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1. INTRODUCTION f
Measurements of various electron scattering cross

sections and related quantities (e.g. , energy loss rates)
have been carried out for approximately the past
seventy years. ' Reasonably successful theories of some
of these cross sections have been proposed for very
nearly the same length of time. ' As electron collision

physics has evolved, it has become apparent that the
low-energy domain (which we will define to be the
range of incident electron energies below the ionization
threshold, e.g. , from 0 to roughly 10 eV) is extremely

$ This review is based on invited papers delivered individually
by D. E. Golden, Neal F. I,ane, and A. Temkin at The American
Physical Society Division of Electron and Atomic Physics
Symposium "Electron-Molecule Scattering", chaired by E.
Gerjuoy, Washington, D.C., April 27, 1970. Each of the four
authors of this review has read all four chapters, and is in general
agreement with their contents. However, each author has been
primarily responsible for a single section, as follows: Sec. 2:
Low Energy Flectron-Molecule Scattering Experiments, D. E.
Golden; Sec. 3: Close Coupling Calculations of Elastic and Rota-
tional Excitation Cross Sections for Electron —H~ Collisions,
Neal F. Lane; Sec. 4: Development of Fixed-Nuclei Approxi-
mations of Electron —Molecule Scattering and the Theory of
Rotational Excitation, A. Temkin; brief overall Introduction,
Sec. 1, E. Gerjuoy, who also has done the editing necessary to
ensure consistency and no redundancy between the main Secs.

'Kerwin, Marmet, and Carette (1969) state "Lenard (1903)
appears to have been the first to bombard atoms with beams of
low-energy electrons". Brode (1933) refers to even earlier electron
collision measurements by Lenard.' Cf., e.g, , J. J. Thomson (1912),whose purely classical theory
of ionization is closely related to the recently widely employed
and often very successful classical binary encounter theory of
Gryzinski (1965}, whose theory in turn can be shown to be
closely related to the quantum mechanical Born approximation
LStabler, 1964; Garcia, 1967; Vriena, 1969j.
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interesting, both experimentally and theoretically. In
particular, there has been a continuing attempt —dating
from the first really quantitative measurements, nearly
fifty years ago'—to bring experiment and theory into
agreement for the collisions of low-energy electrons
with molecules, especially in the simplest circumstance
that the target molecules are homonuclear and diatomic,
e.g., H2 or N2.

Modern experimental techniques for obtaining low-

energy electron-molecule collision cross sections are
reviewed in Sec. 2 below, which also summarizes4 much
of the data for the atmospheric gases. The reproduci-
bility of recent measurements by any one group, and
the agreement between observations by different
groups, are sufficiently impressive to justify the belief
that most experimental low-energy electron —molecule
cross sections now are acceptably reliable. Unfortu-
nately, ab initio (i.e., starting from the Schrodinger
equation, without incorporation of empirical informa-
tion or adjustable parameters) theoretical prediction
of most observed electron —molecule cross sections at
incident energies below the ionization threshold still is
impractically expensive and arduous with the best
available high-speed computers. Of course, ab Azitio
prediction of low-energy electron —atom collision cross
sections is not yet practical either; but for collisions
with not-too-complex target atoms at incident electron
energies not too close to the ionization threshold, i.e.,
for collisions involving only a moderate number of open
(energetically accessible) collision channels, the possi-
bility of soon having codes which will routinely and
practicably predict such electron-atom cross sections is
reasonably promising. The difficulty with electron-
molecule collisions is that even when the incident
energy is capable of exciting merely a few electronic
levels, there usually are a very large number of open
channels, corresponding to the various rotational and
vibrational levels which are energetically accessible. To
keep the number of open channels small in electron—
molecule collisions, the incident energy must be very
low indeed by electron —atom collision standards; in
fact, the incident energy must be so low that (with
very few exceptions, surely) electron —atom collisions
would be elastic and accurately describable by effective
range theory.

The simplest electron —molecule collisions (other than
purely elastic collisions) involve target molecules
which are homonuclear and diatomic, at incident ener-
gies too low for vibrational excitation, though large

" References to the early experimental work on electron—
molecule collisions are given by Massey and Burhop (1952),
pp. 207—209, and by Brode (1933); judging by these sources
the first reasonably believable measurements of such collisions
were performed by Ramsauer (1921), and by Townsend and
Bailey (1922) .

4 Other recent summaries of low-energy electron —molecule
collision experiments, along with extensive references to the
literature, include Massey, Burhop, and Gilbody (1969);
McDaniel {1964); Phelps (1967, 1968); Varney and Fisher
{1968).Primarily bibliographic compilations, not always entirely
overlapping, . include Takayanagi (1969); Hochstim (1969);
Kieffer (1967); Chamberlain and Kieffer (1970).

enough for rotational excitation. As a rnatter of fact,
for rotational excitation under these circumstances,
there exists a first-order theory which is much more
successful than any first-order theory of electron —atom
excitation at low energies. To be specific, it was shown
about fifteen years ago (Gerjuoy and Stein, 1955a,
1955b) that at incident energies just above the excita, —

tion threshoM, the cross section for rotational excitation
of homonuclear diatomic molecules by electrons
depends solely on the molecular quadrupole moment,
and is almost trivially correctly obtainable in closed
form using the Born approximation. As the incident
energy increases from threshold, the Born approximation
is decreasingly valid, and the rotational excitation cross
section commences to depend in a complicated manner
on more collision parameters (e.g. , on the molecular
polarizability) than merely the quadrupole moment.
The, at first sight, surprising conclusion that in rota-
tional excitation of homonuclear diatomic molecules by
electrons the Born approximation is best at the lowest
energies is understandable from the fact that the
electron —molecule interaction has a long-range tail,
proportional to the molecular quadrupole moment Q
and to r ', with r the distance between the incident
electron and the molecular center; it then can be argued
(Gerjuoy and Stein, 1955a) that as the incident wave
length increases, the principal contribution to the
matrix element for rotational excitation comes from
increasingly large distances, where the ratio of the
interaction energy to the incident kinetic energy
approaches zero, therewith satisfying a customarily
cited criterion for the validity of the Born approxi-
mation. This argument also explains the result that the
rotational excitation cross section near threshold
depends only on Q.

Consequently, the main theoretical interest in
rotational excitation by electrons is to develop methods
for correctly predicting observed cross sections as the
energy increases from threshold, and departures from
the simple Gerjuoy —Stein formulas develop. Sections
3 and 4 below review the most recent progress in this
regard. In particular, Sec. 3 reviews results obtained
in what may be termed the rotational close coupling
approximation, while Sec. 4 examines the so-called
fixed-nuclei approximation for elastic scattering, and
its so-called "adiabatic-nuclei" counterpart for rota-
tional excitation. The close-coupling approximation
method LBurke and Smith, 1962]has been applied with
varying degrees of success to several electron —atom
problems, and its evolution is one of the reasons for our
previous assertion that routine prediction of low-energy
electron-atom cross sections soon may be practical.
The method may be described in three steps: (i)
Expansion of the total wavefunction describing the
collision in terms of the complete set of target states, '"

' Close-coupling expansions in terms of so-called pseudostates
(Damburg and Karule, 1967), which are designedly chosen
different from the actual target states, also have been employed
(Burke and Geltman, 1970) .
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including antisyrnmetrization with respect to inter-
change of all electrons, incident as well as target; the
coefficients in such an expansion then may be inter-
preted as continuum electron orbitals, and must satisfy
an infinity of coupled partial integro-differential
equations. (ii) Next these continuum orbitals are
expanded in terms of spherical harmonics ("partial
wave expansion") resulting in an infinity of coupled
ordinary integro-differential equations for the radial
parts of the continuum orbitals. (iii) Finally, one makes
the "close-coupling approximation" of truncating this
last infinite set of equations, in order to make tractable
the task of finding solutions satisfying appropriate
asymptotic conditions. The fixed-nuclei approximation
starts from a somewhat less fundamental point of view
than the close-coupling method Lwhich in principle
would be exact if truncation were not necessary], but
within its framework can be carried out very con-
sistently; the basic idea is to replace the actual molecule

by one in which the nuclei are fixed during the entire
collision process, an approximation crudely defensible
whenever the incident electron speed is large compared
to the nuclear rota. tional speed [a criterion requiring
merely that incident electron energies exceed 10 4 eV,
for all electron —molecule collisions]. In this way, one
obtains elastic scattering amplitudes, which then can
be employed in a so-called "adiabatic-nuclei" approxi-
mation (again ba, sed on the fact that the incident
electron speed is large compared to the nuclear rota-
tional speed) to yield rotational excitation cross
sections by simple quadr atures. A perhaps more
accurate criterion might be that the collision time is
small compared to the molecular rotational period;
however, the collision time is difficult to pin down
without completely solving the problem. The criterion
for the validity of the adiabatic-nuclei approximation is
discussed further in Sec. 4; here it suffices to say that the
incident energies at which the adiabatic-nuclei approxi-
mation is valid probably are larger than 10 4 eV.

Especially when the possibility of electron exchange
is taken into account, either of the aforementioned
approximations is considerably more complicated to
carry out than the very simple Gerjuoy-Stein Born
approximation, wherein electron exchange was wholly
ignored. Unfortunately, it appears that these refine-
ments are needed at energies quite close to threshold
[in e=H2 collisions, at energies merely seven hundredths
of a volt above threshold (Chang, 1970), i.e., below the
threshold for opening a second rotational excitation
channel], if detailed agreement between theory and
experiment is to be obtained. At the present time, only
e=H& collisions have been studied sufficiently carefully
both experimentally and theoretically to warrant any
conclusions concerning the utility of these fixed-nuclei
and close-coupling approximations in rotational excita-
tion. In e=H2 collisions, however, it does seem that
either the close-coupling or the adiabatic-nuclei ap-
proximation is able to account for the observed rota-
tional excitation cross sections at energies up to a few

volts above threshold, and that the adiabatic-nuclei
method involves rather less computation than does the
rotational close-coupling method.

The foregoing remarks are amplified, elucidated and
illustrated in Secs. 2—4 below. Sections 3 and 4, on the
theory of rotational excitation by slow electrons, may
be compared with a very recent review of the same
subject by Takayanagi and Itikawa (1970), who also
give extensive references to the literature. It is worth
mentioning that Secs. 3 and 4, being concerned solely
with homonuclear diatomic molecules, do not consider
rotational excitation of molecules possessing a per-
manent dipole moment, for which there also is a success-
ful first order theory at low incident energies, due to
Altshuler (1957), who employed the Born approxi-
rnation together with an adiabatic-nuclei approximation.
For more recent theoretical treatments of electron
scattering by polar molecules, see Takayanagi (1967);
Tagayanagi and Itikawa (1968); Itikawa and
Takayanagi (1969a); Itikawa (1967, 1969); Turner,
Anderson, and Fox (1968); Garrett, Turner, and
Anderson (1970); Bottcher (1970, 1971); Crawford
(1971); Garrett (1971). For swarm data in a large
variety of polar rnolecules, mostly organic and dis-
tinctly polyatomic, along with a summary of much of
the relevant literature, see Christophorou and
Christodoulides (1969) .

2. Low-Energy Electron-Molecule Scattering
Experiments

Although some reference will be made to older work,
in general this chapter concentrates on the more
modern measurements of electron —molecule scattering
at energies below ionization, particularly in the at-
mospheric gases. Because hydrogen is the simplest
molecular gas from a theoretical standpoint, and
especially because Secs. 3 and 4 below are almost
entirely concerned with e=H~ collisions, these collisions
will receive the most attention in this chapter.

Z.l Basic ExPerimegta/ Procedures

There are three classes of measurements which can
be performed. Most desirable, of course, would be a set
of measurements of the differential cross section as a
function of incoming and outgoing energy and angle.
From such a set of measurements, one can directly
obtain either the total cross section or the momentum-
transfer cross section. In principle, at least, a direct
measurement of the differential cross section is straight-
forward. All one need do is scatter a monoenergetic
parallel electron beam by a monoenergetic line gas
target; one then studies the scattered electrons arriving
at a detector of infinite angular resolution as a function
of angle, and as a function of incoming and outgoing
energy. Such an arrangement is illustrated schematically
in Fig. 1. In practice, the problems associated with

making a low-energy quasimonoenergetic electron beam
and a quasiline gas target, together with detecting the
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scattered electrons at even some finite angular resolu-
tion, have proven to be somewhat difficult. The problems
of unknown or at best variable detection efficiency
arising from finite angular resolution can be, to a certain
extent, overcome by a total scattering measurement.
However, the problems associated with finite energy
resolution become more serious as one goes to lower and
lower energies. Ultimately, the problem of space
charge (leading to loss of signal at very low energies)
Inakes it impossible to measure scattering cross sections
directly. In any case, as the energy is lowered, a
measurement of scattering cross section as a point
function of energy gradually becomes a measurement of
the average value of the product of the cross section and
collisional relative velocity, divided by the average
value of the relative velocity. Thus at suKciently low
energies even a so-called direct measurement ends up
with the problem of unfolding the desired cross section
for monoenergetic particles from measurements averaged
over the energy distribution functions of the colliding
particles.

The direct measurement of electron scattering cross
sections, both total and differential, was begun by
Ramsauer in the early years of this century. ' In these
and subsequent measurements' a magnetic momentum
selector was used to define the electron beam energy;
then the beam was allowed to interact with a gas con-
tained in a scattering cell, and the attenuation of the
electron beam current was measured as a function of the
gas density in the scattering cell at a particular electron
energy and (in some cases) scattering angle. The
arrangement for such measurements is shown very
schematically in Fig. 2. Since the logarithm of the
attenuated current is proportional to the total scattering
cross section and the pressure, an absolute cross section
measurement depends upon an absolute pressure
measurement, usually at pressures below about 100p, .

ELECTRONS

X

FIG. 2. Interaction region geometry. The incident electron beam
has area A.

In the most recent measurements of this general nature
( Golden, Handel, and Salerno, 1966; Golden and
Handel, 1966; Golden, 1966a; Salop and Nakano,
1970), cross section measurements have been limited to
electron energies greater than 100 meV, with an
estimated probable error of +3%, arising mainly in
the pressure measurement. '

Conversely, one may study the neutrals instead of
the electrons. In such a case one need not measure the
absolute neutral density, but rather one must measure
the absolute value of electron current; obviously this is
an advantage. However, in order to do such an experi-
ment, one needs a molecular beam in addition to the
electron beam, and hence one needs a method of
measuring relative neutral cruxes at least. The molecular
beam sidesteps the problem of absolute pressure
measurement and allows the measurement of cross
sections of atoms or molecules not normally available as
gases, but at the same time introduces another problem,
that of further loss of signal. For substances which are
normally gases, the achievable beam density usually is
at least 100 times less' than the corresponding gas
density used in a beam —gas cell experiment, and can be
as much as 10' times less'0 for substances made by
dissociation. Thus the beam —beam experiments have
usually been limited to energies greater than about
500 meV with an estimated probable error of about
&20-30% (Sunshine, Aubrey, and Bederson, 1967).
The difFiculties associated with direct measurement
of low-energy electron scattering cross sections has led
to the re-emergence of the so-called indirect methods of
cross section measurement, wherein the desired cross
section is extracted from the data only after a fairly
complicated analysis. The oldest of these methods,
which determines the momentum-transfer cross section"
from measurements of transport properties of electron
swarms, was pioneered by Townsend (1914). In this

FIG. 1. A desirable experimental arrangement for a differential
scattering cross section measurement.

'For total electron —molecule scattering see, e.g. , Ramsauer
and Kollath (1930); for differential electron —molecule scattering
see, e.g., Ramsauer and Kollath (1932).

7 For a discussion of the modern application of the Ramsauer
technique to precise total electron-atom or molecule scattering
cross section measurements, see Golden and Handel (1965).

Particular difficulties associated with the 02 measurements
have led Salop and Nakano (1970) to estimate their error to lie
between ~8 and ~10%.

