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1. INTRODUCTION

A quantum solid is one in which the zero-point
motion of the atoms about the equilibrium lattice sites
is a large fraction of the near-neighbor distance. This
large zero-point motion has three important con-
sequences (e.g., Guyer, 1969) :

(a) Neighboring atoms in the lattice encounter one
another away from their respective lattice sites at
distances comparable with the hard core radius.

(b) An atom visits a large region of space in the
vicinity of its lattice site. The small parameter of con-
ventional lattice dynamics (rms displacement/near-
neighbor distance) is not small so that there is large
anharmonicity.

(¢) Neighboring atoms tunnel around one another
and exchange lattice sites.

The difficulties caused by an atom’s visit to a rela-
tively large region of space near its lattice site or its
encounters with its near neighbors at the hard-core
radius have a significant effect on how one does a theory
of quantum crystals. But, the aggregate of conventional
thermostatic and thermodynamic experiments on the
quantum crystals exhibit few remarkable or unusual
features that are a consequence of large anharmonicity
or close approach (Guyer, 1969).

However, the third consequence of the large zero-
point motion of the atoms in a quantum crystal has
important experimental implications. There is a finite
overlap between the wavefunction of an atom localized
near lattice site 1 and the wavefunction for an atom
localized near lattice site 2, a near neighbor site of 1.
Because of this overlap, the atoms can tunnel about one
another and change place. In solid 3He, the atoms are
fermions (there is one unpaired nuclear spin) so there
is a nuclear exchange process due to the finite overlap.
The energies associated with the exchange process are
on the order of 1 mK. Thus this process is unimportant
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to the ground state properties that are seen in most of
the thermostatic and thermodynamic measurements at
1 K. But the particles which make up the solid have
mobility - through it, by virtue of quantum mechanical
tunneling, on a time scale that is easily observable.
These particle motions give rise to a wide variety of
phenomena, e.g. (a) the tunneling excitations, (b)
vacancy wave excitations, (c¢) mass fluctuation waves,
(d) the coupling of the particle motions manifested in
these excitations to one another and to the phonons,
etc. Because SHe atoms are tagged by their nuclear spin,
it is possible to observe the particle motion phenomena
in nuclear magnetic resonance (NMR) experiments on
the quantum crystals. i

The purpose of this paper is to present a careful
survey of (a) the theory of particle motion phenomena
in quantum crystals, (b) the NMR experiments on
these systems which see particle motion phenomena,
and (c) the correlation of theory and experiment. We
will deal with pure *He, *He with small concentrations of
‘He, “He with small concentrations of 3He, and nondilute
mixtures. Our approach to the theory of these systems
will be principally phenomenological. For those phe-
nomena whose description is new in this paper we will go
into somewhat greater detail although we will maintain
a phenomenological posture throughout. It is our
intention here to explicate the physics of particle motion
phenomena as seen in NMR experiments, and to suggest
the direction of further theoretical and experimental
work.

This paper is organized as shown in the Table of
Contents. A word about that organization. For each
kind of system (pure *He, dilute mixtures, and nondilute
mixtures) we discuss in order: (a) the excitations in the
system, (b) the expectations for NMR experiments on
the system, and (c) the results of NMR experiments on
the system. A serious attempt is made to be descriptive
in dealing with most of the presentation. Therefore, the
major portion of the detailed calculations that are
called for are found in the Appendices. We treat new
and old topics with uniform depth so that this article
will serve as more than a guide to the literature.

The physical picture of the tunneling motions that
interest us emerges toward the end of the substantial
progress that has been made in the theory of quantum
crystals in the past six years. Let us recount that
progress. The theoretical description of a quantum
crystal must account for:

(a) the short-range correlations in the relative
motion of a pair of neighboring particles that approach
one another at hard core distances; and

(b) the motion of the particles over a large region of
space in the vicinity of their lattice site where they see
many derivatives of the interaction potential.

The short-range correlation problem has been dealt
with by Nosanow and co-workers (Nosanow, 1966;

Hetherington, 1967), Brueckner and co-workers (1965,
1969), and Krumhansl and Wu (1968) using a Jastrow
wavefunction within the framework of a variational
calculation of the ground-state energy; and by Hansen
and Levesque (1968) using molecular dynamics. The
outcome of these calculations is that a pair of atoms in a
quantum crystal interact with one another through an
effective interaction which is the product of the bare
interaction and correlation function for the pair, i.e.,
approximately the f-matrix result. This effective inter-
action has a softened hard core for which short-range
correlations are relatively unimportant.

The long-range correlation problem (phonons) has
been dealt with by Koehler (1966, 1967), Horner
(1967) and others (see the review b, Werthamer, 1969)
using “self-consistent”” phonons; and by Brenig (1963)
and Fredkin and Werthamer (1965) as the RPA
response of a driven Hartree system. The outcome of
these calculations is that for the purpose of finding the
phonons, the spring constant of the interaction between
a pair of particles in a quantum solid is given by the
second derivative of the bare interaction between the
pair, averaged over their relative motion. The phonons
in the solid are the collective modes for particles coupled
by these springs. Finally, in detailed numerical cal-
culations for the phonons in a quantum solid, the bare
inleraction called for in the phonon theories is replaced
by the ¢ matrix. The phonons are taken to be the
collective modes for pairs of particles coupled by
springs whose spring constant is the second derivative
of the ¢ matrix averaged over the relative motion of the
pair.

A large body of computational results (principally on
solid helium) have been generated by Nosanow and
co-workers (Nosanow, 1966; Hetherington, 1967),
Werthamer and co-workers (de Wette, 1967; Gillis,
1968), and Koehler (1966, 1967) for the ground state
thermostatic properties [energy, E; pressure, P; bulk
modulus, 8; phonon spectrum, w(g), etc]. These results
are in reasonable qualitative agreement with experiment.

Recently Iwamoto and Namaizawa (1966), Sarkissian
(1969), and Guyer (1968b) have developed a theory of
quantum solids using what are essentially the techniques
of the theory of nuclear matter. This approach has the
advantage of yielding the ¢ matrix and phonons within
the same computational framework. Detailed cal-
culations of the ground state properties of solid helium
within the framework of this theory yield lowering of
the ground state from 3 K/particle to 1 K/particle,
and a pressure dependence of E and 3 in excellent agree-
ment with experiment. Aside from conceptual problems
which are clarified by this approach, its most important
contribution is to show that a simple but careful treat-
ment of the short-range correlation part of the problem
yields substantial improvement in the quantitative
features of the theory. ,

Guyer and Zane (1969) have extended the treatment
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of the ground state problem due to Guyer (1968b) and
Sarkissian (1969) to include the exchange process.
Calculations with their theory of exchange yields
results in good qualitative agreement with experiment.
See also Hetherington, Mullin, and Nosanow (1967)
and Nosanow and Varma (1968). More important than
this agreement between theory and experiment, is the
physical picture which results from this theory. Guyer
and Zane show that the particle motions which lead to
the nuclear exchange process are embodied in the
tunneling motions that are represented by a Hubbard
Hamiltonian! (Herring, 1966). It is with regard to these
tunneling motions that the quantum crystals (solid
3He, “He, and mixtures) are truly unique. The physics
we are discussing in this paper is a consequence of the
tunneling motion.

2. BACKGROUND (NMR)

A nuclear magnetic resonance experiment on a
sample containing nuclear spins begins by placing it in
an external magnetic field Hy.2 Each of the spins in
the sample precesses about the magnetic field with the
Larmor frequency

(2.1)

where y=2.04X 10* rad/G-sec for *He. After the spins
have come to thermal equilibrium in the Larmor field
(i.e., for spin 1/2 the population of the two spin states
is Py/P_= exp +BhyHo, where 8 =kpT, and T is the
ambient temperature of the sample) a radio frequency
magnetic field, Hy(¢), in the plane perpendicular to Hj
is turned on at frequency w=wp for a short period of
time. Energy is dumped into the spin system by the
rf field, and the spin system is driven away from
equilibrium; P,/P_< exp +BhvyHo,. The rf field is
turned off, and as the spin system returns to equilibrium
various experiments are done to observe it.

In a Ty measurement, the z component of the mag-
netization is studied as a function of time. If the spins
come to equilibrium among themselves in a time short
compared to the time required for the excess energy in
the spin system to decay away, then, as the spin system
returns to equilibrium, it can be described by a spin
temperature, and decay of the excess energy or mag-
netization corresponds to a decay of the spin tempera-
ture. At Bs1=kpT s>hiyH,, we have

W= 7H0J

N
M.= 3 ()= Nu*HBs

and
(d/dt) M .(t) = Nu*H,(dBs/dt).

1A cell model Hamiltonian was first used to look at solid
helium by Gersch and co-workers (Fernandez, 1966). Sub-
sequently Hamiltonians of this kind have come to be called
Hubbard Hamiltonians.

2 We discuss NMR from a pulse point of view in this section.
A more general discussion is found in the excellent book by
Abragam (1961).

(2.2)

Thus a T3 measurement is a measurement of the
inverse temperature Bg as a function of time.

More precisely, a 77 measurement is a measurement
of the motion of the total spin of the system among the
manifold of energy levels due to Hp; this motion is
described by a temperature. The Hamiltonian de-
scribing the spins in Hj is the Zeeman Hamiltonian
given by

N
3C,= —Ho' Z Pei-

=1

(2.3)

The manifold of energy levels for N spins 1/2 in H, is
the manifold of Zeeman energy levels or the Zeeman
system. The temperature of the Zeeman system changes
as M, changes. The spins which add up to give M, are
precessing at the Larmor frequency wo. One of these
spins will flip, contributing to the decay of M, if it sees
a local magnetic field which is varying at the Larmor
frequency wy. By local field we mean a field of micro-
scopic origin at the site of the spin in question, H;(R),
where R is the lattice site of the spin.

A local field occurs because of the dipolar interaction
between the spin at R and its neighbors, i.e., because of

H:(R,?)

3(R—R/)[pr () - (R—R’) ])

== |[R—R' [’

RI<R

( wr (1) _
[R—R’3

(2.4)

where the R’ are the positions of the field particles.
See Fig. 1. We refer to the neighbors of the spin at R
as the field particles of R, they are the particles which
cause the local field seen by the spin at R. We write this
local field as a Fourier transform

H (R,t)=[doH;(R, ) exp (—iwt).  (2.5)

If this local field has a Fourier component in the
transverse plane at frequency wo, the spin at R (which
is precessing at wp) sees this component of the local
field precessing with it. The spin sees H;(R, wp) as a
static field and it undergoes an additional precession
about this field just as it precessed about the rf field
above which was tuned to look to it like a static field.
The spin at R “flips” due to the mo*ion of the field
particles at wp manifested in H;(R, wo), and contributes
to the decay of M ..

We have made this qualitative argument to suggest
the physics we are going to see in a 7 measurement.
Those motions of the particles in the system which give
rise to fluctuations in Hy(R, 1) al frequency wy will be
observable in a Ty measurement.

Suppose a system of excitations exists in a solid which
gives rise to the motions of the field particles which
lead to the decay of M, and an attendant energy loss
from the Zeeman system. The energy which the Zeeman
system is losing is transferred from it to the system of
excitations. The dipolar field is the agency by which this
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transfer is accomplished. The energy dumped from the
Zeeman system into the excitation system will raise the
temperature of the excitation system unless the excita-
tion system is tightly coupled to the reservoir in which
the experimental sample sits. In the typical NMR
experiment, the excitation system is tightly coupled to
the reservoir by some means. However, it can happen
that at low temperatures the excitation system will
become uncoupled from the reservoir. The energy
dumped from the Zeeman system to the excitation
system will bring the two systems to a common equilib-
rium temperature above the reservoir temperature.

t=0

t=t +1,

(a) (b)

F16. 1. A T, Experiment. In Column (a) we show the magnetic
fields seen in the laboratory by the spins in the region of space
R at various times in a 7} experiment. In Column (b) we show
the response of the magnetization of the spins in R to the various
magnetic fields shown in Column (a). In Column (b) we are
in a frame of reference rotating at wo so that the rotating fields
in Column (a) have become static fields. At ¢=0, the spins see
H, which they precess around at frequency wo=vHo. At =0
they also see a relatively weak dipolar field due to the motion
of the field particles of R, e.g., the particles in the region of
space R'; yHo>vH>>vHa(wo). At t=4, an 1f field, Hy, is turned
on. This field is perpendicular to Hy and precesses in the labora-
tory frame at frequency wo. The spins precessing about H, at
frequency wo see H; as a static field and precess about it. If
H, is on for a time fy given by vHifso=m/2, the spins precess
into the transverse plane, M,(fi+Zy0) =0. After the rf field is
turned off, e.g. at t=#-1, t2>%0, the spins, precessing at fre-
quency wo, see only the transverse component of the dipolar
field at frequency wo, This internal magnetic field drives the
spins back toward the z axis. (In this figure we have used regions
of space instead of individual lattice sites so that we could use
a classical picture of the motion of the magnetization.)

HZI

Haall

Hz| HIR

Hir
(a) (b)

T16. 2. Relaxation topologies. In the simplest case, relaxation
of the rf energy put into the Zeeman system is accomplished by
coupling the Zeeman system to the particle motions, the 1-
system, and having the excitations which represent the particle
motions be tightly coupled to the reservoir, (a). If it happens
that the particle motions are weakly coupled to the reservoir,
then, they and the Zeeman system will come to mutual equilib-
rium on a fast time scale and decay together to the reservoir
through a mechanism which couples the 1-system to the reservoir.

Then, on a longer time scale, the coupled systems will
decay together to the temperature of the reservoir. See
Fig. 2. The mechanism of this long time decay will be
the coupling of the excitation system to the reservoir.
For example, if the field particle motion is due to the
vacancy wave excitations, then, the vacancy waves
couple to the phonons which in turn easily transfer the
energy from the sample to the reservoir. The topology
of energy relaxation corresponds to Fig. 2(b). The long
time which characterizes the decay of the coupled
Zeeman-excitation systems may depend upon the
characteristic time for the excitation systems to couple
to one another or to the reservoir (e.g. the vacancy
wave-phonon coupling) and on the relative specific
heats of the excitation systems. Thus we expect that at
low temperatures, a 77 measurement will contain
information about (a) the specific heat of the excitation
systems giving rise to the particle motion, and (b) the
characteristic time for the coupling of these excitations
to one another and to the reservoir.

In a T, measurement, the transverse (x,y) com-
ponent of the magnetization is studied as a function of
time. The characteristic time for the decay of the
transverse magnetization is a measure of the time
required for the spins to come to equilibrium among
themselves. The magnetization vector can be tipped
from along Hj into the transverse plane by application
of an rf magnetic field of appropriate duration;i.e. a 90°
pulse. See Fig. 3. Once in the transverse plane (for
example, along the x axis at £=0) the individual spins
move in the plane relative to one another due to (a)
precession about the w=0 Fourier component of the
z component of the local field, H;(R, w=0),, and (b)
precession about the w=wy, component of the local field
in the transverse direction, H;(R, w) +. If the local
field at R is time independent, the motion of the spin at
R is reversible. This reversibility is demonstrated by the
observation of the recovery of M at time 2 to its value
at time O after the application of a 180° pulse at time
4. See Fig. 3. If the time evolution of the local field is
reversible after turning all of the spins by 180° at #,
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H 1)
2
(a) ﬂ_;tgo \L
, -
"2

H, (1)

(b)

tiso

yHiteo
H, (1)

F16. 3. A T; experiment. A 90° pulse
is an rf field of sufficient duration that
the z component of the magnetization
goes to zero as shown in (a). When the
magnetization is in the transverse plane,
following a 90° pulse, a 180° pulse is an
rf field of sufficient duration to flip the
component of the magnetization per-
pendicular to H; by 180° as shown in
(b). The full pulse sequence for a T,
experiment is shown in (c). For a
1 classical spin: at ¢=0 the spin points

yHitgo= 7

Hy ()

(c)

upward, at an application of a 90° pulse
it turns into the transverse plane, a—b;
the motion from b to ¢ is due to the local
field, e.g., Hi(0).; at #; a 180° pulse flips
the spin by 180°, ¢—d; if the local field
flips by 180° when the spin flips by 180°,
then the spin returns to ¢ at time 24 to
form an echo.

U h 0

ab c d e
oty o ty— :

‘we have M (24;) equal to M(0). The spin motion is
reversible; there is no thermalization of the spins. The
transverse component of the magnetization will not
return to M (0) at time 24 following a 180° pulse at 4
if the local field on each particle does not reverse its
motion in time when all of the spins are turned by 180°.
See Fig. 4. Those motions of the field particles around
R which give rise to an irreversible time evolution of the
local field at R, and consequently an irreversible pre-
cession of the spin at R, are motions which transfer
energy between the field particles and the spin at R.
Such motions bring about thermal equilibrium among
the spins. Both the motions of the field particles at
w=uwy, as well as their motions at w<wy, contribute to
the irreversible precession of the spin at R. Thus a T
measurement is a probe of (a) the low-frequency
motion of the field particles, as well as (b) their motions
at wp which also appear in 7.

In a conventional diffusion experiment, the Zeeman
system of spins is examined by a T, pulse sequence
(e.g., a 90° pulse at ¢=0 followed by a 180° pulse at
time #) while sitting in an externally applied magnetic
field gradient. If the particles are free to move from
place to place in the field gradient due to a particle
motion process, the transverse component of the

magnetization will undergo an additional irreversible
motion due to the diffusion of particles in the field
gradient. Thus a diffusion experiment is a T» experiment
in an externally applied magnetic field gradient. Such
an experiment directly measures the diffusion constant
of the spins. See Fig. 5.

In addition to the conventional diffusion experi-

- ments, there are energy diffusion experiments. In an

energy diffusion experiment, the diffusion of the z com-
ponent of magnetization is studied as a function of
time. Such an experiment begins by placing the Zeeman
system in a weak field gradient. This gradient is used
only to see the spins in different parts of the sample; the
Larmor frequency will be a function of position in the
sample. Energy may be dumped into the spins at the
center of the sample by turning on an rf field of fre-
quency wo. Energy may be dumped into the spins on
the left or right of the sample by using rf fields at
wokAw. Let us assume that the energy is put into the
spins at the center of the sample and that this energy
is strongly coupled to a particle motion excitation
(e.g., the tunneling motion of the particles) on a time
scale fast compared to 7T'y. Thus the Zeeman system and
the excitation system in the vicinity of the center of the
sample will share the rf energy and be “hot” compared
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f=f9°

345
M 4

F16. 4. Reversibility and irreversibility.
In (a) we show: (1) the configuration of
the local magnetic fields at the lattice
site of five spins at the times fg0, #1, fi+
tiso, and 24 (cf. Fig. 3) and, (2) the

(a)
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t=1

i

+
I t=t+tigo

TTOOL

s 43 2 '
Hj \\:XLéC//

f=2t|

i

5432

|

=X

orientation in the transverse plane of )
each spin. Between =ty and f, the
spins “fan out” in response to their local
field. At #4150, the spins have been
fiipped by 180°; so has the local field.
At time 24, the local fields have returned
to their configurations at ¢=0, except
for a reversal of all signs. The motion
of the local fields and spins is reversible
in time. In (b) we show (1) the con-
figuration of local magnetic fields and
(2) the orientation of the spins as in
(a). We note that the local magnetic
fields do not return at ¢=2¢# to the
negative of their value at £=0. The local
magnetic fields do not reverse their
motion in time when the spins are turned
over by 180°. Thus the spins do not
reverse their motion in time. The com-
ponent of the magnetization along the
—ux axis is less at 2/, when the motion of
the spins is irreversible.

12345

) |2345

(b)+

(2)

12345

to the reservoir. Both the hot spins (Zeeman system)
and the hot excitation system will diffuse through the
sample. As they do so they keep up with one another
because of their strong coupling. The diffusion of these
coupled systems through the sample corresponds to a
diffusion of the temperature or energy. It is measured
by measuring M. (x, t). See Fig. 6.

3. EXCITATIONS IN PURE °®He

3.1 Excitations

Our understanding of the results of an NMR experi-
ment on solid *He will depend upon our understanding
of the excitations that exist in the solid and the inter-
actions which occur between them. This section is
devoted to a discussion of the three kinds of excitations
that are important in pure 3He. These excitations are
the phonons, vacancy waves, and tunneling excitations.

Phonons. The phonons are the excitations in the

(&)

*“’“rn“l“m

4 3 2 32
5 | 5 4 )
—X
H,
! 5
2 34

solid which describe the small displacement motions of
particles about their equilibrium lattice sites. These
displacement motions are too small to contribute
significantly to the motion of the field particles which
are seen in a T experiment (Abragam, 1961). However,
the phonons play a crucial role in transferring energy
from the other excitations (e.g., vacancy waves) to the
reservoir. We do not discuss the phonons here in any
detail®; the energy of the phonons, their specific heat,
and energy constant are tabulated in Appendix D.
When we have need to calculate the properties of the
phonons we will use the formulae from this Appendix
and the experimentally determined Debye temperature
from Sec. 4. We will discuss the coupling between the

~various excitations after we have discussed each

excitation in the necessary detail, thus we go on to the
vacancy waves and the tunneling excitations.
3 The theory of phonons in quantum crystals, a subject of

considerable interest in its own right, has been recently reviewed
by Werthamer (1969).
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H(x)

Ho—"

-X

t=tgo 2: 12345 +y

1,2,3,4,5

=X

it 5

134/5| \2

t=t

2\ |3/134

TR i

t=t+tgg

t=21

Fic. 5. A diffusion experiment. A gradient of the z component
of the external field is placed on the system, H.(x) =H,—Gux.
Here we show the time evolution of five particles in the sample,
and the time evolution of the spin of each particle. At t=ty
the five particles are taken to be at the center of the sample.
Their transverse magnetization in a co-ordinate system rotating
at wo is Sux. Due to the particle motion excitations, the particles
diffuse in space. Each particle sees a local field which is unique
to its motion through the sample. Its spin moves relative to
the +x axis in a way which depends on the time averaged local
field. If on the average the particle is to the left of x=0, it has
seen a slightly higher field than H,; it has precessed in the trans-
verse plane slightly faster than the particle that remains at
x=0. Its spin precesses to the right. See particle 2 at #,. When
the 180° pulse occurs, the local field reverses, but the gradient
which is responsible for the motion we exhibit here does not. The
particles continue to move by diffusion (irreversibly) in the
gradient, and at 24 the magnetization along the —x axis is con-
siderably less than Suy. Here we have shown only the degrada-
tion of M.(24) due to motion in the external gradient. There
is superposed on this decay an additional loss of magnetization
that is due to the irreversibility of the time evolution of the
local fields shown in Fig. 4.

The particle motions which are more drastic than
those described by the phonons and which are observable
in a Ty measurement are embodied in the model particle
motion Hamiltonian used by Gersch and Fernandez
(1966), Guyer and Zane (1970), and Mullin (1971)

ICpm= Z E(R) brsbrs+ Z l(RR,) bretbrs

R, RR!,0

+% Z ¢0(R) va+bRa'+bRa’ bEa,

R,o0/

(3.1)

where the operator bg,* creates a particle at R of spin o
in the ground state of a complete set of Wannier states.
The energy e(R) is a Hartree single-particle energy

e(R)=K(RR)+} Y V(RR, R'R"){bre*brrar),
R!1g!5(R)a!
(3.2)

where K(RR) is the diagonal matrix element of the
kinetic energy operator

K(RR') = [ dx¢r* () T (x) drr ()

(3.3)

[¢r(x) is the ground state Wannier function at lattice
site R7], »(RR, R”R") is the diagonal matrix element
of the potential energy

o(RR', R"R"")
= [ dx[ dx'¢p* (%) dr (&) v(6—&") pprrr () e ()
(3.4)

HRR')=K(RR')+% 3 v(RR', R'R") (brro*barer),

7.0

(3.5)

>

H| = h|e|w°'

T
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F16. 6. Energy diffusion measurement. The specimen of solid
$He is placed in a static magnetic field H, with a uniform gradient
G=dH /dz in the z direction. Application of a strong rf signal,
7 exp(iwot), with the polarization of /; lying in the plane per-
pendicular to Ho, heats the spins in the thin slab of the specimen
over which H(z) =wo/v. The energy of the Zeeman system is
quickly transferred locally to the tunneling energy reservoir.
The subsequent measurement of the resonance absorption signal
using a much weaker rotating rf field /i, reveals a resonance line
with a “hole burned in it”’ corresponding to the signal from the
portion of the specimen with locally higher spin temperatures.
The specimen returns to thermal equilibrium through spatial
diffusion of the energy in the tunneling reservoir. The rate of
the energy diffusion is determined through studies of the time
evolution of the hole in the absorption signal. [Hunt and Thomp-
son (1968) 7.
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F16. 7. Vacancy wave excitations. The (a)
ground state of the lattice has one
particle at each lattice site (a). A
vacancy state is created by brthr’X  (b)
(1—3gg’) which removes a particle from
R’, and doubly occupies the lattice site
at R (b). This vacancy state has two (c)
components, a hole at R’ and a particle
at R. Both components propogate due
to 3Cpm, as shown in (c) and (d). (d)

and ¢o(R) is a hard-core energy associated with the
double occupation of a lattice site, ¢o(R) =v(RR, RR).
It requires more than one state per lattice site to
describe the small displacement motions at a lattice site
which are manifested in the phonons.* Here we are
interested only in the large displacements embodied in
JCpm. The first term in Eq. (3.1) gives the Hartree
energy for the system, Ex= Ne(R). The second term in
Eq. (3.1), called the tunneling term, leads to particle
motion from lattice site R to R’, and the third term is
the hard core repulsion which works to inhibit this
motion. There are two kinds of simple excitations in the
system of particles described by 3Cpm. These are the
vacancy wave excitations and the tunneling excitations.

Vacancy Waves. We take the ground state of the
system to be the state | 0) corresponding to having one
particle at each lattice site. Then, a vacancy is created
by operating on the ground state with the vacancy
creation operator Cy+(RR’) given by

CV+(RRI) = b[z+b131 (1—51313») y (36)

where for the purpose of discussing vacancies we ignore
the spin index. This vacancy state has two components,
a doubly occupied lattice site at R, and an empty
lattice site at R’. See Tig. 7. It is conventional to put
the doubly occupied lattice site on the surface and to
look at the ‘“hole” only (Hetherington, 1968). Both
components of this vacancy state propagate through the
crystal because of the tunneling term in JCpy. We
construct an operator for creation of a vacancy wave
state thus

Cvt(k, k')
= > exp (ik*R) exp (—ik’+R’) bptbp (1—8gr').

RE/
(3.7
Using the equation of motion method, we find
ih(3/9t) Cy* (k, k') = [po+1(k) — (k") JCv* (k, &),
(3.8)

¢ A fundamental question in the theory of quantum crystals
is that of the coupling between the phonons (small displacement
motions) and the particle motions embodied in Eq. (3.1). The
description of displacement motion in the vicinity of a lattice
site requires more than one state per lattice site (Nosanow,
1965; Guyer, 1968a). The coupling of motion among low-lying
states at a lattice site, to motion among states at different lattice
sites gives rise to phonon-particle motion interactions. Recently
McMahan and Nosanow (1970) produced a proof that these
motions are independent. The earlier work of Nosanow and
Varma (1968) also pertains to this point.

elele

O
O —
O
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3000
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where {(k) = > g t(RR’) exp [tk-(R—R’)7]. The term
1(k) in Eq. (3.8) is due to the propagation of the doubly
occupied lattice site, the “particle,” and the term
{(k’) is due to the propagation of the empty side, the
“hole.” Now we take {(RR’) = —¢ for R’ a near neighbor
of R and zero otherwise; then for simple cubic geometry
we have

t(k) = —2t(cos koA~ cos k,A+ cos k,A),  (3.9)

where A is the near neighbor distance. For simplicity
we assume that the “particle” does not propagate,
then the vacancy wave dispersion relation is simply

fiwy (k) = dpo+2¢(cos ks A+ cos k,A+ cos k.A)  (3,10)

which is shown in Fig. 8. From the discussion in Sec. 4,
Fig. 29(b), we have the estimate {=0.4 K at V=20.0
cm?/mole. At ¥=20.0 cm®/mole, the crystal structure
is bee with each lattice site having eight near neighbors.
The bandwidth for the vacancy waves is Aey=2z | ¢ | =
6 K. At the edge of the Brillouin zone we have fiw(kp) =
¢o—2z | ], and at the zone center fiw(0)=¢p+z]|¢]5
From the discussion in Sec. 4 we have the estimate
d=¢do—z| 1| 145K or ¢=¥18 K. Throughout this
paper we use experimentally determined values of ¢ and
we take the vacancy energy, specific heat, concentration
etc., to be given in terms of these experimental con-
stants. For example, the vacancy concentration is
given by

xy= exp (—B¢). (3.11)

Formulae for other quantities of interest for the
vacancies are found in Appendix D.

Tunneling Excitations. By the tunneling excitations
we mean the excitations of the system associated with
the particle motions which are usually referred to as
exchange (Herring, 1968). We use the phrase tunneling
excitations because the word exchange is ambiguous;

5 The vacancy waves of our model are propagating in a homo-
geneous background like ‘He. InHe, the vacancy waves propagate
in a spin disordered medium. The fact that the vacancy waves
must disorder the 3He medium to move through it leads to a
slight modification of the structure of the band; it leads to a
major modification of the mobility and diffusion constant of
the vacancies. These points are explicitly illustrated in the
recent work of Brinkman and Rice (1970). We argue for the
qualitative structuré of the energy band, w(kp)<w(0), by
noting that a vacancy wave excitation at k=kp corresponds
to removal of a short-wave length density fluctuation. Mullin
(1971) has pointed out that a vacancy is dressed by lattice
distortion and may carry an effective positive mass along with
itself. See also Footnote 8.
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F1c. 8. Vacancy wave excitation spectrum. The vacancy
wave excitation spectrum is like a ‘“hole” spectrum in a semi-
conductor. The band edge is at ¢po—zf. This energy is identified
with the experimentally measured excitation temperature, ¢.
The bandwidth is 22¢~6K, whereas the typical experiment is
done at 2K. Thus the experimentally observed vacancy waves
are near the band edge.

it suggests a process associated with antisymmetrizing
wavefunctions for Fermions; it does not suggest the
physical process involved as picturesquely as the word
tunneling nor that the process may involve two *He
atoms, a He and a ‘He atom, or two *He atoms ( Guyer
and Zane, 1969; 1970).

In pure solid *He, the tunneling excitations are
associated with the creation of a virtual vacancy state.
They are given by the Hamiltonian

567’: Z Z [—t(RR,> 2/¢0]bRﬂ+bR’va’dl+bR0"

RR/,00/

(3.12)

which describes the elemental tunneling motion shown
in Fig. 9. The steps to this process are: (a) the system
starts in the ground state | 0) and the particle at R
with spin ¢ tunnels to R’ (this is the beginning of a
vacancy), (b) instead of the particle and hole propa-
gating away from one another to become a full fledged
vacancy, one of the two particles at R’ returns to R,
and the system returns to the ground state. In the
intermediate state, the virtual vacancy state, the
energy of the system is Eo4¢o so that the matrix
element for this process,

{(RR’) (Eo—3Cpm) " t(R'R)

is equal to —{(RR’)2/¢bo.
We may convert 3Cr into a pseudospin Hamiltonian

by carrying out the transformation discussed at length
by Anderson (1963). We write

2= 2 brstbribrio re

o ol

(3.13)

=bg1*br 1br bRt bRy bR bR FORY

+bzttbrr 1brr FORy+br bR bRy TORY  (3.14)

and make the identifications bgytbr,=or", brtbrt =
G'R_, and A’}’LH= ’}’1431\'—%3;——-0'}32, where Nnp= Z, bR,+bR,,.
Then it is possible to rewrite Eq. (3.12) in the form
Hp=— Z m(RR’) (%-{—20'13'0'31), (315)
RE!
where m(RR')=¢(RR’)?/¢o, and o is the unitless
angular momentum of the spin at R. The part of this

Hamiltonian of interest is the part associated with
particle dynamics; this is

3r=—23 | J(RR') | o0, (3.16)
RR/
where
J=|J(RR’) | =t(RR')*/ . (3.17)

We use Eq. (3.16) as the fundamental definition of J.
As such the values of J quoted in this work are taken
from our Fig. 32; they will differ from the J used in
many of the NMR papers. The primary justification for
the use of Eq. (3.16) to define J is the use of this
definition in almost all nonNMR work on Heisenberg
systems.’ At V'=20.0 cm®/mole, wehave J=0.35 MHz=
1.6 XX 1075 K from the discussion in Sec. 4, Fig. 32, thus
using ¢y=18 K in Eq. (3.17), we have |¢]=~0.02 K.
This result is in poor agreement with our theoretical
estimate of 0.14 K made in Appendix A7

We will refer to the pseudospin Hamiltonian given by
Eq. (3.16) as the tunneling Hamiltonian. This Hamil-
tonian is a Heisenberg Hamiltonian and the tunneling
excitations, energy, specific heat, etc., which follow from
JCr are those of a Heisenberg antiferromagnet (Baker,
1967). The energy, specific heat, etc., for 3Cr are
tabulated in Appendix D.

b 4

(a) O
(b) O - (I)(i)R’
" o

F1c. 9. Tunneling excitations. Due to the tunneling term in
JCpm, a particle moves to double occupy the lattice site R’.
Because of the hard-core repulsion between pairs of particles,
this double occupation is energetically expensive. One of the
doubly occupying particles returns to lattice site R. If the particles
are tagged, e.g. by their spin or mass, this kind of motion is
detectable and gives rise to a system of excitations.

