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Calculational procedures are developed for the ground-state energy of a many-fermion system. The entire theory
is developed from the many-body Schrodinger equation via perturbation theory. The linked cluster expansion is derived
by elementary methods. The analytic singularities of the energy function are analyzed, and procedures designed to avoid
or overcome them. Results for the calculation of the energy in the presence of a purely repulsive two-body force are
reviewed, and the situation is found to be reasonably satisfactory, though good results are restricted to weak potentials
when the system is not dilute. Results for an attractive potential surrounding a strongly repulsive core are reviewed,
and procedures described for calculations in this case. A sample calculation with an assessment of the probable errors
is reviewed.
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I. INTRODUCTION

The aim of this article is to present a reasonably
self-contained account, for the somewhat mathe-
matically inclined physicist, of the specialized topic of
the computation of the ground-state energy of a very
large system of identical fermions from an assumed
two-body interparticle interaction potential. A good
general background in quantum mechanics and the
mathematical methods of theoretical physics should
suffice to read this article, and an effort has been made
to a,void the a,ssumption that the reader has a detailed
knowledge of other specialized disciplines of theoretical
physics.

The problem to which we will address ourselves is
quite simply stated. It is, "What is an effective pro-
cedure for finding the lowest energy eigenvalue of the
system described by the Hamiltonia, n

N p2 N

~= Z
' + Z V(l r,—r, I), (I.I)

; )2M

when E becomes indefinitely large' ?" In (1.1), p, and r,
are the momentum a,nd position of the ith particle,
V(x) is the interaction potential, a,nd 3f is the particle
mass. We will have in the back of our minds throughout
this discussion the problem of "infinite nuclear matter, "
that is to say a very large system with forces similar to
the nucleon —nucleon forces, a,nd will therefore not con-
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sider potentials of the full range of generality which
occur in nature, nor will we allow more than one
species of particles. To do so would necessarily open
the lid on the whole Pandora's box of molecules,
crystalline solids, etc. There is one significant physical
problem which must however be considered. The atomic
nucleus and hence infinite nuclear matter have a great
many of the properties of a liquid, as is emphasized by
the successes of the Bohr liquid-drop model of the
nucleus (see, for example, Evans, 1955). In particular,
a large system when confined in a box will not uni-
formly fill the box if the box volume is greater than a
certain amount, but will form a bound system and leave
the rest of the box relatively unoccupied. Put more
accurately, even though according to quantum me-
chanics every point in the box is equally likely (periodic
boundary conditions) to be occupied by any particle,
there will be a long-range correlation between the
particles, such that in terms of relative coordinates the
volume can be divided into two phases. In one phase
there is a very high probability of occupation, and in
the other a very low probability. This physical effect
manifests itself in the mathematics, as we shall see, by
the introduction of singularities in the ground-state
energy as a function potential strength and density.
It is therefore a major goal of any calculational scheme
to avoid these singularities.

In addition to the above mentioned physical problem,
the calculation is beset by a number of purely mathe-
matical complications, at least some of which arise
because of physically understood effects. Before the
middle 1950's it was thought that any use of perturba-
tion theory in terms of the potential strength was
impossible because the size of successive terms of the
perturbation expansion increased as powers of the
number of particles. That the energy series should not
be a convergent one can be understood in terms of the
physical effect of "nuclear collapse. "A typical nuclear-
type force has a strongly repulsive core and a weakly
attractive outer portion. If the sign of the potential is
reversed, then there is a strongly attractive core. This
type of potential leads (see for example, Blatt and
Weisskopf, 1952) to a ground state whose total dimen-
sions are of the same order of magnitude as the radius
of the attractive core. In the limit of indefinitely large
system size, this collapse will occur no matter how weak
the attraction. As we will see later, this extremely
dramatic variation of the energy function at zero
potential strength is associated with singularities which
approach the zero of potential strength in the limit of
indefinitely large system size. As the location of the
nearest singularity to the origin limits the radius of
convergence of the perturbation series, it will follow that
the perturbation series has zero radius of convergence
for a nuclear-type potential. Brueckner (1955) showed
however that the use of perturbation theory was not as
hopeless as was previously believed. He showed, and

Goldstone (1957) and Hugenholtz (1957) later
proved, that in the perturbation expansion of E/1V,
every term is of order 1 in E. This result greatly stimu-
lated activity in the field as it permitted calculations to
be carried out.

A great deal of research has been done on the infinite
nuclear matter problem since then in an attempt to
improve upon the results of Brueckner and Gammel
(1958a) . The bulk of this work has aimed at combining
as much of the perturbation series as possible into the
leading-order term of a new expansion. The construction
of this leading-order term usually involves the solution
of a nonlinear integral equation. This approach has
been extensively reviewed in a series of review articles
by Day (1967), Rajaraman and Bethe (1967), and
Brandow (1967). Consequently we will not attempt
to cover this approach more than by occasional refer-
ence. We shall concentrate instead on a parallel ap-
proach which has not yet been treated in a review.
This parallel approach is concerned with the investiga-
tion and exploitation of the analytic structure of the
ground-state energy function. There are several
problems implicit in that function. For example, the
zero radius of convergence of the series remains as a
difficulty to be overcome, for it means that the perturba-
tion series is at best asymptotic, and may or nzay rot
eve+ de@re the physically correct energy function.

Another problem which occurs, due to the physics, is
that of the extremely strong, perhaps infinite, short-
range nucleon —nucleon repulsive force. We know
physically that the only effect is to exclude the particles
from coming closer to each other than a certain mini-
mum distance. To take care of this problem mathe-
matically, Brueckner had the idea of rearranging
into a single term all the successive interactions be-
tween the same pair of particles, in analogy to Watson's
theory of multiple scattering. Inasmuch as the original
series is divergent, one is compelled to examine the
legitimacy of any rearrangement. When the problem
of the "Emery singularities" has been overcome by a
slight modification of Brueckner s original E-matrix
resummation into an E-matrix resummation, the
rearrangement is found to be a valid one. The technical
problem of actually producing the terms of the ex-
pansion is considerable and is treated at length.

The major conclusions to which we come are briefly
these. First, if we consider a system with purely re-
pulsive forces the problem of the liquid drop does not
arise. The calculation of the energy of a dilute many-
fermion system with arbitrary strength of interaction
is well in hand. For weak interactions, so long as order—
disorder phenomena of the packing marbles in a box
type are avoided, the energy for any density can be
computed. Second, if we consider a system with a
potential with a repulsive core and an attractive outer
portion, the calculational outlook is hopeful. The
problem is to locate "saturation density, " that is,
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where any increase in volume of the system will lead
to the appearance of an occupied and an unoccupied
phase. We seek the ground-state energy at that density.
We believe that through the use of sophisticated
series summation techniques applicable to divergent
series, the R-matrix expansion at fixed density can be
summed to yield accurate values of the ground-state
energy at saturation density. A sample calculation
(Baker et at. , 1970) is described.

II. PRELIMINARIES

A. Rayleigh —Schrodinger Perturbation Theory

and expand E and 0 in powers of P as

E(X) =Ep+Ezk+Ep'AP+ ~ ~ ~,

Q (X) = I+Qyk+QphP+ (2.6)

Upon substituting Eq. (2.6) into Eq. (2.3) and equating
coefficients of the same power of X, we obtain the funda-
mental Rayleigh —Schrodinger perturbation equations

E„=(4 ihQ„, i 4), (2.7)
n—»

Q„= (I—I'p) (Ep—Hp) '(hQ„z —Q E„,Q,), (2.8)
j=»

where the normalization condition

The aim of this section is to derive the linked-cluster,
perturbation expansion for the ground-state energy of a
many-fermion system by elementary methods. The
purpose is twofold. It is, first, by avoiding the use of
field theoretic methods, to make these results available
to a wider group of physicists; and second, to clarify
the practical matters of signs and factors of two which
will be vital in the subsequent actual evaluation of
terms in this expansion.

Our starting point is the time-independent Schro-
dinger equation for a system of X identical particles
interacting by pairwise forces (see for example, Pauling
and Wilson, 1935)

N

Z — ~,'+ +(Z o(r', ) 1+=E+, (2 1)
2M

Iz= g v(r;, ). (2.2)

Then we wish to find E(X) defined by the eigenvalue
equation

(2.3)

where 7'j~ is the Laplacian with respect to the co-
ordinates of the jth particle, and r,j is the distance
between the ith and the jth particles. Our goal now is
to develop a perturbation expansion in powers of the
potential strength. We will employ the Rayleigh-
Schrodinger perturbation procedure to this end. Let us
define

has been used. The projection operator I'0 projects the
unperturbed ground state 4' so that (I—I'p) is a state
orthogonal to 4. Prior to the work of Brueckner (1955),
it was thought that this expansion was not useful in
the many-fermion problem because the successive
terms diverged as higher and higher powers of E, the
system size. Brueckner recognized that this difhculty
does not in fact occur as the terms proportional to
A', S', etc. all cancel, and leave E formally proportional
to X only in the limit of a large system. This result was
later proven by Goldstone (1957) and Hugenholtz
(1957). We will give a different proof here, which we
believe makes the practical aspects clearer. It is based
only on time-independent perturbation theory and does
not require the additional machinery of time-dependent
perturbation theory.

B. Basic Diagram Representation of Perturbation
Theory

First. let us work out explicitly the effect of multi-
plying 4 by Ig. To be definite we shall confine our
system to a rectangular box of incommensurate sides
with volume F, and impose periodic boundary condi-
tions. In this way we will avoid any degeneracy between
the eigenvalues of the unperturbed system. As we are
dealing with fermions, the wave function must be anti-
symmetric under the interchange of any two coordi-
nates. This condition is conveniently e6ected by the
use of a Slater determinant of single-particle wave
functions, due to the properties of determinants. As
Ho is the sum of one-particle operators, we need the
solution for the one-particle wave function, subject to
our periodic boundary conditions. It is

where we presume that we can solve explicitly
where

po(r, ) =F '" exp(ik r, ), (2.10)

Hp4 =E(0)4 (2.4) k = 2zr((l/Lr) i+ (nz/L, )j+ (zz/Lp) k], (2.11)

4 =Q(X)4 (2.5)

for the unperturbed ground-state energy E(0), and
wave function C. Let us also introduce the wave matrix
Q(X) such that

with L», L2, L3 the lengths of the three sides of the box,
and l, m, m any positive or negative integer, or zero. We
will take account of the effects of spin and isotopic spin
at a later stage.
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The unperturbed wave function will be

C = (tVl) "'r *'~ det

exp (iki ri) exp (ik& ri) exp (AN'rl)

exp (zki r, ) exp (ik, r, ) exp (z4 r, )
(2.12)

exp (iki r~) exp (ikz rg) ~ ~ ~ exp (ik& r&)

Next we will find it convenient to express the interaction potential in a momentum representation. Thus we define

(vp. )
v

~

X,ii) = r—'
Box

d'r, d'r, d'r, ' d'r, '[8(r,—r, ') 8 (r,—r, ') v (r,,) ]
Xexp ( iv r, ip—, r:,+i—) r,'+iq r,'), (2. 13)

where we assume that n(r, ,) vanishes for
~
r;,

~

&
~

R ~,

where
~
R

~

&-', min (Li, Lz, L&) . Using the locality of the
interaction, and changing to the center of mass and
relative coordinates

R=-', (r,+r, ),

Eq. (2.13) at once becomes

would have been destroyed and momentum would not
have been conserved in the interaction. We are now
in a position, by the completeness of the set of eigen-
functions, to write

6(r,—r„')8(r,—r )v(r;, )

=r ' g exp (iv r;+ip, r, )(vp.
~

v
~ Xq)

v~psk~ fl

(vp.
~

~
~

kq) = r-' O'R d'rn(r)
X exp (—iX r —ir!.r, '), (2. 18)

Box where the sums extend over all the eigenvalues. If we

Xexp [z(y+& v &) .R+. zr. (y+p v &)j now expand C along the ith and jth rows by the Laplace
expansion (see, for example, UtIuir, 1960) in double

(2.15) minors, we obtain

This integral is most conveniently investigated by using
the periodicity of the wave function, remembering that
the 6 functions in (2.13) are the sort appropriate to
periodic boundary conditions; that is to say, a particle
near one wall can interact with a particle at the other
end of the box just as though it were moved by exactly
one box length so as to be near the first particle. Under
these circumstances, the integral (2.15) factors giving

(vp, i
v

i kr!)

=(2 )'r-'»+-, .+ v(l()+p —v —~)), (2.16)

where the 6 is a Kronecker delta which is unity when
the subscripts are equal and zero otherwise. We get
(2.16) because for the v, p, , X, r! of interest [form
(2.11)], —,

' (X+r!—v —p) and —,
' (X+p, —v —il) are

necessarily of form (2.11) also, and hence by the
orthogonality of the wave functions, (2.16) results.
We have used

8(k) = (2') 'f d'rv(r) exp (zk r). (2.17)

Form (2.16) shows that, (i) momentum is conserved
and (ii) (vp,

~

v
~ Xq) is inversely proportional to the

volume. It is to be noted that if we had not used
periodic boundary conditions translational invariance

C =(F!) '"r "v g exp (im r, '+in r, ')C;,„...„.
mgn

(2. 19)

Thus if we multiply (2.18) times (2.19) and integra, te
r, r,' over our box, we obtain

v(r;, )C =(X!) "'I" '*~ g P exp (iv r,+i p, r, )
mQn y, p

X (vp,
~

z
~
mn)C;. .. ;, (2.20)

by the orthogonality of the single-particle wave func-
tions. If we now use (2.2) to sum over all pairs of
particles, we obtain, by using the Laplace expansion on
columns instead of rows,

hC =-', (X!)—'~'r-i~ g g (vp,
~

z
~
m, n)

mQn y, p

XC (m—~v; n—+p.), (2.21)

where by C (m~v; n—+p, ) we mean that we have the
same Slater determinant as 4 (2.12), except that the
column which had momentum m now has momentum
v and n, p, . The first summation in (2.21) is over all the
momenta in C, and the second is over all eigenstates.
Of course, the C factors vanish if there are two columns
the same, so we may as well restrict the summation over
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2 (m'+n' —v' —pP) -'/(fi'M) . (2.22)

In genera, l, a.cting on any Slater determinant (Eo—Hp)
gives a factor which comprises the sum (from Eo)
of the energies of the states which are emptied, less the
sum of the energies of the states which are filled in their
place. The factor (I—Po) is just unity, except for the
original Slater determinant, or any permutation of its

v and Ij, to exclude those momenta in 4;. .., ,„.In order
to keep track of more complicated sequences of opera-
tions, it has been found advantageous to introduce a
pictorial representation. In the first instance we will use
diagrams rather similar to those of Goldstone (1957),
but will later find those of Hugenholtz (1957) to give a
more compact and manageable representation. We will
discuss now the ground state; although excited states
could also be discussed by the same methods we will
not do so here. The lowest lV states of the system form
the Fermi sea, and we will by convention not picture
them so long as they are filled (that is, there is a column
for each one in the Slater determinant) . The remainder
of the states will not be pictured so long as they are
empty. We will use a solid line to denote a filled state
which is above the Fermi sea, and a dotted line to
indicate a hole in the Fermi sea. The action of multi-

plying by the potential will be called a vertex, and since
its effect on the wave function is one of replacement of
one momentum state by another, we represent this
replacement by a pair of crossed lines. We join these
crosses by a wavy line which represents the momentum
transfer during the interaction. We have illustrated
(2.21) in Fig. 1. The rule in drawing an interaction
vertex is that since the occupancy of each state changes,
one end of every line which meets at a vertex is blank,
according to our convention. There is one exception to
this general statement. According to the summations
described in (2.21), we can have, for example, v=m;
that is to say a filled state is involved in the interaction
but is left unchanged by it. (In this ca,se we must have
also p, =n by momentum conservation. ) We conven-
tionally represent this case by Fig. 2.

The other operation we must represent in the con-
struction of the Q„operators is the multiplication by
(I—P,) (Eo—Hp) '. This operator is diagonal in the
representation given by the Slater determinants of
(2.21), and is wholly expressible in terms of the mo-
menta of the states which have been emptied, and the
new momenta which replace them. In other words, in
terms of the line labels in Fig. 1, we find that (Eo Hp)—
acting on (2.21) contributes a factor of

FIG. 1. Pictorial repre-
sentation of the action of a
vertex on the unperturbed
Fermi sea.

3= exp (i g Ki,. r;), (2.23)

where I', are a permutation of the j's. By the single-
particle state orthogonality, unless there is a term in 4
with the k dotted into I'; equal to Kp,. for every j, we
have

j=0
(2.24)

but this equality can only hold if the IK} are the same
as the Ik} except possibly rearranged. Further, if they
are the same set then we have

fC*C g d'r;=1, (2.25)

as every one of the (X!) perrnutations occurs in the
expansion of the Slater determinants, and appears with
the same sign in both C and C*.

The consequence of (2.24) is that the energy pertur-
bation terms can be represented by diagrams which
have no lines incident (i.e. , they are conventionally
represented by blanks) on the left, and no lines leaving
on the right. They have, because of the (I—Po) factor,
at least one (and as we shall see, two) filled state and
hole lines at each intermediate point. A sample third-
order diagram appears in Fig. 3. The formula it repre-
sents is (after having been integrated over the co-
ordinate variables)

rows or columns, in which case it is zero. This factor
prevents the system from returning to its original
state, so that all of the Slater determinants in which
the Q„may be expanded have at least one state occupied
which is outside the Fermi sea.

Finally, to describe all the operations necessary to
perform the perturbation calculations (2.7) and (2.8),
we must consider the inner product of 4 with another
Slater determinant. It is well known that two Slater
determinants are orthogonal, unless they correspond to
the same set of single-particle states. This result can
be seen easily as follows. Every term in the expansion of
a Slater determinant is proportional to

&»ri
I

&
I vpi&&mpi I

i
I p»&&vp I

v Irrm&

(jP/2~) & (v'i+ p,P—~P—ri~) (v&+ pP —m2 —ri&)
(2.26)
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FIG. 2. An interaction which leaves the Fermi
sea unchanged.

subject to the restrictions:

m, n in the Fermi sea, and mgn,
Ij,, v not in the Fermi sea, and p, &v,
nj in the Fermi sea, but ni&Q, m
Ij,~ not in the Fermi sea, and p,~/v, (2.27)

Let us next consider the behavior of each term in the
Q„and E„as X, the number of particles in the system
tends to infinity (f)//F fixed) . From (2.16), (vti,

I
o

I Xq&

which come from the fact that a determinant with
two rows or columns equal vanishes, and from the sum
over the states in the original Slater determinant. The
factor of one-eighth comes from three factors of
one-half from (2.21). The sign is plus because the
columns of C underwent an even number of permuta-
tions: (m, n, ni) —+(n, ni, m) . This term arises as part
of the first term of

z,=(e
I
hn,

I
c) mI, QI

VI, Iji
mg, Qg

V2, p2

in the Fermi sea, and m~&QI,
not in the Fermi sea, and pI/v~,
in the Fermi sea, and m2/m~, ni, or n2

n, &m&, or n&,

not in the Fermi sea, and v2&v~, pI, or jj.2
p,2+vy) or p,y)

in the Fermi sea, and n3/mI, n~, m~, or n~,
not in the Fermi sea, and p.3&vi, v2, or p2,

(2.30)
and the term in E5 it represents is

is proportional to I' ' and conserves momentum. When
we remember that the states summed over Lin (2.26)
for example) are eigenstates of the single-particle
energy, we can convert, in the limit of F—+~, the
momentum sums to integrals

Z ~L1'/(2~) ')f d'tl (2.»)

as, by (2.11) the level spacing is (2ir/L, ) . As a sample
we will analyze (2.26) (Fig. 3). By momentum con-
servation at the first vertex, there are only three inde-
pendent momenta created there. At the second vertex
there is one more, and at the last vertex none. The
momentum conservation there is satisfied automati-
cally. Thus, converting the sums to integrals yields a
factor of I". The three factors of (I v I) yield a factor
of F '. The net result is I'+'. This behavior is what we
desire as we seek an energy proportional to the system
size. Another example is given in Fig. 4. The second and
fourth vertices are displaced downward for clarity.
The summation restrictions are:

mJ, I11,P$, V1,

m2»2 p2 V2

&3)P3

(mi» I
~

I »t s&(m»s I
~

I »v'&&»vs I
~

I v»o)(»t s I
~ Im»s&(» tai I

~
I m»i&

y I (fis/2~) 4(»sy pso mio iios) (»s+ lio2+»2+ tiss mi2 ns2 mss ns2)

)( (»s+ p.is+»s+ logos
—mrs —nio —mss —n,2) (»s+ trio —mi2 —nis) ) i (2.31)

There are seven independent momentum sums, and
five potential factors. Thus (2.31) is proportional to r',
which if it stood alone would lead to a divergent
energy per particle, and render the expansion unusable.

Let us now find the general rule for the F dependence
for any diagram which arises directly. By arising
directly we mean in the first term of (2.28), or more

generally from

&@ I hII:(I &o)/(Eo &o)l&I" '
I

4'& (2.32)

which results from using only the first term on the
right in (2.8) . Every vertex gives a factor of r ' so E„
will contain a factor I' ". When momentum conserva-
tion is taken into account, every vertex gives addi-

—(IYE+p.—v-fl ( + Fio. 3. A sample diagram. This diagram
represents Eq. (2.26).
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(v +n ITl /l. }

FIG. 4. A sample two-component
diagram representing Eq. (2.31) .

