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Optical pumping of ground-state and metastable atoms and ions is reviewed. We present a critical survey of the literature
on pumping mechanisms, light propagation, relaxation mechanisms, spin exchange, and experimental details on the
various atomic species which have been successfully pumped.
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I. INTRODUCTlON

Ever since the pioneering work of Hanle (Han24) on
the magnetic depolarization of resonance light, it has
been known that the excited atomic states that are
produced by the absorption of anisotropic resonance
light are strongly polarized. This atomic polarization
results from the directionality or polarization of the
light beam. Perhaps the most important aspect of
polarized excited atoms is that the degree of atomic
polarization can be determined with great sensitivity by
observing the intensity and polarization of the Quores-
cent light. Unfortunately, very little work was devoted
to the interrelationships between polarized atoms and
resonance light in the two decades following Hanle's
original work. In 1949, Kastler (Kas50) again drew
attention to the remarkable properties of the interaction
of resonance light with atoms. Kastler pointed out that
the absorption and scattering of resonance light could
lead to large population imbalances in atomic ground
states as well as in excited states. Ground-state polariza-
tion by optical pumping was soon observed experi-
mentally by Brossel, Kastler, and Winter (Bro52b) and
by Hawkins and Dicke (Haw53).

A simple optical pumping experiment is illustrated in
Fig. 1. An atom with a 'SI~2 ground state and a 'I'y~2

excited state is illuminated by circularly polarized reso-
nance radiation which propagates along the direction of
a small magnetic field H. Ground-state atoms in the +—,

'
sublevel cannot absorb light since they cannot accom-
modate the additional angular momentum of the

photon in the P~~~2 excited state. However, ground-state
atoms in the —

& sublevel can absorb a photon and jump
to the +—', sublevel of the excited state. Atoms in the
+~~excited-state sublevel decay very quickly and fall
back to either the ——', ground-state sublevel or the +—',
ground-state sublevel. The atom is twice as likely to fa11
to the —-', sublevel as to. the + 2 sublevel, but neverthe-
less, in the absence of any relaxation mechanisms, all
atoms will eventually be "pumped" into the +—',
sublevel.

This pumping can be detected in two ways. Ke notice
that when all atoms have been pumped into the +-',
sublevel, the vapor will become transparent. Con-
sequently, the pumping light will no longer be at-
tenuated, and photodetector A will receive the full
intensity of the pumping light. Thus, observing the
intensity of the transmitted pumping light, or traes-
missioe moe~torAzg, is one important way to detect
optical pumping. It is also clear that when complete

pumping has taken place there will no longer be any
resonantly scattered light, and the intensity of Quores-
cent light at photodetector 8 wi. ll vanish. Consequently,

pumping can also be detected by observing the Auores-
cent light or byguoresceece moriitoring Ther. e are many
variants of each method. For instance, transmission
monitoring can be done with nonresonant light, since
a polarized atomic vapor may change the polarization
of the light even though the total intensity of the light
is not a6'ected.

It is also possible to detect optical pumping in an
atomic beam experiment by using inhomogeneous
magnetic-fields to state select the pumped atoms. Such
experiments were first used by Buck, Rabi, and Senitsky
(Buc56) to measure the quadrupole interactions of

OPTICAL PUMPING OF AN ATOM)C GROUND STATE

C. P.

I/2

I&2

FIG. 1. A simple optical pumping experiment. Atoms are
polarized by the scattering of circularly polarized resonant light.
Either the transmitted light at A or the Ruorescently scattered
light at 8 can be used to monitor the atomic polarization.
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excited alkali atoms. However, such experiments are
not as sensitive, except in the case of radioactive atoms,
as experiments based on optical monitoring. Recently
Bucka (Buc66) has reconsidered these atomic beam
techniques.

The ultimate degree of polarization that can be
attained in an optical pumping experiment depends
critically on the relaxation rates in the ground state.
Pumping rates with conventional lamps rarely exceed a
few thousand photon absorptions per second; and,
consequently, relaxation times from collisions and
other dissipative mechanisms can be no shorter than a
few milliseconds if large degrees of polarization are to be
attained. Long relaxation times can be obtained in a
number of ways. The simplest is to place the atoms in a
very large evacuated container or atomic beam so that
the time between interatomic collisions or wall collisions
is long. The first successful optical pumping experiments
by Brossel et al. (Bro52b, 53) and by Hawkins and
Dicke (Haw53) were done with atomic beams of
sodium, and Barrat (Bar54) reported successful
pumping of sodium vapor in a large (12-cm diameter)
quartz cell shortly thereafter. It was apparent that
nearly every collision of a sodium atom with the wall
destroyed the polarization of the atom.

The problem of wall relaxation of optically pumped
alkali atoms was overcome in two ways. Brossel et' ul.
(Bro55b), Dicke's group in Princeton, and a number of
other workers (Coh57), (Deh57a), (Ska57), (Har58)
discovered that the molecules of certain simple gases
such as hydrogen, nitrogen, or the inert gases could
make millions of collisions against polarized alkali
atoms without destroying the atomic polarization.
These weakly relaxing gases can therefore be used as
bu6er gases which, at pressures of a few Torr, greatly
increase the times for diffusion of the polarized atoms
to the walls. Spin-relaxation times on the order of
seconds can be obtained in buffered cells.

A second technique that has proved useful in optical
pumping work with alkali atoms is coating the con-
tainer walls with a nonrelaxing material. Dehmelt,
Ensberg, and Robinson (Rob58) discovered. that
various parens and organosilanes are effective wall
coatings against which an atom can make thousands of
collisions without loss of polarization. Wall relaxation
is not as serious a problem for diamagnetic species such
as mercury, cadmium, helium-3, and lead, and these
atoms are usually pumped in unbury'ered, uncoated cells,

In this brief introduction we have already touched
on three of the most important aspects of optical
pumping: pumping, relaxation, and optical monitoring.
In the remainder of this paper we shall examine these
three topics in more detail.

In undertaking this review we had originally hoped
to cover the entire subject of the interaction of resonance
radiation with atomic vapors as well as peripheral
6elds of interest that have geen generated by optical
pumping. These include the interaction of atoms with

strong rf fields and the elegant experimental techniques
of optical double-resonance and level-crossing spectros-
copy of excited states. However, a closer acquaintance
with the extensive and growing literature soon con-
vinced us of the futility of these plans, and we have
therefore limited this discussion to optical pumping
of ground-state atoms and long-lived metastable states.
Pumping of the excited state is discussed only insofar as
it is necessary for an understanding of the ground. -state
pumping.

In the first six sections of this paper we review three
basic phenomena, optical pumping, light propagation,
and relaxation, which are common to most experiments.
We have tried to present a reasonably complete outline
of the basic theory of these phenomena, and where-
ever possible we have reproduced experiments from the
literature which illustrate particularly important aspects
of the physics. Sections VII—X contain a more detailed
discussion of the various atomic and ionic species which
have been pumped to date. These latter sections can be
read without reference to the first six sections for a
rapid review of the experimental situation. An ex-
tensive bibliography and cross reference list has been
prepared, and we have tried to include all papers
published through 1970. Because of the extensiveness
of the literature some excellent papers have undoubtedly
been overlooked and we apologize in advance to their
authors.

Earlier reviews of optical pumping have been written
by Kastler (Kas57), Skalinski (Ska60), deZafra
(deZ60), Skrotskii and Izyumova (Skr61), Carver
(Car63), Cohen —Tannoudji and Kastler (Coh66c), and
Major (Maj68) . A monograph and collection of reprints
on Optical Pumping has been published by Bernheim
(8er65b) .

II. MATHEMATICAL FRAMEVf ORE

A. The Atomic Hamiltonian

We shall assume that the evolution of an individual
atom of the vapor is described by the Schroedinger
equation

i5, (B/8/)
~ P) =3'.

~
P). (II.1)

We assume that the Hamiltonian operator K is the sum
of a large static part Xo, which is the same for all atoms
in the vapor, and a small perturbation V, which may
represent a randomly Quctuating collisional interaction,
an external radio-frequency field, or other processes.
The unperturbed Hamiltonian 3CO will define a number
of eigenstates

~
&):

(II.2)

In optical pumping experiments we will usually be
interested in a set of ground. -state basis functions, which
we shall designate by Greek letters p, , v, etc., and a set of
excited-state wave functions, which we shall designate
with Latin letters m, e, etc. We shall find it useful to
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define a ground-state Hamiltonian as

(II 3)

B.The Density Matrix

One is seldom interested in the wave function of an
individual atom. The signals observed in any optical
pumping experiment always turn out to be proportional
to the mean value (M) of some atomic observable M.
For instance, 3f might be some component of the
atomic angular momentum. Suppose that each atom of
the vapor can be described by a wave function

~
P, &.

Then the average value of M for a vapor of X atoms is

&M&=(1/&) 2 8; I
M l4;&.

i=1

Note that Eq. (II.6) can also be written as

(II.6)

where E, is the mean energy of. the ground-state sub-
levels. We may define the excited-state Hamiltonian 3C,
in an analogous way. Both the ground-state and excited-
state Hamiltonians are traceless, e.g. ,

Tr Pe,]= Q &p ( X, [ p& =0. (II.4)

For an atom of nuclear spin I and electronic spin J,
the truncated Hamiltonians K, and K, can be repre-
sented to su%cient accuracy by an effective Hamil-
tonian of the form

AAI J+h8$3(I J)'+(3/2) (I J)
I(I+1)—j(J+1)]/2I(2I —1)J(2J—1)

+gztJp J'H —(pr/I) I H. (II.5)

The magnetic dipole- and electric quadrupole-
interaction constants are A and 8, respectively, the
gyromagnetic ratio of the electronic spin J is gz, and
the nuclear moment is pI. The atoms are subject to an
external magnetic field H.

as a description of physical systems is contained in a
review article by Fano (Fan57) .

The description of optical pumping experiments
usually requires two types of observables: ground-
state observables and excited-state observables. Con-
sequently, it is convenient to write the density matrix
as the sum of a ground-state component p, and an
excited-state component p, .

P=Pg+P8+ ' ' '
~

Here p, and p, are the projections of p within the ground
state and excited state, respectively, of the atom.

C. The Liouville Equation

The rate of change of the density matrix is often
described by a first order differential equation called the
I.iouville equation:

(~/~t) t = (1/+) [~0, t ]+L(t ). (» 10)

The commutator LXO, p] follows directly from the
Schroedinger equation (II.1) .The term L(p) represents
relaxation and pumping mechanisms and all other
processes which cannot be included in 3'.p. We shall find
that the Liouville operator for an optically pumped
ground-state atom is composed to three main parts:

L(p) = (d n/dt) p+ (dt@/dt) p+ (d~3~/dt) p ~ ~ . (II.11)

Here the first term represents depopulation pumping,
which is discussed in detail in Sec. III.A. The basic
formula for depopulation pumping is Eq. (III.7). The
second term in Eq. (II.11) represents repopulation
pumping, which is discussed in Sec. III.C. The basic
formula for repopulation pumping is Eq. (III.87) . The
last term in Eq. (II.11) represents relaxation, which is
discussed in Sec. V. Relaxation is an extremely diverse
and complicated phenomenon and cannot be sum-
marized by one formula.

D. The Interaction Representation

&M&= Tr LpM]= P &n
~
pM

~
e&,

n

where the density matrix p is defined by

t =(1/&) 214'&O'I

(II.7)

(II.8)

We shall frequently make use of the interaction
representation to analyze optical pumping experiments.
The interaction-picture density matrix 0- is defined by

0 =p= exp (iXot/5) p exp (—iÃot/5). (II.12)

The probability of finding a given atom of the vapor in
the sublevel

~
v& is &n

~ p ~
e&. Thus, in order to calculate

the average value of atomic observables it is only
necessary to know the density matrix of the atoms. One
need not know the wave functions of the individual
atoms; and, in fact, because of interactions between
the atoms themselves and between the atoms and the
light, a wave function for each individual atom may not
exist. Nevertheless, one can always define a density
matrix p such that Eq. (II.7) is valid.

A more profound discussion of the limitation of the
wave function and the advantages of the density matrix

More generally, a tilde over any operator always in-
dicates that it has been subjected to the transformation
of Eq. (II.12). The goal of this transformation to the
interaction picture is to simplify the I.iouville equation,
which now becomes

(d/dt) 0 =L(p) . (II.13)

That is, the interaction-picture density matrix would be
constant if there were no pumping or relaxation
mechanisms. Analogous transformations can be made if
BCp is time dependent; for instance, if the atom is
subject to an oscillating or rotating magnetic field

(Rab54), (Ale64) .
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POLA RIZ ATION D I STRI8UTION MULTIPOI E EXPANSION

FIG. 2. Multipole polarizations for
a spin--,' atom. The pure multipole
population distributions have char-
acteristic effects on the absorption or
emission of light, and they often relax
by simple exponential decay.
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(M)= Tr [oM]. (II.14)

E. The Secular Approximation

In terms of a, the expectation value of any operator M unpolarized ensemble. It is natural to define the polari-
zation P of an atomic vapor as the difference between
the actual density matrix and the density matrix of an
unpolarized ensemble. Thus, the polarization of the
ground-state density matrix p, is

One frequently finds that the rate of change of the
density matrix in the interaction picture is given by an
equation of the form

(d/dt)o;;=A, ,+. P 8;;(~v) exp (ical,t). (II.15)

That is, the rate of change of the density matrix is the
sum of slowly varying parts A;; and rapidly oscillating
parts B,, (a&~) exp (i~~t) . We assume that the oscillation
frequencies co& are very large compared to the com-
ponents of A and 8, i.e.,

uj,)&A;;,

col,)&B,;(a&,) . (II.16)

We also assume that the elements of A and 8 are of
comparable orders of magnitude. Under these conditions
one finds that an adequate description of the atomic
evolution can be obtained by simply ignoring the
rapidly oscillating terms and solving the simplified
equation

(d/dt) ~,,=A,;. (II.17)

This procedure, called the secular approximation, is
quite useful in discussing the relaxation of an atomic
ensemble. Barrat and Cohen-Tannoudji (Bar61d,e) dis-
cuss the limits of the secular approximation in more
detail.

F. Atomic Polarization

Let us suppose there are 6 sublevels of the atomic
ground state. If the atoms of a vapor were distributed
at random among the ground-state sublevels, the
probability of ending the atom in any given sublevel
would be 1/G, and the density matrix would be

p, = (1/G) Q i ti)(p i
=1/G. (II.18)

For brevity we shall always suppress projection opera-
tors such as P„~ti)(ti

~
when no confusion can arise.

The density matrix of Eq. (II.18) describes a completely

P, =p, (1/G) Tr p—,. (II.19)

The excited-state polarization is de6ned in like manner.
The polarization operators are always traceless, i.e.,

Tr P=O. (II.20)

We shall call the diagonal matrix elements of the
polarization "population excesses. " Thus, (p ~

P,
~

p, )
is the excess population of the ground-state sublevel p
with respect to a random population distribution.
Off-diagonal components of the polarization or of the
density matrix are called coherences. Thus, (ti

~ p, I v)
or (ti

~
P,

~
v) isthecoherencebetween thelevelsti and v.

In the absence of optical pumping or other polarizing
mechanisms the polarization of the ground state is

P = Kv/GAT. — (II.21)

Here T is the absolute temperature, and k is Boltz-
mann's constant. We assume that the energy splittings
of the ground state are much smaller than kT, so that
the thermal polarization is always very small. By
optically pumping the ground state, one can produce
much larger polarizations than the thermal polarization
of Eq. (II.21).

G. Spherical Tensor Representations of p

For many problems which arise in optical pumping,
it is convenient to represent the density matrix in
terms of spherical basis operators. This is entirely
analogous to the description of the surface of a solid
with spherical harmonics. The systematic use of
spherical basis operators seems to have been first
suggested by Fano (Fan57), and the spherical tensor
formalism has been popularized in optical pumping
work by Dyakonov and Perel (Dya65), Omont
(Omo65b), and Happer and Mathur (Hap67c).

To see why these "multipole polarizations" are
useful, consider a ground-state atom with nuclear spin
I=3o(e.g. , "'Hg). In Fig. 2, five different types of
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population distribution are shown for an ensemble of
such atoms. In case (a), there is a random distribution
with no polarization. In case (b), there is a pure dipole
polarization; that is, the average value of the magnetic
dipole moment is nonzero, but all other multipole
moments are zero. In case (c), there is a pure quad-
rupole polarization, and in case (d), there is a pure
octupole polarization. The polarization of case (e) is
mixed; that is, it is a linear superposition of a dipole, a
quadrupole, and an octupole polarization. In a certain
sense, the polarizations (a)—(d) correspond to the ffrst
four Legendre (more precisely, Gram) polynomials,
while the polarization (e) corresponds to a Dirac delta
function.

A few examples will indicate the significance of these
diBerent types of multipole distributions. First, it is
easy to show that static or oscillating magnetic fields
cannot change the multipolarity of a distribution, since
magnetic fields simply rotate the atomic ensemble. A
rotated dipole distribution is still a dipole distribution.
Also, under the isotropic conditions which often prevail
when a polarized ensemble relaxes toward a random
ensemble, each multipole polarization is decoupled from
all other multipole polarizations, and each multipole
relaxes with a characteristic decay time that may be
different for different multipoles. Furthermore, one can
show that the absorption (or spontaneous emission) of
light is affected only by dipole or quadrupole polariza-
tions, but not by octupole or higher-order polarizations.
That is, the distribution d of atoms would absorb or
emit light in precisely the same way as a random dis-
tribution of the same number of atoms. Thus, regardless
of the atomic spin, one need only consider the dipole
and quadrupole components of polarization when
analyzing most optical pumping experiments. This can
result in a considerable simplification for high-spin
atoms. It is convenient to describe the multipole
polarizations with spherical basis operators. Consider
two atomic multiplets which can be described by
angular momentum basis states

l
Fm) and

l
F'm').

Here F and m label, respectively, the total angular
momentum and the axial angular momentum of the
state. Spherical basis operators for the atom are then
defined by

TzM(FF') = P l
Fm)(F'm M l( —1)—

XC(FF'L; m, M—m). (II.22)

These operators form an orthonormal basis system in the
sense that they satisfy the condition

Tr p IM (FF') Tt~( ff') 5 = &IBM BPf~P f ~ (II.23)

Consequently, one can expand the density matrix of the
atom in terms of the basis operators

p= Z ( 1) '+ prM(FF')Tz, M—(F'F), (II.24)

where the summation extends over the complete range

where the summation extends over the range of the
labels E, M, L, and S, and

p(K~ LlV) = Tr LpTxM(II) TrN(JJ)]. (II.28)

We shall refer to Eqs. (II.24) and (II.27) as coupled
and uncoupled expansions of p. The formulas for
transforming between the coupled and the uncoupled
expansions are listed at the end of this section.

As an example, let us consider the ground state of an
alkali atom. We can always write the density Inatrix in
the form

p=n+A S, (II.29)

where S is the electron spin, and n, A, 2„,and A, are
purely nuclear operators. We.note that since the elec-
tronic spin is —,'-, we have

&2S„=Tg„(JJ), (II.30)

so that Eq. (II.29) is a version of the uncoupled
expansion of Eq. (II.27); and, in fact, we have

n= (1/K2) Q (—1)Mp(L M00) TzM(II), (—II.31)
LM

where p(L —M; 00) is one of the expansion coefficients
in Eq. (II.27).

We can also express n in terms of the coupled basis
operators, and we can use the transformation formulas
summarized at the end of this section to write Eq.
(II.31) as l here l F]= (2F+1) etc.]
~ = 2, l:(—1)"/2j(l:F)l:F'jl:fjl:f'j)"'
X~(&&F'L; F&)~(f'&L&)&f)pz. M(FF'') TrM—(ff') ~

(II.32)

Similar expressions can be found for A S. YVe note
that the expectation value of the electron spin is

(S)= Trr l A]/2, (II.33)

and the nuclear multipole moments are

(TrM(II)) =2 Trr fnTzM(II) j. (II.34)

Here Try means that the trace is to be performed only
over the nuclear sublevels.

of the indices L, M, F, and F'. We note that the
Hermitian conjugate of a basis operator is

TiMt(FF') = (—1)~ ~™TzM(F'F). (II.25)

Equations (II.23), (II.24), and (II.25) imply the
condition

prM(FF ) = Tr fpTzM(FF') j. (II.26)

For an atomic state of electronic angular momentum
J and nuclear spin J, it is often convenient to express
the density matrix in terms of the basis operators
TxM(II) and Ty.~(JJ). Thus, we can write

p = Q (—1)M+~p(K3f; L1V) Trr, M (II)Tr. , n (JJ),
(II.27)
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We shall sometimes find it convenient to work with
the Zeeman projections of the electronic and nuclear
multipole operators. We shall denote such a projection
by a bar over the operator, e.g.,

TzM(JJ) = g ~
Fm){Ftu

~
TJM(JJ)

~

Fm'){Ftl' [.

I I j
X J J j' LT (II)T'(JJ))zM (II 36)

F P L

The symbol L j ~ j')z,M indicates that the angular
momenta j and j' have been coupled to a total angular
momentum L and s projection M. The inverse of Eq.
(II.36) follows from the orthogonality properties of the
9j symbols:

t T (11~)T~'(JJ) )zM

= 2 L(2F+1) (2F'+1) (2j+1)(2j'+1))"'
gal/

X J J j Tz M (FF') . (II.37)

F FI L

Important special cases of Eq. (II.37) are

TzM (II) = Q L(2F+ 1) (2F'+ 1)J~'

and
XW(F'JLI; IF) TzM(FF') (11.38)

TzM{JJ)= Q L{2F+1) (2F'+ 1))"2
Pgf

XW(IFJL; JF') TzM(FF'), (II.39)

where the symbol 8" denotes a Racah coeScient.

(II.35)

Such operators are not orthogonal to each other or to
the original multipole operators, but they play an
important role in the description of many optical
pumping experiments because they appear naturally
when one makes the secular approximation.

In conclusion we list some important transformation
equations for the multipole operators. Since the
multipole operators Tz,M (FF') are in essence four
angular momenta (I, J, I, and J) coupled to a total
angular momentum L and s projection M, the coupled
and uncoupled multipole operators are related to each
other with a 9j symbol. Consequently, we have the
equation

TzM(FF') = p I (2F+1) (2F'+1) (2j+1) (2j'+1))'~'

a — DEPOPULATION PUMPING BY DIRECTIONAL LIGHT

J=O

oo o ATOMSooo

m=-I

DEPOPULATION PUMPING BY FREQUENCY SELECTED LIGHT

00 0
o oo

1C

FIG. 3. Some simple examples of depopulation pumping.
Population excesses are created in weakly absorbing sublevels,
and population deficiencies are created in strongly absorbing
sublevels.

III. PUMPING

A. Deyoyulation Pumping

The transfer of order from a light beam to an atomic
vapor takes place as a result of two different mech-
anisms, depopulation pumping and repopulation pump-
ing. Depopulation pumping occurs when certain ground-
state sublevels absorb light more strongly than others.
Since atoms are removed more rapidly from the strongly
absorbing sublevels, an excess population will tend to
build up in the weakly absorbing sublevels.

Depopulation pumping can occur if the pumping
light is anisotropic or polarized, or if the frequency
spectrum of the light departs from that of a blackbody
for frequencies in the neighborhood of the atomic
absorption lines.

Depopulation pumping by anisotropic light is
illustrated in Fig. 3(a). This type of pumping is some-
times used with metastable helium atoms. Unpolarized
light is incident, along the z axis, on an atom with a
spin-1 ground state and a spin-0 excited state. Since the
atom must absorb & j. units of angular momentum from
the light beam, no transitions can occur out of the m= 0
sublevel of the ground state. However, an atom which
has been excited from the m = &1 sublevel has a prob-
ability of 1/3 of falling back to the ground-state sub-
level m=0. Consequently, in the absence of any relaxa-
tion mechanisms, all atoms will eventually be pumped
into the m=0 sublevel of the ground state.

Depopulation pumping by isotropic light with a
nonequilibrium-frequency profile is illustrated in Fig.
3 (b) . Pumping of this type is used in the alkali atoms to
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produce population imbalances between the hyperfine
multiplets. Consider an atom with two well-resolved
ground-state levels (or multiplets) and one excited-
state level (or multiplet). Light of frequency &v&3 is
incident on the atoms in such a way that atoms in level
1 are excited but atoms in level 2 are not, since the
pumping light is off-resonance for the transition 2—+3.
The atoms can decay spontaneously to either of the two
ground-state levels. Consequently, in the absence of
relaxation, all atoms will eventually be pumped into
level 2.

V= —E D (III.2)

where D is the electric dipole-moment operator of the
atom.

From simple perturbation theory, we find that the
light wave will induce transitions from the ground-state
sublevel p to the excited-state sublevel m at a rate

R.-= I(1/&')
I
S.D-. I'/[(F/2)+ ( -,+'k —)g}

+c.c., (III.3)

where F is the spontaneous decay rate of the excited
state, v is the velocity of the atom, and

(u„„=(1/5) (E„E„) (III.4—)

is the resonant frequency of the transition. Let us
denote the total rate of depletion of the ground state
caused by transitions into all excited-state sublevels by

(III.S)

Then the depletion of population in the ground-state
sublevel p resulting from depopulation pumping is
described by the equation

(d"'/«) p..= bF..p„. —

Z. The Effective Hamiltonian

Equation (III.6) is useful only if no coherence
exists in the ground state. Barrat and Cohen-Tan-
noudji (Bar61d, e) have shown that the correct general-
ization of Eq. (III.6) is

1. Elementary Theory of Depopulation Pumping

The transition rate E„ from a sublevel p, of the
ground-state to a sublevel m of the excited state can be
calculated from elementary perturbation theory. Let us
represent the electric field of a monochromatic light
wave by

E= 8 exp i(k r—&8)+c.c., (III.1)

where c.c. denotes the complex conjugate. Then the
atom will experience an oscillating perturbation

operator whose matrix elements are

X Q 8* D„„D„„.8/((cv —(o „—k v)+iF/25

(III.S)

The effective Hamiltonian is not Hermitian, but it can
be written in terms of a Hermitian light-shift operator
88 and a Hermitian light-absorption operator bI'

bX = bS iQ—F/2 (III.9)

Let us denote the statistical weight of the ground
state by G. Then the mean pumping rate of the light
beam is defined as

R= (1/G) Tr PF]. (III.14)

We shall see that the mean pumping rate plays a role
in the ground state analogous to the role of the spontane-
ous decay rate of the excited state. '

In the original work of Barrat and Cohen —Tannoudji
(Bar61d,e), the effective Hamiltonian was designated
by

bX„„=A „„(2E'i/2T„—) 5, (III.'10)

where the parameters dE' and 1/T„were rates propor-
tional to the light intensity, and A» was a dimension-
less matrix proportional to the numerator of Eq. (III.S) .
The form of Eq. (III.10) is not as general as that of
Eq. (III.S) because it implies that the light-shift
operator and the light-absorption operator are both
multiples of the same matrix A». . This is true only in
certain simple cases, and it is not true, for instance, for
heavy alkali atoms such as rubidium and cesium.

3. The Effective Hamiltonian and The Polarisability

From Eq. (III.S) we see that the effective Hamil-
tonian can be written in the form

ABC= —8* ot 8= 68—iQF/2, (III.11)

where the dyadic operator 0! is defined by its matrix
elements

(p I
cr

I t )= (—1/&)

y P D„.D„„/L(~—~„„—k v)+iF/2j. (III.12)

Happer and Mathur (Hap67c) have shown that the
expectation value of o! is the polarizability of the atom,
i.e., that the dipole moment (D) induced in the atom by
the electric field E of Eq. (III.1) is

(D)= (tx) ~ 8 exp i(k.r—a&t) +c.c.. (III.13)

4. The Jrlean Pumping Rate

5. Velocity Averages
i5(d&'&/dt) p=tiXp puet, —(III.7)

Suppose that the probability of finding the atomic
where the effective Hamiltonian NC is a ground-state velocity v in the volume element d'v is X(v)d'~. Then
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and the polarizability becomes

&t'Icx
It�)=(1/&h)(~/2RT)"'&

(t'ID Im)
m

X (m
~
D

~
ti)ZPx(mt')+iyj, (III.18)

where we have

g(mt') = (1/h) (M/2RT) 't'(co —co „)(III.19)
and

y = (1/h) (M/2RT) "'r/2. (III.20)

6. Pressure Broadening and Shifting of the Optical
Absor ption Lines

One usually assumes that the effects of small col-
lisional broadening and shifting of the optical absorption
line can be accounted for by making the replacements

oimp~~mll+ +oi) (III.21)

r/2~r/2+ y„ (III.22)

in Eqs. (III.19) and (III.20). Here Aco/2ir is the
collisionally induced shift of the absorption frequency,
and p, is the collisionally induced dephasing rate for
optical coherence. These approximations seem to work
reasonably well, but no de6nitive studies of the in-
huence of optical collision broadening and pressure
shifts on optical pumping experiments have been made.
More careful consideration of these phenomena will
eventually be necessary. For instance, the pressure-
broadened lines are known to deviate from a simple
I orentzian shape, so that a plasma-dispersion function
is not the correct line shape function. A review of the
pressure broadening and shifting of optical lines has
been written by Chen and Takeo (Che57) .

7. Oscillator Strengths and Lifetimes

The magnitudes of the dipole-matrix elements which
enter into the effective Hamiltonian t Eq. (III.8)] or
the polarizability (Eq. (III.12)$ are conveniently
expressed in terms of the oscillator strength of the
optical transition. A number of different definitions of
oscillator strengths are in use, and to avoid confusion,
we shall briefly review the more widespread conventions.

for a Maxwell —Boltzmann distribution of velocities at
a temperature T we have

N(v) d'v= (M/27rRT)"' exp ( M—s'/2RT) d'ii,

(III.15)

and the polarizability of an atomic vapor should be
replaced by the velocity-averaged polarizability

ot= fot(v) N(v) d'e . (III.16)

The velocity average can be conveniently expressed in
terms of the plasma-dispersion function (Fri61)

Suppose that an atomic multiplet of angular momentum
J, can decay to an atomic multiplet of electronic
angular momentum J, by an electric dipole transition.
The energies of the upper and lower states are E,
and E„respectively. Then the "absorption-oscillator
strength" is

f"=f(J., J.)
= 2nuo'L3e'(2 Jg+1) (E, Eg)—j

&& P (J,m
~

D
~
J,p, ) ~ (J,p ~

D
~
J,m). (III.23)

m, p,

Here the notation f„is that used by Foster (Fos64),
while the notation f(J„J,) is that used by Condon and
Shortley (Con53) . Extensive, critically evaluated
Tables of absorption oscillator strengths have been
prepared by Wiese, Smith, and Glennon (Wie66). We
note that

(2J,+1)f(J„J,) = —(2J,+1)f(J'„J,). (III.24)

Condon and Shortley's "emission-oscillator strength"
f(JJ,) is a negative number. The product of the
absolute value of the emission-oscillator strength and
the statistical weight of the upper state

gf= If(J J )l(2J,+1) (III.25)

is also widely used, and extensive tables of gf values can
be found in the work of Corliss and Bozman (Cor62) .
However, while the relative values of emission-oscillator
strengths for a single element are usually fairly accurate,
the absolute values can be in error by as much as an

, order of magnitude.
The oscillator strength can also be written in terms of

the momentum operator y of the atom, since we have

(J.m
~ p [ Jgp)=(im/ea)(E, —Eg)(J,m

~

D
( Jyp).

(III.26)

For spontaneous electric dipole transitions from the
state e to the state g, the decay rate is

r (J,.-+J,) = 2e'&u'(mc') '(2J,+1)f„/(2J,+1).
(III.27)

Very reliable estimates of oscillator strengths can be
inferred from atomic lifetime measurements with the aid
of Eq. (III.27).

In this paper, we shall always make use of the
absorption-oscillator strengths fg edfine d in Eq.
(III.23), and the oscillator strength will always refer
to an electronic transition. Ke shall not use oscillator
strengths for transitions between ground-state and
excited-state hyperfine multiplets (e.g. , F, and F,),
since, for allowed transitions, these are related by simple
angular factors to the more fundamental electronic
oscillator strength.

S. The Spectral Profile of the Pumping Light

Most optical pumping experiments are done with
incoherent light from a conventional lamp. We can
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think of such light as a superposition of many mono-
chromatic waves of the form (III.1) with different
frequencies and random relative phases. Let C(v)dv
represent the energy flux carried by waves whose
frequencies lie between v and v+dv. Let us assume that
the light has a well-defined polarization e (i.e., the
electric field amplitude of a monochromatic wave such
as that of Eq. (III.1) is 8=

~
8

~
e). Then we have

C (v) dv= (c/2')g' (III.28)

and the effective Hamiltonian [Eq. (III.11)7 becomes

8K= —(2n-/c) fe~ n eC(v)dv. (III.29)

If the light is only partially polarized, it is convenient
to define a flux dyadic (Coh67),

e(v) =c(2irhv) —'Q 8 8* (III 30)

F„andthe sum on m extends only over sublevels of the
multiplet F.. Under these circumstances, we designate
the mean pumping rate by R(F,F,), and we find

R(FpF.) =Xrpcfp, u(25) '

XW'(J,FJpFp, I1) (2Jp+1) (2F,+1), (III.36)

where I is the energy density at the frequency of the
transition F,—+F,.

10. Multipole Represeetatiori of ot

We shall often find it convenient to write the
polarizability 0,' in terms of its irreducible components.
For instance, for an atom devoid of hyperfine structure
both in the ground state and in the excited state, the
polarizability is (Hap67c)

where the summation extends over all waves i whose
frequencies lie within the interval v to v+hv. Then
Eq. (III.29) becomes XZ(JJp) (2Jp+1)W(1LJ+p, 1Jp) Ctr, Tr(JJ,).

(III.37)
5X= —(2m./c) (III.31)0!'. @dp.

The irreducible basis dyadics are defined in analogy to
Eq. (II.22) as

The Qux dyadic 4 and the electric field 8 are analogous,
respectively, to a density matrix and a wave function
description of the light.

If the pumping light beam is modulated, correlations
between the diferent frequencies of the light beam must
be considered.

Dr,M = Q i„(f„M)*(1)" ~—'C(11L;p, M u). —

(III.38)

In the future, we shall call the L=O component of 0.
the isotropic part, the L=1 component of 0.' the
gyrotropic part, and the L=2 component of 0! the
birefringent part. In view of Eq. (III.11), we see that
both the light-shift operator R and the light-absorption
operator bF will have a multipole expansion analogous
to Eq. (III.37). For instance, the light-absorption
o erator corres ondin to E . (III.37) is

P. Light with a Flat Spectral Profile

Let us assume that the light intensity is independent
of frequency in the neighborhood of the absorption
lines. Then the Aux is

(III.39)

p p g q
C(v) =cu, (III.32)

2

where uis the energy densityper unitfrequencyinterval gl =3R g (2J +1)W(1LJg, 1J,)E~.Tz(J J,)
of the light beam. The integral of Eq. (III.29) may be
calculated without diSculty, and one finds the results

and
(III.33) Here E is the mean pumping rate defined in Eq.

(III.14), and the polarization tensor Er,M is defined by

81' = (2ir/P) u P e* D
~
m) (m

~

D e. (III.34) EcM =8'Grpr'e (III.40)

One can show that the mean pumping rate (III.14) for
light of a Qat spectral profile is

R(JP.) =Xrpcf„u(25) ', (111.35)

where X is the mean wavelength of the transition
(J,—vJ, ), rp is the classical electron radius, and f„is the
absorption-oscillator strength of the transition J,.—+J,.

For an atom with hyperfine structure, the spectral
profile may be Rat only for transitions from one ground-
state multiplet F, to one excited-state multiplet F,.
Then the light-absorption operator of Eq. (III.34) may
be thought of as operating only within the multiplet

cx =ap+to.„JXx+ap, D, (III.42)

where no, n, ~, and n~, are scalar functions of frequency,

for light with a polarization vector e.
For an atom with well-defined hyperfine multiplets,

the light-absorption operator which corresponds to the
transition F,—+F, is

oI'=3R(FpF, ) Q (2Fp+1) W(1LF,Fp, 1Fp)

XEz Tz, (FpFp) (III 41)

It is also useful to write the polarizability [Eq.
(III.37)j in the form
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l(H)

tE

FIG. 4. Production of static co-
herence by optical pumping. Co-
herence can be produced by un-
modulated light only when two levels
intersect. In this experiment, a mag-
metic field and a tensor light shift
caused by a coaxial beam of off-
resonant light are used to produce
level crossings. The coherence is
produced and detected by the res-
onant light beam )from (Dup68b) j.
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J is the angular momentum operator of the atom (J is
supposed to form a vector cross product with any vector
to the right of it), and the quadrupole operator D is p('& = 1/G. (III.49)

(DI.44), one finds that the zeroth order contribution
to p, is

(III.43) The first-order contribution is composed of two terms

11. The Polarization Produced by Weak Pur)vPir)g Light o)=p o)+p o) (III.SO)

(III.45)

is the sum of the static, unperturbed Hamiltonian and
the light-shift operator 88. Suppose that the pumping
light is weak, causing the mean pumping rate R to be
much smaller than the decay rate y of the polarization.
Under these conditions, it is reasonable to seek a
steady-state solution for the density matrix as a power
series in the parameter

That is, we assume

l). =R/p((1. (III.46)

p p(0) +p(1)+p(2) + . .~ (III 47)

where the nth order contribution to pg is

~(n) p,np(n)
7 (III.48)

and E'& ) is an operator which is independent of ).
Substituting Eqs. (III.47) and (III.48) into Eq.

Some insight into the mechanism of optical pumping
can be gained by considering the polarization produced
by weak pumping light. This procedure was suggested
by Ensberg (Ens67a). For simplicity, let us assume
that the ground-state polarization decays with a single
relaxation rate y. More realistic relaxation processes will
be considered later. Then the evolution of the ground-
state density matrix is given by

(d/dt) p = (—1/2) (bi'p+ pbI') —yP

+ (d( )/dt) p+ (1/i5) LBC', pj. (III.44)

The Hamiltonian

which we can identify as the polarization produced by
depopulation and repopulation pumping, respectively.
The polarization due to depopulation pumping is

1Z. Grour)d State Harble Eg-ect aud Level Crossir)g E-jfect

Note that the coherences (t(Wp') in Eqs. (III.51)
and (III.52) depend explicitly on the energy difference
hco» between the sublevels p, and p'. Sizeable coherence
can be produced only if

GOlslg r ~P) (III.53)

i.e., only if the energy splitting is comparable to or less
than the collisional relaxation rate y. Thus, static
coherence can be produced in optical pumping experi-
ments only when the energies of the corresponding sub-
levels are nearly equal; this condition can easily occur
at zero magnetic field. The first experimental studies of

From Eq: (III.51),we see that population imbalances
can be produced by depopulation pumping only if the
diagonal matrix elements of the light-absorption
operator di6er from each other, i.e., only if the pumping
rates out of the diferent sublevels are not all the same.
The 6rst-order polarization produced by repopulation
pumping is

(t( I
P„('&

I
&a') = I 1/(p+io)„„)](p I

(d('&/dt) (1/G) I
&a').

(III.52)

We shall discuss the polarization due to repopulation
pumping in more detail in Sec. III.C.
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and

(u I P, '
I t '& = exp ( io—rt)

x(u I
(dt'I/«) (1/G). I u'&/P&+'(~„„, ~)—j, (III.58)

where the repopulation rate is assumed to be of the
form

(d&'I/dt) (1/G) = exp ( iro—t) (d&'I/dt) (1/G)„.(III.59)

Hence, if the excitation rate is modulated at a frequency
co, it is possible to produce sizeable, oscillating coherence
between the levels p and p' when the condition

FIG, 5. Production of oscillatory coherence by optical pumping
(optically driven spin precession). When the pumping light is
modulated at a ground-state transition frequency, coherence
may be generated between the corresponding sublevels. The
coherence causes a change in the mean intensity of the transmitted
pumping light /from (Bel61b) ].

the production of static coherence were made at zero
field with optically pumped "'Cd by Lehrnann and
Cohen —Tannoudji (I.eh64b, 67) . The phenomenon is
closely related to the excited-state phenomena of level
crossing and the Hanle effect. A particularly interesting

example of the resonant increase of coherence when
ground-state sublevels intersect has been investigated
by Dupont —Roc and Cohen —Tannoudji (Dup68b),
whose results are illustrated in Fig, 4. The ground-state
Hanle effect has been observed in rubidium and cesium

by Scbmieder et al. (Sch70c).
For an atom with a single Zeeman multiplet in the

ground state, the polarization is most conveniently
described in the rnultipole representation. Let a mag-
netic field define the s axis of the coordinate system, and
let ~ be the Larmor frequency of the atoms in the held.
Then the polarization due to depopulation pumping is

P.nl(L~) =-br. IG(y —i~ )~-, (111.s4)

and the polarization due to repopulation pumping is

P.'"(L~) = L1/(V —ill~) jL(d"'/«) (1/G) j.u.

(III.55)

%e note that if the ground-state relaxation is not
uniform, but if the multipole moments TIKI have a
characteristic relaxation time pl.~, one can simply
replace y by pr~ in Eqs. (III.54) and (III.55) .

13. Pumping by 3IIodulated Light

Suppose the pumping light is intensity modulated so
that one component of the light-absorption operator has
the form

br = bl'(~) exp (—i'd), (III.56)

where bl'(ro) is a time-independent operator. For weak
pumping light, one can easily generalize the procedure
of the preceding sections to show

p( — t)( I«'( )I p'&

XIy+i(co„„.—rn) ] (III.57)

rew'
I

&'y (III.60)

holds. Pumping with modulated light in order to
produce coherence was first suggested by Dehmelt
(Bel61b), and the first experiments of this type were
performed by Bell and Bloom (Be161b), who called the
effect optically driven spin precession (see Fig. 5).
Such experiments can be thought of as ground-state
Hanle-effect or level-crossing experiments in a rotating
coordinate system.

Analogous experiments have been described by
Pokazan'ev (Pok68a), where the stationary states of
the atom are defined by a precessing magnetic field.
Resonances are observed when the modulation fre-
quency of the light in the precessing coordinate system
appears to be equal to the precession frequency of the
atom about the effective static field.

14. Absence of Depopulation Pumping by Light of a Very
Broad Spectral Prost, le

Depopulation pumping is often found to be effective
only for light of a limited spectral width. For instance,
the diamagnetic 'So ground states of Hg, Cd, and Zn
and the 'Po ground state of lead cannot undergo de-
population pumping if all hyperfine components of the
pumping light have equal intensities. The light-ab-
sorption operator is found to be isotropic, regardless of
the polarization of the pumping light. A similar situation
arises for the alkali atoms if the two D lines have equal
intensities. Also, no depopulation pumping of the
metastable 'SI state of helium can occur if the D~, D2,
a'nd D3 lines all have equal intensities. In all of these
cases the ground-state polarization is not affected by
the absorption of light, but is transferred unchanged
into the excited state. The polarization imparted to the
atom by the photon is carried by a second, independent
angular momentum, which is nonzero only in the
excited state; e.g. , if the ground state is 'SI, the ground-
state polarization is carried by the electronic spin S,
and the photon polarization is imparted to the orbital
angular momentum L of the 'I'g excited states. The
absorption probability is completely independent of the
initial ground-state polarization, and, since this implies
that br is isotropic, no depopulation pumping can occur.
One can prove formally that 5F is isotropic under the
conditions stated above by summing the expressions of
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il FrCquenCy
Shift

Doppler width

FIG. 6. Frequency dependence of
the light shift due to virtual transi-
tions. The shift is proportional to the
index of refraction of the vapor
Drom (Coh62a, h) g.