®QQ
®QQ

6 A secondary justification for this definition of J is the near
unanimous vote of the participants in the First Quantum Crystals
Conference, Aspen, Colorado, (1969), which overrode a veto by
J. C. Wheatley.

7This estimate of ¢ is not in good agreement with those in
Sec. 4. The problem of course is that ¢o should be much larger
than 18 K. Our indentification of ¢y with the vacancy excitation
temperature was prompted by an interest in pushing the model
as far as possible. From a quantitative point of view, we have
pushed it too far. We may invert the calculation here and con-
clude ¢o=10% K. Certainly the model vacancy is not the real
vacancy.
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3.2 Interactions

Now let us turn to the question of interactions among
the excitations which exist in the solid.

Phonon—Vacancy Wave Interactions. The phonons
couple strongly to the vacancy waves in the solid
because they see a vacancy wave as a dynamic mass
fluctuation. If a vacancy were static, a phonon would
scatter off of it due to the perturbation

$AmpUR =% (mp—mz) Ug? (3.18)

without change in energy. Here uz is the displacement
of the atom at lattice site R (Carruthers, 1961). This
is the perturbation which gives the isotopic impurity
contribution to the thermal conductivity. See Fig. 10.
But a vacancy wave is a dynamic mass fluctuation
which can exchange energy with the phonons. The
phonons see a vacancy wave through the time-de-
pendent perturbation

%Amg(l)l:h?,z:%[mk(l) —’M3]l:11~32. (319)

The rate of change of the energy of the phonons due to
interaction, via the perturbation

GCVP=% Z AmR(t)ﬁR2, (320)
R

with the vacancy waves has been calculated. Appendix
A .4 quotes the result of that calculation which is similar
in its details to that in Appendix A.6. As an illustration
of the basic definitions of relaxation times and of the
physical content of the phonon scattering from dynamic
mass fluctuations we discuss the phonon-vacancy wave
relaxation process here at some length.

The vacancy system (the aggregate of vacancy wave
excitations) has energy (Eq. D10)

Ey=(¢o+31ksT)ny,

where #ny=Nxy=N exp (—B¢); the phonon system
(the aggregate of phonon excitations) has energy

(3.21)

qt+r,wigrk)
q, w(q)
k-x,€,(k-x)
——X T
g, (g 9, w(g) ke, ()
(a) (b)

F16. 10. Vacancy wave-phonon interaction. If a vacancy is
static, it appears to a phonon as a scattering center. The phonon
scatters from the vacancy with a change in momentum but no
change is energy (a). If a vacancy is dynamic, it appears to the
photon as a moving scattering center, a vacancy wave. The
photon scatters from the vacancy wave with a change in energy
and momentum (b). In this latter process, energy is transferred
between the phonons and the vacancy waves.

541

,ev(r)l /'Bp Bv(f)'vBP(l—exp-f/Tvp)
Bv(o)\
G -

t

Fie. 11. Definition of Tj. The time which describes the
relaxation of the l-system to the 2-system is called T, e.g.
vacancy wave-photon coupling, Typ. This time is defined as
characterizing the behavior of the temperature of the l-system
in the limit that the temperature of the 1-system is asymptotically
approaching that of the 2-system due to the coupling 3¢;» between
the systems. As their process occurs the 1-system is completely
isolated except for its link to the 2-system, and the 2-system
is tightly coupled to a reservoir. Even though the 2-system
receives energy from the 1-system, the 2-system does not change
temperature.

(Eq. D18)
Ep=(NAp/V)ksT(T/0)*=NBp™/V, (3.22)

where Ap=23(m)*/5, and Bp=Ap/(kpfp)?. The vacancy
wave system and phonon system are assumed to come to
equilibrium among themselves on a short time scale.
Thus each system is characterized by its own tempera-
ture; we write

Ey=N(¢o+%ksTv) exp (—Bro) (3.23)

and
Ep=(N/V)BpBr, (3.24)

where (k];ﬂv)—l=Tv, (k];ﬁp)—1=Tp, and 7Ty and Tp
are the respective temperatures of the vacancy wave
system and the phonon system. The fundamental
relaxation time which governs the coupling of the
vacancy waves and the phonons is Tvp defined by the
set of equations:

((iEv/dt) vazkv((iﬁv/dl) IVP (325)

and
(dBv/dt) lvp=— (Tvr) ™ (Bv—Br),

where ky= (d/dByv) Ey(Bv) is the energy constant for
the vacancy system. By (dEy/dt) l[vp, we mean the
rate of change of Ey due to 3Cyp. We regard these
defining equations as meaningful only for 8y=gp, i.e.,
asymptotically as the hotter vacancy system approaches
the phonon system or vice versa. Thus 7y, is under-
stood to be the rate at which the inverse temperature
of the vacancy system decays when (a) the vacancy
system is infinitesmally hotter than the phonon
system, (b) the coupling of the two systems is by
JCyp, and (c) the phonon system remains throughout
strongly coupled to a reservoir which maintains its
temperature at 8p. See Fig. 11.

The intrinsic rate for coupling energy from the
vacancy system to the phonon system is given by Eq.

(3.26)
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(Ad.4)

Tvp™?

40022 (éﬂ)z fior (3, 3)2 (Z

6
T 90) , (3.27)

™ ms3

where in this case Am= —mj;, 0p is the Debye tempera-
ture which characterizes the phonon spectrum; wy (3, 3)
is the frequency which characterizes the vacancy
tunneling motion, (=%wy(3,3). We may understand
the general features of Eq. (3.27) by outlining a
variation of the calculation detailed in Appendix A.6.

(a) The phonons see the vacancy waves through
the perturbation 3Cyp which we regard as a noise
source. We write

Ieyp="Fy (1) = X 3[me() —msJar?,  (3.28)

where mg(¢) is a time-dependent number.
(b) The rate of change of the energy of the phonons
due to their coupling to this noise source is given by

dEp/dt= 3 [hwn(q)—Hhar(g")IW (A, N'¢'), (3.29)

Ag, Mg/

where W(A\g, N'¢’) is the rate at which phonons of
wavevector q are scattered to wavevector q’ by Fy(¢).
In second-order perturbation theory, we have

W(xg, N'q')

1

t t
==t [ [ b () a2,
0 0

(3.30)

where £(2) 4 is the g¢¢' component of Fy(tf) and n,
is the phonon occupation number. The bracket in this
equation means that %(#)%(¢) is averaged over an
ensemble of noise sources.

(c¢) From Eq. (3.28) for Fy(f) and the definition
of ug from Eq. (A6.4), we have

Fy(t)= q%‘w R(Drane
= qg}:’w (h/4msN) Lo (g)wn (¢7) ]V
Xex(q) -en (q) [nq(ng+1) 1%y (1) o,  (3.31)
where
fr()ew= ZRifv(R, t) exp [i(q—q')-R], (3.32)
and
fr(R, t) =mg(t) —ms. (3.33)
Thus we may write Eq. (3.30) in the form
W(ng, N¢') =[(4msN)* T eor(g) v (¢)
X[ex(g) -ex(q") Prg(nd+1) gr(weg) aar, (3.34)

where

gv(@ae) ag’

=2 dtAmg(0) oo Atmz: (t) o €xp (iwget), (3.35)
RR! Y9
and wgy =w(g) —w(¢).
(d) We make several plausible assumptions which
simplify gy (wgq') q- These are

1. Amg(0) and Amg (¢) are uncorrelated for R=R’.

2. Amg(t) =Amgp(0)a(?).

3. (AmR (O) Amp (O) >Av= Amg (O) 2kBT(ﬂV—‘18P) .

Using 1-3 and Eqs. (3.34) and (3.35), we obtain Eq.
(3.29) in the form

dEp/dt=[1/(4N)*] X [hen(q) —hwr(g)]

aa’ NN
Xan(@)an (¢') A (wgq) ng(ng+1)ThpT (By—Bp),
(3.36)
where
T'= % (| Amz(0) |2/ma?) (3.37)
and '

Aw) = / " d1a(0)a(t) exp (iwl).  (3.38)
0

(e) We assume a(t) has a simple time dependence,
e.g.,
a(t)=a(0) exp — (zt/7)?, a(0)=1, (3.39)

where 7 '=wy (3, 3). We replace the ¢ sums in Eq.
(3.36) by integrals. Then, upon ignoring the A de-
pendence of wi(¢) and using the acoustic approxi-
mation, 7w (¢q) = ficg, we find

O ® 6 ®
dEp/dt=12002*(hr")71(T/0p)TksT (Br—Bv), (3.40)
where kgfp=TFicgp.

The various factors in this result are:

@ the typical energy available in the vacancy
system to be transferred to the phonons;

(2 the rate at which this energy is transferred;

(® a measure of the phase space available for the
2-phonon process;

(® the strength of the noise source.

Although the calculation we have outlined here is
rather complicated in its details the result is a simple
dependence on the basic quantities which enter the
problem.

The fundamental time which measures the rate of
transfer of energy from the vacancy waves to the
phonons is defined in terms of the rate of change of the
inverse temperature of the vacancy system as in Eqs.
(3.25) and (3.26). Thus, using the definition of Typ™*
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F1c. 12. Ty vs T71. There are three A

qualitatively different mechanisms which
determine 73 in Regions I, II, and
IIT of a Ty vs 7! plot. In Region I, T}
is determined by the direct coupling of the
Zeeman energy to a particle motion Ty
excitation, e.g., the vacancy waves,
I-A, the tunneling excitations, I-B, etc.
In Region II, T} is determined by the
coupling between excitations in the
system, e.g.,, tunneling-vacancy. In
Region III, T) is determined by the
spatial diffusion of the excitations.

[ m
| P Pure 3He

3He-*He Mixture

and Eq. (3.40), we have
(dEv/dt) |vp=Fky(dBv/dt) |vp
=kyTvp™(Bv—Bp) = — (dEp/dt) |vr

or
Typ'=— (dEp/dt) |vp[kv(By—Br) T
and finally
Typt=— (12002/kv) (h/7)77(T/0p)*ksTT  (3.41)

as quoted in Eq. (3.27). Once again this is a deceptively
simple result.

Tunneling-Vacancy Interactions. The tunneling ex-
citations are strongly coupled to the vacancy wave
excitations because they see the vacancy waves as
dynamic spin fluctuations. If a vacancy were static a
tunneling excitation would see it through the static
perturbation

J(RR")Aa(RR’,0)og 0GR

and be scattered without change in energy. But the
tunneling excitations see the vacancy waves through :
Kry= Z ](RR’) Aa(RR', l)O'R'O'RI, (343)
RR!
where Aa(RR’, t) =a(RR', t) — («(RR’) Y and «(RR’, )
is zero unless there is a *He particle at R and R’.

The rate of change of the energy of the tunneling
excitations through coupling to the vacancies by
JCry has been calculated by Garwin and Landesman
(Garwin, 1964b) and Richards (1965). The treatment
of this problem in Appendix A leads to a decay of the
energy in the tunneling system at the rate

(TTV)_1= Z(Z— l)wa(V, 3)xv,

(3.42)

(3.44)

where xy is the concentration of vacancies at the lattice
temperature, z is the number of near neighbors, and
w3(V, 3) is the rate at which a ®He particle will tunnel
into a vacancy site. This relaxation rate is worked out
in detail in Appendix A.3. For our discussion here we
want the result of that calculation, Eq. (3.44), and a
physical idea of its meaning. In Appendix A.3 we show
that the rate at which the tunneling system loses energy
is given by the rate at which the motion of a He
vacancy pair is uncorrelated. See Eq. (A3.8) and the
accompanying discussion. This rate is given by the
product of the probability that a 3He vacancy pair
occurs and the frequency with which the vacancy
component of the pair tunnels. The first factor is
xy*(z—1) and the second is w3(V, 3) 8

The Tunneling—Phonon Interaction. There is no
evidence in any experiment on He to date that a
tunneling-phonon interaction occurs at an observable
rate. A phenomenological theory of the tunneling—
phonon interaction has been developed by Nosanow
and Varma (1968). See also McMahan and Nosanow
(1970).

4. RELAXATION IN PURE *He EXPERIMENTAL

4.1 T; Relaxation, Theory

There are three kinds of excitations in solid *He which
are responsible for the results observed in NMR
experiments. These excitations and their coupling to
one another are described above. In this section we
discuss the interpretation of NMR experiments on pure

8 The treatment of this problem by P. M. Richards (1965)

gets the correct answer. That treatment is incorrect in its details;
the important pairs are 3-V pairs (Zane, 1970). See Appendix
A3.
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F1c. 13. Relaxation mechanisms vs temperature and pressure.
On a phase diagram, we show the boundaries between the various
relaxation regions for wy—0. The boundary between Region I-A
and Region I-B is found by equating Eq. (A7.11) and Eq.
(A7.18). The boundary between Region I-B and Region II-A
is found by equating Eq. (A7.18) and Eq. (A7.20). The boundary
between Region II-A and II-B is found by equating Eq. (A7.20)
and Eq. (A7.36). We do not show the boundary to Region III
since it is size dependent.

SHe in terms of these excitations, and the extensive
experimental explorations that have been conducted on
the 3He system. We discuss 743, 7%, and diffusion
experiments.

The result of a typical 7 experiment on pure He is
as shown in Fig. 12. The data is ordered into three
regions designated by I, IT, and III by the temperature.
In Region I, the high-temperature region, the energy in
the Zeeman system is transferred to one of the particle
motion excitation systems inhabiting the solid. The
excitation system in turn is tightly coupled to the
reservoir and the experiment gives evidence about the
nature of the excitation system. In Region II, the
intermediate-temperature region, the excitation system
which takes the energy from the Zeeman system is not
tightly coupled to the reservoir, and the experiment
gives evidence about the coupling between the excitation
systems in the solid. In Region III, the low-temperature
region, the energy taken from the Zeeman system by
the excitation system in the solid is delivered to the
reservoir by spatial motion of the excitations, e.g., by
diffusion. Regions I and II are characterized by energy
flow in time among the excitation systems in the solid,
e.g., from the Zeeman system to the tunneling system to
the vacancy wave system, etc. Region III is char-

acterized by energy flow in space, e.g., from the Zeeman
system to the tunneling system where it diffuses
across the sample.

We show in Fig. 13 a P-T phase diagram on which
we map the temperature and pressure corresponding to
Regions I, IT, and III. In Table I we have listed the 7}
experiments that have been done on pure *He. The
various regions on the 7% vs 77 plot are further sub-
divided to indicate that changes in the details of the
relaxation process in each region occur although the
qualitative features remain the same, e.g., Regions
I-A and I-B on Fig. 12. On Fig. 13 we have also indi-
cated this further subdivision.

Region I. Energy is dumped into the Zeeman system
by the rf field. This energy is transferred to one of the
particle motion excitations through the agency of the
dipolar field as explained in Sec. 3. In Region I-A the
vacancy waves are the important particle motion
excitations which cause fluctuations in the dipolar
field.® As the temperature is lowered, the vacancy
concentration goes toward zero as

xy(B) = exp (—B¢),

and the attendant motions of the magnetic moments
disappear leaving only the motions due to the tunneling
excitations to cause fluctuations in the dipolar field,
Region I-B (Garwin, 1966; Hartmann, 1964).

Region I-A. The energy dumped into the Zeeman
system by the rf field is delivered to the vacancy wave
excitations. In Fig. 14 we show the topology of the
energy flow process. The relaxation time which char-
acterizes this process is derived in Appendix A.1 and
will be discussed in some detail below. Throughout
Region I-A (and Region I-B) the vacancy waves are
tightly coupled to the reservoir through the vacancy
wave-phonon coupling discussed above.

From Eq. (A1.20) the 73 for relaxation of energy

Z— VP

F16. 14. Topology Z-V P.

9In Region I-A, the energy in the Zeeman system is trans-
ferred to the vacancy waves through the agency of the dipolar
field. For this to be a correct physical picture we must have the
vacancy wave dressed by spin fluctuation excitations (magnons
at low temperature), i.e., the vacancy wave is not a bare particle.
The Zeeman system is coupled through the dipolar field to the
spin fluctuations in the wake of the vacancy.
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TaBLE I. Summary of NMR relaxation experiments.

Reference

Summary of Experiment

Goodkind and Fairbank (1959, 1960)

Reich (1963)

Garwin and Landesman (1964)

Beal, Giffard, Hatton, Richards, and Richards
(1964) ; and Richards, Hatton, and Giffard
(1965)

Richardson, Hunt and Meyer (1965); and
Richardson, Landesman, Hunt, and Meyer
(1966)

Thompson, Hunt, and Meyer (1967)

Hunt and Thompson (1968)
Senghaphan and Zimmerman (1968)

Garwin and Reich (1964)

Giffard and Hatton (1967) ; Giffard (1968) ; and
Giffard, Hatton and Truscott (1971)

Hunt, Richardson, Thompson, Guyer, and
Meyer (1967)

Bernier and Landesman (1969) ; Bernier (1970) ;
and Landesman and Bernier (1970)

Yu and Reich (1969)

Miyoshi, Cotts, Greenberg, and Richardson
(1970)

Pure *He

Measurement of 77 and 7, at V=20 cm?®/mole at temperatures above 1 K.
(Region IA). Observed minimum in 73 and showed temperature dependence
of vacancy concentration.

Measurement of 7, 7%, and D in the volume range 18.4<V <22.5 cm3/mole
down to 0.5 K (Regions IA, IB, and ITA). Observed “plateau’ in 7 and de-
coupling of the tunneling bath from the lattice in Region ITA.

Measurement of 73 and T for volumes 16.5<V <19.3 cm3/mole. Described the
physics involved in the relaxation processes in the various regions (IA, IB, and
ITA) in terms of the three-bath model.

Investigated 7% for volumes 18.5< ¥ <24.0 cm?/mole down to 0.1 K (Regions
TA, IB, ITA, IIB, III). Systematic measurements of frequency dependence of
T in regions IB, ITA, and IIB. Measurements of the heat capacity of the
tunneling bath.

T1 and T, measurements for 19.5<¥V <24.5 cm /mole down to 0.35 K (Regions
TA, IB, ITA, and IIB). Study of frequency dependence of 73 and T in Region
IB. Measurement of 10/3 effect in 7%, and discussion of spectral function for
relaxation.

Measurement of diffusion coefficient D, at low temperatures, down to 0.05 K.
Correlation of D, with J for volumes in the range 20<V <24 cm?/mole.

Measurement of energy diffusion rate Dy in “hole burning” experiment.

Measurements of 7% in Regions IA and IT for volumes 20<V <24 cm®/mole.
Studies of phonon interaction with relaxation rates.

Dilute mixtures of ‘He in He

Measured anomalously long 73 in Region II for specimen at 19 cm?/mole with
x4=0.01. Measured large heat capacity of “tunneling reservoir.”

Studies of T on Regions IT and ITI. Observed the concentration dependence of
Ty at V=20 cm3/mole with various concentration of 4He in the range 5X1077<
24 <3X107% In low-temperature measurements, Region III, observed the
diffusion limited ““plateau’ and the increase of 7, with temperature below
0.1K.

Studies of 7% in Region IIT for 20< ¥ <23 cm®/mole. Observed specimen size
limitation for 7} in Region IIT, the diffusion limited ““plateau,” (x4=2X107*).

Measurements of 71 in Region II, and T in Region I for ¥ =20, 21 cm3/mole and
1074 <x, <1072 Interpretation of the concentration dependence of 73 and heat
capacity in terms of mass fluctuation wave excitations.

Measurements of frequency and concentration dependence of 7} in Region IT for
18.3<¥V <20.8 cm?®/mole and with 5X 1076 <xy<1.5X 1073,

Nondilute mixtures of He in ‘He

Measurements of frequency and concentration dependence of 73, T3, and D in
Region I for 19<V <21 cm?®/mole and for *He concentrations in the range
0.02<x3<1.0.

from the Zeeman system to the vacancy wave system is

T17 zv=(Tzv) 7' =3(Ms/w0)g(n),

where

g(n) = g(wory)

= {worv/C1+ (eorme) 2T} {ere/[14-4 ()T},

Ty = xvzwg( V, 3) s

and w3(V, 3) is the frequency for tunneling of a 3He

particle into a neighboring vacancy site; ws(V,3) is
calculated at the end of Appendix A.1 and discussed in
some detail below. Here also wy=+vH, is the Larmor
frequency, and M, is the Van Vleck second moment;
see Appendices A.1 and B.1. We may understand the
physical content of this result upon looking at the
wory<<K1 limit. In this limit the “looking” frequency of a
spin, wo, i1s much less than the frequency which char-
acterizes the fluctuations in its local field. For Eq. (4.1)
we have

(4.1)

(4.2)
(4.3)

T i= ( 10/3) MQTV/Q//wdzTV, (4—4)
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\
P

Frc. 15. Time evolution of ¢(¢). At
t=0, i.e., after a 90° pulse, a classical
spin lies in the x, v plane. At the site of
the spin, the fluctuating local field,
Hi(wo) 1, causes the spin to random
walk back toward the z axis. The angle
¢ also random walks and might evolve
in time as shown in (b).

¢ W

T

(a) (b)

where waop?s/ (7A3%) is the frequency of precession of a
spin in the dipolar field of z near neighbors at distance
A. A spin at R sees a local field of average strength Hg
fluctuating between +H; and —H, at frequency
7y L If precessing at frequency wo in the horizontal
plane (the rf field has just been turned off) the spins
orientation with respect to the z axis as measured by ¢
will random walk, in response to the fluctuating
transverse local field, a distance A¢=1 in a time
given by

T~ (Ap/wary) *rv[(Ad) 2/ witry ]. (4.5)

Here the typical step the spin takes is of length wary;
n=A¢/(wary) steps are required to walk directly the
distance A¢, #n? step are required to random walk A¢,
7v is the time per step. See Fig. 15. For A¢=1, the spin
has effectively recovered to its original orientation
along the external field and Eq. (4.5) agrees with Eq.
(4.4). In the limit we>>7y~Y, the physical argument is
the same as above but now the “looking” frequency of a
spin is much faster than the frequency with which the
local field is fluctuating. Then, the amplitude of the
local field at frequency wo enters Eq. (4.5) in place
of the low-frequency local field wq; i.e., we replace wq
by wi(wo) =wa(wry)™ in Eq. (4.5). Then, the spin
random walks a distance A¢=1 taking steps of duration
TV and Iength wd(wo) TV, i.e.,

TR A¢/wa(wo) v Prv= (Ad*/was?) (rv/wd?) .

Equations (4.1) and (4.2) are the analytic expression
of this physics.

Now let us consider the behavior of T as the tempera-
ture is lowered. We choose a particular Larmor fre-
quency with which to look at the system. See Fig.
16a. The frequency which characterizes the particle
motion which cause the fluctuations in the local field
becomes smaller and smaller as the temperature is
lowered

v 1=2w3(V, 3)xy=2ws(V, 3) exp (—B¢).

At high temperature, wiry<<1, the spin relaxes in time
T ~Rwdry

which becomes shorter as the temperature is lowered,
and is independent of the Larmor frequency. At the
resonance temperature, wory21, the spin looks at
precisely the frequency of the fluctuations of the local
field, and the local field fluctuations are most effective
in turning the spin up; 77 is as short as it can be. At
low temperatures, wory>>1, the spin looks for what is a
fast component of the local field,

T 'Rws? (woa’l'y) -1

T1 becomes longer as the temperature is lowered, and
7v becomes longer. At fixed temperature 73 becomes
longer as the frequency is raised, and the spin goes
further out of synchronism with the fluctuation in the
local field. See Fig. 16a, b.

Region I-B. The energy dumped into the Zeeman
system by the rf field is delivered to the tunneling
excitations. In Fig. 17, we show the topology of the
energy flow process. The onset of Region B occurs as
the temperature is lowered and the particle motion due
to vacancy waves is frozen out; i.e. at point B on Fig.
16(a). In the limit of low Larmor frequency, we would
estimate C to be at ayw;(V, 3)=J or

xv(Tc) =]/w3(V, 3)

From the results at the end of this section at 20.0
cm3/mole, we have /0.4 X 10° Hz, and w3(V, 3)10Y,
for ¢ in 2y (B) equal to 14.5 K we have xy (8) =J /w3(V, 3)
at 7~1.5 K. The transition from Region I-A to Region
I-B isat 7'=1.5 K for v=20.0 cm?®/mole.

From Eq. (A2.17), we find the rate for relaxation of
energy from the Zeeman system to the tunneling
excitations is

T17 |zr=J1(wo/wr) +471(2wo/wr), (4.7)
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where
J1(wo/wr) =[G (M2/3wr) ' exp (—wi?/2wr?)
(Gaussian), (4.8)
J1(wo/wr) = (wM2/6wr) exp — (wo/wr) (Lorentzian),
(4.9)

and wr is proportional to J, wp=>5J; the magnitude of
b depends on the choice of a Gaussian or a Lorentzian
correlation function. See the discussion in Appendices
A.2 for further details leading to J(wo/wr). The de-
pendence of Ty and b on the correlation function is taken
up below. The function J1(wo/wr) has the same qualita-

Vacancy Tunneling, wy(V,3)

(a)

Frequency
B Tunneling, wy
___________ 2
C
W
T
(b)
B 1
/"Synchromsm
A
T
2
B

—1
T

F16. 16. Frequencies. The qualitative behavior of T} vs 71!
is determined by the comparison of the “looking” frequency,
wo, and the frequencies that characterize ;. In (a) we show
w3(V, 3) and wr, the frequencies which characterize H;, as a
function of 771 At T71>Tp !, wy(V, 3)>wr, and the dipolar
field is characterized by w =~w;3(V, 3). At T1< T, ws(V, 3) Kwr,
and the dipolar field is characterized by w ~w7. For the two choices
of the Larmor frequency, 1 and 2, indicated by dashed lines,
there are two different kinds of behavior for T3 vs 7! as shown
in (b). For dashed line 1, wo=w3(V, 3) at T4%, and we>wr
everywhere. The spin sees the dipolar field in synchronism with
itself at 7'471; hence, the minimum value of 7 occurs at 7471
For dashed line 2, it is not possible to satisfy the synchronism
condition, wo=w;(V, 3).

Z-Tvp

Fic. 17. Topology Z-TVP.

tive dependence upon wo/wr as the function g(wery)
above. When the looking frequency is slow compared
to J, wo/wr—0 we have the shortest 77,

T{_l% (wdz/wT)

in analogy with Eq. (4.5). When the looking frequency
is fast compared to J, wy/wr—+ =, the wy Fourier com-
ponent of the fluctuating local field goes to zero as

wa(wo) =wq exp [— % (wo/wr) ]

and we get a very long 77,
T~ wq(wo) 2/(07‘/%' (wa/wr) €xp ['_ 5 (WO/"-’T) 2]'

In this region, the fundamental microscopic time, J,
and hence wr, is temperature independent, but very
volume dependent. For a sample prepared at a particu-
lar molar volume, wr is fixed, and wo/wr is varied by
changing H,. At fixed Hy or wo, samples prepared at
differing molar volumes yield a variation in wr (e.g.,
a factor of 50 over the bce phase) which permit one to
explore a wide range of wo/wr.

The frequency dependence of 73 in Region I-A
differs from that in Region I-B because of the time
dependence of the correlations in the dipolar field
brought about by the two kinds of particle motion
excitations.

4.2 T, Experiments, Results

There have been measurements of 73 in pure *He in
Region I by many experimenters. The accumulated
body of the work extends over a wide range of: (a)
molar volume, 16 cm3/mole to 24.5 cm3/mole; (b) tem-
perature, 0.003K <T'<T}y, and (c) Larmor frequency,
with parameter wy/wr being varied from 1072 to 30.

Before characterizing these results, we must give a
qualification statement for the expression pure *He.
Most of the experiments were performed prior to the
knowledge that traces of “‘He could play a major role in
some of the relaxation processes. Thus most of the
experiments to be discussed were performed with gas
samples containing unknown amounts of ‘He impurity
at the level of about 100 ppm, the best gas then avail-
able from the supplier (Monsanto Corporation,
Moundsville, Ohio). Subsequent work revealed that the
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Ty behavior at lower temperatures, in Regions II and
III on Fig. 12, is profoundly affected by the quantity of
isotopic impurity. However, the properties of solid *He
which depend upon the vacancy waves and the tunneling
excitations do not seem to be seriously affected by
traces of isotopic impurity of less than approximately
0.59%,. We shall therefore discuss the quantitative results
of Ty experiments in Region I, and the 7% and spin
diffusion coefficient measurements at all temperatures
as being properties of pure SHe even though the actual
experiments used somewhat contaminated gas samples.
A discussion of T in Regions IT and III will be deferred
to Sec. 6 and 7 where we discuss systems with isotopic
impurities.

In all of the relaxation experiments, the samples
were formed at ‘“‘constant volume” using the “blocked
capillary technique” in which a plug forms in the
filling capillary when the liquid under pressure is cooled
to the freezing point on the melting curve. It is then
usually assumed that the plug stays fixed as the experi-
mental sample chamber is cooled through the melting
point to fill the chamber with solid. In the solidification
process, the pressure in the chamber typically drops by
109%,, and it is common for the plug to slip as the solid
is being formed. This introduces an error in the volume
determination of order 0.1 c¢cm?®/mole which depends
upon the relative volume of the sample cell and the fill
capillary. In some recent work, a strain gauge measure-
ment of the pressure in the sample chamber was used to
determine the molar volume of the experimental sample.
The standard PVT data used for molar volume deter-
mination is that given by Mills, Grilly, and Sydoriak
(1961), and by Grilly and Mills (1959). An accurate
determination of the bcec-hep phase boundary has been
made by Straty and Adams (1966).

Finally, before discussing the results we comment on
the quality of the crystals that are formed in a typical
experiment. Because of the simplifications that result
in the theoretical analysis, the most desirable form of
solid in the NMR experiments is a powder of crystallites
so that anisotropy associated with crystal orientation
relative to the field H, is averaged out (e.g. Abragam,
1961). In practice, this circumstance is not always
achieved. Workers who are interested in the formation
of single crystals for transport measurements of solid
helium have found it rather easy to form single crystals
(Ackerman and Guyer, 1968; Mueller, 1970). Varia-
tions in 74 in Region I-B of about 109, due to anisotropy
for solids formed even by rapid cooling from liquid to
solid have been observed (Giffard, Hatton, and
Truscott 1971).

The earliest measurements of 77 in solid He were by
Goodkind and Fairbank (1959, 1960) who identified
the liquidlike behavior of Region I-A as being due to
vacancies. Their work was extended to lower tempera-
tures by Reich (1963) who observed the plateau in
Region I-B due to tunneling. Figure 18 shows the

measurements of Reich over the temperature range
0.5<7T71<3 for various molar volumes of the solid at
a constant Larmor frequency of 5.24 MHz. We note
that in Region I-A, where the relaxation rate is char-
acterized by vacancy motion, the relaxation time first
decreases with temperature as 7y decreases as expected
from Eq. (4.4), then passes through a minimum at
wiry21, and finally increases as 7y™! with further
decrease in temperature. As the volume is increased,
the temperature at which the minimum occurs de-
creases, reflecting the fact that the vacancy excitation
temperature decreases with increasing molar volume.
We note also that in the high-temperature region, I-A,
the magnitude of 73 shows only a mild decrease with
increasing volume since the frequency of the vacancy
motion, w3(V, 3) is apparently not a strong function of
the volume. Further discussion of the quantitative
determination of ¢ and w3;(V, 3) will be delayed until
after the discussion of the 7% and diffusion experiments.

At temperatures below that of the minimum of 73,
where wory>>1, we enter the region described by Eq.
(4.6) and, provided that the Larmor frequency is
sufficiently large, the relaxation time increases as the
temperature is lowered until there are so few vacancies
present in the system that the tunneling motion becomes
relatively more important. The frequency dependence
of 71 throughout Region I has been investigated by
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F16. 18. Ty vs T ! for various molar volumes. The figure shows
the T data of Reich (1963) for various molar volumes measured
at a fixed precession frequency of 5.24 MHz. Curve E for V=
20.12 cm®/mole displays all of the characteristics seen for T}
in Regions I and II. The minimum at 7'~0.6K™! occurs when
the vacancy tunneling frequency w;(V, 3) is near the precession
frequency; at lower temperatures the recovery is determined by
the ®He tunneling rate. The minima for curves H, J, K, and L
would occur at higher temperatures than that at which the
measurements were made. For curves 4, B, C, and D there is
no minimum in 7 because the precession frequency is less than
the effective frequency of the 3He tunneling wz; the *He tunneling
dominates the process when the temperature is low enough that
XVws(V, 3) <wrp. [After Reich (1963) ].



Richards, Hatton, and Griffard (1965), and by
Richardson, Hunt, and Meyer (1965). The data of
Richardson, Hunt and Meyer at various Zeeman
frequencies for the volume 20.4 cm3/mole are shown in
Fig. 19. In this figure we see that as the Zeeman fre-
quency is raised from 1.05 MHz to 6.80 MHz, the
behavior of Ty for values of 7! between 0.5 and 0.9
changes dramatically. It is in this temperature range,
I-A, that 7y is of the order 1077 sec so that the frequency
dependence of 7'y begins to be observable. The minimum
in T does not even appear if the Zeeman frequency is
less than the tunneling rate, wo<wr, because point C
in Fig. 16(a) occurs at a higher temperature than that
expected for the minimum, point B, the point at
which wpry™.

