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The paper begins with a tutorial introduction to the theory of inelastic light scattering by polaritons in dielectric
crystals. The treatment is based on a simple two-oscillator model which represents the ionic and electronic motions of
a crystal. The model contains a third-order anharmonicity which allows an incident laser beam to mix with the oscil-

lator fluctuations and produce scattered light of frequency different from the incident frequency. The magnitude of the
oscillator fluctuations is determined by an application of the Nyquist or fIuctuation-dissipation theorem, using the re-

sponse functions of the oscillators for externally applied forces. The simple model gives results for light scattering cross
sections which agree with more rigorous derivations in the existing literature, The response function approach is gener-
alized to apply to crystals having many ionic resonances and of uniaxial or orthorhombic structure. The general 'formulas

reduce in appropriate special cases to results already published. Experimental and theoretical work on light scattering
by polaritons and by pure phonons is reviewed in the context of both the two-oscillator model and the general theory.
Particular attention is given to resonance scattering in an attempt to achieve consistency between the differing theoretical
treatments in the literature. The subject matter of the review overlaps some topics in nonlinear optics, and contact is
made with the theories of the electrooptic effect and stimulated Raman scattering.
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1. RESPONSE FUNCTIONS AND
FLUCTUATIONS

A. Introduction

* Permanent address: Physics Department, Essex University,
Colchester, England.

It has been recognized since the pioneering work of
Huang (1951) and Poulet (1955) that lattice vibrations
which carry an electric dipole moment have radically
different properties from nonpolar vibrations. The
dipole moment couples the lattice vibration to the

radiation field in the crystal to form mixed excitation
modes, part phonon and part photon, which have a
characteristic dispersion relation and are known as
polaritons. The excitations can be explored in their most
interesting long-wavelength region by inelastic light
scattering experiments. They have frequencies which

depend in general on their wave-vector magnitude, and
direction relative to the crystal axes and on their
polarization. Their observed degeneracies are usually
smaller than group theory would predict, and the
relative intensity of scattering by the split components
of a group theoretically degenerate excitation is not
correctly predicted by a theory based. on the crystal
symmetry group. In contrast, the light scattering by
nonpolar vibrations shows that the excitations have
frequencies independent of wave vector, and the

degener acies and polarization dependence of the
scattered intensity are in good agreement with the
predictions of group theory.

The development of the theory of light scattering by
polar vibrations in the years since Poulet first identified
the source of their apparently anomalous properties
has been somewhat piecemeal. Various papers have
inched forward the general theory by treating a range
of special cases, covering one by one the diferent
symmetries of crystals, and concentrating on some
particular aspects of the scattering.

We have three main intentions in the present paper:
first, to present a tutorial introduction to the theory of
light scattering by polaritons using what seems to us
to be the simplest model of a crystal which is capable
of producing realistic results; second, to present a
theory of the scattering sufficiently general to embrace
all the previous work in the area and to apply to any
crystal whose principal axes are at right angles; and
finally to show how the Quctuations in the crystal which
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give rise to the scattering can be obtained very easily
using the Quctuation-dissipation theorem.

Since all the calculations are based on this theorem,
we complete Sec. 1 by reviewing briefly the Nyquist or
fluctuation-dissipation theorem, which relates the
mean-square fluctuation in some physical quantity to
the imaginary part of an appropriately defined ad-
mittance or response function.

In Sec. 2 we introduce a simple model of a crystal in
which the lattice and electronic motions are each
represented by a simple harmonic oscillator. The
admittances required for the Raman crossection are
easily obtained by calculating the response of the model
to external forces applied to the ionic and electronic
oscillators. The polariton frequencies, determined
by the poles of the admittances, are discussed. The
model is now made nonlinear by adding to it an anhar-
monic potential which couples the two oscillators. The
anharmonicity is assumed sufFiciently weak that its
effects can be treated by first-order perturbation theory.
Kith anharmonicity included, the two-oscillator model
can couple light waves of different frequency, and
displays the various properties studied in nonlinear
optics. The model is in fact similar to, but somewhat
simpler than, one used by Garrett (1968) in a discussion
of nonlinear susceptibilities for various optical processes.
Our main concern is with light scattering rather than
with nonlinear optics as such, but as a first application
of the anharmonic model we derive an expression for the
electrooptic coefFicient and make contact with the
literature of nonlinear optics. Finally, in Sec. 2 we
derive the intensity of light scattering by the model
crystal. The scattering of an incident laser beam arises
from its mixing with the crystal fluctuations to produce
light of various shifted frequencies. The scattering cross
section is related to the mean-square fluctuations in
oscillator amplitude, and can then be evaluated using
the response functions derived earlier in the section.
The polariton light-scattering cross section so derived
displays all the features found in more complicated
derivations. The simple model calculation enables
a clearer understanding of the origins of the various
terms in the cross section.

In Sec. 3, we leave the two-oscillator model and
consider the more general case of a crystal having
an arbitrary number of polar lattice vibration modes
and possessing orthorhombic symmetry. The treatment
parallels that of Sec. 2 to a large extent. Response
functions are derived for the more complicated crystal
by considering externally applied polarization and
externally applied forces. The polariton dispersion
relations are derived by finding the poles of the response
function and reducing them to results given by previous
authors when specialized to uniaxial or cubic crystal
symmetry. The electrooptic coefFicient and scattering
cross section are derived using the response functions
and the fIuctuation-dissipation theorem.

The theories of Secs. 2 and 3 are applied in Sec. 4

(W'(t) )A, = (1.3)

'An excellent elementary review of fluctuation theory and
power spectra has been given by D. K. C. MacDonald (1962).

'Most derivations of the fluctuation spectrum (1.1) obtain
the thermal factor n{~)+-,'= (-,') coth(cv/2) rather than n{cv)+1.
This is because a symmetric combination of +co and —~ Fourier
components is averaged and all integrals are then folded and
taken to range from zero to infinity. In Raman scattering, +co
and —co can be measured separately so that one sided integrals
are not appropriate. Butcher and Ogg (1965) 6rst pointed out
the correct thermal factor in Nyquist's theorem as applied to
Raman scattering. The thermal factor in {1.1) removes the zero-
point fluctuation noise which cannot be detected by the usual
radiation detector which only annihilates photons.

to reviews of experimental and theoretical work on
light scattering by polaritons and vibrational modes.
For the usual right-angle scattering geometry the
cross-section formulas simplify and can be compared
with experiment. Scattering experiments at small
angles are required to observe the more interesting
regions of the polariton dispersion curves; such experi-
ments are more difFicult to carry out and not all

aspects of the theory have so far been subjected to
experimental test. We review the existing experimental
work and derive sum rules and linewidth expressions
for the polaritons which can in principle be tested
experimentally. We also emphasize the properties of
polaritons in biaxial orthorhombic crystals. The
resonance Raman effect, where the laser frequency lies
close to an electronic transition frequency of the
crystal, is a field of much current interest. A number of
theoretical papers have considered the case of resonance
with an isolated exciton transition, and several con-
flicting or apparently conflicting expressions have been
derived. We treat the same problem within the context
of the theory of the present paper and achieve a
reconciliation between the previous workers in the field.
Finally we consider briefly the related process of
stimulated Raman scattering, and derive an expression
for the stimulated gain in scattering by polaritons. The
result agrees with expressions previously derived by
the methods of nonlinear optics.

B. Nyquist's Theorem for Raman Scattering

The frequency spectrum of fluctuations in a variable
S" is given by the quantum mechanical Nyquist
formula

(I II' I')-= (&/~) LN(~)+13 Im (T), (1.1)

where Im (T) is the imaginary part of the linear
response function T appropriate to the variable TV,

and n(sr) is the quantum mechanical thermal factor

e((o) =
I
exp (6u/kgT) —1$ '. (1.2)

Here k~ is the Boltzman constant, and T is the absolute
temperature. '' The frequency domain ranges from
minus infinity to infinity in both above equations so
that the mean square value of the fIuctuating variable
S' is given by
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tially the scattered light spectrum which is measured.
Figure 2(a) is a schematic diagram of a Raman scat-
tering experiment. A laser with frequency co& is used as
the source or pump. The laser beam is directed through
the sample which is transparent at the laser frequency.
Ninety degree scattered light is picked up by a lens
and analyzed by a spectrometer. If the sample has a
Raman-active phonon mode described by the oscillator
of Fig. 1, then the scattered spectrum is centered at ~~

with a strong Stokes peak at co~—~0 and a weaker anti-
Stokes peak at oo~+coo. The Stokes peak corresponds to
down-scattering where a phonon is created. Phonon
creation is described by +~0, but causes a frequency
shift of —coo in the Raman spectrum since the scattered
photon must have energy %co&—Rvo to conserve energy.
The anti-Stokes peak corresponds to phonon destruction
and approaches zero strength as the temperature
approaches zero. Note that when ~ changes sign

(C) FLUCTUATIONS FOR

kgT-WQJo

Fzo. 1. (a) Mechanical oscillator driven by force F and having
its resonance at coo= (E/nz)". The response function has damping
(F) included to broaden the resonance. (b) Real and imaginary
parts of the response function. (c) Fluctuation spectrum of the
displacement t'V for the temperature indicated.

In words, Nyquist's theorem states that the power
spectrum of the fluctuationsI in W(/) is related to the
product of a thermal factor and the resistive (dissi-
pative) part of the corresponding response function,
Im (T). Derivations of (1.1) have been given by
Landau and Lifshitz (1969) 2 and Benson and Mills
(19'70a) .

Figure 1 shows the response function and fluctuation
spectrum for a simple harmonic oscillator. The dis-
placement is 8', the restoring force constant E, and
the mass nz. The damping constant I' is included to
give the response finite linewidth. The mechanical
response function T ' is simply the displacement per
unit force and has the familiar resonance form given in
the figure. T has real and imaginary parts which are
symmetric and antisymmetric respectively. 4 If for
convenience we choose a temperature T such that

o
——kET, the fluctuation spectrum (1.1) appears as

shown in Fig. 1(c).
It will be shown in Sec. 2 that for a simple model of

Raman scattering by phonons, Fig. 1(c) shows essen-

(o) 9O SCATTERING

LASER SAMPLE

LENS

SPECTROMETER

(b) RAMAN SPECTRUM

STOKES

ANT I STOKES

I(—oo) +1 = tt (ar—)
so that the thermal factor in 1.1 correctly reproduces
the usual Stokes (m+1) and anti-Stokes (m) thermal
factors. Comparison of Figs. 1 and 2 immediately shows
the importance of the fluctuation spectrum of the
phonon coordinate LV in understanding Raman spectra,
since the lower graphs in each figure are essentially
identical.

Note that two important ingredients are necessary
to establish the fluctuation spectrum and hence the
Raman scattering spectrum. First there is the linear
response function T which contains details of mode
frequency and linewidth. For a simple harmonic
oscillator T can be calculated classically. Second, the

Gals

'We write T as a matrix for consistency with later usage
though for the one-dimensional oscillator of Fig. 1, T has dimen-
sion one by one.

4 More generally, T(—co*) =T*(co), where * denotes complex
conjugate (Landau and Lifshitz 1969).

FIG. 2. (a) Schematic diagram of 90 degree Raman scattering.
(b) Raman scattered spec'trum for a sample possessing one
Raman active phonon mode described by the oscillator of Fig. 1
at temperature k~T = Acro.
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quantum-thermal factor is needed to describe the
proper weighting of processes where an excitation is
created or destroyed.

In the high-temperature (i.e., classical) limit,
Nyquist's theorem takes the simple form

(~ W ~')„= (kttT/sto) Im (T). high temperature
limit.

TABLE l. Definitions of response functions for simple mechanical
and electrical systems.

A. Mechanical

Displacement 8'(t) =8' exp {—icot)+cc a

Force F(t) =F exp ( i—cat) +cc
Energy perturbation II'= F (t) W (t)

(1.5)

A familiar statement of (1.5) is the equation for
voltage fluctuations across a two terminal impedance

Response function

T((a) = W/F

Nyquist's theorem for scattering

(~ W ~') = (k/x) Ln(ar) +1) Im (T)
(keT/xa&) Im (T) at high

temperatures

(~ V ~')„=(krtT/rr) Re (Z), (1.6)

where Z is the electrical impedance. Equation (1.6)
differs in form from (1.5) only because electrical
response functions (e.g., impedance) differ by a time
derivative' from the response functions employed in
most other systems. Equation (1.6) is historically
important as the original Nyquist theorem developed
to explain voltage fluctuations (7ohnson noise) in
electrical networks. Table I shows the variables
usually used in mechanical and electrical systems, and
collects various forms of Nyquist's theorem. It also
lists our conventions for Fourier components and
complex time factors. Throughout this paper we will
refer to T somewhat loosely as a response function or
as an admittance.

For a system with several independent variables
8 ~, t/t/'2, etc., correlations between variables must be
considered. Landau and Lifshitz (1969) and Lax (1960)
have shown that the Nyquist theorem has the form

(W;*W;) = (W,W,*)„=(kttT/e-to) Im [T;,(co)j (1.7)

in the classical limit, In the one-variable case when
i=j, Equation (1.5) is recovered for the fluctuations.
The new terms are the cross correlations which exist
only if there is coupling between variables, described
by the response function T,, ' In one model of Raman
scattering discussed in Sec. 2, (Wr*W2) describes the
correlation between the ion and electron motion;
Tr2(&o) is then the response of the electron to an ex-
ternal force on the ion. The existence of a 6nite T~~,

(i.e., of correlations between Wr and Wx) can give
interesting cancellations in the Raman spectrum.

The main purpose of the present work is to examine
the various linear response functions or admittances
T;; appropriate to Raman scattering. The models to be
examined assume that the nonlinearities which cause
Raman scattering are small so that the linear response
is not affected. An alternative approach is to calculate
the fluctuations from the imaginary part of a third-

' The time derivative results in a factor imp in converting from
T to Z which reverses real and imaginary parts and brings in an
additional frequency factor.

