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Hadronic multiparticle reactions at very high energies are reviewed with emphasis on current theoretical pictures
and models.
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I. INTRODUCTION

The motivation for this review grew out of the feeling
that the field of multiparticle reactions is growing in-
creasingly coherent, and increasingly likely to yield
fundamental information about the nature of hadrons.
Widespread agreement has developed as to some im-
portant questions to be asked of the experimental data,
and excitement increases as partial answers to some of
these questions become available. Nevertheless, it
seemed to us as we began this work that this excitement
was not widely shared among particle physicists, much
less among the larger physics community. For example,
despite their simplicity, single-particle inclusive spectra.
were explored very little even at existing accelerator

energies. Two new facilities are or soon will be in opera-
tion: the CERN-ISR, intersecting storage rings pro-
viding proton —proton collisions at up to 60 GeV center
of mass energy (the equivalent of 1900 GeV lab energy
impinging on a stationary proton); and the NAL ac-
celerator providing a proton beam at energies up to 500
GeV. We hope that this review will provide back-
ground material useful in the interpretation of data
from these machines.

We begin, in Sec. II, with general features of multi-
particle reactions, trying to emphasize considerations
which are not. tied to specific models. If this review
shouM have any effect on future choices of measure-
ments to be made, we would like it to help "maximize
the possibility that the experimental data collected will
remain useful despite continuing changes in theoretical
fashions. '" We defer to Sec. III the description of
specific models, very obviously influenced in our choice
by current theoretical trends. In Sec. IV we summarize
the predictions of these models, as well as the more
general considerations of Sec. II, and attempt a com-
parison with emphasis on those experiments which dis-
criminate most effectively between models.

Although we have tried to emphasize general con-
siderations and have tried to give an adequate presen-
tation of other models, we caution the reader that all
of us are theorists, and that we have among us invested
several man years in the study of the multiperipheral
model. This paper is primarily theoretical; the experi-
mental data presentation is illustrative, not exhaustive.

Conversations with our colleagues over the course of
the past few years were of course essential to the forma-
tion of this review, but it is impossible to enumerate
them all. Some of the most extensive and recent help
has come from J. S. Ball, T. Betlach, G. F. Chew,
T. Ferbel, S. C. Frautschi, R. L. Lander, B. %. Lee,
A. Mueller, R. Sugar, C. I. Tan, L. Van Hove, and
L.L. Wang. Finally, the detailed criticism of our Editor,
J. D. Jackson, led to most of the improvements in this
revised manuscript.

We conclude this introduction with a guide to some
of the other reviews of multiparticle hadronic reactions
which have appeared recently, and which, because of
their differing emphases, will help the rea.der to ob-

' K. G. Wilson (1970).
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tain a balanced picture of the field. Lander (1971),
augmented by Krisch (1971), provides comprehensive
coverage of data on inclusive reactions as of September
1971. A brief phenomenological review was given by
Frazer (1971a), and a more comprehensive one by
Berger (1971).Theoretical reviews with very different
emphasis from the present one are those by Van Hove
(1971) and Bjorken (1971).Reviews which very con-
siderably overlap this one are those of Frazer (1971b),
Quigg (1971), and Arnold (1971). Older reviews
which have been useful to us are Wroblewski (1970a),
Czyzewski (1968), and the entire proceedings of the
International Conference on Expectations for Particle
Reactions at New Accelerators (Madison, 1970) and
of the 1969 Stony Brook Conference )High Energy
Collisions, edited by C. N. Yang et al. (Gordon and
Breach, New York, 1969)].

II. GENERAL FEATURES OF MULTIPARTICLE
REACTIONS

A. Some Very General Observations
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Two empirical rules concerning the nature of multi-
particle reactions are so well accepted and so inAuential
in both phenomenology and the construction of models
as to deserve priority of presentation. They are

(1) Smallness of trarssverse momenta: The number
of particles produced falls off very rapidly as a function
of q&, the magnitude of momentum transverse to the
incident beam (compatible with exponential or Gauss-
ian fits). The average value, (qi) 0.3 to 0.4 GeV/c,
is approximately independent of the incident energy,
and does not depend strongly on the type of particle
or multiplicity of particles produced. See, for example,
Smith et aL (1969) or Elbert et al. (1968).
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Pn. 2.2 Contours of constant cross section as a function of
longitudinal and transverse momentum of secondary particle,
for various beam momenta in pp~m X. The contour at 12.5
GeV jc is taken from Akerlof et al. (1971);the others are estimated.

(2) Low multiplicity of particles produced: The aver-
age number of particles produced grows slowly with
energy —much more slowly than would be the case if
most of the available energy were converted into par-
ticles. The data on the multiplicity of charged particles
from the Echo Lake cosmic ray experiment (Jones,
1970) shown in Fig. 2.1 are well fit by a logarithmic
increase with energy

(u,i)=A+B ln s, (2.1)

where the values of the parameters for this and other
similar its are given in Table 2.1.

We shall return in Sec. II.F to a more detailed de-
scription of multiplicity distributions, but at the mo-
ment we are mainly concerned with observing that the
multiplicity of particles produced is growing much less
rapidly than the available energy would allow. This fact,
together with the rule of smallness of transverse mo-
menta, implies that most of the available energy goes
into longitudinal motion (along the incident beam
direction), and the average longitudinal momentum
increases rapidly with incident energy,

&Vii) s'"/ln s»&V ). (2.2)

Figure 2.2 sketches the elongation in q~I of a typical
contour of constant cross section as s increases. Thus
the longitudinal momenta are the only variables which
change rapidly with energy, and great kinematical sim-
plifications can be obtained by recognizing this fact,
as we shall discuss in the next sections.

B. Longitudinal Kinematics
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FIG. 2.1. Average multiplicity of charged secondaries as a func-
tion of energy in the Echo Lake cosmic ray experiment {Jones,
1970). High-energy points (s)200) are cosmic ray data; low-
energy points are accelerator data,

l. J.oegitldinal aed Transverse JI/Iomerlta

The kinematics of a many-particle system is gen-
erally quite involved. Great simplifications result,
however, in the region of very high-energy scattering.
As we have seen in the previous sections, the final-state
particles of such scattering processes are characterized
by small mean transverse momenta ( 0.4 GeV/c),
which become independent of the incident energy as
the latter becomes large. This, as already noted, sug-
gests a differential treatment for the longitudinal and
transverse momentum dependence of the scattering am-
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TABLE 2. 1. Fits to the multiplicity data shown in Fig. (2. 1) . Entries labeled (+HBC) include low-energy data; others fit only to the
Echo Lake points (Janes, 1970) at high energies. The energy unit for EJ., $'I, and Q is GeV. L. W. Jones, private communication.

ln.a)
Degrees of

freedom

A+B 1n Ez ((+HBC)

A+B ln $ (+HBC)

A+2B 1n Q I(+HBC)

1.46+0. 16
0.91~1.78

0.79~0.20
0.28~2.00

1.98~0, 13
0.94~1.77

0, 89+0.05
0.96&0.33

0.91+0.05
0.97~0.33

0.73~0.04
0.89~0.30

7.0
0.08

7.9
0.08

3.9
0.07

plitude. That is, if q is the four-momentum of a 6nal
state particle, it can be conveniently represented as:

q=(~, cl. qll) qii=q. , il~=(q* q. ) (23)

The conservation of four-momenta reads

(2.5a)

where the incident beam is chosen to be in the s direc-
tion, and where E= (q~~'+p')'", p= (m'+q~')'1', and
m is the rest mass of the particle in question; p is some-
times referred to as the longitudinal mass. If one ig-
nores what happens in the transverse momentum
plane, the problem essentially reduces to one dimen-
sion in ordinary space, and p becomes the effective mass
(for a given

I qi I).
As emphasized above, it is expected that a great deal

of information will be contained in the longitudinal
phase space (LPS) alone. Indeed it was suggested by
Van Hove (1969) that LPS plots might provide a
suitable framework for the phenomenological analysis
of experimental data and for comparison with known
theoretical models. This plot has had some interesting
applications, as will be reviewed presently.

Z. LPS P/ot

(a) Theory. The main difficulty in a multiparticle
phase space plot is the large number of dimensions.
In the LPS plot, one makes use of the smallness of (qi)
and its independence of the incident energy, and pro-
jects the distributions of events onto the longitudinal
portion of the phase space, thus greatly reducing the
dimensionality of the plot. In contrast to the Dalitz
plot, the phase space volume element here is not a con-
stant. Appropriate phase space factors should therefore
be included in order to exhibit the net distribution of
events due to the scattering matrix element.

We now present an outline of the LPS plot. Consider
the process

A +B &Ci+ ~ ~ ~ +C„. —(2.4)

For definiteness, we go to the center-of-mass frame. The
momentum q' of the particle C; is now represented as:

2 ql I

1
(2.5b)

g qi'=0.
1

(2.5c)

The space of longitudinal momenta (q~~', ~ ~ ~, q~~") is
called 5„,' and the hyperplane of points satisfying the
constraint (2.5b) is called L„ i. The latter includes as
a subset all the points of the longitudinal phase space
for a physical process.

In the approximation p, =0 for every i, the energy
constraint (2.5a):

Z&'=Z
I ei'I =If'

I
(2.5a')

= p slil cv,

q~
~'= pL —

2 sin ~—(v3/2) cos ~],

q~
~'= pL ——,

' sin a&+(v3/2) cos &v]. (2 6)

describes a polyhedron H„2 in L„~. For a physical
event, {p,I are in general nonzero but small compared
to {q~ ~'I. Then, for a given set of values {1i;I, the energy
constraint (2.5a) describes a hypersurface E„2 which
lies inside the polyhedron H„2. Here K„& deviates
from H„2 most signiicantly at the vertices and sides
of lower dimensions of the latter, which correspond to
points where some of the {q~~'I vanish. The deviation,
however, is of order pA, for qIII, =O, and is small com-
pared to the over-all size, 8", of E ~ or H

To illustrate these, consider the case m=3. The plot
is shown in Fig. 2.3. The point P with coordinates
(q~ ~', q~ ~', q~ ~') is also given by the circular coordinates
(p, o&). They are related as:

where

q'= (&', il~', qadi'),

&'=~ '+ (qadi')', p, '=m;2+I qj.' I'.

&««hat (qadi')'+

(qadi')'+

(q(i')'= lP'.
As already noted, peripherality of scattering means

'One may also use scaled parameters, such as Feynman's
g.—2g( )i/$1/2
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that most events will concentrate near the boundary.
A useful related plot is then the ~ distribution:

dX /des= f I
M I' 6'(2 q&') H d'qJ. ' (2 7)

Sca)e in GeV
a I I
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where sV'=number of events weighted according to
phase space density [see Van Hove (1969)j, and M is
the scattering matrix element. The applications of
these plots will be summarized below.

(0) I.ongiludinal Phase SPace PhenonMnology To g.et
some feeling for the nature of longitudinal phase space
phenomenology let us look first at the simplest case,
a three-body final state. Since the three longitudinal
momentum variables in. the center-of-mass system,
qI I', q~~', and qI I' are subject to the constraint that their
sum is zero, a two-dimensional plot with axes at 60' is
appropriate. The variables and kinematical boundaries
are shown in Fig. 2.3. The experimental distribution
for m.+p~n.+~'p is shown in Fig. 2.4. Note the cluster-
ing of points near the boundary. The energy-conserva-
tion constraint, Eq. (2.5a), would require all points to
lie on the boundary if the transverse momenta were
zero. Thus we see the rule of small transverse momenta
appearing in this plot. Note also that practically all
events lie in the left half-plane, corresponding to the
proton in the final state continuing in the same direc-
tion as the proton in the initial state. Continuing in the
spirit of displaying only the dependence on longitudinal
momenta, Van Hove reduces the two-dimensional plot
of Fig. 2.4 to one dimension by projecting all events
onto the boundary; that is, he plots the density of
events as a function of the angle co defined in Fig. 2.3
and in Eq. (2.6). Figure 2.5, taken from Bialas el al.
(1969), shows some of these plots. Note the strong
clustering of events which occur even after prominent
resonance production has been excluded.

This clustering of events can easily be understood
in terms of Pomeron exchange (diff'ractive dissociation).
In Fig. 2.6 the possible Pomeron exchange diagrams
contributing to the reactions of Fig. 2.5 are shown.
The ordering of the final-state particle from top to
bottom of a graph corresponds to the ordering of the
labeling q~, q2, q3 of their longitudinal momenta. Con-
sider Fig. 2.6(a). The m' and the p come out together,
which means that q2 and q3 are both negative. This
occurs, as can be seen from Fig. 2.3, if 60'(cv(120',
which is just where the clustering occurs in Fig. 2.5 (a).
The rest of the distributions can be understood in the
same manner from the Pomeron-exchange graphs in
Fig. 2.6.

One additional interesting fact emerges from Fig.
2.5(c) and Fig. 2.5(f). The relative weakness of the
bumps in these reactions' can be understood from the
Gribov —Morrison rule of conservation of "naturality"
[naturality= (—1)~Pj: This rule states that particles
(or systems of particles) A and 8 couple to a Pomeron
only if they have the same naturality.
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1' IG. 2.3 Longitudinal phase space plot for mwS at c.m. energy
TV=4 GeV. The inner full curve is the boundary for typical
transverse momenta, whereas the outer full curve is for zero
transverse momenta. The dashed curve is the boundary in the
zero mass, zero transverse momentum limit.

Elegant as the LPS plots are, it can still be argued
that all the foregoing material could be seen on more
conventional Dalitz or Chew —Low plots. With four-
body final states the LPS plot clearly shows its utility.
Here the LPS boundary is a polyhedron called a cub-
octahedron. Just as the two-dimensional LPS plot for
three-body final states is reduced to the one-dimensional
plots of Fig. 2.5 by projection on the boundary, so are
the four-body distributions two-dimensional after pro-
jection on the cuboctahedron.

The example of n. p-+2m w+p at 11 and 16 GeV/c
has been analyzed by Kittel, Ratti, and Van Hove
(1971). For this reaction the only region of the LPS
plot with appreciable population is defined by q~ I

"(0,
q~~r) 0, where the superscripts P, +, f, and s refer to
proton, ~+, and fast and slow m, respectively. The
resulting distributions are shown in Fig. 2.7, where

qI I+ and qI I' are used as independent variables.
Two facts emerge clearly from the elegant display

in Fig. 2.7: (1) Only the regions favored by Pomeron
exchange are heavily populated (see Fig. 2.II for the
exchanges which populate the different regions). (2) In
the heavily populated regions the density of events does
not vary signihcantly from 11 to 16 GeV/c, which con-
firms the assignment of these events to Pomeron ex-
change. The LPS plot has shown us in a very clear and
detailed manner that single Pomeron exhange (diffrac-
tion dissociation) is the dominant mechanism in the re-
actions studied. We shall return to this point later, since
the comparison of the relative importance of diffractive
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FIG. 2.4 Experimental LPS plot for
x+P—+m+~ P at 8 GeVic, from Van Hove
(1969).
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vs multiperipheral production is one of the important
issues to be resolved.