At lower temperatures, we enter Region I-B, the
“plateau” region in 7. The magnitude of 7Ty in the
plateau is expected to vary with frequency as given by
Eq. (4.8). It is through studies of the frequency
variation of T3 in Region I-B that we acquire detailed
information about the spectral function J(wo/wr).
Figure 20 shows the Ty data of Richardson, Hunt, and
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Meyer for many different molar volumes in the bcc
phase plotted in a reduced form T3(0)/Ti(ws) versus
(wo/J)2. If we assume that all of the volume dependence
of T is contained in T1(wo=0) and in wy(V), then the
plot is essentially the function Ji(wy/wr) vs (wo/wr)2.
From Eq. (4.8) we see that the points on such a plot
are given by

Tl(O)/Tl(wo) =](wo/wT) +4](2w0/wT) .

The solid lines represent the calculated values of 7}
assuming either of two simple analytical forms for the
correlation function that governs the time evolution of
the dipolar field due to tunneling motion, the Gaussian
function, J(n) = exp —7%/2, and the Lorentzian func-
tion, J(n) = exp (—n), (see Appendix A for a detailed
discussion of this point). It appears that in the bcc
phase the function exp [— (wo/wr) ] obtained from the
Lorentzian approximation produces a better fit to the
observed data than a Gaussian approximation. Figure
20b shows a similar plot for the data in the hcp phase.
It can be seen that in the hcp phase the function
exp [ — (wo*/2w?) ] obtained from the Gaussian approxi-
mation produces a better fit to the observed data than
the Lorentzian approximation. The actual correlation
function for either phase is probably not exactly a
pure Gaussian or a pure Lorentzian. The question of
the functional form of J;(wo/wr) must be understood if
one is to reliably use only the relaxation data to cal-
culate the tunneling frequency J. The use of experi-
mental evidence to straighten out this question is
further complicated by uncertainty as to the validity of
the powder hypothesis for experimental samples (single
crystals produce anisotropic values of Tzr which vary
by at least 109,) and by the presence of 200 ppm “He

T-'(K™

F16. 19. Ty vs T7' at various precession frequencies. The
figure displays the frequency effects on 73 at ¥V'=20.4 cm3/mole
measured by Richardson, Hunt, and Meyer (1965). At high tem-
peratures 771<0.6 K, the relaxation rate is independent of
frequency and is governed by the vacancy tunneling motion.
The curves for 6.8 MHz and 4.82 MHz display a minimum at
wery = 1. For this specimen wy/2r =3 MHz so that in the measure-
ments with wo/27r=2.00 MHz and 1.05 MHz, there is no mini-
mum in 7. The plateau values of 7T in Region IB (1< 771<1.4)
at various frequencies are used in the determination of the
spectral function, J(w,), for the Zeeman-tunneling relaxation
process [after Richardson, Hunt, and Meyer (1965).]

impurities in most of the experimental samples. The

“effects of “He motion upon relaxation will be discussed

in the following sections of the paper. The crucial
observation from studies of dilute *He—*He mixtures is
that the motion of ‘He impurities could lead to anoma-
lously short values of T in the limit (wo/wr)<<1. To
resolve these questions further experiments with very
pure *He single crystals should be performed. Further
theoretical progress is possible by calculating the sixth
moment of the line shape and by including the effects
of zero-point motion in the evaluation of the moments
(Harris, 1971).

4.3 T, Relaxation, Theory

The result of a typical 7% experiment on pure *He is
as shown in Fig. 21. The data are ordered into two
regions, I-A and I-B, by the temperature. Since the
process by which equilibrium is established among the
spins involves energy transfer within the Zeeman
system only, T> has a much less bizarre temperature
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F16. 21. Ty vs T The figure shows a “typical” shape of the
data curves for T3 vs 7! for V=204 cm? with a Larmor fre-
quency of 0.53 MHz. The magnitude of 7% is greatest near the
melting curve, and decreases rapidly with the decrease in the
vacancy population. When the characteristic vacancy tunneling
frequency becomes less than the *He tunneling frequency
the *He tunneling motion dominates the spin equilibrium process.
The dashed line indicates the expected rigid lattice limit for T
in the absence of *He tunneling motion for which there is no
motional narrowing of the resonance line so that Te~yH aipoto™~
Ms712, where M, is the Van Vleck second moment of the line.

dependence than 7. In Region I-A we have equilibrium
among the spins established by the motion of the
vacancy waves; in Region I-B equilibrium is established
by the tunneling motions. In Table I we have listed the
T, experiments that have been done on pure *He along
with the parameters which describe the experiment.
Region I-A. The irreversible motion of the spins in
the transverse plane occurs because of fluctuations in
the local field due to the motion of vacancy waves
through the field particles. The rate at which this
irreversible motion takes place is given by Eq. (B1.12),

Tyt =3(Ms/w) {$n+350n/ (147%) J+[n/ (1449 ]},
(4.10)

where n=wory, M, is the Van Vleck second moment, and
wy, 7v ! etc., are discussed below Eq. (4.3) and in
Appendix A. The physical content of this result is much
the same as that of Eq. (4.1) for 7% in Region I-A.
The irreversible motion of the spins in the transverse
plane is caused by the fluctuations in the local field.
The spins which are precessing about the z axis at
frequency wp will change motion in the transverse plane
by coupling to Hi(w) L as well as to Hy(w=0),. For
the purposes of causing a spin flip, only Ha(wo) + will
work. For causing spin motion in the transverse plane,
both Hg(wo) + and Hy(0), work. The first term in Eq.
(4.10) comes from the z component of the dipolar field

H;(0), which causes irreversible transverse motion
independent of the “looking” frequency. The second
and third terms in Eq. (4.10) are the contribution to
T2t of Ha(wo) 1; they are essentially the same as the
contribution of this field to 777%; c.f. Eq. (4.2).

We may understand the qualitative dependence of
T2 on wg, wy, and 7y by arguments similar to those
below Eq. (4.3). In the limit we—0, the spin sees the
zero frequency component of Hy(we—0) as well as
Hy(0),. Both fields contribute to the irreversible
transverse motion and

I/Tg (w0—>0) IZVN ( 10/3) MgTVN(10/3> wfry. (4 11)

The spin random walks in the transverse plane in
response to Hg(wo) + and Hg(0),. The argument below
Eq. (4.5) applies. In the limit wy—--, the spin sees
the wy Fourier component of Hy(wg) + which goes to
zero as wg(wory) ™. If the spin moved in the transverse
plane in response to Hg(wo) 1 only, then 7% would go to
- as wy— o, i.e., as the looking frequency goes out
of synchronization with the fluctuating field. But the
spin moves in the transverse plane in response to
Ha(0), as well as to Ha(wo) 1. Thus as wy—+ o T does
not go to 4o but it goes to

1/T2(w0—->00 ) =M2TV= (3/10) (1/T2(w0.,0)) (412)

the value determined by Hy(0). alone. At low fre-
quencies, 309, of T»!is due to Hy(0) ., and 709, is due
to Ha(wo) 1. As wg— 0, the transverse component goes
away because the spin can’t see Hg(wo)+ and only
H;(0), remains. The result in Eq. (4.12), 7%71(0) =
(3/10) Ty 1(+4 ), is called the ten-thirds effect. We
discuss its observation in experiments below. Finally,
we note that (1) the spin motions due to H4(0), occur
entirely in the transverse plane—they are energy
conserving and termed adiabatic, and (2) the spin
motions due to Hq(wo) L occur in the transverse plane as
well as out of the plane—they are not energy con-
serving and are termed nonadiabatic. The nonadiabatic
motions contribute to 7%.

The temperature dependence of 75 in Region I-A
is due to the temperature dependence of 7y. As the
temperature is lowered 7, becomes shorter until at
sufficiently low temperature the particle motions
leading to the fluctuating field are principally those of
the tunneling excitations.

Region I-B. At the lowest temperatures, the im-
portant particle motions are those manifested in the
tunneling excitations. In this region, 7’<1.5K at
V'=20.0 cm3/mole, T is given by Eq. (B2.1). We have,
using the Gaussian approximation,

Tyt =3 (3m) V3 ( M/ wr)
X {345 exp [—5(wo/wr) ]+ exp [ —2(wo/wr)?]},
(4.13)
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where wy is the Larmor frequency, M, is the Van Vleck
second moment, and wr is related to J as discussed
above. The physical content of this result is the same as
that above. Thus see the discussion below Egs. (4.5,
4.6,and 4.11).

We note that there is a (10/3) effect in both Region
I-A and I-B. The physics of the (10/3) effect is in-

dependent of the particle motion leading to Ha(w) -

and Hy(0) ..

The Nonadiabatic Frequency Shift

Conjugate to the (10/3) effect in the linewidth, T,
is a small shift in the center of the resonance line, the
nonadiabatic frequency shift (Kubo and Tomita,
1954). A detailed discussion of this shift is found in
Appendix B. The maximum frequency shift away from
wo occurs when the motional frequency, due to tunneling
or vacancy waves, is the same as the precession fre-
quency, wo. Then the Fourier components of the non-
adiabatic part of the dipolar interaction, Ha(wp) 1, have
a maximum coupling to the Zeeman resonance at
w=wo. Using the Gaussian approximation to the
correlation function, leads to a shift in the resonance
frequency in Region I-B that is given by

+ow= [@1( _ “’02> (‘*’_(’)]
= 3w7~ eXp 20)7'2 d) wr
2
42 [exp (— 2%) é (Z"i‘-’ﬂ . (4.14)
Wy w7t

Wo /W
o <3°—> - / " exp (3X?) dX.
0

wr

where

The maximum amplitude of éw occurs when wy=wr; for
wo=wr the magnitude of dw is approximately 1/7%. In
the high- and low-field limits we have (wo/wr)>>1 or
(wo/wr)<<1, 8w—0. (Use of the Lorentzian approxi-
mation to the correlation function leads to a frequency
shift of about the same magnitude as the Gaussian
approximation but with a slightly different frequency
dependence.)

4.4 T, Experiments, Results

Figure 22 shows the variation of 7. with inverse
temperature measured by Reich (1963) for a number of
different molar volumes in both the bcc phase and the
hcp phase. We see immediately a manifestation of the
volume dependence of the parameters which char-
acterize the particle motion excitations, ¢, ws(V, 3),
and J, and in turn determine the behavior of 7%. In
Region I-A, we note that 7% decreases rapidly as 1/T
increases. A given value of T occurs at higher tem-
peratures as the molar volume decreases. These features
are a consequence of the increase in ¢ with decreasing
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F16. 22. Data of T, vs T7! for various molar volumes. The
figure shows the data for T, obtained by Reich (1963), (V>
20.12 cm3/mole) and by Garwin and Landesman (1964) (V<
19.32 cm?®/mole). Additional measurements at larger molar
volumes have been made by Richardson, Hunt, and Meyer
(1965). The limiting low-temperature value is proportional to
the exchange frequency J which can be seen to increase rapidly
with volume. It is apparent from the high-temperature part of
the curves, governed by the vacancy motion, that the activation
energy of the vacancies decreases with volume.

molar volume. In Region I-B, 7, is temperature in-
dependent. The details of the data shown in Fig. 22
have been successfully analyzed using Eqgs. (4.10) and
(4.13) to determine the parameters, ¢, ws(V, 3), and J.
The results so obtained are in good agreement with the
values found from determination of these parameters
from 7 and diffusion measurements. Table I sum-
marizes the region in volume and temperature which
has been investigated in T experiments.

Figure 23 shows the reduced plot of [T (wo=0) /T2(wo)]
vs (wo/wr) for data in both the hcp and bec phases
(Richardson, 1965). As in the case of 7'y measurements,
it is found that the Gaussian approximation to the
correlation function yields a good fit to the data in the
hcp phase. In the bee phase, a more satisfactory fit is
found by using a Lorentzian function (Richards,
1970). The general features of the (10/3) effect can also
be readily seen; the value of 7% in the high-field limit is
about a factor of 3 greater than those in low fields. At
the larger molar volumes, the 7 values are systemati-
cally about 309, less than the T values, even though
the limit (wo/wr)<<1 is well established. In this limit,
Ty and T3 should be equal. The source of this discrepancy
is thought to be due to the spin diffusion in the in-
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TF1c. 23. (a) Reduced plot of T5™ for bee ®He. The points in the plot are the “reduced” values of 757! for the data listed by Richard-
son, Hunt, and Meyer (1965) for the bcc phase. The same basic rules as those used in the construction of Fig. 20(a) are applied here.
Values of J for each molar volume are obtained from the thermostatic measurements in bee 3He. The coefficient % in the expression
T2(0) =T1(0) =k (J/27) V* has the same value as that used in the plot for the reduced 717 |z data, k=30X 10712, The lines represent
the function

T2(0) _ [J1(0)4-5/3J1(wo) +2/3J1(2wo) ]
T2 (wo) 10/3J:(0)

with the solid line representing the values obtained using the spectral function of the Lorentzian approximation Ji(wo)/J1(0) =exp—
(wo/wr), and the dashed line representing that of the spectral function of the Gaussian approximation Ji(wo)/J (0) =exp—3 (wo/wr)?.
For the Gaussian approximation, the theoretical relation between wr and J is used, wr= (My/M1)¥*=4.76J. For the Lorentzian ap-
proximation, the relation wr=4.16J is used rather than wr=4.76J/vZ, the theoretical value, for the same reasons as those discussed
in the application of the 777! |27 data to a reduced plot [Fig. 20(a) ]. The points for each different volume are shown with a different
symbol to illustrate that, as in the case of the 717! |zr data, an adjustment of the parameter J of the points for a given volume may
be made to give better coincidence with the functional form of Ji(wo) resulting from the Lorentzian approximation than that of the
Gaussian approximation. Consistent fitting of the data to the Lorentzian relation, Eq. (4.9), produces values of J which are about a
factor of 2 larger than those measured in the thermostatic experiments. In the figure, the data points for V'=24.1 cm?/mole and V=
24.6 cm?/mole have been omitted because they are measured in the limit wo/J <1, where there is no wo dependence of 7, and because
they are systematically 409, less than 7 in the same limit and would therefore be misleading when presented in the figure. (b) Re-
duced Plot of 7> for hcp ®He. The points in the plot are a presentation of the reduced (73)! data for the hcp phase of *He taken
from the Table I in Richardson, Landesman, Hunt, and Meyer (1966). The same rules are used to plot the points here as those used,
in the construction of Figure 20(b). There being no reliable thermostatic measurements of J for pure hep *He, T2(0) is taken at 3/107%’
where T’ is the value of T measured in the high-field limit wo/J>>1. J is then calculated using the relation, J /27 = (3/10) T%'/(kV?)
where k=43.1X1072is the value derived from the Gaussian approximation. The open circles are the points listed for V=19.50 cm?®/mole
(which are incorrectly plotted in Fig. 1 of Richardson, Landesman, Hunt, and Meyer (1965), unfortunately exaggerating the fit of
the data to the exact Gaussian relation). The closed circles are the data points for V' =19.55 cm3/mole, for which 7% is obtained by
extrapolation of the theoretical relation for the Gaussian based spectral function Ji(we) through the data points. The curves labeled
Gaussian, the dashed line, and Lorentzian, the solid line, are plotted from Eq. (B1.11) using the same correspondences between wr
and J as those used in Fig. 20(b). For the Gaussian line, wr=[M,/M;]?=6.48 J, and for the Lorentzian line, wr=6.487/V2r. The
extra factor 1/ in the Lorentzian form occurs in order to make a consistent comparison between the limiting theoretical approxi-
mations and the data without recalculating the value of J. The open circles can easily be adjusted to fit the Gaussian curve by varying
J by approximately 20%. They can also be adjusted to fit the Lorentzian relation but then the value of J used to do this would give
a very large discrepancy for the 7; data of the same specimen using the Lorentz relation. We therefore conclude that for hep *He,
the Gaussian relation provides the better approximate form for the correlation function. This relation will be used in subsequent cal-
culations of the values of J for hep *He.
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homogeneous applied magnetic field since it occurs only
for Ty~T,> 100 msec and when D, is largest.

The Nonadiabatic Frequency Shift—Experimental

The shift in the center position of the resonance line
which occurs when wyxwr has been observed by Homer
and Richards (1969a). The experimental technique
involved forming a sample in the hcp phase (V'=19.3
cm?, wr/27=0.82 MHz) for which the value of wr
would produce a maximum shift in a c.w. NMR spec-
trometer tuned at 0.82 MHz. The frequency of the
maximum in the absorption signal in fixed external field
H, was measured. Then the pressure on the solid was
reduced to form a sample having a value of wr that
would produce a negligible shift, and the frequency of
the maximum in the absorption curve was measured
again and observed to shift by 11 cycles. The resulting
difference in the frequencies of the maxima was a
direct measure of the shift.

The magnitude of the shift is in good agreement with
the prediction of Eq. (4.14). The observation of the
frequency shift and the details of the 10/3 effect serve
to verify the correctness of the structure of models for
nuclear relaxation. *He forms a system in which these
effects are basically easier to measure and interpret
since the characteristic motional frequency of the
sample, wr and 7,7!, may be easily varied (through
melting) while the sample is i sifu.

4.5 Diffusion, Theory

The result of a typical magnetization diffusion
experiment on pure *He is shown in Fig. 24. As with
the T, experiment, the data is ordered by 7 into two
regions, I-A and I-B. In Region I-A, the diffusion of spin
is due to the presence of vacancy waves in the system;
in Region I-B, the vacancy waves have been frozen out
and the diffusion of spin is due to the tunneling process.
In Table I we have listed the magnetization diffusion
experiments that have been done on pure *He.

Region I-A. In Region I-A the diffusion of the spins
in the externally applied field gradient is due to the
presence of a substantial number of vacancies in the
system. The diffusion constant for ®He motion has been
derived in Appendix C and is given by

Dz(V, S)NAz(V, 3) A21V_1=A2(V, 3)A22.'w3(V, 3)061/,
(4.15)

where Az(V,3) is a constant of order 1, xy is the
vacancy concentration, ws(V, 3) is the frequency with
which a ®He atom tunnels into a vacancy, and z is the
number of near neighbors. We write this diffusion
constant in the form
D;(V,3)=Dz(V,3,x=1)ux,, (4.16)

where Dz(V, 3, 1) « A%w;(V, 3) is only mildly volume
dependent.
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F16. 24. Dz vs T, The figure shows the typical variation of
Zeeman diffusion coefficient with temperature. At high tem-
peratures the measured spin diffusion rate is dominated by the
*He atoms drifting through the wake left by the vacancies tun-
neling through the lattice. The rate is given by Dz(V, 3)=
Az(V, 3)A%w;(V, 3)xy, where Az(V, 3) is a constant of order
1, A% is the lattice parameter, z is the number of neighbors,
w3(V, 3) is the tunneling frequency of a vacancy in ®He, and
¥y is the vacancy population. At sufficiently low temperatures,
the *He tunneling dominates the observed diffusion rate, and one
obtains a temperature-indipendent diffusion rate Dz(3, 3)=
Az(3, 3)AT, where Az is a constant of order 1, and J is the
*He tunneling frequency.

Region I-B. As the temperature is lowered, the
vacancies are frozen out, and the tunneling motion of
pairs of He particles leads to their diffusion in the field
gradient. The diffusion constant for this case is derived
in Appendix C and is given by

D4 (3, 3) = A47(33) A, (4.17)

where Az(33) is a constant of order one, and J is the
tunneling frequency. The diffusion constant Dz(V, 3)
is equal to the diffusion constant Dz(33) at
zw3(V, 3)ay=J for V=20.0 cm3/mole at T=1.5K.
Note: this is the same condition and temperature as
that involved in the transition from Region I-A to
Region I-B in a T, experiment.

4.6 Diffusion Experiments, Results

Reich (1963) has measured D, for various molar
volumes in Region I-A; his results are shown in Fig. 25.
The strong temperature dependence of Dz at high
temperatures may be readily analyzed to yield the
characteristic temperature for the excitation of a
vacancy wave, ¢, and the tunneling frequency for
vacancies, w3(V, 3). The variation in D, with volume
in this region is a consequence of the changes in ¢
with volume. The results of the analysis of D, data are
summarized in the final portion of this section where
they are compared with the results obtained by other
experimental techniques.

In Region I-B, the diffusion coefficient is temperature
independent and determined by the *He tunneling fre-
quency, J. From Eq. (4.17) we expect Dz« J. In Fig.
26 the values of D obtained by Thompson, Hunt, and
Meyer (1964) are plotted against (J/2w). It is clear
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Fi16. 25. Dz vs T7! for various molar volumes. The figure
shows the data of Reich (1963) for the diffusion coefficient Dy
versus inverse temperature. The labeling of the data points cor-
responds to the varous molar volumes at which the measure-
ments were made. At high temperatures the diffusion rate is
determined by the vacancy diffusion; the straight lines may be
used to calculate the parameters ¢, the vacancy activation
energy, and w;(V, 3), the vacancy tunneling frequency. At
lower temperatures the observed diffusion rate is governed by the
*He tunneling and is temperature independent. [After Reich

(1963).]

from this plot that Dy is proportional to J. The solid line
in the figure through the data fits the relation D=
(4.4£04) X (J/2x) A% The value of the coefficient 4 in
Eq. (4.17) has been calculated by Redfield and Yu
(1968, 1969) to be 4.12, in excellent agreement with
the experiment.

The energy diffusion coefficient, Dg, which is a
measure of the rate of energy transfer through the
sample has been measured by Hunt and Thompson
(1968) in a novel pulse experiment. Their experiment
in outline is as follows:

(1) Local spin heating is achieved over a narrow
slab of a sample placed in a large magnetic field gradient
by “burning a hole”” in the inhomogeneously broadened
magnetic resonance line.

(2) The recovery of the line shape, with the hole
burned in it, to the preburning shape is achieved
through diffusion of the magnetic energy through the
specimen.

(3) The experiment is performed at 71 corre-
sponding to Region II-B, i.e., at low temperature where
the Zeeman system, tunneling excitations, and mass
fluctuation waves come to a common equilibrium.

(4) The recovery rate is measured by observing the
rate at which the ‘“hole” is broadened as in Fig. 27.

Experimentally Hunt and Thompson looked at the
time evolution of the Fourier transform of the hole by
observing the free induction decay following the
application of a small rf pulse (4°) tuned at a slightly
different precession frequency. The time evolution of
the beat pattern of the 4° pulses is measured to deter-
mine Dg. The whole experiment must be performed in

times short compared with T4, so it is done with the
specimen cooled to Region II. In this region, the
strongly coupled excitation systems diffuse together
with a single diffusion constant given by

Dy= (C2Dz4CrDy+4-CupDur) / (Cz4+Cr+Cur).
(4.18)

From analysis of the free induction decay, Dy is ob-
tained. Then using Eq. (4.8) and Dz as measured in a
conventional diffusion experiment, Dy can be found.
The value of Dr obtained by Hunt and Thompson is
(9.4+2.0) (J/2r)a?. [Redfield and Yu (1968, 1969)
have calculated the value 4(J/2w)a%)] The experi-
mental situation with regard to diffusion experiments at
low temperature needs clarification (Giffard, 1971).

4.7 Properties of the Excitations in Pure *He

Here we summarize the properties of the excitations in
pure solid He which have been measured in the NMR
experiments we have discussed above and compare the
results of NMR measurements of the properties of the
excitations with measurements using other techniques.

We begin by observing that the excitations in pure
solid ®He can be described by four parameters: the
phonons 0p; vacancy waves ¢ and w;(V, 3); and the
tunneling excitations J. NMR experiments on pure *He
do not see the phonons although these excitations are
involved in the energy flow chain. Measurements of 8
come directly from thermostatic measurements, Cy,
(dP/dT) |v, etc. The other three parameters, ¢,

J/2m (MHz)
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F1G6. 26. The diffusion constant Dy in the bce phase. The
figure shows the limiting low temperature values of Dz measured
by Thompson, Hunt, and Meyer (1967), shown with circles and
error bars, and by Reich (1963), shown with crosses. The data
points are shown as a function of the quantity (J/27) a®X 1078
cm? sec™! to emphasize that Dz is determined by the tunneling
motion of the 3He atoms. The value of J in the figure should be
divided by a factor 2 to conform with the definition of the tun-
neling energy used in this work. The straight line fits the equa-
tion Dz=(4.44-0.4) X (J'/2/2w) A% cm?/sec”?, where J’ is the
value of J used by Thompson, Hunt, and Meyer (1967), and
A is the lattice constant. The calculation by Redfield and Yu
(1968, 1969) predicts Dz=4.12 (J/27)A? cm?®/sec for the bcc
lattice. [After Thompson, Hunt, and Meyer (1967) ].
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F16. 27. Measurement of the rate of spin energy diffusion. The figure shows measurements of the time evolution of the recovery
of the spin system to thermal equilibrium after a “hole burning” experiment. (See Tig. 6.) The sketches at the left represent the sche-
matic time evolution of the Gaussian hole in the inhomogeneously broadened resonance line. The spin system recovers to thermal
equilibrium through spatial diffusion of the energy in the spin system with the diffusion constant Dg= (kzDz+krDr) [ (kz+tkr).
“The specimen is locally heated by application of a saturating 2-mG rf field, /i, for about 3 sec producing the “hole” in the line at 7=0.
The recovery of the system is monitored by observing the Gaussian free precession signals following small rf pulses (4°) applied at
various times = after the saturating field is turned off. The nuclear signal following the 4° pulse is the Fourier transform of the line
shape; it consists of two components, a very short-lived component due to the entire side resonance line, and a long-lived component
due to the narrow “hole”. The sketches at the right of the figure represent the long component of the free precession signals after 4°
pulses applied every 3 seconds. The beat pattern occurs because the frequency of the 4° pulse is detuned by a small amount 8w from
that of the saturating signal. The 4° probe pulse at wo+6w thus beats with the hole signal at frequency wo. The envelope of the beat
pattern is given by G(¢, 7) =exp[— 3 (c2+2vG2D7) 2], where oy is the rms width of the hole at 7=0, G is the field gradient, and # is
the time elapsed after the 4° pulse. The traces shown are for a solid in which J/27=7 MHz, and at T'~0.1K. The top trace (=0)

corresponds to co=2.3X10% rad/sec. [After Hunt and Thompson (1968).7]

ws3(V, 3), and J, are most easily studied in NMR experi-
ments. The magnitude of these parameters determined
in measurements of 74, T, and the diffusion constants
Dz and Dg are all internally consistent and in reasonable

TasLe II. Experiments used to determine basic parameters:
J, 0, and w3(V, 3) .2

Parameter

See Figure Data Used

J 31 and 32 Panczyk and Adams (1969); Hatton
and Giffard (1967); Bernier and
Landesman (1969); Richards,
Hatton and Giffard (1965);
Richardson, Hunt, and Meyer
(1965); Garwin and Landesman
(1964) ; Reich (1963)

Sample and Swenson (1967) ; Edwards
and Pandorf (1965, 1966, 1968)

b 29 and 50 Reich (1963); Richardson, Hunt, and
Meyer (1965); Sample and Swenson
(1967) ; Giffard and Hatton (1967);
Miyoshi, Greenberg, Cotts, and
Richardson (1970)

Reich (1963); Richardson, Hunt, and

Meyer (1965); Giffard and Hatton
(1967)

0p 28

wy(3,3) 30

2 For each of the parameters, J, 0p, ¢, and w3(V, 3) we have tabulated
the references to the experiments from which the data is-drawn.

agreement with their values determined from thermo-
static measurements. The experimental sources of the
parameters we have derived from NMR measurements
are listed in Table II.

Phonons, 0p

Four recent specific heat measurements, those of
Sample and Swenson (1967), and Edwards and Pandor{
(1965, 1966, 1968) provide the most reliable data on
the Debye temperature. In Fig. 28 we plot 6p vs molar
volume for bec and hep *He. We use the values of 0p
from these plots to characterize the phonon spectrum.

Vacancy Waves, ¢ and ws(V, 3)

In the discussion of NMR experiments in pure *He
in Sec. 4, we have seen that the behavior of T4, T3,
and D, at high temperatures is due to the vacancy wave
excitations. In Region IT-A (to be discussed in Sec. 6),
the behavior of 7 is due to the coupling of the vacancy
wave excitations to the tunneling excitations. Thus
there are within the body of NMR data four inde-
pendent experiments which are sensitive to the char-
acteristics of the vacancy wave excitations. The vacancy
wave excitations have the dispersion relation given in
Eq. (3.10); they are characterized by the excitation
temperature ¢ and the tunneling frequency ws(V, 3).
In Fig. 29 we have plotted ¢ vs molar volume; we
have used (1) the diffusion constant measurements of
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Fic. 28. Debye Temperature. The
data are from the following specific heat
measurements: A, hcp 3He: Sample
and Swenson (1967); O, hcp 3*He:
Edwards and Pandorf (1965); @, bcc
#He: Sample and Swenson (1967); A,
Edwards and Pandorf (1968). In cal-
culating the properties of the phonons
we use the numbers from the smooth
curve through the data.
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Reich in Region I-A, Fig. 25 to determine ¢ at 18.0
cm®/mole< V<23 cm?/mole using Eq. (4.15); (2) the
71 measurements of Richardson, Hunt, and Meyer
(1965), Fig. 19, in Region I-A to determine ¢ at
V=204 cm®/mole using Eq. (4.1), and (3) the Ty
measurements of Giffard and Hatton (1967) in Region
II-A to determine ¢ at ¥V'=20.0 cm?®/mole. We have also
plotted the values of ¢ from analysis of the specific
heat data of Sample and Swenson of Iig. 29. First we
note the good agreement between the three independent
NMR determinations of ¢ and the good agreement
between the NMR wvalues of ¢ and those from the
specific heat data. The comparison of different experi-
mental determinations of ¢ is limited because only the
diffusion measurements of Reich have been carried out
over a wide range of molar volumes. However, at
V=20.0 cm3®/mole where each of the experiments
yields a value of ¢, there is good agreement. On Iig.
29 we have also plotted the values of ¢ from the theo-
retical calculations of Hetherington (1968).

The same data which have been analyzed above to
yield values of ¢ also yields values of w;(V, 3). In Fig.
30 we have plotted ws(V, 3) vs V: we have used (1) the
diffusion data of Reich in Region I-A, Fig. 25, and Eq.
(4.15), (2) the T, data of Reich at V=20.1 cm?/mole
at the temperature of the 7y minimum (curve E in

Fig. 18), (3) the 7% data of Richardson, Hunt, and
Meyer at V=20.4 cm?/mole at the temperature of the
71 minimum (Fig. 19) and (4) the Ty data of Giffard
and Hatton (1967) in Region II-A. In Fig. 30, we have
also drawn a smooth curve determined from the
theoretical calculation of w3(V, 3) outlined at the end of
Appendix A.1 and a smooth curve determined from the
calculations of Hetherington (1968). We note that the
order of magnitude of the four independent experi-
mental determinations of w3(V, 3) is in good agreement
with one another and in moderate agreement with the
theory of Hetherington.!? As with ¢ above, the bulk of
the independent determinations are near ¥V =20.0
cm®/mole. The volume dependence of ws(V, 3) which is

10 A theory of the vacancy excitation temperature is as difficult
as a theory of the ground state in that like the theory of the
ground state it involves the cancellation of two large numbers
to get a small one. The vacancy excitation temperature (ignoring
the bandwidth) is given by

¢=Pv+E¢—Eq,

where Pv is the energy required to make the empty space, Eo
is the energy associated with putting the removed particle on
the surface, and E; is the energy gained by the relaxation of
the lattice in the vicinity of the vacancy site. We have E,=~
kpfp=~30K at V=20.0 cm?®/mole. Since ¢ is less than Pv, Fig.
50, we have | E;| > | Eo| =30K. The results of Hetherington
are quite reasonable.
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given by the data from the diffusion experiment is in
reasonable agreement with the volume dependence of
the theory of Hetherington. The vacancy tunneling
frequencies calculated in Appendix A.1 are slightly
smaller than the experimentally determined values.
This is not surprising since the calculation in Appendix
A.1 did not attempt to account for the distortion of the
wavefunction for particles that are near neighbors of a
vacancy site. This distortion is very important; it leads
to the increase in magnitude of w3(V,3) and to a
decrease in ¢ from the undistorted value to a value
comparable with Py,

We see that the parameters which characterize the
vacancy wave excitations are quite well determined by

50

K
)

5

20+

0 | 1
16 18 20 22 24 26
Molar Volume (cm3/mole)

F1G6. 29. Vacancy excitation temperature vs molar volume.
The excitation temperature is calculated from the data in the
following sources: For bec ®He: O, Sample and Swenson (1967),
specific heat; X, Reich (1963), diffusion; v, Giffard and Hatton
(1967), Ti data in the topology ZT-V P; A, Richardson, Hunt,
and Meyer (1965), T: data in the topology Z-CP. For hcp
3He: A, Reich (1963), diffusion. For hep *He—*He; &, Miyoshi,
Cotts, Greenberg, and Richardson (1970). These data are taken
from 7 and diffusion measurements at 29, 3He in ‘He.
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F16. 30. Bandwidth vs molar volume. The bandwidth is
calculated from the data in the following sources: X, Reich
(1963), diffusion; O, Richardson, Hunt and Meyer (1965), T
in the topology Z-VP. A, Giffard and Hatton (1967), 7; in
the Topology ZT-V P. The results of the theory of Hetherington
are shown as are the results of the calculation from Appendix A.
Both theory and experiment suggest that the vacancy band
width is relatively insensitive to volume.

the NMR data."! The magnitude of these parameters as
determined by the experiments is in good qualitative
agreement with theory. To date, only the theory of
Hetherington has addressed itself to calculating these
parameters from first principles. This is unfortunate
because the calculation of ¢ and particularly ws;(V, 3)
is a sensitive test of the validity of a theory of the
ground state and excited state properties of quantum
crystals.
The Values of J

The basic zero-point tunneling motion between 3He
atoms, characterized by the frequency J, appears as a
fundamental parameter of all the nuclear resonance
experiments in the temperature Region I-B. There is
excellent self-consistency between the values of J
deduced in (1) magnetization diffusion measurements,

11 In the literature there appears a suggestion that the turneling
frequency (or diffusion constant) found from the data of Giffard
and Hatton (1967) and Bernier (1970) does not agree with
the tunneling frequency determined from the high-frequency
data, the diffusion data of Reich, etc. Most of this discrepancy
is due to an erroneous factor of 14 in the combination of Egs.
(3) and (4) in Giffard and Hatton. In place of their Eq. (3),
write np=71p1'=2(z—1)x,/7,. Now the diffusion constant is
related to 7, by

6D/A=2(z—1) o/ 7.