Eqs. (III.39) or (III.41) over the appropriate excited shift
states.

15. Depopulation Pumping at Very High Magnetic
Fields

Light-absorption operators of the form of Eq.
(III.39) are obtained only if the Zeeman splitting of the
atomic absorption lines is assumed to be much less than
the Doppler widths of the lines. %hen the Zeeman
splitting is comparable to or greater than the Doppler
width, a number of interesting qualitative changes
should occur in the character of depopulation pumping
(Hap69) . For example, anisotropic population im-
balances could be produced by depopulation pumping
using isotropic light if the frequency of the light were
such that it could cause preferential absorption from
one Zeeman sublevel of the ground state.

There are a number of technical problems associated
with optical pumping at high magnetic fields. Fre-
quently, it is dificult to obtain a pumping lamp whose
emission profile overlaps the Zeeman-shifted absorption
profile of the pumped atoms. Franz (Fra71) has shown
that one can use white light from an incandescent lamp
to pump cesium atoms in fields of 100 kG, and Gibbs
and Slusher (Gib 70c) have used a mercury laser to pump
rubidium atoms at 74.5 kG.

16. Light Shifts due to Virtua/ Absorption of Light

An interesting aspect of depopulation pumping is the
phenomenon of "light shifts due to virtual transitions. "
Barrat and Cohen —Tannoudji (Bar61c), (Coh62a, b)
have pointed out that the Hermitian part of the effec-
tive Hamiltonian (Eq. (III.9)]will cause a frequency

of the resonance frequency ~„„.These light shifts may
be thought of as the mean Stark shifts produced by the
oscillating electric field of the light wave. Light shifts
due to virtual transitions were first observed by Arditi
and Carver (Ard61) in the 0-0 transition frequency of
optically pumped alkali vapors. Light shifts of the
Zeeman-transition frequencies of rubidium have been
observed by White et al. (Whi68). Light shifts in
helium have been observed by Schearer (Sch62,68e),
and shifts in mercury were first observed by Cohen-
Tannoudji (Coh61a). Shifts due to virtual absorption
of light are by no means small, and shifts of 20 times the
resonance linewidth have been reported by Dupont-Roc
(Dup67b). Related shifts have been induced using
intense laser light by Aleksandrov et al. (Ale66) and
Bonch-Bruevich et at. (Bon66) .

Since the light-shift operator 58 is closely related to
the real part of the polarizability operator of the atoms
)see Eq. (III.11)), the frequency dependence of the
light shift will be similar to the frequency dependence
of the index of refraction of the vapor. The results of a
frequency-scanning experiment for the light shift are
shown in Fig. 6. This is data obtained by Cohen-
Tannoudji (Coh61a, 62a,b) in experiments on '9'Hg.

The tensor properties of the light-shift operator have
been investigated by Mathur and Happer (Hap67c).
They showed that for a simple Zeeman multiplet the
light-shift operator can always be written in the form

K = Mo —bH p,—(1/6) bVE:A, (III.62)

where 880 is a common upward or downward shift of all
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of the ground state. The evolution of the excited atoms
is of considerable interest in its own right, since it can
furnish precise information about the lifetime of the
excited state, about the hyperfine interactions in the
excited state, about the interactions of the excited atom
with external electric and magnetic Gelds, and about
collisional relaxation of the excited atoms. We shall
only discuss those aspects of the excited-state evolution
which are essential for an understanding of ground-state

pumping.

OPi OP(
0

FIG. 7. Multipole components of the light shif t. The light
shift due to virtual transitions can be represented by fictitious
magnetic and electric fields and by modifications of the hyper-
6ne coupling constants /from (Mat6gb) ].

the Zeeman sublevels, bH is an effective magnetic Geld
which is proportional to the photon spin, and 6V'8 is
an effective electric field gradient which interacts with
the electric quadrupole moment G. of the rnultiplet.
We may call these three components the scalar, vector,
and tensor parts of the light-shift operator. The charac-
teristic splittings caused by each component are
illustrated in Fig. 7.

The effective fields which enter into Eq. (III.62) are
completely equivalent to real electromagnetic fields
insofar as the evolution of the atomic ground state is
concerned. For instance, Happer and Mathur (Hap67b)
have shown that an oscillating effective magnetic field
can cause transitions between the sublevels of a
Zeeman multiplet, and Cohen —Tannoudji and Dupont-
Roc (Dup67a) have shown that an atom will precess
freely around the effective field if all real fields are
canceled. Dupont —Roc and Cohen —Tannoudji
(Dup68c) have shown that an oscillating effective
electric Geld gradient will cause Am= 2 transitions, and
they have performed ground-state level-crossing experi-
ments (Dup68b) with a coaxial effective electric field
gradient and a real magnetic field (see Fig. 4). Cohen-
Tannoudji and Dupont —Roc have also demonstrated
that the tensor light shift couples multipole moments of
different angular momentum (Coh69) .

A detailed theory of the light shifts in alkali atoms has
been developed by Mathur, Tang, and Happer (Mat68b)
and applied to the case of Rb. Experimental con-
firmation of some aspects of the theory was obtained.
Analogous work for "Rb was carried out by Stern
(Ste71). Reviews of light shifts due to virtual transi-
tions have been published by Kastler (Kas63) and
Happer (Hap71) .

B.The Excited State

One excited atom is produced for every photon
absorbed from the pumping light. It is necessary to
consider the behavior of these excited atoms in order to
understand two important aspects of optical pumping:
the production of fluorescent light and the repopulation

I. Gerreratiorr of the Excited State

We can use the transition rates R„ofEq. (III.3) to
write the rate of generation of atoms iri the excited-state
sublevel m as

(dtsi/dt) p„=P R„p„„. (III.63)

Equa, tion (III.63) is valid only when there is no co-
herence. Happer (Hap67c) has shown that the general-
ization of Eq. (III.63) to include coherence yields an
equation of the form

(d"'/«) p- = (I/&') 2 &~ I
~ D

I t &p.,
X (tr'

~

8* D
~

m')/[(I'/2)+i(tg „+Itv &g)—]+cc.
(III.64)

Barrat and Cohen —Tannoudji (Bar61d,e) have shown
that in the limit of a broad spectral profile, Eq. (III.64)
becomes

(d"'/dt) p, = (2tr/A') Ne Dp,e* D, (III.65)

where ss is the energy density; and t",'is the polarization
of the pumping light.

The polarization which is generated in the excited
state originates both from the polarization of the light
and from the polarization of the ground state. As an
example, let us write Eq. (III.65) in the uncoupled
multipole representation:

(d" /dt) p, =3R(2Jg+1)

X Q L(2K+1) (2L'+1)]'t'X(1J,Jg, 1JJ' L'ItL)
AX, L I ~,Mp,

X [Ez Ts.(JJ.)]r,siT),„(II)pg(L, M; ),,—tr) (—1)&+—~.

(III.66)

The mean pumping rate R was defined in Eq. (III.35) .
Equation (III.66) shows that the excited-state polariza-
tion can be expressed as a rather complicated coupling
of the polarization tensor EI,M, the light, and the
polarization p, (LM; Xp) )see Eq. (II.27) ]of the ground
state.

For future reference we consider several important
special cases of Eq. (III.66). Suppose that the ground
state is unpolarized. Then we have

pg(LMi lofti) ~L04r0'40tig0)

XL(2Jg+1) (2I+1)]—' (III.67)
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Thus, only electronic orientation (L=1) and align-
ment (L= 2) are produced by broad-line excitation. No
nuclear polarization is generated in the excitation
process. However, because of the hyperfine coupling of
the nucleus to the electrons, some of the electronic
polarization can be converted into nuclear polarization
if the excited atom lives for a suSciently long time.
Also, we should emphasize that only for broad-line
excitation is no nuclear polarization generated at the
instant of excitation. For narrow-line excitation it is
quite possible to produce nuclear polarization "in-
stantaneously" in the excited state by the absorption of
polarized light.

As another interesting special case, let us consider
excitation by unpolarized light. Then we have the
conditions

and
ELM =&r04so(~~) (III.69)

(d&'&/dt) p, (LM Xp)

=R(2j,+1)W(1JQL; Jg,)p, (LM; Xp) . (III.70)

Thus, each multipole moment of the excited state is
generated from the corresponding multipole moment of
the ground state. We shall see that Eq. (III.70) is
completely analogous to the rate of transfer of polariza-
tion from an excited atom to a ground-state atom by the
mechanism of spontaneous decay /see Eq. (III.83)J.

Z. Evolltioe of the Excited State

The initial polarization of the optically excited atoms
may be greatly modi6ed before the atoms decay. There
are three main causes for this change in polarization;
the hyper6ne interaction between the electrons and the
nucleus, the coupling of the excited atom to external
magnetic or electric fields, and the relaxation mech-
anisms. Thus, the rate of change of the excited state can
be described by the differential equation

(d/dt) p, = (d ' /dt) p,+ (1/i5) PC„p,f+ (d ' /dt) p, I'p, . —
(III.71)

Here the excited-state Hamiltonian 3C, describes the
hyperhne interactions and interactions with external
fields. The optical excitation rate (do&/dt) p, was dis-
cussed in the previous section. The spontaneous decay
rate of the excited atom is F. The relaxation of the
excited state is represented by the term (d&"/dt) p, .

3. Steady Excitatioe

Let us consider the solutions to Eq. (III.71) for a
few important special cases. We shall be concerned with
steady-state conditions, i.e., with the long-term be-

and Eq. (III.66) becomes

(d"'/dt) p, = [3R/(2I+1)]
2

X Q W(J+,1L; 1J.) ( 1)z—EI, Tz(JQ.). (III.68)

havior of the atoms after the transients, which occur
when the excitation begins, have died away. For the
time being, we shall neglect relaxation of the excited
state. Suppose that the excitation rate is time inde-
pendent. Then the steady-state density matrix p, will
also be time independent, and the solution to Eq.
(III.71) is

(~ I p. I ~&=11/(I"+i~-)3~ l(d"&/«) p. I ~&

(III.72)

We see that for time independent excitation, sizeable
coherence is generated between the sublevels m and e
only when the frequency co

„
is comparable to or less

than the natural decay rate I' of the excited state.
Experiments based on this phenomenon, such as
Hanle-effect experiments (Lur64), or level-crossing
experiments (Fra61), have been used to make precise
determinations of the lifetimes hyperfine structures,
polarizabilities, and g values of the excited states of
atoms. Ke shall not discuss these experiments further
here, but the read. er can find reviews of this type of
experiment in articles by Budick (Bud67) and Happer
(Hap68) .

Since the polarization of the excited state can be
measured directly by observing the Auorescently
scattered. light (see Sec. IV-B), tbe excitation process
represented by Eq. (III.72) has been studied in great
detail. For unpolarized ground-state atoms, optical
double-resonance (Bro52) and level-crossing (Sch70c)
experiments have shown that Eq. (III.72) describes
experimental observations to the limits of experimental
accuracy, even for very complicated excited-state
hyperfine structure.

Baylis (Bay68) and Krainska-Miszczak (Kra67, 69)
have studied the inRuence of ground-state polarization
on the polarization of the excited state. They find good
qualitative agreement between experiment and theory,
but quantitative comparisons are difhcult to obtain
because the ground-state polarization cannot usually be
measured precisely.

4. ModuLated Excitation

Let us consider the case where the excitation rate is
modulated. This can occur if the atom is excited. by
modulated light or if the ground-state density matrix
has modulated components. For simplicity, let us assume
that the excitation rate is

(do&/dt) p, =S exp ( i&et), (I—II.73)

where S is a constant source operator. Then the solution
to Eq. (III.71) leads to oscillating components of p, of
the form

(m
~
p, (t)

~
e)= Iexp (—i~t) P'+i(~ .—~) 3 'I

y (~
~
S ) ~&. (III.74)

We see that sizeable excited-state coherence can be
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Then from Eqs. (III.'14) and (III.65), one finds that
unmodulated pumping light will generate oscillating
components of p, of the form

(rrs I p, I
rs& = (2s./fis) u exp (—i~t)

lt'(~
I
e D

I p&(p I ~. I ~&(~ I

e* D
I ~&

XLI'+i(ce „—cu„„)]'. (III.78)

Thus, Eq. (III.78) implies that the excited-state
coherence (rrs p. I I) can be coupled to the ground-state
coherence (p p, I r) by an unmodulated light beam

only if the coherence frequencies do not differ by much
more than the natural width of the excited state, i.e.,
only if

ments can provide information complimentary to that
obtained from level-crossing experiments.

A very important type of modulated excitation occurs
when oscillatory coherence exists in the ground state.
Suppose that the component (p, I p, I v& of the ground-
state density matrix oscillates at a frequency co, which
we shall assume to be close to the resonant frequency
(dpvj 1 e )

(tt I p, I v) = exp ( it—st) (p, I
tr,

I
r), (III.76)

where (ts I o, I v& is a constant and

I
ssmn &y, v I

& I. (III.'19)
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FIG. 8. Resonant transfer of coherence to the excited state
of '"Hg. (a) The energy splitting between a pair of ground-
state sublevels becomes equal to the energy splitting between
a pair of excited-state sublevels at a magnetic field of 7091
Gauss. (b) The modulation index of the fluorescent light is
plotted as a function of the ground-state magnetic resonance
frequency. The light is most strongly modulated when the ground-
state and excited-state energy splittings are equal )from (Qua66) ].

produced by an osrillatory excitation rate when the
driving frequency co of the excitation process does not
diBer from the coherence frequency cv „bymore than
the natural width of the excited state, i.e., when we
have the condition

&wan I
& I. (III.75)

Kastier (Kas61) has pointed out that one way to
produce a modulated excitation rate such as that of
Eq. (III.73) is to illuminate atoms with modulated
light. Experimental studies of the excitation of atoms
with modulated. light were initiated by Aleksandrov
(Ale63a), and a review of recent work is contained in
the article by Novikov et al. (Nov70). Such experi-

This resonant increase of the coupling of ground-state
to excited-state coherence has been investigated
experimentally by Quarre and Omont (Qua66) in
"Hg. They observed a strong resonant increase in the
modulated component of the fluorescent light when the
condition of Eq. (III.79) was satisfied (see Fig. 8).
Similar studies in sodium have been carried out by
Rosinski (Ros67). In all cases, the agreement between
experiment and theory was excellent.

In Sec. III.C.7, we shall show that the resonance
condition (III.79) has an important bearing on light
shifts due to real transitions.

Rosinski (Ros65,66), Skalinski and Rosinski (Ska65),
and Franzen et at. (Fra68) have studied the transfer of

ground-state coherence into the excited state for both
Am= 1 transitions and Am= 2 double quantum transi-

tions in sodium. Rosinski points out that for X quantum
transitions, coherence is generated at the Eth harmonic
of the driving frequency co, so that the fluorescent light

may be modulated. at harmonics of the driving fre-

quency.
Series (Ser66) has studied the transfer of coherence

at very low fields between the ground state and excited
state, and he concludes that for suSciently strong
coupling of the ground state and excited state by the

pumping light, modulation of the fluorescent light at
4' and higher multiples of the driving frequency can be
observed.
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5. Optical Double Resonauce

For completeness, let us mention one more very
common type of experiment which is described by the
excitation Eq. (III.71) . These are experiments in which
a strong oscillating field is used to induce transitions
between the sublevels of the excited state before the
atom decays. Such optical double-resonance experi-
ments were first performed by Brossel and Bitter
(Bro52) and since then, similar experiments have
yielded an enormous amount of information about the
excited states of atoms. Since the techniques and
results of optical double-resonance experiments have
been reviewed in articles by Series (Ser59) and zu
Putlitz (zu P65), we shall not discuss optical double
resonance in detail here. The oscillating magnetic fields
used in most ground-state optical pumping experiments
are far too small to have any inRuence on the evolution
of the excited-state polarization.

C. Repopulation Pumping

In addition to depopulation pumping, a second
pumping mechanism, which we shall call repopulation
pumping, occurs in many optical pumping experiments.
Repopulation pumping can occur when the atomic
ground state is repopulated as a result of spontaneous
decay of a polarized excited state. Some simple examples
of repopulation pumping are illustrated in Fig. 9. In
Fig. 9(a) a completely polarized 'I'&t. excited-state atom
decays spontaneously to a. 'S&/& ground state. Since the
atoms which are initially in the +—, sublevel of the
excited state are twice as apt to fall to the —-', ground-
state sublevel as to the +-', ground-state sublevel, the
ground state will be partially polarized in the opposite
sense from the excited state after all excited atoms have
decayed. Figure 9(b) illustrates how hyperfine polariza-
tion of an excited 'P~t~ state can be transferred to a
'S~p state.

1. Theory of Repopulation t'umping

According to simple perturbation theory, the rate of
spontaneous decay from the excited-state sublevel nz to
the ground-state sublevel p, is

A„„=(4e'cu/3m2c%)
~
(m

~ p ~
u)~', (III.80)

where p is the momentum operator of the atom. The
rate of population of the ground-state sublevel p is
therefore

(d"'/«) p..= 2 ~-.p-
'rn

= (4e'(v/3m'c%) X (u ~ p ~

m). p„(m
~ p ~

p).

(III.81)

Equation (III.81) is valid only when there is no atomic
coherence. Barrat and Cohen —Tannoudji (Bar6]d,e)
have shown that Eq. (III.81) can be generalized to

(d"'/dt) pa= (4e'cv/3m'c%) p p,p (III.82).
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SPIN- POLARIZED EXCITED STATE

2 -I/2 + I /2

NUCLEAR SPIN
I/3 y= O

2s
I/2 -I/2 + I/2

(b) REPOPULATION PUMPING FROM AN EXCITED
STATE WITH HYPERFINE POLAR I ZATION

2p
PI/2

F=O

NUCLEAR SPIN
I = I/2

2s
I/2

F=O

I' IG. 9. Some simple examples of repopulation pumping,
Excited-state polarization can be partially transferred to the
ground-state by spontaneous emission.

Equation (III.82) describes the repopulation pumping
of the ground state. We note that Eq. (III.82) can be
written in the uncoupled multipole representation as

(dt2~/dt) p, (LM' Ap) = P(2J,+1)
XW(1J+gL; JgJ,) p. (LM; Ap). (III.83)

That is, the various multipole components of the ground
state are generated at a rate which is proportional to the
corresponding multipole component of the excited state.
Equation (III.83) should be compared to Eq. (III.70) .
We see that spontaneous decay and pumping with iso-
tropic light are completely analogous. The spontaneous
decay rate F can be regarded as the isotropic pumping
rate which is caused by zero-point fluctuations of the
electromagnetic held. Systematic studies of the transfer
of coherence by spontaneous decay have been made by
Duclay and Dumont (Duc68), and by Dumont and
Decomps (Dum68) . They observed the fluorescent light
emitted by neon atoms in cascade tra, nsitions and
found excellent agreement with the predictions of
Eqs. (III.82) and (III.83) .

Note that for isotropic pumping light, equilibrium
between the ground-state and excited. -state populations,
X, and E„respectively, occurs when

N YR =N. (I'+GgR/G. ) . (III.84)

Here G, and G, are the statistical weights of the ground
state and the excited state, respectively. One can
introduce an effective temperature T of the light by
requiring that the condition

N, /Ng= (G,/Gg) exp P
—(E, Eg)/kT) (III.85)—
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be satisfied. The eR'ective temperature is therefore

T=L(E —E,)/kj ln G,R/(G, I'+G R). (III.86)

The

effective

temperature T is typically several
thousands of degrees Kelvin; i.e., the effective tem-
perature is on the order of the excitation temperature
of the light source.

Z. Transfer of Polarization through the Excited Stale

An important aspect of the optical pumping process
is that the polarization of a ground-state atom may
be partially retained after the atom has absorbed and
re-emitted a photon. Combining Eqs. (III.82), (III.72),
and (III.65), we find that this polarization transfer can
be described by the equation

(d"'/«) & I o. I v) = & &(»; t "')
&

'
I t. I "»

p~v~

(111.87)

where the coupling coeScient is

B(pv; pV) = ( 8i/r3) Pe'u/m'c%'cod

x 2 &u I p I ~& &u I p I v&

x&~ I
e p I t'&&" I

e* p I
I&/LI'+i(~- —~"")7'.

(III.88)

Equations (III.87) and. (III.88) were first derived by
Barrat and Cohen —Tannoudji (Bar61d.,e) .

For computational convenience, it is useful to
introduce the dimensionless matrix elements

(t I p I ~) =
&t I p I ~&/&J. II p II J.& (»I 89)

Then Eq. (III.88) can be written as

Jl(tv;t") =3«Z I:(ul pire) (ul p I v)

x (~ I
e p I t ') (v'

I
e' p I u) 3

Xl-(r+i( „„—„.„,)- j. (111.90)

The self-coupling coefficient is

It(vv, ' ») =3RI"(2J,+1)L(2J,+1)$ '

x 2 Cle. I'(~I p. Iu)'(ul p. I.)'3
X{lI'+i(a) „—a)„„)1 i}. (III.91)

3. Repopulatiou Pumping by Weak Light

From Eq. (III.52) we find that the first-order
polarization produced by weak repopulation pumping is

&. I P,t'I v&=L1/G(v+'-. ,)jZ B(" ')
=3RI'LG(y+ka„„)i—'

X + (p I p lm) (u I p I v)
ma, pI

X (m I
e.p I

ti') (ti' I
e*.p I u)/(I'+ior ). (III.92)

I'i =I'+¹o (III.94)

For weak pumping light we can use Eqs. (III.93),
(III.54), and (III.39) to show that the polarization
produced by Dj light is

P&"(10) = —(RiEip/y) L1——,'(I'/I'i) ), (III.95)

while for D2 pumping light we find

P&»(10) = (R,E„/~)I (1/2) —Sr/61, ). (III.96)

As the excited-state relaxation rate F~ varies from F to
, that is, from no collisional depolarization to com-
plete collisional depolarization, the ground-state polari-
zation (in units of RiEM/p) produced by weak Di
pumping light varies from —

~~ to —1, while the ground-
state polarization (in units of R&Eio/y) produced by
weak Dz pumping light varies from —si to +-', . From
Eq. (III.96) it follows that the polarization produced
by weak D~ pumping light is zero when we have

r, =51/3. (III.97)

For an atom with no nuclear spin (I=0), Eq. (III.92)
reduces to

P,n& (LM) =L3R/(~ —iM~, ) )Lr (2J.+1)/(r —~,M) ]
XW(1J+gL) JvJ, )W(JvJ, 1L) 1J,) (—1)~Erg'.

(III.93)

4. Degradatiou of Repopulation Pumpusg due to
Collisiouai Depolarization of the Excited State

Since repopulation pumping rates are proportional to
the excited-state polarization, any depolarization of
the excited state by collisions will decrease the ef5ciency
of repopulation pumping. At high bu6er-gas pressures
the excited state may be almost completely depolarized
by collisions so that almost no repopulation pumping
can occur, even though the ground state may still be
strongly polarized by depopulation pumping. Such
situations can arise because of the tremendous differ-
ences which sometimes exist between excited-state and
ground-state depolarization cross sections. For an
alkali atom in a helium bu6er gas, for instance, the
ground-state depolarization cross sections are about
10" times smaller than the excited-state depolarization
cross sections. Hence, it is quite possible to choose a
buGer-gas pressure which causes negligible ground-state
depolarization but almost complete excited-state de-
polar ization.

As a simple example, let us consider a hypothetical
alkali atom with no nuclear spin. I et us denote the
spontaneous decay rate of the excited state by I' and the
collisionally induced relaxation rate for the excited-
state orientation by Tao., where E is the number density
of the bu8er-gas molecules, 8 is the mean relative
velocity between a buffer-gas molecule and a polarized
atom, and 0- is the mean depolarization cross section.
Then the total relaxation rate for orientation is
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Experimentally, it is weil known (Fri66) that in optical
pumping experiments with D2 light, there is a critical
bu6er-gas pressure at which no transmission monitoring
signal occurs. Franz (Fra66a) has suggested that one
could use these critical pressures to determine the
depolarization cross section 0. for excited-state orienta-
tion. Thus, if S, is the number density which cor-
responds to the critical pressure, one can use Eq.
(III.97) to write

0.5

E,vo = 2I'/3. (III.98) 0.2-

Unfortunately, the presence of hyperfine structure
complicates the interpretation of the critical pressure so
that Kq. (III.98) must be considerably modified to
apply to a real alkali atom with nonzero nuclear spin.

The inhuence of hyperfine coupling in the excited
state was analyzed by Okunevich and Perel (Oku70).
Further experimental studies of D2 pumping have been
reported by Zhitnikov et al. (Zhi70) . Only in the upper
hyperfine multiplet (F= I+-', ) does a change in polar-
ization occur as a function of pressure (Fri66), (Zhi70) .
Furthermore, in 'Rb and ~Rb the critical pressure for
'Rb is about 1.5 times higher than that for Rb
(Zhi70). However, the analysis of Zhitnikov et al.
(Zhi70) can still not be considered completely satis-
factory because they assumed that the ground-state
relaxation was uniform. This is known to be a very poor
approximation (see Sec. V).

5. The Influence of the Excited State Hype-rfine Structure
on Repopulation Pumping

The coupling of the excited-state electronic polariza-
tion to the nuclear polarization plays an important role
in repopulation pumping. A particularly detailed study
of the inQuence of this coupling has been carried out by
Lehmann (Leh67) for the Group II elements. Since the
ground states of the Group II elements are diamagnetic
('Ss), the ground-state polarization must be purely
nuclear. Depopulation pumping can occur only for
narrow-line excitation, i.e., when the di6erent com-
ponents of the hyperfine absorption lines are illuminated
with different intensities )see Sec. III.A.14)$. For the
singlet resonance line of cadmium ('Ss—'Pi), the
hyperfine structure of the 'Pj state is much smaller
than the Doppler width of the absorption line; and,
consequently, no depopulation pumping is observed.
Thus, the pumping of cadmium vapor with singlet
resonance radiation must result solely from repopula-
tion pumping. From Eq. (III.83), we find that the
repopulation pumping of a diamagnetic ground state is
described by

( "'/dt) (Ter (II) ),= I'(Tz&z (II) ),. (111.99)

That is, the nuclear polarization of the excited state is
conserved when the atom decays to the ground state.
However, we recall from Eq. (III.68) that broad-line
excitation from an unpolarized ground state produces
no nuclear polarization in the excited state. Thus,

0.1

Hm l00 200

FIG. 10. Degradation of repopulation pumping due t o the
decoupling of I and J in a large magnetic field. Here p+ is the
probability that an atom, initially in the ——, ground-state sub-
level, will decay spontaneously to the +~ ground-state sublevel
after absorbing a tT+ photon. Similarly, p is the probability
that an atom, initially in the +-, ground-state sublevel, will
decay to the —

~ ground-state sublevel after absorbing a 0=
photon. EAicient repopulation pumping of diamagnetic atoms
is possible only if I and J are coupled to each other in the excited
state Drom (l,eh67) j.

no repopulation pumping can occur unless the hyperfine
coupling in the excited state is strong enough to trans-
form some of the electronic polarization (which is
produced by anisotropic excitation with light) into
nuclear polarization before the excited state decays.
This transformation can occur only if the lifetime 1/P
of the excited state is comparable to or greater than a
typical hyperfine period 1/hr of the excited atom, i.e.,
only if

(III.100)I' &Av.

This criterion is satisfied in mercury and in cadmium,
both of which have been pumped with singlet (and
triplet) resonance radiation. In zinc, on the other hand,
Eq. (III.100) is satisfied for the 'Pi excited state but not
for the 'Pi excited state. As expected, attempts to pump
zinc with singlet radiation have failed, but successful

pumping with triplet radiation has been achieved.

6. High Field Decoupling and Its Effect on Repopulation
Puns ping

The coupling of the nuclear polarization to the elec-
tronic polarization is modified when the atom is in an
external magnetic fieM. If the field is so large that the
azimuthal quantum numbers mr and m& of the nucleus
and of the electrons are approximately good quantum
numbers, the coupling of the electronic and nuclear
polarization will be negligible, and it will no longer be
possible to transform appreciable amounts of electronic
polarization into nuclear polarization during the
excited-state lifetime. Lehman (Leh67) has shown that
the repopulation pumping of cadmium with singlet
resonance radiation becomes less eScient for fields

above 200 G because of the decoupling of the nuclear



REVIEWS OZ MODERODERN PHYSICS ' AP~ RII. 1972

F=3
I/2

2

~~Q
2

2S
I/2

I

320 GAUSS

Rb85 O iso- LIGHT R=IOO

IO

IOO 400

2

7. Itght Shifts due to Real Tr

I0
An impo t

-I hen
r ant as

o eat TrarIsitiorIs

pect of re o

-2
omeenon of "1 hig t shifts d to eal

umping is the

Tannoud"
a t e ima inar

E a)„.= —Im B(pv; pv .

0

E ' .101) is valid

pv; pv) . (III.101)

0
2

~ q y

I

solvedll g

0
e shifts due to real tr

'
en

F=

ansitions de

-I
e s because of th

q. III.91 .. Sizeable shift
eener d r ogy enominator o

2—

ot d ff f o th
quency ~

„
b

,„„,d.„,a e coherence fre-

xcite state. E
e natural w

d th l
t

-I e, et us consid h shftof th t

2

FIG. 11. su

qp excited-state t ' '
re

. Magnetic subl e Rb T

e ransition fre

su evels of the 'Rb T

quency Ii =3

e Rb . The energy

ld of 20 G (see Fi

Rh .
eT~ o curs at 320 G

olari

ground-state a,nd eetween r
ic e s, where

d stat
ss

o or less th an the light-induced

th

p larized

of th

i s ue to

uced bnewidth

p
qul l l lum

rp ion o er
r

eli ht-g

are zero. However

o real transitions a
e energy levels, althou h su

is ulte s l ts due to virtual

te ls Howground sta
ause the el

ever, at o
y g can transform

low magnetic field
e purely elec-

e state d
ar iall ret e

e s, the electronic oon c polar at on s

SHIFT

-8

ic is generated b

K

ransferred to t

4 o

o the ground t

NA RROW ING

i . A pected, itis l m

-2
I

toms h e b

200 500
I

aligned with

500

arized pum in

IG. 12. Light shif ts
change in the ahie shift and nar

s I ts ransI
' . A resonant

(B 171 )5



W. HAP&ER Optical PNw ping 189

4y„„=—Re B(pv; pv) . (III.103)

Equation (III.103) is valid only for a well-resolved
ground-state resonance. For poorly resolved coupled
transitions, one can solve the Liouville equation (II.11)
numerically to obtain the line narrowing. The line
narrowing for a typical transition is show'n in Fig. 12.
The narrowing is particularly pronounced at low fields
and at 320 G, where efficient transfer of coherence
through the excited state can occur.

Line narrowing, or more precisely, transverse ground-
state relaxation rates, have been studied experimentally
and theoretically by Cohen —Tannoudji (Coh61b, 62a,b)
for ' Hg. The e6ects of repopulation pumping on the
relaxation rates were in complete agreement with the
predictions of Eq. (III.103).

IV. EVOLUTION OF THE LIGHT

ln most optical pumping experiments, the behavior
of the pumped atoms is determined by monitoring
changes in the intensity of light that has interacted with
the atoms. One can classify most detection systems as
those in which the Quorescent light emitted by the
atoms is observed (fluorescence monitoring) or those

transitions. For instance, the shifts due to real transi-
tions are not additive; i.e., if P, q, and. r label three
energy sublevels in descending order, the equation

h(o„,+hco,„=Ace„, (III.102)

is not true. However, Kq. (III.102) does hold for the
shifts due to virtual transitions I see Kq. (III.61)$.

Shifts due to real transitions have been studied in
detail for "'Hg by Cohen —Tannoudji (Coh61c,62a,b)
for "'Cd by Lehmann (Leh6'7), and for the alkali atoms
by White et al. (Whi68), and Bulos et al. (Bul71a) . In all
of these cases, detailed studies have been restricted to
single well-resolved ground-state transitions.

A theoretical analysis of shifts due to real transitions
is dificult when many degenerate ground-state transi-
tions are coupled, as in the case for the high-spin
mercury and cadmium isotopes and for low-Geld
Zeeman transitions in the alkali atoms. However, the
shifts in the resonance frequencies can, in principle, be
obtained by numerical solution of the Liouville equation
(II.11).

h'. Line 1Varroming

Repopulation pumping, in addition to causing light
shifts, causes a narrowing of the magnetic resonance
lines of the ground state. This occurs because part of
ground-state coherence survives the passage through
the excited state and back to the ground state during
the absorption and re-emission of a photon. Line narrow-
ing was first predicted by Barrat and Cohen —Tannoudji
(Bar61d,e), who showed that the relaxation rate y „of
the ground-state coherence between the levels p and v

is decreased by the real part of the self-coupling co-
efticient of Eq. (III.87),

in which a probing, external light beam is observed after
the light beam has passed through the vapor (trans-
mission monitoring). Thus, it is natural to consider
separately the forward propagation of a light beam and
the production of fluorescent light. We shall see that the
fluorescent light provides direct information about the
polarization of the excited state, while the attenuation
of a light beam provides direct information about the
polarization of the ground state.

A. Forward Light Propagation

The most convenient theory to describe the forward
propagation of light is the semiclassical formalism, in
which the light is considered to be classical electro-
magnetic waves, and the atoms are considered to be
quantum mechanical systems. This type of formalism
has a long history and was used by Opechowski (Ope53)
to describe experiments similar to modern optical
pumping experiments. Recently, such theories have been
worked out in detail by Corney, Kibble, and Series
(Cor66), Happer and Mathur (Hap67c), Cohen-
Tannoudji and Laloe (Coh67), Laloe, Leduc, and
Minguzzi (La169a,b), and by Verchueren (Ver68) .

One can think of the light beam as being composed of
many monochromatic waves. The electric field of an
individual wave can be written as

E= 8 (l t) exp i(k r u&t) +c.c., — (IV.1)

where c.c. denotes the complex conjugate. The ampli-
tude 8 will be a slowly varying function of time and
distance l along the direction of propagation

The oscillating electric field will produce an oscillating
electric dipole moment (D) in each atom of the vapor:

(D)=D expi(k. r ~t)+c c— .

We shall only be concerned with light sources which
are so weak that saturation does not occur, and the
induced dipole moment is proportional to the electric
Geld.

(IV.4)

The constant of proportionality is the expectation value
of the polarizability operator e, which was defined in
Eq. (III.12). We can also define the dielectric sus-

ceptibility as
(IV.5)

where X is the number density of pumped atoms. We
shall see that the susceptibility governs the propagation
of light in much the same way that the Hamiltonian
governs the time evolution of the atom (see Table I).

H oscillating ground-state coherence is present, the
polarizability will also oscillate, and the induced dipole
moment will oscillate not only at the driving frequency
of the electric field, but at sideband frequencies that are
displaced by the atomic coherence frequency from the
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TABLE I. Analogous roles of the atomic wave function and the electric 6eld of the light.

Atom Light

State

Evolution parameter

Evolution equation

Evolution operators

i (8%,/et) = (Ra+BR)%'g

BX= —/+A

f= 5((+«)

i(es/eg) = (—2~kx) s

x/&=(+, I

'(t+«)-,
n= '(l «)-—

(IV.7)

(IV.8)

The propagation of the light wave is then determined
by the infinite set of coupled equations (Hap69)

~~(~)/~k I~ -t= I:~~(~)/~t j+(1/c) L~~(~)/@j

=2sik Q (td
I Xi

I

(o') 8((u'). (IV.9)

Equation (IV.9) is a linearized form of the reduced
Maxwell equation which occurs in the theory of non-
linear optics. It is based on the assumption that the
fractional change of the field amplitudes over the dis-
tance of one wavelength or after one optical period is
very small. This condition is very well satisfied in all
optical pumping experiments that have been performed
so far. We note that the transverse susceptibility dyadic

X =~(&) X &(k) (IV.10)

is used in Eq. (IV.9), where we have

Z(fc) = 1 fck, —(IV.11)

and A; is the direction of propagation of the wave.
Physi~ally, it is clear that the longitudinal components
of the susceptibility cannot affect the propagation of
light to first order, since the longitudinal components of
the induced polarization do not reradiate light in the
direction of propagation.

driving frequency. In this way, sidebands can be
generated on an initially monochromatic light wave.

I.et us write the susceptibility for a light wave of
frequency cv as

(x(~, l,t))= 2 (~'I x I ~) expiDk' k)l —(~'—~)tj-.
~l

(IV.6)

The sum on I' is such that all coherence frequencies of the
atomic vapor are included in the set of difference
frequencies ra cv' E—quat. ion (IV.6) represents an
expansion of the susceptibility into waves that propagate
along the direction of the light wave. The quantities
(&v'

I X I t0) are independent of time, but theymay depend
on position. We may think of them as matrix elements
in the frequency domain, which couple a light wave of
frequency cv with a wave of frequency co'. It is conveni-
ent to introduce new independent variables

There is a very close parallel between the forward
propagation of the light in an optically pumped vapor
and the evolution of the atoms of the vapor as a result
of absorption pumping. These relationships are sum-
marized in Table I. The state of the atoms is described
by a ground-state wavefunction iP„and the state of the
light is represented by an electric field amplitude 8.
The ground-state wavefunction changes as time
increases, and the electric field amplitude changes as the
wavefront moves through the vapor, i.e., as the param-
eter $ increases for a constant value of rt Lsee Eq.
(IV.9)]. The evolution of the atomic ground state is
determined by a Schroedinger equation with the un-
perturbed Hamiltonian augmented by the effective
Hamiltonian SIC. The evolution of the electric field is
governed by the propagation equation (IV.9), which is
formally analogous to the Schroedinger equation. The
susceptibility plays the role of the Hamiltonian for the
propagation equation. Finally, both the

effective

Hamiltonian and the susceptibility can be thought of as
expectation values of the polarizability operator a. The
effective Hamiltonian is the expectation value of 0.'
with respect to the electric field amplitude. The sus-
ceptibility is the expectation value of 0.with respect to
the ground-state atomic wavefunction.

1. Quasistatic Susceptibilities

2~k(Xi).eg ——(kg —k) ei, . (IV.14)

For each direction of propagation, there are two solu-
tions to Eq. (IV.14), which we may label with X= 1
and P =2. The characteristic propagation constants k)

are related to the phase velocities eq of the two eigen-

I-et us consider a vapor in which the susceptibility is
either static or very slowly varying with respect to the
transit time l/c of a light wave across the length l of the
vapor. Then Eq. (IV.9) reduces to

t) 8/8$ = 2~ik (Xi) 8. ~ (IV.12)

We may seek eigensolutions to Eq. (IV.12) of the form

S=ei, exp i(k&,—k) i, (IU.13)

where eq is an eigenpolarization vector, and kq is the
corresponding propagation vector. Substituting Eq.
(IV.13) into Eq. (IV.12), we derive an eigenvalue
equation for ez
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waves by-

(IV.16)

SUSCEPTIBILITY OF ALKALI VAPORS

&eq
' &hfs'" + K)( (ff )J(ff )X + ~gb (ff)Q(ff )qt ft' br

ttg
——a/k), . (IV.15)

Since the frequencies of the light used in optical purnp-
ing experiments are usually close to the atomic absorp-
tion frequencies, the vapor attenuates the light, and kz
will usually have a small imaginary part which accounts
for the attenuation. A compact way to represent the
solutions to Eq. (IV.14) is to plot the real part of the
phase velocity vz as a function of the direction of propa-
gation. A surface is formed for each value of X (X= 1 or 2),
and these surfaces are called normal velocity surfaces in
the classical optics of crystals. A second set of two
surfaces, called ray-velocity surfaces in classical optics,
is defined as those wavefronts which would develop if a
pulse of light were allowed to expand outward in all
directions. Two difFerent surfaces will develop in an
anisotropic medium, each corresponding to a difFerent
polarization of the light wave. The ray-velocity surfaces
and the normal velocity surfaces are identical to each
other to first order in (x). Therefore, since (x) &10 4 in
most optical pumping experiments, we need not make a
distinction between the ray-velocity and normal velocity
surfaces, and will simply speak of the "wave surface. "

As an example, consider the wave surfaces of an
alkali vapor (Fig. 13). Each component of the sus-
ceptibility causes a characteristic type of wave surface.
For instance, a vapor with a pure quadrupole polariza-
tion (pure alignment) will behave as a birefringent
crystal; and, consequently, the quadrupole component
of the susceptibility is often called the birefringent
part. Similarly, a vapor with a pure dipole polarization
(pure orientation) will behave as a gyrotropic optical
medium birefringent. The wave surfaces are ellipsoids
of revolution, and the eigenpolarizations are 0+ and 0.

light (with respect to the direction of propagation).
When the polarization of the vapor is a combination

of several multipole polarizations, the wave surfaces
will be more complicated, but there will always be two
eigenpolarizations for each direction of propagation.

We shall assume that the eigenpolarization vectors
are linearly independent so that any initial electric
field amplitude 8(0) can be written as a linear com-
bination of the e~, i.e.,

8(0) =aiot+asos.

Fin. 14. Transmission monitoring of (J). The precessing
atomic spin (J) causes a variable attenuation of the transmitted
light. The angular dependences of the dc and ac components of
the transmitted light are sketched.

After the wave has propagated through a length l of the
vapor, the electric held amplitude will have become
[see Eq. (IV.13)]

8(l) = P aqei, exp [i(kq —k) l$

= exp [2vri(Xi)klf 8(0). (IV.17)

The exponential operator on the right of Eq. (IV.17)
may be thought of as a power series in the dyadic (Xi).

Z. Absorption, of Light by an Optically Thin Vapor

The change in the intensity of a light wave after
passage through a length / of optically pumped vapor is

BI= (c/2n) I ~
8(l) ~' —

~
8(0) ~'I. (IV.18)

Mathur et al. (Mat70) have shown that for an optically
thin vapor, (i.e., to first order in (X)), Eq. (IV.18)
becomes

00 l

dvC(v) dsh(v, s, t'), (IV.19)
0 0

where the retarded time is

(IV.20)

and the absorptivity h(v, s, t) is

h= —2sikXe* (ai) e+c.c. (IV.21)

0+ 0 0y 0

EQUILIBRIUM HYPE RF INE GY ROTRO P IC BIRE FRINGENT
The absorptivity is the optical power absorbed by the
atoms per unit volume and per unit frequency interval.
From Eq. (III.11), we see that the absorptivity is
related to the light-absorption operator by the equation

WAVE SURFACES IN Al KALI VAPORS

FIG. 13. Wave surfaces for light propagation in an atomic
vapor. A polarized atomic vapor has optical properties similar
to those of an anisotropic crystal Lfrom (Mat70) ].

h(v, s, t) 4(v)dv= Bier(br(s, t) ). (IV.22)

That is, the absorptivity is the energy per photon h~
times the number of photon absorptions per second. The
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intensity change for an optically thin vapor is thus

AI (t) = —X(a5 dz(bI'(zt') ). (IV.23)

3. Transmission Monitoring

The most direct way to detect the ground-state
polarization of an atomic vapor is to measure the
attenuation or polarization changes of a probing light
beam. Dehmelt (Deh57b), Raith (Rai61), and Bouchiat
(Bou65a) have emphasized that the attenuation of a
probing beam is linearly dependent on certain well-
defined components of the ground-state polarization.
For example, consider an optically pumped alkali vapor.
If the vapor is optically thin and if its polarization is
uniform along the path length / of a probing light beam,
the attenuation of the beam is

AI=1Ã~5I "oI' +6I'ht, (I J)+ p 6I'„(ff') (J(ff) ) s
ff~

+ + 51'~ (ff') e* . (Cl( ff') ) e}. (IV.24)

The scalar coeScients 6F; are convolutions of the
spectral profile of the light with corresponding com-
ponents n, (v) of the polarizability operator (Mat70)
of an alkali atom Lcf. Eq. (III.42) j:
ot=~"+~hi.I J+s Z ~v~(ff') J(ff') X

ffI

+ Q ns, ( ff') G.( ff') . (IV.25)
ffI

For instance, in view of Eqs. (III.11) and (III.28), we
have

8I',s = (4'/Sc) f4 (v) Im n,~(v) dv. (IV.26)

In Eq. (IV.24), the mean spin s of the photons is

On the other hand, if the probing beam is "narrow
line" but linearly polarized or unpolarized, the mean
photon spin s will be zero, and the absorption signal will
depend on (I J) and (Zj( ff') ). For the lighter alkali
atoms, the coefficient 51'&,( ff') is negligibly small
compared to 5Fhg„so that the absorption signal is
essentially a measure of (I J) alone.

