REVIEWS OF MODERN PHYSICS

VOLUME 43, NUMBER 2, PART II

April 1971

Review of Particle Properties Particle Data Group

ALAN RITTENBERG, ANGELA BARBARO-GALTIERI, THOMAS LASINSKI, ARTHUR H. ROSENFEID, and THOMAS G. TRIPPE

Lawrence Radiation Laboratory,* University of California, Berkeley, California 94720 MATTS ROOS† and CLAUDE BRICMAN CERN, Geneva, Switzerland PAUL SÖDING DESY, Hamburg, Germany

NAOMI BARASH-SCHMIDT Brandeis University, Waltham, Massachusetts 02154 CHARLES G. WOHL Oxford University, Oxford, England

This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Phys. Letters 33B, 1 (1970)]. Data are evaluated, listed, averaged, and summarized in Tables. A data booklet is also available.

CONTENTS

I. Introduction, Credits, Consultants	S1
II. Selection and Organization of Data	S2
III. Criteria for Resonances	S2
IV. Parameters and Conventions	S3
A. Quantum Numbers	S 3
B. Particle Names	S4
C Masses and Widths	S4
D Muon-Decay Parameters	56
F K-Decay Parameters	\$7
E. Baryon Decay Parameters	50
V Statistical Procedures	50
A Confidence Levels and Engage	59
A. Confidence Levels and Errors.	59.
B. Unconstrained Averaging, Scale Factors	510
C. Constrained Fits.	SIU
VI. Particle Data Group Publications	S10
Acknowledgments	S11
References (for above sections)	S11
Particle Properties Tables	S12
Stable Particles	S12
Addendum	S15
Mesons	S16
Barvons	S21
Miscellaneous Tables, Figures, and Formulae	S25
Physical and Numerical Constants	S25
Clebsch–Gordan Coefficients and Spherical Harmonics	S26
contrain contraints and opinetical Harmonics	040

* The Berkeley Particle Data Center is jointly supported by the U.S. Atomic Energy Commission and the Office of the Standard Reference Data of the National Bureau of Standards. † On leave of absence from the Institute of Nuclear Physics, University of Helsinki, Helsinki, Finland.

SU(3) Conventions	S26
SU(3) Isoscalar Factors	S27
c.m. Énergy and Momentum vs Beam Momentum	S28
Special Relativity, Phase Space, and Cross Sections	S29
Confidence Level vs χ^2 for n_D Degrees of Freedom	S30
Gaussianlike Distributions	S30
Atomic and Nuclear Properties of Materials	S31
Multiple Coulomb Scattering	S31
Radioactivity and Radiation Protection	S31
Range and Energy Loss in Copper	S32
Range and Energy Loss in Liquid Hydrogen	S33
Data Card Listings	S34
Illustrated Key	S34
Stable Particles	S36
Mesons	S61
Baryons	S97
Appendix I. Test of $\Delta I = \frac{1}{2}$ Rule for K Decays	S147
Appendix II. $SU(3)$ Classification of Resonances	S148
• •	

I. INTRODUCTION, CREDITS, CONSULTANTS

This review is an updating through January 1971 of our previous review (Particle Data Group, 1970).

In this version of the text we concentrate on topics that are either new or essential. For complementary information on our standard procedures the reader is referred to our 1969 article (Particle Data Group, 1969).

We remind the reader that it is inappropriate to make reference to this compilation instead of to an original work. In our Data Card Listings we provide references to all original data quoted by us.

The responsibilities of the authors of this compilation (who prefer to be quoted as the "Particle Data Group") can roughly be broken down as follows:

Stable Particles: A. Barbaro-Galtieri, N. Barash-Schmidt, T. G. Trippe. Our eta meson consultant is L. R. Price.

Meson Resonances: M. Roos, A. H. Rosenfeld, P. Söding.

Baryon Resonances: A. Barbaro-Galtieri, C. Bricman, T. Lasinski, C. G. Wohl.

General: All Berkeley authors.

Consultants: The three teams just mentioned must come to a consensus on how to treat the data, and must write a number of mini-reviews. It is impractical to spread this responsibility over more than a few people in each team, and still expect to meet publication deadlines. Hence we limit our number of authors (to ten in this edition), but thereby leave gaps in our coverage, both intellectual and geographical. To help us overcome this deficiency, we have solicited the help of consultants:

•Chih-Yung Chien (Johns Hopkins University) and •LeRoy R. Price (Univ. of California at Irvine).

Mark Sakitt (BNL) has recently agreed to aid us in the future, and we hope to add a few more consultants.

The usefulness of this compilation depends in large part on the interaction among the users and authors and consultants. We appreciate comments, criticisms, and suggestions for improvements of all stages of data retrieval, processing, and presentation.

II. SELECTION AND ORGANIZATION OF DATA

All particles are considered to fall into one of the three groups:

(1) Stable Particles, immune to decay via the strong interaction.

- (2) Meson Resonances.
- (3) Baryon Resonances.

These groups are maintained within the two main parts of the compilation:

(1) Tables of particle properties

(2) Data Card Listings.

The Data Card Listings contain the original information (data, references, etc.), weighted averages, comments and "mini-reviews." Immediately preceding the Data Card Listings is an illustrated key thereto.

Data that have not been used in the averages are set off in parentheses; our reasoning is then often given in a footnote below the data. If the reason is not given, it is one of the following:

•The quantity was presented with no error stated.

•The result comes from a preprint or conference report and has not been verified by its authors.

•It involves some assumptions that we do not wish to incorporate.

•It is of poor quality, e.g., bad signal-to-noise ratio. •Two experiments give contradictory results, so that it is senseless to average the data.

When the data for a particle have received special treatment or when they present special problems, this is noted in a mini-review in the Data Card Listings.

The Tables represent the output of weighted averages and some critical judgment. The extent to which "blind" averaging has been tempered with judgment is explained in footnotes to the Tables. In general, however, the footnotes are less complete than are the collection of notes and mini-reviews in the Data Card Listings. The reader is therefore encouraged to familiarize himself with the Data Card Listings, and ultimately with the original experiments.

Further details about our selection of data can be found in the text of the 1969 edition, (Particle Data Group, 1969, Sec. III).

III. CRITERIA FOR RESONANCES

An experimentalist who finds some evidence for a peak in a mass spectrum will of course want to know what has been seen in that region in the past; hence, we strive to have the Data Card Listings serve as an archive for any substantial claim or evidence for a new state.

For the Tables, on the other hand, we wish to be more conservative, and to include only those peaks or resonances that have a $\geq 90\%$ chance of survival. One's betting odds for survival are of course completely subjective; they are influenced mainly by the amount of information available (such as partial-wave analyses), and somewhat by the degree of controversy over interpretation and how long it will be before more information is available.

More details on our acceptance criteria are as follows:

(1) Consider, first, peaks where there is *no* partial-wave information:

(1a) Most mesons and Ξ^* peaks, plus N^* and Y^* peaks above 2200 MeV. Unless the peak is experimentally shaky, we put it in the table.

(1b) Peaks not far above some threshold, e.g., $A1 \rightarrow \rho \pi$ or $A3 \rightarrow f \pi$, and their K^* counterparts Q and L. These are at least partly explained by the "Deck effect," or its more modern version "double-Regge-pole (DRP) exchange." But the notion of duality tells us that "to explain is not to explain away," i.e., the "explanation of a peak" with the DRP model need not contradict its interpretation as an s-channel resonance. So we put these four peaks on the Meson Table, but add comments like "A1 interpretation not clear; 160 MeV above $\rho\pi$ threshold." For more discussion of this problem, see the A1 mini-review in the listings.

(2) Consider, next, peaks for which there *are* partialwave analyses. We can then check that the Argand plot follows roughly a left-hand circle, and that the "speed" of the amplitude also shows a maximum near the resonance energy; further, there should be data well above the resonance, showing that the speed again decreases. Indeed proper behavior of the partial-wave amplitude will accredit a resonance even if its elasticity is too small to make a noticeable peak in the cross section.

Of course, even if Argand plots are available, it may still be a matter of opinion as to what behavior constitutes a resonance. Such an example is the K^+p peak (near $K\Delta$ threshold) called Z_1 (1900), which is discussed in a mini-review in the listings. The P_{13} Argand plots are displayed there, and most suggest a resonance; however, there is disagreement between the various analyses as to the speed of the amplitude, i.e., as to whether it has a Breit-Wigner type of behavior. In addition, the errors on the amplitudes are still large, and we prefer to wait a bit longer before we put Z_1 on the table.

Approximate Breit-Wigner behavior of a partialwave amplitude appears to us to be the most satisfactory test for a resonance, since after all a Breit-Wigner amplitude is the Fourier transform of an exponential decay of a state with a finite lifetime. We are aware that this approximate Breit-Wigner behavior could be accidental, but can only hope that such an accident is improbable.

We now ask "How likely is it that peaks of class (1) above (no way to check them with partial-wave analysis) will eventually be confirmed as resonances?" We know of no experimentally convincing peak that has been shown to having *nothing* to do with a resonance. But be warned that broad peaks may be misleading: they may contain several resonances, or they may include a resonance narrower than the peak, plus some other complications.

•Before 1966 we might have tabulated the πp bumps at 1512 and 1688 MeV as single resonances, whereas partial-wave analysis shows that each contains several resonances.

•Abrams *et al.* have reported broad peaks in the $\overline{N}N$ total cross section at 2190, 2345, and 2380 MeV. One of these indeed overlaps our tabulated U(2375) meson, whose width is given as 30 MeV. But $\overline{p}p$ s-channel experiments, which can study all the final states formed at c.m. energies near 2345 MeV, show that the rest of the $\overline{p}p(2345)$ peak, which is 140-MeV wide, must be attributed to a jumble of many different, unresolved effects. So we do not accept as a single resonance the whole $\bar{N}N(2345)$ peak, whose width is measured as 140 MeV.

Despite these cases where a resonance has turned out to be narrower than a bump, and only partly to explain the bump, *most* baryon enhancements have been confirmed by partial-wave analysis. A relevant example is the following:

•Before the $N^*(1470, P11)$ was confirmed in partial-wave analyses, it was seen as a missing mass or $p\pi\pi$ peak produced peripherally in high-energy ppcollisions, and (like A1, Q, A3, and L) was partly explained by the Deck effect and later by double-Regge-pole exchange. Thus nowadays we say that the s-channel resonance confirms the production peak, and that this supports one's confidence in duality.

In summary, we enter onto the tables experimentally convincing peaks unless there is contradictory information; and we expect that most of these peaks will eventually be confirmed as one or more resonances.

IV. PARAMETERS AND CONVENTIONS

A. Quantum Numbers

The symbols $I^{G}(J^{P})C$ represent:

I = isospin G = G parity J = spin P = space parity C = charge conjugation parity.

Mesons

The charge conjugation operator C turns particle into antiparticle and has eigenvalues ± 1 only for neutral states, so it is useful to define an extension Gwhich has eigenvalues for charged states too. It is usually* defined by

$$G = C \exp(i\pi I_y). \tag{1}$$

A neutral nonstrange state is an eigenstate of exp $(i\pi I_y)$ with eigenvalue $(-1)^I$. Then we can write the eigenvalue equation for the whole multiplet as

$$G = C_n (-1)^I, \tag{2}$$

where C_n (*n* for neutral) is the eigenvalue *C* would have if applied to the neutral member of the multiplet. Thus, for a π^0 , *C* has the eigenvalue +1, and since I=1, G=-1. For the charged pion, there are no eigenvalues corresponding to *C* and to the isospin rotation, but Eqs. (1) and (2) still give G=-1.

Consider a meson as a bound state of fermionantifermion, e.g., $\bar{q}q$, with orbital angular momentum l, and with the two quark spins coupling to give a spin

^{*} Most texts define it as in Eq. (1); see, e.g., Gasiorowicz (1966); however, sometimes the rotation is taken about I_x . The difference between the two conventions is mentioned in a footnote in Källén (1964).

S. Then one can show that the charge-conjugation eigenvalue [defined in Eq. (2)] is

$$C_n = (-1)^{l+S}.$$
 (3)

Equations (2) and (3) combine to give

$$G = (-1)^{l+S+I}.$$
 (4)

$$P = -(-1)^{l}.$$
 (5)

Equations (3) and (5) combine to give

$$C_n P = -(-1)^s$$

so all singlets $({}^{1}S_{0}, {}^{1}P_{1}, \cdots)$ have $C_{n}P = -1$, and all triplets $({}^{3}S_{1}, \cdots)$ have $C_{n}P = +1$.

If, instead of $\bar{q}q$, we consider the meson as a state of boson-antiboson (e.g., $A2 \rightarrow \bar{K}K$), it turns out that some signs cancel, and Eqs. (3) and (4) [not (5)!] apply unchanged. Of course the mesons are usually spinless and S is zero, but the equations are more general. Equations (3) and (4) can be considered as selection rules forbidding many decays.

For proofs see our 1969 text (Particle Data Group, 1969), and Appendix by C. Zemach. We repeat here as the summary Table I that we used in 1969 as Table II.

Baryons and Mesons

Well-established quantum numbers are underlined (except for stable particles, where most of the quantum numbers are established). We have used flimsy evidence to guess many of the remaining ones, and we have indicated with "?" the ones for which there is almost no evidence.

As is customary, we define antiparticles as the result of operating with CPT on particles, so both share the same spins, masses, and mean lives. Whenever there is a particularly interesting test of CPT invariance we include it in the Stable Particles Table.

B. Particle Names

If a meson has a well-accepted colloquial name, we use it. If not, we name it by a single symbol which specifies its atomic mass number A (=0 for mesons), its hypercharge Y, its isospin I, and, for a nonstrange meson, its G parity. We choose

$$I=0; \eta$$
 if G is even, ϕ if it is odd:

$$I=1; \rho$$
 if G is even, π if it is odd;

 $I = \frac{1}{2}; K$

 $I = \frac{3}{2}$; L (if ever established).

To crowd even more information onto the symbol, we add a subscript giving J^P . Thus $\eta_{0+}(1070)$. If J^P is not

known, but must be "normal" $(0^+, 1^-, 2^+, \cdots)$, e.g., because $K\pi$ decays are seen, we use the subscript N. Thus $K_N(1420)$. If such modes are *not* seen (and are not otherwise forbidden), we guess that it is because J is "abnormal," and we write, for example, $K_A(1320)$.

For *baryons*, no attempt has been made to attach a subscript about J and P. The symbols are

	Z_I	for	Y=2,	I = 0, 1;
	N	for	Y=1,	$I = \frac{1}{2};$
	Δ	for	Y = 1,	$I = \frac{3}{2};$
	Λ	for	Y=0,	I = 0;
	Σ	for	Y=0,	I = 1;
-	E	for	Y = -1,	$I = \frac{1}{2};$
	Ω	for	Y = -2,	I = 0.

For stable baryons of each Y and I we use the symbol standing alone; for resonances, the mass is in parentheses [i.e., N(1688), $\Lambda(1405)$, $\Sigma(1765)$, etc.]. The J^P assignment is reported in the Table as $\frac{1}{2}$ +, $\frac{3}{2}$ -, $\frac{5}{2}$ +, etc., and also by the symbols P_{11} , D_{13} , F_{15} , which refer to the πp , Kp, or Kp partial-wave amplitude where the resonant state occurs (the first subscript refers to the isospin state).

When two *baryons* have identical quantum numbers we warn the reader by adding a *prime* to the symbol for the heavier one, e.g., p, $N'(1470, \frac{1}{2}^+)$. In the case of baryon resonances described by Argand diagrams which exhibit more than one resonance, we use one prime for the first, two for the second, \cdots ; thus the series of which the proton is the stable member becomes: $p, N'(1470, \frac{1}{2}^+), N''(1780, \frac{1}{2}^+)$.

If there is only one resonance on an Argand plot, and thus no need for distinctions, we use no primes.

For some pairs of mesons with identical quantum numbers, we also use primes; e.g., η , η' ; f, f'.

C. Masses and Widths

In the Tables, columns are headed Mass M, and Width Γ . We speak loosely of M as the position of a resonant peak, and of Γ as its full width at half-maximum. We now want to make these statements more precise. Values of M and Γ are extracted from data via *models*, and we cannot average these values if the models are dissimilar. In the next few paragraphs we discuss this point in slightly more detail, using the example of an s-channel resonance.

An *elastic* nonrelativistic Breit–Wigner *T*-matrix element is usually written

$$T_{11} = \frac{\Gamma/2}{M - m - i\Gamma/2} \,. \tag{6}$$

Here $\Gamma(m)$ is the width for decay into the channel 1, with angular momentum *l*. It contains barrier-penetra-

TABLE I. $I^{Q}(J^{P})$ of mesons from $\bar{q}q$ model. For the distinction between abnormal J^{P} and abnormal C, see text. $I = \frac{1}{2}$ states share the same values of J^{P} as the I=0 and 1 states shown, but are not eigenstates of G. The middle column, which gathers together $(J^{P})_{N \text{ or } A} CP$, is a redundent intermediate step intended to make the Table easier to read.

	q Sta CP -	CP +	(J ^P) CP Normal or <u>abnormal</u>	I ^G (J ^P)C _n	Examples and comments
Parity	¹ s ₀		(0 ⁻) _A -	{0 ⁺ (0 ⁻)+ 1 ⁻ (0 ⁻)+	η, η' π
		³ s ₁	(1 ⁻) _N +	$\begin{cases} 0^{-}(1^{-}) - \\ 1^{+}(1^{-}) - \end{cases}$	ω, φ ρ
	¹ P ₁		(1 ⁺) _A -	$\begin{cases} 0^{-}(1^{+}) - \\ 1^{+}(1^{+}) - \end{cases}$	В
ty +		³ P ₀	(0 ⁺) _N +	$\begin{cases} 0^+(0^+) + \\ 1^-(0^+) + \end{cases}$	η ₀₊ (1060) π _N (1016)
— Pari		³ P ₁	(1 ⁺) _A +	$\begin{cases} 0^{+}(1^{+}) + \\ 1^{-}(1^{+}) + \\ 0^{+}(2^{+}) + \end{cases}$	A1 f. f'
		^P 2	(2') _N +	1-(2+)+	A2
	¹ D ₂		(2 ⁻⁾ A-	$ \left\{ \begin{array}{c} 0^{+}(2^{-})+\\ 1^{-}(2^{-})+\\ \end{array} \right\} $	Regge recurrence of ¹ S ₀ ,0 ⁻
ity -		³ D ₁	(1 ⁻) _N t	same as ³ S ₁	
—Pari		³ D ₂	(2 ⁻) _A +	$ \left\{\begin{array}{c} 0^{-}(2^{-}) - \\ 1^{+}(2^{-}) - \\ \end{array}\right\} $	Regge recurrence of top abnormal-C state below: $(J^P)C_n = (0^-)$ -
		³ D ₃	(3 ⁻) _N +	J > 2	
1	¹ F ₃		(3 ⁺) _A -	{J > 2	
ty + -		${}^{3}F_{2}$	(2 ⁺) _N +	same as ³ P ₂	Another A2?
Pari		³ F ₃	(3 ⁺) _A +	J > 2	
		⁵ F ₄	$(4^{+})_{N}^{+}$	etc.	

ABNORM	ALC STATE	ES THAT CANNOT COME F	ROM qq MODEL
Abnormal G	(0 ⁻) _A +	{0 ⁻ (0 ⁻)- 1 ⁺ (0 ⁻)-	All except
states	(1 ⁻) _N -	{ 0 ⁺ (1 ⁻)+ 1 ⁻ (1 ⁻)+	$J^{\mathbf{P}} = 0^{-}$
$\left\langle Have no \overline{qq} \right\rangle$	(0 ⁺) _N -	$\begin{cases} 0^{-}(0^{+}) - \\ 1^{+}(0^{+}) - \end{cases}$	are
model	(2 ⁺) _N -	$\begin{cases} 0^{-}(2^{+}) - \\ 1^{+}(2^{+}) - \end{cases}$	$J^{\mathbf{P}} = normal,$
	(3 ⁻) _N -	{ 0 ⁺ (3 ⁻)+ 1 ⁻ (3 ⁻)+	CP = -1

S6 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

tion factors which can vary rapidly with energy; near threshold $\Gamma(m)$ should start up as q^{2l+1} , and then level off. Various *m* dependences are used, mostly variants of the general form

$$\Gamma(m) \propto \{q^2/[1+(qR)^2]\}^l(q/m).$$
 (7)

For a choice of forms, see Jackson (1967), Pisut and Roos (1968), and Barbaro-Galtieri (1968). Of course the detailed shape of the amplitude will depend on the form chosen. So, although Γ is *related* to the full width, it can be measured in terms of the behavior of T at resonance. It is easy to show (Herndon *et al.*, 1970) that the relation is

"Speed" (res) =
$$\left| \frac{dT}{dm} \right|_{m=M} = \frac{x_e}{\Gamma(M)/2}$$
, (8)

where the elasticity, $x_e = \Gamma_e/\Gamma$, is introduced next. Further properties of "Speed" are discussed in the baryon mini-review at the front of the baryon Data Card Listings.

For an *inelastic* resonance feeding into channel β ,

$$T_{1\beta} = \frac{\frac{1}{2} (\Gamma_1 \Gamma_\beta)^{1/2}}{M - m - i\Gamma/2} = (x_1 x_\beta)^{1/2} \frac{\Gamma/2}{M - m - i\Gamma/2}, \quad (9)$$

where

$$\Gamma = \sum_{1}^{N} \Gamma_{\beta}, \qquad x_{\beta} = \Gamma_{\beta} / \Gamma, \qquad (10)$$

and x_1 (called the elasticity) is often written x_e .

The channel cross section $\sigma_{1\beta}$ for the reaction $1 \rightarrow \beta$ is

$$\sigma_{1\beta} = 4\pi \lambda^2 \left(J + \frac{1}{2} \right) \mid T_{1\beta} \mid^2, \tag{11}$$

where $J = l \pm \frac{1}{2}$.

Resonances seen in production are even more complicated. $(\Gamma_1)^{1/2}$ disappears from *T*, and must be replaced with some model-dependent parametrization of the production process.

In conclusion, we have seen that because of the energy dependence of Γ even the amplitude T for a resonance does not have a full width at half-maximum equal to Γ (but it does peak at or near M). Then kinematic factors enter into the cross section for formation [Eq. (11)] or production, and displace the observed peak away from M. For quantitative examples, see Barbaro-Galtieri (1968).

Most of the useful information on the N, Δ , Λ , and Σ baryon resonances with M < 2000 MeV has come from partial-wave analysis. Masses and widths of most of these states are dependent on the model, as well as on the data used by the different groups that performed these analyses; therefore, the masses in the main baryon Tables are not averages, but plausible guesses, and the errors are "external errors" based on the consistency among different from resonance to resonance,

see the appropriate mini-review in the Data Card Listings.

Resonances with mass M > 2000 MeV have been detected primarily in total-cross-section experiments.

We can use Eq. (11) to relate the height of the peak at resonance σ_{res} to the elasticity x_e . At resonance, the *channel* cross section is

$$\sigma_{\rm res}(1 \rightarrow \beta) = 4\pi \lambda^2 (J + \frac{1}{2}) x_e x_\beta, \tag{12}$$

and the *total* cross section is

$$\sigma_{\rm res}^{\rm (total)} = 4\pi\lambda^2 (J + \frac{1}{2}) x_e. \tag{13}$$

If J is known, we can solve for x_e . If J is not known, the product $(J+\frac{1}{2})x_e$ is given in the baryon table.

D. Muon-Decay Parameters

The μ -decay parameters describe the momentum spectrum (ρ and η), the asymmetry (ξ and δ), and the helicity (h) of the electron in the process $\mu^{\pm} \rightarrow e^{\pm} + \nu + \overline{\nu}$. Assuming a local and lepton-conserving interaction, the matrix element may be written as

$$\sum_{i} \langle \bar{e} \mid \Gamma_{i} \mid \mu \rangle \langle \bar{\nu} \mid \Gamma_{i}(C_{i} + C_{i}' \gamma_{5}) \mid \nu \rangle, \qquad (14)$$

where the summation is taken over i=S, V, T, A, P. Using the definitions and sign conventions of Kinoshita and Sirlin (1957), we have, for the momentum parameters:

$$\rho = [3g_A^2 + 3g_V^2 + 6g_T^2]/D, \qquad (15)$$

$$\eta = \left[g_{S^{2}} - g_{P^{2}} + 2g_{A^{2}} - 2g_{V^{2}} \right] / D; \qquad (16)$$

for the asymmetry parameters:

$$\xi = \left[+ 6g_{S}g_{P}\cos\phi_{SP} - 8g_{A}g_{V}\cos\phi_{AV} + 14g_{T}^{2}\cos\phi_{TT} \right]/D,$$
(17)

$$\boldsymbol{\delta} = \left[-6g_A g_V \cos \phi_{AV} + 6g_T^2 \cos \phi_{TT}\right]/D\boldsymbol{\xi}; \tag{18}$$

and for the parameter describing the helicity of the electron:

$$h = \pm \left[2g_S g_P \cos \phi_{SP} - 8g_A g_V \cos \phi_{AV} - 6g_T^2 \cos \phi_{TT} \right] / D.$$
(19)

Here

and

$$D = g_{S}^{2} + g_{P}^{2} + 4g_{A}^{2} + 4g_{V}^{2} + 6g_{T}^{2}, \qquad (20)$$

$$g_i^2 = |C_i|^2 + |C_i'|^2, \qquad (21)$$

$$\cos \phi_{ij} = Re(C_i * C_j' + C_i' C_j^*).$$
(22)

The quantities g_i are defined to be real nonnegative numbers, and the ϕ_{ij} are phase angles between the *i*-type and *j*-type interactions. Under the assumption of two-component neutrinos, $C_i' = -C_i$, and $C_j' = -C_j$, the *S*, *P*, and *T* terms vanish, and ϕ_{AV} is the phase angle between C_A and C_V in the complex plane. By using the above equations and the experimental determinations of ρ , η , ξ , δ , and h, limits can be placed on g_S/g_V , g_A/g_V , g_T/g_V , g_P/g_V , and ϕ_{AV} . The results, listed in the data cards, assume neither two-component neutrinos nor time-reversal invariance. If, however, two-component neutrinos are assumed, then $\sin \phi_{AV}$ is the amplitude of time-reversal violation. Note that most experiments study only the upper end of the spectrum where ρ and η are highly correlated, so they can only report ρ for $\eta \equiv 0$ and η for $\rho \equiv \frac{3}{4}$. The values for ρ and η we use here were obtained by combining measurements of both upper and lower ends of the spectrum and turn out to be nearly uncorrelated.

Note also that the radiative corrections are unambiguous only when $g_S = g_T = g_P = 0$. The same limits on g_A/g_V and ϕ_{AV} are obtained, however, as when g_S , g_T , and g_P are left free.

E. K-Decay Parameters

1. Dalitz Plot for $K \rightarrow 3\pi$ Decays

The small deviation from uniformity of the Dalitz plot for the 3π decay of the K meson is usually described by a "slope parameter" (Dalitz, 1956). For the τ and τ' decays of the charged K's, and the τ^0 decay mode of the K_L^0 , we parameterize the Dalitz plot distribution by the expression

$$|M|^{2} \propto 1 + g(s_{3} - s_{0})/m_{\pi^{+}}^{2} + h[(s_{3} - s_{0})/m_{\pi^{+}}^{2}]^{2} + j(s_{2} - s_{1})/m_{\pi^{+}}^{2} + \cdots, \quad (23)$$

where $m_{\pi^+}^2$ has been introduced so as to make the coefficients g, h, and j dimensionless, and

$$s_i = (\mathbf{p}_K - \mathbf{p}_i)^2 = (m_K - m_i)^2 - 2m_K T_i$$
 $i = 1, 2, 3,$

(24)

$$s_0 = \frac{1}{3} \sum_i s_i = \frac{1}{3} (m_K^2 + m_1^2 + m_2^2 + m_3^2).$$
 (25)

Here the \mathbf{p}_i are 4-vectors, m_i and T_i are mass and kinetic energy of the *i*th pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h measures the quadratic dependence on s_3 . The coefficient j is related to the asymmetry of the plot and must be zero if CP invariance holds. Note also that if CP is good, g must be the same for τ^+ and τ^- , and similarly for h.

At present there is no compelling experimental evidence for either the h or the j term [for upper limits on the j term, see Section E.2(b) below]. Thus we stop the above expansion at the first term and list only g. Since different experiments use different forms for $|M|^2$, in order to compare the experiments we have converted to g whatever coefficients have been measured. See the *listings* for details on this point. Relations among τ^{\pm} , τ'^{\pm} , and τ^{0} are predicted by the $\Delta I = \frac{1}{2}$ rule. See Appendix I for these relations and a discussion of this rule.

2. CP Violation in K⁰ Decays

We list parameters for four different reactions in which CP can be tested [Okun and Rubbia (1967), Steinberger (1969)].

(a) $K_S \rightarrow \pi^+ \pi^- \pi^0$. The quantity measured here is the ratio of amplitudes

$$A_{S}(K_{S} \rightarrow \pi^{+} \pi^{-} \pi^{0}) / A_{L}(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}) \equiv x + iy. \quad (26)$$

If CPT invariance holds and there is no I=3 state present, then x is zero, and one measures y, which is the CP-violating part. In the K_{S^0} listings, we give the results for (26) under Branching Ratio R4. Our procedure is to assume that x=0, and to list $(A_S/A_L)^2$ in the form of a branching ratio.

(b) Charge asymmetry in $K_L \rightarrow 3\pi$ decays. As mentioned above, the presence of a term in (s_2-s_1) in Expression (23) describing the Dalitz plot distribution for τ^{\pm} , τ^0 decays of K mesons would be an indication of CP violation. Rather than listing values of the (s_2-s_1) coefficient j in Eq. (23), we choose to list σ_{\pm} from the equivalent expression

$$M |^{2} \propto 1 + \sigma_{\pm 3}^{2} (T_{+} - T_{-}) / T_{\pm \max} + (CP \text{ nonviolating terms}), \quad (27)$$

where T_{\pm} are the kinetic energies of the charged pions. We have momentarily abandoned the form involving the Mandelstam variables s_i in favor of (27) because the latter has been consistently used by experimenters searching for *CP* violation. We list σ_{\pm} among the *CP*-violating parameters at the back of the K_L^0 data cards. Note that only upper limits have been reported for this quantity.

(c) Asymmetry in the $K_L \rightarrow \pi^{\mp} l^{\pm}\nu$ decays. The quantity measured and compiled here is

$$\delta = \frac{\Gamma(K_L \to \pi^{-} l^{+} \nu) - \Gamma(K_L \to \pi^{+} l^{-} \nu)}{\Gamma(K_L \to \pi^{-} l^{+} \nu) + \Gamma(K_L \to \pi^{+} l^{-} \nu)}.$$
 (28)

This asymmetry violates CP invariance. If CPT is good, for a pure K_{L^0} beam, δ can be written as

$$\delta = 2 \frac{1 - |x|^2}{|1 - x|^2} \operatorname{Re} \epsilon, \qquad (29)$$

where x is the $\Delta S = \Delta Q$ -violating parameter defined in Sec. E.3, and ϵ is the parameter of the expansion

$$|K_L\rangle = \{ [(1+\epsilon) | K\rangle - (1-\epsilon) | \tilde{K}\rangle] / [2(1+|\epsilon|^2)]^{1/2} \},$$
(30a)

$$|K_{S}\rangle = \{ [(1+\epsilon) | K\rangle + (1-\epsilon) | \tilde{K}\rangle] / [2(1+|\epsilon|^{2})]^{1/2} \}.$$
(30b)

S8 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

(d) $K_L \rightarrow 2\pi$ decay. The relevant parameters are:

$$\eta_{+-} = A(K_L \rightarrow \pi^+ \pi^-) / A(K_S \rightarrow \pi^+ \pi^-) = |\eta_{+-}| \exp(i\phi_{+-}),$$
(31)

$$\eta_{00} = A \left(K_L \rightarrow \pi^0 \pi^0 \right) / A \left(K_S \rightarrow \pi^0 \pi^0 \right) = | \eta_{00} | \exp \left(i \phi_{00} \right),$$
(32)

 ϵ , defined in Eqs. (30) above, and

$$\boldsymbol{\epsilon}' = (i/\sqrt{2}) \exp i(\boldsymbol{\delta}_2 - \boldsymbol{\delta}_0) \operatorname{Im} (A_2/A_0). \quad (33)$$

Here A_i and δ_i are the amplitude and phase of $\pi\pi$ scattering at the K mass, defined by

$$\langle I=0 \mid T \mid K \rangle = \exp\left(i\delta_0 A_0\right), \qquad (34a)$$

$$\langle I = 2 \mid T \mid K \rangle = \exp(i\delta_2 A_2). \tag{34b}$$

Wu and Yang (1964) have derived the relationships

$$\eta_{+-} = \epsilon + \epsilon', \qquad (35a)$$

$$\eta_{00} = \epsilon - 2\epsilon'. \tag{35b}$$

At present many models have been proposed to explain the experimental results on CP violation, but more data are needed before the cause of CP violation can be ascertained.

We list η_{+-} , η_{00} , ϕ_{+-} , and ϕ_{00} . The phases are measured directly, whereas the magnitudes η_{+-} and η_{00} are derived parameters. We use, as far as we can, the directly measured quantities as input, and calculate η_{+-} and η_{00} from the values given by our constrained fits. Therefore, if one looks at the Data Card Listings, most of the $|\eta|$ measurements appear in the form of branching ratios, with appropriate comments. We then give the values of η_{+-} and $|\eta_{00}|^2$ (Particle Data Group, 1969) in a separate list at the end of the CP-violating parameters section of the K_L^0 Data Card Listings.

3.
$$\Delta S = \Delta Q$$
 Rule in K^0 Decays.

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$x = A \left(K^0 \longrightarrow \pi^- \ell^+ \nu \right) / A \left(K^0 \longrightarrow \pi^- \ell^+ \nu \right). \tag{36}$$

We list Re $\{x\}$ and Im $\{x\}$.

4. Form Factors in K_{13} Leptonic Decays.

Assuming that only the vector current contributes to these decays, we write the matrix element as

$$M \propto f_{+}(q^{2}) [(P_{K}+P_{\pi})_{\mu} \bar{u}_{\ell} \gamma_{\mu} (1+\gamma_{5}) u_{\nu}]$$
$$+ f_{-}(q^{2}) [m_{\ell} \bar{u}_{\ell} (1+\gamma_{5}) u_{\nu}], \quad (37)$$

where P_K and P_{π} are the four momenta of K and π mesons, respectively; m_{ℓ} is the lepton mass; f_+ and f_- are dimensionless form factors which can depend only on $q^2 = (P_K - P_{\pi})^2$, the square of the momentum transfer to the leptons. The parameters we list are:

 λ_{\pm} , the energy dependence of the $f_{\pm}(q^2)$ form factor

$$f_{\pm}(q^2) = f_{\pm}(0) [1 + \lambda_{\pm}(q/m_{\pi})^2]; \qquad (38)$$

and ξ , the ratio of the two form factors

$$\xi = f_{-}/f_{+}.$$
 (39)

The quantity ξ can be determined in different ways:

(1) by measuring the $K_{\mu3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio as given in terms of $\xi(0) = f_{-}(0)/f_{+}(0)$.

 $\Gamma(K_{\mu3}^{\pm})/\Gamma(K_{\epsilon3}^{\pm}) = 0.6457 + 0.1264 \text{ Re } \xi + 0.0192 \mid \xi \mid^2$

 $+1.4115\lambda_{+}+0.4754\lambda_{-} \operatorname{Re} \xi+0.0080\lambda_{+} \operatorname{Re} \xi,$

 $\Gamma(K_{\mu3}^{0})/\Gamma(K_{e3}^{0}) = 0.6452 + 0.1246 \text{ Re } \xi + 0.0186 | \xi |^2$

$$+1.3162\lambda_{+}+0.4370\lambda_{-} \operatorname{Re} \xi+0.0064\lambda_{+} \operatorname{Re} \xi.$$
 (40)

See CABIBBO 66 and FEARING 70 (for the chargedependent formulae) in the card listings. Note that the first constant has been changed to 0.6457; the earlier value was a misprint,* which we copied from CABIBBO 66.

(2) by studying the Dalitz plot of the $K_{\mu3}$ decay. The K_{e3} Dalitz plot distribution is only dependent upon the λ_+ parameter, whereas the $K_{\mu3}$ distribution is dependent upon λ_- , λ_+ , ξ . Often experimenters have measured only the momentum spectrum of either the π or the lepton and compared it with the predicted spectrum. See note in the K^+ Data Card Listings for a discussion of this method. For a formula relating the Dalitz plot variables to ξ , see for example, BRENE 61 in the K^{\pm} card listings.

(3) by measuring the muon polarization in $K_{\mu3}$ decay. In the rest frame of the K, the μ is expected to be polarized in the direction **A** with $\mathbf{P} = \mathbf{A}/|\mathbf{A}|$, where **A** is given (CABIBBO 64 in K^+ card listings) by

$$A = \alpha_{1}(\xi) \mathbf{p}_{\mu} - \alpha_{2}(\xi) \{ (\mathbf{p}_{\mu}/m_{\mu}) [(m_{k} - E_{\pi}) + (\mathbf{p}_{\pi} \cdot \mathbf{p}_{\mu}) (E_{\mu} - m_{\mu})/| \mathbf{p}_{\mu} |^{2}] + \mathbf{p}_{\pi} \} + m_{K} \operatorname{Im} \xi(q^{2}) (\mathbf{p}_{\pi} \times \mathbf{p}_{\mu}).$$
(41)

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane.

See the note in the Listings, after K^+ decays, for discussions of experimental results.

F. Baryon-Decay Parameters

A/V ratio for baryon leptonic decays. The baryon part of the matrix element for these decays may be written as

$$\langle B_f | \gamma_{\lambda}(g_V - g_A \gamma_5) | B_i \rangle,$$
 (42)

where B_i and B_f represent initial and final baryons, and

 $[\]ensuremath{^*}\xspace$ We thank Drs. H. W. Fearing and J. Smith for calling this mistake to our attention.

 g_A and g_V the axial and vector coupling constants. Here the Pauli representation is used for the γ matrices. The definition of g_A/g_V is

$$g_A/g_V = \mid g_A/g_V \mid e^{i\delta}, \tag{43}$$

where δ is $0+n\pi$ if time-reversal invariance holds (see JACKSON 57 in neutron card listings).

In neutron beta decay the measurements are consistent with time reversal, so g_A/g_V therefore is nearly real and has been considered to be such in all the baryon leptonic decays. Notice that by using the above definition of the matrix element with the Pauli representations, the value of g_A/g_V in neutron beta decay is negative.

We compile the ratio g_A/g_V with its sign, for those decays for which it has been measured. For the neutron beta decay we compile also the phase δ .

Asymmetry parameters in nonleptonic hyperon decays. The transition matrix for the hyperon decay may be written as

$$M = s + p(\mathbf{\sigma} \cdot \mathbf{q}), \tag{44}$$

where s and p are the parity-changing and the parityconserving amplitudes, respectively, σ is the Pauli spin operator, and **q** is a unit vector along the direction of the decay baryon in the hyperon rest frame.

The asymmetry parameters are defined by the relations

$$\alpha = 2 \operatorname{Re} (s^* p) / (|s|^2 + |p|^2), \qquad (45a)$$

$$\beta = 2 \operatorname{Im} (s^* p) / (|s|^2 + |p|^2), \quad (45b)$$

$$\gamma = (|s|^2 - |p|^2) / (|s|^2 + |p|^2).$$
(45c)

With the transition matrix (44), the angular distribution of the decay baryon, in the hyperon rest system, is of the form

$$I = 1 + \alpha \mathbf{P}_Y \cdot \mathbf{q}, \tag{46}$$

where $\mathbf{P}_{Y} = \langle Y \mid \boldsymbol{\sigma} \mid Y \rangle$ is the hyperon polarization.

In the notation of Lee and Yang (1957), the polarization \mathbf{P}_B of the decay baryon is*

$$\mathbf{P}_{B} = \frac{\left[(\alpha + \mathbf{P}_{Y} \cdot \mathbf{q}) \mathbf{q} + \beta (\mathbf{P}_{Y} \times \mathbf{q}) + \gamma \mathbf{q} \times (\mathbf{P}_{Y} \times \mathbf{q}) \right]}{(1 + \alpha \mathbf{P} \boldsymbol{\sigma} \cdot \mathbf{q})},$$
(47)

where \mathbf{P}_B is defined in that rest system of the baryon obtained by a Lorentz transformation along \mathbf{q} from the hyperon rest system in which \mathbf{q} and \mathbf{P}_Y are defined. Note that α is the helicity of the decay baryon for unpolarized hyperons.

The three parameters α , β , and γ satisfy the relation

$$\alpha^2 + \beta^2 + \gamma^2 = 1. \tag{48}$$

It is then convenient to describe hyperon nonleptonic decays in terms of the two independent parameters α and the angle ϕ defined by

$$\beta = (1 - \alpha^2)^{1/2} \sin \phi,$$
 (49a)

$$\gamma = (1 - \alpha^2)^{1/2} \cos \phi, \qquad (49b)$$

which has a more nearly Gaussian distribution than β or γ . Evidently

$$-\frac{1}{2}\pi \leq \phi \leq \frac{1}{2}\pi \quad \text{for} \quad \gamma > 0, \tag{50a}$$

$$+\frac{1}{2}\pi \leq \phi \leq \frac{3}{2}\pi \quad \text{for} \quad \gamma < 0. \tag{50b}$$

In discussing time-reversal invariance, the quantity of interest is Δ , defined by

$$\alpha = 2 |s|| p | \cos \Delta/(|s|^2 + |p|^2), \quad (51a)$$

$$\beta = -2 |s||p| \quad \sin \quad \Delta/(|s|^2 + |p|^2); \quad (51b)$$

that is, Δ is the phase angle of *s* relative to *p*. Evidently

$$-\frac{1}{2}\pi \leq \Delta \leq \frac{1}{2}\pi \quad \text{for} \quad \alpha > 0, \tag{52a}$$

$$+ \frac{1}{2}\pi \leq \Delta \leq \frac{3}{2}\pi \quad \text{for} \quad \alpha < 0. \tag{52b}$$

Under the assumption of time-reversal invariance, the angle Δ must satisfy the relation

$$\Delta = \delta_s - \delta_p, \tag{53}$$

modulo π , where δ_s and δ_p are the pion-baryon scattering phase shifts at the appropriate energy and for the appropriate isospin state. For Λ decay, assuming the validity of the $|\Delta I| = \frac{1}{2}$ rule,

$$\Delta = \delta_s - \delta_p = (6.8 \pm 2.0) \text{ deg.*}$$

On the data cards we list α and ϕ for each decay since they are the most closely related to the experiments and are essentially uncorrelated. Whenever necessary we have changed the signs of the reported values, so as to agree with our conventions. In the Stable Particles Table we give α , ϕ , and Δ with errors; and for convenience we also give the central value of γ , without an error.

V. STATISTICAL PROCEDURES

This section is a much abbreviated version of Sec. IX in the text of our January 1970 edition (Particle Data Group, 1970), to which the reader is referred details. See also the mini-review on K^* masses and mass differences in the Data Card Listings.

A. Confidence Levels and Errors

Quoted errors represent one standard deviation (σ) . Upper and lower limits represent 68.3% confidence bounds (1σ) , unless otherwise stated.

^{*} Note that Ref. 13 contains a misprint. The minus sign in the definition of β should be replaced by a 2. In addition, our unit vector **q** is the direction of the baryon, whereas their unit vector **p** is the direction of the pion.

^{*} This value for $\delta_s - \delta_p$ is derived from the phase-shift analyses by Roper *et al.* (1965). The error is our estimation of the uncertainty.

The errors in the Tables and the errors of the averages in the *listings* often include a scale factor S; see Sec. V.B below.

Quantities that have changed more than 1σ since our January 1970 edition (Particle Data Group, 1970) are italicized in the Tables. For a discussion see Sec. V.B in the text of that edition.

B. Unconstrained Averaging, Scale Factors

In the absence of constraints, we calculate a weighted average

$$\bar{x} \pm \delta \bar{x} = (\sum \omega_i x_i / \sum \omega_i) \pm [1 / (\sum \omega_i)^{1/2}];$$

$$\omega_i = [1 / (\delta x_i)^2], \qquad (54)$$

where the sums run over N experiments. We also calculate χ^2 and compare it with its expectation value of N-1.

If $\chi^2 > N-1$, we increase the error $\delta \bar{x}$ in Eq. (54) by a factor

$$S = [\chi^2 / (N-1)]^{1/2}.$$
 (55)

It is easy to design statistical tests for determining whether one experiment (or a group of experiments) is consistent with the other experiments. However, statistics do not tell us who is wrong in case of contradictions. When $S\gg1$, one can conclude either that:

(1) some (or all) experiments are wrong or

(2) some (or all) experiments have underestimated their errors, or

(3) the experiments do not measure the same quantity (systematic errors).

We do our best to resolve these cases. If we cannot, we *assume* that *all* experimentalists underestimated their errors by the same scale factor. If we scale up all input errors by this factor, χ^2 returns to N-1, and of course the output error scales up by the same factor.

If all the experiments have errors of about the same size, the above procedure is straightforward. If, however, there are both precise and imprecise (large errors) measurements of a particular quantity, one must be very careful not to permit the imprecise ones to "dilute" the scale factor. See our January 1970 edition (Particle Data Group, 1970) for the prescription we use to handle this effect.

We often plot an ideogram to guide the reader in deciding which data he might reject before making his own selected average.

For further discussion of ideograms and scale factors, we refer the reader to Sec. IX of our January 1970 edition (Particle Data Group, 1970).

C. Constrained Fits

The information on partial-decay fractions P_i and partial widths $\Gamma_i = P_i \Gamma_{\text{total}}$ is frequently given by branching ratios R_j , say, $R_1 = P_1/(P_1+P_2)$, $R_2 = P_2/P_3$, $R_3 = P_1/P_2$, $R_4 = P_3/(P_1+P_2+P_3)$, etc.*

The number of experimental inputs R_j is often greater than the number of decay modes. In these cases we fit all available information on the P_i , Γ_i , and R_j subject to the constraint $\Sigma P_i = 1$. When, in addition, the input R_j are contradictory so that scale factors may have to be introduced, one has to resort to iterative procedures.

The Data Card Listings give the values of the fitted R_j , P_i , and Γ_i , together with the error matrices of the P_i and of the Γ_i . For details about this procedure the reader is referred to the text of the January 1970 edition (Particle Data Group, 1970), Sec. IV.B.

VI. PARTICLE DATA GROUP PUBLICATIONS

To obtain a reprint of this report, or any of the items listed below, write either Scientific Information Service, CERN, or Technical Information Division, Lawrence Radiation Laboratory, Berkeley, whichever is closer.

A. Pocket-Sized Particle Data Booklet

In addition to the present version of the Review of Particle Properties available from CERN and LRL, a pocket booklet is available. This contains the tables only, plus some additional useful information, selected for high-energy physicists. The complete pocket version comprises the data booklet, a 16-month diary, a mini-atlas, and a plastic cover. Any of these items that you have requested in the past will automatically be sent to you, but please note that our mailing lists are self-cancelling; unless you return the request card that is sent with each mailing, your name will be removed from our mailing list. If you wish to order any items in bulk we must charge 25 cents (US) for each of the pocket-sized items.

B. Other Compilations

The following reports of the Particle Data Group and of the CERN HERA Group are available from both CERN and LRL:

1. Cross Sections

A Compilation of K^+N Reactions, L. R. Price, N. Barash–Schmidt, O. Benary, R. W. Bland, A. H. Rosenfeld, C. G. Wohl, UCRL-20000 K^+N (September 1969).

A Compilation of *YN Reactions*, O. Benary, N. Barash-Schmidt, L. R. Price, A. H. Rosenfeld, G. Alexander, UCRL-20000 *YN* (January 1970).

Compilation of *Elastic Scattering Data*, G. C. Fox and C. Quigg, UCRL-20001 (January 1970).

NN and ND Interactions (above 0.5 GeV/c)-A Compilation, O. Benary, L. R. Price, G. Alexander, UCRL-20000 NN (August 1970).

^{*} We are also able to fit *products* of rates from formation experiments as given in Eq. (12).

Data Compilation of Antiproton-proton Reactions into Antihyperon-hyperon, B. Sadoulet, CERN/HERA 69-2.

A Compilation of Total and Total Elastic Cross Sections, G. Giacomelli, CERN/HERA 69-3.

A Collection of Pion Photoproduction Data. I-From the Threshold to 1.5 GeV, P. Spillantini and V. Valente, CERN/HERA 70-1.

Compilation of Cross Sections. I-Proton Induced Reactions, J. D. Hansen, D. R. O. Morrison, N. Tovey, E. Flaminio, CERN/HERA 70-2.

Compilation of Cross Sections. II-Antiproton Induced Reactions, E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey, CERN/HERA 70-3.

Compilation of Cross Sections. III— K^+ Induced Reactions, E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey, CERN/HERA 70-4.

Compilation of Cross Sections. IV— π^+ Induced Reactions, E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey, CERN/HERA 70-5.

2. Partial-wave amplitudes

 πN Partial-Wave Amplitudes—A Compilation, D. J. Herndon, A. Barbaro-Galtieri, A. H. Rosenfeld, UCRL-20000 πN (February 1970).

Each of these reports in turn lists relevant references. A further list of references can be found in: "Compilation of Coupling Constants and Low-Energy Parameters," by G. Ebel et al., [Nucl. Phys. B17, 1 (1970), and Springer Tracts in Modern Physics, Vol. 55, Sept. 1970 edition, edited by G. Höhler.]

ACKNOWLEDGMENTS

J. Bartels has assisted with the meson data, and Jane Zoba has helped with all the data processing. We thank K. Kleinknecht for his assistance on some of the K^0 parameters, and J. D. Jackson for useful comments.

REFERENCES

- Particle Data Group: M. Roos, C. Bricman, A. Barbaro-Galtieri, L. R. Price, A. Rittenberg, A. H. Rosenfeld, N. Barash-Schmidt, P. Söding, C. Y. Chien, C. G. Wohl, and T. Lasinski, Phys. Letters **33B**, (Aug. 1970)
- Particle Data Group: N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H. Rosenfeld, P. Söding, C. G. Wohl, M. Roos, and G. Conforto, Rev. Mod. Phys. 41, 109 (1969).
- S. Gasiorowicz, Elementary Particle Physics (Wiley, New York, 1966)
- Källén, *Elementary* Reading, Mass., 1964). G. Elementary Particle Physics, (Addison-Wesley,

- J. D. Jackson, Nuovo Cimento 34, 615 (1967).
 J. Pišut and M. Roos, Nucl. Phys. B6, 325 (1968).
 A. Barbaro-Galtieri, "Baryon Resonances," in Advances in Particle Physics, edited by R. L. Cool and R. E. Marshak (Wiley, New York, 1968). (Wiley, New York, 1968), Vol. 2. See specifically, Table IV and Figs. 10 and 12.
- D. J. Herndon, A. Barbaro-Galtieri, and A. H. Rosenfeld, πN Partial-Wave Amplitudes—A Compilation, Lawrence Radiation Laboratory Report UCRL-20030 πN , Feb. 1960, p. 4, Eq. (9). T. Kinoshita and A. Sirlin, Phys. Rev. 108, 844 (1957). R. H. Dalitz, Proc. Phys. Soc. (London) 69A, 527 (1956).
- R. H. Dalitz, Proc. Phys. Soc. (London) 69A, 527 (1956).
 For details see the following review talks: L. B. Okun' and C. Rubbia, Proceedings of the Heidelberg Conference on Elementary Particles, p. 301 (1967); J. Steinberger, CERN Topical Conference on Weak Interactions, CERN 69-7, p. 291 (1969); L. Wolfenstein in *Theory and Phenomenology in Particle Physics*, edited by A. Zichichi (Academic, New York, 1060). T. T. Wu and C. N. Yang, Phys. Rev. Letters 12, 380 (1964).
 T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957).
 L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138, 1066 (1987).

- B190 (1965).
- Particle Data Group: A. Barbaro-Galtieri, S. E. Derenzo, L. R. Price, A. Rittenberg, A. H. Rosenfeld, N. Barash-Schmidt, C. Bricman, M. Roos, P. Söding, and C. G. Wohl, Rev. Mod. Phys. 42, 87 (1970).

PARTICLE PROPERTIES TABLES

April 1971

"Now go, write it before them in a table, and note it in a book, that it may be for the time to come for ever and ever." Isaiah 30:7-8

> "... or at least until the next edition." Particle Data Group

N. Barash-Schmidt, A. Barbaro-Galtieri, C. Bricman, T. Lasinski,

A. Rittenberg, M. Roos, A. H. Rosenfeld, P. Söding, T. G. Trippe and C. G. Wohl

(Closing date for data: Feb. 1, 1971)

Stable Particles

For additional parameters, see Addendum to this table. Quantities in italics have changed by more than one (old) standard deviation since January 1970.

Particle	e	IG(J ^P)Cn	Mass	Mean life		Partial decay mode	
			(MeV) Mass ² (GeV) ²	(sec) cτ (cm)	Mode	Fraction ^a	p or P _{max} b (MeV/c)
γ		0,1(1 ⁻) ⁻	0(<2.)10 ⁻²¹	stable	stable		
ν	νe v _μ	$J = \frac{1}{2}$	0(<60 eV) 0(<1.6)	stable	stable		
е		$J = \frac{1}{2}$	0.5110041 ±.0000016	stable (> 2×10^{21} y)	stable		
μ		$J = \frac{1}{2}$ $m_{\mu} - m_{\pi} \pm$	$105.6599 \pm.0014 a^{2} = 0.0112 = -33.916 \pm.011$	2.1983×10-6 ±.0008 cτ=6.590×10 ⁴	eνν eγγ 3e eγ	$\begin{array}{cccc} 100 \\ (<1.6 \\ <1.3 \\ (<1.3 \\ <2.2 \end{array}) 10^{-5} \\ (<2.2 \\)10^{-8} \end{array}$	53 53 53 53
π^{\pm}		1-(0-) m	139.576 ±.011 1 ² = 0.0195	2.6024×10-8 ±.0024 $c\tau$ = 780.2 $(\tau^+ - \tau^-)/\overline{\tau}$ = (0.05±0.07)% (test of CPT)	μν eν μνγ π ⁰ eν ^{eνγ} + eve e	$\begin{array}{ccccccc} 100 & \% \\ (& 1.24 \pm 0.03) 10 - 4 \\ c & (& 1.24 \pm 0.25) 10 - 4 \\ (& 1.02 \pm 0.07) 10 - 8 \\ c & (& 3.0 \pm 0.5) 10 - 8 \\ (< 3.4 &) 10^{-8} \end{array}$	30 70 30 5 70 70
π°		1 ⁻ (0 ⁻) ⁺ m _{π±} -m _π ⁰	$134.972 \\ \pm .012 \\ a^{2} = 0.0182 \\ = 4.6041 \\ \pm .0037$	$0.84 \times 10^{-16} \\ \pm .10 \text{ S}=2.1^{*} \\ \text{c}\tau=2.5 \times 10^{-6} \\ $	$\gamma\gamma$ γe^+e^- $\gamma\gamma\gamma$ $e^+e^-e^+e^-$	$\begin{array}{cccc} (& 98.84 \pm 0.04)\% \\ (& 1.16 \pm 0.04)\% \\ (& < 5 &)10^{-6} \\ d(& 3.47 &)10^{-5} \end{array}$	67 67 67 67

.

Particle	IG(J ^P)C _n	Mass	Mean life		Partial decay mode	
		(MeV) Mass ² (GeV) ²	(sec) ст (ст)	Mode	Fraction ^a	p or P _{max} b (MeV/c)
Κ [±]	$\frac{1}{2}(0^{-})$	493.84 ±0.11	1. 2371×10^{-8} ±. 0026 S=1.9* $c\tau = 370.8$	μν ππ ⁰ ππ ⁻ π ⁺	$(63.77\pm0.28)\%$ S=1.1 [*] $(20.92\pm0.29)\%$ S=1.2 [*] $(5.58\pm0.03)\%$ S=1.1 [*]	236 205 126
	n	n ² 0.244	$(\tau' - \tau^{-})/\tau =$ (.11±.09)% (test of CPT)	^{ππ²π²} μπ ⁰ ν eπ ⁰ ν	$(1.68\pm0.04)\%$ $(3.20\pm0.11)\%$ S=1.8* $(4.86\pm0.07)\%$ S=1.1*	133 215 228
	mK _{∓-w} 1	K ^{0=-3.95} ±0.13 S=1.1*	S=1.2*	$\pi\pi = e^{\pm}\nu$ $\pi\pi = e^{\pm}\nu$ $\pi\pi = e^{\pm}\nu$ $\pi\pi = \mu^{\pm}\nu$ $\pi\pi = \mu^{\pm}\nu$ $\pi\pi = \mu^{\pm}\nu$ $\pi\pi = -\gamma$ $\pie^{\pm}e^{-}$ $\pi\mu^{\pm}\mu^{-}$ $\pi\nu$	$ \begin{array}{c} (3.3 \pm 0.3) + 0.5 \pm 1.1 \\ (3.3 \pm 0.3) + 10^{-5} \\ (<7) + 10^{-7} \\ (0.9 \pm 0.4) + 10^{-5} \\ (<3) + 10^{-6} \\ (1.30\pm 0.18) + 10^{-5} \\ (<1.9) + 10^{-4} \\ (<1.9) + 10^{-5} \\ (<1.9) + 10^{-5} \\ (<1.9) + 10^{-5} \\ (<1.9) + 10^{-5} \\ (<1.9) + 10^{-5} \\ (<1.9) + 10^{-5} \\ (<2.4) + 10^{-6} \\ (<2.4) + 10^{-6} \\ (<2.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4) + 10^{-6} \\ (<0.4$	204 204 151 151 247 205 126 227 227
				πνν πγ	(<1.2)10-6 (<4)10-6	22 7 227
Ko	$\frac{1}{2}(0^{-})$	497.79 ±0.15	50% K _{Short} , 50%	% K Long		
K _s	$\frac{1}{2}(0^{-})$	S=1.1* m ² =0.248	$\begin{array}{c} 0.862 \times 10 - 10 \\ \pm .006 \text{S} = 1.2^{*} \\ \text{c}\tau = 2.58 \end{array}$	π ⁺ π ⁻ π ⁰ π ⁰ μ ⁺ μ ⁻ e ⁺ e ⁻ π ⁺ π ⁻ ν	$(68.7 \pm 0.5)\%$ S=1.3* $(31.3 \pm 0.5)\%$ S=1.3* $(<.7)10^{-5}$ $(<35)10^{-5}$ C 2.3 ± 0.8 10^{-3}	206 20 9 225 249 206
KL	$\frac{1}{2}(0^{-})$		5.172×10^{-8} ± 0.043 $c\tau = 1550$	π ⁰ π ⁰ π ⁰ π ⁺ π ⁻ π ⁰ πμν πεν	$\begin{array}{c} (21.4 \pm 0.7)\% \text{ S=}1.1^{*} \\ (12.6 \pm 0.3)\% \\ (26.8 \pm 0.6)\% \\ (38.9 \pm 0.6)\% \text{ S=}1.1^{*} \\ (0.457\pm 0.05)\% \end{array}$	139 133 216 229
	^m K _L ^{-m} K _S	= 0.5398× 5 ± 0.0033	$(10^{10} h sec^{-1})$ $\frac{\Gamma (K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0})}{\Gamma (K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0})} < 0.45$ (test of CP)	π ⁰ π ⁰ π ⁴ π ⁻ γ. ΥΥ eμ μ ⁺ μ ⁻ e ⁺ e ⁻	$(0.157\pm.005)\%$ $(0.094\pm.019)\%$ S=1.5* $(<0.4)10^{-3}$ $(5.6\pm0.5)10^{-4}$ $(<1.6)10^{-9}$ $(<1.9)10^{-9}$ $(<1.6)10^{-9}$	206 209 206 249 238 225 249
η	0 ⁺ (0 ⁻) ⁺	548.8 ±0.6 S= 1.4* m ² = 0.301	Γ=(2.63±0.59) keV Neutral decays 72.2%	$\begin{cases} \gamma \gamma \\ \pi^{0} \gamma \gamma \\ 3\pi^{0} \\ \pi^{+}\pi^{-}\pi^{0} \\ \pi^{+}\pi^{-}\gamma \\ \pi^{0}e^{+}e^{-} \end{cases}$	$ \begin{pmatrix} 38.6 \pm 1.1 \\ 0 \\ 3.3 \pm 1.1 \\ 0 \\ 30.3 \pm 1.1 \\ 0 \\ 30.3 \pm 1.1 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	274 258 180 175 236 258
			Charged decays 27.8%	$\pi^{+}\pi^{-}e^{+}e^{-}$ $\pi^{+}\pi^{-}\pi^{0}\gamma$ $\pi^{+}\pi^{-}\gamma\gamma$ $\mu^{+}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	236 175 236 253 211
P	$\frac{1}{2}(\frac{1}{2}^+)$	938.2592 ±0.0052 $n^2 = 0.8803$	stable $(> 2 \times 10^{28} \text{y})$			
n	$\frac{\frac{1}{2}(\frac{1}{2}^+)}{m_p-m}$	$\begin{array}{r} 939.5527 \\ \pm 0.0052 \\ m^2 = 0.8828 \\ n^2 = -1.2934 \\ \pm 0.0000 \end{array}$	$e(0.932\pm0.014)10^{3}$ c7 =2.79×1013	pe v	100 %	1

Stable Particles

Particle	I ^G (J ^P)Cn	Mass	Mean life		Partial decay mode	
		(MeV) Mass ² (GeV) ²	(sec) cτ (cm)	Mode	Fraction ^a	p or p _{max} b (MeV/c)
Λ	$0(\frac{1}{2}^{+})$	$1115.59 \\ \pm 0.06 \\ S = 1.3^{*} \\ m^{2} = 1.245$	$2.517 \times 10^{-10} \\ \pm .024 \text{ S} = 1.2^{*} \\ c\tau = 7.55$	pπ- nπ ⁰ peν pμν	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1 [*] 100 104 163 131
Σ*	$1(\frac{1}{2}^+)$ $m_{\Sigma^+} - m_{\Sigma^+}$	$1189.42 \pm 0.11 S = 1.7* m2 = 1.415 m2 = -7.95 \pm .12 S = 1.4*$	0.800×10^{-10} $\pm .006$ $c\tau = 2.40$ $\frac{\Gamma(\Sigma^+ \rightarrow \ell^+ n\nu)}{\Gamma(\Sigma^- \rightarrow \ell^- n\nu)} < .035$	$ \begin{array}{c} p\pi^{0} \\ n\pi^{+} \\ \gamma\gamma \\ n\pi^{+}\gamma \\ \Lambda e^{+}\nu \\ \leftarrow \begin{cases} n\mu^{+}\nu \\ ne^{+}\nu \end{cases} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	189 185 1.4* 225 185 72 202 224
Σ°	$1(\frac{1}{2}^+)$	1192.51 ±0.10 m^{2} = 1.422	<1.0×10 ⁻¹⁴ cτ<3×10 ⁻⁴	Λγ Λe ⁺ e-	¹⁰⁰ % d(5.45)10-3	74
Σ	$1(\frac{1}{2}^+)$ $m_{\Sigma^0} - m_{\Sigma^0}$	$m^{2} = 1.422$ 1197.37 ± 0.07 $S = 1.1^{*}$ $m^{2} = 1.434$ $m_{\Sigma} = -4.86$ $\pm .06$	$e_{1.489 \times 10^{-10}}$ ±.022 S=1.8* $c\tau$ = 4.46	nπ ne - ν nμ - ν Λ e - ν nπ - γ	$\begin{array}{ccccccc} 100 & \% \\ (& 1.09 \pm 0.05) 10^{-3} \\ (& 0.45 \pm 0.04) 10^{-3} \\ (& 0.60 \pm 0.06) 10^{-4} \\ c(& 1.0 \ \pm 0.2 \) 10^{-4} \end{array}$	193 230 210 79 193
ы С	$\frac{1}{2}(\frac{1}{2}^{+})^{f}$ m _{Ξ} o-m	$\begin{array}{c} 1314.7 \\ \pm 0.7 \\ m^2 = 1.729 \\ m^2 = -6.6 \\ \pm .7 \end{array}$	3.03×10^{-10} ±.18 $c\tau = 9.08$	$ \begin{array}{c} \Delta \pi^{0} \\ p\pi^{-} \\ pe^{-\nu} \\ \Sigma^{+}e^{-\nu} \\ \Sigma^{-}e^{+\nu} \\ \Sigma^{+}\mu^{-\nu} \\ \Sigma^{-}\mu^{+\nu} \\ p\mu^{-\nu} \end{array} $	$\begin{array}{cccccc} 100 & \% \\ (<0.9 &)10^{-3} \\ (<1.3 &)10^{-3} \\ (<1.5 &)10^{-3} \\ (<1.5 &)10^{-3} \\ (<1.5 &)10^{-3} \\ (<1.5 &)10^{-3} \\ (<1.5 &)10^{-3} \\ (<1.3 &)10^{-3} \end{array}$	135 299 323 119 112 64 49 309
Ħ_	$\frac{1}{2}(\frac{1}{2}^+)^{f}$	1321.31 ±0.17 m ² =1.746	$\begin{array}{r} 1.660 \times 10^{-10} \\ \pm .037 \ \mathrm{S=1.1^{*}} \\ \mathrm{c}\tau \ = \ 4.98 \end{array}$	$ \begin{array}{c} \Lambda \pi^{-} \\ \Lambda e^{-}\nu \\ \Sigma^{0} e^{-}\nu \\ \Lambda \mu^{-}\nu \\ \Sigma^{0} \mu^{-}\nu \\ n \pi^{-} \\ n e^{-}\nu \end{array} $	$\begin{array}{ccccccc} & 100 & \% \\ g(& 0.67\pm 0.23)10^{-3} \\ (< 0.5 &)10^{-3} \\ (< 1.3 &)10^{-3} \\ (< 0.5 &)\% \\ (< 1.1 &)10^{-3} \\ (< 1.0 &)\% \\ \end{array}$	139 190 123 163 70 303 327
Ω	$0(\frac{3^{+}}{2})^{f}$	1672.5±.5 m ² = 2.797	$ \begin{array}{r} 1.3^{+0.4}_{-0.3} \times 10^{-10} \\ c\tau = 3.9 \end{array} $	Ξ ⁰ π ⁻ Ξ ⁻ π ⁰ Λ Κ ⁻	Total of 28 events seen	294 290 211

Stable Particles

*S = Scale factor = $\sqrt{\chi^2/(N-1)}$, where N \approx number of experiments. S should be \approx 1. If S > 1, we have enlarged the error of the mean, δx , i.e., $\delta x \rightarrow S \delta x$. This convention is still inadequate, since if S >> 1, the experiments are probably inconsistent, and therefore the real uncertainty is probably even greater than Sδx. See text and ideogram in data card listings.
a. Quoted upper limits correspond to a 90% confidence level.
b. In decays with more than two bodies, P_{max} is the maximum momentum that any particle can have

any particle can have.

c. See data card listings for energy limits used in measuring this branching ratio.

d. Theoretical value; see also data card listings.

e. See note in data card listings. f. P for Ξ and J^P for Ω^- not yet measured. Values reported are SU(3) predictions. g. Assumes rate for $\Xi^- \rightarrow \Sigma^0$ e⁻ ν small compared with $\Xi^- \rightarrow \Lambda$ e⁻ ν .

			Stab	le Pa	rtic	les		
	Magnetic mor	ment						
е	1.001 159 6 ±.000 000 0	644 <u>e</u> ħ 007 2m_c	-	μ Decay pa	rameters ^a	3		
μ	1.001 166 ±.000 000	16 <u>e</u> ħ 31 2m_c	ρ = 0.752: ξ = 0.972:	± 0.003 η = - ± 0.013 δ =	0.12 ±0 0.755±0	h = 1.0	0±0.13	
			∣ _g ∕g _V ∣	=0.86 + 0.33	φ = 180	• ±15•		
Κ [±]	$\frac{Mode}{\mu\nu} (5) \\ \pi\pi^{0} (1) \\ \pi\pi^{+}\pi^{-} (1) \\ \pi\pi^{0}\pi^{0} (1) \\ \mu\pi^{0}\nu (1) \\ \mu\pi^$	Partial rate 1.55±0.25) 6.91±0.24) 4.51±0.02) 1.36±0.04) 2.59±0.09)	(sec-1) 10 ⁶ S=1.2* 10 ⁶ S=1.2* 10 ⁶ S=1.1* 10 ⁶ 10 ⁶ S=1.8*	$\Delta I = \frac{1}{2} \text{ rule}$ $\pi^{+}\pi^{+}\pi^{-}c_{g}$ $\pi^{-}\pi^{+}\pi^{-}c_{g}$ $\pi^{+}\pi^{0}\pi^{0}c_{g}$ See also 1	for K [±] → 3 =206± =194± = .527± istings a	π Form .007 .007 .017 See	factors for leptoni listings for λ ,	c decays ξ
Kso	$e\pi^{0}\nu$ ($\pi^{0}\pi^{0}$ (C)	3.92±0.06)).796±.007)).364±.006)	$\begin{array}{c} 10^{10} & \text{S=1.2}^{\times} \\ 10^{10} & \text{S=1.2}^{\times} \\ 10^{10} & \text{S=1.3} \end{array}$	Appendix CP vio $ \eta_{\perp} = (1.95 \pm 1)$	I lation para 0.03)10 ⁻³	meters ${}^{3}_{, \phi_{+}} = (44 \pm 3)^{\circ}$	$I = \frac{1}{2} \text{ rule for } K_{I}$ $\pi^{+}\pi^{-}\pi^{0} g_{=.60\pm.}^{c}$ See also listing	$P \rightarrow 3\pi$ 03 S=3.1* s& App. I
κ°	π ⁰ π ⁰ π ⁰ (π ⁺ π ⁻ π ⁰ (πμν (πεν (π ⁺ π ⁻ (4.14 ± 0.13 2.44 ± 0.06 5.19 ± 0.12 7.52 ± 0.14 3.03 ± 0.10	$S)10^{6} S=1.1^{*}$ $S)10^{6} S=1.1^{*}$ $S)10^{6} S=1.1^{*}$	$ \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \end{array} $	2)10 ⁻³ , ϕ	$(51\pm30)^{\circ}$	$\Delta S = -\Delta I$ Re x =003±.(Im x =037±.(Form factor	D)31 S=1.7*)43 S=1.1* s for
	π ^ο π ^ο (1.82 ±0.37	y)10 ⁴ S=1.5*	$\delta = \frac{\Gamma(K_{L} \rightarrow I)}{\Gamma(K_{L}^{0} \rightarrow I)}$) -1 (K _L)		leptonic dec See listin for λ,ξ	ays 1g s
η	$\frac{\text{Mode}}{\pi^+\pi^-\pi^0} \begin{pmatrix} 1\\ 1\\ \pi^-\pi^-\gamma \end{pmatrix} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$	symmetry 1.2±0.5)% S 1.1±1.3)%	parameter S=1.3*					
	Magnetic		-	Decay paramet	ers b			
	moment	_	Measure	ed	De	rived	g _A /g _V ^b	$\frac{g_V/g_A^{b}}{d}$
	$\frac{(e\hbar/2m_pc)}{p}$	-	α	<u> (degree)</u>	<u> </u>	Δ (degree)		
р	2.792782 ±.000017							
n	-1.913148 ±.000066	pe ⁻ v					-1.231±0.010 [δ=(181.1±1.3)°]
Λ	-0.70 ±.07	pπ ⁻ 0 nπ ⁰ 0 peν).645±0.016).649±0.046	(-6.3±3.5)°	0.76	$\left(7.4^{+4.0}_{-4.1}\right)^{\circ}$	-0.83 ±0.18	S=1.3*
		pπ ⁰ -0	.991±0.019	(22±90)°	0.12	$(183^{+11}_{-12})^{\circ}$		
Σ*	2.59 ±.46	nπ ⁺ +0 Pγ -1	.066±0.016 .03 ^{+.52} .42	(167±20)° S=1.1*	-0.97	$\left(-73^{+136}_{-10}\right)$		
Σ-		nπ ⁻ -0 ne ⁻ ν Λe ⁻ ν	0.069±0.008	(10±15)°	0.98	$(249^{+12}_{-115})^{\circ}$	See listings	0.35±0.18
Ħ٥		Λπ^ο - 0).35 ±0. 08	(25±21)° S=1.3*	0.85	$(228^{+16}_{-37})^{\circ}$		
Ħ_		Λπ ⁻ -0	0.40±0.03	(-4±8)° S=1.1*	0.91	$\left(170^{+18}_{-17}\right)^{\circ}$		

ADDENDUM TO

S = scale factor. Quoted error includes scale factor; see footnote to main Stable Particles Table for definition. a. $|g_A/g_V|$ defined by $g_A^2 = |C_A|^2 + |C'_A|^2$, $g_V^2 = |C_V|^2 + |C'_V|^2$, and $\Sigma \langle \overline{e} |\Gamma_i| \mu \rangle \langle \overline{\nu} | \Gamma_i (C_i + C'_i \gamma_5) | \nu \rangle$; ϕ defined by $\cos \phi = - R_e (C_A^ C'_V + C'_A C_V^*) / g_A g_V$ [for more details, see text]. b. The definition of these quantities is as follows [for more details on sign convention, see text]: see text]:

see text : $\alpha = \frac{2 |s| |p| \cos \Delta}{|s|^2 + |p|^2}; \qquad \beta = \sqrt{1 - \alpha^2} \sin \phi; \qquad g_A/g_V \text{ defined by } \langle B_f | \gamma_\lambda (g_V - g_A \gamma_5) | B_i \rangle; \\
\beta = \frac{-2 |s| |p| \sin \Delta}{|s|^2 + |p|^2} \cdot \qquad \gamma = \sqrt{1 - \alpha^2} \cos \phi \cdot \qquad \delta \text{ defined by } g_A/g_V = |g_A/g_V| e^{i\delta}.$ c. The definition of the slope parameter of the Dalitz plot is as follows: $|M|^2 = 1 + g \left(\frac{s_3 - s_0}{m_{\pi^+}^2}\right)$

April 1971

Quantities in italics have changed by more than one (old) standard deviation since January 1970

Name					- Fai	trai decay mode	
$\frac{\overrightarrow{G} \mid 0 \mid 1}{- \phi \pi} + \eta \mid \rho$	I ^G (J ^P)C _n ⊢—∣estab.	Mass M (MeV)	Width F (MeV)	м² ±гм ^(а) (GeV)²	Mode	Fraction %	p or Pmax ^(b) (MeV/c)
π [±] (140) π ⁰ (135) →	<u>1 (0)+</u>	139.58 134.97	0.0 7.2 eV ±1.2 eV	0.019483 0.018217	See Stable Particle	s Table	·
η(549)	$0^+(0^-)^+$	548.8 ±0.6	2.70 keV ±.67 keV	0.301 ±.000	All neutral $\pi^+\pi^-\pi^0+\pi^+\pi^-\gamma$	72 See Stable 28 Particles Ta	ab1e
$\eta_0^+ \begin{pmatrix} 700 - \\ 1000 \end{pmatrix}$ or ε	$\frac{0^+(0^+)^+}{\delta_0^0}$	≳ 750 seems to st	>> 100 ay near 90° f:	≥ 0.6 rom 750 to 1	ππ 1150 MeV; see note in	100 listings	
ρ(765)	<u>1⁺(1⁻)-</u>	765 <u>±10</u> (c)	125 ±20(c)	0.585 ±.095	ππ e ⁺ e- μ ⁺ μ- For upper limits, s	≈100 .0060±.0008 (d) .0067±.0012 (d) ee footnote (e)	356 382 368
ω(784)	<u>0⁻(1⁻)-</u>	783.9 ±0.3 S=1.4*	11.4 ±0.9	0.614 ±.009	π ⁺ π ⁻ π ⁰ π ⁺ π ⁻ π ⁰ γ e ⁺ e ⁻ For upper limits, s	89.8±4.0 0.93±0.25 (f) 9.3±1.2 0.0066±.0017 S=1 ee footnote (g)	328 366 380 .4* 392
n'(958) or X ⁰	$J^{P} = 0^{-} c$	957.5 ±0.8 or 2	< 4	0.917 <.004	ηππ $π^+π^-γ$ (mainly $ρ^0γ$) γγ [note (h)] For upper limits, s	64.0±5.0 S=1.1* 29.4±2.7 S=1.2* 6.6±3.7 ee footnote (i)	231 458 479
δ(962)	≥1 ()	962 ±5	< 5	0.925 <.005	Observed in missing mass		•
π _N (975)	1 ⁻ (0 ⁺)+	975 ±10 [§]	58 ±11	0.950 ±.056	$n\pi$ possibly seen		315
$\pi_{N}(1016) \rightarrow K\overline{K}$	$1^{-}(0^{+})+$	1016 ±10	≈ 25 if res.	1.032 ±.025	K [±] K⁰ Ŋπ	Only mode seen <80	111 342
Resonance,	virtual bour	nd state, o	r antibound s	tate, still	not distinguished.		
φ(1019)	<u>0⁻(1⁻)-</u>	1019.5 ± 0.6 $S = 1.5^*$	4.0 ±0.3	1.039 ±.004	K ⁺ K ⁻ K _L K _S π ⁺ π ⁻ π ⁰ (incl. ρπ) e ⁺ e ⁻ μ ⁺ μ ⁻	46.4±2.8 S=1.2* 35.4±4.0 S=1.6* 18.2±5.4 S=1.9* .035±.003 .023±.005	12: 104 46: 509 491
	+ +				For upper limits, s	ee footnote (j)	·
n ₀ + (1070) or S*	<u>0 (0´)+</u>	1070 ±30 [§] if re	150-300 (k) sonance R	1.14 esonance a ee notes in	π <u>π</u> KK nd scattering length listing on η ₀ +(700-10	< 65 > 35 both possible (k); 000,ππ) and η _N (1080, J>	51 20: 0)
A1(1070)		1070 ± 20^{5} $J^{P} = 2^{-} r$	50-200 dep. on bgr. not excluded	1.14	3π [see note (ℓ) on $K\bar{K}$ [G = (-1) ^{ℓ+I} forbid	ρπ] ≈ 100 < 0.25 s KK̄ for J = 1]	488

					Dautial decay mode	
I ^G (J ^P)C _n ⊢−−−Iestab.	Mass M (MeV)	Width F (MeV)	M ² ±rM ^(a) (GeV) ²	Mode	Fraction	p or P _{max} (t (MeV/d
<u>1</u> , (1 ⁺)-	1233 ±10 [§]	100 ±20 [§]	1.53 ±.13	ωπ ππ KK For other upper 1	<pre>≈ 100 < 30 Absence suggests < 2 J^P = Abnormal Limits, see footnote (m)</pre>	350 602 371
$0^{+}(2^{+})+$	1269 ±10 [§]	154 ±25 [§]	1.60 ±.20	^{ππ} 2π+2π- KK	≈ 80 7±2 ≈ 5	61) 554 391
$\underline{O}^{+}(A) + J^{P} = O^{-},$	1286 ±4 S=1.4 1 ⁺ , 2 ⁻ , with	33 ± 4 h 1 ⁺ favoure	1.65 ±.04	KKπ [mainly π _N (10 ππη π _N (975)π ππο	016)] Seen Possibly large Possibly seen Not seen	305 484 244 352
$\frac{1^{-}(2^{+})_{+}}{(\approx 1300, \Gamma \approx (\approx 1290, \Gamma \approx (\% 1290, 1290, 1290, 1290, 1290, 1290, 1290, 1290, 1290, 129)$	$\langle 1310 \rangle$ $80) + A2_{Na}$ $25) + A2_{Hig}$ e explained e recent hi	$\langle 85 \rangle$ rrow (≈ 1300 gh (≈ 1310 , by a pair of gh-resoluti	$\langle 1.72 \rangle$ (1.72) (), $\Gamma \approx 10$) () $\Gamma \approx 25$) () of resonance on expts. sh	$\langle \rangle$ = unsplit and ρ^{π} η^{π} KK $\eta'(958)\pi$ es which are either r low no split. See no	unresolved avge. $\langle \approx 76 \rangle$ $\langle \approx 18 \rangle$ $\langle \approx 5 \rangle$ $\langle \sim 1 \rangle$ harrow-on-wide or possible ite (n).	40 52 42 27
0^{+} $(0^{-})^{+}$ $J^{P} = 1^{+}$ note is	1422 ±4 ot excluded in listings	69 ±8	2.02 ±.10	K [*] K̄ + K̄ [*] K π _N (1016)π ππη ππρ	50 ± 10 50 ± 10 < 60 Not seen	153 326 568 457
<u>0⁺(2⁺)+</u>	1514 ±5	73 ±23 S=1.8*	2.29 ±.11	KK K*K + K*K ππ ηππ ηη	$ \begin{array}{c} 72 \pm 12 \\ 10 \pm 10 \\ < 14 \\ 18 \pm 10 \\ < 40 \end{array} $ (0)	570 294 744 624 521
1 (A) Evidence b	1540 ±5 pased on on	40 ±15 ly one expen	2.37 ±.06 riment	K [*] K̄ + K̄ [*] K	Only mode seen	321
$\frac{1}{J^{P}} = 2^{-} pr$	1640 ±10 [§] referred	50-200 (t)	2.67 ±.15	$f\pi$ 3π $\omega\pi\pi$ (p) π threshold see note	Dominant Possibly observed	310 792 597
	1664 ±13 S=1.2*	141 ±17	2.83 ±.23	ρπ 3π 5π	Dominant Possibly observe 10±10	639 d 797
$ \begin{array}{c} \frac{1}{1}, (N) \\ \frac{1}{2}, \\ J^{P} = 1^{-}, \end{array} $	1660 ±20 [§] 3 ⁻ , wit	≲ 200 h 3 ⁻ favoure	2.76 ed	2π KK Nearby peaks in under ρ(1710) be _ ρ _N (1660) and ρ(1	Dominant 7 ± 3 4π modes have been grouped 10w. This does not imply 1 710) are different resonand	818 664 that ces.
1 ⁺ () ₋	1712 ±10 [§]	125 ±25	2.93 ±.21	$t_{\pi^{\pm}A_{2}^{0}(\neg\pi^{+}\pi^{-}\pi^{0})/a1}^{4\pi}$ $t_{\pi^{\pm}\omega(\neg\pi^{+}\pi^{-}\pi^{0})/a11}^{4\pi}$	$1(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}) 40 \pm 20] \\ (\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}) 25 \pm 10]$	797 339 667
		(0) 1		+[ρ ⁺ ρ⁰	Seen]	382
	$i^{G}(J^{P})C_{n}$ → lestab. 1^{+} (1 ⁺)- $0^{+}(2^{+})+$ $0^{+}(A)+$ $J^{P} = 0^{-},$ $1^{-}(2^{+})+$ (≈ 1300, $\Gamma \approx$ $2^{*}1290, \Gamma \approx$ $2^{*}1290, \Gamma \approx$ $3^{*}21290, \Gamma \approx$	$I^{G}(J^{P})C_{n} \qquad Mass \\ M \\ (MeV) \qquad MeV \qquad M$	$\frac{\mathbf{I}^{\mathbf{G}}(\mathbf{J}^{\mathbf{P}})\mathbf{C}_{\mathbf{n}}}{\overset{\mathbf{M}}{(MeV)}} \xrightarrow{\mathbf{Mass}}_{(MeV)} \underbrace{\begin{array}{c} \mathbf{Width}\\ \mathbf{F}\\ (MeV) \\ (MeV) \\ (MeV) \\ (MeV) \\ (MeV) \\ \hline \\ 1^{+}(1^{+})^{-} 1233 \\ \pm 10^{5} \pm 20^{5} \\ \hline \\ 1^{+}(1^{+})^{-} 1286 \\ \pm 10^{5} \pm 25^{5} \\ \hline \\ \frac{0^{+}(2^{+})^{+}}{1286} \\ \frac{1}{25^{5}} \\ (A)^{+} 1286 \\ \frac{1}{25^{5}} \\ (A)^{+} 1286 \\ \frac{1}{25^{5}} \\ (A)^{+} 1286 \\ \frac{1}{25^{5}} \\ (A)^{+} 1^{+}(1^{3}10) \\ (B5) \\ (A)^{+}(1^{-})^{+}(1^{-})^{+}(1^{-})^{-}(A)^{+}(1^{-})^{-}(A)^{+}(1^{-})^{-}(A)^{+}(A)^{-}(A)^{$	$\frac{\mathbf{j}^{\mathbf{G}}(\mathbf{j}^{\mathbf{P}})\mathbf{C}_{\mathbf{n}}}{(\mathbf{MeV})} \xrightarrow{\mathbf{Mass}}_{(\mathbf{MeV})} \underbrace{\mathbf{Width}}_{(\mathbf{MeV})} \underbrace{\mathbf{m}^{\mathbf{P}}_{(\mathbf{GeV})^{2}}_{(\mathbf{GeV})^{2}} \\ \frac{\mathbf{j}^{+}(1^{+}) - \frac{1233}{\pm 10^{5}} \underbrace{100}{\pm 20^{5}} \underbrace{1.53}_{\pm 113} \\ \frac{0^{+}(2^{+}) + \frac{1269}{\pm 10^{5}} \underbrace{125^{5}}_{\pm 2.0} \underbrace{1.60}_{\pm 10^{5}} \underbrace{1.20}_{\pm 25^{5}} \underbrace{1.20}_{\pm 2.0^{5}} \\ \frac{0^{+}(\mathbf{A}) + \underbrace{1286}_{\mathbf{S}=1.4^{+}} \underbrace{14}_{\pm 4} \underbrace{1.04}_{\pm 0.4^{-}} \\ \underbrace{\mathbf{J}^{\mathbf{P}} = 0^{-}, 1^{+}, 2^{-}, \text{ with } 1^{+} \text{ favoured}}_{\mathbf{Marrow}} \underbrace{1^{-}(2^{+}) + (1310)}_{\mathbf{Marrow}} (\approx 1300, \Gamma \approx 10) \\ (\approx 1300, \Gamma \approx 80) + A2_{\mathbf{Marrow}} (\approx 1310, \Gamma \approx 25) \\ (\text{at a can be explained by a pair of resonance}_{\mathbf{s} \mathbf{ide}; \text{ three recent high-resolution expts. sh}_{\mathbf{Marrow}} \underbrace{0^{+}(0^{-}) + \underbrace{1422}_{1=4} \underbrace{48}_{\pm 1.10}_{\mathbf{S}=1.8^{+}} \underbrace{0^{+}(0^{-}) + \underbrace{1422}_{1=5} \underbrace{123}_{\pm 1.8^{+}} \underbrace{1.11}_{\mathbf{S}=1.8^{+}} \underbrace{0^{+}(0^{-}) + \underbrace{1410^{5}}_{\pm 10^{5}} \underbrace{125}_{\pm 2.3} \underbrace{1.11}_{\mathbf{S}=1.8^{+}} \underbrace{0^{+}(1^{+}) + \underbrace{1514}_{\pm 10^{5}} \underbrace{1^{-}(0^{-}) + \underbrace{1640}_{\pm 10^{5}} \underbrace{5^{-}200}_{2.67} \underbrace{2.76}_{\pm 10^{5}} \underbrace{1^{+}(0) + \underbrace{1^{+}(0^{5})_{\pm 10^{5}} \underbrace{1^{+}(0^{-})_{\pm 10^{5}} \underbrace{1^{+}(0^{-})_{\pm 10^{5}} \underbrace{1^{+}(1^{+})}_{\pm 10^{5}} \underbrace{1^{-}(1^{-})_{\pm 10^{5}} \underbrace{1^{+}(1^{-})_{\pm 10^{5}} \underbrace{1^{+}(1^{-})_{\pm 10^{5}} \underbrace{1^{+}(1^{+})_{\pm 10^{5}} \underbrace{1^{+}($	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Mesons

Name	C D			2	-	Partial decay mode	
$\frac{\dot{G}^{I} 0 1}{- \phi \pi} + \frac{1}{\eta \rho}$	$ \begin{array}{cccc} I^{\bullet}(J^{\bullet})C_{n} & Mass & Width & M^{2} \\ & & M & \Gamma & \pm \Gamma M^{(a)} \\ & & (MeV) & (MeV) & (GeV)^{*} \end{array} $	M ² ±rM ^(a) (GeV) ²	Mode	Fraction %	p or Pmax ^{(b} (MeV/c		
∋ See not	te (q) for :	states groupe	d as R(17	50), ŋ/p(1830)	, φ/π(1830)		
S(1930)	1 ⁺ (≥ 2)-	$1929 \\ \pm 14$	20 ±15§	onfirmed in pr	n <u>π</u> pp	Probably seen Probably seen	955 226
	te (q) for s	states groupe	d as $\rho(2$	100), T(2200),	$\rho(2275)$, and	NN (2350).	
U(2375)	1 () H	2371 ±13	30 ±20 [§]	5.57 ±.07	Seen in π [−] p→	(MM) p and pp+KK [*] ππ.	
. See not	te (q) for l	heavier state	s.			· · · · · · · · · · · · · · · · · · ·	
K ⁺ (494) K ⁰ (498)	1/2(0)	493.84 497.79		0.244 0.248	See Stable I	Particles Table	
K [*] (892)	1/2(1)	892.6 ±0.5 S=1.3* (Charged r	50.3 ±1.1 S=1.3 [*] node; m ⁰	$0.797 \pm .045$ - m [±] = 8 ± 3)	Kπ Kππ	≈ 100 0.2	288 216
+ + +			·				
$K_{A}^{(1240)}$ or C) $1/2(1^+)$ seen in \bar{p}	1242 ±10 p at rest an	127 ±25 dπp→Λ	1.54 ±.16 Κππ	Resonance in above K [*] π th	nterpretation unclear; only 270 mreshold; see notes (r) and (t)) MeV
$\begin{cases} C \\ K_{A}(1280) \\ to 1400 \end{cases}$	<u>1/2</u> (1 ⁺))	1280 to 1400	See note (t)		^{Κππ} †[Κ [*] π †[Κρ	Only mode seen Large] Seen]	
к _N (1420)	<u>1/2</u> (2 ⁺)	1408 ±10 [§]	107 ±15	1.98 ±.15	Кπ К*π Ко	$56.9 \pm 4.0 S = 1.2$ 27.4 \pm 3.2 S = 1.1 0.2 + 3.5 S = 1.2	* 609 * 406 * 311
	s J ^P = 3 ⁻ s	ee note (s).	e		Κω Κη	4.5 ± 1.8 2.0 ± 1.8	291 474
L(1770)	$\frac{1/2}{J^{P}} = 1^{+},$	1770 ±10 [§] 2 ⁻ favoured	50-140 (t)	3.13	Κηπ [Κ [*] (1420)π Κηππ	Dominant Large; in K ⁺ p expts. domina Possibly seen	791 nt]300 760
Resonance	interpretat	ion unclear;	only 215	5 MeV above K _N	(1420)π thresho	old; see note (t).	

- The following bumps, excluded above, are listed among the data cards: $\sigma(410)$; M(953); H(990); $\eta_N(1080)$; Al.5(1170); $\rho\rho(1410)$; $K_{S}K_{S}(1440)$; R(1750); η or $\rho(1830) \rightarrow 4\pi$; ϕ or $\pi(1830) \rightarrow \omega\pi\pi$; $\rho(2400)$; T(2200); $\Gamma(2200)$; $\rho(2275)$; $N_{I=1}(2350)$; $N_{I=0}(2375)$; X (2500); X (2620); X (2800); X (2880); X (3030); X (3075); X (3145); X (3475); X (3535); K_N(1080-1260); K_A(I=3/2)(1175); K_A(I=3/2)(1265); K_N(1660); K (2240) \rightarrow YN. (See note (q).) →
- * Quoted error includes scale factor S = $\sqrt{\chi^2/(N-1)}$. See footnote to Stable Particles Table.
- Square brackets indicate a subreaction of the previous (unbracketed) decay mode. t
- This is only an educated guess; the error given is larger than the error of the average of the published values (see listings for the latter). §
- (a) IM is approximately the half-width of the resonance when plotted against M^2 .
- For decay modes into \geq 3 particles, p_{max} is the maximum momentum that any of the particles in the final state can have. The momenta have been calculated by using the averaged central mass values, without taking into account the widths of the resonances.
- (c) The values given for $M(\rho)$ and $\Gamma(\rho)$ and their errors are not average values from various experiments, but rather are intended to give the range where we believe the actual values are most likely to fall. Contrast the results tabulated in this note (references in the listings).

	M(MeV)	<u>Г (MeV)</u>	
ρ ⁰	774±5	111±5	From e ⁺ e ⁻ → π ⁺ π ⁻ , fitted to Gounaris-
ρ ⁰	768±10	140±14	Sakurai formula.
ρ ρ ρ ρ	764±2 775±3 768±2	147±4 145±9 132±13	From physical region fits to $\pi N \rightarrow \pi \pi N$, using energy-dependent width.
ρ°	759±7	119±20	From pole extrapolation in $\pi N \rightarrow \pi \pi N$
ρ	760	131	

(d) The e⁺e⁻ branching ratio is from e⁺e⁻ → π⁺π⁻ experiments only. The ωρ interference is then due to ωρ mixing only, and is expected to be small. See note in listings. The μ⁺μ⁻ branching ratio is compiled from 3 experiments; each possibly with substantial ωρ interference. The error reflects this uncertainty; see notes in listings. If eµ universality holds, Γ(ρ⁰ + μ⁺μ⁻) = Γ(ρ⁰ + e⁺e⁻) × phase space correction.

- (e) Empirical limits on fractions for other decay modes of $\rho(765)$ are $\pi^{\pm}\gamma < 0.5$ %, $\pi^{\pm}\eta < 0.8$ %, $\pi^{+}\pi^{+}\pi^{-}\pi^{-} < 0.15$ %, $\pi^{\pm}\pi^{+}\pi^{-}\pi^{-} < 0.15$ %,
- (f) Depends mainly on one experiment, $\gamma C \rightarrow \pi^+ \pi^- C$. Uncertainties about ρ shape and production mechanism could increase error.
- Empirical limits on fractions for other decay modes of $\omega(784)$ are $\pi^+\pi^-\gamma < 5\%$, $\pi^0\pi^0\gamma < 1\%$, η + neutral(s) < 1.5\%, (g) $\mu^+\mu^- < 0.02\%, \pi^0\mu^+\mu^- < 0.2\%.$
- (h) This $\eta' \rightarrow \gamma\gamma$ value is from a constrained fit under the assumption that $\eta \pi \pi$, $\rho^0 \gamma$, and $\gamma\gamma$ are the only existing decay modes. Note that direct measurement of the $\eta' \rightarrow \gamma\gamma$ branching fraction gave the slightly different result of (9.9 + 4.4) %.
- (i) Empirical limits on fractions for other decay modes of n'(958): $\pi^+\pi^- < 2$ %, $\pi^+\pi^-\pi^0 < 5$ %, $\pi^+\pi^+\pi^- < 1$ %, $\pi^+\pi^-\pi^- < 1$ %, $\pi^+\pi^-\pi^- < 1$ %, $\pi^+\pi^-\pi^- < 1$ %, $\pi^0e^+e^- < 1$.3%, $\pi^0e^+e^- < 1$.1%, $\pi^0\rho^0 < 4$ %, $\pi^0\omega < 8$ %.
- (j) Empirical limits on fractions for other decay modes of $\phi(1019)$ are $\pi^+\pi^- < 5$ %, $\eta\gamma < 8$ %, η + neutrals < 13%, $\pi^+\pi^-\gamma < 4$ %, $\omega\gamma < 5$ %, $\rho\gamma < 2$ %, $\pi^0\gamma < 0.35$ %.
- (k) Width of n₀₊(1070) → K_SK_S uncertain due to proximity of threshold. The data also allow a fit with scattering length and effective range. See listings and W. Beusch's review, Philadelphia Conference 1970, p. 185.
- (1) $\rho\pi$ fraction of 3π mode difficult to distinguish because ρ bands cover most of the Dalitz plot.
- (m) Empirical limits on fractions for decay modes of B(1235): $\pi\pi < 30\%$, $K\bar{K} < 2\%$, $4\pi < 50\%$, $\phi\pi < 1.5\%$, $\eta\pi < 25\%$, $(\bar{K}K)^{\pm}\pi^{0} < 8\%$, $K_{S}K_{S} \pi^{\pm} < 2\%$, $K_{S}K_{L} \pi^{\pm} < 6\%$.
- (n) For an up-to-date discussion see K.W.J. Barnham and G. Goldhaber, UCRL-20293. They adjust the absolute mass scale of different expts. by ~10 MeV, and then find that a broad continuum of parameters will fit the data; the values above are typical. Unsplit and unresolved A2 peaks have the following m and Γ : $\rho\pi$ and $\eta\pi$ modes--m = (1300±4) MeV, Γ =(84±4) MeV; $\bar{K}K$ mode--m = (1316±3) MeV, Γ = (60±15)MeV.
- (o) There is only a weak indication for a $K^*\bar{K} + \bar{K}^*K$ mode of the f'(1514). If this mode does not exist, the $K\bar{K}$ branching fraction will have to be reported as 80 ± 13% (rather than 72 ± 12% as given in the table), and $\eta\pi\pi$ as 20 ± 13%.

(p) The possible ωππ decay mode of the A3 has mass 1690 MeV and width 45 MeV, in agreement with R2.

(q) We tabulate here Y = 0 bumps with M \geq 1700 MeV, for which no satisfactory grouping into particles is yet possible. See listings.

Name	I _C	J^{P}	M(MeV)	Γ(MeV)	Decay modes observed	Tentative grouping
KK(1740) R3(1750) ππ(1764)	1 1,2		1740 1748 ± 15 1764 ± 15	\approx 120 ≤ 38 87 + 14 = 20	$K^{0}K^{\pm}$ (MM) \rightarrow 1/3/>3 charg.part.>14/<80/15 $\pi^{+}\pi^{-}$	R(1750)
Kkπ(1820) R4(1830) η/ρ(1830) φ/π(1830)	0,1,2 1,2 +		$1820 \pm 12 \\ 1830 \pm 15 \\ 1832 \pm 6 \\ 1848 \pm 11$	$50 \pm 23 \\ \leq 30 \\ 42 \pm 11 \\ 67 \pm 27 $	K _S K ⁰ π ⁰ (MM) ⁻ π ⁺ π ⁻ π ⁺ π ⁻ ωπ ⁺ π ⁻ , possibly ωρ ⁰	1830 region
X ⁻ (2086) ρ(2120)	1 ₁ ²	3-(?)	2086 ± 38 2120	≈ 150 < 249	$(MM)^{-}$ backward $\pi^{+}\pi^{-}$, $\bar{p}p$	ρ(2100)
ππ(2157) NÑ(2190) T(2195) 3π(2207) 4π(2200) KKω(2176)	$ \begin{array}{c} 1^{+} \\ 1^{-} \\ 1 \\ 1,2 \\ \leq 3^{-} \\ 1^{+},2^{+}, \\ 0^{-},1^{+} \end{array} $	(odd)- 3 ⁺	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$68 \pm 22 20-80 \approx 85 \leq 13 62 \pm 52 \approx 130 20 + 16 - 2$	$ \begin{cases} \pi^{+}\pi^{0} \\ \rho^{0}\rho^{0}\pi^{0}, \ \bar{p}p \\ \text{Structure in NN total } \sigma \\ (MM)^{-} \rightarrow 3 \text{ charged particles } \approx 94\% \\ \pi^{+}\pi^{-}\pi^{0} \\ \rho^{-}\pi^{+}\pi^{-}, \ \omega \text{ and } \eta \text{ antiselected} \\ K_{S}K_{S}\omega \end{cases} $	T region Seems to require >1 resonance
x¯(2260) ρ(2290)	$1^{1}_{1^{+}}^{2}_{1^{+}}^{2}$	5-(?)	2260 ± 18 2290	≤ 25 < 165	(MM) backward $\pi^{+}\pi^{-}$, $\bar{p}p$	ρ(2275)
NN (2350) NN (2375) X (2500)	1 0 1.2		2350 ± 10 2375 ± 10 2500 ± 32	≈ 140 ≈ 190 ≈ 87	Structure in $N\overline{N}$ total σ Structure in $N\overline{N}$ total σ (MM) backward	
$X^{-}(2620)$ $4\pi(2676)$ $X^{-}(2800)$	1,2 (1,2,3 1,2	j)+	$2620 \pm 20 \\ 2676 \pm 27 \\ 2800 \pm 20$	$85 \pm 30 \\ \approx 150 \\ 46 \pm 10$	$(MM)^{-}_{\rho^{-}\pi^{+}\pi^{-}, \omega \text{ and } \eta \text{ antiselected}}$ } (MM)^{-}	2650 region
X ⁻ (2880) X ⁻ (3025) NN(3035)	1,2 1,2 +		$2880 \pm 20 \\ 3025 \pm 20 \\ 3035 \pm 25 \\ \end{array}$	≤ 15 ≈ 25 200 ± 60	(MM) ⁻ (MM) ⁻ 4π, 6π	3030 region
X ⁻ (3075) X ⁻ (3145) X ⁻ (3475) X ⁻ (3535)	1,2 1,2 1,2 1,2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 ≈ 25 ≤ 10 ≈ 30 ≈ 30 	(MM) - (MM) - (MM) - (MM) -	

(r) See Q-region note in listings. Some investigators see a broad enhancement in mass $(K\pi\pi)$ from 1250-1400 MeV (the Q region), and others see structure. Only the $K_A(1240)$ or C seems well established, whereas possible structures from 1280 to 1400 MeV cannot be disentangled. For the whole Q region the decay rate into $K^*(892)\pi$ is large, and a Kp decay is seen. The Kn, Kw, and Km are less than a few percent.

(s) The mass comes only from charged $K_N(1420) \rightarrow K\pi$ measurements, since it is not well determined in the $K\pi\pi$ system with Q effect present; average of neutral K_N^{π} mass is 1423, but see typed note under $K^{*}(892)$ mass in listings.

(t) Four bumps (A1, A3, Q, L) appear, in mass spectra, as broad enhancements (up to 200-400 MeV wide) centred about 200 MeV above threshold; they can be interpreted as either resonances or kinematic effects. Widths and branching ratios are published, and compiled in the listing, but in some cases we do not average them because they are very sensitive to difficult background subtractions. For more discussion, see notes in data card listings.

Mixing angles for SU(3) nonets: the small table which appeared here in earlier editions has been moved to Appendix II.

Baryons

April 1971

[See notes on N's and Δ 's, on possible Z^* 's, and on Y^* 's at the beginning of those sections in the data listings; also see notes on <u>individual</u> resonances in the listings.]

Particle ^a	I (J ^P)	$\frac{\pi \text{ or } K \text{ Beam}}{\pi}$	Mass	Width	M ²	Partial decay mode			
	⊢l estab.	T(GeV) p(GeV/c) σ = 4π x 2 (mb)	M ^D (MeV)	^а (МеV)	‡ΓΜ° (GeV ²)	Mode	Fraction %	p or p _{max} c (MeV/c	
p n	1/2(1/2 ⁺)		938.3 939.6		0.880 0.883	See	Stable Par	ticles	
N' (1470)	$\frac{1/2(1/2^+)}{11} P'_{11}$	T=0.53πp p=0.66 σ=27.8	1435 to 1505	165 to 400	2.16 ±0.34	Νπ Νππ	60 40	420 368	
N' (1520)	1/2(3/2 ⁻) D' ₁₃	T=0.61 p=0.74 $\sigma=23.5$	1510 to 1540	105 to 150	2.31 ±0.18 [∆	Νπ Νππ (1236)π] ^e Νη	50 50 [dominant ~0.6	456 410] ^e 224	
N' (1535)	1/2(1/2 ⁻) S'11	T=0.64 p=0.76 o=22.5	1500 to 1600	50 to 160	2.36 ±0.18	Νπ Νη ⁰ Νππ ⁰	35 55 ~10	467 182 422	
N(1670) ⁱ	<u>1/2(5/2⁻)</u> D ₁₅	T =0.87 p=1.00 σ=15.6	1655 to 1680	105 to 175	2.79 ±0.24	Νπ Νππ [Δ(1236) [,] ΛΚ Νη	$ \begin{array}{r} 40 \\ 60 \\ [44]e \\ < .3 \\ < 1^{j} \end{array} $	560 525 357 200 368	
N(1688) ⁱ	$\frac{1/2(5/2^+)}{15}$ F ₁₅	T =0.90 p=1.03 σ=14.9	1680 to 1692	105 to 180	2.85 ±0.21	Νπ Νππ [Δ(1236)+ ΛΚ Νη	$\pi^{e} \begin{bmatrix} 60 \\ 40 \\ [26]^{e} \\ < .2 \\ < .5 \end{bmatrix}^{i}$	572 538 371 231 388	
N'' (1700) ⁱ	<u>1/2(1/2⁻)</u> S" 11	T=0.92 p=1.05 o=14.3	1665 to 1765	100 to 400	2.89 ±0.42	Νπ Λ Κ Νη	-65 5	580 250 340	
N" (1780)i	1/2(1/2 ⁺) P ^{''} 11	T=1.07 p=1.20 o=12.2	1650 to 1860	50 to 450	3.17 ±0.51	Νπ Λ Κ Νη	30 ~ 7 ~ 10 ^j	633 353 476	
N(1860)	$\frac{1/2(3/2^+)}{13}$	T=1.22 p=1.36 σ=10.4	1770 to 1900	180 to 330	3.46 ±0.57	Νπ Νππ ΛΚ Νη	25 ~ 5j	685 657 437 545	
N(2190)	$\frac{1/2(7/2^{-})}{17}$ G ₁₇	T=1.94 p=2.07 σ=6.21	2000 to 2260	270 to 325	4.80 ±0.67	Νπ Νππ	25	888 868	
N(2220)	1/2(9/2 ⁺) H ₁₉	T=2.00 p=2.14 σ =5.97	2200 to 2245	260 to 330	4.93 ±0.65	Νπ Νππ	15	905 887	
N(2650)	1/2(?)	T=3.12 p=3.26 o=3.67	2650	360	7.02 ±0.95	Νπ Νππ	(J+1/2)x = 0.45 f	1154 1140	
N(3030)	1/2(?)	T=4.27 p=4.41 σ=2.62	3030	400	9.18 ±1.21	Ν π Νππ	(J+1/2)x =0.05 f	1366 1354	
Δ (1236)	3/2(3/2 ⁺) P' ₃₃	T=0.195 (++ p=0.304 σ=91.8) 1230 to 1236	110 to 122	1.53 ±0.14	Νπ Νπ ⁺ π ⁻ Νγ	99.4 0 ~0.6	231 89 262	
∆ (1650)	3/2(1/2 ⁻) S ₃₁	T=0.83 p=0.96 g=16.4	1615 to 1695	130 to 200	2.72 ±0.28	Νπ Νππ	28 72	547 511	

Particle ^a	I (J ^P)	π or K Beam	Mass	Width	м ²	Partial decay mode		
	⊢—I estab.	T(GeV) p(GeV/c) $\sigma = 4\pi \chi^2$ (mb	Mb (MeV))	Г ^b (MeV)	±∩M ^c (GeV ²)	Mode	Fraction %	p or p _{max} d (MeV/c
<u>∆(1670)</u>	3/2(3/2 ⁻) D ₃₃	T=0.87 p=1.00 $\sigma=15.6$	1650 to 1720	175 to 300	2.79 ±0.40	Νπ Νππ	15	560 525
△ (1890)	$\frac{3/2(5/2^+)}{5}$ F ₃₅	T=1.28 p=1.42 σ=9.88	1840 to 1920	135 to 350	3.57 ±0.49	Νπ Νππ	17	704 677
<u>∆(1910)</u>	3/2(1/2 ⁺) P ₃₁	T=1.33 p=1.46 σ =9.54	1780 to 1935	230 to 420	3.65 ±0.62	Νπ Νππ	25	716 691
<u>∧ (1950)</u>	3/2(7/2 ⁺) F ₃₇	T = 1.41 p = 1.54 $\sigma = 8.90$	1930 to 1980	140 to 220	3.80 ±0.39	Νπ Δ(1236)π Σ Κ Σ (1385)Κ	45 ≈50 ~ 2 1.4	741 571 460 232
<u>∆(2420)</u>	3/2(11/2 ⁺)	T=2.50 p=2.64 σ =4.68	2320 to 2450	270 to 350	5.86 ±0.75	Νπ Νππ	11 >20	1023 1006
∆ (2850)	3/2(?+)	T=3.71 p=3.85 $\sigma=3.05$	2850	400	8.12 ±1.14	Νπ Νππ	(J+1/2)x =0.25 f	1266 1254
A (3230)	3/2(?)	T=4.94 p=5.08	3230	440	10.4 ±1.4	Νπ Νππ	(J+1/2)x = 0.05 f	1475 1464
k z*	Evidence for st discussion and	$\sigma = 2.25$ tates with hyp display of da	percharge ; ta.	2 is contr	oversial.	See listin	gs for	
κ z*	Evidence for st discussion and 0(1/2 ⁺)	σ =2.25 tates with hyp display of da	percharge , ta. 1115.6	2 is contr	oversial.	See listin See S	gs for 	icles
κ Z* Λ Λ (1405)	Evidence for st discussion and $0(1/2^{+})$ $0(1/2^{-}) S_{01}$	$\hat{\sigma}$ =2.25 tates with hyp display of da	1115.6	2 is contra- 40 $\pm 10^{g}$	0versial. 1.24 1.97 ±0.06	See listin See S ² Σπ	gs for table Part 100	icles 142
λ (1405) Λ'(1520)	Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$ $\frac{0(3/2^{-})}{0_{03}} D_{03}^{+}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^- p$ p = 0.389 $\sigma = 84.5$	$\frac{1115.6}{1405}$ $\frac{1518}{\pm 2}$ g	2 is control 40 $\pm 10^{g}$ 16 $\pm 2^{g}$	1.24 1.97 ±0.06 2.30 ±0.02	See listin See S $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma (1385)\pi]^{e}[$ $\Sigma \pi\pi$	gs for table Part 100 46±1 41±1 9.6±.7 (39±10] ^e 1.0±. 1	icles 142 237 260 252 75 ⁿ 144
Δ (3230) κ Δ Λ </td <td>Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$$\frac{0(3/2^{-})}{003} D_{03}^{'}$$\frac{0(1/2^{-})}{003} S_{01}^{'}$</td> <td>$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^-\text{p}$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$</td> <td>bercharge ta. 1115.6 1405 ±5g 1518 ±2g 1670</td> <td>2 is control 40 $\pm 10^{g}$ 16 $\pm 2^{g}$ 15 to 38</td> <td>1.24 1.97 ±0.06 2.30 ±0.02 [2 2.79 ±0.04</td> <td>See listin See S $\Sigma \pi$ NK $\Sigma \pi$ $\Lambda \pi \pi$ <math>\Sigma (1385)\pi]^{e}[</math> $\Sigma \pi \pi$ NK $\Lambda \eta$ $\Sigma \pi$</td> <td>gs for table Part 100 46±1 41±1 9.6±.7 (39±10]^e 1.0±. 1 ~20 ~35 ~45</td> <td>icles 142 237 260 252 75 144 410 66 393</td>	Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$ $\frac{0(3/2^{-})}{003} D_{03}^{'}$ $\frac{0(1/2^{-})}{003} S_{01}^{'}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^-\text{p}$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$	bercharge ta. 1115.6 1405 ±5g 1518 ±2g 1670	2 is control 40 $\pm 10^{g}$ 16 $\pm 2^{g}$ 15 to 38	1.24 1.97 ±0.06 2.30 ±0.02 [2 2.79 ±0.04	See listin See S $\Sigma \pi$ NK $\Sigma \pi$ $\Lambda \pi \pi$ $\Sigma (1385)\pi]^{e}[$ $\Sigma \pi \pi$ NK $\Lambda \eta$ $\Sigma \pi$	gs for table Part 100 46±1 41±1 9.6±.7 (39±10] ^e 1.0±. 1 ~20 ~35 ~45	icles 142 237 260 252 75 144 410 66 393
Δ (3230) κ Δ Λ Λ Λ Λ Λ Λ'(1520) Λ''(1670) Λ'''(1690)	Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$ $\frac{0(1/2^{-})}{003} S_{01}^{1}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^- p$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$ p = 0.78 $\sigma = 26.1$	$ \begin{array}{r} \text{percharge} \\ 1115.6 \\ 1405 \\ \pm 5g \\ 1518 \\ \pm 2g \\ 1670 \\ 1690 \\ 1690 $	2 is control $40_{\pm 10}g_{\pm 2}g_{\pm $	1.24 1.97 ±0.06 2.30 ±0.02 [2 2.79 ±0.04 2.86 0.09	See listin See S $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Delta \eta$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \eta$ $\Sigma \pi$ $\Sigma \pi$	gs for table Part 100 46±1 41±1 9.6±.7 39±10] ^e 1.0±.1 ~20 ~35 ~45 ~35 ~45 ~30h ~20 ~10	icles 142 237 260 252 75 ⁿ 144 410 66 393 429 409 415 352
$k = \frac{z^{*}}{\Lambda}$ $\frac{\Lambda}{\Lambda (1405)}$ $\frac{\Lambda}{\Lambda' (1520)}$ $\frac{\Lambda'' (1670)}{\Lambda'' (1690)}$ $\frac{\Lambda}{\Lambda (1815)}$	Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$ $\frac{0(1/2^{-})}{003} S_{01}^{1}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$ $\frac{0(5/2^{+})}{003} F_{05}^{1}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^- p$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$ p = 0.78 $\sigma = 26.1$ p = 1.05 $\sigma = 16.7$	bercharge ta. 1115.6 1405 ±5g 1518 ±2g 1670 1690 1820 ±5g	2 is control $40 \pm 10^{\text{g}}$ $16 \pm 2^{\text{g}}$ 15 to 38 27 to 85 64 to 100	1.24 1.97 ±0.06 2.30 ±0.02 [2 2.79 ±0.04 2.86 0.09 3.30 ±0.15	See listin See S $\Sigma \pi$ $\overline{\Sigma} \pi$ $\overline{\Sigma} \pi$ $\overline{\Sigma} \pi$ $\Sigma \pi \pi$ $\overline{\Sigma} \pi \pi$ $\overline{\Sigma} \pi$ $\Sigma \pi$ $\overline{\Sigma} (1385) \pi$	gs for table Part 100 46±1 41±1 9.6±.7 39±10] e 1.0±. 1 ~20 ~35 ~45 ~45 ~45 ~45 ~20 ~10 62 11 17	icles 142 237 260 252 75 ⁿ 144 410 66 393 429 409 419 352 537 504 358
$k = \frac{z^{*}}{A}$ $A = \frac{A}{A}$ $A = \frac{A}{A$	Evidence for st discussion and $\frac{0(1/2^{+})}{0(1/2^{-})} S_{01}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$ $\frac{0(1/2^{-})}{003} S_{01}^{1}$ $\frac{0(3/2^{-})}{003} D_{03}^{1}$ $\frac{0(5/2^{+})}{005} F_{05}^{1}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^- p$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$ p = 0.78 $\sigma = 26.1$ p = 1.05 $\sigma = 16.7$ p = 1.09 $\sigma = 15.8$	$\frac{1115.6}{1405}$ $\frac{1405}{\pm 5g}$ $\frac{1518}{\pm 2g}$ $\frac{1670}{1690}$ $\frac{1820}{\pm 5g}$ 1835	2 is control 40 ± 10^{g} 16 ± 2^{g} 15 to 38 27 to 85 64 to 100 74 to 150	1.24 1.97 ±0.06 2.30 ±0.02 [2 2.79 ±0.04 2.86 0.09 3.30 ±0.15 3.37 ±0.20	See listin See S $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ \overline{K} $\Sigma \pi$ \overline{K}	gs for table Part 100 46±1 41±1 9.6±.7 39±10] e 1.0±. 1 ~20 ~35 ~45 ~35 ~45 ~30h ~20 ~10 62 11 17 ~10 ~30	icles 142 237 260 252 75 ⁿ 144 410 66 393 429 409 415 352 537 504 358 550 515
$ \begin{array}{c} \Sigma (3230) \\ $	Evidence for st discussion and $0(1/2^{+})$ $0(1/2^{-}) S_{01}$ $0(3/2^{-}) D_{03}^{+}$ $0(1/2^{-}) S_{01}^{+}$ $0(3/2^{-}) D_{03}^{+}$ $0(5/2^{+}) F_{05}^{+}$ $0(5/2^{-}) D_{05}$ $0(5/2^{-}) D_{05}$ $0(7/2^{-}) G_{07}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^- p$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$ p = 0.78 $\sigma = 26.1$ p = 1.05 $\sigma = 16.7$ p = 1.09 $\sigma = 15.8$ p = 1.68 $\sigma = 8.68$	$\frac{1115.6}{1405}$ $\frac{1405}{\pm 5g}$ $\frac{1518}{\pm 2g}$ $\frac{1670}{1690}$ $\frac{1820}{\pm 5g}$ $\frac{1835}{2100}$	2 is control 40 ± 10^{g} 16 ± 2^{g} 15 to 38 27 to 85 64 to 100 74 to 150 60 to 140	$\begin{array}{c} 1.24 \\ 1.97 \\ \pm 0.06 \\ 2.30 \\ \pm 0.02 \\ [2] \\ 2.79 \\ \pm 0.04 \\ \hline 2.86 \\ 0.09 \\ \hline 3.30 \\ \pm 0.15 \\ \hline 3.37 \\ \pm 0.20 \\ \hline 4.41 \\ \pm 0.22 \end{array}$	See listin See S $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $N\overline{K}$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi\pi$ $\Lambda \pi\pi$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi$ $\Lambda \pi\pi$ $\Sigma \pi$ $\Lambda \pi\pi$	gs for table Part 100 46±1 41±1 9.6±.7 39±10] e 1.0±. 1 ~20 ~35 ~45 ~35 ~45 ~30h ~20 ~10 62 11 17 ~10 ~30 25 ~5	icles 142 237 260 252 75 ⁿ 144 410 66 393 429 409 415 352 537 504 358 550 515 748 699 447
$ \begin{array}{c} \Sigma (3230) \\ $	Evidence for st discussion and $0(1/2^{+})$ $0(1/2^{-}) S_{01}$ $0(3/2^{-}) D_{03}^{t}$ $0(1/2^{-}) S_{01}^{t}$ $0(3/2^{-}) D_{03}^{t}$ $0(5/2^{+}) F_{05}^{t}$ $0(5/2^{-}) D_{05}$ $0(5/2^{-}) D_{05}$ $0(7/2^{-}) G_{07}$	$\sigma = 2.25$ tates with hyp display of da $p < 0 \text{ K}^-\text{p}$ p = 0.389 $\sigma = 84.5$ p = 0.74 $\sigma = 28.5$ p = 0.78 $\sigma = 26.1$ p = 1.05 $\sigma = 16.7$ p = 1.09 $\sigma = 15.8$ p = 1.68 $\sigma = 8.68$	percharge 1115.6 1405 ±5g 1518 ±2g 1670 1690 1820 ±5g 1835 2100	2 is control $40_{\pm 10}g_{\pm 10}g_{\pm 2}g_{\pm 2}g_{\pm$	$ \begin{array}{r} 1.24 \\ 1.97 \\ \pm 0.06 \\ 2.30 \\ \pm 0.02 \\ [2 \\ 2.79 \\ \pm 0.04 \\ 2.86 \\ 0.09 \\ 3.30 \\ \pm 0.15 \\ 3.37 \\ \pm 0.20 \\ 4.41 \\ \pm 0.22 \\ \end{array} $	See listin See S $\Sigma \pi$ N \overline{K} $\Sigma \pi$ $\Lambda \pi \pi$ $\Sigma (1385)\pi$] e [$\Sigma \pi \pi$ N \overline{K} $\Sigma \pi$ $\Lambda \pi \pi$ $\Sigma \pi$ $\Lambda \pi \pi$ $\Sigma \pi$ $\Lambda \pi \pi$ $\Sigma \pi$ $\Lambda \pi$ $\Sigma \pi$ $\Lambda \Lambda$ $\Lambda \pi$ $\Sigma \pi$ $\Lambda \Lambda$	gs for table Part 100 46±1 41±1 9.6±.7 39±10] ^e 1.0±.1 ~20 ~35 ~45 ~35 ~45 ~30h ~20 ~10 62 11 17 ~10 ~30 25 < 3 < 10	icles 142 237 260 252 75 ⁿ 144 410 66 393 429 409 415 352 537 504 358 550 515 748 699 617 483 443

Baryons

PARTICLE DATA GROUP Review of Particle Properties S23

Pai	rticle ^a	I (J ^P)	$\frac{\pi}{1}$ or K Beam	Mass	Width	м ²	Partial decay mode			
		i estab.	T(GeV) p(GeV/c) σ = 4π χ 2 (m	M ^b (MeV) nb)	Г ^b (MeV)	±ՐМ ^C (GeV ²)	Mode	Fraction %	p or P _{max} o (MeV/c	
2	Σ	1(1/2 ⁺)		(+)1189.4 (0)1192.5 (-)1197.4		1.41 1.42 1.43	See Sta	ible Partio	cles	
	Σ (1385)	$1(3/2^+)$ P ₁₃	р<0К⁻р	(+)1383±1 S=1.3* (-)1386±2 S=2.2*	(+)36±3 S=1.9* (-)36±6 S=3.5*!	1.92 ±0.05	Λ π Σ π	90±3 10±3 S=1.4*	208 117	
	צ' (1670) ^k	$\frac{1(3/2^{-}) D_{13}^{\prime}}{Mass, width and in partial wave more results s$	p=0.74 $\sigma=28.5$ and elasticity analyses fo see the listin	1670 are the valu r a D ₁₃ res gs and footr	50 les ob tain onance. I lote k.	2.79 ±0.08 ed For	ΝΚ Σπ Λπ Σππ [Λ (1405)π Λππ	~8]e	410 387 447 326 207 397	
	Σ'(1750)	$\frac{1(1/2^{-})}{11}$ S''	p =0.91 σ =20.7	1750	50 to 80	3.06 ±0.11	$N\overline{K}$ $\Lambda \pi$ $\Sigma \eta$	~15 seen seen	483 507 55	
	Σ (1765)	1(5/2 ⁻) D ₁₅	p =0.94 σ =19.6	1765 ±5 ^g	~120	3.12 ±0.21	NK Λπ Λ (1520)π Σ (1385)π Σπ	~44 ~15 ~14 ~13 ~1	496 518 187 315 461	
	$\Sigma (1915)^{i}$	$\frac{1(5/2^{+}) F_{15}^{\dagger}}{} F_{15}^{\dagger}$	p = 1.25 $\sigma = 13.0$ experiments	1910 do not agr	70	3.65 ± 0.13	NK Λπ Σπ	~11	613 619 568	
• • •	<u>Σ</u> (2030)	$\frac{1(7/2^+)}{17} F_{17}$	p = 1.52 $\sigma = 9.93$	2030	100 to 170	4.12 ±0.27	$\frac{\Sigma \pi}{\Sigma \pi}$	10 to 27 14 to 38 2 to 5 < 2	700 700 652 412	
	Σ (2250)	1(?)	p =2.04 σ =6.76	2250	100 to 230	5.06 ±0.37	$N\overline{K}$ Σ^{π} Λ^{π}	(J+1/2)x =0.3 ^f	849 842 799	
	Σ (2455)	1(?) -	p=2.57 σ=5.09	2455	~120	6.03 ±0.29	NK	(J+1/2)x =0.2f	979	
÷	Σ (2620)	1(?)	p=2.95 σ=4.30	2620	~175	6.86 <u>±0.46</u>	NK	(J+1/2)x =0.3 ^f	1064	
;	Ξ ^ℓ	$\frac{1/2(1/2^+)}{2}$	(0)1314.8 -)1321.3		1.73 1.75	See Sta	ble Partic	cles	
+	Ξ (1530) ^ℓ	1/2(3/2 ⁺) p-wave	(0)1528.9±1. -)1533.8±1.	1 7.3 9 ±1.7	2.34 ±0.01	Η	100	144	
, ,	Ξ (1820) ^ℓ	1/2(?) All four decay been seen. B	modes have ranching rat	1795 to 1870 ios not quot e state her	12 to 99 ed because	3.31 ±0.10	Λ Κ Ξ π Ξ (<u>1</u> 530)π Σ Κ		396 413 234 306	
1	王 (1940) l	Seen in both f	inal states; r or more, sta	1894 to 1961 not ites present	42 to 140	3.72 ±0.18	Ξπ Ξ(1530)π		499 336	
	<u>-</u>	0 (0 (0t)								

Barvons

Baryons

- Quoted error includes an S(scale) factor. See footnote to Stable Particles Table. An arrow at the left of the Table indicates a candidate that has been omitted because the evidence for the existence of the effect and (or) for its interpretation as a resonance is open to considerable question. See listings for information on the following: N(1700) D_{42}^{μ} N(1990) F_{17} , N(2040) $D_{13}^{''}$, N(3245), N(3690), N(3755), Δ (1690) $P_{33}^{''}$, Δ (1960) $D_{35}^{''}$ $\Delta(2160) P_{33}^{'''}, Z_0(1780), Z_0(1865), Z_1(1900), \Lambda(1330), \Lambda(1750) P_{01}, \Lambda(1860) P_{03}, \Lambda(1870) S_{01}^{''}, \Lambda(2010) D_{03}^{'''}, \Lambda(2020) F_{07}, \Lambda(2100) F_{05}^{''}, \Lambda(2585), \Sigma(1440), \Sigma(1480), \Sigma(1620) S_{11}^{'}, \Sigma(1620) P_{11}^{'}, \Sigma(1660) D_{13}^{'}, \Sigma(1690), \Sigma(1880) P_{11}^{''}, \Sigma(1940) D_{13}^{''}, \Sigma(2070) F_{15}^{''}, \Sigma(2080) P_{13}, \Sigma(2100) G_{17}^{''}, \Sigma(2100) G_{1$ $\Sigma(3000)$, $\Xi(1630)$, $\Xi(2030)$, $\Xi(2250)$, $\Xi(2500)$.
- For the baryon states, the name [such as Ni(1470)] contains the mass, which may be different. a. for each new analysis. The value chosen is the rounded average from Table II of the note on N's and Δ 's in the baryon listings. For Y^{*}'s and Ξ ''s, the mass is an educated guess obtained by looking at the reported values. The convention for using primes in the names is as follows: when there is more than one resonance on a given Argand diagram, the first has been designated with a prime, the second with a double prime, etc. The name (col. 1) is the same as can be found in large print in the listings.
- See note on N's and Δ 's in baryon listings. For M and Γ of most baryons we report here an b. interval instead of an average. Averages are appropriate if each result is based on independent measurements, but inappropriate here where the spread in parameters arises
- because different models or procedures have been applied to a common set of data. Where only one value is given it is either because only one experiment reports that state or because the various experiments agree. An error is quoted only when the various experiments averaged have taken into account the systematic errors.
- For this column M is the rounded average which also appears in the name column. For the c. N's and Δ 's, Γ is the average quoted on Table II of the N's and Δ 's note in the baryon listings; for the Y^{*}'s and Ξ ^{*}'s, Γ is taken as the center of the interval given in the column labeled " Γ ". For decay modes into >3 particles p_{max} is the maximum momentum that any of the particles
- đ. in the final state can have. The momenta have been calculated using the averaged central mass values, without taking into account the widths of the resonances.
- Square brackets indicate a sub-reaction of the previous unbracketed decay mode. e.
- This state has been seen only in total cross sections. J is not known; x is $\Gamma_{\rm el}/\Gamma$. f.
- This is only an educated guess; the error given is larger than the error of the average of g. the published values (see listings for the latter).
- h. Reported values of elasticity range from .18 to .34, each with a small error; x=.30 is only a guess. All the other branching fractions are dependent upon this choice. The reported values of x. x_e for the other channels favor the large value of x. An x=.25 or lower would violate unitarity.
- i., Only information coming from partial-wave analyses has been used here. For the production experiments results see the listings.
- j. Value obtained in an energy-dependent partial-wave analysis which uses a t-channel-polesplus-resonance parametrization. The values of the couplings obtained for the resonances may be affected by double counting.
- In this energy region the situation is still confused. Formation experiments suggest two k. states: P11(1620) decaying mainly into $\Sigma \pi$, and D13(1670) with branching fractions $\Sigma \pi$ (40%), $\Lambda \pi(10\%)$, $\Sigma \pi \pi(< 14\%)$. Production experiments report four states: $\Sigma(1620)$ seen only in the $\Lambda \pi$ mode, $\Sigma_1(1660)$ with appreciable $\Lambda \pi$ and $\Sigma \pi$ modes, $\Sigma_2(1660)$ with main decay mode $\Lambda(1405)+\pi$ (that is, $\Sigma\pi\pi$), and $\Sigma(1690)$ seen in the $\Lambda\pi$ mode. Of these four, Σ_1 and Σ_2 seem to be on firmer ground than the other two and both seem to have $J^P = 3/2$ like the $D_{13}(1670)$ seen in formation experiments. Two resonances of the same spin and parity have been hypothesized as the origin of much of the complexity observed in production experiments. With the addition of the $P_{11}(1620)$, there are three candidates that eventually might be required to clarify the situation.
- Only $\Xi(1530)$ is firmly established; information on the other states comes from experiments l. that have poor statistics due to the fact that the cross sections for S=-2 states are very low. For Ξ states, because of the meager statistics, we lower our standards and tabulate resonant effects if they have at least a four-standard-deviation statistical significance and if they are seen by more than one group. So $\Xi(2030)$, with main decay mode $\Sigma \overline{K}$, reported as a 3.5-standard-deviation effect, is not tabulated. See the listings for the other states.
- m. See note on $\Delta(1236)$ in the baryon listings. Values of mass and width are dependent upon resonance shape used to fit the data.
- n.
- This p value is the average value obtained by folding over the two Breit-Wigner shapes. The preliminary results of DIEM 70 quoted in the listings have been revised so that they are now in agreement with the values quoted in the present table (G. Smadja, private communication).

PHYSICAL AND NUMERICAL CONSTANTS*

		PHYSI	CA	L CONSTANTS		
Ν	= 6.0221	69(40)×10	23 r	nole ⁻¹ (based on A	$C^{12} = 12$:)
c	= 2.9979	250(10)×1	010	cm sec ⁻¹		
e	= 4.8032	50(21)×10	- 10	esu = 1.6021917(70)	×10 ⁻¹⁹ a	coulomb
1 MeV	= 1.6021	917(70)×1	0-6	erg		
ħ	= 6.5821	83(22)×10	-22	MeV sec		
	= 1.0545	91 9(80)×1	0-2	7 erg sec	-	
ħc	= 1.9732	891(66)×1	0-1	1 MeV cm = 197.3289	91(66) M	leV fermi
	= 0.6240	088(21) G	eV	mb ^{1/2}		
α	= e ² /ħc	= 1/137.0	360	2(21)		
k _{Boltzmann}	= 1.3806	22(59)×10	-16	erg K ⁻¹		
Donzinann	= 8.6170	8(37)×10 ⁻	11	$MeVK^{-1} = 1 eV/116$	04.85(4	9)K
m	= 0.5110	041(16) M	eV =	= 9.109558(54)×10 ⁻³	¹ kg	
m	= 938.25	92(52) Me	/ =	$1836.109(11) \text{ m}_{2} = 6.7$	72211(63	$3)m_{\pi\pm}$
P	= 1.0072	7661(8)m	(w	here $m_1 = 1$ amu $= \frac{1}{12}m$	$1 C 12^{=93}$	1.4812(52)MeV)
r	$= e^2/m_e$	$c^2 = 2.817$	193	9(13) fermi (1 ferm	$i = 10^{-1}$.3 cm)
λ	= ħ/m c	$= r_{\alpha}^{-1} =$: 3.	861592(12)×10 ⁻¹¹ cr	n	
a Bohr	$= \hbar^2/m$	$e^2 = r_{\alpha} - \frac{1}{2}$	2 =	0.52917715(81)A (1	$A = 10^{-1}$	⁸ cm)
σ _{Thomson}	$=\frac{8}{3}\pi r^{2}$	= 0.665245	3(6	$1) \times 10^{-24} \text{ cm}^2 = 0.66$	52453(6	1) barns
^µ Bohr	$= e\hbar/2m$	c = 0.578	883	81(18)×10 ⁻¹⁴ MeV g	auss ⁻¹	
^µ nucleon	= eħ/2m	c = 3.152	252	6(21)×10 ⁻¹⁸ MeV gau	135 ⁻¹	
$\frac{1}{2}\omega^{e}$	$= e/2m_{o}$	c = 8.7940)14	$(27) \times 10^6 \text{ rad sec}^{-1} \text{ g}$	auss ⁻¹	
$\frac{1}{2}\omega^{p}$	$= e/2m_{p}$	c = 4.7894	84	$(27)\times10^3$ rad sec ⁻¹ g	auss ⁻¹	
Hydrogen-lik	e atom (noni	elativisti	c,	<pre>u = reduced mass):</pre>		
	\mathbf{v}	ze ² . F -	μ	$\mu z^2 e^4$ n^2	ћ ²	
	c'rms -	nħc' 'n ¯	2	$v = \frac{1}{2(n\hbar)^2}, a_n = \frac{1}{\mu z}$	$\overline{e^2}$	
$R_{\infty} = m_e e^4/2^4$	$h^2 = m_e c^2 \alpha^2$	/2 = 13.60	582	26(45) eV (Rydberg)		
$p_c = 0.3 H \rho(N)$	AeV, kilogau	.ss, cm); (0.3	(which is 10^{-11} c) e	enters b	ecause there
are ≈ 30	00"volts"/e	su volt.			_	
1 year (sider	eal)	= 36	5.2	56 days = $3.1558 \times 10^{\circ}$) ⁷ sec (≈	$\pi \times 10^7 \text{ sec}$)
density of dr	y air	= 1.2	05	mg cm ^{-3} (at 20°C,	760 mm	1) ·
acceleration	by gravity	= 980	0.6	2 cm sec ⁻² (sea leve	el, 45°)	
gravitational	constant	= 6.6	73	$2(31) \times 10^{-8} \text{ cm}^3 \text{g}^{-1} \text{s}$	ec ⁻²	
1 calorie (the	rmochemica	al) = 4.1	.84	joules		
1 atmosphere	:	= 10	33.	2275 g cm ⁻²		
1 eV per part	cicle	= 110	604	.85(49) °K (from E =	= kT)	
		NUMEF	lIC	AL CONSTANTS		
π = 3.	1415927	1 rad	=	57.2957795 deg	$\sqrt{\pi} =$	1.7724539
e = 2.	7182818	1/e	=	0.3678794	$\sqrt{2}$ =	1.4142136
$\ln 2 = 0.$	6931472	ln 10	=	2.3025851	√3 =	1.7320508
$\log_{10} 2 = 0.$	3010300	logioe	=	0.4342945	$\sqrt{10} =$	3.1622777
10		10				

^{*}Compiled by Stanley J. Brodsky, based mainly on the adjustment of the fundamental physical constants by B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. <u>41</u>, 375 (1969). The figures in parentheses correspond to the 1 standard deviation uncertainty in the last digits of the main number.