See, for example, Ehrhardt, Langhans, Linder, and Taylor
(1968).' See, for example, Smith (1955).

"For a discussion of the modern application of the swarm
technique see, for example, Crompton (1970). For a definition
of the momentum-trarisfer cross section and a discussion of
its significance in transport processes, see Massey and Hurhop
(1952), pp. 15—20.
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chapter, remarks concerning indirect methods will be
restricted to cross section determinations from these
so-called "swarm" experiments, " since these data thus
far have yielded much more precise information than
other types of indirect measurements, and have done so
for the largest variety of gases. Usually measured are
the drift velocity and the ratio of the diffusion coe%cient
to mobility, as functions of the ratio of electric field
strength E to density E. The pioneering work on the
numerical solution of the ensuing Boltzmann equation
to find the momentum-transfer cross section was done
by Frost and Phelps (1962). The use of modern
techniques in the measurement of both the drift velocity,
vd, and the ratio of diffusion coefficient to mobility,
D/p, such as employed by Crompton, Elford, and Jory
(1967), has yielded measurements of these quantities
with quoted accuracies of ~1 jo over a wide range of
values of E/1V. At the higher pressures used in swarm
experiments, the principle source of error is the pressure
measurement, but this error can be made less than 1%%u&.

For collisions with atoms at energies below the excita-
tion threshold, the method applied by Crompton and
others is to use an assumed cross section as a function of
energy to calculate both od and D/p as a function of the
ratio of electric field strength to density, E/E. Then the
cross section function is varied until the computed
values of oe and D/p are consistent with the corre-
sponding measured values. This has resulted (Crompton,
Elford, and Jory, 1967) in a stated error of ~2/o for
electron —helium scattering in a range of energies from
10 meV to 3 eV."

Because of inelastic effects, for molecular gases the
same kind of analysis of transport data as was used for
the atomic gases cannot be used to unfold the cross

"It should be noted that attempts to compare total and
momentum-transfer cross sections through a phase-shift analysis
of the data show that even in the case of He the total and mo-
mentum-transfer cross sections do not agree to better than about
10%. For this type of analysis see, for example, Golden (1966b),
Bransden and McDowell (1969).

COLLECTOR

Fxo. 3. Schematic arrangement of a modified Ramsauer ap-
paratus for the measurement of total scattering cross section,
from Golden and Handel (1965).

section. However, if all but one inelastic cross section is
known accurately, the remaining inelastic cross section
can be determined, and the analysis of the data near
threshold is most precise. Moreover, if the only signih-
cant inelastic losses are due to one type of excitation
process (such as rotational excitation), swarm methods
can be used to normalize the cross sections measured
by a beam experiment; alternatively, if the cross
sections have been calculated from theory, both the
theory and the physical parameters used in the theory
(such as electric dipole and quadrupole moments) can
be checked with the results of swarm experiments. The
momentum-transfer cross section can be obtained with
reasonable accuracy at all energies, provided the
inelastic collision frequency is small compared to the
elastic collision frequency. Crornp ton, Gibson, and
McIntosh (1969) have estimated the error in their
momentum-transfer cross section determinations in
hydrogen to be +5%."Modern differential scattering
cross section measurements still are fragmentary but,
hopefully, more data soon will be forthcoming.

2.2 Modern Exyerimenta1 Methods

Z.21 Modified Ramsauer Technique

Figure 3 shows a schematic diagram of an apparatus
used by Golden and Handel (1965) to make total cross
section measurements. More recently this apparatus has
been used by Salop and Nakano (1970).The apparatus
is very similar to that used by Ramsauer and Kollath
(1930), the major modification being the provision here
for differential pumping. Briefly, the electrons from an
oxide coated ca,thode, or (in the case of oxygen) a
thoriated iridium filament, are momentum selected by
the combination of the three slits, S~, S~, S~, and a
uniform magnetic field applied perpendicular to the
plane of the drawing. The electrons are then allowed to
interact with the gas to be studied in the scattering
cell, and the transmitted electron signal is studied as a
function of gas density in the scattering region at a
particular value of electron energy. If it is assumed that
a current of electrons I,o+I,o Io enters the scatter—i—ng
region, the current reaching the collector is given by

I (e) =I,o(o) exp L
—o~(o)Nxj, (2.1)

where I,p is that part of the current entering the scat-
tering region which would reach the collector in the
absence of scattering, a., (e) is the total cross section,
X is the gas density, x is the path length of the electron
beam through the scattering chamber, and e is the
electron energy. The current reaching the scattering
chamber walls is given by

I,=I.o+I,o/1 exp ( —o.,X )gx(2.2)—

where I p is that part of the current entering the scat-
tering chamber which would reach the scattering

"For a comparison between the results in H2 and D. see
Engelhardt and Phelps (1963); for N2, see Engelhardt, Phelps,
and Risk (1964); for momentum-transfer cross section deter-
minations in 02, CO, and CO2, see Hake and Phelps (1967).
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FIG. 4. Approximate angular detec-
tion eSciency function of the modified
Ramsauer apparatus of Fig. 3, from
Golden and Handel (1965).
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chamber walls in the absence of scattering. Then we
have

ln $(I +I )/I ]= ln [(Ip+I p)/I pj+ogNx. (2'.3)
From Eq. (2.3) the total cross section is directly
determined by measuring the slope of a plot of the left
hand side vs X at constant e. In this kind of selector,
two parameters define the electron energy. One is the
magnetic field strength and the other is the accelerating
voltage. This coupling of the energy to two experimental
parameters leads to the fact that the electron energy is
not easily continuously variable. The energy resolution
of this type of apparatus is roughly given by

(R=e/Ae~r, —/26w (2.4)
where Lh is the electron energy spread passed by the slit
system-, r is the mean radius of the apparatus, and hw
is the slit width. Since the energy resolution is a con-
stant, the energy spread passed is a function of the
energy. Thus the study of resonance efI'ects is quite a
tedious aGair. However, there is an advantage with
regard to changes in accelerating potential due to
interactions between the cathode and background gas
I Golden, Bandel, and Salerno 1966j.For a given value
of magnetic field strength, only one value of electron
energy will be transmitted regardless of the applied
accelerating voltage. Figure 4 shows the angular
detection efIiciency for this kind of a transmission
experiment to measure total scattering cross section.
This function has been calculated for a rectangular
geometry without a magnetic field, and as such is only
an approximation (although a pessimistic one) to the
true situation in a Ramsauer apparatus. ' If we define
the angular resolution as the angle at which 50%%uq of the
scattering events are detected, the apparatus has an 8'
resolution for forward scattering, and a 2' resolution for
backward scattering. In order to estimate how much of
the total cross section is measured, this function must
be multiplied by the differential cross section and the
element of solid angle, and then integrated over the
angle. Hence the lack of detection at zero and 180' is

somewhat minimized. Estimates based upon calculated
diA'erential cross sections for hydrogen or helium, using
this geometrically derived function, give the result that
the experiment measures about 99%%uq of the total
scattering cross section.

Z.ZZ 3foleculur Beam Eecoi/ Technique

Figure 5 shows the schematic arrangement for the
atomic or molecular beam recoil experiment of Sunshine,
Aubrey, and Bederson (1967). The gas from the source
goes through some collimating slits and then is cross
fired with a pulsed electron beam. The transmitted
atoms or molecules are detected by a phase-sensitive
detector locked to the pulse frequency of the electron
beam. The output of the phase-sensitive detector is
connected to the input of a voltage to frequency con-
verter, the output of which is connected to a sealer
timer for signal enhancement. Sunshine, Aubrey, and
Bederson (1967) show that for electron-molecule
scattering the total cross section 0-& is given by

p ~
——1.064 (Hev/i) (S/I), (2.5)

where II is the common dimension of electron and
neutral beams at their intersection, i/e is the number of
electrons per second in the interaction region, 0 is the
most probable velocity of the neutral beam in the
source, and 5/I is the ratio of the measured scattering
signal to the total beam signal. This equation takes into
account the distribution of molecular velocities, in-
cluding corrections for the transit time of the neutral
beam. For molecular oxygen, the angular resolution of
this apparatus using the 50% criterion ranges from
about 18.5 at 1 eV to 11.5 at 12 eV.

Z.Z3 E/ectron Smarm Techniques

Figure 6 shows the chamber used by Crompton,
Elford, and Gascoigne (1965) to measure the ratio of
diffusion coefFicient to mobility as a function of the
ratio of electric field strength to gas density. Electrons
enter the chamber through the small hole in the cathode,
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and drift and diGuse under the influence of a uniform
electric field towards the anode. The anode is divided
into a disk and an annulus, and the ratio of electron
currents to the two parts of the anode is measured.
This ratio is related in a complicated way to the ratio of
diffusion coefFicient to mobility, D/y, . Figure 7 shows a
slightly di fferent chamber employed by the same
authors; this one is used to measure the drift velocity
as a function of the ratio of electric field strength to
density. Here the time required for a pulse of electrons
to go from one electrical shutter through the other to
the collector is measured, and this is related straight-
forwardly to the drift velocity. The diffusion equation
has been solved for the electron drift, subject to the
boundary conditions that the density is zero at the
cathode and anode except for a point electron source
at the cathode LHuxley, 19407."The particular form of
the Boltzmann equation given by Frost and Phelps
(1962), which was derived by Holstein (1946) and
Margenau (1946) to include the effect of the molecular
energy distribution function, is

d e df(e) I 2m d

Equation (2.6) may be solved for the steady state
distribution function f(e) of a swarm of electrons
drifting and di6using through a gas at temperature T
under the influence of a uniform electric field E. In
this equation X is the gas density; 0 (~) is the momen-
tum-transfer cross section; o;(e) is a rotational, vibra-
tional, or electronic excitation cross section of excitation
energy e;; 0;(~) is the cross section for collisions of the
second kind in which an excitation energy ~; is gained
from the molecule. The symbol e is electron charge;

2mkT d $, df(e) I+ —
I "&~-(~)

M de k de

+ P L(.+;.)f(.+;)x~,(.+;)—.f(.)x~;(.) 7

with the distribution function normalization
(2 6)

+ 2 L(~ ~~)f(~ ~i) &—~ , (~ —
~~) ~f(~-) &~—~(~)—7=o

I I ~ I ~
T.C.

I R
II 0
I I

II 0
I I ~ ~TC
I lr

e'I'f(e) de=1. (2.7)
I I I I0246

' A slightly different solution was obtained by Huxley and
Crompton (1955), by changing the boundary conditions of
the diffusion equation. When this was done, the resulting equation
eras found. to agree closely @faith the experimental results.

FIG. 6. Schematic arrangement of a Drift tube used to measure
the ratio of diffusion coefFicient to mobility, from Crompton,
Elford, and Gascoigne (1965); TC denotes "thermocouple".
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m is the electron mass; M is the molecular mass, and
k is the Boltzmann constant. "

It would be possible to measure f(c) directly, and
thus to solve Eq. (2.6) for the cross sections by varying
trial sets of cross sections as a function of e until Eq.
(2.6) is satisfied for the known f(p). However, electron
energy distribution functions have only been measured
directly in a few cases (Roberts and Burch, 1966;
Golden and Nakano, 1967) . The procedure that usually
has been adopted is to compare experimental and
calculated values of the electron drift velocity and
diffusion coefficients as functions of the ratio of electric
6eld strength to density. These quantities are given by

and

De "ef(p) de " c df(p)
de. (2.9)

p
0'I (p) p pgg (p) dp

Thus f(p) is calculated from Eq. (2.6) for specified trial

I''IG. 7. Schematic arrangement
of a Drift tube used to measure
the drift velocity, from Crompton,
E]ford, and Gascoigne I'1965) .

00
4 ~
0 ~

cross sections; then the right sides of Eqs. (2.8) and
(2.9) are computed using the calculated f(p) and the
same trial p (p) . The trial cross sections are varied until
agreement for calculated and measured values of 'vd, and
De/p is obtained within the experimental accuracies
of these quantities.

In practice, the procedure which has just been
described is useful mainly at lower energies, where only
elastic scattering and at most one inelastic excitation is
energetically possible. When only elastic scattering can
occur, this swarm technique conveniently determines
the momentum transfer cross section o (e), because
the electron energies which mak. e up a characteristic
swarm and significantly contribute to the integrals of
Eqs. (2.8) and (2.9) extend from zero to only about
twice the mean energy. There may be many different
cross section functions which would yield the correct
transport integrals for a limited range of values of
8/X (Margenau, 1946) . However, when a wider range
of values of L/1V is used in conjunction with precise
experimental results, a wider energy range of validity
of the cross section as a function of energy will be
obtained. In fact, definite limits can be obtained for the
cross section's validity. In the case of only one inelastic
process it is still possible to determine the cross section
almost as accurately as in the case of elastic scattering,
because only o. enters into the transport integrals
LEqs. (2.8) and (2.9) j, while the inelastic cross section
only affects the energy distribution function. However,
when more than one inelastic process is important in the
determination of. the energy distribution, the situation
becomes less clear. If only two inelastic processes are
considered, with cross sections oi(e), p~(e) at threshold
energies ei, p2 respectively (where p2) ci), then at some

energy between ei and e2 neither &ri(p) nor 02(p) can be
uniquely determined from swarm data alone; above this
energy, 0-& cannot be uniquely determined unless cr2 is
known accurately from some other source. Furthermore,
0& can never be determined with a great deal of accuracy
unless e2))e~.

There are other methods of making direct cross
section measurements, which have not been fully
applied to either total or differential cross sections at low

energies in an absolute way as yet, but which probably
will be in the near future. However, they have been used
to look at a number of elastic and inelastic effects, and
therefore warrant some attention.

Z.Z4 High Sensitivity Teclseigues

"Tt should be noted that this form of the Boltzmann equation
has neglected transverse spatial gradient terms in the distribution
function. However, Lowke and Parker I'1969) have shown that
I'despite this difhculty) calculations based on solutions of Eq.
(2.6) agree with the experimentally obtained ratios of longitudinal
and transverse diffusion coefficients to mobility.

2.24a rpd Technique. Figure 8 shows an electron gun
of the retarding potential difI'erence type due to Schulz
and Fox (1957). This was used in. the first experiment
which attempted to look at resonance effects in electron—
atom scattering, by looking for the production of helium
metastables as a function of electron energy in the
vicinity of the threshold of the first triplet S level of
He. An electron beam from the cathode is aligned and
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a function of interaction energy and energy loss by
means of another monochromator used to look at the
transmitted electron energies. The resolution of this
kind of monochromator is given by I compare Eq. (2.4) )
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FIG. 8. Schematic arrangement of a retarding potential
difference electron gun, from Schulz. and Fox (1957). Here Ii
is the filament; Pj, P2, and P3 are the three electrodes constituting
the electron gun; C is the collision chamber; G1 and G2 are two
concentric cylindrical grids; M is the gold-plated cylinder where
electrons released by metastable atoms are measured; and L is
the collector for electrons in the electron beam.

held together by a magnetic field pointed along the
direction of the cathode-collector axis. A square wave
retarding potential is applied to P2, which serves as a
dispersing element. Thus the ac current arriving at E in
phase with the pulse applied to P~ has, in principle, an
energy width equal to the pulse height applied to P2."
By proper choice of the potential on the transverse
elements defining the interaction region, electrons
which have lost a prescribed amount of energy may be
trapped; thus the device can also serve as a sort of
energy analyzer. " In practice this geometry has led to
energy widths greater than about 100 meV, the reason
being that the retarding potential works on solely the
axial component of velocity, whereas the only limits on
the allowable transverse velocity components are those
given by the aperture dimensions and the applied
magnetic field strength. '8

2.24b Electrostatic MorIochromator-Analyzer Tech-
niqle. Figure 9 shows the schematic arrangement of
the electrostatic monochromator —energy analyzer com-
bination Simpson, Kuyatt, and Mielczarek used in
their transmission experiments to study structured
effects in electron scattering (Simpson 1964). This
method of energy selection was first described by
Hughes and Rojansky (1929) . In this version, the lenses
have cylindrical symmetry, and both monochromator
and analyzer are spherical sections. In the mono-
chromator, the electrons first are energy selected by the
combination of the radial electrostatic field and the
apertures, .and then interact with the gas in the scat-
tering cell; the transmitted electrons may be studied as

"For a more complete discussion of the retarding potential
difference method, see Fox, Hickam, Kjeldaas, and Grove (1951),
and Fox, Hickam, and Grove (1953, 1955).