The response matrix T;; is analogous to the admittance
matrices used in the theory of four-terminal networks (Westman
1961).

B. Electrical-two terminal network in high temperature limit

Charge
Voltage
Current
Energy perturbation

Q(t) =Q exp ( idiot)—+cc
V(t) = V exp ( i~t)+—cc
I(t) =I exp {—idiot)+cc
II'=Q(t) V (t)

Response functions"

T=Q/V
7(admittance)

=I/V = —iarT
Z (impedance)

= V/I=1/Y

Nyquist's theorem

(~ Q ~') = (krtT/%hi) Im (T)
([ I [').= (4T/x) «(Y)

(~ V(') =(krrT/w) Re (Z)

a cc means complex conjugate,"Note our convention exp( —icut) causes the admittance and impedance
defined here to be the complex conjugate of the admittance and impedance
defined in texts on network theory.

2. TWO-OSCILLATOR MODEL

A. The Equations of Motion

The model we wish to analyze in detail is shown in

Fig. 3. To the left side of the figure is the oscillator
which is to represent ionic motion. This oscillator
consists of the linear spring with restoring force-
(Hooke's constant) E attached to a particle of mass M.
The displacement of the mass from equilibrium is W.
In making comparisons with a diatomic crystal, M
would be the reduced mass of the two ions in the
primitive cell. The oscillator to the right of Fig. 3
represents electronic transitions. A comparison with
more detailed shell models shows that the electron
restoring force k is the same order of magnitude as E,
but the much smaller electronic mass m causes the
electronic transitions to occur at a much higher fre-
quency than the ion resonant frequency. The nonlinear
spring o. couples the two oscillators. It can be thought
of as the 6rst correction to a purely quadratic potential.
This correction term simulates hard-core repulsion of
the ions and electrons in a crystal.

order nonlinear response function (Butcher and Ogg,
1965) . The present approach has direct physical
appeal, since the linear response functions are related
to the dielectric function and determine the modes of
the system in a direct way.
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To keep all expressions simple and thus emphasize
the physical effects, we analyze the model of Fig. 3 as if
it were a unit in a cubic crystal. Further, we apply the
various driving fields along the bond directions. If we
call this the x direction, we will derive diagonal (xx)
components of tensors describing various optical
eBects. We first neglect the nonlinear spring cx to
derive the linear effects. The equations which define
the model are

MW= KW+—ZE,

222w = kw+ —sE,

(2. 1)

(2.2)

P= (ZW+sw)/V, (2 3)

where Z and s are the charges of the oscillators which
represent the ionic and electronic motions, respec-
tively. Equation (2.3) gives the macroscopic polariza-
tion created by the two dipoles, where V is the volume
of the primitive cell. E is the macroscopic electric field,
thus we are dealing with a macroscopic model in the
spirit of Born and Huang (1954) who first set up such a
model for the lattice vibrations in a diatomic cubic
crystal (see Sec. 9 of this reference for a microscopic
justification of the ma, croscopic model).

where S~ and S2 are dimensionless strengths

SI=42rZ2/VK, S2=42rs2/Vk, (2. 10)

and the transverse-mode mechanical resonances are at

The dielectric function ~ for the present system has
two poles and two zeros. Figure 4 shows the frequency
response of the particles to a constant-amplitude
driving field applied just outside the crystal. Figures
4(a) and 4(b) show the transverse case where reso-
nances occur at the poles of e. Figures 4(c) and 4(d)
show the longitudinal case. For this geometry, the
normal component of D=E+42rP is conserved so that
E(inside) =E(outside)/e. This gives an additional
1/e factor in Eqs. (2.5) when they are written in terms
of E(outside). The 1/e factor gives resonant response
at frequencies where e is zero. We stress that while ~

and 1/s describe the particle response, some energy is
carried by electric and magnetic fields apart from the
particles. It is only when we consider Maxwell's equa-
tions together with (2.1) to (2.3) that we can obtain
the true modes of the system.

To summarize and define some standard notation we
write

~= LSI~I'/(~I' —~') j+LS~2'/(~2' —~') 3+1, (2 9)

B. The Linear Dielectric Function

Consider a transverse or longitudinally polarized,
oscillating electric field with the field direction along
the bond direction in Fig. 3. We take the field to have
the form

a&I2= K/M and (a22 =k/222.

For co«~2, it is useful to note that

Ls '/( '—')]+ „,
where

(2. 11)

(2. 12)

E(t) =E exp Pi(qx u&t) j+com—plex conjugate. (2.4)

We expand all variables in this form and substitute
in (2.1) and (2.2) to obtain for the particle response

W=ZE/(K Ma)2), w=sE/—(k —euo2) (2.5)

and the obvious complex conjugate relations for 8'*
and zv*. Substituting into the polarization equation
(2.3) and defining the dielectric function, we obtain

e„=1+(42rs2/ Vk) (2. 13)

is a frequency-independent dielectric constant which
approaches at frequencies well above the ionic

resonance ~~ but well below co2. The generalization of
(2.9) to include damping and the evaluation of the
longitudinal vibration modes has been treated by
Barker (1964) .

C. The Linear Resyonse to a Mechanical Force

where

c= 1+42r(P/E) = 1+4m. (XI+X2),

Z2/ V
X& E—MoP

'

(2.6)

(2 7)

It is now necessary to consider all the equations of
motion (including Maxwell's equations) in order to
derive the response functions needed to evaluate the
thermal fluctuations in a dielectric. We must use the

s'/ V
X2=

k —mes'
' (2.8)

are the susceptibility functions for the ionic and
electronic parts of the system. This dielectric function
is independent of q, but has two poles at frequencies
given by aP= K/M and k/2rI. Huang (1951) has shown
that there are transverse modes of a mechanical
nature at the poles of ~. These modes occur only at
large values of wave vector q. Longitudinal modes
occur at the zeros of e.

~.: =0000=- M

NON L INEAR r+z
~~mq 0000

FIG. 3. Two-oscillator model of. a dielectric with one vibra-
tional mode. The ion with mass M and charge Z is shown on the
left bound by a spring with force constant X. The electron is
shown on the right. Here cx denotes a purely anharmonic spring
coupling the two harmonic systems.
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response appropriate to externally applied forces
(Landau and Lifshitz, 1962, Sec. 125). In this section
we will derive the response function F/W, where F is
an external force which drives the ion displacement S'.
The presence of Ii adds the energy FR' to the system
Hamiltonian. The equations of motion must then have
the term F added to right side of (2.1). The response
function W/F can then be derived and used in Nyquist's
theorem to evaluate the fluctuations in the displace-
ment 8'. If we wish to evaluate the polarization
fluctuation, we must consider the energy term PE, t,.
The response function~ P/E„,„t is then used in Nyquist's
theorem to obtain (!P!')„.Alternatively we can drive
the system with the external polarization P,„&. To
obtain the fluctuations in E we must then calculate
the response function E/P, „,. These latter response
functions will be derived in later sections.

For the present, we require the response to a term
F exp fi(qx a&t)—j added to (2.1) . We obtain

TRANSVERSE
DISPLACEINENT

W
AND 0

W

Qo

20 =
o-

-20-

LONGITUDINAL
DISPLACEMENT

.2

W
AND 0

W
-,1

-2-

—rON W

ELECTRON w i
(0) E rr

q

(b)

I (c)

E

W =F/(E 3EoP) . —

According to Maxwell's equations we have

V)& V &&E= —(c')—'(O'D/BP),

or equivalently

(2. 14)

(2. 15)

+.5-

0-

—.5—

(g/~) M =E+4~P,.„, (2 17)

where a factor c representing the velocity of light has
been absorbed into q, that is, q is measured in the same
units as co. For the present case, the total polarization is

e—1 ZF/V
Pg g= E+,, (2. 18)

V'E —V(V E) =(c') '(8'/Bt') (E+krP). (2. 16)

Thus with the assumption of transverse plane-wave
fields

I

10102 1O' 104 1O'
FREQUENCY (cm ')

FIG. 4. Particle response and linear dielectric functions for
the two-oscillator model. In (a) a transverse electric field is
coupled into a slab of the dielectric, (b) shows the dielectric
functions. In (c) a longitudinal external field drives the system
so that the D field is conserved across the boundary. (d) shows
the response function —1/e. The parameters used are S1=12.6,
S2= 6.3, co1= 100, co2= 1.41 10' cm ' with Z and z having opposite
sign. The short vertical arrows mark the transverse and longi-
tudinal resonances in ascending order ao1, euL, O, cv2, col,o.

i.e., the usual linear dependence on E plus a n.ew term
arising from our external drive on the ion via the
force F Eliminating . Pt,,~ between (2.17) and (2.18),
we obtain

both frequency and wave-vector dependence for
charged oscillators (ZWO). If we apply an external
driving force to the electron with amplitude f, then
by similar methods we obtain the electron responseE=4 ZF/{ V(E 3E ')

} ( / ) —j}.—(2. 19)

The total ion motion is 4ns2 1
'N= F. (2.21)

V(k —ymo') 'L (q/(v)
'—e$ k —mes'ZE Ii

W= +E—MoP E—3foP The large brackets in (2.20) and (2.21) contain the
admittances or response functions needed to compute
the fluctuations of 8' and zo, the ion and electron
motion. In addition we will need the fluctuations in the
cross term mlV. In the language of network theory,
we have a four-terminal network, the two variables zv

and 8' corresponding to the two currents which can
be impressed on the network. Equations (2.20) and
(2.21) give us the admittances Tu and T22 of the
four-terminal network. For a complete description we
still need T» w/F since the system——s are coupled by
Maxwell's equations. The transfer admittance T»

Thus as a result of these calculations we have obtained
the response to a mechanical force and 6nd that it has

'Note that the dielectric function & is not a response func-
tion (except asymptotically for large wave vector). This is
because E is not the external field which drives P. Both I'/E
and P/E, t, can be evaluated for our model, but only the latter
is to be used in Nyquist's theorem.

4n-Z2

V(It —M(o')'L(q/a)' —ej IC 3EoP-+ F. (2.20)
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in the present system describes the response of the
electron when the ion is driven by F.

Using the same procedures outlined above, we obtain

4+sZ

V(k —maP) (E—Md') L(q/(u)' —«]
F. (2.22)

Evaluation of W/f where f is a force driving the electron
would have given the same response function in the
bracket above, showing that for the present model
T~~= T2~, i.e., the admittance matrix is symmetric.

D. The Linear Response-Longitudinal Case

When longitudinal plane wave fields are considered,
(2.17) becomes

the resulting uncoupled niodes are completely mechani-
cal modes at frequencies cdI and &u2 (Eq. 2.11) and pure
electromagnetic modes (light waves) with no dispersion.
When the equations are solved together (i.e., simul-
taneously) as in the previous sections, the resulting
coupled modes possess a mixture of mechanical and
electromagnetic character. These modes have been
named polaritons (Hopfield, 1966) .

In the case of any oscillatory system, we may
examine the modes by looking at a response function.
Going first to the uncoupled case of the ion driven by
a force F, we write again (2.14)

W =F/(E —M(a') .

The response function is

F+4IrPt,,t, 0. —— (2.23) T= W/F = —1/(E—MI«')

It is apparent that we can retain all the formulae of the
above section by letting the term q'/&u' be zero when-
ever we consider longitudinal waves. In later sections we
will see that this result is generally true only for cubic
crystals. The response of E to a longitudinal force
field applied to the ions is therefore )from Eq. (2.19)]

E=4IrZF/I V (E Mar') (—«—) I . (2.24)

Equations (2.21) and (2.22) can be modified in the
same manner for longitudinal 6elds. The ubiquitous
L(q/cv)' —«] ' factor of the transverse case arising
from Maxwell's equations has been replaced by the
factor 1/( —«). The longitudinal response functions
will therefore have peaks at the zeros of e as was
anticipated in Sec. 2.B.

All of the linear response functions necessary to
describe Raman scattering have now been derived. It is
worth stressing that for uncharged particles, only
1/(E M«Is) types —of response functions would have
been obtained. For charged particles, Maxwell's
equations must be included in the model causing various
combinations of e to appear in the response functions.
This coupling of the mechanical and light waves
causes new mixed modes in the system called polaritons.
The mixed modes are discussed in the next section.

E. The Polariton Modes

In a system capable of oscillations, a mode is generally
specified by giving its frequency and in some cases its
strength, i.e., its coupling to an external probe. Hopfield
(1966) has emphasized that for the case of light waves
at frequencies below the x-ray region interacting with a
solid, the set of equations which describe the oscillations
are Maxwell's equation plus an equation which deter-
mines I' in terms of E, i.e., an equation for the dielectric
function. To gain insight, the equations can be solved
separately by ignoring Maxwell's equations while
solving (2.1), (2.2), and (2.3), and then solving
Maxwell's equation (2.17) with P~,~ 0, i.e., ignoring- —
the charged oscillators. For our two-oscillator model

( 1 1

2E &~+a)I «0 —a)Il
' (2.25)

Im I L(ql(0)' —«]}-'. (2.27)

Hopfield in his review article has illustrated the
polariton modes in the case of zero damping. In Fig.
5(a) we show Im((q/Id)' —«] ' for a case of finite
damping. In Fig. 5(b) the dispersion curve is plotted
from the peaks in. Fig. 5(a). In addition, dispersion
curves are shown for zero damping and two cases of
large damping. In these figures the finite phonon line-
width has been generated by addition of a damping
term MI'W to the right-hand side of (2.1).

where a&I is defined in (2.11). In conformity with the
causality principle (Kittel, 1958), a response function
like (2.25) always has an imaginary part which can be
determined by associating a small positive imaginary
part with ~ and taking the limit as this imaginary part
tends to zero. Following this procedure for (2.25) we
find

Im (T) = (Ircoi/2E) L5(a&—a&I) —8(~+~I)]. (2.26)

The modes are sharp peaks (delta functions) located
at &coi. When damping is included in the oscillator
equation of motion as was done for Fig. 1, the peaks
broaden and we have some freedom in choosing the
definition of a mode. Obviously the response function T
contains all the information of interest; however, to
plot dispersion curves we must extract one frequency
from T. We are therefore led to the definition of a mode
frequency as the frequency of the peak in the response
function.

