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A review is presented of the direct numerical approach to the study of the atomic vibrational properties of disordered
systems. The basis and details of the numerical methods employed are first described. This is followed by a review of
applications of the approach to two-component disordered lattices, glasses, mixed-crystal systems, orientationally dis-
ordered crystals, and random polymers.
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1. INTRODUCTION

Lattice dynamics has a history extending to the early
years of this century, to the classic papers of Debye
(1912) and Born and von Karman (1912). These
studies of the normal modes and thermodynamic
properties of simple models of solids initiated what was
to be the main stream of research in lattice dynamics,
that on crystalline solids within the harmonic approxi-
mation, up to perhaps 15 years ago. Since then, other
areas of interest and activity have emerged, not all
related to the dynamics of atoms in perfectly periodic
structures. In this review we shall be concerned with one
of these relatively new fields, that of the vibrational
properties of disordered atomic structures of various
kinds.

It is a measure of the complexity of the mathematical
problems which arise in the study of atomic vibrations
in disordered systems that although much e6ort has
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been put into the field over the past years, progress has
been relatively slow. The primary difhculty stems
directly from the absence of any real simplifying
feature in the geometry of disordered systems. There is
no periodicity in the structures and so we cannot invoke
the elegant theorems implicit in the theory of crystalline
solids, nor are disordered systems suKciently closely
related to any basically simpler structures that some
form of perturbative approach is likely to be really
profitable. There is, in fact, such a difference in character
between the problems of atomic vibrations in disordered
and periodic systems that one finds that methods of
lattice dynamics which have proved quite adequate for
crystals or dilute impuritv systems generally yield
relatively little information on disordered systems. As a
consequence of this, a variety of new methods have been
devised and used. The main object of this paper is to
review in detail one such approach, an approach that
has proved to be quite successful in leading to an under-
standing of the nature of atomic vibrations in dis-
ordered systems, the direct numerical approach. In
order to assess this approach and evaluate the results
that have come from it, we must necessarily touch
upon and make comparisons with the results of other
methods. To this extent, but only to this extent, this
review encompasses the whole area of theoretical work
to date on the atomic vibrations of disordered structures.

One of the major difhculties associated with the study
of atomic vibrations in disordered structures is that we
cannot use some of the quite familiar concepts as-
sociated with phonons in regular lattices. In a lattice, a
phonon is a wavelike excitation which extends spatially
throughout the whole structure; this is not generally
true for a disordered system in which an excitation of
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2. FORMULATION OF THE PROBLEM

The basic model used in la, ttice dynamical studies—
whether of periodic or disordered structures —is one in
which the atoms of a system are free to vibrate with
small amplitude about certain equilibrium positions
R, (i =1, 2, ~ ~ ~, E).The Hamiltonian operator for this
vibrational motion is the sum of two parts, related to
the kinetic and potential energies, respectively, of the
nuclei. In the harmonic approximation the potential
energy term is quadratic in atomic displacement, and
the Hamiltonian takes the form

N
a= —6'gv, 2+ g

i,j;i' ex=1,p=l
a;~, ;pq, ~qy, (2.1)

where qi~ is a mass-dependent component of displace-
ment from equilibrium of the ith atom in the Cartesian
direction a.

atomic vibrations may be highly localized spatially and
thus have no well-defined momentum, or k value.
Thus, we see at the outset that the familiar description
of atomic vibrations in a solid, in terms of dispersion
relations, no longer holds for disordered crystals. The
information that can be obtained is of a somewhat
different kind, and an adequate description of this
information depends upon the introduction of new
ideas and concepts totally inapplicable to crystals.

The present state of our understanding of atomic
vibrations in disordered systems is appreciably less
advanced than is the case for crystals, with theoretical
approaches to da, te having been aimed largely a.t
studying and understanding basically simple disordered
models. Effort has been confined almost entirely to the
study of models with harmonic forces and, within this
approximation, the force fields have usually been short
range in character. In stating this we are excluding
reference to the molecular dynamics approach, in which
the equations of motion of a system of particles are
integrated forward in time; in that approach the use of a,

complicated potential function presents no difFiculty of
principle. Our interest, in this review, is on the effects of
disorder on vibrational atomic motion as determined by
numerical and related studies; attention in this area has
been confined almost exclusively to harmonic systems.

We start this review, in Sec. 2, with a formulation of
the harmonic lattice dynamical problem in the co-
ordinate representation. In Sec. 3 we describe the basic
methods of the numerical approach to the study of
disordered systems. Section 4 is devoted to a discussion
and review of work on two-component disordered
lattices, the class of disordered system which has
attracted most attention in the past. In Secs. 5—8 we
review work by the numerical approach which has been
carried out on glasses, mixed-crystal systems, orienta-
tionally disordered crystals, and random polymers.

It is possible to find a unitary transformation
3N

q,„= P V;,iei,
l=1

N 3

Qi= Z Z ~i'. .q', (2.2)

which diagonalizes the Hamiltonian (2.1), so that the
wave equation

~ ~

3N g2 3X

, +z e l~(e, e., "., e-)
i=i 8 P t=l

=&4(e Q, ",Q ) (23)
is separable into 3Ã independent one-dimensional
systems of the form

L
—@'(d'/de')+~PQPjd i(ei) =&id i(Qi), (2 4)

where

e= II~ (e),

N
E= gE, . (2.5)

K'(&, Q) = Z&P+ Z~PQP
L=l

(2.8)

leading to classical equations of motion for the system

Qi =- —~Pel (/= 1, 2, ~ ~, 3X) . (2 9)

This equation indicates tha, t it is possible to derive the
quantities co&, upon which the energy levels of the system
depend Las in (2.6) j, purely by considering the classical
problem. Because of this, and because of the simplicity
of the classical formulation, it has become one of the
accepted procedures in lattice dynamical calculations.

Equation (2.4) is the well-known equation for the
harmonic oscillator, with eigenvalues

E (ii) =(e+-', )Aevi, (+=0, 1, 2, ~ ~ ~ ). (2.6)

It is clear that the quantities co& are of prime importance
in characterizing the energy levels and thus the vibra-
tional properties of the model. In the case of systems
such as molecules having a small number of degrees of
freedom, the individual co&'s are fully meaningful and
may usefully be determined. On the other hand, for
systems such as solids, containing large numbers of
atoms, interest is normally confined to the statistical
distribution of ~t, i.e., the ~~ spectrum, rather than
particular individual values.

The classica, l Hamiltonian corresponding to (2.1) is
3 N 3

&.(P, q) = Z Z P-'+ Z Z ~'-,Nq'-qN, (2 &)
i=1 a=1 i,j;i' n=l, P=l

with p; the component of momentum of atom i in the
a direction. The transformation (2.2) reduces this to the
diagonal form
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$;,,p=1
=0

if i=j, n=P

otherwise.

The determination of the frequencies and normal
modes of the system thus reduces to a standard eigen-
value problem, one familiar in the fields of the lattice
dynamics of crystalline materials and molecular
spectroscopy. In both of these areas the problem is a
tractable one in practice as well as principle, because of
certain simplifying features in the dynamical matrix
{a, ,,8}.For periodic structures, the matrix is of a simple
recurrent pattern, and basic theorems of matrix algebra
can be invoked to reduce the problem to one associated
with a, set of matrices of much lower order (Dean, 1967) .
For most problems of molecular vibrations, {a, ,,8} is
already of small order and thus quite amenable to
conventional computational procedures.

The presence of atomic or spatial disorder injects a
new feature into the problem. The dynamical matrix is
now neither of a simple recurrent form as in problems of
crystal dynamics, nor of small order as in molecular
vibrations. The mathematical problems, in fact, become
very substantial, and no fully satisfactory way of
dealing with them has yet been devised. The essence of
the approach described in this paper is the development
and use of efFicient methods of numerical analysis so that
the general problem (2.11) presented by disordered
structures can be made tractable.

There is one feature of the eigenvalue problem pre-
sented by disordered systems that should be mentioned
at this stage. Equations (2.11) relate to just one
Particular disordered system of A atoms. For large E,
one assumes that properties computed from this system

We start, then, with a classical formulation of the
problem and write down the equations of motion of the
system based on (2.7), viz.

N 3

g at= Q Z Oia t8t.b8 (2.10)
P=l

In these equations the quantities a;,,p are simple
functions of interatomic force constants and atomic
masses. We take the a;,;p to form a symmetric co-
efficient matrix, i.e., one in which a;,,p=a,p„, this
can always be arranged if the variables q; in Eq. (2.1)
are chosen to be mass dependent of the form q; =
m,'~'a;, where m; is the mass of the ith atom, and e; is
the component of its displacement from equilibrium
along the Cartesian a axis.

For a normal mode of circular frequency ~, we have
q; =A; e'"', where A; is a mass-dependent amplitude
component. Equations (2.10) thus reduce to the linear
algebraic set
N 3

Z Z (~-, 8
—~'~'-, 8)~ 8=o

j=l p=l

(i =1, 2, , 1V; n= 1, 2, 3), (2.11)
where

relate not only to just this one particular system, but
to a whole class or emsemMe of disordered systems of
which it is representative. A considerable quantity of
evidence suggests that for E of the order of thousands,
or even less, properties —such as frequency spectra—
obtained for a single system represent meaningful
ensemble averages; certainly they are closer to en-
semble averages than results so far obtained by other
approaches, excepting certain special exact results.

3. NUMERICAL METHODS

The numerical approach has as its basis highly
efFicient techniques for extracting information from
general symmetric matrices of large order, matrices
such as {tt„,t8} } in (2.11)].There are essentially two
major numerical problems, somewhat distinct from
each other, arising from the dynamical equations. The
first is that of the determination of the distribution of
eigenvalues of a general (tt&&tt) symmetric matrix M
(which we shall identify as {a;,t8}), where tt is large.
This distribution could in principle be found by com-
puting each of the e eigenvalues separately, but such a
method would be impracticable for large order matrices.
Moreover, it would provide appreciably more data than
needed, for the quantity of physical interest is the
frequency spectrum, a function simply related to the
distribution of eigenvalues of the dynamical matrix.
Individual eigenvalues have no particular physical
significance for systems containing large numbers of
atoms, except in rather special cases.

The second numerical problem is that of the direct
determination of selected eigenvectors of M. Here
again, we recognize that the determination of all the
eigenvectors of a large-order matrix is quite impracti-
cable. Indeed, as the computation of an eigenvector
involves first the accurate determination of its eigen-
value, the process of calculating a complete set of
vectors would involve an effort that we have dismissed,
in the preceding paragraph, as being impracticable.
Fortunately, a complete set of eigenvectors is by no
means an essential requirement for an understanding
of the atomic vibrations of systems of large order. One
can normally derive quantities such as infrared ab-
sorption, Raman intensities, and degree of localization
and gain a fairly full understanding of the form of
atomic motion in the various regions of the spectrum by
considering a relatively small sample of "typical"
eigenvectors. This, in fact, has been the procedure
a,dopted in all published work to date on large-order
systems.

3.1 The Distribution of Eigenvalues

We describe here an efficient method of computing the
distribution of eigenvalues of a real symmetric matrix
by means of a theorem, introduced by Dean and Martin
(1960a), known as the negative eigenvalue theorem.
There are other ways (cf., Wilkinson, 1965) of showing
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that the method described here leads correctly to the
required .eigenvalue distribution, but the negative
eigenvalue theorem is itself of some wider significance
in lattice dynamical applications, and so we shall use it
here.

The theorem relates to a partitioned matrix of the
form

AI B2

B2 A2 B3

(3.1)

Xl ——Al —xIl,

Zl ——A2 —xI2)

Yl—=B2, (3 5)

where Ai, A, , and B2 are as defined in (3.4); we shall
also write Mi(x) =—M —xI.

In this new notation, the partitioning of the matrix
M —xI referred to above takes the form

where m.;, (4,,j =1, 2, ~ ~ ~, e) is the (i,j ) th element of
M. We then apply the negative eigenvalue theorem.
However, before doing so we shall introduce at this
point, for reasons which become obvious later, a new
notation. We write

B T A

Xl 4 Yl
M

I
I1(x) = I
I

YT4 Z
(3.6)

and the negative eigenvalue theorem gives the result

n{M1(x)}=n{X1}+g{Z1—Yi Xi—'Yi}. (3.7)

Thus, q {M1(x)} can be determined from the sign of the
scalar quantity Xi (in this case simply the element
mii —x of the matrix M —xI) and the number of
negative eigenvalues of a matrix Zl —Yl Xl 'Yl of order
s—1.

We now write

)n

g{M—xI}= gg{U;},
),=1

(3.2)

where

U;=A; —xI,—B;TU ';.lB,

U, =A, -xI,
and, of course,

(i=2, 3, ~ ~, m), M2(x) =Zi —YirX1 'Yi (3.8)

and partition M~(x) as follows:
3.3

X2

Mp(x) =
Y2

(3.9)
YTi

where A, is a (symmetric) square matrix of order /;

(say), B, is of order (l, 1&&l,), B,r is the transpose of B,,
and all of the elements of M other than those in the A
and B submatrices are zero. The negative eigenvalue
theorem states that, if g j X} denotes the number of real
negative eigenvalues of. a matrix X, then

In our notation, I, is the unit matrix of order t;, and I is
of order n. A concise proof of the theorem is given in the
Appendix.

The particular form of. the negative eigenvalue
theorem that we wish to use rests upon a simple partition
of M —xI into only four submatrices, Al, A2, B2, and
B2r, with Ai of order unity (i.e., scalar), and A2 of order
m —1. Thus we have

Al ——mll

B2 j m12 41418 m14, , min }

~22 ~23 ' ' ' ~2n

The reasons for the notation change introduced in
(3.5) should now be clear. The new notation at once
suggests that we can continue the procedure indicated
by the Eqs. (3.5)—(3.10) for a total of 44 1stages-,
the ith stage being summarized by the equations

M;(x) =Z; 1
—Y, 1 X; 1 'Y, 1 (4)1),

[Mi(x) =M —xI), (3.11)

where X2 is a scalar, and Z2 is a square matrix of order
ri 2 The —neg.ative eigenvalue theorem, applied to (3.8),
gives

g{M2(x) } =q{Xg}+g{Zg—Yg X. 'Y2}. (3.10)

(3.4)
and

X, '
, Y;

M~ )~— 4'1 X) I) I

Z'
(3.12)

mn2 mnn

g{M,(x) }=g{X,}+g{Z,—Y,rX, 'Y,}, (3.13)

where X; is a scalar, and Z; is a square matrix of order
n i. The set of Eqs. (3.13), with—i running from 1 to
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n —1, together yield the result

it I M —xI I =—it IMt (x) I
= Q rt I X;I, (3.14)

where, for notational convenience and consistency, we
have written the scalar Z„ l—Y„ l X„ l 'Y„.l as X„.

Equation (3.14) is the central result needed for the
efficient determination of eigenvalue spectra. It shows
that the number of eigenvalues of a real symmetric
matrix M which are smaller than a real parameter x
can be found from the signs of e scalar quantities
X;(x); these quantities are the (1, 1) elements of a set
of matrices M, (x), calculable from a recurrence relation
(3.11).

The amount of computation in determining a value of
rt IM —xI I may be estimated as follows. The ca,lculation
at the ith stage involves a determination of the matrix
Z,—Y;~X; 'Y;, given Z, as a symmetric (n —i&&rt —i)
matrix, Y; as a (1&(n—i) vector, and a scalar X;.Let us
take M to be a band matrix of half-bandwidth s&m
Lso that all elements (i, j) such that ~j i

~

&—s are
zero). It is easy to see, by induction, that Z, (for all i)
is then also of band form with a half-bandwidth s, and
Y, has zero elements beyond its (s—1) th place. The
determination of Z,—Y, X, 'Y, involves s—1 scalar
divisions (in calculating X, Y;) and, within unity,
as(s —1) scalar multiplications, taking account of
symmetry —and there are also 2s(s+1) subtractions.
The total calculation over e—1 stages involves no more
than (rt —1) (s—1) scalar divisions and a (it—1)s(s—1)
scalar multiplications (with a, similar number of
subtractions). We use the term "no more than" here
for, in the final s—1 stages the matrices Z; and Y; are
reduced to sizes within the half-bandwidth s; in some
cases it may be more convenient, however, to program
the algorithm to add zeros to these matrices in the final
stages so that one is dealing with similarly sized
matrices throughout.

This procedure, then, involving essentially (rt 1)X—
(s—1) scalar divisions and ~a (rt —1)s (s—1) scalar
multiplications gives the number of eigenvalues of M
less than x. By giving x (say) rt' values throughout the
range of the spectrum and then differencing, one can
determine to any desired accuracy the distribution of
eigenvalues of M. The total calculation involves
I'(rt —1) (s—1) divisions and ait'(rt —1)s(s—1) multi-
plications; i.e., of the order of art'(rt —1)s' scalar multi-
plicative operations when s is not small.

A considerable body of practical experience in the
procedure described here indicates that it is numerically
stable, and leads to accurate results. There is, however,
a danger in the process that the programmer or user of a
computer program must be aware of. In rare cases, the
top left-hand element (X;) of the matrix M;(x) will be
of very small magnitude or, possibly, zero. If this ele-
ment is zero the numerical process breaks down, for the
formation of M;+l involves a division by X;. The
program must therefore test for zero X; and discard

results for values of x which lead to such zeros. This
represents no limitation in practice, for by adding a
small number (say 10 ') to x one can always obtain the
information one requires.

