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This article gives a systematic review of the many NMR experiments in solid helium to date, emphasizing the view-
point that the results may be interpreted primarily in terms of the effects of three fundamental excitations in the solid:
the vacancy waves; the 'He tunneling interaction or exchange; and the 'He —'He tunneling interaction or mass fluctuation
waves.
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532 A quantum solid is one in which the zero-point
534 motion of the atoms about the equilibrium lattice sites

537
is a large fraction of the near-neighbor distance. This

541 large zero-point motion has three important con-
545 sequences (e.g., Guyer, 1969):
543

(a) Neighboring atoms in the lattice encounter one
another away from their respective lattice sites at
distances comparable with the hard core radius.

(b) An atom visits a large region of space in the
vicinity of its lattice site. The small parameter of con-
ventional lattice dynamics (rms displacement/near-
neighbor distance) is not small so that there is large
anharmonicity.

(c) Neighboring atoms tunnel around one another
and exchange lattice sites.

573
573 The difficulties caused by an atom's visit to a rela-
574 tively large region of space near its lattice site or its

encounters with its near neighbors at the hard-core
radius have a significant effect on how one does a theory
of quantum crystals. But, the aggregate of conventional
thermostatic and thermodynamic experiments on the
quantum crystals exhibit few remarkable or unusual

584
features that are a consequence of large anharmonicity

586 or close approach (Guyer, 1969) .
588 However, the third consequence of the large zero-

589 point motion of the atoms in a quantum crystal has
589 important experimental implications. There is a finite

overlap between the wavefunction of an atom localized
near lattice site 1 and the wavefunction for an atom

p96 localized near lattice site 2, a near neighbor site of 1.

596
Because of this overlap, the atoms can tunnel about one
another and change place. In solid 'He, the atoms are

598 fermions (there is one unpaired nuclear spin) so there
is a nuclear exchange process due to the finite overlap.
The energies associated with the exchange process are
on the order of 1 mK. Thus this process is unimportant

532
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to the ground state properties that are seen in most of
the thermostatic and thermodynamic measurements at
1 K. But the particles which make up the solid have
mobility through it, by virtue of quantum mechanical
tunneling, on a time scale that is easily observable.
These particle motions give rise to a wide variety of
phenomena, e.g. (a) the tunneling excitations, (b)
vacancy wave excitations, (c) mass fluctuation waves,
(d) the coupling of the particle motions manifested in
these excitations to one another and to the phonons,
etc. Because ~He atoms are tagged by their nuclear spin,
it is possible to observe the particle motion phenomena
in nuclear magnetic resonance (NMR) experiments on
the quantum crystals.

The purpose of this paper is to present a careful
survey of (a) the theory of pa, rticle motion phenomena
in quantum crystals, (b) the NMR experiments on
these systems which see particle motion phenomena,
and (c) the correlation of theory and experiment. We
will deal with pure 'He, 'He with small concentrations of
4He, 4He with small concentrations of 3He, and nondilute
mixtures. Our approach to the theory of these systems
will be principally phenomenological. For those phe-
nomena whose description is new in this paper we will go
into somewhat greater detail although we will maintain
a phenomenological posture throughout. It is our
intention here to explicate the physics of particle motion
phenomena as seen in NMR experiments, and to suggest
the direction of further theoretical and experimental
work.

This paper is organized as shown in the Table of
Contents. A word about that organization. For each
kind of system (pure 'He, dilute mixtures, and nondilute
mixtures) we discuss in order: (a) the excitations in the
system, (b) the expectations for NMR experiments on
the system, and (c) the results of NMR experiments on
the system. A serious attempt is made to be descriptive
in dealing with most of the presentation. Therefore, the
major portion of the detailed calculations that are
called for are found in the Appendices. We treat new
and old topics with uniform depth so that this article
will serve as more than a guide to the literature.

The physical picture of the tunneling motions that
interest us emerges toward the end of the substantial
progress that has been made in the theory of quantum
crystals in the past six years. Let us recount that
progress. The theoretical description of a quantum
crystal must account for:

(a) the short-range correlations in the relative
motion of a pair of neighboring particles that approach
one another at hard core distances; and

(b) the motion of the particles over a large region of
space in the vicinity of their lattice site where they see
many derivatives of the interaction potential.

The short-range correlation problem has been dealt
with by Nosanow and co-workers (Nosanow, 1966;

Hetherington, 1967), Brueckner and co-workers (1965,
1969), and Krumhansl and Wu (1968) using a Jastrow
wavefunction within the framework of a variational
calculation of the ground-state energy; and by Hansen
and Levesque (1968) using molecular dynamics. The
outcome of these calculations is that a pa, ir of atoms in a
quantum crystal interact with one another through an
effective interaction which is the product of the bare
interaction and correlation function for the pair, i.e.,
approximately the t-ma, trix result. This e6ective inter-
action has a softened hard core for which short-range
correlations are relatively unimportant.

The long-range correlation problem (phonons) has
been dealt with by Koehler (1966, 1967), Horner
(1967) and others (see the review b, Werthamer, 1969)
using "self-consistent" phonons; and by Brenig (1963)
and Fredkin and Werthamer (1965) as the RPA
response of a driven Hartree system. The outcome of
these calculations is that for the purpose of finding the
phonons, the spring constant of the interaction between
a pair of particles in a quantum solid is given by the
second derivative of the bare ieteractioe between the
pair, averaged over their relative motion. The phonons
in the solid are the collective modes for particles coupled
by these springs. Finally, in detailed numerical cal-
culations for the phonons in a quantum solid, the bare
interaction called for in the phonon theories is replaced
by the t matrix. The phonons are taken to be the
collective modes for pairs of particles coupled by
springs whose spring constant is the second derivative
of the t matrix averaged over the relative motion of the
pair.

A large body of computational results (principally on
solid helium) have been generated by Nosanow and
co-workers (Nosanow, 1966; Hetherington, 1967),
Werthamer and co-workers (de Wette, 1967; Gillis,
1968), and Koehler (1966, 1967) for the ground state
thermostatic properties Lenergy, E; pressure, P; bulk
modulus, P; phonon spectrum, &v(q), etcj. These results
are in reasonable qualitative agreement with experiment.

Recently Iwamoto and Namaizawa (1966),Sarkissian
(1969),and Guyer (1968b) have developed a theory of
quantum solids using what are essentially the techniques
of the theory of nuclear matter. This approach has the
advantage of yielding the t matrix and phonons within
the same computational framework. Detailed cal-
culations of the ground state properties of solid helium
within the framework of this theory yield lowering of
the ground state from 3 K/particle to 1 K/particle,
and a pressure dependence of E and P in excellent a,gree-
ment with experiment. Aside from conceptual problems
which are clarified by this approach, its most important
contribution is to show that a simple but careful treat-
ment of the short-range correlation part of the problem
yields substantial improvement in the quantitative
features of the theory.

Guyer and Zane (1969) have extended the treatment
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of the ground state problem due to Guyer (1968b) and
Sarkissian (1969) to include the exchange process.
Calculations with their theory of exchange yields
results in good qualitative agreement with experiment.
See also Hetherington, Mullin, and Nosanow (1967)
and Nosanow and Varma (1968). More important than
this agreement between theory and experiment, is the
physical picture which results from this theory. Guyer
and Zane show that the particle motions which lead to
the nuclear exchange process are embodied in the
tunneling motions that are represented by a hubbard
Hamiltonian (Herring, 1966) . It is with regard to these
tunneling motions that the quantum crystals (solid
oHe, 4He, and mixtures) are truly unique. The physics
we are discussing in this paper is a consequence of the
tunneling motion.

2. BACKGROUND (NMR)

A nuclear magnetic resonance experiment on a
sample containing nuclear spins begins by placing it in
an external magnetic field Hp. ' Each of the spins in
the sample precesses about the magnetic held with the
Larmor frequency

Thus a T» measurement is a measurement of the
inverse temperature Pq as a function of time.

More precisely, a T» measurement is a measurement
of the motion of the total spin of the system among the
manifold of energy levels due to Hp, this motion is
described by a temperature. The Hamiltonian de-
scribing the spins in Hp is the Zeeman Hamiltonian
given by

i=»
(2.3)

The manifold of energy levels for S spins 1/2 in Ho is
the manifold of Zeeman energy levels or the Zeeman
system. The temperature of the Zeeman system changes
as M, changes. The spins which add up to give M, are
precessing at the Larmor frequency orp. One of these
spins will Qip, contributing to the decay of M„ if it sees
a local magnetic field which is varying at the Larmor
frequency cop. By local field we mean a field of micro-
scopic origin at the site of the spin in question, Hi(R),
where R is the lattice site of the spin.

A local field occurs because of the dipolar interaction
between the spin at R and its neighbors, i.e. , because of

(2.1) Hi(R, l)

(d/dt)M. (t) = Xp'Ho(dPs/dl). (2.2)

'A cell model Hamiltonian was first used to look at solid
helium by Gersch and co-workers (Fernandez, ].966}. Sub-
sequently Hamiltonians of this kind have come to be called
Hubbard Hamiltonians.' We discuss NMR from a pulse point of view in this section.
A more general discussion is found in the excellent book by
Abragam (1961}.

where y=2.04X10' rad/G. sec for 'He. After the spins
have come to thermal equilibrium in the Larmor field

(i.e., for spin 1/2 the population of the two spin states
is P+/P = exp +PkyHo, where P '=hoT, and T is the
ambient temperature of the sample) a radio frequency
magnetic field, Hi(t), in the plane perpendicular to Ho
is turned on at frequency co=cop for a short period of
time. Energy is dumped into the spin system by the
rf 6eld, and the spin system is driven away from
equilibrium; P+/P ( exp +PA&Ho. The rf field is
turned off, and as the spin system returns to equilibrium
various experiments are done to observe it.

In a T» measmremerIt, the s component of the mag-
netization is studied as a function of time. If the spins
come to equilibrium among themselves in a time short
compared to the time required for the excess energy in
the spin system to decay away, then, as the spin system
returns to equilibrium, it can be described by a spin
temperature, and decay of the excess energy or mag-
netization corresponds to a decay of the spin tempera-
ture. At Ps ' ——kiiTe)&fiyHo, we have

(2 4)

where the R' are the positions of the geld particles.
See Fig. 1. Ke refer to the neighbors of the spin at R
as the field particles of R, they are the particles which
cause the local held seen by the spin at R. We write this
local field as a Fourier transform

Hi(R, t) = f do)H((R, (d) exp (—io)t). (2.5)

If this local held has a Fourier component in the
transverse plane at frequency (do, the spin at R (which
is precessing at &oo) sees this component of the local
field precessing with it. The spin sees Hi(R, (oo) as a
static field and it undergoes an additional precession
about this 6eld just as it precessed about the rf 6eld
above which was tuned to look to it like a static field.
The spin at R "Qips" due to the mo'ion of the field
particles at &oo manifested in Hi(R, o)o), and contributes
t,o the decay of M, .

We have made this qualitative argument to suggest
the physics we are going to see in a T» measurement.
Those motions of lhe Particles in the system which gine

rise to fluctuations inHi(R, t) a,$ frequency o)o will be

observable ie a T» measnremerIt.

Suppose a system of excitations exists in a solid which
gives rise to the motions of the field particles which
lead to the decay of M, and an attendant energy loss
from the Zeeman system. The energy which the Zeeman
system is losing is transferred from it to the system of
excitations. The dipolar field is the agency by which this
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transfer is accomplished. The energy dumped from the
Zeernan system into the excitation system will raise the
temperature of the excitation system unless the excita-
tion system is tightly coupled to the reservoir in which
the experimental sample sits. In the typical %MR
experiment, the excitation system is tightly coupled to
the reservoir by some means. However, it can happen
that at low temperatures the excitation system will
become uncoupled from the reservoir. The energy
dumped from the Zeeman system to the excitation
system will bring the two systems to a common equilib-
rium temperature above the reservoir temperature.

Z = I

Kzi

K IR

FIG. 2. Relaxation topologies. In the simplest case, relaxation
of the rf energy put into the Zeeman system is accomplished by
coupling the Zeeman system to the particle motions, the 1-
system, and having the excitations which represent the particle
motions be tightly coupled to the reservoir, (a). If it happens
that the particle motions are weakly coupled to the reservoir,
then, they and the Zeeman system will come to mutual equilib-
rium on a fast time scale and decay together to the reservoir
through a mechanism which couples the 1-system to the reservoir.

H—0

Hdlu)0)i Q
~o&~ ~ Hd{u&

~oR'

—0H

Hd(u)0)~ gy )i0

H, Kd((a)

FIG. 1. A T& Experiment. In Column (a) we show the magnetic
fields seen in the laboratory by the spins in the region of space
R at various times in a TI experiment. In Column (b) we show
the response of the magnetization of the spins in R to the various
magnetic 6elds shown in Column (a}. In Column (b) we are
in a frame of reference rotating at cop so that the rotating fields
in Column (a} have become static 6elds. At t= 0, the spins see
Hp which they precess around at frequency cop=pHp. At t.=0
they also see a relatively weak dipolar 6eld due to the motion
of the field particles of R, e.g. , the particles in the region of
space R', pHp))yHI))yH~(cop). At t=t&, an rf field, HI, is turned
on. This field is perpendicular to Hp and precesses in the labora-
tory frame at frequency cop. The spins precessing about Hp at
frequency cop see H& as a static 6eld and precess about it. If
H& is on for a time tgp given by pHItgp=m'/2, the spins precess
into the transverse plane, M, (ti+tgp) =0. After the rf fieM is
turned off, e.g. at t=ti+t2, t2&tgp, the spins, precessing at fre-
quency cop, see only the transverse component of the dipolar
field at frequency cop, This internal magnetic 6eld drives the
spins back toward the s axis. (In this figure we have used regions
of space instead of individual lattice sites so that we could use
a classical picture of the motion of the magnetization. )

Then, on a longer time scale, the coupled systems will
decay together to the temperature of the reservoir. See
Fig. 2. The mechanism of this long time decay will be
the coupling of the excitation system to the reservoir.
For example, if the field particle motion is due to the
vacancy wave excitations, then, the vacancy waves
couple to the phonons which in turn easily transfer the
energy from the sample to the reservoir. The topology
of energy relaxation corresponds to Fig. 2(b). The long
time which characterizes the decay of the coupled
Zeeman —excitation systems may depend upon the
characteristic time for the excitation systems to couple
to one another or to the reservoir (e.g. the vacancy
wave —phonon coupling) and on the relative specific
heats of the excitation systems. Thus we expect that at
low temperatures, a Tj measurement will contain
information about (a) the specific heat of the excitation
systems giving rise to the particle motion, and (b) the
characteristic time for the coupling of these excitations
to one another and to the reservoir.

In a T& measurement, the transverse (x, y) com-
ponent of the magnetization is studied as a function of
time. The characteristic time for the decay of the
transverse magnetization is a measure of the time
required for the spins to come to equilibrium among
themselves. The magnetization vector can be tipped
from along Ho into the transverse plane by application
of an rf magnetic held of appropriate duration; i.e. a 90'
pulse. See Fig. 3. Once in the transverse plane {for
example, along the g axis at t=0) the individual spins
move in the plane relative to one another due to (a)
precession about the co=0 Fourier component of the
s component of the local field, Ht(R, co=0) „and (b)
precession about the ~=cup component of the local field
in the transverse direction, Hi(R, &uo) i. If the local
field at R is time independent, the motion of the spin at
R is reversible. This reversibility is demonstrated by the
observation of the recovery of M at time 2t& to its value
at time 0 after the application of a 180 pulse at time
t~. See Fig. 3. If the time evolution of the local field is
reversible after turning all of the spins by 180 at t&,
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I 2

teo
y H~teo= 2

torso

X'"i tISO= ~

FIG. 3. A T2 experiment. A 90' pulse
is an rf field of sufficient duration that
the s component of the magnetization
goes to zero as shown in (a). %hen the
magnetization is in the transverse plane,
following a 90' pulse, a 180'pulse is an
rf field of sufFicient duration to fiip the
component of the magnetization per-
pendicular to Hi by 180' as shown in
(b). The full pulse sequence for a T2
experiment is shown in (c) . For a
classical spin: at t=0 the spin points
upward, at an application of a 90' pulse
it turns into the transverse plane, u—+b;
the motion from b to c is due to the local
fieM, e.g., H~(0) „at ti a 180' pulse flips
the spin by 180', c-+d; if the local field
H.ips by 180' when the spin Aips by 180',
then the spin returns to e at time 2' to
form an echo.

(c)

Q
a b
L
I

G d

t, ,
— t,

e
I

I

we have M(2ti) equal to M(0). The spin motion is
reversible; there is no thermalization of the spins. The
transverse component of the magnetization will not
return to M(0) at time 2ti following a 180' pulse a,t ti
if the local field on each particle does not reverse its
motion in time when all of the spins are turned by 180 .
See Fig. 4. Those motions of the field particles around
R which give rise to an irreversible time evolution of the
local 6eld at R, and consequently an irreversible pre-
cession of the spin at R, are motions which transfer
energy between the field particles and the spin at E.
Such motions bring about thermal equilibrium among
the spins. Both the motions of the held particles at
co=coo, as well as their motions at co«coo, contribute to
the irreversible precession of the spin at R. Thus a T2
measurement is a, probe of (a) the low-frequency
motion of the field particles, as well as (b) their motions
at coo which also appear in Ti.

In a conventional digmsioe experiment, the Zeeman
system of spins is examined by a T2 pulse sequence
(e.g. , a 90O pulse at t=0 followed by a 180 pulse at
time ti) while sitting in an externally applied magnetic
field gradient. If the particles are free to move from
place to place in the field gradient due to a particle
motion process, the transverse component of the

magnetization will undergo an additional irreversible
motion due to the diffusion of particles in the field
gradient. Thus a diffusion experiment is a T2 experiment
in an externally applied magnetic field gradient. Such
an experiment directly measures the diRusion constant
of the spins. See Fig. 5.

In addition to the conventional diffusion experi-
ments, there are energy diffusion experiments. In an
erlergy digusioe experiment, the diffusion of the s com-
ponent of magnetization is studied as a function of
time. Such an experiment begins by placing the Zeeman
system in a weak field gradient. This gradient is used
only to see the spins in diferent parts of the sample; the
Larmor frequency will be a function of position in the
sample. Energy may be dumped into the spins at the
center of the sample by turning on an rf field of fre-
quency coo. Energy may be dumped into the spins on
the left or right of the sample by using rf fields at
coo&hco. Let us assume that the energy is put into the
spins at the center of the sample and that this energy
is strongly coupled to a particle motion excitation
(e.g. , the tunneling motion of the particles) on a time
scale fast compared to T&. Thus the Zeeman system and
the excitation system in the vicinity of the center of the
sample will share the rf energy and be "hot" compared
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t- ti+ theo t =2t)

FIG. 4. Reversibility and irreversibility.
In (a) we show: (1) the configuration of
the local magnetic fields at the lattice
site of five spins at the times tep, ti, ti+
tisp, and 2ti (cf. Fig. 3) and, (2) the
orientation in the transverse plane of
each spin. Between t=tpp and ti, the
spins "fan out" in response to their local
field. At ti+tgp the spins have been
fiipped by 180', so has the local field.
At time 2ti, the local fields have returned
to their configurations at t=O, except
for a reversal of all signs. The motion
of the local fields and spins is reversible
in time. In (b) we show (1) the con-
figuration of local magnetic fields and
(2) the orientation of the spins as in
(a). We note that the local magnetic
fields do not return at t = 2ti to the
negative of their value at t=O. The local
magnetic fields do not reverse their
motion in time when the spins are turned
over by 180'. Thus the spins do not
reverse their motion in time. The com-
ponent of the magnetization along the—x axis is less at 2t& when the motion of
the spins is irreversible.

(b)-

l2345

4
5

5432 ~

I 2345

to the reservoir. Both the hot spins (Zeeman system)
and the hot excitation system will diffuse through the
sample. As they do so they keep up with one another
because of their strong coupling. The diffusion of these
coupled systems through the sample corresponds to a
diffusion of the temperature or energy. It is measured
by measuring 3E,(x, t) . See Fig. 6.

3. EXCITATIONS IN PURE 'He

3.1 Excitations

Our understanding of the results of an NMR experi-
ment on solid 'He will depend upon our understanding
of the excitations that exist in the solid and the inter-
actions which occur between them. This section is
devoted to a discussion of the three kinds of excitations
that are important in pure 'He. These'excitations are
the phonons, vacancy waves, and tunneling excitations.

I'honons. The phonons are the excitations in the

solid which describe the small displacement motions of
particles about their equilibrium lattice sites. These
displacement motions are too small to contribute
significantly to the motion of the field particles which
are seen in a T~ experiment (Abragam, 1961). However,
the phonons play a crucial role in transferring energy
from the other excitations (e.g. , vacancy waves) to the
reservoir. We do not discuss the phonons here in any
detaiP; the energy of the phonons, their specific heat,
and energy constant are tabulated in Appendix D.
When we have need to calculate the properties of the
phonons we will use the formulae from this Appendix
and the experimentally determined Debye temperature
from Sec. 4. We will discuss the coupling between the
various excitations after we have discussed each
excitation in the necessary detail, thus we go on to the
vacancy waves and the tunneling excitations.

' The theory of phonons in quantum crystals, a subject of
considerable interest in its own right, has been recently reviewed
by Werthamer (1969).
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where the operator bg + creates a particle at R of spin 0.

in the ground state of a complete set of %annier states.
The energy e(R) is a Hartree single-particle energy

e(R) =K(RR)+-', Q V(RR, R"R")(brr". +by-;),
R«~/~(a) ~/

(3.2)

where K(RR) is the diagonal matrix element of the
kinetic energy operator

K(RR') = f dxrbro*(x) T(oo) re (oo) (3.3)

Pg~(oo) is the ground state Wannier function at lattice
site Rj, w(RR, R"R") is the diagonal matrix element
of the potential energy

n (RR', R"R'")

l,3,4 5
1

,3,4

(3.4)

i(RR') =E(RR')+-', Q s(RR', R"R")(brr";+by-;),

t = ti+tgo +y (3.5)

t-2t C

„H =he l td

XI

FIG. 5. A diffusion experiment. A gradient of the z component
of the external field is placed on the system, H, (x) =Ho —Qx.
Here we show the time evolution of five particles in the sample,
and the time evolution of the spin of each particle. At t=t90
the five particles are taken to be at the center of the sample.
Their transverse magnetization in a co-ordinate system rotating
at coo is 5p~. Due to the particle motion excitations, the particles
disuse in space. Each particle sees a local field which is unique
to its motion through the sample. Its spin moves relative to
the +x axis in a way which depends on the time averaged local
Geld. If on the average the particle is to the left of x=0, it has
seen a slightly higher field than Ho, it has precessed in the trans-
verse plane slightly faster than the particle that remains at
x.=0. Its spin precesses to the right. See particle 2 at ti. When
the 180' pulse occurs, the local 6eld reverses, but the gradient
which is responsible for the motion we exhibit here does not. The
particles continue to move by diffusion (irreversibly) in the
gradient, and at Zti the magnetization along the —x axis is con-
siderably less than 5p~. Here we have shown only the degrada-
tion of M (Zti) due to motion in the external gradient. There
is superposed on this decay an additional loss of magnetization
that is due to the irreversibility of the time evolution of the
local fields shown in Fig. 4.

The particle motions which are more drastic than
those described by the phonons and which are observable
in a Tj measurement are embodied in the model particle
motion Hamiltonian used by Gersch and Fernandez
(1966), Guyer and Zane (1970), and Mullin (1971)

3CpM= Q e(R)bg, +brr, + Q i(RR')brr, +b~,
B,0 BB/, o

+ s Q re�(R)bzr+brr, +be br'. , (3.1)
R,oo/

Specimen

//
= ///

//

= H=ho+Gz

Slob for which H = ~
y

FIG. 6. Energy diffusion measurement. The specimen of solid
'He is placed in a static magnetic field Ho with a uniform gradient
G=dH/dz in the z direction. Application of a strong rf signal,
hi exp(icoot), with the polarization of hi lying in the plane per-
pendicular to Ho, heats the spins in the thin slab of the specimen
over which H(z) =coo/y. The energy of the Zeeman system is
quickly transferred locally to the tunneling energy reservoir.
The subsequent measurement of the resonance absorption signal
using a much weaker rotating rf field hi, reveals a resonance line
with a "hole burned in it" corresponding to the signal from the
portion of the specimen with locally higher spin temperatures.
The specimen returns to thermal equilibrium through spatial
diffusion of the energy in the tunneling reservoir. The rate of
the energy diffusion is determined through studies of the time
evolution of the hole in the absorption signal. LHunt and Thomp-
son i1968}g.
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FIG. 7. Vacancy wave excitations. The {O)
ground state of the lattice has one
particle at each lattice site (a) . A
vacancy state is created by bR bR X {b)
(1—B~g ) which removes a particle from
R', and doubly occupies the lattice site
at It (b). This vacancy state has two {O)
components, a hole at R' and a particle
at R. Both components propogate due
to KpM as shown in (c) and (d) . {d) C3-

OO,
CO,

and Pp(R) is a hard-core energy associated with the
double occupation of a lattice site, gp(R) = v(RR, RR) .
It requires more than one state per lattice site to
describe the small displacement motions at a lattice site
which are manifested in the phonons. 4 Here we are
interested only in the large displacements embodied in

KpM. The first term in Eq. (3.1) gives the Hartree
energy for the system, EH ——imp�(R) . The second term in

Eq. (3.1), called the tunneling term, leads to particle
motion from lattice site R to R', and the third term is
the hard core repulsion which works to inhibit this
motion. There are two kinds of simple excitations in the
system of particles described by XpM. These are the
vacancy wave excitations and the tunneling excitations.

Vacancy TVaves. Ke take the ground state of the
system to be the state

~
0) corresponding to having one

particle at each lattice site. Then, a vacancy is created
by operating on the ground state with the vacancy
creation operator Cv+(RR') given by

CI +(RR') = bst+bE (1 4E ), —
where for the purpose of discussing vacancies we ignore
the spin index. This vacancy state has two components,
a doubly occupied lattice site at R, and an empty
lattice site at R'. See Fig. 7. It is conventional to put
the doubly occupied lattice site on the surface and to
look at the "hole" only (Hetherington, 1968). Both
components of this vacancy state propagate through the
crystal because of the tunneling term in X+M. We
construct an operator for creation of a vacancy wave
state thus

Cv+(k, k')

= p exp (zk R) exp (—ik' R') bE+bE (1—8Etr ).

(3.7)

Using the equation of motion method, we find

zh(ct/ctt) Cv+(k, k') = [pp+t(k) —t(k') ]Cv+(k, k'),

(3 8)
4A fundamental question in the theory of quantum crystals

is that of the coupling between the phonons (small displacement
motions) and the particle motions embodied in Eq. (3.1). The
description of displacement motion in the vicinity of a lattice
site requires more than one state per lattice site (Nosanow,
1965; Guyer, 1968a). The coupling of motion among low-lying
states at a lattice site, to motion among states at different lattice
sites gives rise to phonon —particle motion interactions. Recently
McMahan and Nosanow (1970) produced a proof that these
motions are independent. The earlier work of Nosanow and
Varma (1968) also pertains to this point.

xv ——exp (—P@). (3.11)

Formulae for other quantities of interest for the
vacancies are found in Appendix D.

Tuenel&sg Excitatiorss. By the tunneling excitations
we mean the excitations of the system associated with
the particle motions which are usually referred to as
exchange (Herring, 1968) . We use the phrase tunneling
excitations because the word exchange is ambiguous;

5 The vacancy waves of our model are propagating in a homo-
geneous background like 4He. In 'He, the vacancy waves propagate
in a spin disordered medium. The fact that the vacancy waves
must disorder the 'He medium to move through it leads to a
slight modification of the structure of the band; it leads to a
major modification of the mobility and diffusion constant of
the vacancies. These points are explicitly illustrated in the
recent work of Brinkman and Rice (1970). WVe argue for the
qualitative structure of the energy band, co (kD) &cv (0), by
noting that a vacancy wave excitation at k=kz corresponds
to removal of a short-wave length density fluctuation. Mullin
(1971) has pointed out that a vacancy is dressed by lattice
distortion and may carry an effective positive mass along with
itself. See also Footnote 8.

where t(k) = Pit t(RR') exp [ik (R—R') j. The term
t (k) in Eq. (3.8) is due to the propagation of the doubly
occupied lattice site, the "particle, " and the term
t(k') is due to the propagation of the empty side, the
"hole."Now we take t (RR') = t for R—' a near neighbor
of R and zero otherwise; then. for simple cubic geometry
we have

t(k) = —2t(cos k,h+ cos k„h+ cos k,h), (3.9)

where 6 is the near neighbor distance. For simplicity
we assume that the "particle" does not propagate,
then the vacancy wave dispersion relation is simply

fuov(k) = pp+2t(cos k,A+ cos k,A+ cos k,A) (3.10)

which is shown in Fig. 8, From the discussion in Sec. 4,
Fig. 29(b), we have the estimate t=0.4 K at V=20.0
cm'/mole. At V=20.0 cm'/mole, the crystal structure
is bcc with each lattice site having eight near neighbors.
The bandwidth for the vacancy waves is hei ——2s

~
t

~

=
6 K. At the edge of the Brillouin zone we have adios(kD) =
@p

—s
~

t ~, and at the zone center fuo(0) =gp+s
~

t ~.
'

From the discussion in Sec. 4 we have the estimate
@=—pp

—s
~

t
~

14.5K or Qp 18K. Throughout this
paper we use experimentally determined values of @and
we take the vacancy energy, specific heat, concentration
etc. , to be given in terms of these experimental con-
stants. For example, the vacancy concentration is
given by
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and make the identi6cations b~t+b~~ ——0~+, b~~+b&t ——

o~, and An~ ——z~i n~i—=o~', where e~ ——P, b~,+bp,
Then it is possible to rewrite Eq. (3.12) in the form

2zt Ser = —P m(RR') ( ;+2o-g og.), (3.15)

where m(RR') =t(RR')'/pp, and o'~ is the unitless
angular momentum of the spin at E.. The part of this
Hamiltonian of interest is the part associated with
particle dynamics; this is

X,= —2P
~
J(RR') ~o~.o~, (3.16)

where

(3.17)

FIG. 8. Vacancy wave excitation spectrum. The vacancy
wave excitation spectrum is like a "hole" spectrum in a semi-
conductor. The band edge is at @p—z$. This energy is identified
with the experimentally measured excitation temperature, p.
The bandwidth is 2zt=6K, whereas the typical experiment is
done at 2K. Thus the experimentally observed vacancy waves
are near the band edge.

it suggests a process associated with antisymmetrizing
wavefunctions for Fermions; it does not suggest the
physical process involved as picturesquely as the word
tunneling nor that the process may involve two 3He

atoms, a 'He and a 'He atom, or two 'He atoms ( Guyer
and Zane, 1969; 1970) .

In pure solid 'He, the tunneling excitations are
associated with the creation of a virtual vacancy state.
They are given by the Hamiltonian

Kr = P g $ t(RR') '—/Pp jhow.+by.b~;+b~. (3.12)

We use Eq. (3.16) as the fundamental definition of J.
As such the values of J quoted in this work are taken
from our Fig. 32; they will differ from the J used in
many of the NMR papers. The primary justification for
the use of Eq. (3.16) to define J is the use of this
definition in almost all nonNMR work on Heisenberg
systems. 'At V=20.Oem'/mole, wehave 5=0.35 MHz=
1.6)&10 ' K from the discussion in Sec. 4, Fig. 32, thus
using pp 18 K in Eq. (3.17), we have

~
t

~

0.02 K.
This result is in poor agreement with our theoretical
estimate of 0.14 K made in Appendix A.7

Ke will refer to the pseudospin Hamiltonian given by
Eq. (3.16) as the tunneling Hamiltonian. This Hamil-
tonian is a Heisenberg Hamiltonian and the tunneling
excitations, energy, speciic heat, etc. , which follow from
X~ are those of a Heisenberg antiferromagnet (Baker,
1967). The energy, specific heat, etc., for 3Cr are
tabulated in Appendix D.

which describes the elemental tunneling motion shown
in Fig. 9. The steps to this process are: (a) the system
starts in the ground state

~
0) and the particle at R

with spin o tunnels to R (this is the beginning of a
vacancy), (b) instead of the particle and hole propa-
gating away from one another to become a full fledged
vacancy, one of the two particles at E.' returns to E,
and the system returns to the ground state. In the
intermediate state, the virtual vacancy state, the
energy of the system is Ep+pp so that the matrix
element for this process,

t(RR') (Ep—KpM) 't(R'R) (3.13)

is equal to t(RR')'/pp-
We may convert 3Cr into a pseudospie Hamiltonian

by carrying out the transformation discussed at length
by Anderson (1963).We write

Z Z 4.+4.4;+4;
d di

=4i+b~ i 4 i+4i+bzi+be ihvi+bzi i

+4(+4 i4 )+4)+4)+4 i4 i+4) (3.14)

(b)

FIG. 9. Tunneling excitations. Due to the tunneling term in
3CpM, a particle moves to double occupy the lat tice site
Because of the hard-core repulsion between pairs of particles,
this double occupation is energetically expensive. One of the
doubly occupying particles returns to lattice site R. If the particles
are tagged, e.g. by their spin. or mass, this kind of motion is
detectable and gives rise to a system of excitations.