This relation is apparent upon considering relaxation in Region
I-A from either of two views, that of diffusion or that of the
vacancy tunneling. From the definition of »p, we have

np=tp t=06D/A%

Equations (3) and (4) of Hatton and Giffard give np=_84D/A2.
When the correct factor of 14 is used, the vacancy tunneling
frequency from high and low temperature data are in good agree-
ment. See Fig. 30.
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Fic. 31. Experimental Values of J. The figure presents the results of a number of different measurements of the value of J as a
function of volume. The types of points fall in two categories: (a) thermostatic measurements and (b) relaxation measurements. The
thermostatic measurements derive values of J from thermodynamic quantities calculated with the high-temperature expansion of
the partition function for the spin Hamiltonian Tr[exp(3C/k7) ] and do not depend upon the details of the approximation used to
describe the time evolution of the local dipolar field. There are three kinds of thermostatic measurements which have been made on
#He which yield information about J: Susceptibility measurements, d P/dT measurements, and nuclear relaxation heat capacity measure-
ments. The departure from Curies Law in susceptibility measurements produces information about the sign of J as well as the mag-
nitude. None of the susceptibility results are shown in the figure. Reliable susceptibility measurements have been made by Anderson,
Reese, and Wheatley (1961), Pipes and Fairbank (1969), Sites, Osheroff, Richardson, and Lee (1969), and by Kirk, Osgood, and
Garber (1969). All of these experiments yield a negative value of J, the magnitude of which is good agreement with other thermostatic
measurements. The data of Kirk, Osgood, and Garber (1969) extends to the lowest temperatures ~5SmK and covers the widest range
of molar volumes. The second class of thermostatic measurement which has been made is the measurement of isochoric pressure change
of the solid with temperature. The value of J is determined from the easily derived relation

P _ dln [ J I CT

oT |y alnv )V
where Cr=3(hJ/kgt)? for bee *He. The measurements have been reported by Pancayk, Scribner, Straty, and Adams (1967), and by
Panczyk and Adams (1969) for the bee phase. The data points of the latter are shown as solid circles in the figure. The third type
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of thermostatic measurement is the heat capacity derived from the determination of the topological factors in measurements of the
spin lattice equilibrium times at low temperatures (region IT) where a long component of the relaxation rate is given by

Tit=[1+(k./kr) 17,
where (771) intrinsic 15 the frequency independent, and where
’ kz/kr= (hwo)?/z(hJ)=(2/32) (wo/ J)?

z is the number of neighbors, and wo is the Larmor frequency. The time T'inerinsio is the coupling rate of the tunneling system to the
lattice. The determination of J from such measurements is made by studying the Larmor frequency dependence of the long relaxation
rate. The heat capacity determinations of J by such a technique for pure *He have been made by Hatton and Giffard (1967) and by
Bernier and Landesman (1969), and are shown with the symbol & . Both measurements are near 20 cm3/mole. More extensive measure-
ments as a function of volume have been made by Richards, Hatton, and Giffard (1965) with specimens containing ~200 ppm ‘He
impurities, and are shown with the symbol @ . The effect of ‘He impurities is to add an additional heat reservoir, due to the mass fluctua-
tion wave bath, in series with the spin-relaxation process so that value of J determined is systematically too large. Also shown in the
figure are.the values of (J/27) determined from studies of 7'z and 7. The magnitude of J obtained in such studies depends upon
the details of the spectral function. The source of the points in the figure, as well as the spectral function used in the calculation of J
is tabulated below:

Experiment Symbol Spectral function

Richards, Hatton, and Giffard 7} (1965) (hep v Gaussian

data only)
Richardson, Hunt and Meyer (1965), Richard- & ““Self-consistent empirical

son, Landesman, Hunt, and Mayer (1966) T\ function”
Richardson, Hunt, and Meyer (1965), 7 data v Lorentzian

fitted by Richards (1970)
Garwin and Landesman (1964) T data O Gaussian
Reich (1963) T data hcp phase A Gaussian
Richardson, Hunt, and Meyer (1965) T data O Self consistent empirical function.

Measurements of 77 and T in the bec phase have also been made by Reich with substantially good agreement with Richardson,
Hunt, and Meyer (1965). The measurements of Richards, Hatton, and Giffard (1965) of 7' in the bce phase (not shown in the figure)
analysed with the Gaussian correlation function, yield values of J which are in substantial agreement with the values of J obtained
in the “heat capacity” experiments shown with symbol ®. At the larger molar volumes, the values of T} are in disagreement with

those obtained by Richardson, Hunt, and Meyer, being systematically shorter, perhaps through a difference in the volume deter-

mination.

(2) Ty measurements, (3) measurements of the limiting
value of 7 in low fields, (4) measurements of the
Larmor frequency dependence of 7%, and (5) measure-
ments of the nonadiabatic frequency shift. In all of
these measurements, however, the exact magnitude of
J depends upon the explicit time evolution of the
microscopic dipolar field due to the tunneling motion,
i.e., upon the validity of the Gaussian or Lorentzian
approximations for the correlation function. The value
of J determined from a measurement of 7%, for instance,
will be larger by a factor w'/2if the Lorentzian correlation
function is used rather than the Gaussian correlation
function. The same factor applies to the calculation of
J in almost all of the resonance relaxation experiments.
There is one class of nuclear relaxation experiments
which does not depend upon the details of the correla-
tion function and still produces information about
the magnitude of J. These are 7% measurements in
Region II, in which the topological factors related to
the heat capacity of the Zeeman and tunneling energy
reservoirs appear as coefficients of the relaxation rates
in the form T1=[14 (kz/kr) 1T intrinsic. (See Sec. 6 and
Appendix A). We have

Tl"‘1= [1+ (kz/kT) -__}ﬁlTintrinsic—_1

2 w0)2]—1
=1 \F Tin rinsichl,
[ + 3z (] ‘

where z is the number of nearest neighbors, and where
Tintrinsic does not depend upon wo. The coefficients %z
and k7 are derived (see Appendix D) without recourse
to an approximation for the correlation function, thus
experiments in which 7 is measured in Region IT at
different Larmor frequencies yield an independent
value of J which can be used to scale the values of J
obtained in the other nuclear resonance experiments.
This procedure eliminates the possible systematic
uncertainties in J that could arise due to any of the
errors in approximating the time evolution of the
dipolar interaction.

The values of J/2w obtained in NMR relaxation
experiments are shown in Figs. 31 and 32. We wish to
reiterate at this point that the definition of J used in
this work differs from that used in most previous
papers on NMR in solid helium. We take J to be
defined by the Hamiltonian, 3¢p=—2%J 3 'rr Or*0r,
Eq. (3.16). This definition is selected to be in agreement
with the convention used in most of the reports of
thermostatic measurements. In Fig. 32, the values of
J/2mw obtained by Adams and co-workers (Panczyk,
1967, 1969) from elegant low-temperature measure-
ments of the pressure changes in the solid at constant
volume, are compared with the values of J/2r obtained
in the NMR work. The agreement is excellent. Un-
fortunately, the method does not have sufficient
sensitivity to measure the smaller values of J/2m for
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molar volumes less than 21 cm?® at experimental tem-
peratures greater than 12 mK.

The magnitude and sign of J can be determined in
nuclear magnetic susceptibility measurements by fitting
the observed size of the nuclear absorption signal at
various temperatures to a Curie-Weiss Law of the form
x=C/(T'—H), where C is the Curie Constant, and
H=2zhJ/4kp is the Weiss Constant. Most of the early
experiments measuring the nuclear susceptibility were
unreliable for determining either the magnitude or sign
of J due to insufficient knowledge about the spin
relaxation processes, the effects of *He impurities, and
insufficient resolution of susceptibility at the experi-
mental temperatures employed, typically greater than
50 mK. With the development of new techniques to
reach and maintain low temperatures, there have been a
number of reliable susceptibility measurements in
solid 3He. (See Fig. 31.) All of these experiments deduce
values of J/27 in agreement with those in Fig. 32.
These experiments also give a negative sign to J
corresponding to antiparallel spin alignment in the
lowest energy state. The consequence of the negative J
is that as the solid is cooled to very low temperatures it
will undergo an antiferromagnetic spin ordering
transition. The transition is expected to occur at a
temperature given by

TN=2.78(fLJ//€B), (bCC),
Tn=4.2(7J/kg), (hcp).
Thus for the largest possible molar volume and largest
value of J, the solid should undergo a Fermi ordering
transition at 2mk which results from the motional
freedom due to the tunneling and the Fermi statistics
of the 3He.

In Fig. 32, the values of J/2m represent the most
accurate available interpretation of all experimental

F1c. 32. Values of (AJ/kg). The lines in the figure represent the
“‘smoothed” values of (AJ/ky) in mK used for calculations in this
paper. The values arc our hest guess for the interpretation of all
of the experiments to date to obtain the tunneling energy of *He
atoms. The data points upon which the lines are based are shown;
the symbols correspond to the same points in Fig. 31. In the bcc
phase we have used the thermostatic values of J and the values
from the self-consistent correlation function for 7; fitted to the
thermostatic measurements. In the hcp phase, we use the values
of J obtained in 7, measurements. The T, data were selected because
of the internal consistency and because the Gaussian approximation
for the correlation function probably does not lead to a serious
error in determining J from 7} in the hcp phase.

data to date. Here J/2m is probably accurate to within
109, everywhere on the curve. Probably the most
spectacular feature of Fig. 32 is the huge change J
makes with changes in volume. At 20 cm?/mole,
vs=d(InJ)/d(In V)=+420. The steep change in J
with volume is understood theoretically as resulting
from the compacting of the wavefunction of an atom in
the vicinity of its lattice site as the volume decreases.

5. EXCITATIONS IN DILUTE *He-‘He MIXTURES

5.1 Mass Fluctuation Waves

In pure solid 3He, there are three excitations of
interest: the phonons, the vacancy waves, and the
tunneling excitations. In solid 3He with small concen-
trations of ‘He, there are these three pure crystal
excitations as well as a new excitation associated with
the motion of the ‘He atom in the *He medium. In
solid *He with small concentrations of *He, there are
phonons, vacancy waves, and a new excitation asso-
ciated with the motion of the *He through the *He
medium. In both dilute limits a new excitation appears,
the mass fluctuation wave. We discuss it and its coupling
to the pure crystal excitations in this section.

Our discussion of the excitations due to particle
motion in the case of pure *He began with the Hamil-
tonian, 3Cpy, given by Eq. (3.1). This model Hamil-
tonian was constructed from the most important matrix
elements of the Hamiltonian

N
se= X To(i)+3 X o4(if), (5.1

i=1 ij .
where Ts3(i) = p:2/2ms, and v°(4j) is an appropriate
effective interaction for low-lying harmonic oscillator
states. The important matrix elements of 3¢ in Eq.
(5.1) are, in addition to the ground-state matrix
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elements (@, | 3C | &), those involving empty lattice
sites and doubly occupied lattice sites. In Fig. 33 we
represent the ground state

N
Bo= [T or(xr),

RB=1

(5.2)

and the excited states schematically. The excited states
are denoted by

‘I/RRI = bR+bR/q)o.

The important matrix elements of 3C are (¥rg: | 3C | $o)
which gives rise to the tunneling term, the second term
in Eq. (3.1); and (¥zp | 3¢ | Yrgr') which gives rise to

the hard-core term, the third term in Eq. (3.1). If the "

particles have spin, and the system is placed in a weak
external field, then there are two states per lattice site.
The spin variable ¢ is introduced, and Eq. (3.1) results.
We note that the tunneling process preserves spin and
that the tunneling matrix element is spin independent.

To construct a model Hamiltonian for the mixture
system we consider the matrix elements of

N-N; N,

3C3,4= Z Ts5(i)+ > Tu(i)+3 Z/ 2.(if), (5.3)

=1 =1

where 7. (7) = p:*/2m,, and we have assumed the effec-
tive interaction to be independent of the nature of the
interacting pair, °*He-*He, 3*He—*He, or *‘He—*He.
Suppose we write T4(2) =T3(2)+Tu(i) —T3(3) =
T5(7) —1T(¢) and approximate 3C3 4 by

N
3s,403Cs= 3 Ts() 45 2.  v°(4)).

=1 %j

(5.4)

Now as above the important matrix elements of 3C;
involve the states ® and ¥gz'. In analogy to the spin
variable which denotes the possibility of two distin-
guishable states at each lattice site, we use an index \ to
refer to two distinguishable states at each lattice site;
these are a ®He ground state or a *He ground state.
Then, we have

= D, H(RR)bpxtbent X dobrxtoratbeynbe,

RR/ N RN

(5.5)

where unlike the spin case, the matrix element for the
tunneling process depends upon the state label. We have

ts(RR") = | dupr® (%) T3(x)pr® () (5.6)

@lpy-o o o © © o

Oy >0 00 © O £

R

F1c. 33. Wavefunctions. The important states for calculating
the matrix elements that lead to particle motion Hamiltonians
are | ®o) and | Wgg:). For | &), each lattice site is occupied by
a single particle. For | Wgg-) the lattice site R is doubly occupied
while the lattice site R’ is vacant.
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nd
) L(RR') = [ dugr® (x) Ts(x) p @ (x),  (5.7)

where ¢z® and ¢z® are single-particle ground-state
wave functions for *He and “He atoms, respectively.
Of course the tunneling process preserves state. We have
not included a spin index to label the *He particles be-
cause the “He particles move through the 3He medium
relatively unaffected by its spin configuration.!?

The tunneling excitations in the 3He—*He dilute
solution are given by the Hamiltonian

er= 2, [A(RR)H(RR')/—¢o]

REZ AN
Xopxtornbrnvtbry.  (5.8)

The terms in this Hamiltonian with A=\’ correspond
to the tunneling of a particle to a neighboring lattice
site and its immediate return. This process reduces the
single-particle energy by #2/¢, per particle. The terms of
interest in Eq. (5.8) are those with A%\, we write
Jp= —2 E M(RR,)34b134+b1314b3'3+b33, (59)
RE!
where M (RR')ss=1;(RR'){4(RR") /¢. Now the operator
combination in Eq. (5.9) can be rearranged to give

(5.10)

where agt=0bpiTbrs, and ag~= brstbrs. The operator agt
creates a mass fluctuation at R, ez~ destroys a mass
fluctuation at R. The Hamiltonian, 3Cr can be written
in the form

brat bR b5 ORs= artar,

Jp=— 2 Z M(RR’)34GR+(1131_.

RR/

(5.11)

A single-particle state corresponding to a “He particle
tunneling through the ®He medium is created by

at= % exp(tk-R)agr*. (5.12)
The equation of motion for a;* is given by
i (d/dt) at="[axt, 3¢y = —2m(k) ai™,
where
m(k)= 3, M(RR)sexplik- (R—R’)]. (5.13)
RIF(R)
For a simple cubic crystal we have
m(k) =4M (A)34(cosk, A+ cosk,A+ cosk.A). (5.14)
As k—0, we have
m(k)~22t(A) t(A) /o ][ 1— (k2A%/2) ). (5.15)

The excitation created by axt is called a mass fluctuation
wave; it has the dispersion relation

oo (k) = 2m (k)

2 As in the case of the vacancy waves, the mass fluctuation
wave in *He must be dressed with a spin fluctuation cloud. In
‘He, the mass fluctuation wave, a He atom, is not so dressed.
See Footnote 9.
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F1c. 34. Densities. (a) When there is a single ‘He atom on a
linear chain with three 3He atoms, the single-particle density at
each lattice site is one; it is the sum of two contributions;
0.75 | $®[24-0.25 | ®|2. We have distorted the wavefunction
of the ‘He atom to emphasize the change in the single-particle
density in the vicinity of a lattice site. (b) When there is a
vacancy on a linear chain with three He atoms, the single-
particle density at each lattice site is 0.75. (c) When there is a
spin | on a linear chain with three spins T the single-particle
density at each lattice site is one; it is the sum of two contributions,
0.75| ¢ |2+0.25 | ¢ |2 Here we have shown the appearence of
the single-particle density for the k—0 mode on a four atom
chain.

and it represents a ‘He particle tunneling through the
SHe medium. Independent of the details of the crystal
structure the bandwidth of the mass fluctuation waves is
42M (A)3s. This ‘He particle in a mass fluctuation wave
state is delocalized just like the vacancy that is in a
vacancy wave state. Thus there is a finite amplitude of
‘He particle at each lattice site. See Fig. 34. For a
linear chain with ten lattice sites occupied by nine,
®He atoms and one, ‘He atom, there is one particle
at each lattice site; i.e.,

(Nr)= 3 bextbma= Nrp®+Ng®=1.
A

But this one particle is 909, *He, and 109, ‘He. To
localize a “He particle in a region. of the lattice, one
constructs a wave packet by the proper superposition of
mass fluctuation waves; e.g.,

V= [ dF'C(k, B ) ap,

where C(k, k') « exp[—N(k—F')?]. For conceptual
purposes, the localized wave packets are often more
convenient than the individual mass fluctuation waves.

We may estimate the magnitude of the parameter
which characterizes m(k), t3(A)t(A)/¢o by noting that
when Eq. (3.12) is put in pseudo spin form, Eq. (3.16),

we have
AT =t5(A) 85(A) /po. (5.17)
Thus if we write £1(A) =N3(A), we have

The bandwidth for the mass fluctuation waves is
Aemr=4NzAJ.. At V'=20.0 -cm?/mole, we have J=
0.35X105 MHz=16 uK and Aeyr=0.5mK for A\=1.
Thus the bandwidth for mass fluctuation waves is
rather large. Below, we discuss the mass fluctuation
wave lifetime.

We compute the energy associated with this system of
excitations by noting that m (k) goes from —22\iJ to
2a\iJ, as k goes from O to w/A. Thus we approximate
m(k) by m(k)=—2zJ for 0<k<w/24, and m(k)=
4227 for m/2A<k<m/A. In the limit kpT>>Aemw, we
find that this energy spectrum yields

Eyp=N{e)—BL{&)— () ]+ -+,
()= 2 4/2 1.

(5.19)
where

Thus the specific heat and energy constant for the mass
fluctuation waves are

CMF/IVkB=x4(7/4)>\222(ﬂﬁ])2 (520)
and

Fscw= —x4(7/4) N2 (81T ). (5.21)

Recent work on mass fluctuation waves by Landesman
and Bernier (1970), and Balakrishnan and Lange
(1970) lead to a specific heat which has a numerical
factor different from what we obtain here. The specific
heat of x4-2 pairs of *He atoms interacting by the
Hamiltonian 3Cr is given by (D.7)

Cr/Nks= (xs) 32(BHJ )2

For A=1, Cyr=50Cr; the specific heat of x4 *He atoms
is about 50 times greater than that of the w2 tunneling
SHe pairs. Let us understand this result. At concentra-
tions x,<< 1000 ppm, each *He atom is isolated from the
other *He atoms in the system. It sees all of its neighbors
to be 3He atoms and it undergoes a tunneling process
involving any one of its neighbors with equal energetic
benefit to itself. This situation is analogous to a single
inverted spin in a ferromagnetic crystal—all of its
neighbors have spin T —it has spin | . The spin sees

" the sea of ferromagnetism about it as an inert medium

through which it tunnels with a resulting energy reduc-
tion. Now contrast this with a spin system at kpT>>%J,
where the z neighboring spins about a given spin have

. no particular correlation among themselves or with the

given spin; the spin sees a noisy undulating sea of
paramagnetism. The “He atom alone in a 3He lattice
sees the lattice as a well ordered inert medium. The
obvious analog in this case to temperature, which in the
spin system takes the ordered spin state into the dis-
ordered spin state at T=T, is the concentration.
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Here we have discussed the mass fluctuation wave
that corresponds to a *He atom propagating in a SHe
medium. The propagation of a 3He atom in a “He
medium can also be termed a mass. fluctuation wave.
Both the *‘He atom in a *He medium and a *He atom in a
‘He medium are fermions (Andreev and Lifshitz, 1969).
At experimentally realizable temperatures 7>1 mK,
the thermal energy is greater or about equal to the
bandwidth for the mass fluctuation waves, and at dilute
concentrations, x4<1000 ppm or x3<1000 ppm, the
fermi nature of these excitations is of no consequence.
For dilute *He in a “He medium, the mass fluctuation
wave is the spin carrying excitation. This system can
be regarded as a hot-dilute fermi gas. For dilute ‘He
in a *He medium, the mass fluctuation wave is a spin
disordering perturbation just like the vacancy wave.

Andreev and Lifshitz (1969) have suggested a simple
criterion for the existence of impurity excitations (im-
puritons) and defect excitations (defectons). Here we
refine their argument for impuritons slightly and work
out the existence criterion for mass fluctuation waves
and vacancy waves. A single ‘He particle in SHe has a
smaller zero-point motion than the SHe particles which
make up the medium in which the *He sits. We regard
the *He medium as an elastic continuum, and consider
the “He particle to be a sphere of volume v4= A3(1—¢)3,
where e is a measure of the distortion of the elastic
continuum in the vicinity of the ‘He. From the cal-
culations of Mullin (1968), Guyer (1968a) and Varma
(1969), we have exx1072; i.e., using a microscopic model
of a quantum crystal, one finds that replacing a *He by a
‘He leads to a distortion of the lattice in the vicinity of
the “He atom. The neighbors of the ‘He move toward it;
they shift their equilibrium positions by about 19%,.
We transfer this result to a continuum model of the
lattice and argue that the *He looks to the continuum
like an ““‘undersized” sphere. The continuum shrinks in
on the sphere and creates a pressure field in the solid
given by

p(r) =po(A/7)%,,

where po=—(6/5)Be, and B is the bulk modulus;
B=—V(dP/3dV)r. A second “undersized” sphere, 2,
at a distance R away from the first “undersized” sphere,
1, interacts with the pressure field with an energy of
interaction given by

AE’:fpl(?’)‘Ug(?’) dS, (5.24)

where the integral is over the surface of sphere 2,
p1(7) is the pressure on the surface of sphere 2 due to
sphere 1, us(r) is the displacement of the surface of
sphere 2; Fig. 35. Equation (5.24) represents the work
done to contract sphere 2 in the pressure field of sphere
1. Now we have uy(r;) =eAe,; thus Eq. (5.24) can be
evaluated (Bitter 1931) to yield

AE(R)=— (48/5)weBA A3/ R(R*— A%)].  (5.25)

For R=Ax"'3; i.e., for R equal to the average distance
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F16. 35. Interacting Spheres. An ““under” sphere, 1, embedded
in an elastic continuum creates a pressure field around itself,
pi(7). In order to place a second similar sphere, 2, at R from 1,
work must be done to displace the continuum in the presence
of the pressure field, pi(r), to accommodate the second sphere.
The work done to place the second sphere is proportional to
pi(r) +ua(r).

between ‘He atoms, we have an energy of interaction
given by

AE(R=Ax"3)— (48/5)me80%  (5.26)

for x<<1. Now the mass fluctuation wave will be a good
excitation if the kinetic energy associated with this
state, s\J, is larger than the potential energy of attrac-
tion between *He neighbors at a distance Ax~'/3 apart;
Le.,

N> AE(R= Ax713),
or

X< NS /32868, (5.27)

At V=200 cm?®/mole, NJJ=0.35X10° MHz; 8=
500 atm, BA%/kp=100°K, ex21072; we have

x<1073,

Thus we expect mass fluctuation waves to be good
excitations up to x~~1000 ppm.’* At higher concentra-
tions, the interaction between ‘He particles is great
enough to require that they be treated as a strongly

- interacting gas. The simple picture of an excitation

associated with the independent motion of the ‘He
atoms breaks down. In Sec. 7 where we deal with non-
dilute mixtures this point is taken up in further detail.
We note that Eq. (5.27) for x. depends very strongly on
volume through the factor J.

18 The existence criterion of Andreev and Lifshitz does not
include the factor ¢ and gives much too low a concentration
limit.
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5.2 Interactions

The mass fluctuation waves couple strongly to the
tunneling excitations and the phonons. We now discuss
these coupling mechanisms.

Phonon—Mass Fluctuation Interactions. The phonons
see a mass fluctuation wave as a dynamic mass fluctua-
tion just as they see the vacancy waves. Thus they
couple to the mass fluctuation waves through

Hpur=13% 2 Amp(t)tr?,
R

where the time evolution of Amg (1) =mz () —ms is due
to the mass fluctuation excitations in the system. In
Appendix A.6 we have worked out the rate of energy
transfer from the mass fluctuation excitations to the
phonons, viz Eq. (A6.20). Here

TMFP_1= ISOO(AM/M)Z(/CBT/ﬁ) (:Z—‘/BD)6

where Am=ms—ms. This calculation is exactly anal-
ogous to that discussed in some detail in Sec. 3 for the
vacancy-phonon coupling. Further it is essentially the
calculation that would be required to assess the lifetime
of the mass fluctuation waves due to their interaction
with the phonons. The lifetime of the mass fluctuation
waves, approximately T'yrp, Is much longer than
()t for T<2K.

Tunneling—M ass Fluctuation Interactions. The tunnel-
ing excitations are strongly coupled to the mass fluctua-
tions by the same mechanism that couples them to the
vacancy waves. The tunneling excitations see the mass
fluctuation as a dynamic spin fluctuation through

Hrur=—hJ Y, Aa(RR', t)or-0r,
RR!
where the time evolution of Aa(RR’,t) is due to the
mass fluctuation waves, cf. Eq. (3.43). The rate of
change of the energy of the tunneling excitations due to
coupling to the mass fluctuation waves through 3Crur
leads to a decay in the energv of the tunneling system
at the rate
1/Trur=x2(3—1)NJ,

where N =13#s/¢o; see Appendix (A.5). As in our dis-
cussion below Eq. (3.44) this rate is the rate at which a
tunneling pair of particles becomes uncorrelated through
the motion of a *He particle changing place with one of
the tunneling pair. Both a vacancy and a ‘He atom are
magnetically inert objects—both disrupt the magnetic
regularity that the tunneling excitations look for.

Vacancy—Mass Fluctuation Interaction. The vacancy—
mass fluctuation interaction occurs at a rate propor-
tional to the product of x, and x4. It is of no importance
in the experimentally accessible temperature range.

6. NMR IN DILUTE 3’He-‘He MIXTURES
6.1 Dilute “‘He in *He Mixtures, Theory

There are four kinds of excitations in dilute mixtures
of *He in *He that are responsible for the results of NMR

experiments, the three pure 3He excitations discussed in
Sec. 3 and the mass fluctuation waves. In this section
we discuss: (1) the features of NMR experiments that
depend upon the existence of the additional excitation,
the mass fluctuation wave, (2) the experimental ex-
ploration of dilute ‘He in 3He mixtures in the region
where the mass fluctuation waves are important, and
(3) the probable behavior of dilute mixtures of 3He
in “He. This latter system, dilute *He in *He, has yet to
be studied extensively; however, there are some clues in
the NMR experiments on nondilute mixtures at lowest
concentrations, x320.01, that suggest that the sort of
behavior that we anticipate for dilute SHe in “He is
beginning to be observed (Miyoshi, 1970a).

The results of a typical 7' experiment on nominally
pure 3He were shown in Fig. 12. But as we stressed
above pure *He is an idealization unachievable in the
laboratory. In Fig. 36 we show more detail of the kind
of results that are achieved in a typical 7 experiment
on 3He containing various dilute concentrations of ‘He.
We notice that the behavior of 7' in the high-tempera-
ture region, 7> 0.5K at v=20.0 cm®/mole, is essentially
independent of *He concentration, and that the behavior
of Ty at low temperatures, 7<0.5K at v=20.0 cm®/mole,
approaches a limiting behavior as x,—0 which we can
regard as pure *He behavior. It is because the pure *He
behavior at low temperatures can only be assessed by
experimentally taking the limit x,—0 that we have
left the discussion of pure ®He at low temperatures to
this section.

The high-temperature behavior of 73 in dilute mix-
tures is the same as in “pure” *He; it is that of Region I

I
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F1c. 36. Ty vs T7! at low temperature for x;50. When small
concentrations of ‘He are put into *He, the low temperature
behavior of 7% is seriously altered. (1) A relaxation process that
is proportional to x4 and considerably milder in temperature
dependence than exp¢ | 77 appears. (2) There is temperature
and concentration independent plateau at low temperatures,
Region III. This is also present in pure *He. (3) At lowest tem-
perature, there is a further temperature dependence in 7;. There
1s some sensitivity of T at lowest temperatures to the concentra-
tion of ‘He.



which we discussed in detail in Sec. 4. At low tempera-
tures, 71 has two distinct kinds of behavior as a function
of 771 which occur in Regions IT and ITI on Fig. 36. We
will discuss this behavior in detail.

Before doing so, it will be useful to review the nomen-
clature developed in Appendix B to describe relaxation
processes. The relaxation of the rf energy to the reser-
voir in Regions IT and ITI is relatively more complicated
than in Region I. Throughout Region I, the rf energy
was coupled to particle motion excitations that were
tightly coupled to the reservoir. Thus throughout
Region I, only two systems were involved: the Zeeman
system which is heated by the rf field, and the vacancy
system or the tunneling system both of which are
tightly coupled to a reservoir. The 7y’s which described
relaxation in Region I are the intrinsic times for the
pair of systems involved. The intrinsic times are defined
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for a pair of systems coupled together, as shown in
Fig. 52, in Appendix A. They measure the rate at which
energy passes between two systems when one of the
two systems is completely isolated except for its connec-
tion to the other, and the other system remains tightly
coupled to a reservoir. In Region IT, we find that three
or more systems are involved in the relaxation process.
Energy is transferred among the systems involved in
the relaxation process in series, i.e., 0—1—2—3 etc.
Relaxation through a particular series of three or more
systems is referred to as relaxation through a particular
topology. See Fig. 52. When we have a relaxation proc-
ess involving three or more systems, the 77 measured
for this relaxation process involves an intrinsic time and
a topological factor in the form

T1 [topotogy = (1/ Tintrinsic) X (topological factor).

The topological factor is a function of the energy con-
stants (specific heats) of the systems involved in the
relaxation process. The 7%’s measured in this circum-
stance (three or more systems) are referred to as
topological times. Let us introduce a notation which
depicts the qualitative features of a particular relaxation
process. In Region I-B, we have energy flow out of the
system by the chain: Zeeman—tunneling—vacancy
wave—phonon—reservoir. The weak link in the energy
flow chain and the source of the long time is the Zeeman-
tunneling coupling. We denote the topology of relaxa-
tion by Z-T'V P. This is a two system relaxation process;
the vacancy waves and phonons are simply the link
which keeps the tunneling system tightly coupled to
the reservoir. The 7 which describes relaxation in the
topology Z-T'V P is the same as the intrinsic time which
describes the relaxation of Zeeman energy to the
tunneling excitations. We will find that in Region IT-A,
the energy flow chain is also Zeeman—tunneling—
vacancy wave—phonon—reservoir. But in Region IT-A,
the weak link in this chain is the tunneling-vacancy
wave coupling. We denote the topology of relaxation
by ZT-VP. This is a three-system relaxation process.
The T which describes relaxation in the topology Z7T-

I'16. 37. Topologies: (a) ZT-V P, and (b) ZTV-P.

VP is the intrinsic time which describes the relaxation
of tunneling energy to the vacancy wave excitations
multiplied by a topological factor involving the energy
constant of the Zeeman system and the tunneling
system.

The important intrinsic times and topological times
are calculated in Appendix A.

Region II. In Region II, the route by which energy
put into the Zeeman system gets to the reservoir is
“bottlenecked” by one of the particle motion excita-
tions. This is best understood by contrast to Region I.
In Region I, energy was transferred from the Zeeman
system to the particle motion excitations by the dipolar
field. Throughout Region I, the particle motion excita-
tions are strongly coupled to the phonons; thus the
particle motion excitations are always at the lattice or
reservoir temperature. The onset of Region II occurs
when the particle motion excitations become uncoupled
from the lattice or reservoir.