In this section, however, we are most interested in
assessing the value of the LPS plot as a phenomenologi-

,
cal tool. The example we have discussed establishes its
value for four-body final states. Kittel, Ratti, and
Van Hove have also succeeded in using LPS plots to
extract interesting features of five-body production
reactions, but here the fact that the plot is three-
dimensional makes it much harder to read. Obviously,
simpler displays, such as single-particle densities and
two-particle correlations, are needed for higher multi-
plicities. These will be discussed in succeeding sections.

Before leaving this subject of LPS plots, it may be
worthwhile to discuss their significance from a more
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FIG. 2.7. I PS distributions for m- p—+2~ ~+p at 11 and 16
GeV/c. The oblique segments drawn upward from the bin centers
measure the number of events in each bin at 11 GeV/c (left-
hand segment) and 16 GeV/c (right-hand segment). The graphs
show the possible Pomeron exchange processes (Kittel, 1970).

3. Choice of Longitudinal Uariables

Ic)

FIG. 2.6. Pomeron exchange diagrams by which the processes
in Fig. 2.5 can be interpreted.

The foregoing sections have emphasized the utility
of distinguishing the role of longitudinal and transverse
momenta. Models and phenomenological schemes gen-
erally make this distinction. Manifest covariance under
general Lorentz transformations is thereby sacrificed,
and only invariance under longitudinal Lorentz trans-

general point of view: the LPS plot is an example of
data presentation, relatively unbiased by theoretical
models, in which one hopes to recognize patterns which
elucidate the underlying physics. As the number of final-
state particles grows, it becomes impossible to compre-
hend complete multivariable distributions. The im-
portant task of the phenomenologist is then the de-
vising of useful ways to present these data. Bjorken
(1971) has expressed the problem as one of devising
"projection operators" to project the data onto spaces
of manageable numbers of dimensions. Inclusive spec-
tra, where only one or two final-state particle momenta
are specified, are currently the most-used form of pro-
jection. Although we shall devote a large fraction of this
review to discussion of inclusive spectra, we must recog-
nize the incompleteness of this presentation and hope
for the development of other, complementary, projec-
tions.

M F
7l' P

p

FIG. 2.8. Possible exchange diagrams contributing to the four
regions of Fig. 2,7.
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formations (transformations along the beam direction)
remains. Under these transformations the tranverse
momenta are invariant, and need no further discussion.
The choice of a reference frame for the longitudinal
momenta varies, however, according to the physical
picture one favors. Benecke, Chou, Yang, and Yen
(1969), picturing multiparticle production as a diffrac-
tive fragmentation of the projectile and target, favor
the rest frames of these particles. Feynman (1969),
picturing particle production by bremsstrahlung result-
ing from change of direction of a parton, prefers the
center of mass system, in which the bremsstrahlung
products would have relatively low energy. The multi-
peripheral model prefers no special frame, since it im-

plies production of particles evenly spaced (on the
average) in the parameter specifying the longitudinal
Lorentz transformation.

There is one elegant choice of variable which elimi-
nates the bias imposed on the data presentation by
choice of a particular frame. This variable was used
by Wilson in 1963 (Wilson, 1963), and has recently
been employed by Feynman (1969),Van Hove (1971),
and DeTar (1971).

Consider the process

P,+Pb-+q'+X, (2.8)

—(m 2+
~

g~i
~

2) I/2 (2.10)

Often one can drop the superscript i when there is no
confusion about which final particle is being considered.
In terms of the rapidity y;, the four-momentum q; in
the laboratory system is given by

q'= (p, cosh y, , q, ', q„', p; sinh y;), (2.11)

where the s direction has been chosen along the beam,
so that

z"= (q*', q. ') (2.12)

The rapidity y; specifies the longitudinal Lorentz trans-
formation that relates the lab frame to the frame in
which particle i has zero longitudinal momentum.

All longitudinally moving frames are put on an equal
footing by the use of the y; variables, since they are
all related by a simple shift of the scale. That is, a
longitudinal Lorentz transformation characterized by
&=cosh u merely changes y; to y, ', where y, '=y, +u.

where Pb is the beam four-momentum, P, is the target
four-momentum, q' is the four-momentum of the ith
outgoing particle, and X represents the rest of the out-
going particles. Specializing to the laboratory frame,
we 6nd p =0. Then the rapidity y; is defined as

yi= sinh (qll /u~) =
2 ln L(L+qll )/(+~ qll )]

(2 9)
where the loegitudieal mass p, ; is defined as

The beam and target momenta are given by

Pb= (mb cosh yb) 0, 0, mb sinh yb).

p = (m„0, 0, 0), (2.13)

1n(p/m. ) (y(yb+ln (mb/Ib) (2.15)

The total length of the kinematically allowed region
in y is equal to I", where

ym ax ym in V = 111 (s/u') . (2.15b)

The length I' of the y plot varies with the type of par-
ticle observed, but not with the nature of beam or
target particle. If one wishes to have a plot of constant
length, one can use a reduced rapidity y„=y/V, which
is asymptotically restricted to 0&y„&1.This variable
does, however, have the drawback that at infinite
energy it maps any momentum which remains finite
in the laboratory into the point y„=0, and any mo-
mentum which remains finite in the projectile frame
into the point y„= 1. This is analogous to the situation
with the x variable, in which all finite momenta in the
cm system are mapped into x=0. Mapping has always
been a useful technique for the theorist, but in this
field the judicious choice of variable offers us the unique
opportunity to map the entire region in which our
theories fail, into a single point.

We conclude this section by collecting the relations
between the three common choices of longitudinal
variables: y, qll (lab frame), and x, where we use the
definition

x= 2ql l%'12. (2.16)

An asterisk is used here to denote a c.m. quantity. Two
other definitions are in common use, x=qll*/p, * and
x=qll*/(qll*)„„„, which differ slightly at finite s, but
approach the same limit. Although the latter definition
has the advantage of restricting x to exactly —1&x& 1,
it leads to complicated connections with other variables
because of the dependence of (ql l*)„„„onthe nature
of the final state particles. 4

The exact relation between q~~ in the lab frame and
x is given by a Lorentz transformation,

ql l
=-2, +s Isinh uLx2+ (4u2/s) J"+xcosh ut, (2.17)

where p2= qi2+m2 and where sinh u= p,*/m, .
' This can be derived from Eq. (3.9).
4 We doubt that it is worthwhile spending much time worrying

over which x to use, and advocate standardizing to the simplest
definition, Eq. (2.16). The difFerences are of the order 1/s, and
experience with two-body Regge phenomenology does not instill
confidence in our ability to understand corrections of this order.

where s= (p,+pb)' is exponentially related to yb in the
large s limit

s—m, mb exp (yb), (2.14)

where the asymptotic equality refers to the region
s))m, 2 mg2.

The absolute kinematic limits on y for a fixed value
of q are given in the asymptotic region by'
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Fxpanding the square root on finds the asymptotic TABI,E 2.2. Relations among various sets of kinematic variables

formulas for single-particle inclusive reactions.

q[[=rsm x—(ass/2xm, )+0(s '),
= sx/2m, +0(1),

whereas at x=0, q~ ~

=ass'"/2m, .
The exact inverse relation is

x«—(2fs/s'Is)

x)) (2fs/s'~'),

(2.18)

Reaction:

P +p~~q+&

masses nz, m}5, nz V

De6nitions:

x= (2fs/s'I') sinh y*,

Taking a large-s limit yields

y*=y—N. (2.24)

x- (f /m—.)f e »+ —(m.-'/s) e»5

The inverse relation is of the form

y= ln (—is/xm ), x«—(2is/s'I'),

(2.25)

= ln (xs/Ism, ), x))2ls/s'I' (2.26)

whereas @=0corresponds to y= N.

The rapidity y* defined in terms of c.m. momenta
in terms of lab momenta is formally somewhat simpler
than y. It is easy to see by adding and subtracting the
energy —momentum conservation conditions

that
Z qadi

'=0, Z qo '=s I

g fs, exp(y;*) =s'I'= g p; exp (—y;*).

From these equations it follows that the absolute limits
on y* are

1 P' gy gglg' (2.15a')
where

F,= ln (s/is, s). (2.15b')

The relationship of y* to x is given by the definition,

x= (2/s'~')Lq~~ cosh I—
(q~t +is )'I' sinh Ng. (2.19)

As long as q~ ~

is held fixed as s—+, this gives the result

x= m, 'Lq~
~

—(q ~
~'+is') 'I'+0 (s ')g

=
(q~ ~

—E,)/m, +0(s ') (2.20)

which is always negative. However, if q~~ grows as s'f'
(to be specific, let q~~

——sls'~'), then one obtains

x= (4m, 'rP Is )—/2rim, s'~ if qt ~

= res'I' (2.21)

which vanishes as s—+00. Finally, if q~ ~
grows as fast as

possible, as s, then one finds

x r, if —q~~=rs/2m, .
Analogous relations hold in the projectile frame.

The relation between y and q~ ~
is just the definition

of y, Eq. (2.9),

y= sill}1 (q~ ~/ls) . (2.23)

The basic relation between x and y can be found by
performing a Lorentz transformation to the c.m. system
on the above equation, which yields

Momenta without superscripts refer to lab frame
Asterisks refer to c.m. frame
Superscript "b" refers to projectile rest frame

q~ ~

=q„+s direction along p&

p~ =qi~+nz',

y=—sinh r (q~~/»),

F—=in (s/»')

x=—2q~ ~~/srls

y*=»nh ' (I i'/»)

Exact relations, valid for all physical x, y, q„:

y =y —», cosh» =F.,*/m:„ sinh»=p*/»s

x = (2/s''s) } q(( cosh» —(q( P+gP) '+ sinh»g

q~ ~

= (s'I'/2) }xcosh»+sinh»} x'+ (4'/s) g»'}

x=exp( —-,'F+y ) —exp( —as'' —y*)

Approximate relations, valid for x«—2»/s"s

q(( =-',»s,} x—(/ »»~,x'))+0(s ')

*=Cmi
—(mi'+»') '"j/»s. +0(s ' mi/s)

qadi =sx/2~»s+0(1)

x= —exp (—kl' —y')+0 Lexp (—sl'+y*) g

x= —1+(Ms/s) +0(»'/xs)

Approximate relations, valid for x»(2»/s' ')

q) P xsmsPx =(pP/xma—') )+0(s ')

*=i@i'+}:(mi')'+»'3'"}/»»+0}:s '
(m Ws) &

qi i
=sx/2»s, +0(1)

*=exp (—ll'+y*)+OLexp (——:1'—y') 3

x= 1—(M'/s) +0 (s4'/xs)

Eq. (2.24), which can be written in the form

x= exp L
—(-' 1'—y»)] —exp P—(-', F+y*)). (2 25')

Note that —,'I' —y* is the distance from y* to the right-
hand limit of the rapidity plot, and s I'+y* is the dis-
tance to the left-hand end. These formulas are col-
lected in Table 2.2.

The Jacobians of these transformations can be read
off from the Lorentz invariance of d'q/E, . Since d'q=
d'qxdq

~ ~, it follows that dq~ ~/E is invariant under Lorentz
transformations along the beam direction, and there-
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fore that

dqll/(qll2+lP) & =dz/P +(4@2/s)] &2=dy (2 27)

C. Inclusive Syectra; Scaling

1.

Defirti�ti

ort aed Conwentiorts

Since the complete display of dependence on all the
longitudinal momenta is impractical for more than five
particles in the final state, experimenters and theorists
have turned to simpler distributions. The first to be in-
vestigated is the single-particle inclusive spectrum;
that is,

a+b~c+X
with momenta

Pa+ Pb q+ ' ' '
yr

(rs)c1c2" crs= (f /& bF (n)c1c2 ~ crs (2.31)

Since we shall most often discuss the single-particle
density, we abbreviate by simply writing p for p(').

~ More general qz dependence is of course permitted in polarized
reactions, which we do not consider here.

where I stands for whatever else is produced, but not
observed. It is convenient to write the unpolarized
cross section in terms of a function F,q'(q~~, qd. , s) de-
fined as:

E,ttd'a(ab &c+X)/d—q~7= F,t,'(q~ ~,
—qi, s) (2.29)

where' qd. =~ qd.
~
. We shall frequently drop the sub

and superscripts when they are not required for clarity.
We encourage everyone to use this invariant func-

tion F rather than d'o/dq'. The factor E, multiplies out
an uninteresting phase space variation. The current
situation in which some data are presented with the
E factor and some without this factor makes compari-
sons dificult. At the time of this writing, however, the
confusion still persists. If we cannot agree on such a
simple thing as invariant phase space, perhaps we could
at least agree to present data irI, bins in qi, rather than
presenting only averages over all qi. Then readers could
convert to their own favorite plots.

Multiparticle inclusive spectra can also be defined.
Neither experiment nor theory has progressed beyond
the two-particle inclusive reaction,

a+ b +cg+cg+X—
for which the two-particle inclusive spectrum is defined
as

E&+$d'o(ab~c&+c2+X)/. d'qzd'qm j=F&&@'"'(q& q2, s—).
(2.30)

Many theoretical results simplify when expressed
in terms of derIsities p(") rather than in spectra F("),
where the densities are defined by dividing by the total
cross section 0. ~,

f (d'q/E. )p(q, s) = (~},
where the average multiplicity (rt} is

(N}=o~,~ 'Q rIo&"&

(2.32)

(2.33)

Caution: Experimenters often normalize (n) to the
inelastic instead of the total cross section by excluding
elastic events from measurement.