'A secondary justification for this definition of J is the near
unanimous vote of the participants in the First Quantum Crystals
Conference, Aspen, Colorado, (1969), which overrode a veto by
J. C. Wheatley.

7 This estimate of t is not in good agreement with those in
Sec. 4. The problem of course is that @p should be much larger
than 18 K. Our indentification of pp with the vacancy excitation
temperature was prompted by an interest in pushing the model
as far as possible. From a quantitative point of view, we have
pushed it too far. We may invert the calculation here and con-
clude @p=10' K. Certainly the model vacancy is not the real
vacancy.
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3.2 Interactions

Now let us turn to the question of interactions among
the excitations which exist in the solid.

Phorloe —Uacaecy TVave Imteracti ops. The phonons
couple strongly to the vacancy waves in the solid
because they see a vacancy wave as a dynamic mass
fluctuation. If a vacancy were static, a phonon would
scatter off of it due to the perturbation

p (() &I

pv(o)~

p (t) ™p() —exp-tiT )
V P VP

—',Am&u&' ——-', (mi, —m, )u&' (3.18)

SCv~ ——-', Q Am~(t) ug', (3.20)

f

with the vacancy waves has been calculated. Appendix
A.4 quotes the result of that calculation which is similar
in its details to that in Appendix A.6. As an illustration
of the basic definitions of relaxation times and of the
physical content of the phonon scattering from dynamic
mass Auctuations we discuss the phonon —vacancy wave
relaxation process here at some length.

The vacancy system (the aggregate of vacs, ncy wave
excitations) hs, s energy (Eq. D10)

Lv= (go+2«aT) ~v, (3.21)

where nv= tVxv =.V exp (—P@); the phonon syst. em
(the aggregate of phonon excitations) has energy

+ K, QJ ((li.K}

without change in energy. Here uz is the displacement
of the atom at lattice site R (Carruthers, 1961).This
is the perturbation which gives the isotopic impurity
contribution to the thermal conductivity. See Fig. 10.
But a vacancy wave is a dynamic mass Quctuation
which can exchange energy with the phonons. The
phonons see a vacancy wave through the time-de-
pendent perturbation

-', t) m~(t) u~'= -', [m&(t) —m~fu~'. (3.19)

The rate of change of the energy of the phonons due to
interaction, via the perturbation

FxG. 11.. Definition of T12. The time which describes the
relaxation of the 1-system to the 2-system is called T», e.g.
vacancy wave —photon coupling, Tyj. This time is defined as
characterizing the behavior of the temperature of the 1-system
in the limit that the temperature of the 1-system is asymptotically
approaching that of the 2-system due to the coupling 3C12 between
the systems. As their process occurs the 1-system is completely
isolated except for its link to the 2-system, and the 2-system
is tightly coupled to a reservoir. Even though the 2-system
receives energy from the 1-system, the 2-system does not change
temperature,

Ev=N(yp+ ', kiiTv) exP -(—Pvy) (3;23)

Ei ——(N/ V) BrpI ', (3.24)

where (kiiPv) '= Tv, (kliPp) '=Tr, and Tv and Tr
are the respective temperatures of the vacancy wave
system and the phonon system. The fundamental
rela, xation time which governs the coupling of the
vacancy waves and the phonons is T&I defined by the
set of equations:

and

(dEv/dt) lvp= kv(dPv/dt) lvp (3.25)

(dPv/«) lvi= —(Tvp) '(P —P ) (326)

(Eq»g)
Er = (1VAp/V)kiiT(T/0)'=ÃBpP 4/V, (3.22)

where Ap ——3(vr)'/5, and Br Ar/(k&0&)'——.The vacancy
wave system and phonon system are assumed to come to
equilibrium among themselves on a short time scale.
Thus each system is characterized by its own tempera-
ture; we write

K, 6~ (k-K)

(b)

Fxo. 10. Vacancy wave —phonon interaction. If a vacancy is
static, it appears to a phonon as a scattering center. The phonon
scatters from the vacancy with a change in momentum but no
change is energy (a). If a vacancy is dynamic, it appears to the
photon as a moving scattering center, a vacancy wave. The
photon scatters from the vacancy wave with a change in energy
and momentum (b). In this latter process, energy is transferred
between the phonons and the vacancy waves.

where kv ——(d/dPv)Ev(Pv) is the energy constant for
the vacancy system. By (dEv/dt) lvr, we mean the
rate of change of F~ due to BC~I. Ke regard these
defining equations as meaningful only for pv pi, i.e. ,
a,symptotically as the hotter vacancy system approaches
the phonon system or vice versa. Thus X&I ' is under-
stood to be the rate at which the inverse temperature
of the va, cancy system decays when (a) the vacancy
sy stem is infinitesmally hotter than the phonon
system, (b) the coupling of the two systems is by
Kvi, and (c) the phonon system remains throughout
strongly coupled to a reservoir which maintains its
temperature at Pi . See Fig. 11.

The intrinsic rate for coupling energy from the
vacancy system to the phonon system is given by Eq.
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(A4.4) where

400s' am ' &~v(3, 3) ' T ' gv(~„)„
m3 kii T 8D 00

rvhere in this case hns= —m3, 8& is the Debye tempera-
ture which characterizes the phonon spectrum; ~v(3, 3)
is the frequency which characterizes the vacancy
tunneling motion, t=kcv v(3, 3). We may understand
the general features of Eq. (3.27) by outlining a
variation of the calculation detailed in Appendix A.6.

(a) The phonons see the vacancy waves through
the perturbation Ky~ which we regard as a noise
source. Ke write

Xvp Fv(t) =——g —,'[m~(t) m~—]u~', (3.28)

where mg(t) is a time-dependent number.
(b) The rate of change of the energy of the phonons

due to their coupling to this noise source is given by

dtkmg(0) «hmg (t) «exp (i~« t), (3.35)

and or, q
——a) (q) —a) (q') .

(d) We make several plausible assumptions which
simplify gv (s&«) « . These are

1. Am~(0) and Ambi (t) are uncorrelated for RWR'.
2. Ambi (t) = Am~ (0)a (t) .
3. (Am&(0) hm&(0) )A, ——Dm&(0)'kiiT(Pv Pr). —
Using 1—3 and Eqs. (3.34) and (3.35), we obtain Eq.
(3.29) in the form

dEp/dt= j 1/(4$)'] Q Puli, (q) —fiari, (q)]
qqt', U ~

Xco&, (q)coi, (q )A(a&qq )Nq(rtq'+1) I'kiiT(pv pr),

(3.36)

dEI//dt= g [A(ui, (q) —fi(~ (q') ]W(hq, X'q'), (3.29)
'A q, Xt'qI r= P (~ ~m~(0) ~2/m, 2) (3.37)

where W(Xq, Vq') is the rate at which phonons of
wavevector q are scattered to wavevector q' by Fv(t).
In second-order perturbation theory, we have A(a&) = dta(0) a(t) exp (i~t). (3.38)

W(Xq, X'q')

= —,t ' dt'
p

dt" (k(t') „k(t")«. )A,riq(e, +1),
(e) We assume a(t) has a simple time dependence,

e.g. ,

a(t) = a(0) exp —(zt/r)', a(0) = 1, (3.39)
(3.30)

where k(t) « is the qq' component of Fv(t) and n, ,

is the phonon occupation number. The bracket in this
equation means that h(t)k(t) is averaged over an
ensemble of noise sources.

(c) From Eq. (3.28) for Fv(t) and the definition
of uz from Eq. (A6.4), we have

Fv(t) = Q k(t)&, q i.,
q'A, qt'Xt'

where r '=catv(3, 3). We replace the q sums in Eq.
(3.36) by integrals. Then, upon ignoring the X de-
pendence of a&q(q) and using the acoustic approxi-
mation, Su&i, (q) = hcq, we find

Qi Q2 Qs Q4

dE /dt=1200s'(fir ')r '(T/8D)'FkiiT(pp pv), (3.—40)

where k~03 ——A,cd.
The various factors in this result are:

where

(ti/4m3X) [coi, (q)(ug (q') ]'"
qX, q~) ~

«(q) e ( q) ~[.(~'+ )1"]'f (t)-, (331)

Qi the typical energy available in the vacancy
system to be transferred to the phonons;

Q2 the rate at which this energy is transferred;
Q3 a measure of the phase space available for the

2-phonon process;
Q4 the strength of the noise source.

f, (t) «. Q fv(R, t) ex——p [i(q—q') R], (3.32)

fv(R, t) =mii(t) —mg. (3.33)

Thus we may write Eq. (3.30) in the form

W(Xq, X'q') = [(4maX)'] 'cog(q) ~di, (q')

X [e&,(q) e&, (q') ]'n, (ri, '+1)gv(~«) «, (3.34)

Although the calculation we have outlined here is
rather complicated in its details the result is a simple
dependence on the basic quantities which enter the
problem.

The fundamental time which measures the rate of
transfer of energy from the vacancy waves to the
phonons is de6ned in terms of the rate of change of the
inverse temperature of the vacancy system as in Eqs.
(3.25) and (3.26). Thus, using the definition of Tvt '
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III
Pure He

FIG. 12. T1 vs 1 '. There are three
qualitatively diferent mechanisms which
determine T1 in Regions I, II, and
III of a T1 vs T ' plot. In Region I, T1
is determined by the direct coupling of the
Zeeman energy to a particle motion
excitation, e.g. , the vacancy waves,
I-A, the tunneling excitations, I-B, etc.
In Region II, T1 is determined by the
coupling between excitations in the
system, e.g. , tunneling —vacancy. In
Region III, T& is determined by the
spatial diffusion of the excitations.

He- He Mixture

and Eq. (3.40), we ha, ve

(dEv/«) Ivp=tv("Pv/dt) lv~

~vTv& (Pv t3I') = —(dEJ'/~t) lvr

or

Tv~ '= —(d&I'/~t) lvp[&v(Pv Pp)] '—
and finally

Tvi = (1200s2/kv) (6/r) r (T/On) k~TI' (3.41)

as quoted in Eq. (3.27) . Once again this is a deceptively
simple result.

Tnmnelimg —Vacancy Imteractioes. The tunneling ex-
citations are strongly coupled to the vacancy wave
excitations because they see the vacancy waves as
dynamic spin fluctuations. If a vacancy were static a
tunneling excitation would see it through the static
perturbation

J(RR') dn(RR', 0)o'g. og (3.42)

and be scattered without change in energy. But the
tunneling excitations see the vacancy waves through

Krv= Q J(RR') An(RR', t)o~ og. , (3.43).
azi

where Dn(RR', t) = n(RR', t) —(n(RR') ) and n (RR', t)
is zero unless there is a 'He particle at R and R'.

The rate of change of the energy of the tunneling
excitations through coupling to the vacancies by
Kp~ has been calculated by Garwin and Landesman
(Garwin, 1964b) and Richards (1965).The treatment
of this problem in Appendix A leads to a decay of the
ene& gy in the tunneling system at the rate

(Trv) '=2(s—1)&u3(V, 3)xv, (3.44)

where xy is the concentration of vacancies at the lattice
temperature, s is the number of near neighbors, and
&u3(V, 3) is the rate at which a 'He particle will tunnel
into a vacancy site. This relaxation rate is worked out
in detail in Appendix A.3. For our discussion here we
want the result of that calcula, tion, Eq. (3.44), and a
physical idea of its meaning. In Appendix A.3 we show
that the rate at which the tunneling system loses energy
is given by the rate at which the motion of a 'He
vacancy pa, ir is uncorrelated. See Eq. (A3.8) and the
accompanying discussion. This rate is given by the
product of the probability that a 'He vacancy pair
occurs and the frequency with which the vacancy
component of the pair tunnels. The first factor is
xv"-(s—1) and the second is ~3(V, 3) .'

The Tneeelieg —Phonos Ieteracti oe. There is no
evidence in any experiment on 'He to date that a
tunneling —phonon interaction occurs at an observable
rate. A phenomenological theory of the tunneling-
phonon interaction has been developed by Xosanow
and Varma (1968). See also McMahan and Nosanow
(1970).

4. RELAXATION IN PURE 'He EXPERIMENTAL

4.1 Ti Relaxation, Theory

There are three kinds of excitations in solid 'He which
are responsible for the results observed in NMR
experiments. These excitations and their coupling to
one another are described above. In this section we
discuss the interpretation of NMR experiments on pure

The treatment of this problem by P. M. Richards (1965)
gets the correct answer. That treatment is incorrect in its details;
the important pairs are 3—V pairs (Zane, 1970). See Appendix
A.3.
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acterized by energy Qow in space, e.g. , from the Zeeman
system to the tunneling system where it diGuses
across the sample.

We show in I'"ig. 13 a P-T phase diagram on which
we map the temperature and pressure corresponding to
Regions I, II, and III. In Table I we have listed the T~
experiments that have been done on pure 'He. The
various regions on the Tj vs T ' plot are further sub-
divided to indicate that changes in the details of the
relaxation process in each region occur although the
qualitative features remain the same, e,g. , Regions
I-A and I-3 on Fig. 12. On Fig. 13 we have also indi-
cated this further subdivision.

Region I. Energy is dumped into the Zeeman system
by the rf field. This energy is transferred to one of the
particle motion excitations through the agency of the
dipolar 6eld as explained in Sec. 3. In Region I-A the
vacancy waves are the important particle motion
excitations which cause Quctuations in the dipolar
field. ' As the temperature is lowered, the vacancy
concentration goes toward zero as

xv(P) = exp (—Py),

FIG. 13. Relaxation mechanisms vs temperature and pressure.
On a phase diagram, we show the boundaries between the various
relaxation regions for coo—+0. The boundary between Region I-A
and Region I-3 is found by equating Eq. (A7.11) and Eq.
(A7.18). The boundary between Region I-8 and Region II-A
is found by equating Eq. (A7.18) and Eq. (A7.20). The boundary
between Region II-A and II-8 is found by equating Eq. (A7, 20)
and Eq. (A7.36). We do not show the boundary to Region III
since it is size dependent.

He in terms of these excitations, and the extensive
experimental explorations that have been conducted on
the 'He system. We discuss T~, T~, and diffusion
experiments.

The result of a typical T& experiment on pure 'He is
as shown in Fig. 12. The data is ordered into three
regions designated by I, II, and III by the temperature.
In Region I, the high-temperature region, the energy in
the Zeeman system is transferred to one of the particle
motion excitation systems inhabiting the solid. The
excitation system in turn is tightly coupled to the
reservoir and the experiment gives evidence about the
nature of the excitation system. In Region II, the
intermediate-temperature region, the excitation system
which takes the energy from the Zeernan system is not
tightly coupled to the reservoir, and the experiment
gives evidence about the coupling between the excitation
systems in the solid. In Region III, the low-temperature
region, the energy taken from the Zeeman system by
the excitation system in the solid is delivered to the
reservoir by spatial motion of the excitations, e.g., by
diGusiori. Regions I and II are characterized by energy
Qow in time among the excitation systems in the solid,
e.g., from the Zeeman system to the tunneling system to
the vacancy wave system, etc. Region III is char-

and the attendant motions of the magnetic moments
disappear leaving only the motions due to the tunneling
excitations to cause Quctuations in the dipolar field,
Region I-B (Garwin, 1966; Hartmann, 1964).

Regioe I-A. The energy dumped into the Zeeman
system by the rf field is delivered to the vacancy wave
excitations. In Fig. 14 we show the topology of the
energy Qow process. The relaxation time which char-
acterizes this process is derived in Appendix A.1 and
will be discussed in some detail below. Throughout
Region I-A (and Region I-B) the vacancy waves are
tightly coupled to the reservoir through the vacancy
wave-phonon coupling discussed above.

From Eq. (A1.20) the Tr for relaxation of energy

Z —VP

FIG. 14. Topology Z—Vt'.

'In Region I-A, the energy in the Zeeman system is trans-
ferred to the vacancy waves through the agency of the dipolar
field. For this to be a correct physical picture we must have the
vacancy wave dressed by spin fluctuation excitations (magnons
at low temperature), i.e., the vacancy wave is not a bare particle.
The Zeeman system is coupled through the dipolar field to the
spin fluctuations in the wake of the vacancy.
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TABLE I. Summary of NMR relaxation experiments.

Reference Summary of Experiment

Pure 'He

Goodkind and Fairbank (1959, 1960)

Reich (1963)

Garwin and I.andesman (1964)

Heal, Giffard, Hatton, Richards, and Richards
(1964); and Richards, Hatton, and GiGard

(1965)

Richardson, Hunt and Meyer (1965); and
Richardson, I.andesman, Hunt, and Meyer
(1966)

Thompson, Hunt, and Meyer (1967)

Hunt and Thompson (1968)
Senghaphan and Zimmerman (1968)

Garwin and Reich (1964)

Giffard and Hatton (1967);Giffard (1968);and
Giffard, Hatton and Truscott (1.971)

Hunt, Richardson, Thompson, Guyer, and

Meyer "(1967)
Bernier and I.andesman (1969);Bernier (1970};

and I.andesman and Bernier (1970)

Yu and Reich (1969)

Miyoshi, Cotts, Greenberg, and Richardson
(1970)

Measurement of T» and T2 at V=20 cm'/mole at temperatures above 1 K
(Region IA). Observed minimum in T1 and showed temperature dependence
of vacancy concentration,

Measurement of T1, T~, and D in the volume range 18.4&V&22. 5 cm'/mole
down to 0.5 K (Regions IA, IB, and IIA). Observed "plateau" in T1 and de-

coupling of the tunneling bath from the lattice in Region IIA.
Measurement of T1 and T~ for volumes 16.5& V&19.3 cm'/mole. Described the

physics involved in the relaxation processes in the various regions (IA, IB, and
IIA) in terms of the three-bath model.

Investigated Tr for volumes 18.S(V(24.0 cm'/mole down to 0.1 K (Regions
IA, IB, IIA, IIB, III) . Systematic measurements of frequency dependence of
T& in regions IB, IIA, and IIB. Measurements of the heat capacity of the
tunneling bath.

T1 and T2 measurements for 19.5&V&24. 5 cm /mole down to 0.35 K (Regions
IA, IB, IIA, and IIB).Study of frequency dependence of T1 and T2 in Region
IB. Measurement of 10/3 eRect in T2, and discussion of spectral function for
relaxation.

Measurement of diffusion coefficient D, at low temperatures, down to 0.05 K.
Correlation of D, with J for volumes in the range 20& V&24 crn'/mole.

Measurement of energy diffusion rate D~ in "hole burning" experiment.
Measurements of T1 in Regions IA and II for volumes 20& V&24 cm'/mole.

Studies of phonon interaction with relaxation rates.
Dilute mixtures of He in He

Measured anomalously long T1 in Region II for specimen at 19 cm~/mole with

x4 ——0.01. Measured large heat capacity of "tunneling reservoir. "
Studies of TI on Regions II and III. Observed the concentration dependence of

Tl at V = 20 cm'/mole with various concentration of 'He in the range 5 && 10
x4&3&&10 '. In low-temperature measurements, Region III, observed the
diffusion limited "plateau" and the increase of T1 with temperature below
0.1 K.

Studies of T1 in Region III for 20&V&23 cm'/mole. Observed specimen size
limitation for T1 in Region III, the diffusion limited "plateau, '

(x4 ——2)&10 4).
Measurements of T1 in Region II, and T. in Region I for U = 20, 21 cm'/mole and

10 4&x4 &10 2. Interpretation of the concentration dependence of T1 and heat
capacity in terms of mass fluctuation wave excitations.

Measurements of frequency and concentration dependence of T1 in Region II for
18.3&V&20.8 cm'/mole and with 5&(10 '&x4&1.5&10 3.

Xondilute mixtures of He in 4He

Measurements of frequency and concentration dependence of T1, T&, and D in

Region I for 19&V&21 cm3/mole and for 'He concentrations in the range
0.02&x3&1.0.

rv ' = ~vzoro ( V, 3), (4.3)

and ors(V, 3) is the frequency for tunneling of a 'He

from the Zeeman system to the vacancy wave system is

Ti-' lzv= (Tzv) '=-s'(~s/~o) g(n), (4.1)

where

g(~) =g(~«v)
= (ororv/[1+ (ororv) ']}+ I 4ororv/[1+4 (oror v) ']I,

(4 2)

particle into a neighboring vacancy site; oro(V, 3) is
calculated at the end of Appendix A. 1 and discussed in
some detail below. Here also ~p ——yHp is the I.armor
frequency, and M2 is the Van Vleck second moment;
see Appendices A.1 and 8.1. We may understand the
physica1 content of this result upon looking at the
Mpv. p((1 limit. In this limit the "looking" frequency of a
spin, Mp, is much less than the frequency which char-
acterizes the fluctuations in its loca, l field. For Eq. (4.1)
we have

Tt ' ——(10/3) Msrv ord'rv,
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FIG. 15. Time evolution of p(t) . At
t=0, i.e., after a 90 pulse, a classical
spin lies in the x, y plane. At the site of
the spin, the fluctuating local field,
HI (coo) j., caus".s the spin to random
walk back toward the z axis. The angle
p also random walks and might evolve
in time as shown in (b).

t=o
(b)

where coz~p's/(M') is the frequency of precession of a
spin in the dipolar field of 2' near neighbors at distance
h. A spin at R sees a local field of average strength H~
fluctuating between +Hq and Hq at freq—uency
ry . If precessing at frequency coo in the horizontal
plane (the rf field has just been turned oA') the spins
orientation with respect to the s axis as measured by g
will random walk, in response to the fluctuating
transverse local field, a distance A&=1 in a time
given by

(4.5)

Here the typical step the spin takes is of length ordr~, '

e=hP/(&uqrv) steps are required to walk directly the
distance hp, n' step are required to random walk dp,
rv is the time per step. See Fig. 15. For A&= 1, the spin
has effectively recovered to its original orientation
along the external field and Eq. (4.5) agrees with Eq.
(4.4). In the limit ceo))rv ', the physical argument is
the same as above but now the "looking" frequency of a
spin is much faster than the frequency with which the
local field is fluctuating. Then, the amplitude of the
local fiel at frequency ~o enters Eq. (4.5) in place
of the low-frequency local field cod,

' i.e., we replace cu,~

by ~g((op) =10d(Goorv) ' in Eq. (4.5). Then, the spin
random walks a distance DP= 1 taking steps of duration
«and length cod(~o) «, i.e.,

At high temperature, coory&(1, the spin relaxes in time

T» ~Q)day'

which becomes shorter as the temperature is lowered,
and is independent of the Larmor frequency. At the
resonance temperature, ~Dry 1, the spin looks at
precisely the frequency of the Auctuations of the local
field, and the local field fluctuations are most effective
in turning the spin up; T» is as short as it can be. At
low temperatures, orory)&1, the spin looks for what is a
fast component of the local field,

Ti M&p((do 1 v)

T» becomes longer as the temperature is lowered, and
r~ becomes longer. At fixed temperature T» becomes
longer as the frequency is raised, and the spin goes
further out of synchronism with the fluctuation in the
local field. See Fig. 16a, b.

Region I-B. The energy dumped into the Zeeman
system by the rf field is delivered to the tunneling
excitations. In Fig. 17, we show the topology of the
energy Aow process. The onset of Region 3 occurs as
the temperature is lowered and the particle motion due
to vacancy waves is frozen out; i.e. at point 3 on Fig.
16(a) . In the limit of low I.armor frequency, we would
estimate C to be at xvcu3(V, 3) J or

Equations (4.1) and (4.2) are the analytic expression
of this physics.

Now let us consider the behavior of T» as the tempera-
ture is lowered. We choose a particular Larmor fre-
quency with which to look at the system. See Fig.
16a. The frequency which characterizes the particle
motion which cause the fiuctuations in the local field
becomes smaller and smaller as the temperature is
lowered

xv(To) =J/~3(V, 3).

From the results at the end of this section at 20.0
cm'/mole, we have J 0.4X10' Hz, and &u3(V, 3) 10",
for&in xv(P) equal to 14.5Kwehavexv(P) =1/u, (V, 3)
at T~1.5 K. The transition from Region I-A to Region
1-8 is at T= 1.5 K for n= 20.0 cm'/mole.

From Eq. (A2. 17), we find the rate for relaxation of
energy from the Zeeman system to the tunneling
excitations is

« ' ——s(a1 ( V, 3)xv ——s(o, ( V, 3) exp (—py) . Tl ~zr +1(~0/~F) +4+1(2~0/~T) q (4.7)
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where

JI (MO/MT) =
I -;0r (~2/3MT) O'I' exp (—M0'/2MT')

( Gaussian), (4.8)

Jl(MO/MT) = (IfM2/6MT) exp (M0/MT) (LorentZlan),

(4.9)

and coz is proportional to J, co~=bJ; the magnitude of
b depends on the choice of a Gaussian or a I.orentzian
correlation function. See the discussion in Appendices
A.2 for further details leading to J(M0/MT). The de-
pendence of T'~ and b on the correlation function is taken
up below. The function Jl(M0/MT) has the same qualita-

Tunneling, m (V,3)

Frequency

Tunneling, coT

Z —TVP

FIG. 17. Topology z—TVP.

tive dependence upon M0/MT as the function g(M0TI )
above. When the looking frequency is slow compared
to J, M/0M~TO we have the shortest Tl,

Tl ~(Mg /MT)

in analogy with Eq. (4.5) . When the looking frequency
is fast compared to J, M0/MT~+ ~, the M0 Fourier com-
ponent of the fiuctuating local field goes to zero as

Mg(M0) = My exP L——4(M0'/MT) j
and we get a very long T'&,

Tl '=M~(M0)'/MT=(M'/MT) exp L
—2(M0/MT)'3.

(b)

Ta Te Tc

"Synchronism"

In this region, the fundamental microscopic time, J,
and hence co&, is temperature independent, but very
volume dependent. For a sample prepared at a particu-
lar molar volume, MT is fixed, and M0/MT is varied by
changing Ho. At fixed IIO or coo, samples prepared at
differing molar volumes yield a variation in MT (e.g. ,
a factor of 50 over the bcc phase) which permit one to
explore a wide range of M0/MT.

The frequency dependence of T& in Region I-A
differs from that in Region I-B because of the time
dependence of the correlations in the dipolar held
brought about by the two kinds of particle motion
excitations.

FIG. 16. Frequencies. The qualitative behavior of T1 vs T
is determined by the comparison of the "looking" frequency,
uo, and the frequencies that characterize FE&. In (a) we show
co3(V, 3) and coz, the frequencies which characterize FJf, as a
function of T ~. At T j)T~ 1 co3(V 3)&&coT, and the dipolar
Geld is characterized byco =cv3(V, 3).At T '& Tz ', co3(V 3) ((Go+,
and the dipolar field is characterized by co =coT. For the two choices
of the Larmor frequency, 1 and 2, indicated by dashed lines,
there are two different kinds of behavior for T1 vs T ' as shown
in (b). For dashed line 1, coo=cu3(V, 3) at T~ ', and coo)co~
everywhere. The spin sees the dipolar field in synchronism with
itself at T~ ", hence, the minimum value of T1 occurs at T~ '.
For dashed line 2, it is not possible to satisfy the synchronism
condition, coo=co3(V, 3).

4.2 T~ Exyeriments, Results

There have been measurements of Tj in pure 3He in
Region I by many experimenters. The accumulated
body of the work extends over a wide range of: (a)
molar volume, 16 cm'/mole to 24.5 cm'/mole; (b) tem-
perature, 0.003K(T&T», and (c) Larmor frequency,
with parameter M0/MT being varied from 10 ' to 30.

Before characterizing these results, we must give a
qualification statement for the expression pure 'He.
Most of the experiments were performed prior to the
knowledge that traces of 4He could play a major role in
some of the relaxation processes. Thus most of the
experiments to be discussed were performed with gas
samples containing unknown amounts of 'He impurity
at the level of about 100 ppm, the best gas then avail-
able from the supplier (Monsanto Corporation,
Moundsville, Ohio). Subsequent work revealed that the
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T~ behavior at lower temperatures, in Regions II and
III on Fig. 12, is profoundly affected by the quantity of
isotopic impurity. However, the properties of solid He
which depend upon the vacancy waves and the tunneling
excitations do not seem to be seriously affected by
traces of isotopic impurity of less than approximately
0.5%.We shall therefore discuss the quantitative results
of T~ experiments in Region I, and the T2 and spin
diffusion coefficient measurements at all temperatures
as being properties of pure 'He even though the actual
experiments used somewhat contaminated gas samples.
A discussion of Tj in Regions II and III will be deferred
to Sec. 6 and 7 where we discuss systems with isotopic
impurities.

In all of the relaxation experiments, the samples
were formed at "constant volume" using the "blocked
capillary technique" in which a plug forms in the
filling capillary when the liquid under pressure is cooled
to the freezing point on the melting curve. It is then
usually assumed that the plug stays fixed as the experi-
mental sample chamber is cooled through the melting
point to fill the chamber with solid. In the solidification
process, the pressure in the chamber typically drops by
10%, and it is common for the plug to slip as the solid
is being formed. This introduces an error in the volume
determination of order 0.1 cm'/mole which depends
upon the relative volume of the sample cell and the fill

capillary. In some recent work, a strain gauge measure-
ment of the pressure in the sample chamber was used to
determine the molar volume of the experimental sample.
The standard I'VT data used for molar volume deter-
mination is that given by Mills, Grilly, and Sydoriak
(1961), and by Grilly and Mills (1959). An accurate
determination of the bcc—hcp phase boundary has been
made by Straty and Adams (1966).

Finally, before discussing the results we comment on
the quality of the crystals that are formed in a typical
experiment. Because of the simplifications that result
in the theoretical analysis, the most desirable form of
solid in the %MR experiments is a powder of crystallites
so that anisotropy associated with crystal orientation
relative to the field Ho is averaged out (e.g. Abragam,
1961). In practice, this circumstance is not always
achieved. Workers who are interested in the formation
of single crystals for transport measurements of solid
helium have found it rather easy to form single crystals
(Ackerman and Guyer, 1968; Mueller, 1970). Varia-
tions in T& in Region 1-3 of about 10% due to anisotropy
for solids formed even by rapid cooling from liquid to
solid have been observed (Giffard, Hatton, and
Truscott 1971).

The earliest measurements of Tj in solid 'He were by
Goodkind and Fairbank (1959, 1960) who identified
the liquidlike behavior of Region I-A as being due to
vacancies. Their work was extended to lower tempera-
tures by Reich (1963) who observed the plateau in
Region I-B due to tunneling. Figure 18 shows the
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FIG. 18. T1 vs T ' for various molar volumes. The figure shows
the T1 data of Reich (1963) for various molar volumes measured
at a fixed precession frequency of 5.24 MHz. Curve E for V=
20.12 cm'/mole displays all of the characteristics seen for T1
in Regions I and lI. The minimum at T '=0.6K ' occurs when
the vacancy tunneling frequency co3(V, 3) is near the precession
frequency; at lower temperatures the recovery is determined by
the 'He tunneling rate. The minima for curves H, J, E, and L
would occur at higher temperatures than that at which the
measurements were made. For curves A, 8, C, and D there is
no minimum in T1 because the precession frequency is less than
the effective frequency of the 3He tunneling mT, the 3He tunneling
dominates the process when the temperature is low enough that
XVco3(V, 3) (or~. LAfter Reich (1963)$.

measurements of Reich over the temperature range
0.5(T '(3 for various molar volumes of the solid at
a constant I.armor frequency of 5.24 MHz. We note
that in Region I-A, where the relaxation rate is char-
acterized by vacancy motion, the relaxation time first
decreases with temperature as 7.~ decreases as expected.
from Eq. (4.4), then passes through a minimum at
MpTyr 1, and finally increases as rz ' with further
decrease in temperature. As the volume is increased,
the temperature at which the minimum occurs de-
creases, rejecting the fact that the vacancy excitation
temperature decreases with increasing molar volume.
We note also that in the high-temperature region, I-A,
the magnitude of T& shows only a mild decrease with
increasing volume since the frequency of the vacancy
motion, co3(V, 3) is a,pparently not a strong function of
the volume. 'Further discussion of the quantitative
determination of p and a&~(V, 3) will be delayed until
after the discussion of the T2 and diffusion experiments.

At temperatures below that of the minimum of T~,
where copra))1, we enter the region described by Eq.
(4.6) and, provided that the Larmor frequency is
sufficiently large, the relaxation time increases as the
temperature is lowered until there are so few vacancies
preserIt in the system that the tunneling motion becomes
relatively more important. The frequency dependence
of T& throughout Region I has been investigated by
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Richards, Hat ton, and Griffard (1965), an.d by
Richardson, Hunt, and Meyer (1965). The data of
Richardson, Hunt and Meyer at various Zeeman
frequencies for the volume 20.4 cm'/mole are shown in
Fig. 19. In this 6gure we see that as the Zeeman fre-
quency is raised from 1.05 MHz to 6.80 MHz, the
behavior of T~ for values of T ' between 0.5 and 0.9
changes dramatically. It is in this temperature range,
I-A, that 7.& is of the order 10 ' sec so that the frequency
dependence of Tj begins to be observable. The minimum
in T& does not even appear if the Zeeman frequency is
less than the tunneling rate, coo&cu~, because point C
in Fig. 16(a) occurs at a higher temperature than that
expected for the minimum, point B, the point at
which orz ~7 y

At lower temperatures, we enter Region I-B, the
"plateau" region in T~. The magnitude of T~ in the
plateau is expected to vary with frequency as given by
Kq. (4.8) . It is through studies of the frequency
variation of Tj in Region I-B that we acquire detailed
information about the spectral function J(ceo/cor) .
Figure 20 shows the Tj data of Richardson, Hunt, and
Meyer for many different molar volumes in the bcc
phase plotted in a reduced form Tt(0)/Tt(too) versus
(&os/I) '. If we assume that all of the volume dependence
of Tr is contained in Tt(a&s ——0) and in ter(V), then the
plot is essentially the function J&(coo/cur) vs (~o/cur)'
From Eq. (4.8) we see that the points on such a plot
are given by

Tt(0)/Tt(coo) =J(coo/cog)+4J(24os/&or) .