"For a discussion of the trapped electron method as applied
to a retarding potential difference electron gun, see Schulz (1958,
1959).

"Recently this drawback has been overcome in a device
operated at zero magnetic field; in fact an energy modulated
electron spectrometer capable of energy resolution better than
0.01 eV has been demonstrated. For a description of this electron
spectrometer, see Golden and Zecca (1971a). For the use of
this spectrometer as applied to the study of resonance effects
in e —He scattering, see Golden and Zecca (1970).

where r now is the mean radius of the monochromator,
and Am, is the aperture dimension. Since the energy
resolution and the energy in this type of apparatus each
are dependent upon only one parameter (namely and
respectively the voltage between the spherical sections
and the voltage on the scattering cell), the energy in
the interaction region easily may be continuously
varied. Thus resonance effects are easily studied. The
gas cell may be replaced by a cross fired molecular
beam, and either the monochromator or energy analyzer
may be made movable so as to study the scattered
electrons. This has been done most recently in the
excellent experiments of Keingartshofer, Ehrhardt,
Hermann, and I.inder (1970) on electron-hydrogen
molecule scattering, where both angular distribution
and energy loss were observed.

2.3 Experimental Results

Ke shall review first experimental results in at-
mospheric gases other than hydrogen, deferring our
discussion of e=Hu collisions (wherein we examine
rather small effects) to the end of this section. For the
most part, we are concerned with measurements of
total and momentum-transfer cross sections, performed
via techniques described above. For a review of work
prior to 1968, especially of rotational and vibrational
excitation, covering H2, N2, O~, CO, and CO2, see
Phelps (1968).

Z.31 Total and Morrterttum Trartsfer Cross-Sectiorts

2.31a EitrogerI, . Figure 10 shows a total cross section
measurement for N2, done in a Ramsauer-type appa-
ratus (Golden, 1966a). Also shown on the plot are the
older measurements of Bruche (1927) and the semi-

empirical calculations of Fisk (1936). Some discussion
of Fisk's work (which included calculations of cross
sections for 02 and H2) and its significance is given in
Sec. 4 below. There is a broad peak in the measured
total cross section at about 2.25 eV. The position of this
peak is the same a,s the peak found by Schulz (1964)
in a direct measurement of the cross section for vibra-
tional excitation. Schulz's measurements give a peak
total vibrational excitation cross section of about 5 A~

(roughly one-fifth the peak height seen on Fig. 10
disregarding the larger resonances) . This result is
consistent with the analysis of swarm data in N2

performed by Englehardt, Phelps, and Risk (1964),
shown on Fig. 11. However, the very large resonances
{widths about 0.2 eV) which have first been. observed

by Schulz (1964), who also showed them to be elastic,
cannot be resolved in the swarm measurements. These
resonances are believed to be due to the temporary
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formation of N2 in the 'II, state. "There also appear in
Golden's (1966a) data some smaller structures at the
lower electron energies which also may have been
observed by Boness and Hasted (1966) in a trans-
mission experiment using an electrostatic analyzer.
Since no energy analysis was performed by Golden
(1966a), it is not known whether these structures are
elastic or not. Some preliminary measurements with a
high energy resolution, energy modulated electron
spectrometer' have also revealed these lower energy
structures (Golden and Zecca 1971b), but as yet they
have not been energy analyzed; thus whether they are
elastic or inelastic or due to direct vibrational excitation
must be decided by additional work. In any case, N2 is a
gas in which resonances play an important role in the
scattering process, and a theoretical picture which
attempts to explain the total scattering in N~ should
include provision for the formation of intermediate
states of N2 . (Burke and Sinfailam, 1970; Krauss and
Mies, 1970) .

2.31b Oxygen. Figure 12 shows the very recently
measured (Salop and Nakano, 1970) total cross sections
in e=02 collisions. No large resona, nce effects are seen.
The plot also shows the recent molecular beam recoil
measurements of Sunshine, Aubrey, a,nd Bederson
(1967), the results of Bruche (1927), and the semi-
empirical calculations of Fisk (1936). Figure 13 shows
swarm results for the momentum-transfer cross section
and other inelastic cross sections in oxygen (Hake and
Phelps, 1967). The agreement at the higher energies
between the momentum-transfer cross section and the
total cross section is very good.

' For the potential energy curve of this state of N&, based
on the measurements of Schulz (1964), see Gilrnore (1965).

2.31c Cgrbon Monoxide. Figure 14 shows the momen-
tum-transfer cross section in carbon monoxide (Hake
and Phelps, 1967), which is a heteronuclear diatomic
molecule, and therefore possesses a permanent electric
dipole moment; Also shown on the plot are the Born
approximation calculations of Altshuler (1957) for the
momentum-transfer cross section, as well as the total
cross section (Ramsauer and Kollath, 1931; Kollath,
1932) . For the specific case of e=CO collisions, attempts
to improve on first order Horn approximation predic-
tions of rotational and/or vibrational excitation cross
sections include Takayanagi (1966), ftikawa and
Takayanagi (1969b), and Itikawa (1970).

2.31d Carbon Dioxide. Figure 15 shows momentum-
transfer cross sections in CO2 (Hake a.nd Phelps, 1967),
along with other inelastic cross sections. Also shown on
the plot are the total cross section measurements of
Ramsauer and Kollath (1931) and Bruche (1927). As
in the case of 02, there is good agreement between
momentum-transfer and total cross sections, especially
at the higher energies. The peak at about 4 eV coincides
with the maximum found by Schulz (unpublished) in
the energy loss spectrum. It is also suggestive of the
structure in N2 a,t a,bout 2.25 eV, which is resonant
in character.

2.31e IIydrogen. Figure 16 shows a set of direct
total cross section measurements in hydrogen and
deuterium (Golden, Bandel, and Salerno 1966); the
total cross sections in these two gases are identical on
this scale. Also shown are the older measurements of
Ramsauer and Kollath and the old semiempirical
calculation of Fisk (1936). Detailed comps, rison of
these measured e=H2 cross sections with more recent
theoretical calculations will be deferred to Secs. 3 and 4.
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seen in each case, the observation being clearest in
HD. The larger of the series has been shown to represent
changes in cross section of about 2)&10 "cm', a factor
of about 2.5)&10 ' smaller than the elastic scattering
at that energy. "These bumps are elastic resonances"
due to the temporary formation of H2 in 'Z,+ states at
about i1 eV. Recently Weingartshofer, Ehrhardt,
Hermann, and Linder (1970) have measured diRerential
excitation functions and angular dependence of the
scattered electrons for Axed incident energy and given
decay channel, and have found an additional state of
H~ at about 13.6 eV. The potential energy curves given
by them for some of the H~ states and H2 resonant
states are shown in Fig. 19.

2.32b Dissociative Attachment. In the same energy
regime an even smaller effect has been observed. Some
of the structures in the dissociative attachment cross
section are probably also due to the formation of
temporary states of H& . Figure 20 shows the dissociative
attachment cross sections for electrons incident on H
HD, and D2, measured by Rapp, Sharp, and Briglia

2—
0 I I III I I I I I I I I I I I I I I I II
0.2 I.O l,8 2.6 3.4 4.2

ELECTRON ENERGY (eV)
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10-l4

FIG. 10. Total scattering cross sections in square Angstroms
for e —N~, from Golden (1966a), Bruche (1927), and Fisk
(1936).

Figure 17 shows the results for the momentum-transfer
cross section in hydrogen. Here we have the calculations
of Henry and Lane (1969), the swarm results of
Engelhardt and Phelps (1963), and the swarm results
of Crornpton, Gibson, and McIntosh (1969).There is
fairly good agreement between the calculations and the
experiment (maximum disagreement with Henry and
Lane is 40% at low energies) . However, the significance
of this comparison between experiment and theory in
Fig. 17 is best evaluated in the light of the discussion in
Secs. 3 and 4 below.

Z.3Z Other Observations in Hydrogen,
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We next shall review the smaller effects in hydrogen
which can be seen with high sensitivity experiments.
Many of these effects have been seen in other gases, but
the discussion will be restricted to hydrogen.

2.32a Resonances. Figure 18 shows the results" of the
transmission experiment of Kuyatt, Simpson, and
Mielczarek (1966) in H~, D2 and HD. The transmitted
current of electrons which have suffered no energy loss
is plotted as a function of incident electron energy for
the energy range 11—13 eV. Two series of bumps can be

"The stronger series of these resonances in H2 was first ob-
served by Kuyatt, Simpson, and Mielczarek (1964) .The measure-
ments were extended to D2 by Golden and Handel (1965b),
who also gave quantitative information about the cross section
changes in and out of the resonances.

FIG. 11. Momentum-transfer, o, and other inelastic cross
sections for e=N. , from Engelhardt, Phelps, and Risk (1964).
The dashed o- curve indicates the results reported previously
by Frost and Phelps (1962). To avoid confusion, only one rota-
tional excitation curve is shown, namely o.« from j=4 to j=6
calculated at 77'K from the Gerjuoy and Stein (1955a, 1955b)
formulas using a quadrupole moment of 1.04 in atomic units;
the corresponding deexcitation curve, from j=6 to j=4, is
labeled o-64. The curve labeled Zo.„represents the total of all
vibrational excitation cross sections to vibration levels v=1—8;
the curve labeled Zo- represents the total of six various types of
effective processes with thresholds between 5.0 and 14.0 eV. The
ionization cross section, o.;, represents the experimental results
of Tate and Smith (1932).

"The spacings of these resonances in H2 have been calculated
by Taylor and Williams (1965), and agree moderately well
with those shown in Fig. 18.See also Eliezer, Taylor, and Williams
(1967).
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FIG. 12. Total scattering cross
sections for e —02, from Salop and
Nakano (1970); Sunshine,
Aubrey, and Bederson (1967);
Bruche (1927); and Fisk (1936).
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(1965). The apparatus was essentially as described by
Tate and Smith (1932), and similar to that used by
Schulz and Fox (1957) . The negative ion current was
directly collected by one-half of a parallel plate capacitor,
placed across the interaction region so that the incident
electrons moved in the center of the capacitor and
across its 6eld. The lower energy portion of the H&

curve in Fig. 20 is believed to be due to the formation
of H, with the neutral H left in the ground state; the
dissociative attachment presumably occurs via the
'Z,+ repulsive state of H2, and produces H ions
having considerable kinetic energy. On the other hand,
the upper peak in Fig. 20 is ascribed to H formation
proceeding via a temporary excited state of H~ and
leaving the neutral H in an excited state, so that very
little kinetic energy remains to be shared between the

outgoing H and H . The upper ( 13.5 eV) H~ peak in
Fig. 20 is smaller than the elastic cross section at that
energy by a factor of about 2.5)&10 '. In a more recent
experiment employing essentially the same apparatus
as Rapp, Sharp, and Briglia (1965), but with the
addition of an electron trap which collects electrons
that have undergone inelastic collisions, ' nowell and
Sharp (1967) have found vibrational structure in the
dissociative attachment cross section at the lower
energy broad peaks of Fig. 20; this structure super-
imposed on Fig. 20 occurs at the same positions as the
strong series of resonances found by Kuyatt, Simpson,
and Mielczarek (1966). The existence of such structure
seems to have been predicted by O' Malley (1966), and
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FIG. 13. Momentum-transfer cr and other inelastic cross
sections for e —02, from Hake and Phelps (1967). The curve for
o- labeled "microwave results" was derived from measurements
by Mentzoni (1965) and by Veatch, Verdeyen, and Cohn (1966),
Also shown are total cross section results o.

& by Brode (1933),
dashed line; and by Ramsauer and Kollath (1930), points. The
curves labeled o denote various types of eRective processes with
threshold beginning at about 8.0 eV. The ionization cross section
~; is taken from Tate and Smith (1932).
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FIG. 14. Momentum-transfer, o-, and other inelastic cross
sections for e —CO, from Hake and Phelps (1967). Also shown
are values of o from an earlier analysis of ".warm data, by Pack,
Voshall, and Phelps (1962), and theoretical estimates of o. , by
Altshuler (1957).To avoid confusion, only one rotational excita-
tion curve is shown, namely o-4 5 from j=4 to j=5; the cor-
responding deexcitation curve, from j=5 to j=4, is labeled
o.5 4. The curve labeled Zo.„represents the sum of all energetically
possible vibrational excitations from the ground state. The curve
labeled r is an electronic excitation cross section suggested by
electron beam data. Measured values of the total cross section
are denoted by o&.
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FIG. 15. Momentum-transfer a„, and other inelastic cross
sections for e=CO2, from Hake and Phelps (1967). Various
vibrational cross sections are labeled 0, , various excitation proces-
ses are labeled 0. , the ionization cross section is cr;. Total cross
sections are labeled 0.~.

"See also Schulz and Asundi (1967),

there has been further theoretical work -on this dis-
sociative attachment problem by O' Malley and Taylor
(1968).

Figure 21 shows a plot of the H ion current formed
from electrons on H2 as a function of electron energy at
about 3.'73 eV, as given by Schulz and Asundi (1965),
using an apparatus similar to that employed by nowell
and Sharp (1967) . In this lower electron energy range,
the hydrogen atom comes off with essentially zero
kinetic energy. The peak cross section has been esti-
mated by Schulz and Asundi to be about 2X10 " of
the elastic cross section at that energy; they have
postulated that this peak results from a, resonant
process, the process probably proceeding via the 'Z„+
unstable ground state of H~ ." We shall make some
comments in Sec. 4 concerning this "resonance".

2.32c Vibratz'oeak a&zd Eotatioma/ Excitatiosz. Severa, l

authors (Ehrhardt, Langhans, Linder, and Taylor,
1968; Crompton, Gibson, and McIntosh, 1969;
Kngelhardt and Phelps, 1963; Burrow and Schulz,
1969; Schulz, 1964) have measured the cross section
for vibrational excitation by electrons on H~, from the
ground state to the first excited state (v=0—+1) for
electron energies close to threshold (0.513 eV). All of
the above authors have found an almost linear rise of
cross section with energy near threshold. The indirect
experiment of Crornpton, Gibson, and McIntosh (1969)
has found the lowest initial slope (0.11 A'/eV), while
the direct measurements of Ehrhardt, Langhans,
Linder, and Taylor (1968) have found 0.21 A'/eV
Lin agreement with the value given by Engelhardt and
Phelps (1963) in another indirect experiment(. The
most recent direct experiment using the trapped elec-
tron method (Burrow and Schulz, 1969) gives a slope of

22 t & I I I I I I I I I I I I
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l'IG. 16. Total cross sections for e —H2, from Golden, Bandel,
and Salerno (1966); Ramsauer and Kollath (1930); and Fisk
(1936).

"It should be noted that Burrow and Schulz (1969) also
have measured the cross section for vibrational excitation near
threshold in Hg for v =0—+2, 3, 4; in D~ for v='0 —+1, 2; in N2 for
&=0~1, 2; and in CO for v=0—+1, 2. For vibrational excitation
of CO2 by electron impact, see Boness and Schulz (1968).