If the experiment measures only particles of a given
type, ~ for example, then the normalization is

f (d'q. /E. )p. = (~.} (2.34)

where the subscript c labels the particle type. The
two-particle inclusive density satisfies the normaliza-
tion

f (d q /E ) (d qd/Ed) p '(q. , qd, s) = &~.~d '%b d)

(2.35)

Useful sum rules can be derived by integrating in-
clusive densities multiplied by components of momenta
(Chou, 1970; DeTar, 1971c).The simplest of these is
an expression of energy conservation,

Q f d'qp, (q, s)=s"' (2.36a)

which can also be written in the form
1

dx d'qip, (x, qd. , s) = 2.
c —1

(2.36b)

3. Limitieg Fragmeetatioe arid Scaheg

Organization of the data on single-particle spectra
has been greatly facilitated by the scaling and /imitieg
fragrrterttatiort, hypotheses. These hypotheses have a
long history, starting with the pioneering work of
Amati, Fubini, and Stanghellini (1962). Wilson (1963)
was the first to recognize the generality of the scaling
idea, but its importance was not widely appreciated
until its rediscovery by Feynman (1969) and Benecke,
Chou, Yang, and Yen (1969). We shall present the
various forms of the scaling/limiting-fragmentation
hypothesis, and discuss the degree to which they are
equivalent and the extent to which they are confirmed
by current data. We shall first state the hypothesis
with only a sketch of one of the several pictures of high-
energy phenomena which imply it. Another picture,
that of short-range correlations, will be. developed in
the next section. It is remarkable that theorists using
such a variety of pictures of high-energy phenomena
agree on the same conclusion. In Feynman's words,"I am more sure of the conclusions than of any single
argument which suggested them to me, for they have
an internal consistency which surprises me and exceeds

Z. Vormalizatio~z and' SNm ENles

Since an event with e particles in the final state is
counted n times in a single-particle inclusive measure-
ment, it follows that
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the consistency of my deductive arguments which
hinted at their existence" (Feynman, 1969).

Limiting fragmentation hypothesis In. this form, pro-
posed by Benecke, Chou, Yang, and Yen (BCYY),
one uses either the laboratory or projectile rest frame.
In the laboratory, for example, the hypothesis is that
F(q~ ~, qi, s) approaches an asymptotic limit for large s

F(mi, q~, s)—=~(qadi, q~) (2.37)

provided that q[ [ is held fixed as s—+~. Such particles
are considered by BCYY as fragments of the target.
A similar statement holds in the projectile rest frame,
which we denote by the superscript b,

p(qadi', qi, s)—p(qadi', qi) (2.38)

provided that q~~~ is held fixed as s—+~. Similar state-
ments are also hypothesized for two- and more-particle
distributions.

One argument given by BCYY for this hypothesis
is based on the geometrical picture of Yang and col-
laborators. In the lab system, the projectile Lorentz
contracts into a thin disk which passes through the
target and excites it. "What is the effect of higher and
higher projectile momentums The time of passage is
essentially fixed, but the disk is further and further
compressed. The constancy of the total cross section
and of the elastic scattering cross section suggest that
the momentum and quantum-number transfer process
between the 'stu6' in the projectile and the 'stu6' in the
target does not appreciably change when the projectile
is further and further compressed. Thus one expects
that the excitation and breakup of the target approaches
a limiting distribution" (Benecke, 1969).

Scaling hypothesis In this fo.rm, proposed by Feyn-
man, one regards F (q~ ~*, qi, s) as a function of c.m. vari-
ables, which we denote by asterisks. The scaling hy-
pothesis then says that asymptotically in s the function
F(q~~*, qi, s) depends only on qi and x=2q~ ~*/s'",

F (q~ ~*, qi, s)=J"(x, s). (2.39)

For x'»4ti'/s, this is equivalent to the hypothesis of
limiting fragmentation. From Eq. (2.20) one sees that
for x((—2t/ 'i' suffixed x implies fixed q~~ in the lab;
similarly, for )&x2 /tsar'", fixed x implies fixed q~~~ in the
projectile rest frame. However, the point x=0 does
not correspond to any finite momentum in the lab or
projectile frame, but instead to finite momentum in
the cm system. Thus scaling includes the limiting frag-
mentation hypothesis, but goes beyond it in making
a statement about the region x 0 also. In this central
region Feynman makes the further prediction, based
on a bremsstrahlung picture, that F(x, qi) should be
independent of x for small x.' Ke discuss this prediction

'This prediction has a long history. It was found by Amati,
Fubini, and Stanghellini (1962) to be a consequence of the
multiperipheral model. Heisenberg (1963) saw it as a consequence
of the Lorentz contraction of the source region of overlap of the
target and projectile disks in the c.m. system.

in more detail in the next section, from the point of
view of short-range correlations in the rapidity vari-
able y.

Experimental results on limiting fragmentation. Since
the importance of the scaling/limiting fragmentation
hypotheses has only recently come to be appreciated,
there were very little relevant data available at the
time of writing of the first draft of this review. In the
meantime, fashions have changed to such an extent
that it is impossible for us to present a comprehen-
sive review of the data. Of the medium-energy data
(&30 GeV), which is summarized in Lander's review
(1971), we present only one example: pp~s. X at
five energies from 13 to 28 GeV (D. Smith, 1971),
shown in Fig. 2.9. Both the q~ ~

and q~ distributions show
little variation over this energy range.

The successful operation of the intersecting storage
rings (ISR) at CERN has opened up a vast new
energy range in pp reactions. Figure 2.10 (Krisch, 1971;
Ratner, 1971) shows that limiting fragmentation passed
the test, within presently available accuracy! Note,
however, that scaling in the central region is still un-
tested, a point to which we return in the next section.

Limiting fragmentation has now passed its first
tests, and the utility of the idea is confirmed. The study
of the nature of the limiting behavior of single-particle
inclusive spectra will now become more refined, yield-
ing information on the approach to the limit which will

greatly enrich our knowledge gained through study of
total cross sections, the simplest of inclusive reactions.

D. Short-Range Correlation Picture

1. Correlation Length Hypothesis

We present in this section a picture of high-energy
phenomena which provides an intuitively simple mo-
tivation for the scaling hypothesis discussed in the
previous section, but which is powerful enough to lead
to many additional predictions. Wilson (1963) was the
first to see that the predictions of the multiperipheral
model concerning the single-particle inclusive spectra
depended only on rather general hypotheses: (a) limited
transverse momenta, and (b) short-range order in
longitudinal momenta. DeTar (1971) and Wilson
(1970) have explored this observation more fully.
Although it has been abstracted from multipheripheral
models, and includes all their most successful predic-
tions, it is more general than any specific model and
is therefore presented here. Discussion of specific multi-
peripheral models can be found in Sec. III.A.

Since the transverse momenta are limited to small
values, we shall ignore them and concentrate as before
on the distributions in q~~,

' or, more conveniently, the
lab rapidity y= sinh '(q~~/ti), where p,'= +mqi' (see
Sec. II.B.3 for a discussion of these variables).

The correlation length hypothesis states that there is
no correlation between particles whose rapidities y; are
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separated by a distance large compared to a certain
correlation length L; that is, for

~ y;—y, ~&&L. Moreover,
there is no correlation with the incident particles as
long as their rapidities y, and y& differ from y by a dis-
tance large compared to L. With rapidities dehned in
the laboratory frame, this means that the outgoing
particle will have no correlation with the target as long
as y))L, and no correlation with the projectile for
y&&V—L. We shall now show that all the predictions
we have encountered previously follow from this cor-
relation length hypothesis.

Consider the hypothetical single-particle spectrum
shown in Fig. 2.11. It is divided into three regions:
Region T, which we call the target fragmentationregi. on,
where y(L; Region C, the central region, where L(y&
Y—L; and the beam fragmentation region, where

y) Y—L. Consider first the target fragmentation
region. The single-particle spectrum depends on only
three variables, which we take to be qi, y, and y

—F.
But assuming high enough energy that F'»2L, then
in the target fragmentation region I —y»L, depend-
ence on this variable would violate the correlation
length hypothesis. Therefore, we have

(E,/ ~ b) (d'~~'/dq') =p.b'(qi, —y, y —Y)

=p~b'(qi, y) for V—y&&L. (2.40)
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That is, the distribution is limiting. Moreover, there
can be no correlation with the beam particle (except
for a normalizing factor), so the distribution reduces to

p b (q, y, y —~)=V.'(q, y) for I' —y»2L.

(2.41)

In the beam fragmentation region, the corresponding
result is

p.b'(q~ y y —1'):—Vb'(q~ y —i') for y»L (2.42)

In the central region, both y and y—I' are large
compared to L, so that the spectrum must be inde-
pendent of both, and independent of the nature of
both target and projectile,

0.5—
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FIG. 2.9. Test of limiting distribution hypothesis in single-
particle inclusive spectrum of pp~m +anything at various
beam energies. Points at different energies should coincide if
distribution is limiting. (a) Longitudinal momentum spectrum,
(b) transverse momentum spectrum.

p-b'(q, y, y—1')—=y'(q ) for L«y« V—L. (2.43)

~There is no compelling reason to believe that all these cor-
relations lengths are the same, but we shall use one symbol for
simplicity. Also, in order to simplify kinematic relations in Table
2.2, we de6ned Y as the total length of the rapidity plot, Y=
ln (s/p, '), rather than defining Y=y& as DeTar (1971) does. The
fact that YWyb, in general means that y and yb are not quite
at the ends of the rapidity plot. We know of no physical reason
to attach greater signficance to discussion of correlations in
terms of distances from yf, and y, or in terms of distances from
the ends of the plot. Therefore, we ignore differences of this
order, and choose on the basis of notational simplicity.

'This picture has been discussed by Feynman and by Wilson
(1970) in terms of the analogy with a gas or liquid. Coordinates
of each particle in the liquid are the two components of transverse
momentum and the rapidity. Since (g&) is small, independent
of energy, the liquid is con6ned to a long thin cigar-shaped volume
as in Fig. 2.2. The single-particle density p&) is the density of
the liquid. Correlations are short-range, both among the particles
of the liquid and between the particles and the walls.
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This equation predicts a centra/ ptateal which arises
simply because a particle in the central region is farther
than a correlation length away from both ends. The
resulting distribution in qi is predicted to be a universal do'

dp
B

10

Pt=.16

~ l2-24GeV
v 500 GeV
~ IIOO GeV
~ l500 GeV

Pj =.I6
2

FIG. 2.11. Hypothetical single-particle inclusive spectrum as
a function of rapidity. Illustrated are target fragmentation
region T, central plateau C, and beam fragmentation region B,
as well as correlation length L. (These designations are only
qualitative; dimensions on the figure should not be taken literally. )
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FIG. 2.10. Data on pp —+c+anything (c=p, ~+, E+) from
CERN intersecting storage rings (Krisch, 1971), with lower-
energy data included for comparison (a) as a function of x, for
fixed p~', and (b) as a function of p~', for fixed x. Energies shown
are equivalent lab energies.

depending on the length Y=ln(s/p') of the rapidity
plot. See Table 2.3 for a tabulation of I' vs s and Et,b.

Low-energy region, I' &L. In this region the y plot
is shorter than one correlation length, so that the dis-
tribution is nowhere limiting.

Limiting fragmentation energy region, V»L. As soon
as the energy is such that V»L, particles with y near
one end of the spectrum decouple from the opposite
end. Hence the distribution becomes limiting near the
ends, and the limiting portion spreads as the energy
increases.

P/ateaN energy region, F&&2L. For F»2L, the entire
distribution is expected to take its limiting form. Every
value of y is now at a distance large compared L from
at least one end. As I" becomes large compared to 2L,
the central plateau should develop. As I" increases
further, the only expected change in the single-particle
inclusive spectrum is that the central plateau lengthens.
In this region the multiplicity should increase like ln(s).

Since s= p,'e~, doubling V means sqlarieg s. That is,
if sp is the threshold of the limiting fragmentation
region, and if s„ is the threshold of the plateau region,
then we find s„~sg'.

Khich of these energy regions are reached by current
experiments' The evidence on limiting distributions
presented in Sec. II.C shows that the reaction pp~mX
possesses a limiting fragmentation region, to within
the 25%—30% experimental accuracy, at 13 GeV (see
Fig. 2.9). It seems likely that many reactions have
reached approximate limiting fragmentation at energies
of 10—30 GeV, and perhaps even lower in some cases.
See Lander's review (1971)for additional relevant data.

TanxE 2.3. Length F'=ln (s/px) of the rapidity plot for pions

function depending only pn the t57pe of partic]e pro of transverse momentum pi=350 MeV, for various values of

duced c.m. total energy s'" and El,b in pp collisions.~o

Z. Speculations Concerning Asymptotic Energies 4 5 6 7 10

At what energies should these asymptotic forms be
valid' Assume for the purpose of speculation the ex-
istence of a universal correlation length L in the vari-
able y. Then there are several distinct energy regions

s '2 in GeV 28 46 76 125 206 340 574

Ei,b in GeV 3.3 10.6 30.0 83 227 615 1750
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show in Fig. 2.13 some of the data from Fig. 2.10, re-
plotted as a function of y. We eagerly await the filling
in of the central region!

3. Ceetrul Pluteul used Logurithmic Growth

of 3fNlti pticities

Existence of a central plateau implies that the aver-
age multiplicity of final-state particles must rise log-
arithmically with s. This can be seen from the normali-
zation relation, Eq. (2.32), expressed in terms of y

f dyd'qip, &'(y, qi, s) = (e,), (2.44)

where (I,) is the average multiplicity of particles of
type c. Performing the integral over transverse mo-

menta, one can write

(2.45)
10 —

I,

io'l'

Dp

E~P
Y-Tl~ ~ +

E -PL

I i I i I i I

0 l 2

Y

The integral over y in Eq. (2.45) gives two contribu-
tions to the multiplicity; a constant contribution com-
ing from the fragmentation regions, and a contribution
from the plateau region. The latter contribution grows
logarithmically with energy, since the plateau length
grows with I". Explicitly, this plateau contribution to
the multiplicity is given by

FIG. 2.12. Some experimental single-particle inclusive spectra,
as functions of the CM rapidity. (BNL—Rochester —Wisconsin
collaboration (Chen et al.); communicated by T. Ferbel and
L. L. Wang at the Cal Tech conference "Phenomenology in
Particle Physics, 19''1".)

Theoretical arguments based on the Mueller approach
presented in Sec. II.E (Abarbanel, 1971a) suggest a
correlation length I.= (1—neer)

' 2. Correlations due
to prominent low-energy resonances also lead to an
estimate of L 2. If these estimates are correct, then
the energy at which approximate limiting fragmenta-
tion would begin to be observed is I"&3—4, and a central
plateau should begin to develop at I' &6—8. Table 2.3
gives the relation between I' and beam energy, for pions
of qi=350 MeV produced in pp collisions. Our estimates
translate into fragmentation limits being approached
at 2—4 GeV, and a plateau beginning to appear at 30—200
GeV.

