“negative’ response (6Q0<0) of the
shell distribution to a quadrupole perturbation of the
shape. This is also true for other magic nuclei with
spherical shapes and some nuclei around them.

The shell forces, represented in our calculations by
0%, constitute only one—and a relatively small—part of
the generalized forces acting on the nuclear shape. The
other component is represented by classical forces
present in the liquid-drop model. Then, the total force
can be written

F oot =F o1+ 05. (I1.11)

This division is enforced in our calculation by the
normalization of the uniform energy-distribution terms
to the phenomenological LDM energy.

The two main components of &, are the Coulomb
and the surface tension forces, and each of them is, in
general, much stronger than the shell force 6%. However,
F.1 is relatively small for shapes not very different from
the spherical shape, which is an extremal shape for the
LDM energy alone. There, the shell force §F, or equiv-
alently the shell correction energy 68U, is the most
essential factor in determining the equilibrium shape
of the nucleus. Consequently, the condition §F=0
must be fulfilled at the equilibrium. So we see that, for
not too large distortions, the ground-state equilibrium
shapes are determined by the position of the minima, of
sU(N,B).

At larger distortions, the liquid-drop model forces
increase and the presence of shells is generally insufficient
to form an equilibrium state, even in the regions of very
pronounced shell closures. This is not the case, however,
in the very heavy nuclei; there one finds a relatively
large region of space spanned by the nuclear shape
coordinates, where the increase in the surface energy is
largely compensated for by the decreasing Coulomb
energy—it is the region of the so-called LDM valley.
The resulting classical force is weaker and the shell
force again plays a significant role. This makes possible
the existence of pronounced potential wells in the
deformation energies of some very distorted heavy
nuclei.

At first sight, a formal estimate of the amplitude of
the energy variations related to the shell structure may
be obtained as a characteristic energy of the shell, equal,
by the order of magnitude, to the intershell spacing

7Q times the number of states in the shell
Ushen = hQA23200-300 MeV. (1I1.12)

This quantity should also be related to the spatial
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F16. II-6. The quadrupole shell force §F, the quadrupole
moment 8Q of the spatial density nonuniformity, the energy cor-
rection 8U, and the level density variation §g as functions of the
quadrupole deformation B of the Nilsson potential, calculated
for Z=82 protons. The deformation parameter 8 used here is
defined by 8=d—1, where d is the ratio of the oscillator fre-

quencies, d=w1/w,. For small deformations, =6+ %82+~ with

d as used in Mottelson and Nilsson, 1959.

density fluctuations by the relationship-
Usnenn= [V (r)8p(r)dr, (11.13)

where V is the average nuclear potential of the order of
A. The two quantities are the same if the average
magnitude of dp in Eq. (I1.13) is of the order of 4—2/3
relative to the total density p(r)

So/ pro A28, (I1.14)

The estimate (II.14) agrees with the expected fluctua-
tion of the nucleon density in a shell, as this fluctuation
is proportional to the square root of the number of
individual uncorrelated states in the shell adjacent to
the Fermi energy,

5P/p%(A2’3)”2/A = 4203,

Stronger fluctuations are expected if some of the states
have identical density distributions, as e.g., in the case
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of spherical degeneracy [though, even in this case, the
amplitude of the variations of the shell-model density
does not seem to differ much from the estimate (11.14) ].

However, the energy corrections 6U found in actual
calculations are an order of magnitude smaller than
the quantity (II.12). Apparently, this is so because
the considerations leading to both (I1.12) and (I1.13)
ignore essential factors: Eq. (II.12) disregards com-
pletely the spread of the energy shell, while using
(I1.14), the oscillating character of §p has not been
considered.

A much better estimate can be given by making use
of Eq. (IV.38). There it is shown that the shell correc-
tion A(8U), produced by a small change AV of the
average nuclear potential, equals

A(8U) = [(AV)épdr. (I1.15)
In this equation we substitute, instead of AV, the
change of the potential produced by increasing the
number of particles in the nucleus by an amount equal
to one-half of the number of states in the shell, AN =
3423, The most important effect in V due to the
increase in particle number is the corresponding
increase in the nuclear radius

ARRA (roAV3) =§r,. (11.16)
The depth of the potential remains approximately
constant equal to . Using §p_2A~%/3p, we then find the
following estimate for the variation of 60U from magic
to mid-shell nucleus

A (BU)ANSpAVINA20 MeV.  (IL17)

Here Av is the variation in the volume of the potential
Av=3%9,4713

where 7 is the nuclear volume. The quantity (II.17)
agrees better with the numerical results concerning the
variation of the energy correction in spherical nuclei.
In deformed nuclei, the amplitude of U is two or three
times less.

The relative magnitude of the shell-correction quanti-
ties is very small, indeed. While the total binding energy
in nuclei is of the order of a few GeV, the shell-correction
energy amounts only to 5-10 MeV.

With respect to the magnitude of the shell part of the
quadrupole moment &Q, it is only 1-2 b or less, whereas
the typical quadrupole moment Q of a deformed nucleus
is of the order of 10 b. The relative smallness of the
shell corrections was probably one of the reasons why
the rather regular shell structure in deformed nuclei
remained unnoticed until recently; it was difficult to
observe these small variations on the background of a
much larger and poorly determined quantity. These
variations were undoubtedly present in all single-
particle calculations of the total single-particle energy

and of the quadrupole moment (cf., e.g., Fig. 5 in Bes
and Szymdnski, 1961; Gustafson ef al., 1966).

III. VARIATION IN ENERGY AND ITS
CONNECTION TO HARTREE-FOCK
THEORY

The equations of the shell-correction method may be
obtained by starting from the Hartree-Fock (HF)
expression for the total energy. The subsequent steps to
be taken can be summarized as follows:

One assumes that there exists some smooth, generally
nonlocal, but not necessarily self-consistent average
field, which is close to the HF field. Such a field may
be identified with the shell-model potential. In other
words, the shell model is defined as a model in which
the potential is constructed without regard to the
shells.

The self-consistent quantities in the HF equation are
substituted for by the solutions of the shell model. In
the expression for the total energy, this gives only an
error of second order in the difference between the HF
and the shell-model field.

In the expression obtained in this way for the total
binding energy, the shell-structure effects are contained
only in the sum of the shell-model single-particle
energies. A smooth part of this sum is extracted and
taken together with the already smooth potential
energy term. The sum of these two terms is considered
as representing a ‘“smooth” part of the total energy,
which may be considered an analog to the liquid-drop
energy. The result is further simplified and improved
by replacing the smooth part by the phenomenological
expression of the liquid-drop model (LDM) for the
energy of the nucleus. The remaining part of the sum of
single-particle energies (after extraction) constitutes
what we call the shell-correction energy of the nucleus.
This quantity can be evaluated for any given shell-
model field. Added to the LDM energy, it gives an
approximate expression for the total nuclear energy.

The pair correlation energy is added to the final
expression.

1. The Shell Model as an Alternative to the
Self-Consistent Theory

In a first step, we show that one makes only a
relatively small error in the total energy by replacing
the self-consistent single-particle energies and wave
functions by the analogous quantities of the not self-
consistent shell model.

The single-particle density matrix

p(x, 1) = 23" e, (1) @ (1') (IIL.1)

plays a fundamental role in HF theory. In this equation
n, is the occupation number (either 0 or 1), and ¢,(r)
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is the solution of a Schrodinger equation
[—(7/2m)A4+VIpy=8sp,.  (IIL2)

The self-consistent single-particle potential V is built
up by the density matrix p and the effective nucleon
interaction G

V(r)=[dr'p(r’,1')G(r, r')+ exchange terms. (IIL.3)

In addition to the density matrix p, one can define a
quantity (r, r’) which is p properly averaged over a
number of nuclei or an equivalent average over a
sufficient number of states in the same nucleus. A
characteristic feature of the nuclear shell structure is an
approximately periodic variation with the nucleon
numbers with a period AAA4?%3. Thus, the interval
over which the average should be taken must at least
contain that many nuclei. This corresponds to an
interval 7Q in the single-particle energy spectrum.
Quantities averaged in this way represent the smooth
behavior of the original quantities and this can also be
assumed for p(r, 1’).

In analogy to Eq. (II1.3) we can use 5 to define a
smooth single-particle potential ¥ (r),

V(r)=[dr'3(x', 1')G(r, ')+ exchange terms. (II1.4)

Apparently, 5 is not related to ¥ in the same way as p is
to V, since the latter two are connected by the seli-
consistent HF equation. The average or smooth
quantities 5 and V are not self-consistent and do not
correspond to any real physical system. We may assume,
however, that apart from some relatively small devia-
tions due to the shell structure in specific nuclei, these
quantities are close to those in real nuclei. As ¥ by the
definition varies smoothly from one nucleus to another,
it may be close to a “good” shell-model field. From the
solutions of the shell-model Schrédinger equation

[— (7/2m)A+V]e,5=8,50,5,  (IILS)
we can form the shell-model density matrix p$
p3(x, 1) = 23" mp,5 (1) Y, S(r'). (IIL6)

The three densities p, 3, and p® differ from each other,
but differences between them are of the same order of
magnitude, and are all linear in

V=V—V xp, (IIL.7)
with

(I11.8)

Considering 6V as small, one finds in first-order per-
turbation for the density

dp=p—p.

p=p5+p+0[(p)%] (I11.9)
with
p(r, 1) = 2§ L(n—m)/(8,—8,) 1v l 8V | )
Xt (1), (1), (II1.10)
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where the neglected terms are of second order in &p.
Correspondingly, one finds for the self-consistent
single-particle energies

8,=8,5+(v | oV | »)+ ; | |8V | W)/ (8,—84).

(TT1.11)

In the matrix elements of Eq. (II1.11) and Eq. (II1.10),
the index S has been dropped for the shell-model wave
functions ¢,5. The fluctuation 8p of the self-consistent
density p can be related in a simple way to the analogous
quantity of the shell model, i.e. to

(1I1.12)

Noting that the average value of 8V is zero, one obtains
up to second order in §p

6pS:pS_‘isS'

p=p5+0L(d0)*]. (IIT.13)
From Eq. (IIL.9) it follows that
Sp=208p5+p'+O0[ (8p)%]. (IIL.14)

If we express §V in Eq. (IIL.10) in terms of 6p by means
of Egs. (IT1.3) and (1II.4), we obtain

5P=5PS+ 2; (”v_”u)/(gv—gu)¢v+(r)¢u(r,)

X Ells (o | G(1—@)| Bu){a | 3p | B). (TIL15)

Here we have used the exchange operator ® and the
notation

Q2| G | vaps)= [dr [dr'G(x, 1) p,5T (1)
XnT (1) @u(1) 0y, (). (IIL.16)
In a symbolic form, Eq. (II1.15) can be written as

dp=20p+QGdp. (I11.17)
The matrix elements of @ are
<”lalﬂ>=2("v_nn)/(8v_8u)$ <V|@IV>=0.
(I11.18)

By means of Eq. (ITII.17), dp can be expressed directly
in terms of 8p® and the so-called scattering amplitude T'.
The latter satisfies the equation

W IT o) =W [ GA=C) | vu)
+ 22 (' [ G(1=0) | va)

atal

X (Ha—nar) [ (8a—8a) (We' | T | par) (I11.19)
or
I'=G+GGaT. (111.20)
Thus one obtains
dp=(14QT")ép". (I11.21)

The virtue of this equation lies in the fact that the
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fluctuation ép of the self-consistent density p is ex-
pressed in terms of the nonself-consistent quantity 8p5,
which can be easily found.

Otherwise any attempt to evaluate ép would require
that one solve the full self-consistent problem.

Using the above formalism, the HF energy of the
system

Fap= 25 8~} tr [oG(1—@)p] (IT1.22)

can be transformed in such a way that only shell-model
quantities appear. The new approximate expression for
the energy is

EHF= 22 Sysn,,—% tr [56(1—@)5]

+6:.E[ (3p)* H-O[(3p)*], (II1.23)
where the second-order term is given by
&E[ (6p)2]=3Jdr [dr'6p5(r, 1) G(r, 1')6p(r', 1),
(II1.24)

which can be expressed in terms of §pS alone.
From Egs. (I11.20) and (II1.21) we find

&E[ (8p)*]=%Jdr [dr'8p5 (1, 1) T (r, 1')8p5 (1, ').
(II1.25)

It is important to note that in Eq. (IIL.23) all terms
linear in 8p cancel identically. The neglected terms are of
third order in an expansion in which §p/p plays the role
of a small parameter.

The arguments presented in this section only reflect
the familiar feature of the HF energy, that it is sta-
tionary with respect to small variations of the single-
particle density matrix. The aim of presenting them
here is to show how this feature can be used in the
discussion of the accuracy and meaning of the shell
model and its connection to the self-consistent cal-
culations.

The smooth potentials used in shell-model calculations
may be interpreted as the result of a two-step averaging
procedure. The self-consistent field for a definite state
in a definite nucleus is a quantum-mechanical average
quantity which, when averaged over many nuclear
states, in a number of nuclei leads to the shell-model
average field which in this sense is rather a statistical
average quantity.

If, therefore, the self-consistent quantities were
known for many nuclear states in a large number of
nuclei, the best shell-model field could be found simply
by means of a least-deviation fit of a proper phenomeno-
logical expression containing a number of free param-
eters. However, one hardly needs to do so because the
shell model is fitted directly to experimentally known
features of nuclei and, at present, one may have more
confidence in the shell-model average field and the
LDM than in the available HF solutions.

2. The Renormalization of a Smooth Part
of the Energy

Technically, Eq. (II1.23) is simpler than the original
HF equation (IIL.22), which contains self-consistent
quantities, but even this simpler form can hardly be
used in practice and, of course, it has all the ambiguity
of the original HF expression as an independent-
particle model approximation for a strongly bound
system.

However, Eq. (II1.23) forms a good basis for a re-
normalization procedure, in which a phenomenological
liquid-drop model expression is used to replace the
smoothly behaving part of the energy (1I1.23).

It has been proved by many authors that the quasi-
classical Thomas—Fermi type approximation (“statisti-
cal model”) is equivalent to a phenomenological droplet
model (see, e.g., Myers, 1968; Myers and Swiatecki,
1969). In particular, the condition of equilibrium
density distribution of the statistical model in a de-
formed nucleus is equivalent to the familiar equation
of equilibrium of the nuclear surface considered in the
liquid-drop model (Strutinsky and Tyapin, 1963).

The liquid-drop model is in fact even more general,
because its phenomenological terms may contain any
contributions of the same functional type, not neces-
sarily only those which appear in the Thomas—Fermi
approximation (Bethe, 1968; Siemens, 1970) . Therefore,
one probably does not make things worse by replacing
the smooth part of Eq. (IT1.23) by a phenomenological
LDM. The essential assumption is that the LDM,
being a classical model, is characterized by smoothly
behaving terms, such as e.g. the volume and the surface
energies. It may also contain any other correction terms
which have this feature.

These quasiclassical approximations naturally ignore
completely any kind of shell-structure effects, which
appear as relatively small variations (of the order of a
few percent) around the average in both the sum of the
single-particle energies and the potential energy term?
in Eq. (I11.22).

The shell effects are also present in the approximate
shell-model expression (II1.23) for the total energy,
but the latter equation is different in one impor-
tant respect: The shell structure appears there mainly
in the first relatively simple term, while the second
term, representing the average shell-model potential
energy, is already a smooth quantity.

These considerations may clarify some arguments
concerning calculations of the nuclear deformation
energy in which the latter was identified with the
variation of the sum of shell-model single-particle
energies only (Mottelson and Nilsson, 1959; Bés and

3 The shell fluctuations of the total quadrupole moment of
the nucleus, discussed in Sec. IV, constitute an example of shell
effects in a quantity of the same type as the potential energy
integrals in Eq. (I11.22).
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Szyménski, 1961). Equally strong shell-structure
effects in the self-consistent potential energy term
were, presumably, ignored.3

Equation (II1.23) shows, however, that within an
accuracy of (8p)?, only a smooth component, containing
no shell structure, was missing in such calculations.
This means that at least some of the shell-structure
effects could indeed be reproduced in this way provided
that the variation of the omitted smooth term was small.
This requirement is not easily dealt with and has not
always been fulfilled for larger quadrupole or more
complicated distortions of the nuclear shape.

The criticism would be completely justified, however,
based on the original Eq. (II1.22), where the self-
consistent quantities appear.

Although the difference between the shell model and
the self-consistent solutions is expected to be small, it
appears as a significant factor, when sums over many
nuclear states are considered.

The microscopic theory is now left with the much
simpler task of evaluating that part of the total binding
energy which fluctuates due to shell structure. The
main contribution to the latter comes from linear terms
in §p, which in Eq. (I11.23)—but not in Eq. (I11.22)—
is contained in the relatively simple sum of U of the
single-particle energies. This shell structure part of the
energy can be obtained by subtracting from U the
smooth quantity

by
=2 [ egeas, (II1.26)
where §(&) is the mean density of single-particle levels
at the energy &, which is obtained by averaging the
shell-model level density

2(8) = X 8(6—8,5) (II1.27)

over a finite energy interval 7 around the Fermi energy
A\, where

FEAQNATB, (1I1.28)
Thus we define
bl &—¢&'
g(8) ='9‘1f E( p )go(S')dS’
=712 {(8—8,5) /7] (I11.29)

The smoothing function #(x) can (but must not
necessarily) be defined by (see Sec. IV.1)

£(x) = (m)"2 exp (—«?) Em arHi(x), (111.30)

with Hg(x) being the Hermite polynomials. The

coefficients are then given by the recurrence relation
A= — (1/2k) ar—2

for £>2 and ao=1.
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The first-order energy correction is then?
X
U=6E=U-U=2%8,51,—2 / j(e)eds.

(IIL.31)

In this equation X is the Fermi energy corresponding to
g, and is determined from the condition of number
conservation

N=2 f ® 3(8)de. (I1.32)

The next step is to replace Eq. (II1.23) by

Eur=FE+3E, (111.33)

where the fluctuating part of the energy, 6E, is the sum
of the first-order shell correction & E—given by Eq.
(III.31)—and the second-order shell correction 8.F—
given by Eq. (II1.25)—i.e.,

SE=5,E+8E. (IIL.34)

The quantity E is the smooth part of the energy in
Eq. (I11.23),
E=U—1%tr3Gp, (111.35)
and it is now replaced by the liquid-drop energy Erpm.
Then the final expression for the energy becomes

EHF=ELDM+6E- (111.36)

The smooth energy E does not literally correspond to a
phenomenological mass equation fitted to the ground-
state masses. One should rather make a new fit of the
LDM and shell-model parameters, in which the
evaluated shell corrections 6E to the ground-state
masses are taken into account. A calculation of this
kind has recently been performed by Seeger (1967).
Without doing such a fit, the use of Eq. (II1.36) may
result in smoothly varying and relatively small devia-
tions, which at the present stage are insignificant.

It will be shown in Sec. IV that the contribution to
the energy shell correction [Eq. (IT1.31)7] comes only
from a relatively narrow region of the order of 10-15
MeV around the Fermi energy. All more distant states
can be ignored in the evaluation of the difference of the
two energies Eq. (I11.31).

This is important for the applicability of the re-
normalization expressed by Eq. (IT1.36), because the
use of approximately independent quasiparticles with
relatively small residual correlations, as in the Fermi
liquid model, can be justified only for this narrow
region. Also in this respect,- the shell-correction ap-
proach differs in principle from the traditional ap-
proach to the problem of nuclear deformations, in

4In Sec. IV we will discuss another important form of &E,
making use of an occupation number representation.
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which the total sum of single-particle energies is con-
sidered to represent the nuclear deformation energy.

As to the LDM part, there is little doubt that at
present it is an accurate and reliable model for describing
the average properties of the nuclear masses and
deformation energies. Thus, we find Eq. (II1.36) as an
approximation for the total energy of the nucleus. The
accuracy expected of this expression should be sig-
nificantly better than that of the LDM alone, i.e., it
should on the average be of the order of at least a few
hundred keV. Comparison of the results with a number
of empirical data seems to demonstrate that such an
accuracy is indeed achieved.

The shell-correction approach should be compared
with attempts to evaluate the total mass of the nucleus
starting from “first principles” and a “good” nucleon—
nucleon interaction (e.g., Negele, 1970). There, far less
accuracy has been reached at present, and attempts to
raise the level of accuracy involve many model-
dependent assumptions and some phenomenological
relations concerning, e.g., the density dependence of the
nuclear forces.

An approach from the other end, namely, from a
many-body theory, in which one tries to describe only
small changes in the system without evaluating the
total quantities, seems more justified for heavy nuclei.
The shell-correction approach is an approximation of
the latter type.

A foundation of the shell-correction method can also
be given on the basis of the Fermi-liquid theory
(Bunatyan, Kolomietz, and Strutinsky, 1972). The
result is formally the same as obtained above by
means of the Hartree-Fock theory. The difference is
that the single-particle energies are to be interpreted as
quasiparticle excitations in the vicinity of the Fermi
energy. The amplitude T' in Eq. (II1.25) is replaced by
Migdal’s quasiparticle amplitude found from an
equation analogous to Eq. (II1.19), in which the
nucleon interaction G is replaced by the universal
amplitude I'* (Migdal, 1968).

The energy shell correction, determined as the energy
difference between the self-consistent energy of the
nucleus and the energy related to a smooth statistical-
model approximation, is a quantity of the first order in
the difference between the real density matrix and an
average density distribution. A formal estimate of the
energy correction was presented in the previous section.
This should be compared to inaccuracies originating
from the (8p)? terms in Eq. (I11.25).

An estimate of the (dp)2 terms may be obtained from
Eq. (II1.4) using the fact that the average potential is
by order of magnitude equal to the Fermi energy A.
From this we find that the neglected terms are of the
order of

A (80/p)*

With (8p/p)~A~%3, this gives an inaccuracy of the

(111.37)

order of N4, i.e., a quantity formally A3 smaller
than the leading-order term. There are reasons to
believe, however, that Eq. (II1.37) gives much too
large an estimate.

A somewhat better quantitative estimate of the
second-order term can be obtained if we neglect the
difference between 6p° and 6p in Eq. (I11.24). With
6pS defined as in Sec. IV of this paper and the use of a
6 force approximation for the nucleon interaction, one
gets

SEX (62E) =V (47!‘/3) rofdrl:éps (r) ]2. (III38)

With Vi=~40-50 MeV, this quantity may amount to a
few MeV and is thus essentially smaller than the leading
shell correction term of the order of 10 MeV (Kolomietz
et al., 1971). Again, we have however only an upper-
limit estimate, since Eqs. (I11.24) and (II1.25) have
integrands which are oscillating functions. Calculations
of 8. E using the amplitude I' of Migdal’s theory (Buna-
tyan et al., 1972) result in fractions of MeV for 6;E.
The variation with the nucleon numbers exposes even
less fluctuation. The appreciable difference of these
results from the estimate (III.38) suggests not only
that the amplitude of the effective interaction V, has
been overestimated, but also that the difference be-
tween dp and §pS is significant. One may slso say, that
the range of the effective nucleon correlation T' in
Eq. (I11.25) is of the same order of magnitude as the
period of the spatial oscillations of 6p5 due to the shell
structure.

These results lead to the conclusion that the particle-
hole interaction, represented by &£, is only of secondary
importance. We shall therefore neglect this term
throughout the paper. More essential are the nucleon
pairing interaction and some uncertainties related to the
evaluation of the first-order term. These will be dis-
cussed in detail later in this paper.

3. The Average Field and the Shape of the Nucleus

No detailed assumptions have thus far been made for
the average field ¥. It may be local or nonlocal,
spherical or deformed. It should only be consistent
with the LDM term in (II1.36). We shall, as argued
above, identify &,5, ¢,5, and ¥, with the corresponding
quantities of a phenomenological shell model. Fortu-
nately, the evaluated shell corrections are rather in-
sensitive to details of the average field.

The consistency of the shell model with the LDM is
not a very severe condition. It essentially requires an
approximate equality between the shape and the volume
of the shell-model potential, and the shape and the
volume used in the LDM expression. In our calculations,
the shape of the nucleus is defined in a transparent
classical-like manner as that of the effective surface of
the nucleon distribution by the largest density gradient
condition. The shell-model potential may now be
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defined in terms of this nuclear surface (Damgaard
et al., 1969). The above requirement is then easily
fulfilled by using the same nuclear surface in both the
LDM and the shell-model term (see also Sec. VII).

The definition of the nuclear shape in terms of the
nuclear surface ensures also the consistency with the
shell-model density distribution in an average field
defined in this way. In another description of the nuclear
form, e.g., by prescribing the value of the quadrupole
moment, the same is achieved by making use of the
Lagrange multiplier method in which the very notion of
the nuclear surface and its shape is lost. Moreover,
such a description is more complicated.

The definition in terms of the shape of the nuclear
surface makes it possible to distinguish the concept of
nuclear surface distortions from static or dynamic
variations of the nucleon distribution within the
nuclear volume. Examples of the latter are the static
undulations of the mean nucleon density due to the
shell structure, and some nucleon quadrupole vibrations
analogous to the density vibrations in a macroscopic
body. These quantities are not so easily obtained, if
e.g., the total quadrupole moment is used to determine
the shape of the nucleus. The relatively small but
undoubtedly important contribution from the shell
structure will be completely lost in the total quantity
where the main contribution comes from the common
distortion of all the nucleon wave functions.

On the basis of this discussion, another important
conclusion can be drawn, namely that, with the nuclear
surface so defined, one may consider the parameters
that appear in its definition as adiabatic collective
variables of the shape distortion without subsidiary
conditions. This possibility is exploited in Sec. IX,
which deals with the effective inertia of nuclear shape
variations.

4. The Smoothed Level Density

The definition of the smooth level density § does not
follow uniquely from the arguments presented above.
One could, in fact, define an infinite number of smoothly
behaving level density functions representing the same
discrete distribution of single-particle energies. For
further specification of this important quantity, we
use the following qualitative arguments. The renormali-
zation to the phenomenological LDM energy in Eq.
(TI1.36) has a meaning only if the energy correction
SE, defined by Eq. (IIL.34), does not contain any
smooth terms analogous to those already present in the
LDM part; the phenomenological LDM terms in the
total energy should account for all contributions of a
given type. However, the sum of single-particle energies
is known to contain a certain contribution proportional
to the area of the surface region where the nucleon
density gradient is the largest. This feature is most
easily seen in the Thomas-Fermi approximation where
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it appears in higher-order terms in the quasiclassical
expansion (Kirzhnits, 1967). It has also been proved in
a very general way by Bloch and Balian (1969) in their
recent calculations on the level density of the inde-
pendent-particle model.

Therefore, the shape dependence of the uniform
energy integral U (IIL.26) should be the same as that
of the total single-particle energy in order not to have
the surface energy component in the shell correction.
To achieve this, the level density §(&) which formally
corresponds to a quasiclassical level density where the
quantum numbers are treated as continuous variables,
must contain the higher-order corrections in the ex-
pansion in the Planck constant 4. Unfortunately, such
a level density can be found practically only in a few

_ simple cases, far from any physically reasonable shell-

model potentials.

One might then attempt to use a simple definition of
G and to take the “surface energy’’ into account by a
separate calculation. However, it is not easy to evaluate
this term with any reasonable accuracy even in the
relatively simple case of Thomas—Fermi theory (Sie-
mens, 1970).

A simple practical solution of this problem is to
average the discrete single-particle spectrum, obtained
for the chosen field V, over an energy interval A\t
around the Fermi energy A\, with ¥ of the order of
N A3 (5-15) MeV as described above (Sec. II1.2)
and in more detail in Sec. IV.

Such a procedure requires, of course, the knowledge
of the single-particle spectral distribution around the
Fermi energy. This can be found in the usual way by
solving the independent-particle model problem for a
given shell-model field V, spherical or deformed. More-
over, the use of the same spectrum in both terms of
Eq. (II1.31) automatically ensures numerical consist-
ency between the two large terms, which is important
as the difference is relatively small. Otherwise, even a
very small error in these terms would lead to completely
erroneous results for the energy correction 8U.

An indication that the uniform energy U indeed
contains a ‘“‘surface energy” part has been found in
actual calculations. In cases of a “good” volume con-
servation, it varies approximately proportional to the
area of the nuclear surface; see also Strutinsky (1968).

It is interesting that the single-particle ‘“‘surface
tension” constant found in this way often exceeds the
empirical LDM value which should include all con-
tributions. But it may also become negative, as is
found, for example, for protons in the Woods—Saxon
potential to which the Coulomb potential is added,
probably because the sum of the single-particle energies
contains a doubled magnitude of the average Coulomb
potential energy decreasing in the deformed nucleus.

All this is, however, insignificant for our calculations,
in which all kinds of the surface energy contributions,
realistic or not, are replaced by the phenomenological
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LDM term. Neither is it necessary that U and U
behave in a physically reasonable manner as a function
of the nuclear shape or volume. In fact, these features
are not so easily achieved for a reasonable shell-model
potential, for which no volume conservation condition
can even be formulated with the required accuracy.
This does not affect the shell corrections which are
proved to be much less sensitive to the volume conserva-
tion condition. For them, the approximate volume
conservation, formulated above, is completely sufficient.

IV. THE SHELL CORRECTIONS

In this section, we first define some of the main
quantities used in the shell-correction method and
derive an approximate formula for the energy correction
6U. An occupation number representation is introduced
and the quantities of the shell-correction method are
given in this representation. Then we discuss the
influence of small variations in the average field and the
connection between spatial density fluctuations and the
shell forces. Finally, the origin of the contributions to
the shell-corrections is discussed.

1. Quantitative Description of Level Densities

To account for the average properties of a single-
particle spectrum, we introduce, as outlined in the
preceding section, a smooth function §(§,38). By 8 we
denote, as a shorthand notation, a set of one or more
parameters Bi, B, -+, Bi, *-+, used to characterize
nuclear deformations. In order to define the function §,
we introduce the auxiliary function

G(&,B) = (n'27) 1 X exp (—{[6—8,(8) 1/7}2).
(1V.1)

In this section, we shall for convenience leave out the
superscript ‘8’ used in Sec. III to distinguish shell-
model quantities such as §,5 and ¢,5 from the cor-
responding self-consistent quantities.

The averaging interval 7 in Eq. (IV.1) is chosen to be
of the order

T w2 7-10 MeV, (Iv.2)

i.e., we represent the intershell distance (denoted #Q in
Secs. IT and III) by w41/ A3, the shell spacing of a
harmonic oscillator spectrum.

Thus, the function G'(§,8) [Eq. (IV.1)], is obtained
by smearing out the single-particle energies &, over an
energy range of the order Zwo. It is therefore a smooth
function of the energy and does not reflect the existence
of shells in the spectrum §&,.