~(mp+pZ v~ nZ}
I

2

02

(ITl +p, v —
IT~}

tional independent momenta (or imposes restrictions)
so that the conversion of momentum sums to integrals
yields a factor of F'+&:~'~, where 5/ is the change in the
number of lines leaving on the right at that stage in
the diagram. There are two exceptions to this rule.
The first is shown in Fig. 2 (and its exchange diagram)
which contribute a net factor of I' rather than I' as
would be expected. The second exception is that in
which a vertex ends a separate component of the
diagram (as do vertices 4 and 5 in Fig. 4). Here the
momentum conservation is automatic and we get a
factor of I ' instead of F '. In each case, the conse-
quence is that we must multiply the results of the above
rule by a factor of I' for each separate component
of the diagram. As the net change in the number of
lines for a directly arising energy diagram is zero, we
And that the dependence on the system size is F',
where s is the number of separate components. We will
show that the energy can be reexpressed completely
in terms of single component diagrams.

C. Factorization of Separated Component Terms

In order to establish this result, we need a theorem
due to Hugenholtz (1957). He actually established a
more general result than we prove here. An additional
algebraic proof has been given by Franz and Mills
(1960). Baker et al. (1963) have used this theorem
without reference on parts of a single linked diagram,
and Bethe et at. (1963) have emphasized its value in
this regard.

Hugenholts Factori ziti orI, Theorem. Consider the
perturbation terms represented by a diagram which
consists of two given separated components. (Neither
of these components need be a linked component. )
We will assume that the left (beginning) end of each
component has no lines entering it, and that the right
most vertex of one component is given to lie to the right
of all vertices of the other component. For any single

component p: (2.33)

We now add the new vertex on the left of component P,
and because of the additivity of the energy denominator
in the propagator factors, we obtain for the sum of all
vertex orders

term in the momentum sums represented by the dia-
gram, the sum over all allowed vertex orders (all
different diagrams consisting of the two separated
components subject to the above restrictions) is equal
to the product of the term represented by the 6rst
component considered as a diagram in its own right
(the energy denominators are as if no other excitation
of the Fermi sea were present) times the term repre-
sented by the second component considered as a dia-
gram in its own right times 1/(Di+D2), where Di and
D2 are the right most (last) energy denominators of
components one and two.

Proof. It will sufRce to show, by induction, that the
addition of a single vertex to the left end of one com-
ponent simply multiplies the contribution by the addi-
tional propaga, tor (one over the energy denominator)
when the sum over all allowed vertex orders is taken.
At this stage, no stipulation is made concerning the
number of lines entering or leaving either component,
and no account is taken of the propagators beyond the
right end of either component. The interaction matrix
elements do not change with vertex order as they
depend only on the incoming and outgoing momenta.
We will represent the vertices and the propagators of
component o. by tt, and (1/A, ) respectively; of com-
ponent p by b, and (1/8, ) respectively, with i sta, rting
from 1 in both cases. We will add to component P an
additional vertex, bo with associated propagator
(1/Bo). A typical term in the sum over all allowed
vertex orders before adding bo can be represented as:

component n:

i=1
(2.34)
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where R(n, 1) stands for the rest of the term coming the part to the right of vertex a„and h&. We may rewrite
(2.34) as

n j
ILBo '(8o+A ) '+A '(8o+A ) ')lI (8+A') '+A 'Z rII (A') ')LII (8+A') 'lI~(, 1)

i=2

=A 'IBo 'II (8o+A') '+Z CII (A') 'ALII (8o+A') '0I&( 1), (2 35)
a=2

which is (1/Ai) times the same problem with one less
term. Repeating this operation until the g is exhausted,
we are left with

n

80 'LII (A;) 'jR(m, 1) =8, 'R(1, 1), (2.36)

which is simply (1/Bo) times the summand we had
before the addition of vertex bo. As one can easily
verify directly the theorem for o. and P consisting of
each of the one and two vertex diagrams, we have
established the lemma, by induction.

%e can illustrate this process by a sample case
(see Fig. 5) . The sum over all allowed vertex orders for
the newly inserted vertex bo is, in this case, the three
terms (a), (b), and (c). The complete denominator
contributions are

Ql Op

(a)

only. We will assume that the theorem is true for all
n&g, and prove its truth for 0+1. From (2.7), we see
that Eg+l can be derived from j|acting on Qg. Since, by
hypothesis 0 has no separate zero-line to zero line-
components, the only way to produce a nonvanishing
contribution is to have h of the type illustrated in
Fig. 6 which has no lines leaving on the right. It cannot
be of the type of Fig. 2 as 0 would have had to be a
ground-state to ground-state term which is excluded by

(a) =Ai 'Ag '(A2+80) '(A2+Bi) '

(b) =Ai '(Ai+80) '(A2+80) '(A2+Bi) ',

(c) =Bo—'(Ai+80) —'(A,+8 )
—'(A, +8 )

—'

These sum to yield

(a)+(b)+(c) =(8, 'A 'A ')(A +8) '.

ba bl

The term in the erst parenthesis is the factored con-
tribution of the two components resulting from the
sum of all allowed vertex orders for bl, the right most
vertex. The second factor contains the (Di+D~)
factor mentioned in the theorem. If one of the com-
ponents had no lines on the right, its right most de-
nominator would of course vanish.

D. Reduction to Single Component Diagrams

We are now in a position to state and prove the
fundamental theorem which makes the Rayleigh-
Schrodinger perturbation expansion tractable for the
many-fermion system.

Linked Cluster Expulsion Theorem. The terms in the
energy perturbation expansion, E„,may be represented
completely in terms of ground-state to ground-state
single-component diagrams. The wave matrix perturba-
tion expansion may be represented completely in terms
of diagrams which have no separated component
without lines entering or leaving it.

Proof. Referring to the defining Eqs. (2.7) and
(2.8), we can immediately establish this theorem for Ei,
E2, and 0& which consist of directly occurring terms

bp

b
———— b0 l

FIG. 5. A sample diagram illustrating the sum over all vertex
orders.
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FIG. 6. The final vertex of a ground-
state to ground-state component of a
diagram.

fTl ~ ~ fYl

hypothesis. Since a vertex of the type illustrated in
Fig. 6 can create at most one ground-state to ground-
state component, the theorem is proved for Ee+~.
Now consider Qg+~. As there is a left-hand factor of
(I—Po), there are no ground. -sta, te to ground-state
diagrams in it. Suppose, h contributes a vertex of the
type of Fig. 2 or its exchange, Fig. 7. This creates a
separate component. The summation restrictions are
mQn and both in the excited Fermi sea. By the excited
Fermi sea we mean the set of all the single-particle
states comprising the original ground state, except that
those states which have been excited to states not in
the original Fermi sea are omitted. I.et us combine this
contribution with the term from the summation in
(2.8), E~oe. Thes—e two contributions are the same
except that, for the second, the summation restriction
is only m&n and both in the Fermi sea. The difference
will be the negative of the term represented by attaching
the new vertex to the hole lines on the right in Qo as
shown in Fig. 8; although the terms in Fig. 9, which
attach a "bubble" to a filled state line can and do occur
directly, those in Fig. 8 do not because they involve
emptying an already empty state. However, our
diagram formalism now includes them, with an extra
minus sign, as the residual of the subtraction term in
(2.8) . The only other way that a separated component
of the zero-line to zero-line type can be created is if h
represents a vertex of the sort shown in Fig. 6. If it does
and creates a separate component, then this component,
considered as a diagram in its own right, is, by our
construction procedure, a term contributing to E, ,
j=2, ~ ~ ~, 0. Conversely, any term in such an E; can
arise as such a separated component. All the various
vertex orders for the directly occurring separated
component will occur and the sum can be performed by
means of the Hugenholtz Factorization Theorem. A
sample case is shown in Fig. 10 from Q3. The only
complication comes from the restrictions on the
momentum summations. We counter this difficulty by
adding in the missing terms to the sum, and taking
account of their subtraction by separate diagrams. By
the Hugenholtz Factorization Theorem, the vertex
order sum is exactly canceled by the subtraction of
the corresponding term from the summation in (2.8),
which eliminates all the separated zero-line to zero-line

FIG. 8. "Bubble" and its exchange diagram on a hole line. These
diagrams arise in the subtraction process.

components in Qg+~, and completes the proof of this
theorem. In the case illustrated in Fig. 10, the subtrac-
tion term is (I—Po) (Eo—IIO) 'Rnr.

We must however give the prescription for drawing
the subtraction terms. Suppose the lines (either
filled-states or holes) shown in Fig. 11(a) are restricted
in the subtraction term to have equal momenta. They
can be "pasted" together, as shown in Fig. 11(b).
Momentum conservation across the dotted line insures
that the momenta on the two new lines is equal. The
resulting diagram has no zero-line to zero-line separate
component. It has an extra minus sign as it is a sub-
traction term. This diagram does not occur directly as
it has two lines with the same momentum. It is worth
noting that when one "pastes" a separated component
on and there are two different lines with the same
momentum resulting from a previous "pasting"
operation, the final result can arise from two different
intermediate stages. That is to say A could be pasted to
8 and then the combination to C, or B to C and then
to A. This doubling of the final result can be con-
veniently accounted for by simply including both
pastings of the new component to lines with the same
momentum when drawing out all the distinct ground
state energy graphs. In Fig. 12, we have shown the
topologically distinct (taking account of equivalent
lines) "pasted" contributions which occur from the
cancellation of Fig. 10. Each one shown is but one of
the four occurring "pasted" diagrams of its type.

E. RuIes for the Basic Linked Diagram Expansion

By the theorem in the previous section, we need only
consider linked (i.e., single-component) diagrams in the
expansion of the ground-state energy. We will sum-
rnarize here the rules drawing the basic diagram ex-
pansion, and associating terms in the perturbation
series with them. It is to be borne in mind that these
refer to a system of X particles in a box of volume I'

FIG. 7. The exchange diagram of Fig. 2.
Ill

I
g /

I
~ fl

FIG, 9. "Bubble" and its exchange diagram on a filled-state line,
These diagrams arise directly.
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Fre. 10.The two vertex orders for a par-

ticular two-component diagram.

(b)

subject to periodic boundary conditions and a short-
range, but periodic potential interaction.

1. The first order energy is given by

—', Q f(mn
~

~
) mn) —(nm [ i

~
mn)], (2.37)

mQn

where m and n are in the Fermi sea, and (i ) comes from
(2.16). This term is represented by Figs. 2 and 7.

2. For second, and higher (eth) ord.er, draw all
distinct, linked, e vertex diagrams which begin with
Fig. 1 and end with Fig. 5. An allowed vertex may be
produced by attaching one and only one solid or dotted
line to each of the four straight lines in Fig. 13. By
convention, the solid lines are attached to the top, and
the dotted lines to the bottom, of these straight lines.
There are therefore 2 = 16 such vertex types. In
addition, there is the type in which a state is left un-
changed. There are eight such vertices, illustrated in
Figs. 8 and 9, plus the up —down interchange. Note,
however, that the eight vertices represented by Fig. 14,
its left-right interchange, and their up —down inter-
change are excluded, as momentum conservation
requires a filled state and a hole to have the same
momentum. A state cannot be both occupied and
empty at the same time.

3. I.abel every line with a momentum in such a way
that momentum is conserved at every vertex. Sum over
all single-particle momentum eigenstates such that the
holes lie in the Fermi sea, and the filled states lie
outside it.

4. The following terms are to be deleted from the
sum: (i) Ko two lines, situated at least in part one
above the other, of the same type may have the same
momentum unless cutting both will yield two separate
components of the diagram; (ii) No hole line of the
same momenta can both enter and leave a single vertex
unless cUtting both parts of it will yield two separate
components of the diagram; (iii) No hole and filled
state may have the same momentum.

5. For every vertex include a factor of —,'(vp,
~

v
~
mn)

Lsee Eq. (2.16)$, where the labeling of the lines is as
given in Fig. 13.

6. For every propagator (the interval between
successive vertices) include a factor of 1/(the sum of
the energies of the hole lines minus the sum of the
energies of the filled state lines) .

'7 Multiply by (—I)~+~ o, where I' is the number of
violations of the Pauli principle (a case permitted by
an unless of rule 4), H is the number of hole lines, and
C is the number of cycles. The cycle count is the

F. Hugenholtz Contracted Diagrams and
Spin Weights

Up until now we have not considered the effects of
spin or isotopic spin. First, for spin and isotopic spin
independent forces, we need only note that when a
potential interaction causes

ID ) SJQ~V) Sp)

Q) s~~p) sp) (2.38)

where the s's are the spin and isotopic spin variables, as

Fxo. 11. (a) General separated diagram, with a restriction of
the equality of the momentum between a line in each component.
(b) The same diagram represented by a connected diagram where
equality is insured by momentum conservation.

number of closed loops in the diagram which can be
traced out by following the solid and dotted lines but
not the wavy ones. For example, Fig. 3 has C=1;
Fig. 4 has C=S.

Perhaps the only part of these rules not yet com-
mented on is the factor (—1)~ o. This factor counts the
evenness or oddness of the permutation required to
change the final Slater determinant into the original
one. It can be seen as follows. We fix our attention on
one closed loop or cycle in a basic diagram and start
at its left most end. (If there are two, pick either one. )
The eA'ect of the vertex action is to replace a Fermi sea
state with another momentum from outside the Fermi
sea. As we continue (starting out along the filled state
line) around the loop, we eventually fill a hole. This
filling effects a permutation of the Slater determinant
by putting the momentum of the first hole in the
position of the second, unless, of course, the hole
encountered was the first one, in which case there is no
permutation. As we continue about the loop, we gen-
erate a cyclic permutation of the hole momenta in the
Slater determinants of length equal to the number of
holes in the cycle. The number of permutations is one
less than the number of holes in the cycle. Thus, for
the diagram as a whole the permutation sign factor is
( ])IE C—
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FIG. 12. The inequivalent "pasted"
graphs derived from I ig. Io.

(a) (b)

(o) (b)

pictured in Fig. 13. The spin independences requires
s =s„and s„=s„.Following the loop structure of the
basic diagram, this spin and isotopic spin conservation
yields a sum over as many independent spins and
isotopic spins as there are cycles in the basic diagram.
Hence we have the additional rule, when spin and
isotopic spin are present.

8. Multiply the contribution by (2S+1)~(2I+ 1)~ to
take account of the spin (S) and isotopic spin (I)
states in the presence of spin and isotopic spin in-
dependent forces.

The trouble with the basic diagrams used so far is
that, although they have great clarity standing as they
do in one-to-one correspondences with terms in the
perturbation expansion, there are too many of them for
convenient calculation, and they are not handy for
forces which are not spin independent. A more con-
venient set of diagrams has been introduced by Hugen-
holtz (1957). Each one corresponds to several basic
diagrams. They are obtained from the basic diagrams
by shrinking every vertex (Fig. 13) to a dot. Every
solid line is replaced by a line with an arrowhead
pointing left, and every dotted line by a line with an
arrowhead pointing right. The count of cycles is lost
in this contraction. The different allowed types of
vertices are shown in Fig. 15.%ith each vertex we have
associated a numerical factor which is the number of
basic vertices which correspond to that Hugenholtz
vertex times two if there are two hole lines entering from
the left, times two if there are two filled state lines enter-
ing from the left. The product of these factors gives the
total number of basic graphs represented by one Hugen-
holtz graph. This counting rule is equivalent to Hugen- .

P/(27r) '= 3W/L(2S+1) (2I+1)4srkp'l. (2.39)

The rules are, for 2V~~:

(i) The first order energy (represented diagram-
matically by Fig. 16) is

EiM 3(2S+1)(2I+1)
lim

n )zs) lt )!" Ji
dm dD

&(Tr It)(0) —v(~ m —n ~) P(m, n) }/Tr II}, (2.40)

holtz s'rule of 4"/2, where rt is the order, and nt is the
number of pairs of equivalent lines (i.e., two lines

going in the same direction between the same two
vertices). The extra factors of two come because if
there are two lines of the same type coming in they can
be hooked up in two ways. We only count it for the left
side as we think of building the diagram up from left
to right, and in this case the symmetry between lines
leaving on the right is only a relabeling change of a
dummy variable.

As our numerical applications will be concerned with
the limit X—+~, we will now give the rules for the
Hugenholtz diagram representation of the ground-state
energy of the infinite limit of the many-fermion
perturbation series. Except for Rule (4), where terms
of order 1/X are neglected here, which may be sig-
nificant when one interchanges the order of summation
and letting E—+ ~, the transcription is a straightforward
summary of what we have said previously. The sums
are converted to integrals by (2.29). Also, by (2.29)
the number of particles is related to the volume by

FIG. 13. Conventional representation of a single
vertex in a basic diagram.

FIG. 14. Disallowed ver-
tices, by momentum con-
servation and the Pauli
principle.

(
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where the trace is taken over the spin and isospin
space states corresponding to m and n. The operator
P(a, b) permutes the spin and isotopic spins variables
corresponding to momentum states a and b.

(ii) For second and higher (mth) order, draw all
distinct, linked, rs vertex diagrams using the vertices of
Fig. 15 which begin with vertex F and end with ver-
tex E.

(iii) Form any basic diagram from the Hugenholtz
diagram which has the largest number of cycles possible
for that Hugenholtz diagram,

(iv) Label every line in the basic diagram with
momentum in such a way that momentum is conserved
at every vertex. The labels will be referred to according
to the convention of Fig. 13, with a subscript j ap-
pended to denote the vertex number. It is to be noted
that every line is thus given two names. The relations
between them, for example v2=—m4, v~= m5, m~—=v5,
e~—=v3, etc. , in Fig. 4, are what distinguish the different
diagrams. Integrate the following term over that
region where all hole momenta are less than or equal to
k~ and all filled, state momenta are greater than k~

3( 1) +~+a—c(25+1)c—'(2I+.1)c—'/2m4~k

1

Xf dr [Tr Ig $(v(q, )I—v(q, ",",,')P(m, , n, )P(p, , v, ) )P(m, , v, )P(n;, p,,))I ]

X(Tr IQ P(m;, v, )P(n, , p,,) IQ D, )—', (2.41)

where sz is the number of vertices, I the number of
violations of the Pauli principle, H the number of hole
lines, C the maximum number of cycles, 5 the spin, I the
isotopic spin, m the number of pairs of equivalent lines,
kp the Fermi momentum, 8 is defined by (2.17), q, is
the momentum transfer at vertex j, g, ,h, ; is the ex-
changed momentum, and D, is the energy of the filled
state lines minus that for the hole lines for the section
of the diagram between the jth and the (j+1)st
vertex. The trace is to be taken over the II independent
spins and isotopic spins associated with the II holes.
It is to be noted that Rule (4) (iii) for basic diagra. ms
is an automatic consequence here and that those
Hugenholtz diagrams which can be separated by cutting
a single hole and a single ulled state line vanish on that
account.

(v) An exception to form (2.41) occurs for "bubble"
vertices (type J). The permutation operator multi-

plying 8(q,„,h, ,) is only P(m, , n, ) as P(m, , n, ) =
P(p, , v, ) for this type of vertex, so that wha, t for mov-
ing vertices AI is a single line, for vertex J is moving a
pair of lines.

We note that we like to treat as a group all those
diagrams which have bubble insertions at the same
vertex position in given Hugenholtz graph. This pro-
cedure cancels certain divergences which would other-
wise occur and will be discussed later. We represent this
sum by a "Rag" as shown in Fig. 15.

summability properties of the resultant limiting series.
The material of this chapter is based primarily on the
work of Baker (1963, 1970).

We first establish, for a system interacting by means
of a sof t repulsive square-well potential that the
radius of convergence for the ground-state energy of
the X-body system (at fixed density) tends to zero as.V tends to infinity at least as fast as X &, where y is
any positive number less than —', . This result implies
that the perturbation series is, at best, an asymptotic
one. We consider the complete perturbation series for

III. THE SINGULARITY AT THE ORIGIN

In the previous chapter we established that the energy
per particle was formally of order unity in every order
of the perturbation expansion and did not diverge as the
system size (fixed density) increased indefinitely. In
this chapter we will examine the convergence and FIG. 15. Hugenholtz vertices with statistical weight factors.
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more general potentials which may include attractive
as well as repulsive forces, and bound every order. We
find that it diverges no faster than a geometrical
series times (zz!), where n is the order of the term. We
consider the problem of assigning a meaning to the
sum of the series and show that, provided the density
is low enough (small compared to the jamming density
for hard spheres), it may be summed, even though
divergent, to the lim~ „E~(V), where Eir(V) is the
energy per particle for a potential of real, positive
strength V in the Ã-body problem.

Finally we show that certain rearrangements,
though not all, of the potential perturbation series,
highly important from the practical point of view, also
define the same physically correct function.

A. Singularities in the Two-Body, Square-Well
Force Problem

In order to investigate the many-body problem with a
square-well interaction, we shall first investigate the
problem of a particle in a spherical box with a square-
well potential of strength V near the origin. The
potential is

Again approximating ta, nh (x) near x=zzr by (x—izr),
we find (3.5) valid for large V not near V real and
positive.

The difference of these two results for, say, V large
and imaginary implies the existence of at least one
complex conjugate pair of branch points. We may
locate them as follows: It is well known that the branch
points of E(V) occur where (dU/dE) =0 (see, for
instance, Kober, 1957). If we define

s""=L(2m/5') (V E))'"a-
t" =

} (2m/P) E]'"b (3.6)

approximating the right-hand side of (3.2) for tan (x)
near x=zr by (x—zr), that E(V) is approximately
given by (3.4) for all V in the neighborhood of infinity,
except near U real and negative. This statement is true
when we sta, rt V toward infinity along the positive
real axis.