Have any reactions begun to develop a central pla-
teau in existing experiments? Some rapidity plots com-
piled by the BNL-Rochester-Wisconsin collaboration, 9

Chen et ul. , are shown in Fig. 2.12. Although one can
see increasing rounding at the higher energies, no real
plateau is apparent. At ISR energies, one should see the
plateau, if it exists. Unfortunately the data available
at this time, shown in Fig. 2.10, do not extend into the
central region. If the correlation length is L 2, and
we then ask for y more than two correlation lengths
from the end of the plot, we need

~
x

~
(0.02!To drama-

tize the difference between the x and y variables, we

' Private communication of unpublished data by L. L. Wang
and T. Ferbel at the CalTech conference "Phenomenology in
Particle Physics, 19''1".

(n.)=B, ln s+ const,

& =(1/~)(«/dy) l.~ ~ ' (246)

Thus the height of the plateau in y determines the co-
efhcient of the logarithmic term in the multiplicity.

We are not yet able to use Eq. (2.46) without further
assumptions, because we have no data which show a
clear plateau. Bali, Brown, Peccei, and Pignotti (1970a)
pointed out, however, that one can use this equation
to test the speculation that medium-energy data around
30 GeV might be at the threshold for development of
a central plateau. In this case, (do/dy)„~, ~„„would be
equal to the maximum height of the distribution in
Fig. 2.12, which is about 14 mb for pp —+s X at 28.5
GeV/c. To compare with the Echo Lake data in Fig.
2.1, we must normalize to the inelastic cross section,
since they measure the multiplicity in inelastic col-
lisions only. Using o~

3~3 mb (see Holder et al. ,
1971), we find 8,— 0.42. If we assume that the
charged particles measured at Echo Lake consist of
equal numbers of sr+ and ~ (ignoring a E correc-
tion of uncertain magnitude) we infer from Table 2.1
a value of 8„- ranging from 0.36 to 0.48, depending
on which fit is used. The theoretical value obtained from
Eq. (2.46) using the speculation of onset of the pla-
teau at 30 GeV is in agreement, within the considerable
uncertainties.

These speculations may be roughly correct, but they
are probably as oversimplified a picture as were the
initial attempts to predict asymptotic behavior of two-
body amplitudes using Regge poles. In Sec. II.E, we
shall be able to say more about the approach to the
limit. Detailed predictions must, however, employ
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speci6c models. One such prediction using a multi-
peripheral model (Pignotti and Ripa, 1971) shows a
rather slow approach to a plateau, with considerable
curvature in the central region even at ISR energies.

Pa

4. Tzvo-I'article Correlations

The short-range order hypothesis predicts the vanish-
ing of two-particle correlations if the rapidities of the
two particles diGer by much more than a correlation
length. We discuss this prediction briefly in this section,
and defer further discussion of correlations to Sec. II.E.

Defining the two-particle inclusive density as in
Eq. (2.30), we have

p,b""(q&, q&,
' s)=—(E&E2/o, t,) )do (ab~c&C2X)/d'q&d'q2).

(2.47)

It is also useful to define a two-particle correlation func-
tion C~2~,

C, '" (q, , q„.s) =,""(9,, q; s) —p, "(rb, s)p "(q„s).
(2.4g)

Then the short-range correlation hypothesis states that

C~'"'(yg) qadi, y2p QQJj s)~0 for
~ y2

—
yy ~

&&L.

(2.49)

Consider, for example, the case where y~ is in the target
fragmentation region, and y& is in the beam fragmenta-
tion region, and y2

—y»&L. Then using Eq. (2.41) and
(2.42) one obtains the result

p~'"'(q&, q2, s)—yo" (yi, qu )pa" (I'—y2, q2i), (2.50)

where the y's are the same functions measured in single-
particle spectra.

C disc

Pa Pb

Pa Pb

Pq Pb

Fn. 2.14. Schematic display of unitarity relation between
total cross section and imaginary part of forward scattering
amplitude.

p,-pair production by Altarelli, Srandt, and Preparata
(1971) is proving very useful in suggesting further
theoretical and phenomenological developments. The
6rst step in Mueller's analysis can be regarded as a
generalization of the optical theorem. The optical
theorem, based on unitarity, says that the cross section
for a+b~anything is equal (up to phase space factors)
to the imaginary part (or absorptive part, or discon-
tinuity in s) of the amplitude a+b-+a+b in the for-
ward direction. This is shown pictorially in Fig. 2.14.
Similar relationships exist (DeTar, 1971a; Tan, 1971a;
Stapp, 1971) between the n-particie inclusive reaction

a+b~cl+c2+ ' ' '+c~+X, (2.51)

where X represents anything else produced, and the
forward limit of a discontinuity in M', the missing
mass, "of the amplitude for the process

a+b+c~+c2+ ~ +c„+a+b+c~+c—, ~ +c.. (2.52)

E. Mueller Analysis of Inclusive Reactions

1. Geeeralised Optical Theorem

A new method of analysis of inclusive reactions intro-
duced by Mueller (1970) inspired by related work on

a+b~c+X, (2.53)

whose cross section turns out to be proportional to a
discontinuity" of the forward amplitude

For simplicity we limit the discussion here to the single
particle inclusive reaction

a+b+c +a+b+c- (2.54)

l 500 GeV

ll00 GeV

500 GeV

q~ = O. I6
2

The relationship is shown pictorially in Fig. 2.15, in
close analogy to the treatment of the optical theorem
in Fig. 2.14. The relation between the inclusive cross
section and the appropriate" absorption part 2 (p, q, ps)
of the three-body amplitude is

E.(«/d'q)= P(qll, q, s) =s '~—(p., q, p~), (2.55)

where some irrelevant normalization constants have
been absorbed in A.

I.O I I I I I I I

I 2 3 4 5 6 7

RAPIDITY y

FIG. 2.13. A replotting of some of the ISR data from Fig. 2.10 as
a function of rapidity.

10%he correct discontinuity in M' is the one which is equal to
the sum over intermediate states of the modulus squared of the
production amplitude. For a precise speci6cation see (Tan,
1971a}.
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by Regge Poles (not branch points) one finds the
result"

Pa qPb 2 (s, t, u) = t '"'u ""&f(qi) (2.59)

Pa Pb

X

Pg Pb

g dISC 2~
M

P qPb

From Fig. 2.16 we see that both Regge poles carry
vacuum quantum numbers, so that the leading be-
havior should be given by the Pomeron. " Then Eq.
(2.59) simplifies to

2 (s t u) = (tu) &&'if~'(qi)
=s '"'f~'(q ), (2.60)

FIG. 2.15. Generalized unit arity relation for single-particle
inclusive reactions, relating them to absorptive part of forward
three-body amplitude.

It will be convenient to express A as a function of the
invariants

s= (p,+pi)',

t= (pi —q)',

u= (P. q)', -
M'= (P.+P~ q)'. — (2.56)

These are related in the usual way

s+t+u= M', (2.57)

where mass terms have been dropped in the high-energy
limit.

The utility of these expressions becomes apparent
only in the high-energy limit. Mueller proceeds to
develop asymptotic expansions using Toiler's method
(Toiler, 1965), a very elegant and systematic prescrip-
tion for extracting asymptotic expressions. Rather
than attempt to develop the Toiler machinery here,
we shall adopt a more heuristic approach. There are
two limits to discuss, and we begin with the central,
or pionization, region.

Z. Central RegiorI; DoNMe-Regge Limit

tl—P s, (2.58)

where p'=qi'+m'. This limit in which both t and u
become large is appropriate to evaluation by a double-
Regge expansion, indicated by the diagram of Fig.
2.16. Assuming that the leading contribution is given

In what we have called the central (or pionization)
region; that is, the region in which qt ~

* is small in the
cm system of p, and p& and in which the rapidity y is
near the center of its allowed range, both t and I are
large and comparable in magnitude. In this kinematic
region it is easy to show Dor example, by using Eqs.
(2.65) and (2.67)] that

-q

FIG. 2.16. Mueller diagram
describing double-Regge limit
appropriate to central pla-
teau region of single-particle
spectrum.

Pa Pb

"This wobbly foundation underlines all the predictions which
follow. Although the energy dependence would be modified by
logarithms if branch points are important, this effect would be
hard to detect. Factorization is easier to test, and should be
tested as accurately as possible. It should be remembered,
however, that whereas a breakdown of factorization implies
non-pole terms, the converse is not true.

"That the Regge singularities which govern the asymptotic
behavior of A are the same as those which govern the asymptotic
behavior of two-body reactions is a plausible, but unproved,
hypothesis.

where Eq. (2.58) has been used in the final step, and
where the subscripts have been added to the function

f, 't(qi) to identify the incident particles, and the
superscript c identifies the observed 6nal-state particle.

Using Eq. (2.60) in Eq. (2.55) one finds

F '(q q s)=s ""' 'f '(q ) (261)
for the single-particle inclusive spectrum. If ai (0) = 1,
the distribution approaches a constant limit as s—+~.
If nz (0) should be slightly less than unity, the single-
particle density, p, defined in Eq. (2.31) as the distribu-
tion Ii, divided by the total cross section 0~ will still
approach a constant as s~co.

Another prediction of Eq. (2.60) is that in the central,
double-Regge region the single-particle spectrum f~'(qi)
in independent of q~ ~

as well as of s. This is equivalent
to the prediction of a central plateau in the rapidity
variable y, which resulted from the short-range correla-
tion model (see Sec. II.D.). If the leading singularities
are Regge poles, factorization is expected, so that

f~ (q ) =P.P~v (q.), (2.62)

where p, is the Pomeron coupling to particle u, and
where p'(qi) is now a universal function, depending
only on the observed particle. Since the couplings P,
and Pq determine the magnitude of the total cross sec-
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tion 0 g, one can write the universal relation

p~'=&./o~(do~'/d'q) =v'(q ), (2 63)

iedepemdelt of which particles o', and b are incident.
Remember, however, that this relation holds only for
su%ciently high energies to permit both t and I to be
large; see Sec. II.D.2 for further discussion of this
point.

3. Fragmentation Regions; Single-Regge Limit

Pa -q

I'o I'a Pb

The limit t—+—, I fixed, s~~, and qi fixed is the
target fragmentation region. To see this, go to the lab
frame and use the parameterization used in defining
the rapidity y in Sec. (11.8.3)

(b)(a)

q= (I cosh y, q, q„, p sinh y),

p.=(m. , 0, 0, 0),

Pb ——(mb cosh yb, 0, 0, mb sinh yb), (2 64) which gives the result

FIG. 2.17. Mueller diagrams describing single-Regge limit
appropriate to fragmentation regions of single-particle spectrum.
(a} Target fragmentation region, (b} Projectile fragmentation
region.

where tb'=qi'+m'. Since s is large, s m,—mb exp(yb).
From the definition of I it follows that

I=m, '+m' —2pm, cosh y. (2.65)

Thus fixed I and fixed qi imply fixed y (and therefore
fixed q(( in the lab frame). The appropriate form of the
Regge limit is then

&.(d .b'/d'q) =I".b'(q(„q, s)=(t "'/s)f. ' (q, qll)

(2.66)

which is indicated diagrammatically in Fig. 2.17(a).
In the target fragmentation region t is proportional

to s, as we can easily see by evaluating t in terms of y
from Eq. (2.50),

t=m2+mb' 2pmb cosh(y—b
—y)——(t((e "/m, )s (2.67)

Using Eq. (2.67) we can rewrite the single-Regge
limit form, Eq. (2.66), as

~.b'(q(( qi, s) =s""' 'f.b'(qi, qll) =f~'(q~ qll) (2 68)

where we have again assumed Pomeron dominance,
and assumed ni (0) = 1.

From Fig. 2.17(a) we see that factorization implies
that all the dependence on the beam particle is con-
tained in a factor Pb, so that we can write

f. '(qb~, q(l) =Pbbs:(qi, q(( ). (2.69)

Since Regge theory says that o,b=P,Pb, one can divide
by the total cross section to obtain a function which is
independent of the nature of the beam:

pab = (I/&ab)Fab = ra (q&) q(l ) ~ (2.70)

Similar results hold in the beam fragmentation re-
gion, where I is large and t fixed. According to Eq.
(2.67), this corresponds to fixed y —F', or fixed q(( in
the projectile rest frame (which we designate as q((b),
and has the single-Regge limit shown in Fig. 2.17(b),

Pab =7b (q&) qll ) ~ (2.73)

4. Approach to Limit; Secoedory Truj ectories

By including secondary trajectories in the Mueller
analysis, one can discuss the rate of approach to the
asymptotic limit (Chan, 1971a; Abarbanel, 1971a).
For example, in the target fragmentation region, the
inclusion of a secondary trajectory, n~ would give an
expression

~.b(q((, qi, s) =f.b'(qi, ql l )+s ""' 'f b"(q~, qll).

(2.74)

Secondary trajectories can be isolated by taking differ-
ences of single-particle spectra; for example, the dif-
ference between x+ and x on protons isolates the p.
If p+(q((, qi, s) describes the target fragmentation
spectra of the reactions

~++p—+c+X
then we have

p+(q((, qJ. , s) —p (q((, qJ. , s) =2f)'(qi, q(() a' & '. (2.75)

An interesting speculation is the extension of duality
arguments to predict reactions which attain their limit-
ing values at lower energies (Chan, 1971a). For ex-

ample, E++p~m++X is related in Mueller's analysis
to the three-body reaction E++P+~+~E++P+~+.
This reaction has exotic quantum numbers in the abc
channel. By analogy to two-body reactions, Chan et at.

Fab(ql() q~) s) =s""' fab (q~) qll') (2 71)

Factorization then implies that

f b(q&, q(l') =p.yb'(q&, ql('). (2.72)

Finally, one can divide by the total cross section to
obtain the density which is independent of the nature
of the target,
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TABLE 2.4. Comparison of some predictions made by three
different criteria which have been proposed concerning exotic
channels and rapid approach to the fragmentation limit (Chan,
197ia; Ellis, 1971; Einhorn, 1971}.

Fragmentation limit attained at low energies?

Reaction Chan et al. Ellis et al. Einhorn et al.

E+p—+~+X

~+p—+7i- X

pp —+m.+X

pp —+X X

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes, p frag;
no, E frag

no

no

no

yes

where
+ exp (—&/L) p'f. a (qi, qll), (2.74a)

L= (1—a~(0)) ' 2, (2.74b)

thus exhibiting the prediction of the correlation length
made by the Mueller —Regge picture.