In Region II-A, the route of energy relaxation is that
in Fig. 37(a), Zeeman—tunneling—vacancy wave—
phonon ZT—VP. At T'>0.5, the long time in the chain
of energy flow is due to the Zeeman-tunneling coupling
through 3C4. This long time is temperature independent.
The times which describe the coupling of systems
further along the chain, T'ry and Typ, are temperature
dependent, so that as the temperature is lowered we
expect to see 7 change its behavior and become tem-
perature dependent. The weak link in the energy flow
chain, Z—»T—V—P, is the tunneling to vacancy wave
link. As the temperature is lowered the number of
vacancies goes to zero as exp(—fB¢), the Zeeman and
tunneling systems come to a mutual equilibrium at a
temperature above the lattice temperature, and the
coupled systems slowly lose their excess energy to the
vacancy waves which remain tightly coupled to the
phonons. The topology of this process, ZT-VP, is
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shown in Fig. 37(a). A comparison of the long time in
the two rival topologies shown in Fig. 37(a),(b) is
made in Appendix A7. There we show that at v=20.0
cm3/mole topology ZT-VP is faster than topology
ZTV-P.

The situation we have described here is quite simple
and if it always held true the low-temperature 74 data
would be very easy to understand. But in experimentally
achievable pure solid *He samples, there are small con-
centrations of *He. These impurities are not static.
Because of their tunneling motion through the *He
medium, they constitute a system of excitations that
can rival the vacancy waves for de-excitation of the
tunneling system. The *He impurities as mass fluctua-
tion waves couple to the tunneling system just as do the
vacancy waves. Both the vacancy waves and the mass
fluctuation waves are magnetically inert and can inter-
fere with the tunneling of a ®He pair. The concentration
of “He impurities in the purest samples is x;~1 ppm. At
7~0.5 K, the number of vacancies present at v=20.0
cm?/mole is N,;~10712, Although there are far fewer
vacancies present, the vacancy waves are much more
mobile than the ‘He mass fluctuation waves. The mass
fluctuation waves rival the vacancy waves in coupling
to the tunneling energy when

x4w4(3, 3)%%‘,,&)7,(3, 3),

at 9=20.0 cm®/mole, ws(3, 3)~J=0.4 MHz, wy (3, 3)~
10* MHz, thus we have equality at xp=10~%v,;. For
x4=107%, this is at 7=0.6K. At more substantial
concentrations of *He, 100 ppm or 1000 ppm, the mass
fluctuation waves completely dominate the vacancy
waves at temperature as low as 0.6K. Now the energy
flow route Z—7T—MF will be a useful alternative to the
vacancy route, Z—T—V, only if the mass fluctuation
waves can get rid of the energy they acquire fast enough.
Recall that the mass fluctuation waves interact with
the phonons in the same way as the vacancy waves.
Both excitations are seen by the phonons as dynamic
mass fluctuations. Thus we must compare the two
energy flow topologies shown in Fig. 38, ZT-MFP and
ZTMF-P. As we show in Appendix A7, the long time is
associated with the topology ZT'M F-P; the weak link
in Z—=T—MF—P is the link between the mass fluctua-
tion waves and the phonons. Of course the link between
the tunneling system and the mass fluctuation waves is
temperature independent, whereas the mass fluctuation
wave-phonon link is temperature dependent. Thus at
lowest temperatures, in the absence of any other new
relaxation mechanisms, the mass fluctuation wave-
phonon link must be the weakest.

In Region II of the 7% vs T plot, we will see a
rivalry between the vacancy waves and the mass
fluctuation waves for relaxation of the system. The
two topologies that rival one another are those shown in
Fig. 38. In both of these topologies, the energy relaxa-
tion process involves more than two systems, so the

relaxation rate depends upon an intrinsic rate and a

topological factor. From Appendix A7 we have a

topological factor kz/(kr+kz) for the topologies -
ZT-VP and ZT-MFP shown in Figs. 37(a) and 38(a).

Also from Appendix A7 we have a topological factor

kar/ (ko+kz~+Fkar) for the topology ZTMF—P shown

in Fig. 38(b). Since ksp < x4, and x4 is small, we may

approximate this by

kMF/(kz-l'kT).

Thus for both topologies in Region II, we expect to
find a dependence of 777 upon the Larmor frequency,
through the topological factor, of the form(73)'e«
(kz+Fk7r)™*. The observation of this Larmor frequency
dependence is one of the experimental tests which
establishes the structure of the relaxation topologies in
Region II. As the concentration of ‘He impurities is
increased toward the limit for dilute mixtures, %=
1000 ppm, the energy constant %y in the denominator
of the topological factor may become comparable to
kz+Fkr. Then, it is possible to study the frequency or
concentration dependence of 7 and extract kyr.
Region I11. In Regions I and II, the routes by which
energy is transported from the Zeeman system to the
reservoir involve a transfer of energy among the excita-
tions in the solid pointwise in the bulk of the solid. This
behavior is to be contrasted with that in Region III.
where the energy put into the Zeeman system by the
rf field leaves the solid by diffusion of the particle
motion excitations to the boundaries of the solid. In our
discussion of both Regions I and II, we took it as a
matter of faith that once the energy being transferred
among the excitations got to the phonons it was im-
mediately transferred to the reservoir. Let us first dis-
cuss this point. All of the mechanisms which coupled
the particle motion excitations to the reservoir involved

z T
(a)
: ZT — MFP
MFW |— P - R
z T MFW
(b) ZTMF—P
\
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Fic. 38. Topologies: (a) ZT-MFP, and, (b) ZT'M F-P.
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two phonons. Thus the phonons which finally receive
the rf energy have energies determined by the ambient
temperature. These phonons carry the energy they
receive to the boundaries of the system by a diffusion
process which is characterized by the thermal conduc-
tivity mean free path.

Ax=3K/Cpe, (6.1)

where K is the steady state thermal conductivity, Cp is
the specific heat of a phonon gas, and . is the velocity
of sound; i.e. Dp~cAk. The thermal conductivity mean
free path is limited at low temperature by the size of the
sample, \gl. There exists adequate thermal conduc-
tivity data on solid helium to determine the time re-
quired for phonon energy to diffuse a distance on the
order of the size of a typical sample chamber, 1 cm.
[See Hogan, Guyer, and Fairbank, (1969) and the
literature referenced therein.] Instead of using this
data, it is easiest to recall that temperature pulse ex-
periments on solid helium indicate that phonon energy
will diffuse a distance of about 1 cm on a time scale
that varies from 10 usec at low temperatures, T<1K,
to 1 msec at high temperatures, 7~2K (Ackerman,
1968). The diffusion of phonon energy across a sample
chamber of typical dimension 1 cm, and its exit from the
sample chamber on reaching the boundary, is compli-
cated somewhat at Jowest temperatures because of the
Kapitza resistance (Pollack, 1969). Yet there is no
reason to believe that times greater than about 1 msec
are required for phonons toleave a 1 cm sample chamber
even at the lowest temperatures (Mueller, 1970).
The typical 7y seen at low temperatures is substantially
greater than 1 sec. Thus once the phonons receive the
energy from the particle motion excitations they carry
it to the reservoir on a time scale that is fast compared
to the long time in the energy flow chain.

As the temperature is lowered, the weak link in the
energy flow chain is the mass fluctuation wave-phonon
link. The energy has a hard time getting to the phonons.
Thus in Region ITI, we see the energy leave the system
by the diffusion of the particle motion excitations to
the boundaries of the sample.

6.2 Experiments on Dilute He-*He Mixtures,
Results

Ty in Region II. Most of the early 7' experiments
on solid *He have explored some part of Region II and
Region IIT (Reich, 1963; Richards, 1965; Richardson,
1965). However, as pointed out above, these experi-
ments were done with unknown amounts of “He im-
purities. Hence, it is difficult to use the results of these
early experiments in this region in other than a qualita-
tive way. Recently there have been a series of experi-
ments by several groups that have carefully explored
the effects of *He impurities in NMR experiments at
low temperatures. The pioneering experiments of this
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F16. 39. T Data in Region II-B; (concentration dependence).
The data from the thesis of Giffard (1968), 717! vs T~! are
shown. The topological factor kp/(kz-+kr) has been removed.
The behavior characteristic of ZT-V P is seen in the data at
107! ppm. Even a small concentration of impurities, x,~ 15 ppm
drastically alters 71 vs 771 From the data at higher concentra-
tions, the dependence Ty lccay is easily verified.

series, those of Giffard and Hatton (1967) and Giffard
(1968) are most illuminating; the experiments of Ber-
nier and Landesman (1969), Bernier (1970) and
Reich and Yu (1969) are corroborative and comple-
mentary to these experiments. In Fig. 39, we show the
results of the 7' experiments of Hatton and Giffard on
bee *He at 9= 20.0 cm?/mole at impurity concentrations
from x4<1 ppm to x4=300 ppm; the plot is log T} vs
1/T. Over the temperature and concentration range
explored, the relaxation rate contains a topological
factor, kr(kz+kr). The data shown in Fig. 39 has had
the topological factor divided out. We first note that as
the concentration of ‘He impurities approaches zero,
the intrinsic T approaches a limiting curve which is a
straight line on the log 7 vs 7! plot. The limiting 7%
curve will fit the analytic expression

Ty '=1.9X10% exp — (13.4/T), (6.2)

and corresponds to relaxation of the system through the
topology shown in Fig. 37a, ZT-VP. The expected
intrinsic relaxation time for this topology is related to
the vacancy excitation temperature and the vacancy
tunneling frequency by

Iy'=2(z2—1)wy (3, 3) exp (—B9).
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(Volume Dependence). The data of
Richards, Hatton, and Giffard
(1965), Ty vs T, are shown. The
topological factor kr|(k,+kr) has
been removed; the data are on
samples containing less than 500
ppm “He. The Region II-A has been
shaded. The remainder of the data
corresponds to II-B and III; data
in Region III has also been shaded.
For the hcp phase region II-A does
not occur; see I'ig. 13. The T data
in Region II-B is mildly volume
dependent and has the tempera-
ture dependence corresponding to
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Thus the limiting curve provides a good measure of
¢ and wy(3,3). We have ¢=13.4, and wy(3,3)=
1.4 10%; these values of the vacancy excitation tem-
perature and the tunneling frequency were plotted on
Figs. 29 and 30 above. They are in reasonable agreement
with the values of these quantities obtained from NMR
measurements in Region I, and with specific heat data.
We note that at 771> 2.25K™1, the limiting T curve
becomes temperature independent; 0.44K is the tem-
perature for the transition from Region IT to Region ITI
at x<1 ppm. At concentrations as low as 15 ppm, the
transition from Region II to Region III occurs below
the experimentally realized temperatures at approxi-
mately 0.25K.

As small concentrations of impurities are added to
solid ®He, the behavior of T4 as a function of temperature
departs from the exponential behavior characteristic
of the tunneling—vacancy wave topology, ZT-V P. If we
define

(1/T") = (1/Texpt) = (1/Trv),

where Try! is given by Eq. (6.3), and Texpe ! is the
measured intrinsic relaxation rate plotted in Fig. 39.
We find that (7”)~! is proportional to the *He concen-
tration, and proportional to a high power of the tem-
perature, 77 or 7%. This is precisely the behavior we
expect for the topology ZTM F-P in which the Zeeman,
tunneling, and mass fluctuation systems come to mutual
equilibrium and lose their energy to the phonons by a
two-phonon process with the mass fluctuation waves.
The experiments of Giffard and Hatton and Giffard
constitute a direct experimental observation of phonons
scattering from mass fluctuation waves. From Appendix
A6 we have

1/TMFP= ISOO(Am/m)Z(kBT/ﬁ) (T/0)6 (65)

From Eq. (6.5) we see that Tarp depends relatively
mildly on volume; it goes as 8p*5. Now we look at the
low-temperature 77 data of Richards, Hatton, and
Giffard (1965) which is shown in Fig. 40. We recognize

(6.4)

ZTMF-P.

that this data, which is on samples made at nine molar
volumes, and containing ‘He impurity concentrations
of about 500 ppm, is primarily on phonons scattered
from mass fluctuation waves. Thus we may use it to
test the volume dependence of 77 as given by Eq. (6.5).
From Fig. 28 we have

[05(20.0)65(23.0) = (29.5/21.8)6~6;

this is to be compared with the variation of the 7% with
volume, at T=0.3K, by a factor of 10. Looking at the
data on the hep phase, we have [0p(18.5) /05 (19.6) =
(42.5/36.6)%~2.5; this is to compared with the varia-
tion of 71 with volume, at T=0.7 K, by a factor of
about 7. Within the uncertainties introduced by the
unknown concentration of ‘He impurities in the various
samples, the volume dependence of 74 in Region I is
consistent with expectations.

In the data of Richards, Hatton, and Giffard (1965)
displayed in Fig. 40, we also note that at the higher
temperatures in the bce phase, e.g. at 7>0.35 at v=20.5
cm®/mole, T becomes a much faster function of tem-
perature and there is no evidence for similar behavior
in the data in the hcp phase. Both of these facts are a
consequence of the volume (or pressure) dependence of
the vacancy excitation temperature. In the bcc phase,
the excitation temperature for vacancies is low enough
that the topology ZT—-V P is observed, whereas, in the
hep phase, the vacancy excitation temperatures are so
large that there are not enough vacancies present to see
this topology.

The data of Giffard and Hatton, and Giffard were at
x4<300 ppm. Thus the concentration of ‘He impurities
was too small to permit a determination of the specific
heat of the mass fluctuation wave system from a study
of the topological factor in 7y!|yrp. Bernier and
Landesman (1969) and Bernier (1970) have reported
data on bec 3He at v=20.1 and 21.0 cm®/mole in Region
IT at concentrations up to 2800 ppm. The 73 and T»
data in these experiments in Region IT is in quantitative
and qualitative agreement with that in the experiments
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of Giffard and Hatton, and Giffard. By going to higher
concentrations of ‘He impurities, Bernier and Landes-
man, and Reich and Yu (1969) are able to study the
specific heat of the mass fluctuation waves. The basic
idea behind these experiments is that the times which
characterize the decays observed in a T experiment
depend upon an intrinsic time and a topological factor.
Thus a study of 74 as a function of frequency (Reich,
1969) yields information about the topological factor
and k. A study of 77 as a function of concentration at
fixed frequency and temperature also yields kyr. For
example, if the system is at 7, and the topology of
relaxation is the topology ZT M F-P, then we have

urp=(Tarp) Laer/ (kztlr+rkyr)].  (6.6)

Now data on T |arp as a function of we? yields kr—+Ear,
independent of a quantitative microscopic theory of the
interaction which leads to relaxation, as the intercept of
T1 |mrp with zero on the we? axis. At this intercept we
find kz(wo) =kr+kur; if kr is known, then kyp can be
found. Bernier and Landesman, and Bernier have used a
different technique with a similar physical basis to
study kur/(kz+kr+Ekyr) at »=20.1 cm3/mole in
Region II-B at x,<2800 ppm; they find

71

kyrp=825xskr. (6.7)

At =210 cm®/mole in Region II-B at x,<2800 ppm,
Bernier and Landesman saw #o convincing evidence for
karr7%0. The Ty and Ts data at v=21.0 cm®/mole were
in good agreement with the expectations from similar
data at 20.0 cm®/mole (Bernier, 1970). We may under-
stand the first of these results, Eq. (6.7), by recalling
that

kMF= 50x4k1v[w4(3, 3) /J:IZ, (68)

Eq. (5.22). Thus for ws(3, 3)=4J, the mass fluctuation
wave specific heat is equal to its experimentally ob-
served value. If a *He—*He pair tunnel at about four
times the rate at which a 3He pair tunnels, then, the
specific heat due to the mass fluctuation waves is in
agreement with experiment. A tunneling rate for a
*He—*He pair that is four times that of a *He—*He pair is
somewhat unexpected but not impossible. Alternative
explanations of the data of Bernier and Landesman and
others (Richards, 1965; Reich, 1969) in terms of the
concept of “exchange enhancement” has required that
a *He pair in the vicinity of a ‘He atom (assumed
stationary) tunnel 30 times faster than they do in bulk
helium. It is difficult to support this requirement
theoretically (Glyde, 1969). “Exchange enhancement”
provides no explanation of the 7 data (Guyer, 1969).

A study of the frequency dependence of the topolog-
ical factor in Region II at low concentrations provides
an independent measurement of zr and J. This approach
has been used by Richards, Hatton, and Giffard (1965),
Richardson, Hunt, and Meyer (1965), and Reich and
Yu (1969) to determine J. We have discussed this

application of frequency analysis of 7} above. It pro-
vides a very useful and independent measurement of
the specific heat of a particle motion excitation system.

Ty in Region III. Region III, at T7'>2.3 at xy=1
ppm, and v=20.0 cm?/mole, was first observed in the
experiments by Richards, Hatton, and Giffard (1965).
In Region III, Richards, Hatton, and Giffard found
that the long-time behavior of the time evolution of M,
toward equilibrium was nonexponential, and that the T}
which was chosen to characterize this nonexponential
recovery was temperature independent. Subsequently,
Hunt, Richardson, Thompson, Guyer, and Meyer
(1967) showed that 7 was sample chamber size
dependent, and that at very low temperatures, 7'<
0.1K, a temperature dependence set in with 7 increas-
ing mildly with further reduction in temperature.
Finally, Giffard (1968) has done a careful study of this
region as a function of controlled concentrations of ‘He
impurities. He finds no strong or systematic dependence
of 7Ty in the temperature-independent region on con-
centration, and that the further increase in T; at low
temperatures in a mixture with a particular ‘He con-
centration occurs at a temperature near 7'pg, the phase
separation temperature for that concentration. A typical
result from the experiments of Giffard is shown in
Fig. 41. On that figure the low-temperature data is
divided into two regions labeled ITI-A, the temperature-
independent region, and ITI-B.

Regions I11-A, B. In Region III-A, the energy put
into the system by the rf field gets to the reservoir or an
excitation system tightly coupled to the reservoir by
spatial diffusion of the particle motion excitations. The
experimental evidence for this is the observation of non-
exponential behavior of the long-time recovery of
Mz(t) to Mz(0) in the three experiments mentioned
above, the observation of short-time behavior,

My () ~1/07

which is suggestive of a one-dimensional random walk
(Giffard, 1968), and the observation of a sample
chamber size dependence. The time scale for this diffu-
sion process is about 1000 sec. On this time scale the
Zeeman system, the tunneling system, and the mass
fluctuation wave system have been in equilibrium a
long time. Thus the diffusion in space of any one of
these excitations carries the other excitations with it.
In Appendix C, we show that the diffusion constant for
energy in this circumstance is given by

Dg= (lezDz-l—kTDT‘*—kMFDMF)/(]€z+kT+kA1F),

where Dz, Dr, and Dy are the diffusion constants for
the Zeeman energy (magnetization), the tunneling
energy, and the mass fluctuation energy, respectively.
This formula is a manifestation of the strong coupling
among the diffusing excitations. If any one of the excita-

(6.9)



572 REVIEWS OF MODERN Puysics - OcToBERr 1971

r T T T ‘ T T
|
\ |
D\
10* =" ‘ —
- ' -
—vg:’ g + m-A
B | ]
L (? -
Y \ o 4
RN _
B [°S~o 314 MH:
QE’ I 9\%\7
rd o
-oor l
§73 ) |
5L 1.42 MHz
+
S [ Y o
&
103 — l
. -8B
- |
-
i |
- Extrapolation of Try
from 0.4°K
Lo | 1 | |
0.06 o.l 0.2 03

Temperature  (K)

F1c. 41. Low-Temperature Plateau. Typical data from the
thesis of Giffard (1968) (Giffard, 1971) are shown. On the right,
the extrapolation to low temperatures of the 7' data of region
II-B is shown. Recall that the time dependence of M.(¢) in
Region III is qualitatively different from the exponential time
dependence in Regions I and II. Thus the mismatch between
the extrapolation of Region II-B data and the Region III data.
T is frequency dependent in Region III but only approximately
in the way called for by the topological factor in Dg, Eq. (6.10).
At temperatures in the vicinity of 0.1 K the plateau behavior
goes over to a mildly temperature-dependent behavior.

tions has a large (specific heat) X (diffusion constant),
its motion will dominate the diffusion of the energy.
From Appendix C where we discuss the diffusion con-
stant of each excitation, we have Dz=Dz(3,3)=
Az(3,3)A%, Dr=Dr(3,3)=A7(3,3)A% =adz(3,3)AY,
where « is a constant of order 1, and DyrdD4(3, 3) =
A4(3, 3) A%4(3, 3). Since, kyrx x4, and x, $300 ppm,
we have

DEND2(1+akT/kz) (1—|—kT/kz)—l.

The characteristic time for energy to diffuse a distance /
with diffusion constant Dy is

tp~P/Dg= (?/Dgz) (1+kr/kz) (14akr/kz)"t. (6.11)
Giffard, Hatton, and Truscott (1971) have found a

(6.10)

frequency dependence in 7% throughout Regions ITI-A
and III-B which is not consistent with Ty« {p < (1/Dg)
and any choice of 1<a<2. A recent theoretical cal-
culation by Redfield and Yu (1968, 1969) has given
a=1; this result predicts Dz~Dry, or that there is no
frequency dependence in 7. As mentioned above, the
direct measurement of Dz and Dr by Hunt and Thomp-
son (1968) gave Dy=42Djz, or as2. This discrepancy
between theory and experiment is unsettled. We take
tp=T1~10% sec at v=20.0 cm3/mole and find /~0.003
cm. This is a relatively short distance. It is not charac-
teristic of the size of the sample chamber; it may be
characteristic of the typical distance between structural
defects. The energy delivered to the structural defect is
converted at the defect into an excitation that can cross
the sample chamber, with a typical dimension 1 cm,
in a time much less than 1000 sec. It seems likely that
the energy conversion process at the defect converts the
energy in the particle motion excitations into phonons.
This conversion process very probably involves the ‘He
impurities. It is possible to construct plausible models
for what is going on in the vicinity of the defects,
however, there isn’t adequate experimental data against
which to test these models.

Giffard (1968) has constructed a model for the
energy conversion process to phonons which also ex-
plains the temperature dependence that leads to Region
III-B in terms of the phase separation process. In
Giffard’s model, the transition from the behavior of
Region ITI-A to that of Region III-B occurs at 7'= T'pg.
The analysis Giffard made of his data verified this
point. However, Giffard calculated the phase separation
temperature using the critical temperature, T¢=0.35K,
from the experiment of Edwards, McWilliams, and
Daunt (1962) at 35 atm. Adams and Panczyk (1968)
have found dT¢/dP=—1.7 mK/atm. Using a critical
temperature appropriate to pressures of about 100
atm, T¢~0.23 K, we find that 7Tps for a mixture
of 100 ppm is about 50 mK. Thus the phase separa-
tion temperature for the mixtures investigated by
Giffard is substantially below the temperature range
available in his experiment. We believe there is no
compelling reason to associate the behavior observed in
Region ITI-B with the phenomena of phase separation.

6.3 Dilute *He in “He Mixtures, Theory

There are as yet no experiments on systems with
small concentrations of *He in ‘He. The excitations in
these systems are:

(1) the mass fluctuation waves which represent the
motion of a ®He atom through the *He medium; the
mass fluctuation waves carry a nuclear moment and
are fermions; their magnetization is the Zeeman system,

(2) vacancy waves. characterized by an excitation
temperature of about 15K at P=230 atm, and

(3) a phonon gas characteristic of nearly pure ‘He.
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Fi1c. 42. Ty vs T for dilute 3He in
4He. In this limit, the 3He is a mass T
fluctuation wave in an inert *He back-
ground. The mass fluctuation wave is
the spin carrying object. We expect the
behavior shown here for 77 vs T71.

The interactions among these excitations are:

(1) Zeeman—vacancy wave; through the agency of
3Ca;

(2) Zeeman—mass fluctuation wave; through the
agency of 3C;. (This is the analog of the Zeeman-—
tunneling interaction in nearly pure 3He);

(3) Masss fluctuation wave-phonon; and

(4) Mass fluctuation wave-vacancy; this is the
analog of the tunneling—vacancy wave interaction in
nearly pure He.

Let us sketch the major features we would expect for
this system. The Zeeman system and mass fluctuation
waves are coupled by 3C;. For a magnetically dilute
system, we have

T1’1NM2x373{[1/<1+w027'32) H[4/( 1+4wi’rs?) :l} ’
(6.12)

where 757 =w3(V, 4) +ws(4, 4), ws(4, 4) is the tunneling
rate for a He atom through ‘He, w3;(V, 4) is the tunnel-
ing rate for a *He atom into a vacant neighboring lattice
site, and

Ty R Moxsrs {1431/ (1+wi'rs?) ]
+3[1/(14+4wir?) I}, (6.13)

Equations (6.12, 6.13) embody both the Zeeman-—
vacancy and the Zeeman-mass fluctuation wave inter-
action. Both of these interactions convert the Zeeman
energy to particle motion energy. The energy in the
particle motions, the vacancy waves, and the mass
fluctuation waves couples strongly to the phonons. The

result for Typp is exactly the same as that discussed
above for the nearly pure *He case, except for the factor
of concentration. We have

1/ Tarrpe (Dm/m)* (hsT/R) (T/6)5.  (6.14)

The factor of concentration is absent because the par-
ticle motion system which receives the energy from the
Zeeman system is exactly the same size as the mass
fluctuation system. Compare this case with that of
nearly pure *He where the particle motion system is
the tunneling system, and the mass fluctuation system
is smaller by x4.

In Fig. 42 we show what we believe would be the
results of a typical T4 experiment on dilute 3He in “He.

7. NONDILUTE *He-*He MIXTURES
7.1 Introduction

In this section we will discuss: (1) the excitations
that exist in solid helium specimens with greater than
1000 ppm “He, (2) the results of experiments performed
on these systems, and (3) the analysis of these experi-
ments to provide information about the excitations in
solid mixtures.

Solid mixtures have the same basic excitations as
those in pure *He and in dilute mixtures; i.e., phonons,
vacancy waves, and tunneling excitations. The primary
theoretical problem is that of understanding how the
dilution of the *He component of the system will affect
the characterization of the excitations and their motion
through the crystal. Consider an intermediate mixture,
#~0.5. Almost all of the 3He atoms will have at least
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F1c. 43. Phase diagrams for mixtures. The figure shows the P-T diagrams for pure *He (x3=1.0), pure ‘He(x3;=0), and 8%, mixture,
and the P-V diagram for all three. The 3He diagram has been intensely studied (Mills, Gilly, and Sydoriak, 1961; Scribner, Panczyk,
and Adams, 1969, and references therein) because of the information obtained about both the Fermi liquid and solid spin entropies.
The minimum pressure for formation of solid *He occurs at 77=0.32 K, and »=28.9 atm. In the case of *He (Schuch and Mills, 1962;
and references therein) a minimum pressure of 25 atm is required for the formation of the solid. The melting properties of solid mixtures
have been recently reviewed by Tedrow and Lee (1970). The diagram for the 8%, mixture is from the work of Miyoshi, Cotts, Green-
berg, and Richardson (1970). According to the Gibbs phase rule, the presence of a isotopic mixture permits the extra degree of freedom
that allows the mixed hcp—bce phase shown in P-T space for x=0.08. The molar volume of a mixture is essentially given by the linear
combination of the two partial components [V (%3, P) o~V (x3=1, P) + (1—x3) V(x3=0, P).] (Mullin, 1968).

one *He atom as a nearest neighbor, and most atoms
will have several He neighbors; therefore, at low tem-
peratures, the mutual tunneling of SHe atoms will be an
important mechanism for relaxation of the magnetiza-
tion. (We expect the equivalent of Region I-B in pure
#He to show up in mixtures.) At higher temperatures,
we expect the analog of Region I-A in pure 3He, i.e.,
if there are enough vacancies present we expect a region
in which vacancy wave motion is important. Careful
NMR studies of the mixtures will provide information
about the parameters which characterize the vacancy
wave excitations and the tunneling excitations.

In order to understand the changes that occur in the
solid mixtures as pure *He is diluted further and further,
we must first understand how the phase diagrams of the
mixtures, P-V-T, vary with concentration. We compare
various mixtures at the same molar volume; pure 3He
at 20.5 cm3/mole occurs at 100 atm, whereas 8%, *He in
‘He at 20.5 cm?/mole occurs at PR30 atm. Figure 43
shows the melting curve of pure 3He, pure *He, and the
mixture x3=0.08. We see that as the mixture goes from
x3=1 (pure *He) to x;=0 (pure ‘He):

(1) the region of the P-T plane occupied by the
bce phase decreases,

(2) the pressure required to form a solid mixture at a
fixed volume decreases,

(3) the intermediate mixtures, 0<x<1, have an
hep-bece mixed phase region, and

(4) at sufficiently low temperature, the mixtures
undergo an isotopic phase separation.

We will not discuss the physics of the phase diagrams in
Fig. 43 in any detail. But we want the general feature
of the phase diagram to be available for use in our
interpretation of the experiments.

In that which follows, we tailor the expressions de-
rived above to describe relaxation in pure *He to suit the
present case, and then discuss the expreimental results
for Ty, Ts, and Dz measurements. We then summarize

the new information obtained about the excitations in
mixtures at the end of the discussion.

7.2 T Relaxation, Theory

In Fig. 44 we show the results of a typical 7' experi-
ment on a dilute 3He—*He mixture; v=20.6 cm3/mole,
x3=0.02. As in the case of pure *He, the behavior of T}
is ordered by 7! into several regions.

Region I-A. In Region I-A, the relaxation process is
that of vacancy wave motion. The effect of dilution is
primarily to reduce the size of the average dipolar field
seen at the site of each spin. We expect that, all other
things being equal, 7% will increase with dilution as a
result of the weaker coupling of a spin to its environment
via 3C4. Let us examine the expressions derived to de-
scribe relaxation of the Zeeman system due to the
presence of vacancy waves. From Sec. 4, we have Eq.
(4.1)

T = (2M,/3) {[rv/(1Hwitrv®) 1+ [4rv/(14-4wdrv?) 1} .
(7.1)

We modify this equation to make it appropriate to
nondilute mixtures. (1) Ignore for the moment any
concentration dependence in 7y7%, the rate of *He
tunneling into a vacant lattice site. (2) Perform the
lattice sum called for in the second moment only, over
the lattice sites occupied by *He atoms; the second
moment for mixtures becomes

Mz(V, x)=x3M2(V, x4=0) (7.2)

We therefore carry over the formalism derived for
pure *He and the attendant interpretation of experi-
ments; we make two modifications of the formalism,
Mxs is to replace M, and 7y is replaced by 7y,

v l=zxpws(V, M), (7.3)

where w3(V, M) is the rate of tunneling of a *He
particle in a mixture, denoted by M, into a vacant
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neighboring lattice site. This change in the microscopic
frequency, ws(V, 3)—ws;(V, M), and the mixture de-
pendence of xy=xy (M) are the only changes in 7v.
Region I-B. In Region I-B, the behavior observed
for T is that characterizing relaxation of the Zeeman
system to the tunneling system. In this region, vacancy
waves and/or phonons couple the tunneling excitations
to the lattice. In the spirit of the discussion above of
dilution in Region I-A, we attempt to carry over the
formalism developed for pure He. We observe that the
fourth moment involved in the time evolution of 3¢,
contains double summation [Eq. (A2.11)7] over the

10 T I !
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F1c. 44. T, for Mixtures. The variation of 7 with inverse
temperature for the mixture x;=0.02 is compared with that of
pure *He at the same molar volume, V'=20.6 cm?®/mole, and
precession frequency, wo/2r=3.5 MHz. The curve for the 29,
mixture comes from the data of Miyoshi, Cotts, Greenberg,
and Richardson (1968), and that for He is based upon inter-
polation of the T measurements of Reich (1963). We note that
in Region I-A, (771<0.7) the vacancy contribution to the
relaxation process is decreasing exponentially with temperature
in both cases and with about the same slope. However the dilute
mixture is in the hcp phase, whereas the pure specimen is in the
bce phase. In the case of pure 3He, the activation energy for
the vacancies in the hcp phase is about 509 greater than that
of the bcc phase so that we conclude that the activation energy
for vacancies decreases as the specimen is diluted at constant
volume in the same crystallographic phase. The pure *He specimen
displays no minimum in 7' because wr is greater than the preces-
sion frequency wo. The minimum in T occurs for the dilute
mixture because the effective correlation frequency due to the
tunneling has been decreased by the dilution process wr(ws)o
(#3) V2wr(ws=1).

lattice sites occupied by He? spins so that
M4(V, x) =x32M4(V, :L=0)

Carrying over the definition of wr from Appendix A.2,
we have

wr(x) =[Ma(x)/M(x) ]

=[w?M(x=0)/asM>(x=0) ]2 (7.4)

or
wr (%) = (x3) V2wr(x3=1).

With this effective correlation frequency and the same
modification of M» as we had above, My (x3) = x3M,, we
find

MQ(.’X?: 0)
(x3)1/2w7'(x= 0)

o= G o[- (25

(using the Gaussian approximation).

