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A unified survey is presented of various theoretical approaches that have been developed to account for the novel
propagation effects which may take place when extremely short pulses of coherent light interact with matter.
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I. INTRODUCTION

Recent advances in laser technology have led to the
production of coherent optical pulses having durations
in the picosecond (10 " sec) regime (DSG67, Ma68,
DGBM69). Such time intervals are comparable to or
shorter than the phase memory times associated with
many atomic systems. The high-frequency polarization
induced in a medium by such a light pulse can therefore
retain a definite phase relationship with the incident
pulse. The resonant interaction of radiation and matter
on such short time scales gives rise to phenomena which,
as a result of the quantum mechanical coherence
eRects, cannot be described by the rate equation
analysis developed previously (BBW63, FN63,
BAZKL66) for the treatment of much longer pulses.
In gases, where atomic phase memory times may be on
the order of nanoseconds, pulses of a correspondingly
longer duration may play this same role and, in the
present work, any pulse which is shorter than all
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relevant relaxation times will be referred to as "ultra-
short. "

The novelty of the effects that may occur as a result
of the coherent response of a medium to an optical
pulse has been brought out quite strikingly by the
recent discovery of self-induced transparency (McCH67,
McCH69) . In this effect, the leading edge of the pulse
is used to invert an atomic population, while the tr'ailing

edge returns the population to its initial state by
means of stimulated emission. The process is realizable
if it takes place in a time that is short compared to the
phase memory time of the resonant atomic systems,
i.e., to the homogeneous broadening time of the medium,
and also if the pulse has sufficient intensity to eRect the
population inversion. When conditions for the process
are met, it is found that a steady-state pulse profile is
established, and that this pulse envelope then propagates
without attenuation at a velocity that may be con-
siderably less than the phase velocity of light in the
medium. Pulses with intensity below the threshold
required for this process merely attenuate in the usual
manner. Within the theoretical framework that has
been used to describe this effect, it has been shown that
the above-mentioned steady-state propagation takes
place after the profile of the electric 6eld has evolved
to the form of a hyperbolic secant (McCH67). Many of
the experimental and theoretical aspects of this phe-
nomenon have been considered since its discovery
(McCH69, PS67, GS70, HS69) . The possibility of
analogous effects in semiconductors has also been
proposed (PP69) . Somewhat similar steady-state pulse
propagation has been observed in the study of neuristor
waveforms (Sc70a) and is known to occur in the
propagation of impulses on the nerve axon (Ka66).

In addition to the anomalous transmission property
of ultrashort optical pulses, the amplification of such
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pulses has also drawn considerable attention. A number
of analytical results have been obtained here as well
(AB65, AC68, AC69). One expects that ultimately the
amplification process will be limited by nonresonant
loss mechanisms. If these are introduced in a phe-
nomenological way by means of a conductivity, then
for a nondispersive host medium, the ad hoc assumption
that there is a steady-state pulse propagating at the
phase velocity of light in the medium is readily verified.
Steady-state propagation has also been demonstrated
when host medium dispersion is included (AC69).

Whenever it becomes necessary to extend the range
of validity of a theory to encompass new phenomena,
it is useful to seek limiting cases of the general formalism
(WW66, TS66, McCH69, HS69) which admit to exact
solutions of the type referred to above. The present
paper is an attempt to summarize the success that has
thus far been achieved in describing the novel aspects
of ultrashort optical pulse propagation by analytical
methods. No attempt has been made to survey the
entire field of ultrashort optical pulse propagation.
Experimental results as well as numerical computations
have been referred to only insofar as they enhance an
understanding of the analytical results under con-
sideration. A review which does place emphasis upon
experimental topics and is accordingly complementary
to the following presentation has appeared recently
(KL70) . While the experimentalist is frequently
unmoved by theoretical descriptions that fail to provide
for all facets of a phenomenon as it occurs in the experi-
mental milieu, such as level degeneracy, finite relaxation
times, inhomogeneous broadening, etc. , it should be
emphasized that many of the most interesting aspects
of ultrashort pulse propagation appear already in
rather highly idealized theoretical contexts and our
understanding of the equations that govern even these
simpler situations is still far from complete. An in-
creased understanding of these simpler theoretical
models will undoubtedly enhance our understanding of
the more complete descriptions that require numerical
computations. A case in point is the recent discovery
that certain nonlinear equations, notably the Korteweg-
deVries equation, possess conservation laws in addition
to those of field energy and field momentum. An
examination of a highly idealized theoretical model of
optical pulse propagation has shown that the governing
equation is another example of an equation possessing
such higher conservation laws. Guided by this result,
it has been found that higher conservation laws may
also be obtained for one of the more general theoretical
formulations that has been used to describe ultrashort
optical pulse propagation. Such conservation law' s
provide an extremely simple means of obtaining certain
results which previously required extensive numerical
computation, and also provide a guide to the synthesis
of these numerical results. The most promising method
for attacking such nonlinear problems is clearly through
a simultaneous application of both analytical and

computational techniques, and the field of optical pulse
propagation provides an ideal opportunity for applica-
tion of this "synergetic" (ZA67) approach. In fact,
self-induced transparency was discovered from an
analysis of numerical solutions of the equations which
describe optical pulse propagation.

In addition to the steady-state results mentioned
above, two relatively simple models, one of which has
already been alluded to, have been devised to describe
a number of the effects that have been observed both
experimentally and as output from machine computa-
tions. The first model is one in which inhomogeneous
broadening is neglected. The physical situation most
closely related to such a model is that of propagation
under conditions of extreme saturation broadening.
Although the problem under consideration involves a
coupling between radiation and matter that is too
strong to be treated by perturbation theory, a fairly
extensive analytical treatment of this model is still
possible since it expresses this interaction in terms of a
single nonlinear partial differential equation which arose
long ago in differential geometry. The techniques
developed about the turn of the century for obtaining
solutions to this equation may be employed here to
considerable advantage (La69b) .

Certain other phenomena, notably that of photon
echo (AKH65, CLA68, PS68, SSB68, GWPST69),
require for their explanation the relative dephasing of
atoms that results when inhomogeneous broadening is
included. This effect also provides an example of a
collective superradiant state in which energy is radiated
coherently into the electromagnetic field (Di54, AP69,
AMS69). Here again, it is possible to construct a
soluble model which takes into account the reaction
of stimulated emission upon the incident wave (La69a) .
If one is willing to forego consideration of the detailed
structure of pulse shapes, the time dependence of the
pulse may be assumed to be that of a delta function,
and interest confined to the spatially dependent ampli-
tude of such delta function pulses. Only the time
integral of such pulse envelopes is meaningful, of course,
but such time integrals have been shown to be precisely
the quantities of interest in the treatment of ultrashort
pulses. The area theorem (McCH67), which is so
useful in understanding short pulse phenomena, is also
found to govern the spatial evolution of the amplitude
functions introduced in this model.

Although much of the physical insight required for
an understanding of the propagation effects associated
with ultrashort optical pulses may be obtained from a
consideration of the interaction of a plane mono-
chromatic light wave with a system of nondegenerate
two-level atoms, it should be noted that effects thus
uncovered do experience modification when transverse
mode structure (McCH70), homogeneous and in-
homogeneous broadening (HS69, IL69), and especially
level degeneracy (McCH69, RSJ68) are taken into
account.



G. L. LAMs, JR. Ultrashort Optical EN/se I'ropagation 101

In addition, it is now becoming apparent that the
restriction to a monochromatic light pulse will have to
be relaxed. Ultrashort optical pulses have recently been
shown to possess a frequency sweep (Tr68b, GDH68,
Tr69b). It is to be expected that future research in the
field of ultrashort optical pulse propagation will place
increasing emphasis upon the phase characteristics of
the pulse (GHS).

ri= (2ep/%pi, p) E p, (2.3)

where ~,b is the transition frequency between the upper
and lower levels u and b, respectively, and P is the
dipole matrix element for such a transition. The factor
of 3 in parentheses is to be included if all possible
spatial orientations of the two-level systems are per-
mitted so that an average over all orientations must be
performed (VanV24, KS48) .

In Eqs. (2.2) and (2.3) it is customary (BAZKI66)
to include terms proportional to the longitudinal and
transverse relaxation times T& and T2, respectively.
However, for ultrashort pulses it is assumed that pulse
widths are much shorter than all relaxation times.
Hence contributions from terms proportional to
relaxation times will be much smaller than contributions
from time derivatives of pulse profile envelopes. All
terms containing relaxation times will therefore be
ignored.

We now return to Eq. (2.1) and consider the effect
of the medium upon the optical wave. For the resonant
situation being considered, the term O'P/Bt' may be
replaced by —(vp'P, where cop is the carrier frequency of

II. BASIC EQUATIONS

We begin by summarizing the standard semiclassical
description of the interaction of an electromagnetic
wave with an assembly of two-level systems. The
optical field in the form of a plane polarized electro-
magnetic pulse may be characterized by its electric
field vector E(r, t) which satisfies the usual wave
equation

4m' BE 1 O'E 4x O'P
PE— ————= ——, (2.1)c' B] c'BP c' BP

where 0. is a conductivity that is introduced to simulate
nonresonant losses in the medium, c is the phase
velocity of light in the medium, and P is the polarization
of the medium that is induced by the electromagnetic
wave. For a medium consisting of an assemblage of
noninteracting two-level systems distributed with a
uniform density np, this polarization is npp, where p is
the polarization of an individual two-level system.

The polarization p, as well as the difference in
population between upper and lower levels, n, are in
turn driven by the optical field E. As shown in Appendix
A, the quantities p, n, and E are related through the
equations

p+cpab p= —(p) (2cp, p p'/Sitp) Ee, (2.2)

P(r, t) =rip d aping (api) p (api, r, t) —=np(p (b pi, r, t) ).

(2.3)

The spectrum g(d p~) is assumed to be normalized
so that

dip&g(Acp) = 1. (2.6)

Equation (2.1), specialized to a, plane wave traveling
in a positive x direction, then becomes

$(dl" /dt)+27roE] sin 4 (x, t)+E(d.g/dt) cos C (x, t)

= 2irpipnp(p(kcp x t) ) (2.7)
where

and
C =kpx cupt+$(x, t), —

d/dt = (8/Bt) +c (ct/Bx) . (2.8)

the incident pulse. This follows immediately if cu,b is
replaced by pip in Eq. (2.2), and the term on the right-
hand side of that equation is then ignored. Neglect of
this term is justified if cJp)) P ~

E ~/5. As will be seen in
the subsequent development, the term on the right-
hand side of this inequality is comparable to the pulse
widths being considered. Since they will always contain
many optical periods, the above inequality will always
be satisfied. Two-photon resonant propagation in which
up= 2pp p llas also beell considered (BP69) .

Since even the shortest pulses produced to date
contain many optical cycles, it is appropriate to write .

the electric field in terms of a carrier wave, as well as
envelope and phase functions E(r, t) and @(r, t),
respectively, which vary slowly on the length and time
scales of the carrier wave. Hence one may write

E(r, t) =E(r, t) cos [kp r—pipt+p(r, t)], (2.4)

and assume cppE»BE/Bt, kpE&)7'E plus similar in-
equalities for @.Because of the assumption that E(r, t)
and g(r, t) vary slowly compared to the carrier wave,
Eq. (2.1) may be reduced to a, much simpler form. In
particular, only the first derivatives of E(r, t) and
&(r, t) need be retained on the left-hand side of this
equation when it is expressed in terms of the envelope
and phase as defined by Eq. (2.4). The solution thus
obtained is customarily referred to as the solution in
the slowly varying envelope and phase approximation.

In general, it is appropriate to allow for a continuous
distribution of transition frequencies ~ about co b, the
so-called inhomogeneous broadening, rather than a
single transition frequency ~,b. It is convenient to
analyze the situation in which this frequency dis-
tribution is symmetric about co b, and the carrier
frequency of the incident optical pulse is at this center
frequency, i.e., ~p=M b.

If the spectrum which characterizes the broadening
is written as g(Api), where dpi= cp —pip, then the polar-
ization of the medium is given by
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When the polarization is decomposed into parts
which are in phase and ~/2 out of phase with the electric
field, one finds, as shown in Appendix A, that Eq. (2.7)
may be written as the pair of relations

(dE/dt) +2iraE= cn'(tP(her, x, t) ), (2.9a)

E(dg/dt) = —cn'(G(A~, x, t) ), (2.9b)
where

E= (P/f'i)E,

and (P and 6 are related to P according to

p= p[(P(h(u, x, t) sin C (x, t) +0(t!ice, x, t) cos C (x, t) .