The problem of the effects of a very small X;, rather
than a zero X;, is more serious. The process defined by
Eqs. (3.11) and (3.12) indicates that if X; is small then
the s&&s top left-hand block of M;+&(x) may become
completely dominated by the elements Y; X; 'Y;. As an
example, if X; is of order 10 but all the other elements
of M; are of order unity then, clearly, t'he contribution
to M,+~(x) of Y,~X; 'Y; is six orders of magnitude
greater than that of Z;. If only six decimal places are
retained in the computation, all information on the
s&(s top left-hand block of Z; will be lost. Fortunately
it appears that the probability of X; becoming really
small (except in the special case we mention in the next
paragraph) is negligible. It is, though, important that
the danger is known, and that tests to anticipate a
potentially unstable situation are written into the
program.

One meets, in practice, only a rather special situation
in which X; is zero (or, because of rounding errors, close
to zero) . This occurs at small values of i and, in partic-
ular, at the first stage, i.=1.At these early stages, for
certain systems, it is not uncommon to find that the
elements of M, (x) will be integers or simple ratios of
integers, thus leading occasionally, for simple selected
values of x, to zero X s. As indicated earlier, the solu-
tion here is to increase the values of x by some small
increment such as 10 '.

The difhculties of the eGects of small X;can in general
be almost completely met by the methods of pivoting,
described by Wilkinson (1965) in his description of
Gaussian elimination. The disadvantage of pivotal
procedures is that they increase the bandwidth of the
matrices, and therefore substantially increase the
amount of computation involved in the problem.
Fortunately, a considerable body of experience on
lattice dynamical systems indicates that the procedure
described here, with tests for small X; written into the
program, is quite satisfactory both in determining
distributions of eigenvalues and also in calculating
particular eigenvalues accurately, as needed for eigen-
vector determinations.

3.2 Computation of Eigenvectors

We mentioned earlier that the accurate determination
of an eigenvector involves, first, a precise calculation of
its eigenvalue. An excellent method of locating the
eigenvalue is to use an extension of the procedure out-
lined in the last section for finding an eigenvalue dis-
tribution. There we showed how to compute the number
of eigenvalues of a symmetric matrix M less than a
real number x. We may extend the method as follows.
If, for example, the pth eigenvalue of M is required
accurately, then by using a few trial values of x (nor-
rnally with the help of the already-determined eigen-
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»{M(x„ i&i&) } =p —1,

» {M(x„&")}=p. (3.15)

The quantity»{M(x&'&) } is then calculated, again by
the methods of Sec. 3.1, where

value distribution), one finds real numbers x„ i&'& and
x„o& such that

Hence, if
~
4—h

~
&&

~
X;—h

~
(for all i other than k)

the component of x;(iWk) in u, decreases rapidly with
increasing s. It follows that the number of iterations
needed to compute an accurate eigenvector x~, will be
quite small if h is a good approximation to X~.

The iterative process described by (3.17) can be
carried out in a straightforward manner. The sth .step
consists merely of solving the set of equations

s"i =—'(s i&'&+X &'&). (3.16) (M —hI) v,+i ——u, (3.20)

v,+i = (M —i'iI) —'u„

uayi = vg+.i/max (v,pi), (3.17)

where max(v, +i) denotes the element of largest modulus
in v,+~. If we write Qp, the initial trial eigenvector, as

uo= g &i;X,, (3.18)

where x, (i= 1, 2, ~ ~ ~ , e) are the true eigenvectors of
M, and o., are scalars, then, apart from a normalizing
factor, the sth iterate is

u, = Pn, (X;—h) 'x;. (3.19)

If i&{M(@&2&)}=p —1 then, clearly, the pth eigenvalue
lies between x"i (which we now refer to as x„ i"&) and
x~&'&; on the other hand, if i&{M(x"&)} =p then the
eigenvalue lies between x„ &&i& and x"& (now written as
x„&'&) . By successivelv bisecting the appropriate interval
x„~("to x„"',where the notation has been extended in
an obvious way, we can ultimately locate the required
eigenvalue to any desired accuracy. Even closely
separated eigenvalues can be satisfactorily evaluated
by this method. Degenerate eigenvalues present a new
feature. One can locate degenerate or near degenerate
eigenvalues by the procedure mentioned above without
trouble. The difhculty arises in specifying and con-
verging to an appropriate eigenvector, as those as-
sociated with the degenerate eigenvalue are not unique.
In lattice dynamical applications this difhculty can
normally be evaded without penalty, for interest is
usually confined to the determination of particular
unique eigenvectors. Thus there is no need to invoke
the special methods. Moreover, one finds in practice
that disordered systems provide degenerate eigenvalues
very rarely indeed, possibly because of the absence of
any form of symmetry in the structure. The one common
exception is the triply degenerate zero frequency
motion associated with pure translations in a system
under the free-t. nd boundary condition.

Given, then, a well or reasonably well separated
approximate eigenvalue the next problem is the
accurate determination of its eigenvector. Here we
recommend the technique of inverse iteration (cf.
Wilkinson, 1965). In essence, the method is that of
successively multiplying a trial vector by the matrix
(M —hI) ', where h is a, computed approximation to
X~, the eigenvalue whose vector we wish to determine.

More preciselv, one can define the process of inverse
iteration by the equations

for the unknown v,+I. One method is based upon a
decomposition such as

M —hl= LU, (3.21)

where L is a lower triangular matrix the elements L;,.
of which are zero if i(j, and U is an upper. triangular
matrix with U,;=0 if j(i. The decomposition into L
and U is not unique and one needs to define, for ex-
ample, the diagonal elements of L or U. An LU de-
composition is easily carried out in practice —it is, in
fact, implicit in the eigenvalue determination —and
enables one to solve the simultaneous equations (3.20)
in two simple stages, by solving the triangular sets of
equations

Ly, = u,
and

Uvs+1 =ys. (3.22)

Bell, Bird, and Dean (1968) have found it convenient,
in practice, to use the decomposition (3.21) in the form

M —hI =U~DU, (3.23)

where U is the transpose of U, and the diagonal matrix
D is such that the diagonal elements of U are all unity.
In each iteration one solves the equations

U ys=&s)

Dz=y„

Uv, +i ——z„ (3.24)

each of which represents a straightforward computa-
tional procedure on a high speed computer. This partic-
ular decomposition was used primarily because it
enables the data to be processed speedily: the matrix U
was stored on magnetic tape and the first and last of the
Eqs. (3.24) could conveniently be carried out with
the same storage data processed alternately in opposite
directions. The initial trial vector was usually taken to
be the vector of unit elements and, in practice, it was
found that convergence was quickest if this was
regarded as a z vector and used to yield a first v vector
by the third equation (3.24) . The computational process
thus described has been found quite satisfactory in all

cases, convergence to several decimal places (and this
is more than adequate for lattice dynamical applica-
tions) being normally attained in two or three itera, tions
for an h known to one part in 10', and with n of the order
of 10'. In practice there is no need. to always compare
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successive iterate vectors in order to be sure of con-
vergence. Increasing convergence to the two eigen-
vectors is indicated by the growth in magnitude of
successive iterates, and one can always arrange to
terminate the iteration process when the element of
maximum absolute magnitude of any iterate exceeds a
certain prestated value (such as, say, 10" times the
maximum element of the initial trial eigenvector).

Wilkinson (1965) states that it is tempting, but
unwise, to omit interchanges in the inverse iteration of
band matrices. We cannot therefore unreservedly
recommend the process described above and must refer
the reader to the pivotal interchange schemes recom-
mended by Wilkinson to give greater assurance of
numerical stability. However, the penalty for using
interchanges is that the amount of computational work
increases considerably —to an extent which in many
cases would have made projects successfully completed
quite impracticable to carry through. In defense of the
methods outlined here, it is important to state that in
numerous cases computed eigenvectors have been
compared with exactly known mathematical results
showing, in all cases, excellent agreement. In addition,
one often has some foreknowledge of the physical
characteristics of computed eigenvectors and, again,
in no case that we are aware of has any untoward
result occurred. It would appear, then, that although
the method outlined is capable, in principle, of producing
errors induced by the particular computational pro-
cedure, the practical probability (at least, for matrices
of the kind one encounters in atomic vibrational work)
of such an occurrence is extremely small.

The calculation of eigenvalues or eigenvalue dis-
tributions and eigenvectors is, as we have already
indicated, the central problem of atomic dynamical
systems described by potential functions in the har-
monic approximation. The calculation of macroscopi-
cally observed properties such as infrared absorption
and Raman intensities at various frequencies depends
upon the further application of particular physical
ideas —often simple ones such as ascribing unit positive
and negative charges to alternate masses on a vibrating
lattice —although sometimes of a sophisticated char-
acter. Given the solution to the basic eigenvalue
problem, the computation of these quantities and
others, such as the extent of phonon localization, and
lattice thermal properties (with the exception of thermal
conductivity) presents no difhculty of principle and is
normally substantially easier to carry out than the
matrix procedures already outlined.

4. TWO-COMPONENT DISORDERED LATTICES

4.1 One-Dimensional Work

Since the paper by Dyson (1953),on the dynamics of
disordered linear chains, there has been much interest
in the subject of the atomic vibrations of two-com-
ponent disordered structures. The mathematical prob-

Po =Ptr =0i t'= 1, 2, ~ ~, 7, (4.1)

where the tt; are mass-dependent amplitudes (cf. Sec. 2),
and the n, and P; are simple functions of the force
constants and atomic masses of the system. Thus
n; = (y,+y; g) rl, ', P, = y; g—m; g "'rN, ",where sN; is
the mass of the atom at the ith site, and y; is the force
constant of the interaction between atoms i and i+1.
Equations (4.1) indicate clearly that the dynamical
matrix is tridiagonal in form, and it is just this simple
structure of M upon which Dyson's and Schmidt's
methods depend.

The negative eigenvalue theorem is particularly
simple to apply to the tridiagonal matrix based upon
equations such as (4.1). In (3.1) we simply replace
A, by n;, and B, by P;. Equations (3.3) then take the
form

h =a —x—P'/h (i=2, 3, ~ ~ -, 7),
kg =A] —X, (4.2)

where we have substituted fz; for U;, and written x for
cu', and the negative eigenvalue theorem states that

rt IM —xII = Q st(h, )

=number of negative IE s. (4.3)

The essence of Dyson's and Schmidt's methods is the
setting up of an equation for the probability distribu-
tion of h, in terms of probabilities of uncorrelative
parameters in the system. One considers an ensemble
of chains, and a large value of i, i.e., one well removed
from the end i=1, and then equates the probability
distributions of h; y and Iz;. If, for example, Iz; ~ and the
pair of parameters (a, , P;) on the right-hand side of
Eq. (4.2) are uncorrelated, then such a procedure gives

p(h, ) = p g(n, , p, )P[p,'/(n, x h)]- —

)&p,2(a;—co' —h ) ' (44)

where A(n;, p;) represents the probability of (a;, pt)

lems which arise in this area are quite substantial, and
progress by analytical methods has been correspondingly
slow. The case of the two-component disordered chain
illustrates well the kind of detailed and precise informa-
tion that can be obtained using the direct numerical
approach. We shall therefore consider this system in
some detail in this section, indicating various ap-
proaches and results in order to attain a proper perspec-
tive of this much studied disordered dynamical system.

Dyson's paper, and also later work by Schmidt
(195'7) and others, was concerned with setting up a
functional equation for the two-component disordered
chain, the solution of which in principle enabled the
distribution of frequencies to be found. In a linear chain
of X atoms with nearest neighbor harmonic interactions,
the equations of motion are of the form

p.,tt;,+ (n;—oo') tt,+p;+gN;+g ——0
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function P(h) for the case of a two-component chain
with nearest-neighbor forces which depend on the types
of atoms to which they relate. It is unfortunate that
such equations, because of their complexity, give little
hope of accurate solutions in the foreseeable future.

Other early studies of two-component disorder in
linear chains by the transfer-matrix method (Hori and
Asahi, 1957; cf., Hori, 1968a)—again a method based
originally upon the specific properties of tridiagonal
dynamical matrices —provided techniques which, in
principle, could lead to eigenvalue distribution func-
tions. However, no specific calculations were carried out
because of the difficult computing problems that were
foreseen. The transfer-matrix method of Hori and Asahi
(1957) was later to be of much value in clarifying and
predicting many special properties of disordered
systems, not only the two-component disordered chain,
but also (in a generalized form of the theory) ~more
complex systems (cf., Hori, 1968a) . However, the
method was not used for the precise calculation of
frequency spectra.

The first attempt at a numerical evaluation of a
frequency distribution function for the disordered two-
component chain was that of Domb et al (1959)., using
the moment trace method. This method depends upon
the theorem that

FIG. 1. Computed squared frequency spectra for two-com-
ponent disordered chains containing 8000 atoms. The mass ratio
is 2:1 and forces are restricted to nearest-neighbor pairs with
force constants all equal. The parameter cL refers to the fraction
of light atoms in the chain. The abscissa is in terms of the maxi-
mum squared frequency of the monatomic light chain as a unit;
thus 1.0 corresponds to the squared frequency co+(L), and
0.5 to or~'(H).

taking on a particular pair of values, and the summation
extends over all possible pairs of (a;, P;). It is clear,
from the negative eigenvalue theorem, that

2
0

D(x) dx= PL'h(x) ]dLh(x) j, (4.5)

where D(x) is the eigenvalue distribution function.
Dyson's formulation was complicated by the in-

troduction of additional transformations which some-
what cbscured the essential points of his argument, and
which certainly made the practical realization of his
method for finding D(cu') most difjicult to attain.
Schmidt's formulation was almost identical to that
outlined here, and was later used by Agacy (1964) to
compute an accurate spectrum.

In some cases of practical interest it is not possible to
derive a simple functional equation such as (4.4) for
P(h) in view of correlations which exist between h; i
and n, and P;. It is normally still possible to formulate
exact expressions from which P(k) may, in principle, be
derived —but the system of equations may be very
complex indeed. Dean and Martin (1960b), for ex-
arnple, have derived a set of four coupled functional
equations whose solutions yield the distribution

p;= trace(M'), (4.6)

where p; is the ith moment of the eigenvalue distribu-
tion of the matrix M. Thus we have

jg(~2) ~2id(~2) (4.7)

Spectra were computed by determining p;, for low i,
by combinatorial means from the dynamical matrix
M, and then by inverting the transformation (4.7).
The results obtained by this method, for a wide range
of parameters of the system, showed fairly smooth
featureless spectra with, over certain restricted ranges
of frequency, one or sometimes two fairly distinct high
frequency bands. Although these results were accepted
at the time, it was later shown by the more precise
numerical approach based on the negative eigenvalue
theorem that they are incorrect. The difhculty was that
the true frequency spectra are (as we shall see) most
complicated in structure, and simply cannot be repre-
sented by low-order polynomials.

The negative eigenvalue theorem, in its specialized
form for tridiagonal matrices was first used for the
accurate computation of vibrational frequency spectra
by Dean (1960, 1961). The basic equations of the
technique are (4.2) and (4.3) which may be derived
either as already indicated or, alternatively, from the
sequence of Eqs. (3.6)—(3.14) . The technique employed
was to set up, by means of computer programs em-

ploying random number generators, typical long two-
component chains of some thousands of atoms, having
prespecified statistical properties. The sequence of
numbers I h;} (i=1, 2, ~ ~ ~, E) was then computed for
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various values of oP, and the spectral points plotted
merely by noting the proportion of negative h s. This
method for tridiagonal matrices is known by numerical
analysis as the Sturm sequence method; it has the
virtue of being exceptionally stable numerically, as
shown by Wilkinson (1965).

Figures 1 and 2 summarize the kind of information
obtained for two-component chains by the numerical
approach. The histograms are computed eigenvalue
(i.e., squared frequency) spectra for randomly generated
chains of length 8000 atoms, with an atomic mass ratio
of 2:1, and with all force constants equal. The per-
centage of light atoms varies from 5% in Fig. 1(a), to
95% in Fig. 1(f), as indicated on the diagrams. In
Fig. 2(a) we have plotted, again, the spectra for mass
ratio 2:1, equal force constants, and 50% light atoms,
but for a chain of length 32 000 atoms and with a some-
what smaller histogram interval than in Fig. 1; on this
diagram we depict, for comparison, the spectra of two-
component alternating chain ~ ABABAB ~, and the
result (Domb et a/. , 1959) of a calculation for the dis-
ordered chain using the moment trace method as
described earlier. Figure 2 (b) depicts a histogram
computed for a statistically identical system to that in

CO

3
U

I I

l 0

FIG. 2. Computed squared frequency spectra for disordered
two-component chains (cL=0.5) of length 32000 in (a), and
250 000 in (b) . The mass ratio is 2:1 as in Fig. 1, and the nearest-
neighbor force constants are equal. In Fig. 2(a) we have depicted
also (broken curve) the results of a moment-trace calculation
using the first seven moments of the eigenvalue spectrum (after
Domb et aI., 1959), as well as the well-known spectrum for the
ordered chain ~ ~ .AHAB -- of the same mass ratio and force
field.

Fig. 2(a), but composed of 250000 atoms. This com-
parison is shown in order to indicate just how little is the
change in the spectrum in increasing the chain length
from 32 000 atoms to a quarter of a million; chains of
several thousand atoms give as much information as is
normally required.

The histograms depicted in Figs. 1 and 2 are corn-
plicated in form. The detailed structure in the spectra—
induced by the disordered arrangement of the two
atomic species —came as a considerable surprise when
first published and, indeed, was at first greeted with a
certain scepticism. However. , a variety of later work,
including some mathematically exact results, has
amply confirmed the accuracy of the work and has also
verified a suggested mechanism for the complex struc-
ture in the spectra. The basic idea proposed for the ex-
istence of the complicated system of peaks and valleys
at the high-frequency end of the spectra was as follows.
Each well-defined peak is regarded as associated with
vibrational modes localized at particular types of local
structure. Consider, for example, peak A in Fig. 1.
This peak is composed of frequencies of modes which
are highly localized about single light atoms surrounded
in a local environment of heavy atoms. Thus, at
each point in the chain where the local structure
~r ~ HHLHH ~ ~ occurs (where L and H denote,
respectively, light and heavy atoms), a strongly
localized mode can be excited; such modes each con-
tribute a frequency towards the peak A.