Care should be taken that the local value of the level
density is reproduced when the procedure (IV.1) is
applied to a uniform level distribution. This is achieved
by introducing a curvature correction (Strutinsky,
1968), which contains higher derivatives of the sum
defined by Eq. (IV.1). Thus, we define the uniform level

density as
7(8, 8) = G—172(9°G/88%) +557*(84G/8")
—ee azm,ym(azrné/agﬂm) ,

which is identical to Eq. (II1.29). From this form,
however, it is possible to estimate the order of magnitude
of the curvature corrections. Qualitatively, Eq. (IV.3)
corresponds to an expansion of §(\, 8) in powers of the
small quantity ¥/A=471/3:

GO\, BYRG (N, B) (142 (7/N) 2 ca(F/N) 4+ - 1.

(IV.3)

(IV.4)

In analogy to Eq. (IV.3), other smooth quantities like
the uniform energy U Eq. (II1.26) can be expanded in
powers of ¥/\. ,

As we already have mentioned in Sec. III, the shell-
correction method is not limited to the use of the
Gaussian function as the averaging function £(x) in
Eq. (II1.29). In fact, any other averaging function with
a correct asymptotic behavior may be used (see e.g.,
Brack and Pauli, 1971). In any case, the role of the
curvature corrections is very important for the tech-
nical realization of the shell-correction method. As
argued in Sec. ITI, the shell-correction energy 6U should
not contain smooth terms already present in the
phenomenological liquid-drop model part of the total
energy, Eq. (IIL.35), (see also Strutinsky, 1968);
otherwise such terms would be accounted for twice.
This is avoided by the requirement that the integral
(I11.29), or correspondingly the sum (IV.3), re-
produce identically any component of the level density,
which can be written as a polynomial in energy of order
less than or equal to 2m. This requirement leads, in
fact, directly to a series of the form (IV.3), the numeri-
cal coefficients in front of the derivatives being de-
pendent on the averaging function £(x). In the case of
Gaussian averaging, this can be recognized by the fact
that Eq. (II1.30) is equal to the sum of the first m
terms in the expansion of a delta function in Hermite
polynomials, as pointed out by Tsang (1968). For the
general case, we refer to Brack and Pauli (1971).

For the uniform energy U, the lowest order (m=1)
of the curvature correction contributes up to a few tens
of MeV, and is thus an important part of it. However,
for the level density §(&,8) itself, the curvature
corrections are less important and have only a negligible
effect on the relationships derived below. In the
qualitative discussions of this section, we shall therefore
omit these corrections.

As the parameter 7 in itself has no physical meaning,
the results obtained for §(\, 8) (and for 8U, of course)
should not depend on the exact value of 7 used. It has,
in fact, been shown (Strutinsky 1968, Nilsson et al.,
1969) that the results are independent of ¥ within an
interval of Aiwy $7 S 27w, when a harmonic oscillator or
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a Nilsson model potential is used for the calculation of
the single-particle levels &,. With the use of finite depth
potentials, this problem becomes more delicate; it has
been argued, however, that the correct value of ¥ can be
found in these cases by the condition

a(sU) /a7 =0 (IV.5)

(Brack and Pauli, 1971; compare also Bunatyan,
Kolomietz, and Strutinsky, 1972).

As we shall discuss in more detail below, the essential
contributions to the level density (IV.3) come from the
energies &, within a region =7 around the Fermi energy
A, i.e., with the value (IV.2) for ¥, within A4 (7-10)
MeV. It is thus important to know all single-particle
energies &, in this region. Frequently, the use of an
improper basis for the diagonalization results in the
omission of some appreciable fraction of the levels;
consequently, erroneous results for the shell correction
are obtained.

In calculations with finite depth potentials, as, e.g.,
the Woods—Saxon potential, the nucleon binding energy
is often less than ¥, and the number of bound states is
insufficient for the averaging in Eq. (IV.1), especially
with larger values of 4. This difficulty is avoided by
adding to the bound-state spectrum also the lower
quasistationary unbound states. These unbound states
should represent a reasonable extrapolation correspond-
ing to the transition to nuclei with larger 4 values. Such
an extrapolation of the bound spectrum is obtained by
the diagonalization, provided that the size of the basis
functions is close to the size of the potential well. The
energies of these states depend on the number of basis
states used, when the energies are found by a diagonali-
zation method. However, this dependence is rather
weak and influences most strongly the low spin states,
which contribute less to the smearing procedure.
Therefore, in the present paper, we have not given any
special treatment of these states. For a more detailed
discussion of this problem, we refer to the works of
Bolsterli et al. (1971), and of Brack and Pauli (1971).

For qualitative discussions, it is convenient to
introduce another density function ge (&, 8) in order to
describe the local level density of the single-particle
spectrum, defined analogous to (IV.1) and (IV.3). As
g (&, B) shall reflect shell nonuniformities, the smearing
interval yen has to be chosen considerably smaller than
hwo. On the other hand, g should be a continuous
function of energy and therefore the interval s, should
still contain many levels (in the limiting case when
¥sn—0, gen turns into a sum of delta functions). In our
calculations, we have normally used

Ysh_RINAT351-2 MeV. (Iv.6)

With this choice, g (8, 8) represents a locally averaged
level density, which is a wiggly function of energy and
deformation parameters, oscillating around the “uni-
form” level density §(§, 8), see Fig. 1I-3.

2. The Energy Shell Correction

With the definitions above, the variations in the
single-particle level density caused by the shells can be
described by the function

6g(8; .3) =gsh(87 ﬁ) _’g(gy :8) .

Furthermore, the sum of single-particle energies

U=2 ng(ﬁ))

(IvV.7)

(IV.8)

can be replaced by

Ash(8)
U=2 / Eaun (8, B) dE. (IV.9)

In the limiting case ys,—0, the integral (IV.9) is the
sum of the single-particle energies §,(8) in Eq. (IV.8).
The Fermi energies An(8) and A(8) appearing in Eqs.
(IV.9) and (I11.32) are determined from the condition
that the number of particles (protons or neutrons) is
fixed and is the same for both distributions

Aen(B) AB)
N=2 f g (8, B)dE =2 f i(s,8)de. (IV.10)

The energy shell correction can be written as

—0 —

Ash X
6U=2[ 8gshda—f Sgds]. (IV.11)
Normally, the difference between the two Fermi
energies An(B) and A(B) is small compared to their
absolute values

Asn(B) —A(B) =8N (B) S1/§(X, B)KA.

For the pure single-particle model, a value of A, must
be taken between the last occupied and the first empty
level. Inserting Asn(8) =X(8)+6A(8) into Eq. (IV.10),
we find

A(B) = — [ /| t}'@ 545, 6) dS] / J(8), 81,

(IV.12)

(IV.13)
Expanding Eq. (IV.11) around As(8), one obtains,
using Eq. (IV.13),
Ash(B)
U@ =2 [ [e—ra(®Jog(s, 8)d

— (60) %G (Asn) +-OL (81) 1.

To a good accuracy, one can use only the first term in
(IV.14). This expression is stationary with respect to
small changes in A. Thus, without specifying any more
the Fermi energy, we obtain the approximate formula

(IV.14)

SU=2 f Y (6= N)ag(e)ds+O[(V)].  (IV.15)
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In practice there is no advantage in using Eq. (IV.15);
on the contrary, the definition of §U given in Sec. ITI
with summation for U (i.e., using ys»=0) is simpler.
In the qualitative discussion here, however, Eq. (IV.15)
is of interest, especially because it shows the connection
between 6U and 6g. It will also be used later in this
section.

Keeping in mind that the shell-model potential, and
therefore all quantities introduced here, depend on the
deformation B8, we shall in the following, for simplicity,
omit the argument B of the functions §, gsn, X, Ash, €tc.

3. The Occupation Number Representation

The physical content of the relations obtained above
will become more transparent, when these relations are
expressed in an occupation number representation. The
assumption of independent-particle motion in a shell-
model potential allows the introduction of occupation
numbers 7, describing the filling of the »th shell-model
state (being 1 or 0, if &, is occupied or empty, respec-
tively). The particle number and the sum of single-
particle energies [Eq. (IV.8)] can then be written as

N=2%n,; U=2%8&mn,  (IV.16)

The smearing procedure considered above [Eq. (IV.1)]
can now be interpreted as a kind of reoccupation of the
levels, whereby the steplike distribution corresponding
to (1V.16) is smoothed out over a region ==+ around the
Fermi level. Such an interpretation can be described by
introducing occupation numbers 7, which are not
restricted to having the values 0 and 1. These “average”
occupation numbers can be defined by the equation

X
N=2zﬁ,=2/ ge)ds.  (IV.17)

Inserting in this equation the expression (1I1.29) for the
smooth level density and interchanging the integration
and the summation, leads to the following explicit form

for 7,
Aore—8,
ﬁ,,=')7*‘/ E( — >d8.
—w 0%

By means of the occupation numbers 7,, the uniform
energy Eq. (IIL.26) can after some calculations (see
Brack and Pauli, 1971) be written as

U=2Y &7, +7(00/0%).

(IV.18)

(1V.19)

This relation holds independent of the averaging
function £(x). In the special case of Gaussian averaging,
the second term in Eq. (IV.19) can also be written as

F(80/97) = (7/7/) asn 3= Ham[ (A—86,) /7]

X exp (—[(A—=8&,) /7], (IV.20)

and is thus proportional to the 2mth derivative of the
function G'(}, 8) [Eq. (IV.1)]; compare also Bunatyan
et al. (1972).

As 7 in all cases considered has been chosen to fulfill
Eq. (IV.5), the term involving 8U/d4 vanishes.
Therefore the first-order shell-correction energy U can
be expressed in the simple form

U=23 8&,m,, (IV.21)
where
n,=n,—Mn,.

(Iv.22)

The occupation number representation introduced here
can be used to express the expectation values of all one-
body operators. We have for instance for the quadrupole
moment

Q=22 gums, (1V.23)
where g¢,, is the diagonal matrix element of the quad-
rupole operator in the state ¢,. Correspondingly, the
uniform part of the quadrupole moment can be defined

by B
Q=23 q.4,

(see Sec. IV.5 below).

Finally, the total shell-correction energy 8E [Eq.
(I11.34) ], including &E [Eq. (IIL.25)], can in this
representation be brought into the simple form

(IV.24)

SE=8E+8E=2Y &5n,423 (' | T | w' Yon,om,.
v vy!

(IV.25)

This demonstrates that §E is of second order in éz,,
and thus only a correction to the leading term 6, £=4U.

4. Effect of a Small Variation of the Average Field

We now consider the effect of a small change V' of
the average shell-model field on the shell corrections.
The change of the »th energy level is, in first-order
perturbation theory, equal to

8,/ =[drV" | ¢y(r) 2. (IV.26)

Then, we have
&,=8,9+8,/. (Iv.27)

The corrections to the level densities introduced in
Sec. IV.1 are obtained directly from their definition.
In the following, we denote both functions § and gsn by
gv, and the corresponding occupation numbers by 7,7,
not specifying the values of v for the momerit. Inserting
&, into Eq. (II1.29), and assuming that the perturba-
tion V' does not explicitly depend on &, we obtain

8~(&) =g,0(8) =y 22 &,/ (d/d8) [ (8—8,) /]

(IV.28)
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Here, the derivative of £(x) with respect to &, has
been substituted for by the derivative with respect to &.

In Eq. (IV.28) the essential contributions come from
states with | §—8,@ | <v, and therefore we have used
in the derivation of Eq. (IV.28)

| 2(6—8,@)8,) | K73, (1v.29)

which implies that the perturbation of the individual
energies must be small as compared to the smearing
effect of v, instead of the usual quantum-mechanical
condition

&) | K| &,0—g, O], (Iv.30)

The perturbation of the level density g,(§) can now be
written as

&/ (8)=—v [ V()

X (Ti; (2 @)L (6.0—6) /1]

- f &V (x) (;—i;py(s, 1. (1V.31)

Here, we have introduced a new quantity
pr(8, 1) =7y 2 | () PEL (6,9 —8) /v], (IV.32)

which may be interpreted as an averaged phase-space
density of the nucleons. Its volume integral is equal to
the level density g,(8):

Jdrpy(8, 1) =¢(8).

The averaged spatial density distribution of the nucleons
is obtained as an energy integral over p,(§, 1)

Ay
pa0) =2 [ deoy(6,1) =2 T | (). (IV.30)

(IV.33)

Inserting the two different averaging parameters vysn
and ¥ in Egs. (IV.28)-(IV.34), we define the local
densities psh (&, I), psu(r) which contain shell effects, and
the uniform densities 5(§, r), p(r) reflecting an aver-
aged nucleon distribution. The shell corrections to the
phase density and the spatial density are thus

0p(8, 1) =pan(8, 1) —5 (8, 1) (Iv.35)

and

dp(r) = pen (r) —3(1)
Ash X

—2 [ dgpu(e, 1) —2 / dep(e, 1), (1V.36)
The quantity 8p(r) is the density fluctuation, which was
called 6p® in Sec. I1I. In spite of the fact that there is no
simple relation to the self-consistent density fluctuation
dp [see Eq. (IIL.21)7, it is an important quantity in
itself. It describes fluctuations of the spatial single-
particle density, which are related to the non-uniform
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distribution of the single-particle states near the Fermi
energy. It will be discussed in some detail below.

Finally, we can express the change of the shell
correction (8U)’ caused by the perturbation V' in
terms of dp(r). Using Eq. (IV.15) and the above
definitions, we find

vy [ deE-)) (gl @)~ @)

=2 / * de(e—) / &V (1) fgap(a, 1), (IV.37)

and, after partial integration,
BU)Y = [V (t)dp(r)dr=23 (V') ,.én,. (IV.38)

The Egs. (IV.31), (IV.37), (IV.38) are analogous to
Eqgs. (32)—(36) in the paper by Strutinsky (1968)
where a smooth WKBlike density distribution, deter-
mined by a continuous spectral function »=»(8) was
considered, and the deviation from a spherical shape
was taken as a perturbation V’. The smooth density
function §(&) is here determined as it appears in the
shell-correction calculations, and therefore, the above
equations hold also for small variations of a deformed
field.

5. The Shell Force and the Spatial Density
Fluctuations

Equation (IV.38) shows the direct relation between
the change in the energy-shell correction, which is
caused by a small perturbation of the average field, and
the spatial density fluctuations. This relation is of
relevance especially in connection with the discussion of
the stretching—or restoring—forces related to the
shell structure, which we shall just call the shell forces.

Defining the force, as usual, as the derivative of the
potential energy taken with respect to a certain co-
ordinate, we can define the shell forces 6F; as the deriva-
tives of the energy correction with respect to the de-
formation variables B;. These quantities can be found
by means of Eq. (IV.38).

Assuming

V'=(8V/3B:) 8B,

we find the related force
8F:=—9(8U) /B;=— [dr[8V () /9B:]op(T)
=—22 (8V (1) /9B:) nén,. (IV.39)

In addition to the forces (IV.39) related to the
intrinsic shell structure in the nucleus, we must con-
sider also the classical forces ¥ of the surface tension and
the Coulomb field. These are described in our calcula-
tions by the LDM energy terms in Eq. (I11.36) for the
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Frc. IV-1. Curves 8Q(B) and 8U (B8) obtained with the Nilsson
model. (The definition of the deformation parameter 8 in this
and the following figures is given in the caption to Fig. II-6).
Thin lines are without and thick lines are with the pairing cor-
relations included (cf. Sec. V; A=0.8 MeV). The coincidence
of the nodes of 8Q with the extrema of 6U is shown by arrows.
In addition, 8F, is shown for the case vy =0 and ¥y =1.2 fiwo.

total energy of the nucleus. So we have
Fiot=Fo1105.

With the exception of very large distortions, the classical
forces are, however, weaker than the local value of the
structural force 6F. Consequently, they are less sig-
nificant for establishing the equilibrium shape B;*
which is determined by

0F:(B:*) =0. (Iv.40)

Hence, the shell forces are a measure of the trend of the
system to change its deformation until it reaches a
shape where the energy is stationary and the condition
(IV.40) is fulfilled.

As the average potential varies most around the
nuclear surface, dV/d8; is largest there and, conse-
quently, the surface region is relatively more essential
for determining the shell force &F, see Eq. (IV.39).
This is not the case for the energy correction §U, to
which the whole region of variation of dp contributes.

As an example, we consider the special case of

quadrupole distortions B8 of a spherical average field.
The derivative —adV(r)/68 is then approximately
proportional to the single-particle quadrupole operator
¢(r) in harmonic oscillatorlike potentials (e.g., in the
Nilsson model). To the same accuracy, the quadrupole
shell force 6F, is then proportional to the quadrupole
moment of the shell undulations of the spatial density
distribution

85, 6Q = [drg(x)dp(r) =Qum—@, (IV.41)

where Qs and Q are the quadrupole moments of the two
density distributions, ps(r) and 5(r). For example,

Q= [drg(r)p(r) (IV.42)

[see also Egs. (IV.23, 24)7].

The relationship between 6Q and 6F,, expressed in
Eq. (IV.41), has already been discussed qualitatively in
Sec. IT; see also Fig. I1-4.

As a special case of Eq. (IV.40), it follows that, at
the equilibrium deformation 8%,

Qu (8%) =Q(8%). (IV.43)
The more general condition is that
(0V/3B)sn=(0V/3B) 3, (Iv.44)

where the average values of dV(r)/d8 are evaluated
with pen(r) and p(r).

Equations (IV.43) and (IV.44) imply that, at
equilibrium, the shell inhomogeneity of the density
distribution is uniformly spread over the nucleus
(especially near the surface) so that no specific shell
force arises.

Although the proportionality of §F, [Eq. (IV.39)]
and 8Q [Eq. (IV.41)] does not hold for larger de-
formations, their zeros along the 8 axis always coincide,
even for very large distortions. In the calculations with
the Nilsson model, the two quantities are easily com-
pared; see, e.g., Fig. IV-1. The Woods-Saxon model
does not seem to make an exception, however, as can
be seen from Fig. IV-2. B

Concerning the quadrupole moment @ of the uniform
density distribution, all results .of our calculations
prove that for this quantity, only the deformation of the
average field is significant. Thus, it may be regarded as
representing the quadrupole distortion of the average
field, and is practically identical to the quadrupole
moment of a uniform density distribution which has
the same shape as the shell-model potential.

Therefore, Eqs. (IV. 43) and (IV.44) may be con-
sidered to be just another expression for the consistency
condition that, at equilibrium, the quadrupole moment
of the average field and that of the nucleon density
distribution must be the same (Bohr and Mottelson, to
be published). Equations (IV.39) and (IV.40) express
the same condition for the general case.

These relationships have been checked in calculations
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F16. IV-2. The same as Fig. IV-1 for the Woods—Saxon model, calculated with pairing correlations only. vs=0, ¥=1.2hwo. The
uniform quadrupole moment is shown by a dashed line. The deformation of the potential well is not purely ellipsoidal; at higher de-

formations, the shape has a small neck at the center (cf. Sec. VII).

with different potentials, which shall be briefly presented
here.

In the case of a pure deformed harmonic oscillator,
the relationship between the positions of the extrema of
the energy correction 6U and the zeros of §Q holds
exactly, even for nonanalytic maxima where 6Q and the
derivative of 8U are discontinuous; see Fig. IV-3. It

holds undistorted by the addition of the pairing cor-
relation (thick lines). ‘

An example of the data showing the correlation
between the energy correction, the quadrupole shell
force 8F 4, and the fluctuation of the quadrupole moment
of the spatial density distribution is shown in Fig. IV-1
above which is calculated with the Nilsson model.

4N HARMONIC OSCILLATOR _— 4 40
T N=82 3
- - 20 (barns)
sa [ 8 | [
(barns) <l |
Fic. IV-3. The same as Fig. IV-2 o — ! < N 0
for an axially symmetric deformed {\ A A l{\ N
harmonic oscillator. Note the finite | | !
value of 5Q and the finite slope of the -2 ‘I | !
38U curve for the case §P=0 at B=0 ! }
due tc the Rainwater effect in an |
unfilled degenerate spherical state.
This as well as similar anomalies of
a smaller scale in the deformed case 12 H
disappear when the pairing is in-
cluded, thereby revealing more WITH PAIRING
distinctly the shell structure. Strict 8 k-
proportionality of @ to 8 shows that 5U
Q is determined by the deformation
of the average field, only. (MeV) 4L ‘\
-4 \/l 1 Nl

0.0
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F16. IV-4. Proton level spectrum of a deformed Woods—-Saxon
potential around the Fermi energy (for details of the potential,
see Sec. VII). The positions of the vertical lines along the energy

axis are those of the levels &,, their lengths are equal to the values
of én,. The curvature-correction order is 2m=4.

Different values of vsn and ¥ are used, and pairing is
added. The insensitivity of the results to these variations
is clearly demonstrated. The minor deviations from the
general rule for the v =0 and nonpairing case are
probably due to the fact that for the calculated values
of 6F,, in the derivative 9V /48 [Eq. (IV.39)] only the
main (coordinate) part of the average field is taken into
account. The agreement is improved when some ad-
ditional smearing is present, as in the case where the
pairing correlation is included and v, =0.

Very similar results were obtained in the calculations
with the Woods—Saxon model, see, e.g., Fig. IV-2.

The agreement of all these results illustrates the
insensitivity of the shell correction to the detailed
features of the shell model.

6. Contributions to Shell Corrections

It is important to know, which part of the single-
particle spectrum contributes to the quantities §U, 6,
and 8Q. This can most easily be seen, if we use the
occupation number representation introduced in Sec.
IV.3. We have from Egs. (IV.21), (IV.39), and (IV.41)

6U=2 Z 8,,6”;:
5{;1-_—_ —2 Z ((9 V/aﬁg) yvanv

50=23" q.,on,. (IV.45)
The fluctuations én, are shown in Fig. IV-4. It is seen
that they differ significantly from zero only in a relatively
narrow region of width ¥ around the Fermi energy.
Consequently, the quantities in Eq. (IV.45) get their
main contribution from the same energy region, and the
states far away from the Fermi energy do not contribute
at all. Actually, the Fermi energy A\, which is found from
the condition that the total number of particles is con-
served, is the only quantity for which the lower states,
or at least their number, are important.

Taking into account the behavior of the function

on, (Fig. IV-4), one can also represent 8Q in Eq.
(IV.45) as the difference between two terms Q< and
Q>, which are the averaged quadrupole moments in an
energy region below and above the Fermi energy,
respectively:

00=0<—0>. (IV.46)

The same holds for the general case of shell forces §F;,
determined as in Eq. (IV.39), as well as for 6U. As the
quantity (V/48),, in Eq. (IV.45) determines the
slope of the »th level in the Nilsson-type diagrams, the
strength of the shell force 65, can thus also be expressed
as the difference between the averaged slopes of the
states above and below the Fermi energy,

L(8V/3B)>In—L(8V/38) <Im,

the average being taken over a sufficiently large energy
interval of the order of A/A/3,

A detailed picture of the contributions to the shell
force is given in Fig. IV-5. In this figure, the matrix
elements (0V/dB),, of the single-proton states in the
Nilsson model are plotted against the energy. The
lengths of the vertical lines, in upward or downward
directions depending on the sign of (8V/98) ,,, represent
the absolute values of the matrix elements. Two
characteristic deformations have been chosen, 3=0.16
(lower part) and 3=0.46 (upper part), and the weight-
ing functions é7(&§—X\) for different Fermi energies,
corresponding to the proton numbers Z=82, 88, and
92, are represented by dotted lines.

At both deformations, the distribution 4 (belonging
to Z=82) leads to extremal values of the shell force
0F, which means that the slope of 8U is maximal
(cf. Fig. IV-1). By shifting the Fermi energies (i.e.,
moving the dotted curves along the energy axis), the
weighting factors éz, in Eq. (IV.45) are changed, until
for a certain nucleon number (Z=282 for 3=0.16, and
Z =92 for $=0.46) the value of éF, becomes zero. At
these points the contributions from both sides of the
Fermi energy cancel, although it hardly can be seen in
the figure.

A similar picture of the distribution of the individual
quadrupole moments g,, contributing to éQ is shown in
Fig.  IV-6, calculated also for the Nilsson model with
3=0.46 for Z=282. Due to the prolate distortion of the
average field, the positive value of ¢,, predominate.
Nevertheless, this does not affect 6Q.

Although many states near the Fermi energy con-
tribute to the sum (IV.45), most of the contributions
cancel, so that the remaining coherent shell effect in
3Q does not exceed 1-2 b, a small quantity as compared,
e.g., to the typical value of Q=10 b for the quadrupole
moment of a deformed nucleus. The value of 6Q oscillates
around zero when the deformation changes, which
shows that it is related to a volume nonuniformity of the
nucleon distribution.

In Fig. IV-7, some results are shown which demon-
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F1c. IV-5. Plot of the matrix elements — (dV /dB),,, which contribute to the stretching force 5, according to Eq. (IV.45). The spectrum
is taken for the Nilsson model at two different deformations, 3=0.16 in the lower part, and 8=0.46 in the upper part of the figure.
The lengths of the vertical lines are proportional to the absolute values of (dV/3B),. Their positions along the energy axis correspond
to the single-particle energies &,. The dashed curves represent, in an arbitrary normalization, the function 8z, (cf. Fig. IV-4) with
vsh=0.2 fiwo and ¥=2.0 hwo. At each deformation, two positions of the Fermi energy are chosen to correspond to extremal values of

8%, in cases A, and to §F,=
[505 11/2] mentioned in the text.

strate the effect of varying ¥ on the shell corrections
6Q. The features of 6Q discussed above are insensitive for
¥ 2 17w, in analogy to the behavior of the quantities
8U and dg(\) (see also Fig. IV.1).

By increasing vsn, the centers of the contributing
regions are moved away from the Fermi energy, which
can easily be seen from Fig. IV-4. This affects con-
siderably only the amplitudes of 6Q and éU, but not
their general behavior. This result demonstrates that no
single state at the Fermi energy is particularly im-
portant. Thus, it is not correct to say, e.g., that the
large deformations of some nuclei are due to especially
strong coupling to the surface of certain high-spin states,
as, e.g., the [505 11/27] state (Bés and Szymdnski, 1961;
Mottelson and Nilsson, 1955). In Fig. IV-5, the latter
state is one of a few states with large negative slopes
(it is marked by an asterisk). It is clear that its con-
tribution is of no special significance, and positive and
negative contributions of many other states from above
and below the Fermi energy must also be considered.

The data in Figs. IV-1-IV-7 demonstrate clearly

0 in cases B. (The respective nucleon numbers are given in the figure.) The asterisk (>k) denotes the state

that the shell force is the result of a delicate balance of
contributions of many states around the Fermi energy.

7. Shell Effects in the Spatial Density Distributions

The spatial variation of the nucleon density in
nuclei constitutes an important problem in nuclear
physics. It is usually assumed that this density dis-
tribution is smooth, as exemplified by, e.g., the Fermi
distribution. Recently, however, from electron scatter-
ing experiments (Heisenberg et al., 1969), evidence has
been obtained that the nucleon density does deviate,
in an oscillating manner, from such a smooth distribu-
tion. Hopefully, with further refinements of these
experiments, more detailed quantitative information will
soon become available.

The discussion above shows that the energy effects
of the shell structure—which are the main goal of this
paper—are also closely related to variations of the
spatial density. Thus, it may be instructive to have a
closer look at the origin of the oscillations of the
nucleon density. as they appear in the shell model.
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T16. IV-6. The same as Fig. IV-5, but for the single-particle quadrupole moments ¢,,. Only the case of Z =282, 8=0.46 is shown, which
is the same as case A, upper part in Fig. IV-5. Note the predominance of large positive values of g, which is due to the prolate deforma-

tion of the average field.

It should be noted that, contrary to the total
energy of the nucleus, the spatial density distribu-
tion does not have the property of being stationary
against small variations of.the density matrix. There-
fore, the results presented below do not pretend to
accurately reproduce the real density distribution in the
nucleus. This is even more true as we shall consider the
fluctuations of the shell-model density, denoted 8p® in
Sec. ITI, and not the fluctuations of the self-consistent
density, which is connected to 8p® by Eq. (IIL.21).
Nevertheless, it is of a certain interest to investigate
more thoroughly the density distribution of the shell
model. It was represented in Eq. (IV.36) as the sum of
the energy-smoothed distribution 3 and of §p describing
the variations due to the nonuniform energy distribu-
tion of the individual states. The comparison of the
energy-smoothed distribution 3 with the familiar
Thomas—Fermi distribution is also of some interest.

Examples of density distributions and the shell
corrections 6p are presented in Fig. IV-8. The proton
densities of 28Pb, calculated with the commonly used
Nilsson model and a Woods—Saxon shell model are
compared in this figure.

The thick solid lines represent the single-particle
distribution functions ps,(r) calculated as the ‘“‘shell”
sum over the single-particle densities of the occupied
states. The dashed lines are the energy-smeared density
distributions p(r) obtained by means of Eq. (IV.32)
with 7 =2%hw=014 MeV. In the lower part of Fig. TV-8,

the spatial density corrections 8p are shown. The
calculated 6p are found to be insensitive to the specific
value of ¥ and are rather similar for the two variants
of the shell model, although there are some noticeable
differences in their magnitudes. This resemblance
appears in spite of the fact that the total densities
psn and p are quite different for the two models. Note

5Q
0
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-1

~

3L 2 — — ¥ =075 hw, T
Y ¥ =00
3 —— ¥ =045 hw,
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L 1 1
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B

Fic. IV-7. The quadrupole moment 8Q of the spatial density
fluctuations, calculated with the Nilsson model (Z=82) for
different values of the smearing parameter ¥ (v.,=0). Starting
from the smallest values of ¥ (lines +# and 3), the full value of
8Q is essentially reached for ¥ =0.75kwo.
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F1c. IV-8. Proton density distributions and their shell corrections 8p for 2%Pb, calculated for the Nilsson model and the
Woods—Saxon model. The thick and the dashed curves represent pg (vs+=0) and p (¥ =2.0hw,), respectively. The Thomas—Fermi
distributions prg (thin dash-and-dot lines) are calculated without the 1-s term (and in the Nielsson case, without the 12 term) in the
potential. (The Coulomb energy is included in prr for the Woods—Saxon curve). Note the very similar behavior of the curves 8p in

both cases.

also that no Coulomb energy is contained in the Nilsson
model; in the Woods—Saxon model it causes a clear
rise of p in the surface region.

The smoothed density p describes the spatial nucleon
distribution of the independent-particle model, smeared
over the shell structure in the energy spectrum. Neither
this definition of % nor its role in the calculations of the
energy shell corrections excludes that this quantity also
may contain some oscillating component. The uniform
distributions p(r) in Fig. IV-8 were found, indeed, to
have some oscillations, though, in the Nilsson model,
these were much less pronounced than those of the total
single-particle density pen(r).

In the Woods—Saxon model, the oscillations of p are
more pronounced, while §p oscillates less than the total
density does. The same result was found in other spheri-
cal and deformed nuclei including shapes with very
large distortions. This suggests that, in the Woods—
Saxon model, distant shells contribute more appreciably
to the single-particle density than they do in the Nilsson
model or in the harmonic oscillator potential.