CLEBSCH-GORDAN COEFFICIENTS AND SPHERICAL HARMONICS

SU(3) CONVENTIONS

for Isoscalar Factor Table on next page

Since January 1970 we have used the convention that the first particle shall be a baryon, the second a meson (R. Levi Setti, Proceedings of Lund Conference, 1969, p. 339 and Table II). Note, for comparison, that the de Swart table of 8×8 is merely labeled with symbols like $(I_1 = 1/2, Y_1 = 1, I_2 = 1, Y_2 = 0)$, which can be read either as $(N\pi)$ or $(K\Sigma)$. Since there are no decuplet mesons, however, his 8×10 table is unambiguous; it must be read with the meson first.

The de Swart convention violates the other convention that the N,N π coupling shall be D + F (as opposed to -D + F). To get D + F one must use the first line of the "N" table, which reads. . . $3\sqrt{5}/10 | 8_{\rm D} \rangle + 1/2 | 8_{\rm F} \rangle$ as opposed to. . . $-3\sqrt{5}/10 | 8_{\rm D} \rangle + 1/2 | 8_{\rm F} \rangle$. The first line must then be labeled N π rather than K Σ , i.e., with the baryon first.

Levi Setti further advocates the convention of writing the baryon first for SU(2) as well as SU(3). For example, the sign of the amplitudes as plotted on his and our Argand plots comes from using our SU(2) Clebsch-Gordan coefficients (Condon Shortley notation) and writing the baryon first. To make it easier to abide by this universal convention we have changed de Swart's 8×10 (SU(3) table to 10×8 , with the help of his Eq. (14.3):

SU(3) ISOSCALAR FACTORS

Adapted from J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963) (See note on previous page concerning conventions)

This factor is irrelevant if you are doing your own self-consistent calculations; it enters when you try to check someone else who chose $\mu_2 \bigotimes \mu_1$ instead of $\mu_1 \bigotimes \mu_2$.

$\{10\} \otimes \{8\} = \{35\} \oplus \{27\} \oplus \{10\} \oplus \{8\}$

* Four single coefficient tables are omitted; only the $\{27\}$ is -1; the three with $\{35\}$ are +1.

	$\begin{array}{c c} & & & \\ & & \\ \hline \\ & \\ & \\ & \\ & \\ & \\ &$	$= 1 I = 1/2$ $\frac{27}{\sqrt{5}/5} -2$ $\sqrt{5}/5 -2$	$\frac{8}{\sqrt{5}/5}$		$ \begin{array}{c} \xi_1 \\ \hline \\ \Delta \pi \\ \Delta \eta \\ \Sigma K \end{array} $	$\begin{array}{c} Y = 1 I = 1 \\ 35 \\ \hline 1/4 \\ \sqrt{5/4} \\ \sqrt{10/4} \end{array}$	$3/2 \Delta$ 27 $\sqrt{5}/4$ 3/4 $\sqrt{2}/4$	$ \frac{10}{\sqrt{10}/4} \\ \sqrt{2}/4 \\ - 1/2 $
$\begin{array}{c c} & & Y = 0 \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\$	$\frac{I - 0 \Lambda}{\frac{8}{\sqrt{15}/5}}$	\$1+ Σπ Ση ΞΚ ΔΚ	$\begin{array}{c ccccc} Y = 0 & I = 1 \\ \hline 35 & 27 \\ + & - \\ \hline 3/6 & -3\sqrt{5}/10 \\ \hline 3/3 & -\sqrt{5}/5 \\ \hline 3/6 & \sqrt{5}/10 \end{array}$		$ \frac{\frac{8}{4}}{\sqrt{30}/15} \\ - \sqrt{5}/5} \\ \sqrt{30}/15} \\ 2\sqrt{30}/15 $	ξ ₁ Σπ ΔΚ	$ \begin{array}{c} Y = 0 \\ 35 \\ + \\ \sqrt{3}/2 \\ 1/2 \end{array} $	$I = 2$ $\frac{27}{-1/2}$ $\sqrt{3}/2$
	V=2 1* 0 -1	$ \begin{array}{c} & & & \\ & & \\ \xi_{1} \rightarrow & 35 \\ & \pm \\ \Xi \pi & 1/4 \\ & \Xi \pi & 3/4 \\ & & & \\ \Omega K & \sqrt{2}/4 \\ & \Sigma \overline{K} & 1/2 \end{array} $	$= -1 I = 1/$ $= -7\sqrt{5/20}$ $= -7\sqrt{5/20}$ $= -3\sqrt{10/20}$ $= \sqrt{5/10}$	$\frac{2}{\frac{10}{\sqrt{2}/4}} = \frac{10}{\sqrt{2}/4} = \frac{1}{\sqrt{2}/2} = \frac{1}{\sqrt{2}/2}$	$\frac{8}{\sqrt{5}/5}$ $\sqrt{5}/5$ $\sqrt{10}/5$ $\sqrt{5}/5$	$ \begin{array}{c} \xi_1 \\ \Xi \\ \Sigma \\ \overline{K} \end{array} $	Y = -1 $\frac{35}{+}$ $\sqrt{2}/2$ $\sqrt{2}/2$	$I = 3/2 \\ \frac{27}{-\sqrt{2}/2} \\ \sqrt{2}/2$
Multiplicity of 35; •=1, X = 2	-2 -3*	ξ ₁ → Ωη ΞΚ	$\begin{array}{c c} & & & & \\ \hline & & & \\ &$	$ \begin{array}{c} \underline{-0} \\ \underline{10} \\ \hline \\ \underline{\sqrt{2}/2} \\ \sqrt{2}/2 \end{array} $	-	ξ ₁ → Ωπ ΞK	$+Y = -3$ 35 $+$ $1/2$ $\sqrt{3}/2$	$\frac{2 I - 1}{\frac{27}{-\sqrt{3}/2}}$

C.M. ENERGY AND MOMENTUM VS. BEAM MOMENTUM

 $E_{cm}^{dE} dE_{cm} = m_p^{dT}_{beam} = m_p^{v}_{beam}^{dP}_{beam} \approx m_p^{dP}_{beam}$

PREAM (MEV/C)	C. P	. ENERGY (MeV)	MOMEN	TUM IN (Mev/C)		PBEAM (MEV/C)		С.М. Е (МЕ	NERGY V)	MOMENT	TUM IN C.P. 4FV/C)	PBEAP	,C.P	1. ENERGY (GEV)	-MOMENTUM	IN C.M
	YP ep	р Кр рр	YP ; ep	р Кр	pp		үр ер	πp	Kp pp	үр ер т	р Кр р		үр ер тр	Кр рр	ҮР ер К _І ≢р	, pp
с 20 40 60 80	939 10 958 10 977 10 996 10 1015 10	78 1432 1877 79 1432 1877 83 1433 1877 89 1434 1877 96 1436 1878 96 1436 1878	C 20 38 56 74	0 0 17 13 35 26 52 39 68 52	C 10 20 30 40	1500 1520 1540 1560 1580	1922 1932 1942 1951 1961	1930 1940 1950 1959 1969	2022 2254 2031 2261 2039 2268 2048 2275 2057 2282	732 73 738 73 744 74 750 74 756 79	29 696 62 35 702 63 41 709 63 47 715 64 53 721 65	4 3.0 1 3.2 7 3.4 3 3.6 0 3.8	2.56 2.63 2.70 2.77 2.83	2.61 2.77 2.68 2.83 2.75 2.89 2.82 2.99 2.88 3.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1.02 2 1.06 6 1.10 1.14 24 1.18
100 120 140 160 180	1033 11 1051 11 1069 11 1087 11 1104 11	05 1439 1879 16 1441 1880 27 1445 1882 39 1449 1883 52 1453 1885 52 1453 1885	91 107 1 123 1 138 1 153 1 92 MEV	85 65 C1 78 17 91 32 104 47 116	50 60 70 80 90	1600 1620 1640 1660 1680	1970 1980 1989 1999 2008	1978 1988 1997 2006 2016	2065 2289 2074 2296 2083 2304 2091 2311 2100 2318 = PBFAM - 1	762 75 768 76 773 75 779 75 785 78	59 727 65 55 733 66 70 739 66 76 745 67 32 751 68	6 4.0 2 4.2 8 4.4 4 4.6 0 4.8	2.90 2.96 3.03 3.09 3.15	2.95 3.04 3.01 3.14 3.07 3.19 3.13 3.29 3.19 3.31 1(PI) = PR	3 1.29 1.3 1.33 1.3 1.36 1.3 1.40 1.3 1.43 1.4 AM = 138 G	7 1.22 11 1.26 14 1.29 18 1.33 11 1.36
200 220 240 260 280	1121 11 1137 11 1154 11 1170 12 1186 12	65 1457 1887 78 1462 1889 92 1468 1892 06 1474 1894 19 1480 1897 P() = PBFAM -	167 1 182 1 195 1 209 2 222 2 107 MEV	61 129 75 141 89 153 02 166 15 178	99 109 119 129 138	1700 1720 1740 1760 1780	2018 2027 2036 2045 2054	2025 2034 2043 2053 2062	2109 2325 2117 2332 2126 2339 2134 2346 2143 2353 = DBEAM ~ 1	791 78 796 79 802 79 807 80 813 81 34 MEV	38 756 68 93 762 69 99 768 69 95 774 70 10 779 71	6 5.0 2 5.2 8 5.4 4 5.6 0 5.8	3.21 3.27 3.32 3.38 3.43	3.25 3.30 3.31 3.40 3.36 3.47 3.42 3.55 3.47 3.56 T(P1) = PR	1.46 1.4 1.49 1.4 1.53 1.5 1.56 1.5 1.59 1.5 4M - 138 6	4 1.40 8 1.43 91 1.46 94 1.49 97 1.52
300 320 340 360 380	1261 12 1217 12 1232 12 1247 12 1262 12	33 1486 1900 47 1493 1903 61 1500 1906 74 1507 1910 88 1514 1913 PD1 = PBFAM -	234 2. 247 2. 259 2. 271 2. 282 2.	28 189 41 201 53 213 55 224 77 235	148 158 167 177 186	1800 1820 1840 1860 1880	2064 2073 2082 2091 2100	2071 2080 2089 2098 2107	2151 2360 2159 2367 2168 2374 2176 2381 2184 2388	818 8 824 8 829 8 835 8 840 8 34 NEV	L6 785 71 21 791 72 27 796 72 32 802 73 37 808 73	6 6.0 1 6.2 7 6.4 3 6.6 9 6.8	3.49 3.54 3.59 3.65 3.70	3.52 3.63 3.58 3.68 3.63 3.73 3.68 3.78 3.73 3.83 T(P1) = P86	1.61 1.6 1.64 1.6 1.67 1.6 1.70 1.6 1.73 1.7	0 1.55 3 1.58 5 1.61 8 1.64 11 1.67
400 420 440 460 480	1277 13 1292 13 1306 13 1320 13 1335 13	02 1522 1917 15 1530 1921 29 1538 1925 42 1546 1929 56 1554 1933 56 1554 1933	294 2 305 3 316 3 327 3 337 3	88 247 00 258 11 268 22 279 32 290	196 205 214 224 233	1900 1920 1940 1960 1980	2108 2117 2126 2135 2144	2115 2124 2133 2142 2150	2193 2395 2201 2402 2209 2409 2217 2416 2226 2423	845 84 851 84 856 81 861 84 867 86	43 813 74 48 818 75 53 824 75 59 829 76 54 835 76	4 7.0 0 7.2 6 7.4 1 7.6 7 7.8	3.75 3.80 3.85 3.89 3.94	3.78 3.8 3.83 3.9 3.88 3.9 3.93 4.0 3.97 4.00 7(P1) = P8	1.75 1.7 1.78 1.7 1.81 1.7 1.83 1.8 1.83 1.8 1.86 1.8	4 1.70 6 1.72 9 1.75 32 1.78 34 1.80
500 520 540 560 580	1349 13 1362 13 1376 13 1396 14 1403 14	69 1563 1938 82 1572 1943 95 1580 1947 08 1589 1952 21 1598 1957	348 3 358 3 368 3 378 3 388 3	43 300 53 310 63 321 73 331 63 341	242 251 260 269 278	2000 2020 2040 2060 2080	2153 2161 2170 2179 2187	2159 2168 2176 2185 2194	2234 2430 2242 2437 2250 2444 2258 2451 2266 2458	872 80 877 8 882 8 887 81 892 8	69 840 77 74 845 77 79 851 78 85 856 78 90 861 79	2 8.0 8 8.2 3 8.4 9 8.6 4 8.8	3.99 4.04 4.08 4.13 4.17	4.02 4.11 4.07 4.15 4.11 4.20 4.16 4.24 4.20 4.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 1.83 9 1.85 72 1.88 74 1.90 76 1.93
600 620 640 660 680	1416 14 1430 14 1443 14 1456 14 1456 14	34 1607 1962 46 1616 1967 59 1625 1973 72 1634 1978 84 1644 1984	397 3 407 4 416 4 425 4 434 4	93 350 02 360 12 370 21 379 30 388	287 296 304 313 322	2100 2120 2140 2160 2180	2196 2204 2213 2221 2230	2202 2211 2219 2227 2236	2274 2465 2282 2472 2290 2479 2298 2486 2306 2493	897 81 902 91 907 91 912 91 917 91	95 866 79 00 872 80 05 877 81 10 882 81 15 887 82	9 9.0 5 9.2 0 9.4 5 9.6 1 9.8	4.22 4.26 4.31 4.35 4.39	4.25 4.3 4.29 4.3 4.33 4.4 4.38 4.44 4.42 4.50	2.03 2.0 2.03 2.0 2.05 2.0 2.07 2.0 2.09 2.0	9 1.95 1 1.97 3 2.00 6 2.02 8 2.04
700 720 740 760 780	1481 14 1494 15 1506 15 1519 15 1531 15	96 1653 1989 C9 1662 1995 21 1671 2001 33 1681 2007 45 1690 2013	443 4 452 4 461 4 470 40 478 4	39 397 48 406 57 415 55 424 74 433	330 339 347 355 364	2200 2220 2240 2260 2260	2238 2246 2255 2263 2271	2244 2253 2261 2269 2277	2314 2500 2322 2507 2330 2514 2338 2520 2346 2527	922 92 927 92 932 9 937 92 942 92	20 892 82 25 897 83 30 902 83 34 907 84 39 912 84	6 10.0 1 10.5 6 11.0 1 11.5 6 12.0	4.43 4.54 4.64 4.74 4.84	4.46 4.54 4.57 4.64 4.67 4.74 4.77 4.84 4.86 4.93	2.12 2.1 2.17 2.1 2.22 2.2 2.28 2.2 2.33 2.3	C 2.07 6 2.12 1 2.18 6 2.23 51 2.28
800 820 840 860 880	1543 15 1555 15 1567 15 1579 15 1591 16	57 1699 2019 69 1709 2025 80 1718 2031 92 1728 2037 04 1737 2043	486 44 495 44 503 44 511 5(519 5)	82 442 90 450 99 459 07 467 15 475	372 380 388 396 404	2300 2320 2340 2360 2380	2280 2288 2296 2304 2312	2286 2294 2302 2310 2318	2353 2534 2361 2541 2369 2548 2377 2555 2384 2561	947 94 951 94 956 95 961 95 966 96	44 917 85 49 922 85 54 927 86 59 932 86 53 937 87	2 12.5 7 13.0 2 13.5 7 14.0 2 14.5	4.94 5.03 5.12 5.21 5.30	$\begin{array}{r} 1(p_1) = p_{00} \\ 4.96 & 5.03 \\ 5.05 & 5.12 \\ 5.15 & 5.21 \\ 5.24 & 5.30 \\ 5.32 & 5.32 \\ 5.32 & 5.32 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 2.33 1 2.38 6 2.43 1 2.48 6 2.53
900 920 940 960 980	1603 16 1615 16 1626 16 1638 16 1649 16	15 1747 2049 27 1756 2056 38 1765 2062 49 1775 2062 61 1784 2075	527 5. 535 5: 542 5: 550 5: 558 5:	23 483 31 492 38 500 46 508 54 515	412 420 428 435 443	2400 2420 2440 2460 2480	2320 2328 2336 2344 2352	2326 2334 2342 2350 2358	2392 2568 2400 2575 2407 2582 2415 2589 2423 2595	970 90 975 9 980 91 984 98 989 98	58 941 87 73 946 88 77 951 88 52 956 89 57 960 89	7 15.0 2 16.0 7 17.0 2 18.0 7 19.0	5.39 5.56 5.73 5.89 6.05	5.41 5.41 5.58 5.64 5.75 5.81 5.91 5.91 6.07 6.12	$\begin{array}{c} 2.61 \\ 2.61 \\ 2.70 \\ 2.78 \\ 2.87 \\ 2.87 \\ 2.95 \\ 2.$	0 2.57 9 2.66 7 2.75 16 2.83 14 2.91
1060 1020 1040 1660 1680	1660 16 1672 16 1683 16 1694 17 1705 17	72 1794 2082 83 1803 2088 94 1812 2095 05 1822 2102 16 1831 2108	565 54 573 54 580 5 587 55 594 51	61 523 69 531 76 538 83 546 91 553	451 458 466 473 481	2500 2520 2540 2560 2580	2360 2368 2376 2384 2392	2366 2374 2382 2390 2398	2430 2602 2438 2609 2445 2616 2453 2622 2460 2629	994 99 998 99 1003 100 1007 100 1012 101	91 965 90 96 970 90 91 975 91 95 979 91 10 984 92	1 20.0 6 22.0 1 24.0 6 26.0 1 28.0	6.2C 6.49 6.78 7.05 7.31	6.22 6.23 6.51 6.56 6.79 6.84 7.07 7.11 7.33 7.37	3.03 3.0 3.18 3.1 3.32 3.3 3.46 3.4 3.59 3.5	2 2.99 7 3.14 1 3.29 5 3.43 9 3.56
1100 1120 1140 1160 1180	1716 17 1727 17 1738 17 1748 17 1759 17	26 1840 2115 37 1850 2122 48 1859 2129 58 1868 2135 69 1877 2142	601 5 609 6 616 6 622 6 629 6	98 561 05 568 12 575 19 583 26 590	488 495 502 510 517	2600 2620 2640 2660 2680	2400 2408 2415 2423 2431	2405 2413 2421 2429 2436	= PREAM - 1 2468 2636 2475 2643 2483 2649 2490 2656 2498 2663	1017 101 1021 101 1025 102 1030 102 1034 103	14 988 92 19 993 93 23 998 93 28 1002 94 32 1007 94	6 30.0 0 32.0 5 34.0 0 36.0 4 38.0	7.56 7.81 8.04 8.27 8.50	$\begin{array}{c} 7.58 & 7.62 \\ 7.82 & 7.80 \\ 8.06 & 8.10 \\ 8.29 & 8.33 \\ 8.51 & 8.55 \\ 100 & -0.55 \end{array}$	3.72 3.7 3.85 3.8 3.97 3.9 4.08 4.0 4.20 4.1	1 3.69 4 3.82 6 3.94 8 4.06 9 4.17
1200 1220 1240 1260 1280	1770 17 1780 17 1791 18 1801 18 1812 18	80 1887 2149 90 1896 2156 00 1905 2163 11 1914 2170 21 1923 2177	636 6 643 6 650 6 656 6 663 6	33 597 39 604 46 611 53 618 60 624	524 531 538 545 552	2700 2720 2740 2760 2780	24 39 2446 2454 2462 2469	2444 2452 2459 2467 2474	2505 2669 2512 2676 2520 2682 2527 2689 2534 2696	1039 103 1043 104 1048 104 1052 105 1056 105	87 1011 94 41 1016 95 45 1020 95 50 1025 96 54 1029 96	9 40.0 4 42.0 8 44.0 3 46.0 8 48.0	8.72 8.93 9.14 9.34 9.54	8.73 8.77 8.94 8.98 9.15 9.16 9.35 9.39 9.55 9.58	4.31 4.3 4.41 4.4 4.52 4.5 4.62 4.6 4.72 4.6	0 4.28 1 4.39 1 4.50 2 4.60 2 4.70
1300 1320 1340 1360 1380	1822 18 1832 18 1843 18 1853 18 1863 18	31 1932 2184 41 1941 2191 51 1950 2196 62 1959 2205 72 1968 2212	669 6 676 6 682 6 689 6 695 6	66 631 73 638 79 645 85 651 92 658	559 565 572 579 585	2800 2820 2840 2860 2880	2477 2484 2492 2499 2507	2482 2490 2497 2505 2512	= PBEAF - 1 2542 2702 2549 2709 2556 2715 2563 2722 2570 2728	1061 105 1065 106 1069 106 1074 107 1078 107	58 1034 97 53 1038 97 57 1042 98 71 1047 98 76 1051 99	2 50.0 7 55.0 1 60.0 6 65.0 0 70.0	9.73 10.20 10.65 11.08 11.50	$\begin{array}{l} (1) = PB0 \\ 9.74 & 9.74 \\ 10.21 & 10.25 \\ 10.66 & 10.65 \\ 11.10 & 11.12 \\ 11.51 & 11.54 \\ 11.51 & 11.54 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.80 5.04 8.5.26 0.5.48 1.5.69
1400 1420 1440 1460 1480	1873 18 1883 18 1893 19 1903 19 1912 19	PI - PBEAM - 81 1977 2216 91 1986 2226 01 1995 2233 11 2004 2246 21 2013 2247 PI) = PBEAM -	731 6 768 7 714 7 720 7 726 7 133 MEV	98 664 64 671 11 677 17 684 23 690	592 599 605 612 618	2900 2920 2940 2960 2980	2514 2522 2529 2537 2544	11P1) 2520 2527 2534 2542 2549 T(P1)	= PBEAM - 1 2578 2735 2585 2742 2592 2748 2599 2755 2606 2761 = PBEAM - 1	1082 108 1086 108 1091 108 1095 109 1099 109 36 MEV	80 1056 99 34 1060 99 38 1064 100 93 1069 100 97 1073 101	5 80.0 9 90.0 4 100.0 8 200.0 3 500.0	12.29 13.03 13.73 19.40 30.65	$1(P1) = P8E$ $12.30 \ 12.32$ $13.04 \ 13.06$ $13.74 \ 13.76$ $19.40 \ 19.42$ $30.65 \ 30.66$ $T(P1) = P8E$	AM139 GE 6.11 6.1 6.48 6.4 6.83 6.8 9.67 9.6 15.31 15.3 AM140 GE	v 0 6.09 8 6.46 3 6.82 7 9.66 1 15.30 V

SPECIAL RELATIVITY, PHASE SPACE, AND CROSS SECTIONS

<u>Notation</u>. 4-vector in c. m. $p = (w, \vec{p})$; in lab $P = (W, \vec{P})$, T = W-m. Solid-angle element $d\omega = 2 r d \cos \theta$; $d\Omega = 2 r d \cos \theta$. $p^2 = w^2 - p^2 = m^2$ is an invariant. Cross section σ is invariant.

Lorentz Transformation

0 0

P_x Py

$$\begin{pmatrix} \overline{\gamma} & -\overline{\eta} & 0 & 0 \\ -\overline{\eta} & \overline{\gamma} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} W \\ P_x \\ P_y \\ P_z \end{pmatrix}$$
 If θ and Θ are measured with respect to the transformation axis x ,
$$\begin{pmatrix} p_{\perp} \\ P_{\perp} \\ P_{\perp} \end{pmatrix} = \tan \theta = \frac{|\vec{P}| \sin \Theta}{-\overline{\eta} W + \overline{\gamma} |\vec{P}| \cos \Theta}.$$
 (1)

If particle 1 is beam, 2 is target, then $(\mathbf{W}_2, \vec{\mathbf{P}}_2) = (\mathbf{m}_2, \vec{\mathbf{0}})$ and $\vec{\gamma} = (\mathbf{W}_1 + \mathbf{m}_2)/\sqrt{s}, \ \vec{\eta} \equiv \vec{\gamma} \vec{\beta} = |\vec{\mathbf{P}}_1|/\sqrt{s}, \ |\vec{p}_1| = |\vec{p}_2| = \vec{\eta}\mathbf{m}_2 = |\vec{\mathbf{P}}_1|\mathbf{m}_2/\sqrt{s}.$ For $\mathbf{m}_1 = \mathbf{m}_2, \quad \vec{\gamma}^2 = \mathbf{i} + \mathbf{T}_1/2\mathbf{m}_1.$ (2)

<u>A Useful Transformation</u>: Consider two 4-vectors $Q = (E, \vec{Q})$ and $q = (e, \vec{q})$. In the rest frame of Q $[Q' = (M, \vec{0})]$, q becomes $(q \neq q')$ $e^{\dagger} = Q \cdot q/M$ and $\vec{q}^{\dagger} = \vec{q} - f\vec{Q}$,

where $Q^2 = M^2$ and $f = (e + e)^3/(E + M)$. These equations follow from example (b), p. 34 of Hagedor.^{*} They are particularly useful when Q is a sum of four-vectors that correspond to a resonant state.

Invariants. Notation: $1 + 2 \rightarrow 1' + 2'$.

$$s = (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2(w_1w_2 - \vec{p}_1 + \vec{p}_2), \qquad (3)$$

$$\cdot t = (p_1' - p_1)^2 = m_1^2 + m_1'^2 - 2(w_1w_1' - \vec{p}_1 + \vec{p}_1'), \quad (i = 4, 2), \qquad (4)$$

$$u = (p_1' - p_2)^2 = (p_2' - p_4)^2 \qquad [u = (6), below].$$
(5)
General relation: $a_1 + a_2 = m^2 + m^2 + m^2$

General relation:
$$s + t + u = m_1^2 + m_1'^2 + m_2^2 + m_2'^2$$
. (6)
In lab system $P_2 = (m_2, \vec{0})$, and writing $W = m + T$,

$$s = m_1^2 + m_2^2 + 2W_1m_2 = (m_1 + m_2)^2 + 2T_1m_2, \qquad (3,lab)$$

$$t = m_1^2 + m_1^2 - 2W_1m_2 = (m_1 - m_1)^2 - 2T_1m_2, \qquad (4,lab)$$

n c.m. system dt =
$$+2|\vec{p}_1||\vec{p}_1'|d\cos\theta$$
. (4, cm)

For elastic scattering $(m_1 = m'_1, m_2 = m'_2)$, (4) and (5) in c.m. become $t = -2p^{2}(1 - \cos\theta) = -4p^{2}\sin^{2}\theta/2$, (4,el)

$$u = (m_1^2 - m_2^{-2})^2/s - ip^2(1 + \cos \theta) \approx (m_1^2 - m_2^{-2})^2/s - ip^2\cos^2\theta/2. \quad (5,el)$$

For elastic scattering, using (4,lab), (4,el), and (2),
$$2\vec{P} \cdot m_2 = 2 \cdot ip_2$$

$$T'_{2} = \frac{\mu_{1}}{s} \sin^{2}\left(\frac{\theta}{2}\right) \text{ (useful for calculating δ-ray energies). (7)}$$

Two-Body States. Energies and momenta in c.m.

$$w_{1} = \frac{s + m_{1}^{2} - m_{2}^{2}}{2\sqrt{s}}, \quad \dot{p}_{1}^{2} = \dot{p}_{2}^{2} = \frac{1}{4s} \left[s - (m_{1} + m_{2})^{2}\right] \left[s - (m_{1} - m_{2})^{2}\right]. \quad (8)$$

<u>3- and 4-Body States</u>. Let $m_{ij}^2 = (p_i + p_j)^2$, etc.; then

$$\sum_{\substack{i < j \\ i < j}} m_{ij}^2 = \sum m_i^2 + m_{123}^2 = \text{const. } (i, j = 4, 2, 3) \text{ [follows from (6)]}$$
(9)
$$= 2\sum m_i^2 + m_{1234}^2 = \text{const. } \text{]}$$

$$\sum_{\substack{k' j \leq k}} \frac{1}{ijk} = \sum m_i^2 + 2m_i^2 +$$

Rn, Invariant Volume in n-Body Momentum Space

A useful invariant is
$$\int d^4 p \, \delta(p^2 - m^2) = \int \frac{d^3 \vec{p}}{2w} = \int \frac{d^3 \vec{p}}{2w} = \frac{d^3 \vec{p}}{2w} = \frac{1}{2} \int |\vec{p}| dw d\omega$$
.
 $R_2 = \pi |\vec{p}_1| / \sqrt{s}, R_3 = \pi^2 \int dw_1 dw_2 = (\pi^2/4s) \int dm_{12}^2 dm_{23}^2$.

Recurrence Relation for Factoring R_n (see e.g., Hagedorn, p. 93^{*}): Write N \rightarrow 1.2.... k. k + 1.... n (R).

Cross Sections and Decay Rates[†]

For a system of n particles with overall four-momentum p and final momenta
$$q_1, \cdots, q_n \left[q_i = (e_i, \hat{q_i})\right]$$
, define Lorentz Invariant Phase Space

$$d LIPS(s; q_1, \dots, q_n) = (2\pi)^4 \delta^4(p - \sum_i q_i) \frac{1}{(2\pi)^3 n} \prod_{i=1}^n \frac{d^3 \vec{q}_i}{2e_i}.$$
 (11)

Note that $R_n = (2\pi)^{3n-4} \int d LIPS.$

or

For
$$1 + 2 \rightarrow n$$
 particles or $1 \rightarrow n$ particles, in general $|i\rangle \rightarrow |f\rangle$,

$$\sigma_{\rm if} = \frac{1}{4F} \int \left| T_{\rm if} \right|^2 \, d \, {\rm LIPS}(s;q_1,\cdots,q_n) , \qquad (12)$$

$$\Gamma_{if} = \frac{1}{2m_1} \int \left| T_{if} \right|^2 dLIPS(m_1^2; q_1, \cdots, q_n) , \qquad (13)$$

where T_{if} is an invariant matrix element. F is Møller's invariant flux factor, $F^2 = (p_1, p_2)^2 - p_1^2 p_2^2$. In every system where \vec{p}_1 and \vec{p}_2 are collinear, $F = w_1 w_2 | \vec{v}_1 - \vec{v}_2 | (\vec{v} = \vec{p}/w)$. If i is beam, 2, target $(\vec{p}_2 = 0)$, then $F = |\vec{P}_1| m_2 = |\vec{p}_1| \sqrt{s}$.

For elastic scattering in c.m.,
$$\frac{d \text{ LLPS}}{d\Omega} = \frac{1}{(4\pi)^2} \frac{|\vec{p}_1|}{\sqrt{s}}$$
, and (12) yields

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{|\mathrm{T}|^2}{(8\pi)^2 \mathrm{s}} \text{ or } \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{|\mathrm{T}|^2}{64\pi |\tilde{\mathrm{P}}_1|^2 \mathrm{s}}.$$
(14)

The normalization is such that the optical theorem reads

$$\operatorname{Im} \mathbf{T} \Big|_{t=0} = 2 \Big| \overrightarrow{\mathbf{p}}_{1} \Big| \sqrt{s} \sigma_{\text{tot}} .$$
 (15)

The choice of Eq. (11) implies a particular normalization of any spinors that may occur in T.[†] The advantage of this normalization is that it greatly simplifies the structure of T by putting factors such as $\frac{1}{(2\pi)^3} \frac{1}{2E}$ into the phase space where they really belong. In addition, the labels, i, f, refer to specific spin (helicity) states, so that the usual "average and sum" rule is implicit.

^{*}R. Hagedorn, <u>Relativistic Kinematics</u>, W. A. Benjamin, New York, 1964. See, for example, Chaps. 1 and 2 of H. Pilkuhn, <u>The Interactions of</u> <u>Hadrons</u>, John Wiley & Sons, New York, 1967.

A <u>better</u> approximation, due to Fisher, * is that χ , not χ^2 , is normally distributed, specifically

$$y_2 = \sqrt{2\chi^2} - \sqrt{2n_D - 1}$$
 has unit s.d.

One sees then that y_4 underestimates small C.L.'s. Thus for n = 50 and χ^2 = 80, y_4 = 3.0 and C.L. = 0.13% vs. y_2 = 2.7, C.L. = 0.35%.

is normalized so that $\int_0^\infty P_{2n+1}(x)dx = 1$; the normalization is valid for n > -1 and not necessarily integral $((\frac{1}{2})! = \sqrt{\pi}/2)$. For n = -1/2 it reduces to the Gaussian distribution. Through a change of variables it yields the χ^2 distribution for n_D degrees of freedom:

$$P_{n_{D}}(\chi^{2}) = \frac{1}{2^{n_{D}/2} \binom{n_{D}}{2} - 1} (\chi^{2})^{n_{D}/2 - 1} \exp\left[-\chi^{2}/2\right].$$

Relation between standard deviation σ and mean deviation α :

$$2\sigma^2 = \pi \alpha^2$$
; $\sigma = 1.4826$ probable error

Odds against exceeding one standard deviation = 2.15:1; two, 21:1; three, 370:1; four, 16,000:1; five, 1,700.000:1.

R. A. Fisher, <u>Statistical Methods for Research Workers</u>, Oliver and Boyd, Edinburgh.

C		Cross Section	Collision Length L _{coll} b		Minim -dE/	Minimum -dE/dx ^c			Density P-3	
Material	Z	Α	barns	g cm ⁻²	cm	$MeV g^{-1} cm^2$	MeV cm ⁻¹	g cm ⁻²	cm	_g cm - 3
н,	1	1.01	0.063	26.5	374 ^e	4.13	0.292 ^e	58.0	819 ^e	0.0708 ^e
D_2	1	2.01	0.100	33.4	202 ^e	2.07	0.342 ^e	116	703 ^e	0.165 ^e
He	2	4.00	0,16	42.0	336 ^e	1.94	0.242 ^e	85.4	683 ^e	0,125 ^e
Li	3	6.94	0.23	50.4	94.3	1.69	0.902	78.7	148	0.534
Be	4	9.01	0.28	55.0	29.9	1.60	2.96	63.7	34.7	1.848
С	6	12.01	0.33	60.4	f	1.78	f	42.4	f	≈1.55 ^f
N ₂	7	14.01	0.36	63.6	78.9 ^e	1.81	1.46 ^e	37.8	46.7 ^e	0.808 ^e
Ne	10	20.18	0.465	72.1	60.1 ^e	1.73	2.08 ^e	29.1 ⁱ	24.2 ^e ,	i 1.200 ^{e,k}
Al	13	26.98	0.57	79.2	29.3	1.62	4.37	24.0	8.9	2.70
Fe	26	55.85	0.92	101.2	12.8	1.48	11.6	13.9	1.8	7.87
Cu	29	63.54	1.00	105.4	11.8	1.44	12.9	12.0	1.34	8.96
Sn	50	118.69	1.55	129.7	17.8	1.28	9.4	8.89	1,22	7.31
w	74	183.85	2.02	150.8	7.80	1.17	22.6	6.89	0.36	19.3
Pb	82	207.19	2.20	156.2	13.8	1.13	12.8	6.52	0.58	11.35
U	92	238.03	2.42	163.6	≈8.63	1.09	≈20.6	6.13	≈0.32	≈18.95
Air				64.6	53620 ^g	1.81	0.0022 ^g	36.5	30290g	0.001205 ^g
Freon (C	F,Br)			87.1	≈58.0	1.52	≈2.3	16.6	≈11	≈1.5
H ₂ (bubble	e char	nber, 27	°K)	26.5	442 ^h	4.13	0.248^{h}	58.0	970 ^h	≈0.060 ^h
H-Ne mi	xture	(bubble ch	amber) ^j	67.3	96.1	1.83	1.28	29.8 ⁱ	42.5 ⁱ	.70
н,о				57.2	57.2	2.03	2.03	35.7	35.7	1.00
Ilford Em	ulsion	ı		103.0	27.0	20.9	5.49	11.2	2.91	3.815
LiF				63.8	24.2	1.69	4.46	39.0	14.8	2.64
Mylar (C	.н.о.	.)		59.1	42.8	1.91	2.64	39.6	28.7	1.38
NaI	942			119.0	32.4	1.32	4.84	9.58	2.61	3.67
Polyethyl	ene (C	СН.)		51.0	≈55.5	2.09	≈1.92	44.1	≈48	≈0.92
Polystyre	ene (C	н) ^ź		54.9	≈52.3	2.03	≈2.14	43.4	≈41.3	≈1.05
Propane	(C,H	bubble c	hamber)	48.9	119.3	2.28	0.935	44.6	109	0.41

ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

a. $\sigma = \sigma_{\text{natural}} = \pi (\hbar/m_{\pi}c)^2 \times A^{2/3} = 62.8 \text{ mb} \times A^{2/3}$

b. $L_{coll} = A/(N\sigma_{natural})'' = 26.5 \text{ g cm}^{-2} \times A^{1/3}$

c. From W. H. Barkas and M. J. Berger, <u>Tables of Energy Losses and Ranges of Heavy Charged Particles</u>, NASA SP-3013 (1964).

NASA SP-3015 (1904).
Mainly from High Energy and Nuclear Physics Data Handbook, W. Galbraith and W. S. C. Williams, Ed. (N. I. R. N.S., Rutherford Lab., Chilton, Didcot, Berks.) 1964.
For liquid phase at 1 atm. and boiling temperature.

f. Density variable. g. At 20°C.

j. k.

g. At 20°C.
h. May vary by about ±3%, depending on operating conditions.

i.

Way vary by about $\pm 3\%$, depending on operating conditions. From F. R. Huson, Ionization Loss, Range, Straggling and Multiple Scattering, BNL 11386 (1967). 53.7 atomic percent Ne. Density of gas at STP = 0.900×10⁻³ g cm⁻³, i.e., 0.75×10⁻³ times the density (1.200) of the boiling liquid. Typical scintillator; e.g., PILOT B has an atomic ratio H/C = 1.1.

MULTIPLE COULOMB SCATTERING*

The rms projected angle θ due to multiple Coulomb scattering (only) of a particle of charge z (in units of electron charge), momentum p (in MeV/c), and velocity v (in units of c) is

$$\theta_{\text{proj}} = z \frac{15}{pv} \sqrt{\frac{L}{L_{rad}}} (1 + \epsilon) \text{ radians;}$$

where L = length in scatterer.

For L \geq 1/10 L $_{rad},$ ϵ is generally \leq 1/10. The distribution of θ is not truly Gaussian.†

The rms projected displacement y on traversing an absorber of thickness L is

$$y_{\rm rms} = L\theta_{\rm proj}/\sqrt{3}$$
.

^{*}Mainly from G. Z. Molière, Naturforsch. 3(a), 78 (1948). [†]See, for example, the experimental work of A. D. Hansen, L. H. Lanzl, E. M. Lyman, and M. B. Scott, Phys. Rev. 84, 634 (1951).

RADIOACTIVITY AND RADIATION PROTECTION

Unit of activity = Curie: 1 Ci = 3.7×10^{10} disintegrations/sec

1 Ci = 3.7×10^{10} disintegrations/sec Unit of exposure dose for x and y radiation = Roentgen: 1 R = 1 esu/cm³ = 87.8 erg/g (5.49×10^{7} MeV/g) of air Unit of absorbed dose = rad: 1 rad = 100 erg/g (6.25×10^{7} MeV/g) in any material Unit of dose equivalent (for protection) = rem: 1 rem (Roentgen equivalent for man) = 1 rad×QF, where QF (quality factor) depends upon the type of radiation and other factors. For y rays and HE protons, QF ≈ 4; for thermal neutrons, QF ≈ 3; for fast neutrons, QF ranges up to 10; and for α particles and heavy ions, QF ranges up to 20. Maximum permissible occupational dose for the whole body: 5 rem/year (or ≈ 100 millirem/week) Fluxes (per cm²) to liberate 1R in carbon: 3 × 10⁷ minimum ionizing singly charged particles 0.9 × 10⁹ protons of 1 MeV energy (These fluxes are correct to within a factor of 2 for all

(These fluxes are correct to within a factor of 2 for all

materials.) Natural background: 120 to 130 millirem/year

 $\begin{array}{c} \mbox{cosmic radiation (charged particles + neutrons)} \\ \mbox{cosmic radiation (} \gamma \mbox{ rays)} \end{array}$ ~ 25 ~ 25 ~ 73 radiation from rocks and air (γ rays)

Cosmic ray background in counters: ~ 1/sec/cm²/ster

RANGE AND ENERGY LOSS IN COPPER

Range and energy/momentum loss in copper, based on a calculation assuming a nominal mean excitation potential of 310 eV. (Calculation by W. A. Aron, UCRL-1325, 1951). The abscissa is to be read as kinetic energy T for the solid curves and momentum p for the dashed curves.

Range and energy loss in liquid hydrogen bubble chamber, determined by a μ^+ range of 1.103 ± 0.003 cm from the $\pi^+ \rightarrow \mu^+ \nu$ decay. Liquid hydrogen conditions: T = $27.6 \pm 0.1^{\circ}$ K; P = 48 ± 5 psia; $\rho = (5.86 \pm 0.06)10^{-2}$ g/cm³. (Data by Clark and Diehl, UCRL-3789, 1957.) Bubble chamber physicists: note that the number of bubbles per cm is proportional to $1/\beta^2$, not to dE/dx.

S34

Abbreviations

Journals		Measurem	ent techniques
APAH ADVP ANP BAPS JETP LINC NC NP PL PPSL PR PRL PRSL	Acta Phys. Acad, Hungarica Advances in Physics Annals of Physics Annual Reviews of Nuclear Science Bulletin of the American Physical Society English Translation of Soviet Physics JETP Letters to Soviet Physics JETP Letters to Nuovo Cimento Nuclear Physics Physics Letters Proceedings of the Physical Society of London Physical Review Physical Review Letters Proceedings of the Royal Society of London	A SPK CC CNTR DBC EMUL HBC HEBC HEBC IPWA MMS MPWA OSPK RVUE	Automatic spark chambers Cloud chamber Counters, electronics Deuterium bubble chamber Energy-dependent partial wave analysis Emulsions Hydrogen bubble chamber Helium bubble chamber Heavy liquid bubble chamber Energy-independent partial wave analysis Missing mass spectrometer Model-dependent partial wave analysis Optical spark chambers Review of previous experimental data
RMP SJNP ZPHY	Reviews of Modern Physics Soviet Journal of Nuclear Physics Zeitschrift für Physik	Conference Confere were held	nces are referred to by the location in which they (e.g., DUBNA, BOULDER, LUND, etc.).

Institutions

Names of institutions are frequently abbreviated. We use mainly the four-letter code proposed by the HERA group at CERN in 1969; however, starting in January 1971 we have revised some of the US entries to follow more closely the abbreviations in common usage, e.g., LSU instead of LOUI for Louisiana State University. Revised and new entries are marked by an asterisk. We have not yet revised the older cards and apologize for the temporarily double entries.

ICCONNECCE UNIT. ALCHEN ALTING'C APPEN PESS. CENTRE JUMA STATE UNIT. ALCONNE MAY LAR. JUMA STATE UNIT. ALCONNE MAY LAR. JUMA STATE UNIT. ALCONNE MAY LAR. UNIT. ALCONNE MAY LAR. UNIT. JUMA DE LARGES CENTRE DEPORTITOS DITIO UNIT. UNIT. JUMA DE LALF. AT BERKELY JUMAT.

ALEFRI, GERMANY MERELL, BEHKS, EKGLAND ANGEN, LLI, USA ANGONG, ALL, USA ANGONG, ALL, USA ANGONG, RECE ATHENS, ORIG, USA BALLEN, SCHECE ATHENS, ORIG, USA BALLEN, CALLEN, USA BALLEN, ADALAN, AND AND BALLEN, AND AND AND AND BALLEN, AND AND BALLEN, AND AND AND BALLEN, AND A

HANNI HANNI

NUMENT TAN COLLEGE UNITY ANTY, OF MASSACHUSETTS UNITY, OF MASSACHUSETTS MASSACHUSET MASSACHUSETS MASSACHUSETTS MASSACHUSETS MASSACHUSET

HEW YODY, N. Y., UGA MAINT, GERMANY AMIERST, MASS., USA MONTREST, MINN, USA MARCHESIER, ENCLAND EAST LANSING, MICH., USA MONTREST, MINN, USA MONTREST, USA MONTREST, MINN, USA MONTREST, MINN, MINN, MINNN, USA MONTREST, MINNN

Stable Particles

(Immune to Strong Decay)

For notation, see illustrated key at beginning of data card listings.

CODE EVENTS QUANTITY ERROR+ FRROR- REFERENCE YR TECN SIGN COMMENTS DATE Arnye Backgrounn		
····· ··· ······ ······· ········ ······		
γ 0 GAMMA (0, J=1)		3 ELECTRON MAGNETIC MOMENTIE/2ME)
0 GAMMA MASS (IN UNITS OF 10**-21 MEV)		MM (1+0011609) +-(24)*10**-7 SCHUPP 61 CNTR -
M (6.) OR LESS PATEL 65 SATFLLITE DATA 10 M (6.) OR LESS GINTSBURG 64 SATFLLITE DATA 10 M (2.3) OR LESS GOLDMADER 68 SATELLITE DATA 10	0/69 0/69 0/69	MM (1.00119622) → (27)*0**-9 WILKINSUN 63 CMIR - 876 MM (1.001163) → (22)*0**-6 RICH 66 CMIR + POSITRON 876 MM R (1.001159557) → (30)*10**-9 RICH 68 CMIR + 0751TRON 876 MM R (1.66 SI SREFAULATION OF MILKINSON 63 77 744 74011596380) → (31)*10**-1074VIC R 69 RVUE 777 MM (1.001159664) → (31)*10**-1074VIC R 69 RVUE 777 744 74011596380) → (31)*10**-1074VIC R 69 RVUE 777
		****** ******* ******* ******* ********
C GAMMA		REFERENCES
GINTSBUR 64 SOV. ASTR.AJ7 536 M. A. GINTSBURG (ACAD SCI, USSR)		3 ELECTRON (0.5, J=1/2)
PATEL 65 PL 14 105 V.L.PATEL (DURHAM) GOLDHABE 68 PRL 21 567 A.GOLDHABER,M.NIETO (STONY BROOK)		SCHUPP 61 PR 121 1 A A SCHUPP,R W PIDD.H R GRANE (MICHIGAN) HIKKING 63 PR 130 852 D T WILKINGON,H R CPANE (MICHIGAN) COHEN 65 RRP 37 537 E R COHEN, J H M DUMOND (NAASC+CALTECH)
******* *******************************		RICH 66 PRL 20 967 A RICH, H R CRANE (MICHIGAN) RICH 68 PRL 20 967 A RICH
ν _A 1 F-NEUTRINO (0, J=1/2)		TAYLOR 69 RMP 41 375 +PARKER,LANGENBERG (PRIN+UCI+PENN) WESLEY 70 PRL 24 1320 J.C.WESLEY+4.RICH (ANNA)
1 F-NEUTRINO MASS (KEV)		****** ********* ********* ************
M (0.25) OR LESS LANGFR 52 CNTR M (0.15) OR LESS HAMLITON 53 CNTR M (0.55) OR LESS +OR- 0.28 FRIEMAN 58 CNTR M 0.06 OR LESS CL=.90 REPGKVIS 69 CNTR EL.STATIC.MAG.SP 1	1/69	4 MUON (106+J=1/2)
****** ******* ************************		4 MUON MASS (MEV)
REFERENCES		M (105.659) (0.002) FEINERG 63 RVDF M 105.6599 +0014 TAYLOR 69 RVDE USING NEW E/H 7/7
1 E-NEUTRINO (0, J=1/2)		
LANGER 52 PR R8 689 L N LANGER,R J D MOFFAT (INDIANA) HAMILIAN 53 PR 92 1521 D HAMILIAN,N PALFORD,L GROSS (PRINCETON) FPIEDMAN 58 PR 109 2214 LEVIS FRIEDMAN,LINCOLG SMITH (BNL) BERGRVIS 69 CERN 69-7 91 KARL-ERIK BERGRVIST (UNIV STOCKHOLM)		4 MUON LIFETIME (UNITS 10**-6) T 2.197 0.001 0.001 FARLEY 62 CNTR T 2.203 0.004 UNDY 62 CNTR CINLEV=.98 11/6 T 2.202 0.003 ECKHAUSE 63 CNTR
****** ********* ******** ************		T 2.197 0.002 0.002 MEYER 63 CNTR + T 2.198 0.002 0.002 MEYER 63 CNTR - 7/6
		T AVG 2.1983 0.0008 0.0008 AVERAGE (ERROR INCL. SCALE FACTUR OF 1.0)
ν_{μ} 2 MU-NEUTRING (0, J=1/2)		
2 MU-NEUTRINO MASS (MEV)		4 RATIO OF LIFETIME OF MU+ TO MU-
H (3,5) DR LESS RAPKAS 56 EMUL M (4,0) DR LESS DUDZIAK 59 CNTR M (3,6) DR LESS FEINHERG 63 RVUE M (3,0) DR <less< td=""> ALLCOCK 65 RVUE M (2,5) O3 LESS ALRONG 65 ASPK</less<>	7/66 7/66	DT 1.000 0.001 MEYER 63 CNTR LIFETIME MU+/MU- 7/6
M (2.1) OR LESS SHAFER 65 CNTR CONFLEV = 68PCT M 1.6 OR LESS CL=.90 BOOTH 67 CNTR M 2.3 OR LESS CL=.90 HYMAN 67 LEBC 0 K= HE	7/66 3/68	MM 1162.0 5.0 CHARPAK 62 CNTR + MM 8 (1165.75) (0.71) BALLEY 68 CNTR + STOR, RINGS 5/6
M (0.46) (0.64) (0.46) FRANK 68 CNTR PRELIMINARY	9768	MM B (1166.25) (0.24) BAILEY 68 CNTR - STOR. RINGS 5/6 MM B ERRORS STATISTICAL. VALUES COMBINED TO GIVE MU+- VALUE BELOM 5/6
****** ******** ********* *************		MM 1166.16 0.31 BAILEY 68 CNTR +- STOR. RINGS 576 MM 1.00 0.00 </td
REFERENCES		
BARKAS 56 PR 101 778 W H BARKAS, W BIRNBAUM, F M SMITH (LRL)		4 MUON PARTIAL DECAY MODES
DUDZIAK 59 PR 114 336 W F DUDZIAK,R SAGANE,J VEDDER (LRL) FEINBERG 63 ARNS 13 431 G FEINBERG,L M LEDERMAN (COLUMBIA) ALLCOCK 65 PPSL 85 875 G R ALLCOCK (LIVERPOOL)		DECAY MASSES P1 Muon Into E (F-NEU) (MU-NEU) .5+ 0+ 0
BARDON 55 PRL 14 449 BARDON+NORTON+PEOPLES + (COLUM+STONY BROOK)		P2 MUON INTO E 2GAMMA .5+ 0+ 0 P3 MUON INTO 3ELECTRONS .5+ .5+ .5
SMAFER 65 PRL 14 92.3 R E SMAFER_LCRUME_JENKINS (LL (LL RL) 800TH 67 PL 26.8 39 B00TH, JONSON.VILLIANGS, MORMALD (LIVERPOOL) HYMAN 67 PL 25.8 37.4 +L0KEN, PEWITT, MCKENZIE, KEYES+(ARG+CARN+NWJ) FRANK 6.8 VIENNA ABS. 36.5 FRANK.CAMPLIANEN.ISKIN (SHAMHLIVP+STAN)		P4 MUUN INIU E GAMMA
******* ********* *********************		4 MUON BRANCHING RATIOS
****** ********* ********* ******** ****		RI MUON INTO E+2GAMMA (IN UNITS OF 10**~5) (P2)/(P1) RI (1.6)OR LESS C.L.= .90 FRANKELI 63 OSPK
e 3 ELECTRON (0.5, J=1/2) 3 ELECTRON MASS (MEV)		R2 HUON INTO 3E (IN UNITS OF 10**-7) (P3)/(P1) R2 F (5:0)0R LESS C.L.=
M (.511006)(.00002) COMEN 65 RVUE M .5110041.0000016 TAYLOR 69 RVUE USING NEW E/H T	7/70	RZ F FULD ANDVE EXPERIANTS FULLATED UPPER LIMITS ASSUMING A SECOND DADER RZ F FULD ANDVE EXPERIANTS FULLATED UPPER LIMITS ASSUMING A SECOND DADER RZ ASSUMING A CONSTANT MARINE LEMENT. RZ ASSUMING A CONSTANT MARINE LEMENT.
3 ELFCTRON LIFETIME (UNITS 10**21 YR) T DVFR 2.0 MOE 65 CNTR	6/66	R3 MUON INTO E+GAMMA (IN UNITS OF 10**-8) (P4)/(P1) R3 4.3 OR LESS C.L.*.90 FRANKELL 63 OSPK R3 2.2 OR LESS C.L.*.90 PARKER 64 OSPK R3 2.9 OR LESS C.L.*.90 KORENCHEN 70 OSPK 2/7 R3 2.9 OR LESS C.L.*.90 KORENCHEN 70 OSPK 2/7
		a
Stable

For notation, see illustrated key at beginning of data card listings.

4 MUON DECAY PARAMETERS

Particles

	(V-A THEORY OBEDICTS BHO-D TE)	
RHO C (0.741) (0.027)	DUDZIAK 59 CNTR + 20-53 MEV E+	10/69
RHOP TWO PARAMETER FIT RHO C 2276 (0.751) (0.034)	TO RHO AND ETA BLOCK 62 HEBC - WHOLE SPECTRUM	10/69
RHO D (0.64) (0.04) RHO D (0.661) (0.016)	BARLOW 64 CNTR - WHOLE SPECTRUM BARLOW 64 CNTR + WHOLE SPECTRUM	10/69
RHO D (0.867) (0.035) RHO D RESULTS IN DOUBT	PONTECORV 64 CC -	10/69
RHD C 800K (0.7503) (0.0026 RHD C 280K (0.760) (0.009)) PEOPLES 66 ASPK + 20-53 MEV E+ SHERWOOD 67 ASPK + 25-53 MEV E+	10/69
RHO C 170K (0.762) (0.008) RHO C FTA CONSTRAINED =0	FRYBERGER 68 ASPK + 25-53 MEV E+	10/69
RHO C PARAMETER FIT TO R RHO 0.7518 0.0026	HO AND ETA BY DERENZO 69. DERENZO 69 BY	10/69
RHO	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
ETA ETA PARAMETER	(V-A THEORY PREDICTS ETA=0)	
ETA P 9213 (-2.0) (0.9) ETA P TWO PARAMETER FIT TO	PLAND 60 HBC + WHOLE SPECTRUM RHO AND ETA- PLAND 60 DISCOUNTS VALUE FOR ETA	10/69 10/69
ETA C 800K (0.05) (0.5) ETA C 280K (-0.7) (0.6)	PEOPLES 66 ASPK + 20-53 MEV E+ Sherwood 67 ASPK + 25-53 MEV E+	10/69 10/69
ETA C 170K (-0.7) (0.5) ETA C RHO CONSTRAINED =0	FRYBERGER 68 ASPK + 25-53 MEV E+ .75	10/69
ETA 6346 -0.12 0.21	DERENZO 69 HBC + 1.6-6.8 MEV E+	10/69
XSI XSI PARAMETER XSI 9K 0.97 0.05	(V-A THEORY PREDICTS XSI=1) BARDON 59 CNTR BROMOFORM TARGET	10/69
XSI 8354 0.93 0.06 XSI A (0.903) (0.027)	PLANO 60 HBC + R.8 KGAUSS ALI-ZADE 61 EMUL + 27 KGAUSS	10/69
XSI A DEPOLARIZATION BY XSI G 66K (0.975) (0.030)	MEDIUM NOT KNOWN SUFFICIENTLY WELL GUREVICH 64 EMUL 140 KGAUSS	10/69 10/69
XSI 0.975 0.014 XSI G GUREVICH 67 SUPERC	GUREVICH 67 EMUL EEDS GUREVICH 64	10/69 10/69
XSI AVG 0.972 0.013	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
DEL DELTA PARAMETER	(V-A THEORY PREDICTS DELTA=0.75)	
DEL 9354 0.78 0.05 DEL 0.782 0.031	RUGER 61	10/69
DEL 490K 0.752 0.009 DEL VOSSLER 69	HAS MEASURED THE ASYMMETRY BELOW 10 MEV	10/69
DEL AVG 0.7551 0.0045	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
HEL HELICITY OF DECAY	ELECTRON	
HEL WE HAVE FLIPPED TH	E SIGN FOR E- SO OUR PROGRAMS CAN AVERAGE	10440
HEL D IN DOUBT- POSITRON	S POSSIBLY DEPOLARIZED IN BE MODERATOR	10/69
HEL 1.05 0.30 HEL 0.94 0.38	BUNLER 63 CNTR + ANNIHILATION BLOOM 64 CNTR + BREMS TRANSMISS	10/69
HEL 29K 0.89 0.28	SCHWARTZ 67 OSPK - MOLLER SCATT	10/69
HEL AVG 1.00 0.13	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
GS SCALAR COUPLING CO	NSTANT IN MUON DECAY (IN UNITS OF GV) DERENZO 69 RVIE	10769
GA AXIALVECTOR COUPLI	NG CONSTANT IN MUON DECAY (IN UNITS OF GV)	
FAV PHASE BETWEEN VECT	OF AND AXIALVECTOR COUPLINGS (DEGREES)	10/69
FAV 180. 15.	DERENZO 69 RVUE	10/69
GT (0.28) OR LESS	DERENZO 69 RVUE	10/69
GP PSEUDOSCALAR COUPL GP (0.33) OR LESS	ING CONSTANT IN MUON DECAY (IN UNITS OF GV) Derenzo 69 RVUE	10/69
****** ******** ********	****** ******** ******** ******* ******	
	REFERENCES	
BARDON 59 PRL 2 56	M BARDON D BERLEY, L LEDERMAN (COLUMBIA)	
DUDZTAK 59 PR 114 336 PLAND 60 PR 119 1400	W DUDZIAK,R SAGANE, J VEDDER (LRL)	
ALI-ZADE 61 JETP 40 452 KRUGER 61 UCRL-9322 (UNPUB)	ALI-ZADE, GUREVICH, NIKOLSKI (USSR) H KRUGER (LRL)	
ALIKHANO 62 CERN CONF 423	A 'I ALIKHANDV, A BABAEV + (ITEP MOSCOW)	
8LOCK 62 NC 23 1114 CHARPAK 62 PL 1 16	BLOCK, FIORINI, KIKUCHI+(DUKE, BOLDGNA, MILANO) G CHARPAK, F J M FARLEY, R L GARWIN + (CERN)	
FARLEY 62 CERN CONF 415 LUNDY 62 PR 125 1686	FARLEY, MASSAM, MULLER, ZICHICHI (CERN) RICHARD A LUNDY (EFINS)	
PARKER 62 NC 23 485	S PARKER, S PENMAN (EFINS)	
BABAEV 63 JETP 16 1397 BUHLER 63 PL 7 368	BABAEV, BALATS, KAFTANOV, LANDSBERG + (ITEP) +CABIBBO, FIDECARO, MASSAM, MULLER+ (CERN)	
DICK 63 PL 7 150 ECKHAUSE 63 PR 132 422	DICK, FEUVRAIS, SPIGHEL (CERN) M ECKHAUSE, T A FILIPPAS + (CARNEGIE)	
FEIN9ERG 63 ARNS 13 431 FRANKEL1 63 NC 27 894	GERALD FEINBERG, L M LEDERMAN (COLUMBIA) S FRANKEL,W FRATI, J HALPERN + (PENNA)	
FR4NKEL2 63 PR 130 351 MEYFR 63 PR 132 2693	S FRANKEL,W FRATI,J HALPERN + (PENNA) S L MEYER,ANDERSON,BLESER,LEDERMAN+ (COLUM)	
BARLOW 64 PPS 84 239	+BODTH,CARROL,COURT,DAVIES,EDWARDS+ (LIVP)	
BLOOM 64 PL 8 87 DUCLOS 64 PL 9 62	+DICK,FEUVRAIS,HENRY,MACQ,SPIGHEL (CERN) +HEINTZE,DE RUJULA,SOERGEL (CERN)	
GUREVICH 64 PL 11 185 PONTECOR 64 DUBNA CONF	GUREVICH, MAKARIYNA+ (KURCHATOV, MOSCOW) PONTECORVO, SULYAEV (MOSCOW)	
PARKER 64 PR 1338 768	S PARKER +H L ANDERSON, C REY (EFINS)	
GUREVICH 67 IAE 1297	J PEUPLES (COLUMBIA) GUREVICH, MAKARIYNA, MISHAKOVA+ (KURCHATOV)	
SCHWARTZ 67 PR 162 1306 SHERWOOD 67 PR 156 1475	D M SUHWARTZ (EFINS) B A SHERWOOD (EFINS)	
DAILLY 58 PL 288 287 FRYBERGE 68 PR 166 1379	+UARIL,VUN BUCHMANN,BROWN,FARLEY+ (CERN) D FRYBERGER (EFINS)	
DERENZO 69 PR 181 1854	S DERENZO (EFINS)	
VOSSLER 69 NC 634 423	TRANSCHLANDENDERD (PRIN+ULI+PENN) C VOSSLER (EFINS) KORENNHENKO, KOSTIN, MICHELMICHER (FINS)	
NORTHONE TO STAR PI-2201	MANERAL MERCER AUTORNAUTEL MALMER + (JINK)	

PAPERS NOT REFERRED TO IN DATA CARDS TISHER LEONTIC, LUNDRY, MEUNIER, STADT (CFRN) ASTAURY, HATTERSLEY, HUSSAIN + (LIVERDOL) DEVONS, GIALALEDERMANS SHAPIRO J LATHROP, R A LUNDY, V L TELEGOI + (EFINS) J LATHROP, R A LUNDY, V D TELEGOI + (EFINS) J LATHROP, R A LUNDY, SPINAN + (EFINS) CONTANUÁSI , SUITON + (CARNECIE) V L TELEGOI EV (GANIN, MULLER, SENS + (CERN) G SHAPIROL M LEDERMAN (COLUMBIA) G SHAPIROL M LEDERMAN (COLUMBIA) FAIRLEY, BAILEY, BROWN, GIESCH + (CFRN) FISHER 59 PRL 3 349 ASTRUPY 60 PRCH COMF 60 542 DEVINS 60 PRL 5 330 LATHROP 60 NC 17 109 LATHROP 60 NC 17 114 REITER 60 PRL 5 22 FALESON 60 PRL 7 129 GHTCHIKS 61 PRL 7 129 SHAPIRO 62 PR 125 1022 FAIRLEY 66 NC 45A 281 π^{\pm} 8 CHARGED PION (140, JPG=0--) I=1 8 CHARGED PI MASS (MEV)
 139.37
 0.20
 CROWE
 54 CNTR

 139.57
 0.013
 SHAFEAS
 56 EMUL +

 139.577
 0.013
 SHAFEA
 67 CNTR
 YESDNIC ATOMS

 (139.550)
 (0.008)
 SHAFEA
 67 CNTR
 YERLIMINARY

 THIS VALUE
 DIFFERS
 CONSIDERABLY
 FROM PREVIOUS
 YALUE. THIS DIS

 CREPANCY IS BEING
 INYESTIGATED
 VALUE MOMENTERALY NOT USED.
 VALUE
 SHOT
 6/68 2/71* 2/71* 2/71* MM 139.577 139.576 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.011 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 2/71* AVG FIT PI+ MU+ MASS DIFFERENCE (MEV) ---- ---0.076 0.076 0.035 0.025 BARKAS 56 EMUL BARKAS 56 EMUL HYMAN 67 HERG + K-HE 2/71* RIOTH 70 CNTR + MAGNETIC SPECT. 2/71* 34.00 33.89 145 33.881 33.925 33.915 33.916 0.019 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.011 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 2/71* AVG F1T 8 ((MASS PI+)-(MASS PI-))/AVERAGE (PERCENT) 0.05 GREENBERG 69 CNTR DM 0.02 5/70 ---- ----8 CHAR.PI LIFETIME (UNITS 10**-9) 25.6 0.5 CRIWE TOTAL CONTR 10-37 25.6 0.7 0.7 CRIWE 7 RVUE 25.6 0.8 0.8 ANDERSON 40 CNTR 26.02 0.94 0.32 0.32 ASHKIN 60 CNTR + 25.6 0.3 RARDON 66 CNTR + 25.9 0.3 DUNALTSEV 66 CNTR + 25.9 0.3 DUNALTSEV 66 CNTR + 25.401 (0.08) KINSEV 66 CNTR + 5Y 3CHAILC ERADAS IN CALIBALIN THIS EXP. 013CUSSED BY NORDBERG 67 26.04 0.05 NORDBUG 67 CNTR + 26.04 0.04 MOREDWERG 67 CNTR + 26.04 0.04 MOREDWERG 67 CNTR + 9/66 6/68 6/68 8/66 8/67 9/66 8/67 5/70 N N 26.024 0.024 AVG 0.024 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.0) _____ -----8 MEANLIFE DIFFERENCE, (+)-(-)/AVGE. (PERCENT) THIS QUANTITY IS A MEASURE OF CPT INVARIANCE IN W.I. DT N DT L DT L DT DT DT DT DT AVG 0.23 0.40 LOBKOWICZ 66 CNTR SEE NOTE L 460VE IS THE MOST CONSERVATIVE VALUE QUOTED BY AUTHORS 0.4 0.7 BARDON 66 CNTR -0.14 0.29 PETRUKHIN 68 CNTR 0.055 0.055 0.71 AVRES 69 CNTR NEW EXPERIME 9/66 9/66 7/66 8/68 10/59 NEW EXPERIMENT 0.053 0.061 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 8 CHARGED PION PARTIAL DECAY MODES DECAY MASSES 105+ 0 105+ 0 105+ 0+ 0 134+ .5+ 0 .5+ 0+ .5+ .5 CHAR.PION INTO 4U (MU-NEU) CHAR.PION INTO E (E-NEU) CHAR.PION INTO 4U (MU-NEU) GAMMA CHAR.PION INTO PIO E (E-NEU) CHAR.PION INTO E NEU GAMMA CHAR.PION INTO E NEU E+ E-P1 P2 P3 P4 P5 P6 8 CHARGED PION BRANCHING RATIOS CHAR.PION INTO MU NEU GAMMA (UNITS 10**-4) (P3)/(P1) 26 1.24 0.25 CASTAGNOL 58 EMUL E(MU).LT.3.38 MV R 1 R 1 (UNITS 10**-4) (P2)/(P1) ANDERSON 60 CNTR DI CAPUA 64 CNTR CHAR.PION TNTO E NEU (UNITS 10**-4) (P2)/(P1) 1.21 0.07 ANDERSON 60 CNTR 1.247 0.028 DI CAPUA 64 CNTR G 1.242 0.026 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R 2 R 2 R 2 R 2 R 2 R 2 AVG
 CHAR.PION.NTOP.FIG. ENGL
 CHAR.P. FOR NTOP.FIG. ENGL
 C R3 6/66 7/66 3/68 1.023 0.069 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG R4 R4 CHAR.PION INTO E NEU GAMMA (UNITS 10**-8) (P5)/(P1) 143 3.0 0.5 DEPOMMIER 63 CNTR GAM KE 50-90 MEV 6/66 CHAR.PION INTO E NEU E+ E- (UNITS LO**-8) (P6)/(P1) (3.4)OR LESS C.L.= .90 KORENCHEN 70 OSPK + R 5 R 5 2/71*

Stable Particles

9 NEUTRAL PLON PARTIAL DECAY MODES REFERENCES 8 CHARGED PION (140, JPG=0--)[=1 DECAY MASSES K M CROME,R H PHILLIPS (LRL) W H BARKAS,W BIRNBAUM,F M SMITH (LRL) K M CROME (STANFORD HEPL) C CASTAGNOLI,M MUCHNIK (ROMF I F) PIO INTO 2GAMMA PIO INTO E+ E- GAMMA PIO INTO 4ELECTRONS PIO INTO 3 GAMMA CRUWE 54.PR 96 470 BAPKAS 56 PR 101 778 CROWE 57 NC 5 541 CASTAGNO 58 PR 112 1779 P1 P2 P3 P4 0+ 0 •5+ •5+ 0 •5+ •5+ •5+ •5 0+ 0+ 0 ANDERSON 60 PR 119 2050 ASHKIN 60 NC 16 490 DEPNIMIE 63 PL 7 245 BARTLETT 64 PR 1368 1452 DI CAPUA 64 PR 133R 1333 H L ANDERSON,T FUJII,R H MILLER + (EFINS) ASHKIN,FAZZINI,FIDECARO,LIPMAN + (CERN) D DEPOMIER,HEINIZE,RUBBIA,STERGEL (CERN) AARTLETT,DEVONS,MEYFR,ROSEN [COLUMBIA] NI CAPUA,GARLAND,PRONROM,STRELZOFF (COLUM) 9 NEUTRAL PION BRANCHING RATIOS
 R1
 PIO
 INTO
 (GAMMA E+ F-1/(2GAMMA)
 (P2)/(P1)

 R1
 (0.0119)
 THEORET. CALC. JOSEPH
 0
 QUANTUM FLECT.

 R1
 27
 0.0117
 0.0015
 BUDAGOV
 SO HBC

 R1
 3071
 0.01166
 0.00047
 SAMIOS
 SA HARC
 PI-P TO PIO N

 R1
 S
 SAMIOS
 SAMIOS VALUE USES PANDESKY RATIO = 1.62
 R1
 R1
 S

 R1
 S
 0.0117
 0.0004
 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0)
 (P2)/(P1) QUANTUM FLECT. 9766 +GHESQUIERE,NIEGAND,LARSEN (LRL+SLAC) RERTRAM,MEYER,CARRIGAN+ (MICH+CARNEGIE) DIMAITSEV.PETRUKHIN,PROKOSHKIN + (DUBNA) FCKHAUSF,HARRIS,SHULER+ (WILLIAM AND MARY) BACASTON 65 PR 139 B407 BERTRAM 65 PR 139 B 617 DUNAITSE 65 JETP 20 58 ECKHAUSE 65 PL 19 348 BARDON 66 PRL 16 775 OUNAITSE 66 PL 23 283 KINSEY 66 PR 144 1132 LUBKOWIC 66 PRL 17 548 84 RDDN, DOR F, DORFAN, KRIEGER + (COLUMBIA) +KUTYIN, PORKOSHKIN, RASUVAEV, SIMONOV (DUBNA) KINSEY, LORKOWICZ, NOROBERG (ROCHESTER UNIV) LOBKOWICZ, MELISSINOS, NAGASHIMA+ (ROCH+BNL) R 2 R 2 R 2 PT0 INTO (3 GAMMA)/(2 GAMMA) (UNITS 10++−6) (P4)/(P1) 0 (5,010R LESS 0UCLOS 65 CNTR CL=90 PERCENT (5,0) OR LESS KUTIN 65 CNTR 90 PERCT C. ENT 6/66 C.L. 3/68 +LOKEN,PEWITT,DERRICK + (ANL+CARN+NWES) NOAOBERG,LOBKOWICZ,BURMAN (ROCHESTER UNIV) ROBERT E. SHAFER (LRL) SHAFER,CROWE,JENKINS (LRL) HYMAN 67 PL 25B 376 NUROBERG 57 PL 24B 594 SHAFER 67 PR 163 1451 SFE ALSO PRL 14 923
 R3
 PI0
 INTO
 (E+E+F-E-1/12
 GAMMA)
 (UNITS
 10*#-51
 (P3)/(P1)

 R3
 (3.47)
 THEORETICAL
 CAL
 KROLL
 55
 QUANTUM ELECT.
 9/66

 R3
 146
 3.18
 0.30
 SAMIOS
 62 HBC
 SEE NOTE N RFLOW
 6/66

 R3
 ABOVE VALUE USES PANOFSKY RATION1.62
 2
 2
 2
 2

 SFT ALS0
 FIL
 F4 23

 DEFONME
 68 NUC PHYS R84 189
 PFTRUKMI 68 JINP-PL-3862

 AVRES
 69 UCPL-13869
 ALS0

 ALS0
 67 PR 157 1289
 ALS0

 ALS0
 68 PRL 21 261
 CALSA

 GREEMBER 6C
 PL 23 1267
 ANOTH 70 PL 328

 ALS0 CH 70 JINR PL-5230
 MALS0HG 71 THESIS
 SMATER LEURE JERNINS DE POMMIER, DUCLOS, HEINTZE, KLEINKNECHT (CERN) PETRUKHIN, RYKALIN, KHAZINS, CISEK (DUBNA) DAVID S AYRES (THESIS) LRLI AYRES, CALDWELL, GORENBERG, KENNEY, KURZ+ (LRL) AYRES, CORMACK, GERENBERG, KENNEY, KURZ+ (LRL, UCSS) +AYRES, CORMACK, KENNEY, CALDWELL+ (LRL, UCSS) ONE MALK, KASIST, MANCHALMACHER + (JINS) C. VON DER MALSBURG REFERENCES 9 NEUTRAL PION (135, JPG=0--)[=1 W K H PANDFSKY,R L AAMODT,J HADLEY (IRL) W CHIYOMSKY,J STEINRERGER (COLUMBIA) N KROLL,W MADA (COLUMBIANENLA) CASSELS,JONES,MURPHY,O.NEILL (LIVERPOOL) HADODCK,ABSHIAN,CROWE,CZIRR (IRL) HILLMAN,MIDDELKOOP,YAMAGATA,ZAVATINI(CERN) PANOFSKY 51 PR 81 565 CHINDWSK 54 PR 93 586 KROLL 55 PR 98 1355 CASSELS 59 PPS 74 92 HADDOCK 59 PRL 3 479 HILLMAN 59 NC 14 887 PAPERS NOT REFERRED TO IN DATA CARDS
 BUDAGOV
 60
 JETP 11
 755

 JOSEPH
 60
 NC 16
 997

 GLASSER
 61
 PR
 123
 1014

 SAMIOS
 61
 PR
 121
 275

 SAMIOS
 62
 PR
 126
 1344

 TIETGE
 62
 PR
 127
 1324

 RUDAGOV,VIKTOR,DZVELEPOV,ERMOLOV + (JINR)

 D W JOSEPH
 (FFI)

 R G LASSER,N SEEMAN,B STILLER
 (NRL)

 N P SAMIOS
 (COLUMBIAFNL)

 SAMIOS,PLANN,PRODELL + (COLUMBIAFNL)
 J TIETGE,W PUESCHEL
 A W MERRISON (LIVERPOOL) G SHAPIRO,L M LEOFRMAN (COLUMBIA) JOHN B CZIRR (LRL) MFRRISON 62 ADVP 11 1 SHAPIRO 62 PR 125 1022 CZIRR 63 PR 130 341 CZIRR 63 PR 130 341 KOLLER 63 NC 27 1405 KOLLER 63 SEE ALSO STAMER PETRUKH 63 SIEMA CONF 208 VON DARD 63 PL 4 51 JOHN B CZIRR (LRL) F L KOLLER,S TAYLOR,T HUETTER (STEVENS) 66 π^0 9 NEUTRAL PION (135, JPG=0--) [=1 66 V I PETRUKHIN,YU O PROKOSHKIN (JINR) VON DARDEL,DEKKERS,MERMOD,VAN PUTTEN+(CERN) 9 PI MASS DIFFERENCE (PI+-)-(PIO) (MEV) PANDESKY 51 CNTR -CHINDUSKY 54 CNTR -HADDDCK 50 CNTR -HILLMAN 59 CNTR CASSELS 59 CNTR C2IRR 63 CNTR PETRUKHIN 63 CNTR -VASILEVSK 66 CNTR -000 H SHWEFE N SMITH.N H BARKAS (LLRL) PLLETITINI, BEMPDRAD, RAACCINI+(PISA+FIRENZE) DUCLOS, FREYTAG, HEINTZE + (CERN+HEIDELBERG) D A EVANS (DXFORD) KUTIN, PETRUKHIN, PROKOSHKIN (JINR)
 SHWE
 64
 PR
 136B
 1939

 BELLETTI
 65
 NC
 40
 A
 1139

 DUCLOS
 65
 PL
 19
 253

 EVANS
 65
 PL
 139
 9
 982

 KUTIN
 65
 JETP
 LETT
 2
 243
 STAMER 66 PR 151 1108 VASILEVS 66 PL 23 281 BELLETTI 70 NC 66A 243 KRYSHKIN 70 JETP 30 1037 STAMER,TAYLOR,KOLLER,HUETTFR+ (STEVENS) VASILEVSKY,VISHNYAKOV,DUNAITSEV + (DUBNA) BELLETTINI,REMPORAD,LUBELSMEY+ (PISA+RONN) +STERLIGOV,USNV (TOMSK) 9/66 4.6041 0.0037 AVFRAGE (ERROP INCLUDES SCALE FACTOR OF 1.0) AVG 9 PIO LIFFTIME (UNITS 10**-16)
 y
 PID
 Cliffing (1)
 L0**-16)

 N
 76
 (1.9)
 (1.5)
 C4.55E
 6.1 EMUL

 N
 45
 (2.3)
 (1.1)
 (1.0)
 TIFTEFE
 6.2 EMUL

 N
 88
 (2.3)
 (1.1)
 (1.0)
 TIFTEFE
 6.2 EMUL

 N
 88
 (2.3)
 (1.0)
 0.19
 NOLRE
 6.2 EMUL

 N
 75
 (1.7)
 (0.5)
 SHUE
 6.4 EMUL
 6/66

 0.730
 0.105
 BELLETTIN 65 ENTR
 6/66
 6/66
 6/66

 4.22
 1.0
 0.5.1
 SHUE
 6.5 EMUL
 6/66

 6.22
 1.0
 0.5.5
 SHUE
 6.5 EMUL
 6/66

 0.9
 0.68
 KRYSHKIN 70 CNTR
 PRIMAEFE FEON NUC
 6/66

 0.9
 0.68
 KRYSHKIN 70 CNTR
 PRIMAEFEFE
 12/70*

 N
 DLD EMULSIGN MEASUBEHENTS NOT UNE DO BECAUSE OF POSSIBLE SYSTEMATIC
 8/67

 N
 DUE SULER 663
 8/67

</tabu/> K± 10 CHARGED K (494, JP=0-) I=1/2 19 CHARGED K MASS (MEV) ĸ 0.2 0.3 0.17 COHEN 57 RVUE + Barkas 63 Emul -Greiner 65 Emul + VIA TAU Decay M M M M AVG M FIT 493.9 493.7 493.78 0.17 UPERFER IN LINE 1 FACTOR OF 1.01 0.12 AVERAGE FACTOR OF 1.01 0.11 FROM FIT (FRROR INCLUDES SCALE FACTOR OF 1.0) 2/71* 493.81 493.84 0.03 CONTRACTOR 0.092 AVERAGE (ERROR INCL. SCALE FACTOR OF 2.1) (SFE DEGRAAM BELOW) CHARGED K CONSTRAINED FIT OVERALL FIT OF LIFETIVE, MIDTHS AND BRANCHING RATIDS USES 46 DATA POINTS TO DETERMINE SEVEN QUANTITIES: OVERALL FIT HAS CHISQ-73.9. MAIN CONTRIBUTION (13.5) COMES FROM RI9 OF HAIDT 71 (WE SEE NO REASON TO REJECT THIS EXPERIMENT AT THIS TIME) WEIGHTED AVERAGE = 1.19 ± 0.14 ERROR SCALED BY 2.1 ----- ------
 10
 CHAR.K
 LIFETIME (UNITS 10**-8)

 CHAR.K
 LIFETIME (UNITS 10**-8)

 0
 10.951
 (0.31
 (0.25)
 LIOFF
 56
 ENUL

 0
 52
 (1.40)
 (0.31
 (0.31)
 FISENBOUES
 60
 ENUL

 0
 33
 (1.24)
 (0.24)
 FEFDEN
 60
 ENUL

 0
 1.251
 (0.22)
 (0.17)
 BARKAS
 60
 ENUL

 0
 1.251
 (0.22)
 (0.24)
 FEFDEN
 60
 ENUL

 0
 1.251
 (0.22)
 (0.24)
 FEFDEN
 60
 ENUL

 0
 1.251
 (0.26)
 FEFDEN
 60
 ENUL

 293
 1.31
 0.06
 NORDIN
 61
 HUC

 1.231
 0.011
 0.011
 NORDIN
 62
 KIT +
 464

 1.241
 0.012
 FITCH
 65
 KIT + K
 KIT FEST
 6/6/6

 1.2310
 0.016
 OT
 CHT + K
 KIT FEST
 10 CHAR.K LIFETIME (UNITS 10**-8) CHISQ KRYSHKIN 70 CNTR 0.9 9.4 ····STAMER 66 EMUL о.в AVG FIT VON DARDE 63 CNTR 2.0 13.1 (CONLEU =0.004) 2 3 n 1 NEUTRAL PI DECAY RATE(UNITS 10**16SEC-1) _____

1/71*

6/66

9/66

9/66 6/66

CHISQ

0.7

1.4

1.6

4.4 0.0

8.6

11/67 11/67 10/70*

11/67

11/67

11/67

8766 10769

8766

8/66

811 811 811	CHAR.K INTO E NEU (160.0) OR LESS 4 2.1 1.8 1.3	UNITS 10* BORREANI BOWEN	*-5) 64 HBC 67 OSPK	(P11)/TOTAL + CONLEV=0.	.95	11/67 8/67
R 1 1 R 1 1	SOWEN RESULT SHOULD BE CORRE K+ TO E+ NEU GAMMA DECAYS BE	CTED TO 1.9 FORE COMPAR	(+1.7,-1 ING WITH	BOTTERILL 61	1 R 2 R	
R 1 2 R 1 2 R 1 2	CHAR, K INTO PI GAMMA GAMMAZ (1.1) OR LESS {0.4} OR LESS	TOTAL (UNITS CHEN KLEMS2	10**-4) 68 OSPK 70 OSPK	(P17)/TOTAL + T(PI)60 T + T(PI)GT T	0 90MEV 117 MEV	5/68 12/70*
R13 R13 R13 R13	CHAR. K INTO PI PIO GAMMA 18 (2.2) (0.7) E O (1.9) OR LESS F 90 PER CENT CONFIDENCE	(UNITS 10* CLINE EMMERSON	*-4) 64 FBC 69 OSPK	(P13)/TOTAL + PI+ KE 55 PI+ 55-8	-80 MEV	8/66 10/69 10/69
R14 R14	CHAR. K INTO PI PI+ PI- GAMM 1.0 0.4	A(UNITS 10* STAMER	*-4) 65 EMUL	(P14)/TOTAL +		8/66
R15 R15 R15 R15	CHAR.K INTO PI E+ F- 1 (1.1) DR LFSS (0.4) DR LFSS (4.4) DR LESS	(UNITS 10* CAMERINI CLINE BISI	*-61 64 FBC 67 FBC 67 DBC	(P15)/TOTAL * * * 90 PER CI	r conf	8/66 11/67 11/67
R16 R16 R16	CHAR.K INTO PI MU+ MU- (3.0) DR LESS (2.4) DR LESS	CAMERINI BISI	*-6) 65 FBC 67 DBC	(P16)/TOTAL + 90 PER C1 + 90 PER C1	r conf r conf	8/66 11/67
R17 R17 R17	CHAR. K INTO (PI PIO)/TAU 134 3.24 0.34 1045 3.96 0.15	YOUNG	65 EMUL 66 FBC	(P2)/(P3) + +		8/66
R17 R17 R17	AVG 3.84 0.27 AVERA FIT 3.746 0.058 FR04 F	GE (ERROR I IT (ERROR I	NCL UDES	SCALE FACTOR SCALE FACTOR	OF 1.9) OF 1.2)	
R18 R18 R18	CHAR. K INTO (PI 2PIO)/TAU 2027 0.303 0.009 17 0.393 0.099	BISI YOUNG	65 H+HL 65 EMUL	(P4)/(P3) + +		8/66 8/66
R18 R18	AVG 0.3037 0.0090 AVERA FIT 0.3004 0.0078 FROM F	GE (ERROR I IT (ERROR I	NCLUDES NCLUDES	SCALE FACTOR SCALE FACTOR	OF 1.0) OF 1.0)	
R19 R19 R19 R19 R19 R19 R19	CHAR. K INTO (MU PIO NEU)/TA 2175 0.632 0.035 39 0.90 0.16 H 1505 (0.510) (0.017) H1505 0.503 0.019 H H10T 71 IS A REANALYSI	U BISI YOUNG EICHTEN HAIDT S OF EICHTE	65 H+HL 65 EMUL 68 HLBC 71 HLBC N 68	(P5)/(P3) + + + +		8/66 8/66 11/68 12/70*
819 819 819	AVG 0.536 0.054 AVERA FIT 0.573 0.019 FROM F (SEE IDEOGRAM	GE (ERROR I IT (ERROR I BELOW)	NCLUDES	SCALE FACTOR SCALE FACTOR	OF 3.2) OF 1.8)	
	WEIGHTED AV Error	ERAGE = (Scaled).536 ± BY 3.2	0.054		
		Values a error, a reader's data wer constrain calculate and scale ent from	bove of y nd scale conveni e actuall ned fit pa s its ow e factor, the valu	weighted ave factor are fa ience only. y processed rogram, whi n values of x which are d tes shown he	rage, or the The by a ch δx , liffer- re.	
		· · · · · · · · · · · · · · · · · · ·	PIDT JUNG	71 HLBC 65 EMUL	<u>CHISG</u> 3.1	2
					10.5	-
	0.2 0.6 CHARGED K INTO (NU P	1.0 10 NFU)/	1 (TAU)	. 4	=0.001	Ĺ)

R 20	CHAR	. K INTO	LE PTO NE	EU)/TAU			(P6)/	(P3)			
R20	230	0.90	0.04		BORREANI	64 HB	C + .				8/66
R20	37	0.90	0.16		YOUNG	65 EM	JL +				. 8/66
320	854	0.94	0.09		BELLOTT2	67 HL	вс				11/67
R 20	H 4385	(0.846)	(0.021)		EICHTEN	68 HL	BC +				11/68
820	H4385	0.850	0.019		HALDT	71 HL	3C +				12/70*
820	н	HAIDT 71	IS A REA	ANALYSIS	OF EICHT	EN 68					
R 20											
820	AVG	0.858	0.018	AVERAGE	LERROR	INCLUDE	S SCALE	FACTOR	OF	1.0)	
820	FIT	0.870	0.013	FROM FIT	(ERROR	INCLUDE	S SCALE	FACTOR	0F	1.1)	
R 21	209	T.K INTO	(PI+ PI-	E+ NEU)/		S 10**-	4)(P7)/	(P3)			
R 21	69	6.7	1.5		BIRGE	65 FB	C + D				8/66
R 21	269	5.83	0.63		ELY	69 HL	BC				11/68
R21	2										
R 21	AVG	5.96	0.58	AVERAGE	I ERROR	INCLUDE	S SCALE	FACTOR	OF	1.0)	
R22	POST	T.K INTO	(PI+ PI-	HU+ NEU)	/TAU (UNI	TS 10**	-4)(P9)	/{P31			
B 2 2	1	(2.5) 4	PPROX		GREINER	64 EM	UL +				8/66
R22	7	2.57	1.55		8151	67 08	с +				11/67
823	CHAR	. K INTO	(E P10 N	EU)/(MU2+	PI2) (UN	TS 10**	-2)(P6)	/(P1+P2)		
R23	1679	5.89	0.21		CESTER	66 OS	РК +				8/67
R23	5110	6.16	0.22		ESCHSTRU	JT 68 OS	РК +				3/68
R23											
R23	AVG	6.02	0.15	AVERAGE	(ERROR	INCLUDE	S SCALE	FACTOR	0F	1.0)	
R23	FIT	5.733	0.090	FROM FIT	(ERROR	INCLUDE	S SCALE	FACTOR	0F	1.1)	
R24	CHAR	. K INTO	(PT PIO).	(MU NEU)			(P2)/	(P1)			
R24		0.3253	0.0065		AUERBACH	1 67 US	РК +				8/67
R24	1600	0.305	0.018		ZELLER	69 AS	РК +				10/69
R24											
R24	AVG	0.3230	0,0065	AVERAGE	(ERROR	INCLUDE	S SCALE	FACTOR	٥F	1.1)	
R24	FIT	0.3280	0.0059	FROM FIT	(ERROR	INCLUDE	S SCALE	FACTOR	DF	1.2)	

Stable Particles

R25 R25 R25 R25 R25 R25 R25 R25 R25 R25	CHAR. 472 THE VAL AUERBAC 960 561 350 AVG FIT	K INTD (E 0.0797 0 UE .0785+- H 67 R25 A .0775 0 0.069 0 0.069 0 0.0753 0 0.0753 0	PIO NEU)/(MU .0054 .0025 GIVEN I ND CESTER 66 .0033 .006 .005 .005 .0011 FROM EL	NEU) AUERBACH N THE ABOVE R23. BOTTERII GARLAND ZELLER E (ERROR IN T (ERROR IN	67 DSPK REF IS A8 ASPK 68 OSPK 69 ASPK CLUDES S	P6)/(P1) + AN AVERAGE DF + + + CALE FACTOR OF CALE FACTOR OF	1.1)	8/67 5/68 4/68 10/69
R26 R26 R26 R26 R26 R26 R26 R26	CHAR. 310 424 240 AVG	K INTO (MU 0.0602 0 0.055 0 0.054 0 0.0569 0	PID NEU)/(MU .0046 .004 .009 .0029 AVERAG	NEU) AUERBACH GARLAND ZELLER E (ERROR IN	(67 OSPK 68 OSPK 69 ASPK CLUDES SI	P5)/(P1) + + CALE FACTOR OF	1.0)	8/67 4/68 10/69
R 2 7 R 2 7 R 2 7 R 2 7 R 2 7 R 2 7 R 2 7	CHAR. R 427 (1 R DELETED R TO ADD U FIT	K INTO (MU 0.38) (0 FROM DVERA IP TO 1. 0 1.421 0	NEU)/(TAU) .82) LL FIT BECAUS NLY YOUNG MEA .085 FROM FI	YOUNG E YOUNG 65 SURED MU2 D	65 EMUL CONSTRAT IRECTLY.	P1)/(P3) * NS HIS RESULTS		9766
R 2 A R 2 B R 2 B R 2 B R 2 B R 2 B	CHAR. K 10 8 66 AVG	INTO (F N 1.9 0 1.8 0 2.15 0 2.04 0	EU)/(MU NEU) •7 0•5 •8 0•6 •35 • • • • • • • • • • • • •	(UNITS 10** BOTTERILL MACEK CLARK E (FRROR IN	-5) (67 ASPK 69 ASPK 70 OSPK CLUDES S	P11)/(P1) + + CALE FACTOR OF	1.0)	11/67 4/69 11/70*
R29 R29 R29 R29 R29 R29 R29	CHAR. K C1509 5601 A 1398 (A (INTO (MU 0.703 0 0.667 0 0.604) (0 0.596) (COMM	PIO NEU)/(E P .056 .017 .022) 0.025) ENTS	IO NEU) CALLAHAI BOTTERI2 EICHTEN HAIDT	(66 HLBC 68 ASPK 68 HLBC 71 HLBC	P5)/(P6) + +		6/68 6/68 10/68 12/70*
R29 R29 R29 R29 R29 R29 R29 R29	H F A DNLY C FROM TH C INCLUDE C SHOW LA AVG	AIDT 71 IS INDIVIDUA IS EXPERIM IN THE FI RGE DISAGR	A REANALYSIS L RATIOS INCL ENT WE USE ON T THE RATIOS EEMENTS WITH .016 AVERAG	OF EICHTEN UDED IN FIT ILY THE MU3/ MU3/TAU AND THE REST OF	68 SEF R1 F3 RATIO E3/TAU, THE DAT	9 AND R20 AND DO NOT SINCE THEY A. CALE FACTOR OF	1.0)	11/68
R30 R30 R30 R30	CHAR. K B B GAMMA	0.859 0 1NTO PI E 0.012 0 ENERGY GRE	NEU GAMMA/PI .008 ATER THAN 30	E NEU BELLOTTI MEV	67 HLRC	(P19)/(P6) +	1.57	11/67
R 31 R 31 R 31	K- INTO TEST	0 PI+ E- E- OF LEPTON 1.51 OR L	/TOTAL (UNITS NUMBER CONSER ESS	10**-5) VATION CHANG	68 HBC	(P19)/TOTAL - CL=		3768
R 32 R 32 R 32 R 32 R 32	CHAR • K (10 K K ASSUME	INTO PI N 0.0) OR L 1.2 OR LES S PI+ SPEC	EU NEU/ TOTAL ESS CL=.90 S TRUM SAME AS	(UNITS 10 CAMERINI KLEMS PIO SPECTRU	**~6) 69 HLRC 70 OSPK M IN KE3	(P20)/TOTAL + TEST NEUTR. DECAY	CURR.	5/70 5/70
R 3 3 R 3 3 R 3 3	CHAR.K M (M ABC	INTO E NE 7.11 DR L IVE IS MEAS	U GAMMA / TOT ESS UREMENT OF ST	AL (UNITS 1 MACEK RUCTURE-DEP	0**-5) 70 OSPK ENDENT D	(P21)/TOTAL + P(E) 234 TO ECAY ONLY	247	12/70*
R34 R34	CHAR. K 4	INTO PIG	AMMA / TOTAL LESS, CL=.90	(UNITS 10 KLEMS	**-6} 70 П.SPK	(P22)/TOTAL +		1/71*
R 35 R 35 R 35 R 35	CHAR. K USED FO FIT	INTO (TAU IR DELTA I= 3.329 0)/(TAU PRIME) 1/2 TEST .086 EROM ET	Ť.		(P3/P4)		
FIT	TED PARTI	L DECAY N	40DE BRANCH	ING FRACTIO				
brar δP _i cien abov are	The matrix aching fraction = $\sqrt{\langle \delta P_i \delta P_i \rangle}$ ts $\langle \delta P_i \delta P_j \rangle$, e; only those thus constra	below is der ons, P_i , as , while the $/(\delta P_i \cdot \delta P_j)$. e P_i appearing ined to add t	ived from the e follows: The <u>di</u> <u>off-diagonal</u> ele For the definit ng in the matrix o 1.	rror matrix I agonal eleme ements are th tions of the ir t are assumed	for the fitt nts are P _i e <u>normali</u> dividual F d in the fit	ted partial decay $\pm \delta P_i$, where $\frac{zed}{zed}$ correlation \hat{P}_i , see the listin to be nonzero a	mode coeffi- gs nd	
P P P P	P 1 +638+00 850 138 127 257 230	P 2 .209+00 062 051 188 198	P 3 •056+000 .145 .0 .063 .168	P 4 17+000 .002 .03 .009	P 5 2+001 .481 .	P 6 049+001		

FITTED PARTIAL DECAY MODE RATES

The matrix below is the branching fraction matrix above, transformed into rate space; i.e., $G_1 = \Gamma_1 = \Gamma_{total} P_1$, in appropriate units. In analogy to the matrix above, the <u>diagonal</u> elements are $G_1 \pm \delta G_1$, where $G_1 = \sqrt{\langle \delta G_1 G_2 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta G_1 \delta G_2 \rangle / \langle \delta G_1 \cdot \delta G_2 \rangle$. Note that, because of the error in Γ_{total} , the errors and correlations here are not directly derivable from those above.

3	ż	669	.169+002				
;	3	106	038	.045+000			
;	4	099	041	.139	.014+000		
;	5	213	175	.083	.002	.026+001	
5	6	166	173	.165	.010	.4 82	.039+00

Stable Particles

Slope Parameter for $K\!\rightarrow\!3\pi$ Decays

For the 3π decays of the K mesons we list the slope parameter ''g'' which is defined by

$$|M|^2 \propto 1 + g \frac{(s_3 - s_0)}{m_{\pi^+}^2}$$
 (1)

where

$$\mathbf{s}_{i} = (\underline{\mathbf{p}}_{K} - \underline{\mathbf{p}}_{i})^{2} = (\mathbf{m}_{K} - \mathbf{m}_{i})^{2} - 2 \mathbf{m}_{K}^{T}\mathbf{I}_{i}$$
(2)

$$\mathbf{s}_0 = \frac{1}{3} \sum \mathbf{s}_1 = \frac{1}{3} (\mathbf{m}_K^2 + \mathbf{m}_1^2 + \mathbf{m}_2^2 + \mathbf{m}_3^2)$$
(3)

 $\underline{p}_{K}, \underline{p}_{i}$ are the four-vectors for the K and

the ith pion, and the index 3 refers (4) to the odd pion.

We refer to the three possible charged decays as τ , τ ', τ^0

 $\begin{aligned} \tau^{\pm} & K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} \\ \tau^{\tau^{\pm}} & K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm} \\ \tau^{0} & K^{0}_{2} \rightarrow \pi^{+}\pi^{-}\pi^{0} \end{aligned}$

where the odd pion is the third one.

There is no strong evidence so far that a second order term is needed in Eq. (1). Most of the experimenters have fitted their data with a second order term, which turned out to be consistent with zero. We use the value of g obtained when the second order term was dropped from the fit. HEUSSE 70 have studied the $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$ decay where only a second order term could explain deviation from uniformity of the Dalitz plot. They also get results consistent with a zero coefficient.

In the literature other definitions of slope parameters have appeared. We have converted to the definition of g in Eq. (1) whatever experimental quantity has been reported. We give the conversion to the definition (1) for two of the most widely used parametrizations and tabulate the conversion factors for the reader's convenience.

(a) For analysis of charged K's the expression often used is:

$$|M|^2 = 1 + a_y Y$$

with

$$Y = \frac{3T_3 - Q}{Q}$$
, $Q = m_K - \sum m_i$

The relevant formulae are:

Y =
$$-\frac{3}{2} \frac{s_3 - s_0}{m_K \Omega} + \Delta$$
, with $\Delta = \frac{m_{12} - m_3}{\Omega} (2 - \frac{m_3 + m_{12}}{m_K})$

and

$$g = \frac{-c_y a_y}{1+a_x \Delta}$$
, with $c_y = \frac{3}{2} \frac{m_{\pi^+}^2}{m_K \Omega}$

(b) For the analysis of K^{0} decay the expression often used is:

$$|M|^2 = 1 + 2a_t \frac{m_K}{m_{\pi^+}^2} (2T_3 - T_3 max)$$

with

$$T_{3 \max} = \frac{m_K^2 + m_3^2 - 4m_{12}^2}{2m_K^2} - m_3$$
.

The relevant transformations are

$$T_{3} = -\frac{s_{3}^{-s_{0}}}{2m_{K}} + \frac{Q}{3} (1 + \Delta)$$

and

$$g = \frac{-2a_t}{1+a_tc_t} , \text{ with } c_t = \frac{2m_K}{m_{\pi^+}^2} \left[\frac{2}{3}Q(1+\Delta) - T_{3\max}\right]$$

For the reader's convenience we give a table of numerical values for Q, $T_{3 max}$, Δ , c_{y} and c_{t} , obtained using the masses from our August 1970 edition.

	Q	$T_{3 max}$	Δ	су	°t
rt	74.96	48.15	0	0.7894	0.0924
r ' [±]	84.24	53 .2 7	-0.0789	0.7025	-0.0778
r ⁰	83.54	53.92	0.0798	0.7028	0.3176

Some K^0 authors use the above form of matrix element:

$$|M|^2 = 1 + 2a_u \frac{m_K}{m_{e^+}^2} (2T_3 - T_3 max)$$

but define

$$T_{3 \max} = \frac{2}{3}Q.$$

The relevant transformation is then

$$g = \frac{-2a_u}{1 + a_u c_u}$$
, with $c_u = \frac{2m_K}{m_{+}^2} \Delta = 0.2272$.

Older K^0 analyses were done using

$$\left|\mathbf{M}\right|^2 = \mathbf{1} + \mathbf{a}_{\mathbf{v}} \frac{\mathbf{T}_3}{\mathbf{m}_{\mathbf{K}}}$$

The relevant transformation is then

$$g = \frac{-c_v^a v}{1 + d_v^a v}$$

$$c_v = \frac{m_{\pi^+}^2}{2m_K^2} = 0.0393$$

and $d_v = \frac{Q}{3m_K} (1 + \Delta) = 0.0604$.

with

LO CHARGED K ENERGY DEPENDENCE OF DALITZ PLOT MATRIX FLEMENT SQUARED = L + G (53-50)/(MPI+**2)

 GT+
 LINEAR
 EWREGY DEPENDENCE (G) FOR TAU DECAYS
 CHARGED K INTO PI PI+PI-THESE EXPTS FIT M=*2+1+AYY. WE LIST G IN THE MAIN LISTING AND GIVE AY AT RIGHT. G=1.5*AY*(HNE). SEE NOTE ABOVE.

 GT+
 G1VE AY AT RIGHT.G=1.5*AY*(HNE)*21/(HXE). SEE NOTE ABOVE.
 10/69

 GT+
 G994
 -0.218
 0.024
 10/49

 GT+
 G944
 -0.221
 0.024
 10/49

 GT+
 294
 -0.223
 10/49
 10/49

 GT+
 294
 -0.223
 10/24
 10/49

 GT+
 294
 -0.223
 10/24
 10/49

 GT+
 294
 -0.218
 0.016
 BUTER
 68 HBGC
 AV=0.22A+.002
 10/49

 GT+
 294
 (-0.233)
 (0.012)
 GURAMASTE 70 HIGC + AV=0.22A+.003
 4/70

 GT+
 SOLO TA ADDED - ALL EVENTS INCLUDED BY HOFFMASTE 70
 1/71*
 1/71*

 GT+
 ALSO INCLUDES DGE EVENTS
 GT
 1/47*
 1/71*

 GT+
 MAG
 -0.2057
 0.0033
 FERROFLUZ GI HME - AY=0.24*--0.29
 10/69

 GT INEAR EARGRY DEPENDENCE (G) FOR TAU DECAYS

Note on K⁺ and K⁰ Form Factors

The definition of all the variables listed in this section can be found in the text. As in the past we keep the values of ξ as obtained in μ polarization measurements (ξ_B) separated from the values obtained from branching ratios and spectra (ξ_A), but combine them in order to display in an ideogram the discrepancies in Re ξ .

Many approximations are usually made to extract these parameters from the experimental data:

1) Scalar and tensor currents. There is no evidence for scalar or tensor currents so pure vector current is usually assumed.

2) Im ξ so far is consistent with 0, and this is usually assumed in most of the experiments.

3) The q² dependence of the f_± form factors is assumed to be linear, as in Eq. (38) in the main text.
 4) Radiative corrections are not serious; they change λ_± by about 0.005 (GINSBERG 67 and 70).

 Momentum transfer dependence of ξ. From Eq.
 (38) and Eq. (39) in the main text, it is clear that in the first approximation one has

$$q^2$$
) = $\xi(0)[1 + (\lambda_- - \lambda_+)t]$,

where $t = q^2/m_{\pi}^2$. This shows that the three parameters $\xi(0)$, λ_{-} , and λ_{+} can be highly correlated. Many of the

Stable Particles

old experiments have assumed $\lambda_{+} = \lambda_{-} = 0$; however, recently it has become clear that in order to eliminate the discrepancies between ξ_{A} and ξ_{B} , λ_{+} and λ_{-} should be included in the fits. We discuss each method of determining ξ separately.

a) <u>Branching ratio analysis</u>. From Eq. (40) in the main text it is clear that $\frac{d\xi}{d\lambda_+} \approx -\frac{1.4}{0.125} \approx -11$. Therefore for $\lambda_+ = 0.05$, $\Delta \xi = -0.55$. The old hypothesis $\lambda_+ = 0$ certainly is not very good.

b) <u>Dalitz plot analysis</u>. From Eq. (37) in the main text, it appears that the Dalitz plot distribution of the K_{e3} decay is essentially dependent only upon λ_{+} and independent from ξ ; therefore, the values of λ_{+} obtained from K_{e3} data can be directly averaged.

On the other hand for the $K_{\mu3}$ Dalitz plot, all three parameters are involved and they are correlated. For example, CHIEN 70 (in a neutral K experiment) find that λ_{+} is not sensitive to ξ and λ_{-} variations, whereas ξ and λ_{-} are highly correlated. HAIDT 71 (in a K⁺ experiment) find that the uncorrelated parameters are $\xi(0)$ and $\xi(6.8)$. Because of these correlations, we list the values of λ_{+} from $K_{\mu3}$ decays separately from those obtained from K_{e3} decays and do not list λ_{-} at all. We refer the reader to the original papers for discussion of the λ_{-} parameter.

c) <u>Muon polarization analysis</u>. The μ polarization depends only on $\xi(q^2)$; the λ_{+} and λ_{-} parameters do not appear explicitly in Eq. (41) in the main text. For large statistics one could determine $\xi(q^2)$ and then derive $\xi(0), \lambda_{+}$, and λ_{-} . This has not been possible with the statistics available so far.

In addition to the most common correlation among ξ , λ_+ , and λ_- , there are many experimental difficulties. For example, in the Dalitz plot both ξ and λ_+ are most sensitive to the low E_{π} region, which happens to be the least populated area; hence, the parameters are determined with a very small fraction of the data. Many experiments are sensitive only to part of the Dalitz plot. Others fit only one projection of it, which may yield more than one solution.

In conclusion, due to various experimental difficulties and inhomogeneous treatment of the data by the various experiments, in this edition we continue our past policy of not quoting average values, and limit our review to a listing of experimental data. Again, as in the past, the table does not include any values for λ and ξ .

For a recent review on K_{l3} form factors, see Gaillard and Chounet.¹

Particles Stable

For notation, see illustrated key at beginning of data card listings.

Reference

1. M. K. Gaillard and L. M. Chounet, K₁₃ Form Factors, FS FS FS CERN 70-14 (May 1970), and Phys. Letters 32B, 505 (1970).

8/67

F+ AND F- ARE FORM FACTORS FOR THE VECTOR MATRIX ELEMENT FS AND FT REFER TO THE SCALAR AND TENSOR TERM

10 CHARGED K FORM FACTORS

XIA = F-/F+ (DETERMINED FROM SPECTRA AND KMU3/KE3) XIA XIA XIA XIA XIA XIA SOME OF THE OLDER EXPERIMENTS HAVE EVALUATED XI ASSUMING THAT IT IS INDEPENDENT OF THE MOMENTUM TRANSFER (1), i.e., they set i=1-=0. OTHERS HAVE ASSUMED A VALUE FOR L+ AND USED 1-=0. OHLY RECENTLY BOTH L+_L AND XILO) (OR THREE RELATED PARAMETERS) HAVE BEEN INCLUDED IN THE FITS. SEE HAIDT 71. (OR CHIEN TO FOR KOL).
 AUXING UPLL AND ALLOT TUR TIMEE RELATED PARAMETERS) MAVE BEEN INCLU

 XIA
 DED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 DED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED IN THE FITS. SEE HAIDT TL. IOR CHIEN TO FOR KOLD.

 XIA
 LED.T
 LED.T

 XIA
 LED.T
 LED.T
 LED.T</ XIA XIA AVERAGE MEANINGLESS (SCALE FACTOR = 1.3) XIB = F-/F+ (DETERMINED FROM MU POLARIZATION IN KMU3) ------XIB THE MU POLARIZATION IS A MEASURE OF XI(T). NO ASSUMPTIONS ON L+-NECESSARY, T SHOULD BE SPECIFIED.

X18 X18 2100 +1.2 2.4 1.8 BORREANI 65 HLBC + POLARIZATION 8/67 397 -1.4 1.8 CALLAHAI 66 FRG + TOTAL POLA- 8/67 2950 -0.7 0.9 3.3 CALLAHAI 66 FRG + TOTAL POLA- 8/67 86000 -0.6 1.1 BETTELS 64 FRG + TOTAL POL + 70 6000 -1.9 0.3 BETTELS 64 FRG + TOTAL POL + 74.9 11/69 3137 FLS 68 VALUES AT T=0 AND T=4.9 ARE UNCORRELATED. XIB
 X1B
 397
 -1.4
 1.8
 CALLANA

 X1R
 2950
 -0.7
 0.9
 3.3
 CALLANA

 X1R
 M6000
 -0.6
 1.1
 BETTELS
 BETTELS

 X1B
 M5000
 -0.6
 1.1
 BETTELS
 BETTELS
 CHLSANG

 X1B
 X1B
 APETTELS
 69 AULES AT T=0 AND T=4.9 AB
 AB
 X1B

 X1B
 VERAGE
 MEANINGLESS
 SCALE
 FACTOR
 = 1.0)

 REAL PART OF XI
 (CUMBINED XIA AND XIB)

 2100
 +1.2
 2.4
 1.8
 BORREANI
 65
 HLBC +
 MU POL

 2648
 0.0
 1.1
 0.9
 CALLAHAI
 66
 FRBC +
 MU POL

 2648
 0.0
 1.1
 0.9
 CALLAHAI
 66
 FRBC +
 MU POL

 364
 +0.72
 0.37
 CALLAHAN
 66
 FRBC +
 POL
 707.1

 397
 -1.4
 1.9
 CALLAHAN
 66
 FRBC +
 POL
 POL
 107.1

RXI	2950	-0.7	0.9	3.3	CALLAHAN	66	FRBC	+	MU POL (LONG.)	
RXI	86000	-0.6	1.1		BETTELS	68	FRBC	+	4U POL T=0	
RXI	31 3 3	-0.95	0.3		CUTTS	68	OSPK	•	MU POL T=3	
RXI		0.91	0.82		ZELLER	69	ASPK	+	B.R.	
RXI	в	-0.35	0.22		BOTTERIL	70	OSPK		KM3/KE3,LM+=.045	10/69
RXT	3240	-0.50	1.50		HAIDT	71	HLBC	٠	0.P. L+=.055,T=0	2/71*
RXI	1505	-0.72	0.21		HAIDT	71	HLBC	+	KM3/KE3, L+=.029	2/71*
RXI										
RXI	AVER AGE	MEANINGLE	ESS (SCALE	FACTO	R = 1.7)					
			(SEE ID	EOGRAM	BELOW)					

111 FS/F+ RATIO DE SCALAR TO F+ COUPLINGS (ABS. VALUE) ------(.18) OR LESS (.30) OR LESS (0.23) OR LESS BELLOTT2 67 HLBC 90 PERC, CONFLEV 10/69 KALMUS 67 HLBC + 95 PERC, CONFLEV 10/69 BOTTERILI 68 ASPK CL=90 PERCENT 8/66 COUPLINGS (ABS. VALUE) -----FT/F+ RATIO OF TENSOR TO F+ (.58) OR LESS (1.1) OR LESS (0.58) OR LESS BELLOTT2 67 HLBC 90 PERC. CONFLEV 10/69 KALMUS 67 HLBC + 95 PERC. CONFLEV 10/69 BOTTERIL1 68 ASPK CL=90 PERCENT 8/66 FT LAMBDA + (LINEAR ENERGY DEPENDENCE OF F+ IN KE3 DECAY) -------For Rad. Corr. to the dalitz plot, see ginsberg 67. L+E L+E
 ALTIZ PLOT, SEE GINSBERG 67.

 RROUM
 62 XERG + PIO SPEC.NO P.C.

 JENSEN
 64 XERG + PIO SPEC.NO R.C.

 RRARNI
 64 HAC + F. SPEC.NN R.C.

 RATARNI
 64 HAC + F. SPEC.NN R.C.

 ALTIZ PLT, PLT, PLT, PLT, R.C.
 11/42

 ASK + DLTZ PLT, PLT, NG R.C.
 8/67

 OLIA KALMUS
 67 FBC + E.PI SPEC.NN R.C.
 8/67

 BOTTERILL 68 AND K + E.SPEC USFS R.C.
 6/68

 ANTTERIL 70 USPK
 PIO SPECTRUM KC
 6/64
 217 407 230 854 .045 +0.036 L+E .045 .029 .05 0.017 .016 .013 (.04) 0.08 .015 0.0286 0.0074 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG LAMBDA + (LINFAR ENERGY DEPENDENCE OF F+ IN KMU3 DECAY) FOR RAD. CORR. TO DALITZ PLOT OF KMU3 SEE GINSBERG 70 L+M L+M L+M 0.055 0.025 HAIDT 71 HLBC KMU3 DAL. PLOT 2/71* REFERENCES 10 CHARGED K (494, JP=0-11=1/2 BIRGE, PERKINS, PETERSON, STORK, WHITEHEA (LRL) ILOFF, GOLDHAAFR, LANNUTI, GILBERT + (LRL) ALEXANDE, JOHNSTON, AGCELALGIGH (DUNGLIN INST) E R CINHEN, K M GROMEJ, DUMOND (AI+LEL+CIT) EISENBERG, KOGHL, JOHANNN, NIKOLIC + (MERN) BURNDWES, CALOWELL, FRISCH, MILL + (HT) S TAYLOR, HARRIS, GREAR, LEE, BAUYEL (COLUMBIA)
 RIRGE
 56
 NC
 4
 R34

 ILDFF
 56
 PR
 102
 927

 ALEXANDE
 57
 NC
 6
 478

 COHEN
 57
 FUND.CONS.PHYS.
 57
 FUND.CONS.PHYS.

 BURROWES
 59
 PRL
 2
 12
 17

 TAYLOR
 59
 PR
 114
 359

 FREDEN
 60
 PR
 118
 564

 BARKAS
 61
 PR
 124
 1209

 BHOWMIK
 61
 NC
 02
 877

 FERRO-LU
 61
 NC
 22
 1087

 NORDIN
 61
 PR
 123
 166

 ROF
 61
 PR
 123
 166

 ROF
 62
 PR
 128
 2398

 BRYMANSKI
 62
 PR
 18
 450
 S C FRFDEN,F C GILBERT,R S WHITE (LRL) BARKASLAVER,MASON,NORRIS,NICKOLS,SHIT (LRL) B BOHMIK,P C JAIN,P C MATHUR (DELHI UNIV) FERRO-LUZZI,MILLER,MURRAY,ROSENFELD+ (LRL) PAUL NORDIN JR (LRL) ROE,SINCLAIR,BROWN,GLASER + (MICH+LRL) BOYARSKI,LOHN,NIEMELA,RITSON (MIT) BOYARSKI,LOHN,NIEMELA,RITSON (MIT) BOWN,KADYK,TRILLING,RDE+ (LRL,MICH)
 00.1mm
 12
 PHL
 0
 9.0

 80R4X5
 63
 PRL
 12
 12.3

 80R4R5ANI
 64
 PL
 12
 12.3

 CAWERNI
 64
 PL
 16.8
 146.3

 CAWERNIN
 64
 PRL
 13
 101

 GIACOMEL
 64
 PRL
 13
 101

 GIACOMEL
 64
 PRL
 13
 103

 GIACOMEL
 64
 PRL
 13
 103

 GREINER
 64
 PRL
 13
 284

 JENSEN
 64
 PRL
 13
 284

 JENSEN
 64
 PRL
 13
 90

 SHAKLEE
 64
 PRL
 13
 68
 W H BARKAS, J. N. DYER, H. H. HECKMAN (L.R.) G. RUDREANI, G. RINAUDO, A. WERKRRUICK. (TURIN) A. CALLAHAN, MARCH, R. STARK (WISCONSIN) CANFERINI, CLINE, FRY, POWELL (WISCONSIN, RL) O. CLINE, H. FRY (WISCONSIN) GIACOMELLI, MONTI, GUARENI+ (BOLOGNA, MUNICH) D. GREINER, W. OSORONE, M. RARKAS (LRL) JENSEN, SHAKLFE, POF, SINCLAIRAS (LRL) JENSEN, SHAKLFE, POF, SINCLAIRAS (MICHIGAN) KERDAN, DUPUTEIL, DOWD KERNAN, PULPOWELL, DOWD (LRL, WISC) SHAKLEE, JENSEN, RDE, SINCLAIR (MICHIGAN) RIRGE, ELY, GIDAL, CAMERINI, CLINE + (LRL+HIS) RISI, BORREANI, CESTER, FERKARO + (TURIN) BISI, MARZARI - CHIESA, RINAUDO I TURINO, INFN BORREANI, GIDAL, RINAUDO, CAFORIN+(BARIJURIN) CALLAIAN, O CLINE CALLAIAN, O CLINE A CLINE, WISCHNSTON CAMERINI, CLINEGOIDAL, KALMUS, KERNANIWIS'I SIRI BIRGE 65 PR 139 B 1600 BISI 65 NC 35 768 BISI 65 PR 139 B 1068 RNRFRAN 65 PR 140 B1686 CALLAMAN 65 PR 140 B1686 CALLAMAN 65 PRL 15 129 CAMERINI 65 PL 15 293 A CLINE, W F FKY DE MARCO,GROSSO, RINAUDO (TURINO-CERN) SYER, BEALLJOEVI IN, SHEPHARD+(MD+PPA+PALMEN FITCH, QUARLES, WILKINS (PRINCETON+MT HOLYK) QUITED BY BARKAS QUITED BY BARKAS GUARGE HIETFR, KOLLER, TAYLOR, GRAUMAN (STEV) GEORGE H TRILING LIRL) 1965 AAGONNE CONF, PAGE 5 POH-SHIEW YOUNG (THESIS BERKELEY) (LRL) P-S YOUNG, W.Z.OSBORNE, W.H., BARKAS (LRL) DE MARCO 65 PR 140 B 1430 ALSO 65 PR 140 B 1430 ALSO 65 PR 140 1045 FITCH 65 PR 140 B 109R GREIMER 65 ARWS 15 67 STAVER 65 PR 138 0 40 THALLING 65 UCB 1500 45 HOLMO 65 UCB 1500 45 OUNG 65 UCB 150 1464 CALLAHAI 66 PR 150 1153 CALLAHAN,CAMERINI+(WISC,LRL,RIVERSIDE,BARI) CALLAHAN 66 NC 44A 90 A C CALLAHAN (WISCONSIH) CESTER 66 PL 21 343 CESTER,FSCHSTWUTH,ONEILL+ (PRINCFTON-PENN) CESTER 66 SEE ALSO FOOTNOTE L OF AUFRBACH 67 + ODARS.HANN.HCFARLANE,WHITE+ (PENN,PRIN) BELLOTTI,PULLIA (MILAN) BELLOTTI,FIORINI,PULLIA (MILAN) BELLOTTI,FIORINI,PULLIA (MILAN) RISI,CESTER,CHIESA,VIGONE (TORINO) ROTTERILL,BROWN,CORBETT,CULLIGAN + (OXFORD) AUERBACH 67 PR 155 1505 BELLOTT 67 HETDELBERG CON BELLOTT 67 HETDELBERG CON ALSO 66 PL 20 690 BISI 67 PL 258 572 BOTTERIL 67 PRL 19 982 BOTTERIL 67 SEE 4LSO BOT ROWEN 67 PR 154 1314 CONF LL 68 BOWEN, MANN, MCFARLANE, HUGHES+(PENN-PRINCETO) CLINE 67 HEIDELBERG CONF FLETCHER 67 PRL 19 98 FORD 67 PRL 18 1214 IMLAY 67 PR 160 1203 KALMUS 67 PR 159 1187 ZINCHENK 67 RUIGERS(THESIS)
 CLINE, HAGGERTY, SINGLETON, FRY+
 (WISCONSIN)

 FLETCHER, RELER, FDURADS, +
 (ILLINDIS)

 LEMONICK, ANDENBERG, FIROUE
 (PRINCETON)

 IMLAY, ESCHSTRITH, FRANKLIN+
 (PRINCETON)

 KALMUS, KENNAN
 (RL)

 ZINCHENKO
 (RUTGERS)

 BETTELS
 68 NC 564 1106

 BOTTERIL
 68 PR 171 1402

 BOTTERIL
 68 PR 174 1661

 BOTTERIZ
 68 PRL 21 766

 BUTLER
 68 URL-18420

 CHANG
 68 PRL 20 510
 AACHEN-BARI-BERGEN-CERN-EP-NIJMFGEN-DRSAY+ BOTTERILL, RROWN, CORRETT, CULLIGAN+ (DXFORD) BOTTERILL, BROWN, CLEGG, CDABETT, + (DXFORD) ROTTERILL, BROWN, CLEGG, CDABETT, + (DXFORD) + SLAND, GOLDHASER, AUDUARER, HIRATAL (LRI) + CHANG, YDDH, FHRLICH, PLAND+(MARYLAND, RUTGERS)
 CHEN
 68
 PRL
 20
 71

 CUTTS
 68
 PRL
 20-955
 4
 50
 65
 PR
 138
 8969
 9
 184
 130
 65
 PR
 144
 130
 61
 FL
 61
 64
 PL
 278
 586
 61
 61
 61
 61
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64
 64</td CHANG, TUDH, FHRLIGH, FLANIS LANKILAND, KUI DERS J CHENG, CUTTS, KIJEWSKI STISTINIG, H. (LRL, HIT) CUTTS, STIENING, HIEGAND, DEUTSCH (LRL, HIT) CUTTS, STIENING, MIEGAND, DEUTSCH (LRL, HIT) ACHEN-BARTI-CERN-EP-DESATPADOVA-VALENCIA EISLER, FUNG, MARATECK, HEYER, PLAND (AUTGRS) ESCHSTRUTH, FAANKLIN, HOMEKSL, PLAND (AUTGRS) HTSJEIGENGS, MOSEN+ (COLUMPIA, ADTEGTS) HTSJEIGENGS, UNIV PARIS ORSXY CAMERINI 69 PRL 23 326 DAVISON 69 PR 180 1333 ELY 69 PR 180 1319 EMMERSON 69 PRL 23 393

+LJUNG,SHEAFF,CLINE (WISCONSIN) +RACASTOW,BARKAS,EVANS,FUNG,PRRTER+ (RIVS) ELY,GIDAL,HAGOPIAN,KALMUS+ (UCL,WIS,LRL) EMMERSON-QUIRK (OXFORD)

S44 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

Stable Particles

For notation, see illustrated key at beginning of data card listings	ī.
R3 K05 INTO (P1+ P1-1/(P10 P10) (P1/P2) P3 247 2.12 0.17 R070K1 69 HLBC 5/7 R3 3016 2.285 0.055 G0RBL 69 0.59K K+N TO K0P 5/6 P3 3700 2.10 0.06 M0RFIN 69 HLRC K+N TO K0P 10/6	9
R3 AVG 2.196 0.065 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.6) R3 FIT 2.189 0.046 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3) (SEE INENGRAM RELOW)	
WEIGHTED AVERAGE = 2.196 ± 0.065 Error scaled by 1.6	
Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of \mathbf{x}_r , $5\mathbf{x}_r$ and scale factor, which are differ- ent from the values shown here.	
CHISQ HDRFIN 69 HLBC 2.6	
1.9 2.1 2.3 2.5 2.7 =0.068) K SHORT B.R. (PI+PI-)/(PIO PIO)	
P4 (KOS INTO PI+ PI- PIO)/(KOL INTO PI+ PI- PIO) TEST UF CP VIOLATION - SEE TEXT FOR DEFINITIONS CPT ASSUMED VALIO - (I.E. RE(A)=0) - ONLY (IMA)=*2 QUOTED HERE R4 IA 0.45 OR LESS ANDFRSON 65 HAG. 90 PERCENT CL 10/6 R4 0.45 OR LESS ANDFRSON 65 HAG. 90 OPERCENT CL 10/6 R4 0.45 OR LESS BEHR 66 HLBC 90 PERCENT CL 8/7 R4 0.45 OR LESS WEBBER 70 HBC 90 OPERCENT CL 8/7 R4 5 (1.7) OR LESS WEBBER 70 HBC 90 PERCENT CL 8/7 R4 C 71 0.8 OR LESS WEBBER 70 HBC 90 PERCENT CL 8/7 R4 50 (I.2) DR LESS WEBSER 70 HBC 90 PERCENT CL 8/7 R4 50 (I.2) DR LESS WEBSER 70 HBC 90 PERCENT CL 8/7 R4 50 (I.2) DR LESS CT 11 HAC 90 OPERCENT CL 8/7 R4 9 (I.2) DR LESS CL=.95 MEISNER 71 HBC 0.0 CL=.9 HOT 40/41.1 2/7 R4 9 (I.2) DR LESS CL=.95 MEISNER 71 HBC 0.0 CL=.9 HOT 40/41.1 2/7	9 6 0* 1*
R5 K05 INTO (MU+ MU-)/CHARGED (UNITS L0**-5) (P3)/(P1) R5 110.01 (R LESS ROTT-BODE 67 DSPK 90 PER CT CONF 8/6 R5 120.01 OR LESS ROTT-BODE 67 DSPK 90 PER CT CONF 8/6 R5 120.01 OR LESS ROTH-MODE 67 DSPK 90 PER CT CONF 2/7 R5 (1.07) OR LESS HYAMS 69 DSPK 90 PER CT CONF 10/6 R5 (1.27) OR LESS STUTIXE 69 DSPK 90 PER CT CONF 5/6 R5 S12.61 OR LESS STUTIXE 69 DSPK 90 PER CT CONF 5/6 R5 VALUE CALCULATED BY US-USING 2.3 INSTEAD OF 1 EVENT, 90 PERC.CL 10/6	7 1*
86 KOS INT3 (PI+ PI- GAMMAJ/(PI+ PI-) (UN_L)9*+-33 (PS)/(PI) 86 27 NO PATIO GIVEN BELLOTTI 66 HBC PG GT 50 MEV/C LO/6 86 LO 3.3 1.2 WEBBER 70 HBC 9G GT 50 MEV/C LO/6	9
R7 KOSINTO(F+E-)/CHARGED (UNITS10+=-5) (P4)/(P1) R7 (50.0) URLESS BOHM 69 OSPK 90 PERCTCONF 2/7	l*
****** ******** **********************	
12 SHIRT-LIVED NEUTRAL K (49H, JP=0-) [=1/2 80L0T 58 PRL 1 150 E BOLDT, D CALDHELLY PAL (MIT) CRAWFORD 59 PRL 2 266 CRAWFORD CRESTLADUCESS.COND.TICHD + (181)	
BAGLIN 60 NC 18 1043 BAGLIN-BLOCH, BRISSON-HENNESSY + (PARIS EP) BOWEN 60 PR 119 2030 BOWEN, HARDY-REYNOLDS, SUN, MOORE (PRINCE+ARL) COLUMBIA 60 ROFL GONE 72 Y SCHWARIZ + (COLUMBIA)	
RROWN 6L NC 19 1155 BROWN, BRYANT, BURNSTFIN, GLASER, KADYK+ (MICH) ANDERSON 62 CERN COVE 835 JA ANDERSON, FS CRAWFORD + (LRL) BERTANZA 62 PREPRINT DI05 BERTANZA, CONNOLLY-CULWICK, EISLER + (DNL) (BEFTANZA UMPURLISHED, BUT RECERTIFIED BY AUTHORS, AUGUST 661	
BROWN 63 PR 130 769 BROWN,KADYK,TRILLING,ROE + (LRL+MICHIGAN) CHRETIEN 63 PR 131 2208 CHRETIEN+ (BRANDEIS+BROWN-HARVARDH MIT) KRETSLER 64 PR 136 B 1074 M KREISLER,O UVERSETH,J CRONIN (PRINCETON) ANDERSON 65 PRL 14 475 + CRAMFOR,GOLDEN,STERN,BIMFORD + (LRL+WISC)	
ALFF-STE 66 PL 21 595 ALFF-STEINBERGER,HEUER,KLEINKNECHT + (CERN) AUERBACH 66 PR 149 1052 AUERBACH,DOBBS,LANDF,MANN,SCIULLI+ (PENN) SFF AI SO AUERBACH 65	
BALTAY 66 PR 142 932 BALTAY SANDWEISS, STONEHILL + (YALE+BNL) BFHR 66 PL 22 540 BFHR, PRISSON, PFIAUH (EP, MILAN, PADUA, ORSAY) BFLUITI 66 04 23 27 + + BFLUTI 66 04 23 27 + + (MILAN+PADUA) RITT-RDD 66 92 32 27 ROTT-BUDENHAUSEN, DE BOUARD + (CERN) KIRSCH 65 PE 147 93 L KIRSCH, PS CHMIDT (COLUMBIA)	

BOTT-BODENHAUSEN,DF BOUARD,CASSEL+ (CERN) DONALD,EOWARDS,NISAR+(LIVERPODL,CERN,PARIS) HILL,ROBINSON,SAKITT + (BNL,CARNEGIE)

 BDHM
 69
 THESIS
 A. BDHM
 (AACH)

 BDZDKT
 69
 PL 308 498
 +FERNVES,GOMBDSI,NAGY,SURANYI
 BUDAPEST

 DIVLE
 69
 PL 308 498
 +FERNVES,GOMBDSI,NAGY,SURANYI
 BUDAPEST

 GDABI
 69
 PL 22
 672
 CDABI,GREEN,HAKEL,MOFFETT.ROSEN+(ROCHESTER)

 GDABI
 69
 PRL 22
 678
 S21
 CDABI,GREEN,HAKEL,MOFFETT.ROSEN+(ROCHESTER)

 MOFEN
 60
 PRL 27
 660
 MOREN, DITLO, NUL INDERN,LORRNY, ECRNIMIN ARBOR

 MOFEN
 69
 PRL 27
 000
 #AARSHIAN,JOHES,MANTSCH.ORR,SMITHAWA ARBOR

WEBBER 70 PR DI 1967 +SOLMITZ,CRAMFORD,ALSTON-GARNJOST (LRL) ALST 69 UCRL 19226 THESIS B R WEBBER (LRL) WEISNER 71 PR 3D 59 +MANN,HERTZBACH,KOFLER + (MASA+BNL+YALE)

80TT-80D 67 PL 248 194 DONALD 68 PL 278 58 HILL 68 PR 171 1418

Stable Particles

Note on $K^0_L - K^0_S$ Mass Difference

Because the mass difference is now known almost as precisely as the K_S^0 lifetime, we no longer give the mass difference in units of inverse K_S^0 lifetimes. Following the convention of recent mass difference experiments (FAISSNER 69, CULLEN 70, ARONSON 70), we now give $\Delta M/\hbar$ in units of 10^{10} sec^{-1} . For ease of comparison, older experiments have been converted to these units by dividing by the K_S^0 lifetime. We have used the value of the K_S^0 lifetime given in this review (0.862×10^{-10} sec) in those cases where the auchor's value is not given.