The solid lines represent the calculated values of T~
assuming either of two simple analytical forms for the
correlation function that governs the time evolution of
the dipolar field due to tunneling motion, the Gaussian
function, j(ri) = exp —rP/2, and the Lorentzian func-
tion, J(ri) = exp (—ri), (see Appendix A for a detailed
discussion of this point) . It appears that in the bcc
phase the function exp [—(cop/4or) ] obtained from the
Lorentzian approximation produces a better fit to the
observed data than a Gaussian approximation. Figure
20b shows a similar plot for the data in the hcp phase.
It can be seen that in the hcp phase the function
exp [—(coos/2co, ') ]obtained from the Gaussian approxi-
mation produces a better fit to the observed data than
the Lorentzian approximation. The actual correlation
function for either phase is probably not exactly a
pure Gaussian or a pure Lorentzian. The question of
the functional form of Jt(coo/ter) must be understood if
one is to reliably use only the relaxation data to cal-
culate the tunneling frequency J. The use of experi-
mental evidence to straighten out this question is
further complicated by uncertainty as to the validity of
the powder hypothesis for experimental samples (single
crystals produce anisotropic values of Tg~ which vary
by at least 10%) and by the presence of 200 ppm 4He
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FIG. 19. T& vs T ' at various precession frequencies. The

figure displays the frequency effects on T1 at V=20.4 cm'/mole
measured by Richardson, Hunt, and Meyer (1965). At high tem-
peratures T '(0.6 K ', the relaxation rate is independent of
frequency and is governed by the vacancy tunneling motion.
The curves for 6.8 MHz and 4.82 MHz display a minimum at
Gpp1'~ 1.For this specimen cur/2s =3 MHz so that in the measure-
ments with coo/2m. =2.00 MHz and 1.05 MHz, there is no mini-
mum in TI. The plateau values of T1 lIl Region IB (1(T '(1.4)
at various frequencies are used in the determination of the
spectral function, J((op) for the Zeeman —tunneling relaxation
process [after Richardson, Hunt, and Meyer (1965).]

impurities in most of the experimental samples. The
effects of 4He motion upon relaxation will be discussed
in the following sections of the paper. The crucial
observation from studies of dilute 3He—'He mixtures is
that the motion of 4He impurities could lead to anoma-
lously short values of Tt in the limit (cop/err)((1. To
resolve these questions further experiments with very
pure 'He single crystals should be performed. Further
theoretical progress is possible by calculating the sixth
moment of the line shape and by including the effects
of zero-point motion in the evaluation of the moments
(Harris, 1971).

4.3 T2 Relaxation, Theory

The result of a typical T2 experiment on pure 'He is
as shown in Fig. 21. The data are ordered into two
regions, I-A and I-B, by the temperature. Since the
process by which equilibrium is established among the
spins involves energy transfer within the Zeeman
system only, T2 has a much less bizarre temperature



550 REVIEWS OF MODERN PHYSICS ~ OCTOBER 1971

II I & I I I I I ~ I I i 1 I I (I I I I I i

CV0

/
/

/
/

/

le
I
I
l

I

)0
~ I

I

~ I

lg
'O

~it

I

y ~
I

I
OJ

04'0

0
II

0
I=

OJ
'O

FO= 'O

il I i I I II I I I I I I i

'0
(0)lg

(0)~x

libel t s

CU
'O

FO



~ mm e~ '~ 0c+ 0m~~ V
m ~ Q~ ~ .g ca

~4Q O0
~M~Wg

ocn ~ 0 &Ll ~
3

cd ~ cd~ ~ g ~ g 4 cd~-"~o
C4 CLED rn 8

~ ~ V ~ C4 Q ~ ~ gO cd P cd C4 0
O

0 ~ ~ ~ cd

o~+'Q
II P v Q

0
cd'~ ~ 3 o~cd ~ I

~ ~ g 0~~ -Wo
tV'Q &u & ~m ~ m v

p C4~ rn 3~~
O cd ~~~ O,~~ P

Q '~
I 3 g 0 O 0 '~

~Pl, ~ P~ I M~ cmg, ~ ~ C)0~'boa ~3 ~ ~ X ~~~g cd ~ ~~ bQ~

0&~N ~0~~cd+~~~a 0~
t vo00'~ g~~ ~ ~ &V cd ~ P

hq~ ce ~ P . P cd
~ cd

M I~

-„v g g, f q II ~ 'p Q v o )

0 ~ rn (0

g ~~ ~ V

~ ~~W~~~N ~ 0 „~ 0
Q rnO~g

rn ~~ ~ K g ~ . ~ g gMo 3
cd ~~ ~ ~ kO & cd v

O O

~ ~

g ~~ + cd cd ~ ~ Pp 0

O M cd O
O + boIb~~~~ 6 '" g OW 50

~ w

0 tL) cd cd ~ ~ 0 ~ ~ C4
N E ~ ~ ~ rn C e X ~ ~ cdO,~,w g Q 0 + O o + CL

c~~& o~

cd rn G4~ ~ (Q ~ ~ +~ (Ll

rv! C4~00 cd o
C4 ~ ~ + ~ ~ cd e ~ S

rn
0 ~

~ .~ rn 0 0 '™4 om
&~gp

cdC4t-4'~~~ m ~O
~ "~ ".H~~~~Ã~5-

I

OO

3 O+
3 Ev

O 3
O

I
I

O

E'xcitatioes ie Quantum CrystalsGUYER, RICHARDSON) AND ZANE

~ A
CL7

0.~ Q a) ~
t

~ ~

a)

rn rn Q Cd
boy ~ vi3 g~U ~ ILI g'2 (u

Q r ~ g rn (D

&Q ~ ~ O

~ O u) cd o & W ~

~" oO 0

0 o cd o cd P, II4™~
0 ILL &Dcd~&~g&P

c rn ~~ cd ~ '~ C4~
o o~0

cd ~ ~ 0.0 cd ~-i v'i a) ~on~ @~OOOO
0

2
0 ~ 0A

0
rn

&u VvO~~~O~~~~V
cd V-~~~/~~ O

rn Q) V~~ g
~ w cd V

~~.& o

bO& o~ 0
O g ~~ cd 8"&Vo~~x g g-~~~~~&g- -o
rn ~~ &~~~ t g ~ C4M

o &~- . IO g~P 0

&OO&D~cdo(D~~

O cd ~cdo~O
V~ cd O

g O ~P~ + V rn, ~&~
'Pq & O 0 cd

0 0 ~ ~ ~ + M ~ Qcol ~ M ~ V O ~ Q g a ~ CLI

II &~ o cd 0 v ~~~~+
3~ Ch 0 II

.~ + ~W'~ 0
v-I g ~ M ~ Cd

&Q

rn a eq 0 0 a) ~ ~
o ~~~~~~ o 0~ o0 rn rn 4 t & rn ~ ~ ~ W 3 ~

bg)

47

~ M

cd

Sv
3
3

VO

l

C4

V

8
0

cd
~ M

0
~ A

0
~ W

07

vv

3
C)

3
~ A
8eM

0
~ rf
cd

E
~ A

0
C4

cd

cd 3
o

rn

cd ~
CL)

g"

~ w Q

cd
~ M

cd

cn

II ~
3 cd0

C4

I
C4

~3 +
O
3 Ev

3
I

C4

II

O



552 REvzzws oz MQDERN PHYslcs ' OcTQBER 1971

-I
lo

-2
IO

T2
(sec)

10

-4
IO

IO
0

I-A

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Y = 20.0 cm/mole
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dependence than T~. In Region I-A we have equilibrium
among the spins established by the motion of the
vacancy waves; in Region I-8 equilibrium is established
by the tunneling motions. In Table I we have listed the
T2 experiments that have been done on pure 'He along
with the parameters which describe the experiment.

Region I-A. The irreversible motion of the spins in
the transverse plane occurs because of fluctuations in
the local field due to the motion of vacancy waves
through the field particles. The rate at which this
irreversible motion takes place is given by Eq. (B1.12),

T2 '= a(~2/~o) Ik~+-'E~/(1+~') j+L~/(1+4~') jI,
(4 10)

where g= cv07-y, M2 is the Van Vleck second moment, and
coo, ~i ' etc. , are discussed below Eq. (43) and in
Appendix A. The physical content of this result is much
the same as that of Eq. (4.1) for Ti in Region I-A.
The irreversible motion of the spins in the transverse
plane is caused by the Quctuations in the local field.
The spins which are precessing about the s axis at
frequency ~0 will change motion in the transverse plane
by coupling to H~(coo) ~ as well as to H~(co=0), . For
the purposes of causing a spin fhp, only Hz(coo) i will
work. For causing spin motion in the transverse plane,
both Hq(&uo) i and Hq(0), work. The first term in Eq.
(4.10) comes from the s component of the dipolar field

T (K)
FIG. 21. T2 vs T '. The figure shows a "typical" shape of the

data curves for T2 vs T ' for V=20.4 cm' with a Larmor fre-
quency of 0.53 MHz. The magnitude of T2 is greatest near the
melting curve, and decreases rapidly with the decrease in the
vacancy population. When the characteristic vacancy tunneling
frequency becomes less than the 'He tunneling frequency
the 'He tunneling motion dominates the spin equilibrium process.
The dashed line indicates the expected rigid lattice limit for T2
in the absence of 'He tunneling motion for which there is no
motional narrowing of the resonance line so that T2 yIIq;~, ~,~
Mg "~, where 312 is the Van Vleck second moment of the line.

Hq(0), which causes irreversible transverse motion
independent of the "looking" frequency. The second
and third terms in Eq. (4.10) are the contribution to
T2 ' of Hq(&uo) ~; they are essentially the same as the
contribution of this field to Ti ', c.f. Eq. (4.2) .

%e may understand the qualitative dependence of
T2 on co&, ~0, and 7& by arguments similar to those
below Eq. (4.3). In the limit a&0~0, the spin sees the
zero frequency component of Hg((op~0) as well as
Hq(0), . Both fields contribute to the irreversible
transverse motion and

1/T2((00~0) Izi (10/3)M27'y (10/3)(dd ry (4,11)

The spin random walks in the transverse plane in
response to Hq(~do) i and Hq(0), . The argument below
Eq. (4.5) applies. in the limit cup~+ ~, the spin sees
the ~o Fourier component of Hg((dp) s which goes to
zero as or~(Mori. ) . If the spin moved in the transverse
plane in response to Hd, (a&o) i only, then T& would go to
+~ as Mp~+ ~, i.e., as the looking frequency goes out
of synchronization with the Quctuating field. But the
spin moves in the transverse plane in response to
Hq(0), as well as to H&(a&0) i. Thus as Mo~+ ~ T2 does
not go to +~ but it goes to

1/T2((go~~ ) = Mnrv= (3/1'0) (1/T~(~0 0)) (4.12)

the value determined by Hz(0), alone. At low fre-
quencies, 30% of T2 ' is due to Hd(0) „and 70% is due
to Hg(G&p) J.. As Mo~+ ~, the transverse component goes
away because the spin can't see Hz(~0) i and only
Hq(0), remains. The result in Eq. (4.12), T2 '(0) =
(3/10) T, '(1~), is called the ten-thirds effect. We
discuss its observation in experiments below. Finally,
we note that (1) the spin motions due to Hq(0), occur
entirely in the transverse plane —they are energy
conserving and termed adiabatic, and (2) the spin
motions due to Hq(coo) i occur in the transverse plane as
well as out of the plane —they are not energy con-
serving and are termed nonadiabatic. The nonadiabatic
motions contribute to T~.

The temperature dependence of T2 in Region I-A
is due to the temperature dependence of 7-~. As the
temperature is lowered T~ becomes shorter until at
sufficiently low temperature the particle motions
leading to the Quctuating field are principally those of
the tunneling excitations.

Region I-B. At the lowest temperatures, the im-
portant particle motions are those manifested in the
tunneling excitations. In this region, T( 1.5 K at
V=20.0 cm'/mole, T2 is given by Eq. (82.1).We have,
using the Gaussian approximation,

T. ' Ir-s= 3(2~)"'(~2/~~)

X I-,'+—,
' exp L

——',(a)o/o)r)'j+ exp L
—2(~0/orT)

(4.13)
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where cop is the I armor frequency, M2 is the Van Vleck
second moment, and coz is related to J as discussed
above. The physical content of this result is the same as
that above. Thus see the discussion below Eqs. (4.5,
4.6, and 4.11).

We note that there is a (10/3) effect in both Region
I-A and I-B. The physics of the (10/3) effect is in-
dependent of the particle motion leading to Hg(cop)
and Hg(0), .

The Nortadiabatic Freqgertcy Shift

T2

(sec)

I s I

IO

- l94

I I l I
I

I I

oo oooo o«~~-g~. 2288
~—22.05

~a-a —a—a—a-a-2I.70
==--o—o—o—e-2l. IO

Conjugate to the (10/3) effect in the linewidth, T2,
is a small shift in the center of the resonance line, the
nonadiabatic frequency shift (Kubo and Tomita,
1954). A detailed discussion of this shift is found in
Appendix B.The maximum frequency shift away from
cop occurs when the motional frequency, due to tunneling
or vacancy waves, is the same as the precession fre-
quency, cop. Then the Fourier components of the non-
adiabatic part of the dipolar interaction, Hq(roe) i, have
a maximum coupling to the Zeeman resonance at
co= cop. Using the Gaussian approximation to the
correlation function, leads to a shift in the resonance
frequency in Region I-3 that is given by

+2 e p( — )4 ( ), (4.14)

where

ai~~~~~—20.I2
-2

10 —) ~
- 8

e—sQ—~-~ 0 I9.52
0
I

I8.55
~ a a-ri--& Og

a a
I6 56 I8.27

IO
0 2

FIG. 22. Data of T2 vs T for various molar volumes. The
figure shows the data for T2 obtained by Reich (1963), (V&
20.12 cm'/mole) and by Garwin and Landesman (1964) (V&
19.32 cm'/mole) . Additional measurements at larger molar
volumes have been made by Richardson, Hunt, and Meyer
(1965). The limiting low-temperature value is proportional to
the exchange frequency J which can be seen to increase rapidly
with volume. It is apparent from the high-temperature part of
the curves, governed by the vacancy motion, that the activation
energy of the vacancies decreases with volume.

coo/tap'

exp (-'X') dX.

The maximum amplitude of bee occurs when ~p= Goy,
' for

roe ——&or the magnitude of pro is approximately 1/T&. In
the high- and low-field limits we have ((op/&or)))1 or
(cop/cop) «1, 6ro~0. (Use of the Lorentzian approxi-
mation to the correlation function leads to a frequency
shift of about the same magnitude as the Gaussian
approximation but with a slightly different frequency
dependence. )

4.4 T2 Experiments, Results

Figure 22 shows the variation of T2 with inverse
temperature measured by Reich (1963) for a number of
different molar volumes in both the bcc phase and the
hcp phase. We see immediately a manifestation of the
volume dependence of the parameters which char-
acterize the particle motion excitations, @, ro3(V, 3),
and J, and in turn determine the behavior of T~. In
Region I-A, we note that T2 decreases rapidly as 1/T
increases. A given value of T2 occurs at higher tem-
peratures as the molar volume decreases. These features
are a consequence of the increase in @ with decreasing

molar volume. In Region I-B, T2 is temperature in-
dependent. The details of the data shown in Fig. 22
have been successfully analyzed using Eqs. (4.10) and
(4.13) to determine the parameters, @, co3(V, 3), and J.
The results so obtained are in good agreement with the
values found from determination of these parameters
from T~ and diffusion measurements. Table I sum-
marizes the region in volume and temperature which
has been investigated in T~ experiments.

Figure 23 shows the reduced plot of [T2(roe ——0) /T& (roo) ]
vs (roo/oiz') for data in both the hcp and bcc phases
(Richardson, 1965) . As in the case of Ti measurements,
it is found that the Gaussian approximation to the
correlation function yields a good fit to the data in the
hcp phase. In the bcc phase, a more satisfactory fit is
found by using a Lorentzian function (Richards,
19/0) .The general features of the (10/3) effect can also
be readily seen; the value of T2 in the high-6eM limit is
about a factor of 3 greater than those in low fields. At
the larger molar volumes, the T2 values are systemati-
cally about 30/o less than the Ti values, even though
the limit (~,/~, )&&1 is well established. In this limit,
Tj.and T2 should be equal. The source of this discrepancy
is thought to be due to the spin diffusion in the in-
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IzG. 23. (a) Reduced plot of T& 'for bcc'He. Thepointsin theplot are the "reduced" values of T& «for thedata listed by Richard-
son, Hunt, and Meyer (1965) for the bcc phase, The same basic rules as those used in the construction of Fig. 20(a) are applied here.
Values of J for each molar volume are obtained from the thermostatic measurements in bcc 'He. The coefficient k in the expression
T2 (0) = T& (0) = k ( J/27r) V has the same value as that used in the plot for the reduced Tq ~ ~zr data, k =30K 10 ".The lines represent
the function

T~(0) I:JI (0}+5/3J«(~p) +2/3 J«(2~p) ]
T.(cop) 10/3 J, (0}

with the solid line representing the values obtained using the spectral function of the Lorentzian approximation J«(cop) /J«(0) = exp-
(mp/uz), and the dashed line representing that of the spectral function of the Gaussian approximation J«(cop) / J(0) = exp —

2 (cop/Gap)'.
For the Gaussian approximation, the theoretical relation between coq and J is used, uz ——(M4/1lf2)'"=4. 76J. For the Lorentzian ap-
proximation, the relation coz ——4.16J is used rather than co~ ——4.76J/V2, the theoretical value, for the same reasons as those discussed
in the application of the Tq r ~zr data to a reduced plot LFig. 20(a) ].The points for each different volume are shown with a different
symbol to illustrate that, as in the case of the T& '

~zr data, an adjustment of the parameter J of the points for a given volume may
be made to give better coincidence with the functional form of J«(~p) resulting from the Lorentzian approximation than that of the
Gaussian approximation. Consistent fitting of the data to the Lorentzian relation, Eq. (4.9), produces values of J which are about a
factor of 2 larger than those measured in the thermostatic experiments. In the figure, the data points for V=24. 1 cm'/mole and V=
24.6 cm /mole have been omitted because they are measured in the limit cop/ J&(1, where there is no ~p dependence of T&, and because
they are systematically 40%% less than T, in the same limit and would therefore be misleading when presented in the figure. (b) Re-
duced Plot of T. ' for hcp 3He. The points in the plot are a presentation of the reduced (T~) ' data for the hcp phase of 'He taken
f'rom the Table I in Richardson, Landesman, Hunt, and Meyer (1966).The same rules are used to plot the points here as those used,
in the construction of Figure 20(b}.There being no reliable thermostatic measurements of J for pure hcp 'He, T2(0) is taken at 3/10'
where T~' is the value of T2 measured in the high-field limit ~p/ J))1.J is then calculated using the relation, J/2~= (3/10) Tg'/(k& )

where k =43.1&(10 "is the value derived from the Gaussian approximation. The open circles are the points listed for t/" = 19.50 cm'/mole
(which are incorrectly plotted in Fig. 1 of-Richardson, Landesman, Hunt, and Meyer (1965), unfortunately exaggerating the fit of
the data to the exact Gaussian relation). The closed circles are the data points for V= 19.55 cm'/mole, for which T2' is obtained by
extrapolation of the theoretical relation for the Gaussian based spectral function J«(cop) through the data points. The curves labeled
Gaussian, the dashed line, and Lorentzian, the solid line, are plotted from Eq. (B1.11) using the same correspondences between co&

and J as those used in Fig. 20(b) . For the Gaussian line, mr = LM4/M, ]'"=6.48 J, and for the Lorentzian line, cur=6. 48 1/V2s-. The
extra factor 1/21. in the Lorentzian form occurs in order to make a consistent comparison between the limiting theoretical approxi-
mations and the data without recalculating the value of J.The open circles can easily be adjusted to fit the Gaussian curve by varying
J by approximately 20'pc). They can also be adjusted to fit the Lorentzian relation but then the value of J used to do this would give
a very large discrepancy for the T«data of the same specimen using the Lorentz relation. We therefore conclude that for hcp 'He,
the Gaussian relation provides the better approximate form for the correlation function. This relation will be used in subsequent cal-
culations of the values of J for hcp 3He.
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homogeneous applied magnetic field since it occurs only
for T~ T2& 100 msec and when D, is largest.

4.5 Diffusion, Theory

The result of a typical magnetization diffusion
experiment on pure 'He is shown in Fig. 24. As with
the T2 experiment, the data is ordered by T ' into two
regions, I-A and I-B.In Region I-A, the diffusion of spin
is due to the presence of vacancy waves in the system, '

in Region I-B, the vacancy waves have been frozen out
and the diffusion of spin is due to the tunneling process.
In Table I we have listed the magnetization diffusion
experiments that have been done on pure 'He.

Region I-A. In Region I-A the diffusion of the spins
in the externally applied field gradient is due to the
presence of a substantial number of vacancies in the
system. The diffusion constant for 'He motion ha, s been
derived in Appendix C and is given by

Dz ( V, 3)~Az ( V, 3) &'&v '= Az ( V, 3) &'z~3( V, 3)xv,

(4.15)

where Az(V, 3) is a constant of order 1, xr is the
vacancy concentration, 0»(V, 3) is the frequency with
which a 'He atom tunnels into a vacancy, and s is the
number of near neighbors. We write this diffusion
constant in the form

Dz(V, 3) =Dz(V, 3, x=1)x„, (4.16)

where Dz(V, 3, 1) ~ 6'za»(V, 3) is only mildly volume
dependent.

The Xouadi abatic Frequency Shift E—xPerimeutal

The shift in the center position of the resonance line
which occurs when &p G0T has been observed by Homer
and Richards (1969a). The experimental technique
involved forming a sample in the hcp phase (V= 19.3
cm', &ur/2z. =0.82 MHz) for which the value of cur

would produce a maximum shift in a t,".ve. NMR spec-
trometer tuned at 0.82 MHz. The frequency of the
maximum in the absorption signal in fixed external field
IIp was measured. Then the pressure on the solid was
reduced to form a sample having a value of coy that
would produce a negligible shift, and the frequency of
the maximum in the absorption curve was measured
again and observed to shift by 11 cycles. The resulting
difference in the frequencies of the maxima was a
direct measure of the shift.

The magnitude of the shift is in good agreement with
the prediction of Eq. (4,14). The observation of the
frequency shift and the details of the 10/3 effect serve
to verify the correctness of the structure of models for
nuclear relaxation. 3He forms a system in which these
effects are basically easier to measure and interpret
since the characteristic motional frequency of the
sample, ~& and r. ', may be easily varied (through
melting) while the sample is i&z situ
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FiG. 24. Dz vs T '. The figure shows the typical variation of
Zeeman diffusion coefficient with temperature. At high tem-
peratures the measured spin diffusion rate is dominated by the
'He atoms drifting through the wake lef t by the vacancies tun-
neling through the lattice. The rate is given by Dz(V, 3) =
Az(V, 3)h's~~(V, 3)xv, where Az(V, 3) is a constant of order
1, d' is the lattice parameter, s is the number of neighbors,
co3(V, 3) is the tunneling frequency of a vacancy in 'He, and
xv is the vacancy population. At sufficiently low temperatures,
the 3He tunneling dominates the observed diffusion rate, and one
obtains a temperature-indipendent diffusion rate Dz(3, 3) =
A z(3, 3) LV J, where A z is a constant of order 1, and J is the
'He tunneling frequency.

4.6 Diffusion Exyeriments, Results

Reich (1963) has measured D. for various molar
volumes in Region I-A; his results are shown in Fig. 25.
The strong temperature dependence of Dz at high
temperatures may be readily analyzed to yield the
characteristic temperature for the excitation of a
vacancy wave, @, and the tunneling frequency for
vacancies, ~3(V, 3). The variation in Dz with volume
in this region is a consequence of the changes in @
with volume. The results of the analysis of D, data are
summarized in the final portion of this section where
they are compared with the results obtained by other
experimental techniques.

In Region I-B, the diffusion coe%cient is temperature
independent and determined by the 'He tunneling fre-
quency, J. From Eq. (4.17) we expect Dz o:J. In Fig.
26 the values of Dz obtained by Thompson, Hunt, and
Meyer (1964) are plotted against (J/2x). It is clear

Region I-B. As the temperature is lowered, the
vacancies are frozen out, and the tunneling motion of
pairs of 3He particles leads to their diffusion in the Geld
gradient. The diffusion constant for this case is derived
in Appendix C and is given by

Dz(3, 3) = Az(33) ~'J, (4 17)

where Az(33) is a constant of order one, and J is the
tunneling frequency. The di6usion constant Dz(V, 3)
is equal to the diffusion constant Dz(33) at
z~3(V, 3)xr=J for V=20.0 cm'/mole at T=1.5 K.
Note: this is the same condition and tempera, ture as
that involved in the transition from Region I-A to
Region I-B in a. T~ experiment.
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times short compared with T~, so it is done with the
specimen cooled to Region II. In this region, the
strongly coupled excitation systems diffuse together
with a single diffusion constant given by

Dz= (CzDz+CrDr+Csr gDmr )/(Cz+Cr+CM p) .

(4.18)
2-

0.2 0.4 0.6 0.8 I.O I.2 I.4 1.6 I.8 2.0 2.2
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FIG. 25. Dz vs T ' for various molar volumes. The figure
shows the data of Reich (1963) for the diffusion coefficient Dz
versus inverse temperature. The labeling of the data points cor-
responds to the varous molar volumes at which the measure-
ments were made. At high temperatures the diffusion rate is
determined by the vacancy diffusion; the straight lines may be
used to calculate the parameters p, the vacancy activation
energy, and ~3 ( V, 3), the vacancy tunneling frequency. At
lower temperatures the observed diffusion rate is governed by the
~He tunneling and is temperature independent. )After Reich
lt963l. j

from this plot that Dg is proportional to J.The solid line
in the figure through the data 6ts the relation Dz=
(4.4&0.4) && (J/2n) LV. The value of the coefficient A in

Eq. (4.17) has been calculated by Redfield and Yu
(1968, 1969) to be 4.12, in excellent agreement with
the experiment.

The energy diffusion coefficient, DE, which is a
measure of the rate of energy transfer through the
sample has been measured by Hunt and Thompson
(1968) in a novel pulse experiment. Their experiment
in outline is as follows:

(1) Local spin heating is achieved over a narrow
slab of a sample placed in a large magnetic field gradient
by "burning a hole" in the inhomogeneously broadened
magnetic resonance line.

(2) The recovery of the line shape, with the hole
burned in it, to the preburning shape is achieved
through diffusion of the magnetic energy through the
specimen.

(3) The experiment is performed at T ' corre-
sponding to Region II-B, i.e., at low temperature where
the Zeeman system, tunneling excitations, and mass
Quctuation waves come to a common equilibrium.

(4) The recovery rate is mea, sured by observing the
rate at which the "hole" is broadened as in Fig. 27.

Experimentally Hunt and Thompson looked at the
time evolution of the Fourier transform of the hole by
observing the free induction decay following the
application of a small rf pulse (4 ) tuned at a slightly
different precession frequency. The time evolution of
the beat pattern of the 4 pulses is measured to deter-
rnine D~. The whole experiment must be performed in

From analysis of the free induction decay, D& is ob-
tained. Then using Eq. (4.8) and Dz as measured in a
conventional diffusion experiment, Dz can be found.
The value of Dz obtained by Hunt and Thompson is
(9.4+2.0) (J/2x) a'.

t Redfield and Yu (1968, 1969)
have calculated the value 4(J/2m')a'. ) j The experi-
mental situation with regard to diffusion experiments at
low temperature needs clarification ( Giffard, 1971).

4.7 Properties of the Excitations in Pure 'He

Here we summarize the properties of the excitations in
pure solid 'He which have been measured in the NMR
experiments we have discussed above and compare the
results of NMR measurements of the properties of the
excitations with measurements using other techniques.

We begin by observing that the excitations in pure
solid 'He can be described by four parameters: the
phonons OD, vacancy waves @ and res(V, 3); and the
tunneling excitations J.XMR experiments on pure ~He
do not see the phonons although these excitations are
involved in the energy Row chain. Measurements of 0&
come directly from thermostatic measurements, Cy,
(dI'/dT) ~r, etc. The other three parameters,

J/2m {MHz)

0 IO 20 30 40 50
I I I I

I 2-
I0- I l~

OJ

E 8,-
O

O

THM

x Reich

0 I 2 3 4 5 6 7 8
(J/2') a (lQ cm /sec)

FIG. 26. The diffusion constant Dz in the bcc phase. The
figure shows the limiting low temperature values of Dz measured
by Thompson, Hunt, and Meyer (1967), shown with circles and
error bars, and by Reich (1963), shown with crosses. The data
points are shown as a function of the quantity ( J/2~) a~X10 8

cm' sec ' to emphasize that Dz is determined by the tunneling
motion of the 'He atoms. The value of J in the figure should be
divided by a factor 2 to conform with the definition of the tun-
neling energy used in this work. The straight line fits the equa-
tion Dz=(4.4~0.4) g(J'/2/2m)h' cm'/sec ', where J' is the
value of J used by Thompson, Hunt, and Meyer (1967), and
6 is the lattice constant. The calculation by Redfield and Yu
(1968, 1969) predicts Dz=4. 12 (J/2m)A' cm'/sec for the bcc
lattice. t After Thompson, Hunt, and Meyer (1967)j.
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a&s(V, 3), and J, are most easily studied in NMR experi-
ments. The magnitude of these parameters determined
in measurements of Ty Tp and the diffusion constants
Dz and Dg are all internally consistent and in reasonable

agreement with their values determined from thermo-
static measurements. The experimental sources of the
parameters we have derived from NMR measurements
are listed in Table II.

Parameter See I'igure Data Used

31 and 32 Panczyk and Adams (1969); Hatton
and Giffard ( 1.967); Sernier and
l.andesman (1969};Richards,
Hatton and Giffard {1965);
Richardson, Hunt, and Meyer
(1965); Gar win and I.andesrnan

(1964); Reich {1963)
28 Sample and Swenson (1967); Edwards

and Pandorf (1965, 1966, 1968')

29 and 50 Reich (1963); Richardson, Hunt, and
Meyer (1965); Sample and Swenson
(1967};Gizzard and Hatton (1967);
Miyoshi, Greenberg, Cotts, and
Richardson (1970)

30 Reich (1963); Richardson, Hunt, and
Meyer (1965); GiAard and Hatton
(1967)

a For each of the parameters, J, 0~, qb, and cu3(V, 3) we have tabulated
the references to the experimer1ts from which the data is-drawn.

TABLE Il. Experiments used to determine basic parameters:
S, 0, and (V, 3).'

Phonons, HD

F r recent specihc heat measurements, those of'our r
fSample and Swenson (1967),and Edwards and Pandor

(1965, 1966, 1968) provide the most reliable data on
the Debye temperature. In I'ig. 28 we plot 0~ vs molar
volume for bcc and hcp 'He. |A'e use the values of 8~
from these plots to characterize the phonon spectrum.

Vacancy Waves, @and a&s ( V, 3)

I th discussion of NMR experiments in pure 'Hen e
Tin Sec. 4, we have seen that the behavior of 1'~,

d D at hi h temperatures is due to the vacancy wave
excitations. In Region II-A (to be discusse in ec.
the behavior of T» is due to the coupling of the vacancy
wave excitations to the tunneling excitations. Thus
there are within the body of NMR data four inde-

pendent experiments which are sensitive to the char-
acteristics of the vacancy wave excitations. The vacancy
wave excitations have the dispersion relation given in
E . (3.10); they are characterized by the excitation
temperature P and the tunnehng frequency tes,
In Fig. 29 we have plotted p vs molar volume; we

have used (1) the diffusion constant measurements o
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FIG. 28, Debye Temperature. The
data are from the following specific heat
measurements: &, hcp 'He: Sample
and Swenson (1967); Q, hcp 'He:
Edwards and Pandorf (1965); , bcc
'He: Sample and Swenson (1967);
Edwards and Pandorf (1968). In cal-
culating the properties of the phonons
we use the numbers from the smooth
curve through the data.
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Reich in Region E-A, Fig. 25 to determine p a,t 18.0
cms/mole& V&23 cm'/mole using Eq. (4.15); (2) the
T~ measurements of Richardson, Hunt, and Meyer
(1965), Fig. 19, in Region I-A to determine p a,t
V=20.4 cm'/mole using Eq. (4.1), and (3) the Tt
measurements of GiRard and Hatton (1967) in Region
II-A to determine g at V= 20.0 cm'/mole. We have also
plotted the values of @ from analysis of the specific
heat data of Sample and Swenson of Fig. 29. First we
note the good agreement between the three independent
NMR determinations of @ and the good agreement
between the NMR values of @ and those from the

specific heat data. The comparison of different experi-
mental determinations of @ is limited because only the
diffusion measurements of Reich have been carried out
over a wide range of molar volumes. However, at
V= 20.0 cms/mole where each of the experiments
yields a value of @, there is good agreement. On Fig.
29 we have also plotted the values of @ from the theo-
retical calculations of Hetherington (1968).