When V—+—oo, the right-ha, nd side of (3.2) tends to
zero, the wave function falls into the region 0(r(a,
and the energy tends to

lim LE(V) —V]= (V/2m) (n&/a&). (3.5)

V,

0,

0(r(a,
a(r&a+b,

then the equation for the critical points of E(V)
becomes

+ oo, a+b&r. (3 1)

By solving Schrodinger's equation (see, for example,
Schiff, 1949) we may easily establish that the energy of
the lowest state, as a function of the potential strength,
is given by the solution of

2m 1/2

tanh —( V E) a—
52

as
2t'"—sin (2t"') =0, cosh (s"') =0, (3 8)

Leos~ (t'/2) ]/[cosh2 (s'/~) ]cc (b/a) ~ (b/a)))1. (3.9)

ts/' cos' (t'/') 2s'/' —sinh (2s"') b '
(3.7)2t"—sin (2t") s"' cosh' (z'") a

subject to (3.2). If (b/a)))1, then the solution is
approximately given by

= ——tan, E b E b . 3.2
Hence, in this limit we have the branch points at
(Kober, 1957) approximately

When U=O, it follows readily from the trigonometric
identity ta,nn+tan (zr —n) =0 that the ground-state
energy is

V =6'/2ma'} —-'zr'+ (a/b) '(12.1372~10.3789i)].
(3.10)

E(0) = (fze/2m) [zr'/(a+b)'). (3.3) For the case a= b, E(V) satisfies, by symmetry, the
relation

As V—+ ~, the left-hand side of (3.2) tends to zero,
the wave function is compressed into the region
a&r&a+b, and the energy tends to

hm E(V) = (fP/2m) ( /zbrz') (3 4)
V~+oo

In fact, if
} (V E)"'a

}
is large and we—are not near

the poles of the left-hand side of (3.2), then we see, by

ITl
FIG. 16. Hugenholtz representation of Figs. 2 and 6

(first-order energy) .

fl

E(V) —E(—V) = V, (3.11)

and hence we expect the branch point to be on the
imaginary axis. For V pure imaginary, (3.11) implies
t= —s*, and (3.7) reduces to

Re I L2sz/2 —sinh (2sz/2) ]/} ss/e cosh2 (sz/2)) } = 0 (3 12)

We compute that the branch points are at the points

s = —6.3a4.6i,

V= (f't'/2ma~) (&9.2i) . (3.13)

As b continues to decrease until b/a(&1, we find
reciprocally to (3.8) above, that the branch points
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tOi--
a=b

b-0

mately,

V (b'/2ma') (—( j+-', ) 'vr'+ (a/b) '((e—j) 'm'

—
4 I ln L47r (e—j)jI'+i(e—j)m. ln (4~(e—j)j) J

j=0, 1, ~ ~ ~, m —1, (3.16)

a,s long as the correction to —( j+2) '~' is small. There
are now e pairs of branch points for the eth state. We
previously found one pair for the ground state, or
first state.

-- 5i
B. Singularities in the Many-Body, Square Well

Force Problem

a«b

I'IG. 1.7. Trajectory of the branch point in the ground-state
energy for one particle in a box.

occur for

2a ~ —sin}i (2s'~ ) =0

cos (t"') =0 (3.14)

which implies that, approximately

s = —12.1372~ j.0.3789i,

V = (fP/2m'')

Xf—12.1372'10.3789'+ (-'~) '(a/b) '] (3 15)

so that the branch points recede to plus infinity along
a path parallel to the positive real axis. The trajectory
of this branch point is shown in Fig. 17 as a function of b.

Katz (1962) has illuminated the nature of these
branch points. They result from the degeneracy of the
ground state and the first excited state. If we cut the
complex plane from these points to infinity, we have by
(3.4) and (3.5) a single-valued function of V with no
other branch points. However, if we join the two
branch points by a cut (encircling both of them can
easily be shown to leave the function unchanged),
we find some of the additional branch points discussed
by Katz where the ground state is degenerate with the
second, third, ~ ~ ~ excited states.

For the higher excited states (angular momen-
tum=0), the analysis is similar. For instance, for the
case b/a)&1, we need the mth root for 3 in (3.8) for the
eth excited state instead of the first root which we used
for the first state. Hence, (3.10) becomes, approxi-

We now consider for simplicity the many-fermion
(spinless here) system interacting with a simple
square-well potential.

We shall show that there is at least one (pair) of
branch points which tends to the origin of the V plane
as X tends to infinity by traversing two paths in the
complex plane to a certain point. The paths we take
will never pass further from the origin than a distance
which tends to zero as S tends to infinity. They will
yield two different values of E(V) for the same V,
hence imply the existence of at least one branch point.
The occurrence of a branch point stops the convergence
of the Taylor series at that point. - Let us consider a
system de6ned by the Hamiltonian

p.2a=g ' +g.(~r, r, ~), —
i=i 2w z&q'

which is enclosed in a large box of volume I', such that
p = 1V/F. The function i (r) is taken to be a square well
of range a and strength V.

Let us follow the energy as a function of V as V
becomes progressively more attractive. We study the
case of Fermi —Dirac statistics. The result here is well
known. ' The system collapses rapidly to a size of order a.
The kinetic energy of the highest state (+~S'") is
proportional' to E~~'. However, the potential energy of
each particle is approximately XV as each particle
feels the attraction of every other particle. Thus, for
the collapsed state, we have for each particle a problem
equivalent to one particle in a box with a square-well
potential of strength '0 =XV. The parameter b is
related to the total volume 0, and hence is proportional
to (X/p) '".It becomes very large as E goes to infinity.
If we go to an attractive potential of strength U
proportional to X "'&'+'&~, then {for X very large) the
potential energy per particle (proportional to
W~+'&~&~+'~) will dominate the kinetic energy. Also, we
will be to the left of all the branch points in the complex
'U plane for the first n =X"' states. The analysis equiva-
lent to that given above for angular momentum states
different from zero is similar; for b/a&)1 the branch

'See, for example, Blatt and Weisskopf (1962), Chap. 3,
Sec. 4.
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points will close on the axis at the various appropriate
binding energies. Returning to zero angular. momentum,
if we now approximate the tanh (x) in Eq. (2.2) by
x—e, 7ri for x near e,„,xi, we may continue on 'U

around the arc of a circle to the positive real axis, as
long as we are careful to avoid points for which

FIG. 18. A divergent
bubble diagram.

cos (t'~z) =0 or 2P~ —sin (2t"~') =0 (3.18)

which can easily be done. At this point, the collapsed
state has been continued to the positive real axis and,
in terms of the energy per particle, is of the order of
X"+'~~'+'. As the potential energy per particle is
still Xv, the wave function must still be concentrated
in a sphere of size a. However, if we continue from the
origin straight out the positive real axis, then we know,
physically, that as V tends to infinity we obtain the
hard-core Fermi gas, The energy per particle is bounded
for all V, 0& V( ~, at least for densities which are
small compared to closest packing of hard spheres.
Thus, we conclude that we must have encircled at
least one branch point. As our above argument is
valid for any e)0, E(V) must have a radius of con-
vergence of not more than the order of E '~', Hence, in
the limit as X tends to infinity, the radius of con-
vergence of E(V) for the potential we are considering
tends to zero. As we showed formally in the previous
chapter that each term in the expansion E(V)/X is
6nite, we conclude that the expansion is a divergent one.

Our information on the direction in which the closest
singularities approach the origin and, hence, the angle
in which the series is asymptotic, is less definite. How-
ever, if we assume that the angular distribution of the
correct many-body branch points is somewhat like
those for the collapsed state problem, even though for
'U of the order of —1 we are nowhere near the collapsed
state, we get a physically fairly reasonable result.
Looking, for low density, at the closest state of widest
angle, we have (zz ~ &V",j=0) from (3.16),

'U„(A'/2m a')

X P
——,'m'+-Aa'p"'+zB ln E/2V"') (3 19)

where A is a constant independent of X. From (3.19)
it is evident that, for p small compared to the density
for the closest packing of hard spheres, the branch
points for V ='U/E approa, ch the axis from the negative
real direction. If the second and third terms of (3.19)
are not small compared to the first, then (3.19) is not
valid, and no conclusions can be drawn from it. Hence,
at least for p small enough, we find tha, t E(V)/S is
asymptotic in the cut plane

—m. (arg V(x. (3.20)

This does not, of course, necessarily mean E(V) is
analytic in the cut plane.

The case of Bose—Einstein statistics is similar to the
above. However, in the collapsed state all particles

occupy the lowest state so that we find the radius of
convergence to be only of order V =E '. This result
may be true for Fermi —Dirac statistics as mell, but we
have proved only the less restrictive V= X "' instead.

We wish to point out that an argument similar to the
above has been advanced previously for the case of
quantum electrodynamics by Dyson (1952). He was
able to show by considering e~ negative that a phe-
nomenon similar to the collapsed state occurs where
electrons and positrons gather into separate regions of
space and form a state of energy arbitrarily lower than
that of the vacuum.

C. The Rate of Divergence

In this section we shall enumerate the terms con-
tributing to the nth order of perturbation theory and
bound each term for Fermi —Dirac spinless particles.
Ke shall then estimate the rate of divergence of the
perturbation series. It could diverge more slowly than
our estimates, due to cancellation between terms, but
as we have shown in the previous section, it cannot
converge. In order to enumerate all the terms it is
convenient to use the Hugenholtz diagram representa-
tion explained in the previous chapter.

The potential function v(k) introduced in (2.17) is,
for a square-well potential

v(lz) = Vfsin (ak) a/~ cos (ak) )/—(2zr'lzz) . (3.21)

This precise form is not used in the following analysis
but only some general aspects of it; namely, that it is
bounded and goes to zero as k ' as k—+ ~.

In order to enumerate all the basic diagrams in the
'6th order, we use the counting rule of Fig. 15. Vertex J
is de6ned as the sum of bubbles on all occupied lines
plus bubbles on all hole lines. If this is not done,
diagrams such as shown in Fig. 18 diverge when taken
separately, but when the sum over diagrams with
bubbles in all possible positions is taken, this divergence
is canceled. We will discuss this point further below.

Let us introduce a counting function Q(zz, E) which
is equal to the number of basic diagrams of order e
with X external occupied state lines (and hole lines)
on the right and none on the left. The number of terms
in the vth-order expansion of the energy will be related
to Q(zz, 0) . If we include vertex F, we will include some
disconnected diagrams. If we omit vertex F, we will
omit some connected ones. As we shall see, however, it
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TABLE I. Enumeration of diagrams.

1 2 3

2 4 84 4324 335 348 34 775 108

2 4 84 4900 454 004 60 987 716

0.5 0.25 1.31 16.9 8491

is a matter of indifference to the rate of divergence
whether vertex F is included (except for the first
vertex) or not. We may now write recursion relations
for the function Q. The subscript denotes the nature of
the last vertex.

Q~(s+(, Ã) = 2 ( ) Q(nÃ), ,

Q~(m+1, X) =4 ( )( ) Q(n, X+1),

Qc(22+1, 1V) =2 Q(22, iV—1),

Qa (@+1,14) =4 ( )( ) Q (n, , (4),

Q.(.+1,~)=4(, ')(, ') Q(., ~+2),

Qp(22+1, E) =max L1, Q(22, E—2) $,

Qg(n+(, (4)=4( )( )Q(n, (4+I),

Qrr(22+1, X) =2 Q(22, X—1),

&7
Qr(22+1, 1V) = 2 Q(22, 1V),

Q, (~+1, iV) = (1—~~,o) Q(~, iV),

where

(3.22)

are the standard binomial coefficients, which, of course,
equal the number of ways of taking a things, b at a time.
Summing the terms in (3.22) we obtain the relation

Q(22+1, E) = L (1—()))( 2 ()) Q(22, X—2)

+4(& 1)Q(22 & 1)+(6& 2&+1 ~vo)Q4(22, &),

+4(%+1)2EQ(n, /+1)
+ (%+2)2(%+1)2Q(22, X+2)], 22) 1,

Q(1, JV) =0, XW2, Q(1, 2) =1. (3.23)

The Kronecker delta 6~ 2,0 arises from the exclusion of

—2F(0, 22) = (42r) ' (e 24)4+ ~ i)4+ 1+e—+i)4+~2—4)4) n dP

(3.25)
sin (—', k)

which, by the method of steepest descents (see, for
example, Jeffreys and Jeffreys, 1950) is, for large 22,

approximately 5"(162r22) '". Thus, the total number of
diagrams can increase no faster than

(23)"$(22/2) !]4 (1.5)"(222!). (3.26)

= (42r) '

disconnected diagrams caused by not allowing vertex P
to follow a state with zero lines on the right. If we drop
the Q(22, 1V—2) term, we eliminate vertex F altogether
(except for the first vertex). We illustrate in Table I
the number of basic diagrams and a lower bound to the
number of Hugenholtz diagrams. This bound is ob-
tained by noting that no more than 4" basic diagrams
may correspond to one Hugenholtz diagram. Row F is
the number of basic diagrams with no external lines
that have only one (the first except in first order) F
vertex. This number is less than or equal to the total
number of connected diagrams. Row 6 is the number
of basic diagrams with no external lines which never
return to the ground state. This number is greater
than or equal to the total number of connected dia-
grams. Row H is a lower bound to the number of
Hugenholtz diagrams. It is Row F over 4". In the first
four orders it varies from about 4 to —,

' the actual num-
ber. In order to estimate the number of diagrams for
large e, we use the fact that there are the same number
of lines entering on the left as leaving on the right;
for instance, if 1V is changed by +1 at one vertex in
the diagram, it must be lowered at some subsequent
vertex. In Table II we give several possible types of
raising and lowering combinations, together with their
weight factors and the root mean factor per vertex.
The weight factor assumes A lines of each type entering
from the left. The root mean weight factors are ap-
proximate. In the type designation in Table II, the
plus sign is used to lump all contributions of the
designated types of vertex together and - ~ ~ indi-
cates other parts of the diagram that may intervene
before the indicated level reduction occurs. We can see
from Table II that the most heavily weighted paths in

(22, lV) space will be the ones in which the largest
values of X are reached. If type V combinations are
used, a value of X=e can be reached and, hence,
we get

weight (FFF EEE) 4"(22/2!) 4. (3.24)—
Similarly, using types II, III, or IV we get again (3.24) .
Except for III and IV, the 4" becomes (4.5)". The
total number of allowed paths in (22, E) space is less
than one-half the number of random walks in one
dimension which return to the origin in e steps, where
steps of length 0, 1, and 2 are allowed. This is easily
computed (see, for instance, Montroll, 1960) as
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TAM.E II. Path weights.

Type Total weight factor
Root mean weight
factor per vertex

IV.

A+D+I

C+IX ~ 8+G

C+H ~ ~ ' C+H' ~ ' E

Fo ~ o /(+Go ~ o g+G

F- ~ F.

6N' —2N+1 —8~, 0

16N'(N+1) '

16N (N+1) '(N+2) '

16(N+2) '(N+1) 'N

(N+2) '(N+1) '

6(N —-) ~

4(N+2)'

2.5 (N+7/6) '

2.5 (N+7/6) '

{N+-;)&

On the other hand, using only the most heavily weighted
path with type II contributions only, we have at least
as many as given by (3.24). Hence, the number of
diagrams is asymptotically something like AB"(2e!).
According to the data in Table I, A 0.12, 8 1.0.

After the diagrams have been enumerated, the
next step is to bound each individual diagram. There
are basically two possible types of divergences which
the diagrams could possess. The first would be a
singularity for a finite value of the internal momenta,
and the second would be a divergence for an infinite
value of the internal momenta. We will examine now
the first type of situation. For the many-body perturba-
tion theory diagrams, the action of the exclusion
principle always prevents any divergence from a finite
internal momentum plane. We will illustrate this
situation for a case in which there is apparently an
arbitrarily strong singularity. The diagram is given in
Fig. 19. The contribution to E/S of the direct (no
exchanges) term is

spin, and k~ is the magnitude of the wave vector at the
top of the Fermi sea. Apparently (3.27) diverges as
q~ "as

~ q ~
goes to zero. However, following Hugenholtz

(1957), if we neglect quadratic terms in q, we may
convert (3.27) into

m n —i
3 —— 2K kg cfqq 5 q52

0

1 1
Ij,i dIJ,i

X ~ ~ ~ y~ dye II ' ', (3.28)
0 0 i=8 81+@1

where the p; are cosines of the angles between mi and q
(except that p~= —cos). We see from (3.28) that the
integrand actually vanishes at q =0 instead of becoming
singular. The problem of a vanishing denominator
(p&

——p, =0) does not cause any difhculty for, doing
the integrals over p, ;, i = 2, ~ ~ ~ e, we obtain

~)n—1 oo

dqq3 p q52)

1&i&n, (3.27)

where we are treating the case without spin or isotopic

I'zo. 19. A succes-
sive hole, filled-state
interaction diagram.

X p& dp&[1 —
pg ln (1+kg)+pg ln pr)". (3.29)

0

Since the mth root of the integrand for p~ is bounded,
the entire term increases only geometrically as e goes to
infinity.

As mentioned earlier, Fig. 18 may by itself diverge.
We will now consider the bubble diagrams in more
detail. First, the contribution of a bubble on a hole
line has the opposite sign from that of a bubble on a
filled-state line. This change of sign follows because
such contributions arise from the subtraction terms in
the Rayleigh —Schrodinger perturbation theory, as we
saw in the previous chapter. The effect of a bubble
on a filled-state line or momentum k is to insert a
vertex contribution of

2f d'm[8(0) —8(k+m) j,
~

m ~(kp (3.30)

and raise the power of the denominator by unity. On a
hole line, there is the same contribution as (3.30)
except that the overall sign is now minus, and k now
stands for the momentum of the unoccupied state.
Hence, summing over bubbles on all lines, we obtain
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m+q
n —

q
m+Q as dq/q'. The analysis of A is slightly more complex:

Pick any hole m, then we may write

C lYl FIG. 20. Labeled
"free" mornentum-
originating vertices.

for the contribution of a J vertex a factor in the in-

tegrand of

Iml&

d3m

X g L8(k,+m) —8(rn, +m) j/ p (kp —m,2), (3.31)

where j is the number of holes or 6lled-state lines
present, k; the ulled-state momenta, and mi the hale
momenta. The 8(0) terms have canceled as the number
of holes must equa, l the number of filled-state lines in
this type of diagram. If 8 depends on the excha. nge
momentum transfer, as well as on the momentum trans-
fer, then the 8(0) terms will not cancel but they will not
adversely affect the following analysis. Since 8 depends
only on the ma. gnitude of its argument, it follows
easily that the integrals of v appea, ring in (3.31)
depend only on

I
k,

I
and

I
m, I. Furthermore, since

k,~Q kp'&m;~, the denominator may va, nish only when
all the momenta lie in the Fermi surface. But, for that
ca,se the numerator also clearly va, nishes. Hence, the
contribution of a summed bubble vertex is bounded by a,

quantity related to the first derivative of the integra, l of
8 appea, ring in (3.31). If the bubble dia, grams are not
summed, singularities may arise (Tolmachev, 1961).

We have seen, from analyzing the different types of
apparent singularities that may occur for finite internal
momenta, that they do not contribute any additional
divergence to the perturbation series.

In order to study the possible divergence of a diagram
at infinite values of the internal momenta, we will
consider each type of vertex which is allowed by the
Pauli exclusion principle to originate a momentum
which may be infinite. These vertices are A, C, and F.
First, if we label vertex F as shown in Fig. 20, then the
vertex contributes v(q), and the denominator following
it has a nonnegative part plus 2q. (q+m —n). As
8(q) goes to zero as q ~, and we are doing only three-
dimensional integrals, this remark suffices to show that
the integral over the "free" momenta q originated at. Ji

vertices must converge at infinity a.t least as dq/q'.
If we label a C vertex as shown in Fig. j.5, then the
vertex again contributes a factor of v(q). If we consider
only the new hne m+q and hole m, then the next
denominator is something nonnegative plus qua+2m q.
Again the integral over q converges at infinity a,t least

pi=lll+qi, p3=111+qg. (3.32)

(3.33)max dq3 dQ3 8 q3—
q»

gl P

where 14 is the solid angle for q3. A bound for (3.33)
follows easily when we note that

I 8(~) I
&~/(1+»') (3.34)

for a, square well, or any other potential which decays
a,t least this fast at infinity.

It now follows easily that, since there are no diver-
gences on any of the integrations and there are at most
it,+1 internal three-dimensional momenta in a diagram
of nth order, any nth-order basic diagram contributes
at most

Mi(Mg) ", (3.35)

where M» and M2 are determinable constants. To show
this we may break a general diagram of the form

fvi(1/Di) v~ ~ v„ i(1/D„ i) v„dr (3.36)

down into a number of factors depending on (essen-
tia, lly) single va. riables only, in the general manner
indicated above. Then each single integration may be
bounded. Ke get something like

n—1

»»x(Iv-I) II D Iv'(1/D*) Ijffdmdn, (3»)
where m and n are the two holes which occur in every
dia. gram. Hence, we have shown so far that the per-
turbation series diverges at worst as

M3(2e) !(M4) ". (3.38)

We shall now show that (3.38) can be greatly im-
proved upon. Although the argument is not rigorous, we
believe that it makes the result quite plausible. It is
based on the observation that when many excited
states are filled, the denominators are, on the average,
much larger than when very few excited states are
present. If the range of the various internal momenta is
determined by the convergence properties of the
potentials or the exclusion principle alone, and not by
the energy denominators which depend on X, then we
niay think of each hole, filled-state, line pair as con-
tributirig an average excitation energy. When there

In this notation q3 will be the "free" momentum created
at this vertex. The vertex will contribute a factor
8(q3 —qi), and the next denominator to the right will
be something nonnegative plus q3'+2q3 m. As we have
shown above, the exclusion principle keeps this quantity
from vanishing in an unfortunate manner for g3 and m
finite, so we may replace the q3~ in the volume element
divided by it with a constant for the purpose of bound-
ing the integral over q3. Our task is thus reduced to
b oundlIlg
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are S of these pairs, the denominator will be, on the
average, X times as large.