(2.10)
The constant o.' is defined by

n = 27I Bpcoo p /5c. (2.11)

The transformation to slowly varying quantities given
in Eqs. (2.4) and (2.10) is equivalent to the trans-
formation to a rotating frame that is free, uently em. -

ployed by workers in this field (McCH69) .
As shown in Appendix A, the two components of the

polarization are related to E, g, and the normalized
population inversion K= n/no by

BK/Bt = —E(P,

B(P/Bt =EX+[aci+ (By/Bt) fe,

(2.12a)

(2.12b)

Be/Bt = —[Aa)+ (By/Bt) jtP .(2.12c)

Multiplication of Eqs. (2.12) by K, 6', and 0, respec-
tively, and summation of the resulting equations yields
an exact differential which is equivalent to

K'+ iP'+ 8'= 1 (2.13)

In this latter result, a constant of integration has been
set equal to unity since in the usual applications of the
theory one requires tP(x, —~) =0(x, —oo) =0,
X(x, —~) =&1.The form of Eq. (2.13) enables one
to interpret the response of a two-level system in terms
of the motion of a vector on the surface of a sphere in a
(P, 6, X space. This description will be considered in
Sec. V.

Equations (2.12) describe how the field amplitude L&'

and phase p determine 5', 6, and X for a two-level
system that is o8 resonance by an amount Ace. Equa-
tions (2.9) show how the total polarization due to an
assembly of two-level systems, with transition fre-
quencies distributed according to g(Ace), reacts back on
the amplitude and phase. Equations similar to (2.12),
the Bloch equations, also arise in nuclear magnetic
resonance studies in which an oscillating magnetic field
interacts with an assemblage to two-level systems which
possess a magnetic moment. Such studies have been
confined to samples that are su%ciently thin that the
reaction of the induced field back upon the exciting
field may be ignored. In that case, Eqs. (2.12) may be
solved for a specified external field. This is not the case

in the situation envisioned here. A satisfactory descrip-
tion of optical pulse propagation is achieved only when
the field is determined self-consistently by the simul-
taneous solution of Eqs. (2.9) and (2.12) .

For lossless propagation (0.=0), the conservation of
energy follows from Eq. (2.9a) upon multiplication by
E and introduction of Eq. (2.12a). The result may be
written in the form

(B/Bt) (-'E' +n'c(X)) +c( B/ Bx) (-'E') = 0. (2.14)

It will be shown in Sec. VII that this is the first of a
number of conservation laws which are satisfied by the
coupled Maxwell and Bloch equations in the slowly
varying envelope approximation.

III. SELF-INDUCED TRANSPARENCY AND THE
AREA THEOREM

Up to the present time, the full set of equations
given by Eqs. (2.9) and (2.12) has received limited
attention. A simplified version of these equations that
has been treated quite extensively is obtained by
adopting the consistent set of assumptions that the
phase term P is initially zero, that the carrier frequency
is at the center of a symmetrically broadened line
[i.e., g(A~) =g(—A&v) j, and that 0 is an odd function
of Ace. From Eq. (2.9b) one then sees that the source
term governing variations in @ is zero so that @ will
remain zero.

The stability of this choice of the phase is perhaps
most easily inferred from recent numerical calculations
by Diels (Di70) in which the mean frequency of a
light pulse was found to be pulled toward the center of a
Lorentzian broadened line. The form of the theory,
which follows from the choice of constant phase, has
provided considerable insight into the subject of ultra-
short pulse propagation (HS69, McCH69, IL69) .

The only analytical solutions of this specialized form
of the basic equations that are available to date are
steady-state solutions. They include both the solitary
wave solution of self-induced transparency and infinite
wave train solutions (ADS68, Cr69a, Eb69) which
contain the solitary wave as a limiting case. Only the
former will be described here; infinite wave train
solutions will be considered later in connection with a
somewhat more specialized theoretical model.

For a steady-state solution, one may assume that
E, 5', 6, and X are functions of a single independent
varia, ble w= (t—x/V), where V is the velocity of the
pulse.

Equa, tions (2.9a) and (2.12c) may now be combined
and integrated to yield

[1—(c/V) 1E(w) +n'c(tI(A&a, w) /Ace) = 0. (3.1)

An integration constant has been set equal to zero in
this result since E and 6 are zero before arrival of the
pulse. If this equation is divided by E(w) and differ-
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entiated with respect to zv, one obtains

g (A(o) d tG
ddt)

h&v dw &E
(3.2)

express the envelope velocity in the form

V '=c '+n'r '(D)

For g(h~) given by Eq. (3.3), one finds that

(3.9)

Now the function g(hco) contains a parameter such
as T2* that determines the width of the inhomogeneous
broadening, e.g. ,

where
(D)=2K exp (E') erfc (E),

E=T2*/2r„,

(3.10)

(3.11)

K= —1+2D sin' (g/2),

(P= —D sin y,

g= 2Dr„Geo sin (p/2),

(3.5b)

(3.5c)

(3.5d)

g(a~) = LT,*/2(~)'&q exp L
—(a~T2*/2)2]. (3.3)

Although V, and hence m, depends in an implicit way
upon T~*, there is no explicit dependence of E upon
T2 . Since g is the response of an individual two-level

system, it is also independent of T2* except for the
implicit dependence contained in m. Consequently,
the function in parentheses in the integrand of Eq.
(3.2) does not contain explicit dependence upon T~*.
Since it is known that the theory is still valid for
arbitrarily large values of T2~, one may invoke Lerch's
theorem' to justify the conclusion that the term
multiplying g(lcd) in the integrand must itself be
equal to zero. It then follows that

g(Aa), w) =y(lcd)E(w), (3.4)

where z(hco) is an as yet undetermined function of the
detuning. As shown in Appendix 8, the factorization of
Q provided by Eq. (3.4) enables one to solve completely
for the self-consistent interaction of tP, g, and K with
the field envelope E. One obtains (McCH67)

E= (2/r„) sech (w/r„) = (2/t~) sin (y/2), (3.5a)

and erfc (K) is the compliment of the error function
(AS64). For T2*))r„, we find that (D)~1. As Tg*
becomes much less than r„, a much smaller percentage
of the atoms are on resonance. One then finds (D)~0
and hence V—+c. A number of other experimental
implications of these results have been considered
(M cCH69) .

Finally, it has been noted (CS68) that if the carrier
frequency is not located at the center of a symmetric
line but is in fact far from resonance, the expression for
the envelope velocity goes over to the usual result for
the velocity of a wave in a dispersive medium. In that
case, Eq. (3.7) is replaced by

D= L1+(r,bc')']-',

where 0~ = a&
—ceo

——Are+cd, c,
—~o. Far from resonance,

co,c,
—~o))hco, and Eq. (3.9) reduces to

V = c +n /(cong cdo) (3.13)

The above results, along with the previously men-
tioned infinite wave train solutions are the only ana-
lytical solutions of the inhomogeneously broadened
version of Eqs. (2.9a) and (2.12) that have been
reported to date. However, further analytical progress
has been made by confining attention to the area under
the envelope curve (McCH67) . If we define

where 0(x) = dtE(x, t), (3.14)

D= $1+ (r„Aa&)'] '

dw'E(w') = 4 tan ' exp (w/r~), (3.6)

(3 7)

the equation governing the variation in 0 is readily
obtained by integrating Eq. (2.9a) over all time. The
details are contained in Appendix C. The result is

and, from Eq. (3.4),

y(Ace) = Dr~'Acd. (3.8) iil wlilcll

(d0/dx)+cc0= a {n/2) sin 0, (3.15)

The pulse width v.„may be chosen arbitrarily. It is
essential to recognize that this steady-state pulse of
self-induced transparency is determined not only by
the strength of the field but also by the properties of
the medium as expressed through the dipole moment P.

Various topics of experimental interest can now be
considered. In particular, Eq. (3.1) enables one to

' For present purposes, the theorem may be stated in the form
given by Watson (%a62, p. 382): If f(r) is a continuous function
of r such that

exp (—r't) f(r) dr =0
0

for all sufficiently large positive values to t, then f(r) is identically
zero.

and
cc = 2n-cr/c,

n = 2irg (0)n'.

(3.16)

(3.17)

The constant n' is as defined in Eq. (2.11).
Equation (3.15) is known as the area theorem

(McCH67) . It contains the key to an understanding of
many of the effects which occur in the propagation of
ultrashort pulses. Again, if orientational averaging is
included, the factor n should be replaced by n/3. The
physical significance of a follows from the linearized
version of Eq. (3.15) in which sin 0 is replaced by 0.
For ~=0, the field is then seen to amplify or decay in
the characteristic length a '. When the spectrum
function given in Eq. (3.3) is used, one finds that n is
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i= x

FIG. 1. Schematic representation of solution of Eq. (3.13) for
t~:=0.

proportional to T~~. In Sec. VI, a simplified theoretical
model will be considered in which inhomogeneous
broadening is neglected. This may be accomplished by
letting T2*—+~ in the present model. An immediate
consequence of this limiting procedure is that this
characteristic length tends to zero.

For i~=0, the solution of Eq. (3.15) which satisfies
8=op at s=sp is

tan (8/2) = tan (gp/2) exp [+(n/2) (x—xp) ] (3.18)

and is depicted schematically in Fig. 1. Modifications
of this result due to nonvanishing conductivity have
been inferred (IL69, Co69) from numerical solutions
of Eq. (3.15).

Since Eq. (3.15) contains a choice of signs, it is
actually two distinct differentia equations. The two
solutions are obtained from Fig. 1 by reading the
diagram from right to left for the plus sign (amplifier),
and from left to right for the minus sign (attenuator).
Hence one sees that an infinitesimal area will grow to
x in an amplifier, while any area less than m. will evolve
to zero in an attenuator. This second result allows for
not only the well-known decay of a pulse as it propagates
in an attenuator, but also for evolution into a non-
vanishing zero ~ pulse, j.e., one in which the total area
under the pulse envelope is zero, but the area under the
pulse energy ( E') is not zero This is p. ossible if the
positive portions of a pulse envelope are equal in area to
the negative portions. Physically, the regions of positive
and negative envelope are merely regions in which
there is a relative difference of 180 degrees in the phase
of the carrier wave. In an attenuator, initial pulse
areas between m- and 3~ will evolve into the steady-state
2m pulse of self-induced transparency: the 2x pulse is
unstable in an amplifier and will evolve into either a x
or 3x pulse. Figure 1 refers only to the total area of a
pulse and gives no information at all about either the
possible breakup of a pulse into two or more pulses
with the same total area or whether a continually
amplifying vr pulse will retain an area of 7r by virtue of
pulse narrowing or by developing negative regions in
the pulse envelope.

Although the phase has been neglected by most
workers in this field, the effect on the phase of a K.err
effect or nonlinearity in the refractive index has been

obtained (EM69) for steady-sta, te pulses in an un-
broadened medium [i.e. , g(A~p) =8(hip)]. It is found
that the frequency has a nonmonotic frequency sweep
or "chirp" proportional to sech' x.
IV. STEADY-STATE PULSE IN AN AMPLIFIER

(4.1)
and

E(dy/dt) = —n'cn, (4.2)

as well as Eqs. (2.12). The ad hoc assumption which
renders the analysis tractable is that both E and @
travel at the velocity c. The differential operators in
Eqs. (4.1) and (4.2) then vanish identically and the
problem is greatly simplified. It is emphasized that no
rigorous justification for this assumption has been
presented. However, from a study of numerical corn-
putations, it has recently been noted (IL69) that if a
steady-state pulse at any velocity v Q c is assumed, then
the resulting numerical solution is unstable and evolves
into a pulse propagating at v= c.

From Eq. (4.2) one sees that 0=0, and hence from
Eq. (2.12c) that

Dpi+ (ity/rtt) = 0.

Consequently, we have

(M Mp) t&

(4.3)

(4.4)

and from Eq. (2.4) it follows that the frequency of the
steady-state pulse is always equal to ~ the transition
frequency of the two-level system (AB65). As pre-
viously mentioned a similar frequency shift has been
observed in a numerical analysis of the 2& pulses of
self-induced transparency (Di70) .