For polaritons in the model considered in the previous
sections, the coupling occurred between the light
waves and the transverse mechanical vibrations. The
response functions for various particle motions all
contained the denominator L(q/Id)' —«]. We now
defwe the polariton modes as the peaks of
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pro. 5. (a) po]ariton response function 1m)(q/~)' —ej '. The spectrum has been plotted in the region of the lattice vibratio n

using the two-oscillator model with parameters S=3, co& = 100 cm ', I'=0.15co1, e = 1, The peaks clearly show the transition from light

waves to damped lattice vibrational waves. Note that the vertical scale is logarithmic and some portions of contours have been omitted

for clarity. (b} Polariton dispersion curves for several choices of damping. The open circles correspond to the peak positions shown

in Fig. 5(a). The dashed curve corresponds to very large damping such that the response function shows no peak but only a broad

shoulder near au = 100 ' for q/2m) 150 cm '.

For longitudinal vibrations, (2.27) becomes
Im (1/ —e) and the peaks show no dispersion. In this
case, there is no coupling of the mechanical and light
waves and the term polariton is inappropriate. Figure
6(b) shows a longitudinal spectrum.

One point needs further emphasis. While the defini-
tion of a, mode as the imaginary part of some response
function is obviously useful and certainly pictorial, the
particular response function chosen is somewhat
arbitrary. The definition (2.27) is a fairly natural one
but the result of a particular experiment may involve a
di6'erent response function. For Raman scattering, the
function (2.27) is in fact multiplied by another function
which for a certain choice of parameters and at a
certain value of q can have a dip right at the peak in
(2.27). The resulting Raman scattering may therefore
have no peak at the polariton mode. It is incorrect to
say that there is no polariton mode, however, since
some other probe (e.g. , neutron scattering) with a
diferent response function would show a peak here. The
definition (2.27) contains the universal factor which
appears in any more complicated response function and
is thus particularly useful as a de6nition.

F. Nonlinear ESects-The Electrooptic CoefBuent

The nonlinear spring in Fig. 3 is regarded as con-

tributing an anharmonic term (n/3) (W—w)' to the

potential energy of the system. Its inclusion changes

the equations of motion to

MW= —EW—tr(W —w)'+ZE, (2.28)

(2.29)

(2.30)

mw = —kw+u (W—w) '+sE

P= (ZW+sw)/V.

and the second (the "electro" field) as resulting from a
source with frequency co low compared with the fre-

quencies of the resonances in the system, i.e.,

E(t) =E exp (—ia&t)+cc. (2.32)

With these delnitions the peak fields are 2
~
Ei ) and

2
~
E j, respectively.

For the electro-optic eGect we consider the case of two
electric 6elds driving the system. We may think of one
field (the "optic" field) as resulting from a laser

Ei(l) =Ei exp ( icoit)+Ei* exp (—in~it) (2.31)
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CO =CO& CO

and find for the displacements at this frequency

(2.34)

W(co.) =— 2n ZE* sE*

E—MCu, 2 E;—3EaP k —mOP

ZE) sE)
X 2.35

IC McoP —k —nba P

2n ZE* sE+
w((o, ) =

k —nun, 2 E—MOP k —mOP

(2.36)E—MO) )2 k —ma) )2

The relative importance of the various terms which
result from multiplying out these equations depends on
the magnitudes of the three frequencies which enter,
and will be different for different nonlinear-optical
processes. For the electro-optic effect, co~ and co, are
close in magnitude and are very much larger than
(E/M)'~' and the third frequency ~. It follows that
w(ra, ) is much larger than W(a&,) and that the first
term in the second bracket of (2.36) is much smaller
than the second. Thus to a good approximation

2nsE~Ei
28 or, (k- mcvP) (k—mcoP)

8 Z
X —,, (2.37)

k —rmO2 E—MOP

and W(co.) can be ignored.
The nonlinear polarization vibrating at ~, is obtained

by substituting (2.37) into (2.30)

The linear response of the ion is

W =$ZE exp (—iart)/(E —3fco') j
+LZE~ exp ( m—tt)/(K M—a&P) j+cc (2.33)

and a similar expression for ze, the electron motion.
Inserting these expressions into the nonlinear terms in
(2.28) and (2.29), we find that W and u have terms
vibrating at zero frequency, and at double the applied
frequencies, as well as at ~&&~. We use the term
"scattered frequency" to denote this latter combination.
We deal specifically with the "down-shifted frequency"

(1968) has done, by using the quantities xi and x~
defined in (2.7) and (2.8),

2~V'x~(~.)x~(~~)
PNL(~s) =

82

X2 (~) xi ( ) Egg (2 39)
3 Z

The nonlinear coefficient of E*E~ in (2.38) or (2.39) is
equivalent to 4d in the notation of Boyd and Kleinman
(1968). We note that there are two terms and that
there can be cancellation between them. Zero electro-
optic effect will result if Z and s have appropriate sign
and magnitude to cause cancellation inside the bracket.
We will find cancellations of a similar nature in the
Raman response.

The two terms entering the bracket in (2.38) are
associated with electronic and ionic contributions to the
electro-optic effect. The ionic contribution will be zero
for an infrared inactive mode (Z=O). The formal
electro-optic coefFicient, r, is defined in terms of the
derivative of the reciprocal of the susceptibility with
respect to the low-frequency electric field (Kaminow,
1967). Using cgs units, we write:

8(1/e) —1 Bc —4s. 8(P~r/Et)
BE* ~2 BE* f2

For the present one-dimensional model, the coefficient is

—8xs2n
f

e'V(k —nues) (k—m(vP)

(X —,(2.41)
(k—moP) (E—M(u')

where e is the dielectric function evaluated at the laser
frequency.

In many cases, all of the frequency dependent
denominators in (2.38) and (2.41) are far from reso-
nance and can be replaced by constants. We can make
contact with much of the current literature on non-
linear optics by defining the coefFicients

a= —2s'a, /LV(k —mug) (k—nugP) j (2.42)

b = 2ss~/fV(k —~ ~) (k —ma&P) (k —neo') j. (2.43)

The nonlinear polarization equation (2.38) then
simplifies to

28 n
PA'L(&a) =

V(k —m~,~) (k—~P)
P~l. (~,) =aW*Et+bE*E(, (2.44)

where 8' is the amplitude of the ion motion at the
frequency &o. Equation (2.44) clearly shows that the
coe%cients a and b describe the ion and electric-held
contributions to the electro-optic effect. Many dis-
cussions of electro-optic effect and light scattering
intensities break up the nonlinear polarization in this
way (Johnston and Kaminow, 1969; Johnston, 1970;
Burstein and Mills, 1969a, b) so that the parameters a
and b are taken as basic model parameters. Equations

(X
(k —moP)

Z
E*Et. (2.38)E MsP—

For the "up-shifted" frequency we have a&, =~&+~ and
the electric fields at the right-hand side become EE~.
The entire coe%cient of E*E~ is a second-order sus-
ceptibility describing the electro-optic effect. It may
be related to first-order susceptibilities as Garrett
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(
ZEi sEi

(2.49)E—%co)' k —~)'r= (—4m/e') (aI Z/(E —Ma)') 7+bI, (2.45)

(2.42) and (2.43) show that the two-oscillator model and amplitude
gives the same results, and in addition can be used to

tX
describe resonant effects when or~ or co, approach the w(cv, ) =

I W~(co) —w*(ru))
electronic transition frequency. In terms of the a and b

coeKcients, the electro-optic coe%cient is

ion motion

E( exp (—icott), (2.46)

ZE( exp ( ice(t)—
W(cv) exp (—i(ot)+ ', , (2.47)

K—Mu~'

electron motion

sEI. exp ( —i(a(t)
w(or) exp ( idiot)+— , . (2.48)

k —~('
Inserting into the equations of motion (2.28) and
(2.29), we obtain, as before, frequency doubling,
rectification, and frequency mixing from the nonlinear
term. Considering only the mixing process, and writing
out only the down-shifted or Stokes contributions, the
electron motion at cv, =co~—co has wave vector q~

—q,

where we have made use of the derivative rule

B/BE*= (BW*/BE*) (B/BW*) .

G. Nonlinear Effects-Raman Scattering

We now consider the case where a laser field is
impressed on the model and in addition the electron and
ion vibrate thermally at the frequency co. While we
think of ~ as a phonon frequency, it is retained as a
variable. At the end of the calculation the scattering
spectrum is examined as a function of or. There will be
peaks when ~ is near phonon (or polariton) frequencies.

The calculation proceeds much as in the case of the
electro-optic effect. The linear fields present are the
laser E~ exp i(qtx —o)~t), and the particle vibrations
W expi(qx cut) and—w expi(qx ~t). All of the ampli-
tudes E&, 8', and zv can be thought of initially as
driving the system to produce the nonlinear response at

~, q, =q&—q. Here W and zv are thermally
driven however, so finally we must calculate the
power spectrum using Nyquist's theorem for the
fluctuation in TV and ze.

We begin with the laser field at frequency co& and the
particle vibrations at frequency ~ with amplitude
W(a&) and w(a&) . For compactness, we cease writing the
complex conjugate terms for each field,

laser

A similar expression is obtained for W(~,); however
the prefactor of a/(E Mo,—2) makes the ion amplitude
negligibly small under the usual conditions of Rarnan
scattering. For the same reasons, (because M»m) the
first term in the large bracket above can be neglected.
Inserting (2.49) in the polarization equation (2.30),
and neglecting small terms the nonlinear polarization
vibrating at the scattered frequency co, is:

2AS
I'Ni(~. ) = L~*(~)—if'*(~))

V X,. (2.50)
(k—ma) ') (k —euuP)

Equation (2.50) shows a number of features to be
expected of the Raman eGect. The nonlinear parameter
n enters as well as the electronic charge squared. The
electron and ion amplitudes enter linearly. At some

frequency, for a suitable choice of parameters, 8' and m

may vibrate in phase, giving zero Raman scattering.
Finally there is a resonant enhancement of the Raman
scattering when either the scattered frequency
or the laser frequency co& approach the electronic
resonant frequency (k/m) 't'.

Before defining the Raman scattering cross section,
we examine the fiuctuations in I'~r, (s&,) which have
essentially the same spectrum. The power spectrum of
the nonlinear polarization, which we now call the
Raman polarization, is

4n's4

I"(&—~ ') '(&—~t') '

x(l ~(~) —w(~) I')- (2 51)

Using Nyquist's theorem (1.1) first on (I W(&u) I'), we

obtain for transverse vibrations using (2.20)

(I w I')-= (&/~) L~( )+1)
4zZ' 1

X Im .. . +,I. (2.52)
V(E—Mcv')'L(q/cu)' —e) It; MoP)-

Using (2.21) and (2.22) to obtain (I w I')„and (Ww*)„,
the power spectrum of the Raman polarization at
frequency or, and wave vector g, is

(I I'yrz I') 40.'s%(n (co) +1)/vr 4~Z2
Im

I
E/ I' y (P—~ ') (P—~P)~ v(A —M4P)2L(q/~)2 ~7

1 4ms' 8mzZ

I'(&—~')'L(q/~)' —~) ~(&—M~') (&—~') L(q/~)' —~)
'
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To obtain some feeling for the power spectrum of X~I„
we study the nonresonant case. Indeed we shall assume
nonresonant conditions for most of the paper, and give
special attention to the resonant case in Sec. 4.E.

Figures 6 and 7 show some spectra as functions of

q and +. Phonon damping has been included as in Fig. 5.
A similar damping could be included in the electron
equation of motion, but such a modification is important
only when resonant effects are considered and would
not influence Figs. 6 and 7. Table II lists the parameters
used in the figures. The phonon frequencies have been
chosen to approximate Gap. The peaks in (i PNz, i')
closely follow the polariton dispersion curve, however
there are significant small shifts, In Fig. 6, Z/s is
positive. It is easy to show that for this sign choice there
is always a frequency where the Raman scattering has
zero intensity in the range 0(&(~& ' as long as

' We continue to use coj for the frequency of the resonance in
e, coi is the same as the transverse optic frequency (usually
denoted ~To) for zero damping. For finite damping a suitably
defined response function peaks at co& so that we can consistently
define ~I to be the transverse optic-mode frequency in all cases.

FIG. 6. (a) Response function for
Raman scattering for transverse
vibrations (parameters given in Table
II). The thermal factor is omitted.
The vertical axis is logarithmic and
only values greater than 10 ' are
plotted. Note the disappearance of
the lower peak at q=5870 cm '. The
dashed curves give the location of
the peaks. (b) Response function for
Raman scattering by logitudinal
vibrations (parameters given in Table
II1. The lower frequency dashed
curve gives the peak position for
transverse scattering shown in Fig.
6(a). It clearly shows the dispersion
near the interference which causes
cancellation near q=5870 cm '. The
higher frequency dashed curve gives
the frequency of the peak of the
longitudinal mode and is a straight
line.

(Z/z) (e —1)+e is larger than ep —e . In Fig. 6 this
cancellation effect occurs at co=259 cm '. Measure-
ments by Faust ef aL (1968) on Gap show a cancellation
at this frequency. As emphasized in Sec. 2.E, the
polariton mode dispersion curve still exists and passes
smoothly through co=259 cm ', while the peaks in

(~ P&z, ~') actually show a discontinuity here as shown

by the dashed line in Fig. 6(b) . In Fig. 6(b), the spec-
trum is shown for longitudinal phonon fluctuations.
In Fig. 7, Z/s is chosen negative, giving a cancellation
in the scattering above col.o at ~=448 cm '. Roughly
speaking, a cancellation either above ~1.0 or below cui

is to be expected when e„ is large compared with S~,
the phonon mode strength.