The other peaks in the high-frequency region of the
spectrum are similarly associated with particular types
of local structure. Thus peak 6, for example, cor-
responds to the local structure ~ ~ HHLLHH. ~, and F
to the local structure ~ ~ HHLHLHH ~ ~ . Table I
contains a list of such assignments.

The reason that each such local structure indicated
in Table I can be regarded in essence as an independent
unit when discussing normal modes of the complete
chain is due to the effect of the two (or more) heavy
atoms at each end of the unit. Provided the mass ratio
is about 2:1 or greater, these heavy atoms act as almost
impenetrable barriers to high and middle frequency
modes; thus the nature and frequency of the localized
mode of a light atom vibrating, for example, in. a
structure having the local geometry ~ ~ HHLHH ~ ~ in
a disordered chain are very little different from those of
a light atom in an otherwise monatomic chain of H
atoms. One can compare frequencies easily enough. The
localized mode frequency of a light atom in a heavy
monatomic chain (assuming all the force constants are
equal) is given by

to)..'=toss'(H) (1—e') ',

where ooM'(II) is the maximum squared frequency of the
monatomic chain of heavy atoms and e=1—rrtL/rnH,

@AH and mL being the respective masses of the heavy
and light atoms. For the mass ratio 2:1 we obtain
oo&„'=~4tosr'(H), while the limits of peak A, simply
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TAaxz I. Correspondence between spectral lines (Figs. 1 and 3)
and local chain structures.

Line(s) Local chain structure

A

S, G

C

D, E
F
P, R, U

0

S, V

T

-HHLHH-

-HHLLHH ~,b

f —HHLLLHH-L '
HHLHLHH —J

-HHLHHLHH- b

-HHLHLHH-

-HHLLLLHH ..b,

f—HHLLLHLHH
HHLLLLLHH I

-HHLLLLLHH- b

—HHLLLHH-

The lines B and P occur only at mass ratios greater than 2.
Two or more letters associated with a chain structure indicate that

more than one distinct type of localized mode is associated with the local
structure.

Lines C and Q each contain frequencies associated with modes localized
at two types of local structure, as indicated.

d For mass ratio 2, the line R occurs roughly at the frequency of line F.

joining together to form two- or multi-light atom
clusters. At the composition of 38 per cent light atoms
[in Fig. 1(c)] one can see that peak A has already
decreased in intensity from its maximum value, and
that the secondary and even tertiary peaks (such as T
which corresponds to three-atom clusters) are quite
pronounced. At the 50 percent composition and beyond,
the structure becomes very complicated indeed, al-
though it is clear that the identity of the individual
peaks holds for quite high concentrations of light atoms.
Ultimately the spectrum tends to the form (4.9), with
~,~'(1.) replacing ~~'(H) .

At higher mass ratios, changes of the same kind occur
and they are somewhat easier to follow because the
individual peaks are more widely separated. Figure 3
shows computed spectra for the chain of mass ratio 3:1,
with equal force constants, for three compositions. One
notices that one effect of increasing the mass ratio is the
emergence of additional peaks from the low-fre-

quency continuum: peak 8, for example, which is
the lower of the two frequencies associated with
cluster ~ ~ HHLLHH ~ ~ has no counterpart in Figs. 1

reading abscissa values from Fig. 1, are (21/16)&u,~g(H)
and (43/32) ~~'(H) which clearly encompass the value
col„', a study of computed results using finer intervals
(cf. Fig. 2) indicates that, in fact, peak A lies between
(85/64) &v~'(H) and (86/64) ~~'(H), an interval which
again includes the value col„'. We see therefore that the
frequency of the localized mode of a light atom sur-
rounded locally by at least two heavy atoms on each side
is remarkably little affected by the form of chain struc-
ture elsewhere. A similar situation holds for other clus-
ters containing light atoms surrounded locally by heavy
atoms.

This simple picture of associations between peaks of
the spectrum and local chain structure accounts fully
for the changes which occur in the high-frequency region
of the spectrum as the proportion of light and heavy
atoms is changed. Thus, for the case of mass ratio 2:1,
we notice that at low concentrations of light atoms the
spectrum consists mainly of a band in the region
oP=O to ~~'(H) reminiscent of the U-shaped function

G(~2) —~.—1~—1[~ 2(H) ~2j—1/2 (4 9)

for the spectrum of the monatomic lattice of heavy
atoms; there is just a little structure at high frequencies,
dominated by the peak A due to isolated light atoms. As
the proportion of light atoms increases, the peak A
first increases in intensity, due to the greater number of
single light atom clusters. Also, peaks such as C, D, E,
and F, due to clusters containing two light atoms
become more dominant. At a certain stage, with
increasing numbers of light atoms, peak A reaches a
maximum intensity and then starts to decline at the
expense of secondary peaks. This occurs because of the
increasing probability of single light atom clusters

(o)~L = o io

G8
JLP qll l llL. R s r u

B

(b)cL= 0 26

E
~ F T

Q

Rf i nv

(c) cL=O 50

2/3
Q

2

FIG. 3. Computed squared frequency spectra for disordered
chains of length 8000 atoms, of mass ratio 3:1, with equal nearest-
neighbor force constants. On the abscissa axis, we have co+(I.) =
1.0 and co+(H) = 3.
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and 2. It is also noticeable that the continuum exhibits
structure, particularly towards its higher frequencies, a
feature which is not evident in the spectrum for the
mass ratio of 2:1.

As the mass ratio increases beyond 3:1,the spectrum
becomes increasingly discontinuous in character. The
limit of infinite mass ratio has been investigated by
Domb et al. (1959), along with their moment trace
investigation. They point out that the infinitely heavy
atoms separate the light atom clusters into "islands"
which vibrate quite independently of each other, so
that the problem can be solved exactly. The spectrum
consists of a 8 function at the origin corresponding to
the zero-frequency modes of the infinitely heavy atoms,
together with an infinite number of 8 functions in the
range between 0 and zoM which occur at all the possible
frequencies generated by light-atom clusters of all
possible lengths. Since the frequencies generated by a
chain of length e between rigid walls are given by

oo'=toss'(I) sin' [zrt/2( +rt1)], t=1, 2, , zt (4.10)

(a) m. r. = 2 0

(b) m. r. ~t S

'
LJ 1ik

it follows that the 8-function frequencies are given by
formula (4.10), with zz taking all possible integer values.
The intensity of lines (i.e., of individual 8 functions) is
related simplv to cluster probabilities which, in turn,
are governed by the over-all proportion of light to heavy
atoms. It is interesting to note that such a spectrum of

functions is a most pathological mathematical
function, having the property of being discontinuous at
every point in the range of interest, 0 to &ost'(I.). As
Domb et al. (1959) point out, near any one 8 function
frequency of the spectrum there will be infinitely many
other 5 functions, but the closer any such frequency
comes to the first the larger is the difference in their
rr.agnitudes. Payton and Visscher (1967a) have
carried out the numerical computation of spectra for
high-mass ratios, using the negative eigenvalue theorem,
and have obtained results consistent with the remarks of
Domb et al. (1959). One interesting feature of the
squared frequency spectrum at high-mass ratios is its
symmetry about a central point (neglecting the zero-
frequency b function); this property follows from (4.10)
but is also a consequence of a more general symmetry
theorem established by Bell and Dean (1968a).

The spectrum obtained by Domb el ztl. (1959) for
infinite mass ratio is perhaps of some relevance in
connection with the recently reopened question of
localization in relation to the Anderson model (Ander-
son, 1958, 1970; Thouless, 1970; Economou, 1971;
Economou and Cohen, 1971). It contributes a well-
defined example of a system where the spectrum is
dense in the sense of having no intervals of zero density
in the range 0 to +~, the eigenstates are localized and
the spectrum discontinuous, as described.

At mass ratios below 2:1, the spectrum of the two-
component linear chain becomes increasingly smooth,
tending again to the monatomic form as the mass ratio
approaches unity. In Fig. 4 we plot results obtained

(c) m. r. l.6

0 J0.5 I 0

Frc. 4. Computed squared frequency spectra for disordered
chains indicating changes which occur as the mass ratio decreases
from 2:1 to lower values. For these three spectra cz, =0.5 and,
as in previous 6gures, forces are confined to nearest-neighbor
pairs with equal constants. In all three cases we have co+(L) =
1.0 on the abscissa axis, with co~'(H) varying from 0.5 in (a) to
0.625 in (c).

for mass ratios 2:1,1.8:1, and 1.6:1.It is clear that the
form of the spectrum changes quite rapidly as the mass
ratio moves below 2:1. The effect of having force
constants which depend upon the types of nearest
neighbor atoms to which they relate has been investi-
gated by Payton (1966) and by Dean (unpublished).
Again, one finds extremely complex spectra which can
be explained in terms of the basic ideas already de-
scribed.

We have mentioned that the study of the eigen-
vectors of the disordered nearest-neighbor two-com-
ponent chain have fully verified the suggestions out-
lined for the existence of highly structured spectra.
The first accurate vectors were obtained by Rosenstock
and McGill (1962) using, in effect, the difference
Eqs. (4.1) to compute successive vector components
u;. The method yielded accurate vectors for the short
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Agacy's spectrum agrees closelv with that derived from
the negative eigenvalue theorem. This agreement is most
significant in that the functional equation relates to an
ensemble-averaged system, unlike those calculated for
particular chains.

A number of interesting and valuable exact results
for the spectrum of the two-component disordered chain
with nearest-neighbor and equal interactions has
become known following the work of several authors
(Borland, 1964; Hori, 1964a,b; Matsuda, 1964; Matsuda
and Okada, 1965). These results apply to so-called
"special" frequencies at which infinitesimal gaps occur
for certain ranges of parameters in the frequency dis-
tribution function. Special frequencies occur at the
points

~'=~(s t)'=~M(L) cos' (ns/2t), (4.11)

(d)

V

Mode no. 36,gP ~0.56 uM&(L)

Hg~ p, I

where s and z (with s(t) are integers prime to each
other, provided only that the mass ratio mH/mL is
greater than a certain critical value defined by

(mH/mz, )„;i;,.i=1+ cot (s/2t) tan (ss/2/!). (4.12)

Matsuda and Teramoto (1965) have proved that

(e) Mode no. 47' ~0.85 ~M~ (L) $[~d(s, t)')=1—[c(1—n)n' '/(1 —n') j
c(1—n) '-'

Q n(jt/e]
n(1—n');=,

(s= 1),

(s)2)

L L Position in chain

Fxo. 5. Form of modes for the isotopic disordered chain of
mass ratio 3:1 based on calculations (Dean and Bacon, 1963)
for a chain of length 50 atoms (under the rigid wall boundary
condition) . Atomic displacements are plotted vertically, and
atomic position in the chain horizontally. In the case of the two
highest-frequency modes, the atomic types near the centre of
localization are noted. Refer to Fig. 3(a) for the positions of the
modes in the spectrum.

chain lengths involved, up to about sixteen atoms,
but there is the danger that this approach could run
into difhculties due to numerical instability if applied
to very long chains. Dean and Bacon (1963) computed
spectra for chains of length 50, using inverse iteration.
Figure 5 indicates the form of vectors obtained for
chains of mass ratio 3:1 at various frequencies: the
association of the high-frequency modes with various
types of local atomic arrangement, and the general
intensification of localization with increasing frequency,
are two features of the results. Eigenvector calculations
for disordered two-component chains have also been
carried out by Payton (1966) and Payton and Visscher
(1967b), again by inverse iteration, and they confirm
the features described above.

It was mentioned earlier that Agacy (1964) solved
a functional equation —essentially one in the form
derived by Schmidt (1957)—for the disordered two-
component chain. He considered the case of mass ratio
2: j., with equal force constants, and solved the func-
tional equation numerically using finite representation
of the solution and standard linear algebra procedures.

for the integrated frequency spectrum
2

(4.13)

E((u') = G(a)') d(o' (4.14)

2t—1 8—1

Q nb'&/&I

2t —1 &.=1

(s= 1)

(s)2) (4.15)

giving, for s=1, 3=2, and provided that mH/mz, )2, the
result cV[2co,iz'(L) j=—„and verifying the accuracy of
figures given by Dean (1960, 1961).Moreover, at the
point ~d'= 2a&/a'(L) one can actually observe the
existence of a gap in the numerically calculated spec-
trum (as in Fig. 2, for example). Numerical results
have similarly been conhrmed at other points in the
spectrum, and for numerous other cases.

Frequency spectra of disordered chains with second

provided that mH/mz, & (mH/mz, ),»&;„i. In Eq. (4.13),
c is the concentration of light atoms, and n is the
probability that a given site (say, the ith) is occupied
by a light atom, given that its neighboring site (the
i 1th) is also occup—ied by a light atom; also [jt/sj
denotes the largest integer not exceeding j t/s.

Equa, tion (4.13), and the gap property of the special
points, have provided most valuable checks on the
validity of the numerical work. For example, for the
case of 50% composition and a completely random
structure (c=-,', n=-', ), we have
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as well as 6rst neighbor atomic forces have been in-
vestigated by Martin (1961), again using the direct
numerical approach. The dynamical matrix for Martin' s
model is of the five diagonal banded form

{g) g=0

e31 P2 |'3 0

P3 e33 P3 V4

V3 P3 ~3 P4 V3

(4.16)

{b) 9= —'

32

0

Martin computed the determinants of leading principal
minors of the matrix M —co'I, i.e., the sequence

60=—1, hg, 62, (4.17)

where 6, is the determinant of the leading principal
minor of order i. He used the recurrence formulas

4= (e3'—zo') ~' 3
—PP~'-3 —V"~*—3+20 V'B'-z,

~z= (&z ZO )~i—3 'Yz ~i—3z

B;=P;6, 3 yB; y,
—

where A, and 8; are the determinants

0

(4.18)

{Q) g
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I
I
I
l

s—1

0

(4.19)

0 ~ ~ ~ 0 y P

together with the initial conditions

Dp ——1, 6 3=do=Be ——0, hz=ug —zo . (4.20)

He then invoked the theorem that the number of
negative eigenvalues of M —cv'E is the same as the

FIG. 6. Squared frequency spectra for the disordered isotopic
chain of 50%—50% composition, length 8000 atoms, with 6rst-
and second-neighbor interactions. In each case mB=1, mL=&,
and f+4g=1, f and g being the nearest-neighbor and second-
neighbor force constants, respectively. The unit on the abscissa
is in terms of or+(L), the maximum squared frequency for the
light-atom chain with nearest-neighbor interactions only.

number of changes in sign of adjacent determinants in
the sequence (4.17). This theorem is the same basic
mathematical property on which the negative eigen-
value theorem depends (cf. the Appendix), and
Martin s computational method is, in fact, a partic-
ularization —for the Ave diagonal banded matrix —of
the technique outlined in Sec. 3.1.

In applying his method, Martin generated by com-
puter particular realizations of disordered two-com-
ponent chains having various preset statistical proper-
ties. Figure 6 indicates the results he obtained for a
completely disordered chain of mass ratio 2:1, 50%—
50% composition and of length 8000 atoms. The top
histogram is already familiar from earlier diagrams, and
relates to the case of zero second-neighbor forces. The
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center histogram relates to the same chain but with the
second neighbor to 6rst neighbor force constant taking
the ratio 1:28, and the lowest histogram to this ratio
being 1:12. Martin's results show that the introduction
of a relatively small amount of second-neighbor force
has little effect on the major characteristics of the
spectrum of the nearest-neighbor chain; there are some
general drifts in the frequencies and features of the
spectrum, and changes in the relative positions of peaks
in the high frequency region, but the identity of peaks
remains unchanged. Martin particularly noted this last
point, that the identity of each peak in terms of a type
of short-range structure about which certain modes are
highly localized, remains unchanged. Sah and Srivasta
(1970) have recently investigated the extent to which
this holds good for higher relative values of the second-
neighbor force, using the same method.

A considerable number of other studies of the dis-
ordered two-component chain have been carried out,
using a variety of methods. We mention in passing the
Green function approach first applied to this problem
by Langer (1961) and Davies and Langer (1963), and
since developed by other authors, This approach
depends essentially upon the technique of expanding
elements of the inverse dynamical matrix, averaging
over all chains of the ensemble, and evaluating terms in
the ensemble averaged series using diagrammatic
methods. It has not been successful in showing the fine
structure indicated by the numerical approach. A real
shortcoming of the method is its inability to provide
an assessment of the accuracy of the results it predicts.

(m- I n+

FIG. 7. Enumeration of lattice sites for (a) the simple quadratic
lattice, and (b) the honeycomb lattice.

Another method for the study of the disordered two-
component chain is that of Flinn, Maradudin, and
Weiss (1961) which is based on a modification of the
transfer matrix method of Hori and Asahi (1957) as
described by Faulkner and Korringa (1961). However,
the method of ensemble averaging employed by Flinn
et al. is now accepted to be erroneous. Yet another
published method is tha, t of Domb (1963): power series
expansions were derived for the very long wave region
of the spectrum, and a method was proposed which was
stated to offer reasonable prospects for practical
evaluation of the spectrum over the whole frequency
range.