We must now determine when the ranges are so
restricted. Clearly, the energy range of every hole
momentum is completely restricted by the Pauli
exclusion principle. It therefore remains to check the
free momenta. We can do this by the familiar procedure
of counting powers at infinity of each free momentum q.
To facilitate this power counting, we may compute
from (3.21)

+1 4m Ve
t (~ qi —qs )) dxis=

qiq2

&& I:io(a(8+qe) ) —Jo(a(qi —
q2) )3, (3 39)

member. The number of such pairs is

and their relative probability will be

AA = 1/PN(N+1)+ Ij,
AB=N/[ ', N(N+-1)+1j,

(3.41)

where x~2 is the cosine of the angle between q~ and q2. As
the quantity in square brackets in (3.39) is bounded
for all q& and q2 by 2, we see that a vertex operator
involving two free momenta may simply be divided
equally between them, i.e., one inverse power for each
one. This property is a general one possessed by most
of the potentials with which we shall be concerned and
not just by the square well. Its origin is that the coefti-
cient of xis in

~ qi —q~ ~

is (—2q]q2).
Referring to the above analysis of the free

momentum-creating vertices A, C, and F, we see (also
let P, =r qi, with r pos—sibly free for vertex A) that
they contribute factors of A, q '; t", q '; and Ii, q '. A
similar analysis of the vertices which may terminate a
free momentum shows that they contribute factors of A,
q '; 8, q '; and E, q ', where q is the one free momentum
which can be annihilated at the vertex. To be sure of
not overlapping in our counting, we will consider only
the originating and the terminating vertex for each free
momentum. If we consider all nine types of pairs of
vertices, we find that all but AA and AB have at least 3
inverse powers of q, and hence determine the range of
their respective free momentum. The other two pairs
have only a factor of q

' and so the range of q is possibly
controlled by the energy denominators. Sy considering
the integral (Grobner and Hofreiter, 1958, No. 131.7.)

dx „, I'(rt —-', )
(A+x')" $21'(rt) A" '"j '

we see that the approximate eRect of an integration
determined by the energy denominator is to multiply
the magnitude of the result by (A) 'te. When there are
several denominators involved, the integration will
affect the multiplication by (A) "',where A is some kind
of a mean A. If an A vertex occurs when there are X
excited states, then we expect that the "free" momen-
tum created will be annihilated on the average when
there are of the order of X excited states present also.
We also compute roughly the probability (fraction of
diagrams) of the pairs AA, AB, and AE occurring.
These are the only pairs which contain A as the first

permutation
1 2

''' 1 2
''' n

=(64" 4) ' (3 44)

is also suggestive in this regard as there are exactly et
permutations. Hence, we may divide the weight factors
given in (3.22) by N, and multiply by some constant A
in order to calculate the total contributions. When we
calculate the contribution in this way, an analysis
similar to that in (3.23) to (3.26) and Table II shows
us that the eth order in perturbation theory diverges
no faster than

I'rt! (A) ", (3.45)

where A is a multiple of A.
The so-called ladder insertions (several successive A

vertices) form a special case. Integration over each free
momentum (in the simple ladder diagram) in the
region near the Fermi surface contributes a factor
proportional to ln (-',

~
m+n ~+kr —-',

~
m —n ~). For r

successive such factors, the final integration over the
hole momenta I and n gives a result proportional to n~.
However, there are only 2" of these terms, so they con-
tribute terms at most of order r~. When a ladder
insertion occurs with m hole lines present, its contribu-
tion is cut to the order of (rI)/m, "+' (r»rn) as can be
seen from the integral

7rt m
~ ~ ~ g dx; ln" (Q x;) .

0 0

AE= ', N(N 1)-/LAN(N+1)+13 (3 42)

For vertex AE, the contribution will be 1/N at each
denominator times the number of diagrams. For AA
and AB, we must take only 1/(8) "~ for the first
denominator to the right of the 6rst A vertex. Thus,
averaging over the possible final vertices, we get a
factor of

P-', (N—1)y(N+1)/(N)'"j/L-', N(N+1)+ 1j (3.43)

for the first denominator to the right of A. This factor,
however, tends to 1/N as N tends to infinity. The
algebraic identity given by Hugenholtz (1957)
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The rest of an eth-order diagram will contribute like a
diagram of order zz —r, or as we have seen (rz —r)!.
Summing over all partitions, we get g r!(zz —r) !,
which is again of order n!. Thus, although the ladder
diagrams contribute more than their proportional
amount, they will not increase the rate of divergence of
the series as a whole.

Summing out the ladder insertions with a E matrix,
will not render the whole series convergent, as can be
seen by counting up the remaining contributions.

We believe that, although for certain potentials (such
as 5-state interaction only, which does not lead to a
collapsed state and, hence, yields a convergent series)
cancellation between terms may occur so as to decrease
the rate of divergence, there is no better general bound
than (3.45). The derivation of (3.45) did not depend
strongly on the properties of the potential, but only on

I v(q) I
being bounded and going to zero like q

z as q
went to infinity.

D. The Summability of the Perturbation Series

In the previous sections we have found that the
formal perturbation series of Sec. II is at best asymp-
totic for the usual type of potentials. Since it does not
therefore converge for any interaction strength however
small, it is a very real problem to assign a meaning to
this series and to determine whether it indeed repre-
sents the true physical function.

The notion Larticulated by Heavyside as quoted by
Hardy (1956)7 is still widely held that for a series to
have a, finite value it must be convergent. A divergent
series would of course have an infinite value. Solutions
of physical problems must always be in finite terms, or
convergent series, otherwise nonsense results. Still, as
we shall see, divergent series need not necessarily be
given up as hopeless. Consider, for example, the series
studied by Euler

f(x) = 1—1!x+2!x'—3!x'+

Plainly the successive terms of this series diverge
eventually for @&0, no rnatter how sma, ll x is. How-
ever, the integral

oo g
—t

dt
1+xt

has the same expansion as f(x) in powers of x at x= 0+.
Furthermore, we can write

zr co ( xt) A'+le i dt
v(x) = Zj (—x)'—

j=0 1+xt
If Re (x) )0, then we have

I
1+xt I) 1, so that the

remainder integral is bounded by (X+1) !x~+' in magni-
tude. If Re (x) (0 and Q= arg x, then we have

I
1+xt I) I

sin P I, so that the rema, inder integral is
bounded by I

cosec (P) I
(X+1)!x~+'.Hence, in any

angular wedge, we have —p&arg (x) (p, p(zr. The

remainder function

g~(x) —~(x) —g jt( x)i
j'=0

is bounded, uniformly in X and x by a constant multiple
of the first term neglected. This property is a stronger
property than the usual definition of an asymptotic
series. Any function g(x) is said to be asymptotic in an
angular wedge

I
arg x I&/ to the formal power series

f(x) if

lim JLg(x) —Q j!(—x) &7/x~) =0
x~0+ j=0

for all 31. The difference here is that the uniformity is
missing. That this difference is a real one can be seen
by the example

h (x) = q (x) +exp ( —x—'") .

This example is asymptotic (!t (zr) in the above
described usual sense as all the derivatives of
exp (—x) "z along rays

I
arg x

I
&P(zr vanish as x—0.

Nevertheless, h(x) does not satisfy the bounding
property possessed by R&(x), as x ~ exp (—x '") has
a ma, ximum of (2X/e) '~ at x = (2X) ' which is asymp-
totica, lly much larger than E.', and approaches arbi-
trarily close to the origin.

If we are willing to restrict our attention to the class
of functions with well behaved remainders, then a
precise answer can be given to the problem of unique-
ness of a function defined by a formal power series.
According to Ha, rdy (1956), Carleman ha, s proved that
a necessary and sufficient condition for

Ig(z)I&n-"
I

~ I", (I ~ I&ro& "), I»g'I&l~ (346)

to imply g(s) =0, is that gn, „' diverge (for suitably
regular n) . Rephrased, this means that if the remainders
satisfy (3.46), then there can be at most one function
asymptotic in the sense (3.46) to a given formal power
series. If the many-body perturbation series is asymp-
totic in the angular sector

I
arg V I&zzr Lin the sense

of (3.46) 7, then this theorem means, since (zz!)""~rz
implies P n„' diverges, that there is at most one func-
tion which is regular for real positive V and asymp-
totically equal to the perturbation series. That the de-
sired solution, for a soft, repulsive square-well potential,
is regular, follows directly from our analysis in Sec.
III.B, and from perturbation theory which shows the
existence of a bounded derivative for positive real poten-
tials. We feel for potentials in which there is a strong but
finite central repulsion, so that no collapsed state is
possible, that for very weak potentials (V 0) the be-
havior should be essentially that of the central repul-
sions. That case was analyzed in detail in Sec. III.B and
the location of the singularities nearest the origin esti-
mated. It was found that they approached the origin
from the direction of the negative real axis. Their origin
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physically is the well known collapse phenomenon (for V
negative) in an attractive short range potential well.
Then we feel that it is physically reasonable to suppose
that, at least for very weak potentials, the ground-state
energy is asymptotic in the closed right-half plane.
Let me mention, however, that the type of singularities
found in super-conductivity

g~—B/V (3.47)

Etr(V) = Q ~e V"
ye=0

(3.48)

This series has a nonzero radius of convergence as
mentioned above, and by analytic continuation defines
E&(V) everywhere in the complex V plane, except at
singular points or on branch cuts. This analytic con-
tinuation is conveniently given by Mittag —LeRer s
method (Hardy, 1956). We define

Etr(V, 5) = Q (3.49)
n=p I" 8n+1

For every 6)0, Etr(V, h) is an entire function of V as
E&(V) is analytic at V=0. Also, Hardy (1956), has
shown, Theorem 135, that

lim Etr(V, 6) =E~(V) (3.50)

uniformly, in any closed and bounded region in the
Mittag —LeKer star of Etr(V). The Mittag —Lefner star
is defined by cutting the complex V plane from every
singularity to infinity along rays. As we have pointed
out above, Etr(V) is regular for positive real V (at least
V small), and hence the positive real axis in the
neighborhood. of V=0 is interior to the Mittag-
LeRer star for all X. The meaning we wish to assign

are excluded here as they do not satisfy (3.46) for V
pure imaginary. We have argued in a previous paper
(Baker and Kahane, 1969) that for the usual sort of
potential with a central repulsion pIus short range
attraction, superconductivity should not be a problem.
We also remark that the nearest singularity of course
sets a limit on the radius of convergence so that while
V=O is a regular point for a system of finite size S,
the radius of convergence tends to zero as X tends to
infinity.

We will now prove, based on our analysis of the loca-
tion of the singularities of the energy function for finite
E, and other known properties, that the perturbation
series defines the physically correct function. The
method of proof is to establish an analytic continuation
method which is valid for finite lV, and to show that it
is so, uniformly, for all finite S.We then take the limit
as E goes to infinity, and demonstrate that this analytic
continuation defines the physically correct function
from the "infinite nuclear matter" power series.

I,et the energy per particle in the X-fermion problem
with pair interaction Vq (r) be

FIG. 21. X-dependent integration contour.

to the sum of the perturbation series for infinitely
many fermions is

lim Z'~(V) = lim lim Err(V, 5). (3.51)

Ke would like to interchange the order of limits in
(3.51) to lime p limip. „. For this interchange to be
correct, it is sufficient to show that Iim~ „is uniform
for 8 small enough. To this end, let us introduce the
Mittag —LefAer function

n 'ye(V/I) —+(tt V) '—(3.54)

as U/u tends to infinity, pot(V/I) is bounded on the
contour of Fig. 21. We may now shrink the circular
arc part of the contour to the origin. As Etr(u) is
bounded, and the length of the arc goes to zero, the
contribution from this part of the contour goes to zero.
Hence we can replace the contour of Fig. 21 by that of
Fig. 22 which is now independent of E. However,
E&(u) tends to a finite limit at every point on this
contour and does so uniformly. Hence, for all ir5&2$,
taking the limit of (3.53), we have that Etr(V, 8)
tends uniformly to

E(V, 5) =(2rri) 'gqn(V/u)E(tt)tt 'dg. (3.55)

By the properties of pot(x), we deduce that

E(V) =lim E(V, 0) =lim lim Etr(V, 6). (3.56)

(3.52)

For V less than the radius of convergence we have, by
Cauchy's Theorem, for regular functions of a complex
variable,

E&(V, 5) = (27ri) 'gpt(V/N)Etr(tt) (dtt/u), (3.53)

where the contour is a circle about the origin inside the
circle of convergence. Again, using Cauchy's Theorem,
we may deform the contour as shown in Fig. 21, pro-
vided we cross no singular points of Eii (u) . If we now
restrict 7r8&2$, then as for P&~ arg (V/tt) ~&m., we
have
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consider the following example of a purely mathematical
nature:

1+2x'+ 2x4+ 2x'+ 2x'+ ~ ~ ~ (3.57)

which can be summed for small x as

(1+x')/(1 —x') .

however, by rearranging (3.57) as

(3.58)

FIG. 22. N-independent integration contour.

That is to say, we may obtain E(V) correctly from the
V series by first taking the limit as system size increases
indeinitely, and then summing the series. The limiting
function necessa, rily has the asymptotic expansion

E(V)=pe V,

where
1~

en llm pe
N~ oo

by our construction, and the usual theorems on the
limits of a sequence of analytic functions and limits of
the sequence of its derivatives. We can see roughly how
the Carleman restriction comes into play by noting
that we can get E(V, 8) by simple series summation
only when 6)1, and we can only prove analyticity in 6

for 0&6&2//~. Thus, if 2f/~)1 we can establish
E(V, 8) over a, range of 8 and a,nalytically continue it
uniquely to 8=0, whereas if 2P/~&1, we cannot make
contact and sum in this manner. In the latter ca,se,
Carleman's Theorem assures us that indeed there is
not a unique analytic continuation, but in the former
case, which obtains for the problem a,t hand, we do
have a unique analytic continuation and a well defined
sum for the energy series.

Consequently, we conclude that if the potential is
such that the function E(V) is asymptotic in the
sense of (3.46) in the closed right-half plane a,nd our
estimated bound (3.45) for the perturbation series
holds, then that series defines a unique function and it
is the physically correct one Lin the sense of (3.51)].

E.. Rearrangements of the. Perturbation Series

%e have by now established the existence of a
perturba, tion series for the energy per particle in the
ground state of a many-fermion system interacting
by forces which include a strong, short-range repulsion.
This series is divergent, but nevertheless is summable
to a unique answer which is the physically correct one.
In this section, we show that. under certain conditions
the series can. be rearranged and still yield the correct
answer. The results in this section are based on Baker
(1970). To see that this procedure needs consideration,

1 ~ 3-5 2x 5'
, l

+.~, (3.59)

we obtain a, series which is now also convergent for
large x. Summing up directly, we get for large x

(x'+1) /(x' —1) . (3.60)

We require

8~(V) = g ~a„LV"g ~b. ,;V&].
n=0 j=0

(3.61)

~e-= Z (~~.) (xf., —.)
n=o

(3.62)

in order that this be a formal rearrangement of the
energy. In order to facilitate our development, we will
introduce the a,uxiliary function

8~(V, X) = g ~u„X"V"(Q ~b„,,U'). (3.63)
n=0 j=0

Ke will assume that the rearrangement has preserved
the bounds for the original series in the sense that

fn

(„a„)(~f„,„-„)l&a(am )- and r'(A')"m. ,
n=0

(3.64)

the second bound holding uniformly in S. Under this
assumption, there exists a circle

l
V l& p(X), for which

the double series converges uniformly and absolutely,
provided

l
X l&E)1. It follows, then, by standard

a,rguments that for. V in this circle

8~(V, 1) =E~(V). (3.65)

We now wish to extend G~(V, X) by analytic con-
tinuation to a wider domain. This may be done, again

As (3.58) is a meromorphic function, it represents the
unique analytic continuation of the series (3.57)
throughout the whole complex plane. The result
(3.60), seemingly valid for large x, is the negative of
(3.58) and thus incorrect. Nevertheless (3.59) gives
the correct sum for small x. This example illustrates
that some care is necessary in the rearrangement of a
series.

We will now rearrange, formally, the series (3.48) as
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by the Mittag —LeSer method. To this end we introduce
Oo g )nPn

8))i(V, X, b, r)) = P
„=p F gn+1

3.66
(;= I') ( j+ii)8~+1]

The a,nalytic continuation is then given by

(3.67)8~ ( V, X) = lim lim 8))).( V, X, 8, rl)
5~0 q~0

throughout the Mittag —LefHer star. If there exists a
path, interior to the Mittag —LefQer star, connecting
(V=Q, X=1) with (V=V, X=1) for all X, then by
analytic continuation from (3.65), we have (3.65) a,iso
valid for (V= V, 'A = 1) . Now as this path is a closed and
bounded set, and as, from our discussion of the V series,
Ev (V) tends to a finite limit at every point of such a
path, it does so uniformly in X; thus we conclude that
under these assumptions

(3.69)

Now, it is not possible to pass from small x to large x

E(V) =8(V 1) = Z ~-(V" Z &- V') (3 68)
n=0 j'=0

We have established that this series is summable to the
correct value provided the rearrangement satisfies
(3.64) and there exists a path in the Mittag —Leffler
star joining (V=0, X=1) and the point of interest.
The imposition of the second part of (3.64) is necessary
to insure that the limiting analytic continuation be
unique.

We remark that when (3.68) is known to be sum-
mable, and the terms in square brackets are at least
asymptotic in an angular wedge 0&~ arg V ~&P&2~
in the sense of (3.46), then Carleman's Theorem a,ssures
us that it sums to the correct result in any connected
region of summability. To see this, we need only note
that a finite number of terms from the m and j sums in
(3.68) will suffice to give any finite order coefficient.
These restrictions on the square bracket quantities are
certainly valid for resummation of the ladder diagrams
into a E matrix when the potential is purely repulsive.
This result follows as the series is closely related to a
series of Stieltjes (Baker et c/. , 1963). The R-matrix
procedure (Baker and Kahane, 1969), also satisfies
those restrictions for R(V) is convergent when V is
bounded and of finite range; and for usual potentials
E(V) is nonsingular in the neighborhood of the positive
real V axis.

It is worth noting that the example at the beginning
of this section. violates one of our conditions. To see that
this is so, rewrite (3.59) as

1 2x &~ 1 3 2x I4
1 — X —~—

2 1+x~j 2 4 1+xii

FIG. 23. Ladder diagrams.

without crossing the unit circle in the complex x plane,
by the Jordan curve theorem. For x on the unit circle,
we find that

1&[2x/(1+x') ]'( ~ (3.70)

so that points on the unit circle in the x plane lie on the
branch cut introduced by the Mittag —LefRer summation
of the X series when X= 1.Hence there is no path within
the Mittag —Leffler star which connects large and small
values of x, and thus no necessity for the sum of
(3.59) to be the same function in the two regions.

As pointed out in Baker (1970), some methods now in
use cannot be justified by these procedures, and for
independent reasons may not be employed with full
confidence.

A. The E-Matrix Rearrangement

In order to make the perturbation series useful, in
a practicable problem, some sort of rearrangement was
considered desirable by most workers. The reason was
that in the nuclear problem there is a very strong
repulsive potential core and even if the series were
convergent (which it is not) a great many terms
would be required to deal with such a large force. The
same problem arises in two-body scattering. There we
recognize that even though the potential is very large
(even infinite), the effect is finite. It simply excludes the
wave function from the region of- the repulsive core.
Brueckner had the idea of rearranging into a single
term all of the so-called ladder diagrams in the energy
(see Fig. 23), in analogy to Watson's theory of multiple
scattering. Also, by the same procedures, two or more
successive vertex A interactions (Fig. 15) between the
same pair of lines would be reduced to a single term.
For example, vertex D would combine as illustrated
in Fig. 24.

IV. THE REPULSIVE FORCE PROBLEM

In the preceding two sections we have established a
formal series expansion for the ground-state energy and
found that although it is divergent, it can still be used
to define the physical solution to the many-fermion
problem. In this chapter we consider the problem in
which the forces are purely repulsive. Here, there can be
no bound states or condensation phenomena to compli-
cate the problem. Physical intuition is very eAective,
based on elementary considerations alone, in analyzing
which perturbation terms will contribute significantly,
at least in the important low-density limit. In the case
in which attractions are also present, there are addi-
tional complications and we will discuss these in the
next chapter.
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FIG. 24. The ladder sum starting with vertex D.

In order to evaluate this sum, we must erst write
down a typical term. From (2.41), we see that the first
step is to evaluate the Tr { I over spin and isotopic
spins. In Fig. 25 we have illustrated a typical basic
diagram. From the figure we see clearly that there are

two cycles. Any odd number of exchanges leads to one
cycle, and any even number undoes the exchange and
leads back to two cycles. For example, an interchange
at vertex 2 and vertex 3 leads, except for the momentum
labels, to an identical figure. The momentum labels
can also be made identical by replacing the integration
variable q2 by n —m —q&. Likewise, any term can be
reexpressed as one involving 0 or 1 exchanges on the
last vertex, accordingly as the number of exchanges is
even or odd. Hence, using v= (2S+1)(2I+1), (2.41)
for a ladder diagram reduces to

—3(—1)"v
d7.