In order to compare the energy-smoothed density
distribution 5(r) with the analogous Thomas—Fermi
quantity, some special calculations were performed with
simple shell-model potentials for which the Thomas—
Fermi distribution could easily be found.

The Thomas—Fermi density is defined as

prr(r) =p A=V (1) FP, (Iv.47)
where po is a normalization constant.

In general, the calculated energy-smeared 5(r) turns
out to be close to the corresponding Thomas-Fermi
distribution prp(r). In the case of a pure harmonic
oscillator potential, the two distributions are practically
identical. The only difference is that prr(r) has a finite
maximal radius, whereas p(r) has a ““tail”’. This feature
is seen in Fig. IV-9a where the calculated distributions
for a magic number of nucleons are shown. In these
cases, p(r) has no oscillations at all and can hardly be
distinguished from prr(r) except for the tail. In the tail
region, p is so close to psn that the figure cannot show
the difference. Addition of a spin—orbit term to the
harmonic oscillator potential does not change 3(r)
(cf. Fig. IV-9b). The insensitivity of p(r) to the spin—
orbit term was found also in the case of a Woods—Saxon
potential.

The only difference between the two potentials used
in Fig. IV-9b and Fig. IV-8a is the presence of the I?
term in the Nilsson potential. It is clearly seen that this
term brings the averaged distribution p closer to a
Woods—Saxon density distribution: the density at the
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and prp are very close in case (a)
and they completely coincide in
| case (b), except for the region »>6F.
Note that the density p,s obtained
for a harmonic oscillator with only
1-s interaction (case b) is the same
as in the case with an additional I?
- in the potential (Fig. IV-8).
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center is lowered as compared to that at the surface
region.

Contrary to that, the single-particle density pgn is,
in the case of Z=82, not affected by the 12 term. This
is because with 1 being a good quantum number in the
spherical case, it changes neither the wave function of
the individual states nor the occupied states and,
therefore, the total density remains the same. The
energies of the single-particle states, however, are
affected and therefore the weights which appear in the
evaluation of p are different, resulting in a change in p.

The remaining oscillations in 5 mentioned above are
found to be most pronounced in the Woods-Saxon
model. They seem to become stronger, the steeper the
potential well is at the surface. The oscillations of 5 are
not related to the degeneracy of the subshells in the
spherical case, because they are equally pronounced in
the deformed Woods—Saxon potential. As all occupied
states contribute to » (in contrast to dp), it seems
important that different shells have the same radius
in a potential with steeper walls. In fact, it is reasonable
to assume that this effect is a characteristic feature of
the independent-particle distribution near the walls of a
steep reflecting potential, where all individual wave-
functions are in phase. A more detailed discussion of this
point is given by Kolomietz ef al. (1971).

The residual oscillations in 3 have no influence on the
smooth behavior of quantities such as § or the uniform
single-particle energy U. Considered as functions of the
nuclear shape, these latter quantities do not exhibit
any significant oscillations.” Thus it seems reasonable
to assume that this residual effect in 5 disappears when

% This may not be true, however, in the case of a “poor”” volume
conservation.

r (fm)

some additional averaging is present, as, e.g., the
integration in Q or a variation of the radii in different
shells distant from the Fermi level.

Anyway, we assume that these fluctuations in 3 are
not significant for 60/, which is the quantity of interest.

One should recognize that the shell effects in the
spatial density distribution will be counteracted by
residual interactions which tend to restore a constant
density. This is of course only true for the fluctuation
of the real self-consistent density, which is related to the
shell-model density fluctuation by Eq. (I1I1.21).

However, even a relatively strong interaction is not
expected to change the qualitative character of the
density oscillations represented by the density correc-
tion 8p. This is because the characteristic energy interval
of the shell distribution is of the order of 7-10 MeV, and
it would require a very strong mixing to wash out the
shell-structure effect near the Fermi energy. This would
account also for the role of the virtual and real excita-
tions in the electron scattering process.

In particular, the amplitude of the oscillations of dp
in the presence of a strong pairing force is reduced by a
factor of up to 2, but the qualitative behavior as well as
the positions of the nodes of §p remain unchanged.

Some calculations of the electron scattering cross
section were performed for the case of lead-208, in which
the spatial density distribution used was obtained by
adding 8p to the smooth phenomenological distribution.
Preliminary results indicate that the oscillations rep-
resented by 8p, although weaker than in the single-
particle density psn, are still too strong. This result is
consistent with the investigations on the size of the so-
called (8p)2 term. Also there we came to the conclusion
that the amplitude of 8p* is considerably larger than the
one of the self-consistent density.
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It is likely that the use of the phenomenological
density-dependent interaction, which hinders large-
scale variations of the density, will improve the results.
Such an interaction is known to improve greatly the
results obtained by the Bruckner-Hartree-Fock theory;
see, e.g., Negele, 1970.

V. EQUILIBRIUM DEFORMATIONS AND THE
PAIRING CORRELATIONS

This section is devoted mainly to a discussion, kept
in rather general terms, concerning the connection
between level densities, pairing correlations, and the
ground-state equilibrium deformations.

1. Equilibrium Shapes

As the lowest possible density of single-particle states
at the Fermi energy—or lowest degeneracy in the sense
described in Sec. II—is a characteristic feature of ground
state shapes, the equilibrium deformations should
coincide with the minima of the function d§g(¥V, ()
calculated at the Fermi energy. Some contour maps of
this function are shown in Fig. V-1. The experimental
equilibrium deformations are not plotted in the figure
because they depend significantly on more than one
deformation parameter. This will be discussed below, and
it will also be shown that the minima of §g(, ) in
fact give a good representation of the experimental
equilibrium deformations. The figure shows the results
obtained in an actual calculation and will be used as a
basis for a more general discussion. In Fig. V-2 the
‘landscape of neutron and proton energy shell corrections
are illustrated. This figure exhibits essentially the same
features as those seen in the level density diagrams in
Fig. V-1. The contour maps shown in Figs. V-1 and V-2
were evaluated using four variants of the Woods—Saxon
shell model, namely, with parameters corresponding to
neutrons and protons in "Yb and *Pu (see Table
VIII.1). Actually, the level schemes obtained for these
two nuclei may be used in broad regions of nuclei around
them, in the same way as if we worked with, e.g., the
Nilsson model. Although the parameters of the Woods—
Saxon potential depend explicitly on Z and N, this
dependence is weak and does not appreciably change
the shell distribution near the Fermi energy. This fea-
ture can be seen by comparing the right- and left-hand
side maps in Fig. V-1. The figures referred to above
show the behavior of the different quantities for a one-
parameter sequence of the nuclear shapes along the so-
called liquid-drop valley, see Sec. VII. For small dis-
tortions, this corresponds approximately to quadrupole
deformations. It may, however, not be sufficient to
consider distortions of this type. Recently, it was found,
both experimentally (Hendrie et al., 1968) and theoret-
ically (Nilsson et al., 1969; Gareev et al., 1969), that
many ground-state shapes seem to involve an ap-
preciable P,-type component. The most direct experi-
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mental evidence came from detailed measurements of
elastic a particle scattering cross sections, but also the
presence of /=4 transitions between the levels in the
lowest rotational band seems to be established.

These data are summarized in Fig. V-3 along with the
calculated values based on the Nilsson model (Nilsson
et al., 1969). In this reference the theoretical values were
obtained in two different ways, namely, by means of the
traditional Mottelson—Nilsson prescription, i.e., by
minimizing the total sum of the single-particle energies,
and by the shell correction method. Good agreement
with experiment was found in the latter case, while the
values obtained by minimization of the single-particle
energy sums are in clear disagreement with the empirical
values. Thus, this result may also be considered as an
additional evidence in favor of the shell correction
approach. (For the quadrupole distortion of the ground-
state shapes, the two methods give close results.)
Although relatively small, corrections of the P4 type
in many cases lower the ground-state minimum of the
deformation energy by up to 2 MeV, as compared to
purely ellipsoidal deformations. This is the case in
particular in the actinide region, see also Sec. VIII.
Besides the Nilsson model calculations mentioned
above, calculations of ground-state hexadecapole
deformations have been performed successfully, using
the Woods—Saxon model (Gareev et al., 1970).

Using the deformed Woods—Saxon model adopted in
this paper, we have also briefly investigated the equilib-
rium deformations in the rare-earth region.

In Fig. V-4, contour diagrams for a few nucleon
numbers are shown, which give more detailed data
concerning the energy corrections as functions of the two
variables, ¢ and %, representing respectively the elonga-
tion of the nucleus and the degree of necking-in (the
meaning of these parameters is explained in detail in
Sec. VII).

This parametrization of the nuclear surface was
chosen because of its advantages in connection with
fission problems. However, in earlier experimental as
well as theoretical works concerning ground-state
deformations, the nuclear surface was described by an
expansion of the form

R=R[1+B:Yort+B:Vaot+Bs Voot + -+ ].

Therefore, in order to be able to compare our results
with those expressed in terms of the expansion co-
efficients e, B4, etc., Fig. V-5 was drawn. It shows the
connection between our parameters {c, 4} and {Bs, B4}.

As it seemed difficult to establish an analytic con-
nection between the two sets of parameters, the figure
was obtained by making a least-square fit of the
parameters Bz and B4in the equation above to our shapes
described by {c, #}. (Terms involving 8s and so on are
neglected). Using this connection, one easily obtains
the B; and B values corresponding to the minima of
contour maps as those shown in Fig. V-4. The points
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F16. V-1. Some contour maps of the function §g(XV, 8). The nucleon numbers are along the ordinate, while a deformation param-
eter ¢ is along the abscissa. As discussed in text, the figure has been made on the basis of only 4 Woods-Saxon spectra, namely "Yb
protons (upper left), ™Yb neutrons (lower left), 2Pu protons (upper right), and 29Pu neutrons (lower right). In all cases v =0.2§
was used. The {c, /#} parametrization (see Sec. VII) has been used to describe the nuclear shape. The contour maps are drawn for
k=0, which for small deformations (¢ small) is approximately equivalent to quadrupole deformations (comp. Fig. V-5). The thick
curves are zero lines and the increment per line is 0.2/MeV. The shaded areas have negative values of 3g.

designated by crosses in Fig. V-3 have been obtained in
this way. Normally the equilibrium deformations
inferred from contour maps are rather well defined,
but in some cases the minimum in the deformation
energy is not clearly defined (see the Er map in Fig.
V-4) and no simple equilibrium configuration may be
found.

As seen from Fig. V-3, the theoretical determined B4
values agree quite well with the experimental data and
with the results obtained in Nilsson et al., 1969 once
more indicating the relative insensitivity of the shell
corrections to the specific nuclear model used.

In Fig. V-6, we show analogous results for 8¢ values
corresponding to equilibrium deformations in the rare-
earth nuclei.

2. Shape Transitions and the Influence of Pairing

An interesting feature seen in both Figs. V-1 and V-2
is the presence of rather well-defined nucleon numbers,
which separate regions of minima of spherical shapes
and regions of deformed shapes. That is, in all nuclei
with nucleon numbers near to spherical magic numbers,
0g(N,B) taken at the Fermi energy considered as a
function of deformation, has its minimum for a spheri-
cal shape. But for nucleon numbers beyond the critical
values, the minimum of this function occurs at a de-
formed shape. This is due to a redistribution of the
shell closures, brought about by the formation of new
shells in deformed nuclei, magic at N =100, 152, etc.

It is characteristic of nuclei with nucleon numbers
equal to transitional values that in them essential shell
structure near the Fermi energy develops neither at
spherical nor deformed shape: The level density at the
Fermi energy remains nearly constant for all not too
large deformations. Consequently, the shell corrections
remain small and the deformation energy stays close to
the mean LDM value with the effect that the nuclear
shape is relatively soft in these nuclei.

As the variation of the nuclear deformation energy for
small deformations is mainly determined by the energy
correction (see Sec. IV), the total deformation energy, in
which the energy corrections are added to the LDM
energy, also reflects the behavior of the energy correc-
tion described above. The critical nucleon numbers set
the limits of the region of nuclei deformed in their
ground states. In Figs. V-1 and V-2 we find the transi-
tional numbers equal N=88, 136, 196 for neutrons, and
Z=56, 88, 130 for protons. They agree rather well with
values known from experiments.

Because the presence of the transition point is due to
a change in the gross structure of the level distribution,

it is independent of the residual interactions, and about
the same transitional nucleon numbers are found in the
contour maps of the energy corrections §U shown in
Fig. V-7 evaluated with or without taking pairing
correlations into account. However, in the latter case
80U has some additional shallow minima, which occur
for slightly distorted shapes and which are not found in
the 8g distributions; compare Figs. V-1 and V-2.

These secondary minima are due to grouping of the
spherical levels in degenerate j states, i.e., the subshell
structure. They disappear if this degeneracy is lifted by
the presence of pairing correlations or any other
residual interactions, which spoil the spherical sym-
mefry of the average field and mix the independent-
particle states over energy intervals comparable to
intersubshell spacings of the order of 1 or 2 MeV.
Consequently, the same result as obtained by taking
pairing into account may be achieved in a formal way
by artificially mixing the single-particle states, for
example, using g« (&, 8) with a ys»=2-3 MeV, which is
slightly larger than in Eq. (IV.6).

Whenever either the strength of the pairing correla-
tions or <s» is increased, the subshell structure dis-
appears first, while the gross-shell effects remain until
vsh ¥, in which case the shells are completely smeared
out. This difference in behavior of the shell and subshell
structures, when the pairing strength is varied, is
illustrated in Fig. V-8. The figure shows the changes in
energy shell corrections 6U4-6P brought about by
varying the pairing strength, characterized by the
parameter A, whose physical meaning is that of the
energy gap parameter for the smoothed energy dis-
tribution of the single-particle states. (Explicit def-
initions of 8P and A are given in Sec. V.4.) The
calculations have been done for several nucleon numbers,
namely, for nearly magic numbers N =86, 120, a
spherical mid-shell number N =94, and also for transi-
tional nucleon numbers NV =88, 90, 112-116.

The first thing we notice in the figure is the dis-
appearance of the above-mentioned shallow minima in
nearly spherical nuclei for rather weak pairing, some-
what smaller or equal to its empirical value A=0.8
MeV. In contrast hereto, the shell-structure minima
and maxima remain, although their amplitude pro-
gressively decreases with theincrease of pairing strength.
For the largest value of A -shown in the figure, the
amplitude of the pairing correlations becomes com-
parable to the shell structure, and the shell correction
then behaves rather erratically.

The influence of the subshell structure in nearly
spherical nuclei on the equilibrium deformations is also



Aprir 1972

MODERN PHYSICS

350 REVIEWS OF

"SAN[BA JAI}EIAU 9ARY
SB2I® PIPBYS Y, "ASIN T SI duj] Jod JuoweIdul 9y} pue Saul] 0197 91 SIAIND 1YY YT, ‘T-A “S1 wt sdew 9y} 03 Surpuodsariod 01393110 [[oYs A31us 3y jo sdew mojuo) ‘z-A ‘9L
P) (@)
'43+nq ‘dg+“ng
SLL 091 S7l o€ ._SN Sl o€l Sul

Sit
T

081
\\\ IghSons=z

i (@ NN}

o

‘L 0¢'l Sl
57 e
é\ pegs=rn

D




BrACK, DAMGAARD, JENSEN, PAuLl, STRUTINSKY, AND WoNG The Shell-Correction Approach to Nuclear Shell Effects

351

0.12 | ' Dy

0.08 |- Sm v

0.04

-

—— - Theory (Vol.. cons.. coupling between all shells)
—— Theory (Strut. norm. coupling between all shells)

% Exp. T

B

-
-0.04 |- 4
L Xw .
-0.08 - -1
— —
-012 |- -

1 1 ] 1

150 160 170 180

A

F1c. V-3. Experimental and theoretical 8 values for ground-state shapes in the rare-earth region. The full lines and the dashed lines
for Dy and Er are the results obtained by Nilsson et al. (1969) by the shell-correction method and the summation method, respectively.
The crosses are the results obtained in this paper using a deformed Woods-Saxon potential. Note the uncertainty found, e.g., for

168Ky (compare Fig. V-4).

illustrated in Fig. V-9. There, for each neutron number
between V=82 and 126 are shown the values of the
quadrupole deformation parameter By* of the first
minimum of the neutron shell correction §Un+6P,.
The “transition” points from spherical to nonspherical

F16. V-4. Contour diagrams of the total deformation energy
for 2Sm and ®Er. The ¢ and % are deformation parameters
(compare Sec. VII). The LDM energy is normalized to be
zero at spherical shape. Each contour line corresponds to an
increment equal to 1 MeV. The deformation energy is negative
in the shaded regions. In cases such as ¥8Er no clear-cut ground-
state deformations are found (see also Figs. V-3 and V-6).

equilibrium shapes, and vice versa, are clearly seen, and
they remain practically unchanged even for unrealisti-
cally high values of the pairing strength. They change
by only a couple of units of the nucleon number for the
whole range of pairing strength from zero to A3 MeV.
In the figure it may also be noted that the presence of
the transition points can be traced even in the data eval-
uated without pairing correlations (A=0). It appears
in a step-like change of the slope of the curve A=0 at
N~88-90 and 114-116. This feature is not clearly seen
if the single-particle proton and neutron energies are
summed up (Mottelson and Nilsson, 1959). Some
experimentally known equilibrium deformations are
also shown in Fig. V-9.% They practically coincide with
the values 8* of the first minima of the neutron energy
corrections 8U,+8P,. This demonstrates that the shell
closures occurring at these deformations in the neutron
shell distribution are apparently most important in
determining the equilibrium deformations. However, in
many deformed nuclei in the rare-earth region, the
proton shell closures occur at approximately the same
deformation as those of the neutron shells. The depth of
the ground-state minimum of the deformation energy is
then increased, but its position remains unchanged.

6 Taken from Coulomb excitation measurements and ignoring
values of B4, Bs etc. different from zero.
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F1c. V-5. Relation between the parameters {c, 4} and {8, 84}

3. Comparison with Some Earlier Discussions

The results mentioned above seem to be in disagree-
ment with a number of earlier conclusions (Belyaev,
1959; Beés and Szyménski, 1961). Therefore, in this
section, we dwell on these discrepancies. With respect
to the points relevant to this discussion, the conclusion

reached in these earlier calculations may be summarized
briefly as follows. The pairing correlations would have a
great influence on the variation of the deformation
energy and in particular would play a central role for the
transition between spherical and deformed shapes, as
the transition was predicted to take place when a certain
occupation of a shell, proportional to the pairing

-1 F16. V-6. Similar to Fig. V-3
for our equilibrium B values
in the rare-earth region.
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F1c. V-8. The influence of the pairing strength A on the energy shell correction 6U+8P for some nucleon numbers. The results
are based on the Nilsson model. The deformation parameter g8 is defined in the caption to Fig. II-6. The thick full line shows the total
deformation energy LDM—+8U~+3P (with A=0.8 MeV).
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strength, is reached. This conclusion was originally
based on qualitative considerations using a simplified
model of the competition between quadrupole forces
and the pairing correlations within an unfilled shell.
The “shell” was pictured as a highly degenerate
spherical state, which splitted in a fanlike manner when
the magic core was distorted (Belyaev, 1959). Such a
model, in our point of view, not only exaggerated the
role of the pairing correlations at smaller deformations;
it also ignored decisive effects due to crossing of single-
particle levels as well as formation of new shell closures
in the deformed nucleus.

The importance of the pairing correlations in reducing
the distorting effect of the unfilled shell is emphasized
in the simplified model. However, real shells in nuclei
consist of many degenerate states, each splitting in a
fanlike way. Thus, even a very small distortion of the
average field normally creates a rather random mixture
of states, which by itself reduces appreciably the dis-
torting effect of the unfilled shell already for small
deformations. In fact, the crossings of individual states
near the Fermi energy influence in a decisive way the
distorting force arising in the unfilled shell, characterized
by the quadrupole moment Qy of the unfilled shell in
Belyaev (1959). This is so, because the two crossing
levels have opposite slopes and, therefore, opposite signs
of their quadrupole moments; at each crossing at the
Fermi energy, the contribution of the occupied state to
O changes its sign. This circumstance alone makes Q, a
function of deformation determined by some average
distribution of the level’s slopes and the crossings, and
by the variation of this distribution with deformation.
However, in the simplified model, Q» was assumed
constant in the absence of pairing.

The function Q\(8) changes even its sign at certain
deformations, when the levels of higher or lower shells
systematically come into the vicinity of the Fermi
energy and replace those of the original unfilled spheri-
cal shell. Consequently, the interaction energy of the
core and the extra nucleons considered in the model
(Belyaev, 1959)

Hint = KQ)\chosed, (V'l)

even in the absence of pairing correlations, becomes an
oscillating function of the deformation. The presence of
an inversion point of Q\(8), where the restoring force
determined by the interaction (V.1) changes its sign,
will then determine the equilibrium deformation. The
pairing interaction plays only a secondary role here,
producing some additional smearing of the strengths of
the individual states.

Normally, the degeneracy of spherical levels plays no
significant role except at meaningless deformations for-
mally as small as 4~%/320.03-0.05%,. However, this
degeneracy becomes significant at the edges of the gross
shells, where the distorting effect of the few last
spherical single-particle levels is not weakened by
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crossings with the other levels until at a relatively large
deformation, where levels of the next shell approach
the Fermi energy. Therefore, the distorting power of
only a few particles or holes outside the closed shell is
sufficient to produce a relatively large deformation in
the transition region; compare e.g., the contour maps of
8U in Figs. V-1 and V-2.

In contrast to the qualitative considerations referred
to above, the level crossing effect wasimplicitly included
in actual calculations of equilibrium deformations by
minimizing the sum of single-particle energies, when one
assumed at each deformation all states below the Fermi
energy to be filled. Consequently, good agreement with
the empirical values was obtained already in the very
first simple calculations of this kind, with a rather poor
version of the Nilsson model and not taking into ac-
count such, presumably, essential factors as the pairing
correlations and the Coulomb forces (Mottelson and
Nilsson, 1959). Actually, when in some later calculations
the pairing correlations and the Coulomb energy were
taken into account, the equilibrium deformations were
found almost unchanged.

As the above-mentioned qualitative considerations
had pointed to a large influence of the pairing correla-
tions, this was an unexpected result. Some authors have
drawn the conclusion that the result was due to a mutual
compensation of the two factors (Nilsson et al., 1969).
Such a conclusion seems not convincing to us. We feel
that all results of concrete calculations point to the
conclusion that neither the pairing correlations nor the
Coulomb forces are as important for determining the
equilibrium shape as the formation of ‘“magic”’ shell
closures in the mid-shell nuclei at a deformation
$~0.2-0.3.

One of the essential difficulties of the summation
method is that all occupied single-particle energies
contribute to the deformation energy, and therefore, all
model-dependent errors in the single-particle level
distribution add, so that their total may be considerably
larger than the expected effect due to single-particle
structure. The latter amounts only to a few MeV
modulation of the nuclear deformation energy compared
to a background energy in the GeV region. Furthermore,
it remains unclear to what extent the model is able to

reproduce such quantities as the volume and the surface

energy.

Actual calculations employing the summation of
single-particle energies clearly show these difficulties.
The instability of the method to small changes either in
the volume conservation condition (Strutinsky, 1968)
or in the potential (Quentin and Barbinet, 1970) has
been pointed out. Furthermore, an attempt to improve
the volume conservation failed to predict even the
ground-state deformations (Albrecht et al., 1970), and
calculations using an approximately self-consistent
potential, with respect to quadrupole deformations,
failed badly at large deformations (Belyakov, 1964).
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F16. V-10. Figure showing that A is nearly independent of the
cutoff parameter .

Other attemps to describe the total energy at large
deformations, using the summation method, have also
failed, since they were not able to reproduce even
qualitatively the fission barriers (Szyménski, 1961;
Gustafson et al., 1960).

The arguments above exhibit clearly a correspondence
between our approach and the original ideas of the
unified model. In fact, the renormalization of the shell-
correction method may be considered a version of the
unified model approach, in which the distinction
between the core and independent nucleon features is
based on a different principle. Thus, the quantity §Q
introduced in the shell-correction calculations plays a
role which in many respects is analogous to the one
played by the quadrupole moment Q» of the unfilled
shell in the unified model, and the same is true for the
LDM part whose role is analogous to that of the magic
core. The resemblance is especially clear at smaller
deformations (Strutinsky, 1968). In particular, the
relationship between the shell undulations quadrupole
moment 6Q and the shell force is qualitatively the same
as was assumed in the unified model, (Secs. II and
IV), although the specific definitions of the shell-
correction quantities are different in many respects, too.

4. Renormalization in the BCS Theory

In our calculations, the pairing correlation energy was
evaluated according to the commonly used prescriptions
of the BCS approach. We have found it very useful,
however, to apply the idea of a renormalization based
on the extraction of a smooth part also to the calcula-
tions of the pairing energies (Strutinsky, 1968). In this
way, one evaluates only the essential variations of the
energy gap A and the pairing energy due to the shell
structure, while the same quantities for a uniform model
distribution of the single-particle states are described
phenomenologically by means of the smoothed dis-
tribution gap parameter A. The use of A as an input
parameter determining the intensity of the pairing cor-

relations was found very convenient because the value
of A varies relatively little throughout the Periodic
Table, and it is easy to find a good approximation for it.
In fact, using the relation

A= (12.0/412) MeV (V.2)

gives good agreement, throughout the Periodic Table,
between the calculated values of the energy gap A in
specific nuclei and the values deduced from experiment
(see also Nilsson et al., 1969). .

The main advantages, however, in using A as a
parameter are that it absorbs the divergency charac-
teristic of the BCS theory and that it appears to be the
only essential parameter in the treatment of the pairing
correlations. Such a treatment usually requires two
parameters, namely, the effective strength of the
interaction G and the number of states 7, affected by the
interaction. The latter parameters have no unique
physical meaining and it is difficult to connect them in
such a way that for several nuclei one gets reasonable
values of A.

We start with the following BCS equation

ntne
2= 2
a

a=n—ne¢

2/G= TL(6a—N AT, (V:3)

and
2 M2 G(E)dE
6™ Joo tEnrE
where the integral is a uniform-distribution analog of
the sum (V.3). In the integral (V.4), the cutoff energy

Q is related to the number of states 2#, taken into
account in the sum (V.3) by the relationship

20=2n./§(X), (V.5)

where §(X) is the average level density at the Fermi
energy. The BCS equation must be solved with the
constraint that the particle number

~2§(X) In (%), (V4)

N=2Y v2 (v.6)
is conserved. Here, we have
v=G{1—(&—N)/[(&,—N)*+ A1}y (V.7)

Equation (V.6) together with (V.3) determines the
two parameters A and A in terms of the pairing strength
and the cutoff parameter #..

Both Egs. (V.3) and (V.4) diverge logarithmically,
which leads to familiar inconveniences of the BCS
theory. Therefore, instead of using these equations
directly, we now consider the difference

[ (8a—N) A2 2—25(X) In(29/A) =0, (V.8)

where the two cutoff parameters 7, and @ are connected
by (V.5). In the difference, the parameter G is not
present and, furthermore, it is seen that the divergency



BrACK, DAMGAARD, JENSEN, PAULI, STRUTINSKY, AND WONG The Shell-Correction A pproach to Nuclear Shell Effects

in each of the terms in (V.8) cancel in the difference.
Consequently, the quantity of interest, A, is now found
to be a function of the only parameter A. The specific
values of the cutoff parameters 7, and Q have no signif-
icance provided that 2>>A.

As an illustration we present Fig. V-10, where it is
seen that the change in A, brought about by varying
the cutoff by more than a factor of four, is negligible.
Furthermore, the energy gap A is practically a linear
function of A (see Fig. V-11) as long as one chooses
Q>>A. In our calculations, we have fixed @ to have
the order of intershell spacing, i.e., =10 MeV,
and the quantities A, A, and X are found by an iter-
ation method” described in Baranger and Kumar,
1968. As the inclusion of the pairing correlations
has practically no effect on the uniform Fermi en-
ergy X, this quantity was found as in the pure inde-
pendent-particle model, see Eq. (IV.10). The pairing
quantities evaluated in this way were found to be in
good agreement with the known experimental values
(see also, Strutinsky, 1968). The pairing strength A
varies significantly when comparing different nuclei in
their ground state. It varies, for instance, by a factor of
2 over the rare-earth region. Furthermore, A varies with
deformation when the nucleon numbers are kept fixed.
These variations reflect the periodic behavior of the
local level density at the Fermi energy. Small values for
the pairing gap are obtained in the middle of the rare-
earth and the actinide regions and also in spherical
nuclei. This is always near the centers of the shell
closures characteristic of deformed and spherical
nuclei, where the level density is low.

Now, we define the energy P of the pairing correla-
tions as the difference of the sums of single-particle
energies evaluated with and without the pairing
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F16. V-11. The gap parameter A as a function of the strength A
keeping the cutoff parameter constant.

" The authors are indebted to Dr. K. Kumar for letting them
use his computer code for solving the BCS problem.
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F1e. V-12. Contour map of the function P(S)—P(So) ap-
pearing in Eq. (V.16). The map may be applied in a region
around *Pu as P(S)—P(S,) changes only slowly with the
nucleon numbers.

correlations. This quantity is found equal to

P=3 {(8—N) sign [8,—No]

—LE&=N+347Y/[(&,—N)* a2}, (V.9)

analogous to Eq. (9) in Strutinsky (1967) where,
however, the change of the Fermi energy due to pairing
correlations was ignored. In Eq. (V.9), Ao is the Fermi
energy for A=0, ie., No=(8,+8n41)/2. The sum in
(V.9) converges and no cutoff problem arises.

The shell correction in the pairing energy is now
determined as

6P=P—DP, (v.10)

where P is the pairing correlation energy for the uniform
distribution _ .
P=—35X)A (V.11)

The variation of 6P with the shape of the nucleus and
with the nucleon number is similar to that of the other
shell correction quantities. But the pairing is stronger,
i.e., the energy P takes larger negative values, where the
Fermi level density is increased (8g>0) and is weaker or
even becomes zero in regions of the shell closures
(6g<0). Its oscillations follow rather closely those of the
energy correction 6U and, when added to this quantity,
the pairing correction smooths the shell oscillations of
the deformation energy. It always remains smaller,
however, than the shell effects in the deformation
energy, and plays only a secondary role.