13 KOL-KOS MASS DIFFRENCE WF GIVE (KOL-KOS MASS DIFFRENCE / HBAR) IN UNITS DF 10**10 SEC-1

т	(2.20) (0.35)	FITCH	61 CNTR		
	0.84 0.29 0.	22 G000	61 HLBC		
τ	1.02 0.23	CAMERINI	62 HLBC	SEE NOTE C BELOW	8/67
с	VALUE CHANGED FROM 1.7 (SEE	TABLE 1 OF CA	MERINE 6	61	8/67
T	0.55 0.24	AUBERT	65 HLBC		6/66
	0.25 0.36 0.	26 BALDO-CEO	65 HLBC	ASS.CP CONS.	
ΤA	0.64 0.12	CHRISTENS	65 OSPK		6/66
Α	CHRISTENSON 65 HAS BEEN CORE	ECTED FOR INT	ERFERENC	E BY FITCH 65 FTNOT	1/71*
τ .	(0.70) OR LESS	FITCH	65 OSPK	CF. MEISNER 66	7/66
v	130 (0.89) (0.15)	V I SHNE VSK	65 OSPK	CU AND AL REGEN	8/67
v	VISHNEVSKY 65 NOT CORRECTED	FOR INTERFERE	NCE EFFE	CTS	3/68
	0.514 0.039	ALFE-STEI	66 OSPK		6/65
	84 0.42 0.24 0.3	6 BALDO-CEO	66 HLBC	KO+N INTO HYPER.	8/67
B	(0.531) (0.027)	BOTT-BODE	66 OSPK	C REGEN	9166
т	77 0.58 0.17	CAMERINI	66 H8C.	DBC KO+N INTO HYPER	8/67
N	72 (+ 0.64) (0.18)	CANTER	66 DBC	KO SCATTER IN D2	11/66
N	ERROR IGNORES UNCERTAINT	Y OF PHASE SH	IFTS		
	95 0.62 0.10 0.1	6 CHANG	66 HBC	KO+P INTO HYPER.	8/67
	0.81 0.17	FUJII	66 OSPK	IRON REGENERATOR	9766
	59 0.74 0.34	MEISNERL	66 HBC	SEE NOTE M1	6/66
M1	+ SIGN FAVORED	METSNER2	66 HBC		9/65
	0.38 0.16	JOVANOVIC	66 OSPK	C+URANIUM REGEN.	11/66
т	136 + 0.64 0.19	CANTER	67 DBC	KO+D INTO HYPER.	11/67
	0.65 0.11	MESCHKE	67 OSPK		11/67
	590 0.59 0.13	BALATZ	68 OSPK	AL REGENERATOR	3/68
	0.520 0.044	CARNEGIE	68 HBC	GAP METHOD	3/68
т	+0.487 0.046	MELHOP	68 OSPK	ST.STEEL REGEN	6/68
8	0.547 0.024	80TT-800	69 OSPK	C REGEN	1/71*
8	BOTT-BOD 69 IS A REEVALUATIO	IN OF BOTT-BOD	66		1/71*
F	0.555 0.020	FAISSNER	69 ASPK	REGEN IN CU	10/69
F	ESTIMATED ADDITIONAL SYSTEM	TIC UNCERTIAN	TY LESS	THAN TWO PERCENT	1/71*
	0.542 0.006	CULLEN	70 CNTR		1/71*
	0.542 0.006	ARONSON	70 ASPK	GAP METHOD	1/71*
D	0.534 0.006	CARNEGIE	70 CNTR		2/71*
D	CHANGED FROM KIEV CONF.VALUE	BY AUTHORS			3/71*
T	A KOS LIFETIME OF 0.862 10**	-10 SEC WAS L	SED IN C	ONVERTING THE MASS	1/71*
τ	DIFFERENCE FROM UNITS OF INV	ERSE KOS LIFE	TIMES TO	ABSOLUTE UNITS.	1/71*
т	VALUES NOT BEARING THIS FOOT	NOTE EITHER W	ERE GIVE	N IN ABSOLUTE UNITS	1/71*
т	OR WERE CONVERTED USING THE	AUTHORS VALUE	DE THE	KOS LIFETIME.	1/71*

T OR WERE CONVERTED USING THE AUTHORS VALUE OF THE KOS LIFFTHE. AVG 0.5398 0.0033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (SEE IDEOGRAM BELOW)

WEIGHTED AVERAGE = 0.5398 ± 0.0033 ERROR SCALED BY 1.0

Stable Particles

8/66 8/66 8/66 6/66 6/66 6/66 8/67

7/66 2/71*

7/66 2/71*

9766

For notation, see illustrated key at beginning of data card listings.

Stable Particles

TAU O SLOPE PARAMETER

THE WAGNITUDES OF FTA+- AND OF ETA00 ARE DERIVED FROM BR. RATIOS. FOD THE QUANTITIES WEASURED BY THE INDIVIDUAL EXPERIMENTS SEE LISTINGS OF SI389 AND SI382 (ETA+-) AND OF SI3817 AND SI3819 (ETA00). FOR THE READER'S CONVENIENCE WE LIST HERE THE DERIVED QUANTITIES ETA+-(CALLED E+- BELOW) AND (ETA00)**2 (CALLED EOS BELOW)

505		1001++2 =	TALKE TO .	ZPIUIJAINS TO EP	1071++2 10	1113 1011 01	
EQS	59	5.06	1.4	BANNER2	68 OSPK		10/69
EOS	0	-2.	7.0	BARTLETT	68 OSPK		10/69
EOS	F 180	(13.)	(4.)	GAILLARD	69 OSPK		10/69
FOS	133	14.1	3.4	CENCE	69 OSPK		10/69
EOS	29	4.08	0.9	BARNIN	70 HLBC		12/70*
EOS	30	3.61	1.9	BUDAGOV	70 HLBC		10/70*
EOS		11.03	4.3	CHOLLET	70 OSPK	CU REG.,4 GAMMAS	10/70*
EOS	F 172	9.9	3.4	FAISSNER	70 OSPK		12/70*
EOS	F FAISS	NER 7) C	ONTAINS SA	ME 2PTO EVENTS A	S GAILLARD	69	
EOS							
EOS	AVG	4.9	1.0	AVERAGE (ERROR	INCLUDES SC	ALE FACTOR OF 1.61	
EOS	FIT	5.0	1.0	FROM FIT (FRROR	INCLUDES SC	ALE FACTOR OF 1.51	2/71*
			(SEE ID	EGGRAM BELOW)			
E+-	ETA+-	- ≃ A(KL	TO PI+PI-)/A(KS TO PI+PI-) UNITS LO*	*-3	
F +-	45	(1.94)		CHRISTEN	S 64 OSPK		10/69
E + -	54	(2.02)		GALBRAIT	H 65 DSPK		10/69
E+-		(1.86)		BASILE	66 OSPK		10/69
F+		(1.935)		8011-800	E 66 OSPK		10/69
E+-	525	1.91	.06	FITCH	67 OSPK		10/69
F+-							
E+-	FIT	1.95	0.03	FROM FIT (ERROR	INCLUDES SC	ALE FACTOR OF 1.0)	2/71*
ER	RATI	D OF ETAO	O OVER ETA	+-			
ER		1.09	0.09	RUBBEA	70 CNTR	PRELIMINARY	2//1*
E00	PHA	SE DE ETA	0.0 (.0.6	GREES)			
F 0.0	FIRS	TQUADRAN	T PREFERRE	D GOBBI	69 OSPK		11/69
E00		51.	30.	CHOLLET	70 OSPK	CU REG. 4 GAMMAS	10/70*
				01102221	5 551 4		

Stable Particles

Superweak Model Predictions

The superweak model of Wolfenstein, Phys. Letters 13, 562 (1964) predicts that

$$\phi_{+-} = \phi_{00} = \tan^{-1} \left(\frac{2\Delta m \tau_s}{\hbar} \right)$$

$$\operatorname{Re} \epsilon = \left| \eta_{+-} \right| \left[1 + \left(\frac{2\Delta m \tau_s}{\hbar} \right)^2 \right]^{-1/2}$$

The $K^0_L-K^0_S$ mass difference, the $K^{}_S$ lifetime, and $\left|\eta^{}_{+-}\right|$ given in these tables result in the predictions that

$$\phi_{+-} = \phi_{00} = (42.94 \pm 0.26)^{\circ}$$

and

and

Re ϵ = (1.428 ± 0.023) $\times 10^{-3}$.

$$\phi_{+-} = (43.0 \pm 3.3)^{\circ}$$

 $\phi_{00} = (51 \pm 30)^{\circ}$
Re $\epsilon = (1.64 \pm 0.24) \times 10^{-3}$

where ϵ has been computed from δ , the charge asymmetry parameter for leptonic K_{L}^{0} decays, and (Re x, Im x), the $\Delta S = -\Delta Q$ amplitude, using Eq. (29) of the text.

Stable

For notation, see illustrated key at beginning of data card listings.

Particles

REFERENCES 13 LONG-LIVED NEUTRAL K (498, JP=0-) I=1/2

RARDON 58 ANP 5 156 CRAWFORD 59 PRL 2 361 ASTIFR 61 AIX CONF 1 227 FITCH 61 NC 22 1160 CODD 61 PR 126 123	M BARDON,K LANDE,L LEDERMAN (COLUMBIA+BNL) CRAWFORD,CRESTI,DDUGLASS,GOOD + (LRL) ASTIEP,BLASKOVIC,RIVET,SIAUD + (PARISEP) V FITCI-P,PIAUCER PEKKINS (PARISETON)
OFAGU OFAGU <th< td=""><td>NEAGU, OKONOV, PETROV, ROSANOVA, RUSAKOV (JINR) CAMERINI, FRY, GAIDOS, BIRGE, ELY + (WISCHLR)</td></th<>	NEAGU, OKONOV, PETROV, ROSANOVA, RUSAKOV (JINR) CAMERINI, FRY, GAIDOS, BIRGE, ELY + (WISCHLR)
DARMON 62 PL 3 57 ADAIR 64 PL 12 67	J DARMON+A ROUSSET+J SIX (PARIS+EP) R K ADAIR+L B LEIPUNER (YALE+BNL)
ALEKSANY 64 NURVA 2 102 SEE ALSO JEFP 19 1019 ANIKINA 64 JEFP 19 42 CHRISTEN 64 PRL 13 138 FUJI 64 DUBNA 2 146 LUERS 64 PR 133 B 1276	ALEK SANYAN, ALIKHANYAN, YARTAZARYANÈ (ÈREYUN) ALEK SANYAN + (LEB DEV+MOS ENG PHYSER FREVUN) ANIKINA, ZHURAVLEVA+ (GEORG ACAD SCI+ DUNAA) CHRISTEBSUN-GRNIN, HITCH, TURKAY (PRINCETN) FUJII, JUVANUVICH, TURKUT+ (INN, MARYLAND, MIT) UJRS, HITTRA, HILLIS, YAMAHOTO
ANIKINA 65 JINR P 2488 ANDERSON 65 PRL 14 475 AST30RY1 65 PL 16 80 AST8URY1 65 SEE ALSO M PEPI AST8URY2 65 PL 18 175 AST8URY3 65 PL 18 178	ANIX INA, VARDENGA, JHURAVLEVA, KOTLVA+ (JUJANA) ANDERSON- CRAMFORD, JOEDEN, STEEN + (LRL+HISC) ASTBURY, FINDCCHIARO, REUSCH + (CERN+ZURICH) HELV, PIVS, ACTA 39 523 ASTBURY, HICHELIN, BRUSCH + (CERN+ZURICH) ASTBURY, HICHELIN, BRUSCH + (CERN+ZURICH)
AUBERT 65 PL 17 59 AUBERT 65 SEE ALSO LOWYS BALDO-CE 65 NC 38 684	AUBERT,BEHR,CANAVAN,CHOUNET+ (PARTS+ORSAY) 57 BALOD-CEOLIN,CALIMANI,CIAMPOLILLO + (PADVA)
CHRISTEN 65 PR 140 P 74 FISHEP 65 ANN. 7130 A3 FITCH 65 PR 15 73 FRANZINI 65 PR 140 B 127 GALBRAIT 65 PR 140 B 127 GALBRAIT 65 PR 140 B 127 GUIDONI 65 ARGONNE CONF 49 HOPKINS 65 ARGONNE CONF 67 VISHNEVS 65 PL 18 339	CHRISTENSON, CRONIN, FITCH, TURLAY (PRINCETON) FISHER, AMASHIAN, ABRAMS, CARPENTER+ (ILLINDIS) FITCH, ROTH, RUSS, VERNON (PRINCETON) FRANZINI, KIRSCH, PLAND + (COLUMBIARUTGERS) GALDRAITH, MANNING, JONES + (AREFERBISTENHEL) +BARNES, FOELSCHE, FERBEL, FIRESTO, + (NNL-YALE) H W K HOPKINS, PAGON, EISLER (VAND-RUTGERS) VISHEVSKY, GALANINA, SEMENDY + (MISCOW)
ABASHIAN 66 BERKELEY 2B ALF-STE 66 PL 21 595 ANKKINA 66 SNP 2 339 AUERBACH 66 PRL 17 990 AUERBACH 66 PRL 17 990 AUERBACH 66 STE ALSO PRL 14 RALON-CF 65 NC 45A 733 BASILF 66 BALATON COVF	ABASHIAN, ABRAMS, VERHEY+ (URBANA) ALFF-STEINBEGGR, HEREK, PUBBIA (JRN) ANIKINA, VAROBKGA, ZMURAVLEVA+ (JIN) AUBEBACH, MANN, HCFARMARF, SCIULLI (PENN) JUEB BACH, MONN, HCFARMARF, SCIULLI (PENN) J92 BALDO-CFOLIN, CALIMANI, CIAMPOLILLO+ (SACLAY)
BFHR 66 PL 22 540 BFLLOTTI 65 NC 45A 737 ROTT-BDD 65 PL 23 277 CAMERIN 16 PR 150 1149 CANTER 66 PRL 17 942 CARPENTF 66 PR 142 871 CHANG 66 PL 23 702	REHR.BRISSON.BALDO-CEOLIN,AUBERT+(PAQUA,EP) BELLOTTI,PULLIA,BALDO-CEOLIN+ IMILAN,PADUA) BOTT-BODFHAUSEN,DE BOUARO,CASSEL+ (CERN) CAMERINI,CLINE,ENGLISH,FISCHBEIN+HISCONSIN CHMERNER,FISK,HIL+ (CANNEGIF+BNL) CARPENTER,ABASHAN,ABRAMS,FISHER (ILLINDIS) CHANGEARSSANO,KIKUCH(JODD)+ (SYRACUSE,BNL)
CRIEGEE 66 PRL 17 150 FIRESTON 66 PRL 16 556 FIRESTON 66 PRL 17 116 FUJII 66 PRL 13 253 (FUJII 66 15 THE CORRECTED GOLORN 66 PR 21 239 HAWKINS 66 PL 21 239 ALSO 67 PR 156 1444	+FDX_FRAUENFELDER_HANSOW,NDSCAF+ (ILLINDIS) FIRESTOWE.KI NLACH.SAMDEISS. FIRESTOWE.KI NLACH.SAMDEISS. YUJII.JYANNOVICH.YINKOT.JCORN (INLHAANYLAND) VALUF GIVEN BY JOVANOVICH+ 66) R.GOLDENK, CRAMFORD, 0.STERN (ILL) C J B HAWKINS (YALE)
JOVANOVI 66 PRL 17 1075 KULYUKIN 55 BERKELEY 28 MFISNERI 66 PRL 16 27R MEISNERI 66 PRL 17 492 NEFKENS 66 PRL 17 469 VERHEY 66 PRL 17 669	JOVANOVICH,FUJII,TURKOT,ZORN + (8NL+MO+MIT) KULYUKINA,MESTVIRISHVILI,NEAGU,PETR+(JINR) G MEISNER,B A CRAMFORD,F CRAMFORD (LRL) G MEISNER,H CRAMFORD,F CRAMFORD (LRL) MEFKENS,AMASHIAN,ABRAMS,CARPENTER+ (ILL) VERHEY,NEFKENS,ABASHIAN+ (URBANA)
RENNETT 67 PAL 19 993 ROTT-ROD 67 PL 248 194 ROTT-ROD 67 PL 248 194 ALSO 64 PL 20 212 ALSO 66 PL 20 217 CANTER 67 THESIS CRONIN 167 CRONIN 67 PL 18 25 CRONIN 67 PR 58 662 ALSO 67 PL 58 58	REWNETT, NYGGEN, SAAL, STEINBERGER, + (CGLUNBLA) ADTT-RODEWHAUSEN, DEGUARD, CASSEL + (CERNI) BOTT-RODEWHAUSEN, DEGUARD, DEKKERS,+ IDTT-RODEWHAUSEN, DEGUARD, CASSEL + (CERNI) BOTT-BODENHAUSEN, DEGUARD, CASSEL + (CERNI) BOTT-BODENHAUSEN, DEGUARD, CASSEL + (CERNI) J, M. CANTER +KUNZ, RISK, WHEELER (PRINCETON) DEGUARD, DEKKERS, SJORMAN, WERNON + (CENNI) DEGUARD, DEKKERS, SJ
DEVLIN 67 PRL 18 54 DORFAN 67 PRL 19 987 FELDMAN 67 PR 155 1611 FIRFSION 67 PR 168 176 FITCH 67 PR 164 1711 HAWKINS 67 PR 166 1444 HILL 67 PRL 19 668	DEVLIN, SOLOMON, SHEPARD, BEALL+ (PRINC+MARY,) DORFAN, ENSTROM, RAYMOND, SCHMARTZ +(SLAC+LR,) FELDMAN, FRANKEL, HIGHLANN, SLOAN (U OF PENN) FIRESTONE, KIM, LACH, SANDWEISS, + (YALE, BNL) FITCH, ROTH, RUSS, VERNN (PRINCETON) C J B HAMKINS (VALE) HILL, LUERS, ROBINSON, CANTER+ (BNL, CARNEGIE)
HOPKINS 67 PRL 19 185 KADYK 67 PRL 19 597 KULYUKIN 67 PREPRINT LOWYS 67 PRL 248 75 MISCHKF 67 PRL 18 138 NEFKENS 67 PR 157 1233 TODOROFF 67 THESIS	HPPKINS, FACON, FISLER (BL) KADYK, CHAN, DRIJARD, OREN, SHELDDN (LRL) KULYUK, MAMMESTVIRISHVILIANEAGU + (ILR) LOUYYM MAEMETSTVIRISHVILIANEAGU + (EP, ISING LOUYYM MAEMETSTVIRISHVILIANEAGU + (ILL) LOUYYM, ARASHIAW, BBKAMS; CARPENTER, FISHER + (ILL) JAMMA & TODOROFF (ILLINDIS)
ARRAMS 68 PR 176 1603 ARNOLO 68 PL 288 56 ARNASON 68 PRL 20 287 ALSO 69 PR 175 1708 BALATZ 68 PL 264 320 BANNERI 68 PRL 21 1103	+ABASHIAN, HISCHKEN, FRENS, SMITH+ (ILLINDIS) ARNDD, BINGAGV, CUNNY, AUBERT- (CERNIGKSAY) S.H.ARNOSON, K.W.CHEN (PRINCETON) S.H.ARNOSON, K.W.CHEN (PRINCETON) BALATZ, JEREZIN, VISHNEVSKY, SALANINA+(MOSCON) BANKER, CENNIN, LIV, PILCHFR (PRINCETON)
BANNER2 68 PRL 21 1107 ALSO 69 PR 188 2033 BARTLETT 68 PRL 21 558 BASILE 68 PL 268 542 BASILE 68 PL 288 59 RENNETTI 68 PL 278 244	BANNER,CRONIN,LIV,PILCHER (PRINCETON) BARTLETT,CARNEGIE,FITCH+ (PRINCETON) BASILE,CRONIN,THEVENET,TURLAY+ (SACLAY) +CRONIN,THEVENET,TURLAY,ZYLBERAJCH+(SACLAY) +CRONIN,THEVENET,TURLAY,ZYLBERAJCH+(SACLAY)
BFNNETT2 68 PRL 27B 248 BLAMPIED 68 PRL 21 1650 BUDAGRU 67 NC 57A 182 ALSO 68 PL 288 215 CANNEGTE 68 PRL 284 145 JAMES 68 PRL 212 145 KLST 68 PRL 212 57 KULYUKIN 68 PRL 226 20 KUNZ 68 THESIS F04 461 MELHOP 58 PR 172 1613 THATCHER 68 PR 174 1674	BENNETT, NYGRFN, STE INBERGER+ (CALUMBIA+CERN) BLANPIED, LEVIT, ENGELS+ (CASE+HARV+MCGI) BUDAGUV, BUNKEISTER, CUNY+(CERN, DASAY, PARIS) +CUNNY, MYATT, NEZRICK+ (CERN, DRSAY, PARIS) +CUNNY, MYATT, NEZRICK+ (CERN, DRSAY, PARIS) FLAND, LONGO, YOUNG (UCLA, MICHIGAN) KULANY, LONGO, YOUNG (UCLA, MICHIGAN) KULYNKINA, MESTVIRISHVILI, NEAGU+ (JINR) F KUNX MELMAND, DAGHSHAN, SCAPPENTER + (UL JOLLA)

Stable Particles

E	EILLIER 6 ENNETT 6 EDHM 6	9 PL 9 PL 9 NP	308 2 298 3 89 60	02 17 5	BEILLIERE,BOUTANG,LIMON (EPOL) +NYGKEN,SAAL,STEINBFRGER+ (CDLU,BNL) +DARRIULAT,GRUSSO,KAFTANOV+ (CERN)	
F	ALSO 6 IDTT-BOD 6 ENCE 6	A PL 2 9 CERN 9 PRL	78 32 69-7 22 12	1 329 10	BOHM,DARRIULAT,GROSSO,KAFTANOV (CERN) BOTT-BODENHAUSEN,DE BOUARO,CASSFL+ (CERN) CENCE,JONES,PFTERSON,STENGER+ (HAWAII,LRL)	
F	VANS 6 AISSNER 6	9 PRL 9 PL	23 42 308 2	7	EVANS, GOLDEN, MUIR, PEACH+ (EDINBURGH, CERN) +FOETH, STAUDE, TITTEL+ (AACH, CERN, TDRI)	
(AILLARD 6 ALSO 6	9 PL 3 9 NC 7 PRL	08 28. 594 49 18 20	2 53	+MOLDER, NADERMACHER + (AACHEN, CERN, TORINO) +GALBRAITH, HUSSRI, JANE+ (CERN, RUTH, AACHEN) +KRIENEN, GALBRAITH, HUSSRI+ (CERN FRUTH+AACH)	
0		9 PRL	22 68	5	+GREEN, HAKEL, MOFFETT, ROSEN, GOZ+ (ROCH+RUTG)	
i	ONGO 6	9 PR 1	81 1	4 308	M J LONGO,K K YOUNG,J A HELLAND (ANNA,UCLA)	
8	LBROW 71 RONSON 71 ARMIN 71	D PL 3 D PRL D PL 3	38 514 25 109 38 37	5 57 7	+ASTON,BARBER,BIRD,FLLISON + (MCHS+DARE) +EHRLICH,HOFER,JENSEN+ (EFI,ILLC,SLAC) +BARYLON,BORISOV,BYSHEVA+ (ITEP,JINR)	
e	ASILE 7	D PR D D PL 3	2 78 38 62	3	+CRONIN, THE VENT, TURLAY, ZYLBERAJCH + (SACL) +DRICKEY, RUDNICK, SHEPARD+ (SLAC, JHOP, UCLA)	
8	ALSO PRI UDAGOV 74 ALSO 6	VATE C D PR D R PI	0MMUN 2 815 288 21	ICATIO	N, B, COX, FEB. 71 +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, EPOL) +CUNDY, MYATT, NEZRICK+ (CERN, ORSA, EPOL)	
c	ARNEGIE 7) KIEV	CONF		+CESTER+FITCH+STROVINK+SULAK (PRINCETON)	
c	HIEN 70	VATE C D PL 3 VATE C	0MMUN 38 62 0MMUN		N, V. FITCH, FEB. 71. C-Y.CHIEN,COX,ETTLINGER + (JHU+SLAC+UCLA) N. B. COX. EEG. 71	
c	HO 70	D PR D	1 3031		+DRALLE, CANTER, ENGLER, FISK+ (CARN, BNL, CASE) HILL JUFES, SUBINSON, SAKITT + (BNL, CASH)	
С	HULLET 7	D PL 3 CERN	18 658	309	+GAILLARD, JANE, RATCLIFFE, REPELLIN + (CERN) +GAILLARD, JANE, RATCLIFFE, REPELLIN + (CERN)	
c	LARK 70 ALSO 7	UCRL	20289	-THES	+ELIOFF,FIELD,FRISCH,JOHNSON,KERTH + (LRL)	
с	ALSO 70	DUCRL	1970	-THES	IS ROLLAND JOHNSON (I.R.) +DARBIU AT-DEUTSCH-EDETH + (AACH-CERN, TORI)	
D	ARRIULA 70	PL 3	38 249	,	+FERRERO,GROSSO,HOLDER + (AACH,CERN, TORI)	
F	NSTROM 70 AISSNER 70) SLAC) NC 7	125 (04 57	THEST	S) J E ENSTROM (SLAC) +REITHLER,THOME,GAILLARD+ (AACH,CERN,RHEL)	
J	ENSEN 70 ALSO 69) THES P PRL	15 23 615	;	D.A. JENSEN (EFI) JENSEN,ARONSON,EHRLICH,FRYBERGER+(EFIN,ILL)	
м	ARX 70 ALSO 70) PL 3.) THES	28 219 IS,NEV) 15 174	+NYGREN+PEOPLES+STEINBERGER+(COL+HARV+CERN) 9 JAY MARX (COLUMBIA)	
R	UBBIA 70 CIULLI 70) BAPS) PRL	15 19 25 121	87	RUBBTA+ (CERN) +GALLIVAN,BINNTE,GOMEZ,MALLARY,PECK+ (CALT)	
s s	CRIBAND 70 MITH 70) PL 3	28 224 28 133		+MANNELUI,PIERAZZINI,MARX+ (PISA,COLU,HARV) +WANG,WHATLEY,ZORN,HORNBOSTEL (UMD,BNL)	
¥	OSBURG 71 EBBER 71	PREP PR 3	RINT (RUTG)	+ DEVLIN, ESTERLING, GOZ, BRYMAN+ (RUTG+MASA) + SOLMITZ, CRAWFORD, GARN LOST (LPL)	
	ALSO 68 ALSO 69	PRL DUCRL	19266	-THESI	WEBBER, SOLMITZ, CRAWFORD, ALSTONGARNJOST (LRL) IS B R WEBBER (LRL)	
					PAPERS NOT REFERRED TO IN DATA CARDS	
A J	LEXANDE 62 OVANOVI 63	PRL BNL	9 6 9 CONF 4	2	G ALEXANDER,S ALMEIDA,F CRAWFORD (LRL) JOYANDVIC,FISCHER,BURRIS + (BNI+MARVIAND)	
5 8	TERN 64 EHR 65	PRL	12 459 NNE CO	NF 59	STERN, BINFORD, LIND, ANDERSON + (WISC+LPL) BEHR, BRISSON, BELLOTTI+ (FP+MILANO+PADOVA)	
M T	ESTVIRI 65 RILLING 65	JINR UCRL	P 244 16473	9	MESTVIRISHVILI,NYAGU,PETROV,PUSAKOV+ (JINR) GEORGE H TRILLING (LRI)	
T G	RILLING 65 Insbfrg 67	PR 10	UPDAT 52 15	ED FRO 70	EDWARD S GINSBERG (U. MASS BOSTON)	
R	USBIA 67	PL 2	248 5	31	C.RUBBIA, J.STEINBERGER (CERN+COL)	
	ALSO 2 56	PL 2	21 59	5	ALFF-STEINBERGER+HEUER+KLEINKNECHT+ (CERN)	
S	CHMIDT 67	NEVI	5 1600	THESIS	SI P. SCHMIDT (COLUMBIA) RI COUNTA ADDODITEURS TALK (ODLIMBIA)	
Ğ	INSBERG 70 EUSSE 70	PR DI	229		E S GINSBERG (IIT HAIFA) +AUBERT, PASCAUD, VIALLE (ORSAY)	
*	***** ****	*****	*****	**** *	******** ********** ******** **********	
F			14	ETA	(549,JPG=0-+) I=0	
l	η FO CO	R C. E	ALTAY	S REVI	IFW OF THE ETA MESON, SEE PROC. UNIV.OF PENN. TROSCOPY (W.A.BENJAMIN, N.Y., 1968)	
щ	53	549.0	14	ETA	MASS (MEV) BASTIEN 62 HDC	
M	35	546.0))	4.0	PICKUP 62 HBC ALEFE 62 HBC	
M	148	549.3		2.9	DELCOURT 63 CNTR FORISCHE 64 HPC	
M	325	552.0		3.0	KRAEMER 64 DBC	14.4
M	2 50	555.0		2.0	JAMES 66 HBC 6	166
M	AVG	548.8	2	0.56 (SEE	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) IDEOGRAM BELOW)	
				 FTA	WIDTH (NEV)	
ж	91	(10.0) DR	LESS	ALFF 62 HBC	
¥	149 31	(10.0) OR	LESS LESS	FOELSCHE 64 HBC JAMES 66 HBC 6	/66
W		(4.0) OR	LESS	BALTAY 66 DBC	/66 /67
	ALSO SE	EETA	DECAY	RATES	(BELOW).	

Stable Particles

For notation, see illustrated key at beginning of data card listings.

The above value for $\Gamma_{\gamma\gamma}$ assumes that $\Gamma_{\gamma\gamma}/\Gamma_{total}$ = 31.4%. However, the results of that experiment may be stated more generally than is given in the paper, as

$$\Gamma_{\gamma\gamma} \times \frac{\Gamma}{\Gamma_{\text{total}}} = 0.380 \pm 0.083 \text{ keV}$$

(private communication from C. Bemporad). Thus our new value of

$$\Gamma_{\rm vv}/\Gamma_{\rm total} = 38.6 \pm 1.1\%$$

would give

$$\Gamma_{\gamma\gamma} = 0.99 \pm 0.22 \text{ keV}$$

and

$$\Gamma_{total} = 2.63 \pm 0.59 \text{ keV}$$

ETA DECAY INTO NEUTRALS

As is well known, there are great inconsistencies among the various experiments that report etas decaying into neutrals. The controversy is over whether the mode $\eta \rightarrow \pi^0 \gamma \gamma$ is ≈ 0 (as some experiments indicate) or $\geq 20\%$ (as other experiments indicate). The discrepancies are displayed in the ideogram below, in which all ten relevant experiments have been converted to a common ratio, $\pi^0\gamma\gamma$ /neutrals. Also upper limits, < x, have been converted to 0 ± x. The confidence level for consistency of all ten is < 10⁻⁵!

In previous editions we were able to point out that it was the older experiments which gave the > 20%values, whereas the more recent experiments had been giving $\leq 1\%$. However, the recent experiment of COX 70 gives about $8 \pm 3\%$, so the controversy is not yet settled.

We feel that we should consider all ten experiments on an <u>a priori</u> equal basis, and then follow the prescription of deleting large χ^2 experiments until the confidence level rises to some reasonable value. If we remove the Feldman and DiGiugno experiments, χ^2 decreases from 45 (for all ten) to about 9 (for the remaining 8). Accordingly we have removed those 2 experiments and used the remaining eight experiments in our overall fit.

S52 Reviews of Modern Physics • April 1971 • Part II

Stable Particles

For notation, see illustrated key at beginning of data card listings.

R3 ETA INTO (PIO 2GAMMAI/NEUTRALS (P71/(P1+P2+P7) R3 S (0.375) (0.072) DIGIUGNO 66 CNTR ERROR DOUBLED R3 THE ERROPS OF DIGIUGNO+ 66 HAVE DEEN INCPEASED BY A FACTOR R3 OF TWO. TO TAKE INTO ACCOUNT POSSINGE SYSTEMATIC FRRORS, AS	6/66
23 30003121E.27 110E ALD GRUMHAUS 66 DSPK 73 R (.024) FLOMAN 67 DSPK 73 S (.244) (.051) FELDMAN 67 DSPK 73 S S.744 (.051) FELDMAN 67 DSPK 73 S S.744 (.051) FELDMAN 67 DSPK 73 S S.744 (.051) BUTTRAN 70 DSPK 73 S S.747 DSS OAS 70 DSPK 73 S S.747 DSS OAS 70 OSPK 73 S C.477 DR LSS OAS 70 OSPK 9 CONF.LEVEL 73 R S C.471 DR DSS OAS 9 CONF.LEVEL 73 R S FUNITY TO S S CONF.LEVEL S S S CONF.LEVEL <td< td=""><td>8/67 11/67 8/67 12/70* 6/70 12/70* 12/70* 2/71*</td></td<>	8/67 11/67 8/67 12/70* 6/70 12/70* 12/70* 2/71*
R3 E TO RE SERIOUSLY UNDERESTIMATED R3	2/71*
Arr O.043 O.017 FR/M FIT CHAULT FACTOR OF I R4 ETA INTO OF IF GAMMA//PI PI FACTOR OF I R4 O.14 O.04 O.04 PI GAMMA//PI PI FACTOR OF I I PI GAMA//PI PI FACTOR OF I PI FACTOR OF I PI FACTOR OF I PI FACTOR OF PI FACTOR OF I PI FACTOR OF PI FACTOR FACTOR OF PI FACTOR OF PI FACTOR OF PI FACTOR OF PI FACTOR <t< td=""><td>6/66 7/66 7/66 8/67 11/67 6/70 4) 31</td></t<>	6/66 7/66 7/66 8/67 11/67 6/70 4) 31
UEIGHTED AVERAGE = 0.2041 ± 0.0079 ERRDR SCALED BY 1.4	
Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of X, 5X, and scale factor, which are differ- ent from the values shown here. 	<u>50</u> 3 6 7 0 6 EU 31)
R5 ETA [NTO (3P10)+ 2/3(P10 2GAMMA)/ P1+P1-P10 (P2+2/3P7)/P3 R5 0.83 0.32 CRAWFORD 63 HBC R5 2.0 1.0 FOFLSCHE 64 HBC R5 0.90 0.24 FOSLA 65 HBC	7/66 7/66 7/66
R5 AVG 0.91 0.19 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0 R5 FIT 1.406 0.091 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3	
R6 ETA INTO 3PIO/2GAMMA [P2]/(P1) R6 (11/67 1/68 12/70*
R7 ETA INTO 2GAMMA/(P[+ P]- P0) (P]/(P3) R7 1.61 0.39 FOSTER1 65 HBC	
кт чиц 1.72 .25 BAGLIN 69 MLBC R7 R7 AVG 1.669 0.21 AVERAGE (ERRDR INCLUDES SCALE FACTOR OF 1.0 R7 FIT 1.67 0.10 FROM FIT (ERRDR INCLUDES SCALE FACTOR OF 1.2	0) 2)
R8 ETA INTO NUTRAL/(PI+ PI- PIO (P1+P2+P7)/(P3) R4 240 3-6 0.8 1.1 PAULI 64 DBC R4 2.8 1.1 PAULI 64 DBC R4 2.89 0.56 ALFF-STEI 66 HBC R8 244 3.6 0.6 FLATTEZ 67 HBC R8 3.45 0.55 ALFF-STEI 67 HBC R8 3.45 0.45 AVERAGE (ERROR HACUDES SCALE FACTOR PL R8 4VG 3.135 0.35 AVERAGE (ERROR INCLUDES SCALE FACTOR PL R8 FIT 3.12 0.18 FROM FIT (ERROR INCLUDES SCALE FACTOR PL	7/66 9/66 1/68 0) 2)
R9 FTA [NTO] (E+E-P[O]/(P[+P]-P[O] (UNITS 10**-2) (P5]/(P3) R9 (1.1) OR LESS PRICE 65 HBC R9 0 (0.771) OR LESS FNSTER2 65 HBC R9 0 (0.477) OR LESS FNSTER2 65 HBC R9 0 (0.477) OR LESS BAGLINUL 67 HLBC • GONF.LEVEL	8/67
R9 0 (1.6) NR LESS BILLING 67 HLBC .9 CONF.LEVEL R10 ETA INTO (E+F=P1+P1-1/TOTAL (UNITS 10*-2)) (P6)/TOTAL (P6)/TOTAL P10 IO 7100 FESS 0 (P6)/TOTAL (P6)/TOTAL	11/67
P11 ETA INTO (E+E-P1+P1-)/(P1+P1-GAHAA) (P6)/(P4) R11 L 0.026 GROSSMAN 66 HBC	6/66

R12 R12 R12 R12 R12 R12	ETA INTO 2 GAMMA/NEUTRALS (P1)/(P1+P2+P7) S (0.416) (0.044) DIGIUGNO 66 CNT ERRUR DOUBLED -44 .07 GRUMHAUS 66 DSPK S (.579) (.052) FELDMAN 67 DSPK S SFE THE NOTEON CATA DECAY INTO NEUTRALS ABOVE. SEMOVE. SEMOVE. SEMOVE.	6/66 8/67 8/67
R12 R12	T (0.39) (0.06) JONES 66 CNTR T THIS RESULT FROM COMBINING CROSS-SECTIONS FROM TWO DIFFERENT EXPTS.	8/67
R12 R12 R12 R12 R12 R12	.59 .033 BUNIATOV 67 OSPK .535 .018 BUTFAAM 70 OSPK .496 .036 COX 70 HBC 0.57 0.09 STRUGALSK 70 HLBC	11/67 12/70* 6/70 2/71*
R12 R12	AVG 0.535 0.018 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) FIT 0.535 0.013 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R13 R13 R13 R13 R13	ETA INTO 3PIO //EUTRALS (P21//P1+P2+P7) (0.209) (0.054) DIGIUGNO 64 CMTR FROR DOUBLED R (.291) (.101) GRUMHAUS 66 OSPK S (.171) (.035) FELDMAN 47 OSPK S SEE THE NOTE ON FILA DECAV INTO NEUTRALS ABOVE.	6/66 8/67 8/67
R13 R13	•41 •033 BUNIATOV 67 OSPK R REDUNDANT INFORMATION FROM THIS EXPERIMENT	11/67
R13 R13 R13 R13	R (.439) (.024) BIUTRAM 70 OSPK .392 042 COX 70 HBC 0.32 0.09 STRUGALSK 70 HLBC	12/70* 6/70 2/71*
R 1 3 R 1 3	AVG 0.397 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) FIT 0.420 0.016 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R14 R14 R14 R14	ΕΤΑ ΙΝΤΟ ΡΙΟ (2GAM4A)/2GAM4A (P7)/(P1) (.5) OR LES' AMLIG 66 SPRK • 9 CONF LEVL 0.0 0.14 BALTAY 67 DRC P (0.05) (0.04) BONAMY 67 SPRK PRELIMINARY RESULT	7/66 11/67 11/67
R14 R14	FIT 0.085 0.033 FROM FIT (ERRUR INCLUDES SCALE FACTOR OF 1.3)	
R 15	ETA INTO (E+E-PIO)/TOTAL (UNITS LO**-2) (P5)/TOTAL	
R 15	(0.084)OR LESS BAZIN 58 DBC .9 CONF LEVL	6/68
R16 R16 R16	ETA INTO 2GAMMA/(3PIO + PIO 2GAMMA) (P1)/(P2+P7) 0.80 .25 BACCI 63 CNTR	7/64
R16	FIT 1.149 0.062 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R 17 R 1 7	ETA INTO (PI+PI-PIO GAMMA)/(PI+PI-PIO) (P10)/(P3) (.07) DR LESS FLATTE 67 HBC	8/67
R17 R17	(.009)OR LESS PRICE 67 HBC (.016)OR LESS BALTAY2 67 DBC .95 CONF LEVL	8/67 11/67
R17	(0.017)OR LESS ARNOLD 68 HLBC .9 CONF LEVEL	9/68
R 1 8 R 1 8	ETA INTO (PI+PI- 2GAMMA)/(PI+PI~PIO) (P11)/(P3) (+009)OR LESS PRICE 67 HBC	8/67
R18	(.016)OR LESS BALTAY2 67 DBC .95 CONF LEVL	11/67
R19 R19	ETA INTO 3PIO/(PI+ PI- PIO) (P2)/(P3) 1.3 .4 BAGLIN2 67 HLBC	8/67
R19 R19	199 1.50 .15 .29 BAGLIN 69 HLBC	7/69
R19 R19 R19	AVG 1.46 0.13 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) FIT 1.312 0.083 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R20 R20	ETA INTO 2GAMMA/((3PIO)+2/3(PIO-2GAMMA)) (P1)/(P2+2/3P7) l.lo 0.5 MULLER 63 DBC	7/66
R20	FIT 1.188 0.059 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R 21 R 21	ETA INTO NEUTRALS/TOTAL .79 +08 BUNIATOV 67 OSPK	11/67
R21	FIT 0.722 0.012 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2)	
R 2 2 R 2 2 R 2 2	ETA INTO (PIZRO 2GAMMA)/TOTAL (P7)/TOTAL (.12) OR LESS JACQUET 69 HLBC .95 CONF.LEVEL	6/70
R 2 2	FIT 0.033 0.012 FRDM FIT	
R 2 3 R 2 3	FTA INTO MU+MU-/TOTAL (UNITS 10**-5)· (P12)/TOTAL 0 (2.) OR LESS WEHMANN 68 OSPK .95 CONF.LEVEL	4/68
R24 R24	ETA INTO MU+MU-PIO/TOTAL (UNITS 10#*-4) (P14)/TOTAL (5.) OR LESS WEHMANN 68 OSPK	4/68
R25 R25	ETA INTO MU+MU-/2GAMMA (UNITS 10**-5) P(12)/(P1) 5.9 2.2 HYAMS 69 OSPK	7/69
R26 R26	ETA INTO (PIO 2GAMMA)/(3PIO + PIO 2GAMMA) (P7)/(P2+P7) N 0.1 0.3 KANDESKY 70 DSPK	2/71*
R26 R26 R26 R26	\dot{N} WE MAVE CHANGED THE ERROR ON THIS EXPERIMENT FROM +0.3,-0.1 N TO HE AROVE 0.3,-0.3 SINCE IT IS CLEAR FROM FIGURE 7 IN THE ARTICLE THAT A CENTRAL VALUE OF 0.0 IS ABOUT AS PROBABLE A STHE QUITEN VALUE OF 0.1	2/71* 2/71* 2/71* 2/71*
к26 R26	FIT 0.097 0.035 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3)	
FITT	TED PARTIAL DECAY MODE BRANCHING FRACTIONS	
	The matrix below is derived from the error matrix for the fitted partial decay mode	
bran	ching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where	

branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{(\delta P_i \delta P_i)}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $(\delta P_i \delta P_j) / (\delta P_i, \delta P_j)$. For the definitions of the individual P_i see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

P 1 P 2 P 3 P 4 P 7 P 1 386+-011 P 2 - 200 .303+-011 P 3 - .464 - .234 .231+-010 P 4 - .378 - .202 .700 .047+-.002 P 7 -.351 -.554 -.179 -.135 .033+-.011

Stable Particles

For notation, see illustrated key at beginning of data card listings.

H. Yuta and S. Okubo [Phys. Rev. Letters 21, 781 (1968)] have pointed out that an asymmetry in the decay $\eta \rightarrow \pi^+\pi^-\pi^0$ of about 2% need not imply a breakdown of C invariance, since an asymmetry of this amount <u>could</u> be caused by an interference between the η and the 3π background. Gormley et al. [Phys. Rev. Letters 22, 198 (1969)], however, believe that this effect can account for only $\leq 0.23\%$ in their experiment (above). Also see: A. Frenkel and G. Vesztergombi, "C-Violation in η -Decay," Nucl. Phys. <u>B15</u>, 429 (1970) and K. Taggart, "Asymmetry and Background in $\eta \rightarrow 3\pi$," Phys. Rev. D 2, 1960 (1970).

B DECAY B B N 163 B N 480 B 725 B AVG	Y ASYM 33 - 20 IVE EX 57	MAFTRY PARAMETER -2. 17. -4. 8. 1.5 2.5 CPERIMENT IS SENS 1.22 1.51 1.56	FOR PI+ PI- GAMMA (UNITS 10++-2) CRAMFORD 66 MBC LITCHFIEL 67 0BC MULLER 69 DSPK SITIVE ONLY TO UPPER 4 OF GAMMA-RAY SPECTRUM GORMLEY 70 ASPK AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	11/66 8/67 9/69 6/70
*****	*****	*** *********	****** ********************************	
			REFERENCES	
			14 ETA(549, JPG=0-+)I=0	
PEVSNER	61 PR	RL 7 421	PEVSNER, KRAEMER, NUSSBAUM, RICHARDSON + (JHU)	
41 F.F	62 PB	RL 9 322	ALFF.BERLEY.COLLEY.BRUGGER + (COL+RUTGERS)	
BASTIEN	62 PR	81. 8 114	BASTIEN, BERGE, DAHL, FERRD-LUZZI + (LRL)	
CHRETIEN	62 PR	RL 9 127	CHRETIEN+ (BRAND+BROWN+HARVARD+MIT+PADOVA)	
PICKUP	62 PR	RL 8 329	F PICKUP, ROBINSON, SALANT (NRC+CAN+BNL)	
SHAFER	62 CE	ERN CONF 307	J SHAFER+FERRO-LUZZI+MURRAY + (UC+LRL)	
			RACCT DENCO SALVINI & (DONE UNCHEN ERASCA)	
BALLI	63 PH	CL 11 37	DISCUBECK_CTADD.CODED & (VIENNA+CERN+AMS)	
NUSCHBEL COALIECOOD	() 00	LENA CONF L 100		
CRAWFURD	03 PH	KL 10 346		
ANI)	12 01	7 216	DELCOURT I EEDANCOIS, DEDEZ V 100844 (0854V)	
MULLEO	43 61	- 7 213	MULLER PAULT + (I PCHE+SACLAY (E+RONE+INEN)	
HULLER	10.01	CIA COAT 77	NEEday Roll - TELONE SHOEAT IT THE ETHING	
FOEL SCHE	64 PF	R 134 B 1138	H W FDELSCHE+H & KRAYBILL (YALE)	
KRAFMER	64 PF	1 1 16 B 4 96	KRAEMER+MADANSKY+FIELDS + (JHU+NW U+WOOD)	
PAULI	64 PL	13 351	E PAULI;A MULLER (LPCHE+SACLAY)	
FOSTER1	65 PP	138 8 652	FUSIER, PETERS, MEER, LUEFFLER + (WISC+PORDUE)	
FOSTER2	65 A1	THENS	FUSTER+GOUD+MEEK WISCUNSING	
FOSTER3	65 11	HESIS		
PRICE	65 PF	RL 15 123	L.R.PRILE,F.S.CRAWFUKU (LRL)	
RITTENBE	65 PF	RL 15 556	KITTENBERG+KALBFLEISCH (LKL+BNL)	

ALFF-STE 66 PR 145 1072 ALFF-STE INBERGER, BERLEY+ (COLUMBIA+RUTGERS) RALTAY 66 PRL 16 1224 +FRANZINI, KIM, KIRSCH+(COLUMBIA+STONY BRODX) CRAMFORM 66 PRL 16 33 F.S.CRAWFORM, CRUD, L.R.PRICE (RALTAY) DIGIUGNO 66 PRL 16 757 DIGIUGNO, GINRGI, SILVESTRI+ (NAP+RRST+FRASL) GROSSMAN 60 PRL 16 767 DIGIUGNO, GINRGI, SILVESTRI+ (NAP+RRST+FRASL) GROSSMAN 60 PRL 767 DIGIUGNO, GINRGI, SILVESTRI+ (NAP+RRST+FRASL) GROSSMAN 60 PRL 767 DIGIUGNO, GINNIF, NALSC (COLUMBIA) JAMES 66 PRL 23 597 JONES, GINNIF, DUANE, HORSEY, MASON, + (ICL+NUTICAN) JAMES 66 PRL 22 NAHLIG, SINGATA, MANNELLI (MIT+PISA)	
AGC11N1 67 PL 248 637 BACLIN, BEZAGUET, DEGRANGE, • (E. POL'VIC) BACLINY 67 BAPS 12 567 BACLIN, BEZAGUET, DEGRANGE, • (E. POL'VIC) BACLINY 67 BARS 12 6495 BALTAY2 67 PRL 19 1498 BALTAY, FRANZUTI, ISAN MANN (E. POL'VIC) BALTAY2 67 PRL 19 1498 BALTAY, FRANZUTI, ISAN MANNICOLULATSONN BK BEMPORAD 67 PL 258 380 BEMPORAD, BRACCINI, FOA, LUBELSMEYY PISA, BONNI AND PRIVATE COMMUNICATION	
ATLLING 67 PL 258 435 BTLLIG, BULLOCK, ESTEN.GUVAN,+ IUCL.OXF. BONAMY 67 HEDDE, HEGR CONF, BONAMY,SONDERGEGER (SACLAY) BUNIATOV 67 PL 258 560 BUNIATOV,ZAVATTINI,DEINET,+ (CERN,KARLS) CENCE 67 PRL 19 1393 CENCE,PETERSDH,STENGER,CHIU+ (HANAI1+LRL) FELDMAN FORT, GLESCH,HALPERN,HALPERN,+ (CERN,KARLS) CENCE 67 PRL 18 966 FELDMAN,FATT,GLESCN,HALPERN,+ (PEN) FLATTE 67 PRL 18 976 S.M.FLATTE (LRL) FLATTE 67 PRL 18 976 S.M.FLATTE (LRL) PLATTE 67 PRL 18 1207 L.R.PLICE,F.S.CRANFOND (LRL) PLATTEZ 7 PR 18 207 L.R.PRICE,F.S.CRANFOND (LRL)	
ARNOLD 68 PL 2.78 466 +PATY,RAGLIN,BINGHAM+ (STRB+MADR+EPOL+BERK) BAZIN 68 PRL 20 895 BAZIN,GOSHAN,ZACHER,+ (PRINCETON,QUEENS) BULIOCK 68 PRL 278 402 +ESTEN,FLEMING,GOVAN,HENDERSON,ONEN+LOUCI WEHMANN 68 PRL 2.78 474 HYMANN,SOCES,+ (ARXOR XAS FSLACE/COR WHGGILL)	
AGLIN 69 PL 298 445 BAGLIN, BEZAGUET, + (EPOL, BERK, WADR, STRB) ALSO 70 NP B22 66 + BEZAGUET, DEGRANGF, MUSSFT +(EPOL, MADR, STRB) HYAMS 69 PL 298 L29 HYAMS, KOCH, POTTER, VON LINDERN, + (CERN, MPIM) JACQUET 69 NC 58 743 JACOUET, MGUYEN-KHAC, HAATUFT + (EPOL, BERG)	
BUTTRAM 70 PRL 25 1358 +KREISLER,MISCHKE (PRIN) COX 70 PRL 24 534 COX,FORTNEY,GOLSON (DUKE) DEVINS 70 PRL 24 534 COX,FORTNEY,GOLSON (DUKE) GORNLEY 70 PR 20 501 GORNLEY,HYMAN,LEE (COLU-SNL) ALSO 70 NEVIS SITTHEAL (COLU-SNL) (COLU-SNL) KANDFSKY 70 NC 88 43 A. KANNFSKY (COLU-SNL) SCHMIT 70 PL 32 638 ANIATOV,7AVATTINI.DEINET+ (CEN,KARL) STRUGALS 70 JINR 252 STRUGALSKI.CHUVILIO,6EMESY,+ (JINR)	
BASTIEN 62 PRL 8 114 BASTIEN, BREGE, DAHL, FERRO-LUZZI, HULLER+ILRL) CARMONY 62 PRL 8 117 D CARMONY, A ROSENFELD, VAN DE WALLE (IRL) ROSENFEL 62 PRL 8 293 A ROSENFELD, CARMONY, VAN DE WALLE (IRL)	
REFERENCES IN ETA ASYMMETRY PARAMETERS BALTAY 66 PRL 162 PALTAY;FRANZINI;KIN;KIRSCH+(COLUM+STONY BK) CNDPS 66 PL 25 46 CNDPS;FINOCENTARS;LASSALLE++(CERN+ZUR+SACL) CRAMFORD 66 PRL 16 333 FS:SCRAMFORD.L.R.PRICE LARRIBE 66 PL 23 600 LARPIBE,LEVEOUE, MULLER, PAULI;+ CLWY 66 PR 149 1044	
ROWEN 67 PL 24B 206 BOWEN,CNDPS FINOCCHIARO,+ (CERN+ZUR+SACL) LITCHFIE 67 PL 248 486 LITCHFIELD,RANGAN,SEGAR,SMITH+RUTH+SACLAND,SEGAR,SMITH+RUTH+SACLAND,SEGAR,SMITH+RUTH+SACLAND,SEGAR,SMITH+RUTH+SACLAND,SEGAR,SMITH+SACLAND,SEGAR,SMITH+SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITH-SACLAND,SEGAR,SMITHS,SEGAR,SAGAN,GOX,AGAN,GOX,AGAN,SUN,SEGAR,SMITHS,SAGAR	
****** ********* ******** *************	: :
P 16 PROTON (938, J=1/2) I=1/2	
M (938.2592 .0052 TAYLOR 65 RVUE 938.2592 .0052 TAYLOR 69 RVUE USING NEW F/H	7/66 7/70
T 10**20 YRS OR MORE GOLDHABE 54 TH 232 FISS.MODE INDEPEN T (0.002) OR MORE FLEROV 57 TH 232 FISS.MODE INDEPEN	1
T B [1.5] OR MORE BACKENSTO & CNTR T B (60.0) OR MORE KROPP 65 CNTR T (200.0) OR MORE CURR 67 CNTR DEP. ON DECAY MODE T (200.0) OR MORE CURR 67 CNTR DEP. ON DECAY MODE B KROPP AND BACKENSTOSS SENSITIVE TO PARTICULAR DECAY MODES OF PROT	
16 PROTON MAGNET. MOMENT(E/2MP)	
MM 2.792782 .000017 TAYLOR 69 RVUE USING NEW E/H	7/70
16 PROTON ELECTRIC DIPOLE MOMENT (IN UNITS OF 10**-23 E CM) NONZERO VALUE IMPLIES VIOLATION OF T AND P IN EM INTERACTION EDM 10 700. 900. HARRISON 69 MAR	10/69

REFERENCES	
REFERENCES 16 PROTUN (938,J=1/2) I=1/2 COLDUARE 54 DR 04 1157 ENDES COLDUARE E RETURSA	
RFFERENCES Istrict RFFERENCES 16 PROTUM (93R,J=1/2) I=1/2 Istrict Istrict GOLDHABE 54 PR 96 1157 FNTFE2 GOLDHABER, F REINES+ (LOS ALAMOS,BNL) FLEROV 57 SDV PHYS DOX 3 78 FLEROV, KLOCHKOV, SKOBKIN, TEPENTEV (USSR) BACKENST 60 NC 16 40 BACKENST FRAUENFELDER, HYAMS + (CERN) COHEN 57 SDV PHYS DOX 3 78 FLEROV, KLOCHKOV, SKOBKIN, TEPENTEV (USSR) BACKENST 60 NC 16 57 RB 1731 E R COHEN, J W NUMOND (NAASC+CALTECH) KRIPP 65 PR 137 B 740 K ROPP, REINES, MFYER (CASE INST TECHNOLGY) GURR, KROPP, REINES, MFYER (CASE, JOHANNESAURG) HARRISON, SANDARS, WFIGHT (CLARENDON OXFORD) MARRISON 69 PRL 22 1263 HARRISON, SANDARS, WFIGHT (CLARENDON OXFORD) TAYLOR 69 RMP 41 375 +PARKER, LANGENBERG (PRIN+UCI+PENN)	
RFFERENCES 16 PROTUN (93R,J=1/2) 1=1/2 GOLDHABE 54 PR 96 1157 FNDTE2 GOLDHABER,F REINES+ (LOS ALAMOS,BNL) FLEROV 57 SDV PHYS DOX 3 78 FLEROV,KLOCHKOV,SKOBKIN,TEPENTEV (USSR) BACKENST 60 NC 16 749 BACKENST FRALENFELDER,HYAMS + (CERN) COHEN 65 RHP 37 537 E R COHEN, J H H DUMOND (NAASC+CALTECH) KRIPP 65 RH 37 R 740 K RDPP, FRINES (LASE INST TECHNOLGSY) GURA 67 PR 158 1321 GURA;KRDPZ,REINES,H*YER (CASE,JOHANNESAUGG) HARRISON 69 PRL 22 1263 HARRISON,ADARS,HRTOLARS,HERG (PRINUCLPPENN) TAYLOR 69 RM 41 375 +PARKER,LANGEMERG (PRINUCLPPENN)	с с
RFFERENCES IG PROTUN (93R, J=1/2) I=1/2 GOLDHABE 54 PR 96 1157 FNDTE2 GOLDHARER, F REINES+ (LOS ALAMOS, BWL) FLEROV 57 SDV PHYS DX 378 FLEROV, KLOCHCOV, SKORENE, FFENTEV (USSR) BOCKENST 60 PM 91 570 BOCKENST 60 PM 91 570 CONSTRUCTION (USSR) FOR 137 B 740 CONSTRUCTION (USSR) FAREFERINS, MYERK (CASE, GHARNESAURG) HARRISON 69 PRL 22 1263 HARRISON 69 PRL 20 100 HARRISON 69 PR	r 1
RFFERENCES 16 PROTUN (93R, J=1/2) 1=1/2 GOLDHABE 54, PR 96, 1157 FNTF2 COLDHABER, F REINES, (LOS ALAMGS, HNL) FLEBON 57 SON 975 FLEROV, KLOCHKV, SKONK M.FEPENTEU USSR) DACKENST 60 NC 16 740 37 FLEROV, KLOCHKV, SKONK M.FEPENTEU USSR) COHEN 65 RM 37 57 FLEROV, KLOCHKV, SKONK M.FEPENTEU USSR) GURA 67 PR 158 740 W R KRIPP, FRINES, MYERK (CASE, INST TECHNOLOGY) USR 87 GURA 67 PR 158 740 W R KRIPP, FRINS, MYERK (CASE, INST TECHNOLOGY) HARRISON 69 PRL 22 1263 HARRISON 69 PRL 22 1263 HARRIKADP, REINES, MYERK (CASE, INST TECHNOLOGY) HARRISON 69 PRL 1375 TAYLOR 69 RM 41 375 HARRER, LAGGENBRER (PRTNULT) FPENNI I.1 NEUTRON (939, J=1/2) I=1/2 I.7 NEUTRON PROTIN MASS DIF, (MEV) 1.229344 0.00007	3/71

S54 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

Stable Particles

Stable Particles

For notation, see illustrated key at beginning of data card listings.

<i>5</i> 8 8 5 8	
18 LAMBDA BRANCHING RATIOS R1 LAMBDA INTO (P PI-)/((P PI-)+(N PIO)) (P1)/(P1+P2) R1 0.627 0.031 CRAMFDR 59 HBC R1 0.657 0.031 CD1/NEIA 60 HBC R1 0.657 0.017) ANDERSIN RATIOS R1 0.657 0.017) ANDERSIN RATION R1 0.065 0.017) ANDERSIN RATION 2 HBC R1 0.0643 0.016 MUMPREY RATION 2 HBC R1 0.0643 0.016 MUMPREY RATION 2 HBC R1 0.0633 0.016 MUMPREY RATION 2 HBC R1 0.0643 0.016 MUMPREY RATION 2 HCLUPES SCALE FACTOR OF 1.01 R1 - - - - - R1 - - - - - R1 - - - - - R1 - - - - - - R1 - - -<	ANDERSON 64 PRL 13 167. J A ANDERSON.F S CRAWFORD (LRL) BAGLIN 64 NC 35 977. BAGLIN.BINGHAAH* (EP+CERN+UL LINDHEL+BREG) HUBBARD, 64 PR 133 B 18 13 HUBARD, 61 FK, KALFLEISK, SHAFER + (LRL) KERVAN 64 PR 133 B 1271 KERVAN, PDWFLL, SANDLER + (LRL+UN-COLL-(IND) KRFISLER 64 PR 133 B 1074 N KREISLER, OUVERSETH, JCRONNU (PRINCE) RANDERSON 64 PR 135 B 1074 N KREISLER, OUVERSETH, JCRONNU (PRINCE) RINNE 64 PR 135 B 1074 N KREISLER, OUVERSETH, JCRONNU (PRINCE) ROWE 64 PR 135 B 1483 LIND, BINFIRD, GOUD, STERN (VISCONSTN) ROWE 64 PR 135 B 1483 LIND, BINFIRD, GOUD, STERN (VISCONSTN) ROWE 65 PR 136 B 1483 LIND, BINFIRD, GOUD, STERN (VISCONSTN) ROWE 65 PR 135 B 1483 LIND, BINFIRD, GOUD, STERN (VISCONSTN) SCHWARTZ 64 PL 11 350 THESIS JDSEPH ANAM SCHWARTZ (VISCONSTN) SCHWARTZ 65 PC 18 66 JARLON BLAIP, COUNTON, NUTH, BERGEN) BALLAY 65 PC 18 66 CHARRIERF, GIRSON + (EPUL, HRIST, CERN, MPI) CONFORTO 65 PC 115 66 CHARRIERF, GIRSON + (EPUL, HRIST, CERN, MPI) CONFORTO 65 PC 115 85 D A HILL, KA LUS, POWELL + (LRL, LCL LNNONN) HLL 65
02 AVG 0.304 0.025 AVERAGE LERADR INCLUDES SCALE FACTOR OF 1.10 R2 FIT 0.3064 0.0055 FADRA FIT LERADR INCLUDES SCALE FACTOR OF 1.11 R3 LAMBDA INTO (P F- NEU)/TOTAL (UNITS 10##-3) (P4)/(P1+P2) R3 0 15 (2.0) (0.51) R3 0 15 (2.0) (1.5) (1.2) R3 0 15 (2.0) (1.5) (1.2) AUBENT 62 R3 0 0.42 0.12 0.13 FLY 6.3 FBC R3 102 0.78 0.12 BAGLIN 64 FRC R3 102 0.78 0.205 PARAGEN FMT 10/64 R3 0.800 0.009 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 7/70 R3 0.700 0.705 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 94 LAMBDA INTO (P MU- NEINI/TOTAL (UNITS 10#+-4) (P3)/(P1+P2) 64 1 1.021 DR GRAFTER ALSTON 6.0 1.00	BURAN 66 PR 20 318 HURAN, EIVINDSON, SKUEGGESTAN, TOFTE + (105.0.0) CHIEN 66 PR 152 1171 4.4CH, SANDERISS, TAFT, TVEH, NERN + (YALE+BNL) ENGELMAN 66 PR 153 1034 LIDNON, RAU, GLOBERS, LLATH, NERN + (YALE+BNL) AUFERBACH 67 PR 1504 LIDNON, RAU, GLOBERS, LLATHANE, HILLESYRACUS) AUFERBACH 67 PL 255 152 +BONNET, RAIANDET, SADOULET (EP (PARIS)) NAYEUR 67 PL 256 152 +BONNET, RAIANDET, SADOULET (EP (PARIS)) NAYEUR 67 PL 268 45 CLELAND, SIEN, BILEIN, COMPAJ, JURCKS (UL SANV-GLONN) OVERSTHA 67 PL 268 45 CLELAND, SIEN, BILEIN, COMPONITO+ (CERN, GVA, LUND) OVERSTHA 67 PL 268 704 -JAGRIAM HICHELBARGH HICHELBARGH ANDERSSO 68 VIENNA ANS 270 ANDERSSON, AIENLEIN, CLEAND +(CERN, GVA, LUND) MARENS 1202 HERETLI, HAREN KELLEIN, CLEAND +(CERN, GVA, LUND) +(CERN, GVA, LUND) +(CERN, GVA, LUND)
R4 AVG III IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DAHL-JEN 70 NC (TO BE PUBL.) DAHL-JENSEN (CFRN4-ANKRA*LAUSAN**PTM*ROMA) DENIDOV 70 SAND 10 651 *KIRILOV-UGRVMOV.PONSOV.POTTSATON* (TTEP) OLSEN 70 PRL 24 843 *PONDROM.HANDLER.LIMON.SMITH + (WISC.ANNA) PAPERS NOT REFERRED TO IN DATA CAROS ARMENTER 62 CERN CONF 236 ARMENTEROS+ICERN+ED+LONDON+RIRM+CEN-SACLAY) BALTAY 62 CERN CONF 233 BALTAY:FOMLER.SANDWEISS, CULWICK+ (YALE+BNL) BERGE 63 THFSIS (BREKELEY) J PETER BERGE (LRL)
A- M 2529 (0.74 T) (0.086) MERRILL 68 HAC REPL BY DAUBEN 05 6768 A- M 2529 (0.74 T) (0.086) MERRILL 68 HAC REPL BY DAUBEN 05 6768 A- M 2529 (0.74 T) (0.086) AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) 6768 A- AVG 0.645 0.015 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) A0 ALPHAD /ALPHA- FOR LAMBDA (L INTO PIO N/L INTO PI- P) CORK 60 CNF A0 0.045 0.27 CORK 60 CNF A0 0.066 DISEN 70 OSEK PI+N TO K+ LAMDDA 5/70 A0 DONE BY COMPARING PROT DISTRIB WITH N DISTRIB FROM LAMBDA DECAY 400 1.006 0.066 A0 AVG 1.006 0.0466 AVERAGE (FRROR INCLUDES CALE FACTOR OF 1.0) F- 1156 13.0 17.0 CRONIN 63 OSEK F- 1050 -6.0 OVERSETH 67 OSEK LAMBDA FROM PI-P 11/67 F- 777 (-6.2) (5.2) CLEAND 67 OSEK LAMBDA FROM PI-P 11/67 F- 7377 (-6.2) (5.2) CLEAND 67 OSEK LAMDERSON 11/68 F- -6.7 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) LASYWETRY PARAMETER IN E	$ \begin{array}{c} 10 \text{SIGMA+} (1189, JP=1/2+) \text{I=I} \\ 10 \text{SIGMA+} \text{MASS} (\text{MEV}) \\ \hline \\ \text{M} \text{N} \text{SEE} \text{NOTE} \text{PRECEDING LAMBDA MASS (MEV)} \\ \hline \\ \text{M} 144 1189, 38 0.15 \text{MARKAS} 63 \text{EMUL} + \text{SEE} \text{NOTE} \text{S} \text{BELOW} \\ \text{M} 5 \text{IAROVE} \text{SIGMA+} \text{MASSS} \text{MAVE} \text{DECRATS} \text{MOVE} \text{SIGMA+} \text{MASSS} \text{MAVE} \text{DECRATS} \text{IM} \text{MOVE} \text{SEE} \text{NOTE} \text{S} \text{BELOW} \\ \text{M} 5 \text{AROVE} \text{SIGMA+} \text{MASSSF} \text{MAVE} \text{DECRATS} \text{IM} \text{PION} \text{MASS} \\ \text{H} 205 1189, 68 0.10 \text{SCHMIOT} 65 \text{HBC} \text{SFE} \text{NOTE} \text{M} 6/68 \\ \text{H} 1189, 16 0.12 \text{HYMM} 67 \text{HBC} 6/68 \\ \text{H} 1189, 45 0.13 \text{AVERAGE} \text{ERROR} \text{INCLUDES} \text{SCALE FACTOR OF} 1.7) 2/71 \text{H} \\ \text{H} \text{FIT} 1180, 42 0.11 \text{FROM} \text{FIT} (ERROR \text{INCLUDES} \text{SCALE FACTOR OF} 1.7) 2/71 \text{H} \\ \text{H} \text{HEIGHTED} \text{AVERAGE} = 1189, 45 \pm 0.13 \\ \text{ERROR} \text{SCALED} \text{BY} 1.9 \\ \end{array}$
AV GA/SV FOR LAMBDA BETA DECAY (SEE TEXT FOR SIGN CONVENTION) 6/68 AV C 22 (-1.03) GA/BC 64 HBC 64 HBC NO SIGN GIVEN 1/71* AV C 102 (0.6) OR GREATER (ABS.V) BAGLIN 65 HLBC NO SIGN GIVEN 1/71* 6768 AV C 10.7 (0.6) OR GREATER (ABS.V) EAU 85 05PK 6/68 6/68 AV C 10.7 (0.6) OR GREATER (ABS.V) ELW 65 05PK 6/68 6/68 AV C 10.7 (0.7 RCEATER (ABS.V) ELW 65 05PK 6/68 6/68 AV C 10.7 (0.114) O.23 0.30 CMUDNEY 60 HBC 11/67 10/67 AV 1.9 (-0.71) (0.111) O.140 HAGGETT 70 HBC STOP.KPRELIM. 11/70* 11/67 10/63 10/63 AV (-0.71) (0.111) (0.113) HAGGETT 70 HBC STOP.KPRELIM. 11/70* AV 10 (0.35) 10.27) CHU 70 05PK PRELIMINARY 11/70* AV (-0.81) 10.27) CHU 70 05PK PRELIMINARY 11/70* AV A AGGETT 70 HBC STOP.KPRELIM. 11/70* AV AV C EXPTS INCLUED IN CONFIRES INE HABSOLITE VALUE OF A/V AV AV C EXPTS INCLUE	Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of \bar{x} , $\delta \bar{x}$, and scale factor, which are differ- ent from the values shown here.
FISIER 57 NC 5 1700 EISLER, PLANN, SAMIDS, SCHWARTZ + COLUM-PNL) BOLDT, D. CALDWELL, YPAL (MIT) CRAWFORD 59 PRL 2 266 CRAFFORD, CRFSTI, DOUGLASS, GODO + (LRL) RAGLIN 60 PR 1 2 266 CRAFFORD, CRFSTI, DOUGLASS, GODO + (LRL) RAGLIN 60 PR 10 2010 BAGLIN, RALOCH, BRISSON, HENNESSY + (PARLS-EP) JOMEN 60 PR 120 2010 BOMEN, HAADY, KEYNOLD, SS, SUN + (PRINCETON) CORK, 60 PR 120 2010 CORK, KETH, WENZEL, CRONIN, COUL (LRL+PR-FNL) (COLUMBLA) COLUMATIA SCHWARTZ + HUMPHREY & STRACTOR DOLOR + (COLUMBLA) HUMPHREY & STRACTOR DOLOR + COLUMALA HUMPHREY & STRACTOR DOLOR + (LRL+PR-FNL)	Энцинтк 64 ЕМUL 0.0
ANDERSING & CENN CUNF. H32 ANDERSING LGGUDEN.LLIDU + (LR.) AURERT & C2 NC 25 470 ANDERT, BAISSON, HENNESSY, SIX + (PARIS-EP) CHANG 52 THESIS DUKE CHUEN CHUEN CHANG [DUKE] CODL 62 PR 127 223 COL.+HILL, HARSYALL + (BMLHTHNYU+ANL) [DUKE] GODD 62 PR 127 223 COL.+HILL, HARSYALL + (BMLHTHNYU+ANL) [DUKE] GODD 62 PR 127 1305 H L GODD, V G LIND (MISCONTN) [MISCONTN] HUMPHREY 62 PR 127 1305 H L GODD, V G LIND (MISCONTN) [LR.] ALSTON, 63 UCRL 10026 ALSTON, KIRZ, NEUFELD, SOLMITZ, WOHLWHT (LR.L) [DELH] BURWHIK, SJ MC 28 130 T69 B RHOWIK, NO P GOYAL [DELH] [DELH] RICK, 63 PR 130 769 B RHOWIK, NO P GOYAL [DELH] [DELH] RICK, 63 PR 130 769 B SHOWIK, SAYK, TRILLID, RICK + (REAND-RADWHARARAHTT) [CRNIN] CHRETTEN, 63 PR 131 2200 CHRETTEN, CROUCH+ (RRAND-RROWHARARAWARTHT) [CRNIN] [CRNIN] [RINCETON] FLY 63 PR 131 868 ELY, GIOAL, KALWUS, OSMALD, POKELL + (LRL) [KERNAN, NOVEY, WARSHAW, WATTENBERG (ANL-HILL) KERNAN 63 PR 129 870 KERNAN, NOVEY, WARSHAW, WATTENBERG (ANL-HILL) [ANL+ILL] >	Note on Σ^{\pm} Lifetime Errors When combining lifetimes, we first convert mean lives τ to decay rates Γ , since for small numbers of events the distribution of the decay rates is more nearly Gaussian. However, in checking input data it is useful to bear in mind the theoretical minimum statistical error $\delta_{\min}(\tau)$ in the mean life itself. This is

$$\delta_{\min} = \frac{\tau}{\sqrt{N_{eff}}} ,$$

$$N_{eff} = N \left[1 - x^2 \frac{e^x}{(e^x - 1)^2} \right] ,$$

where N = number of decays seen over the time interval Δt and $\mathbf{x} = \Delta t / \tau$.

Thus we have checked the errors quoted in the various experiments for consistency with this minimum error. CHANG 66 turned out to have underestimated his errors in both the Σ^+ and the Σ^- lifetimes. We have therefore redone his χ^2 minimization, using his published data, and found the errors that we now quote.

19	SIGMA+	LIFETIME	(UNETS	10**-10
19	SIGMA+	LIFETIME	(UNITS	10**-10

ז ד ד ד ד ז ד ד ד ד ד ד ד ד ד ד ד ד ד ד	127 0.98 0.16 0 41 0.42 0.34 0 117 0.85 0.14 0 23 0.76 0.22 0 49 0.75 0.13 0 140 0.82 0.10 0 142 0.4749 0.056 0 142 0.4749 0.056 0 140 0.82 0.10 0 21 0.675 0.13 0 100 0.75 0.03 0.03 110 0.84 0.99 0.03 121 0.684 0.09 0.03 121 0.645 0.03 0.03 1311 0.630 0.07 0.0018 200 0.705 0.018 Ats 201 0.795 0.018 Ats 202 0.078 0.0018 Ats 313 0.018 Ats 0.0018 314 0.0	1. QLASER 2.0 FVANS 1.1 FREDEN 1.0 FREDEN 1.4 CHIESA 1.9 DERTHEUSA 1.4 CHIESA 1.9 DERTHEUSA 1.0 A BARKAS 1.0 CHARAS 1.0 CHARAS 1.0 CHARAS 1.0 CHARAS CHARAS CHIEN CARAYAN CARAYAN CHARAYAN CHARAYAN CHIEN CHIEN CHOWITA CHARAYAN	58 RVUE 50 EMUL 60 EMUL 60 EMUL 61 EMUL 61 EMUL 61 HUL 61 HUL 61 HUL 62 HUL 65 HUL 65 HUL 65 HUL 66 HUL 65 HUL 66 HUL 66 HUL 67 EMUL 68 HUL 68 HUL 69 EMUL 69 HUL 69 HUL 69 HUL 60 EMUL 60 HUL 60 HUL 60 HUL 60 HUL 60 HUL 60 HUL 61 HUL 62 HUL 63 HUL 64 HUL 65 HUL 65 HUL 66 HUL 66 HUL 66 HUL 67 HUL 68 HUL 68 HUL 68 HUL 69 HUL 69 HUL 69 HUL 69 HUL 60 HU	6/66 6/66 9/67 7/66 11/69 2/71* 11/69
			(MACHETONE 028 26 MEV.)	
M M M M M M M M M M M M M M	19 SIGMA+ M/ 3R1 1.5 1.1 52 3.5 1.5 51 3.0 1.2 69 3.5 1.2 29333 2.1 1.0 955 2.67 0.97	GONETIC MOMENT COOK KOTELCHUC SULLIVAN COMBE MAST ALLEY	(MAGRETONS,938.26 MEV) 66 OSPK 67 EMUL K-P AT 1.15BEV/C 67 EMUL PHOTOPRODUCTION 68 EMUL 68 HRC K-P AT .4 GEV/C 71 OSPK 1.28 GEV/C PI+P	7/66 8/67 8/67 10/68 6/68 10/70*
**	AVG 2.59 0.46 A	VERAGE (ERROR 1	NCLUDES SCALE FACTOR DE 1.01	
	19 SIGMA+ P.	ARTIAL DECAY MO	DES	
P1 P2 P3 P4 P5 P6 P8	SIGMA + INTO NEUTON PIO SIGMA + INTO NEUTON PI- SIGMA + INTO NEUTON PI+ SIGMA + INTO NEUTON PI- SIGMA + INTO NEUTON AMMA SIGMA + INTO NEUTON F+ N SIGMA + INTO NEUTON F+ N	GAMMA J NFUTR [ND EUTR [NO	DECAY MASSES 938+ 134 9394 139 9394 139 9394 1394 0 11154 .5+ 0 9384 0 9394 1054 0 9394 1054 0 9394 .5+ 0 9384 .5+ .5	r
	19 SIGMA+	BRANCHING RATIO		
R1 R1 R1 R1 R1	SIGMA+ INTO (NEUTRON PI+ 308 0.400 0.024 534 0.46 0.02 1331 0.488 0.010)/(NUCLEON PI) HUMPHREY CHANG BARLOUTAU	(P2)/(P1+P7) 62 HBC 66 HBC J 69 HBC K-P .4-1.2 GEV/U	6/66 11/69
R2 R2 R2	SIGMA+ INTI) (NEUT PI+ GAM (1.8) ABOUT 29 0.27 0.05)/(PI+N) (UNI BAZIN2 ANG	TS 10**-3) (P31/(P2) 65 H8C PI+ LT 116 MEV/ 69 H8C PI+ LT 110 MEV/	8/67 11/68
R 3 R 3 R 3 R 3 R 3 R 3 R 3 R 3 R 3	SIGMA+ INTO (LAMBDA E+ W 4 (3.3) (1.7) W FVENTS FRO 5 1.6 0.7 10 2.9 1.0 AVG 2.02 0.47 A	NEU)/TOTAL (UN WILLIS M THIS ÉXPERIMI BARASH BALTAY EISELEI VERAGE (ERROR	IT 10++-5) (P4)/TOTAL 64 HBC STOP.K- ENT,INCLUDED IN ETSELE1 69 67 HBC STOP K- 69 HBC STOP K- 69 HBC STOP K- 1NCLUDES SCALE FACTOR OF 1.0	9/66 11/69 8/67 11/69 10/69
R4 R4 R4 R4 R4 R4 R4 R4	SIGMA+ INTO (P GAMMA)/(P 1 (0.68) OR LESS 24 0.37 0.09 4 (0.17) 45 0.21 0.03 31 0.276 0.051 AVG 0.2035 A 656 LDEC	PIO) (UNITS CARRARA BAZIN QUARENI ANG GERSHWIN VERAGE (ERROR GRAM BELOW)	10**-21 (P\$)/(P1) 64 HBC 65 HBC 65 EBU 65 HBC 66 HBC STOP K- 69 HBC 1NCLUDES SCALE FACTOR OF 1.4	6/66 10/69 10/69

Stable Particles

REFERENCES

		19 510	GMA + (1189,JP=1/2+) [=1	
EVANS EREDEN KAPLON CORK PUSCHEL	60 60 60 60 60	NC 15 873 NC 16 611 ANP 9 139 PR 120 1000 NP 20 254	RRIST+RRUSS+LAS-UJCOL-OURLIN+LON+MILAN+PAD S FREDEN, H KORNALUM-R WHITE (RL) M KAPLON, A MELISSINGS, YAMANGUCHI (ROCHES) CORK, KERTH, WENZEL-CPONIN, COOL (LRL+PRI+DNL) W PUSCHEL (NST)	
BARKAS BERTHELO CHIESA	61 61 61	PR 124 1209 NC 21 693 NC 19 1171	BARKAS, DYER, MASON, NICHOLS, SMITH (LRL) BERTHELOT, DAUDIN, GOUSSU + (SACLAY+ORSAY) CHIESA, QUASSIATI, RINAUDO (INFN-TURIN)	
8EALL GRARD GALTIERI HUMPHREY TRIPP	62 62 62 62	PRL 8 75 PR 127 607 PRL 9 26 PR 127 1305 PRL 9 66	BEALL.CORK,KEEFE,MURPHY,WENZFL (LRL) F GRARO,G A SHITH GALTIERI,BARKAS,HECKMAN,PATRICK,SMITH (LRL) W E HUMPHRY,R R ROSS N D TRIPP,M B WATSON,M FERRO-LUZZI (LRL)	
BARKAS ALSO	63 61	PRL 11 26 UCRL 9450	W H BARKAS, J N DYER, H H HECKMANN (LRL) John Dyer (Thesis, Berkeley) (LRL)	
BHOWMIK CARRARA COURANT MURPHY NAUENBER WILLIS	64 64 64 64 64 54	NP 53 22 PL 12 72 PR 136 R 1791 PR 134 B 188 PRL 12 679 PRL 13 291	8 BHOWMIK,P JAIN,P MATHUR,LAKSHNI (DELHI) CARARA,CRESTI,GRIGOLETTO,PERUZZO+ (PANDVA) CUDRANT,FILTHUTH+(CERH+HEIDL&HHONRL +BNL) C THORNTON MURPHY NAUENBERG,MARATECK,BLUMENFELD+(COLERUT+PR) WILLIS,COURANT,ENGELMAN+ (BNL+CERN+HEID+MD)	
BAL TAY BAZ IN BAZ IN2 CARAY AN QUARENI SCHMIDT	65 65 65 65 65 65	PR 140 B 1027 PRL 14 154 PR 140 B1358 PR 139 B 433 NC 40 A 928 PR 140 B 1328	BALTAY, SANDWEISS, CULWICK, KDPP + (YALE+BNL) BAZIN, BLUMENFELD, NAUENBERG + (PRINCE+COLUM) BAZIN, PLAND, SCHHDIT + (PRINCE, RUTG, COLUM) CARAYANNOPOULDS, TAUTEEST, HILLMANN (PUROUE) QUARENI, CARTACCI + (BOL+FIR+GENPARMA) P SCHHIDT (COLUMBIA)	
BANGERTF BERLEY CHANG ALSO CHIEN CHI	66 66 65 66 66 67 68 68	PRL 17 495 PRL 17 1071 PR 151 1081 NEVIS 145 THESIS PR 152 1171 PRL 17 223 PRL 19 1458 VIENNA ABS, 374 PRIVATE COMM.	BANGERTER, GALTIERI, DERGE, MURRAY+ (LBL) HERP SBACH, ROFLER, YAMANOTO + (BNL+MASSEVALE) CHURO VUN CHANG (CDLUMBIA) CHUNG VUN CHANG (CDLUMBIA) +LACH, SANDHEISS, TAFT, YEH, DREN + (YALE+BML) V CODK, EMART, MASEK, OMAR, PLATINER (WASHINGTON) BAGGETT, CAN, GLASSER, KEHDE, KNDP+ BAGGETT, KEHDE (MARYLAND) N. BAGGETT (MARYLAND)	
BARASH EISELE HYMAN KOTFLCHU SULLIVAN ALSO	67 67 67 67 67 67	PRL 19 181 ZPHYS 205 409 PL 25 B 376 PRL 18 1166 PRL 18 1163 PRL 13 246	BARASH,DAY,GLASSER,KEHNE,KNOP + (MARYLAND) +ENGELWANN,FLLTHUTH,FOLISH,HEPP+ (HETOELB,) +LOKEN,PEWITH,WCKEN;EKYES+(ARG <carn+nu) KOTELCHUCK,GOZA,SULLIVAN,ROSS (VANDERBILT) SULLIVAN,KUTHURF,KOTELCHUCH (VANDERBILT)</carn+nu) 	
BIERMAN COMRE MAST	68 68 68	PRL 20 1459 NC 57A 54 PRL 20 1312	BIERMAN,KOUNOSU,NAUENBERG + (PRINCETON) CERN-BRISTOL-LAUSANNE-MUNICH-ROME-COLLAOR MAST,GERSHWIN,ALSTON-GARNJOST + (LRL)	
ANG BAGGETT BALTAY BANGERTE BANGERTI BARLOUTA EISELE1 GERSHWIN SEE AL NORTON	69 69 69 69 69 69 69 69 69 69 69 69 69 6	ZP4YS 228 151 MDDP-TR-973 PRL 22 615 UGRL-19244 PR 187 1821 NP 814 153 ZP4YS 221 401 PR 188 2077 UGRL 19246 THESIS NEVIS 175 (THESIS	+EREWHON-EISELE, ENDELMANN, FILTHUTH+ (HEID) N V BAGGETT (THESIS) (MO) BALTAY, FRANZ INI, NEWMAN, NORTNN+ (CDLU, STON) ROGER, ODELL BANGERTER, (THESIS) (CDLU, STON) BANGDUTT, SARANJOST, GARITER, SGERHMIN- (LAL) (AN) BANGDUTT, GARANJOST, GARITER, SGERHMIN- (LAL) (AN) BANGDUTT, GARANJOST, GARITER, SGERHMIN- (LAL) (AN) BANGDUTT, NOT SGERTER, SGERHMIN- (LED) (AN) CHARGHMANN, NOT THE SGERHMIN- (LED) (AN) LANGRONG, CARNJOST, BANGERTER, (LED) (AN) AARRONG, CARNJOST, BANGERTER, (LED) (LEL) AARRONG, CARNJOST, BANGERTER, (LEL) (LEL) HARBERT NORTON (CDLUMBIA)	
BERLEY EBENHOH ALSO EISELE HAPRIS	70 70 70 70 70	PR D1 2015 KIEV CONF ZPHY 228 151 ZPHY 238 372 PRL 24 165	+YAMIN,HERTZBACH,KOFLER + (ONL,MASS,YALE) +EISELE,FNDELMANN,FILTHUTH,FOHLISCH(HEID) ANG,EISELE,ENGELMANN,FILTHUTH + (HEID) FILTHUTH,HEPP,PRESER,ZECH (HEIDELBERG) +DVERSETH,PONDROW,DETTMANN (ANNA,WISC)	
ALLEY	71	PR D3 75	+BENBROOK,COOK,GLASS,GREEN,HAGUE + (WASH)	
GLASER	5 R	CERN CONF 270	GLASER+GOOD+MORRISON (MICH+LRL)	
	QU	ANTUM NUMBER DETER	MINATIONS NOT REFERRED TO IN THE DATA CARDS	
TRIPP ALFF ALSO COURANT	62 63 65 63	PRL 8 175 SIENA CONF 1 205 PR 137 B 1105 STENA CONF 1 73	R TRIPP,M WATSON,M FERRO-LUZZI (LRL) P ALFF,NAUENBERG,KIRSCH,BERLEY+(COLU+RUT+BNL) ALFF,GELEAND,BRUGGER,BFRLEY+(COLUM+RUT+BNL) COURANT,FILTHUTH,BURNSTEIN,DAY+ (CERN+MARY)	
****** * ****** *	***	***** ********* **	····· ··· ······· ······ ······ ·······	
Σ^{-}		20 SIGMA	- (1198,JP=1/2+) [=1 - MASS (MEV)	
H N CE	c	OTE DESCEDING LAND		
M 30	⊢ N 00	1197.47 0.11	SCHMIDT 65 HBC SEE NOTE N	6/68
M M FIT		1197.375 0.072	FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	2/71*
			MASS DIFFER.(-)-(+)(MEV)	
D.	87	8.25 0.40	BARKAS 63 EMUL -	
D 25 D O 4VG D FIT	00	8.25 0.25 8.25 0.21 7.95 0.12	AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.4)	2/71*
			a-) - (LAMBDA) MASS DIFFFRENCE (MEV)	
	SEE	NOTE PRECEDING IA	MBDA MASS LISTINGS.	
DL		81.70 0.19	BURNSTEIN 64 HBC	9/66
DL 22 DL	45 79	61.80 0.24 81.64 0.09	SUMIUI 65 MBC SEE NITE N HEPP 68 MAC	6768 8768
DL AVG DL FIT		81.666 0.077 81.789 0.065	AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.0) FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	2/71*

10.3 14.6 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG

S58 REVIEWS OF MODERN PHYSICS · APRIL 1971 · PART II

For notation, see illustrated key at beginning of data card listings.

Stable Particles

SIGMA O INTO(LAMBDA E+ E-//TOTAL (P2)/(P1+P2) (0.0054) THEORET. CAL. FEINBERG 58 QUANTUM ELECT. 9766 REFERENCES 21 SIGMA 0(1193, JP=1/2+)[=1
 FEINBERG 5R PR 109
 0.19
 G,FEINBERG
 (ANL)

 DAVIS, 62 PR 127
 605
 D DAVIS,R SETTI,M RAYMOND,G TOMASIN (CHI)

 BURNSTE 164 PRL 13 66
 BURNSTE 10, DAY,KEHDE,SECHI ZORY,SNUH (MARY)

 DOSCH 65 PL 14 239
 DOSCH,ENGELMANN,FILTHUTH,HEPP,KLUGE+(HEID)

 SCHMIDT 65 PR 140 B 1328
 P SCHMIDT (CULUMRA)
 PAPERS NOT REFERRED TO IN DATA CARDS. COURANT+FILTHUTH+FRANZINI+ (CERN+UMD+USNRL) QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS 65 PR 137 BLL05 ALFF, GELFAND, NAUENBERG+ (COLUMBIA+RUTG+BNL)P 22 XI- (1321+JP=1/2) I=1/2 22 XI- MASS (MEV)
 22
 A1 AASS (REV)

 H
 L1(1317.9)
 A2.21
 NAMG
 61 HLBC

 H
 DLIDATA AND LON STATISTICS DROPPED ON SUGGESTION OF J R HUB9ARD)
 517 1321.4
 0.4
 JAUNEAU
 63 FBC

 517 1321.4
 0.4
 JAUNEAU
 63 FBC
 62 1321.1
 0.45
 SCHNEIDER A3 HBC

 241 1321.1
 0.3
 BADIERI
 64 HBC
 ALL 4M35FS AROUE MERE RAISED 0.09 MEV BECAUSE LANBDA MASS RAISED

 149 1321.3
 0.4
 DJERROU
 65 HBC
 6.9 DBAR P.ANTI

 6
 1321.67
 0.52
 HHEN
 6 HBC
 6.9 DBAR P.ANTI

 6
 1321.37
 0.51
 GOLDMASE TO HBC
 5.5 K-P
 6

 6
 1321.47
 0.51
 GOLDMASE TO HBC
 5.5 K-P
 6
 9/67 9/67 9/67 6/66 8/70* AVG 1321.32 0.17 AVFRAGE (ERROR INCLUDES SCALE FACTOR OF 1.01 FIT 1321.31 0.17 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.01 2/71* ------22 XI+BAR MASS (MEV)
 Ml
 1(1322.0)
 (1.3)
 BROWN

 M1
 S
 12(1321.7)
 10.61
 SHEN

 M1
 34
 1321.2
 0.4
 STONE

 M1
 34
 1321.2
 0.4
 STONE

 M1
 S
 THE ERROR IS STATISTICAL ONLY
 NO.4
 62 HBC 67 HBC 70 HBC AN T [- X] -AN T [- X] -7/66 10/67 10/70* SHEN STONE 22 MASS DIFFERENCE.(XI-)-(ANTI-XI-) IN MEV 1.0 1.1 CHIEN 66 HBC 6.9 PBAR P 9/67 22 X1- MAGNETIC MOMENT (MAGNETONS,938.26 MEV) MM 2724 -0.1 2.1 BINGHAM 70 OSPK - K-P AT 1.8 GEV/C 2/71* 22 XI- LIFETIME (UNITS 10**-10)
 22
 A1
 LIFFINE (UNITS 10**10)

 H
 11
 (3.5)
 (3.4)
 (1.23) WANG
 61 HLBC

 H
 18
 (1.23)
 (0.4)
 (0.25) FOMLER
 61 HLBC

 H
 18
 (1.23)
 (0.4)
 (0.25) FOMLER
 61 HLBC

 517
 1.86
 0.15
 0.14
 JAUNEAU
 63 HBC

 62
 1.55
 0.31
 0.31
 SCHMEIDER 63 HBC
 64 HBC

 754
 1.69
 0.07
 HUBBAR 04 HBC
 HBC
 64 HBC

 764
 1.70
 0.12
 PJERROU
 65 HBC
 6.9 PBAR P

 246
 1.70
 0.12
 PJERROU
 65 HBC
 6.9 PBAR P

 249
 1.80
 0.16
 LONDON
 64 HBC
 6.9 PBAR P

 291
 1.81
 0.04
 DAUBER
 69 HBC
 6.9 PBAR P

 2010
 1.61
 0.04
 DAUBER
 69 HBC
 K-P AT 1.3-1.8

 5
 THE FRROR IS STATISTISTICAU ONLY
 STATISTICAU ON REP BY PJERROU 65 6/68 K-P AT 1.3-1.8 1.660 0.037 0.035 AVERAGE (ERROR INCL. SCALE FACTUR OF 1.1) --- -----22 XI+BAR LIFETIME (UNITS 10**-10) TI 5 5 (1.51) (0.55) CHIEN 66 HRC + 6.9 PBAR P.ANTI 9/67 TI 5 12 (1.9) (0.7) (0.5) SHEN 67 HBC ANTI-XI- 10/67 TI 34 1.6 0.3 STONE 70 HBC L0/700 -----22 XI- PARTIAL DECAY MODES DECAY 4ASSES 1115+ 139 1115+ .5+ 0 939+ 139 1115+ 105+ 0 1192+ .5+ 0 1192+ .05+ 0 939+ .5+ 0 XI- INTO LAMBDA PI-XI- INTO LAMBDA E- NEUTRINO XI- INTO NEUTRINO PI-XI- INTO LAMBDA MU- NEUTRINO XI- INTO SIGMAO MU- NEUTRINO XI- INTO SIGMAO MU- NEUTRINO XI- INTO NEUTRON E- NEUTRINO 22 XI- BRANCHING RATIOS 11/67

11/67 11/67 11/67 11/67 11/67 6/68 6/68

Stable Particles

For notation and illustrated has at having of late and listing	
For notation, see ulustrated key at beginning of data cara listings.	
R2 XI- INTO (NEUTRON PI-)/(LAMBDA PI-) (UNITS 10**-3) (P3)/(P1) R2 (5.0) NR LESS FERRAT-UZ 63 HRG 6/68 R2 (1.1) NR LESS DAUBER 69 HBC 6/68	
R3 XI- INTO (LAMADA MU- NEUTRINO)/TOTAL (UNITS LO**-3) (P4)/TOTAL R3 (12.0) R LESS BERGE 66 HBC 6/58 R3 (1.3) GR LESS DAUBER 69 HBC 6/68	M M M F1
R4 XI- INTO (SIGHAD E- NEUTRINO)/TOTAL (UNITS L0++-3) (P5)/TOTAL R4 (3,0) DR LESS BERGE 66 HBC 6/68 R4 (0,5) DR LESS DAUBER 69 HBC 6/68	
R5 I XI- INTO (SIGMAO MU- NEUTRINO)/TOTAL (P6)/TOTAL R5 (0.005) OR LESS BERGE 66 HBC 7/66	0
R6 XI- INTO (N E- NEUTRINO) / (LAMBDA PI-) (P7)/(P1) R6 (0.01) OR LESS BINGHAM 65 RVUE CONF.LIMIT 0.9 9/66	0
R7 XI- INTO (SIGHAD € NEU + LAHADA E NEU/TOTAL (10+*-3) (P2 + 0-5/TOTAL) R7 IA 0.62 0.30 DUCLTS 60 S0K PRELSEE NOTE D 10/68 R7 D THIS EXPERIMENT CANNOT DISTINGUISM SIGMAD FROM LAHADA. THE CANTOBAD THE CANTOBAD AND R7 D THIS EXPERIMENT CANNOT DISTINGUISM SIGMAD FROM LAHADA. THE CANTOBAD R7 D THIS EXPERIMENT CANNOT DISTINGUISM SIGMAD FROM LAHADA. THE CANTOBAD R7 D THODY EXPECT SIGMAD GRATE ABOUT A FACTOR 6 SMALLER THAN THE LAMADA R7 D TO GET A VALUE FOR THE TABLE R7 HAS BEEN AVERAGED WITH R1 -	0 F1
22 XI- DECAY PARAMETERS	T T
A ALPHA XI- JAUNEAU 63 FBC SEE NITE D RELOW 6/68 A 0 (-0.73) (0.23) SCHWEIDER 63 FBC SEE NITE D RELOW 6/68 A 0 -0.5 0.38 BAUIERI 64 HBC SEE NITE D RELOW 6/68 A 356 -0.62 0.13 CARMONY 64 HBC SEE NITE D RELOW 6/68 A 1004 -0.3365 0.068 BERGE 66 HBC SEE NITE D RELOW 6/68 A L 3.64 -0.47 0.13 L000M 66 HBC SEE NITE D RELOW 6/68 A L -0.47 0.132 BRGE 2 66 RVUE INCLUDES ALL ABOVE 9/66 A 2529 10.0321 BERGE 2 66 RVUE INCLUDES ALL ABOVE 9/64	
A 27781 -0.391 0.065 DAUBER 69 HBC SFE NOTE A BELDW A 2724 -0.383 0.065 BINGHAM 70.055K 10/70* A USED ALPHALAMRDA = 0.667 PLUS OR WINUS 0.020 0 0 DEROS MULTIPLE 08 Y 1.1 DUE TO APPORXIMATIONS USED FOR XI A D POLARIZATION, (SFE DAUBER 69 FOR DETAILED DISCUSSION) 6/68 A L LONDON 64 USES ALPHA-LAMRDA = 0.62 6/8 A M DATA OF HERRILL 68 INCLUDED IN DAUBER 68. 6/8 A O OLD DATA NOT INCLUDED IN AVERAGE. 6 A O OLD DATA NOT INCLUDED IN AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	P1 P2 P3 P5 P5 P6 P7 P8
PH1 ANGLE (\$IN(PH1)/CCS(PH1)=AETA/GAMMA1 (DEGREES) P 0 1-16.0) (45.0) JAUNEAU 63 FBC SEE NOTE D BELOW 6/68 F 0 62 (45.0) 36.0) SCHMEIDER 63 HBC SEE NOTE D BELOW 6/68 F 0 62 (45.0) 30.0 CARMONY 64 HBC SEE NOTE D BELOW 6/68 F 0.0 12.4 BERGE 64 HBC SEE NOTE D BELOW 6/68 F 1044 0.1 12.4 BERGE 64 HBC SEE NOTE D BELOW 6/68 F 2729 (9.8) 11.6) MAUBER 69 HBC SEE NOTE A BELOW 6/68 F 27731 -14.1 11.6 MAUBER 69 HBC SEE NOTE A BELOW 6/68 F 27732 -26.0 30.0 BINGHAM 70 DSPK 10/70* F A USEO ALPHALAMBDA = 0.647 PLUS OR MINUS 0.020 0 PARAKINKTYONS USED FOR XI 0 F D PARAKS MULTIFIER BY 1.2 UPE TO APPROXIMATYONS USED FOR XI 10/70* 10/70* F D PARAKS MULTIFIER BY 1.2 UPE TO APPROXIMATYONS USED FOR XI 10/70* F D PARAKS MULTIFIER BY 1.2 UPE TO APPROXIMATYONS USED FOR XI 10/70* F D PARAKS MULTIFIER BY 1.2 UPE TO APPROXIM	R1 R1 R1 R2 R2 R2 R2 R3 R3 R3 R3 R3
****** *******************************	R4 R4
22 XI - (1321, JP=1/2) 1=1/2	R 5 R 5 R 5
FINLER 61 PRL 6 134 FUNLER,BIRGE,EBRENARD,ELY,GOND,PUNELL+(LRL) MANG 61 JETP 135 K NANG,T WANNG,TVINYASONY,TING,SOLOVEY (JINR) BRNWN 62 PRL 8 255 BROWN,CULWICK,FOWLER,GAILLOUD + (BNL+YALE)	R 6 R 6 R 6
CARMONY 63 PRL 10 381 CARMONY PAJERROU (UCLA) FERRO-LU 63 PR 130 1564 FFRO-LUZZIA KASTON, ROSENFELD, WOJCICKI (LRL) JAUNEAU 63 SIEMA CONF 4 JAUNEAU+ (PARIS+CERN+LOND+RUTH+BERGEN) ALSD 63 PL 5 261 JAUNEAU+MORELLET+ (EP,CERN+LON, RUTH-BERGEN) SCHNFIDE 63 PL 4 360 H SCHNEIDER (CERN)	R 7 R 7 R 7
CARMONY 64 PRL 12 492 CARMONY PJERRUU,SCHLEIN,SLATER,STOPK+LUCLA) RADIERI 64 DUBNA CONF I 593 BOIER,OFMOULIN, BARLOUTAUDH (PARISSAC-ZFE) HUBRARD 64 PR 135 B IA3 HUBBARD,ARRGE-KALBFLEISCH,SHAFFR + (IRL) BINGHAM 65 PRSL 295 202 H HOINGLAREGE-KALBFLEISCH,SHAFFR + (ICEN) PJERRUU 65 THESIS G M JERRUU GHERUU 65 THESIS G M JERRUU (UCLA)	
BERGE 66 PR 14.7 94.5 BERGE/EGERHARD,HUBARD,HORARD,HERRILL + (LRL) REGGE 2.66 BERKELEV CONF 4.6 BERGE/EGERHARD,HUBARD,HORARD,HORARD,HURARD,HUBARD,HORARD,HUBARD,HORARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HURARD,HUBARD,HURARD,HUBARD,HURARD,HUBARD,HUBARD,HURARD,HUBARD,HURARD,HURARD,HUBARD,HUBARD,HURARD,HUBARD,HURARD,HUBARD,HURARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HUBARD,HURARD,HUBA	A M A A A D A D A L A M
RUPGUN 68 NP R8 467 + MEYER, PAULI, TALLINI, + (SACL+CDEF+RHEL) OUCLOS 68 CERN W.I.49-7 163 OUCLOS, SREYTAGE VIENNA 253(CERN, HEIDELBERG) HUJANARD 68 PRL 20 465. HUBBARD, BERGE, DAUBERC (LRL) MERRILL 68 PR 167 1202 MERTIL, SAMEFER (LRL)	A A A
NAUBER 69 PP 179 1272 +BERGE,HUBBARD,MERRILL,MILLER (LRL)J BINGHAM 70 PR DI 3010 +CCOX,HUMPHREY,SANDER,MILLIAMS+ (UCSD,WASH) GOLDWASS 70 PR DI 1406 GOLDWASSER,SCMULTZ (ILL) STONE 70 PL 328 515 +BERLINGHIERI,BROMBERG,COHEN,FERBEL +IROCH)	F M F A F D F D
QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS	F M

QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS CARMONY 64 PRL 12 482 CARMONY, PJERROU, SCHLEIN, SLATER, STORK+(UCLA) J

							_		
0			22 XI 0	(1314)8-1/3	• • T=	172			
,			23 110	11514157-172	. ,				
			23 XI 0	MASS (MEV)					
	1	1313.4	1.8	PAL	MER	68	нвс		3/69
		1314 75	••••••	FROM FIT (F	RROR	INCL	UDES	SCALE FACTOR OF 1.0)	2/71*
F11		1314.13	. 0.10						
			23 XI	MASS DIFF	ERENC	E (-)-10)(MEV)	
	23	6.8	1.6	JAU	INEAU	63	FBC		
	45	(6.1)	(1.6)	CAR	MONY	64	HBC.	REP BY PJERROU 65	
	88	6.1	0.9	PJF	RROU	65	HBC		11/67
	29	6.9	2.2	LON	ID ON	66	HBC		6165
AVG		6.34	0.74	AVFRAGE (E	RRUR	INCLU	JUES	SCALE FACTOR OF 1.01	2/71*
F11		0.57	0.00	FRUM FIT LE	RRUR	INGLU	0023	SCALE PACIDE OF 1401	2771+
			23 X1 0	LIFETIME UN	ITS 1	0**~)	10)		
	34	2.0		0.00 141		63	car		
	45	(3, 5)	(1.0)	(0.8) (AR	MONY	64	HBC	REP BY PUERROUL 65	
	101	2 5	0.4	0.3 408	BARD	64	HBC	net of fuendo of	
	101	2.0	0.5	0.5 100	DD OIL	65	HBC		11/67
	340	3.07	0.72	0.20 DAU	IBER	69	HBC		6/68
AVG		3.03	0.18	0.16 AV	ERAGE	(ERF	ROR	INCL. SCALE FACTOR OF	1.0)
				0407744 050		05.0			
			23 XI U	PARTIAL DEC	AT MU	UC S			
								DECAY MASSES	
	XI	O INTO L	AMBDA PIO					1115+ 134	
	XI	O INTO P	ROTON P1-					938+ 139	

xi	O INTO PROTO	JN E- NEU		9	38+ .5+ 0	
XI	O INTO SIGNA	A+ E- NEU		119	39+ .5+ 0	
¥ 1	O INTO STOM	A- E+ NEU		119	7+ .5+ 0	
Ŷi	O INTO SIGM	A + MU- NEUTRINO		iii	39+ 105+ 0	
	A INTO SICH			113	7+ 105+ 0	
	0 INTO 31044				94 1054 0	
× 1	U INTO PROD	IN MO- NEOTRINO		7	154 1054 0	
						_
	23		C PATTOS			
	£ :	S AL O BRANCHE	10 101103			
Υſ		N PT-)/(LAMBDA P	(UNITS	10**-3) (P)	21/(21)	
~ •	(27.0) 06	RIESS	TICHO	63 HBC		6/68
	(5.0) 05	RIESS	HUBBARD	66 HBC		6/68
	(0.0) 00		DAUBER	69 HBC		6/68
	10.77 07	CC35	ORODEN	07 1110		
¥ 1		DN E- NEU)/(LAMBI	A PIOL (UN	ITS 10**-3)	(P3)/(P1)	
	127.01 01	RIESS	TICHO	63 HBC		6768
	16.01 05	RIFSS	HUBBARD	66 HBC		6/68
	(1 2) 05		DAUBER	A9 HBC		6/68
	(1.5) 0.	CL33	DROUCH	07 11.00		
XI	D INTO ISLOW	A+ E- NEU)/(LAMBI	A PIOL (UN	ITS 10**-3)	(P4)/(P1)	
	(13.0) 08	RIESS	тісно	63 HBC		6/68
	17.01 05	8 1 655	HUBBARD	66 H8C		6/68
	(1.5) 0	DIESS	DAUBER	69 HBC		6/68
		2030				
XI	INTO (SIGM	A- E+ NEU)/(LAMBI	TA PIOT (UN	ITS 10**-3)	(P5)/(P1)	
	(6.0) 08	B LESS	HUBBARD	66 HBC		6768
	(1.5) 0	RLESS	DAUBER	69 HBC		6/68
XI	INTO (SIGM	A+ MU- NEU1/TOTAL	UNITS LO	**-3) (P6)/	TOTAL	
	(7.0) 0	R LESS	HUBBARD	66 HBC		6/68
	(1.5) 00	RLESS	DAUBER	69 HBC		6/68

6768 6768

6768 6768

23 XI O DECAY PARAMETER

XIO INTO (SIGMA- MU+ NEU)/TOTAL (UNITS 10**-3) (P7)/TOTAL (6.0) DR LESS HUBBARD 66 HBC (1.5) DR LESS DAUBER 69 HBC

XIO INTO (PROTON MU- NEU)/TOTAL (UNITS 10**-3) (PB)/TOTAL (6.0) OR LESS HUBBARD 66 HAC (1.3) OR LESS DAUBER 69 HBC

	ALPHA	XIO							
		-0.09	0.46	PJERROU	65 HBC	SEE NO1	16 D I	BELOW	6/68
	146	-0.13	0.17	BERGE	66 HBC	SEE NOT	E D I	BELOW	6/68
	46	-0.2	0.4	LONDON	66 HBC	SEE NOT	E D I	BELOW	6/68
4	490	(-0.33)	(0.11)	MERRILL	66 HBC	SEE NOT	E D I	BELOW	6/68
	739	-0.43	0.09	DAUBER	69	SEE NOT	EAI	3 E L OW	
	USED	AL PHAL	$\Delta MBDA = 0.647$	PLUS OR MINUS	0.020				
n	FRRO	RS MULT	IPLIED BY 1.1	DUE TO APPROX	IMATIONS US	SED FOR XI			
ő.	POLA	RIZATIO	. (SEE DAUBE	R 69 FOR DETAIL	ED DISCUS	SIDNI			
·	LOND	ON 66 U	SES ALPHA-LAM	80A = 0.62					
4	MERR	111 66	REPLACED BY D	AUBER 69					
۸v i	· ·	-0.351	0.077 A	VERAGE (ERROR	INCLUDES SO	ALE FACTO	R OF	1.0)	
	PHI A	NGLE (SIN(PHI)/COS(PHI)=BETA/GAMM	A) (DEGRE	= 5)			

 PHI ANOLE
 (SINIPHI/SOS(PHI)=BETA/GAWA)
 (DEGREES)

 166
 -R.
 30.
 BERGE
 64 HBC
 SEE NOTE D BELON
 6/68

 M 400
 (107.0)
 (46.0)
 MERRILL
 66 HBC
 SEE NOTE D BELON
 6/68

 A 739
 38.
 19.
 DAUBER
 69 HBC
 SEE NOTE A BELON

 A USED ALPHALAMBDA = 0.647
 PLUS OR MINUS 0.200
 0
 PRRASS NULTPLETO BY 1.2 DUE TO APPROXIMATIONS USED FOR XI

 D ERRARS NULTPLETO BY 1.2 DUE TO APPROXIMATIONS USED FOR XI
 0
 POLARIZATION.
 (SEE DAUBER 64 FBR DETAILED DISCUSSION)

 M MERRILL 66 REPLACED BY DAUBER 69
 AVG
 24.8
 20.8
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3)

 (SEE IDEOGRAM BELON)
 (SEE IDEOGRAM BELON)
 (SEE IDEOGRAM BELON)
 (SEE IDEOGRAM BELON)

Stable Particles

Mesons

For notation, see illustrated key at beginning of data card listings.

CIDE EVENTS QUANTITY ERROR+ ERROR- REFERENCE YR TECN SIGN COMMENTS DATE Abuve Backgrund

π

PI MESON (JPG≖O--) I=1 SEE LISTING OF STABLE PARTICLES

			REFERENCES UN SIGMA
SAMIOS	62	PRL 9 139	+BACHMAN,LEA+ (BNL+CCNY+CO+KY)
BUDKHINT	63	JETP 17 80	BLOKHINTSEVA, GREIBINNIK, ZHUKOV + (DUBNA)
80-1TH	63	PR 132 2314	+ ABASHIAN (I BL)
KTR7	63	PR 130 2481	+SCHWARTZ + TRIPP (LRL)
BAR ISH	64	PR 135 8 416	BARISH,KURZ, PEREZ-MENDEZ, SOLOMON (LRL)
CRAWFORD	54	PRL 13 421	+GROSSMAN,LLOYD, PRICE, FOWLER (LRL)
DEL FABR	64	PRL 12 674	DEL FABRO, DE PRETES, JONES+ (FRASCATE)
K AL MUS	64	PRL 13 99	+KERNAN+PU-POWELL+DOWD (LRL+WISCONSIN)
BIRGE	65	PR 139 8 1600	+FLY+GTDAL+KALMUS+CAMERINI+ (LRL+WISC)
BROWN	65	CORAL GABLES 219	BROWN+FALER (NORTHWESTERN)
JACOBS	66	PRI 16 669	+SELOVE (LBL)
KOPELMAN	66	PL 22 118	+ALLEN+GODDEN+MARSHALL + (COLORADO+IOWA)
LOVELACE	66	PI 22 332	LOVELACE HEINZ DONNACHTE (CERN)
estree.			
ANDERSON	67	PRL 18 89	+FUKUI+KESSLER+ (CHIC+ANL+OTT+MCGILL+QMC)
CORBETT	67	PR 156 1451	+DAMERELL+MIDDLEMAS+NEWTON (DXF+RUTHERF)
MAL AMUD	67	PRI 19 1056	E.MALAMUD + P.E.SCHLEIN (UCLA)
WALKER	67	PRI 18 630	+CARROLL -GAREINKEL -OH (WISCONSIN)
BANDER	68	PR 168 1679	M. BANDER, G.L. SHAW, J.R. FULCO (UCI+UCSB)
BISWAS	68	PL 27 B 513	+CASON, JOHNSON, KENNEY, POIRIER+ [NOTRE DAME]
EISENHAN	68	PRL 20 758	EISENHANDLER + MISTRY + MOSTEK + (CORNELL)
FOSTER	68	NP 8 6 107	+GAVILLET+LABROSSE+MONTANET+ (CERN+PARIS)
JONES	68	PR 166 1405	+CALDWELL+ZACHAROV+HARTING+BLEULER+ (CERN)
MARATECK	68	PRL 21 1613	+HAGOPIAN++ (PENN+LRL+COLO+PURD+TNTO+WISC)
DAVISON	69	PR 180 1333	+BACASTOW-BARKAS++ (RIVS+BERK)
FLY	69	PR 180 1319	+GIDAL+HAGOPTAN++ (BERK+LOUC+WISC)
GUTAY	69	NP B 12 31	+CARMONY - CSONKA - LOFFELER - METERE (PURDUE)
HALL	59	NP B 12 573	+MURRAY, RIDDLEORD (BIRMINGHAM)
ROBERTS	69	PL 29 8 368	R.G. ROBERTS, F. WAGNER (CERN)
BRUDY	70	PPL 24 948	+GROVES, VANBERG, MAGLIC+(PENN+RUTG+UPNJ+ANL)
MAUNG	70	PL 33 B 521	+MASEK, MILLER, RUDERMAN, VERNON, + (UCSD+LRL)
MORGAN	70	SPRINGER TRACTS	MOD. PHY S., VOL. 55, P.1. MORGAN, PISUT (RHEL+CERN)

 η

ETA (549, JPG=0-+) I=0 SFE LISTINGS OF STABLE PARTICLES

 $\eta_{0+}(700-1000)$ or ϵ

14 ETA 0+(700-1000+JPG=0++) 1=0 ALSO CALLED EPSILON (720)

Information about the $\pi\pi$ system in the I = 0 S wave comes mainly from phase-shift analyses of the reaction $\pi^- p \rightarrow \pi^+ \pi^- n$. Although no method used is free from serious objections, all analysts in the past (BATON 65, BATON 67, GUTAY 67, JOHNSON 67, WALKER 67, BISWAS 68, MARATECK 68, MALAMUD 69, SCHARENGUIVEL 69) have agreed that the S wave is near the unitarity limit in the region 650-900 MeV. However there was an ambiguity between two sets of phase shifts which crossed at about 700 MeV, leading to four possible tracks, called "down-up," "down-down," ... The "down-up" solution, preferred by MARATECK 68 and SCHARENGUIVEL 69, leads to an " ϵ (720)" resonance, with Γ about 150 MeV. Experiments on the $\pi^0 \pi^0$ system (BROWN 68, SMITH 69, DEINET 69, SONDEREGGER 69) have not yet removed this ambiguity. For a review, see MORGAN 70.

In the figure we have collected recent results on the S-wave phase δ_0^0 from analyses where the S₀ wave is permitted to be inelastic, as required by direct measurements of KK production (HYAMS 70). BATON 70 now rule out the low-energy "up" solution, and their "down-down" solution is mildly preferred because it has a rather big inelasticity compatible with that reported by HYAMS 70 at 1 GeV; moreover, above 1 GeV their "down-down" solution more-orless agrees with that of OH 70 and BEAUPRE 70.

In the threshold region, MAUNG 70 have determined the scattering length to be $a_0 = 0.28 \pm 0.21$, in agreement with the previous most probable value, $a_0 = 0.16 \pm 0.04$ (MORGAN 70).

$\frac{1}{1000} Marked the starting of the st$		REFERENCES	MO	NEUTRAL ONLY	(20.0)	SAMIOS 62 H	BC 0 4.7 PI-P
Norm Norm <t< td=""><td>8ATON 65 NC 36 1149 DURAND 65 PRL 14 329 LOVELACE 66 PL 22 332</td><td>J.P.RATON, J.REGNIER (SACLAY) L. DURAND AND Y.T. CHIU (YALE) LOVELACE,HEINZ,DONNACHIE (CERN)</td><td>M0 M0 M0 M0</td><td>R 300 (750.0) 160 (775.0) R 500 (770.0) (735.0)</td><td>(10.0)</td><td>ABOLINS 63 HI GUIRAGOSS 63 HI GOLOHABER 64 HI ALYEA 65 DI</td><td>BC 0 3.5 PI+P BC 0 3.3 PI-P BC 0 3.7 PI+P BC 0 2.2 K- P 6/64</td></t<>	8ATON 65 NC 36 1149 DURAND 65 PRL 14 329 LOVELACE 66 PL 22 332	J.P.RATON, J.REGNIER (SACLAY) L. DURAND AND Y.T. CHIU (YALE) LOVELACE,HEINZ,DONNACHIE (CERN)	M0 M0 M0 M0	R 300 (750.0) 160 (775.0) R 500 (770.0) (735.0)	(10.0)	ABOLINS 63 HI GUIRAGOSS 63 HI GOLOHABER 64 HI ALYEA 65 DI	BC 0 3.5 PI+P BC 0 3.3 PI-P BC 0 3.7 PI+P BC 0 2.2 K- P 6/64
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	RATON 57 PL 258 419 RATON 67 NP 8 3 49 CLEGG 67 PR 163 1664 CURRET 67 PR 153 1664 GUTAY 67 PR 151 1421 JOHNSON 67 PR 163 1497 WALKER 67 PR 163 1497	J.P. RATON. G. LAURENS, J. REGNIER (SACLAY) J.P. RATON. G. LAURENS, J. REGNIER (SACLAY) A.B.CLEGG (LANCASTER) P.D.MERELL.MIDDLEMAS+NEWTON (OXF-RUTHERE) +J.DHNSON+LOEFFLER*ACILWAIN+ (PURDUE+UCRL) GUTAY-(ELSNER,KLEIN+) GUTAY-(ELSNER,KLEIN+) (MISCONSIN) M.D. MALKER	MO MO MO MO MO MO	(750.0) S (750.0) 768.0 R (750.0) S (751.1 P (728.0) S (773.0) R (775.0) R (775.0)	(15.0) 14.0 (5.0) (6.1 (8.0) (12.0) (5.0)	CLARK 65 D: GUTAY 65 HI ACCENSI 66 HI ALFF-STEI 66 HI CAMBRIDGE 66 HI CASON 66 HI HAGOPIANI 66 HI	SPK 0 1.5 P1-P BC 0.2.0 P1-P 6/65 BC 0.5.7 PBAXP 6/65 BC 0.2.3 P1+P 5/65 BC 0.0.0 PRARP 6/65 BC 0.0.0 PRARP 6/65 BC 0.1.0-F.0 GAWMA P 10/65 BC 0.3.0 P1-P 9/66 BC 0.3.0 P1-P 6/65 BC 0.3.0 P1-P 6/65
$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{1000000} + \frac{1}{10000000000000000000000000000000000$	BANDEP 68 PR 168 1679 615%AS 68 PL 27 B 513 RRAUN 68 PRL 21 1275 DUIT4-PC, 68 PR 169 1357 FOSTER 69 PR 56 107 JOHNSTM 69 PR 176 1651 LOVFLACE 69 PL 78 B 264 MARATECK 66 PRL 21 1613	+ SHAM, FULCO (UC IRVINE + S. RARBARA) + CASON, JONNSON, KENNEY, POTRIENE (NOAM) BRAUN, CLINE, SCHERER (HISCONSIN) B, JUTA-BRY, I.R. LAPIDUS (HUBROKEN, NI) + GAVILLEF+LARROSSE + MONTANET+ (CERN+PARIS) + CALUBELL-ZACHAROY + MARATING+RELUER+ (CERN) + POIRIER, RISHAS, GUTAY, DERADO+(NO+PUROS) C.LOYELACE CLUPELACE (CERN) + HAGOPIAN, + (PENN+LRL+COLO+PURO+TNTO+HISC)		R (770.) R 7760 (763.3) R 4207 (758.0) R (765.0) R (766.0) 765. R (768.0) 745. 327 750. 0 260 (752.)	(5.) (6.0) (7.5) (8.0) (3.0) 5. (2.0) 9. 10.	HAGDPIAN2 66 HI JACORS 66 HI JACORS 66 HI JAMES 66 HI VEST 66 HI RACON 67 CI RACON 67 HI BARLOW 67 HI DANYSZ 67 HI	AC 0 2.1 P1 TCUT 12 2.2/67 C 0 2.3 P1 6/68 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 1 </td
$\frac{1}{1000} = \frac{1}{1000} = 1$	DEINET 69 PL 30 P 359 FELDMAN 69 PL 22 316 GUTAY 69 NP B 12 31 HOPKINS 69 NC 59 A 181 MALAMUD 69 ARGONNE COMF.076 ANDRAW 69 NP B 10 261 ROMERTS 69 PL 29 B 368 SCHAARNA 69 PL 29 B 368 SCHAARNA 69 PL 20 B 368 SCHAARNA 69 SACLAY REPORT CI STULGALS 69 PL 29 B 518 ALSO 70 NP B 24 358 WAGNER 69 NC 64 A 189	+MERUIONF, WULLER, STAUDEWALFR.+ (KARL+CERN) +FRATI, GLESON, HALPERN, NUSSBAUM.+ +CARMONY, CSONKA, LOEFFLER, MEIERE J.HOPKINSON, R.G. ROBERTS (CERN) J.HOPKINSON, R.G. ROBERTS (CERN) S.HOPKINSON, R.G. ROBERTS (CERN) S.C.ARAFNOU'NE, J. MANNER (CIAN) (CIAN) VIEL (CIAN) (CIAN) (CIAN) (CIAN) (CIAN) (CIAN) (VIEL) (CIAN) (CIAN) (CIAN) (VIEL) (VIEL) (CIAN) (VIEL) (VIEL	40 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0	0 SELECTI 7 (76.1) R (770.0) (777.0) 770.0 R (775.0) 763. 745.0 764. 2250 775.0 S (765.0) S (760.0) S (761.0)	INN 0N 0MEGA. (3.) (4.0) (5.0) 3.0 (2.0) 15. 5.0 (3.0) (3.0) (5.0) (13.0) (5.0) (5.0) (5.0)	HUWE 67 HI MILLER 67 HI POIDEIER 67 HI ARCCOLL- 68 HI ARCNISCE 68 D BLECHSCHM 58 HI DONALD 68 HI POSTER 68 D JONES 68 JONES JONES 68 O JONES 68 O JONES 68 O	BC 0 2.4 PI-P 7/67 BC 0 2.7 PI-T CUI20 9/66 0 0.0 PI-P 11/67 9/66 0 0.0 PI-P 11/67 6/68 0 0.0 PI-P 11/67 6/68 0 0.0 PI-P 11/67 6/68 0 0.6 ABAR AAR 6/68 0 0.1 2 PI-P 9/64 0 0.8 0.1 PI-P 9/64 0
$\frac{p(765)}{r_{12}} + nm (r_{12}) r_{12} r_{$	BARTSCH TO PN B 22 l BATON TO PL 33 B 52 H BFAUPPE TO PL 31 B 52 H DIA7 TO PE 81 B 52 H DIA7 TO NP B 16 C 23 H HVANS TO PL 13 B 52 I MORGAN TO SPRINGER TRACTS 1 GH TO PR D 1 2494 1 SHIBATA TO PL D 1 2474	+KEPPFL,GENSCH,HMRRISDN,+ (AACH+BERL+CERN) +LAURENS,REIGNIER (SACLAY) +DEUTSCHMANN,GRESSLER,+ (AACH+BERL+CERN) +FGAULLET,LARGNSSE,HONTANET, (CERN+CDEF) L+KOCH,BEUSCH,JOHNSDNICEBN>HUN+FTH+IC+HAMAI HONTANET, +MASEK,HILER,FUDERMAN,VENNN,+ (UCSN+L) +MASEK,HILER,FUDERMAN,VENNN,+ (UCSN+L) +MASEK,HILER,FUDERMAN,VENNN,+ (UCSN+L) +MASEK,HILER,HORGAN,VENNN,+ (UCSN+L) +MASEK,HILER,HORGAN,VENNN,+ (UCSN+L) +GARFINKEL,HORSE,HALKER,PRENTICE(HISC+INTO) +FRISCH,HALEG +FRISCH,HALHEL (MIT)	M0 M0 M0 M0 M0 M0 M0 M0	5 (750.0) 5 (780.0) 766.0 766.0 766.0 770.0 F (770.0) 773.5 AUGUSTI INCLUNE	(8.0) (10.0) (5.0) (10.0) (4.0) 5.4 D IN 2 TAKES ACCOUNT ES DATA OF AUGUSTIN	JONES 68 0 JONES 68 0 KEY 68 H LAMSA 68 H LAMSA 68 H LAMZENTT 68 C AUGUSTI1 69 0 SAUGUSTI2 69 0 DE RHO-OMEGA IN 1.	SPK 0 12PI-,TI0 T0 15 5/68 SPK 0 14PI-,TI0 T0 15 5/68 IBC 0 3.0 PI- P 5/68 IBC 0 3.0 PI- P 5/68 IBC 0 0.0 PI- P 16/67 ISD 0 4.0 PI- 11/67 10/66 ISDR 0 E4F- COLL.BEAMS 8/69 11EREAMS 4/69 ITERFERENCE, AND 0 E4F- COLL.BEAMS 6/64
$\frac{1}{2} \frac{1}{12} $	****** ********* **********************		M0 M0 M0	E (754.0) SEE ALS E (768.)	(9.0) SO HAISSINSKI 69, W (10.)	HO FITS AUSLEND HO FITS AUSLEND HAISSINSK 69 R	ISPR O EFE- COLL.BEAMS 5768 IER 69 DATA VUE O FFE- COLL.BEAMS 9769
	ρ(765) 9 RHO (7/	55, JPG = 1-+) [=1	M0 M0 M0	HAISSI 768.4 S (755.0) 771.0	2.4 D (15.0) 3.0	AUTT 59 H	AUE 0 2-4 PI-P 5/70 IBC 0 4.1-5.5 K- P 7/65 IBC 0 2.26 PI- P 5/70
The FULLWING FINITES ARE THE MOST SIGNEFICANT MRES. THEY ILLUSTATE THE ISSERVENCES, AND ARE AS ON REPETCE IN FORMULES INFORMATION TABLE. TA	9 RHO M THERE ARE WIDE FLUCTUATIONS THE RHO DUF TO DIFFERENCES OF ANALYSIS AND PRAMETRIZA SYSTEMATIC ERRORS OF ABOUT 2	ASS (MEV) IN THE MEASURED VALUES FOR MASS AND WIDTH OF IN PRODUCTION MECHANISH, BACKGROUND, METHOD TION. UNCERTAINTIES IN THEORY GIVE RISE TO 20 MEV IN MASS AND WIDTH.	M0 M0 M0 M0 M0 M0 M0 M0	770.0 C (759.0) 765.0 C12630 (760.0) 765.0 765.0 765.0 767.7 S (765.0)	5.0 ▷ (7.0) ▷ 10.0 ▷ 3.0 □ 1.9 (6.0)	8 RODS 69 R 9 SCHAREN 69 H ALVENSLEB 70 C 1 BATON 70 H BINGHAM 70 H BINGHAM 70 H BIGGS 70 C GALLOWAY 70 H	VUE 0 6+F-CDLL.RFAMS 9/69 08C 0 2-4 PI- P 5/70 NTR 0 GAMMA A(BREMS) 5/70 108C 0 2-A PI- P 1/71 108C 0 2-A FI- P 1/71 108C 0 4-7 GAMMA P 5/70 NTR 0PHOTOPRODUCTION 6/77 108C 0 5.97 PI- P 1/71
Distant s.7.70 Number 201 Strand s.7.70 Number 201 Strand s.7.70 Number 201 Strand s.7.70 Number 201 Strand s.7.70 Strand s.7.7.70	THE FOLLOWING ENTRIES ARE TO THE DISCREPANCIES, AND ARE A TABLE.	HE MOST SIGNIFICANT ONES, THEY ILLUSTRATE ALSO REPEATED IN FOOTNOTE (C) OF THE MESON	мо	AVERAGE MEANING	GLESS (SCALE FACTOR	= 1.8)	
Filter PLUS DNLY Filter PLUS DNLY </td <td>D1 84T0N 67.70 (RH1-0 FR01 D2 HYAMS 68 (RH0 0 FR01 D3 MARATECK 68 (RH10 0 FR01 D4 015UT 68 (RH10 0 FR01 D5 AUGUSTIN2 69 (RH10 0 FR01 D7 MALAND 69 (RH10 FR01 D7 MALAND 69 (RH10 FR01 D3 SCM 86FN011VF1 69 (RH10 FR01 D9 SCM 86FN011VF1 69 (RH10 FR01 D1 FR01 D</td> <td>POLE EXTRAPOLATION) PHYSICAL REGION FITS) PHUE EXTRAPOLATION) PHYSICAL REGION FITS) E- E+ COLLIDING BEAMS) PHYSICAL REGION FITS) N OF RHO O FROM F+ E- COLLIDING BEAMS) ROM POLE EXTRAPOLATION)</td> <td></td> <td>240 (752.0) 290 (755.0) 744, 775.0 AV ER AGE MEANING</td> <td>9. 2.0 GLESS (SCALE FACTOR NOTES EXTRAPOLATION</td> <td>ALITTI 63 H CHADWICK 63 H FRENCH 67 H JOHNSON 68 H</td> <td>HC0 1.6 P1-P ISC +-0 0.0 PDAR P BC +-0 3-4 PBAR P 6/67 IBC -0 3.7-6.2 P1- P 7/69</td>	D1 84T0N 67.70 (RH1-0 FR01 D2 HYAMS 68 (RH0 0 FR01 D3 MARATECK 68 (RH10 0 FR01 D4 015UT 68 (RH10 0 FR01 D5 AUGUSTIN2 69 (RH10 0 FR01 D7 MALAND 69 (RH10 FR01 D7 MALAND 69 (RH10 FR01 D3 SCM 86FN011VF1 69 (RH10 FR01 D9 SCM 86FN011VF1 69 (RH10 FR01 D1 FR01 D	POLE EXTRAPOLATION) PHYSICAL REGION FITS) PHUE EXTRAPOLATION) PHYSICAL REGION FITS) E- E+ COLLIDING BEAMS) PHYSICAL REGION FITS) N OF RHO O FROM F+ E- COLLIDING BEAMS) ROM POLE EXTRAPOLATION)		240 (752.0) 290 (755.0) 744, 775.0 AV ER AGE MEANING	9. 2.0 GLESS (SCALE FACTOR NOTES EXTRAPOLATION	ALITTI 63 H CHADWICK 63 H FRENCH 67 H JOHNSON 68 H	HC0 1.6 P1-P ISC +-0 0.0 PDAR P BC +-0 3-4 PBAR P 6/67 IBC -0 3.7-6.2 P1- P 7/69
+	M+ CHARGE PLUS ONLY M+ R (760.0) (9.0)	CARMONY 64 HBC + 3.5 PI+P,TCUT 4		E INCLUDED IN P PHOTOPRODUC	N ROOS 69 RVUE CTION, UNCORRECTED F	OR PRODUCTION E OR BACK	-DEPENDENCE GROUND INTERFERENCE
H+ 777.0 7.0 AAC COLL. 68 HBC + 8 PI+P TO P+3PI 5768 W AV ERAGE MENINGLESS ISCALE FACTOR = 1.41 9 PIN1001 - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 PIN100 - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 PIN100 - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 PIN100 - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 PIN100 - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 RHO(0) - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 RHO(0) - RHO(+-1 MASS DIFFERENCE (MFV) CHARGE MINUELESS ISCALE FACTOR = 1.41 9 RHO(0) - RHO(+-1 MASS DIFFERENCE (MFV) M SEE NOTE ON RHO MASS ABOVE 9 RHO WIDTH (MEV) M AVEPAGE MEANINGLESS ISCALE FACTOR = 3.31 9 RHO WIDTH (MEV) M SEE NOTE ON RHO MASS ABOVE 9 RHO WIDTH (MEV) M CHARGE MINUS ONLY 130 (176,00 GURAGOS S 63 HBC - 3.3 PI-P 6/66 M R OULD NON SALE FACTOR = 3.31 140 (170,00 CARMONY 64 HBC + 2.3 PI+P 16/66 <	M+ 760. 10. M+ R (765.0) (5.0) M+ R (783.0) (6.0) M+ R (758.0) (10.0)	ARMENISE 65 HBC + 2.8 PI+P ALFF-STEI 66 HBC + 2-3 PI+ P JAMES 66 HBC + 2-1 PI+ P JAMES 66 HBC + 2.1 PI+,TCUT2.5	6/66 M 6/66 8/66	R INCLUDED D S S-WAVE BRE	N PISUT 68 RVUE [T-WIGNER FIT, CANN	OT BE COMBINED	WITH OTHER VALUES
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	M+ 777.0 7.0 M+ M+ AV ERAGE MEANINGLESS (SCAI	A8C COLL. 68 HBC + 8 PI+P TO P+3PI Le factor = 1.41	5/68		9 RHO(0) - RHO(+	-1 MASS DIFFERE	INCE (MEV)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M+ <u>CHARGE PLUS AND MINUS</u> M+ S (750.0) (3.0) M+ 755. 10. M+ 730. 11.	BALTAY 66 HBC +- 0-0 PBAR P ALLES-BOR 67 HBC +- 5+7 PBAR P BARLOW 67 HBC +- 1+2 PBAR P	D 12/66 11/66	2.4	2.1 9 RHO WIDTH (ME	PISUT 68 R	.vue PIN TO RHO N 6768
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	M+ 782. 5. M+	FOSTER 68 HBC +- PBAR P AT REST LE FACTOR = 3.31	6768 W	SEE NOTE O	N RHO MASS ABOVE		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	KENNEY 62 HBC - 1.2 PI-P GUIRAGNSS 63 HBC - 3.3 PI-P RLIEDEN 65 MMSP - 3-5 PI- P FIDECARO 66 NSPK - 2.5 PI-,T CUTL8 HAGOPIANI 66 HBC - 3.0 PI- P HAGOPIANI 66 HBC - 2.14 PI-P	H+ H+ 6/66 H+ 11/66 H+ 6/66 H+ 9/67 H+	CHARGE PLUS (IN) 90.0 R (77.0) 160. R (100.0) R (177.0) R (147.0) 149.0	LY 10.0 (20.0) 10. (15.0) (19.0) 22.0	SACLAY 63 H CARMONY 64 H ARMENISE 65 H ALFF-STEI 66 H JAMES 66 H JAMES 66 H ABC COLL. 68 H	HRC + 2.8 PI+P HBC + 3.5 PI+P,TCUT 4 4 HBC + 2.8 PI+P 7/64 HBC + 2.1 PI+P 7/64 HBC + 8 PI+P 7/64
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HAGOPIAN2 66 HBC - 2.14 PI-,TCUT12 JACOB3 66 HBC - 2.3PI- JACOB3 66 HBC - 2.3PI- UACOB3 66 HBC - 2.3PI- BANNER 67 MBC - 2.1 PI-P BANNER 67 MBC - 2.8 PI-P CLEAR 67 HBC - 2.8 PI-P CLEAR 67 HBC - 2.8 PI-P HILLER 67 HBC - 2.7 PI-T CUT30 MILLER 67 HBC - 2.20 PI-T CUT30 MILLER 67 HBC - 2.20 PI-P	9/67 W+ 6/68 W+ 6/68 W+ 9/67 W+ 10/66 W+ 9/67 W+ 9/67 W+ 9/66 W+ 9/66 W+ 9/66 W+ 9/66 W+ 9/66 S+ 9/68 5/70	AVERAGE PLUS AN <u>CHARGE PLUS AN</u> <u>S</u> (150.0) 145. 130. 145. AV ERAGE MEANIN	GLESS (SCALE FACTOR 0 MINUS (30.0) 31. 25. 10. GLESS (SCALE FACTOR	t = 3.6) 9ALTAY 66 H AALTAY 66 H ALLES-BOR 67 H FOSTER 68 H t = 1.0)	18C +- 0.0 PBARP 5/67 18C +- 0.0 PBARP 6/67 18C +- 5.7 PBAR P 12/66 18C +- 1.2 PBAR P 11/66 18C +- PBAR P AT REST 6/65

Mesons

Mesons

For notation, see illustrated key at beginning of data card listings.