The scattering cross section is obtained by considering
the radiation emitted by the oscillating dipole Pzzz(p&, ) .
At a point situated a large distance E and oriented at
right angles to the direction of I'NI. , the time average
power Row per unit area is

I/"2 co

I,=
27IC E
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FIG. 7. Response function for Raman
scattering by transverse vibrations. The
parameters used (Table II) give a can-
cellation in the higher frequency polariton
branch near q=6000 cm '. The dashed
curves give the frequency of the peak
in the response function.
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Here cgs units have been used. V is the unit cell volume
associated with the polarization I Eq. (2.3)), and n,
is the index of refraction at the scattered frequency ~,.
Equation (2.54) is just the standard textbook result
for the time-averaged Poynting vector associated with
an oscillating electric dipole. The time-averaged power
Row per unit area for the laser beam is

beam generates a scattered quantum of smaller energy
Ko., the balance of energy being given to the scattering
material.

The differential cross section can be evaluated from
(2.54), (2.55), and (2.56)

cP0/dQAo = (I o) co&v'&I & I')-.) /(e, c4
I

&~ I') (2 57)

I,= (cn,/2~)
I
zP I, (2.55)

where e~ is the index of refraction at the laser fre-
quency co~.

The scattering cross section 0 is dehned as the energy
removed from the laser beam per unit time divided by
the power Row I~ for the laser beam,

tl = (&Ol/(8 I/) JI 8 dD (2.56)

where dQ is an element of solid angle, and the integral
runs over a sphere. The factor &o~/a&, takes account of
the fact that each quantum ko~ removed from the laser

Except for the weak frequency dependence co,' and
possible resonance of ~, with the electronic transition
which may cause e, to have some signilcant frequency
dependence, the cross section has the same spectrum
as the Raman polarization and will show the peaks
illustrated in Figs. 6 and 7.

%e make one further simpli6cation of the Raman
scattering formulas by restricting co to lie well below the
electron resonance. This allows the neglect of mco2

compared with k, and the replacement of certain
combinations of parameters by e„. From (2.12),
(2.13), (2.53), and (2.57), we obtain for scattering by
transverse waves

tP I'wv(2 ) s,%.[n( )+I'] f(~ — )L'(q/ )'— —2(z/s)( ~ —&)7+(&/~)'( —
&)')

dOdu, nic4(k —mes ') '(k —neo ') '4~'Z' Xml
(q/~)' —~

(2.58)

where ~,=co~—co.

ln (2.58) all of the ion resonance terms have been
rewritten in terms of the dielectric function e. The most
important terms which determine the spectral response
are contained in the large bracket. The denominator
(q/&o)' —~ causes the response to peak generally near
the polariton dispersion curve (Sec. 2.E). The effect of
various choices of Z/» in the numerator can strongly
a8ect the spectrum in certain regions, however, as was
illustrated in Figs. 6 and 7. Equation (2.58) is the final
result giving the Raman cross section for any q and co

in terms of the parameters of the two-oscillator model.

3. GENERALIZATION TO MULTIATOMIC,
NONISOTROPIC CRYSTALS

A. Equation of Motion and Linear Dielectric Functions

The theory of Sec. 2 can be generalized in a straight-
forward way to embrace more complicated crystals,
where there may be many vibrational degrees of
freedom and where the optical symmetry may be
uniaxial or orthorhombic. The inclusion of such
complexities in the theory is the purpose of the present
section. The results will be qualitatively similar to
those for an optically isotropic crystal having a single
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TABLE II. Model parameters used to calculate Raman scattering
response functions.

used. We consider only harmonic plane-wave excitations
in the crystal for which E, P, and W have space and
time dependence exp [2(q r—tot) ]. Elimination of

E;, P, , and W;" from (3.1), (3.2), and (3.5) then gives

Pig. 6(s), (b)'
Fig. 7

366
366

0.03
0.03

O. S
—0.5

where

c;=2;„+P S.to„2/(to„2 —to2 —itoI'„), (3.6)

~ These parameters approximate gallium phosphide but with slightly
increased damping for convenience in drawing the peaks.

S„=42rZ„2/ VM.(0„2. (3.7)

vibrational degree of freedom, but the corresponding
expressions will look more complicated due to the
necessity of enumerating vibrational degrees of freedom
and crystal principal axis directions. Damping of the
lattice vibrations will also be included.

Consider a crystal having optic vibrational modes
enumerated by a superscript v, the vibrational ampli-
tudes being W". For a polar optic mode v, the vibra-
tional amplitude W" can be assigned to one of the
principal axes j of the dielectric tensor. We denote the
appropriate element of the diagonalize d dielectric
tensor e;, and we also attach a label j to the vibrational
amplitude to indicate its principal axis direction. The
classical oscillator equation of motion for W;" is ob-
tained by generalizing (2.1) to

M.[W;"+I'.W;"+id.2W,")=Z„E;, (3.1)

where E, is the component of the macroscopic electric
field along principal axis j,M„ is the appropriate reduced
ionic mass, F, is the damping constant, co„ is the natural
frequency, and Z„ is the effective charge. These latter
four parameters have different values for the different
normal modes v.

The total polarization component is a sum of ionic
and electronic contributions as in (2.13)

where
P . P .ionic J p.electronic

2

p.ionic —p (Z W.v/Ivv)

(3.2)

(3.3)

For the calculations of the present section, we do not
set up any microscopic model for the electronic states
of the crystal. We assume the electronic resonances tobe
well separated from the ionic resonances so that the
electronic contribution to the dielectric function has a
constant value e,„ in the ionic resonance region. The
electronic polarization at frequencies in the vicinity of
the ionic resonances can then be represented as

These are the generalizations of (2.10) and (2.12) .
Any excitation set up in the crystal must have E

and P vectors which are consistent with Maxwell's
equations (2.16) . This imposes a condition on E and P
which can be written in either of the equivalent forms

or

E= —42r[q (q P) —to2P]/(q2 —aP)

42r&o2P = (q2 —to2) E—q(q E) v

(3 8)

(3 9)

B. The Linear Response to an Applied Electrical
Polarization

The nonlinear effects to be considered require a
knowledge of the fluctuations in the t/V, " and the com-
ponents of E, and also of cross correlations between

W," and E. In this and the following section we derive
the response functions or admittances needed to
evaluate the magnitudes of these fluctuations.

For the fluctuations which involve E, we require
the electric-field response to an external stimulus. The
appropriate stimulus which couples to E is an impressed
polarization P' ", taken to have space and time de-
pendence exp [i(q r tot)) In add—ition .to P'"', there
will be an electric field E in the crystal, and an as-
sociated induced polarization P related to E by (3.5).
The polarization in Maxwell's equations must now be
taken as the total P+P'"'. We substitute this in

(3.9) to obtain

where factors of c which multiply q everywhere have
been absorbed into q as was done in Sec. 2.C. The last
equation reduces to (2.17) for a transverse excitation.
The three components each of E and P can be elimi-
nated from (3.5) and (3.8) or (3.9). The resulting
relations between q, co, and the e; determine the polariton
dispersion curves. We do not follow this procedure
here, but will obtain the polariton dispersion relations
as the denominators of response functions, as in
Sec. 2.E.

P.electronic [(&. 1)/42r]E. (3 4) 4~~2(P+Pext) —(q2 &2) E q(q. E) (3 10)

By definition of the dielectric function e, , the principal
axis components of P and E are related by

E;+42rP; = e,E; (3.5)

where the restriction to orthorhombic or higher sym-
metry crystals ensures that the dielectric tensor is
diagonal allowing the single subscript form e; to be ,—E ./PP etx. (3.12)

Take a principal-axis component and use (3.5) to
eliminate P;,

42rtc2P, e»t= (q2 e,cc2) E; ih(q E) . — (3—. 11)

We define the electric-fieM response function
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The four other admittances all contain the same
denominator D. They can be obtained by cyclic
permutation of the subscripts in (3.13) and (3.14).
Here T is symmetric as shown by (3.14).

As discussed in Sec. 2.E, the poles of the response
functions determine the polariton dispersion curves,
The co versus q relation for the polaritons is obtained by
6nding the peaks of Im (1/D). This result is slightly
more than just a generalization of (2.27) since trans-
verse, longitudinal, and mixed-polarization modes are
included in the response function here. It was shown
in Sec. 2.E that for moderate damping the peaks of the
response function lie close to the peak positions in the
limit of zero damping, where the condition for a peak is
simply

(zero damping) . (3.16)

Substituting D from (3.15), the dispersion curves
appropriate to an. orthorhombic crystal are obtained.
We may specialize (3.15) to uniazial or cubic crystals
to compare with results previously derived by other
authors for the zero damping case. The orthorhornbic
case is further discussed in Sec. 4. For a uniaxial
crystal having 3 as the unique axis, we set

6I = 62)

and the denominator factorizes

(3. 17)

D= (q' —sg(o') $sg(qs'+qs') +ssqs' — s(sos's]. (3.18)

The admittances have poles at

q' = ~&(u', (3.19)

which is the dispersion relation for the ordinary

The I;; can be determined by orienting P'"' parallel to
principal axis j.The three principal-axis components of
(3.10) then give (3.11) for the j component, and two
equations for the remaining components which are
similar to (3.11) on the right but have zeros on the
left-hand sides. The resulting three simultaneous
equations for T;; (i=1, 2, 3) can be solved easily by
determinantal methods. %e use 1, 2, and 3 as labels for
the principal-axis directions, and continue to exclude
monoclinic and triclinic crystals so that only three di-
electric functions (sq, ss, and es) occur in what follows.

It is simplest to give results for typical diagonal and
off-diagonal components of the response function,

Tsg ———(4sr/ VD) I q'qP

5&2(ql +qs ) +ss(qs +qs ) ]~'+ssssM I ) (3.13)

Tss = —(4 s/rVD) qsqg(q' ss~') =—T„, (3.14)

where

D= q . (Elql +&qs +ssqs )
—

JEST (es+ Es) qP+ Es (ss+ Es) qs

+Es(sy+ss) qs ]M +EyssssQ& . : (3.15)

polaritons, and at

ss(qs +qs )+saqs = ~i~s~, (3.20)

which is the dispersion relation for the extraordinary
polaritons. These results have been given previously by
Loudon (1964) .

For a cubic or isotropic crystal we set

6y —62= t3= 6) (3.21)

and the denominator reduces to

D=s(q' —saP)'

The admittances now have poles at

(3.22)

&=0, (3.23)

corresponding to the longitudinal mode frequencies,
and double poles at

q =KGB (3.24)

corresponding to the doubly degenerate transverse
polariton branches. Huang (1951) and Born and
Huang (1954) have given the above results for the
cubic case. The above results also agree with (2.27)
and the result for the longitudinal case given in the
discussion in Sec. 2.E.

The polariton degeneracies are usually smaller
than the crystal symmetry group theory would predict,
as mentioned in the introduction. For example, in cubic
crystals, group theory predicts that an electric-dipole
active excitation should have a threefold degeneracy,
whereas the results of the previous paragraph show the
polariton branches to be at most doubly degenerate. An
exception to this statement occurs for. very long-

wavelength polaritons when q((co and the pairs of
transverse poles from (3.24) coalesce with single poles
from (3.23) to produce threefold degeneracies at q=O.
Indeed, the group-theory prediction applies rigorously
only at q=0, so that strictly there is no discrepancy
between group theory and the polariton theory given
above. The apparent discrepancy arises because the
group-theoretical degeneracy is lifted as soon as q

becomes of order co. This occurs for polariton wave-

lengths X which are still about five orders of magnitude
larger than the crystal lattice spacing a. It is important
to realize that for problems involving interactions with
the electromagrietic field, the validity of q=0 group
theory depends on X))g assd X))c/a&. A similar state of
affairs holds in uniaxial crystals where some branches
are two-fold degenerate at q=0 in agreement with

group theory, this degeneracy being lifted except for
propagation parallel to the c-axis as q is increased.

The general forms (3.13) and (3.14) of the admit-
tances simplify sufficiently in the cubic case for the
different admittance components to be expressed in a
single formula

Z';, = —(4sr/V) L(q,q,—s(g'0, ,)/s(q' —ao') ]. (3.25)
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TABLE III. Response functions for an isotropic dielectric. '

Response function T for

Energy perturbation Transverse wave Longitudinal wave

&' =~exit/'

O'= E„,PP

E/VPext= L(4n /V) /(qt/tet e) g-

~/I'-'. *t= L(e &) l (—e'/~'-e) 3

&I&F-,t =5 (e ) /4x—VX(e'/~' ) /(V—'/~' )j—

8/Vp„t = -4K/Ve

Z/Z. „=(1 e)/.-
P/VF„t (e—1——) /4n Ve

cgs units, volume considered is V, wave vector q in units which include the velocity of light.

The contributions of the two types of pole can be
separated by defining x as a unit vector parallel to q,
and X and p, as any pair of unit vectors perpendicular
to each other and to q. Then using the properties

mode v. The equation of motion for this mode is thus
modified from (3.1) and becomes

M„(&0„2—&e2—tteI'„) W "=Z E +F '"' (3.32)

KIK2+XIX2+Pgl2= 0 KI +XI +PI = 1, (3.26)
or using 3.29)

(3.25) can be written
W.v pvE, +. (pv/Z )Fext, (3.33)

42r KIKl )tth~ +II;Ill'
V s (q/(u) '—s

(3.27)

with the longitudinal and transverse contributions
clearly resolved. Table lII lists these results for the
isotropic case. Equivalent expressions for admittances
in the isotropic case have been derived by Abrikosov
el al. (1963).