5. Surface-Dependent Pairing

It has been suggested recently that, for the pairing
correlations, the region of the nuclear surface may be
especially significant because the residual nucleon inter-
action is predominantly attractive there. The assump-
tion of a surface-dependent pairing was extensively used
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by Nilsson et al. (1969). These authors have demon-
strated that such an assumption makes no difference for
smaller distortions as, e.g., for the ground-state de-
formation, but that it has an appreciable effect on the
nuclear deformation energy at large distortions by
lowering the energy, which may be an important factor
in the theory of nuclear fission. So far one has no direct
evidence for such an assumption, and the theoretical
arguments are not too solid either. The well-established
feature of empirical A values, that they decrease as the
size of the nucleus increases, seems to contradict it, or
at least to suggest that the situation is not so very
simple.

However, in some of our calculations, we have in-
cluded a surface dependence in the pairing. At the time
this was done in the hope of reducing the heights of the
so-called second barrier in the deformation energy of
heavy nuclei, as described below. It was found later,
however, that this effect may be achieved in a more
natural way by other means; in particular, by introduc-
ing asymmetry in the nuclear shape at the second
barrier.

In the surface-dependent pairing calculations, one
assumes that the pairing coupling constant G is propor-
tional to the surface area S (Nilsson ef al., 1969)

G S/S (V.12)

where Sy is the surface area of the nucleus with a spheri-
cal shape. Within our approximation, this is equivalent
to the assumption that the average gap parameter
increases from its spherical value A=A,—given by
(V.2)—rather appreciably with the increased surface
at large distortions, i.e., '

A=2Q(A,/29) S0/5. (V.13)

Being a linear function of A (cf. Fig. V-11), the actual
gap A will, on the average, behave in the same way. Now
the question arises whether the surface-dependent
pairing should be thought of as already taken into
account in the phenomenological liquid-drop model. If
this is assumed not to be the case, the nuclear deforma-
tion energy may be written

Ege=P(S)+6U+LDM, (V.14)
while the opposite assumption leads to
Eqt=P(S)—P(S)+sU+LDM. (V.15)

In the latter case, the surface dependence would
practically be confined to the LDM part, because the
pairing energy P(.S) and its uniform part P(S) vary
in very much the same way, making the difference
nearly independent of the nuclear shape.

We have found that the surface-dependence cor-
rection to the pairing energy contributes only to the
smooth component of the deformation energy and, in
the interesting region of large distortions of the actinide

nuclei, affects it in exactly the same way as some change
of the surface tension parameter in the LDM would do.
Thus, it seems more reasonable to us, if the surface
pairing should be considered at all, to assume that it is
already included in a phenomenological way in the
LDM. Since, however, so many unanswered questions
are involved in the application of a surface-dependent
pairing, in the sections below dealing with the behavior
of the deformation energy at large distortions, we
present only the results obtained with a constant
pairing parameter A. If required, the results can always
be corrected for the surface pairing. For this purpose,
we present in Fig. V-12 a contour map of the difference

P(8)—P(So) = =3[ () +7o(Xp) JLA2(S) — A%(S) ]
(V.16)

considered as a function of the elongation parameter ¢
and the neck parameter % of the nuclear shape.

VI. NUCLEAR MASSES IN THE LEAD REGION

As the shell-correction method may become an
important tool for the calculation of nuclear masses, we
shall try in this section to elucidate some points
pertinent to such an application of the method.

1. Empirical and Theoretical Shell Corrections
to Nuclear Masses

In Sec. IT we have referred to the mass fluctuations
in order to introduce the shell-correction method. Now,
we return to this point and investigate whether this
method is in fact able to improve the LDM fit to
nuclear masses. The necessary procedure may be put
as follows: Evaluate for some nucleus the ground-state
deformation as described in Sec. V. Then, at this
deformation, find the shell correction and add it to the
liquid-drop mass. The question is then whether this
total mass agrees better with the empirical one than
does the liquid-drop mass alone.

Such an approach to nuclear masses has the ad-
vantage of relating the evaluated mass corrections
directly to the distribution of single-particle states, i.e.,
to the spectroscopic experience and thus does not
introduce additional parameters.

The separation of the empirical mass into a smooth
average—given by the liquid-drop mass formula—and a
remaining shell correction is somewhat ambiguous.
However, the empirical shell corrections available in the
literature (Myers and Swiatecki, 1966b; Zeldes et al.,
1967) are found relatively independent of the specific
ansatz for the liquid-drop mass formula, and therefore
may be regarded as more or less uniquely determined
empirical data. An example, obtained by Myers and
Swiatecki (1966b), is shown in Fig. VI-1. There, the
difference between the experimental binding energies
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F16. VI-1. Deviations of nuclear masses from the spherical LDM values, plotted as a function of neutron number N (lower part)
and proton number Z (upper part) as found by Myers and Swiatecki, 1966a. We are indebted to W. D. Myers and W. J. Swiatecki for

permitting us to use this figure.

and the calculated liquid-drop value, i.e.,
AMexp=Mexp— M 1D w1, (VL.1)

are plotted both as functions of neutron number N, and
proton number Z; systematic odd-even effects due to
the pairing interaction have been removed already. In
this figure the same characteristic fluctuations of
AM xp can be observed as in Fig. TI-1. i

The experimental mass correction AMey, is calculated
by using a liquid-drop formula adapted to spherical
nuclei. In deformed nuclei, the total energy also gets a
contribution from the liquid drop, AMipm(B) [see
Eq. (VIL.13)], and therefore the theoretical quantity
to be compared with the shell correction AM.y, is given
by

AMa=[AM 1ou(8)+ (U (B)+6P(B) )»
+ @U(B)+8P(8) Inlo—pr, (VI.22)
where the liquid drop deformation energy is defined by
AM1pu(B) =M ipu(B) —Mrou(0). (VI.2b)

In Eq. (VI.2a), 6U(B)p,n are the shell corrections as
defined in Eq. (IV.11), and 8P(B8)p,. the pairing

corrections as defined in Eq. (V.10) for protons and
neutrons, respectively; all quantities should be evaluated
at the ground-state deformation 8=g*.

It should be noted that by its very definition the
quantity defined in Eqgs. (VI.2) does not contain con-
tributions from the leading spherical liquid-drop model
terms. This allows a broad comparison with empirical
mass corrections of many individual nuclei such as
shown in Fig. VI-1. In the more usual microscopic
theories such as the Fermi liquid approach of Migdal
(1968), one is forced to consider more complicated
combinations of individual masses in order to get rid of
contributions of the liquid-drop model type.

To which assumptions are the computed mass cor-
rections sensitive’—Let us start our considerations with
the liquid-drop model part in Egs. (VI.2). At the
moderately small deformations of the nuclear ground
states, the liquid-drop deformation energy AM 1pu(B)
is small compared to the leading shell-correction terms
8U+6P. Therefore, we may confine ourselves to a rather
simple expression of the liquid-drop formula, having
only a Coulomb and surface energy component without
the refinements of e.g. the droplet model (Myers and
Swiatecki, 1969) or a curvature dependence. For the
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F16. VI-2. The theoretical mass corrections obtained with one of the most recent versions of the Nilsson model are compared to the
experimental values (Nilsson, Thompson, and Tsang, 1969). We thank these authors for giving us this figure.

discussion of the nearly spherical nuclei in this section,
AM 1pu(B) may be neglected.

As all of the available shell models (using different
types of average potentials) are tailored to fit the
sequence and the distribution of the levels around the
Fermi energy, i.e. to fit the quantities on which the
shell corrections depend, we would expect that the size
and sign of the shell corrections to the ground-state
masses are almost model independent. Though this
argument will be discussed to some extent later in this
section, it was strongly supported by the first calcula-
tions of this kind (Strutinsky 1967, 1968) in which a
relatively poor version of the Nilsson model (Nilsson,
1955) was used. They demonstrated a clear correlation
with the empirical data both in position and amplitude,
as shown in Fig. II-1.

A calculation connected to the one proposed here, but
with a somewhat different scope, has been done by
Seeger and Perisho (1967). With a suitably chosen
initial set of Nilsson model parameters, these authors
first computed the shell corrections, then substracted
them from the empirical masses, and fitted these
supposedly smooth quantities with the parmeters of
the liquid-drop model. They then iterated the Nilsson

model parameters in order to fit the experimental
masses. The values for which the rms deviation was
minimized were close to the ones obtained from spec-
troscopic information (fit of single-particle states). A
rather good fit was obtained for more than 1000 nuclei
with an rms deviation of 0.6-0.7 MeV, an accuracy
which competes with the more phenomenologically
oriented approaches (Zeldes et al., 1967; Myers and
Swiatecki, 1966b). In the more recent calculations by
Nilsson, Thompson, and Tsang (1969)—using the
Lysekil version of the parameters for the Nilsson model
(Gustafson et al., 1966), the gross features of the
experimental shell corrections are quite well reproduced,
as can be seen in Fig. VI-2. There remain, however,
some discrepancies. The smooth over-all trend with
too small theoretical masses (LDM) is not so much a
problem for the present discussion, and could certainly
be improved by a new fit of the liquid-drop parameters.
Itsregular and oscillating structure, however, expecially
around the doubly magic lead, is more intriguing since
it must be correlated directly with the shell structure
and the shell corrections.

Obviously, the spherically or near spherically magic
nuclei play a special role in understanding the ground-
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state mass corrections. In order to discuss the problem
in greater detail, we shall restrict ourselves in the
following to lead-208.

2. Shell Model Dependence of the Theoretical
Mass Corrections

The . experimental ground-state mass correction for
lead-208, using the revised LDM formula of Myers and
Swiatecki (1966b), is AM =—12.8 MeV. The Nilsson
model gives a result of —11.9 MeV (Nilsson, Thompson,
and Tsang, 1969), while a Woods—Saxon potential,
adjusted to fit the experimental positions of the single-
particle subshells in lead, gives a significantly higher
value (—17.6 MeV). Thus, the experimental value is
rather well reproduced by the Nilsson model in spite of
the fact that this model gives a very poor reproduction
of the experimental single-particle levels in lead.

In order to understand this result, it may be of
interest to know what the values of the shell corrections
would be if the shell-model level distribution had
reproduced exactly the empirical single-particle spec-
trum of lead. This can easily be checked by performing
calculations with an artificial single-particle spectrum
in which some of the single-particle energies are sub-
stituted for by their empirical values.

One may also perform calculations using directly the
experimental single-particle energies. The possibility
of making reasonable calculations with only a limited
number of single-particle states follows directly from
the conclusions reached in Sec. IV. There, it was shown
that only an energy region +5 MeV around the Fermi
surface contributes appreciably to the shell corrections.
As the positions of a sufficient number of single-particle
states in such an energy interval have recently been
determined experimentally (see, e.g. Stein, 1969)
calculations of this kind are quite feasible. For lead-208
such calculations result in a mass correction of AMy,=
—20.6 MeV. This value exceeds the experimental one
by more than 7 MeV, a discrepancy which cannot
possibly be due to the approximation made by using a
limited set.

However, it may not be so surprising as it seems that
the value of AM obtained on the basis of the experi-
mental spectrum differs significantly from the experi-
mental value. An explanation as to why apparently
still “imperfect” shell models might do well in shell-
correction calculations may be found in the arguments
given in Sec. ITI. There it has been shown that not the
realistic self-consistent energy spectrum of the single-
particle states, but rather the shell-model spectrum, is
to be used in the shell-correction approach. Indeed, even
for the best possible shell-model potential, i.e., the one
deviating the least from the actual nuclear field, there
must always be some difference between the shell-
model energies and the actual single-particle energies
due to nonsmooth terms in the real nuclear average
potential. Considering the effect of this difference, one

comes to the conclusion that if the actual single-particle
energies were used in the calculations, then the fluctuat-
ing part of the average potential energy should be taken
into account as well, see Sec. III.

Thus, the quality of the shell-model potential used
in shell-correction calculations should not be judged by
the accuracy reached in reproducing the positions of the
individual single-particle states in real nuclei. And one
should not be discouraged by the fact that none of the
existing variants of the shell model reproduces the
positions of the empirical single-particle states with the
desired degree of accuracy. It seems more justified to
require that the shell-model distribution should
reproduce some important quantities related to the
single-particle state distribution averaged over the
essential shell intervals.

As such properties it seems sensible to consider
quantities like the average distance between the mean
energies of the major shells and their dispersion relative
to these energies. Calculating these quantities in a
number of existing single-particle potentials it has been
found, that there are, in nearly all cases, an appreciable
discrepancy in the difference between the mean energies
of the theoretical gross shells adjacent to the lead-208
gap. This difference is systematically larger than the
experimental value. At the same time, the theoretical
shells are significantly broader. These features are
especially pronounced in the neutron case, where the
mean distance between the shells equals ~7.5 MeV,
compared to the value 6.5 MeV evaluated for the
experimental single-particle level distribution in the
lead region. A better agreement was found for models
using a radius for the neutron well, considerably larger
than that used in determinations of spectroscopic
factors (see Rost, 1968; Batty and Greenless, 1969; and
Batty, 1970). Another way to achieve the same result is
to take the effective nucleon mass larger than the free
mass. This may be justified by the residual particle-hole
interaction (see, e.g., in Brown, 1969) or by the recent
self-consistent field calculations with a modified
effective § interaction (Vautherin and Brink, 1970;
Moskowski, 1970). Actually, with the normal value for
the radii, the use of a neutron or a proton mass higher
than the free nucleon mass by 209, and 59, respec-
tively, is sufficient to improve the agreement with the
experimental level distribution.

In order to illustrate this point, we show in Fig. VI-3
a comparison between the results obtained with and
without the use of an effective nucleon mass. In that
figure, case (A) shows the single-particle spectra
obtained with the Woods-Saxon potential ordinarily
used in our calculations. This potential is described in
detail in Sec. VII below. In case (B), the spectra
resulting from the use of an effective mass are presented;
in case (C), the spectra of the Nilsson model; and
finally in case (D) the experimentally observed level
distributions of protons and neutrons are shown. In
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I16. VI-3. Single-particle energies and shell level densities of
208Ph. The shell level density is calculated with ,=1.5 MeV.
The arrows show the positions of the Fermi energies, and the
triangles mark the mean energies of the gross shells. The lengths
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Woods-Saxon potential with free nucleon masses; B: Woods-
Saxon potential with effective nucleon masses; C: Nilsson model
(Nilsson et al., 1969), D: Experimental single-particle energies,
taken from the spectra of 27Tl, 29Bi, 27Pb, and 2%Pb (see e.g.,
Bohr and Mottelson, 1969).

each case is shown the local level densities obtained by
averaging with ~vyn=15MeV. The curves g (8)
resemble each other in the sense that they behave like
gaussians, centered around the middle of each shell.
The mean value and widths of these guassians, how-
ever, differ from one single-particle spectrum to another.
It is reasonable to believe that these features of the
spectra are more important for the shell corrections than
for the specific positions of the individual states.

The triangles in the figure mark the positions of the
mean energies of the gross shells adjacent to the lead-208
gap. The distances between these positions are just
the mean shell energies mentioned above. For the four
distributions shown in Fig. VI-3, these quantities equal
7.70 MeV [case (A)], 6.58 MeV [case (B)], 6.71 MeV
[case (C)7], and 6.64 MeV [case (D)] for the neutron
distributions, and respectively, 7.75 MeV, 7.42 MeV,
6.45 MeV, and 7.46 MeV for the proton distributions.

3. Comparison with Experiment

Contrary to the level distances within the shells, the
lead-208 gap (in the following called D, for protons and
D, for neutrons) cannot be taken from experiments
without making assumptions on the effect of pairing
interactions in the even target and odd compound
nuclei. It is therefore not surprising that Bromley and
Weneser (1968, Fig. 1) arrive at somewhat different
values for D, and D, than ours shown in Fig. VI-3 (D),
which were taken from Bohr and Mottelson (1969,
p. 325). The latter have been found by separation
energy differences, i.e., by

Dy =5, (*Pb) — S, (*°Ph) =3.44 MeV,

D,=5,(*Pb) — S,(*Bi) =4.23 MeV. (VL.3)
The difference between these values and the experi-
mentally observed onesreflects mainly the pairingenergy.
Now we note that in the shell-correction approach the
total mass correction is the sum of two terms, one for
protons and one for neutrons, which for a fixed average
potential are independent of each other

AM(N, Z) =AM, (Z)+AM,(N). (V1I4)

Calculating the corrections AM, for a set of / proton
numbers, and AM, for m neutron numbers, one can by
combinations get the total mass corrections for Im
nuclei. Looking now at the experimental data of Fig.
VI-1, one sees that this assumption is valid only in a
limited region of nuclei: Should it hold strictly, then all
curves in Fig. VI-1 connecting isotopes and isotones
should be parallel to each other. As can be seen, this
holds only for five or six isotopes or isotones around
208Ph, Moving away from 205Pb, the slopes decrease
systematically, which may be due to changes in the
shape of the nucleus and therefore cannot be accounted
for in this calculation, where we use a fixed set of
experimental levels of a spherical nucleus.

However, for nearly 20-30 even nuclei around the
magic lead-208, the experimental values of AM can
indeed be reproduced as a sum of the two independent
neutron and proton partial mass corrections AM, and
AM,,. The inaccuracy brought about by this approxima-
tion is less than 0.5 MeV, as can be seen from the
empirical AM curves in Fig. VI-1.

It should be noted that the separability of the proton
and neutron contributions to the masses in this region
may be taken as an indication of the smallness of the
(6p)2-term in Eq. (II1.24), as we know that the n—p
interaction is as important for this term as the #—x or
p—p interactions are.

The results obtained for the lead-208 region using
Woods—Saxon potentials with and without the use of an
effective nucleon mass are compared with the experi-
mental mass corrections in Fig. VI-4.

The theoretical curves are normalized to the experi-
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Fie. VI-4. Total mass corrections AM in the lead region, plotted as function of proton number Z (left) and neutron number N
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justed to the value of 208Pb.

mental mass correction in 2%Pb. As the figure shows,
none of the slopes on either side of 28Pb agree with the
experimental results.

In Fig. VI-5, the results of similar calculations using
directly the experimental single-particle levels are
shown. As mentioned above, the absolute values differ

even more from the experimental ones in this case and
no improvement in the slopes is seen.

Because of the uncertainties in the relative positions
of the two shells on one hand, and in the importance of
the pairing interaction for magic nuclei on the other,
some special calculations have been done using again

1
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the experimental single-particle spectrum in which,
however, the distances between all states belonging to
the upper and lower shells were artifically reduced and,
instead, no pairing was taken into account. A rather
good agreement with experimental values was obtained
in these calculations when both the proton and neutron
shell distances were reduced by 1.5 MeV compared to
the values shown in Fig. VI-3(D). The results for this
case are also shown in Fig. VI-5. The mass increments
in “particle” and “hole” nuclei fit now the experiments
much better and over a larger region of nuclei than in
the “normal” calculations with the shell-model single-
particle spectrum and the BCS pairing. The discrepancy
does not, on the average, exceed 0.2-0.3 MeV. In
the absolute values of AM, however, a common devia-
tion of ~2 MeV remains.

The significance of these calculations with the reduced
distance between the shells is not very clear to us, but
the agreement obtained seems suggestive and the
reasons for it must be understood better.

This and the other results described above in this
section probably indicate a still inadequate treatment
of the nucleon interactions in spherical nuclei.

We feel that the problem of shell effects in masses of
spherical nuclei still requires a deeper understanding
of these phenomena and a more rigorous treatment of
the residual interactions. It could be one of the im-
portant lines in the future improvement of the theory.
It is, however, not of great importance for this paper in
which problems of deformed nuclei are considered.

VII. THE LIQUID DROP AND SHELL MODEL
FOR LARGE DISTORTIONS

In this section, we consider the specific definitions of
the two nuclear models involved in our calculations.
These are the liquid-drop model and the shell model.
Special attention is paid to some qualitative features,
which are important for the use of these models at
large distortions, so significant for the fission process.

1. Description of the Nuclear Shape

Even in simple classical models, fission is a many-
dimensional process, in the sense that many deforma-
tional degrees of freedom are involved. Therefore, any
reasonable theory requires at least a few parameters to
describe even the most important variation of the
nuclear shape.

In a complete dynamic theory of the process, these
parameters would appear as generalized coordinates. At
the present time we have, however, no reliable dynamic
theory, which can guide us in choosing these parameters.
As the variety of possible shapes, and with it the com-
putational time, increases extremely fast with the
number of independent variables, we are forced to limit
ourselves to a few parameters (more than three is
practically impossible), chosen by physical intuition.

Since any restraints in the degrees of freedom are equiva-
lent to introducing some infinitely strong ‘‘restriction
forces”, the choice of parameters may result in a rather
artificial model of the process. In order to avoid as much
as possible a priori restraints of this kind, we have tried
to express the important physical quantities in a way
which at least makes a change in the number and
meaning of the shape parameters very easy. In our
calculations, it is practically required only that the
shape of the effective nuclear surface be defined in some
way. As was mentioned in Sec. III, this may be done
consistently, both for the LDM and the shell model;
how this is done is described in more detail in this
section. In these calculations, the only significant
limitation we impose on the shapes is that they shall be
axially symmetric. In cylindrical coordinates, which we
use throughout, the skape of the nuclear surface is given
by an equation

(8, u, v) =0, (VIL1)

where 3 is a set of deformation parameters, and % and v
are dimensionless coordinates proportional to the
ordinary cylindrical coordinates

z2=Cu,

p=Cu. (VIL2)

Here and in the following the origin of the coordinate
system coincides with the center of mass of the assumed
shape. This is achieved as in Damgaard et al. (1969a).

The real nuclear surface may be obtained from Eq.
(VII.1) by imposing the volume conservation condition,
thereby determining the proper value of the scale factor
Cin Eq. (VIL.2)

3 U —1/3
C=R, |:~ / wﬁ(u)du] ,
4 uy1

where the function (%) is determined implicitly by
Eq. (VIL.1), #; and u, are the two end points at which
v;(#) becomes zero, and Ry is the radius of the sphere.
For the following, it is convenient to introduce a
dimensionless elongation paratmer ¢, which is defined by

¢=C/Ro. (VIL.3b)

In the volume conservation condition [Eq. (VIL.3a)],
we replace the real distribution of nucleons by a uniform
density distribution which is constant within the
effective nuclear surface determined by Egs. (VII.1)-
(VIIL.3a). This volume is kept constant for all variations
of the nuclear shape.

This formulation of the volume conservation condi-
tion is, of course, only a crude approximation. It is,
however, sufficient for the definition of the phenomeno-
logical equation of the LDM as well as the shell-model
potential with the accuracy required for the shell
correction calculations (see Strutinsky, 1968, Sec. 9).

After trying a number of different parameterizations

(VIL3a)
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F1G. VII-1. Some shapes in the {c, 2} parametrization [Egs. (VII-4) and (VII-5)]. The solid lines show symmetric shapes (a«=0);
the dotted lines are shapes with an asymmetry parameter «=0.2.

of the shape, we have found that the following simple
polynomial expression is in rather good agreement with
the known results of exact LDM calculations, where
practically no restrictions were imposed on nuclear
shapes (Strutinsky et al., 1963; Cohen and Swiatecki,
1963)

w(u,v) =v*— (1—u?) (A+ Bu*+au). (VIL4)

The parameter a describes the asymmetry of the shape
in the z direction. When a=0, one obtains a family of
symmetric shapes ranging from the spherical shape
(A=1, B=0) to two-fragment shapes (4<0). These
were first studied by Lawrence (1965) and later
considered by Hasse (1969). When both « and B are
equal to zero, one has a set of oblate (4>1), and
prolate (A4<1) ellipsoids. In general, the shape de-
scribed by Eqs. (VIL.1), (VIL.4) is more necked-in, if
B is positive, than the ellipsoidal shape with the same
longer axis.

For the description of the ground-state shapes of
many deformed nuclei, which seem to require more
diamond-like shapes, the shapes obtainable from
Eq. (VI1.4) were found to be insufficient. Therefore,
Eq. (VIIL.4) is replaced by

w(u, v) =0— (1—u2) [(A+au) exp (Bcu2)] (B<O)

(VILS5)

as soon as B becomes negative. The two definitions join
smoothly for small absolute values of B.

We assume that the two most important modes of
deformation appearing in the fission process are
elongation and formation of a neck. It is convenient to

connect the formal parameters introduced above with
some other parameters, which can be related more

* directly to these two modes.

With respect to the nuclear elongation, this is easily
done with the parametrization we use here. Indeed,
if the shape is defined by Egs. (VIIL.4) or (VILS5), it will
always have its end points at #==1 in dimensionless
coordinates #u, v.

The volume normalization scale factor ¢ in Eq.
(VIL3) is equal to

c=(4+1%B)"13 (VIL6)

for the parametrization (VII.4), and approximately
equal to this number when (VILS) is used. Thus, the
total length of the longer axis of the density distribu-
tion, in units of Ry, equals simply 2¢, independently of
the asymmetry parameter a.

A second parameter % describes the variation of the
thickness of the neck without changing the length 2¢
of the nucleus, and is chosen in such a way that the
k=0 line fits approximately the bottom of the liquid

drop valley described below. The connection between

the parameter sets {4, B} and {c, %} is given by
B=2h+3(c—1)

A=(1/c®)—1B. (VIL.7)
Figure VII-1showssome selected shapes, connected with
our {c,k} parametrization. It should be noted that
Eq. (VII.4) describes also separated shapes, as soon as
A is less than zero, or as we see easily from Eq. (VIL.7),
h=>(5/2¢%) —§(c—1).



366 REVIEWS OF MODERN PHYSICS + APRIL 1972

2. The LDM Energy Surface

When investingating the deformation energy of the
nucleus, two terms emerging from the liquid-drop model
are especially important. These terms are the surface
energy E, and the Coulomb energy E., which we express
in units of the corresponding energies of a sphere (see
Hill and Wheeler, 1953) :

E, 1/C\2 2 dvs\2 )12
== (o) [ auder| 1 ()1
B E,O 2 (Ro) —/1:1 “ {7) [ + (d”) :”

(VIL8)
E,
.Bcz Ec(")
1 RO C 3 ug dv82
-2 () [ oo,
(VIL9)
where the energies of a sphere are
Es 0= 47(‘0'R02,
E,©=3(22/R,), (VIIL.10)

and @ is the Coulomb potential. The surface tension
coefficient was fixed to the value
B=A4mor=E,®/A3=17TMeV,
where
R0=7’()A 1 3.

The function v;(#) in Egs. (VIL8) and (VIL9) is the
same as that introduced in Eq. (VIL.3). As a rule, it can
be found by solving Eq. (VII.1) numerically. In our
case, it is given explicitly as

v2= (1—u?) (A+Bu*+au),
v2=(1—u?) (A+oau) exp (Bcu?).

(B=0)
(B<0).
(VIL11)

The derivatives occurring in the integrands are found by

dv? _ dv, _ (ar/z')u) Tu
amr/ov*

du % du

T
They are evaluated at the integration points. The
Coulomb.potential is evaluated as

3 Ze? u2
Do, u)= =250 [ aw {B(a, b)+F(a,0)
0 uy

, 4 (o)
du’

X [v}(u’) —v?(u) — (u—u') ]} , (VIL.12)
where the complete elliptic integrals of the first and
second kind (Abramowitz and Segun, 1964) are
described by E(a, b) and F(a, b), and their arguments

are

a={[v(w)+v(a') P+[u—u P},
b={[v(u) —v(a') P4Lu—o' P}

The function ®(», %), which in Eq. (VIL.9) is taken
only in surface points (vs, %), applies also to all other
points in the space, and is used in the Coulomb part of
the Woods—-Saxon potential for the protons.

In terms of these quantities, the deformation energy
of the nucleus—normalized to the spherical case—is
then

Ewpu=EO[B,—142x(B,—1)], (VIL.13)
where « is the fissility parameter
r=E©/2E©. (VIIL.14)
Using Eq. (VIIL.10), we get
x=(22/A)/(Z*/ A) cxits (VIL.15)

where the critical value of Z2/4 is simply related to 7,
and the surface tension o:

(Z2/A) ariv=Ama R (ri}/ ).,

In the earlier versions of the liquid-drop model this
value was taken to be independent of Z and 4. In more
general versions—such as in the droplet model of
Myers (see, e.g., Myers and Swiatecki, 1969)—the
introduction of a critical value of Z2/4 is no longer a
unique concept, as this quantity may vary with the
nuclear isospin. However, the liquid-drop coefficients
are determined by a fit of the liquid-drop formula and,
as pointed out by several authors, this can be done in an
unambiguous way only by taking the fission thresholds
into account, where the shell corrections become
extremely important and no simple LDM equation is
applicable. Therefore, we keep the ratio of the liquid-
drop surface and Coulomb energy as a free parameter,
and in most cases we use

(2% A) ris=45

keeping in mind that a better and consistent value may
be obtained by a final fit with a better quantitative
knowledge of the shell corrections at large distortions
(see Pauli and Ledergerber, 1971).

The LDM energy surface has some important
qualitative features, which become clear when the
physical parameters of elongation and neck formation
are used for the description of the shape. These features
are related to the presence of a certain LDM valley
with its characteristic of relative smallness of effective
classical forces arising from shape variations, and also
to the existence of a critical deformation at which,
according to the LDM, the elongatated nucleus becomes
unstable against scission. The latter feature determines
the physical scission point and is directly connected with
the kinetic energy release to the fission fragments.

(VIL.16)
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LDM

x = 0.80

F1c. VII-2. LDM-energy surface for
a nucleus with x=0.8 (E,© =635 MeV).
The curves are lines of constant de-
formation energy (in MeV) which is
normalized to zero for the spherical
shape (c=1, £=0). The straight line
denoted ““ellipsoids” connects the points
of ellipsoidal shapes [B=0in Eq. (VIL.4)
or (VILS5)]. The thick dashed line is the
scission line (4 =0). In the region above
this line, the shapes are separated. The
shadowed region is the “exit” described
in the text.
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3. The LDM Valley

What we call the LDM valley may be viewed as a
region in the space spanned by the deformation co-
ordinates, in which the LDM energy varies less than
elsewhere. That is a region where the Coulomb repulsion
and the surface tension nearly compensate each other
as, e.g., is reflected in the relatively low fission barriers
(of the order of 5-7 MeV) found in the valley region
for heavy nuclei. These barrier heights should be com-
pared with typical values of the Coulomb and surface
energies separately, which near the fission barrier
increase to a few hundred MeV. The reason for
introducing this concept may be understood by recog-
nizing the orders of magnitude of the three main forces
involved in fission. These are the classical Coulomb and
surface tension forces and the shell force arising from the
intrinsic structure. An estimate of the latter may be
obtained from a typical variation of the shell-energy
corrections of the order of a few MeV over the charac-
teristic deformation RoA~/3:

dF5 MeV/RoA~13~30 MeV/R,.

This force is significantly smaller than the two others.
The average value of the Coulomb force can be esti-
mated as the Coulomb repulsion energy of a couple of
hundred MeV gained by a distortion of the order of R,.
The surface tension force is comparable in magnitude
to the Coulomb force, but with opposite sign. Thus, in
regions where the two strong forces are not in balance,
they result in a strong effective force which either
restores the equilibrium by bringing the nucleus back
to the region of the valley or tends to split the elongated
nucleus into pieces.