The same data which have been analyzed above to
yield values of p also yields values of vs(V, 3). In Fig.
30 we have plotted tos(V, 3) vs V: we have used (1) the
diffusion data of Reich in Region I-A, Fig. 25, and Eq.
(4.15), (2) the Tt data of Reich at V=20.1 cm'/mole
at the temperature of the Tt minimum (curve 8 in

Fig. 18), (3) the Tt data of Richardson, Hunt, and
Meyer at V= 20.4 cms/mole at the temperature of the
Tt minimum (Fig. 19) and (4) the Tt data of Giffard
and Hatton (1967) in Region II-A. In Fig. 30, we have
also drawn a smooth curve determined from the
theoretical calculation of cus( V, 3) outlined at the end of
Appendix A. 1 and a smooth curve determined from the
calculations of Hetherington (1968). We note that the
order of magnitude of the four independent experi-
mental determinations of tus(U, 3) is in good agreement
with one another and in moderate agreement with the
theory of Hetherington. "As with p above, the bulk of
the independent determinations are near V= 20.0
cm'/mole. The volume dependence of cus(V, 3) which is

' A theory of the vacancy excitation temperature is as dif6cult
as a theory of the ground state in that like the theory of the
ground state it involves the cancellation of two large numbers
to get a small one. The vacancy excitation temperature (ignoring
the bandwidth) is given by

P= Pv+Ep —Eg,

where Pv is the energy required to make the empty space Ep

is the energy associated with putting the removed particle on
the surface, and E~ is the energy gained by the relaxation of
the lattice in the vicinity of the vacancy site. We have Ep=
kgeD=30K at V=20.0 cm'/mole. Since @ is less than Pv, Fig.
50, we have

) Es
~
)

~
Eo

~

=30K. The results of Hetherington
are quite reasonable.
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FIG. 31. Experimental Values of J. The figure presents the results of a number of different measurements of the value of J as a
function of volume. The types of points fall in two categories: (a) thermostatic measurements and (b) relaxation measurements. The
thermostatic measurements derive values of J from thermodynamic quantities calculated with the high-temperature expansion of
the partition function for the spin Hamiitonian Tr[exp(R/kT) g and do not depend upon the details of the approximation used to
describe the time evolution of the local dipolar field. There are three kinds of thermostatic measurements vrhich have been made on
'He which yield information about J:Susceptibility measurements, d E/d T measurements, and nuclear relaxation heat capacity measure-
ments. The departure from Curies Law in susceptibility measurements produces information about the sign of J as well as the mag-
nitude. None of the susceptibility results are shown in the 6gure. Reliable susceptibility measurements have been made by Anderson,
Reese, and Wheatley (1961), Pipes and Fairbank (1969), Sites, osheroff, Richardson, and Lee (1969), and by Kirk, Osgood, a»d
Garber (1969). All of these experiments yield a negative value of J; the magnitude of xvhich is good agreement with other thermostatic
measurements. The data of Kirk, osgood, and Garber (1969) extends to the lowest temperatures SmK and covers the widest range
of molar volumes. The second class of thermostatic measurement which has been made is the measurement of isochoric pressure change
of the solid with temperature. The value of J is determined from the easily derived relation

BP 8 ln J Cz

&&ere Cz 3(h J/k~t)' for bcc 'He. The measurements have been reported by Panczyk, Scribner, Straty, and Adams (1967), and by
Panczyk and Adams (1969) for the bcc phase. The data points of the latter are shown as solid circles in the figure. The third type
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of thermostatic measurement is the heat capacity derived from the determination of the topological factors in measurements of the
spin lattice equilibrium times at low temperatures (region II) where a long component of the relaxation rate is given by

Tg ' ——[1+(k,/kp)] ',

where (T ');„&„„„,is the frequency independent, and where

kz/kr= (h~o)'/~(k J)'= (2/3&) (a&o/1)'

s is the number of neighbors, and coo is the Larmor frequency. The time T; t„„„cis the coupling rate of the tunneling system to the
lattice. The determination of J from such measurements is made by studying the Larmor- frequency dependence of the long relaxation
rate. The heat capacity determinations of J by such a technique for pure 'He have been made by Hatton and Giffard (1967) and by
Dernier and Landesman (1969),and are shown with the symbol . Both measurements are near 20 cm'/mole. More extensive measure-
ments as a function of volume have been made by Richards, Hatton, and Giffard (1965) with specimens containing 200 ppm IIe
impurities, and are shown with the symbol . The effect of 'He impurities is to add an additional heat reservoir, due to the mass Quctua-
tion wave bath, in series with the spin-relaxation process so that value of J determined is systematically too large. Also shown in the
6gure are the values of (J/2~) determined from studies of Tzz and T2. The magnitude of J obtained in such studies depends upon
the details of the spectral function. The source of the points in the 6gure, as well as the spectral function used in the calculation of J
is tabulated below:

Experiment

Richards, Hatton, and Gizzard T1 (1965) (hcp
data only)

Richardson, Hunt and Meyer (1965), Richard-
son, Landesman, Hunt, and Mayer (1966) T1

Richardson, Hunt, and Meyer (1965), T& data
6tted by Richards (1970)

Garwin and Landesman (1964) T2 data
Reich (1963) T2 data hcp phase
Richardson, Hunt, and Meyer {1965) T2 data

Symbol Spectral function

Gaussian

"Self-consistent empirical
function"

Lorentzian

Gaussian
Gaussian
Self consistent empirical function.

Measurements of T& and T. in the bcc phase have also been made by Reich with substantially good agreement with Richardson,
Hunt, and Meyer (1965).The measurements of Richards, Hatton, and Giffard (1965) of Tl in the bcc phase (not shown in the figure)
analysed with the Gaussian correlation function, yield values of J which are in substantial agreement with the values of J obtained
in the "heat capacity" experiments shown with symbol 8. At the larger molar volumes, the values of T& are in disagreement with
those obtained by Richardson, Hunt, and Meyer, being systematically shorter, perhaps through a difference in the volume deter-
mination.

(2) T2 measurements, (3) measurements of the limiting
value of Ti in low fields, (4) measurements of the
Larmor frequency dependence of Ti, and (5) measure-
ments of the nonadiabatic frequency shift. In all of
these measurements, however, the exact magnitude of
J depends upon the explicit time evolution of the
microscopic dipolar held due to the tunneling motion,
i.e., upon the validity of the Gaussian or Lorentzian
approximations for the correlation function. The value
of J determined from a measurement of T~, for instance,
will be larger by a factor m'" if the Lorentzian correlation
function is used rather than the Gaussian correlation
function. The same factor applies to the calculation of
J in almost all of the resonance relaxation experiments.
There is one class of nuclear relaxation experiments
which does not depend upon the details of the correla-
tion function and still produces information about
the magnitude of J. These are T~ measurements in
Region II, in which the topological factors related to
the heat capacity of the Zeeman and tunneling energy
reservoirs appear as coefhcients of the relaxation rates
in the form Ti=L1+ (kz/kr) jT;„i„„„.. (See Sec. 6 and
Appendix A) . We have

Ti ' [1+(k /kr)g 'T;„„;„„,——

T. —1
intrinsic

where s is the number of nearest neighbors, and where
1;„t„„„.does not depend upon coo. The coefficients kg
and kr a,re derived (see Appendix D) without recourse
to an approximation for the correlation function, thus
experiments in which Tq is measured in Region II at
different Larmor frequencies yield an independent
value of J which can be used to scale the values of J
obtained in the other nuclear resonance experiments.
This procedure eliminates the possible systematic
uncertainties in J that could arise due to any of the
errors in approximating the time evolution of the
dipolar interaction.

The values of J/27r obtained in NMR relaxation
experiments are shown in Figs. 31 and 32. We wish to
reiterate at this point that the dehnition of J used in
this work differs from that used in most previous
papers on NMR in solid helium. We take J to be
defined by the Hamiltonian, X&———25J P'»os o'ii,
Eq. (3.16) . This definition is selected to be in agreement
with the convention used in most of the reports of
thermostatic measurements. In Fig. 3,2, the values of
J/2ir obtained by Adams and co-workers (Panczyk,
1967, 1969) from elegant low-temperature measure-
ments of the pressure changes in the solid at constant
volume, are compared with the values of J/2ir obtained
in the NMR work. The agreement is excellent. Un-
fortunately, the method does not have sufficient
sensitivity to measure the smaller values of J/2ir for
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FIG. 32. Values of (fi J/hz&). The lines in the figure represent the
'smoothed" values of: (AJ/l~~) in»7E used for calculations in this
paper. The values are our best guess for the interpretation of all
of the experiments to date to obtain the tunneling energy of 'He
atoms. The data points upon which the lines are based are shown;
the symbols correspond to the same points in Fig. 31. In the bcc
phase we have used the thermostatic values of J and the values
from the self-consistent correjation function for TI fitted to the
thermostatic measurements. In the hcp phase, we use the values
of J obtained in T2 measurements. The T2 data were selected because
of the internal consistency and because the Gaussian approximation
for the correlation function probably does not lead to a serious
error in determining I from T2 in the hcp phase.
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molar volumes less than 21 cm' at experimental tem-
peratures greater than 12 mK.

The magnitude and sign of J can be determined in
nuclear magnetic susceptibility measurements by fitting
the observed size of the nuclear absorption signal at
various temperatures to a Curie —Weiss I aw of the form
x=C/(T H), where C —is the Curie Constant, and
P= Ss/Jk4z is the Weiss Constant. Most of the ea, rly
experiments measuring the nuclear susceptibility were
unreliable for determining either the magnitude or sign
of J due to insufficient knowledge about the spin
relaxation processes, the effects of 'He impurities, and
insufficient resolution of susceptibility at the experi-
mental temperatures employed, typically greater than
50 mK. With the development of new techniques to
reach and maintain low temperatures, there have been a
number of reliable susceptibility measurements in
solid 'He. (See Fig. 31.) All of these experiments deduce
va, lues of J/2m in agreement with those in Fig. 32.
These experiments also give a negative sign to J
corresponding to antiparallel spin alignment in the
lowest energy state. The consequence of the negative J
is that as the solid is cooled to very low temperatures it
will undergo an antiferromagnetic spin ordering
transition. The transition is expected to occur at a
temperature given by

T~ 2.78 (6J/1~~), (bcc), ——
T~= 4.2(fJ/k~), (hcp) .

Thus for the largest possible molar volume and largest
value of J, the solid should undergo a Fermi ordering
transition at 2mk which results from the motional
freedom due to the tunneling and the Fermi statistics
of the 3He.

In Fig. 32, the values of J/2~ represent the most
accurate available interpretation of all experimental

data to date. Here J/2n is probably accurate to within

10% everywhere on the curve. Probably the most
spectacular feature of Fig. 32 is the huge change J
makes with changes in volume. At 20 cm'/mole,

yq ——d(ln J)/d(ln V) =+20. The steep change in J
with volume is understood theoretically as resulting
from the compacting of the wavefunction of an atom in
the vicinity of its lattice site as the volume decreases.

S. EXCITATIONS IN DILUTE 'He —4He MIXTURES

5.1 Mass Fluctuation Waves

In pure solid 'He, there are three excitations of
interest: the phonons, the vacancy waves, and the
tunneling excitations. In solid 3He with small concen-
trations of 4He, there are these three pure crystal
excitations as well as a new excitation associated with
the motion of the 4He atom in the 'He medium. In
solid 4He with small concentrations of 'He, there are
phonons, vacancy waves, and a new excitation asso-
ciated with the motion of the 'He through the 4He

medium. In both dilute limits a new excitation appears,
the mass fluctuation wave. We discuss it and its coupling
to the pure crystal excitations in this section.

Our discussion of the excitations due to particle
motion in the case of pure 'He began with the Hamil-
tonian, KpM, given by Eq. (3.1). This model Hamil-
tonian was constructed from the most important matrix
elements of the Hamiltonian

N
~= 2 T3(')+k 2' "('j), (31)

i=1

where T&(i) = p,'/2m3, and v'(ij ) is an appropriate
effective interaction for low-lying harmonic oscillator
states. The important matrix elements of K in Kq.
(5.1) are, in addition to the ground-state matrix
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~ (RR') = f d*4 "'(*)T ( ) 4 '"( ), (5.7)

where gzr&@ and prrt'& are single-particle ground-state
wave functions for 'He and 4He atoms, respectively.
Of course the tunneling process preserves state. We have
not included a spin index to label the 'He particles be-
cause the 4He particles move through the 3He medium
relatively unaffected by its spin configuration. "

The tunneling excitations in the He—He dilute
solution are given by the Hamiltonian

C 0 II O'R (xR ) (5.2)

and the excited states schematically. The excited states
are denoted by

+RR = bB+bB C'o.

The important matrix elements of K are (Prrzr
~
K

~
Cp)

which gives rise to the tunneling term, the second term
in Eq. (3.1); and (0'rz~

~

K
~

4'zt~ ) which gives rise to
the hard-core term, the third term in Eq. (3.1). If the
particles have spin, and the system is placed in a weak
external Geld, then there are two states per lattice site.
The spin variable o. is introduced, and Eq. (3.1) results.
We note that the tunneling process preserves spin and
that the tunneling matrix element is spin independent.

To construct a model Hamiltonian for the mixture
system we consider the matrix elements of

~,.= Z T (')+ Z T (')+-: Z' "(zj), (5 3)

Kz —— Q [tg(RR') f), (RR') / —Pp]
RR~, U ~

X4),+be g4 &, +bryan . (5.8)

The terms in this Hamiltonian with P =P correspond
to the tunneling of a particle to a neighboring lattice
site and its immediate return. This process reduces the
single-particle energy by t'/&s per particle. The terms of
interest, in Eq. (5.8) are those with X&X', we write

'dt'-r = —2 z M (RR') 34bR4+bR 4bR a+bR3)
RR~

(5 9)

where M (RR') 34 f$ (RR ) t4(RR ) /tj&p. Now the operator
combination in Eq. (5.9) can be rearranged to give

elements (C's
~
K

~
C's), those involving empty lattice and

sites and doubly occupied lattice sites, In Fig. 33 we
represent the ground state

where T„(i)=P,s/2m„, and we have assumed the effec-
tive interaction to be independent of the nature of the
interacting pair, 'He —'He, 'He —He, or He—'He.
Suppose we write T4(i) = Ts(z) +T4(i) —Tz(i) =
T's(i) —~Ts(i) and approximate K3,4 by

Ses,4-Se,= g T, (z)+-,' Q'v'(ij). (5.4)

bR4+bR'4bB'3 bR3 —QR QB' (5.10)

ACT = —2 g M(RR') s4arr+arz (5.11)

where aB+= bR4+bR~, and uB ——bB3+bB4. The operator aB+
creates a mass fluctuation at R, aR destroys a mass
fluctuation at R. The Hamiltonian, Kz can be written
in the form

Now as above the important matrix elements of K3
involve the states Co and 4BB . In analogy to the spin
variable which denotes the possibility of two distin-
guishable states at each lattice site, we use an index X to
refer to two distinguishable states at each lattice site;
these are a 'He ground state or a 4He ground state.
Then, we have

Xpsr = Q t), (RR') bzrg+bzr g+ Q Ppbzrg+bgg+bgg bzrg,
RR~, ) B,) X~

ay+= g exp(ik R)ay+.
R

The equation of motion for aI,+ is given by

i5(d/dt) as+= [as+, Bez j= —2zrz(k) as+,

where

(5.12)

A single-particle state corresponding to a 'He particle
tunneling through the 'He medium is created by

(5.5) zzz(k) = P M(RR') s4 exp[zk (R—R') j.
R~g(B)

where unlike the spin case, the matrix element for the
tunneling process depends upon the state label. We have

(5.13)

t (RR') = f dx(frat@(x)T (x)P &@(x) (5.6)

«) IC, )= D

m(k) =4M(d)s4(cosk, h+ cosk„A+ cosk,A). (5.14)

As k—&0, we have

zzz(k) 2s[t (6) z (6)/yo][1 —(k'lL'/s) j. (5.15)

&b) I,P )
RR

f VD

R R'

The excitation created by a&+ is called a mass Quctuation
wave; it has the dispersion relation

hc0(k) = 2m(k)
FIG. 33. Wavefunctions. The important states for calculating

the matrix elements that lead to particle motion Hamiltonians
are

I
Co) and

I
4'~a ). For

I
4 o), each lattice site is occupied by

a single particle. For
I
4'zR ) the lattice site R is doubly occupied

while the lattice site R' is vacant.

"As in the case of the vacancy waves, the mass fluctuation
wave in 'He must be dressed with a spin fluctuation cloud. In
4He, the mass fluctuation wave, a 'He atom, is not so dressed.
See Footnote 9.
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we have
&re = t, (a) t, (a)/y, . (5.17)

(a) Thus if we write tq(t& ) =7&ts(h), we have

2sM(h)34 72'(A)» ——7 (2sJ). (5.18)

(5.19)
where

&A)= g A&,/g 1.

The bandwidth for the mass fluctuation waves is
Aemz ——4l&skJ. At V= 20.0 cm'/mole, we have J=
0.35X 10' MHz= 16 pK and ~eMI =0.5 mK for X= 1.
Thus the bandwidth for mass fluctuation waves is
rather large. Below, we discuss the mass Quctuation
wave lifetime.

We compute the energy associated with this system of
excitations by noting that m(k) goes from —2s7&&r&J to
2s7&&&iJ, as k goes from 0 to sr/A. Thus we approximate
m(k) by m(k) = —2sJ for 0(k(w/2A, and m(k) =
+2sJ for w/25&k&m/A. In the limit k~T))t& eMF, we
find that this energy spectrum yields

E»= N&e) —&L&")—&e)'j+ ",

FIG. 34. Densities. Ia) When there is a single 4He atom on a
linear chain with three 'He atoms, the single-particle density at
each lattice site is one; it is the sum of two contributions;
0.75

~
p& &~ +0.25

~

p& &~ . We have distorted the wavefunction
of the 4He atom to emphasize the change in the single-particle
density in the vicinity of a lattice site. (b) When there is a
vacancy on a linear chain with three 'He atoms, the single-
particle density at each lattice site is 0.75. (c) When there is a
spin l, on a linear chain with three spina l the single-particle
density at each lattice site is one; it is the sum of two contributions,
0.75

~ p ~'+0.25
~ P ~'. Here we have shown the appearence oi

the single-particle density for the k~0 mode on a four atom
chain.

and it represents a 4He particle tunneling through the
3He medium. Independent. of the details of the crystal
structure the bandwidth of the mass fluctuation waves is
4sM(h) s4. This He particle in a, mass fluctuation wave
state is delocalized just like the vacancy that is in a
vacancy wave state. Thus there is a finite amplitude of
'He particle at each lattice site. See Fig. 34. For a
linear chain with ten lattice sites occupied by nine,
'He atoms and one, 4He atom, there is one particle
at each lattice site; i.e.,

&N&s)= Q bm+ba& = Nrt&s&+t'&ted&4& = 1.

But this one particle is 90% 'He, and 10% 4He. To
localize a 'He particle in a region of the lattice, one
constructs a wave packet by the proper superposition of
mass Quctuation waves, e.g. ,

4&——f dk'C(k, k')a&, +,

where C(k, k') cc exp[—l&'(k —k') '$. For conceptual
purposes, the localized wave packets are often more
convenient than the individual mass Ructuation waves.

We may estimate the magnitude of the parameter
which characterizes m(k), ts(t&&) t4(h)/@&& by noting that
when Eq. (3.12) is put in pseudo spin form, Eq. (3.16),

Thus the specific heat and energy constant for the mass
fluctuation waves are

CMF/Nks g (7/4) l&ss2(p&&iJ)2

k„p= x4(7/4) X's—'(PA J)'.

(5.20)

(5.21)

Recent work on mass fluctuation waves by Landesman
a,nd Bernier (1970), and Balakrishnan and Lange
(1970) lead to a speci6c heat which has a numerical
factor different from what we obtain here. The specific
heat of x4 s pairs of 'He atoms interacting by the
Hamiltonian 3Cr is given by (D.7)

Cr/NkI& (x4) ss(PA J) '——.

For 'A= 1, CMF 50C~,' the specific heat of x4 'He atoms
is about 50 times greater than that of the xas tunneling
'He pairs. Let us understand this result. At concentra-
tions x4(1000 ppm, each 'He atom is isolated from the
other 4He atoms in the system. It sees all of its neighbors
to be 3He atoms and it undergoes a tunneling process
involving any one of its neighbors with equal energetic
benefit to itself. This situation is analogous to a single
inverted spin in a ferromagnetic crystal —all of its
neighbors have spin t' —it has spin f . The spin sees
the sea of ferromagnetism about it as an inert medium
through which it tunnels with a resulting energy reduc-
tion. Now contrast this with a spin system at k&T))AJ,
where the s neighboring spins about a given spin have
no particular correlation among themselves or with the
given spin; the spin sees a noisy undulating sea of
paramagnetism. The 4He atom alone in a 'He lattice
sees the lattice as a well ordered inert medium. The
obvious analog in this case to temperature, which in the
spin system takes the ordered spin state into the dis-
ordered spin state at T~TN, is the concentration.
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Here we have discussed the mass Auctuation wave
that corresponds to a 4He atom propagating in a 'He
medium. The propagation of a 'He atom in a 4He

medium can also be termed a mass Guctuation wa;ve.
Both the 4He atom in a 'He medium and a 'He atom in a
'He medium are fermions (Andreev and Lifshitz, 1969).
At experimentally realizable temperatures T& 1 mK,
the thermal energy is greater or about equal to the
bandwidth for the mass fluctuation waves, and at dilute
concentrations, x4(1000 ppm or x3(1000 ppm, the
fermi nature of these excitations is of no consequence.
For dilute 'He in a 4He medium, the mass fluctuation
wave is the spin carrying excitation. This system can
be regarded as a hot —dilute fermi gas. For dilute 4He

in a 'He medium, the mass fluctuation wave is a spin
disordering perturbation just like the vacancy wave.

Andreev and Lifshitz (1969) have suggested a simple
criterion for the existence of impurity excitations (im-
puritons) and defect excitations (defectons). Here we
refine their argument for impuritons slightly and work
out the existence criterion for mass fluctuation waves
and vacancy waves. A single 4He particle in 'He has a
smaller zero-point motion than the 3He particles which
make up the medium in which the 4He sits. We regard
the 'He medium as an elastic continuum, and consider
the 'He particle to be a sphere of volume r4 ——6'(1—e)',
where e is a measure of the distortion of the elastic
continuum in the vicinity of the 4He. From the cal-
culations of Mullin (1968), Guyer (1968a) and Varma
(1969),we have &~10 '; i.e. , using a microscopic model
of a quantum crystal, one Ands that replacing a 'He by a
4He leads to a distortion of the lattice in the vicinity of
the 4He atom. The neighbors of the 4He move toward it;
they shift their equilibrium positions by about 1%.
Ke transfer this result to a continuum model of the
lattice and argue that the 4He looks to the continuum
like an "undersized" sphere. The continuum shrinks in
on the sphere and creates a pressure 6eld in the solid
given by

between 4He atoms, we have an energy of interaction
given by

gE (R= gg—'&3)~~—(48/5) ~g~P/3g (5.26)

for x((1.Now the mass Quctuation wave will be a good
excitation if the kinetic energy associated with this
state, sXJ, is larger than the potential energy of attrac-
tion between 'He neighbors at a distance d x 't' apart;
i.e. ,

sXJ)AE(R=dx '"),
or

x &g,J/32''@P. (5.27)

FIG. 35. Interacting Spheres. An "under" sphere, 1, embedded
in an elastic continuum creates a pressure field around itself,
p1(r). In order to place a second similar sphere, 2, at R from 1,
work must be done to displace the continuum in the presence
of the pressure field, y1(r), to accommodate the second sphere.
The work done to place the second sphere is proportional to
p (r) u (r).

where Po= —(6/5) Pe, and P is the bulk modulus;
P= —V(BP/BV)r. A second "undersized" sphere, 2,
at a distance R away from the first "undersized" sphere,
1, interacts with the pressure field with an energy of
interaction given by

AE= +p (r) r. (ru) 2ds, (5.24)

where the integral is over the surface of sphere 2,
pr(r) is the pressure on the surface of sphere 2 due to
sphere 1, uq(r) is the displacement of the surface of
sphere 2; Fig. 35. Equation (5.24) represents the work
done to contract sphere 2 in the pressure field of sphere
1. Now we have u2(r~) = she„; thus Eq. (5.24) can be
evaluated (Bitter 1931) to yield

AE(R) = —(48/5) ~e'PA'P, '/R(R' —6') ] (5 25)

For R= hx 'l", i.e., for R equal to the average distance

At V = 20.0 cm'/mole, kI~J =0.35X 10' MHz; P =
500 atm, PA'/ka ——100 K, e 10 ', we have

Thus we expect mass fluctuation waves to be good
excitations up to x 1000 ppm. "At higher concentra-
tions, the interaction between 4He particles is great
enough to require that they be treated as a strongly

. interacting gas. The simple picture -of an excitation
associated with the independent motion of the 4He
atoms breaks down. In Sec. 7 where we deal with non-
dilute mixtures this point is taken up in further detail.
We note that Eq. (5.27) for x, depends very strongly on
volume through the factor J.

"The existence criterion of Andreev and Lifshitz does not
include the factor e' and gives much too low a concentration
limit.
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5.2 Interactions

The mass fluctuation waves couple strongly to the
tunneling excitations and the phonons. We now discuss
these coupling mechanisms.

Phonon —Mass Fluctuation Ieteracti ops. The phonons
see a mass fluctuation wave as a dynamic mass Quctua-
tion just as they see the vacancy waves. Thus they
couple to the mass fluctuation waves through

3.'~, MF = -,' Q Ense (/) ug',

where the time evolution of Awry(t) =no~(t) —ms is due
to the mass fluctuation excitations in the system. In
Appendix A.6 we have worked out the rate of energy
transfer from the mass fluctuation excitations to the
phonons, viz Eq. (A6.20) . Here

TMFp ' ——1500(hm/m) (k~T/fi) (T/Hn) s

where Am=m4 —ns3. This calculation is exactly anal-
ogous to that discussed in some detail in Sec. 3 for the
vacancy —phonon coupling. Further it is essentially the
calculation that would be required to assess the lifetime
of the mass fluctuation waves due to their interaction
with the phonons. The lifetime of the mass Ructuation
waves, approximately TMFp, is much longer than
(XJ) ' for T(2E.

TNeeeHeg —Mass Fluctuation Interactions. The tunnel-
ing excitations are strongly coupled to the mass Auctua-
tions by the same mechanism that couples them to the
vacancy waves. The tunneling excitations see the mass
fluctuation as a dynamic spin B.uctuation through

3CTMF —AJ=g Acr(RR, t)air ojr, ,
BB~

where the time evolution of An(RR', 3) is due to the
mass fluctuation waves, cf. Eq. (3.43). The rate of
change of the energy of the tunneling excitations due to
coupling to the mass fluctuation waves through K~Mp
leads to a decay in the energy of the tunneling system
at the rate

1/TTMF=x42(s —1)XJ,

where XJ=tst4/ps, ' see Appendix (A.S). As in our dis-
cussion below Eq. (3.44) this rate is the rate at which a
tunneling pair of particles becomes uncorrelated through
the motion of a 4He particle changing place with one of
the tunneling pair. Both a vacancy and a 'He atom are
magnetically inert objects—both disrupt the magnetic
regularity that the tunneling excitations look for.

Vacancy —Mass Fluctuation &teracti os,. The vacancy—
mass fluctuation interaction occurs at a rate propor-
tional to the product of x„and x4. It is of no importance
in the experimentally accessible temperature range.

6. NMR IN DILUTE 'He-'He MIXTURES

6.1 Dilute 4He in 'He Mixtures, Theory

There are four kinds of excitations in dilute mixtures
of 4He in 'He that are responsible for the results of NMR

1 PPM

I —8

r
r~lOPPM~

(OO PPM

PS

FrG. 36. T1 vs T ' at low temperature for @4&0. When small
concentrations of 4He are put into 'He, the low temperature
behavior of T1 is seriously altered. (1) A relaxation process that
is proportional to x4 and considerably milder in temperature
dependence than exp&

~

T appears. (2) There is temperature
and concentration independent plateau at low temperatures,
Region III. This is also present in pure 'He. (3) At lowest tem-
perature, there is a further temperature dependence in T1. There
is some sensitivity of T1 at lowest temperatures to the concentra-
tion of 4He.

experiments, the three pure 'He excitations discussed in
Sec. 3 and the mass Auctuation waves. In this section
we discuss: (1) the features of NMR experiments that
depend upon the existence of the additional excitation,
the mass fluctuation wave, (2) the experimental ex-
ploration of dilute He in 3He mixtures in the region
where the mass fluctuation waves are important, and
(3) the probable behavior of dilute mixtures of 'He
in 4He. This latter system, dilute 'He in 4He, has yet to
be studied extensively, ' however, there are some clues in
the NMR experiments on nondilute mixtures at lowest
concentrations, x3 0.01, that suggest that the sort of
behavior that we anticipate for dilute 'He in 4He is
beginning to be observed (Miyoshi, 1970a).

The results of a typical T& experiment on nominally
pure 'He were shown in Fig. 12. But as we stressed
above pure 'He is an idealization unachievable in the
laboratory. In I'ig. 36 we show more detail of the kind
of results that are achieved in a typical T& experiment
on 'He containing various dilute concentrations of 4He.
We notice that the behavior of T~ in the high-tempera-
ture region, T)O.SK at v= 20.0 cm'/mole, is essentially
independent of 4He concentration, and that the behavior
of T~ at low temperatures, T(O.SK at v= 20.0 cm'/mole,
approaches a limiting behavior as x4—+0 which we can
regard as pure 'He behavior. It is because the pure 'He
behavior at low temperatures can only be assessed by
experimentally taking the limit x4—+0 that we have
left the discussion of pure 3He at low temperatures to
this section.

The high-temperature behavior of T~ in dilute mix-
tures is the same as in "pure" 'He; it is that of Region I
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which we discussed in detail in Sec. 4. At low tempera-
tures, T~ has two distinct kinds of behavior as a function
of T ' which occur in Regions II and III on Fig. 36. We
will discuss this behavior in detail.

Before doing so, it will be useful to review the nomen-
clature developed in Appendix 8 to describe relaxation
processes. The relaxation of the rf energy to the reser-
voir in Regions II and III is relatively more complicated
than in Region I. Throughout Region I, the rf energy
was coupled to particle motion excitations that were
tightly coupled to the reservoir. Thus throughout
Region I, only two systems were involved: the Zeeman
system which is heated by the rf field, and the vacancy
system or the tunneling system both of which are
tightly coupled to a reservoir. The T&'s which described
relaxation in Region I are the intrinsic times for the
pair of systems involved. The ietrAzsic times are defined
for a pair of systems coupled together, as shown in
Fig. 52, in Appendix A. They measure the rate at which
energy passes between two systems when one of the
two systems is completely isolated except for its connec-
tion to the other, and the other system remains tightly
coupled to a reservoir. In Region II, we find that three
or more systems are involved in the relaxation process.
Energy is transferred among the systems involved in
the relaxation process in series, i.e., 0~1—+2—+3 etc.
Relaxation through a, particular series of three or more
systems is referred to as relaxation through a particular
topology. See Fig. 52. When we have a relaxation proc-
ess involving three or more systems, the T& measured
for this relaxation process involves an intrinsic time and
a, topologica, l factor in the form

+1 ~topology= (&/&intrinsic) X (topologrcal factor) .

The topological factor is a, function of the energy con-
stants (specific heats) of the systems involved in the
rela, xa, tion process. The T~'s measured in this circum-
stance (three or more systems) are referred to as
topological times. I et us introduce a notation which
depicts the qualitative features of a particular relaxa, tion
process. In Region I-B, we ha, ve energy Row out of the
system by the chain: Zeeman —+tunneling —+va, cancy
wave —+phonon~reservoir. The weak link in the energy
flow chain and the source of the long time is the Zeeman-
tunneling coupling. We denote the topology of relaxa-
tion by Z—TVP. This is a two system relaxation process;
the vacancy waves and phonons are simply the link
which keeps the tunneling system tightly coupled to
the reservoir. The T~ which describes relaxation in the
topology Z—TVP is the same as the intrinsic time which
describes the relaxation of Zeeman energy to the
tunneling excitations. We will find that in Region II-A,
the energy Qow chain is also Zeeman —+tunneling~
vacancy wave —+phonon —+reservoir. But in Region II-A,
the weak link in this chain is the tunneling —vacancy
wave coupling. We denote the topology of relaxation
by ZT—VP. This is a three-system relaxation process.
The T& which describes relaxation in the topology ZT—

(a)
ZT —vp

(b)

ZTV —F

E'IG. 37. 'I'opologies: (a) ZT—VP, and (b) ZTV —P.

VP is the intrinsic time which describes the relaxation
of tunneling energy to the vacancy wave excitations
multiplied by a topological factor involving the energy
constant of the Zeeman system and the tunneling
system.

The iniportant intrinsic times and topological times
a,re calculated in Appendix A.