The remaining equations are now

7E= g,

5' =L'x)

x= —E~,

(4.5)

(4.6)

(4 7)

where the dot signifies differentiation with respect
to t x/c, and—

r—= 2iro/n'c. (4 g)

Equations (4.6) and (4.7) have the parametric repre-
sentation

(P= sin p,

X= cos ttt))

(4 9)

(4.10)

In addition to the self-induced transparency solution
in an attenuator, a somewhat similar steady-state result
may be obtained in an amplifier if the loss term 0- is
retained in Eq. (2.9a). This was first recognized by
observation of machine computations (WW64) and
subsequently described analytically (AB65) . Both
results have been obtained in the limit of no inhomoge-
neous broadening. Certain cases in which homogeneous
broadening is reta, ined have also been treated (AB65).
From Eqs. (2.9), the relevant equations are

(dE/dt) + 2iraZ& = n'c(P
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with
(4.11)

and
(B(P/Bw) +BI cop (8@/Bw) )=0. (4.16b)

Equation (4.5) then provides a diRerential equation
for p. The solution yields

E= r 'sec-h P(t x/—c)/r] . (4.12)

The population is seen to be inverted by the pulse
since Eq. (4.10) is now equivalent to

(4.17a)

coo8 (4.17b)

Equations (2.12), with Aco set equal to zero, are also
applicable. Combination of Eq. (4.16a) with (2.12c),
and of Eq. (4.16b) with (2.12b) leads to

~E= g,

Finally, since

X= —tanh t (t—x/c) /r]. (4.13) Equations (2.12b) and (2.12c) may be combined
to yield

IP (8/Bw) ((P/6) =EXO+ (Beati/Bw) (1—X') (4.18)
(4.14)

aE = —BP/cjw, (4 15)

where w= t x/c When E—and .P are written in the form
of Eq. (2.4) and (2.10), respectively, but without any
assumption that 8 and it are slowly varying, Eq. (4.15)
yields the pair of relations

rE= (P—(~po) 'L6'(Bit /cjw) + (cIq/Bw) ] (4.16a)

and also because the vector whose rectangular com-
ponents are 6' and 6 is rotated through an angle x
during passage of the pulse, the result given in Eq.
(4.12) is customarily referred to as a 7r pulse. Pre-
liminary measurements indicate that such pulses may be
realized in standing wave geometries (FS67) .

Steady-state pulse propagation in an amplifier has
also been analyzed without the assumption of a slowly
varying envelope and phase (AC68) . For a non-
dispersive medium the assumption of propagation at the
phase velocity of light in the medium is retained,
however, and again it provides the simplification that
is sufficient to permit an exact solution. For pulses that
are many optical cycles in duration, there is very
little difference between the pulse shape obtained with
this more exact treatment and the method described
above. What is of great interest, however, is the pre-
diction of a phase variation in the carrier wave. The
"chirp" predicted by the theory is proportional to the
square of the ratio of optical period to pulse width.
Such a result could not be obtained in the slowly
varying phase and envelope approximation which is
equivalent to an expansion to only first order in this
ratio.

The method has subsequently been extended (AC69)
to include the effect of dispersion in the host medium.
In the limit of large dispersion it was found that a
monotonic frequency sweep is predicted. Such chirping
of ultrashort pulses has been observed experimentally
and offers new opportunities for pulse compression
(GDH68, Tr68b, Tr69) and population inversion
(Tr68a) .

We first consider the case in which no dispersion is
present. When the pulse is assumed to propagate at the
velocity of light in the host medium, Eq. (2.1) reduces
to

in which Eq. (2.13) has been employed. From Eqs.
(4.17), (2.12), and (2.13), one obtains

cjX/clw= —r t (1—XP)/(1+a Xo)) (4.19)

The constant u is defined as

a—= (copr) ' (4.20)

and is the ratio of the period of the carrier wave to the
width of the pulse. Finally, Eq. (4.18) yields

el/ a Xo 1—%2
(4 21)

Bw r 1+(aX) ' L1+ (aX) ']'
Unfortunately, explicit time dependence for K is no

longer possible; Eq. (4.19) leads to the implicit relation

w/r = a'X—(1+a') tanh —' X.
For a«1 this reduces to Eq. (4.13).

The "instantaneous" frequency is

(4.22)

coins', = ado (el//clw) . (4.23)

For %=&1, i.e., at both ends of the pulse, this
becomes

~;..i= ~o[1—a'/(1+a') ], (4.24)

while at the center of the pulse X=0 and

~pinst idp(1+a ) ~ (4.25)

The fractional shift in frequency is 2a'/(1+a') .
For a picosecond pulse at 1p, u 10 ', and the fractional
frequency shift is 10 '. The absolute frequency shift
is 300 Mc/sec.

The calculation outlined above was subsequently
(AC69) extended to include dispersion in the host
medium. The dispersion was treated by standard
methods of linear wave propagation. It was found that
in the limit of large dispersion, the chirp becomes
proportional to the first power of the ratio of optical
period to pulse duration, rather than to the second
power as found in the calculation summarized above.
As is to be expected, then, this limiting case can be
treated in the slowly varying envelope and phase
approximation, and this formulation is adopted below.

The wave equation given in Eq. (2.1) is readily
modified to include effects arising from the presence of
a host medium. Since the effect of the host is merely to
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P=P,+P „ (4 26)

provide an additional contribution to the polarization,
one need merely introduce an additional polarization
term P„„ to describe this nonresonant contribution.
The total polarization in Eq. (2.1) is then

(4.37)

For a dispersionless system, p= 0 and hence 6=0. The
effects of dispersion may therefore be considered to be
large when y&1.

From Eq. (2.13)

E'= (I—&') /r'(1+7')
and from Eq. (2.12a)

BK/Bt = —
I (1+rP) /7 (1+y') ]. (4.38)

The population is again seen to be inverted by the
pulse, for the solution of Eq. (4.38) is

x= —tanh (t/r„),

r.= r(1+&')

(4.39)

(4 27) wheie

(4 4p)

where the first term P„ is the previously considered
resonant polarization which results from the interaction
of the wave with the two-level systems suspended in
the host medium. The frequency dependence of the
nonresonant polarization is conveniently described in
terms of a susceptibility y(cp) by writing

dc'
P„,= —e '"'X(tp) E(tp),

oo 2X

where E(tp) is the Fourier transform of the electric
6eld vector

(4.41)

The pulse shape, which follows from Eq. (4.37), is

E=r~ ' sech (t/r~).
E(~) = dte' 'E(t). From Eq. (4.19), (4.35), and (4.37),

In the neighborhood of the carrier frequency ~0, the
susceptibility may be approximated by

4irX(pp) = op+op(tpp/tp) ~ (4.29)

where ap and ao are real. Hence x is real, and y(tp) =
z( —tp) which assures the reality of P„„. Absorption
associated with an imaginary part of p, as required by
the Kramers —Kroenig relations, is presumably small
and will be ignored.

If it is assumed that E is plane polarized and of the
form of a steady-state pulse with envelope velocity v,
and phase velocity v„, then one may introduce the scalar
electric field

By/Bt= —(y/r )X,, (4.42)

and the relative change in the "instantaneous" fre-
quency is

(tpinst ppo)/too= —
ppo '(Bp/Bt) = (p/tpr~)X. (4.43)

Hence, the chirp is now monotonic and, for y com-
parable to unity, is proportional to the first power of
the ratio of optical period to pulse width.

For large p, it may easily be seen that the population
inversion takes place by means of adiabatic rapid
passage (Tr68a). If we introduce a position vector %
in a three-dimensional (P, 6, X space according to

E=g(t —x/ )telos popo(t x/o„)+g(t —x/p, )]. (4.3p)— %=e,tP+e&6+co%, (4.44)

The resonant polarization of the medium may be
written

P,= no PI —(P sin (P+g)+0 cos (f+g) ], (4.31)

as well as a vector describing both the electric field and
the detuning of an individual two-level system by

5=eoE+ eo (By/Bt), (4.45)

where
top(t x/p„), — — (4.32)

then Eqs. (2.12), for the case of exact resonance, may
be written

(d%/dt) =6 x%. (4.46)
and 6', 6, and p are functions of t—x/t~, . As is shown in

Appendix D, the insertion of these forms into the wave
equation and into the equation for energy conservation
leads to

c/o, = (1+ap) '"
c/p„= (1+ap) "'—op't'.

Also, as shown in Appendix D, one finds

(P= rE,
e=qrE,

where

(4.33)

(4.34)

(4.35a)

(4.35b)

y=——(coo/2n. p) La, (1+up) ]'t', (4.36)
and r is as defined in Eq. (4.8). From Eqs. (4.35) it is
seen that y represents the ratio of the in-phase com-
ponent of polarization to the out-of-phase component.

For large y, the angle between % and 5 is given by

cos B=% @/I% II @
I

-1 (447)
v)) j

Hence the position vector remains collinear with 5.
As the pulse passes a given two-level system and
BP/Bt goes from y/r~ to y/r~, the eo c—omponent of %
must proceed from 1 to —1. Such a response of the
position vector % has been encountered in nuclear
magnetic resonance and has come to be referred to as
adiabatic rapid passage (Ab61) .

V. A TRANSFORMATION OF THE UNDAMPED
BLOCH EQUATIONS

In treating ultrashort pulses it has been found useful
to observe that the undamped Bloch equations have
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exactly the same structure as the Frenet —Serret equa-
tions of differential geometry (Ei60). The solution of
such a set of equations is equivalent to the solution of a
Riccati equation (Ei60). To show this, one first recalls
from Eq. (2.13) that an integral of Eqs. (2.12) is

~2+ (p2+ q2 —1 (5 1)

W=N exp dt'E
I

and y= (2i/Dpi) d(ln u)/dt. From well-known properties
of such second-order differential equations, it follows
that in general it is impossible to write y or P explicitly
in terms of quadratures of E.

Equation (5.5) is particularly instructive since it
puts power broadening in evidence and provides
immediate contact with results obtainable from the
well-known vector model for describing the response of a
two-level system to an external field (RRS54, FVH57) .
For a constant envelope E=Ep, Eq. (5.5) is readily
solved in terms of the functions

Wi p
——exp I ~ (it/2) L(gp)) P/EpP]itP I. (5.6)

If the population is initially in the lower level and the
pulse is turned on at t= 0, then the proper initial condi-
tion for W is readily found to be W(0)/W(0) =
i(Ap& —Ep)/(AoP+Ep')'", and one obtains

K= —1+2 cos' P sin' (h&vt/2), (5.7)

Two new functions may now be introduced by
writing

(X+io')/(1 —e) = (1+@)/(X in—) =y, (5.2a,)

and

(&—itP) /(1 —tI) = (1+~)/(~+ i~p) —=—4 '= y*.

(5.2b)
Equations (5.2) may be inverted to yield

K= (1 yg) l(y 0') =2 —Re y/(I y I'+1) (5 3a)

(A=i (1+yP)/(y f) = 2 I—m y/(I y I'+1), (5.3b)

~= (y+0)/(y k) = (I y I' ——1)l(I y I'+1) (5 3c)

Equations governing the time dependence of y and P
are readily deduced by inserting Eqs. (5.3) into Eqs.
(2.12). It is found that. y satisfies the Riccati equation

By/Bt=iEy+ (i/2) I App+ (B@/Bt)](y' —1), (5.4)

and that f satisfies the same equation.
One may now employ the usual transformation to

convert this Riccati equation to a second-order linear
equation. If the phase term is neglected the problem is
reduced to that of solving the equation

d'W/dt'+ '$(Api) '+E'+-2i (dE/dt) ]W= 0, (5.5)

where the dot signihes differentiation with respect to t.
The new dependent variable TV is related to p through
the transformations

where
P= tan-' (hpr/Ep). (5.8)

dt'E= 4 tan —' e'~~. (5.11)

Equations (5.3) now yield expressions for the response
of the system which agree with Eqs. (3.5) .

VI. A SOLUBLE MODEL

Although it is possible to obtain a fairly complete
analytical description of steady-state pulse propagation
in an inhomogeneously broadened medium, most other
features of ultrashort pulse propagation have not thus
far yielded to analytical treatment when inhomogeneous
broadening is included. However, if inhomogeneous
broadening is neglected, the analysis may be pursued
much further. It has been found that results predicted
on the basis of such a model are preserved to a con-
siderable extent when inhomogeneous broadening is
included, and the more complete set of equations is
investigated by nuinerical computations (HS69, IL69,
HRLS71). Furthermore, the model is not without
physical interest in its own right. As might be expected
from Eq. (5.6), it may be used as an approximate
description of optical pulse propagation under condi-
tions of extreme saturation broadening (RSJ68).