0

about 0.43 A'/eV, while the older direct experiment of
Schulz (1964) gave an even larger slope (0.6 A'/eV). "

Recently Crompton, Gibson, and Robertson (1970)
have determined the threshold behavior of the cross
section for vibrationa, l excitation of H2 by electrons from
swarm data, using the apparatus of Crompton and
McIntosh (1968) . They found from drift velocity
measurements that the power absorbed by rotational
excitation in normal and parahydrogen were equal for
10 " volt-cm' &E/cV(26X 10 " volt-cm'. This is
consistent with the proposition that, near threshold at
least, the vibrational excitation cross section is the same
for molecules in either the j=0 or j= 1 rotational states.
This conclusion is also consistent with the results of the
calcula, tion of Chang and Temkin (1969). The pro-
cedure of Crompton, Gibson, and Robertson (1970)
was to assume that the vibrational cross section of, e.g, ,
Burrow and Schulz (1969) was correct, and then to
calculate a rotationa, l cross section such that both the
calculated rotational cross section and the directly
measured vibrational cross section gave agreement
between measured and calculated transpor t data.
When they employed this procedure with the vibrational
cross sections of either Burrow and Schulz (1969) or
Ehrhardt, Langhans, Linder, and Taylor (1968), they
found they had to assume unrealistic rotational excita-
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energy loss spectra for e=H& at three diferent scat-
tering angles for an incident energy of 4.42 eV. Here we
see the pure vibrational excitation as the central large
peak. Several rotational transitions may be seen to the
left, and superelastic processes may be seen to the
right of the central peak. The relative intensities of the
rotational transitions are consistent with values cal-
cxilated from the relative cross section formulas of
Gerjuoy and Stein (1955a); for a more careful com-
parison of Linder's (1969) data with theory, including
comparison of the absolute as well as relative intensities,
see Sec. 3 below.

Figure 24 shows the integrated cross section Lnor-
malized- to the total cross section of Golden, Handel,
and Salerno (1966)] for pure vibrational excitation
(the upper curve), and the cross section for simul-
taneous rotational-vibrational excitation ( the lower
curve). It will be noted that the cross section for
simultaneous vibrational-rotational excitation is of
the same order as that for pure vibrational excitation;
this probably is an important fact which had been
ignored previously. With this remark we conclude this
chapter, adding only that more e=H2 rotational
excitation data will be found in a number of the figures
in Secs. 3 and 4 below.

of the data thus obtained. In this section, we shall
examine the ability of close-coupling theory to predict
cross sections for elastic scattering and rotational
excitation in e=H2 collisions, observations of which
were summarized at the end of Sec. 2. But before
getting into the details of close coupling theory, which

I
—"

LLI
CL
Q

C3

3. CLOSE COUPLING CALCULATIONS OF ELASTIC
AND ROTATIONAL EXCITATION CROSS

SECTIONS FOR e -H COLLISIONS

The preceding section has been devoted to a review
of experimental techniques for measuring low-energy
electron-molecule collisions, and to a summary of some

5.5 40 4.5 5.5
ELECTRON ENERGY, eV

PEG. 21. The H ion current from the reaction e +H~—+

H +H, as a function of electron energy for energies in the vicinity
of 3.73 eV (Schulz and Asundi, 1965).
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2.0

FIG. 22. Cross sections in e —H.
collisions for rotational excitation
(q„} and for vibrational excita-
tion (q,) in the vicinity of the
vibrational excitation threshold,
as a function of incident electron
energy (Crompton, Gibson, and
Robertson, 1970) . Their results
agree with those of Crompton,
Gibson, and McIntosh (1969).
Also shown are results of Engel-
hardt and Phelps (1963), Ehr-
hardt, Langhans, Linder, and
Taylor (1968); Burrow and
Schulz (1969); and an estimated
upper bound to q„(Crompton,
Gibson, and Robertson, 1970) .
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can be forrnal and nontransparent, it is desirable to
make a few qualitative remarks.

A primary distinction between electron-atom and
electron —molecule collisions is the assuredly anisotropic

Aj =0
2- H2(~=&, j j

4.42 eV

N
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I
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energy Loss LrneVU

Fxo. 23. Energy loss spectra for electrons on hydrogen at
three different scattering angles (20', 70', and 90'), showing
pure vibrational excitation v =0—+1, hj =0 as well as simultaneous
rotational transitions with Aj= ~2, for an incident electron
energy of 4.42 eV (Linder, 1969}.

charge distribution of the target in the latter case. In
the case of rotational excitation, this anisotropy is
particularly important in that, classically speaking, its
interaction with the incident electron provides the
necessary torque required to change the angular
momentum of the molecule. One then might expect
rotational excitation to be favored by a long "lever
arm", and it is indeed found that the long-range portion
of the electron —molecule anisotropic interaction domi-
nates the rotational —excitation process at low energies.
In fact, as has already been mentioned in Sec. 1, for
homonuclear diatomic target molecules the pure t' 3

electron —quadrupole interaction is sufficient to describe
rotational excitation, at least in the immediate vicinity
of threshold (Gerjuoy and Stein, 1955a). Dalgarno and
Moffett (1963) further demonstrated that the r 4

adiabatic polarization interaction, also anisotropic, is

important just above threshold, and can lead to much
larger cross sections at higher energies. However, the
question of how to include polarization has remained for
some time and, although much progress has been
made, is still not completely resolved, at least in the
context of close coupling. The inclusion of an explicit
polarization potential of this r 4 type assumes that the
bound molecular electrons relax adiabatically in the
field of the scattering electron. Such an assumption is
clearly bad at high incident energies, and even the low-

energy range of applicability is not certain.
In a sense, the employment of an adiabatic polarization

potential is the complement to the fixed-nuclei approxi-
mation which was described brieRy in Sec. 1, and whose
utility in rotational excitation will be the primary
subject of Sec. 4. At incident electron energies so low
that only rotational excitation channels are open, the
incident electron speed has the convenient property of
being small compared to electron speeds in the target
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where the parts of the function, left to right, are (P)
spacia, l electronic, (8) spin, (x) vibrational, a,nd (&R)
rotational. It will be convenient to think of the full
wavefunction as labeled by an index a as shown. An
approximate expression for the energy levels is (Herz-
berg, 1950)

& ' '=& ~s+ri~~s(v+~)+b~~s. j (j+1) (3.3)

where for the ground 'Z,+ state of H2, a—0.54 eV, and
b—0.0075 eV.

Ke now consider the electron-molecule system. The
process of interest involves the scattering of an electron
by H& with the possibility of an internal change of
state, ~~a'. Our task is to obtain positive energy
solutions of the full Schrodinger equation

I'IG. 24. Total cross sections for pure vibrational (&T„) and
simultaneous rotational —vibrational (o., ) excitation of H& by
electron impact (Linder, 1969).

molecule (making plausible the assumption that the
target electrons can relax adiabatically in the field of
the incident electron), while simultaneously being large
compared to the rotational speeds of the target nuclei
(making plausible the fixed-nuclei approximation) . In
this chapter we do not employ the fixed-nuclei approxi-
mation, but do make use of—and critically examine-
the adiabatic assumption that the target electrons can
be supposed to move in the field of an essentially fixed
incident electron.

3.1 General Formulation of Rotational
Close-Coupling Theory

In this subsection, an attempt will be made to outline
the close-coupling theory of electron-molecule scat-
tering in some generality, in order that our descriptions
of the calculations actually carried out so far may be
meaningful. The complete Schrodinger Equation of the
molecule is given by

PC&"&(1, 2 R) —E &"'&j+ ™(1,2, R) =0, (3.1)

where R is the internuclear vector, 3C( & is the full
molecular Hamiltonian, 4 ( ' the full molecular wave
function, and E ( & the eigenvalue&es. The index n=
pn, &, S, Has, v, j, nz, $ labels all quantum numbers
(among which e includes symmetry character) and,
in addition, orders the energies of states, otherwise alike
in quantal description; A is the projection of electronic
angular momentum on the body axis; 5 and M8 refer to
the total spin; ~ denotes the vibrational state; and

j and m, refer to the rotational angular momentum.
In the Born—Oppenheimer approximation, the total

molecular wavefunction may be written [ignoring the
A degeneracy, a,s is legitimate for our present purpose]

+.&"&(1, 2; R)

=4' ~s(1, 2; &)Ss~ (1, 2) x xs. (&)@ a, (R)

"target states", (3.2)

(Xv Er) +&—0, ——

BCr= Ta+U3(1) 2, 3) R)+K™(1,2) R)

(3.4)

where we may suppose (although of course all electrons
are equivalent) that the molecule is initially composed
of electrons l and 2. In this event, K' & is as in Eq.
(3.1); T, is the kinetic energy of electron 3; and U3 is
the interaction between particle 3 and the initial
molecule. The total wavefunction +z must satisfy
scattering boundary conditions, symbolically written

lim +r (plane wave)%' ™
T3~ 00

+ P (scattered waves) 4 ' '. (3.5)

The amplitudes of the scattered waves then yield cross
sections for all possible processes. The total wave-
function must be completely antisymmetric in the space
and spin coordinates of all the electrons, and of course
can be obtained only approximately.

As has been explained in Sec. 1, the erst step in the
close-coupling method involves expansion of the total
wavefunction in terms of the complete set of target
states. In the e -H~ collision of present interest, this
expansion of the total wavefunction is given by

where y= (a, l, m&, m, j is an index identifying a
particular scattering channel, and 5 denotes the
operation of full antisymmetrization. In a typical term,
(fCxS) ~ represents the t. arget (H~) function, treated
as if it is exact, @, denotes the spin function for the
continuum electron; and the spherical harmonic carries
the angular dependence of rs, leaving the radial con-
tinuum function u(r3) to be determined. It is well
known, however, that the problem is simplified if one
takes advantage of the rotational invariance of the full
Hamiltonian by first coupling the rotational (j) and
orbital (1) angular momenta to form a total angular
momentum J, which commutes with BCr (Arthurs and
Dalgarno, 1960). Similarly, it is convenient to couple
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(3 9)
where y is designated as the initial system state;
—,'k~ 7'= (E&, 8, '"&) is the —kinetic energy of a scat-
tered electron at ~, leaving the molecule in state n'
(included in y'); and P,, interchanges electrons i and
j. Two kinds of matrix elements influence the scat-
tering. The "static" matrix element on the second line of
Eq. (3.9) is simply an integral over all coordinates
except r3 of the electron —molecule electrostatic potential
sandwiched between two system state functions. The
"static" terms contain all the long-range interactions,
and tend to dominate the scattering of high partial
waves. These static terms dominate the rotational
excitation at low energies. The exchange matrix
elements, which appear on the third line of Eq. (3.9),
decrease exponentially in r3, since the operators I'»
and F23 interchange the continuum and bound electrons.

The radial functions must satisfy the asymptotic
conditions

lim u, .;S,., exp [—i(k„r,—-', i~) 7

(k»/k;v) ' '5, , exp [i(k, ,r. 3
——,'l'a ) 7

—exp (—I
k, , I

r3)

k, .,~&0

k,.,2&0

(3.10)
which define the "scattering matrix" S. For channels

the spins to form Sy. This angular momentum coupling
is incorporated into the close-coupling method by simply
using eigenfunctions of the total angular momenta in
place of the product functions. Thus, defining the new
functions 'tl and 3, the expansion of 4'r becomes

+,=@Z r3-'~„(r3) (4x'JJ3), , (3 7)
p/

where the "in.cident" channel index &= [e, A, S, v,j, i;
J, M, Sr, Ma, 7, and where

—cg zM(r R)

(jm, lmi
I
JM) Yi„,(ra) 6t, g„,. (R),

m&, mi

sg—= Sai(2arM e, (123)
(SMs ,'m, -I SrM&, )+a~ (12)y,(3), (3.g)

lM g, me

the coefficients being the familiar Clebsch- Gordon
coeKcients. The advantage of using the coupled
representation is that the resulting coupled equations
turn out to be diagonal in the four quantum numbers
J, M, Sz and Ms„and the radial functions are in-
dependent of M and Ms, .

The coupled equations which must be solved to
obtain the radial continuum functions are (atomic
units are used throughout)

I (d'/dr ') —[-l'(1'+1)/r, '7+0 ~ 'Il ~ (r,)
—2 2 &v'

I
V3

I
v")I,",(r~)

p//

= —2r 2 &&'I ~r —&r 1(~»+~»)r3 'Nv ~(ra) I
~"»

not energetically accessible, i.e. , "closed channels",
the radial functions are seen to decay exponentially.

Knowledge of the S matrix allows calculation of the
differential and integrated cross section for molecular
excitation. The cross section, averaged over initial,
and summed over final magnetic quantum numbers, is
given by

0 (e'A'5'ej '~it AS' )

=m[k»'(2j+1) (25+1) (2s+1)7 '

&& Q (2J+1) (25r+1) 8, ,—5, , I', (3.11)
JS~El/

where, of course, s=-', .

3.2 Elastic Scattering and Rotational Excitation of H~

The close-coupling approximation is obtained by
making some hopefully wise truncation of the set of
coupled Eqs. (3.9) . The first attempt at a close coupling
calculation for electron —molecule scattering was made
by Lane and Geltman (1967). Since only the ground
electronic state X'Z,+ was included, the effects of
polarization, which can be described in terms of virtual
electronic excitation (Castillejo, Percival, and Seaton,
1960), were not being taken into account. The inter-
nuclear separation was taken as fixed at the equilibrium
value, R,=1.4ap, and the exchange matrix elements
were ignored. It was expected that this latter approxi-
mation would primarily affect the s-wave scattering,
felt at that time to be unimportant in rotational
excitation. The electron-molecule polarization, how-
ever, being a long-range and anisotropic interaction, was
known to be important (Dalgarno and Moffett, 1963)
and was included in a phenomenological manner. For
purposes primarily of illustration, a short-range
modification of the potentials was made to "mock."
the effects of exchange.

The matrix elements which appear in the coupled
equations for the radial scattering function can be
reduced to angular integrals (we will drop the subscript
on r3 from here on, writing r),

&v'
I

V
I

v")= &j 'i'JM
I

V(r, R)
Ij"i"JM), (3.12)

where V(r, R) can be considered an effective e=H2
interaction potential. It is in fact just the electrostatic
electron —H2 potential, averaged over the electronic
ground state of the molecule and evaluated at the
equilibrium separation E,= 1.4ap. The homonuclear
nature of H2 permits an expansion in even harmonics
of cosa of the form

V(r, R) = Vo (r)+V2 (r)P~(cos8)+ ~ ~ ~, (3.13)

where 0 is the angle between r and R. The superscript
W is just a reminder that the Wang X 'Z, + function
was used here (Wang, 1928) .The spherical term Vow(r)
will not contribute to rotational excitation, and the
leading anisotropic term imposes a selection rule" on
rotational excitation of 4j= &2.

"This selection rule is discussed in Sec. 4 below.
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These potentials were modified by adding long-range
terms, which include the electron —molecule polarization
and insure that the electron —molecule interaction is
correct at large r. These modifications are necessary
because the manner in which the Wang molecular
wave function was used results in exponentially de-
creasing Vp'~ and V~~ at large r, which cannot be
correct, if only because the molecule is known to
possess a nonvanishing quadrupole moment. The
modified functions were of the form

Vo(r) = Vo'r(r) B(r) —(a/2r') C(r),

V2(r) = U&'r(r) B(r) —(a'/2r4+Q/r') C(r), (3.14)

where the values o.=5.508p, cx =1.388p, and a quad-
rupole moment Q=0.49eao2 were used. The long-range
terms were cut off with the function

C(r) = 1—exp L
—(r/R, ) 'g,

where E, was determined from observed elastic scat-
tering data, as discussed below. This is really the only
parameter which affects the rotational excitation cross
section. The short-range attractive terms were multi-
plied by the function

B(r) = exp L B(R,/2 r) j, —r(R—,/2

r&R,/2, (3.15)

which contains a strength parameter B. Note that the
somewhat arbitrary B(r) is effective only well inside
the molecule; the effect of B(r) is to make the short-
range field more attractive. This short-range modifica-
tion was found to have no effect on the rotational
excitation cross sections.