Quite analogous considerations apply to the absorp-
tion signals of other optically pumped atoms, such as
mercury and helium. In all cases, one can associate the
absorption signals with certain ground-state observ-
ables, which, at low magnetic fields, include J, C}, and
various powers of I J.

Dehmelt (Deh57b) pointed out that the attenuation
of the light beam will be time dependent if the observ-
ables of the vapor are time dependent. Thus, Bell and
Bloom (Be157), were able to use a transverse, circularly
polarized beam of light to detect the rotating transverse
spin of an optically pumped vapor. A typical crossed-
beam experiment of the type introduced by Bell and
Bloom is shown in Fig. 14.An analogous type of crossed-
beam experiment, (Pan68) (La168a,b), (Mat70), which
utilizes the birefringence of the vapor, is shown in
Fig. 15.

4. Off Resorsan-t Light

An optically pumped vapor can be probed with either
resonant or off-resonant light, since the polarization of
the vapor affects both the real and imaginary parts of
the index of refraction of the vapor. For instance,

H

s = ie&(e* (IV.27) LP

2 (J(ff')) s=(J) & (IV.29)

for light of a well-defined polarization e. The quadrupole
operator C, ( ff') is defined in analogy to Eq. (III.43).
ThesumsinEqs. (IV.24) and (IV.25) extend overboth
hyperfine multiplets f=I&', of the ground sta—te, and
J( ff') denotes the projection of the electronic angular
momentum operator J

J(ff') = & If~)(fi I J I
f'»(f'v

I (» 28)
pv

Thus, the attenuation of a light beam can be used to
measure the observables I.J, J( ff'), and D ( ff') . By
a proper choice of the polarization or spectral profile
of the light, the absorption signal can be made to
depend on only one of these observables. For instance,
for broad-line probing light, the coefficients BFhg, and
61's, ( ff') are zero, and 81',~( ff') becomes independent
of the arguments f and f'. The attentuation is then
proportional to

Cp
Ã'

/+
y

G(3
Fio. 15. Transmission monitoring of (+ ). The precessing

quadrupole moment (dielectric ellipsoid) of the vapor causes a
variable attenuation of the linearly polarized probing beam. The
dependence of the dc and ac components of the transmission
monitoring signals on the angle @ between the polarization vector
of the light and the magnetic field is sketched.
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5$=2~klS(jr) Re na, (IV.30)

after the light has passed through a length / of polarized
vapor. By inserting a suitable analyzer in the path of
the beam, one can detect this rotation angle even though
no attenuation of the beam has occurred. A simple
experimental arrangement is shown in Fig. 16.

Similar experiments can be designed to make use of
the birefringence of the vapor for off-resonant light.

Oft'-resonant probing light has the advantage that it
causes no depumping of the vapor. However, off-
resonant light does cause light shifts, and the signal-to-
noise ratios are not always as good as those which can
be obtained with resonant light.

Kastler (Kas51) proposed that the parametric Faraday
rotation of a polarized vapor be used to detect the
degree of polarization of the vapor. Similar proposals
were made by Opechowski (Ope53) and Gozzini
(Goz62). Daniels and. Wesemeyer (Dan58a, b) were
able to use the paramagnetic rotation to detect mag-
netic rotation in paramagnetic salts. Early observations
of the paramagnetic Faraday rotation in optically
pumped atomic vapors were reported by Manuel and
Cohen —Tannoudji for mercury (Man63), by Strumia
for sodium (Str66), and by Mathur and Happer for
rubidium (Hap67a). All paramagnetic Faraday-effect
experiments are based on the fact that the gyrotropic
component of the atomic polarizability causes the
electric field 8 of a light wave to be rotated by an angle

R b LAMP Dl FILTER
85

CANNING ETALON
L

85
' ' ' - - ————-v REFRIGERATED

L i PHOTOMULTIPLIER

LINEAR Rb87 LINEAR
POLAQIZER CELL CAVITY PPLARIZER

P)
il Pp

REFERENCE

SENSITIVE
DETECTOR

I RECORDERI

IMODULATOR

STASIL I ZED
KLYSTRON

FIG. 17. Phase-matched parametric frequency conversion.
Transmission monitoring techniques must be modi6ed when the
atomic coherence changes appreciably during the transit time of
a probing light pulse across the vapor. The light pulse should
move at the same velocity as the waves of atomic coherence. In
this experiment, a dielectrically loaded cavity was used to adjust
the velocity of the microwaves, which produced waves of atomic
coherence. The group velocity of the light was greatly modified
by the index of refraction of the vapor I from (Tan7o) ].

5. Rapidly Varying Susceptibilities

The susceptibility of the atomic vapor may vary
appreciably during the time required for the light to
traverse the -vapor. For this to occur, the wavelength of
the electromagnetic 6eld which drives the susceptibility
of the vapor must be on the order of typical cell dimen-
sions, and the corresponding frequencies will therefore
be in the microwave range. The simplest way to view the
problem is to think of the vapor as a parametric medium
which couples optical waves with microwaves. The
quantitative details of thi. s coupling are described by
Eq. (IV.9), but several qualitative aspects can be
understood without difhculty. Suppose that the sus-
ceptibility of the vapor is modulated at a frequency O.
Then an optical carrier wave of frequency ~0 can be
coupled to upper and lower sidebands of frequencies

LPI
Go+y = coo~Q. (IV.31)

Suppose that the susceptibility is also spatially
modulated with a propagation constant

(IV.32)

where A is the wavelength of the exciting microwave
6eld. Then scient conversion from carrier to sideband
power can occur only if we have the condition

CP
kon((oo) aK= Irate(coyt). (IV.33)

Paramagnetic Faraday Rotation Experiment

FzG. 16. Transmission monitoring of (J) with the parmagnetic
Faraday effect. The plane of polarization of the off-resonant
light is rotated about the atomic angular momentum (J). The
dependence of the modulated signal amplitude on the angle p
between the linear polarizer LPI and the linear polarizer LI'2
is sketched.

Here ko, k+~, and k ~ are the free-space wave vectors
of the carrier and of the upper and lower sidebands, and
n(o&) is the static index of refraction of the vapor at the
frequency ~

n(ro) = 1+2'(to I y I
a&). (IV.34)

The two conditions represented. by Eqs. (IV.31) and
(IV.33) are called the conditions for phase matching.

Because of the condition in Eq. (IV.33), the optimum
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FIG. 18. Spectral line profiles
observed with the apparatus
of Fig. 17. (a) Sidebands; Pi
and P2. were crossed. (b)
Attenuated carrier; Pi and P2
were parallel; (c) Unat-
tenuated carrier, the micro-
wave cavity and absorption cell
were removed. (d) Spectral
profile of a "Rb lamp; (e)
Fluorescent hght; probing "Rb
lamp was removed /from
(Tan711).
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propagation constant for the microwaves will be shifted
from the free-space value Q/c. The shift is

atom decaying from an excited-state sublevel m to a
ground-state sublevel p, is

&—11/o=2~&C&~~
I » I ~» (~o I xo I ~0&3 (IV 35) I" 1(m I

~.p I ~&l', (IV.36)

for phase matching to the sideband. The shift can be
10%%u~ or more of the free-space wavelength, since the
inde'x of refraction is very large in the neighborhood of
the atomic absorption lines.

Tang and Happer (Tan70), have observed the side-
bands produced by the 0—0 coherence in 87Rb vapor with
a Fabry —Perot interferometer. Their apparatus is shown
in Fig. 17.It was necessary to pump the 45-cm rubidium
cell along its entire length with an auxiliary lamp to
maintain a sufficient polarization of the vapor, and a
special microwave cavity was designed to allow pump-
ing from the side. Typical sidebands are shown in
Fig. 18.

Very weak sidebands are difFicult to detect with a
spectrometer because the intensity falls as the square
of the sideband amplitude. A considerable gain in
sensitivity can be obtained by beating the sideband
with the carrier and looking for the difference frequency.
In this heterodyne-detection scheme, the signal is
linearly proportional to the sideband amplitude. The
original crossed-beam light-modulation experiments of
Bell and Bloom (Be157) can be considered as a hetero-
dyne detection of the sidebands produced by the
Zeeman coherence of the vapor. Coherence between
different hyperfine states was first used by Firester and
Carver (Fir66, 67) to produce light modulation at 458
MHz in "K. Light modulation at the 6835-MHz
hyperfine frequency of 'VRb was detected by Mathur
et ai. (Mat68a) . In all of these experiments, one of the
chief difficulties is to find a photodetector with adequate
sensitivity and frequency response. At the present time,
the best detector for frequencies above a few hundred
MHz seems to be a crossed-field photomultiplier tube
(Mat.68a).

B.Fluorescent Light

Another important method of measuring the proper-
ties of an optically pumped vapor is to observe the
Buorescently scattered light. Before Dehmelt's
(Deh57b) suggestion of transmission monitoring,
fluorescent light was always used to detect optical
pumping. Fluorescence monitoring has the advantage
that the large background of pumping light that ac-
companies the transmission-monitoring signal can be
nearly eliminated, provided that instrumental scattering
is kept to a minimum. However, a serious disadvantage
of fluorescence monitoring is that the signal is not
related as directly to the ground-state polarization as is
the transmission-monitoring signal. In fact, it is the
excited-state polarization that is most simply related to
the Quorescent light signal.

From elementary quantum mechanics, we know that
the rate of emission of light with polarization 6 by an

where p is the momentum operator of the atom.
Equation (IV.36) can be generalized without difhculty
to include the case of excited atoms described by an
arbitrary density matrix. One obtains

AI(6) 60=6.(9(r)) 6*, (IV37)

where AE(8) /AQ is the light intensity (photons per sec-
ond steradian) of polarization 6 emitted in the direction
r, and the fluorescent light dyadic (Q(r) ) is the expecta-
tion value of the excited-state operator

&(r) = (1/~) (~/o)' 2 &(r) D
I ~&( I

D.&(r).

&zx(r) =&(r) .&zu. &(r), (IV.40)

and the partial decay rate from J, to J& is denoted by
I'(JJ'q) . A completely analogous expression is obtained
for 9, when a single hyper6ne transition F,~F& is
observed. One need only replace J, by F, and J~ by Iiy

in Eq. (IV.39).
From Eq. (IV.39), we see that the fluorescent light is

composed of three components, one proportional to the
excited-state population (L=O), one proportional to
the magnetic dipole moment of the excited state
(L= 1), and one proportional to the quadrupole
moment of the excited state (L=2) . By a proper choice
of the polarization of the observed light, one can usually
eliminate signals from either the dipole or the quad-
rupole polarization. For instance, the contribution from
the dipole always has the form (J,).s, where s=i4&(6*
is the mean spin of the observed photons. Thus, there
will be no contribution from the dipole if the mean
spin is zero, i.e., for linearly polarized or unpolarized
light. Even if s is not zero, there will be no dipole signal
if s and (J,) are orthogonal.

1. Abselce of Flgoresceet Signal for Broad Bam&-
Detecti oe

The intensity of polarized fluorescent light may be
independent of the excited-state polarization if all
decay branches from the excited state are observed

(IV.38)

Here Z(r) is the transverse projection dyadic for the
direction r )see Eq. (IV.11)j, and the summation
extends over all sublevels p to which the atom is observed
to decay. If all hyperfine components of the fluorescent
light that corresponds to the transition J.—+Jy are
observed, the fluorescent light dyadic is

8(r) = $31'(Jgg)/8n-)(2J. +1)
)& Q W(L1JJg, 1J,) (—1)~Qr, (r) ~ Tl, (JJ',) . (IV.39)

Here we define
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simultaneously. This is closely analogous to the absence
of depopulation pumping for broad-line excitation
(see Sec. III.A.14), and atomic states of the same type
are involved (e.g., S states, or states with J= 0) . For
example, if an excited 'S&~2 state decays, there will
normally be branches to both the V'~~9 and 'I'3~2 com-
ponents of a fine structure doublet. The polarizations
of the corresponding fluorescent intensities are very
nearly equal and opposite, so that the total intensity
will appear to be isotropic and unpolarized. Thus, to use
fluorescence monitoring with a 'Si~2 state, one must
filter the fluorescent light in such a way that only one
component of the fine structure doublet reaches the
photodetector.

V. RELAXATION

Any optically pumped vapor will eventually reach a
steady state if the pumping light, external fields, and
other experimental parameters are maintained in a
steady state. If one of the experimental parameters is
changed suddenly to a new value, the atomic vapor will,
after a certain time, relax to a new steady state. Relaxa-
tion can be caused by many mechanisms. Some of the
most common are collisions of the polarized atoms with
other atoms or molecules, collisions of the polarized
atoms with the container walls, spatial diffusion of the
polarized atoms from regions of high polarization to
regions of lesser polarization, and trapping of resonance
radiation. Indeed, optical pumping itself can be viewed
as a relaxation mechanism in which an ensemble of
atoms relaxes to a polarized steady state because of
repeated collisions with the polarized, directional, or
frequency-selected photons of the pumping light. Some
of the common relaxation mechanisms that are known
to play a role in optical pumping experiments are
summarized in Table II.

2

Time (sec)

FIG. 19. Relaxation of (S,) for "Rb atoms in a paraffin-
coated cell. There are two time constants T, and T„Dr om
(Bou63a, b) 7.

The transient changes of atomic polarization that
accompany a sudden change in external conditions are
seldom characterized by a single exponential decay. For
example, the decay of the longitudinal electronic spin
(S,) of srRb atoms in a dark paragon-coated cell is
shown in Fig. 19. The decay is the sum of two ex-
ponentials with time constants T, and T . Further-
more, different observables of the same atom relax in
diA'erent ways. Thus, under the same conditions as
those in Fig. 19, the observable (S I) relaxes as a single
exponential and with a time constant TH, which differs
from both T„and T,.

Often, Eq. . (V.1) is obtained by using the secular
approximation (see Sec. II.E). The coupling of the
various components of the density matrix is described by
the constant coefficients R;;,„.We shall call the array of
these coeScients the relaxation matrix. For instance, the
rate of transfer of atoms from the sublevel j to the sub-
leveli is R;;.,;;.A simple example of a relaxation process
is illustrated in Fig. 20, in which the S~~2 ground state
of an alkali atom with nuclear spin I=~3 is sketched.
We assume that the electron-spin polarization is de-
stroyed at a rate T ' but that the nuclear spin is un-
affected by the collisions. We also assume that the time
between collisions is much longer than the hyperfine
periods of the atom. All nonzero population-transfer
rates R;,;;; are indicated in the figure. More details
about this type of relaxation by electron randomization
can be found in Sec. V.C.1.

We shall assume that the process represented by the
relaxation matrix neither creates nor destroys atoms.
We assume that any actual destruction of atoms, which
is represented by the second term on the right of Eq.
(V.1), occurs at the same rate I' from every sublevel.
Such destruction might, for instance, be caused by
chemical reaction with the walls, or in the case of an
excited atom, by spontaneous decay. Depopulation
pumping will not normally be considered a destruction

m= -2
F=2 0— I 08

2
l

8
—0

3'8 3/8

F =I
m =

l6 0
0 I

Fro. 20. The population-transfer rates between magnetic sub-
levels of a state with J= ~ and I=-,' when J is randomized but I
is inert. The rates are expressed as multiples of the electron
randomization rate, T '.

A. Linear Relaxation

In a very widespread class of problems, the evolution
of the density matrix in the interaction picture is
governed by a set of coupled linear equations of the
form

(V.1)
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TABLE II. Some important relaxation mechanisms for polarized atoms.

Relaxation mechanisms Potential
Typical relaxation

phenomena Typical 0. in cd References

Near field dipole —dipole (DA'DB —3DA'RAB
XRAB DB)R '

Self-broadening of optical
lines and self-depolariza-
tion of excited states;
foreign gas broadening

10 " (Resonant)
10 " (Foreign gas)

Byr64a

A A
Radiation-field dipole-dipole (DA. RABRAB DB

—DA DB)k'R '
Radiation trapping; co-

herence narrowing

Relaxation times depend on Bar59a, b
container shape and can
be orders-of-magnitude
longer than the natural
lifetime of the excited
state

Spin-exchange between
electrons

V(R»)SA S& Approach to spin tempera- 10 '4

ture equilibrium. Conser-
vation of total spin

Pur56;
Gro64a

Spin-orbit

Spin-nuclear

V(R) N. S

SZ(R) .I

Disorientation of 5-state
atoms by wall collisions

and buffer-gas collisions

Disorientation of S-state
atoms by wall collisions
and buffer-gas collisions.
Nuclear polarization by
spin exchange with elec-
trons

10—19 10—26

10 R4

Ber62

Her65

Collisional modification
of hfs coupling constants

BA I S Pressure shift of hyperfine ) hA ( =KHz Torr '
frequency

Adr60a, b

Nuclear quadrupole Wall relaxation of nuclear
spins of diamagnetic
atoms

Depends on sticking time Coh63
at the wall, field gradients
at wall, nuclear quadru-
pole moment, etc.

Random motion in inhomo-
geneous magnetic field

v (VHXH). I
H2

Relaxation of 'He ground- Depends on field gradient Sch65;
state atoms and mean free path Gam65

Scattering of resonance light —(e/zzzc) p A Relaxation of pumped
atoms to polarized equi-
librium state

Typical pumping times are Kas50
on the order of milli-

seconds or longer

Diffusion Diffusion rate is propor-
tional to the kinetic
mean free path and the
mean velocity

Spatial motion of polarized
atoms to the container
walls by random walk
through a buffer gas

Typical diffusion times at
a few Torr pressure in a
10 cm cell are a few
milliseconds

Mas67

mechanism for ground-state atoms, since the atoms
return to the ground state very quickly by spontaneous
decay.

We shall also assume that the process represented by
the relaxation matrix does not involve the creation of
atoms. We shall represent the rate of creation of polar-
ized atoms by constant source matrix S;;of Eq. (V.1) .
For example, the excitation rate (d&'&/dt)p, of Eq.
(&&&.71) can be considered to be a source matrix for the
excited state.

Before obtaining the solutions to the inhomogeneous

relaxation Eq. (V.1), it is convenient to discuss the
solutions of the associated homogeneous equation:

(d/dt) zrzj = P Kj;razrrz. (V.2)

The solutions to the inhomogeneous Eq. (V.1) can be
readily obtained in terms of the solutions of the homo-
geneous equation (V.2). In the following sections we
shall discuss hoer a number of important properties of
the solutions to Eq. (V.2) follow from physical con-
siderations.
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1. RelaxatiorI, Rates arId EigerIobsereables or
(V.14)

Suppose that Eq. (V.2) has exponentially decaying
solutions of the form

0,;(t) =v,;exp (—yt).
The coefficients MI, can be determined by inverting

(V.3) Eq. (V.14). Then we have

These equations have nontrivial solutions only when
the determinant of the matrix in square brackets is zero,
c.e.,

det [R„.;,.+8g;„y]=0.
The dimensionality of R is given by

(V.S)

The constant coeScients e;; and the relaxation rate y
may be determined by substituting Eq. (V.3) into
Eq. (V.2). In this way, one obtains the eigenvalue
equations

(V.4)

My= Q nj„.„'M~t, (V.15)

0 (t) = P o;(0) Vp exp (—yet), (V.17)

where the inverse matrix e ' is de6ned by

Z &a;ij &'j;8=@a. (V.16)
$j

The inverse matrix will exist, provided that the
eigenobservables form a complete set.

The complete solution to the relaxation Eq. (V.2) is
then

E= (2I+1)'(2J+1)'
There will be E roots,

(V.6) and the decay of an arbitrary operator M is given by

(M) = Tr [3IIo.(t)]= P 0, (0) Tr[MVI,] exp (—pl, t).
(k=1, 2, , tU), (V.7) (V.18)

of the secular equation (V.S). Each root is a relaxation
rate of the atoms, and the corresponding relaxation
time is given by

Tn=(va) '. (V.8)

The relaxation rates yI, will in general be complex; and,
since the solution to Eq. (V.2) must remain 6nite, the
real parts of the relaxation rates must be nonnegative:

ReyI, &0. (V.9)

For each relaxation rate p&, one can solve Eq. (V.4) for
the corresponding coefficients v;;, I,. These coefficients
can be used to define eigenobservables:

(V 10)

The eigenobservables are not necessarily Hermitian,
but if VI,~VI, ~, then both VI, and VI, ~ are eigen-
observables, while yI, and yA,

* are the corresponding
relaxation rates. If VI, is a relaxing eigenobservable, it is
traceless (see Sec. V.A.S.a). That is

Tr VI, =O, (V.11)

if &I, is not zero. Conversely, any eigenobservable with
nonzero trace does not relax, i.e.

(U.12)

if Tr VA, is not zero.
One can assume that the V~ form a complete but not

necessarily orthogonal set of operators. Although situa-
tions arise in which the VI, do not form a complete set
(see Sec. V.A.3), they are quite uncommon. Thus, for
any observable M, we can write

(V.13)

Thus, the relaxation rate yI, will contribute to the
transient decay of (3II) if the kth eigenobservable is
present in the initial density matrix; i.e., if we have
0&(0) NO, and if the projection of M on Vl, is not zero;
i.e., if Tr [MVq]WO.

Vp=G '. (V.20)

When the relaxation of the atoms is dominated by
spin-exchange collisions with another polarized species,
then the nonrelaxing observable will be approximately

Vo= X exp (PF,), (V.21)

Z. The Steady-State DerIsity Matrix

Regardless of the initial polarization of the density
matrix, it will eventually relax to a unique steady state,
and no further changes will occur. We can identify the
steady-state density matrix with a Hermitian eigen-
observable which we shall denote by Vp. The correspond-
ing relaxation rate pp is zero. Only one nonrelaxing
eigenobservable can exist if the steady-state density
matrix is unique.

Some simple examples will illustrate the significance
of Vp. If no pumping mechanisms are present, the
equilibrium density matrix is given by

Vo ——c exp ( H/kT), —(U.19)

where c is a constant of proportionality, B is the
Hamiltonian operator of the atom, and kT is the mean
thermal energy. For atomic ground states the energy
splittings of the atomic sublevels are often so small
compared to kT that the exponential function in Kq.
(V.19) is nearly unity. Therefore, each of the G sub-
levels of the ground state has almost the same popula-
tion, and we find
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where Il, is the total angular momentum operator of the
atom, —P ' is the spin temperature, and lil is a constant
of proportionality Lsee Sec. VI.A.3 for more details].

or, equivalently,

&ij( ~ ) = 2 &it;ts Sts. (V.30)

has the same eigenobservables Ui as Eq. (V.2), but the
corresponding relaxation rates diGer by F, i.e.,

v~= vs+I' (V.24)
We note that

(V.25)

Consequently, we have

» ij;rs ~ Va&ij;k&lc;rs
-1 (V.26)

and
—1ig';rs = —~ Ye &sj;I&I;rs (V.27)

The solution to Eq. (V.1) is then

o,, (t) = P IS&(y&)
—'(1—exp (—pit)) ]

+o„(0)exp (—pit) I v;, i, . (V.28)
The steady-state solution to Eq. (V.1) is then

o;;(~)= Q Sp(yi, )-'z;;.,i,
k

(V.29)

3. 1Vonexponenti al Decay

Although the transient decay of atomic polarization
can usually be expressed as a sum of exponentials
Lsee Eq. (V.17)j, the homogeneous relaxation Eq.
(V.2) can have nonexponential solutions if the decay
rates p are not all different. For instance, if two decay
rates, y, and yj, are equal to each other, then in addition
to the simple exponential solutions of the form
V, exp ( y, t), —there may be other solutions of the
form V, exp ( y;t)+—W, t exp (—y;t), where V; and W;
are constant matrices. Such nonexponential transients
are analogous to the response of a critically damped
galvanometer, and they have been observed experi-
mentally under special conditions by Dupont —Roc et al.
(Dup68a) in "'Hg.

Nonexponential decay does not normally occur just
because several decay rates are equal. For instance,
under isotropic conditions, all (2L+1) components of
the (2) ~ pole moment of an atom relax at the same rate
(see Sec. V.A.S.d), but the transients stBl have the
form of simple exponentials. Nonexponential decay
occurs only if the eigenobservables Vl, defined in Eq.
(V.7) do not form a complete set of operators.

4. Relaxation with a Source of Polarization

The solutions to the inhomogeneous Eq. (V.1) may
be obtained with the aid of the solutions to Eq. (V.2) .
Let us define a new relaxation matrix:

8,;,„,=Eg.r.—F8;;;„. (V.22)

Then the linear relaxation equation

&ij = P Rij;rs Jts (V.23)

Q R,,,„,=O. (V.31)

If we combine Eq. (V.31) with (V.4), we find

(V.32)

Therefore, the trace of every relaxing (y&WO) eigen-
observable must be zero, and observables with nonzero
trace do not relax.

b. Herrniticity of p. The density matrix of the system
niust be Hermitian at all times. Consequently, Eq.
(V.2) implies

(V.33)

An immediate consequence of Eqs. (V.33) and (V.4) is
that if VI, is an eigenobservable that corresponds to the
relaxation rate yp, then Vl, t is also an eigenobservable
that corresponds to the relaxation rate pA,*.If yI, is real,
then we find pl, =y~*, and there are two possibilities:
Either Vl, ~ and V& are linearly independent, in which
case Hermitian linear combinations can be chosen as
new eigenobservables; or Vl, ~ is proportional to VI„in
which case Vi, is Hermitian (or antiHermitian, so that
iU& is a Hermitian eigenobservable). In any case, real
relaxation rates can be associated with Hermitian
eigenobservables. If yg, is complex, then VI, and Vp~

must be linearly independent, but they need not
necessarily be Hermitian. Equation (V.33) also implies
that population transfer rates R;;,jj are always real.

c. Positiiie definiteness of p. The diagonal matrix
elements of p must be nonnegative, since they represent
the probability of finding the atom in some eigenstate.
Also, no diagonal matrix element of p can exceed unity.
In order to ensure that these conditions are main-
tained in spite of relaxation, the followirig conditions
must be satisfied

R;;,;;&0, (V.34)

where
~
i) is any state of the atom. For example, suppose

that p;;=1 and all other components of p are zero.
Then Eq. (V.2) implies p, ,=R,;,, ; and since p;; is

5. Corlstra&sts os the Rekaxatioe Matrix

Physical considerations place a number of important
constraints on the elements of the relaxation matrix.
Some of these constraints, such as those connected with
the conservation of the total number of atoms or the
Hermitian and positive-de6nite character of the density
matrix, are almost always present. Other constraints,
such as those connected with spherical or axial sym-
metry, occur in a limited but important class of prob-
1ems.

a. Conservation of atoms If th. e relaxation mech-
anism does not change the total number of atoms
present in the vapor, Eq. (V.2) implies the condition



REVIEWS OP MODERN PHYSICS ' APRIL 1972

already at its maximum value 1, it can only remain
constant or decrease, which proves Eq. (V.34). We
must also have

to the spherical basis operators, i.e.,

Vznr= Tr,nr(II) && const, . (V.44)

Z,;.„;&0, (V.35) From Eq. (V.40) we deduce that

where
~
i ) and

~ j) are any two orthogonal atomic states.
If p;, =1 and all other components of p are zero, then
we have p;;=8;,.,;;.Therefore, since p,;=0 is already at
its minimum value, it can only remain constant or
increase, which proves Kq. (V.35).

d. Isotropy. We now discuss a number of more
specialized constraints associated with spatial rotations
and reflections. The effects of these constraints on the
relaxation matrix are most pronounced for an atom with
a single Zeeman multiplet of spin I in the ground state,
such as Hg or Cd. We shall limit our discussion to this
case, although closely analogous considerations apply
to atoms with hyperhne structure, e.g., the alkali
atoms, in the low-field limit. It will be convenient to
use the multipole representation. Then the relaxation
Eq. (V.2) becomes

go= 0.

Therefore, the equilibrium density matrix is

Vo= Too(II) (2I+1)

(V.45)

(V.46)

which represents a random distribution of atoms among
the 2I+1 atomic sublevels.

From Eqs. (V.41) and (V.43) we deduce that the
multipole-relaxation rates are all real.

e. A xial symmetry. In many problems there is
rotational symmetry about only one axis in space.
For instance, the symmetry axis might be provided by
the direction of an external electric or magnetic 6eld,
or, in the absence of external fields, by the propagation
direction of an unpolarized or circularly polarized light
beam. If o (t) is a solution to Eq. (V.2) then the density
matrix

(d/dt) OLnr = Q RLn'r L',ll'&L', 'lf'1
LIMI

where

Rrnr; r, 'nr ——P (—1)" "+~ ~'C(III; m, M—m)

(V.36)
o'(t) =SpotRp ', (V.47)

which is obtained by rotating o. by an angle p about the
symmetry axis, is also a solution of Kq. (V.2). As a
consequence, the relaxation matrix obeys the constraint

XC(IIL', rn, M' rn) R— nr„.,„M., , (V..37) ~LM; L'M' OMM'~LM; L'M. (V.48)

00;LM =0) (V.40)

and the constraint associated with Hermiticity is

The coefficients ELM-, I, of the eigenobservables

VI, ——Q vr„ii,~Tr. nr (II) (—1)~ (V.38)

satisfy the eigenvalue equation [c.f., Eq. (V.4))
Z [Rr.nr;r. nr +vn4r. k~snr $&r. .v;n=0. (V.39)

Lure

One can use Eq. (V.39) to show that the constraint
associated with the conservation of atoms [Eq. (V.31))
becomes

That is, when axial symmetry is present, relaxation
cannot couple components of the density matrix that
have diferent values of the axial angular momentum M.
Consequently, the eigenobservables have well-dehned
axial angular momentum. Since the eigenobservables
with nonzero M are traceless, they must all eventually
relax to zero, i.e., the associated relaxation rates are
nonzero. Thus, the equilibrium density matrix (the
nonrelaxing eigenobservable Vo) must have no axial
angular momentum.

Using Eq. (V.48) together with Kq. (V.39) one can
show that if

Rznr;r. nr = (—1) 'Rrnr;z; nr".— —(V.41) Vrrnl Z &L nr rrTLnr( 1)—
L

(V.49)

Suppose that experimental conditions are isotropic;
for instance, relaxation in the dark in the absence of any
external 6eld or other directional influences should be
isotropic. Then if o (t) is a solution of Eq. (V.36), the
density matrix

which is obtained*by rotating 0 with any rotation
operator (R, is also a solution. As a consequence, we can
deduce

~LM; I 'M' ~LL'4I.XI'PL. (V.43)

That is, the relaxation matrix is diagonal and has only
2I+1 different relaxation rates po, y~, ~ ~ ., y~r. There
are 2L+1 eigenobservables Vrnr corresponding to the
relaxation rate 7L, and these can be chosen proportional

is an eigenobservable with axial angular momentum M
and relaxation rate ELM, then

Vrr nr
——(Vrrnr) t( —1) (V.50)

is another eigenobservable with axial angular momen-
tum —M and a relaxation rate AM*. We do not mean
to imply that K is the total angular momentum of the
eigenobservable. It is simply a label to distinguish
diGerent eigenobservables with the same axial angular
momentum.

f. Extern arnd odd polarisatiorns. Let us call a multipole
operator TLM even if L i.s even, and odd if L is odd. In
some axially symmetric relaxation processes, there is an
additional symmetry that causes even multipoles to
couple only to even multipoles and odd multipoles to
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couple only to odd multipoles. We shall not discuss the
underlying reasons for this even —odd symmetry, but the
formal consequence is that

energy to shake loose from the wall. According to the
theory of physical absorption (DeB63), the average
dwell time of the atom on the wall is given by

RLM; L'M (V.51) r = rp exp (F./hT), (V.55)

unless (L+L') is even.
As a consequence of Eqs. (V.51) and (V.39), we

infer that all eigenobservables will be even or odd. Since
all odd eigenobservables are traceless, they must relax
to zero, and the equilibrium eigenobservable is therefore
even and has zero axial angular momentum (M=O).

Some examples of relaxation processes where even-
odd symmetry is present in addition to axial symmetr
are zero-6eld optical pumping with unpolarized
linearly polarized light and high-field relaxatio
resulting from a weak, rapidly Auctuating perturbatio
Some axially symmetric relaxation processes that do n
have even —odd symmetry are zero-held optical pumpin
with circularly polarized light and relaxation by spi
exchange with polarized atoms.

B.Relaxation due to a Weak Fluctuating
Perturbation

In many situations, the relaxation of polarized atoms
results from a very weak perturbation. For instance, a
polarized mercury atom may make thousands of
collisions against the walls of a quartz container before
losing its polarization, and a rubidium atom can make
billions of collisions against helium atoms before being
depolarized. Under such conditions, one can assume that
the Hamiltonian for a given atom of the vapor has the
form

where F, ( 0.1 eV) is the binding energy of the atom
to the surface, and T is the absolute temperature of the
wall. The constantrp ( 10 "sec) isa time on the order
of a vibrational period of the atom on the surface. The
average dwell time of an atom at a given site on the
wall is

r, '=rp' exp (t( E,/hT), (V.56)

where AE is a measure of the difference in binding
,energies between different sites on the wall. During the
time the atom is stuck to the walls, it will be subject to
various random perturbations which will cause it to
depolarize. The time dependence of the perturbation is
illustrated schematically in Fig. 21.

When the atom breaks loose from the wall, it may Ry
undisturbed through the cell if no buffer gas is present

.and if the vapor pressure of the pumped atoms is low
enough. Under these conditions, relaxation occurs only
during those periods of time when the atom is stuck
to the walls. The average time of Right from wall to wall
1s

r, =l/i) 10 4 sec,

where l is a characteristic linear dimension of the cell,
and v is the mean velocity of the atom.

Equation (V.54) should therefore be modified to read

(d/dt) o = r,/(r. +—r, )

K=BCp+ V(t) . (V.52) X &(V(t), LV(t—.), (t) j]d.).„.(V.57)

The static part of the Hamiltonian, Ko, is the same for
all atoms of the vapor. A weak, Quctuating perturba-
tion, which varies in a random manner from atom to
atom, is represented by V(t) . In the interaction picture
the perturbation is

V(t) = exp (iÃpt) V exp ( iÃpt). — (V.53)

According to the general theory of relaxation by a weak
fluctuating perturbation (Abr61), the evolution of the
density matrix is governed by the equation

The symbol ( )A„denotes an ensemble average over all
atoms of the vapor, and the square brackets denote
commutators.

1. Retaliation oe the 8'alls

Upon striking the wall of a container, an atom does
not necessarily rebound, but may stick to the wall for. a
certain time. %bile the atom is on the wall, it may hop
from site to site as a result of thermal agitation.
Eventually, the atom will acquire enough thermal

0

Here V is the interaction experienced by the atom while

it is stuck to the walls.
In all experiments on wall relaxation that have been

performed so far, it is found that the relaxation times
are proportional to the linear dimensions of the cell.
This implies that the sticking times are much shorter
than the times of Qight.

7,((v, .

Z. The Interaction V(t)

In order to evaluate Eq. (V.54) or Eq. (V.57), one
must have some knowledge of the perturbation V.
Specifically, it is necessary to know the strength, the
angular dependence, and the correlation time of V.
One usually assumes that the interaction results from
the coupling of some multipole moment of the atom with
an external field, i.e.,

(V.58)V(t) = 2 Fi.(t) Ti, (—1)".
m

Here T( is the (2) ' pole moment operator of the atom.
The fluctuating tensor components F)~(t) are further
assumed to be isotropic and to have an exponential
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yz, (1)= (hy) rL(L+1)/3, (V.63)

where p is the gyromagnetic ratio of the multiplet; i.e.,
the Larmor frequency in radians/sec in a magnetic field
B ls op=+H.

For nonzero magnetic fields, a simple solution of the
relaxation equations can be found only for the case of a
magnetic perturbation. Then, the relaxation equation
becomes

(d/dt) trrsr pre——rorM—.

Here the relaxation rates are

(V.64)

in the ground state of Hg or ' Cd. In the limit of a
very small external magnetic field, the environment is
essentially isotropic, and each (2) ~ pole relaxes inde-
pendently with a relaxation rate (see Fig. 22)

yr(l) = 2f'r {(2%+1)—'—W(LKKl; EK) I . (V.62)

Here l is the multipolarity of the interaction, f' is the
mean squared amplitude, and v is the correlation time

I
see Eq. (V.59)]. In the special case of a fluctuating

magnetic field of rms amplitude h, Eq. (V.62) reduces to

vr, sr =~r, (1)&z~(~r), (V.65)
FIG. 21. Schematic time dependence of the perturbation

experienced by an alkali atom on a parafFin coated wall. The
nuclei of the wall material produce nearly static local fields
that change abruptly as the atom hops from site to site on the
wall. The vibrational motion of the atom at a given site produces
a rapidly tiuctuating spin-orbit interaction /from (Bou63a, b) j.

autocorrelation function, i.e.,

(F t (t) Ft, (t—r) )A„=f9, (—1)

X exp (—r/r, )/(2l+1) . (V.59)

According to the Wiener —Khintchine theorem, the
power spectrum J (cv) of the perturbation is proportional
to the cosine Fourier transform of the autocorrelation
function, so that we have

~(~) = 1/I:1+(~r.)'j (V.60)

Thus, the spectral width of the perturbation is on the
order of 1/r„and the perturbation will be most eScient
in causing transitions between energy levels E; and E;
such that

I
Z,—Z;I & 1/r, (V.61)

Although the theory can be developed for more
complicated autocorrelation functions, the simple
exponential autocorrelation function seems adequate
to describe the existing experimental data. However, it
is often necessary to postulate several independent
perturbations of diferent strength, multipolarity, and
correlation time.