The simplification introduced by the assumption of
vanishing bandwidth is immediately evident when it is
noted that Eq. (5.4) becomes linear when one continues
to neglect the phase term and sets dc&=0. The solution
is then

p= %e', (6 1)

where o is as defined by Eq. (5.11), or equivalently,

E=Bo/Bt, (6.2)

The choice of sign in Eq. (6.1) is again related to the
two relevant initial conditions K(x, —pp) =~1. From

This constant field result agrees with that obtained
from the geometric model. It should be emphasized
that although the vector model itself is valid for arbi-
trarily short pulses, Eq. (5.7) and the form for power
broadening expressed by Eq. (5.6) are only applicable
if the pulse envelope varies slowly on the time scale
Eo '. For the ultrashort pulses under consideration
here, this condition is violated. An example of a time-
dependent pulse profile for which Eq. (5.4) is still
soluble in closed form is the steady-state solution for
self-induced transparency, namely

E= (2/7) sech (t/r). (5 9)

The solution of Eq. (5.4) when E has this form and the
phase term is neglected may be sho~n to be

y= [v4pi —i exp p—(io.)]/[rhode i exp —p( io)—],
(5.10)

where
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Among such solutions are analytical expressions that
describe not only the steady-state 2~ pulse associated
with self-induced transparency, but also solutions that
correspond to a 4' pulse as well as pulse envelopes for
which the total pulse area is zero—the so-called Ox

pulses. As noted previously, such pulse shapes cannot
be discarded on any physical basis. The negative part
of the envelope in a Ox pulse merely indicates the
way in which the present model accommodates a phase
change of m. that could take place in a more complete
theory in which the phase term P of Eq. (2.4) were
retained. Small amplitude solutions of Eq. (6.6) which
exhibit this ringing have been investigated recently
(Cr70). The 42r solution exhibits the pulse breakup
phenomenon that has been observed both experi-
mentally (McCH69, GS70) and in numerical com-
putations (McCH69, HS69) .

A more general method of obtaining solutions of Eq.
(6.6) uses the fact that it is an example of an equation
which admits of a Backlund transformation (Ba,76,
Ba82, C103, Go18, SDK53, Fo59). Such transforma-
tions, which are more general than contact trans-
formations, may be interpreted geometrically as the
transformation of a surface that corresponds to a
solution of a given partial differential equation, into
another surface which is the solution to another, or in
some cases, the same equation.

For Eq. (6.6), the transformation equations are
(Go18, Ei60, SDK53)

—', (cl/clr) (ol—op) = a sin [(0'i+op) /2], (6.11a)

and

cr- FIG. 2. Symbolic representatio:1 of 8acklund
transformation given in Eqs. (6.11).

Eq. (5.3) there follows

(6.3a)K= & cos o',

(P=& sin o., (6.3b)

(6.3c)

It is convenient in the subsequent analysis to intro-
duce the dimensionless independent variables

&= (0/c)x,r =Q(t —x/c), (6.4)
where

fl = (n'c) 't2 (6 5)

When nonresonant losses are neglected, Eq. (2.9a)
takes the form

82o/ct/ctr . = & sin 0-. (6.6)

This nonlinear partial differential equation is the
fundamental equation of the model (AB65, La67).
Fortunately, it has already been studied extensively
since it arose long ago in the theory of pseudospherical
surfaces, i.e., surfaces of constant negative curvature
(Ei60). More recently, it has also arisen in dislocation
theory (SDK53), model field theories (SK61, PS62,
En63), superconductivity (t'o65, LS67, Sc70), and in
mechanical models of nonlinear wave propagation
(Sc69).

The general solution of Eq. (6.6) is unknown at the
present time. However, a variety of particular solutions
have been discovered. One rather large class of solutions
is expressible in terms of the variables 2 (cl/41$) (&i+op) = ~a ' sin [(ol—&0) /2]. (6.11b)

These relations may be derived without appealing to
their geometric significance by using a technique
devised by Clairin (C103, La69b).

One may easily show that both o.o and o.
& satisfy Eq.

(6.6). Hence, from a given solution op, one may obtain
a new solution o& which contains not only the constant
a, but also an arbitrary constant of integration p. This
transformation may be used repeatedly to generate a
solution o.

2 from o.I, etc. For extensive calculations of
this sort, it is convenient to use a symbolic representa-
tion of Eqs. (6.11) in which a transformation from a
solution o; to a solution o; with a constant aI, is repre-
sented as shown in Fig. 2. As a first usage of multiple
transformations of this sort, one may show quite readily
that the four solutions related by the transformation
depicted in Fig. 3 satisfy

u= ar+(/a,

v = ar g/a. , — (6 7)

where a is an arbitrary constant. In terms of these
independent variables, Eq. (6.6) becomes

(820./Bu2) —(82o/ctv2) = & sin 0.. (6.8)

The above-mentioned solutions are of the form

o (u, 0) = 4 tan ' [F(u) /G(o) ]. (6.9)

Substitution of this assumed form into Eq. (6.8) leads
to the requirement that F(u) and G(0) satisfy the
equations

F'2= k~4+mF2+n—

G"= kG4+ (nt —1)G' —n,
and

(6.10)
tan 4(02 op) = [(Gl+82)/(421 Q2)] tan 4 (01 02) . (6.12)

where k, m, and e are arbitrary constants, and the
primes indicate differentiation with respect to the
appropriate independent variable. The various pseudo-
spherical surfaces corresponding to such solutions are
known as the surfaces of Enneper of constant curvature,
and have been exhaustively catalogued by Steuerwald
(St36).

FIG. 3. Diagram for sequence of
transformations giving 4~ and Om.

pulses.
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This result, quite remarkably, permits the deter-
mination of a new solution 03 without the use of quad-
ratures. A simple algebraic manipulation of the eight
equations implied by Fig. 3 leads immediately to Eq.
(6.12). It will be shown subsequently that this result
may be used to construct a 4~ pulse, as well as a number
of difterent types of Om pulses.

If a~= a2, and the integration constants y~ and y~ in
0& and a2, respectively, are different, this relation
merely yields

I

-20

II

b

-20

20 40

40

I

100

80 100

60 ~ 80
0.5

0'3= 0'p&7l . (6.13)

l'io. 4. Diagram for
sequence of transforma-
tions giving 6' pulses.

When the integration constants are the same, however,
the resulting indeterminate form may be evaluated
from the usual Taylor expansion, and one finds

tan g (0'8 00) 2811 (~01/~+1) + (~01/~7) (~7/el~1) ]
(6.14)

whele p= pi =+2.
It will be shown that the compounding of trans-

formations shown in Fig. 4 yieMs a 6x pulse. An obvious
generalization to obtain a 2m- pulse, and, of course,
more complicated ox pulses suggests itself imme-
diately, but the subject has not been pursued beyond
this point.

According to Fig. 1, all of the above solutions
represent modes of propagation that are realizable only
in an attenuator. It has been found that the invariance
of Eq. (6.6) under the one-parameter group of trans-
formations $= a$, r= a '7 leads to a similarity solution
in terms of a single independent variable s=$r The.
solution is a x pulse and hence is realizable in an
amplifier. Such solutions have also been considered
within the context of differential geometry (Am55),
and have been used recently in the attenuator case to
describe coherent resonance fluorescence of thin samples
of resona, nt materials (BC69).

A. Specific Pulse Profiles

We now turn to a more detailed consideration of the
various solutions of Eq. (6.6) that were mentioned
above. The results are, of course, meager in comparison
with the complete analytical description of the evolution
of arbitrary initial pulse profiles that can be obtained
for linear initial value problems. However, the particular
solutions that have been found do exhibit many of the
important and interesting features of optical pulse
propagation.

I'iG. 5. (a) zilumerical solution of Eq. (6.15) satisfying
0(0) =0.1. (b) Derivative of the solution shown in (a). The
pulse envelope is related to this result by 0 'E=(o-'. (c) Phase
plane diagram of the solution.

l. x Pulse

A x pulse is described by a similarity solution of Eq.
(6.6) . The fact that the equation is invariant under the
transformation $=a$, r=a 'r implies the existence of
the similarity variable s= (r (Am65) . The solution of
the linearized counterpart of Eq. (6.6), obtained by
replacing sin cr by 0., is also expressed in terms of this
combination of variables (BC69). In terms of this in-
dependent variable, Eq. (6.6) reduces to (I.a69c)

so "+o
'—sin o =0, (6.15)

where the prime indicates differentiation with respect
to s'.

The new dependent variable, t/t/', related to o. by
W= exp (io), is readily shown to satisfy a special case
of the equation which defines the third Painleve tran-
scendent (In56) . Since these functions are not available
in convenient form, it is preferable to resort to a direct
numerical integration of Eq. (6.15). The result of such
a solution is shown in Fig. 5 which also includes the
result for o.'= 0 'E/$ and a, phase plane diagram of the
solution. The example shown in Fig. 5 satisfies the
condition o (0) =0.1 as well as 0.(0) = sin a (0) which is
required in order for the solution to be finite in the
vicinity of the origin (Fo59, Vol. III, p. 193).

Scaling laws for x pulse propagation in a lossless
amplifier may be inferred from these results. Since the
abscissa for the pulse envelope is fr, the actual pulse
envelope narrows linearly with increasing distance of
propagation. Also, since 0 'E= $o.', the amplitude of the
envelope increases linearly with distance. Since the
pulse is moving forward with respect to the retarded
time coordinate frame employed above, the pulse
profile is actually moving slightly faster than the light
velocity. With continued propagation, however, it slows
down and asymptotically approaches the light velocity.
This is the velocity of a temporal peak, however, and
not of a spatial peak. It may be expected that the veloc-
ity associated with such temporal profiles will exceed
the velocity of light in the medium (11.69) .

This spatial evolution of the pulse shape is shown
explicitly in Fig. 6. Similar results have been obtained
from direct numerical analysis of the partial differential
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1.5

'I.O-

Q.5- FIG. 6. Spatial evolution
of a 7l- pulse in a lossless
amplifier.

width of the pulse envelope. Therefore, setting uQ=
7„',where 7~ is the pulse half-width, the expression for
the electric field envelope becomes

2 t x/V—E= —sech (6.19)
7u 7u

The envelope velocity is given by

Q V '=c '+n'r '=c '(1+U /U„), (6.20)

-0.5-

-10 0 g 10 20

equations governing optical pulse propagation in a
resonant medium (WHG68, BN69, IL69). A com-
parison of Fig. 6 with the numerical results of these
other workers shows that until the signal becomes so
large that linear loss is dominant (AB65, AC68, AC69),
neglect of the loss term introduces no significant change
in propagation in an amplifier.

The fact that the self-consistent interaction of field
and resonant matter should give rise to ringing is not
unexpected in view of the known (BC64) response of an
inverted population to a specified spatial mode of the
electric field. The ringing may also be inferred from a
theorem concerning solutions of Eq. (6.6). It may be
shown (B145, St69) that there is no function which
satisfies Eq. (6.6) and at the same time remains within
the interval 0(g &m..

Z. Zx Pulse

As indicated previously, a large number of pulse
profiles may be obtained for propagation in an atten-
uator. Perhaps the most widely known solution of this
type i.' the one related to self-induced transparency. It
may be obtained in a number of ways, the simplest
being that of nierely assuming a steady-state solution
of the form o. (t—x/V) . Such steady-state solutions will
be discussed subsequently. The solution may also be
obtained by noting that o =0 is a solution of Eq. (6.6) .
This solution may then be used as 0-0 in the Backlund
transformation given by Eqs. (6.11).When we choose
the lower sign in the second of Eqs. (6.11),as is required
for propagation in an attenuator, the two resulting
first-order differential equations have the solution

where
o, =4 tan ' (exp v;), i=1, 2,

v; = a;r (/a;. —
(6.21)

(6.22)

where U =m05coo is the energy density stored in the
medium, while U = (5/ Prv)'/2v is the energy density
in the wave. The second form for the velocity given in
Eq. (6.20) is particularly instructive and has been
derived (Co68) on simple physical grounds by equating
the average energy of both wave field and medium
Vrv(U +U ), to cr„U the amount of energy that
fIows through the volume V7~ at the light velocity c.
Eqs. (6.19) and (6.20) agree with Eqs. (3.5a) and
(3.9) in the appropriate limit, namely g(Aco) =8(hco).