Apart from the Monte Carlo approach of studying the
spectra of a small sample of particular long chains, one
other particularly simple numerical approach has
achieved some success. This is the technique of com-

puting either the exact eigenvalues or the eigenvalue
spectrum (using a convenient histogram interval) of
chains of short length, say 10 or 12 atoms, and averaging
over all possible structural configurations (2" or 2").
One 6nds that the high-frequency region of the resulting
average spectrum reproduces almost exactly the correct
spectrum for a very long chain. The reason lies in the
high localization of the higher frequency modes; the
localization is such that, at least for mass ratios of 2:1 or
greater, the modes are relatively little affected by the
proximity of the boundaries and thus vibrate very
much as they would in an infinite system. Both Rosen-
stock and McGill (1968) and Borland (unpublished)
have computed spectra for short chains in this way and
observed their use in reproducing the high-frequency
spectrum of the disordered chain. At low frequencies,
where the modes interact appreciably with the bound-
aries, and for mass ratios much less than about 2:1, the
method is of little value.

The effects of chain length and related questions in
the numerical approach have been discussed in some
detail by Matsuda (1966a) . Perhaps the most complete
catalogue, to date, of results for the disordered two-
component chain are contained in the reports and
papers by Payton (1966), and Payton and Visscher
(1967'a, b, 1968). This work carried out at Los Alamos
discusses in detail the effects of variation of all the
main parameters such as mass ratio, composition, chain
lengths, order —disorder parameters, and force constants.

The two-component disordered chain does not
represent accurately any physical system, and so one
cannot make direct comparisons with experiment.
This system is, rather, a testing ground for theory and
numerical techniques and, in this sense, has proved
most valuable. We already know, having introduced
quite general equations in Sec. 3, that the numerical
methods used for the linear chain are applicable to two-
and three-dimensional systems. It is interesting, and
emphasizes the value of studying the linear chain, that
the general nature of the results discovered for this
system extend to the higher dimensional structures.
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4.2 Toro- and Three-Dimensional Work

The numerical methods described in Sec. 3 have been
applied to various two- and three-dimensional lattices
and have clearly shown that the properties discussed for
the one-dimensional system extend, in an obvious way,
to these more realistic systems. It is perhaps not
generally realized that one of the advantages of the
numerical approach is that it is independent of dimen-
sion. Some other approaches used in one dimension—
such as, for example, the method of setting up func-
tional equations from which the spectrum can be
derived —fail in two- and three-dimensional problems
because of the lack of a sequential ordering in the
atomic positions. The Green's function approach has
been more successful in three, rather than in one,
dimensions. However, as we indicate in Sec. 9, it shows
no real promise as a predictive technique.

Dean and Bacon (1965) applied the direct numerical
method to the problems of the two-component simple
quadratic and honeycomb lattices. In both cases a
nearest-neighbor force field was used and, for stability,
noncentral as well as central forces for the simple
quadratic lattice. With the lattice points enumerated
as in Fig. 7(a), the equations of motion for displace-
ment in the x direction of the atom i (not a boundary
atom) can be written as

m,x, =y;,~g' (x;~g x;)+y,;—~'(x; t x;)—
+y, ;~ (x;+ —x;)+y;; (x; —x;), (4.21)

m; being the mass of the ith atom, and y;; and y; being
the central and noncentral force constants, respectively,
between the atoms i and j. After substituting i;=
—io2x, (for a normal mode of circular frequency io),
dividing the ith equation by m ~', and changing to new
displacement variables I;=m,' sx; (i=1, 2, ~ ~, mrt),
the equations (4.21) can be cast in the form

(Mttq —io'I) u=O, (4.22)

with Mgg a symmetric matrix of block tridiagonal form
of order (mrtXmn), and u a vector of mrs elements. A
toroidal boundary condition was imposed in the y
direction (thus, giving the atom 2n a noncentral force
interaction with the atom 2rt+1), and a rigid wall
boundary condition in the x direction.

The feature of this model of simple quadratic lattice
with nearest-neighbor interactions is that the atomic
vibrations in the x and y directions are independent.
Dean and Bacon (1965) considered explicitly motion in
the x direction; vibrations in the y direction can be
treated in an exactly analogous manner.

The equations of motion for the honeycomb lattice
are rather more complicated than those for the simple
quadratic lattice, there being no question of separating
atomic motions in two perpendicular directions in this
case. A section of lattice as in Fig. 7(b) was considered.
Notice that there are two kinds of lattice site, denoted
by a and P in the diagram. The equations of motion for
an atom i, on an 0. lattice site may be written as
follows:

——,'K3y, ;+. t+-,'V3y, ,+„) (x;)
1 1
4 Yii+n —1 epii+n Vii—n) (yi)

provided that the atom is not at a boundary. Here x; and y; represent the x and y components of the displacement
from equilibrium of the ith atom, m; is the mass of the atom, and p;; is the central harmonic force constant acting
between the atoms i and j.If i refers to an atom at a P lattice site then, again, provided the atom is not at a bound-
ary, the equations of motion may be written as

( 4Vii n4vii n+1 ev—3—7ii—n e~37ii—nial ) (xi I (O O
1 (xi+n)

I+v "+-I II I
(4 24)

4~'rii —n e~&pii n+& 4'rii —n e'rii n+j 'Yii—+n)—(y;) (O 1) Di+n)

Equations (4.23) and (4.24) become modified in obvious ways for boundary atoms according to the precise nature
of the boundary conditions imposed.

Writing now x;= —iosx;, g, = —&o'y; for a normal mode of frequency io, dividing each of the equations (4.23) and
(4.24) by m;"', and changing to new displacement coordinates tt;=m'"x t!,=m;"'y;, we find that the equation can
be written in the matrix form

(Mrr —io'I) w=O. (4.25)
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The matrix M~ is of the block tridiagonal symmetric form

I, R, 0

Rp Q2 S3

S3~ P3 R4

R4~ Q4 S5

(4.26)

with the submatrices P;, Q;, and R; block diagonal as follows:

C(i—1)n+1

P, =
C(i—1)n+2

(4.27)

C;„

D(i—1)n+1

D(j—1)n+2

(4.28)

F(i—1)n+1

F(i—1)n+2

(4.29)

F;

The matrix S; contains a subdiagonal of blocks, in addition to the main diagonal:

S;= (4.30)

6;
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The matrices C,, D, , F;, 6;, and H; are functions of the masses and force constants of the lattice, and are all of
order (2X2), as follows:

~~ h'ii ~+—& 7ii o)—
C, = (4m, )-

~~ ('Yii n+—x 78—~) 'Yii ++V—ii n+1+—478 +-»

3(v i+ r+vi-i+ )
D, =(4m, ) '

~~( /jjpn 1—'rtiyn) Yjj+n 1+'—rjjpn 4"rjj n—
0 0

F 722

m, „m)" 0 1

3
6 722

4(mt m )'"

Pj'j'—n+1

4(m, „+pm,)'' (4.31)

TABLE II. Correspondence between spectral lines and local
structure.

Simple quadratic lattice
(Fig. 8)

mH/mL=3:1, y/y'=1

Hexagonal lattice
(Fig. 9)

mH/mL =3:1

Line
Cluster of L atoms
(any orientation)

Cluster of L atoms
Line (any orientation)

A ~

C C

~ ~

Most of the frequencies in the shoulder of the peak at A and at au'=
4.2y/mL are probably associated with localized modes extended over two
(or possibly more) light-atom clusters, at least one of which is the single
light-atom cluster.

The vector w in Eq. (4.25) is the column vector of
elements Ny, 'Fly, ~, &2, ~ ~ ', Q~» p~».

The eigenvalue distributions of the matrices Mgq
and MJI were calculated for a range of parameters
corresponding to various values of the mass ratio, the
ratio of central to noncentral force in the case of the
simple quadratic lattice, and the concentration of the
light atom species. Typical results for the simple
quadratic lattice are shown in Fig. 8, and for the honey-
comb lattice in Fig. 9. One can see that the main
features noted in the case of the two-component dis-
ordered chain carry over to these disordered two-
dimensional systems. For example, one notices that at
low concentrations of the light atomic species the

spectrum consists largely of a band in the low-frequency
region similar to the band of the heavy monatomic
lattice; in the high-frequency region one notices the
emergence of a small number of peaks of low intensity.
As the concentration of the light atomic species in-
creases, the peaks in the high-frequency region become
progressively more dominant and the low-frequency
band loses the form associated with the heavy mon-
atomic lattice. As the light atom concentration ap-
proaches 0.5, the spectrum becomes quite complex with
a number of peaks and valleys throughout its entire
range, and it remains complex until the proportion of
light atoms comes very close to unity.

As in one dimension the peaks in the high-frequency
region of the spectrum are associated with modes of
vibration localized in the vicinity of particular types of
local atomic configuration. Thus the peaks marked A,
for example, in Figs. 8 and 9 are associated with modes
of vibration localized at single light atom clusters em-
bedded in a local environment of heavy atoms. As the
concentration of light atoms increases from very small
values towards cL=0.5, this peak becomes relatively
less dominant in relation to other peaks (8, C, and D,
etc.) in the high-frequency portion of the spectrum
which are associated with clusters containing two and
more light atoms embedded in a local environment of
heavy atoms. The sequence of changes in the spectrum
is therefore very similar to the sequence we noted in
Sec. 4.1 for the one-dimensional lattice, but of course
there are quantitative distinctions. The information
in Table II, relating to the assignments of peaks in the
high-frequency spectrum of Figs. 8 and 9, was obtained
by the simple device of calculating spectra for various
lattice samples containing just a small concentration of
particular types of light-atom impurity cluster.

Payton and Visscher (1966, 1967a,, b) have carried
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(a) cL =0 I sequence technique of Givens is then used to find the
accurate eigenvalues.

The lattices considered by Payton and Visscher are
the square, triangular, simple cubic, body-centered
cubic, and face-centered cubic structures. Figure 10
indicates a typical sequence of spectra obtained for the
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(b) cL —-0 25

C
CDB D A B C

D
I

lI
I

'll

ll

j

g~
I
I

BA CBC
CB

C

~, hr
B
C

C BC

(c) cL =0 5 (b) cL 0.25

(d) cL =0.7
(c) cL-OS

(d) cL —-O.?

0 0-5
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I-0

FIG. 8. Squared frequency spectra for the disordered two-
component simple quadratic lattice of size 56X16 for which
MH/ML ——3:1 and y=y'. The letters A, 8, C, and D refer to
Table II. The broken line in (a) is the spectrum of the monatomic
heavy lattice, and that in (e) is the spectrum of the monatomic
light lat tice.

(e) cL=0-9

through a substantially more ambitious program of
work on the vibrations of two- and also three-dimen-
sional lattices. They computed not only the vibrational
frequency spectrum of a whole range of lattice types and
samples by the method outlined in Sec. 3.1, but also
evaluated normal modes for these various lattices by an
inverse iteration technique, accurate eigenvalues being
first found by a diagonalization procedure devised'by
Ortega (1964). Ortega's method is a combination of the
Householder method (Householder and Bauer, 1959)
of matrix reduction and the diagonalization procedure
of Givens (1953, 1954). The dynamical matrix is first
reduced to tridiagonal form by a series of simple
orthogonal similarity transformations, and the Sturm

I
/

/
/

/
/~~)

05
Q2

I 0

E'IG. 9. Squared frequency spectra for the disordered two-
component honeycomb lattice of size 50)&18 for which MH/ML=
3:1.The letters A, 8, and C refer to Table II, In (a) and (e),
the broken curve represents part of the spectrum for the infinite
monatomic lattice of heavy and light atoms, respectively. One-
quarter of the frequencies of the theoretical spectra for the
monatomic lattices also occur in a 8 function at co=0, and another
quarter in a 8 function at the maximum frequency of the con-
tinuous spectrum. These 8 functions are -represented in the
diagrams by lines with double arrows.
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simple quadratic lattice as the concentration is varied.
These spectra correspond to a 30)(30 atom section of
lattice with a mass ratio of 3:1and with equal central
and noncentral forces. The agreement with the histo-
gram of Fig. 8 is good in spite of the different lattice
sizes chosen and the fact that Dean and Bacon used a
coarser histogram interval in their work. Figure 11
indicates the effect of varying the mass ratio of the
square lattice, as found by Payton and Visscher, for a
given concentration of light to heavy atoms (25% light
atoms; 75% heavy atoms). The spectrum becomes

(b) m. r. =2-l

(d) m.r. 4:l

(e) m. r. = l000:l

(a) cL ~0-I5
Ol

3

0 05
Q

2
t 0

(c) m. r. = 3:l

0.5 I.O

(c) cL ~O 5

FIG. 11. ERect of varying the mass ratio on the squared
frequency spectrum of the simple quadratic disordered lattice,
given cL=0.25 and y/p'=1. Special frequencies (see Sec. 4.1)
begin to appear at the mass ratio 2:1;the low-frequency behavior
of the spectra is determined largely by the harmonic mean mass
up to the frequency of the big peak, whose position is inversely
proportional to the harmonic mean mass, {after Payton and
Visscher, 1967a) .

4p ~III i p" I

I I I I l I n I

(d) cL=07

0
I I I I I

05
QR

FIG. 10. Squared frequency spectra for disordered two-com-
ponent simple quadratic lattices of size 30)&30 with mass ratio
3:1, and equal central and noncentral force constants (after
Payton and Visscher, 1967a). A good general agreement with
the spectra of Fig. 8 is an indication of the reproducibility of
results —even for quite small lattice sections —using the numerical
approach.

progressively more peaky as the mass ratio increases,
as in one dimension. At very high mass ratios, the
squared frequency spectrum becomes symmetric about
its center point, except for the existence of a low-
frequency delta function; the explanation for this
symmetry is given by Bell and Dean (1968a) .

Calculated spectra for 10)&50 sections of. the triangu-
lar two-component disordered lattice are given in the
report by Payton (1966) . Again, these spectra show the
existence of high-frequency peaks, corresponding to local
modes, at low concentrations of light atoms.

The three-dimensional results of Payton and Visscher
(1966, 1967a, b) are very much an extension of the
findings for the linear chain and the two-dimensional
lattices. The simple cubic lattice was mainly considered;
this system has the advantage that one can again, as for
the simple quadratic lattice, separate out motion in
mutually perpendicular directions —provided forces are
restricted to nearest neighbors. Payton and Visscher's
results are based upon lattice sections of sizes 6X6X25
and thus are most limited in two of the three directions.
Yet they all show features consistent with the changes
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FIG. 12. Squared frequency spectra for disordered two-com-
ponent simple cubic lattices of size 6X6X25 with mass ratio
2:1. The force 6eld is one with equal nearest-neighbor central
and non-central forces, and the broken line in (a) is the exact
spectrum for the in6nite monatomic lattice of heavy atoms {Payton
and Uisscher, 1967a) .

mentioned for one- and two-dimensional lattices as
parameters such as concentration of light atoms and the
mass ratio of two atomic species are changed. These
results are also supported by calculations of a similar

type on sections of sizes up to 12X12&12 by Dean and
Kingsley (unpublished), and there is little doubt that
they represent well the general features of the spectrum
of large three-dimensional two-component disordered
structures.

Figures 12 and 13 depict spectra obtained by Payton
and Visscher for sample structures of the simple cubic
lattice. In Fig. 12, for the case of mass ratio 2:1, the
fraction of light atoms is varied from 10% to 50% of
the total. One notices here the existence of some high-
frequency structure which becomes more clearly
attached to the main low-frequency region of the
spectrum as the light atom concentration is increased.
In Fig. 13, the effect of varying the mass ratio is de-
picted for the concentration of 50% light atoms. At this
concentration most light atoms belong to a cluster of
infinite size (for the infinite lattice) and the spectrum
has a quasicontinuous background at high frequencies.
In both Figs. 12 and 13 the central and noncentral force
constants were taken to be equal.

The fact that the three-dimensional lattice sections
used are fairly small necessitates the use of a rather
coarse histogram interval. This, in turn, makes it dif-
ficult to establish with certainty the existence of
narrow and well-defined. high-frequency peaks in the

(g) m. r. =2:I (c) m. r. =5:I

3

(b) m. r. =3:I (d) m. r.=l000:I

05
Q
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I0
I

0.5
Q2

I.O

FIG. 13. Effect of varying the mass ratio on the squared fre-
quency spectrum for the disordered simple cubic lattice of size
6X6X20 and 50%—50/z concentration. The force 6eld is one
with equal nearest-neighbor central and noncentral forces (Payton,
1966).

spectrum. However, Payton and Visscher have shown
that the prominent high-frequency features in their
computed spectra do encompass the frequencies of
light atom modes embedded in local heavy atom en-
vironments. Their eigenvector calculations, which we
discuss below, support the view that the nature of the
high-frequency spectrum for three-dimensional dis-
ordered two-component lattices is qualitatively similar
to that of the analogous one-dimensional systems.

We mentioned earlier that Payton and Visscher
computed sample eigenvectors for the two- and three-
dimensional disordered two-component structures.
Although the vectors evaluated were for lattice samples
fairly small in size, the results obtained point quite
conclusively to the dominance of the local modes
introducing the observed structure in the wide range of
frequency spectra obtained for two- and three-dimen-
sional lattices.

The interpretation of spectra, by Payton and Visscher
(1967b), is based upon the computation of specific
eigenvectors for small sample lattices in two and three
dimensions. Thus, Fig. 14 is a squared frequency
spectrum computed for a 14&(14 section of a simple
quadratic lattice, of mass ratio 3:1,with equal central
and noncentral forces, and 15% light atom concentra-
tion. The lettering on the diagram refers to modes,
picked out as examples, having the following charac-
teristics:

(A) This is a mode of frequency or~/cdM'=1. 99, and
is the higher-frequency vibration associated with an
isolated pair of light impurities embedded in a heavy
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atom local environment. It is an antisymmetric mode
(~—+), its symmetric counterpart (—& —+) having a
frequency given by tos/toss'-—1.26.