The approach to the limit in the central region can
similarly be treated by including secondary trajectories
in the diagram of Fig. 2.16. The leading terms as s—+00
come from Pomeron exchange on one side and secondary

conclude that the contributions of the secondary meson
trajectories vanishes, f~=0. Such reactions should
then show limiting behavior at lower energies than
nonexotic channels.

It seems, however, that the application of duality
to the six-point function is not straightforward —several
papers have appeared recently which criticize the Chan
et al. criterion (Ellis, 1971; Chan, 1971b; Chen, 1971b;
Einhorn, 1971; Kugler, 1971). Alternate criteria for
the absence of secondary trajectories in the fragmenta-
tion limit have been proposed: Ellis et al. say that it is
indeed necessary that (abc) be exotic, but suKciency
requires (ab) exotic also. Einhorn et al. say that neces-
sary and sufFicient criteria are (ab) exotic, plus (bc)
exotic in the target fragmentation region (our conven-
tion is that a is the target, b is the beam) or (ac) exotic
for beam fragmentation. Examples of reactions where
the three criteria differ are given in Table 2.4. We know
of no data which discriminate clearly among these
tests. It should also be pointed out that finding energy
variation where none is predicted clearly violates the
prediction, whereas finding no energy variation where
such variation is allowed could occasionally occur "ac-
cidentally. "

The approach to the fragmentation limit described
by Eq. (2.74) can also be expressed in terms of the cor-
relation length picture described in Sec. II.D, by re-
writing that equation in the form

F~(qll, q~, s) =f.b'(q~, qll)

5. Experimemta/ Test of Factorisatiom

One of the factorization predictions discussed above
has already received a measure of experimental con-
firmation. In the target fragmentation region (the
region of small laboratory momenta qll) the prediction
of Eq. (2.70) is that the inclusive spectrum divided
by the total cross section is independent of the beam
momentum or beam particle type:

P~& ='Y~ (q~i qll)1 (2.77)

where y depends on the fragment and or the type of
target, but not on the beam. A Brookhaven —Rochester—
Wisconsin collaboration (Chen, 1971a) has collected
data on the following reactions,

ir+p~vr +X at 7 GeV/c, (a)
E+p~~-+X at 12.7,

pp —+n=+X at 28.5,

~ p~n. +X at 24.8,

m
—

p—+n.++X at 24.8.

(b)

(c)

(d)

(e)
Since reactions (a)—(d) have the same target and
same particle observed in the final state, they should
obey Eq. (2.77), provided that the energies are high
enough. Figure 2.18(a) shows the results of Chen
et a/. The agreement for reactions (a)—(c) is quite
good, but reaction (d) agrees less well. It is interesting
to note that this is just what Chan et al. (1971a) pre-
dict by regarding the first three reactions as exotic,

trajectory (N ) exchange on the other,

p.~'(qll, q~; s)=V'(q~)+ exp L
—(2 I" y—*)/LXpiib (q~)

+ exp) —(
' I'—+y*)/L]f ski" (qi)=y'(qi)

+s [ppsib (qJ. ) exp(y*/L)+& Mb (qL)

)& exp (—y*/L) j. (2.76a)

Note that the approach to the central plateau is rela-
tively slow; the secondary trajectory vanishes only as
s 'I'. If particle a is the same as particle b, as in pp~cX,
the secondary term simplifies to (Abarbanel, 1971a)

p~'(qll, qi; s)=&'(qi)+s "4&iver„'(qi)2 cosh (y*/L).

(2.76b)

Not only the rate of approach to the limit, but also the
shape of the secondary contribution is predicted.

The secondary term in Eq. (2.76) will contribute to
the average multiplicity, via Eq. (2.32). If y&~„' is
positive, (I) will curve downward as a function of
lns to its eventual linear behavior, and the central
region of the single-particle inclusive spectrum will
show a depression in its center before the plateau limit
is reached. If ymir„' is negative, (I) will curve upward
and the single-particle spectrum will have a hump in
the middle.
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whereas (d) is nonexotic and therefore expected to
approach its asymptotic limit more slowly. It will be
very interesting to have more such data at a greater
variety of energies.

TABLE 2.5. The second column gives the single-particle in-
clusive cross section for q~~(0. 5 GeV/c. The third column
shows these cross sections divided by their asymptotic total
cross sections.

I.OOO I
'

I

I

O. IOO—

b
0.010 —

t

l

0005

0.002—
0.00I—

w~p m"

p+p
K +p
w+p-g t"

IO.O I I

y. p„&&-)&O.5 Gev/c

LOO

O. IO

0.05

0.02

O.OI—

I i I

0 I.O 2.0
IGeV/c)

LONGITUDINAL MOMENTUM OF p LABORATORY FRAME

(a)

Reaction
0.5

p
dQ'I

I

0.5

QADI I

dgII

(d)

5.3+0.4 mb

3.5~0.4 mb

9.1a0.6 mb

7.9&0.6 mb

0.23+0.02

0.20+0.02

0.23+0.02

0.32+0.02

In those portions of the fragmentation regions which
are near the phase space boundary, x &1, more spe-
cific predictions can be made about single-particle
inclusive spectra Consid. er the limit s~~, t= (q—ps)
fixed, and. for the moment, M'= (p +ps —q)' fixed also.
An ordinary Regge limit is appropriate here,

do/dtdM'= (1/s')P(t& M') (s/M')'~'" (2.78)

and s. p-+w+X. This is the region where q~~ in the pro-
jectile rest frame, qI I, is small. In this region the asymp-
totic amplitudes for Reactions (a) and (e) are repre-
sented by the two Mueller diagrams in Fig. 2.19. Since
the Pomeron carries vacuum quantum numbers, these
two diagrams and hence the two spectra should be
equal asymptotically. In Fig. 2.20(a) the data of Chen
et al. are shown, and the two reactions agree roughly in
shape and magnitude —probably as well as could be
expected in view of the large difference in incident
energy. " In Fig. 2.20(b) the corresponding qi dis-
tributions are shown.

6. PItase Space Boundary; Triple Regge Limi-t

O. I

(G eV/c)

SQUARE OF TRANSVERSE MOMENTUM OF p

(b)

FIG. 2.18. Momentum distributions in the laboratory for four
reactions at different energies (see text). Each reaction is nor-
malized by its asymptotic total cross section. Equality of distribu-
tions tests factorization and hypothesis of limiting fragmentation
(Chen, 1971a). (a) Longitudinal momentum distributions. (b)
Transverse momentum distributions. Curves shown are fits to
data. Typical points show size of errors.

(a) {e)

In Fig. 2.18(b) the dependence on qi' is shown for
the region of q~~(0.5 GeV/c; again the spectra nor-
malized by the total cross section agree quite well,
especially the three exotic reactions at small qi'. Table
2.5 shows quantitatively how good the agreement is.

The 8NL —Rochester-Wisconsin collaboration also
analyzed the beam fragmentation region for rr+p~rr X

FIG. 2.19. Mueller diagrams for reactions (a) ~+p—+m X and
(e) m. p—+m-+X.

'3 From Fig. 2.21 one can infer that the difference between
the two reactions shouM come from p exchange. We know from
two-body Regge phenomenology that the ppp vertex is small
at t=0, since it is predominantly spin-Rip. Hence the p contribu-
tion should be suppressed, and the difference between x+p-+m X
and m p—+m+X in the beam fragmentation region should be
small.
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I.OO

I

0' O.IO—

~ 0.05—

-~b"
0.02—

0.0I—
x --—71 +

p
—g +... (24.8 GeV/c)

~ 7t +p —w +.... (7 GeV/cj

2.0I.O

I.00

0
(Ge V/c)

LONGITUDINAL MOMENTUM OF 7t IN PROJECTILE FRAME

where

F(x, qi)—y(t) (1—x)'—'~"& (2.83)

v(~) = (1|~) '
I A~(~) l'P.p(0)C»p(~) (2 84)

The P's are the usual Regge couplings, normalized ac-
cording to the prescription of Abarbanel et al. (1971c).
The factor gag+(t) is a Reggeon —Reggeon —Pomeron
coupling (see Fig. 2.21).'4 At the other boundary,
x —1, a similar formula can be obtained,

allows us to rewrite Eq. (2.79) in the form

Eq(d(r/dqa) =8 (x, qx, s)

=n(t, M')(1 —x) ""' ' '"s ""'-' (2.82)

Now t is a function of x and qi in this region, so F(x,
qi, s) will scale if n, (0)=1, and if y(t, M ) is inde-
pendent of N'. Imposing these conditions we 6nally
obtain

F(x, qi) —p(e) (1+x)'-"'"&. (2.86)

O. IO T
Ow

0 05 x'&&

0.02—
77++p-7f t" (7 GeV/cj

0.0I x--- 7f+p-71 +" (24.8 GeV/cj

I l

O. I 0.2 0.3
(Ge V/c)

2

SQUARE OF TRANSVERSE MOMENTUM OF 7t'

(b)

FIG. 2.20. Momentum distributions in the projectile rest
frame of 71-+p~71- X at 7 GeV/c, and x p~m-+X at 24.8 GeV/c.
(a) Longitudinal momentum distributions, (b) transverse
momentum distributions (Chen, 1971a).

Interesting and encouraging applications of the
triple-Regge formula have already been made with
medium-energy data (Chliapnikov, 1971; Peccei, 1971;
Ting, 1971; Wang, 1971), although these energies are
insufficient to allow both M' and s/M2 to be comfortably
large.

2
X, M

(S~ ce

t fixed)

do/dtdM'= (1/s')y(t, M') (s/M')' "&(M') "~ '. (2.79)

To pin down the M dependence of y(t, M2) let us
translate Eq. (2.79) from the variables t, M' to x,
qJ. (Elitzur, 1971).Fixed t as s—+~ implies that we are
in the beam fragmentation region, where Table 2.1
tells us that

3P/s 1 x—(2.80)

Use of this relation and the fact that

dq'/E, = ~dM'dt/s (2.81)

Now let M' become large also, but keep s/M2 large
enough that the Regge limit taken above is still valid.
From Fig. 2.21, one sees that P(M2, t) can be inter-
preted as a Reggeon-particle total cross section, which
should be proportional to (M') ""&, where n„(0) de-
notes a Regge trajectory with vacuum quantum num-
bers. The cross section then becomes

(M2- c
s/M

t fixed)

FIG. 2.21. Triple-Regge limit, s~c, s/M2~cc, t fixed. Wavy
lines represent Regge roles.

'4Equation (2.83) has a long history which the interested
reader can find recounted in footnote 5 of Peccei (1971). It
has been derived by the Mueller approach (DeTar, 1971c),
from the multiperipheral model (Caneschi, 1969b; Silverman,
1970b) and by Feynman (1969). Chou and Yang (1970) arrived
at a qualitative version of the result from a fragmentation picture,
but Chou's quantitative version (Chou, 1971) disagrees with
Eq. (2.83) in having a power one unit higher. We do not find
Chou's intuitive arguments as convincing as those which arrive
at Kq. (2.83).
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Great theoretical interest is currently focussed on
the case in which the Reggeons are pomerons, which
may be observable in di6raction dissociation into high
missing mass. For additional discussion of the triple-
Pomeron coupling see Sec. III.A. SQ.

7. Two part-icle Inclusive Spectra; Correlations

The Mueller approach relates two-particle inclusive
spectra in ub~cdX to a discontinuity in M' of the for-
ward scattering amplitude abed —+abed. One can then
make Regge expansions appropriate to the various
regions of the kinematical variables. Ke shall consider
only the configuration available at medium energies,
where the rapidity y, is in the target fragmentation
region, and y~ is in the beam fragmentation region. The
appropriate Mueller diagram is shown in Fig. 2.22.
The asymptotic limit, given by Pomeron exchange, is
just the product of single-particle spectra

o.b'"(q e; s)—=v:(y., q )vb'(F' X.; q")—(2 g7)

The correlation function C,s'", de6ned in Eq. (2.4&)
as the difference between the two-particle spectrum
and the product of the single-particle spectra, vanishes
in this limit.

The rate of approach to the limit will again be given
by secondary trajectories, and the simplest possibility
is of the form

C.~"(q., %.; s)= expL- (3.-3 )P-j
X'raM (gc qck)pbM ( F—y~, qe~). (2.&&)
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In order to test the exponential dependence without
mixing in variation from the single-particle spectra,
one must let y&

—y. grow while keeping y. and I"—y&
fixed (that is, q. and qq fixed). This can be done only
by increasing s; tests of the vanishing of two-particle
correlations in the fragmentation regions cannot be
done cleanly at fixed energy. The situation is simpler
when one or both particles are in the central region; see
(Abarbanel, 1971a) for details.

The above treatment of correlations is, however, not
completely general, even in the Mueller —Regge frame-
work. Freedman, Jones, Low, and Young (1971) have
used the Toiler machinery to expand the forward eight-
point function in a way which exploits the full O(3, 1)
symmetry of the forward amplitude. They 6nd that
the exchange of Toiler-Regge poles with Toiler quan-

l4NSER OF CHARGED PRONG$

FIG. 2.23. Charged multiplicity distributions in Echo Lake
cosmic ray data (Jones, 19'?0), with two Poisson-distribution
6ts.

turn number 3f can induce long-range correlations of
the form cosMp, where cos p =j,j. j«. Two-body
Regge phenomenology favors M =0 for all high-ranking
Regge poles, but branch points may introduce M/0
contributions. At any rate, such tests for long-range
correlations will be very interesting.

Additional correlation tests are possible with a po-
larized beam or target, and these can also be analyzed
with the help of the Toiler M quantum number.
(Abarbanel, 1971a, e).

F. Partial Cross Sections and Multiplicity
Distributions

Fzo. 2.22. Mueller dia-
gram for two-particle in-
clusive spectrum when
particle c is in the target
fragmentation region, and
particle d is in the beam
fragmentation region.

Another important class of data on multiparticle
reactions is the observation of the number of particles
produced. Since the neutrals are usually not observed,
the data collected are numbers of events as a function
of the number of charged. prongs e,~ and as a function
of beam energy. The resulting two-dimensional distribu-
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tion, o (n. , E) properly normalized, is called a charged

Prong cross section (or a IoPological cross section). The
most extensive information on o (n„E) at high energies
comes from the Echo Lake hydrogen-target cosmic-ray
experiment (Jones, 1970; Lyon, 1970, 1971a).The mul-

plicity distribution, a(n, z, E) as a function of n.z at
fixed E, is shown in Fig. 2.23; the charged prong cross
section, a(n, z, E) as a function of E for fixed 'n @, ls
shown in Fig. 2.24. The average charged multiplicity
in inelastic events" (n,q(E)) is shown in Fig. 2.1.