3. 4~ Pulse

It has been observed, both experimentally and from
machine computations, that the combination of field
strength and magnitude of dipole moment sufficient to
induce two inversions in the population of the two-
level system, a so-called 4m pulse, does not propagate
as a single pulse but rather separates into two separate
2m- pulses. Pulse decomposition is a natural by-product
of the alternate amplification and attenuation of a
pulse that accompanies the coherent oscillations in
population and induced polarization of the two-level
systems. A portion of the pulse is attenuated if it
interacts with the atomic systems when they are in the
lower level, while it is amplified by stimulated emission
if the population is inverted. Each isolated portion of
the pulse becomes a 2x pulse with amplitude and
envelope velocity related according to Eqs. (3.5a) and
(3.9) . Such pulse decomposition is also exhibited by the
analytical solution (La67, La69b). The 4v. pulse is
obtainable as the function o3 in Eq. (6.12), when one
chooses o.()=O. Again choosing the lower sign in Eq.
(6.6), as is appropriate for the attenuator, one obtains

o-I ——4 tan ' e", (6.16) The resulting expression for o.3 may be put in the form

where v is as defined in Eq. (6.7) . A constant of integra-
tion that merely serves to translate the initial location
of the solution along the v axis has been neglected in
this result. The corresponding electric field follows from
Eq. (6.2), and one finds

E= 2aD sech v= 2aO sech [ao,(t x/V) ], (6.17)—
where

V 1 = c 1[1+a 2] (6.18)

From Eq. (6.17) it is seen that (aQ) ' determines the

dtE&=o(~) —o. ( —~) =4v-, (6.24)

one may expect that the associated electric field will
correspond to a 4x pulse and that the envelope will

ai+ an slilll g (vi —v2)
oq ——4 tan ' . (6.23)

a,—a2 cosh —,
' (v,+v, )

For a,)0, a2(0, the function o.3 in Eq. (6.23) varies
from —2m- to 2x as 7 proceeds from —~ to ~. Since
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exhibit the pulse decomposition effect. This is found to
be the case.

Setting a&Q=r, ', —a2Q=r2 ' and using Eq. (6.2),
the electric field is found to be

E=A (2/rt) sech X+(2/r2) sech Y
6.25

1—B(tanh X tanh V—sech X sech F) '

where
3= (r2 —rt ) /(r2 +rP)
8= 2rtr2/(rs'+rP),

(t—x/Vt)

and

0

g iE0
FIG. 8. Propagation of

On-pulse given in Eq, (6.32).

0

0

01= 3
02= 1

g= 1.0

= 3.0

10

Y= (t x/V,—)
'r2

The velocities V& and V& are given by

(6.26)

p= tanh ' 8 (6.29)

In order to obtain a pulse envelope that begins at
/=0 with only one peak as a function to time, one must
impose the requirement ct'E/etc'(0 at )=r=0. This
condition, along with the requirement E)0, leads to

(1—r) (1+r'—3r) )0, r—=Tl 7'2 (6.30)

which is equivalent to

0( (lL3—(5)"'j. (6.31)

Figure 7 could, of course, be continued back to

Vr ' ——c '(1+n'crts)

Us '=c '(1+n'crP) (6.27)

A graph of Eq. (6.25) is shown in Fig. 7. As the pulses
become completely separated, Eq. (6.25) reduces to
the two steady-state pulses

E= (2/rt) sech (X&P)+(2/rs) sech (V&P), (6.28)

where the upper sign is to be included for v~(~~, and
the lower sign for r~) r2, and where

negative values of f to provide an example of the
envelope distortion that takes place when an ultrashort
pulse overtakes a slower pulse and passes through it.

In addition to the above results for specific pulse
profiles, certain conclusions relating to 4~ pulses of
arbitrary initial shape may be given by employing
conservation laws that are satisfied by Eq. (6.6) . This
topic will be considered in Secs. VI.C and VII.

4. Om I'ulses

o.= 4 tan ' (tt sech n) . (6.33)

As mentioned previously, Eq. (6.6) also admits of
solutions for which the associated electric field envelope
becomes negative. Two distinct types of Om pulses
have been constructed from the solutions described
above. The simplest type is obtained by merely choosing
a2&0 in the previous solution for the 4m pulse. The
electric field envelope is

E=A (2/rt) sech v,—(2/72) sech v,
(6.32)

1—B(tanh o, tanh v,+ sech o, sech t2)

An example of this result is shown in Fig. 8.
In the limit at= as= ao, Eq. (6.12) becomes indeter-

minate. In this case, one may use Eq. (6.14) to obtain
a zero m pulse of the form

Fzc. 7. Breakup of 47l-

pulse for a'c7 1'= 2, and
ratio of 6nal pulse widths
~1/~2 = (3+V'5) /2

0i
4-

0
4-

Q-'E2

0

L=O

This yields the field envelope

(1—tt tanh ~)E= (4/ro) sech n (6.34)
(1+st' sech' ~)

where ro (aoQ) '. A g——raph of this result is shown
in Fig. 9.

The second, and by far the more interesting, type of
Ox pulse is obtained by allowing the parameters a&

and a2 in Eq. (6.12) to become complex, and requiring

at= G2 = g=n+zp. (6.35)

0
4-

One then finds

2-

0 -4 -2 0
Q(t-x/vi)

where
o =4 tan '

I (n/p) (sin q/cosh P) ], (6.36)

(6.37)



REvIEws oF MoDERN PHYsIcs APRIL 1971 PART I

where
02=4 tan-' exp (v2), (6.41a)

3

=2
Q'E

3-

o~=4 tan ' IItI2[sinh -', (vI —v2)/cosh —', (v,+v, ) )I,
(6.41b)

F 9 P „ f
&b 4 tan IE23[sinh —,'(v2 —v3)/cosh —', (v2+v3) jI,

07'- pulse given in Eq. (6.34) . 6.41c)

2
5 Q 5 10

and

The electric field envelope is

(6.38)

(6.42)

One may immediately impose a number of constraints
upon the triad of constants ai, a2, a3. In the first place,
for the envelope function corresponding to o-~ to be
positive, one must require u2) 0. To obtain a 6m- pulse,
one may proceed by making 0., a 4x pulse which requires
aI(0. Also, 0-& is made a Om- pulse which requires
0(a3(a2. The three constants a, may be related to the
widths of the three pulses when complete separation
has taken place by setting —uIQ = 7y 820= r2 '
a30 = ~3

—'.

cos g
—(a/P) sin q tanh pE= 4r sechp (6.39

1+ (n/P) ' sin' q sech' p
= 0

a)= -2.0
a&= 30
a&= 07

where r = (nQ) '. A graph of this result is shown in

Fig. 10.
Unlike the two previous types of 0~ pulses, which

separate into two distinct pulses, the envelope given in

Eq. (6.44) remains as a single localized disturbance
with a half-width equal to r . It provides an alternate,
but more complicated, form of self-induced trans-
parency. It has been found (HRI.S70) from numerical
computations that this pulse shape is remarkably
insensitive to variations in inhomogeneous broadening.

5. 6 I'Itive

0
4-

QEo
4-

05

$= 0.1

= 0.3

0.5

g= S.o

I

5 g 10 15 20

I'IG. 11. Propagation of
6' pulse as obtained from
sequence of transformations
shown in I'ig. 4.

The 6~ pulse is obtained from the sequence of
transformations depicted in Fig. 4. From this diagram,
the corresponding analytical expressions are

vf = Ir2+4 taI1 I%18 taII [(v vb)/4jI (6.40)

V V

As with the 4m pul e, one must impose additional
restrictions in order to assure a pulse shape that con-
sists of a single peak at )=0. The inequality is much
more complica, ted in this case than in Eq. (6.30) and
has not been analyzed in detail. Hy a trial-and-error
method the case shown in Fig. 11 has been obtained.

The decomposition of a 6x pulse into three 2z pulses
has been observed recently in Rb vapor (GS70), and
pulse profiles very similar to those of Fig. 11 have
resulted. In particular, amplitudes of final 2m. pulses in
excess of the initial pulse amplitude, as shown in Figs.
7 and 11, ha, ve been obtained.

O'E 2

-3-
4-

-2
-5 0 ~ 5 10

FIG. 10. Propagation of
07r pulse given in Eq,
(6.39) .

B. Steady-State Solutions

An example of a steady-state solution has already
been given with the discussion of the 2x pulse. This
solution is actually a limiting form of a more general
oscillatory solution which is now considered. Similar
results for propagation in an inhomogeneously broad-
ened medium have also been reported (ADS68, Cr69,
Eb69) .
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Steady-state solutions will be functions of one of the
variables defined in Eq. (6.7) . If the variable is chosen
to be m, one readily shows that the conservation laws
given by Eqs. (2.13) and (2.14) take the form

—pr 'E'+K=K (6.43) cos 0 = 1—-'7. 'E' (6.50)

the steady-state Korteweg —deVries equation. This may
be seen by writing u(f, r) in the form o.(v). A first
integral of Eq. (6.6) is readily obtained. The integral
satisfying E( ~—) = o ( —pp ) =0 is

(P'+X'= 1, (6.44) When this result is solved for 0. and differentiated,
one obtains

where X» is a constant of integration. If one allows for a
steady-state solution in which E is nonzero when the
entire population is in the ground state, one sees from
Eq. (6.44) that the constant Xi may be less than —1.

From Eqs. (2.12a), (6.43), and (6.44)

', (dF-/dv) '= F' ', F—',- (6.51)

where Ii =7.„2E~. Two derivatives of this equation yield
the steady-state Korteweg —deVries equation in the
form

(dX/dv)'= 2(X—X,) (1—X'), (6.45) cf'+—ff'+f"'= o, (6.52)

from which it follows that X may be expressed in terms
of elliptic functions.

If —1(X»(1, a solution for which the population
varies between Ki and 1 is given by (BF54, p. 79) .

X= 1—2k'sm'[(v —vp), k], (6.46)

se(v, k) =k—'se(kv, k '),

cd(v, k) =dn, (kv k
—') (6.48)

one finds that the population difference and field
envelope may be written

X= 1—2sNP[k —'(v —vp), k], (6.49a)

8= (2/kr„) de[k—'(v —vp), k], (6.49b)

where now k'= 2/(1 —Xi). These latter forms may, of
course, be obtained by direct integration of Eq. (6.45) .
In the limit X»—+—1 both solutions reduce to that for
the 2x pulse in an attenuator. It has been conjectured
(RN68) that such steady-state solutions may be
realizable in self-pulsing situations.

C. Higher Conservation Laws

The hyperbolic secant solution of Eq. (6.6) and the
decomposition of pulses into a sequence of such "solitary
waves" is quite similar to results obtained in recent
investigations of the Korteweg —deVries equation
(ZK65, WT66, GGKM67, La68, KS68) . In fact, it has
been noted (AMS69, Ru70) that for steady-state
solutions, the square of the envelope function E satisfies

where k'= —', (1—X,) . From Eq. (6.43), we find

E= (2k/r„) cm[(v —vp), kj. (6.47)

A solution for which —1(X(K» could also be given,
but it requires that 7.„' be negative. According to Eq.
(6.20) this implies envelope function propagation
faster than the light velocity. In the limit k—+1 this
solution goes over to one which represents 2m pulse
propagation in an amplifier. As will be shown in Sec.
VI.D, such a solution is unstable.

For X» & —1, it is seen that k'& 1. Using the relations
(M054, p. 105)

where

f(x) = ,'cF, —

x= 2c—»~'v,

(6.53)

(6.54)

and the prime indicates differentiation with respect to
x. The solution that vanishes for large values of x may
be written in the form (La68)

f=3c sech' (-' cx) (6.55)

—', (p.p'), + (1—cos p.) p
=0,

(1—cos o),+-,'(o,') p=0,

(6.56a)

(6.56b)

where subscripts indicate partial differentiation. Equa-
tion (6.56b) follows from (6.56a) by the interchange of

$ and r. That the conservation laws should appear in
such pairs is to be expected in view of the symmetry

This isolated pulse solution, which has come to be
known as a soliton, is equivalent to the result given in
Eq. (6.19). A periodic solution of Eq. (6.52) in terms
of the ce Jacobian elliptic function may also be obtained.
It corresponds to the result given in Eq. (6.17), and is
known in the hydrodynamic literature as a cnoidal
wave.

Although the multisoliton and oscillatory (BK67)
solutions of the Korteweg —deVries equation are similar
to results obtained above for 2am and x pulses, respec-
tively, and the criterion given in Eq. (6.31) is similar to
one appearing in the breakup of two soliton solutions of
the Korteweg-deVries equation (La68), to the author' s
knowledge a quantitative relation between Eq. (6.6)
and the time-dependent Korteweg —deVries equation
has not been discovered.