3. Relaxation zoithin a Single Zeernan Multi/let

The relaxation caused by a weak Quctuating per-
turbation is particularly simple (Hap70) for an isolated
Zeeman multiplet of angular momentum E, for instance,

and the function is

~~~(x) = L1/L(L+1) 3

& IM'+I (L'—M'+L)/(1+x') jI
—iMxI L(L+1)(1+x')j. (V.66)

The imaginary parts of the relaxation rates give rise to a
small frequency shift

~-=(1/3)(hv)" /I1+( )'j (V67)

The Zeeman splitting of the relaxation rates is illus-
trated in Fig. 23. High-field relaxation is rather compli-
cated when the relaxation is caused by quadrupole or
higher order interactions. Then, although 3f and the
even —odd symmetry remain good quantum numbers, I
does not. Unfortunately, there are often several inde-
pendent even or odd observables of the same M, and the
eigenobservables must be obtained by solving Eq.
(V.39). Although the procedures are straightforward,
there seems to be no simple closed-form expression for
the eigenobservables and the relaxation rates.

For 'MHg (I= ss) the high-field relaxation rates that
would be caused by a fluctuating electric 6eld gradient
have been calculated by Cohen —Tannoudji (Coh63) .At
zero magnetic field there is a curious accidental de-
generacy of the dipole and octupole relaxation rates
(see Fig. 22), and the quadrupole relaxation rate is
twice as great as the dipole relaxation rate.

In the case of the longitudinal observables, there is in
addition to the isotropic observables Too only one other
even observable T~o. Since the equilibrium polarization
is a random distribution, the steady-state density
matrix Vo of Sec. V.A.2 is Too. Thus, T20 is also an
eigeoobservable for arbitrary values of the external
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held. The two odd eigenobservables, VM and V30, are
linear combinations of TM and T30

V»= (1/5"') (2T»—T»), (V 68)

V» ——(1/5't') (T»+2T») . (V.69)

The corresponding relaxation rates are

pro =yi(2) J»(2cpr) (V.70)

1/T =2(ky)'r/3 (V.73)

where y is the gyromagnetic ratio of the electronic
angular momentum J.For longer correlation times, the
power spectrum of the perturbation is no longer con-
stant at all the atomic transition frequencies, and the
relaxation is no longer of exactly the same type as that
caused by electron randomization. However, we shall
still retain the time T ' defined in Eq. (V.73) as a
useful unit of measurement for the various relaxation
1ates.

We shall find it convenient to discuss the relaxation
equation for several diferent regions of magnetic field
strength.

a. Weak magnetic fields For weak m. agnetic fields
(we shall define "weak" more precisely later), the
relaxation Eq. (V.54) reduces to

(d/dt) ~r M (ff) = —
I I'(ff') /[1+ (~~r) ']

+L(L+1)JrM(ppfr)/2T(2I+1)'jorM( ff)
+ I I'(f'f) /[1+ (--r) P) }(2f +1)

X W(lff'L; f'f) orM( f'f') exp (2ippt Mt), (V.74)

where the Larmor frequency of the multiplet f is a&t,
and f&f'. The rate I'( ff') is

I'( ff') = (2f'+1)/2T(2I+1) . (V.75)

The terms in Eq. (V.74) have a straightforward

V»=pi(2) J»(~r), (V.71)

where pi(2) is defined by Eq. (V.62), and the function
Jip is defined in Eq. (V.66) . The relaxation rate of T„is

y»= ~oyp(2) [Jio(p~r)+Jio(2&or) ]. (V.72)

Analogous expressions for the transverse eigen-
observables and relaxation rates have been calculated
by Cohen —Tannoudji (Coh63) .

4. Relaxation of a Sp&s-—,
' Atom

Consider an atom with electronic angular momentum
J=2 and arbitrary nuclear spin I. The atom experi-
ences a weak fluctuating magnetic field of root mean
square amplitude k and correlation time r [see Eq.
(V.59)).We assume that the interaction of the nucleus
with the external field is negligibly small. In the limit
of very short correlation times, this type of relaxation is
completely equivalent to relaxation by electron random-
ization (see Sec. V.C) at a rate

Vi,M ——1V (I [(2I+1)+I.][(2I+1)—L—1)}'t'T I.M (aa)

—
f [(2I+1)—L][(2I+1)+L+1]}'t'TzM (bb) ), (V.77)

where a=I+ ,' and b=I——-', .
The normalizing constant is

iV= [2(2I+1)'—2L(L+1)) 't'.

The corresponding relaxation rates are

I'zM J,p(op~ ) /T+ [—L——(L+1)/2T(2I+1)')

X [Jro(pptr) Jio(pier) ],—(V.78)

I' +=[L(L+1)/2T(2I+1)'][J p(rrpp)t+J( »~crp)]

(V.79)
Some of the simpler eigenobservables are

Vpp+ = [2(2I+1)]—'t', (V.80)

Upp
———I@2/[I(I+1)(2I+1)]"'}I S, (V.81)

V,0+~1, (V.82)

Vio ~ 8,—2I./[(2I+1)'—2)=Q,. (V.83)

In the last two expressions, the bar over I, and S,
indicates that only the Zeeman components are retained.
That is, for any operator M, we have

M= Q ~
fm)(fm ~

3E
~

fm')(fm' ~. (V.84)
fmml

Bouchiat (Boua, b,c) designates the relaxation rates
associated with I, and Q„respectively, as

1/T„=rio+ (V.85)

physical meaning. The term involving I'( ff') represents
the transfer of atoms from the multiplet f to the multi-
plet f'. It is proportional to the spectral density

1/[1+( )']
of the perturbation at the hyperfine frequency u~. The
multipole relaxation rate within a given Zeeman
multiplet is given by the term proportional to L(L+1)
of Eq. (V.74) It is closely analogous to Eq. (V.64) for
multipole relaxation of an isolated spin multiplet due to
a Ructuating magnetic 6eld. The last term of Eq.
(V.74) represents the repopulation of the multiplet f
due to transfer of atoms from the multipet f' It is.

closely analogous to the expression of Eq. (III.83) for
repopulation pumping of the ground state.

As Eq. (V.74) shows, if a (2) ~ pole moment exists in
both Zeeman multiplets of the atomic ground state,
these multipoles will be coupled to each other by the
relaxation process. I et us first consider the zero-field
relaxation. Equation (V.74) will in general lead to two
eigenobservables for each multipolarity. We denote
these eigenobservables by Vl.~+ and VI.M, where

VzM+ = iV( t [(2I+1)—L][(2I+1)+L+1]j "'T rM (aa)

X }[(2I+1)+L][(2I+1)—L—1]}"'TrM(bb) ), (V.76)

and
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In somewhat more generality, one can show

Irr,sr+" ~r.ztr (II)

where ottT &1 but where the different (AF =0, Anz= 1)
(V.86) transitions are completely unresolved, the transverse

multipole moments of each Zeeman multiplet relax
independently at a rate

&»r (ff) = F (ff')/Ll+ (~~r)'j
Since the multipolarities L= 2I and L= 2I+1 can only
occur in the hyperfine multiplet with f=a=I+ '„the-
eigenobservables are simply

and
Vsr, M Tzl, sr (aa) (V.88)

Irsr+z, sr = Tsr+t, M (aa), (V.89)

with relaxation rates (for r—+0)

F,r, ztr = (1/T) 2I/(2I+1); F,r+, ,sr 1/T. (V.90)——
b. Decouptztzg of the eigerzobservables in a nzagrzetio

fie/d. When the Larmor frequency of the atoms exceeds
the characteristic relaxation rate T ', the transverse
polarization components of the two hyperfine multiplets,
which are coupled at zero field, become decoupled.
However, in the case of the longitudinal eigenobserv-
ables, i.e., the VL,O+ of the previous section, the magnetic
field has no appreciable effect until it is so large that
F=I+J ceases to be an approximately good quantum
number. The eigenobservables for coherence, however,
can be almost completely decoupled well before F
ceases to be a fairly good quantum number.

Let us consider the transverse Zeeman coherence.
Because the Larmor frequencies of the upper and lower
Zeeman rnultiplets are approximately equal and
opposite, the coupling term in Eq. (V.74) is modulated
at multiples of the Larmor frequency for the transverse
components. Solutions to Eq. (V.74) are readily ob-
tained by making the substitution

trrM'( ff) =orztr( ff) exp (zMottt). (V.91)

One finds that the transverse multipole components are
effectively coupled only when cvf T«1. For higher fields,

+LL(L+1)/2T(2I+1) 'ljrM (ottr) . (V.92)

At still higher magnetic fields the different (tt F=0,
Anz=1) transitions become resolved because of the
repulsion of energy levels from different Zeeman
multiplets. Consequently, each individual Anz = 1

transition relaxes independently from all the others. A
similar decoupling of individual hyperfine transitions
occurs as soon as ~yT&&1. The secular approximation to
Eq. (V.54) for a well-resolved resonance is then

(d/dt) (fnz ) o
~

f'nz') = —y( fnz; f'nz') (frN
~

o
)
f'nz')

(V.93)

The relaxation rates of Eq. (V.93) are listed in Table III.
For simplicity, we have only listed values for a very
short correlation time w, .

Relaxation rates in "Rb for arbitrary correlation
times were tabulated by Bouchiat (Bou63a,b) .

c. Itztermediate fzelds. The relaxation of an alkali
atom at intermediate fields, i.e., at fields where neither
the quantum numbers (Fnz) or (nzrnzs) can be con-
sidered particularly good, is very complicated because
little symmetry remains. Direct diagonalization of the
relaxation matrix of Eq. (V.4) is possible with elec-
tronic computers, and this process has been used by
Bouchiat (Bou63a,b) for the case of an alkali atom with
nuclear spin I=tat. In this case, there are 4I+1=7
longitudinal relaxation rates and seven longitudinal
eigenobservables, all of which contribute to the relaxa-
tion of (S,).To extract seven relaxation rates from one
somewhat noisy experimental decay curve is a hopeless
task. In order to make the analysis of experimental
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'IN 1N' Tp(f1N; f Nz )

'JN I~g 1N —1 3 (2I+1)2—41M (sN —1)

4(2I+ 1)~

1' I——,
' »z

3 (2I+1) '—4''
4(2I+ 1)'

7+ 1
1N

3(2I+1)'+4nz (nz+ 1}
4(2I+ 1)'

TABLE III. Relaxation rates y( fm; f'm} for vrell-resolved

Zeeman transitions in terms of the electron randomization
rate T

H ff —v L(&H) &&H](1/pH'), (V.94)

times on the order of hours are not unusual. Under these
conditions, relaxation is often caused largely by slight
gradients in the static magnetic field through which the
atoms move with thermal velocities. This type of
relaxation has been investigated by Schearer and
Walters (Sch65) and by Gamblin and Carver (Gam65).

If the atom moves through a magnetic field that is not
constant in space, the direction of the nuclear spin will
not follow the field direction adiabatically; rather, there
will be slight changes in the angle between the spin and
the local field direction. The rotation of the atomic spin
with respect to the local field occurs as if the atom were
subject to an effective field

data more tractable, Bouchiat (Bou63a,b) has defined
a pseudorelaxation rate T~ ' which describes the main
features of the decay curve. The precise definition of the
pseudorelaxation time and comparisons with experi-
mental data can be found in the reference (Bou63a,b) .

Studies of the magnetic field dependence (Fig. 24) of
the pseudorelaxation time have contributed a great deal
toward elucidating the mechanism of wall relaxation.
Experiment shows (Bou63a,b) that for relaxation on
paraffin walls, there seem to be at least two interactions
of quite different correlation times. It is believed that a
short correlation time (r~10 " sec) is associated with
vibrations of the alkali atom around its equilibrium
position while it is stuck to a given site on the wall. A
longer correlation time is believed to be associa. ted
with occasional hops from site to site on the wall ~ The
interaction associated with the long correlation time
almost certainly results from the magnetic fields
produced by the nuclei of the wall, since d euterated
walls cause much slower relaxation than hydrogenated
walls. However, the short-correlation-time interaction is
the same on both hydrogenated and deuterated walls
and seems to be related to the spin —orbit interaction.

d. High fields. In the limit of extremely high mag-
netic fields, the nuclear spin is decoupled completely
from the electronic spin and can be ignored. The relaxa-
tion then becomes very simple, and the spin--,'atom
relaxes with a single longitudinal relaxation time
(called ri) and a single transverse relaxation time
(called r~) . Franz (Fra71) has measured the relaxation
rates of cesium at magnetic fields up to 100 k G, and
finds reasonable agreement between the high-field
longitudinal relaxation rate and the intrinsic spin-
randomization rate deduced from low-field measure-
ments.

5. Relaxati on dNe to Inhomogeneous Magneti c Fields.

The relaxation of helium-3 ground-state atoms can
be extremely slow because of the weak coupling of the
nuclear moment to external perturbations. Relaxation

where v is the velocity of the atom, H is the local field,
and y is the gyromagnetic ratio {the Larmor frequency
is co= yH) . The effective field is transverse to H, and,
as one can see from Eq. (V.94), it is proportional both
to the velocity of the atoms and to the field gradient.

One can use Eqs. (V.94) and (V.54) to show that the
longitudinal relaxation rates are

&ro= LL(L+1)„.2(~ vH. ~'

+
~
z H~') jI 6H'[1+((OT )')I (V.95)

In Eq. (V.95), the correlation time r, is on the order of
the time between velocity-changing collisions, v =
3hT/M is the mean square velocity, and one assumes
that both the magnetic field H and the gradients are
approximately constant over the volume of the con-
tainer. The special case of Eq. (V.95) for L=1 was
first derived by Schearer and Walters (Sch65) and
Gamblin and Carver (Gam65). Equation (V.95) is
closely related to Eq. (V.63), which describes the
relaxation rates in a fluctuating magnetic field. The
transverse relaxation rates are hard to define for an
inhomogeneous field and will not be discussed here.

C. Relaxation due to Strong Collisions

There is another important class of relaxation
phenomena, exemplified by spin-exchange relaxation,
excited-state relaxation, or molecular formation, where
the polarization of an atom is drastically changed by
even a single collision. In the case of binary collisions,
relaxation by strong collisions will be characterized by
cross sections on the order of gas kinetic cross sections.
The relaxation can be analyzed as follows. Suppose that
the average result of a collision is to transform the
initial density ma, trix p into a modified density matrix
p'. We denote the mean time between collisions by T.
Then over any small time interval At, a fraction At/T
of atoms will have experienced collisions, and a fraction
(1—ht/T) will not have collided. The change in the
density matrix to first order in At is therefore

Ap= (1/i5) L:tC, pffft+ (At/T) (p' —p), (V.96)
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In this case we can immediately write the relaxation
matrix

R,;.,„=(1/T) (C,;,„—b;;.,„). (V.99)

The linear relationship of Eq. (V.98) does not hold
for spin-exchange collisions between identical atoms.
Nevertheless, the basic relaxation equation for strong
collisions, Eq. (V.97), is valid whether or not a linear
relationship relates p' to p.

With the exception of "sticking" collisions, which
have been discussed by Bouchiat (Bou70), strong
collisions occur over a time interval on the order of
10 " seconds. For such short times, the influence of
external electric or magnetic fields or of hyperfine
interactions on the electronic polarization is usually
negligible compared to the collisional interactions.
Consequently, the electronic but not the nuclear polari-
zation is affected by the collision. However, recoupling
of the electronic polarization to the nucleus or to
external fields during the intervals between collisions
does have an important effect on the relaxation process.
Formally, the influence of the nuclear-electronic
recoupling can be taken into account by proper use of
the secular approximation; i.e., the rapidly oscillating
parts of 0, are simply dropped from the I.iouville
equation.

1.Relaxation of a Spin', Atom;b-y Electron Randomisation

As a simple example of relaxation by strong collisions,
let us consider the case where the electronic spin of the
atom is J=-'„and the nuclear spin I is arbitrary. We
shall suppose that every collision completely destroys
the electronic polarization. The density matrix before
collisions is )see Eq. (II.29)]

p=n+A. J,
and the density matrix after a collision is

(V.100)

P =A. (V.101)

Consequently, the evolution of the density matrix is
given by /see Eq. (V.97)j
(d/dt) o = —(1/T) a+(1/T) exp (iKt) n exp (

.—iÃt) .

(V.102)

Further reduction of Eq. (V.102) using Eq. (II.32)
and the secular approximation leads to Eq. (V.74) for
the limiting case 7.,—+0. That is, relaxation of an alkali-
atom ground state by electron randomization is com-

from whence we derive the differential equation

dp/dt= (1/i5) Pe, pJ —(1/T) (p—p'). (V.97)

Equation (V.97) can be solved once p' is known. In
many cases p' is linearly dependent on p, or, equivalently
0 is linearly dependent on 0'.

(V.98)

pletely equivalent to relaxation by a very rapidly
fluctuating magnetic field. Thus, one can use the
formulas in Sec. V.B.4 to describe relaxation by elec-
tron randomization by setting 7,=0 and regarding T
as the time between randomizing collisions.

Z. Relaxation of Atoms with J)-',
a. Xo hyperfine structure W. e shall only consider the

case of strong isotropic collisions. Then, according to
the considerations of Sec. V.A.S.e, the relaxation of an
atom without hyperfine structure is described by
(2J+1) relaxation rates yr„one for each (2)~ pole
moment. The relaxation equation is

(d/dt) p= —Q yrpr, (JJ) .Tc(JJ). (V.103)

Unless quenching is present the atoms will not be
removed from the multiplet J, and the monopole
relaxation rate yo will be zero. There are only a few
situations in which this simple type of relaxation occurs
for atoms that can be optically pumped. Such a situation
can occur, for instance, in the relaxation of the 'S~ state
of metastable helium-4, and in the relaxation of the
excited 'P3/~ state of Sr+.

The actual values of the multipole relaxation rates
depend on the type of interaction involved during the
collision. Completely depolarizing "hard" collisions
relax the multipole moments at the same rate, while

partially depolarizing "soft" collisions cause the
different multipole moments to relax at different rates.
For states with nonzero orbital angular momentum the
dominant relaxation mechanism is usually the electro-
static dipole-dipole interaction

V= t
D.P—3(D ~) (~.P)]R ' (V.104)

between the electric dipole moment D of the polarized
atom and the electric dipole moment P of the depolariz-
ing atom. The separation between the atoms is R.
Since the atomic states have well-defined parity, the
odd operator (V.104) must usually be taken in second
order, and rough estimates of the effective second order
interaction, based on closure sum rules, are usually
made. However, if the colliding atoms are identical, and
one atom is in an excited state while the other is in a
lower state in which the excited atom could decay by an
allowed electric dipole transition, the interaction
(V.104), taken in first order, leads to a resonant
exchange of excitation and very large depolarization
cross sections. Such resonant depolarization is almost
always accompanied by strong radiation trapping.
Optical pumping of the ground state is therefore quite
dificult to accomplish when resonant self-depolarization
of the excited state is taking place.

Some representative calculations for relative de-
polarization rates, resulting from the interaction
(V.104), are shown in Table IV. The multipole relaxa-
tion rates seldom differ by more than 10% from each
other, and it is therefore a fairly good approximation
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TABLE IV. Relative multipole relaxation rates due to Van

der Waals interactions between polarized atoms and inert gas
atoms.

energy eigenstates, the density matrix is

p= & p. I~)(i I

Relative relaxation rates Text (II)Tzprt (JJ)
State of polarized

atom Reference

i7,KN, LM

X (j I
Tx~(II) Tr,ir(JJ) I

i )p, , (V.106)

3P

I'3/2

)1.11

)1.11

0.92 1.11 1.01

Omo65c

Okujo

Ga167b

Because of collisional relaxation, the (2)z pole elec-
tronic component of p will relax at a rate yL, so that the
relaxation of p is described by

(d/dt) p= — Q yr(j I Tire�(II)Tier(JJ)
I
i)

ij,LM, KN

XP,,Tlirt (II)Tr~t (JJ). (V.107)

This can be simplified somewhat to yield

to assume that the collisions result in "electron ran-
domization". The small differences in multipole relaxa-
tion rates have, however, been detected experimentally.
Barrat et al. (Bar66) have measured the orientation
(L=1) and alignment (L=2) depolarization rates for
the 6'8& state of mercury in various inert gases, and they
have found that the orientation relaxation rates were
always larger than the alignment relaxation rates by
5 to 25%. Faroux and Brossel (Far66c) have obtained
similar results.

Nonresonant depolarization cross sections resulting
from the interaction (V.104) are usually on the order of
10 "cm', and are given approximately by

oi, Kr, (eQ——n/Ap)'t' (V.105)

where EL is a dimensionless parameter of order unity
which accounts for the slight differences between the
relaxation rates of the different multipole polarizations.
The other parameters are (in cgs units): e, the electron
charge; Q, the static quadrupole moment of the polarized
atom; a, the static polarizability of the perturbing
atom; 2vr5, Planck's constant; and e, the mean relative
velocity of the colliding pair.

b. Hype»one structure The relax. ation of atoms is
greatly complicated by the presence of hyperfine
structure. Although the nucleus is essentially inert
during a collision and does not affect the electronic
depolarization (unless the hyperfine periods are com-
parable to or less than the collision times), the conserved
nuclear polarization regenerates electronic polarization
during the time between collisions; and this tends to
slow down the relaxation rates. Thus, when hfs is
present, there remain (2J+1) primary relaxation rates,
one for each electronic multipole moment; but these
rates must be combined with various angular factors,
involving the nuclear spin I, to obtain the experi-
mentally observed rates.

The influence of the hyperfine structure and the
external magnetic fields will cause the energy eigen-
states

I i) of the atom to be complicated linear combina-
tions of the zero-field basis states

I Fm&. In terms of the

(d/dt) p,,= —Q pr[2L+1]W(LJJ/; JJ)
L, lm, sr

X(» I
T,.t(JJ)

I j&(i I Ti (JJ) I ~&p,„.(V.108)

For J= -'„pi——1/T, and pp
——0, Eq. (V.108) leads to the

equations for electron randomization discussed in Sec.
V.C.1. For pure electron randomization in an atom
with J)-'„i.e., when we have y~=y2= ~ ~ .ygJ
yp=0 Eq. (V.108) may be written as

(d/dt)P' = 'YP' +['r(2J+1)]
X 2 (» I

Ti-'(JJ)
I j&(i I

Ti-(JJ) I ~&p- (V 109)
lm, sr

For zero-field relaxation and, in some cases, for relaxa-
tion at small magnetic fields, it is convenient to use the
multipole representation. If we neglect hyperfine
coherence, Eq. (V.108) becomes

(d/dt) p= —Q p [2fr+1][2F+1][2K+1][2L+1]
lfE,KL

I I K I E K

J J L J J L Ti(FF) pi( ff). (V.110)

f f l F F l

For pure electron randomization at a rate y, Eq.
(V.109) becomes

(d/dt) p= —yp+y P I[2f+1][2F+1]/[2J+1]}
lfE

XW(ffII; lJ)W(FFII; LJ) (—1)t ~Ti(FF) 1 i(ff).
(V.111)

For pure electron randomization, the Zeeman
projections Tier(II) [see Eq. (II.35)] of the nuclear
multipole moments are always eigenobservables at zero
field. The corresponding relaxation rates are

ys. =yI 1—[2J+1] ' Q [2F+1]'W'(FFII; IJ) I.

(V.112)

Equation (V.79) with r=0 is a special case of Eq.
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(V.112). For an atom with J=I we have I see Eq.
(II.32))

Trm(JJ) = Tr~(II), (V.113)

so that the Zeeman components of the electronic
multipole moments are also eigenobservables. This
situation occurs, for instance, in the ground state of the
hydrogen atom and in the 'P'3~& states of "Rb and "K.
The analysis of relaxation experiments is particularly
simple in such cases, since Ti~(JJ) and T~~(JJ) are the
observables normally monitored with fluorescent light
Lsee Sec. IV.B]

Barrat et al. (Bar65) have carried out detailed studies
of the collisional transfer of population between the
various hyperfine sublevels of the 6'Pj state of mercury.
They found good experimental evidence that the
collisions do not affect the nuclear polarization directly.
Faroux and Brossel (Far65) reached similar conclusions
by investigating the destruction rates for orientation
and alignment in the 'P~ states of '"Hg and "'Hg. More
detailed studies by Faroux and Brossel (Far66a, b,c)
support the hypothesis that nuclear polarization is not
affected by a collision. Certain anomalies with helium
turned out to result from impurities in the helium, buffer
gas (Far67a) .

In summary, both theory and experiment show that
the nuclear polarization is not affected by a strong
collision. However, recoupling of the nuclear and
electronic polarizations during the time between
collisions can have a profound effect on the observed
relaxation rates.

3. Radkutioe Trapping and Coherence Narrowing

A particularly important effect which must be con-
sidered in all optical pumping experiments is the
trapping of the pumping light by multiple scattering
within the vapor. Trapping occurs whenever the vapor
ceases to be optically thin for some mode of fluorescent
decay. Trapping strongly affects the evolution of both
the ground-state and excited-state atoms. Detailed
studies of the effects of trapping on the ground state
have not been made, but it is well known qualitatively
that trapping usually degrades the polarization pro-
duced by optical pumping. This is because the trapped
light provides a weakly polarized, nearly isotropic
background of resonant light that competes with the
optical pumping of the primary beam and degrades the
polarization of the ground state.

The trapping of resonance radiation increases the
effective lifetime of excited atoms; and, hence, level-
crossing or optical double-resonance signals, whose
linewidths are inversely proportional to the relaxation
rates of the excited-state polarization, become narrower.
This effect, which was first discovered by Guichon,
Blamont, and Brossel (Gui56), is called coherence
narrowing. The theory of coherence narrowing was 6rst
developed by Barrat (Bar59a,b). For a single excited
state with electronic angular momentum J, and no

hyperfine structure, the theory of coherence narrowing
predicts that the spontaneous decay rate of the (2) ~

pole moment is reduced to

Fr, = F (1—xnr, ), (V.114)

D. Diffusion to the Walls

If buffer gas is present in the cell which contains the
optically pumped atoms, an atom will not be able to
bounce freely from wall to wall if its mean free path X~

in the buffer gas is comparable to or less than the
dimensions of the cell. If the mean free path is much
smaller than the cell dimensions, the spatial movement
of the polarized atoms will be governed by the diffusion
equation

Bp/Bt =DPp (V.115)

where p is the density matrix of the atoms and D is the
diffusion constant. A comprehensive treatment of
diffusion in optical pumping experiments has been
published by Masnou —Seeuws and Bouchiat (Mas67).

The classical diffusion constant is related to the
"transport" mean free path X& and the mean atomic
velocity v by the equation

D =X,v/3. (V.116)

In practice, the diffusion constants are determined
experimentally, and the diffusion constant Dp at 760
Torr of gas pressure and at O'C is often tabulated.
Representative values of Dp are listed in Table V.
Since the diffusion constant is proportional to the mean
free path, it is also inversely proportional to the pressure
so that the diffusion constant D at any pressure is
related to Dp by

D = (760 Torr/I') Do. (V.117)

where F is the natural spontaneous decay rate of the
state, x is the average probability that a photon will be
absorbed before leaving the vapor, and nL, is a positive
numerical factor which depends on the angular momenta
of the atom. In some cases, the decay rate I"I, can
decrease to only 30% of the natural decay rate. How-
ever, the extent to which the dipole- and quadrupole-
relaxation rates I"& and F2 can be reduced by trapping is
limited, and the "saturation widths" F(1—ur, ) are
always greater than zero.

Coherencenarrowing in the absence of spatial isotropy
has been studied by Omont (Omo64) and Otten (Ott64),
and coherence narrowing under the conditions that the
excited state can decay to several branch states has
been studied by Saloman and Happer (Sa166) and by
Dumont and Decomps (Dum68), (Dec68) .Meuner and
Omont (Meu66b) have studied the effects of radiation
trapping on the. high-field. level crossing of 'P'Hg, and
have also investigated the effects of ground. -state
polarization on the coherence narrowing. Dyakonov
and Perel' (Dya65) have modified Barrat's theory to
treat the velocity distribution of the atoms in a more
reasonable way.
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TABLE V. Diffusion constants Do in cm' sec ' for alkali atoms should be proportional to the buffer-gas pressure p
in foreign gases. (in Torr), and the total relaxation rate (V.122) becomes

F»„y——»p(P/760) +Dp(A», ) '(760/P), (V.123)Foreign
gas Cs

where y~p is the relaxation rate in the buffer gas at 760
Torr of pressure. Experimental measurements of relaxa-
tion rates as a function of pressure are usually described
more or less by (U.123), and by fitting experimental
data to (V.123) one can determine values for y»s and
Dp. Some typical experimental data is shown in Fig. 25.
In analyzing experimental data, however, one must be
extremely careful to account for higher-order diffusion
modes (Min66b). It is frequently not clear which
eigenobservable was being measured in many of the
early studies of alkali spin relaxation, and some experi-
ments probably involved three-body collisional relaxa-
tion so that Eq. (V.123) was not the correct theoretical
curve to fit to the experimental data.

Cells with nondisorienting walls are of great practical
importance in optical pumping experiments, and such
cells must be used for studies of buffer-gas relaxation at
low pressures. The atom, after diffusing to the walls and
adhering to the wall for a mean time ~„eventually
breaks loose and Qies back into the vapor. During its
dwell time on the wall the atom is not completely de-
polarized, but some relaxation may occur. For simplicity
we shall assume that the eigenobservables are the same
whether the atoms are on the walls or in the vapor. Let
o» be the probability that the observables (V») is
destroyed while the atom is stuck to the walls. Then
Masnou —Seeuws and Bouchiat (Mas67) have shown
that the general boundary conditions for a partially
disorienting wall are

0.92 (Ram64)0.54 (Be62)
0.7 (Fra65}

0.37 (Leg64)
0.20 (Bev71}

He

0.50 (Ram64)0.31 (Fra59)
0.5 (Fra65)

0.24 (Leg64)
0.40 (Fra64b)
0.15 (Bev71)

Ne

0.24 (Fra59)
0.4 (Fra65)

0.19 (Leg64)
0.23 (Fra64b)
0.13 (Bev71)

N2 0.33 (McN62)
0.54 (Ram64)0.22 (Fra64b)

0.07 (Bev71)

1.34 (McN62)H2
1.3 (Ram64}

The diffusion constant also depends on the gas tem-
perature.

If we choose V to be an eigenobservable V~ for the
buffer gas in question, then Eqs. (V.115) and (V.3)
lead to the equation

r)(V»)/r)f =DV'(V» )—y»(V» ) (V.118)

for relaxation in the dark. We may seek exponential
solutions to Eq. (V.118) of the form

(V» (r, t) )= g exp ( F».t)f»„(r—)a»„(V.119).
V

Then the mode functions f»„(r)satisfy the wave equa-
tion (U.124)

(V.125)I »=3~»/2&i(2 —~»).

[(F»„—y») +DPjf»„0. (V.120)——

Because of the boundary conditions, Eq. (V.120) will
have solutions only for certain discrete values of Fz„
which we shall label with the index v. It is customary to
de6ne a diffusion length Az„for each decay mode

F».=v»+D(&». ) '. (V.122)

The weights a~„ofthe various decay modes depend on
the initial density matrix of the atoms, and, in practice,
since the pumping cells are usually more or less uni-
formly illuminated, only the erst few decay modes are
important.

The boundary conditions for completely disorienting
walls are, for all practical purposes, f»„=0at the walls
(Fra59). Under such conditions the diffusion length
A~„ is independent of pressure. Furthermore, if the
relaxation rate in the buffer gas results from binary
collisions between the polarized atoms and. the buffer
gas molecules, then the relaxation in the buffer gas

A»„'——D(F»„—y»)
—'. (V.121)

In terms of the diffusion length the decay rate of the vth
IIlode 1S
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FIG. 25. Pressure dependence of therelaxation rate of polarized
cesium atoms when both difFusion to the walls and collisional
relaxation are present Drom (Fra64b) ].
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Here 8 (Vrr )/Br is the normal derivative of (Vrc) at the
surface of the container.

The parameter pz plays an important role in deter-
mining the character of the relaxation. For instance,
consider a spherical cell of radius E.. At sufFiciently high
pressures the condition

p,~EQ)1 (V.126)

will be satished. Under such conditions the wall coating
has practically no effect on the relaxation and the
polarization is said to be "confined". The polarization
is maximum in the region of optical pumping and falls
off substantially toward the walls. A polarized atom
close to the walls is much more apt to be depolarized by
successive collisions with the wall than to diffuse into
the center of the cell.

The opposite extreme is when

CO

O
p

0
o 0
LLJ r, {Angstroes)

stngtet

P,l;E&(1. (V.127) Fin. 26. Typical spin-exchange potentials Lfrom (Car63) g.

In this case the polarization is said to be "unconfined, "
and polarized atoms will tend to fill the entire container
uniformly, irrespective of the spatial distribution of the
pumping light. Since the diffusion equation is valid
only when

&]&(R, (V.128)

the inequalities (V.127) and (V.128) can be simultane-
ously satis6ed only when

a~&&j., (V.129)

that is, only when the probability of depolarization by a
wall collision is very small.

For uncon6ned polarized atoms one can show that the
diffusion length Azo varies inversely as the square root
of the pressure. Consequently, the wall-induced relaxa-
tion rate is pressure independent for unconfined polariza-
tion. Masnou —Seeuws and 8ouchiat (Mas67) have
shown that the wall-induced relaxation rate is

, (760 3pxDo 760 3a~
Do &rco V.130

R 4R

The rate of Eq. (V.130) turns out to be the relaxation
rate for atoms in a completely evacuated cell. Equation
(V.130) is of great practical significance since it shows
that any pressure dependence of the relaxation rate in a
good, wall-coated cell must result from changes in the
intrinsic relaxation rate in the buffer gas and not from
changes in the wall-induced relaxation. Uncon6ned,
polarized rubidium vapor in parafFin-coated cells was
used by Bouchiat et al. (Bou69) in their studies of the
influence of molecular formation on the spin relaxation
of rubidium atoms in krypton.

VI. SPIÃ EXCHANGE

Spin exchange can play a very important role in
optical pumping experiments, especially in the case of
alkali atoms. A simple spin-exchange collision between
two 'Si~2 atoms A and 8, can be represented by the

equation

A(t')+B(L)~A(l)+B(t') (VI1)

and
V.( ) = Vo( ) —-'V ( )

V,(.) = V.(r)+-,'V, (.).
(VI.3)

(VI.4)

Analogous but more complicated interaction poten-
tials are required to describe the interaction between
atoms with spins greater than ~. Since the forces
responsible for the spin-exchange interaction are of an
electrostatic nature, the potentials are on the order of
electron-volts, and the cross sections for spin exchange
are very large (o=10 "cm'). The most striking prop-
erty of spin-exchange collisions is that even though the
spin of an individual atom may fIip during a collision,
the total spin of a colliding pair of atoms is conserved.

The difference between the singlet and triplet poten-
tials causes the total scattering cross section of a pair
of atoms to depend strongly on their polarization.
Geittner and Elbel (Gei70) reported a method for

Before the collision, the spin of atom A is up, while the
spin of atom B is down. After the collision the spin of
atom A is down, and that of atom B is up; the spin
orientations of the two atoms have been exchanged.
The origin of the spin-exchange interaction is to be
found in the difference between the lowest singlet and
triplet potential energy curves of the molecular system
AB. A typical set of potential curves is shown in Fig. 26.
In this case the triplet potential is repulsive, while the
singlet potential is attractive over part of its range.
These potential curves can be represented by an inter-
action of the form

V(r) = Vo(r)+Sa SsVi(r), (VI.2)

where SA and SB are the spin operators of atoms A and

B, respectively. The singlet and triplet interaction
potentials V, and V~ are then
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determining the ratio of the singlet to triplet scattering
cross sections of alkali atoms by observing the inRuence
of optical pumping on the effusion rate of alkali vapors
from an orifice.

A. The Mechanism of Syin Exchange

The theory of spin exchange has been developed in
two alternate ways. In the original work on spin-
exchange scattering by Purcell and Field (Pur56) and
by Dicke and Wittke (Wit56) the colliding atoms are
assumed to follow classical paths. The spins of the two
atoms rotate rapidly around the resultant spin, Sz+S&,
which is conserved during the course of the collision.
The total angle y through which the spins rotate is
given by the phase difference accumulated during the
collision

pg'= Trp [Pp~8 p&P "], (VI.10)

where pz and p& are the instantaneous density matrices
of species A and B, and Tr~ indicates a trace over the
substates of species B. The spin-exchange operator is

the electronic-magnetic moment p. with a small,
fictitious magnetic field 6H which is proportional to the
mean spin (S) of the ensemble. We shall discuss this
term in more detail in Sec. (VI.A-6), where we shall
show that it causes frequency shifts in the magnetic-
resonance spectrum of the atoms.

The dominant effect of spin-exchange collisions is
represented by the last term of Eq. (VI.8) . The density
matrix pp,

' represents the atoms of species A immediately
after they have undergone a spin-exchange collision
with atoms of species S. We may dehne p+' as

v
= (1/&) (V(—V,) dt

P= ,'+2Sg.-Sn=Pz=P

It is useful to note thatVI.S)
(VI.11)

The cross section 0- for spin exchange can be obtained by
averaging the exchange probability & (1—cos q) over
impact parameters E

PSgP~ = SB. (VI.12)

p&
——~+A S~, (VI.13)

There are a number of ways to express p+'. If we write

0 =71 1—Cos p EdE.
0

(VI.6) where n and A are functions of the nuclear spin opera-
tors [see Eq. (II.29) ], then Eq. (VI.10) leads to

A partial-wave analysis of spin-exchange scatter-
ing was carried out by Dalgarno (Da161). He deter-
mined the /-wave phase shifts 8p and 8~' for scattering
from the singlet and triplet potentials of Eqs. (VI.3)
and (VI.4) . The spin-exchange cross section is then

0=zr/k'g (21+1) sjnz (8p —B,i)
L=O

(UI 7)

1/r, = 1Vsv(r (VI.9)

is the average collision rate of an atom of species A with
atoms of species 8, EB is the number density of atoms
of species 8, v is the mean relative velocity between an
atom A and an atom 8, and 0. is the spin-exchange cross
section defined by Eqs. (VI.6) or (VI.7). The un-
perturbed Hamiltonian is modifl. ed by the addition of a
term —p. .bH which is equivalent to the interaction of

where k is the propagation constant of the incident
wave. Similar partial-wave analyses of spin-exchange
scattering have been carried out by Balling and Pipkin
(Ba164a) and by Glassgold (Gla63), who also studied
the complications that arise when spin exchange occurs
between identical atoms.

Both the classical-path theories and the partial-wave
theories lead to the following fundamental equation for
the evolution of the density matrix of an atomic
species A which is undergoing spin exchange with atoms
of a second species B

(d/dt) p~ = (1/i5) [(Xo—
fL

~ 8H), pg]+ (1/r, ) (p+' —p+) .

(VI.8)
Here

+ [Syph+ pgSg] (Sa ), (VI.15)

which is equivalent to Eq. (VI.14). Except in certain
special cases, Eq. (UI.8) is not a linear equation, and
it can be solved only with electronic computers.

It is usually assumed that in the case of identical
atoms, spin-exchange collisions are adequately de-
scribed by replacing (S&) and (S+) with (S) in Eqs.
(VI.14) and (UI.1S), i.e.,

p'=o. (1+4(S) S). (VI.16)

Gibbs ( Gib65) has considered the approximations
involved in this assumption and has concluded that, at
least for the rubidium isotopes, they are well founded.
Grossetete (Gro65) has also investigated the spin-
exchange relaxation of id.entical atoms (both "Rb and
szRb) experimentally, and she has found good, agreement
with the predictions of Eqs. (VI.8) and (VI.16).

Contrary to some misleading suggestions in the
literature, (Lam70), the nuclear spin has a profound
inRuence on the relaxation due to spin exchange.
As has been emphasized by Gibbs (Gib71a), this
is because the nuclear and electron spins will re-