(8) This is the 13th highest frequency mode at
co'/oose'—-1.7, and it contributes to the high-frequency
peak in the diagram. It is the localized mode associated
with a single light atom embedded in a local environ-
ment of heavy atoms. The size of the peak in the figure
reflects the facts that there are several isolated im-
purities of this kind in the lattice section and that many
clusters of odd numbers of light atoms have modes
which are almost degenerate with those of the isolated
light atoms.

(C) This is the 26th highest mode and corresponds to
the frequency &o'/tosrs = 1.1.It is the first mode above the
continuum, and is highly localized about a particular
cluster of light atoms having the configuration

and embedded in a heavy atom local environment. The
mode is a vibration of the form

(~&toM )

Other modes for this particular light atom cluster are

FIG. 14. Squared frequency spectrum of a 14P 14 simple
quadratic disordered lattice, some modes of which are described
in the text. The mass ratio of the lattice is 3:1 and the non-
central and central nearest-neighbor forces are equal; the con-
centration of light atoms is 15%. The maximum frequency of
the heavy monatomic lattice is denoted by &AM. (After Payton
and Visscher, 1967b.)

and correspond to the frequencies &o'/&osrs=1. 36,
oo'/toss= 1.8, and to'/toss'=2. 2, respectively.

(D) This is the 27th highest mode and corresponds to
the frequency to /to.~ =0.96. This mode is the mode of
highest frequency in the host lattice continuum and it
is not nearly as localized as the higher frequency modes
discussed above. Even so it is substantially more
localized than the typical wavelike forms associated
with monatomic or regular two-component lattices, only
perhaps one quarter of the atoms of the lattice section
contributing substantially to atomic motion in this
particular mode.

Payton and Visscher were able to interpret the
spectra of simple cubic lattices in an analogous manner.
In Payton's original report (1966), their calcula, ted
modes for small two- and three-dimensional lattices are
depicted as stereographic pairs, and it is recommended
that the reader observe their diagrams and attempt
(with or without the aid of a stereo viewer) to visualize
the nature of the two- and three-dimensional vibrations.
The diagrams of their published paper (1967b) consist
only of single members of the stereo pairs. As mentioned
earlier, these authors also carried out calculations of the
spectra of two other three-dimensional lattices, the
face-centered cubic and body-centered cubic lattices.

The results they obtained are qualitatively of the same
kind as those found for all the other lattices considered.
One notices, particularly at low light-atom concentra-
tions, the existence of fairly well defined high-frequency
peaks in the spectra, clearly associated with the
localized vibrations of small light-atom clusters. As the
concentration of light atoms increases away from small
values, the spectra become very complex indeed,
tending towards a more continuous form at high
concentrations 'of the light-atom species.

All this shows that the picture obtained for the
vibrations of atoms in disordered two-component
chains carries over, with apparently few changes, to
two- and three-dimensional disordered structures. As
we have mentioned, however, certain qualitative
differences do occur for the higher dimensional dis-
ordered structures. At any given concentration of the
light atom species, it is clear that the high-frequency
spectrum consists of many more peaks each of sub-
stantially less intensity than in the corresponding two-
component linear chain. The reason is that there are, in
three dimensions, many more types of small light atom
clusters than in one dimension, and a correspondingly
smaller probability of any particular type of cluster
contributing a local mode frequency to the spectrum.
At low concentrations of light atoms, the spectrum is
basically quite similar to that of the one-dimensional
chain. As the concentration of light atoms increases,



&48 REVIEWS OF MODERN PHYSICS ~ APRIL 1.972

the spectrum becomes very complex indeed, with
substantial numbers of peaks all of fairly low intensity
appearing at the high-frequency end of the spectrum.
Because of the relative small intensity of each of the
peaks in the spectrum and the large number of such
peaks the high frequency spectrum takes something of
the appearance of a continuum. It is important to
realize, though, that even at high light atom concentra-
tions a sufFiciently detailed analysis of the spectra of
two- and three-dimensional lattices would show
numerous peaks, possibly superimposed on a reasonably
continuous background. Because the form of spectra is
limited by the probability of occurrence of various light
atom clusters, one expects rapid changes in the spectrum
for two- and three-dimensional disordered lattices as
the light atom concentration varies at values near the
so-called "critical percolation concentrations" (Dean
and Bird, 1967). This expectation is supported by the
results of the various numerical studies.

Approaches other than the direct numerical method
for two- and three-dimensional systems have not
elucidated in any such detail the nature of atomic
vibrations in the two-component disordered solids. The
Green's function approach. as applied to the phonon
problem, has however had some success. Maris (1966)
calculated the spectrum of a disordered face-centered
cubic system with a mass ratio close to unity. Taylor
(1967), using a self-consistent approach based upon
equations derived from multiple-scattering theory,
produced results for frequency spectra in good agree-
ment with the studies of Payton and Visscher (1967a)
for the simple cubic lattice. He also used his result to
reinterpret experimental data for Ge—Si alloys with some
success. Leath and Goodman (1969) carried through a
calculation based on an unperturbed reference lattice of
mean-inverse mass and obtained results for the simple
cubic structure again consistent with the numerical
studies of Payton and Visscher (1967a); however,
comparison of a calculation on a linear chain with one-
dimensional numerical results showed a failure to
reproduce spectral detail at high frequencies. Other
work on the development of the approach includes
papers by Yonezawa (1968), Takeno (1962, 1968) and
Aiyer et al,. (1969). As indicated earlier in the section on
one-dimensional two-component systems, a major
difFiculty of the Green's function method is the lack
of a means to provide an assessment of the accuracy of
computed results.

The moment-trace method, outlined in Sec. 4.1, is
independent of dimensionality, and Bradley (1961)has
carried through a calculation for a simple cubic dis-
ordered structure. However, the substantial difhculties
in obtaining large numbers of moments, as required for
a detailed spectrum, provide a real barrier to any real
progress by this method for three-dimensional systems.

The concept of "special" frequencies, discussed in
Sec. 4.1 in connection with the two-component dis-
ordered chain, carries over in a somewhat restricted

sense to higher dimensional lattices. Matsuda (1966b)
showed that every cluster frequency, that is every
frequency of a finite cluster of light atoms surrounded
in its lattice environment by infinitely massive heavy
atoms becomes what he terms a "generalized special
frequency" or GSF. These frequencies are such that
there appear at these points infinitesimal gaps in the
spectrum provided that certain conditions in the
atomic arrangements and mass ratio of the species hold
good. No simple formula exists, as in one dimension,
either for the values of the GSF's or the corresponding
critical mass ratios. Hori (1968b) has shown how to
calculate these quantities, and with Wada gives a
readable and full account of the concept of GSF's in a
recent review (Hori and Wada, 1970).There seems to be
good agreement between the results of these calculations
and spectral features obtained by the direct numerical
method in cases where comparisons are appropriate.

S. GLASSES

Glasses represent a totally different class of dis-
ordered system from those considered hitherto, both in
their properties as real materials and in the theoretical
problems they present. A great deal of experimental
work relating fairly directly to their atomic vibrations
have been carried out. Simon (1960) documents most
of the infrared and Raman work on simple glasses up to
about 1959, and since that time numerous other
studies have been carried out. Thus, on the experi-
mental side, there is a wealth of data available from
work extending back over many years.

The major difFiculty associated with the theorv of
atomic vibrations in glasses lies not so much in attempt-
ing to solve equations of atomic motion, but rather in
formulating the mathematical problem from a starting
point of the usual insufhcient and rather vague in-
formation on the structure of glasses. The significant
characteristic of the atomic structure of glasses is that
of spatial disorder, i.e., that the atoms do not lie on sites
of a regular lattice but in random positions in space,
subject to certain near-neighbor restrictive conditions.
Such structures cannot easily be specified mathe-
matically in the way one can specify —in a statistical
sense —the disorder in, for example, a two-component
lattice, and it is not possible to set up easily models on
which to base theoretical investigations or com-
putational work. This has, in fact, been the central
difhculty for work on glasses, that of setting up a model
as a starting point for investigations —and the problem
of the equations of atomic motion seems relatively
tractable in comparison with this.

In practice some progress has been made in theoreti-
cal studies. First, one-dimensional models exhibiting
disorder in interatomic distances can be tackled without
undue difhculty; one can order the atomic sites along
the chain and use the techniques described in Sec. 3.
However, it can be argued that such models neglect the
problem of topological disorder. Bell (private com-
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munication), though, has recently studied a one-
dimensional system exhibiting topological disorder, as
we indicate later. A second and important point of
progress is that methods of building physical models of
realistic atomic arrangements in glasses have proved
most fruitful. In this work particular sample configura-
tions of atoms representing the structure of a glass are
built, and the coordinates of atoms in these models are
used as a

'

basis for calculating atomic vibrational
properties. The Green's function and numerical ap-
proaches have both been used for the one-dimensional
problem, but only the numerical method —used in
connection with the physical models just mentioned-
has so far been used for the three-dimensional problem.

5.1 One-Dimensional Models

In one dimension one cannot reproduce the l.ind of
spatial disorder which characterizes the atomic geom-
etry of real glasses. The most one can do is to introduce
the concept of a continuous distribution of interatomic
distances or (what amounts to the same thing) forces
in the model. Thus, Dean (1964) studied the monatomic
glass defined by the equations

rrtto'x;=—y, (x;~t x;)+y;—t(x; t x,)—
(i=1, 2, ~ ~, S), (5.1)

for 0&y &y,&yg

=0 (5.2)

The vibrational properties of the particular chains
realized were investigated, using the Sturm sequence
method for the distribution of frequencies, as outlined
in Sec. 4, and the method of inverse iteration for a
selection of atomic displacement eigenvectors (cf.

otherwise.

where the force constants y; are governed by an a pri ori
continuous probabHity distribution function P(y;)
which is nonzero only in the region 0&y,&y;&y&.
Stated in this way, Eqs. (5.1) together with I'(y;)
de6ne an ensemble of chains. The work was concerned
both with specific properties of the ensemble, and with
the properties of individual representative chains as
determined by the direct numerical method. A general
result proved in the paper, one based upon an ergodic-
type hypothesis, states that unless the chain is ordered
(i.e., p, =pz), all nonzero frequency vibrational modes
are localized. This result is supported by the numerical
studies of particular chains from which, incidentally,
one also sees a strong suggestion of a trend towards
increasing spatial localization of modes with increasing
frequency.

The numerical methods employed are essentially
those described earlier. Chains of length 7900 atoms
were realized using a random number computer routine
which chose numbers y, in the range y &y;&y~ with
equal probability; this, in eGect, gives harmonic force
constants y, described by an a Priori proba, bility dis-
tribution

0

Fio. 15. Spectra of squared frequencies for monatomic chains
in vvhich the distribution of force constants is of the form (5.2).
(a) y~=-,', yf, ——1-4; (b) y, =-,', yq=i-,'; (c) y, =0, p|,=2. The
smooth curve in (a) is the spectrum for the ordered chain (y = 1) .

Sec. 3). Typical spectra of squared frequencies are
depicted in Fig. 15. The U-shaped form

G(~2) (2/u) L~ 2 ~2j—1/2 (0(~2(~ 2 —4~/rtt)

for the regular chain y =y =y~ is indicated by the con-
tinuous line in diagram (a). As the disorder of the
structure increases, i.e., E(y) increases in width, the
high-frequency end of the spectrum changes as indicated
successively in Figs. 15(a), (b), and (c). In contrast to
the cases of two-component disordered structures
studied in Sec. 4, there is no structure in the spectrum.
The small variations in the height of histogram intervals
in the diagram are merely statistical fluctuations, as was
verified by comparing results for chains of identical
statistical properties but different realizations.
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FIG. 16. Envelopes of atomic
amplitudes for typical eigen-
vectors P(a) 128th, (b) 224th,
(c) 288th, (d) 368th, correspond-
ing approximately to mes'= 1,
7/4, 9/4, 3 on Fig. 15(a)j for a
chain of 512 atoms in which the
distribution of force constants is
of the form (5.2), with y =4,
yq=14. The fluctuations of indi-
vidual atomic displacements are
indicated to the lef t of the
envelopes in (a), (b), and (c).

I I

50atoms Position along chain

Atomic amplitude eigenvectors for the one-dimen-
sional glass differ considerably from those typical of the
periodic chain. In Fig. 16 we depict amplitude en-
velopes for four tvpical eigenvectors calculated for a
chain of length 512 atoms with p =4, yg=14. The
increase of localization with increasing frequency is
most noticeable both here and in numerous other com-
puted results obtained when the work was carried out.
In the diagram, regions in which the amplitude appears
to be zero indicate parts of the chain in which the atomic
amplitudes of vibration for the mode depicted are
extremely small, rather than identically zero. The
equations of motion indicate that no two (or more)
successive atoms can have zero amplitude in a (non-
trivial) mode of vibration.

The smooth squared frequency spectra and the form
of eigenvectors calculated for the monatomic glass
models do not indicate any obvious dependence of
vibrational modes on particular types of local atomic
geometry, as is the case noted in Sec. 4 for two-com-
ponent disordered structures. This difference may well
be a consequence of the fact that, in the glasslike chain,
the nature of changes in local environment due to
disorder is not so discrete as that in two-component
disordered systems, and moreover, in the case of the
glasslike chains there exist (in the chains of infinite
length) an infinity of local situations and not just a
finite number (for, say, small atomic clusters surrounded
locally by at least two heavy atoms on each side). It
follows that even if highly localized modes are as-
sociated with particular types of local structure (as may
be the case at high frequencies) there will be an infinity
of such frequencies —not just a few preferred values as in
Figs. 3—6—and these will average out to a continuum.

In addition to the monatomic chain, the alternating
diatomic chain ~ ~ ABABAB ~ ~ in which the force G(~') =~(~')+ lG~(~') (5 4)

constants are governed by a continuous bounded
probability distribution was considered (Dean, 1964).
In a study of the effect of increasing disorder on the
band gap, it was shown analytically that if my&&My„
no frequencies exist in the region

2yb/M(cos( 2y, /m (5 3)

Here M and m (with M&m) are the masses of the two

types of atoms in the chains, and p, and yb (with
yb&y, &0) are the limits of the bounded probability
distribution function I'(y) of the nearest-neighbor
interatomic force constants. It was inferred that, as for
monatomic chains, the atomic modes are localized if one
assumes an ergodic-type hypothesis. As in the case of
monatomic chains, a particular class of diatomic chains,
with a I'(y) distribution given by Eq. (5.2), was
studied. Typical results for various degrees of order and
the mass ratios 2:1 and 4:1 are depicted in Fig. 17. As
the disorder is increased, the general trend of the
results —away from the well-known diatomic form for
the alternating chain towards a more continuous
distribution —is clear from the histograms. Again, a,s in
the monatomic case, there is no fine structure in the
spectra —the small discontinuities a,rise merely from
statistical fluctuations. The absence of frequencies in
the range (5.3) was confirmed in all the cases of diatomic
chains studied.

One particular (and unphysical) class of diatomic
chains was studied exactly. These are disordered chains
in which the mass ratio is infinity, i.e., in which single
light atoms of mass nz are separated by infinitely heavy
walls (corresponding to the atoms of mass M) and with

P(y) again given by, for example, (5.2). In this case the
distribution of squared frequencies was shown to be of
the form
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with

Gr, (zos) =zzz(zrtzo' —2y ) (yb —y.) '

for 2y, &rrtzos&y, +yb

=zN(2yb —zrtzos) (yb —y,) '

(a)

=0
for y +yb&zrtzo'&2yb

elsewhere. (5.5)

The 8 function at the origin is associated with the zero
vibrational frequency of the heavy atoms, whereas the
"triangular" squared frequer. cy spectrum, Gr. (zos), is
that due to the lighter atoms. A tendency towards the
triangular form of spectrum is evident in chains of mass
ratio 4:1 and is even more obvious in results for chains
of mass ratio 8:1not depicted in the original paper.

This work represents the only study by a direct
numerical method of fully disordered "glasslike" chains
with nearest-neighbor interactions. Studies using
Green's function methods have been undertaken by
Hindley (1967),and by Wu and Taylor (1969). In both
cases agreement with the earlier numerical work,
where tested, is good. In a sense Dyson (1953) was the
first to consider glasslike disorder in a one-dimensional
system for he studied analytically rather special models
with continuous disorder similar in some respects to
those described in this section. His results showed the
frequency spectrum to be featureless and smooth, very
much in agreement with the conclusions noted above
from numerical studies. Anderson (1965) conjectured
from general considerations that the frequency spectrum
of a diatomic glasslike chain would be of the form similar
to that eventually derived in the computer experiments.

As mentioned earlier, Bell (private communication)
has studied the effect of topological disorder on the
vibrational properties of one-dimensional disordered
systems. He considered two classes of chains. In the
first, each atom, in addition to interacting with its two
nearest neighbors, was coordinated also to two other
atoms of the chain randomly selected. In the second
class of system, each atom of a chain was coordinated
to four atoms, each of which was selected randomly.
For both models, the interatomic forces were all taken
to be equal and thus independent of the particular
interacting atoms, and the chains were mainly of length
1600. For computational speed and convenience
interactions were always confined to atomic pairs no
further than 16 atoms apart. Bell's models clearly
exhibit a type of topological disorder, from the manner
of atomic linkages, rather than the usual random force
(or mass) magnitude disorder (with topological order)
normally associated with linear chains.