8~kg'

n—1

I: II &(I k'—i k I)]l:8(l ko—k —i I) &(I ko+k —i I)/p]
j=l

n—I

II (&7—&o')
j'=I

(4. 1)

where the region of integration is that allowed by the Pauli exclusion principle. The denominators have been
reexpressed through the identity

(iy+k. ) 2+ (iy k) 2 (Ly+k ) 2 (Ly k 2) —2(P 2 P 2) (4.2)

which uses momentum conservation to eliminate the dependence on the total momentum of the hole lines, which
equals that for the filled-state lines. If we think of the integration over the various k, as again discrete sums, then
the terms (4.1) in the ladder sequence are successive terms in a matrix geometric progression, and can be generated
by iteration of the integral equation

where

I k +kP I&A'F i I
k II kP I+~F (k"') '—k(P

lim [El.m./(M') )= (3/Svr4')
iV~ &0 0+iPI(~Fi Ik0 2P I+I F

dy dkoLpE(ko, ko, p, ko) —E(ko, —koi p, kp) ]. (4.4)

The p dependence of E enters through the Pauli
exclusion principle, and the ko dependence through the
energy denominator. The replacement at the other
vertices is easily seen to be given by the solution of the
same equation, LEq. (4.3)] except that the denomi-
nator in (4.3) now depends on the total excitation of
the Fermi sea. As the rules for the potential perturba-
tion series call for the sum over all linked-cluster
diagrams (Sec. II.E), there will occur a diagram cor-
responding, for example, to every term in the infinite
sequence illustrated in Fig. 24 every time a vertex D
occurs. Hence we can, as Brueckner showed, rearrange
the potential perturbation expansion in powers of the
E matrix using the same rules as in Sec. II.E, except:

(i) replace the 8 with E-matrix elements (this replace-
ment sums exactly all the second-order terms, so that
no E diagram of two vertices is required. )

(ii) there shall not be two successive A vertices
between the same pair of equivalent lines.

By transforming (4.3) to a coordinate space repre-
sentation (we will give an approximate version below)

~2p+k

2 P+

—
p

—k J ~
2 o 2p —

k~

~ +k ~ +k

2 2 2p k Lp k

FIG, 25. Fourth-order basic ladder diagram.

we can show that for n(r) repulsive, all the necessary
criteria of Sec. III are met so that this E-matrix re-
arrangement of the perturbation series defines the same
ground-state energy. It is to be noted that the E of v

series is divergent, as is also the E of E series.
Brueckner has gone one step further and summed an

additional class of diagrams into the E matrix. Suppose
on every line in the graph we include the series of
insertions shown in Fig. 26, as well as any number of
these insertions on the same line. The insertion of one
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of these sequences of terms is, as there is the same
denominator before and after each of these terms by
momentum conservation, given by D 'ED', where K
is an average over the hole momentum m in Fig. 26.
All of these terms, of course, occur in the series. In
addition, we may have any number of such sequences of
insertions on every line. This yields

D-1 D—1KD—1+D 1KD—-1KD—1

D'K—D 'KD 'KD '+ ~ ~ ~ (4 5a)

which can be formally summed to yield

(D+K) ' (4.5b)

As Srueckner points out, this sum can be thought of as a
self-energy correction. When the insertions are allowed
on the lines that define the E matrices, a self-consistent,
momlieear integral equation results for the E matrix.
It is unproven whether this additional rearrangement
of the energy series still leads to the same energy func-
tion as the original series, but we are inclined to the
view that it does so, at least for repulsive potentials.
However as we shall see later, the numerical approxima-
tions necessary to make this additional rearrangement
a computationally practical one are sufFiciently in-
adequate as to make its use seem to us to be presently
inadvisable.

We now describe, following Brueckner and Masterson
(1962), the approximations a,nd procedures which
are used in K-matrix calculations. In order to carry out
calculations, it is usual to eliminate the dependence of
the K matrices on the total momentum by making the
following approximations. An energy denominator D

D=E(-', p+k') +E(-',p —k')
—E (-', p+ k) —E (-', p —k), (4.6)

where p is the total momentum, k is the relative
momentum in the initial state, and k' the relative
momentum in the intermediate state (an integration
variable in the K-matrix equations), is set equa, l to

D= 2[E(k') —E(k) ]. (4.7)

This is correct if the E's are approximately quadratic
functions of their argument. The Pauli principle
requires that the integration over k' be restricted to a
region E such that

Pp+k' ~) kr and
~

—', p —k' ~)kr in R. (4.8)

This is approximated by replacing

+ =~= + =~=+"

Fro. 26. The ladder sum starting with vertex J.

To eliminate p completely, an average value p is used in
place of p:

yg 3k'' 1——

=0 k& kr. (4. 11)

The effect of these two approximations, usually called
angular averaging and center-of-mass averaging has
been studied extensively. Baker et ai. (1963) find them
to be "adequate".

Irwin (1963) has investigated the a,ngular averaging,
a,nd Kohler (1969) the center-of-mass averaging,
separately, and found them to be good approximations.

The off-energy shell effects have to be approximated
a,iso Lthe K matrices and single-pa, rticle energies
depend on the excitation of the Fermi sea as we pointed
out above; we have already suppressed this fact in
writing (4.6)]. By transforming into coordinate space
and making a partial wave expansion, we obtain the
following set of equations. The Green's function is

G/,.t(r, r') =

where f is chosen arbitrarily. It is in the definition of
A(k) that approximations to off-energy shell effects
manifest themselves. Continuing with the equations,
we have that the wave function I satis6es the integral
equation

~ jt( "«)ji(k"r')
F - k„k

2t-E(k//) (k) ] (P/ / ) / ( )

where j is a radial Bessel function, / is the angular
momentum, and

6(k) =E(k)

= E(kp) —fLE(kr) —E(0)] k&kr, (4.13)

where

dk'-+ dk'F (p, k'),
n/, t (r) =j t (kr)

2
Git(r, r') V(r') ukt(r') r" dr', (4.14)

F(P, k') =0, (k"+—'P')'t'(kr
=1, O' —-', P&kr

k"+-'p' —kF'
, otherwise. (4.10)

Vl p

where V is the potential. The K matrices are given by

00

K&(k) = — jt(kr) V(r) uk&(r) r' dr, (4. 15)
Q
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and the single-particle energies by
(/c p —m) /2

E(m) =-,'m'+4

=-'m'+4
&"+"'&i' m'+4k' kF'—

1— k' dkI
(~ /, ~)/2 4km

m) kp, (4.16)

~"&+"'»' m'+4k' —kg'

f+ 1— k' dkI
(/cg —m) /2

section we will investigate their utility in the repulsive
force problem.

A characterization of those potentials, for which the
inclusion of self-consistent energies in the denominator
of the Green's functions is a valid rearrangement of the
series, is not known. It is known that a self consistent
solution to these equations can fail to exist even for the
simple, repulsive square-well potential at higher density
(Baker et at. , 1963),as well as in the liquid He3 problem
(Brueckner and Gammel, 1958b). Whether this defect
is removed by a more exact treatment (Gammel and
Nut tall, 1965) of the off-energy shell effects [the
approximation made in (4.13)] is unknown.

(i —1, / even)
I= Q (2~+1)

I ~zi(k). (4 17)
&,+1, i.dd)

Finally, the average binding energy per particle is

3 kp

Ey [E——(m) ——',m']m' dm. (4. 18)
2k'' o

The factors in (4.16) arise as follows; the expected
equation is

E(m) =-,'m'+[z /(2') ']
&& f dn[(mn

~

IC
~

mn) —1/iE.„.~,„„,.]. (4. 19)

Instead of n, the variable k=-', (m —n) has been used,
and the requirement e(kp, and an integration over the
angles of k, result in the factors.

The single-particle energy [Eq. (4.16)], is then
substituted back into (4.7), the Green's functions are
recomputed, and new single-particle energies obtained.
This process is continued until self-consistent single-
particle energies are obtained. This iterative solution is
necessary because of the nonlinearity of the equations.
The computationa, l techniques are adequately discussed
in the original papers and we will not dea, l with them in
this article. There have been a number of other effective
procedures developed to' deal with special cases of the
E-matrix problem. In particular we mention the
schemes of Kohler and McCarthy (Kohler, 1969 and
references therein), and Kallio and Day (1969) .
These procedures appear to be useful when there is a,

strong attraction and only the hole state, but not the
particle state energy is made self-consistent. Otherwise
the resultant integral equation has a, singular kernel
(Kohler and McCarthy) or the iteration scheme fails
to converge with adequate speed (Kallio and Day).
A method due to Haftel and Tabakin (1970), which
appeared too late for integration into this review article,
involves a solution by matrix inversion in momentum
space and may be a very efficient numerical procedure.

These procedures were, of course, developed with the
intention that they should be applicable to problems in
which both attractive and repulsive forces aIc present,
but we will discuss that in a later section. Later in this

B. Low-Density Rearrangements

Further rea, rrangements of the E-matrix series were
found by many workers to be desirable. In the first
place, the numerical calculations involved are quite
complex and require a high speed computer to get
through them. In the second place (see, for example,
Bethe, 1965), the E-matrix series is not automatically
a low-density series.

Undoubtedly, the most ideal method yet proposed for
this problem, in principle at least, is that developed by
Bethe and his co-workers. However, as it has been
thoroughly reviewed by Day (1967), Rajaraman and
Bethe (1967), and Brandow (1967), we will only touch
briefly on the physical ideas. Through the introduction
of the reference spectrum method (Bethe et a/. , 1963) a,

number of the qualitative features of the higher order
dia, grams were studied. In particular, one can see
roughly from (2.41) that for each new hole momentum
introduced there is a factor of k~' (which is proportional
to the density, p) multiplying the contribution. It can
happen however that the new denominator will con-
tribute a, factor of kp ' if the bulk of the contributions
to the integral come when the mornenta in it are of
the order of the Fermi momentum. Also, self-energy-
type insertions lead to singula, rities, due to raising the
same denominator to higher powers; however, the
inclusion of the corresponding insertions on the other
type of line (hole or filled-state) cancels this singularity,
as we explained in the previous chapter. Thus Bethe
and his co-workers have been led to the "hole-line"
approximation where the diagrams of the E-matrix
expansion are grouped by the number of independent
hole-line momenta. It can then be shown that the results
of the e hole-line approximation can be expressed in
terms of the e-body scattering operator (in the presence
of a Fermi sea). The difficulties of this approach lie in
the calculation of the 2-, 3-, ~ ~ ~ body scattering
operators. Various approximate treatments have been
proposed as described in the above-mentioned review
article. Day (1969) has also considered four-body
terms. A persistent problem with this a,pproach is the
treatment of the intermediate state energy denomi-
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nators. The goal has been to treat them in such a way
as to improve convergence. Ke note that the Brandow
(1966) choice which includes the self-energies on the
hole-lines but not the filled-state lines is not useful here.
[One virtue of this choice is tha, t a variant of the
Hugenholtz Factorization Theorem, Sec. II.C shows
that hole-line self-energy corrections are on the energy
shell; the other virtue is that for net attractive poten-
tials E(k")—5(k) in Eq. (4.12) is always large. ] The
reason is that Eq. (4.12) must necessarily have a
vanishing denominator for a repulsive potential as
E(kl:) —6(kr) (0. Thus the effect is simply that there
is a branch cut along the positive real V axis. This
choice has also been criticized as either wrong or
deceptive for the case of nuclear-type potentials
(Baker, 1970) .

Although Bethe and his collaborators aimed to
apply their theory to potentials with both attractive
and repulsive parts, their arguments are relevant,
a fortiori, to the repulsive potential problem.

A diferent tack was pioneered by Huang, Yang, and
Lee [Huang and Yang (1957);Lee and Yang (1957)].
They introduced two methods: The method of pseudo-
potentials, and the method of binary collisions. They
applied these procedures specifically to the hard sphere
gas (both Bose and Fermi statistics were considered) .
The results were an expansion in (kryo), where a is the
hard core radius, or more generally the scattering length.
They obtained the first two terms. Further terms
involve other two-body scattering parameters, and as-
pects of the potential which are not given by two-body
scattering para, meters. Efimov and Amusia (1964;
Efimov, 1965) and independently Baker (1965a,) have
carried this expansion further. It is valid for any
strength potential and low density. For weaker poten-
tials, the range in density is greater. It is calculationally
simpler to use than the previously discussed series
rearrangements, and although not so good in principle,
it is quite adequate for certain problems. We will
discuss this expansion in detail in Sec. IV..E and attempt
to access its accuracy.

C. The Potential Perturbation Series Expansion
Through Fourth Order

In order to provide a standard of comparison and
evaluation for the various proposed approximations,
Baker et at. , (1963) calculated through fourth order the
complete potential perturbation series for the simple
repulsive square-well potential. There is one first-order
diagram, one second-, four third-, and 46 fourth-order
diagrams. Of the 46, fourth-order diagrams, there are

FIG. 27. First- (81), and second-order (82) perturbation theory
diagrams.

3/(4~kp')
[m[&kr, InI&ar

dm dn[o(0) —-', o(I m —n I) ].

This integral can be done analytically in terms of the
sine integral Si (x): The result is

[(krc) '/97r] {2—(72/x') [x' Si (x) —4—3x'

+(4+x') cos (x)+4x sin (x)]I, (4.23)

where x is 2k~c.
The contribution A& comes solely from Fig. 27b. It

is, by (2.41),
—3 e(q) [v(q) —-', e(I n —m —q I)]

dGl dQ dq
4~kp'c' q'+q (m —n)

(4.24)

where the integration is carried over all values allowed
by the Pauli exclusion principle; that is, all hole-line
momenta are in the Fermi sea, and all filled-state line
momenta are outside the Fermi sea:

Im+q
I
)kr

As a further sample of the perturbation series terms, we
write out the third-order terms which correspond to
Fig. 28. The various contributions are:

only 28 distinct nonzero diagrams. First, the momentum
transform of a square well of strength j. and width c is,
by (2.17)

8(q) = (1/2m'q') [sin (qc) —qc cos (qc) ]. (4.20)

We will obtain the terms iri the expansion as

EEMc'/(FfP) =Ar (V3fc~/'k') +A~(VMc'/fi'4) '

+A3(VMc'/fi')'+ ~ ~ ~ (4.21)

for a potential of strength V. Referring to (2.40), we
obtain the contribution AI, which comes solely from
Fig. 27a. It is

Figure 28a:

83= 3/(4m-kp'c4)
dm dn dq dqr~(q) &(I q—qr I) [~(q~) —2~(lm —n+qr I)]

[q+q (m —n)][q, +q, (m —n)]
(4.25)
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(a)

FIG. 28. Third-order perturbation
theory diagrams: (a) 83, (4) H3, (c)
R3, (d) F3.

(c)

Figure 28b:

H3= 3/(4m. kp'c4)
dm dn dq dq&n(q) v(q&) [v(l q —

q& I) ——,'n(l q+q&+m —n I)]
[q'+q (m —n) ][q'—qP+ (q—

q&) ~ (m —n) ] (4.26)

Figure 28c:

R3 = 3/(xkp'c4)

dm dn dq dq~I b(v) —k~(l m+q —q~ I) ][&(v)—k&(i n —
q~ I) ][&(q)—2~(l n —m —q I)]—s&(l n —m —q I) &(I m+q —qr I) &(I n —

q~ I) I

[q'+q. (m —n)][('+q (m —qg)]

(4.27)
Figure 28d:

dm dn dq dq&v (q) [n(q) —-', v(l n —m —q I) ]F3= —3/(27r1~p'c4) [&(I q+m+q~ I)
—~(l m+q~ I) ].[q'+q (m —n)]'

The fourth-order contributions are illustrated in
Figs. 29—34. We will not give the equations derivable
from them here, but refer to Baker et al. (1963) for
those. They are broken into classes of similar integrand
structure. We will however note the following errors in
that paper. Crichton and Anderson (1967) ha, ve pointed
out that (2.15) of Baker et al. (1963) is wrong for
IIA.5—6, but the formula given there for IIA. 1—4 also
holds for diagrams IIA.5—6. In addition we note that
Eq. (2.13) of Baker et al. (1963) is misprinted and the
factor 2" should have been 2' as was actually used in
the computation. Further in Table II, the argument x2

for Diagram II.9 should have been
I q+q~ I

instead of
I q —

qq I. This error has caused the tabulated results
there and in Baker et a1. (1964) to be slightly wrong
for II.9.

The integrals were evaluated by Monte-Carlo pro-

cedures and the number of repetitions varied from 2&& 10'
to 2.8)&10'.The error estimates are based on the Monte-
Carlo estimates of the variance. Details are contained
in the original paper. The values for II.9, IIA.2

(=IIA.4), IIA.5, and IIA.6 have been corrected in
this report with the assistance of M. F. Hind. In the
code for IIA.2, one of the Pauli restrictions was wrongly
programmed in the original work. This error also
persisted to the work of Baker et al. (1964). We give
the fourth-order results in Table III. The diagrams
which are, in principle, included in Brueckner E-
matrix approximation through fourth order, are 81, $2,
B3, F3, I.1, III.1, III.7+8, IV.1, IV.2, and IV.3.

We mention that III.3—6, 11, 12 vanish automatically
because we cannot have a hole and a filled state with
the same momentum.

The two hole-line approximation is identical with the
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Brueckner approximation. The diagrams, including the
self-energy corrections, which contribute to the three
hole-line approximation of the "Cornell group" (see
Sec. IV.B) are H3, R3 (completing third order), I,2,
I.3+4, I.5, II.1, II.2, II.5, II.6, II.7, II.12, II-A.1,
IV.4, IV.5, IV.6, and IV.7.

Careful attention to Table III yields the following
observation, which is not unexpected on general
grounds. The Brueckner approximation forms a quite
adequate approximation to the first four orders of the
potential energy expansion to the ground-state energy
at the lowest densities. )Nuclear saturation density
(Day, 1967) is krc=0.544, for reference. $ The three
hole-line approximation works substantially better
and is accurate to higher density. The leading correc-
tions to the ladder approximation (81+82+83+
I.1+ ~ ~ ~ ) are the ring (R3) diagram and the hole—
hole interaction diagram (H3) and those derived from
them by ladder-type insertions, rather than the self-

energy-type insertions. At low to moderate densities,
the inclusion of those self-energy insertions which have
four independent hole momenta (IV.1, IV.4, IV.5,
IV.6, and IV.7) do not improve the accuracy of the
three hole-line approximation. It is just as well that
there is no advantage to their inclusion because, as
Baker et al. (1963) have shown, the numerical approxi-
mations used to solve the self-consistent energy problem
fail in the lowest order (III.1 and 111.7+8) in which
they enter even to give the correct sign of the correction.

If we rearrange the E-matrix rearrangement with no
self-energy corrections, which we refer to as the ladder
rearrangement, according to the number of independent
hole-line momenta, then we observe that an effective

I.2

n-q

I A. I IA. 2

I A. B

FIG. 30. Class lA, fourth-order perturbation theory diagrams.

procedure is obtained for treating the ground-state
energy of the low-density, repulsive potential. many-
fermion system. This rearrangement can be shown to
satisfy conditions (3.64). As we remarked above (Sec.
B) the n hole-line approximation can be expressed in
terms of the m-body scattering operators (m&e).
Since these are analytic Re (V) &0, near V=O, for
purely repulsive forces, we conclude that this rearrange-
ment is valid. The problem is, of course, that the three-
body and higher operators are difficult to compute
accurately, as are those higher-order contributions
which depend only on integrals over products of
two-body operators.

In order to investigate the effect on the many-
fermion energy of different potentials which are equiv-
alent for the two-body scattering problem, and thus to
study whether that information is sufficient to pin down
the many-fermion energy, Baker ef al. (1964) have
repeated the calculation of the first four orders of the
potential perturbation series, as well as the ladder and
Brueckner approximations for a nonsingular, but
velocity-dependent force, which exactly simulates a
hard core potential for two-body scattering. The force
used is defined as follows: I.et p(r) be greater than or
equal to one, and p(~) = 1. Then, if A is Legendre's
opera, tor with eigenvalues l(l+ 1),
i. = —([p, (r) —1]'7'+Up '+ ,'7'p, -

+ I "r ' —L~(r)+&) 'IA —k''Lv'7(g") —r '3) (4 29)

exactly simulates (Baker, 1962) a hard core of radius

I1—Lp(r)7 '"I «, (4.30)

I.5
n-q,

I.6

where

p(r) = (p(r) j "'«. (4 31)

I'xG. 29. Class l, fourth-order perturbation theory diagrams. This force does not, of course, exactly simulate a hard



508 REvIEWS OP MODERN PHYSIcs ' OcToBER 1971

TABLE III. Monte Carlo calculations.