We anticipate that some modification of these results
will occur in the dilute limit, x3—0, for then very few
*He atoms have 3He neighbors, and we expect the
tunneling motion of single *He particles through the ‘He
matrix characterized by w3;(4,4) to govern the relaxa-
tion. As x3—0, the rate of relaxation of the Zeeman
system is given by Eq. (6.12), where we let 7p— 0,

Tl_l = %(xs) Mz(x4= 0)
X {[rs/ (14w?rs?) 1+ [4rs/ (14+4wi’rs?) 1},

where 7371=2w3(4, 4). Thus we expect that as x; goes
from nondilute concentrations, 0.95>x;>0.05, toward
dilute concentrations the source of the motions which
will contribute to Ty will go from *He—*He tunneling,
Eq. (7.5), toward SHe—*He tunneling, Eq. (7.6). Of
course in the extremely dilute limit x3< 1000 ppm, we
may also regard the ®He atoms as mass fluctuation
waves. But even before this limit is achieved we expect
to see evidence in T for the *He—*He tunneling motion.

Region II. In the limit of nondilute mixtures where
mass fluctuation waves do not propagate, the relaxation
of energy dumped into the tunneling system occurs
through coupling to the vacancy waves and/or the
phonons. The treatment of relaxation in this region
would be qualitatively similar to our treatment of
Region IT in Sec. 4. Behavior characteristic of Region 11
has yet to be observed in the preliminary experiments
on the nondilute mixtures. Hence, we will not discuss
Region II behavior for the nondilute mixtures in detail.

Tit=3(m)

(7.5)

(7.6)

7.3 T, Experiments, Results

Figure 45 shows the variation of 73 with inverse
temperature for mixtures with 23=0.08 and 0.02, V=21
cm?®/mole, and wp=3.5 MHz. The solid line is the be-
havior which would be observed for pure *He under the
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F1c. 45. T, for Mixtures at various concentrations. The

figure shows 77 measurements by Miyoshi, Cotts, Greenberg,
and Richardson (1970) for the mixtures x;=0.0194 and 0.0778
at V=21 cm3/mole compared with the relaxation rate for pure
3He at the same precession frequency, 3.5 MHz. The open circles
and open squares correspond to measurements of the relaxation
rate for the hcp phase, and the solid circles and squares are
measurements in the bce phase. For this molar volume there
are rather wide temperature ranges over which the bce and hep
phase exist simultaneously. The relaxation rates observed in
the mixed phase region have two components; a rapid one due
to the contribution of the hcp phase which has the higher activa-
tion energy for vacancies, and a slower component from the
fraction of the specimen in the bce phase. The relative amplitude
of the two components varies continuously with temperature as
the mixed phase region is crossed. For x;=0.0778, the specimen
ultimately becomes completely a bce solid at low temperatures
for this molar volume, and for x;=0.0194 the specimen becomes
a hep solid at low temperatures. The minimum in 7% occurs
at higher temperatures for the hcp component than for the
bce component, as expected. The plateau value of 73 in region
I-B increases rapidly with decreasing *He concentration as a
result of the weakening of the local dipolar field through the
dilution process.

same conditions. Only Region I is seen in the data. For
this particular sample, two relaxation rates are meas-
ured; i.e., Mz(t) decays back to M;(0) as the sum of
two components with different characteristic times. This
occurs because the molar volume we have selected lies
in the mixed phase region of Fig. 43. At the high-tem-
perature end of the diagram, most of the sample is in
the bee phase, with a relatively low value of ¢; as the
temperature is lowered a large fraction of the x;=0.02
sample occurs in the hcp phase and ultimately all of the
specimen is hep with a relatively high value of ¢. Thus
there is a steep decrease in 7y, 7v < exp[ —B¢(M)7]. By
¢(M), we mean the excitation temperature for a va-

cancy in a mixture designated by M. The qualitative
description of the behavior of 7% due to the presence of
vacancy waves observed here is exactly the same as the
qualitative description of 7% in pure *He in Region I-A.
Information about 7 and ¢ extracted from measure-
ments of 7, D, and T, in mixtures is summarized in the
concluding section of this discussion.

In Region I-B, we observe a temperature-independent
plateau given by the relaxation rate T47~'. We plot the
T data as a function of wy from Region I-B in the same
way we plotted this kind of data for pure *He. See
Fig. 20. Figure 46 shows a plot of [71(w=0)/T1(wo) ]
versus (w?/wswr?) for all points measured in both phases
and for concentrations x;=0.32, 0.08, and 0.02. The
parameters 71(wo=0)=Kx"J(V)/V?] and wr are
calculated using the value of J for the same molar
volume for pure He® and Eqgs. (A2.18 and A2.19).
There are no adjustable parameters used in constructing
the plot in Fig. 46. The fit of the mixture data to the
spectral function of pure 3He is excellent. We take this
as strong evidence that the value of J is unaffected by
dilution. This interpretation is useful for the under-
standing of the problem of SHe doped with small quan-
tities of *He. Early attempts to explain the effects of
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I16. 46. Reduced plot of 7} for mixtures. The figure shows a
plot of [71(0) /T1(wo) ] versus (wo/we)?, obtained in the measure-
ments by Miyoshi, Cotts, Greenberg, and Richardson (1970).
The values of 7'1(wo) are those measured at various molar volumes,
*He concentration, and Larmor frequencies in thermal region
I-B. The quantity w, is the effective correlation frequency of
the diluted pairs of spins we= (x3)2wr(a3=1) and 71(0) is the
zero-field limit of the relaxation rate given by Eq. 7.5 in the
text 71(0) =K o[ J(V)/V2]. In plotting the points in the
figure, the values of J used for each volume were obtained from
these measured in pure *He, Fig. 32. There are thus no adjust-
able parameters in making the plot shown. Since the data for
mixtures fit upon the data of pure *He in this plot, we conclude
that the tunneling frequency between 3He pairs with a fixed
molar volume is unaffected by the variation in the background
medium from a predominantly 3He lattice to a predominantly
‘He lattice. At the larger values of the Larmor frequency, the
data points for the most dilute specimens, x;=0.02, depart from
the data obtained in richer mixtures. This is possibly evidence
for the tunneling motion of %He atoms with “He neighbors,
since 7y varies as wo? [rather than as exp(constant xwe?) .
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“He doped in *He in Region II used arguments that the
average neighbor distance of pairs of ®He atoms around
the site of a “He atom decreased, thereby making large
changes in the average value of J for such pairs. The
result being discussed here on nondilute mixtures im-
plies that J remains essentially constant for gross
dilution. We therefore conclude that it probably does
not change significantly for very dilute *He in *He.

We note that in Fig. 46 the data from the 29
mixture deviate from the universal relaxation curve in
the limit of large values of wo/wr. Because wy? o« &3, the
data points for the x3=0.02 mixture are at large values
of we?/wr?. We suspect that these deviations are evidence
of the influence of *He tunneling with the “He. Let us
suggest a model that incorporates this idea. We argue
that as the very dilute limit is approached, 1000 ppm <
23<0.05, a He atom at lattice site R sees two kinds of
3He neighbors: (1) neighbors which are single isolated
*He atoms, and (2) neighbors that are members of
clusters of ®He atoms of two or more. The isolated *He
atoms move with the characteristic frequency w;(4, 4)
and contribute a dipolar field at R which fluctuates
with frequency w3 (4, 4) . The clusters of *He atoms move
with a characteristic frequency w., which is a compli-
cated average of J and w3(4,4), and contribute a di-
polar field at R which fluctuates with frequency w,. Of
course there is a continual transfer of particles between
these two groups by virtue of the very tunneling proc-
esses that give rise to the fluctuations in each group but,
if the rate at which particles are transferred between
the two groups is small compared to the rate of fluctua-
tion of the field due to each group, then the groups can
be regarded as independent, and the contributions of
the groups to the dipolar field at lattice site R are
independent. We can estimate a concentration at which
this independence of motion occurs. The cross section of
a ®He atom for forming a pair is approximately zAZ;
thus the mean free path for pair formation is \,=
A/za3. The rate at which a single *He forms pairs is

Wp= Aw3(4, 4)/>\p= Zx;;w3(4, 4) .

We require that the rate at which pairs are formed by
singles be small compared to the rateat which the dipolar
field due to the single fluctuates, i.e., w,Kws(4,4) or
%321, This criterion suggests that at x;—19%, the
picture of groups of *He atoms having substantially
independent motions has some validity.

Let us adopt this picture. We regard the 3He atoms
moving in the neighborhood of lattice site R as being
made up of two independent components. Each com-
ponent of the field particles contributes an independent
dipolar field at R with a characteristic time dependence.
Then, the relaxation of the spin at R will be dominated
by whichever fluctuating field has the strongest Fourier
component at wo. The spectral function for the 3He-*He
tunneling goes approximately as

(225/3) My[ 75/ (1+wirs?) ]
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and the resulting rate for relaxation in the high fre-
quency limit, wers>>1, is

T1_1(3—4)2(10/3) (stz/woz'r?,). (77)

On the other hand the relaxation rate due to He? pair
exchange is

T4 (3—3)~ (3m) 302 (M o)
X[exp (—w/2x307%) ] (7.8)

in the equivalent limit (a3) ! (wo/wr)2>1. The experi-
mentally observed relaxation rate will depend upon the
relative strength of the two independent fields so that

T Jep=[e/T1(3-4) I+ [(1—0)/T1(3-3)], (7.9)

where ¢ is the concentration factor describing the num-
ber of isolated spins. The character of the high-frequency
dependence of the spectral function due to 3-4 tunneling
is much milder than that of 3-3 tunneling, w;2 rather
than exp[— (we?/2x507%) ], so that eventually as wp
increases the (3-4) rate dominates the relaxation proc-
ess. The motion of the isolated singles dominates the
relaxation process. The data shown in Fig. 46 for 29,
3He in the hcp phase has an wg® dependence for 7 in
high fields. The same data fits the Gaussian correlation
function model of exchange in low fields. Both of these
results are in qualitative agreement with the discussion
here.

Region II. The characteristic properties of Region 1T
have been observed in only one published experiment
on mixtures, that of Garwin and Reich (1964a) at
V=193 cm?® and x,=0.01. The relaxation time varies
as 777 and is possibly the direct phonon coupling with
the *He tunneling bath. The “He concentration is
sufficiently large that the mass fluctuation waves do not
propagate so they can’t transfer the energy from the
tunneling system to the phonons. In the same paper,
the authors report a very interesting heat capacity
measurement. A sequence of 90° pulses is applied at
intervals long compared with 7z but quite short
compared with 7T3. (Each 90° pulse dumps a calibrated
amount of heat into the energy reservoir.) The magni-
tude of the signal following each pulse is proportional
to the temperature of the Zeeman system which is in
equilibrium with the tunneling bath but not the lattice.
The heat capacity obtained in the analysis of this
experiment was 350 times the heat capacity of the 3He
tunneling reservoir. This result is perhaps the most
puzzling of any of the NMR experiments performed in
solid helium. A possible explanation is that the heat
capacity observed in the experiment is that due to iso-
topic phase separation. Edwards, McWilliams, and
Daunt (1962) have measured the specific heat of
mixtures and find an excess heat capacity above the
phase separation temperature, i.e., a precursor to the
phase separation which is sufficiently large to account
for the observed anomalous specific heat. However, it is
not clear how the spin system communicates its energy
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F1c. 47. T, for mixtures. The figure shows the values of
T in the bcc phase measured at V=21 cm3/mole for a mixture
in which x;=0.08 [Miyoshi, Cotts, Greenberg, and Richardson
(1970) ]. The data are compared with those obtained by Reich
(1963) at V=21.1 cm3/mole for x;=1.0. The two important
features that arise from the comparison are that: (1) in Region
I-A, (T71<1.5K™1) where the vacancy motion governs the spin
equilibrium time, the characteristic energy for vacancy activa-
tion is much lower than that of pure *He and (2) the temperature-
independent value of T for the 8%, mixture in Region IB is
(T71>1.5 K1) lower than the value of T3 for pure *He. The
latter result is not predicted from simple considerations of the
effects of dilution upon the tunneling motion of the pure *He
solid. If the important motion for the relaxation were the tun-

neling between 3He pairs, T2 would be expected to increase as
X512,

to such a heat reservoir without heating the lattice
first.

7.4 T, and Diffusion Experiments

In Fig. 47, we show the results of a typical T, meas-
urement on nondilute *He-*He mixtures. As in the case
of pure He, the behavior of T% is ordered by 7 into
two regions.

Region I-A. In Region I-A, both Dz and T behave
essentially as they do in pure He. As was the case of
Ty, we expect that the primary effect of dilution is to
decrease the local dipolar field from M, to «x3M,, thus
making 7 longer than it would be with the same va-
cancy wave motion in pure *He solid. We modify Eq.
(4.10) to take into account that only a3V lattice sites
are occupied by *He atoms in making the second
moment calculation. We obtain

_ 2005M 5 (x5=1) <§ +~E n n )
- 2T 21 T 14/
(7.10)

T

3w

where 7 is wory.

The diffusion coefficient that is measured in mixtures
does not reflect the spin dilution since, in this region, the
motion of the spins is due entirely to the presence of
vacancy waves in the system. The expression for pure
He? vacancy diffusion Dz(V, 3) « A%wy (3, 3) becomes
Dy= Azwv(3, 4), where wv<3, 4)%&)1}(3, 3) .

In Region I-B, the tunneling motion dominates both
T, and the diffusion process so that they become
temperature independent. '

Figure 48 shows the values of 75 vs T for V=210
cm?/mole and x;=0.08. As in the case of the T} for this
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Fi1c. 48. T, at various molar volumes for a dilute mixture.
The figure compares the values of T: obtained by Miyoshi,
Cotts, Greenberg, and Richardson (1970) for the dilute mixture
23=0.0194 at various molar volumes. In Region I-A, T71<1.2,
the activation energy for the vacancy wave motion is seen to
increase with molar volume as in pure 3He. For this particular
concentration, the solid passes through the bcc-hcp mixed
phase region into the pure hcp phase for volumes shown at
temperatures in Region I-A. At lower temperatures, Region I-B,
where the tunneling motion is responsible for the relaxation
process, T becomes independent of temperature. The variation
of T, with volume in this region is quite large for this concentra-
tion. In pure 3He, 7% increases from 15 msec to 30 msec when
the volume is increased from 20.1 to 21.1 cm3/mole (see Fig:
22). In this specimen the value of T3 increases by more than a
factor of 3 when the volume is increased only from 20.3 to 21.0
cm?® so that the rate of change of 7% with volume is twice as
great for the dilute mixture x;=0.0194 as for pure He. In the
static or rigid lattice limit, where there is no tunneling motion,
T, is of order 500 uwsec for x;=0.02 and V'=20. In the rigid-
lattice limit, T varies with volume as V2 so that T would only
increase by about 6%, in going from 20.3 to 21 cm?/mole. The ob-
served values of 7 then, are too large and show far too much
change with volume to be accounted for solely by the dipole
motion of the rigid lattice.

A plausible explanation is that the observed relaxation is due
to contributions from two independent field fluctuations so that
the observed value of T is the mixture relaxation rate of a
small number, a, of isolated spins and the relaxation rate of
(1—a) spins which see the effects of the 3He tunneling motion.

Ti—l |expt= (0/T2) lstatic"}’[(l _C) /szlmotion-
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concentration and volume, the relaxation process in
Region I is characterized by two exponentials in the
recovery time due to the existence of a mixed bcc-hep
phase solid. 7% for both phases decreases rapidly with
1/T due to the depletion of vacancy waves. Measure-
ments of 7% and Dz for mixtures in Region I-A have
been analyzed (Miyoshi, 1970) to yield the parameters
¢ and 7y for the mixture. The values for these param-
eters are summarized in the concluding part of this
section.

As the temperature is lowered to reach Region I-B,
the values of T and Dz become temperature independ-
ent. (Dz has not been measured in this region because
it is characteristically much too short.) The magnitude
of T is governed by the tunneling motion in the solid.
Figure 49 shows the values of Ts measured as a function
of x for various molar volumes. The solid lines are the
values of T, for the same molar volumes expected from
consideration of the dilution of 3He pair tunneling;
the T equivalent of Eq. (7.5). In the high-field limit we

find
T2—1= lgo_(%"r)UZEMg (x) /wT (x) :Iy
or

T2_1=J§Q(%ﬂ') ”2x31/2[:M2(x3= 1)/0)1’(363: 1) ]. (711)

Thus, in the data shown in Fig. 49 we expect To~ax;712,
But T does not increase as x3 gets smaller.

We argue that this data gives evidence for the exist-
ence of a frozen-in component of the dipolar field. By
this we mean that in the nondilute mixtures, there are
particle clusters in which the potential energy at a pair
of lattice sites is such that the interchange of the
particles localized near these lattice sites is not ener-
getically advantageous. The interchange may lead to
an inequivalent energy for the system which is greater
than the energy before interchange. Thus the motion
must involve unlike pairs. The motion of the 3He—*He
pair will be frozen out by energy considerations. Al-
though it is difficult to quantify this concept, its con-
sequence is that there is a contribution to H, at R
which is due to essentially static 3He atoms. These
static *He atoms give an independent dipolar field at R
that contributes to 7. We write

TZ—I lexpt = (1TI2—1 Istatic"l" (1_ a) TZ—I 'motion,

where T3 |motion 1S given by Eq. (7.11), and ¢ is a
measure of the static component of the local dipolar
field. We may use the data shown in Fig. 49 to obtain an
estimate of a. Certainly T% |static is not less than the
natural dipolar linewidth,

[T2(xs) T Inaturaled(xs) Rdwa(as) V2,

Now from Abragam we have T |natura 10 usec. Thus
we have

[T2 (x3) ]—1 lnatuml% 105(953) 1/2-

For the data at x3=0.08, V=20.2 cm3/mole we have
T [motion220 msec and T |expy02 msec. Thus, we
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F16. 49. The concentration dependence of 75 The figure
shows the values of T in Region I-B for the mixtures measured
by Miyoshi, Cotts, Greenberg, and Richardson (1970) at various
molar volumes. T: decreases with concentration rather than
increasing as might be expected from considerations of dilution
on the 3He-*He tunneling motion shown with the dashed lines.
The measured values of 73 at the minimum dilution measured,
13=0.0194, remain greater than that predicted for the rigid
lattice (shown with solid lines), and display a strong variation
with change in volume.

calculate a(3X10*)4(1—a)350=300 or ¢ <0.02. For
plausible values of a it is possible to understand the
results of the 7Ty experiment.

Our description of the Ty and T data on nondilute
mixtures is not very satisfactory. To understand the 7}
data, we introduced a local dipolar field due to the mo-
tion of isolated *He atoms. To understand the 7% data,
we have introduced a local dipolar field due to frozen in
3He atoms. The need for this “ad hoc” approach to the
nondilute mixtures in Region I-B provides compelling
evidence of the need for a good first principles theory.
When we have such a theory we will know how to
extract wy(4,4), J, etc., quantities of great interest,
from the experiments.

7.5 Properties of Excitations in *He-*He Mixtures

In this section we summarize the properties of the
excitations in solid *He—*He mixtures which have been
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measured in the NMR experiments described in Secs.
4 and 7. The properties of the excitations in pure *He
are discussed at the end of Sec. 4. In principle, the class
of experiments discussed in Secs. 6 and 7 provides a
wealth of information about the excitations in mixtures.
In practice, the new information that is reasonably
well established is limited.

Tunneling Frequency. The experiment of Miyoshi,
Cotts, Greenberg, and Richardson (1970) indicates
that at fixed molar volume J is essentially independent
of concentration. This result is made plausible by the
results of theories of *He—*He mixtures (Glyde, 1968)
specific heat data (Sample and Swenson, 1967).

Mass Fluctuation Waves, ws(3,3) and ws3(4,4). The
experiments of Giffard and Hatton (1967), Giffard
(1968), Bernier and Landesman (1969), Bernier
(1970), and Reich and Yu (1969) suggest that v=20.0
cm?®/mole ws(3, 3)~4J. Data on these excitations re-
mains limited. There have been no experiments on mass
fluctuation waves in x3—0 mixtures. Such experiments
would measure w3(4,4). There is some evidence for
effects due to ws(4,4) in the data of Miyoshi, Cotts,
Greenberg, and Richardson (1970). The usefulness of
that data is presently limited by the inadequacy of the
theory on nondilute mixtures.

Vacancy Waves; (M) and wy(3, M). It is gratifying
that the nondilute mixture experiments have provided a
substantial amount of new data on the nature of va-
cancy excitations in quantum crystals. From the experi-
ment of Miyoshi, Cotts, Greenberg, and Richardson
(1970), we are able to determine the vacancy excitation
temperature and vacancy tunneling frequency for
SHe—*He mixtures approaching x;—0. In Fig. 50, we
show the excitation temperature for vacancy waves as
a function of pressure for pure *He (see Fig. 29) and
3He—*He mixtures with x3=0.32, 0.08 and 0.02. We
have plotted the data against pressure in order to illus-
trate a simple point. The energy required to create a
vacancy in bee 3He is very nearly Pv. This energy is just
the energy required to create the empty lattice site
that is the vacancy. Let us look first at the bee data on ¢.
At P=30 atm, x3=1, ¢85 K we estimate that the
energy required to create a vacancy in bee “He is about
5 K. The vacancy waves are a substantial contributor to
the thermostatic properties of the bcc phase even in
‘He. Unfortunately bcc *He exists only in a small
P-T sliver of the phase diagram so that thermostatic
verification of this result is virtually impossible. For
P25 atm and x3~0.02, the solid mixture is in the hcp
phase. The excitation temperature for vacancies in
hcp “He is about 12 K~15 K. Should the vacancy waves
contribute noticeably to the thermostatic properties of
hep “He? From the data of Edwards and Pandorf (1965)
on hcp “He at 25 atm, we have 0p®(7T») =23 K and
for which ¢® =15 K. This is to be compared with bcc
SHe at 20 cm®/mole, P=105 atm, for which Edwards
and Pandorf find 8p3(7T») =24 K, and for which ¢®=
14.5 K. Thus we expect the vacancy excitations in

static properties comparable to that which they make
for bee *He at P=105 atm. At melting in hcp *He at
25 atm, the ratio of the vacancy and phonon contribu-
tions to the specific heat is about 19. Thus the vacancy
wave excitations don’t seriously affect the thermo-
static properties of hcp *He. At melting in bee *He at 105
atm, the vacancy wave excitations make up 509, of the
specific heat. Actually the values of ¢ derived by Sample
and Swenson for bce ®He come from an analysis in which
all excess specific heat beyond (7/65°)3 is assumed to
be due to vacancies. This certainly isn’t true, since
6p(T) <0p° at T>1 K. Thus the ¢ calculated by Sample
and Swenson must account for too much of the excess
specific heat. The ¢ of Sample and Swenson should be
less than the NMR values.

The values of the tunneling frequency for a 3He
particle into a neighboring lattice site in solid “He,
wy (3, 4) is essentially equal to wy(3, 3). This observa-
tion follows from the fact that Miyoshi, Cotts, Green-
berg, and Richardson (1970) found D, in mixtures,
D= Dyxy, to be in good agreement with the results of
Reich in pure *He. Thus we conclude that wy(3, 3)=~
wy(3,4); the vacancy bandwidth is the same size in
both 3He and *He crystals.

It is appropriate here to make some comments on two
recent suggestions about a superfluid state in solid ‘He.
Chester (1970) has suggested that the possibility of
such a state is not inconsistent with the known prop-
erties of the solid *He ground-state wavefunction. Fur-
ther he has suggested that the ground-state wavefunc-
tion for the superfluid solid state should have ground-
hcp *He at 25 atm to make a contribution to the thermo-
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F16. 50. Vacancy excitation temperature vs pressure. The
excitation temperature is calculated using the data from the
following sources: For hcp 3He: A, Reich (1963), diffusion;
For bee *He: X, Reich (1963), diffusion; A, Richardson, Hunt
and Meyer (1965), Ti; v/, Giffard and Hatton (1967), T1i;
O, Sample and Swenson (1967), specific heat. For bce *He—"He
mixtures: [J, Miyoshi, Cotts, Greenberg, and Richardson (1970),
T, and diffusion, (x3=0.32); @, Miyoshi, Cotts, Greenberg and
Richardson (1970), T; and diffusion (x3=0.08). For hcp *He—*He
mixtures: @, Miyoshi, Cotts, Greenberg, and Richardson (1970),
T and diffusion (x3=0.02). For bcc *He and bee *He, the vacancy
excitation temperature is less than PV. For hcp *He and hcp
iHe, the vacancy excitation temperature is about PV. There
should be lots of vacancies in bec ‘He.
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F1c. 51. Ground-state vacancies.
Chester (1970) has suggested that
in addition to thermally excited

b (P)

vacancies there are ground-state
vacancies, i.e., two bands of vacancy
excitations. The thermally excited
band is depleted as 77—0, the ground-
state band is not. Andreev and
Lifshitz have suggested that ¢(P) =
¢o—zt—0 at some pressure; i.e., the
thermally excited vacancy band be-
comes a ground-state vacancy band

qSO(P) zt

0

at P,. i 2
3 R . i
(a) (b)

state vacancies. We take this latter statement to mean
that the single-particle density peaks at N-#, equiv-
alent points in space, the lattice sites, but that in the
vicinity of each lattice site we have less than one par-
ticle, (ng)=N/(N-+n,). The excitation spectrum for
the solid would have two vacancy wave bands as
shown in Fig. 51a. The ground-state vacancies, whose
number is 7,, move through the crystal just as do the
thermally activated vacancies. At 7=0K, there are
only ground-state vacancies in the system. Andreev
and Lifshitz (1969) have made a similar proposal.
Andreev and Lifshitz have suggested that the lower
edge of the vacancy band approaches 0 at some pressure.
See Fig. 51b. At pressure P, the ground-state vacancies
can occur. The NMR experiments we have discussed
permit us to consider the likelihood that there are
ground state vacancies. Since ground-state vacancy
waves must move through the solid in the same way as
thermally activated vacancies, they must contribute to
a T; measurement in the same way as thermally acti-
vated vacancies. It is harder to form thermally activated
vacancies in solid “He than in solid *He; it is harder to
form thermally activated vacancies in hcp *He than in
bee *He. Thus in the absence of pathological behavior on
the part of “He, we may use bcc *He as a test of the above
hypothesis. We believe there are no ground-state
vacancies in bce ®He. The data of Giffard and Hatton,
and Giffard discussed in Sec. 4 shows relaxation due to
thermally activated vacancies at concentrations of 1074
Therefore the number of ground-state vacancies in
solid He at ¥=20.0 cm?®/mole is less than 107“4N;
ny/N <1074,

The theory of thermally activated vacancy excitation
should also show the possibility of ground-state vacan-
cies if they exist. The possibility of these excitations is
ruled out by any plausible calculations with the theory
(Mullin, 1971).

8. CONCLUDING REMARKS

Because of the large zero-point motion of the particles
in a quantum crystal, there are particle motion excita-
tions in these systems: (a) tunneling excitations,
(b) vacancy wave excitations, and (c) mass fluctuation
waves. We have described these excitations and the
physics they give rise to that is observable in NMR
experiments. We have also described the results of
NMR experiments and the information that is obtain-
able from them about the particle motion excitations.

Our description of the particle motion excitations has
stressed the interplay of theory and experiment. A
qualitative idea of the nature of the excitation leads to
the expectation of certain phenomena to be observed,
perhaps by NMR. The observation of the expected
phenomena in turn leads to a quantitative understand-
ing of the excitation. From the observation of unex-
pected phenomena, one can gleen new and interesting
aspects of physics. The progress that has been made in
understanding the excitations in quantum crystals has
followed closely this pattern of mutual feedback be-
tween theory and experiment. We are hopeful that
future work in this field will follow this same pattern
and that it will be as profitable as what has gone before.
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APPENDIX A: RELAXATION TIMES
A.0. Introduction to T

In this Appendix we calculate the rate for the relaxa-
tion of energy between the various systems of excita-
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tions that are present in the quantum crystals. These
calculations amount to an exercise in the application
of a basic computational scheme due to Abragam (1961)
that is reviewed below. The application of this compu-
tational scheme to Zeeman—vacancy relaxation was
apparent following the observation by Goodkind and
Fairbank (1959) of the high-temperature behavior of
T:. The experiments of Reich (1963) and Garwin and
Landesman (1964) in which the Zeeman—tunneling
relaxation was observed were interpreted by Garwin
and Landesman and Hartman (1964) using the com-
putational scheme of Abragam. At the same time, Gar-
win and Landesman introduced the multiple bath
picture of the relaxation process that has been so
fruitfully applied to solid ®He. Garwin and Landesman,
and P. M. Richards (1965) have described the tunnel-
ing-vacancy wave relaxation process. The relaxation
rates calculated below have not previously been des-
cribed in the literature.

Consider a solid which is inhabited by two kinds of
excitations, designated 1 and 2, which are weakly
interacting with one another. By weakly interacting
we mean that the 1-system and 2-system come to ther-
mal equilibrium within themselves on a time scale
short compared to the rate at which energy is trans-
ferred from the 1 system of excitations (1-system) to
the 2 system of excitations (2-system). We write the
Hamiltonian for the solid as

JC=3C;+3Co+FC1o= FCo+3Cs2, (A0.1)

where 3Co=3C;+3C,, 3C; and JC; are the Hamiltonian for
the 1-system and 2-system respectively, and 3Cy, is the
interaction between 1 and 2. The form of Eq. (A0.1)
contains the crux of the physical arguments we want to
make about the system. We assume that the excitations
in the 1-system are in thermal equilibrium among
themselves and move independently of the excitations
in the 2-system (which are also in thermal equilibrium)
except for 3Cy,. That is we have

[5C1, 3¢2]=0 (A0.2)

but [3C;, 312 ]7£0 and [3Cz, 3C12 0. We will choose 3C;»
to be a plausible analytic representation of the inter-
action of the 1-system with the 2-system.

The rate at which energy is lost from the 1-system to
the 2-system due to 3Cy is calculated as follows:

1. Compute d(3C,)/dt,

d(30,)/di=d Tr 5¢10/dt= Tr 56,  (A0.3)

where ¢ is the density matrix for the system.
2. Use the interaction representation to do the cal-
culation of the density matrix Then, we have

d(30,)/dt= Tr 5e16*, (A0.4)

where 6¥= exp (i3Ct)o exp (—1i3Cot), and in general we
write O*(¢) = exp (13Cot)O exp (—173C). In the inter-
action representation, the equation of motion for

a*(t) is:

the* (8) = [3C*(2), o*(2) J. (A0.5)

The solution to this equation by iteration to second
order in A7 is

a*(t) =a*(0) — é/' [3Cw*(¢), a*(0) ] dt’

0
n (é) / Car / T (1), [0 (), o*(0) T1.

(A0.6)
From this equation we find ¢*(¢) to be

<% ____i % % _1.2
#*(1) == 2 [30*(), o*(0) T+ (h)

X [ afTsest(0), [30t@), *O) T (407)
0

3. Now we specialize Eq. (A0.7) because of the noise
character of 3C10*(¢) : (a) 3C*(¢) is regarded as a noise
source. Therefore we want to calculate d{3¢;)/dt for an
ensemble of 3Ci’s or equivalently we want to use a
¢*(t) in Eq. (A0.4) which is obtained by ensemble
averaging Eq. (A0.7). We denote ¢*(¢) appropriately
ensemble averaged by (¢*(¢) )a. In general, quantities
that are ensemble averaged over JCj» are denoted by
brackets, { )a. (b) Assume ¢(0) and 3Ci*(¢f) are un-
correlated. (c) Replace ¢*(0) under the time integral
in Eq. (A0.7) by o*(¢). (d) Put the upper limit in the
time integral in Eq. (A0.7) at 4. Carrying out
(a)-(d) we obtain

¢ - (3

X / “dr Tr Fea([3Ce*(8), [3Cw* (¢), o*(£) J] -
0

(A0.8)

4. We assume that the 1-system and the 2-system are
in thermal equilibrium throughout the relaxation proc-
ess (as the 1-system loses energy to the 2-system), and
that the density matrix has the form

o*(f)= exp [—Bi(t) ]3C1 exp — (8:3Cz), (A0.9)

where B1(¢) '=/kpT1(2), and Be, the inverse temperature
of the 2-system, has a fixed value because the 2-system
is attached to an external reservoir at inverse tempera-
ture Bz. The 1-system relaxes from a higher temperature
to the temperature of the 2-system. The 2 system is in
equilibrium with a reservoir. As B:1(f) approaches B;
we have

o*(t) = exp —[B1(¢) —B2]3Cs exp —B23Co
[ 1—B1(t) —BeJoo(Be), (A0.10)

where go(B2) = exp (—pB:3C) is the equilibrium density
matrix for H, at inverse temperature B.. Using Eq.
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(A0.10) in Eq. (A0.8) leads to

atsey/de= =0~

X / " v gesen (1), [Beu* (1), 5() TT)  (AO.11)
0

where (+++)= Trexp (—83C)++-.
We may obtain an alternative expression for d(3¢;)/d!
by using Egs. (A0.9) and (A0.10) directly, i.e.,

_ d Tr 5@10’*(0 _

‘i@c
at M d Tre*(t)

— (d/dt)Bi(¢) (A%C:?),
(A0.12)
where

(A%;*) = ((3C1— (31))*).
5. The quantity 7T, is defined by the equation
Bu(t) = — T '[Bs(t) —B2]. (A0.13)

This time, Ty, is called the intrinsic time. It is the
characteristic time for decay of energy from the 1-
system to the 2-system when: (1) these two systems
are an isolated pair, and (2) the 2-system remains
always at the equilibrium temperature, Fig. 52. Now
recall that the specific heat of the 1-system is given by

um iyt B B
(A0.14)
where we have defined the energy constant ky by
kv=dE,/dB.