For notation, see illustrated key at beginning of data card li	istings.
$ \begin{array}{c} W- & \underbrace{CHARGE VINUS ONLY}{130 (125,0)} & GUIRAGOSS 63 HBC & -3.3 PI-P \\ W- & 98 (180,0) & RONDAR & 64 HBC & -4.1 PI-P \\ W- & R & (127,0) & (f,0) & BLIEDEN & 66 \; MMSP & -3.5 \; PI-P \\ W- & R & (123,0) & (30,0) & HAGDPIAN & 66 \; HBC & -3.0 \; PI-P \\ W- & R & (133,0) & (30,0) & HAGDPIAN & 66 \; HBC & -3.0 \; PI-P \\ W- & R & (133,0) & (30,0) & HAGDPIAN & 66 \; HBC & -2.14 \; PI-P \\ W- & R & (133,0) & (15,0) & JACOBS & 66 \; HBC & -2.39 \; PI-P \\ W- & R & (133,51) & (20,0) & JACOBS & 66 \; HBC & -2.39 \; PI-P \\ W- & R & (133,51) & (20,0) & JACOBS & 66 \; HBC & -2.39 \; PI-P \\ W- & R & (133,0) & (13,0) & WEST & 66 \; HBC & -2.3 \; PI-P \\ W- & (100,0) & 30,0 & BANNR & 67 \; HBC & -2.4 \; PI-P \\ W- & (133,0) & (13,0) & WEST & 66 \; HBC & -2.3 \; PI-P \\ W- & R & (135,0) & (13,0) & WEST & 67 \; HBC & -2.4 \; PI-P \\ W- & R & (153,0) & (15,0) & MILLER \; 67 \; HBC & -2.7 \; PI-T \; CU \\ W- & R & (155,0) & (15,0) & MATDN & 68 \; RVUE & -2.7 \; PI-T \\ W- & R & (155,0) & (15,0) & MATDN & 68 \; RVUE & -2.4 \; PI-P \\ W- & L2773 & 167,3 & 4,0 & 3.9 \; PIPISUT & 68 \; RVUE & -2.2 \; 8 \; PI-P \\ W- & VERAGF \; MARINGES \; SCALE \; FACTOP = 1.0 \\ W- & NUERAGE \; \mathsf{MARINGES \; SCALE \; FACTOP = 1.0 \\ MO \; \underbrace{NUUPAL \; MUY} \\ NUEUPAL \; MUY \\ NUEUPAL \; MUY \\ NUEUPAL \; MUY \\ NUEUPAL \; MUS \; MUS \; NUES \; SCAUDS \; SCAUDS \; SCAUDS \; SCAUDS \\ NUEUPAL \; MUS \\ NUEUPAL \; MUS \\ NUEUPAL \; MUS \; NUEV \; NUES \; NUES \\ NUEUPAL \; MUS \\ NUEUPAL \; MUS \\ NUEUPAL \; MUES \; NUES \; NUES \; NUES \; NUES \; NUES \\ NUEUPAL \; NUES \\ NUEUPAL \; NUES \; NUES \; NUES \; NUES$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O P 3:00 (00,0) (10.0) AB:LINS S3 HRC O 3:5 PI+P W0 1:60 (175.0) GUTRAGOS 53 HRC 0 3:5 PI+P W0 1:60 (175.0) GUTRAGOS 53 HRC 0 3:7 PI+P W0 1:10.0 20.0 ALYEA 65 ORC 2:2 K-P W0 (130.0) GUTRAGOS 53 HRC 0 3:7 PI+P W0 (130.0) GUTRAGOS 53 HRC 0 3:7 PI+P W0 (130.0) GUTRAGOS 53 HRC 0 3:7 PI+P W0 (130.0) GUTRAGOS 53 HRC 0 2:7 PARP W0 72:0 3:0 GUTRAGOS 53 HRC 0 2:7 PARP W0 5 (175.0) GLARRAGOS 66 HRC 0 0 ARGOPIANIA 6 HRC 0 0 0 0 <td>by interference with ω decay. In photoproduction, $\gamma A \rightarrow e^+e^-A$, there is substantial interference between the allowed $(\rho^0, \omega) \rightarrow e^+e^-$ decays. The interference in the colliding-beam reaction $e^+e^- \rightarrow \pi^+\pi^-$ is due to $\gamma^{0/46}_{0/46}$ $\gamma^{0/46}$</td>	by interference with ω decay. In photoproduction, $\gamma A \rightarrow e^+e^-A$, there is substantial interference between the allowed $(\rho^0, \omega) \rightarrow e^+e^-$ decays. The interference in the colliding-beam reaction $e^+e^- \rightarrow \pi^+\pi^-$ is due to $\gamma^{0/46}_{0/46}$ $\gamma^{0/46}$
NO R (122,1) (15,1) HUWE 67 HBC 0 2.4 PI-P NO R (160,0) (15,0) MILLER 67 HBC 0 2.7 PI-T, T CUI NO R (167,0) (10,0) PNTRTER 67 HBC 0 2.7 PI-T, T CUI NO R (167,0) (6,0) AARCHISE 60 DCALOL. 68 BCC 0 5.1 PIO NO R (167,0) (6,0) AARCHISE 60 DCALON 68 DSK 01.2 PA PA V0 132. 10. FOSTER 68 HBC 0 DARS 68 DSK<0	747 10 747 11 747 11 747 12 747 14 747 14 <th747 14 <th747 14 <th747 14</th747 </th747 </th747
W C FROM POLE FXTRAPOLATION W F FINCLUPEN IN NODS 49 RVUE W F INCLUPEN IN NODS 49 RVUE W R INCLUPEN IN NODS 49 RVUE W S S-MAVE DIN PISUT 68 RVUE P PHOTOPRODUCTION, NUCCRRECTPO ISEE NOTE P UNDER RHO MASSI W S S-MAVE REIT-NIGNER FIT, CANNOT BE COMBINED WITH OTHER VALUES	BONDAR 64 NC 31 729 BONDAR+ (AACHEN+BIRM+BONN+DESY+IMP-COL+MPI) CARMONY 64 DUBMA CONF 1 466 CARMONY, HOALANDER, NG.H. XUDNG, YAGER (UCSO) GOLDHABE, BAGNAN, KADX, SUHHNITKILLINGITALIGER (UCSO) ALYEA 65 PL 15 82 ALYEA, CRITTENDEN, MARTIN, RHODE + (INDIANA) ALYEA 65 PL 15 82 ALYEA, CRITTENDEN, MARTIN, RHODE + (INDIANA) ALYEA 65 PL 19 446 CERM MISSING MASS SPECTORMETER GROUP (CERM) CLARK 65 PL 19 446 CERM MISSING MASS SPECTORMETER GROUP (CERM) CLARK 65 NC 39 301 GUTAY, LANURSKY-KRAEHER GROUN N.TURLAY (PRINCETN) S LAWZEROT 65 PRL 15 210 LAWZEROT 71, HUMENTIALLENN, FAISSLER + (HARVO) 139 ACCENSI 66 PL 20 557 ACCENSI 1, ALLES-BORELLI, FRENCH, FRISK+ (CERN) 149 ACCENSI 66 PL 20 577 ACCENSI 1, ALLES-BORELLI, FRENCH, FRISK+ (CERN)
	66 PG 145 103 -FRANTINI,LUTJENS,SEVERINS,TVCKN+CRULWRIAN BLIEDEN 66 NC 63 71 CERN MISSITVE MASS SPECTOPHTER GROUP (CERN) CANDRIDG 66 PR 166 994 CAMBRIDG FMSTER GROUP (CERN) CASON 66 PR 164 994 CAMBRIDG FMSTER FNORTHER GROUP (MIT+HARV+) DEUTSCHWACK 66 PR 164 994 CAMBRIDG FMSTER FEAREL 66 PR 120 82 DEUTSCHWACN,STEINBERG + (AACHBERLIN+ CERN) FEAREL 66 PL 23 163 GFM FIDFCARG,J POIRIER,P SCHIAVON HAGOPIAN, 56 PL 128 HAGOPIAN,FAN (PENNSKLVANNA, LE DERKEL V) HAGOPIAS 6 PR 152 118 HAGOPIAN,FAN (PENNSKLVANIA, LE DERKEL V) HUSON 66 PL 23 163 GFM FIDFCARG,D,J POIRIER,P SCHIAVON (CERN) HAGOPIAN,FAN (PENNSKLVANIA, LE DERKEL V) HAGOPIAN,FAN (PENNSKLVANIA, LE DERKEL V) HUSON 66 PL 24 86 F LAMES, KRAYBILL (VALE+BROCHAVENIA (LRL) 6/66 JAWES 66 PR 142 86 F LAMES, KRAYBILL (VALE+BROCHAVENIA (LRL) 6/66 FAL42 86 F LAMES, KRAYBILL (VALE+BROCHAVENIA (LSCONSIN) 11/66 FAL57 108

ALLES-BD 67			
asining 1 asining 1 Assnury 2 assnury 2 assnury 2 Assnury 2 assnury 2 assnury assnury 2 assnury asnury </td <td>NC 50 A 776 PRL 10 860 PRL 12 463 PRL 12 1263 PRL 157 1263 PRL 157 1263 PR 164 1679 NC 40A 339 NC 40A 339 NC 41A R01 PR 164 1679 NC 52A 462 PR 155 1461 JCDAN15 651 PR 264 6423 PR 163 1462</td> <td>ALLES-BIRELLI, FRENCH, FRISK, + (CERN+BONN) +BECKERA+BETRAH, JODS-JORDAN+TING-(DESY+CDL) +BECKERA+BETRAH, JODS-JORDAN+TING-(DESY+CDL) +FICKENA+BETRAH, JODS-JORDAN+TING-(HOESY+CDL) +FICKENA+BETRAH, JODS-JORDAN+TING-(HOESY+CDL) -BICKENA+CALLEST +FICKENA+SILALST J.BATON, G.LAURENS, J.REIGNIER (SACLAY) J.BATON, G.LAURENS, J.REIGNIER (SACLAY) +JOHNSTON-COMPER+JANNER+MALKER+(TO+ANL+HIS) DANYS+FRECHA+SIMAK (CERN) +JOHNSON+KLEIN+PETERS'SANHIYEN+ (PURDUE) +KINSON+KLEIN+PETERS'SANHIYEN+ (CERN) HERTZAACH, K'AREMER, ADANSKI, JOANIS+(JUHUBNL) +HAROUITAY, JOHNSONF, LOFFEREN (CERN) HILLER, OUDPENDE THRA SCULUT, Z'NHILSON (CCL) +KOCH+PELLET++NOTTFR+YONLINDFRH, (CERN)+ENR) HILLER, OUDENDERADO, KENNEY+ (NOTRDAM+PENN)</td> <td></td>	NC 50 A 776 PRL 10 860 PRL 12 463 PRL 12 1263 PRL 157 1263 PRL 157 1263 PR 164 1679 NC 40A 339 NC 40A 339 NC 41A R01 PR 164 1679 NC 52A 462 PR 155 1461 JCDAN15 651 PR 264 6423 PR 163 1462	ALLES-BIRELLI, FRENCH, FRISK, + (CERN+BONN) +BECKERA+BETRAH, JODS-JORDAN+TING-(DESY+CDL) +BECKERA+BETRAH, JODS-JORDAN+TING-(DESY+CDL) +FICKENA+BETRAH, JODS-JORDAN+TING-(HOESY+CDL) +FICKENA+BETRAH, JODS-JORDAN+TING-(HOESY+CDL) -BICKENA+CALLEST +FICKENA+SILALST J.BATON, G.LAURENS, J.REIGNIER (SACLAY) J.BATON, G.LAURENS, J.REIGNIER (SACLAY) +JOHNSTON-COMPER+JANNER+MALKER+(TO+ANL+HIS) DANYS+FRECHA+SIMAK (CERN) +JOHNSON+KLEIN+PETERS'SANHIYEN+ (PURDUE) +KINSON+KLEIN+PETERS'SANHIYEN+ (CERN) HERTZAACH, K'AREMER, ADANSKI, JOANIS+(JUHUBNL) +HAROUITAY, JOHNSONF, LOFFEREN (CERN) HILLER, OUDPENDE THRA SCULUT, Z'NHILSON (CCL) +KOCH+PELLET++NOTTFR+YONLINDFRH, (CERN)+ENR) HILLER, OUDENDERADO, KENNEY+ (NOTRDAM+PENN)	
ABC COLL 69 ARYENISE 63 ASTVACAT 58 BATON 68 BATON 68 SLECHSCH 68 (SEE ALSO CHING 59 DOMALD 68 FOSTER 68 HUSIN 68 JOHNSON 68 KEY 64 JOHNSON 68 KEY 64 LAY260T 68 PISUTC 68	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AACHEN+BERLIN-CERN GULLABORATION GOIDINI,FORINO, GALIFADUGON+RIERZ-JOISSAY) ASTVACATURRV,AZIMOV,BALDIN+ (JINE+MOSCOW) J.P. BATON G. LAURENS (SACLAY) BLECHSCHHIDT,DONG,ELSNEF,+ (DESY+MANCH) S.U,CHUMG-D.I.DAHL-J.KIRZ,D.H.WILLER (LRL) FOWANDS,FODESEN,BETINI+ (LIVP+OSLO+PADD) +GAYILLET+LARRDSSE+MONTANET+ (CERN+PARIS) +UGATISISI,VILLET+ (DRSAHILA+UCLA) +NGCH,PDITER,WILSON,VON LINDERN+(CERN+PARIS) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OCH,PDITER,WILSON,VON LINDERN+(CERN+PARIS) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHER,ANHLAHUCLA) +OLUBALT,SLAUDELLESKE,ANHER,ANHER, HADANG +ALGOBLAN, (PENN+LRL+COLO+PURD-TNTHALS) J.PISUT,M.ROOS (CERN)	
AUGUSTII 69 AUGUSTI2 69 AUGUSTI2 69 AUGUSTI2 69 GERMAN C 69 GERMAN C 69 MALAMUD 69 MILLER 69 MILLER 69 RDTS 69 RDTS 69 RDTS 69 RDTHWELL 69 SCHAREN 69 ALVENSE 70	PL 28 8 508 LNC 2 214 SJMP 9 69 PR 168 2060 A@CONNE CONF. 377 PR 164 1661 ARCONNE CONF. 9.92 PR 178 206 PR 177 1966 PR 177 1966 PR 164 1624 NP B 10 563 PR 23 1521 A@CONNE CONF.306 PR 178 2095 PR 124 786	+BI20T+BUD0H+HAISSINSKI+LALANNE+ (DRSAY) LEFRANCTSISLEHHANNARIN,+ (DRSAY) AUSLENDFP, BUDKER, PANTUSDVA,PESTUY+ (NDV0) CREANS (DRSAY) J.HAISSINSKI (DRSAY) J.HAISSINSKI (DRSAY) J.HAISSINSKI (DRSAY) HEARCMC, MONSCHEENN,LIBBY,+ (AMES+GUL) P.MILER,LICHTAN,HILMANN (PURDUE) AMAR, ANDISK, KROPAC, SATEF, DAGAN+ (NMES+ANL) -ALBR (GHT, BRADLEY, BRUCKER, HARMS+ -ANGRS, J.PISUT (CERMERATISLAVA) -CHAR SE, EARLES, GETTNER, GLASS, MEINSTEI+ (NEAS) (FLAS) -CHAR SE, EARLES, GETTNER, GLASS, MEINSTEI+ (NEAS) (PURDUE) +FNOT (CERMERATISLAVA) -CHAR SE, GETNER, GLASS, MEINSTEI+ (NEAS) (PURDUE) +FNOLS, HILSON+ (HARV+CASE+SLAC+ORN+CGI) (PURDUE)	
BATON 70 RIGGS 70 BINGHAM 70 GALLOWAY 70	PL 33 R 528 PRL 24 1197 PRL 24 955 PR D 1 3077	LAURENS, REIGNIER SPAREN, GLIFFIGARATHULER, KITCHING (DARE) +FRETTER, WOFFEIT, 9ALLAN+ (LRL+SLAC+TUFF) +MITT, ALVA, LFF-MARTIN PRICKETT (INO)	
$\omega(784)$) i nmega	(784, JPG=1) [=0	
	1 OMEGA HERE WE LIST O OF MASS RESOLU	MASS (MFV) DNLY EXPERIMENTS IN WHICH THE EFFECTS JTION HAVE RFEN EVALUATED.	
м ғаомкі- м 64	L OMEGA HERE WE LIST O OF MASS RESOLU KL MODE 779.4 1.4	MASS (MFV) Inly Experiments in which the effects Jiton Mave Refer evaluated. Armentero 62 HBC 0.0 PBAR P Kiki	
м ғармат м ба м 155	L DMEGA HERE WE LIST O OF MASS RESOLU KI MODE 779.4 1.4 779.5 1.5 781.0 0.6	MASS (MFV) NNLY EXPERIMENTS IN WHICH THE EFFECTS JTION MEYE AFEN EVALUATED. ARMENTERO A2 HBC 0.0 PRAR P KIKI BARASH 67 HBC 0.0 P PRAR KIKI	11/66
M FROM KI- M 64 M 155 M AVG	L OMEGA HERE WE LIST (OF MASS RESOLU KI MODE 779.4 1.4 779.5 1.5 781.0 0.6 780.60 0.52	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JTIN HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PRAR P KIKI RARASH 07 HBC 0.0 PRAR P KIKI BIZZARR2 70 HBC 0.0 P PRAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0)	11/66 1/71*
M FROM KI- M 64 M 155 M 155 M AVG M FKOM OTH	L OMEGA HERE WE LIST (OF MASS RESOLU KI MODE 779.4 1.4 779.5 1.5 781.0 0.6 780.60 0.52	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JTION HAVE BREN EVALUATED. ARMENTERO 62 HBC 0.0 PRAR P KIKI ARASH 67 HBC 0.0 PRAR P KIKI BIZZARR2 70 HBC 0.0 P PRAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE.	11/66 1/71*
M FROM KI- M 64 M 155 M AVG M FROM DTF M 400 M 34	L OMEGA HERE WE LIST O OF MASS RESOLU 773.4 1.4 773.5 1.5 780.60 0.52 780.60 0.52 182.7 N. KL-KL MOC 782.0 1.0	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JTION HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PRAR P KIKI RARASH 67 HBC 0.0 PRAR PKIKI RIZZARRZ 70 HBC 0.0 PRAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC 0.0 PRAR P	11/66 1/71*
M FROM K1- M 64 M 155 M 4V6 M FROM OTH M 400 M 340 X 220	1 0MEGA HERE ME LIST (DF MASS RESOLU 	MASS (MFV) NULY EXPERIMENTS IN WHICH THE EFFECTS JTION HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 PBAR VKIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC 0.0 PBAR P KRAFMFR 64 OBC 1.2 PI+D	11/66 1/71*
M FROM K1- M 64 M 155 M 4VG M 4VG M 400 M 34 M 200 M 666	L OMEGA MERE WE LIST (OF MASS RESOLU XI MODE 773-4 1.4 773-5 1.5 781-0 0.5 780-60 0.52 IER THAN K1-K1 NGO 784-0 1.0 784-0 1.0 781-0 2.0 785-6 1.2 785-6 1.2	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JTINN HAVE REFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 P PBAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF A2 HBC 2.3-2.9 PI+P ARMENTERO A3 HBC 0.0 PBAR P KRAFMER A4 DBC 1.2 PI+0 MILLER 0 65 HBC 2.1 PI+P MILLER 0 65 HBC 2.1 PI+P	11/66 1/71* 6/66
M FROM K1- M 64 M 155 M 4VG M 400 M 34 M 2200 M 646 Y 2198 M	L OMEGA HERE WE LIST (OF MASS RESOLU KI MODE 773-4 1.4 773-5 1.5 781-0 0.5 780-60 0.52 IER THAN K1-K1 MOC 782-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN MAVE AFFN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI RARASH 57 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 P PBAR KIKI AVERAGE (FROR INCLUDES SCALE FACTOR OF 1.0) DE. ALF 62 HBC 2.3-2.9 PI+P RAREMTERO 63 HBC 0.0 PBAR P RAREMTERO 63 HBC 0.12 PI+0, MAST 64 DBC 1.2 PI+0, MAST 64 DBC	11/66 1/71* 6/66 9/66
ч FROM KL 64 M 155 M 4VG M FROM DTI M 400 M 34 M 2200 M 666 4 2109 4 2400 V 260	L OMEGA HERE WE LIST O OF MASS RESOLU (TOF MASS RESOLU (TOF MASS RESOLU (TOF MASS RESOLU (TOF NESS) (TOF NESS)	MASS (MFV) NLV EXPERIMENTS IN WHICH THE EFFECTS JITION HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI BIZZARAZ 70 HBC 0.0 P PAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC 0.0 PBAR P KRAEMER 64 DBC 1.2 PI+0. MILLER 0.65 HBC 2.1 PI+P RATAY 67 HBC 0.0 PBAR P KRAEMER 64 DBC 1.2 PI+0. MILLER 0.65 HBC 2.1 PI+P PALTAY 67 HBC 0.0 PBAR P KRY JAMES 66 HBC 2.1 PI+P PALTAY 67 HBC 0.0 PBAR P KRY JAMES 66 HBC 2.1 PI+P PALTAY 67 HBC 0.0 PBAR P KFY JAME 68 HBG 0.0 PJAL P D STALE 0.0 PJAL D	11/66 1/71* 6/66 11/67 9/69 9/69
 ROM K11 G4 155 AVG FROM OTI 400 34 220 666 2199 2400 250 500 	L OMEGA HERE WE LIST (OF MASS RESOLU 	MASS (MFV) NULY EXPERIMENTS IN WHICH THE EFFECTS JITION HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 PBAR PKIKI BIZZARR2 70 HBC 0.0 PBAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC 1.2 PI+0 MILLER 0.65 HBC 2.1 PI+P RATENTERO 63 HBC 2.1 PI+P RATEN 66 HBC 2.1 PI+P RATEN 66 HBC 2.1 PI+P RATEN 66 HBC 3 PI-P BIZZARRI 69 HBC 3 PI-P BIZZARRI 69 DBC 1.2 PI+ D DANBURG 69 DBC 1.2 PI+ D	6/66 1/71* 6/66 9/66 11/67 9/69 9/69
M FROM K1- 64 M 155 M 4VG M 400 M 400 M 240 M 646 M 2199 M 2500 M 500 M 500 M 500	L OMEGA HERE ME LIST (OF MASS RESOLU KI MYOE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 0.5 784-0 1.0 784-0 1.0 784-0 1.0 785-6 1.2 785-6 1.2 785-6 1.1 784-8 1.1 784-8 1.1 784-1	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JIINN HAVE BFEN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARASH 67 HBC 0.0 PBAR P KIKI HARASH 67 HBC AVENAGE (FRROW INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 67 HBC AKMENTERO 53 HBC 0.0 PBAR P KRAFKFR 64 AGC DE. ALFF 67 HBC AKMENTERO 55 HBC 2.3-2.9 PI+P AARMENTERO 56 HBC AKMENTERO 57 HBC 0.0 PBAR P KRAFKFR 64 BC JAMES 66 HBC 2.1 PI+P PALTAY 67 HBC JAMES 66 HBC 0.0 PBAR P KRY BIZJERRI 64 HBC 0 PBAR P NALTAY 67 HBC DANBURG 69 ORC 1.4 PI+ 0 DANBURG 69 ORC DANBURG 69 ORC 1.7 PI+ 0 DANBURG 69 ORC	11/66 1/71* 6/66 9/66 11/67 9/69 9/69 9/69 9/69
ч FROM K11 64 м 155 м АVG м FROM OTI м 210 м 646 ч 2109 м 646 ч 2109 ч 2400 ч 250 ч 250 ч 5000 ч 2000	L OMEGA HERE WE LIST (OF MASS RESOL KI MODE 779-4 1.4 779-5 1.5 780-60 0.52 168 THAN KI-KI MOD 780-60 0.52 168 THAN KI-KI MOD 780-60 0.52 168 THAN KI-KI MOD 780-60 1.0 783-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 785-0 2.2	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE PFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BARASH 67 HBC NLY EXPERIMENTS IN WHICH THE EFFECTS JARMENTERO A2 HBC 0.0 PBAR P KIKI BARASH 67 HBC ALFF A2 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF A2 HBC ALFF A2 HBC 2.3-2.9 PI+P AAMENTERO A3 HBC ALFF A2 HBC 2.3-2.9 PI+P AMENTERO A3 HBC JALES A6 HBC 1.0 PBAR P KEY 68 HBC JALES A6 HBC 0.0 PBAR P RAITAY 67 HBC JALST 69 HBC 0.0 PBAR P HALTAY 67 HBC JANBURG 69 DBC 1.2 PI+ 0 DAMBURG 69 DBC DAABURG 69 DBC 1.2 PI+ 0 DAABURG 69 DBC DAABURG 69 DBC 1.4 PI+ 0 DAABURG 69 DBC DAABURG 69 DBC 1.4 PI+ 0 DAABURG 69 DBC	11/66 1/71* 6/66 9/69 9/69 9/69 9/69 9/69 9/69
ч FROM KL 64 м 155 м 4v6 н FKOM OT 4 400 н 400 н 220 ч 2199 ч 2400 ч 250 ч 500 ч 500 ч 500 ч 500 ч 500 ч 500 ч 500 ч 500 ч 500	L OMEGA HERE WE LIST (OF MASS RESOL XI MODE 773-4 1.4 773-5 1.5 781-0 0.5 780-60 0.52 HER THAN KL-KL MOD 782-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-1 1.7 784-1 1.7 784-1 1.7 784-1 1.7 785-1	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JIION HAVE BFEN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI ARARSH 67 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI ARTASH 67 HBC 0.0 PBAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P ARMENTERO 53 HBC 0.0 PBAR P MILLER D 65 HRC 2.1 PI+P MARES K6 HBC 2.1 PI+P MARES K6 HBC 2.1 PI+P BIZZARRI 69 HRC 0 PPAR P BIZZARRI 69 HRC 0 PPAR P DANBURG 69 DBC 1.2 PI+ 0 DANBURG 69 DBC 1.4 PI+ 0 DANBURG 69 DBC 1.2 PI+ 0 DANBURG 69 DBC 1.9 PI+ 0 DANBURG 69 DBC	11/66 1/71* 6/66 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1- 64- M 155 M 4VG M 4VG M 400 M 34 M 220 M 2400 M 250 M 250 M 250 M 200 M 500 M 500 M 500 M 500 M 500 M 750 M 750	L OMEGA HERE WE LIST (OF MASS RESOLU 	MASS (MFV) NLV EXPERIMENTS IN WHICH THE EFFECTS JITION HAVE PREN EVALUATED. ARMENTERO 62 HBC 0.0 P PAR P KIKI HARASH 67 HBC 0.0 P PAR KIKI HIZZARRZ 70 HBC 0.0 P PAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1-0) DE. ALFF AKENTERO 63 HBC 2.3-2.9 PI+P ARMENTERO 54 HBC 2.1-2.1 PI+P ARMENTERO 54 HBC 2.1 PI+P ARMENTERO 54 HBC 2.1 PI+P ARAMES 66 HBC 2.1 PI+P BRACO 54 HBC 0.0 PBAR P MILLER 0 65 HBC 2.1 PI+P DANBURG 69 DBC 1.2 PI+0 0 DANBURG 69 DBC 1.2 PI+0 0 DANBURG 69 DBC 1.3 PI+0 0 DANBURG 69 DBC 1.3 PI+0 0 DANBURG 69 DBC 2.3 PI+0 0 DAN	11/66 1/71* 6/66 11/67 9/69 9/69 9/69 9/69 9/69 9/69 9/69 9
M FROM K1- 64 M 155 M 4VG M FROM 07 M 400 M 240 M 240 M 220 M 220 M 250 M 200 M 200 M 750 M 750 M 200 M 750 M 200 M 750 M 200 M 750 M 260	L OMEGA HERE ME LIST (OF MASS RESOLU *1 MNDE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.7 781-0 0.52 187 7140 K1-K1 NG 784-0 1.0 784-0 1.0 785-6 1.2 784-0 1.0 785-6 1.5 784-0 1.5 784-1.1 784-1.1 785-1.1 785-1.1 785-1.1 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-1.2 785-2.1 7	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE BFEN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARASH 67 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARASH 67 HBC 0.0 PBAR P KIKI HARASH 67 HBC AVERAGE (FARDR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 67 HBC ARMENTERO 53 HBC 0.0 PBAR P KRAFKF 64 ABC JAMES 66 HBC 2.1 P1+P PALTAY 67 HBC JAMES 66 HBC 0 PBAR P KRAFKF 64 BG JAMES 66 HBC 0 PBAR P KRAFK 64 BG JAMUSG 69 DBC 1.4 P1+ 0 DANBUSG 69 DBC DANBUSG 69 DBC 1.4 P1+ 0 DANBUSG 69 DBC DANBUSG 69 DBC 1.4 P1+ 0 DANBUSG 69 DBC JANBUSG 69 DBC 1.4 P1+ 0 DANBUSG 69 DBC ABRAMULC 70 HBC 3.4 P1+ P TANBUSC 10 DANBUSC 1	11/66 1/71* 9/66 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1- 64 M 155 M 4VG M FROM 015 M 640 M 240 M 646 M 2199 M 646 M 2199 M 646 M 2209 M 500 M 500 M 750 M	L OMEGA MERE WE LIST C OF MASS RESOLU KI MODE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-6 0.5 781-0 0.5 782-0 1.0 784-0 1.0 785-0 1.0 785-0 1.0 785-0 1.0 784-8 1.1 784-8 1.1 784-1 1.2 785-1 1.7 785-1 1.7 785-1 1.2 785-1 2.7 784-1 1.2 785-1 2.7 784-1 1.2 785-1 2.7 784-1 2.2 785-1 2.7 785-1 2.7 785-1 2.7 785-2 1.7 785-2	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE FFN EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI HIZZARR2 70 HBC 0.0 P PBAR KIKI AVERAGE (FROR INCLUDES SCALE FACTOR DF 1.0) DE. ALFF 62 HBC 2.3-2.9 PI+P KARENTERO 53 HBC 0.0 PBAR P MARENTERO 54 HBC 0.0 PBAR P MLEF 64 HBC 2.1 PI+P MARENTERO 55 HBC 0.0 PBAR P MARENTERO 54 HBC 0.0 PBAR P MARENTERO 55 HBC 0.0 PBAR P MILLER 0 65 HBC 2.1 PI+P PALTAY 67 HBC 0.0 PBAR P DANBURG 69 DBC 1.2 PI+ 0 DANBURG 69 DBC 1.7 PI+ 0 DANBURG 69 DBC 1.7 PI+ 0 DANBURG 69 DBC 1.7 PI+ 0 DANBURG 69 DBC 2.1 PI+ P ARAMURG 69 DBC 2.1 PI+ 0 DANBURG 69 DBC 3.0 PI-P ATHERTON 70 HBC 3.0 PI-P ATHERTON 70 HBC 3.0 PI-P ATHERTON 70 HBC 0.0 PBAR K+K-G	11/66 1/71* 9/69 9/64 9/69 9/69 9/69 9/69 9/69 9/69
ч FR04 K1 64 м 155 м AVG м FR04 01 м 220 м 666 ч 2199 м 666 ч 2199 м 666 ч 2199 м 2200 м 500 ч 200 м 750 ч 200 м 750 ч 200 м 369 м 369 м АVG	L OMEGA HERE WE LIST (OF MASS RESOL 770-4 1.4 770-5 1.5 781-0 0.5 780-60 0.52 168 THAN K1-K1 MOC 782-0 1.0 783-6 1.0 783-6 1.0 783-6 1.0 784-8 1.1 784-8 1.1 784-1 1.2 785-1 1.7 785-1 1.	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE AFFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BLZZARRZ 70 HBC 0.0 PBAR P KIKI BLZZARRZ 70 HBC 0.0 PBAR P KIKI AVERAGE (FROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ALFF 62 HBC ALFF 62 HBC ALFF 62 HBC JILLERO 83 HBC 0.0 PBAR P MANNERO 63 HBC 0.0 PBAR P MARTIRO 63 HBC 0.0 PBAR P MILLERO 63 HBC 2.3 - 2.9 PI+P ALFF 64 HBC 1.2 PI+0 MALES 66 HBC 2.1 PI+P MALTY 67 HBC 0.0 PBAR P MANURG 69 DBC 1.2 PI+0 DANURG 69 DBC 1.4 PI+0 DANURG 69 DBC 1.3 PI+0 ARAWOUC 70 HBC 3.9 PI-P ATTHENT NTO HBC 3.6 PBAR P, T PI ATTHENT NTO HBC 0.0 PBBAR K+K-CASDN TO HBC ANTHENT ND TO HBC 0.0 PBBAR K+K-C	6/66 1/71* 9/69 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1- 64- 64- 64- 64- 64- 64- 64- 64	L OMEGA HERE WE LIST (OF MASS RESOL XI MODE 773-4 1.4 773-5 1.5 781-0 0.5 780-60 0.52 IER THAN K1-K1 MOD 782-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 784-8 1.1 784-1 1.7 784-1	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE PFR EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI RATASH 67 HBC 0.0 PBAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1-0) PE. ALF AKMENTERO 53 HBC 0.0 PBAR P KIKI AMENTERO 54 HBC 2.3-2.9 PI+P ARMENTERO 54 HBC 2.3-2.9 PI+P ARMENTERO 54 HBC 2.0 DBAR P MILLER 0 65 HBC 2.0 DBAR P MALTER 0 54 HBC 0.0 DBAR P RAREMER 64 DBC 1.2 PI+0 MALTER 0 54 HBC 0.0 DBAR P RAREMER 64 DBC 1.2 PI+0 MALTER 0 54 HBC 0.0 DBAR P RATAY 7 HBC 0.0 DBAR P NANURG 69 DBC 1.2 PI+0 DAANURG 69 DBC 1.2 PI+0 DAANURG 69 DBC 1.3 PI+P ATHERTON 70 HBC 3.4 PHAP ATHERTON 70 HBC 3.4 PHAP ATHERTON 70 HBC 3.4 PHAP ATHERTON 70 HBC 3.6 PBAR P, 7 PI ATHERTON 70 HBC 3.6 PBAR P, 7 PI ATHERTON 70 HBC	11/66 1/71* 6/66 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1 64 M 64 M 155 M FROM OT M FROM OT M 220 M 646 M 260 M 500 M 646 M 260 M 500 M 646 M 646 M 260 M 646 M 750 M	L OMEGA HERE ME LIST (OF MASS RESOLU *1 MODE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.7 781-0 0.5 782-0 1.0 784-0 1.0 785-0 1.0	MASS (MFV) NULY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE REFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARARSH 67 HBC 0.0 PBAR P KIKI HIZZARR2 70 HBC AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ARMENTERO 63 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC AKMENTERO 64 HBC 2.1-2.9 PI+P AMENTERO 65 HBC AKMENTERO 64 HBC 0.0 PBAR P KREWER 64 BC MES 6.4 HBC 0.0 PBAR P MALTAY 67 HBC JAMES 6.4 HBC 0.0 PBAR P NALTAY 67 HBC DANUNG 69 DBC 1.4 PI+0 DANUNG 69 DBC 1.7 PI+0 DANUNG 69 DBC DANUNG 69 DBC 2.1 PI+P AATAY 70 HBC 3.9 PI-9 PIZARAT 70 HBC ASBAMUUC 70 HBC 3.9 PI-9 DANUNG 69 DBC 1.0 PI-9 PAATAY 70 HBC ASBANUUC 70 HBC 3.0 PI-9 PAR ATTHENS 71 DBC 6.95 PI+0 AVERAGE (ERROR INCLUDES SCALE FACTOR 0F 1.4) DEOGAM BELOM 1 1.4 DEOGAM BELOM 1	6/66 9/66 9/66 9/69 9/69 9/69 9/69 9/69
M FROM K1- 64 M 155 M FROM 015 M FROM 01 M 24 M 646 M 2199 M 646 M 2209 M 646 M 200 M 750 M 400 M 400 M 646 M 200 M 750 M 400 M 400 M 400 M 646 M 200 M 750 M 400 M	L OMEGA HERE WE LIST C OF MASS RESOLU KI MODE 770-4 1.4 770-5 1.5 780-60 0.52 780-60 0.52 180 THAN KI-KI MO 784-0 1.0 784-0 1.0 784-1 1.2 784-1 1.2 784-1 1.2 784-1 1.2 784-1 1.2 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-2 1.6 783-4 0.7 783-4 0.7 783-6 1.7 783-6 1.7 783-7	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE FFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI AVERAGE (FRADE INCLUDES SCALE FACTOR DF 1.0) DE. ALFF 62 HBC 0.0 PBAR PK AKENTERO 63 HBC 0.0 PBAR PK 1.0) DE. ALFF 63 HBC 0.0 PBAR PK MARENTERO 63 HBC 0.0 PBAR PK 1.0) DE. ALFF 63 HBC 0.0 PBAR PK MARSHER 64 HBC 0.0 PBAR PK 1.01 DE. ALFF 63 HBC 0.0 PBAR PK JAMES 64 HBC 0.0 PBAR PK 1.01 DE. ALFF 63 HBC 0.0 PBAR PK JAMES 69 HBC 1.2 PI + 0 1.41 PI + 0 DANBURG 69 DBC 1.2 PI + 0 1.41 PI + 0 DANBURG 69 DBC 1.2 PI + 0 1.41 PI + 0 DANBURG 69 DBC 1.2 PI + 0 1.41 PI + 0 DANBURG 69 DBC 1.2 PI + 0 1.41 PI + 0	6/66 1/71* 9/66 11/67 9/69 9/69 9/69 9/69 9/69 9/69 0/69 0/67 0 6/70 6/70 1/71*
M FROM K1- 64- M 155 M 4VG M 400 M 400 M 220 M 200 M 360 M 200 M 360 M 360	L OMEGA HERE WE LIST (OF MASS RESOL KI MODE 770-4 1.4 770-5 1.5 781-0 0.5 780-60 0.52 IER THAN KI-KI MOD 782-0 1.0 785-0 2.0 785-0 2.0 784-0 1.0 784-0 1.0 784-1 1.7 784-1 1.7 783-2 1.6 783-2 1.6 783-2 1.6 783-2 1.6 783-2 1.6 783-4 1.0 783-4 1.0 783-8	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE PFR EVALUATED. RARENTERO 62 HBC 0.0 PBAR P KIKI NARASH 67 HBC 0.0 PBAR P KIKI RARASH 67 HBC 0.0 PBAR P KIKI RARASH 67 HBC 0.0 PBAR P KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1-0) PE. ALFF AMENTERO 54 HBC 2.3-2.9 PI+P ARMENTERO 54 HBC 0.0 PBAR P RAREMERO 69 HBC 0.0 PBAR P NALES 08 HBC 0.0 PBAR P NALES 08 DBC 1.2 PI+0 DANBURG 69 DBC 1.9 PI+1 ANTHENTON TO HBC 3.9 PI-2 ATHENTON TO HBC 3.9 PI-2 ATHENTON TO HBC 3.9 PI-2	11/66 1/71* 6/66 11/67 9/69 9/69 9/69 9/69 9/69 9/69 9/69 2/71* 2/71*
M FROM K1- M FROM K1- M 155 M 4VG M FROM OT M 220 M 200 M	1 0MEGA MERE ME LIST (0F MASS RESOLU *1 MNDE 773-4 1.4 773-4 1.4 773-4 1.7 781-0 0.5 782-0 1.0 784-0 1.0 784-0 1.0 785-6 1.2 785-6 1.2 786-0 1.7 786-8 0.7 786-8 0.7 786-8 1.7 786-8 1.1 786-1 1.7 786-1 1.7 787-1	MASS (MFV) NNLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE RFCN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI HIZZARR2 70 HBC 0.0 PBAR KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 67 HBC 2.3-2.9 PI+P ARMENTERO A3 HBC 0.0 PBAR P KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. 3.4 BC 0.0 PBAR P ARKENTERO A3 HBC 0.0 PBAR P MARES 6.4 BC 2.1 PI+P AALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MULLER D 65 HBC 1.2 PI+O DANBURG 69 DBC 1.2 PI+O DANBURG 69 DBC 1.2 PI+O DANBURG 69 DBC 1.2 PI+O DANBURG 69 DBC 1.2 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC	11/66 1/71* 9/66 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1- 64 M 64 M 155 M FROM 07 M FROM 07 M 2400 M 2200 M 2200 M 2200 M 2200 M 2200 M 2200 M 2200 M 200 M 200 M 200 M 369 M 369	L OMEGA HERE ME LIST (OF MASS RESOLU *1 MNDE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.7 781-0 0.52 10.7 784-0 1.0 784-0 1.0 785-0 1.0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE RFP. EVALUATED. ARMENTERO 62 HBC 0.0 PBAR P KIKI BARASH 67 HBC ARARSH 67 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC AVERAGE (FROR INCLUDES SCALE FACTOR 0F 1.0) DE. ALFF AKMENTERO 63 HBC 0.0 PBAR P AVERAGE (FROR INCLUDES SCALE FACTOR 0F 1.0) DE. ALFF AKMENTERO 63 HBC 0.0 PBAR P ALFF 67 HBC 2.3-2.9 PI+P ARMENTERO 63 HBC 0.0 PBAR P MARS 66 HBC 2.1 PI+P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.1 PI+P ALFF 69 HBC 1.2 PI+P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MALLER D 65 DBC 1.2 PI+P MANUGG 69 DBC 1.1 PI+D DANBUGG 69 DBC 2.1 PI+P ATTARTN TO TORODACTION PODACTION 1000PRDACTION MATHENTN TO HBC 3.9 PI-	11/66 1/71* 6/66 9/66 9/66 9/60 9/60 9/60 9/60 9/60
H FROM K1- 64 M 155 M 4VG M FROM 015 M 640 M 34 M 2199 M 2400 M 646 H 2199 M 646 H 2209 M 646 H 200 M 500 H 200 M 500 H 200 M 750 M 369 M 400 M	L OMEGA HERE WE LIST (OF MASS RESOLU KI MNDE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 778-0 1.0 778-0	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITIN HAVE RFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI BARASH 67 HBC 0.0 PBAR P KIKI AVERAGE (FROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF 62 HBC 0.2 PI+P ARKHTRO A3 HBC 0.2 PI+P ARKHTRO A5 HBC 0.2 PI+P MARKHTRO A5 HBC 0.0 PBAR P JAMES 66 HBC 2.1 PI+P RALTAY 67 HBC 0.0 PBAR P HLER 0 65 HBC 2.1 PI+P RALTAY 67 HBC 0.0 PBAR P BIZZARI 69 HBC 0.0 PBAR P DANBURG 69 DBC 1.2 PI+P DANBURG 69 DBC 1.4 PI+D DANBURG 69 DBC 1.2 PI+P ARAMUNIC 70 HBC 3.0 PI-P ATHERTON 70 HBC 0.0 PBAR F, 7PI ABRAMUNIC 70 HBC 0.0 D PBAR K+K-C CASON 70 HBC 0.0	11/66 1/71+ 6/66 9/60 9/60 9/60 9/60 9/60 6/70 6/70 6/70 6/70 6/70 6/70 5/70 6/70 5/70 6/70
M FROM K1- 64- M 155 M 4VG M 400 M 2400 M 220 M 200 M 369 M 349 M 349 M 349 M 349 M 349 M 369 M 369	L OMEGA HERE WE LIST (OF MASS RESOL KI MODE 770-4 1.4 770-5 1.5 781-0 0.5 780-60 0.52 HER THAN KI-KI MOC 783-0 1.0 784-0 1.0 783-2 1.6 783-2	MASS (MFV) NLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE AFFN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 PBAR P KIKI BIZZARR2 70 HBC 0.0 PBAR P KIKI AVERAGE (FROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ALFF A2 HBC MASS (MFV) ABRENTERO A3 HBC MASS (A BBC 0.2 J-2.9 PI+P ARMENTERO A3 HBC 0.0 PBAR P MASS (A BBC 1.2 PI+0 MASS (A BBC 1.2 PI+0 MASS (A BBC 0.0 PBAR P BIZZARI (59 HBC 0.0 PBAR P DANBURG (A BC BC 1.2 PI+0 DANBURG (A BC BC 1.4 PI+0 DANBURG (A BC BC 1.9 PI+0 DANBURG (A BC BC 1.9 PI+1 ABRAVUCIC 70 HBC 3.9 PI-9 ATTHENT N1 DAC 0.0 PBAR K+K- GAST (A BC HERO A BLO H) 1.4 DIDEOGAAM BELOH)	11/66 1/71* 6/66 9/69 9/69 9/69 9/69 9/69 0/67 0/71* 2/71* 6/66 6/60 5/70 5/70 5/70
M FROM K1- 64- M 155 M 400 M 400 M 220 M 666 V 2199 M 2200 M 2600 V 250 V 250 V 250 V 250 V 250 V 200 M 200 V 20	L OMEGA MERE ME KE LIST (OF MASS RESOLU *1 MNDE 773-4 1.4 773-4 1.4 773-4 1.7 781-0 0.6 782-0 1.0 784-0 1.0 784-0 1.0 784-0 1.0 785-6 1.2 785-6 1.2 785-6 1.2 785-6 1.7 784-1 1.7 784-1 1.7 784-1 1.7 784-1 1.2 784-1 1.2 78	MASS (MFV) NNLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE RFN EVALUATED. ARMENTERD 62 HBC 0.0 PBAR P KIKI HARASH 67 HBC 0.0 PBAR P KIKI HIZZ ARR2 70 HBC 0.0 PBAR P KIKI AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ARMENTERD 63 HBC 0.0 PBAR P ARMENTERD 63 HBC 0.0 PBAR P MILLER 0 65 HBC 2.3-2.9 PI+P ARMENTERD 63 HBC 0.0 PBAR P MILLER 0 65 HBC 2.1 PI+P MALTAY 67 HBC 0.0 PBAR P MILLER 0 65 HBC 1.2 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 2.1 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.4 PI+O DANBURG 69 DBC 1.0 PI+P, P ATHFRINN 70 HBC 0.0 PBAR P, F MITTARZ 70 HBC 0.0 PBAR P, F MILLER 0 65 HBC 0.0 PB	11/66 1/71* 6/66 9/69 9/69 9/69 9/69 9/69 9/69 9/6
M FROM K1 64 M 155 M AVG M FROM OTH FROM OTH FROM OTH 400 M 220 M 2400 M 220 M 250 M 250 M 250 M 250 M 250 M 250 M 260 M 500 M 369 M 369 M 34 M 34	1 ΟΜΕGA HERE ME LIST (OF MASS RESOLU *1 MNDE 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.4 773-4 1.7 781.0 2.0 784.0 1.0 784.1 1.7 784.2 0.10 784.3 1.7 784.4 1.7 784.5 1.7 784.6 1.7 784.7 1.7 784.1 1.2 784.2 1.6 783.2 1.6 783.2 1.6 783.2 1.6 781.0 2.0 1.4 1.2 1.5 3.2 9.0 1.2 1.6.2 3.2 <td>MASS (MFV) NNLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE BFEN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARASH 67 HBC 0.0 PBAR P KIKI HIZARR2 TO HBC AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ARMENTERO A3 HBC 0.0 PBAR P ARMENTERO A5 HBC 0.10 PBAR P ARMENTERO A5 HBC 0.10 PBAR P MALSY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.2 PI+P AALTAY 67 HBC 0.2 PI+P AALTAY 67 HBC 0.2 PI+P MALTAY 67 HBC 0.2 PBAR P DANURG 69 DBC 1.2 PI+P DANURG 69 DBC 1.4 PI+D DANURG 69 DBC 1.4 P</td> <td>11/66 1/71* 9/60 9/60 9/69 9/69 9/69 9/69 9/69 2/71 2/71* 6/66 6/766 6/760 6/700 5/70 1/71* 2/71*</td>	MASS (MFV) NNLY EXPERIMENTS IN WHICH THE EFFECTS JITON HAVE BFEN EVALUATED. ARMENTERO A2 HBC 0.0 PBAR P KIKI HARASH 67 HBC ARASH 67 HBC 0.0 PBAR P KIKI HIZARR2 TO HBC AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) DE. ALFF ARMENTERO A3 HBC 0.0 PBAR P ARMENTERO A5 HBC 0.10 PBAR P ARMENTERO A5 HBC 0.10 PBAR P MALSY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.0 PBAR P MALTAY 67 HBC 0.2 PI+P AALTAY 67 HBC 0.2 PI+P AALTAY 67 HBC 0.2 PI+P MALTAY 67 HBC 0.2 PBAR P DANURG 69 DBC 1.2 PI+P DANURG 69 DBC 1.4 PI+D DANURG 69 DBC 1.4 P	11/66 1/71* 9/60 9/60 9/69 9/69 9/69 9/69 9/69 2/71 2/71* 6/66 6/766 6/760 6/700 5/70 1/71* 2/71*

Note on the branching fractions of $\omega(784)$

Note that the <u>errors</u> of the decay branching fractions in the Meson Table are different from their values below (under "FROM FIT"), the table values being more conservative. The CONSTRAINED FIT only takes into account the decay modes $\pi^+\pi^-\pi^0$, $\pi^+\pi^-$, and neu'.als, the latter defined as $\pi^0\gamma$. In the Meson Table we have also taken into account the upper limits, L_i (one-standard-deviation values), on the $\eta\gamma$, $\pi^+\pi^-\gamma$, and $\pi^0\pi^0\gamma$ decays by treating them as if they were measurement results of value $0 \pm L_i$.

R 1	OMEGA	INTO NEUT	RAL/(PI+	PI- PI))				
R1		0.17	0.04		ARMENTERO	63	нвс	0.0 PBAR P	
R 1	20	0.11	0.02		BUSCHBECK	63	HRC	1.5 K-P	
RI	35	0.08	0.03		KRAEMER	64	DBC	1.2 P1+0	
R1	65	0.10	0.04		ALFF-STEI	66	HBC CORR	BY SCHULTZ(COL)	9/66
R 1	850	0.134	0.026		DIGIUGNO	66	CNTR	1.4 PI-P	9/66
RI	348	0.097	0.015		FLATTE	66	HBC	1.8 K-P	9/66
RI		0.06	0.05	0.02	JAMES	66	HBC	2.1 PI+P	5/66
91	19	0.10	0.03		BARASH	67	HBC	0.0 P8AR P	7/67
P 1									
01	AV G	0.1043	0.0091	AVERAG	E (ERROR T	NCLI	UDES SCAL	E FACTOR OF 1.0)	
D 1	EIT	0.1037	0.0070 E	ROM FT	CERSOR L	NCU	UDES SCAL	F FACTOR OF 1.01	
		0	0.00.0						
0.2	OMECA	INTO LOLA	B1-1//01		101. SEE	A1	50 215		
0.2	0.000	10 011108	MORE C I	-0.95	ABRAMOVIC	70	HRC	3.9 PT- P	6/70
02	9	10.035108	LESS-C-L	.=0.95	BI 77ABB1	70	DBC	PRAR N AT REST	6/70
0.2	~	10.010108	MORE C 1	-0.05	CHADMAN	70	HBC	1.6=2.2 P PRAP	6/70
0.2	F	1 002108	MORE C L	-0.0	EI ATTE	70	HBC	1.5 K- D	8769
0.2	6	ELATTE 7	A CEES MA	SIGNA	AT 1 7.	2.1	. 2.6 GEV	10	0,0,
0.2	1.	10 002610		- 94	HACOPIAN	70	HAC	2.3 P1- P	1/71*
62		10.0601.0		- 94	HAGORIAN	70	HBC	2.3 PT- P	1/71*
62	D	0.022	0 009	0.01	2005	70	RVUE	2.5	6/70
02	0	8005 70	COMBINES .	ABDAMO	TCH 70 AN	ດ່ຄ	1774881	70	
62	· ·	10 001510	P MORE-CL	= 95	HAGOPTAN	71	HRC	2.3 PI- P	1/71*
0.2		10.001/10	N HUNCHOL	,,	In COLUMN		100	2	•••••
62	61T ·	0.0106	0 0028 51			NCU		E EACTOR DE 1.0)	
R.2		0.0104	0.00201	10-11	i tenton 1		0000 0000		
0.3	OMECA	INTO (RIO	GANNAL Z	(01+					
0.2	11-12.04	10 1251	10 025108	COTO	BARMIN	64	PYRC	2.8 PT-P	
22		0.13	0.04		LACOUET	69	HIBC		10767
		0.15	0.04		040000	· · ·			
22	E 1 T	0 1037	0 0070 6			NCL	UDES SCAL	E EACTOR OF 1.01	
~ 2		0.1057	0.0010 11	100111	i tennok i		UNED JONE		
٥.4	OMEGA	INTO CRIA	DI- CAMM		. PT- P101				
0.4	0.46.04	(0.05) 0	0 1 5 5 5		FLATTE	66	HBC	1.8 K-P	9766
~ 7		(0.0)/ 0			- CHITE			1.0	
R 6	OMEGA	INTO (MU+	MU-1/(P1-	+ PI- 1		10	**-3)		
86	JILUA	(1.2) 08	LESS		GALTIERI	65	HBC	2.7 K-P	
86		(1.7) OR 1	FSS		FLATTE	66	HBC	1.8 K-P	9/66
R.6		(0.2) DB	LESS		WILSON	69	OSPK	12 PI- ON C+FE	9/69

Mesons

For notation, see illustrated key at beginning of data card listings.

REFERENCES FOR M AGUILAR 70 PRL 25 1635 AGUILAR-BENITEZ, BASSAND, SAMIDS, BARNES+(BNL) $\eta'(958)$ 2 ETA PRIME (958+JPG=0-+) I=0 KNOWN ALSO AS XO (JP = 2- NOT YET EXCLUDED,) (SFE NOTE ON QUANTUM NUMBERS AT FND OF ETA PRIME LISTINGS) ------2 FTA PRIME MASS (MEV) DAUBER 64 MBC KALBERLEIS 64 MBC SUPERSEDED BY RITTENBERG 69 RADIFR 65 MBC C.DHN 66 MBC C.DHN 66 MBC UNNON 66 MBC WOTT 69 MBC RITTENBER 69 MBC 85 (957.0) (1.0) (1058.0) (1.0) (1.0) (1058.0) (1.0) (1.0) 957.0 3.0 (1.0) 9 960.0 3.0 957.0 3.0 (1.0) 957.0 10.0 (1.0) 957.0 1.0 (1.0) 957.0 1.0 (1.0) 957.0 2.0 (1.0) 1.95 K-P 2.7 K-P 6/66 ĸ 3.0 K-P 3.65 PI+ P 3.3 PI+D 2.2 K-P 4.1-5.5 K-1.7-2.7 K-3.9-4.6K-P 9/66 6/66 6/66 7/69 9/69 L/71 957.46 0.75 4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AV G ------2 ETA PRIME WIDTH (MEV) 14.010R LESS DAUBER 64 HBC (7.010R LESS KALBFLETS FA HBC KALBFLETS FA HBC KALFFLETSCH 64 SUPERSEDED BY RITTEMARG 69 130.010R LFSS BADIER 15.010R LFSS BADIER 65 HBC 15.010R LFSS BADIER 64 HBC (15.010R LFSS BADIER 65 HBC (20.01) OR LESS RUTPINER 64 HBC (20.01) OR LESS RUTPINER 64 HBC (20.01) OR LESS RUTPINER 64 HBC 85 1.95 K-P 2.7 K-P N N N к к 6/66 3.0 K-P 2.2 K-P 1.7-2.7 K- P 3.9-4.6K-P 6/66 9/69 1/714 ž. ----------2 ETA PRIME PARTIAL DECAY MODES ETA PRIME INTO PI+ PI- ETA PI(N) ETAS DECAY INTO ALL NEUTRALS PI(C) ETAS DECAY INTO ALL NEUTRALS P2(N) ETAS DECAY INTO ALL NEUTRALS P2(N) ETAS DECAY INTO ALL NEUTRALS P2(C) ETAS DECAY INTO ALL NEUTRALS P3(C) ETAS DECAY INTO ALL NEUTRALS ETA P3(M) EINTO D1+ P1- EA ETA P3(M) EINTO D1+ P1- EA ETA P3(M) EINTO D10 GAMMA CAMMA ETA P3(M) EINTO D10 GAMMA CAMMA ETA P3(M) EINTO D10 GAMMA CAMMA ETA P3(M) EINTO D10 ETA E+ E- (D10) APPROX,1) ETA P3(M) EINTO ETA E+ E- (D10) APPROX,1) ETA P3(M) EINTO D10 ETA E+ E- (VIOLATES C) ETA P3(M) EINTO D10 HO Q10(ATES C) DECAY MASSES 139+ 139+ 548 Pl ΡZ 134+ 134+ 548 139+ 139+ 0 Ρ3 94 P6 P10 P11 P12 P13 P14 P15 P15 P17 548+ .5+ .5 STA PRIME INTO PIO RHD O (VIOLATES C) FTA PRIME INTO PIO OMEGA (VIOLATES C) P18 P19 134+ 765 ------

2 ETA PRIME BRANCHING RATIOS

Note on $\eta'(958)$ branching ratios

In our calculation of the constrained branching fractions of the $\eta^{\,\rm t}(958)$ we assume the following decay modes:

a) $\eta \pi \pi$ (including $\eta \pi^0 \pi^0$, 72% of the η 's have neutral decays),

b) ρ⁰γ,

с) үү.

Note that the average of the directly observed $\gamma\gamma$ values (9.9 + 4.4)% (BOLLINI 68, BENSINGER 70) is slightly different from the result of the overall fit, $(6.6 \pm 3.7)\%$, because of independent measurements of $(\eta' \rightarrow \text{all neutrals})/(\eta' \rightarrow \text{total})$. In the fit we do not use the constraint

 $R = \Gamma(\eta' \rightarrow \eta \pi^{+} \pi^{-}) / \Gamma(\eta' \rightarrow \eta \pi^{0} \pi^{0}) = 2$

from I-spin conservation. The result of the fit is in agreement with it, R = 2.2 \pm 0.5.

lesons

ETA PRIME INTO (PI+PI-GAMMA)/(TOTAL)

R7 R7 87			ETA PRIME 0.25	INTO (PI+ PI- GA 0.14	MMA (INCLUDI DAUBER 6	NG RHO GAI 4 HBC	MMA))/(PI PI ETA) 1.95 K-P	10/66
R7	FIT		0.460	0.066 FROM F1	T (ERROR INC	LUDES SCA	LE FACTOR OF 1.3)	
R 8 R 8			ETA PRIME (0.013)	INTO (PIO E+ E-) OR LESS	/TOTAL RITTENBER 6	5 HBC	2.7 K-P	10/66
R9 R9			ETA PRIME (0.011)	INTO (ETA E+ E-) OR LESS	/TOTAL RITTENBER 6	5 HBC	2.7 K-P	10/66
R 1 0 R 1 0			ETA PRIME (0.04)	INTO (PIO RHOO)/ OR LESS	RITTENBER 6	5 нвс	2.7 K-P	10/66
R 1 1 R 1 1			ETA PRIME (0.08)	INTO (PIO OMEGA) OR LESS	/TOTAL RITTENBER 6	5 нвс	2.7 K-P	10/66
R 1 2 R 1 2			ETA PRIME (0.006)	INTO (PI+ PI- E+ OR LESS	E-)/TOTAL RITTENBER 6	5 НВС	2.7 K-P	10/66
R13 R13			ETA PRIME (0.07)	INTO (2 PI)/TOTA OR LESS COMP.BY	L LONDON 6	6 НВС		10/66
R14 R14			ETA PRIME (0.07)	INTO (3 PI)/TOTA OR LESS COMP.BY	L LONDON 6	6 НВС		10/66
R15 R15			ETA PRIME (0.01)	INTO (4 PI)/TOTA OR LESS COMP.BY	L Landan 6	6 нвс		10/66
R16 R16			ETA PRIME (0.01)	INTO (6 PI)/TOTA OR LESS COMP.BY	L LONDON 64	6 НВС		10/66
R18 R18			ETA PRIME 0.31	INTO (RHOO GAMMA 0,15	DAVIS 6	1 8 HBC	5.5 K- P	9768
R18	F[T		0.460	0.066 FROM FI	T (ERROR INC	LUDES SCAL	E FACTOR OF 1.3)	
R19 R19	8	5	ETA PRIME (0.055)	INTO (2 GAMMA)/T (0.036) (0.030	OTAL 1801LEINE 6	8 CNTR	1.9 PT- P	9/68
R 19 R19	8	5	0.085	0.055 0.045	BOLLINI 6	TION, BEN: 8 CNTR 0 DBC	1.9 PI- P 2.2 PI+ D	1/71
R19 R19 R19	AVG FIT		0.098	0.042 AVERAG 0.037 FROM FI	E (ERROR INCI T (ERROR INCI	LUDES SCAL	E FACTOR OF 1.0) E FACTOR OF 1.1)	
R 20 R 20			ETA PRIME (0.02)	INTO (PI+PI-)/TO OR LESS	TAL RITTENBER 6	9 HBC	1.7-2.7 K-P	9/69
R21 R21			ETA PRIME (0.05)	INTO (PI+PI-PIO) OR LESS	/TOTAL RITTENBER 64	9 HBC	1.7-2.7 K-P	9769
R 22 R 22			ETA PRIME (0.01)	INTO (PI+PI+PI-P DR LESS	I-)/TOTAL RITTENBER 6	9 НВС	1.7-2.7 K-P	9/69
R 2 3 R 2 3			ETA PRIME (0.01)	INTO (PI+PI+PI-P DR LESS	I-PIO}/TOTAL RITTENBER 69	9 HBC	1.7-2.7 K-P	9769
R24 R24			ETA PRIME (0.01)	INTO (PI+PI+PI-P OR LESS	I- NEUTRALS) RITTENBER 6	TOTAL 9 HBC	1.7-2.7 K-P	9/69
R 2 5 R 2 5			ETA PRIME 0.94	INTO (RHOO GAMMA 0.20)/(ALL PI+ P AGUILAR 70	I- GAMMA) D HBC	3.9-4.6K-P	1/714
R26 R26		4	ETA PRIME 0.11	INTO (PIO PIO ET 0.06	A INTO 3 PIO BENSINGER 70)/TOTAL D DBC	2.2 P[+ D	1/714
R26	FIT		0.060	0.015 FROM FI	T (ERROR INC	LUDES SCAL	E FACTOR OF 1.1)	

FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS

The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>disgonal</u> elements are $P_1 \pm \delta P_1$, where $\delta P_1 = \sqrt{(\delta P_1 \delta P_2)}$, while the <u>off-diagonal</u> elements are the <u>normalised</u> correlation coefficients $(\delta P_1 \delta P_2)$. For the definitions of the individual P_4 , see the listings above; only those P_1 appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. $P_1 = P_2 = P_3 = P_4$

P 1 4394-.024 P 1 44394-.024 P 2 -428 .201+-.049 P 3 -408 -302 4944-.027 P 4 .159 -402 -019 .066*-.035

UNCERTAINTY IN THE J^{P} ASSIGMENT OF $\eta'(958)$

For the dominant $(64\%)\pi\pi\eta$ decay mode of the η' , since the Dalitz plot population is rather flat (DAUBER 64, LONDON 66, RITTENBERG 69, DUFEY 69), and in particular does not vanish at the edges of the plot, the J^P = Normal series may be ruled out.

In the notation of the sketch, any Normal matrix element would have a factor $\sin\theta$ and would thus go to zero at the edge of the Dalitz plot [C. Zemach, Phys. Rev. <u>133</u>, B1201 (1964)].

Since 1^+ is excluded by the observation of the $\gamma\gamma$ decay mode (BOLLINI 68, BENSINGER 70), this leaves us with 0^- , 2^- , \cdots of the Abnormal series. Unfortunately, no information permits us at present to distinguish between 0^- and 2^- [A. Zaslavskij, V. Ogievetskij and W. Tybor, Soviet Journ. of Nucl. Phys. 9, 498 (1969)]:

The $\pi\pi\eta$ decay mode (RITTENBERG 69, LONDON 66, DUFEY 69) is fitted better with $J^{P} = 0^{-}$ than with $J^{P} = 2^{-}$, but the latter cannot be excluded, either when comparing the simplest matrix elements with the Dalitz plot density distribution or when judging from the θ -dependence or the η energy dependence of the squared element [Zaslavskij et al., op. cit., and S. Giler et al., Acta Phys. Polon. A 37, 475 (1970)].

Turning to the 29% mode $\eta^{1} \rightarrow \pi^{+}\pi^{-}\gamma$, which RITTENBERG 69 has shown to be mainly $\rho^{0}\gamma$ decay, one gets a good fit with both $J^{P} = 0^{-} [d\sigma/d(\cos\theta) \propto \sin^{2}\theta]$ and $J^{P} = 2^{-} [d\sigma/d(\cos\theta) \propto 6 + \sin^{2}\theta$ for the simplest possibility of pure M1 transition, or $d\sigma/d(\cos\theta) \propto 1.48 + \sin^{2}\theta$ from the vector dominance model (private communication from V. Ogievetskij)], so no distinction is possible here.

Moreover, the possible existence of a new resonance, M(953), which decays into $\pi\pi\gamma$ but not into $\rho^0\gamma$, makes a study of the $\pi\pi\gamma$ final state even more ambiguous.

A longer discussion appears in our 1970 editions.

****** **	***	***	* *	***	****	** 4	***	***	**	***	***	**:	**	**	**	***	**	**	***	***		* * *	***	***
							R	FE	REN	CES	5 F	OR	E 1	A	PR	E M 8								
DAUBER	64	PRL	13	44	9		D	4 U 8	ER,	SL.4	TE	R., :	SMI	тн	• S'	TOR	к,	110	но			(10	LA	IJP
AL SO	64	DUB	NA	CDN	IF 1	418	3 0/	٩UB	ER,	SL/	١TE	R . I	L 1	r s	MI	rн,	ST	DR K	, T I	CHC).	100	LA)
KALBFLET	64	PRL	13	34	9		G	.R.	KAL	BFL	. E I	sci	н, (•0	AH	L,A	• R	111	ENB	ERG		()	RL	IJP
BADIER	65	PL	17	33.	,		8/	101	ER.	OE	100	c.	N , f	3A R	LO	UTA	uo	+ (PAR	+5/	IC+	zee	ма	1
KTENZI F	65	PL 1	19	438	9		ĸ	IEN	ZLĖ	+ M/	AGL	10,	. L 8	VR	AT.	. LE	FEI	BVR	ES	+		I CE	RN)
RITTENBE	65	P81	15	5	56		R	111	ENP	ER	з,к	AL	8 F I	.E 1	SC	н				- (LR	L+f	INL)
TRILLING	65	PL	19	42	7		+1	BRO	WN,	GOL	. OH	48	ERS	6 e K	(A ()	ΥК,	sc	ANI	0			(L	RL	}
COHN	66	PL :	21	34	7		c	зни	, мс	c u		сн	, BL	JGG	. .c	ONC	0	(OF		TEN	4N +	UNC	CAR	1
LONDON	66	PR	143	10)34		Ł	DND	ON,	RA	J, S	٨M	105	5.0	OL	DBE	RG	+	(BN	12+5	YR	ACI	JSE) I J P
BOLLINI	68	NC	58	A	289		+	вин	LER	,0	AL P	14	z.,	MAS	S A	M+		(ERM	+80	-	+ 51	rrb)
DAVIS	68	PL .	27	8	532		+	AMM	AP,	MO	٢т,	DA	GAI	N. C	ER	RIC	к,	F16	1.05	. ()	WE	S+)	NL)
MOTT	69	PR	177	1	966		+,	A MM	AR .	OA	/15	, к	ROI	PAC	• s	LAT	ε,	DAC	AN+	. ()	₩E	S+1	NL)
RITTENBE	69	UC	RL-	184	363		A	LAN	R	TTE	NB	ER	G	(TH	IE S	15)						a	. RL)[=0
AGUTLAR	70	PRL	25	14	535		A	GUI	LAF	-8	ENI	TE.	Ζ,Ι	BAS	SA	NO 1	SA	мтг	ns., F	BAR	ve s	+()	3 NL)
BENSINGF	70	PL	33	в	505		8	ENS	INC	ER	• E R	WT	N.	THO)M P	5 01	1.W	•D.	WAL	KEP	t	(#)	I SC)
	QUA	ANTU	M N	U٩	BER	OET	ERMI	NAT	10	4S 1	тои	R	EF	ERF	ED	T	1	N 1	гне	DAT	ſA	C AI	RDS	
MARTIN	66	PL	22,	35	2		м	ART	IN	CR	1 1 1	EN	DE	N, S	сн	RO	DE	R		(1)	ND T	AN	ΔU	11
BARBARD-	68	PRL	20	3.	49		8	ARB	AR(3-G	ALT	1.6	R [.	, M 2	IT I	SOF	4.R	ITI	LENE	BERG	;+	- (1	RL	11=0
BARLOUTA	68	PL	26	8	674		в	ARL	001	rau	D+	15	AC	LA١	/+ A	MST	rn+	801	. JC -	₩E	I Z M	+ E	۰°.)1=0
DUFEY	69	PL	29	ß	505		+	608	81	, P ()	UCH	104	• C	NO	·S •	+		(1	тна	7.+CI	ERN	+ S	ACE	ILJP
		****		**	****	**	****	***	**	**	* * *	**	**	**	***	**'	***	**	***	***	**	* *	***	***

Mesons

$\delta(962)$ and $\pi_{ m N}(975)$

36 DELTA MESON (962, JPG=) I = 1 AND PI (975, JPG=N -) I = 1

The original, narrow $\delta^{-}(962)$ was seen with the CERN MMS (KIENZLE 65). Other missing-mass spectrometers (OOSTENS 66, BANNER-1 67, BANNER-2 67, ABOLINS 70) have added nothing conclusive to this evidence.

A claim for a $\delta^- \rightarrow \pi^- \pi^0$ decay at high |t| in the reaction $\pi^- p \rightarrow \pi^- \pi^0 p$ (ALLEN 66) can now be discounted by virtue of the results of a compilation (ROOS 70) of the same reaction; the compilation has 7 times larger statistics in the region 640-1000 MeV and 0.5 $\leq |t| \leq 1.0 (\text{GeV/c})^2$, and includes the data of ALLEN 66.

Claims for 3π decay (ALLISON 67, JUHALA 68) have also been contradicted (SAMIOS 68, KRUSE 69). For a review, see SAMIOS 68, MAGLIĆ 69.

Recent experiments have, however, shown evidence for a <u>broad</u> resonance, also called $\pi_N(975)$. These are BARNES 69 and AMMAR 70, who see a peak in the $\eta\pi$ system, and who claim that it cannot be explained by the kinematic effect discussed below under 2a; moreover, ABOLINS 70 see a peak of width 60 MeV in a missing mass spectrum.

The following references have possible relevance to the existence of the $\,\delta.\,$

1) The $\pi_N(1016)$ may be interpreted as a virtual bound state in the $K\overline{K}$ channel. It would then correspond to a narrow resonance at about 975 $^+_{-10}$ MeV (ASTIER 67) in open channels, e.g., $\eta\pi$ or 5π .

2) Further η_{π} enhancements have been reported at masses in the 960-980 MeV region. As evidences for a resonance they are however not yet convincing, because there are two kinematic effects that can produce η_{π} peaks in that mass region:

a) In the reactions $K^{-}n \rightarrow \Lambda \pi^{-}(MM)$ and $K^{-}p \rightarrow \Lambda \pi^{+}\pi^{-}(MM)$ (studied by CRENNELL 69, MILLER 69) with selection of the missing mass (MM) in the $\eta(549)$ region, a spurious δ peak can arise from contamination with $\Lambda \rho^{-}\pi^{0}$ final states. This has been pointed out by CRENNELL 69.

b) In final states containing many pions [e.g., $2\pi^{+}2\pi^{-}\pi^{0}$, $(3\pi)^{\pm}\pi^{0}$], and with the ω copiously produced, the constraint of at least one η combination in the $\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$] mass "fakes" a peak in the mass region around 960 MeV, due to reflections from the ω . This remark (by NELLEN 69) may apply to the observations of DEFOIX 68 and CAMPBELL 69. OTWINOWSKI 70

has shown, however, that the δ peak in OTWINOWSKI 69 cannot be explained this way.

If we accept $\delta \rightarrow \pi\eta$ by strong decay, then $I^{G} = 1^{-}$; nonobservation of 3π decay can be explained by choosing $J^{P} = 0^{+}$, or simply by saying that 3π background is too large to permit detection. These quantum numbers, $1^{-}(0^{+})$, are then the same as those most likely for $\pi_{N}(1016)$, which could be just the $\overline{K}K$ decay mode of the δ .

An unattractive alternative is to believe that δ is really very narrow, and guess that its $\pi\eta$ decay is <u>G-violating</u> electromagnetic. (It is not clear whether there would be competition from $\pi\pi\eta$ decay, which is strong but has much smaller phase space.) However, in this electromagnetic (em) case, one would also expect slightly faster decay into $\pi\pi$, and we are not sure whether this mode should have been detected. To see why we expect $\pi\pi$ decay, note that these em decays into $\pi^{-\pi} \sigma^{0}$ or $\pi^{-\eta}$ involve emission and reabsorption of a photon, with rates proportional to e^{4} (also $\pi\pi$ has slightly larger phase space than $\pi\eta$). Neutral em decays (as in the familiar $\eta^{0} \rightarrow 3\pi$) have selection rules either

$$\Delta G = Yes, \quad \Delta |I| = 1,$$

Δ

or

$$G = No, \Delta |I| = 2,$$

but charged decays ($\delta^- \rightarrow \pi^- \pi^0$ or $\pi^- \eta$) have no such rules (except $\Delta |I| \leq 2$).

Mesons

Mesons

E+ E- COLL.BEAM 1/71* 11. PI- P 6/70

For notation, see illustrated key at beginning of data card listings.

36 DELTA MESON WIDTH (MEV) (5.0) OR LESS (10.0) OR LESS (25.0) (50.0) OR LESS (60.0) (30.0) 2.62 w (30.0) 30.0 15.0 28.0 80.0 60.0 31.0 10.0 22 31.0 2n.0 58.2 11.0 Р1 Р2 ä AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) AVG 36 DELTA MESON PARTIAL DECAY MODES OELTA MESON INTO 3 PI Delta meson into 4 pi Delta meson into eta pi 134+ 134+ 134 134+ 134+ 134+ 134 548+ 134 P2 P3 P5 R 1 R 1 36 DELTA MESON BRANCHING RATIOS CHARGED DELTA INTO (1 CHARGED) / (3 OR MORE CHARGED) 1.3 0.9 0.7 KIENZLE 65 MMS - 3-5 PI- P 81 81 9/66 . DELTA MESON INTO ETA PI SEEN 92 82 BARNES 69 HBC - 4-5 K-P+PI-ETA 9/69 DELTA INTO (RHO PI)/(ETA PI) (0.25)OR LESS,C.L.=0.7 AMMAR 70 HBC +- 4.1,5.5K-,ETA PI 5/70 R3 R3 DELTA INTO (K KBAR)/(ETA PI) (0.2)OR LESS+C+L+=0.7 AMMAR R 4 R 4 70 HBC +- 4.1.5.5K-,ETA PI 5/70 ****** REFERENCES ON DELTA MESON
 TURKOT
 63
 SIFNNA CONF 1
 661
 +COLLINS, FUJII, KEMP+
 (BNL+PITTSBURGH)

 KIENZLE
 65
 PL
 19
 438
 +
 MAGLIC, LEVRAT, LFFE0VRES +
 (CERN)

 ALLEN
 66
 PL
 25
 +GP FISHER, G CONDENL, LARSHALL, SEARS (COLDIG=+

 FDCACC1
 66
 PL
 17
 890
 +
 KIENZLE, LEVRAT, MAGLIC, MARTIN
 (CERN)

 ONSTENS
 66
 PL
 27
 074
 +
 KIENZLE, LEVRAT, MAGLIC, MARTIN
 (CERN)
 +CRUZ+ (OXF+Mu++BIRM+RUTH+GLASG+LON(IC)) +FAYOUX,HAMEL,ZSEMBERY,CHEZE+ (SACLAY+CAEN) +CHEZE,HAMEL,MAREL,TEIGER,CROZON+(CDF+SACL) ALLISON 67 PL 258 619 BANNER 1 67 PL 25 8 300 BANNER 2 67 PL 25 8 569 +0.DAHL, J. KIRZ, D.H.HILLER (LRL) +RIVET,SIAUD,CONFORTO,SHIVELY(COF+DE+CERN) ARBAR-OGALITERI,MATISON,RITTENBERG+ (LRL) +LEACOCK,RHDDE,KOPELMAN,LIBBY+ (DMA+CDLO) ARLDUTAUD+ (SACL+AMST+BOMA+EHDL) CHUNG S 68 PR 165 1491 DEFNIX 68 PL 28 B 353 GAITIERI 68 PRL 20 349 JUHALA 68 PL 27 B 257 SABRE CD 68 PL 26 B 674
 CHUNG, EL SWER, BASSANG, GOLDBERGE
 (BNL-\$YEN]

 J.H.CAMPRELL, LICHTMAN, LOEFLER, +
 (PURDUE)

 KARSHON, KAN HU LAI, +
 (BNL-\$YEN]

 KRUSE, LOCOCK, RHODE, KOPELNAN, LIBY, +
 (AMESKOLD)

 J.H.CARMON, GOLDBASSE
 (ILLINIS)

 D.H.H.LER, S.L.KRANFR, D.D.CARMONY, +{FURDUE}
 (PURDUE)

 YEN, AIMANN, CARMONY, FLSNER, +
 (BONH-CERN)

 S.OTHINOKSKI
 (MARSAM)
 BARNES 69 PRL 23 610 CA MPRFLL 69 PRL 22 1204 CRENNELL 69 PRL 22 1398 JUHALA 69 PRL 23 1398 JUHALA 69 PRL 74 1461 KRUSE 69 PR 177 1951 MILLER 69 PRL 79 82 NELLEN 69 PRL 747E COMM. OTWINOWS 69 PL 29 8 529 ABOLINS 70 PRL 25 469 AMMAR 70 PR D 2 430 DTWINGWS 70 1207/VI/PH ROOS 70 PRIV.COMM. +GRAVEN, MCCARTHY,G.SMITH,L.SMITH+ (LRL+UCD) +KROPAC,DAVIS,DERRICK+ (KANS+NMES+ANL+HISC) S.DTWINOMSKI M.RODS, L.D.JACOBS (CERN+SACL) ANDERSON 71 PRL 26 108 +DIXIT.+ (CHIC+ANL+CARL+LASL+DTTA+NAGOYA) SEE ONE-TENTH THE CROSS SECTION OF COSTEMES 66 ****** 35 H (990, JPG=A -1 I=0 H(990) THE EVIDENCE OF RENNO 66 HAS DISAPPEARED AFTER RE-ANALYSIS (CHAUDHARY 70), NO STATISTICALLY SIGNIFICANT EVIDENCE FOR THE GRE-1988 H-CHNIANCE-MENT THEREFORE RENAINS (BARBARD-GALIIERI 60), HOMEVER, GUDHABER 69 REPORT A NEW [PIPI-DIO] ENHANGEMENT AT ANDUT THE SAME MASS, MEIDOD MEV, SEEN UNDER CONDITIONS DIFFERENT FROM THOSE OF TH EARLIER OBSERVATIONS. OMITTED FROM TABLE. THE REFERENCES ON H MESON

 BARTSCH 64 PL 11 167
 AACHEN-ZEUTHEN-BIR-BONN-HAMB-MUNCHEN COLL

 GRUDHABE 65 CORAL GABLES P.76 G. GOLDHABER
 (IR1)

 BEVSDN 65 PRL 17 1234
 HARAULIT.RCP.SIDKLGIR.VANDER VELDE (MICH.IDV.

 CHUN 67 NP BI 57
 HC CULLOCH.BUGG.CONDO (DAK R.+UNIY.TENN)

 RDSNPE16 78 RP 30 1,APPENDIX ROSENFELD.BARBAGO-GALTIERI(LET.LER.HVALE)
 HC CULLOCH.BUGG.CONDO (DAK R.+UNIY.TENN)

 ARMENTE 68 PL 208 336
 +GHIDINI FORIMOL FARLYADER VELDE (MICH.ITERI, V.FON)
 HC CULLOCH.BUGG.CONDO (DAK R.+UNIY.TENN)

 ARMARD - 64 PLL 20. COMF.P.133 A.ABRARD-GALTIERI, P.SONOB (IRL)
 +GHIDINI FORIMOL FORIMOL FARLYADER VELDE (MICH.ITERI, V.FONOB (IRL)

 CHAUMAR 70 PL 10. COMF.P.137 A.BARARD.COMF.ITERI, V.FONOB (IRL)
 +JACKSINHPURADUMAGUAGIDAL (U.C.RIVERSIRL)

 CHAUMAR 70 PREPRINT
 MCAUDARY V.F.V.FONOB (IRL)
 (HINESOTA)

 GORONN 70 COD 1105 179
 THESIS, ILLINDIS
 (ILL)

 $\pi_{N}(1016)$ 16 PI(1016, JPG=0+-) 1=1 STILL NOT DECIDED WHETHER (K KBAR) RESONANCE, VIRTUAL ROUND STATE OR ANTIBOUND STATE. MAY BE RELATED TO THE DELTA (962) →KŔ 16 PI(1016) MASS (MEV) 8/66 8/66 . 7/67 8 8 7/67 7/67 7/67 AVG

Mesons

For notation, see illustrated key at beginning of data card listings.

4	PHI	PARTIAL	DECAY	MODES	

P1 P2 P3 P4 P5 P6 P7 P7 P10 P11 P12		PHI PHI PHI PHI PHI PHI PHI PHI PHI PHI	INTO INTO INTO INTO INTO INTO INTO INTO	0 K+ 0 K01 1 PI+ 1 PI+ 0 E+ 1 PI0 1 ETA 0 OME 1 ETA 0 RHC	K- PI F- GA GA PI- GA FI GA	2 - PI - (V - MMA GAMM GAMM O (V MMA	0 (1 10LA A (V 10LA (VIO	NCLUD TFS G IOLAT TES C LATES	ES C	RHO PI	,			493 497 139 139 105 105 134 548 139 733 548 765	DECA + 49 + 13 + 13 + 10 + 13 + 13 + 13 + 13 + 13 + 13	Y 4 97 97 97 99 99 99 99 99 99 99 99 99 99	134 0	s	
					4	PHT	ßR	ANCHI	NG	RATIOS									
R1 R1 R1 R1 R1 R1 R1	B	27 252	РНІ (0 (0) (0)	IN TC 1.261 1.48 1.541 1.493 1.493	· · ·	+ K- (0.0 (0.4 (0.4 0.0)/TO 6) 4 2) 44 30	AVER	AGE	BADIER LINDSEY BALAKI BIZOT	6 6 1 7 7	5 HBC 6 HBC 0 DSF 0 DSF	ж ж s sc	(SEE 2 E E+	ND1 •7 F • E- E-	FE 8 (- P - CO -COL FOR	0 8EL 0LL.F .L.85	.0W) EAM EAMS	10/66 10/66 1/71 6/70
×1	FII	ŕ	о рыт	.464		0.0	28	FROM	FIT	(ERRO)	INC	LUDES	sc	ALE	FACT	TOR	OF 1	•2)	
R2 R2 R2	8	25 147		0.231 0.40		0.0	61 4			BADIER LINDSE	6	5 HBC 6 HBC	;	(SEE 2	.7 I	те е К-Р	BBEL	.0W)	10/66
R 2 R 3	E []	r	рыт	0.354	, 1 (P	0.0	40 I- P	FROM	FIT	(ERRO)	R INC		s sc	ALE	FACI	TUR	0F 1	6)	
R 3 R 3		30	10	0.12		0.0	8 421	10 ()		LINDSE	4 7	6 HB0 0 OSF	с РК	E	•7) + E-	К-Р - СС)LL.8	велм	10/66
R3	F [1		• • •	0.192		0.0	46	FROM	FIT	(ERRO	R INC	LUDE	s sc	AL E	FAC	TOR	0F 1	.6)	
R5 R5 R5 R5		10 52	РНI С С	(N11))•40)•48)•44	I (K	0.1	17(K 0 7 7	. КВАН	0	SCHLET BADIER LONDON	N 6 6	3 HB0 5 HB0 6 HB0		2 3 2	.0 1	К-Р (-Р К-Р			10/66
R 5 R 5 R 5	AV(; r	•••).448).433		0.0	44 34	AVER FROM	A G F F T T	(FRRO		LUDES	s sc s sc	AL E AL E	FAC	TOR	OF 1 OF 1	.0)	
R 6 R 6			рні	1N TC 0.30) (P	1+ P 0.1	I- P 5	10 (1	NCL	•RHO P LONDON	007 (6	к кв/ 6 нв	R)	2	•2 1	K-P			10/66
R6 R6	ΕI.	r	•••	222	•••	ò.o	68	FROM	FIT	(ERRO)	R INC	LUDES	s sc	AL E	FAC	TOR	0F 1	.6)	
P7 R7 R7 R7			РН1 (с с	INT().3)).69	0 (P 0	[+ P R LF 0.1	I - P SS 4	10 11	INCL	BERLEY BIZOTI	6	KI K2 5 HBC 0 0 \$	2) Эк	2 E +	.9 F E-	01+F COL	, 86	AM	10/66
P 7	F1	r	c).~i		ö.i	8	FROM	FIT	(ERRO	R INC	LUDES	s sc	ALE	FAC	TOR	OF	7)	
8 H 8			рн <u>і</u> (().2)	5	9 L E	55	1	34 5 1	LONDON	: AL 3 6	6 HB		2	.2 1	K-P			10/66
R 9 R 9		40	рнт <i>(</i>	1NT/ 5-1) (8	+ E- 1.7)/(K	(+ K-))	BECKER	10**	-41 8 CN	I SEE FR	AL S	O R	16) GAMM	4A C		9/68
R10 R10 R10 R10 R10 R10 R10			PHI (55) (1) 22	INT(3.) 7.4) 3.5 2.34 2.17	OR OR	U+ N LES 3.5 1.0	U-1/ S 1 0	1.1	- (L 3	GALTIF GALTIF CHASE WFHMAN MOY EARLES)**-4 ?[6) 5 HB(7 CN 8 OSI 9 CN 9 CN	C FR FR FR FR	2.7 D 12 P 6	К- Ната К- Ната • 0 1	P C DPR(BRF*	10. 10. 155 TF	۹.	10/66 6/68 6/68 11/70 11/70
P10	414	5	2	2.26		0.5	1	AVER	A GE	(ERRO	R INC	LUDE	s sc	ALE	FAC	TOR	0F 1	.0)	
R11 R11 R11			10	0.21		R LE R LF (0.0	SS SS 075)	.,,,,,,,		BADIER LINDSE BENAKS	r 6 As 7	5 HB0 6 HB0 10 US	ĸ	3	.0 I .7 I	К-Р К-Р + Е-	-		10/66 10/66 1/71
R 1 2 R 1 2			((PH1	0.05 INTO) (P	R LF J+ P	55 1- G	-	/ (K	LINDSE KBAP)	r e	5 HBI	:	2	• 7 •	к-Р			10/68
R13 R13			PHI	INT() (E	TA N R LE	EUTR SS	ALS1,	(K	KBAR) LINDSE	<i>,</i> ,	6 нво	:	2	.7)	K-P			10/66
R 1 4 R 1 4			PHT ((1NT0) (()	MEGA R LE	GAM SS	IMA) /	· TC	LINDSE	r 6	е нв	:	2	.7)	K-P			10766
R 1 5 R 1 5			PHI (C	1NT() (R	НО G К L E	<u>амма</u> 5	0.21	101	LINDSE	<i>r</i> 6	к нв	5	2	.7)	K-P			10/66
R155 R155 R155 R155 R155 R155 R155 R155	A B B B	5 E 27 9	PHI (6 RROR (3 (2 (2 3 3	(NTC 5.6) 0F 7.2 5.1 3.4) 3.41 3.45 3.50) (F ASTV (IN	+ E- (4.4 3.9 2.4 (0.4 69 S (0.2 0.2)/TO UROV UPER 5) 7	AVEF	B) DDES D BY	(UNITS ASTVAG NOT I BOLLIN BOLLIN BALAKII BALAKII BIZOT (ERROI	10** ATU 6 NCLUF 6 1 6 1 6 1 7 1 7 1 7 7 8 1 N 0		ISFE SK GMA(PK PK PK SSC	ALS 4 PHT) 1. E+ E+ ALE	0 R PI- UNI 6 P 9 P E- + E- FAC	9) CFR1 I - F COU COU COU	DLL.B	FAMS BEAM EAMS L.O)	6/68 6/68 9/68 9/68 9/69
R17 R17 R17			РНТ (IN TO) (P 3510 2410	IO G R LE R IF	АМЧА SS-С)/(T(DT AL) BENPOR	AD 6	9 CN	TR PK	5	•5 F	GA MI + F-	4A N		7/69
R 18 R 18 R 19			PHT	INTO 0.051) (P OR	I+ P LES	1-)/ S S.C.	(TOT/	L)	(SEE LINDSE BALAKI	ALSC 12 6 N 7	0 R8) 5 HB0 10 GS1	с РК	1.	7-2 + E	- cc	(-P)LL.	5.	

FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS

The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P₄, as follows: The <u>diagonal</u> elements are P₄ ± 5P₄, where $\delta P_1 = \sqrt{\langle \delta P_1 \delta P_2 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta P_1 \delta P_2 \rangle / \langle \delta P_1 \delta P_2 \rangle$. For the definitions of the individual P₄, see the listings above; only those P₄ appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

P 1 P 2 P 3 P 1 .464+-.028 P 2 -.154 .354+-.040 P 3 -.565 -.729 .182+-.054

			REFERENCES FOR PHI	
RERT AN ZA	6Z	PRL 9 180	BERTANZA, BRISSON, CONNOLLY, HART + (BN	L+SYR)
ARMENTER	63	SIENA CONF 2 70	ARMENTEROS, EDWARDS, ASTIER+ (CERN+CDF-	PARISI
GELFAND	63	PRL 11 438	GELFAND, MILLER, NUSSBAUM, KIRSCH+ (COLU	+RUTG }
GELEAP	10 0	53 DATA INCLUDED IN	I MILLER 65 BELOW	
SCHLEIN	63	PRL 10 368	SCHLEIN, SLATER, SMITH, STORK, TICHO	(UCLA)
BADIER	65	PL 17 337	BADIER + DEMUULIN+ BARLOUTAUD+ LOAR+LPCH	F+ZFE)
BERLEY	65	PP 139 B 1097	D BERLEY N GELEAND (BNL+COL)	JMB+A)
GALTIERI	65	PRI 14 279	A BARBARD GALTIERIAR D TRIPP	(LRL)
LINDSEY	65	PRI 15 221	LAMES S. LINDSEY, GERALD & SMITH	(1.81.)
LINDS	:v ,	5 DATA INCLUDED IN	LINDSEY 66 BELOW	
LINDSEV2	65	UCRI 16526	IAMES S. LINDSEY (THESIS)	(1.81.)
MILLER D	65	CU-237(NEVIS 131)	DAVID C MILLER (THESIS) (COL	198141
MILLER O	0.2	C0-23/(42/13/151/	WAVID C MEECEN THESISY TODE	
GRAY, L	66	PRL 17 501	+HAGER TY, BIZZARR I, CLAPETTI + (SYR	+ROME1JPG
LINDSEY	66	PR 147 913	JAMES S LINDSEY, GERALD A SMITH	(LRL)
L INDSEY1	66	PI 20 93	J.S.LINDSEY, G.A.SMITH	(ERL)
I INDS	FY	66 DATA INCLUDED	IN LINDSEY 66 ABOVE	
	66	PR 143 1034	LONDON . RAU. SAMIDS. GOLDBERG + (BNL+SYR.	ACUSET
	00	14 143 105-	en total inter station to concertain a state state	
ABRAMS	67	MD TECH REP 720	GERALD ABRAMS + THESIS (MAR	YLAND)
BARLOW	67	NC 504 701	+LILLESTOL+MONTANET+(CERN+CDE+IR+LIVE)	RPDOL)
CHASE	67	PRI 18 710	R.C.CHASE.P.ROTHWELL.R.WEINSTEIN(CEA+	NEAST
DAHL	67	P9 163 1377	+HARDY+HESS+K187+M111E8	(1.81.)
HERTTRAC	67	PR 155 1461	HERTZBACH-KRAEMER-MADANSKI, ZDANIS+/ HU	I+BML)
KHACHATU	67	01 748 349	KHACHATURYAN+A7 IMOV+BALDIN+BELOUSOV+I	DUBNAI
Rinkonaro		12 240 340		
ABRAMS	68	PR 175 1697	+GLASSER •KEHOE • SECHI-ZORN•WOLSKY (MAR)	YLAND)
ASTVACAT	68	P1 27 8 45	ASTVACATUROV. AZTMOV. BALDIN+ LIINR+M	ISCOW)
41.50	67	PRI 19 869	ASBURY.BECKER.BERTRAM.TING+ (DESY+COL)	UMBIA)
BECKER	6.8	PRI 21 1504	+RERTRAM-BINKLEY, IORDAN-KNASEL+ (DES	Y+MIT)
BINNIE	6.8	PI 278 106	+DUANE + FARUO I + HORS FY + (1.C. ON + RU	THEREY
BOLLINT	6.8	NC 56 A 1171	+BILHLER, DALPTAZ, MASSAM+ (CERN+BONA	+STRR)
MOSTER	4.0	BBI 20 1057	LETSENHANDLED MCCLELLAN MISTRYA (CO	DNELLA
U E LI MANNI	4.0	001 20 749	JENCELSA UNDERKINGGELEENNE HISTORIE LAN	COLLA
HCH. MIN	0.0	FRE 20 140	TENGEEST THAN TANDICASETSEACTOSKACECT	corce /
BALAK IN	69	LYAF 327 TRANS	+BUDKER,KORSHUNGV,MISHNEV,SIDOROV+	(NOVO)
SEE AL	_S'0	SIDOROV 69		
BEMPORAD	69	PI 29 8 383	+BRACCINI+CASTALDI+LUBELSMEYER++(PISA	+ 80NN)
MOY	69	THESIS	KEN MIN MOY (NORTH-EASTERN UNIVER	I YT I 2 S
SCOTTER	64	NC 62 A 1057	+FRSKINE-PALER++ (RTRM+GLAS+LOTC+MPT	4+0XE1
STRONGOV	40	LIVEROOOL SYMP ON	ELECTRONS BUOTONS 9 227. STODBOV	NOVOI
3100804	0 7	CIVERFORE STOP	electrons+Filotons+Filezett storkot	
BALAKIN	70	PREPRINT	+BUTLER, PAKHTUSOVA, SIDOROV, SKRINSKY, +	(NOVO)
BENAKSAS	70	LAL 1240	+COSME, JEAN-MARIE, JULLIAN, LAPLANCHE+	(ORSA)
BIZOT	70	PL 32 416	+BUON, CHATELUS, JEANJEAN, LALANNE, +	ORSA
SEE AL	sõ	PERFZ-Y-JORBA, LIV	ERPOOL SYMP. 69	
BIZOTI	70	PRIV.COMM.	PEREZ-Y-JORBA	(ORSA)
EARLES	70	PRL 25 1312	+FAISSLER.GETTNER.LUTZ.MOY.TANG.+	(NEAS)
HYANS	70	PRIV. COMM.	+KOCH-POTTER-V-LINDERN-LORENZ-LUTJENS	(CERN)
SABRE	70	PREPRINT	SABRE COLLABOR. (SACL+AMST+BONA+REHD	+ EP (1)
3 E	. 0		the second the second the second	

NOTE ON I^G = 0⁺ PEAKS WITH M = 1000 - 1120 MeV [$S^* \rightarrow K\bar{K}, \eta_N(1080) \rightarrow \pi\pi$].

Evidence for $I^{G} = 0^{+}$ peaks in this region comes from two distinct final states: $K\bar{K}$ and $\pi^{+}\pi^{-}$. As the $K\bar{K}$ peaks undoubtedly have $J^{P} = 0^{+}$, whereas the $\pi^{+}\pi^{-}$ peaks in some cases favor $J^{P} = 2^{+}$, it is not clear whether there are one or more objects in this region. For the time being we continue to treat the $K\overline{K}\; \text{and}\; \pi\pi$ peaks as two distinct objects, named $\eta_{0+}(1070)$ or S^* , and $\eta_N(1080)$, respectively.

Final understanding of these resonances, which can decay into both $K\overline{K}$ and $\pi\pi$, requires coupled-channel analyses. For a summary of the S-wave $\pi\pi$ partial wave amplitude in this region, see the earlier mini-review on the η_0^+ (700-1000) or ϵ , meson.

The disagreement between some of the observed widths of the $K\overline{K}$ peaks is related to an ambiguity in interpretation either as a resonance (above threshold) or as a scattering length effect in the $K\overline{K}$ channel. Computation of the average values of mass and width of the S^{*} would be useless because of the large discrepancies. In the meson table we give the values estimated in the review of BEUSCH 70.

The $\eta_N(1080)$ is seen in $\pi^- p \rightarrow \pi^+ \pi^- n$ predominantly at backward decay angles, $\cos\theta \leq -0.75$. OH 70 state that this "bump is almost certainly the result of p-d interference".

Note that the selection made in some HBC experiments to reduce the background under the $\eta_N(1080)$ in the reaction $\pi^-p \rightarrow \pi^+\pi^-n$ may lead to a sample of events ambiguous with $\pi^-p \rightarrow p\pi^-\pi^0\pi^0$. This is because selecting on small momentum transfer to the $\pi^+\pi^-$ -system, together with large $\pi_{in}^-\pi_{out}^-$ scattering angle, leads to rather high lab momenta of the π^+ , so that ionization cannot be used to discriminate between the two hypotheses (BATON 70, footnote p. 525, and private communications from G. Laurens).

η	or (1	1070) S [*]	3 ETA (107) Named S* B'	JPG=0++)I=0 CRENNELL 66. SEE NOTE AROVE.	
			3 ETA (107)	 MASS (MEV)	
*********************	3 12 73 5 H H H H H B B B B	(1000.0) (1000.0) (1000.0) (1002.0) (1025.0) 0 1068.0 0 5CATT.L 0 1074.0 1046.0 (1070.1 (1040.1 (1070.1) (1040.1 (1070.1) (1030.1) SCATTER +-(1.2 (1033.1) SCATTER +-(1.3 LENGTH RELATIVE	APPROX APPROX. APPROX. 10.0	RINGHAM 62 HLRC 6 RIGI 62 HBC 1 EKVINY 62 HBC 1 EKVINY 64 HLRC 2 BARMIN 64 HLRC 2 CRENNELL 66 HBC 1 TTER. HESS 66 HBC J.D. BELSCH 70 SPK S.O. BEUSCH 67 0SPK J.D. HGANG 69 0SPK J.D. HGANG 69 0SPK J.D. HGANG 69 0SPK J.D. HGANG 69 0SPK J.SIGNIFICANT IM PART FEORA J.SIGNIFICANT IM PART FEORA J.BEUSCH 70 0SPK J.BEUSCH	-18 PI-N 0.0 PI-P 10/66 17 PBAR P A PI-P 6/66 6-0 PI-P 6/66 6-0 PI-P 6/66 1-0 FI-P 0/67 1-2 PI-P 9/67 1-5-5.0 K-N 7/69 7/12 PI-P 9/67 1-5-5.0 K-N 5/70 0-KS KS N 5/
***	(1) (2) (3)	FIT ASSI FIT ASSI FIT ASSI	UMING BRANCH JMING BRANCH UMING BRANCH	NG RATIO (2 PI)/(K KBAR) OF (NG RATID (2 PI)/(K KBAR) OF 1 NG RATIO (2 PI)/(K KBAR) OF 2	• 5/70 • 5/70 • 5/70
м	AV G	1061.7	10.7	AVERAGE (ERROR INCLUDES SCALE	FACTOR OF 2.9)
			3 ETA (107	WIDTH (MEV)	
	86	0 80.0 169.0 EUSCH 67 A	15.0 21.0 SSUME NO S W	CRENNELL 66 HBC 6 19.0 BEUSCH 67 DSPK 5 VE SCATTERING LENGTH. WITH S DIED ABOVE	••0 PI-P 6/66 7.12 PI-P 9/67 AVE THE WIDTH
	н н н в в в	54 45.0 40.0 (200.) (160.) (150.) SCATTE (361.) (208.) SCATT.	35.0 20.0 (SEE NOTE (SEE NOTE (SEE NOTE RING LENGTH (SEE NOTE (SEE NOTE LENGTH WITH	10 ALITTI 48 HBC 000 11 HOANG 69 MSK 4 PI- 21 HOANG 69 MSK 4 PI- 21 HOANG 69 MSK 4 PI- 21 HOANG 69 MSK 4 PI- 13 EQUALLY WELL SEE UNDER MI 11 REUSCH 70 MSK 4,6 21 REUSCH 70 MSK 4,6 EFFCTIVE RANGE ALSO FITS SE	I.6-5.0 K- N 7/69 I.7.1.2 PBAR P 7/69 P.KS KS N 5/70 P.KS KS N 5/70 P.KS KS N 5/70 S.S ABOVE. 5/70 I-P 5/70 E UNDER MASS. 5/70
	(1) (2)	FIT ASS	UMING BRANCH UMING BRANCH	NG RATIO (2 PI)/(K KBAR) OF NG RATIO (2 PI)/(K KBAR) OF NG RATIO (2 PI)/(K KBAR) OF). 5/70 L. 5/70 2. 5/70
2.3	AVG	85.8	27.4	AVERAGE (ERROR INCLUDES SCALE	FACTUR OF 2.9)
			3 FTA (10) PARTIAL DECAY MODES	· · · · · · · · · · · · · · · · · · ·
P1 P2		ETA (10 FTA (10	701 INTO KKE 701 INTO PIE	R 49 13	DECAY MASSES 3+ 497 7+ 134
			3 ETA (10	BRANCHING RATIDS	
R I R I R I	L L	ETA (10 (2.5) 1.0	070) INTO (P OR LESS 0.6	PI)/(K KBAR) CRENNELL 66 HBC 9 0.3 LAT 68 HBC 6	PCT CONFLEV 7/60 PI-P 11/60
**	***** *	*******	******* **	***** ******** ************************	***** ******
81 81 EF	NG IGI INGHAM RWIN	61 JETP 1 62 CERN 0 62 CERN 0 62 PRL 9	3 323 ONF 247 ONF 240 34	IANG TSU-TSENG,VEKSLER,VRANA,+ BIGI,S BRANDT, R CARRARA + I H BINGHAM,H BLOCH + IPARIS+ RWIN,HOYER,MARCH,WALKER,WANGL	(JINR) (CERN) EC POLY+CERN) ER (WIS+BNL)
8/ 8/	AL TAY ARMIN	64 DUBNA 64 DUBNA	CONF 1 409 CONF 1 433	ALTAY,LACH,CRENNELL,OREN,STUM ARMIN,DOLGOLENKO,YEROFEEV,KRE	P +(YALE+BNL) STNI+ (ITEP)
C P	RENNELL	66 PRL 10 66 PRL 11	5 1025 7 1109	RENNELL,KALBFLEISCH,LAI,SCARR DAHL+HARDY+KIRZ+MILLER	SCHU+ (BNL) (LRL)
B I B I	ARLOW EUSCH AHL	67 NC 50/ 67 PL 25 67 PR 16	A 701 B 357 B 1377	LILLESTOL+MONTANET+(CERN+COF+ FISCHER,GOBBI,ASTBURY,MICHELI HARDY+HESS+KIRZ+MILLER	IR+LIVERPOOL) NI+(ETH+CERN) (LRL)

Mesons

ALITTI	68 PRL 21 1705	+BARNES, CRENNELL, FLAMINIO, GOLDBERG, + (BNL)
141	68 PHILAD.CONF.P.30	KWAN WU LAT (BNL)
PHET AN	68 THESIS	JAMES J. PHELAN (ANL+ST.LOUIS UNIV)
AL SO	68 PRL 21 316	HOANG, EARTLY, PHELAN, ROBERTS+(ANL+CHIC+NDAM)
AGUILAR-	69 PL 29 B 241	M.AGUILAR-BENITEZ, J. BARLOW, + (CERN+CDF)
AL SO	BARLOW 67	
AL SO	69 NP B 14 195	M.AGUILAR-BENITEZ, J. BARLOW, + (CERN+CDF)
HDANG	69 NC 61 A 325	T.F.HDANG (ANL)
HOANG	69 PR 184 1363	+EARTLY, PHELAN, ROBERTS, + (ANL+ILL(CH)+NDAM)
BADIER	70 NP B 22 512	+BONNET, DREVILLON, BAUBILLIER, + (EPOL+IPNP)
BATON	70 PL 33 B 528	+LAURENS +REIGNIER (SACLAY)
BEUSCH	70 PHILA.CONF.P.185	W.BEUSCH (ETH+CFRN)
HYAMS	70 PHILA.CONF.P.41	+KOCH, BEUSCH, + (CERN+MUNT+ETH+LOIC+HAWA)
он	70 PR D 1 2494	+GARFINKEL, MORSE, WALKER, PRENTICE (WISC+TNTD)
****** *	*****	******* ********* ******** *******
****** *	*******	******* ******** ******* ******

A1(1070) 10 A1 MESON (1070, JPG=1+-) I=1

The Threshold Enhancements A1, A3, Q, and L

We present here <u>first</u> some general remarks about these four related peaks; <u>second</u>, some remarks specifically about A1.

The four peaks under study generally arise from a reaction of the form

$$M + T \rightarrow M^{*} + \pi + T \qquad (1)$$
$$|_{\rightarrow M + \pi},$$

where T is the target (proton or deuteron), M the beam particle, and M^* a resonance in the $M\pi$ system. The relevant quantities for each of the enhancements are given below:

M	M*(J ^P)	M [™] π enhancements mass in (MeV)	Mass threshold M [*] and π (MeV)
π	ρ(1)	A1 (~ 1070)	920
π	$f^{0}(2^{+})$	π _A (~ 1640) or A3	1400
K	K [*] 000 (1 ⁻)	K _A (~ 1300) or Q	1030
к	к ^{*°30} (2 ⁺)	K _A (~ 1770) or L	1560

These enhancements share the following features:

1) Large widths (150 to 400 MeV), with little structure except for compilations discussed in the note on the Q peak.

2) Mass about 200 MeV above $M^{*}\pi$ threshold.

3) They are produced strongly only in diffractive processes [reaction(1)]; exceptions are discussed in point 7 below.

4) Each enhancement has one predominant decay mode, described in reaction (1), although the Q, which is just above K ρ threshold, can hardly avoid showing some K ρ signal.

5) As would be required of a resonance, the enhancement seems to appear in a single partial wave. In fact for all four peaks, preliminary analyses favor a relative s-wave for the $M^{*}\pi$ system.

6) Some of these enhancements [reaction(1)] have

been "reasonably" well described by the Reggeized Deck model, which does not invoke resonance production in the $M^{\#}\pi$ system. However, the duality hypothesis makes the meaning of these fits unclear.

7) There have been some reports of these enhancements produced in "nondiffractive" processes [i.e., other than reaction (1)] (e.g., Q in $\pi p \rightarrow \Lambda K^{*} \pi$, A1 in $Kp \rightarrow Kp \rho\pi$, etc.) Sometimes this is taken as evidence supporting the resonance interpretation, since the production mechanisms are different. However, there are multi-Regge models that can produce lowmass enhancements just as the double-Regge models do. Hence the warnings of (6) apply. This warning was voiced by BERLINGHIERI 69 (footnote 5) as a warning against their own A1 peak produced "nondiffractively" by K⁺ mesons. See also discussion of CASO 70 below.

8) There has been a considerable amount of confusion related to these enhancements. Usually the mass distributions from different experiments are guite similar except that the mass distribution from one experiment may be a smooth broad peak, while others may have one or more peak(s) on top of it. In the former case it is natural to attribute the whole enhancement to one effect, resulting in broad width and mainly one decay mode. In the latter case one tends to perform a background subtraction and various cuts to remove the broad enhancement, leaving narrow resonances with several decay modes. The width, cross section, and branching ratio are therefore very sensitive to the assumed background since it is high and rapidly varying. This probably explains why two groups sometimes state very different conclusions while their data are actually very similar.

* * *

We have already mentioned in the text (Sec. III) and under point 6 above that for these four peaks it is not yet possible to distinguish between two different interpretations (threshold enhancement vs resonance) which are linked by the notion of duality. Our procedure is to enter all four on the Meson Table, with a warning about the interpretation.

Note on Nondiffractive A1 Production

Very many authors have shown that A1 production according to reaction (1) above ($\pi p \rightarrow p$ A1) can be described by a Reggeized Deck model. (Two recent papers are BRANDENBURG 70 and CHIEN-1 70.) Hence it is particularly interesting to see if A1 is also produced in other reactions that are free from this complication. • ANDERSON 69 reported A1 production in $\pi^- p \rightarrow p A1^-$ in the backward direction. The A1 so produced has much steeper u dependence than exhibited by the other well-known resonances also produced in the same experiment, and this steep $d\sigma/du$ has no simple theoretical explanation. Hence we still accept this result with some reservation.

• DANYSZ 67 and FRIDMAN 68 reported A1 in $\overline{pp} \rightarrow 3\pi^+ 3\pi^- \pi^0$. However, the evidence is not overwhelming because of low statistics and high background. The further facts that A1 is neither observed in simpler final states (e.g., $\overline{pp} \rightarrow 2\pi^+ 2\pi^- \pi^0$) in the same experiments, nor observed in other \overline{pp} experiments, make the case for A1 production in \overline{pp} reactions quite dubious.

• ALLABY 69 measured the deuteron momentum spectra from the reaction $pp \rightarrow d + MM$ at 21.1 GeV/c. Broad peaks were observed with MM at 1100 and 1300 MeV. However, in these measurements the MM system was not observed, hence it is not clear if these peaks were indeed produced in a $\rho\pi$ system. Also SHIH 70 has shown that a double-Regge-pole model produces a broad A1-like enhancement in reactions in which baryon exchange dominates and a $\rho\pi$ system exists in the final state.

• CASO 70 study the following final states in $\pi^- p$ reactions at 11.2 GeV/c:

(1)	π ⁻ p → pπ ⁻ (kπ ⁰),	k ≥2,
(2)	pπ ⁺ π ⁻ π ⁻ ,	
(3)	pπ ⁺ π ⁻ π ⁻ π ⁰ ,	
(4)	pπ ⁺ π ⁻ π ⁻ (kπ ⁰),	k≥2,
(5)	μ π ⁺ π ⁺ π ⁻ π ⁻ ,	
(6)	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	
(7)	$n\pi^{+}\pi^{+}\pi^{-}\pi^{-}(k\pi^{0}).$	k ≥1.

Reactions (2) and much of (1) are of course the classical Deck examples which we are trying to avoid in this note. But the remaining reactions each do show an A1 peak, and when they are all added, the peak shows up quite well. However, we must restate here more precisely our reservation given in point 7 above. Figure 1(a) shows a double-Regge-pole diagram that contributes to reaction 2. The matrix element is called M2, and we know that it more-or-less explains the A1 peak. Figure 1(b) shows how the DRP diagram must be modified to explain reaction (6) which involves two more pions. One can simply add one more link to the chain, and put a $\boldsymbol{\rho}$ at the new vertex. The triple-Regge-pole matrix element M3 can then be written $M_3 = M_2 M_1$, where M_2 already contains the A1 peak, and \overline{M}_1 just involves another propagator. We do not see why the extra factor ${\rm M}_4$ should destroy
Mesons

For notation, see illustrated key at beginning of data card listings.

the A1 peak. Then how can we say that reaction 6 is new evidence for a resonant interpretation of the A1 peak?

Another way to draw this reaction 6 is sketched in Fig. 1(c). M¹ might have much the same shape as M2.

One can look for new evidence where there is charge-exchange at the lower vertex, so that Pomeron exchange is forbidden. $M_2(n)$ should then simulate the A1 peak less well than $M_2(p)$. Unfortunately their charge-exchange reaction (7) does not show a very good A1 signal. We conclude that it is hard to find an independent "nondiffractive" example of A1 production.

In summary, reports on A1 production in "nondiffractive'' reactions (i.e., other than $\pi^{\pm}p \rightarrow \rho^{0}\pi^{\pm}p$) become increasingly abundant. (For details, see GARELICK 70.) But the most striking example is still that of ANDERSON 69, and even here we have stated some reservations. CASO 70 also looks quite convincing. In general, contrary to the overwhelming evidence of A1 production in $\pi^{\pm}p \rightarrow \rho^{0}\pi^{\pm}p$ reactions reported in every π^{\pm} experiment, A1 production in "nondiffractive" reactions has been reported in very few experiments with much lower statistics. More experiments and re-examination of the "nonreporting" experiments are needed; e.g., it is important to examine other high-energy mp experiments for reactions 1 to 7 to compare with CASO 70.

Fig. 1. Regge pole diagrams for A1 production.

	10 A1 MESON MA	SS (MEV)			
м	MASS AND WIDTH MIGHT HAVE LA	RGE SYSTEMA	110		
м	ERRORS DUE TO COMPLICATED BE	HAVIOR OF B	ACK GROUN	10.	
м	PRODUCED BY PIONS, RESONANCE INT	ERP. CONFUS	ED 8Y 08	CK EFFECT	
м					
м	PRODUCED BY PI +				
м	(1090.0)	ADERHOL Z	64 HBC	4.0 P[+P	
м	(1080.) APPROX.	BOESEBECK	68 HBC	+ 8 PT+ P	6768
м	(1040.0)	ARMENISE	70 HBC	0 9 PI+ N A1 P	1771*
м					
м	PRODUCED BY PI -				
м	(1060.)	ASCOLI	68 HBC	-0 5 PI-P	6768
м	1089.0 12.0	BALLAM	68 HBC	- 16.0 PI- P	9768
м	(1090.) APPROX.	CHUNG	68 HBC	- 3.2,4.2 PI-P	2/6/
м	1055.0 5.0	JUNKMANN	68 HBC	- 16. PI- P. 5PI	4/64
м	\$ (1119.) (30.)	KEY	68 480	- 3 PI-P	3168
м	S SHOULDER ON A2 ONLY				6170
м	1069.0 7.0	CASO	70 HBC	- 11.201-0	5/70
м	(1120.0)	CRENNELL	70 HHC	- 6. PI- P,F PI	5710
м			C C C C C T		
м	PRODUCED BY PIONS, BACKWARDS SCAT	I. NO DECK	CFFEUT.	- 14 01- 0 040000	9/69
M	1115.0 20.0	ANDERSON	04 103	- 10 FI- F, DACKNY	070.7
M		e.		•	
	PRODUCED BY PBARS, SEE TIPED NOT	048957	67 HBC	+- 3.3.6 PBAR P	7/67
M	(1054.) (7.)	EDIDMAN	49 480	Am 5.7 PHAR P	6/68
M	(1042.) (21.)	FRIDEOM	00 100		
	ADDOUCED BY K- SEE TYPED NOTE.				
		ALLESON	67 HBC	. + 6 K-P+LAM +5 PT	1/68
	1117 30.	ALLISON	67 HBC	+ 6 K-P+LAM +4 PL	1/68
	1060 15.	UIHAL A	67 HBC	0 4.6-5 K-P.5800Y	1/68
	1000. 15.				
2	PRODUCED BY K+. SEE TYPED NUTE.				
M	K+ (1060.0) (20.0)	ALEXANDER	69 HBC	+ 9 K+P	9/69
M	K+ (1030-0) (20-0)	8ERL INGHI	69 HBC	+ 0 12.7 K+ P	9/69
M	K+ FOR CONTRADICTORY EVIDENCE SF	E RABIN 70	AND TYPE	ED NOTE.	
M					
M					
м	AVG 1073-1 9-2 AVERA	GE (ERROR I	NCLUDES	SCALE FACTOR OF 2.5)	

SEE NOTE UNDER AL MESON MASS.

PRODUCED BY PIONS, RESONANCE INTERP. CONFUSED BY DECK EFFECT

PI +								
. 0)			ADERHOLZ	64	нвс		4.0 PI+P	
.) /	APPROX.		BOESEBECK	68	HBC	+	8 PI+ P	6768
•0) (DR LESS	·	ARMENISE	70	нвс	0	9 PI+ N A1 P	1/719
PI -								
.0	31.0		BALLAM	68	нвс	- 1	16.0 Pt- P	9768
.) /	APPROX.		CHUNG	68	HBC	-	3.2.4.2 PI-P	2/67
.0	17.0		JUNK MANN	68	HBC	-	16. PI- P. 5PI	9769
	(46.)		KEY	68	HBC	- 3	3.0 PI- P	11/67
LDER (DN 42 ONLI	,						
.0	15.0		CASO	70	HRC	- 1	11.2PI-P	5/70
PTON	S. BACKWAR	S SCATT.	NO DECK	EFF	сτ.			
0	45.0	20.0	ANDERSON	69	MMS	~	16 PI- P.BACKW9	8/69
PRAR	S. SEE TYP	PED NOTE						•
	(19.)		DANYSZ	57	HBC	+	3,3.6 PBAR P	7/67
.,	APPROX .		FRIDMAN	68	нвс	+-	5.7 PBAR P	6/68
к	SEE TYPED	NOTE.						
	50.		ALLI SON	67	нвс	+	6 K-P.LAM +4 PI	1/68
	25.		ALLISON	67	HBC	+	6 K-P,LAM +5 P[1/68
	15.		JUHALA	67	HBC	0	4.6-5 K-P.580DY	1768
к+.	SEE TYPED	NOTE.						
. 0)	(20.0)		ALEXANDER	69	HBC	+	9 K + P	9/69
. 0)	(30.0)		RERLINGHI	- 59	нвс		12.7 K+ P	8/69
	FORM FULL	ENCE SEE	RABIN 70	AND	TYPE	D NO	те.	
RADIC	IUKY EVIU							
	PI + -0) -0) -0) -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	 A.) APPROX. 	 APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. ASSOCIATION ACCOUNTY ASSOCIATION APPROX. APPROX. APPROX. APPROX. SOL SOL SOL SOL SOL SOL APPROX. APPROX.	ADF PROX. ADF PROX. ADF PROX. 1) APPROX. ADT SEAFCX 10) OR LESS ARMENISE 10) OR LESS ARMENISE 10) OR LESS ARMENISE 10) OR LLAM CHUNG 10) TALLAM CHUNG 10) TALLAM CHUNG 10) TALLAM CHUNG 100) TALLAM CHUNG 100) TALO CALU 100) TALO CALU 100) TALO ANDERSON 110) TANY SZ ANDERSON 1110) TANY SZ ANDERSON 11110) TANY SZ ALLISON 11110) TALLISON ALLISON 11110) TALLANDER JUHALA 11110) TALLANDER JUHALA	ADDE ADDENTIZ ADDENTIZ ADDENTIZ ADDESTACK ADDEST	ADTRINUZ 64 HBC 1) APPROX. ADTRINUZ 64 HBC 10) DR LESS ADTRINUZ 64 HBC 10) DR LESS ARMENISE 70 HBC 10) DR LESS ALLAM 10) DR LESS ALLAM 10) DR LESS CHUNG 68 HBC 1100 CAS 0010 CASU 70 HBC 1100 CAS 0010 CASU 70 HBC 100 CAS 0010 CASU 70 HBC 101 CAS 0010 CASU 70 HBC 1110 CASU 700 NOTE. S7 HBC 1111 CASU 700 NOTE. S7 HBC	ADT ADTRINUZ 64 HBC 1) APPROX. BDTSSRECK AB HBC 0 10) DR LESS ARMENISE 70 HBC 0 10) DR LESS CHUNG 68 HBC - 10) TOTONS CHUNG 68 HBC - 100 TSOURCA CHUNG 68 HBC - 100 TSOURCA CASO 70 HBC - 100 TSOURCARDS CASO 70 HBC - 100 TSOURCARDS SCATT. NO DECK EFFECT. - - 101 TON SEC THRC + - - 1101 DANYSZ THRC + - 1101 D	M_{1}^{++} ADFRINIZ 64 HAC 4.0 0.1+P 1) APROX. BOFSERECK AS HAC + 0 9 PI+P 20) OR LESS ARMENISE 70 HBC 0 9 PI+N - Al P 20) OR LESS ARMENISE 70 HBC - 0.9 PI+N - Al P 20 OR LESS ARMENISE 70 HBC - 0.9 PI+N - Al P 20 OR CASO 70 HBC - S.2.4.2.2 PI-P 1.0 CASO 70 HBC - S.0 PI-P PSIC 1.00 USMMAIN & SHBC - S.0 PI-P PSIC SC 3.0 PI-P PSIC 1.01 ONC CASO 70 HBC - 1.0 PI-P SC 1.00 SCATT. NO DECK EFFECT. SC ASC SC PAR P

10.1 - AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) (SEE IDEOGRAM BELOW) AVG 96.6

S74 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

Mesons

For notation, see illustrated key at beginning of data card listings.

For notation, see illustrated key at beginning of data card listings.

5 F WIDTH (MEV) REFERENCES FOR F
 5
 F
 WIDTH (MEV)

 100.0
 25.0
 SELDVE
 62 HBC
 3.0 PI-P

 (200.0)
 0R LFS
 YFILLET
 63 FAC
 6.1 PI-P

 102.0
 0 ACCENSI
 66 HBC
 5.7 PBAR P
 6/66

 102.0
 10.0
 JACORS
 66 HBC
 5.7 PBAR P
 6/66

 103.1
 WAHLIG
 66 HBC
 2.3 PI-P, TCUT20 10/67
 10/66

 103.1
 WAHLIG
 66 OSPK
 10.0 PI-P
 11/66

 113.1
 APTENTISE 64 HBC
 R.5 PI+P
 9/67

 124.1
 13.
 APTENTISE 64 HBC
 8.5 PI+P
 9/67

 174.
 13.
 APTENTISE 64 HBC
 8.5 PI+P
 9/67

 174.0
 13.0
 JOHNSON 64 HBC
 8.7 PIAP
 9/67

 J
 176.0
 13.0
 JOHNSON 64 HBC
 8.7 PIAP
 7/67

 J
 JOHNSON 64 HBC
 BARP AT REST
 6/68
 12.7 PIPIPIPIN
 6/68

 113.3
 30.0
 LAMSA 68 HBC
 B PI-P
 17/67
 6/61

 <t SELUYE,HAGOPIAN,BRODY,BAKER,LEBOY (PENNA) BONDAR+ IAACHEN+BIRH+BONN+DESY+IC-LUND-MPI] Z.G.T. GUTAGINSIAN (LRL) V HAGDIAN,W SELUYE V EILLET,HENNESSY,BINGHAM,HLOCH+ (PAR+MILAN) SELOVE 62 PRL 9 272 BONDAR 63 PL 5 153 GUIRAGOS 63 PRL 11 85 HAGOPIAN 63 PRL 10 533 VEILLET 63 PRL 10 29 ADERHOLZ 64 PL 10 240 BRUYANT 64 PL 10 232 LEE 64 PRL 12 342 SODICKSO 64 PRL L2 485 AACHEN+BERLIN+DIRM+BONN+HAMRUR+IC-LOND+MPI IJ BRUMANT,GOLDBERG,HOLDER,ELEURY,HUC(CERN+PA) I LEF,RDE,SINCLAIR,VANDRRVELDE (MICHIGAN) SODICKSON,WAHLIG,MANNELLI,FRISCH+ (MIT) I s BARMIN 65 SJNP 1 230 BARMIN 65 SJNP 1 623 CHUNG 65 PPL 15 325 DERADO 65 PRL 14 872 GUIRAGOS 65 PRL 11 85 WANGLER 65 PR 137 B 414 ADDLGDLEWKD, ELENSKY, ERDFEEV+ (ITEP MOSCON) JP +DDLGDLEWKD-ERDEEV+KRESTNIKOV+ (ITEP MOSC) (HUNG, DANL HARDY, HESS, JACOBS, KIRZ (IRL) OERADD, KENWEY, PDIPIERS, SHEPHARD (NOTRE DAMF) Z G T GUIRAGOSSIAN (IRL) T P WANGLER, A R ERWIN, W WALKER (WISCONSIN) s ACCENSI 66 PL 20 557 JACOBS 66 UCRL-16877 WAHLIG 66 PR 147 941 ACCENSI, ALLES-BORELLI, FRENCH, FRISK+ (CERN) L.D.JACOBS, THESIS (LRL) +SHIBATA, GORDON, FRISCH, MANNELLI (MIT+PISA) J +LILLESTOL+MONTANET+(CERN+COF+[R+LIVERPOOL) +FISCHER,GOBBI,ASTBURY,MICHELINI+(ETH-CERN) +ARDYHESSKHRZ+MILLER [LR] +JOHNSON+KLEIN+PETERS+SAHNI+YEN+ (PURDUE) +JISNAS,GSDN,GERADD,KENNEY+ (NOTRDAH-PENN) M, RABIN (PUTGERS)
 BARLOW
 67 NC
 50A
 701

 BEUSCH
 67 PL
 25 B
 357

 DAHL
 67 PR
 163
 1377

 FISNER
 67 PR
 164
 1699

 POIRIFR
 67 PR
 163
 1462

 RABIN
 67 THESIS
 163
 153
 s 10.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.5) (SEE IDEDGRAM BELOW) 154.0 AVC ARMFNISE 68 NC 54 A 999 ASCOLI 68 PRL 21 1712 FDS5EBEC 68 NP B 4 501 FDSTER 68 NP B 4 107 JOHNSNN 68 PR 176 1651 ALSO BONDAR 63, LEE LAMSA 68 PR 166 1395 ALSO PDIRIER 67 WHITEHEA 68 NC 53A 817 +FORINO+CARTACCI+(BARI+R0LOG+FIRENZE+ORSAY) G-ASCOLI+H-B-CRAWLFY-D-W-MIRTARA+ INFSBECK-DDUTSCHAMN,HACHENHBERLIY+CFRH +GAVILLET+LABROSSE+MINTANET+ (CERNFPARIS) +OINIES ISINGS-GUTAY,DRRADG+HNPGRPSLAC RCMSDFRH CASON+RISWAS+DERADD+GRUVES+ (NUTREDAME) WEIGHTED AVERAGE = 159.5 ± 10.7 ERROR SCALED BY 2.4 CHISQ · · · FLATTE 71 HBC 2.5 +MCEWEN,OTT,AITKEN+ (AERE+SHAMPT+UC.LOND) 4.1 ADERHOLZ 69 NP B 11 259 AGUILAR- 69 PL 29 B 241 ARMENISF 69 LNC 2 501 CASO 69 NC 62 A 755 DONALD 69 NP B 11 551 +BARTSCH.+ [AACH+BERL+CERN+KRAK+WARS] M_AGUULAR-BENITZ.J_RARLUN,+ [CERN+COF GOHIOINI,FORING,CARTACCI+ [MARL+BONA+FIR2] +CONTE,HENZ++ (GEN0+DESY+HAMH+MILA+SACL) +EDWARDS,BUNAN,BETTINI,+ (LIVP+OSLN+PADD) ARMENISE 70 HBC 1.5 ARMENISE 70 HBC 1.3 ---+ · · · · · · AGUILAR 70 HBC 0.3
 AGUILAS-BENTEF, BARNES, BASSAND, +
 (BNL-SYR)

 -GGUILAS-BENTEF, BARNES, BASSAND, +
 (BNL-SYR)

 -GGUILAS-BENTER, CARTACCI, +
 (BNL-SYR)

 BARDANIN-OTVINUNKA, HOFMOLL, +
 (BASSANIN-OTVINUNKA, HOFMOLL, +

 BARDANIN-OTVINUNKA, HOFMOLL, +
 (BASSANIN-OTVINUNKA, HOFMOLL, +

 CARSINE, CARTACCI, +
 (BASSANIN-OTVINUNKA, HOFMOLL, +

 CARSING, CARTACCI, +
 (BASSANIN-OTASSANIN, CARTASSER, +

 CARTINEL, HARSE, HALKEP, PRENTICE (HISCH (CERN))
 (ILL)

 FISHNSTEIN, GORDON
 (ILL)

 CARFINKEL, HARSE, HALKEP, PRENTICE (HISCH (TSC))
 (TLL)

 STUNTEBECK, KENNEY, DEERY, BISWAS, CASON+ (NDAM)
 (NDAM)
 AGUILAR 70 PRL 25 58 ARMENISE 70 LNC 4 199 BADIER 70 NP 8 22 512 ARADADIN 70 PREPRINT BEAUPRE 70 CERN PHYS 70 EISENSTE 70 CENN PHYS 70 EISENSTE 70 CR0 1195 194 OH 70 PR DI 2494 STUNTEBE 70 PL 32 8 391 DONALD 69 HBC 0.1 ARMENISE 69 DBC JOHNSON 68 HBC 1.6 ·LAMSA 6B HBC 2.4 FOSTER 68 HBC 0.1 BDESEBECK 68 HBC 1.9 FLATTE 71 UCRL 20273 ALSTON-G,BARBARO-G,DERENZO,FRIEDMAN,+ (LRL) SUBM. PHYS.LET.B 5300 F EVENTS SHOW NO SPLITTING UNSPLIT -+-ARMENISE 68 DBC 3.6 RMENTSE 68 080 18.9 JACOBS 66 HBC 36.6 ACCENSI 66 HBC 1.6 SELDVE 62 HBC 5.7 8 D MESON (1285+JPG= +) I=0 D(1285) 82.0 100 200 300 400 0 (JP=0-,1+,2- WITH 1+ FAVORED.) (CONLEV ≈0.000) F WIDTH (MEV) (1290.) APPROX. 1290. 7. 0... 1200. 7. 0... 1210. 0.0 EFGIX 1270.0 10.0 CAMPBELL 69 Dow 1285. 7. CLORSTAD 69 HBC 0... 1285. 7. CLORSTAD 69 HBC 8 PI+ SUPERSEDE BY OTNINOUSK 70 HBC 8 PI+ P. P+6PI 1303.0 8.0 OTMINOUSK 70 HBC 8 PI+ P. P+6PI 5 1286.4 4.3 AVERAGE CHERON INCLUDES SCALE FACTOR OF 1.41 (SEE IDEOGRAM BELOW) 1286.4 ± 4.3 8 D MESON MASS (MEV) 1.2 PBAR P. 4PFS 5/67 1.6-4.2 PI- P 10/66 1.2 PBAR P. 5-6 PFS 6/A8 1.2 PB P.7 PI 3/69 2.7 PI+ D 8/69 0.7 PB P. 4.5-BNDY 9/69 8 PI+ P. P+6PI 9/69 5 F PARTIAL DECAY MODES DECAY MASSES 139+ 139 139+ 139+ 139+ 139 497+ 497 F INTO PI+ PI-F INTO 2PI+ 2PI-F INTO K KBAR D D 9/69 ------AVG 5 F BRANCHING RATIOS F PARTIAL WAVE (I.E. I=1, JP=2+) AMPLITUDE AT F RESONANCE WE TABULATE X = 1/2 (I + FTA). THIS SHOULD BE PI PI FRACTION FOR PURE 9W WITH NO BACKROUNDO. 250 0.8° 0.0° ΒΕΑUPRE 70 HBC 0/26 PI- P. DELTA++F 1/71* 400 0.8° 0.0° ΠΗ 70 HBC 0/26 PI- P. P F 1/71* R10 R10 R10 R10 R10 R10 R10 250 600 0.920 0.031 AVFRAGE LERROR INCLUDES SCALE FACTOR OF 1.0) AVG
 AVG
 0.520
 0.031
 AVFALLE TEMOR INCLUDES SCALE FACING UP 1.01

 FINT (291+201-1, V [P] P1]
 ASCOLI & AS SUGGEST DECAY IS WAINLY RHO-RHON, 1/3 OF WHICH YIELD 201+201-SUME UPPER LIMITS IX OR LESSI HAVE AFER PUNCHED AS (0 + x)

 SOME UPPER LIMITS IX OR LESSI HAVE AFER PUNCHED AS (0 + x)

 O.08
 0.08
 0.08

 0.09
 0.05
 CHUNG
 65 HRC

 0.09
 0.05
 CHUNG
 55 HRC

 0.04
 0.05
 CHUNG
 65 HRC

 0.04
 0.05
 CHUNG
 51 HRC

 0.04
 0.05
 ANDAIN TO HRC
 1.26 PI - P

 0.04
 0.07
 0.02
 OH HRC
 1.26 PI - P, P
 R1 1/71* 0.068 0.016 AVFRAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) ۸VG R2 F R2 F R2 R2 R2 S(1) R2 S(1) R2 S(1) R2 R2 R2 A R
 G
 0.064
 0.016
 AVERAGE LEMENT INCLOSES SLALE PAULOGE OF LEMENT

 F INT (K.KBR)/(F) P1)
 DGTER NIATING P1)
 DGTER NIATING P1)
 DGTER NIATING P1)

 DGTER NIATING NOTES, SINCE INTERFRENCE MAY BE CONSTRUCTIVE
 DQ DESTRUCTIVE, EVEN UDPER LIMITS ARE DUBING
 SOME NAME

 SOME DESTRUCTIVE, EVEN UDPER LIMITS ARE DUBING
 2.8 PI 10/66

 0.00
 0.09
 RARNIN
 65 HBGC
 2.8 PI 10/66

 0.00
 0.16
 WANCLER
 65 HBC
 1.0 PI-P
 PROBABLY SEEN
 BARLOW 67 HBC
 1.2 PBAR P--KIKI 11/66

 0.000
 0.121
 SST DAHL
 67 HBC
 1.6-4.2 PI-P
 9/67

 0.001
 0.022
 DAHL
 67 HBC
 1.6-4.2 PI-P
 9/67

 0.0121
 ADERHOLZ 69 HBC
 R IP P, PKENET 8/69
 K+K-PFEAK SAT 1320.
 ALSO (CPOSSECTION#SRAATUNE ROR ATIO) FGRA 21 S26 HIL
 600

 0.06
 0.02
 0H
 70 HBC
 1.26 PI-P, P, F
 1/71+
 CHISQ OTWINDWSK 70 HBC 4.3 ·LORSTAD 69 HBC ·CAMPBELL 69 DBC 0.0 2.7 D.ANDLAU 6B HBC 0.3 DAHL 67 HBC 0.5 7.8 0.035 0.021 AVERAGE (FROR INCLUDES SCALE FACTOR OF 1.4) (CONLEU =0.101) 1250

1270 1290 1310 1330 1350 D MESON MASS (MEV)

8 D MESON WIDTH (MEV)
 DAHL
 67
 HBC

 D.ANDLAU
 68
 HBC

 DEFDIX
 68
 HBC

 CAMPBELL
 69
 OBC

 LDRSTAD
 69
 HBC

 DTWINDWSK
 69
 HBC
 1.6-4.2 PI- P 1.2 PBAR P, 5-6 PFS 1.2 PA P,7 PI 2.7 PI+ D 0.7 PB P,4.5-BODY 8 PI+ P, P+6PI 35.0 10.0 10/66 30. 40.01 30.0 6/68 3/69 8/69 15.0 9769 60. 15. (52.0) (29.0) SUPERSEDED BY OTWINOWSKI 70 44.0 24.0 D OTWINOWSK 70 HBC 8 PI+ P. P+6PI 9/69 33.4 4.1 W W AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) -- ------ -8 D MESON PARTIAL DECAY MODES DECAY MASSES 497+ 497+ 134 134+ 134+ 765 548+ 134+ 134 956+ 134 D MESON INTO K KBAR PI O MESON INTO PI PI RHO O MESON INTO ETA PI PI D MESON INTO DELTA(962) PI P1 P2 P3 P4 -----------8 0 MESON BRANCHING RATIOS D MESON INTO (PI PI RHO) / (K KBAR PI) (2.0) OR LESS DAHL 67 HBC (4.0) OR LESS DOWALD 69 HBC THIS IS FOR (RHOO PI+ PI-1/(K KBAR PIO) R1 R1 R1 D R1 D CHARGED PI ONLY 10/66 1.2 PBAR P.5PI . 8/69 D MESON INTO (K KBAR PI)/(ETA PI PI) (0.124) (0.035) DEFDIX R 2 R 2 68 HBC 1.2 PR P,7 P1 3/69 D MESON INTO (DELTA PI)/(ETA PI PI) POSSIRLY SEEN AMMAR 70 HBC +- 4.1.5.5K-.ETA 5/70 POSSIRLY SEEN OTWINOWSK 70 HBC 9 PI+ P. P+6PI 9/69 83 83 83 REFERENCES FOR D MESON HITCHENES TO ALLO NELSON HITCHER, D-ANDLAN+LCERN+CDF+LDR+LIVERPODL) +HARDYHESS+KIRZ+HILLER [LRL]) HILEB; (HUNNS, DAHL, HFSS, HARDY, KIRZ+ [LRL+UG] +ASTIFB; ABALDW, MONTANET+ (LDF+CENN+RAD+LIV)] JO +LICHTMAN, +CINASS, DAL, CHNFORTO, SHIVEYLY (CDF+CENN) +LICHTMAN, +CHNASS, DAL, DAL, ASTIFR, + (LIVP+DSLE) R.LSS, OTWINDWSKI (WARSAW) HARLOW 67 NC 50 A 701 DAHL 67 PR 163 1377 SEE 4/50 65 PR4 14 1074 DEANDLAU 68 NP 8 5 693 DEF01X 68 PR 8 5 693 CONALL 69 PR 22 2 533 CONALL 69 PR 22 1 591 LOSSIAD 69 NP 8 14 63 DTWINNWS 69 PL 29 8 529 +KROPAC, DAVIS, DERRICK+ (KANS+NWES+ANL+WISC) S. OTWINOWSKI (WARS) AMMAR 70 PR NTWENDWS 70 1207/VI/PH 12 A2 MESON (1300, JPG=2+-) I=1 A2(1300)

There are now several important experiments which disagree on the issue of whether the A2 is split or not. As can be seen from the summary table, the division between splitting and not-splitting experiments is not simply correlated to any physical property such as A2 charge, momentum transfer, beam energy, decay

Mesons

mode, etc. If indeed all experiments are correct (and we have no reason to suspect the contrary) then a symmetric dipole is excluded. It seems possible, by invoking two interfering resonances, to fit the line shape of all the observed A2 peaks. But then the mechanism responsible for the necessary energy-dependence and charge-dependence of the interference phase and/or the degree of coherence remains an unsolved problem.