The calculations so far in the present subsection
refer to the electric-field response to an applied polariza-
tion. However the ionic displacement amplitudes W"
are coupled to the electric field E by the equation of
motion (3.1), and the W" also respond to the applied
polarization. The interaction between W" and P'"'
is indirect, and the corresponding response function is a
transfer admittance which we define to be

All the remaining normal-mode amplitudes continue
to satisfy (3.29), and the equation of motion of some

randomly chosen normal-mode amplitude t/t/', '7 can be
written in the general form

W,e= peE, +. (pe/Z„) F„*'b„„b,, (3.34)

Before deriving an expression for the mechanical
response, it is convenient to consider the electric-held
response to the applied force. The force term on the
right-hand side of (3.33) causes an additional contribu-
tion in the ionic polarization evaluated by (3.3), and

(3.5) is changed to

P;=L(S,—1)/42rjEl+(p"/V)F. ,'"'. (3.35)

But according to (3.9), which is a general result relating
P and E, we have

T,, —W, / VP,ext (3.28) 42rt02P;= (q' —Idt)E,—q, (q E). (3.36)

The equation of motion (3.1) can be rewritten more
compactly as

where
W "=P"E (3.29)

Z„ lM „
(3.30)

~,'—oP—io)I'„

Then, using (3.12), (3.28), and (3.29), we can express
the admittance as

T,l"=p"T,, (3.31)

C. The Linear Response to an Applied Mechanical
Force

For the fluctuations in W" we require the ionic-
displacement response to an external stimulus. We now
remove the externally applied polarization P'"' and
instead apply an external force F ' " which tends to
distort the crystal in the manner appropriate to normal

Elimination of I', from the last two equations gives

(4&~2/V) pvF .ext (q2 &.&2)E, q.(q, E) (3 37)

We note that this equation is identical to (3.11) except
that P '"' is replaced by P"F '*'/V. It therefore follows
that

(3.38)E./p ext VE,/. pvF, ext

or, using (3.12), (3.28), and (3.31)

E /F ext pvE /V'p ext pvT, . T—,v W,v/Vp, ext

(3.39)

The admittance T;;" can therefore be defined either as
the mechanical response to an external electrical
stimulus as in (3.28), or as the electric-field response to
an external mechanical stimulus; (3.39) shows that, as
would be expected, both definitions lead to the same
transfer admittance, proving that the admittance is
symmetric. The same result was mentioned for (2.22) .
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We expect the symmetric form to hold generally for
non-magnetic systems.

With these preliminaries we can now calculate the
purely mechanical admittances, defined as

2' . .pe ~,p/P ext. (3.40)

D. Fluctuations in Electric Field and Vibrational
Amplitude

The response functions obtained in the previous two
subsections can be used to derive expressions for the
Quctuations in W" and E. The connection is made via
the Quctuation-dissipation or Nyquist theorem .dis-
cussed in Sec. 1.B. In the present section, we use the
theorem to generate some of the standard results for
the Quctuations of electric field and lattice displace-
ment.

Consider the simplest possible case of a cubic crystal,
where the electric-field response function is given by
(3.27). Using (1.1) and (1.3), we have

Thus, dividing (3.34) by F„*"and using (3.39), we
have

T,;=p p"r,,+(p/Z„)S„„S;;. (3.41)

The two terms in this result are exactly analogous to the
two terms in (2.20) . For a nonpolar lattice vibration Z„
is zero and p& vanishes, but the ratio p"/Z& remains
finite. The transfer admittance is zero for such a
vibration and only the second term in the mechanical
admittance contributes to give

T;P"=8„„b,,/M„(pi '—pi' —pppF„) .

Of somewhat less interest are the response functions
for an externally applied electric field. For completeness
we list two results for this latter case for the isotropic
dielectric in Table III.

comes

4' fq'
&~(t),:.)"= d [ ( )+1j& I-

V EM

2' 07
dpi[n(pp)+1) „„V

&&[~(~p""—q)+&(~""'+V)3 (3 45)

= (2~vg/Vp"t') [2n(&g) +1), (3.46)

where (1.20) has been used, and vg is the usual group
velocity of the electromagnetic wave in the dielectric
defined as

vg= dpp/if(ppp"'). (3.47)

For a given q, all the strength of the Quctuation lies at
delta-function singularities on the undamped polariton
dispersion curve given by (3.24) with the imaginary
part of p neglected. A result equivalent to (3.46) can be
extracted from Case and Chiu (1970) if only the lowest-
order terms in p" in their Eq. (25) are retained, and
some obvious misprints in the succeeding equation are
corrected.

A similar treatment of the longitudinal part of

(3.43) shows that the fluctuations occur at delta-
function singularities of frequency &~1., the longitudinal
mode frequency related to co& by the usual Lyddane-
Sachs —Teller relation

(3.48)

For a given value of q, the delta-function contributions
come in pairs at positive and negative frequency, the
contribution for such a ~+ pair being

(& (")trans)Av

= (2prfi/ V) I [n (pp) +1j—[n( —pi) +1)I (ppvg/p"t')

du[n(~)+1] Q Im T,,

dpi[n(co) +1j

Here eo is the low-frequency dielectric constant

pp p~+ Si

The strength of the Quctuations is

(E'(t) i.„p)A„——(2prfip)r/ V)

(3.49)

X [(pp—p„)/ppp„j[2n(p&1. ) +1j. (3.50)

The transverse part of this expression has been given

by Case and Chiu (1970).
The frequency spectrum of (E'(t))A, can in general

only be displayed more transparently by plotting the
integrand for specific values of the parameters which
enter into the dielectric function. For a cubic crystal
having a single resonance at frequency ppi, from (3.6)

p =p„+[Sipii'/(ppP —pi' —pp~I'i) j=p'+pp". (3.44)

However, the general result can be further reduced
in the limit of zero damping, F~—+0 and e"—+0. For one
of the transversely polarized excitations, (3.43) be-

Finally we suppose the mode of frequency ~& to be
nonpolar, so the P' defined in (3.30) is zero. This case
would be appropriate to describing the long-wavelength

optic modes in materials such as diamond, silicon, or
germanium. For any of the three polarizations in the
limit of zero damping, a calculation based on (3.42)
gives delta-function contributions at or = %co~ with
stren'gth

([W'(t) ]')p, = (5/2Mi&ui) [2n (ppi) +1]. (3.51)

This is the usual expression for the amplitude Quctua-

tions (Peierls, 1955).
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E. The Electrooptic CoefBcient

We envisage the crystal as being illuminated by a
laser beam whose electric field is given by (2.31). The
laser beam can mix with the crystal excitations driven
by a second electric field of frequency co to produce
sidebands of frequency co&&co. The polarization on the
low-frequency side of co&, at the frequency co, given by
(2.34) can be written

F. Raman Scattering

Let e' be the unit polarization vector of the laser
beam, and e' that of the scattered light. The differential
Raman scattering cross section for a unit cell volume V
is then obtained by substituting the polarization at the
scattered frequency given by (3.52) into (2.57), noting
that I' in the latter equation must be replaced by
es, Ps

d'o/dQd(o, = (n, V'(a, '(o(/n(c4)
p v a, ,vali(V, ,v 4v+$, .g IP p (3.52)

X(I eA'e" (aA "IV"*+&A'A'*) ~') „(355)

PA' [aA "P"*+——bA ]"E'E*" (3.53)

This equation is a generalization of (2.44) for a three-
dimensional crystal with several vibrational modes. To
avoid many summation signs, we adopt the convention
that indices which are repeated in a term (that is
v, i, and j) must be summed. The different coeKcients
e~;;" and bI,;, are in general independent and must be
determined experimentally for a particular crystal.

Using (3.29) we can write the polarization as

where the convention of summing over repeated indices
remains in force.

The correlation functions which enter into the
thermal average in (3.55) can all be expressed in terms
of admittances by means of the fluctuation-dissipation
theorem (1.1). We use the definitions (3.12), (3.28)
and (3.40), for the various types of response functions,
and the relations (3.29) and (3.41) between admit-
tances. The differential cross section can then be
written

SArA je =47r['aA, ;"(Z„/M„&u„') +bA;;], (3.54)

where the dielectric functions on the left are to be
evaluated at the laser frequency ~&, and the summation
convention does not apply to their subscripts. This
result is a generalization of (2.45) .

The quantity in square brackets is a second-order
nonlinear susceptibility tensor. The advantage of
separating the tensor into two contributions in (3.53)
is that a and b are expected to vary smoothly with +,
even as (o passes through lattice resonances [see (2.42)
and (2.43)]; the resonant behavior of the nonlinear
susceptibility under these conditions appears explicitly
in the p" factors.

The linear electro-optic coefficient rq;; is defined in
terms of (3.53) for a frequency (o which is inuch smaller
than the lattice resonances co„but is sufficiently large
not to excite sample acoustic resonances. We neglect co

in {3.30) and obtain

where
p =p(s 4 )

p= /V4Zs. I

(3.57)

(3.58)

Using (3.27) for the response function in the cubic
case, we have

(Po/dQA&, = (An, V'(o '(o(/~n(c4) [n((d) +1. ]eAve 'e„,ve, , '

X Im I (aA;, "p"+b(v(;) (aA. ,'; &*p"+bA;p*) T,y

+a.', "aa ' ~"*(P"/Z.) I, (3 56)

where T;, is given in general by (3.13), (3.14), and
(3.15), and P" is given by (3.30). This result applies
generally to a crystal of any symmetry having an arbi-
trary number of Raman-active vibrational modes. An
equivalent expression has been derived by Benson and
Mills (1970b) .

The general result can be written in more explicit
form for the special case of a cubic crystal having a
single threefold vibrational mode co~. The dielectric
constant is given by (3.44), and we note that

4~+sVs &l
[n((o) +1]eA'e,'eA"e,"Im [aA; p(s 4„)+$„—;,'][a„,,', I*p(s e„)+$„.. . '*]—