From this consideration, an important conclusion

may be drawn. To a certain extent, any reasonable
“trajectory” of the fissioning nucleus is determined by
the static relationship between the two classical forces
and must therefore be close to the LDM valley. This
statement may be considered as part of a rough model
of the fission process.

Outside the valley region where the resulting classical
force is much larger than the force related to shell
structure, the deformation energy is not expected to be
influenced considerably by any specific structure in the
nucleus. However, within the valley region, the other-
wise smooth relief of the LDM deformation energy
surface is strongly affected by the shell structure. This
shell-structure effect, together with the inertia and
possible damping properties of the nuclear matter, may
influence the fission process in many important ways,
and is presumably responsible for a variety of observed
features of nuclear fission. Therefore, in considering this
process, one may, as a first step, restrict oneself to
investigating the shell structure only within the valley
region, which is convenient at least in reducing the
amount of work involved.

The LDM valley may be found as the locus of
conditional minima of the LDM deformation energy,
with the condition that some elongation parameter has
a given value D. The sequence of the minimal energy
values W(D), corresponding to the bottom of the
valley, is usually regarded as a static model for the
energy variation in fission, while the corresponding
sequence of shapes is treated as a kind of LDM fission
trajectory. The definition of the LDM valley is not
unique, but fortunately the sequence of shapes deter-
mined in this way is not too sensitive to the specific
choice of the elongation parameter, as long as it is a
physically reasonable one.
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Fic. VII-3. Left side: The same as in Fig. VII-2, but in the {p, %} representation, i.e., using the mass-center distance p.m as elonga-
tion parameter instead of ¢. The three branches of conditional extrema are clearly indicated. Right side: Plot of the deformation energy
of the three branches of conditional extrema as a function of pem. A triangle indicates the saddlepoint. For pem>p*~1.16 there exist
only separated stable shapes. The dotted curve is calculated for the case of two equal oblate ellipsoids whose energy was minimized

for a given distance p.m of their centers.

In our {c, 2} parametrization, the region of the LDM
valley can be confined to a rectangular region deter-
mined by 1.0 ¢ $1.8, and —0.3 $%50.3. This can be
seen, e.g., in Fig. VII-2) which shows a contour map
of the LDM energy surface, calculated for a nucleus
with x=0.80 in the {c, #} parametrization. The line of
ellipsoids is indicated as well as the line Z=0, which
approximately follows the bottom of the LDM valley.
The thick dashed line shows the scission line (4=
0), beyond which the shapes are separated into two
fragments.

4. The Exit Deformation

An important feature of the LDM wvalley is the
existence of a well-defined exit at the deformation
¢s1.7-1.8. Here, the energy surface drops steeply down
in a waterfall manner and a force arises in the direction
of reducing the neck radius of the stretched nucleus,
thus leading to an abrupt scission.

The original of this critical point can be understood if
one considers that, already at somewhat smaller dis-
tortions, the separated fragment shapes become much
lower in energy than the continuous shapes of the same
elongation. For this region of deformations, one finds
three shapes of the same elongation, which give three
different conditional extrema of the LDM deformation
energy (Strutinsky ef al., 1963, Sec. 2.1). Two of them
correspond to minima of the deformation energy, one
for usual continuous shapes of the LDM valley, and
another for separated two-fragment shapes. The valley
of these minima for two-fragment shapes can be

recognized in Fig. VII-2) lying above the scission line.
The third extremum corresponds to the maximum of the
potential barrier which separates the two minima at
the same elongation. Considered as a function of the
elongation parameter, the energies of these extrema
form three branches of the extremal energy curve.
Conversely, one finds at smaller distortions only one
extremum, namely the conditional minimum of the
deformation energy for continuous shapes of the LDM
valley.®

The barrier between the two minima disappears at
the exit. For distortions larger than the exit deforma-
tion, again, only one minimum corresponding to
separated fragment shapes exists. From this point, the
minimum energy curve reflects actually the energy of
the Coulomb repulsion between the two distorted
fragments. The elongation parameter used by Strutinsky
et al. (1963) was half the distance between the centers
of mass of the two halves of the nucleus, pem, which can
be defined by

pcm=2c</uu2|ulvz(u)du/Lu2v2(u)du). (VIL17a)

It was found in this reference, that the exit deformation
shapes are characterized by a relatively thick neck,

8 There is also an infinite number of other continuous-shape
solutions with two and more ‘“‘necks” as well as asymmetric
solutions. These are of no interest here; see, however, Strutinsky
et al., 1963.
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occurring at a mass-center distance of

pem=p*~1.16R, (VIL.17b)

which is almost independent of the fissility parameter «.

This general result is confirmed in our calculations
with a limited set of shapes determined by the shape
functions (VII.4) and (VILS5). This is obvious from
Fig. VII-3, which shows—on the left side—the same
energy surface as in Fig. VII-2, but plotted in the
{pem, #} representation. The curves of conditional
minima for the continuous shapes of the LDM valley
and the separated shapes (“MIN SEP”) are clearly
marked in the map. The ridge separating the two
valleys is also well discernible. On the right-hand side
of Fig. VII-3, the energy extremal along these three
branches is plotted against p.. One clearly observes
a characteristic singularity occurring in the exit re-
gion where the continuous shape minimum disappears.
Note also the strongly increased slope after the exit.
There, the deformation energy is determined merely
by the Coulomb repulsion of the two forming frag-
ments. This feature can also be seen in Fig. VII-4,
where a perspective plot of the LDM energy surface of
0Py is shown. The viewpoint is chosen at a large
distance; its direction is parallel to the c, % plane in an
angle of 45° to the c axis, i.e., looking from the region of
separated fragments towards the saddle. The cataract-

like falling off of the deformation energy after the exit
from the LDM valley can easily be recognized.® The
maximal value of pem, at which a stable continuous
shape still exists, is seen in Fig. VII-3 to agree very well
with the value p* (VIL.17). In fact, the data on the
right-hand side of Fig. VII-3 are similar in all respects
to Fig. 2 of the paper by Strutinsky et al. (1963) where
the exit singularity was obtained in a more general
treatment of the LDM energy. For the separated
shapes, our parametrization should be improved. The
humps on the inner side of the fragments make the
surface energy too high. This can be seen from the
results of calculations in which the fragments are
described by two oblate ellipsoids with a mass center
distance pem. Minimizing the total LDM energy for
constant pem, one obtains values which are lower by
5-10 MeV than those of the {pem, #} parametrized frag-
ments; see the dotted curve on the right-hand side of
Fig. VII-3. For the discussion of the exit region, this is
of no consequence.

When we use asymmetric shapes, we still find a well-
defined exit, as can be seen from Fig. VII-5. The
presence of the exit deformation is an important feature
of the liquid-drop model and may be used for the

9 We would like to thank Dr. F. Dickmann for his help in
preparing Fig. VII-4.
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F16. VII-5. LDM-energy surface for 2Pu (x=0.818, E®=
631.5 MeV) for symmetric shapes (a=0, uppermost figure),
and asymmetric shapes (@¢=0.1 and 0.2). The shadowed regions
are the exits as in Figs. VII-2 and VII-3, and the dotted lines
are the “static ways to fission”” along the LDM valley, for given
values of the asymmetry parameter a.

determination of the physical scission point. Such a
determination seems more natural than the usual
condition that the neck radius becomes zero. The latter
condition is very ambiguous as it depends completely
on the specific choice of the shapes: The more general
parametrization of shapes used, the less meaning such a
scission shape has. In addition, one can hardly treat

the nucleus by means of the liquid-drop model when the
neck radius becomes comparable to the internucleon
distance.

The interpretation of the exit as the scission point
receives some support from experimental evidence
concerning the mean Kkinetic energy of the fission
fragments 7. This quantity taken as the Coulomb
repulsion energy at scission, is almost uniquely deter-
mined by the mass center distance at the exit, p*, and is
found to be insensitive to the details of the shape.
Moreover, as the exit_shape does not depend on the
fissility parameter, Ty should be proportional to
Z2/A'Y3 and, indeed, this feature is well known from
systematics of the empirical values, see, e.g., Terrell
(1959). (More recent data can be found in Nix, 1969.)
Measured in units of the surface energy E,® o« 423 T,
should thus be proportional to Z2/4:

T,~Dx. (VIL18)

In Fig. VII-6, known experimental fission fragment
kinetic energies are plotted against x. A straight line in
the figure is drawn through the experimental points and
the origin of the coordinate system. Its slope agrees
rather well with the estimate based on the above
interpretation of the scission point. In fact, the theo-
retical value of the proportionality coefficient D in
(VIL.18) can be obtained directly from the calculated
Coulomb interaction energy of the two ‘“halves” of the
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F16. VII-6. Experimental average kinetic energies 7y of
fission fragments, plotted against fissionability parameter x.
The straight line drawn through the points shows the approxi-
mate proportionality of 7, to the parameter x. [The experi-
mental points are taken from R. Nix’s paper (1970) ].
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nucleus at the exit. In this way, one gets
D=0.35240.02.

The experimental slope of the straight line in Fig.
VII-6 corresponds to D=0.33. This value should also
be compared with Terrell’s estimate (1959), based on a
smaller number of experimental points in a region of
smaller values. Nevertheless, this result corresponds to
the same value of D. The agreement strongly suggests
that at least the major part of the kinetic energy of the
fragments does come from the Coulomb repulsion at
scission, which takes place as an abrupt splitting of the
elongated nucleus, when the exit deformation is
reached. If so, one can probably not deduce from the
quoted experimental evidence that an appreciable part
of the kinetic energy of the fragments comes from sliding
downhill after the saddlepoint, an alternative con-
sidered recently by Nix (1969).

On the other hand, some evidence concerning the
kinetic energy distribution of « particles formed in
fission seem to demonstrate that the fragments already
have considerable kinetic energy at the moment of
emission of the « particles (private communication by
Halpern, 1970). An explanation of this controversy
may probably be found in the fact that normally the «
particles are not emitted in fission events which con-
tribute appreciably to the mean kinetic energy of the
fragments in low-energy fission. Other data shown in
Fig. VII-6 refer to fission of highly excited compound
nuclei formed in heavy-particle bombardment. No
detailed data on the kinetic energies of « particles are
available for these reactions.

For the exit shapes, the neck radius is still sufficiently
thick and amounts to about one-third of the nuclear
radius Ro. One may hope, therefore, that the situation
just before the exit still can be treated by means of the
usual quasistationary theory, considering the whole
nucleus as an entity. As any significant opposing forces
are absent, scission should be a very fast process.
Consequently, one may assume that not only the mean
kinetic energy, but also other distributions in the
fission fragments are identical to those formed just
before the exit deformation. We shall come back to this
point later (see Sec. VIIL.2).

5. The Shell Model

The single-particle energies and wavefunctions used
in our calculations are evaluated in a generalized shell
model. It is evident from the previous sections that the
shell model should be easily applicable to very general
shapes which the nucleus may take during the process of
fission. We shall therefore define a deformed Woods—
Saxon potential in such a way that the shape deter-
mined by the function [Eq. (VII.1)] easily can be
varied. For the evaluation of the single-particle energies
and wavefunctions, we use a fast numerical method
recently suggested (Pashkevich and Strutinsky, 1969;
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Damgaard et al., 1969a). In this method, all parts of
the single-particle Hamiltonian are defined in terms of
the nuclear surface. The accuracy of the numerical
method and the required computer time are approxi-
mately independent of the shape of the surface, in
contrast to some other formulations of the deformed
Woods—Saxon potential. (See, e.g., Nemirovsky and
Chepurnov, 1966; Ford et al., 1970). :

In order to solve the Schrédinger equation, we
diagonalize the Hamiltonian

H= T+ V(l) + Vso+ I/v(‘}oul (VIIlg)

where T is the kinetic energy in a deformed, axially
symmetric oscillator basis. This basis has the following
desirable features. The shape and size %o of the basis
may easily be adjusted to the form and volume of the
nucleus considered. The matrix elements of the Hamil-
tonian can be expressed as two-dimensional integrals in
a way appropriate to the application of Gaussian
quadrature formulae. In evaluating the integrals, simple
recurrency relations are used for the Hermite and
Laguerre polynomials in terms of which the basis
functions are expressed.

Furthermore, the truncation of the basis also varies
depending upon the deformation of the average field,
and is different along the main deformation (i.e., the
2 axis) and in the perpendicular direction. This con-
trasts with the usually used truncation of the basis
with a definite number of spherical shells, where, in
order not to miss the states of very high quantum
numbers in strongly deformed nuclei, one is forced to
use very many states in the spherical basis. The use of
the basis and truncation adjustable to the deformation
of the average field helps to avoid this problem com-
pletely.

Furthermore, in the applications, it is also often
convenient to have the wave functions expressed in
terms of Hermite and Laguerre polynomials because of
the simple recurrency relations which connect these
functions. Finally, it is possible to write the computer
program in such a way that the computer time required
is determined mainly by the time used for the diagonal-
ization, which means that the computer time involved is
comparable to the time used when one is working, e.g.,
with the Nilsson model. The speed of the computations
is an essential factor in applications to the fission theory
where a large variety of nuclear shapes must be con-
sidered.

We start from the effective surface of the nucleon
density as defined in Eq. (VIL.1) and assume that the
density drops exponentially to zero in a surface layer
whose thickness is small compared to the mean nuclear
density radius Ry. We assume the distribution of the
nuclear field to follow approximately the density,
although it may extend somewhat outside the density
surface region due to the finite range of nuclear forces.
Consequently, we introduce an effective surface for the
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nuclear field whose shape is determined by the same
shape function =(#, v) as in Sec. VII.1, though with a
slightly larger scale factor C, than the scale factor C,
Eq. (VIL3), for the density surface, i.e., we take a
somewhat larger volume for the potential surface

C,~C[1+ (ARy/Ry) ]

where AR, is the difference between the half-value radii
of the potential and the density distribution. For
simplicity, we assume the same effective surface = (%, v)
both for protons and for neutrons.

Knowing one equipotential surface, namely the
effective surface for the potential, we finally need to
assume a definite distribution of the others. The
distribution we shall use is based on the observation
that, in a phenomenological description of nuclear
density distributions, the surface thickness parameter
is nearly constant over the whole range of spherical
nuclei, i.e., it is approximately independent of the
surface curvature. Consequently, we use an expression
for the nuclear potential which has the feature of
varying in the surface region only in the direction
perpendicular to the surface with a constant gradient
in each point independent of the nuclear shape.

Another commonly used prescription for the potential
distribution is to assume that the equipotential surfaces
are scale transforms of each other. For deformed shapes,
this assumption implies, however, that the skin thick-
ness in the normal direction to the surface varies along
the surface.

In the calculations presented in this paper, we use
a potential with a constant skin thickness, which can be
obtained by introducing a length variable

(u, v) =Cy[m (%, v) /| Vy,om(n,v)|] (VIL.20)

and then, in conformity with our starting point, use
this in a Fermi function to give the ‘‘radial” dependence

V() =Vo/[1+ exp (I/a)] (VIL.21)

where a is the surface thickness parameter for the
potential, and V), is its value in the nuclear interior.

Without implying any further restrictions, we may
obtain the correct asymptotic behavior by assuming the
length variable I(u, v) to be always positive outside and
negative inside the potential surface at which, by
definition, it is zero. The definition of the potential by
Egs. (VIL.20) and (VII.21) ensures, as may easily be
verified, that the field in the neighborhood of the
potential surface varies only perpendicular to the
surface. It has a constant gradient in this direction
independent of the point on the surface equal to 3(Vo/a)
and, as long as | /| Sa, the length variable I may, for
any shape = (%, v), be identified with the distance from
the surface m (%, v) =0.

Summarizing, we see that as soon as the function
w(u,v) is given, the procedure described defines the
potential uniquely, except for the extremum points

of the function = (%, v), where Va(u, v) =0. As we shall
see, these special points may be interpreted as geometric
centers of the shape determined by the equation
w(u, v) =0. The length variable ! becomes singular in
these points, which may have unpleasant consequences
such as, for example, that the value of the potential
(VIL.21) in such a point may depend on the manner in
which one approaches the singularity point.

The difficulty may be partly avoided by using the
inherent arbitrariness left over in our definition of the
shape by the function 7 (%, v) . This means that identical
shapes are obtained if the function = (%, v) is replaced
by any other function II(#%, v), which is expressible as
a functional of w(u, v)

(%, v) =®[w(u,v)], (VIL.22)

where the function ®(x) satisfies our sign convention
and is zero for 7 (#, v) =0, viz.
®(x) 20  for

x20 (VIL.23)

and

®(0) =0. (VIL.24)

The additional freedom may be used in different
ways. We have found it convenient to choose II(#, v)
in such a way that /, now determined by

I=C,[II(#,v)/| Vyu,slI(n,v)|] (VIL.25)

in the spherical case always becomes identical to the
usual radial variable r—R,. This is also true near each
sphere, if the equation II(#, v) =0 describes a number
of identical separted spheres.

Such a transformation is useful in the sense that,
with the modified length variable / given by Eq.
(VIL.25), one is able to define a Woods—Saxon potential
which, starting from a spherical shape, continuously
transforms into a number of identical spherical poten-
tials of the same type, paralleling the corresponding
transformation of the nuclear shape. The potential
always preserves the feature of saturation, i.e., its depth
in the nuclear center (or centers) remains constant.

When we parametrize distortions as described by
Egs. (VIL4) or (VILS) in Sec. VIL.1, a function
II(%,v) with the above-mentioned properties may be
found by setting

I (u, ) =[7 (%, V) —Tmin ]2 —[—Tmia ]2, (VIL.26)

where Tmin is the minimal value of 7 (%, v). As all the
extrema of the function (%, v) in our parametrization
are situated on the line v=0, i.e., the z axis, one may
conveniently classify the different shapes as one- or
two-center shapes according to the number of minima
of m(u, v). This number depends on the specific values
of the deformation parameters appearing in the shape
function (%, v). We find, e.g., among the symmetric
shapes (a=0) determined by Eq. (VIL.4) that we



BrACK, DAMGAARD, JENSEN, PAULI, STRUTINSKY, AND WoONG The Shell-Correction Approach to Nuclear Shell Effects 373

ONE CENTER

F1c. VII-7. Qualitative illustration A>B
of the connection between the shape
and the function II(%, ») taken along
the # axis. It shows that one may
interpret the extrema of the function

I (u, 0) as geometrical centers of W

T (u, 0)

T (u, 0)
TWO CENTERS TWO CENTERS
CONT. DISCONT.
B>A>0 B>0>A
) u

the shape. 0

OW u
+1

have one-center shapes if 4> B, in which case

=—A,

and two-center shapes if 4 <B, in which case
tmin==£{3[1—(4/B) }",

—3i[(4—B)¥B]. (VII1.28)

The two-center shapes are continuous for B>A4 >0 and
discontinuous for B>0> 4, see Fig. VII-7. In the case
of two-center shapes, I(#, v) is still singular for #=0.
This singularity however, gives, rise to undesirable
effects if the neck radius

rmin':va(O) =C,A"? (VIIZg)

is smaller than the diffuseness parameter a. Shapes for
which this is true are hardly of any interest in this
connection as the LDM description is meaningless when
the neck radius becomes so small. In addition, there are
reasons to believe that physical scission takes place just
at the exit from the LDM valley, i.e., before the neck
radius has become so small. For the exit shapes deter-
mined from Fig. VII-3, the neck radius is still consider-
ably larger than a. In order to give an impression of our
parameter choice as well as of the field resulting from the

Umin=0, (VIL.27)

Tmin

Tmin =

method described, Fig. VII-8 shows the distribution of
equipotential surfaces for several shapes of the nuclear
surface.

The occurrence of a rather strong spin—orbit coupling
in the nucleonic interaction, combined with the assump-
tion that the range of interaction is small compared to
the surface thickness of the density distribution, leads
to a spin—orbit coupling in the average potential of the
form

Vso=%k,(1:8)7[3p(r) /8r] (VII.30)

where k, is a constant, and p(r) the density distribution.
In actual calculations, we have used another form for
the spin—orbit term, but one which is analogous to that
used traditionally in the shell model, i.e.,

Veo(t, ) =—k[VVXpJ-e,  (VIL31)

where V(u,v) is evaluated by Egs. (VIL21) and
(VIL25) up to the fact that the density-volume
normalization condition, C, Eq. (VII.3), is used instead
of C, for defining the radial variable !, Eq. (VIL.25).
The choice of a spin-orbit radius somewhat smaller
than the potential radius may also find support in
calculations which aim at finding the one-body po-
tential suitable for specific nuclei by fitting the ex-

Fic. VII-8. Equipotential
lines for some shapes in the

an W an

{c, k} parametrization. The
equipotential lines refer to the
energies 0.1 Vo, 0.3 Vy, 0.5 V,,
0.7 Vo, and 0.9 V,, where Vo
is the well depth in the center.
Each division on the axis rep-
resents 1 F. The spherical
radius is taken equal to 7 F.

@® c=115 h=01

/m\ F

c=1225,h=-041

c=1225,h=-0.2

c=14, h=-002 c=16, h=-01
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Fic. VIII-1. Contour maps of the shell-energy correction
8U,+06P, for neutrons in the actinide region. Numbers are
given in MeV. The equidistance for the full lines is 2 MeV. For
the parameters of the single-particle potential used, see Table
VIIIL.1. The deformation parameters ¢ and /% are defined in Sec.
VII. The uniform pairing gap A is kept constant over the whole
{c, 2} region and chosen to equal A=12 4712 MeV, as in all
figures of this section. Note that there are up to four regions of
negative energy corrections (shadowed).

perimental single-particle levels. Thus, the spin-
orbit potential will be peaked slightly inside the half-
potential radius R,. Such a step increases the influence
of the spin—orbit potential on the distribution of levels
at the Fermi energy.

Another important component of the nuclear
average field is the Coulomb field. As mentioned above,
this was evaluated by assuming the nuclear charge to be
uniformly distributed within the nuclear surface. It is
given by (VIL.12).

VIII. THE DEFORMATION ENERGY OF
HEAVY NUCLEI

Large deformations of the nucleus have so far been
studied only in the fission process. In this section we
try to give a quantitative discussion of the role of the
shell structure in the deformation energy of fissioning
nuclei, and to examine to what extent the occurrence of

shells can be related to experimental results, some of
which have puzzled nuclear physicists in the past. A
complete treatment of the fission process, especially the
discussion of the stability of nuclei against division,
must involve dynamics, to which the next section is
devoted. However, the deformation energy alone is
conclusive with respect to the relative energies of the
stationary points, i.e., the saddle and the ground-state
shapes. Without too much ambiguity these quantities
can also be compared to experimental results (Lynn and
Bjgrnholm, private communication).

The single-particle calculations, on which the results
presented below are based, have been performed by fast
numerical methods, using an average potential of the
Woods—Saxon type described in Sec. VII. The applica-
tion of such a potential implies in principle the need of a
calculation for each isotope separately. But for neigh-
boring nuclei, the single-particle level distribution
changes slowly and monotonically, and the increased
radius of the average potential can easily be corrected
for by a scale factor varying like Nilsson’s %w, with
A3 (cf. Sec. V). Thus, we have found it sufficient in
the region of heavy elements (42220) to use only two
level schemes, one for the known fission region around
0Py, and one for the hypothetical superheavy region
around 2®114. The parameters of the average potential
used for those nuclei are compiled in Table VIII.1.

In order to ensure this assumption, we have done
some check calculations with the levels of 20Th; there
the deformation energy should be more sensitive to the
spectrum of states since it is a nucleus in the transition
region from spherical to deformed shapes. But even in
that case, the change in the shell-correction energy by
using 472 scaling of the 0Py level scheme was at all
deformations less than 0.5 MeV, which number we
consider as a kind of error limit—both physically and
numerically.

1. The Deformation Energy for Symmetric Shapes

We first restrict the discussion of the deformation
energy to the case of symmetric shapes, i.e., to the
shapes described by Egs. (VII.4) and (VILS5) with
a=0. In the numerical computations, the increments
of the deformation variables were chosen equal to
Ac=0.06 and Ak=0.075, which ensured that no sig-
nificant extrema of §U were missed. For the reasons
mentioned in Sec. VIL.3, we have confined ourselves
to the region of the LDM valley, i.e., to 1.0<¢<1.9,
and —0.375</4<0.3.

In Figs. VIII-1 and VIII-2, we present the shell
correction energies for neutrons and protons, respec-
tively, for the most important nucleon numbers in the
actinide region. They include the pairing correction 6
(see Sec. V.4). We did not assume here any dependence
of the pairing energy on the nuclear surface, i.e., the
coupling constant G was taken to be constant all over.

In the same way as in the rare earth region, the
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TasLE VIIL.1. The parameters of the single-particle potentials. These parameters were taken from the droplet model (Myers, 1969)
except for the depth of the potential and the spin-orbit coupling constant, which were obtained by a fit to the levels of 2Pb.

10Yh 20Py %8114
Protons  Neutrons Protons Neutrons Protons Neutrons

Central potential

Ry (F) 6.91 6.81 7.79 7.72 8.40 8.32

ay (F) 0.66 0.66 0.66 0.66 0.66 0.66

—Vo (MeV) 61.0 49.0 60.4 46.8 61.1 46.1
Spin-orbit potential

R, (F) 6.21 7.06 7.65

a, (I) 0.55 0.55 0.55

«Vo (MeV) 12.0 12.0 12.0

neutron energy corrections oscillate around zero with an
amplitude of ~3 MeV, which is larger than that of the-
protons (=~1.5 MeV). Thus, -the neutrons play a
dominant role in the total deformation energy, as we
shall see later.

The contour maps in Figs. VIII-1,2 show clearly

F1c. VIII-2. The same as in Fig. VIII-1 for protons in the
actinide region.

a number of shell-correction minima, reflecting shell
closures. In the total deformation energy, these minima
lead in most cases to two locally stable configurations,
namely the ground state and the second minimum.

As the shell structure is most important along the
bottom of the LDM wvalley, i.e., for 20, the first
minimum of the neutron energy corrections at c~1.2
is decisive in determining the ground-state shape. This
minimum is most pronounced around the magic
number N =152, which also has been observed experi-
mentally (Ghiorso et al., 1954).

The second minimum, which is responsible for the
existence of fission isomers in many heavy nuclei,
occurs at c¢1.4. Its magic number, N =146 or 148, is in
agreement with the conclusions drawn from studies of
spontaneous fission isomers and other data (Bjgrnholm
and Strutinsky, 1969).

For some neutron numbers, there is also a third
minimum of the energy shell corrections at a very large
deformation(c1.7-1.9) . However, as the LDM energy
falls off very steeply there, the existence of a third
minimum in the total deformation energy is rather
unlikely. A minimum in U, may, however, influence the
exit, once the nucleus has passed the saddlepoint (see
Strutinsky and Pauli, 1969).

03

00

-03
10 18 20
Fic. VIII-3. Plot of lines of constant mass center distance
pem in the {c, %} plane. The equidistance of the full lines is 0.1.
The definition of pem is given in Eq. VII.17a.
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Fic. VIII-4. Left hand side:
Contour maps of the energy shell
corrections of Z=94 protons
(above), and N =146 neutrons

(below), as in Figs. VIII-1 and
2. Right hand side: Above: Con-

tour map of the LDM energy of
20Py (normalized to 0 MeV for the
spherical shape). Below: Contour
map of the total deformation en-
ergy of 2Pu (i.e., the sum of the
quantities in the three other
maps). Equidistance 2 MeV. For
convenience, the regions below 2
MeV are shadowed here.

An interesting feature of the landscapes shown in
Figs. VIII-1,2 shall only be touched here: A clear
orientation of the “valleys” and “ridges” in the {c, %}-
plane can be noticed both in proton and neutron maps,
irrespective of the nucleon number. It is most pro-
nounced for the neutron numbers around N =130. It
turns out that these orientations almost coincide with
the lines of constant pem, Where pem is the distance of the
mass centers discussed in Sec. VIL.4 (see Fig. VIII-3).

For the discussion of the detailed interplay between
the shell corrections and the LDM energy, we show in
Fig. VIII-4 the energy surfaces of **Pu as a typical
example. Further contour maps of the total energies,
calculated for a series of heavy nuclei, are collected in
Appendix A (Fig. A-1).10

Figure VIII-4 shows the proton and the neutron shell
corrections of 29°Pu separately on the left-hand side. On
the right-hand side, the LDM energy (upper diagram)
and the total deformation energy (lower diagram) of
240Py are shown. The shapes at both the ground state and
the second minimum are determined mainly by the
neutron shell correction, as we have mentioned above
(for the second minimum, ?Pu has a magic neutron
number, see above). The ground state has the typical
deformation coordinates ¢=1.20, #=~—0.15. For the
region of actinides calculated (228<A4<252), the
elongation coordinate of the ground state moves
within the limits 1.12<¢<1.22, and has its maximum
value for the nuclei around #?Th and 2¢U. For the neck
coordinate of the ground state, systematics similar
to that of the rare earths are found (see Sec. V and

10 The superheavy nuclei (with Z>104) are treated in Sec.
VIII.4.

especially Fig. V-3, there). It is negative for the lighter
actinides (k~—0.2 for %28Ra), goes towards zero with
increasing mass number A4, and is positive for nuclei
with 4 2252.

The second minimum (isomer state) occurs for
approximately the same shape for all the actinides:
(c, B)~(1.4, 0.0). Between the two minima, there is a
saddlepoint connected to the so-called first barrier.
As the saddle is very shallow in the % direction (i.e.,

240

Stationary shapes of Pu

O Co

ground state isomer state

)

first saddle

second saddle

Fic. VIII-5. The four symmetrical, stationary shapes (full
lines) of 2°°Pu, found from the total energy surface in Fig. VIII-4:
The ground state (c=1.21, A=—0.15), the isomer state (c=
1.41, =0.0), the first saddle (c=1.24, £=0.18), and the second
saddle (c=1.62, 2= —0.04). The dotted lines show the asymmet-
ric second saddle shape as found from Fig. VIII-7 below (see
also Sec. VIIL.2).



BrACK, DAMGAARD, JENSEN, PAULI, STRUTINSKY, AND WoNG The Shell-Correction Approach to Nuclear Shell Effects

along ¢= const.), its position in the (c, %) plane varies
rather strongly with the mass number of the nucleus.
The outer saddlepoint (“second barrier”), which
separates the second minimum from the exit region,
corresponds also to a more or less constant shape within
the actinide region (¢, 2)~(1.6, —0.05).

In Fig. VIILS we show the four shapes corresponding
to the stationary points in the energy surface of °Pu.
It is significant that these four points in the (c, %)
plane do not lie on a straight line. Thus, the problem of
finding a reasonable trajectory—which for the pure
LDM can be approximated by a one-dimensional path
(h=0)—will in any case (including dynamics or not)
be a multidimensional one.