Region II. In Region II, the route by which energy
put into the Zeema, n system gets to the reservoir is
"bottlenecked" by one of the particle motion excita-
tions. This is best understood by contrast to Region I.
In Region I, energy was transferred from the Zeeman
system to the particle motion excitations by the dipolar
field. Throughout Region I, the particle motion excita-
tions a,re strongly coupled to the phonons; thus the
pa, rticle motion excitations are always a,t the lattice or
reservoir temperature. The onset of Region II occurs
when the particle motion excitations become uncoupled
from the lattice or reservoir.

In Region II-A, the route of energy relaxation is that
in Fig. 37(a), Zeeman —ytunneling —vacancy wave~
phonon ZT—+VP. At T&0.5, the long time in the chain
of energy Aow is due to the Zeeman-tunneling coupling
through 3Cd. This long time is temperature independent.
The times which describe the coupling of systems
further along the cha, in, Tqy and T~I, are temperature
dependent, so that as the temperature is lowered we
expect to see Tj change its behavior and become tern-
pera, ture dependent. The weak link in the energy Aow
chain, Z~T—+V—+P, is the tunneling to vacancy wave
link. As the temperature is lowered the number of
vacancies goes to zero as exp( —Pp), the Zeeman and
tunneling systems come to a mutual equilibrium at a
temperature above the lattice temperature, and the
coupled systems slowly lose their excess energy to the
vacancy waves which remain tightly coupled to the
phonons. The topology of this process, ZT—VP, is
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shown in Fig. 37(a). A comparison of the long time in
the two rival topologies shown in Fig. 37(a), (b) is
made in Appendix A7. There we show tha, t at v= 20.0
cm'/mole topology ZT VP—is faster than topology
ZT V—P.

The situation we have described here is quite simple
and if it always held true the low-temperature T& data
would be very easy to understand. But in experimentally
achievable pure solid 'He samples, there are small con-
centrations of 4He. These impurities are not static.
Because of their tunneling motion through the 'He
medium, they constitute a system of excita. tions that
can rival the vaca, ncy waves for de-excitation of the
tunneling system. The 4He impurities as mass Auctua-
tion waves couple to the tunneling system just as do the
vacancy waves. Both the vacancy waves and the mass
fluctuation waves are magnetically inert. and can inter-
fere with the tunneling of a 'He pair. The concentration
of 4He impurities in the purest samples is x4 1 ppm. At
T 0.5 K, the number of vacancies present at z = 20.0
cm'/mole is E.~10 ". Although there are far fewer
vacancies present, the vacancy waves are much more
mobile than the 4He mass fluctuation waves. The mass
fIuctuation waves rival the vacancy waves in coupling
to the tunneling energy when

x4(o4(3, 3) x„co„(3,3);
at @=20.0 crn'/mole, cu4(3, 3) J=0.4 MHz, co~(3, 3)
10' MHz, thus we have equality at xz 10 'x4. For
x4= 10 ', this is at T=0.6K. At more substantial
concentra, tions of 4He, 100 ppm or 1000 ppm, the ma, ss
fluctuation waves completely dominate the vaca, ncy
waves at temperature as low as 0.6K. Now the energy
How route Z—+T~MF will be a useful alternative to the
vacancy route, Z—+T—+V, only if the mass fluctuation
waves can get rid of the energy they acquire fast enough.
Recall tha, t the mass fluctuation waves interact with
the phonons in the same way as the vaca, ncy waves.
Both excita, tions are seen by the phonons a,s dynamic
mass fluctuations, Thus we must compare the two
energy flow topologies shown in Fig. 38, ZT—MFP and
ZTMF —P. As we show in Appendix A7, the long time is
associated with the topology ZTMF—P; the wea, k link
in Z—+T—+MF~P is the link between the mass Ructua-
tion waves and the phonons. Of course the link between
the tunneling system and the mass fluctuation waves is
temperature independent, whereas the mass fluctuation
wave —phonon link is temperature dependent. Thus at
lowest temperatures, in the absence of any other new
relaxation mechanisms, the mass fluctuation wave-
phonon link must be the weakest.

In Region II of the TI vs T ' plot, we will see a
rivalry between the vacancy waves and the mass
fluctuation waves for relaxation of the system. The
two topologies that rival one another are those shown in

Fig. 38. In both of these topologies, the energy relaxa-
tion process involves more than two systems, so the

(a)
Z T. —MFP

MFW

(b)
MFW

ZTMF —P

FIG. 38. Yopologies: (a) ZT—MFP, and, (b) ZTMF —P.

relaxation rate depends upon a,n intrinsic rate and a
topological factor. From Appendix A7 we have a
topological factor k'/(kr+kz) for the topologies
ZT VP a—nd ZT 3IIFP—shown in Figs. 37(a) and 38(a).
Also from Appendix A7 we have a topological factor
k~r/(km+ kz+k'I') for the topology ZTMF Psho—wn
in Fig. 38(b). Since k~'" x4, and x4 is small, we may
approximate this by

k'vp/(kz+kp) .

Thus for both topologies in Region II, we expect to
find a, dependence of T& ' upon the Larmor frequency,
through the topological factor, of the form(T') '~
(kz+kz) '. The observation of this Larmor frequency
dependence is one of the experimental tests which
establishes the structure of the relaxation topologies in
Region II. As the concentration of 4He impurities is
increased toward the limit for dilute mixtures, x4

1000 ppm, the energy constant k~& in the denominator
of the topological factor may become comparable to
kz+kz. Then, it is possible to study the frequency or
concentration dependence of T~ and extract k~~.

Region III. In Regions I and II, the routes by which
energy is transported from the Zeeman system to the
reservoir involve a transfer of energy among the excita-
tions in the solid pointwise in the bulk of the solid. This
behavior is to be contrasted with that in Region III.
where the energy put into the Zeeman system by the
rf field leaves the solid by diffusion of the particle
motion excitations to the boundaries of the solid. In our
discussion of both Regions I and II, we took it as a
matter of faith that once the energy being transferred
among the excita, tions got to the phonons it was im-
mediately transferred to the reservoir. Let us first dis-
cuss this point. All of the mechanisms which coupled
the particle motion excitations to the reservoir involved
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two phonons. Thus the phonons which finally receive
the rf energy have energies determined by the ambient
temperature. These phonons carry the energy they
receive to the boundaries of the system by a diffusion
process which is characterized by the thermal conduc-
tivity mean free path.

IO+
-0

Xz = 3E/Cpc, (6.1) I.O—

where X is the steady state thermal conductivity, C& is
the specific heat of a phonon gas, and, is the velocity
of sound; i.e. D& c)z. The thermal conductivity mean
free path is limited at low temperature by the size of the
sample, )~ t. There exists adequate thermal conduc-
tivity data on solid helium to determine the time re-
quired for phonon energy to diffuse a distance on the
order of the size of a typical sample chamber, 1 cm.
LSee Hogan, Guyer, and Fairbank, (1969) and the
literature referenced therein. ) Instead of using this
data, it is easiest to recall that temperature pulse ex-
periments on solid helium indicate that phonon energy
will diffuse a distance of about 1 cm on a time scale
that varies from 10 @sec at low temperatures, T(1K,
to 1 msec at high temperatures, T~2K (Ackerman,
1968) . The diffusion of phonon energy across a sample
chamber of typical dimension 1 cm, and its exit from the
sample chamber on reaching the boundary, is compli-
cated somewhat at lowest temperatures because of the
Kapitza resistance (Pollack, 1969). Yet there is no
reason to believe that times greater than about 1 msec
are required for phonons to leave a 1 cm sample chamber
even at the lowest temperatures (Muelier, 1970) .
The typical T& seen at low temperatures is substantially
greater than 1 sec. Thus once the phonons receive the
energy from the particle motion excitations they ca,rry
it to the reservoir on a, time scale that is fast compared
to the long time in the energy Aow chain.

As the temperature is lowered, the weak link in the
energy Qow chain is the mass fiuctuation wave —phonon
link. The energy has a, hard time getting to the phonons.
Thus in Region III, we see the energy leave the system
by the diffusion of the particle motion excitations to
the boundaries of the sample.

6.2 Exyeriments on Dilute 'He-'He Mixtures,
Results

Tj ie Region II. Most of the early T& experiments
on solid 3He have explored some part of Region II and
Region III (Reich, 1963; Richards, 196S; Richardson,
196S). However, as pointed out above, these experi-
ments were done with unknown amounts of 4He im-
purities. Hence, it is dificult to use the results of these
early experiments in this region in other than a qualita-
tive way. Recently there have been a series of experi-
ments by several groups that have carefully explored
the effects of 4He impurities in %MR experiments at
low temperatures. The pioneering experiments of this
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PIG. 39. T» Data in Region II-8; (concentration dependence),
The data from the thesis of Giffard (1968), T» ' vs T ' are
shown. The topological factor h~/(kz+ky) has been removed.
The behavior characteristic of Z T—V5' is seen in the data at
10 ' ppm. Even a small concentration of impurities, x4 =15 ppm
drastically alters T» ' vs T '. Prom the data at higher concentra-
tions, the dependence T» '~x4 is easily verified.

series, those of Giffard and Hatton (1967) and Giffard
(»968) are most illuminating; the experiments of Ber-
nier and I.andesman (1969), Bernier (1970) and
Reich and Yu (1969) are corroborative and comple-
mentary to these experiments. In Fig. 39, we show the
results of the Tj experiments of Hatton and Giffard on
bcc 'He a, t v = 20.0 cm'/mole at impurity concentrations
from x4(1 ppm to x4 ——300 ppm; the plot is log T» vs
1/T. Over the temperature and concentration range
explored, the relaxation rate contains a topological
factor, /cr(kx+kr). The data shown in Fig. 39 has had
the topological factor divided out. Ke first note that as
the concentration of 4He impurities approaches zero,
the intrinsic T~ a,pproaches a limiting curve which is a
straight line on the log Tj vs T ' plot. The limiting Ti
curve will fit the analytic expression

Tq '= ».9&& 10' exp —(13.4/T) (6.2)

and corresponds to relaxation of the system through the
topology shown in Fig. 37a, ZT—VP. The expected
intrinsic relaxation time for this topology is related to
the vacancy excitation temperature and the vacancy
tunneling frequency by

Tg ' ——2 (s—1)a&y (3, 3) exp (—Py) .
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I'IG. 40. T1 Data in Region II-B;
(Volume Dependence). The data of
Richards, Hat ton, and Gift ard
{1965), T1 vs T, are sho~vn. The
topological factor hr

~
(1~,+br) has

been removed; the data are on
samples containing less than 500
ppm 'He. The Region II-A has been
shaded. The remainder of the data
corresponds to II-8 and III; data
in Region III has also been shaded.
I'or the hcp phase region II-A does
not occur; see I'ig. 13. The T1 data
in Region II-B is mildly volume
dependent and has the tempera-
ture dependence corresponding to
ZTMI' —P.

Thus the limiting curve provides a good measure of
and coy(3, 3). We have @=13.4, and cov(3, 3) =

1.4)&10'; these values of the vacancy excitation tem-
perature and the tunneling frequency were plotted on
Figs. 29 and 30 above. They are in reasonable agreement
with the values of these quantities obtained from NMR
measurements in Region I, and with specific heat data.
We note that at T '&2.25K ', the limiting T» curve
becomes temperature independent; 0.44K is the tem-
perature for the transition from Region II to Region III
at @&1ppm. At concentrations as low as 15 ppm, the
transition from Region II to Region III occurs below
the experimentally realized temperatures at approxi-
mately 0.25K.

As small concentrations of impurities are added to
solid 'He, the behavior of T» as a function of temperature
departs from the exponential behavior characteristic
of the tunneling —vacancy wave topology, ZT—VP. If we
define

(1/T') = (1/T- ~) —(1/T~v), (6 4)

where T&& ' is given by Eq. (6.3), and T, -,&
' is the

measured intrinsic relaxation rate plotted in Fig. 39.
We find that (T') ' is proportional to the 'He concen-
tration, and proportional to a high power of the tem-
perature, T or T'. This is precisely the behavior we
expect for the topology ZTMIi —P in which the Zeeman,
tunneling, and mass Quctuation systems come to mutual
equilibrium and lose their energy to the phonons by a
two-phonon process with the mass fluctuation waves.
The experiments of Giffard and Hatton and Giffard
constitute a direct experimental observation of phonons
scattering from mass fluctuation waves. From Appendix
A6 we have

1/Ter 1500(dm/nz)'(kiiT/ft) (T/8——)' (6.5)

From Eq. (6.5) we see that T~» depends relatively
mildly on volume; it goes as 8D+'. Now we look at the
low-temperature T» data of Richards, Hat ton, and
Gizzard (1965) which is shown in Fig. 40. We recognize

that this data, which is on samples made at nine molar
volumes, and containing 4He impurity concentrations
of about 500 ppm, is primarily on phonons scattered
from mass fluctuation waves. Thus we may use it to
test the volume dependence of Ti as given by Eq. (6.5).
From Fig. 28 we have

(A&(20.0)8i) (23.0) ]'= (29 5/21 8) 6'

this is to be compared with the variation of the T» with
volume, at T=0.3K, by a factor of 10. Looking at the
data on the hcp phase, we have L8n(18.5)/8n(19. 6) j'=
(42.5/36. 6)' 2.5; this is to compared with the varia-
tion of T» with volume, at T=0.7 K, by a factor of
about 7. Within the uncertainties introduced by the
unknown concentration of 4He impurities in the various
samples, the volume dependence of T» in Region II is
consistent with expectations.

In the data of Richards, Hatton, and Giffard (1965)
displayed in Fig. 40, we also note that at the higher
temperatures in the bcc phase, e.g. at T&0.35 at v = 20.5
cm'/mole, Ti becomes a much faster function of tem-
perature and there is no evidence for similar behavior
in the data in the hcp phase. Both of these facts are a
consequence of the volume (or pressure) dependence of
the vacancy excitation temperature. In the bcc phase,
the excitation temperature for vacancies is low enough
that the topology ZT—VP is observed, whereas, in the
hcp phase, the vacancy excitation temperatures are so
large that there are not enough vacancies present to see
this topology.

The data of Giffard and Hatton, and Giffard were at
x4&300 ppm. Thus the concentration of 'He impurities
was too small to permit a determination of the specific
heat of the mass fluctuation wave system from a study
of the topological factor in Ti ' ~~pi. Bernier and
Landesman (1969) and Bernier (1970) have reported
data on bcc 'He at v= 20.1 and 21.0 cm'/mole in Region
II at concentrations up to 2800 ppm. The T» and T2
data in these experiments in Region II is in quantitative
and qualitative agreement with that in the experiments
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of Giffard and Hatton, and Giffard. By going to higher
concentrations of 'He impurities, Bernier and Landes-
man, and Reich and Vu (1969) are able to study the
specific heat of the mass fluctuation waves. The basic
idea behind these experiments is that the times which
characterize the deca, ys observed in a T& experiment
depend upon an intrinsic time and a topological factor.
Thus a study of Ti as a function of frequency (Reich,
1969) yields information about the topological factor
and k~&. A study of T& as a function of concentration at
fixed frequency and temperature also yields k~p. For
example, if the system is at To and the topology of
relaxation is the topology ZTJtt/IF —P, then we have

Ti '
lMFP (TcVFP) [~MP/(kz+kT+kMF)]. (6.6)

Now data on Ti ~,»&e a, s a function of ~g yields kg +kg$f p,
independent of a quantitative microscopic theory of the
interaction which leads to relaxa, tion, as the intercept of
Ti ~ia.pt with zero on the &vo' axis. At this intercept we
find kz(&o) =kr+k~~; if kr is known, then k~p can be
found. Bernier and Landesman, and Bernier have used a
different technique with a similar physical basis to
study k»v /(kz+ kr+ ki»i ) at v = 20.1 cm'/mole in
Region II-B at x4& 2800 ppm; they find

k~p = 825x4kz. (6 7)

At v= 21.0 cm'/mole in Region II-B at x4& 2800 ppm,
Bernier and La,ndesman saw @so convincing evidence for
k~v WO. The Ti and T2 data at v= 21.0 cm'/mole were
in good agreement with the expectations from similar
data at 20.0 cm'/mole (Bernier, 19'70) . We may under-
stand the first of these results, Eq. (6.7), by recalling
that

k,»&
——50x4k&L~4(3, 3)/J7, (6.8)

Eq. (5.22) . Thus for &u4(3, 3)~4J, the mass fluctuation
wave specific heat is equal to its experimentally ob-
served value. If a 'He —'He pair tunnel at about four
times the ra, te at which a 'He pair tunnels, then, the
specific heat due to the mass fluctuation waves is in
agreement with experiment. A tunneling rate for a
'He —4He pair that is four times that of a 'He —'He pair is
somewhat unexpected but not impossible. Alternative
explanations of the data of Bernier and Landesman and
others (Richards, 1965; Reich, 1969) in terms of the
concept of "exchange enhancement" has required that
a 'He pair in the vicinity of a 'He atom (assumed
stationary) tunnel 30 times faster than they do in bulk
helium. It is dificult to support this requirement
theoretically ( Glyde, 1969). "Exchange enhancement"
provides no explanation of the Ti data (Guyer, 1969).

A study of the frequency dependence of the topolog-
ical factor in Region II at low concentrations provides
an independent measurement of kz and J.This approach
ha, s been used by Richards, Hatton, and Giffard (1965),
Richardson, Hunt, and Meyer (1965), and Reich and
Yu (1969) to determine J. We have discussed this

application of frequency analysis of T& a.bove. It pro-
vides a very useful and independent measurement of
the specific heat of a particle motion excitation system.

T~ ie Region III. Region III, at T '&2.3 at x4 ——1

ppm, and v= 20.0 cm'/mole, was first observed in the
experiments by Richards, Hatton, and Giffard (1965).
In Region III, Richards, Hatton, and Giffard found
that the long-time behavior of the time evolution of 3f,
toward equilibrium was nonexponential, and that the Tj
which wa, s chosen to characterize this nonexponentia, l

recovery was temperature independent. Subsequently,
Hunt, Richardson, Thompson, Guyer, and Meyer
(1967) showed that Ti was sample chamber size
dependent, and that at very low temperatures, T&
0.1K, a temperature dependence set in with T~ increa, s-

ing mildly with further reduction in temperature.
Finally, Giffard (1968) has done a, careful study of this
region as a function of controlled concentrations of 'He
impurities. He finds no strong or systematic dependence
of T~ in the temperature-independent region on con-
centration, and tha, t the further increase in T~ at low
temperatures in a mixture with a particular 4He con-
centration occurs at a temperature near TI q, the phase
sepa, ration temperature for that concentration. A typical
result from the experiments of Giffard is shown in
Fig. 41. On that figure the low-temperature data is
divided into two regions labeled III-A, the temperature-
independent region, and III-B.

Regions III-A, B. In Region III-A, the energy put
into the system by the rf field gets to the reservoir or an
excita, tion system tightly coupled to the reservoir by
spatial diffusion of the particle motion excitations. The
experimental evidence for this is the observation of non-
exponential behavior of the long-time recovery of
Mz(t) to Mz(0) in the three experiments mentioned
a,bove, the observation of short-time behavior,

Mz (t) ~1/t"'

which is suggestive of a one-dimensional random walk.

( Giffard, 1968), and the observs, tion of a sample
chamber size dependence. The time scale for this diffu-
sion process is about 1000 sec. On this time scale the
Zeeman system, the tunneling system, and the mass
fluctuation wave system have been in equilibrium a,

long time. Thus the diffusion in space of any one of
these excitations carries the other excitations with it.
In Appendix C, we show that the diffusion constant for
energy in this circumsta, nce is given by

DE (kzDz+krDz+k&—z—&D~+)/(kz+kz+k~p), (6.9)

where Dz, D~, and D~~ are the diffusion constants for
the Zeeman energy (ma, gnetization), the tunneling
energy, and the mass fluctuation energy, respectively.
This formula is a manifestation of the strong coupling
among the diffusing excitations. If any one of the excita-
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FIG. 41. Low-Temperature Plateau. Typical data from the
thesis of Gizzard (1968) (Giffard, 1971) are shown. On the right,
the extrapolation to low temperatures of the TI data of region
II-8 is shown. Recall that the time dependence of 3f,(t) in
Region III is qualitatively different from the exponential time
dependence in Regions I and II. Thus the mismatch between
the extrapolation of Region II-8 data and the Region III data.
T& is frequency dependent in Region III but only approximately
in the way called for by the topological factor in D@, Eq. (6.10).
At temperatures in the vicinity of 0.1 K the plateau behavior
goes over to a mildly temperature-dependent behavior.

tions has a large (specific heat) X (diffusion constant),
its motion will dominate the diffusion of the energy.
From Appendix C where we discuss the diffusion con-
stant of each excitation, we have Dz= Dz(3, 3) =
Az(3, 3)A'J, Dr Dr(3, 3)=Ar(3, 3)LVJ——= aAz(3, 3)6'J,
where a is a constant of order 1, and D~F D4(3, 3) =
A4(3, 3)A2o)4(3, 3). Since, kirp~x4, and x4&300 ppm,
we have

Dz Dz(1+sky/kz) (1+kg/kz) '. (6.10)

The characteristic time for energy to diffuse a distance 1

with diffusion constant D~ is

tD P/Dz (P/Dz) (1+kr/kz) (1+~kr——/kz) '. (6.11)

Giffard, Hatton, and Truscott (1971) have found a

frequency dependence in Tj throughout Regions III-A
and III-B which is not consistent with Ti~ tn ~ (1/Dz)
and any choice of 1&0.&2, A recent theoretical cal-
culation by Redfield and Yu (1968, 1969) has given
o,=1; this result predicts Dz D~, or that there is no
frequency dependence in Tj. As mentioned above, the
direct measurement of Dz and Dy by Hunt and Thomp-
son (1968) gave Dr 2Dz, or a 2. This discrepancy
between theory and experiment is unsettled. We take

Ti 10' sec at v=20.0 cm'/mole and find l-0.003
cm. This is a relatively short distance. It is not charac-
teristic of the size of the sample chamber; it may be
characteristic of the typical distance between structural
defects. The energy delivered to the structural defect is
converted at the defect into an excitation that can cross
the sample chamber, with a typical dimension 1 cm,
in a time much less than 1000 sec. It seems likely that
the energy conversion process at the defect converts the
energy in the particle motion excitations into phonons.
This conversion process very probably involves the 4He

impurities. It is possible to construct plausible models
for what is going on in the vicinity of the defects,
however, there isn't adequate experimental data against
which to test these models.

Giffard (1968) has constructed a model for the
energy conversion process to phonons which also ex-
plains the temperature dependence that leads to Region
III-8 in terms of the phase separation process. In
Giftard's model, the transition from the behavior of
Region III-A to that of Region III-8 occurs at T= TI 8.
The analysis Giffard made of his data verified this
point. However, Giffard calculated the phase separation
temperature using the critical temperature, T~ ——0.35K,
from the experiment of Edwards, McWilliams, and
Daunt (1962) at 35 atm. Adams and Panczyk (1968)
have found dTc/dI'= —1.7 mK/atin. Using a critical
temperature appropriate to pressures of about 100
atm, Tq 0.23 K, we And that Tg~ for a mixture
of 100 ppm is about 50 mK. Thus the phase separa-
tion temperature for the mixtures investigated by
Giffard is substantially below the temperature range
available in his experiment. We believe there is no
compelling reason to associate the behavior observed in
Region III-8 with the phenomena of phase separation.

6.3 Dilute 'He in 4He Mixtures, Theory

There are as yet no experiments on systems with
small concentrations of 'He in 'He. The excitations in
these systems are:

(1) the mass fluctuation waves which represent the
motion of a 'He atom through the 4He medium; the
mass fluctuation waves carry a nuc1ear moment and
are fermions; their magnetization is the Zeeman system,

(2) vacancy waves characterized by an excitation
temperature of about 15K at I'~30 atm, and

(3) a phonon ga, s characteristic of nearly pure 'He.
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FIG. 42. TI vs T ' for dilute 'He in
4He. In this limit, the 'He is a mass
fluctuation wave in an inert 4He back-
ground. The mass fluctuation wave is
the spin carrying object. We expect the
behavior shown here for TI vs 1
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The interactions among these excitations are:

(1) Zeeman —vacancy wave; through the agency of
SCAN )

(2) Zeeman —ma. ss fluctua, tion wave; through the
agency of Ãz. (This is the analog of the Zeema, n-
tunneling interaction in nearly pure 'He);

(3) Masss fluctuation wave —phonon; and
(4) Mass fluctuation wave —vacancy; this is the

analog of the tunneling —vacancy wave interaction in
nearly pure 3He.

I et us sketch the major features we would expect for
this system. The Zeeman system and mass fluctuation
waves are coupled by K&. For a magnetically dilute
system, we have

Tg ' Moxoro{[1/(1+ooo'ro')]+[4/(1+4~o'ro') jI,
(6.12)

where ro '= ~o( V, 4) +~o(4, 4), ~o(4, 4) is the tunneling
rate for a 'He atom through 'He, ~o(V, 4) is the tunnel-
ing rate for a 'He atom into a vacant neighboring lattice
site, and

T2 ' M2xoro{1+—oo[1/(1+coo'roo) j
+o[1/(1+4~o'ro') 3I (6 13)

Equations (6.12, 6.13) embody both the Zeeman-
vacancy and the Zeeman —mass fluctuation wave inter-
action. Both of these interactions convert the Zeeman
energy to particle motion energy. The energy in the
particle motions, the vacancy waves, and the mass
fluctuation waves couples strongly to the phonons. The

result for T~pp is exactly the same as that discussed
above for the nearly pure 'He case, except for the factor
of concentration. We have

1/T&zzI ~ (Dm/m) '(h&T/fi, ) (T/8) '. (6.14)

The factor of concentration is absent because the par-
ticle motion system which receives the energy from the
Zeeman system is exactly the same size as the mass
Ructuation system. Compare this case with that of
nearly pure 'He where the particle motion system is
the tunneling system, and the, mass fluctuation system
is smaller by x4.

In Fig. 42 we show what we believe would be the
results of a typical T& experiment on dilute 'He in 4He.

7. NONDILUTE 'He —4He MIXTURES

7.1 Introduction

In this section we will discuss: (1) the excita, tions
that exist in solid helium specimens with greater than
1000 ppm 'He, (2) the results of experiments performed
on these systems, and (3) the analysis of these experi-
ments to provide information about the excitations in
solid mixtures.

Solid mixtures have the same basic excitations as
those in pure He and in dilute mixtures; i.e., phonons,
vacancy waves, and tunneling excitations. The primary
theoretical problem is that of understanding how the
dilution of the 'He component of the system will affect
the characterization of the excitations and their motion
through the crystal. Consider an intermediate mixture,
x 0.5. Almost all of the 'He atoms will have at least
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Fro. 43. Phase diagrams for mixtures. The figure shows the P Tdiag—rams for pure 'He (x& = 1.0), pure 4He (x, =0), and g% mixture
and the p—V diagram for all three. The He diagram has been intensely studied (Mills, Gilly, and Sydonak, 1961; Scnbner, Panczyk,
and Adams, 1969, and references therein) because of the information obtained about both the Fermi liquid and solid spin entropies.
The minimum pressure for formation of solid 'He occurs at T=0.32 K, and P =28.9 atm. In the case of 4He (Schuch and Mills, 1962;
and references therein) a minimum pressure of 25 atm is required for the formation of the solid. The melting properties of solid mixtures
have been recently reviewed by Tedrow and Lee (1970). The diagram for the g'%%uq mixture is from the work of Miyoshi, Cotts, Green-
berg, and Richardson (1970).According to the Gibbs phase rule, the presence of a isotopic mixture permits the extra degree of freedom
that allows the mixed hcp —bcc phase shown in I'—T space for x =0.08. The molar volume of a mixture is essentially given by the linear
combination of the two partial components PV(xa, P) x&V(x3=1, P)+(1—x~) V(xi=0, P).) (Mullin, 1968).

one 3He atom as a nearest neighbor, and most atoms
will have several 'He neighbors; therefore, at low tern-
peratures, the mutual tunneling of 'He atoms will be an
important mechanism for relaxation of the magnetiza-
tion. (We expect the equivalent of Region I-B in pure
'He to show up in mixtures. ) At higher temperatures,
we expect the analog of Region I-A in pure 'He, i.e.,
if there are enough vacancies present we expect a region
in which vacancy wave motion is important. Careful
NMR studies of the mixtures will provide information
about the parameters which characterize the vacancy
wave excitations and the tunneling excitations.

In order to understand the changes that occur in the
solid mixtures as pure 'He is diluted further and further,
we must first understand how the phase diagrams of the
mixtures, P—V—T, vary with concentration. We compare
various mixtures at the same molar volume; pure 'He
at 20.5 cm'/mole occurs a,t 100 atm, whereas S%%u~

'He in
4He at 20.5 cm'/mole occurs at P 30 atm. Figure 43
shows the melting curve of pure 'He, pure 'He, and the
mixture x3——0.08. We see that as the mixture goes from
xs ——1 (pure 'He) to xs ——0 (pure 4He):

(1) the region of the P Tplane occupied —by the
bcc phase decreases,

(2) the pressure required to form a solid mixture at a
fixed volume decreases,

(3) the intermediate mixtures, 0(x(1, have an
hcp —bcc mixed phase region, and

(4) at sufFiciently low temperature, the mixtures
undergo an isotopic phase separation.

We will not discuss the physics of the phase diagrams in
Fig. 43 in any detail. But we want the general feature
of the phase diagram to be available for use in our
interpretation of the experiments.

In that which follows, we tailor the expressions de-
rived above to describe relaxation in pure 'He to suit the
present case, and then discuss the expreimental results
for T~, T2, and Dz measurements. We then summarize

the new information obtained about the excitations in
mixtures at the end of the discussion.

cVs(V, x) =xsMs(V, x4 ——0) . (7.2)

We therefore carry over the formalism derived for
pure 'He and the attendant interpretation of experi-
ments; we make two modifications of the formalism,
M2x3 is to replace M2 and ry is replaced by v=y,

rv sxpois( V) 3f) y (7.3)

where ois(V, M) is the rate of tunneling of a 'He
particle in a mixture, denoted by M, into a vacant

7.2 TI Relaxation, Theory

In Fig. 44 we show the results of a typical T& experi-
ment on a dilute 'He —'He mixture; n=20.6 cm'/mole,
x3—0.02. As in the case of pure 'He, the behavior of Tj
is ordered by T ' into several regions.

Eegioe I-A. In Region I-A, the relaxation process is
that of vacancy wave motion. The effect of dilution is
primarily to reduce the size of the average dipolar field
seen at the site of each spin. We expect that, all other
things being equal, T& will increase with dilution as a
result of the weaker coupling of a spin to its environment
via BC~. I-et us examine the expressions derived to de-
scribe relaxation of the Zeeman system due to the
presence of vacancy waves. From Sec. 4, we have Eq.
(4-.1)

Tr '= (2Ms/3) I [rv/(1+&vs rv )7+[4rv/(1+4ois rvs)71.

(7.1)

We modify this equation to make it appropriate to
nondilute mixtures. (1) Ignore for the moment any
concentration dependence in 7.

1 ', the rate of 'He
tunneling into a vacant lattice site. (2) Perform the
lattice sum called for in the second moment only, over
the lattice sites occupied by 'He atoms; the second
moment for mixtures becomes
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neighboring lattice site. This change in the microscopic
frequency, co&(V, 3)~~3(V, M), and the mixture de-
pendence of xi ——xv(M) are the only changes in rv

Region I-B. In Region I-B, the behavior observed
for T~ is that characterizing relaxation of the Zeeman
system to the tunneling system. In this region, vacancy
waves and/or phonons couple the tunneling excitations
to the lattice. In the spirit of the discussion above of
dilution in Region I-A, we attempt to carry over the
formalism developed for pure 'He. We observe that the
fourth moment involved in the time evolution of BC~

conta, ins double summation [Eq. (A2.11)] over the

IO'

or

cur(x) = [M4(x)/M2(x) ]'"
= [x32M4(x=0)/x3M2(x=0) ]"' (7.4)

cur (x3) = (x3) '"(up(xa ——1) .

With this effective correlation frequency and the same
modification of M2 as we had above, M2(x~) = x3M~, we
find

lattice sites occupied by He' spins so that

M4(V, x) =x3'M4(V, x=O).

Carrying over the definition of cv& from Appendix A.2,
we have

IO
2

I

I

I-A I

I

I

I

I-8

T -i 2 (1~)i/2. M2(x=O)

(x3) 'i'(ap(x=0)

X exp —,4 exp —, 7.5

Ti

(sec)

IO—

X~ = 0,02

'Itl' = 20.6 cm /mole

—=5.5 MHz27r

(using the Gaussian approxima, tion) .
We anticipate that some modification of these results

will occur in the dilute limit, @3~0, for then very few
"He atoms have 'He neighbors, and we expect the
tunneling motion of single 'He particles through the 4He
matrix characterized by a»(4, 4) to govern the relaxa, —

tion. As x3—+0, the rate of relaxation of the Zeeman
system is given by Eq. (6.12), where we let ry +~, —

Ti ' ——-', (x3)Mg(x4 ——0)

IO X5 = I.O

IO~ » I i I I I I i I I I I

I.O 2.0 3.0
(K )

FIG. 44. T1 for Mixtures. The variation of Tr with inverse
temperature for the mixture x3=0.02 is compared with that of
pure 'He at the same molar volume, V=20.6 cm'/mole, and
precession frequency, coo/2m. =3.5 MHz. The curve for the 2%
mixture comes from the data of Miyoshi, Cotts, Greenberg,
and Richardson (1968), and that for 3He is based upon inter-
polation of the T1 measurements of Reich (1963). We note that
in Region I-A, (T '(0.7) the vacancy contribution to the
relaxation process is decreasing exponentially with temperature
in both cases and with about the same slope. However the dilute
mixture is in the hcp phase, whereas the pure specimen is in the
bcc phase. In the case of pure 'He, the activation energy for
the vacancies in the hcp phase is about 50% greater than that
of the bcc phase so that we conclude that the activation energy
for vacancies decreases as the specimen is diluted at constant
volume in the same crystallographic phase. The pure 'He specimen
displays no minimum in T1 because ~z is greater than the preces-
sion frequency uo. The minimum in T1 occurs for the dilute
mixture because the efFective correlation frequency due to the
tunneling has been decreased by the dilution process co&(x3)~
(x3) coT (x3= 1) .