The combination of Egs. (A0.11)-(A0.13) and the
definition of %; leads to

T t= (A%y)!
X f i dr(3e1(0) [3C12*(0), [3Ci*(£), 3¢:(0) J1), (AO0.15)
0

where we have used the fact that the expectation value
in the integral depends upon the relative time only, to
simplify the integrand. Equation (A0.15) may be
brought to the form

Typ'= }bl}kl_l /w dt{[3¢1(0), 3C12*(0) J[3¢:1(0), 3Cx*(¢) 1)

0
or

1 0
Ty t= {2/31_1/‘; dT<P12(t)1712(t+7') >7 (AO.16)

where p12(2) =[3€1(0), 3C12*(¢) 1. This is the fundamental
formula for the intrinsic time. See also Eq. (A0.22)
below.

Let us specialize Eq. (A0.16) by writing the per-
turbation 3Cy in the form

ICro= Myhs, (A0.17)

(a)

(b)

2 > R

F16. 52. Topologies. (a) The topology for the calculation of
the intrinsic time. (b) The topology for the calculation of the
topological time.

where /; depends upon the coordinates of the 1-system
only, and %, depends upon the coordinates of the 2-
system only. We write 3Cio*() = hy*(¢) [1h2* (¢) |2, where
by A*(£)|1 we mean % time evolved according to 3¢;.
Now we write the expectation value in Eq. (A0.16) in
the form

(pra(t) pra(t+7) )= (pa(8) pr(t47) ) |1(Pa(2) b (t4-7) o)
=Gi(1) Fa(1), (A0.18)

p(t) =[301(8), (1) ]

-+ )= Trexp (—B3C,) -~

The function (p12(£) p12(#+7) ) is called the correlation
function. Its separate pieces, Gi(¢) and Fy(¢) are also
correlation functions. The perturbation to the 1-system
due to the 2-system is through 3C; driving the term 4,

in 3Cj5. Let us carry out Fourier analysis of the motion
of Gy,

where

and

G1(?) = | dwet™'Gi(w) = (p1(2) pr(t4+7) 1

. Gi(w) = (2m)1f dteGy(t).  (A0.19)
Then we find
Tpi= ﬁl;krl /0 © a0 f dewe™ Gy ()
= ()™ [ doGr(w) Fa(—a),
where
Falw) = f * AUF () eiot, (A0.20)
0

Thus the product of the power spectrum of % and p;
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yields the relaxation rate. The function
f del(w)F2(-w)/ﬁ2k1

is called the spectral function. Its separate pieces Gi(w)
and F»(w) are also spectral functions.

Suppose that we have calculated T2 and we want to
know Ty, the rate at which energy is transferred from
2 to 1. Using energy conservation for the coupled sys-
tems we must have

d((3e1)+ (3C2)) /dt=0.
Now (3C1) is given by (3Ci)= Tr3Ciexp (—B%C) so
that
d(8s)/dt= (d(31)/dB) b= uPs,
d(3Cy)/di= (d(3C2)/dB) Bo= Fsf.

Thus energy conservation implies B1= — (ko/k1)B. We
define Ty by the equation of motion for B,

Be=—To*(B—PB1)
and using Eq. (A0.13) we have
— T (B1—B2) = (ko/k1) (T1) 7 (B—PB1)

Toy™t=Tr  (ky/ks).

and

(A0.21)

or
(A0.22)

This result is in agreement with the intuitive notion of
energy flow. For k>>k,, a relatively small change in 34
implies a large energy flux to the 2-system and a
relatively large change in Bz, or Tor >T

In the remainder of this Appendix we illustrate the
application of these general results to various systems of
coupled excitations. There are four excitations, phonons,
vacancy waves, tunneling excitations, and mass fluc-
tuation waves, with which we deal. Thus there are
(4-3)/2!=6 basic interactions among these excitations.
See Table III.

A.1 Zeeman-Vacancy Wave Relaxation

We will discuss in some detail the relaxation of the
Zeeman system to the vacancy system as an illustration
of the basic ideas which are developed in a general way
above. We take the Hamiltonian describing the coupled
Zeeman—vacancy system to be

J=3Cz4+3Cv+3zv. (A1.1)
Here the Zeeman system is taken to be described by
Iz= ‘—Hg‘; i (A1.2)
The vacancy system is described by
$y= 2 ev (k) Cy*(k)Cy(k), (A13)

k

where Cy*(k) is defined in Eq. (3.7) of the text. The
motion of a vacancy wave through the lattice does not
directly perturb the Zeeman system. The Zeeman-—

vacancy interaction comes about because of the modula-
tion of the dipole-dipole interaction between the
nuclear magnetic moments by the vacancy motion.
Thus 3Czv is given by the dipolar Hamiltonian

42

Hzv=53a= >, > By1Sy4,

q=—2 i<j

where the B’s are a function of the relative position of
particles 7 and 7, and the S’s are a function of the spins of
particles ¢ and j. The dipolar Hamiltonian, 3¢; is
discussed in great detail by Abragam (1961) and
Slichter (1963).

The correspondence of this problem with the general
problem discussed above is made by associating 3¢
with 3Cz, 3C; with 3Cy, and Hi, with 3C;. We consider the
relaxation of the Zeeman system to the vacancy system.
Then, the basic equation, Eq. (A0.15), involves the
time evolution of 3Ci*(¢)

3(:12*(0 = mzv*(t)

(A1.4)

42
= Z Z exp (iﬂCot)Biquijq €xp (—Z.JC()t).

q=—2 i<j
(A1.5)

It is assumed that in 3Co=U3Cz+3Cy, the 3C; piece time
evolves the spin part of 3Czy, and the 3Cy piece time
evolves the position part of 3Czy, i.e., the B’s. We have

exp (#3Cot) B(0).S(0) exp (—123Cqt)
= exp (i0Cyt) B(0) exp (—i3Cyt)
X exp (#3Czt) S(0) exp (—1i3Czt)

=B()|vS(1)]z (AL.6)
and
Kav(D)= 5 5 Byt S (D)

=2 i<j

Il

5 5 But(1)rS:(0) exp (—iga), (ALT)

=2 i<j
since S3;%(¢) |z= S:;4(0) exp (—iguwot). So the correlation
function called for in Eq. (A0.15) is given by
(Pre(t) pra(t47) )= 2 X exp (—iguwor)
qq’ i<j
X exp [—i(g+q")wit]
X (B:;1() B, (14-7) [3Cz, S3;2(0) J[5Cz, S5;¢'(0) J).
(A1.8)
We proceed further by using the following steps:

(a) The correlation between p(f) abd p(t--r) is
taken between a given pair of spins at ¢, and the same
pair at t+r.

(b) The B¥s are spherical harmonics so that only the
term g= —¢’ contributes in >4,
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TasLE III. Interaction matrix.®

Phonon Vacancy wave Tunneling Mass fluctuation wave
Phonon D,
Vacancy wave (A-4) : phonon scattering D,
from the mass fluctuation
and lattice distortion
Tunneling (A-3) : phonon modulation of the vacancy wave tunnel- D(3,3)

ing process interferes with the regularity of the spin

arrangement

(A-6) : phonon scattering
from the mass fluctuation
and lattice distortion

Mass fluctuation wave

(A-5) : mass fluctuation
wave interferes with the
regularity of the spin ar-
rangement

Dmr(4)

8 There are four excitations and 4 X3/2!=6 interactions among them.
The intrinsic rates for transfer of energy among the four systems of excita-
tions by the six interactions are calculated in Appendix A. The part of the
Appendix dealing with each interaction is noted. The diagonal components

(c) The commutator of S? with Hz has the simple
form

[543z 1= — ghiwnSi;.
From (a)-(c) it follows that

(A1.9)

1 iy
Tzvi= 2 k7t 2 ¢ (fiwn)? X (S:7(0) Si77(0) )z

ﬁ/2 q===2 <J

X /w dt(Bijq(O)Bij—q(t) >V (All())
0

It is conventional to write this result in the form

Tzvh1=]1(w0) v+]2(w0) Vv, (Alll)

where

T o) v= f " Gul)y exp (—igent) df, (A1.12)

0

Gi(t)v=2 [(w0)*/kz](B:(0) Bi; (1) )v

<g
X {(S8:#(0)S:7(0) )z, (A1.13)
and
Gy(t)y=4 g_[(woy/kzj (Bi*(0) Bii (1) v
X (S:2(0)S:72(0) )z. (A1.14)

We assume that the B correlation function has a simple
time dependence

(B:;2(0) Bs;~2(t) v = (B:2(0) Bi;~%(0) )y exp (—t/7v),
(A1.15)

where 7y is a characteristic time related to the vacancy
motion in the solid which we will discuss in detail
below. After a straightforward but considerable com-
putational effort we can show that for a powder

Gy(t) =1M; exp (—1/rv), (A1.16)

of the interaction matrix are the self-interactions that would appear in
the self-diffusion constants; in the case of the phonons the self-interaction
is seen in the thermal conductivity.

and

Gg(i)=%‘M2 exp(—t/rv), (A1.17)
where
Mz= 3 [(w0)*/kz]] B:2(0) [28:(0) Si;71(0)  (A1.18)

i<j

is the well-known Van Vleck second moment of the
dipolar field. The second moment is given by

Mz"—‘- (9/20)’)/4ﬁ2 'E.) [1/] Rf_'Rj |6:|

Using Eqgs. (A1.12-19), we may write Eq. (A1.11) in
in the simple form

Tov™'=3M>{[rv/(1+wirv?) 14[4rv/ (14deirv?) ).
(A1.20)

(A1.19)

This equation provides an explicit example of the basic

- ideas discussed in the text (Sec. 4). If we have the

qualitative dependence of 7 on the temperature,

lim 7y—0, and lim ry—+ o,
T->+o0 T-0
then
lim Tzy i~ ( 10/3) MZTVNO)
T->+o0
and

lim Tz i~ (4/3)M2 (wova)—lNO.

T-0

At both extremes of wory, the relaxation time goes to
—+ . A minimum occurs in T at wery=0.62, i.e., when

. the basic microscopic frequency, 7v71, is comparable

with the “looking” frequency of the spins.

The tunneling rate for vacancy waves. The rate for
tunneling of a ®He particle into a neighboring vacancy
site is given by

Ty l=xypzws(V, 3). (A1.21)
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TaBLE IV. Parameters used in the calculation of 7% at ¥'=20.0 cm3/mole at all temperatures.®

zwv (3, 3)
half-
Yo A a?b bandwidth 6p ¢d J /27 M,
cm3/mole A (R)~? K K K MHz 108 (rad/sec)?
20 3.51 2.03 1.1 29 14.5 1.0 5.67
21 3.56 1.84 1.5 27 11.3 2.2 5.13
22 3.62 1.69 1.7 24 9.5 4.6 4.67
23 3.67 1.55 2.0 22 7.8 8.6 4.27
24.7 3.76 1.32 2.3 18 5.5 25 3.71

2 For the purposes of the numerical calculation which illustrate the
application of the results in Appendix A we have calculated 71 at V =20.0
cm3/mole at all temperatures, Fig. 53. In this table we show the parameters
that were used in that calculation. We also show the half bandwidth for
vacancy waves using the undistorted single-particle wavefunctions of

Here xy is the concentration of vacancies, z is the
number of near neighbors, and ws;(V, 3) is the frequency
for tunneling of a SHe atom into an adjacent empty
lattice site in a pure *He crystal. In Eq. (A1.21) the
factors xyz are the probability that one of the z near
neighbors of a ®He is empty (occupied by a vacancy).
We estimate the frequency of tunneling of a He atom
into a vacancy

w(V, 3) =3[ dx¢r(x) T (x)¢r (x), (A1.22)
where ¢r(x) is the wavefunction for a He atom at R
with a vacant lattice site at R’, ¢r/(x) is the wave-
function for a *He atom at R’ with a vacant lattice site
at R, and T'(x) is the kinetic energy operator. The factor
of § comes from the fact that the potential energy has a
similar off-diagonal matrix element but (PE)=3(KE).
The wavefunctions used to calculate w3(V, 3) should
be slightly distorted ground-state wavefunctions. We
ignore the distortion and calculate w3(V, 3) using the
ground-state wavefunctions of Sarkissian (1969). The
results of these calculations are shown in Table IV and
on Fig. 30.

A.2 Zeeman-Tunneling Relaxation

We consider the relaxation of energy from the Zeeman
system to the *He tunneling system. The physics of this
relaxation mechanism is the same as that of the Zee-
man—vacancy wave relaxation mechanism. The energy
in the Zeeman system is coupled to the motion of the
SHe particles by the dipolar interaction. In this case the
motion of the *He particles is that due to tunneling
instead of to the presence of vacancies.

We make the identifications

ICi—3Cz, (A2.1)

JCe—3Cr, (A2.2)

Sarkissian (1969). See Fig. 30.
b Sarkissian (1969).
¢ From the smooth curve on Fig. 28.
4 From Fig. 29.
¢ From Figs. 31 and 32.

and
FC1o—3Czr=3Cy. (A2.3)
Now the time evolution of 3C;s*(¢) is given by
+2
3C12(l) =3CZT(t) = Z Z exp (i:}C()t)Biquijq
=2 i<j
X exp (—13Ct), (A24)

where Ho= H;-+Hr. It is conventional at this stage to
write

exp (13Cet) B4(0).S9(0) exp (—13Cot)

=B1(0) exp (i3Cot) S2(0) exp (—143Cot), (A2.5)
and use
exp (73Cet) S2(0) exp (—13Cot) = exp (i3Crt).S2(0)
X exp (—i3Crt) exp (—iquot). (A2.6)

The time evolution of S;;2 due to Hz is well known,
exp (13Czt) S?(0) exp (—13Czt) = S2(0) exp (—iqwot).

The curious feature of this procedure is noticed by
comparison of Eqs. (A2.5) and (A2.6) with Eq. (A1.6)
above. Above, when the motion of the *He particles
was due to vacancies this motion was assumed to be
manifested in the time evolution of By, the spatial
part of JCaiporar- Here, when the motion of the °He
particles is due to tunneling, the motion is assumed to be
manifested in the time evolution of Sg-? the spin
part of 3Caiporar- The reason for this is simple. There isa
useful pseudospin Hamiltonian which correctly de-
scribes the effect of the *He tunneling motion. Thus that
motion can be regarded as a motion of the spin operators
only. No useful effective spin Hamiltonian has been
written down which describes the motion of the *He
particles due to tunneling into vacancies. Thus in the
treatment of the vacancy problem that motion has been
taken to reside in B;;2.
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This ambiguity in the treatment of the two processes
can be resolved by returning to Eq. (A1.6) above and
writing

exp (13Cet) B1(0).S9(0) exp (—173Cet)

=B4(0) S*(1)|v exp [—iguo(t) ], (A2.7)

where
Se(t) |y = exp (13Cyt) S2(0) exp (—1i3Cyt).
Then in Eq. (A1.10) one would have the factor
2 Bi;2(0) Bi;~1(0) (S7(0) Si7 (1) [v).  (A2.9)

<j

(A2.8)

Results identical with those in Appendix Al are
achieved by the approximation

(S454(0) Si79(2) | v)=(S:72(0) S:772(0) ) exp (—t/7v)
(A2.10)

[cf., Eq. (A0.15)7]. It doesn’t really matter where you
put the time dependence due to the vacancy waves
unless you are going to be serious about calculating the
correlation functions.

Returning to the calculation of Zeeman—tunneling
relaxation we can follow the results in Appendix A.1
through the steps leading to Eq. (A1.11). We have

TZT—1=]1(O)O)T+]2((,00)T, (A27)
where
Jo(w)r= /°° G, (t)re~t dt, (A2.8)
Gi(Dr= (o) kz) g Bi;#(0) Bi71(0)
X (Si(0) S () |r)r, (A2.9)
and
Ga()r=(dot/kz) T Bi2(0) Bi~*(0)
X (S:2(0) Si2(0) |r)r.  (A2.10)

The time evolution of the S?s is given by 3Cr. It is
conventional at this stage to expand S?(¢) in Taylor
series for small ¢, i.e.,

S9(t) = (14-i3Cpt++ - +) S9(0) (1—i3Cptt-+ - +).
(A2.11)
Then, Eq. (A2.9) for Gi(£)r can be put in the form
Gi(r)r=3Ms— (M,/6)r>+---,  (A2.12)

where M, is the Van Vleck second moment defined in
Eq. (A1.19), and M, is the Van Vleck fourth moment
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given by (Van Vleck, 1948):

M= (v*3*/N){ 2 [3Ba*B;i?+2A4;2(Bji— Bri)?
Fn

+244A1(Bi— Bji,) (Bji— Br1) +2A4 x B, (Bj1— Bri) ]
XA (I+1) P4 2 2By 121 +1)2 =3 (I+1)]
k>3
+4Bt At 31 (I41)2 =351 (1+1)]
+Bi2d 241 (IT+1)2— 2 (I+1) 1]}

in which the quantities 4 and By are

(A2.13)

Ap=—3(1—3 cos? 0;,)ry°
and
Bij=3(1—3 cos? 0;)7;,~>.

The secohd and fourth moments have been evaluated
for bee and hep crystals, and are given by

22.796 (bee),
M,= X (10°/12) sec™® (A2.14)
22.610 (hep),
and
517.76 (bce),
M= X 101°(J2/V?) sec™ (A2.15)
951.68 (hep),

where V is the molar volume in cm3/mole. In evaluating
M,, the exchange interaction is assumed to exist only
between near neighbors, and only the terms of order
J% in (A2.13) are retained. The lattice sums used to
calculate (A2.13) and (A2.14) do not include the effects
of the large-amplitude zero-point motion. A correct
calculation of (A1.19) and (A2.12) would include the
expectation value of 7;;7% in the sum > w7 %(f) and
would be expected to decrease M, and M, in (A2.14)
and (A2.15) by about 4109, (Harris, 1971).

In order to evaluate (A2.8) and (A2.7), it is useful
to approximate the series in (A2.12) with a simple
function having the same Taylor series expansion for
small values of . Two such functions appear to be
useful, a Gaussian

Gi(7)r=M>/3 exp (—5wr®?), (A2.16a)
where
wr?= M4/ M,,
and a Lorentzian (Richards, 1970)
Gi(r)r= (My/3) (14w, (A2.16b)

where wr?=3$M4/M,. (If the next higher order term of
the series in (A2.12), 4 (Ms/72)7* were retained it
would be possible to justify a prererence for one or the
other of these expressions. However, evaluation of the
sixth moment has proven too formidable a task for
anyone to attempt. We will do the calculation including
both possibilities and compare the results of each with
the experiments.)
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In the case of a powder of crystallites, we have that
Gs(7) =4G1(7) so that Eq. (A2.7) becomes

Tor=J1(w0)r+J1(2w0)r.
Evaluation of (A2.8) then yields
Ji(wo)r= (3m) (M2/3wr) exp (—wi®/2wr?);

wrt= (M4/M>) (A2.18a)

(A2.17)

for the Gaussian correlation function, and
Ji(wo)r= (3m) (Ms/3wr) exp [— (wo/wr) J;
wrt=M/2M, (A2.18b)

for the Lorentzian correlation function. The relation
between wy and J for both correlation functions is

4.76J bcc

wp= Gaussian (A2.19)
6.487 hcp
3.36J bce

wr= Lorentzian (A2.20)
4.58J hcp

The imaginary component of the Fourier transform
of Gi(r) gives rise to a slight shift to the central fre-
quency of the resonant absorption and has been dis-
cussed in detail by Kubo and Tomita (1955).

A.3 Tunneling-Vacancy Wave Relaxation

We consider relaxation of energy from the *He
tunneling system to the vacancy waves. The basic
topology is shown in Fig. 37a. We make the identifica-
tion

3C—3Cr (A3.1)
a3y (A3.2)
5(312—>3CTV= —-h] Z Aa(RR/)O'R’O'Rr, (A33)

RR/

where Aa(RR') =a(RR’)—{a(RR’) ), and agg’ is zero
when a vacancy is at either R or R’ and 1 for both R
and R’ occupied by *He atoms. To do this calculation
it is most convenient to intercept the general develop-
ment above at (A0.15). The integrand in Eq. (A0.15) is

(5€1(0) [322*(0), [3Cr*(¢), 3¢2(0) 11)

= (3€12(0) [3€1(0),, [3€2(0), 3ex*(£) 11)
or from Eq. (A3.3)
(+iﬁ)2ﬁ2-72RE 2 (Aare (0) Aass (1) |v)v

R S8/
X (d%/d?) (Arr: (0) Ass () [r)r, (A3.4)
where Agp'=0g+0g. Substituting Eq. (A3.4) into

Eq. (A0.15) leads to

B s
TTV —+ kT ; , dl(AaP(O)AaP(t)lVﬁ,gtE
X{(Ap(0)Ap(&)|r)r, (A3.5)

where 3 p is a sum over neighboring pairs. Now we
separate the pairs into 3-3 pairs, 3-V pairs, and VV
pairs,

Aap(0) Aap(t) = (1—x)2Aass (0) Aciss (2)

+22(1—2) Aazy (0) Aasy (1) +22Aay v (1) (A3.6)
Using the definition of Aas; and Aazy, we have
Aaz(0) =as(0) — (@)=1— (1—2zx) =zx, (A3.7a)

Aasv(O) =agv(0) - <oz>=0— (1-—296) =— (1—290).
(A3.7b)
Aavv(O) = avv(O) - (a)= —14-zx. (A3.7C)

Now for the correlation functions involving Aas(f),
Aoz (t), and Aayy(t), we write

{Aaz3(0) Acess () )= (Aass(0)2)fss(£),  (A3.8a)
<Aa3v(0) Aagv(f) >= <Aagv(0) 2>fsv(t) s (A38b)

and
(Aayy (0) Aayy (1) )= (Aayy (0)2)fry(£), (A3.8c)

where fu(t), fav(f), and fyy(¢f) are time decaying
functions that have the general property that f(0)=1
and f(4)=0. Putting Eqs. (A3.7a, 7b, 7c) and
Eqgs. (A3.8a, 8b, 8c) into Eq. (A3.6) leads to

(Aap(0) Aap (D) v )v= (1—x)*(2x) %3 (1)
+2x(1—=) (1—22)for () +o*(1—22) vy (£).  (A3.9)
Keeping only the leading term in concentration, we get
(Aap(0) Aap () [v Yy =2afsy (1). (A3.10)

The 3-V pair becomes uncorrelated after the vacancy
has taken one step, where the mean time between steps
is 7y. For this physical process, we obtain for f3y(¢)

for() =14+ (t/rv) Jexp — (t/rv). (A3.11)

The time dependence (4p(0)Ap(¢)|r)r is generated by
the tunneling Hamiltonian and we write it as

(Ap(0)Ap(t) y=(A2(0) ) exp (—wr¥?). (A3.12)
Putting (A3.10, 11 and 12) into (A3.5) leads to
hJ? 0 ¢
Tyyi= 20 (Ap2(0)>/ dt(l—l— —)
kr 0 TV

2

d
X exp — (¢/7v) T2 OP (—er'l). (A3.13)

The above integral can be done in the limit wrry<<1,
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which is indeed the physically relevant limit. That is,
the motion of the vacancies is much faster than that of
the tunneling *He’s, i.e.,

Trv = — (8% kr) (22/7v) %: (4°P(0) )=2x/7v.

(A3.14)

The time 7y called for to evaluate this equation is the
time required for a vacancy to tunnel away from its
lattice site. This time is

TV—1=Z0)3(V, 3).’)61/ (A315)
for a vacancy in pure *He. Thus we have
Tryl= ZZwas(V, 3) (A316)

A.4 Vacancy Wave—Phonon Relaxation

The vacancy wave-phonon relaxation process is the
same as the mass fluctuation—phonon process which is
discussed at length in Part 6 of this Appendix. In this
case, the mass fluctuation associated with the vacancy
motion is Amgr= —ms. Thus we may carry over most of
the early results of Part 6 upon making the correspond-
ence

I—3Cp (A4.1)
33y (A4.2)
(A4.3)

3C12'—>3va=% Z Ale'lR‘z.
R

We may take over Eq. (A6.18) in the form
Typt=rky 12600xy (Am/m)*(h/rv)2(ksT/H) (T/6p)8,
(A4.4)

where xy= exp(—B¢), 7v '=2w3(V, 3), and Am/m=
—1. We have taken the mass fluctuation correlation
function for vacancy motion to have a Gaussian time
dependence with characteristic time 7y. At this point
our picture of the vacancy—phonon coupling begins to
differ from that of the *He-phonon coupling. We
imagine here that at t=0, the vacancies and phonons
are at the same temperature; the number of vacancies
present is

xy(Bp) = exp(—Bro). (A4.5)

The vacancy system is heated to Tv>7p by a mech-
anism which changes the energy per vacancy, but leaves
the number of vacancies unchanged. Thus we have

Ey=Nxy(Tp) (¢p+5ksTy),

where we take kpTy<<2zhiws(V, 3), the vacancy band-
width, about 6 K. The vacancies behave like classical
particles. It is the energy 2ks(Ty— Tp) that must be
dumped into the lattice by 3Cyp. Thus we have

dEv/di= (d/dBv) Ey=—4Nxvy(Br)Bv By

(A4.6)

(A4.7)

and
kv=3Nxv(8p)Br >

Using Eq. (A4.8) in Eq. (A4.4) leads to
Typi= 1730xV(Am/m)2(Tv—1) (ﬁ/Tvk[gT) (T/0D)6
(A4.9)

(A4.8)

A.5 Tunneling—=Mass Fluctuation Wave Relaxation

This relaxation process is exactly the same as the
tunneling-vacancy relaxation process. In this case, the
‘He particle motion through the lattice accomplishes
the same relaxation that the vacancy did above in
Part 3. We may take our Eq. (A3.16) in the form

(Trarr) ™t =2z2404(3, 3), (AS.1)

where w4(3, 3) is the tunneling frequency for a 3—4 pair
in pure *He, and «, is the concentration of *He atoms.

A.6 Mass Fluctuation Wave—Phonon Relaxation

To do this calculation most easily within the frame-
work discussed above, it is convenient to consider the
rate at which energy is transferred from the phonons to
the mass fluctuations. In the experimental observation
of this process it goes in the opposite direction. We make
the identification

Jer—o3p= 3 fiw(q) (Not+3), (A6.1)
q
3C—3Cuyrr, (A6.2)
and
3C12=5CPMF=% Z AmRixR2, (A63)
R

where Amp=mpr—ms. In terms of the phonon co-
ordinates Uiz is given by

Up=—i ; [Fico (k) /2msN 1128 ()
X[ar exp(+ik-R) —ait exp (—ik-R)] (A6.4)
and p(0) of Eq. (A0.16) is given by
p(0)=3% % Amg % ho(q)[agtaq, ur?]. (A6.5)

Upon using Eq. (A6.4) and the phonon commutation
relations we find four contributions to the commutator.
These are

p(0)=% > AmgrC(kE)
R

X {expli(k—K') - R][Fiw (k) — oo (k') Jartar
— exp [—i(k+k’) - R][Fico (k) +Hiew (k') Jaxtas™
+ exp [— (k+K') - R Fiw (k) +Fioo (k') Jaraw
+ exp [— (k—k') - R][ 7w (k) — Tico (K') JaxTa-},
(A6.6)
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where
C(kE') = {h[w(k)w (&) J/2/2m;N}é(k) - ¢(k’).
(A6.7)

We neglect the second and third terms (they correspond
to a 2 phonon direct transition), and combine the first
and fourth terms (they are Ramanlike terms). Thus
we have

p)=% % Amp (1) |ar % C(kk") h[w(k) —w (k)]
X{exp —[(k—K') - R+i(w(k) —w(k'){]+C.C) artas
(A6.8)

where Amg(t)|mr, the time evolution of the mass at R
due to the mass fluctuation waves, is the noise ampli-
tude for this process. So we write

P0)p() )= 1%/ (Amz (0) Amg () [arr )ur (pp(0) pp(1) )p
(A6.9)

where
(pp(0) pp(2) )= ka/) A(kR")
X {exp [i(k—k') - (R—R") ] exp (—iwwt)+C.C.
+ exp [i(k—k') (R+R’)Jexp (+iwwmt)+C.C.},

(A6.10)

A(kR) = —=3C (kR )2 (Fwrpr ) 2(mp+1) e,  (A6.11)
and

wr=w(k)—w(k’). (A6.12)

For a random distribution of the ‘He impurities, we
have

3 (A (Oyma (1) aer aer exp [+i(k—K)) (R=R) ]
= % (8mp (0) Amg (1) [sr)ar, (A6.132)

}%, (Amg (0) Amp (1) [mr)arr exp [i(k—k') - (R+R’)]
= %3 (Amz (0) Amp(t) |ar Yur exp [i2R(k—k') ]=0.

(A6.13b)

We assume the correlation function for Amgz in Eq.
(A6.13a) to have a Gaussian time dependence for
purposes of computational ease. We write

% (Amp(0) Amp(2) |srr e = xalrrm? exp — (¢/7.)%,
(A6.14)

where 7,77 =2w4(3, 3) ws(3, 3) is the *He—*He tunneling
time and x4 is the concentration of ‘He impurities. Thus

we have

Tpupt= (Wllz/hzkp).’m Z A (kk’)TC exp [——%(wkkm)?].
kk!

(A6.15)

To do the sums on % and %', we use the following
approximations:

(a) The phonon frequencies are assumed to be polari-
zation independent; 7iwx (k) =7fiw (k). Then, the polari-
zation sums yield D> _aex(k)en (B') =1.

(b) The acoustic approximation is made w(k)=
clk|.

(c) The sums on % and %’ go to integrals with the
replacement > ,—[V/(2r)%][ dk, and the integral over
k' is converted to an integral on K through the trans-
formation k=k’+K. ‘

(d) The occupation numbers for the states % and %’
are

(mi4-1) = exp () /[exp (a)—1]
me-x=[exp (m) — 117+ 0(K),
where x;=Bfick. We approximate (#;+1)74 by
(mA1)me= exp (xx)/[exp (ax) — 1T
The combination of steps (a)—(d) leads to
> A(kE)7s exp [— 2 (wprre)?]

kk!

= —92x12(V/2n%) (12c*/m2N?) (7o/N3) (ks T /Hic)7,

(A6.16)
where A= cr,, so that Eq. (A6.15) becomes
Tpart=—(2587/kp) x4(Am/m)?

X (h/7.)*(ksT/#) (T/0p), (A6.17)

where ficgp="Fkrfp, and N=[V/(2r)3Jérqp®. To find
the rate at which energy is transferred from the mass
fluctuation system to the phonons, we use Eq. (A0.22),

Trrp=Trur Y (kp/kur)
=— /aMp‘126OOx(Am/m)2(h/rc)2(kBT/ﬁ)(T/BD)G.

(A6.18)
For kar, we use the result from Eq. (D16)
Exr=karrB=— (24) (£) (2%) [fiwa(3, 3) 8.  (A6.19)
Thus for 2=8, we have
Tyrp~t=1500(Am/m)*(ksT/1) (T/0p)%. (A6.20)

A.7 Relaxation Topologies

There are seven distinct topologies for the energy
baths which are involved in the relaxation processes in
solid ®He. Five of these topologies are associated with
relaxation in pure *He, and two additional topologies are
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associated with relaxation in dilute mixtures of ‘He in
SHe. In this part we will work out the formula for the
experimentally observed long time in each of the
topologies. The intrinsic relaxation times which enter
into these formulae have been derived in detail in
Parts 1-6 above.

We begin by stating the general results which are
consequences of topology:

(1) When energy relaxes from the 1-system to the
2-system (which remains at the reservoir temperature),
the intrinsic relaxation time for the relaxation of energy
via the 1-2 linkage is defined by the equation

Bi=—Tu(Bi—Bs), (A7.1)

where B; is the inverse temperature of the 1-system,
and PBy=Pk, is the inverse temperature of the reservoir.
See Fig. 52.

2. When energy relaxes from the combined 0, 1-
system to the 2-system through the 1-2 linkage (see
Fig. 52), the observed relaxation time is given by

Tyt 1012‘—‘ T [ ky/ (kit-ko) ], (A7.2)

kn=dE,/dB (A7.3)

and E, is the energy of the #-system. We will call this
time the topological relaxation time to contrast it with
the intrinsic relaxation time defined above. This result
is achieved by writing equations of motion for the
temperatures of the three systems; i.e.

where

Bo=—To *(Bo—B1), (A7.4)
Bi=~+(a/To) (Bo—B1) — T (B1—Be), (AT.3)
Ba= (b/Ta) (Bi—B2). (A7.6)

We consider the following cases:

(A) Tw—+; energy conservation between 0
and 1 implies
k030+k131=0 or a=ko//€1.
(B) Tu—+ = ; energy conservation between 1
and 2 implies
kiBit-koBa=0 or b=ki/ks.

(C) For Tp<KT12 we can assume that 0 and 1 come
to a common temperature quickly. We use Eq. (A7.4)
in Eq. (A7.5) to write

B1+ (ko/k1)30= T (B1—PBe).