Using the potentials just described, elastic ( j=0)
and rotational excitation ( j=0—~2) cross sections were
calculated for several values of the long-range parameter
Jl„and short-range parameter 8. It was found that

2.0,—

I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22

E (8V)
1IG. 25. Total cross sections crz for e=H2 scattering. Dashed

curve, experimental results of Golden, Handel, and Salerno
(1966); open circles, Ramsauer and Kollath (1930); solid curve,
the semiempirical calculations of Lane and Geltman (1967).

p wave and higher partial-wave scatterings were
insensitive to a moderate variation of the short-range
potential via the parameter B. Thus, 8 was chosen to
be —3ap ', in order to obtain reasonable s-wave elastic
scattering at low energies where it dominates the total
scattering cross section.

The long-range cutoff parameter R, was found to
influence both s- and p-wave scattering. However,
above about 5 eV, only p-wave and higher partial-
wave scattering showed sensitivity to E,. Since s and
p waves dominate the elastic cross section in this
energy range, it was felt that choosing the cuto8
parameter E, so as to yield reasonable elastic scattering
for energies E&5 eV, would result in a reasonable
representation of p-wave scattering and hence of the
rotational excitation. Values of E, in the range 1.8ap-
2.0ap were found to be satisfactory.

In Fig. 25 we have replotted as a smooth curve
(dashed) the total cross section points from Fig. 16,
measured by Golden, Bandel, and Salerno (1966).
Figure 25 also shows (open circles) the tota, l cross
sections measured by Ramsauer and Kollath (1930),
which in Fig. 16 were represented by the smoothed
dot—dash curve. The solid curve in Fig. 25 shows the
calculated total cross section (elastic plus rotational
excitation), computed as described above with the
cutoff parameter E,= 1.Sap, The agreement is seen to be
very good. Because this theory (Lane and Geltman,
1967) contains adjustable parameters, and therefore is
not ab initio in the sense explained in Sec. 1, the cal-
culated curve has been labeled "semi-empirical" in Fig.
25. However, the present calculation must be dis-
tinguished from the older much less sophisticated and
less successful semiem. pirical calculations of Fisk
(dashed curve in Fig. 16), which will be discussed in
Sec. 4. Coincidentally, the theoretical curve in Fig. 25
is in better agreement with the Ramsauer measure-
ments. A slightly larger value of 8, would make agree-
ment with Golden, Bandel, and Salerno (1966) better.
A precise fit was not important at this juncture.

The cross sections computed by Lane and Geltrnan
(1967) for several individual rotational transitions are
given in Fig. 26. It was found that the sum of elastic and
excitation cross sections from a given initial rotational
level j was quite accurately independent of j. It was
conjectured that this was because the rotational
periods were large compared to the collision time.
Indeed, it will be seen in Sec. 4 that this result is just a
reGection of the validity of the adiabatic-nuclei approxi-
311ation.

A comparison between close-coupling, distorted wave,
and Horn approximation j'=0~2 rotational excitation
cross sections is given in I'ig. 27. Hy Born approxi-
mation in this figure is meant a first-order calculation
using the full interactions (3.13)-(3.15), to be dis-
tinguished from the Gerjuoy —Stein (1955) Born
approximation calculation which employed only the
pure quadrupole contribution, to Vz' (r), namely
V~~ ———Q/r' at all r. The distorted wave curve in Fig. 27
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Fzo. 26. Calculated e=H2 rotational
excitation cross sections, from Lane
and Geltman (1967). The energy scale
is in atomic units, with k2 = 1 at an energy
of one Rydberg.
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l'zo. 27. Comparison of calculated j=0—+2 rotationa, l excita-
tion cross sections obtained in the close-coupling (CC), distorted-
wave (D%), and Born approximation (B) using the full inter-
actions (3.13)—(3.15), from Lane and Geltman (1967).

lies very near the close-coupling curve, indicating that
solutions to the close-coupling equations are reasonably
approximated by neglecting coupling between the
channels in first order (reflecting the fact that the
rotational coupling is comparatively weak in e=II2
collisions); on the other hand, the Born curve in Fig. 27
lies well below the close-coupling and distorted-wave
curves away from threshold, indicating that the further
approximation of neglecting distortion in the scat-
tering electron wave function is poor.

In Fig. 28, these Lane and Geltman (1967) close-
coupling results for two values of the long-range cutoff
parameter, R,=1.8 and 2.0ao (labeled I.G in Fig. 28)

are compared with earlier calculations, namely Geltman
and Takayanagi (1966); Sampson and Mjolsness
(1965);Dalgarno and Moffett (1963);Oksyuk (1966);
Dalgarno and Henry (1965); and Gerjuoy and Stein
(1955a). It is evident that nea, r threshold (excepting
Oksyuk, who fails to include long range interactions) a, ll

the more complicated calculations converge to the
simple Gerjuoy —Stein pure quadrupole interaction Horn
approximation formula. The recent results of Chang
and Temkin (1969) and Hara (1969b) are not included
in Fig. 28, but will be discussed in Sec. 4.

In order to better judge these first close-coupling
calculations, it might be helpful to look ahead a bit and
compare in Fig. 29 the calculated j= 1—+3 cross sections
with the mea, surements Ehrhardt and Linder (1968)
made a few years later. "The solid curve represents the
calculation, and the dashed curve through open circles,
the measurements. Error bars of about 10% to 15%
should appear on experimental points. The open
triangles are their slightly earlier measurements. At the
energies below the peak in Fig. 29, where p waves make
the main contribution to the rotational excitation
cross section (see Sec. 4 below), Fig. 29 suggests that
the tail of the long-range potential used in this early
calculation (Lane and Geltman, 1967) is still too weak.

In order to further illustrate the nature of these early
results, we compare in Fig. 30 differential j=1 elastic

27 We acknowledge with thanks priva, te communications from
Ehrhardt and Linder on the subject of their measurements.
Vote added in proof: The j=1~3 experimental points in I'ig.
30 are taken. from somewhat different mea, surements than those
in Fig. 43. As a matter of fact, the most recent data (unpublished)
on the j=1—+3 angular distribution a,gree very well with the
Chang —Temkin —Hara theoretical predictions shown in Pig. 43.
Moreover, the latest data indicate that the Linder (1969) curve
in Fig. 34 should be lowered about 10 jo at energies between
4—6 eV, and raised somev hat at the lower energies, which now
make the comparison between experiment and theory for j= 1—+3
a,bout as good as in Fig. 33 for j=0—+2.
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and j= 1~3 rotational excitation cross sections at
4.35 eV. The lower curve and ordinate on the right refer
to the elastic cross section; the upper curve and ordinate
on the left refer to the inelastic cross section. The
circles are the measurements of Ehrhardt and Linder
(1968)"; the open triangles, Ramsauer and Kollath
(1930); and the solid curves the calculated results
(Lane and Geltman, 1969) . The results of Ehrhardt and
Linder are normalized to theory at 90'; however the
Ramsauer and Kollath data are absolute. While agree-
ment is satisfactory for the elastic cross section, one
cannot say much about the rotational excitation. There
seems to be an upward trend in the data at low angles,
which is present in the calculated cross sections. The
error bars are fairly large due to the difficulty of the
measurement. Calculations have been made at other
energies and the comparisons are much the same. In
Fig. 31 is shown a similar (to Fig. 30) comparison at
8=10 eV.

There were two particularly disturbing features of
these early close-coupling calculations by Lane and
Geltman (1967): (1) the need for a semiempirical
determination of the polarization interaction, and (2)
the neglect of exchange. The polarization question
seemed more pressing at the time, so an attempt was
made by Lane and Henry (1968) to calculate a, reason-
able polarization potential from first principles.

The procedure, akin to the well-known polarized
orbital method of Temkin (1957), is based on the
Rayleigh-Ritz variational principle. A strictly adiabatic
approach was taken where the scattered electron 3 was
taken to be fixed in space. Employing the variational
method, a trial wavefunction of the form

P(12; 3) =@0(12) Q C~p(gq+x~) (s~+s,)~
a,P&0

was used to represent the molecule in the field of the
electron, where &0(12) was taken to be the one-center

I I I I I I I I I I I I

I.O—

4
~4

0 t I I I I I I I I I I

0 2 4 6 8 IO I2

E (ev)
FIG. 29. Comparison of j= 1~3 rotational excitation cross

sections: triangles, circles and dashed line, the measurements of
Ehrhardt and Linder (1968); solid line, the semiempirical cal-
culation of Lane and Geltman (1967).

Joy and Parr ground-state wavefunction for H~, here
supposed composed of electrons 1 and 2. The linear
variational coef6cients C p depend of course on the
coordinates of electron 3. The secular equation was
solved and the minimum eigenvalue, also a function of
the coordinates of electron 3, was compared to the
unperturbed energy plus the first-order static inter-
action, the difference being the polarization potential.

The homonuclear symmetry permits an expansion of
the polarization potential in terms of even Legendre
polynomials of cos tY=r3 R. Once the potential has been
obtained, it is convenient to drop the subscript 3. The
radial coefficients in this polarization —potential expan-
sion are compared in Fig. 32 with the semiempirical
potentials of Lane and Geltrnan (1967) (actually the
negative of the potential is plotted). The spherical
(subscript;ed 0) and anisotropic (subscripted 2) func-
tions are plotted separately. There is an apparent
qualitative agreement; however, the variational results
are smaller for large values of r, where the polarization
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interaction is important to the cross section (at smaller
values of r&2ao, the static potentials Vo~(r) and
V2~(r) are much larger and dominate the scattering).
The semiempirical potentials were felt to be larger in
magnitude because of their tendency to include p-wave
exchange effects which might be present. This com-
parison suggested that exchange was probably also
important for p waves. The two-center polarization
potentials calculated by Adamov, Objedkov, and
Evarestov (1963), and more recently by Hara (1969a)
are somewhat smaller, but generally in good agreement
for values of r important to the rotational excitation
cross section, i.e., for p-wave scattering.

Using the variationally determined polarization
intera, ction just described, Hen. ry and Lane (1969)
began another close-coupling calculation similar to the
earlier calculation, but including the exchange matrix
elements explicitly in the coupled equations. No ad-
justable parameters were present. Ardill and Davison
(1968) already had reported a distorted-wave cal-
culation. of p-wave scattering including exchange, and
found the contribution to be significant; they did not,
however, include the important polarization effects.

Before the improved close-coupling calculations were
completed, Crompton, Gibson, and McIntosh (1969)
had begun to obtain j=0—+2 rotational excitation cross
sections via electron drift and diffusion measurements
in parahydrogen; that parahydrogen observations
would provide a good test of the theory had been
suggested by Gerjuoy and Stein (1955b). These
observations of Crompton, Gibson, and McIntosh
(1969) indicate that the early results of Lane and
Geltman (1967) were somewhat too small. This
observation was consistent with Ehrhardt and Linder's
(1968) beam measurements of the j= 1—+3 cross
section and, in the light of Ardill and Davison's
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(1968) calculation, seemed to demonstrate conclusively
the presence of exchange effects.

As soon as the new close-coupling results, including
exchange, were obtained, they were included in the
analysis of swarm data. The results for the j=0—+2

cross section are shown in Fig. 33. The solid curve
labeled LG represents the original semiempirical close-
coupling results of Lane and Geltman (1967, 1969).
The curve labeled A represents the new theoretical
results including exchange and polarization (Henry
and Lane, 1969). The open squa, res are swarm data of
Crompton, Gibson, and McIntosh (1969). The agree-
ment between these swarm data and curve A is very
sa, tisfactory, namely within 2% throughout the energy
range from threshold to 0.5 eV. The open circles repre-
sent the early swarm Ineasurements of Englehardt and
Phelps (1963). The curves 8 and C also were quoted by
Henry and Lane (1969); they include polarization but
no exchange (8), and exchange but no polarization (C) .
Thus both effects are important.

At higher energies, where j= 1~3 transitions are
sizable, the agreement. between these close-coupling
calculations and the measurements is not quite so
good —as shown in Fig. 34. The open squares and
circles are the j=1—+3 rotational excitation measure-
ments of Ehrhardt and Linder (1968), the squares
being the original measurements and the circles more
recent results'7; the open triangles correspond to data
reported more recently by Linder (1969). The reason for
the significant disagreement between these two sets of
data is unclear, but neither of these sets" has the kind
of overlap with the theoretical calculations of Henry and
Lane (1969) seen in Fig. 33.

A number of other theoretical calculations also are
shown in Fig. 34. In particular, we see that the original
close-coupling semiempirical results of Lane and
Geltrnan (1967, 1969) are somewhat too small as was
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pointed out earlier. The refined close-coupling cal-
culations of Henry and Lane (1969) including exchange
and polariza, tion yield cross sections which (if the data
can be trusted) appear to be somewhat too large a,t
energies up to 2 eV. A similar observation can be made
in the case ofj=0~2 cross sections (Fig. 33), suggesting
that perhaps the magnitude of Henry and Lane's
(1969) polarization potential is somewha, t too large.

Henry (private communication) ha, s repeated the
close-coupling calculations, including the v =0 vibra-
tional wavefunction explicitly, rather than assuming the
internuclear separation to be fixed at the equilibrium
separation. In so doing, however, he has had to make
certain assumptions about the dependence of the
polarization potentials on the internuclear separation.
His results also are shown in Fig. 34. The two lower
curves in Fig. 34 again emphasize the need for both
polarization and exchange.

With exchange as well as polarization included in the
close-coupling calculation we also should expect to be
able to represent the s-wave scattering, which is
particularly sensitive to short-range effects and which
dominates the elastic (and hence tots, l) cross section
below a few eV. In I'ig. 35, a comparison is given
between the calcuL&ted (Henry and Lane, 1969)
total (ela,stic plus rotational) cross sections in the
states j=0 (solid curve A) and j=1 (dashed curve A),
the measurements of Golden, 8andel, and Salerno
(1966), and the measurements of Ramsauer a,nd
Kollath (1930). As in Fig. 33, the curve 8 corresponds
to the neglect of exchange but with the polarization
included, while curve C corresponds to the neglect of
polarization but with exchange included (Henry and
Lane, 1969).Thus, we must conclude that both effects
are important for elastic scattering as well as rotational
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FIG. 33. Comparison of j=0~2 rotational excitation cross
sections. From Henry and Lane (1969):A, exchange and polariza-
tion; 8, no exchange; C, no polarization. The curve labeled LG
represents the semiempirical calculations of Lane and Geltman
(1967, 1969). Open circles, Engelhardt and Phelps (1963); open
squares, Crompton, Gibson, and McIntosh (1969).

excitation. In the vicinity of the maximum the theo-
retical cross sections computed including both polariza-
tion and exchange are somewhat too large. Again this
probably reflects too strong a polarization potential.

In Fig. 36 a comparison of several fairly recent elastic
scat tering calculations is given. The experimental
points are the same as described in Fig. 35, and the
Henry and La,ne (1969) exchange plus polariza. tion
close-coupling results are repeated on this figure as a
dot—dashed curve. Xo attempt will be made to discuss
each calculation, except to remark that they all include
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V=O

8Z X Xo (X—1)'
~&&o

RgJ3 X'—p' X ('Ap —1)'
(4.2b)

Physically, the added factor (in brackets) in (4.2b)
has the effect of distributing the positive charge
throughout the volume of the ellipsoid, while simul-

Oberhettinger, 1949], defined by the coordinates p and
X (Fig. 37).

& = (re+ra) /R~a, p = (ra —r~) /R~a

—1&@&1. (4.1)

In a sense, p is the generalization of the quantity cos 0 in
spherical coordinates, where 0 is the polar angle of the
electron relative to the internuclear axis; specifically
p-+ cos 0 as Eg~~0, or as r~, r~—+~ .