The height of the higher barrier of 2°Pu, taken from
Fig. VIII4, is about 7 MeV, measured from the
ground state. To it, the LDM contributes only ~1
MeV. The remaining 6 MeV come from the shell cor-
rection. The same holds for the other actinides which
we have considered: The main contribution to the
barrier (6-9 MeV) always comes from the shell cor-
rections. Thus, the comparison with experimental
barrier heights is a rather crucial test of our calculations.
The observed role of the shell structure explains, as a
matter of fact, why the experimental fission barriers do
not follow the LDM prediction for heavy nuclei (see
Sec. I and Fig. I-2, therein).

In Table VIII.2, the heights of the barriers and the
depths of the isomer minima for some actinides, as
found by analyzing different experimental results
(Lynn and Bjgrnholm, private communication), are
listed. Comparing the numbers in Table VIII.2 with
the results presented in Figs. VIII-4 and A-1, it appears
that the computed threshold energies are considerably
higher than the experimental ones. In particular, the
second barrier is, in most cases, too high as compared to
the first one.

This defect can be removed only to some extent by a
better choice of the LDM parameters. For example,
fitting the higher barriers to the experimental thresh-
olds, the inner barrier would be consistently too low as
compared to the values deduced from experiment, and
we would end with the problem of increasing the lower
instead of decreasing the higher barrier. The relative
size of the two barriers is deterimined mainly by the
shell structure, as seen above.

Qualitatively the same results were obtained also by
Nilsson ef al. (1969) and Pashkevich (1969), although
these authors used rather different single-particle
models and parameterizations of the shape.

In order to remove this disagreement with experiment
we have performed a number of computations involving
different definitions of the nuclear surface (though
still symmetric) and different radial dependences of the
single-particle potential—all with negative result. Even
chaining the spin-orbit coupling constant beyond
physically reasonable limits, e.g., so far that the magic
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TaBre VIIL.2. Information on double hump barriers as in-
ferred from experimental results by Lynn and Bjgrnholm (private
communication). Only the results for the nuclei appearing in
Table VIII.3 have been listed.

Ground state Isomer Inner Outer
(in MeV rela-  state saddle saddle
tive to spher- (given in MeV, relative
ical LDM) to the ground state)
22Th 0.44 5.940.2 6.1+0.2
36U —0.15 2.5+0.2 5.940.2 6.0+0.2
#0Py —0.71 2.0+£0.2 6.04+0.2 5.440.2
#Cm —1.26

number for spherical shapes were shifted, did not reduce
the second barrier to a sufficient extent. The introduc-
tion of a surface-dependent pairing coupling constant,
as suggested by Nilsson et al. (1969), does not help
either. It mainly gives a smooth contribution to the
total energy (see Fig. V-12), which can be accounted
easily for by choosing slightly different values of the
surface energy coefficient or of the parameter (Z2/A4 ) et
in the LDM energy.

2. The Deformation Energy for Left-Right
Asymmetric Shapes

The asymmetry in the distribution of the fission
fragments, i.e., the fact that the fissioning nucleus
breaks into pieces of unequal sizes, has early in the
history of fission been related to shell structure (e.g.,
Meitner, 1950, 1952). The lighter fragments are indeed
close to a doubly magic nucleus with N =82, Z=50.
We shall, however, not investigate here the shell
structure in the fragments. We shall rather ask the
question, whether the asymmetry of the fission products
is already being determined or partially caused by shell
structure of the total deformation energy on the way to
fission.

That the LDM energy for continuous shapes is
stable against asymmetric shape variations (Cohen and
Swiatecki, 1962) can also be seen in our calculations on
Fig. VII-5: At each point of the {c, #} landscape, the
energy is increased as soon as a#0. Thus, only the
shell-correction part of the total deformation energy
can give rise to a possible instability against asymmetry.

Recently, Mgller and Nilsson (1970) have shown,
using a suitable combination of P; and P5 deformations,
that the variation of the shell-correction energy pro-
duced by reflection—asymmetry shape variations may
lower the deformation energy significantly, especially
at the second barrier of the actinide nuclei.

At present, we use the {c, %, a} parametrization of
the surface given in (VIL.4), where a is the asymmetry
parameter. We have ensured that the ground-state
region is stable against asymmetry, a result which was
reported earlier also by Vogel (1968). We found
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instabilities against the asymmetric deformations,
however, for the spherical shapes of the deformed
nuclei and especially at the second barrier of all actinide
nuclei (Pauli et al., 1971). While the former case is
merely interesting for the systematics of shell effects,
the latter case is of important physical significance.
Therefore, we have restricted our further calculations
with asymmetry to the most important region in the
{c, &} plane, which contains the two barriers and the
second minimum in the actinide region.

In Fig. VIII-6, we present the results obtained for the
neutron shell corrections which are a decisive part of the

total deformation energy. On the left-hand side of the
figure, four {a, ¢} contour maps of the total energy
correction 8U,+6P, are shown, calculated for the
neutron number N =146. For c)1.3, i.e., at the left
edge of the maps, symmetric shapes are favored in all
cases. These are the regions of the first barrier and the
second minimum. For larger ¢, in the region of the
second barrier, the instability sets in. The occurrence
of pronounced shell closures obviously can be connected
also with left-right asymmetric shapes. In some cases,
up to 5 MeV can be won by minimizing 6U,+ 8P, with
respect to the « degree of freedom. Although this is
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largely balanced by the increase in the LDM energy,
one finds remarkable effects in the total deformation
energy especially around the second barrier (with
cx1.6).

In the right-hand side of Fig. VIII-6, we see some
{c, h} maps of the same results for different values of a.
While the region of lower ¢ and % values is not affected
by «, the shell structure in regions of larger deformations
is clearly changed with increasing asymmetry. The
topmost map on the right-hand side was obtained by
minimizing the shell energy correction with respect to
the asymmetry.

It is now interesting to see how these results affect the
total deformation energy. This is shown in Fig. VIII-7.
Above we see the total energy surface of °Pu in a
{c, #} map for «=0 (which is a part of the correspond-
ing map in Fig. VIII-4). Below, an analogous surface is
shown, but here the total energy has been minimized
locally in each point (c, %) with respect to «. One
clearly recognizes that the second minimum region is
unaffected, whereas the outer barrier is slightly shifted
from (¢, 2)~(1.6, —0.05) to (c, k)= (1.54,0.0), its
energy being lowered by approximately 2 MeV. It is
important to realize that the second barrier is not only
unstable against asymmetry, but also that its position
in the (c, %) plane is shifted towards a deformation

Total energy of Pu2®

0.150

- 0.075
13

F16. VIII-7. Total deformation energy of 2Pu for symmetric
(above, a=0) and asymmetric shapes (below, amin). Equi-
distance: 1 MeV. Only the region of the outer minimum and
saddle is shown. The upper map is a part of the corresponding
map in Fig. VIII-4. The lower map has been obtained by mini-
mizing the total energy with respect to « in each point {c, %}.
The minimum is symmetric, whereas the saddle is lowered by
the asymmetry by approximately 2.2 MeV. Note that the posi-
tion of the saddle point is shifted in the {c, /} plane.
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TaBLE VIIL3. The calculated energies for local extrema of
the deformation energies in the actinide region. The higher of
the barriers is marked by an asterisk (*). The shell corrections
were computed using an average potential of the Woods-Saxon
type (see Sec. VII) with parameters given in Table VIIL.I.
Left-right asymmetry is included. For the liquid-drop energy
a value of (Z2/A)eit=45, and a surface energy coefficient of
17 MeV was assumed. No special fit to experimental threshold
was undertaken [see however Pauli and Ledergerber (1971)7].

Ground state  Isomer Inner Outer
in MeV rela- state saddle saddle
tive to spher- (given in MeV, relative
ical LDM) to the ground state)
28Ra —0.4 2.2 2.4 8.2%
22Th —1.1 2.3 3.9 6.8*
267 —-1.7 2.2 4.4 6.1*
0Py —-2.3 2.5 5.2% 5.1*
24Cm —2.7 2.0 6.0* 4.1
u48Cf -3.5 2.1 7.4% 3.2
%2Fm —-3.8 1.6 7.8* 2.0
%6No —4.2 0.8 7.6% 0.9
20K u —-5.2 0.4 7.0% 0.8

with a thinner neck, when the shape asymmetry is
included. The nuclear elongation is reduced at the exit
point and correspondingly a higher value of the Coulomb
repulsion at the exit, i.e., a higher kinetic energy of the
fragments is expected for the asymmetric mass division.
This result agrees qualitatively with the experimental
observation that the kinetic energy of the fission
fragments is about 20 MeV higher for asymmetric fission.

Similar results are obtained for the other nuclei in the
actinide region, whose maps are collected in Appendix A
(Fig. A-2). Summing up the results, we can state the
following points:

The shapes corresponding to the two minima and the
first barrier are symmetric for all the actinides. The
second barrier is unstable against asymmetry for all
actinides. The energy of the saddlepoint is shifted
towards a thinner neck (%) and a somewhat smaller
elongation (c).

Our results confirm the above-mentioned report of
Mgller and Nilsson (1970). Also, the recent calculations
of Pashkevich (1970) seem to agree, although the
shapes and parameters of the Woods-Saxon potential
which he used were somewhat different. [He considers
a family of shapes, which are based on the lemniscate
shapes and parameters of the Woods—Saxon potential,
which ressemble those of Rost (1968).]

This qualitative agreement of calculations using
different shapes and different single-particle models
indicates once more that the result is not sensitive to
details of the single-particle potential.

For more quantitative results, this problem of
asymmetric fission must be treated in a more general
way. Also, the dynamic features of the distorted nucleus
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Frc. VIII-8. Theoretical mass ratios
x (for definition see the text) of some

nuclei in the actinide region, plotted
against ¢. The full and dotted lines cor-
respond to two paths in the {c, 2} plane
shown in the energy surfaces of these
nuclei in Fig. A-2. Arrows ( | ) mark the
isomer state shapes (symmetrical in all
cases, therefore x=1.0), triangles (A)
mark the second saddle shapes. The
crosses (X) mark the experimentally

measured mass ratios of the fission
fragments (Hyde et al., 1964). Note the
two crosses for ?Ra, which has three
peaks in the fragment mass distribution.

-
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must be taken into account. Nevertheless, it seems
plausible to conclude at this stage that the deformation
energy favors asymmetric shapes at the outer barrier
and in the exit region. It seems to us that these results
may be considered as a basis for an explanation of the
asymmetry in nuclear fission. It is, indeed, a shell-
structure effect, although the shells responsible for it
have hardly much to do with the magicity of spherical
fragments.

It is thus tempting to estimate the mass ratios x of
the fragments which can be expected from these results.
Let us define x as the ratio of the volumes on each side
of the x =0 plane. This definition is of course somewhat
arbitrary but it is simple and should reveal the main
features of the real mass ratio. Therefore x is useful as a
guide. In Fig. VIII-8, we have plotted x against the
elongation variable c¢. The two curves shown for each
nucleus correspond to the two trajectories shown in
Fig. A-2 in Appendix A. Along these paths, the mass
ratio x increases rather rapidly just behond the second
minimum (marked by an arrow | ), where we have
found it above to be unity. In almost all cases it is more
or less constant along the way from the second saddle
(marked by a triangle A) towards scission. With the
assumption that this mass ratio does not change during
scission, it should be a rough estimate for the measured
mass ratio of the fission fragments. The experimental
points in Fig. VIII-8, which are the peak-to-peak ratios
of the measured mass distributions, show that our
estimates of x are reasonable. It seems to us that more
reliable than .the absolute values of the calculated x,
as the assumptions made are hard to prove, are the
systematics: the existence of a symmetric fission mode
of 8Ra and the slow. decrease of the mass ratios with
increasing mass number for 4> 240 is roughly reflected
in these preliminary results (see also Pauli et al., 1971).

1 1
1.2 A 154 166

C

3. The Heights of the Fission Barriers of
the Actinides

In Table VIIL.3 we present the energies of the four
stationary points of the total deformation energy as
obtained from the maps presented in Figs. VIII-7 and
A-2. The calculated fission thresholds—i.e., the higher
of the two barriers, measured from the ground state—
agree in general with the known experimental values
(Table VIIL.2) within our estimated error limit of
about 0.5-1 MeV. This result could certainly be
improved by a final fit of the LDM parameters, which
was not performed here. The relative height of the two
barriers is appreciably improved by the allowance of
asymmetric shapes and now agrees better with the con-
clusions of Lynn and Bjgrnholm (private communica-
tion) drawn from a compilation of various experiments.
We mention especially the equal height of the barriers of
28U, For lighter nuclei the outer barrier, and for heavier
nuclei, the inner barrier is the higher one. These thresh-
olds do not expose any tendency to decrease with
increasing Z2/A, as was predicted by the liquid-drop
model. On the contrary, for the heavier actinides, they
increase up to about 7 MeV for 2°Ku. This does, how-
ever, not necessarily contradict the lifetime systematics,
as we shall see later in Sec. IX.

The thorium isotopes are somewhat pertinacious
nuclei. We get there a too low inner barrier, viz. 3.8
MeV for **Th and even less for #'Th, whereas the
experiments seem to suggest at least 5.5 MeV in order
to explain a rather high intermediate vibrational state
(Lynn, 1966; Vorotnikov et al., 1967). As mentioned
above, this lack could not be removed by improvements
of the single-particle model and seems to be serious.

A way to improve the results would be a new adjust-
ment of the liquid-drop model. Actually, in all our
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calculations the LDM parameters must be fitted anew
after addition of the calculated shell corrections to the
LDM energies. Thereby, it will be a somewhat cumber-
some problem to determine which one of the two barriers
in the deformation energies of the actinide nuclei
corresponds to the experimental fission thresholds.
Such a fit—simultaneously done for both ground-state
masses and fission thresholds—may definitely improve
the results. The lighter fissioning nuclei like thorium
will be more sensitive to this correction, as for those the
shape of the LDM saddlepoint is more critical than for
the heavier nuclei.

With our choice of two symmetric and one left-right
asymmetric shape parameters, we may still have
restricted too much the possible shape variations of the
nuclear surface. Even small amounts of more compli-
cated shape distortions may lead to a gain of some MeV
in the deformation energy. For example, a degree of
freedom which breaks the axial symmetry may be
important at larger deformations. Recently, Pashkevich
(1969) has reported an instability of the first barrier
against v deformations, going along spheroidal deforma-
tions in a Nilsson potential well. It has to be investi-
gated, whether this instability is still present in a more
realistic (e.g., the Woods—Saxon) potential, using the
(asymmetric) saddle-point shapes which we have
investigated.
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F16. VIII-9. Shell-corrections sU48P, as in Fig. VIII-1, for
protons in the superheavy region (Equidistance of the contour-
lines is 1 MeV here). ‘
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F16. VIII-10. Shell-corrections §U--6P, as in Fig. VIII-1, for
neutrons in the superheavy region.

In connection with the ground-state masses (Sec.
VI), we have mentioned the problem of the zero-point
energies of vibrations in the potential wells formed by
the deformation energy surface. Should these energies
differ in the two wells, the neglect of this effect may give
rise to errors of up to 1 MeV, as the lowest vibrational
states are known to lie at energies of this magnitude.

4. The Deformation Energy for Superheavy Nuclei

In the liquid-drop model, the upper limit for the
stability of nuclei against fission is reached when the
fissility parameter x [see Eq. (VII-14)] is equal to 1.
It was pointed out earlier (e.g., Myers and Swiatecki,
1966a) that the increased stability due to shell structure
may lead to islands of nuclei in the Periodic Table
beyond this limit of (Z2/A4)eris. As the shell structure is
especially pronounced in spherical magic nuclei, possible
candidates for such superheavy nuclei should favorably
be compositions of the magic nucleon numbers 82, 126,
184- - -. For the neutrons, this outer magic number 184
is well established (see however, Meldner, 1969), but
there is less agreement on the proton number. The
importance of the Coulomb field for the distribution of
shells increases with the increasing charge of the nucleus.
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Total energy of 298114
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Fi1c. VIII-11. The same as in Fig. VIII-7 for the hypothetical
superheavy nucleus #8114.

As a consequence, the original shell at Z=126 is
widened and centered around Z~114-120. This effect
can be seen in Fig. V-1, 2, where shell corrections are
plotted against the nucleon numbers.

We have thus, for this discussion, carried out some
calculations using the deformed Woods—Saxon potential
of a hypothetical nucleus with Z=114 and N =184.
The parameters of the LDM and the average potential
were obtained by the straightforward extrapolation and
are presented in Table VIII.1. As we, of course, are
interested mainly in deformations closer to sphericity
than for the actinides, we have used the range of
deformations 0.7<¢<1.6, —0.375<£%<0.375, and 0<
a<0.2.

The contour maps of the energy shell corrections for
110<2<126 (protons) and 178<N<192 (neutrons)
are shown in Figs. VIII-9 and VIII-10, respectively.
They show essentially the same pattern as the energy
corrections of the actinides (comp. Figs. VIII-1, 2).

Maps of the total energy for a series of superheavy
nuclei can be found in Figs. A-3 and A-4 in Appendix A.
It turns out that the most favorable magic neutron
number is indeed V=184, even when the LDM is
added, whereas for the protons Z=114 and Z=120
lead to deep shell minima, both at spherical shapes.
Thus, the hypothetical nuclei ?#®114 and 34120 are
spherical magic nuclei of interest. Their fission thresh-
olds are seen to be =213 MeV. Other than spherical
shapes cannot be expected to be stable in this region, as
the LDM energy falls off very rapidly, moving away

from sphericity. Of the two candidates, the former, i.e., .

#8114, is supposed to be more stable against a decay

(see e.g., Nilsson ef al., 1969; Muzycka, 1970). There-
fore we show here the total energy map of this nucleus
in Fig. VIII-11, both for symmetrical shapes (above),
and minimized with respect to the asymmetry param-
eter o (below). The barrier height is not affected much
by the asymmetry and the resulting value of 12.7 MeV
is still high enough to make a relatively long lifetime
possible. A definite answer to this question can, however,
only be given within the framework of a dynamic theory
(see Sec. IX below).

How reliable are the numbers presented here? One
should keep in mind that we have extrapolated both the
single-particle and the liquid-drop model.

As we have discussed in Sec. VI for the ground-state
masses of spherical nuclei, the shell corrections are not
very sensitive to the exact position of individual levels
or even degenerate spherical subshells. Instead, the
shell corrections are sensitive to the spacing between the
mean energies of the upper- and lower-level bunches and
their relative widths. We believe that these quantities
are also quite reliably reproduced in the extrapolated
region of the single-particle model. Thus we tend to
believe that the shell corrections presented are as
reliable as the shell correction to the ground-state mass
of 28PDb discussed in Sec. VI.

IX. ON THE DYNAMICS

In this section, some problems concerning fission
dynamics are discussed. A possibility of circumventing
some still poorly understood dynamic features of the
nuclear shape distortion by considering a least-action
trajectory in the space of deformation coordinates is
described. The approximation implied by using the
least-action trajectory is expected to give at least an
order-of-magnitude estimate of the spontaneous fission
problem. But, in order to apply this approximation,
we must know the mass tensor connected with the
trajectory. The evaluation of this tensor in the cranking
model and the results obtained for lifetime estimates are
discussed subsequently. Finally, we present some cal-
culations of the moments of inertia for fissioning nuclei.

1. Inertial and Friction Forces and the Dynamics
of Fission

In a more complete theory of the fission process, the
deformation energy surface described in the preceding
section constitutes only a part of the required data.
Considered as a function of the deformation parameters,
the deformation energy gives the generalized forces
acting on the nuclear shape. For a description of the
process of fission, one should also know how the nucleus
reacts to these forces. This is another piece of the
information required, which is contained in the so-called
tensor of inertial coefficients of the system, B;;. In the
case of dissipation, the tensor of the friction forces 7vi;
is also of importance. Here, the indices denote different
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degrees of freedom as they appear in the definition of the
nuclear shape, e.g., in terms of the shape function
II(B, #,v). In each of the two tensors, one has for »
deformation coordinates, 37 (#+1) independent quanti-
ties. They are all complicated functions of the deforma-
tion coordinates (Damgaard et al., 1969b).

Of course, one must also know the equation of motion
characteristic of the fission process in terms of the shape
coordinates. Unfortunately, not much is known about
such an equation and, at present, one can even hardly
decide what kind of dynamics it should describe. The
latter may also depend on the excitation energy of the
compound nucleus since, at larger excitation energies,
the interaction between the collective and intrinsic
degrees of freedom seems to play an increasingly
important role.

Some confirmation of such a dependence may be
found in the fact that—as in Bohr and Wheeler’s paper
of 1939—one has always assumed statistical equilib-
rium in order to determine the fission rate in terms of the
statistical phase-space density of the nucleus at the
fission barrier

I‘f‘x (Nf/ZW)D. (IX.].)

Here, N; is the number of excited states available at the
barrier, and D is the level spacing of the initial com-
pound nucleus. In a number of critical reviews on
empirical data (e.g., Vandenbosch and Huizenga, 1958),
it has been demonstrated that this simple equation
agrees well with the data concerning both the energy
dependence of I'y and its variation with Z and 4.

In 1940, Kramers showed, however, that the Bohr-
Wheeler equation (IX.1) requires a finite viscosity for
the collective motion. Equation (IX.1) is valid only if
the viscosity coefficient » is of the order of the charac-
teristic frequency of the collective mode, wen. The
magnitude of T'; is then nearly independent of the
specific value of the viscosity. For a very small ratio
v/weon, Ty is proportional to the viscosity coefficient »,
because it is only due to the interaction with the
intrinsic motion that the thermal energy in the excited
nucleus concentrates back in a collective mode. Con-
trary to this, for large viscosity, I'; is inversely propor-
tional to » as the collective motion dissipates too fast.

The available data on T'; are not yet accurate enough
to deduce the viscosity connected with the collective
motion in the fission mode. It appears only in a slowly
varying pre-exponential factor in T, (see Kramers,
1940). However, the very success of the Bohr—Wheeler
equation suggests that, in the excited nucleus, the
viscosity of the shape variations must be at least a few
hundred keV or more, which is comparable to the esti-
mated fission mode frequency of the order of 0.5 MeV.

In contrast, the model of purely mechanical, i.e.,
nondissipative, motion seems to work well for the
lowest excitation, particularly when used to estimate
the rate of spontaneous fission. Here again one hardly

383

has any direct evidence that this assumption is relevant,
except for the fact that simple estimates of the spontane-
ous fission lifetimes in this model are in at least qualita-
tive agreement with the empirical values.

The problem of formulating the equation of motion
for the fission process is intimately related to one of the
most exciting problems of modern nuclear physics, i.e.,
the dynamic properties of nonequilibrium states in a
large piece of nuclear matter. In many respects, it is a
new problem, as the main efforts were concentrated so
far on a discussion of small perturbations of the ground
states.

The dissipation problem is a hard nut in the micro-
scopic theories of nearly all classical media; there is no
reason why it should be simple in a relatively small and
strongly bound quantal system such as the nucleus.
Therefore, one should not be discouraged by the fact
that, in the fission theory, the discussion of this im-
portant problem has been limited so far to ambiguous
estimates which only explore the field; see, e.g., Wilets
(1959).

The situation is, however, not as hopeless as one
might conclude from the foregoing. Although one can
hardly be very enthusiastic about having a ready-to-use
detailed theory of fission in a very near future, in many
instances one will probably not need it for a description
of at least some of the features of practical importance.
As an example, one may refer to the data described in
Sec. VII, where it has been shown how some qualitative
pecularities of the LDM energy surface help to draw a
reasonably qualitative picture of the process, in which
the intrinsic structure of the nucleus as well as dynamic
and quantal features of the deformation play probably
only a secondary role—though undoubtedly important
for finer details.

2. The Least-Action Trajectory

In an analogous manner, the theory of spontaneous
fission is considerably simplified due to the fact that the
probability of the process is determined by the ex-
ponentially small penetration factor

71=4 exp (—2S/F), (IX.2)

where

S>1. (IX.3)

The quantity S is the classical action integral taken
along the trajectory of least action of a given energy &,
connecting the positive energy regions in the ground-
state well and the exit. Correspondingly, the trajectory
connects the second well and the exit for the spontane-
ous fission isomers. In any case, it is a relatively simple
classical concept which is not too sensitive to details of
the equation of motion and in particular to quantal
features, which would affect only the pre-exponential
factor 4 in Eq. (IX.2), equal, by the order of magni-
tude, to the characteristic frequency of the collective
mode.
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The variation of the latter is, in fact, much less
important than the action integral itself which is of the
order of a few ten or a hundred units of 7.

Therefore, with logarithmic accuracy, the spontane-
ous fission probability may be found by means of a
simple theory dealing only with the classical action
integral

S= /”2(2 |e—w | TY2de (IX.4)
T= 3 By(dBi/do) (dBy/do).  (IX.5)

Here, the deformation parameters 8; are considered as
functions of some arbitrary parameter o. The integral is
taken along some trajectory, determined in the para-
metrical form, between the two end points o1 and oy
corresponding to the entrance into the sub-barrier
region and the exit on the other side of the potential
barrier. The energy & of the collective motion is assumed
to be conserved. Though the region of interest (W>§)
is classically forbidden, the trajectory is a classical one.

The potential energy W (B, ««+) is just the deforma-
tion energy described in the previous sections (see
especially Sec. VIII). The deformation parameters
{8} =1{B1, *++,Bx} appear here as generalized co-
ordinates. The inertial parameters Bj;; are also functions
of these variables. And, as discussed below, it appears
that the inertial parameters are nearly as much in-
fluenced by the intrinsic shell structure as is the
deformation energy itself. These variations may also be
important in determining the actual trajectory. The
energy consideration alone is in no case sufficient: The
system may even go in a direction where the potential
barrier is higher or increases faster, if the effective
inertial parameter is smaller or strongly decreases in
that direction. »

In order to estimate the penetrability of the multi-
dimensional potential barrier, one should find, first,
such a trajectory that corresponds to the lowest value of
the action integral (IX.4) among all possible trajec-
tories which connect the two end points o; and o3 as
well as the trajectories obtained by variation of these
points. For the energy-conserving system such as we
assume here, this corresponds to one of the well-known
formulations of the least-action principles (see, e.g.,
Landau and Lifschitz, 1960).

There is a formal analogy between this problem and
the problem of finding a geodesic in an z-dimensional
space, where the arc length element is given by the
equation

(o)=Y a.idB:dB;

@,7=1

(IX.6)

with

The path of lowest action is one of the geodesics which

are determined by the following system of » Euler
equations:

B, (B, B:)— (d/do ) B3, (8:, :)=0. (IX.8a)
Here we have

®(Bi, B:) = ) a:iB:B; (IX.8b)

and

Bi=dﬁ,~/da.

In Eq. (IX.8a) the subscripts 8; and 8; mean dif-
ferentiation with respect to these variables. To Eq.
(IX.8) we can add the subsidiary condition

P=1. (IX.9)

This subsidiary condition specifies the variable o in
such a way that it becomes equal to the arc length of the
curve

Bi=Bi(o)

in n-dimensional space (Smirnov, 1964).
By means of the Christoffel symbols, Eqs. (1X.8) are
resolved with respect to the second derivatives:

i=1,2,---,n  (IX.10)

pq

mz[ Jmﬁo 1<i, p, g<n, (IX.11)

lm’ n “[M:I
= > a¥ .
i 7=1 j

The Christoffel symbol of the first kind is denoted by

749 _ 9ay " 9aqi 38,
1 aﬂq aﬂp a.Bi
and the quantity a* is the inverse and transpose matrix
of the matrix a4 defined by Eq. (IX.7).
The boundary conditions are also determined by the
requirement that the action integral is stationary

against variation of the endpoints o7 and o3, which rest
on the equipotential surface

W(B1, +++, Ba)=8. (IX.13)

Thus, the variation of the action integral equals

1
where

(IX.12)

(F— i BiFs,)éo+ i F308,=0 (IX.14)
=1 =1

where F is the integrand of the action integral (I1X.4),
F=a'", (IX.15)

The variations éc and §8; must also satisfy equation
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(IX.13)

n W
6W = 0 = —_— 5 i
i=21 9B: B
and these equations lead to #» boundary conditions in the
endpoints,

(IX.16)

F— ZBiFﬁi=0

=1

(IX.17)

and #—1 equations relating the partial derivatives of
the function F and the generalized forces

F.=0W/3B:. (IX.18)

These equatiohs are
Féi/gl':"':Fﬁn/an' (IX19)

Now, taking into account the specific form of the
integrand F, Eq. (IX.19) can also be written as

T4,/F1=Tg/Fo=++-=T4/Fn  (IX.20)
where T'(8, 8) is the kinetic energy part of F:

T=% 2. BiBif;. (IX.21)
2,7

The condition (IX.17) is identical to Eq. (IX.13).

Here, we have assumed that the inertial parameters are

functions of the coordinates 3; only, and T is a homo-

geneous function of the second order of the derivatives

B

The system of the differential equations (IX.8)
together with the boundary conditions (I1X.13) and
(IX.20) determine several trajectories which give
extrema of the action integral (IX.4) evaluated along
such trajectories. Among them, the one which gives the
lowest value of the integral (IX.4) must be chosen.

Apparently, the problem of solving these equations is
not an easy one even in such a limited formulation of the
problem. One must know not only the deformation
energy and the inertial parameters as functions of the
deformation coordinates, but also their partial deriva-
tives. In addition, Eq. (IX.4) has a singularity in the
classical turning points, and special measures must be
taken to overcome this difficulty.

Nevertheless, one can consider these equations as a
kind of first approximation to a complete dynamic
theory of the fission process. They are rather compli-
cated, but one should note that for their derivation,
no knowledge of the Schrédinger equation for collec-
tive shape variation is required; to develop the latter
for a system whose inertial parameters depend signifi-
cantly on the coordinates is in itself a problem.

The choice of the arc length o as the independent
variable is in no case necessary. Its only advantage is
that with it the Euler equations for geodesics take a
more symmetric form. Instead, any other function of
the coordinates 8; may be used or one of them may be
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taken as an independent variable, the others being
considered as functions of it.

Taking one of the deformation coordinates, say the
elongation parameter, as an independent variable, one
obtains the following system of »—1 differential Euler
equations:

T(KTy+TK,,)—T[K(d/dx)Ti+5T i (dK/dx)]
+1KT;, (dT/dx)=0, (IX.22)

where we denote the independent variable by x, and
y;(x) are the other coordinates which, as functions of x,
determine the trajectory. As before, the subscripts y;
and g; denote the partial derivatives with respect to y;
and to dy;/dx which appear as arguments in the
“kinetic energy” function T and in the actual kinetic
energy K

K= |8—W(By, +++,B.)| (IX.23)

It might be instructive to consider the case of only two
deformation coordinates. When we drop the index ¢,
we find a single differential equation for this case.
Denoting as @, b, and ¢ the three independent com-
ponents of the inertial tensor B;; in

T=a+2b(dy/dx)+c(dy/dx)?, (1X.24)
we find the following equation for y=y(x):
K[2§(b*—ac)+a-(b+cy)+ay(a+3by+2cy?)