p~' ——n(1+4(Ss) Sg) . (VI.14)

That is, the expectation value of Sz immediately after
a spin-exchange collision is (Sp), and all correlation
with the nuclear spin is lost. Grossetete (Gro64a, 68)
writes Eq. (VI.14) in the form

p~' ——4p~+ P S~'p~S~' —2z(S~Xp~S~) ~ (Ss)
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couple after a spin-exchange collision, since the spin-
exchange rate in all experiments to date is much less
than the ground-state hyperfine precession frequency.

I. Relaxation when (S&=0

The relaxation is particularly easy to analyze if the
mean spin is zero, i.e., if (S~&=(Ss)=0. Then Eq.
(VI.14) or Eq. (VI.16) implies that a spin-exchange
collision is equivalent to an electron-randomizing
collision, and the analysis of Sec. V.C.1 applies to
spin-exchange relaxation. For instance, &S I) relaxes
with the single time constant T,. Furthermore, if
species A is very dilute compared to species 8 and if
&Ss& is zero but (Sz) is not, the relaxation of (S@)will
be caused mainly by spin-exchange (electron-randomiz-
ing) collisions with the unpolarized species I3, and
(S~) will relax with two time constants T,(AB) and
—', (2I~+1)'T,( AB). Such a situation has been studied
in detail by Grossetete ( Gro64b), who pumped rubidium
vapor in the presence of cesium vapor. The polarization
of the cesium vapor was maintained at zero by saturat-
ing the Zeeman transitions of the cesium ground state
with a resonant magnetic 6eld. The experimental
results were in good agreement with the prediction that
the relaxation of the rubidium should proceed via
electron randomization. Grossetete (Gro64b) has also
studied the relaxation of the polarization of the F=I+ 2

hyperfine sublevel when the polarization of the Ii =I—
~

sublevel is maintained at zero with a rotating rf field
(the gz values of the two hyperfine levels are approxi-
mately equal and opposite). Again, the experimental
observations were in good accord with the theory of
electron randomization.

Because of the relative simplicity of spin-exchange
relaxation when (S)=0, measurements of spin-exchange
cross sections are usually made under these conditions.
The most foolproof method is to measure the relaxation
of (S I), since this gives the spin-exchange rate directly.
A summary of experimental results to date is included
in Table VI.

&. Relaxation when &S&WO

When the average spin of the vapor is not zero, the
effects of spin exchange are much more complicated,
since the exchange collisions must conserve angular
momentum. I.et us first consider the simplest possible
situation where the spin-exchange rate is much more
rapid than any other relaxation rate or pumping rate of
the system. Under such conditions Anderson eI, ul.
(And60b) have shown that the atomic polarization will
be very nearly de6ned by a spin temperature. That is,
the density matrix will be

p(j9) =N exp (PF,), (VI.17)

where the parameter P is called. the spin —temperature
parameter. One can show that the equation I

see Eq.
(VI.16)j

(S.) = (1/2) tanh P/2 (VI.26)
and

(I,)= (I+1/2) coth P(I+1/2) —(1/2) coth P/2.

(UI.27)

In the high-temperature, low-polarization limit (P((1),
Eq. (VI.27) reduces to

&I.&=t I(I+1)/3,
and Eq. (VI.26) becomes

(VI.28)

holds, which implies that p(P) is invariant to spin
exchange. The equation

L(~0—lj ~~), p(P) j=o (UI 19)

is also valid; that is, p(tl) is invariant to the hyperfine
Hamiltonian. Consequently, in view of Eqs. (VI.18)
and (VI.19) one can use Eq. (VI.8) to show that

(d/Ct) p(t3) =0; (VI.20)

i.e., p(P) is stationary with respect to internal hyperfine
couplings and spin-exchange collisions.

Experimental studies by Anderson(And63) have
demonstrated that under conditions easily attainable
in optical pumping experiments, the polarization of the
vapor is very nearly described by a spin temperature.
However, one often finds that at the high temperatures
where rapid spin exchange prevails, the vapor is no
longer optically thin, and a precise interpretation of the

experimental results is dificult to obtain.

3. Properties of the Atomic Polarization in the Spin
Temperature Limit

The density matrix p(P) of Eq. (VI.17) can be
factored into a nuclear part and an electronic part,
that is

p(P) =Nz exp (PI,)cVe exp (PS,), (VI.21)

where the normalizing constants are of the form

Nz= (sinh P/2)/sinh P(I+~). (VI.22)

A completely analogous formula holds for Eg. One can
expand the density matrix in terms of the multipole
operators of the system, for instance

Nz exp (PI.) = P Tzo(II) (Tzo(II) ). (UI.23)

The expansion coeScients are

(Tzo(II) )= (i)zNz(2zr)'~2fz, (I, zp), (VI.24)

where the functions

fi(I, *)=l '(2 )"'3 '

X P exp( imx) C—(IIL; m, m) (—1) z (VI.25—)
fn

are the periodic Bessel functions defined by Happer
(Hap68b). By using Eqs. (VI.23) and (VI.24), one can
show that

p'(P) =p(P) (VI.18) &S*&=PS(S+1)/3 (VI.29)
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TABLE VI. (From Mor71) Comparison of the experimental and theoretical spin-exchange cross sections of alkali atoms (10 "cm') .

Authors and references O'NtL —Na, 0 Rb—Rb &Cs-Cs T'( K)

Jarret (Jar64)

Gibbs —Hull (Gib67)

Grossetete (Gro67c)

Experimental values

2.7+0.7

1.85~0.23

1.9+0.2

2. 1~0,3 2.20+0.35

363

300
350

Ernst —Strumia (Ern68b)

Moretti —Strumia (Mor71)

Ressler —Sands-Stark (Res69)

1.109~0.005

1.03+0.21 1.45~0.21 1.9&0.2

2.20+0. 15

2, 06+0.2

300

390

500
700

Smirnov —Chibisov (Smi65)

Dalgarno —Rudge (Dal65)

Chang —Walker {Cha69b)

0.98

(1.24

Theoretical values

1.41

1.5
1.6

2.44
2.38

1.57

1.6
1.8

2. 70
2.64

1.80

1.9
2.0

2.82
2. 77

540
300

300
405

In general, we find for P((1

&Tio(II) )=p L~L(2I+1) (2L)!] 'L(2I+L+1)!]'I'
angular momentum, i.e.,

(d/«) (F.)= —(1/T) &5.) (VI.32)

XL(2L+1)(2I L) ll '' (VI30)

An analogous formula is obtained by replacing I with
S in Eq. (VI.28). Hence, for small values of P, the (2) ~

pole moments of the system are proportional to P~, and
the angular momenta (L=1) make by far the largest
contribution to the polarization.

For small values of p the observable &I ~ S) is

&I S)= &I) &S)= &I.)&5.)=I(I+1)5(5+1)P /9.

(VI.31)

so that the hyperfine polarization (I S) is second order
in the spin-temperature parameter p, and consequently
is very small compared to the spin polarizations &S) and

4. Etectron Randomization roith Rapid Spin Exchange

In many of the experiments on ground-state relaxa-
tion in the alkali atoms that have been reported in the
literature, the experimental conditions were such that
spin-exchange relaxation rates were much faster than
buffer-gas relaxation rates. Anderson (And64) has
pointed out that this may lead to important simplifica-
tions in the character of the relaxation. If the spin-
exchange rate is very large, a spin temperature will be
approximately maintained throughout the relaxation
process, but the parameter p will slowly decrease
because of the electron-randomizing collisions against
buffer-gas molecules. One can equate the electron-
randomization rate with the rate of destruction of total

If the spin —temperature parameter is not too large, we
may use the linear approximation for (I,) and (5,)
t see Eqs. (VI.27) and (UI.28)$ to transform Eq.
(VI.31) into a relaxation equation for P:

where
dP/dt = 4P/T, —(VI.33)

TABI,E VII. The slowing-down factor for spin relaxation with,

rapid spin exchange.

I A =3/P3+4I(I+1) j
0

1/2
1

3/2
2

5/2
3

7/2

1

1/2
3/11
1/6
1/9
3/38

1/22
3/83

A = 5(5+1)/[5(5+1) +I(I+1)j. (VI.34)

Thus, &I',.), (S,), and (I,) all relax at the same rate
.4T ', which can be considerably smaller than the
electron-randomization rate because of the angular
momentum stored in the nuclear polarization. Values of
.4 are listed in Table VII.

Suppose that a mixture consists of a fraction fi of
atoms with spin Ii, and a fraction of fi of atoms with
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spin I2. Then the slowing down factor A is given by

A = S(S+1)/LS(S+1) +ftI&(I&+1)+fsI2(Is+1) j.
(VI.35)

TABLE VIII. The slowing-down factor for spin-exchange relaxa-
tion of the 0-0 coherence.

(6I+1)/(8I+4)

For example, for natural mixtures of rubidium isotopes
(see Table XII for f; and I,), the slowing down factor
is A =0.0927= (10.8)

Et is interesting to note that under the same conditions
of rapid spin exchange, we have

(I S)~I(I+1)S(S+1)P'/3ec exp (—2At/T),

(VI.36)

1/2
1

3/2
2

5/2
3

7/2
4

1/2
7/12
5/8

13/20
2/3

19/28
11/16
25/36

so that (I S) relaxes twice as fast as the angular
momenta but still much more slowly than the electron-
randomization rate T ', which would prevail in the
absence of a spin-temperature equilibrium. Experi-
mental studies of the relaxation of (I S) in the presence
of spin exchange have been made by Grossetete and
Bouchiat (Gro68), and they have demonstrated that
spin exchange slows down the relaxation of (S I) when
the mean spin is not zero (see Fig. 27) .

5. Spin Exchange -Relaxation of the 0-0 Coherence

Spin-exchange relaxation plays an important role in
the hydrogen maser, in the rubidium masers, and in
various other devices which utilize the field-independent
0—0 transition(F=a=I+ ', , m=0 +F=-5=I——-'„m=0).
Although there is no static component of (S) associated
with this transition, there is an oscillating component,
and the partial conservation of the oscillating com-
ponent of (S) after a spin-exchange collision does slow
down the relaxation rate. One finds that the relaxation
of the 0—0 coherence is given by (Gro68)

(d/dt) p p;bp= —L(6I+1)/(8I+4) T jp~p, bp, (VI.37)

where T, is the time between exchange collisions, and I
is the nuclear spin. The slowing down factor, (6I+1)/

(8I+4), is listed in Table VIII. For large values of I,
the slowing down factor is nearly 4, the value for
electron randomization. Ke should mention that,
except in the case of hydrogen where Eq. (VI.37) is
exact, small nonlinear terms have been neglected.
Careful experimental studies of the relaxation of the 0—0
coherence have been carried out by Vanier (Van68),
who verified that the slowing down factor for the spin ~

isotope of "Rb is ss, as predicted by Eq. (VI.37) .

6. Frequency Shifts due to Spin Exchange

The angle of rotation pp I see Eq. (VI.5) $ of the spins
of a colliding atomic pair about each other is seldom
exactly 180', which would correspond to complete spin
exchange. On the average, the rotation angle lies
between 0' and 180' or 0' and —180'. This tendency
of a spin-exchange collision to rotate the spins can be
represented, as was indicated in Eq. (VI.8), by a small
effective magnetic field

8H= —xh(SQ)/tbpT. (AB), (VI.38)

where tbp is the Bohr magneton, and T,(AB) is the mean
exchange time for collisions between atoms of species A
and B. For spin-exchange collisions between identical
atoms of species A, one should replace (Sn) by (Sx) and
T,(AB) by T,(AA) in Eq. (VI.38) . The rotation
parameter ~ is defined as

= (~/ ) f sds sin y,
0

(VI.39)

which is seen to be the average over impact parameters
of the sine of the rotation angle y. The corresponding
expression for ~ in the partial-wave theory is

I I t,

h ~T
' ~ i~ ~[r ~v ~ w ~~ ywr14

~ a a, sx

x= (z./2k'o. ) g (2l+1) sin 2(5t' —8t'). (VI.40)
L=O

The static component of bH will shift the resonant
frequency ~,; of a field-dependent transition just as a
small magnetic field would. The expression for the
frequency shift is thus

FIG. 27. The relaxation ot (S.I) due to spin exchange, buti'er ~bp 'i(dc) = (2x/Te) (S~)I (i I
S~ I s) (2 I

S~
I 2)j~

gas, and wall collisions. The relaxation is slower when (S,) is
nonzero (a), than when (S,) is zero (b) Drom (Gro68) g. (VI.41)
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Experimental evidence on frequency shifts due to
spin exchange is rather sparse so far, and for those
measurements that have been made the agreement
between theory and experiment is poor (Bal64a,b).
The reasons for the lack of agreement are not yet clear.
Bender (Ben64) has calculated explicitly the expected
shifts for e—Na and e—Cs collisions and finds much
larger shift-to-broadening ratios than those measured by
Balling et al. (Bal64a) in the e—Rb system.

Balling and Pipkin (Bal64b) have suggested that
spin —orbit forces must be considered together with spin
exchange in electron —alkali —atom systems, and have
worked out the appropriate theory. However, the role of
spin —orbit interaction in frequency shifts is still in-
conclusive because of the paucity of experimental data.

O
el)
fD

CO

K

B. Spin-Exchange Spectroscopy

Spin-exchange collisions between an optically pumped
alkali vapor and a second species can be used to detect
magnetic resonance in the second species. Such experi-
ments were first suggested by Dehmelt (Deh58a). A

typical experiment is shown in Fig. 28. The alkali vapor
is polarized by optical pumping, and the density is high

TABLE IX. Summary of species polarized by spin exchange with

optically pumped vapors.

IOO

I I

150
FREQUENCY (KHz)

200

(b)

FIG. 28. Atypicalexperiment withspin-exchangespectroscopy.
Strontium ions are polarized by spin exchange with optically
pumped rubidium. Changes in the Sr+ polarization produce cor-
responding changes in the rubidium polarization, which is ob-
served by transmission monitoring [from (Gib70c).]

where (S,& is the static component of (S,), and T, is
the appropriate exchange time. For spin-exchange
collisions between identical atoms, the oscillating parts
of bH can also cause shifts of the frequency ~;,, since if a
population difference exists between the sublevels i and

j, a resonant, oscillating field can produce additional
coherence which adds to that already present. The
shift due to the oscillating components of SIC is thus

~~' («) = (2sl T.) &i I
S

I
') &s

I
S

I i&

&& I:&s I ~ I
s & &i I i I J)3, (VI 42)—

where T, is the mean time between self-spin-exchange
collisions. The total frequency shift is the sum of the
terms of Eqs. (IV.41) and (VI.42).

We note in conclusion that the expected frequency
shift for the 0—0 field-independent transition is given by
Eq. (VI.42) and is (i is the upper state)

~~= —~(2T ) 'L&s
I r I s& (J I ~ li&3 (» 43)—

Species
polarized by

spin exchange

e

H
H, D, T
H, T
H

He+

Rb
K
"Na
37K

N
N
N
N
P
Rb+
Ag
CU
Sr+
Cd+
'He
Eu
Mn

Optically
pumped
species

Na
VIa

K
Rb
He(3SI)
Na
Rb
Rb
Na

Cs

Na
Na
"Na
Rb

Rb
Na
Cs
Cs
Rb
Rb
Rb
Cs
Rb
Rb
Rb
Cs
Rb
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Til69b
Dav71
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enough that a spin-temperature equilibrium is estab-
lished between the alkali atoms and the Sr+ ions, which
are produced by a weak discharge in the sidearm. When
the ion spin polarization is decreased by saturating one
of the hyperfine transitions with a radio-frequency field,
the rubidium spin temperature is also increased (P is
decreased); this can be detected by transmission
monitoring with the pumping light. Thus, spin-exchange
spectroscopy allows one to carry out very precise rf
spectroscopy on atoms or ions that cannot be con-
veniently optically pumped with their own resonance
radiation.

Mitchell and Fortson (Mit68) have shown that Rb+
ground-state ions can be polarized by charge exchange
with optically pumped rubidium atoms in a helium
buHer gas. This is a type of spin exchange in which one
species, the Rb+ ion, has no electronic spin but does
have a nuclear spin which can be polarized. The charge
exchange cross section was estimated to be about
2&& 10 "cm'. Hadeishi and I.iu (Had66) have reported
that Xe+(sI'sts) ground-state atoms can be polarized
by charge exchange with aligned metastable Xe(sPs)
atoms. References to most of the experiments on spin-
exchange spectroscopy to date are contained in Table
IX.

C. Spin Exchange Between Electron and Nucleus

A type of spin exchange can also occur between an
electronically polarized atom and the nucleus of an
unpolarized collision partner. For instance, Bouchiat,
Carver, and Varnum (Bou60) have detected an en-
hancement of the nucleus polarization of a He' buffer
gas in a cell containing optically pumped rubidium
vapor. More detailed studies of He' —Rb spin exchange
have been reported by Gamblin and Carver (Gam65),
who measured He' polarizations of 0.01%%u~. By using
aluminosilicate glass containers, which are relatively
impervious to helium, Fitzsimmons et al. (Fit69) were
able to achieve He' polarizations of 0.5%. The mech-
anism for nuclear —electronic spin exchange is almost
certainly the contact interaction between the nuclear
spin and the polarized electron of the optically pumped
atom. Herman (Her65) and Gamblin (Gam65) have
shown that this interaction is considerably enhanced
by the exchange correlation between the spin of
the pumped atom and the core electrons that surround
the unpolarized nucleus. Herman estimates exchange
cross sections on the order of 10 ', 10 ",and 10 "cm'
for 'He, "Ne, and 'Kr, respectively. Precise experi-
mental values for the exchange cross sections are not
available. Herman (Her65) has suggested that the
nuclear —electronic spin-exchange collisions may be
important relaxation mechanisms for polarized alkali
atoms in buffer gases with nonzero nuclear spins.
However, experiments by Brewer (Bre62) with Hs and
Ds, and Franz (Fra64b) with (' N)s and (' N)s show
that for these isotope pairs, the alkali-depolarization

3 P~
/2

0

D(+

s's,,/2
2 3/2 I I/2 0
I 3/2 2 5/2 3

1/2 1 3/2
5/2 2 3/2

cross sections depend very little on the nuclear spins of
the buGer-gas molecules.

VII. ALKALI ATOMS AND SIMILAR
ATOMS AND IONS

The alkali atoms, lithium, sodium, potassium,
rubidium, 2,nd cesium, can all be optically pumped in
.much the same way, although there are technical
problems peculiar to each species. Other atoms or ions
with a 'S~~. ground state, such as hydrogen, or singly
ionized strontium and magnesium, can also be pumped
in the same manner as alkali atoms. We shall first dis-
cuss the properties that are common to all atoms and
ions of this class, and we then review some of the special
problems associated with each species.

A. Basic Atomic Properties

The pertinent energy levels of an alkali atom are
shown in Fig. 29. The 5~~2 ground state is split into two
hyperfine multiplets of total angular momenta a= I+ a

and b= I——,', and the transition frequency between the
multiplets is given by

Av= (I+-,') A. (VII.1)

The low-field Larmor frequencies of the two multiplets
are very nearly equal and opposite. The Larrnor fre-

quency of the multplet a is

v, = I 1/(2I+1) hjIgJ ps —2pr }H, (VII.2)

and the Larmor frequency of the multiplet b is

,= I
—1!(2I+1)hj{g p, —2(I+1)p /I }H. (VII 3)

The difference between the ground-state Larmor
frequencies

(VII.4)

-2 -I 0 I 2

fAF

FIG. 29. The low-lying energy levels of alkali atoms. The
relative absorption rates for 0-, D1, and D2 light are shown above
and below the respective ground-state subievels } from (Car63) ].
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TABLE X. Basic atomic parameters of alkali atoms.

Natural AP Xl X2 Tl T2

Atom abundance % I (MHz) (A) (L) (naec) (nsec) f2

/JI r
~ 1 ~ 2 82 (Nuclear

(MHz) (MHz) (MHz) magnetons)

6Li

7Li
7.5

92.5
1 228. 2 6708 6708

3/2 803.5

0.25 0.50 17.5
46.2 —3.0

0.8220
3.2564

"Na

39K

4'K

~Rb
87Rb

100

93.2
6.8

72.2
27.8

3/2 461.7 7699 7665
3/2 254. 0

26

5/2 3035.7 7948 7800 28
3/2 6834. 7

3/2 1771.6 5896 5890 16 16

26

26

0.33 0.65 94.5

0.34 0.68 28.9

0.35 0.70 121
409

18.9

6.0

25.0
84.9

2.4

2.9

26.0
12.6

2.2176

0.3914
0.2148

1.3527
2. 7506

s 100 7/2 9192.6 8944 8521 34 33 0.33 0.66 280 50.9 —0.9 2.579

is proportional to the nuclear moment and can be
detected experimentally in many cases (Fra66a) .

For sufFiciently large values of the magnetic field, the
different At=0, 6m=1 transitions within a single
Zeeman multiplet become well resolved, and an optical
pumping experiment yields a magnetic resonance
spectrum such as that in Fig. 30. The transition fre-
quencies for the resolved resonances can be calculated
with the Breit—Rabi formula (Kop58) .

Transitions between the two hyperfine multiplets can
also be observed in optical pumping experiments, and
the held-independent 0—0 transition is of particular
importance for frequency standards.

Optical pumping in the alkali atonis normally in-
volves excitation of the atoms to the lowest 'P&~2 and
P3/g excited states. The 'I &/'2 state lies lower and decays

with the emission of Dj resonance light, while the 'P3j2
state emits D2 resonance light. The lifetimes of these two
states are nearly equal.

The 'P&/2 state is split into two hyperfine states by
the magnetic dipole interaction. The splitting is much
smaller than the corresponding ground-state splitting
because of the absence of a large contact interaction
between the nucleus and the excited valence electron.

The 'I'3/& state can be split into as many as four
different hyperfine components with total angular
momenta F ranging from

~
I—

z ~

to
~
I+a ~. The

splittings in the 'P3/2 state ace somewhat smaller than
those in the 'P~/~ state, and the splittings are often
noticeably affected by the nuclear quadrupole moment.

A summary of the basic atomic parameters of alkali
atoms and alkalilike ions is contained. in Table X.

B.Pumping

Both depopulation and repopulation pumping are
effective in the alkali atoms. Theoretical calculations of
pumping transients and steady-state polarizations have
been carried out by Franzen and Emslie (Fra57),
Hawkins (Haw61, 69), and Violino (Vio66,68). Vio-
lino points out that the calculational procedure used
by Hawkins is somewhat unrealistic, since Hawkins

and
(VII.5)

(VII.6)
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FIG. 30. Magnetic resonance spectrum of optically pumped
cesium atoms. Multiple quantum transitions are seen at higher
rf power )from (Ska57).g

assumes that the photons are absorbed and emitted
"one at a time. " This procedure corresponds to rather
large intervals of numerical integration of the funda-
mental equation of optical pumping (Vio68). In most
theoretical calculations, rather unrealistic models for
ground-state and excited-state relaxation are assumed.

For broad-line pumping light only gyrotropic de-
population pumping occurs. The light-absorption
operators for Dj and D2 pumping light are, respectively,
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The mean pumping rates Ei and E~ are related to the
corresponding energy densities, I& and ~, by Eq.
(III.35). The mean photon spins for the D~ and D2
light are s& and s&, respectively. The total light-ab-
sorption operator is therefore

51'= (Rg+R2) —(2R,sg—R2s2) J. (VII.7)

Equation (VII.7) implies that if the polarizations of the
D~ and D2 light are the same (i.e., if s~ ——s2), then no
pumping will occur when 2E~=E2 or when

ug
——(Xg f2/Xg fg) u2/2. (VII.8)

Since the ratio (X&f&/X& f&) is approximately 2 for alkali
atoms, e%cient depopulation pumping will not occur if
the intensities of the two D lines are equal. Thus, at
high buR'er-gas pressures, where repopulation pumping
is suppressed, it is necessary to ensure that one D line
is much stronger than the other if pumping is to take
place. Similarly, transmission monitoring of the ground-
state polarization is quite inefficient when the D-line
intensities are equal, because a change in (J) will
increase the transparency of the vapor for one D line
while decreasing it by a compensating amount for the
other D line.

Good depopulation pumping can be achieved with
equal intensities of the two D lines if the mean spins s&

and s2 are antiparallel. An interesting method for
making s~ and s2 antiparallel for sodium light has been
developed by Kopf et al. (Kop69) . They passed sodium
resonance radiation through a Lyot polarization-
interference filter and replaced the exit polarizer with a
X/4 plate. Since the D~ and D2 components of the light
were polarized at right angles to each other before
entering the X/4 plate, the D lines were circularly
polarized in opposite directions after passage through
the plate. Consequently, both D lines caused depopula-
tion pumping in the same direction.

Narrow-line depopulation pumping is often used in
the heavier alkali atoms to produce hyperfine population
i~balances (I J). Methods for obtaining narrow-line
pumping light in K, Rb, and Cs are discussed in Sec.
VII.E.I.

Repopulation pumping is important at low buGer-gas
pressures where collisional depolarization of the
excited state is negligible. For circularly polarized
pumping light, repopulation and depopulation pumping
tend to polarize the ground-state in opposite directions.
For D2 light, repopulation and depopulation pumping
can actually cancel each other at certain critical
pressures of the buffer gas (see Sec. III.C.4). Because
of the sensitivity of D2 pumping to excited-state mixing,
greater ground-state polarization can be obtained with
circularly polarized Dj light than with either natural or
D2 pumping light. The mechanisms of Dq pumping
have been analyzed in some detail by Franzen and
Emslie (Fra57), who, with Dehmelt, erst drew atten-
tion to the advantages of D~ pumping light.

One of the most interesting aspects of repopulation

AC = 1N(vMg(1 —2(J,)), (VII.9)

where 1 is the length of the vapor, E is the number
density, and R& is the mean pumping rate Lsee Eqs.
(IV.23) and (VII.S)j. The diijerence in attenuation
between a polarized and an unpolarized atomic vapor is

84, = 2lNo)SR'( j,). (VII.10)

One can also measure the attenuation of the unpolarized
vapor at slightly different temperatures, T~ and T2. The
difference in attenuation is then

84, =lcvSRg[N(T, ) N(Tg) j. (VII.1—1)

The spin polarization is therefore

(Jg) =
t N(T2) —N(T))]L2N(T)) ] '(SCAN/842). (VII.12)

The number densities E can be determined from tables
indicating saturated vapor density versus temperature.
Analogous procedures can be used with narrow-line
excitation to determine the hyperfine polarization (I J).

Raith's method is independent of the absolute
calibration of the photodetector or of the width of the
probing light, provided that the profile is flat over all
components of the absorption profile. It is also inde-
pendent of the nuclear spin. However, it is important
that the vapor density at a given temperature equal the
density of a saturated vapor at the same temperature.
This condition seldom holds for alkali vapors in trans-
parent glass or quartz containers unless large amounts of
clean alkali metal are present in the container.

pumping is that it can produce alignment of the ground
state even when the light beam is unpolarized and has a
broad spectral profile. This occurs only for D2 pumping
light, and Varshalovich (Var67) has suggested that
hydrogen atoms in interstellar space may be aligned by
the pumping action of nearby stars. The creation of.

alignment by unpolarized light has been observed
experimentally with sodium atoms by Hawkins
(Haw55) and Margerie et al. (Mar55). The creation of
alignment by repopulation pumping becomes less and
less efficient at higher magnetic fields because of the
decoupling of the nuclear spin from the electronic spin
in the excited 'Pst2 state (Mar55) .

Some pumping of alkali vapors seems to occur with
almost any light source when optically thick samples
are used. This seems to result from a self-filtering action
of the pumped vapor, and an analysis of some aspects
of the problem has been considered by Bloom (Blo58) .
The analysis of experiments in optically thick samples is
dificult, however, and most quantitative work is now
done with thin samples.

1. Raith's Method for Measuriug Polarization

An intersting way to measure the electronic spin
polarization (I,) in absolute units has been developed
by Raith (Boe61), (Rai61) . For an optically thin vapor,
the attenuation of a broad-line D~ light beam, circularly
polarized in the direction of propagation is
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4O l).
1 pure Kr (0.97 Torr)

I
Kr (0.9Torr)

tnixture i
I He(55Torr)

20 40 60 80 100 )20 140 H geese

FIG. 31. Magnetic field dependence of the relaxation of polarized rubidium atoms in krypton. The rapid decrease of the relaxation
rate with magnetic field indicates that the relaxation cannot be caused solely by sudden, binary collisions, which have very short correla-
tion times. Also, the addition of helium should have almost no effect if only binary collisions were involved. The observations can be
explained if it is assumed that alkali —inert-gas molecules are formed by three-body collisions and broken up by subsequent collisions
/from (Aym67) j.

TABLE XI. Ground-state relaxation cross sections for alkali atoms in foreign gases.

Foreign gas Cs Rb

He

Ar

Kr

Xe

H2

2.5X10 ~ (Leg64)
2.8X10 " (Bev71)

8.4X10 ~ (Leg64)
5.3X10 ~ (Fra64b)
9.0X10 " (Ern68a)
9.3X10 " (Bev71)

2.6X10 23 (Leg64)
8.0X10 " (Fra64b)
1.04X10 " (Bev71)

2. 1X10 " {Fra64b)

4.6X10 ~ (Fra64b)

4.7X10 ' (Fra64b)
5.5X10 " (Bev71)

6 ~ 2X10 " (Be62)
3.3X10 25 (Fra65)

5.2X10 ' (Fra59)
3.3X10 ~ (Fra65)

3.7X10 " (Fra59)
1.1X10 22 {Fra65)

5.9X10 " (Fra59)
7.3 X 10 " (Fra65)
2.3X10 + {Bou69)

1.3X10 '0 (Fra59)
1.3X10 " (Fra65)

5.7X10 " (McN62)

3X10 M (McN62)
2.2 X 10 (Bre62a)

2.2X10 I (And63)

1.8X10 ' (And63)

8.8X10 " (Ram64)

2.0X10 2' (Ram64)

2 SX10 ~ (Ram64)

4. 1X10 ~ (Ram64)

2.7X10~6 (Ram64)

~ Most of these cross sections were deduced by observing the relaxation
of (S, ). The slowing down of the relaxation rate by the nuclear spin inertia
was seldom taken into account. The vapors were often optically thick,
and the effects of higher diffusional modes and possible molecular formation

were usually ignored. The cross sections probably differ from the true
electron-randomization cross sections by as much as an order of magnitude
in some cases.
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C. Ground-State Relaxation of Alkali Atoms
in Su8er Gas

Some of the most detailed studies of relaxation have
dealt with the relaxation of polarized alkali atoms in
buffer gases. The most common buffer gases are the
inert gases, helium, neon, argon, krypton, and xenon;
the simple diatomic gases, H~, D2, and N~, and the
simple organic gases, CH4, CsHs, CsH4, cyclohexane,
benzene, etc. The relaxation is now known to involve at
least two different types of collision; sudden, binary
collisions, which last for about 10 " seconds, and
sticking collisions, which lead to bound molecules. The
bound molecules may have lifetimes on the order of 10 '
seconds at buGer-gas pressures of a few Torr.

Convincing evidence for the existence of alkali
atom —inert gas molecules has been presented by
Bouchiat and her co-workers (Aym67), (Bou67), who
showed that the rate of relaxation of polarized rubidium
atoms in krypton depended strongly on the external
magnetic field for magnetic fields in the range of 0—100
G (see Fig. 31) . It was also found that the relaxation
rate was not proportional to bu8er-gas pressure, even
when the eGects of diffusion were fully taken into
account. Such behavior can not be explained by the
mechanism of sudden binary collisions, but it is in very
satisfactory accord with the behavior one would expect
from molecular formation. Hartmann (Har70b) has
also found evidence for Rb—Kr molecules by studying
the relaxation of the 0—0 coherence of rubidium atoms
in a krypton buGer gas. At the present time we do not
know the extent of the phenomenon of molecular forma-
tion, but molecular formation may be important for all
of the heavy noble gases, argon, krypton, and xenon.
Unfortunately, at the time of the early studies of the
relaxation of alkali atoms, the occurrence of molecules
was not suspected, and the inhuence of the nuclear spin
was poorly understood. Therefore, it is dificult to
interpret the results of many early studies of buffer-gas
relaxation.

There has been some discussion in the literature about
the role of molecules with permanent electric dipole
moments in alkali relaxation (McN64a, 65). However,
Berg (Ber65a) has pointed out that the electric dipole
moment probably has no direct inhuence on the spin-
relaxation rates of alkali atoms, since the polarizability
tensor of these Si~~ atoms is isotropic.

l. ExPerirrzenta/ Methods of Investigatz zg Ground State-
Reluxatioe

Most experimental methods for studying the relaxa-
tion of ground-state polarization in alkali atoms are
variants of the "relaxation-in-the-dark" method devel-
oped by Franzen (Fra59), (Bou66a), (Ban67) . A
typical experimental arrangement is shown in Fig. 32.
A strong pumping beam is used to establish a large
ground-state polarization in the vapor. The strong beam
is suddenly removed by a shutter, and the subsequent

FxG. 32. A typical experimental arrangement for measuring
relaxation in the dark. Atoms in the cell C& are polarized by a
strong pumping beam I'„.A weak probing beam I'q is used to
monitor the decaying polarization when the pumping beam is
suddenly cut oG by the shutter Oz )from (Bou66a) j.

evolution of the vapor is followed by monitoring the
absorption of a very weak probing beam, which has
negligible inhuence on the relaxation.

It is also possible to measure collisional relaxation
rates even if the atoms do not relax in the dark, although
one must usually extrapolate the results at low light
intensities to distinguish the true collisional relaxation
rates from the pumping rates. For instance, Dehmelt
(Deh58a) has developed a simple method in which the
direction of a small static 6eld is suddenly reversed. The
field reversal is fast compared to the pumping and
relaxation rates but slow enough that the polarization
can follow the field adiabatically. There is always a
residual field of adequate magnitude to prevent non-
adiabatic transitions (Deh65), although this aspect of
Dehmelt's method has been misunderstood in the
literature (Ale63b) . The reestablishment of equilibrium
polarization after the adiabatic reversal is monitored
by observing the transmitted pumping light. By
properly accounting for the pumping rates, collisional
relaxation rates can be deduced. Bouchiat and Brossel
(Bou62a) observed the polarization transients that
accompany destruction of the ground-state polarization
with a square-wave modulated resonant rf 6eld. This
method is similar to Dehmelt's field-reversal method,
and the transients must be corrected for the pumping
rates in much the same way.

Precision measurements of relaxation rates are quite
dificult to make, and one should probably ignore the
error estimates for most relaxation rates quoted in the
literature. In a good relaxation experiment attention
should be given to the following points:

(1) For gases which cause very slow relaxation, high
purity samples must be used to avoid sizeable con-
tributions to the relaxation rate from trace impurities of
strongly relaxing species (Fra65) .

(2) Strongly relaxing gases are sometimes diluted in
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TABLE XII. Pressure shifts in Hz Torr ' of the hyperfine frequency interval of alkali atoms in foreign gases.

Foreign gas H '7Rb 133cs

He 130 (Ram65)

80 (Ard58a, c)
80 (Ram65)

43 (Blo60b) 720 (Ben58)

24 (Blo60b) 392 (Ben58)

1050 (Bea58)
1600 (Ard58a, b, c)
1200 (Ard61)

580 (Bea58)
650 (Ard58b, c)

Ar =0 (Ard58a, c)
5 (Ram65)

—0.4 (Blo60b) —51 (Ben58)
—52 (Ard61)

—190 (Bea58)
—250 (Ard58b, c)
—212 {Ard61)

—15 (Ens68) —75 (Ram65) —42 (Blo60b) —580 (Ben58) —1300 (Bea58)
—1300 (Ard58b, c)
—1360 (Ard61)

H2

—28 (Ene68) —150 (Ram65)

110 (Ram65)

100 (Ard58a, c)
87 (Ram65)

33 (Blo60b) 660 (Ben58)

520 (Ben58)

—2400 (Ard58b, c)
—2350 (Ard(61).

1900 (Ard58b, c)

890 (Bea58)
930 (Ard58b, c)
840 {Ard61)

weakly relaxing gases to yield mixtures with longer and
more conveniently measured relaxation times. This can
obscure the effects of molecular formation on the
relaxation rates (Bou67) .

(3) One should determine whether molecular forma, -

tion is important by observing the pressure dependence
and magnetic field dependence of the relaxation rates
(Bou67) .

(4) The vapor should be optically thin, so that the
attentuation of the probing beam depends linearly on
the atomic observables (Bou66a) . The polarization and
spectral profile of the probing beam should be well
understood so that one can determine precisely which
observable is being measured.

(5) The effects of diffusion should be eliminated if
possible by the use of good wall coatings (Bou66a) . It is
very difficult to be sure that higher diffusion modes are
not contributing to the relaxation rates, especially when
the vapor is not optically thin. If the measured relaxa-
tion rates are strongly dependent on temperature,
higher diffusion modes are probably present (Min66b) .
Both the polarization and intensity of the light may
vary in a complicated way throughout the volume of the
cell if the cell does not have flat windows (e.g. , spherical
cells) .This influences the volume generation of polarized
atoms and the steady state spatial dependence of the
polarized atoms. The lenslike behavior and polarizing
properties of curved glass surfaces should probably be
avoided.

(6) Relaxation rates should be corrected for the
effects of spin exchange by extrapolating the rates back
to the limit of zero alkali-vapor density. However, very
rapid spin-exchange rates may be useful in an optically

thin sample, since under such circumstances the decay
of the polarization should be very nearly single-ex-
ponential (see Sec. VI.A.4) .

Experimental data on ground-state relaxation are
summarized in Table XII. The cross sections are taken
directly from the literature, and they may differ by
several orders of magnitude from the true electron-
randomization cross sections. In many of the experi-
ments rapid spin exchange probably slowed down the
measured rates appreciably (see Sec. VI.A.4) and even
where spin exchange was negligible, it is seldom clear
whether T, or T„wasbeing measured, although it was
Drobably T„in most cases.

Z. Theory of Binary Collisions With Inert Gases

The interaction of alkali atoms with inert gases has
been studied in considerable detail. While it is too
early to say that all aspects of alkali relaxation in inert
gases are understood, it is clear that many of the
observed relaxation phenomena can be interpreted by
assuming that the spin-dependent interaction between
an alkali atom and an inert-gas atom is given by an
effective Hamiltonian

V=y(r)N S+h5A(r)I S. (VII.13)

Here r is the interatomic separation, and N is the
translational angular momentum of the alkali atom and
the inert-gas atom around each other.

a. Charge ie the hyper/me cogpiixg The term.
5A(r)I S represents a small change in the contact
interaction between the nucleus of the alkali atom and
the spin of the valence electron (Adr60a). At large
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Robinson (Rob60), Herman (Her61), Clark (Cla62),
Rao (Rao69), and Ray et al. (Ray70). Although most
of'these theories are in reasonably good agreement with
experimental observations, they are all based on the
assumption that only binary collisions contribute to the
pressure shift, whereas it may be true in some situations
that molecular formation contributes a noticeable
amount to the pressure shift. For instance, Brewer
(Bre64) attributes an anomalously large negative
pressure shift of rubidium in benzene to a molecular
complex.

The interaction W.l.S should also contribute to the
linewidth of the hyperfine transition frequencies.
However, Hartmann (Har70b) has shown that for
krypton the linewidth of the hyperfine transitions is
probably caused mainly by the spin —orbit interaction.

b. The spiv orbit inter—actjori. An interaction of the
form yS N was first suggested by Bernheim (Ber62),
who showed that two effects can lead to an effective
interaction of the form yS N. The first is a direct
interaction between the spin of the valence electron
and the electric field E of the inert-gas atom (the
moving electron experiences an effective magnetic field
of the form (v/o) XE), while the other is a second-
order interaction, involving the excitation of virtual x
states of the valence electron. Herman (Her64) has
shown that in most cases the second-order interaction is
more important, and he has estimated spin-depolariza-
tion cross sections for various collision partners.
Because of the very short duration of the binary
collisions, the interaction yS N causes electron random-
ization with an electron-randomization cross section
on the order of

od's—Ly(b&) I(b&)/12M]'oi, ;, (VII.15)

where bo is an effective distance inside which short-
range interactions dominate, J(bo) is the moment of
inertia of the colliding pair, and o.i,;„is the kinetic cross
section. Of course the basic electron-randomization rate
gives rise to a number of different observable relaxation
rates for an atom with hyperfine structure (see Sec.
V.C.1) .