An additional similarity between the two equations
lies in the fact that both possess conservation laws in
addition to the usual ones governing field energy and
field momentum. The question of whether or not pulse
decomposition may always be inferred from the exist-
ance of higher conservation laws has already been
raised (Za67). The first two conservation laws, which
correspond to field energy and field momentum, follow
immediately upon multiplication of Eq. (6.6) by
pip/BP or Bp/Br They m.ay b. e written
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of Eq. (6.6) . The following two conservation laws have
also been constructed (La,70) .

( 4«4 —«P), —(«2 cos 0) t
—0—, (6.57a)

(6«' —3«'«t'+ (8/9) «'«tt+ 3«tt').

Leos ir(9&t' ~0M') 35=0 (6 57b)

Two additional laws again follow from the interchange
of $ and r in these expressions.

The conservation laws given in Eqs. (6.57), and
presumably even higher ones as well, may be derived by
considering Eq. (6.6) within a Hamiltonian framework.
A Lagrangian density for Eq. (6.6) is

2 = —,'0 to, —(1—cos a), (6.58)

as is readily verified by insertion in the appropriate
Euler —I,agrange equation, namely,

——=0. 6.59

The canonical momentum is ~=BR/Bo, = 2«, and the
Hamiltonian density takes the form BC= (1—cos 0).
Following the prescription that is well known from the
classical theory of fields, one may introduce a function

f, defined by f(r) =J d&5 (a, «, n, mt) . The density 7 is

integrated over the entire range of values accessible to
the space variable (. The time derivative f is given by

f= f d&I (BP/60. ) (NC/Sir) —(BX/Bo.) (5F/Sir) j, . (6.60)

where the symbol 6 refers to the variational derivative,
namely,

6r/Bo= (BF/.—Bo.) —(B/B&) (BF/B«) . (6.61)

One sees that in the present instance f will be a con-
served quantity (i.e., f= 0) provided

J d$(8F/Air) sin 0.=0. (6.62)

The conserved density given in Eq. (6.57a) is recovered
from this result by 6rst noting that it is of the form
F(ir, ~r). Secondly, the vanishing of the integral in
Eq. (6.62) will be assured if the integrand is of the form
BG/B$, where G(o, vr, vari) vanishes for large values of f
This leads to the partial differential equation

8$ . dG BG BG (PG
sin o = —=- —o~+ —iri+ —ir~t

B7r B( B7rt. B$ B~ Bm B7ri

(6.63)

If we recall that ir= 2«, the form of Eq. (6.63) is de-
termined by first noting that G .must be of the form
G=A(m, ~i) cos a+8(m, ~i) sin 0., where A and 8 are
to be determined. Neglecting t.ertns which have the
form of an exact divergence or correspond to the lower
conservation laws pertaining to field energy or field
momentum, one finds

(6.64)

which is proportional to the density given in Eq.

D. Stability Considerations

When inhomogeneous broadening is present, the
stability of the area under the electric field envelope
may be inferred (McCH67, McCH69) from the solution
of Eq. (3.15). However, an integration over the fre-
quency of the detuning associated with inhomogeneous
broadening is a crucial step in the derivation of this
result. In the model being considered here, inhomoge-
neous broadening is neglected, and so one must rely
upon other considerations to infer area stability. This is
accomplished quite readily by noting that Eq. (6.6)
may be written

where
(BE/Bx) =a' sin 0., (6.66)

(r(x, t) = o (x, —~ )+ dt'E(x, t,') . (6.67)

For a system initially in the Lower level, one may take
o. (x, —~) = —n. , for then X(x, —~ ) = cos (x, —~ ) =
—1. For a system initially in the upper level, one may
assume 0(x, —oo) =0.

For the hyperbolic secant pulse envelope given in

Eq. (6.17),

de= 2m,

so that near the trailing edge of this pulse, Eq. (6.66)
goes to

BZ (—"&—=a' sin
~ (

+2m-, (6.68)

where the upper choice is made for the attenuator, and

(6.57a). If P were assumed to be of the form F(n-),
then the density given by Eq. (6.56a) would be
recovered.

It is, of course, unnecessary to confine attention to
densities which are merely functions of o., 7t. and their
first spatial derivatives. If 7 is of the form P(m, m~, mtt),
then a minor extension of the method outlined above
enables one to derive the density given in Eq. (6.57b).
A somewhat more direct approach is to avoid the
partial integrations employed in the derivation of Eq.
(6.60) and merely set

BF BF Bf BG—= —n.,+ m,)+ ~,g ———(0, m, s)). (6.65)
Br Bm Bn-p B~g B(

Since m, = —
~ sin cr, and G is again of the form

G= A (~, ~t) cos o+B(n., 7rt) sin 0., while P is at most
quadratic in m~~, one readily obtains the density given
in Eq. (6.57b).

The above conservation laws may be used to deter-
mine quite accurately the amplitude of each of the
pulses into which a large pulse will decompose as it
propagates through an attenuator. This topic will be
considered in Sec. VII where the method is extended to
inhomogeneously broadened systems.



G. L. LAMB JR. Ultrashort Optical Pulse Propagation 115

the lower choice for the amplifier. Now if there is a
perturbation in E such that the total area 8 is greater
than 24r, then in an attenuator BE/Bx sin (v.+4) (0.
The field at the trailing edge therefore tends to decrease
to recover a total area of 2x. On the other hand, if the
perturbation is such that B is less than 24r, then BE/Bx) 0,
and the field at the trailing edge increases. The total
area of such a pulse therefore tends to remain at 2x.
In the amplifier, the inequalities are reversed and the
hyperbolic secant no longer represents a stable pulse
envelope. These results are in agreement with those
previously obtained (McCH67, McCH69) for the case
in which inhomogeneous broadening is included.

The above considerations refer only to area stability
and leave open the possibility of perturbations in which
the total area remains unchanged. We now take up this
topic and show, by exhibiting a I iapunov functional
(Ha67) with vanishing derivative, that pulse shapes are
stable but not asymptotically stable, i.e., perturbations
remain finite.

Consider first the Liapunov functional F(u) given by

F(u) —=
80 &90'

+ — +2(1—cos o) (6.69)
BN 8'v

which is proportional to the total energy residing in
field and medium. Differentiation with respect to I,
and a subsequent partial integration yields

80' t9 0' 8 0' 80 80'

, + sino. +Bs 8Q 88 BQ 88

(6.70)

For an attenuator the result will vanish by virtue of Eq.
(6.8) (in which the lower sign has been chosen as is
appropriate for an attenuator) and the boundary
conditions that, since tr represents a pulse, both Ba/Bu
and Bo/Bv must vanish at v= & ~ .

Since dF/du is merely zero rather than negative
definite, it is not unexpected that a first-order per-
turbation analysis of Eq. (6.8) will contain a zero
eigenvalue. This is readily seen to be the case. Setting
tr=o'' i(v)+on'(u, v), one finds that oi" satisfies

shown by considering the Liapunov functional

F(r) = df(1 —costr). (6.74)

Differentiation and use of Eq. (6.6) yields

F(r) =&-',
00 00

d& —(a ') =en —'E'
B$

=0. (6.75)

Again, solutions are stable, but not asymptotically
stable.

VII. HIGHER CONSERVATION LAWS FOR THE
INHOMOGENEOUSLY BROADENED MEDIUM

where

aild

(Bp„/R) +c(BF„/Bx)= 0,

p
—F +T

F4 n4( ',E4 Et2)——, -—

(7.1)

(7.2)

(73a)

(7.3b)

F =n~( 'E' 'E'E '+ '—E'E—, t+-~Etp ), —(73c)

The decomposition of intense pulses into a number of
separate 2x pulses has been described by numerical
methods for the inhomogeneously broadened medium
(McCH69, HS69). It has been found that the final
pulse amplitudes may be fairly accurately determined
by using higher conservation laws that are satisfied by
the inhomogeneously broadened system. The con-
servation laws are a generalization of those for the
completely unbroadened system that were considered
in Sec. VI.C.

Since E=Qo.„ the conservation laws that may be
obtained by interchanging $ and r in Eqs. (6.56)-
(6.58) will express conservation laws obeyed by the
electric Geld envelope. It has been found that the
extension of these results to include inhomogeneous
broadening is readily accomplished. If the terms in the
$ derivative are retained while those in the r derivative
are suitably modified by employing the (phase-
independent) Bloch equations (2.12), one finds the
conservation laws

(B'tr'"&/Bu') —(B'dr &"/Bv') —(1—2 sech' v) tr'" =0 2",=n'(1+x),

(6 71) &4= fE'(K)+2E(hdtdG) —2((hdtd)'(1+%) )),

(7.4a)

(7.4b)
If we express 0.~') in the form

o i'& (u v) = V(v) e'~ (6.72)

V(v) is found to satisfy the "Schrodinger" equation

V"+ (X—2 sech' v) V=0, (6.73)

where X= —(s'+1). For tt, = —1 (and hence s=O), one
readily finds (MF53) V(v) = sech v which is the solu-
tion corresponding to the expected zero eigenvalue.

In an amplifier, the opposite sign in Eq. (6.8) must
be used and the above results are no longer applicable.
Stability of solutions in terms of $ and r may still be

aild

T,=n-'pE4(X) ——;E2(X)+ (4/9) E'(S~e)

+ (8/3) «((~~) '6') —(8/3) E((~~)'0)
——:E'&(~)'~)+(8/3) &(~ )'~)3 (7 4 )

Integration of Eq. (7.4) over the entire length of the
host medium, assumed for convenience to be semi-
infinite, and over all time, leads to

(7.5)
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The functions F„(0,3) may be calculated for a given
pulse shape at x=0 by using Eqs. (7.3) . After the pulse
has propagated far enough into the material for the
steady-state pulse shapes to evolve, one may write
(McCH67, McCH69) J dÃp2 = 2c g g~,

D

(7.12a)

(7.2), and integration over the entire length of the
medium, yields

s(z, t)= r (
—).ech(

'
*), (7.6) dxp4 ——(1/3) c g a,3, (7.12b)

where the 7, are the pulse widths, the v; are the corre-
sponding pulse velocities, and the t; are merely time
delays which separate the various pulses. The value of
E is determined by the area under the pulse at x= 0 in
the manner described in Sec. III. For each 2m- pulse,
the response of the two-level systenls in the vicinity of
the pulse is given by (McCH67, McCH69)

dxp6= (1/15) c P a, (7.12c)

where a, =2/r, = (E,), . As is known from the area
theorem, one expects two pulses for 3'(op(5'. In
thi. case only the first two conservation laws are needed
and one flIlds

where

O';= —D; sin pj)

X,= —1+2D, sin' (p;/2),

&,= 2D,d,o&r, sin (q;/2),

a,+a,=-', f dtF, ,(7.7a)

(7.7b) Op+82 = 3f @F4. (7.13)

(7 7c) For 5~(eo(7w three pulses will be obtained. Hence
one requires the solution of

D =$1+(r Au&)'j '

(7 8)

(7.9)

aq+a2+a3 ——2f dtF2,

+g'+G2+a3'=3f dtF4,

aP+ag'+aP=15f dtF, (7.14)

tp (7.11a)

There is, of course, a small region at the edge of the
medium within which the pulse evolution into a se-
quence of 2x pulses takes place. In this region, Eqs.
(7.6) and (7.7) are inapplicable. An unknown amount
of the population is left in an inverted state, and values
of the polarization (P and Q are similarly unknown. In
performing the spatial integration in Eq. (7.5), this
fact is neglected, and Eqs. (7.6) and (7.7) are used over
the entire range of the spatial integration. The closeness
of the results thus obtained to those predicted by the
exact numerical calculation shows that, as for the
Korteweg —deVries equation (BK67, KS68), this tran-
sient region may indeed be ignored. For weaker initial
pulses which result in only a single 2z pulse, however,
this initial region is no longer negligible. Hence only
pulses which have an initial area greater than 3x are
considered in the following.

For the initial pulse profile

E(0, t) = (80/vrto) sech (t/to), (7.10)
one finds

One sees from Eqs. (7.3) that the higher conservation
laws depend upon higher derivatives of the initial pulse
shape. Hence, the decomposition of strong pulses is
expected to be sensitive to the detailed structure of the
initial pulse profile. Such sensitivity has been noted in
experimental observations (PS67) .