rsgc4

X
~~~~'Iv+ pv p~'

(q/(o) '- e

KjKp
+a'~'a'"p'*(X~Ap+p~pp+((~'p) p'(e —4~) v (3 59)2

~

where (3.26) has been used in rewriting the final term. If we use the fact that c„has been assumed purely real, the
differential cross section can be written in a form which separates the scattering by transverse and longitudi»1
excitations. For a transverse excitation of polarization vector X,, we have

— [n((o) +1]Im
4', Va), '(u)

I
ar I' p'( 4-)4[(q/~)' e.]+(ar&~*—+a~*&~)p(e e-)+I &~ I—

(3.60)
n~c (q/~)' —e
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where

a~=eI, e; 3,;aI,;, ,
e,l. . .1 6z'= 8g 8 A&4)„.&. (3.61)

81,=8g 8; K Cg;' br, = 8g 8 K&bo;&'. (3.63)

The somewhat complicated expression (3.60) for
the transverse cross section can be simpli6ed by making
an approximation which is valid in many cases of
practical interest. The denominator in (3.60) is

(q/~)' —o-

M —
GO

—i Fy

Sgo)g'
X (vg' —oP— —zcoI'g 3.64

(q/co)' —o„ i

where (3.44) has been used. The real part of the de-
nominator vanishes at frequencies coo which satisfy

q'/&oo' =o~+LSi~P/(~p —~o') i (3.65)

This result is to be compared with (2.58) derived for the
two-oscillator model. For the longitudinal mode of
polarization vector x, the corresponding result is

d'o/dQA), = (4A'e. U os)(/ntc4) fm((or, )+1j
XIm [—I o».„b.—Io/.] (3.62)

where

Provided that the other factors in the scattering cross
section do not vary rapidly with frequency, the maxi-
mum in the scattering cross section occurs very near
~0. Thus, as discussed in Sec. 2 and by Benson and
Mills (1970a) the peak in the scattering cross-section
occurs close to the dispersion relation for polaritons in
the absence of damping.

Provided that the scattering cross section has only
a narrow spread about its maximum at coo, the frequency
u can be replaced by uo everywhere in the expression
for the cross section, except in the term in the real
part of the denominator which has a zero at co=+0.
The denominator from (3.64) can thus be written

q 2Lo (G)P—ooo ) +Sy(dy $L o
—(d —$F( o) j

ooo(cog' —coo') (o)p —coo' —nopFg)

(3.66)

where (3.65) has been used to remove the dependence
on q., and the damping parameter F(+o) appropriate to
a constant q is given by

2F (a) ) =(oooo)PS Fg/Lo„((gP —(uo')'+ S (u 'j. (3.67)

The remainder of the scattering cross-section expres-
sion (3.60) can be similarly approximated, if we replace
cv by (uo and use (3.65) to remove q. If we use (3.44)
and (3.58), the large bracket of (3.60) becomes,

I ar+br(M, /Z, ) (~P—~o ) I'—f
I

br I' (M,/Z, ) (~P—~o )~oF,

2M'' Lo~((dP —ooo ) +Sybly )L(do—M —zF (cvo) $
(3.68)

The imaginary term in the numerator is small compared with the real part, except when cancellation occurs be-
tween the two terms in the real part. With neglect of the imaginary part, the cross section becomes

d'o 25cuon, Vu'uizp
I ar+br(M&/Zi) (~p ~o ) I F(ooo)

, I e(ooo)+1j.
dQd&u, n, ic4MP o„((a)P—ooo ) +Sy(oz (ooo ~) +F (&o) '

(3.69)

The cross-section is thus predicted to have a Lorentzian lineshape of width 2F(~o) given by (3.67) . The width will

be discussed further in Sec. 4.C. Integration of (3.69) over o4, remembering that ~= oot —oo„replaces the Lorentzian
factor by ~ to give an expression for do/dQ identical to earlier results derived from a different point of view (Loudon,
1969).

For 90' light scattering, where

q/&u)) o'Io (3.70)

the transverse polariton frequency ooo approaches ~& and the cross section given by (3.60) or (3.69) becomes

d-'0 A'e, Vcu, 'a&&
I
ar I' Pn(co&)+1] (F&/2)

dQAo, 27fW)C M]My (,—) +(F,/2)
(3.71)

The linewidth is I'& as expected for a mode which is now entirely mechanical. The longitudinal mode has a cross
section given by (3.62), which can be written more explicitly using (3.44) as

d'o' An, V'cv, 'coi
I
a br, (4~Z,/o„V) I' Ln(—~i)+1] (Fi/2)

de(o, 2~m)c4Mgcol, (oo~—u)'+ (Fg/2)'j
(3.72)
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4. APPLICATIONS

A. Right-Angle Scattering

The case of right-angle scattering, brieRy mentioned
at the end of .the previous section, is applicable to the
great majority of experiments. If a crystal has a
transverse lattice resonance at ~&, and e asymptotically
approaches ep below the resonance, then the region

q»cogp'" (4. 1)

VJ

T IO
I

Cl
K

lies well to the right of the region of mixed mode
behavior. In this large-q region, the polariton dispersion
curve near ~~ is horizontal. For most crystals, scattering
at 90' selects q in this regime. For a cubic crystal we
can take the cross section derived in Sec. 2.G, and take
the large-q limit directly to obtain

LL.

O
(d'~/df}d~, )„,„,= a.(e(~)+1] Im (s) (4 2)

~ IO—0
z

X

IO

-IO
I I

390 400
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FIG. 8. Transverse and longitudinal optic mode scattering in
Gap. The measured Raman intensities have been scaled to fit
the dielectric functions near the peaks. The solid curve cor-
responds to a dielectric function which includes frequency de-
pendent damping due to a two-phonon band near 357 cm '
( 1)arker, 1968}.

for transverse lattice waves, and

(d'0/d|}dM, ) I.„„——At s(M)+1]

&& Im I Ls„+(2/s) (s„—1)]'/ —EI (4.3)

for longitudinal lattice waves. A is a constant to a good
approximation under nonresonant conditions. It con-
tains the nonlinear parameter a and the various indices
of refraction and resonant denominators which appear
in (2.58). Similar expressions for scattering cross sec-
tions are obtained from the results of Sec. 3.F.

It is seen from (4.2) and (4.3) that for 90' scat-
tering the Raman spectra are given essentially by
/Is(0I)+1] Im (s) and fn(cd)+1] Im (—1/s). These
forms have been used in a study of scattering in GaP
where the dielectric function is so peaked that even the
frequency dependence of the thermal factor could be
neglected (Barker, 1968). Figure 8 shows the scat-
tering spectra.

DiDomenico et al (1968) hav.e studied 90' scattering
in BaTi03. For the frequencies observed in this experi-

The longitudinal mode also has hnewidth I'~. Most.
previous calculations have derived do./dQ, where the
Lorentzian factors in (3.71) and (3.72) are replaced
by x. Results equivalent to the above have been ob-
tained in a wide variety of notations by previous
authors.

All the results subsequent to (3.56) refer to a cubic
crystal having a single vibrational mode which would
be threefold degenerate for Z~ ——0. The particular
simplification which occurs in this case is due to the
way in which PI is related to the dielectric function by
(3.57). For crystals having several degrees of freedom
or optical anisotropy, the cross section must be eval-
uated using (3.56). The qualitative behavior of the
cross section as a function of frequency is especially
simple for the cubic-crystal single-vibration case, and
will be further discussed in Sec. 4.
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Fto. 9. Raman spectrum of BaTi03 in the ferroelectric phase.
The sample is being cooled towards the. second phase transition
near O'C. Analyses of these spectra give the mode frequencies
shown by solid triangles.
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ment keT»ku, and the thermal factors become
ksT/%v. The spectral peaks are so broad that the
frequency dependence contained in the thermal factor
ksT/s& is extremely important. Their Raman spectra
are shown in Fig. 9. While Im (p) has a peak, it is so
broad that it disappears in the function Im (p/+)
of (4.2) taken in the classical limit. DiDomenico et al.
use (4.2) to analyze for the transverse mechanical
resonant frequency &~ shown as triangles in Fig. 9.

Kaminow and Damen (1968) have analyzed the
Raman scattering from paraelectric KHRPO4. In this
case the spectra extend to high frequencies so that
AT»%p is not a good approximation. Figure 10(a)
shows the spectra of Kaminow and Damen. Both
Stokes and anti-Stokes spectra were measured. In
Fig. 10(b), the spectra have been corrected for the
quantum prefactor to yield a quantity proportional to
Im (p).t Here, as in BaTiOp, the peak in Im (p) is so
broad that the scattering spectrum shows no peak.
The use of (4.2) is therefore essential in analyzing for
the shape of e and the resonant frequency and damping
parameters it contains.

Scattering by longitudinal modes has not been
observed in the studies of BaTi03 and KH~PO4 dis-
cussed above. Barker (1970) has analyzed the case of
an oscillator with very large damping and shown that
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Pro. 10. The Raman spectra of KH2PO4 above the transition
temperature. The lower figure shows the signal corrected for the
quantum thermal factor to give the dielectric response function
which is very broad.

the longitudinal spectrum can be expected to be quite
featureless similar to the transverse spectra discussed
above. Some general comments can be made about
the strength of the longitudinal scattering using (4.2)
and (4.3). Taking the ratio of the integrated strengths
for a one-oscillator dielectric model, we 6nd

(d~/da) „„„.,
(da/dn) &.„, Im (p)(u 'da)

~ [p„+(Z/s) (p„—1)7' Im (—1/p)(u 'd(o ~,)
(4 4)

where we have used the equivalence of integration
over ~ and cv, for fixed co~, and have included the classical
form of the thermal factor in (4.2) and (4.3) . This is a
good approximation if Im (p) and Im (—1/p) fall off
rapidly, at and above the frequency ksT/A'. The inte-
grals in (4.4) can be evaluated exactly for a classical
oscillator (2.12) giving:

(d~/dO) „.„„., 60t~

(da/dQ) (,„, I [p„+(Z/s) (e„—1)7'I
(4.5)

Equation (4.5) shows that the ratio of integrated
strengths of the transverse. to longitudinal modes is
determined by only the high- and low-frequency dielec-
tric constants and the ratio of the charges in the two-
oscillator model of Sec. 2. In GaP, co= 11.1 and e„=9.09
(Barker, 1968). The cancellation shown in Fig. 6
which was predicted by Faust and Henry (1966)
determines Z/s to be 0.5. Using these numbers, (4.5)
predicts that the transverse mode is weaker than the
longitudinal, the intensity ratio being 1:1.7. This is
the ratio observed by Faust and Henry (1966) (see
also Faust et al. , 1968).

On the basis of the magnitudes of eo, e„, and estimates
of the electronic parameters in a variety of crystals,
we expect Z/s never to depart very far from unity. In
paraelectric and ferroelectric crystals therefore where

pp»p„, 90' scattering should show the transverse
modes much stronger than the corresponding longi-
tudinal modes according to (4.5). This behavior is
observed in LiNbOp (Barker and Loudon, 1967;
Kaminow and Johnston, 1967). The same effect may
be responsible for the difhculty in observing the
longitudinal mode in KH2PO4 (Kaminow, 1969) and
in NH4HpPO4, both of which have large ratios of ep/p„

The oscillator model of Sec. 2 was used to derive
the simple relations (4.2) and (4.3) between the
dielectric functions and Raman cross section. These
relations can be shown to hold even when p(~) contains
complicated frequency dependent damping and for
certain cases in which there is more than one-phonon
oscillator. Stolen (1970) has found (4.2) to hold in the
case of noncrystalline glasses where Im (p) is thought
to arise from a broad distribution of modes. The reader
is cautioned however that there can be more compli-
cated situations where (4.2) and (4.3) do not hold.
Scott et al. (1970) have discussed such a case for
scattering by plasmons and phonons in doped CdS,
where there is a pronounced interference in the scat-
tering by the two types of excitations. Such effects can
be included in the oscillator model only at the expense of
simplicity by including two or more ionic vibrators
which are coupled.
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FIG. 11. Polaritons in gallium phosphide. The dispersion
curves of the uncoupled phonons and photons are shown by the
lines labeled U, and those of the LO phonons and the polaritons
by solid lines. The equation of the polariton lines is indicated.
The long-dashed curves indicate the values of energy and. eave
vector which kinematically are possible at each angle 8, where 0
is de6ned by the vector triangle. q& and q., are the wave vectors
of the laser light and the Stokes shifted light, respectively; q is
the wave vector of the scattered polariton. (From Henry and
Hop6eld, 1965).

g= g&
—q, . (4.6)

In all present Raman setups, the lens which directs
the laser light into the crystal and the lens which
selects the scattered light are fixed with respect to
the crystal. Since q, =n, &u,/c, where n, is the index at
the scattered frequency, when different frequencies cu,

are studied by scanning with a spectrometer, q, is
changed also, changing q. The effect of scanning &, is
to trace out a contour in (q, a&) space which depends on
n, and its dispersion.

Henry and Hopfield (1965) have discussed the situa-
tion for GaP with 6328 A. He —Ne laser excitation.
Figure 11 is taken from their paper. The insert in
Fig. 11 shows the wave-vector conservation vector
triangle. The angle 0 is measured in the medium. Using
accurate values of e~ and n, appropriate to the He —Ne
laser, frequency scans of co at constant 8 give the con-
tours shown in Fig. 11. Two points are immediately

B. Experiments on Polariton Light Scattering

In Sec. 4.A, the large-q Raman scattering regime was
discussed. In that regime the lower polariton dispersion
curve is Rat and the mode consists principally of
mechanical vibration. We now examine the small-q

region where the polariton has a significant dispersion,
i.e., there is a significant admixture of electric field and
mechanical ion displacement in the mode. In previous
theoretical plots (Figs. 5 and 6) contours of modes at
constant q were plotted giving the impression that q
is an independent variable. For the experimenter this
is not so at the present time. The conservation of wave
vector gives
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FIG. 12. A plot of the observed energies and wave vectors of
the polaritons and of the LO phonons; the theoretical dispersion
curves for the uncoupled photons and phonons are shown by
lines labeled U. The values of energies and wave vectors which
are kinematically possible at angle |) are shown by dashed lines.
Some of the experimental angles 8 are indicated next to the data
points (Henry and Hopfield, 1965).

apparent. First we note that the experimental scans
cross the dispersion curve at an angle. This effect can
cause:asymmetric line shape and an observed linewidth
somewhat different from that calculated for constant-g
spectra. Secondly, certain portions of the lower and

upper polariton curve may be inaccessible because of
reaching a limiting q value at 8=0'. In GaP (with
6328 A. excitation), the lower branch can be studied
down to about 304 cm '. Figure 12 shows the experi-
mental results of Henry and Hopfield (1965) for GaP.
The experimental peaks in the scattering give a pleasing
confirmation of the polariton dispersion curve.

Loudon (1963a, 1964) has discussed the polariton
curves and features of the Raman scattering to be ex-

pected for uniaxial crystals. The dispersion curves are
obtained as discussed in Sec. 3, Eqs. (3.19) and (3.20) .
The scattering intensity is given by (3.56). Figure 13
shows the results of polariton scattering experiments in

the uniaxial crystal ZnO carried out by Porto et al.
(1966). The polaritons polarized along y have been
measured for two different polarizations of the laser.
On the left of the figure, the laser is polarized perpen-
dicular to s (ordinary ray) which in ZnO allows meas-

urements to be made down to lower polariton fre-

quencies. The measurements show good agreement with

the polariton dispersion curve.
Polariton scattering measurements have been carried

out in ZnSe by Leite, Darnen, and Scott (1969).
These authors make some comparisons with the
predicted scattering intensity as well as the mode fre-

quency. Scott, Cheesman, and Porto (1967), and
Scott and Ushioda (1969) have measured polariton
scattering in n-quartz which possesses eight polariton
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I'IG. 13, The dispersion curves for polaritons
in Zno. The theoretical dispersion curves are
shown by solid lines, and the allowed co(g) curves
for different 8(co&=6328 A.) are shown by dashed
lines. The experimental points are the energies
and wave vectors of the polaritons derived from
small angle scattering measurements, and the
vertical bars represent the line width at half-
maximum, of the observed Raman peaks. The
inserts represent the "kinematics" for the two