The experimental evidence for and against splitting is shown in the figure, taken from G. R. Lynch, UCRL 20622. Each mass spectrum is fitted to an unphysical mixture of the form

 $dn/dm = \delta$ (Dipole) + (1 - δ) (BW) + Background where (Dipole) and (BW) are best fits to each hypothesis separately.

The "Duplicity" parameter δ is easily visualized and plotted because it spans the conflicting hypotheses. We repeat that it makes no <u>physical</u> sense to mix hypotheses.

Sommarie of Externelito fint my borion ibb ne of bit find	SUMMARY OF	EXPERIMENTS	THAT	INVESTIGATED	A2 SPLITTING
---	------------	-------------	------	--------------	--------------

	Momentum			$\Gamma_{\rm r}/2$	t range	Events	Probability of		f fit ^a	
Reaction	(GeV/c)	Reference	Method	(MeV)	$(GeV/c)^2$	in peak	BW	BW Dipole		2 incoh. BW
π [*] p → X [*] p	6,7	CHICOVANI 67	Jac. peak	8.3	0.20-0.29	1400	1	~ 40%	> 40%	<0.0 ¹
→ X ⁻ p	2.65	BENZ 68	0°	5.2		1100) ~~0.1%	≥40%	≥ 40%	< 0.2%
→ κ ⁻ κ _S p	7	BAUD-1 70	Jac. peak	<10	0.20-0.29	145	1%	> 60%		
+ ηπ p	11	BAUD-2 70	Jac. peak	20	0.20-0.30	~90				
	6	CRENNELL 68	нвс	10	0.22-0.39	100				
→ X ⁰ n	3.2	BASILE 70	CNTR	7.5	0.35-0.65	2600	1%	65%		25%
$\pi^+ p \twoheadrightarrow \pi^+ \pi^- \pi^+ p$	7	ALSTON-G 71	нвс	6.7	> 0.2	941	42%	9%		
$\rightarrow \eta \pi^+ p$	7	ALSTON-G 71	HBC	9.2	all	189	33% 16%	21% 0.2%		
$\rightarrow \kappa^{+}\kappa_{s^{p}}$	7	ALSTON-G 71	нвс	3.8	all	132	4%)	0.6%)		
→ ρ ⁰ π ⁺ p	5	BOCKMANN 70	HBC	5	t' > 0.1	108	20%	63%		70%
$\overline{p}p \rightarrow K^{\pm}K_{1}\pi^{\mp}$	0,0.7,1.2	AGUILAR-1 69	HBC	5		270	4%	65%	}	28%
$\rightarrow 2\pi^+ 2\pi^-$	1.2	DONALD 69	HBC	12		~100	2%			40%
$\pi^{-}p \rightarrow K^{-}K_{S}p$	17.2	GRAYER 71	ASPK	6.7	<0.7	~950	32%	"Not a dipole"		
a. These confiden number of adju	ce levels per stable paran	rmit only qualitati neters; these choic	ve compariso ces differ fro	ons, since m group	they depend to group.	l on the si	ze and number	of bins used and th	e treatment	of the

R2 A2 4550N INTO (FTA PII/TOTAL R2 R (0.084) (0.021) R2 R NO LONGER VALID SINCE RI VALUE HAS CHANGED (MORRISON 71). R2 R NO LONGER VALID SINCE RI VALUE HAS CHANGED (MORRISON 71). R2 R1 0.179 0.018 FROM FIT	FISTER 68 NP B 8 174 +GAVILLET,LABROSSE,MONTANET,* (CERN*CDEF) FRIDHAN 68 PR 167 1268 +MADER, *TCHALDN,OUDET*/*EIDELN*STASSORG) KEY 68 PR 166 1395 +FRENTIC*CONFERNANCES* (CERN*CDEF) KEY 68 PR 166 1395 +FRENTIC*CONFERNANCES* (NOTRENAME) VON KRIG 68 PR 166 1395 +FRASON*BISMAS*DERADFRAVES* (NOTRENAME) VON KRIG 68 P2 325 +TXASNITAK.NPELMAN, MARSHALL LIBBY (COLDI) (DIN)
P3 A2 MESON INTO LETA P11 / (RHO P1) R3 0.3 0.2 ADERHOLZ 64 HBC 4.0 P1+P R3 0.22 0.09 CONTE 67 HBC - 11.0 P1-P 8/67 R3 0.22 0.09 CONTE 67 HBC - 5 P1-P 6/68 R3 0.12 0.08 ASCNLI 68 HBC - 3.2 P1-P 6/68 R3 0.12 0.08 CHUNG 68 HBC - 3.2 P1-P 6/68 R3 0.16 0.10 KEY 69 HBC - 3.2 P1-P 6/68 R3 0.16 0.10 KEY 69 HBC - 3.3 P1-P 9/66 R3 0.3 0.13 ABRAMOVIC 70 HBC - 3.93 P1-P 2/711 R3 15 0.25 0.09 BUCKMANN 70 HBC 7.0 P1+P 2/711 R3	ADERHOLZ 69 NP B 11 259 +BARTSCH.+ (AACH+BERL+CERN+KRAK+WARS) AGUILAR 169 PL 29 B 62 +BARLOW,JACOBS,DELLA NEGRA+(CERN+CDF+LIVP) ALSD BARLOW A7,COMPORTO 6 AGUILAR-BENITEZ,J,BARLOW,+ (CERN+CDF+LIVP) AMDERSON 69 PRL 22 1300 +COLLINS-ENITEZ,J,BARLOW,+ (CERN+CDF) AMMENISE 69 LNC 2 501 +COLLINS-ENITEZ,J,BARLOW,+ (CERN+CARN) ARMENISE 69 LNC 2 501 +CHIDINI,FCRING,CARTACCI+ (BARI+BONAFIRZ) CHENDWA 69 PL 22 1327 +CHABSHONK MAS SPECTROMETE GROUP (CERN) CHENDWA 69 PL 22 1327 +KASSHON,KWAN WU LAI,+ CHENDWA 69 PL 23 1322 EISENBERG,MABER,MALLAM,CHAMNIKK+REMUKLAA VETLITSK, K61 YAD,FTL2 5950 VETLITSK, KGI GUREYEV, KGI SHISH, KJUAWIKK+(TEPI)
No D Ströngly Dependent on background Subfraction 83 avg 0.225 0.027 Average (ERROR INCLUDES SCALE FACTOR OF 1.0) 83 Avg 0.225 0.027 Average (ERROR INCLUDES SCALE FACTOR OF 1.0) 83 Avg 0.229 0.028 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 84 A2 MESON INTO (ETA PRIME PI) / TOTAL 6 HR 0.0021 84 10.10 R (ESS CHUNG 65 HRC - 3.2 PI-P 6/68 84 10.0041 BOESEREC 68 HRG - 3.2 PI-P 6/68 84 10.0021 0.0071 FROM FIT 7 7 84 10.0022 0.0071 FROM FIT 7 7 7 85 10.0410 R (ETA PRIME PI)/(RHO PI) 7 7 7 7 7 85 10.0410 R (ETA PRIME P1)/(RHO PI) 7 7 7 7 7 7 7 85 10.0410 R (ETA PRIME P1)/(RHO PI) 7	ARRAWNUI 70 NP B 29 466 ARRAWNUICH, BLUMENFEID, BRUYANT,* (CERN) JP ARRAWS TO UCRL 20067 *BRRWAM, BUTLER, COYNE, GOLDHABER, HALL+(LLL) JARAMS ARRAWS TO UCRL 195 193 *GOT *BRRWAM, BUTLER, COYNE, GOLDHABER, HALL+(LLL) ASCOLT 70 COD 195 193 *BROCKAW, CRANETY, ESENTEID, HANT, FF (LLL) BASILE 70 LONC 4 838 *ADACHAY, CRANETY, ESENTEID, HANT, FF (LLL) BAJDI 70 PL 318 307 CERN 805NN SPECTROMETER GROUP (CERN) BAUD 70 PL 118 307 CERN 805NN SPECTROMETER GROUP (CERN) BAUD 70 PL 118 307 CERN 805NN SPECTROMETER GROUP (CERN) BAUD 70 PL 118 307 CERN 805NN SPECTROMETER GROUP (CERN) BAUD 70 PL 118 307 CERN 805NN SPECTROMETER GROUP (CERN) BAUR 70 PR BERTNT *HISEBAUCH, GARFINKEL, MORSE, OH+ VISC+TOT) (CARD L) CAROLL AND 70 NP B 6 239 *GAVILLET, LARDSSE, MANTAWET (CERN+100H) CAROL AND 70 NP B 16 239 *GAVILLET, LARDSSE, MANTAWET (CERN+100H) DIAZ 70 NP B 16 239 *GAVILLET, LARDSSE, MANTAWET (DERN+100H) ALSO 66 LAYSE GAFINKEL, MARANN, CARMONY, YEN (PURDUEJ)C GAFINKE 70 PL 33 555 GAFINKEL, MARANN, CAR
R5 FIT 0.0156 0.0093 FROM FIT CEROR INCLUDES SCALE FACTOR D R6 A2 MESON INTO (PI+PI-PI-PIO) (RHO PI) R6 0.0170 OR ESS BENSON 66 DBC 0.3.7 PI+D R7 A2 MESON INTO EESS FOSTER 68 HBC - PBAR P.P.PBA REST 9/69 R7 (3.0) OR EESS FOSTER 68 HBC - PBAR P.P.PBA REST 9/69 R7 (3.0) OR EESS FOSTER 68 HBC - PBAR P.P.PBA REST 9/69 R7 (3.0) OR EESS FOSTER 68 HBC - PBAR P.P.PBA REST 9/69 R7 (3.0) OR EESS FROM FIT R. 1.8 FROM FROM FROM FROM FROM FROM FROM FROM FROM <	SUTHERLA 70 PHILAD.CONF.P.369 G.SUTHERLAND.INTERFERING RESONANCE(GLASGOW) ALSTON-GA71 PL 34 B 156 +AARBARD.BUHL.DEERNZD.EPPERSON.FLATTF(IRL) BARNHAM 71 UCRL 2023 K.W.J.PARNHAM AND G.GIDHABER FDLEY 71 PRL 26 413 +LOVE.P7XK1.PLATNER.LINDENBAUN.+ (SRUF.CURNY) GRAYER 71 PL 34 B 333 +LOVE.P7XK1.PLATNER.LINDENBAUN.+ (SRUF.CURNY) MORRISON 71 PRIV.COMM. D.MORRISON PAPERS NOT REFERED TO IN DATA CARDS CHUNG 64 PRL 12 621 +DAMELANDEY.HESS.KALBELEISCH.KIR7.+ (LRL) LANDER, ADNU.NS.CARMMY.HENDRICKS + (UCS) JP ADGEHIOLZ 65 PL 138 B 897 ADGEHIOLZ 65 PL 156 G MITTLABATO.DEELER.GRUSABLION.HENDRICKS (DAVINON-HENDRICKS) MACHENDERKO.D.DEELER.GRUSABLION.PHENDRICKS (DAVINON-HENDRICKS)
RR FIT 0.0274 0.0065 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.8) R9 A2 MESON INTO (PI+ PI- P(-)/(3 PI) PI	SLATTERY 57 MC 50A 377 + KRAYABLL+FORMANFERDEL (YALE-KRCH) JP BAUD3 70 PL 31 B 401 CERN BISDN SPECTROMETER GRUP BEKETOV 70 MOSCOW 70 816 + SOMBKOWSKY,KONOWALOV,KRUTSCHININ,+ (ITEP) JP $AZ_{I=2}(1320)$ 37 A2,2 (1320) I=2 DR GREATER SFEN AS A BUMP IN RHO- PI- SPECTRUM.
The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P ₁ , as follows: The diagonal elements are $P_1 \pm \delta P_1$, where $\delta P_1 = \sqrt{\langle \delta P_1 \delta P_2 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coeffi- cients $\langle \delta P_1 \delta P_2 \rangle$. While the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coeffi- cients $\langle \delta P_1 \delta P_2 \rangle$. For the definitions of the individual P ₁ , see the listings above; only those P ₁ appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. P ₁ = P ₂ P ₃ P ₄ P ₁ = 7.72-0.20 P ₂ =	EVIDENCE NOT COMPELLING. DROPPED. SEE JAN. 67 EDITION. E(1422) 6 E MESON (1422, JPG=A +) [=0 BAILLON 67 FAVOR JP=0 DAHL 67 FAVOR 1+ BUT DO NOT EXCLUDE 2-, 0 LORSTAD 69 FIND 0- OR 1.
ADEPHOL7 64 PL 10 248 ADEPHOL7 64 PL 10 248 ADEPHOL7 64 PL 10 248 ADEVING 64 PRL 12 621 ODLINARE 64 DURN COMP 1 480 G GOLDHABER, S GOLDHABER, SOLDHABER, SINALDRAN, SHENLLL) LANDEP 64 PRL 13 66 ADOLINS, CARMONY, HENDRIKS, SUDNG, LA JOLLA)	6 E MESON MASS (MEV) M 1425. 7. BAILLON 67 HBC 0. PBAR P 11/66 M 1420.0 20.0 DAML 67 HBC 1.6-6.2 PI-P 10/66 M 1423.1 10. FRENCH 67 HBC 3-4 PBAR P 6/67 M 1423.0 7. LORSTAD 69 HBC 0.7 PB P, 4.5-BODY 9/69 M 310 1420.7 7. LORSTAD 69 HBC 0.7 PB P, 4.5-BODY 9/69 M AVG 1422.5 4.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
ARDLINS 55 ATHENSIONIDICONF. *CARMONY, LANDER, XUONG, YAGER (LA JOLLA)I=1 CHUNG 55 PALLIST 325 DAMESMADDY, PESS, JACIDS, KIRY, MILLER (LAL) FURIND 65 PALLIST 325 DAMESMADDY, PESS, JACIDS, KIRY, MILLER (LAL) FURIND 65 PALLIST DAMESMADDY, PESS, JACIDS, KIRY, MILLER (LAL) FURIND 65 PALLIST ARASS SPECTROMETER GROUP (CERN) SFIOLITZ 65 PALLIST LSEIDLITZ, O I DAML, D H MILLER (LRL) BARNES 64 PALLIST, C.S.BENSON, THESIS (MICHIGAN) HELIST, AND (MILLIST) BARNES 64 PALLIST, C.S.BENSON, THESIS (MICHIGAN) BARNES 64 PALLIST, THESIS (MICHIGAN) BARNES 64 PALLIST, THESIS (MICHIGAN) BARNES 64 PALIST, THESIS (MICHIGAN) <td>6 E MESON WIDTH (MEV) M 80. 10. BATLLON 67 HRC 0. PRAR P 11/66. M 80. 20. DATL 67 HRC 1.4-6.2 PI-P 10/66. M 45. 20. FRENCH 67 HRC 3-4 PBAR P 6/67. M 45. 20. FRENCH 67 HRC 0.7 PB P. 4.95-RNOY 9/69. M 310 60. 20. LORSTAD 60 HRC 0.7 PB P. 4.95-RNOY 9/69. M AVG 69.3 7.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)</td>	6 E MESON WIDTH (MEV) M 80. 10. BATLLON 67 HRC 0. PRAR P 11/66. M 80. 20. DATL 67 HRC 1.4-6.2 PI-P 10/66. M 45. 20. FRENCH 67 HRC 3-4 PBAR P 6/67. M 45. 20. FRENCH 67 HRC 0.7 PB P. 4.95-RNOY 9/69. M 310 60. 20. LORSTAD 60 HRC 0.7 PB P. 4.95-RNOY 9/69. M AVG 69.3 7.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
LEVRAT 66 PL 22 714 CERN #ISSING #ASS SPECTROMETER GROUP (CERN) AR*ENISE 67 PL 258 53 AR*ENISE 67 EL CERN #ISSING #ASS SPECTROMETER GROUP (CERN) ARITAY 67 NC 50 +KRSCH+XU%>EVEN+RABIN CERN #ISSING #ASS ARALTAY 67 NC 50 +KRSCH+XU%>EVEN+RABIN CERN #ISSING #ASS ARALTAY 67 NC 50 701 +LILLESTOL+MONTANETA-(CERN+COF+18+LIVERPOOL) ARAFISCH 67 NC 50 701 +LILLESTOL+MONTANETA-(CERN+COF+18+LIVERPOOL) ARAFISCH 67 NC 50 701 +LILLESTOL+MONTANETA-(CERN+COF+18+LIVERPOOL) ARAFISCH 7 PL 25 8 -91 50 CATIN AF 7 PL 25 8 -92 50 CATIN AF AF SOBRETA AF AF AF CATIN AF SOBRETA AF AF AF AF CATIN <td< td=""><td>6 E MESON PARTIAL DECAY MODES DECAY MASSES P1 E INTO K K*1890) 433* 992 P2 E INTO K K*8AR PI 497* 497* 139 P3 E MESON INTO PI PI RHO 134* 155 P4 F INTO PI (1016) PI 1016* 139 P4 E INTO ETA PI PI 491* 497 P4 F INTO PI (1016) PI 1016* 139 P5 E INTO ETA PI PI 548* 139* 139</td></td<>	6 E MESON PARTIAL DECAY MODES DECAY MASSES P1 E INTO K K*1890) 433* 992 P2 E INTO K K*8AR PI 497* 497* 139 P3 E MESON INTO PI PI RHO 134* 155 P4 F INTO PI (1016) PI 1016* 139 P4 E INTO ETA PI PI 491* 497 P4 F INTO PI (1016) PI 1016* 139 P5 E INTO ETA PI PI 548* 139* 139
ALSO AG UCRL-LGA32 RICHARD I HESS-THESIS, BERKFLEY LIRI CDNM G7 NP B157 +YCCULLCIGHENUGG CONDO IORNL-HUYLY, TENN.1 CDNPERTO A7 NP B3 469 +YABECHAL, MONTANET+ (CERN+GF1PN-LIVERPOOL CONTE G7 NC 51 A 175 +YOMASINI, CARDOS I GENDYA-HHAN-YILANO+SACLAY) DAHL 67 PR 163 1377 +HARDY+HESS+KIRZ+HILLER (LERL) DAHL 67 PR 163 1377 +HARDY+HESS+KIRZ+HILLER (LERL) DAMYS2 7 NC 51 A 801 DANYS2+FERCH+SIMAK (CERN) ARMENISE 68 PL 260 336 ARMENISE, FORINO,+ (BARI+BOL+FIR+ORSAY) ASCHLI 68 PRL 20 1321 +CRAMLEY+MRTARA, SHAPTRO, BRIDGES+(ILLINDIS) JP BALLAM 68 PRL 210 48070, CIA301(C.FRIES, GURAGOSSIAN, ESAL) JP RALE 68 PRL 20 123 CERN MISSING MASS SPECTPORTER GROUP (CERN) JP RALE 68 PRL 24 B 233 CERN MISSING MASS SPECTORETER GROUP (CERN) CERN MISSING MASS	6 E MESON ARANCHING RATIOS RI E INTO K **(890)/((K K*)+(PI(1016) PI)) RI 50 10 BAILLON 67 HRC 0.0 PBAR P 11/66 RZ E MESON INTO (PI PI RHO) / (K KBAR PI) RZ 12.0) OR LESS DAHL 67 HRC 0 CHARGED PI UNLY 10/66 R3 E MESON INTO (ETA 2 PI)/(K KBAR PI) R3 E MESON INTO (ETA 2 PI)/(K KBAR PI) R3 E MESON INTO (ETA 2 PI)/(K KBAR PI) R4 E MESON INTO (ETA 2 PI)/(K KBAR PI) R5 E MESON INTO (ETA 2 PI)/(K KBAR
CHUNG 68 PR 165 1491 S.U.C.HUNG.Q.DAHLJ.J.KIRZ.D.H.HILLER (LR.) CRENNFLL 58 PRL 20 1318 +KARSHON+KWAN LAI,SCARR,SKILLICORN (BNL)	

For notation, see illustrated key at beginning of data card listings.

A3 production is also reported in $\overline{p}p$ and other		34 PI (1640) BRANCHING RATIOS
reactions, but the statistics are relatively poor and		RZ PI(1640)+- INTO (PI+- RH00)/(ALL PI+- PI+ PI-) RZ (0.3) OR LESS DARISCH 68 HBC + 8. PI+ P.3PI P. 9/69 D3 (0.4) D. LESS FERDER 68 HBC + 8. DI+ P.3PI P. 9/69
TUIS ENTRY CONTAINS CONT DEAKS AND THE 02 DEAK.		R2 10.4 J UR LESS FEMBEL 58 MVDE ← .
HIS FRINT CUMIAINS G=1 PEAKS AND INE K2 PEAK. BARTSCH AG FIND BEST FIT WITH J=2NEXT BEST 1+,0-,3+ NOTE THAT (OMEGA PI PI) PEAKS HAVE DIFFERENT HASS,WIDTH		R3 INITALE INTO PI+ PI- R3 INDICATION SEEN LUBATTI 66 HLRC 16 PI- 11/66 R3 INDICATION SEEN LUBATTI 66 HLRC 16 PI- 11/66 R3 IO.501FOR JP=2- RARTSCH 68 HRC 8. PI+ P.3PI P 8/A9 R3 IO.501FOR JP=1+ RARTSCH 68 HRC 8. PI+ P.3PI P 8/A9 R3 IO.501FOR JP=0- RARTSCH 68 HRC 9. PI+ P.3PI P 8/A9
34 PT (1640) MASS (MFV) M 30(1600:0) FORINO 65 DBC 04.5 PI+D 10. M 20(630:0 30:0 VETLITSKY 66 HBC - 4.7 PI-P M 1630: 10. BALTAY 66 HBC - 7, R.5 PI+P 6. M 1630: 10. BALTAY 66 HBC - 7, R.5 PI+P 6.	/66	R3 0.35 0.20 MALTAY 68 HRC + 7-8.5 P[+P) 5/68 R3 CDNSISTENT WITH L.0 CASD 68 HBC - 119-7 - 6/68 R3 SFEN LOFFPED0 68 HBC - 113-20 P[-P,P]-F 9/68 R3 SFEN LOFFPED0 68 HBC - 13-20 P[-P,P]-F 9/68 R3 (0.76) (0.24) (0.34) ARMENTISE 49 D(C + 5.1) P[+D,3]P[++- 5/70 R3 CONSISTENT WITH 1.0 CRENNELL 70 HBC - 4. P[-P,F] 5/70
M (1650.0) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/68 /67 /70	R4 R1 MESON FRACTION INTO ONE / THREE / FIVE OR MORE CHARGED TRACKS R4 IO.371/ O.59 / O.04 FOCALCT 66 MMS - 3-12 P1-P 10/66
ч (1480.) (20.0) CAST 69 ННС - 11 РІ-Р 5, м (1460.0 20.0 CAST 69 ННС - 11 РІ-Р 55, ч (1460.0 20.0 CAST 69 ННС - 11 РІ-Р, РІ-Р 55, ч (1463.0 10.0 CRENNELL 70 ННС - 6, РІ-Р, РГ 55, м (1433.0 (12.0) НІХАУНІТА 70 ННС - 6, 7 РІ-Р, РІ-Р, Г	/70 /70 /70 /71*	R5 PI(1640) ↔ INTO (PI+→ ETA)//ALL PI+→ PI+ PI-) R5 (ALL ETA DECAYS) R5 (0.0910R LESS CALTAY 68 HRC + 7-8.5 PI+P 5/68 R5 (0.1019R LESS CRENNELL 70 HRC - 6. PI- P,F PI 5/70
M ARCKGROUND SUBTRACTION DIFFICULT. M (1672.0) M AVG 1640.1 6.2 AVFRAGE (FRROR INCLUDES SCALE FACTOR OF 1.1)	/71*	Р. В. РІ(1640)+- ІЛТО (РІ+- 2РІ+ 2РІ-)/(ALL РІ+- РІ+ РІ-) R6 (0.11) ЛЯ LESS ВАLТАУ 6Я НВС + 7,8,5 РІ+ Р 6/6Я R6 (0.10)ЛЯ LESS СЯЕМИЕЦ 70 ИНС - 6, РІ-Р,F РІ 5/70
(SEE IDENGRAM RELOW)		R7 P1(1640) INTO (1946GA P1 P1)/(F P1) R7 P (4.) DR GREATER RARNES 69 HBC 0 4.6 K-P.OMFGZP1 8/69 R7 P NOT CLEAR IF (1946GA P1+P1-) PFAX IS DECAY MODE DF P1(1640)
WEIGHTED AVERAGE = 1640.1 ± 6.2 Error scaled by 1.1		R8 PI(1640)+- INTO (RHO PI)/(F PI) R8 0.03 0.37 0.03 CASO 69 HBC - 11 PI- P 5/70
I Ā		R9 P1(1640)+- INTO (PI+- PI+ PI-1/(F PI) R9 0.06 0.47 0.06 CASO 69 HBC - 11 PI- P 5/70
		****** ********************************
		FORINO 65 PL 19 68 +GESSANDLI-LENDINARA-FADL-BART+FIR+DRS+SAC] FOCACCI 66 PRL 17 890 CFRN HISSING MASS SPECTROMFTER GRUUP (CERN) LURART 66 PL 22 714 CFRN HISSING MASS SPECTROMFTER GRUUP (CERN) LURARTI 66 THESIS BERKELEY H.J.LURARTI (RL)1-2- VETLITSK 66 PL 21 579 VETLITSK/GUSZAVIN-KLIGER,20(GRUOY (ITEP)
$\left(\begin{array}{c} + \\ + \\ - \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\$		DANYSZ 67 NC 51 A 801 DANYSZ+FRENCH+SIMAK (CERN) DUBAL 67 NP B3 435 CERN MISSING MASS SPECTROMETER GROUP (CERN)
		ALSO CAUDORAL LEDORAL LEDORAL
7.1 1550 1600 1650 1700 1750 (CDNLEU =0.312)		ARMENISE 69 PAL 23 142 +CHUDINI,FORING,CARTACCI+ (BARI+BGNA+FIRZ) BARNES 69 PAL 23 142 +CHUNG,EISNER,FLAMINIG,+ (ONL) CASD 69 LNC 2 437 +CONTE,TOMASINI,CANTORE+ (GEN0+MILA+SACL) ALSO CASO 69 L 2 437 +CONTE,TOMASINI,CANTORE+ (GEN0+MILA+SACL)
Μ <u>IOMEGA PI PI PEAKS AND THE R2</u> DANYSZ A7 HBC 0.3,3.6 PBAR P 7/ M 1689. 10. DIBAL A7 MMS - 7.11.5,12PI-P 7/ M 1700. 15. DIBAL A7 MMS - 7.11.5,12PI-P 7/ M R2 PEAK FRIM CERN MMS EXPT. DECAY MIDES AND G PARITY UNKNONN. - - - - M R2 PEAK FRIM CERN MMS EXPT. DECAY MIDES AND G PARITY UNKNONN. -<	/67 /67 /68 /69	BEKETATV 70 MOSCOW 70 916 ++ OMBKOMSKY,KONOMALOV,KRUTSCHININ,+ (1FF) BRANDENB 70 NP 813369 ++ SOMBKOMSKY,KONOMALOV,KRUTSCHININ,+ (1FF) BRANDENB 70 NP 813369 ++ SOMBKOMSKY,KONOMALOV,KRUTSCHININ,+ (1FF) BRANDENB 70 NP 813369 ++ SOMBKOMSKY,KONOMALOV,KRUTSCHININ,+ (1FF) BRANDENB 70 NP 70 NP 70 HILAD,CONF.P.275 C.Y.CHIEN, REVIEW MIYASHIT 70 PR D 1 771 HIYASHITA,VON KROCH,KOPELMAN,LIRBY (COLD)
		45 PHI (1650, JPG= -) I=0
34 PI (1640) WIDTH (YEV) W 20 (100.) VETLITSKY 66 HBC - 4.7 PI-P 6/ W 70. 40. BALTAY 58 HBC + 7, 8.5 PI+ P 6/ W 115.0 45.0 BARTSCH 68 HBC + 8. PI+ P3PI P 8/ W 100. 50. 30. LANSA 68 HBC - 8.0 PI-P PI-F 11/	/66 /68 /69	$ \begin{array}{c} \phi_{N}\left(1650\right) \\ \rightarrow \rho^{0} \pi^{0} \end{array} \qquad $
H P DBSERVED IN (DWEGA PI+PI-) AND (DMEGA RHOD) MODES IN RATID 2/L M A 297 (240.0) (50.0) ARMENISE 69 DBC + 5.1 PI+D-3PI++- 5/ M A BACKGROUND SUBTACTION MODEL-DEPENDENT. 5/ 5/ 5/	/70 /70	45 PHI (1650) MASS (MEV)
W (130.) CASD 69 HRC - 11 PI-P 6/ W (150.0) CASD 69 HRC - 11.0 PI-P.PI 6/ N 130.0 30.0 CRENNELL TO HRC - 6. PI-P.PF PI 5/ N 137.0) (24.0) MIYASHITA TO HRC - 6. 7 PI-P.PI-F 1/ N BACKGROUND SUBTRACTION DIFFICULT. - - - - - - - - - - - - 1/2 -P.P.PI-F 1/	/68 /68 /70 /71*	M 1636.0 20.0 AR MENISE 68 DBC 0.5.1 PI+D 9/68 M 1670.0 20.0 KENYON 69 DBC 9.1 PI+D 9/69 M 1640.001 20.0 KENYON 69 DBC 9.1 PI+D 1/71 M G (1640.01) (30.0) GORDON 70 DBC 0.4.2 PI+D 1/71 M G (1616.01) (30.0) GORDON 70 DBC 0.4.2 PI+D 1/71
W AVG 107.7 18.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	/14	M G NOT CERTAIN IF PHI(1650) IS OBSERVED IN THIS EXPERIMENT M AVG 1663.6 12.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)
W OMEGA PI PI PEAKS AND THE R2 W R (21.) OR LESS LEVRAT 66 MMS - 7,12 PI- P 7/ W R R2 PEAK FROM CERN WMS FXPT. DECAY MODES AND G PARITY UNKNOWN.	/67	(SEE IDEOGRAM RELOW)
M 3R. IA. DANYS2 67 HRC 0 3.3.6 PBAR P 7/ M 50.0 15.0 YGST 6A HGC 04.3 K-P.LMB0.5P1 9/ M 70.0 FARMES 69 HRC 04.6 K-P.LMB0.5P1 9/ M AVG 4.5.1 1.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF LOO)	/67 /68 /69	45 PHI (1650) WIDTH (MEV) W 112.0 60.0 AMMENISF 68 DBC 0 5.1 PI+D 9/68 W 100.0 40.0 KENYON 69 DBC 3 PI+D.3PI 2P 8/69 W G (1884.0) (47.0) GORDON 70 DBC 0 4.2 PI+D 1/71 W 105.0 155.0 20.0 MATTHENS 1.40.0 0.6.7 PI-D.3PI 1/71
34 PI (1640) PARTIAL DECAY MODES		W AVG 141.4 17.1 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0)
DECAY MASSES DECAY MASSES P1 P1(1640) INTO 3 P1 1344 1344 1344 P2 P1(1640) INTO RMO P1 1344 765 P3 P1(1640) INTO FR P1 1344 765		45 PHI (1650) PARTIAL DECAY MODES
1112 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100<		PI PHT (1650) INTO 3 PI DECAY MASSES P2 PHT (1650) INTO 5 PI 134+ 134+ 134 P3 PHT (1650) INTO 5 PI 755+ 134 P3 PHT (1650) INTO 5 PI 755+ 134

S84 REVIEWS OF MODERN PHYSICS · APRIL 1971 · PART II

For notation, see illustrated key at beginning of data card listings.

WEIGHTED AVERAGE = 136.0 ± 23.9 ERROR SCALED BY 1.5 CHISQ KRAMER 70 HBC 9.0 BORTSCH 70 HBC 2.1 70 HBC ARMENISE 0.3 +--CRENNELL 68 HBC 1.4 CRENNELL 68 HBC 0.4 CRENNELL 68 HBC 0.4 ARMENISE 68 DBC 1.1 GOLDBERG 65 HBC 1.2 16.0 (CONLEU =0.025) -100 100 300 500 1600 RHD(1660) WIDTH (MEV) REFERENCES FOR RH0(1660) BELLINI,DI CORATO,DUIMINO,FIORINI (MILANO) FORINO,GESSAROLI + (BOLDGNA+ORSAY+SAGLAY) GOLDBERG+(CERN+PARIS+ORSAY+MILANO+CEA-SAGL)
 BELLINI
 65
 NC
 40
 A
 948

 FORINO
 65
 PL
 19
 65

 GOLDBERG
 65
 PL
 17
 354
 EHRLICH 66 PR 152 1194 FICACCI 66 PRL 17 890 LEVRAT 66 PL 22 714 R. EHRLICH, W.SELOVE, H.YUTA (PENNSYLVANIA) CFRN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) ABRAMS 67 PRL 18 620 DUBAL 67 NP 83 435 ALSO 68 THESIS 1456 +KEHOE+GLASSER+SECHI-ZORN+WOLSKY (MARYLAND) CERN MISSING MASS SPFCTROMETER GROUP (CERN) L+DUBAL (GENEVE) P1 P2 P3 P4 P5 P6 +FORINO+CARTACCI+(BARI+BOLOG+FIRENZE+ORSAY)I ROESEBECK, DEUTSCHMANN,+(AACHEM+BERLIN+CERN) *KARSHON,LAI,SCARR,SKILLICORN (BNL) +RENTICE,STEENBERG,YOON (TORONTO+WISC) ARMENISE 68 NC 54 A 999 BOESEBEC 68 NP B 4 501 CRENNELL 68 PL 28 B 136 JOHNSTON 68 PRL 20 1414 +BARTSCH,+ (AACH+BERL+CERN+KRAK+WARS) +SELOVE,BISWAS,CASON,+ (PENN+NDAM+ROCH) +CONTE,BENZ,+ (GENO+DESY+HAMB+MILA+SACL) ADERHOL7 69 NP 8 11 259 84RISH 69 PR 184 1375 CASO 69 NC 62 A 755 ARMENISE 70 LNC 4 199 BARTSCH 70 CERN/D./PHYS70 KRAMER 70 PRL 25 396 STUNTEBE 70 PL 32 B 391 +GHIDINI,FORING,CARTACCI,+ (BARI+BGNA+FIRZ) +KRAUS,TSANDS,GROTE,KOTZAN+(AACH+BERL+CERN) R 1 R 1 +BARTON, GUTAY, LICHTMAN, MILLER, + (PURDUE) STUNTEBECK, KENNEY, DEERY, BISWAS, CASON+(NDAM) R 2 R 2 R 2 R 2 R3 R3 R3 R3 R3 R3 R3 AVG 38 RHO(1710, JPG= +) I = 1 OR 2 THIS ENTRY CONTAINS 4PI, RHO 2PI, 2RHO, OMEGA PI, AND K*KBAR ENNANCEMENTS, AND THE RI AND THE R2. NTE THAT THE (OMEGA PI) PARK HAVE OIFFERENT MASS. DECAY RHOLITIOI INTO 4PI MAY BE INEL,DECAYS OF G-MESON ABOVE. SEE RARTSCH 70. $\rho(1710)$ $\rightarrow 4\pi$ R4 R4 ----- ------ ------ ------R5 85 85 38 MASS (MEV)
 3
 RASS (FFV)

 80.171.7.
 DANYSZ.67 HBC
 OSEE NOTE R BELOW 5/67

 STEN [N.2.5-3] PRAR P. 2P1+2P1-+XITH 0.1.2 P1+P1- PATS; IN PHOD BAND
 7/67

 STEN [N.2.5-3] PRAR P. 2P1+2P1-+XITH 0.1.2 P1+P1- PATS; IN PHOD BAND
 7/67

 STEN [N.2.5-3] PRAR P. 2P1+2P1-XITH 0.1.2 P1+P1- PATS; IN PHOD BAND
 7/67

 STEN [N.2.5-1] PATS
 STENCH
 7/167

 STEN [N.2.5-2]
 STENCH
 7/17

 STENCH
 IN FUTFAL(K* KBAR) M'DE [G-PARTIY UNKNOWN]
 7/67

 1203
 JOLASTON
 SH HBC + 7, 8,5 P1+P
 6/68

 J
 UL675.0)
 JOHNSTON
 SH HBC + 7, 8,5 P1+P
 6/68

 J
 VOT SEPARTED FORM 2 P1 DECAY
 ADDERDIZ 69 HBC + 8 P1+ P,4 FNKRAPI 8/65
 7/67

 1630.0
 16.0
 ADERHOLZ 69 HBC + 8 P1+ P,4 P1 5/70
 1/705.0
 21.0
 CASIN 70 HBC + 8 P1+ P,4 P1 5/70

 1705.0
 21.0
 CASIN 70 HBC - 11.2P1-P.RHD 2P1 5/70
 1/70.60.0
 NAURER 70 HBC - 05.7 PRAR P.7 P1 2/71*

 MSEEN IN 2 RHD0, NOT IN 4 P1 OUTSIDE RHD RANDS.
 Y11
 Y11
 Y11
 Y11
 N N N N R 6 R 6 _к к R7 R7 R7 R7 J J R 8 R 8 R9 R9 D R9 D 1711.5 5.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) (SEE IDEDGRAM BELOW) AVG OMEGA PL DECAYS AND THE RI.
 OMEGA PI DECAYS AND THE RI.
 67 MMS
 7.11.5.12PI-P
 7.67

 1630.
 15.
 OUBAL
 67 MMS
 7.11.5.12PI-P
 7.67

 R1 PEAX FROM CERN MMS EXPT.
 DECAY MODES AND G PARTY UNKNOWN.
 1654.
 16.70
 1630.0
 16.70
 6.70

 1630.0
 11.0
 CASO
 70 HRC
 11.2PI-P.PI
 0MEG
 5.70
 1632.9 B.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) M AVG 38 WIDTH (MEV)
 (30.)
 0 R LFSS
 LEVRAT
 66 MMS
 - 7-12 PI-P
 7/67

 R2 DFAX FRMM CERN MMS EXPT. DECAY MIDDES AND G PARITY UNKNINM.
 0
 40.1
 12.1
 0 ANVS2
 67 HBC
 0SEE NOTE R BLLD
 5/67

 SEEN IN 2.5-3 PBAR P. 2P1+2P1-.HITM 0.1.2 P1+P1- PAIRS IN RHOD GAND
 100.35.
 BALTAY
 68 HBC
 - 7.0 P1-P
 6/68

 NOT SEPARATED FROM 2 P1 DECAY
 JOHNSTON
 68 HBC
 - 7.0 P1-P
 6/68

 NOT SEPARATED FROM 2 P1 DECAY
 IL2.0
 A0.0
 ADFRHOLZ 69 HBC
 + 8 P1+P PKKBARPI 8/69

 (12.0
 A0.0
 ADFRHOLZ 69 HBC
 + 8 P1+P PKKBARPI 8/69
 6/72.1
 (20.1
 60.0

 (105.0)
 CA0.0
 BARNHAM
 70 HBC
 + 10 F4-P1 5/70
 5/70

 (160.0)
 CASD
 70 HBC
 + 11.2P1-P.RHD 2P1 5/70
 5/70
 5/70
 M M R R XXX J BARNHAM 70 PRL 24 1083 BARTSCH 70 CERN/0./PHYS70 CASO 70 LNC 3 707 MAURER 70 THESIS NO.588 123.8 24.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)

AVG

WEIGHTED AVERAGE = 1711.5 ± 6.0 ERROR SCALED BY 1.1 CHISQ · · · · · CASD 70 HBC 0.1 BARTSCH 1.9 70 HBC ANDERSON 69 MMS ADERHOLZ 1,8 69 HBC BALTAY 68 H8C 0.3 ·DANYSZ 67 HBC 0.6 4.8 **CONLEU** 1650 1800 1700 1750 1850 =0.314) RHD(1710) MASS (MEV) OMEGA PI DECAYS AND THE RI.
 OMEGA PI DECAYS AND THE RI.
 LEVRAT
 66 MMS
 7-12 PI-P
 7/67

 (30,1) DR LESS
 LEVRAT
 66 MMS
 7-12 PI-P
 7/67

 R1 PEAK FROM CERN MMS EXPT.
 DECAY MODES AND G PARTY UMKNONN.
 130,
 73.
 63.0
 804NHAM
 70 HBC
 + 10.4 K-P.NMEGA PI 6/70
 6/70

 (60.0)
 CASD
 70 HBC
 - 11.2 PI-P.PI 0MEG
 5/70
 38 RHO (1710) PARTIAL DECAY MODES DECAY MASSES 139+ 139+ 139+ 139 139+1300 139+ 783 1018+ 139 765+ 765 765+ 139+ 139 RHO(1710) INTO 4 PI RHO(1710) INTO 42 PI RHO(1710) INTO 04EGA PI RHO(1710) INTO 04EGA PI RHO(1710) INTO 2 RHO RHO(1710) INTO 2 RHO RHO(1710) INTO PI PI RHO 38 RHD(1710) BRANCHING RATIOS R2 MESON FRACTION INTO ONE / THREE / FIVE OR MORF CHARGED TRACKS (0.42)/ 0.56 / 0.01 FOCACCT 66 MMS - 10/66 RH0(1710)+- INTO (PI+- A20)/(ALL PI+- PI+ PI- PIO) (WITH A20 INTO (PI+ PI- PIO)) 0.40 0.20 BALIX 68 HHC + 7,8,5 PI+P NOT SEEN JTHMSTON 68 HHC - 7 PI- P · 6/68 RH011710)+- INTO (PI OMEGA)/(ALL PI+- PI+ PI- PIO) (WITH OMEGA INTO(PI+ PI- PIO)) 0.25 0.10 8ALTAY 6A HBC + 7-8.5 PI+P .25 0.10 JOHNSTON 64 HBC - 7.0 PI- P • 5/68 6/68 0.250 0.071 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) RH0(1710)+- INTO (PI PHI)/(ALL PI+- PI+ PI- PIO) (0.11) OR LESS BALTAY 68 HBC + 7.8.5 PI+P 6/68 RH0(1710)+- INTO (RHO 2PI)/(ALL 4PI) CONSISTENT WITH I. CASO 68 HRC - 11 PI- P SEEN VETLITSKY 69 HRC 04.7-5.7 PI- P 6/68 RH0(1710)+- INTO (RH0+- RH00)/(ALL RHO 2PI) 0.49 0.16 CASO 68 HBC - 11 PI- P 6/68
 AFF01(710)
 TNT0 (2 RH0) / (ALL 4P1)

 SFEN
 DAMYSZ 67 HRC 0 3-4 PBAR P

 SFEN
 PALTAY 68 HRC + 7, AL5 PI+ P

 SFEN
 JOHNSTON 68 HRC - 7 PI-P
 5/68 • 6/68 6/68 RH0(1710)+- INTO (PI+- 2PI+ 2PI- PIO)/(ALL PI+- PI+ PI- PIO) (0.15) OR LESS BALTAY 68 HBC + 7.8.5 PI+ P 6/68 RHD(1710)+- INTO (PI+- PIO) / (ALL PI+- PI+ PI- PIO) (0.08) OR LESS BALTAY 68 HBC + 7-R.5 PI+ P USING DATA OF DEUTSCHMANN 65 ON PI+P TO PI+ PIO P 6/68 6/68 REFERENCES FOR RHO(1710) M.DEUTSCHMANN ET AL (AACHEN+BERLIN+CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) DEUTSCHM 65 PL 18 351 FOCACCI 66 PRL 17 890 LEVRAT 66 PL 22 714 DANYSZ 67 PL 24B 309 DUBAL 67 NP B3 435 ALSD 68 THESIS 1456 FRENCH 67 NC 52A 442 +FRENCH+KINSON+SIMAK+ (CERN+LIVERPOOL) +FRCACCI+KIENZLE+LECHANDINE+LEVRAT+ (CERN) L+DUBAL (GFNEVE) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIA*) BALTAY 68 PRL 20 887 CASΩ 68 NC 54 A 983 JOHNSTON 68 PRL 20 1414 +KUNG+YEH+FERBEL+ (COLMB+ROCH+RUTG+YALE)[=1 + +CONTE+CORDS+DIAZ+ (CENOVA+HAMB+MIL+SACL) +PRENTICE,STEENBERG,YOON (TORONTO+WISC)[JP ADERHOLZ 69 NP B 11 259 ANDERSON 69 PRL 22 1390 VETLITSK 69 SJNP 9 461 +BARTSCH,+ (AACH+BERL+CERN+KRAK+WARS) +COLLINS,BLIEDEN+ (BNL+CARN) +GUZHAVIN,KLIGER,KDLGANDV,LEBEDEV+ (ITEP) +COLLEY, JOBES, KENYON, PATHAK, RIDDIFORD(BIRM) 4 *KRAUS, TSANNS, GROTE, KOTZAN+(AACH+BERL+CERN) +CONTE, TOMASINI, CORDS+(GENO+HAM+SHLLA+SACL) G.MAURER (STRASHOURG)

For notation, see illustrated key at beginning of data card listings. 43 WIDTH (MEV) (67.) (27.) DANYSZ 67 HRC 0.3.3.6 PBAR P URSERVED IN (UYEGA PI+ PI-) (AND POSSIBLY (OMFGA RHOID)) YODE (50.) (20.) FRINCH 67 HRC 0.3-4 PBAR P URSERVED IN (KS KO PIO...) MODE (G-PARITY UNKNOWN) (30.0) UR LESS URSEAL 67 MMS - 7.11.5.12 PI-P MISSING MASS R4 PEAK.FINAL STATE UNKNOWN 7/67 39 R(1750) I=1 R(1750) 7/67 THIS ENTRY CONTAINS I=1 PEAKS AND THE R3 PEAK NOT A FIRMLY ESTABLISHED RESONANCE - OMITTED FROM TABLE 6/68 39 8(1750) MASS(MEV) 43 PARTIAL DECAY MODES 1748. 16. (1740.) SEE FIG. 9 OF FRENCH 67 1764.0 15.0 16. DUBAL 67 MMS - 7+11.5+12 PI- P 7/67 FRENCH 67 HBC (KO K+-) 3-4 PBAR P 7/67 DECAY MASSES 139+ 139+ 139+ 139 139+ 139+ 783 783+ 765 134+ 497+ 497 F P1 P2 P3 P4 PHI (1830) INTO 5 PI PHI (1830) INTO OMEGA PI PI PHI (1830) INTO OMEGA RHO PHI (1830) INTO K KBAR PI STUNTEBEC 70 HBC 0 8. PI-P.PI+PI- 1/71* 1756.5 10.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG ****** REFERENCES 39 R(1750) WINTH (MEV) [334,] OR LESS LEVRAT 66 MMS - 7,12 P1- P 7/67 (120,] APPROX, FRENCH 67 HBC (KO K+-) 3-4 PRAR P 11/69 ABOVE VALUE ESTIMATED FROM FIG. 9 OF FRENCH 67 R7.0 14.0 20.0 STUNTEBEC TO HRC 0 8. PI-P,PI+PI- 1/71* DANYSZ 67 NC 51A 801 DUBAL 67 NP 83 435 ALSD 68 THESIS 1456 FRENCH 67 NC 52A 442 DANYSZ+FRENCH+SIMAK (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) L-OUBAL (GENEVE) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) F 39 R(1750) BRANCHING RATIOS NESON FRACTION INTO ONE / THREE / FIVE OR MORE CHARGED TRACKS (0.14)/ 0.80 / 0.05 FOCACCI 66 MMS - 10/66 FRACTION INTO UNE CHARGED PROM. LARGER THAN GIVEN ABOVE. CF. DUBAL 67 31 S(1930, JPG=) I=1 OP 2 R3 R3 C R3 C R3 C R3 C S(1930) THIS ENTRY CONTAINS, BESIDES THE S(1930) SEEN BY CHIKOVANI 66 WITH A MMS, AND CONFIRMED BY CLINE 70 IN PBAR P BACKWARD ELASTIC SCATTERING, VARIOUS OTHER PEAKS NEARBY. FOR REVIEWS, SEE ASTIER 70,MONTANET 69. REGION ****** ******* ******** ******* REFERENCES FOR 8 (1750) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) +KINSON+MCOONALO+RIDDIFORD+ (CERN+BIRM) 31 S (1930) MASS (MEV) FOCACCI 66 PRL 17 890 LEVRAT 66 PL 22 714 DUBAL 67 NP 83 435 FRENCH 67 NC 52A 442

 31 S (1930) MASS (MEV)

 1929.0 14.0 CHKOWANI 66 MMSP - 12.0 P1-P

 1900. 40. CHKOWANI 66 MMSP - 12.0 P1-P

 1000. 10.0 CHKOWANI 66 MMSP - 12.0 P1-P

 1000. 10.0 CHKOWANI 66 MMSP - 12.0 P1-P

 1017.0 LS.0 CKWANI 66 MMSP - 11.2 P1-P, NOTE C 5/70

 1975.0 L2.0 KRAWER 70 MBC - 11.2 P1-P, NOTE C 5/70

 1975.0 L2.0 KRAWER 70 MBC - 2.35 SECT 10.0 F1 11/70

 1926.0 CLINE 70 MRC 0 .25-74 PB P ELL 1/71

 1025.0 (2.3) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1047.0 (10.2) (10.0) (10.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1926.0 (10.0) (10.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1936.0 (10.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1936.0 (11.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1936.0 (11.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1936.0 (11.0) CLINE 70 MRC 0 .25-74 PB P EL 1/71

 1936.0 (13.5 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.8)

 (SFE IDEOGRAM BELOW)

 ************* X X X STUNTERFCK .KENNEY.DEERY.BI SWAS.CASON+(NDAM) STUNTEBE 70 PL 32 B 391 5/70 5/70 11/70* 11/70* 1/71* 1/71* $\eta_{\mathbf{A},\mathbf{I} \ge \mathbf{0}}(1830)$ 42 ETA OR RHO (1830) G=+1 (JPG= +) I GTE 0 $\rightarrow 4\pi, K^*\bar{K}$ THIS ENTRY CONTAINS 4 PI AND K PI KBAR AND THE R4 MMS PEAK. R4 IS ONLY A 3 STANDARD DEVIATION EFFECT. OMITTED FROM TABLE. с с с AVG 42 MASS (MEV) 110 1832. 6. DANYSZ 67 H8C OSEE NOTE R BELOW 5/67 SFEN IN 2.5-3. PRAR P. 2PI+2PI-, WITH 0.1.2 PI+PI- PATRS IN RHOD RAND (1830.1 (15.) DURAL 67 MMS - 7.11.5,12.2PI- P 6/68 MISSING MASS RA PEAK, FINAL STATE UNKNOWN 1820. 12. FRNCH 67 H8C OSEE NOTE K BELOW 7/67 SEEN IN 3.-3.6 PRAR P TO (KS KO PI0...). G PARITY UNKNOWN 16 16 1829.6 5.4 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ WEIGHTED AVERAGE = 1958.0 ± 13.5 ERROR SCALED BY 1.8 RRMM к M AVG 42 WIDTH (MEV) R R M M ĸ CHISQ AVG KRAMER 70 HBC 2.0 CASO 70 HBC 1.0 42 PARTIAL DECAY MODES BOESEBECK 68 HBC 2.1 DECAY MASSES 1394 1394 1394 139 1394 1394 765 7654 765 1344 4974 497 CHIKDUANI 66 MMSP 4.3 ETA OR RHO (1830) INTO 4 PI ETA DR RHO (1830) INTO RHO PI PI ETA OR RHO (1830) INTO RHO RHO ETA DR RHO (1830) INTO K KBAR PI 9.4 P1 P2 P3 P4 (CONLEV =0.024) 2100 1850 1900 1950 2000 2050 ****** S(1930) MASS (MEU) REFERENCES +FRENCH+KINSON+SIMAK+ (CERN+LIVERPOOL) CERN MISSING MASS SPECTROMETER GROUP (CERN) L.DUBAL KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM) DANYSZ 67 PL 24B 309 DUBAL 67 NP 83 435 ALSO 68 THESTS 1456 FRENCH 67 NC 52A 442 31 S (1930) WIDTH (MEV)

 31 S (1930) WIDIN (ACC)

 35.0) DR LESS
 CHIKOVANI 66 MMSP - 12.0 PI-P
 8/66

 216.
 105.
 DDFSEBECK 68 HRC + 8 PI+P,PI+PI0 6/68

 (10.0)
 CLINE 68 HBC 3--7 PB P ELAST 9/68

 (10.0)
 CLINE 68 HBC 3--7 PB P ELAST 9/68

 (10.0)
 CLINE 68 HBC 3--7 PB P ELAST 9/68

 (10.0)
 CASD 70 HBC - 11.2PI-P.NOTE C 5/70

 (10.0)
 CASD 70 HBC - 11.2PI-P.NOTE C 5/70

 (10.0)
 CASD 70 HBC - 11.2PI-P.NOTE C 5/70

 (18.0)
 CASD 70 HBC - 11.2PI-P.NOTE C 5/70

 (18.0)
 CLINE 70 HBC 0.25-74 PB P ELAST 11/70*

 (18.0)
 CLINE 70 HBC 0.25-74 PB P E 1/71*

 (17.6)
 (13.5)
 CLINE 70 HBC 0.25-74 PB P E 1/71*

 (15.0)
 CLINE 70 HBC 0.25-74 PB P E 1/71*

 (15.0)
 CLINE 70 HBC 0.25-74 PB P L 1/71*

 (15.0)
 CLINE 70 HBC 0.25-74 PB P L 1/71*

 (16.0)
 CLINE 70 HBC 0.25-74 PB P L 1/71*

 (17.6)
 (10.0)
 CLINE 70 HBC 0.25-74 PB P L 1/71*

 (10.0)
 CLINE 70 HBC 0.25-74 PB P L 1/71*

 (10.0)
 CLINE 70 HBC 0.25-74 PB P E L 1/71*

 (10.0)
 CLINE 70 HBC 0.25-74 PB P E L 1/71*

 (10.0)
 CLINE 70 HBC 0.25-74 PB P E L 1/ ××× CCKK. $\phi_{A,I \ge 0}(1830)$ 43 PHI OR PI (1830) G=-1 (JPG= -) (GTE 0 THIS ENTRY CONTAINS OMEGA PI PI AND K PI KBAR AND THE P4 MMS PEAK. R4 IS ONLY A 3 STANDARD DEVIATION EFFECT. I=1 IF IOWEGA RHOJ MODE EXISTS. OMITTED FROM TABLE. $\rightarrow 5\pi, K^*\bar{K}$ E E C C C ≻ 43 MASS (MEV) ____ LIR49.) (11.) DANYSZ 67 HBC 0 3,3.6 PBAR P 7/67 DBSERVED IN (DMEGA P1+ P1-) (AND POSSIBLY (DMEGA PHOLO)) MODE [1220.) (12.) FRENCH 67 HBC 0 3,3.6 PBAR P 7/67 DBSERVED IN (KS KO PI0...) MODE (G-PARITY UNKNOWN) (1330.) (15.) DURAL 67 WMS - 7,111.5,12.PI- P 6/68 WISSING MASS R4 PEAK,FINAL STATE UNKNOWN 00 K K **F F** 31 S MESON PARTIAL DECAY MODES ***** 0ECAY 4455E5 139+ 139 938+ 938 P1 P2 S INTO PI+ PI-S INTO PBAR P ---------____

S86 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

	32 T(2200	D) WIDTH (MEV)	
8	(13.0) OR LESS (85.)	CHIKOVANI 66 MMSP - 12+0 PI-P R ABRAMS 67 CNTR S CHANNEL NBAR N 7	166
В	SEE NOTE 8 UNDER 62. 52.	ALLES-BOR 67 HBC 0 5.7 PBAR P 12	166
ĸ	BETWEEN 20 AND 80 SEEN IN PRAR P T	MEV KALRFLEIS 69 HRC 0 S-CHANNEL PBARP 7 TO RHOD PIO. IG-1 CASO 70 HPC - 11 201- 0 MDT C 5	/69
c C	SEEN IN RHO- PI+ P 68.0 22.0	PI- (DMEGA AND ETA ANTISFLECTED IN 4 PI SYSTEM) 5 KRAMER 70 HRC + 13.1 PI+ P.2PI 11	/70 /70*
9 B	HAS IG=1+ FROM ABS	ENCE OF PI+PI+ PEAK. THUS JP=(000) 11	/70*
• A\		AVERAGE (FRROP INCLUDES SCALE FACTOR OF 1.0)	
	32 DISIGN	MA)/D(T) (MICROBARNS/(GEV/C)**2)	
s	29.0 10.0	FOCACCI 66 MMS +22 LTE T LTE +36 9	/66
		·······	
· c	32 SIGMA	(MB) FOR FORMATION BY NUCLEON ANTINUCLEON	
S K	(0.5) (0.1) SEEN IN PBAR P	KALRFLEIS 69 HBC OS CHANNEL NBAR N 1. TO RHOO RHOO PIO.IG=1	/69
*****	********	******* ******** ******** ********	
		REFERENCES FOR T(2200)	
HIKOV OCACC BRAMS	AN 66 PL 22 233 I 66 PRL 17 890 67 PRL 18 1209	CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) +COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (ANL)	
LLFS-	80 67 NC 50 A 776 N 67 HEID8G.CONF.P.57 58 PRL 20 1059	ALLES-BORELLI,FRENCH,FRISK,+ (CERN+BONN)G=- +MASON,MUIRHEAD,FILIPPAS+ (LIVPONL+ATHENS) +HYMAN,MANNFR,MUSGRAVE,VOYVODIC (ANL)	
RICMA ASO ALBFL IONTAN	N 69 PL 29 B 451 69 NC 62 A 755 EI 69 PL 29 B 259 ET 69 LUND CONF.P.189	<pre>+FERRO-LUZZI,BIZARD,+ (CERN+CAEN+SACL) +CONTE,BENZ,+ (CENN+DESY+HAMB+MILA+SACL) G.KALBFLEISCH,R.STRAND,V.VANDERBURG (BNL) L.MONTANET, QAPPORTEUR (CERN)</pre>	
BRAMS	70 PR D 1 1917	+COOL, GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL)	
ALBEL	SO CASO 69 EI 70 PHILAD.CONF.P.409	G.KALBFLEISCH AND D.MILLER REVUES (BNL)	
RAMER	70 PRL 25 396	+BARTON+GUTAY+LICHTMAN+HILLER++ (PURDUE)	
*****	*********	****** ******** ***********************	
ρ(~	2275) 52 RHO (2275, JPG= +1 [=1	
REC	ION NICHOLSON	69 SUGGEST IG=1+,JP=5- FROM ANALYSIS OF IAL-CROSS-SECTIONS FOR PBAR PI 2PI.	
	OMITTED F	RON TABLE.	
	52 RHD (2275) MASS (MEV)	
	52 RHO (2275) MASS (MEV) ANDERSON 69 MMS - 16 PT- P.BACKH 8/	69
	52 RHO (2260.0 18.0 (2290.)	2275) HASS (MEV) ANDERSIM 60 MMS - L6 PT- P.RACKM 9, NTCHOLSON 69 CNTR 0 -7-2.4 PB P.2PT 9,	/69 /69
	52 RHO (2250.0 18.0 (2290.) 	2275) HASS (MEV) ANDERSON 60 MMS – 16 PI- P.HACKW 9, NICHOLSON 60 ONTR 0.7-2.4 PB P.2PI 9, 	/69 /69
N	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.)	2275) HASS (MEV) ANDERSON 69 NMS - 16 PI- P.RACKW 9, NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9, 	/69 /69
NN	52 RHO (2260.0 18.0 (2290.) 52 RHO () (25.0) OR LESS (165.) THE WIDTH INCLUDE	2275) HASS (MEV) ANDERSON 69 MMS - 16 PT- P.BACKW 9, NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSON 69 MMS - 16 PT- P.BACKW 9/ ANDERSON 69 CNTR 0.7-2.4 PB P.2PT 9/ S RESOLUTION.	/69 /69 /69
N N	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE:	2275) HASS (MEV) ANDERSON 69 MMS - 16 PI- P.RACKW 9, NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9, 2275) HIDTH (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW 9, NICHOLSON 69 CNTR 0.7-2.4 PB P.201 9, S RESOLUTION.	769 769 769
N N *****	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE ********	2275) HASS (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW 9/ NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW 9/ NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS, #LIEDFN+ (BNL+CARN)	769 769 769
N N ****** NDERSI ICHOL:	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: *******	2275) HASS (MEV) ANDERSON 69 MMS - 16 PI- P,BACKW 9/ NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/ 22751 WIDTH (MEV) ANDERSON 69 MMS - 16 PI- P,BACKW 9/ NICHOLSON 69 CNTR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS,BLIEDEN+ (BNL+CARN) NICHOLSON,BARISH.DELORME,+ (CALT-ROCH-BNL)	769 769 769
N N NDERSI ICHOL:	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (16%.) THE MIDTH INCLUDE: THE MIDTH INCLUDE: 0.0 69 PRL 22 1390	2275) HASS (MEV) ANDERSIN 60 MMS - 16 PI- P,BACKW 9, NICHOLSON 69 CNTR - 16 PI- P,BACKW 9, 22751 WIDTH (MEV) ANDERSON 69 MMS - 16 PI- P,BACKW 9, NICHOLSON 69 CNTR 0.7-2.4 PB P.201 9, S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS.HLIEDFN+ (RML+CARNI) NICHOLSON.RARISH.DELORME.+ (CALT+ROCH+BNL)	769 769 769
N N N N N N N N N N N I I N N I	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE MIDTH INCLUDE: THE MIDTH INCLUDE: M 69 PRL 22 1390 6 69 PRL 23 603	2275) HASS (MEV) ANDERSON 60 MMS - L6 PI- P.BACKW 9/ NICHOLSON 60 CNTR 0 .7-2.4 PB P.2PI 9/ 2275] WIDTH (MEV) ANDERSON 69 MMS - L6 PI- P.BACKW 9/ NICHOLSON 60 MMS - L6 PI- P.BACKW 9/ RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS.HLIEDFN+ (BNL+CARNI NICHOLSON.BARISH.DELDRME,+ (CALT+ROCH+BNL) ************************************	769 769 769
N N N N N N N N N N N N N	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE NITH INCLUDES 069 PRL 22 1390 50 69 PRL 23 603 51 (2350) 5 5	2275) HASS (MEV) ANDERSIN 60 NMS - 16 PI- P.BACKW 9, NICHOLSON 69 CNTR 0 .7-2.4 PB P.2PI 9, 2275] WIDTH (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW 9, NICHOLSON 9 CNTR 0 .7-2.4 PB P.2PI 9, S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS.HLIEDEN+ (CALT+ROCH+BNL) ************************************	769 769 769
N NDERSI ICHOL:	52 RHO ($2260.0 18.0 (2290.) 18.0 (2290.) 18.0 (2290.) 18.0 (2290.) 18.0 (2290.) 18.0 (2290.) 18.0 (2190.)$	2275) HASS (MEV) ANDERSIN 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 69 CNTR - 16 PI- P.RACKW 9, NICHOLSON 69 CNTR - 16 PI- P.BACKW 9, NICHOLSON 69 MMS - 16 PI- P.BACKW 9, NICHOLSON 9 CNTR 0 .7-2.4 PB P.201 9, S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS.RLIEDEN+ (RNL+CARNI NICHOLSON,RARISH.DELORVE, + (CALT+ROCH+BAL) ************************************	769 769 769
N NDERSI ICHOL:	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE THE WIDTH INCLUDE THE WIDTH INCLUDE THE WIDTH INCLUDE THE WIDTH INCLUDE 50 69 PRL 22 1390 50 69 PRL 23 603 50 69 RL 23 503 50 7 58 MASS (2350.1 (10.)	2275) HASS (MEV) ANDERSON 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR - 16 PI- P.RACKW 9, ANDERSON 69 MMS - 16 PI- P.BACKW 9, ANDERSON 69 MMS - 16 PI- P.BACKW 9, NICHOLSON 9 CNTR 0.7-2.4 PB P.201 9, S RESOLUTION. REFERENCES FOR RH012275) +COLLINS.BLIEDEN+ (RNL+CARNI NICHOLSON,BARISH.DELORWE,+ (CALT-ROCH-BARL) ************************************	769 769 769
N NDERSI ICHOL	$52 \text{ RHO (} \\ 2260.0 \\ (2290.) \\ 18.0 \\ (2290.) \\ 52 \text{ RHO (} \\ (25.0) \text{ OR LESS} \\ (165.) \\ 1 \text{ THE WIDTH INCLUDE:} \\ 1 \text{ THE WIDTH INCLUDE:} \\ 1 \text{ OR OPRIL 22 1390} \\ 1 \text{ OR OPRIL 23 603} \\ 1 \text{ OR OPRIL 23 603}$	2275) HASS (MEV) ANDERSON 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0 .7-2.4 PB P.2PI 9, 2275) MIDTH (MEV) ANDERSON 69 MHS - 16 PI- P.BACKW 9, NICHOLSON 69 CHTR 0 .7-2.4 PB P.2PI 9, S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS,RLIEDEN+ (BNL+CARNI NICHOLSON,BARISH, DELRWE,+ (CALT-ROCH-BNL) ************************************	769 769 769
N NDERSI ICHOL: NNI B B	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: THE WIDTH INCLUDE: THE WIDTH INCLUDE: THE WIDTH INCLUDE: 50 69 PRL 22 1390 50 69 PRL 23 603 50 59 RL 23 603 50 59 RL 23 100 50 8 MIDTH	2275) HASS (MEV) ANDERSON 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0 .7-2.4 PB P.2PI 9/ 2275) MIDTH (MEV) ANDERSON 69 MHS - 16 PI- P.BACKW 9/ MICHOLSON 60 CHTR 0 .7-2.4 PB P.201 9/ S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS,RLIEDENL (BNL+CARN) NICHOLSON,RARISH.DELORME,+ (CALT-ROCH-BHL) NICHOLSON,RARISH.DELORME,+ (CALT-ROCH-BHL) NICHOLSON,RARISH.DELORME,	769 769 769
	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: THE WIDTH INCLUDE: 50 69 PRL 22 1390 50 69 PRL 23 603 51 MASS (2350.) 53 MASS (2350.) (10.1) 54 WIDTH (140.)	2275) HASS (MEV) ANDERSDIN 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0 .7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSDIN 60 MMS - 16 PI- P.BACKW 9/ ANDERSDIN 60 MMS - 16 PI- P.BACKW 9/ ANDERSDIN 60 MMS - 16 PI- P.BACKW 9/ S RESOLUTION. REFERENCES FOR RH0(2275) +COLLINS.RLIEDEN+ (BML+CARN) MICHOLSON, HARISH-DELORME,+ (CALT-ROCH-BML) MICHOLSON AABLSH-DELORME,+ (CALT-ROCH-BML) MITTED FROM TABLE ARRAMS 70 CNTR S CHANNEL NRAR N 1/ STATE. MIDTH MUCH LARGER THAN IN MMS EXPT. ARRAMS 67 CNTR S CHANNEL PRAR N 7/	769 769 71*
N NN NN NN NN NN NN B B B B B B B	52 RHO (2260.0 18.0 (2290.) 52 RHO ((2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: THE WIDTH INCLUDE: 50 69 PRL 22 1390 50 69 PRL 23 603 50 69 PRL 23 603 51 MASS (2350.) 52 RHO (53 MASS (2350.) 54 MASS 55 MASS (2350.) 55 MASS (2350.) 55 MASS 55 MASS 56 MASS 57 MIDTH (140.) 56 MASS 57 MIDTH 11 MIDTH 57 MIDTH 58 MIDTH 59 MIDTH 59 MIDTH 59 MIDTH 50 MIDTH 50 MIDTH 50 MIDTH 50 MIDTH 51 MIDTH 55 MI	2275) HASS (MEV) ANDERSON 60 MMS - 16 PI- P.RACKW 9, MICHOLSON 60 CNR - 16 PI- P.RACKW 9, ANDERSON 60 MMS - 16 PI- P.BACKW 9, MICHOLSON 60 MMS - 16 PI- P.BACKW 9, ANDERSON 60 MMS - 16 PI- P.BACKW 9, S RESOLUTION. REFERENCES FOR RH0(2275) *COLLINS.RAIEDEN* (BML+CARN) MICHOLSON, FARISH DELORME, + (CALT-ROCH-SML) MICHOLSON, FARISH DELORME, + (CALT-ROCH-SML) MICHOLSON, FARISH DELORME, + (CALT-ROCH-SML) MICHOLSON AS 70 CNTR S CHANNEL NRAR N 1/ STATE. MIDTH MUCH LARGER THAN IN MMS EXPT. ARRAMS 67 CNTR S CHANNEL PRAR N 7/ STATE. MIDTH MUCH LARGER THAN IN MMS EXPT.	71* 67
N NN NN NN NN NN NN B B B B B B B B	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: 00 00 69 PRL 22 1390 00 00 00 00 00 00 00 00 00	2275) HASS (MEV) ANDERSON 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSON 60 NMS - 16 PI- P.BACKW 9/ NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. REFERENCES FOR RH0(2275) *COLLINS, RISTERFM+ (RML+CARN) NICHOLSON, AGA CNTR 0.7-2.4 PB P.2PI 9/ ANDRAKISH-DELORME,+ (CALT+ROCH+BRL) ************************************	71* 67
N NDERSSI ICHOL:	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: 1.16.0 50 69 PRL 22 1390 50 69 PRL 23 603 50 69 PRL 23 603 50 59 RL 23 603 50 59 RL 23 603 50 59 RL 23 603 50 59 RL 23 1390 50 59 RL 23 603 50 70 RL 23 603 50 70 RL 23	2275) HASS (MEV) ANDERSON 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSON 60 NMS - 16 PI- P.BACKW 9/ NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. COLLINS, RISTORY NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. ANDERSON 60 NMS - 16 PI- P.BACKW 9/ NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. ANDRAK 120751 ************************************	<pre>/69 /69 /69 /69 /69 /69 /67 /1*</pre>
N NDERSS NDERSS	52 RHO (2260.0 18.0 (2290.) 52 RHO (1 (25.0) OR LESS (165.) THE WIDTH INCLUDE: 50 69 PRL 22 1390 50 69 PRL 23 603 50 69 PRL 23 603 50 59 RL 23 70 RL 23 603 50 59 RL 23 603 50 70 RL 23 70 RL	2275) HASS (MEV) ANDERSDIN 60 NMS - 16 PI- P.RACKW 9, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ 2275) WIDTH (MEV) ANDERSDIN 60 NMS - 16 PI- P.BACKW 9, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9/ S RESOLUTION. ************************************	<pre>/69 /69 /69 /69 /67 /1*</pre>
N NOERS(I NOERS(I NNNI NNI B B B B B B B B B B B B B B B	52 RHO (2260.0 18.0 (2290.) 52 RHO (1 (25.0) OR LESS (165.) THE WIDTH INCLUDE: 	2275) HASS (MEV) ANDERSDIN 60 NMS - 16 PI- P.RACKW 0, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 0, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 0, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9, NICHOLSON 60 CNR 0.7-2.4 PB P.2PI 9, S RESOLUTION. REFERENCES FOR RH0(2275) + COLLINS.RIGEN+ *COLLINS.RIGEN+ (RNL+CARNI NICHOLSON, 60 CNR 0.7-2.4 PB P.2PI 9, S RESOLUTION. ************************************	71* 67
N NDERSI ICHOL: NNNI B B B B B B B B B B B B B B B B B	52 RHO (2260.0 18.0 (2290.) 52 RHO ((25.0) OR LESS (165.) THE WIDTH INCLUDE: 	2275) HASS (MEV) ANDERSDIN 60 NMS - 16 PI- P.RACKW P. NICHOLSON 60 CNR - 0.7-2.4 PB P.2PI 9/ 2275) HIDTH (MEV) ANDERSDIN 60 MMS - 16 PI- P.BACKW P. NICHOLSON 60 CNR - 0.7-2.4 PB P.2PI 9/ SRESOLUTION. ************************************	769 769 71* 67

1=1

U(2375) REGION

Evidence for the existence of a non-strange, I=1 meson in the 2375-MeV region, having $\Gamma \leq 30$ MeV, originally came from the CERN Missing-Mass Spectrometer group (CHIKOVANI 66). Others have since found indications of a peak in the neighborhood; the figure shows the current situation.

Removed from our figure and data cards since the last edition is some previously reported evidence for the U in the reactions $\overline{p}p \rightarrow K\overline{K}\omega$ and $\overline{p}p \rightarrow K_SK_L$ + neutrals (RING-1 69 and RING-2 69). The groups involved now have added more data and do not see any significant peak in the U region (OH 70 and private communication).

We show the CLAYTON 69 and JOHNSON 70 mass distributions, although the peaks in these experiments do not appear to line up with those of the other experiments. There is also a peak in the I=1 $\overline{p}p$ total cross section reported by ABRAMS 67, but it is 140 MeV wide and is not shown.

Although the net evidence for the U is not very strong, we continue to include it in our Meson Table because of the concurrence of several experiments on its mass and width.

33 11/2375	MASS (MEV)	
M 2382.0 24.0	CHIKOVANI 66 MMSP - 12.0 PI-P	8/66
M C (2324.0) (20.0) M C MAY BE DIFFERENT (M C 2380.4-10.15 MIST	CLAYTON 67 HBC +- 2.5PBAR,42+0MEGA BJECT. VALUE QUINTED IN HEIDEBERG PROC. OF AKE PRIV. COMM. ERDOM NUTPHEAD	11/69
4 2370. 17. M (2420.0) (25.0)	ANDERSON 69 ASPK - 16 PI- BKSCAT JOHNSON 70 HBC - 12.0 PI- P	11/69 1/71*
M 2360.0 25.0 M	OH 70 HOBC -OPBAR(P,N),K*K2PT	5/70
	AVERAGE TERROR INCLODES SCALE FACTOR OF L.OF	
33 U(2375) WIDTH (MEV)	
W (30.0) OR LESS W (57.)	CHIKOVANI 66 MMSP – 12.0 PI-P ANDERSON 69 ASPK – 16 PI- BKSCAT	8/66 11/69
W (80.0) OR LESS W (60.0) OR LESS	JOHNSON 70 HAC - 12.0 PI- P OH 70 HDBC -OPBAR(P+N),K*K2PI	1/71* 5/70
33 D(SIGM CS 42.0 14.0	A)/D(T) (MICROBARNS/(GEV/C)**2) FDCACCI 66 MMS .28 ITF T ITF .36	9/66
33 U MF S	ON BRANCHING RATIOS	
R1 U- MESON FRACTION R1 (0.30)/ 0.45/	INTO ONE / THREE / FIVE OR MORE CHARGED TRACKS 0.25 FOCACCI 66 MMS -	10/66
****** ******** ********	****** ********* ******** *************	
	REFERENCES FOR U(2375)	
FOCACCI 66 PRL 17 890	CERN MISSING MASS SPECIFUMETER GROUP (CERN)	
CLAYTON 67 HEIDBG.CONF.P.57 ALSO 71 PRIV.COMM.	+MASON,MUIRHEAD,FILIPPAS+ (LIVPOOL+ATHENS) W.MUIRHEAO (LIVP)	
ANDERSON 69 PRL 22 1390	+BLESER, BIRNBAUM, EDELSTEIN, + (BNL+CARN)	
JOHNSON 70 UH 511 77 70 DH 70 PRL 24 1257	+PETERS,STENGER,YEE (HAWA) +PARKER,EASTMAN,SMITH,SPRAFKA,MA (MICHIGAN)	
	PAPERS NOT REFERRED TO IN DATA CARDS	
ABRAMS 67 PRL 18 1209	+COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL)	
CASO 69 LNC 3 707 RINGI 69 MICH PREPRINT RING2 69	CONTERPREZ, + (GENOLDESY HAMBEHILAFSACL) +CHAPMAN, CHURCH, LYS, MURPHY, VANDERVELD(MICH) JOINT PREPRINT COMBINES RING1 AND OH 70	
LYS 70 MICH PREPRINT SMITH 70 PHILA.CONF.	J.LYS (MICH) G.A.SMITH (MSU)	
****** ******** ********	****** ******** ******* ***************	
******	****** **********	
	······································	
$\overline{NN}_{I=0}(2375) \overset{41}{\text{EV}}$	N NBAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY.	
$\frac{\bar{NN}_{I=0}(2375)}{\bar{N}_{I=0}}$	N NRAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE.	
NNI = 0 (2375)	N NBAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE.	
$\frac{N\bar{N}_{I=0}(2375)}{41}$	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. 	1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$	N NAAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N	1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41 \text{ MASS}}$	N NAAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CMTR S CHANNEL NBAR N	1/71*
NNI = 0 (2375) 41 FW M 41 MASS 41 MASS 41 WIOTH 41 WIOTH 41 WIOTH	N NRAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CMTR S CHANNEL NBAR N	1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$	N NBAR (2375) I=0 TOENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON	1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$	N NBAR (2375) I=0 TOENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR	1/71* 1/71* 1/71*
$N\bar{N}_{I=0} (2375)$ 41 FV FV 41 MASS 41 MASS 41 VIOTH 41 VIOTH 41 VIOTH 41 SIGMA CS (2.5)	N NMAR (2375) I=0 TOENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS TO CMTR S CHANNEL NBAR N ABRAMS TO CMTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS TO CMTR REFERENCES FOR N NBAR (2375)	1/71* 1/71* 1/71*
NNI = 0 (2375) 41 MASS 41 MASS 41 MASS 41 MASS 41 MASS 41 MIOTH 41 SIGMA CS (2.5) RB ICMAN 69 PL 29 B 451 41 SIGMA	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (237%) +FERENCLUZZI, RIZABO, +	1/71* 1/71* 1/71*
$N\overline{N}_{I=0} (2375)$ 41 FV 6M 41 MASS 41 MASS 41 41 MASS 41 41 41 41 41 41 41 41 41 41 41 41 41	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CMTR REFERENCES FOR N NBAR (2375) +FERRO-LUZI, ATLARD, +. (CERN+CAEN+SACL) +COOL, GIACOMELLI, KYCIA, LEONTIC, LI, + (BML)	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS M 2375. 10. 41 WIDTH W (190.) 41 SIGMA CS (2.5) RRICMAN 69 PL 29 B 451 ARRAYS 70 PR D L 1017	N NAAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) +FFRRO-LUZI, MIZARD, + (CERN+CAEN+SACL) +COOL, GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL)	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS 41 MASS 41 MASS 41 MASS 41 MASS 41 MIOTH 41 MIOT	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (237%) *FERRO-LUZZI.RIZARO.+ (CERN+CAEN+SACL) *COOL.GIACOMELLI.KYCIA.LEONTIG.LI.+ (BNL) *COOL.GIACOMELLI.KYCIA.LEONTIG.LI.+ (BNL) *COOL.GIACOMELLI.KYCIA.LEONTIG.LI.+ (BNL)	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS M 2375. 10. 41 WIOTH W (190.) 41 SIGMA CS (2.5) RRICMAN 69 PL 29 E 451 ARRAY 70 PR D L 1917 (2500) 46 x- (0)	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CHTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) +FFRRD-LUZZI,RITARD,+. (CERN+CAEN+SACL) +COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL) 2500, JPG= J I=1 OR 2 ED FROM TABLE	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS M 2375. 10. 41 WIDTH W (190.) 41 SIGMA CS (2.5) RRICMAN 69 PL 29 B 451 ARAMS 70 PR D 1 1917 MARAMS 70 PR D 1 1917 ARAMS 70 PR D 1 1917	N NAAR (2375) 1=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) +FFRRO-LUZZI, MIZARD, + . (CERN+CAEN+SACL) +COOL, GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL) 2500, JPG=) 1=1 OR 2 ED FROM TABLE 500] MASS (MEV)	1/71+ 1/71+ 1/71+
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS M 2375. 10. 41 WIDTH W (190.) 41 SIGMA CS (2.5) RRICMAN 69 PL 29 E 451 ARRAYS 70 PR D 1 1917 M (2500) 46 x- (1) M (2500.0 32.0	N NAAR (2375) 1=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) +FFRRO-LUZZI, NITARD, +. (CERN+CAEN+SACL) +FFRRO-LUZZI, NITARD, +. (CERN+CAEN+SACL) +FFRRO-LUZZI, NITARD, +. (CERN+CAEN+SACL) 2500, GIACOMFLLI, YCTALLEONTIC, 11 + (BRL) 2500, JAGE) 1=1 OR 2 ED FROM TABLE 500) MASS (MEV) ANDERSON 69 MMS - 16 PI- P.BACKM9	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 41 41 41 41 41 41 41 41 41	N NAAR (2375) 1=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (237%) +FERRD-LUZZI, AFLARD, F. CODU, GLACUFHELI, YCCALLEONTIG, II+ (BRL) ************************************	1/71* 1/71* 1/71*
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS M 2375. 10. 41 MASS M (190.) 41 MIDTH 41 NIDTH 41 SIGMA CS (2.5) RRICMAN 60 PL 29 R 451 ARRAY 70 PR D 1 1917 ARRAY 70 PR D 1 1917 46 X- (2 M 2500.0 32.0 46 X- (2 M (87.0)	N NRAR (2375) 1=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CMTR S CHANNEL NBAR N (NR) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CMTR (NR) FOR FORMATION BY NUCLEON TABLE 5000, JACOMELLI, XY CALLEONTIC, 11+ (RN) 2500, JPG= 1 I=1 OR 2 E0 FROM TABLE 5000 MASS (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW9 500) MIDTH (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW9	1/71* 1/71* 1/71* 8/69
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS 41 MASS 41 MASS 41 MASS 41 MIDTH 41 WIDTH 41 SIGMA (100.) 41 SIGMA (25 (2.5) 41 SIGMA (5 (2.5) 46 X- (2 M 2500.0 32.0 46 X- (2 M (87.0)	N NRAR (2375) 1=0 IDENCE FOR RESONANCE PRELIMINARY. ITED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) +FFRRO-LUZZI, RIZARD,+ . (CERN+CAEN+SACL) +COOL, GIACMELLI,*YC (A,LEGNTIC,LI)+ (BNL) 2500, JPG= 1 I=1 OR 2 ED FROM TABLE 	1/71* 1/71* 1/71* 8/69
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS 41 MASS 41 MASS 41 MASS 41 MASS 41 MASS 41 MIOTH 41 SIGMA CS (2.5) CS (N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CMTR S CHANNEL NBAR N ABRAMS 70 CMTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CMTR (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CMTR REFERENCES FOR N NBAR (237%) +FERRO-LUZZI, RIZARD, + . (CERN+CAEN+SACL) +CODL, GIACOMELLI, KYC (A, LEONTIC, LI, + (BNL) CODL, GIACOMELLI, KYC (BNL+CARN)	1/71* 1/71* 1/71* 8/69
$\frac{N\bar{N}_{I=0}(2375)}{41}$ 41 MASS 41	N NMAR (2375) I=0 IDENCE FOR RESONANCE PRELIMINARY. ITTED FROM TABLE. ABPAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N ABRAMS 70 CNTR S CHANNEL NBAR N (MB) FOR FORMATION BY NUCLEON ANTINUCLEON ABRAMS 70 CNTR REFERENCES FOR N NBAR (2375) *FGRO-LUZZI.AIZARO.+. (CERN+CAEN+SACL) *COOL,GTACOMELI,KYCTA,LEONTIC.LI,+ (BML) 2500, JPG= 1 I=1 OR 2 ED FROM TABLE 500) MASS (MEV) ANDERSON 69 MMS - 16 PI- P.BACKW9 S00) MIDTH (MEV) ANDERSON 69 MMS - 16 PI- P.RACKW9 REFERENCES FOR X-(2500) *COULINS.+ (BNL+CARN)	1/71* 1/71* 1/71* 8/69 9/69

For notation, see illustrated key at beginning of data card listings.

From Baud et al. paper, presented by G. Damgaard, Proceedings 1970 Philadelphia Conference.

$X^{-}(2620)$ through $X^{-}(3535)$

The figure on this page shows the X^{-} spectrum, as studied with the CERN Boson Spectrometer. The background is not shown but is about ten times as large as the signal. Uncertainties in where to draw this background make it extremely difficult to measure the width of these peaks, or to judge their statistical

48 X- (2620) WIDTH (MEV)	
M 550 R5. 30. BAUD 69 MMS - 8,-10,-P1-P W (150.0) CASO 70 HRC - 11.2P1-P.NOTE C N C SEEN IN RHD-P1+P1-(OMEGA AND ETA ANTISELECTED IN 4 P1 SYSTEM)	9/69 5/70 5/70
****** ******** ******** *****	
REFERENCES FOR X-(2620)	
BAUD 69 PL 30B 129 CERN BOSON SPECTROMETER GROUP (CERN) CASO 70 LNC 3 707 +CONTE,TOMASINI,CORDS+(GENO+HAMB+MILA+SACL)	
******* ********* *********************	
$X^{-}(2800)$ 49 X- (2800, JPG=) I=1 (TR 2	
OMITTED FROM TABLE	
49 X- (2800) MASS (MEV)	
H 640 2800. 20. BAUD 69 MMS - B10. PI- P	9769
W 640 46. 10. BAUD 69 MMS - 8LO. PT- P	9/69
****** ******** ********* ******** *****	
REFERENCES FOR X-(2800)	
BAUD 69 PL 30B 129 CERN BOSON SPECTROMETER GROUP (CERN)	
BAUD 69 PL 308 129 CERN BNSON SPECTPOMETER GROUP (CERN)	
BAUD 69 PL 308 129 CERN BNSON SPECTPOMETER GROUP (CERN) V (2880) (2000)	
BAUD 69 PL 30B 129 CERN BNSON SPECTPOMETER GROUP (CERN) X (2880) 50 X- (2800, JPG=) 1=1 DR 2 1=1 DR 2	
BAUD 69 PL 30B 129 CERN BRSON SPECTPOMETER GROUP (CERN) X (2880) 50 x- (2880, JPG=) (1=1 OR 2 0MITTED FROM TABLE 0MITTED FROM TABLE	
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 X- (2880, JPG=) 1=1 DR 2 OMITTED FROM TABLE OMITTED FROM TABLE	
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 X- (2880, JPG=) I=1 DR 2 OMITTED FROM TABLE OMITTED FROM TABLE 50 X- (2880) 445 445 445 445 50 X- (2880) MASS (MEV) 445 450 450 460 M 230 20. BAUD 69 MMS - 810. PI- P 450	9/69
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 X- (2880, JPG=) I=1 DR 2 OMITTED FROM TABLE OMITTED FROM TABLE 50 X- (2880) MASS (MEV) MASS (MEV) M 230 2880. 20. BAUD 69 MMS - 810. PI- P	9769
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X-(2880) 50 X- (2880, JPG=) I=1 DR 2 OMITTED FROM TABLE OMITTED FROM TABLE 50 X- (2880) MASS (MEV) MASS (MEV) M 230 2880. 20. BAUD 69 MMS - 810. PI- P 50 X- (2890) MIDTH (MEV) MIDTH (MEV)	9/69
BAUD 69 PL 30B 129 CERN BISON SPECTROMETER GROUP (CERN) X ⁻ (2880) 50 X- (28R0, JPG=) I=1 DR 2 OMITTED FROM TABLE OMITTED FROM TABLE 50 X- (2880) MASS (MEV) MASS (MEV) M 230 2880. 20. BAUD 69 MMS - 810. PI- P 50 X- (280) MIDTH (MEV) V 230 15. DR LESS BAUD 69 MMS - 910. PI- P	9769
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 X- (28R0, JPG=) I=1 DR 2 OMITTED FROM TABLE 0MITTED FROM TABLE 50 X- (2880) MASS (MEV) MASS (MEV) M 230 2880. 20. BAUD 69 MMS - 810. PI- P 50 X- (2890) MIDTH (MEV) W 230 15. DR LESS BAUD 69 MMS - 910. PI- P	9769
BAUD 69 PL 30B 129 CERN BISON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 x- (2880, JPG=) I=1 DR 2 0MITTED FROM TABLE 0MITTED FROM TABLE 50 x- (2880) MASS (MEV) 4 230 2880. 20. BAUD 69 MMS - 810. PI- P 50 X- (2890) MIDTH (MEV) W 230 15. OR LESS BAUD 69 MMS - 910. PI- P REFERENCES FOR X-(2880)	9769
BAUD 69 PL 30B 129 CERN BOSON SPECTPOMETER GROUP (CERN) X ⁻ (2880) 50 x- (2880, JPG=) I=1 DR 2 0MITTED FROM TABLE 50 x- (2880) MASS (MEV) M 230 2880. 20. BAUD 69 MMS - 810. PI- P S0 X- (2890) MIDTH (MEV) M 230 15. OR LESS BAUD 69 MMS - 910. PI- P REFERENCES FOR X-(2890) REFERENCES FOR X-(2890) BAUD 69 PL 30B 129 CERN BUSON SPECTROMETER GROUP (CERN)	9769
BAUD 69 PL 30B 129 CERN BISON SPECTROMETER GROUP (CERN) X ⁻ (2880) 50 X- (2880, JPG=) I=1 DR 2 OMITTED FROM TABLE 0MITTED FROM TABLE 50 X- (2880) MASS (MEV) MASS (MEV) M 230 20. BAUD 69 MMS - 810. PI- P 50 X- (2880) MIDTH (MEV) MID 9 MMS - 910. PI- P REFERENCES FOR X-(2890) BAUD 69 MMS - 910. PI- P CERN BAUD 69 MMS - 910. PI- P CERN BAUD 69 MMS - 910. PI- P CEFRENCES FOR X-(2890) BAUD 69 PL 30B 129 CERN BAUD 69 MMS - 910. PI- P	9769

For notation, see illustrated key at beginning of data card listings.

This note is divided into two discussions:

I. Basic difficulties in determining the mass difference because of interferences and biases.

II. Impossibly small errors reported by some experiments. We have increased some errors that violate the laws of statistics, and scaled up some errors that are inconsistent; but we warn that most of the errors in our data cards are inconsistent. One cannot then obtain a K^{*} mass difference by calculating an average mass for K^{*_0} and for $K^{*\pm}$ and just subtracting the two.

I. BASIC DIFFICULTIES

There are two difficulties in measuring a mass difference $m(K^{*0}) - m(K^{*\pm})$ of ~7 MeV when the halfwidth $\Gamma/2$ of the K^{*} is 25 MeV:

1) Interference between the resonant amplitude and background can in general shift the peak in the mass spectrum by some fraction of $\Gamma/2$.

2) The two charges of K^* have different topologies; this introduces differences in the measuring and fitting of the events, which can also produce mass shifts.

Some reactions (symmetric under reflection of I_) are immune to the first difficulty. Thus compare the mass of K^{*0} produced in

with the mass of K^{*+} in the I_z -reflected reaction

The final-state amplitudes of each will contain not only the $|K^*\rangle$ with Ispin 1/2, but also an interfering I = 3/2 P-wave, which we can call $|K_{3/2}^*\rangle$. But I_z symmetry

forces $\langle \pi \bar{p} | \Lambda K^{*_0} \rangle$ to equal $\langle \pi^{+}n | \Lambda K^{*+} \rangle$; and similarly for the two $K_{3/2}^*$ amplitudes, so that the shifting of the K^* peak is the same in both reactions. Nobody has published a mass difference exploiting this fact.

II. IMPOSSIBLY SMALL ERRORS

Consider a sample of N events, with their invariant masses m distributed as an S-wave Breit-Wigner resonance:

.e.,
$$P(\epsilon - \epsilon_R) = \frac{1/\pi}{(\epsilon - \epsilon_R)^2 + 1}$$
 (1)

where $\varepsilon=\frac{m}{\Gamma/2}$, $\varepsilon_R=\frac{m_R}{\Gamma/2}$. One can then show that the minimum possible error on the determination of the central value ϵ_{R} is

i

$$\delta_{\min}(\epsilon_R) = \pm \sqrt{\frac{2}{N}}$$
, i.e., $\delta_{\min}(m_R) = \pm \sqrt{\frac{2}{N}} \frac{\Gamma}{2}$. (2)

This lower limit assumes no background events. In practice, with background, the error will be larger, by another factor $\alpha \approx \sqrt{2}$.

We illustrate errors with small and large backgrounds with a table summarizing the recent experiment ("Unsplit K^{*}'s") by DAVIS 69.

Mass Errors ôm of DAVIS 69

Sample with 5% background/signal at peak Events: $K^{*}(892)$, 10 700 events in resonance, $\frac{1}{2} \approx 25$ MeV. Lower limit from Eq. (2), $\delta_{\min}(m) = \sqrt{\frac{2}{N}} \frac{\Gamma}{2} = \pm 0.35 \text{ MeV}.$ Their likelihood fit yields two sorts of errors:

$$\frac{\delta_1(m)}{(background, width, etc.)} \text{ fixed, vary m only:}$$

$$\delta_1(m) = \pm 0.41, \ \delta_1(m)/\delta_{min}(m) = 1.16.$$

 $\delta_2(m)$. As m is varied, reoptimize other parameters. $\delta_2(m) = \pm 0.53, \ \delta_2(m) / \delta_{min}(m) = 1.5.$

DAVIS 69 mention $\delta_2 = 0.53$, but to hedge against sys-

tematic effects, they quote $\delta_3 = 2$ MeV. We punch 2 MeV.

Sample with 50% background/signal at peak. Γ

Events: $K^{*}(1420)$, 2200 events in resonance, $\frac{1}{2}$ = 50 MeV. $\delta_{\min}(m) = 1.6 \text{ MeV},$ $\delta_{4}(m) = \pm 2.2 \text{ MeV}, \quad \delta_{4}(m)/\delta_{min}(m) = 1.4,$

$$\frac{1}{\delta_2(m)} = \pm 2.6 \text{ MeV}, \quad \delta_2(m)/\delta_{\min}(m) = 1.6.$$

Width Errors δΓ of DAVIS 69

For width, the equivalent of Eq. (2) is $\delta_{\min}(\Gamma)$ = $\pm \sqrt{\frac{8/3}{N}} \frac{\Gamma}{2}$ = 1.15 $\delta_{\min}(m)$. For convenience we neglect the factor 1.15 and use $\delta_{\min}(\Gamma) \approx \delta_{\min}(m)$. • 5% background, K^{*}(892):

- $\delta_2(\Gamma) = \pm 1.6 \text{ MeV}, \ \delta_2(\Gamma)/\delta_{\min}(m) = \frac{1.6}{0.35} = 4.6.$ 50% background, K^{*}(1420):

 $\delta_2(\Gamma) = \pm 10 \text{ MeV}, \ \delta_2(\Gamma) / \delta_{\min}(m) = \frac{10}{1.6} = 6.25.$

For notation, see illustrated key at beginning of data card listings.

We note that $\delta_2(m)/\delta_{\min}(m)$ does not change rapidly with background (1.5 at 5%, 1.6 at 50%) and hence conclude that it is hard to believe an error with δ_2/δ_{\min} < 1.4 = $\sqrt{2}$. We chose $\sqrt{2}$ because together with Eq. (2) it leads to the simple "realistic" result

$$\delta(m) > \sqrt{2} \sqrt{\frac{2}{N}} \frac{\Gamma}{2} = \frac{\Gamma}{\sqrt{N}} . \qquad (3)$$

We conclude that for a sensitive subtraction like $m(K^{*0}) - m(K^{*\pm})$, the experiments as listed are useless, and we must either re-evaluate them all or concentrate on those two experiments that explicitly quote a mass difference. For a detailed discussion of how we have actually treated those experiments, we refer to the January 1970 edition of this note.

The table above also allows us to concoct a criterion for "realistic" errors in width $\delta(\Gamma)$. We average the 5% and 50% background results [to give $\delta(\Gamma)/\delta_{\min}(m) \approx 5$ to 6] and express the result in terms of Γ , in the style of Eq. (3). We then get the "realistic" test for widths:

$$\delta \Gamma > 4 \frac{\Gamma}{\sqrt{N}} \quad . \tag{4}$$

			18 K* (8	892) WIDT	H (MEV)					
w	CHARGED	ONLY. T	HIS IS WHAT	APPEARS	ON MESON	TAB	E			
		46.0	8.0		CHADWICK	63	HBC	+	1.5 K+P	
W	3870	46.0	3.0		ADELMAN	64	HBC	-	1.7 K-P	6166
2		47.0	4.0		FEBRO-LUZ	7 65	HBC	+	3.0 K+P	0700
ŵ		50.0	15.0		GELSEMA	65	HBC	-	1.5 K-P	
Ŵ.		50.	5.		BOMSE	67	HBC	+	2.3 K+P	7/67
w	D	(56.)	(4.5)		DE BAERE	67	нвс	+	3.5 K+P (KO PI+)	7/67
W	O VALUE	ABOVE	SUPERSEDED	BY DE BA	ERE 70 BEL	-0W				1/71*
м.		53.	.8.		DE BAERE	. 67	HBC	•	3.5 K+P (K+ P10)	7/6/
W .		68.	10.		SALLSTROM	4 4 7	HBL	:	3. K+ P (KU P(+)	7/67
Ξ.		44.	7.		BARLOW	67	HRC	÷	1.2 PBAR P	11/66
ŵ.		43.	9		BARLOW	67	HBC	+-	1.2 PBAR P	11/66
w		53.	7.		BARLOW	67	нвс	*	1.2 PBAR P	11/66
W		(43.)			CONFORTO	67	нвс	+	O. PBAR P	9/67
w		58.	7.		ADERHOLZ	68	HRC	-	10 K- P	6/68
W		58.	16.		FICENECI	68	HBC	-	1.3 K-P (K-PIO)	9/67
н.		44.	13.		FICENEC1	68	HBC	-	1.3 K-P (KOPI-)	9/67
Ψ.		41.0	8.0		SCHWEINGE	2 68	HBC	-	4.1 K-P	9/6/
н Ц		67.0	4.0		SCHWEING	60 2	HAC	-	2.7 K- P/K-PION	2/60
Ξ.		49.0	13.0		FICENEC2	68	HRC	-	2.7 K- P(K-P10)	2/69
Ξ.		52.0	8.0		KANG	6.8	HBC	-	4.6 K- P	7/69
ŵ.		(27.0)	(8.0)	(6.0)	ERWIN	69	HBC	•	3.5 K+ P	9/69
w		53.	3.		FRIEDMAN	69	HBC	-	2.1 K-P (38DY).	9/69
w		49.	4.		FRIEDMAN	69	нвс	-	2.45 K-P (3BDY)	9/69
М		46.	2.		FR IEDMAN	69	HBC	-	2.6 K-P (38DY)	9/69
w		49.	3.		FRIEDMAN	69	нвс	-	2.7 K-P (38DY)	9/69
w		50.	· · .		LIND	69	HBC	+	9. K+ P	5//0
Ξ.		57.0	3.0		CHARRIER	70	HBC	:	8.25 K+ P	1/71
		70.0	4.0		DE BAERE	70	HBC	1	5.0 KA P	1/71
ü.					WE DALKE	10			2.0 K. I	
W	AVG	50.3	1.1 (SEE 1	AVERAG DEGGRAM	E (ERROR BELOW)	INCL	UNES	SCAL	E FACTOR OF 1.3)	
w	MIXED	CHARGED	AND NEUTRA		ABULATED					
W	200	60.0	5.0		AL EXANDER	R 62	HBC	+ 0	2.2 PT-P	
w.		51.8	3.5		FERRO-LUZ	2 65	HBC	+ 0	3.0 K+P	6/66
8		(40.0)	10		COCNCH	47	HBC	+ 0	3.0 PI- P	6/67
		ou.	10.		FRENCH	n /	nou	+-0	3-4 PBAR P	0/0/
Ŵ	AVG	54.9	2.8	AVERAG	E (ERROR	INCL	UDES	SCAL	E FACTOR OF 1.0)	
W	NEUTRAL	ONLY.								
W	70	60.0	10.0		COLLEY	62	HBC	0	2.0 PI-P	
۳.	200	50.0	5.0		KRAENER	63	HBC	0	2.3 K+P	
н.	150	(50.0)			SMITH	63	HBC	0	2.3 91-9	11/66
W		34	13.		BARLOW	67	HBC	0	1.2 PRAR P	11/66
ũ.		(43.)			CONFORTO	67	HBC	ő	O. PBAR P	9/67
ŵ		44.	4.		DAUBER	67	HBC	ō	2.0 K- P	12/66
W		58.	8.		DE WIT	68	DBC	ō	3. K- D	9/69
W		52.	12.		FICENEC 1	68	нвс	0	1.3 K-P (K-P[+)	9/67
W		50.0	8.0		FICENEC 2	68	H 8C	0	2.7 K- P(K-P[+)	2/69
W		48.0	8.0		KANG	68	HRC	0	4.6 K- P	7/69
W		51.0	11.0		SC HWE INGE	R 68	HBC	0	5.5 K-P	9/67
H.	10700	53.0	11.0		SCHWEINGE	< 68	HRC	0	4.1 K-P	9/67
× .	10700	53.2	1.6		DAVIS	69	HHC	0		9/69
ni W	0 2000 D DE 846	58.0 BE E800	RS ENLARCED		OC DAERE	150P	TIN	. SEF	TYPED NOTE.	11/69
Ŵ	4000	54.0	3.0		HABER	70	DBC		3. K-N	5/70
w	1000							-		
w.	AVG	52.2	1.2	AV FRAG	E (ERROR)	INCL	IDES	SCAL	E FACTOR OF 1.0)	

OMITTED FROM TABLE.

For a recent review of $K\pi$ phase shifts, see ASTIER 70. However, there may be more structure than reported at Kiev, but the final results (superseding TRIPPE 68, SCHLEIN 69) are not yet public, so we refrain from further comments here on phase shift analyses.

→Kπ

As to the existence of peaks in the $K\pi$ mass distribution in this region, the situation is as follows (for histograms see our August 1970 edition in Phys. Letters 33B, 1):

• DODD 69, compiling ~7600 $\text{K}^+\text{p} \rightarrow \text{K}_{S}\pi^+\text{p}$ events produced at 3-3.5 GeV/c, see an excess of events at M = 1080 MeV and a small peak at M = 1260 MeV, $\Gamma \approx 70$ MeV. Antiselecting for Δ_{33}^{++} , the peak is enhanced to 4.6 σ .

• CRENNELL 69 have $3044 \text{ K}^{-}n \rightarrow \text{K}_{S}\pi^{-}n$ events produced at 3.9 GeV/c, and see a 5 σ peak at M = 1160 MeV, Γ = 90 MeV, without Δ_{33} antiselection. The effects of DODD 69 and CRENNELL 69 tend to cancel, if added.

• FIRESTONE 70 see a spike at $M = 1247 \pm 5$ MeV, $\Gamma = 20 \frac{+9}{-6}$ MeV in the reaction $K^{+}n \rightarrow K^{+}\pi^{-}p$ at 12 GeV/c.

• The international K^+ compilation (private communication, V. Henri, CERN) has 77,220 $K^+p \rightarrow K^+\pi^-p\pi^+$ events produced at 2.5-12.7 GeV/c, and see no structure in the $K^+\pi^-$ mass distribution.

Thus the combined information on narrow peaks is contradictory or cancelling, to the extent that no safe conclusions can be drawn about the existence of resonances.

		REFERENCES FOR KN(1080-1260)	
TRIPPE 68 PL	28 B 203	+CHIEN, MALAMUD, MELLEMA, SCHLEIN, +	(UCLA)
CRENNELL 69 PRL DODD 69 PR 1 GOLDBERG 69 PL 3 SCHLEIN 69 ARG	22 487 177 1994 30 B 434 DNNE CONE. 446	+KARSHON,LAI,O.NEALL,SCARR +JOLDERSMA,PALMER,SAMIDS SABRE COLLABOR. (SACL+AMST+BGNA+REHO P.SCHLEIN	(BNL) (BNL) (HEPOL) (UCLA)
FIRESTON 70 UCF ASTIER 70 KIE	RL-20091 V CONF.	A.FIRESTONE.G.GOLDHABER.D.LISSAUER RAPP.TALK ON BOSON RESONANCES	(LRL) (COF)
****** ********	• ********* *** • ********	1×14×1×* *******************************	* * * * * * * * * * * * * * * * *
K _{A,I=3/2}	(1175)	24 KA 3/2 (1175, JP= 1 I = 3/2 EVIDENCE NOT COMPELLING, OMITTED FRO FOR A DISCUSSION SEE ROSENFELD 68 AM GIACOMELLI TO WHO CONCLUPES THAT IF STATE WAS WIDTH NOT LARGER THAN IOO THEN ITS PRODUCTION CORSS SECTION IS ORDERS OF MAGNITUDE SMALLER THAN THA NON-EXDIC K*S.	M TABLE. ID THIS MEV. 5 L OR 2 IT DE
WANGLER 64 PL MILLER 65 PL ROSENFEL 69 PHI	9 71 15 74 L4.CONF.P.455	REFERENCES ON KA3/2(1175) T P WANGLER,A R ERWIN,W D WALKER (WI MILLER,KOVACS,WCILWAIN,PALEREY + (P A.H.ROSENFELD	SCONS) URDUE) (LRL)
0000 69 PR CHO 70 PL GTACOMEL 70 PL	177 1991 32 8 409 33 8 373	+JOLDERSMA, PALMER, SAMIOS +DERRICK,JOHNSON,MUSGRAVE,+ (ANL+NWES G.GIACOMELLI + (BGNA+SACL+ZEEM+REHO	(BNL) ;+KANS) ;+EPOL)
****** *******	* ********* ** * ******** **	****** ******** ******** ******* ****** ******	******* *******
$K_{A,I=3/2}$	(1265)	25 KA 3/2 (1265,JP=) I = 3/2 •EVIDENCE NOT COMPELLING. OMITTED FRO FOR A DISCUSSION SEE ROSENFELD 68.	DM TABLE.
		REFERENCES DN K*3/2 (1265)	
FRENCH 67 NC ROSENEEL 68 PHI CHO 70 PL	52A 442 LA.CONF.P.455 32 B 409	+KINSON+MCDONALD+RIDDIFORD+ (CERN A+H-ROSENFELD +DERRICK+JOHNSON+MUSGRAVE++ (ANL+NWES	<pre>I+BIRM) (LRL) S+KANS)</pre>
****** ******* ****** ******	* ******** **	******* ********* *********************	******* *******
Q	REGION	Ν, Κππ(1240-1400)	

There is a peak in the $K^*\pi$ spectrum centered at about 1300 MeV, or just about 270 MeV above $K^*\pi$

threshold. The $Q(\rightarrow K^*\pi)$ is then the hypercharge = 1 analog of the Al($\rightarrow \rho\pi$), and its interpretation as resonance vs. threshold enhancement is ambiguous. (For more discussion see text Sect. III and the note on "Al, A3, Q, L", just before the Al in these listings.)

However, in the case of the Q region, there are two a<u>dditional</u> complications:

1) The $K_{A}^{*}(1240)$ or "C" meson, with width only 120 MeV, seems to be produced nondiffractively in $\overline{p}p$ capture at rest, and in the reaction $\pi^{-}p \rightarrow \Lambda K \pi \pi$.

2) The Q peak in the $K_{\pi\pi}$ mass distribution does not have a simple Breit-Wigner shape (FIRESTONE 70 and private communication from V. Henri, CERN). It can be fitted by two Breit-Wigner shapes (5-parameter fit) at all energies with reasonable χ^2 (FIRESTONE 70).

The figure shows M and Γ for all peaks reported in this region. We list first the results of the $\overline{p}p$ production of the "C", and the $\pi^-p \rightarrow \Lambda Q^0$ experiment, so as to separate them from the conventional diffractive experiments $K^{\pm}p \rightarrow Q^{\pm}p$. The remaining Q reports are ordered by increasing mass.

The dominant $J^{\mathbf{P}}$ assignment throughout the Q region is 1^{\dagger} . $K^*\pi$ is the dominant decay mode. While there is Kp and interference between $K^*\pi$ and Kp, there is no evidence for other decay modes. From the coherent production of Q in K⁻d experiments, I = 1/2 is confirmed.

For notation, see illustrated key at beginning of data card listings.

			2R Q RE	GION WIDTH	IS (MEV)							
W	PRODUCE	D BY BEAM	S OTHER	THAN K MES	ONS						-	
W		127.0	7.0	25.0	ASTIER	69	HBC	0	PB	AR	ρ	4164
Ŵ	Δ.	ERRORS OF	ASTIER	69 ARE STA	TISTICAL.	TPI	JE UN	CERT	AIN	ŦΥ	IS LARGER	
ŵ.	45	(60.)			CRENNELL	67	нвс	0	6	РI-	Р	1767
Ŵ												
Ŵ	PRODUCE	D BY K BE	AMS									
ŵ.	M=1230				BASSOMPTE	67						
ü.	0	(60.0)	(20.0)		BASSOMPLE	67	HBC	+	5.	К+	Р	11/67
ü	M=1260				ALEXANDER	69						
w	c	(40.0)	(10.0)		ALEXANDER	69	нвс		9.	0 K	+ P	5/70
ü	M=1260				FARBER	70						
ŵ		180.	28.		FARBER	70	HBC	+	12	•7	K+ P	6/70
ü.	M=1270	APPPDX.			DE BAERE	67						
ü		(200.)	APPROX.		DE BAERE	67	HBC	+	3.5	K+	P	7/67
ü.	4=12.80				SHEN	66						_
ü	0	(100.0)	(20.0)		SHEN	66	HBC	+ 0) 4.	6 K	+P,5 BODY	11/67
ŵ	M=1280				BASSOMPIE	67						
ü	C 35	(80.0)	(20.0)		BASSOMPLE	67	нвс	+	5.	. К 🕈	P	11/67
ü	M=1281				FRIEDMAN	69						•
ü		51.	22 .		FRIEDMAN	69	HBC	-	2.	6,2	•7 K- P	9/69
ä.	M=1300				ERWIN	69						
ũ.	21	40.0	15.0		ERWIN	69	HBC	0) 3.	5 K	(+P(K* PI)	9/69
ü	4≈1300				ABRAMS	70						
ŵ		80.0	20.0		ABRAMS	70	нвс	+	2.	.5-3	8.2 K+ P	11//0
ü	M=1301				BISHOP	69						
ü	45	40.0	10.0		BISHOP	69	нвс	+	3.	5 K	(+P(K* P[)	9769
ü	M= 1300	APPROX.			BARBARO	69						
ü	R	250. AP	PROX.		BARBARD	69	HBC	+	12	• K +	F P (K 2PT) 9769
w	8	NO BACKG	ROUND SU	STRACTION.								
÷.	M=1320				ALMEIDA	65						
ü.	12	60.0	20.0		ALMEIDA	65	нвс	+	3-	·5 M	(+P	8766
ŵ	M≈1320				SHEN	66						
Ŵ	C 70	(80.0)	(20.0)		SHEN	66	нвс	+	4.	.6 1	(+P	8766
Ŵ.	M≈1320				BASSOMPIE	67						
ŵ	c	(60.0)	(20.0)		BASSOMPIE	67	нвс	+	5.	. к	• P	11/6/
ŵ.	M=1325				BARTSCH	-68						
ÿ		196.0	16.0		BARTSCH	68	нвс		10.	. к	- P.K NPI	. 9769
Ŵ	M=1380				AL FXANDER	69						
Ŵ	c	(120.0)	(20.0)		ALEXANDER	- 59	HBC		9.	• 0 +	<+ P	5/70
w	с	SPLIT TH	E Q REGI	ON INTO SE	VERAL PEAK	s.	NOT	AV ER	AGE).		
Ŵ				•								
w	AVG	82.5	21.6	A V ER A G	E (ERROR L	NCL.	UDES	SCA	LE	- AC.	TUR UF 3.8	·.
			(SEE	IDEDGRAM	RELOW)							

BARTSCH 68 NP B8 9 +CCCCONL+ (AACH+BFRL+CERN+LDIC+VIEN) ROMSE 68 PRL 20 1519 +RORENSTEIN,CALLAHAN,COLE,COX+ (JOHNHOPK) 1+ DEVEGRI 69 PPL 20 1194 +CALLAHAN+FTTLINGFR+GILLESPIE+ (JOHNHOPK) 1+ 4LSO 70 ANTICH

REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II S94

For notation, see illustrated key at beginning of data card listings.

lesons

For notation, see illustrated key at beginning of data card listings.

	CHARGED ONLY, WITH OTH 105.0 30.0 8 240 110. 25. AVG 104.0 19.2 CHARGED AND NEUTRAL 92.0 100. 0 20.0 107.0 20.0 AVG 85.9 8.4 NEUTRAL ONLY 61.0 24.0 116.0 17.0 9.420 110.2 8.4 VAG 101.2 8.4 (55	IER FINAL STATES RADIER 65 HBG RASSONPIE 65 HBG AVERAGE (ERROR INCLUDE:) FOCARDI 65 HBG SHEN 65 HBG BASSAND 65 HBG BASSAND 67 HBG GOLDHABER 75 HBG GOLDHABER 75 HBG AVERAGE (ERROR INCLUDE: AVERAGE (ERROR INCLUDE: E IDEGGAM BELOW) AVERAGE (ERROR INCLUDE: E IDEGGAM BELOW)	 3.0 K-P 5 K+P (K 2P1) 5 SCALE FACTOR OF 1.0) -0.3.0 K-P (K P1) -0.4.6 K+P -0.4.145.5 K-P SCALE FACTOR OF 1.0) 0.3.8-4.2 P1-P 0.4.6 K-P 0.5 K+P (K P1) SEE K4 TYPEN NITE. 0.12. K*P (K P1) SCALE FACTOR OF 1.1) 	6/66 11/69 8/66 10/67 10/67 9/67 9/67 9/69 11/69 11/69 9/69
	HE 20 60 KN (1420) HID	IGHTED AVERAGE = 101.3 ERROR SCALED BY 1.	2 ± 0.4 1 69 HBC 0.0 VIE 69 HBC 0.2 68 HBC 0.9 67 HBC 2.8 3.7 220 =0.29 ()	Q
P1 P2 P3 P4 P5	22 KN KN(1420) INTO K KN(1420) INTO K KN(1420) INTO K KN(1420) INTO K	(1420) PARTIAL DECAY MODES PI «Rooi PI RHO OMEGA ETA	DECAY MASSES 493+ 139 992+ 139 493+ 785 493+ 783 493+ 783	
R11 R11 R11 R11 R11 R11 R11 R2222	22 KN KN(1420) WTO KK R (0.37) (0.1 R (0.39) (0.1 R @ CANNOT US R @BTAIN IT ME MEASUREMENTS FIT 0.569 0.0 KN(1420) WTO (KK Q (0.41) (0.1 Q (0.47) (0.1)	(1420) BRANCHING RATIOS PI)/TOTAL BADIER 55 HRC 1 BADIER 55 HRC 1 BASSAND 75 HRC 1 BASSAND 75 HRC 1 BASSAND 75 HRC 1 BASSAND 75 HRC 0 BASSAND 75 HRC 0 FOTHER RATIOS. 40 FROM FIT (190) PII / TOTAL 41 BADIER 65 HBC 01 BASSAND 67 HRC	3+0 K-P - 4-6, 5-0 K- P NT RATIO. AUTHORS TY THEIR 3+0 K-P - 4+6, 5-0 K- P	6/66 10/67
R11 R11 R11 R11 R11 R22222 RR13 RR13 RR1	22 KN KN(1420) NYT) (K R (0.37) (0.1 R (0.37) (0.1 R we cannot us R OBTAIN IT ME MEASUREMENTS FIT 0.569 0.0 KN(1420) INTO (K Q (0.41) (0.1 FIT 0.274 0.0 KN(1420) INTO (K Q (0.14) (0.1 FIT 0.992 0.0	(1420) BRANCHING RATIOS PI)/TOTAL 9 BADIER 55 HRC 91 BASSANO 37 HRC 13 HSSSANO 37 HRC 14 BASSANO 37 HRC 15 HSC 16 HSC 17 HSSSANO 37 HRC 18 HSSSANO 37 HRC 19 HSSSANO 37 HRC 10 HSSSANO 37 HRC 14 BADIER 65 HBC 15 FROM FIT 160 HSSSANO 37 HRC 16 BADIER 65 HBC 17 HSSSANO 47 HBC	3+0 K-P - 4.6, 5.0 K- P NT RATIO. AUTHORS TY THEIR 3+0 K-P - 4+6, 5-0 K- P 3+0 K-P 0 4+6, 5-0 K- P	6/66 10/67 6/66 10/67
RRRRRR RRRRR RRRRR RRRR	22 KN KN(1420) IVIT) (K R (0.37) (0.1 R (0.37) (0.1 R 0.37) (0.1 R 0.4 R 0541N IT ME R 0541N IT ME R MC420 IVIT) (K Q (0.4) (0.1 FIT 0.5274 0.0 KN(1420) IVIT) (K Q (0.14) (0.1 FIT 0.022 0.0 KN(1420) IVIT) (K 0.07 0.0 FIT 0.045 0.0	(1420) BRANCHING RATIOS P1)/IDTAL 91 BADIER 65 HRG 11 BASSAND 67 HRG 12 BASSAND 67 HRG 13 BADIER 65 HRG 14 BADIER 65 HRG 15 FROM FIT 16401 BADIER 65 HRG 15 FROM FIT 15 FROM FIT 15 FROM FIT 15 FROM FIT 65 HRG 15 FROM FIT 15 FROM FIT 65 HRG 15 FROM FIT 16 FROM FIT 16 FROM FIT 65 HRG 16 FROM FIT 17 FROM FIT 18 FROM FIT 68 HRG 18 FROM FIT 68 HRG 19 FROM FIT 68 HRG 19 FROM FIT 68 HRG 19 FROM FIT 68 HRG 10 FROM FIT 68 HRG 19 FROM FIT 68 HRG	3.0 K-P - 4.6, 5.0 K- P IN RATIO. AUTHORS TY THEIR 3.0 K-P 0 4.6, 5.0 K- P 3.0 K-P 0 4.6, 5.0 K- P 3.0 K-P SCALE FACTOR OF 1.01	6/66 g 10/67 g 10/67 g 10/67 g 10/67 g 6/66 g 0 g
RRRRRR RPRRR RRRRR RRRR RRRR	22 KN KN11420) INTO IK R (0.37) (0.1 R 0.37) (0.1 R 0.37) (0.1 R 0.50) (0.1 R 0BTAIN IT ME MEASUREMENTS 0.569 (0.0 KN(1420) INTO IK (0.1 G (0.47) (0.1 FIT 0.367 (0.1 FIT 0.367 (0.1 FIT 0.392 (0.0 KN(1420) INTO IK (0.1 FIT 0.092 (0.0 KN(1420) INTO IK (0.1 FIT 0.092 (0.0 KN(1420) INTO IK (0.1 FIT 0.045 (0.0 FIT 0.045 (0.0 FIT 0.02 (0.0 FIT 0.02 (0.0	(1420) BRANCHING RATIOS PI)/TOTAL 9 BADDIER 55 HBC 1) BADSAND 57 HBC 1) BASSAND 57 HBC 57 HBC 87 HBC 10 F OTHER RATIOS. 10 F OTHER RATIOS. 10 F OTHER RATIOS. 10 F OTHER RATIOS. 11 BADDIER 65 HBC 12 FROM FIT 13 FROM FIT 14 BADIER 65 HBC 15 FROM FIT 15 FROM FIT (FRROR INCLUDES ETA)/TOTAL 2 BADIER 65 HBC 14 FROM FIT (ERROR INCLUDES 14 FROM FIT (ERROR INCLUDES 14 FROM FIT (ERROR INCLUDES 14 FROM FIT (ERROR INCLUDES 15 FROM FIT (ERROR INCLUDES 14 FROM FIT (ERROR INCLUDES 15 FROM FIT (E	3.0 K-P - 4.6, 5.0 K- P TRATIO. AUTHORS TY THEIR 3.0 K-P - 4.6, 5.0 K- P 3.0 K-P 0 4.6, 5.0 K- P 3.0 K-P SCALE FACTOR OF 1.0]	6/66 10/67 4 10/67 4 10/67 4 10/67 4 6/66 5 6/66 5 6/66 4 10/67 4 10/6

R 7 R 7		K N (1	(0.0)		(K OM	EGA) /	К		66	нас		4.6	K + P			8766
R 7			10.2	OR	LESS			BASSOMPT	F 69	HBC	+	5 K	+ P			9/69
87			0.1	1	0.07			BASSOMPT	E 69	HBC		5 8	+ P			9/69
87			0.0	5	0.04			AGUILAR	70	HBC		3.9	-4.6	к- Р		1/714
87				·				ROOTEAN					4.0	N - 1		11/11
R7 A\	v c	•	0.01		0.035	AVE	0 4 6 9	1 60 0 00	INCI	UDES	SCAL		CTOP	05.1	. 0.1	
07 61			0.01		0.033	COON	E 1 1		INCL	UDES	SCAL	C CA	CTOR	OF L	•••	
			0.00	.0	0.033	r KUM		TERROR	TRUCE	0063	SUAL	6 64	CTUR	0 1	• • • •	
		KNU I	4201	INTO												
		KOUL I	10 00	1 00	LECC.	,,,,		CHING								
K Ø			10.0	UR UR	LESS			CHUNG		HBC	+ 0		9-4-2		P	8766
K /3			0.20		0.16			SC HWE ING	R 68	HBU	0	4.1	* 2 . 2	K- P		10/67
R B			(0.2)	UR .	LESS			BASSUMPT	E 69	нвс	• .	5 K	+ P			9769
R B			(0.3)	UR	LESS			BASSUMPI	E 69	HBC	0	5 K	+ P			9769
R8 Q	1	15	(0.1)	0	(0.06)			BT SHOP	69	HRC		3.5	K+ P	,		9/69
R 8			0.15	5	0.06			AGUILAR	70	HBC		3.9	-4.6	К- Р		1/71*
R 8		•														
RA AV	V G		0.16	• 4	0.056	AVE	RAGE	LERROR	INCL	UDES	SCAL	E FA	CTOR	OF 1	•0)	
R8 F1	IT		0.16	2	0.068	FROM	FI	I ERROR	INCL	UDES	SCAL	E FA	C TOR	OF L	•2)	
R 9		KN(1	4201	INTO	(K RHC) / (K*(8	119 (098								
R9			(0.34	D OR	LESS			BASSOMPT	E 67	HBC	+	5.	К+ Р			9/67
89			(0.40) OR	LESS	(CL=.	90)	FIELD	67	HBC	-	3.8	к- Р			6/67
Rġ		· .														
R9 F1	тт	•	0.34		0.15	EROM	E I I	r								
	• •															
R10		KNU	4201	INTO	LK ONE		(**	(890) PT	1							
			10 10		0 061			ETELO	' 47	uac			- n			6 167
			10.10		0.047			FIELD	07	nnc		2.0	~ P			0/0/
		•	· · · ·	· · ·	· · · ·	EDOM	611									
NIU PI			0.10		0.012	FRUM	-11									
			4 20 1	THE	14 614			001 011								
		C 101 1	10 07	1910			~ • • •	5161 911								
KII Q			10.07		0.041			FIELD	67	HBC	-	3.8	K- P			6/6/
*11		•	••••	• •												
R11 F1	11		0.01	2	0.050	FROM	F 11									
R12		KN(1	4201	INTO	IK ETA	u / u	к рі	1								
R12			(0.02	51 OR	LESS			BASSOMPI	E 69	нвс		5.0	K+ P			9768
R 1 2			10.02) OR	LESS			BISHOP	- 69	нас		3.5	K+ P			9/69
R12			(0.04) OR	LESS,C	=O	.95	AGUILAR	70	нвс		3.9	-4.6	К- Р		1/71*
R12		•		• •												
R12 F1	IT		0.03	5	0.026	FROM	FII									
R13		KN(1	4201	INTO	(K PI	P() /	(K	P()								
R13			(0.5)	OR	LESS			BIRMINGH	A 70	HBC	+	10	K+ P			1/71*
813		-														
R13 E1	ТТ		0.64		0.11	EROM	FIT									
R D	F	0110	WING	suggi	STION	BY AG	111.4	8 70. WE	n۵	NOT M	AKF	USE	DE ME	ASUR	F-	
ด ถึ		ENTS	WHER	F THE	1 K P1	E PT)	васк	GROUND S	UBTR	ACTIO	N IS	DIF	FICUL	TOU	F	
RÓ		O TH	E NE	RBY	REGIO	N.										
E LUE OF E	ים חי	A 12 m		FC 4 **	NOD-	DD 4										
	🛏	I		A V	no. 1116.											

BRANCHING FRACTIONS

The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_1 \pm \delta P_1$, where $\delta P_1 = \sqrt{\langle \delta P_1 \delta P_1 \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients ($\delta P_1 \delta P_1$). For the definitions of the individual P_1 , see the listings above; only these P_1 appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

	are thus c	ons	trained to add to	1.	
		P	1 P 2	P3 P4 P5	
	P 1.56	9+-	.040		
	P 2 -	.47	7 .274+032		
1	P 3 -	.43	3355	.092+035	
	P 4 -	. 23	- 242	104 045+ 018	
	P 5 -	15	5117	044034 .020+018	
		•••	••••	1014 1051 1020 1020	
	******	***	***** *******	* ******** ********* ******* *******	
				REFERENCES FOR KN(1420)	
	BADIER	65	PL 19 612	BADIER, DEMOULIN, GOLDBERG+ (EP+SACLY+ZEEMAN)	
	CHUNG	65	PRI 15 325	+DAHL+HARDY+HESS+JACOBS+KIRZ+MILLER (LRL)	
	FOCARDI	65	PI 16 351	EDCARD L.MINGUZZI RANZI.SERRA+ (BOLOGNA+CEN)	
	SHEN	66	PRL 17 726	+BUTTERWORTH,FU,GOLDHABERS,TRILLING (LRL)	
	ALSO	66	(PRIVATE COM	MUN)GERSON GOLDHABER (LRL)	
	BASSANO	67	PRL 19 968	+GOLDBERG+GOZ+BARNES+LEITNER+(BNL+SYRACUSE)	
	BASSOMPT	67	PL 268 30	BASSOMPIERRE+GOLDSCHMIDT+ (CERN+BRUX+BIRM)[J	Р
	CRENNELL	67	PRL 19 44	+KALBFLEISCH+LAI+SCARR+SCHUMANN (BNL)	
	DAHI	67	PR 163 1377	+HARDY+HESS+KIR7+MILLER (LRL)	
	41.50	65	PRI 14 401	HARDY, CHUNG, DAHL, HESS, KIRZ, MILLER (LRL)	
	DE BAERE	67	NC 51 A 401	+GOLDSCHMIDT-CLERMONT-HENRI+ (BRUX+CERN)	
	FIFID	67	PL 248 638	+HENDRICKS+PICCIONI+YAGER (LAJOLLA)	
	GOL DHARE	67	PRI 19 972	G. GOLDHABER. FIRESTONE. SHEN (LBL)	
		68	NP 8 5 567	+DEUTSCHMANN+ (AACH+BER1+CERN+1-C++VIENNA)	
	41.50	66	PI 22 357	BARTSCH, DEUTSCHMANN, MORRISON+ (ABCL(IC)V)	
	ANTICH	6.8	PPI 21 1842	+CALLAHAN, CARSON, COX, DENEGRI, + (1HOP)	
	DUBAL	68	THESIS 1456	L-DUBAL (GENEVE)	
	KANG	6.6	DP 176 1587	Y H KANG (IDHA)	
	SCHWETNO	6.9	DR 166 1317	SCHWEINCRURED, DEDDICK, EIELDS, AMMARA (ANI ANW)	
	AL SO	67	THESIS	E.I. SCHWEINGRUBER (NORTHWESTERN, EVANSTON)	
	1200		111.015		
	BASSOMPT	69	NP 813 189	BASSOMPLERE.GOLDSCHMIDT-CLERM.+ (CERN+BRUY) U	Р
	4150	66	DE BAERE		
	AL SO	70	DE BAERE		
	B T SHOP	69	NP 8 9 403	+GOSHAW-ERWIN-WALKER (WISC)	
	CRENNELL	66	PRI 22 487	+KARSHON JAT ONFALL SCARR (BNL)	
	DAVIS	69	PRI 23 1071	+DERENZO-ELATTE, ALSTON, LYNCH, SOLMITZ (LRL)	
	DE BAERE	60	NC 61 A 397	+COLDSCHMIDT=CLERMONT_HENRI.+ (BELG+CERN)	
	AL SO	70	DE BAERE		
	ED I COMAN	40	UC 04CKL		
	LIND	40	ND P 14 1		D
	LIND	07	WF 0 14 1	TREEXANDER FIRESTONE FOR OUCDINGER (CREF SI	
	ABDAMS	70	PP D 1 2433	*ELSENSTEIN-KIM-MARSHALL-O-HALLORAN-* (166)	
	AGUTLAR	70	DRI 25 1362	ACUTI AR-RENITEZ, RASSAND, ETSNER.+ (RNI+PURD)	
	BIRMINGH	70	KIEV CONE.		
	CHARRIER	70	CERN PHYS 70	-50 CHARRIERE+DRT IARD, DUNWOODTE-+ (1 HEB+CERN)	
	DE BAERE	70	CERN PHYS 70	41 +DEBAISTEUX.DE WOLE.DUEDUR.+ (LHEB+CERN)	
	an and				
	****** **	***	***** *******	* ********* ********* *****************	
	****** *	***	***** *******	* ********* ******** ******************	

REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II S96

 $K_{N}(1660)$ 27 KN (1660, JP=) I = 1/2 EVIDENCE NOT COMPELLING, DMITTED FROM TABLE 27 KN (1660) MASS (MEV) (1660.0) CARMONY 67 HBC - 3.8 K-P.OMEGA K 11/67 1660.0 10.0 JOBES 67 HBC + 5. K+ P 11/67 CLAIMED BY JORES IN (K P1). (K+(R90) P1). AND (K+(1620) P1) MODES. K P1 BUMP INTERFERES MOSTLY WITH DELTA(1236). J J _____ 27 KN (1660) WIDTH (MEV) 60.0 20.0 JOBES 67 HBC + 5. K+ P 11/67 м

27 KN (1660) PARTIAL DECAY MODES

P1 P2 P3 P4

DECAY MASSES 493+ 139 493+ 139+ 139 892+ 139 1409+ 139

For notation, see illustrated key at beginning of data card listings.