Herman (Her68) has suggested that an interaction of
the form

V= —(pop(r)I(r)/A']pi S—(H r) (r S)/r']

sudden binary collision, and e is the number density of
perturbing atoms.

3. EeLaxatioss die to Sticking CoLLisioes

The theory of the relaxation due to sticking collisions
has been developed by C. C. Bouchiat, M. A. Bouchiat,
and I . C. L. Pottier (Bou69,70) . An adequate descrip-
tion of the experimental observations can be obtained
by assuming an interaction potential between the
alkali atom and the inert-gas atom of the form

V= U(r)+h/A jBA (r) ]S I+y(r) S N. (VII.18)

The central potential U(r) can be obtained from low-

energy atom —atom scattering experiments, and the
value of U(r) is known for most rare-gas —alkali atom
pairs. The spin-dependent terms, bA (r)

andy�(r),

play a
negligible role in scattering, but they cause the polariza-
tion of the alkali vapor to relax and also cause frequency
shifts in the magnetic resonance spectrum of the alkali
ground state. Certain higher-order spin interactions
that are allowed by symmetry are not included in Eq.
(VII.18) because experimental and theoretical con-
siderations indicate that they are negligibly small. The
physica, l origins of the coupling constants 5A(r) and
y(r) were discussed in the previous sections.

Because the interaction U(r) is attractive at large
distances, where it is determined mainly by Van der
Waals forces, bound states of the alkali —inert-gas
molecule can exist. The center-of-mass motion is
governed by an effective potential

U~(r) = U(r)+P1V(N+1)/2pr', (VII.19)

where &7 is the angular momentum of translation of the
alkali atom around the inert-gas atom, and p, is the
reduced mass of the system. Typical potentials U&(r)
are shown in Fig. 34. Bound or quasibound states can
exist for all angular momenta less than the critical
value .~V, . Such states can be formed by three-body
collisions or by resonant two-body collisions. Bouchiat
et aL. have shown that resonant two-body collisions are
not important in the regime of present day experiments,
but such phenomena would be important if experiments
could be performed at much lower pressures. For higher-
pressure ranges, the concentration of molecules is given
by the law of mass action:

(VII.16)
I Rb Kr]= kRb]t Kr]K, (VII.20)

may cause a slight shift in the effective gJ value of the
atomic angular momentum. The coefficient y(r) is the
same as the coupling constant for the spin-orbit
interaction of Eq. (VII.13), and Herman has shown
that the gJ shift is

where 0.&;„10'5 crn' is the cross section for velocity-
changing collisions, 0-q;, is the cross section for elec-
tron randomization by the interaction pS.N during a

where E is the equilibrium constant of the reaction

Rb+Kr~Rb Kr.

Bouchiat et al. (Bou70) have shown that an adequate
description of the experimental results of spin relaxation
can be obtained by a three-parameter theory. The
parameters are K, the equilibrium constant of Eq.
(VII.20); o, the mean cross section for the breakup of
Rb-Kr molecules, and y, the mean value of the spin-
rotational interaction constant in Eq. (VII.18) .
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For instance, for the rubidium —krypton system,
Bouchiat et al. (Bou70) report the following values for
these parameters

TABLE XIV. Depolarization cross sections in A.' for 'PI&& states
in inert gases (DE is the 'Ei/Q ///s fine-structure interval). '

y/A'= 0.63 MHz; 0 2.23K/rm j
Rb Cs Tl

Gas (b,F.=238 cm ') (DE=554 cm ') (68=7793 cm ')

E=1.68&(10 "cm'.

Here r =4.53 A is the scale parameter of a 6—12
Lennard —Jones potential.

4. 8'all Eelaxatiom ie Alkali Atoms

He

Ar

10.6 (Gal67b) 0.0220 (Gib70a)

9 (Ga167b) 2. 1 (Ga167b) 0.0060 (Gib70a)

6 (Gal67b) 0.8 (Gal67b) 0.0014 (Gib70a)

9 ~ 7 (Gal67b) 1.7 (Gal67b) 0.0110 (Gib70a)

Robinson et al. (Rob58) discovered that alkali atoms
can be pumped in evacuated cells if the glass walls of the
cell are coated with weakly relaxing materials. It has
been found that para%ns and certain organosilanes
(Drifilm) are especially useful for pumping alkali atoms.
Unfortunately, TeQon and other Auorocarbons, which
work well with atomic hydrogen, are attacked by the
alkali atoms. Relaxation times approaching one second
can be obtained in parafBn-coated cells.

Detailed studies of the relaxation of rubidium on
paraffin-coated walls have been made by Bouchiat
(Bou62a, b,66a) and her associates. The relaxation rates
seem to be independent of the chain length of the
paraffin molecule (Bou62b). However, the relaxation
rates are noticeably smaller on deuterated paraffin than
on norinal hydrogenated paraffin (Bou62b) . This
implies that the magnetic fields of the hydrogen and
deuterium nuclei play a signi6cant role in the relaxation,
since the magnetic moment of deuterium is smaller than
that of hydrogen by a factor of about 3. However, it is
not possible to attribute all of the observed relaxation
to the magnetic fields of the nuclei in the wall coating,
since a number of properties of the relaxation indicate
that a second (probably spin —orbit) interaction is
present. For instance, Bouchiat (Bou63c) found that

&Ienergy

~ 1

Tliese cross sections are not always clearly defined (see text) .

the hyperfine polarization (S I) relaxes at the same rate
for both "Rb and "Rb on deuterated walls, but that the
rates are slightly different on hydrogenated walls. On
deuterated walls the interaction responsible for the
relaxation of (S I) is believed to be mainly a spin—
orbit interaction. The same spin —orbit interaction
accounts for most of the relaxation of (S I) on hydro-
genated walls, but a measurable contribution is also
present from the magnetic fields of the hydrogen nuclei.

Experimental studies of the relaxation rates as a
function of the external magnetic field (Vid65),
(Bou66b) reveal that the interaction due to the nuclear
spins has a rather long correlation time, which is
probably associated with hops from site to site while
the atom is bound to the wall. However, the spin —orbit
interaction has a short correlation time, which is
probably on the order of the vibrational period of the
bound rubidium atom at a given site on the wall.

The relaxation on paraf5n-coated walls is also a
strong function of temperature (Bou65b). Increasing
the temperature up to about 60'C lengthens the relaxa-
tion time because the rubidium atoms remain stuck. to
the walls for shorter periods of time. However, above
60'C the relaxation times decrease with increasing
temperature, apparently because of irreversible reactions
of the rubidium atoms with the paraffin or with the
walls.

510 eV

V(r)

N (N+1}5
2 tAf

D. Collisional Depolarization of the
Excited State

Ej N

5

FIG. 34. Typical potentials for an alkali —inert-gas molecule.
The eA'ective potential V,ff is the sum of the electronic potential
V and the centrifugal potential /from (Bou69) g.

The excited 'Pi~2 and 'P3p states are strongly affected
by collisions with buffer-gas molecules, and the colli-
sional depolarization cross sections are usually on the
order of gas kinetic cross sections or larger. Presumably,
there are three basic depolarization cross sections for the
'P'gp state, one for each of the electronic multipole
moments of the state (see Sec. V.C.2) . Although theory
indicates that the basic relaxation rates are nearly the
same (Oku70), no definitive experimental studies of
these rates have yet been made because of the difficulty
in accounting for the effects of the nuclear spin. The
situation is somewhat simpler in the case of the 'Py~2

state, where only one electronic relaxation rate exists.
However, even in the 'Pip state the influence of the
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nuclear spin is not small, even though it is usually
ignored (Bu171b) .

Order-of-magnitude estimates of depolarization cross
sections are listed in Tables XIII and XIV. The D~

depolarization cross sections were estimated from
critical pressure data for D2 pumping of the ground
state. The Pj/2 depolarization cross sections were ob-
tained by Hanle-effect measurements. Neither method
is very reliable because of uncertainties in the inter-
pretation of the data. For instance, the 'Pj/2 electron-
randomization cross sections should probably be about
three times larger than those quoted by Gallagher

( Ga167b), because of the influence of the nuclear spin on
the 'collisional broadening of the Hanle-effect signals
(Bu171b) . The 'Esses cross sections are probably too small
for the same reason. However, to avoid confusion we
have listed the cross sections as they appear in the
literature.

Despite the uncertainties of these measurements, it is
clear that the 'P~/2 depolarization cross sections for
rubidium and cesium are anomalously small. Experi-
mental evidence for anomalously small collisional
depolarization cross sections for the 'P'&/2 states of heavy
alkali atoms was first reported by Marrus and Yellin
(Mar66) . Franz (Fra66b) and Gallagher (Gal67b) have
pointed out that for electrostatic interactions, no
collisional depolarization at all should occur in the 'PI/~
state, provided that transitions to the 'P3~/~ state can be
neglected. Such fine structure transitions would be
least likely in rubidium and cesium, because their fine
structure intervals are larger than the thermal energy
kT. For comparison we have included in Table XIV the
depolarization cross sections for the 'PI~/2 state of
thallium (Gib70a). The depolarization cross sections
for thallium are three or four orders of magnitude
smaller than gas kinetic cross sections. Thus the small-
ness of the PI~/~ cross sections in rubidium, cesium, and
thallium furnishes good evidence that the forces in-
volved in collisional depolarization of the 'P states are
largely electrostatic in nature.

i0

17
IO

Rb-4e

Ip
-18

Rb-Q

E
V

- l9
Ip

cs-He

Ip

velocity tail of the velocity distribution contribute to
the transfer cross sections. Gallagher's data is repro-
duced in Fig. 35. Qualitatively, one can understand
these results by remembering that transitions can be
induced between the 'P~/~ and 'P3/2 states only if the

1. Transfer between the Fine Structure Doubl-ets

The transfer of population between the fine-structure
doublets of the alkali atoms can be measured with some
confidence, since, with proper precautions, the nuclear
spin and the excited-state polarization need not com-
plicate the experimental measurements. However,
Gallagher (Ga168) has pointed out that serious errors
can arise if proper account is not taken of the pressure
broadening of the optical lines. Extensive studies of
fine-structure transition rates have been made by
Krause (Kra66b) and his co-workers. Their work
showed clearly that the inert gases are very poor
agents for inducing transfer between the doublets of
rubidium and cesium. More detailed work by Gallagher
(Gal68) has shown that the transfer cross sections are
strongly velocity dependent; and, in the case of rubid-
ium and cesium, only the very fast atoms in the high-

-Rl
Ip

Cs- Ne

p 2 2 I I
30 too 300 loop

" +ALKALi-HI/+ALKALI-NERT GAS

FIG. 35. Cross sections for collisional transfer between the I'112
and P3/~ 6ne structure states of the alkali atoms. There is a
pronounced temperature (velocity) dependence of the cross
sections Lfrom (Ga168) ].
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TABLE XV. Quenching and transfer cross sections for excited rubidium atoms in molecular buffer gases.

0 (PIn~kn) ~ (I'ala~Sala) ~ (I'ua~I'an) 0.(P@2—+Pg12) Reference

Hy.

CH4

C2H4

CgH6

139
174

43
42

95
112

16
14

11
9

22
19

30
32

23
12

57
57

23
24

15
15

30
29

42
53

32
19

77
86

(Hry70)
(Bu171c)

(Hry70)
(8ul71c)

(Hry70)
(Bul71c)

(Hry70)
(8u171c)

(Hry70)
(Bu)71c)

(Hry70)
(8ul71c)

kinetic energy of the incident atom is sufhcient to
supply the energy of the transition. From the view-
point of semiclassical collision theory, it is also necessary
that the Fourier components of the collisional interac-
tion have substantial amplitude at the fine-structure
frequency. Only for very fast collisions are such high-
frequency Fourier components available. Thus, rubid-
ium and cesium, with their large fine-structure intervals,
are least susceptible to collisional transfer between the
I'y(g and Pay states.

A completely di6'erent behavior is exhibited by
molecular buffer gases. One finds that these gases
induce transitions between the fine-structure doublets
of all alkali atoms with about the same e%ciency.
Presumably, some of the internal energy of the fine-
structure separation can be converted into vibrational
and rotational energy of the molecules. Some typical
transfer cross sections for molecular buffer gases are
listed in Table XV. More details on transfer cross sec-
tions can be found in the work of Krause and his
collaborators (Kra66b), (Pit66), (Mcg67), (Stu68, 69),
(Cop69). In these papers some of the smaller reported
cross sections for transfer between the 6ne structure
doublets may not be very reliable because of pressure
broadening of the optical line.

Z. Queaachieg

Bu6'er gases may also quench the excited atoms, i.e.,
the excitation energy of the atoms may be transferred
to the foreign gas molecule in such a manner that no
Quorescent light is observed. For all practical purposes
the inert gas atoms may be regarded as nonquenching;
i.e., the quenching cross sections are much less than 10 "
cms. Dodd et al. (Dod69) have determined experimental
upper limits of about 10 " cm' for the quenching of
excited cesium atoms by helium. Molecular buffer gases,
however, do quench fairly effectively, the most notable
example being nitrogen, for which quenching cross
sections in excess of 50 A' are observed. Presumably,

the rotational and vibrational degrees of freedom of a
molecule are necessary to absorb the excitation energy
of the atom. Direct conversion of the excitation energy
into kinetic energy, which would have to occur with
inert gases, is highly unlikely. Quenching cross sections
for some of the common gases are included in Table XV.

Quenching is very important in optical pumping
experiments, since it decreases the influence of radiation
trapping. For instance, the "Rb maser has been operated
successfully only with a nitrogen buffer gas (Dav66),
probably because the quenching of the rubidium
Quorescence by the nitrogen allows one to operate with
an optically thick vapor but with little depumping
resulting from fluorescent light.

E. Lithium

Lithium, which is highly corrosive, attacks quartz
and glass cells in a few minutes at the high temperatures
(~400'C) necessary for pumping. Sapphire and mag-
nesium-oxide windows are more resistant to the action
of lithium, and Minguzzi et at. (Min69) have success-

fully constructed a stainless steel pumping cell with

sapphire windows. The cell, which could be baked at
temperatures as high as 450'C, was 6lled with ~Li and
177 Torr of helium buffer gas for operation. The D2

line of 'Li overlaps the D~ line of Li so that each isotope
can be used in a lamp for depopulation pumping or
transmission monitoring of the other isotope (Min69) .
The most successful lithium lamps are of the hollow
cathode or flow lamp design (Bud65). Minguzzi et at.
(Min66a) have published details of a particularly
effective lithium Row lamp. The scattering of red
lithium resonance radiation from pumped atoms can
often be seen with the naked eye.

F. Sodium

Although sodium is much less corrosive than lithium,
it still presents problems, and some care must therefore
be taken in the selection of materials for cells. Most
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glasses are satisfactory at low temperatures, but quartz
is particularly susceptible to attack and should be
avoided. Sodium-resistant glasses have been developed
by several lamp manufacturers (Phillips, General
Electric), and the resistance of lamps to attack can be
increased by coating the glass with various glazes
(Bel61) .

The 6 X separation of the yellow sodium D lines is too
little to allow the use of conventional interference filters.
However, very successful use has been made of Lyot
polarization-interference filters to separate the D lines
(Boe61), (Kop69) . Carver et al. (Car61) have developed
a magnetically scanned, sodium-vapor filter which
passes 90%%uo of the Dz line, and only 2% of the D2 line.
The behavior of high-intensity sodium lamps in a strong
magnetic field has been investigated by Ioli et al.
(Iol70). A magnetically scanned sodium lamp has been
developed by Moretti (Mor71) . Such lamps are useful
for hyperfine pumping and transmission monitoring of
(I J). Electrodeless discharge lamps of the type de-
scribed by Bell et al. (Bel61a) and by Brewer (Bre61)
are adequate for Zeeman-pumping experiments. Reso-
nance scattering of the yellow sodium D lines is often
visible to the naked eye, and a change in the brightness
of the vapor is readily noticed when the pumped atoms
are depolarized with a resonant rf field.

Typical operating temperatures for sodium-absorp-
tion cells are 150'C. At these temperatures sodium
reacts slowly with molecular buffer gases such as
hydrogen and nitrogen (And64b) . It also attacks many
types of paraffin coatings, but Lemmerich and Raith
(Lem62) have produced satisfactory polyethylene
coatings. Coatings of the Drifilm type are also satis-
factory (Bes67), (Kop69) .

The field-independent hyperfine transitions in sodium
have been studied by Arditi (Ard58a) and Bell (Bel58) .
Multipole quantum transitions in the ground state
have been investigated by Winter (Win59) . Besch et al.
(8es67), (Kop69) have polarized the radioactive
sodium isotope "Na by spin exchange with optically
pumped natural isotopes of sodium.

G. Potassium

At the typical temperatures of operation of potassium
absorption cells ( 100'C), the corrosive properties of
potassium are similar to those for sodium but less severe.
The two D lines of potassium can be separated by
narrow-bandpass interference filters. The hyperfine
splittings of the atomic states of "K are particularly
small, so that resolution of the Am=1, AF=O reso-
nances of the ground state can be achieved at fields of
three or four G. The hF = 1 ground-state transitions at
458 MHz can be driven with conventional radio-
frequency equipment. Electrodeless discharge lamps
(Bel61) are adequate sources of pumping light.

Multiple quantum transitions and w'all coatings for
potassium have been studied by Kraniska —Miszczak

(Kra66a). Grossetete and Brossel (Gro67a) have devel-
oped a method to measure the hyperfine polarization
(S I) for "K bv using resonantly scattered light from
a "K vapor. They have also investigated the use of

paragon wall coatings for potassium-vapor cells. The
potassium atoms react fairly quickly with the parafKin
coatings at typical (100'C) operating temperatures.

H. Rubidium.

At the low operating temperatures of rubidium
absorption cells (&60'C), corrosion is seldom a
problem, although rubidium atoms are known to be
permanently absorbed by glass walls and to a lesser
extent by paraffin-coated walls. Partial saturation of
the walls with rubidium atoms seems to occur after
periods of days or weeks. Similar phenomena may occur
with the other alkali atoms, but only rubidium has been
studied in much detail. Both Drifilm (organosilane)
and paragon wall coatings have been successfully used
with rubidium (Bou66b). Rubidium pumping in wall-
coated cells with buffer gas has been investigated by
Kryger et ul. (Kry64) and by Masnou —Seeuws and
Bouchiat (Mas67) .

There are two common isotopes of rubidium, @Rb
and the weakly radioactive species @Rb. The nuclear
spins and hyperfine structures of these isotopes are
quite different, and they can be easily distinguished by
radio-frequency spectroscopy (see Table XII) . An
absorption cell of one isotope can be used to filter out the
low-frequency hyperfine component of light from the
other isotope, and such filters have been used to
prepare light for hyperfine absorption pumping in
masers (Dav64) . Conventional interference filters can
be used to separate the D lines. A simple, eff'ective
filter that passes D2 light but absorbs most D~ light has
been developed by Firester (Fir68) from a solution
of neodymium chloride. Gibbs and Slusher (Gib70c)
have used the 7944-A line from a Hg laser to pump
rubidium atoms in a magnetic field of 74.5 kG. Mathur
and Happer (Hap67a) have used the 4215-A. line of a
Sr+ lamp as a probe of optically pumped rubidium
vapor. Both rubidium isotopes exhibit noticeable bire-

. fringence for narrow-line probing beams. Electrodeless
discharge lamps (Bel61a) are adequate sources of
pumping light. However, long (40-cm) cells of rubidium
vapor have been successfully pumped by long lamps
with internal electrodes (Tan70).

I. Cesium

The corrosive properties of cesium are not severe and
are similar to those of rubidium. There is only one stable
isotope, "'Cs. There is a large hyperfine splitting of all
atomic states (see Table XII), which leads to a pro-
nounced birefringence of the pumped vapor. The D
lines are easily separated with interference filters.
Electrodeless discharge lamps (Bel61a) are the most
convenient and widely used sources of pumping light.
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E'iG. 36. I ow-lying energy levels of Sr+.

Intense pumping lamps have been described by Franz
(Fra63a). Light sources for hyperfine pumping have
been developed by Ernst et al. (Ern67, 68a) and by
Beverini and Strumia (Bev70). Cesium has also been
probed with a gallium —arsenide laser (Sia69). The
vapor can be probed with the 8521-A line of argon
(Bea58), or with the 3880-L line of helium.

Orientation of cesium vapor was first reported by
Blandin and Barrat (Bla56). Hyperfine transitions
have been investigated by Beaty and Bender (Bea58),
by Diamond, Legendre, and Skalinski, (Dia58),
(Ska58), and by Arditi and Carver (Ard58b) .

J. Singly Ionized Strontium and Barium

Optical pumping of Sr+ ions has been reported by
Ackermann et aL (Ack67). The energy levels involved
in the optical pumping are shown in Fig. 36. The
pumping mechanisms are quite similar to those in the
alkali atoms, except for the presence of the low-lying
metastable 'D state to which branching occurs from the
excited P states. The branching ratios to the 'Sj~2
ground state have been measured by Gallagher
(Ga167a), who reports values of 15% and 13% for the
'P&~2 and 'P&~2 states, respectively. Ackermann et al.
(Ack67) report ion lifetimes of several milliseconds in
their experiments. In experiments with Sr+ ions, they
have also reported upper limits for ground-state
depolarization cross sections of 10 ' L' for helium,
8)&10 'A' for Ar, and 4&10 'A' for Kr. Their cross
sections include the effects of Sr+-e, Sr+-Sr, and other
relaxation mechanisms, and the actual noble gas cross
sections may be substantially lower.

Optical pumping of Ba+ ions in helium buffer gas
has been reported by von Sichart et al , (Von70). The.
D~ (4934-A) and D2 (4554-A) resonance lines were
generated by a high-intensity arc discharge hollow
cathode lamp. Precisjon measurements of the ground-
state hyperfine intervals for '"Ba+ and "~Ha+ were
obtained. Ions of other Group II atoms, such as Mg+,

Ca+, Cd+, Hg+, etc. can probably be pumped in the
same way as Sr+.

The oscillator strengths and branching ratios of the
important optical transitions of interest in Mg+, Ca+,
and Ba+ have been measured by Gallagher (Ga167a)
and by Smith and Gallagher (Smi66).

K. Hydrogen

Attempts to optically pump hydrogen atoms have
not yet succeeded. There are severe problems with the
optical components needed to handle the 1216-A D
lines, and the best material for lenses and windows,
lithium Quoride, develops color centers under the
inQuence of the pumping light. Furthermore, hydrogen
atoms must be produced somehow from molecular
hydrogen, and the discharges or thermal dissociators
used for this purpose are an added complication in the
experimental apparatus. Some of the problems associ-
ated with the optical pumping of hydrogen in the
laboratory have been summarized by McIlrath (McI66) .
However, Varshalovich (Var70) has suggested that
optical pumping of hydrogen atoms may occur in

interstellar space.

VIII. ATOMS WITH 'Sp GROUND STATES

Diamagnetic atoms with a 'Sp ground state can be
optically pumped provided that a nonzero nuclear spin
is present. Perhaps the most striking feature of such
atoms is their resistance to depolarization by wall

collisions, and such atoms are usually pumped without
buffer gas in quartz or glass containers. A typical
energy-level diagram for such atoms is shown in Fig. 37.
Pumping is usually done with the 'P& or 'P& excited
states. Because of the breakdown of L,S coupling,
neither state is pure triplet or singlet; and consequently,
the 'P& state can decay to the ground state by an
electric —dipole transition. However, because the 'P~

state has only a weak admixture of the 'Pj state, the
radiative lifetime of the triplet state is much longer
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TABLE XVI. Basic atomic parameters of Group IIB atoms.

Atom
Triplet resonance Singlet resonance Triplet lifetime

line (A.) line (A) (nsec)
Singlet lifetime

(nsec)

Zinc

Cadmium

Mercury

3076

3261

2537

2 139

2288

1850

20 000

2 400

115

1 ~ 41

1 ~ 66

1 ~ 31

than that of the singlet state. The triplet state always
lies lower in energy than the corresponding singlet state,
and the triplet (intercombination) radiation therefore
has a longer wavelength than the singlet radiation.

Optical pumping of the 'So atoms can occur only if the
hyperfine intervals in the excited states are larger than
the natural width. Depopulation pumping can occur
for narrow-line excitation but not for broad-line
excitation (see Sec. III.A.14) . However, ef5cient
repopulation pumping can occur for either broad-line
or narrow-line excitation provided that the hyperfine
periods of the excited state are much shorter than the
excited-state lif etirne. A detailed study of the effects of
hyperfine coupling on repopulation pumping has been
made by Lehmann (Leh67), (see also Sec. VIII.B).
Some of the important properties of 'So atoms are
summarized in Table XVI.

Buffer gases are seldom used in optical pumping
experiments with mercury, cadmium, and zinc, since the
polarized atom can make many collisions with the
container walls before being depolarized. The mech-
anisms responsible for wall relaxation are not yet
completelv understood. For atoms with nuclear spins
I& 1, one of the major mechanisms is known to be the
interaction of the electric quadrupole moment of the
nucleus with electric field gradients caused by the
constituents of the wall. However, a magnetic interac-
tion is also present, since atoms devoid of any quad-
rupole moment (e.g. , "'Hg with I= rs) relax on the
walls. The magnetic interaction probably has a number
of di fferent origins, and the strength of the interaction
depends on the state of the container surface. Prolonged
irradiation of quartz containers with ultraviolet light
is found to increase the relaxation rate of optically
pumped '"Hg vapor (Coh64) . Presumably, the ultra-
violet light creates some sort of paramagnetic sites in
the quartz surface. The relaxation rates are also strongly
dependent on the wall temperature. The temperature
dependence is caused at least partly by changes in the
mean dwell time of an atom on the surface.
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the cooling bath then determines the vapor pressure in
the rest of the cell. Typical temperatures of operation
are around O'C for pumping with the 2537-L inter-
combination line and about —43 C for pumping with
the 1850-A resonance line. Radiation trapping becomes
a serious problem if these temperatures are exceeded.

Optical pumping of mercury was first reported by
Cagnac, Brossel, and Kastler (Cag58a, b,d), who aligned

'Hg atoms with unpolarized 2537-A light. Optical
pumping of the odd mercury isotopes is greatly facili-
tated by the use of lamps and absorption filters made
with separated isotopes. The relative frequencies of the
various isotopic components of the 2537-A intercom-
bination lines and the 1850-A resonance line are shown
in Fig. 38. Cagnac and Brossel (Cag59) have shown that
a "4Hg lamp can serve as a good narrow-line source for

A. Mercury

Mercury has a very high vapor pressure even at room
temperatures, and consequently it is a very convenient
isotope to pump. The atomic density can be controlled
simply by placing a drop of mercury in a long sidearm
that is immersed in a cooling bath. The temperature of

Iso

pro. 37. Low-lying energy levels of mercury Drom lBro52l).
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exciting the transition F=
2
—+F=-,' in ' 'Hg. Early work

on the optical pumping of mercury is summarized in
Cagnac's thesis (Cag61) .

Optical pumping of ' 'Hg with the 1850-A resonance
line from a '"Hg lamp was reported by Popesku and
Novikov (Pop64), (Nov65). A remarkable feature of
these experiments was the appearance of a very broad
magnetic resonance line, corresponding to a relaxation
time of 2.2&(10 4 sec, in addition to the expected narrow
resonance line of "'Hg. The broad line has not yet been
positively identified, but Novikov and Popesku
(Nov65) have suggested that it may be associated with
the 'Pp metastable state.

Mercury-199, which has only two ground-state sub-
levels, has served us as an important test case for the
basic theory of optical pumping. Many detailed com-
parisons between theory and experiment for "'Hg can
be found in the thesis of Cohen —Tannoudji (Coh62a, b) .

Optical pumping of the 6'P~ state of mercury has been
reported by Barrat, Cheron, and Cojan (Bar64). They
polarized the 'P& state both by depopulation pumping
with the 5461-A green line (6'P&~7'Sr) and by re-
population pumping from the 7'S~ level, which was
populated by stepwise excitation from the 'Sp ground
state through the 6'P~ excited state with the lines at
2537 A. and 4358 A. Up to 2% of the mercury atoms
were maintained in the metastable state. Contributions
to the relaxation were 18 kHz from the pumping light,
11 kHz from collisions between rnetastable and ground-
state atoms, and 3 kHz from wall collisions. Collision-
broadening cross sections for the 'P2 state in various
foreign gases have been measured by Tittel (Tit65) .

Optical pumping of the metastable 6'Pp state of "'Hg
has been reported by Lahaye and Margerie (Lah70).
Polarization was produced by repopulation pumping
from the 7'S& state, which is populated by excitation of
6'P2 metastable atoms with polarized 5461-A light. The
polarization of the 6'Pp state is monitored by observing
the cross fluorescent 5461-A light that is produced when
the polarized 6'Pp states are illuminated with unpolar-
ized 4047-L light. A remarkable finding of these experi-
ments was that the gg value for the 'Pp state is about 1.8
times larger than that of the ground state. This occurs
because the hyperfine interaction admixes sizeable
amounts of the F=

~ component of the 'P~ state to the
F=

2 component of the 3Pp state. The large electronic
gg factor of the 'P~ state therefore contributes to the g
factor of the 'Pp state.

1. Wal/ Relaxatiom of 3ferelry

Cagnac and Brossel (Cag58c, 59) discovered that
polarized "'Hg atoms relaxed much faster than "'Hg
in evacuated quartz containers, and they suggested
that the faster relaxation rate of "'Hg was caused by
the nuclear quadrupole moment of "'Hg. More detailed
studies by Cohen-Tannoudji (Coh63) showed that the
relaxation mechanism for ' 'Hg was indeed mainly an
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FIG. 38. Isotope shifts and hyperfine structures of the mercury
isotopes Lfrom (Pop64)].

electric quadrupole interaction. For instance, Cohen-
Tannoudji found that the alignment of 'Hg relaxed
twice as quickly as the orientation. This is exactly what
one would expect if the relaxation were caused by a
weak, Ructuating electric fieM gradient (see Sec. V.B.3) .
The exact correlation time of the interaction is un-

known, but it is known to be less than 10 r sec (Coh63) .
The relaxation of "'Hg is slower than that of "'Hg

when the walls are at room temperature. Presumably,
this results from the absence of an electric quadrupole
moment in "'Hg. The nature of the magnetic interac-
tions at the walls is still unknown. Cohen —Tannoudji and
Brossel (Coh64) have shown that prolonged irradiation
of the cell walls with intense ultraviolet light can
shorten the relaxation time of "'Hg by factors of three
or more. The ultraviolet light is believed to produce
paramagnetic centers in the surface of the quartz cell.
If the cell is removed from the ultraviolet light for
several hours, the original relaxation time is re-estab-
lished. Several different types of center are believed
to be involved, because the recovery of the cell is
characterized by several different time constants.

The relaxation times of the mercury isotopes depend
strongly on the temperature of the cell walls. Initially,
(see Fig. 39) there is a rapid lengthening of the relaxa-
tion time with increasing temperature in the tempera-
ture range of 20 —200'C. This decrease in the relaxation
rates is believed to result mainly from a decrease in the
dwell time of the atoms on the wall. Cagnac and
Lemeignan (Cag67) report an anomalous increase in the
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FIG. 39. Relaxation rates of polarized mercury atoms in a quartz
container as a function of temperature Drom (Cag67) j.

relaxation rates at temperatures above 300'C. They
suggest that a change in the structure of the quartz
walls may occur at 300'C. Above 400'C the relaxation
rates again decrease with temperature.

Z. Excited State R-elaxatiox of Mercury

Buffer gases are seldom used in ground-state purnp-
ing experiments with mercury, and, consequently,
excited-state depolarization cross sections are less
important in practice than they are for the alkali atoms.
However, excited-state relaxation has been very
interesting from a more fundamental point of view,
and it is in mercury that the phenomena associated with
radiation trapping and the inertia of the nuclear polari-
zation were first studied in detail.

Quenching rates and the mean depolarization cross
sections for the 'P& state of mercury in various foreign
gases have been measured by Cunningham and Olsen
(Cun60) and by Pickely-Rives et al. (Pik64). Barrat
et al. (Bar66) have made careful measurements of
quenching and depolarization cross sections for orienta-
tion and alignment in the 'P& state. Very detailed
studies of the relaxation of the 'PI state have been made
by Faroux and Brossel in order to test the theory of
relaxation in atoms with hyperfine structure (see
Sec. V.C.2b and the references cited there). Resonant
self-broadening of the 'P& state of mercury has been
studied by Meunier, Omont, and Brossel (Meu65) .

The effects of radiation trapping on excited-state
relaxation have been studied by Barrat (Bar58,59a,b),
and by Omont (Omo65a, c). Coherence narrowing in
the 'P'j state of mercury has been studied by I.ecler
(Lec68a,b) .

B. Cad,mium

Optical pumping of cadmium was first reported by
Lehmann and Brossel (Leh64a, c) . The isotopic struc-

O

ture of the 3261-A intercombination lines is shown in
Fig. 40. Both depopulation and repopulation pumping
are possible with the 3261-A intercombination line,
since the 'P& excited-state hyperfine structure is well
resolved optically. However, because of the small
oscillator strength of the intercombination line, the
pumping rates are lower than those which can be
obtained with the 2288-A resonance line. Adequate
vapor pressures for pumping with the 2288-A resonance
line are obtained at 120'C, while temperatures of around
200'C are required to fully utilize the weakly absorbed
3261-A intercombination line. Careful cell bakeout
procedures are required to prevent outgassing at these
high temperatures.

The 3261-A intercombination line can be used for
transmission monitoring of polarized cadmium vapor,
and it is clear from Fig. 40 that several even isotopes of
cadmium, among them "Cd and "Cd, can be used to
probe the vapor in paramagnetic Faraday-effect
experiments (Leh67) .

The 2288-A resonance line cannot be used for trans-
mission monitoring or depopulation pu, rnping because
the 'P& excited-state hyperfine structure is small com-
pared to the Doppler width of the absorption line.
Repopulation pumping is, however, still quite effective
since the hyperfine splitting of the 'P& excited state is
somewhat larger than the natural width of the excited
state.

Lehmann (Leh64a, 67,69) has shown that the prob-
ability p+ that the nuclear spin of a spin —', isotope be
Ripped in the excited state is at most

P+= (a/Z')'Ll+2(a/P) j '

where a is the magnetic dipole-coupling constant of the
excited state, and F— is the excited-state lifetime. The
maximum Qipping probability occurs at a critical
magnetic field

H = a/2ggpp.

The field dependence of the Gipping probabilities
for Cd'" and Cd'" were shown in Fig. 10. The max-
imum Aipping probability for various Group II iso-
topes is shown in Fig. 41. Note that for all the mer-
cury isotopes, the Ripping probability is close to the
upper limit of 50%, while in "'Cd and '"Cd the Ripping
probability is still about 43%. However, a very small
flipping probability is to be expected for '7Zn, where-the
ratio (a/F) is much less than unity.

One remarkable feature of the repopulation pumping
via the 'PI state is that orientation of the ground state
can be achieved even with unpolarized pumping light at
intermediate values of the static magnetic field. (Leh67) .
Also, the pumping efIIciency as a function of magnetic
field can be used to determine the sign of "a" (Leh67) .
Unusual light shifts due to real transitions occur when
a and F are approximately equal, and complete expres-
sions for these light shifts and pumping rates have been
calculated by Lehmann (Leh67, 69) . Most of the
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coupling of the nucleus to the fluctuating electric 6eld
gradients, which the atom experiences while it is stuck
to the walls (Led68b). The spin--', isotopes '"Cd and
'"Cd relax via some sort of magnetic interaction. A
comparative study of wall relaxation in the cadrniurn
and mercury isotopes has been reported by I ehmann
and Brossel (Leh66) .

Fro. 40. Isotope shifts
and hyperfine structures
of the cadmium isotopes
(from (Leh67) j.
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theoretically predicted results have been observed
experimentally by Lehmann (Leh67). Since trans-
rnission monitoring is impracticable, fluorescence
monitoring is used with 2288-L resonance light

The radioactive isotopes '"~Cd '"Cd, and '"~Cd
have been optically pumped by Chancy and Mc-
Dermott (Cha69). They used the 3261-A intercom-
bination line from an intense lamp, and they detected
the pumping by fluorescence monitoring.

Wall relaxation of the cadmium isotopes is quite
similar to that of the mercury isotopes. The spin ~~

isotope '~Cd is known to relax via a quadrupolar
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Fro. 42. The low-lying energy levels of orthohelium /from
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FIG. 41. Singlet pumping efficiency in Group II atoms as a
function of A/r Drom (Leh67)].

radiation has been reported. However, Spence and
McDermott (Spe67) have reported optical pumping of
s'Zn with the 3076-A. intercombination line. Successful
pumping was achieved in spite of the very small
oscillator strength by using very intense lamps. Never-
theless, pumping rates probably did not exceed one
hertz. Polarization was detected by fluorescence

monitoring. The zinc vapor was contained in a quartz
cell which was maintained at a temperature of 525'C.
The transverse relaxation time was estimated to be
about 60 msec, so that the zinc atoms were able to make
hundreds of bounces against the cell walls without being
depolarized (cell-transit times were on the order of 0.1
msec) .
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FIG. 43. A typical optical pumping experiment with metastable
helium Drom {Co160}j.

IX. HELIUM

The pumping of helium has an importance compa-
rable to that of the alkali atoms, since optically pumped
helium is used in the construction of magnetometers
(Sch63b, 64a), as a source of polarized electrons
(McC69), to prepare polarized 'He nuclei (Phi62),
(Bak68), and to polarize ions via the Penning reaction
with atoms and molecules (Sch69a, 70a) .

Franken and Colegrove (Fra58b), (Co160) have
shown that the metastable 'SI state of helium can be
optically pumped by the I0,830-A resonance line of the
transition 2'SI—2'P~. The pertinent energy levels are
shown in Fig. 42. A simple experimental arrangement