These pioneering data place important constraints
on the model-builders. The data on (n, q(E) ) in Fig. 2.1,
which are well fit by growth linear in ln E, are un-
comfortable to advocates of models which imply con-
stant or power-law behavior. An example of the former
is what we shall call the naive diSractive-fragmenta-
tion picture; an example of the latter is the Cheng-Ku
iterated tower-diagram model (see Sec. III.C.). Veri-
6cation of the apparent logarithmic growth of multi-
plicities would constitute a triumph for multiperiph eral
models —in fact, the prediction was contained in the
classic Amati, Fubini, Stanghellini paper (1962).Never-
theless, other models based on quite different physical
pictures can be made compatible with logarithmic
growth; as we saw in Sec. II.D.3, any model with a
nonvanishing central plateau will give logarithmic
growth at suAiciently large s.

'5 Elastic events, pp —+pp, are excluded from these data, Figs.
2.23, 2.24, and 2. j..

The detailed two-dimensional distribution in Fig.
2.23 and 2.24 will impose much more severe constraints,
but their present accuracy is insufficient to do this.
For example, a definitive prediction of the diffractive
picture is that individual partial cross sections approach
constant limits at high energies. The plots of o (n, q, F.)
for each n.J, shown in Fig. 2.24 are not inconsistent with
this interpretation. On the other hand, the multipe-
ripheral model predicts that each partial cross section
O.„rises to a maximum, then falls off with energy. This
also is not inconsistent with Fig. 2.24, especially Fig.
2.24b. The solid lines are a fit based on the simplest
multiperipheral model, the Chew-Pignotti model (1968),
which predicts a Poisson form,

a =c((n)"e-&"&/n!). (2.89)

(n, ) =- 2+8 In Q Q =s'"—2In . (2.90b)

Again, the point here is not so much the detailed fit,
as the observation that the present data do not dis-

The fit actually given by the solid lines in Figs. 2.23
and 2.24 follows a suggestion by C. P. Wang (1969a)
that one use a Poisson distribution in pairs of pro-
duced charged particles; the parameters used are (see
Lyon, 1970; and Table 2.1)

(2.90a)
where
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tinguish between the constant diffractive prediction
and the multiperipheral-type 6t.

The multiplicity distribution, o (n. 3, E) at fixed E,
is often 6t with a Poisson-type distribution. Examples
shown in Fig. 2.23 give a fairly good fit to the data.
Any model in which particles are produced in uncor-
related clusters (including some multiperipheral models)
will give rise to a Poisson distribution in multiplicity
of clusters. Assumptions about the nature of the clus-
ters give a degree of freedom in data fitting. More
general multiperipheral models, which allow finite-
range correlations (see Sec. II.D), do not necessarily
yield simple Poisson distributions. This is illustrated in
a particular model by Ball and Marchesini (1970),
and discussed in general by Mueller (1971).

The data can also accommodate totally different
multiplicity distributions. As Hwa (1971) has pointed
out, it is possible to have (n) growing logarithmically
with energy even in a diffractive picture where o(n, 8)=
o (n), independent of energy, if the multiplicity dis-
tribution is

Sp

I' IG. 3.1. Peripheral process, a+0—+

{s1)+ {s2) vrith exchange of x. The
kinematics are specifIed by s, t1, and
the invariant masses-squared, s1 and s2.

rectly predicting experimental behaviors, such as scal-
ing for the single particle spectrum and the existence
of pionization, and have provided a framework for the
bootstrap models of Regge poles. General features pre-
dicted by multiperipheral models independent of the
details which distinguish them, but resulting from the
basic topological structure common to all of them, were
discussed in Sec. II.D. under the heading "Short-range
correlation hypothesis. " In this section we discuss
multiperipheral models more specifically.

o(n) ~n '. (2.81)
1. Definition

In this case, the sum P no (n) would diverge logarith-
mically, except that there is an upper limit imposed by
the available energy s'", with the result that the multi-
plicity grows as ln s. The distribution in Eq. (2.81)
is compatible within the errors with the tails of the
distributions in Fig. 2.23. It is, however, very different
from the Poisson distribution for n»(n), and more
accurate data on high-multiplicity events will easily
discriminate between the two distributions.

III. MODELS OF MULTIPARTICLE REACTIONS

In this section we discuss specific models of multi-
particle reactions in somewhat more detail than the
general remarks of Sec. II, although the presentation
is still necessarily very sketchy. The models chosen are
those which seem to us to be having the greatest in-
Auence, either on the organization of current data or
on further theoretical development. Some models which
have been of considerable historical importance are
therefore not included. Moreover, the distinction be-
tween a model and a set of ideas about or a picture
of multiparticle reactions is an arbitrary one. Some
very inRuential ideas (for example, Feynman's ideas
about high-energy reactions) are scattered through
various sections, rather than being gathered together
under the heading of a single model.

A. Multiperipheral Models

%e shall discuss in this section a class of models,
loosely described as "multiperipheral", which are in
some general ways consistent with present experi-
mental evidence concerning multiparticle production
(Amati, 1962; Fubini, 1964; Kibble, 1963; Ter-Martiro-
syan, 1963).They have played a significant role in cor-

The multiperipheral idea has its origins in the singly
peripheral description of high energy scattering. This
description of a reaction is meaningful when

(sis2/s) (r (3,1)

where v is some peripheral range of momentum transfer,
and s~ and s2 are the subenergies of the two blobs in
Fig. 3.1. By singly peripheral, we mean that the full
amplitude can be written as a product of the a+@—+si
amplitude and the x+b~s2 amplitude times some
propagator for the exchanged virtual particle x. Now,
once this description becomes acceptable, a further
decomposition of the amplitude can be performed as
long as the kinematics allow it to be meaningful. If the
total energy s is large, s2 can be large enough so that
it also admits a singly peripheral description (see Fig.
3.2). The criterion now is

t2 ~($2 $3/$2)

be small. Continuing to X blobs, this gives

(SiS2" $3/Sr3' —') &1,

(3.2)

(3.3a)

where v is some mean interblob momentum transfer.
It is hard to reject this line of reasoning, once the singly
peripheral description is accepted, unless one abandons
the tacit assumption that the amplitude b+x~s2
behaves essentially like an ordinary scattering am-
plitude. If x is a physical particle, such as a pion, this
is hard to abandon, but if x is a Pomeron, many lines
of speculation are open. For example, Hwa (1971),
Silverman, Ting, and Yesian (1971), and Zachariasen
(1971a) have speculated that a Pomeron can only be
exchanged once, thus making the P+fi +$2 reaction-
very different from an ordinary scattering amplitude.
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Sp Sp

FIG. 3.2. Extension of peripheral to multiperipheral process.

Equation (3.3a) provides a simple, rough derivation
of the law of logarithmic growth of multiplicities.
Taking all the s; equal to some average blob mass-
squared so, one can rewrite Eq. (3.3a) as

N &c ln (s/r), (3.3b)

where c '= ln so/r, and where N is the number of blobs.
If each blob decays into eb particles, logarithmic growth
of e=Eeb results.

We have in this analysis used several ideas which
are defining ingredients of all multiperipheral models.

(a) The momentum transfer dependence between
successive links in the chain is damped rapidly. This
restriction is necessary in order to limit the transverse
momentum, qi, of the produced secondary particles.
Multiperipheral phase space is a very small segment of
that allowed on purely kinematical grounds.

(b) Factorizability, or the property that the full

amplitude can be written as a product of factors de-
scribing the dynamics in "local" regions of the multi-
peripheral chain. This property allows one to construct
the matrix element for I+1—particle production by
simply adding an additional link (factor) to the matrix
element for e-particle production. Together with uni-
tarity, and the approximate factorizability of phase
space, this feature has been exploited to yield integral
equations for the elastic scattering amplitude (Amati,
1962; Bertocchi, 1962; Chew, 1969a, b; Halliday,
1969a, b). These will be discussed in more detail below.
Furthermore, we have seen in Sec. II.D. that the pro-
vision for only "nearest neighbor" interactions along
the rnultiperipheral chain has far reaching consequences
for the single particle spectrum and other inclusive
experiments.

Various multiperipheral models for the e-particle
production amplitude have been studied. Many of
these are based on the assumed dominance of multipion
exchange due to the proximity of the pion pole to the
physical region, and the consequent enhancement for
small momentum transfers. They are shown in Fig. 3.3
where the exchanged pions scatter to produce secondary
pions with amplitude T . Several models for the dy-
namics of T are the following:

(i) Dominance by low-energy resonances (Amati,
1962).

\ I
I

IL / Fic. 3.3. Amati-
I'ubini - Stanghellini
multiperipheral model.

(ii) Inclusion also of a high-energy "tail" repre-
sented by Pomeron exchange (Chew, 1970a, b).

(iii) The use of duality to replace the low-energy
direct-channel resonances of (i) by the exchange of
lower-lying Regge trajectories (I", p ) in the crossed
channel, in addition to the Pomeron exchange of (ii)
(Ball, 1969a, b).

Other multiperipheral models which have been pro-
posed are multi-Regge exchange models (Kibble, 1963;
Ter-Martirosyan, 1963; Bali, 1967; Zachariasen,
1967a, b) which have their origin in the Regge de-
scription of two-body scattering at high energies. This
description may be valid when all the subenergies
s;;= (q;+q;)', between outgoing neighboring particles
are large, as indicated by some experimental analyses
(Chan, 1967; Lipes, 1969). However, much of the
available multiperipheral phase space, as well as ob-
served events, occur at small subenergies 1 GeV'. In
order to use a Regge description in this low-energy
region, one must rely very heavily on duality (Chew,
1968a)—namely that the asymptotic Regge form is
valid in an average sense, in the low energy resonance
region.

All of the models so far discussed satisfy the basic
criteria of multiperipheralism as stated above. They
describe multiparticle production in terms of a linear
chain of repeating links. The actual details of the links
differ from model to model, but we shall see below that
many general predictions follow independent of these
details. In the following section we shall explore the
consequences of a simple model for multiparticle pro-
duction to illustrate how their general features come
about.

Z. Chne-Eigeotti Model

We now examine in more detail a multiperipheral
model based on some of the physical principles that have
been previously discussed. We have already noted that
since all the transverse momenta are limited, the real
degree of freedom in multiparticle production processes
lies in the longitudinal motion. DeTar (1971), exploits
this empirical fact by simply ignoring the transverse
momentum degrees of freedom and formulates the
Chew-Pignotti model (Chew, 1968b) in only one di-
mension. This involves the simplification of uncoupling
the transverse momenta in the Regge behavior of the
particle subenergies by the approximation (s;;) &"
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s;, , where a is some effective value of the trajectory.
Sy means of this approximation, he illustrates in a
straightforward manner the general features of the
cross sections and single-particle distributions which
follow from any multiperipheral mechanism for particle
production.

The process we consider is

a+b~+1+ ~ ~ +n+ (m+1), (3.4)

that is, there are rb+2 particles in the final state. In the
laboratory system, where particle u is at rest and par-
ticle b moves along the s direction, we specify the
momenta of the outgoing particles in terms of the
rapidity variable discussed in Sec. II.B.3

$=$01$12' 'snn+1/ 4~1 P2 ' ' 'Pn J (3.13)

so that we may write

n+1
o. n exp( —yb)g'" exp'(2n —1)) II dy;()(yb —y„+i)

i=1

and the delta functions in the phase space may be ap-
proximated by"

exp (-y )
~(yo —x.)()(yb—y +i—xb) (3 12)

maWb

where x = ln(p()/m, ) and xb ——1n(p„+i/mb). Further-
more, in this limit, we find, using Eq. (3.6), the rela-
tion

p.=(m., o, O, O),

Pb= (mb cosh yb, 0, 0, mb sinh yb),

q&= (y& cosh y*, q*i, p' sinh y&), (3 5)

n exp( yb)—g2" exp'(2n —1)]

xf dy.
2

1~ '

where )(bp=qi, 2+m, 2. For large energies, s= (p,+pb)'
is exponentially related to yb

s= m, '+mb'+2m mb cosh yb m, mb—e» (3.6.a)

Moreover, if y;»y;, it follows that

~' = (q'+q )'—=~*) exp(y —y') (3 7)

(yb)", , (g' ln s)"
~ g'" expgb(2n —2)J n s' —', (3.14)

nt nl

where in the spirit of ignoring the transverse momenta,
we have assumed p, i=mi and taken for simplicity
m0= m„m„+1=mb. The total cross section is simply

n $2n 2+g—2

n=0
(3.15)The differential element of phase space for n-particle

production is
n+1 d3q . n+1

d4-= II ~'( Z q* q. qb)— —
i~ +i i=0

Thus Regge behavior emerges in a multiperipheral

(3 8~ model. In order to obtain constant (or nearly constant)
total cross sections one requires

which can be cast in terms of our new variables using
the combinations q()+q(( and qo

—
q((

n+1 n+1

dy =-', II d'qi, dy, ()'( Q qi;)
i=0

n+1

)&()L P p; exp( —y;) —m, —mb exp (—yb)$
i=0

2n —2+g'= 0. (3.16)

Using this relation one finds, from Eq. (3.14), the result

o =cs'-'P(g' ln s)"/e!]
=c$(g' ln s)" exp( —g' ln s)/e! j, (3.17)

which is simply a Poisson distribution with an average
multiplicity which grows logarithmically with energy,

n+1

&&()L g p, exp(y, ) m, m—b exp—(yb) j. (3.9)
2M

n=g2 ln s. (3.18)

The e-particle production cross section is (ignoring
irrelevant constant factors that do not depend on e)

where the integrand is the square of a multi-Regge
matrix element and g is the coupling constant at the
Reggeon —Reggeon-particle vertex, n is an effective"
Regge trajectory (since we are ignoring momentum
transfers) and exp( —yb) is the usual flux factor s ' in
our normalization. One of the assumptions of the model
is that all the subenergies, s;,i+1, are large. In this
kinematical domain, usually referred to as the "strong
ordering" limit, (Zachariasen, 1967) we have

(See Sec. II.F for a more general discussion and com-
parison of these results with experiments. )

Efforts to make the Chew —Pignotti model more realis-
tic of course destroy the simplicity of the result in Eq.
(3.17). See, for example, Ball and Marchesini (1969a, b)
and Chew, Rogers, and Snider (1970).But the model,
although obviously oversimplified, exhibits most of
the general, successful predictions of multiperipheral
models.