KN*(1660) INTO K PI KN*(1660) INTO K PI PI KN*(1660) INTO K*(890) PI KN*(1660) INTO KN*(1430) PI ****** ******** ********* REFERENCES FOR KN(1660) CARMONY 67 PRL 18 615 JOBES 67 PL 268 49 D.CARMONY,T.HENDRICKS,L.LANDER (LA JOLLA) +BASSOMPIERRE,DE BAERE + (BIRM+CERN+BRUX) L(1770) 23 L (1770, JP=) I = 1/2

For a review of the L-meson data up to May 1970, see CHIEN 70.

This peak is seen in most K[±]p and K⁻d experiments, with a large decay mode into $K_N(1420)\pi$, only ~200 MeV above that threshold. There is at present no agreement among experimenters about whether to interpret this peak as a resonance, with decay into several open channels, or as a pure $K_{\underset{\ensuremath{\mathrm{N}}}{}}(1\,420)\pi$ threshold enhancement of possibly "kinematic" origin. We list only one branching ratio

$$\frac{L \rightarrow K_{N}(1420)\pi}{L \rightarrow K\pi\pi}$$

which has bearing on this contradiction.

					445.00					
			25 L (1	//U/ MA55	(10.4)					
M.		20(1780.)			BERLINGHI	67	нвс	+	12.7 K+P	7/67
м		1760.0	15.0		JOBES	67	HBC	٠	5. K+ P	11/67
ч	8	1785.0	12.0		BARTSCH	68	HBC		10.0 K- P	9/69
м	В	INCLUDED	IN BARTS	CH 70					1	
м		1745.0	20.0		AGUILAR	70	HBC	-	4.6 K- P	6/70
м		1780.0	15.0		BARTSCH	70	HBC	-	10.1 K- P	1/71*
м		(1753.0)	(10.0)		BIRMINGH.	70	HBC	+	10.K+P.K(1420)PI	11/70*
м		(1773.0)	(20.0)		BIRMINGH.	70	HBC	+	10.K+P.K* 2PI	11/70*
м		1760.0	15.0		LUDLAM	70	HBC	-	12.6 K- P	1/71*
м										
м	AVG	1769.9	7.0	AVERAG	E (ERROR L	NCL	UDES	SCAL	E FACTOR OF 1.1)	
			22 1 /1	770) שוחד						
			25 6 11		n (nev)					
Ξ.		20 (80.)	25 1 11			67	нас		17 7 8 40	7/67
		20 (80.)	20 0		BERLINGHT	67	нас	:	12.7 K+P	7/67
W.	в	20 (80.) 60.0	20.0		BERLINGHI JOBES	67	HBC HBC	;	12.7 K+P 5. K+ P	7/67
M M	B	20 (80.) 60.0 127.0	20.0 43.0	CH 70	BERLINGHI JOBES BARTSCH	67 67 68	HBC HBC HBC	* *	12.7 K+P 5. K+ P 10.0 K- P	7/67 11/67 9/69
M M M	B B	20 (80.) 60.0 127.0 INCLUDED 100-0	20.0 43.0 IN BARTSI 50.0	сн 70	BERLINGHI JOBES BARTSCH	67 67 68 70	HBC HBC HBC	:	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P	7/67 11/67 9/69 1/71*
	В 8	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0	20.0 43.0 IN BARTS 50.0 40.0	сн 70	BERLINGHI JOBES BARTSCH AGUILAR BARTSCH	67 67 68 70	HBC HBC HBC HBC	:	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P	7/67 11/67 9/69 1/71* 6/70
	в 8	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0 (174.0)	20.0 43.0 IN BARTS1 50.0 40.0	сн 70	BERLINGHI JOBES BARTSCH AGUILAR BARTSCH BIRMINGH-	67 67 68 70 70	HBC HBC HBC HBC HBC	÷ ;	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P 10.1 K- P	7/67 11/67 9/69 1/71* 6/70 1/71*
	в 8	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0 (174.0) (155.0)	20.0 43.0 IN BARTS1 50.0 40.0 (23.0)	сн 70 (19+0)	BERLINGHI JOBES BARTSCH AGUILAR BARTSCH BIRMINGH	67 67 68 70 70 70	HBC HBC HBC HBC HBC	÷ ;	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P 10.1 K- P 10.K+P,K(1420)PI	7/67 11/67 9/69 1/71* 6/70 1/71* 11/70*
	B . 8	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0 (174.0) (155.0) 50.0	20.0 43.0 IN BARTS1 50.0 40.0 (23.0) (22.0)	CH 70 (19.0)	BERLINGHT JOBES BARTSCH AGUILAR BARTSCH BIRMINGH. BIRMINGH.	67 67 68 70 70 70 70	HBC HBC HBC HBC HBC HBC HBC	• • • • • •	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P 10.1 K- P 10.K+P,K(1420)PI 10.K+P,K* 2PI 12.6 K- P	7/67 11/67 9/69 1/71* 6/70 1/71* 11/70* 11/70*
	B 8	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0 (174.0) (155.0) 50.0	20.0 43.0 IN BARTSI 50.0 40.0 (23.0) (22.0) 40.0	CH 70 (19.0) 20.0	BERLINGHI JOBES BARTSCH AGUILAR BARTSCH BIRMINGH. BIRMINGH. LUDLAM	67 67 68 70 70 70 70 70	HBC HBC HBC HBC HBC HBC HBC	* * * * * * * *	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P 10.1 K- P 10.K+P.K(1420)PI 10.K+P.K* 2PI 12.6 K- P	7/67 11/67 9/69 1/71* 6/70 1/71* 11/70* 11/70* 1/71*
	в 8 Ауб	20 (80.) 60.0 127.0 INCLUDED 100.0 138.0 (174.0) (155.0) 50.0 	20.0 43.0 IN BARTSI 50.0 40.0 (23.0) (22.0) 40.0	CH 70 (19.0) 20.0 AVERAG	BERLINGHT JOBES BARTSCH AGUILAR BARTSCH BIRMINGH. BIRMINGH. LUDLAM	67 67 68 70 70 70 70 70	HBC HBC HBC HBC HBC HBC HBC HBC	+ + + + -	12.7 K+P 5. K+ P 10.0 K- P 4.6 K- P 10.1 K- P 10.K+P,K(1420)PI 10.K+P,K(1420)PI 12.6 K- P F EACTOR OF 1.21	7/67 11/67 9/69 1/71* 6/70 1/71* 11/70* 11/70* 1/71*

WEIGHTED AVERAGE = 77.4 ± 16.2 ERROR SCALED BY 1.2 CHISQ LUDLAM 70 HBC 0.8 BARTSCH 70 HBC 2.3 AGUILAR 70 HBC 0.2 1.3 BARTSCH 68 HBC JDBES 67 HBC 0.8 5.4 (CONLEU =0.247) 50 150 250 -50 L (1770) WIDTH (MEV) ____ ____ 23 L (1770) PARTIAL DECAY MODES DECAY MASSES 497+ 134+ 134 134+1409 L ENTU K PT PT L INTO K*(1420) PI 23 L (1770) BRANCHING RATIOS R1 R1 R1 R1 R1 R1 R1 1/71* 1/71* 1/71* 1/71* 1/71* REFERENCES FOR L (1770) BERLINGHTERI+FARBER+FERBEL+FORMAN+ (ROCH)I +BASSOMPIERRE,DE BAERE + (BIRM+CERN+RRUX) +CALLAHAN+ETTLINGER+GILLESPIE+ (JOHNSHOP) +COCCONI,+ (AACH+BERL+CERN+LOIC+VIEN) BERLINGH 67 PRL 18 1087 JURES 67 PL 268 49 DENEGRI 68 PRL 20 1194 BARTSCH 68 NP. 88 9 +LACH,LUDLAM,SANDWEISS,BERGER,+ (YALE+LRL) RARBARD-GALTIERI,DAVIS,FLATTE,+ (LRL) +EASTWODD,+ (BIRM+GLAS+LOIC+MPIM+OXF+RHEL) ANDREWS 69 PRL 22 731 BARBARD 69 PRL 22 1207 COLLEY 69 NC A 59 519 AGUILAR AGUILAR-BENTTEZ-BARNES, RASS SARTSCH 70 PL 35 54 AGUILAR-BENTTEZ-BARNES, RASS SARTSCH 70 PL 33 B 186 • DEUTSCHMANN+* (AACH+BER) SIMINGHAY GLASGOW COLL. CENN PHYS 70-50 CHARRIERE, GOLDSCHMID T-C, DEB CHIEN 70 PHTLA-CONF.P.275 C-YACHIEN LUDLAM 70 PR D 2 1234 AGUILAR-RENITEZ, BARNES, BASSANO, CHUNG, + (BNL) + OFUTSCHWANN, + (AACH+BERL+CERN+LOIC+VIEN) BIRMINGHAM GLASGOW COLL. CHARRIERE, GOLDSCHWIDIT-C, DEBAERE+ (CERN+BRUX) (JOHNS HOPKINS) (YALE) 40 K* (2240, JP=) [=1/2 $K^{*}(2240)$ ENHANCEMENT SEEN IN (ANTIHYPERON+NUCLEON) MASS. FVIDENCE NOT COMPELLING, OMITTED FROM TABLE. 40 K* (2240) MASS (MEV) 15 2240. 20. ALEXANDER 68 HBC + 0 9 K+P+YBAR+N+.. 6/68 40 K* (2240) WIDTH (MEV) 15 70. 20. ALEXANDER 68 HBC + 0 9 K+P+YBAR+N+.. 6/68 REFERENCES FOR K*(2240) ALEXANDE 68 PRL 20 755 ALEXANDER, FIRESTONE, GOLDHABER, SHEN (URL)

Note on Resonance Parameters from Partial-Wave Analyses

I. Speed Plots

In the discussion which follows, we use the term "speed plot" to indicate a plot showing the variation with C. M. energy m of the derivative |dT/dm| of a partial-wave amplitude T. (See section IV. C of the main text.) In principle such plots are a very sensitive and useful means of searching for a resonance. A rapid increase in speed followed by a rapid decrease is certainly a good indication of the presence of a resonance. In practice these plots must be judiciously used because:

 The values of dT/dm are sensitive to variations in T. It is difficult enough to determine T(m); finding its derivative is necessarily more difficult.

2) Once the speed plot tells us that a resonance is present, the determination of precise parameters from such a plot requires additional considerations:

 a) the maximum of the speed is not necessarily at the resonance mass,

b) the width cannot simply be obtained by the relation $\left|dT/dm\right|_{m=M}$ = $2\mathbf{x}/\Gamma$.

Consider for example the P_{33} partial-wave amplitude in $\pi\text{-N}$ scattering. Since its elasticity (x) is one, we have

$$T(m) = \frac{\Gamma(m)/2}{M-m - i\Gamma(m)/2} .$$
 (1)

If we let $\Gamma'(m) = d\Gamma/dm$, then we find that

"Speed" =
$$\left|\frac{dT}{dm}\right| = \frac{2}{\Gamma} \frac{1+(M-m)\Gamma'/\Gamma}{1+4(M-m)^2/\Gamma^2}$$
. (2)

To estimate where Eq. (2) is maximum, we let δ = M-m ($\left|\delta\right|<\Gamma/2$) and keep only linear terms in $\delta.$ Thus

$$\left|\frac{\mathrm{dT}}{\mathrm{dm}}\right| \approx \frac{2}{\Gamma} \left(1 + \delta \frac{\Gamma}{\Gamma}\right).$$
 (3)

Since all reasonable parametrizations of Γ (m) agree that $\Gamma \ge 0$, we may conclude that to first order the "speed" will have its maximum value at an energy less than the resonant value, m=M.

This effect is illustrated in Fig. 1, which is taken from UCRL-20030 $\pi N.^1$ For the P₃₃ partial wave, the CERN experimental and CERN Kirsopp solutions indicate the instability of |dT/dm| in the region of a . resonance (the other solutions are "smooth" by the

Fig. 1. Speed plots as computed from four solutions compiled in Ref. 1. ($\sqrt{s} = m = C.M.$ energy in MeV)

nature of the analysis). In addition, each of the plots, quite consistently, gives $2/\Gamma \approx 16 \text{ GeV}^{-1}$ at a resonant mass of ~1236 MeV. This corresponds to a width at resonance of ~125 MeV. The speed, however, peaks some 10 to 15 MeV lower in mass and at a value of ~18.5 GeV⁻¹. Hence, were we to estimate the mass and width of the 33-resonance from the maximum speed, we would get M \approx 1220 MeV and Γ = 108 MeV. For additional discussion on the mass and width of this resonance, see the mini-review at the beginning of the $\Delta(1236)$ listings.

II. Effect of Partial-Wave Parametrization

To appreciate the systematic differences that arise in extracting resonance parameters from the data, we have compared several recent analyses in Table I. The notation is standard: T is the scattering amplitude, S = 1+2 i T, and f is the spin non-flip amplitude. The subscripts B and R refer to background and resonant contributions, respectively. The first part of the table refers to analyses of the πN system, the second part to the $\overline{K}N$.

	Authors	E _{CM} Range (MeV)	Data	Model	Background
	AYED 70	1320-2480	$\pi^{\pm}p,\uparrow$, CEX, \uparrow	$\begin{cases} 1. T=T_B+T_R e^{i\phi_R} \end{cases}$	$\delta_{\rm B} = \Sigma a_{\rm n} q^{\rm n}$
				(2. $S=S_B \cdot S_R$	$\eta_{\rm B} = 1/[1+(\Sigma b_{\rm m}q^{\rm m})^2]$ $a_{\rm n}, b_{\rm m}, \phi_{\rm R} \text{ free}$
πN	DAVIES 70	1320-1960	π [±] p,↑, CEX,↑	$S=e^{2i\phi} \cdot \frac{\Gamma_{e\ell}}{[B+ie^{i\alpha} \frac{M-E-i\Gamma}{2}]}$	$\phi=a+bx+cx^{2}$ $B=1/(1+ dx+ex^{2})$ $x=k^{2}-(460 \text{ Me V/c})^{2}$ α , a-e free
	HULL 70	2030-2560	$\pi^{-}p, \uparrow$ $ t \leq .6(GeV/c)^2$	f=f _B +f _R	$f_{\rm B}^{\rm =}(\alpha+i)\frac{k\sigma}{4\pi}e^{bt/2}$ α , σ , b free
	BRICMAN-1 70	1780-1950	K ⁻ p,↑, CEX	T=TB+TRe ^{i¢R}	$T_B^{=a+b(p-p_0)}$ a,b free, complex ϕ_R free, real
TZDI	GALTIERI 70	1610-2170	Δπ, Σπ	$T = T_B + T_R e^{i\phi}R$	$T_B = (a+bk)exp[i(c+dk)]$ a, b, c, d, ϕ_R free, real
KN	KIM 71	1430-1880	<u>Κ</u> Ν, Λπ, Σπ	K matrix, multichannel	Expand K matrix in successive intervals
	LITCHFIELD70	1800-2170	Λπ	$T = T_B + (T_R)$	$\begin{array}{c} N\\ T_{Bn=0}a_{n}P_{n}(x)\\ P_{n} \text{ are Legendre polyns.}\\ x \text{ is linear in momentum}\\ such that x=\pm 1 \text{ at } p_{max},\\ P_{min} \cdot a_{n} \text{ complex, free} \end{array}$

<u>Table I.</u> Representative examples of energy-dependent parametrizations used to determine resonance parameters.

The problem of adding background to a resonant amplitude has been extensively discussed in the literature.² It is not very clear what is meant by background. After it has been parametrized as an expansion in the incident momentum (or other similar parametrizations as shown in Table I), it may turn out to move fast enough across the Argand plot to represent a resonance. In this case the parameters obtained for the T_R part of the amplitude are very much dependent upon the parametrize the amplitude with an additional resonance. This is an extreme situation, but in general any nonconstant background is very critical to the determination of resonance parameters.

We now discuss the models displayed in Table I. A. $\underline{\pi}N$ System. There have been several determinations made of the parameters for nucleon resonances. We have tabulated all these parameters in Table II of the following "Note on N's and Δ 's." It is useful for extending the comparison here, which we restrict to the analyses mentioned in Table I of the present note.

1. <u>AYED 70</u> have done an energy-independent phase-shift analysis and then fit their experimental Argand plots (reported in Fig. 3 of Note on N's and Δ 's) in order to obtain resonance parameters. They use the two methods shown in Table I for combining background and resonances. Both essentially can be written as

$$T = T_B + \gamma T_R$$
 with $T_B = \frac{S_B - 1}{2i} = \frac{\eta_B e^{2i\theta} - 1}{2i}$

and

Model 1: $\gamma_1 = e^{i\phi R}$, ϕ_R real, free parameter Model 2: $\gamma_2 = \eta_B e^{2i\delta}B$, i.e., S matrix for the background.

For only one open channel the two are identical, since unitarity requires that $e^{i\phi R} = \eta_B e^{2i\delta B}$, with $\eta_B = 1$. Model 2 is most likely invalid (see for ex-

ample Goebel and $McVoy^2$) when S_B becomes inelastic. This can be understood by considering the corresponding Argand amplitude:

$$T = T_B + \eta_B e^{2i\delta_B} \frac{x}{\epsilon - i}, \ \epsilon = \frac{2(M-m)}{\Gamma}, \ x = \Gamma_{el}/\Gamma.$$

If, for some reason, $\eta_B \approx 0$ when $m \approx M$ and a clear resonant circle were present, than an abnormally large elasticity $(x \ge 1)$ might be obtained. For this reason we included in the listings only those parameters from model 1. Two typical examples of how the parameters depend on the model are shown in Table II. For the rather elastic F_{15} state, the two sets of

Table II. Two examples of resonance parameters from models 1 and 2 of AYED 70.											
		М	Г	x	φ _R						
च	Model 1	1682	109	.59	03						
£15	Model 2	1694	128	.62							
P43	Model 1	1766	182	.149	-1.58						
	Model 2	1508	047	.123							

parameters are in reasonable agreement. However, there is a difference of 12 MeV in the mass, 19 MeV in the width, and .03 in the elasticity, certainly larger than the statistical errors on the data would indicate. This is an excellent example of why we do not average parameters from energy-dependent analyses when errors of ± 2 MeV are quoted. The other example is known as $P_{13}(1860)$ in our listings. The results of the two models disagree not only with one another but also with all of the older values. In addition, model 2 seems to require a second P_{13} at ~1896 MeV!

2. DAVIES 70 (Table I) uses a model similar to model 1 of AYED 70. The main difference between these two analyses is in the procedure: AYED 70 do an energy-independent partial-wave analysis first and then fit the Argand plots so obtained. DAVIES 70 fit the data directly with their model; therefore they obtain smooth Argand plots (Fig. 2 of Note on N's and Δ 's). The amplitude is written in a form suggested by Goebel and McVoy,² who discuss the multichannel generalization of the Breit-Wigner approximation. In principle $^{2} \alpha$ (or ϕ_{R}) can be constrained through unitarity from the other elements of the S matrix. The resonant parameters of DAVIES 70 are generally quite different from those of AYED 70 (see Table II in "Note on N's and Δ 's") possibly because AYED 70 include newer experimental data and use a different fitting procedure as mentioned earlier.

Baryons

3. HULL 70. This is not strictly a partialwave analysis, but it does emphasize that useful information on resonances can be obtained from the forward elastic diffraction peak. This was first noted by Damouth et al.³ and elaborated upon by Levi Setti and co-workers.⁴ Essentially, HULL 70 parametrize all background effects and the tails of resonances (outside the region considered) by the diffraction-like background f_B . Through a fit to recent forward $\pi^- p$ data, supplemented by forward polarization data, they were able to establish the spin of the $H_{19}(2220)$. Their resonance parameters are in reasonable agreement with those of the more orthodox analysis of AYED 70.

B. \overline{KN} system. Most of the partial-wave analyses reported in the \overline{KN} system are energy dependent, therefore the resonance parameters are very much dependent upon the parametrization used to fit the experimental data. We report in Table I only a few representative examples of such analyses.

1. <u>BRICMAN 70</u> uses model 1 of AYED 70 but parametrizes the background with a simple linear dependence in momentum. This simple parametrization, used extensively by the CERN-Heidelberg-Saclay collaboration, has proven quite adequate for discovering many new resonant states in the 1-GeV/c region. It was introduced as an expedient in the belief that background cannot vary too rapidly in an interval of ~200 MeV. In addition the initial paucity of KN data could not permit a more elaborate parametrization (AYED 70 have <u>many</u> background parameters).

The following studies, which we discuss, indicate several methods for extending this sort of analysis to include an ever-broader region in energy.

2. <u>GALTIERI 70</u> uses a background parametrization that tends to have a circular behavior in the Argand plot. The analysis is performed by dividing the overall region into two intervals so far as the background is concerned. Continuity in |T| is required and, of course, the same resonant parameters are used for both regions.

In the first region (\leq 1900 MeV), the resonant structure is somewhat better known. The inclusion of the second region in the fit is initially made with only a background contribution (with the exception of the well-known G_{0.7}(2100) and F_{1.7} (2020)). If a resulting partial wave (background !?) shows a resonant-like behavior, the fit is repeated with the presonant-like behavior.

ence of a Breit-Wigner in that wave. In this manner it was found that both the D_{03} and D_{13} required a second resonant state at higher energy.

3. <u>KIM 71</u> presents a multichannel K-matrix analysis of $\overline{\rm KN}$ data from threshold to ~ 1880 MeV. In this analysis he parametrizes the S, P, D, and ${\rm F}_{05}$ waves with the K matrix. In principle this is the ideal manner in which to analyze the $\overline{\rm KN}$ data; however, such an analysis is not immune to problems.

The first problem is the treatment of threebody states. KIM 71 handles them by introducing an additional "junk" or "quasi-two-body" channel. Such an approximation is most likely reasonable if the three-body final states constitute a small part of the total cross section. The additional channel can be to some extent constrained by the measured three-body cross section.

The next problem is the energy dependence used for the K matrix. Kim's approach is to use an effective range expansion of K⁻¹. Beyond ~1500 MeV, he expands K⁻¹ in successive intervals of ~100 MeV. In each of these intervals a new set of ranges is determined by a fit, while continuity is ensured at the boundaries of the regions. This method will ensure smooth Argand plots and, very importantly, unitarity is observed. However, finding the resonance parameters by searching for the poles in the K matrix is now impractical (uses K matrix for every 100 MeV) and one has to resort to some other method (reading parameters off the Argand plot).

4. LITCHFIELD 70 first fits the data with each partial wave (except F_{17} and D_{15}) parametrized by the Legendre polynomial expansion (LPE) in Table I. He then looks for counterclockwise ("resonant like") behavior in the resulting Argand plots. Such a behavior usually requires the order N to be 4 or 5; if it exists, the fit is repeated with a lowerorder LPE and the addition of a Breit-Wigner amplitude. If the new fit is just as good, he takes this as evidence for a resonant effect.

For N=1 the LPE corresponds to the linear background used by BRICMAN-1 70; for higher orders it can simulate the behavior of GALTIERI 70's background. Thus the LPE attempts to generalize the useful features of these analyses. As a practical point, LITCHFIELD 70 notes that the use of the LPE generally reduces the computer time for reminimization. Since the a_n are relatively uncorrelated, the reduction of N to 1 and the inclusion of a Breit-Wigner would, hopefully, tend to leave a_0 and a_4 unchanged.

References

 D. Herndon et al., "πN Partial-Wave Amplitudes, a Compilation," UCRL-20030 πN, Feb. 1970.

 Discussion on the "addition" of background and resonances can be found, among others, in the following papers: R. H. Dalitz, Ann. Rev. Nucl.
 Sci. <u>13</u>, 339 (1963); C. J. Goebel and K. W. McVoy, Phys. Rev. <u>164</u>, 1932 (1967); K. T. R. Davies and M. Baranger, Ann. Phys. (N. Y.) <u>19</u>, 383 (1962);
 C. Michael, Phys. Letters <u>21</u>, 93 (1966); and S.
 Coleman, in <u>Theory and Phenomenology in Particle Physics</u>, edited by A. Zichichi (Academic Press, New York, <u>1969</u>).

 D. E. Damouth, L. W. Jones, and M. L. Perl, Phys. Rev. Letters <u>11</u>, 287 (1963).

4. R. Levi Setti, T. Lasinski, and E. Predazzi, Phys. Rev. <u>179</u>, 1429 (1969).

Note on N's and Δ 's

There are now complete phase-shift analyses from four different groups: The Saclay group (referred to as BAREYRE 68 and AYED 70), the Berkeley group (JOHNSON 67), the Glasgow group (DAVIES 70), and the CERN group.

The CERN group has performed two phase-shift analyses, using different methods. The CERN I solution is published as DONNACHIE-1 68 for both I spin 1/2 and 3/2. Their figures contain two sorts of results: 1. "Experimental Phase Shifts," i.e., partial-wave amplitudes at each energy at which they used experimental input. In their figures these are plotted as, η and δ at each energy, but not as Argand plots.

2. "Theoretical Fits" using smooth functions based on dispersion-relation theory. These are plotted both as smooth curves of η and δ vs energy, and as Argand plots. Brody et al. ¹ have recently criticized the "Theoretical Fits" because it turns out that although the "experimental" amplitudes describe the data as well as (or better than) any other available set, the theoretical fits for some rapidly varying partial waves are too smooth. Because they are so convenient to draw and to remember, we continue to present these smooth Argand plots, having warned the reader of their limitations.

The new solution, CERN II, 2 covers I = 3/2 only, and has been published only as Argand plots of "experimental" amplitudes.

The most recent and extensive analysis comes from the Saclay group (AYED 70); it extends up to a mass of 2.5 GeV. They obtain values for M,Γ,x through energy-dependent fits of the Argand plots (see the preceding mini-review).

We reproduce below, in Figs. 1, 2, 3, most of the available Argand diagrams. The Berkeley diagrams, from which the authors do not yet quote resonance parameters, are reproduced here only for I = 1/2 partial waves.³ Table I below is a summary of all the states claimed by the various groups with our evaluation of their significance. We have included in the Baryon Table only states listed as "good" or "fair."

Spread in Values of Resonance Parameters

Values of masses, widths, and branching ratios can be obtained only from phase-shift analyses. In production experiments, in fact, it is seldom clear which of the many states at similar masses is being observed. We now have phase-shift analyses from four different groups, but we are quite far from having reliable masses and widths derived therefrom.

The problem is that the errors on the phase shifts are quite large and it is thus difficult to draw smooth curves on the Argand diagrams. In addition, except for the Glasgow solutions and the results of AYED 70, where energy-dependent fits to the data and phase shifts are done, the resonance parameters are just the result of an "eyeball" fit with the use of different methods. As a result, different authors using the same phase shifts often estimate different values of M, Γ, x . This is the case for the CERN I solution, from which three sets of parameters have been reported. Furthermore, as discussed in the preceding note, different assumptions about background and resonant shapes can often lead to quite dissimilar values for M, Γ, x even in energy-dependent analyses.

In order to make the reader aware of these problems, we present below in Table II all the different values for M, Γ , x. We also present in this table the mean values of these parameters and the "Ind. Ext. Error," or the "external error" of the individual values:

$\langle \delta \mathbf{x}_i \rangle = \sqrt{\frac{1}{N} \sum_{i}^{\Sigma} (\mathbf{x}_i - \overline{\mathbf{x}})^2}$

The error $\delta \overline{\mathbf{x}}$ of the mean is of course smaller by another factor $1/\sqrt{N}$ but we avoid giving it because we feel that $\overline{\mathbf{x}}, \delta \overline{\mathbf{x}}$ have little meaning here. In order that the reader may appreciate the spread in the values of M, Γ , \mathbf{x} given in Table II, we discuss briefly the different methods used to determine these parameters. AYED 70 analyze their phase-shift results with an energydependent background and Breit-Wigner amplitudes. BAREYRE 68 uses two methods to find resonance parameters: 1 (cross section method) -- the energy where the total cross section is maximum; 2 (speed method) -- the energy where the speed of variation of the amplitude in the Argand plot is maximum. CERN quotes only one method, usually where the absorption is maximum, but three different sets of values have been given. The Glasgow group (DAVIES 70) uses Breit-Wigner parametrization; A and B differ in the starting values of the minimization (CERN I solution was used for solution B). For some states no parameters have been quoted by the authors. We report in the M column of Table II our evaluation of the status of this resonance as judged on the published Argand plots. Symbols are the same as on Table I.

On the main table of Baryon Resonances we decided not to quote a value with an error, but to quote a range of masses and widths in order to point out the large indeterminancy of these parameters. So the P_{11}' will be M = 1435 to 1505 MeV, Γ = 164 to 400 MeV, etc.

The resonant parameters, of course, depend on the validity of the partial-wave analyses. Several recent experimental results have not been included in the phase-shift analyses summarized here. Regions of disagreement have been noted by Abillon et al.⁴ (in the backward direction) and by Albrow et al.⁵ (at M = 2100 MeV and higher). Future analyses are likely to provide different parameters, especially in the 2-GeV region.

Footnotes and References

A. D. Brody, D. W. G. S. Leith, B. G. Levi,
 B. C. Shen, D. Herndon, R. Longacre, L. Price,
 A. H. Rosenfeld, and P. Söding, Phys. Rev. Letters
 22, 1401 (1969).

2. The CERN II Argand plots have been reported by A. Donnachie, <u>14th International Conference on High</u> Energy Physics, Vienna, 1968, p. 139.

3. For the complete set of Argand plots including speed versus energy, see UCRL-20030 π N (Feb. 1970) by D. J. Herndon, A. Barbaro-Galtieri, A. H. Rosenfeld. The AYED 70 solutions are not included, since they were not available at the time.

4. J. M. Abillon, A. Borg, M. Crozon, T. Leray,J. P. Mendiburu, and J. Tocqueville, Phys. Letters32B, 712 (1970).

M. G. Albrow, S. Andersson/Almehed, B.
 Bosnjakovic, C. Daum, F. C. Erne, J. P. Lagnaux,
 J. C. Sens, F. Udo, Nucl. Phys. <u>B25</u>, 9 (1970).

PARTIAL-WAVE AMPLITUDES FOR CERN I, CERN II, AND BERKELEY SOLUTIONS

Fig. 1. Results of the phase-shift analyses of the CERN and Berkeley groups. The CERN I results are the smooth curves (dashed in the I = 3/2 diagrams). This analysis used dispersion relations to join and smooth the solutions found at different energies. The arrows in the I = 1/2 diagrams indicate approximate resonance positions; they have been drawn by us. The CERN II solution is shown (as a dot-dash line) only for the I = 3/2 amplitudes since the I = 1/2 are not available. The arrows have been drawn by the authors. The Berkeley solution is shown only for the I = 1/2 state (as empty squares joined by dashes).

PARTIAL-WAVE AMPLITUDES FOR GLASGOW SOLUTIONS

Fig. 2. Phase-shift analysis results of DAVIES 70. The curves plotted here are the results of the energy-dependent analysis. DAVIES A (solid curves) is obtained by starting from the set ot phase shifts that is the best solution of the Glasgow group. DAVIES B (dashed curves) is obtained by starting from the CERN I phase shifts. DAVIES B is not shown when it is very close to DAVIES A. Scale marks are shown every 50 MeV. The first large mark is at M = 1400 MeV, the last large mark at M = 1900 MeV.

PARTIAL-WAVE AMPLITUDES FOR SACLAY SOLUTIONS

Fig. 3. Latest Saclay phase-shift analysis results [Phys. Letters 31B, 5981 (1970)]. The full and dashed lines connect points of "minimal path" and "minimal surface", respectively.

			_				Our						
	Berkeley	CERN I	Saclay ^f C	lasgow	RBD ^a	CERN I	ation	ηn	KΛ	KΣ	πΔ	ρN	γN
P'11 ⁽¹⁴⁷⁰⁾	D	D	D	D			Good				D		
D¦ ₁₃ (1520)	D	D	D	D			Good				D		D
S'11 ⁽¹⁵³⁵⁾	D	\mathbf{D}^{t}	D	D			Good	D				D	D
D ₁₅ (1670)	D	D	D	D			Good				D		
F ₁₅ (1688)	D	D	D	D			Good				D		D
S''_11(1700)	D	D	D	D			Good	Po	D				D
D'' ₁₃ (1700)	Po	Po	А	No			Poor		Po				
P'' ₁₁ (1780)	Pr	Pr	\Pr	D			Fair	Po	D				D
P' ₁₃ (1860)	A ^c	А	Po	\Pr	\Pr{r}		Fair		Po				
F ₁₇ (1990)	с	\Pr	А	e	А		Poor						
D ¹¹ ₁₃ (2040)	с	\Pr	A	с	А		Poor						
G ₁₇ (2190)	с	D	D	с	Pr		Good						
H ₁₉ (2220)	с	с	D	с	с		Good						
P' ₃₃ (1236)						-	Good						D
S''_(1650)	D	D	D	D		D	Good				Po ^b		
P'' ₃₃ (1690)	Po	A	Po^{g}	No		А	Poor				Pob		
D ₃₃ (1670)	А	D	D	D		D	Fair				Pob		
F ₃₅ (1890)	Pr	Pr	Pr	D		Pr	Fair			Po			
P ₃₁ (1910)	\Pr^{c}	Pr	Po	D		D	Fair						
D ₃₅ (1960)	с	А	No	с	Po	А	Poor						
F ₃₇ (1950)	D	D	D	D		D	Good			D	D	D	D
P ^{'''} 33(2160)	Po ^c	Po	No	с		d	Poor						
H _{3 11} (2420)	c	с	D	с			Good						

Table I. Our evaluation of the status of all N and \triangle resonances as seen in partial-wave analyses. \overline{D} = definite, Pr = probable, Po = possible, A = ambiguous, No = not present. Notice that in the Glasgow fits the resonance hypothesis is built into the fit, so only the symbols D or No apply, except for one Pr at the upper end.

a. RBD = LEA 69 (Lea et al., Ruth, Bristol, Daresbury) and APLIN 70.
b. For these references see DONNACHIE-2, the latter part of the article.
c. This state is very close to or beyond their highest energy.
d. We can't say anything.
e. Glasgow A has a G₁₇ state, Glasgow B may have an F₁₇. However, this region is very close to their highest energy.
f. Evaluation based on new analysis (AYED 70).
g. Around 1800 MeV, however.

Table II. Mean values of Resonance Latameters for N S and A S	Table II.	Mean	Values	of Resonance	Parameters	for N	's and Δ 's
---	-----------	------	--------	--------------	------------	-------	--------------------

-		_							-					-							
			Method	м	Г	×	1			Method	м	г	x					Method	м	г	x
• P	(1470)						• P"	(1780)							8	Glasgow	68	А	No		
1	Aved	70		1461	164	0.56	1	Aved	70		1645	50	0.15		9	Glasgow	68	в	No		
2	Bareyre	68	σ	1470	255	0.68	2	Bareyre	68	σ	Pr				Ave	rage			1717	350	0.10
3	Bareyre	68	Speed	1505	205	0.68	3	Bareyre	68	Speed	Pr			-	± In-	d. ext. error			±48	±144	±.02
4	Berkeley	67		D			4	Berkeley	67		Pr				• D ₃₃	(1670)					
5	Donnachie-1	68 -	Abs.	1466	211	0.658	. 5	Donnachie-1	68	Abs.	1751	327	0.32		1	Aved	70		1722	258	0.22
6	Donnachie-2	68	Abs.	1470	211	0.66	6	Donnachie-2	68	Abs.	1750	327	0.32		2	Barevre	68	σ	Po	250	0.22
7	Kirsopp	68	Abs.	1466	211	0.66	7	Kirsopp	68	Abs.	1860	270	0.32		3	Bareyre	68	Speed	Po		
8	Glasgow	68	A	1462	391	0.49	8	Glasgow	68	A	1770	445	0.43		4	Berkeley	67	•	А		
9	Glasgow	68	в	1436	224	0.46	9	Glasgow	68	в	(1867)	(525)	0.30		5	Donnachie-1	68	Abs.	1691	269	0.14
Aver	rage			1467	234	0.61	Ave	rage			1/55	284	+ 09		6	Donnachie-2	68	Abs.	1690	269	0.14
± 1nc	. ext. error			±18	±64	±.08	± 1n	d. ext. error			±68	±130	±.08		7	Kirsopp	68	Abs.	1690	300	0.13
• D' ₁₃ (1520)						• P' 13	(1860)							8	Glasgow	68	A	1649	188	0.12
1	Ayed	70		1523	131	0.59	1	Ayed	70		1766	182	0.15	1	9	Glasgow	68	В	1650	174	0.13
2	Bareyre	68	σ	1510	125	0.54	2	Bareyre	68	σ	A				Ave	rage			1682	243	0.15
3	Bareyre	68	Speed	1515	110	0.54	3	Bareyre	68	Speed	A ^U b				± Ine	d. ext. error			±26	±46	±.03
4	Berkeley	67		1526	114"	0.57	4	Berkeley	67		A				• F ₃₅	(1890)					
5	Donnachie-1	68	Abs.	1541	149	0.509	5	Donnachie-1	68	Abs.	1863	296	0.207		1	Aved	70		1837	198	0.15
6	Donnachie-2	68	Abs.	1520	114	0.57	. 6	Donnachie-2	: 68	Abs.	1860	296	0.21		2	Bareyre	68	σ	Po		
,	Glasgow	60	Abs.	1520	115	0.57		Classow	68	Abs.	1900	340	0.25		3	Bareyre	68	Speed	Po		
0	Glasgow	68	в	1512	100	0.49	ů	Glasgow	60	р	1854	307	0.40		4	Berkeley	67		Pr		
Aver	age	00	Б	1521	121	0.54	10	Lea	69	5	1860				5	Donnachie-	68	Abs.	1913	350	0.16
± Ind	l. ext. error			±9	±12	±.04	Ave	rage	• /		1849	309	0.25		6	Donnachie-2	2 68	Abs.	1910	350	0.16
• SL (4626)						± In	d. ext. error			±38	±78	±.08		7	Kirsopp	68	Abs.	1910	380	0.15
• S. 11	1555)														8	Glasgow	68	· A	1841	136	0.2
1	Ayed	70		1534	96	0.40	• F ₁₇	(1990)							9	Glasgow	68	в	1852	150	0.19
2	Bareyre	68	a	1535	155		1	Ayed	70		No				Ave	rage			1877	261	0.17
3	Bareyre	68	Speed	1515 a	105 a		2	Bareyre	68	σ	ь				± In	d. ext. error			±34	±102	±.02
4	Berkeley	67		1548	116	0.326-	3	Bareyre	68	Speed	b				• P ₃₁	(1910)					
5	Donnachie-1	68	Abs.	1591	(268)	0.696	4	Berkeley	67		b				1	Ayed	70		1783	308	0.13
5	Donnachie-2	68 68	Abs.	1550	110	0.33	5	Donnachie-1	68	Abs.	1983	225	0.128		2	Bareyre	68	σ	Ab		
8	Glasgow	68	A .	1502	(36)	0.36	6	Donnachie-2	68	Abs.					3	Bareyre	68	Speed	Ab		
9	Glasgow	68	в	1499	53	0.35	1	Kirsopp	68	Abs.	1995	250	0.09		4	Berkeley	67		Pr ^b		
Aver	araogen		-	1535	114	0.40	8	Glasgow	68	A	c				5	Donnachie-f	68	Abs.	1934	339	0.30
± Inc	l. ext. error			±27	±34	±.13	40	Giasgow	68	в	c 2000				6	Donnachie-2	2 68	Abs.	1930	339	0.3
							Ave	nage	07		1993	239	0.409		7	Kirsopp	68	Abs.	1930	425	0.25
• D ₁₅	(1670)						+ In	d. ext. error			+7	+13	+ 049		8	Glasgow	68	A	1914	290	0.18
1	Ayed	70		1675	143	0.39						-15	2.01)		9	Glasgow	68	в	1834	231	0.24
2	Bareyre	68	. a	1680	135	0.41	• D ₁₃	(2040)							Ave	rage			1888	322	0.23
3	Bareyre	68	Speed	1655	105	0.41	1	Ayed	70		No				± in	d. ext. error			±58	±59	±.06
4	Berkeley	67		D			2	Bareyre	68	α	b				• D ₃₅	(1960)					
5	Donnachie-1	68	Abs.	1678	173	0.391	3	Bareyre	68	Speed	ь				1	Ayed	70		No		
6	Donnachie-2	68	Abs.	1680	173	0.391	4	Berkeley	67		ь				2	Bareyre	68	σ	Ab		
<i>(</i>	Kirsopp	68	Abs.	1678	1/5	0.391	5	Donnachie-1	68	Abs.	2057	293	0.26		3	Bareyre	68	Speed	A ^b		
0	Glasgow	20	P	1007	115	0.30	6	Donnachie-2	68	Abs.	2030	290	0.11		4	Berkeley	67		b		
7 Aver	Glasgow	08	b	1673	142	0.41		Classow	68	AOS.	2040	240	0.15		5	Donnachie-1	68	Abs.	1954	311	0.154
± Ind	. ext. error			±8	±27	±.04		Glasgow	68	B	h				6	Donnachie-2	68	Abs.			
• • •	4(00)						10	Lea	69	5	2030				7	Kirsopp	68	Abs.	1970	400	0.12
• F 15	1688)						Ave	rage	• /		2039	274	0.17		8	Glasgow	68	A	ь		
1	Ayed	70		1682	109	0.59	± In	i. ext. error			±11	±24	±.06		9	Glasgow	68	в	ь		
2	Bareyre	68	σ	1690	110	0.64		(2490)							10	Lea	69		1950		
3	Bareyre	68	Speed	1680	105	0.64	· · · · · · · · · · · · · · · · · · ·	(2170)							Ave	rage			1958	356	0.14
4	Berkeley	67		1692	132	0.68	1	Ayed	70		2158	325	0.15		± in	a. ext. error			±9	±45	±.02
2	Donnachie-1	66 49	Abs.	1007	111	0.56	2	Bareyre	68	σ.	ь.				• F.,	(1950)					
7	Kirsopp	68	Abe	1692	130	0.68		Bareyre	68	Speed	ь,						-				
8	Glasgow	68	A A	1685	104	0.54	4	Doppachie 4	67	Abo	D 2265	208	0.240		1	Ayea	40	~	1931	197	0.50
9	Glasgow	68	в	1684	123	0.54	6	Donnachie=1	60	Abs.	2400	270	0.349		3	Bareyre	68	Speed	1975	100	0.57
Aver	age			1688	125	0.62	7	Kirsopp	68	Abs.	2265	300	0.35		4	Berkeley	67	Dpeed	D 1700	140	
± Ind	. ext. error			±4	±21	±.06	8	Glasgow	68	A	(1906) ^C	(319) ^C	(0.14) ^C		5	Donnachie-1	68	Abs.	1946	221	0.386
							9	Glasgow	68	в	c	(01))	(0111)		6	Donnachie-2	68	Abs.	1950	221	0.39
• S ¹ 11	1700)						10	Lea	69		~ 2000				7	Kirsopp	68	Abs.	1946	220	0.39
1	Ayed	70		1689	166	0.64	Ave	age			2176	306	0.30		8	Glasgow	68	А	1935	196	0.51
2	Bareyre	68	σ	1710	260		± Inc	l. ext. error			±97	±11	±.09		9	Glasgow	68	в	1935	212	0.39
3	Bareyre	68	Speed	1665	110	a	• • •	(650)						-	Ave	rage			1950	198	0.45
4	Berkeley	67		1709	300-	0.786	31	1050)							± In	d. ext. error			±17	±26	±.07
5	Donnachie-1	68	Abs.				. 1	Ayed	70		1614	142	0.32	1	• P!!!	(2160)					
6	Donnachie-2	68	Abs.	1710	300	0.79	2	Bareyre	68	σ	1695	250									
1	Glass	68 40	ADS.	1/09	404	0.19	3	Bareyre	68	Speed	1650	130		1	1	Ayea	40	~	IN O		
o q	Glasgow	68	R	1674	121	0.51	4	Donne abia	67 60	Abe	1625	477	0.284	1	د ٦	Barevre	69	Speed	ы Ъ		
, Ave.	GIROFOW .	00	Б	1704	245	0.68	5	Donnachie-1	60 60	Abs.	1635	177	0.284		3	Berkeley	67	opeed	Pob		
± inc	l. ext. error			+29	±96	±.12	. 7	Kirsonn	69	Abs.	1640	100	0.28		5	Donnachie-1	68	Abs	10		
						1.1	8	Glasgow	68	A	1617	141	0.28	1	6	Donnachie-2	68	Abs.			
• D''_13	(1700)						9	Glasgow	68	в	1623	140	0.25		7	Kirsopp	68	Abs.	2160	260	0.25
1	Ayed	70		А			Ave	age		-	1639	167	0.28		8	Glasgow	68	А	ь		
2	Bareyre	68	σ				± Inc	l. ext. error			±24	±36	±.02		9	Glasgow	68	в	ь		
3	Bareyre	68	Speed	Po			• 1911	(1690)						1	Ave	rage			2160	260	0.25
4	Berkeley	67		Po			33							1	± In	d. ext. error			—		
5	Donnachie-1	68	Abs.	4770			1	Ayed	70		1801	598	0.14		() '	Values in nare	nthee	ses have -	ot been	sed in	he
6	Donnachie-2	68	Abs.	1130			2	Bareyre	68	σ.	A			1		averages.					-
ر م	Glasgow	00 68	Δ	No				Barkelow	68 67	speed	Pc			1	a. val Hei	ues quoted by delberg Confei	Love cence	насе, гарј в (1967), п	. 109.	aik at	
9	Glasgow	68	в	No				Donnachie 4	07 69	Abs	1688	784	0.098	1	b. Thi	s state is very	clos	se to or be	yond the	ir highe	st
Áve	rage			1705			6	Donnachie-?	6R	Abs.	1690	281	0.1	1	c.Gla	sgow A has a (G17 8	state at thi	s mass,	Glasgo	w B
± Ine	d. ext. error			±25			7	Kirsopp	68	Abs.	1690	240	0.08	1	reg	y nave an F ₁₇ ion is verv clo	and a setc	a G ₁₇ ; how their hig	ever, th	is ener; rgv.	gy

For notation, see illustrated key at beginning of data card listings.

CODE EVENTS QUANTITY ERROR+ ERROR- REFERENCE YR TECN SIGN COMMENTS DATE Arnve Backgrnund	
	BAREYRE 68 PR 165 1731 P RAREYRE, C BRICMAN, G VILLET (SACLAY)IJP DOWNACH 68 PL 2A8 161 A DOWNACH E, R G KIRSOPP, C LOVELACE (CERNIJP DOWNACH 26 AV LENNA 139 DOWNACH E RAPPORTEUR.S TALK (GLAS) KIRSOPP 64 THESIS R G KIRSOPP (EDIN) MPGCAN AR DE 166 1731 D MURGAN (RTHEN)
p 16 PROTON (938, J=1/2) 1=1/2 SEE LISTINGS OF STABLE PARTICLES	AYED TO KIEV CONF R AYED.P BAREYPE, G VILLET (SACL)IJP AYED TO KIEV CONF A DAVIES (GLAS)
	DAVIES TO THE SST DIEM 70 KTEV CONF. + SMADJA, CHAVANON, DELER, DOLGEAU+ (SACL) LODI-RIZ 70 LNC 3 697 + FIDRF, PIAZZA+ (PAVIA+POMAC(NEN+NAPOLI) LODI-RIZ 70 LNC 3 697 - FIDRF, PIAZZA+ (PAVIA+POMAC(NEN+NAPOLI))
17 NEUTRON (939, J=1/2) [=1/2	SAXON 70 PK HZ 1740 SAXON, HOLEET CHIMMAN HUNCHARD
SEE LISTINGS OF STABLE PARTICLES	BAREYRE 64 PL B 137 +BRICMAN, VALLADAS, VILLET, + (SACLAY, CAEN) IJ BAREYPE 65 PL 19 342 +BRICMAN, STIRLING, VILLET (SACLAY) JJP
****** ********** *********************	DALITZ 65 PL 14 159 R H DALITZ, K G GUNRHUSE (DALIAN) JAHNSON 67 UCRL-17683 THESIS C H JOHNSON (LRL) DONNACHI 69 NOR 108 433 A DONNACHIE, R KIRSOPP (GLAS+EDIN)
N(1470) FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE	AYED 70 PL 318 598 +BAREYRE, VILLET ISACLATY RERARDD 70 PRL 24 419 +HADDOCK, NEFKENS,, PARSONS+ (UCLA+LRL)
ABOVE THE MASS AND WIDTH ARE BEST DETERMINED FROM PHASE-SHIFT ANALYSES. WE	FOR PHOTONIC COUPLINGS SEE (GLAS) MODRHOUSFTO NP R23,181 +RANKIN (GLAS) WALKER 69 PR 182,1729 R.L.WALKER (CALT)
LIST PRODUCTION EXPERIMENTS SEPARATELYSEE HELUW.	THE FOLLOWING ARE THEORETICAL PAPERS CONCEPNING THE N*1/2(1470) Resnick 66 pr 150 1292 L RESNICK (NIELS BOHR)
M (1380.0) ROPER 65 RVUE PHASE-SHIFT ANAL 9// M (1370.0) BRANDSEN 65 RVUE PHASE-SHIFT ANAL 9//	66 SCHWARZ 66 PR 152 1325 J H SCHWARZ CLERT 66 BALL 67 PR 155 1725 JS BALL, GL SHAW, DY WONG (UCLA,UCI,UCSD) 66 GOLDBERG 67 PR 154 1558 H GOLDBERG (CORNFLL)
M 1 (1470.0) BARFYRE 68 RVUE PHASE-SHIFT ANAL 11/1 1 WHERF CROSS SECTION IS GREATEST - EYEBALL FIT M 2 (1505.0) BAREYRE 68 RVUE PHASE-SHIFT ANAL 11/1	67 ******* ******** ******** ******** *****
2 WHERE SPEED IS GREATEST - EYEBALL FIT M 3 (1466.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 6/ M 3 (1470.1 DONNACH2 68 RVUE PHAS.SHIFT-CERNI 10/	1470 MEV REGION - PRODUCTION EXPERIMENTS
 M 3 (1466.) KIRSOPP 68 RVUE PHASE SHIFT ANAL LU/ 3 WHERE MAX. ABSORPTION IS -DONNACHI, 2 ,KIRSOPP EYEBALL FIT CERN 1 10/ 4 (1462.0) A ALA ALA ALA ALA ALA ALA ALA ALA ALA A	69 61 N*(1470) PROD. EXP.
 M 5 (1436.0) DAVIES TO RVUE P-S ANAL SUL 8 5 SOL 8 IS E-D FIT TO SAME DATA START FROM CERN I EXPER. (DONNACH1 68) M 6 (1461.0) AYED TO IPWA 1/ 	N(1470) IT IS NOT CLEAR THAT THE BUMP SEEN IN PRODUCTION EXPE- RIMENTS AT LOW INVARIANT MASS CORRESPONDS TO THE PIL RIMENTS AT LOW INVARIANT MASS CORRESPONDS TO THE PIL
6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM	DOMICS RESONANT STATF. DIFFRACTION SCATTERING SUMS TO BE THE DOMINANT FEATURE IN THIS MASS REGION- SEE GELIERT 64, WALKER 68 AND CLEGG 68 FOR DISCUSSION OF THIS POINT.
W 1 (255.0) RAREYRE 68 RVUE 11/ W 2 (205.0) BAREYRE 68 RVUE 11/	AFE LIST VALUES OF MASSES AND WIDTHS FROM THESE EXPERIMENTS FOR 67 THE READER'S CONVENIENCE THE LIST MAY NOT BE COMPLETE. 67 THE CATR AND SPRE EXPERIMENTS SEE A BUMP IN THE MISSING MASS
W 3 (211.0) DONNACH1 68 RVUE 67 W 3 (211.) DONNACH2 69 RVUE PHAS.SHIFT-CERNI 107 W 3 (210.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 107	 PLOT. THE HBC EXPERIMENTS SEE A BUMP IN THE PPPI MASS PLOT. TAN 69 68, SHAPIRA 68 SEE A BUMP IN PI P - PRODUCTION OF THIS STATE 69 IN GAMMA-P DR GAMMA-O IS VERY SMALL, SEE ALBERI 68.
W 4 (391.) DAVIES 70 R ¹⁰ /F, P-S ANAL SOL A 87 W 5 (224.) DAVIES 70 RVUE P-S ANAL SOL B 87 W 6 (164.0) AYED 70 IPWA 17	69 71* N#1/2(1470) MASS (MEV) PROD. EXPE7
SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	M (1425.) АРРКЛХ АОБЕМАМ 65 Н8С + K-P 1.45 GEV/C 7/66 M (1400.) АРРКЛХ СЛССОМІ 64 СМТК + РР 3.6-12 GEV/C M (1430.) АРРКЛХ АМКЕМВРАМ 55 СМТК + РР 7.1 GEV/C 7/66
61 N*1/2(1470) PARTIAL DECAY MODES	H (1400.) APPROX BELLETTIN 65 SPRK + PP, 10-26 GFV/C 7/46 H (1405.) (15.) ANDERSON 66 SPRK + PP, 6-30 GEV/C 7/66 H (1410.) (15.) RLAIR 66 CNTK + PP 2.8-7.9 GEV/C 7/66
DECAY MASSES P1 N#1/2(1470) INTO P1 N 1394 938 P2 N#1/2(1470) INTO N SIGMA (SIGMA MESON) 9384 410	M (1400.) (30.) FOLFY 67 CNTR PI+→ PAND PP 11/67 M (1450.) (17.) ALMEIDA 68 HBC + PP→P2PI, 10GEV/C 10/69 (1450.) ADDRDY BFLL 68 HBC PI+→P, 6 GEV/C 6/68
P3 N*1/2(1470) 1NTO N*3/2(1236) P1 1236+ 139 P4 N*1/2(1470) 1NTO N*3/2(1236) P1 938+ 139+ 139 P4 N*1/2(1470) 1NTO N P1 P1 938+ 139+ 139 N*1/2(1470) 1NTO CAMAN N 0+ 938	M (1400) APPROX LAMSA 68 HBC PI-P, 8 GEV/C 6/68 M S 175(1446) (11.) SHAPIRA 69 DBC INTO PPI,PN 7.0 10/69 M S 175(1446) (11.)
P6 N#1/2(1470) INFO RHI (PIPI, [=1) 938+ 765	M S (1390.) (20.) TAN 6B H8C PP TO PIP. 6.1 10/69 M 120(1443.) (15.) RHODE 69 H8C PP 22 GEV/C 10/69 M ANDES CON TO MMS - PI-P TO PI-MMS 2/71*
R1 N+1/2(1470) NTO (PI N)/TOTAL (P1)/TOTAL R1 N+1/2(1470) NTO (PI N)/TOTAL (P1)/TOTAL	/67 N#1/2(1470) WIDTH (MFV) PROD. EXPE
R1 1 (0.658) DUNNACH1 68 RVUE 67 R1 3 (0.658) DUNNACH2 68 RVUE PHAS.SHIFT-CERNI 107 R1 3 (0.658) DUNNACH2 68 RVUE PHAS.SHIFT-CERNI 107 R1 3 (0.658) DUNNACH2 68 RVUE PHAS.SHIFT-CERNI 107	768 (100.) BFLL 6R HBC PI+- P AND PP 6/68 769 W \$ 175 (198.) \$ 40.) \$ SHAPIRA 68 BRC + 10/69 769 M \$ 175 (198.) \$ 40.) \$ 50.000
RI 3 (1,65) Alladit Outles P - S ANAL SOL A B/ RI 4 (0,49) DAVIES 70 RVUE P - S ANAL SOL A B/ RI 5 (0,461) DAVIES 70 RVUE P - S ANAL SOL B/	769 W 5 (150.1) 11000 1100 1100 11
R1 6 (0.564) (0.18) SAXON 70 HRC AT 1400 MEV 6/ R1 8 (0.57) (0.18) SAXON 70 HRC AT 1400 MEV 6/ R1 8 (0.58) (0.09) SAXON 70 HRC 6/	/70
A AND B CURRESPIRIO TO THE 2 HEST SOCIOUS. AND BE OF THE STATE OF THE AND BE OF THE SOCIETIES AND A SOCIETIES ACCOMPANYING THE MASSES QUOTED.	N*1/2(1470) RRANCHING RATIOS PROD. EXP
R2 N#1/2(1470) INTO (N SIGMA)/TOTAL (P2)/TOTAL R2 ODMINANT INELASTIC DECAY THURNAUER 65 RVUE - 11. NUMBER 11 AUGUST	R1 V#1/2114/01 INTE (P1 F)/TOTAL PRODUCT LINCE PP TO PIP, 6.1 10/69 /67 /67
R2 DOMINANT INELASTIC DECAY MARSLASS 66 AVE - 11. R2 DOMINANT INELASTIC DECAY MOGGAN 68 RVUE - 11. R2 DOMINANT INELASTIC DECAY MOGGAN 68 RVUE ISOBAR MODEL 6	R2 N#1/2114705 INID IN-5/2112367 F1/701AE FROM BLY SEEN LAMSA 68 HBC P1-P B BEV/C 11/68 763 R2 PROBABLY SEEN JESPERSEN 58 HBC PP 22 BEV/C 11/68
R2 A (0.30) (0.20) SAXUN /0 HRL 6 R2 B (0.20) (0.12) SAXUN 70 HRC 6 A AND B CORRESPOND TO THE 2 REST SOLUTIONS, SEE NOTE IN R1.	771
R2 0 (0.14) DIEM 70 IPWA 5 BUUT AWALTSIS 4 D ASSUMING R1= 0.61	COCCINI 64 PL 8 134 +LILLETHUN,SCANLON,STAHLBRANDT, + (CERN)
R3 N≠1/2(1470) INTO (N≠3/2(1236) P1)/101AL (P3)/101AL R3 A (0.03) (0.201 SAXON 70 HBC 6 R3 B (0.22) (0.121 SAXON 70 HBC 6	ADELMAN 65 PRL 14 1043 S L ADELMAN CLADELMAN CLADELMAN 770 ANKENRAA 65 NC 35 1052 ANKENRANDT,CLYDE,CORK,KEFE,KERTH+ (LRL) 780 BELLETTI 65 BELLETTI 65 (CERN)
A AND B CORRESPOND TO THE 2 BEST SOLUTIONS, SEE NOTE IN RL. 03 D (0.17) DIEM 70 IPWA 3 BOOY ANALYSIS 1 D ASSUMING RL= 0.61	ANDERSON 66 PRL 16 855 +BLESFR, COLLINS, FUJI,+ (BNL, CARN) BLAIR 66 PRL 17 789 +TAYLOR, CHAPMAN,+ (HARWELL, OUFENMARR, RHEL) GELLERT 66 PRL 17 784 +SHITH, VOJCICKI, COLTON, SCHLEIN + (LRL, UCLA)
R4 N#1/2(1470) INTO (GA4MA N)/(PI N) (P51/(P1) R4 SOME INDICATION LODI-RIZZ 70 DBC GAM-N TO PI-P 7	/TO ALDERY 67 PRL 19 397 +JONES,LINDENBAUM,LOVE,DZAKI+ (BNL) ALDERI 68 PR 176 1631 +APPEL.RUDNITZ,CHEN,DUNNING,GOITEIN+ (HARV)
R5 N#1/2(1470) INTO (N RHO)/TOTAL (P61/TOTAL R5 10.07) DIFM 70 IPWA 3 RODY ANALYSIS L	ALMEIDA 68 PR 174 1638 +RUSHNROMKF,SCHARFNGUIVEL* [CAVF,DESY] BELL 68 PRL 20 164 +CRENNELL,HOUGH,KARSHON,LAI+ [BNL,CCNY] /71* CLEFG 68 PREPRINT 4 CLEFG (LANC)
n ASSUMING RI= 0.61	JESPERSE 68 PRL 21 1368 JESPERSEN,KANG.KERNAN+ (10WA STATE) LAWSA 68 PR 166 1395 +CASON.BISWAS,DERADO,GROVES,+ (NOTRE DAME)
****** ********* ********* ***********	SHAPIRA 68 PRL 21 1835 +AFFNARY, EISENBERG, RONAT, YAFFF+ (REHD) TAN 68 PL 288 195 TAN, PERL, MARTIN, CHINNONSKY + (SLAC+LRL+UCI) WALKER 68 PPL 20 33 *THOMPSIN, ROBERTSON, ON LEE, HARTUNG++ (WISC)
ROPER 65 PR 139 B190 LD ROPER,RM HRIGHT,BT FELD (LRL-LVNR,MIT)IJP RKANDSEN 65 PR 139 B1566 +ODONNELL, MODRHOUSE (DURHAM,RTHED)IJP	RHODE 69 PR 187 1844 RHODE, LEACOCK, KERNAN, JESPERSEN,+ (AMES) ANDERSON 70 PRL 25,699 +BLESER,BLIEDEN,COLLINS++ (BNL,CARN)
THURNAUF 65 PRL 14 985 P G THURNAUER (RUCH) Namyslow 66 PR 157 1328 Namyslowski,razmi,roberts (Stan,eDinr,ic) Rojsfwerd 67 Trying Conf a h Rosenfeld, P Soding (LRL)	****** ******** **********************
	****** ********

S108 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

Baryons

				-	_						
N(1	520) FOR DISC PRECEDIN	2(1520, JP=3/2-) I=1/2 USSION CONCERNING RESONANT P G N*1/2(1470).	D'13 ARAMETERS, SEE NOTE		KIRZ BAREYS CROUCT DERADO - MERLO	63 PR 130 24 RE 65 PL 18 344 H 65 DESY CONF D 65 ATHENS CO 66 P ROY SO	PAPER 481 J KIR 2 + BRI F II 21 + (DNF 244 +KENN C 289 489 J P M	S NOT REFER Z+ J SCHWAR CMAN, STIRL BROWN,CEA,H EY,LAMSA, + ERLO, G VAL	RED TO IN TZ, R D TI ING, VILLI ARVAPD,MI (NO LADAS	DATA CARDS. RIPP (LRL) ET (SACLAY)I. T, PADOVA, WEIZMANN) FRE DAME, KENTUCKY) (SACLAY)	16
м м м 1 I	(1536.0) (1530.0) (1510.0) WHERE CROSS	ROPER 65 RVUE BRANDSFN 65 RVUE BAREYRE 68 RVUE SECTION IS GREATEST - EVFBAI	PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHASE-SHIFT ANAL LL FIT	9/66 9/66 11/67	J OH NSI DE ANS DONNAC AYE D	THE ABOVE PA ON 67 UCRL-1762 69 PRL 1772 CHI 69 NP 10B 43 70 PL 31B 59	APERS DISCUSS I B3 THESIS C H J 2623 S R D 33 A DON 98 +BARE	NELASTIC CH OHNSON EANS NACHIE: R K YRE:VILLET	ANNELS NE	AR THE RESONANCE. (LRL) (FLORIDA) (GLAS+EDIN) (SACLAY)	
M 2 M 3 M 3	(1515+0) WHERE SPEED (1541+0) (1520+)	BAREYRE 68 RVUE IS GREATEST - EYEBALL FIT DONNACH1 68 RVUE DONNACH2 68 RVUE	PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHAS.SHIFT-CERNI	6/68 10/69	WORRH	FOR PHOTON DUSE70 NP 823,18 R 69 PR 182,17	IC COUPLINGS SE 31 +RANK 729 R.L.W	E IN ALKER		(GLAS) (CALT)	
43 3 44 5 5 4 6	(1526.) WHERE MAX. 4850RPTIO (1512.0) (1512.0) SOL B IS E.D FIT TO S (1723.0) FROM ENFR. DEP. FIT D	KIRSOPP 68 RVUE N IS -DONNACHL, 2, KIRSOPP DAVIES 70 RVUE DAVIES 70 RVUE AVED 70 RVUE AMF DATA START FROM CERN I E AYED 70 IPMA DF ARGAND DIAGRAM 2(1520) WIDTH (MEV)	PHASE SHIFT ANAL FYFBALL FIT CERN 1 P-S ANAL SOL A P-S ANAL SOL B XPER. (DONNACHI 68)	10/69 10/69 8/69 8/69 1/71*	 N(1		00 DISCUSSION (RFCEDING N*1/2)	<pre>************ JP=1/2-) I CONCERNING (1470).</pre>	=1/2	51111ARAMETERS, SEE NOTE	*
W 1 W 2 W 3 W 3 W 3 W 5 W 5	(125.0) (110.0) (149.0) (114.) (115.) (115.) (125.0) (125.0) (131.0) SFE THE NOTES ACCOMPAN	HAREYRE AN RULE BAREYRE AN RULE DANACH AN AN AN DONACH 2 AR RULE CONNACH 2 AR RULE CANVES TO RULE DAVIES TO RULE DAVIES TO RULE DAVIES TO RULE DAVIES TO RULE DAVIES TO FUA	PHAS.SHIFT-CERNI PHASE SHIFT ANAL P-S ANAL SOL A P-S ANAL SOL B	11/67 11/67 6/68 10/69 10/69 8/69 1/71*	M M M N M 1 1 M 2 2 M 3	(1519.0) (1570.0) R FITTING GI (1535.0) WHFR (1515.0) WHFR (1515.0) (1550.)	 N*1/2(1535) 1565.0 VES TWO SOLUTIO E CROSS SECTION E SPEED IS GREA 	MASS (MEV) HENDRY MICHAEL UCHIYAMA. INS. PROBLI BAREYRE I IS GREATE: BAREYRE ITEST - EYEI DONNACHI DONNACHI	65 RVUE 66 RVUE - 66 RVUE EMS MATCHI 68 RVUE 51 - EYEBA 68 RVUE 34LL FIT 68 RVUE	FTA N + SIL PI M FITS RAREYRE SIL FITS N FTA DATA NG PI P PHASE SHIFT PHASE-SHIFT ANAL PHASE-SHIFT ANAL PHASE-SHIFT ANAL	- 9/66 9/66 11/67 11/67 11/67
	62 N*1/	2(1520) PARTIAL DECAY MODES	DECAY MASSES		M 3 M M 4	(1440.) WHERE MAX. A8 (1535.0) (1502.0)	SORPTION IS -DO (10.0)	KTRSOPP INNACH1+ 2 DELCOURT	68 RVUE KIRSOPP 69 CNTR 70 RVUE	PHASE SHIFT CERNI PHASE SHIFT ANAL EYEBALL FIT CERN L PHOTOPRODUCT.	10/69
P1 P2 P3 P4 P5 P5 P5 P5	N*1/2(1520) INTO (N*1/2(1520) INTO (N*1/2(1520) INTO (N*1/2(1520)+ INTO N*1/2(1520)+ INTO N*1/2(1520) INTO (N*1/2(1520) INTO (N*1/2(1520) INTO (PIN #3/2(1236) PI 9 PIPI NEUTRON PI+ PRJTON PI+ PI- 4 FTA 8 SIGHA (SIGHA MESON)	1394 938 12364 139 9394 1394 139 9394 139 9384 1394 139 9394 548 9394 410		M 5 5 M 6 	(1302-0) (1499-0) SOL B IS F.D F (1534-0) FROM ENER. DE	IT TO SAME DATA P. FIT OF ARGAN 3 N*1/2(1535)	DAVIES DAVIES START FROM AYED D DIAGRAM WIDTH (MEV)	TO RVUE TO RVUE CERN I E TO IPWA	P-S ANAL SOL A P-S ANAL SOL B XPER. (DONNACH1 68)	8769 8769 1771*
PR	N*1/2(1520) INTO P	RHO (PIPI, I=1) 2(1520) BRANCHING RATIOS -	938+ 765		H H N H N N	(130.0) (130.0) (156.0) DR (155.0)	144.0	HENDRY MICHAEL UCHIYAMA- BAREYRE	65 RVUE 66 RVUE 66 RVUE 68 RVUE	SEE NOTE ON MASS	9766 7766 9766
R1 R1 1 R1 3 R1 3 R1 3 R1 4 R1 4 R1 5 R1 6	N*1/2(1520) INTO ((0.54) (0.509) (.57) (0.45) (0.45) (0.45) (0.49) SFE THE NOTES ACCOMPAN	PINJ/TAL BAREYRE 68 RVUE DONNACH1 68 RVUE DONNACH2 68 RVUE KIRSOPP 68 RVUE DAVIES 70 RVUE DAVIES 70 RVUE DAVIES 70 RVUE AVED 70 IPVA AVSSFS QUOTED.	(P1)/TOTAL PHAS.SHIFT-CERNI PHASE SHIFT ANAL P-S ANAL SOL A P-S ANAL SOL B	11/67 6/68 10/69 10/69 8/69 8/69 1/71*	H 2 H 3 H 3 H 3 H 4 H 4 H 6	(105.0) (268.0) (116.) (160.) (120.0) (36.0) (36.0) (96.0) SEF THE NOTES (APPROX	BAREYRE DDNNACH1 DDNNACH2 KIRSOPP DELCOURT DAVIES DAVIES AYED E MASSES QU	68 RVUE 68 RVUE 68 RVUE 68 RVUE 69 CNTR 70 RVUE 70 RVUE 70 RVUE 70 IPWA	PHAS.SHIFT-CFRN1 PHASE SHIFT ANAL PHOTOPRODUCT. P-S ANAL SOL A P-S ANAL SOL A	11/67 6/68 10/69 10/69 8/69 8/69 8/69 8/69 1/71*
AL M A N D S A	OST THE ENTIRE INELAST IT DOESNTL. THE N PI ND D WAVES.	TICITY IS IN N PI PI (ONLY N PI SEEMS TO BE MAINLY N*3/2	FTA COULD COMPETE, 2(1236) PI, IN BOTH			63		PARTIAL DEC			
R2 R2 P2 P2 0 0	N*1/2(1520) INTO (DOMINANT INEL C 0.20 0.05 (0.40) ASSUMING R1= 0.5	N\$3/2(1236) PTI/TOTAL PECAY OLSSON 66 RVUE KIR7 66 HRC 0 DIFM 70 IPWA	(P4)/TOTAL PI P TO PI PI N 0 ASSUMING R1=0.72 3 BODY ANALYSIS	9/66 9/66 1/71*	P1 P2 P3 P4	N*1/2(1535) N*1/2(1535) N*1/2(1535) N*1/2(1535) N*1/2(1535)) INTO PI N I INTO N ETA) INTO N PI PI INTO N SIGMA	(SIGMA MESO	N)	DECAY MASSES 139+ 938 939+ 548 938+ 139+ 139 938+ 410	
R 3 R 3 R 3 R 3 R 3 R 3	N*1/2(1520) INTO (IARGE LARGE LARGE LARGE LARGE LARGE	N*3/2(1236) PTJ/(N PI PTJ THURNAUER 65 RVUE NAMYSLOWS 66 RVUE ROBERTS 67 RVUE ROBERTS 67 RVUE MORGAN 68 RVUE	(P2)/(P3) - - - - - -	11/67 11/67 11/67 11/67 6/68	P6 R1 R1	N*1/2(15351 63 N*1/2(1535) (0.69)	INTO N RHO (P N*1/2(1535) INTO (PI N)/T	PI I PI, I=1) BRANCHING R DTAL HENDRY	4TIOS -	1236+ 139 938+ 765 (P1)/TOTAL	0/44
R4 R4 R4 D D	N*1/2(1520) INTO (PROBABLY PRESENT (0.02) ASSUMING R1= 0.5	N SIGHA) / TOTAL MORGAN 68 RVUE DIEN 70 IPWA	(P7)/TOTAL ISOBAR MODEL 3 BODY ANALYSIS	6/68 1/71*	R1 R1 N R1 R1 3 R1 3 R1 3	(0.32) (0.71) OF (0.31) (1) (0.696) (.33) (.3)	0.28 IR 0.43	MICHAEL UCHIYAMA- DAVIES DONNACH1 DONNACH2 KIRSOPP	66 RVUE 66 RVUE 67 RVUE 68 RVUE 68 RVUE 68 RVUE	SEE NOTE ON MASS PIP TO N ETA,B,C PHAS.SHIFT-CERNI PHASE SHIFT ANAL	9/66 9/66 11/67 6/68 10/69 10/69
R5 D R5 D R5 B R5 B	N*1/2(1520) INTO ((0.006) APPROX VIES 67 GIVES SEVERAL (0.014) (0.0012) (0.001)	N ETAI/TOTAL DAVIES 67 RVUE VALUES DEPENDING ON INPUT DA BOTKE 69 MPWA DEAME 60 NOMA	(P5)/TOTAL ATA, ALL ARE SMALL T POLE+ RESON.	11/67	R1 R1 4 R1 5 R1 6	(0.33) (0.36) (0.35) (0.397)		DELCOURT DAVIES DAVIES AVED	69 CNTR 70 RVUE 70 RVUE 70 IPWA	P-S ANAL SOLA P-S ANAL SOLB	8/69 8/59 8/59 1/71*
R5 B R5 B R6 D D	0.00210R 0.004 PARAMETRIZATION USED N*1/2(1520) INTO ((0.07) ASSUMING R1= 0.5	CLARRERAS TO MPWA COULD BE IN DANGER OF DOUBLE N RHO)/TOTAL DIEM TO IPWA	T POLE+ RESON. COUNTING (P3)/TOTAL 3 BODY ANALYSIS	5/70 5/70	R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2	N*1/2(1535) DOMINANT (0.69) (0.29) OR (0.69) (0.66) (0.4)	INTO (N ETA)/ INEL DECAY 0.71 R 0.45	FOTAL HENDRY MICHAEL UCHIYAMA- DAVIES DELCOURT DEANS	65 RVUE 66 RVUE 66 RVUE 67 RVUE 69 MPWA	(P2)/TOTAL SEE NOTE ON MASS PIP TO N ETA.B.C	9/66 9/66 9/66 11/67 8/69
******	******	REFERENCES N*1/2(1520)	*********		R2 B R2 B R2 T R2 T	(0.69)OR PARAMETRIZATIO THE VALUES OF RZ DF DIEM ET AL. (0.696 N USED COULD BE LISTED ABOVE 7 70)	CAPRERAS IN DANGER IRE INCOMPAT	70 MPWA OF DOUBLE FIBLE WITH	T POLE+ RESON. COUNTING THE RESULTS	5/70
BRANDSEN	SEE & PREVIOUS EDIT 65 PR 139 81566	10N (RMP 37, 633, 1965) FOR +DDONNELL, MOORHOUSE	EARLIER REFERENCES. (DURHAM,RTHFD)[JF		R3 R3 D D	N#1/2(1535) (0.07) ASSUMING R	INTO (D(1236) 1= 0.34	PI)/TOTAL DIFM	70 IPWA	(P4)/TOTAL 3 BODY ANALYSIS	1/71*
	65 PR 133 8190 E 55 PRL 14 985 66 PRIVATE COMM - NUMBER EXTRACTED FR	LD RUPER, RM WRIGHT, BT FELD P G THURNAUER J KIRZ OM DATA DISCUSSED IN KIRZ 63	(LRL-LVMR,MIT)IJP (ROCH) (LRL)	•	R4 R4 D D	N*1/2(1535) (0.26) ASSUMING R	INTO (N. SIGMA) 1= 0.34	/TOTAL DIEM	70 IPWA	(P5)/TOTAL 3 BODY ANALYSIS	1/71*
OLSSON DAVIES ROBERTS POSENFEL	66 PR 145 1309 67 NC 52A 1112 67 PREPRINT 67 TRVINE CONF	M G OLSSON, G B YODH A T DAVIES, R G MOORHOUSE R G ROBERTS A H ROSENFELD, P SODING	(JIAN+EDINB,IC) (WISC,MD) (GLASGOW,RTHFD) (DURHAM) (LRL)		R5 R5 D D	N*1/2(1535) (0.20) Assuming R	INTO (N RHO)/ 1= 0.34	DIEM	70 IPw∆	(P6)/TOTAL 3 BODY ANALYSIS	1/71*
BAREYRE DONNACHI DONNACH2 KIRSOPP MORGAN BOTKE DEANS	68 PR 165 1731 68 PL 268 161 2 68 VIENNA 139 68 THESIS 68 PR 166 1731 69 PR 180 1417 69 PR 185 1797	P BAREYRF, C BRICMAN, G VIL A DINNACHIF, R G KIRSOPP, C DONNACHIF, RAPPORTEUR, S TAL R G KIRSOPP D MORGAN J C BOTKE S DEANS, L MODTEN	LET (SACLAY)IJP LOVELACE (CERN)IJP K (GLAS) (EDIN) (RTHED) (UCSR) (UNIN S ELODIDA)		++++++ HENDRY	********* *****	REFEREN A W HEN Y PHASE-SHIFT-A	********** * CES N*1/ DRY, R G MC NALYSIS RES	2(1535) ORHOUSE	(R THFD) PI- P TO FTA N	
CARRERAS DAVIES AVED DIEM	70 NP 168 35 70 NP 821 359 70 KIEV CONF 70 KIEV CONF.	B CAREFAS, A DONNACHIE A DAVIES R AYEO,P BAREYRE, G VILLET + SMADJA, CHAVANON, DELER, S	(DAR E, MCHS) (GLAS) (SACL)IJP DOLBEAU+ (SACL)		MICHAEL UCHIYAM DAVIES	66 PL 21 93 A 66 PL 21 93 A 66 PR 149 122 67 NC 52A 111	C INCHA C MICHA O F UCHIY Z A T DAV	KS FRUM THE FL AMA-CAMPREL IES, R G M∏	SULUTION L, R K LO ORHOUSE	USING PRANDSEN 65. (DXF) GAN (ILL)IJP (GLASGOW,RTHED)	
м M M M M M

R2 R2 R2 R2 R2 R2

CARR DAVI AYED WAGN BROD

Baryons

For notation, see illustrated key at beginning of data card listings.

P RAREYRE, C BRICMAN, G VILLET (SACLAY)IJP A DUNNACHIE, P G KIRSOPP, C LOVELACF (CERNIJD) DUNNACHIE RAPPORTEUR, S TALK (GLAS) R G KIRSOPP DFLCOURT, LFFRANCOIS, PEREZ-Y-JORBA, + (OBSA) S DFANS, J WOOTEN (UNIV S FLORIDA) BAREYRE 68 PR 165 1731 DONNACH1 69 PL 268 161 DONNACH2 68 VIENNA 139 KIRSOPP 68 THESIS UELCHURT 59 PL 298 75 DEANS 69 PR 185 1797 AYEN 70 KIEV CONF CARRERAS 70 NP 168 35 DAVIES 70 NP 821 359 DIEM 70 KIEV CONF. R AYFO,P BAREYRE, G VILLET (SACL)IJP B CARRERAS, A DONNACHIE (DARE,MCHS) DAVIES DIEM B CARRERAS, A DONNAUHLE (DARTHOUDS) A DAVIES (GLAS) + SMADJA, CHAVANON, DFLER, DOLBEAU+ (SACL) PAPERS NOT REFERRED TO IN DATA CARDS. BR4WDSEN 55 PP 139 S1566 COONNELL, MOORNOUSE COUNDAW, RTHFD)1JP -- NASIS OF NUMMERS WE QUITE FROM HEADRY 65, COUNDAW, RTHFD)1JP AREYKE 65 PL 19 32 + BRICMAN, STIRLING, VILLET (SACLAY)IJP LOVELACE 47 HEIDFLBREG 6, 79 C LOVELACE CERNIJP CERNIJP DIVISON 67 UGRL-17AS THESIS C H JOINSON LLRL ONNACHI 69 NP 100 433 ATFD 70 PJ 316 S90 HERYREVELUET (SACLAY) EUR PHOTONIC COUPLINGS SEE MOORHOUSETO NP 823,181 +RANKIN WALKER 69 PR 182,1729 R.L.WALKER (GLAS) (CALT) THE FOLLOWING ARTICLES DEAL WITH THE REACTIONS PI- P TO ETA N AND GAMMA P TO ETA P NERR THRESHILD. THE DATA AND THE THEORETICAL ARTICLES ARE USFFUL IN UNPERSTANDING THE REHAVIOR OF THE SIL AMPLITUDE AS DETERMINED IN PI P PHASE-SHIFT ANALYSES. FURTHER REFERENCES WAY HE FONDIN IN THEM. HULD AS PERPENDING 1520 MEV REGION - PRODUCTION EXPERIMENTS N(1520) 8 N*(1520) PRODUCTION EXPERIMENTS BUMPS THIS INFORMATION REFERS TO FITHER THE DI3 OR THE SIL STATE SEEN AT THIS MASS 8 N*(1520) MASS (MEV) PROD. EXP. ----------м 1503. 6. ANDERSON 70 MMS - PI- P TO PI- MMS 2/71* ____ 8 N*(1520) WIDTH(MEV) PROD. EXP. ----w 120. 10. ANDERSON 70 MMS - PI- P TO PI- MMS 2/71* ----- 8 N*(1520) BRANCHING RATIOS PROD. EXP. -----N*(1520) INTO (N_PI)/TOTAL PRODUCTION EXPERIMENTS 0.78 0.24 BASSOMPIE 67 HBC + K+P TO K* N* 11/68 Р1 Р1 N*(1520) INTO (NFUTRON PI+)/(P PI+ PI-) 0.77 0.45 ALEXANDER 67 HRC + PP 5.5 BEV/C R 2 R 2 9/66 N*(1520) INTO (N PI)/(N PI PI) 1.25 0.44 0.71 A-BORELLI 67 HRC 0 PBAR P 5.7 BEV/C 9/66 Р 3 R 3 N*(1520) INTO (N*3/2(1236) PI)/(N PI PI) PROD. EXP. 0.00 0.09 A-BORFLLI 67 HAC R4 R4 9/66 N*(1520) INTO (N PI PI)/TOTAL (0.08) OR LESS BASSOMPIE 67 HRC + K+P TO K* N* 85 85 11/68 N*(1520) INTO (N ETA)/TOTAL PROD. EXP. 0.22 0.14 BASSOMPLE 67 HBC + K+P TO K* N* R 6 R 6 11/68 R 7 R 7 N*1/2(1520) (NTO (PE N)/(PE N*3/2(1236)) (0.42) OR LESS LEE 67 HBC PT-P 3.6 GEV/C 11/67 ****** ******** REFERENCES -N*(1520)- PROD. EXP. A-BORELL 67 NC 47 232 ALEXANDE 67 PR 154 1284 BASSOMPI 67 PL 258 440 LEF 67 PR 159 1156 ALLES-BORFLLI,FRENCH,FRISK.MICHEJDA (CERN) ALEXANDER,BENARY,CZAPEK,+ (WEIZMANN(CERN) DASSUMPTERRE, + +MGEBS,RDE,SINCLAIR,VANDER VELDE (MICH) +BLESER,BLIEDEN,COLLINS++ (BNL,CARN) ANDERSON 70 PRL 25+699 END PRODUCTION EXPERIMENTS

N(1670)	64 N+1/2(1670, JP=5/2-) 1=1/2 D_{15} FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N+1/2(1470).							
H (1650.0) H (1674.0) H (1674.0) H (1674.0) H (1674.0) H 2 (1655.0) H 3 (1678.0) H 3 (1678.0) H 3 (1678.0) H 5 (1667.0) 5 SGL B 15 E(. H 6 (1657.0) 6 FRM ENRE. H 1 (1357.0) 6 FRM ENRE. H 1 (137.0) H 2 (173.0) H 3 (173.0) H 3 (173.0) H 3 (173.0) H 3 (173.0)	FOR DISCUSSION CON PRECEDING N*1/2(16 64 N*1/2(1670) MA APPROX HERE CROSS SECTION I HERE SPEED IS GREATE ABSORPTION IS ~DONN 0 FIT TO SAME DATA S DEP. FIT DF ARGAND 64 N*1/2(1670) WI	CERNING RESON 701. ISS (MEV) BRANDSEN 65 NUKE 68 RAREYRE 68 RAREYRE 68 ST - EYEBALL ST - EYEBALL ST - EYEBALL ST - EYEBALL DOWNACH2 28 NOWNACH2 28 NOWNACH2 68 NOWNACH2 68 NOWNACH3 68 NO	ANT PARAWETERS, SFE NDTE AVUE PHASF-SHIFT ANAL CNTR PI-PEL+POL RVUE PHASE-SHIFT ANAL EYEBALL FIT RVUE PHASE-SHIFT ANAL BYUE PHASE-SHIFT ANAL RVUE PHASE-SHIFT ANAL RVUE PHASE SHIFT ANAL RVUE PS-S ANAL SOL B IPWA RVUE PS-S ANAL SOL B IPWA RVUE PHASES SHIFT-CERWL	7/66 6/88 11/67 11/67 10/69 10/69 8/69 8/69 1/71* 11/67 11/67 11/67 6/68				
W 3 (175.) W 4 (115.0) W 6 (143.0) SEE THE NOTE	S ACCOMPANYING THE	KIRSOPP 68 DAVIES 70 AYED 70 MASSES QUOTE	RVUE PHASE SHIFT ANAL RVUE SOL A AND B IPWA D.	10/69 8/69 1/71*				
P1 N*1/2(14 P2 N*1/2(14 P3 N*1/2(14 P4 N*1/2(14 P5 N*1/2(14	64 N×1/2(1670) PA 570) INTO PI N 570) INTO N ETA 570] INTO LAMBDA K 570) INTO N×3/2(1236 570) INTO N PI PI 64 N×1/2/1670 PB	ANTIAL DECAY	MIDES 					
R1 N*1/2(14 R1 1 (0.41) R1 3 (0.39) R1 3 (.39) R1 4 (0.50) R1 4 (0.50) R1 5 (0.43) R1 6 (0.39) SEE THE NOTE	570) INTO (PI N)/TOT)) 3 5 accompanying the	AUCHING PATT BAREYRE 68 DONNACH1 68 DONNACH2 68 DONNACH2 68 KIRSOPP 68 DAVIES 70 DAVIES 70 DAVIES 70 MASSES QUOTEI	(PL)/TOTAL RVUE RVUE RVUE PHAS.SHIFT-CERNI RVUE PHASE SHIFT ANAL RVUE P-S ANAL SOL A RVUE P-S ANAL SOL A IPHA D-	11/67 6/68 10/69 10/69 8/69 8/69 8/69 1/71*				
R2 N#1/2(1/ R2 (0.02' R2 (0.01' R2 (0.01' R2 (0.01' R2 (0.00' R2 (0.00' R2 R R (0.00' R2 R (0.00' R2 R R R (0.00' R2 R R (0.00' R2 R <td>570) INTO (N ETA)/TO 5) OR LESS 5) 5) (0.004) 5)OR 0.012 510N USED COULD BE</td> <td>TAL TRIPP 67 BOTKE 69 DEANS 69 CARRERAS 70 IN DANGER OF</td> <td>(P2)/TOTAL RVUE MPWA T PULE + RESON. MPWA T POLE + RESON. MPWA T POLE + RESON. DOUBLE COUNTING</td> <td>3/67 10/69 5/70 5/70</td>	570) INTO (N ETA)/TO 5) OR LESS 5) 5) (0.004) 5)OR 0.012 510N USED COULD BE	TAL TRIPP 67 BOTKE 69 DEANS 69 CARRERAS 70 IN DANGER OF	(P2)/TOTAL RVUE MPWA T PULE + RESON. MPWA T POLE + RESON. MPWA T POLE + RESON. DOUBLE COUNTING	3/67 10/69 5/70 5/70				
R3 N*1/2(1/ R3 (0.01/ R3 R3 0.001/ R3 R3 0.001/ R3 R3 (0.001/ R3 R3 (0.001/ R3 R3 <	70) INTO (LAMBDA K) b) OR LESS) OR LESS ITION USED COULD BE PAIDR LESS CL=+63	/TOTAL TRIPP 67 RUSH 58 IN DANGER OF WAGNER 70	(P3)/TOTAL RVUE MPWA T POLF + RESON, DOUBLE COUNTING IPWA PI-P TO K LAMB	8/67 8/69 1/71*				
R4 E 12600 0.63 F ASSUMES SEE NOTE PRECEDI	0.1 ELASTIC BRANCHING R NG THE N#1/2(1688)	TOTAL SRODY 71 ATTO 0.42+-0 INELASTIC DEC ******** *** FS N*1/2(HBC PI-PZPI N. PWA .04 CAY MODE MEASUREMENTS.	6/70				
BRANDSEN 65 PL 10 TRIPP 67 PR 83 BAREYRE 67 PR 83 BAREYRE 67 PR 83 DONACHI 54 PL 268 DONACHI 68 PR 10.5 DUNACHI 68 PR 10.6 DUNACHI 68 PR 10.6 DINACHI 68 PR 10.6 BUTXE 69 PR 10.6 DITXE 69 PR 10.6 DEANS 69 PR 10.6 DAVIES 70 NP 16.4 AVENE 70 NR 10.4 AVENE 70 NR 10.4	Active 20 + DOUNNEL 0 + LEFITH, 1731 P BAREYR 161 A DONNAC 139 DOWNACHT 1404 +JONES,K 1714 RGUMYS,K 1707 S DEANS, 35 B CARRER 350 A DAVIES, 357 R CARRER 350 A DAVIES, NF R AVED,P TH 1227 1247 H CASHMAR 135 PAL 200 PAL 400 PAL 90 PAL	L. MORAHOUSE E. C. DRICHAN MIE. R. G. KIR R. R. G. KIR EMP. MURPHY. TI EMP. MURPHY. TI EMP. MURPHY. TI EMP. CONCERN J. WODTEN AS. A DONNACI BAREYRE, G. Y. C. LOVELACE EL++HERNOON.		р Р Р				

 DUKE
 65
 PPL
 15
 468
 + JONES,KEMP,MURPHY,PREVITCE,+
 (RTHFD,DXF)LJP

 RABEYRE
 65
 PL
 18
 342
 + RRICMAN, STIRLING, VILLET
 (SACLAY)LJP

 JONNSON
 AT
 UCRL-17663
 HESIS
 CH
 JONNSON
 (LR1)

 JONNSON
 69
 PPL
 177
 2623
 S
 DEANS
 69
 (FLORIDA)

 DONNACHI
 69
 NPL
 177
 2623
 S
 DEANS
 (FLORIDA)

 DONNACHI
 69
 NPL
 107
 343
 DONNACHIF, R
 KIRSOPP
 (GLAS+EDIN)

 AYED
 70
 13
 598
 HBAEYREYNLLET
 (SACLAY)
 (SACLAY)
 FOR PHOTONIC COUPLINGS SEE WALKER 69 PR 182,1729 R.L.WALKER (CALT)

For notation, see illustrated key at beginning of data card listings.

Baryons

F15 65 N#1/2(1688, JP=5/2+) [=1/2 S_{11}'' N(1688) 66 N*1/2(1700+ JP=1/2-) I=1/2 FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N*L/2(1470). N(1700) FOR DISCUSSION CONCERNING RESONANT PRECEDING N#1/2(1470). PARAMETERS, SEE NOTE 66 N*1/2(1700) MASS (MEV) ----- 65 N*1/2(1688) MASS (MEV) -----
 66
 N*1/2(1700) MASS (MEV)

 (1698.0)
 RRADGEN 65 RVUE
 PHASE-SHIFT ANAL 9/64

 (1700.0)
 BAREYRE 68 RVUE
 PHASE-SHIFT ANAL 9/64

 (1710.0)
 BAREYRE 68 RVUE
 PHASE-SHIFT ANAL 1/67

 WHERE CROSS SECTION IS GREATEST - EVENALL FIT
 NHERE CROSS SECTION IS GREATEST - EVENALL FIT

 (1665.0)
 MAREYRE 68 RVUE
 PHASE-SHIFT ANAL 1/67

 WHERE SPEED IS GREATEST - EVENALL FIT
 DUNMACH1 58 RVUE
 PHASE-SHIFT ANAL 1/67

 (1700.0)
 KIRSOPP 68 RVUE
 PHASE-SHIFT ANAL 1/67

 (1700.1)
 KIRSOPP 68 RVUE
 PHASES HIFT ANAL 1/67

 (1700.1)
 KIRSOPP 68 RVUE
 PHASE 741FL ANAL 1/67

 (1705.0)
 COLONACH1 50 RVUE
 PHASE 741FL ANAL 1/67

 (1705.0)
 COLONACH1 50 RVUE
 PHASE 741FL ANAL 1/67

 (1705.0)
 COLONACH1 50 RVUE
 PHASE 741FL ANAL 1/67

 (1706.0)
 COLONACH1 50 RVUE
 PHASE 741FL ANAL 1/67

 (1706.0)
 COLONACH1 50 RVUE
 PS ANAL 50L B 8/69

 (1766.0)
 CALVE 70 RVUE
 PS ANAL 51L B 8/69

 (1671.0)
 CANTES TART FROM CERN 1 EXPER. 100NACH 68
 1/714

 (
 11680.0)
 081/2(1680)
 MADSEM (4EV)

 11680.0)
 084805EM (4E RUVE)
 PHASE SHIFT ANAL 7/66

 11682.0)
 004E
 68 CNTR
 PI-P EL + POL
 6/69

 11692.0)
 004EFRE
 68 CNTR
 PI-P EL + POL
 6/69

 11692.0)
 004EFRE
 68 CNTR
 PI-P EL + POL
 6/69

 11692.0)
 004EFRE
 68 CNTR
 PI-P EL + POL
 6/69

 11600.0)
 004EFRE
 68 CNTR
 PI-P EL + POL
 6/69

 11607.0)
 004EFRE
 68 CNTR
 PI-P EL + POL
 6/69

 11607.0)
 004EFRE
 68 CNTR
 PIASE-SNIFT ANAL 11/67

 WHERE SPEED IS GREATEST - EYEBALL FIT
 14050
 14500
 14500
 14500
 14500
 14500
 14500
 14500
 14500
 145060
 14500
 145600
 145600
 145600
 145600
 146600
 146700
 146600
 146700
 146600
 146700
 146600
 146700
 146600
 146700
 146600
 146700
 146600
 146700
 146600
 146700
 MMY м м м M M M M M M м 6 м ----- 65 N#1/2(1688) WIDTH (MEV) -----м BAREYRE 68 RVUE BAREYRE 69 RVUE DONNACH1 68 RVUE DONNACH2 68 RVUE KIRSOPP 68 RVUE DAVIES 70 RVUE DAVIES 70 RVUE AYED 70 IPMA MASSES CHOTED. (110.0) (105.0) (177.0) (132.) (130.) (104.0) (123.0) 11/67 11/67 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 P-S ANAL SOL A 8/69 P-S ANAL SOL B 8/69 1/71* 2333 ----- 66 N#1/2(1700) WINTH (MEV) --------VICHAEL 66 RVUE RAREYRE 68 RVUE BAREYRE 68 RVUE DONNACH 68 RVUE DONNACH 68 RVUE KISSOP 68 RVUE KISSOP 68 RVUE ORITO 69 RVUE DAVIES 70 RVUE AVED 70 IPWA WASER 001ED 77/66 11/67 11/67 PHASLSHIFT-CERNI 10/60 PHASLSHIFT-CERNI 10/60 PHASLSHIFT-CERNI 10/60 PHASLSHIFT-ANAL 10/60 P-S ANAL SOL B 8/69 P-S ANAL SOL B 8/69 1/71* PI-P TO K LAMB 1/71*
 1240.01
 41CHAEL 66 RV

 12/00.01
 RAREYRE 68 RV

 110.01
 RAREYRE 68 RV

 1300.01
 DONNACH2 68 RV

 1300.01
 DONNACH2 68 RV

 1300.01
 DONNACH2 68 RV

 1300.1
 DONNACH2 68 RV

 100.1
 CR RETT

 100.1
 CR RETT

 100.1
 DAVIES 70 RV

 1160.01
 DAVIES 70 RV

 1166.01
 AYED 70 RV

 1166.01
 AYEN 70 IP

 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.
 12333 (109.0) AYED 70 IF SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. ----- ------454 ----- 65 N*1/2(1693) PARTIAL DECAY MODES ------DECAY MASSES 1394 938 9394 548 11154 497 N#1/2(1688) INTO PI N N#1/2(1698) INTO N ETA N#1/2(1688) INTO LAMBDA K N#1/2(1688) INTO N#3/2(1236) PI N#1/2(1688) INTO N PI PI P1 P2 P3 P4 P5 _____ ----- 66 N#1/2(1700) PARTIAL DECAY MODES 1236+ 139 938+ 139+ 139 DECAY MASSES ----- 65 N*1/2(1588) BRANCHING RATIOS ------N*1/2(1700) INTO PI N N*1/2(1700) INTO N ETA N*1/2(1700) INTO LAMBOA K N*1/2(1700) INTO N GAMMA 139+ 938 939+ 548 1115+ 497 938+ 0 P1 P2 P3 P4
 Nº1/2(1698)
 INTO (PI N)/TOTAL

 (0.64)
 BAREYRE
 68 RVUE

 (0.560)
 DONNACHI
 68 RVUE

 (.681)
 DONNACHI
 68 RVUE

 (.681)
 KISSOPP
 68 RVUE

 (.691)
 DAVIES
 70 RVUE

 (0.931)
 APEO
 70 IPNA

 SEE
 THE NOTES ACCOMPANYING THE MASSES DUOTED.
 10
 (P1)/TOTAL R1 R1 11/67 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 SOL A AND B 8/69 3334 R1 R1 R1 ----- 65 N*1/2(1700) BRANCHING RATIOS ------N+1/2(1700) INTO (PT N)/TOTAL (1.0) APPPOX HICHAEL 66 RVUE (0.73) DONMACH1 68 RVUE (1.73) DONMACH2 68 RVUE (1.73) KIRSOPP 68 RVUE (0.76) DAVIES 70 RVUE (0.761) DAVIES 70 RVUE (0.642) AYED 70 IPWA R1 R1 3 R1 3 R1 3 R1 3 R1 4 R1 5 R1 6 (P1)/TOTAL 8/69 1/71* P1)/TOTAL 7/56 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 P-S ANAL SOL A 8/69 P-S ANAL SOL B 8/69 1/71* 6 MORE INFORMATIONS ON THE INELASTIC DECAY MODES OF THE 1590 MEV BUMP, AS SEEN IN PRODUCTION EXPERIMENTS, MAY BE FOUND BELOW N41/2(1649) INTO (N ETA)/TOTAL (P2)/TOTAL (0.015) OR LESS TRIPP A7 RVUE (0.0004) BOTKE 69 MPMA I POLE + RESON. (0.0031) (0.021) DFANS 69 MPMA I POLE + RESON. (0.0035) DR .001 CARBERAS 70 MPMA I POLE + RESON. PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING R 2 R 2 R 2 R 2 R 2 R 2 R 2 8 8 8 10/69 5/70 5/70 N#1/2(1700) [NTO (LAMBDA K)*(PI N)/TOTAL**2 (P3*P1)/TOTAL**2 R 2 R 2 R 2 1/2(17001 INTO [LAMBDA K]*(P[N]/TOTAL**2 (P3*P1)/TOTAL**2 0.03* 0.019 (P8TTO 69 RVUE (0.043)DR 0.054 WAGNER 70 IPWA P1-P TO K LAMB W1/2(1700) INTO (LAMBDA K)/TOTAL (P3)/TOTAL (0.0231 APPROX. RUSH 68 MPM T POLE + RESON. PARAMETRIZATION USED COULD BE IN DANGER OF COUBLE COUNTING 8/69 1/71* A N*1/2(1688) INTO (N ETA)/(PI N) (0.027) OR LESS HEUSCH R 3 R 3 (P2)/(P1) 66 RVUE + PIO, ETA PHOTO R 3 R 3 R 3 9766 8 9 N*1/211649) INTO LCAMBOA K/TOTAL (0.0013) OR LESS TRIPP 67 RVUE (0.001) OR LESS RUSH 69 MPWA T POLE + RESON. PARAMETEITATIGN USED COULD RE IN DANGER OF DOUBLE COUVIING (0.0016) OR LESS CL=.63 WAGNER 70 DPMA PI-P TO K LAMB R 4 R 4 R 4 R 4 R 4 Nº1/2(1700) INTO (N ETA)/TOTAL (21/70TAL (0.013) NOTKE 69 MPMA T PDLE + RESON. (0.03) (0.02) DEAMS 69 MPMA T PDLE + RESON. (0.19) DR 0.27 CABREAS 70 MPMA T PDLE + RESON. PARAWERTALITION USES COULD RF IN DAWGER OF NOULE COUNTING CARRERAS 70 USES REGGE PDLES + RESONANCES. VALUES SUSPICIPUISLY LARG (P2)/TOTAL T POLE + RESON. 10/69 T POLE + RESON. 8/69 T POLE + RESON. 5/70 R4 R4 B R4 B R4 C R4 B R4 C 8/67 5/70 8 8 1/71* R5 N€1/2(1638) INTO (N+3/2 PT)/TOTAL (P4)/TOTAL R[©] E 12500 (0.13) (0.04) SQ1.4.A BRODY 71 HBC PI-P--2PI N/PWA P5 E 12500 (0.39) (0.101 SQ1.4.B RRODY 71 HBC PI-P--2PI N/PWA F ASSUMFS FLASTIC BRANCHING RATIO 0.62+-0.06 6/70 6/70 N#1/2(1700) [NTO (N GAMMA)/TOTAL (PERCENT) (P4)/TOTAL (0.0065) 0RITO2 69 CNTR K-LAM, PHOTOPRO, 5/70 R 5 R 5 ------REFERENCES -- N*1/2(1700) REFERENCES -- N*1/2(1688)
 BRANDSEN
 65
 PL
 19
 420

 MICHAEL
 66
 PL
 21
 93

 BAREYRE
 68
 PR
 155
 1731

 DONNACHL
 58
 PL
 2.48
 161

 DONNACHL
 58
 VIENNA
 139

 KIRSOPP
 68
 THESIS
 RUSH
 68
 PR
 173
 1776
 +ODDANELL, MODRHOUSE (DURHAM, RTHED) I JP SEE & PREVIOUS EDITION (RMP 37, 633, 1965) FUR EARLIER REFERENCES.
 • DUNAMPELL, HOLMHOUSE
 (DARHAT, KIHPUILDY)

 • MICHAEL
 (NXF)

 P SAREVRF, C BRICMAN, G VILLET
 (SACLAYILDY)

 DUNACHIE, P G KIRSOPP, C LOVELACE (CERN)LDY
 DONACHIE, RAPPORTEUR, S TALK

 G KIRSOPP
 GLAVELACE (CEN)LDY

 DUNACHIE, RAPPORTEUR, S TALK
 (GLAS)

 J E GUSH
 (UNIV ALABAMA)
 +ODONNFLL, MOORHOUSE (DURHAM,RTHFD)IJP C A HEUSCH, C Y PRESCOTT, R F DASHEN (CIT) + LEITH, + (LRL,SLAC,GFRN,HEIDEL,SACLAY) BRANDSEN 65 PL 19 420 HEUSCH 66 PRL 17 1019 TRIPP 57 NP B3 10
 BAREYRE
 68
 PR
 165
 1731

 DINNACHI
 68
 PL
 268
 161

 DINNACHI
 68
 PL
 268
 161

 DINNACHI
 68
 PL
 268
 161

 DINNACHI
 68
 PL
 166
 1448

 KIRSNPP
 68
 PR
 166
 1448

 KIRSNPP
 68
 PR
 173
 1776
 P BARFYPE, C BRICHAN, G VILLET (SACLAY)IJP A NONNACHTE, R G KIPSOPP, C LOVELACE (CERN)IJP ODNVACHTE, R RAPPARTURY, S TALK (GLAS) +JONES,KENP,MURPIM, THRESHER, + (RTHFA,NKF)IJP R G KIRSOPP (EDIN) J E RUSH (UNIV ALABAMA)
 BOTKE
 69
 PR
 190
 1417

 DEANS
 69
 PR
 195
 1797

 ORITO
 59
 LNC
 1
 936

 ORITO2
 69
 INS
 J
 113
 J C BOTKE S DEANS, J WOUTEN S ORITO, S SASAKI S ORITO (THESIS) (UCSR) (UNIV S FLORIDA) (TOKYO-OSAKA) (TOKYO) (EDIN) (UNIV ALABAMA) B CARRERAS, A DONNACHIE CARRERAS 70 NP 16R 35 B CARRERAS, A DONNACHTE DAVIES 70 NP 821 359 A DAVIES AYED 70 KIEV CONF R AYEO,P BAREYRE, G VILLET WAGNER 70 PREPRINT TH 1227 F WAGNER, C LOVELACE (DARE, MCHS)
 RGTKE
 69
 PR
 180
 1417
 J
 C
 RGTKE
 LUCSB

 DEANS
 69
 PR
 185
 1797
 S
 DEANS, J
 J
 UDITEN
 (UNIV
 S
 FLORIDA)

 CARERAS, 70
 NP
 164
 35
 B
 CARERAS, A
 DONNACHIF
 (DAREE, MCHS)

 ONVIES
 70
 NP
 183
 359
 A
 DAVIES
 FGLASI

 AYED
 70
 NEVEV
 COMP
 R
 AYED, P
 RAVENER
 G
 ULLET
 (SALILI)

 MACNER
 70
 DREMA
 1102
 F
 MAGRER
 (JORELACE)
 (CERNI)

 BRODY
 71
 SUBM.
 TO
 PR
 +CASHMORE+...+HERNOON+...
 (SLAC+LRL)
 (DARE, MCHS) (GLAS) (SACL)[JP (CERN] PAPERS NOT REFERRED TO IN DATA CAROS.
 BAREYRE
 65 PL 18 342
 + RRICMAN, STIRLING, VILLET
 (SACLAY)IJP

 JOHNSON
 67 UCRL-17683 THESIS C H JOHNSON
 (RR)
 (RR)

 DEANS
 69 PR
 177 2623
 S DEANS
 (FL)RIDAJ

 DONNACHI 69 NP 106 433
 A DONNACHIER R KIRSOPP
 (GLAS+FDIN)

 AVED
 70 PL 318 599
 + RREYER+VILLET
 (SACLAY)
 PAPERS NOT REFERRED TO IN DATA CARDS.
 PAPERS NOT REFERENT DI IN DATA CARDS.

 DURE
 65 PRL 15 448
 +JONES.KEMP.MURPHY.PRENTICE.+ (&THEO.OXF)IJP

 CRINCH
 65 DESY COME II 21
 + IRRINK.CEMP.MURPHY.PRENTICE.+ (&THEO.OXF)IJP

 DEAL
 65 DESY COME II 21
 + IRRINK.CEMP.MURPHY.PRENTICE.+ (&THEAMAN)

 DEAL
 65 ATHENS COME 244
 + KENMER'LAMEA.HAR VARD.VAIT.PADOVA.WEIZMAANN

 DEAL
 65 ATHENS COME 244
 + KENMER'LAMEA.+
 (NOTRE DAME.KENTUCKY)

 SANDERIS
 65 DEES COME 244
 + KENMER'LAMEA.+
 (NOTRE DAME.KENTUCKY)

 SANDERIS
 68 DEL66 I347
 + DETOEUF.FAVOUX.HAMEL,+
 (SACLAY.CENT)

 --- THE ANOVE PAPERS DISCUSS INELASTIC CHANNELS NEAR THE BUNP.
 SACLAY.CAENI

 --- THE ANOVE PAPERS DISCUSS INELASTIC CHANNELS NEAR THE BUNP.
 SACLAY.CAENI

 JOHNSON HS OF VEIDA 332
 A DONNACHIF.R KIRSON
 (FLORIDA)

 DONNACH OF VEIDA 333
 A DONNACHIF.R KIRSON
 (FLORIDA)

 DONNACH HS OF VEIDA 333
 A DONNACHIF.R KIRSON
 (SACLAY)

 EDB DUNTORUL GOVUN HEAR FORCE
 CONNACHIF.R KIRSON
 18 N#1/2(1700, JP=3/2-) I=1/2 D"13 N(1700) FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N+1/2(1470). 18 N#1/2(1700) MASS (MEV) -----(1680.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 (1730.) DONNACH2 68 RVUE PHASESHIFT-CERNI 10/69 WHERE MAX. ABSORPTION IS -DONNACH1, 2 .kirsopp FYFABLL FIT CERNI 10/69 (1780.0) WAGNER 70 IPMA PI-P TO K LAMB 1/71* DI3 RESOMATES ONLY IN ONE OUT OF 3 POSSIBLE SOL. M FOR PHOTONIC COUPLINGS SEE WALKER 69 PR 182,1729 R.L.WALKER (CALT)

S112 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

Baryons

P13 17 N*1/2(1990) BRANCHING RATIOS ------15 N*1/2(1860, JP=3/2+) 1=1/2 FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N#1/2(1470). N*1/2(1990) INTO (PI N)/TOTAL (P1)/TOTAL (+09) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 N(1860) R1 R1 3 RZ N¥1/2(1990) INTO (N ETA)/TOTAL (P3)/TOTAL RZ R (0.02) (0.02) DEANS 69 MPM I POLE * RESON. 5/70 RZ 8 PARAMETRIZATION USED COULD BE IN OANGER OF MOUGLE COUNTING ----- 15 N#1/2(1860) MASS (MEV) -----------
 (1860.0)
 DINNACHI 68 RVUE
 PHASE-SHIFT ANALL

 (1860.1)
 DUNNACHI 68 RVUE
 PHASE-SHIFT CENNI

 (1900.1)
 KIRSOPP 68 RVUE
 PHASE SHIFT CENNI

 (1840.0)
 NIFERE MAX. ABSORPTION IS - DUNNACHI, 2 KIRSOPP EVERALLE FIT CERNI
 1

 (1840.0)
 NAVIES TO RVUE
 P-S ANAL SOL A

 (1840.0)
 NAVIES TO RVUE
 P-S ANAL SOL A

 (1870.0)
 AVIES TO RVUE
 P-S ANAL SOL A

 (180.0)
 AVIES TO RVUE
 P-S ANAL SOL A

 (180.0)
 AVIES TO RVUE
 PI-S ANAL SOL A

 (180.0)
 AVIES TO RVUE
 PI-S ANAL SOL A

 (180.0)
 AVIES TO RVUE
 PI-S ANAL SOL A
 6/68 10/69 10/69 10/69 8/69 8/69 ******* REFERENCES -- N*1/2(1990) A DOWNACHTE, R G KIRSOPP, C LOVELACE (CFRN)IJP R G KIRSOPP LEALOADFS, WARD, COMAN,+ (RHEL, BRISTOL, DAFF) S DEANS, J WODTEN COMAN, GIRSON, GILWAR++ (RHEL, SRISTOL) DONNACH1 68 PL 268 161 KIRSOPP 68 THESIS LEA 69 PL 298 584 DEANS 69 PR 185 1797 APLIN 70 RPPIH/67 8/69 м X⁻¹(145,0) - ΑΦΡΒΟΧ LEA 69 CATR PI-P ELASTIC X SEE ALSO APLIN 70 AYED 70 IPMA 6 FROM HERR, DFP, FIT OF ARGAND DIAGRAM A (1400.0) A PIJ REFORMER 70 IPMA PI-P TO K LAMB A PIJ REFORATES ONLY IN ONE OUT OF 3 POSSINGLE SOLUTIONS 1/71* v PAPERS NOT REFERRED TO IN DATA CARDS. 1/71* (FLORIDA) (SACLAY) DEANS 69 PR 177 2623 AYED 70 PL 318 598 S R DEANS +BAREYRE,VILLFT ----- 15 N*1/2(1860) WIDTH (MEV) ------N(2040) In N(2040)
 (296-00)
 DONNACHI
 68 RVUE

 (296-1)
 DONNACHI
 68 RVUE
 PHAS.SHIFT-CERNI

 (325-1)
 KIRSOPP 68 RVUE
 PHASE SHIFT ANAL

 (449-01)
 DAVIES
 70 RVUE
 SOL 4

 (317-01)
 DAVIES
 70 RVUE
 SOL 8

 (182-01)
 AVYEN
 70 RVUE
 SOL 8

 (120-01)
 AVYEN
 70 RVA
 FTO RVA

 (120-01)
 KER TO IPNA
 FTO RVA
 FTO K LAMB

 SEE THE NOTES ACCOMPANYLAG THE MASSES QUOTED
 SOL 8
 SOL 8
 ****** ******** 8/69 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 SOL 8 8/69 SOL 8 8/69 1/714 PI-P TO K LAMB 1/714 3334564 ----- 16 N*1/2(2040) MASS (MEV) ------3 (2057.0) DOWNACH1 48 RVUE PHASE-SHIFT ANAL 3 (2050.1 DOWNACH2 68 RVUE PHASE-SHIFT ANAL 3 (2060.1 KIRSDPD 68 RVUE PHASE SHIFT ANAL 3 HHERE MAX. ABSORPTION IS -DOWNACH1, 2 ,KIRSDPP EYFSALL FIT CERN 1 4 (2030.0) APPPOX LFA 69 CNTR PI-P ELASTIC X SEE ALSO APLIN 70 ----- 15 N*1/2(1860) PARTIAL DECAY MODES ------DECAY MASSES 139+ 938 1115+ 497 939+ 548 939+ 139+ 139 N*1/2(1860) INTO PIN N*1/2(1860) INTO LAMBDA K N*1/2(1860) INTO N ETA N*1/2(1860) INTO N PI PI P1 P2 P3 P4 ----- 16 N*1/2(2040) WIDTH (MEV) ----------- 15 N*1/2(1860) BRANCHING RATIOS ------(293.0) DONNACHI 68 RVUE (290.) DONNACH2 68 RVUE (240.) KIRSNOP 58 RVUE SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.
 N+1/2(1860) INTO (PI N)/TOTAL

 (0.21)
 DONNACH1
 68 RVUE

 (.21)
 DONNACH2
 68 RVUE

 (.25)
 KIRSDP
 68 RVUE

 (0.40)
 DAVIES
 70 RVUE

 (0.40)
 DAVIES
 70 RVUE

 (0.26)
 DAVIES
 70 RVUE

 (0.149)
 4YEO
 70 IPWA
 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 (P1)/TOTAL й З Н З PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 PHASE SHIFT ANAL 10/69 SOL 8 8/69 SOL 8 8/69 1/714 R1 P1 P1 R1 R1 R1 333456 ----- ----------- 16 N*1/2(2040) PARTIAL DECAY MODES ------DECAY MASSES 139+ 938 938+ 139+ 139 939+ 548 N=1/2/1860) [NTO (LAMBDA K)/TOTAL (P2)/TDTAL (0.014)T3 0.16 RUSH 68 MPWA T POLE + RESON-PRANFERIZATION USED COULD RE IN DANGER OF DOUBLE COUNTING R 2 R 2 R 2 N*1/2(2040) INTO PI N N*1/2(2040) INTO N PI PI N*1/2(2040) INTO N ETA 8/69 P1 P2 P3 N#1/2(1950) INTO (N ETA)/TOTAL (P3)/TOTAL (0.0364) ADTKE 69 MPWA T POLE + RESON. (0.003) (0.003) DEANS 69 MPWA T POLE + RESON. (0.030)OR 0.090 COULD RE IN DANGER OF ONUBLE COUNTING N*1/2(1850) INTO (N ETA)/TOTAL BOTKE R3 R3 B R3 B R3 B R3 B 16 N*1/2(2040) BRANCHING RATIOS ------10/69 5/70 5/70
 R1
 N+1/2(2040) INTO (PI N)/TOTAL
 (P1)/TOTAL

 R1
 3
 (.26)
 DONNACH2
 6R PVUE
 PHASESHIFT_CFRN1 10/69

 R1
 3
 (.15)
 KINSOPP
 6A RVUE
 PHASE SHIFT_ANAL 10/69

 R2
 N+1/2(2040) INTO (N ETA)/TOTAL
 (P3)/TOTAL
 (P3)/TOTAL
 (P3)/TOTAL

 R2
 0.0
 DR 0.009
 CARREAS 70 MPAA
 T PILE + PESON. 5/70

 R2
 PARAMETRIZATION USED COULD RE IN DANGER OF DOUBLE COUNTING
 S/70
 R4 N±1/2(1360) INTO (LAMBDA K)*(PI N)/TOTAL**2 (P2*P1)/TOTAL**2 R4 a (0.015) wagnep 70 IPWA ₽I-₽ TO K LAMB 1/714 ***** REFERENCES -- N*1/2(1860) REFERENCES -- N*1/2(2040) A DONNACHIF, R G KIRSDPP, C LOVELACE (CERN)IJP DONNACHIF RAPPORTEUR,S TALK (GLAS) (G KIRSOPP (FOIV) J E RUSH (UNIV ALABAMA) A DONNACHTE, P G KIRSDPP, C LOVELACE (CERNIJP DDNNACHTE RAPPORTEUR.S TALK (GLAS) G G KIRSDPP (EDINI LEA, DADES, MARD, COWAN,+ (RHEL, RRISTOL, DARF) +COWAN, GIBSON, GILMORY, (RHEL, RRISTOL) B CARREARS, A DONNACHTE (DARE, MCHS) DONNACH1 68 PL 26B 161 ORNNACH2 68 VIENNA 139 KIRSOPP 68 THESIS RUSH 68 PR 173 1776 DONNACH1 68 PL 268 161 DONNACH2 68 VIEVNA 139 KIRSOPP 68 THESIS LEA 69 PL 298 584 APLIN 70 RPP1H/67 CARRERAS 70 NP 168 35
 ADJ
 ADJ
 C ROTKE
 (UCSB)

 DEANS
 49 PR 189 1797
 S DEANS, J WOOTEN
 (UNIV S FLORIDA)

 LEA
 69 P2 195 1797
 S DEANS, J WOOTEN
 (UNIV S FLORIDA)

 LEA
 69 L 293 584
 LFA JOADES, MARD, COMAN, + I (RHEL, RRISTOL), DARE1

 APLIN
 70 RPD IH/67
 +COMAN, GILMORE++
 (HREL, RRISTOL), DARE1

 AYED
 70 RPD IH/67
 +COMAN, GILMORE++
 (HREL, RRISTOL), DARE1

 CARGERAS, TO NP 16A 35
 B CARRERAS, A DONNACHIE
 (DARE, MCHS)

 CAAVIES
 70 NP 16A 35
 B CARRERAS, A DONNACHIE
 (DARE, MCHS)

 MAGNER
 70 PREPRINT TH 1227
 F WAGNER, C LOVELACE
 (CERN)
 PAPERS NOT REFERRED TO IN DATA CARDS. DONNACHI 69 NP 108 433 A DONNACHIE, R≮IRSOPP (GLAS+EDIN) AYED 70 PL 318 ≂99 +BAREYRE,VILLET (SACLAY) PAPERS NOT REFERRED TO IN DATA CARDS. 71 N*1/2(2190, JP=7/2-) [=1/2 G17 DEANS 69 PR 177 2623 DINNACHI 69 NP 108 433 AYED 70 PL 318 598 S R DEANS (FLORIDA) A DONNACHIE, R KIRSOPP (GLAS+EDIN) +BAREYRE,VILLFT (SACLAY) N(2190) FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N#1/2(1470). ----- 71 N*1/2(2190) MASS (MEV) ------N(1990) F17
 III
 N=D2/221001
 Mass
 17 N*1/2(1990, JP=7/2+) [=1/2 (2190.0) (2210.0) (2190.0) (2265.0) (2265.1) WHERE MAX. (2000.0) (2158.0) FROM ENER. 2180. (2260.0) FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N#1/2(1470). 3 3 3 3 ----- 17 N*1/2(1990) MASS (MEV) -----3 (1983.0) DONNACH1 68 RVUE PHASE-SHIFT ANAL 3 (1995.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 3 WHERE MAX. ABSORPTION IS -DONNACH1, 2 ,KIRSOPP EYEBALL FIT CFRN 1 10/59 X (2000.0) APPROX LEA 69 CNTR PI-P ELASTIC 8/69 X SEE ALSO APLIN 70 ABSUMPTION IS "DUMNLENT, 2, KIASATE PI-P FLASTIC 78/69 APROX LEA 60 CNTE PI-P FLASTIC 78/69 1/71* DEP.FIT OF APGAND 71602M 25. NUCFASON 70 MMS - PI-P TO PI- MMS 2/71* HUL 70 MPMA SMALL ANGLE PI-P 1/71* M M 6 6 M ----- 17 N#1/2(1990) WINTH (MEV) ----------- 71 N*1/2(2190) WINTH (MEV) ------
 1200.01
 DIDDENS
 63 CNTR

 1200.01
 NIDDENS
 63 CNTR

 1200.01
 APPROX
 YOKISKAM

 1200.01
 APPROX
 YOKISKAM

 1200.01
 PROX
 YOKISKAM

 1300.1
 CONTACT
 68 CVUE

 275.
 TO
 ANDERSON 70 MS

 1225.01
 AVDERSON 70 MS
 PI- P TO PI- MS

 1237.01
 AVDERSON 70 NS
 PI- P TO PI- MS

 1239.01
 AVDERSON 70 NS
 YOKA

 1239.01
 AVDERSON 70 NS
 PI- P TO PI- MS

 1239.01
 AVDERSON 70 NS
 SVALL ANGLE PI- 1/71*

 THE NOTES ACCOMPANYING THE MASSES OUDTED.
 YALL ANGLE PI- P
 DONNACHI 68 RVUE 8/69 KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 (200.0) (200.0) (220.0) (299.0) (300.) (300.) (300.) (300.) (325.0) (239.0) (225.0) W 3 W 3 ******* 3 3 3 ------ 17 N*1/2(1990) PARTIAL DECAY MODES ------DECAY MASSES 139+ 938 938+ 139+ 139 939+ 548 6 N#1/2(1990) INTO PI N N#1/2(1990) INTO N PI PI N#1/2(1990) INTO N ETA P1 P2 P3 SEE

71 N*1/2(2190) PARTIAL DECAY MODES	
PI N+1/2/2/300 INTO PI N 130+ 938 P2 N+1/2/2/300 INTO LAMBDA K 1135+ 497 P3 N+1/2/2/200 INTO Y PI PI 938+ 139+ 139 93 N+1/2/2/200 INTO Y PI PI 938+ 139+ 139+ 139+ 139+ 139+ 139+ 139+ 139	PI N+1/2(2650) NTO PI DECAY MASSES P2 N+1/2(2650) INTO LAMBDA K 1115+497 P3 N+1/2(2650) INTO LAMBDA K 1115+497
RI N*1/2(2190) INTO (PI N/IOTAL (PI//TOTAL RI 10.33 APPROX DIDDENS 63 CNTR 7/66 RI 10.31 APPROX DIDDENS 63 CNTR 7/66 RI 3 10.33 APPROX YOKNSAWA 66 CNTR 7/66 RI 3 10.31 APPROX DONNACHI 68 RVUE PHAS.SHIFT-CERNI 10/68 RI 3 (.35) DONNACHA 66 RVUE PHAS.SHIFT-CERNI 10/68 11/71 RI 6.10.1501 AYED 70 TPWA 11/71 11/71 11/71 RI (0.09) HULL 70 MPAA SMALL ANGLE PI-P 1/71	N*1/2126501 NTO CPI N)/TOTAL (P1)/TOTAL R1 N*1/2126501 NTO CPI N)/TOTAL (P1)/TOTAL R1 NULY (J+1/2)*(P1 N)/TOTAL (P1)/TOTAL R1 OL(2) OL(2) R1 OL(2) OL(2) R1 OL(2) OL(2) R1 OL(2) SAFGER R1 OL(2) SAFGER
DIDDENS 63 PRL 10 262 +JENKINS, KYCIA, RILEY (BNL) I HOMLER 64 PL 12 14.9 G HOMLER, J JGESECKE (KARLSRUHE) I YNKDSAMA 66 PRL 1.4 SUMA, HILLERSTFRLING, BNOTH IARG; CHII JP DONNACHI E AS VENVA 1.4 APPORTEUR, S RAGG, CHI JP DONNACHI E AS VENVA 1.3 DONNACHI E RGKINSOPP, C CUVELACF (GEN) DANNACHI SA VELVA 1.0 ADONACHI E RAPPORTEUR, S TALK (GLAS) KIRSOPP 64 THESIS R G KIRSOPP (ENN) LEA OP L ADAPES, MARD; COWAN+ (PREL, BRISTOL, DARE) ANDERSON 70 KIE V CONF R AYEP, P AARFYRE, G VILLET (SAL) IJP AVEN 70 KIE V CONF R AYEP, P AARFYRE, G VILLET (SUL) JUL QUANTUM NUMBER DEVERMINATIONS NOT REFEREND TO IN DATA CAROS. </td <td>REFERENCES </td>	REFERENCES
CARROLL 66 PRL 16 289 +CORBETT_DAMERFLL,MIDDLEMAS, + (RTHFD,DXF)J-L CARROLL 66 PRL 17 1274 +CORBETT_DAMERFLL,MIDDLEMAS, + (RTHFD,DXF)J-L RRATUM CHANGING THE FATTER WARK DETERMINATION OF J-L TO +1/2, KIRAMAYT 66 PRL 16 703 KDRMANYOS,KRISCH-OFALLDN, + (MICH.ARG) P ARAGER 66 PRL 16 103 V BARGER, 0 CLINE BUSZA 67 NC 57A 331 +DAVIS,DUFF,HEYMANN, + (UNICOL,HESTFIELD)	BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE,ORSAY)J-L WAHLIG 68 PR 168 1515 N A WAHLIG 64. IN CONJUNCTION WITH FINAL VERSION OF DATA USED IN WAHLIG 64. IN CONJUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTERING AMPLITUDE AT O DEGREES.
PAPERS NUT REFERRED TO IN DATA CARDS. AYED 70 PL 318 598 +9AREVRE, VILLET (SACLAY)	N(3030) 73 N+1/2(3030, JP=) I=1/2 73 N+1/2(3030) MASS (NEV)
FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING No1/2(1470).	M (3030.0) CITRON 66 CNTR PI+- P TOTAL 7/66 73 N+1/213030) WIDTH (MEV) W (400.0) CITRON 66 CNTR 7/66
6 FRIM# FNER. DEP. EIT OF ARGAND DIAGRAM M (2200.1. APPRDX. BUSTA 67 DSPK LEG. POLYN.ANAL. 2/71* M (2200.1. APPRDX. BUSTA 67 DSPK LEG. POLYN.ANAL. 2/71* M (22245.0) HULL 70 MPWA SMALL ANGLE PI-P M (2245.0) HULL 70 MPWA SMALL ANGLE PI-P 90 N*1/2(2220) WIDTH (MEV)	
W 6 (258.0) AYED 70 TPWA 1/71* W (329.0) HULL 70 NPWA SMALL ANGLE PI-P 1/71*	R1 N*1/2(3030) NTO (PLN)/TOTAL (P1)/TOTAL
90 N*1/2(2220) PARTIAL DECAY MODES P1 N*1/2(2220) INTO P1 N*1/2(220) P2 Y*1/2(220) INTO P1 N*1/2(220) P2 Y*1/2(220) INTO P1 939+548 P3 Y*1/2(2220) INTO P1 939+548	RI DNLY (J+1/2)*(PT N/TOTAL) YEASUAGD FOR THIS STATE (0.047) CTRIN 66 CNTR TOTAL CROSSEC. 11/67 RI 9 (0.047) (0.016) BARGER 67 CNTR UNES KORMANYDS66 11/67 B USES REGGE AMP.#RFSON. TO CALCULATE DIF. CROSS SECTIONS AT 190 DEGME R FOR CHITICISM OF THIS METHOD. SEE DOLM 64. RI 9 OLOJOS TO CALCULATE DIF. CROSS SECTIONS AT 190 DEGME R FOR CHITICISM OF THIS METHOD. SEE DOLM 64. RI 9 OLOJOS TO CALCULATE DIF. CROSS SECTIONS AT 190 DEGME R FOR CHITICISM OF THIS METHOD. SEE DOLM 64. RI 10 OLOSS TO CALCULATE OFF. CROSS SECTIONS AT 180 DEGMES D USES ONLY RESONANCES TO CALCULATE OFF. CROSS SECTIONS AT 180 DEGMES
R1 N+1/2(2220) INTO (PI N)/TOTAL (P1)/TOTAL R1 6 (0.140) AVED 70 IPMA (P1)/TOTAL 1/71+ R1 (0.15) HULL 70 NMMA SMALL ANGLE PI-P 1/71+	REFERENCES Nº1/2(3030)
AYED 70 KIEV CONE R AYE0,P BAREYRE, G VILLET (SACL)IJP BUSZA 67 NC SZA 331 + DAVIS,DUFF, HEYMANN, NIMON + (UCL+VCL) HULL 7 CO PR 02 L73 J HULL, R LEACOCK (ISU)	HUBLER 64 PL 12 149 G HUBLER J GIESECKE (KARLSRUHP) I CITYON 66 PR 144 101 +GALBRAITH-KYCTALECONTIC, PHILLIPS, + (HNL) I BARGER 66 PR 151 1123 V BARGER, M DLSSON (HTSC) BARGER 67 PR 151 1123 V BARGER, M DLSSON (HTSC) DIKMEN 7 PR 151 1123 V BARGER, M DLSSON (HTSC) DIKMEN 67 PR 151 1123 V BARGER, M DLSNE (MTCL) DIKMEN 67 PR 164 INFRANYOS, KRISCH, OFALLON, + (MTCH, ARG) (MTCH, ARG) P DOLFN 68 PR 166 1768 R DOLFN, C SCHMID (CAL TECH)
PAPERS NOT REFERED TO IN DATA CARNS AVED 70 PL 31B 59R +BAREYRE,VILLET (SACLAY)	$N_{2}(3245)$ 74 N [#] (3245, J ^{p=} +1) EXISTENCE NOT CONCLUSIVELY ESTABLISHED. I-SPIN NOT DETERMINED, AUGT LIVE ADARDY WIDTH DEECLUDES
M > 2200 MEV - PRODUCTION AND <i>G</i> TOTAL EXPERIMENTS	IDENTIFICATION WITH THE N*3/2(32301.)WITTED FROM TABLE. 74. Nº /2(323/51 MASS (MEV)
BUMPS	M 3245.0 10.0 KORMANYOS 67 CNTR PI-P 180 DEG EL 6/68
N(2650) 72 N+1/2(2650, JP= -) 1=1/2	W (135.0) OR LESS KORMANYOS 67 CNTR 86
72 N*1/2(2650) VASS (MEV) M (2700.0) ALVAREZ 64 CNTR PI PHOTOPROD M (2600.0) APPROX MAHLIG 64 OSPK 0 PI-P CH EX M (2600.0) APPROX MAHLIG 64 OSPK 0 PI-P CH EX M (2600.0) APPROX HOHLER 64 OSPK 0 PI-P CH EX M (2604.0) O CITRON 66 CNTR PI+-P TOTAL 7/66 M (2633.0) 10.0 CITRON 66 CNTR TOTAL+ CH EX 11/67	74 N* /2(3245) PARTIAL DECAY MODES P1 N* /2(3245) INTO PI N 139+ 938
72 N*1/2(2650) WIDTH (MEV) W (109.0) ALVARE7 64 CNTR W (200.0) HOHLER 64 RVUE 7/66 W 360.0 20.0 CITRON A4 CNTR 7/66 W 360.0 20.0 CITRON A6 CNTR 7/66 M HOHLER 64 FIT TOTAL + CH EX 11/67	REFFRENCES N+ /2(3245) KORMANYO 67 PR 164 1661 KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, + (MICH, ARG) P
	· · · · · · · · · · · · · · · · · · ·

S114 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

Baryons

75 N+1/2(3690, JP=) [=1/2 A RUMP SEEN IN THE INVARIANT MASS OF A VERY COMPLICATED STATE (N + SEVEN PIS), SO AS EVIDENCE FOR A NEW RESONANCE IT IS NOT CONCLUSIVE. NOT INCLUDED IN TABLE. N(3690) 75 N#1/2(3690) MASS (MEV) ----------10.0 BARTKE 67 HBC + PI+P 8 PRONGS 8/67 3690.0 ----- 75 N#1/2(3690) WINTH (MEV) ------30.0 BARTKE 57 HBC + 8/67 50.0 ----- 75 N#1/2(3690) PARTIAL DECAY MODES ------DECAY MASSES N#1/2(3690) INTO N + 7 PIS P1 ***** REFERENCES -- N#1/2(3690) BARTKE 67 PL 248 118 +CZYZEWSKI+DANYSZ++ (CRACOW, ORSAY) I 76 N* /2(3755, JP=) $N_{2}(3755)$ A SMALL PEAK IN THE (P P PBAR) INVARIANT MASS FROM θ_{14} dev/c p1+ p to p1+ p p pBar events. As evidence for a new resonance it is not conclusive. Omitted from table. ----- 76 N# /2(3755) MASS (MEV) ----------EHRLICH 68 HBC + PI+ P PBAR 3755.0 8.0 6/68 ----- 76 N* /2(3755) WIOTH (MEV) ---------40.0 20.0 EHRLICH 68 HBC + 6/68 ----- 76 N# /2(3755) PARTIAL DECAY NODES ------DECAY MASSES Pl N* /2(3755) INTO PI+ P P PBAR REFERENCES -- N# /2(3755) EHRLICH 68 PRL 20 686 R EHRLICH,R J PLAND, J B WHITTAKER (RUTGERS) END PRODUCTION EXPERIMENTS P'33 33 N*3/2(1236+ JP=3/2+) 1=3/2 ∆(1236) CLASS CARTER TO PEPORT NEW PRECISE CROSS SECTION MEASURE-MENTS FOR 91+0,01-P AND CHARGE EXCHANGE. THEIR ANALYSIS COMMINES TOTAL CROSS SECTION DATA WITH THE PHASE SHIFTS OF DONACHTE AS USED FOR THE BACKGROUND UNDER THE P33) THE CHAPGE EXCHANGE DATA WERE NOT USED. DLSIN 65 MAS DONE A SIMILAR ANALYSIS ON OLDER DATA. USING ROPER 65 PHASE CHIFTS WITH A FREE OVERALL NOTANLIZATION.