Diagram

81a

B3a

H3b

R3b

F3a

Z3

ZB3

I.1a

I.2b

I.3+4b

I sc, b

I.6
I-A.1

I-A.2

I-A.3
II.1b

II 2c, b

II.3
II 4c

II.sb

II.6b

II.7b

II.8
II.9
II.10

II 11c

II 12c,b

II-A. ib

II-A.2

II-A.3
II A 4c

II-A, 5

II-A.6
III.ia
III.2
III.7+8'
III.9+10
Iv. ia

IV,2"

IV 3c,a

IV.4b

IV.5' b

IV.6b

IV 7c, b

Z4

ZB4
Z3HI.4

kpc =0.25

Value

5.567499X 10-4

—1.960X 10-4

7.003x 10 '

1.75X 10 '
—8.60X10 '

3.95X 10 '
6.939X10-5

7.007X 10-5

—2.506X 10-5

—6.30X10 s

—6.22xio s

6.30xio s

—9 93X10- o

—1.01X1O-s
—4.65X 10 '
—9.39X10 '

3.07X 10 '
3.07X 10 '
2.45X 10 s

2.45X 10-s

9.00X 10 '
2.28X 10 '

-2.77X10-s
-4.66X10-s

1.36X10 s

5.04X 10 "
—4.66X10 '
—2.77X 1O-s

—9.12X10 '
2.96X 10 '

—6.88X 10 "
2.96X 10 '
4.92X 10 '

4.59X 10 '
—3.01X 10 '
—4.59X 10-s

3.66X 10 '
6.86X 10-s

—6.2X 10-»
—1.35X 10-s

—1. , 35X10-s
1.83 X 10-io

1.83 X 10-~o

3.90X10-»

3.90X10 "
—2.438X 10-5

—2, 509X 10 '
—2.437X10 '

Deviation

1.2X10 '

5.7X10 '
1.6X10 s

6 SX10 '
2.3X10 'o

5.7X10 7

S.7X10-7

1 9X10 7

6 1X10 'o

6 OX10 ~o

6 1X10 'o

1.8X10 "
2.9X10—io

1.8X10 'o

1.5X10 "
3.1X10 '
3.1 X 10-s

4.3X10-»
4.3X10-»
4.5X10 'o

1.5X10 s

2.3 X 10-»

7X jo—zo

6X10—»

1.3X10 "
i.7X ip-I
2.3 X 10-»

4 6X10 'o

5X1Q—»

1.OX 10-»

4.5X10-»
4X 1Q

—»

6.6X10 "
2. 1 X 10-s

5.9X10 "
1.6X10 s

2.PXip I
1 Pxip —»

4.9X10-io

4.9X10 'o

9.8X10-»
9.8X10 "
3.2X10-»
3.2X1Q-»

1.9X10-7

1.9X10 '
1.9X10 '

kJc=o. so

Value

4.551588X10-'

—1.346X 10-s

4. 146X10 4

4.45X 10 o

—2 14X10 '
2. 10X10 '
4.00X 10 4

4. 167X10 4

—1.288X10 '
—1.36X10 '
—1.41X10 s

—1.36X 10 '
—5.58X 10 '
—5 36X10 '
—2.40X10 '
—4.94X 10 7

6.71X10-'

6.71 X 10-'

1.38X 10-7

1 38X10 '

2.72X 10 '

4.22X lo 6

—1.46X 10 '
—1.96X 10 '

7.44X 10 s

2 92X10 s

—1.96X 10 '
—1.46X 10 '
—2.80X 10 '

1.70X 10-~

—4.26X 1O-s

1.70X 10 '
2.62X 10 '

2.43X 10 '
—6.13X10 '
-2.54X10-~

8.28X 10 '
3.67X 10 '

—3.46X 10-s

—6.79X 10-7

—6.79x 10-7

3.60X 10-s

3.60X 10 '
7.70X 10-s

7.70X 10 '
—1, 149X10-4
—1.280X10 4

—1.148X1O-4

Deviation

2.4X10 '

1.7X10 '
&.3xio '
1.6X10 7

QX10 s

1.7X10 '
1.7X10 6

4.4X10 7

5.0X1p-s

4.5X10 s

5.0X10 s

9.5X 10-~o

1,6X1P s

8.4X10-'
7.2X10 '
1.0X10 7

1.0X10 '
2. 1 X10-s

2. 1 X10-s

1.0X 10-7

9.5X 10-s

1.2X 10-s

3.7X10 '
1.3X10 '
7.2 X 10-~o

3.7Xip s

1.2X10 s

3.7X10 s

2.3X10 '
6.2 X1P—zo

2.3X1p-s

2.0X10 s

3.2X10 s

9.7xio '
3.OX 1O-s

1.2X10 7

9.3X10 '
3.3X10 'o

4.5X10-s

4.SX10-

1.2X10 '
1.2X10 s

3.6X10 "
3.6X10 "
5.5X10-7

4.8X10 7

5.PX10 7

kpc=o. 75

Value

1.589397x 10 '

—3.827X 10 '

9.742X10 '
2, s7x 10-5

—1, 175X10 4

1 89X10 '
9.013X10-4

9.931X 10-4

—2.571X10-4
—6, 82X10 '
—7. 10X10 '
—6.82X10 '
—5, 16X10 7

—4.68X 10 '
—2.Oox 10-6

—4.24X 10-o

3.»X 1O-5

3.15X10-5

1.26X 10-6

1.26X 10-6

1 39X10 5

1.86X10-5
—1.20X10 '
—1.34X 10 '

6.52X 10 7

2.80X 10-7

—1.34X10-6
—1.20X 10-6

—1.68X 10 '
1.63X10 '

—4. 57 X 10-7

1.63 X 10-s

2.28X10 '
2.08X 10 '

—3.01X10-~

—2.31X10-o

4.21 Xip-5

3.15X10 '
—9.75 X 10-s

—4.62X10 '
—4.62 X 10-6

6. 15X10-7

6. 15X10 '
1.40X10-7

1.40X10 7

—1.991X10 4

—2, S44X io-4

—1.974x 10-4

Deviation

4.6X10 '

3.1X10 '
2 ~ QX10 '
6.4X10-7

2.5X10 '
3.2xip-o
3.1 Xio-s

1.1 Xio-o

1 5Xip-7

9.4X 10-s

1.5X10-7

8.6X1O-s

1.4X10 '
6.0X10 s

5.8X10 s

2.2X10 ~

2 2X10 z

1 7X10-s

1.7X10
—s

1 9X10 '
2.9X10-7

1.0X10 s

1.8X10 s

1.1X10 s

7.QX10 '
1.8X10 s

1.PX 10-'

1.7X10 '
1.5X 10-s

6.7X10 '
1.5X10 "-

2. 1Xip s

2.8X 1O-s

2.8X 10-~

2.7X10
3.OX10 '
6.5X 10-s

3.8X 10-s

1.4X10 '

1.4X 10-7

1.0X 10-s

1.0X10-s
3.9X 10-s

3.9X ip '
1.4xip-&

1.2X10 '

1.3X10 '
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TABLE III

kyc= 1.0

(ConHnued)

kpc=1. 5

Diagram

83'

R3b

F3a

Z3

ZB3

I.2b

I.3+4
I 5c, b

I.6
I-A.1

I-A.2

I-A.3

II.1b

II.2cr b

II 4c

II.5b

II.6b

II.7b

II.9
II.10

II 11'
II.12c, b

II-A. 1'

II-A.2

II-A.3
II-A.4c

II-A.5

II-A.6
III.1.
III.2
III.7+8~
III.9+10
IV.1~

IV.2
IV 3c, tL

IV.4b

IV.5c b

IV.6b

IV.7'b

Z3HL4

Value

3.936174X10-~

-7.495 X10-3

1.538X10-s

7.87X 10 '
—3 30X10 4

8.08X10-5

1.368X10 s

1.619X10-s

-3.347 X10-4
—1.75X10-5
—1.85X 10 '
—1.75x 10 '
—2. 19X10-s

—1 89X10 '
—7, 82X 10 '
—1 67X10 '

7.40X10-5

7.40X 10-5

5.23X 10-6

5.23X 10 '
3.42X 10 ""

4. 18X10 '
—4 23X10 6

—4.OOX 1O-'

2.54X 10 '
1.22X 10-s

—4.00X 10 '
—4.23X 10 '
—5.» X 1O-"r

7.34X 10 '
—2.35X10 '

7.34X 10-s

9.18X10 '
8 13X10 '

- —8.32X10 '
—9.81X10 '

1.155X10-4

1.24X 10 '
—9.08X10 '
—1.65X 10 '
—1.65X 10 '

3.74X 10 '
3.74X 10-6

9 ' 42X 10 '
9.42X 1O-7

—2 24X10 4

—3 363X10 4

—1 98X10 4

Deviation

1,9X 10-~

5.0X10 '
5.6X10 '
1.7X 10-'

8.3X lo '
5.3X10 '
5.1X10 '

2. 1 X 1O-6

3.4X 10-~

3,4X10-7

3.4X10-7

3.7X 10—s

5.4X10 '
2. 2X10-7

2 4X10 '
4.8X10 7

4, 8X10-7

7 OX10—s

7.0X10 s

3, 9X10 '
5.4X 10-7

2.9X10 s

6.6X 1P-s

4.6X10 s

2X10—s

6 6X10 s

2. 9X&0 '
5.4X 10-~

9.9X10 s

3.6X10 '
9.9X10-

8. 1X10-s

1.3X10 '
5.3X10 '
1 ~ 3X10 '
6.7X10 '
1.6X 1O-7

2 2X10 s

3.7X10 '
3.7X10 '
4. 7x 10-

7X1p—s

2.4X 1O-s

2.4X10 '
2.9X1o '
2 ~ 4X10 '
2 5X10 '

Value

1.475170xio '

—1.715X 10-2

2. 19OX10 '
2.81 X10-4

—7.98X 10 4

5.O5X1O-4

2. 178X10-3

2.695X 10-s

—3.01X10-4

—3.93X10-5
—4.51X1O-5

—3.93 X10-5
—1.16X10-"
-1.01X10-4

—4.56X10-4
—8.50X 10 '

1.20X10-4

1.20X10 '
2.39X10 '
2.39X10 '
4.76X 1o-5

5.85X 10 '
—1.06X10 '
—6.23 X 10-~

9.68X10 '
6.38X10 '

—6.32X10-6
—1 06X10 '
—2. 17X10-4

4.98X 10 '
—2.03 X 10-5

4.98X10-'

4.86X 10 '
3.89X 10 '

—2.78X 10-4

—5.69X 10 '
3.68X10 4

6.53X10 '
—1.55 X 10-5

—6.42X10 '
—6.42X 10 '

2 47X10 '"

2.47X 10 '
9.36X10 '
9.36X 10 '

—3.20X10 4

—3.55 X 10-4

—3 02X10 '

Deviation

4.8X10 '

1.1 X10-5

2.2X 10-s

7.7X10 6

4 6X10 '
1.4X10-5

1.2X10 '

4. 7X10 '
6.6X 10-7

6.8X10 '
6.6X10 '
2.3X10 '
1.0X10 s

8 8X10 '
8 4X10 7

1 2X10 6

1.2X10 6

3-3XIO '
3.3X 10-7

9 5X10 7

1.4X10 6

2 1X10 7

3.9X10 7

2.7X 10-7

1.7X10 7

3.9X10-7

2. 1X10 7

9 8X10 '
8.0X 10-7

2.8X 10-7

8.0X10 '
8.2X 10-7

1.1 X10-6

1 8X10 6

8 OX10 7

2.9X10 6

6.4X 10-7

1.7x10 7

8.9X10-7

8.9X10 '
3.4X10-7

3.4X10 7

1.9X10-'
1.9X10 '
8.2X10 6

6 1X10 '
6.5X10-6
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TABLE III. (Continled)

kgc=2, 0 kgc=3. 0

Diagram

B2~

B3
H3b
R3b
F3
Z3
ZB3

I.i.
I 2b

I.3+4
I Sc,b

I.6
I-A. 1

I-A.2
I-A.3
II 1b

2c, b

II3
II.4c

II.sb

II.6b

II.7b

II.8
II.9
II.10
II ]ic
II 12c,b

II-A. 1b

II-A.2

II-A.3
II A4c
II-A.5
II-A.6
III.1'
III.2
III.7+8&
III.9+10
IV.is
IV.2~

IV 3c,a

IV.4b

IV.sc b

IV.6b

IV.7'b

ZB4
Z3HI.4

Value

3.9O1OO6X 10-1

—2.868X 10-~

2.44X 10 3

4.99X10 4

—2.61X10 4

1.51X10-3
4. 19X10 3

3.95X 10 '
—2 25X10 4

—4.»X 1O-'
—4.69X 10 '
—4. 13X10 '
—2.39X10 '
—2.80X 10 4

—1.77 X 10-4
—2.32X 10 4

1.98X10 '
1.98X10 5

2.86X10 '
2.86X 10 '

—3.51X10 '
—1.6/X10 '
yi. oSX 1O-'

+1.92X 10 '
5.1X10 '
8.46X10 '

+1.92X10 '
+1.05X 10 '
—5.28X 10 4

1.61X10-4
-7.87X 10-'

1.61X 10 4

1,25X 10 4

9.00X 10 '
—5.75X 10 4

—1.71X10 4

7.36x1o-
1.80X 10-4

—8.43 X 10-5
—1.32X 10 '
—1.32X10 4

1.21 X10-'
1 21X10 '
3.12X10 5

3.12X10 '
—1.111X10 3

—4. 12X10 4

—9.74X10 4

Deviation

5.9X1O-'

2.0X10 '
5.7X10 '
1.3X10 5

1.5X10 '
2, 9X10-5
2.5X10 '
9.4X 10-6

1.4X10-6
1.3X10 '
1 4X10 6

7.oxio-&
S.2X 10-6

2.6X10 '
3.2X10 '
3.9X10 '
3.9X10 '
1.4X10 '
1.4X10 6

2. 7X10-'
4.0X10 '
1.1 X 10-6

1.8X10 '
1.0X10 '
7 ~ 4X10 '
1.8X10 '
1.1 X 10-6

3 ~ 6X10 '
3.5X 10-6

1.5X10 '
3.5X10 '
3 ~ 1X10 6

4.2X10 6

5.7X10-'
3.7X10 '
1.0X10 "'

2.4X10 '
8.8X 10-7

2 6X10 '
2.6X10 '
1.8X 10-6

1 ~ 8X10 '
8.4X10 '
8.4X 10-7

2.8X10 5

1.6X10 '
1.9X10-'

Value

1.574696Xioo

—5.367X10 '

2 ' 73X10 '
8.21 X10-4

+4 7sx10 '
4.45X10 3

1.275X 10-2

7 18xio '
—1 09X10 4

—3.54X10 5

—2.71X10 5

—3 54X10 ~

—2 82X10 5

—1-35X10 3

—1 06X10 3

—1 30X10 3

—2 46X10 4

—2.46X10 4

—1.00X10 4

—1.OOX10-
—2.39X10 4

—2.36X10 4

1.36X10 4

1.38X10 4

—9 SOX10 5

—3.51X10 '
1 38X10 '
1 36X10 4

—1 228X10 '
5.79X10 4

—3 76X10 4

5.79X10 4

3 48X10 4

2 85X10 4

—1 248Xio '
—5.92X 10-4

1.568X 10 '
6.71 xio 4

—3 90X10 4

—2 67x10 4

—2.67x 10 4

—4.86X 1O-4

—4 86X10 4

8 9SX10 '
8 ~ 95X10 '

—5.83X10 '
—7 13x10 4

—3.53 X10-3

Deviation

3.3X10 4

1.2X10 4

2 1X10 '
2 OX10 4

6-6X10 '
2.4X10-4
1.4X10-4

2.8X1O-
4.6X10 '
4.0X10 6

4.6X1O-6
2 OX10-
8.4X10-5
5 6X10 '
1 2X10 4

3.2X10 '
3.2X10-5
1.3X10 5

1 3X10 6

3 3X10 5

4.2X10-5
1.1X10 '
1.2X10 '
7.9X10-6
6.7X10-6
1.2X10-5
1.1X10 5

5, 3X10-5
2.6X10-6
1.SX10-'
2.6X10-6
1.8X 10-'
2 ~ 3X10 '
6.5X10 '
3.1X10 '
6.SX10-'
3.3X10 5

7.7x10 6

4.6X10-5
4.6x io-'
3.3X10-5
3.3X10-5
5.5X10-6
5 ~ 5X10 ~

2.6X10-4
1.3X10-4

1.8X10-'

Included in the Brueckner approximation.
Included in the three hole-line approximation.

core in the many-body problem except in the limit of
zero density where only binary collisions are important.

They selected, for convenience in these calculations,

p(r) =1+se—"«

s= (2' —1) —1 =4.2782422, (4 32)

which implies a=P.

c Identical v ith a previous diagram (but must be added to find the total
fourth-order coefFicient) .

The structure of the importance of various diagrams
was found to be qualitatively the same as in Table III.
However, for moderate and higher density, the velocity-
dependent force is less repulsive than the hard core
force, as can be seen in ladder approximation in Fig. 35.
That the ratio drops can be understood qualitatively
from the observation that the energy for the hard core
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m+q,

II.2

IZ. 5

m+q

-II 7 -ZI. 8

II.9 II. IO

pQ

~(4 ~t7,

-ZI. I I -IZ. I2

1'IG. 31. Class II, fourth-order perturbation theory diagrams.

system goes to infinity at some jamming density, while
for the velocity-dependent force the energy does not.
Thus, even in ladder approximation, we would expect
that the hard core force would seem stronger.

D. The Fermi Momentum Expansion

In order to provide a computationally simpler formal-
ism, we will expand the series rearrangement discussed
in the previous section in powers in k~ in the manner
mentioned in Sec. IV.B. We will follow the work of
&aker (1965a). Unfortunately that paper was marred
by several errors as pointed out by Amusia and Efimov
(1968) . We will use a, formalism similar to theirs as it
is more compact and easily manipulated.

Our procedure for obtaining the expansion of the
ground-state energy of a many-fermion system in
terms of the Fermi momentum is to select, from the
perturbation expansion in the potential, all those terms
which can contribute through the desired order in k~,
and sum them to all orders in the potential strength.
The basis of our selection procedure is the observation
that the creation of an independent hole momentum at a
potential vertex implies that the contribution of the
diagram must vanish at least as one higher power of kp

in the limit as k~ goes to zero. The reason for this result
is that the volume in momentum space is proportional
to k~', however, there is one more denominator which
may reduce the volume factor by kp' leaving a net
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mi+ Q Q
0 Q-Q&

+Q

rr A. I
—II A. 2

IIA.3 -IIA.4

m+Q

—II A, 5 -II A. 6

FIG. 32. Class IIA, fourth-order perturbation theory diagrams.

the sum of all ladder insertions as discussed in Sec.
IV.A, we may obtain the (2+e) th order in kp by con-
sidering the eth in potential strength to find the basic
graphs.

By examination of the catalog of graphs given in the
previous section, we may classify the basic graphs for
the first six orders in k~ as follows: Those proportional
to kp3 are elaborations of 81. Those proportional to kg5

are elaborations of R3 and H3. Those proportional to
kg' are elaborations of F3, I.6, I-A. 1, I-A.2, I-A.3,
II.3=II.4, II.5, II.7=II.12, II.8=II.11, II.9, II.10,
II-A.1, II-A.2 = II-A.4, II-A.3, II-A.S, II-A.6, III.2, and
III.9+10.The other diagrams in that catalog are either
included as part of the elaboration of the above, or
(IV.4—7) are of higher order in k~. These sequences must
be expanded in kj; to give the Fermi momentum expan-
sion. For instance, the ladder diagrams, 81, 82, 83,
I.1, - ~ all vanish as kj," as k~ goes to zero; however,
they also contribute terms like k&', kp', k&', etc. Starting
with the elaborations of F3 terms proportional to
kp' ln kp are obtained.

The first step in our expansion procedure is to obtain
an expansion of the sum of the ladder energy diagrams.
This sum may be easily evaluated LEq. (4.4) ] in terms
of the E matrix defined by Eq. (4.3) . We may rewrite
(4.3) using matrix notation as

result of kp'. The only vertex which neither creates nor
destroys a hole is the particle —particle scattering vertex
illustrated in Fig. 15.

Since the leading terms in the energy are of the order
kl.", it follows that if we agree to replace every vertex by

K= v —vGK,

where 6 has the diagonal matrix elements

(4.33)

miq+Q, m+ Q m+Q

ID.2 —III.7 —III.8

III. 3
—III. 9 —EEI.IO

III.6 I(I.I2

FIG. 33. Class Ill, fourth-order perturbation theory diagrams.
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in the notation of Eq. (43) . The function F is defined

F(p, &"') =1,
i
lt"'+-', p i

)k, and
i

k"'—-', p i
)k

=0 otherwise. (4.34)

It is convenient to introduce the two-body scattering
operator which has zero momentum in the Green's
function. It satisfies the equation

t=v —vt t, (4 35)

where V=1/(k'")'. We find this operator more con-
venient than the one of Amusia and E6mov (1968) as
it avoids a principal part integral and is Hermitian,
even off-the-energy shell. Then K can be shown to
satisfy the equation (since V is purely repulsive, all
the operations can be done without trouble)

0.5—

K=t—tbGK, (4.36)

where the diagonal elements of 66 are

3G(k"') = P(p, k"—') f1/$(k"')' —k(P]—1/(k"')'I
0.0

I.0 2.0

+(1—J'(p &"')3/(k'")' (4 3&)

We can now iterate (4.36) to yield

FIG. 35. Ratio of the hard-core simulating, velocity-dependent
force energy shift to the hard-core force energy shift in the
ladder approximation.

K=t—t36t+t36t36t —~ ~ ~ (4.38)

To leading order in 1z~ each integration, characterized

ZZ. 2

by the addition of another 66, contributes, as explained
above, another factor of ke after substitution in (4.4).
Hence if we set our goal as terms in the energy through
order kate, then we may break off (4.38) with the term
involving 366's.

First let us evaluate the first term in (4.38) when
substituted into (4.4) . This evalua, tion can be done by
noting tha, t (4.35) is equivalent. to the differential
equation

L
—V'+o(r)]%„(r) =P'exp (ip r), (4.39)

where

(q ~

t
~ p) = L1/(2zr)'jf dr exp ( —iq. r) v(r)%, (r)

ZK. 4
(4 4o)

are the matrix elements of t, and 0' satisfies the bound-
ary conditions that it be finite at r=o, and that
~
+o(r) —exp (ip r

~

tend to zero like r ' as r tends to
infinity (Wu and Ohmura, 1962) . We will need the well
known (Wu and Ohmura, 1962) formula for the scatter-
ing length

(0
~

t
~
0)= a/2n~. (4 41)

If we make the usual partial wave decomposition of
+,(r) as

XK 7
FIG. 34. Class IV, fourth-order perturbation theory diagrams.