is shown in Fig. 43. Triplet metastable atoms are
produced in helium gas at a few Torr pressure by a weak
rf discharge. The ground-state helium atoms serve as a
buffer gas for the metastable atoms, which are produced
in concentrations of 10'o—10" atoms/cm'. Electrodeless
discharge lamps or electrode-containing lamps are both
used as sources of pumping light. Photomultiplier tubes
suitable for use at IO 830-.4 have low quantum eKcien-
cies and high dark currents, and silicon photodetectors
or lead su6de photoconductors are found to be almost as
satisfactory as photomultiplier tubes.

Depopulation pumping (or transmission monitoring)
is possible if the three D lines have unequal intensities,

D. Barium

Optical pumping of the barium isotopes "'Ba and
"'7Ba has been reported by Olschewski and Otten
(Ols66) .They used the 5535-A resonance line ('So—'P~),
for which the pumping scheme is similar to that of the
singlet pumping in mercury and cadmium. Because of
the highly corrosive nature of the barium vapor, it was
necessary to use a buGer gas to keep the vapor away
from the glass windows.

E. Ytterbium

Optical pumping of the odd ytterbium isotopes
'~'Yb and ' 'Yb has been reported by Olschewski and
Otten (Ols67). The pumping scheme is similar to that
of mercury. Temperatures of about 350'C are required
for adequate vapor pressure.

but for broad-line pumping light only repopulation

pumping can occur. A typical spectral pro61e for the
2'PI-2 SI line is shown in Fig. 44. The DI and D2 lines
overlap almost completely and are often called the D3
line. The lifetime of the 'P& state has been measured by
Landmann (Lan68) who reports a value of 99&8 nsec.

Schearer et al. (Sch63a) have shown that the isotope
shift between the 'He and 'He resonance lines can be
put to good use in optical pumping experiments. The
Da line of 4He overlaps the Dj line of 'He. In low-pressure
experiments (p&0.1 Torr) there is little depolarization
of the excited state, and repopulation pumping is quite
e%cient. Vnder these conditions good pumping can be
obtained by illuminating 4He atoms with light from a
4He lamp or by illuminating 'He atoms with light from a
'He lamp. However, at higher pressures, the repopula-
tion pumping is suppressed by excited-state mixing,
and narrow-line depopulation pumping is required to
polarize the atoms. Vnder high-pressure conditions it is
best co pump 4He atoms with a 'He lamp, or, alterna-
tively, one should pump 'He atoms with a 4He lamp.

The 'S& state can be pumped with circularly polarized,
linearly polarized, or unpolarized light. Schearer
(Sch68b) has studied the pumping of '5, atoms with
unpolarized light in some detail.

A. Optical Pumping of He'

Walters, Colegrove, and Schearer (Wal62), (Co163)
a,nd Greenhow (Gre63) have shown that large nuclear
polarization of 'He can be obtained by opticallypumping
the 'S& state. The nuclear polarization produced by
optical pumping in the 'S~ state is preserved when the
excitation energy of the atom is passed on to a colliding
ground-state atom. The original atom is left in the 'So
ground state with a polarized nuclear spin. Nuclear
polarizations of up to 40/& (Co163) have been produced
in this way in gaseous 3He.

Because of the nuclear spin, the ground-state 'He
atoms provide a large reservoir of angular momentum
which takes many minutes to polarize at typical
optical pumping rates. Thus, the optical pumping
transients are orders of magnitude longer in 'He than
in any other opticallypumped system. Also thepolarized
'He atoms are extremely resistant to depolarization by
wall collisions, and relaxation times of many hours are
not uncommon.

Dehmelt (Deh64) has pointed out that for optically
pumped 'He a small shift of the ground-state magnetic
resonance frequency should occur because each 'He
atom spends a small fraction of time in the rapidly
precessing 'S~ metastable state.

More detailed studies of metastability exchange
involving 'He atoms have been reported by Dupont-
Roc et aL (Dup71). They point out that the nucleus
remains inert during the metastability exchange, and
that this leads to a strong coupling of the ground-state
nuclear polarization to the polarization of the Ii =

~ and.
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Ii =-,' components of the triplet metastable state. This
coupling causes the exchange-induced linewidths of the
F=~ and Ii=-', magnetic resonance curves to differ.
Experimental confirmation of these effects was ob-
tained by Dupont —Roc el al. , (Dup71).

McAdams and Walters (McA67, 68) have used
optical pumping of saturated 'He vapor to polarize
liquid 'He up to 0.15%.The vapor was connected to the
cold liquid by a long diffusion tube, and the ultimate
degree of liquid polarization seems to be limited by the
length of the diffusion tube and by the time the polar-
ized atoms spend attached to the walls of the tube.
Most angular momentum loss appears to occur on the
cold parts of the tube, where the dwell time of the 'He
atoms on the wall is long.

B.Relaxation of Helium-3

There are at least four distinct relaxation mechanisms
for optically pumped 'He. The most important mech-
anisrn is the relaxation caused by the pumping light.
The next most important is motion through an in-
homogeneous magnetic field. The moving atom experi-
ences a Quctuating magnetic field whose Fourier com-
ponents cause transition between the magnetic sublevels
(see Sec. III.B.S). Relaxation in an inhomogeneous
field has been studied in detail by Gamblin and Carver
(Garn65) and by Schearer and Walters (Sch65), who
find good agreement between theory and experiment.
The most complicated relaxation mechanism is relaxa-
tion at the walls of the container, which has been studied
by Fitzsimmons, Tankersley, and Walters (Fit67).
They found that their experimental results can be
interpreted by assuming two different relaxation
mechanisms, adsorption-controlled relaxation and per-
meation-controlled relaxation. At low temperatures the
'He is readily adsorbed to the walls. It is believed that
the 'He interacts with some kind of paramagnetic
centers on or near the glass surface. There does seem to
be a magnetic field dependence of the relaxation rate,
but so far no information about the correlation time of
the perturbation has been obtained. Permeation-
controlled relaxation involves the solution of the helium
atoms in the material of the container walls. Since the
helium dissolves more readily at higher temperatures,
permeation-controlled relaxation tends to dominate at
high temperatures. Support for this model comes from
the fact that one can obtain much longer relaxation
times with aluminosilicate glasses (Fit67), in which
helium is known to dissolve poorly, than with Pyrex or
quartz, in which helium dissolves more readily.

Fitzsimmons et al. (Fit69) have reported relaxation
times as long as nine days for 3He in an aluminosilicate
cell at a 500-Torr pressure and at a temperature of
100'C. These relaxation times are comparable to the
expected bulk relaxation due to spin —spin interactions
between the helium nuclei; and ultimately, spin —spin-
limited relaxation times of months to years may be
attainable.

He

0.5 em '

He

cs4
I

CO

t
~le

II

T

t
~Op

II

T
I

I

~ 0
'e I I

I

I
40

I

I

I

I

I

I

I

I

I
I

I

I

a) Theoretical

He'

b) Experimental

O0
I

Cg

He

I0 830 A LINE STRUCTURE IN He AND He

Fro. 44. Isotope shift and hyperhne structure of the helium
isotopes )from (Gre64) g.

C. Excitation Transfer and Diffusion of Helium
Metastable Atoms

One of the most important processes in the optical
pumping of 'He is the exchange of excitation between
polarized'S~ metastable atoms and ground-state atoms.
This process has little effect on optically pumped 4He,
since the electronic-spin angular momentum is con-
served during the process. In 'He the nuclear spin is
not affected during the very short excitation-transfer
collision, which is completed within 10 " seconds.
During the intervals between collisions the nuclear and
electronic spins couple together, and the whole ensemble
will eventually reach a spin-temperature equilibrium.
The metastability-exchange rate makes a contribution
to the linewidth of the magnetic resonance transitions
of the atom. Studies of the magnetic resonance line-
width by Colegrove, Schearer, and Walters (Co164) have
made it possible for them to estimate the mean cross
sections for rnetastability exchange in helium. They
found (see Fig. 45) that the exchange cross section
decreases rapidly with decreasing temperature. The
cause of this behavior is thought to be a repulsive lip
in the interaction potential between atoms in 1'So and
2'Sy states. The cross section measurements of Colegrove
el al. (Co164) are consistent with those of Greenhow
(Gre64), who obtained a mean metastability exchange
cross section of 7)&10-" crn' at room temperature.
However, as Dupont —Roc el al (Dup71) have p.ointed
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resonance studies of some of the excited states of Cd+
and Zn+ which were polarized by Penning ionization
with optically pumped. helium metastables.

Polarization by Penning ionization is closely related
to spin exchange, and is based on the fact that the
electronic spin polarization of the helium n1etastable
atom is shared by the free electron and the ion produced
by the Penning reaction. The spin polarization can
subsequently be transformed by the spin —orbit
intel action into polarization of the orbital angular
momentum of the ion. As a spectroscopic technique,
polarization by Penning ionization should be at least as
important as polarization by spin exchange.

TE M P ERATURE ( K)

FIG. 45. Temperature dependence of the helium metastability
exchange cross section Drom {Fit68)].

out, it is necessary to eliminate the eGects of nuclear
spin to obtain true metastability exchange cross sections
from data on 'He.

Fitzsimmons, Lane, and Walters (Fit68) have
measured the diffusion constant for metastable helium
atoms in helium. The diffusion constant also drops
rapidly with temperature, and it was possible to obtain
empirical parameters for an adjustable potential which
was consistent with the excitation-transfer rates and
with the diffusion constants.

D. Depolarization of the 'P State

The 'I'g excited states of helium are quite sensitive to
collisional depolarization, and Schearer (Sch67,68b)
has measured an effective cross section for transitions
out of the 'Po level of 68 A', for collisions with ground-
state helium atoms. Landmann (Lan68) has measured
an alignment depolarization cross section of 56 A' for. the
'Pj state.

E. Polarization by Penning Ionization

An important technique that makes use of optically
pumped helium rnetastable atoms has been developed
by Shearer (Sch69a). Metastable helium atoms are
optically pumped in a Qowing afterglow of a plasn1a
(see Fig. 46). Atoms (e.g. , cadmium atoms) are in-
troduced into the afterglow from an oven. The cad-
mium atoms are ionized by Penning collisions with the
polarized metastable helium atoms. The cadmium ions
are produced in various excited states, and the ions are
found to be strongly polarized because of the initial
polarization of the helium metastables. The polarization
of the excited ions can be easily monitored by observing
the polarization of the Quorescence light that is emitted
when the Quorescent ions decay. Fractional polariza-
tions of up to 10% in the 'Ds~s state of Cd+ have been
observed by Schearer (Sch67a) .

Schearer and Holton (Sch70a) have reported magnetic

F. Other Polarization Mechanisms Involving
Optically Pumyed Helium

Laloe (Lal68c) has shown that the polarized nuclear
spins of optically pumped 'He act as Qywheels for
angular momentum during electron excitation. The
nuclear polarization is retained in any excited state of
helium produced by electron bombardment. If the
coupling of the nucleus to the electrons in the excited
state is strong enough, some of the nuclear polarization
is converted to electronic polarization. The electronic
polarization can be detected by observing the degree of
polarization of the Quorescent light emitted by the
excited atoms. Pavlovie and Laloe (Pav69) have
measured the hyperine structures of a number of
excited states in helium by electron excitation of
optically pumped 'He.

Sevast'yanov and Zhitnikov (Sev69) have reported
that optical pumping of the triplet metastable states of
helium decreases the electron density of a weak elec-
trical discharge in helium gas. Destruction of the polari-
zation of the metastable state causes an increase in the
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I' IG. 46. Polarization by Penning ionization. Penning ioniza-
tion of atoms by optically pumped helium metastable atoms
produces polarized ions in the ground state and in various excited
states. The polarization can be detected by observing the polarized
fluorescent light emitted by the excited ions or by transmission
monitoring with ionic resonance radiation )from {Sch69a)].
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electron density and, for weak electrical discharges,
an increase in the light emission of the plasma.

For strong electrical discharges, the increase in elec-
tron density at resonance is accompanied by a decrease
in light emission. Sevest'yanov and Zhitnikov (Sev69)
suggest that these eQ'ects may be associated with
changes in the relative populations of the 2'Si and 2'P
states at magnetic resonance.

McCusker, Hat6eld, and Walters (Mc69) have
shown that the rate of the reaction

He{2sS,)+He(2'S')~He(1'So)+He++e

6s Sp7s2

4OSeA

MF

3/2
F 3/2 ii

I/2
—I/2
-3/2

t ~ . . )(2
F=I/2 j ll

-i/2

is strongly dependent on the orientation of the meta-
stable triplet atoms. The reaction rate almost vanishes
when the metastable atoms are fully oriented since the
total spin angular momentum cannot be conserved under
such conditions. Shearer (Sch70b) has shown that the
electron density varies by asmuch as 5% in an optically
pumped Qowing afterglow when the helium atoms are
oriented.

Schearer (Sch68d) has shown that when metastable
helium atoms are optically pumped in the presence of a
small amount of neon, the excited neon atoms, which
are produced by collisions of the second kind with
helium, are polarized. Presumably, this involves the
same spin-conservation rule that is responsible for
polarization by spin exchange or Penning ionization.

X. OTHER OPTICALLY PUMPED ATOMS

A. Metastable States of the Heavy Noble Gases

The metastable states of neon, argon, and xenon have
been optically pumped by Schearer (Sch68a, 69b,c).

The metastable 'P~ state has a remarkably small
depolarization cross section compared to the 3P2 state
of an atom such as mercury. For instance, the mean
depolarization cross section of the 'P2 state of neon in
helium is reported by Schearer (Sch68a) to be only
4.3)&10 ' cm'. These anomalously low depolarization
cross sections are not yet completely understood, but
they seem to be associated with the anomalously small
tensor polarizability of the sos state of neon (Rob66).

Metastable 'P2 atoms are produced by a weak electric
discharge in an inert gas at a pressure of a Torr or less.
Helium can be used as a buffer gas for the heavier inert
gases (Sch69c). The states can be pumped with any
one of several resonance lines, and in neon the 6402-A
line ('Fs~'Ds) gives excellent pumping.

The depolarization cross sections of the 'P~ metastable
states in argon and xenon are larger than the correspond-
ing depolarization cross sections for neon. Systematic
studies of mean depolarization cross sections for
polarized metastable states of inert gases have been
made by Schearer (Sch69d). It is usually necessary to
use a lighter noble gas as a buffer gas for a heavier
noble gas, since excitation transfer to the buGer gas can

2833A

6s Sp
'P F =I/2 I/2

-I/2
ZE'EMAN

Fro. 47. The low-lying energy levels of lead /from (Gib69a) g.

take place otherwise, causing very rapid depolarization
and de-excitation to occur.

S.Lead

Optical pumping of lead has been reported by Gibbs,
Greenhow, and Chang (Gib69a, b). The low-lying
energy levels of lead are shown in Fig. 47. Temperatures
of around 600'C are required to provide an adequate
vapor pressure of lead atoms. The pumping mechanisms
for the 'Pp ground state are analogous to those of 'Sp
atoms, such as mercury, cadmium, and zinc. However,
the repopulation pumping does not occur with maximum
eSciency, because the 'P& excited state can decay to the
'P2 and 'P~ metastable states as well as to the ground
state, and the branching ratio to the ground state is
only about 0.27 (Sa166). Gibbs et at. make the reason-
able assumption that the atoms which decay to the
'P& and 'P& metastable states are completely depolarized
before finally reaching the 'Pp ground state.

Transmission monitoring or depopulation pumping
of the 'Pp ground state of 'PVPb is Possible only if the
F=rs and F= sshyPerfine comPonents (A —and. A+)
of the probing light have different intensities. Gibbs
ensured that the two different hyperfine components
had diGerent intensities by inserting a ' 'Pb filter cell
between the'"Pb probing beam (which also served as
the pumping beam) and the photo-detector. The 61ter
cell, 6lled with 400 Torr of helium and operated at 550'C,
removed the A+ component of the resonance light. A
lead fiow lamp, described by Churchill (Chu70),
can be used to provide an intense source of resonance
radiation.

Gibbs and Chang (Gib71b) have also reported
pumping of the 'P2 and 3P~ metastable states of both
' 'Pb a,nd "Pb. Pure repopulation pu~ping from the
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Fro. 48. The low-lying energy levels of thallium. (From (Gib70a) ].

excited state was employed, and. the degree of
polarization was detected by transmission monitoring
with 3639-A and 4058-A light.

The polarized 'Po ground-state atoms can make about
50 collisions against quartz walls before the orientation
is lost (Gib69c). Buffer gases are found to have ex-
tremely small disorientation cross sections for the
ground state. For "Pb, Gibbs and White (Gib69c)
have shown that the cross sections do not exceed 10 "
cm for He, Ne, Ar, Kr, Xe, H~, and N~. The relaxation
times for an evacuated cell could be lengthened con-
siderably by admitting several Torr of hydrogen in the
cell and letting it stand for several hours. When the cell
was evacuated again the relaxation times were found to
increase by a factor of 2 to 3. The enhanced relaxation
time persists for several hours at 625'C. The reason for
this behavior is not known.

Very little information on the relaxation of the 'P~'
excited state is known. Gibbs ( Gib69c) has shown that
the hyperfine coupling in the excited state is so strong
that at least 400 Torr of helium can be added without
decoupling the electronic and nuclear spins and thereby
preventing optical pumping. Saloman and Happer
(Sa166) have investigated the relaxation of the sI'io

state by coherence narrowing and resonant self-
broadening. From the coherence narrowing they esti-
mate a branching ratio to the ground state of 0.27, and
the resonance self-broadening cross sections are in
reasonable agreement with theoretical estimates.

Systematic studies of the depolarization and quench-
ing cross sections of the 'P~ and 'P2 metastable states
and of the 'P~' excited state of lead have been reported
by Gibbs (Gib71b). The disalignment cross sections
(&20%) in A' for the 'J'i and 'Es states, respectively,
are: He, 27, 36; Ne, 27, 35; Ar, 51, 59; Kr, 64, 76; Xe,
123, 159; H2, 26, 39; N2, 73, 88. The 'P'j quenching cross
sections were found to be less than 10 " cm' for the
rare gases, (1.3X10 " cm' for N, , 24(5) X10 " cm'
for Hs, and 0.3X10 's cm' for D&. Gibbs ( Gib71b) also
reports a radiative lifetime of 53&30 msec for the 'P~
metastable state. .

C. Thallium

We have attempted to collect (and read) all papers
on optical pumping of ground-state atoms and ions.
We have arranged these papers by year of publication
in the bibliography. For internal reference we have
labeled each paper by the 6rst three letters of the 6rst
author's name and by the last two digits of the publica-
tion year. An additional index a, b, c, etc. , is added if
it is necessary to distinguish between otherwise iden-
tical internal references. We have found it useful to cross
reference these papers by subject matter, and we
have included our Table of cross references in this
section.

Pumping Theory and Basic Phenomena

Han24
Kas50
8ro52a
Con53
Ope53
Fra57
Blo68

Hanle Effect
Proposal of Optical Pumping
Optical Double Resonance
The Theory of Atoseic Spectra
Paramagnetic Faraday Effect
D1 Pumping in Alkalis
Self-Filtering of Pumping Light

Optical pumping of thallium has been reported by
Gibbs et al (.Gib70a). The pertinent energy levels of
thallium are shown in Fig. 48. Pumping is possible
because the electron randomization cross sections for the
'P&~& ground state are quite small, and Gibbs et al.
(Gib70a) report the following cross sections (at 610'C,
in units of 10 "cm' with a 30% uncertainty); He, 60;
Ne, 14; Ar, 110; Kr, 220; Xe, 620; H~, 380; N2, 920.
Since the ground-state electronic spin is —'„the nuclear
spin slows down the relaxation rates in the same way as
in the alkali atoms, and the eigenobservables are the
same as for alkali atoms (e.g. , I J, E„Q„etc.; see Sec.
V.B.4); but since the nuclear spin is —', for both TP"
and Tp", I, and 8, are essentially the same eigenob-
servable and they relax at half the electron randomiza-
tion rate. Evacuated cell-relaxation times could be
lengthened by a factor of 5 by leaving H2 gas in the cell
for a few minutes before evacuation.

The small depolarization cross sections for the 'P~i2
state of thallium in inert gases are consistent with the
anomalously small depolarization cross sections for
rubidium and cesium. The cross sections scale approxi-
mately as (AE) ', where AE is the fine structure in-
terval from the P~~i~ to the 'P3~~ state. Earlier experi-
ments which seemed to indicate depolarization cross
sections in excess of 10 'r cm' (Fra67) have not yet
been explained. Depolarization cross sections in the
'P3~. state are on the order of 104 times larger than the
corresponding 'P~~2 cross sections. Collisional transfer
cross sections between the 'P~~~ and 'P3~~ states were too
small to be measured, but Gibbs et 0/. quote an upper
limit of 2&(10 " cm' for the transfer cross section in
neon.

XI. REFERENCES
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Kop58
Bar61a
Bar61b
8ar61c
8ar61d
Bar61e
3el61b
Boe61
Coh61a
Coh61b
Coh61c
Fra61
Kas61
Rai61
Coh62a

Ale63a
Ale63b
Leh64a

Leh64b
Lur64
Ros64

Bou65a

Deh65
Ros65

Ska65

Buc66

Car66
Qua66

Ros66

Ser66
Vio66
Hap67c

Kra67

Leh67
Lorn67
Xov67a
Ros67

Bay68

Cap68
Duc68
Dup68a
Fra68

Ham68
Hap 68b
Pok68a
Vio68
Hap69
Kra69

Leh69
Van69
Sch70c
Var70

Relaxation

N'ucLear 3fonzents
Density Matrix in Optical Pumping
Density Matrix in Optical Pumping
Density Matrix in Optical Pumping
Density Matrix in Optical Pumping
Density Matrix in Optical Pumping
Pumping With Modulated Light
Measurement of (5, ) in Alkalis
Light Shifts due to Virtual Transitions in '"Hg
Line Narrowing Due to Real Transitions in '9PHg

Light Shifts Due to Real Transitions in '99Hg
Level-Crossing Theory
Excitation with Modulated Light
Measurement of (S,) in Alkalis
Density Matrix Theory of Optical Pumping, Light
Shifts, Line Narrowing and Broadening.
Excitation with Modulated Light
Discussion of Field Reversal Method; see (Deh65)
Effect of Excited-State hfs on Pumping of Sp
Atoms
Ground-State Hanle Effect
Hanle EfFect
Modulated Fluorescent Light at Ground-State
Resonance
Proportionality and Attenuated Light to Ground-
State Observables
Clarification of Field-Reversal Method
Modulated Fluorescent Light at Ground-State
Double Quantum Resonance
Modulated Fluorescent Light at Ground-State
Double Quantum Resonance
Detection of Optical Pumping by Atomic Beam
Deflection
Monitoring Operators
Resonant Coupling of Ground-State to Excited-
State Coherence
Resonant Coupling of Ground-State to Excited-
State Coherence
Light Modulation at Very Low Fields
Theoretical Pumping Transients for Alkalis
Semiclassical Optical Pumping Theory; Multipole
Representation.
EfFect of Ground-State Polarization On Level
Crossings
Pumping of 'Sp Atoms with Small hfs.
Mixing of Multipolarities by Electric Field
Pumping with Modulated Light
Resonant Coupling of Ground-State to Excited-
State Coherence
EfFect of Ground-State Polarization On Level
Crossings
Multipole Representation for Optical Pumping
Polarization Transfer by Spontaneous Emission
Xonexponential Relaxation
Modulated Fluorescent Light a& Ground-State
Double Quantum Resonances
Comment on Semiclassical Theories
Partial Wave Expansion of Rotation Operator.
Optical Pumping Theory
Theoretical Pumping Transients for Alkalis
Optical Pumping Theory
EfFect of Ground-State Polarization On Level
Crossing
Pumping of 'Sp Atoms with Small hfs
Optical Pumping Theory
Alkali Level Crossings
Polarized Atoms and Molecules in Space

8ou62a
8ou62b
Bou63a
8ou63b
Coh63

Har63
8yr64a
Her64
McN64b
Ber65

Gam65
Omo65b
Sch65

Bou66a

Erm66

Fra66a

Fra66b
Meu66
Min66b
Xov66
Ruf66
Ban67
Mas67

Xov67c
Elb68
BouN
Elb69
Bou70
Hap70
Okuio
Xov71

Light Shifts

Ard61
Coh61a
Coh61c
Coh62a
Coh62b
Sch62
Ale66
Bon66
Pan66
Dup67a

Dup67b
Hap 67c
Hap 67b

Leh67
Cag68
Dup68b
Dup68c

Jon68
Mat68b
Sch68e
Ver68
Coh69
3ul71a
Hap71

Shifts of 0—0 Transition Frequency in Alkalis
Shift Due to Virtual Transitions in 'P'Hg
Shift Due to Real Transitions in '"Hg
Summary of Shifts in Hg
Summary of Shifts in '"Hg
Light Shifts in Helium
Shift Due to Laser
Shift Due to Laser
Semiclassical Theory
Free Precession of '~Hg Around Circularly Polarized
Light
Large Shifts in Mercury
Multipole Expansion of Light Shift Operator
Magnetic Resonance with Modulated OfF-Resonance
Light
Shift Due to Real Transitions in Cadmium
Tensor Light Shift in ' 'Hg
Ground-State Level Crossings Due to Light Shifts
Magnetic Resonance for hnz=2 Transition with
Modulated Light
Derivation with Green's Functions
Shifts Due to Virtual Transitions in Alkalis
Shifts in Helium
Semiclassical Theory
Mixing of Multipoles with Tensor Light Shift
Shifts due to Real Transitions in Alkalis
Light Propagation and Light Shifts

Measurement of Alkali Relaxation
Relaxation of Rubidium on Paragon Walls
Theory of Wall Relaxation of Alkalis
Theory of Wall Relaxation of AlkaHs
Wall Relaxation due to Quadrupole Coupling in
2P1Hg

EfFect of UV Light on Quartz Surfaces
Depolarization by the Van der Waals Interaction
Relaxation of Alkalis by Spin —Orbit Interaction
Optical Pumping and Chemical Reactions
Absence of Electrostatic Interactions in 'S~12
States
Relaxation Due to Inhomogeneous Magnetic Fields
Depolarization by the Van der Waals Interaction
Relaxation Due to Inhomogeneous Magnetic
Fields
Experimental Methods to Measure Alkali Relaxa-
tion
Use of Polarization of Fluorescent Light to Study
Relaxation
Effect of Excited-State Relaxation on Alkali
Pumping
Excited-State Depolarization of Alkalis
Comparison of Resonant Self-Broadening Theories
Effect of Higher DifFusion Modes
Measurement of Transverse Relaxation Time
Spin Echoes in Sodium
Variant of Relaxation in the Dark
Analysis of DifFusion with Partially Disorienting
Walls
Spin Echoes
Comment on Selection Rules
Analysis of Relaxation by Molecular Formation
Depolarization of Excited Alkali Atoms
Analysis of Relaxation by Molecular Formation
Multipole Relaxation Times
Relaxation of 'P3~2 States of Alkalis
Spin Echoes in Cesium

Dic53
3ro55b
Pin55
Rob58
Fra59
Blo60a
Ber62

Collisional Narrowing of Doppler Width
Buffer Gas for Alkalis
Simple Theory of Spin Relaxation
Wall Coatings for Alkalis
Relaxation-in-the-Dark Method
Alkali Relaxation
Relaxation of Alkalis by Spin —Orbit Interaction

Pressure Shifts

Ard58a
Ard58b
Ard58c
Mar59
Adr60a

Shifts of 0—0 Frequency of Sodium
Shifts of 0—0 Frequency of Cesium
Shifts of 0—0 Frequencies of Sodium and Cesium
Theory of Shifts in Alkalis
Theory of Shifts for Hydrogen Atoms
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Theory of Shifts f'or Nitrogen Atoms
Shifts of 0—0 Frequency of Potassium
Theory of Shifts in Alkalis
Shifts of 0—0 Frequency of Cesium and Rubidium
Correction to Mar59
Shifts of 0—0 Frequency of Hydrogen in Helium
Shifts of hfs Frequencies of Nitrogen
Large Shift of 0—0 Frequency of Rubidium in
Benzene
Shifts of 0—0 Frequency of Sodium
Shifts of 0—0 Frequency of Hydrogen in Krypton
and Xenon
Theory of Pressure induced gz Shifts
Shifts of 0—0 Frequency of Cesium in Molecular
Buffer Gases
Nonlinear Shift of Rubidium 0—0 Frequency at
High Pressure
Theory of Temperature Dependent Shifts
Theory of Shifts for Lithium and Sodium in Heliun;
Temperature Dependence of Nitrogen Pressure
Shifts

Adr60b
Blo60b
Rob60
Ard61
Her61
Cla62
Lam63
Bre64

Ram65
Ens68

Her68
Ber69

Ens69

Rao69
Ray70
Wei70

Forward Light Propagation

Rapid Modulation of Diamagnetic Faraday Effect
Paramagnetic Faraday Effect for Detection of
Spin Resonance
Paramagnetic Faraday Effect for Detection of Spin
Resonance
Modulation of Light Beam by Precessing Atoms
Modulation of Light Beam by Precessing Atoms
Paramagnetic Faraday Effect for Detection of Spin
Resonance
Paramagnetic Faraday Effect for Detection of Spin
Resonance
Paramagnetic Faraday Effect for Detection of Spin
Resonance
Paramagnetic Faraday Effect in Mercury
Faraday Effect in Sodium Vapor
Proportionality of Attenuated Light to Ground-
State Observables
Effect of Excited-State Magnetic Resonance on
Light Propagation
Transmission Light Modulation at "K hfs
Frequency
Transmission Light Modulation in Helium
Paramagnetic Faraday Effect in Sodium
Theory of Light Propagation in Polarized Vapors
Transmission Light Modulation at '9K hfs Fre-
quency
Paramagnetic Faraday Effect and Zeeman Light
Shifts
Light Propagation in "'Hg
Light Propagation in 2f)&Hg

Transmission Light Modulation at 'Rb hfs Fre-
quency
Light Propagation in Cesium
Light Propagation in Helium
Theory of Light Propagation in Polarized Vapors
Light Propagation in Cesium
Light Propagation. in Hejium
Relation of Light Propagation to Polarization of
Vapor
Relation of Light Propagation to Polarized Vapor
Light. Propagation in Alkali Vapors
Parametric Frequency Conversion in Rb Vapor
Light Propagation and Light Shifts

Han33
Kas51

Ope53

Bel57
Deh57b
Dan58a

Dan58b

Goz62

Man63
Sch64b
Bou65a

Cor66

Fir66

Par66
Str66
Coh67
Fir67

Hap 67a

Lal68a
Lal68b
Mat68a

Nov68a
Pan68
Ver68
Yab68
Kor69
Lal69a

Lal69b
Mat70
Tan70
Hap71

Fluorescent Light

Hanle Effect
Optical Double Resonance
Fluorescent Light Modulation
Excitation with Modulated Light
Scattering of Modulated Light
Hanle EfFect /

Han24
8ro52a
Dod59
Ale63a
Kon63
Lur64

Kib65
Ser66

Stepwise Excitation
Modulated Light with Optically Pumped Ground-
State
Fluorescent Light From Laser
Fluorescent Light From Laser
Effect of Anomolous Dispersion on Hanle Effect
Light Scattering Theory

Dec68
Dum68
Lec68a,b
Pok68c

Trapping of Resonance Radiation

Coherence Narrowing in Mercury
Coherence Narrowing in Mercury
Coherence Narrowing in Mercury
Theory of Coherence Narrowing
Theory of Coherence Narrowing
Coherence Narrowing in Large Magnetic Fields
Frequency Shifts due to Trapping
Coherence Narrowing in Large Magnetic Fields
Multipole Relaxation with Radiation Trapping
Multipole Relaxation with Radiation Trapping
Frequency Shifts due to Trapping
Effect of Ground-State Polarization on Coherence
Narrowing
Coherence Narrowing in Laser

Gui56
Gui57
Bar58
Bar59a
Bar59b
Omo61
Omo64
Ott64
Dya65
Omo65a
Omo65c
Meu66b

Dum68

Spin Exchange

Spin Exchange in Hydrogen
Spin Exchange in Hydrogen
H—Na Spin Exchange
e—Na Spin Exchange
e—Na Spin Exchange
K—Na Spin Exchange
N—Rb Spin Exchange
Rb—Na Spin Exchange
N—Na Spin Exchange
H, D, and T—Rb Spin Exchange
H, D, and T—Rb Spin Exchange
He' —Rb Spin Exchange
Spin Temperature in Sodium Vapor
Partial-Wave Analysis of Spin Exchange
He+—Cs Spin Exchange
N—Cs Spin Exchange
P—Rb Spin Exchange
H and T—Rb Spin Exchange
Spin Temperature in Sodium Vapor
Theory of Frequency Shift and Linewidth for H—H
Exchange
Spin —Exchange Theory
Spin Temperature in Alkali Vapors
Frequency Shifts for Rb—e Exchange
Frequency Shifts for Cs—e Exchange
Frequency Shifts due to Electron Exchange
Theory of Spin Exchange in Alkali Vapors
Rb—Cs Spin Exchange; No Cs Polarization.
Rb—Cs Spin Exchange; Relaxation of (I.S ).
"Rb—"Rb Spin —Exchange Cross Section
'II, T, e, g Values by Spin Exchange with Rubidium
Calculated Spin-Exchange Cross Sections For
Alkalis
Kffect of Nucleus in Spin Exchange
Relaxation of Polarization in F=I+& Level of
Alkalis
Theory of Electron-Nuclear Spin Exchange
Na —H Coherence Transfer by Spin Exchange
Calculated Spin —Exchange Cross Sections for
Alkalis
Na —e Spin Exchange; Frequency Shifts
He+—Cs Spin Exchange
Rbss Rbsv and Rbsv Csiss Spin —Exchange Cross.
Sections
K—K Spin-Exchange Cross Section
Spin-Exchange Theory and Experiments
K'7—Rb Spin Exchange
Spin —Exchange Theory
He+—Cs Spin-Exchange

Pur56
Wit56
And58
Deh58a
Deh58b
Fra58a
Hol58
Nov58
And59
And 60a
And 60b
Bou60
And61
Dal61
Deh62a
Hol62
Lam62
Pip62
And63
Ben63

Gla63
And64
Bal64a
8al64b
Ben64
Gro64a
Gro64b
Gro64c
Jar64
Bal65
Da165

Gib65
Gro65

Her65
Ruf65
Smi65

Bal66
For66
Gib67

Gro67a
Gro67c
Bes68
Gro68
Maj68
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Mit68
Bal69
Cha69b

Hof69
Kop69
Res69

Til69a
Til69b
Gei70

Gib 70b
Lam70
Cra71
Dav71
Ens71
Gib 71a
Val71a
Va171b

Rb+—Rb Spin (Charge) Exchange
Rb—Ag Spin-Exchange
Calculated Spin-Exchange Cross Sections for
Alkali Atoms
Cs—Cu Spin-Exchange
K"—Rb" and Na"—Na" Spin —Exchange
Cs"' Rb' Rb", and K" Self-Spin-Exchange Cross
Sections
N-Cs Spin-Exchange
Eu—Cs Spin-Exchange
InQuence of Spin Polarization on Effusion of Alkali
Atoms from an Orifice.
Sr+—Rb and Cd+—Rb Spin Exchange
Discussion of Nuclear Effects in Spin Exchange
Clarification of Lam70
Mn —Rb Spin Exchange
Effects of Rapid Spin Exchange
Clarification of Lam70
Rb"—H Spin Exchange
Discussion of Spin Exchange

Deh57a
Ard58a
Bel58
Har58
Boe61
Lem62
Ram64
Ros65

Jor66
Bes67
Klb67
Luk68
Stu68
Stu69
Tol70
Mor71

Potassium

Ar Buffer Gas for Sodium
Hyperfine Pumping of Sodium
Hyperfine Pumping of Sodium
Buffer Gases for Sodium
Measurement of (S, ) in Polarized Sodium Vapor
Wall Coatings for Sodium
Ground-State Relaxation of Sodium in Buffer Gases
Modulated Fluorescent Light at Ground-state
Double Quantum Resonance
Excited-State Relaxation of Sodium in Buffer Gases
Optical Pumping of Radioactive Na"
Excited-State Relaxation of Sodium in Buffer Gases
Excited-State Relaxation of Sodium in Buffer Gases
Excited-State Relaxation of Sodium in Buffer Gases
Excited-State Relaxation of Sodium in Buffer Gases
High-Intensity Sodium Lamp in Magnetic Field
Hyperfine Pumping of Sodium

Interaction With Radio-Frequency Fields

Bro53
Rab54

8ro55a
Red55

Win59
Ale64
Fav64
Fra64c
Ale65
Coh65
Po165a
Pol65b
Pol65c

Coh66a

Coh66b
Don67b
Nov68b

Pok68b

Precision Measurements

Ben62
Led66a
Led 66b
Ens67a
Ens67b
Hay68
Lad 68a
Whi68

Rb"—H Zeeman Frequency Ratio
Hg"'—Cd"' Zeeman Frequency Ratio
Cd"'—Cd"' Zeeman Frequency Ratio
Upper Limit on Electric Dipole Moment of Rb
Upper Limit on Electric Dipole Moment of Rbs'
gJ Ratios for II

p
D

p
Rbss and Rbs

Cd"'—Cd"' Zeeman I'requency Ratio
g Factor Ratios for Rubidium Isotopes

Lithium

Min69 Lithium Pumping; Special Container

Sodium

Bro52b
Bro53
Haw53
Bar54
8ro55b
Haw55
Mar55
Coh57

Optical Pumping of Sodium Beam
Multiple Quantum Transitions in Sodium
Optical Pumping of Sodium Beam
Optical Pumping of Sodium Cell
H2 Buffer Gas for Sodium
Optical Pumping of Sodium Beam
Alignment of Sodium Vapor
He Buffer Gas for Sodium

Multiple Quantum Transitions in Sodium
Analysis of Magnetic Resonance in Rotating Co-
ordinates
Bloch—Siegert Shif ts
Magnetic Resonance in Rotating Coordinate
System
Multiple Quantum Transitions
Parametric Resonance
Parametric Resonance
Multiple Quantum Transitions
Parametric Resonance
Parametric Resonance
Parametric Resonance
Parametric Resonance
Interpretation of Parametric Resonance with
Quantized Fields
Interpretation of Parametric Resonance with
Quantized Fields
g-Factor Shifts
Parametric Resonance
Parametric Resonance in Rotating Coordinate
System
Parametric Resonance in Rotating Coordinate
System

Buc56
Cha65

Jor66

Kra66a
Cop69

Kra69

Optical Pumping of Potassium Beam
Excited-State Relaxation of Potassium in Buffer
Gases
Excited-State Relaxation of Potassium in Buffer
Gases
Optical Pumping of Potassium Cell
Excited-State Relaxation of Potassium in Buffer
Gas
Effect of Ground-State Polarization on Level
Crossings

Rubidium

Ben58
Fra59

Bou62b
Bre62a

McN62

8ou63a
8ou63b
8ou63c
Ard64

Bre64
Dav64
Fra64a

Her64
Kry64

McN64a

8ou65b
Fra65

McN65
Roz65
Vid65
Win65
8ou66b
Mar66

Pit66

Aym67
Bou67
Ga167b, c

Fir68
Gal68

Rou69
Haw69

Hyperfine Pumping of Rudidium
Ground-State Relaxation of Rudibium in Buffer
Gases
Wall Relaxation of Rubidium on ParafFin
Ground-State Relaxation of Rubidium in Buffer
Gases
Ground-State Relaxation of Rubidium in Buffer
Gases
Wall Relaxation of Rubidium on ParafFin
Wall Relaxation of Rubidium on ParafFin
Wall Relaxation of Rubidium on ParafFin
Ground-State Relaxation of Rubidium in Buffer
Gases
Evidence for Rb —Benzene complex
Rb" Filter Cell For Hyperfine Pumping of Rb"
Ground-State Relaxation of Rubidium in Buffer
Gases
Theory of Ground-State Relaxation in Buffer Gas
Optical Pumping With Wall Coating and Buffer
Gases
Ground-State Relaxation of Rubidium in Buffer
Gases
Wall Relaxation of Rubidium on ParafFin
Ground-State Relaxation of Rubidium in Buffer
Gases
Comment on McN64a
Vapor Pressure of Cs—Rb Mixtures
Wall Relaxation of Rubidium on Paragon
Sr+ Probing Light For Rubidium
Wall Relaxation of Rubidium on ParafFin
Excited-State Relaxation of Rubidium in Buffer
Gases
Excited-State Relaxation of Rubidium in Buffer
Gases
Evidence for Rb—Kr Molecular Formation
Evidence for Rb—Kr Molecular Formation
Excited-State Relaxation of Rubidium in Buffer
Gases
Neodymium-Solution Filter for Rubidium Pumping
Excited-State Relaxatioq of Rubidium in Buffer
Gases
Rb—Kr Molecular Formation Theory
Theory of Rubidium Pumping
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Bou70
Gib 70c
Har70
Hry70

Zhi70

Bul71b

Cesium

Bla56
Ska57
Bea58
Dia58
Ska58
Haw61
Fra63b
Fra64b
Leg64
Cza65
Kan65
Roz65
Cza66
Fri66
Che67
Fri67
Gal67b, c
Mcg67
Ern68a
Ern68b
Gal68
Dod69
Sia69
Bev70
Bev71
Fra71
Nov/1

Analysis of Relaxation by Molecular Formation
Hg'" Laser for Pumping Rubidium
EfFect of Molecular Formation on 0-0 Coherence
Excited-State Relaxation of Rubidium in Buffer
Gases
Ground-State Relaxation of Rubidium in Buffer
Gases
Nuclear Spin Inertia in 'P&i2 State

Optical Pumping of Cesium Vapor
Buffer Gas (H2 and Xe) for Cesium 0—0 Transition
Pressure Shifts in Cesium
d Ji = 1 Transitions in Cesium
Optical Pumping of Cesium Vapor
Theory of Cesium Pumping
Ground-State Relaxation of Cesium in N2
Ground-State Relaxation of Cesium in Buffer Gases
Ground-State Relaxation of Cesium in Buffer Gases
Excited-State Relaxation of Cesium
Ground-State Relaxation of Cesium in Benzene
Vapor Pressure of Cesium —Rubidium Mixtures
Excited-State Relaxation of Cesium
D2 Pumping of Cesium in Buffer Gas
Pressure Broadening of Optical Absorption Lines
Excited-State Relaxation Studied with D2 Pumping
'Pji2 Depolarization in Buffer Gas
Excited-State Relaxation in Buffer Gases
Relaxation of (S I ) With Neon Buifer Gas
Hyperine Pumping of Cesium
Excited-State Relaxation of Cesium in Buffer Gases
Quenching by Helium
Gallium —Arsenide Laser for Probing Cesium Vapor
Hyperfine Pumping of Cesium
Relaxation of (S.I ) in He, Ne, Ar, N2
Optical Pumping at 10' Gauss
Spin Echoes in Cesium

Bar65
Far65
Meu65
Nov65
Tit65
Bar66
Far66a
Far66b
Far66c
Big67
Cag67
Far67a
Far67b
Far67c
Far67d

Omo67
Lec68a,b
Lah70
Mor70

Cadmium

Byr64b
Leh64c
Leh66
Led 68b
Cha69a
Leh69

Self-Depolarization of Excited State
Optical Pumping of Cadium
Wall Relaxation of Cadium
Wall Relaxation of Cd"'
Optical Pumping of Cd113m Cd115 Cdllsm

Optical Pumping of Cadmium

Other 'So Atoms

Ols66
Osl67
Spe67

Optical Pumping of Ba"' and Ba"'
Optical Pumping of Yb'7' and Yb'73
Optical Pumping of Zn'

Helium

Excited-State Relaxation in Rare Gases
Excited-State Relaxation in Rare Gases
Self-Depolarization of Excited State
Optical Pumping With 1850-A. Line
Relaxation of 'P2 State in Noble Gases
Excited-State Relaxation in Buffer Gases
Excited-State Relaxation in Helium
Excited-State Relaxation in Helium
Excited-State Relaxation in Rare Gases
6 SO~6 Pp Transition Rates for Odd Isotopes
Temperature Dependence of Wall Relaxation
Excited-State Relaxation in Helium
Excited-State Relaxation in Rare Gases
Excited-State Relaxation in Rare Gases
Temperature Dependence of Excited-State Relaxa-
tion
Self-Depolarization of Excited State
Effec of Anomolous Dispersion on Hanle Effect