—2b,(a+by)+2b,y* (b+cy)

— ¢z (20+3by+cy*) — e (a+by) ]
+TT(a+b) Ky~ (b+ey)K.]=0. (IX.25)

The transversality condition Eq. (IX.20) at the end
points just means that the term included in the squared
brackets in the second term should become zero there.
The Eq. (IX.25) also has another singularity at these
points: the coefficient of the second derivative equal to

2K (B*—ac) (IX.26)

is zero there, alongside the actual kinetic energy K.

Therefore, the transversality condition insures that a
physically reasonable solution exists, which has a finite
second derivative at the endpoints. Close to them, the
solution may be found in the usual way by equating the
coefficients in the Taylor expansions.

With the inertial parameters ¢, b, ¢ depending
significantly upon the coordinates, it is not an easy
task to find the solution of Eq. (IX.25); neither can one
describe even qualitative features of the best trajectory.

Practical evaluation of the potential energy of the
deformation and the related forces as well as of the
inertial parameters and their derivatives is still labor
consuming and one can only postpone a rigorous
solution to the near future, when more knowledge is
acquired concerning the behavior of these important
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physical quantities, as well as more general dynamic
features of the deformations.

A simple solution can be obtained only for the case of
a constant inertial parameter in the region near the
extremum of the potential, where the potential can
be represented as a homogeneous polynomial of the
power p

»
W = E aixiyp—i;

=0

(IX.27)

where «; are the expansion coefficients of the potential
energy W normalized to zero at the extremum point
x=79=0. For this special case, straight line trajectories
crossing the extremal point are a solution. Assuming

(IX.28)

where A is a constant, we find from Eq. (IX.25) the
following equation for A:

(a+bAYK,(1, A)— (b+cA)K.(1,A)=0 (IX.29)

y=Ax,

which is satisfied with one or more constant values of
the slope A.

For p=2, A is found from the following quadratic
equation:

A2(2bag— co ) +2A (aocn— car)+ (aou— 2bay) =0
(IX.30)

in which aq, o1, and o are the coefficients in Eq. (IX.27).
The solutions of this equation determine the slopes of
the two trajectories of extremal action corresponding to
the smallest and the largest values of the action integral
(IX.4). They are also trajectories of the two normal
modes of motion. These trajectories, in general,
coincide neither with the direction of the steepest
variation of the potential energy nor with that of the
kinetic energy, which would be the case only for rota-
tional invariance of the quadratic form of the potential
energy W, or of the kinetic energy K in Eq. (IX.23).

Another interesting case is the approximation of
steepest descent. It is obtained from Eq. (IX.25) on the
assumption that the kinetic energy of the system is small
compared to the potential energy. Neglecting all terms
proportional to K in Eq. (IX.25) we obtain the following
equation:

[a+b(dy/dx)]F,—[b+c(dy/dx) ]F.=0. (IX.31)

In this equation, §, and F, are the two partial forces

defined as in Eq. (IX.18)
F,=0W/0x=0K/0x
F,=0W/dy=0K/dy. (IX.32)

This equation determines locally the slope of the steep-
est descent trajectory

dy/dx= (aFy—bF,)/ (cF,—bF,). (1X.33)

For two orthogonal coordinates (5=0), the slope is
proportional to the ratio of the forces divided by the
corresponding partial masses. Thus, Eq. (IX.33) may
be considered as a form of the steepest descent condi-
tion, generalized for the case of nonorthogonal co-
ordinates and nonequal masses.

An even more general form is given by the trans-
versality condition (IX.20) which can also be expressed
in the following way:

i B1,Bi/F1= i BoiBi/Fo= 1+ = Zn: B,Bi/F.. (IX.34)
=1 =1 =1

Considered locally in each point of #-dimensional space,
these equations determine the direction of smallest (or
largest) local variation of the action integral.

It should be noted, however, that the arguments on
which Eq. (IX.34) are based are in conflict with the
original assumption of energy conservation in the
system. In any system of this kind, the kinetic energy is,
on the average, of the same order of magnitude as the
potential energy. Consequently, the case of slow motion
is realized only in systems with strong dissipative
forces, and in this case the partial friction forces are at
least as important as the effective inertial parameters.

3. The Effective Mass Parameters

The nucleons rearrange themselves in each state of
the average potential in such a way that the total energy
of the system has its lowest possible value. With a
potential, i.e., with deformation parameters {8}
depending on the time, this so-called adiabatic assump-
tion is of course only justified if the motion of the
nucleons and the transitions from one level to another
are so fast that the nucleon density distribution follows
the average field at each moment. The nuclear com-
position is thus supposed not to depend on the history
of the process.

This assumption justifies the expansion of the total
energy in the time derivatives of the deformation
parameters

&=8[B(t+8t) JNE[B(1) 14+ T[B(2), B(2)]. (IX.35)

The second term T is interpreted as the kinetic energy
of the collective motion and is to lowest order in B
given by o
T=3% X Bii(B)B:B;- (IX.36)
2,7

The first term &[B(%)] may be identified with the
deformation energy W(B)—described in Secs. V and
VIII—and plays the role of a potential in the Hamil-
tonian of the collective motion.

The effective mass parameters B;(B) are given
by the cranking model formula (Inglis, 1954)

> (0]9/3Bi| m)(m|8/38;]0)

i7(8) =27 :
By(8)=27 3 e

(IX.37)



BRACK, DAMGAARD, JENSEN, PAULI, STRUTINSKY, AND WoNG The Shell-Correction Approach to Nuclear Shell Effects

where | 0) and | 7) denote the ground and an excited
state of the system, respectively. No specific assump-
tions are made on these wave functions—provided one
knows their dependence on the deformation parameters
{8}

Frequently, constraints on the motion of the in-
dividual particles are introduced at each deformation,
in order to ensure that certain collective operators such
as, e.g., the quadrupole moment have a particular value.
This is usually achieved by means of the Lagrange
multiplier method. The multipliers, introduced in this
way, are then treated as dynamic variables. However,
one hardly needs to do so in our case, where the collective
variables are determined by the shape of the effective
nuclear surface. By the very definition of the deformed
shell-model potential (Sec. VII), one imposes con-
straints on the motion of the individual particles, by
putting them into a potential well of a given shape.
There is little doubt that, in this way, one has a con-
sistent definition of the nuclear shape coordinates, by
simply using the shape parameters of the potential as
collective variables. |

F1e. IX-1. Above: Mass parameter B.. plotted versus the de-
formation parameter ¢ (£=0, a=0). Below: Shell energy cor-
rection 8U+3P plotted versus ¢ (=0, a=0). Both curves are
calculated for V=146 neutrons using a constant uniform pairing
gap A=12 4712 MeV. For smaller deformations (¢<1.4) the
fluctuations in the two quantities parallel each other, which
reflects the role of the effective level density in the mass parameter
[see Eq. (IX.48)].
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F16. IX-2. Contour maps of the three mass parameters B,
Bey, and By for symmetric {c, %} shapes. The neutron part (left
side) and the proton part (right side) of #°Pu separately. Numbers
are in units of 100 #%/MeV ; equidistance of full lines: 200 4*/MeV.
The uniform pairing gap has been taken constant (A=12 4-12
MeV). The plots demonstrate the shell structure for the two-
dimensional case also. Observe the increase of the mass parameter
at larger ¢ values. Several local divergencies, which are connected
to the short-comings of the formula (IX.37), as discussed in
the text, can be observed.

Applying the cranking model formula (1X.37), one
usually assumes (Bés, 1961; Kumar and Baranger,
1968), that the excited states | m) in Eq. (IX.37) are
superpositions of two quasiparticle excitations | )
with the energy E,+E,, where E,=[(8§,—\)>+A%]/2
and X and A are the Fermi energy and energy gap of the
system. Together with the relation (e.g. Wilets, 1964)

(En—Eo)(m | 0/08 | 0)= (m|[3¢, /98] 0)
=—(m|93¢/38 | 0),

this leads to the following simple expression for the
matrix elements of the operators 9/98;

(wv | 8/8B: | 0Y= — (uuv,+u,,)/ (E,+E,)
X (u | 03¢/38: | v); (u#v) (IX.39)

in terms of single-particle wave functions | u) and | »).
#,, v, are the usual factors appearing in pairing theory
(see Belyaev, 1959). The effects, due to variations in
the occupation numbers as a function of deformation
come from the ‘‘diagonal” matrix element, where the
one quasi-particle is in the time-reversed state of the

(IX.38)
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other, and the matrix element is:
(9 19/9B:| 0)=(1/2E,)[—A(v | 33¢/3B: | »)
+A(ON/8B:)+ (8,—N) (94/88:) ]

IN/9B:i= (ac;+bd;)/ (a?+8%);
9A/8B:i= (bc;i—ad,)/ (a*+b?);

a=A3 (1/E});
b= Ev(gr—)\)/Eﬁ;
=APZ,) (v | 03¢/0B: | v)/E*;
di= 3 (8, (v | 95¢/96: | )/ E.

where

(1X.40)
with

Thus, the effective mass parameters are given by

e [ (w1 93€/08: | v) (v | 83¢/3B; | 1)
By=28 [Z (Ex+E,)?

X (u;.v,,—i-v,‘u,)Z] +P;, (IX.A4la)

where the term

h? 1 o\ oA JdA 0A
Pﬁ=z>,3z:s[“azé'ﬁ:+< M) 36. 35;
+A(8 _)\) (6)\ d0A (2);%)
661 aB] aﬁj aﬁi
oA
(am< '_' AFrad ﬁ,M)
oA JA e
—ate0 (550155 10+ 22 615510))|

(IX.41b)

gives the contribution, due to the change of the occupa-
tion number, when the deformation varies.

3a. The One-Dimensional Case

The derivatives of the Hamiltonian with respect to
the deformation variables in Eq. (IX.39) can be re-
placed by their leading terms, i.e., by the derivatives of
the central potential,

830/0B:~9V /0B, (IX.42)

the derivatives of the spin-orbit and the Coulomb
potential being comparatively less important (Bés,
1961).

For our calculations, the derivative of the potential
can for the general case be conveniently expressed in
terms of the “quasiradius”, /, introduced in Sec. VII,

see, e.g., Eq. (VIL.25):
oV _av al _ Vo  exp (=1/a) ol
B ol 9 a [1+exp (—l/a)Pog:’
The partial derivatives 9//dB; of this quantity are
expressed in terms of partial derivatives of the shape
function II in the following way

(IX.43)

9 m oC W —a—vm
aB; | vII|ap: | VII |2 98;
ol
+C | viI | (IX.44)

aB:

The derivatives (IX.44) become somewhat complicated
by the definition of the shape functionII [Eq. (VII.26)7].
Let us first express the derivative of II with respect

to Bi:
QE _ 1 [a’ll’(ﬁ, U, 'I)) _ 87rmin]
B: 2[w (B, #, v)— Tmin ]2 aB; B
a"rmin/aﬁi
—_—, A45)
+ pT— T (IX.4

where = is the initial shape function, Egs. (VII.4) and
(VIL.S).
The derivatives of the gradient are

3 L | WII |
N 2[w(B, #, v)— Tmin |

(B, u,v) awmin]
X[ s

98;
2 { [T(ﬂr u, 'U) - Wmin]("u2+7rv2) }112

1

+

o, Jr,

X |:7ru %8 +, aﬂiJ . (IX.46)
Thus, the required derivatives of II are expressed in
terms of 7 and its derivatives with respect to % and v,
i.e. m, and m,. Care should be taken concerning the
partial derivatives with respect to 8;, as the appropriate
values of # and v also depend on the deformation
parameter via the volume conservation constant C.
Recalling the definition of # and v, i.e., Cu=3 and
Cv=p [see Eq. (VII.2)], and keeping in mind that, for
asymmetric degrees of freedom, the deformation-
dependent mass point has to be kept at rest, one
obtains for these derivatives

n u aC
% =mp,—C- (vvrrl-mru) 98 +7r" (6[31 + E&ﬁl)
(IX.47)

In this equation u denotes the u coordinate of the
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center of mass of the shape considered. Analogous rela-
tions hold for the derivatives dr,/d8; and dm,/33;.

Though the above formalism is somewhat cumber-
some, it does not introduce any serious complications
for numerical calculations, as one needs in addition to
the first derivatives—as used in the single-particle
Hamiltonian (Damgaard et al., 1969a)—only the
second partial derivatives of the shape function m, i.e.,
Tuus Mooy Ty, Tu;, and m,g,, which are found without
difficulty for any reasonable definition of the nuclear
shape function .

The results, presented below, have been computed
using the Woods—Saxon potential as defined in Sec.
VII, with the shape variables 8 taken as they appear in
the definition of the shape of the nuclear surface m,
i.e., the coordinates c, %, and «. As an example of the
results obtained by applying the formulae derived
above, we present Fig. IX-1. From this figure, it is seen
that the mass parameter in the one-dimensional case
shows a wiggly behavior with deformation very similar
to the one found in shell-correction quantities.

3b. The Two-Dimensional Case

In the following, we restrict the discussion to the

mass parameters connected to our two symmetric shape
degrees of freedom, i.e., ¢ and %. The three mass param-
eters Bee, Bu, and B., are computed by means of Egs.
(IX.41) and presented in Fig. IX-2 for the specific case
of 0Pu. The results expose the wiggly behavior—
-observed already in the one-dimensional case—which
parallels the one in the energy (compare Fig. VIII-1, 2).
This may be explained by means of the following
considerations.

A simple approximate expression for the mass
parameters can be derived if the BCS approximation is
valid, i.e., for A>G. In this case, the correction term P;;
is relatively less important and can be neglected.
Restricting ourselves to the diagonal matrix elements
and replacing the summation by an integration, we have

BegoTsh? [(93C/0B)w [2(g®/A%).  (IX.48)
The matrix element (v | 33¢/38 | ») was replaced here by
some average value (33¢/88)w, which is expected to
change only slowly with deformation. This equation
exposes significant features of the mass parameter,
especially the counter fighting effect of the effective
local level density at the Fermi energy, g**(\), and the
energy gap A.

This is illustrated in Figs. IX-3 and IX-1. The de-
pendence of the mass parameter, calculated according
to Eqgs. (IX.40)-(IX.47), on the pairing strength, i.e.,
on A, is shown in Fig. IX-3. This dependence cor-
responds almost to 1/A? as predicted by Eq. (IX.48).
The size of the gap depends on the shell structure. It
may thus be surprising that the mass parameter as a
function of deformation, shown in Fig. IX-1, does not
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Fr1c. IX-3. Mass parameter B, plotted versus the pairing
gap A. The figure is drawn on the basis of calculations done for
N =146 neutrons at a deformation {c, %, a}=1{1.36, 0, 0}. The
mass parameter follows almost exactly the 1/A? dependence
predicted by Eq. (IX.48).

vary with respect to the pairing gap as predicted by
Eq. (IX.48): local minima of the energy gap coincide
with minima of the mass parameter and not with its
local maxima, as one would expect from Eq. (IX.48).
The explanation is found in the effective local level
density, g®*()\) in Eq. (IX.48). Because of the strong
energy cutoff in formula (IX.41a), in the form of
E~3, the effective level density varies similarly to
the shell level density which, for selected cases, was
shown in Fig. II-3. Thus, the result shows that the shell
structure in the local level density represented by the
factor g°?in Eq. (IX.48) is more important than the one
of the energy gap. Taken alone, the variation of g*?()\)
amounts to a factor of four between the extrema.

These results lead us to the important conclusion that
the effective mass parameters are relatively large just
near the shell energy maxima, compared to their smooth
average. They decrease when one moves away from the
maxima, and find their local minima near the local
minima of the deformation energy.

The increase in the nuclear inertia near the barrier—
see also Fig. IX-4—is a significant effect, which should
not be neglected in estimates of the penetrability of the
fission barrier and of spontaneous fission lifetimes. It is
possible, though, that the data presented in Fig. IX-4
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F16. IX-4. Contour maps of the total mass parameters B,
B.;, and By, of #0Pu. The uniform pairing gap X is taken constant
on the left side and surface dependent (see Sec. V) on the right.
Units and equidistance as in Fig. IX-2. (Thick line for 1000
h?/MeV). For large deformations the mass parameters become
smaller by a factor 2-3, when A is surface dependent.

exaggerate the effect: the increased inertia near the
barrier, which in fact is a saddlepoint in the many-
dimensional space of the shape coordinates, may
produce a shift of the trajectory from the saddlepoint
to a sidewalk. Although the potential barrier is higher
there, a smaller value for the action integral may result,
due to smaller inertia.

This result demonstrates once more the importance
of the level bunches close to the Fermi energy, as the
main contribution to the nuclear inertia comes from a
relatively narrow energy region of the order of twice the
pairing gap around the Fermi energy. Special investiga-
tions of numerical calculations have shown that more
than 90%, of the mass parameter comes from this
region, independent of deformation. However, the
situation may be very different in regions of shell
closures, where A becomes small. Indeed, one observes
that at certain deformations, the mass parameters
suddenly become tremendously large or even diverge.
This effect has its origin in the existence of shell regions
with a low pairing gap, where one or two levels come
close to the Fermi energy. Then, their quasiparticle
energies become very small, which may lead to a diver-

gence of B;;, due to a sudden change of the wave function
of the occupied level at the level crossing. For these
situations, residual interactions, other than pairing,
become important: They remove the degeneracy near
the Fermi energy, and distribute the drastic change of
the wavefunction over an extended region of deforma-
tion, thus smoothing the rapid variation. Fortunately,
the accidental singularities do not constitute a real
difficulty in the type of calculations referred later in this
section, because in a multidimensional approach as ours
there is always a possible path around them.

The above should be compared to the case A=0, when
no crossing takes place. Then, a weak variation of the
single-particle wavefunctions leads .to very small
effective mass parameters. This is also reflected in the
presence of relatively large energy denominators in
Eq. (IX.37) of the order of %wy10 MeV. As the
energy denominator in the case of pairing is of the order
of 24, instead of 2Aw,, the residual interactions lead in
general to increased values of the mass parameters
compared to the pure independent particle value. The
treatment of residual interactions other than pairing is
beyond the scope of the present paper.

The effect of assuming a surface-dependent pairing
for the case of 2#Pu is shown in Fig. IX-4.

In Fig. IX-2, one sees that the fluctuation around the
mean value is less pronounced in the % direction (neck
formation). This can be explained by the behavior of the
average matrix element (dV/dk), in Eq. (IX.41).
Would it be possible to find another parametrization
{c, '} in such a way that the average value of the mass
parameter remained constant by varying %', the plots
would probably expose more similarity with the energy
variation in this direction. As in the case of the deforma-

30 T T T
 Bgy/Bem

Fi1e. IX-5. The mass parameter B,, in units of the reduced
mass, plotted versus the elongation ¢ for (#=0) for 0Pu. It is
seen that we asymptotically approach B,,~B:m (dotted line).
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tion energy, the neutrons contribute more than the
protons to the mass parameters of Py, shown in
Fig. IX-2 on the left-hand side.

A convenient unit of reference for the effective masses
is' the reduced mass for two equal fragments at large
distances: Brm=0.0240r2A45%%2/MeV. For the case of
0Py this quantity equals R+330%2/MeV. It is expected
that the mass parameter approaches this value when
the shape of the nucleus approaches the shape of two
tangent spheres.

However, the calculated mass parameter B.. does not
seem to decrease and to approach this limiting value.
It rather seems to maintain a constant value on the
average. The discrepancy can be easily resolved by
remembering that, for the reduced mass, the mass
center distance pem as defined in Eq. (VIL.17a) is
important, while in the data presented we have used the
longer axis as the deformation coordinate. Transforming
the B. to the B,, by the equation

B,p=DBe:(d¢/dp)? (IX.49a)
valid for the one-dimensional case and using Eq.
(VII.17a), we obtain by putting, e.g., k=0,

dc/dp=1/(3+4ct—¢?) (IX.49b)
for continuous shapes. Thus we see that the mass
parameter B,, does decrease to a value about equal to
the reduced mass for larger values of c. We plot in
Fig. IX-5 a graph of the ratio B,,/Bm as a function of
the parameter ¢ for #=0. Indeed, as expected, our mass
parameter approaches the value of the reduced mass as
the elongation increases. The fact that there is a large
decrease in the ratio as ¢ changes from 1.0 to 1.78 is due
mostly to the factor (d¢/dp)? in Eq. (IX.49a). One can
also see that our choice of the parametrization is
fortunate because B, is not a rapidly decreasing (or
increasing) function of ¢, and thus the fluctuations due
to shells can be more easily identified.

The calculated mass parameters show that in general
our two symmetric degrees of freedom ¢ and % cannot be
considered separately. This is indicated by the size of
the nondiagonal inertial coefficient Bo being, on the
average, of the same order of magnitude as the product
of the diagonal mass parameters B or B i.€.,

B2/ Bee Bino1.

In an ideal parametrization, this ratio should be small,
but this would imply the knowledge of a fission mode
which has not been found yet. In this connection, it is
interesting to note that, by choosing the mass center
distance pem Eq. (VII.17a) as a dynamic stretching
coordinate, the interference mass parameter B, takes
substantially lower values than the two diagonal ones.
Thus, also from this point of view, the mass center
distance pem offers itself as a kind of natural dynamic
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Fi1c. IX-6. Energy surface of 2°Pu. Some of the trajectories
along which the action integral has been computed are shown.
Each trajectory is identified by a letter. The calculated lifetime
estimates were found to be: (A) 24.6, (B) 23.8, (C) 26.7, (D)
26.0, and (E) 30.2 [all in units of logioryz (years)]. It should
be noted that the trajectory (E) touches all extremal points
of the deformation energy, but has the lowest penetrability of
all trajectories presented. The straight line (A) connecting the
ground state and the exit region has a penetrability quite close
to the trajectory of the least action (B), we have found. For
all the trajectories considered the energy & was assumed to be
—2 MeV, ie., 0.3 MeV above the point of lowest deformation
energy.

variable (see also Sec. VIII) and would be a better
choice.

4. The Trajectory for Symmetric Distortions.
Lifetime Estimates

The knowledge of the total deformation energy and of
the mass parameters permits a crude estimate of spon-
taneous fission lifetimes. For reasons of technical
simplicity, we restrict ourselves to the two symmetric
degrees of freedom.

The penetrability is given by Egs. (IX.2) and (IX.4).
The pre-exponential factor is not very well defined.
Although it may depend on the energy, the isotope
number, etc., we identify it with the “number of
assaults”

A =2mw;~510%8 [years !

obtained with 7w;=0.5 MeV, where wy is the angular
frequency of the fission mode. As we shall see later, the
uncertainy of this factor is less important at the
moment.

Instead of solving the equations of Sec. IX.2, we
determine the trajectory approximately by searching
for a path ¢ with the highest possible penetration,
corresponding to the shortest lifetime. The mass
parameters were taken along the trajectory o so that the
“kinetic energy” in Eq. (IX.5) equals

. dc\2 dc ok (ak)2]
= ce\ T ch T T B b . IX.SO
d [B <8¢7) T2Ba o 00 TBu 5, ( )
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Fic. IX-7. The lifetime estimates—computed along straight
line trajectories—are plotted versus the ground-state energy &
measured from the point of lowest deformation energy (see
Table VIII.3) for several nuclei in the heavy and superheavy
region. The estimates do not include the effects due to left-right
asymmetry. An average pairing gap A=12.0 A™Y2 MeV has
been used independent of the surface area. It is remarkable that
the slopes of the curves are about the same for all nuclei calculated.

As a starting estimate, we have computed the pene-
trability along a straight line, this being the shortest
connection between the regions of positive energy (see
Fig. IX-6). Then, o was varied by letting it pass through
several (n) fixed points between the two fixed endpoints.

These medium points were varied until no further
increase in the penetrability was found, a procedure
which rapidly converged. In Fig. IX-6, a few trajec-
tories for the case of Pu are plotted. Though this
procedure is quite rough, some important conclusions
can be drawn from it:

A multidimensional calculation is necessary as no
unique “fission mode” is known up to now.

The trajectory, i.e., the path of lowest action, does
not follow the steepest descent of the potential and does
not necessarily lead through the extremal points of the
deformation energy.

The straight line in the {c, %} plane connecting the
ground state and the exit has a penetrability close to
that of the best trajectory found.

The best trajectory usually has a penetrability of
about two to three orders of magnitude higher than the
penetrability along the straight line.

If not otherwise mentioned, we assume in this paper
as in others (see, e.g., Nilsson et al., 1969) a zero-point
energy of 0.5 MeV at the ground state.

In order to study the consequences of this assumption
for the penetration estimates, we have varied this
energy and present the results in Fig. IX-7. In the
simplified case of a one-peaked barrier idealized by an
inverted parabola, the logarithm of the penetrability is
approximately proportional to the difference between
threshold and ground-state energy.

It is surprising to see that our penetration estimates
expose almost the same behavior, even though we
include the shell structure in both the deformation and
the kinetic energy. Even for different nuclei, the slopes
of these curves do not vary considerably. From Fig.
IX-7 we also see that changing the ground-state energy
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I're. IX-8. Spontaneous fission lifetimes for several actinide
nuclei. Experimental values (+) as well as our estimates with
(O) and without (A) surface-dependent pairing are plotted
versus Z2/A. The total energy & was assumed to be 0.5 MeV
above the point of lowest deformation energy. Note the abrupt
change in the experimental values between ?2?Fm and #No and
the closer agreement of the estimates with experiment for **No
and 260Ku. The presented estimates do not include any effects
due to left-right asymmetry.
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by 0.2 MeV, our penetration estimates vary by about
two order of magnitude. Thus, the uncertainty of the
ground-state energy has practically the same effect on
the results as a path variation, i.e., the difference
between a straight line and a “best trajectory”.

The estimated lifetime for spontaneous fission are
shown in Fig. IX-8 for a few actinide nuclei together
with the experimental values. The systematics of the
estimates follow quite well the experimental decrease in
spite of the fact that the fission thresholds are almost a
constant over the whole region (cf. Table VIIL.3). In
size, however, there is a considerable discrepancy
varying between 12 and 8 orders of magnitude between
uranium and fermium. This discrepancy—the huge
factor of 10 being related to a change of 30 percent
in the actually computed action integral S, Eq. (IX.4)
is certainly due to the present restriction to symmetric
shape distortions, i.e., the presented estimates are
computed with fission threshold too high by about 2
MeV. Considering the numerical results in detail, it
turns out that more than two-thirds of the action
integral comes from the region at and behind the outer
barrier, where a relatively large deformation energy
coincides with increased values of the mass parameters
(see, e.g., Fig. IX-4). Due to the asymmetry, the
second barrier is lowered, as we have seen in Fig.
VIII-7, and also the mass parameters decrease, as
preliminary calculations have shown. Thus, we expect
a better agreement with the empirical values, once we
include the asymmetric degree of freedom. Such cal-
culations are under way.

In the case of nobelium and kurchatorium, we have
performed some special calculations. As can be seen by
comparing Figs. A-1 and A-2, the inclusion of the shape
asymmetry for these nuclei lowers the outer barrier,
obtained for symmetric shapes, so much that the
system has to penetrate only the first barrier in order to
fission. As we have seen this barrier is not affected by the
asymmetry. Therefore, we have calculated the penetra-
tion factor not for both (symmetic) barriers but only
for the inner one. The result will thus not be affected
by a future inclusion of the asymmetry—and shows a
surprisingly good agreement with the measured life-
times. In this context, we may take the disrupt change
of the experimental lifetimes between fermium and
nobelium in the otherwise smooth curve as experi-
mental evidence for a sudden disappearance of the
outer barrier in the region around Z=102 and N=152,
see Fig. IX-8.

Analogous results can also be obtained with the
surface-dependent pairing. According to Eq. (IX.48),
the mass parameter depends directly on the size of the
pairing gap A, its value decreasing approximately as
1/A2. TIf we increase A by the assumption of a surface
dependence of the pairing coupling constant (see Sec.
V.5), the mass parameters will at larger deformations
decrease by a factor of up to two or three. This can be
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F1c. IX-9. Energy surface of the hypothetical nucleus 28114.
Some of the trajectories along which the action integral was
computed (as in Fig. IX-6) are plotted. The letters refer to the
following lifetime estimated [logioruz(years) J: 36.6 (A), 35.6 (B),
34.0 (C), and 38.8 (D). In this case, too, the straight line tra-
jectory delivers a good estimate.

seen from Fig. IX-4 on the right-hand side. The effect
on the penetrability will of course be appreciable, and
the spontaneous fission lifetime decreases by more than
a factor of 10 in the case of 2#Pu. For other nuclei, the
effect is similar (see, Fig. IX-8). The resulting lifetime
estimates are closer to the experimental data than with-
out surface pairing. But, as long as the effect of the
asymmetry on these estimates is not cleared up, the
closer agreement of the latter cases cannot be consid-
ered as an argument in favor of a surface-dependent
pairing.

These difficulties seem to be related to fission of the
lighter actinide nuclei, where large nuclear distortions
contribute significantly to the penetration estimate. In
heavier nuclei the discrepancy is smaller and thus, one
may hope that a reasonable estimate may be obtained
for the lifetime for spontaneous fission of the hypothetic
superheavy elements, where much smaller nuclear
distortions are essential.

Also for these nuclei the ground-state zero-point
energy was shown in Fig. IX-7 on the right-hand side.
Note that within reasonable limits the slope of the
log 712 curves for the superheavy nuclei is the same as
that of the actinides. The values presented in Fig. IX-7
were obtainec by computing the action integral along
straight line trajectories. How strongly this estimate is
influenced by a different choice of the trajectory is
shown in Fig. IX-9. Obviously, the same qualitative
conclusions as for the Pu case can be drawn that a better
trajectory than a straight line can indeed be found;
however, it does not change the penetration estimate
significantly. The estimated lifetimes fall rapidly down,
away from the two nuclei 28114 and 34120, which are the
most stable ones against fission. For the lighter of these
nuclei we have plotted the results in Fig. IX-10. Due
to the liquid-drop background, the lighter of these “off
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Fre. IX-10. Estimates of spontaneous fission lifetimes for a
number of superheavy nuclei, plotted versus their proton number
Z. The two solid curves refer to calculations using a total energy
e which is 1 or 2 MeV above the point of lowest deformation
energy. Estimates with surface-dependent pairing are shown by
the dashed curve (for §=1 MeV).

center” nuclei have a longer lifetime than the heavier
ones. As expected, the possible surface dependence of
the pairing has less influence on the fissility of the super-
heavy nuclei than on the known heavy nuclei, smaller
deformations and, thus, smaller surface areas being
involved.