X I [r3/(1+oPr3') ]+[4r3/(1+4a&0'r3') ]I, (7.6)

where r3 '=s&u3(4, 4). Thus we expect that as x3 goes
from nondilute concentrations, 0.95&x3)0.05, toward
dilute concentrations the source of the motions which
will contribute to T~ will go from 'He —'He tunneling,
Eq. (7.5), toward 'He —4He tunneling, Eq. (7.6). Of
course in the extremely dilute limit x3(1000 ppm, we
may also regard the 'He atoms as mass Quctuation
waves. But even before this limit is achieved we expect
to see evidence in T» for the 'He —4He tunneling motion.

Region II. In the limit of nondilute mixtures where
mass fluctuation waves do not propagate, the relaxation
of energy dumped into the tunneling system occurs
through coupling to the vacancy waves and/or the
phonons. The treatment of relaxation in this region
would be qualitatively similar to our treatment of
Region II in Sec. 4. Behavior characteristic of Region II
has yet to be observed in the preliminary experiments
on the nondilute mixtures. Hence, we will not discuss
Region II behavior for the nondilute mixtures in detail.

7'.3 Tj Expeximents, Results

Figure 45 shows the variation of T~ with inverse
temperature for mixtures with x3——0.08 and 0.02, V = 21
cm'/mole, and &up

——3.5 MHz. The solid line is the be-
havior which would be observed for pure 'He under the
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cancy in a mixture designated by M. The qualitative
description of the behavior of T~ due to the presence of
vacancy waves observed here is exactly the same as the
qualitative description of T& in pure 'He in Region I-A.
Information about rt and g extracted from measure-
ments of T~, D, and T~ in mixtures is summarized in the
concluding section of this discussion.

In Region I-B, we observe a temperature-independent.
plateau given by the relaxation rate lzz '. Ke plot the
T~ data as a function of coo from Region I-8 in the same
way we plotted this kind of data for pure 'He. See
Fig. 20. Figure 46 shows a plot of I T (t&pe=0)/T (tpte) ]
versus (tos'/xs~r') for all points measured in both phases
and for concentrations x3 ——0.32, 0.08, and 0.02. The
parameters Tt(a&s= 0) =Ex'~'[J(V) /V'] and cur are
calculated using the value of J for the same molar
volume for pure He' and Eqs. (A2.18 and A2. 19).
There are no adjustable parameters used in constructing
the plot in Fig. 46. The fit of the mixture data to the
spectral function of pure 'He is excellent. Ke take this
as strong evidence that the value of J is unaffected by
dilution. This interpretation is useful for the under-
standing of the problem of 'He doped with small quan-
tities of 4He. Early attempts to explain the effects of

FIG. 45. T1 for Mixtures at various concentrations. The
figure shows T& measurements by Miyoshi, Cotts, Greenberg,
and Richardson (1970) for the mixtures x3=0.0194 and 0,0778
at t/'=21 cm3/mole compared with the relaxation rate for pure
'He at the same precession frequency, 3.5 MHz. The open circles
and open squares correspond to measurements of the relaxation
rate for the hcp phase, and the solid circles and squares are
measurements in the bcc phase. For this molar volume there
are rather wide temperature ranges over which the bcc and hcp
phase exist simultaneously. The relaxation rates observed in
the mixed phase region have two components; a rapid one due
to the contribution of the hcp phase which has the higher activa-
tion energy for vacancies, and a slower component from the
fraction of the specimen in the bcc phase. The relative amplitude
of the two components varies continuously with temperature as
the mixed phase region is crossed. For x~=0.0778, the specimen
ultimately becomes completely a bcc solid at low temperatures
for this molar volume, and for x3 ——0.0194 the specimen becomes
a hcp solid at low temperatures. The minimum in Ti occurs
at higher temperatures for the hcp component than for the
bcc component, as expected. The plateau value of Ti in region
I-B increases rapidly with decreasing He concentration as a
result of the weakening of the local dipolar field through the
dilution process.

same conditions. Only Region I is seen in the data. For
this particular sample, two relaxation rates are meas-
ured; i.e., 3IIs(t) decays back to Ms(0) as the sum of
two components with different characteristic times. This
occurs because the molar volume we have selected lies
in the mixed phase region of Fig. 43. At the high-tem-
perature end of the diagram, most of the sample is in
the bcc phase, with a relatively low value of @; as the
temperature is lowered a large fraction of the x~ ——0.02
sample occurs in the hcp phase and ultimately all of the
specimen is hcp with a relatively high value of p. Thus
there is a steep decrease in rtr, rv ~ expL —Pp(M) ].By
P(3II), we mean the excitation temperature for a va-
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FIG. 46. Reduced plot of Ti for mixtures. The figure shows a
plot of [Ti(0)/Ti(coo) ] versus (a&0/co, )', obtained in the measure-
ments by Miyoshi, Cotts, Greenberg, and Richardson (1970).
The values of T1(co0) are those measured at various molar volumes,
'He concentration, and Larmor frequencies in thermal region
I-B. The quantity co, is the effectiv'e correlation frequency of
the diluted pairs of spins co, = (x3)'"coT(x3=1) and T1(0) is the
zero-field limit of the relaxation rate given by Eq. 7.5 in the
text Tq(0) =E', &&&[J(V) /V'j. In plotting the points in the
figure, the values of J used for each volume were obtained from
these measured in pure "'He, Fig. 32. There are thus no adjust-
able parameters in making the plot shown. Since the data for
mixtures fit upon the data of pure 3He in this plot, we conclude
that the tunneling frequency between "He pairs with a fixed
molar volume is unaffected by the variation in the background
medium from a predominantly 'He lattice to a predominantly
4He lattice. At the larger values of the Larmor frequency, the
data points for the most dilute specimens, @3=0.02, depart from
the data obtained in richer mixtures. This is possibly evidence
for the tunneling motion of 3He atoms with 4He neighbors,
since Tq varies as cup [rather than as exp(constant xcoo') j.
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4He doped in 'He in Region II used arguments that the
average neighbor distance of pairs of 'He atoms around
the site of a 'He atom decreased, , thereby making large
changes in the average value of J for such pairs. The
result being discussed here on nondilute mixtures im-

plies that J remains essentially constant for gross
dilution. We therefore conclude that it probably does
not change significantly for very dilute 4He in 3He.

We note that in Fig. 46 the data from the 2%
mixture deviate from the universal relaxation curve in
the limit of large values of zop/zor. Because zor'zz- xs, the
data points for the x3=0.02 mixture are a,t large values
of zoo'/zor'. We suspect that these deviations are evidence
of the inAuence of 'He tunneling with the 4He. Let us
suggest a model that incorporates this idea. We argue
that as the very dilute limit is approached, 1000 ppm(
x3(0.05, a 'He atom at lattice site R sees two kinds of
'He neighbors: (1) neighbors which are single isolated
'He atoms, and (2) neighbors that are members of
clusters of 'He atoms of two or more. The isolated 'He
atoms move with the characteristic frequency zos(4, 4)
and contribute a dipolar field at R. which fluctuates
with frequency zoo(4, 4) . The clusters of 'He atoms move
with a, characteristic frequency ~„which is a compli-
cated average of J and zos(4, 4), and contribute a di-
polar field at R which fluctuates with frequency w, Of
course there is a continual transfer of particles between
these two groups by virtue of the very tunneling proc-
esses that give rise to the fluctuations in each group but,
if the ra, te a,t which particles are transferred between
the two groups is small compared to the rate of Quctua-
tion of the field due to each group, then the groups can
be regarded as independent, and the contributions of
the groups to the dipolar field at lattice site R are
independent. We can estimate a. concentration at which
this independence of motion occurs. The cross section of
a 'He atom for forming a pair is approximately zlV;
thus the mean free path for pa, ir formation is X„=
6/axs. The rate at which a single 'He forms pa, irs is

zo„= t1zos(4, 4) /X„= sxszos(4, 4) .

We require that the ra, te at which pairs are formed by
singles be small compared to the rate at which the dipolar
field due to the single fluctuates, i.e. , zo„((zos(4, 4) or
xsa«1. This criterion suggests that at xs—+1%, the
picture of groups of 'He atoms having substantially
independent motions has some validity.

Let us adopt this picture. Ke regard the 'He atoms
moving in the neighborhood of lattice site R as being
made up of two independent components. Each com-
ponent of the field particles contributes an independent
dipolar field at R with a characteristic time dependence.
Then, the relaxation of the spin at R will be dominated
by whichever fiuctuating Geld has the strongest Fourier
component at coo. The spectral function for the 'He —4He
tunneling goes approximately as

(2 /x3s) Ms[rs/(1+zoo'rP) ]

and the resulting rate for relaxation in the high fre-
quency limit, ~0~3)&1, is

TI '(3—4) (10/3) (xsMp/zoo'rp) (7.7)

On the other hand the relaxation rate due to He~ pair
exchange is

TI '(3—3) (-', zr) "'-,'xs"'(3Ip/zor)

X [exp ( —top'/2xszor') ] (7.8)

in the equivalent limit (xs) (zop/zor)'»1. The experi-
mentally observed relaxation rate will depend upon the
relative strength of the two independent fields so that

2'I ' I-.= I
o/2'I(3-4) L+[(1—o)/Ti(3-3) 3, (7 9)

where c is the concentration factor describing the num-
ber of isolated spins. The character of the high-frequency
dependence of the spectral function due to 3—4 tunneling
is much milder than that of 3—3 tunneling, coo

' rather
than exp[ —(poo'/2xsosz') ), so tha, t eventually as zoo

increases the (3—4) rate dominates the relaxation proc-
ess. The motion of the isolated singles dominates the
relaxation process. The data shown in Fig. 46 for 2%
'He in the hcp phase has an coo' dependence for T» in
high fields. The same data fits the Gaussian correlation
function model of exchange in low 6elds. Both of these
results are in qualitative agreement with the discussion
here.

Reg~oe II. The characteristic properties of Region II
have been observed in only one published experiment
on mixtures, that of Garwin and Reich (1964a) at
V=19.3 cm3 and x4 ——0.01. The relaxation tinge varies
as T 7 and is possibly the direct phonon coupling with
the 'He tunneling bath. The 4He concentration is
suKciently large that the mass fluctuation waves do not
propagate so they can't transfer the energy from the
tunneling system to the phonons. In the same paper,
the authors report a very interesting heat capacity
measurement. A sequence of 90' pulses is applied at
intervals long compared with Tzz but quite short
compared with Ti. (Each 90 pulse dumps a calibrated
amount of heat into the energy reservoir. ) The magni-
tude of the signal following each pulse is proportional
to the temperature of the Zeeman system which is in
equilibrium with the tunneling bath but not the lattice.
The heat capacity obtained in the analysis of this
experiment was 350 times the heat capacity of the 'He
tunneling reservoir. This result is perhaps the most
puzzling of any of the %MR experiments performed in
solid helium. A possible explanation is that the heat
capacity observed in the experiment is that due to iso-
topic phase separation. Edwards, McWilliams, and
Daunt (1962) have measured the specific heat of
mixtures and find an excess heat capacity above the
phase separation temperature, i.e., a precursor to the
phase separation which is sufficiently large to account
for the observed anomalous specific heat. However, it is
not clear how the spin system communicates its energy
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In Region I-B, the tunneling motion dominates both
T2 and the diffusion process so that they become
temperature independent.

Figure 48 shows the values of T2 vs T ' for V= 21.0
cm'/mole and xs ——0.08. As in the case of the Tr for this
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Pro. 47. T2 for mixtures. The figure shows the values of
T2 in the bcc phase measured at V=21 cm'/mole for a mixture
in which x3=0.08 I Miyoshi, Cotts, Greenberg, and Richardson
(1970)7. The data are compared with those obtained by Reich
(1963) at V=21.1 cm'/mole for x3=1.0. The two important
features that arise from the comparison are that: (1) in Region
I-A, (T (1.5K ') where the vacancy motion governs the spin
equilibrium time, the characteristic energy for vacancy activa-
tion is much lower than that of pure 'He and (2) the temperature-
independent value of T2 for the 8% mixture in Region IB is
(2 ')1.5 K ') lower than the value of T2 for pure 'He. The
latter result is not predicted from simple considerations of the
effects of dilution upon the tunneling motion of the pure 'He
solid. If the important motion for the relaxation were the tun-
neling between 3He pairs, T~ would be expected to increase as
x -j./2

(sec)

IO

-2
IO

hcp
mixed

phase

to such a heat reservoir without heating the lattice
first.

7.4 T2 and Diffusion Experiments

In Fig. 47, we show the results of a typical T2 meas-
urement on nondilute 'He —4He mixtures. As in the case
of pure 'He, the behavior of T2 is ordered by T ' into
two regions.

Region I-A. In Region I-A, both Dz and T2 behave
essentially as they do in pure 3He. As was the case of
T&, we expect that the primary effect of dilution is to
decrease the local dipolar field from M~ to x3M~, thus
making T~ longer than it would be with the same va-
cancy wave motion in pure 'He solid. We modify Eq.
(4.10) to take into account that only xslV lattice sites
are occupied by 'He atoms in making the second
moment calculation. We obtain

2xsMs (xs ——1) 3 3

3 2 2 1+q' 1+4'') '

(7.10)
wheie 'g ls Q)07'y.

The diffusion coefficient that is measured in mixtures
does not reQect the spin dilution since, in this region, the
motion of the spins is due entirely to the presence of
vacancy waves in the system. The expression for pure
He' vacancy diffusion Dz(V, 3) cc dPccv(3, 3) becomes
Dz= 6'&cv(3, 4), where rcv(3, 4) &cv(3, 3) .

l I 1 i i l I 1 i i I

I.O 2.0 5.0
(K )

Fic. 48. T2 at various molar volumes for a dilute mixture.
The figure compares the values of T2 obtained by Miyoshi,
Cotts, Greenberg, and Richardson (1970) for the dilute mixture
x3=0.0194 at various molar volumes. In Region I-A, T '&1.2,
the activation energy for the vacancy wave motion is seen to
increase with molar volume as in pure 'He. For this particular
concentration, the solid passes through the bcc—hcp mixed
phase region into the pure hcp phase for volumes shown at
temperatures in Region I-A. At lower temperatures, Region I-B,
where the tunneling motion is responsible for the relaxation
process, T2 becomes independent of temperature. The variation
of T2 with volume in this region is quite large for this concentra-
tion. In pure 'He, T~ increases from 15 msec to 30 msec when
the volume is increased from 20. 1 to 21.1 cm'/mole (see Fig;
22). In this specimen the value of T2 increases by more than a
factor of 3 when the volume is increased only from 20,3 to 21,0
cm3 so that the rate of change of T2 with volume is twice as
great for the dilute mixture x3=0.0194 as for pure 'He. In the
static or rigid lattice limit, where there is no tunneling motion,
T2 is of order 500 @sec for x3=0.02 and V=20. In the rigid-
lattice limit, T2 varies with volume as V' so that T& would only
increase by about 6% in going from 20.3 to 21 cm3/mole. The ob-
served values of T2 then, are too large and show far too much
change with volume to be accounted for solely by the dipole
motion of the rigid lattice.

A plausible explanation is that the observed relaxation is due
to contributions from two independent field fluctuations so that
the observed value of T2 is the mixture relaxation rate of a
small number, a, of isolated spins and the relaxation rate of
(1—a) spins which see the effects of the 'He tunneling motion.

Ts ' I...t= (c/1's)1.e t, .+L(t —c)/2shl
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concentration and volume, the relaxation process in
Region I is characterized by two exponentials in the
recovery time due to the existence of a mixed bcc—hcp
phase solid. T2 for both phases decreases rapidly with
1/T due to the depletion of vacancy waves. Measure-
ments of T2 and Dz for mixtures in Region I-A have
been analyzed (Miyoshi, 1970) to yield the parameters
@ and vy for the mixture. The values for these param-
eters are summarized in the concluding part of this
section.

As the temperature is lowered to reach Region I-B,
the values of T2 and Dz become temperature independ-
ent. (Dz has not been measured in this region because
it is characteristically much too short. ) The magnitude
of T2 is governed by the tunneling motion in the solid.
Figure 49 shows the values of T2 measured as a function
of x for various molar volumes. The solid lines are the
values of T~ for the same molar volumes expected from
consideration of the dilution of 'He pair tunneling;
the Ts equivalent of Eq. (7.5). In the high-field limit we
find

Ts '= 's'(s~)'"L~s(*)/~r(*) ],
ol

Ts '=-' o(—'sr)»s»'~serfs(»= I)/(or(»= 1)]. (7.11)
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Thus, in the data shown in Fig. 49 we expect T~~x3 '~'.

But T2 does not increase as x3 gets smaller.
We argue that this data gives evidence for the exist-

ence of a frozen-in component of the dipolar field. By
this we mean that in the nondilute mixtures, there are
particle clusters in which the potential energy at a pair
of lattice sites is such that the interchange of the
particles localized near these la, ttice sites is not ener-
getically advantageous. The interchange may lead to
an inequiva, lent energy for the system which is greater
than the energy before interchange. Thus the motion
must involve unlike pairs. The motion of the 'He —4He

pair will be frozen out by energy considera, tions. Al-
though it is difficult to quantify this concept, its con-
sequence is that there is a contribution to II,& at R
which is due to essentially sta, tic 'He atoms. These
static 'He atoms give an independent dipola, r field a,t R
that contributes to T2. We write

larrpt aT2 Iatattc+ ( 1 a) Ts Imotjon~

where Ts '
Im«ton is given by Eq. (7.11), and a is a,

measure of the static component of the local dipolar
field. We may use the data shown in Fig. 49 to obtain an
estimate of a. Certainly Ts Ia«„o is not less than the
natural dipolar linewidth,

LTs(») ] Inaturat tod(») ~toe(»)

Now from Abragam we have Ts
I atu„t 10 @sec. Thus

we have

CTs(») 7 ' I-t- t=10'(»)'".

For the data at »=0.08, V=20.2 cm'/mole we have
Ts Imotion~20 msec and Ts Ia»t 2 msec.
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FIG. 49. The concentration dependence of T2. The figure
shows the values of T2 in Region I-8 for the mixtures measured
by Miyoshi, Cotts, Greenberg, and Richardson (1970) at various
molar volumes. T2 decreases with concentration rather than
increasing as might be expected from considerations of dilution
on the 'He —'He tunneling motion shown with the dashed lines.
The measured values of T2 at the minimum dilution measured,
x3=0.0194, remain greater than that predicted for the rigid
lattice (shown with solid lines), and display a strong variation
~vith change in volume.

calculate a(3X10s)+(1—a)50=500 or a &0.02. For
pla, usible values of a it is possible to understand the
results of the T2 experiment.

Our description of the Ti a,nd T2 data on nondilute
mixtures is not very satisfactory. To understand the Tj
data, we introduced a loca, l dipolar field due to the mo-
tion of isolated 'He atoms. To understand the T~ data,
we have introduced a local dipolar field due to frozen in
'He atoms. The need for this "ad hoc" approach to the
nondilute mixtures in Region I-8 provides compelling
evidence of the need for a good first principles theory.
When we have such a theory we will know how to
extract. tos(4, 4), J, etc. , quantities of great interest,
from the experiments.

7.5 Properties of Excitations in 'He-4He Mixtures

In this section we summarize the properties of the
excitations in solid 'He —He mixtures which have been
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measured in the NMR experiments described in Secs.
4 and 7. The properties of the excitations in pure 'He
are discussed at the end of Sec. 4. In principle, the class
of experiments discussed in Secs. 6 and 7 provides a
wealth of information about the excitations in mixtures.
In practice, the new information that is reasonably
well established is limited.

TunneHwg Frequency. The experiment of Miyoshi,
Cotts, Greenberg, and Richardson (1970) indicates
that at fixed molar volume J is essentially independent
of concentration. This result is made plausible by the
results of theories of 'He —4He mixtures (Glyde, 1968)
specific heat data (Sample and Swenson, 1967) .

Mass F/uctugtiors Waves, co4(3, 3) aud o~3(4, 4). The
experiments of Giffard and Hatton (1967), Giffard
(1968), Bernier and Landesman (1969), 8ernier
(1970), and Reich and Yu (1969) suggest that v= 20.0
cm'/mole ~4(3, 3)~4J. Data on these excitations re-
mains limited. There have been no experiments on mass
fluctuation waves in x3~0 mixtures. Such experiments
would measure co3(4, 4). There is some evidence for
effects due to a&3(4, 4) in the data of Miyoshi, Cotts,
Greenberg, and Richardson (1970). The usefulness of
that data is presently limited by the inadequacy of the
theory on nondilute mixtures.

Vacancy Waves; P(M) and ~i (3, M) . It is gratifying
that the nondilute mixture experiments have provided a
substantial amount of new data on the nature of va-
cancy excitations in quantum crystals. From the experi-
ment of Miyoshi, Cotts, Greenberg, and Richardson
(1970), we are able to determine the vacancy excitation
temperature and vacancy tunneling frequency for
'He —4He mixtures approaching x3—+0. In Fig. 50, we
show the excitation temperature for vacancy waves as
a function of pressure for pure 'He (see Fig. 29) and
'He —4He mixtures with x =0.32, 0.08 and 0.02. We
have plotted the data against pressure in order to illus-
trate a simple point. The energy required to create a
vacancy in bcc 'He is very nearly Pv. This energy is just
the energy required to create the empty lattice site
that is the vacancy. I et us look first at the bcc data on @.
At P 30 atm, x3——1, @~5 K we estimate that the
energy required to create a vacancy in bcc 4He is about
5 K. The vacancy waves are a substantial contributor to
the thermostatic properties of the bcc phase even in
4He. Unfortunately bcc 4He exists only in a small
P—T sliver of the phase diagram so that thermostatic
verification of this result is virtually impossible. For
P 25 atm and x3 0.02, the solid mixture is in the hcp
phase. The excitation temperature for vacancies in
hcp 'He is about 12 K—15 K. Should the vacancy waves
contribute noticeably to the thermostatic properties of
hcp 4He? From the data of Edwards and Pandorf (1965)
on hcp 4He at 25 atm, we have 8Di@(T ) =23 K and
for which @&4&=15K. This is to be compared with bcc
'He at 20 cm'/mole, I' 105 atm, for which Edwards
and Pandorf find 8D'(T ) =24 K, and for which @'@=
14.5 K. Thus we expect the vacancy excitations in
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FIG. 50. Vacancy excitation temperature vs pressure. The
excitation temperature is calculated using the data from the
following sources: For hcp 'He: &, Reich (1963), diffusion;
For bcc 'He: &(, Reich (1963), diffusion; +, Richardson, Hunt
and Meyer (1965), T1, &, Giffard and Hatton (1967), Ti.,
O, Sample and Swenson (1967), specific heat. For bcc 'He —4He
mixtures: Q, Miyoshi, Cotts, Greenberg, and Richardson (1970),
T& and diffusion, (x3=0.32); , Miyoshi, Cotts, Greenberg and
Richardson (1970), T1 and diffusion (x3=0.08) . For hcp 'He —4He
mixtures: , Miyoshi, Cotts, Greenberg, and Richardson (1970),
T& and diffusion (x3=0.02) . For bcc 'He and bcc 'He, the vacancy
excitation temperature is less than PV. For hcp 'He and hcp
4He, the vacancy excitation temperature is about P V. There
should be lots of vacancies in bcc 4He.

static properties comparable to that which they make
for bcc 'He at P= 105 atm. At melting in hcp 4He at
25 atm, the ratio of the vacancy and phonon contribu-
tions to the specific heat is about 1/o. Thus the vacancy
wave excitations don't seriously affect the thermo-
static properties of hcp 'He. At melting in bcc 'He at 105
atm, the vacancy wave excitations make up 50'Po of the
specific heat. Actually the values of g derived by Sample
and Swenson for bcc 'He come from an analysis in which
all excess specific heat beyond (T/8D~)' is assumed to
be due to vacancies. This certainly isn't true, since
8g) (T) (8g&' at T) 1 K. Thus the P calculated by Sample
and Swenson must account for too much of the excess
specific heat. The g of Sample and Swenson should be
less than the NMR values.

The values of the tunneling frequency for a 3He
particle into a neighboring lattice site in solid He,
o&i (3, 4) is essentially equal to a&i (3, 3) . This observa-
tion follows from the fact that Miyoshi, Cotts, Green-
berg, and Richardson (1970) found Do in mixtures,
D= Dpsg to be in good agreement with the results of
Reich in pure 'He. Thus we conclude that cvi (3, 3)~
&vi (3, 4); the vacancy bandwidth is the same size in
both 'He and 'He crystals.

It is appropriate here to make some comments on two
recent suggestions about a superfluid state in solid 'He.
Chester (1970) has suggested that the possibility of
such a state is not inconsistent with the known prop-
erties of the solid 4He ground-state wavefunction. Fur-
ther he has suggested that the ground-state wavefunc-
tion for the superQuid solid state should have ground-
hcp 'He at 25 atm to make a contribution to the thermo-
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FIG. 51. Ground-state vacancies.
Chester (1970) has suggested that
in addition to thermally excited
vacancies there are ground-state
vacancies, i.e. , two bands of vacancy
excitation s. The thermally excited
band is depleted as T~O, the ground-
state band is not. Andreev and
Lifshitz have suggested that p(P) =
@p—st~0 at some pressure; i.e., the
thermally excited vacancy band be-
comes a ground-state vacancy band
at P'
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state vacancies. We take this latter statement to mean
that the single-particle density peaks at X+e„equiv-
alent points in space, the lattice sites, but that in the
vicinity of each lattice site we have less than one par-
ticle, (n~)=1V/(E+m„). The excitation spectrum for
the solid would have two vacancy wave bands as
shown in Fig. 51a. The ground-state vacancies, whose
number is n„move through the crystal just as do the
thermally activated vacancies. At T=O K, there are
only ground-state vacancies in the system. Andreev
and Lifshitz (1969) have made a, similar proposal.
Andreev and Lifshitz have suggested that t:he lower
edge of the vacancy band approaches 0 at some pressure.
See Fig. 51b. At pressure I', the ground-state vacancies
can occur. The NMR experiments we have discussed
permit us to consider the likelihood that there are
ground state vacancies. Since ground-state vacancy
waves must move through the solid in the same way as
thermally activated vacancies, they must contribute to
a T~ measurement in the same way as thermally acti-
vated vacancies. It is harder to form thermally activated
vacancies in solid 4He than in solid 'He; it is harder to
form thermally activated vacancies in hcp 'He than in
bcc 'He. Thus in the absence of pathological behavior on
the part of 4He, we may use bcc 'He as a test of the above
hypothesis. We believe there are no ground-state
vacancies in bcc 'He. The data of Giffard and Hatton,
and Giffard discussed in Sec. 4 shows relaxation due to
them&ally activated vacancies at concentrations of 10 '4.

Therefore the number of ground-state vacancies in
solid 'He at V=20.0 cm'/mole is less than 10 '4X;
ny/E(10 '4

The theory of thermally activated vacancy excitation
should also show the possibility of ground-state vacan-
cies if they exist. The possibility of these excitations is
ruled out by any plausible calculations with the theory
(Mullin, 1971).

8. CONCLUDING REMARKS

Because of the large zero-point motion of the particles
in a quantum crystal, there are particle motion excita-
tions in these systems: (a) tunneling excitations,
(b) vacancy wave excitations, and (c) mass fluctuation
waves. We have described these excitations and the
physics they give rise to that is observable in NMR
experiments. We have also described the results of
NMR experiments and the information that is obtain-
able from them about the particle motion excitations.

Our description of the particle motion excitations has
stressed the interplay of theory and experiment. A
qualitative idea of the nature of the excitation leads to
the expectation of certain phenomena to be observed,
perhaps by NMR. The observation of the expected
phenomena in turn leads to a quantitative understand-
ing of the excitation. From the observation of unex-
pected phenomena, one can gleen new and interesting
aspects of phd sics. The progress that has been made in
understanding the excitations in quantum crystals has
followed closely this pattern of mutual feedback be-
tween theory and experiment. We are hopeful that
future work in this 6eld will follow this same pattern
and that it will be as pro6table as what has gone before.
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APPENDIX A: RELAXATION TIMES

A.o. Introduction to Tj

In this Appendix we calculate the rate for the relaxa-
tion of energy between the various systems of excita-
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tions that are present in the quantum crystals. These
calculations amount to an exercise in the application
of a basic computational scheme due to Abragam (1961)
that is reviewed below. The application of this compu-
tational scheme to Zeeman —vacancy relaxation was
apparent following the observation by Goodkind and
Fairbank (1959) of the high-temperature behavior of
Ti. The experiments of Reich (1963) and Garwin and
Landesman (1964) in which the Zeeman —tunneling
relaxation was observed were interpreted by Garwin
and Landesman and Hartman (1964) using the com-
putational scheme of Abragam. At the same time, Gar-
win and Landesman introduced the multiple bath
picture of the relaxation process that has been so
fruitfully applied to solid 'He. Garwin and Landesman,
and P. M. Richards (1965) have described the tunnel-
ing —vacancy wave relaxation process. The relaxation
rates calculated below have not previously been des-
cribed in the literature.

Consider a solid which is inhabited by two kinds of
excitations, designated 1 and 2, which are weakly
interacting with one another. By weakly interacting
we mean that the 1-system and 2-system come to ther-
mal equilibrium within themselves on a time scale
short compared to the rate at which energy is trans-
ferred from the 1 system of excitations (1-system) to
the 2 system of excitations (2-system). We write the
Hamiltonian for the solid as

X=Xi+Xp+X» ——Xp+X», (A0.1)

where Xp= Xi+Xp, Xi and Xp are the Hamiltonian for
the 1-system and 2-system respectively, and 3C» is the
interaction between 1 and 2. The form of Eq. (A0.1)
contains the crux of the physical arguments we want to
make about the system. We assume that the excitations
in the 1-system are in thermal equilibrium among
themselves and move independently of the excitations
in the 2-system (which are also in therma, l equilibrium)
except for BC». That is we have

Pei, xp]=0 (A0.2)

but LXi, X»]40 and [Xp, X»]40. We will choose X»
to be a plausible analytic representation of the inter-
action of the 1-system with the 2-system.

The rate at which energy is lost from the 1-system to
the 2-system due to K» is calculated as follows:

1. Compute d(Xi)/dt,

d(Xi)/dt=d Tr Xia/dt= Tr Xia, (A0.3)

where o- is the density matrix for the system.
2. Use the interaction representation to do the cal-

culation of the density matrix Then, we have

(r*(t) is:
i)iia'(t) = LX„*(t),a*(t)]. (AO.5)

The solution to this equation by iteration to second
order in fi ' is

i
a*(h) = a+(0) —— PC,P(h'), a*(O)] dh'

fl 0

t

+ —
~

dh' dt"Lx»*(t), Pe,g(t"), a*(0)]].
)rii

(A0.6)
From this equation we find a*(t) to be

z (i '
a (h) = ——(X *(h), a*(o)]+ I—

)5

X dh'Pe„'(t), [X„*(t'),a*(0)]]. (A0.7)

3. Now we specialize Eq. (A0.7) because of the noise
character of X~+(t): (a) X»*(t) is regarded as a noise
source. Therefore we want to calculate d(Xi)/dt for an
ensemble of 3C»'s or equivalently we want to use a
a*(t) in Eq. (A0.4) which is obtained by ensemble
averaging Eq. (A0.7). We denote a*(t) appropriately
ensemble averaged by (a~(t) )A„. In general, quantities
that are ensemble averaged over X» are denoted by
brackets, ( )A, . (b) Assume a(0) and X»*(t) are un-
correlated. (c) Replace a*(0) under the time integral
in Eq. (A0.7) by a*(t). (d) Put the upper limit in the
time integral in Eq. (A0.7) at + p(). Carrying out
(a) —(d) we obtain

X dh' Tr Xi(pe„*(h), LX»*(h'), a*(t) ]])„,.