Now since systems 0 and 1 are in equilibrium in a time
fast compared to T, we have Bo=p1 and Bo=[; or

81= Cky/ (krt-ko) 17157t (B1—Bs2).

3. When energy relaxes from the O-system to the
1-system to the 2-system the observed long time is the
longer of the two times associated with the two possible

topologies, i.e., the longer of

Ty |01= Tu™,
or

1Y o= T [ky/ (kstko) .

for the topology in Fig. 52b. We make this observation
to stress that the decision about long times and short
times cannot be made without consideration of the
relevant topologies. It is inappropriate in comparing
0-1 and 0, 1-2 to consider only the comparison of 7p
Wlth T12.

In Table V, we list the seven topologies of interest
and the appropriate intrinsic time and topological time
for each. We denote the intrinsic time associated with
each topology by the labeling above. We denote the
various topologies by the letter sequence in Column (b).
The bar in the letter sequence indicates where the long
time occurs. In Row E, where the energy flow is Z—T—
V—P, the long time is due to the vacancy wave-phonon
link, ZT'V-P.

We complete this Appendix by writing out analytic
formulas for the seven topological times of interest.
We do this at ¥'=20.0 cm®/mole and attempt to indicate
(at least for this molar volume) the relative size of each
of the seven times over the temperature range of experi-
mental interest.

Topology Z-VP; Zeeman—Vacancy Relaxation. The
intrinsic time is given by Eq. (A1.20)

Tav™'=3(Ms/wo)g(n),

g(m) =n/(14n)+4[n/(1+490)],  (A7.8)

and n=wory. The lopological time is equal to the intrinsic
time. We do the calculations in terms of f defined by
wo=2m X 10%; f is the Zeeman frequency in megaHertz
(MHz). For M, from Eq. (A1.19) we have

My=3X108 sec™. (A7.9)

Here M, has the dimensions [ 7727; it is essentially the
square of the precession frequency of a nuclear moment
in the dipolar field of its neighbors. Define

wa=h"wH 10l 2 (2/A%) = 3X 104 sec™?,

(A7.7)

where

(A7.10)

where u=nuclear magnetic moment, z2=8, and A=
3.5X 1078 cm. The microscopic time in Eq. (A7.8), rv,
is given by Eq. (A1.21)

rv i=ayaws(V, 3) =6X 10 exp [—14.5/T ] sec?!,
(A7.11)

where we have taken ¢ from Fig. 29. The 71 minimum
occurs at T such that wery=31 or at Thwin=1.32 K for
Zeeman frequencies near 1 MHz. Note that the mini-
mum is mildly frequency dependent. At T'=Tmin,
g(n)~1, and we find

TN (Tiin) |2vOMs/wex5/f sect (AT.12)
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TasLE V. Topologies. For each of the topologies discussed in Appendix A.7 we show the topological diagram (a), notation (b), intrinsic
time (c), and topological time (d).

Intrinsic
Topology Notation relaxation rate Observable relaxation rate
Z-VP TZV*I 1yt ’ZV = sz_l
.
ZV-P Typ? Tt lyp=[ky/ (kz+ky) JTvp !
P
(2]
7 Z-TVP Tyrt Tyl gp=Tzr !
ZT-VP Try? Tt =[kr/(kz+kp) JTry?
TV ey =[kr/ (kz+kp) 1Ty
ZTV-P Typt Tt |yp="Lky/ (kz+kr+ky) 1Tvp™
ZT-MFP Trurt Tt ={ky/ (kz+kr) 1Tryr?
TMF e =Lkr/ (kz+kr) 1Trmr
ZTMF-P Tarpt T yrp = Lkagr/ (kz+ke+Ragy) 1T arp™

At T> Tuin, woryK1, T1 is frequency independent,
and given by

Ty (T3> i) = (10/3) Myry=10~% exp (14.5/T).
(A7.13)

At T< Twin, worv>>1, T1' is frequency dependent, and
given by

Ty (TK T wmin) =3 (Mz/wirv)
= (105/f?) exp (—14.5/T).

Topology Z-TVP; Zeeman—Tunneling Relaxation.
The intrinsic time is given by Eq. (A2.17)

Ty = [(21!') 1/2/3](M2/wT)h(x) ,

h(x)= exp (—3a%)+4 exp (—2a?)

(A7.14)

(A7.15)
where
(A7.16)
and

x=wo/wT and wT=4.76].

The topological time is equal to the intrinsic time. As
above we do the calculations in terms of wy= 27X 10%.
The value of M, is given by Eq. (A7.9). At V=20.0
cm®/mole, the exchange frequency, J, is about 0.5 MHz.
Thus we write x=wo/wr=Ff/4.8. For Eq. (A7.15) we
have

Tyr™'=16[exp— ( 2/18) +4 exp — ( f2/4.5) ] sec™.
(A7.17)

This relaxation time is temperature independent, since
the time characterizing the microscopic motion is
temperature independent. It is highly frequency de-
pendent. For f—0, we have

Tzr1( f—0) =80 sec™™. (A7.18)
For f—+- o, we have
Tort( f—+ ) =16 exp (—f2/18) sec™’. (A7.19)

At f=1, we have T1'~0.012 sec. At f=7, we have T\~
1.0 sec.
Topology ZT-VP; Tunneling-Vacancy Relaxation.
The intrinsic time is given by Eq. (A3.16)
Try'=2zxywy(3, 3), (A7.20)

where wy(3,3) is discussed in Part 2 above and in
Sec. 4. The topological time is given in Table V as

T py="[kr/ (kr+kz) JTrv Y, (A7.21)

where kr and kz are given in Appendix D. Using Eqgs.
(D4, 8) for kr and kz, we have

Tt v =[141% (w0/J) T 2xv20r (3, 3).  (AT7.22)
For wo=2mX 10% and J~0.5 MHz, we have
Tt ry=[1/(1+5 f*) Ravzwv(3,3).  (A7.23)
Using the numbers from Sec. 4, we find
T py=[10"/(14+3 )] exp (—14.5/T). (A7.24)



GUYER, RICHARDSON, AND ZANE Excitations in Quantum Crysials 593

This relaxation time is frequency dependent for f> 2,
and is very strongly temperature dependent.

Topology ZTV—P; Vacancy-Phonon Relaxation. The
intrinsic time is given by Eq. (A4.4)

TVP—1= kV_12600xV(AM/m)Z(h/Tv)2(kBT/fL) (T/O)G,
(A7.25)

where 7y '=2wy(3,3). For the fopological time we
have from Table V

Ty lvp=Lkyv/(kz+kr+kv) 1Tve ™,

where kz, kr, and ky are found in Appendix D. Using
Eqgs. (D4, 8, 12) for kz, kr, and ky we have

Ty lvp=2600xy (ksT /1) (T/6)°
X Gol+3243wiey) " (1/7v2), (AT.26)

where flw,=kpT. We have 7y =20y (3, 3) which per-
mits us to write

It ‘VP'—' 2600xv(kBT/fL) (T/())G
X [Zov (3, 3)/ Gud+372+30er) T (AT.27)

Certainly the values of wy and J of interest are in the
vicinity of 1 MHz. In the denominator of the topological
factor in Eq. (A7.27), we ignore the term proportional
to xy. At low temperatures, we have

TI_I(T<<1.O) IVP: 104xv(kBT/ﬁ) (T/())‘f
X {[zwy (3, 3) I/ (wi+127%) }.
For wo/2w=J/2r=1 MHz, we have

(A7.28)

Ty (T<1.0 K)|yp=8X 10477 exp(—14.5/T).
(A7.29)

We take the transition to this low-temperature behavior
to occur at 7" such that

ay(ksT/B)~(1 MHz),  ie., at T<0.6K.

This topology (ZTV-P) for relaxation is competitive
with topology ZT-V P for which the long time is given
by Eq. (A7.24). Equating these two times we have

It v Tt ve (A7.30)

down to T'=0.2K.
Topology ZT-MFP; Tunneling—*He Relaxation. The
intrinsic time is given by Eq. (AS.1) ‘ \

Tryrt=2z204004(3, 3). (A7.31)
The topological time from Table V is
T |rar=[ke/ (kz+kr) 1Toar™,  (A7.32)

where kz and kr are given in Appendix D. From Egs.
(D4.8) with the replacements J=0.5 MHz and wy=

27X 10%, we have
T3 |eare=[1/ (145/%) 122204(3, 3). (A7.33)

This topology is competitive with the *He-vacancy
topology (ZT-VP) at T, and x4 determined by equat-
ing Eq. (A7.24) and Eq. (A7.33), i.e., at

2axes(3, 3) =101 exp — (14.5/T).  (A7.34)
For wi(3, 3)~J=2wX10% we have
x4 exp (14.5/T)=10.3. (A7.35)

At x24=107% the transition from topology ZT-VP to
topology ZT-MFP occurs at T=0.7K; at x4=10"5
(10 ppm) it occurs at 7'=0.8K, at x,=10"* (1000 ppm)
it occurs at T'=1K.

Topology ZTMF-P; Mass Fluctuation W ave-Phonon.
The intrinsic time is given by Eq. (A6.20)

The topological time from Table V is
It |MF‘P= [kMF/(kZ—FkT—I—kMF) :ITMFP—I, (A7.37)

where &z, kr, and kyr are given in Appendix D. Using
Eqs. (D4, 8, 16) for kz, kr, and kyr, we may write the
topological factor as

122(wa(3, 3)Y/ {fow T4z wa(3, 3) 1)), (A7.38)

For w(3, 3)~J and x4 small enough that the x4 term in
the denominator doesn’t matter, again at 20.0 cm3/mole,
we have

T17 e =SX10%, T 1/ (1431 1.

This topology is competitive with topology Z7T-MFP.
The two topologies give equally long times at T deter-
mined by equating Eq. (A7.33) with Eq. (A7.39), i.e.,
at

(A7.39)

2204(3, 3) = 5X 10577 (A7.40)

or for wys(3,3)=J=27X10% at T/2°K. Thus at all
temperatures of relevance the long time in the topology
ZTMF-P is much longer than the long time in the
topology ZT-MFP.

Topology ZTMF-P is also competitive with topology
ZT-VP. We equate Eq. (A7.24) with Eq. (A7.39),
and find

SX16°T 7%= 10" exp — (14.5/T). (A7.41)
For x4=1075, the topologies give equally long times at
T~0.5K.

The notation used throughout this work is sum-
marized in Table VI and VII.

The results of the numerical calculations in this
Appendix are plotted in Fig. 53 of the text. On that
figure representative data is also plotted. Recall that
we have used no parameters in the theoretical expres-
sions for the various times; (we have used J, fp, and ¢
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TasrE VI. Diffusion constants.

Dz(3, 3) Diffusion of magnetization due to 3He tunneling in
a 3He medium

Dz(V, 3) Diffusion of magnetization due to the presence of
vacancies in a *He medium

Dz(V,4) Diffusion of magnetization due to the presence of
vacancies in a ‘He rich medium

Dr(3,3) Diffusion of energy in the tunneling system due to
3He-*He tunneling

Dy (V, 3) Diffusion of *He due to vacancies in a ®He medium

D;(V, 4) Diffusion of *He due to vacancies in a ‘He medium

Dy(3, 3) Diffusion of a ‘He (mass fluctuation wave) in a He
medium

D;(4, 4) Diffusion of a He (mass fluctuation wave) in a ‘He
medium

Dy (3,3) =Dz(V,3)

from experiment). The agreement between theory and
experiment is truly remarkable.

APPENDIX B: EQUILIBRIUM TIMES; T; THE
10/3 EFFECT, ETC.

B1 T,

Consider the Zeeman system established by Hy and
weakly coupled to the 1-system, a system of excitations
described by H;. Suppose that in the plane perpen-
dicular to the z axis, the magnetization has a com-
ponent

I.1(8) =1, cos wot+1, sin wo
= exp (—3C.t) I, exp (i3C,t) (B1.1)

which is along the x axis at /=0. To prepare the system
at =0 so that it has this nonvanishing | magnetiza-
tion, we write

tr(t) =0'o(t)¢rl
= exp {—[B.()3.—a(Hwl 1]} exp (—F13C1),
(B1.2)

where ao(¢f) has been arranged to describe the z com-
ponent of the magnetization through 8,(¢)3C, and the
1 component through «(f)wel/i. The function «(f)
describes the time evolution of {I1). To see this we look
at (I1), where

(I.)= TrI+(8)o(t)/Tr o(t) = Tr Lo*(1) /Tr o*(1),

(B1.3)
where
o*(1) = exp (i3C.t)a(¢) exp (—i3C.t). (B14)
For a(t)wil 1K1, we have
I;)=—a(t)wo Tr I,2/Tr 1, (B1.5)

where we have used Trace o*(#)=~~1, and the high-

temperature approximation, 8,(¢)3C.<<1. We define T,
to be related to the rate of change of «(¢), thus

dla(t))/dt=—Ts" |z (t). (B1.6)

Now we find T3 in terms of the coupling of Z to 1
through 3¢; by computing (d/d¢) (I1) in direct analogy
to the steps leading to Eq. (A0.16). We make the
replacement

JC—3Cz,

3C2—">5€1,
JC12—3Cz=3Cy.
Then, analogous to Eq. (A0.8), we have
. 1 2 0
(t)=(3) Re [ ar@Lseat ), earw), o) 1)

0

(B1.7)
For o*(¢), we take o*(¢) =[1—a(t)wol,]o.(B.)o1(B1),
where 0,(8) = exp (—B:3C,). Thus Eq. (B1.7) becomes
. 7 2 0
<Ix>=—w0a(t)<£> Re fo ar
X L[3Cz* (1), [3Cz* (1), I.1]).
Combining Egs. (B1.5, 6, 8) leads to
1

Tt |z1= =

h?

(B1.8)

X {Re [ at @m0, (), 10D / 1 m} .

(B1.9)

Of course this equation is recognized as being one which

TasrE VII. I'undamental Parameters and tunneling frequencies.

fp Debye temperature

¢ Vacancy excitation temperature

J the 3-3 pair tunneling rate, exchange
frequency

w3 (V, 3) Tunneling frequency for *He in ®He due to
vacancies

w3(V, 4) Tunneling frequency for 3He in ‘He due to
vacancies

w3 (V, M) Tunneling frequency for *He in a non-

dilute mixture, M, due to vacancies

w3 (4, 3) Tunneling of a 3—4 pair in *He
w3(4, 4) Tunneling of a 3—4 pair in ‘He
w3 (4, M) Tunneling of a 3—4 pair in a mixture, M
w3(3, 3) Tunneling of a 3-3 pair in 3He
w3(3,4) Tunneling of a 3-3 pair in ‘He
w3 (3, M) Tunneling of a 3-3 pair in a mixture, M

wy(3,3)[=ws(V,3)] Tunneling of a vacancy in *He
wy(4,4)[=ws(V,4)] Tunneling of a vacancy in ‘He
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F1c. 53. Quantification of 7. Here
we have plotted the results of applica-
tion of the formulas developed n A-7
for 77 at V near 201.0 cm3/molei’l We
show the experimental T'’s of Richard- _ _
son, Hunt, and Meyer1 (1965), and (-Z TVP (f=7.0)
Giffard and Hatton (1967) for com- |
parison.
0.l -
(Z—’TVP (f=1.0)
0.0l . 3
& (Richardson 1965), 20.4 cm®/mole, f=2.0
* (Richardson 1965), 20.4 cm3/mole, f=6.8
0,0 (Giffard 1967), 20.0 cm3/mole
0.001 | 1 | ] 1
0 | 2 3 4 5
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we can write in the form
1 0
Tit|a= . Re f dr(§(0)j(r))/Tr I.2, (B1.10)
0
where

J(7) =z, a(r) ]

A sequence of steps like those between (A1.10) and
(A1.11) leads to

T, |21=%J(0) +%J(w0) +J (2w0),

where J (wo) is defined in Eq. (A1.12).

Ty; Zeeman—Vacancy. The coupled Zeeman—vacancy
wave system is described by Egs. (Al.1, 2, 3). To
calculate T» we need 3Czv(¢) given by Eq. (A1.4). We

(B1.11)

have

z* () =3Czv*(7)
2
= 2> 2 By2(r)Si;7(0) exp (—iqwor).
— i<

The correlation function called for in Eq. (B1.10) is

(7(0)j(r) )= 22 2 exp (—igwor) exp [—i(g+q ) wot ]

X (Bij2(t) Bi¥' (t47) [z, Si;4(0) J[L2, Si;2(0) 1).

Now the spin commutations on the rhs of this equation
lead to a relatively complicated result compared to the
analogous commutations in Appendix A. Carrying out
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the details of the calculation we obtain
T57 |7y =3 (Mz/wo)
X {$n+50n/ (142 J+[n/ (14-492) T}

where 7= wory.

Ty; Zeeman—Tunneling. The coupled Zeeman—tunnel-
ing systems are described by Eqs. (A2.1, 2, 3). Using
these Hamiltonians in the calculation of 7 and the
Gaussian approximation for the tunneling correlation
function leads to

ot ’ZT= [(277) 1/2/3](M2/w7')
X {43 exp [—3(wo/wr)* ]+ exp [—2(wo/wr)?]}.
(B1.13)

(B1.12)

To get an idea of the numbers involved here, we
calculate Th at ¥'=20.0 cm®/mole in the we—0 limit;
see the end of Appendix A. We have

[T2(w0—0) I [zv= (10/3) Mory=[T1(w0o=0) I |2v

~10"% exp (14.5/T) sec™!
and

[T2(w0—-)0) :]'"1 |ZT= (10/3) (%ﬂ-) 1/2(M2/wT)
=[T1(w—0) J=80 sec™.

The Zeeman-tunneling process takes over from the
Zeeman-vacancy process at 7'=1.3K for w;—0.

B.2 10/3 Effect and Nonadiabatic Frequency Shift

The discussion of 75 up to now considered only the
real part of the Fourier components of the correlation
function in Eq. (B1.10). The real part taken in Eq.
(B1.10) gives the broadening of the spectral line in a cw
experiment. We note that in the limit of large fre-
quencies wo/wr>>1 the terms in exp — (wy/wr)? in Eq.
(B1.12)—0, and 757! reaches a high-frequency limiting
value which is three-tenths of the low-frequency value
so that

1/ Ty (wo/wr)>1]= (37)2(M2/wr)
= (3/10) [ T2(w—0) T

An identical result is obtained in Eq. (B1.11) in the
limit wery>>1. The physical interpretation of this is that
the spectral linewidth becomes narrower by a ratio of
10/3 when the characteristic frequency of the higher-
order terms in 3Cz;*(r) (for which ¢>0) at w=wp==quwo
are no longer coupled by the motion to the resonance
line at w=wo. An accompanying conjugate physical
process is a small shift in the position of the center of
the resonance line. This shift has a maximum displace-
ment from the line center, wo, in the high- and low-field
limits, when the motional frequency and precession
frequency are comparable. This effect may be calculated
by considering the contribution of the imaginary com-

ponents of the spectral function in (B1.11)

Sw,= Tm f Gy (r)eordr.  (B1.13)

When the powder assumption is used, the total shift,
dw, is calculated to be given by

sw=Tm / * [exp (= ieoor) Ga(r)+-2 exp (— 2itsor) Ga(r)] dr.

(B1.14)

In the case of tunneling motion and the Gaussian
approximation, the shift is given by (Kubo and Tomita,
1955)

o (- 2)0(2)
= —d{exp| — —
© 2wr P 2ewr? ¢ wrp

2
2w02>¢<&’_°>}, (B1.15)
w7 wr

o= [ e (a3 d

+2 exp (—
where

(B1.16)

The shift has its maximum value when wyJwr and has
the approximate value 7% rad/sec.

APPENDIX C: DIFFUSION

C.1 Introduction

Suppose the components of the magnetization satisfy
the macroscopic equations

M.=D;V°M ,+~vHo(2) M,— (M./Ts), (C1.1)
M,=D;V*M,—~Ho(2) M,— (M,/Ts), (C1.2)

and
M,=Ds;V?M ,— Tz [M.—M.(Bz)], (C1.3)

where Ho(x) =Ho+Gx is the magnetic field along the
2 axis; it is made up of a constant field, Hy, and a field
gradient pointing in the z direction and proportional to
x; see Fig. 5. In the equation of motion for M, and M,,
there is a decay term representing the intrinsic 7%
process acting among the spins, M1 returns to zero after
a 90° pulse in time 7. In the equation of motion for M,
there is a decay term representing the intrinsic 7%
process acting on the spins. This decay process returns
M, to the value it has when in equilibrium at tempera-
ture Bz, M.(Bg). In each of these equations of motion
there is a diffusion term, DzV2M,, which incorporates
the spin diffusion process into the description of the
magnetization; it is characterized by the magnetization
diffusion coefficient, Dj.

The pulse sequence which is used in a typical diffusion
experiment (90°-180°) looks at M.. From Egs.
(C1.1, 2, 3) we see that M. and Mz move independ-
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ently. It is clear that a diffusion experiment carried out
in this way measures the motion of M. and thus the
magnetization diffusion coefficient. But a diffusion
experiment which looks at the motion of M, measures
the energy diffusion. Because of the coupling of M,
through 3C; to the various excitation systems in the
solid, manifested in the 73 term in Eq. (C1.3), the
diffusion of energy can be quite complicated. We discuss
energy diffusion and magnetization diffusion in detail
in this Appendix. We want here to emphasize that there
are two diffusion constants, the magnetization diffusion
constant which is seen by looking at M1, and the energy
diffusion constant which is seen by looking at M.

Dyz; Magnetization Diffusion. Let us return to Egs.
(C1.1, 2, 3). We may use mi=M,+iM, to combine
Egs. (C1.1) and C1.2) in the form (Abragam, 1961)

(0mu/ot) =vyHo(x)mi— (ms/T2)+D,Vmsr. (C1.4)

The external field is a function of x so we write

ma(x, 1) =m*(x, t) exp (iwet) exp (—t/T2) (C1.5)
and find that m™* satisfies the equation
Im*/dt= (—~G) xm*+ D, Vim*. (C1.6)
If we ignore the diffusion term we have
m*(x, 1) =4 exp (—ivyG-xt). (C1.7)

By assuming that the diffusion term can be accounted
for by making A depend upon ¢ and substituting Eq.
(C1.7) into Eq. (C1.6), we find

LA (2)]/ot=— ADyG*2. (C1.8)

Thus A(t)=A4(0) exp (—Dv*G*/3) and Eq. (C1.7)
becomes

m*(x, 1) = A(0) exp (—iG-x¢) exp (—3Dy*G*?).
(C1.9)
Combining Eq. (C1.9) with Eq. (C1.5) leads to
ma(X,t)=A4(0) exp [—ivHo(x)!]
X exp [— (¢/T2) ] exp [— (Dy*G*/3)]. (C1.10)

The transverse magnetization given by Eq. (C1.10)
at x and time ¢: (1) precesses at the local Larmor fre-
quency, wo(X) =vHo(x); (2) is damped by the particle
motion coupling to m. through 3C,; as manifested in T';
and (3) is damped by the spin diffusion which carries
particles in the external field gradient. It is the last
term, (3), which we want to understand. Assume that
the external field gradient is along the x axis, Hy(Xx),=
Ho+gx. Then, in the absence of the diffusion process,
the spins at z=-a precess more rapidly than those at
z=—a by Aw=2vGa. An x-dependent gradient in the
transverse magnetization builds up, and when D is
turned on the particles are driven in the x direction by
the gradient. See Fig. 5. As time evolves, the y com-
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ponent to the magnetization builds up as « and ¢ in-
crease, so that

M, « cos (vGxt) (C1.11)

and the gradient which drives the magnetization in-
creases,

Ve, = (d?/dx?) my= D (vGt)*m,. (C1.12)
Thus we have
dmy,/dt= D (yGt)*m, (C1.13)
and
my(8) < exp [— (Dv*G*/3) ]. (C1.14)

We have repeated the above calculation, Egs. (C1.4-
C1.10) in this way to emphasize the source of the
dependence of the decay of transverse magnetization
on ! and G. As ¢ increases, the magnetization gradient
which drives the spins increases, Vm,=~vyGim,. It is the
time dependence of the gradient that appears in Eq.
(C1.10) and leads to # in the decay process.

Dg; Energy Diffusion. Consider the equation of
motion for M, Eq. (C1.3). M is not coupled to M 1, but
through the T term M, is coupled to the particle motion
excitations in the system. Since, M,xfB;, we write
Eq. (C1.1) in the form

Bz =+4+D;V?8;— Tz (Bz—B1).

The second term in this equation couples 8z to the
temperature of the 1-system. The particle motion
excitations that constitute the 1-system can diffuse.
Thus B; obeys the equation of motion

Bi=DV2B1+T177 (kz/k1) (Bz—B1). (C1.16)

We look at the solution of Egs. (C1.15) and (C1.16)
when 7'7;—0. In this circumstance, the Zeeman system
and the 1-system come rapidly to mutual equilibrium,
B1=PBz. Using Eq. (C1.16) in Eq. (C1.15), we have

(C1.15)

Bz+ (lél/kz)61= DzVBz+ (ki/kz) V381, (C1.17)
But since B1=8z and 61=Bz, we find
Bz=[(kzDs+ID1)/ (ks+kr) I35 (C1.18)

Thus the 2 component of the magnetization diffuses in
space with a diffusion constant Dg, called the energy
diffusion constant, given by

DEZ (kzDz+k1D1) / (kz+]€1) .

This result is easily understood. The energy in the
system is transferred rapidly from the Zeeman system
to the 1-system by T'z;7. Thus the energy spends the
fraction of its time kz/(kz+k) in the Zeeman system
where it moves with diffusion constant Dz and the
fraction of its time %1/ (kz+k1) in the 1-system where
it moves with diffusion constant D.

(C1.19)
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C.2 Diffusion Constants

There are three particle motion excitations in solid
¥He which can carry energy by diffusive motion. These
are the ®He atoms, the vacancy waves, and the mass
fluctuation waves. Here we estimate the diffusion
constant for each of these excitations and discuss the
dependence of the rate of energy diffusion on the to-
pology of the energy baths.

Dz (3, 3); Magnetization Diffusion due to Tunneling.
The diffusion constant for magnetization, Dy, appears
in both the motion of M1 and M,. Dy is given by

Dz(3,3)=47(3,3) A%, (C1.20)

where A is the near neighbor distance, J is the tunneling
frequency, and Az(3,3) is a constant of order 1. A
calculation of Dz from first principles requires first
that a formal expression for D; be obtained. This is
accomplished by placing the system in an external field
and computing the response of the magnetization to
the field. The magnetization diffusion constant has
been calculated by several workers (Redfield and Yu,
1968, 1969). The results of these calculations are all
similar and give

Az(3,3)=4.2/2n. (C1.21)

D;(V, 3); Magnetization Diffusion due to Vacancies.
At high temperature, the motion of a ®He particle
through the medium it is in is due to the presence of
vacancies as near neighbors of the particle. The diffu-
sion constant is

Dz(V, 3) =Az(V, 3)A2w3(V, 3),

where w3(V,3) is the rate at which a ®He particle
tunnels into a neighboring vacancy site in a *He
medium. For a ®He particle in a “He medium, we have

Dz (V,4)=A5(V,4) A%wy(V,4). (C1.23)

The constants Az(V,3) and Az(V,4) are of order 1.

Dr(3,3); Energy Diflusion due to Tunneling. The
magnetization diffuses with magnetization diffusion
constant Dz in response to an external field perturbation
because of the tunneling motion of the particles. The
energy in the tunneling system also diffuses because of
the tunneling motion of the particles. We define the
tunneling diffusion constant to be the diffusion constant
that measures the response of the energy of the tunnel-
ing system to an external perturbation. The tunneling
diffusion constant is

Dr(3,3)=Ar(3,3) A%, (C1.24)

where A7(3, 3) is of order 1. Redfield and Yu (1968,
1969) have calculated A7 (3, 3) and found Ar(3, 3)~
Az(3, 3). Thus we have Dz~ Dy. This theoretical result
disagrees with the results of two experiments. See the
discussion in Sec. 6.

Dy(3,3) and Dvy(4,4); Diffusion of Vacancies. A

(C1.22)

suitable linear combination of vacancy waves will
describe a localized propagating vacancy state. If this
localized vacancy is in solid ‘He, it sees the medium it
is in as an inert background. It interacts only with
other localized vacancies. The mean free path for
vacancy—vacancy scattering is

AVV= V/()‘.’)CVy (Cle)

where V is the molar volume, ¢ is the vacancy—vacancy
cross section, ¢=¥A?) and xy is the vacancy concentra-
tion. For the vacancy diffusion constant we have

Dy (4,4)=[4v(4,4)/Svivv],  (C1.26)

where Ay (4,4) is of order 1, and Sy is the vacancy
velocity. We estimate Sy to be

Sy=awy(4, 4)A, (C1.27)

where wy (4, 4) is the frequency for tunneling of the ‘He
neighbor of a vacancy site into the vacancy site. Using
V/N=A% o~A? and Eqgs. (C1.25, 26, 27), we have

DV(47 4)RJJAV(4; 4) [AZwV(4; 4) /xV:I' (C1'28)

If the localized vacancy is in solid *He, it does not see
the medium it is in as an inert background. The
vacancy in moving through the ®He medium must dis-
arrange the spins. It has a diffusion constant given by

Dv(3,3)=Av(3,3) Ny (3,3).  (C1.29)

The physical situation is exactly analogous to that of a
hole in a magnetic insulator. This latter problem has
been dealt with by Brinkman and Rice (1970).

Note Dy (4,4) and Dy(3,3) differ by orders of
magnitude. The vacancy diffusion coefficients Dy (3, 3)
and Dy(4,4) are not directly observable in NMR
experiments. Such experiments see the motion of 3He
atoms. These diffusion constants are observable in a
light scattering experiment.

Dy(3, 3) and Ds(4, 4) ; Diffusion of Mass Fluctuation
Waves. For a *He particle in a *He medium, the diffusion
constant is

Dy(3, 3) = 44(3, 3) [ A% (3, 3) /251, (C1.30)

where w4(3, 3) is the rate of tunneling of a 3, 4 pair in a
SHe medium. For a *He particle in a ‘He medium, the
diffusion constant is

Ds(4,4) = A35(4, 4) A% (3, 3), (C1.31)

where w;(4, 4) is the rate of tunneling of a 3, 4 pair in a
‘He medium. D3(4,4) and Dy(3, 3) are analogous to
Dy(4,4) and Dy(3,3), respectively as far as their
dependence on the medium is concerned.

APPENDIX D. SPECIFIC HEATS, Etc.

In this Appendix we tabulate the specific heats and
the constants k, which enter the calculations of the
relaxation times for the various baths.
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D.1 Zeeman System

5C2= —‘HO’Z UgR. (Dll)
R

At kgT>hw, the energy of the Zeeman system is
Ez=— (N/4) [hwo/kpTP, (D1.2)

where wo=vH, is the Zeeman frequency; the specific
heat of the Zeeman system is

Cz=kp(N/4)[Fiw/ksT ], (D1.3)

the energy constant %z is
kz=— (N/4)[ (hwo)%]. (D1.4)

D.2 Tunneling System
Yor=—HhJ Yop-on. (D1.5)

RR!

At kgT>hJ, the energy of the tunneling system is

Er=—2Nz[ (hJ*)ksT]; (D1.6)
the specific heat is
Cr=3Nkpa[1iJ /ksT)%]; (D1.7)
the energy constant kg is
kp=—3(Nz/kp) (hJ)?. (D1.8)
D.3 Vacancy Excitations
Hv= 2 e(k)Ci*Cr, (D1.9)

k

where ey (k) =d¢o+2t cos kA from Eq. (15). Experi-
mental temperatures are much less than ¢, or the band-
width 22t~6K. Thus the energy of the vacancies is

Ey= (¢o+3ksT)ny, (D1.10)

where ny= exp (—B¢) is the number of vacancies;
here ¢ is the experimentally observed vacancy excita-
tion temperature, ¢p=Y¢o—2zf. The specific heat of the
vacancies is

CV=dEv/le/€/g(¢/T)2nv. (Dlll)

The energy constant of the vacancies calculated at
constant vacancy number, ny, is

ky=(dEv/dB)ny=—%(ksT)ny. (D1.12)
D.4 Mass Fluctuation Wave System
Harr= Y exrr(k)ditdk, (D1.13)
k

where exrr (k) = 22hiwss(3, 3) (1— cos kA). The energy of
the ‘He system is (for z=8)

Eyr=(14/3) 22N {[hwss(3) /kpT} (D1.14)
the specific heat is
Cur=[(14/3)218Nzkp[hws(4, 3) /kpT]; (D1.15)

the constant & is

kyr=—(14/3)23 N3 hws(4, 3) 2.  (D1.16)
D.5 Phonon System
3p= Y ho(k)[n(k)+32], (D1.17)
k

where the w(k) are the phonon frequencies. The energy
of the phonon system is given by

Ep=(31%/5) (N/V)ksT(T/6)%, (D1.18)

where fp is taken to be the experimentally observed
Debye temperature. The specific heat of the phonon
system is

CP= (121!'4/5) (LV/V)]&[{(T/OD)"

and the energy constant is

(D1.19)

/ep-——dl':p/({B: —S(EP/B) =31l'4(N/ V) (/egT)E(T/()D)3.
(D1.20)
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