Now we calculate the prediction of this model for the
single particle distribution function as measured in
inclusive experiments. For the n-particle production
process we can calculate the probability that the ith
particle in the chain has momentum q~ ~i= p; sinh y by

&~1&&K&&P2 (3.11)
"Note the extremity of this assumption: It says that the leading

particle carries away practically all the energy.
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inserting a delta function b(y —y;) in Eq. (3.14)

«-.'(y, y~) ~ expLyp(2n —2)]g'"
dy

XJ g dy, &(y,—y„+,)&(y—y;)

~ expLy&(2n —2)]g'". . . (3.19)
(y~—y)" '

(i,—1)! (n —i)!
Since we cannot distinguish an observed particle's

position in the multiperipheral chain, the spectrum for
producing a single particle in conjunction with n —1
others is obtained by summing over i
«-(y y~)

" do-, '(y y~)

dy;=& dy

I7'n-1
~ expI yq(2a —2)jg'", (3.20)

(n —1)! '

where we see that the distribution is Rat, independent
of y. The total "inclusive" spectrum, where no distinc-
tion is made in the number of produced particles is
obtained by summing over e,

«(y y~)ldy= 2 I:do-(y, yb)ldyj" expI:y~(2~ —2+g') j
(3.21)

which is also Rat in y and has the same asymptotic
behavior as the total cross section Eq. (3.15).

The simple physical picture which emerges from
this analysis is that the produced particles are on the
average uniformly spaced in y, with a density propor-
tional to g'. Consequently as the energy increases, the
physical region opens up linearly with yb,

' or equiva-
lently, I', and the mean multiplicity grows as g' ln s.

More general investigations based on the multi-
peripheral model confirm the simple picture given by
the Chew-Pignotti model. The property of scaling
(Feynman, 1969) or the existence of a limiting distribu-
tion (Benecke, 1969) for the inclusive single particle
spectrum (see Sec. II.C) has been shown to be a prop-
erty of all multiperipheral models (Silverman, 1971b)
that have so far been proposed. This is due to the damp-
ing in momentum transfer, factorization, and to the
generation of the Pomeranchuk Regge singularity in
these models. In the multiperipheral model, the ex-
ponential damping of the single particle spectrum in
qi' has been shown to follow from an assumed exponen-
tial damping in momentum transfer of the residue of
the exchanged Regge trajectories (Bali, 1971; Silver-
man, 1971c).

The phenomenon of pionization, that is, the existence
of slow particles in the center of mass system, was
first shown to exist in the pion exchange multiperiph-
eral model by Amati, Fubini, and Stanghellini (1962).
Their proof was directly extended to show the existence
of pionization for multi-Regge exchange models (Silver-

oout= 2~in 1+g, (3.22)

where o,;„ is the input Regge trajectory. The equality
is illustrated schematically in Fig. 3.4.

Some important features of multiperipheral boot-
straps can be seen from Eq. (3.22):

(a) The constant g' controls the multiplicity. Com-
paring Eq. (3.18) and Eq. (2.1), and estimating that
one-third of the particles produced are neutrals, one
estimates g' 1.3. Since u, „& 1, it follows from Eq.
(3.22) that n;„.35. This is consistent with the inter-
pretation of 0.; as an average over secondary mesonic
trajectories (I', p, ~, etc). It is inconsistent with mul-

tiple Pomeron exchange being a dominant contribution.
(b) Multiple exchange of a Pomeron with intercept

unity, n; =1, gives n,„,=1+g', in violation of the
Froissart bound. This Finkelstein-Kajantie (1968)
effect is quite general. Either one sets gp'=0 (Gribov,
1967), or nz(0) (1.The latter option, chosen by Chew
and Pignotti, gives total cross sections which fall with
energy as s ', where ~ can probably be taken small
enough not to violate existing data.

Chew, Goldberger, and Low (1969a) put the multi-

Regge bootstrap into the form of an integral equation,
and many authors have worked on their equations in
the meantime (see, for example, the review of Frazer,
1970). A generalized partial-wave projection of the
equations can be made which allows one to investigate
the J-plane singularities of the scattering amplitude.
We shall not go into detail, but merely mention some
relatively recent interesting results:

(a) Complex Regge poles emerge from such equa-
tions (Ball, 1969a, b; Chew, 1970b); their phenomeno-

~io ~su!~

FIG. 3.4, Symbolic version of multiperipheral bootstrap equation.

man, 1971b) as well. In the multiperipheral model,
the pionization property can be described either by a
continuous, non-zero limit of the single particle dis-
tribution at x~ in the center of mass system, or by a
flat plateau in the rapidity variable (see Sec. II.D,
where these properties are discussed more fully).

3. Multi peri phera/ Bootstrap Models

The simple Chew —Pignotti model discussed in the
previous section illustrates the possibility of construct-
ing multi-Regge bootstrap models. The behavior of the
total cross section calculated from the model is that
of a Regge pole with intercept n,„~, where
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logical implications are now being explored (Zach-
ariasen, 1971).They can give rise to polarizations, and
even to wiggles in total cross sections.

(b) Realistic models usually fail to give a Pomeron
with suKciently high intercept. Chew and Snider
(1970a, 1971), in response to this difficulty, invented
the "schizophrenic Pomeron", in which the P and P'
are manifestations of fundamentally the same trajec-
tory on different sheets of the complex J plane.

(c) The nature of the Pomeranchuk singularity,
which we have called "the Pomeron" in this review,
is an open question. A review by Zachariasen (1971a)
examines many possibilities. It is universally agreed
that it is not a simple Regge pole, but it is not known
how good the pole approximation might be for phe-
nomenological purposes, Much of the Mueller analysis
in Sec. II.E relies on this simplifying assumption.

(d) The small parameter e measuring the rate of
decrease of total cross sections, 0- ~ s ', implies in multi-
peripheral schemes the weakness of some internal
Pomeron coupling. Abarbanel, Chew, Goldberger, and
Saunders (1971c, d) identify the coupling as a "triple-
Pomeron" coupling, which measures the strength of
diffraction dissociation into high-mass states (see
Sec. II.E.6).

We close this very brief review with the apology that
this is not intended to be primarily a theoretical paper.
We have therefore con6ned our remarks to those which
might be of use in interpretation of data in the near
future.

B. Diffractive Fragmentation Model

Yang and collaborators have developed a picture of
high-energy hadronic reactions as the interpenetration
of two spatially extended objects (Wu, 1965; Byers,
1966; Chou, 1968; Benecke, 1969; Chou, 1970). Al-
though the subject of this review is multiparticle re-
actions, we must brieRy review two-body reactions
because the diffractive (or droplet) model had its origins
there.

The picture of two hadrons, extended semitransparent
objects with many degrees of freedom, passing through
each other is made quantitative by an eikonal treat-
ment. This treatment establishes a finite limit for da/dt
as s—+~, and provides a relation between this asymp-
totic limit and the hadronic matter density in the
following way:

If the scattering amplitude a(k)' is defined by
do/dt = 7ra', the eikonal approximation consists of
writing

a(&) = f L1—S(b)7 exp(ib k)d'b (3.23)
where k is the two-dimensional momentum transfer,
and b is the impact parameter in the plane transverse
to the incoming beam:

k= (k„k,);
b= (b„b„).

Here S(b) is the transmission coefficient (or the S
matrix for a given impact parameter). The assumption
underlying this formulation is that the wavelength of
the incoming particle be small compared to the dimen-
sions of any change in the transmitting medium. The
quantity —log S(b) is called the opaqueness at the
impact parameter b, in analogy to the scattering of a
wave through a slab. Pursuing the analogy, one may
write

—log S(b) =& JJ Dg(b b—')D ii(b') db', (3.24)

where

D(~, y)= p(&, y s) «
and p is the spherically symmetric matter density inside
a hadron. E is some constant absorption coefficient.
Equations (3.23) and (3.24) relate the scattering am-
plitude to the hadronic density. For pp elastic scatter-
ing, Chou and Yang (1968) identify the hadronic
density with the charge density inside the protons.
Using experimental fits to high-energy pp elastic scatter-
ing, they were able to predict the charge form factor
Fi(k') over a wide range of the momentum transfer.

Searing in mind. the droplet interpretation of high
energy elastic scattering, Benecke ef al. (1969) make
the following argument for limiting fragmentation. As
the energy increases, the projectile undergoes increasing
Lorentz contraction as seen by the target. Constancy
of o,&, o&„&, and da/dt ~,&

at asymptotic energies suggest
that the momentum and quantum number transfer
process between the matter in the projectile and that
in the target do not appreciably change when the pro-
jectile is further compressed. Thus one expects that
excitation and subsequent breakup of the target would
also approach a limiting distribution: Hence the limit-
ing distributions p"&(p), p&" (pi, p2), etc. Empirical
support for the existence of limiting single particle dis-
tributions is discussed in Sec. II.C.

Several qualitative predictions emerge from the
diffractive fragmentation model: Rapid decrease of
elastic cross sections for large t is a consequence of the
idea that it is hard to keep a hadron intact when given
too much transverse momentum (Wu, 1965). Con-
sistent with this idea it is expected that in ep and
hadron —hadron scattering, the partial cross sections
o(3I*, t) should fall sharply with increasing momentum
transfer t, when M*, the invariant mass of the frag-
ments, corresponds to the case of an elastic scattering
or to the production of a resonance. For values of M*
in between the resonances and beyond the resonance
region, the falloff in t should be more gentle. Experi-
ments on deep inelastic electron scattering (Panofsky,
1968) seem to have this feature, but Bloom and Gilman
(1970) have advanced an alternate interpretation in
which there is no signi6cant difference in the behavior
of the resonances and the continuum. In pp scattering,
however, there is a qualitative agreement with the
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prediction mentioned above (Anderson, 1966; Amaldi,
1971).

Another consequence of a diffractive view of frag-
mentation is that all the partial cross sections tT„,

become constant at high energies. There is some evi-

dence at rather low energies that partial cross sections
for low multiplicities, i.e. , small m, continue to persist
in diffractive processes like pp~pp* where p* is a low-

lying resonance with the quantum numbers of the
proton (Cocconi, 1961; Anderson, 1966; Foley, 1967).
The ratio p+/p, at sea level (Fuji, 1969;Appleton, 1971)
remains approximately 1.25 from 3—100 Bev. This
has been cited by Chou and Yang (1971) as support
for the diffractive picture, but the constancy of the
p+/p ratio follows from scaling and the power-law
behavior of the cosmic ray primary spectrum alone, and
hence is obtained in all currently popular models
(Frazer, 1971c).

We close this section with a discussion on multiplicity
and pionization. If there are final state particles with
finite momenta in the cm frame as s—+~, the phe-
nomenon is termed "pionization" by some authors. '
In terms of the scaled variable x=2P~~oM/s'I', this
implies that the single-particle distribution p(x, Pi)
will approach a finite limit as x—+0. In terms of the
rapidity variable y, this corresponds to the prediction
of a plateau in the center of the plot for do/dy vs y. At
first sight, the diffractive fragmentation model seems
to exclude such a possibility as it envisages a hadron
collision as that of two extended, semitransparent ob-
jects "going through" each other without arresting
each other in the cm frame. Consider, however, the
average multiplicity, given by

where pr(p) is the single-particle spectrum for the target
fragments, and p~(p) is that of the projectile frag-
ments. ' In a diffractive fragmentation model where
the fragments have finite momenta in the rest frame
of the fragmenting particle, the integrals are con-
vergent and the average multiplicity asymptotically
becomes a constant. Should the multiplicity continue
to increase with the incoming energy, the integrals of
p(p) must diverge. This implies that as E-+m, there
are target fragments with infinite lab mornenta.

If p(q)= const, for large q~ ~, one recovers (n) ~ ln s.
Since dq~~/&, =dy, this implies a uniform distribution
on the y plot. Thus, logarithmically increasing multi-
plicities can be made consistent with a diffraction frag-
mentation picture. Such a single-particle spectrum may
then be dificult to distinguish from that predicted by
the multiperipheral model. In such a model, however,
there is no reason why the factorization or short-range
correlation predictions of Secs. II.D and E should hold.

A detailed model of the diffractive fragmentation

Chou and Yang define the term differently. To avoid con-
fusion, it seems best to avoid this term.' Note that our invariant normalization differs by a factor
1/E~ from that of Yang and collaborators.

type which incorporates growth of multiplicities like
ln s has been constructed by Hwa (1971). See Sec. II.F
for further discussion of multiplicities in diffractive and
multiperipheral models.

C. Field Theory Models"

Regge's analysis of the asymptotic behavior of scat-
tering amplitudes in potential theory led to insights
which still dominate our attempts to understand high-
energy hadronic processes. Very soon after the recogni-
tion of the importance of these insights, theorists turned
to quantum field theory, to see if its high-energy limit
would support the insights drawn from potential
theory, and to see if it would lead to further insights
applicable to high-energy processes. The intensity of
this effort has increased in the past few years, led by the
program of Cheng and Wu. '

Cheng and Wu have concentrated on the analysis
of quantum electrodynamics with massive photons.
Although this theory includes complications of spin
and gauge invariance which can be avoided by looking
at simpler theories (such as q', which we shall discuss
later), it is especially interesting because quantum
electrodynamics is the only really reliable theory we
have. Moreover, its spin structure leads to asymptotic
behavior resembling that of diffraction scattering, even
in the weak-coupling approximation on which all cur-
rently used techniques rely.

Although the techniques used by Cheng and Wu and
the many others who have contributed to this field are
of great theoretical interest, we confine our review to
a discussion of results which may be relevant to high-
energy hadronic processes. Various authors have used
various methods (see Chang, 1968, for example), but
all use the procedure of summing the leading terms
as s—+~ in each order of perturbation theory. The
fact that this procedure involves summing infinite
sets of diagrams should not delude us into forgetting
that it is still a weak-coupling approximation. To see
this clearly consider as an example an amplitude of
Regge form, depending on a parameter X

(3.26)
where

Expanding the factor s '"&, we have

+-', (Q ah')' In' s+ ] (3.27)
1

' This section was heavily influenced by a review of F.
Zachariasen (1971) and by conversation with R. L. Sugar and
B. W. Lee.

'OAmong the multitude of Cheng-Wu references, a recom-
mended starting point is Phys. Rev. Letters 24, 1456 (1970).
Other references can be found there.
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g(s, b) —1
T(s, &) sf d )sexp(sb k')=

2z
(3.30)

dPb (g k) PD l( ) )j
2i

7

(a)

Taking only the leading power of ln s in each order of
), one finds

T(X) =yps p[1+),n&ln s+p(Xn& ln s)'+ ~ ~ ]=yps p+ ~
&

(3.28)

a result which is zeroth order in ) for the residue func-
tion, and first order for the trajectory function.