Our estimates are significantly higher than those
presented by Nilsson ef al. (1969). The difference for
the superheavy nuclei is about a factor of 10", cor-
responding to a difference of 309, of the action integral
in the exponent, Eq. (IX.14). To our larger values, the
inertia at the threshold has certainly contributed. With
a constant value of the mass parameter—corrected
empirically for the actinide nuclei as these authors did—
we approach their estimate up to a factor of 10%, which
must be attributed to our slightly increased threshold
energy.

Not withstanding this difference we arrive, thus, at
mainly the same conclusions as Nilsson ef al. (1969);
namely that the hypothetic superheavy elements are
practically stable against spontaneous fission. Whether
they disintegrate by competing processes like o or
decay (Nilsson et al., 1969; Muzycka, 1970) is a

question which lies beyond the scope of the present
paper.

5. Moments of Inertia

So far, we have discussed only the vibrational mode
of the collective motion and its application to fission.
However, in a total collective Hamiltonian, the rota-
tional energy also has to be taken into account. In this
subsection, we will investigate the inertial parameters
connected to the rotational degrees of freedom, i.e., the
moments of inertia.

In fission theory, the so-called effective moment of
inertia Jess is of particular interest, as it determines the
anisotropy of the angular distribution of the fission
fragments at higher exitations (Halpern and Strutinsky,
1958). It is defined by

Jets= [(1/5”)— (l/g-")]_li (IXSI)

where g); and J. are the moments of inertia for rotation
about the symmetry axis (or the fission axis) and the
axis perpendicular to the symmetry axis, respectively.
Usually, for g and Ji, the rigid-body values are
assumed, and then Jes is rather strongly dependent on
the shape of the nucleus at the top of the fission barrier
(Strutinsky et al., 1963; Cohen and Swiatecki, 1962).
It becomes infinity when the saddlepoint shape becomes
spherical. This should be the case of a nucleus which is
very unstable against fission, and then, an isotropic
angular distribution is predicted. Recently, some
attempts were made to determine the limits of stability
of nuclei by measuring the angular anisotropy of highly
excited nuclei produced in nuclear reactions with «
particles and heavy ions (Bate ef al., 1963; Muzycka
et al., 1968 ; Oganessian, 1968).

Experimental studies of gess are very important in
view of the fact that they are probably the most direct
way of investigating the shape of the nucleus at the
barrier. However, this quantity may also be affected by
the shell structure, which may be misinterpreted as due
to a different shape of the nucleus. It is therefore of
some interest to find out how strong the shell structure
effects on the moments of inertia can be.

For the moment of inertia g; for rotation about the
i-axis we assume the cranking-model formula (Inglis,

1954)

_ (u,,u,—v,,'u,)z( Ey E,)

gi= “Z; {——-—2 (BT tanh Y + tanh T
(uuuv‘*“vﬂ’ﬂ)?( E, E,,)} ;
Ay T TR —r = M| »)2

+ 2E—F,) tanh ST tanh 9T [(u| M;|v)l

(IX.52)

‘where M is the ith component of the single-particle

angular momentum operator j with

Mi=j, (IX.53)
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for g and
M =3, (IX.53)

for 9. The pairing interaction is treated here as tem-
perature-dependent (Decowsky et al., 1968). The quasi-
particle energies E, and the occupation numbers #, and
v, are defined as usually in the BCS theory:

Eu=[(8,—\)*H-A2]12; uy={3[14 (8,—N\)/E, ]}
(IX.54)
vl=1—u2,

where the single-particle energies &, are found as
described in Sec. VII for any given average nuclear
potential. The parameters N and A in Eq. (IX.54) are
determined by the temperature-dependent gap equation

2 . tanh (E,/2T) ‘
e z": ———————-——Eu (IX.55)

and the conservation condition for the particle number
N:

N=3 {1=[(8,—\)/E,] tanh (E,/2T)}. (IX.56)

The nuclear temperature 7" is considered here as a free
parameter, which, however, is related in a definite way
to the excitation energy.

The strength of the pairing interaction, G, is found in
the way described in Sec. V, using the uniform gap A as
an input parameter. The expression (IX.52) and the
above-mentioned quantities refer to either protons or
neutrons. The total J; for a specific nucleus is then the
sum of the contributions from neutrons and protons.

A convenient unit of J; is the so-called “rigid-body
value” (J;®B), i.e. the moment of inertia of a uniform
mass distribution with a sharp surface, which has the
same shape as the average potential used for the
evaluation of the eigenenergies §, and the eigenfunctions
Pu-

We have done calculations with two different
potentials:

1. NM: The Nilsson potential with pure ellipsoidal
deformation. The deformation parameter is the ratio of
the axes d of the mass distribution. With this, we have

(1) =ImN R,
(9aRB) = EmN R (14-a)d—",

(IX.57)
(IX.58)

The nuclear radius, Ry, is assumed to be Ry=1.243 F;
m is the nucleon mass, and N the number of nucleons
involved (either proton, neutron, or total mass number).

In this model, the parameter 7w, has been fixed by the
requirement that the states near the Fermi level should
have a value of (r?) equal to 2Rp. With ,=1.2 F, this
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gives

o= 554713 MeV.1 (IX.59)

2. WS: A Woods—-Saxon potential with constant skin-
thickness (see Sec. VII) and the shapes {c,h} (see
Eq. VII.4). The rigid-body values of the moments of
inertia along the LDM valley (k=0) are

(911%8)=2mN R c1—#5c2(c—1)+555c5(c—1)%]
(IX.60)
(9L®B)=3(91/®®)+EmN R c*++%c5(c—1)].  (IX.61)

For the parallel moment of inertia g, Eq. (IX.52)
reduces to

K2

—_ -1 —_—
Ju= D7 5 (E:/2T)’
where K; is the projection of the angular momentum
of the ith state on the symmetry axis. The quantity g,
can be estimated by replacing the summation by an
integration. Defining the continuous functions gSF(&)
and gr®F(&), respectively, as the single-particle level
density and the density of single-particle states with a
definite K value, one gets approximately

K2(&)

(IX.62)

+00
~(4 _‘/ SP(g8) ————————— d§ IX.63
AT | g% (8) — (& /ar) % ( )
where ;
EQP— [(8—)\)2+A2]l/2
and

(K*(8))=[¢ (&)1 /_ J:c K2%xSP(8)dK. (IX.64)

Equation (IX.63) suggests expressing J;| as a product
of some level density and the average of K2 for the levels
around the Fermi energy \. Using WKB estimates, one
finds the rigid-body value of | given as

JIRBEE (V) (K2(N) ).

In order to write g); in a similar way, including tem-
perature and pairing interaction, we define the following
quantities:

(IX.65)

gr¥®(\)=(4T)™ Z ot (B/2T) (1X.66)

and

(K*(\) )r

o K? b
=(4T) ,Zcm—osm (EJ2T) / g (). (IX.67)

11 The value of fiwey=41 A~13 MeV, normally used in the
Nilsson model, is obtained by averaging 72 over all occupied states.
In the discussion of shell structure, which is determined by a
relatively narrow region around the Fermi energy, we prefer,
however, the value (IX.59).
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F16. IX-11. Moments of inertia
and related quantities at different
temperatures, shown as functions
of the elongation ¢ (Nilsson model
for N=126). The moments of
inertia §|| and Ju are plotted in
units of their rigid body values
[Egs. (IX.57, IX.58); c=d?3].
The quasiparticle level density
¢rQP and the mean value of K?
are defined by Egs. (IX.66) and
(IX.67), respectively. The latter
is multiplied by its inverse de-
formation dependence [see Eqgs.
(IX.68) and (IX.57)]. The energy
shell-correction 8U (see Sec. IV)
is shown for comparison. The
pairing gap A (calculated with
A=0.6 MeV) is shown to dis-
appear at larger temperatures.
The temperatures chosen are:
1.32 MeV (thick solid lines),
0.84 MeV (thin solid lines), and
0.28 MeV (dashed lines). The
results obtained without pairing are
indicated (dashed-dotted lines)
for the lowest temperature only;
for the mean value of K? no effect
can be seen.

[MeV] // /\ Seo
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Fi1c. IX-12. Same as Fig. IX-11,
for N=152.
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Fic. IX-13. Same as Fig.
IX-11, calculated with the
Woods-Saxon model for N=
126.
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Fic. IX-14. Same as Fig.
IX-12, calculated with the
Woods-Saxon model for N=
152.
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Then, we find

Ji=gr¥ ) (K2(\) ) (IX.68)
The quantity gr®F(A\) is thus the density of quasi-
particle states.

For a fixed value of T, we can see now from Eq.
(IX.68) how these functions are expected to behave.
First of all, we note from the exponential cutoff that
only those levels which lie within an energy interval 27
around A contribute appreciably in the summations.
From our knowledge of the level density behavior
(see Sec. IT) we can expect that all three functions

(IX.66), (IX.67), and (IX.68) will fluctuate with -

deformation, reflecting the changing shell structure
near the Fermi energy. The amplitude of these oscilla-
tions decreases as T increases, because then a larger
number of levels contribute in the averaging procedure,
thereby making all quantities less sensitive to the shells.
In the limit of high temperature, there should not be any
fluctuations at all, and we expect g;; to approach the
rigid-body value (J;®8).

When T is larger than the critical temperature of the
pairing correlation 7', at which A disappears, the
quasiparticle level density grQF(\) is the same as the
single-particle level density g3(M\). In the other limit
T<KA, one finds (Grin, 1963) the approximate expres-
sion

g1 (\) = (20A/T) 1 exp (—A/T)gF(N).  (IX.69)

The gap parameter A is known to increase when the
local density of the single-particle states near the Fermi
energy increases (see Sec. V). This can lead to a re-
versed effect in the quasiparticle density (IX.69),
which exponentially decreases with increasing A.
Therefore, it is expected that, at higher excitations,
maxima and minima of ¢); should approximately
correspond to those of the single-particle level density
while, at low excitations, maxima of g, correspond to
minima of gSF (i.e., to maxima of the quasiparticle
level density), and vice versa. While this is approxi-
mately valid for high excitations, the actual correlation
at low excitations is more complicated because there is
also a shell effect in the averaged value of K2. Indeed,
for small temperatures, only a few states contribute to
the averaging of K2. It is known that the energies of the
single-particle states with higher K values go up with
deformation while those with lower K values go down.
Therefore, the average value of K? oscillates about as
frequently as does the energy shell-correction but with
a different phase.

As we have described in Sec. VII, we calculate our
single-particle states by a diagonalization method,
using the harmonic oscillator states as a basis. For the
calculation of gi, we thus need in Eq. (IX.52) the
matrix elements of /1 between the harmonic oscillator

states. The nonvanishing matrix elements are
(N,m, A, K+1| M1 | N,n,, A, K)=3% (IX.70)
and
(N, m.~41, A1, K41 | ML | N, n, A, K)
=a[ (n+1) (N—nFA)]7,
(N, n,—1, A1, K1 | My | N, n,, A, K)
=ap[ 1, (N—n,=A+2)]12,
(N+2,n41, A1, K1 | My | N, n,, A, K)
=ai[ (n,41) (N—n.£=A+2) ],

(N—2,n,—1, A+1, K+1| M+ | N, n,, A, K)

=ou[n.(N—n,FA) ]2, (IX.71)
where
ar=— 1l (w1/@1)? 4 (wn/wr)],
ay=— 3 (ws/w))) V2= (wpi/ws)"2].  (IX.72)

Using these matrix elements and the expansion co-
efficients obtained from the diagonalization, it is easy in
principle to find (1| M1]|2) and finally to compute
g+ by means of Eq. (IX.52). A straightforward cal-
culation shows that, in the spherical case, both moments
of inertia are equal, i.e.

9u(T)=4u(T) (IX.73)
for all nuclei and temperatures.

For zero temperature (7=0), the energy interval
which contributes to J+ increases with increasing de-
formation. The matrix element of M 1 between different
subshells and shells increases with larger deformations.
Therefore, also, states relatively far away from the
Fermi energy contribute (see, e.g., Bohr and Mottelson,
to be published), and the increased number of states
makes gu less sensitive to the level properties at the
Fermi energy. The amplitudes of the oscillations and
the influence of pairing are therefore expected to
decrease with deformation.

As a function of temperature, we expect Ji to
approach its rigid-body value in the limit of large 7.
This has been shown for the harmonic-oscillator poten-
tial at the equilibrium deformation and also in the
approximation where one considers only the diagonal
matrix elements of M. (Migdal, 1959), which cor-
responds to the WKB case of an infinitely large system.
It is not very clear what this limit should be in the finite
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Fre. IX-15. The moments of
inertia Jotr, i1, and gu for 28U,
evaluated in the Woods-Saxon
model (WS), are shown as a
function of the nuclear tempera-
ture for the deformations at the
ground state (¢=1.15), the second
minimum (c=1.46), the first
barrier (c=1.32), and the second
barrier (c=1.76). All the moments }“
of inertia are expressed in units
of the rigid-body value for a

30 |-

sphere, Jrp’. In all cases, the
thick horizontal lines represent
the rigid body values. These values
are reached at high temperatures.
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nuclei. It can, however, be found numerically in our
calculations.

In Figs. IX-11-I1X-15, some numerical results are
presented, which illustrate the influence of pairing,
shell structure, and model dependence of the quantities
introduced above. Here (K?(\))r remains almost un-
affected by the pairing, while the other functions are
more sensitive. This is, however, not true for g, where
the pairing effect, as in all other structure, is seen to
decrease with deformation. When A <7, all quantities
behave qualitatively in the same way with and without
pairing. When 7'KA, we note the opposite behavior of
the two level densities g7?F and g% as functions of
deformation. Because of the pairing independence of

TEMPERATURE T [MeV]

K?, this anticorrelation is also present in g;;, with and
without pairing.

There is no clear correlation between ;) and either of
the two functions (K2(\) )r and gr®F. The drawings indi-
cate that gr?F in many cases is the more significant, but
when g7 is not fluctuating very much, J;; will essen-
tially be determined by (K2(\))r. Therefore, one can
say that g, is definitely determined by the shell struc-
ture around X, but not in a simple way. Sometimes it is
the variation of the level density that is more important,
and sometimes it is the variation of the average of
(K*(\) )r. In a way Jo behaves similarly. For small
deformations, it seems to be correlated with the level
density. As the deformation increases, this correlation
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is destroyed, but also shell structure and pairing effects
become less pronounced.

With increasing 7', the shell structure disappears and
at T 21 MeV all functions approach their asymptotic
values.

The discussion above was a general one and did not
refer to a specific model. If we compare corresponding
moments of inertia calculated in different models

mentioned, expected to be the rigid-body values. To
what extent this is the case can be seen in Fig. IX-15.
There, the quantities Jesr, 1), and Jo are shown as
functions of the temperature 7, evaluated for the most
interesting shapes of the nucleus 2*U, namely the
ground-state deformation, the second minimum, and the
two barriers. It can be seen that, for the first and second
barriers, the rigid-body values of the moments of inertia
are essentially reached at a nuclear temperature of
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I'16. A-1. Potential energy surfaces for some nuclei in the
actinide region, calculated for symmetric shape degrees of freedom.
Units and equidistance of the contour lines as in Fig. VIII-1.

(NM: Figs. IX-11, 12, WS: Figs, 1X-13, 14), we ob-
serve a very similar behavior even if the shapes are
different.? However, there are differences, and if
quantitative results are wanted, one must be careful in
the choice of the model.

The limiting values of §;; and Ju at large T are, as

12 Tn order to make a comparison easier, we use the deformation
parameter ¢ also in the figures of the NM calculations [instead
of d, Egs. (IX.57), (IX.58); c=d2].

I'16. A-2. Same as Fig. A-1, but with the energy minimized
in each point (c, ) with respect to the asymmetric degree of
freedom a. Only the region of the isomer minimum and the second
barrier is shown. The two trajectories shown are the ones used
in the calculations to Fig. VIII-8. (See also text in Sec. VIIL.2.)

T3x0.8-1.0 MeV. This value is close to that for the
critical temperature at which the shell-structure effects
in the level density disappear, as was found earlier
(Pavlinchuk, 1967). It is also higher than the critical
temperature T,, at which the pair correlation effects
disappear (7,~0.4-0.5 MeV).

The evaluated moments of inertia may be applied to
the analysis of the angular anisotropy in the neutron-
induced fission at lower excitations. The angular dis-
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tribution of the fragments is in this case described ap-
proximately by (Halpern and Strutinsky, 1958)

W(0) /W (90°) =1+ (5E,/8T Jess) cos? 0.  (IX.74)

For the specific case of the reaction 25U (%, f) with

E,=3 MeV neutrons, the value of the temperature is

found to be equal to 0.28 MeV at the first barrier and
T=0.33 MeV at the second barrier (with the rigid-body
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Fic. A-3. Same as Fig. A-1 for some hypothetical superheavy
nuclei. (Symmetric deformations.)

values, these would be equal to 0.05 MeV and 0.14
MeV, respectively, which values are too low).

The asymptotic values of the moments of inertia can
be used for finding 7w, for the Nilsson model by re-
quiring that they coincide with the corresponding
rigid-body value. From the discussion above it is clear
that this would give the value (IX.59). Usually, another
value, which is obtained from the condition that 72,
averaged over all nucleons, is equal to the same quantity
for uniformly distributed matter, is used. In applica-
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tions, one is rather interested in a better fit near the
Fermi energy. With the normal 7w, the potential
would be somewhat too broad in this energy region.
Another way of finding 7wy is to require that the
Nilsson model on the average has the same level spacing
as the Woods—Saxon model or, in other words, that the
asymptotic value of g5° be the same in both models.
This will give a slightly smaller value than the one we
have used. Still another way could be the fit of the
ground-state moments of inertia. These, however, are
relatively insensitive to 7wy, as was noted by Nilsson
and Prior (1961).
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APPENDIX

In this Appendix, we present for completeness some
contour maps of deformation energies which we have
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not shown in Sec. VIII above, in order not to make the
presentation of results too confusing there. The results
have, however, been discussed in general in Sec. VIII
and need therefore not to be repeated.

BIBLIOGRAPHY

1. Conferences

Proceedings of the Second United Nations International Conference
on the Peaceful Uses of Atomic Energy, Geneva, 1-13 September,
1958, (United Nations Publications) Vol. 15.

Proceedings of the International Conference on Nuclear Structure,
Kingston, Canada, 29 August-3 September 1960, edited by
D. A. Bromley and E. W. Vogt (North Holland Publ. Co.).

Proceedings of the Second International Conference on Nuclidic
Masses, Vienna, Austria, 15-19 July 1963, edited by W. H.
Johnston, Jr., (Springer-Verlag).

Proceedings of the Symposium on the Physics and Chemistry of
Fission, held by IAEA, Salzburg, Austria, 22-26 March
1965.

Proceedings of the Inlernational Symposium on, why and how
should we investigate Nuclides far off the Stability Line, Lysekil,
Sweden, 21-27 August 1966 (Almqvist and Wiksell, Stockholm).

International Nuclear Physics Conference, Gatlinburg, Tennesee,
12-17 September 1966, edited by R. L. Becker, C. D. Goodman,
P. H. Stelson, and A. Zucker, (Academic, New York).

Proceedings of a Conference on Nuclear Data—Microscopic Cross-
sections and Other Data Basic for Reactors, held by IAEA,
Paris, 17-21 October 1966.

Proceedings of the Third International Conference on Atomic
Masses, Winnipeg, Canada, 28 August-1 September 1967,
edited by R. C. Barber, (University of Manitoba Press).

Proceedings of the Second IAEA Symposium on the Physics and
Chemistry of Fission, Vienna, 28 July-1 August 1969.

Pioceedings of the International Conference on Properties of
Nuclear States, Montréal, Canada, 25-30 August 1969 (Univer-
sity of Montréal Press).

2. References

Abramowitz, M., and I. A. Segun, Eds., 1964, Handbook of
Mathematical Functions (Dover, New York).
Albrecht, K., et al., 1970, Phys. Letters 32B, 229.
Andersen, B. L., et al., 1970, Nucl. Phys. A159, 337.
Androsenko, K. D., et al., 1969, Vienna, p. 419.
Balian, R., and C. Bloch, 1970, Ann. Phys. 60, 401.
, and C. Bloch, 1971, Ann. Phys. 64, 271.
Baranger, M., and K. Kumar, 1968, Nucl. Phys. Al22, 241.
Bassichis, W. A., ef al., 1971, Livermore Preprint UCRL-73044.
Bate, G. L., et al., 1963, Phys. Rev. 131, 722.
Batty, C. J., 1970, Phys. Letters 31B, 496.
——, and G. W. Greenless, 1969, Nucl. Phys. A133, 673.
Batty, C. J., and G. W. Greenless, 1969, Nucl. Phys. A133, 673.
Belyaev, S. T., 1959, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 31, No. 11.
Belyakov, V. A., 1964, Sovjet Phys.—JETP 19, 1103.
Bés, D. R., 1961, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 33, No. 2.
. ——, and Z. Szymanski, 1961, Nucl. Phys. 28, 42.
Bethe, H. A., and R. F. Bacher, 1936, Rev. Mod. Phys. 8, 82.
, 1968, Phys. Rev. 167, 879.
Bjgrnholm, S., and V. M. Strutinsky, 1969, Nucl. Phys. A136, 1.
Bloch, C., and R. Balian, 1969, private communication.
Bohr, A., 1952, Kgl. Danske Videnskab. Selskab, Mat-Fys.
Medd. 26, No. 14.
——, and B. Mottelson, 1953, Kgl. Danske Videnskab. Selskab,
Mat.-Fys. Medd. 27, No. 16.
——, and B. Mottelson, 1969, Nuclear Structure, (Benjamin
Inc., New York), Vol. 1.
-——, and B. Mottelson, tu be published, Nuclear Structure (W.
A. Benjamin Inc., New York), Vols. 2, 3.
Bohr, N., and F. Kalckar, 1937, Kgl. Danske Videnskab. Selskab,
Mat.-Fys. Medd. 14, No. 10.
, and J. A. Wheeler, 1939, Phys. Rev. 56, 426.
Bolsterli, M., et al., 1971, Los Alamos Preprint LA-DC-12817.

Brack, M., and H.-C. Pauli, 1971, Preprint, Basel University.

Bromley, D. A., and J. Weneser, 1968, Comments Nucl. Part.
Phys., 2, 151.

Brown, G. E., 1969, Comments Nucl. Part. Phys., 3, 136.

Bunatyan, G. G., V. M. Kolomietz, and V. M. Strutinsky, 1972,
to be published.

Cohen, S., and W. J. Swiatecki, 1962, Ann. Phys. 19, 67.

, and W. J. Swiatecki, 1963, Ann. Phys. 22, 406.

Damgaard, J., et al., 1969a, Nucl. Phys. A135, 432.

, 1969b, Vienna, p. 213.

Decowsky, P., ¢t al., 1968, Nucl. Phys. A110, 129.

Feenti;zr)g, E., 1955, Shell Theory of the Nucleus (Princeton
U.P.).

Fong, P., 1969, Statistical Theory of Nuclear Fission (Gordon
and Breach, New York).

Ford, G. P., et al., 1970, Los Alamos Report, 1.LA-4329.

Frenkel, J., 1939, Soviet Phys.—JETP, 9, 641.

— 1939, Phys. Rev. 55, 987.

Gareev, F. A, et al., 1970, Sov. J. Nucl. Phys. 11, 667.

Geilikman, B. T., 1960, Kingston, p. 874.

—, 1965, Salzburg, 1, 121.

——, and G. N. Khlebnikov, 1968, Yad. Fiz. 7, 215.

Ghiorso, A., et al., 1954, Phys. Rev. 95, 293.

Goeppert-Mayer, M., and J. H. D. Jensen, 1955, Nuclear Shell
Structure (Wiley, New York).

Grin, T., 1963, Soviet Phys.—JETP 16, 1327.

Gustafson, C., et al., 1966, Lysekil, p. 613.

Hahn, O., and F. Strassman, 1939, Naturwissenschaften 27, 11.

Halpern, I., and V. M. Strutinsky, 1958, Geneva, p. 408.

Hasse, R. W., 1969, Vienna, p. 33.

Haxel, O., et al., 1949, Phys. Rev. 75, 1766.

Heisenberg, J., et al., 1969, Phys. Rev. Letters 23, 1402.

Hendrie, D. L., et al., 1968, Phys. Letters 26B, 127.

Hill, D. L., and J. A. Wheeler, 1953, Phys. Rev. 89, 1102.

Hyde, E. K., ¢t al., 1964, The Nuclear Properties of the Heavy
Elements, 3 (Prentice Hall, Englewood Cliffs, New Jersey).

Inglis, D., 1954, Phys. Rev. 96, 1059.

Johansson, S. A. E., 1962, Nucl. Phys. 22, 529.

Kirzhnits, D. A., 1967, Field Theoretical Methods in Many-Body
Systems (Pergamon, New York).

Kolomietz, V. M., et al., 1971, Preprint ITF-71-93-R, Kiev.

Kramers, H. A., 1940, Physica 7, 284.

Kumar, K., and M. Baranger, 1968, Nucl. Phys. A110, 529.

Landau, L. D., and E. M. Lifshitz, 1959, Quantum Mechanics
(Pergamon, New York).

_ a)nd E. M. Lifshitz, 1960, Mechanics (Pergamon, New
York).

Lawrence, J. N. P., 1965, Phys. Rev. B139, 1227.

Lynn, E., 1966, Paris, 2, 89.

——, and S. Bjgrnholm, 1970, private communication.

Malov, L. A., S. M. Polikanov, and V. G. Soloviev, 1966, Gatlin-
burg, p. 786.

Mayer, M. G., 1949, Phys. Rev. 75, 1969.

Meitner, L., and O. R. Frisch, 1939, Nature 143, 239.

——, 1950, Nature 165, 561.

——, 1952, Arkiv Fysik 4, 383.

Meldner, H., 1969, Phys. Rev. 178, 1815.

Migdal, A. B., 1959, JETP 37, 249; Soviet Phys.—JETP 10
(1960), 176.

——, 1968, Nuclear Theory, The Quasiparticle Method (Benjamin,
New York).

Mosel, U., et al., 1971, Phys. Letters 34B, 587.

Moskowski, S. A., 1970, Phys. Rev. C 2, 402.

Mottelson, B., and S. G. Nilsson, 1955, Phys. Rev. 99, 1615.

——, and S. G. Nilsson, 1959, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Skr. 1, No. 8.

Muzycka, Ya. A, ef al., 1968, Yad. Fiz. 6, 306.

, 1970, Yad. Fiz. 11, 105; Sov. J. Nucl. Phys. 11, 57.

Myers, W. D., and W. J. Swiatecki, 1966a, Nucl. Phys. 81, 1.

, and W. J. Swiatecki, 1966b, Lysekil, p. 343.

——, 1968, Ph. D. Thesis, Lawrence Radiation Laboratory
Report UCRL~18214.

— 1969, Nucl. Phys. A145, 387.

, and W. J. Swiatecki, 1969, Ann. Phys. 55, 395.

Moller, P., and S. G. Nilsson, 1970, Phys. Letters 31B, 283.

Negele, J. W., 1970, Phys. Rev. C1, 1260.

Nemirovsky, P. E., and V. A. Chepurnov, 1966, Sov. J. Nucl.
Phys. 3, 730.




BRrACK, DAMGAARD, JENSEN, PAULI, STRUTINSKY, AND WONG T'e Shell-Correction A pproach to Nuclear Shell Effects 405

Nilsson, S. G., 1955, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 29, No. 16.

——, and O. Prior, 1961, Kgl. Danske Videnskab Selskab, Mat.-
Fys. Medd. 32, No. 16.

, et al., 1969, Nucl. Phys. A131, 1.

——, S. G. Thompson, and C. F. Tsang, 1969, Phys. Letters 28B,
458.

Nix, J. R., 1969, Nucl. Phys. A130, 241.

Oganessian, Yu. T., 1968, preprint JINR E7-3942, Dubna.

Pashkevich, V. V., 1969, Nucl. Phys. A133, 400.

——, 1969, 1970, private communications; See also Nucl. Phys.
A169, 275 (1971).

——, and V. M. Strutinsky, 1969, Yad. Fiz. 9, 56; Sov. J. Nucl.
Phys. 9, 35.

Pauli, H. C,, et al., 1971, Phys. Letters 34B, 264.

, and T. Ledergerber, 1971, Nucl. Phys. A175, 545.

Pavlinchuk, V. A., 1967, private communication.

Polikanov, S. M., et al., 1962, Zhur. Eksp. i Teoret. Fiz. 42, 1464;
Soviet Phys.—JETP 15, 1016.

Quentin, P., and R. Babinet, 1970, Nucl. Phys. A156, 365.

Rainwater, J., 1950, Phys. Rev. 79, 432.

Rost, E., 1968, Phys. Letters 26 B, 184.

Seeger, P., 1967, Winnipeg, p. 85.

——, and 'R.C. Perisho, 1967, Los Alamos Rept LA-3751.

Siemens, P., 1970, Phys. Rev. C1, 98.

Smirnov, V. L, 1964 A Course of Hzgher Mathematics (Pergamon,
New Vork) Val. 4, Chap. 2.

Stein, N., 1969, Montréal, p. 337.

Strutinsky, V. M., and A. S. Tyapin, 1963, Zhur. Eksp. i Teoret.
Fiz. 45, 960; Soviet Phys.—JETP 18, 664.

——, et al., 1963, Nucl. Phys. 46, 639.

——, 1966, Yad. Fiz. 3, 614; Sov. J. Nucl. Phys. 3, 449.

——, 1966, Lysekil, p. 629.

——, 1967, Nucl. Phys. A95, 420.

——, 1968, Nucl. Phys. A122, 1.

——, and H.-C. Pauli, 1969, Vienna, p. 155.

Sw1ateck1 W.7J, 1963 Vlenna p. S8.

—_ 1970 in" Nuclear Reactions Induced by Heavy Ions, edited
by R. Bock and W. R. Hering (North Holland Publ. Co..
Amsterdam) p. 729.

——, and W. D. Myers, 1970, private communication.

Szyménskl Z., 1961, Nucl. Phys 28, 63.

Terrell, J., 1959 Phys Rev. 113, 527.

Tsang, C. F., 1969, Berkeley Report UCRL-18899.

Vandenbosch, R., 1963, Nucl. Phys. 46, 129.

——, and J. R. Huizenga, 1958, Geneva, p. 284.

Vautherin, D., and D. M. Brink, 1970, Phys. Letters 32B, 149.

Vogel, P., 1968, Nucl. Phys. A112, 583.

von Weizsicker, C. F., 1935, Z. Physik 96, 431.

Vorotnikov, P. E.; et al., 1967, Sov. J. Nucl. Phys. 5, 210.

Wilets, L., 1959, Phys. Rev. 116, 372.

—_ 1964 Theories of Fission (Clarendon Press, Oxford).

Zeldes N., etal., 1967, Kgl. Danske Videnskab. Selskah, Mat. Fys.
Skr. 3, No. 3.