The interaction between the incident electron and
the molecular nuclei (charge Z) is

V, = —(2Z/r~) —(2Z/r~) = —(8Z/R~&) LX/(X' —p') ],
(4.2a)

where we have introduced atomic units (r~, r~ in units
of the Bohr radius; energy in units of the Rydberg).
Kith this interaction, the Schrodinger equation for the
incident electron is separable in prolate spheroidal
coordina, tes (the rea, son for introducing these co-
ordinates, of course), as is well known from the theory
of the hydrogen molecular ion (Pauling and Wilson,
1935). The idea of the Stier-Fisk model is to add an
interaction resembling the repulsion of the incident
electron by the molecular electrons, but without dis-
turbing the separability of the Schrodinger equation.
This can be done by introducing, instead of (4.2a),
the interaction

taneously reducing the potential outside to zero, By
implication, therefore, the model puts a layer of nega-
tive charge on the surface in order that the potential be
zero outside, Evidently, the model is crude compared
to a real molecule, not to mention the fact that exchange
of the scattered and orbital electrons is not at all
included. But there is at least one free parameter,
namely the boundary ellipsoid Xo, by which one can
hope phenomenologically to make up for the afore-
mentioned deficiencies; also, the eRective charge Z can
be adjusted to 6t other atomic data. At any rate, even
in this very rudimentary form the Axed-nuclei model
yields total electron-molecule scattering cross sections
of the right order of magnitude, as can be seen from Figs.
10, 12, and. 16. Concentrating on Fig. 16 for e=H~, we
observe that the experimental results of Ramsauer and
Kollath (1930), and of Golden, Handel, and Salerno
(1966), are reasonably well s,ccornmodated below 5 eU

by Fisk's fit."Above 5 eV his theoretical cross sections
are definitely too low; in this energy range the more
sophisticated calculations (Fig. 25) by Lane and
Geltman (1967) discussed in Sec. 3 are a distinct
improvement on Fisk's, On the very low-energy side
(energies(~1 eU), Fisk. 's results are de6nitely too
high, and, going in the wrong direction, a feature also
manifested by Lane and Geltman's (1967) theoretical
results (Fig. 25) .

These low-energy failures of the theory presumably
are to be ascribed to the neglect of electron exchange in
Fisk's and in Lane and Geltman's calculations (as was
discussed in Sec. 3). Actually, it. took over twenty
years beyond Fisk's calculations to demonstrate that
exchange is important in electron —molecule collisions,
although even before Fisk the profound eRect of
exchange in electron-atom scattering had been shown

by Morse and Allis (1933), This demonstration —of the
effect of exchange on e=H~ total cross sections —was
6rst given by Massey and Ridley (1956). They em-

ployed the completely antisymmetrized form

+(1, 2, 3) = 2 F(r.)C(r, , r )x'+(x,+x ——x,-x+)

(4.3)

FIG. 37. Ellipsoidal coordinates for electron —molecule scat-
tering calculations, R,f, is the internuclear distance, r~, rg are
the distances from the individual nuclei to the incident electron,
speed v;„. Lines of fixed p are dashed. The heavy black ellipse
is a curve of constant X=),. The Stier-E'isk model assumes the
potential is zero outside this boundary. The shading and + signs
indicate that on this model the nuclear charge is supposed to be
distributed throughout the volume bounded by the ellipsoid

to obtain the wave function 0' approximately solving
Schrodinger's equation for e=H2 scattering. The sum in
(4.2) is over the three independent cyclic permutations
of the subscripts i, j, 0 designating the three electrons
1, 2, 3 in the system. The term written explicitly in
(4.2) corresponds to electron i incident, with j, k the
molecular electrons; xy are the usual single-particle
spin 1/2 eigenfunctions. The spatial part of the target
molecular ground-state eigenfunction employed by

"Fisk's work —especially his use of a spheroidal expansion
and his introduction of a separable potential —was based on
procedures developed by Morse (1935). A similar spheroidal
expansion was independently employed by Kotani, references
to whose work may be found in Nagahara (1953, 1954) .
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—& sin (a,+gtoo) i', (4.5b)

where a, b, and y are as yet undetermined constants, and

c—
g kRQ jg) (4 5c)

with Ig the wave number of the incident electron (in
atomic units). The "best" values of a, b, and y were
found using the Kohn (1948) variational piinciple. In
the Kohn principle, one varies the expression

L=f+(H E)%', —(4.6a,)

where% is the purported solution (4.3) to Schrodinger's
equation, satisfying the required bounda, ry conditions.
Using (4.3), Ma, ssey and Ridley rewrote (4.6a) in
the form

L=Ln+Lz, — (4.6b)

where Zn involved only direct (nonexchange) integrals,
and JI: involved exchange integrals only. 9"hen Ma, ssey
and Ridley kept only .I.D, the resultant "5-wave"
phase shift was such a,s to give a huge low-energy cross
section, reminiscent of the Fisk result and in gross
disagreement with experiment. Kith retention of I~,
however, the cross section is lowered dramaticall&, as
shown in Fig. 38 (the exchange curve of Fig. 38 is a.

replot of the curve labeled Massey and Ridley in Fig.
36). Thus for t.he first tinge one could say tha, t a funda, —

mental (not semiernpirical via introduction of ad-

Massey and Ridley wa, s

C'( j, tg) =~(j)~(tg)
go( j) =N exp (—q).,) (1+ftg,'+gX;) (4.4)

from Coulson (1938);here q, f, g are known constants,
and tg;, X; are the spheroidal variables (referring to the
jth electron) defined in (4.1) .

Massey and Ridley then were able to calcula, te the
"5-wave" scattering phase shift go& from the asymptotic
form of F in (4.3), namely from

F(r') = 1i(1+a')'"—Lc(1 '—1)] '

X (sin c(X,—1) Ia+fi exp }
—y()i, —1)]}

)& I 1—exp }
—y (X;—1)]I cos c (X,—1) ) (4.5 a )

justable parameters to fit some of the data) electron-
molecule collision calculation was in semiquantitative
agreement with experiment. In detail, introducing
exchange causes the Massey and Ridley e=H& zero-
energy phase shift to approach m rather than zero
radians, as typically occurs in t.=atom scattering; the
concomita, nt reduction —by inclusion of exchange —of
their e=H2 cross sections near the ela, stic threshold also
is analogous to frequently observed exchange effects in
e=atom collisions. Fina, lly, the exchange cross section
in Fig. 38 is rather Hatter at low energies than is the
experimental curve. This is a well-known defect of the
exchange approximation in e -atom scattering, and
indica. tes the need for inclusion of induced polarization
effects; similar behavior of calculations including
exchange but omitting polarization can be seen in the
no-pola, rization curves of Fig. 36 Lone of which is the
Tully and Berry (1969) curve].

The calcula, tion of Massey and Ridley can be regarded
as the first quantitative calculation of e=H2 scattering
cross sections. The next step in improving the accuracy
is to include higher partial waves. To do this in sphe-
roidal coordinates, while at the same time retaining the
electron-electron interaction a.s did Massey and
Ridley, one must go beyond the sepa, rable spheroidal
analysis of Stier and Fisk. . This was in fact done first by
Nagahara (1953), but his calculations (Nagahara,
1954) for e=Hg scattering did not include exchange,
and any agreement with experiment his results may
contain now is generally considered to be coincidental.
The nonsepa, rablc spheroida, l analysis ha, s been repea, ted
niore recently by Takayanagi (1967) and by Ha, ra
(1969a,). The la, tter has gone much further, in tha, t he
actually has done the calculation including polarization
a,s well a,s exchange.

Ke shall discuss Hara, 's results in due course. For the
moment, however, let us note a. disadvantage of
spheroidal analysis, namely that the spheroidal har-
monics in terms of which the sca, ttering amplitude is
expressed (Morse and Feshba, ch, 1953) depend on the
internuclear distance, Rgp, of the particular molecule

being investigated. This means tha, t the experimentalist
would infer different scattering parameters for different
molecules (having presumably different Rzs's) even
if their observed scattering rates were the same.
Not only is this inconvenient, but it is really unphysical,
because the internuclea, r separa, tion is something which
isn't observed in the scattering experiment at a,ll. If we

ma, de the ana, lysis in terms of the more customary
spherica, l harmonics, this problem would not a,rise.

4.11 Sigggie Cergter E'xpargsi-ons

Therefore, we now shall examine the description of
electron —molecule scattering in terms of an expansion in

spherical harmonics, instead of in the (at first, sight
more physics, l) spheroida, l expansion associated with

the spheroida. l coordinates (4.1) . A single-center

spherical harmonic expansion for electron —molecule
collisions first was systematically employed by Temkin
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and Vasavada (1967), whose work was extended in
Temkin, Vasavada, Chang, and Silver (1969). In Fig.
39, we sketch the electron —molecule collision geometry
relevant to a single-center expansion. We introduce a
rectangular system of coordinates in the laboratory
frame, with the labora, torv s direction (along z')
parallel to the initial velocity v of the incident electron.
The molecular internuclear axis still is assumed 6xed,
and points along z; associated with z are a set of x and
y axes (not shown) fixed in the molecular frame. The
orientation of the molecular frame relative to the
laboratory frame is specified by three Eulerian angles,
defined as usual (Goldstein, 1965); these Eulerian
angles are designated by the single symbol Ps in Fig. 39.
The instantaneous position of the electron relative to
the center of the internuclear axis is r; the incident
electron ultimately will be scattered into the direction
specified by Q' in the laboratory frame.

In terms of the above coordinates, the (total elastic)
scattering amplitude at a given incident energy can be
designated by f(Ps, Q'), expressing the fact that the
scattering amplitude in general depends on the orienta-
tion Ps of. the molecule, as well as on the direction. Q' of
the out going electron. The following simplifying
observations can be made, however. In the approxi-
mation that the internuclear axis is fixed, writing the
Schrodinger equation in terms of unprimed (z along the
internuclear axis) coordinates is just as valid as writing
the Schrodinger equation in terms of the original
primed (z' along v) laboratory coordinates. But in the
unprimed coordinate system, the Hamiltonian —though
it depends on the x, y, s coordinates of the incident
electron, of course —is quite independent of the direction
along which the electron is initially incident. Moreover,
if the incident direction v

~ ~

z and the final direct. ion Q
are rotated together, and if the same rotation then is
performed on the unprimed molecular frame relative to
the laboratory frame, the scattering amplitude f(Ps, Q')
obviously cannot change. Tal. ing these simplifying
observations into account, it can be shown that f(Ps, Q')
has the "factored" expansion

= Z 2 ~i;i...& ~ "*'(Ps)&~""*(Ps)Vi; (&'), (4.7)
on, nt, ~ lj', l~

where the V~,. ~ are the usual spherical harmonics; the
X) functions, the so-called rotational harriionics
(Edmonds, 1957), are known functions of Ps,

' a,nd the
aE,.&, are nunibers, determined by the particular
electron —molecule interaction, but independent of Ps.

Thus, via, the expansion (4.7), for each molecular
target at. each energy, the dynamical problem can be
solved for the numbers a~, ~, once and for all, and the
dependence on Ps then simply multiplies those numbers
by factors. In addition to its simplicity, this feature of
(4.7) will be seen to have important implications for the
adiabatic-nuclei theory of rotational excitatiori dis-
cussed in the n'ext subsection. Furtherniore, in the ap-
proximation wherein the various partial waves are

z'

FIG. 39. Geometry for single-center expansion. The z direction
in the laboratory frame is z', parallel to the initial velocity v
of the incident electron. The incident electron's position relative
to the molecular center is r. The electron will scatter into the
direction defined by D' in the laboratory frame. The single symbol
$0 designates the orientst. ion of rectangular axes fixed in the
molecular frame relative to axes fixed in the laboratory frame;
the z direction in z the molecular frame lies along the internuclear
axis.

supposed to be uncoupled, an approximation which
turns out to be an excellent one in many cases, the
a~,.~,. reduce to a very familiar form involving phase
shifts q&, namely

at,.(,.„~6t,.(,. I [4m (2l,+1)"'/kj} exp (irt&~) sin rl&~.

In this approximation it is quite obvious what price we
have paid for eliminating Ps from the dynamical
problem —the q~ depend on the magnetic quantum
number m as well as on /. Generally this is a small price
to pay, as we shall see when we look at some radial
equations. We add that the consistency of the procedure
starting with the expansion (4.7) is evinced by the fact
that the optical theorem holds for all angles of orienta-
tion Ps (Temkin, Vasavada, Chang, and Silver 1969).

In summary, the single-center spherical harmonic
partial-wave expansion can be carried out consistently
even for the spherically nonsymmetric targets occurring
in electron —molecule collisions; moreover, this expansion
in principle yields a complete description of the colli-
sion. In practice, however, the expansion must be
truncated, and we still must inquire into its pragmatic
utility. In order that the single-center expansion con-
verge reasonably rapidly, the incident electron should
not be able to penetrate into the molecular core. The
basis for this assertion is the sketch (solid line in I'ig. 40)
of the potential energy V(r) of an electron in the
vicinity of the nuclei. The potential becomes singular
only on a single line through the origin, namely the
internuclear axis, and this very pronounced deviation
from spherical symmetry means [recall Fig. 37 and
Eq. (4.2a) ] tha, t the spherical harmonic expansion
of V(r)

= —(2/r~) —(2/ra) = Q V~(r)P~(cos 0) (4.8)
l

will converge only very slowly at r ';Rza, in (4.8),
the interaction obviously is aziniuthally symmetric
about the internuclear axis, i.e., depends only on r and
on the angle 0 between r a,nd z (Fig. 39). The lowest
order Vs term on the right side of (4.8) is sketched as
the dashed line in I'ig. 40, and obviously is indeed a
crude approximation to V(r) in the vicinity of a=
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-I/2, RAg -I/2 RAg simpler than collisions of electrons with H2. We shall
confine our attention to the uncoupled approximation
described in subsection 4.11. In practice, this approxi-
mation means we are confining our attention to s and

p waves; for the phase shifts of /&2 waves, coupling to
the lower order s and p waves occurs. The two-electron
wave function 4'(1, 2) solving the Schrodinger equation
for e=H2+ collisions in the present approximation
takes the form

FIG. 40. Electron —molecule interaction on the internuclear
axis. Solid line, actual interaction V(r); dashed line, lowest
order term Vp(r) in the spherical harmonic expansion oi V(r).

+-,Rqi) (r=sR~&), 0=0 and pr). In contrast to the
spherical expansion, theo, the real advantage of
spheroidal coordinates is eat that they simplify the
partial wave analysis (they do not, in fact as noted
above they are interpretatively further removed from
experiment). But spheroidal coordinates do allow the
singularities in V(r) near the nuclei to be included in a
natural way,

The considerations of the preceding paragraph make
it clear that there will be no simple criterion for the
accuracy (i.e., reasonably rapid convergence, per-
mitting practical truncation) of the spherical harmonic
expansion. If, for example, the effective wave number
of the electron near the nucleus is much larger than the
wave number tt' at ~, the m, ost obvious criterion,
namely that kRqg((1, may not prevent s and higher
partial waves fram probing the molecular core; in this
event, a severely truncated expansion will be in-
adequate. Even if only the s wave penetrates the
molecular core, the expansion may be invalid because
of the aforementioned fact that Vp(r) is so poor a
representation of V(r) . The upshot of these remarks is
that probably we will be able to evaluate the utility of
the single-center expansion in electron-m. olecule scat-
tering only by actually using it and then comparing its
predictions with experiment. We proceed, therefore, to
examine the results of actual single-center expansion
calculations.

In this connection, for historical reasons, we first
mention the single-center calculation of Carter, March,
and Vincent (1958). Their calculation was extremely
crude, and exchange was taken into account only in an
approximate way. Nevertheless, this was the first
single-center electron-molecule scattering calculation,
and it supported the conclusion of Massey and Ridley
(1956) that exchange was essential for reduction of the
low-energy elastic cross section. Unfortunately, Carter,
March, and Vincent (1958) did not wholly correctly
take into account the rotational symmetry of
f(Pp, Q') —expressed bv the expansion (4.7)—so that
they inferred the phase shifts must depend on Pp, a
very misleading conclusion.