Comments on the Mass and Width of Δ (1236)

In a paper submitted to the Kiev Conference, CARTER 70 present new data on the $\pi^{\pm}p$ total cross sections and the charge exchange cross sections in the region of Δ (1236). The same group also has data on the differential cross sections, but they have not yet been fully analyzed. The data of CARTER 70 seem both statistically and systematically much better than the older results (which date back to the early 50's). When compared with the previous measurements, the most interesting feature of the new data is an apparent small shift of the peak values of the cross sections to lower momenta.

CARTER 70 then calculate the δ_{33} phase shift from the total $\pi^+ p$ cross-section data. This they do by using the phase-shift solutions of DONNACHIE 68 for the S₃₁ and P₃₁ partial waves, which they subtract to obtain the δ_{33} phases. The errors assigned to the phases do not include uncertainties in the background subtraction.

The δ_{33} phase shifts were next fit by CARTER 70 with the so-called Layson form of the resonance line shape:

$$\tan \delta_{R} = \frac{\Gamma(E_{\pi})}{2(E_{\pi 0} - E_{\pi})}, \ \Gamma(E_{\pi}) = \frac{4m_{p}(qR)^{3}\gamma^{2}}{(E_{\pi} + E_{\pi 0})[1 + (qR)^{2}]},$$

where E_{π} is the pion c.m. energy and an additional subscript 0 denotes the resonant value. The mass M at resonance, reduced width γ^2 , and range R are determined by a fit to the data. The width at resonance is given by $\Gamma(E_{\pi 0})M/(M-E_{\pi 0})$. The results are shown in the accompanying table (the values quoted in the

Comparison of analyses of the δ_{33} phase shifts which CARTER 70 obtain from their π^+ p total cross section data. a₃₃ is the background scattering length; a dash indicates no background was permitted.

	"Breit-Wigner"	$a_{33}^{}(1/m_{\pi}^{3})$	M (MeV)	Γ ₀ (MeV)	R (fermi)	χ^2 (14 points)	N _{param} .
CARTER 70	Layson	-	1231±0.6	111±3	?	?	?
	Standard	-	1231	109	1.09	48	3
Our studies	Layson	-	1231	110	0.92	35	3
	Standard	0.0100	1234	120	0.89	9.7	4
	Layson	0.0099	1234	120	0.75	10	4
	Standard with two radii	-	1231.4	112	0.83, 0.62	12.8	4
	3-parameter polynomial		1230.8	110	-	35	3
	4-parameter polynomial	-	1231.4	112	-	12.3	4

For notation, see illustrated key at beginning of data card listings.

listing are slightly different because the additional Coulomb correction has been applied to obtain the final values).

The results of this fit are considerably lower than the values we had quoted earlier. These were the results of OLSON 65 who did the same type of analysis on the old data, using the ROPER 65 phase shift for S_{31} and P_{31} with an additional overall constant scaling factor for the background. How much of the disagreement between CARTER 70 and OLSON 65 is due to the difference in the data and how much to the difference in the background is not clear to us at this time.

There is, however, an additional problem, which we now discuss. We have repeated the fit of CARTER 70 to their δ_{33} 's with both the Layson and what we shall call the Standard Breit-Wigner form:

$$\tan \delta_{\mathrm{R}} = \frac{M\Gamma(\mathrm{E}_{\mathrm{CM}})}{M^{2} - \mathrm{E}_{\mathrm{CM}}^{2}}, \ \Gamma (\mathrm{E}_{\mathrm{CM}}) = \Gamma_{0} \left(\frac{\mathrm{q}}{\mathrm{q}_{0}}\right)^{3} \left[\frac{1 + (\mathrm{q}_{0}\mathrm{R})^{2}}{1 + (\mathrm{q}\mathrm{R})^{2}}\right]$$

As seen in the table, our results for the Standard and Layson forms agree with those of CARTER 70. We conclude from this that there is little difference between three-parameter resonant forms so far as the values of masses and widths are concerned.

While we obtain the same low values as do CARTER 70, the disturbing feature of these fits is the poor χ^2 . This shortcoming can be removed by permitting a small background in the P₃₃ partial wave itself: $\tan \delta_B = a_{33} \left(\frac{q}{m_{-}}\right)^3$.

We have then added δ_R and δ_B as required by unitarity, assuming the π^+p channel is perfectly elastic. Thus the overall amplitude becomes

$$T = T_B + e^{2i\delta} T_R$$

where $T = 1/(\cot \delta -i)$, with similar expressions for T_B and T_R . As shown in the table, a small 33 background scattering length yields an excellent χ^2 . The contribution of T_B to the total cross section $(8\pi\lambda^2 \ ImT_B)$ is less than ~1 mb from threshold to ~1300 MeV. The primary effect of the background is to rotate the resonance in a counterclockwise sense in the Argand plot. What is surprising is that the mass and width of the $\Delta(1236)$ are much closer to the older values we gave in our tables. (Olson's scaling factor in the background tends to move M, Γ in the same direction as our background,)

It is not clear to us at the moment if such a background is needed or if simply the Breit-Wigner form used is not adequate to fit the data, now that very precise experiments are available. We illustrate this point by replacing the width in the Standard form by a parametrization in terms of two radii:

Baryons

$$\Gamma(E_{CM}) = \Gamma_0 \left(\frac{q}{q_0}\right)^3 \left[\frac{1 + (q_0R_1)^2 + (q_0R_2)^4}{1 + (qR_1)^2 + (qR_2)^4}\right]$$

Both statistically and in view of the manner in which the experimental phases were obtained, the χ^2 of 12.8 obtained with this form should be considered quite good (see the table). Finally we have used the following "polynomial" expression to fit the δ_{33} phases:

$$q^3 \cot \delta = \sum_{n=1}^{N} a_n q^{2n-2}$$
.

In this case the resonant mass corresponds to the energy $(s=E_{CM}^2=M^2)$ where $q^3 \cot \delta = 0$. The width is given by

$$_{0} = \frac{q_{0}^{3}}{M} \left[\frac{d}{ds} (q^{3} \cot \delta) \right]_{s=M}^{-1} 2 .$$

r

As seen from the table, the three-parameter fit (N=3) yields a poor χ^2 , whereas the four-parameter fit has a reasonable χ^2 and gives essentially the same mass and width as the "two radii" Standard form.

The central problem we have raised is how seriously we should take the usual energy dependence of the width (other than $q^{2\ell+1}$). In the fits that combine background and resonance, it should be noted that $q^3 \cot (\delta_B + \delta_R)$ passes through zero at precisely the same mass as the four-parameter "polynomial" fit. Thus the inclusion of background assumes, in the context of these simple fits, that the parametrization of the widths in either the Layson or Standard forms is correct. At the very least, an analysis of the forthcoming angular distributions of Carter et al. will determine the precise energy at which $\cot \delta_{33} = 0$. More optimistically, it may put to rest the problem of parameters for the senior citizen of resonances.

We conclude that mass and width of \triangle (1236) are in a state of flux; therefore we do not quote any errors in the table.

			33	N*3/2	(1235) M	ASS (ME)	v)				
M M++ M++ M++	AVG	(1234.) 1230.0 1236.0 		0.6 0.55 3.0	AVERAGE	ROPER CARTER OLSSON (ERROR	65 70 65 INCL	DPWA MPWA RVUE UDES S	0++ PHASE SH ++ PI+P SIG. ++ TOTAL-SIG CALE FACTOR	ITET AN. TOTAL MA DATA OF 7.41	1/71*
M0 M0 M0 M0	AVG	1232.9 1236.45 1234.5	•••	0.6 0.65 1.8 N#3/2	AVERAGE	CARTER OLSSON (ERROR DTH (ME)	70 65 INCL	MPWA RVUE UNES S	0 PI-P SIG. 0 CALE FACTOR	0F 4.0)	1/71*
W W++ W++ W++ W++	AVG	(120.) 112.8 120.0 	•••	3.0 2.0 3.3	AVERAGE	ROPER CARTER OLSSON	65 70 65 TNCL	DPWA MPWA RVUE UDES S	O++ PHASE SH ++ PI+P SIG ++ GCALE FACTOR	(IFT AN. TOT. OF 2.0)	1/71*
W0 W0 W0	AVG	114.7 119.6 117.7		3.0 2.4 2.4	AVERAGE	CARTER OLSSON	70 65 ENCLI	MPWA RVUE UDES S	O PI-P SIG O CALE FACTOR	TOT. OF 1.3)	1/71*

S116 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

Baryons

		33 N*(0)	- N*(++) MASS DIFF	ERENCE (M	EV)					82 N	*3/2(1650) BRANCHING R/	- 2017		
n R	(0.45)	(0.85)	OLSSON	65 RVUE			R1	_	N*3/2(165	0) IN	TO (PE N)/TOTAL	49 94116	(P1)/TOTAL	6/68
D R D R	(2.9) REDUNDANT	(0.85) WITH DATA	CARTER IN MASS LISTING.	70 MPWA	PI+- P SIG.TOT.	2/71*	R1 R1	3	(.28)		DONNACH2	68 RVUE	PHAS, SHIFT-CERN1	10/69
							R1 R1	3	(0.28)		DAVIES	70 RVUE	P-S ANAL SOL A	8/69
		33 N*3/2(12361 PARTIAL DECA	WODES			RI	5	(0.317)		AYED	70 IPWA	P-3 ANAL JOL 0	1/71*
					DECAY MASSES		****	** **	****** ***	****	** ******** ******	********	*****	
P1 P2	N*3/2(1236) [N*3/2(1236)]	NTO N PI NTO N GAMM	۵		938+ 139 938+ 0						REFERENCES N*3	2(1650)		
рŊ	N*3/2(1236) [NTO N PI P	T		938+ 139+ 139		DEVL	IN	65 PRL 14 1	031	T J DEVLIN, J SOLO D BAREYRE, C BRIC	40N+G BERTS	SCH (PRINCETON) I	Р
		33 N*3/2(1236) BRANCHING RA	TIOS			DONN	ACH1	68 PL 268 1	61	A DONNACHIE, R G	TEUR S TALL	LOVELACE (CERN) [J	р
R 1 R 1	N*3/2(1236) T 0.55	0.02	DALITZ	66 RVUE	P217(P1)	7/68	KIRS	OPP	68 THESIS	50	R G KIRSOPP		(FDIN) (GLAS)	
R2	N#3/2(133	6) 0 INTO	(N PI)/TOTAL		P11/TOTAL	1 /714	AYED	23	70 KIEV CON	F	R AYED, P BAREYRE,	G VILLET	(SACL)[J	P
RŹ	(0.99)		CARTER	70 MPWA 0	PI-P FORM. EXPER	17/1*					PAPERS NOT REFERR	ED TO IN D	ATA CARDS.	
*****	* * * * * * * * * * * * * * * *	******	****** ********	********	*********		CAPR	UTHE	60 PRL 4 30	3	P CARRUTHERS	OYER. V PE	(CORNELL) 1 REZ-MENDEZ (LRL) 1	
			REFERENCES N#3	2112361	(111.55.)		HELL	AND	64 PR 134 B	1062	+DEVLIN, HAGGE, LON + BRICMAN, STIRLI	SO, MOYER, WI	000 (LRL) I (SACLAY)IJ	Р
DALITZ	65 PRL 14 1 64 PR 146 1	18 180	M G OLSSON DALITZ, SUTHERLAND		(DXFORD)		JOHN	SON	67 UCRL-176	83 TH	HESIS C H JOHNSON A DONNACHIE, R KI	RSOPP	(LRL) (GLAS+EDIN)	
CARTER	70 KIEV CON	iF •	+HILLIAMS, BUGG, I	505567, UA	ATA CARDS		AYED	F.D.	70 PL 318 5	98	+BAREYRE,VILLET +CASHMORE		(U. OXFORD)	
			PAPERS NOT REFERRI		MALACES THE 1945.		****		*******	****	** ******** *******	********	*****	
	FOR EXTENSIVE	ESPECTALL	Y APPENDIX II.	1047 P.T	SELD (IPLANIT)IN		****	** **	******* ***	****	** ******** *******	• * * * * * * * * * * * ·	<u>**********</u> **************************	
DONNAC	65 PR 138 8	.61	DONNACHIE,LOVELAC	E,KIRSOPP	(CERN)					10 N	4*3/211670, JP=3/2-1 1=	<i>sr2</i>	D_{33}	
							Δ	(16	570) _{F0}	R DE	SCUSSION CONCERNING RES	ONANT PARA	METERS, SEE NOTE	
******	* ********* ***	******	*****	*******	*****				ph bb	RECEDI	ING N*1/2(14/0).			
1/1	2361	81 N*3/2	1236, JP=3/2+) (= 3/2	PROD. EXP.					10 1	N#3/2(16/0) MASS (MEV)	68 RVIIE	PHASE-SHIFT ANAL	8/69
	1230)						M	3	(1691.0) (1690.)		DONNACHZ	68 RVUE	PHAS.SHIFT-CERNI PHASE SHIFT ANAL	10/69
BO	MPS						м	3	(1690.) WHERE MAX. /	ABSOR	PTION IS -DONNACH1, 2 .	KIRSOPP EY	EBALL FIT CERN 1	10/69 8/69
		01 1002/20	1224) NACE INEVI				M	4 5	(1649.0)		DAVIES DAVIES	70 RVUE	P-S ANAL SOL B	8/69
		81 N*372	ANDERSON	70 445	- PI- P TO PI- MMS	2/71*	м	5 SI	OL B IS E.D (1722.0)	FIT	TO SAME DATA START PRO- AYED	70 IPWA		1/71*
M M++	(1232.0)	(6.0)	FERRO-LUZ	65 HBC 1	++ K+P TO KO P P1+	7/66		6	ENER. DEP. 9	FIT U	F ARGAND DIAGRAM			-
M++ M++	(1235.4)	(4.4)	DEANS	66 RVUE +	+ PI+P TOTAL	7/66				10	N#372(1670) #101H (GEV)	AR RVUE		8/69
M++ M-	(1241.3)	(*.1)	GIDAL	66 D8C -	-	7/66	W W	3	(269.0) (269.)		DONNACH1 DONNACH2	68 RVUE	PHAS.SHIFT-CERN PHASE SHIFT ANAL	1 10/69 1 10/69
		81 N*(-)	- N#(++) MASS DIF	FERENCE (M	MEV)		H H	3 4	(300.)		DAVIES	70 RVUE	SOL A	8/69 8/69
D	7,9	6.8	GIDAL	66 DBC			, X	5	(174.0)		AYED	70 IPWA		1/71*
		81 N*3/2	(1236) WIDTH (MEV)						SEE THE NOT	ES AC	CUMPANYING THE MASSES			-
W W 4 4	115.	5.	ANDERSON FERRO-LUZ	70 MMS 65 HBC 4	- PI- P TO PI- MMS	2/71*								-
K++	(124.0)	(14.0)	GEDAL	66 DBC 4	**	7166 7166				10	N#3/2(1670) PARTIAL DE	JAY MODES		-
W++	(120.0)	(8.0)	HABER	70 DBC 66 DBC -	K-D TO 4 80D(P)	7/70 7/66	P1		N#3/2(16	701 1	INTO PE N		139+ 93R	
*****	* ********	****** **	****** ******	******	*****		P2 P3		N#3/2(16 N#3/2(16	70) 1 70) 1	INTO N PI PI INTO K SIGMA		493+1189	
			REFERENCES N*3	/2(1236)	PROD. EXPERIMENTS					10	N#3/2(1670) BRANCHING	RATIOS		-
FERPO	-LU 65 NC 36 1	101	FFRRD-LUZZI,GEORG	E, +	(CERN)		R I		N*3/2(16	701 1	INTO (PI N)/TOTAL	4.0 04115	(P1)/TOTAL	8/69
DEANS	66 PREPRIN 66 PR 141	T 1261	S R DEANS. W G HO G GIDAL. A KERNAN	LLADAY , S KIM	(VANDERBILT) (LRL)		R1 R1	3	(0.14)		DONNACHI	68 RVUE	PHAS.SHIFT-CERN	1 10/69
HABER	SON 70 PRL 25,0 70 NP 178	699 289	+BLESER, BLIEDEN, C +SHAPIRA, MERRILL,	OLLINS++ MCNARI++	(BNL+CARN) (SABRE COLL)		R1 R1	3	(.13) (0.12)		DAVIES	70 RVUE	SOL A	8/69
****	* ******** **	****** **	******	*******	******** *******		R1 R1	5	(0.13)	7,	AYED	70 1PWA	350 1	1/71*
****	* *********	****** **	*****	*******	********* *******		R 2		N#3/2(16	5701	INTO (K SIGMA)/TOTAL		(P3)/TOTAL	7/70
	1050)	82 N*3/2	(1450, JP=1/2-) I=	3/2 5	531		R2	1	LESS TH ASSUME	44 SS +	WIDTH, X(FLAST) OF DON	NACHIE 68		
Δ(1650)	FOR DISCU	SSION CONCERNING R	ESONANT P	ARAMETERS, SEE NOTE			1	MODEL U	SED MA	AY DUBLE COONT.	********	*****	**
		PR EC ED ING	N*1/2(1470).				**	****	*******	*****		3/2(1670)		
		82 N*3/2	(1650) MASS (MEV)							. / .	A DONNACHIE, R.G.	KIRSOPP.	C LOVELACE (CERN)	[JP
							00	NNACH	1 68 PL 268 2 68 VIENNA	139		RTFUR.S TA	LK (GLAS) (EDIN)	
м м 1	(1648.0) (1695.0)	(12.0)	BAREYRE	68 RVUE	PHASE-SHIFT ANAL	11/67	FE	U FR BA	68 THESTS	85	FEUERBACHER+HOLL	ADAY	(VANDERBILT) (GLAS)	
1 M 2	WH (1650.0)	ERE CROSS	SECTION IS GREATES BAREYRE	68 RVUE	PHASE-SHIFT ANAL	11/67	DA A Y	VIES ED	70 NP 821 70 KIEV C	354 ONF	R AYED P BAREYR	, G VILLET	T (SAGL)	IJP
2 м 3	WH (1635.0)	ERE SPEED	DONNACH1	68 RVUE	PHASE-SHIFT ANAL	6/68					PAPERS NOT REFER	RED TO IN	DATA CARDS.	
M 3 M 3	(1640.)		KIRSOPP	68 RVUE	PHASE SHIFT ANAL	10/69	00	NNACH	11 69 NP 108	433	A DONNACHIE, R F	TR SOPP	(GLAS+EDIN) (SACLAY)	
M 4	(1617.0)	ARZUR PT 104	nAVIES	70 RVUE	P-S ANAL SOL A	8/69	80	WLFR	70 NP 178	331	+CASHMORE		(U. OXFORD)	
M 5 5	(1623.0) SOL B IS E.D	FIT TO SA	ME DATA START FROM	CERN I E	XPER. (DONNACH1 68)	1/71#	I			*****	**** ******* *******	* ******	* ******** *****	**
м 6 6	(1614.0) ENER. DEP.	FIT OF ARG	AVED SAND DIAGRAM	TO IPHA				****	*******	*****	**** ********* *******	· *******	*****	**
		82 N#3/2	(1650) WINTH (MEV)	,				(16)	390)	19	N#3/211690,JP=3/2+1 [-3/2	33	
W 1	(250.0)		BAREYRE	68 RVUE		11/67			Ļ	FOR	OISCUSSION CONCEPNING	RESONANT	PARAMETERS. SEE NOT	ε
W 2 W 3	(130.0)		DONNACH1	68 RVUE	PHAS, SHIFT-CEPNI	6/68			\rightarrow	PRE	-CEOING N#1/2114/01.			
₩ 3 ₩ 3	(180.)		KIRSOPP	68 RVUE	PHASE SHIFT ANAL	10/69	1			19	N+3/2(10-0) MA35 (#E	2 68 9 1115	PHAS.SHIFT-CFP	NI 10/69
# 4 W 5	(140.0)		DAVIES	70 RVUE	P-S ANAL SOL B	8/69 1/71*	M	3	(1690.)			68 RVUE	PHASE SHIFT AN	AL 10/69 10/69
- 0	SEE THE NOTE	S ACCOMPAN	IY ING THE MASSES QI	JOTEO.			м	3 6	WHERE MAX. (1801.0)	ABS	AYED	70 I PWA		1/71*
							I	6	ENER. DEP.	. ⊢IT	UF AKGAND DIAGKAN			
		82 N*3/2	2(1650) PARTIAL DE	CAY MODES			1							
P 1	N#3/2(16	50) INTO (PTN		DECAY MASSES 139+ 938		1							
P2	N#3/2(16	501 INTO P	N PI PI		938+ 139+ 139		•							

Barvons

For notation, see illustrated key at beginning of data card listings.

_____ L9 N*3/2(1690) WIDTH (MEV) _____ PHAS.SHIFT-CERN1 10/69 PHASE SHIFT ANAL 10/69 1/71* DONNACH2 68 RVUE KIRSOPP 68 RVUE AYED 70 IPWA P31 12 N#3/2(1910, JP=1/2+) I=3/2 Δ(1910) FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N*1/2(1470). _____ 19 N*3/2(1690) PARTIAL DECAY MODES 12 N*3/2(1910) MASS (MEV) -----_____ (1934.0) DDNNACHI 68 RVUE PHASE-SHIFT ANAL (1930.1) DDNNACHI 68 RVUE PHASE-SHIFT ANAL (1930.1) NIBOPP 68 RVUE PHASE-SHIFT ANAL (1930.4) KIBOPP 68 RVUE PHASE SHIFT ANAL (1930.4) KIBOPP 68 RVUE PHASE SHIFT ANAL HHERE MAX.ASDRPTION IS -DDNNACHI 2.5 KIBOPP EYEBALL FIT (CERN I (1914.0) SIL (1934.0) DAVIES 70 RVUE PS ANAL SOL A SIL 8 I SE DF FIT TO SAME DATA SHART FROM CERN I EXPER. (DONNACHI 68) SOL A SIL 8 I SE DF FIT TO SAME DATA SHART FROM CERN I EXPER. (DONNACHI 68) AYED 70 IPHA FROM FNER. DEP. FIT OF ARGAND TARGANM MEHTANI 70 MPMA PI+P TO (1236)PI DECAY MASSES 8/69 10/69 10/69 10/69 N#3/2(1690) INTO PI N N#3/2(1690) INTO K SIGMA 139+ 938 493+1189 Р1 Р2 3345566 ----- 19 N*3/2(1690) BRANCHING RATIOS -----8/69 8/69 N#3/2(1690) INTO (PI N)/TOTAL (PI)/TOTAL (+10) DONNACH2 68 RVUE PHAS.SNIFT-CERNI 10/69 (-08) KIRKOPP 68 RVUE PHASE SHIFT ANAL 10/69 (-03) KIRKOPP 68 RVUE PHASE SHIFT ANAL 10/69 (0.135) AYED 70 IPWA 1/1* R1 R1 3 R1 3 R1 6 м 1/71* PI+P TO (1236)PI 1/71* N*3/2(1690) INTO (K SIGMA)/TOTAL (P2)/TOTAL LESS THAN 0.00002 FEUERBACH 70 RVUE PI P TO K+ SIG+ 7/70 ASSUME MASS, HIOTH, XELEAST) OF DONNACHIE 68 MODEL USED MAY DONBLE COUNT. R2 R2 1 1 ----- 12 N*3/2(1910) WIDTH (MEV) -----DONNACH1 68 RVUE DONNACH2 68 RVUE KIRSDPP 68 RVUE DAVIES 70 RVUE DAVIES 70 RVUE AYED 70 IPWA MEHTANI 70 MPWA SES DUDED (339.0) (339.) (425.) (290.) (231.0) (308.0) 8/69 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 SOL A 8/69 SOL B 8/69 1/714 PRELIMINARY 1/714 333456 ĩ REFERENCES -- N*3/2(1690) (308.03 AYEO (124.0) MEHTANI SEE VOTES ACCOMPANYING MASSES QUOTED PRELIMINARY DONNACHIE RAPPORTEUR.S TALK DONNACH2 68 VIENNA 139 KIRSOPP 68 THESIS FEUERBAC 70 NP 168 85 AYED 70 KIEV CONF R G KIRSOPP (EDIN) FEUERBACHER+HOLLADAY (VANDERBILT) R AYEO,P BAREYRE, G VILLET (SACL)IJP _____ 12 N*3/2(1910) PARTIAL DECAY MODES PAPERS NOT REFERRED TO IN DATA CARDS. DECAY MASSES 139+ 938 938+ 139+ 139 493+1189 1236+ 139 +BAREYRE +VILLET +CA SHMORE (SACLAY) (U. OXFORD) AYED 70 PL 318 598 BOWLER 70 NP 178 331 N*3/2(1910) INTO PI N N*3/2(1910) INTO N PI PI N*3/2(1910) INTO K SIGMA N*3/2(1910) INTO D(1236) PI P1 P2 P3 P4 ----- 12 N*3/2(1910) BRANCHING RATIOS N+3/2(1910) [NTO (P[N)/TOTAL (0.30) DONNACH1 68 RVUE (-30) DONNACH2 68 RVUE (-25) KIRSOPP 68 RVUE (0.11) DAVIES 70 RVUE (0.24) DAVIES 70 RVUE (0.24) DAVIES 70 RVUE F35 RI 3 RI 3 RI 3 RI 4 RI 4 RI 5 RI 6 (P1)/TOTAL 11 N*3/2(1890, JP=5/2+) I=3/2 9/17/10/12 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 SOL A 8/69 SOL B 8/69 1/71* **∆(1890)** FOR DISCUSSION CONCERNING RESONANT PARAMETERS.SEE NOTE PRECEDING N+1/2(1470). 11 N*3/2(1890) MASS (MEV) ----------- III N#3/2[1840] RASS (FeV (1913.0) DONNACH1 68 RVUE PHASE-SHIFT-CERNI L0/69 (1910.) DONNACH1 68 RVUE PHASE-SHIFT-CERNI L0/69 (1910.) LISCOP AR RVUE PHASE SHIFT-CERNI L0/69 WHERE HAX, ABSTRPTION IS -DONNACH1 2, KIRSOPP KEBALL FIT CERN IAL 10/69 (1915.0) DAVIES TO RVUE P-5 ANAL SOL B (1915.0) DAVIES TO RVUE P-5 ANAL SOL B (1917.0) AYED TO IPWA [/71+ FRO N#3/2(1910) INTO (K SIGMA)/TOTAL (P3)/TOTAL LESS THAN 0.008 FEUERBACH 70 RVUE PI P TO K+ SIG+ ASSUMF MASS, HIDTH, XIELASTI OF DONNACHTE 68 MODEL USED MAY DOUBLE COUNT. R 2 R 2 M 7/70 1 1 1 N*3/2(1910) INTO (D(1236) PI)*(PIN)/TOTAL**2 (P4*P1)/TOTAL**2 (0+20) MEHTANI 70 MPWA PRELIMINARY R 3 R 3 1/71* м 6 REFERENCES -+ N*3/2(1910) ----- 11 N*3/2(1890) WIDTH (MEV) -----A DONNACHTE, R G KIRSOPP, C LOVELACE (CERNIJP DONNACHTE RAPPORTEUR, S TALK (GLAS) R G KIRSOPP (EDIN) FEUERRACHER+HULLADAY (VANDERBILT) DOWNACHL 68 PL 268 161 DOWNACH2 68 VIENNA 139 KIRSOPP 68 THESIS FEUERBAC TO NP 163 95 DAVIES TO NP 821 359 AYED TO KIEV CONF. (150.0) DONNACHI 68 RVUE (150.1) DONNACHI 68 RVUE PHAS, SHIFT-CFC (130.1) RINEOPO 68 RVUE PHASE SHIFT AC (134.0) DAVIES 70 RVUE SHASE (136.0) DAVIES 70 RVUE SUL (134.0) DAVIES 70 RVUE SUL (134.0) DAVIES 70 RVUE SUL (137.0) AVED 70 IPMA RELIMINARY SEE VOTES ACCOMPANYING MASSES QUOTED AS FOR N+1/2(1910) SUL SUL 8/69 PHAS.SHIFT-CERNL 10/69 PHASE SHIFT ANAL 10/69 SOL A 8/69 SOL B 8/69 1/71* PRELIMINARY 1/71* **** 333456 A DAVIES (GLAS) R AYED,P BAREYRE, G VILLET (SACL)IJP +FUNG, KERNAN + (UCR,LRL,U N,HAMP) PAPERS NOT REFERRED TO IN DATA CARDS. CARYANN 65 PR 138 8433 CARAYANNOPOULOS,TAUTFEST,WILLMANN (PURD) --- A PARTIAL WAVE ANALYSIS OF PI+P TO SIGMA+ K+ AYED 70 PL 318 598 +RAREYRE+VILLFT (SACLAY) _____ ----- 11 N#3/2(1890) PARTIAL DECAY MODES DECAY MASSES 139+ 938 938+ 139+ 139 493+1189 1236+ 139 N*3/2(1890) INTO PI N N*3/2(1890) INTO N PI PI N*3/2(1890) INTO K SIGMA N*3/2(1890) INTO D(1236) PI P1 P2 P3 P4 R3 N*3/2(1950, JP=7/2+) I=3/2 F37 --------- 11 N*3/2(1890) BRANCHING RATIOS ------**∆(1950)** N*3/2(1890) INTO (PI N)/TOTAL (0.16) DOWNACHL 68 RVUE (.16) DOWNACH2 58 RVUE (.15) K1850PP 68 RVUE (0.20) DAVIES 70 RVUE (0.13) NAVIES 70 RVUE (0.147) AYED 70 TEVA R1 R1 3 R1 3 R1 3 R1 4 R1 5 R1 6 FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE PRECEDING N+1/2(1470). (P1)/TOTAL P11/T0TAL 8/69 PHAS.SHIFT-CERNI 10/69 PHASE SHIFT ANAL 10/69 SOL A 8/69 SOL B 8/69 1/71* ----- 83 N*3/2(1950) MASS (MEV) -----M M M N*3/2(1890) INTO (K SIGMA)/TOTAL (P3)/TOTAL LESS THAN 0,009 FEUERBACH 70 RVUF PIP TO K* SIG* 7/70 ASSUME MASS, WIDTH, KELASTI OF DONNACHIE 69 MOREL USED MAY DOUBLE COUNT. 82 82 11223333345 1 м M M M N+3/2(1890) INTO (SIGMA KI*(PI N)/TOTAL**2 (P3*P1)/TOTAL**2 LESS THAN 0+0016 KALMUS 70 DPWA PI+P TO K+ SIG+ 1/71* R 3 R 3 R4 R4 N*3/2(1890) INTO (D(1236) PT)*(PIN)/TOTAL**2 (P4*P1)/TOTAL**2 (0.025) MEHTANI 70 MPWA PRELIMINARY M 1/71* ****** м REFERENCES -- N*3/2(1890) м A DONNACHIE, R G KIRSOPP, C LOVELACE (CERNIJJ DONNACHIE RAPPORTEUR.S TALK (GLAS) R G KIRSOP FEUERBACHERHOLLADAY (VANDERRILT) A DAVIES (GLAS) G KALMUS, G BORREANT, J LOUIE (IR.) R AVED,P BAREYRE, G VILLET (SACLIJP +FUNG, KERNAN + (UCR.LRL,U N.HAMP) DONNACH1 68 PL 268 161 DONNACH2 68 VIENNA 139 KIRSOPP 68 THESIS FEUERBAC 70 NP 168 85 NAVIES 70 NP 821 359 KALWUS 70 FR 02 1824 AYED 70 KIEV CONF. ----- 83 N*3/2(1950) WEDTH (MEV) -----DUKE 6⁴ CNTR YIKKDSANA 66 CNTR BAREYRE 68 RVUE DANRACH1 68 RVUE DONNACH1 68 RVUE DONNACH2 68 RVUE DONNACH2 68 RVUE DAVIES 70 RVUE AVFD 70 IPWA MASSES QUOTED. 7/66 7/66 1/67 1/67 PHAS.SHIFT-CFQNI 10/69 PHASE SHIFT ANAL 10/69 SOL A 3/69 SOL A 3/69 1/71* (170.0) (170.0) (200.0) APPRIX (180.0) (140.0) (221.0) (221.1) (220.1) 12333456 PAPERS NOT REFERRED TO IN DATA CARDS. +BAREYRE+VILLET (SACLAY) 4YED 70 PL 318 598 SEE ¥ (300.0) (163.0) KALMUS TO OPWA PI+P TO K+ SIG+ MEHTANI TO MPWA PRELIMINARY 1/71* -----

For notation, see illustrated key at beginning of data card listings.

	83 N#3/2(1950) PARTIAL DECAY MODES	REFERENCES N*3/2(1960)
P1 P2 P3 P4 P5 P6	DECAY MASSES N#3/2(1950) INTO PI N 1394 938 N#3/2(1950) INTO N5164A K 11894 493 N#3/2(1950) INTO N#3/2(1236) PI 12364 139 N#3/2(1950) INTO N#3/2(1236) PI 12364 493 N#3/2(1950) INTO N#3/2(1236) RHI 12364 493 N#3/2(1950) INTO N#3/2(1236) RHI 12364 765 N#3/2(1950) INTO N#3/2(1236) RHI 12364 749	DUNNACHI 68 PL 268 161 A DUNNACHIE, R G KIPSOPP, C LIVELACE (CFRNIJP KIRSOPP 68 THESIS P G KIRSOPP.C LIVELACE (CFRNIJP LEA 69 PL 208 584 LEALDARS WARD, COMAN,+ (RHEL, BRISTOLIDAR) APLIN 70 RPTH/67 + COMAN, CIRSON, GILVDRCF+ (RHEL, ARISTOL) FEURAMERTANI 70 KIEV CONF. + FURGKACHRENTOLLANDY (UCR, LALU N, MAMP) NERDE NUT GEERBECH TO N DATA (CAPIS
P7	N#3/2(1950) INTO N#3/2(1236) PLPT (NOT RHO) 1236+ 139+ 139	DOWNACHI 69 NP 108 433 A DOWNACHIE, R KIRSOPP (GLAS+EDIN)
RI	N#3/2(1950) INTO (PI N)/TOTAL (PI)/TOTAL (0.41) OUVE 45 CNTR VERY ENERGY DEP 7/66	AYED 70 PL 318 598 +BAREYRE+VILLET (SACLAY) ******* ************************************
R1 R1 1	(0.4) APPROX YOKOSAWA 66 CNTR 7/66 (0.57) BAREYPE 68 RVUE 11/67	****** ******** ***********************
R1 3 R1 3 R1 3 R1 4 R1 5 R1 6	(0.3 R6) (0.4 R6)	Δ(1950) BUMPS 70 Nº (1950) PROD. EXP.
R 2 R 2 R 2 L 1 1 82	V*3/2(1950) INTO (SIG4A K)*(P[N]/TOTAL**2 (P2*P1)/TOTAL**2 SEEN SEEN BRREANI 68 HBC P1*P1.35-1.68 10/69 ASSO WOLE P1 P1 AST 1.68 HD/69 ASSO WOLE (TOTAL* SEE AST 10 P0/10 P1 P1 TO K* SIG* 7/70 ASSO WOLE (SEE AST 10 P1 P1 TO K* SIG* 7/70 D-0001 0.0001 KALMUS 70 DPMA P1*P TO K* SIG* 1/71*	M (1922.0) APPRIX CODL 5. CHTR PI+PTOTAL 7746 M (1912.0) (15.0) REISSON 41 CHTR PI+PTOTAL 7746 M (1912.0) (5.0) DEVLIN 45 CHTR PI+PTOTAL 7746 M N (2000.0) (12.0) PTOTAL 45 CHTR PI+PTOTAL M N (2000.0) (12.0) PTOTAL 7746 M THIS RUMP IS NOT SEEN RY CHUNG 48 AT 3.2 GEV/C
R 3 R 3 R 3	N#3/2(1950) INTO (D(1236) PI)#(PIN)/TOTAL##2 (P3#PI)/TOTAL##2 0.23 0.04 FUNG 68 HAC ++ PI+P TO PI+PIO P 11/68 (0.034) MEHTANI 70 MPWA PRELIMINARY 1/71*	70 N* (1950) WINTH (MEV)
MOR EXP	E INFORMATIONS ON INELASTIC DECAY MODES OF BUMPS, SEEN IN PRODUCTION Eriments around 1950 MeV, May be found in the Next Entry	
*****	********* *****************************	RI N# (1950) INTO (PI N)/TOTAL PROD. EXP.
OUKE	65 PRL L5 468 +JONES,KEMP,MURPHY,PRENTICE, + (RTHED,OXFIL)P	R2 N# (1950) INTO (SIGMA K)/(PI N) P300. 5XP.
BAREYRE BAREYRE BORREAN	A 66 PR 16 714 + SUMA, HILL, ESTENLING, HUUIN (ARGININD 68 PR 165 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP 1 68 UCRL 18350 BORREANI, KALMUS (LRL)	R2 0.054 0.024 CHINAGAN CO NOT RHO) R3 N* (1950) [NTO N*3/2(1236) PI PI (NOT RHO) CHINAGAN CO NOT RHO)
DONNACH DONNACH FUNG	1 66 PL 268 161 A DONNACHIE, R G KIRSDPP, C LOVELALE (CERNIJP 2 68 VIENNA 139 DONNACHIE RAPPORTEUR.S TALK (GLASI 68 VIENNA CONF. FUNG, KERNAN, KALMUS, BIRGF (RIVERSIDE,LRL)	R3 SEEN CONTINUEST OF THE PT TO REPLICITELY 6/70
K 1 R SOPP	68 THESIS R G KIRSOPP (EDIN) C 70 NP 168 85 FEUERBACHER+HOLLADAY (VANDERBILT)	R4 N# (1950) INTO (PI N)/(N*3/21236) PI PI-P 3.63 BEV/C 11/67 R4 LESS THAN 0.55 LEE 67 HBC PI-P 3.63 BEV/C 11/67
DAVIES KALMUS AVED	70 NP B21 359 Δ DAVIES (GLAS) 70 PR D2 1824 G KALMUS, G BURREANT, J LOUIE (LRL) 70 KIFV COMF R AVED,P BAREYRE, G VILLET (SACL)IJP	R5 N* (1950) INTO (101 N)*(NEUTRON DI+ DI+))/IIIAL PROD. EXP. R5 0.05 0.013 GALLOWAY 68 RVUE ++ PI+P ON ZPI+ 6/6R
SEHTANI	70 KIEV CONF. +FUNG, KERNAN + (UCR,LRL,U N.HAMP) PAPERS NOT REFERRED TO IN DATA CARDS.	R6 N* (1950) INTO (Y*1(1385) K)/(P1 N) PRO R7. R6 0.035 0.015 CHINOWSKY 68 HBC ++ PP TO P LAW K PT 11/68
LAYSON HOHLER	63 NC 27 724 W M LAYSON (CERN) 1J 63 NP 48 470 G HOHLER, G EBEL (KARLSRUHE) 1	R7 N# (1950) INTO (N*3/21/236) RHD//(PI N) PRUDE EXP R7 (0.45) APPROX CHINDWKY GR HBC ++ PP TO (P 3PI) N 11/6B THIS INCLUDES CORRECTION FOR UNSEEN DECAY (ISPIN FACTOR 5/3).
AUVIL HOHLER HELLAND HOLLADA JOHNSON DONNACH AYED	As N 33 4 4 4 P 0004 ER J 015 SEC XE (KAR, SGUHET I As PR 134 R 1062 PONULER J 015 SEC XE (KAR, SGUHET I As PR 134 R 1062 PONULA ALGE LONGO, MOYER, WOOD (LEL IJ) Y 65 PR 134 R 1062 PONULA ALGE LONGO, MOYER, WOOD (LEL IJ) Y 05 PL 1748 T HEST OF ULTONON (VANDERBILT) (VANDERBILT) Y 05 PL 1748 T HEST OF ULTONON (RL) (RL) Y 07 PL 181 S 94 HAREYRE FULLET (SACLAY)	RB N+ (1950) INTO (N+3/2(1236) RH0)/TOTAL B/67 RA SEEN BOOM AT HRC + B/67 RA NDT SEEN AOGGILD 70 HRC P TO N3P[(NTRL) A/70
******	********* ********* *******************	COOL 56 PR 103 1082 R COOL, O PICCINI, O CLARK (BAL) I
Δ(19	960) 13 N+3/2(1960, JP=5/2-) I=3/2 D35 FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SEE NOTE	ARTISON 61 NC 19 210 Operute is particle virtual random virtual ra
	PRECEDING N*1/2(1470).	CHINDAKK SR PR 171 1421 CHINDAKK, LUMUUNAKI ALSEFA CEITA, CLARD SLADD CHUNG GA PR 165 1491 SU CHINGAN LKTRZ-HILLER (LRL) GALLOWAY SR PL 26R 334 K F GALLOWAY (INVIANA) I ADGCIN J TAN PRIS 503 ** KOREA-4HOJACORSEN+ (COP+HELS+OSLOFSTOCK)
ч 3 м 3	(1954.0) DONNACHI 64 RVUE PHASE-SHIFT ANAL 6/68 (1070.) KIRSOPP 58 RVUE PHASE SHIFT ANAL 10/69 (1070.) KIRSOPP 58 RVUE PHASE SHIFT ANAL 10/69	
м х 3	T1950.01 APPK0X LEG BOUNDACH, 2 KIRSOPP EYEBALL FIT CERN L 10/69 WHERE MAX, ARSORPTION IS -DOWNACH, 2 KIRSOPP EYEBALL FIT CERN L 10/69 KIRSOPP AND A DIPP TO 112361PI 1/71*	****** ******** ******** ********* *****
м	(1932-0)	[1/21/20] * N#3/2(2150) JP=3/2+1 (=3/2 P ²¹ /3)
W 3 W 3 W	(311.00) DONNACHI 69 RVUE 9/69 (400.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/69 (182.0) MEHTANI 70 MPWA PRELIMINARY 1/714	FOR DISCUSSION CONCERNING RESONANT PARAMETERS, SFE NOTE PRECEDING N+1/2(1470)
	13 N#3/2(1960) PARTIAL DECAY MODES	9 N+3/2(2160) MASS (MFV) M 3 (2160.) KIRSOPP 68 RVUE PHASE SHIFT ANAL 10/65
Pl	DECAY MASSES N#3/2(1960) INTO PI N 1394 938 60341199	9 N+3/2(2160) WINTH (MEV)
P2 P4	V#372(1960) INTO K NIGMA	W 3 (260-) KIRSOPP AR RUUE PHASE SHIFT AMAL 10/65
R1 R1 3 R1 3	N+3/2(1960) INTO (PI N)/ TOTAL (PL)/TOTAL (PL)/ (-154) DONNACHL 68 RVUE PHASE SHIFT ANA. 10/69 (-12) KIRSDPP 68 RVUE PHASE SHIFT ANAL 10/69	
R2 R2 1 1	N+7/2(1960) INTO IK SIGMAL/TOTAL (0,013) (0,01) FEBERACH TO RVUE PIP TO K+ SIG+ 7/70 ASSUME MASS, WINTH, XTELASTI OF DONNACHIE 68 WODFI UNER MAX DOUBLE COUNT:	
R3 R3	N#3/2(1960) INTO (D[1236] P[]*(PIN)/TOTAL**2 (P4*P])/TOTAL**2 (0.029) MENTANI 70 MPWA PRELIMINARY L/71*	R1 3 (+25) KIRSUPP AN KVUE PTASE SHIFT ANAL LUSS
******	********* ********* *******************	REFERENCES N*3/2(2160)
		KIRSOPP 68 THESIS R G KIRSOPP (EDIN) PAPERS NOT REFERRED TO IN DATA CARDS.
		DONNACHE 69 NP 108 433 & DONNACHEE,R KIRSOPP (GLAS+EDIN)
		****** ******** ******** ******** ******

Δ(2420)	$\Delta(2850)$ ⁸⁵ N*3/2(2850, JP= +) 1=3/2 85 N*3/2(2850) MASS (NEV)
84 N+3/2(2420, JP=11/2+) I=3/2 84 N+3/2(2420, JP=11/2+) I=3/2	N (2700.0) APPROX WAILIG 64 OSPK 0 PI-P CH EX M (2870.0) HOHLER 64 RVUE DATA + DISP REL M 2850.0 12.0 CITRON 66 CHR PI-P TOTAL 7/66
M 6 (2312.0) AYEO 70 IPWA 1/71* 6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM	M (2850.0) BARDADIN 66 HBC ++ N# TO P + 3 PIS 7/66 85 N#3/2(2850) WIDTH (MEV)
84 N*3/2(2420) WIDTH (MEV) W 6 (347.0) AYED 70 IPNA 1/71*	₩ 400.0 40.0 CITPON 64 CMTR 7766 ₩ (150.0) BARDADIN 66 HBC ++ 7766
94 N*3/2(2420) PARTIAL DECAY MODES	85 N*3/2(2850) PARTIAL DECAY MODES
DECAY MASSES Pl N#3/2[2420] INTO PL N 1394 938 P2 N#3/2[2420] INTO SIGMA K 1197+ 493	DECAY MASSES Pl N+372(2850) INTO PI N L394 938 . P2 N+372(2850) INTO P PI PI 938+ 1394 1394 139 P3 N+372(2850) INTO N PI PI 938+ 1394 139
R1 N*3/2(2420) BRANCHING RATIOS R1 N*3/2(2420) INTO (PI N)/TOTAL (PI)/TOTAL R1 (0.113) AYED TO IPWA L/71* R1 State N*3/2(2420) NTO (PI N)/TOTAL (PI)/TOTAL L/71* R1 State State N*3/2(2420) NTO NTO NTO R1 State State State State State State R1 State St	85 N*3/2(2850) PRANCHING RATIDS R1 V*3/2(2850) NINTO (PI N)/TOTAL (P1)/TOTAL R1 ONLY (J*1/2(2850) NINTO (PI N)/TOTAL (P1)/TOTAL R1 O.251 O.404 CITRON 66 CNTR R1 (O,240) O.0464 BARGEF 67 WUE TIAL + CH EXC. 11/67 R1 (O,240) BARGEF 67 RVUE USES KORMANYOSA 11/67 R1 O.401 SEE FOLEN AG. FOLEN AG. 160 DEGRE R1 (O,240) OLEN AG. SEE FOLEN AG. SEC KORMANYOSA TIL/57 R1 (O,240) OLEN AG. SEC KORMANYOSA TIL/57 NUES KORMANYOSA TIL/57 R1 (O,240) OLEN AG. SEC KORMANYOSA TIL/57 NUES KORMANYOSA TIL/57 R1 (O,240)
	****** ********* *********************
M > 2200 MEV – PRODUCTION AND σ_{TOTAL} EXPERIMENTS	HAHLIG 64 PPL 13 103 + MANNELLI,SODICKSON,FACKLER,HARD, + (MIT) HOHLER 64 PL 12 149 G HOHLER, J GIESECKE (KAPLSOHH) I CITRIN 66 PR 144 1101 + GALBAAITH,KYCIA,LEONTIC,PHILLIPS, + (PANL) I BARDADIN 66 PL 21 357 BARDADIN-OTHINNISKA,FACHAYSZ, + (KARSAM)
BUMPS	ARAGGR 6.5 PR 151 1123 V BARGER, A MILSON (MISC) BARGER 6.7 PR 155 1792 V BARGER, D CLINE (MISC) DIXMEN 6.7 PR 154 TOR (MISC) (MISC) DIXMEN 6.7 PR 164 DOBROWDLSKIGUSKOV,LIXMACHEV, + (MICHARG) MIRMAND ODBROWDLSKIGUSKOV,CIXMACHEV, OFALLON, + (MICHARG) (MICHARG) DOLEN DOLEN 6.8 PR 16.6 1768 NOLEN, O MIRA, C SCHMID (CALTECH)
Δ(2160.0) 94 N#3/2(2420) MASS (MEV) M (2360.0) DIDDENS 63 CNTR PI+ P TOTAL M (2520.0) (40.0) ALVAREZ A4 CNTR PI PHOTOPROD 7/66 M (2400.0) APROX WAHLIG 64 ORVE 0 PI- C H EX M (2400.0) APROX WAHLIG 64 ORVE 0 PI- C H EX M (2400.0) APROX MAHLIG 64 ORVE 0 PI- C H EX M (2402.0) 10.0 CITROM 66 CNTR PI+ PI TOTAL 7/66 M (2423.0) 10.0 CITROM 66 CNTR PI+ PI TOTAL 7/66 M (2457.0) NGER 66 RVUE TOTAL + CH EX 11/67 R USER REGGE AMP.+RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE N FOR CRITICISH OF THIS WETHOP, SEP DOLEN 64.	BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUME, $ORSAY$)J-L WAHLIG 68 PR 168 1515 M A WAHLIG, I MANNELLI (MIT, PTSA) FINAL VFRSIN OF DATA USED IN WAHLIG 44. IN COMJUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTER ING AMPLITUDE AT O DEGREFS.
и (200.0) DIDDENS 63 ENTR 1245.0) НОЧЦЕК 64 RVUE 7766	#6 N*3/2(3230) MASS (MEV) M (3230.0) CITRON 66 CNTR PI+ P TOTAL 7/66
B (275.0) BARGER 66 RVUE TOTAL + CH EX 11/67	86 N*3/2(3230) WIDTH (MEV) W (440.0) CITRON 66 CNTR 7/66
94 N+3/2(2420) PARTIAL DECAY MODES	Ré N*3/2(3230) PARTIAL DECAY MODES
DECAY MASSES P1 N+3/2(2420) INTO PT N L139+ 939 P2 N+3/2(2420) INTO SIGMAK L1197+ 493 P3 N+3/2(2420) INTO N5/2(1236) P1 L236+ 139 P4 N+3/2(2420) INTO NEUTRON PI+ PI+ 939+ 139+ 139	DECAY MASSES P1 N*3/2(3230) INTO PI N 139+938 P2 N*3/2(3230) INTO N PI PI 939+139+139
R1 N+3/2[2420] NRANCHING RATIOS (P11/TOTAL R1 N+3/2[2420] NTO (P1 N)/TOTAL (P11/TOTAL R1 0.0671 APPROX DIDDENS 63 CNTR ASSUMING J=11/2 7/66 R1 0.113 0.0036 CITRON 66 CNTR ASSUMING J=11/2 7/66 R1 0.113 0.0036 CITRON 66 CNTR ASSUMING J=11/2 11/67 R1 0.123 0.0036 CITRON 66 CNTR ASSUMING J=11/2 11/67 R1 0.0143 0.0140 DIARMS 67 FIT ASSUMING J=11/2 11/67 9 USES ONLY RESONANCES TO CALCULATE DIF. CROSS SECTIONS AT 100 DEREES KORMARNYOS 67 CNTR ASSUMING J=11/2 11/67 R1 (0.061) CANTRA ANYOS 67 CNTR ASSUMING J=11/2 11/67	R1 (0.06) (0.01) CITRON 66 CNR TOTAL CROS. SEC. 11/67 R1 8 (0.03) (0.01) BARGER 66 RVUE TITAL + CH FRC. 11/67 R1 8 (0.03) TO 0.1 BARGER 67 CNR USES KORMANVIS66 11/67 R1 8 USES REGGE AMP. RESON. TO CALCULATE DIF. CROSS SECTIONS AT 190 DEGRE R2 8 FAR CRITICISM OF HITS METHOD. SEC DOLEN 63. R1 0 USES DALY RESONANCES TO CALCULATE OIF. CROSS SECTIONS AT 180 DEGRE R1 0 USES DALY RESONANCES TO CALCULATE OIF. CROSS SECTIONS AT 180 DEGRE
R2 N#3/2(2420) INTO (PE N)*(NEUTRON PI+ PI+)/(TOTAL##2) (PI+P4)/TOTAL##2 R2 0.0195 0.0048 GALLOWAY 68 RVUE 6/68	****** ********* *********************
REFERENCES N#3/2(2420) NIDDENS 63 PRL 10 262 +-JENKINS, KYCIA, RILEY (ANL) I ALVAREZ 66 PRL 12 710 +-DAR-YAM,KEN,LUCKEY,NSBORNE, + (MIT.CEA)	CITRON 66 PR 144 1101 + GALBRAITH,KYCIA,LENTIC,PHILLIPS, + (BNL) I RARGER 66 PR 151 1123 V BARGER, M OLSSON (VISC) BARGER 67 PR 155 1792 V BARGER, D OLINE (VISC) DIXVEN 67 PR 164 1601 KONTANYOS, KRISCH, OFALLON, + (VICLARG) P
wahilig 64 PPL 13 103 +MANNELLI,SODICKSON,FACKLER,WARD, + 14111 wordter 64 PL 12 149 Hondler, 3 CIESECKE (KARLSRUHE) I CITRIN 66 PR 144 1101 +GALGRATIH,KYCIA,LEONTIC,PHILLIPS, + (BNL) I BARGER, M OLSSON HOLSSON (MISC)	ULLEN ON WEIDE LIGH KINDEN, UINEN, UINKA, UINHUU ILAE IFEH)
BARGER 67 PR 155 1792 V BARGEP, D CLINE (WISC) P DIKWEN 67 PR L4 145 F N DIKWEN (MICH) KDRMANYO 67 PR L4 1461 KORMANYO, KRISCH, OFALLON, + (MICHARG) P DILEN 64 PR 1461 TOBENANYO, KRISCH, OFALLON, + (MICHARG) P DILEN 64 PR 166 1768 R DOLEN, D HDRN, C SCHMID (CAL FFCH) GALUMAY 140 DANAN TOLANAN (MICHARA) I	END PRODUCTION EXPERIMENTS
PAPERS NOT REFERRED TO IN DATA CARDS.	THIS IS NOT A COMPLETE LIST. WE WILL TABULATE EXOTICS FROM NOW ON CS LT. 40 MB [=5/2, M=1540-1750 BANNER 70 DSPK +++ PI+P,1.9 GEV/C 7/70
UUMAKIMUL 5/ PL 24H 203 DUMAKIMULSKI,GUSKOV+LIKHACHEV, + (DUBMA) P MAACKE 6/ NC 51A 761 J BAACKE, M VYERT (KARSKUME-DASAY)J-L WAHLIG 68 PR 158 1515 M A WAHLIG, I MANNELLI (HIT,PISA). FINAL VERSION OF DATA USED IN WAHLIG 64, IN CONJUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEYE ASTLE SCATTERING AND INTER AT OFFENER	REFERENCES EXOTIC NUCLEONS
.:MMLEX ELASTIL SUATTEKING AMMLITUDE AT O DEGREES. ****** ******** ******** ******** ******	RANNER 70 NP B15 205 +CHEZE,HAMMEL,TEIGER,ZACCONE + (SACLAY)

For notation, see illustrated key at beginning of data card listings.

EX(1640) 92 EX(1640, JP=)1=	
92 EX(1640) MASS (NEV) M A 29(1627.) (12.) PRICE 70 DRC K-D AT 4.91GEV/C 7 A F3UR S. D. EFFFCT	3/714
W B 29 30. OR LESS .90 CL PRICE 70 DBC PI-PI-N BUMP W B CROSS SECTION 13.0+-3.9 MICROBARNS	3/71•
****** ******** ********* ******** *****	
REFERENCES EX(1640)	
PRICE 70 PL 338,533 +RERG,SALANT,WATERS,WEBSTER,WEINBERG (VAND)	

Note on Possible Z*'s

Although much work has been done on the strangeness +1 reactions during the past year, it is not yet clear whether the peaks seen in total KN cross sections near 1 GeV/c are resonances; see Fig. 1. Since positive-strangeness baryons cannot be made from three quarks, it is very important to find out if these peaks are resonances.

(a) I = 0 System. New total-cross-section data have been reported by the Arizona group in the 0.36 to 0.72 GeV/c region (BOWEN 70). The old K⁺p and K⁺d total cross sections have been reanalyzed by ABRAMS 69. They made a new unfolding of the isospin-0 total cross section and found that the wellknown peak in this cross section just above 1.0 GeV/c (M~1865 MeV) has a companion at about 0.8 GeV/c (M~1780 MeV). COOL 70 adds the new data of BOWEN 70 to the analysis and obtains the two possible results shown in Fig. 2a for the I = 0 cross section. DOWELL 70 also reports similar results. The choice of two possibilities depends mostly on the disagreement between the data and very little on the method of unfolding, as discussed by LYNCH 70.

Until the K^+p and K^+d cross sections are remeasured in this region, the lower peak, though probable, cannot be considered definitely established. There is, however, no doubt about there being a large broad peak in the isospin-0 <u>elastic</u> cross section. The inelastic cross section is very small until the K^*N threshold at 1.08 GeV/c is approached, then it rises rapidly (HIRATA 68 and HIRATA 70), as shown in Fig. 2c. Subtracting this from total cross sections gives the two possible results of Fig. 2b. (The elastic cross section has not been independently measured.) The $Z_0^{*}(1780)$ in the listings below is the result of fitting the elastic peak with a Breit-Wigner resonance form. The width is anomalously large, nearly 600 MeV. The resonance (if it exists) must be nearly entirely elastic because the inelastic cross section is small at the peak. If J were greater than 1/2, the resonant peak would exceed the observed height of $4\pi \lambda^2$. This fixes the spin as 1/2, and means that there is little cross section left over for other partial waves. Of course it is quite possible that in fact the peak is not caused by a resonance at all.

Phase shift analyses of the elastic scattering data in the I = 0 state have been done only up to 810 MeV/c;¹ therefore it is not clear whether the structure (either double-peaked or not) is associated with a definite resonance-like structure in one or more partial waves.

(b) I = 1 System. New K^+p data have been reported by REBKA 70 from 1.54 to 1. 71 GeV/c and by BARBER 70 from 1.4 to 2.3 GeV/c. As for new analyses at the Duke Conference on Hyperons, a total of <u>nine partial-wave</u> analyses were presented. Each of these analyses gets more than one solution to choose from, which indicates that the data are not good enough to eliminate some of the possibilities. Certainly new data and the simultaneous analysis of elastic and inelastic channels (copious inelastic data is desirable at the moment) could improve the understanding of this system.

The P13 amplitude still remains the best candidate for a resonance in the K⁺p system. The preferred P₁₃ Argand plots obtained by the various groups are shown in Fig. 3. Each analysis in one way or another gets at least one solution with a counterclockwise P_{13} amplitude. Resonant P_{13} is claimed by REBKA 70, KATO 70, ERNE 70, and GIACOMELLI 70; the results of the other five analyses are not so clear cut. AYED 70 claim that the speed of variation of the amplitude as a function of the energy is nearly as well fit by a smoothly varying background as by a broad (500-MeV) Breit-Wigner amplitude superimposed on a background. For this reason they claim one is not obliged to invoke a resonance. BENNETT 70 got two solutions: the preferred one shows no resonant behavior; the other one might be resonant, but the errors on the amplitudes are too large to believe any circle drawn among them.

CARRERAS-1 70 get a P_{13} amplitude similar to that found in other analyses, which can be interpreted

H BUGG

ABRAMS ₫ COOL

₫ OTHER JENKINS

15

1.0 1.5 2.0 MOMENTUM OF K⁺ MESON (GeV/c)

2

Ρ_κ (GeV/c)

• σ₀(KN→K^{*}N)·

σ, (KN →K^{*}N)

3

(a)

25

TOTAL CROSS SECTION (mb)

아이

25 (b)

20

10

0.0

σ (mb)

10

5

0 0

HIRATA Ŧ

0.5 LABORATORY

(c)

CROSS SECTION (mb) 15 0.5

1.0

Baryons

2 5

Fig. 1.

KN total and partial cross sections. Subscripts indicate isospin. Total cross sections are from CARTER 68, which uses data from COOL 66 and BUGG 68. Isospin-1 partial cross sections are adapted from a compilation made by BLAND 68. Isospin-0 partial cross sections are from HIRATA 68. Thresholds for various processes are indicated at the top.

Fig. 2.

(a) The I = 0 KN cross section evaluated by COOL 70. The new data of Jenkins are reported in BOWEN 70.

(b) The I = 0 cross sections as obtained by the two possible interpretations of the data. This shows the uncertainties in the 0.8 to 1.2 GeV/c region.

(c) Energy dependence of the I-spin 0 and I-spin 1 cross sections for the reaction $KN \rightarrow K^*N$

Fig. 3. Argand plots for the P13 partial wave as obtained in partial-wave analyses performed by the authors indicated. (CARRERAS-1 70 plotted by us from η , δ .)

For notation, see illustrated key at beginning of data card listings.

as having resonant behavior, but do not feel that the resonance interpretation is compelling.

BARBER 70 include the new data up to 2.3 GeV/c. Their preferred solution is shown in Fig. 3 and shows no structure in the speed. They also report a second solution which resembles the Argonne solution I (KATO 70 in Fig. 3) below 1.8 GeV/c.

HALL 70 have presented an analysis that includes the elastic and inelastic data. The analysis was done at three momenta, and the P_{13} amplitude of their best solution is shown in Fig. 3. Here again the errors are really too large to detect any possible Breit-Wigner behavior.

The S_{11} amplitude. It should be mentioned that AYED 70 find a solution with the P_{13} negative and moving clockwise, and the S_{11} positive and moving counterclockwise. In this solution the S wave is essentially zero below 520 MeV/c, and a negative P_{11} wave rather than S wave would fit the angular distributions at low energy. The trouble with this solution is that the P₁₁ phase shifts do not show the q³ dependence at low energy as required from a P wave. CARRERAS 70 report an attractive S wave at low energy. This is in contradiction with the constructive interference between the elastic and Coulomb scattering suggested by the data. CARRERAS-1 70 mention the possibility that S and P_{11} waves contribute equally at low energy (below 300 MeV/c). This is also contradicted by the data, which do not show the required SP interference term. See GOLDHABER 70 for more discussions on the sign of the S₁₁.

<u>Threshold effects</u>. Another possible way to describe the P_{13} amplitude would be in terms of a coupled-channel threshold effect: the KN amplitude becomes rapidly absorptive as it feeds the rapidly increasing K Δ channel. The main question still remains: Is it also a resonance? If it is, its elasticity is small (≈ 0.2) and it decays mainly into K Δ . But a definite conclusion has yet to be made and awaits much more data.

One more comment on exotic resonances is that, as pointed out by ERNE 70, the present upper limits for the cross sections for production of broad exotic resonances are not very small; that is, they are of the same order as cross sections for Y^* or N^* production.

<u>Conclusions</u>. The existence of exotic resonances is still an open question. It looks to us that the following are needed:

1) More high-precision data in the critical region

where the peak is seen.

2) The fit to the data should extend over a very wide region, down to threshold and up to 2 GeV/c as already done by ERNE 70, BARBER 70, and AYED 70.

3) Simultaneous study of elastic and inelastic channels should certainly help.

4) More emphasis on the speed plot.²

5) For the I = 0 states it would be very useful, however difficult it may be, to measure the elastic cross section.

References

1. V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G. Goldhaber, and S. Goldhaber, Phys. Rev. 134, B1111 (1964).

2. See the January 1970 edition of the Review of Particle Properties for some earlier speed plots and definitions.

		95 Z*O(1780, JF THIS EFFECT, IF BECAUSE THE INEL AND THE TOTAL CF	P=1/2) I=0 A RESONANCI ASTIC CROSS ROSS SECTIO	E, MUST HA S SECTION N IS ABOUT	VE SPIN=1/2, IS VERY SMALL 4*PI/K**2.	
		95 Z*0(1780) M/	SS (MEV)			
M M D M D	1780.0 SEEN SEE ALSO	10.0 DISCUSSION OF LY	COOL DOWELL (NCH 70	70 CNTR 70 RVUE	+ K+P, D TOTAL	1/71* 7/70 7/70
		95 Z*0(1780) W	(DTH (MEV)			
W	(565.0)		COOL	70 CNTR	+ K+P, D TOTAL	1/71*
		95 Z*0(1780) PA	RTIAL DECA	MODES		
P1	2*0(1780) INTO K N			NECAY MASSES 493+ 939	
		95 7.*0(1780) BR	ANCHING RA	105		
R 1 R [Z*0(1780 (0.95)) INTO (K N)/TOTA	cnor	70 CNTR	(P11/TOTAL + K+P, D TOTAL	1/71*
*****	* * * * * * * * * * * * *	******	********	********	******** ******	
		REFERE	NCES Z*	0(1780)		
		SEE REFEREN	ICES FOR THE	2*1(1900)	
******	* ********** ** * *********	******* *********	*********	********	******** ********	
Z 0((1865)	96 Z*O(1865, JP THIS EFFECT IS S THRESHOLD. SEE	TRONGLY ASS	SOCTATED W	ITH THE K* N	
		96 2*0(1865) Mr	SS (MEV)			
M M	(1868.0)	(10.0) (15.0)	KYCIA CARTER	67 CNTR 67 THEO	K+P, D TOTAL Dispersion RFL.	8/67 8/67
м м	(1868.0) (1860.0)	(10.0) (15.0) 96 Z*0(1865) WI	KYCIA CARTER	67 CNTR 67 THEO	K+P, D TOTAL DISPERSION RFL.	8/67 8/67
M M W W	(1868.0) (1860.0) (160.0) (160.0) (200.0)	(10.0) (15.0) 96 Z*0(1965) WI (30.0) (50.0)	KYCIA CARTER DTH (MEV) KYCIA CARTER	67 CNTR 67 THEO 67 CNTR 67 THEO	K+P, O TOTAL DISPERSION RFL.	8/67 8/67 8/67 8/67
M M W W	(1868.0) (1860.0) 	(10.0) (15.0) 96 Z*0(1965) WI (30.0) (50.0) 96 Z*0(1865) PA	KYCIA CARTER DTH (MEV) Kycia Carter Rtial Decay	67 CNTR 67 THEO 67 CNTR 67 THEO 7 MODES	K+P, D TOTAL DISPERSION RFL.	8/67 8/67 8/67 8/67 8/67
м м w w P 1 P 2	(1868.0) (1860.0) (160.0) (160.0) (200.0) Z*0(1865 Z*0(1865	(10.0) (15.0) 96 Z*0(1865) MI (30.0) (50.0) 96 Z*0(1865) PE) INTO K N) INTO K N	KYCIA CARTER DTH (MEV) KYCIA CARTER RRTIAL DECAY	67 CNTR 67 THED 67 CNTR 67 CNTR 67 THEO 7 MODES	K+P, D TOTAL DISPERSION RFL. DECAY MASSES 4034 939 9384 992	8/67 8/67 8/67 8/67
M M W W P 1 P 2 	(1868.0) (1860.0) (160.0) (200.0) (200.0) Z*0(1865 Z*0(1865	(10-0) (15-0) 96 Z+0(1865) WI (30-0) (50-0) 96 Z+0(1865) PA (100 K N (100 K N (100 K N) (100 K K) (100 K K) (100 K K)	KYCIA CARTER CARTER CARTER CARTER CARTER RTIAL DECAY	67 CNTR 67 THED 67 CNTR 67 THEO 7 MODES	K+P, D TOTAL DISPERSION RFL. DECAY MASSES 4034 039 0384 992	8/67 8/67 8/67 8/67
M M W W P1 P2 R1 R1 R1	(1868.0) (1860.0) (160.0) (200.0) Z*0(1865 Z*0(1865 (0.40) (0.31)	90 2*0(1805) *1 (10.0) (15.0) 96 2*0(1865) *1 (30.0) (50.0) 96 2*0(1865) *2) INTO K N) 9 X*0(1865) *2) INTO K N) 96 Z*0(1865) *2) INTO K N) 96 Z*0(1865) *2 0 INTO K N) 96 Z*0(1865) *2 96 X*0(1865) *2 96 X*0(1865) *2 96 X*0(1865) *3 96 X*0(1865) *3 96 X*0(1865) *3 91 10.05 92 10.05	KYCIA CARTER DTH (MEV) KYCIA CARTER RTIAL DECAY ANCHING RAT	67 CNTR 67 THEO 67 CNTR 67 THEO 7 MODES 7105 67 CNTR 67 THEO	K+P, D TOTAL DISPERSION PFL. DFCAY MASSES 4031 039 738+ 992 (P1)/TOTAL IF J=1/2 IF J=1/2	8/67 8/67 8/67 8/67 8/67 8/67
M M W W P 1 P 2 R 1 R 1 R 1 R 2 R 2 R 2	(1868.0) (1860.0) (1860.0) (200.0) (200.0) Z*0(1865 Z*0(1865 (0.40) (0.31) Z*0(1865 MAIN	(10-0) (15-0) (15-0) 96 Z*0(1865) WI (50-0) 96 Z*0(1865) PA (50-0) 96 Z*0(1865) PA (50-0) 96 Z*0(1865) BR (10-0) 96 Z*0(1865) BR (0-05) (0-05) 90 NIO N K*(890) 90 NIO N K*(890)	KYCIA CARTER DTH (MEV) KYCIA CARTER CARTER INCHING RAT INCHING RAT INCHING RAT	67 CNTR 67 THEO 67 CNTR 67 CNTR 67 THEO 7 MODES 67 CNTR 67 THEO 68 HBC	K+P, D TOTAL DISPERSION RFL. DECAY MASSES 4934 939 3184 992 (P1)/TOTAL IF J=1/2 IF J=1/2 (P2)	8/67 8/67 8/67 8/67 8/67 11/68
M M W W P1 P2 R1 R1 R1 R1 R1 R2 R2 R2	(1868.0) (1860.0) (1860.0) (200.0) Z*0(1865 Z*0(1865 (0.40) (0.31) Z*0(1865 MAIN	90 2*0(1805) *F (10-0) (15-0) 96 2*0(1865) *F (50-0) 96 2*0(1865) F 1 NTO K N 1 NTO K X*(890) 96 2*0(1865) BR 1 NTO (K N)/TOTA (0-05) 1 NTO N K*(890) 1 NTO N K*(890) 1 NTO N K*(890)	KYCIA CARTER DTH (MEV) KYCIA CARTER IRTIAL DECAY ANCHING RAT KYCIA CARTER HIRATA	67 CNTR 67 THEO 67 THEO 67 THEO 7 MODES 7 MODES 7 CNTR 67 THEO 67 CNTR 67 THEO 68 HBC	K+P, D TOTAL DISPERSION RFL. DECAY WASSES 493-93 7384-99 (P1)/10TAL IF J=1/2 IF J=1/2 (P2)	8/67 8/67 8/67 8/67 8/67 11/68
M M W W P 1 P 2 R 1 R 1 R 1 R 2 R 2 R 2 ******	(1868.0) (1860.0) (1860.0) (200.0) Z*0(1865 Z*0(1865 (0.40) (0.31) Z*0(1865 MAIN	(10-0) (15-0) (15-0) (15-0) (50-0) (50-0) (50-0) (96 Z*0(1865) PA (50-0) (100 N K*(890) (0-05	KYCIA CARTER DTH (MEV) KYCIA CARTER CARTER ANCHING RAT L KYCIA CARTER HIRATA NGES 2+(67 CNTR 67 THEO 67 THEO 7 MODES (105 67 CNTR 67 THEO 68 HBC (1865)	K+P, D TOTAL DISPERSION RFL. DECAY WASSES 493- 939 7184 992 (P1) // TOTAL IF J=1/2 IF J=1/2 (P2)	8/67 8/67 8/67 8/67 8/67 9/67
M M W H P 1 P 2 R 1 R 1 R 1 R 1 R 2 R 2 ******	(1868.0) (1860.0) (1860.0) (200.0) Z*0(1865 Z*0(1865 (0.40) (0.31) Z*0(1865 MAIN	(10-0) (15-0) (15-0) (15-0) (15-0) (50-0) (50-0) (96 Z*0(1865) PA (50-0) (96 Z*0(1865) PA (10-0) (96 Z*0(1865) BM (10-0) (96 Z*0(1865) BM (10-0) (96 Z*0(1865) BM (10-0) (96 Z*0(1865) PA (10-0) (96 Z*0(1865) PA (10-0) (10-0	KYCIA CARTER DTH (MEV) KYCIA CARTER CARTEAL DECAY ANCHING RAT KYCIA CARTER HIRATA NGES Z+C CCES FOR THI	67 CNTR 67 THEO 67 CNTR 67 THEO 67 CNTR 67 THEO 67 CNTR 67 THEO 68 HBC 0(1865) 241(1900	K+P, D TOTAL DISPERSION RFL. DECAY WASSES 493- 939 7384 992 (P1) // TOTAL IF J=1/2 IF J=1/2 (P2)	8/67 8/67 8/67 8/67 8/67 11/68

S124 REVIEWS OF MODERN PHYSICS · APRIL 1971 · PART II

For notation, see illustrated key at beginning of data card listings.

Z. (1	900)	97 Z*1(19	00, JP=) [=1 (
-1	<u> </u>	THIS EFFEC THRESHOLD.	T IS STO IF A P	RONGLY ASSE RESONANCE:	THE	TED WIT SPIN-P	H THE K ARITY I	N* S ALMOST	
		CERTAINLY	3/2+.						
м	1900.0	10.0	001 443.	COOL	70	CNTR ++	K+P TO	TAL	1/71
M 1 M 1	(1932.0)			AYED	70 70	T PW A	P13,50	L.[L.[]	6/70
ч į	(2030.0)			AYFD CREASING S	70 TGN	IPWA IFICANC	\$11,50 E. THOU	L.ITI GH AYED	6/70
l M 2	GIVE P4	RAMETERS .TH	EY CONC	LUDE RESONA	NT 70	INTER PR	ETATION P13.SO	DOUBTEU	7/70
2	RESONANC	E SIGNAL BA	RELY ABO	OVE BACKGRO		DUE TO	THE LA	RGE ERRO	RS
м ^С м	(1959.0)	(90.0)		ERNE	70 70	I PWA	P13 P13 IN	SOLN I	6/70
4	(1950.)	(100.)		KATO	70	IPWA	SOL. I	11	7/70
		97 7*1(19	001 WID	TH (MEV)					
W W 1	(240.0)			C DOL AY FD	70 70	CNTR ++ IPWA	K+P TO K+P	TAL	6/70
W 1 W L	(397.0) (557.0)			AYED	70 70	IPWA IPWA	Қ+Р К+Р		6/70
W 2 W	(80.0) (251.0)			BAPNETT FRNE	70 70	[PWA	K+P EI K+P	PWA	6/70
W W	ABOUT 13 (180.)	0.0 APPROX.		KATO KATO	70 70	IPWA IPWA	PI3 IN SOL. I	SOLN I	6/10
	SEF THE NOT	ES ACCOMPAN	YING MA	SSES QUOTER) .				
		97 2*1(19	00) PAR	TIAL DECAY	MOD	ES -			
P1	Z*1(1900	I INTO K N					DECA 493+ 93	Y MASSES 8	
PZ	Z*1(1900) INTO N*3/	2(1236)	к		1	236+ 49	3	
		97 2*1(19	OUT BRA	NUMING RATI	lus				
R L R 1	(0.10)	OR LE	SS	CARTER	67	THEO	DISPER	SION REL	. 8/6
R1 1	(0.12)	(45504149	J-3/21	AYED	70	IPWA	K+F 11/		6/70
R1 1	(0.17)			AYED	70	IPWA			6/7
R1	ABOUT 0.	1		KATO	70		P13 IN	SOLN I	6/7
R1 2	(0.09)	APPRUA.		BARNETT	70	I FRA	K+P EI	PWA	7/70
	SEE NOTES	ACCOMPANY IN	G THE M	ASSES QUOTE	ED.				
R2	Z*1(1900) INTO K N#	3/2(123	6) BLAND	67	нас ++	P21		8/6
		Z*1 CROSS	SECTION	LIMITS (M	ICRO	BARNS)			
	SFE MINIREV	IEW PRECEDI	NG Z*O						
CS LE	SS THAN 50.			BASSOMPIE	68	нвс	к+р то	Z*+ PI+	10/6
CS ALE	SS THAN .2 ABOVE LI	+.3 MITEOR M=	1 1.2 TO	ANDERSON L.4 GEV -	69 CL=	ASPK + 99 P.C	РІ-Р Т	∩ K−Z*+	10/69
CS B LE	SS THAN 1.4 ABOVE LT	+1.9 MIT FOR M=	5 1.5 TO	ANDERSON 2.5 GEV	69	ASPK +	PI-P T	0 K-Z*+	10/6
*****	******* **	****** ***	*****	*******	****	***** *	******	* *****	**
			RFFEREN	CES Z#1	(190	0)			
TOT	AL-CROSS-SE	CTION EXPER	IMENTS						
COOL	66 PRL 17 SLIGHTLY	102 REVISED RES	ULTS FR	OM KYCIA 6	7 RE	PLACE C	00L 66	(DNL)	י י
ABRAMS	67 PRIVATE 67 PRL 19	259	+C.00L+6	IACOMELLI,	K Y C I	A.LEONT	10,11,	+ (BNL)	
8066	COOL 66,	ABR AMS 57,	AND ABR	AMS 69 ARE	SUP	ERCEDED	BY COD	L 70 AND	•
ABRAMS	69 PL 308	564	+C 00L ,		, кү	CIA. LI	+ MICHA	EL (BNL)	IJ
BOWEN	70 PP 02 2	599 NG 47	+CALDWE	LL, DIKMEN	, Je	NKINS,	KALBACH	(+ (AR IZ)	i
600L 1	70 PR D1 1	887	+GIACOM	ELLI, KYCI	A, L	EONTIC,	LI, +	(BNL)	1
LYNCH	70 DUKE 9		GLYNCH	(REVIEWER	٩F	CR.SEC.	DATA)	(LRL)	
DIS CARTER	PERSION-REL 67 PRL 18	ATION CALCU 801	A A CAR	USING TOTAL TER	L-CR	OSS-SEC	TION DA	TA	
CARTER	68 PREPRIN	π -	A A CAR	TFR			(CA	VENDISH)	
ак ніте	-MATRIX ANA 67 THESIS	LYSIS OF SC		HE EARLY K	+P 0	DATA	(1	LLINOISI	
A R	FGGF-POLE A	NALYSIS FX1	ENDED T	O LOW ENER	GIES	;			
CARRERAS	70 NP 819	349	B CARRE	RAS, A DON	NACH	116 (0	ARESBUR	Y,MANCH)	
BLAND	ERIMENTS MA 67 PRL 18	INLY ABOUT	INELAST +BOWLER	<pre>IC CHANNEL: ,BROWN,G+S</pre>	s GOL	DHABER,	SEEGER.	+ (LRL)	
BLAND HIRATA	68 UCRL-18 68 PRL 21	131 THESIS 1485	R W BLA	ND WOHL, GOL	DHAE	SER, TRI	LLING	(LRL)	
BLAND	59 NP 813 70 NP 818	595 537	+BOWLER +BOWLER	, BROWN, K , BROWN, G	0 L D H	GOLDH HABER,	IABER, 4	· (LRL) (LRL)	
HIRATA	BLAND 59 70 DUKE	AND BLAND 7 429	O REPLA	CE BLAND 6 BER,SEEGER	7 AN • TR 1	ID BLAND	0 68. (OHL	(LRL)	
BGRT	70 KIEV CO	NF	(80L	UGNA, GLAS	60W,	RUME.	INTE M	CULLAB	1
THE ANA	ULYSES	IL-SLATTERI	AFT CONC	PULAR (ZATI	0 N E	IN THE THE	AND AND	A PRASE-S	
ANDERS-1	69 PKL 21	1252 611	ANDERSS	ON, DAUM,	ERNE	LAGNA	UX, +	(CERN)	
A SBURY BLAND	69 PL 298	618 56	R W BLA	ND, G GOLD		R, G H	TRILLIN	(CERNI)	
AVED	70 81 330	404	+849549	E. EELTECC	E a N	.,		(SACIAY)	LIP
BARBER	70 PL 328	214	+8810ME	+ DUFF+ HE	Y MAN	INREPC	E,+ (LO	UC+RHEI 1	I J P
CARRERAL	70 NP 823	525	B CARRE	RAS. A DON	NACE	HE IDA	יי 45+MCH<4	(DARE)	I J P
ERNE	70 DUKE	375	+ SENS+ H	AGNER	ITHS	5. (RGNA -	GLAS	(CERN)	IJP IJP
HALL	70 DUKE	435	+BLAND+	GOL DHABER .	TRIL	LING		(LRL)	IJP
REBKA	70 PRL 24	160	+ROTHBE	RG, ETKINS	. GL	ODIS, +	•	(YALE)	IJP

EAR	LIER	ANAL	LYSES T	HAT DO	NOT	INCLUDE	RECEN	T POLA	RIZATI	ON DATA	A
LFA	68	PR 16	55 1770		LEA,	MARTIN	, DADE	s	(P	THED, B	NL, CERN
MARTIN	68	PRL 2	21 1286	,	8 R	MARTIN					(BNL)
HALL	69	UC RL -	-19231		HALL	. BLAND	, GOLD	HABER,	TRILL	ENG	(LRL)
LEA	69	LUNG	D PAPER	362	LEA,	MARTIN,	OADES			(R)	HEL +UCL
CUTKOSKY	70	PR D	1 2547		RE	CUTKOSK	Y, B 8	DEO	(C A	RNEGIE	- MELL ON
PROI	ουςτ	ION 8	EXPERIM	ENTS T	HAT L	OOK FOR	A Z*				
TYSON	67	PRL 1	19 255		+GR E	ENBERG,	HUGHES	,LU,MI	NEHART	,MORI,	(YALE)
BASSOMPT	68	PL 21	78 468		BASS	OMPTERR	E, +		(C	FRN, HRL	JXELLES
MORI	68	PL 21	88 152		+GRE	ENBERG,	HUGHE S	, LU,RO	THBERG	, +	(YALE)
ANDERSON	69	PL 29	9B 136		+BLE	SER, BL	tenen,	COLLIP	NS. +	(BNL,C)	ARNEGIE
MORI	69	PR 16	85 1687		+GR F	ENBERG.	HUGHE	S, LU,	MINEH	ART, +	(YALE)
	MO	RI 69	9 REPLA	CES TY	SON 6	7 AND M	OR1 68	•			
LATI	EST	REVIE	EW TALK	s							
LEVISETT	69	LUND	CONF 3	41	RLE	VI SETT	I (RA	PPORTFI	JR)	((CHICAGO
GOL DHARE	70	DUKE	407		6.60	1 DHAREP	(REV D	EWER1			(1.91.)

Note on Y^{*'s}

The number of known or suspected Y^{*} states has increased considerably in the last few years, following closely a similar increase in the number of N^{*} states. Just as the recently discovered N^{*}'s are only weakly coupled in the $\pi N \rightarrow \pi N$ reaction, so also are the recently discovered Y^{*}'s only weakly coupled in the $\overline{K}N \rightarrow \overline{K}N$, $\overline{K}N \rightarrow \Lambda \pi$, and $\overline{K}N \rightarrow \Sigma \pi$ reactions. The older, well-established resonances are usually clearly visible as peaks in cross sections, as characteristic variations of angular distributions of 2-body final states, and (or) as peaks in invariantmass distributions of subsets of particles in 3-ormore-body final states. Although some of the newer and less-well-established resonances are seen as small peaks in invariant-mass distributions, many of them make no direct appearance at all, often because there are many states at the same mass and it is not clear which ones (or how many) are being observed. Rather when the 2-body reactions are partial-wave analyzed, some of the amplitudes are found to traverse resonance-like counterclockwise circles. Clearly the results of partial-wave analysis give the $J^{\mathbf{P}}$ information, whereas a peak seen in an invariant mass distribution or a total cross section usually cannot be analyzed for its quantum numbers. We will keep information coming from formation experiments and from production experiments separate, whenever necessary.

<u>Production experiments</u>. These types of experiments are often difficult to analyze. Information on I = 0 states is possible only when there is no I = 1 state at similar mass. The main controversies at the present time concern resonances in the 1600 to 1700 MeV region. See the mini-reviews on $\Sigma(1620)$ and on $\Sigma(1670)$ in the listings. A good review is given by MILLER 70.¹ Also, the branching ratios of $\Sigma(1915)$ F₁₅ as measured in formation and productions experiments do not agree. This is probably

due to two facts: 1) the elasticity is small, 2) the nearby $D_{13}^{(1940)}$ may contribute to production experiments.

Formation experiments. Partial-wave analyses have been performed on $\overline{K}N$, $\Lambda\pi$, $\Sigma\pi$ and ΞK channels. Given the present accuracy of the data it is not possible to perform a completely energyindependent analysis, that is, solve for the partialwave amplitudes at each energy in a modelindependent way. Usually many solutions are found and even when it is required that solutions at neighboring energies join smoothly, it is not possible to select a unique overall solution. To overcome this, one specifies the form of the energy dependence of some or all of the partial-wave amplitudes. Analyses in which the energy dependence of all the amplitudes is specified are called energy dependent. When referring to results of this type of analysis, the technique listed is DPWA. Thus an amplitude known to resonate will be given a Breit-Wigner form, whereas an amplitude not a priori known to resonate may be tried alternately with a resonance form and with some simple nonresonant form, the choice between these then being made by comparing the goodness-of-fit for the two fits. See the Note on Resonance Parameters preceding the Baryon listings for additional discussion of DPWA and of the K-Matrix parametrization of KIM 71.

Analyses in which most of the amplitudes are left unspecified are called (not quite correctly) energy independent. The technique used for these analyses is listed as IPWA. Figure 1 shows results of such an analysis of the reaction $K^{-}p \rightarrow \Lambda \pi$ by ARMENTEROS 70. The D₁₅ amplitude was fixed as the $\Sigma(1765)$, with resonance parameters obtained from an earlier energy-dependent analysis. This amplitude acts as an analyzer for the other amplitudes, which were allowed to vary freely. The S_{11} and D₁₃ amplitudes appear to resonate. Figure 2 shows results of a similar analysis, also by ARMENTEROS 70, of the reaction $K^- p \rightarrow \Sigma \pi$. Here the $D_{03}\Lambda(1520)$, $D_{13}\Sigma(1670)$, $D_{03}\Lambda(1690)$, $D_{15}\Sigma(1765)$, $F_{0.5}\Lambda(1820)$, and $F_{1.5}\Sigma(1910)$ were fixed. It appears that several of the other amplitudes may resonate too. It should be clear from the figures that it is not always possible to decide whether or not an amplitude resonates. Neither is it possible to determine very accurately the parameters of the amplitudes that do resonate, nor to assign meaningful errors to the parameters. The state of knowledge of the newer

Y^{*}'s is rather more qualitative than quantitative.

Partial-wave analyses above 1.1 GeV/c. One of us² has reviewed this energy region at the Duke Conference on Hyperon Resonances. The $\Lambda\pi$ channel has been analyzed by five groups, using different sets of data points that are in very good agreement with each other. LITCHFIELD 70 has used all the data, which plotted together show absolutely no discrepancies. In spite of this fact the five analyses agree only on three of the eight partial waves used to fit the data! And all five groups claim to obtain a good fit. Table I, taken from Ref. 2, shows the resonances included in the fits; the other partial waves were parametrized as background amplitudes with the indicated number of parameters. The three partial waves where agreement was found were D₁₅, F₁₅, F₁₇.

The problem here, more than insufficient data, is that the $\Lambda\pi$ channel alone is not constrained very much and a large number of solutions can be found. For the $\Sigma\pi$ channel, where two I-spin states **a**re present, the interference terms certainly help to reduce the number of possible solutions. Table II, again taken from Ref. 2, is a summary of the states claimed above 1.1 GeV/c where, in view of the above difficulties, most of the new states have been classified "wait". The signs of the amplitudes at resonance follow the convention advocated by Levi Setti. ³ Clearly, resonances have to show up very strongly in at least one channel before they are accepted without reservation.

Errors on masses and widths. Often the quoted errors are only statistical, but, as discussed in the Note on Resonance Parameters, at the beginning of the Baryon listings, the values of masses and widths can change well above these errors when a new parametrization is used. For this reason we report the values of M, Γ , and x_i obtained by different authors even if they analyze the same data. The spread of these masses and widths is certainly a better estimate of the uncertainties than the statistical errors.

Recently it has become the custom to quote errors as obtained by inspection of various fits done with different hypotheses [see for example BERTHON 70 and GALTIERI 70 under $\Sigma(1915)$]. These errors are probably more realistic. In conclusion, we chose not to give errors on masses and widths determined in partial-wave analyses, but, whenever necessary, we give a range of values.

Fig. 1. Partial-wave amplitudes for the reaction $K^-p \rightarrow \Lambda \pi$, as determined in the energyindependent analysis of ARMENTEROS 69. The K⁻ laboratory momenta are indicated. The arrows in a circle, drawn in the lower part of the imaginary axes, fix the sign convention used. See LEVI SETTI 69. Notice that the sign convention used here is different from the one of the Argand plots of our 1969 edition [Rev. Mod. Phys. <u>41</u>, 109 (1969)].

Fig. 2. Partial-wave amplitudes for the reaction $K^-p \rightarrow \Sigma \pi$, as determined in the energyindependent analysis of ARMENTEROS 70. The K⁻ laboratory momenta are indicated. Here again the sign convention follows LEVI SETTI 69.

		N _{par}	P ₁₁	P ₁₃	D ₁₃	F ₁₅	F17	G ₁₇ 6	G ₁₉
^a SMART 66	$\frac{\Lambda \pi^{-}, \Lambda \pi^{0}}{.75-1.9 \text{ GeV/c}}$ $\chi^{2}/\text{DF} = 418/390$	N par M Γ t	4+R (4) 1882±40 222±150 11±.03	6	. 6	4+R (4) 1902±11 52±25 08±.02	R.(4) 2032±6 160±16 .21±.01	3	3
BERTHON 70	$\Lambda \pi^{0}$, 1.134-1.84 GeV/c $\chi^{2}/DF = 319/295$	N _{par} Μ Γ t	4	8	4	8+R(4) 1910±20 60±20 10±.02	R(3) 2030±10 165±15 .20±.02	4	.
^b cox 70	$\Lambda \pi^{-1}$ 1.18 -1.71 Gev/c $\chi^{2}/DF = 258/199$	N _{par} Μ Γ t	6	3+R(3) 2100±20 87±20 16±.03	3	3+R(3) 1903±10 77±27 09±.02	R(3) 2027±6 158±16 .19±.01	3	3
^b LITCHFIELE	$\begin{array}{ccc} 0.70 & \Lambda \pi^{-}, \ \Lambda \pi^{0} \\ 1.0 & -1.85 \ \mathrm{GeV/c} \\ & \chi^{2}/\mathrm{DF} = 705/636 \end{array}$	Npar Μ Γ t	5+R(3) 1920±30 170±40 14±.03	4+R(3) 2070±30 250±40 09±.03	4+R(3) 1940±30 280±40 14±.03	5+R(3) 1895±10 70±15 070±.015	R 2022±4 170±15 .200±.008	7	
^e GALTIERI 7	$ \begin{array}{c} 0 & \Lambda \pi^{0} \\ 1.0 - 1.85 \ \mathrm{GeV/c} \\ \chi^{2}/\mathrm{DF} = 299/245 \end{array} $	Npar Μ Γ t	4+R(4) 1950±50 200±50 09±.04	4	R(4) 1940±50 200±50 12±.04	4+R(4) 1905±30 70±20 11±.03	R(3) 2010±15 115±15 .16±.03	R(3) 2060±20 70±30 07±.02	R(1) [2250] [140] 18

 $\begin{array}{ll} \underline{Table \ I.} & \mbox{Results of partial-wave analyses in the $\Lambda$$$$ $\Lambda$$ π channel. In the second column N = 50 means that 50 parameters were used in the overall fit. In the first row to the right, N_{par} indicates how many parameters were used for that partial wave. $R(4)$ means that the resonant amplitude included four parameters (M, Γ, $|t|,$$$$$). } \end{array}$

a. The D₁₅ state Σ (1765) was also included in the analysis; the following parameters were found: M = 1775±7, Γ = 146±9, t = -.266±.017.

b. Parameters reported here are the ones of fit 13, except for the P_{13} where mass and errors have been estimated by us, examining the various fits reported by the authors. The other errors are only statistical.

c. The results quoted are the ones from fit A.

d. Σ (2250), G₄₉ is really outside the range of most analysis, but its lower tail can be included instead of a G₄₉ background.

e. Quantities in square brackets have been kept fixed. This paper also reports a fit from 0.61 to 1.85 GeV/c.

Table II. Summary of the results obtained for eleven states above
1800 MeV. For the KN channel, the elasticity x is listed. For the
other channels, the quantity listed is t, the amplitude at resonance
$(t = \sqrt{x_e x})$. The last column is our rating for the resonance.

		M (<u>MeV</u>)	Γ (Mev)	Řn x	Λπ t	Σπ t	ΞK t	Status
$\Lambda(1870)$	F07?	1870	40	.10				Poor
Λ(2015)	F07	2020	160			15	-	Wait
Λ(2040)	D ₀₃	2010	130			20	(?) ^a	Wait
Λ(2100)	G ₀₇	2100	60-145	.29		.06	seen ^b	Good
$\Sigma(1900)$	P ₁₁	~1900	200		11			Poor
$\Sigma(1915)$	F 15	1905	60	.10	09	09	.008	Fair
$\Sigma(1940)$	D13	1940	200		13	12	(?) ^a	Wait
$\Sigma(2020)$	F17	2020	100-170	.125	.19	05	.023	Good
$\Sigma(2070)$	P13	~2100	87-250		12			Poor
$\Sigma(2120)$	G ₁₇	~2100	~100		07	.13		Wait
^c Σ(2250)	G ₁₉ ?	2040	~160	.05	(18) ^C	(.07) ^c	Fair

The analysis of BURGUN 68 suggests a J = 3/2 state with

a. The analysis of BURGUR to suggests at a suggest at a sugge gested by the analysis of DAUBER 66.

Conclusions. Table III is an attempt to evaluate the status of the various Y^{*}'s. The evaluations are of course partly subjective. A blank indicates that there is no corresponding evidence at all. This may mean either that the relevant couplings are small or that the resonance does not really exist. The Baryon Table includes only the well-established resonances. It seems clear, however, that whereas any particular one of the questionable resonances may disappear with the next analysis, there definitely are many new resonances underlying those we are more familiar with.

Changes in format. When determining branching ratios from partial wave analyses, the quantity most accessible is the so-called "amplitude at resonance". This is essentially the diameter of the resonant circle in the Argand plot. For a resonance going from channel 1 to channel 2, this is simply $i\sqrt{x_1x_2}$

For notation, see illustrated key at beginning of data card listings.

in the notation in the main text (section IV.C). Thus while an analysis of $K^-p \rightarrow \Sigma \pi$ data could give a reliable value for $\sqrt{x_{\overline{KN}} x_{\pi\Sigma}}$, a determination of $x_{\pi\Sigma} = \Gamma_{\pi\Sigma} / \Gamma_{tot}$ would require a value of the elasticity $(x_{\overline{KN}})$ which is often unavailable or not so well known.

For these reasons we now give the amplitudes at resonance in place of the two body inelastic branching ratios. Where explicit, the sign of these amplitudes is according to the SU(3) convention advocated by Levi Setti³, and shown here in Figure 3 to avoid confusion.

Fig. 3. Plot reproduced from Levi Setti³ showing the sign convention adopted here for the $\Sigma\pi$ and $\Lambda\pi$ amplitudes. Once the signs of one I = 0 and one I = 1 amplitude are fixed, the others can be measured relative to these two. Arrows here indicate signs predicted by SU(3); \times marks indicate the observed phases.

As noted above, errors quoted for parameters are often statistical only. On the other hand, the value of the parameter itself may be consistent with other determinations and often may even be the best available value. In such circumstances we put <u>only</u> the error in parentheses to remind the reader of the additional uncertainty due to model dependent assumptions. For two states, $\Lambda(1820)$ and $\Sigma(1765)$, there is enough data available to perform an overall fit of the type discussed in the main text (section V. C). In this case we are forced to use the errors, however small they may be, but we warn the reader that the final errors are not to be taken seriously.

References

 D. H. Miller, in Proceedings of the Duke Conference on Hyperon Resonances (1970), p. 229.
 A. Barbaro-Galtieri, in Proceedings of the Duke Conference on Hyperon Resonances (1970), p. 173.
 For a recent review of Y^{*} resonances see R. Levi Setti, rapporteur talk at the Lund International Conference on Particle Physics (Lund, June 1969). Table III. STATUS OF THE Y^{*} RESONANCES. THOSE WITH AN OVERALL STATUS OF *** OR **** ARE INCLUDED IN THE MAIN BARYON TABLE.

37 Y*0(1405) WIDTH (MEV)		
x (20.0) ALSTON AL HBC x 35.0 5.0 ALEXANDER 62 HBC x 150.01 ALSTON 62 HBC x 63.0 20.0 MUSGRAVE 65 HBC x 63.0 20.0 MUSGRAVE 65 HBC x 67.0 10.0 ENGLER 65 HBC x 6.7 50.0 10.0 x 6.7 50.0 10.0 x 120 35.0 8.0 x 120 35.0 40.0 x 120 34.1 3.9 AVER AGE LERROR INCLUDES SCALE FACTOR OF 1. AVERAGE LERROR INCLUDES SCALE FACTOR OF 1.	7/66 7/66 7/66 9/67 20 6/68	W1 Y*0(1520) INTO KBAR N (P1) W1 (4.4) (0.5) WATSON 63 HBC W1 0 FAR NEW RESULTS SEF GALTERI (69 AND BURKHARD 69 AFLOW W2 Y*0(1520) INTO SIGNA PI (P2) W2 0 (9.0) (1.0) W2 0 FAR NEW RESULTS SEF GALTIERI 69 AND BURKHARD 69 BELOW W2 0 FAR NEW RESULTS SEF GALTIERI 69 AND BURKHARD 69 BELOW
	•	R1 Y+0(1520) INTO (SIGMA PI)/(KBAR N) (P2)/(P1) B/67 R1 1.72 .73 MISCRAVE 65 HRC K-P AT 2.GEV/C 8/67 R1 0.73 0.11 DAUHER 67 HRC K-P AT 2.GEV/C 8/67 R1 0.94 0.20 DAHE 67 HRC VI-D 1.5-4 GEV/C 10/69 R1 1.06 .14 SCHEURE AS DRC 0 K-N 3 GEV/C 10/69 R1 0.92 0.08 BUKKHARDT 49 HBC K-P 8-1.2 GEV/C 10/69 R1 R1 0.92 0.08 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) R1 F11 0.637 F0M F1T (FROR INCLUDES SCALE FACTOR OF 1.0)
ALSING DI PAL 0 043 *ALVARZZ:BERMARD.GUDU,GKALIANG, + (LRL) ALFXANDE 62 PRL 84.25 PRL 84.45 *ALVARZZ:BERMARD.GUDU,GKALIANG, + (LRL) ALSING AZ CERN COMF 311 +ALVARZZ:FERRO-UZZI,ROSENFELD, + (LRL) MISGVAVE 54 MC 35 735 *PETHZZAS, + (BIRMGHM.CERN,FP.JAPCOL,SACLAY) FNGLER 45 PRL 15 224 +FISK.KRAEWER.WELTZER,WESTGARD,+ (CRNG,BNL) BIRWINGH 66 PR 152 1149 BIRWINGHANGLASGOW,I.C., OXFORD,RUTHERFORD GALITERI 68 PRL 21 573 GARBARD-GALITERI,GHADNICK + (LRL,SLAC)	1 1 1 1 1	R2 Y*C(1520) INTD (LAMBDA PI PI)/(KBA@ N) (P3)/(P1) P2 0.21 0.18 DAUBER A7 HBC K-P AT 2.GEV/C 8/67 R2 0.17 0.05 DAH 67 HBC PI-1.6-4 GEV/C 8/67 R2 0.19 0.04 SCHEUER A8 DBC 0 K-N 3 GEV/C 10/69 R2 0.22 0.03 RURKHARDT 49 HBC K-P AT.2.GEV/C 10/69 R2 0.22 0.03 RURKHARDT 47 HBC K-P AT.12.GEV/C 10/69 R2 0.22 0.03 RURKHARDT 47 HBC K-P AT.12.GEV/C 10/69 R2 0.202 0.021 KIM 71 DPWA K-MATRIX ANAL. 3/71* R2 4VG 0.202 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.00 R2 FU 0.210 0.017 FROM FTI (FROR INCLUDES SCALE FACTOR OF 1.00
A(1405) EXTRAPOLATION BELOW THRESHOLD	*	R3 Y+0(1520) INTO (SIGYA PI//(LAMBDA PI PI) R3 4.5 1.0 ARMENTERO 65 HBC R3 3.3 1.1 AIYMINGNA 66 HBC 3.5 K- P 7/67
SEE NOTE IN Y®OLI405) PRODUCTION EXPERIMENTS -THE DIF- FICULTIES IN FXTRAPOLATING FROM THE PHYSICAL REGION TO THE RESONANCE LOCATION ARE DISCUSSED BY DALITZ 67.		R3 AVG 3,94 0.59 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 AVG 3,94 0.59 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 FIT 4.24 0.35 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)
I 440.7 I .01 KIM 65 HBC 0-EFF-RANGE FIT Ч 1409.6 (1.7) SAKITT 65 HBC 0-EFF-RANGE FIT M 1409.6 (1.7) SAKITT 65 HBC 0-EFF-RANGE FIT M 1407.6 (1.2) SAKITT 65 HBC 0-EFF-RANGE FIT M 1407.5 (1.2) KITTEL 66 HBC 0-EFF-RANGE FIT M 1403.0 (3.0) KIM 67 HBC CONST.K KMATRI M 1416.0 (4.0) MARTIN 69 HBC CONST.K MATRI M 1416.0 (4.0) MARTIN 70 RVUE CONST.K MATRI MARTIN	- 7/66 7/66 7/66 8/67 10/69 6/70	R4 Y*0[1520] INTO (LAMBDA GAMMA)/TOTAL (PERCENT) (P4/)/TOTAL R4 238 0.40 MAST AB AB 0.12 R4 0.80 0.14 MAST AB AB 0.15 R4 0.80 0.14 MAST AB AB 0.10 R4 0.80 0.14 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) P5 Y*0(1520) INTO (SIGNAD GAMMA)/TOTAL (PERCENT) (P5)/TOTAL R5 2.0 35 6A NC SEE NOTE S 10/69 R5 S AILSTEP Y*0(1520) RAMACHING RAMACHING RAMACHING SU(3). NEEDED TO CONSTRAIN 10/69 R5 S ALUTHE Y*0(1520) RAMACHING RAMACHING SU(3). NEEDED TO CONSTRAIN 10/69 R5 S ALUTHE Y*0(1520) RAMACHING RAMACHING SU(3). NEEDED TO CONSTRAIN 10/69
37 Y*0(1405) WIDTH (MEV) Ч 37.0 (3.2) KIM 65 HBC N 27.2 (4.1) Sakitr 65 HBC V 34.2 (4.1) Sakitr 65 HBC V 34.1 (4.1) Sakitr 65 HBC V 36.1 (4.1) Sakitr 65 HBC V 36.1 (4.1) KITTEL 66 HBC V 50.0 (4.0) KIM 67 HBC K MATRIX V 23.0 (A.0) KMATRIX 67 HBC CONST. K MATRIX V (20.0) MARTIN 69 HBC CONST. K MATRIX	- 7/66 7/66 7/66 1 8/67 10/69 6/70	R5 FIT 2.00 0.35 FR0M FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R5 FIT 2.00 1NTO (KRAR N)/TOTAL (P1)/TOTAL R6 V0(1520) INTO (KRAR N)/TOTAL (P1)/TOTAL (P2)/TOTAL R6 (0.45) 0.18 GALTIFRI 69 HBC K-2.845 G/C 10/69 R6 (0.45) CIB KIM 71 DPWA K-MATRIX ANAL. 3/71* R6 0.4579 0.0097 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 10
REFERENCES	* JP JP JP JP JP	R7 Y40(1520) INTO GATTERIA 69 HE (277) 10.4.1 67 10.4.1 67 10.4.6.2 47.1.6 10.4.1 10.7.1.6 10.4.1 10.7.1.6 10.4.1 10.7.1.6 10.4.1 10.7.1.6 10.7.1.6 <th< td=""></th<>
DONALD 66 PL 22 711 + EDWARDS, LYS, NISAR, MODRE (LIVERPODL) KAOYK 66 PPL 17 59 + OREEN, GES GOLDHAREP, REILLING (LRLI) ARKANS 65, KAOYK 66, AND JONALD 66 SUPPORT THOSE EFFECTIVE-RANGE FIT SOLUTIONS GIVING AN I=0 SI/2 RESONANCE.	JP -	RIO Y40(1520) INTO (Y41(1385)+PI)/TOTAL P7/TOTAL P7/TOTAL RIO 0.039 0.011 CHAN 70 HBC K-P TO LAM 2PI 3/71*
END -EXTRAPOLATION BELOW THRESHOLD-	¢ ¢ ¢	The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{\langle \delta P_i \delta P_i \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta P_i \delta P_i \rangle / \langle \delta P_i \delta P_i \rangle$. For the definitions of the individual P_i see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.
PRODUCTION AND PORMATION EXPERIMENTS ACREE QUITE WELL HITH FACH OTHER , THEREFORE THEY HAVE NOT BEEN SEPARATE FOR THIS PARTICLE 38 Y#01[=20] MASS (MFV) 1519,4 20 41517,2 30 401[=20] MASS (MFV) 145 1517,2 30 40 145 1517,2 30 40 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1510,0 1200 1201 1201 1201 1311510,0 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201	D S C 7/66 9/67 C 10/69 N 3/71*	P 1 P 2 P 3 P 4 P 5 P 6 P 1 -658010 P 3704010 P 3289361 .006+007 P 4063055034 .008+001 P 5158137065006 .020+003 P 6067059036003006 .010+001 REFERENCES Y+0(15201 WATSON 63 PR 131 2268 M B WATSON, M FERRO-LUZZI, R 0 TRIPP (LRL) 1JP GALTIERI 63 PL 6 296 A BARBARD-GALTIERI, A HUSSAIN.P0 TRIPP (LRL) 1JP GALTIERI 63 PL 6 296 A BARBARD-GALTIERI, A HUSSAIN.P0 TRIPP (LRL) 1 ALMEIDA 63 PL 9 20 S ALMEIDA C BLYKOL (CERN)
4 AVG 1517.85 0.95 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0	7/66 9/67 9/66 0 10/69 3/71*	PUSUKAWE 05 %L 15 / 15 / 16 EM (ER AS, + (8]EM (HM, CERN, EP, IMPCOL, SACLAY) ARRENTE 65 %L 19 33 ARMENTEROS, FUZZI, + 'CICFAN, +EIDEL, SACLAY) BIRMINGH 66 PR 152 1148 BIRMINGHAM, GLASGON, I.C., OXFORD, RUTHERFORD DAWL 67 PR 163 1377 DAWL 67 PL 246 525 HALAUMI, SCHLERIN, SLATER, STORK (UCLA) UHL 67 PR 155 1448 CHARTINO, CONDON, OLASSER, YODM, + (MO, USNUL) MAST 68 PRL 21175 MAST 68 PRL 21175 SCHEUER 68 PRL 21175 BURKHARD 69 NP B16 106 FFLITHUTHEKLUGE+ INELD-FFLICERN-SACLAY BURKHARD 69 NP B14 106 FFLITHUTHEKLUGE+ INELD-FFLICERN-SACLAY
W AVG 1.5 1.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	CLINE 70 LNC 2 407 ILAUMANN+ABD (L. ISC.) (L. ISC.) KIM 71 HARVABO (L. ISC.) (L. ISC.) (L. ISC.) SEE ALSO DUKE 151 J. K. KIM (HARV) LJP CHAN 70 PREPRINT HBUT-SNAFER.HERT7RACH.KOFLER++ (HASS, VALE) BUT-SNAFER.HERT7RACH.KOFLER++ (HASS, VALE) BURKHARDT70 CERN 70 PREPRINT PAPERS NOT REFERRED TO IN DATA CAROS BERLEY 70 PR DI.1996 +YAMIN.KOFLER,MANN.HEISNER+ (RNL,MASS, VALE) LJP

S130 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

A(1670) 40 Y*0(1670, JP=1/2-) I=0 S'D1 SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. THIS RESONANCE IS WELL ESTABLISHED. (SFE THE NOTE FOR THE Y*0(1330)).	 M THE Y#0(1690) IS AT THE EDGE OF THE ENERGY REGION ANALYZED BY M CONFORTO. THE SAME DATA AS WELL AS OTHERS EXTENDING TO LOWFR M RENEGIES ARE INCLUDED IN AMENIPARAS I. M A ANALYSIS INCLUDES OLD AND MEN DATA OF CMS COLLAB439 GEV/C 10/69 M A THE APPARENT DISCREPARCY BETWEEN THE SIGAN DIA NO DIFMERESILISIS M A PROBABLY NOT SERIOUS. THE ERRORS GIVEN ARF JUST STATISTICAL. THOM M A OF THE PARTAL AWAY AMPLITURES ARE NOT INCLUDED, AND CAN BE LARGE.
40 YULIF/01 HASS (REV) N (1666.0)OR(1675.0) REREY 65 HOC O K-P TO LAM ETA 7764 N THE FIRST VALUE ASSUMES THE BRANCHING PATID INTO LANDAD ETA IS SWALL, THE SECOND THAT IT IS LARGE. BECAUSE THE RESONANCE IS NEAR N SWALL, THE SECOND THAT IT IS LARGE. BECAUSE THE RESONANCE FIR ESONANCE PARA- N THE LANANG ATA THRESHOLD, THE BRANCHING RATID AFFECTS THE MOMENTUM N 1663.0 0.01 N 1663.0 3.01 AR WENT-2 68 HBC O CLASTIC, CH EXCILI/6 N (1675.0) 2.01 AR WENT-2 N (1675.0) 2.01 AR WENT-4 N (1675.0) 2.01 AR WENT-4 N (1675.0) 2.01 AR WENT-4 N (1670.0) 2.01 AR WENT-4 N (1670.0) 2.01 AR WENT-4 N (1673.0) 2.01 AR WENT-4 N (1670.0) 2.01 AR WENT-4 N (1670.0) 3.01 AR WENT-4 N 1	W (35.01) (7.0) ARMENT-1 68 HRC 0 UD DATA 11/68 W (85.01) (7.0) ARMENT-3 68 HRC 0 UD DATA 11/68 W (85.01) (7.0) ARMENT-3 68 HRC 0 UD DATA 11/68 W 40.0 (7.0) RUGG 68 CHR 0 - 768 W 43.0 (7.0) RUGG 68 CHR 0 - 768 W (27.0) 15.03 CUMENTD 68 HRC 0 CLMENT KARDE 11/68 W A 31.0 (7.0) ADMENT-4 69 HRC 0 CLMENT KARDE 64 A 31.0 (7.0) ADMENT-4 69 HRC 0 K-9 TO SIGA P1 E0 9/69 W A 70.0 BERLEY 69 HRC 0 SIGA P1 E1 7/70 W 64.0 (5.0) GUMPORT 70 HRC 0 K-9 TO SIGA P1 E1 7/70 W 64.0 (5.0) COMPORT 70 HRC 0 K-9 LLAST CLEX K7/70 W 64.0 (5.0) GUMPORT 70 HRC 0
 N THE APPARENT DISCREPANCY REFWEEN THESE RESULTS IS PROBABLY NOT SERIOUS, THE FRANS GIVEN ARE JUST STATISTICAL. THE SYSTEMATIC GRANGS THAT RESULT FROM THE RESTRICTIVE PARAMETRIZATION FORCED ON THE PARTIAL-WAVE AMPLITUDES ARE NOT INCLUDED, AND CAN BE LARGE. 40 Y*0(1670) WIDTH (MEV) 	DECAY MASSES P1 Y+0(1690) INTO KBAR N 4074 939 P2 Y+0(1690) INTO SIGMA PI L1394 139 P3 Y+0(1690) INTO SIGMA PI PI L1154 1394 139 P4 Y+0(1690) INTO SIGMA PI PI L1394 139
W I (22,010 Rt[5:0]) ΠFRLEY 65 HBC 0 SEE NOTE M ABOVE 1/6 N (26,0) (10,0) ARMENT-2 69 HBC 0 SEE NOTE M ABOVE 1/6 N (26,0) (4:0) ARMENT-2 69 HBC 0 SEE NOTE M ABOVE 1/6 N (26,0) (4:0) ARMENT-2 69 HBC 0 SEE NOTE M ABOVE 1/6 N 34,0 (15,0) ARMENT-4 69 HBC FLAST,CH EXCED 9/6 N 31,0 (5,0) ARMENT-4 69 HBC K-P TO SIGMA PI 6/7 W 31,0 RERLEY 69 HBC SIG PI-ED 9/6 6 SIG PI-ED 9/6 W 31,0 RERLEY 69 HBC SIG PI-ED 9/6 SIG PI-ED 9/6 W 32,0 (5,0) RATTERT 70 HBC SIG PI-ED 9/6 SIG PI-ED 9/6 W 31,0 RERLEY 69 HBC SIG PI-ED 9/6 SIG PI-ED 9/6 W 35,0 (5,0) KIM 71 DPMA K-MATRIX ANAL. 3/7 SEE	THE SUM OF ALL THE QUOTED BRANCHING RATIOS IS MORE THAN 1.0. THE TWO-BODY RATIOS ARE FROM PARTIAL WAVE ANALYSES, AND THUS PROBABLY ARE MORE RELIABLE THAN THE THRE-DODY RATIOS, WHICH ARE DETERMINED FROM BUMPS IN CROSS SECTIONS. OF THE LATTRR, THE SIGMA PI PI BUMP LODGS MARE SIGNIFICANT (THE ERROR GIVEN FOR THE LAMBDA PI PI RATID LODGS UN- REASTARLY SMALL). HARDLY ANY DE THE SIGMA PI PI DECAY CAN BE VIA * Y\$1(1385), FOR THEN NINE TIMES AS MUCH LAMBDA PI PI DECAY WOULD OF REQUIRED.
40 Y*0(1670) PARTIAL DECAY MODES	BELOW X1 = (PARTIAL-WIDTH LI/TOTAL WIDTH, ETC. A SIGN WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW.
DECAY DECAY MASSES P1 Y*0(1670) INTO KRAR N 6074 934555 P2 Y*0(1670) INTO LAMBDA ETA 11154 548 P3 Y*0(1670) INTO SIGVA PI 1189 139	R1 Y*0(1690) INTO (KRAR NI/TOTAL XI R1 (0,23) RMENT-1 64 RIC 0.53 11/68 R1 (0,23) CONFENTIO 64 HGC 0.52 11/68 R1 (0,22) (0,03) CONFENTIO 64 HGC 0.52 ND/V R1 (0,22) (0,04) DFFTANZA 59 HGC 0.48 9/69 R1 0.23 CONFORTO 70 HAC 0.474 9/63 R1 0.34 (0.02) CONFORTO 70 HAC 0.474 3/714 R1 0.22 CONFORTO 70 HAC 0.474 3/714
EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. R1 Y*0(1670) INTO (KRAR N)/TOTAL XI R1 P (0.164) (0.04) ARMENT-1 68 HBC 0 OLD DATA 11/6 R1 P (0.14) (0.04) ARMENT-1 69 HBC 0 NEW DATA 19/6 P1 0.14 (0.04) ARMENT-3 69 HBC 0 9/6 9/6 R1 A (0.39) (0.05) CONFIRTO 70 HBC 0 K-P.ELAST.CEX 6/7 P1 0.28 KIM 71 DPM K K-MATRIX ANAL. 3/7 R1 A EFEFCT BELON REGION ANALYSED. VALUE OF .IS DOES NOT 1.0 DOES NOT 3/7 R1 A EFEFCT BELON REGION ANALYSED. VALUE OF .IS DOES NOT 1.0 DOES NOT	R1 N EFFELT IS AT EMD OF REDITION ANALIZED: INTO COLD ATTLED FOR TALL R2 Y*0(1690) FROM KBAR N TO SIGMA PI SQRT(X1*X2) R2 (-0.33) (0.02) ARMENT-3 69 HAC 0 OLD DATA LL/68 R2 -0.36 (0.02) ARMENT-3 69 HAC 0 NEW DATA 9/69 R2 -0.36 (0.02) ARMENT-4 69 HAC 0 NEW DATA 9/69 R2 -0.27 BERLEY 69 HAC 0 NEW DATA 9/70 R2 -0.31 (0.03) GALTIERT 70 HAC 0 SIG 91 EDWA 7770 * R2 -0.40 KIM 71 DWA (-MTX NAL. 3771* 83 Y*0(1600) FROM KBAR N TO LAMBOA PI PI SQRT(X1*X3)
n1 p THTS IS THE DIAMETER OF THE CIRCLE IN THE ARGAND PLOT. IT IS R1 SUPERIMPOSED ON A LARGE BACKGROUND. SUPERIMPOSED ON A LARGE BACKGROUND. R2 Y+0(1670) INTO (KBAR N)*(LAMBDA ETAL/TOTAL**2 (P1+P2)/TOTAL**2 R2 M(0,039)DR 0.053 BFRLEY 65 HBC 0 SEE NOTE M ABOVE 7/6 R2 (0,040)DR 0.053 BFRLEY 65 HBC 0 SEE NOTE M ABOVE 7/6 R2 (0,24) KIM 71 DPMA K-MATRIX ANAL. 3/7 SEE THE NOTES ACCOMPANYING MASSES DUDTED COLOR 3/7 SEE THE NOTES ACCOMPANYING MASSES DUDTED 3/7	0.25 (0.02) BARTLEY 68 HOBC 0 K-N TO LAW PI PI 11/68 R4 Y*0(1600) FROM KBAR N TO SIGMA PI PI (0.21) SIGMA PI PI ARMENT-2 SORT(X1*X4) 0
93 y+0(1670) FR0M KBAR N TO SIGMA PI SQRT(X1+X3) R3 (-0.251) (0.061) AAMENT-2 68 HBC 0 UD OATA P3 -0.27 AAMENT-3 69 HBC 0 976 93 -0.23 (0.03) AAMENT-4 69 HBC 0 NEM 076 83 -0.27 APRELY 69 HBC 0 NEM 076 73 -0.27 RFRLEY 69 HBC 0 NEM 077 73 -0.29 (0.03) GALTIERI 70 HBC 0 SIG 0.10 0 10	DAVIES 67 PRL 18 62 +DDWELL, + (BRMNGHM,CVNDSH,RTHFRD) I
REFERENCES Y+0(1670) REFERENCES Y+0(1670) RERLEY 65 PRL 15 661 - +CCNNDLLY, HART, RAUM, STDNEHILL, + (BNL)IJP ARMENT-1 69 NP BB 195 - ARMENTERNS, BAILLON, + (CERN, HEIDEL SACIAVILD ARMENTERNS, BAILLON, + (CERN, HEIDEL SACIAVILD	ARWENT-6 69 NP 914 AR MENTEROS, RAILLON, + (CERN, HEIDEL, SACLAY) [JP BERTANZA 69 PR 177 2036 +BIGI, CARRARA, CASALI, + (PISA, FNL, YALEIJJP BRERLEY 69 PL 180 430 +HART, RAHM, WILLISY, YAMANITO (FILEIJJP CONFORTO 70 EFI 70-281 SUN NP +HART, RAMSEN4LASINSKI++ (EFI+FICIJJP GALTIERI 0.000 NA. RARGARG GALTERI (HARV) IJP KINT TI HARVARD PREPRINT J.K.KIM (HARV) IJP
ARTENT-2 NO UND 262 ARTENT-2 NO UND 200F0 229 ARTENT-805, BAILLON, + (CERR,HEIDEL,SACLAYIIP 	$ \frac{\Lambda(1750)}{\text{SEE THE MINI-REVIEW AT THE STAFT OF THE Y* LISTINGS.} $
BIRMING- 66 PR 152 1148 (BIRMINGHAN, GLASGON, IMPCOL, OXFORO, RUHERFD) LFWISETT 69 LUND 339 REVISETTI (RAPPORTEUR) (CHICAGO) ************************************	WAS FIRST SUBJECTED IN A PARTIAL WAVE AVALYSIS OF KOAR WAS FIRST SUBJECT FOR FIRST POLA WOLLTONE WHEN IT WAS PARAMETRIZED AS A TWO-STRAIGHT-LINE DACK GROUND. WHEN IT WAS RE- PARAMETRIZED AS A TWO-STRAIGHT-LINE DACK GROUND. WHEN IT WAS RE- PARAMETRIZED AS A RESONANCE SUPFRIMINSFO DN A ONE-STRAIGHT-LINE RACK- GROUND, A RROAD RESONANCE RESULTED LAMMENTFROS 60, A REANALYSIS DF SSENTIALLY THE SAME DATA, BUT THIS THE WITH THE POL AVOLITUDE UNCON- STRAINED, SUGGESTED A MUCH NARROWER RESONANCE AT HIGHER ENERGY (ARMEN- TERDS 70).
SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.	A WIDER AND MORE ELASTIC VOL RESUMANCE AL ABOUT THE SANGUESTED BUSS LS SUGGESTED BY THE ANALYSIS OF BALLEY AN, THIS USES CONSIDERABLY LESS DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY DATA THAN THE ARMENTERGS ANALYSES, FOR THIS REASON WE DO NOT YOUTE ANY
Min A Sounde to ALLE CONCONSION 55 Y40(1690) MASS (MEV) M 1695.0 (4.0) BUGG M (1696.0) (1690.0) ADSG (MEV) M (1691.0) (1691.0) CONCATA M (1691.0) (1691.0) CONCATA M (1691.0) (1691.0) CONCATA M (1691.0) (1691.0) CONCATA M (1697.0) (1691.0) CONCATA M (1697.0) (1690.0) CONCATA M (1697.0) (1690.0) CONCATA M (1697.0) (1690.0) CONCATA M (1690.0) A APARDA M (1690.0) A APARDA A (1690.0) A APARDA A (1690.0) A (1690.0) A (1690.0)	ARVENTERDS TO, GALTIERI TO, AND KIM 71 PRESENT EVIDENCE FOR A POL STATE IN THE SIGMA PI CHANNEL. IN ADDITION THE ANALYSIS OF KIM 71 INDICATES A SECOND POSSION OF STATE AT ABOUT 1570. WE TENTATIVELY LIST THESE EFFECTS TOGETHER.