In simpler field theories the leading log terms cor-
respond to a sum of ladder graphs; in electrodynamics
the gauge condition forces one to include some crossed
graphs —the ladder is generalized to what is called a
tower, shown in Fig. 3.5.The scattering amplitude which
results from summing single-tower diagrams, Ti(s, t),
is of the form

T, (s, t) = is [s /(ln s)'jF (i), (3.29)

where a= 11 n'pr/32, independent of t The p. resence of
the (ln s) ' factor indicates that the complex j-plane
singularity giving rise to this behavior is a fixed branch
point, not a simple pole (in contrast to the p' theory).

The most striking feature of this single-tower am-
plitude is that it gives a total cross section which rises
as s', violating the Froissart bound. Therefore it cannot
be the correct high-energy limit of the theory. The
systematic procedure of summing the leading log terms
in each order of perturbation theory has broken down,
and what follows has more the status of a model —the
sum of an arbitrarily-chosen set of diagrams. The set
chosen is an s-channel iteration of t-channel towers, a
reasonable choice to restore unitarity. This set, shown
in Fig. 3.6 gives rise to a scattering amplitude with a
simple eikonal form,

(b)

I.'IG. 3.6. Multi-tower graphs (Cheng, 1970) .

where k'= /, , and whe—re T&(s, t) is given by the lowest-
order term in the expansion of exp[In'(s, b))

Ti(s, /) = ip(is)—f d'1 exp(ib Ir) Inq(s, b). (3.32)

The emergence of the simple eikonal form in the con-
text of relativistic quantum theory is one of the striking
features of this and other closely related calculations
(Abarbanel, 1969;Levy, 1969, 19/0; Chang, 1970, 1971;
Hasslacher, 1970; Cicuta, 1971;Muzinich, 1971;Tikto-
poulos, 1971).The eikonal form, with the lowest-order
term given by a simple Reggle pole, has had consider-
able success in data fitting (Arnold, 1967; Frautschi,
1969).

The novel feature of the present result is that the
lowest-order term in the expansion of the exponential,
the single-tower term, violates the Froissart bound,
but is brought into conformity with unitarity in the
final eikonal expression. The predictions of this eikonal
amplitude are very interesting. According to Cheng
and Wu, the single-tower amplitude corresponds to

ln g(s, b) ~ —[s'/(In s)') exp( —b/bp), (3.33)

(b)

3

where bo is a constant. For s su%ciently large, this gives
g=0, or complete absorption, for b less than a radius
R(s). For b)E(s), & goes rapidly to unity, p—1=0,
and there is no scattering. The physical picture is one
of a black disc of radius E(s).

Estimating E(s) by taking it to be that value of b

for which ln g= —1, we find

FxG. 3.5. Single-tower graphs (Cheng, 1970). 8 ($)~bp In[s'/ (In s)') (3.34)
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or, for sufficiently large s,

R(s) ln s. (3.35)

The picture is that of a black disk having a radius
which grows as ln s, in contrast both to the classical
droplet or diffractive model, and to the Regge pole
model, which corresponds to an increasingly transparent
disk with radius growing as (in s)'I'. The total cross
section is then

or(s) =4ir
s~

b db= 2xR'~ ln
(ln s)' (3.36)

and at suSciently large s,

or(s) (ln s)'. (3,37)

Another prediction is that since the amplitude is
completely absorptive, a,i/or ——1/2. Moreover, the
amplitude has the usual black-disk diAractive form for
sufficiently large s, so that it has zeros at /= —(P,/E)',
where the P; are the zeros of Ji.

None of these predictions fit very well to observa-
tions at existing energies, especially the rising cross
sections and the ratio of elastic to total cross sections.
It is true, however, that some of the limiting forms we
have used such as the passage from Eq. (3.34) to (3.35),
are not valid at present energies, and the predictions
of this model may be applicable at much higher energies.

Similar results have been found in y' theory by
Chang and Yan (1970), and by Hasslacher, Sinclair,
Cicuta, and Sugar (19/0). One important difference is
that the single-tower amplitude is proportional to
s ~o, where n(t) = —1+g'f(/). The limit —1 is charac-
teristic of spinless particles. Thus whether or not the
Froissart limit is violated by the single tower depends
on the size of g'. In this model the g' required to violate
the bound is so large that the weak-coupling approxi-
mation is no longer valid.

Chang and Yan (1970) also look at production
processes. They find that the model predicts pioniza-
tion (the existence of the central plateau in y, or the
dx/x behavior of the x-distribution), as one expects
from a ladder-type model. The distribution is, however,
multiplied by a factor s, so that scaling is not strictly
true, and multiplicities rise as s . These latter predic-
tions may be viewed with skepticism, because the
eikonal form enforces the unitarity bound only on the
elastic amplitude. A more sophisticated scheme, which
included absorption in multiparticle states, might
squelch the s growth.

In summary, it is a matter of taste as to how likely
it is that these results carry over into the real world of
high-energy hadronic processes. As we already re-
marked, the approximations used are weak-coupling
approximations, and we are applying them to strong-
coupling hadronic processes. Moreover, the field
theory calculations assume elementary particles Lthe
result u(0)&1 in QED is a consequence of this7,

whereas hadrons are generally believed to be composite.
The results are, however, quite striking, especially the
rising cross section which results when the single-tower
amplitude (which violates the Froissa, rt bound) is
tamed into the eikonal form. It provides us with a new
family of models to use, should the higher-energy data
require them.

D. Statistical Thermodynamical Model

The statistical model originally proposed by Fermi
(1950), and refined and developed by Hagedorn and
collaborators (Hagedorn, 1970a, b; Ranft, 1970) is
dificult to integrate with the rest of the material of
this review. The areas in which it is most successful are
literally orthogonal to those on which we have con-
centrated. Whereas we have concentrated on longitudi-
nal momentum distributions, the statistical model is
the only model which predicts transverse momentum
distributions. "Moreover, it predicts the particle density
spectrum and relates the parameters of this spectrum
to those of the transverse momentum distribution.

Statistical model of the particle spectrum. Hagedorn's
statistical model of the particle spectrum (Hagedorn,
1967) is in one sense the most naive bootstrap model
possible (there is no dynamics, only phase space), and
in another sense the most complete (all possible inter-
mediate states are included). Hagedorn states the
bootstrap postulate in a particularly colorful way:

A fireball is
~a statistical equilibrium (hadronic black body

radiation) of an undetermined number of all
kinds of hreballs, each of which in turn is con-
sidered to be—,

where "fireball" is a particle or resonance. Frautschi
(1971) has reduced this to more prosaic terms. The
density of hadronic levels p(m) is estimated from the
number of states in a box, and is also required to be
consistent with the spectrum of constituents, which
are assumed to be the hadrons themselves. Self-con-
sistent solutions exist of the form

p (m) =cm' exp(m/To), (3.38)

where c is arbitrary; Frautschi finds a( —5/2, and
Hagedorn finds a= —5/2.

Such a form is roughly consistent with the low-energy
portion of the particle spectrum, as can be seen in Fig.
3.7 (Hagedorn, 196/), provided that To is chosen to be
about 160 MeV. Moreover, spectra of this form have
also been derived from dual models and from models
based on the Veneziano representation (Krzywicki,
1969a; Fubini, 1969a,b; 8ardakci, 1969; Olesen,
1970a,b; Huang, 1970). The constant To can be inter-
preted as the maximum possible temperature of ha-

2' Recently a dual-model calculation in the Mueller approach
has found an exponential cut-off for large q~' (DeTar, 197kb).
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dronic matter in equilibrium, since the average energy E

dm mp(m) e~'r dm p(m) e tr (3.39)

becomes infinite for T&To. Physically what happens
is that as the energy is increased it goes into the creation
of massive particles rather than into raising the kinetic
energy of existing particles. Interesting astrophysical
speculations have been made about the effect of a maxi-
mum temperature (Hagedorn, 1970c; Huang, 1970).

Transverse momentum distributions. The distribution
of transverse momenta of secondaries produced in
high-energy collisions follows rather directly from
the statistical model, with a minimum of further as-
sumptions. It is controlled by a statistical factor
expL —(q11'+qi'+m')''/T]. The determination of T
is model dependent, but at any rate T is not very much
less than To for high-energy collisions. One of the most
impressive successes of the model is that transverse
momentum distributions can be fit with the same value
To 160 MeV determined from the particle spectrum in
Fig. 3.7. Figure 3.8 from Hagedorn (1968) shows a com-

parison of calculated values of (qi) with values in-
ferred from cosmic ray data.

Production of particle pairs. A similar application is
the calculation of the rate of production of pairs of
particles, and the rate of production of massive par-
ticles. One example, EE production, is shown in Fig.
3.9. For large masses, the weight factor becomes ap-
proximately exp ( M/T) exp (—3f/T—o). Successful
predictions range over many orders ~f magnitude (see
Hagedorn, 1970).

Imclusi~e spectra. As we saw above, the statistical
model is very impressive in predicting transverse mo-
mentum distributions. %hen we turn to longitudinal
momenta, however, additional assumptions are neces-
sary. Fermi's pure statistical model, which treated
transverse and longitudinal momenta on the same
footing, could not reproduce the observed forward—
backward peaking in the center-of-mass system (Fermi,
1950). Hagedorn and Ranft (1968) overcome this
diKculty by assuming that the reaction products ema-
nate not from a single fireball, but from a superposition
of fireballs with a continuous distribution of longitudinal
velocities. If the superposition were done in terms of the
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other hand, the longitudinal momentum distribution
is given essentially by F(Y, y), since f(E, T) is peaked
at low values of q~~. Therefore the model is purely
phenornenological in this respect. It is consistent with
the hypothesis of limiting fragmentation, provided that
at high energies T-+To and F(F', y)~F(y). Successes
of the Hagedorn —Ranft model in fitting longitudinal
momentum distributions are thus largely tests of ideas
which are more general than the specific model; in par-
ticular, the fact that limiting fragmentation seems to
be fairly well achieved at accelerator energies.

The model as we have formulated it can also satisfy
scaling, even at x= 0. In other language, one can choose
F(y) to be flat in the central region. The variable X

actually used by Hagedorn and Ranft is less convenient
for thispurpose, as DeTar has discussed (DeTar, 1971).

The literature on the statistical thermodynamical
model is lengthy. Although we have tried to identify
the most impressive successes of the model, we cannot
discuss all the intricacies involved in the fine tuning
of the model to Gt the data. As an introduction to
further study, we suggest Frautschi (1971),followed by
the review of Ranft and Ranft (1970) and Hagedorn
(1970b), at which point the student should be ready
for the original literature (Hagedorn and Ranft, 1968;
Hagedorn, 1968).

IV. SUMMARY OF MODELS AND TYPES
OF EXPERIMENTS

As a guide to help the reader find his way through this
review, we shall list the types of experiments which
have been discussed most thoroughly, along with the
predictions made by the various models. These are
given in concise form as a large matrix, Table 4.1. It
is necessarily incomplete and oversimplified. An ex-
planation of the terms used in the table follows:

Types of experiments

(1) Average multiplicity: The average number
of particles produced, as a function of beam energy.
In practice, only charged particles are detected. (Sec.
III.A and II.F.)

(2) Partial cross sections and multiplicity dis-
tributions: The two-dimensional distribution o(e, F.)
representing the energy dependence of the cross section
to produce e particles (e)2). In practice, only o (e„E)
is measured —the cross section for the production pf
e, charged particles plus an unknown number of neu-
trals. (Section II.F)

(3) Single-particle spectra; limiting fragmenta-
tions: Investigation of whether the single-particle spec-
tra approaches constant limits at high beam energy E.
(Section II.C)

(4) Single-particle spectra; central plateau: In-
vestigation of whether a central plateau develops in
the spectrum as a function of the rapidity y. (Sections
II.D.3 and- II.E.2)

(5) Single-particle spectra, factorization in frag-
mentation regions: Investigation of the factorizatipn
prediction that the density p,&'(qi, y, y —V) is inde-
pendent of the projectile in the target fragmentation
region, and independent of the target in the projectile
fragmentation region. (Sections II.D and II.E.S)

(6) Single-particle spectra, factorization in pla-
teau region. ' Investigation of the prediction that the
normalized spectrum is independent of both the beam
and the target in the central region, p, |,(q~~, qi, y) =
y(qi). (Sections II.D and II.E.2)

(7) Two-particle spectra, correlations: Explora-
tion of the correlation function in two-particle inclu-
sive reactions. The correlation function is defined as
C'" (y1 tll~ y2 tl2~ e)=p (yl, gl~, y2, tl2I s) —p "(y&,
qri, s)Xp"'(y2, q2i, s). In particular, does there exist
a correlation length L, such that for

~ yz —y,
~
&&L,

C "& 0? (Sections II.D.4 and II.E.7)
(8) Diffraction dissociation into high missing

mass: Measurement of diffractive dissociation into
high-mass states; which can be interpreted in terms of
the "triple-Pomeron" coupling, an important param-
eter in multiperipheral models. (Sections III.A and
II.E.6)

(9) Total cross sections: The simplest multi-
particle production experiment, which nevertheless
helps discriminate among the models presented.

/

Models

(a) Mueller analysis: Analysis of multiparticle in-
clusive reactions via generalized unitarity relations
plus assumption of Regge pole dominance of absorptive
parts of amplitudes. (Section II.E)

(b) Multiperipheral model: Specifically, multi-
peripheral models in which exchange of lower-lying
trajectories dominates. Internal Pomerpn couplings are
weak. (Section III.A)

(c) DiAractive fragmentation models: Models in
which particle production occurs via separate fragmen-
tation of target and projectile. (Sections III.B)

(d) Statistical-thermodynamic model: The Hage-
dprn —Ranft model, employing statistical distributions
of produced particles. (Section III.D)

(e) Cheng-Wu model: Sum of certain set of
Feynman diagrams in high-energy limit. (Section III.C)

Beans energy region

The fragmentation threshold E~ is the beam lab
energy above which the ends of the single-particle
spectra approach their fragmentation limits. The
plateau threshold E„ is the energy above which the
central plateau begins to develop.

The speculations in Sec. II.D.2 say that E~~EP.
There is evidence that Er &10 GeV (lab energy, nu-
cleon target), and some indication (see Sec. II.D.2)
that 30&8„&200 GeV.
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