4.1Z Calculati ons using Spherica/ Harmonic Expansions

We next turn to the work of Temkin and Vasavada
(1967) on e=Hp+ collisions, which of course are even

+(1, 2) = P +& iN&, (49)

where %~ is the wave function for the lmth partial wave
in the iVth order of approximation. The expression for
%i '~& Lexcluding spin functions' is

%,„&~&=
I u&„(rr) /ri] 7't„(Q&)

&& I
@o&~&(ro) +C'pi~or & (r, ; r,) j~ (1~~2) . (4.10)

The last term in (4.10) denotes the appropriate sym-
metrization of the more explicitly detailed preceding
terms, wherein one can suppose that electron 1 is
incident: and electron 2 is bound; the + and —signs
refer to singlet and triplet scattering respectively. In
further explanation of (4.10), the ut are radial func-
tions, determined by Eqs. (4.13) below; Qi designates
the instantaneous direction (specified by the spherical
coordinate angles t&i, $i) of the position vector ri
locating electron 1 in the unprimed internuclear frame
of Fig. 39. Furthermore, the functions Co(~) and Co&

in (4.10) are to be regarded respectively as the un-
polarized and polarized parts of the target H2+ wave
function, in analogy to the corresponding functions
arising in the method of polarized orbitals, that has
been extensively used in electron-atom collisions
(Temk. in and I.amkin, 1961).

If the expansion did not have to be truncated, the
unpolarized part of the target wavefunction would be
known a priori; namely in e=H2+ collisions, this un-
polarized part without truncation Ltermed C p&"&]

would be the wavefunction of H2+ in its ground Z, state,
and would have the expansion

(p
(~) (ro)

~o (r2) Z P„(coses), (4.11a)
n=o r2

where the double prime on the summation symbol
indicates that n takes on even values only (in the present
H2+ case the symmetries of homonuclear diatomic
molecules causes the odd n terms to vanish). The
(-', Xth order) approximation to C'p'"' is Cp'~) in (4.10),
whose expansion is taken to be

N ~ (N)(r)
Cp&"& (ro) = P" P„(cos Op) . (4.11b)

n=O r2

The radial functions io„&~& (ro) in (4.11b) are the "best"
for given T& ~; specifically, y„~~) are chosen so as to
minimize the energy of Hp+ for the expansion (4.11b)
terminating at the given E. In practice, the difference
between (ppi & and pppi ' was very small, and post" (r) was
quite small compared to hopis)(r) at all r of interest
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FIG. 41. Calculated phase shifts,
Solid lines, e —H2+ phase shifts,
computed via single-center expan-
sions (Temkin and Vasavada,
1967); zeroth-order vs, first-order
results are shov;n, as are the results
of including or omitting polariza-
tion corrections. Dashed lines,
e —He+ atomic polarized orbital
phase shifts (Sloan, 1964).
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(Temkin and Vasavada, 1967) . Thus the single-center
expansions (4.11b) for the unpolarized (but never-
theless spherically nonsymmetric) part of the target
wavefunction do converge reasonably rapidly, in
e=H2+ collisions at any rate. In fact, Temkin and
Vasavada's calculations (partial results are displayed in
Fig. 41 below) did not go beyond the first order (X= 2)
corrections. In this circumstance, C'o~~oz' of (4.10)
consistently can be written in the form (Temkin and
Vasavada, 1967)

(4.10) are (with the understanding that 1=0, 1 only)

(
d' /(3+1) (3m' —2)+Vo(r) —~ii — . V2(r)

5

26)IS~2 3m —2
r)—'[q oi"' (r2) ]' dr. +

gl/2

exchange term
p

r&2

~(ri; r~) = —[c(ri, r~)/ri']

X (&po& i (rq) /rq) [cos ere/(4ir) 't2] (4.12a)

2 u, (r)
3 r p

(x) (Pot~) d'r

e(ri, rg) =0 rg(r2

where 8~2 is the angle between r~ and r2, qp( ' is
determined solely by the lowest-order term po(' in
(4.11a); and the step function e(ri, r2) is defined by

where
Vi(r) =4r'/( ', Rga) '+'-

4(iR ) i/ri+1

r(-,'-Egg

r & -i2R~a,. (4.13b)

+ (exchange-polarization terms), (4.13a)

~(ri, r~) =1 ri& rp. (4.12b)

The philosophy behind inclusion of only. first-order
polarization corrections qo( ) in the expression
(4.12a) for Co'~ ' is essentially the same as the phi-
losophy behind retention of only first order %=2
terms in (4.11b) . In the latter case, the basic assump-
tion is that the intelnuclear distance not be too large
(i.e., that the molecule not be too aspherical); in the
former case, the basic assumption is that the molecular
polarizability not be too large. In both cases one cannot
give an a priori limit as to what too large means [ just
as we were not able to set an a priori criterion for the
utility of the spherical harmonic expansion (4.8)],
but in practice it appears that one can be pretty
liberal, at least for the lightest nuclei.

With the above expansion (4.11b) and (4.12a,), the
radial equations determining the radial functions I& in

Here r&, r~ are respectively the greater or lesser of r2

a,nd r, 8 designates the usual Kronecker symbol, and the
various p functions under the integral signs in (4.13a)
depend on r2, of course.

The radial equations (4.13) have been displayed to
make explicit their similarity to the radial equa, tions
arising in the polarized orbital method for the collisions
of electrons with atomic hydrogen (Temkin and I.amkin,
1961). On the right hand side of (4.13a), we see a direct
pola, rizability term. The exchange and exchange-
polarization terms (whose signs depend on the sym-

metrization) have not been written out in detail; they
represent the diRerence between singlet and triplet
scattering equations.

When we come to p waves (/=1), we see the first
manifestation of the m dependence of the equations.
In particular, from (4.13b) the V2 term in (4.13a) is

seen to behave like r ' a,t infinity; this is the quadrupole
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FIG. 42. I' wave m=0 'Z e —II2 phase shifts, from Tully
and Berry (1969), and from Hara (1969a). The Horn approxima-
tion results, calculated for a pure quadrupole interaction with
and without induced polarization, also are shown. The incident
wave number k is in atomic units.

term, and it changes sign from attractive for m=O to
repulsive for

~

m
~

= 1. To some extent these m-depend-
. ent quadrupole effects are opposed by the first-order

correction; but since
~

&~i'&
~

&& 4o"'
~

(as already
pointed out), the modifications of the m dependence
stemming from the first-order correction are not
predominant.

The effects that have been discussed above are dis-
cernible in the numerical results obtained by Temkin
and Uasavada (1967), some of which a, re shown in Fig.
41. On the left we see their '5 phase shifts. Evidently,
polarization effects are significant in these 5 cal-
culations; because induced polarization potentials
are always attractive, including polarization algebrai-
cally increases the computed phase shifts. Also we see
that first-order (nonspherica, l) effects are very small
for these '5 phase shifts. For comparison, we have
added on the left of Fig. 41 a plot of the '5e=He+
phase shifts computed by Sloan (1964) via, the es-
tablished polarized orbital procedures for electron —atom
collisions (Temkin and Lamkin, 1961); in effect, He+
is the single-center target that H2+ would become if its
nuclei were to merge. One sees that the computed
e=He+ '5 phase shifts are very much larger algebrai-
cally than the computed e=H~+ '5 phase shifts; of

course, in e=He+ collisions, unlike e=H2+ collisions,
the spherical expansion treatment Sloan. employed takes
full account of the singularity of the nuclear potential.
Thus, the differences between the e=He+ and e=H~+
curves on the left side of Fig. 41 give one some concern
as to the quantitative accuracy of the single-center
expansion in e=H2+ collisions, even though the first
order corrections in e=H2+ were found to be small.
However, the single-center He+ target is su%ciently
diff erent from the two-center H2+ target that the
deviations between e=He+ and e=H~+ computed phase
shifts cannot be regarded as disproving the accuracy of
single-center calculations for e=H2+ collisions. A
spheroidal calculation of e=H~+ scattering (which will
test the single-center expansion) is being performed by
A. B.Ritchie (unpublished) .

On the right side of Fig. 41 are plotted some 'P
phase shifts. Again, previously discussed effects may be
discerned. First, notice how the attractive quadrupole
potential in the m =0 case increases that phase shift
over the repulsive

~

m
~

= 1 quadrupole potential.
Second, note how large the 'I' 0 phase shift is.' It
actually goes to about 80' at zero energy, a behavior
which really has no counterpart even in the atomic
case (dashed e=He+ 'I' curve in Fig. 41). But this
enhancement of the e=H2+ 'I'

0 phase shift also
cannot simply be described as a pure quadrupole eRect.
It was this circumstance which led to the suggestion
(Temkin and Uasavada, 1967) that this e=H,+

enhancement might be associated with an H~ counter-
part of the 'Z.„+ compound state of H2, this H2

resonance has been mentioned earlier, in connection
with the mea, surements (Fig. 21) by Schulz and
Asundi (1965) on H2 formation in e=H2 collisions.

Without further ado, therefore, let us turn to the
I-'-wave, ms=0 'Z.„e=H2 phase shifts, shown in Fig. 42.
In essence, the calculation of Tully and Berry (1969)
includes exchange and the permanent distortion (from
spherica, l symmetry) of the molecule, but does not
include induced polarization" (as we already have
mentioned). Because the induced polarization plus the
long-range effects of permanent distortion (i.e. , the
quadrupole potential) can be included with moderate
accuracy in the Born approximation for partial waves

t&O, we include in Fig. 42 the Born P-wave m=O
phase shifts, computed on the assumption that the
interaction between the incident electron and the
unpolarized molecule is pure quadrupole.

If the polariza, tion contribution (indica, ted by the
Born curves in Fig. 42) is added to Tully and Berry's
phase shif ts, one gets results very close to the Hara
(1969a) phase shifts plotted in Fig. 42. Hara, has made
the most complete calculation of e=H~ scattering thus
far. In addition to automatically taking account of

' The results of Tully and Berry (1969) supplant the cal-
culation of Wilkins and Taylor (1967), who apparently in-
correctly solved their equations. Many of Wilkins and Taylor's
results are very similar to Tully and Herry's, and we believe
the accurately solved Wilkins and Taylor equations would in
all cases yield values very close to Tully and Herry's.
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permanent distortion by using spheroidal coordinates,
he has included polarization eSects (Hara, 1969b).
The only objection one might take to his important
calculations is that it does not include the exchange
polarization terms that would arise in a complete
po1arized orbital calculation. Cross sections inferred
from Hara's calculations agree very well with experi-
ment as already has been seen in Fig. 36, and as we
shall illustrate in a moment.

The Hara 'Z„results plotted in Fig. 42 indeed do
manifest a pronounced enhancement of the I'-wave
m=0 phase shift, as Temkin and Vasavada (1967) had
suggested would be the case; this enhancement in the
e=H& I' wave m-=O phase shift (Fig. 42) really does
correspond to the aforementioned similar enhancement
in e=H2+ scattering (Fig. 41), although it happens that
the e=H2+ phase shift peaks near zero energy (strictly
a Coulomb effect) whereas the e=H~ phase shift peaks
near k=0.6 (about the energy of the experimentally
observed peak in Fig. 21). Note, however, that Hara's
I =p phase shift does not pass through ir/2 radians;
thus to the extent that a "resonance" has been asso-
ciated with this partial wave and with the Schulz and
Asundi (1965, 1967) peak in Fig. 21 (Bardsley, Herzen-
berg, and Mandl, 1966), the term must be taken loosely.
The word "resonance" carries implications concerning
the shapes and maximum values of various partial cross
sections which really don't accord accurately with
e=H~ experimental resul ts. Furthermore, theoretically
a resonance usually is associated with a specific kind of
intermediate state, which dominates the process and
must be included explicitly to make the phase shift
increase by x radians. In actuality, no such state is
included in Hara. 's calculation, and as we said, the phase
shift does moII increase by x radians. The augmentation
certainly is present, but we would recommend our.

word "enhancement" for it; even the term shape
resonance" seems either too strong or too ambiguous.

4.2 "Adiabatic-Nuclei" Theory of Rotational
Excitation

We next turn to the theory of rotational excitation.
Obviously, rotational excitation is only possible if the
nuclei actually are capable of rotation, i.e., we now
must abandon the fixed-nuclei model which has been
the primary subject of discussion thus far in this
chapter. On the other hand, it remains true —as was
explained earlier —that incident electron velocities
v often are large compared to nuclear rotational velocities
V. Hence, it should be possible to develop theories of
rotational excitation for which the fixed-nuclei cal-
culations serve as a starting point, recognizing that the
range of validity of such rotational excitation cal-
culations need not extend down to incident energies as
low as 10 ' eV (recall Sec. 4.1). indeed, such a theory
has been developed; in fact the basic formula first was
derived by Chase (1956) in the context of nuclear
physics, where the problem was the excitation of
deformed nuclei. Use of Chase's theory to compute

rotational excitation customarily is termed the "adia-
batic" theory of rotational excitation, because the
nuclei are moving slowly compaxed to the incident
electron. However, the term "adiabatic" here provides
another illustration of confusing terminology; in the
domain of atomic and molecular processes, an adiabatic
collision between two bodies A and 8 normally is one
in which the relative velocity of A and 8 is small com-
pared to the ve1ocities of their bound electrons. This
certainly is the sense in which we employed the term
"adiabatic" in the opening paragraphs of Sec. 3. For
this reason, we prefer —and shall employ —the term
"adiabatic-nuclei" for rotational excitation calculations
based on Chase's work.

In the "adiabatic-nuclei" theory of rotational
excitation, the amplitude fr r(Q') for. scattering an
electron into the laboratory direction Q' Lrecall Fig.
39], while simultaneously changing the rotational state
of the molecule from initial state Pr to final state
lfr~, is

where f(PO, Q') is the scattering amplitude in the fixed-
nuclei approximation, given by Eq. (4.7). There are
two important observations to be made about this
basic formula: First, use of the symbol —indicates
that. the right-hand side of (4.14) does not yield the
desired fr i (Q') exactly; there is an error which appears
to be small when v/V))1, but whose precise order has
not yet been definitively elucidated. Secondly, the
analytic dependence of f(Pp, Q') on PD, from (4.7),
means that the integral (4.14) for fr r can be evaluated
analytically. For example, the total cross section
(integra, ted over all angles Q') for excitation from

j to j' is (Temkin and Faisal, 1971)

o-;., = (I~r./1~r) PLaii a(g„*/(2K+1) j
&&+ (—1) +"(km m~ J'0) (leap

—ii
~

JO—) (jJA A~ j'0) ', —
(4.15)

where the quantities in. parentheses are Clebsch-Gordan
coefficients; j, j' are the usual total orbital angular
momentum quantum& numbers labeling the rotational
energy, in the rotational states fully labeled by r, r'
respectively; 1~i-, ki are respectively the initial and final
electron wave numbers; A is the usual quantum
nuniber labeling the component (of the bound electrons'
orbital angular momentum) along the internuclear
axis, in the initial state I', and the sum in (4.15) runs
over allowed values of f, X, m, p, J (for further details,
see Temkin and Faisal (1971), and Chang and Temkin
(1969)].