Optical Pumping of the 'Po State of Odd Isotopes
Magnetic Scanning for Optical Pumping with UV
Light

Hydrogen

McI66
Var67

Sy/2 Ions

Smi66
Ack67
Gal67a

Ack68
Von70

Mercury

Mro32
Han33
Cag58a
Cag58b
Cag58c
Cag58d
Cag59

Cun60
Cag61
Bau63
Coh63

Leh63
Bar64
Coh64
Pik64
Pop64

Attempts to Optically Pump Hydrogen
Theory of Pumping with an Unpolarized Light
Beam

Radiative Lifetimes of Ca+ and Mg+ P States
Optical Pumping of Sr+
Radiative Lifetimes of Excited States of Ca+,
and Ba+
Ground-State Relaxation of Sr+
Optical Pumping of Ba+

Sr+

Excited-State Relaxation of Mercury
Diamagnetic Faraday Rotation at High Frequencies
Optical Pumping of Hg"'
Optical Pumping of Hg"'
Optical Pumping of Hg' ' and Hg' '
Ground-State Relaxation of Hg'"
Wall Relaxation of Hg20' and Hg'~; Quadrupole
Interaction
Excited-State Relaxation in Buffer Gases
Optical Pumping of Mercury Isotopes
Relaxation of 'P2 State
Wall Relaxation due to Quadrupole Coupling in
Hg201
Hg'@'—Hg"' Zeeman Frequency Ratio
Optical Pumping of 3P2 State
Effect of uv Light On Wall Relaxation
Excited-State Relaxation in Buffer Gases
Optical Pumping with 1850-L Line

Fra58b
Col60
Sch61a
Sch61b
Phi62
Sch62
Wal62
Col63
Sch63a
Col64

Deh64
Gre64
Gam65
Fit67

Gro67b
McA67
Sch67
Skr67
Bak68
Fit68
Lal68c
Lan68
McA68
Sch68b
Sch68c
Sch68d
Sch68e
Fit69
McC69
Pav69
Sch69a
Sev69
Sch70a
Sch70b

Optical Pumping of 'SI State of He
Optical Pumping of 'SI State of He4
Optical Pumping of 'Si State of He4
Magnetic Field Stabilization
Polarized He' Target for Nuclear Reactions
Light Shif ts in Helium
Optical Pumping of He'
Optical Pumping of He'
Optical Pumping of He3
Temperature Dependence of Metastability Ex-
change Rate
Frequency Shifts in He' Metastability Exchange
Optical Pumping of He'
Relaxation of He'
Temperature Dependence of Wall Relaxation of
He'
Electron Excitation of Polarized He'
Polarization of Liquid He3 By Optical Pumping
Excited-State ('Pq) Relaxation of Helium
Optical Pumping of Helium
Polarized He' —Ion Beam
Diffusion of 'SI Atoms in Helium
Electron Excitation of Polarized He'
Excited-State ('PI) Relaxation of Helium
Polarization of Liquid Hes By Optical Pumping
Excited-State ('PJ) Relaxation of Helium
Spin Exchange between He ('SI) and Electrons
Polarization Transfer between He ('SI) and Neon
g-Value of He ( S )
Wall Relaxation of He'
Polarized Electron Beams from He ('SI)
Electron Excitation of Polarized He3
Polarization by Penning Ionization
Kffect of He ('SI) Polarization on a Plasma
Polarization by Penning Ionization
Effect of He ('SI) Orientation on a Plasma



W. HAPPER Optical Pu~~z ping 243

Dup71
Led71

Metastability Exchange Rate
He'+ Polarization

Neon, Argon, Krypton, and Xenon

Bev70
Chu70
Iol70
Mor70
Van70
Slo71

Magnetically Scanned Cs Vapor 1'ilter
Lead Flow Lamp
Operation of Lamps in Strong Magnetic Fields
Optical Pumping in Vacuum Ultraviolet
Rbss Maser
Self-Oscillating He4 Magnetometer

Rob66
Hin68
Lan68
Sch68a
Sch69b
Sch69c
Sch69d

Lead

Sa166
Gib69a
Gib 69b
Gib 69c
Chu70
Gib 71b

Lifetime and Branching Ratios of 'PP State
Optical Pumping of the 'Po Ground State
Optical Pumping of the 'Po Ground States
Ground-State Relaxation
Flow Lamp For Optical Pumping
Relaxation of the 'P~, 'P2, and 'PP States

Thallium

Fra67
Bel70
Gib70a
Rit70

Relaxation of 'P~f2 State
Relaxation of 'P3f2 State
Optical Pumping of Thallium 'Elf' State
Relaxation of the 6'D3f~ State

Miscellaneous Polarization Techniques

Deh62b
Had66
Had67
Lal68c
Mit68
Ric68
Sch68d
Fan69
I.iu69
Lub69
Pav69

Photodissociation of Molecules
Resonant Charge Exchange Xe—Xe+
Metastability Exchange and Electron Pumping
Electron Excitation of Polarized He'
Resonant Charge Exchange Rb—Rb+
Photodissociation of Molecules
Metastability Exchange; He —Ne
Photoionization of Atoms
Ionization by Electron Beam
Photoionization of Atoms
Electron Excitation of Polarized He'

Metastable 'P2 Rare Gas Polarizabilities
Excited-State Relaxation in Neon
Excited-State Relaxation in Argon
Optical Pumping on Neon 'P2 Atoms
Optical Pumping of Argon and Xenon 'P2 Atoms
Optical Pumping of Neon 'P2 Atoms
Relaxation of Polarized 'P2 Atoms

Reviewer Articles and Books

Con53
Che57
Fan57
Kas57
Kop58
Ser59
Ska60
deZ60
Abr61
Fri61
Skr61
Cor62

Car63
DeB63
kas63
Vos64
Ber65b
ZuP65
Coh66c
Kra66b

Wie66
Bud67

Kas67
Hap68
Maj68b
Hap 70b
Nov70

References

Pre 1955

The Theory of Atomic Spectra
Pressure Broadening and Shifts of Spectral Lines
Irreducible Tensors and Density Matrix
Optical Pumping
nuclear M onzents
Radio-Frequency Spectroscopy of Excited Atoms
Optical Pumping
Optical Pumping
The Principles of Nuclear 3fagnetism
The Plasnza Dispersion Function
Optical Pumping
Experinzental Transition Probabilities for Spectral
Lines of Seventy Elements
Optical Pumping
The Dynanzical Character of Adsorption
Light Shifts
Oscillator Strengths
Reprint Collection on Optical Pumping
Radio-Frequency Spectroscopy of Excited Atoms
Optical Pumping
Collisional Transfer Between P~f~ and P3f2 Levels
of Alkalis
Tables of Oscillator Strengths
Level-Crossing and Optical Double-Resonance
Spectroscopy
Optical Pumping
The Hanle ERect
Optical Pumping
Light Shifts and I.ight Propagation
Coherence ERects

Devices and Experimental Technique

Be161a
Bre61
Car61
Sch61b
Blo62
Bre62b
Ard63
Fra63a
Sch63b
Dav64
Deh64
McN64b
Sch64a
Ard65
Bud65
Dav65
Dav66
Min66a
Don 67a
Ern67
Har67a
Har67b
Har67c
Cer68
Har68
Van68
Har69

Electrodeless Lamps for Alkalis
Electrodeless Lamps for Alkalis
Na —Vapor Filter for Dj Pumping
Magnetic Field Stabilization
Rb—Vapor Magnetometer
Slow Transient Response of Infrared Phototubes
Alkali —Vapor Frequency Standards
Electrodeless Discharge Lamp for Cesium
He' Magnetometer
Rb 5 Filter Cell for hfs Pumping or Rb'
He' Magnetometer
Optical Pumping and Chemical Reactions
He' Magnetometer
Rb" Regenerative Maser Oscillator
Lamps for Optical Pumping
Field-Independent Rb" Maser
Field-Independent Rb" Maser
Lithium Lamp
Rb Magnetometer
Magnetically Scanned Cs Vapor Filter
Rb" Maser Oscillator with External Gain
Rbs~ Maser
Rbss Maser
Rb ' Atomic-Beam Frequency Standard
Rbss Maser
Relaxation in the Rbsv Maser
Lineshape and Filling Factor for Alkali-Vapor
Maser

Han24
Mro32
Han33
Kas50
Kas51
Bro52a
Bro52b

Bro53

Con53

Dic53
Haw53

Ope53
Bar54

Rab54

8ro55a

Bro55b

Haw55
Mar55

W. Hanle, Z. Physiir 30, 93 (1924).
S. Mrozowski, Z. Physik V8, 826 (1932).
W. Hanle, Z. Physik 85, 304 (1933).
A. Kastler, J. Phys. Radium 11, 225 (1950).
A. Kastler, Compt. Rend. 232, 953 {1951).
J.Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).
J. Brossel, A. Kastler, and J. Winter, J. Phys.
Radium 13, 668 (1952).
J. Brossel, B. Cagnac, and A. Kastler, Compt.
Rend. 23/, 984 (1953).
E. U. Condon and G. H. Shortley, The Theory of
A tonzi c Spectra (Cambridge U. P., New York,
1953).
R. H. Dicke, Phys. Rev. 89, 472 (1953).
W. B. Hawkins and R. H. Dicke, Phys. Rev. 91,
1008 (1953).
W. Opechowski, Rev. Mod. Phys. 25, 264 (1953).
J. P. Barrat, J. Brossel, and A. Kastler, Compt.
Rend. 239, 1196 (1954).
I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev.
Mod. Phys. 26, 167 (1954).

J. Brossel, J. Margerie, and J. M. Winter, Compt.
Rend. 241, 556 (1955).
J. Brossel, J. Margerie, and A. Kastler, Compt.
Rend. 241, 865 (1955).
W. B. Hawkins, Phys. Rev. 98, 478 (1955).
J. Margerie, J. Brossel, and A. Kastler Compt.
Rend. 241, 474 {1955).



244 REvIEws oP MQDERN PHYsIcs ' APRIL 1972

Pin55

Red55

Bla56

Buc56

Gui56

Pur56

Wit56

Bel57

Che57

Coh57

Deh57a
Deh57b
Fan57
Fra57

Gui57

Kas57
Ska57

And58

Ard58a

Ard58b

Ard58c
Bar58

Bel58

Ben58

Blo58
Cag58a
Cag58b

Cag58c

Cag58d

Can 58a

Dan58b

Deh58a
Deh58b
Dia58

Fra58a

Fra58b

Har58

D. Pines and C. P. Slichter, Phys. Rev. 100, 1014
(1955).
A. G. Red6eld, Phys. Rev. 98, 1787 (1955).

1956

A. Blandin and J. P. Barrat, Compt. Rend. 243,
2041 (1956).
P. Buck, I. I. Rabi, and B. Senitzky, Phys. Rev.
104, 553 (1956).
M. A. Guichon, J. E. Blamont, and J. Brossel,
Compt. Rend 243, 1859 (1956).
E. M. Purcell and G. B. Field, Astrophys. J. 124,
542 (1956).
J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620
(1956).

1057

W. E. Bell and A. L. Bloom, Phys. Rev. 10'7, 1559
(1957).
S. Y. Chen and M. Takeo, Rev. Mod. Phys. 29,
20 (1957).
C. Cohen-Tannoudji, J. Brossel, and A. Kastler,
Compt. Rend. 244, 1027 (1957).
H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
H. G. Dehmelt, Phys. Rev. 105, 1924 (1957).
U. Fano, Rev. Mod. Phys. 29, 74 (1957).
W. Franzen and A. G. Emslie, Phys. Rev. 108, 1453
(1957).
M. A. Guichon, J. E. Blamont, and J. Brossel, J.
Phys. Radium 18, 99 (1957).
A. Kastler, J. Opt. Soc. 47', 460 (1957).
T. Skalinsky, Compt. Rend. 245, 1908 (1957).

1958'

L. W. Anderson, F. M. Pipkin, and J. C. Baird,
Phys. Rev. Letters 1, 229 (1958).
M. Arditi and T. R. Carver, Phys. Rev. 109, 1012
(1958).
M. Arditi and T. R. Carver, Phys. Rev. 112, 449
(1958).
M. Arditi, J. Phys. Radium 19, 873 (1958).
J. P. Barrat and J. Brossel, Compt. Rend 246, 2744
(1958).
E. C. Beatty, P. L. Bender, and A. R. Chi, Phys.
Rev. 112, 450 (1.958).
W. E. Bell and A. L. Bloom, Phys. Rev. 109, 219
(1958).
P. L. Bender, E. C. Beatty, and A. R. Chi, Phys.
Rev. Letters 1, 311 (1958).
A. Bloom, J. Phys. Radium 19, 881 (1958).
B. Cagnac, J. Phys. Radium 19, 863 (1958).
B. Cagnac, J. Brossel, and A. Kastler, Compt.
Rend. 246, 1827 (1958).
B. Cagnac and J. Brossel, Compt. Rend. 249, 77
(1958).
B. Cagnac and J. Brossel, Compt. Rend. 249, 253
(1958).
J. M. Daniels and H. Wesemeyer, Can. J. Phys.
36, 405 (1958).
J. M. Daniels and H. Wesemeyer, Z. Physik 152,
591 (1958).
H. G. Dehmelt, Phys. Rev. 109, 381 (1958).
H. G. Dehmelt, J. Phys. Radium 19, 866 (1958).
F. Diamond, J. M. Legendre, and T. Skalinski,
Compt. Rend. 246, 90 (1958).
P. Franken, R. Sands, and J. Hobart, Phys. Rev.
Letters 1, 52 (1958).
P. A. Franken and F. D. Colegrove, Phys. Rev.
Letters 1, 316 (1958).
F. Hartmann, M. Rambosson, J. Brossel, and A.
Kastler, Compt. Rend. 246, 1522 (1958).

Hol58

Kop58

Nov58

Rob58

Ska58

And59

Bar59a, b, c

Cag59

Dod59

Fra59
Mar59

Ser59
Win59

Adr60a
Adr60b
And60a

And 60b

Blo60a
Blo60b

Bou60

Col60

Cun60

DeZ60
Rob60
Ska60

Abr61

And61

Ard61

Bar61a

8ar61b

8ar61c

Bar61d

Bar61e

8el61a

8el61b

Boe61

Bre61
Cag61

W. W. Holloway, Jr. and R. Novick, Phys. Rev.
Letters 1, 367 (1958).
H. Kopfermann, Nuclear Moments (Academic, New
York, 1958).
R. Novick and H. E. Peters, Phys. Rev. 1, 54
(1958).
H. G. Robinson, E. S. Ensberg, and H. G. Dehment,
Bull. Am. Phys. Soc. 3, 9 (1958).
T. Skalinski, J. Phys. Radium 19, 890 (1958).

L. W. Anderson, F. M. Pipkin, and J. C.. Baird,
Phys. Rev. 116, 87 (1958).
J. P. Barrat, J. Phys. Radium 20, 541, 633, 657
(1959).
B. Cagnac and J. Brossel, Compt. Rend. 249, 77
(1959).
J. M. Dodd, W. N. Fox, G. W. Series, and M. J.
Taylor, Proc. Phys. Soc. (London) 74, 789 (1959).
W. Franzen, Phys. Rev. 115, 850 (1959).
H. Margenau, P. Fontana, and L. Klein, Phys.
Rev. 115, 87 (1959).
G. W. Series, Rept. Progr. Phys. 22, 280 (1959).
J. M. Winter, Ann. Phys. (Paris) 4, 745 (1959).

1960

F. J. Adrian, J. Chem. Phys. 32, 972 (1960).
F. J. Adrian, Phys. Rev. 12'7, 837 (1960).
L. W. Anderson, F. M. Pipkin, and J. C. Baird,
Phys. Rev. Letters 4, 69 (1960).
L. W. Anderson, F. M. Pipkin, and J. C. Baird,
Phys. Rev. 120, 1279 (1960).
A. L. Bloom, Phys. Rev. 118, 664 (1960).
A. L. Bloom and J. B. Carr, Phys. Rev. 119, 1946
(1960).
M. A. Bouchiat, T. R. Carver, and C. M. Varnum,
Phys. Rev. Letters 5, 373 (1960).
F. D. Colegrove and P. A. Franken, Phys. Rev. 119,
680 (1960).
D, E. Cunningham and L. O. Olsen, Phys. Rev. 119,
691 (1960),
R. L. de Zafra, Am. J. Phys. 28, 646 (1960).
L. B. Robinson, Phys. Rev. ll'7, 1275 (1960).
T. Skalinski, Rendiconti S. I. F. XVII Corso 212—
239 (1960).

A. Abragam, The I'rincip/es of Nuclear Magnetism
(Clarendon Press, Oxford, 1961).
L. W. Anderson and A. T. Ramsey, Phys. Rev. 124,
1862 (1961).
M. Arditi and T. R. Carver, Phys. Rev. 124, 800
(1961).
J. P. Barrat, Proc. Roy. Soc. (London) A263, 371
(1961}.
J. P. Barrat and C. Cohen- Tannoudji, Compt.
Rend. 252, 93 (1961).
J. P. Barrat and C. Cohen-Tannoudji, Compt.
Rend. 252, 255 (1961).
J. P. Barrat and C. Cohen-Tannoudji, J. Phys.
Radium 22, 329 (1961).
J. P. Barrat and C. Cohen-Tannoudji, J. Phys.
Radium 22, 443 (1961).
W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci.
Instr. 32, 688 (1961).
W. E. Bell and A. L. Bloom, Phys. Rev. Letters 6,
280 (1961).
H. Boersch, W. Raith, and M. Rehmet, Z. Physik
163, 197 (1961).
R. G. Brewer, Rev. Sci. Instr. 32, 1356 (1961).
B. Cagnac, Ann. Phys. (Paris) 6, 467 (1961).



W. HAPPER Optzca/ Punzping 245

Car61

Coh61a

Coh61b

Coh6ic

Dal61

Fra61
Fri61

Haw61
Her61.

Kas61
Omo61
Rai61
Sch61a

Sch61b
Skr61

Ben62
Ber62
Blo62
Bou62a

Bou52b

Bre62a
Bre62b
Cla62
Coh62a, b

Cor62

Deh62a

Deh62b

Goz62
Hol62

Lam62

Lem62

McN62
Phi62

Pip62

Sch62
Wal62

Ale63a

Ale63b

And63

Ard63

Bau63
Ben63
Bou63a
Bou63b

T. R. Carver, F. R. Lewis, Jr., R. E. Pollock, and
G. E. Schrank, Rev. Sci. Instr. 32, 861 (1961).
C. Cohen-Tannoudji, Compt. Rend. 252, 394
(1961).
C. Cohen- Tannoudji, Compt. Rend. 253, 2662
(1961).
C. Cohen- Tannoudji, Compt. Rend. 253, 2899
(1961).
A. Dalgarno, Proc. Roy, Soc. (London} A262) 132
(1961}.
P. A. Franken, Phys. Rev. 121, 508 (1961).
B.D. Fried and S. D. Conte, The P/asnza Dispersion
Function (Academic Press, New' York, 1961).
W. B. Hawkins, Phys. Rev. 123, 544 (1961).
R. Herman and H. Margenau, Phys. Rev. 122, 1204
(1961).
A. Kastler, Compt. Rend. 252, 2396 (1961).
A. Omont, Compt. Rend. 252, 861 (1961).
W. Raith, Z. Physik 163, 467 (1961).
L. D. Schearer, Advances in Quantum E/ectronics,
(Columbia U. P., New York, 1961), p. 239.
L. D. Schearer, Rev. Sci. Instr. 32, 1190 (1961).
G. V. Skrotskii and T. G. Izyumova, Soviet Phys.
Usp. 4, 177 (1971).

P. L. Bender, Phys. Rev. 128, 2218 (1962).
R. A. Bernheim, J. Chem. Phys. 36, 135 {1962).
A. L. Bloom, Appl. Opt. 1, 61 (1962).
M. Bouchiat and J. Brossel, Compt. Rend. 254,
3650 (1962}.
M. A. Bouchiat and J. Brossel, Compt. Rend. 254,
3828 (1962).
R. G. Brewer, J. Chem. Phys. 37, 2504 (1962).
R. G. Brewer, J. Opt. Soc. Am. 52, 832 (1962) .
G. A. Clarke, J. Chem. Phys. 36, 2211 (1962).
C. Cohen-Tannoudji, Ann. Phys. (Paris) 7, 423,
469 (1962);
C. R. Corliss and W. R. Bozmann, Nat. Bur. Stand.
Monograph No. 53 (1962).
H. G. Dehmelt and F. G. Major, Phys. Rev. Letters
8, 213 (1962).
H. G. Dehmelt and K. B. Ja6'erts, Phys. Rev. 125,
1318 (1962) .
A. Gozzini, Compt. Rend. 255, 1905 (1962).
W. W. Holloway, E. Liischer, and R. Novick,
Phys. Rev. 126, 2109 (1962).
R. H. Lambert and F. M. Pipkin, Phys. Rev. 128,
198 (1962) ~

J. Lemmerich and W. Raith; Naturwiss. 49, 127
{1962).
R. J. McNeal, J. Chem. Phys. 37, 2726 (1962).
G. C. Phillips, R. R. Perry, P. M. Windham, G. K,
Walters, L. D. Schearer, and F. D. Colegrove,
Phys. Rev. Letters 9, 502 (1962).
F. M. Pipkin and R. H. Lambert, Phys, Rev. 127,
787 {1962).
L. D. Schaerer, Phys. Rev. 127, 512 (1962).
G. K. Walters, F.D. Colegrove, and L. D. Schearer,
Phys. Rev. Letters 8, 439 (1962).

1963

E. B. Aleksandrov, Opt. Spectry. (USSR) 14, 233
(1963).
E. B. Aleksandrov and V. A. Khodovvi, Opt.
Spectry. (USSR) 14, 436 (1963).
L. W. Anderson and A. T. Ramsey, Phys. Rev. 132,
712 (1963).
M. Arditi and T. R. Carver, Proc. IEEE 51, 190
(1963).
M. Baumann, Z. Physik 173, 519 (1963).
P. L. Bender, Phys. Rev. 132, 2154 (1963).
M. A. Bouchiat, J. Physique 24, 379 (1963).
M. A. Bouchiat, J. Physique 24, 611 {1963).

Bou63c

Car63
Coh63
Col63

DeB63

Fra63a
Fra63b

Gla63
Har63
Kas63
Kon64

Lam63

Leh63

Man63

Sch63a

Sch63b

Ale64

And64
Ard64

3al64a

8al64b

Bar64

Ben64
Bre64
Byr64a

Byr64b

Coh64

Col64

Dav64a

Deh64
Fav64

Fos64
Fra64a
Fra64b

Fra64

Gre64
Gro64a
Gro64b
Gro64c
Her64
Jar64
Kry64

Leg64
Leh64a
Leh64b

Leh64c

Lur64

M. Bouchiat and J. Brossel, Compt. Rend. 257, 2825
(1963).
T. R. Carver, Science 141, 599 (1963).
C. Cohen-Tannoudji, J. Physique 24, 653 (1963).
F. D. Colegrove, L. D. Schearer, and G. K. Walters,
Phys. Rev. 132, 2561 (1963).
J. H. DeBoer, The Dynanzzca/ Character of Adsorp-
tion (Oxford U. P., New York, 1963).
F. A. Franz, Rev. Sci. Instr. 34, 589 (1963).
F. A. Franz and E. Luscher, Physics Letters 7, 277
(1963).
A. E. Glassgold, Phys. Rev. 132, 2144 (1963).
P. Hartmann, Compt. Rend. 257, 2447 {1963).
A. Kastler, J. Opt. Soc. Am. 53, 902 (1963).
O. V. Konstantinov and V. I. Perel' Soviet Phys. —
JETP 18, 195 (1964).
R. H. Lambert and F. M. Pipkin, Phys. Rev. 129,
1233 (1963).
J. C. Lehmann and R. Barbe Compt. Rend, 257,
3152 (1963)~

J. Manuel and C. Cohen-Tannoudji, Compt. Rend.
257, 413 (1963).
L. D. Schearer, F. D. Colegrove, and G. K. Walters,
Phys. Rev. Letters 10, 108 (1963).
L. D. Schearer, F. D. Colegrove, and G. K. Walters,
Rev. Sci. Instr. 34, 1363 (1963).

1964

R. B. Aleksandrov, O. V. Konstantinov, V. I.
Perel', and V. A. Khodovoi, Soviet Phys. —JETP
18, 346 (1964}.
L. W. Anderson, Nuovo Cimento 31, 986 (1964).
M. Arditi and T. R. Carver, Phys. Rev. 136, A643
(1964).
L. C. Balling, R. J. Hanson, and F. M. Pipkin,
Phys. Rev. 133, A607 (1964).
L. C. Balling and F. M. Pipkin, Phys. Rev. 136,
A461 (1964).
J. P. Barrat, B. Charon, and J. L. Cojan, Compt.
Rend. 259, 3475 (1964).
P. L. Bender, Phys. Rev. 134, A1174 (1964).
R. G. Brewer, J. Chem. Phys. 40, 1077 (1964).
F. W. Byron and H. M. Foley, Phys. Rev. 134A,
625 (1964) ~

F. W. Byron, M. N. McDermott, and R. Novick,
Phys. Rev. 134, A615 (1964).
C. Cohen-Tannoudji and J. Brossel, Compt. Rend.
258, 6119 (1964).
F. D. Colegrove, L. D. Schearer, and G. K. Walters,
Phys, Rev. 135A, 355 (1964).
P. Davidovits and N. Knable, Rev. Sci. Instr. 35,
857 {1964}.
H. G. Dehmelt, Rev. Sci. Instr. 35, 768 (1964).
C. J. Favre and E. Geneux, Physics Letters 8, 190
(1964).
E. W. Foster, Rept. Progr. Phys. 27, 469 (1964).
F. A. Franz, Physics Letters 13, 123 (1964).
F. Franz and E. LCischer, Phys. Rev. 135, A582
(1964).
W. Franzen and M. Alam, Phys. Rev. 133, A460
(1964).
R. C. Greenhow, Phys. Rev. 136, A660 (1964).
F. Grossetete, J. Physique 25, 383 (1964) .
F. Grossetete, Compt. Rend. 258, 3668 (1964).
F. Grossetete, Compt. Rend. 259, 3211 (1964).
R. H. Herman, Phys. Rev. 136, A1576 (1964).
S. M. Jarrett, Phys. Rev. 133, A111 (1964).
E. Kryger, B.Mioduszewsku, and K. Rosinski, Bull.
Acad. Polonaise Sci. 12, 503 (1964).
S. Legowski, J. Chem. Phys. 41, 1313 (1964).
J. C. Lehmann, J. Phys. Radium 25, 809 (1964).
J. C. Lehmann and C. Cohen-. Tannoudji, Compt.
Rend. 258, 4463 (1964).
J. C. Lehmann and J. Brossel, Compt. Rend. 258,
869 (1964).
A. Lurio, R. L. DeZafra, and R. Goshen, Phys.
Rev. 134, 1198 (1964) .



246 RzvIEws oz MoDERN PHYsIcs ' APRIL 1972

McN64a
McN64b

Omo64
Ott64
Pik64

Pop64

Ram64

Ros64

Sch64

Sch64

R. J. McXeal, J. Chem. Phys. 40, 1089 (1964).
R. J. McNeal, R. A. Bernheim, R. Bersohn, and
74 Dorfman, J. Chem. Phys. 40, 1678 (1964).
A.'

Omont, Compt. Rend. 258, 1193 (1964).
E. Otten, Naturwiss. 7, 157 (1964).
C. A. Piketty-Rives, F. Grossetete, and J. Brossel,
Compt. Rend. 258, 1189 (1964).
I. M. Popescu and L. N. Novikov, Compt. Rend.
259, 1321 (1964).
A. T. Ramsey and L. W. Anderson, Nuovo Cimento
32, 1151 (1964).
K. Rosinski, Bull. Acad. Polonaise Sci. 12, 497
(1964).
L. D. Schearer, F. D. Colegrove, and G. K. Walters,
Rev. Sci. Instr. 35, 767 (1964).
B. M. Schmidt, J. M. Williams, and D. Williams,
J. Opt. Soc. Am. 54, 454 (1964).

1965

Ros65

Roz65

Ruf65

Sch65

Ska65

Smi65

Tit65
Vid65

Win65

zuP65

K. Rosinski, Bull. Acad. Polonaise Sci. 23, 847
(1965).
M. Rozwadowski and E. Lipworth, J. Chem. Phys.
43, 2347 (1965).
G. A. Ruff and T. R. Carver, Phys. Rev. Letters 7,
282 (1965).
L. D. Schearer and G. K. Walters, Phys. Rev. 139,
A1398 (1965).
T. Skalinski and K. Rosinski, Journal of Applied
Mathematics and Physics 16, 15 (1965).
B. Smirnov and M. Chibisov, Soviet Phys. —JETP
21, 624 (1965).
K. Tittel, Z. Physik 187, 421 (1965).
J. Vidal-Couret, M. A. Bouchiat, J. Nasser, and
J. Brossel, Compt. Rend. 260, 1904 (1965).
J. Winocur and R. V. Pyle, J. Appl. Phys. 36, 2740
(1965).
G. zuPutlitz, Ergeb. Exakt. Xaturwiss. 37, 105
(1965).

Ale65

Ard65

Bal65

Bar65

Ber65a
Ber65b

Bou65a
Bou65b

Bud65

Cha65

Coh65

Cza65

Dal65

Dav65

Deh65
Dya65

Far65

Fra65
Gam65

Gib65
Gro65
Her65
Kan65

Kib65

Meu65

McN65
Nov65

0mo65a
Omo65b
0mo65c
Pol65a

Pol65b

Pol65c

Ram65

E. B. Aleksandrov, O. V. Konstantinov, and V. I.
Perel', Soviet Phys. —JETP 22, 70 (1966).
M. Arditi and T. R. Carver, J. Appl. Phys. 36, 443
(1965).
L. C. Balling and F. M. Pipkin, Phys. Rev. 139,
A19 (1965).
J. P. Barrat, J.L. Cojan, and F. Lacroix-Desmazes,
Compt. Rend. 261, 1627 (1965).
H. C. Berg, J. Chem. Phys. 43, 1851 (1965).
R. A. Bernheim, OPtica/ Pub~Ping (Benjamin, New
York, 1965) .
M. A. Bouchiat, J. Physique 26) 415 (1965).
M. A. Bouchiat and J. Brossel, Compt. Rend 260,
6823 (1965).
B. Budick, R. Novick, and A. Lurio, Appl. Optics
4, 229 (1965).
G. D. Chapman and L. Krause, Can. J. Phys. 44,
753 (1965).
C. Cohen-Tannoudji and Serge Haroche, Compt.
Rend. Acad. Sci. Paris 261, 5400 (1965).
M. Czajkowski and L. Krause, Can. J. Phys. 43,
1259 (1965).
A. Dalgarno and H. R. Rudge, Proc. Roy. Soc.
(London) A286, 519 (1965).
P. Davidovits and W. A. Stern, Applied Physics
Letters 6, 20 (1965).
H. G. Dehmelt, J. Opt. Soc. Am. 55, 335 (1965).
M. J. Dyakonov and V. I. Perel', Soviet Phys. —
JETP 20, 997 (1965).
J. P. Faroux and J. Brossel, Compt. Rend. 261,
3092 (1965).
F.'A. Franz, Phys. Rev. 139, A603 (1965).
R. L. Gamblin and T. R. Carver, Phys. Rev. 138,
A946 (1965).
H. Gibbs, Phys. Rev. 139, A1374 (1965).
F. Grossetete, Compt. Rend. 260, 3327 (1965).
R. M. Herman, Phys. Rev. 137, A1062 (1965).
T. Kandu and T. Minemoto, J. Phys. Soc. Japan
20, 1532 (1965) ~

B.P. Kibble and S. Pancharatnam, Proc. Phys. Soc.
London 86, 1351 (1965).
J.Meunier, A. Omont, and J.Brossel, Compt. Rend.
261, 5033 (1965).
R. J. McNeal, J. Chem. Phys. 43, 1851 (1965).
L. N. Novikov and I. M. Popesku, Opt. Spectry.
(USSR) 19, 375 (1965),
A. Omont, Compt. Rend. 260, 3331 (1965).
A. Omont, J. Physique 26, 26 (1965).
A. Omont, J. Physique 26, 576 (1965).
N. Polonsky and C. Cohen- Tannoudji, Compt.
Rend. 260, 5231 (1965) .
N. Polonsky and C. Cohen- Tannoudji, Compt.
Rend. 261, 369 (1965).
X. Polonsky and C. Cohen-Tannoudji, J. Physique
26, 409 (1965).
A. T. Ramsey and L. W. Anderson, J. Chem. Phys.
43& 191 (1965).

Ale66

Bal66
Bar66

Bon66

8ou66a

Bou66b

Buc66
Car66

Coh66a

Coh66b

Coh66c

Cor66

Cza66

Dav66

Erm66
Far66a

. Far66b
Far66c

Fir66

For66

Fra66a
Fra66b

Fri66

Had66

Jor66

Kra66a

Kra66b
Led 66a

Led 66b

Leh66

1066

E. B. Aleksandrov, A. M. Bonch-Bruevich, N, X.
Kostin, and V. A. Khodovoi, Soviet Phys. Letters-
JETP 3, 85 (1966).
L. C. Balling, Phys. Rev. 151, 1 (1966).
J.P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel,
J. Physique 27, 608 (1966).
A. M. Bonch-Bruevich, X. N. Kostin, and V. A.
Khodovoi, Soviet Phys. —JETP 3, 425 (1966).
M. Bouchiat and F. Grossetete, J. Physique 2'7, 353
(1966).
M. A. Bouchiat and J. Brossel, Phys. Rev. 147, 41
(1966).
H. Bucka, Z. Physik 191, 199 (1966).
T. R. Carver and R. B. Partridge, Am. J. Phys.
34, 339 (1966).
C. Cohen- Tannoudji and S. Haroche, Compt.
Rend. 262, 37 (1966).
C, Cohen-Tannoudji and S. Haroche, Compt. Rend.
262, 268 (1966).
C. Cohen-Tannoudji and A. Kastler Progress in
Optics 5, 3 (1966),
A. Corney, B. P. Kibble, and G. W. Series, Proc.
Roy. Soc. (London) A293, 70 (1966).
M. Czajkowski, D. McGillis, and L. Krause, Can.
J. Phys. 44, 91 (1966).
P. Davidovits and R. Novick, Proc. IEEE 54, 155
(1966).
W, Ermisch, Ann. Physik 18, 271 (1966) ~

J. P. Faroux and J. Brossel, Compt. Rend. 262,
41 (1966).
J. P. Faroux, Compt. Rend. 262, 1385 (1966).
J. P. Faroux and J. Brossel, Compt. Rend. 263,
612 (1966).
A. H. Firester and T. R. Carver, Phys. Rev. Letters
17, 947 (1966).
E. X. Fortson, F. G. Major, and H. G. Dehmelt,
Phys. Rev. Letters 16, 221 (1966).
F. A. Franz, Phys. Rev. 141, 105 (1966).
F. A. Franz and J. R. Franz, Phys. Rev. 148, 82
(1966).
J. Fricke and J. Haas, Z. Naturforsch. 21a, 1319
(1966).
T. Hadeishi and C. H. Liu, Phys. Rev. Letters 17,
513 (1966).
J. A. Jordan and P. A. Franken, Phys. Rev. 142,
20 (1966).
M. Krainska-Miszczak, Bull. Acad. Polonaise Sci.
14, 223 (1966) ~

L. Krause, Appl. Optics 5, 1375 (1966).
M.Leduc, J. Brossel, and J. C. Lehmann, Compt.
Rend. B 263, 740 (1966).
M. Leduc and J. C. Lehmann, Compt. Rend. 262,
736 (1966).
J. C. Lehmann, and J.Brossel, Compt. Rend. 2628,
624 (1966).



W. HAPPER Optical PNnzpzng 247

Mar66

McI66
Meu66a

Meu66b

Min 66a

Min 66b

Nov66
Ols66

Pan66
Par66

Pit66

Qua66

Rob66

Ros66

Ruf66
Sal66

Ser66

Smi66

Str66
Vio66
Wie66

Ack67

Aym67

Ban67

Bes67

Big67
Bou67

Bud67

Che67

Coh67

Don 67a

Don67b

Dup67a

Dup67b

Klb67

Ens67a, b

Krn67

Far67a

R. Marrus and J. Yellin, Phys. Rev. 141, 130
(1966).
T. McIlrath, Thesis, Princeton, 1966 (unpublished).
J. Meunier and A. Omont, Compt. Rend. 262, 190
(1966).
J. Meunier and A. Omont, Compt. Rend. 262, 260
(1966).
P. Minguzzi, F. Strumia, and P. Violino, J. Opt.
Soc. Am. 56, 707 (1966).
P. Minguzzi, F. Strumia, and P. Violino, Nuovo
Cimento 46B, 145 (1966).
L. N. Novikov, Pribory i Tex. Exper. 4, 121 (1966).
L. Olschewski and E. W. Otten, Z. Physik 196,
77 (1966).
S. Pancharatnam, J.Opt. Soc. Am. 56, 1636 (1966).
R. B. Partridge and G. W. Series, Proc. Phys. Soc.
(London) 88, 983 (1966).
B. Pitre, A. G. A. Rae, and L. Krause, Can. J.
Phys. 44, 731 (1966).
F. Quarry and A. Omont, Compt. Rend. 263B, 41
( i966) .
K. J. Robinson, J. Levine, and B. Bederson, Phys.
Rev. 146, 95 {1966).
K. Rosinski, Bull. Acad. Polonaise Sci. 24, 239
(1966).
G. A. Ruff, Phys. Rev. Letters 16, 976 (1966}.
E. B. Saloman and W. Happer, Phys. Rev. 144, 7
(i966).
G. W. Series, Proc. Phys. Soc. (London) 88, 957
{1966).
W. W. Smith and A. Gallagher, Phys. Rev. 145, 26
(1966).
F. Strumia, Nuovo Cimento 448, 387 (1966}.
P. Violino, Nuovo Cimento 458, 166 (1.966).
W. L. Wiese, M. W. Smith, and B. M. Glennon,
Atomic- Transition Probabilities (National Standard
Reference Data Series, National Bureau of Stan-
dards 4, 1966).

H. Ackermann, G. zuPutlitz, and E. W. Weber,
Physics Letters 24A, 567 (1967).
M. Aymar, M. A. Bouchiat, and J. Brossel, Physics
Letters 24A, 753 (1967).
I. Bany and B. Mioduszewska-Grochowska, Bull.
Acad. Polonaise Sci. 25, 369 (1967).
H. J. Besch, U. Kopf, and E. W. Otten, Physics
Letters 25B, 120 (1967).
M. C. Bigeon, J. Physique 2&, 51 (1967).
M. A. Bouchiat, J. Brossel, and L. Pottier, Phys.
Rev. Letters 19, 817 {1967).
B. Budick, Advances in Atomic and Molecllar
Physics, 3, (1967).
B. Cagnac and G. Lemeignan, Compt. Rend. 264,
1850 (1967).
S. Y. Ch'en, R. O. Garrett, and E. C. Looi, Phys.
Rev. 156, 48 {196'?).
C. Cohen-Tannoudji and F. Laloe, J. Physique 28,
505, 722 (1967).
A. Donzelmann, A. P. M. Baede, E. J. M. Over-
boom, and J. M. Rozing, Appl. Sci. Res. 18, 61
(1967).
A. Donzelmann, C. J. Van der Berg, and P.
Voetalink, Physics Letters 26A, 83 (1967).
J. Dupont-Roc, N. Polonsky, C. Cohen-Tannoudji,
and A. Kastler, Physics Letters 25A, 87 (1967).
J. Dupont-Roc, N. Polonsky, C. Cohen-Tannoudji,
and A. Kastler, Compt. Rend. 264, 1811 (1967).
M. Elbel and F. Naumann, Z. Physik 204, 501
(1967).
E. S. Ensberg, Phys. Rev. 153, 36 (1967); Phys.
Rev. 164, 270 (1967).
K. Krnst, P. Mipguzzi, and F. Strumia, Nuovo
Cimento 51B, 202 (1967).
J. P. Faroux and J. Brossel, Compt. Rend. 264,
1452 (1967).

Far67b
Far67c
Far67d

Fir67

Fit67

Fra67

Fri67

Gal67a
Ga167b

Gib67

Gro67a

Gro67b

Gro67c

Had67

Hap 67a

Hap 67b

Hap 67c

Har67a
Har67b
Har67c
Kas67
Kra67

Leh67
Lom67
Mas67

McA67

McG67

Nov67a

Nov67b

Nov67c

Nov67d

Ols67

Omo67
Ros67
Sch67
Skr67

Spe67

Var67

Ack68

Bak68

Bay68
Bes68

Cag68

J. P. Faroux, Compt. Rend. 264, 1573 (1967).
J. P. Faroux, Compt. Rend. 265, 393 (1967).
J.P. Faroux and J.Brossel, Compt. Rend. 265, 1412
(1967).
A. H. Firester and T. R. Carver, Phys. Rev. 164,
76 (1967).
W. A. Fitzsimmons and G. K. Walter, Phys. Rev.
Letters 19, 943 (1967).
F. A. Franz, G. Leutert, and R. T. Shuey Helv.
Phys. Acta 40, '?78 (1967}.
J. Fricke, J. Haas, E. LGscher, and F. A. Franz,
Phys. Rev. 163, 45 (1967).
A. Gallagher, Phys. Rev. 157, 24 (1967).
A. Gallagher, Phys. Rev. 157, 68 (1967); 163,
206 (1967).
H. M. Gibbs and R. J. Hull, Phys. Rev. 153, 132
(1967).
F. Grossetete and J. Brossel, Compt. Rend. 264,
38i (1967).
F. Grosset&te, F. Laloe, C. Cohen-Tannoudji, and
J. Brossel, Compt. Rend. 265, 1247 (1967).
F. Grossetete, D. Sci. Dissertation University of
Paris, 1967, (unpublished) .
T. Hadeishi and C. H. Liu, Phys. Rev. 19, 211
{1967).
W. Happer and B. S. Mathur, Phys. Rev. Letters
18, 577 {1967).
W. Happer and B. S. Mathur, Phys. Rev. Letters
18, '?27 {1967).
W. Happer and B. S. Mathur, Phys. Rev. 163, 12
(1967).
F. Hartmann, Physics Letters 24A, 767 (1967).
F. Hartmann, Ann. Phys. (Paris) 2, 329 (1967).
F. Hartmann, J. Physique 28, 288 (1967).
A. Kastler, Science 158, 214 (1967).
M. Krainska-Miszczak, Bull. Acad. Polonaise Sci.
15, 595 (1967).
J.. C. Lehmann, Ann. Phys. (Paris) 2, 345 (1967).
H. Lombardi, Compt. Rend. 2658, 191 (1967).
F. Masnou-Seeuws and M. A. Bouchiat, J.Physique
28, 406 (1967) ~

H. McAdams and G. K. Walters, Phys. Rev. Letters
18, 436 (1967).
D. A. McGillis and L. Krause, Phys. Rev. 153, 44
(1967).
L. N. Novikov and V. G. Polazan'ev, Soviet Phys. —
JETP 53, 699 (1967}.
L. N. Novikov, V. G. Polazan'ev, and L. T. Yakub,
Soviet Phys. —JETP 26, 752 (1968).
L. N. Novikov, Opt. i Spektroskopiya 23, 677
(1967).
L. N. Novikov, Pribory i Tekhnika Experimenta 4,
136 (1967).
L. Olschiwski and E. W. Otten, Z. Physik 200, 224
(1967).
A. Omont, Compt. Rend. 265, 31 (1967).
K. Rosinski, Acta Phys. Polon. 31, 1.73 (1967).
L. D. Schearer, Phys. Rev. 160, 76 (1967).
G. V. Skrotzky, V. G. Pokazan'ev, and L. T.
Yakub, Nuovo Cimento 52B, 469 (1967).
P. W. Spence and M. N. McDermott, Physics
Letters 24A, 430 (1967).
D. A. Varshalovich, Soviet Phys. —JETP 25, 157
(1967).

H. Ackermann, E. W. Weber, and G. zuPutlitz,
Abstracts of the International Conference on Atomic
Physics, New York, 1968.
S. D. Baker, E.B.Carter, D. D. Findley, L. L. Hat-
6eld, G. C. Phillips, N. D. Stockwell, and G. K.
Walters, Phys. Rev. Letters 20, 738 (1968).
W. E. Baylis, Physics Letters 26A, 414 (1968).
H. J. Besch, U. Kopf, E. W. Otten, and Ch. Von
Platten, Physics Letters 26B, 721 (1968).
B. Cagnac, A. Izrael, and M. Nogaret, Compt.
Rend. 267, 274 (1968).



REVIEWS OF MODERN PHYSICS ' APRIL 1972

Cap68

Cer68

Dec68

Duc68

Dum68

Dup68a

Dup68b

Dup 68c

Elb68
Ens68

Krn68a

Ern68b

Fir68
Fit68

Fra68

Gal68
Gro68
Ham68

Han68

Hap 68a

Hap68b
Har68
Hay68

Her68
Jon68

Lal68a

Lal68b

Lal68c
Lan68
Lec68a
Lec68b
Led68a

Led68b

Luk68

Maj68a

Maj68b

Mat68a

Mat68b

McA68
Mit68

Nov68a

Nov68b

Pan68

Pok68a

U. Cappeller and L. Dellit, Physics Letters 26A,
535 (1968).
P. Cerez, M. Arditi, and A. Kastler, Compt. Rend.
267) 282 (1968).
B. Decomps and M. Dumont, J. Physique 29, 443
(i968) .
M. Duclay and M. Dumont, Compt. Rend. 266,
340 (1968).
M. Dumont and B. Decomps, J. Physique 29, 181
(196S).
J. Dupont-Roc, N. Polonsky, and C. Cohen-
Tannoudji, Compt. Rend. 266, 613 (1968).
J. Dupount-Roc and C. Cohen-Tannoudji, Compt.
Rend. 26'/, 1211 (1968).
J. Dupont-Roc and C. Cohen-Tannoudji, Compt.
Rend. 26'7, 1275 (1968).
M. Elbel, Physics Letters, 28A, 4 (1968).
E. S. Knsberg and C. R. Morgan, Physics Letters
28A) 106 (1968).
K. Ernst, P. Minguzzi, and F. Strumia, Physics
Letters 27A, 418 (1968).
K. Ernst and F. Strumia, Phys. Rev. 170, 48
(1968).
A. H. Firester, Am. J. Phys. 36, 366 (1968).
W. A. Fitzsimmons, N. F. Lane, and G. K. Walters,
Phys. Rev. 174, 193 (1968).
W. Franzen, P. B.Xewell, and D. S. Edmonds, Jr.,
Phys. Rev. 170, 17 (1968).
A. Gallagher, Phys. Rev. 173, 88 (1968).
F. Grossetete, J. Physique 29, 456 (1968).
Peter Hammerling, Acta. Phys. Austracia 28, 299
(196S).
T. Hansch, R, Odenwald, and P. Toschek, Z.
Physik 209, 478 (1968).
W. Happer, Beam Foil Spectroscopy, edited by S.
Bashkin (Gordon R Breach, 1968, New York), p.
305.
W. Happer, Ann. Phys. (N.Y.) 48, 579 (1968).
F. Hartmann, Physics Letters 28A, 193 (1968).
G. S. Hayne, E. S. Ensberg, and H. G. Robinson,
Phys. Rev. 171, 20 (1968).
R. M. Herman, Phys. Rev. 175, 10 (1968) ~

B. L. Jones and M. Verschueren, Phys. Rev. 176,
42 (1968).
F. Laloe, M. Leduc, and P. Minguzzi, Compt.
Rend. 266, 1517 (1968).
F.Laloe, M. Leduc, and P. Minguzzi, Compt. Rend.
267, 328 (1968).
F. Laloe, Compt. Rend. 267, 208 (1968).
D. A. Landmann, Phys. Rev. 173, 33 (1968).
D. Lecler, J. Physique 29, 611 (1968).
D. Lecler, J. Physique 29, 739 (1968).
M. Leduc and J. Brossel, Compt. Rend, 266, 12
(1968).
M. Leduc and J. Brossel, Compt. Rend. 266, 287
(1968).
M. Lukaszewski and K. Rosinski, Bull. Acad.
Polonaise Sci. 16, 359 (1968).
F. G. Major and H. G. Dehmelt, Phys. Rev. 170,
91 (1968).
F. G. Major, Methods of ExPeri Inenta/ Physics
(Academic, New York, 1968), Vol. 7, Part B.
B. S. Mathur, H. Tang, R. Bulos, and W. Happer,
Phys. Rev. Letters 21, 1035 (1968).
B.S. Mathur, H. Tang, and W. Happer, Phys. Rev.
171, 11 (1968).
H. H. McAdams, Phys. Rev. 170, 276 (1968),
J. K. Mitchell and E. N. Fortion, Phys. Rev.
Letters 21, 1621 (1968).
L. N. Novikov, Opt. i Spektroscopiya 24, 866
(1968).
L.¹Novikov, V. L. Pokazan'ev, and L. I. Yakub,
lzvestia Vyshikx, Uchebnikh Zavedenii 11, 714
(1968).
S. Pancharatnam, J. Phys. B (Proc. Phys. Soc.
London) 1, 250 (1968).
V. G. Pokazanev, Opt. i Spektroskopiya (USSR)
24) 348 (1968).

Pok68b

Pok68c

Ric68

Sch68a
Sch68b
Sch68c
Sch68d
Sch68e

Sta68

Van68
Ver68
Vio68
Whi68

Yab68

Bal69

Ber69

Bou69

Cha69

Cha69b

Coh69

Cop69

Dod69

Elb69
Ens69

Fan69
Fit69

Gib 69a

Gib 69b

Gib 69c

Hap69

Har69

Haw69
Hof69

Kop69

Kor69

Kra69

Lal69a

Lal69b

Leh69
Liu69

Lub69

McC69

Min69

V. G. Pokazan'ev and L. N. Novikov, Soviet
Phys. —JKTP 54, 1297 (1968).
V. Pokazan'ev, Opt. i Spektroskopiya 24, 174
(196S).
C. B.Richardson, K. B.Jefferts, and H. G. Dehmelt,
Phys. Rev. 165, 80 (1968).
L. D. Schearer, Phys. Rev. Letters 21, 660 (1968).
L. D. Schearer, Phys. Rev. 166, 30 (1968).
L. D, Schearer, Phys. Rev. 171, 81 (1968).
L. D. Schearer, Phys. Letters 27A, 544 (1968).
L. D. Schearer and F. D. Sinclair, Phys. Rev. 175,
36 (1968).
M. Stapavsky and L. Krause, Can. J.Phys. 46, 2127
(1968).
J. Vanier, Phys. Rev. 168, 129 (1968).
M. Verschueren, Can. J. Phys. 46, 1753 (1968).
P. Violino, Nuovo Cimento 54, 61 (1968).
C. W. White, W. M. Hughes, G. S. Hayne, and
H. G. Robinson, Phys. Rev. 174, 23 (1968).
T. Yabuzaki and T. Ogawa, J. Opt. Soc. Am. 58,
587 (1968).

1069

L. C. Balling, R, H. Lambert, J.J.Wright, and R. E.
Weiss, Phys. Rev. Letters 22, 61 (1969).
R. A. Bernheim and L. M. Kohuth, J. Chem. Phys.
50) 899 (1969).
C. C. Bouchiat, M. A. Bouchiat, and L. C. L.
Pottier, Phys. Rev. 181, 144 (1969).
R. L. Chancy and M. N. McDermott, Physics
Letters 29A, 103 (1969).
C. K. Chang and R. H. Walker, Phys. Rev. 1/8,
198 (1969).
C. Cohen-Tannoudji and J. Dupont-Roc, Optics
Communications 1, 184 (1969).
G, Copley and L. Krause, Can. J. Phys. 47, 533
(1969) ~

J. N. Dodd, E. Enemark, and Alan Gallagher, J.
Chem. Phys. 50, 4838 (1969).
M. Klbel, Ann. Physik 22, 289 (1969).
E. S. Ensberg and G. zuPutlitz, Phys. Rev. Letters
227 1349 (1969).
U. Fano, Phys. Rev. 178, 131 (1969).
W. A. Fitzsimmons, L. L. Tankersley, and G. K.
Walters, Phys. Rev. 179, 156 (1969).
H. M. Gibbs, B. Chang, and R. S. Greenhow, Phys.
Rev. Letters 22, 270 (1969).
H. M. Gibbs, B. Chang, and R, C. Greenhow, Phys.
Rev. 188, 172 (1969).
H. M. Gibbs and C. W. White, Phys. Rev. 188, 180
(1969).
W. Happer, Optical Pumping Theory, (Gordon and
Breach, New York, 1969), Vol. XIc.
F. Hartmann, lEEK J. Quantum Electron QE5,
595 (1969).
W. Bruce Hawkins, Phys. Rev. 182, 39 (1969).
H. Hofmann-Reinecke, J. Haas, and J. Fricke, Z.
Naturforsch. 24a, 182 (1969).
U. Kopf, H. J, Besch, E. W, Otten, and Ch. von
Platten, Z. Physik 226, 297 (1969).
V. S. Korol' and A. N. Kozlev, Soviet Phys. —JETP
56, 1100 (1969).
M. Krainska-Miszczak, Acta Phys. Polon. 35' 745
(1969).
F. Laloe, M. Leduc, and P. Minguzzi, J. Physique
30, 277 (1969).
F. Laloe, M. Leduc, and P. Minguzzi, J. Physique
30, 341 (1969).
J, C. Lehmann, Phys. Rev, 178, 153 (1969).
C. H. Liu, R. L. King, and H. H. Stroke, Phys.
Rev. Letters 23, 209 (1969).
M. S. Lubell and W. Raith, Phys. Rev. Letters 23,
211 (1969).
M. V. McCusker, L. L. Hatfield, and G. K. Walters,
Phys. Rev. Letters 22, 817 (1969).
P. Minguzzi, F. Strumia, and P. Violino, Optics
Communications 1, 1 (1969).



W. HAppER Opticu/ I'unzpzng 249

Pav69

Rao69
Res69

Sch69a
Sch69b
Sch69c
Sch69d
Lev69

Sia69

Stu69

Ti}69a

Til69b

Van69

Bel70

Bev70

Bou70

Chujo
Gei70

Gib 70a

Gib 70b

Gib 70c

Hap 70a
Har70

Hry70

Iol70

Lah70

Lam70
Mat 70

Mor70

Nov70

Oku70

Ray70

M. Pav}ovic and F. Laloe, J. Physique 31, 173
(1969).
B.K. Rao and T. P. Das, Phys. Rev. 185, 95 (1969).
N. W. Ressler, R. H. Lands, and T. E. Stark, Phys.
Rev. 184, 109 (1969).
L. D. Schearer, Phys. Rev. Letters, 22, 629 (1969).
L. D. Schearer, Physics Letters 28A, 660 (1969).
L. D. Schearer, Phys. Rev. 180, 83 (1969).
L. D. Schearer, Phys. Rev. 188,.505 (1969).
B. N. Sevastiyanov and R. A. Zhitnikov, Soviet
Phys. —JETP 56, 1508 (1969).
S. Siahatgar and U. E. Hochuli, IEEE J. Quantum
Electron QE-5, 295 (1969).
M. Stupavsky and L. Krause, Can. J. Phys. 47,
1249 (1969).
R. Tilgner, J. Fricke, and J. Haas, Z. Naturforsch.
24A, 337 (1969).
R. Tilgner, J. Fricke, and J. Haas, Helv. Phys.
Acta 42, 740 (1969).
J. Vanier, Can. J. Phys. 47, 1461 (1969).

&70

J. A. Bellisio and P. Davidovits, J. Chem. Phys.
53, 3474 (1970).
N. Beverini and F. Strumia, Optics Communica-
tions 2, 189 (1970).
C. C. Bouchiat and M. A. Bouchiat, Phys. Rev.
2A, 1274 (1970).
G. G. Churchill, Rev. Sci. Instr. 41, 891 (1970).
P. Geittner and M. Elbel, Z. Physik 243, 319
(1970).
H. M. Gibbs, G, C. Churchill, T. R. Marshall, J. F.
Papp, and F. A. Franz, Phys. Rev. Letters 25, 263
(1970).
H. M. Gibbs and G. G. Churchill, Phys. Rev. 3,
1617 (1971).
H. N. Gibbs and R. E. Slusher, Phys. Rev. Letters
24, 638 (1970).
W. Happer, Phys, Rev. B 1, 2203 (1970).
Francis Hartmann and Francoise Hartmann-
Bourton, Phys. Rev. A 2, 1885 (1970).
E. S. Hrycyshyn, and L. Krause, Can. J. Phys. 48,
2761 (1970).
N. Ioli, P. Minguzzi, and F. Strumia, J. Opt. Soc.
Am. 60, 1192 (1970).
B.Lahaye and J. Margerie, Optics Communications
1, 259 (1970).
R. H. Lambert, Phys. Rev. A 1, 1841 (1970).
B. S. Mathur, H. Y. Tang, and W. Happer, Phys.
Rev. 2, 648 (1970).
G. Moruzzi and F. Strumia, Optics Communica-
tions 2, 279 (1970).
L. N. Novikov, V. G. Pokazan'ev, and G, V.
Skrotskii, Soviet Phys. —Usp. 101, 273 (1970).
A. T. Okunevich and V. I. Perel' Soviet Phys. —
JETP 31, 356 (1970).
S. Ray, G. Das, P. Maldonado, and Arnold C. Wahl,
Phys. Rev. 2, 2196 {1970),

Rit70

Sch70a

Sch70b

Sch70c

Tan70

Van70

Vax70

Von70

Wei70

Zhi70

Bev71

Bul71a

Bul71b

Bul71c

Cra71
Dav71

Dup71

Ens71

Fra71

Gib 71a
Gib 71b
Hap71

Led71

Mor71

Nov71

Slo71

St@71

Tan71

Val71a

Va}71b

E. Rityn, M. Chaika, and V. Cherenkovskii, Opt.
Spectry. (USSR) 28, 344 (1970).
L, D. Schearer and W, C. Holton, Phys. Rev. 24,
1214 (1970).
L. D. Schearer and L. A. Riseberg, Physics Letters
33A, 325 (1970).
R. W. Schmieder, A. Lurio, W. Happer, and A.
Khadjavi, Phys. Rev. A 2, 121.6 (1970).
H. Tang and W. Happer, Phys. Rev. Letters 24,
551 (1970) .
J.Vanier, R. Vaillancourt, G. Missout, and M. Tetu,
J. Appl. Phys. 41, 3188 (1970).
D. A. Varshalovich, Uspekhi Fiz. Nauk 101, 369
(1970).
F. von Sichart, H. T. Stockmann, H. Ackermann,
and G, zuPutlitz, Z. Physik 236, 97 (1970).
R. E. Weiss, R. H. Lambert, and L. C. Balling,
Phys. Rev. 2, 1745 (1970).
R. A. Zhitnikov, P, P. Kuleshov, A. T. Okunevich,
and B. N. Sevastanov, Soviet Phys. —JETP 31,
445 (1970).

1971

N. Bevirini, P. Minguzzi, and I'. Strumia, Phys.
Rev. A 4, 550 (1971).
B. R. Bulos, A. Marshall, and W. Happer, Phys.
Rev. 4, 51 (1971).
R. B. Bulos and W. Happer, Phys. Rev. A4, 849
(1971).
B. R. Bulos, Thesis, Columbia University, 1971
(unpublished) .
S. B. Crampton, Phys. Rev. A 3, 515 (1971).
S. J. Davis, J. J. Wright, and L. C. Balling, Phys.
Rev. A 3, 1220 (1971).
J. Dupont-Roc, M. L6duc, and F. Laloe, Phys.
Rev. Letters 27, 467 (1971).
E. S. Ensberg and C. L. Morgan, Phys. Rev. 3, 2143
(1971).
F. A. Franz, T. R. Marshall, and J. A. Munarin,
Physics Letters 36A, 31 (1971).
Hyatt M. Gibbs, Phys. Rev. 3A, 500 (1971).
H. M. Gibbs, Phys, Rev. (to be published).
W. Happer, Progress in Quantum Electronics (Per-
gamon Press, Oxford, 1971),Vol. 1, p. 51.
M. Leduc and F. Laloe, Optics Communications 3,
56 (1971).
A. Moretti and F. Strumia, Phys. Rev. 3, 349
(1971).
L. N. Novikov, Opt. i Spektroskopiya 18, 740
(1971).
R. E. Slocum, P. C. Caniness, and L. L. Blevins,
Rev. Sci. Instr. 42, 763 ('1971).
W. A. Stern, Thesis, Columbia University, 1971
(unpublished) .
H. Y. Tang, Thesis, Columbia University (un-
published) .
P. A. Valberg and N. F. Ramsey, Phys. Rev. 3A,
554 (1971).
P. A. Valberg, Phys. Rev. 3A, 505 (1971).