(A0.8)

4. We assume that the 1-system and the 2-system are
in thermal equilibrium throughout the relaxation proc-
ess (as the 1-system loses energy to the 2-system), and
that the density matrix has the form

a*(t) = exp [—Pi(t) ]Xi exp —(PpXp), (A0.9)

where pi(t) '=kaTi(t), and pp, the inverse temperature
of the 2-system, has a fixed value because the 2-system
is attached to an external reservoir at inverse tempera-
ture pp. The 1-system relaxes from a higher temperature
to the temperature of the 2-system. The 2 system is in
equilibrium with a reservoir. As Pi(t) approaches P&

we have

d(Xi)/dt= Tr Xia*, (A0.4)
a*(t) = exp —[Pi(t) —Pp]Xi exp —PpXp

where a*= exp (iXpt) a exp (—iXpt), and in general we
write O*(t) = exp (iXpt)0 exp (—iXpt). In the inter-
action representation, the equation of motion for

~L1 Pi (t ) Pp]ap (Pp) & (Ao. 10)

where ap(Pp) = exp (—P&Xp) is the equilibrium density
matrix for Hp at inverse temperature pp. Using Eq.
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(A0.10) in Eq. (A0.8) leads to

i&2
d(Xr)/«= —

I P~(t) —P2] —
I5j

X dt" (Xgl X» (t) ) LX»*(t")) Xg(t) ]]) (A0.11)

where ( ~ ~ ~ )= Tr exp (—PXO) ~ ~ ~ .
We may obtain an alternative expression for d{X~)/dt

by using Eqs. (A0.9) and (A0.10) directly, i.e.,

d d Tr Xgo*(t)—(X )= = —("/dt)P (t) (~X')
dt dt Tr 0*(t)

(A0.12)
where

(~XV)= ((X~—(Xr)) ').
5. The quantity T» is defined by the equation

pg(t) = —T» '[pg(t) —p2]. (A0.13)

This time, T», is called the Astrlic time. It is the
characteristic time for decay of energy from the 1-
system to the 2-system when: (1) these two systems
are an isolated pair, and (2) the 2-system remains
always at the equilibrium temperature, Fig. 52. Now
recall that the specific heat of the 1-system is given by

d dP dpi dP dP
Cg= —(Xg)=+ — = ——(b,XP)= —k, ,dT dT dP dT dT

(A0.14)

where we have defined the energy constant k& by

(b)

FIG. 52. Topologies. (a) The topology for the calculation of
the intrinsic time. (b) The topology for the calculation of the
topological time.

where h& depends upon the coordinates of the 1-system
only, and h2 depends upon the coordinates of the 2-
system only. We write X» (t) =h&*(t) l&h2*(t) I2, where
by hP(t) l~ we mean h& time evolved according to X~.
Now we write the expectation value in Eq. (A0.16) in
the form

(p»(t) p»(t+r) )= (p~(t) p~(t+r) ) li(h2(t) 12h2(t+r) l~)~

—=Gi(t) F2(t), (A0.18)
where

p, (t) =LX&(t), h, (t)]

( ~ ~ ~ )„= Tr exp ( —PX ) ~ ~ ~ .

kg dF.g/dP——
and

The combination of Eqs. (A0.11)—(A0.13) and the
definition of k~ leads to

T» ' ——(6'kg) '

X dt(Xg(0) CX»*(0) ) I X»*(t)
~ Xi(0)]]), (A0. 1&)

where we have used the fact that the expectation value
in the integral depends upon the relative time only, to
simplify the integrand. Equation (A0.15) may be
brought to the form

OO

f2
0

G (t) =f d~e+'"G~(~)=(pi(t) p (t+r))

G, ((o) = (2n.) 'f dte '"'Gi(t) . (A0.19)

dt(LXr(0) X»*(0)]LX,(0), X»*(t)]) Then we find

The function {p»{t)p»(t+r) ) is called the correlation
function. Its separate pieces, G~(t) and F2(t) are also
correlation functions. The perturbation to the 1-system
due to the 2-system is through X2 driving the term h2

in 3C». Let us carry out Fourier analysis of the motion
of Gg,

or

-I 1 -1T» '= —kg '
A2

d~(p»(t) p»(t+~) ), (A0.16)

Tg ' ———kg'
f2 dtf, (t) (hue'"'G~(~)

where p»(t) = LX~(0), X~+ (t) ].This is the fundamental
formula for the intrinsic time. See also Eq. (A0.22)
below.

Let us specialize Eq. (A0.16) by writing the per-
turbation K» in the form

where

Fg{(u) = dtF2(t) e '~'.

= (5'kg) ' dkvGg((o) F2( —(o),

(A0.20)

3C»= hgh2, (A0.17) Thus the product of the power spectrum of h2 and pq
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d(X2)/dt = (d(X2)/dP) P2
——k2P2.

Thus energy conservation implies Pl= —(k2/kl)P2. We
define T» by the equation of motion for P2

P2 2 21 (P2 Pl)

and using Eq. (A0.13) we have

or
T» (Pl P2) (k2/kl) (2 21) (P2 Pl)

2 21 —2 12 (kl/k2) ~ (A0.22)

This result is in agreement with the intuitive notion of
energy flow. For k»)k2, a, relatively small change in Pl
implies a large energy Aux to the 2-system and a
relatively large change in P2, or T21 '))T» '.

In the remainder of this Appendix we illustrate the
application of these general results to various systems of
coupled excitations. There are four excitations, phonons,
vacancy waves, tunneling excitations, and mass Quc-
tuation waves, with which we deal. Thus there are
(4 3) /2! = 6 basic interactions among these excitations.
See Table III.

yields the relaxation rate. The function

f d~G1(~) P2( —~)/fPkl

is called the spectral function. Its separate pieces Gl(co)
and F2(cu) are also spectral functions.

Suppose that we have calculated T~2 and we want to
know T2~, the rate at which energy is transferred from
2 to 1. Using energy conservation for the coupled sys-
tems we must have

d((X,)+(X,))/dt= 0.

Now (Xl) is given by (Xl)= Trxlexp (—PX1) so
that

d(X1)/dt (d(X1)/dp) pl —klpl,

X exp (ixzt) S(0) exp (—ixzt)

and
(A1.6)

Xzv(t) = Z Z 8"(t)l S*'(t)lz
g=—2 z(j

vacancy interaction comes about because of the modula-
tion of the dipole —dipole interaction between the
nuclear magnetic moments by the vacancy motion.
Thus Kzz is given by the dipolar Hamiltonian

+2
Xzv=xg= Q Q 8;PS;12, (A1.4)

q=—2 i(j
where the 8's are a function of the relative position of
particles i and j, and the 5's are a function of the spins of
particles i and j. The dipolar Hamiltonian, d, is
discussed in great detail by Abragam (1961) and
Slichter (1963).

The correspondence of this problem with the general
problem discussed above is made by associating 3!&
with BCz, X2 with BC~, and II~2 with 3Cd. Ke consider the
relaxation of the Zeeman system to the vacancy system.
Then, the basic equation, Eq. (A0.15), involves the
time evolution of X12*(t)

x»*(t) =x,*(t)
+2

g exp (iX2t)Bp S;,' exp (—ix2t).
tI=—2 i(j

(A1.5)

It is assumed that in X2——Xz+Xv, the Xz piece time
evolves the spin part of Kgy, and the BC' piece time
evolves the position part of Kg~, i.e., the 8's. We have

exp (ix2t) 8 (0)S(0) exp (—ixpt)

= exp (ixvt)8(0) exp (—ixvt)

X=Xz+Xv+Xzv. (A1.1)

Here the Zeeman system is taken to be described by

Xz= —Ho'Q ps (A1.2)

The vacancy system is described by

Xv ——g ev(k) Cv+(k) Cv(k), (A1.3)

where Cv+(k) is defined in Eq. (3.7) of the text. The
motion of a vacancy wave through the lattice does not
directly perturb the Zeeman system. The Zeeman-

A.1 Zeeman-Vacancy Wave Relaxation

We will discuss in some detail the relaxation of the
Zeeman system to the vacancy system as an illustration
of the basic ideas which are developed in a general way
above. We take the Hamiltonian describing the-coupled
Zeeman —vacancy system to be

g B,p (t) lvs;i2(0) exp ( iqcu2t), —(A1.7)
q=—2 i(j

since S,i2(t) lz= S", (0) exp (—iyo2t). So the correlation
function called for in Eq. (A0.15) is given by

(P»(t) P»(t+ r) )= Z + exp (

X exp l

—i(q+q')(opt)

X (8;,2(t) 8;,. "(t+r)Pez, S;,'(0) jLXz, S,,"(0)]).
(A1.8)

We proceed further by using the following steps:

(a) The correlation between p(t) abd P(t+r) is
taken between a given pair of spins at t, and the same
pair at t+r.

(b) The 8"sare spherical harmonics so that only the
term q= —q' contributes in P«. .



GUYER, RIGHARDsoN, AND ZANE Foci talons in Quantsi'w Crystuts 585

TABLE III. Interaction matrix.

Phonon Vacancy wave Tunneling Mass fluctuation wave

Phonon
Vacancy wave

Tunneling

Mass fluctuation wave

D„
(A-4): phonon scattering D„

from the mass fluctuation
and lattice distortion

(A-3): phonon modulation of the vacancy wave tunnel-

ing process interferes with the regularity of the spin
arrangement

(A-6): phonon scattering
from the mass Auctuation
and lattice distortion

D(3, 3)

(A-5): mass fluctuation
wave interferes with the
regularity of the spin ar-
rangement

l)MF (4)

~ There are four excitations and 4X3i2f=6 interactions among them.
The intrinsic rates for transfer of energy among the four systems of excita-
tions by the six interactions are calculated in Appendix A. The part of the
Appendix dealing with each interaction is noted. The diagonal components

of the interaction matrix are the self-interactions that would appear in
the seIf-diffusion constants; in the case of the phonons the self-interaction
is seen in the thermal conductivity.

(c) The commutator of So with Hg has the simple and
form Go(t) =xMo exp( —t/rv), (A1.17)

Ls,p, BCzj= q5ooos'p—

From (a) —(c) it follows that

(A1.9) where

Mo = Q t (ceo)'/kg) i B;,'(0) i'5;, '(0) 5,, '(0) (A1.18)
+2

Tzv '= —,kz ' g q(n co)o'P &5,,'(0)5;; '(0))z
q=-2 i(j

X dt&B;;o(0)B,,-o{t)), (A1.10)

It is conventional to write this result in the form

is the well-known Van Vleck second moment of the
dipolar' field. The second Inoment is given by

Mo= (9/20)y4fi' Q t 1/~ R;—R; (og. (A1.19)
iw(j)

Using Eqs. (A1.12-19), we may write Eq. (A1.11) in
in the simple form

where
Tgv '=A(~o) v+4(~o) v, (A1.11)

Tgv '= ', MoI Pvv/(1-+no'rv ) j+t,4rv/(1+4ooo'rv ) jI.

~o(~o) v= Go(t) v exp (—iqooot) ctt, (A1.12)
(A1.20)

G~(t) v ——Q f(~o)'/kgj&B;, '(0)B,, '(t) )v

This equation provides an explicit example of the basic
ideas discussed in the text (Sec. 4). If we have the
qualitative dependence of ~& on the temperature,

and
X &S;,'(0) Ss; '(0) )z, (A1.13) lim rv +0, and— lim rv~+ oo,

T~+00 T~O

Go(t) v=4 Z I:(~o)'/kgj&B~P(o)B*~ '(t) )v then
lim Tgv ' (10/3)Morv 0,

x&s,, (o)s,,—(o)),.
and

We assume that the 8 correlation function has a simple
time dependence

lim Tzv ' (4/3)M (~oo' v)r' 0
T-+Q

&B,,'(o) B,,
—

(t) ),= &B,, (o)B,,—(o) ), p

(A1.15)

where 7.I is a characteristic time related to the vacancy
motion in the solid which we will discuss in detail
below; After a straightforward but considerable com-
putational effort we can show that for a powder

At both extremes of cooey, the relaxation time goes to
+~. A minimum occurs in T~ at ~or v= 0.62, i.e., when
the basic microscopic frequency, &I ', is comparable
with the "looking" frequency of the spins.

The tlmmelieg rate for nacalcy wanes The rat.e for
tunneling of a 3He particle into a neighboring vacancy
site is given by

Gr(t) =-',Mo exp ( t/rv), —(A1.16) rv ' xvgooo(V, 3). —— (A1.21)
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TABI.E lV. Parameters used in the calculation of T1 at V=20.0 cm'/mole at all temperatures. a

cm'/mole A

n' b

tv(3, 3)

half-

bandwidth
E

gD c

E MHZ
3I2

108 (rad/sec) 2

20
21
22
23
24. 7

3.51
3.56
3.62
3.67
3.76

2.03
1.84
1.69
1,55
1.32

1.1

1.5
1.7

2, 0
2.3

29
27
24
22
18

14.5
11.3
9.5
7.8
5.5

1,0
2.2

4.6
8.6

25

5.67
5. 13
4.67
4, 27
3.71

~ For the purposes of the numerical calculation which illustrate the
application of the results in Appendix A we have calculated T& at V =20.0
cm3 /mole. at all temperatures, Fig. 53. In this table we show the parameters
that were used in that calculation. We also show the half bandwidth for
vacancy waves using the undistorted single-particle v avefunctions of

Sarkissian (1969). See Fig. 30."Sarkissian (1969).
From the smooth curve on Fig. 28.

'1 From Fig. 29.
From Figs. 31 and 32.

Here xy is the concentration of vacancies, s is the
number of near neighbors, and cup( V, 3) is the frequency
for tunneling of a 3He atom into an adjacent empty
lattice site in a pure 'He crystal. In Eq. (A1.21) the
factors x&s are the probability that one of the s near
neighbors of a 'He is empty (occupied by a vacancy).
We estimate the frequency of tunneling of a 'He atom
into a vacancy

and
X12~+gT +d (A2.3)

Now the time evolution of X»*(t) is given by
+2

Xip(t) =X'(t) = Q p exp (iXpt)&; 5,,p

q=—2 i(j
)& exp (—ixpt), (A2.4)

where Hp Hz+Hr. I——t is conventional at this stage to
~p(V, 3) =$f dx4m(x)T(x)4a (x), (A122) write

where @g(x) is the wavefunction for a pHe atom at R
with a vacant lattice site at R', g~ (x) is the wave-
function for a 'He atom at E' with a vacant lattice site
at 8, and T(x) is the kinetic energy operator. The factor
of —,

' comes from the fact that the potential energy has a
similar off-diagonal matrix element but (PE)= p(EE).
The wavefunctions used to calculate &pp(V, 3) should
be slightly distorted ground-state wavefunctions. We
ignore the distortion and ca,lculate ppp(V, 3) using the
ground-state wavefunctions of Sarkissian (1969). The
results of these calculations are shown in Table IU and
on Fig. 30.

Kg~Kg )

3C2~KT

(A2. 1)

(A2.2)

A.2 Zeeman-Tunneling Relaxation

We consider the relaxation of energy from the Zeeman
system to the 'He tunneling system. The physics of this
relaxation mechanism is the same as that of the Zee-
man —vacancy wave relaxation mechanism. The energy
in the Zeeman system is coupled to the motion of the
'He particles by the dipolar interaction. In this case the
motion of the 'He particles is that due to tunneling
instead of to the presence of vacancies.

We make the identifications

exp (iXpt)BP(0) 5'(0) exp ( iXpt)—

=8p(0) exp (iXpt) 5p(0) exp ( —iXpt), (A2.5)

and use

exp (iXpt) 5'(0) exp (—iXpt) = exp (iXrt) 5'(0)

X exp ( iX&t) exp—(—i@apt). (A2.6)

The time evolution of S,jq due to JIg is well known,
exp (iXzt) 5'(0) exp ( iXzt) =5—'(0) exp ( iqu&pt). —

The curious feature of this procedure is noticed by
comparison of Eqs. (A2.5) and (A2.6) with Eq. (A1.6)
above. Above, when the motion of the 'He particles
was due to vacancies this motion was assumed to be
manifested in the time evolution of 8,;q, the spatial
part of Xd;„,I„. Here, when the motion of the 'He
particles is due to tunneling, the motion is assumed to be
manifested in the time evolution of S;j-q the spin
part of Kd;poi„. The reason for this is simple. There is a
useful pseudospin Hamiltonian which correctly de-
scribes the effect of the 'He tunneling motion. Thus that
motion can be regarded as a motion of the spin operators
only. Xo useful effective spin Hamiltonian has been
written down which describes the motion of the 'He
particles due to tunneling into vacancies. Thus in the
treatment of the vacancy problem that motion has been
taken to reside in B,,q.
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This ambiguity in the treatment of the two processes
can be resolved by returning to Eq. (A1.6) above and
writing

exp (iÃot)Bo(0) So(0) exp (—iXpt)

given by (Van Vleck, 1948):

M4 ——(p454/ItI) I Q [3B;pB,p+2A, g'(B, ( BI,—()'
j,I, lg

+2A,aAa(B, B,k—) (B,i
—Ai)+2A, aB,a(B, i —A~)']

where

= Bo(0)So(t) ~r exp L
—iqa)o(t) ], (A2.7)

X (a~I(I+1)]'+ Q [2B,t4o'[P(I+1) ' —'oI(I+1)]
I&j

+4B,~'A, a-', [oI'(I+1)'—otI (I+1)]
So(t) ~r ——exp (inert) So(0) exp (—inert). (A2.8)

Then in Eq. (A1.10) one would have the factor

+B PA g'PI'(I+1)' —-', I(I+1)]]I (A2. 13)

in which the quantities A,:I, and Bj~ are

Z B,, (o)B,,
—(o) (s,,'(o) s;,—(t) I,). (A2.9)

i(j and
A, q = ——', (1—3 cos' 0,7, ) r, I,

'

Results identical with those in Appendix A1 are
achieved by the approximation

&s,, (o)s,,—(t)
l

)=&s,,'(o)s, ,
—(o)) exp (—t/„)

(A2. 10)

where
Tzr '=A(~o)r+Io(~o)r, (A2.7)

J (o')r= G, (t)re '"' dt (A2.8)

Gr(t)r= (~o'/&z) r, B*2'(0)B*2 '(o)

X &S'~'(0) S*; '(t) ir)r, (A2 9)

Go(t) r = (4~o'/&z) 2 B~P (0)B'r'(0)

Lcf., Eq. (A0.15)].It doesn't really matter where you
put the time dependence due to the vacancy waves
unless you are going to be serious about calculating the
correlation functions.

Returning to the calculation of Zeeman —tunneling
relaxation we can follow the results in Appendix A. 1

through the steps leading to Eq. (A1.11).We have

22.796 (bcc),

and

Mo= X (10"/V') sec ' (A2. 14)
22.610 (hcp),

517.76 (bcc),
M4= X10"(I'/V') sec ' (A2. 15)

951.68 (hcp),

where V is the molar volume in cm'/mole. In evaluating
M4, the exchange interaction is assumed to exist only
between near neighbors, and only the terms of order
J' in (A2. 13) are retained. The lattice sums used to
calculate (A2. 13) and (A2. 14) do not include the effects
of the large-amplitude zero-point motion. A correct
calculation of (A1.19) and (A2. 12) would include the
expectation value of r;, ' in the sum Par;q '(t) and
would be expected to decrease Mo and M4 in (A2. 14)
and (A2. 15) by about +10% (Harris, 1971).

In order to evaluate (A2.8) and (A2.7), it is useful
to approxima, te the series in (A2.12) with a simple
function having the same Taylor series expansion for
small values of v-. Two such functions appear to be
useful, a Gaussian

B,g
———,'(1—3 cos'O, A,

.)r,.A,
. '.

The second and fourth moments have been evaluated
for bcc and hcp crystals, and are given by

X&S., (0)s„-«) i.&.. (A2. 1o)
where

G&(r)r=Mo/3 exp ( —z&ur'r'), (A2. 16a,)

So(t) = (1+iX&t+" ) So(0) (1—iX,ty ) .

(A2. 11)

Then, Eq. (A2.9) for Gr(t)r can be put in the form

Gg(r) r ——-', Mo —(M4/6) 7'+ ~ ~ ~, (A2. 12)

where M2 is the Van Vleck second moment de6ned in
Eq. (A1.19), and M4 is the Van Vleck fourth moment

The time evolution of the 5& s is given by K&. It is
conventional at this stage to expand S'(t) in Taylor
series for small t, i.e.,

(or'= M4/Mo,

and a Lorentzian (Richards, 1970)

Gz(r)r= (Mo/3) (1+cur r ), (A2.16b)

where ~r'= 2M4/M2. (If the next higher order term of
the series in (A2.12), +(Mo/72)r' were reta, ined it
would be possible to justify a prererence for one or the
other of these expressions. However, evaluation of the
sixth moment has proven too formidable a tasl~ for
anyone to attempt. We will do the calculation including

- both possibilities and compare the results of each with
the experiments. )
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Eq. (A0.15) leads to

62J2

(A2 17) rv +
00 d2

dt(h(xp(0) Anp(t) Iv)v-
/1 t2&zr '=A(~o)r+A(2~o)r

In the case of a powder of crystallites, we have that
Gs(r) =4Gs(r) so that Eq. (A2.7) becomes

Evaluation of (A2.8) then yields

A(Mp)r= (ssr) (Ms/3(dr) exp ( Ms /2Mr );
~rs= (M4/Ms) (A2. 18a)

for the Gaussian correlation function, and

A(~s)r= (s~) (M./3~r) exp I:—(~s/~r)1

cur' = M4/2Ms

for the Lorentzian correlation function. The relation
between coT and J for both correlation functions is

4.76J bcc

6.48J hcp

3 36J bcc

4 58J hcp

Gaussian

Lorentzian

(A2. 19)

(A2.20)

The imaginary component of the Fourier transform
of Gi(r) gives rise to a slight shift to the central fre-

quency of the resonant absorption and has been dis-
cussed in detail by Kubo and Tomita (1955).

K1~BCT

K2 +Kg

(A3.1)

(A3.2)

Kis-+Xv v = —fs& P ~4,4s (RR') o'a ' o'r4, (A3.3)

where hn(RR') =a(RR') —(n(RR') ), and noesis is zero
when a vacancy is at either R or R' and 1 for both R
and E' occupied by 'He atoms. To do this calculation
it is most convenient to intercept the general develop-
ment above at (A0.15) . The integrand in Eq. (A0.15) is

(Xs(0) PCis (0), LRis*(t), Ki(0) ]g)
= (~ (o)L~,(o), Lx, (0), se„*(t)]3)

or from Eq. (A3.3)

(+'&)'&'&'Z Z (~ - (0)~ - (t) I.).
X (d'/dt') (Aisis. (0)Ass (t) Ir)r, (A3.4)

A.3 Tunneling-Vacancy Wave Relaxation

We consider relaxation of energy from the 'He
tunneling system to the vacancy waves. The basic
topology is shown in Fig. 37a. We make the identifica-
tion

+»(1—x) S~„(0)a~„(t)+xsS „(t).
Using the definition of Anss and bnsv, we have

&4sss(0) =nss(0) —(n)=1—(1—zx) =zx, (A3.7a)

&4ssv(0) = 4ssv(0) —(n) = 0—(1—zx) = —(1—zx) .

&4svv(0) = ~vr (0) —(n) = —1+zx.

Now for the correlation functions involving
Aasv(t), and A4s. vv(t), we write

(A3.7b)

(A3.7c)

Anss(t),

and

(Anss(0) b4sss(t) )= (Anss(0)')fss(t), (A3.8a)

(6 (0)6 (t) )= (6 (0) ')f (t), (A3.8b)

(64svv(0)hnvv(t) )= (64svv(0)')fvv(t), (A3.8c)

where fss(t), fsv(t), and fvv(t) are time decaying
functions that have the general property that f(0) =1
and f(+~) =0. Putting Eqs. (A3.7a, 7b, 7c) and
Eqs. (A3.8a, 8b, 8c) into Eq. (A3.6) leads to

(~~p(0) ~~p(t) Iv)v= (1—x)'(»)'fss(t)

+Zx(1—x) (1—zx)'fsv(t)+x'(1 —zx)'fvv(t). (A3.9)

Keeping only the leading term in concentration, we get

(A4sp(0) ~4sp(t) Iv)v= »fsv(t) (A3.10)

The 3—V pair becomes uncorrelated after the vacancy
has taken one step, where the mean time between steps
is rv For this p.hysical process, we obtain for fsv(t)

fsv(t) =
I 1+ (t/rv) ] exp (t/rv) . (A3.11)

The time dependence (Ap(0)Ap(t) Ir)r is generated by
the tunneling Hamiltonian and we write it as

(Ap(0)Ap(t) )= (As(0) ) exp (—a&rsts) (A3.12)

Putting (A3.10, 11 and 12) into (A3.5) leads to

AJ2 00

Trv ' ——2x —(Ap'(0) ) dt 1+—
kT 0 7p

d
X exp —(t/rv) —exp ( —&vrsts). (A3.13)

dP

X (A p(0) Ap(t) Ir)r, (A3.5)

where Pp is s, sum over neighboring pairs. Now we
separate the pairs into 3—3 pairs, 3—V pairs, and VV
pall s)

Dnp(0) Anp(t) = (1—x) shnss(0) Anss(t)

where Aisis =o'ss o'R . Substituting Eq. (A3.4) into The above integral can be done in the limit u&rrv«1,
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kv= ,'Xx-v(Pp)Pp '. (A4.8)

Using Eq. (A4.8) in Eq. (A4.4) leads to

Tvz '= 1730xv(hm/m) '(rv ') (fi/rvkzzT) (T/Ozz)'.
Trv '= —(fl'J'/4) (2x/rv) Q (&'&(0) )=2x/rv

which is indeed the physically relevant limit. That is, and
the motion of the vacancies is much faster than that of
the tunneling 3He's, i.e.,

7v ' ——sa)3(V, 3)xv

for a vacancy in pure 3He. Thus we have

Trv ' 2sxvco—g—(V, 3).

(A3.15)

(A3.16)

A.4 Vacancy Wave-Phonon Relaxation

The vacancy wave —phonon relaxation process is the
same as the mass fluctuation —phonon process which is
discussed at length in Part 6 of this Appendix. In this
case, the mass fluctuation associated with the vacancy
motion is hm~= —A&3. Thus we may carry over most of
the early results of Part 6 upon making the correspond-
ence

(A4.1)

(A4.2)

(A3.14)

The time ry called for to evaluate this equation is the
time required for a vacancy to tunnel away from its
lattice site. This time is

(A4.9)

(Tz~v) '= 2sx4zd4(3, 3), (A5, 1)

where co4(3, 3) is the tunneling frequency for a 3-4 pair
in pure 'He, and x4 is the concentration of 4He atoms.

A.6 Mass Fluctuation Wave-Phonon Relaxation

To do this calculation most easily within the frame-
work discussed above, it is convenient to consider the
rate at which energy is transferred from the phonons to
the mass fluctuations. In the experimental observation
of this process it goes in the opposite direction. We make
the identification

A.S Tunneling-Mass Fluctuation Wave Relaxation

This relaxation process is exactly the same as the
tunneling —vacancy relaxation process. In this case, the
4He particle motion through the lattice accomplishes
the same relaxation that the vacancy did above in
Part 3. We may take our Eq. (A3.16) in the form

Xyg~Kpv= s P Amzzuzz .
B

(A4.3)

We may take over Eq. (A6.18) in the form

Tvz '=kv '2600xv(&m/m)'(6/rv)'(kzzT/fz) (T/ozz)',

and

Kz—+Xp ——Q kd(q) (X,+-', ),

2~MF )

Kzg=BCz gzv= ~ Q Dmzzuzz,

(A6.1)

(A6.2)

(A6.3)

(A4.4)

where xv= exp( —pp), rv '=s~3(V, 3), and Dm/m=
—1. We have taken the mass fluctuation correlation
function for vacancy motion to ha, ve a Gaussian time
dependence with characteristic time 7~. At this point
our picture of the vacancy —phonon coupling begins to
differ from that of the 4He —phonon coupling. We
ima, gine here that at t=o, the vacancies and phonons
are at the same temperature; the number of vacancies
present is

xv(pp) exp( pp t') ~ (A4.5)

The vacancy system is heated to T&& TI by a mech-
anism which changes the energy per vacancy, but leaves
the number of vacancies unchanged. Thus we have

Lv Xxv (Tz ) (y+ 2kzzTv)——, (A4.6)

where we take kzzTv((2sfico3(V, 3), the vacancy band-
width, about 6 K. The vacancies behave like classical
particles. It is the energy 23kzz(Tv —Tz) that must be
dumped into the lattice by Kzz. Thus we have

dEv/dt= (d/dPv)Zv= 21ttxv(Pz)Pv 'Pv (—A4.7)

where Amg=m~ —m~. In terms of the phonon co-
ordinates u& is given by

uzz ———i P [fi~(k)/2m3iV]'t'e(k)

X [az exp(+ik R) —aq+ exp (—ik R) ] (A6.4)

and p(0) of Eq. (A0.16) is given by

p(0) = -', Q Amzz Q lz,co(q) [a,+a„uzz']. (A6.5)

Upon using Eq. (A6.4) and the phonon commutation
relations we find four contributions to the commutator.
These are

p(0) = -', P hmzzC(kk')

X I exp[i(k —k') R][6(g(k) —6~(k') ]az+al„.

—exp [—i(k+k') R][5(o(k) +fia)(k') ]az+az, +

+ exp [—(k+k') R][64&(k)+h~(k') ]azaz,

+ exp [—(k—k') R][Are(k) —A,(o(k') ]az,+az, I,

(A6.6)
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where

C(kk') = IAL(o(k)a)(k') 7'"/2m3X}e(k) e(k').

(A6.7)

we have

Tpjwt '= (rr'i'/fPk~) x4 P A (kk') r,, exp L
—

4 (co» r,)'j.
kk~

(A6.15)
We neglect the second and third terms (they correspond
to a 2 phonon direct transition), and combine the first
and fourth terms (they are Ramanlike terms). Thus
we have

To do the sums on k and k', we use the following
approximations:

(a) The phonon frequencies are assumed to be polari-
zation independent; A~&, (k) =fia&(k). Then, the polari-
zation sums yield gi, 4,ez(k) ei, (k') = 1.

(b) The acoustic approximation is made 4d(k) =
cfkf.

(c) The sums on k and k' go to integrals with the
replacement gk~LV/(24r) '7f dk, and the integral over
k' is converted to an integral on E through the trans-
formation k =k'+K.

(d) The occupation numbers for the states k and k'
are

p(t) =-,'P am, (t) I~~ Z C(kk') ar ~(k) —~(k') 3
R kk4'

X I exp —f(k—k') R+i(4d(k) —4d(k') t3+C.C) ai+ai,

(A6.8)

where hei�(t) f~~, the time evolution of the mass at R
due to the mass fluctuation waves, is the noise ampli-
tude for this process. So we write

(P(0)P(t) )—P (44mii(0) Am„(t) f~~)~p(p„(0) pp(t) )i
(n&+1) = exp (x&)/f exp (xi,.) —1]

ni rr= Lexp (xg) —1$ '+e(E),(A6.9)
where

where xq ——Phck. We approximate (ni, +1)n4 by

(ni, +1)ni, ——exp (x,)/Lexp (x~) —1j'.6.(0)p. (t) )= Z ~(kk')
kk~

X f exp f i(k —k') (R—R') $ exp (—i&d» t)+C.C. The combination of steps (a) —(d) leads to

+ exp fi(k —k') (R+R') j exp (+i&a» t)+C.C.}, Z ~(kk )r exp
f

4(~»'r')'3

and

(A6.10)

A(kk') = ——,'C(kk')'(5(o» )'(np+1)ni, , (A6.11)

(o» =(v(k) —4d(k').

= —924r'~'( V/24r') (f'i'c4/m'N') (r,/h') (ke T/hc) '

(A6.16)

where h=cr„so that Eq. (A6.15) becomes

Tr,irr '= —( 2587 /ki) x4(hm/m)'

For a random distribution of the 'He impurities, we
have

Q (dmin(0) mr4 (t) ~pr~)MF exp f +i(k—k') ~ (R—R') ]
= P (Amii(0) Amii(t) f4rp)i4&~, (A6.13a)

g (2mp(0) Dmii (t) f44+)44+ exp Li(k —k') ~ (R+R') j

X (5/r. ) '(kri T/fi) (T/Hn) ', (A6.17)

where fiery kiOD, and X——=
f V/(2m)')44rqD'. To find

the rate at which energy is transferred from the mass
fluctuation system to the phonons, we use Eq. (A0.22),

Tnrzp '= TrMz (kr/tv)
= —k44~ '2600x(hm/m)'(fi/r, ) (kiiT/5)(T/0D)'.

(A6.18)
= p (Amii(0) Am14(t) fi44F)~& exp f i2R(k k') )=0—. F k h l f E (D16)7

(A6.13b) FjfFk~'pP (x4) (—,'') (s') [ficu4(3, 3) 7'P. (A6.19)

Ti4ri p '=1500(h mm/)'(keT/'k) (T/en)' (A6.20)

We assume the correlation function for hmg in Eq. I'hus for z
(A6.13a) to have a Gaussian time dependence for
purposes of computational ease. We write

g (&mii(0) &mii(t) fMF)err x4hm' exp —(t/r. )', ——

(A6.14)

where r, '=su&4(3, 3) cu4(3, 3) is the 'He —'He tunneling
time and x4 is the concentration of 4He impurities. Thus

A. '7 Relaxation Topologies

There are seven distinct topologies for the energy
baths which are involved in the relaxation processes in
solid 'He. Five of these topologies are associated with
relaxation in pure 3He, and two additional topologies are
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where
Tl ~012 T12 Lkl/(kl+kp) ]& (A7.2)

k„=dE„/dp (A7.3)

and 8„ is the energy of the n-system. We will call this
time the topological relaxation time to contrast it with
the intrinsic relaxation time defined above. This result
is achieved by writing equations of motion for the
temperatures of the three systems; i.e.

pp Tpl (pp pl) &

pi=+ (a/Tm) (po —pi) —T12 '(pi —p2), (A7 &)

P2= (b/T21) (Pi—P2) (A7.6)

We consider the following cases:

(A) T12—&+ 00; energy conservation between 0
and 1 implies

kppo+klpi —0 or a= kp/kl.