configurations X( 5 Z) X and X(Z I') X. The
single arrows and dots indicate polarization in
and normal to the plane of propagation g~, q.„
and q and are the wave vectors of the incident
laser radiation, Stokes scattered radiation
(cps = co&—co,), and polaritons, respectively. (From
Porto, Tell, and Damen 1966).
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branches. Using what is essentially the eight mode form
of (3.56), Scott and Ushioda present plots of the
polariton intensities and comment on the stimulated
Raman gain to be expected for the strong 128 cm '
resonance. Detailed theory of polariton scattering and
some comparisons with experiment have been given
in a series of articles by Burstein (1969) and Burstein
and Mills (1969a, b).

Figure 14 shows polariton scattering from the A~
symmetry 628 cm ' mode in LiNbos (Puthoff et al. ,
1968).The authors plot for comparison (dashed curve)
the real part of q by using the expression

q =co (e') '@/c. (4.7)
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FIG. 14. ('omparison of theory and experiment in Liwbo&
(from Puthoff et al. 1957). The short nearly vertical lines are
frequency —wave vector conservation curves and are labeled by
the angular separation 8 between Stokes and laser beams. The
dashed curve is drawn by the authors from infrared data. The
solid curve is the polariton dispersion curve LEq. (2.27)]. It
fits the points in a reasonable way particularly at large q as
discussed in the text.

%hile this procedure has some relevance in discussing
driven infrared response, it is inappropriate for Raman
scattering. From Fig. 14 we note that this procedure
gives a maximum q. As is apparent in studying the
equations in Sec. 2.C, there is no limit on the q of a
driving field used to define a response function, and

hence no limit on the q transferred to the lattice in
Raman scattering. Since several authors have used
(4.7) to define the polariton dispersion curve (see
most recently Zallen et al. , 1970), it is worth empha-
sizing its real significance. If a dielectric is driven at
one plane by a field E exp ( ioit), t—hen a plane wave
is set up in the medium which has an exponentially
decaying characteristic. By solving Maxwell's equa-
tions with no sources in the dielectric, (4.7) is obtained
for the real part of the wave vector of the wave. This
situation corresponds to an infrared beam incident on
the surface of a dielectric but has little connection with
the homogeneous volume drive associated with a laser
beam entering a transparent medium. In Fig. 14 we
have plotted as a solid curve the polariton dispersion in
LiNbOs using (2.27). This curve fits the data reason-

ably well at low q and is much more satisfactory at
large q. Recently, Klyshko et al. (1970) have discussed
polariton scattering in Liwb03 for frequencies above
all lattice modes, i.e., for the highest frequency polariton
branch. They find a cancellation in cross-section in the
small-8 region.

Pinczuk et al. (1969) have observed Raman scat-
tering by polaritons in tetragonal BaTi03. Their results
have been analyzed theoretically by Benson and Mills
(1970b) using a theory similar to that outlined in
Sec. 3. Two polariton modes are observed, and the
theory must take account of interference eRects. Full
account must also be taken of the actual crossing of the
constant-8 scans with the polariton dispersion curve.
Benson and Mills achieve excellent agreement with the
observed lineshapes for a range of angles 8. The same
authors (1970a) have calculated the experimental
linewidth to be expected in cubic ZnSe. .

Obukhovskii et al. (1970) have given a theory of
light scattering by polaritons which is similar in some
respects to that of Sec. 3. They relate their theory to
the particular examples of CdS and Liwb03 and obtain
agreement with the measurements of Klyshko et al.
mentioned above.
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FIG. 15. Polariton response func-
tion. This is the same function shown
in Fig. 5(a) but drawn for constant
frequency contours.

)0

02
10

i'
)0 5000

WAVE VECTOR q (cm-~)
10000

C. Sum Ru1es and Linewidths

In this section we study the form of the polariton
response function T=L(q/+)' —s) '. We restrict dis-
cussion to cubic. crystals and in some places to one
mechanical resonance. The generalization to more
complicated situations is straightforward. Several
results concerning the linewidth of the peak of Im (T)
in cv space and in q space as well as the strength of the
peak can be derived. These results have some interest
and application though it is well to recall that the actual
Raman scattering spectrum may deviate from these
results. The deviations occur because of the multiplying
factor which is included with T in determining the
scattering. The deviations can be exceedingly large near
a cancellation such as occurs near 260 cm ' in Gap
(Fig. 6).

One of the Kramers —Kronig relations (Kittel, 1958,
1969) may be applied directly to the response function
T togive:

%e next examine the width of the polariton peaks
along contours of constant ~. Figure 15 shows the
polariton response function of Fig. 5 replotted in this
way. The response function may be written

—o~'/L~os Re (s) —q'+ioP Im (s) ]. (4.9)

5q s& Im (s)//Re (s) )'i' 4~k/X (4. 10)

where k is the optical extinction coeKcient, and P the
wavelength in free space of a wave with frequency u.
Here 4~k/X will be recognized as the attenuation
coefficient, usually denoted 0., so that the final result
may be compactly written as:

(4. 11)

Equation (4.9) shows that for constant oi, the response
as a function of q has Lorentzian form. If Im (s) is not
too large, the peak has a width at half-maximum of;.

Q

00
dGO

Im f (q/o~)' —sI-' —=s„-'. (4.8)

This result is independent of q. Equation (4.8) shows
that the weighted area under the polariton peaks is
constant. In the case where there is one transverse
mechanical resonance as shown in Fig. 5, there are
two peaks for any value of q. At large q, the lower peak
gets very weak (see Fig. 5) . Equation (4.8) shows that
the upper peak, when weighted by the 1/o~ factor in
the integral, must have an area which approaches
w/(2s„).

The approximation used to obtain: (4.11) is essentially
that Re (s)))Im (s). This condition is usually met as
long as the constant ~ contour we wish to study is well

away from the mechanical resonances at or& and or&.

Figure 15 shows that near these frequencies the con-
stant co contours become very asymmetric and broad.
Coffinet and De Martini (1969) first pointed out the
utility of (4.11). These authors devised an experimental
arrangement using essentially two diferent laser fre-
quencies to generate a polariton parametrically, then a
third beam to detect the polariton by scattering from it.
By varying the angle between two of the beams, a scan
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of q at constant »» was made. Using (4.11) the infrared
attenuation can be measured entirely by optical laser
probes. The authors make a study of the infrared
attenuation in GaP and note that this method can
measure even very large values of 0. deep within a
crystal. The technique of constant ~ scans appears to
be a new and useful technique for study of dispersion
curves.

An expression for the width of the polariton peak
along a contour of constant q has already been given in
(3.67). Note that 2F(&»») reduces to 2F~, both at the
transverse frequency ~j and at the longitudinal fre-
quency cvI.——(»,/»„)'I's&~. The linewidth expression can-
not be used in between these frequencies, since (3.65)
has no real solutions, but it applies for all other uo.
The linewidth 2F(cv») can be regarded as an expression
of the finite lifetime of the polariton in the presence of
lattice damping. An expression for the polariton
relaxation rate in the small damping limit has been
given in Eq. (32) of Loudon (1970). With suitable
changes in notation. (A'—+Sin&P/», F—+Fi, &uo-+&oi,

ca-+»»») this equation is exactly the same as (3.67) .
Finally we derive some relations for the peaks in the

response function at constant-q when e is given by
a single damped-oscillator form. We take

(C01 M ZCd Fy) GP/»~

D )

where the denominator is

D=M +1Fg(0 [Ml, + (g /»~) ]»»

(4. 13)

(0'/ ) + '(0'/ ) (4 14)

The zeros of D determine the poles of the polariton
response function: if co is a root of D, so is —co*. Thus
the poles of the response function occur in pairs. The
two members of a pair are mirror images —mirrored in
the imaginary frequency axis. Because of the occurrence
of pairs of poles, it is convenient to factor D into
quadratic rather than linear factors. We choose the
form

D= (a).'—cv' —~F,) ((et 2 (o' i(uF»)—. — (4. 15)

The form (4.15) explicitly shows the two different pole
pairs that occur in the response function (i.e., the two

»=»„+[S~P/(~P —~'—i F,)j
=» (~L,'—~'—i F&)/(~p —M' —i( Fg), (4. 12)

where we have used the Lyddane-Sachs-Teller relation
for a damped oscillator (Barker, 1964) to introduce the
longitudinal mode frequency col,. If we multiply top
and bottom by certain factors, the polariton response
function (2.27) becomes

branches of the polariton dispersion curve) . The peaks
are near co and cup and have linewidths determined by
F and F~. It is interesting to now relate these two
peaks to the parameters ~~, orL, , and F~ which define ~ in

(4.12). Comparing coefficients in (4.14) and (4.15)
we obtain the four results

F,+Fb= Fi,

(v 2+(vg +F Fb= &el, + (g2/» ),

F,ar»2+ Fb(o ' = F~ (q'/»„),

~ 2~~2 —~ 2(~2/» )

(4. 16)

(4. 17)

(4. 18)

Equation (4.16) shows that independent of q the sum

of the damping factors for the two polariton peaks is
equal to the damping factor entering e. This effect can
be seen in Fig. 5. As q increases, the width of the lower

branch increases but there is a concomitant decrease
in the linewidth of the upper polariton branch.

Several other results may be obtained from the
above equations. We will note only two. As q approaches
zero, one polariton peak must approach zero linearly
with q and its damping. factor approaches zero as q'.
Secondly, (4.19) may be considered the analog of the
Lyddane-Sachs —Teller relation, giving a useful relation
between the product of the mode frequencies~ at any q.
Combined with the other relations, (4.19) shows that
at large q the upper polariton peak frequency increases
linearly with j and has phase velocity c/(»„)'~' as ex-

pected for a light wave in the medium.

D. Polaritons in Orthorhombic Crystals

By mode frequencies we mean the real numbers co, or u&

which will be recognized as the distance from the origin to the
pole of the response function.

"Vote added in proof: These dispersion relations have in fact
been derived previously by L. Merten in a reference which we
overlooked (Phys. Stat. Solidi, 30, 449, 1968).

The polariton dispersion relations derived in Sec. 3.8
for uniaxial and cubic crystals have all been obtained
previously and have been discussed in the literature.
However the orthorhombic crystal dispersion relations
obtained by substituting (3.15) in (3.16) have not been

previously published, " and we discuss here the main

features of polaritons in such crystals.
For any direction of propagation g in an orthorhombic

crystal (possible point groups D2, C2., and D»), the
polariton branches are nondegenerate. Except when q
lies in a plane containing two of the principal axes, the
polaritons do not possess simple pure transverse or
pure longitudinal polarization. If the three components

e~, e2, and ea of the dielectric function have a total of e
resonances, then (3.16) is of order n+2 in &u2, and v+2
distinct polariton branches occur for each wave vector q.
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FIG, 16. Schematic diagram of the variations of the frequencies
of large g excitations with wave-vector direction in the principal
planes of an orthorhombic crystal. The excitations have mixed
polarization except where labeled transverse or longitudinal.
The pure longitudinal excitations occur only at isolated points
along the dispersion curves. Two additional branches occur at
much higher frequency and correspond to ordinary and extra-
ordinary light waves.

This rule is consistent with the well-known result for
cubic crystals having a single threefold degenerate pole,
where for each q there are five solutions of (3.16),
except that twofold degeneracies remain for the cubic
case.

The polariton dispersion relation (3.16) factorizes
when q lies in a principal plane. Suppose that q lies in
the plane which contains principal axes 1 and 2. With
qa set equal to zero, (3.15) combined with (3.16)
factors into two equations

gl +$2 «3M q

«gi +«g2 =«i«2~2 2 2

(4.20)

(4.21)

The first type of solution is similar to the result (3.24)
for a cubic crystal. The polaritons corresponding to this
solution are transversely polarized for any direction of g
in the q3=0 plarie, ' the polariton frequencies are inde-
pendent of the direction of q. The second type of solu-
tion (4.21) is similar to (3.20) for a uniaxial crystal;
the polaritons are in general of mixed polarization but
become strictly transverse or longitudinal for both
qj=O and q2=0. The frequencies of the polaritons
resulting from (4.21) vary with the direction of q in
the q3=0 plane.

For right angle light scattering, where excitations
having q&)co are observed, the mode frequencies are

obtained by retaining only the terms in (3.15) of
highest order in q. Krauzman (1970) has recently
considered this case. The equation to be solved is

«1/1 +«2/2 +«3i73 =0. (4.22)

E. Resonance EBects

In the two-oscillator model of Sec. 2, the electro-optic
effect and the light-scattering cross section were ex-
pressed in terms of two coefficients, a and b. Explicit
expressions for a and b in terms of the parameters of
the model are given in Eqs. (2.42) and (2.43). The
coefficients show resonance behavior when u~ or u,
approach the electronic frequency (k/m)"'. In the
present subsection we exhibit the analogous quantum-
mechanical expressions for u and b, and discuss the
resonant behavior of the cross section.

The type of solution is illustrated in Fig. 16 which
shows the excitation frequencies as functions of q
direction for a fixed

~ q ~

for the three principal planes
of an orthorhombic crystal. The crystal is a hypothetical
substance of D2 symmetry having one resonance in
each of the dielectric functions e„e„,and e,. The sym-
metries of vibrations parallel to x, y, and s, are F4, F2,
and F3, respectively in the notation of Koster et ul.
(1963). The excitations in Fig. 16 are of mixed sym-
metry and polarization except where the curves are
labeled with an irreducible representation and a
polarization. These parts of the curves correspond to
infinities or zeros in components of the dielectric func-
tion as indicated in the figure. Note that the excitations
can be transverse over an entire principal plane, but
that longitudinal excitations can occur only when q
points parallel to a principal axis. The other two solu-
tions of (3.15) and (3.16) for the value of

~ q ~
assumed

in Fig. 16 occur at much higher frequencies and have co

and
~ q ~

of the same order of magnitude. These modes
correspond to the two types of light wave which can be
propagated in an orthorhombic crystal.

Curves of the type shown in Fig. 16 could be meas-
ured experimentally by right angle Raman scattering.
Except where the excitations are longitudinal they also
cause infrared absorption, and the variation of fre-

quency with wave vector direction could be determined

by analysis of a series of absorption or reAection meas-
urements on suitably oriented samples. Couture et al.
(1970) have recently carried out experimental and
theoretical light scattering studies of this type on
crystals of orthorhombic iodic acid HIO3. Hartwig
et al. (1971) have studied orthorhombic NaNO2 and
have derived the large wave-vector formula (4.22).
For NaNO2, the angular dispersion curves equivalent
to Fig. 16 have eight branches. The authors have
measured five branches in one symmetry plane and
discussed the angular dispersion and intensity.
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The quantum-mechanical generalizations of a and b,
namely ai,;," and bi,;;, have been introduced in (3.52).
A quantum-mechanical treatment of light scattering
by pure lattice vibrations has been given by Loudon
(1963b) . The quantum-mechanical expression for
ai„;;" can be found by comparing Eq. (22) of this last
reference with (3.71) of the present paper. In making