Bell, using numerical techniques similar to those
outlined in this paper, found that for all classes of
system the vibrational modes, except at very low
frequencies, were spatially localized, and that the
frequency spectra differed considerably from the spectra
for periodic fourfold near-neighbor coordinated systems.

(e)

3
Q

(c)

FIG. 17. Spectra of squared frequencies for diatomic alternating
chains in which the distribution of force constants is of the form
(5.2). Atomic masses are wz and 2ns in (a), (b), and (c), and m
and 4m in (d), (e), and (f}.The limits of the function I'(y)
are y, =4, pt, =1~ in (a) and (d};y =~~, yf, =i~ in (b) and (e),
and y =0, yb=2 in (c) and (f). In (a) the smooth curves depict
the spectrum of the ordered chain (y=1), while in {d) the
regions of the acoustic and optical bands of the spectrum of the
ordered chain are indicated by the horizontal arrows.

Typically, for modes other than those having squared
frequencies less than about one-tenth of the spectral
maximum, perhaps only 100 to 200 atoms contributed
effectively to the energy of vibration. The effect of the
topological disorder of Bell's chains was thus very
considerable. Bell's work was initiated specifically to
meet the criticism that one-dimensional models provide
results inapplicable to real glasses as linear chains lack
the feature of topological disorder; it has succeeded in

supplying useful new information.

5.2 Three-Dimensional Systems

The difficulties presented by the problem of atomic
vibrations in a real glass have forced authors into a
study of somewhat artificial three-dimensional systems
having only some of the characteristics of a real glass.
For example, molecular-like models containing just
several atoms connected to rigid wall boundaries have
been used in a number of cases; one way of attempting
to impose glasslike disorder in a system of this kind
is to calculate average properties over various con-
figurations of the atoms. Work. of this kind is closer in

technique to that of conventional theoretical molecular

spectroscopy than to studies of condensed disordered
systems and will not be reviewed here. Other models of
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FIG. 18. Computed frequency spectra
for vitreous silica for two sample atomic
configurations (models I and II} each of
about 500 atoms: (a) model I, fixed-end
boundary condition; (b} model I, free-end
boundary condition; (c) model II, fixed-
end boundary condition; (d) model II,
free-end boundary condition.
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glasses considered in the past are quasilinear in form,
having, for example, a regular zigzag chain as a basis
structure. Although such models have also provided
useful insights into certain aspects of atomic vibra-
tions in a range of systems, this work, with its use of
conventional techniques, does not really fall within the
scope of this review (cf. Borrelli and Su, 1968).

To date there has been one investigation of atomic
vibrations in realistic models of glasses —that is in
models having the two essential features of size (and
thus containing large numbers of atoms) and spatial
disorder. This work has been based on sets of coordinates
provided by the actual physical construction of models
of glasses containing up to about 600 atoms each.
Studies were undertaken of glasses of the vitreous silica
type of structure —that is, of Si02, Ge02, and BeF2.
The kind of physical model upon which the work is
based has already been described in the literature (Bell
and Dean, 1966, 1967). The aspect of model building
and construction will not be dwelt upon in this review
but rather we shall concern ourselves with the com-
putation and results of the atomic vibrational proper-
ties.

The two ingredients upon which the vibrational work
depends are (i) the atomic coordinates which specify a
particular (and realistic) sample structure in the glass,
and (ii) a reasonably accurate interatomic force field.
We have already referred to the coordinates; these were
obtained from various models, each containing some
hundreds of atoms. The force field used was one in-
volving. nearest-neighbor interactions only, with both
central and noncentral force components. Such a force
field, with appropriately chosen parameters, is believed
to simulate the true field in vitreous silica reasonably

well, and is probably equally suitable for vitreous
germania and beryllium fluoride.

The principle of the computational procedures for
both the derivation of the frequency spectrum and
atomic displacement eigenvectors is essentially that.
outlined in previous sections. The atomic coordinates
and interatomic force fields are first processed to
provide the elements of a symmetric dynamical matrix
M, much as in Sec. 4, for example. In deriving M, it is
important that the atomic coordinates are enumerated
in a manner that provides a band form for M with the
bandwidth at a minimum or near-minimum value. This
is because of a point we noted in Sec. 3.1, that the
amount of computation of the eigenvalue distribution
of M varies approximately as the square of the band-
width of the matrix.

The matrix M is of order three times the number of
atoms in the model under consideration. The problem
of attaining the minimum band form for a sparse
matrix of this size (between 1000 and 2000 rows and
columns) is, in general, extremely difFicult. However, a
reasonably economical bandwidth can easily be achieved
by simply enumerating the atoms of the model upon
which M is based in a systematic way, defining some-
what arbitrarily rows of atoms within successive vertical
slabs within the model, and counting atoms in the suc-
cessive "rows" as one would for atoms in a three-
dimensional regular lattice. Alway and Martin (1965)
have provided an algorithm whereby a minimum band-
width can be achieved computationally; however im-
plementation of this algorithm is very time consuming
for a large matrix and therefore not desirable in view
of the ease of attaining a near-minimum bandwidth as
~ust stated.
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(b)

FIG. 19. Computed frequency
spectra for vitreous germania. De-
signations of individual spectra are
as for Fig. 18.
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Computation of the eigenvalue distribution of M was
achieved by the method described in Sec. 3. Starting at
the top left-hand corner of the dynamical matrix,
successive submatrices of size s)&s, where s is the maxi-
mum half-bandwidth of M, were operated upon as
described, and the signs of successive top left-hand
elements of the resulting matrix noted. Initially, the
s&(s block operated upon is sparse in form, containing

mainly zero elements, but it soon fills with nonzero
elements. Eigenvectors were calculated by inverse
iteration, again as described in Sec. 3. Two types of
boundary condition were used, the free-end condition-
in which boundary atoms were allowed to vibrate
freely under the influence of their neighboring atoms-
and the fixed-end condition, in which the nonbridging
boundary atoms were connected on one side to an

(a) (b)

FiG. 20. Computed frequency spectra
for vitreous beryllium fluoride. De-
signations of the individual spectra are
as for Fig. 18.
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(a) frequency spectrum

(b) infra-red s

major features of these spectra. Again, (b) and (d) are
directlv comparable. In both cases statistical Ructua-
tions due to differences in the models do not detract to
any extent from the real and obvious features of the
spectra. One interesting difference between the free-end
and fixed-end spectra is the band (or rather peak) that
occurs in the free-end case at about 900 cm '. As we
show later, this band is associated with modes localized
at nonbridging oxygen boundary atoms.

Similarly arranged spectra for vitreous germania and
beryllium Auoride are depicted in Figs. 19 and 20.
Again the excellent agreement of all the major features
between spectra corresponding to different models
under similar conditions is clear. In the case of vitreous
germania, one notices two obvious additional spectral
features induced by the presence of free-end oxygen
atoms —a band between about 600 and 700 cm ', and a

(a}

NB

(c) Raman spectrum
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FIG. 21. Comparison of a computed vibrational frequency
spectrum for vitreous silica gas in Fig. 18lb)g with composite
infrared and Raman spectra of the glass from various experi-
mental studies. Diagrams (b) and (c) are based upon composite
spectra provided by Simon (1960). Abscissa values on the com-
puted spectrum in (a) have been omitted, and the histogram
scaled for the best fit with the spectra of (b) and (c); one can
compare only the positions of bands between (a), (b), and (c),
not the intensities.

(b}

atom of infinite mass, that is a rigid wall. In a three-
dimensional structure containing several hundred
atoms, the boundaries can in some circumstances exert
a strong perturbing inAuence on the vibrational proper-
ties of the system, particularly at low frequencies.
However, by using the two types of boundary condition,
comparing results, and studying the nature of the
calculated modes, the effect of the boundaries could be
judged; the evidence suggested that their effect on the
form of the frequency spectrum and on the general
nature of the normal modes was not significant.

Figure 18 depicts computed frequency spectra, (not
squared frequency spectra as in some of the earlier
diagrams) for two models of vitreous silica (Bell, Bird,
and Dean, 1968) . Diagrams (a) and (c) refer to spectra
based on the fixed-end boundary condition, and (b)
and (d) to spectra, for the model with free-end boundary
atoms. Thus (a) and (c) are directlycomparable spectra
for two models, and one notices the agreement in all the

IOI i I i I I I I I I I t I I

(c)
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FIG. 22. Analysis of the vibrational modes for a free-end model
of vitreous silica. Diagram (a) is the frequency spectrum, (b)
an analysis of energy contributions to the normal modes through-
out the spectrum, and (c) indicates the variation of spatial
localization of the modes with frequency.



P. DEAN Vibratiozza/ ProPerties of Dzsordered Systezzzs: Ezzzzzerical Stzzdhes 155

FIG. 23. Indication of the local
coordinate systems for (a)
bridging, and (b) nonbridging
oxygen atoms, as used for the
analysis of energies of the normal
modes described in the text.

(a) (b)

peak rising above a background spectrum of just under
300 cm '. The differences between free-end and fixed-
end spectra for vitreous beryllium fluoride are relatively
insignificant.

The calculated spectra agree well with what is known
of experimental results relating to the vibrational spectra
of the glasses considered. One cannot make a direct
comparison of vibrational frequency spectra with
experimental infrared and Raman spectra, for the
experimentally measured results depend not only upon
the normal mode density at each frequency but also
upon intensity factors depending upon the changing
dipole moments or polarizabilities of the various modes.
One expects, though, that there should be an agreement
in position (rather than in intensities) of bands of the
computed spectra with those in experimental infrared
and Raman spectra. When comparisons are in fact
made, agreement is found to be good. In Fig. 21, the
histogram (a) is the computed vibrational frequency
spectrum for vitreous silica [as in Fig. 18(b) j. Figures
21(b) and (c) depict, respectively, composite infrared
and Raman spectra based upon the results of various
experimental studies up to about 1959 (Simon, 1960) .
There is clearly excellent agreement in the positions of
all the main bands of (a) with those in (b) or (c).
Similar good agreement exists for comparisons which
have been undertaken for vitreous germania and beryl-
lium fluoride. This agreement, for all three glasses,
suggests that the models adopted, based upon the ideas
of the random network theory with diffuse bond angle
distributions at the oxygen (or fluoride) angles, are
reasonable representations of the atomic structure of
the glasses. The reason for comparing with experiment
a spectrum, in Fig. 21, calculated on the basis of the
free-end boundary condition will become clear later.

By studying the nature of the atomic displacement
eigenvectors, assignments of the modes of vibration in
the various regions of the spectrum have been made.
In contrast to the cases of crystalline solids and simple
molecules one cannot in general specify, in a simple way,
the exact nature of a mode of vibration in a glass. It is

possible, however, to talk about features of the typical
modes within the various bands. One very clear point
which must be impressed at the outset is that the modes
are not simple waves (except at the very lowest fre-
quencies), nor are they in general intensely localized
about particular spatial localities. They are normally
quite complex in form, with some evidence of spatial
localization particularly at higher frequencies and band
edges. Some exceptional types of mode, for example
those occurring in the band (already referred to) at
about 900 cm ' in the free-end spectrum of vitreous
silica, are highly localized.

Figure 22 is an attempt. to show in diagrammatic
form some details of the nature of the normal mode
vibrations for vitreous silica (Bell and Dean, 1970).
Diagram (a) is the spectrum of a model under the free-
end boundary condition, as depicted earlier. Diagram
(b) represents an analysis of contributions to the energy
of the normal modes as a function of frequency, and is
based upon a sample of 60 modes chosen at roughly
equidistant frequencies throughout the spectrum; in

(c) information is presented on the spatial extension or
localization of the modes.

The energy associated with normal mode vibrations
is divided into six classes in Fig. 22(b), each cia.ss being
represented by an area whose vertical height, at any
particular frequency, is a measure of the proportion of
the total energy of vibration appropriate to that class.
Thus, we see that at the high-frequency end of the
spectrum, the total energy is almost exclusively divided
into just two classes, those marked S and C, and that the
ratio of energy between these classes is about 2:1.The
labels S, 8, E., C, EB, and ES in the diagram may best
be understood by referring to Fig. 23. The motion of
each bridging oxygen atom may be decomposed into
components along local directions labeled 8, S, and E.,
as shown. The 8 (or bond-bending) direction is defined
as parallel to the bisector of the Si—0—Si angle; the 5
(bond-stretching) direction is perpendicular to the
bisector but still in the Si—0—Si plane, and the bond-
rocking E axis is normal to the Si-0—Si plane. For non-
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bridging oxygen atoms, ES refers to the direction along
the Si—0 bond, and EB to a/l directions perpendicular
to this bond. Referring back to Fig. 22(b), each
labeled band (with the exception of C) refers to the
total energy of vibration —at a particula, r frequency —of
all the oxygen atoms moving as indicated in relation to
their own local coordinate system. The band marked C
indicates the energy contribution of all the silicon
atoms (cations); this energy is not subdivided further
as each silicon is connected to four oxygens and its
motion is not easy to categorize in simple terms.

From Fig. 22 it is clear that the spectral band between
about 900 cm ' and 1100 cm ' is composed of modes
involving primarily Si—0—Si bond stretching vibra-
tions —there is no energy in the bending and rocking
types of motion in this spectral region. The band at
approximately 800—900 cm ' is composed of modes
associated with the vibrations of nonbridging oxygen
atoms moving along the line of their Si—0 bond, i.e.,
XS vibrations. As we show later, these modes are
characterized by intense spatial localization and
typically most of the vibrational energy is confined to
one or two fairly close such atoms. Perhaps the best way
of regarding these excitations is as impurity modes
which contribute frequencies of strongly localized
vibrations to a region of the unperturbed spectrum
(i.e., that associated with no nonbridging oxygen
atoms) devoid of frequencies.

The highly localized nature of the Si—0 stretching
modes associated with the nonbridging oxygen atoms
implies that such modes are little altered if they occur
at nonbridging oxygen atoms within the bulk of the
structure of vitreous silica rather than at the surface.
This argument in fact provides confirmation of con-
jectures of the nature of experimentally observed bands
at about 950 cm ' in certain silica samples; these bands
were thought to be due to the presence of nonbridging
oxygen atoms within the structure generated, for
example, in thermal spikes due to fast neutron irradia-
tion (Simon, 1957; Bell and Dean, 1968b; Bell, Dean,
and Hibbins-Butler, 197O) .

It can be seen from Fig. 22 that modes in the next
highest spectral band, one centered at about 750 cm ',
are predominantly angli-bending vibrations, in which
each oxygen atom vibrates perpendicularly to the line
joining its two adjacent silicons, within the plane of the
three atoms. The major. peak of the spectrum centered
between 400 and 500 cm ' contains modes whose main
characteristic is an out-of-plane vibration of each oxygen
atom along the line perpendicular to its two neighboring
silicons. On the low-frequency side of the peak is a
shoulder containing modes associated largely with
motion of nonbridging oxygen atoms perpendicular to
the Si—0 bond.

The spatial localization of vibrational modes in Fig.
22(c) is described by a parameter X@FF(&v) which gives
some indication of the number of atoms effectively
participating in a normal mode of frequency co. One

defines the energy moments

(5.6)

where c, (a&) is the mean kinetic energy of atom i in a
normal mode of frequency cv. ÃFFF(cv) is then, simply,

1VEpp ((u) = (Mi j /3I2. (5 &)

It is easy to verify that ÃEpr always lies between 1 and
X. For a monatomic system of E atoms, one can show
that for a purely translation mode of the system
JEFF——S; if I' atoms are in motion with roughly equal
amplitudes LEFT=I', and for a mode involving effec-
tively only one atom vibrating SEFi =1.For the typical
wavelike modes of crystals, we have 1VEFp —-E/2.

For a system of more than one type of atom, SE»
tends to be mass dependent, even for translational
modes. One can overcome this by restricting summations
to just one species of atom, and Fig. 22 (c) is based upon
the summations being confined to silicon atoms only.
The vertical scale in the diagram has a maximum of 101,
the total number of silicon atoms in the particular
model on which these localization calculations were
based. One notices from the figure that the localiza, tion
is very intense both near band edges and in the band at
800—900 cm ', as referred to earlier. Elsewhere the
localization, although "somewhat higher than for a
crystalline solid, is by no means intense. Of course, one is
limited in understanding the extent of localization of the
more extended modes by the finite size of model.

Detailed investigations of vibrational modes of the
vitreous germania and beryllium fluoride models have
also been carried out (Bell, Bird, and Dean, 1968; Bell,
Dean, and Hibbins —Butler, 1971). In a sense the modes
in vitreous germania are somewhat simpler than those in
vitreous silica for the mass ratio in the former structure
is higher and therefore the bands of the spectrum and
the types of vibration are more clearly separated and
distinct. One notices, for example, the presence of a
substantial band gap at about 700 cm ' for the fixed-
end model; within this gap there appears for the free-
end case a really distinctive band of loca, lized modes due
to nonbridging oxygen atoms. Again, the presence of a
distinctive peak at about 300 cm ' for the free-end
models indicates the presence of low-frequency vibra-
tions associated with the nonbridging boundary oxygen
atoms vibrating perpendicular to their Ge—0 bond.

In vitreous beryllium fluoride there is the difference
that the lighter atom (Be) is at the center of a tetra-
hedron whose vertices are the heavier fluorine atoms;
consequently the vibrational modes are somewhat
different in character from those for vitreous silica and
ger mania.

One final point relating to Figs. 18—22 should be
noted. In computing the spectra, in each case a ratio of

,
3:17 for the noncentral to central force constant was
chosen, mainly from suggestions in the existing litera-
ture. Given this ratio, the frequency scale in the figures
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then depends upon arbitrarily assigning an absolute
value for either the central or noncentral force constant.
For vitreous silica the value of 4.0)& 10' N m ' proposed
by Zarzicki and Naudin (1960) was chosen for the
central force constant; comparison with experiment
however suggests that this value is perhaps 15% too
low. The higher force constant value would involve a
simple linear rescaling of the figures, the spectra being
shifted to somewhat higher values; this point should be
borne in mind if detailed comparisons with experi-
mental spectra are made from the data provided.