In Fig. 12, the roots of Eqs. (7.13) and (7.14) divided
by E(0, t),„are plotted as a function of 80. Equation
(7.13) possesses solutions for values of eo for which
three pulses are to be expected. The locus of these
unphysical solutions is given by the dashed portion of
Fig. 12. The crosses are results obtained from numerical
solutions of the equations which describe optical pulse
propagation and are seen to be in quite good agreement
with the approximate values obtained from the con-
servation laws. The numerical results include cases in
which ta/TP varies from 0.1 to 10. The lack of complete
correspondence is due partly to the improper treatment
of the initial region in which the isolated pulses have
not formed and partly to the fact that the correct
amplitudes must satisfy all the higher conservation
laws and not merely the lowest two or three that have
been used here. Further work on this subject is cur-
rently being pursued (LSH) .

tp dtF40 t = — — — — —1 (7.11b) VIII. INHOMOGENEOUS BROADENING AND
PHOTON ECHO

ZtI60, t =

(7.11c)
Also, substitution of Eqs. (7.6) and (7.7) into Eq.

Certain phenomena, notably that of photon echo,
require for their explanation the relative dephasing of
atoms that results when inhomogeneous broadening is
present. The concept of photon echo has been taken
over directly from past work on spin echoes (Ha50).
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However, since one is primarily interested in the
propagation of photon echoes, both the Bloch equations
and the Maxwell equations must be solved simul-
taneously. The associated analytical complexities have
only been overcome by numerical methods. However,
if one foregoes consideration of the actual pulse shapes
and confines attention to the area under the envelope of
the pulse, then further analytical progress may be
made. In particular, a very simple description may be
given of the spatial evolution of the photon echoes that
may appear behind two optical pulses as they propagate
through an inhomogeneously broadened medium
(La69a). This may be carried out by noting that the
area theorem, Eq. (3.15), is still satisfied if the pulses
are assumed to be infinitely narrow, i.e., of the form

E(*, t) =a(x)~l:t—(x/e)], (81)

FIG. 13. Spatial development
of area functions for tvro
optical pulses and the first
photon echo generated by
them.
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(att/at) i Aoo sin tt =E, —
5'= sech p, ; sin p,„,

8= —tanh p;)

X= sech p; cos p„.

(8.2)

(8.3a)

(8.3b)

(8.3c)

Using the form for E given in Eq. (8.1) and integrating
Eq. (8.2) across the singularity at t=x/c, one finds

t
'—

t '=a(x). (8.4)

Since 0 is real, p, , is continuous across the pulse, and
according to Eq. (8.3b), g is also continuous across the

E(o,tl = (go/0'to) tech (t/to)

where 8/t (x/e)—] is a delta function. The assumption
of propagation at the light velocity is consistent with
that of zero pulse width according to Eq. (6.20) .

The apparent inconsistency of using a delta function
in the slowly varying envelope E(x, t) does no violence
to the theory. It merely provides a convenient device
for obtaining solutions to Eqs. (2.9a) and (2.12) in the
short pulse limit. A derivation of the area theorem for
delta function pulses is now given. It is then shown how
some of its implications may be readily explored.

The response of a two-level system is governed by
the Riccati equation given in Eq. (5.4). If the new
complex function ts = ti„+its, is introduced by the
definition to= exp (its), Eqs. (5.4) and (53) become

pulse. The change in population is

AX=X&—X&= sech ts;&(cos tt„~—cos tt,&) (8.5)

which may be written as

X~=X~ cos 0—5'~ sin 0.

Similarly, Eq. (8.3a) yields

6' = (P& cos 8+X sin a.

(8.6)

(8.7)

Equations (8.6), (8.7), and the continuity of g a,cross
the pulse may be summarized in the vector form

{P~ cos 0 0 sin 0

0 1 0 ' tI&

X~ —sin 0 0 cos0 X-

(8.8)

P~ = Rtt(tt) I' (8 9)

While the pulse is not acting, the system evolves
according to the homogeneous counterpart for Eq.
(8.2) which has the solution

e'&=i cot -', (b(ot+n), (8.10)

where n=n, +in; is a constant of integration. It is
now a simple matter to show that the corresponding
evolution of (P, 6, and X may be written

The 3&&3 matrix represents a rotation about the 6 axis
by an angle 0, and may be represented symbolically by
Re(a) . Considering ((P, 0, X) as the three components
of a vector I', Eq. (8.8) may be written

fEt) max

E(a,t) max
1—

0
5 10 15

&a

20 25

(s(o)
tI(t)

coc (g sin co 0 6' to

cos (o 0 ' 6 (to)

0 1 X to

(8.11)
FIG. 12. Pulse amplitudes obtained from conservation la~vs.

Crosses indicate results of preliminary numerical calculations
provided by M. O. Scully.

where (o = A(o(t to) . This repres—ents a rotation through
an angle bM(t to) about the —X axis and may be
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written
P(t) =Rsr(t —t,) P(t,). (8.12)

and

where
tan (02/2) =y sech (—',ax—P) =y sin 0i, (8.23)

If a transverse relaxation time were retained in the
analysis, so that between pulses (P and 6 satisfied by

(8tp/8t) + (1/T2) (P= D~G, (8.13a)

et = tan L0, (0)/2]

y= tan L02(0)/2] csc 0&(0). (8.24)
aIld

(ae/8t) + (1/T, )e = 0, (8.13b)

Eqs. (8.12) would be replaced by

P(t) = exp L
—(t—t,)/T, ]Rsr(t —t,)P(t,). (8.14)

At a time I, after interaction with a pulse of area 8,
the state of a system that was initially in the lower level
is given by d03/d0r+ cos 0~+ cot 8i sin 0~

——0. (8.25)

Now, if 0i(0) =m/2, 82(0) m, the optimum case for
photon echo experiments, then

i 7 i))1 and, from the
solution for 02, one sees that 02 remains nearly equal to
its initial value until OI decays to a value equal to y '.
Until this final state in the pulse evolution is reached,
one may set 82= ~ in Eq. (8.21) . The resulting equation
may then be transformed to

P (t) =Rg, (t) Re (0)P (0) = ' sin 0 sin Acof

—cos 0

Upon substituting y = tan (03/2), this becomes a
Riccati equation which is converted to a second-order
linear equation by the substitution y= —2(du/d0~)/u.
The substitution k= sin (0i/2) leads to

(8.15) k(k' —1)u"+ (3k'—1)u'+ku= 0, (8.26)

Equation (2.9a), with g(Dco) = g(0) to accommodate all
spectral components of the delta function, takes the
form

b (t—x/c) [(d 0/dx) +x0—~a'g (0) sin 0]=0 (8.16)

which is the area theorem given in Eq. (3.15).
This scheme may now be used repeatedly to describe

the response of the medium to a sequence of pulses.
The response due to two pulses of area Oi and 02 a time
T apart is found to have a contribution at $=2T.
Evaluating I' just beyond the time f= 2T, one finds

P(t) =Rsr(t —2T) Rq(03) Rsr(T)

X Re (0,)Rst(T) Rtl (0i)P (0) . (8.17)

Carrying out the indicated multiplications for a system
that is initially in the ground state, one obtains

(P(x, t) = —sin 0i cos Acct sin 0~ cos 0& co—s A&a (t—T)
—Lsin 0, cos 0~ cos 0i—cos 0~ sin' (0~/2) sin 0i]

X cos Ace(t 2T). (8.1—8)

If a relaxation time T~ were included, this entire expres-
sion would merely be multiplied by exp (—2T/T2).

If one substitutes this result into Eq. (2.9a) with
o. set equal to zero, one obtains

d0,/dx= —(a/2) sin 0i, (8.19)

where the prime indicates differentiation with respect to
k. Equation (8.26) has the solution (Ka59)

u =aE (k) +bE (k'), (8.27)

where E(k) is the complete elliptic integral of modulus
k, while k' is the complementary modulus. Finally, the
solution for 03 may be written

tan (03/2)

= L (k'/k) B(k') —(k'/k) B(k)]/PE(k) +E(k') ],
(8.28)

where B(k) is a tabulated function (JE45) related to
the complete elliptic integral by

B(k) = ((1—k')/k](dE/dk) . (8.29)

Figure 13 contains a graph of Eq. (8.28), as well as
the variations in Oi and 02. It is seen that the area of the
echo increases at a rate approximately equal to that at
which the first pulse decreases. This is consistent with
experimental observations (PS68) . A completely
satisfactory comparison of the above results with
experimental observations is not possible since the
experiments measure the area under E'.

A similar analysis of subsequent echoes produced by,
say, the second pulse and the first echo could also be
carried out by the method described above.

Ix. LEVEL DEGENERACY
d02/dx= —(a/2) sin 02 cos 0i, (8.20)

Equations (8.19) and (8.20) have solutions

tan (0i/2) = exp (—~ax+/) (8.22)

d03/dx =
~ a)sin 03 cos 02 cos 0& cos 03 sin' (0&/2) sin 0i].

(8.21)

It has been pointed out (RSJ68, McCH69) that, due
to level degeneracy, pulse propagation under conditions
which prevail experimentally may lead to results that
are considerably different from those predicted here.
It has also been shown that level degeneracy has a
marked effect on the direction of polarization of the
electric field vector of the echo pulse in a photon echo
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experiment (GWPST69). Thus far, however, only the
source term for the echo pulse has been calculated when
degeneracy is present. No consideration has as yet been
given to the complete problem in which the spatial
evolution of the photon echo is followed in the presence
of level degeneracy, and so this latter topic will not be
considered here.

To avoid detailed consideration of specific molecular
models, level degeneracy will merely be expressed in
terms of a simple jm scheme. The two states previously
denoted by a and b, are now characterized by angular
momentum quantum numbers j'm' and jm, respectively.
Each element in the 2&(2 matrices of Eq. (A9) now
becomes a (2j+1)X (2j'+ 1) submatrix itself with
elements (j'm'

I Q I jm). As is well known (CS57),
transitions in j are restricted to Aj=j —j= —1, O, 1,
the three alternatives frequently being referred to as
P, Q and E branch transitions, respectively. In addition,
if the quantization axis is aligned parallel to the electric
field polarization vector, then only the Q, matrix
elements need be calculated. All such matrix ele-
ments vanish unless m'= m. One then finds that
p;= (j'm Q I

jm)=~ p, where p is now the largest
value of P, in each of the three cases, and

6j= —1, (9.1a)

2 j=0, (9.1b)

K =I (j+1)'—m'j'I'/(j+1), Aj=1. (9.1c)

Since the submatrices of 'U= —E g= Eg, are n—ow
diagonal in m, the various pairs of levels designated by
different m values are not coupled by the interaction,
and may be treated separately.

Hence, for each value of m one may write

p-+~ ~'p= —(2~.~/&) n-E
I (j~

I V. I
j'~) I', (9.2)

n = (2noE/5a&, ~) p . (9 3)

If we assume that all sublevels of the lower state are
equally populated initially, then

z= sin o,',

= cosn,

For Aj=O, we have

(2j+1)—' Q ~„sin (x„8)

Aj=~1

Aj=O. (9.8)

—+ — dn sin n cos n sin (8 cos n)
2 p

sin 8—8 cos 8

02
=ji 8, 99

where ji(8) is a, spherical Bessel function. For Aj= &1,
we have

(2j+1) ' g c sin (rc 8)~ — du sin n sin (8 sin a)
2 p

For transparency to take place, it is necessary that
the right-hand side of Eq. (9.6) vanish. For Q branch
transitions this will be possible for 0= 2n~ just as in the
nondegenerate case, since the various ~ are integrally
related. For I' and E branch transitions, however, the
irrational ratios of the various ~ prevent a simultaneous
vanishing of all ~ except in the few cases in which there
is only one nonvanishing value of rc . This takes place
'fol j=0) g.

However, it has been noted (RSJ68) that the right-
hand side of Eq. (9.6) will also vanish if I dt'8=0.
Such Om pulses should exhibit transparency inde-
pendently of the values of the ~, and this is borne
out by recent numerical solutions (HI.RS71) . Although
profiles of Om pulses have been described in Sec.
VI.A, it should be emphasized that they have been
obtained for a nondegenerate two-level system, and
are not directly applicable to the present situation.

For large values of j, the summation may be approxi-
mated by an integration. Setting m =j cos 0., the
results quoted in Eqs. (9.1) may be replaced by those
for a continuous variable ~ given by

nm
I '+0/(2j+ 1)]((j'm I

ti
I
jm) —(jm

I p Ij™)).

(9.4)
=k~ I Ho(8)

H, (8)
0

The electric field is governed by

((K/8t)+c(88/Bx) = 2mnp(op d6(og(tea)) P p„,.