4', (r) = g (2l+1)i'P!(p, r)PtLcos (8) j, (4.42)
L=O
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where E& are the Legendre polynomials, and 0 is the
angle between y and r, then it follows that

dr exp (—iq r) v(r)+v(r) =4or g (23+1)Fi[cos (0)]
1=0

X j i(qr) n(r)iPi(p, r) r' dr. (4.43)

4'(p )=j (p ) A(p)—p'/'+' (4.44)

and the Hermiticity of the 3=0 part, we can deduce in

From Hermiticity of t and (4.43), it is now clear that
the terms quadratic in the momenta come from 1=0
and l = 1 alone and that there are no cubic terms in the
momenta. If we use the asymptotic form

the same way that (4.41) is usually derived tha, t

1Ai" (0) = —— r4o(r)go(0, r) dr
0

Thus, substituting the first term of (4.38) in (4.4), we
obtain the contribution

(4.45)

Fi= (37r)
—'{(v —1)akp'+ [Too (v —1)A" (0)

+T'o(v+1)Ai(0)]kp""}+O(kp'). (4.46)

The numerical factors arise from working out the
momentum integrals in (4.4) .

Next let us evaluate the second term of (4.38). By
scaling the momenta by kp we get a leading order con-
tribution proportional to kg4a'. In addition, we will have
terms both contributing in order k~' and k~6. Let us
break this term up as

(3/(8~kp') ) f dp dko «k"'[&k
I
t

I

k&~G(k'") (v&k I
t

I k)—&k
I
t

I

—k&) ]+(3/8~kp') f dp dko dk"'

X[&k I
t

I
k"'&~6(k"') (v&k"'

I
t

I
k&- &k"'

I
t

I

—») —
& I

t
I

k&~G(k'") (v&k I
t

I
k&—&k

I
t

I

—k&)].

The second integral in (4.47) can be broken into (by 4.37) F and 1 Fparts—of the k'" integration. By using (4.37)
and (4.40), we can recast the F part as

—[3/(8~(2m)okp')]f dp dk dk"' dr dr'+i, (r)v(r) ({exp [ik"' (r—r')]—exp [ik (r—r')]}/((k"')'[(k"')'—ko]))

XF(p, k"')k"(")L+.(")—+-.(')] (4 48)

This quantity, as a function of k (before integration) regular and bounded, and the integration region is sym-
metrical in &k. Thus, if we scale the momenta p, k by kp, the correction to the leading order will be k& smaller.
As the leading order in (4.48) is kp', we may discard the correction as we are only keeping terms through kp'. The
necessary integral over k"' is readily done as

f dk"'{ 1—exp [ik'". (r—r') ]}/(k"')'= ~'
I
r—r' I.

It is convenient to define the parameter

h, = (iM'/h, ') '(3/320~') f dr dr'4o (r) v (r) I
r—r'

I
r (r') %o (r') .

(4.49)

(4.50)

Then (4.48) contributes [(v—1)k bp/3o~]+O(k )pto the energy.
If we expand the t matrix elements in the 1 Fpart of t—he second integral of (4.47) to terms quadratic in the

momentum, we obtain the contribution to the energy of

[3a/(27r)'kp']f dpdkdk'"[1 —F(p, k'")]((v—1)Ao"(0)+6vAi(0) {k (k"'—k)/[(k"')' —ko]}) (4.51)

which is of the order of kp' as can be seen by scaling p, k, and k"'. We can get the remainder of the contributions
of the second term of (4.38) by expanding to order k the t matrix elements in the first integral in (4.47). This
expansion yields

[—3/(2or)'kp'] f dp dk [f dk"'6G(k'") ]{(v —1)a'+2k'a'[(v —1)Ao" (0) +6vAi(0) )}. (4.52)

In order to summarize this contribution to the energy, and that from the third and fourth terms as well, it is con-
venient to introduce the notation

3
g, = dp dk (1/2m') dki{ [(kio—k') —' —k,')F (kpp, kpki) —[1—F (kpp, kpki) )ki '}

(2~) (kv+&)&i; llv —kI&i

(4.53)

hi=[3/(2(2m)')]f dp dkk'((1/2m') f dki{[(kio—k') ' —ki ']F(kpp, kpki) —[1—F(kpp, kpki)]ki '}) (4.54)

ho= [3/(2or)']f dp dk dki[1 —F(kpp, kpki)]. (4.55)
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Then, we get

E,= —
g& (v —1)kp'a'+ [(v—1)/3zr]b2kp (v —1)[2hg —h2]aAo" (0)4'+0(4') (

where use has been made of the identity

[3/(2 ) ']f dp dk dk"' (1—F) {[k (k"'—k) ]/[(k'") '—k'] }
—=h (4.5/)

to eliminate the terms involving A, (0). The third term in (4.38) can be broken up in a similar manner; however
now there will occur integrals involving the product of two 6G s. The contribution follows in the same manner as
before and leads to

Ee——g, (v —1)kp'a' —(20/3) hz (v —1)kpeabz+0 (kp") .

The contribution from the fourth term is

E4 —
ge (v

———1)kp'a'+0 (kp') .

Thus, combining (4.46, 4.56, 4.58, and 4.59) we get for the ladder energy

/sErM/(f(/h') = (3zr) '(v —1)akp' —gr(v —1)kp'a'+ (3zr) '{(v —1)[—,'()Ao" (0) +b2]+ (9/10) (v+1)Ar(0) }kp"

(4.58)

(4.59)

+ g2(v —1)kp'a' 2hz (—v 1)[—A()" (0) + (10/3) b,]ahp'+h2 (v —1)aAp" (0)kp' —g, (v —1)kp'a +0(kp') . (4.60)

Except for the term involving h2, all the rest of this expression can be expressed in terms of the zero energy
scattering phase shifts. Amusia and Efimov (1968) give the result

4p" (0)+ (10/3) b2 = -', a'r() (4.61)

where ro is the effective range. This result can be obtained formally by iterating the integral equation for the normal
(principal part) scattering operator {see Wu and Ohmura, 1962), using

{
z (B'/BE') I' fdkj(k')/[k' E']} ~rr=p=—f dk{[f(k') —f(0) ]/k'} (4.62)

term-by-term to expand to order E2 in the momentum, summing the coefficients of K' and K2, and finally identify-
ing the resulting terms with the effective range expansion.

E cot {bo) = —1/a+. ',roK-'-E' cot (6z) = —1/Az(0). (4.63)

The quantity Ao (0) (or b2) alone is not expressible in terms of phase shifts. This remark is in accord with Fig. 35
which shows that the ladder energy is not purely determined by the two-body phase shifts.

These results can also be shown to hold for velocity-dependent forces because the potential factors (except the
first and last in each ladder term) do not depend on the hole sta, te momenta, but only on the momentum transfer
and the exchanged momentum transfer.

We can easily reduce the g's and h's to double integrals. The result is:

3 2

gi =
7l

Q

3 2

kg—
71

Q

r sr(r k' dk(rt r&r) '+—
2P

rdp(p z'sz( |—.)+
0

(&—eu )
2 1/2

11'

(&—eu )
2 1/2

z (J((1—-', p' —z') ( |—,) '),

k' dk (1—-' p' —k') (rg rz) ), —

(4.64)

(4.65)

3 2

h2=—
2

Q

/
& to-

p dp
~ p k'dkrz+

Q

(c ()(1—-', p' —1~') ), (4.66)

where

rz=p '{(k'+-'P'—1) ln [(1+P+-'P'—k')/(1 —-'P' —k')]+(1—-'P') ln [(1+lp)/(1 —ap)]}

+k ln [(1+-'.,p+k)/(1+-', p —k) ],
rz=1+zap+[(1 —~ep2)/p] ln [(1+ap)/(1 —ap)],

= (-:+lp-p')/24. (4.66a)
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[—~'+e'+. (r)]+,(r) =(p'+q') exp (ip r),
(4.70)

Although these could have been carried further modified to
analytically [Lee and Yang (1957) have done gi
analytically), we have preferred to evaluate (4.64—
4.66) numerically. We obtain

gg= —5.5661X10 ' g2=3.2031X10 '

g, = —1.9156XiO-~ Z, = —1.3373X10-~

h, =3.8196X10-~. (4.67)

We now turn to those terms whose contributions
start in fifth order in k~. The sum of those diagrams
which are elaborations of H3 contributes a term pro-
portional to kv 44'k'/M in leading order; we may cal-
culate the coefficient by evaluating Eq. (4.26) f' or the
arguments of the potential set to zero. The coe%cient
(obtained by Monte Carlo integration) is (5.74X
10 '&1.0X 10 ') (v —1) . By proceeding as we did above
we may show that there are two terms contributed by
the H3 sequence in sixth order in k~. One term comes
from expanding the contributions of the E matrices
which now stand at each vertex of H3. This term con-
tributes

3 (5.74X 10-') (v —1) ( —3m-gi) a4kv%'/M

=9.03 X 10—'a4 (v —1)kv'b, '/M.

The other contribution is of the form ab2. It is

where q' is the excitation energy of the Fermi sea. Equa-
tion (4.70) follows in the usual way (Wu and Ohmura,
1962) from (4.3), with the excitation energy included
in the denominator. Let us define from (4.40)

E(k)=2~~(1 Itlo)
and

K~(k) =(4~) 'f exp (+-',ik r)4(r)f, i..i,(r) dr, (4.72)

where gii, i, is the solution of (4.70), with p= 24k, and
q~=-'O' If we expand

g;i, (r) = g (21+1)i'gi(r)Pi[cos (0) j, (4.73)
l=o

then we find

00 00

K~(k) = g (2t+1) (&1)' ji(2ikr)

v(r)gati(r)

r' dr
L=O

(4.74)
We may now write down c~. It is

c,= [2(v—1)/97r4jf dk

x I E'(k) [(v—1)K (k) —2K+(k) j—(v —3)E'(0) }/k4.

—[20/ (274r') j(v —1)kv'ab2fi'/M. (4.68) (4.75)

The other terms which start in fifth order are elabora-
tions of R3. We obtain, proceeding as above, contri-
butions of

(+2.863X 10 ~+1.7X 10 ') (v —1) (v —3)kv'aali~/M

+3(+2.863X 10 ') (p —1) (v —3) (—3~gi) kv'a4A, '/M

+kv'cih'/M. (4.69)

The term c~ arises in a manner similar to the aha terna
in H3; however, in the calculation of c~ we mi&st con-
sider the effects of a hole —filled-state interaction in the
presence of an excited Fermi sea. In this situation, the
analysis of the low-density limit proceeds in a fashion
similar to that of (4.39) et seq. except that (4.39) is

4

We shall now turn to those sequences of terms whose
contributions begin in sixth order in kg. The self-energy
corrections which are elaborations of the final third-
order graph F3 are of this type. If we write this contri-
bution as kp'c2, then by application of the techniques
used above we can show that

c = (2/9~') (v —1)f dkE'(k)

X [vK~(k) —K (k) —(v —1)E(0) ]/k4. (4.76)

As K+'(0) =K '(0) &0, the integrals (4.75—4.76) for
c& and c2 diverge logarithmically as k goes to zero. This
behavior is symptomatic of the appearance of a k&' ln kp

term in the expansion. The sum ci+c, can be reorganized
as

ei+c2 ——[2(p—1) (p —2) /9m4$ f d1r'E( )k[ K(+)k+ K(k) —2K(0) j/k'

+[2(v—1) (v —3)E(0)/94r4)f dk[E~(k) —E'(0) j/k4. (4. 77)

I 2p+& I &&p, I zp+& I)&p"; I
-'-p—k I &~p, I 2p—k l&&r

The second line of (4.77) is —40(v —1) (v —3)ab&/(27vr~). We can isolate the log term by replacing the kv depend-
ence in the lower limit of the first integral and calculating the various contributions which arise. They are

(v —1) (v —2) , [E(0)3'K+'(0)
4m'k ' k'(1+Pk)

cb=
(v —1) (v —2)

I2p+~ I&& I2p+kl)&; leap
—~'I&i I 2p—~l&&

dp dk dk'E'(0) K+'(0) k[(k' —k") '—k 4j

= (2.30X10 ~&1.0X 10 4) E~(0)Kp'(0) (v —1) (v —2), (4.79)

ba= [2(v—1) (v —2)/97r45 f dkIE~(k) [K+(k)+K (k) —2E(0)j—2E'(0)K~'(0) k/(1+Pk) }k 4. (4.80)
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The quantities b3 and c& are now convergent, and the ln kp part comes from c, alone. Evaluating c analytically, we
get

16
c,=,K'(0) K+' (0) (v —1) (v —2)

2 Lp 1/2—ln (kpP)+3 P(1—oP)'(1+-'P) [1+oP—(1—4P')"') 1— '-
dP (4 81)

0 2

It„'(0)= —,'v3a'.
Thus we get

c,= I [8&3/(9n')) ln (kpP)+1.443X10 ~}

(4.82)

&((v—1) (v —2) a'. (4.83)

If we combine all those non ladder terms which we
have obtained thus far we get the contribution to the

TABLE IV. Values of the coeAicients.

Diagram Coefficient Standard deviation

I.6
IA. 1

IA.2

IA.3
II.3
II.4'
II.5+IIA. 1

II.7
II.S
II.9
II.10
II.i 1 a

II.12'
IIA.2b

IIA.3
IIA.4'b
IIA.5
IIA.6
III.2
III.9+10

Total

—3.39X10 4

—1.81X10 "'

—8.41X10 4

—1-67X10 "'

8.38X10 4

8.38X 10 4

2.9X10 4

—9.73 X10-4
—1.900X10--'

4.96X 10 4

1.74X 10 4

—1.900X 10 '
—9.73X10-'

1.01 X10 "'

—2-29X10 4

1.01X 10 '
1.756X10 '
1.6?4X 10 '

—1.589X10 '
2 404X10 '

—1.73X 10 '

4.2X 10-6

1.4X10 5

3.6X 10-6

9.0X10 6

6.4X10 6

6.4X10 6

2.0X10 '
4.6X10-8
9.0X10 8

4.8X10 '
2.8X10 '
9-OX10 '
4 6X10 '
4 7X10 '
2.3y10-6
4 7X10 '
6.2X10 '
8.7X10 '
1.1X10-6
1.3X10-5

7.0X10 '

~ Identical with a previous diagram but must be included in the total.
The error noted after Fq. (4.28) persisted in Baker (1965a), and

we include what v e believe to be a reliable estimate of these coefficients,
based on the great stability of the ratio of the results of Baker et al. (1963)
to those of Table III.

plus terms which vanish as k~ goes to zero. We have
evaluated the integrals in Eq. (4.81) by Simpson's
rule. It should be pointed out that the division between
the kp'ln (kpP) term and the kp' term (c,+be) is
somewhat arbitrary because of the scale factor P.

One may easily show [since Z+'(0) comes from the
l=0 terms alone), by considering the wave function in
the region beyond the range of the potential as a linear
combination of a solution (even in k) of Eq. (4.70) and
a solution of the homogeneous part of Eq. (4.70) (even
in k), that

energy

(v —1) I [5.74)& 10 +2.863)&10 (v —3) )kp ae

+[9.03)&10 +3.44)(10 (v —2) +4.506&& 10 (v —3) )
&&kp a4—[20(3v—7)/277r )kgab2

—(v —2) [863/(97r') )kp'a' In (kpP) +bs+-
(4.84)

It is to be noticed that the ln (kpP) term and be vanish
when v=2.

The contribution of the remainder of the sequences is
of the form kp'a4. Baker (1965a) calculated by Monte
Carlo the values of the coefficients from the formulas
given in Baker. et al. (1963) for v=2. We list his va. lues
in Table IV. Ke remark that IIA. 1 and II.5 separately
are not of this form, but that their sum is, for v=2.

In order to generalize these results for v&2 we need
only multiply the coefficients in Table IV by the factors
in Table V.

In addition, II.5+IIA.1 contributes a kp' ln (kp)
term, when v&2. This term has been evaluated first by
Efimov (1965) and then by Amusia and Efimov (1968)
(ca,lied ee by them) as

(32/27m') (v —1) (v —2) kp'a' ln (kpP) . (4.85)

Hence the total contribution to leading order in logarith-
mic terms is

Et« = (8/27xs) (4x—3&3) (v —1) (v —2) kp a ln (kpP)

(4.86)

which vanishes for v=1 or 2. The ln terms come from
states in which there are three simultaneous filled states.
When v&2, at least two of the three such particles are
identical. The Pauli principle prevents their close
approach and therefore reduces the order in kp of the
contribution relative to what it. would be for v&2.

We therefore will give two summaries of our results.
The first, for general v, includes only terms which stop
at order kp' ln (kpp) and does not include the terms
O(kp ). The second is for v= 2 and will include in addi-
tion O(kp').

ARM/(EM) = (3sr) '(v —1)akp'+0. 055661(v—1)kp4a'

+[(v—1) /20sr)a'rokp'+[3 (v+1) /10')Aq(0) kp'

+ (v —1) (0.02863v —0.04812)kp'a'+ (8/27'')

&& (4m- —3V3) (v —1) (v —2) kp'a' In (kpP) +O(kp'),

(4.87)
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TABLE V. Diagram class factors.

Diagram class I actor

IA k(.-1)("-3.+4)

—( —1) ( —3)

IIA (v —1) (Bv—5)

lv —1)'

+ (20m-) 'a'r, k'r+ (9/10m-) A q (0)kr'+0. 00914kr'a'

+0.045899a'rokr'+ Q.015680gAo' (Q) kp6

—0.02216kF'a'+ 0(k ~) (4 88)

where a is the scattering length, ro the effective range,
Aq(0) is determined by the /=1, zero energy phase
shift by (4.63), and Ao" (0) is determined by (4.45).
The quantity Ao" (0) is not uniquely determined by
the two-body phase shifts so far as we can tell.

E. The Soft, Reyulsive Square-Well Potential

As an illustration of the calculation of the Fermi
momentum expansion, we choose a soft, repulsive,
square-well potential because most of the calculation
can be done analytically, and because there are data
available, (Sec. IV.C), with which we can compare
our present results.

The 6rst step is to solve for the 1=0 wave function
from (4.39), p= 0. It is, for this case,

sinh $(MVr'/fl') "')
~.( ) =

(MVr'/fP)"'cosh L(MVc'/h)"') '

=(1—a r), r&c,

(4.89)

where M is the mass, V the potential strength, c the
width of the potential, and A, is Planck's constant. The
scattering length is, by (4.41), { or (4.89)),

a=cL1—tanh (p)/p)], (4.90)

p= (MVc'/fP) "'. (4.91)

Next, using the asymptotic form (4.44) to compute

where the expansion for the energy carried only this
far is completely expressible in terms of the two-body
scattering phase shifts. For p= 2, we obtain

AEM/(NAP) = (37r) 'akr'+0. 055661kr4a'

A~(0), and (4.45) to compute Ao" (0), we compute

-', a'ro ——-', c'{1+-', (1+ tanh' p) /p'

—
{ (3/p)+(3/2p')] tanh pI, (4.92)

A "(0)= —', c'{{ (3/p)+(6/p')) tanh (p) —1—6/p'I (4.93)

Ag(0) =-',c'{ 1+3(1—p coth p)/p']. (4.94)

As the available data is for the special case v= 2, we
shall not need to calculate the other potential-dependent
parameter b3 of (4.80). The procedures necessary to
calculate it are detailed in Baker (1965a), although
that b3 is difkrent from the one in (4.80).

One can compute, as described in Sec. IV.A, the
ladder energy by the solution of an integral equation.
This calculation was done by Baker et al. (1963)
although they did not publish the complete table. We
will use their data for comparison. We can then compare
this solution with the results of our expansion. Specializ-
ing (4.60) to v= 2, we have

~~I.M/(&b, ') = (a/37r) kr'+ (0.055661a') kr4

+L(207r) 'u'ro+ (9/107r) Ar(0)+0.032031a3)kp5

+[0.013373a'ro+ 0.038196aA "(0) +0.019156a4]kr'+ ~ ~ ~

(4.95)

We give a short table (Table VI), based on Eqs.
(4.90)—(4.95) of the ladder potential energy kr expan-
sion coeScients.

If we compute the ladder energy from a power series
of four terms, the results are in excellent agreement with
results calculated by the methods described in Sec. A.
For the hard-core potential (actually V=10' for nu-

merical reasons here) the error increases to about 8%
at k&c=1.5, and decreases rapidly for smaller k&c. For
weaker potentials, the range in kpc increases. For V=
1.0, the error is about 42% at krc=1.5, and 11% at
krc=2.0. For V=0.125, the error is only 7% at krc=
2.0, and again decreases rapidly for smaller k&c.

We can conclude from these results that, in spite of
the probable asymptotic nature of the kJ expansion,
Eq. (4.95) forms a good summary of the ladder energy
for low to moderate densities. If the ladder approxima-
tion energy in this density range is desired, it can be
calculated by (4.95) with great resulting economy in

eGort compared to standard methods.
If we now form the difference between the complete

energy and the ladder approximation as given by (4.88)
and (4.95), we may compare it, for weak to moderate
potentials, with the results found in Baker et al. (1963)
and partially quoted in Sec. IV.C. When this compari-
son is made, the same general-error pattern emerges
when due regard is taken for the fact that for weak
potentials the difference is quite small. For very strong
potentials tending towards the hard-core limit we have
nothing with which to compare our results. However,
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TABLE VI. I.adder-approximation coefFicients.