The problem of deriving infrared and Raman spectra
from computed atomic displacement eigenvalues is
relatively trivial by comparison with the problems of
structure, matrix algebra, and computation already
outlined. To calculate infrared activities, one assigns
effective positive and negative charges to the cations and
anions (the silicon and oxygen atoms of vitreous silica,
for example), and computes the total net dipole moment
fluctuations from the appropriate eigenvector. Some
assumption must be made about the effects of the
boundaries but, in general, it is found that these have
relatively little influence on the computed infrared
activity. One feature noted from such computations is
that eigenvectors of adjacently spaced eigenvalues do
not in general give similar infrared activities so that, in
order to compute an accurate infrared spectrum, one
must average over the activities of numbers of fairly
closely spaced modes at various selected frequencies.
The process is thus somewhat time consuming, but
presents no problem of principle. In the calculation of
Raman scattering, it is necessary to make an assumption
as to the way in which polarizability should be cal-
culated. One can simply assign certain polarizability

parameters to nearest-neighbor bonds and sum ap-
propriately for the various vectors considered. As with
infrared results, such calculations show no smooth
variation of Raman activity with frequency or mode
number. One gets meaningful averages for the various
spectral bands which are in rough agreement with
experiment, but results for individual modes vary
considerably, even within the same band.

One disadvantage of the numerical approach we have
described, as applied to three-dimensional glasses, is
that it is not able to yield information about the nature
of low-frequency atomic vibrations below, say, 50 cm '.
This is the consequence of a number of factors. One
expects, for example, these low-frequency modes, with
their long wavelengths and considerable spatial
extension, to be influenced by the boundaries of the
models. Again, the number of modes for any given model
decreases as zo' with decreasing frequency (&o), so that
typically a structure of say 1000 degrees of freedom may
provide only a few modes below 50 cm '. Of more
significance, though, is the fact that numerous low-
frequency modes in the real glass may well depend upon
particular features of structure or force field which are
not provided in the theoretical model. Thus, while there

is little doubt that the bulk of the spectrum is accounted
for well by a central and noncentral force field which
fairly accurately represents the physical forces in the
glass, the very low-frequency spectra may have im-
portant features associated with relatively weak forces
or local structure anomalies; such features will clearly
not appear in the output from models containing only
strong forces and no built-in structural anomalies. The
low temperature excess specific heat in numerous
glasses, in particular vitreous Si02, is almost certainly
due to low-frequency localized modes associated with
particular local force fields or structural features. Such
behavior unfortunately cannot be derived from the
"first-order" approximations to vibrating amorphous
systems considered up to the present time.

0. MIXED-CRYSTAL SYSTEMS

In this section we consider systems of the composition
AB Ct (where x has a value between 0 and 1) and
which consist of two sub-lattices, with the A atoms
lying on the sites of one, and the B and C atoms occupy-
ing randomly the sites of the other. These systems
present similar theoretical problems to those of the
binary disordered lattices discussed in Sec. 4. In recent
years there has been much interest in them, and
numerous infrared and Raman studies have been carried
out.

The experimental work shows that the behavior of
infrared or Raman-active lattice modes in mixed crystals
can be of two types. In one class of system, the optically
active band varies continuously in frequency from that
of one end member to that of the other, as x varies
throughout its range. This type of behavior is now
generally referred to as "one-mode" behavior. In the
other class of mixed-crystal system, two bands of
frequencies are observed which occur at or close to the
optically active frequencies of the end members; the
strength of each band varying continuously from its
maximum (for the pure end member) to zero as x
varies from 0 to 1, or from 1 to 0. Behavior of this type
is referred to as "two-mode" behavior. The one- and
two-mode types of behavior have also been referred to
in the literature as amalgamation" and "persistence"-
type behavior, respectively, or zt- and p-type behavior
(Matsuda and Miyata, 1968). Examples of mixed
crystals showing one-mode behavior are Na, K& ~Cl,
Rb K~ Cl, Tl K& Cl, Co Ni~ "0, Ca Sr~ F2,
Ba~Sr&,F2, and Zn Cd& S; among the systems which
exhibit two-mode behavior are GaAs, P~ „CdS,Se~ „
InAs Py, Ga In~ As, and ZnS Se~

A variety of methods have been proposed to study
theoretically the vibrations of mixed crystal systems;
in particular, there has been much interest in the for-
mulation of criteria for predicting whether particular
systems will be of the one-mode or two-mode type of
behavior. Lucovsky, Brodsky, and Burstein (1968)
have summarized some of these methods, for example
the virtual crystal (Poon and Bienenstock, 1966a, b),
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(a) KCI

I (e) Na CI

(c) 50'/0 Na Ct

the spectrum. We now know the fact that, in general,
the vibrational properties of randomly disordered
systems are so different from those of their ordered
counterparts that one simply cannot accept Matossi's
results Lor the results of similar work (Aggarwal and
Saksena, 1951)j as pertinent to the disordered state.
The work on regular structures does not, for example,
include the possibility of localized modes of vibration-
and we have seen in Sec. 4 how important a role such
modes can play in the discussion of the vibra, tions of
disordered systems.

Matsuda and Miyata (1968) have given an interesting
and useful approximate criterion for. predicting whether
a system will be of the one-mode or two-mode type of
behavior. They show that the quantity

ming

mg mg (6.1)

(d) 75 /o No CI

(b) 25o/&& Na Cl

(f) SQ /o ga &I —ordered

FIG. 24. Results of studies of the mixed-crystal system
Na K1 Cl in the form of a linear chain. The squared frequency
spectra were computed by the method described in Sec-. 3; a
nearest-neighbor force field with force constants independent of
atomic species was chosen. Diagrams (b), (c), and (d) refer to
disordered systems, and (f) to the ordered system
~ ~ .NaClKClNaClKCl. ~ ~

cluster model (Verleur and Barker, 1966; Barker, 1968),
and random element isodisplacement models (Chen,
Shockley, and Pearson, 1966), each of which suffers
from the limitation of being based upon somewhat
arbitrary assumptions. They also mention the work of
Matossi (1951) in which, by studying periodic chains
containing three types of atoms, an attempt was made
to determine the properties of random systems of the
mixed crystal type AB C~, and to predict the form of

where mg, m~, and mg are the masses of the atoms in
AB C& „can normally be used to determine the
spectral behavior; a variety of experimental data
indicates that if r& 1, the behavior of a system is nor-
mally of one-mode type; if r) 1, the behavior is of the
two-mode type. This criterion has some basis in the
Saxon —Hutner theorem which relates to the band gap
of a randomly ordered system in terms of the gap
positions of the two extreme component systems.
Matsuda and Miyata also apply a method known as
MEAPS (Matsuda, 1966a, ; Matsuda and Ogita, 1967;
Okada and Matsuda, 1968)—the method of the en-
semble average of periodic chains —for investiga, ting the
spectra of one-dimensional models of mixed crystal
systems. The MEAPS method is that of finding the
value of a property for a disordered system by deter-
mining the avera, ge value for an ensemble of periodic
chains of unit cell length p atoms, each chain of the
ensemble having in its unit cell one of the various
possible arrangements of p atoms. In principle, by
taking p large enough, one can compute a quantity—
such as spectral density, or infrared absorption —to any
desired accuracy; in practice, the method converges
rapidly and by taking p up to about only 16, results of
good accuracy are obtained.

The direct numerical method, based upon the
techniques outlined in Sec. 3, is almost certa, inly the
best method available for studying the basic properties
of the vibrations of models of mixed-crystal systems.
The method has some disadvantages, along with a, ll the
other methods of investigating mixed-crystal models:
for example, it becomes somewhat slower and less useful
if long-range forces are present, and there is no simple
extension to include the effects of anharmonicity.
However, it can succeed in yielding detailed and
accurate results for the spectrum, eigenvectors, infrared
absorption, and Raman scattering of models of dis-
ordered mixed-crystal systems —results of an accuracy
that no other method seems likely to achieve. The
following indicates some of the work that has been
carried out using the direct numerical method.
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0((u'&(2y/mK);

2y/mcus&"'(2y(mK '+mcus '), (6 2)

in which mK and mqi represent the masses of the
potassium and chlorine atoms, respectively. Kith the
introduction of sodium atoms into the system, there
appear impurity localized modes both in the band gap
and above the optical band, as described by Mazur,
Montroll, and Potts (1956).At the 25% composition of
NaCl, the spectrum is as indicated in Fig. 24(b), the
narrow band gap of pure KCl being filled and a number
of distinct peaks associated with various localized
impurity modes having developed at the high-frequency
end of the continuum. At the 50%—50% composition,
in (c), the spectrum is still more complex. The high-
frequency peaks remain much in evidence, but their
intensities have now changed somewhat from those in

(b), due to the diferent probabilities of occurrence of
the various local clusters in the chain. In addition, at
the 50%—50% composition there appears a certain
amount of structure at lower frequencies. Kith in-
creasing NaCl content, one notices the emergence of a
distinct acoustic band, and the movement of more
modes towards the highest frequencies in the spectrum.
At the 75% NaC1 composition, the spectrum is still
most complex in form with numerous peaks due to
localized modes. Finally, for the pure system NaCl, in
Fig. 24(e) we have again the histogram form of the
function (6.2), with mN, now replacing m~.

The comparison between Figs. 24(f) and (c) should
be noted. Figure 24(f) depicts the spectrum for the
periodic system ~ ~ .NaClKClNaC1KCl ~ ~ and it is
quite unlike that for the randomly ordered 50%—50%
system. The poor agreement suggests that little reliance
can be placed on the conclusions of Matossi (1951) and
Aggarwal and Saksena (1951) applying to randomly
disordered systems.

Results similar to those in Fig. 24 have been obtained
by Payton (1966). Payton (1966) and Payton and
Visscher (1968) have also used the direct numerical
method to study a disordered three-dimensional
NaCl —KCl model. Although their models are rather
limited in size (up to 5X5X40atoms), nevertheless the
results are probably the most accurate available for the
mixed NaCl —KCl system. Kith really fast computers it

Figure 24 depicts squared frequency spectra for a
one-dimensional model of the mixed Na, K~,Cl
system, using the numerical method of negative factor
counting for long sample chains as outlined in Sec. 4.
In Fig. 24(a), at the top, is the spectrum for one
end system, pure KCl; the histogram represen. ts well
the exactly known spectrum for the diatomic chain:

G(co') =n. '~ &u' —y(mK '+mcl ) ~

(a) L}H

FIG. 25. Infrared
absorption plots for
the LiH —Lio linear
system based upon
directly computed
eigen vectors on
linear chains of 100
atoms (after C. Hall,
1969, unpublished).
The two-mode be-
havior indicated
does not represent
the experimental
situation, indicating
that the model is
inadequate —possibly
due to an unrealistic-
ally simple force
field.

(5) 20o/e 0

(C) 40/0 D

(d) 60o/o D

(e) 80o/o D

(f) LiD

II0
I

125 15

would not now be difFicult to extend this work further to
deal with larger three-dimensional models with more
realistic force fields; such work could provide really
accurate details of the dynamics of the systems con-
sidered and would lead to a thorough understanding of
the experimental situation.

Calculations on one-dimensional systems, similar to
those outlined above, have been extended by Hall
(1969, unpublished) to the derivation of eigenvectors
(using inverse iteration, as in Sec. 4) and the calculation
of infrared absorption. In Fig. 25, we depict some of his
results for the infrared spectrum of a linear chain based
on the LiH—LiD system. His spectrum may contain
spurious effects associated with finite chain lengths-
the results depicted are based upon chains of length
100 atoms only —although comparison with shorter
chains suggests that these effects are relatively unim-
portant. One can see that his results indicate that the
LiH —LiD system appears to be in the category of a
"two-mode" system, although this conflicts somewhat
with experiment (Montgomery and Hardy, 1965). It is
probable that Hall's model is not realistic enough in its
force field.

Models of the systems CdS&,Se and Cdj,Zn S have
been considered in a similar way by Hass, Rosenstock,
and McGill (1969), the former being an example of a
two-mode system, and the latter of a one-mode system.
Using the negative factor counting method for the
linear chain in a form introduced by Rosenstock and
McGill (1962), they confuted the frequencies of. the
modes of chains 40 atoms long for various values of x.
Figure 26, in which normal mode frequency is plotted
against mode number for each of the systems and com-
positions studied, summarizes their results. Although
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FIG. 26. Frequency-mode number
curves for random mixed chains of the
type ABj C,. The chains are of length
40 atoms, and the force field is limited to
nearest neighbors with. equal force con-
stants. The top diagram refers to the
system CdS& Se; that at the bottom to
Cdi, Zn, S {after Hass, Rosenstock, and
McGill, 1969).
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these plots give no direct indication of infrared activity
(except for the end compositions) one can see something
of a gradual transition between the two overlapping
optical bands of the pure members in the case of the
Cd&,Zn, S one-mode system, and the persistence and
distribution throughout the composition range of the
remnants of the optical bands of the pure members in
the CdS&,Se two-mode system. It is important not to
attribute to the intermediate compositions of the two
systems properties which do not hold; for example, at
intermediate compositions the plots of Fig. 26 must not
be regarded as the familiar co—k dispersion curves one
encounters in the theory of periodic lattices. For dis-
ordered arrangements of atoms, the concept of the wave
number is not, in general, a meaningful one, except at
very low frequencies.

Bass et al. computed infrared absorption from the
eigenvectors of their models. Figure 27 summarizes
these results. The point is made that the absorption for
the pure compounds shows one strong band at the
fundamental mode with decreasing intensity associated
with odd harmonics, and that there is no absorption
associated with even harmonics due to symmetry. The
spread of the lines in the spectrum of the end members
is associated with the shortness of the chains. In the case
of the mixed chains, the absorption lines for a particular
array contains effects due both to the finite size of the
chains and to the localized modes of the disordered
system. The authors interpret the absorption lines of
Fig. 27 in terms of localized and gap modes, developing
the kind of ideas introduced by Mazur, Montroll, and
Potts (1956).
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Although absorption plots such as those in Fig. 27
are informative and, of course, fully accurate as de-
scriptions of the models they apply to, yet it is not
always easy to use such data to deduce how the real
mixed-crystal system will behave. The results, for
example, are in general agreement with experiment for
the systems CdS&,Se. and Cd&,Zn, S but appear
inadequate for the LiH D& system. The place of such
work in the development of an understanding of mixed-
crystal systems must not, however, be underrated.
These calculations are direct calculations, and are based
upon no assumptions as to the dynamical motion of the
atoms of the models. The development of these direct
numerical methods to realistic three-dimensional mixed-
crystal systems —and without doubt this can be done at
the present time —should lead to a full understanding of
the systems.

7. ORIENTATIONALLY DISORDERED CRYSTALS

A class of solids which has received relatively little
attention is that of orientationally disordered solids.
In these solids, the basic molecular units, although
forming a regular lattice array, are orientated randomly
with respect to one another. The common form of ice,
hexagonal ice I, typifies materials of this class; other
examples include the ammonium halides and carbon
tetrachloride; there are numerous complicated organic
systems exhibiting this type of disorder.

Hexagonal ice I is the only orientationally disordered
solid on which detailed lattice dynamical calculations,
taking into full account the randomness of the system,
have been carried out. In this phase of ice, the oxygen
atoms form a regular space lattice whose positions
correspond to the lattice sites of the wurtzite lattice.
Hydrogen atoms lie along nearest-neighbor oxygen-
oxygen lines, being stronglybonded to one of the oxygens
and only weakly bonded to the other. Each oxygen atom
has associated with it two closely bound and two weakly
bound hydrogen atoms. Within these restrictions, the
structure is random: thus, for a given oxygen atom any
two of the four lines to nearest-neighbor oxygens may
contain strongly bonded hydrogens. Each H&O molecular
unit thus takes one of six possible orientations subject
to compatibility with neighboring units.

The random orientation of molecular units prevents
the use of a conventional lattice dynamical approach.
To some extent Whalley and Bertie (1967) have
overcome the difFiculty for the translation molecular
vibrations (i.e., low-frequency modes) by assuming that
the mechanical vibrations are those of the corresponding
regular crystal, but that disorder leads to a breakdown
of selection rules for the interaction of radiation with
the crystal. They find that, to a first approximation, the
intensity of infrared or Raman scattering for the low-
frequency lattice modes varies as co'g(co), where (as
before) g(to) is the frequency distribution function.
The usefulness of the numerical approach, in which we
are primarily interested in this review, is not restricted
to the low-frequency region, and it has yielded useful

FIG. 28. Indicating the nature of the two-dimensional model
of ice. Each three-atom molecular unit can take six possible
orientations, subject to the fact that only one atom represented
by a closed circle lies between two neighboring atoms represented
by open circles. The 180' molecular configuration is needed in
two dimensions to ensure a properly random structure; such a
configuration does not occur in real ice.

information on both intra- and intermolecular modes.
Two models have been used, a two-dimensional system
which has been most valuable in providing qualitative
data on the vibrational eBects of orientational dis-
order (Dean, 1969; Shawyer and Dean, 1972a), and a
realistic three-dimensional model of hexagonal ice I
(Shawyer and Dean, 1969, 1972b).