(9.5)

When this relation is integrated over the duration of
the pulse, one obtains, in analogy with the derivation
of Eq. (3.15),

d8/dx= I n/ ( 2j+21)jP ~ sin (~ 8), (9.6)

where

where the H„(8) are Struve functions (AS64).
The two forms for the area theorem in the presence of

degeneracy for large j are now obtained by combining
Eq. (9.6) with Eqs. (9.9) and (9.10).Itis again evident
from these results that a Ox pulse should exhibit
transparency. For small 8, the area theorem for Q
branch transitions reduces to the small-0 form of Eq.
(3.15) when orientational averaging is included.

As in Sec. VI, pulse shapes may be obtained in the
limit of extreme saturation broadening. Setting g(Ao&) =
8(h&v), Eq. (6.6) now becomes

8'z/8xBt'= [~'/(2j+1) jg ~ sin (~ a'), (9.11)
8= ( P/&) dt'g(x, t'). (9.7)

where t'=t x/c, and n' is —as defined in Eq. (2.11).
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2-
g -l E

0
W

I iouville equation

i5(ptp/Bt)+[p, K]=0,
where K is the total Hamiltonian of an individual two-
level system. The time dependence of an arbitrary
operator, C, is governed by the relation

ih(dC/dt) =iamb(BC/Bt)+[0, K]. (A3)

For later use, it proves convenient to recognize that
operators not containing explicit time dependence
also satisfy

FIG. 14. Steady-state pulse profile for Q(2) transition.

Equation (9.11) has also arisen in dislocation theory
(Se55).

Examples of steady-state pulse profiles have been
obtained numerically (RSJ68) . For the Q-branch
transition with j= 2, the result may be given in a simple
closed form (Se55) . One obtains

fi'(d'G/dt') +[[C,X],K]= iS[(MC/at), C]. (A4)

The Hamiltonian of a two-level system interacting
with a classical electromagnetic field may be adequately
represented by

3C= Xp+'0, (A5)

where X0 is the Hamiltonian of the isolated two-level
system, and

p = —4 tan ' [(5)'t csch w/r],

where w=t x/V and—
V '=e '+ ,'n'r'-

The electric field is

(9.12) (A6)

is the interaction energy in dipole approximation.
The wave function for the isolated two-level system

may be written

&(r t) =~.(t)&.(r)+~b(t)»(r), (A7)
4(5) '1' sech (w/r)

r[1+4 sech' (w/r) ] (9 14) where u, and» are eigenfunctions of the system and
satisfy

which is shown in Fig. 14. BC0Q~ =E~Q&) (A8)
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APPENDIX A

Such energy eigenfunctions provide the specific repre-
sentations

(z. 0) (o p.,) (,„. p.,)
I, p=i

&b) (Pb~ 0 ) EPb. P»)

(A9)
where

(A10)

and the levels are labeled such that A, &Eg. The
vanishing of the diagonal elements in 'g signi6es the
assumed absence of any permanent dipole moment in
the system under consideration.

In addition to the polarization p, the difference in
population between upper and lower states, e, is also of
interest and may be conveniently expressed in the form

The polarization of an individual system may be
obtained from its microscopic description by the usual
trace operation

1$=1tp(p~@ pbb) = 1tp Tr (pa', ),
where o., is the Pauli spin matrix

(A11)

(1 O)

&0 1)-p= Tr (py), (A1)
(A12)

where p is the density matrix of the two-level system
(La64), and Q is the polarization operator. The time
dependence of p is given by the quantum mechanical The time dependence of p can be conveniently obtained
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subtraction, and integration over all time yields

X sin p)()', —t')X(dp), r, f')E(r, t') cos 4 (r, ),"), (A23)

by taking the trace of the operator equation

6'(dPV/dP) +[[g,SC], m] = i'[(BX/Bt), Ql (A13)
Ap)~ i) i — 2

which follows from Eq. (A4) . With the representations
given above, the right-hand side of this equation
vani. shes while

and

![Q ~]=I0 ~p]=
l) —Pb. 0 )

[[Q, X],Xp]=RP.b'g,

where &=@/np. The factor of p due to orientational

(A14a) averaging is neglected. This expression for the polariza-
tion may now be decomposed into parts which are in
phase and 7r/2 out of phase with the electric field. One
may write

f PabPba

[[Q R], U] 25pp bE ~
I

o
where

~~ah +a ~b.

o
(A14c)—PbP b)

p = P[6'(Ap), r, t)

X sin C (r, t) +t) (App, r, t) cos C (r, t) ]. (A24)

Wheri the carrier frequency is at the center of the
inhomogeneously broadened transition, i.e.,
Eq. (A23) leads to

Equation (A11) therefore reduces to

(d'Q/dt') +p),bPQ = —(2(p,b/6) E p,bpb, o', . (A16)

Application of the trace operation converts this operator
equation into

(d'P/&&') +ppab'P = —(-', ) (2 bp)P/Amp) Ee, (A17)

where it has been assumed that p.b ——pb. p. ——

factor of 3 in parentheses is to be included if all possible
spatial orientations of the two-level systems are
permitted (KS48, VaV24) so that an average over all
such orientations must be performed.

From a direct multiplication of the quantities
involved, there fol1ows

iS(dg/dt) = [Q, K]= ', Kp),b—/o-. , Q]. (A18)

On the other hand, multiplication of Eq. (A2) by
mon„and application of the trace operation, yields

$6(drab/dt) = rbpEp Tr {P[Q, o',]I . (A19)

Calculation of the trace of Eq. (A18) then finally
leads to the equality

(de/dt) = (2ep/Sp), b) E ~ (dp/d/) . (A20)

dPG/dt2+ co'G = —6 ( t—3') (A21)

which satisfies G= 0 for 3(t' is

Equations (A17) and (A20) provide a starting point
for describing the response of a two-level system to an
external electromagnetic field, Equation (A17) with
p),b now replaced by co= p),b+Dp), may be solved in
terms of a Green's function. The causal Green's func-
tion for this equation, i.e., the solution of

dt'E(r, t') X(hpp, r, t')

X cos [Ap)(t —]')+g(r, t) —P(r, 3')], (A25)

Be/Bt = —[6p)+ (By/Bt) ](P (A28)

When time dependence near the second harmonic of coo

is also neglected in Eq. (A20), it is equivalent to

BX/Bt = —E{6'—[(1/p)p) (Bq/R) ]!. (A29)

When the slowly varying envelope approximation is
used, the second term on the right-hand side is dis-
carded.

APPENDIK B

To obtain the form of the envelope function E, it is
first noted that Eqs. (2.12a) and (2.12b), with the
phase term P set equal to zero, are equivalent to the
linear equation

dX/dt+iEX = Ap)6,

where X= (9+iX. Setting

dt'E(r, t') X(~p), r, t')

X sin [&p)(t—t')+Q(x, t) —Q(r, t')]. (A26)

In obtaining this result, terms near the second harmonic
of coo have been discarded. However, it should be
emphasized that there has been no assumption that
(P, 6, and X vary slowly compared to the carrier wave.

Differentiation of Eqs. (A25) and (A26) shows that
6' and 6 satisfy the diff erential equations

BO'/Bt = I) at+ [Ap)+ (By/Bt) ]q (A27)
and

G(t
I

3') = —p) 'u(t —t') sin p)(t —t'), (A22)
(82)

in which u(t) is the unit step function. Multiplication
of Eqs. (A17) and (A22) by G(&

I
& ) and p, respectively, and introducing Eq. (3.4), one finds that the solution
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of E . (81) which reduces to tP, —a'( —~) =0, X(—n ) =
—1, i.e., atoms initia y inll 'n the ground state, is

6'= —(1—xhpp) sin pp,

X= —yAtp —(1—yAcp) cos p.

(33)

(84)

From Eq. (86), we have

x (Atp) = ttttdr„'/ L1+ (r,Atp) 'j.

APPENDIX C

K uation (2.12c) now reduces toqua ion . s to

(35)d'qt/dwP=r„' sin pp,

where Kqs. (3.4) an. ) d (32) have been employed and

7,—'= htp(1 —xhtp) /y. (36)
The solution of Eq. (85) that vanishes as w—+—~ is

pp= 4 tan-' exp (w/r~) . (37)
K . (32), the electric field envelope is thenFrom Kq. ~

(88Lt'= (2/r„) sech (w/r„).

expressed as

t

X(0, x, t) =a cos
i (C6)

o be used if the population is
initially inverted, while the lower sign is use i e
po ulation is initia y inll the lower level. Hence Kq.
(C4) takes the form

(d8/dx+K8= &.Ipn sin 8

4n. (BP„,/Bt) = ap (BE/Bt) —a,cpp2 dt'E(t'). (D1)

olarized in the I' direction andFor an electric field po arize in
velin in the positive X direction, it o ows r

that the associated magneticthe Maxwell equations t a e
field vector is

and Kq. (C7) is the area theorem.

APPENDIX D

From Eqs. (4. an d (4.29), the nonresonant
polarization satisfies

t

de—+K8=n
dx

dhcpg(htp) (Acd) '

oo

X dt'E x, t') X(htp, x, t ) lim sin hid t, t—t', C1)
tab oo

E . (2.9a) over all time and using Eqs.Integrating q. & . a
(A26) and (A28), with ttt again set equa
one -finds

BJEiH= —Bt dt'
Bx

where is a uni v't vector in the Z direction.
onservation is expressed bynergy c

4x BP„„
V (E xH)+(2c)-' —(E'+H')+ —E ~

(D2)

t

lim cos Atpt/Atp= L(1/Atp) —(P/Dcd) $, (C2
tab oo

I' denotes a principal vaue. U
'

g
~ ~

Usin another
s an

'
for the delta function and thestandard representation or t e e

principal value, one obtains

a~0tab oo

=Irti(t1cp) lim (p/Atp).
e-+0

d
' E . ,C1, , one obtainsYVhen these results are users in Eq.

(C3)

—2 / To carry out the limiting process, onewhere A:= xo-/c. o
may erst in ro u

' t d ce the well-known forms

hm sin htdt/A&p= IrB(htp),

pE' j-', (1'Itp) —,D3

E . ,A20) has been employed. If one assumes

c losses and resonant gain, t en ebetween ohmic losse
-h d side of Eq. (D3) will vanis . e e

'
h. The left-handright-han si e o

obtainsside may be simplified and one fina y o

E.p—'(BE/Bt) —V' xH+ (4Ir/c) (BP„„/Bt)]== 0. D4)

Employing Eq. (4.30) for E, Eq. (D2) yields

V xH=cj —II, ' + —(Il, —II~

0(, (E~ slil lp EH cos lp) tpp—

where

d0
+K8= pn

&X
dt'E(x, t')K(0, x, t'),

n 21rg (0)n='.

(c4)

(c5)

where

E,=E cos p,

E,=E sin P, (D6)
K . (6.3a), the population of on-resonance

ented b x(Q, x, t), may beatoms, i.e., those represente y Itt'= tPp(t X/It&) . — (D7)
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V/hen second harmonic terms are neglected, we have

BE'/Bx = z—, s(-BEs/Bt)

and Eq. (D4) takes the form

c BA2
(2c) '(1+a,——

Ot

t

+(ooze[(e,—'—e„—') —asc ']E. dt'E.= 0 (D.9)

Armstrong and Courtens (AC69) make plausible the
choice of satisfying this equation by setting each
coefficient equal to zero separately. This yieMs

c/v, = (1+as)"'
%„=(1+as) 'I' —as'I'. (D10)

AC68

AC69

ADS68

AKH65

Am55
Am65

AMS69

AP69

AS64

Ba76
Ba82
BAZKL6

BBW63

BC69

BF54

B145

BN69

2z A = —[as (1+ao) ]'t'. (D13) BP69

Writing the resonant polarization as given in Kq.
(4.31) and employing the slowly varying envelope
approximation, we find

BI'r/Bt=

~onset[(P

sin (it+&)+lS cos (f+g)] (D14)

C103

CLA68

Co68
Co69

Equation (D12) then yields

(ryE 0) sin P—(r—E (P) cos P = 0, —

(rE (P) sing+(ry—E g) cos $=—0. (D13)

Cr69a
Cr69b
Cr70
CS57

Two expressions may now be formed for tan p. When
they are equated, one finds CS68

(rE—O') '= —(qrE e) ', —(D16)
DGBM69

where r is as defined in Eq. (4.8) and

'y = cooA/0'. (D»)
Since all terms are real, each side of Eq. (D16) must
vanish, and hence one obtains

Di54
Di70
DSG67

Eb69
Ei60

6'= 7E,
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