the comparison the two equations must be modi6ed
slightly to represent the cross section do/dQ and various
changes of notation must be taken into account. The
resulting expression is
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where n and P refer to electron-hole pair states of
excitation energies ~ and cop, 0 refers to the electronic
ground state, d is the lattice constant, " p"j is the
deformation potential matrix element for the vibra-
tional mode W," between the pair states a and P, and
the electron momentum matrix elements used in the
above reference have been converted to r matrix
elements.

In a similar way, the quantum-mechanical expression
for bh;j can be obtained from the equations of Sec. 5 of
I oudon (1963b) .With the same notation and modifica-
tions used in writing (4.23) above, we find

~0p i pa reo
hij—

&'I'-~p (~p —~.) (~-+~)

rophrp ~r 0'

roP rPa ~ao

(Mp+Ml) ((0 +N)
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(~p—~.) (~-—~i) (~p+«) (~.+~,)
~OP'~Pa ~ao

(~p—~) (~-—~i)
(4.24)

(~p—~) (~-+~.)

The expressions (4.23) and (4.24) are somewhat
complicated, and the results (2.42) and (2.43) derived
from the classical oscillator model do not reproduce all
the complexities of the quantum-mechanical solutions.
However, the two-oscillator model successfully predicts
the form of dependence of a and b on the laser and
scattered frequencies u~ and ~, when these lie close to an
electronic transition frequency, (k/m) '" in the classical
model, co or cup in the quantum-mechanical result.

The summations over a and P in (4.23) and (4.24)
run over all electron —hole pair states and would be more
properly written as a sum over all pairs of valence
and conduction band indices with an integration over

~ex
4J)

FIG. 17. Scattering cross section in arbitrary units as a func-
tion of laser frequency co& close to an exciton resonance or,„.The
numerical values assumed for the various parameters are listed
in the text. The full curve shows the exact result; the dashed
curve is the result obtained by neglecting exciton damping aud
taking the refractive indices constant. Note that resonances occur
bOth at o))=eve„and at o),, =co)—co1=m„„.

all wave vectors in the Brillouin zone. The variations
of uh;j" and bh;; with co~ and cv, would be in general very
difficult to compute, requiring as they do a knowledge
of all the electronic wavefunctions and eigenvalues
together with the deformation-potential matrices.
Theories of the resonance behavior of the a and b

coeKcients and hence of the scattering cross section
have so far been applied only to situations where the
summations and integrations can be restricted to a
small subset of the complete set of electron states.

A particularly simple case occurs when the laser
frequency lies close to a single exciton peak in the
absorption spectrum. Experimentally determined scat-
tering cross sections often show a strong resonant
enhancement as the laser frequency approaches the
exciton frequency suggesting a theoretical approxima-
tion where only the exciton transition is retained in the
sums over electronic states. We derive an expression for
this case, and then comment on the several publications
where results for the same problem have been obtained.
It should be realized that the restriction to a single
exciton transition will not be a good approximation in
all cases, and Bendow et al. (1970) have used the entire
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range of exciton transitions in comparing theory with
experimental results on CdS.

Let us consider the simplest possible case of right-
angle scattering by the transverse vibration in a cubic
crystal. We assume the incident laser light to be
directed along the crystal x axis and polarized parallel
to the s axis. The scattered light is observed in the y
direction. The standard symmetry rules for light scat-
tering (reviewed by Loudon, 1964) show that a„„'
is the only appropriate nonvanishing coeKcient. Thus
the scattered light is polarized parallel to x and only
the cos (s/4) component of the transverse vibrational
polarization parallel to y contributes. Thus from (3.61)
we have

can=2 8 (4. 25)

In common with other treatments of resonant light
scattering we retain only the most resonant term in the
coeScient a,„.This is the third term in the large
bracket of (4.23). It is seen that the frequency de-

and the integrated cross section obtained from (3.71) is

dg/iffy= Ihn, V'~, '(gi
[ a.„' (' Lm((gi)+ 1]I/4eic'~ggi.

(4.26)

pendence of this term near resonance exactly reproduces
that of the classical result (2.42). The remaining non-
resonant terms could be retained at the expense of
making the algebra more tedious, and indeed the work
of Ralston et ul. (1970) shows that the nonresonant
terms can sometimes combine with the resonant
term to produce interesting cancellations in the cross
section. However, we shall here keep only the one term
for the sake of simplicity. We denote the exciton fre-
quency by co,„, the matrix elements of r between the
crystal ground state and the exciton state by r, , and
the deformation potential which couples the exciton
to the transverse phonon by

One further modification is necessary before the
scattering coef6cient can be used to calculate resonant
effects. The expressions (2.42) and (4.23) treat the
electronic levels as infinitely sharp, whereas experiment
and more accurate theories show that damping is
present, leading in a 6rst approximation to exciton
line shapes which are Lorentzian. Damping effects can
be taken care of by writing the exciton frequency as
co,. —iy; then 2y is the width at half-maximum height
of the exciton peak in the absorption spectrum.

With these modifications, the scattering coefFicient
from (4.23) becomes

~ ~

2 x~w y ze ~ex ~ex ~ex

8d V (,„—.—~y) (, —
&

—~y) ) ' (4.27)

and the cross section (4.26) is

do n,~.sa&ie'$r„„:" ,„'Jr,„']'[n'(cu.i) +1]
dQ 4A'~mic4M, ~id2L(~, —~,) +y2]L(~«—

cubi) +y ] (4.28)

The main frequency dependence of this expression in
the resonance region arises from the two Lorentzian
terms in the denominator, and from the refractive
indices e, and n~ which exhibit the dispersive behavior
typical in the region of an absorption line. It should be
emphasized that the energy flows (2.54) and (2.55)
which arise in the derivation of the scattering cross
section involve only the real refractive indices m, and
n~, and the imaginary parts do not appear in the cross
section even though w, and u~ lie in an absorptive
region for resonance scattering.

Figure 17 illustrates how the scattering cross section
(4.28) varies with ui close to resonance. The dashed
curve shows the corresponding result in the absence of
any exciton linewidth y, and with the refractive index
variation omitted. For the full curve, the refractive
index is calculated using the dielectric constant given
by (3.6) modified to refer to the exciton resonance and
assuming e„=1 and an exciton strength S,„of magni-
tude 10 '. The other exciton parameters were taken as

~, ——2&& f0 cm ', and p=20 cm '. The transverse
phonon frequency is 400 cm '. These values are typical
for a semiconductor, for example, CdS.

A double-peaked structure of the resonant cross
section has been predicted by previous authors but
has not to our knowledge been observed experimentally
in the first-order Raman cross section, although there
is evidence in its favor from the results of higher-order
Raman experiments (Leite, Scott, and Damen, 1969).
Detailed measurements are made difficult by the
availability of only a limited number of laser fre-
quencies which may give a coarse-gained scan of the
resonance region. In addition, the theoretical cross
section (4.28) relates the incident and scattered light
intensities Beside the scattering medium, whereas
experiments measure cross sections relative to light
beams outside the medium. The relation between the
two types of cross section requires matching of electro-
magnetic waves at the boundaries of the medium and
depends upon the geometrical details of a particular
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experiment. The boundary conditions can be quite
complicated in the resonance region where the light
beams are absorbed by the medium, and extraction of a
cross section from experimental data to compare with
(4.28) is a nontrivial problem in itself.

A range of previous workers have derived expressions
for the resonance cross-section at an excitog. line.
Diverse results have been presented for this same cross
section, and it seems worthwhile to discuss the various
discrepancies and reconcile the various results with
(4.28) .

The first treatment of the problem was that of
Ovander (1962). No explicit expression for the sca,t-
tering cross section is given, but the frequency de-
pendence of scattered intensity as u& approaches ~,„
is discussed under the condition that co. remains in a
transparent frequency region. A graph is presented
showing a three-peaked structure in the scattering
cross section as co~ passes through the resonance region.
The theory makes use of the exciton —polariton formed
by the interaction of the exciton with the laser photons.
We believe that the structure found by Ovander is an
artifact of his having used the group velocity of the
incident light rather than the energy velocity more
appropriate to an absorbing crystal {Loudon, 1970).
If a suitable correction is made, the three-peaked
structure disappears and the frequency dependence
agrees with (4.28) .

Birman and Ganguly (1966) and Ganguly and
Birman (196/) have presented a theory of light scat-
tering by insulators which includes a consideration of
resonant cross sections due to excitons. They omit the
exciton damping and the refractive index factors, but
their frequency dependence agrees with (4.28) if the
same omissions are made. Hopfield (1969) has derived
a resonant scattering cross section using the exciton-
polariton concept. His result is equivalent to (4.28)
with the refractive indices included but without the
exciton damping.

Burstein et al. (1969) have also treated resonant
scattering using the exciton polariton. They state that
their result for the frequency dependence of the
resonant cross section is qualitatively different from
that of Birman and Ganguly mentioned above. How-
ever, if Eq. (9) of Burstein et al. (1969) is rewritten in
terms of the basic exciton parameters instead of various
intermediate functions defined in their paper, their
result is the same as (4.28) with the following two
exceptions: (1) It is necessary to modify (4.28) by
retaining the third and fourth terms in (4.23); the
fourth term is nonresonant and its retention has little
influence on the cross section. (2) Burstein et al. neglect
the exciton damping y, Also, as pointed out in their
erratum, a factor nP is omitted in passing from Eq. (8)
to (9).

A more complete version of these calculations is
given in a more recent paper by Mills and Burstein

(1969).We can make contact with the results of this
paper as follows. For zero damping the refractive index
e is given by

(4.29)

Thus very close to resonance we have

(4.30)

and if ~~ and +, are both close to resonance and for zero
damping, (4.28) gives

The result of Mills and Burstein differs from this by a
factor (o&, —ru. ) due to the e,2 discrepancy. If only u~

is close to resonance, n, can be taken constant, and our
result for the main frequency dependence agrees with
Mills and Burstein, except that the relevant equation
(the second equation on page 1487 of this reference)
has a misprint in that the last exponent should be —2

instead of —j..
The most recent theoretical paper on resonance

scattering is that of Bendow and Birman {19'/0).They
use exciton polaritons and derive results which are
similar to those of other calculatiorjs of this kind
described above. They present graphs of cross-sections
as functions of ~~ and find the characteristic double-
peaked structure of Fig. 17.

The main conclusion therefore is that the rather
extensive literature on the theory of light scattering at
an exciton resonance in the main agrees with the theory
given here, leading to (4.28). Where discrepancies
occur they seem to be resolvable in terms of factors
which have been overlooked by the authors concerned.

I". Stimulated Raman Effect

The stimulated Raman effect lies within the scope of
nonlinear optics, and is not of great relevance for the
present review. However, the nonlinear parameters
which control the gain in a stimulated experiment are
simply related to the scattering cross sections given
above for spontaneous light scattering, and it is
interesting to make the connection with nonlinear
optics. A full treatment of the stimulated Raman effect
can be found in a review by Bloembergen (1967).

In a stimulated light-scattering experiment, one sets
up a scattered light beam whose intensity grows expo-
nentially with its path distance x in the crystal,

)
E,(x) "=

[ E.(0) [' exp gx. (4.32)

Several authors (e.g. , Hellwarth, 1963; Bloembergen,
1967) have derived a relation between the gain g and
the spontaneous cross section. In the notation of the
present article we have

g = (d2(r/dQdGo, )

&(I4~'c'e t E( ~'/V/n(cv)+1''(u (vgn(gf. (4.33)
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Expressions are often derived for the maximum gain
which occurs at the peak of the scattering cross section.
As an illustration, we take the cross section (3.69) for a
cubic crystal having a single vibrational mode. The
maximum gain occurring at co =coo is found by inserting
(3.69) into (4.33),

g, = (4sr Vto,
I
+t I')cMiI'iooort, )

&&I a&+br(Mi/Zt) (top' —too') I', (4.34)

where (3.67) has been used. This expression does not
apply when co lies between the transverse and longi-
tudinal frequencies ~& and col.. In this frequency region,
known as the stop band, it is not possible to set a=+0
in (3.69) because the undamped polariton dispersion
rela, tion (3.65) has no solutions. The maximum gain
thus falls off with a Lorentzian tail as the frequency +
is moved into the stop band from either above or below.

For the low-power lasers usually employed in spon-
taneous Raman scattering experiments, the growth of
the scattered wave is comparatively insignificant.
However, using high-power pulsed lasers, g,„may
attain values as large as 10 cm ' in certain materials.

The polariton produced in a stimulated scattering
experiment is a mixture of vibrational and electro-
magnetic excitation. In nonlinear optics, scattering
which generates a vibrational excitation is usually
called the stimulated Raman e8ect, while the generation
of a purely electromagnetic excitation is called para-
metric amplification. Generation of polaritons is
clearly a mixture of the two processes, and treatments
based on the usual theory of nonlinear optics must
embrace both stimulated Raman effect and parametric
amplification. The original treatments were given by
Butcher et al. (1965), Shen (1965), and Henry and
Garrett (1968). This last reference obtains an expres-
sion for g .„„which is identical to (4.34) . A figure of the
maximum gain as a function of polariton frequency for
Gap has been given by Loudon (1969) (see Fig. 7
of this reference) using the theory described here. This
figure is the same as would be obtained by plotting the
peak height in Fig. 4(a,) a.s a function of frequency.
Scott and Ushioda (1969) have given calculated curves
of integrated polariton scattering cross section in
a quartz, as mentioned in Sec. 4.F. These curves also
«ive Bn indication of the gain as a function of frequency
in a stimulated Raman experiment. It should be noted
that for n quartz the cross section can have spikes where
the polariton frequency is equal to a pure vibrational
frequency, in contrast with GaP where the cross section
is a smooth curve having no increase at the transverse
lattice vibration frequency. The relative simplicity of
the GaP curve results from the way in which the
theoretical expressions simplify for a cubic crystal
having a single vibrational mode, as mentioned at the
end of Sec. 3.

Experiments on stimulated Raman scattering by
polaritons have been carried out by Kurtz and Giord-
maine (1969), Gelbwachs et al. (1969),and Yarborough
et ting. (1969) on LiNbOe. The polaritons produced in
such experiments can partially escape from the crystal
as infrared radiation, leading to the possibility of a
tunable infrared source (Johnson el al. , 1971).
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