The nature of the two-dimensional model is indicated
in Fig. 28. The force held imposed consisted of strong
central and noncentral interactions between neighboring
atoms in the same molecular unit, and weak central and
noncentral interactions between neighboring atoms on
adjacent molecular units. The ratio of central to non-
central force constants for both strong and weak forces
was fixed at 4:1 throughout the calculations, various
values being taken for the ratio of strong to weak
forces. The mass ratio of atomic species was taken as
16:1 and 8:1, corresponding to H20 and D20. Fixed-
end boundary conditions were used on lattice sections of
various sizes up to 40&(40 molecular units.

Figure 29 indicates roughly the kind of result ob-
tained in the computation of spectra for the two-
dimensional model, using the direct numerical methods
described in Sec. 3 on sample structures. The top
spectrum in the figure refers to an ordered lattice in
which each molecular unit (in the 90' configuration) is
orientated in the same direction. The low-frequency
band contains modes associated with movements of the
molecular unit as a whole; these are long wave vibra-
tions for which local geometry can be disregarded. The
middle-frequency band contains molecular angle bend-
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l I il F'IG. 29. Approximate rep-
resentation of frequency
spectra for two-dimensional
models of ice. The top spectrum
refers to the ordered structure
in which all the molecular units
are right angle units and point
in the same direction; the lower
spectrum refers to . the dis-
ordered structure. Note that
the frequency scale is broken
between the bands which, in
fact, lie in quite separate fre-
quency regions.

ing modes, and the high-frequency band is associated
with bond-stretching modes. The lower spectrum in the
figure refers to the orientationally disordered model.
One notices here that the upper two bands —in partic-
ular the high-frequency band —have a detailed structure
with a number of well-defined peaks. A study of eigen-
vectors (computed by the method of inverse itera, tion
described in Sec. 3) shows that one has much the same
situation as that noticed for the two-component dis-
ordered system reviewed in Sec. 4. The high-frequency
modes are spatially localized, in many cases intensely
so, and linked to particular types of local lattice
structure. Each peak in the high-frequency band con-
tains modes of one or just a few major "types" associ-
ated with fairly common local molecular configurations.
In the rniddle-frequency band, the spatial localization
is not intense; typically as many as 20 molecular units
will vibrate with amplitudes greater than, say, 20% of
the maximum amplitude. Although one cannot easily
assign normal mode "types" to the peaks in the middle-
frequency band, it is quite clear from the calculations
that the spectral peaks are not spurious but are as-
sociated with geometric features of the model. Modes
in the low-frequency band are extended and, in the
lower-frequency region of this band, almost identical to
those for the ordered lattice.

Calculations on the three-dimensional model of .
hexagonal ice I used the realistic eight-parameter force
field indicated in Fig. 30. The sample structures
(generated by computer) to which this force field
applied contained as many as about 1500 degrees of
freedom, although preliminary calculations on much
smaller sections were carried out in order to quickly
determine (by comparing results with experiment) an

approximate set of values for the force constants.
The spectrum in Fig. 31 is based upon the following set
of force constants, each in units of 10' N m '. kI ——5.44,
k2

———0.19) k3 ——0.10, k4 ——0.02, k5 ——0.04) hg
——0.74)

h2
——0.024, h3=0.024. The atomic masses were taken as

those of hydrogen and oxygen, and a fixed-end boundary
condition was imposed on an approximately cubic
system of about 1500 degrees of freedom.

For comparison, the vibrational frequencies obtained
from experimental Raman (Taylor and Whalley, 1964),
infrared (Bertie and Whalley, 1964, 1967), neutron

I

I

3

I

kihi

hp

I' IG. 30. The harmonic force field used in the computations
for hexagonal ice I. Oxygen atoms are shown as open circles,
hydrogen atoms as closed circles. The full lines represent strong
covalent bonds and the dashed lines weak hydrogen bonds.
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(a)

Fro. 31. The histogram is the
computed frequency spectrum for
hexagonal ice I. In the upper half
of the figure, the lines indicate
the positions of features (peaks
and shoulders) in the bands of
the experimentally observed
spectra from (a) Raman experi-
ments at 77 K; (b) infrared
experiments at 100 K; (c) in-
elastic neutron scattering experi-
ments at 150 K; and (d) thermo-
dynamic studies reduced to 0 K.
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(Prask, Boutin, and Yip, 1968), and thermodynamic
(Leadbetter, 1965) studies are also indicated in Fig. 31
in (a), (b), (c), and (d), respectively. We noted in
Sec. 5.2 that direct intensity comparisons between
vibrational frequency spectra and experimentally
observed spectra are not normally meaningful, but that,
for disordered systems, a comparison of positions of
bands can provide useful data. On this basis, the general
agreement with experiment is seen to be good. The only
major feature of the experimental spectrum that does
not accurately agree with the corresponding feature in
the calculated spectrum is the broad band of frequencies
(from SX10e to 9)&10' m ') in the infrared spectrum of
ice (Bertie and Whalley, 1964, 1967) which has its
maximum intensity at about 8)&10 m '. The cor-
responding region of the neutron spectrum (Prask,
Boutin, and Yip, 1968) consists of a peak with a
maximum at about 6.5&(10' m ', in good agreement
with the calculations. The computed band also agrees
with an analysis of thermodynamic data (Leadbetter,
1965). These results suggest that the vibrations in a
high-frequency tail of the band are mainly responsible
for infrared activity in this region of the spectrum; that
this tail does not occur in the computed spectrum is
probably a consequence of the particular model used —it
is clear that all band edges in the model have sharp
cutoffs.

A study of sample eigenvectors, computed by the
method of inverse iteration, led to broad assignments of
the various spectral bands. The low-frequency band,
below 2.5)& 10' m ', contains translational lattice modes,
while the region from 4.3&&10 to 7.3)&10' m ' contains
hindered rotational (or librational) modes. The band
at 16.4X10' m ' is associated with the bending vibra-
tion of the H20 molecule and the bands at 31)(104and
32X10' m ' with the symmetric and antisymmetric

stretching vibrations. The order of the assignment of the
two highest frequency bands ~ (antisymmetric) )
to(symmetric) is a consequence of the initial choice of

the force constants. There is an alternative set of
intramolecular force constants consistent with observed

frequencies: kj ——5.05&(10' N m '; k~
——0.48)&10' N m ';

h~=0.52)&10' N m '. This choice reverses the assign-

ments, making &o(symmetric))a&(antisymmetric), but
has little effect on the rest of the spectrum.

Similar computations were carried out for heavy ice

(Shawyer and Dean, 1969), again with good general

agreement with experiment.

8. RANDOM POLYMERS

Random polymer systems, particularly the long

unbranched chain variety, represent ideal subjects for

study by the direct numerical techniques outlined in

this paper. If one takes the interatomic forces of an

unbranched polymer chain to be short range in charac-

ter, then by numbering the atoms of the system in an

obvious way, one derives a dynamical matrix of narrow-

band form. The bandwidth is related to the number of

atoms in each unit of the chain, and also to the effective

range of the interatomic forces. For a polymer contain-

ing several atoms in each monomeric unit, and with

short-range forces, the half-bandwidth of the dynamical

matrix would be of the order of 10' or 10'. Bandwidths
as narrow as this ensure that the numerical procedure
for deriving the vibrational spectrum of the polymer

can be made very fast indeed, and chain lengths of

hundreds or even thousands of units can be dealt with.

At the present time, the potential of the negative factor
counting method for disordered polymer systems has not

yet been fully exploited, and little work has been done.

A good deal of new information on the structure and

chemistry of a wide range of polymeric systems is
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FIG. 32. Con6gurations of monomeric units, as used in the
polymer systems of Tasumi and Zerbi (1968). The arrows indicate
the direction of chain growth.

potentially available by using the numerical techniques
outlined, and comparing the computed results with
observed experimental data, mainly from infrared
absorption experiments. Tasumi and Zerbi (1968)
point out that most of the actual polymers presently
available have various kinds of randomness or disorder
within their structure. We know it to be quite clear,
from work such as that on two-component disordered
systems as described in Sec. 4, that the spectra and
modes of vibration of these disordered polymers can
prove to be drastically different from their periodic
counterparts.

Tasumi and Zerbi (1968) considered a number of
models of polymers isotopically disordered due to the
presence of both hydrogen and deuterium atoms. They
studied first a simple model, a zigzag chain representing
a polyethylene type structure with th~ methylene
groups reduced to point masses. From this they cal-
culated, by the negative factor counting method,
frequency distributions for (a) a regular chain cor-
responding to normal polyethylene (with the point
mass of 14 amu), (b) a regular chain corresponding to
perdeuterated polyethylene (with a point mass of 16
amu), and (c) a chain corresponding to a random co-
polymer of ethylene and perdeuterated ethylene.
These structures exhibited clearly the effects of dis-
order in the high-frequency region (at about 1000 cm ')
of the spectrum in spite of the small mass difference
between the units of the chains. The more realistic
models studied take into account in a proper manner
the hydrogen atoms of polymers of cis-CHD=CHD
and trams-CHD=CHD. The molecular structure as-
sumed in this work had the planar zigzag conformation,

40-
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E

0O
C
0

40-0

bl
Xl 30-
Z

20-

I L
I I 1

(b) Polymer 8

10-

0
I 350 )300 I250

Wavenumber (c m )

I

I200

FIG. 33. Calculated frequency spectra of polymers A and 8,
as referred to in the text, each with 100 monomeric units (after
Tasumi and Zerbi, 1968).

with tetrahedral angles at each carbon atom. A force
field, which included interactions between neighboring
methylene groups but with no interaction between units
further apart, was used. The frequency spectra of two
regular polymers, referred to as polymer A and polymer
B, were computed by the negative factor counting
method. Polymer A is a random sequence composed of
equal numbers of the two units I and II shown in Fig.
32. Similarly, polymer B consists of III and IV. The
sequence of units was generated by means of a random
number computer program, the condition being imposed
that. every successive sequence of twenty units was
made up of ten units of each type. The total chain
lengths used were limited to 100 units (200 methylene
groups) . Some care was taken to ensure that what are
referred to as "good" random sequences were used in
the calculations, for it was found that for the (moder-
ately short) chain lengths used the randomness had
decisive effects on the results of calculations.

In Fig. 33 we depict computed vibrational frequency
spectra for polymers A and B of lengths 100 monomeric
units, as given by Tasumi and Zerbi. Some caution
must be exercised in comparing these with the infrared
absorption spectra of poly-(cps-CHD=CHD) and poly-
(frans-CHD=CHD), as in Fig. 34 (again taken from the
paper by Tasumi and Zerbi), as the intensity factors
appropriate to infrared absorption are not included in
the computed spectra. However, Tasumi and Zerbi
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showed that it is reasonably clear that the spectrum of
polymers A and B correspond, respectively, to the
infrared spectra of poly-(cis-CHD=CHD) and poly-
(trztrts-CHD=CHD)

z
and they interpret various features

in the high-frequency spectra of these polymers.
Another class of system for which comparison was

made between results computed by the direct numerical
approach and experimentally determined infrared
spectra are copolymers of CH2 ——CH2, CHD=CD2, and
CD2=CD2. Various sequences of polymer units, giving a
range of monomer ratios, were used as a basis for cal-
culations; on the experimental side a number of co-
polymers of various compositions were synthesized and
their infrared spectra observed. The agreement between
the computed results and experiment, although reason-
able, is not entirely satisfactory. However, this could
be anticipated. For one thing, the comparison is not
between like quantities, for the infrared intensity
factors are not implicit in the calculated data; for
another, there is evidence that the chain lengths used
in the computations are too short to get good "ensemble-
averaged" spectra. Both these deficiencies could be
made good by (a) computing typical eigenvectors for
polymers of about the size (100 monomeric units)
considered by Tasumi and Zerbi in order to estimate
infrared activity in the various spectra, l bands, and
(b) computing spectra for copolymers of appreciably
longer lengths.

Jannink and Summerfield (1966) considered the
dependence of the frequency spectrum on the conforma-
tion of a simple carbon skeleton chain. They set up
various randomly produced chain sequences of trams
and gauche angles, and used the negative factor counting
method to compute frequency spectra. Although their
model was rather too simple to afford a detailed de-
scription of the spectra and atomic dynamics of the
real polymer systems on which they are based, their
results do at least show clearly the difference between
the spectra of periodic and disordered polymer chains.
The results also indicate clearly the progressive changes
which occur in a spectrum as the concentration of
randomly distributed IE,uuche confirmations is increased.
One interesting, although rather academic, point is that
all the squared frequency spectra produced by Jannink
and Summerfield in their work are symmetric about
their mean squared frequency; this result can be
explained in terms of their model satisfying certain
simple criteria for such spectral symmetry (Bell and
Dean, 1968a).

Similar work on the dependence of spectra on the
chain conformations of a simplified model of poly-
ethylene, again with the methylene groups represented
by point masses, was carried out by Piseri and Zerbi
(1968).' Chains of 200 particles representing random
sequences of trurts (T) and gauche (G and G') con-
formations were generated by computer program; their
vibrational frequency spectra were then calculated
using the technique outlined in Sec. 3. Characteristic

ly-(cis —CMD = CHD)

C
0

y-(trans -CHD = CMD)

I i i I I I t I I I I i

1350 1300 1250
Wavenumber (cm ')

1200

FIG. 34. Observed infrared spectra of poly- (cis-CHD =
CHD) and poly(trans —CHD =CHD) . (Tasumi and Zerbi,
1968.)

changes dependent upon the proportion of trams
conformation present were observed.

A substantially more realistic model of randomly con-
formated polyethylene was used in later work by Zerbi,
Piseri, and Cabassi (1971). ln this model, full account
was taken of all atoms in the methylene groups and the
chains of 200 monomeric units, on which calculations
were based, entailed computations on matrices of size
1800X1800; a 28 parameter valence force field of
Snyder (1967) was used in this work, Trans (T) and
gauche (G and G') sequences of internal rotational
angles were generated for various temperatures of an
Ising model and computed spectra compared with
infrared, Raman and neutron inelastic data. Figure 35
shows a comparison between the calculated spectrum
and the infrared absorption spectrum at room tem-
perature (ordered structure of a trarts sequence), and
at 160 'C (a fairly highly disordered structure). One
cannot compare directly computed intensities with
experiment, but the positions of bands are comparable
and agreement is quite good. By studying in detail those
spectral features which change with temperature and
thus disorder, these authors made a number of conclu-
sions on the changing configurations of polyethylene
with temperature and on the structure of solid poly-
ethylene.

9. CONCLUDING REMARKS

It is clear from the foregoing sections that the
direct numerical method has been of much use in leading
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The partitioning in each case corresponds to that of M,
It, being the unit matrix of order /, (i.e., of the order of
A;). The blocks It;, L;, U, , and V; ( j=1, 2, , rrt)
contain all the nonzero elements of L(x) and U(x) .

Block matrix multiplication applied to the right-hand
side of (A1) leads to the following relations

sufhcient, providing care is taken over the nature of the
boundary conditions.

Again, only a little work has been carried out on
orientationally disordered crystals and disordered
polymers. In these areas it is not easy to see how any
approach other than the direct numerical method could
be successfully used in dealing with the complex atomic
geometries which occur. The direct numerical method is
particularly well suited to the investigation of vibra-
tions of polymers. The dual features of a reasonably
short-range force field and a simple sequential enumera-
tion of monomeric units lead to a banded form of
dynamical matrix ideally suited for efFicient computa-
tion. Tasumi and Zerbi (1968),Piseri and Zerb (1968),
and Zerbi, Piseri, and Cabassi (1971) have shown the
potential of the method in applications to perdeuterated
and randomly conformated polyethylene and we can
expect similar calculations for more complex polymer
systems in the future.
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Ag —xI), ——Ui

A; x—It, L——;V,+U;

Bj=Vj

Bj~=LjVj I (A4)(j=»3 " ).
Therefore, if U; ~ is not singular

Uj =Aj XI&& B ' Uj j Bj)

Up =Ay —xI),. (AS)

From (A1) and the structure of L(x), we note that
the leading principal minors of U(x) are identical to
those of M —xI. Let p; (i=0, 1, 2, ~ ~ ~, rt; po

—= 1) be the
ith leading principal minor of U(x), and qtl, (j =
1, 2, ~ ~ ~, ttt; 4 =0, 1, 2, ~ ~ ~, I, ; qto

—= 1) the 4th leading
principal minor of U, . Then, as U(x) is of block tri-
angular form, we have
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APPENDIX

Proof of the Negative Eigenvalue Theorem

We write the matrix M —xI, where M has the block
tridiagonal form (3.1), as the product of lower and
upper block triangular matrices, thus:

M —xI=L(x) U(x)

p( J 1 ~) =pl +la+" +l z+k 'pit ale' ' 'cd 1l gtfjI ~—

(A6)

where
0

(A1)
Consequently, the number of changes in sign between
the consecutive minors

L(x) =

L2 I), 0

L3 I), 0

p(j 1; 0), p(j 1; 1—), p( j—1; 2—), ~ ~ ~, p(j 1;l;)—
p(j '0)—

is equal to the number of changes in sign between
(A2) consecutive members of the sequence

gio= 1) gg) h2) ' ') gjlq"

and

U(x) =

0

Ug Vi

0 U, V,

0 V3 V3

L„ I)„

0

(A3)

But this latter number is rt(U, ), according to the well-
known theorem (Jeffreys and Jeffreys, 1950) that the
number of negative eigenvalues of a symmetric matrix
is equal to the number of changes in sign. between
consecutive leading principal minors, starting with the
zeroth-order minor as positive. It follows that the total
number of changes in sign in the sequence of all p;
(i =0, 1, 2, ~ ~ ~, rt) is equal to

Z n(Us) ~

j=l

Therefore, by a further application of the theorem just
stated, we have

0 0 U
rt(M —xI) = Qrt(U„).

j=l
(A7)
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