	8	
77 Y*0(1750) MASS (MEV) M. 0 (1745.0) ARMENTERD 6M HBC 0 ELASTIC. CH EXCH 1 M. 11745.0) ARMENTERD 70 HBC 0 ELASTIC. CH EXCH 1 M. (1700.0) ARMENTERD 70 HBC 0 ELASTIC. CH EXCH 1 M. (1750.0) ARMENTERD 70 HBC 0 ELASTIC. CH EXCH 1 M. (1750.0) ARMENTERD 70 HBC 0 SIGMAPT M. N. (1600.0) GALTIERT 70 HBC 0 SIG P1.E0PWA M. N. (1575.) KIN 71 DPWA FW.ANALL INCLUDED M. (1755.) KIN 71 DPWA K-MATRIX ANAL. M. 1 PNSINE EFFECT IN SIGMA PI AND KBAR N CHANNELS. MATRIX ANAL. M. 0 OLD ANALYSIS, USING OLD DATA. 77	1/68 0/70* 6/70 6/70 1/71* 3/71* 3/71*	P2 Y*0(1815) FROM KBAR N INTO SIGMA PI SORTIX1*X2) R2 0.27 0.01 AR*ENT-1 SORTIX1*X2) R2 0.23 0.025 RELL 67 DPMA 0 K-P TO SIGMA PI 1//67 R2 0.23 0.025 RELL 67 DPMA 0 K-P TO SIGMA PI 1//67 R2 0.24 0.025 RELL 67 DPMA 0 K-P TO SIGMA PI 1//67 R2 0.2641 0.03 GALTIRIT 70 DPMA 0 K-P TO SIGMA PI 7/70 R2 0.2641 0.094 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 R3 Y*0(1815) FROM KBAR N INTO Y*1(1395) PI SORT(X1*X3) SORT(X1*X3) R3 0.3 0.05 AP#ENT-2 67 HBC 0 K-P TO LAM PI PI 9/69 R3 FIT 0.327 0.033 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R3
x (147.0) ABMENTERO 50 HAC 0 x (300.0) BAIENTERO 70 HAC 0 ELASTIC. CH EXCH 1 x (300.0) BAIENTERO 70 HAC 0 ELASTIC. CH EXCH 1 x (300.0) BAIENTERO 70 HAC 0 ELASTIC. CH EXCH 1 x (300.0) BAIENTERO 70 HAC 0 SIGA PI x (270.0) GALTIERI 70 HAC 0 SIGA PI x (25.1) KIM 71 DOWA K-HATRIX ANAL. x (50.1) KIM 71 DOWA K-MATRIX ANAL. sefe THE NOTES ACCOMPANY ING MASSES GUDTERO	0/70* 6/70 6/70 7/70 3/71* 3/71*	R4 Y*0(1815) INTO (Y*1(1385) P1)/IOTAL X3 X3 R4 0.20 0.05 BIRCE 65 HBC 0 K-P TO LAM PI PI 7/66 R4 10.015 0.035 FROM FIT (EARDR INCLUDES SCALE FACTOR OF 1.01 R4 FIT 0.171 0.035 FROM FIT (EARDR INCLUDES SCALE FACTOR OF 1.01 R5 Y*0(1815) INTO (SIGMA PI P1)/TOTAL X4 R5 P NO CLEAR SIGNAL ARMENT-4 R5 P THERE IS A SUGGESTION OF A BUNG, ENDUCH TO BE CONSISTENT WITH R5 MHAT IS FXPECTED FROM SIGNAPI DECAY OF THE Y*1(1385) ABDUT 0.02. R5 R5 FI 0.036
DECAY MASSES PL Y#0(1750) 11/10 KRAR N 4974 939 02 V#0(1750) 11/10 SIGMA PL 11/1974 139 -		FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS
72 (************************************		The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{(\delta P_i \ \delta P_i)}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta P_i \ \delta P_j \rangle$. For the definitions of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and
RI (0,4) АЯЧЕМТЕРС АВ ОРИА О ЕLASTIC, СН ЕКСН 1 RI (0,55) ВАЦЕЧ АВ ОРИА О ЕLASTIC, СН ЕКСН 1 RI (0,15) АРИЕМТЕРС 70 ОРИА О ЕLASTIC, СН ЕКСН 1 RI (0,15) АРИЕМТЕРС 70 ОРИА О ЕLASTIC, СН ЕКСН 1 RI (0,15) АРИЕМТЕРС 70 ОРИА О ЕLASTIC, АНА АКЦ.	1/68 10/70* 10/70* 3/71*	are thus constrained to add to 1. P 1 P 2 P 3 P 4 P 1 624010 P 2 200 1114008
R2 Υ+0(1750) FROM KRAR N INTO SIGHA PI SURT(X1+X2) R2 (+0.20) ARMENTERO TO DPMA O K-P TO SIGMA PI R2 (+0.20) GATTREN TO DPMA O K-P TO SIGMA PI R2 (+0.20) GATTREN TO DPMA O K-P TO SIGMA PI	6/70	p 3067 .011 .171+035 p 4181160952 .094+036
R2 (0.17) KIN 71 DPWA K-MATRIX ANAL. SEE THE NOTES ACCOUPANYING MASSES QUOTED	3/71*	****** ******** ******** ******** ******
REFERENCES Y*0(1750) AGMENTER GR NP RG 105 RATLEY 69 THESIS URL-50617 DAVID SAAL BAILEY (LERN.HFIDEL,SACLAY)IJP RATUEY 69 THESIS URL-50617 DAVID SAAL BAILEY (LER LIVEMORE/IJP GALTIRI TO DUKE GONE 123 GALTIRI TO JUKE GAL TRI TA ANAVARD ORIPORTA A SATURA SEE AIG DIKE IA K.KIM (HARVIIJP (HARVIIJP		BIRGE 65 ATHENS CONF 296 +ELY,KALMUS,KERNAN,LOUIE,SAHOURIA, + (LRL)IJP ARMENT-1 67 PL<246
$(1815) 39 \text{ y*o(1815, JP=5/2*) I=0} F_{05}$ See the MINI-REVIEW AT THE START OF THE Y* LISTINGS.		RRICYAN TO PL 31B 152 +FERROLUZZI, PERNFAU,+ (CERVACAEN, SACLAY) RRICYAN TO PL 33B 152 +FERROLUZZI, PERNFAU,+ (CERV) CODU TO PR IN 1887 + STACOMELLI, KYCIA, LEONTIC, LI, + (RNL) I CONTRAT TO DUKE CONF IT3 A BARABAG-GALITERI CONFORTO TO NY SUBMITTEDI +HARMSEN, LASINSKI, + (CHICAGO, HEINELIJA) KIM TI HARVAR PREPRINT J, K.KIM (HARVIIJP SFE ALSO DUKE 161
THIS STATE IS WELL ESTABLISHED, MOST OF THE QUITED EM- RDRS ARE STATISTICAL ONLY. THE SYSTEMATIC FARORS DUE TO THE PARTICULAR PARAMETERIZATION USED IN THE P.W.A. ARE		THE FOLLOWING PAPERS ARE NOW OF ONLY HISTORICAL INTEREST
MOT INCLUDED, FUR THIS REASON WE TO NOT CALCULATE WEITONED AVERANCE FOR MASS AND WIDTH. 		CHAMBERL 62 PK 127 1646 CHAMBERLAUKLOWELAEFERSON GALTIERI 5 PL 6 206 A BARAARGAGITIERI A HUSSANNARD TRIPP LERLIJ SODICKSO 64 PR 133 B757 SODICKSON, MANVELLI-FRISCH-MAMLIG (MITTBALIJ HOLLEY 65 UCRL-16274 THESIS W R HOLLEY
N 1413.0 (2.0) Армент-1 А7 НАС 0 № 0 1.5 0.5 <th0.5< <="" td=""><td>8/67 11/67 11/68 6/68 6/70 1/71*</td><td>RIRWINGH 66 PR 152 1148 RIRWINGHAN-GLASGON-I.C. OXFORD, UTHEEPPON COTL 64 PRI 16 1224 HOLOWELLIX-VCIA.LEONIC.UNDIGY HEAD GELEANDR 66 PRI 17 1224 HARMITENS, FERDO-LUZIE HEAD GELEANDR 66 PRI 17 1224 HARMITENS, FERDO-LUZIE (CHICASCIATIIP LASINSKI 64 PR 163 1792 LASINSKI, LEVI SETTI, PRFDAZZI (CHICASCI JP LASINSKI 64 PR 163 1792 LASINSKI, LEVI SETTI, PRFDAZZI (CHICASCI JP</td></th0.5<>	8/67 11/67 11/68 6/68 6/70 1/71*	RIRWINGH 66 PR 152 1148 RIRWINGHAN-GLASGON-I.C. OXFORD, UTHEEPPON COTL 64 PRI 16 1224 HOLOWELLIX-VCIA.LEONIC.UNDIGY HEAD GELEANDR 66 PRI 17 1224 HARMITENS, FERDO-LUZIE HEAD GELEANDR 66 PRI 17 1224 HARMITENS, FERDO-LUZIE (CHICASCIATIIP LASINSKI 64 PR 163 1792 LASINSKI, LEVI SETTI, PRFDAZZI (CHICASCI JP LASINSKI 64 PR 163 1792 LASINSKI, LEVI SETTI, PRFDAZZI (CHICASCI JP
M 1430.0 (10.0) CONL TO CNTR K-P, D <total< th=""> D M 1420.0 (10.0) GALTIERI TO DPWA 0 X=DTISIGMA PI M 1810.0 (2.0) GALTIERI TO DPWA 0 X=DTISIGMA PI M 1810.0 (2.0) CONFORTO TO DPWA 0 X=DTISIGMA PI M 1810.0 (2.0) CRNPR DUE TO PARTICULAR P.W.ANAL. INCLUDED X=DTISIGMA PI X=NUA.NAL. INCLUDED M ERNPR STATIST ONLO Y NOTH (MEY) X=DTISIGMA PI X=NUA.NAL. INCLUDED</total<>	10/70* 7/70 6/70 3/71* 1/71*	$(\Lambda(1830)) \xrightarrow{56} Y^{+0(1830, JP=5/2-1)} 1=0 \qquad D_{05}$
W 87.0 (15.0) ARMENT-1 67 HRC 0 W 64.0 (12.0) RFLL 67 HRC 0 I 0 71.0 (4.0) ASMENT-3 68 HRC 0 FLASTIC, CH FXCH	8/67 11/67 11/68	THE BEST EVIDENCE FOR THIS RESONANCE COMES FROM THE SIGMA PI CHANNEL. IT APPEARS TO BE WELL ESTABLISMED.
N 75.0 (7.0) RUGG 66 CNTR 0 K-P.D TOTAL N 80.0 (5.0) BRICHAN 70 CNTR 0 TOTAL AND CH EX N 74.0 (3.0) RRICHANI 70 DPHA 51617J-ELAS,CHEX	6/68 6/70 1/71*	
W 100.0 (20.0) GALTIERI 70 DPWA Ο X-P.T 1014L W 100.0 (20.0) GALTIERI 70 DPWA Ο X-P.TO SIGMA PI W 90.0 (4.0) COMFORTO 70 DPWA Ο ELASITE. CH EXCH W 70.0 KIW 71 DPWA SEE THE NOTES ACCOMPANYING MASSES QUITED	7/70 6/70 3/71*	M N 183.0 (11.0) BELL BY HAC O KAN DISTORTING ON THE STATE
30 VHILISISI PARTIAL DECAT MUDES DECAY MASSES PI Y+0(1815) INTO KBAR N 4074 939 P2 Y+0(1815) INTO SIGMA PI 1184+ 139 P3 Y+0(1815) INTO Y+1(1385) PI 1385+ 139 P4 Y+0(1815) INTO SIGMA PI 1122+ 139+ 139		M K POISSING EFFECT WAINLY IN SIGNA PL. NOTCLEAK IF UNCORRELATED K WITH THE IRSO EFFECT M N ERROR STATIST. ONLY- NO ERROR DUE TO PARTICULAR P.W.ANAL. INCLUDED 1/71* 56 Y*0(1930) WIDTH (MEV) H 75.0 (9.0) ARMENTERD 57 HBC 0 X-P TO SIGMA PL 8/57 H 75.0 (9.0) ARMENTERD 57 HBC 0 X-P TO SIGMA PL 8/57
		123.0 132.0 AN ENTERD & AN ENTERD & AN BOO O ELASTIC. CM EXCH 1/760 W 123.0 132.0 AN ENTERD & AN BOO O ELASTIC. CM EXCH 1/760 W 104.0 135.0 CONFORTO TO DEWA O ELASTIC. CM EXCH 6/760 W 150.0 130.0 GALTIENT TO DEWA O SALATIC. CM EXCH 6/760 W 150.0 GALTIENT TO OPHA A O SALATIC. CM EXCH 6/70 W 80. K14 71 W K20.1 K14 71 W K20.1 K14 71
ERRORS QUOTED BY EXPERIMENTERS OD NOT INCLUDE UNCERTAINTY DUP To papametrization used in the p.w.a. They should be increased.		SEE THE NOTES ACCOMPANYING MASSES QUOTED
αι γεν[1615] ΝΤΟΙ (KBAR N)/TOTAL XI XI R1 0.62 0.02 ARRENT-3 68 HDR 0 ELASTIC, CH EXCH R1 0.672 BUGG 68 CNTR 0 K-P, D TOTAL R1 0.55 0.02 ARICMANL 70 CNTR 0 TOTAL R1 0.58 0.02 RTICMANL 70 DPHA STGTT ELAS/CHEX R1 0.58 0.02 RTICMANL 70 DPHA STGTT ELAS/CHEX R1 0.58 0.01 CODE TO CONSTO TO TOMA ELASTIC, CH EXCHEX R1 0.59 0.01 CODE TO CONSTO TO TOMA ELASTIC, CH EXCHEX R1 0.59 0.01 CODE TO CONSTO TO TOMA ELASTIC, CH EXCHEX R1 0.521 0.01 CODE TO DPAA K-MATRIX ANAL R1 0.521 KIP TI DPAA K-MATRIX ANAL	11/68 6/69 6/70 1/71* 10/70* 6/70 3/71*	0FCAY MASSES P1 Y+0(1830) INTO KBAR N 4374 935 P2 Y+0(1830) INTO SIGMA PI 1189+ 139
R1 AVG 0.624 0.011 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) R1 FIT 0.6241 0.0099 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3)		I contraction of the second

56 Y#0(1830) REANCHING RATIOS	
BELOW, X1 = (PARTIAL-WIDTH LI/TOTAL WIDTH, ETC. A SIGN, WHERE	$\Lambda(1870)$ 36 Y*0(1870, JP=1/2-) I=0 S''_01
EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE TO MINI-KEVIEW.	THE SOL AMPLITUDE SHOWS A SECOND RESONANCE BEHAVIOR AT ABOUT LOOD MEV IN BOTH THE BRICMAN TO AND KIM 71
0.09 (0.01) ARMENTERO 68 HBC 0 ELASTIC, CH FXCH 11/68 R1 0.03 (0.02) RTICMANI 70 7PWA SIGTOT FLAS.CHEX 1/71* 01 0.05 (0.02) CINEGRET 70 0PWA 0 FLASTIC, CH FXCH 6/70 R1 (0.24) CINEGRET 70 0PWA 0 FLASTIC, CH FXCH 6/70 FLASTIC, CH FXCH 6/70	ANALYSES. THE FLASTICITIES OF THESE TWO ANALYSES ARE IN RAD DISAGREMENT.
R2 Y≢0(1430) FRNH KBAR N INTO SIGHA PI R2 0,15 (0,02) ΑλΜΕΝΤΕΓΟ 67 DPHA Ο K→P TO SIGHA PI 8/67 R2 0,10 (0,01) ΛΕΙL EF 7 DPHA Ο K→P TO SIGHA PI 11/67 R2 0,10 (0,01) ΛΕΙL EF 7 DPHA Ο C→P TO SIGHA PI 7/70	M (1872.0) (10.0) BFICMAN 70 OPWA TOT, FLAS, CHFX 1/71* M (1780.) KIM 71 OPWA K-WATRIX ANAL 3/71* M 34 YA0/1870.) UDTH (MEV)
α2 0.1% ΚΓΗ 71 ĎΡΨΑ Κ-ΜΑΤRIX ANAL. 3/71•	W (10020) (20.0) BRICMAN 70 DPWA TOT, ELAS, CHFX 1/71* W (40.) KIM 71 DPWA K-WATRIX ANAL, 3/71*
REFERENCES Y*0(1830) ARMENTER 67 PL 24R 199 ARMENTEROS. F-LU771. + (CERN.HEIDEL,SAGLAY)[JP	36 Y*O(1870) PARTIAL DECAY MODES
AFLL 67 PRL 19 936 R A RELL (LULI)P ANNESTER 64 NF DB 195 ARNESTERNS, BAILLON, + (CERN,HEIDELSACLAY)IJP CYNFORTO 64 NF BB 265 + HARMSFN, LASINSKI, + (CHICAGO,HEIDELIJP CONFORTO 64 IS SUPERSFDED BY CONFORTO 70.	P1 Y=01(1470) INTO SKRAR N 4-07- 930 P2 Y=01(1470) INTO SIGMA PI 1197+ 139
ReiCANNI 70 PL 338 SIL +FERRO-LUZZI,LAGNAUX (CERNI) GAITIERI 70 DWE CONVET 73 A ARARARO-GAITIERI (IRLIID CONFORTO 70 NP (SUBMITTED) +HARMSEN, LASINSKI, + (CHICAGO, HEIOCLID KIN 71 HARVARD PREPRINT J.K.KIM HARVARD PLANDARD (IRLING)	RI Y*0(1370) [NTO (KBAR NI/TOTAL XI RI (Ο.14) (Ο.02) ΒΡΙζΜΑΝ 7Ο D94Δ ΤΟΤ, ELAS, CHEX 1/71* RI (Ο.4) ΚΙΜ 71 D94Δ Κ-ΜΑΤRΙΧ.ΔΝΔL. 3/71*
STE 4130 ODKE 191	RZ Y*0(1870) FROM KBAR N TO SIGMA PI SORT(X1*X7) RZ (0.24) KTM 71 DPWA K-MATRIX ANAL. 3/71*
	****** *******************************
$\frac{\Lambda(1860)}{\text{Sef THF MINI-REVIEW AT THE START OF THE Y* LISTINGS.}}$	REFERENCES Y+OI(A70) BRICMAN 70 PL 33B 511 C BRICMAN, M FERRO-LUZZI, J P LAGNAUXICERNIJP KIM 71 HARVARD DREPRINT J.K.KIM (HARV) IJP SEE ALSO DUKE 161 J.K.KIM (HARV)IJP
THE QUANTUM NUMBERS OF THIS STATE ARE PROBABLY 3/2+.	**************************************
OF THE KARA-N DATA WY ANNEHTERDS AT. THE ISOSPIN-O TOT, CROSS SECTION HAS A SHOLLPRE ON THE HIGH SIDE OF YHOIIBISI THAT IS COMPATIBLE WITH A STATE AT THIS MASS ROUG 68D. THE ARMENTERDS 68 AND COMPATIBLE WITH A STATE AT THIS MASS ROUG 68D. THE ARMENTERDS 68 AND COMPATIBLE AND AND YES OF IMPOYED KARA-N DATA INCLUDED THE FOR STATE.	$ \begin{array}{c} \Lambda(2010) \\ \end{array} \qquad \qquad$
HOWEVER IN THE NEW ANALYSES OF COMFORTO TO AND,LATER, BRICHANI TO THE FOT IS NOT REQUIRED BY THE NEW DATA AND A POB RESONANCE IS ACCEPTABLE. IN ANDITION BOTH THESE NEW ANALYSES INCLUDED RECENT POLARIZATION DATA.	SUCH A RESONANCE IS SUGGESTED BY ONE BUT NOT OTHER PARTIAL-MAVE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE FUDENCE, WE ONIT THIS STATE FROM THE MAIN RABYON TABLE.
M N 1870.0 5.0 9UGG 69 CNTR 0 K-P TOTAL 7/68 M A FOT 1854.0 2.0 ARMENTERD 68 DWPA 0 FLASTIC, CH EXCH 11/68	89 Y+0(2010) MASS (MEV) м (2010.0) (30.0) GALTIERT 70 ОРМА О К-Р ТО SIGMA РТ 7/70
μ Λ FO7 1877.0 6.0 BRICMAN 70 CWTR 0 TOTAL AND CH 8 6/70 μ PO3 1870.0 6.0 BRICMANI 70 DPMA 0 SIGTOT, ELAS, CHEX 1/71 μ N NO3 1873.0 10.0 C/NFORTO 70 DPMA 0 ELASTIC, CH EXCH 6/70	89 Y*O(2010) WIDTH (MEV)
■ 1 PO3 1710. ■ A THESE TWO ANALYSES GAVE THE FO? ASSIGNMENT, THEY HAVE TO BE 1/71. ■ A DESCARDED IN VIEW OF COMENDATION TO AND BEICHANN TO	W (130.0) (50.0) GALTIERT 70 DPWA O K-P TO SIGMA PL 7/70
M N DUE TO PARTICULAR PARAMETERIZATION USED.ERROR CAN BE LARGE 1/71* M 1 POSSIBLE EFFECT MAINLY IN SIGMA PI. WE TENTATIVELY LIST IT HERE.	DECAY MASSES
60 Y*O(1860) WINTH (MEV)	PI Y*0(2010) INTO KEAR N 4414 454 P2 Y*0(2010) INTO SIG4A PI 1197+ 139
W N 40.0 10.0 RUGG 68 CNTR O K-P TOTAL 7/68 W A FO7 39.0 7.0 ARMENTERO 68 OWPA O ELASTIC, CH EXCH 11/68	BELOW, X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, FTC. A SIGN, WHERE
W A F07 24.0 15.0 BRICHAN 70 CHTR 0 TOTAL AND CH EK 6770 W P03 37.0 10.0 BRICHANI 70 DPHA 0 SIGTOT-ELAS-CHEX 1/71* W N P03 80.0 20.0 CONFORTO 70 DPWA 0 ELASTIC. CH EXCH 6770	EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. R1 Y*0(2010) FROM KBAR N TO SIGMA PI SORT(X1*X2)
W 1 PO3 20. KIM 71 DPWA K-MATRIX ANAL. 3/71* SFE THE NOTES ACCOMPANYING MASSES DUDTED	RI (-0.20) (0.04) GALTIERI 70 DPWA 0 K-P TO SIGMA PI 7/70
60 Y*0(1860) PARTIAL DECAY MODES	RFFFRENCES Y*0(2010)
P1 Y+0(1960) INTO K9AR N 497+ 939 P2 Y+0(1960) INTO STGMA PI 1199+ 139	GALTIERT 70 NJKE CONF 173 A BARBARD-GALTIERT (LRLIIJP
60 Y*0(1860) BRANCHING PATIOS	****** ********************************
RFLOM, XI = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW.	$\Lambda(2020)$ 27 Y*0(2020, JP=7/2+) I=0 F ₀₇
R1 Y#0(1960) INTO (KRAR N)/TOTAL X1 R1 (JJ+/Z1X = 0.40 RUGG 69 CNTR 0 7/68 . R1 4 F07 0.12 0.02 ARMENTERO 68 HBC 0 ELASTIC, CH EXCH 11/68	SEE THE MINI-REVIEW AT THE START OF THE YN LISTINGS.
R1 A F07 O.07 O.02 PRICMAN TO CNIR O TOTAL AND CH EX 6/70 P1 P03 O.12 RICMAN TO DPWA O SIGTIF, ELAS, CHEX 1/71* R1 P03 O.25 O.03 CINFORTO TO DPWA O ELASTIC, CH EXCH 6/70 SEF THE NOTES ACCYDMANY ING MASSES OUD TED COUPTO COUP	DARTIAL-WAVE ANALYSES ACCORS THIS REGION. UNTIL THERE IS YORE EVIDENCE, WE ONLY THIS STATE FROM THE MAIN Garyon Table.
R2 Y*0(1960) INTO SIGMA PI (P2) R2 P PROBABLY SEEN GALTIERI 68 DBC 0 K-N TO SIG PI PI 11/68	27 Y*0(2020) MASS (MEV)
R2 P POSSIBLY THIS RUMP SFEN AT 1840+10 MEV WITH A WIDTH OF 35+10 MEV R2 IS THE Y*0118301, WHICH DECAYS STRONGLY TO SIGMA PI. HOWEVER THE R2 NARROW WIDTH HERE ARGUES FOR ITS BEING THE Y*0118601.	27 Y+0(2020) WIDTH (MEV)
****** ******** ******** ******** ******	W (160.0) (30.0) GALTIERI 70 DPWA 0 K-P TO SIGMA PI 7/70
	DECAY MASSES
ANTERNITYUGA AV MB 149 ANTERNITY ANTERNI ANTERNITY ANTERNITY ANTERNITY ANTERNITY ANTERNITY ANTER	P1 T-VL20201 INTO KIGAK N
RRILMAN 70 PL 31R 152 +FEPRDLUZZI, DERREAU,+ [CERN,CAEN,SAGLAY] RRICMANI 70 PL 339 511 +FERRD-LUZZI,LAGNAUX CCERNI COVEDRID 70 EFI 70-43 +HARMSEN, LASINSKI, + (CHICAGO, HEIDEL)IJP	BELOW, X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE
KIM 71 HARVARD PREPRINT J.K.KIM (HARVI IJP SEE ALSD DUKE 161 J.K.KIM (HARVIIJP	EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINT-REVIEW. R1 Y*0(2020) FROM KRAR N TO SIGMA PI SORT(X1*X2)
PAPERS NOT REFERRED TO IN DATA CARDS ANNENTER 67 NP B3 592 ARMENTERDS, F-10771. + (CERN.HEIDEL.SACIAVITIP	R1 (-0.15) (0.02) GALTIERI 70 DPWA 0 K-P TO SIGMA PI 7/70
AR VENTERIS 67 IS REPLACED BY ARMENTERDS 68 AND CONFORTO 68. CONFORTO 63 NF R8 245 ++HARMSEN, LASINSKI, + (CHICAGO, HEIDELIIJP CONFORTO 64 IS SUBFESTEDE BY COMEMPTO 70	REFERENCES Y*0(2020)
LEVISETT 69 LUND 339 R.LEVI SETTI (RAPPORTEUR) (EFINS)	GALTIERI 70 DUKE CONF 173 A BARBARO-GALTIERI (LRL)IJP
****** ********* ******** ******* ******	****** ********************************

	0	
$\frac{41}{\Lambda(2100)} \xrightarrow{41} \frac{1}{100} 1$	ł	A(2100) 25 V*0(2100) CROSS-SECTION AND INVARIANT-MASS PEAKS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.
SHE THE MINITARVIEW AT THE START OF PARTIAL-MAVE ANALYSES, PARAMETERS INF PEAKS SEEN IN CROSS-SECTIONS ANALYSES, PARAMETERS INF PEAKS SEEN IN CROSS-SECTIONS GIVEN IN THE NEXT EVENTUALLY THE PARTIAL-MAVE ANALYSES SHOULD GIVE THE REST RESULTS, AS THEY ISOLATE THE GOT MAVE. THIS SUPERIORITY IS, HOWEVER, PROBABLY NOT YET ATTAINED, AND WE RELY ON BOTH ENTRIES FOR PARAMETERS GIVEN IN THE MAIN MARVON TABLE.		SEE THE NOTE TO THE GOT Y+012100), WHICH PROCEEDS THIS EVIRY, HERE WE LIST DULY DARAMETERS OF PEAKS IN CODS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS, THE CROSS- SECTION SHOL CONTAIN A SHALL CONTRIBUTION FAMILY ASSOCIATED WITH THE Y+012100), BUT MAY CONTAIN A SHALL CONTRIBUTION FAMILY ASSOCIATED WITH THE Y+012100), LISHED OTHER RESONANCES IN THIS REGION.
41 Y*0(2100) MASS (MEV)		M (2097.0) (6.0) BOCK 65 HBC PBAR P 5.7 BEV/C 7/66
M (2120,0) WOHL 66 HRC K-P CH FX M 4 (2040,0) (10.0) RUBGUNG 68 DPWA 0 K-P TO XI K M 2110,0 (20.0) GALTIENI 70 DPWA 0 K-P TO XI K M 2110,0 (20.0) GALTIENI 70 DPWA 0 K-P TO XI K M 210,0 120.0) GRETHONI 70 DPWA 0 K-P TO XI K M A BURGUN 48 SEE A RESONANCE-LIKE EFFECT IN THIS REGION IN THE NOT CLEAP	7/66 10/69 7/70 10/70*	M 2100.0 (7.0) RUGG 68 CNTR KP, D 101AL 67/5 H 2121.0 (5.0) ΒΗΓ(*AN 70 CNTR KP, D 101AL 67/5 H 2107.0 (10.0) COOL 70 CNTR KP, D TOTAL 107/0* H (2135.0) (20.0) LU 70 CNTR 0 GAMA P TO K+ Y* 1/71*
WHETTER IT IS MAINLY THE GOT VOLUDIO DE INSTANA A SO GAR OTHERWISE UNDRSERVED RESONANCE WITH A SPIN LESS THAN 7/2.		W (24.0) (14.0) (24.0) BOCK 55 HRC INTO KBAR N (PI) 7/66 W 140.0 (15.0) BUGG 68 CNTR 6/68 W 147.0 (15.0) BRICMAN 70 CNTR 0 TOTAL AND CH FX 6/70 W 147.0 (15.0) CODU 70 CNTR K-P, D TOTAL 10/70*
W (145.0) WOHL 66 MRC W A (80,0) (10,0) BURGUN 68 DPWA 0 K-P TO XIK W 60.0 (25.0) GALTIERI 70 DPWA 0 K-P TO SIGMA PI I 40,0 (15.0) RERTHONI 70 DPWA 0 K-P TO SIGMA PI SFF THF WOTES ACCOMPANYING MASSES 040 TEO	7/66 10/69 7/70 10/70*	W (40.0) LU 70 CNTR 0 GAMMA P TO K+ Y+ 1/71* 25 Y+0(2100) PARTIAL DECAY MODES DECAY MASSES
41 Y*0(2100) PARTIAL DECAY MODES		PL Y*0(2100) INTO KBAR N 407+ 939 P2 Y*0(2100) INTO KBAR N PI 497+ 939+ 139 P3 Y*0(2100) INTO LAMBDA FTA 1115+ 548
DECAY MASSES P1 Y*0(2100) 1HTO KBAR 4 474 939 P2 Y*0(2100) INTO SIGMA PI 1107+ 139 P2 Y*0(2100) INTO SIGMA PI 1371+ 647		P3 190(2100) INTO LAMBDA OMEGA IL15+ 783 25 Y+0(2100) BRANCHING RATIOS AS SEEN IN PEAKS
41 Y*0(2100) BRANCHING RATIOS		R1 Y*0(2100) INTO (KBAR N)/TOTAL X1 R1 THESE VALUES OF ELASTICITIES ASSUME J=7/2
RELOW, XI = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE FXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW.		RI 0.305 BOUGD BRICMAN TO CNIR O TOTAL AND CH EX 6/70 RI 0.24 CODL TO CNIR O TOTAL AND CH EX 6/70 RI 0.4 CODL TO CNIR K-P, D TOTAL 10/70*
RI Y≜O(2100) INTO (KRAR N)/TOTAL . X1 RI (0.25) WOHL 66 HBC DALM 68 CNTR K-P ELA+POL+SIGT	7/66 7/70	R2 Y*0(2100) INTO KBAR N PI R2 SEEN ROCK 65 HRC
RL D DAUM 68 ASSUMFS (J+1/2)*X VALUE SEEN IN TOTAL CROSS SECTION.		R3 Y*0(2100) FROM KBAR NINTO LAMBOA ETA SQRT(X1*X3) R3 (0.09) OR LESS FLATTE 2 67 HBC O K-P TO LAM ETA 6/68
R2 +00.100 FRUM KDAR M THTO STORM FI R2 +00.06 (0.03) GALTIERI 70 DPWA 0 K-P TO SIGMA PI R2 +0.16 (0.02) BERTHONI 70 DPWA 0 K-P TO SIGMA PI	7/70 10/70*	R4 Y+0(2100) INTO (LAMBDA OMEGA)/TOTAL X4 R4
N3 Y+0(2100) FROM KBAR N TO XI K SQRT(X1*X3) R3 (0,05) TRIPP 67 RVUE 0 K-P TO XI K R3 (0,05) RUPCUM 68 DPUA 0 K-P TO XI K	8/67	****** ********* ********* ******** ****
R3 A (0.003) WILLER 69 DPWA O SEE THE NOTES ACCOMPANYING MASSES QUOTED	7/70	BOCK 65 PL 17 166 +CODPER, FRFNCH, KINSON, + (CERN, SACLAY)
****** ********************************		FLATTE L 67 PR 153 141 S M FLATTE, C G WOHL (LRL) BUGG 68 PR 158 1466 GLUNDREKKNIGHT, + (RTHED, BRNGHM, CVNDSH) L GEORGAULA (CEDNLCAEN, SACLAY)
REFERENCES Y*0(2100) WOHL 66 PRL 17 107 C G WOHL, F T SOLMITZ, M L STEVENSON (LRL)IJ TRIPP 67 NP 33 10 + LEITM, + (LRL,SLAC,CERN,HEIDEL,SACLAY)	р	BRICHARN TO PL 318 152 CONL TO PR ID 187 LU TO PR DD 187 CONL TO PR
DAUM 68 NP 87 19 +ERVE, LAGNAUX, SENS, STEUER, UDO (CERNJJP DAUM 68 CONFIRMS THE SPIN-PARITY ASSIGNMENT, BAUD 88 647 +MEVER, PAULI, + (SACLAY, COLFRANCE, RTHED)		COOL 66 PRL 16 1228 +GIACOMELLI.KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) I
WULLER 64 THESISJUCH 19372 RÅ MULLER ILRI Galtier 70 Dike Cink fisa a Rarbard-Galtieri (LRI)ij Berthoni 70 NG R24 417 +VRANA, BUTTERMORTH, + (CDEF, RHEL, SACLAVIJJ	p p	COOL 66 IS SUPERSEDED BY COOL 70.
•***** ********* ******** ******* ******		42 Y*012350, JP=) [=0
Λ(2110) 35 Y+01 2110, JP = 5 /2 + 1 [= 0 F'0 5		$\frac{\Lambda(2350)}{\text{daum 66 favors } J^{p=7/2-} \text{ or } 9/2+. \text{ Brigman 70 favors } 9/2+.}$
	-	
M (2110.) (10.) BERTHON1 70 DPWA - K- P TO SIG PI	1/71*	42 ¥*0(2350) MASS (MEV)
W (195.) (30.) RERTHONI 70 DPWA - K- P TO SIG PI	1/71*	N 2359,0 (6,0) RRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 N 2344.0 (15.0) CDDL 70 CNTR V=7,0 DTAL 10/70* N (2360.0) (20.0) U) 70 CNTR V=7,0 DTAL 10/70* N (2360.0) (20.0) U) 70 CNTR 0 GAMMA P T0 K+ Y* 1/71*
DECAY WASSES P1 Y+0(2110) INTO KBAR N 497+ 939 P2 Y+0(2110) INTO SIGMA PI 1197+ 139		W 140.0 (20.0) BUGG 68 CNTR K-P, 0 OTAL 6/68 W 324.0 0 BRIGMAN 70 CNTR 6 6 CNTR 10/70 10
35 Y*0(2110) BRANCHING RATIOS		W (55.0) 10 10 CHR 0 GRAM F 10 KC 1 201
RFLOW, XI = (PARTIAL-WIDTH LIVTOTAL WIDTH, ETC. A SIGN, WHERE FXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE γ MINI-REVIEN, XZ γ 90(2110) FROM KBAR N TO SIGMA PI SQRTX14X2) RZ (+.17) (-03) DERTHONI TO DPMA - K- P TO SIG-PI	1/71*	DECAY MASSES PL Y+0(2350) INTO KOAR N 497+ 939 42 Yan(2350) RBANCHING RATIOS
****** ******* ******** ***************		RI Y+0(2350) ING KRAR NI/TOTAL XI
RFFERENCES Y*0(2110) BERTHON1 70 NP B24 417 +VRANA,BUTTERWORTH.+ (CDEF,RHEL,SACLAY)IJ	P	J 15 NOT ROUMA The FOLLOWING IS CONTACAT K-P, 0 TOTAL 6/68 RI (0.57) BIGG 68 CONTR K-P, 0 TOTAL 6/68 RI 1.1 0.25 RRICMAN 70 CNTR K-P, 0 TOTAL 6/70 RI 1.1 0.25 RRICMAN 70 CNTR K-P, 0 TOTAL 10/70*
**************************************		****** ******** ******** ******** ******
M > 2100 MEV - PRODUCTION AND $\sigma_{ m TOTAL}$ experimen	TS	REFERENCES Y*0(2350) RUGG 68 PR 168 1466 +GILMORE,KNIGHT, + (RTHFD,BRMGHM,CVNDSH) 1
BUMPS		DAUM 47 NP B7 10 REIGAN 70 PL 316 152 COLL 70 PL 10 157 COLL 70 PL 10 187 COLL 70 PR 10 187 COLL 70 PR 10 187 COLL 70 PR 10 187 COLL 70 PR 10 1846 COLEMBER (MUGHES HINENART, MORIN, (VALE)
•••••••••••••••••••••••••••••••••••••••		PAPERS NOT REFERRED IN DATA CARDS CODL 66 PRL 16 1228 + GIACOMELLIXYCIA,LEDNTIG,LI,LUNDBY,+ (BNL) I CODL 66 IS SUPERSEDED BY CODL 70.
		I

S134 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

For notation, see illustrated key at beginning of data card listings.

32 Y*1(1620, JP=1/2-) I=1 S'11 Σ(1620) THE K-MATRIX ANALYSIS OF KIM 71 SUGGESTS THIS STATE. THE FLASTICITY IS REALLY SMALL. 32 Y*1(1620) MASS (MEV) KIM 71 DPWA K-MATRIX ANAL. 3/714 (1620.) 32 Y*1(1620) WIDTH (MEV) ----------KIM 71 DPWA K-MATRIX ANAL. 3/71 (40.) DECAY MASSES 497+ 939 1197+ 139 1115+ 134 Y*1(1620) INTO KBAR N Y*1(1620) INTO SIGMA PI Y*1(1620) INTO LAMBDA PI 32 Y*1(1620) BRANCHING RATIOS BELOW, XI = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. Y*1(1620) INTO KBAR N (0+05) XI 71 DPWA K-MATRIX ANAL. R | R | KI M 3/714 Y*1(1620) FROM KBAR N TO SIGMA PI (0+08) KIM R2 R2 SQRT(X1*X2) 71 OPWA K-MATRIX ANAL. 3/714 Y*1(1620) FROM KBAR N TO LAMBDA PI (0.15) KIM SORT(X1*X3) 71 DPWA K-MATRIX ANAL. R 3 R 3 3/714 REFERENCES -- ¥*1(1620) KIM 71 HARVARD PREPRINT J.K.KIM SEE ALSO DUKE 161 J.K.KIM (HARV) IJP (HARV)IJP P'11 79 Y*1(1620, JP=1/2+) 1=1 $\Sigma(1620)$ SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. THE PARTIAL-WAVE ANALYSIS OF K- N TO SIGMA PI BY ARMENTERDS TO SUGGESTS SUCH A RESONANCE. KIM 71 FINDS A SIGMAL IN BOTH KBAR-N AND SIGMA PI. 79 Y±1(1520) MASS (MEV) -------- 1600. 1500. ARMENTER() 70 HOBC O- K-N TO SIGMA PI KIM 71 DPWA K-MATRIX ANAL. 6/70 3/71* 79 Y*1(1620) WIDTH (MEV) ------(50.0) (50.) ARMENTERN 70 HDBC 0- K-N TO SIGMA PI KIM 71 DPWA K-MATRIX ANAL. 6/70 3/71* ----- 79 Y#1(1620) PARTIAL DECAY MODES ------DECAY MASSES 497+ 939 1197+ 139 Y*1(1620) INTO KBAR N Y*1(1620) INTO SIGMA PI P 1 P 2 79 Y#1(1620) BRANCHING RATIOS RFLOW X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW.
 Y*1(1620)
 FRUM
 KRAR
 N
 O
 SIGMA
 PI
 SORT(X1*X2)

 (+0.2)
 ARMENTERO
 70
 HDBC
 O-K-N
 TO
 SIGMA
 PI

 (0.24)
 KIM
 71
 DPMA
 K-MATRIX
 ANAL.
 R1 R1 R1 6/70 R2 R2 Y*1(1620) INTO KBAR N (0.14) TE OPWA K-MATRIX ANAL. KIM 3/71 ****** REFERENCES -- Y*1(1620) ARMENTER 70 DUKE 123 ARMENTEROS, BAILLON, + KIM 71 HARVARD PREPRINT J.K.KIM SEE ALSO DUKE 161 J.K.KIM (CERN, HE IDEL)[JP (HARV) [JP (HARV)]JP

Note on *\Sigma***(1620**)

This state was first suggested by the BNL-CCNY collaboration (CRENNELL 68) who presented evidence for it in the reaction $K^-n \rightarrow \Sigma(1620)^{\pm}\pi^{\mp}\pi^{-}$ with $\Sigma(1620)^{\pm}$ decaying into $\Lambda\pi^{\pm}$. Since then there have been conflicting reports about this state. A good review of the production experiments has been recently given by MILLER 70. We summarize here the situation.

<u>Formation experiments</u>. The CHS energy independent (see note on Y^{*} 's) partial-wave analysis (ARMENTEROS 70) shows evidence for a P₁₁ state at 1620 MeV in the $\Sigma\pi$ channel. They had previously

reported evidence for this state in the $\Lambda\pi$ channel (ARMENTEROS 69), which they now disclaim. This is because of the fact that new data have been added at the low-energy end of their previous analysis (i.e., around the 1600-MeV region) and now the preferred solution shows structure at a higher mass, in the $\Lambda\pi$ channel.

Production experiments. Here the evidence is only in the $\Lambda\pi$ channel. The BNL-CCNY collaboration, with increased data, CRENNELL 69, still claim the effect in the $\Lambda \pi$ channel (no evidence seen in $\overline{K}N$ or $\overline{KN_{\pi}}$). SABRE 70 studied the same reaction at 3.0 GeV/c with comparable statistics and do not see any evidence for it in the $\Lambda \pi$ channel; on the contrary, they believe it to be a spurious peak resulting from misidentified Σ^0 from the production of $\Sigma(1670)$ decaying into $\Sigma^0 \pi^+$. CRENNELL 69 give counter arguments to show that this is not the case in their data and the controversy goes on. AMMANN 70 studied the same reaction at 4.5 GeV/c and report a state at 1640 MeV, again decaying only into $\Lambda\pi$ (no evidence seen in $\Sigma\pi$ or $\overline{K}N$ channels). The closeness of this mass to 1670 MeV is suggestive that this effect may be related to what goes on in that region (see discussion below).

In conclusion, for $\Sigma(1620)$ we have to wait for more data and for a complete understanding of the entire mass region 1600 to 1700 MeV. The hope is that the determination of quantum numbers for each of these effects for each decay mode may eventually clarify the situation.

Σ(1620)

78 Y*1(1620, JP=) T=1 PROD.EXP. SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.

BUMPS SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. THIS RESONANCE NEEDS COMFIRMATION. THE PRSULTS OF COLLABORATION AT 3.0 GEVC (SARBE TOI. HOWEVER IN AN EXPERIMENT AT 4.5 GEVC. A AMAAN TO SEE A PEAK AT 1642 WE WHICH ON THE BASIS OF BRANCHING RATIOS THEY OD NOT ASSOCIATE WITH THE Y*111670). SEE MILLER TO FOR A REVIEW OF THESE CONFLICTS.

THERE WAS AN INDICATION OF A Y*11610) IN AN EARLY PHASE-SHIFT ANALYSIS OF X-P TO LAMBOA PI. HOWEYER WORE OFTAILED ANALYSIS OF MORE EXTENSIVE DATA BY THE SAME (CERN, HEIDEREGG, SACLAY) GROUP FAILED TO CONFIRM THIS RESULT. HOWEYER THEY NOW SEE IT IN THE SIGMA PI CHANNEL (SEE PREVIOUS ENTRY). (DLO LAMBDA PI ANALYSIS LISTED AS ARKENTERNS 64, NEW ANALYSIS AS ARMENTERNS TO.)

----- 78 Y*1(1620) MASS (MEV) ------

1	N	(1616.	0) (8.0) 		68 DBC	+- K-D 3.9 REV/C	11/68
	N	20 1419 4		L 00 KKC 1	DI UNEVECI	40 400	A KO LONG A PROTON	9769
		20 1010.0	0 3.0		COENNELL	60 DBC	A KIN TO LAM 3 DI	0/40
		1019.1	0 0.0		CKI WHELL	70 000		6170
		1642.0	0 12.0		4 11 14 19 19	10 040	K=P 4.5 GPV/C	0770
	AVG	1619.	4 3.8	• A V ER A C	SE LERROR IN	CLUDES	SCALE FACTOR OF 1.4)	
			- 78 Y*	1(1620) WI	OTH (MEV)			
	N	166.	0) (16.0)	CRENNELL	68 DBC	+- SEE NOTE N ABOVE	11/68
		20 30.	0 10.0		BLUMENFEL	69 HBC	+	9/69
		72.1	0 22.0	15.0	CRENNELL	69 DBC	+	9/69
		55.1	0 24.0		AMMANN	70 080	K-P 4.5 GEV/C	6/70
	AVG	41.	3 12.2	AVERA	SE LERROR IM	CLUDES :	SCALE FACTOR OF 1.51	
			SEE THE NO	TES ACCOMP	ANYING THE M	ASSES O	OTED	
			- 78 Y*	1(1620) PA	RTIAL DECAY	MODES		
							DECAY MASSES	
1		Y*1(1)	6201 INTO	KBAR N			497+ 939	
2		Y*1(1)	620) [NTO	LAMBDA PI			1115+ 139	
3		Y*1(1)	620) INTO	Y*1(1385)	PI		1395+ 139	
4		Y*1(1	620) INTO	LAMBOA PI I	21		1115+ 139+ 139	
5		Y*1(1)	6201 INTO	SIGMA PI			1197+ 139	
6		Y*1(1	6201 INTO	Y*0(1405) 1	21		1405+ 139	

For notation, see illustrated key at beginning of data card listings.

78 Y*1(16	201 BRANCHING RATIOS	
81 Y#1(1620) INTO (LAMBOA	PT PTI/(LAMBDA PT)	(P4)/(P3)
R1 14 (2.5) APPROX	BLUMENFEL 69	HBC +
82 Y#1(1620) INTO (KBAR N	/(LAMBOA PI)	(P1)/(P2)
R2 (0.0) (0.1)	CRENNELL 68	DBC +
R2 0.4 0.4	4MM4NN 70	DRC K-P 4.5 GEV/C 6/7
R3 Y#1016201 INTO LAMBDA P	r t	(P2)
R3 LARGE	CRENNELL 68	DBC +- 11/6
84 Y#1(1520) [NTO (Y*1(13)	35) PI)/(LAM8DA PI)	(P3)/(P2)
84 (0.2) (0.1)	CRENNELL 68	DBC +- 11/6
R4 (0.3)UR LESS CL=.	95 4MHANN 70	DHC K-P 4.5 GEV/C 6/7
P5 Y*1(1620) ENTO (SEC	MA PI)/(LAMBOA PI)	(P5)/(P2)
R5 (1.1)(95 PC UPPER	LIMIT) AMMANN 70	DBC K-P 4.5 GEV/C 6/7
P5 Y*1(1620) [NTO (Y*0	(1405) PEI/(LAMBDA PE	1 (P6)/(P2)
86 0.7 0.4	AMMANN 70	DBC K-P 4.5 GEV/C 6/7
***** ******** ********	******* ********	***** ********* *******
	REFERENCES Y*1(162	01
CRENNELL 58 PRI 21 648	+DELANEY, ELAMINIO, K	ARSHON. + (BNL.CONY) I
BLUMENEE 69 PL 298 58	BLUMENFELD, KALBELEIS	CH (BNL) (
CREMNELL 69 LUND PAPER 183	+KARSHON, LAI, ONEIL,	SCARR, + (BNL,CCNY) I
-~ CRENNELL 49 RESULTS	ARE QUOTED IN LEVI SE	TTL 69.
AMMANN 70 PRL 24 327	+ GARFINKEL, CARMONY,	GUTAY++ (PUROUE, IND)
	PAPERS NOT REFERRED T	IN DATA CARDS
ARMENTER 68 NP R8 183	ARMENTEROS, BAILLON +	(CERN+HEID+SALAY)
LEVISETT 69 LUND CONF	R LEVI SETTI (RAPP	ORTEUR) EFINS
TRIPP 59 UCPL 19361	R D TRIPP	(LRL)
SABRE 70 NP 815 201	SABRE COLLAB. USAC	L,AMST,BGNA,REHO,EPOLI
ARMENTER 70 DUKE 123	ARMENTERDS, BAILLON +	(CERN+HE [D+SALAY)
HILLER 70 DUKE 229	D H MILLER (REVIEW	TALK) (PURDUE)
****** ******** ******	******* ********	***** ******** ******

END PRUDUCTION EXPERIMENTS

Note on $\Sigma(1670)$

Formation experiments show the presence of only one I = 1 state in this energy region with major decay modes into $\overline{K}N$ (9%), $\Lambda\pi$ (10%), $\Sigma\pi$ (40%) and a very small branching fraction into $\Sigma\pi\pi$. Its quantum numbers are $J^{P}=3/2^{-}$.

<u>Production experiments</u> are more confused. When determined, the most likely quantum numbers are also $3/2^{-1}$ [for $\Sigma\pi$ and $\Lambda(1405)\pi$]. The measured branching ratio $R = \Sigma\pi/\Sigma\pi\pi$ changes with the momentum transfer to the proton. This was first observed by EBERHARD 69 who suggested the existence of $2 Y_{1}^{*}$ with the same mass and quantum numbers; one object with a large $\Sigma\pi\pi$ [mainly $\Lambda(1405)\pi$] decay mode produced peripherally, and another one with a large $\Sigma\pi$ decay mode produced at larger angles. This observation has now been confirmed by AGUILAR-BENITEZ 70.

Two resonances of the same spin and parity have been hypothesized by EBERHARD 69 as the origin of much of the complexity observed in the 1600 to 1700 MeV region in production experiments. See also note on $\Sigma(1620)$.

Σ(1670) SEE THE SEE NOTE WELL EST FORMATI PRAMATI RAGE IN	1670, JP=3/2-1 I=1 $D_1'3$ MINI-REVUE AT THE START OF THE Y* LISTINGS. ABOVE TABLISHED RESONANCE. IT HAS BEEN SEEN IN BOTH N AND PRODUCTION EXPERIMENTS. HOWEVER THE WE AND IS CONCIES.
SEE LISTING OF	PRODUCTION EXPERIMENTS BELOW
AS FOR THE QUANTUM N FORMATION EXP.1 AS WELL A	NUMBERS+ THE ANALYSES OF LAMBDA PI CHANNEL (IN AS THE SIGMA PI CHANNEL AGREE ON JP≖3/2-+
44 Y*1(1	16701 MASS (MEV)
M 1660.0	BERLEY 64 HAC O K-P TO LAM PLO 7/66
M 1668. (5.) M (1661.0) (2.0)	ARMENTER 68 HBC O K-P ELAS.+CH.EX 11/68 Armentez 68 HBC O K-P to sigma pi 11/68
M 1680. M 1663.0 (2.0)	ARMENTE4 69 DBC K-N TO SIG- PIO 12768 ARMENT-5 69 HBC O K-P TO SIGMPT ED 9769
M 1672.0 M 1660.	BERLEY 69 HBC K-P TO SIG PI 5/70 ARMENTER 70 HBC OK-P TO LAM.PI EI 5/70
M 1662.0 (5.0) M 1665. (10.)	GALTIERI 70 HBC 0 SIG PI,EDPWA 7770 GALTIERT 70 HBC 0 LAM. PI, EDPWA 7770
м 1670.	KIM 71 OPWA K-MATRIX ANAL. 3/71
44 Y*1(1	670) WINTH (MEV)
W 60.0 W 56. (18.)	BERLEY 64 HBC 0 7766 ARMENTER 68 HBC 0 K-P ELAS.+CH.EX 11/68
W (44.0) (4.0) W 47.0	ARMENTEZ 68 HBC O K-P TO SIGMA PI 11/68 ARMENTE4 69 DBC K-N TO SIG- PIO 12/68
H 49.0 (4.0) H 34.0	ARMENT-5 69 HBC O K-P TO SIGMPT ED 9769 BERLEY 69 HBC 5/70
W 48.0 (5.0)	GALTIERI 70 HBC 0 SIG PLEOPWA 7/70
W 40.	KIM 71 DPWA K-MATRIX ANAL. 3/71
44 Y*1(1	670) PARTIAL DECAY MODES
01 X+1/1470) INTO KDA	DECAY MASSES
P2 Y*1(1670) INTO LAM P3 Y*1(1670) INTO SIG	IBDA PI 1115+ 139
P4 Y*1(1670) INTO LAM P5 Y*1(1670) INTO LAM	IRDA PI PI 1115+ 139+ 139
P6 Y*1(1670) INTO Y*1 P7 Y*1(1670) INTO Y*0	(1385) PI 1385+ 139
44 Y*1(1	6701 BRANCHING RATIOS
BELOW X1 = (PARTIAL-WI	OTH LIFTOTAL WIDTH, ETC. A SIGN WHERE
EXPLICIT, IS IN THE CO	NVENTION DISCUSSED IN THE Y* MINI-REVIEW.
R1 Y*1(1670) INTO (KB R1 (0.09) (0.02)	AR N)/TOTAL X1 ARMENTER 68 HBC 9/69
R1 0.08 (0.02) R1 0.07	ARMENT-5 69 HBC O ELAS. +CH.EX. ED 9/69 KIM 71 DPWA K-MATRIX ANAL. 3/71
R2 Y*1(1670) INTO (LA	MBDA PI PI)/TUTAL (P4)/TOTAL
R2 (0.11) OR [ESS ARMENTES OF HBC K-P (PI=.09) 9769
R3 A 10.14) OR LES	S ARMENTES 68 HBC K-P AND D-P1=.09 11/68
R5 # KM110 (ME1 FOR (3102) R4 ¥*1(1670) INTO (Y*	
R4 (0.06) OR LES	S ARMENTE3 68 HBC K-P AND D-P1=.09 11/58
R5 Y*1(1670) FROM KBAR N R5 +0.1	TO LAMBOA PT SQRT(X1*X2) ARMENTER 70HBC K-P TO LAMB PT 5/70
R5 +0.09 (0.02) R5 0.08	GALTIERI 70 HBC O LAM. PI, EDPWA 7/70 KIM 71 DPWA K-MATRIX ANAL. 3/71
R6 Y(1(1670) FROM KBAR N	TO SIGMA PI SORT(X1*X3)
R6 (+0.21) (0.01) R6 +0.19	ARMENTE2 68 HBC 0 DLD DATA 11/68 ARMENTE4 69 DBC 9/69
R6 +0.20 (0.01) R6 +0.18	ARMENT-5 69 HBC O NEW DATA 9769 BERLEY 69 HBC 5770
R6 +0.18 (0.06) R6 0.15	GALTIERI 70 HBC O SIG PI,EDPWA 7770 KIM 71 DPWA K-MATRIX ANAL. 3771
R7 Y*1(1670) INTO (Y*1(13)	85)PI1*(KBAR N)/TOTAL**2 (P6*P1)/TOTAL**2
R/ (0.031) (0.006)	
R8 (0.03) DR LESS	BERLEY 69 HBC 0 K-P .682 BEV/C 5/70
****** ********* ********	****** ********* ******** ******** *****
	REFERENCES Y*1(1670)
BERLEY 64 DUBNA CONF I 565	+CONNOLLY, HART, RAHM, STONEHILL, + (BNLIIJP
ARMENTER 68 NP 88 195 Armentel 68 NP 88 183	ARMENTEROS+BATLLON + (CERN+HEID+SACLAY)IJP ARMENTEROS+BATLLON + (CERN+HEID+SACLAY)IJP
ARMENTE2 68 NP 88 223 ARMENTE3 68 PL 288 521	ARMENTEROS+BAILLON + (CERN+HEIDE+SACLAY)IJP ARMENTEROS,BAILLON + (CERN+HEID+SACLAY)I
SIMS 68 PRL 21 1413	SIMS+ALBRIGHT+BARTLEY+MEER+ (FLO+TAFTS+BRA)
ARMENTE4 69 NP BLO 459 ARMENT-5 69 NP BL4 91	ARMENTEROS, BAILLON, MINTEN + (CERN+SACLAY) J ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY) IJP
ADMENTED 70 OUKS 133	ADMENTEROS DATION : (CEDN HEID)
GALTIERT 70 DUKE 123	ARAENIERDS, BAILEDN, + (LERN, HEID) A. BARBARO GALTIERI (LRL)IJP
SEE ALSO OUKE 161	J. K. KIM (HARV) IJP
	PAPERS NOT REFERRED TO IN DATA CARDS
BASTIENI 63 PRL 10 188 REPLACED BY BASTIEN	P L BASTIEN, J P BERGE (LRL) IJ 2, BUT SIMILAR AND MORE READILY AVAILABLE.
BASTIEN2 63 UCRL-10779 THESIS T-ZADEH 63 PRL 11 470	P L BASTIEN (LRL) IJ TAHER-ZADEH,PROWSE,SCHLEIN,SLATFR,+ (UCLA) JP
SEE NOTE FOLLOWING S SCHLEIN 66 UCLA-1016	SCHLEIN 66. P.E. SCHLEIN, T.G. TRIPPE (UCLA) JP
REANALYSES DATA OF 1	INHER-ZADEH 63 . BASTIEN 63 AND ALL PUBLISHED

 REANALYSES DATA OF TAHFR-ZADEH 63.
 BASTIEN 63 AND ALL PUBLISHED LAMBOA PI CROSS SECTION DATA IN THE LIGHT OF THE NOW KNOWN Y+1(1765).
 REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH ON THE PREFERRED JA ASSIGNMENT I FROM 3/2×1 TO 3/2-1.
 SMART 66 PRL 17 556 W N SMART, A KERNAN, G E KALMUS, R P ELY (LRLIJJP ARMENTER 67 NP B3 592 AR NEWTROS, FEROL-LUZZI + (CERN.HED.SACLAY)

S138 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

E(1670) PRODUCTION EXPERIMENTS	54 Y+1(1690, JP=) [=1
SEE NOTE PRECEDING V#1(1670)	BUMPS
BUMPS BUMPS	SEE NUTE PRECEDING VALUATOL LISTINGS, SEEN IN PRO. EXPERIMENTS ONLY, MAIN DECAY MODE IS LAMBOA PI.
44 Y#1(1670) MASS (NEV) RODUCTION N (1685.0) ALEXANDER 62 HBC O P[-P 2-2.2 BEV/C N (1660.0) 10.0 ALVAREZ G3 HBC O-P[-P 2-2.2 BEV/C N (1665.0) 10.0 ALVAREZ G3 HBC K-FP.15 BEV/C N (1665.0) 15.0) BUGG G6 CMTR K-P.0 TOTAL C.7 N P STGARMES G9 HBC G8 HBC K-FP.6-G-5. GEV/C 7/63 N P STGARMES G9 EDR NEW ANALYSIS INF DATAL C3 TIMES MIGE DIFK-P 4 GEV 5/70 10/69 LATIO A.0 ASUILAR TO HBC SIG.2PI K-P 4 GEV 5/70 N APERGE FARMING ISS (SCAFF FACTOR = 1.0) ANDERGE FARMING ISS (SCAFF FACTOR = 1.0) SIG.2PI K-P 4 GEV 5/70	58 Yel(1600) MASS (MEV) M 30(1715.0) (12.0) COLLEY 67 HRC + K-P 6 67 FVC R/A7 M 90(1715.0) (12.0) PRIMER 68 HBC + K-P 6 6.5-5 GEV/C R/A7 M N (1707.0) (50.0) PRIMER 68 HBC + K-P 4 .5-5 GEV/C R/A7 M N (1707.0) (50.0) PRIMER 68 HBC + K-P 5 .5 GEV/C R/A7 M 4(1602.0) AUT A9 HBC + K-P 5.5 GEV/C 9/A9 M 9 SEE Yell1670) LISTING-ACULLAR 70 WITH THREF FIRE ATA OF YOLONO 9/A9 M P SEE Yell1670) LISTING-ACULLAR 70 WITH THREF FIRE ATA OF YOLONO 9/A9 M N THIS ANALYSIS, WHICH IS OIFFICULT AND REQUIRES SEVERAL ASSUMPTIONS ANOS SHORS NO VANATIONO Yell164003 SIGNAL, SUGESTS JP=5/2/2-5. SUCH A
44 y=1(1670) WIDTH (MEV) PRODUCTION w 40.0 10.0 ALEXANDER 52 MBC 0- w 40.0 10.0 ALVAREZ 63 MBC - w 40.0 15.0 BUGG A8 CMFR + w 70 (A0.1 (20.1) BUGG A8 CMFR + 4.0-4.6-5. GEV/C 7/68 w SEFTHE NUTES ACCOMPANYING THE MASSES COUTFO. 110.0 12.0 AGUILAR 70 HBC SIG.PI K-P 4 GEV 5/70 w 113.0 12.0 AGUILAR 70 HBC SIG.PI K-P 4 GEV 5/70 w 30.0 AGUILAR 70 HBC SIG.2FI K-P 4 GEV 5/70 w AVERAGE "FANINGLESS ISCALE FACTOR = 3.4)	M Y* WOULD LEAD ALL PREVIOUSLY KNOWN Y* TRAJECTIMIES.
44 Y#1(1670) BRANCHING RATIOS PROD. EXP. R1 Y#1(1670) INTO (KGAR N)/(SIGMA PI) PROD. EXP.(P1)/(P3) R1 0 (0.19) OR LESS ALVAREZ 63 HBC + K-P AT 1.15 BEV/C R1 (0.614) OR LESS ALVAREZ 63 HBC + K-P AT 1.15 BEV/C R1 (0.614) OR LESS LODONN 64 HBC + K-P AT 2.25 REV/C R1 (0.025) BUGG 6A CNTR 0 ASSUMING J=3/2 R1 0 (0.24) OR LESS R1 0 (0.26) BLESS R1 0 (0.24) OR LESS	DECAY MASSES DECAY MASSES P1 Y*1(16:00) INTO KBAR N 4074:930 P2 Y*1(16:00) INTO SICMA PI 11165:139 P3 Y*1(16:00) INTO SICMA PI 1197:139 P4 Y*1(16:00) INTO SICMA PI 1395:139 P5 Y*1(16:00) INTO LAMBOA PI PI (INCLUDING P4) 1115:139:139
R1 (0.2) CR LESS AGUILAR (0) HSC F/F R2 Y*1(1670) INTO (LAMB.P1)/(SIG PI) PROD. EXP. (P2)/(P3) R2 130 I.201 ALVAREZ AS HBC +K-P AT 1.15 BEV/C P2 11.21 SMITM AS HBC +K-P AT 1.15 BEV/C R2 0.15 0.07 HUWE 64 HBC + R2 0.15 0.07 HUWE 64 HBC + R2 0.6 0.8 ICNON 66 HBC + R-P AT 2.25 HEV/C 10/69 R2 30 0.11 0.06 BUTTON-5 K6 HBC + K-P AT 1.7 GFV/C 10/69 R2 P3 0.11 0.06 BUTTON-5 K6 HBC + <	1 1 0.4 0.25 COLLEY 67 HBC 6/30 EVENTS 8/67 R1 16 0.4 0.25 COLLEY 67 HBC 6/30 EVENTS 8/67 R1 16 0.4 MOTT 59 HBC 9/69 9/69 R2 Y*1(1600) INTO (SIGMA PT)/(LAMBDA D11 (P3)/(P2) 8/67 R2 0.3 0.3 COLLEY 67 HBC 4/30 EVENTS 8/67 R2 10.4 JOR FE 67 HBC 4/30 EVENTS 8/67 R2 10.4 JOR FE 67 HBC 4/30 EVENTS 8/67 R2 10.4 JOR FE 67 HBC 4/30 EVENTS 8/67 R3 Y*1(1600) INTO (Y*1(1385) P1)/(LAMBDA P1) (P4)/(P2) 9/69 R3 0.5 JE S MOTT 69 HRC * 9
RZ P NEL NIFERPRATATION OF DATA (3 TIMES MORE DATA) - RZ 0.45 0.15 BARNES 69 HRC + K-P 3.9-5 GEV/C 10/69 RZ AVERAGE MEANINGLESS (SCALE FACTOR = 1.5)	R4 Y+1(1690) INTO (LAWBDA PI PI)/(LAWBDA PI) (P5)/(P2) R4 0.5 0.25 COLLEY 67 HBC + 15/30 FVENTS 8/67 R4 2.0 0.6 RLUMENFEL 69 HBC + 31/15 EVENTS 9/69 R4
R3 Yailibroi INTO (LAMB. PI PI//SIG PI) PROD. (P4//P3) R3 YO. (D. 5) AUXAREZ AS HACE R3 YO. (D. 5) AUXAREZ AS HACE R3 YO. (D. 5) R4 YO. (D. 5) R3 YO. (D. 5) R4 YO. (D. 5) R3 YO. (D. 5) R4 YO. (D. 1) R5 YO. (D. 1) R4 YO. (D. 1) R5 YO. (D. 1) R4 YO. (D. 1) R5 YO. (D. 1) R4 YO. (D. 1)	R4 AVG 0.72 0.53 AVERAGE [FRRR INCLUDES SCALE FACTIR IF 2.3] R5 V*1(1690) [NTO (V*1(1395) P])/(LAMBDA PI P1) (P4)/(P5) 8/67 R5 SMALL COLLEY 57 HBC - 1/6/7 R5 LARGE STMS 6/8 HBC - 1/6/8
R4 190 (0.56) ALVAKCZ 85 MBC + K+F AT 1.15 05+70 R5 Y#1(1670) [NTD (Y#0(1405) P1)/(SIG P1) PROD. (P7)/(P3)	REFERENCES Y*1(1690)
R 50 1. 1.6 LTNDDN 6.6 HRC + K-P AT 2.25 BFVC 7/68 R5 P I7 (0.53) (0.20) PRIMER 68 HBC + K-P AT 2.25 BFVC 7/68 R6 Y*11(570) INTO (SIGMA PI)/(SIGMA PI) [P3]/(P5) [P3]/(P5) [P3]/(P5) R6 0.30 C:55 L0NDN 66 H8C + K-P AT 3.5 GEV/C 11/67 R6 0.30 C:55 L0NDN 66 H8C K-P AT 2.25 GEV/C 7/68 R6 NETUFER 2.6 AND 0.24 ERFEMARD 69 HBC K-P AT 3.5 GEV/C 11/67	COLLEY 67 PL 246 490 (BARVGHA, GLASG, IMBCOL, MUNICH, OXFORD, RIMERON I DERRICK, 67 PRL 18 266 (FIELOS, LOKEN, AMMAR, (DARGONNE, NORTHWEST) I DERRICK 67 IS REPLACED BY MOIT 49. DELVER 64 PPL 20 610 (GLOBPARG, JAEGER, BARNES, + (SYRACUSE, BAL) I SIMS 68 PRL 21 1413 (ALBRIGHT, + (FLOR ST, TUFFS, BRANDEIS) I
A DEPENDING ON THE PRODUCTION ANGLE	BLUMENFE 69 PL 298 58 B J BLUMENFELD, G K KALHFLEISUM (SOUL) I MOTT 69 PR 177 1966 +AMMAR, DAVIS, KROPAC, +(NDRTHUEST, ARGONNE) I
R7 0.90 0.10 0.16 EBERHARD 65 + K-P 4T 2.45 BEV/C 7/66	PAPERS NOT REFERRED TO IN DATA CARDS AGUILLAR 70 PRI 25 58 AGUILAR-BENITEZ, BARNES, RASSANO+ (BNL+SYR)
RA (0.R) OR MORE EBERHARD 65 + K-P AT 2.45 BEV/C 7/66	****** ******** ***********************
R9 Y*1(1670) IN (LAMHDA PI PI)/(SIGMA PI PI) (P4)/(P5) R9 0.35 0.2 8IRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67	END Y*1(1670) PRODUCTION EXPERIMENTS
R10 Y+1(1670) INTO (LAMBDA PI)/(SIGMA PI PI) (P2)/(P5) R10 (.2) DR LFSS BIRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67 R11 Y+1(1670) INTO (LAMB PI)/(LAMB PI + SIG PI) (P2)/(P2+P3) Co 14 DR LFSS AGUITAR 7D HBC 5/70	$\Sigma(1750) = 57 \text{ y*1(1750, JP=1/2-) 1=1} \qquad S_{11}''$
******	SEE THE WINI-REVIEW AT THE START OF THE VELISTINGS.
44 QUANTUM NUMBER DETERMINATION OL JP=3/2+ LEVEQUE 65 HRC [NTO Y*(1405)+PI 11/68 03 JP=3/2- EBERHARD 67 HRC + [NTO Y*(1405) PI 11/68 04 400 JP=3/2- RUTTON=5H 68 HRC +- [NTO SIGZERO+PI 11/68	SONANCE NEAR THIS ENERGY, INTERPPETATION OF THE SIGMA ETA THRESHOLD SHUP ON ITS ONN VERTS IS NOT CONCLUSIVE (CLINE 47) MORE DATA ARE NEEDED, BUT BY ANALORY WITH THE SIMILAR N ETA AND LAMBDA ETA THRESHOLD EFFECTS, WHICH ARE ALMOST CERTAINLY RE- SONANCES, IT SEEMS VERY LIKELY THAT THIS TOD IS A RESINANCE. SEE THE RAPORTEUR TALKS OF FERRO LUZI 64 AND MEYER 67 FOR OISCUSSIONS.
RFFERENCES Y*1(1670) PR:DOUC. EXPERIMENTS ALEXANDE 62 CERN GDNF 320 ALEXANDE, JACOBS, KALRFLEISCH, MILLER, + (IRL) I ALVAREZ, 63 PRL 10 194 + ALSTON, FFRO-LUZ/I, HUNE, + SAITHENS CONF 5 - 4LSTON, FFRO-LUZ/I, HUNE, + VAREZ, 63 PRL 10 194 + ALSTON, FFRO-LUZ/I, HUNE, + SAITHENS CONF 6 - 4LSTON, FFRO-LUZ/I, HUNE, + HUNE - 1021	IN THE ENERGY-INDEPENDENT PARTIAL WAVE AVALYSIS OF K- N TO LAMBDA PI, THE SIL AMPLITUDE APPEARS TO RESONATE (ARWENTERGS A0). IN 1968 IT APPEARED TO RESONATE NEAR LOSO MEV (ARWENTERGS A6). IN 1968 IT HEREIN AS A SEPARATE STATE. NOW IT HAS MOVED CLOSE ENOIGH TO THE OTHER EFFECTS TO BE TENTATIVELY LISTED WITH THEW, NOT THE SIZE OF THE CHANGE IN THE MASS SHOLD BE A HEALTHY WARNING THAT THE PARAMETERS GIVEN FOR RESONANCES IN LONGER PARTIAL WAVES FROM SUCH AVALYSES ARE SUBJECT TO LARGE CHANGE. (ARWENTERGS TO, FROM WHICH THE RESONANCE PARAMETERS ARE QUITED, IS A SLIGHT UPDATING OF ARENTEROS FO, J
BIRMINGHAM,GLASGON,I.C.Y OXFORD,RUTHEREORD LONDON 66 PR 143 D34 HADLSANTOS,YAMANOTO,GGLDBFRG,+ (BNL, SYCE) 13 BARNES OF BNL 1883 CHUNGAEISNER,FLANINGO (BNL, SYCE) BUGGS 69 PRL LAB 1466 +GLUNGAEISNER,FLANINGO (BNL, SYCE) BUTGS 69 PRL LAB 1466 +GLUNGE,KUIGHT,DAVIES (BIRLIN, CAMB,RUTHI) BUTGS 64 PRL 20 L123 JUTON SHAFER (UNIV, MASH,RL) JP PRIMER 68 PRL 20 A10 +GOLDBERG,JAEGER,BARNES,DORNAN * (SYR-BAL) AGUILAR 70 PRL 25 *A +RARVES, MASSANO, CHUNG, EISNER,* (BNL, SYR) EBERHARD 69 PRL 22 200 +FRIEDMAN, PRISSTEIN, ROSS (LRL)	THERE IS WEAKER EVIDENCE FOR THIS RESUNANCE IN AN ENERGY-DEPENDENT PARTIAL-WAVE ANALYSIS OF ELASTIC AND CHARGE-EXCHANGE SCATTERING (CON- FORTO 70). KIM 71 IN A YULTICHANNEL ANALYSIS FINDS A SURPRISINGLY LARGE ELASTICITY (8). AND SMALLER AVELTIONE IN THE LAMANDA PI CHANNEL. IN VIEW OF THESE DISCREPANCIES WE DO NOT GUOTE ANY VALUES FOR THE RRANCHING RATIOS. 77 Y#1(1750) MASS (MEV)
PAPERS NOT REFERRED TO IN DATA CARDS LEVEQUE 65 PL 18 69 + (SACLAY,EP,GLASSON,INPCIL,OXF,HTHED) JP LEVE A6 PRL 17 45 Y LEE, D REEDER, R VIEW, INFOL, SUP EAFRHARD 67 PR 163 1446 + PRIOSTEIN,SHIVELY,RRUSS,SANSON (LRL,ILL)IJP	N NEAR SIGNA ETA THRESHOLD CLINE 67 DRC - K-N TO SIGNA ETA 9/6 ADDIT 1750.0 М АВПИТ 1750.0 М АВПИТ 1750.0 М АВПИТ 1750.0 (1757.0) (10.0) КІМ 71 ОРИА СНАБТКА АЛАК. 3/7 М (1757.0)
****** ******** ********* ******** *****	I

S140 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS

46 Y*1(1915, JP=5/Z*) I=1 F'_{15} See the MINI-REVIEW AT THE START OF THE Y* LISTINGS. The matrix below is derived from the error matrix for the fitted partial decay mode The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_{i} , as follows: The <u>diagonal</u> elements are $P_{i}\pm\delta P_{i}$, where $\delta P_{i}=\sqrt{\langle OP_{i},OP_{i} \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients $(\delta P_{i}^{-1} P_{j}^{-1})/(\delta P_{i}^{-1} \delta P_{j})$. For the definitions of the individual P_{i} , see the listings above; only these P_{i} appearing in the matrix are assumed in the fit to be nonzero and normalized in the set of the se Σ(1915) THIS RESONANCE WAS FIRST SEEN IN THE TOTAL-CROSS-SEC-TION HEASUREMENTS OF COOL 66. IN THIS FNTRY, HOWEVEN, WE LIST ONLY THE RESULTS FARM PARTIAL-WAVE ANALYSES. SEE THE NEXT EXTY FOR THE DARAMETERS OF PEAKS SEEN AROUND 1900-1950 KEY IN CROSS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS, WE MAKE THIS SEPARATION REGAUSE ONLY THE PARTIAL-WAVE ANALYSES ISOLATE THE FIS WAVE (OF AT LEAST ATTEMPT TO -- THE SIGNAL IS WEAK). THIS MASS REGION AS COMPLICATED AND POPLY UNDERSTODD AND THE PEAK MAY CONTAIN MORE THAN JUST THE YEILINGS. SEE ALSO THE MOTE TO THE NEAT ENTR. are thus constrained to add to 1. P 1 424+-026 P 1 424+-026 P 2 -0.26 P 3 -0.26 P 4 P 5 P 6 P 5 -0.03 P 4 P 5 P 6 P 5 -0.03 P 5 -0.03 P 6 -.555 -.252 -.594 -.559 P 6 -.068 .149+-.042 ----- 46 Y*1(1915) MASS (MEV) ------1902.0 11.0 SMART 68 DPWA O- K-N TO LAMBDA P1 7/68 1903.0 10.0 COX 70 OPWA - K-N TO LAMBDA P1 7/68 1903.0 10.0 SMART 68 DPWA O- K-N TO LAMBDA P1 7/70 1900.0 15.0 SRETHON 70 DPWA O K-P TO LAMBDA P1 7/70 1903.0 13.0 SRETHON 70 OPWA O K-P TO SIGMA P1 0/70 1905.0 30.0 GALTIERI 70 OPWA O K-P TO LAMBDA P1 7/70 1895.0 10.0 LITCHFIEL 70 OPWA O K-P TO LAMBDA P1 7/70 1895.0 10.0 LITCHFIEL 70 OPWA O K-P TO LAMBDA P1 7/70 N FRROR STATIST. ONLY- NO ERROR DUE TO PARTICULAR P.H.ANAL. INCLUDED 1/71* ******** ******* REFERENCES -- Y*1(1765) GALTIFRI 63 PL 6 296 A BARBARO-GALTIERI,A HUSSAIN,RD TRIPP (LRL)IJ ARWENTER 65 PL 9 338 ARWENTEROS, + LCERN,HEIDELBREG,SACLAY)IJP BFL1 16 PRIL 10 PRIL NU PRIL BFL1 2 64 URL 10 URL)IJP ILE BFL2 2 64 URL 10 ILE I AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) ------ 46 Y*1(1915) W[DTH (MEV) ------- A (50.0) (20.0) AR MENTERI 67 DPWA 0 FLASTIC. CH EXCH 11/67 52.0 25.0 SMART 68 DPWA 0- K-N TO LAMBDA PI 7/68 60.0 20.0 BERTHON TO DPWA 0 K-P TO LAMBDA PI 7/68 75.0 20.0 BERTHONI TO DPWA 0 K-P TO LAMBDA PI 7/68 135.0 12.0 RECTMANI TO DPWA 0 K-P TO LAMBDA PI 7/70 135.0 12.0 RECTMANI TO DPWA 3 K-BT TO LAMBDA PI 6/70 70.0 27.0 COX TO DPWA 4 K-H TO LAMBDA PI 6/70 70.0 20.0 LITCH FILL TO DPWA 4 K-H TO LAMBDA PI 6/70 TO DPWA 10.0 K-H TO LAMBDA PI 6/70 70.0 20.0 LITCH FILL TO DPWA 4 K-H TO LAMBDA PI 6/70 TO DPWA 4 K-H TO LAMBDA PI 6/70 70.0 20.0 LITCH FILL TO DPWA 4 K-H TO LAMBDA PI 6/70 TO DPWA 4 K-H TO LAMBDA PI 6/70 70.0 20.0 LITCH FILL TO DPWA 4 K-H TO LAMBDA PI 6/70 LICK NE CALL PREVENTS FROM DETERMENTING UNAMB. HIS AMPLITUDE LI/67 AR MENTERDS, BAILLON, + (CERN, HEIDEL, SACLAYIJP AR MENTERDS, BAILLON, + (CERN, HEIDEL, SACLAYIJ +GILMORE, KNIGHI, DAVIES + (DIRMI, CAMS, NUTHI +GILMORE, KNIGHI, DAVIES + (DIRMI, CAMS, NUTHI H M SHART +GIACDWELLI, KVCIA, LEONTIC, LI, + (DRL)I +HARMSCH, LASINSKI, + (CHICAGO, HEIDEL)IJP +HARMSCH, LASINSKI, + (CHICAGO, HEIDEL)IJP JAK, KIM (HARV) [J] UNL[11] B1 PK 133 1240 UNALL UNITED AR "FKT-16 RN PK 81 B5 AP MENTEPOS. BUGG AR PK 168 AR SIMS AR B216 ARREMTEROS. SIMS 68 PRL 21 1413 SIMS. SMART 68 PRL 21 1413 SIMS. SHARAT 68 PRL 21 1413 SIMS. BRICWARI 70 PL 338 SII +FFRRA-UUZI GALTIEPI 70 DR ECONF 173 A GARABAD-GA AARBARD-GA COMUNT 01 VANSUNG DREPRINT A SARATOR SEE ALSO DUKE 161 S.K.K.KIM K.K.KIM AVERAGE MEANINGLESS (SCALE FACTOR = 1.9) ----- 46 Y*1(1915) PARTIAL DECAY MODES -----DECAY MASSES 497+ 939 1115+ 139 1197+ 139 Y*1(1915) INTO KBAR N Y*1(1915) INTO LAMBDA PI Y*1(1915) INTO SIGMA PI PAPERS NUT REFERRED TO IN DATA CARDS CONFORTO 64 NP B8 265 +HARMSEN, LASINSKI, + (CHICAGO, HE IDEL)[JP -- CONFORTO 64 IS SUPERSEDE BY CONFORTO 70. ----- 46 Y*1(1915) BRANCHING RATIOS ------BELOW, X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE Explicit, is in the convention discussed in the Y* Mini-Review. Y*1(1915) INTO (KGAR N)/TOTAL (0.12) (.01) (0.12) (.01) (0.12) (.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) CONFORTO 70 DPWA 0 ELASTIC, CH EXCH 6/70 R 1 R 1 R 1 R 1 P"11 67 Y*1(1980, JP=1/2+) I=1 ٨ Σ(1880) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. Vill (1915) FROM KBAR N INTO LAMBOA PI -0,09 CONTUNE TO UPMA 0 CLASSING F F/F -0,09 (0.02) SAMIT 68 DPMA 0 K-N TO LAMBOA PI 7/68 -0,19 (0.02) SCRT LIX 70 DPMA 0 K-N TO LAMBOA PI 7/70 -0,11 (0.02) COX 70 DPMA 0 K-N TO LAMBOA PI 6/70 -0,11 (0.02) COX 70 DPMA 0 K-N TO LAMBOA PI 6/70 -0,07 (0.015) LITCHFIEL 70 DPMA 0 K-N TO LAMBOA PI 6/70 SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAVE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORF EVIDENCE, WE DMIT THIS STATE FROM THE MAIN BARYON TABLE. R 2 R 2 R 2 R 2 R 2 R 2 R 2 R 2 67 Y+1(1880) 4ASS (4EV) ----------SMART 6R DPWA O- K-N TD LAM PI 7/6R Ratley 69 dPWA 0 ELASTIC, CH EXCH 10/70b LITCHFIEL 70 DPWA 0 - K-N NT LAM PI 6/70 ARRENTERD 70 IPWA 0- ELASTIC, CH EXCH 6/70 GALTIERI 70 DPWA 0- K-N NT LAM PI 7/70 Y+1[1915) FROM KBAR N INTO SIGMA PI SQRT[X1+X3] (0,00) (0,01) AR₩ENTEPO 67 DPMA 0 K-P TO SIGMA PI 11/67 -0.13 (0,03) BRETHONI 70 DPMA 0 K-P TO SIGMA PI 10/700 -0.06 (0.03) GALTIERI 70 DPMA 0 K-P TO SIGMA PI 7/70 R 3 R 3 R 3 R 3 1882.0 40.0 (1850.0) Α 1920.0 30.0 ABOUT 1850.0 1950.0 50.0 AVG 1914.5 21.6 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) REFERENCES -- Y*1(1915) ----- 67 Y*L(1880) WIOTH (MEV) -----ARIMETEROS, FERRO-LUZZI+ (CERN, HEID, SACLAY) APMETEROS, FERRO-LUZZI+ (CEPN, HEID, SACLAY) M SMAGT (LELIIJ *RANGAN, VPANA, +ICOL FRANCE, RHEL, SACLAYIJ *FERRO-LUZZI, LAGMAUX +HARMSEN, LASINSKI, + (CHEL, SACLAYIJ) +FERRO-LUZZI, LAGMAUX +HARMSEN, LASINSKI, + (CHEL, SACLAYIJ) A BARRAGO-GALTIERI A BARRAGO-GALTIERI (RUIHDEN) (RUTHERFORD) ARMENTER 67 PL 248 198 ARMENTEI 67 NP N3 592 SWART 68 PR 169 1330 BEATHON 70 NP R20 476 BEATHON 70 NP R24 417 RRICMANI 70 PL 33R 511 COMFORTO 70 NP 6130HITEOJ COX 70 NP 819 61 GALTIERT 70 DUCE COXF 173 LITCHFIF 70 NP R22 269 222.0 150.0 SMART 68 DPMA O - K - N TO LAM PI 1200.01 AALLEY A9 DPMA O = LASTIC. CH EXCH 170.0 40.01 LITCHFIEL 70 DPMA O = LASTIC. CH EXCH 200.0 6.01 ANGUETRIT 70 IPMA O = LASTIC. CH EXCH 113.4 70.0 ANGUETRIT TO IPMA O = LASTIC. CH EXCH 111.1 F0.0 GALTIERIT TO IPMA O = LASTIC. CH EXCH 113.4 10.5 AVERAGE LERROR<INCLUDES</td> SCALE FACTOR OF 1.0) SMART 68 DPWA 0- K- N TO LAM PI 7768 Ratley A9 DPWA 0 Elastic, CH Exch 10770 Litchfelt 70 DPWA 0 - K- N TO LAM PI 6770 Armenten 70 IPWA 0 - Elastic, CH Exch 6770 Galteri 70 DPWA 0 - K N TO LAM PI 7770 ANG ----- 67 Y#1(1880) PARTIAL DECAY MODES -----DECAY MASSES 4974 939 1115+ 134 PAPERS NOT REFERRED TO IN DATA CARDS Y*1(1880) INTO KBAR N Y*1(1880) INTO LAMBDA PI SMART 66 PRL 17 556 W M SWART.A KERNAN,G E KALMUS,R P FLY (LRL)IJP -- SWART 66 IS SUPERSEDED BY SWART 68. CONFORTD 69 NP 88 265 + HARMSEN, LASINSKI, + (CHICAGO, HEIDEL) -- CONFORTD 58 IS SUPERSEDED BY CONFORTD 70. P1 P2 ----- 67 Y#1(1880) BRANCHING RATIOS ------BELON, XI = (PARTIAL-WIDTH L)/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. Y*L(1880) INTO (KBAR N)/TOTAL (0.22) SAILEY 67 DPWA O ELASTIC, CH EXCH 10/70* (0.20) ARMENTERO 70 IPWA O- ELASTIC, CH EXCH 6/70 R 1 R 1 R 1 29 Y#1(1900-1950) CRDSS-SECTION AND PRODUCTION PEAKS Σ(1900) Y*1(1880) FROM KRAR N INTO LAMBDA PT SQUTIXI*72) -0.11 0.03 SMART 68 DPMA 0-K-N TO LAM PT -0.14 0.03 LITCHFIEL 70 DPMA 0-K-N TO LAM PT -0.09 0.04 GALTIERI 70 DPMA 0-K-N TO LAM PT SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. R 2 R 2 R 2 R 2 BUMPS 7/68 6/70 7/70 SET THE NOTES TO THE Y*L119151 AND Y*L119401, WHICH IMMEDIATELY PROCEED AND FOLLOW THIS ENTRY. HERE WE LIST ONLY PARAMETERS OF PEAKS SEEN IN COSS SECTIONS CERTAINLY ASSOCIATED WITH THE FILST HE CORDS-SECTION PEAKS ARE ALMOST AVALYSES. THE INVARIANT-MASS PEAKS SEEN MORE LIKELY TO BE ASSOCIATED WITH THE NOT-COMPLETELY-ESTABLISHED OIS Y*L119401. R2 R2 AVG MDD 0.117 0.019 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.01 REFERENCES -- Y*1(1880) ----- 29 Y*1(1900-1950) MASS (MEV) ------ SMART 69 PR 169 1330 W M SMART (LRLIJP Rålley 60 THESIS UCRL-50617 DAVID SAAL RAILEY (LRL LURENDRETLJP LITCHFI FO NUP DZ2 269 P J LITCHFIELD (RUTHERDRDIJP ABVENTER 70 DUKE COMF 123 ARABRART-GALTIERI (CERN, HEIDELIJP GALTIERI 70 DUKE COMF 173 ARABRART-GALTIERI (LRLI)F CROSS-SECTION PEAKS - RUGG 68 CNTR K-P,D TOTAL 11/66 1905.0 5.0 RRIGMAN 70 CNTR K-P,D TOTAL 11/66 1905.0 6.0 RRIGMAN 70 CNTR K-P,D TOTAL AND CH EX 6/70 1912.0 100 COUL TO CNTR K-P,D TOTAL 10/70 1912.0 100 COUL TO CNTR K-P,D TOTAL 10/70 1912.0 100 COUL FO AVERAGE MEANINGLESS (SCALE FACTOR = 1.7)

		• 47 Y#1(2030) MASS (MEV)
CROSS-SECTION PEAKS W 60.0 10.0 BUGG 67 CNTR 50.0 12.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX (30.0) CONL 70 CNTR K-P, D TOTAL W (36.0) (20.0) (36.0) BOCK 65 HBC 90.0 20.0 AGUILAR 70 HBC + 3.9-4.6 GEV/C K- W AVFRAGE MEAVINGLESS (SCALE FACTOR = 1.2) 	11/66 6/70 10/70* 5/70	H (2030.0) (20.0) WCHL 66 HBC 0 K-P TO LAM PIO 7/66 H 2032.0 6.0 SMART FA DPMA K-P TO <lam pio<="" td=""> 7/66 H 2035.0 10.0 BERTHON TO DPMA K-P TO<lam pio<="" td=""> 7/66 H 2035.0 10.0 BERTHON TO DPMA K-P TO<lamda pi<="" td=""> 6/70 H 2035.0 10.0 BERTHONI TO DPMA K-P TO<lamda pi<="" td=""> 16/70 H 2037.0 6.0 CTX TO OPMA K-P TO<lamda pi<="" td=""> 16/70 H 2027.0 6.0 CTX TO OPMA K-P TO<lamda pi<="" td=""> 17/70 H 2000.0 20.0 GALTIERI TO DPMA K-N TO<lamda pi<="" td=""> 17/70 H 2022.0 4.0 LITCHFIEL TO DPMA K-N TO<lamda pi<="" td=""> 16/70 H AVFRAGE MANINGLESS SCSALE FACTOR 1.0</lamda></lamda></lamda></lamda></lamda></lamda></lam></lam>
P1 Y*1(1900-1950) INTO KBAR N DECAY MASSES P2 Y*1(1900-1950) INTO LAMBDA PI 1115+134 P3 Y*1(1900-1950) INTO SIGMA PI 1117+139 P3 Y*1(1900-1950) INTO SIGMA PI 1117+139 P3 Y*1(1900-1950) INTO SIGMA PI 1117+139 P3 Y*1(1900-1950) INTO SIGMA PI (P1)/TOTAL R1 Y*1(1900-1950) INTO KBAR NJ/TOTAL (P1)/TOTAL R1 THESE VALUES OF FLASTICITIES ASSUME J=5/2 (P1)/TOTAL R1 0.07 0.02 NICKANN 70 CNIR 0 TOTAL AND CH EXE R1 0.07 0.02 NICKANN 70 CNIR 0 TOTAL AND CH EXE R1 0.07 0.02 NICKANN 70 CNIR 0 TOTAL AND CH EXE R2 Y*1(1900-1950) INTO (KBAR NI/SIGMA PI) (P1)/(P3) (P1)/(P3) P2 (LT) OR LESS BANNE 69 HEC + 1 STAN DEV.	6/68 6/70 10/70*	W (170.0) WORL 66 M9C 7/66 W 160.0 16.0 SMART 68 DPHA - K-N TO LAMBDA PI 6/78 W 165.0 30.0 15.0 BERTHON TO DPHA O K-P TO LAMBDA PI 6/70 W 150.0 20.0 RERTHON TO DPHA O K-P TO LAMBDA PI 7/70 W 150.0 20.0 RERTHON TO DPHA O K-P TO LAMBDA PI 16/70 W 155.0 16.0 CGX TO OPHA - K-N TO LAMBDA PI 16/70 W 115.0 15.0 GALTIERI TO DPHA O K-P TO LAMBDA PI 7/70 W 100.0 40.0 GALTIERI TO DPHA O K-P TO LAMBDA PI 7/70 W 170.0 15.0 LITCHFTEL 70 DPHA O K-N TO LAMBDA PI 7/70 W AVERAGE MEANINGLESS (SCALE FACTOR = 1.3)
R3 V+1(1900-1950) INTO (LAMBDA PI)/(SIGMA PI) (P2)/(P3) R3 (.28) OR LESS BARNES 69 HBC + L STAN, DEV.	10/69	P1 Y*(12030) NTO KAAR N 407+939 P2 Y*(12030) NTO LAMBOA PI 1115+134 P3 Y*(12030) NTO SIGMA PI 1197+139 P4 Y*(2030) NTO XIK NTO XIK
RDCK 65 PL 17 166 +CODPER.FRINCK XINSON.+ (CERN.SACLAY) I CODL 66 PRL 16 1228 +GIACOMELLI.KYCIA.LEONTIC.LI.LUNDBY.+ (RNL) I		R1 Y+1(2030) INTD (KÖAR N)/TÖTAL WOHL 66 HRC 0 X-P CH EX 7/66 R1 00.257 0.04 CAMPRELL 71 DRC − K- NEUTRON ELAST 1/71 R1 D (0.111 DAV 68 CNTR K-P ELASPOLEAST 1/77 R1 D 04UN 68 ASSUMES (J+1/2)*X VALUE SEEN IN TOTAL CROSS SECTION.
ARICYAN TO PL 31B 152 +FERRO LUZZI, PERREAU++ (TERNICAEN,SACLAY) CONL TO PR 1D 187 +FIACOMELLI, KYCLA, LEONTIC, LI, + (SNL) AGUILAR TO PRL 25 58 AGUILAR TO PRL 25 58 PAPERS NOT REFERRED TO IN DATA CAROS PRIMER 68 PRL 20 610 + GOLDBERG,JAEGERSABARES,ORDAN + (SYR.BNL) PRIMER 68 IS SUPERSEDED BY BARNES 69 AND AGUILAR-BENITEZ TO.		R2 Y*1/2030) FROM KBAR N N INTO LAMBOA PI SORTIXI*X21 R2 (0,20) N MPL 66 HBC 0 K-7 TO LAMBOA PI 7766 R2 +0,21 0,10 SMART 68 DP4A K-N TO LAMBOA PI 7766 R2 +0,21 0,01 SMART 68 DP4A K-N TO LAMBOA PI 7760 R2 +0,21 0,01 SERTININ TO DP4A OK K-N TO LAMBOA PI 7770 R2 +0,20 0,005 LITCHFIEL TO DP4A OK K-N TO LAMBOA PI 7770 R2 +0,20 0,005 LITCHFIEL TO DP4A OK K-N TO LAMBOA PI 7770 R2 +0,20 0,005 LITCHFIEL TO DP4A OK K-N TO LAMBOA PI 7770 R2 +0,20 0,005 LITCHFIEL TO DP4A OK K-P TO LAMBOA PI 7770 R2 +0,16 0,203 GALTIERI 70 DP4A OK K-P TO LAMBOA PI 7770 R2 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) K K K K K
$\Sigma(1940) \xrightarrow{98} \frac{1}{100} $		R3 Y#112030) FROM KBAR N INTO SIGMA PI SORT(X1*X3) R3 -0.052 0.010 GALTIERI TO DPWA 0 K-P TO SIGMA PI 7/70 R3 -0.09 0.02 RETHONI 70 DPWA 0 K-P TO SIGMA PI 10/70 R3 AVERAGE MEANINGLESS (SCALE FACTOR = 1.7)
SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAYE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE EVIDENCE, WE OWNT THIS STATE FROM THE MAIN BARYON TABLE. THIS EFFECT IS PERMASS ASSOCIATED WITH THE DUMPS SEEN IN PRODUCTION FXPERIMENTS NEAR THIS MASS. SEE THE PRECEDING EVITY.		R4 Y+1120301 FROM KRAR N INTO XI K SURT(X1+X4) A/AT R4 (0,05) 0R LESS TRIPP AT NULL A/AT R4 (0,05) 0R LESS BURGUN AB DOWA 0 K-P TO XI K 10/49 R4 (0,023) WULLER G9 DOWA 0 X-P TO XI K 10/49 R4 (0,023) WULLER G9 DOWA 0 X-P TO XI K 10/49
93 Y#1(1940) MASS (MEV) H 1940.0 50.0 GALTIERI 70 DPWA K-N TO LAM PI N 1940.0 60.0 GALTIERI 70 DPWA K-N TO LAM PI N 1940.0 30.0 LITCHFIEI 70 DPWA K-N TO LAM PI N 1940.0 30.0 LITCHFIEI 70 DPWA K-N TO LAM PI N 200.0 21.6 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0) N 200.0 50.0 GALTIERI 70 DPWA K-N TO LAM PI	7/70 7/70 7/70 7/70	WDHL 65 PRL 17 107 C G WDHL F TSULMITZ, H LSTEVENSON LRLIJP TRIPP 67 NP B3 10 + LETTH, + (LRLISLAC, CERN, HEIDEL, SACLAY) BURGIN 68 NP B3 447 + WEYER, PAULIT, TALLINI + (SACL-CDF+RHEL) DAUM 68 NP T0 + EERE, LACANUX, SENS, STEUER, UDD (CERN J)P SMART 68 PR 169 1336 M M SARAT (LRLI) MULLER 60 THES 15, JOURT 192 A MART (RIRM, ICAL) (LRL) CDX 70 PR 15 A MULLER IRITHER, ICALING, IAS, ICA
W 200.0 50.0 GALTIERI 70 DPWA K-P TO SIGMA PI W 270.0 0.0 LITCHFIEL 70 DPWA K-P TO SIGMA PI W AVG 235.1 28.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF I.LI)	7/70 7/70	GALTIERI 70 NUKE CONF 173 A DARBARO-GALTIERI (LLRIJJP BERTHMNI 70 NP B24 417 + VRANA, 9UTERWDRTH, + ICDEF, RHEL SACLAVIJJP CAMPBELL 71 NP B25 75 + VORTON, NEGUS, GOYAL, HILLFR (GLAS, LDIC)IJP
P1 Y#1(1940) [NTO KRAR N UECAY #ASSES P2 Y#1(1940) [NTO LAMBDA PI 115* 139 P3 Y#1(1940) [NTO SIGMA PI 115* 139 P3 Y#1(1940) [NTO SIGMA PI 119* 139 P3 Y#1(1940) [NTO SIGMA PI 119* 139		$\Sigma(2030)$ 28 Y+1(2030) CROSS-SECTION AND INVARIANT-MASS PEAKS BUMPS SEE THE MINI-REVIEW AT THE START OF THE Y+ LISTINGS.
9EL04, X1 = (PA TIAL-WIDTH L)/TOTAL WIDTH, ETC. A SIGN, WHERE FXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. R1 Y*(11940) FROW KBAR N INTO LAMBDA PI SQRT(X1*X2) SQRT(X1*X2) R1 -0.12 0.03 LITCHFIEL 70 OPMA R1 -0.14 0.03 LITCHFIEL 70 OPMA	7/70 7/70	SEE THE WITE TO THE FIT Y*1(2030), WHICH PROCEFOS THIS ENTRY. MER WE LIST ONLY PARAMETERS OF PEAKS IN CROSS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS. THE CROSS- BET MAY CONTAIN A SMALL CONTRIBUTION FROM THE SUGGESTED AUT NOT ESTAB- LISHED OTHER RESONANCES IN THIS REGION. 28 Y*1(2030) MASS (MEV) AS SEFN IN PFAKS
PI AVG MON 0.133 0.024 AVFRAGE (ERROR INCLUDES SCALE FACTOR FI.01 R2 Y=1(1940) FROM KHAR NITO SIGMAPI SORT(X1+X3) R2 -0.12 0.03 GALTJERT 70 DPMA K-P TO SIGMAPI REFERENCES - Y*1(1940) KR	7/70	# (2022.0) 120.0) BLANPIED 65 CNTR 0 GAMMA P TO K+ Y* # 2020.0 7.0 HUGG 63 CNTR 0 GAMTA P TO K+ Y* # 2049.0 4.0 BRICHAN 70 CNTR 0 GTAL AND CH EX 6/70 # 2025.0 10.0 CONL 70 CNTR 0 GTAL AND CH EX 6/70 # 2025.0 10.0 CONL 70 CNTR K-P. D TOTAL 10/70 # 2025.0 120.0 LU 70 CNTR K-P. D TOTAL 10/71 # 2025.5 152.0 LU 70 CNTR K-P. D TOTAL 10/70 # 2025.5 152.0 LU 70 CNTR K-P. D TOTAL 10/71 # AVEPAGE NEANINGLESS SCALE FACTOR = 2.8 X X X
$ \begin{split} & \text{Galtifit 70 DUKE CONF 173} & \text{A BARBARD-GALTIER1} & \text{ILRUID}\\ \text{LITCHFIE 70 NP R22 269} & \text{P J LITCHFIELD} & \text{(RUTHERFORDID)}\\ & \text{(RUTHERFORD)}\\ & (RUTHERFORD)\\ & \text{(RUT$	P P	28 Y*1(2030) WIDTH (MEV) AS SEEN IN PEAKS N (120,0) (20,0) RLANPIED 65 CNTR 0 6/68 N 130,0 10.0 RUGG 68 CNTR 0 6/68 N 126.0 11.0 RUGG 68 CNTR 0 6/68 N 126.0 11.0 BRICMAN 70 CNTR 0 101.1 N 165.0 CORL 70 CNTR 0 FD TOTAL 10/70 N (40.0) LU 70 CNTR 0 GANMA P TO K+ Y* 1/71 N AVERAGE MEANINGLESS ISCALE FACTOR = 1.0) 10 10 10
THIS ENTRY UNLY INCLUDES RESULTS FROM PARTIAL-MAVE ANALYSES, PARAMETERS INF PEAKS SEEN IN CROSS-SECTIONS AND INVARIANT-MASS DISTRIBUITINS AROUND 2030 MEV ARE GIVEN IN THE NEXT ENTRY. EVENTUALLY THE PARTIAL-MAVE ANALYSES SHOULD GIVE THE BEST RESULTS, AS THEY ISOLATE THE FIT MAVE. THIS UPERIORITY IS, HOWEVER, PARDABLY NOT YET ATTAINED, AND WE ARLY ON BOTH ENTRIES FAR PRAMETERS GIVEN IN THE MAIN BARYON TABLE.		

S142 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

For notation, see illustrated key at beginning of data card listings.

26 Y*1(2100) WIDTH (MEV) ------28 Y*1(2030) BRANCHING RATIOS -- AS SEEN IN PEAKS ---Y+1(2030) INTO (KRAP N)/TOTAL THESE VALUES OF ELASTICITES ASSUME J=7/2 --ALI RUGG 64 CNTR 6/68 0.77 (0.02) RAICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 0.12 CONL 70 CNTR K-P, D TOTAL 10/70* GALTIERT 70 DPWA 0 K-P TO LAMBDA PI 7/70 GALTIERI 70 DPWA 0 K-P TO SIGMA PI 7/70 (70.0) (30.0) (135.0) (30.0) ----- 26 Y*1(2100) PARTIAL DECAY MODES ------R1 R1 R1 DECAY MASSES 497+ 939 1115+ 134 1197+ 139 Y*1(2100) INTO KBAR N Y*1(2100) INTO LAMBOA PI Y*1(2100) INTO SIGMA PI P 2 Y*L(2030) INTO KBAR N PI SPEN R 2 R 2 HBC васк ***** ----- 26 Y*1(2100) BRANCHING RATIOS -----REFERENCES -- Y*O(2030) AS SEEN IN PEAKS RELOW, X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. Y*1(2100) FROM KBAR N TO LAMBDA PI SQRT(X1*X2) (-0.07) (0.02) GALTIERI 70 DPWA 0 K-P TO LAMBDA PI 7/70 R 1 R 1 Y*1(2100) FROM KBAR N TO SIGMA PI SORT(X1*X3) (+0+13) (0+02) GALTIERT 70 DPWA 0 K-P TO SIGMA PI 7/70 R 2 R 2 ****** ********* ******* ******* ****** REFERENCES -- Y*1(2100) GALTIERI 70 DUKE CONF 173 A BARBARD-GALTIERI (LRL1IJP 34 Y#1(2070, JP=5/2+)1=1 F15 $\Sigma(2070)$ THIS STATE HAS BEEN SUGGESTED BY ONLY ONE PARTIAL ≯ M > 2200 MEV - PRODUCTION AND σ_{TOTAL} EXPERIMENTS WAVE ANALYSIS ACROSS THIS REGION. IT NEEDS CONFIRMATION ----- 34 Y*1(2070) MASS (MEV) -----BERTHONI 70 DPWA - K- P TO SIG PI 1/71* (2070.) (10.) BUMPS ----- 34 Y#1(2070) WIDTH (MEV) -----(140.) (20.) BERTHON1 70 DPWA - K- P TO SIG PI 1/714 ****** ******* ********* ------ 34 Y*1(2070) PARTIAL DECAY MODES ------48 Y*1(2250, JP=) I=1 DECAY MASSES 497+ 939 1197+ 139 $\Sigma(2250)$ SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THE PHASE-SHIET-AMALYSIS RESULTS APE TOD WERK TO MARRANT SEPARTH TAMALYSIS RESULTS APE TOD WERK TO SECTION EXPERIMENTS. IN AN AMALYSIS OF ELASTIC AND POLARIZATION DATA. OLIH AS COULD NOT EXCLUDE ANT SUGGESTS 7/2-Y*1(2070) INTO KBAR N Y*1(2070) INTO SIGMA PI P1 P2 RELOH, XI = (PARTIAL-WIDTH LI/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. ----- 34 Y*1(2070) BRANCHING RATIOS ------Y*1(2070) FROM KRAR N TU SIGMA (+.12) (.02) RERTHONI TO DPWA - K- P TO SIG PI 1/71* RZ R2 ----- 48 Y*1(2250) MASS (MEV) -------(2245.0) (2299.0) (6.0) 2250.0 7.0 2237.0 11.0 2255.0 10.0 2280. 14.0 (2250.0) (20.0) ***** REFERENCES -- Y*1(2070) +VRANA, BUTTERWORTH,+ (CDEF, RHEL, SACLAY) [JP BERTHON1 70 NP 824 417 AVERAGE MEANINGLESS (SCALE FACTOR = 1.4) 98 Y*1(2090, JP=3/2+) I=1 P13 ----- 48 Y*1(2250) WIDTH (MEV) (150.0) BLANPIED A5 CNTR GAWAA P<TO</th> K+ Y* (21.0) (17.0) (21.0) NDCK 65 HRC P3AR P5.7 GEV/C 230.0 20.0 RUGG A6 CNTR K-P-D DTOTAL 6/68 164.0 50.0 BRICMAN TO<CNTR</td> K-P-D DTOTAL 6/70 (170.0) COOL TO CNTR K-P-D DTOTAL 10/70* (100.0) 20.0 AGULAR TO<HAR</td> K-P-D DTOTAL 10/70* (100.0) 20.0 LU TO CNTR K-3.9-4.4. GEV/C 1/71* $\Sigma(2080)$ SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SUCH A RESINANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAVE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE EVIDENCE, WE OMIT THIS STATE FROM THE MAIN BAYVIN TARLE. ----- 88 Y*1(2080) MASS (MEV) -----AVERAGE MEANINGLESS (SCALE FACTOR = 3.3) COX 70 DPWA - K- N TO LAM PI LITCHFIEL 70 DPWA O- K- N TO LAM PI 6/70 6/70 (2082.0) (4.0) (2070.0) (30.0) ----- 48 Y#1(2250) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1115+ 134 1197+ 139 497+ 939+ 139 Y#1(2250) INTO KBAR N Y#1(2250) INTO LAMBDA PI Y#1(2250) INTO SIGMA PI Y#1(2250) INTO KBAR N PI P1 P2 P3 P4 (87.0) (20.0) (250.0) (40.0) 6/70 COX 70 DPWA - K- N TO LAM PI LITCHFIEL 70 DPWA O- K- N TO LAM PI R8 Y*1(2080) PARTIAL DECAY MODES ----- 48 Y*1(2250) BRANCHING RATIOS ------DECAY MASSES 497+ 939 1115+ 139 RELOW, XI = (PARTIAL-WIDTH LI/TUIAL WIDTH, ETC. A SIGN, WHERE Explicit, is in the convention discussed in the Y* Mini-Review. Y*1(2090) [NTO KBAP N Y*1(2080) [NTO LAMBDA PI P1 P2 XI XI J IS NOT KNOWA. THE FOLLOWING IS (J+1/2)*XI. 6/48 (0,47) BUGG 68 CNTR 6/48 (0,16) (0,12) BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/700 6/42 (0,42) CODL 70 CNTR K-P, D TOTAL 10/70* 10/70* ------ 98 Y*1(2080) BRANCHING RATIOS R1 R1 R1 R1 R1 RELDW, X1 = (PARTIAL-WIDTH 1)/TOTAL WIDTH, ETC. A SIGN, WHERE EXPLICIT, IS IN THE CONVENTION DISCUSSED IN THE Y* MINI-REVIEW. Y*LI20R0] FRIM KBAR N TO LAMBDA PI SORTIKI*K2] (-0.14) (0.03) CDX 70 DPM - K-N TO LAM PI 6/70 (-0.09) (0.03) LITCHFIEL 70 DPMA O-K-N TO LAM PI 6/70 Y*1(2250) FROM KRAR N TO LAMBDA PI THE FOLLOWING ASSUMES JP*9/2-, DATA INSUF, FOR DETECH. THIS AMP. (-0.18) (-0.18) R1 R1 R1 R 2 R 2 R 2 Y#LI2250) FRIM KBAR N TO SIGMA PI THE FOLLOWING ASSUMES JP=9/2-, DATA INSUF, FOR DETERM, THIS AMP. (+0,07) (+0,07) R 3 R 3 R 3 REFERENCES -- Y*1(2080) +ISLAM, COLLFY, + (BIRM, EDIN, GLAS, LOIC)IJP P J LITCHFIELD (RUTHERFORD)IJP COX 70 NP 819 61 LITCHFIE 70 NP 822 269 Y#1(2250) INTO (KBAR N)/(SIGMA PI) (P1)/(P3) (0.18) OR LESS BARNES 69 HBC + 1 STAN DEV LIMIT 10/69 R4 R4 Y*112250) INTO (LAMBDA PI)/(SIGMA PI) (P2)/(P3) (0.18) OR LESS BARNES 59 HBC + L STAN DEV LIMIT 10/69 R5 R5 26 Y*1(2100, JP=7/2-) [=1 G17 $\Sigma(2100)$ REFERENCES -- Y*1(2250) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. BLANPIED 65 PRL 14 741 BOCK 65 PL 17 166 BUGG 65 PR 168 1466 RARTES 69 PR 168 1466 RARTES 69 PRL 22 479 COTU FR 70 PL 10 185 COTU FR 70 PL 10 185 AGUILAR 70 PRL 25 58 LU 70 PR D2 1846 expression of the second SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAVE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE EVIDENCE, WE OMIT THIS STATE FROM THE MAIN IS MORE EVIDER BARYON TABLE. 26 Y*1(2100) MASS (MEV) -----(2060.0) (20.0) GALTIERI TO DPWA O K-P TO LAMBDA PI 7/70 (2120.0) (30.0) GALTIERI TO DPWA O K-P TO SIGMA PI 7/70 M

REFERENCES -- V#1(3000)

EXOTIC HYPERONS CROSS SECTION LIMITS (MICROBARNS)

R EHRLICH, W SELOVE, H YUTA

EHRLICH 66 PR 152 1194

Baryons

(PENN(BNL)) I

For notation, see illustrated key at beginning of data card listin	ngs.
PAPERS NUT REFERED TO IN DATA CARDS	0
CODL 66 PRL 16 1228 +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (RNL) I CONL 66 IS SUPPREDED BY CONL 70.4 DAUBER STORE, STORE, TICHO (UCLAILERL) J - SUGGESTS, 54-72 RESONANT BEHAVING IN SIGNA- PI+, BUT APPEARS INCONSISTENT WITH PARAMETERS OF CONL 66. DAUM 65 NP B7 10 FRNF, LAGNAUX, SENS, STEUER, UDD (CERNIJP	
······ ·· ········ ····· ··· ···· ······	
$\Sigma(2455)$ 53 Y+1(2455, JPa) T=1	
SEF THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.	
THERF IS ALSO SOME SLIGHT EVIDENCE FOR Y* STATES IN THIS MASS REGION FROM THE REACTION GAMMA + P TO K+ + MISSING MASS SFE GREFNBERG 68.	
53 Y#1(2455) MASS (MEV)	6/68
M 2455.0 10.0 ABRAMS TO CNTR K-P, D TOTAL 1 M AVG 2455.0 5.7 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 1.0)	0/70*
53 Y*1(2455) WIOTH (MEV)	
W 100.0 20.0 BUGG 68 CNTR W 140.0 ABRAMS 70 CNTR K-P, D TOTAL I	6/68 0/70*
PL Y+1(2455) INTO KRAR N 477+ 939	
53 Y+1(2455) BRANCHING RATIOS	
PI (2455) INTO IKDAR NJ/TUJAR JIS NUT KANDAN, THE FOLLOWING IS (J+L/2)+X1. PI (0.3) RI (0.3) RI (0.3) (0.0) RIC (0.05) (0.05) RRICMAN TO CNTR 0 TOTAL AND CH EX PI (C) (0.05) RRICMAN TO CNTR 0 TOTAL AND CH EX RI C) THIS REGION.	6/68 .0/70* 6/70
****** ********* ********* ******** ****	
ARRAMS 70 PR 1D 1917 +CODL GIACOMELLI, KYCIA, LEONTIG, + (BNL) 1 RUGG 68 PR 16R 1466 +GILMORE,KNIGHT, + (RTHFD,9RMGHM,CWNSH) 1 RRICMAN 70 PL 318 152 +FERRA ULZI, PERREAU,+ (CERN,CARN,SACLAY)	
PAPERS NOT REFERRED TO IN DATA CARDS ARRAMS 67 PRL 19 678 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI, + (BNL) ARRAMS 67 IS SUPERSEDED BY ABRAMS 70. GREENBERG 68 PRL 20 221 GREENBERG, HUGHES, LU, MINEHART, + (YALE)	
****** ******** ******** *************	
$\Sigma(2620)$ 54 Y*1(2620, JP=) [=1 SFF THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.	
54 ¥#1(2620) MASS (MEV)	
M 2620.0 15.0 ABRAMS 70 CNTR K-P, D TOTAL I	10/70*
W (175.0) ABRAMS 70 CNTR K-P, D TOTAL	10/70*
54 Y*1(2620) BRANCHING RATIOS	
RI Y*12(2620) INTO (KARAP N)/TOTAL RI JISNOT KNINN, THE FOLLOWING IS (J+1/21*XL. RI 0.36 0.12 RRICMAN 70 CMTR 0 TOTAL AND CH EX RI (0.32) ABRAMS' 70 CMTR K-P, D TOTAL	6/70 10/70*
REFERENCES Y*1(2620)	
ARRAMS 67 PRL 19 578 +COOL.GIACOMELLI,KYCIA,LEONTIC.LI, + (BNL) ARRAMS 67 IS SUPERSEDED BY ARRAMS 70. ARRAMS 70 PR 10 1917 +COOL.GIACOMELLI,KYCIA, LEONTIC, + (RNL) 1 BRICMAN 70 PL 31B 152 +FERRO LUZZI, PERREAU,+ (CERN.CAEN.SACLAY)	
****** ******** ***********************	
Σ(3000) 59 Y*1(3000, JP= 1 I=1	
SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.	
SPECTRA AND IN MISSING MASS OF NEUTRALS RECOILING Against Ko. Evidence not conclusive. Omitted from Table.	

----- 59 Y*1(3000) MASS (MEV)

Y*1(3000) INTO KBAR N Y*1(3000) INTO LAMBDA PI

----- 59 Y+1(3000) PARTIAL DECAY MODES ------

(3000.0)

P1 P2 _____

DECAY MASSES 497+ 939 1115+ 139

EHRLICH 66 HBC 0 PI-P 7.91 BEV/C 9/66

THIS IS NOT A COMPLETE LIST. WE HILL TADULATE EXDICS FROM NOW ON CR G (20.) OR LESS GALTIERI AB DRC K-N TO SG-PI-PIO 7/70 G AROVE LIMIT FOR MASS LT 2.15 GEV AND GAMMA LT AO MEV- 12.1 GEV/C K-1 7/70 CR A (40.) OR LESS GALTIERI AB DRC -- K-N ID SG-PI-PIO 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR A ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV AND GAMMA LT 120 MEV- 12.7 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MASS LT 2.3 GEV/C K-1 7/70 CR ABDVE LIMIT FOR MA

Ξ Resonances

The E resonance situation has long been and will probably long remain unsettled. This is because 1) they can only be produced as part of a final state, $K^+p \rightarrow \Xi^*$ + others, and 2) they are so produced with very small cross sections ($<50 \mu b$). Thus the numbers of events available are small, and the analysis is more complicated than if direct formation were possible. Only the Ξ (1530) is really well established. There are at least two Ξ states in the 1800-2000 MeV region and there are indications of several more above 2000 MeV, but the situation is very unclear. We are forced to group together rather disparate observations and await new results. Figures in the listings point out disagreements among various experiments. The table following this note gives our evaluation of the status of the Ξ resonances, based on the meager data available at this time.

STATUS OF THE XI* RESONANCES. THOSE WITH AN OVERALL STATUS OF *** OR **** ARE INCLUDED IN THE MAIN BARYON TABLE. SEE, HONEVER, THE NOTES FOR THE INDIVIDUAL RESONANCES, PARTICULARLY FOR THE XI(1820) AND XI(1940), FOR ADDITIONAL WARWINGS. STATUS AS SEEN IN --OVERALL PARTICLE LIJ STATUS XI PI XI PI LAM K SIG K XI PI OTHER CHANNELS X1(1320) P11 X1(1530) P13 X1(1630) X1(1820) X1(1940) X1(2030) X1(2250) X1(2500) **** *** *** *** *** LAMBDA PI **** ** *** *** ** *** ** ** 3-BODY DECAYS 3-BODY DECAYS 3-BODY DECAYS * ** ** ------*** GOOD, CLEAR, AND UNMISTAKABLE.
 *** GOOD, BUT IN NEED OF CLARIFICATION OR NOT ABSOLUTELY CERTAIN.
 ** NEEDS CONFIRMATION.
 ** WEAK.

S144 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

Baryons

For notation, see illustrated key at beginning of data card listings.

BMST

·BMST

BMST

CRENNELL

ALITTI

· ·SMITH 2

150

-50

P1 P2 P3 P4 P5

P 1 R 1

R 2 R 2

R 3 R 3 R 3

R 4 P 4 R 4

85 85

R 6 R 6

R7 R7

R 8 R 8

R9 R9

HALSTEIN 63 SIFNA CONF 173 SMITH 1 65 PRL 14 25 HADIER 65 PL 6171 SMITH 2 65 ATHENS CONF 251 GTRIPP 67 NP 03 10 -- USES DATA OF SMITH 1.

ALITTI 69 PRL 22 79 DAUBER 59 PRL 179 1262 CRENNFLL 70 PR 10 347 APSELL 70 PRL 24 777 RMST 70 DUKF 317

 $\Xi(1940)$

* * * * * * * * *

35 1933.0 27 1930.0 66 1894.0 21 1955.0 110 1954. 40 1961.

16.0 20.0 18.0 14.0 9.

AVERAGE MEANINGLESS (SCALE FACTOR = 1.7) (SEE IDEDGRAM BELOW)

50 XI*1/2(1820) WIDTH (MEU)

50 XI*1/2(1820) PARTIAL DECAY MODES

X1*1/2(1920) INTO (SIGMA KBAR)/TOTAL (0.02) OR LESS TRIPP 67 RVUE 0.3 0.15 ALITTI 69 HBC

X1*1/2(1820) INTO (X1*1/2(1530) P1)/TOTAL 0.3 0.15 ALITTI 69 HBC (0.2*) DR LESS DAUREP 69 HBC

XI*1/2(1920) INTO (XI PI)/(LAMBDA KBAR) 0.20 0.20 BADTER 65 HBC

XI#1/2(1820) INTO (XI#(1530) PI)/(LAM KBAR) 0.26 0.13 SMITH 1 65 HBC

XI*1/2(1820) INTO (XI PI PI)/(LAMBOA KBAR) (0.1) OP MORE SMITH 1 65 HBC

XI(1820) INTO (XI PI PI)/(XI(1530) PI) 0.3 0.5 APSELL 70 HBC 0

52 X1*1/2(1940, JP=) [=1/2

REFFRENCES -- X1*1/2(1820)

70 HBC

70 HBC

70 HBC

70 HBC

70 DBC

69 HBC

65 HBC

250

For notation, see illustrated key at beginning of data card listings.

or notation, see illustrated key at beginning of data card listi	ings.
E(2030) 68 X[*1/2(2030, JP= 1 [=1/2	$\Xi(2500)$ 99 XI +1/2(2500, JP=) I=1/2
68 XI*1/2(2030) MASS (MEV)	IT IS QUITE POSSIBLE THAT THE REASON THE EXPERIMENTS
42 2030 0 10.0 ALITTI 69 HBC - K-P 3.9-5 REV/C 40 2059.0 17.0 RARTSCH 69 HBC K-P 10GEV/C AVERAGE MEANINGLESS (SCALE FACTOR = 1.4)	9/69 9/69 9/69 THEN TOGETHER. DISAGREE ABOUT THE MASS AND WIDTH IS THAT THEY ARE SEEING DIFFERENT XIS, FOR NOW, HOWEVER, WE GROUP
69 XI*1/2(2030) WINTH (MEV)	M 30.2430.0 20.0 MULTI (0.000 K.0.1.4.5.000
45.0 40.0 20.0 ALITTI 69 HRC - 57.0 30.0 BARTSCH 69 HRC	9/69 4 45 2500.0 10.0 BARTSCH 69 HBC 0- K-P 10 GEV/C 9/69 4 AVERAGE MFANINGLESS (SCALE FACTOR = 3.1)
AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)	99 X1*1/2(2500) WIDTH (MEV)
69 XI*1/2(2030) PARTIAL DECAY MODES XI*1/2(2030) INTO XI PI DECAY MASSES XI*1/2(2030) INTO XI PI 1321+ 139	H 150.0 60.0 40.0 ALITTI 69.HBC - H 59.0 27.0 HARTSCH 69.HBC 0- H AVERAGE MEANINGLESS (SCALE FACTOR = 1.6)
АТ#1/21/20301 INTO LAMIDA KBAR 1115+ 497 XI#1/21/20301 INTO SIGMA KBAR 1197+ 497 XI#1/21/20301 INTO XI#1/211530) PI 1530+ 139	99 XI*1/2(2500) PARTIAL DECAY MODES
XT*1/2(2030) INTO LAMBDA (OR SIGMA) KBAR PI 1115+ 497+ 139	DECAY MASSES
	P2 X1#1/2125001 INTO LAMDA KABR L115 407 P3 X1#1/2125001 INTO SIGMA KBAR L115+407 P4 X1#1/2125001 INTO SIGMA KBAR L147+407 P4 X1#1/2125001 INTO X12115301 P1 L530+139
XI*1/2(2030) INTO (LAM KBAR)/(MODES P] TO P4) (P2)/(P1+P2+P3+P4) 0.25 0.15	Y/OV Y2 X1*1/2(2500) INTO LAMBNA (NR SIGMA) KBAR PI 1115+ 497+ 130 P6 X1*1/2(2500) INTO XI PI PI 1321+ 130+ 139
X1*1/2(2030) INTO (SIG KBAR)/(MUDES P1 TO P4) (P3)/(P1+P2+P3+P4)	7/07 99 X1*1/2(2500) HRANCHING RATIOS R1 X1*1/2(2500) INTO (X1 PI)/(MODES P1 THRU P4) (P1)/(P1+P2+P3+P4)
X1*1/2(2030) INTO (X1* PI)/(MODES P1 THRU P4) (P4)/(P1+P2+P3+P4)	9769 R1 (0.5)DR LESS ALITTI 69 HBC 1 STO DEV LIMIT R2 X1*1/2(2500) INT3 (LAM KBAR)/(MODES P1 THRU P4) (P2)/(P1+P2+P3+P4)
(0.15) UK LESS ALITTI 69 HBC - 1 STO DEV LIMIT X1*1/2(2030) INTO LAMBDA (DR SIGMA) KBAR PI (PS)	9/69 R2 0.5 0.2 ALITTI 69 HRC - R3 XI*1/2(2500) INTO (SIG KBAR)/(MODES PL THRU P4) (P3)/(P1+P2+P3+P4)
>EEN BARTSCH 69 HBC	9/69 R3 0.5 0.2 ALITTI 69 HBC -
REFERENCES x1*1/2(2030)	R4 (0.2)OR LESS ALITTI 69 HBC 1 STD DEV LIMIT
ITTI 69 PRL 22 79 +9ARNES,FLAMINIG,METZGER, + (BNL,SYRACUSE) I RTSCH 69 PL 28B 439 + (AACHEN, BERLIN, CERN, LONDON, VIENNA)	R5 XI*1/2(2500) INTO LAHRDA (OR SIGMA) KBAR PI (P5) R5 SEEN BARTSCH 69 HBC 0-
0789 808808988 85885888 98888888 *** ***************************	R6 XI*1/2(2500) INTO XI PI PI (P6) R6 SEEN BARTSCH A9 HBC 0-
7/0050	****** ********* ******* ****** *******
E(2250) = 1	REFERENCES XI*1/2(2500)
A RUMP FW NIT MUCH STATISTICAL SIGNIFICANCE IN LAWBOA- KARA-JIS SIGNA-KARA-PI, AND XI-PI-PI MASS SPECTRA. GULDBOSKS 70 SEFA MARADRAR GUUMP IN XI-PI-PI AT A	ALITTI 69 PPL 22 79 +BARNES,FLAHINIO,METZGER, + (AML,SYRACUSE) [BARTSCH 69 PL 28R 439 + (AACHAN, BERLIN, CERN, LINDON, VIENNA)
THEY ARE NOT.	
22 XI* (2250) MASS (MEV)	
3> 2244.0 52.0 RARTSCH 69 HBC K-P 10 GEV/C 18 2295.0 15.0 GRUNASSE 70 HBC - K-P 5.5 GEV/C 1 AV FRAGE MEANINGLESS (SCALE FACTOR = 1.0)	9/69 10/70*
22 XI* (2250) WIDTH (MEV)	
130.0 R0.0 BARTSCH 69 HBC LESS THAN 30.0 GDI DNASSE 70 HBC - K-P 5.6 GSV/C V	9/69 0 ⁻ 24 NMEGA - (1675, JP=3/2+) [=0
22 XI* (2250) PARTIAL DECAY MODES	SEE LISTINGS OF STABLE PARTICLES
DECAY MASSES X[#]/2(2250) INTO X[P] P[1321+ 139+ 139 X[#]/2(2250) INTO LAMBDA KBAR P[1115+ 497+ 139 X[#]/2(2250) INTO SIGMA KBAR P[1197+ 497+ 139	******* ********** ******** ******** ****
**** ******** ********* ******** ******	
REFFRENCES X1* (2250)	
TSCH 69 PL 288 439 + (AACHEN, BERLIN, CERN, LONDON, VIENNA)	

Appendix I TEST OF $\Delta I=1/2$ RULE FOR K DECAYS

The quantities of interest for making tests of theoretical predictions regarding the $\Delta I=1/2$ rule for K decay are usually partial decay rates for single channels or special sums of channels. It is not possible to compute the errors on sums, differences, and ratios of partial decay rates from the information given in the Table of Stable Particles because of the presence of off-diagonal terms in the error matrix. For this reason we give some of these quantities below.

1. Leptonic decay rates The Γ rates are useful in testing the K_{l3}

leptonic $\Delta I = 1/2$ rule in the way suggested by Trilling.¹ The predictions are

$$\Gamma_{K_{\ell_3}^0}/2\Gamma_{K_{\ell_3}^+} = 1.012$$
, a phase-space factor,² and

$$K^{0}_{\mu3} / \Gamma_{K^{0}_{e3}} = \Gamma_{K^{+}_{\mu3}} / \Gamma_{K^{+}_{e3}}.$$

From Table I,

Г

$$\Gamma_{K_{\ell_3}^0} / {}^{2\Gamma}_{K_{\ell_3}^+} = 0.976 \pm .022$$

 $\frac{\Gamma_{K_{\mu3}^{0}}}{\Gamma_{K_{e3}^{0}}} \left[\frac{\Gamma_{K_{\mu3}^{+}}}{\Gamma_{K_{e3}^{+}}} \right]^{-1} = 1.046 \pm .048$ and

These results seem to show a less than 2σ disagreement with the predictions, but the errors should be regarded with caution in view of the internal disagreements in the data. (Note the ideograms in the data listing for the charged K meson.)

2. Three-pion decays

We follow here the tests done by Mast et al.,³ based on the general analysis of K decays suggested by Zemach.⁴ Both decay rates and slopes (energy dependence of the Dalitz plot distributions) are used. The $\Delta I = 1/2$ rule gives the following predictions:

$$T_{1} = \frac{2}{3} \frac{\Gamma_{K^{0}(000)}}{\frac{\varphi_{1}}{\varphi_{1}}} \left[\frac{\Gamma_{K^{0}(+-0)}}{\frac{\varphi_{2}}{\varphi_{2}}} \right]^{-1} = 1 ,$$

$$T_{2} = \frac{1}{4} - \frac{\Gamma_{K^{+}_{T}}}{\frac{\varphi_{3}}{\varphi_{3}}} \left[\frac{\Gamma_{K^{+}_{T^{+}}}}{\frac{\varphi_{4}}{\varphi_{4}}} \right]^{-1} = 1 ,$$

$$T_{3} = \frac{1}{2} - \frac{\Gamma_{K^{+}_{T}}}{\frac{\varphi_{3}}{\varphi_{3}}} \left[\frac{\Gamma_{K^{0}(+-0)}}{\frac{\varphi_{2}}{\varphi_{2}}} \right]^{-1} = 1 ,$$

$$T_{4} = \frac{1}{2} g_{K^{+}_{T^{+}}} + g_{K^{+}_{T}} = 0 ,$$

$$T_{4} = \frac{1}{2} g_{K^{+}_{T^{+}}} + g_{K^{+}_{T}} = 0 ,$$

 $T_5 = g_{K^0(+-0)} + g_{K_{\tau}^+} - \frac{1}{2}g_{K_{\tau'}^+} = 0,$

where the $\boldsymbol{\varphi}_{\underline{i}}$ are the phase-space factors. These factors have been calculated as described in Mast et al. 3 by use of a relativistic formulation and the masses and slopes from this compilation. The factors labeled UDP are the relative areas of the Dalitz plots, assuming a uniform distribution. The NUDP include the observed slopes (see below). The CNUDP have been calculated by including the final-state Coulomb interaction. The values are:

	Method		
	UDP	NUDP	CNUDP
$\phi_1(000) =$	1.487	1.487	1.441
$\phi_2(+-0) =$	1.219	1.293	1.278
$\phi_3(++-) =$	1.000	1.000	1.000
$\phi_4(+00) =$	1.247	1.182	1.146

The slopes for the various decays have not been tabulated in the Stable Particles Table. They are as follows:

$$g_{K_{T}^{+}} = -0.206 \pm 0.007$$

$$g_{T}^{-} = -0.194 \pm 0.007$$

$$g_{K_{T}^{-}} = 0.527 \pm 0.017,$$

$$g_{K_{T}^{+}} = 0.603 \pm 0.028 \text{ (Error scaled $\times 3.1$)}$$

A difference in the τ^+ and τ^- slopes would be an indication of CP violation in this decay. Since no

difference is present at this time, we average the two and use this value in ${\rm T}_4.$

Using the CNUDP and rates and slopes reported here, we get:

$$T_{1} = 1.006 \pm 0.043,$$

$$T_{2} = 0.954 \pm 0.025,$$

$$T_{3} = 1.184 \pm 0.028,$$

$$T_{4} = 0.064 \pm 0.010,$$

$$T_{5} = 0.139 \pm 0.030.$$

The three-pion final state can be in isospin states I = 1, 2, 3. T_1 and T_2 test the existence of isospin I=3 in the final state and are consistent with no or very little I=3. T_4 is related to the I=2 amplitude in the final state and indicates the presence of I=2. T_3 and T_5 give information on the $\Delta I=3/2$ part of the I=1 amplitude relative to the $\Delta I=1/2$ part. Both tests indicate the presence of $\Delta I=3/2$.

The rate tests T_4 , T_2 , and T_3 could differ from 1.0 by as much as 10% owing to the π mass differences and the occurrence of big slopes.⁵ The error on $g_{K_{L}^{0}(+-0)}$ has been scaled by a factor of 3.1 to compensate for the disagreement among the determinations of this parameter. Since this error is the main contribution to the T_5 error, the reader is cautioned to refer to the $g_{K_{L}^{0}(+-0)}$ ideogram in the data card listings before interpreting T_5 .

References

 G. Trilling, K-Meson Decays, UCRL-16473 (updated from Argonne Conference Proceedings, 1965, p. 115).

 N. Brene (CERN), private communication. In our Jan. 1968 edition we had erroneously used 1.04.
 T. S. Mast, L. K. Gershwin, M. Alston-Garnjost, R. O. Bangerter, A. Barbaro-Galtieri, J. J. Murray, F. T. Solmitz, and R. D. Tripp, Phys. Rev. <u>183</u>, 1200 (1969).

4. C. Zemach, Phys. Rev. 133, B1201 (1964).

5. C. Bouchiat and M. Veltman, Topical Conference on Weak Interactions, CERN 69-7 (1969), p. 225.

Appendix II A. SU(3) CLASSIFICATION OF BARYON RESONANCES

There are a few multiplets that have been studied and we report here the results. The relevant formulae are given below.

Mass Formulae

Decuplet	$\Delta - \Sigma = \Sigma - \Xi^* = \Xi^* - \Omega$	GMO	(1)
Octet	$2(N + \Xi) = 3\Lambda + \Sigma$	GMO	(2)

Nonet
$$\begin{cases} \sin^2 \theta = \frac{\Lambda - M_8}{\Lambda - \Lambda!} & \text{Mixing} \\ \text{angle!} \end{cases} (3)$$

$$M_8 = \frac{2(N + \Xi) - \Sigma}{3}$$
 GMO (4)

Here GMO stands for the Gell-Mann-Okubo formula; the particle symbol indicates its mass. The formulae would be the same if squared masses were used. For the nonet case, Λ is the "mostly-octet" particle, Λ ' is the "mostly-singlet" particle.

Decay Rates

In terms of a relativistically invariant matrix element T, the decay rate for two-body decay of a resonance of mass M_R is

$$\Gamma \propto \frac{|T|^2 R_2}{M_R}, \qquad (5)$$

where $R_2 = k/M_R$ is the two-body phase space factor. Since the numerator is an invariant, and since Γ must transform as 1/E, we introduce the denominator $1/M_R$ (see FEYNMAN 62).

For <u>meson</u> decays (see below) the rates are calculated according to Eq. (5); for <u>baryon</u> resonance decays into $1/2^+$ baryons and 0^- mesons, one next takes into account the fact that spin sums in $|T|^2$ introduce another factor M_R , cancelling the $4/M_R$. We are then left with

$$\Gamma = \frac{|\mathbf{T}|^2 \mathbf{k}}{M_R} \quad M_N, \text{ for baryons}$$
 (5')

$$= \frac{|\mathbf{T}|^2 \mathbf{k}}{M_R^2} M_N^2, \text{ for mesons}$$
(5")

The powers of the nucleon mass M_N or M_N^2 have been introduced so that we can treat |T| as dimensionless.

 $|T|^2$ contains centrifugal barrier factors, which we call B_{l} . We then have

$$\frac{\text{Decuplet}}{\text{Singlet}} \} \Gamma = (cg)^2 B_{\ell}(k) \frac{M_N}{M_R} k$$
(6)

Octet
$$\Gamma = (c_D g_D + c_F g_F)^2 B_{\ell}(k) \frac{M_N}{M_R} k$$
 (7)

Nonets
$$\begin{cases} G_8 = \Lambda \cos\theta - \Lambda' \sin\theta \\ G_1 = \Lambda \sin\theta + \Lambda' \cos\theta \end{cases}$$
(8)

with
$$G_8 = c_D g_D + c_F g_F$$
$$G_1 = c_1 g_1.$$
(9)

Here c, are the SU(3) coefficients with the sign convention adopted in this article [see note preceding the table of SU(3) isoscalar coefficients and Fig. 3, "Note on $\textbf{Y}^{\texttt{*'s"}}$]. \textbf{M}_N is the nucleon mass, \textbf{M}_R is the resonance mass for which Γ is calculated, k is the center-of-mass momentum for the channel being considered, g; are the relevant couplings. For the case of singlet-octet mixing, formula (8) has to be used in conjunction with (6) and (7). G_8 and G_1 represent the couplings for the multiplet, and Λ and Λ ' represent the couplings for the physical states. In a recent fit of all baryon states into SU(3) multiplets by the CHS collaboration (PLANE 70) two forms have been tried for B_{ℓ} .

(a) The form $\stackrel{\nu}{B}_{\ell} = k^{2\ell} D_{\ell}(kR)$, R being the radius of interaction and D_{ℓ} the polynomials in kR given by BLATT-WEISSKOPF 52. Usually R is taken to be 1 Fermi (TRIPP 68).

(b) The form $B_{\ell} = k^{2\ell}$. It turns out that the values of θ and $g_{F}^{}/g_{D}^{}$ obtained with the two forms for B_{ℓ} are the same, although the absolute values of g_F and g_D depend upon the form used.

The relation between $\boldsymbol{g}_{D}^{}\text{, }\boldsymbol{g}_{F}^{}$ and the D (symmetric) and F (antisymmetric) couplings is as follows:

$$\frac{\mathrm{F}}{\mathrm{D}} = \sqrt{\frac{5}{3}} \frac{\mathrm{g}_{\mathrm{F}}}{\mathrm{g}_{\mathrm{D}}}.$$
 (10)

Fits of baryon decay rates within SU(3) can be found, among others, in TRIPP 68 and 69 and LEVI SETTI 69.

The most recent published survey is by the CHS collaboration (PLANE 70); we report their results in Table I. A new fit by the BNL group has been reported by Samios at the Kiev Conference[‡] (SAMIOS 70). The results of the two analyses are in good agreement, although the procedures used are somewhat different. We refer the reader to these papers for more details. Some comments are given below.

$\frac{1}{2}$ -Nonet (Baryon - Eta Resonances)

For this nonet relation, (7) was multiplied by the factor

$$\left[\frac{M_{R}-M_{B}}{\overline{M}_{R}-\overline{M}_{B}}\right]^{2},$$

where M_B is the decay baryon and $\overline{M}_R - \overline{M}_B = 564 \text{ MeV}$ is the difference of the mean $1/2^-$ and $1/2^+$ baryon octet masses. This kinematic factor comes from PCAC arguments (i.e., the assumption that axial vector current remains an octet in presence of symmetry breaking) and it was advocated by Graham et al. (GRAHAM 67). For the $1/2^{-1}$ nonet it has been used in this form first by Gell-Mann et al. (GELL-MANN 68).

The two values of F/D are dependent upon what value is used for the decay $N(1525) \rightarrow N\eta$. The first value is obtained by using 60% for the Nn branching ratio, the second value by using ~15%. SAMIOS 70 reports only the second value. However, there are now reservations about the second value (see footnote

Table I. SU(3) baryon multiplets with two or more known members. The coupling constants are those for decay into baryon $(1/2^+)$ octet \otimes pseudoscalar meson octet. Values of θ and F/D taken from PLANE 70. The analysis reported by SAMIOS 70 finds similar results.

JP		Octet r	nembers	a	Singlet		$\theta(deg)^{b}$	F/D
1/2-	N' (1535)	<u> </u>	Σ(1750)	<u></u> (1825)	Λ(1405)	18 ± 17	-2.9 -0.21
3/2-	N(1520)	Λ(1690)	Σ(1670)	Ξ(1800)	Λ(1520))	-25 ± 6	2.3
5/2	N(1670)	Λ(1830)	Σ(1765)					-0.19
5/2+	N(1688)	Λ(1815)	<u>Σ(</u> 1915)					0.82 ^d
Decuplet members g_{10}^{2c}								
3/2 ⁺ 7/2 ⁺				0.94 to 2.38 0.25 to 0.97				

a. Masses in parentheses are the nominal masses used in the Baryon Table. For the Ξ members, the value of the mass is the one predicted by SU(3), using the mixing angle calculated by using the rates. b. Values calculated from the decay rates (Eq. 8). c. Values taken from TRIPP 68 who uses the convention of Eq. 6 with $B_j(k)$ being the BLATT-WEISSKOPF 52 form. d. SAMIOS 70 finds F/D = 1.5 for this octet.

S150 REVIEWS OF MODERN PHYSICS • APRIL 1971 • PART II

o to Baryon Table).

B. SU(3) CLASSIFICATION OF MESON RESONANCES

All of the discussion above applies, except that for Bosons the GMO formula is usually applied to the <u>square</u> of the masses, as opposed to the first power for fermions. Thus for example, Eq. (2) becomes

$$4\hat{\mathbf{K}} = 3\hat{\eta} + \hat{\pi}.$$
 (2')

The symbol \hat{K} was introduced by Glashow and Socolow[†] for the square of the K mass, etc.

Because of the difference between Eqs. (5') and (5"), there is also an extra factor of $(M_N^{/}M_R)$ in Eqs. (6) and (7). The three established nonets (0⁻, 1⁻, 2⁺) and their mixing angles are listed in Table II.

Table II. Mixing angles from quadratic SU(3) mass formula. Of the two iso-singlets, the "mainly octet" one is written first, followed by a semicolon.				
JP	Octet members	θ		
0-	possible nonet[π, Κ, η;η']	10.4±0.2°		
0	alternative nonet [π, Κ,η;E]	6.2±0.1°		
1	$[ρ(765\pm10), K^*, φ;ω]$ 39.5			
2+	[A2(1300±20), K _N (1420), f';f]	33.7±3.9°		

Footnotes and References

[†]The formula has been calculated from analogy with the formula for mixing of meson states, first put in this form by S. L. Glashow and R. H. Socolow, Phys. Rev. Letters <u>15</u>, 329 (1966). For the baryon formula see A. Barbaro-Galtieri, Phenomenology of Resonances and Particle Supermultiplets. UCRL-17054 (1966).

[‡]This is an updated version of the fits by Flaminio et al., BNL report 14572.

J. M. Blatt and V. F. Weisskopf, <u>Theoretical</u> Nuclear Physics, Wiley, New York, 1952.

R. P. Feynman, Theory of Fundamental Processes, W. A. Benjamin, Inc., New York, 1962.

R. Graham, S. Pakvasa, and K. Raman, Phys. Rev. 163, 1774 (1967).

M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968).

R. D. Tripp, in <u>Proceedings of the 14th Inter-</u> national Conference on High Energy Physics, Vienna 1968, p. 173. R. Levi Setti, in <u>Proceedings of the Lund Inter-</u> national Conference on Elementary Particles (1969).

R. D. Tripp, in <u>Proceedings of the 3rd Hawaiian</u> <u>Topical Conference on Particle Physics</u>; UCRL-19361 (1969).

D. E. Plane et al., Nuclear Physics <u>B22</u>, 93 (1970). Also J. Meyer and D. E. Plane, CERN/D. Ph. II/Phys. 70-45 (to be published, 1970).

N. P. Samios, BNL report 15284. To be published in Proceedings of the 15th International Conference on High Energy Physics, Kiev, 1970.