(8) Tol—4+ 00; energy conserva, tion between 1
and 2 implies

klpl+kop2=0 or b=kl/k2

(C) For Tpl&&T12 we can assume that 0 and 1 come
to a common temperature quickly. We use Eq. (A7.4)
in Eq. (A7.5) to write

Pl+ (kp/kl) Pp T12 (Pl P2) ~

Now since systems 0 and 1 are in equilibrium in a time
fast compared to T12, we have pp ——pl and pp= pl or

Pl Pl/(kl+kp) ]T12 (Pl P2) ~

3. When energy relaxes from the 0-system to the
1-system to the 2-system the observed long time is the
longer of the two times associated with the two possible

associated with relaxation in dilute mixtures of He in
'He. In this part we will work out the formula for the
experimentally observed long time in each of the
topologies. The intrinsic relaxation times which enter
into these formulae have been derived in detail in
Parts 1—6 above.

We begin by stating the general results which are
consequences of topology:

(1) When energy relaxes from the 1-system to the
2-system (which remains at the reservoir temperature),
the imtrins~c rel'axatioe tinge for the relaxation of energy
via the 1—2 linkage is defined by the equation

Pl T12 (Pl P2) p

where Pl is the inverse temperature of the 1-system,
and p2 ——pn, is the inverse temperature of the reservoir,
See Fig. 52.

2. When energy relaxes from the combined 0, 1-
system to the 2-system through the 1—2 linkage (see
Fig. 52), the observed relaxation time is given by

topologies, i.e., the longer of

or
Ti ~012 T12 pl/(ki+kp) ].

Jt/I& ——3&( 10' sec (A7.9)

Here M2 has the dimensions [T 'j; it is essentially the
square of the precession frequency of a nuclear moment
in the dipolar field of its neighbors. Define

ops= t'4 'tlHio. ~t'1 '442(z/&2) =3X 104 sec ' (A7.10)

where p = nuclear magnetic moment, s= 8, and
3.5X10 cm. The microscopic time in Eq. (A7.8), r~,
is given by Eq. (A1.21)

rl '= xi solo(V, 3) =6X10"exp P—14.5/T j sec ',

(A7.11)

where we have taken p from Fig. 29. The T~ minimum
occurs at T such that (opv'y 1 or at T,„;„=1.32 K for
Zeeman frequencies near 1 MHZ. Note that the mini-
mum is mildly frequency dependent. At T= T
g(rt) 1, and we find

Tl '(T;„)~zr M2/(vp 5/f sec ' (A7.12)

for the topology in Fig. 52b. We make this observation
to stress that the decision about long times and short
times cannot be made without consideration of the
relevant topologies. It is inappropriate in comparing
0—1 and 0, 1—2 to consider only the comparison of Tp&

with Tg2.

In Table V, we list the seven topologies of interest
and the appropriate intrinsic time and topological time
for each. We denote the intrinsic time associated with
each topology by the labeling above. We denote the
various topologies by the letter sequence in Column (b) .
The bar in the letter sequence indicates where the long
time occurs. In Row E, where the energy Row is Z—+T~
V~P, the long time is due to the vacancy wave —phonon
link, ZTV—P.

We complete this Appendix by writing out analytic
formulas for the seven topological times of interest.
We do this at V= 20.Oem'/mole and attempt to indicate
(at least for this molar volume) the relative size of each
of the seven times over the temperature range of experi-
mental interest.

Topology Z VP; Zee—man Vaca—ncy Relaxation. The
intrinsic time is given by Eq. (A1.20)

Tzv '= 2(M2/olo) g(lt),
where

g(rt) =rt/(1+rt')+4[~/(1+4rt') j, (A7 g)

and rt= poorer. The topological time is equal to the intrinsic
time. We do the ca, lculations in terms of f defined by
opo= 22rX10 f; pf is the Zeeman frequency in megaHertz
(MHz). For M2 from Eq. (A1.19) we have
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TABLE V. Topologies. For each of the topologies discussed in Appendix A. 7 we show the topological diagram (a), notation ib), intrinsic
time I,'c), and topological time (d).

Topology Notation
Intrinsic

relaxation rate Observable relaxation rate

Z—UP ~'& '
Izv= &zv '

ZU-P ~VP &i 'lvr=L&v/(&z+&v) 7&'vp '

Z-T UP &i 'Izr=&zr '

1TV 7'i ' Irv = Br/(&z+&r) ]~rv '

QZ
~7'

~VP
I vp Lkv/ (4+ter+ kv) ]~vp

fMF's QP

Lz T ~MFI

Z'1—M FP 1TMF

~MFP

71 IrMF L&rl (&z+&r) 7&roker

7) 'I Mvp L~MF/(&z+&r+&~v) 3&vvp

At T&T;, coory«1, Tj is frequency independent,
and given by

Ty '(T))T; ) = (10/3)Miry ——10 ' exp (14.5/T).

(A7.13)

At T&T„„„,co07-g&)1, Tj ' is frequency dependent, and
given by

Tv—'(T((T„„„)= —,(Mo/(uo'ry)

= (10'/f') exp (—14.5/T). (A7.14)

Topology Z TVP; Zeenian Tunne—ling —Relaxation
The intrinsic time is given by Eq. (A2. 17)

Tzr '( f—&0) = 80 sec '.

For f~+ oo, we have

(A7.18)

Tzr—'(f ++oo) =16 ex—p (—f'/18) sec '. (A7.19)

At f=1, we have Ti 0.012 sec. At f=7, we ha, ve Ti
1.0 sec.

Topology ZT VP; Tnnnehn-g Vacancy —Relaxation.
The intrinsic time is given by Eq. (A3.16)

This relaxation time is temperature independent, since
the time characterizing the microscopic motion is
temperature independent. It is highly frequency de-
pendent. For f~0, we have

where

and

Tzr ' ——[(2ir) '"/3](Mo/(or) h(x), (A7. 15)

h(x) = exp (——,'x')+4 exp (—2x') (A7.16)

x= ohio/oor and ~r ——4.76J.

Try ' ——2zxyooy(3, 3), (A7.20)

where coy(3, 3) is discussed in Part 2 above and in
Sec. 4. The topological time is given in Table U as

Ti ' iry=[kr/(kr+kz)]Try ', (A7.21)

The topological time is equal to the intrinsic time. As
above we do the calculations in terms of ooo ——2irX10of.
The value of M& is given by Eq. (A7.9). At V=20.0
cmo/mole, the exchange frequency, J, is about 0.5 MHz.
Thus we write x=cvo/oir=f/4. 8. For Eq. (A7.15) we
have

Tzr '= 16[exp—( f'/18)+4 exp —( f'/4 5)]sec '. .

(A7. 17)

where kz and kg are given in Appendix D. Using Eqs.
(D4, 8) for kr and kz, we have

Tz try= [1+i o(~o/J) ] "2xvzoov(3, 3). (A7 22)

For coo= 2irX10'f and J 0.5 MHz, we have

Tr ' ~ry= [1/(1+-,'f') ]2xyzooy(3, 3). (A7.23)

Using the numbers from Sec. 4, we 6nd

Ti '
~ry ——[10' /(1+ io f )]exp (—14.5/T). (A7.24)
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xv(kaT/A) (1 MHz), i.e., at T(0.6K.

This topology (ZTV-P) for relaxation is competitive
with topology ZT—VP for which the long time is given
by Eq. (A7.24) . Equa, ting these two times we have

(A7.30)

down to T=0.2K,
Topology ZT MFP; Tunneling —'IIe Relaxation—The.

intrinsic time is given by Eq. (A5.1)

TrMp '= 2sx4(o4(3, 3).

The topological time from Table V is

Tl Imp 9r/(kz+kr) ]TrMp y (A7.32)

where kz and k& are given in Appendix D. From Eqs.
(D4.8) with the replacements J 0.5 MHz and coo=

This relaxation time is frequency dependent for f) 2,
and is very strongly temperature dependent.

Topology ZTV P;—Vacancy P—honon Relaxation T.he
intrinsic time is given by Eq. (A4.4)

T —'=k '2600x (hm/m)'(fi/ v)'(k T/5, ) (T/8)',

(A7.25)

where rv ' sco——v(3, 3). For the topological time we
have from Table V

Ti ' ~vp=Pv/(kz+kr+kv)]Tvp ',

where kz, kz, and k~ are found in Appendix D. Using
Eqs. (D4, 8, 12) for kz, kr, and kv we have

Tg ' ~vp=2600xv(kaT/A) (T/tt)o

X (a~o'+3J'+-o~Rv) '(1/r v') (A7.26)

where ~n&o~ kaT. We ——have rv '=scov(3, 3) which per-
mits us to write

Tg
—' ivp ——2600xv(kaT/6) (T/9)'

X{s'~v(3, 3) /(-' co'o+ 3J'+ oco'xv)]. -(A7.27)

Certainly the values of ~0 and J of interest are in the
vicinity of i MHz. In the denominator of the topological
factor in Eq. (A7.27), we ignore the term proportional
to x~. At low temperatures, we have

Ty '(T&(1.0) ivp= 104xv(kzT/A) (T/8) '

X{{s(uv(3,3)]'/( coo+12 J) }. (A7.28)

For a&o/2n =J/2n = 1 MHz, we have

T (T(&1.0 K) ivp= 8X10"T'exp( —14.5/T).

(A7.29)

Ke take the transition to this low-temperature behavior
to occur at T such that

Tx ' ~orpp=5X10'x4T { 1/(1+of')]. (A7.39)

This topology is competitive with topology ZT-MFP.
The two topologies give equally long times at T deter-
mined by equating Eq. (A7.33) with Eq. (A7.39), i.e.,
at

2s~4(3, 3) = 5X10'T" (A7.40)

or for ~4(3, 3) =J=2rrX10o at T 2'K. Thus at all
temperatures of relevance the long time in the topology
ZT3fF-P is much longer than the long time in the
topology ZT-MIi P.

Topology ZTMF—P is also competitive with topology
ZT VP. We equate E—q. (A7.24) with Eq. (A7.39),
and find

5 X 10'T'x4= 10"exp —(14 5/T) . (A7.41):

For x4= i0 ', the topologies give equally long times at
Tm0.5K.

The notation used throughout this work is sum-
marized in Table VI and VII.

The results of the numerical calculations in this
Appendix are plotted in Fig. 53 of the text. On that
figure representative data is also plotted. Recall that
we have used no parameters in the theoretical expres-
sions for the various times; (we have used J, en, and g

2n. X10fowe have

T~ ' l~~p= E1/(1+ f')]2sx~4(3 3) (A7 33)

This topology is competitive with the 'He-vacancy
topology (ZT VP—) at T, and x4 determined by equat-
ing Eq. (A7.24) and Eq. (A7.33), i.e., at

2sxco4(3, 3) = 10"exp —(14.5/T) . (A7.34)

For ~4(3, 3) J= 2n X10o, we have

x4 exp (14.5/T) = 10.3. (A7.35)

At x4=10, the transition from topology ZT—VP to
topology ZT—MFP occurs at T=0.7K; at x4——10 '
(10ppm) it occurs at T= 0.8K, at x4 ——10 o (1000 ppm)
it occurs at T= iK.

Topology ZTLjrlF P; 3Eas—s Fluctuation Wane Pkono—n
The intrinsic time is given by Eq. (A6.20)

T~pp '= 1500(dm/m) o(koT/5) (T/8) o. (A7.36)

The topological time from Table V is

Tg '
~orpp ——+pep/(kz+kr+kprp) ]Tprpp ', (A7.37)

where kz, k~, and k~g are given in Appendix D. Using
Eqs. (D4, 8, 16) for kz, kr, and k~p, we may write the
topological factor as

-'s-s((u4(3, 3)'/{-r'—,(oo'+J'+ —',4sx4{ co4(3, 3)]'}). (A7.38)

For oo4(3, 3) J and x4 small enough that the x4 term in
the denominator doesn't matter, again at 20.0 cmo/mole,
we have
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Dz(3, 3)

D&(V, 3)

Dz(V, 4)

D, (3, 3)

D3(V, 3)
Ds(V, 4)
D (3, 3)

D3(4, 4)

Dy(3, 3)

TABLE VI. Diffusion constants.

Diffusion of magnetization due to 'He tunneling in
a 3He medium

Diffusion of magnetization due to the presence of
vacancies in a 'He medium

Diffusion of magnetization due to the presence of
vacancies in a 4He rich medium

Diffusion of energy in the tunneling system due to
3He-'He tunneling

Diffusion of 'He due to vacancies in a 'He medium
Diffusion of 'He due to vacancies in a 4He medium
Diffusion of a 4He (mass fluctuation wave) in a 'He

medium
Diffusion of a 'He (mass fluctuation wave) in a 'He

medium

=D&(U, 3)

temperature approximation, P, (t)K.«1. We define Ts
to be related to the rate of change of n(t), thus

dl: (t)]/dt= T—'
lz~ (t) (».6)

Now we find T2 in terms of the coupling of Z to 1
through Kz by computing (d/dt) (Ii) in direct analogy
to the steps leading to Eq. (A0.16). We make the
replacement

BCI~Kg )

K2 +%1)

12~Z1 d.
Then, analogous to Eq. (AO.S), we have

2 00

(I,)= — Re dt'(I, [Kzg (t), [Kz *(t'), (r*(t)]]).
0

(81.7)
from experiment) . The agreement between theory and
experiment is truly remarkable.

APPENDIX B: EQUILIBRIUM TIMES; T, THE
10/3 EFFECTR ETC.

B.I T2

Consider the Zeeman system established by H0 and
weakly coupled to the 1-system, a system of excitations
described by H1. Suppose that in the plane perpen-
dicular to the s axis, the magnetization has a com-
ponent

IJ(t) =I cos pppt+I. & sin cop.

For o*(t), we take o*(t) =[1 n(t)cppI )o (P )o't(Pt),
where o.„(P)= exp ( —P„K„).Thus Eq. (81.7) becomes

2
2 OQ

(I.)= —tppn(t) — Re dt'
6 0

X (I*[Kzr*(t),[Kzt*(t'), I.]]). (81.8)

Combining Eqs. (81.5, 6, g) leads to

1

62

= exp (—K,t)I, exp (iK,t) (81 1) X Re dt'(I*[Kzs*(t), [Kz](t'), I,)])
0

which is along the x axis at t= O. To prepare the system
at t=0 so that it has this nonvanishing J magnetiza-
tion, we write

(r (t) = o p (t) o-t

= exp {—[P,(t)K,—n(t)cppIJ]} exp (—PtK$),

(81.9)

Of course this equation is recognized as being one which

TABLE VII. I'undamental Parameters and tunneling frequencies.

o*(t) = exp (iK,t)o.(t) exp ( —iK,t). (81.4)

For n(t) cppIi«1, we have

(I.)= —n (t) ppp Tr I.'/Tr 1, (81.5)

where we have used Trace o*(t)~1, and the high-

(81.2)

where o.p(t) has been arranged to describe the z com-
ponent of the magnetization through P, (t) K, and the

component through n(t)tppIs The functi. on n(t)
describes the time evolution of (Ii).To see this we look
at (Ii), where

(Ii)= Tr Ii(t)o (t)/Tr o.(t) = Tr I,&r*(t)/Tr o.*(t),

(81.3)
where

HD

J

, (V, 3)

cv3(U, 4)

cu3(U, M)

cu3(4, 3)
~3(4 4)
(u3(4, M)
co3(3, 3)
co3(3, 4)
~3(3, u)
~v(3, 3) 3=~3(l', 3) 3
cvI. (4, 4) I =A)4(V, 4) j

Debye temperature
Vacancy excitation temperature
t;he 3—3 pair tunneling rate, exchange

frequency
Tunneling frequency for 'He in 'He due to

vacancies
Tunneling frequency for 'He in 4He due to

vacancies
Tunneling frequency for 'He in a non-

dilute mixture, M, due to vacancies
Tunneling of a 3—4 pair in 'He
Tunneling of a 3—4 pair in 4He

Tunneling of a 3—4 pair in a mixture, M
Tunneling of a 3—3 pair in 'He
Tunneling of a 3—3 pair in 4He

Tunneling of a 3—3 pair in a mixture, 3/I

Tunneling of a vacancy in 'He
Tunneling of a vacancy in 4He
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j(r) = [I., Xzg(r)

Z ZB„( S '(0) exp ( iqcopr). —
q=—2 i(g
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the details of the calculation we obtain

~zv= p (Mp/~p)

X ($ ii+ —
p[ ii/(1+rP) j+[ii/(1+4 (r)Pj} (81.12)

ponents of the spectral function in (81.11)

G, (r)e ' '(ir (81.13)

where g =orory.

T~, Zeemae —TNeeetieg. The coupled Zeeman —tunnel-
ing systems are described by Eqs. (A2. 1, 2, 3). Using
these Hamiltonians in the calculation of T2 and the
Gaussian approximation for the tunneling correlation
function leads to

T; Izr = [(2~) '&'/33(M, /~, )

X (2+-: exp L
—

p (~p/~r) '3+ exp L
—2(~p/~r) '3].

(81.13)

To get an idea of the numbers involved here, we
calculate Tp at V=20.0 cmP/mole in the (pp—+0 limit;
see the end of Appendix A. We have

[Tp((d,~0)j '
Ized= (10/3)Mp«=[Ti((pp=0)] ' I«

~10 ' exp (14.5/T) sec '
RI1d

When the powder assumption is used, the total shift,
5w, is calculated to be given by

(81.14)

In the case of tunneling motion and the Gaussian
approximation, the shift is given by (Kubo and Tomita,
1955)

where

+2 exp (
—

) ( ( -), (H1.15)

ka= Im [exp (—i(ppr)Gi(r)+2 exp (—21(ppr)Gi(r)] dr.

[Tp((pp~0) 3 ' lzr= (1o/3) (pz)"'(Mp/(pr) exp (-',x') dx. (81.16)

= [Ti((pp~0) ] ' = 80 sec

The Zeeman —tunneling process takes over from the
Zeeman —vacancy process at T= 1.3K for &0~0.

8.2 10/3 Effect and Nonadiabatic Frequency Shift

The discussion of T2 up to now considered only the
real part of the Fourier components of the correlation
function in Eq. (81.10). The real part taken in Eq.
(81.10) gives the broadening of the spectral line in a cw
experiment. We note that in the limit of large fre-
quencies (pp/(pr))1 the terms in exp —((pp/(pr)' in Eq.
(81.12)~0, and T&

' reaches a, high-frequency limiting
value which is three-tenths of the low-frequency value
so that

1/Tp[((pp/(pr)))1j= (-,'~) '"(Mp/(pr)

=(3/1o)LT ( o 0)3 '.

An identical result is obtained in Eq. (81.11) in the
limit co&r&))1. The physical interpretation of this is that
the spectral linewidth becomes narrower by a ratio of
10/3 when the characteristic frequency of the higher-
order terms in ~zi*(r) (for which q&0) at (p=(pi&a(pp
are no longer coupled by the motion to the resonance
line at co=coo. An accompanying conjugate physical
process is a small shift in the position of the center of
the resonance line. This shift has a maximum displace-
ment from the line center, coo, in the high- and low-field
limits, when the motional frequency and precession
frequency are comparable. This effect may be calculated
by considering the contribution of the imaginary com-

The shift has its maximum value when cop Goy' and has
the approximate value Tp ' ra, d/sec.

APPENDIX C: DIFFUSION

C.I Introduction

Suppose the components of the magnetization satisfy
the macroscopic equations

M, = DzV'M, +yHp(z) M„—(M,/Tp), (C1.1)

iV, = DzV'M, —yHp(z) M, (M„/Tp), (C1.2)—

M, = DzV'M, Tz& '[M., M,—(P&) j, (C1—.3)

where Hp(x) =Hp+Gs is the magnetic field along the
s axis; it is made up of a constant field, IIO, and a Geld
gradient pointing in the s direction and proportional to
x; see Fig. 5. In the equation of motion for 3f and M~,
there is a decay term representing the intrinsic T2
process acting among the spins, Mg returns to zero after
a 90 pulse in time T2. In the equation of motion for M„
there is a decay term representing the intrinsic T~
process acting on the spins. This decay process returns
M, to the value it has when in equilibrium at tempera-
ture Ps ', M, (PE). In each of these equations of motion
there is a diffusion term, DzV' M„, which incorporates
the spin diffusion process into the description of the
magnetization; it is characterized by the magnetization
diffusion coefficient, Dz.

The pulse sequence which is used in a typical diffusion
experiment (90 —180 ) looks at Mi. From Eqs.
(C1.1, 2, 3) we see that Mi and Mz move independ-
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ently. It is clear that a diffusion experiment carried out
in this way measures the motion of Mi and thus the
magnetization diffusion coefficient. But a diffusion
experiment which looks at the motion of M, measures
the energy diffusion. Because of the coupling of M,
through 3Cd to the various. excitation systems in the
solid, manifested in the Tl term in Eq. (C1.3), the
diffusion of energy can be quite complicated. We discuss
energy diffusion and magnetization diffusion in detail
in this Appendix. We want here to emphasize that there
are two diffusion constants, the magnetization diffusion
constant which is seen by looking at M~, and the energy
diffusion constant which is seen by looking at M, .

Dz, Magnetization Digusiort. Let us return to Eqs.
(C1.1, 2, 3). We may use mA=M, +iM„ to combine
Eqs. (C1.1) and C1.2) in the form (Abragam, 1961)

(ctmA/ctt) = yHp(O", ) mA (mA/—Tp) +D,V'mA. (C1.4)

The external field is a function of x so we write

mA(x, t) =m*(x, t) exp (itopt) exp ( t/Ts) —(C1.5)

and find that m* satisfies the equation

8m*/Itt = (—yG) xm*+ D,Vsm*. (C1.6)

If we ignore the diffusion term we have

Thus we have

and
itm„/Itt = D(yGt) 'mo (C1.13)

m„(t) ~ exp P—(Dy'G'ts/3) j. (C1.14)

We have repeated the above calculation, Eqs. (C1.4—
C1.10) in this way to emphasize the source of the
dependence of the decay of transverse magnetization
on t and |".As I, increases, the magnetization gradient
which drives the spins increases, V'm„= yGtns„. It is the
time dependence of the gradient that appears in Eq.
(C1.10) and leads to t' in the decay process.

Dz,' Energy Digusi ort. Consider the equation of
motion for M„Eq. (C1.3) . M, is not coupled to MA, but
through the T~ term M, is coupled to the particle motion
excitations in the system. Since, M, ~pz, we write
Eq. (C1.1) in the form

ponent to the magnetization builds up as x and 3 in-
crease, so that

M„~ cos (yGxt) (C1.11)

and the gradient which drives the magnetization in-
creases,

V'm„= (d'/dx') m„= D(yGt)'m„. (C1.12)

m*(x, t) =A exp (—iyG xt). (C1.7) Pz=+DzV'Pz —Tzl '(Pz Pi) . —(C1.15)
By assuming that the diffusion term can be accounted
for by making A depend upon t and substituting Eq,
(C1.7) into Eq. (C1.6), we find

I)PA (t) j//Bt = ADy'G't'. — (C1.8)

Thus A(t) =A(0) exp ( Dp G't /3) an—d Eq. (C1.7)
becomes

m*(x, t) =A(0) exp ( iG xt—) exp (——I,Dy'G'ts).

(C1.9)

Combining Eq. (C1.9) with Eq. (C1.5) leads to

mA(x, t) = A (0) exp [—iyHp(x) tj
X exp 5 (t/T&) j exp 5—(Dy'G'ts/3) 1. (C1.10)

The transverse magnetization given by Eq. (C1.10)
at x and time t: (1) precesses at the local Larmor fre-
quency, pop(x) = yHp(x) ' (2) is damped by tile palticle
motion coupling to mi through 3Cd as manifested in T~,
and (3) is damped by the spin diffusion which carries
particles in the external field gradient. It is the last
term, (3), which we want to understand. Assume that
the external field gradient is along the x axis, Hp(x), =
Hp+gx. Then, in the absence of the diffusion process,
the spins at z=+a precess more rapidly than those at
s= —u by hen=2&Ga. An x-dependent gradient in the
transverse magnetization builds up, and when D is
turned on the particles are driven in the x direction by
the gradient. See Fig. 5. As time evolves, the y com-

The second term in this equation couples Pg to the
temperature of the 1-system. The particle motion
excitations that constitute the 1-system can diffuse.
Thus Pl obeys the equation of motion

Pl= DIV Pl+ Tlz (kz/kl) (Pz Pl) . (C1.16)

We look at the solution of Eqs. (C1.15) and (C1.16)
when Tzj—+0. In this circumstance, the Zeeman system
and the 1-system come rapidly to mutual equilibrium,
Pl ——Pz. Using Eq. (C1.16) in Eq. (C1.15), we have

Pz+ (kl/kg) Pi= DzV'Pz+ (kl/kz) V'Pi. (C1.17)

But since Pi=Pz and PI= Pz, we find

Pz= P(kzDZ+kIDI)/(kz+kl) jV'Pz. (C1.18)

Thus the s component of the magnetization diffuses in
space with a diRusion constant D~, called the energy
digusiort cortstartt, given by

Dz (kgDz+klD, )/(kz+k, )——. (C1.19)

This result is easily understood. The energy in the
system is transferred rapidly from the Zeeman system
to the 1-system by Tz& '. Thus the energy spends the
fraction of its time kz/(kz+kl) in the Zeeman system
where it moves with diffusion constant Dz and the
fraction of its time kl/(kz+kl) in the 1-system where
it moves with diffusion constant Dj.
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C.2 DiSusion Constants

There are three particle motion excitations in solid
'He which can carry energy by diffusive motion. These
are the 'He atoms, the vacancy waves, and the mass
Quctuation waves. Here we estimate the diffusion
constant for each of these excitations and discuss the
dependence of the rate of energy diffusion on the to-
pology of the energy baths.

Dz(3, 3); Magnetzzation Diffusion due to Tunneling.
The diffusion constant for magnetization, Dz, appears
in both the motion of Mi and M, . Dz is given by

Dz (3, 3) =Az(3, 3) LVJ, (C1.20)

where 6 is the near neighbor distance, J is the tunneling
frequency, and Az(3, 3) is a constant of order 1. A
calculation of Dz from first principles requires first
that a formal expression for Dz be obtained. This is
accomplished by placing the system in an external field
and computing the response of the magnetization to
the field. The magnetization diffusion constant has
been calculated by several workers (Redfield and Yu,
1968, 1969). The results of these calculations are all
similar and give

Az(3, 3) =4 2/2zr. (C1.21)

Dz(V, 3); Magnetzzation Diffusion due to Vacancies.
At high temperature, the motion of a 'He particle
through the medium it is in is due to the presence of
vacancies as near neighbors of the particle. The diffu-
sion constant is

Dz(V, 3) =Az(V, 3) LVco3(V, 3), (C1.22)

where co3(V, 3) is the rate at which a 'He particle
tunnels into a neighboring vacancy site in a 'He
medium. For a 'He particle in a 4He medium, we have

Dz(V, 4) =Az(V, 4) LVco3(U, 4). (C1.23)

The constants Az(V, 3) and Az(V, 4) are of order 1.
Dr(3, 3); Energy Dzffusion due to Tunneling The.

magnetization diffuses with magnetization diffusion
constant Dz in response to an external field perturbation
because of the tunneling motion of the particles. The
energy in the tunneling system also diffuses because of
the tunneling motion of the particles. Ke define the
tunneling diffusion constant to be the diffusion constant
that measures the response of the energy of the tunnel-
ing system to an external perturbation. The tunneling
diffusion constant is

Dz (3, 3) = Az (3 3)631 (C1.24)

where Az (3, 3) is of order 1. Redfield and Yu (1968,
1969) have calculated Az(3, 3) and found Az (3, 3)—
Az(3, 3).Thus we have Dz Dz. This theoretical result
disagrees with the results of two experiments. See the
discussion in Sec. 6.

Dv(3, 3) and Dv(4, 4); Diffusion of Vacancies A.

suitable linear combination of vacancy waves will
describe a localized propagating vacancy state. If this
localized vacancy is in solid 4He, it sees the medium it
is in as an inert background. It interacts only with
other localized vacancies. The mean free path for
vacancy —vacancy scattering is

7 vv= V/o*v, (C1.25)

Sv ——cov(4, 4) 6, (C1.27)

where a&v(4, 4) is the frequency for tunneling of the 4He
neighbor of a vacancy site into the vacancy site. Using
V/X=LE, o~LP and Eqs. (C1.25, 26, 27), we have

Dv(4~ 4)~A v(4~ 4) LZP~v(4, 4)/xv]. (C1 28)

If the localized vacancy is in solid 'He, it does not see
the medium it is in as an inert background. The
vacancy in moving through the 3He medium must dis-
arrange the spins. It has a diffusion constant given by

Dv(3, 3) = A v(3, 3) &zarv(3, 3) (C1 29)

The physical situation is exactly analogous to that of a
hole in a magnetic insulator. This latter problem has
been dealt with by Brinkman and Rice (1970).

Note Dv(4, 4) and Dv(3, 3) differ by orders of
magnitude. The vacancy diffusion coe%cients Dv(3, 3)
and Dv(4, 4) are not directly observable in NMR
experiments. Such experiments see the motion of 'He
atoms. These diffusion constants are observable in a
light scattering experiment.

D4(3, 3) and D3(4, 4); DQfusio&z of Mass Fluctuation
5"aves. For a 4He particle in a 'He medium, the diffusion
constant is

D4(3, 3) = A4 (3, 3) PPcv4(3, 3) /x37, (C1.30)

where ~4(3, 3) is the rate of tunneling of a 3, 4 pair in a
'He medium. For a 3He particle in a 4He medium, the
diffusion constant is

D3(4, 4) = A3(4, 4) 6'(u4(3, 3), (C1.31)

where ~3(4, 4) is the rate of tunneling of a 3, 4 pair in a
'He medium. D3(4, 4) and D4(3, 3) are analogous to
Dv(4, 4) and Dv(3, 3), respectively as far as their
dependence on the medium is concerned.

APPENDIX D. SPECIFIC HEATS, Etc.

In this Appendix we tabulate the specific heats and
the constants k which enter the calculations of the
relaxation times for the various baths.

where V is the molar volume, 0- is the vacancy —vacancy
cross section, 0. 6', and x& is the vacancy concentra-
tion. For the vacancy diffusion constant we have

Dv(4, 4) = [A v(4, 4) /Svhvv], (Ci 26)

where Av(4, 4) is of order 1, and Sv is the va, cancy
velocity. We estimate SI to be
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D.l Zeeman System

(D1.1)

the constant k~~~ is

«„„=—(14/3) s-', Xsl S~., (4, 3)j . (D1.16)

At kgT&&fudp the energy of the Zeeman system is D.S Phonon System

Eg = —(N/4) )Fi(op/«AT j', (D1.2) ~p= Z S.(k) I n(k)+-;j, (D1.17)

where cop=pHp is the Zeeman frequency, ' the specific
heat of the Zeeman system is

where the io(«) are the phonon frequencies. The energy
of the phonon system is given by

Cz =ka(N/4) Ppop/kaT]', (D1.3) Ep= (3s4/5) (N/V) kiiT(T/Hn)', (D1.18)

the energy constant kg is

kg ———(N/4) L (Scop) 'j.
where 0~ is taken to be the experimentally observed

(D14) Debye temperature. The specific hea, t of the phonon
system is

D.2 Tunneling System

Ks = —SJ Qo'ii 0'ill.
ma~

Cp = (12ir'/5) (X/V) kii(T/On) '
(D1.5)

and the energy constant is

(D1.19)

At k&T&)AJ, the energy of the tunneling system is

Er ',Ns&(——SJ—')-kr T]
the specific heat is

Cr = sN«gsfAJ/«pT)'];

the energy constant kz is

kr = s(Ns/kii) —(S—J)'

(D1.6)

(D1.7)

(D1.8)

D.3 Vacancy Excitations

Kv ——Q p(«) Cp+Ci. , (D1.9)

the specific heat is

C irp [(14/3) sjpsNs«st S(os (4, 3) /——«s T); (D1.15)

where pv(k) = $p+st cos kd from Eq. (15) . Experi-
mental temperatures are much less than ihip or the band-
width 2st~6K. Thus the energy of the vacancies is

Ev= (4p+sskaT)nv, (D1.10)

where nv exp (———P~ti) is the number of vacancies;
here @ is the experimentally observed vacancy excita-
tion temperature, P~Pp st. The specifi—c heat of the
vacancies is

Cv dEv/dt «Ii (y/T) '——nv. (D1.11)

The energy constant of the vacancies calculated at
constant vacancy number, e&, is

kv= (dEv/dP) v= —sP(«aT)'nv (D1.12)

D.4 Mass Fluctuation Wave System

Xirp ——g p,irp(k)di+d«, (D1.13)

where perp(«) = 2sS~os4(3, 3) (1—cos kd ) . The energy of
the 'He system is (for s= 8)

E&gp (14/3) ssN I LScos4(3——) )'/«BTI (D1.14)

«p=d&p/«P= ~(Ep/P) =3~'(N/V) («i:T)'(T/en) .

(D1.20)
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