Chase himself did not reduce the integral (4.14) for
fr.r to simplest terms, nor did he obtain the formula
(4.15). Oksyuk (1966), who was one of the first" to

"Probably the first application to electron —molecule collisions
was by Altshuler (1957), in his elegant Horn approximation
treatment (mentioned in chapter 1) of rotational excitation for
molecules possessing a permanent dipole moment. See also
Crawford et al. (1967}.
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apply Chase's theory seriously to electron-diatomic
molecule collisions, did obtain useful expressions in the
approximation that the partial waves (in the scattered
electron's wavefunction) are uncoupled; it will be
recalled that we have asserted this approximation—
which was employed in deriving Eq. (4.13a)—often is
excellent. However, the phase shifts Oksyuk used were
derived from a calculation along the lines of Fisk (1936),
discussed early in this chapter; therefore, Oksyuk's
results, though occasionally qualitatively impressive,
assuredly aren't quantitatively fundamental and can be
quite misleading (recall Fig. 28). Mittleman, Peacher,
and Rozsnyai (1968) applied Chase's theory to rota-
tional excitation of polar (i.e. , heteronuclear) molecules,
but again their calculation did not utilize scattering
parameters from a detailed fixed-nuclei calculation, but
used rather a special soluble model due to Mittleman
and von Holdt (1965). The adiabatic-nuclei cross sec-
tions in the full coupled form for homonuclear molecules
in 2 states were worked out for neutrals by Chang and
Temkin (1969), and for charged targets (molecular
ions) by Chang and Temkin (1970). Independently,
Hara (1969c) has derived the necessary formulae, and
has applied the adiabatic-nuclei theory to his spheroidal
calculation of e —H. scattering. Finally, Temkin and
Faisal (1971) have derived the generalized formulae
for non-Z states.

Three implications of (4.15) should be noted. First,
for a. rotational transition ( jWj ), the final Clebsch-
Gordan coeKcient in (4.15) vanishes unless JAO;
while if JAO, the first two Clebsch —Gordan coefficients
in (4.15) imply that both l and 'A cannot be zero. But
the symbols 1, X refer to the orbital angular momenta of
the outgoing and incident electron respectively. Thus,
(4.15) shows that pure s-wave parameters (s waves
in and s waves out) do not contribute to rota. tional
excitation or deexcitation, as is obvious on grounds of
angular momentum conservation. Since exchange
effects are most important in s waves, these remarks
may explain why a model as crude as Stier —Fisk's,
when used in the "adiabatic-nuclei" formalism
(Oksyuk, 1966) can. yield results which —if not wholly
correct—at least are not wrong by orders of magnitude.

Secondly, when A=O (2 states) in (4.15), it is known
(Gerjuoy and Stein, 1955a) that |rr.r ——0 for Aj=
j j —j ~

=an odd integer. Basically, this selection rule
expresses the fact that the rotational transition is being
caused by an even (at long range, quadrupole) inter-
action, while the parities of Z rotational states alternate,
starting from the lowest j=0 level. Formally, the
selection rule is deduced from (4.15) via the relationship
aiq~=aii, valid for homonuclear targets (Temkin e/

at. , 1969). It is to be emphasized, however, that in
the general case (AAO), the (Aj=even integer only)
selection rule no longer holds (Temkin and Faisal,
1971). In essence, the selection rule does not obtain
when ANO because in this circumstance there are
levels of even parity and of odd parity at every j, the
so-called A-doubling phenomenon (Herzberg, 1950) .

Failure of the selection rule hj= odd integer for A/0
also is associated with the fact that the well-known
alternation of intensities in the band spectra of homonu-
clear molecules is not observed in transitions between
states of AQO, if the A-doubling cannot be resolved
(Herzberg, 1950).

Thirdly, we point out that if (4.15) is summed over
all final states j', one arrives at an expression Oz which
not only is independent of j, the initial state of rotation,
but which actually is identical to the fixed-nuclei
expression for elastic scattering averaged over classical
directions of the internuclear axis (Temkin, Vasavada,
Chang, and Silver, 1969) . Specifically, we have

l, X,m l, m

(4.16)

k;„,'& 1.65 (hE) (4.17)

in atomic units. This criterion (4.17) for the validity of
the adiabatic-nuclei approximation implies it is useable
at considerably lower energies than previously had been
estimated (Oksyuk, 1966; Hara, 1969c); the criterion
also is supported by a close coupling calculation of
Henry and Lane (1971). The Gerjuoy-Stein cross
section, which is directly proportional to the quad-
rupole moment, beautifully accounts for the observed
threshold behavior of the e=H~ rotational excitation

The arrow in (4.16) indicates the final form of oz in
the uncoupled approximation. It is in. this way, then,
that one finally learns precisely what is meant physically
by elastic scattering in the fixed-nuclei approximation:
it is the sum over all rotational states [starting from
any fixed initial rotational statej of the scattering cross
sections computed in the adiabatic-nuclei approxi-
mation. This result is very understandable, and was the
basis for the remarks made in Sec. 3 in connection with
Fig. 26.

A word is in order concerning threshold behavior and
the adiabatic-nuclei theory. Strictly speaking, the error
term in the adiabatic-nuclei approximation [the
difference between the left and right sides of (4.14)j is
energy dependent. The error can be minimized by
applying the adiabatic-nuclei theory intelligently
(Chang and Temkin, 1970) but there is no way of
avoiding it altogether. At the threshold for rotational
excitation, the outgoing electron is moving sloe L'y

even compared to the nuclear velocities, and the
adiabatic-nuclei approximation is not justified. Right
at threshold, therefore, the correct way of finding the
cross section behavior is via the theory of Gerjuoy and
Stein (1955). However, Chang and Temkin (1970)
concluded that the adiabatic-nuclei theory becomes
valid when the impacting electron energy exceeds
approximately twice the rotational energy difference
AJ&", in fact when
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.cross section (Crompton, Gibson, and McIntosh, 1969),
as Figs, 28 and 33 taken together show. In fa,ct, the
comparison of Crompton, Gibson, and McIntosh's
results with the Gerjuoy-Stein theory near threshold
yields a molecular H2 quadrupole moment Q=0.48+
0.01eap2 (Chang, 1970), in. remarkable agreement with
the theoretical value Q=0.4858 calculated by Karl and
Poll (1967). By 0.2 eV above threshold, however, the
Gerjuoy-. Stein theory is low by a, factor of 2 in e=H&
rotationa. l excitation; the augmentation in the experi-
mental cross section is correctly predicted by the
adiabatic-nuclei theory, and is accounted for by the
enhancing 2Z„(i.e. , P-wave 222=0) .phase shift.

The threshold behavior for charged molecular
targets (H2+) presents an interesting contrast to the
foregoing. In an avera, ge sense the adiabatic-nuclei
theory here can be applied down to threshold. (Chang
and Temkin, 1970); in fact, most of the results can be
obtained from the Coulomb-Born approxima, tion
(Stabler, 1963). On the other hand, e —H2+ is a case
where rotational close coupling definitely would predict
a series of resonances on top of the smooth background
computed via the adiabatic-nuclei approximation.
These resonances come from the strong coupling of the
different rotationa, l states in the presence of the elec-
tronic effects of the long range Coulomb tail. Fortu-
nately, with the use of a, coupled channel quantum
defect formalism, these resonances conveniently can be
parametrized in terms of the quantum defects of the
lower 22p2r and 22pa orbitals of the compound system
(H2), together with their corresponding dipole moments
and the rotational energy constant of the target (H2+)
(Fano, 1970) . The significant point is the behavior
of tlie electron in the field of the H~+, wherein it is
alternately repelled from the lower rotational state and
attra, cted to the upper rotational, so tha. t the lifetime
in the vicinity of the target at a, discrete set of energies
is long and not short. Thus the electron in e -H2+
collisions fundamentally violates a presumption of
adiabatic nuclei theory, namely that the nuclei change
their orientation only very slightly during the collision
Lotherwise one hardly could compute fr r in (4.14)
using the fixed-nuclei scattering amplitude f(Pp, Q') ];
in other words, the adiabatic-nuclei theory does not
apply to e —H&+ collisions at these energies, and it is not
surprising that one 6nds a, series of resonances which are
not predicted by the adiaba, tic nuclei formalism. Fronx
this e=H2+ case we learn that the semiclassical criterion
for the validity of the adiabatic-nuclei approxima. tion-
namely tha, t the incident (and outgoing) electron
velocity v be large compared to the nuclear velocities
V—provides no guarantee that the adiabatic-nuclei
approximation will be successful. The adequacy of the
adiabatic-nuclei theory, as well as of the fixed-nuclei
approximation for that matter, to some extent can be
decided only a posteriori.

Very near threshold, where the outgoing electrons
are very slow (s waves), the rotational excitation cross
section must be dominated by incoming d waves; this

is the energy region where the Gerjuoy-Stein formula, is
valid. As the energy increases, the rotational excitation
begins to be dominated bv p waves (p in and p out),
and the Gerjuoy-Stein theory becomes inferior to the
adiabatic-nuclei theory, a,s has been explained. The
importance of the p-waves can be seen from the follow-
ing approximate formulas for inelastic differentia, l
cross sections deduced (Chang and Temkin, 1969)
from the adiaba, tic-nuclei theory neglecting coupling
between s a.nd d waves

iso, ,/iB' D—j200
~
g'0) 2//p2j

&( Icl[Pp(cos 0') +,'P 2( -cos0') ]+c2(P,+ ,'Pp) ), —

(4.18a)

where

Cl: 2 Sill (2tlP —ltll),

c2:p Sin ('pip 'gll) slil (r12p+7J21 22/22)

X cos (ltlp+r/11 —
2 g lt2~) . (4.18b)

Indeed, Eqs. (4.18) show that primary importance
attaches to the differences between the

~

222
~

= —1, 0, 1
components of the p wave, a result which readily can be
understood; the m dependence is being caused by a
spherically nonsymmetric intera, ction, which simul-
taneously is applying the torque to the nuclei.

Gran. ted the p wave is dominant in rotational
excita, tion a.nd the s-d coupling is small, the angular
distribution of the outgoing electron should show
relatively little asymmetry about 90', because this
asymmetry is caused solely by interference between the
p and d partial waves, and the d-wave phase shifts are
sma, ll. Figure 43 compa, res theoretical and observed
angular distributions, for the j= 1—+3 transition in
e=H2, at an energy of 4.42 eV (almost identical with
the energies of the curves plotted in Fig. 30 for the same
transition) . The data points" in Fig. 43 are a replot of
the rotationa, l excitation (upper) points in Fig. 30;
the Lane and Geltman (1969) curve in Fig. 43 (dash
dot) is a replot of the rotational excitation (upper)
curve in Fig. 30. However, in Fig. 43, we show some
a.dditional theoretical angular distributions for the
e=H2, j=1~3 transition. Note, first of all, that the
data, and all the theoretical curves, manifest relatively
little asymmetry about 90', as was anticipa, ted above.
Next note the solid curve in Fig. 43, which really is a,

pretty fair fit27 to the data points, considering their
scatter. This curve was computed by Chang and Temkin
(1969) in the following way. They obtained phase
shifts by fitting the total (integrated over outgoing
electron directions) rotational excitation cross sections
of Ehrhardt and Linder (1968) and Crompton, Gibson,
and McIntosh (1969), discussed in earlier chapters;
the phase shifts so obtained then were used to compute
the differential cross sections. In a sense, therefore, the
a.greement between the data points in Fig. 43 and the
Chang and Temkin 6t merely indicates the general
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consistency of measured e=H2 rotational excitation
differential and total cross sections; but the good fit
also shows that the adiabatic-nuclei theory —whose
formulas Cha, ng and Temkin (1969) use in order to
extract the phase shifts from the data —is basically
correct. Of particular interest is the fact that the Chang
and Temkin curve in Fig. 43—computed in this semi-
empirical way —is indistinguishable from Hara s (1969c)
wholly a priori predictions, which is another indication
of the quality of his fixed-nuclei calculations (1969b).
The lowest (dotted) curve in Fig. 43 is what Hara gets
when he does not include polarization. The highest
(dashed) curve in Fig. 43 represents the close coupling
predictions of Henry and Lane (1969), including
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FIG. 43. Differential cross sections for outgoing electrons in
e=H~ scattering resulting in j= 1~3 rotational excitation. Circles,
the measurements of Ehrhardt and Linder {1968).Solid line,
theoretical calculations by Chang and Temkin (1969), and by
Hara {1969c);Hara's slow-nuclei results include exchange and
polarization. Dashed line, Henry and Lane (1969}close-coupling
calculations, including exchange and polarization. Dotted line,
Hara (1969c), omitting polarization. Dash —dot line, Lane and
Geltman (1967, 1969) close-coupling calculation with semi-
empirical polarization interaction and no exchange. See Footnote
27.
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l'IG. 45. Total scattering cross sections for e —N~, from Burke
and Sinfailam (1970), Golden (1966a), and E'isk (1936).
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FIG. 44. Calculated differential cross sections for e=H2+ j=
0~2 rotational excitation at 6.8 eV. Bashed curve, do-t/dO',
triplet scattering; dash —dot curve, do-, /dO', singlet scattering;
solid curve, actually observable scattering, averaged over spin
orientations.

polarization and exchange; this dashed differential
cross section curve corresponds to the solid Henry and
Lane total cross section curve of Fig. 34.

The fairly close agreement in Fig. 42 between the
adiabatic-nuclei results (Hara, 1969c) and the close-
coupling results I Henry and Lane, 1969j when po-
larization and exchange are fully taken into account-
and similar agreements noted in Sec. 3 [recall Fig.
36j—suggest that the adiabatic nuclei and close
coupling theories of rotational excitation must be
accurately related to each other by a unitary trans-
formation. This transformation has been studied
recently by Bottcher (1969); it does appear that aside
from threshold effects and resonant behavior (recall the
discussion earlier in this subsection), the two theories
differ negligibly from each other.
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Returning to the adiaba, tic-nuclei theory, in I'ig. 44
we present some e=H~+ calculated differential cross
sections (Chang and Temkin, 1970) for j=0 to 2
excitation at 6.8 eV. Of particular note is the opposite
asymmetry about 90' of the singlet (o,) and triplet
(a,) curves. This difference is traceable to the enhance-
ment of the 'I'

0 phase shift, for which there is no
counterpart in the 'I'

0 partial wave. Thus Fig. 44
offers another manifestation of the 'E'

0 enhancement
which was such a prominent feature of the e=H~
results.

I.et us summarize the contents of this section. First
of all, the summarizing remarks made in the last
paragraph of Sec. 3 obviously are germane. This
section, like Sec. 3, certainly indica, tes that calculational
understanding of electron —molecule scattering has
progressed significantly in recent years. For the purposes
of incorporating both exchange and polarization, the
fixed-nuclei th'eory provides a reliable and convenient
method of calcula, ting the average cross section;
moreover, coupled with the adiabatic-nuclei theory, it.
becomes an extremely effective not very arduous
method for calculating most aspects of rotational
excitation. However, the validity and utility of the
Axed-nuclei and adiabatic-nuclei approximations must
not be confused with the validity of single-center
expansions, whose reliability is by no means established.
Unquestionably single-center expa. nsions do provide an
approximately quantitative description; on the other
hand, the degree of accuracy practicably attainable with
single-center expansions is suspect, pa, rticularly for
heavier dia, tomics. As evidence for this last assertion, in
Fig. 45 we show a recent very elaborate single-center
calculation of e=N~ scattering, by Burke and Sinfailam
(1970); Fig. 45 also sketches the data, of Golden
(1966a) and the theoretical curve of Fisk (1936), taken
from Fig. 10. Evidently the agreement between experi-
rnent (Golden, 1966a) and the single-center Burke and
Sinfailarn (1970) predictions is at best qualitative.
Moreover, in order fcr. Burke and Sinfailam to obtain
convergence, several terms were required in their
partial-wave expansions —both for the scattered wave
and for the potential. The 'IT, enhancement or shape
resonance mentioned in subsec. 2,31a does show up
gratifyingly in the Burke —Sinfailarn calculation, but its
position and height are not really correct. It appears,
therefore, tha. t spheroidal coordinates —which Hara
(1969b, 1969c) was able to v, se pra, cticably in his
e=H2 compu tations —will be a necessary part of
accurate fixed-nuclei and adiabatic-nuclei calcula, tions.
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