AI A4

0.125
1.0
5.0

4.2106X10 '
2.5296X10 '
5.9724X 10 '
1.0610X10 I

8.7655X 10 '
3.1636X10 "
1.7636X10 '
5.5661X10 '

. 5.6100X10 '
5.6428X 10 "

2.8953X10 '
1.3813X10-'

—1 9594X10 '
—5.0167X10 4

3.6752X10 '
1.5339X10-2

as long as the corrections calculated to the ladder
approximation are small, we expect the results to be
accurate.

V. THE INCLUSION OP ATTRACTIVE FORCES

The presence of attractive forces in the many-
fermion problem is appreciably more difficult then the
purely repulsive force problem dealt with in the pre-
vious section for several reasons. I'irst of all, we will
show that the presence of "Emery (1959) singularities"
makes the E-matrix rearrangement invalid in the
presences of any attractive force (of longer range than
the repulsive forces) whatsoever. We do not believe
that these are real singularities in the energy, as or-
dinary macroscopic sized systems do not appear to be a
close enough approximation to an infinite system to
possess them. Rather, they appear to represent a.n
unfortunate choice of a method of summation of a
series which is known to be divergent. We introduce an
alternate procedure (R matrix) which is numerically
very close to the Brueckner E-matrix method, but free
from the "Emery singularities. " Further, the location,
or even the existence of singularities, which may occur
at various points in the potential strength —density
plane, must receive careful attention. The location of
such singularities is of crucial importance to any
program of series summation, as it is well known that
the nearest singularity limits the radius of convergence
of a Taylor series. No program which has as its goal the
calculation of the ground-state energy of a many-
fermion system can hope to be successful until it has
taken account of at least the closest such singularities.
In particular, it is widely recognized that in many ways
nuclear rnatter, for example, is very much like a liquid
drop and that the ground-state energy-vs-density curve
should have a Oat portion for low density corresponding
to a condensed nucleus which does not fill the whole
volume. The saturation minima obtained by approximate
schemes have been represented as analytic continua-
tions of the high-density portion of the curve. However,
the logical consequences of the liquid aspects of a many
fermion ground state must be tahen into account From.
the theory of liquids and gases we expect, and indeed
6nd, that there will be a potential strength for which
the densities of the liquid and gaseous phases of the
many-fermion system, interacting through an attractive
potential with a strong repulsive core, will become

exp (ik r),
~

-', p+k
~

)hr, [-,'p —k
i
)hr.

(5.2)

equal, and a phase separation will cease to be. At this
point, called the critical point, the theory of liquids and
gases (and of cooperative phenomena in genera, l) tells
us there is an analytic singularity. This situation is in
sharp contrast to the situation for a purely repulsive
potential, where a low-density expansion proved in the
previous section to be satisfactory because of the ab-
sence of a liquid —gas critical-point singularity. The
presence of the critical singularity renders inadequate
(as in classical statistical mechanics) approximation
procedures based on the assumption of low density,
since the ground state lies on the liquid side of the co-
existence curve. A low-density expansion is blocked off
from the liquid side of the coexistence curve by having
to pass through the two-phase region, where the curves
are fl.at. On the other hand, if one tries an expansion in
terms of the number of interacting particles, which is
accurate both for low density and weak interaction,
one may again have trouble as the critical-point
singularity lies directly between the origin in the
density —potential strength plane and the liquid side of
the coexistence curve. We propose a resummed poten-
tial strength expansion at fixed density which will avoid
the critical point singularity.

A. The R-Matrix Rearrangements

We will now examine the solutions of the K-matrix
equa, tions (Sec. IV.A) for singularities in the presence of
attractive forces outside a repulsive core. We have no
need to consider purely attractive forces because it is
well known (Blatt and Weiskopf, 1952) that, except
when the forces are artificially limited, for example to
3=0 only, a pure attraction causes the system to col-
lapse to a volume of the order of the range of the force,
irrespective of the number of particles.

In order to locate the values of the parameters which
correspond to the nearest singularity, we start with the
differential form of the K-matrix equation (Sec. IV.D)
from which we have eliminated the center of mass
coordinates. It is

[H,+AU]ze = h'ze, (5 1)

with II„ the relative coordinate kinetic energy, and V
the potential energy when the wave function ~ must be
expanded in terms of
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The p and k are given in terms of the two hole momenta
pE and rI as

k=-', (m —n), p=m+n. (5.3)

The condition for a singularity is the existence of a
bound state solution to (5.1), subject to (5.2). Inspec-
tion reveals that the least attraction will be needed
when

(5.4)

Hence the usual E-matrix equation (in terms of a
coordinate-space wave function) becomes

us((r) =jt (kr) —— Gk((r, r') V(r') NI, ((r') (r') ' dr',
7l 0

(5 5)
where, for condition (5.4),

kp+(kp —k )

00 h'" dk"
+ „,(j((k"r)jt(k"r') j. (5.6)

kg+(kg —k ) I

The limit as k—+k~ requires special attention. In
fact, it is on this account that we 6nd it necessary to
reorganize the summation of the energy series. There
occur Emery singularities. Emery (1959, 1960) has
shown that a singularity occurs when

that

tan 5t(k) ~ —
t d'Wm/((21+3)fP)]

+ (c/d) ~'+'52l+ 1+2 (d'Wm/5') j. (5.12)

(We use the sign convention on phase shifts that a
simple repulsive core produces a, positive phase shift. )
For large 1, the first term dominates as c&d, forcing
tan 6&(k) negative no matter how weak W' may be.
Thus, at low density, the ladder series has an Emery
singularity for 1 large enough with any attractive force
at all. Baker and Kahane (1969) have followed these
singularities numerically to higher density, and while
they move to stronger potentials with increasing density,
as we expect, there is always another for high enough l
so that the entire attractive potential region of the kp
potential strength plane is filled with Emery singular-
ities of the ladder series.

However, these results do not tell the whole story.
If we examine the rate of approach of the potential V,(k)
for which we have a singularity to V, (k~), we 6nd that

V.(k) V, (kp) —(u/Dog (1—k/kp) j. (5.13)

As / increases, so does &u. The region in which V.(k) is
lower than V, (0) is very tiny.

For example, from the relation between kg and the
volume per particle, we can compute that the average
level spacing is

(kp i
v

i
P)=0, (5.7) dlV/dkp=3iV/kp, (5.14)

where P is the solution of an integral equa, tion with
G&~(r, r') replaced by LEq. (42) of Emery, 1959j

(kp/vGv fk )

where

Gv
i kF)(kp

i

(kp
i

v
i kp} (kFivikp}

'

(5.8)

tan 8((kp) =0, (5. 10)

where 6~ is the phase shift of the corresponding Schro-
dinger equation. If we use a potential

=0,

r&c,

c&r&d,

(5 11)

then it is easy to compute asymptotically for / large

(r i
6 ir')= — dk

2 " k'ji (kr)ji (kr') —4'ji (4r)ji (4r')
kp k' —kp'

(5.9)

and
~
kp) =j~(k~r) . In the low-density limit, (5.7)

corresponds to (Emery, 1960)

and hence we expect, for a macroscopic sample, that
the smallest that the argument of the log in (5.13) can
be is about 10 '4. We have computed the singularity
curve of the K matrix for a potential with a hard core
and attractive square well /see Eq. (5.38) belowj for
b=4 Ian that case for /=0, k~ ——1.0, V, (0) 4.3, there
is a, maximum near k/k~=0. 7 of V, (0.7)~10.2, and
V, (1)=3.2. However, for a macroscopic sized system,
we 6nd V, (1—10 ~4)~4.0, a long way from the limit
as k—&kg I As/ increases, the strength of potential needed
to cause a singularity is generally more attractive,
except for A=kg, where, as we saw, it is less so. The
region around k=kj;, where V, (k) is less than V, (0),
decreases in size very rapidly. It is hard to ascribe much
relevance in the physical world to a phenomenon which
seems to require a much vaster than normal macro-
scopic sized system for its existence.

Brueckner and Gammel (1958a) made the simple
approximation of adding a small excitation energy to
the denominator of the Green's function Lour Eq. (5.6),
for examplej as a numerical expedient to prevent an
infinity in their numerical work. We have checked that
this procedure has the effect of moving V, (kv) well
above (in most of the type of cases we are considering)
V (0).

We know very well that for certain potential shapes
(potential of one sign) the energy is indeed singular
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in the presence of any attraction at all—the well known
nuclear collapse problem. This consideration suggests
to us that the laMer series may be giving a "shape-
independent" approximate description of the nuclear
collapse phenomenon. For the potentials we are con-
sidering, we know that it is the "excluded-volume"
effect of the hard cores in the many-body problem which
prevents this collapse. (In any event, it does not seem
relevant to the size of systems we are attempting to
treat. ) We therefore conclude that a different summa-
tion procedure than those based on the E matrix is
required to make a valid singularity-free calculation of
the many-body energy.

Baker and Kahane (1969) rearranged the energy
series in powers, not of Brueckner's E matrix, but in
powers of a closely related matrix which they called E.
The reason that the ordinary potential strength ex-
pansion was rearranged into powers of E was to enable
one to treat potentials with an infinite repulsive core.
This feature must clearly be retained. The usual E
matrix (in ladder approximation) is given by (4.6—
4.18), except (4.13) is replaced by h(k) =R(k) =-', k'.
The low-density limit of the many-body energy is, as
we have seen in the previous chapter

3
AE= dk dy

(2zrkF) I,peak l&AF, I-,p—kl()'2F

(F—1 t even)
X Z (2i+1)l i Ei(k), (5.15)

kp+1 / odd )
and it is proportional to the scattering length

(1969) therefore introduced

„Lk'"jt(k"r)jt(k''r') —IPjl(kr) ji(kr') j
k'"—k~0

)&F(P, k")+a(P, k)ji(kr) ji(kr'). (5.19)

Form (5.19) of C can now be well defined for all k and p,
not just those in the Fermi sea as was the case for
(4.12), by extending the definition of F(p, k") to be

F(p, k") =1, —',p —kF) k",

(k 2+ p2) 1/2( k

k"——'2p&kF,

= (k'"+ z P' kF2) /k—"P, otherwise. (5.20)

The second term (2(p, k) is arbitrary provided it
vanishes when kF does. They choose a =k2/kF (k(kF) as
a simple function which minimizes the difference
between 6 and G.

The next step is to expand the solution of (4.14) in
terms of the solution of

2
u21(r) =ji(kr) —— CA((r, r') V(r') u21(r') r" dr'

0

(5.21)

To do this, we observe that (4.14) can be rewritten as

2
u„(r) =Aj,(kr) —— C,, (r, r') V(r') u„, (r') r" «',

0

(5.22)
where

a= tan()o(0) =
2 " k'dk"

V(r) uoo(r) r' «(5 16)

f21(», r') = dk"

This result corresponds to the standing wave normaliza-
tion for the wave function (Brueckner, 1959; and Wu
and Ohmura, 1962).

If we introduce the Green's function

j(( r )V()rr')rzu(r'')r'rdr')

(5.24)

X j,( r')z)r(r')rr, (r')r'r dr') . (5.22)
0

Thus, solving for A, we get

1 7l Ty —2Q
0

&&
L &" "'~" " ' &(( "»'( "j"

(5 17) where we use the notation (4.66a) of the previous chap-
ter for v~. Hence, we have

then there is no singularity in the integrand at k"=k.
We may, following usual procedures, (Wu and Ohmura,
1962) evaluate (5.17). It is

u), z(») = Aukz(r), (5.25)

K((k) = Ri(k) /L1+ (-'2»1 —c)Ri(k) j, (5.26)

g&t(r, r') = —kj((kr() rtt(kr)), (5 1g) where we define the dia. gona, l elements of the R matrix
as

where r~ and r~ are the lesser and greater of r and r',
respectively. This is exactly the standing wave (Wu and
Ohmura, 1962) Green's function. The form (5.17) is
well defined for all k's, and is also suitable for inclusion
of the Pauli exclusion principle. Baker and Kahane

00

Ri(k) = — ji(kr) V(r) u2((r) r2 dr. (5.27)
Z 0

The Emery singularity arises in (5.26) if Rt(0, as ri
can be arbitrarily large. From (5.26), the expansion of
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Ei(k) in powers of the R matrix is quite straightfor-
ward;

E)(k) =Rt (k) —(-', ri —c)RP(k) + (-,'ri —a) 'RP (k) + ~ ~ ~ .

(5.28)

If we substitute (5.28) into (5.15), then a,s ri diverges
only logarithmically, the integral of every power is
convergent; hence the expansion of AF. (ladder) is well

defined in powers of the E matrix, provided R itself is
defined. The coefficients of the expansion, of course, are
divergent like (22.). This divergence is the same as that
for E in powers of V. This similarity in divergence rates
follows from the fact that, as 6(r, r') V(r') is bounded
for V(r) bounded, R must have a finite radius of con-

vergence when expanded in powers of the potential
strength. In the low-density limit we see that R has the
standing wave singularity of tan 6t(k). These are well

known to correspond to the occurrence of a two-body
bound state.

In addition to resumming the series in terms of the
E matrix, we must also prescribe how to resum the
complete perturbation series in terms of E.. This pro-
cedure is conceptually simplest (at least from the
point of view of systematically giving all the terms) by
expanding every E matrix in the E-matrix rearrange-
ment in powers of E. Of course, as E is meaningless for
the type of potentials considered, to establish the
validity of the E-matrix rearrangement we must go
directly from the V perturbation series to the E-matrix
rearrangement.

Let us now consider the E matrices which result from
the ladder-type insertions to convert all possible types

of U vertices (see Fig. 15) into E vertices. They can be
divided into two relevant categories. The first category
comprises those in which the higher-order ladder
insertions either begin or end with an E' or F vertex
(number of excited states changes by &2). In this
situation, we can apply the proof of the Hugenholtz
Factorization Theorem (Sec. II.C) to show that the
sum over all relative vertex orders between the different
independent ends (as in Fig. 15) gives an effective
denominator for the E matrix which has no contribu-
tion from the excitation of the Fermi sea. Here we only
require those E matrices which either begin or end "on
mass shell. " They can be obtained as

&k
I
« I

k)=(k'
I

R~
I k)/[1+(2ri —0)R~(k) j, (5 29)

where we define

00

(O'
I

R~
I
k) = — jt(k'r) v(r)GI t(r)r2 dr, (5.30)

and the expansion of (5.29) is analogous to that of
(5.28). The other category comprises all the others. For
these the denominators include an excitation of the
Fermi sea. The integral equation for the E-matrix
wave function is now (4.14), but with

G, , (r ")= "k"2dk""( "")"(""')
F(p k" k )

g

(5.31)

instead of (4.12) . The Pauli principle function is such
that the denominator is nonnegative definite where
F/0; however, 0'—q' may be positive or negative. To
handle these cases we introduce

Ci, ((r, r') = „k'"j((k"r)j)(k"r')
dk" ——„——P (p, k", k, q)k'"—k'+q'

if q'& k',

Then, if we define

„ I
k"-"j&(k"r)j &(k"r') —(k2 —q') j&[(k2—q') '"rg j&[(k2—q')'"r'j }

k'"—k'+ q'

+iz(P k q)j &[(k2 q2) i 2r jul[(k2 q2) i 2r~j if k2+ q2 (5 ' 32)

(k'
I
Ri

I
k)= j ~(k'r) (V) r«. , ~( ) rr«2

(1 I
R2 I(k' —q') "')= j&(k'r) v(r)p&, , &(r)r' dr, (5.33)

where

(5.34)
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for the wavefunction corresponding to (5.31) we can write

zij,oi(r) ((k' —q')"'
i
Ri

~
k)L(p, k, q)

1+L(p k, q) ((k' —q') '"
~

R2
~

(k' —q') '") '

where

(5.35)

Hence we find

(k' —q')
L(p, k, q) = „F(p,k", k, q) dk" —c,(k"'—k'+q'

=0)

k~) q'

k'& q'. (5.36)

(k'
i

R2 i (k' —q') "')((k' —q') '"
i
Ri

i k)L(p, k, q)(k'
/
K, [ k) = (k'

f
Ri

[
k)—

1+L (p, k, q) ((k' —q') "'
~

R2
~

(k' —q') '") (5.37)

which leads directly to an expansion of E, in powers of
R2. The Emery singularities are here seen to be asso-
ciated with ((k' —q')"'

~

Rz
~

(k'"—q')"')=0, which are
analogous to those for an unexcited Fermi sea.

Baker and Kahane (1969) have investigated numeri-
cally the singularity structure of the R matrix for
potentials of the form

0&r&a,

= —zr'a'/[2(b —a) ]', a(r & b, (5.38)

for b=4a, and b=2a. The structure that they find is

v

I

FIG. 36. Sketch of a typical pressure —volume diagram for a
liquid —vapor system. The dashed line is the coexistence curve.

complex; however, the singularities lie at considerably
more attractive potentials than those required to
produce saturation in the R-matrix approximation to
the many-fermion energy. One is thus able to verify
at least for sufficiently weak potentials of this type that
the R-matrix resummation procedure satisfies the con-
ditions we discussed in Sec. III.E, and so is a valid
representation of the answer to the physical problem.

B. The Critical Point Singularity

In the previous section we have corrected the mathe-
matical formalism for probably a more technical than
physical singularity. In this section, we will be prin-
cipally concerned with a physical effect. Ke will still
consider forces with a strongly repulsive core surrounded
by a pure attraction of finite depth and range. Although
we are concerned in this article exclusively with the
ground-state energy of a many-fermion system, it is
sonietimes helpful to understanding to consider a
probleni in the context of a larger one. This we shall do
here by introducing a temperature. The ground state
will be recovered in the limit as the temperature goes to
zero, with the other relevant variables fixed.

Interacting systems with interparticle potentials of
the general type we are discussing are quite common in
nature and have been much studied. One of the most
striking properties exhibited by an extremely wide
variety of niatter in bulk is that of change of phase-
the boiling of water to form steam, for example. This
phenomenon occurs at normal atmospheric pressure.
As we increase the pressure, the temperature and den-
sity of the steam increases; finally, at a criiica/ point
(p„T„p,. ) the density of water and steam become the
same, and for a, higher temperature (or pressure) there
is no longer a change of phase. ~

As one approaches the critical point from (for in-
stance) higher temperature, various ma, nifestations of
the impending phase separa, tion appear. A typical p—V
diagram is shown in Fig. 36. The dashed line is the co-

2 For a good recent review of the equilibrium theory of critical
phenomena, clearly presented, the reader is referred to I'isher
(1967).
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FiG. 37. Sketch of energy vs volume for the ground state of a
many-fermion system with attractive forces present.

existence curve. For example, the density fluctuations
become very large when a liquid and its vapor are in
equilibrium with each other below the critical tempera-
ture at the same pressure. (They have different den-
sities. In the absence of gravity, one expects to find
various droplets of liquid dispersed throughout the
volume. ) This phenomenon is experimentally manifest
as critical opalescence, i.e, , the siibstance becomes
cloudy.

Another type of system which displays an exactly
analogous behavior is a ferromagnetic crystal near its
Curie or critical point where spontaneous magnetiza-
tion suddenly appears. Here the zero-field magnetic
susceptibility becomes infinite at the critical point.
One salient feature observed of critical points is that the
singular physical behavior is represented by an analytic
singularity in thermodynamic properties of these
systems. A consequence is that a limit is set on the
radius of convergence of ordinary perturbation theory

by the existence of such a singularity. Any serious

attempt to calculate the properties of many-fermion
systems must consider the possibility of such a singular-

ity and take account of it.
The argument that systems such as nuclear matter

possess a two-phase region is quite straightforward.
We start from the assumption that the many-fermion

system is spatially homogeneous and that the energy is

an analytic function of the density; then we show that
this assumption leads to a contradiction. Consider a
potential with a hard core plus an attractive part of
strength, ) = 1—e, e& 0, where ) = 1 is the strength
required to produce a two-body bound state of zero

energy. %e will suppose that the pair-interaction
volume is much larger than the hard-core volume. t In
the nuclear case, the range of interaction is at least 2—',

times the hard-core diameter (Gammel and Thaler,
1957) or a ratio of more than 15:1 in volume. j

Ke can now imagine a configuration in which there
are up to six interacting pairs per particle (face-centered
cubic arrangement) without an appreciable increase in

with continuous derivative for all (nonzero) tempera-
tures. The Helmholtz free energy (see, for example,
Epstein, 1937) is defined as

4=E T5, (5.41)

where E is the internal energy (per particle), T the
absolute temperature, and 5 the entropy (per particle) .
iXow the entropy per particle (Hill, 1956) diverges to
plus infinity like the logarithm of the volume in the
limit of large volumes. We may now pick a temperature
small enough so that, for all volumes in any given range
between a lower limit greater than the jamming volume
and less than some finite upper limit, 4' is within any
preassigned distance of E as the entropy is bounded in

~ A more nearly rigorous proof can be given by dividing space
up into equal cubes, each containing, say, three or more particles.
If we then impose zero boundary conditions along the cube bound-
aries, we have restricted the class of wave functions allowed,
and hence possibly raised the ground-state energy. - If we now
drop the attractive intercube interactions and thicken the walls
to take account of the intercube repulsive interactions, we reduce
our problem to a set of finite problems which give an upper
bound to the energy of the complete problem. The application
of variational techniques Lsee, for example, Austern and jano
(1960)7, now suffice to establish a negative eigenvalue for some
intermediate density.

the kinetic energy per particle. Consequently, we expect.
to be able to obtain a negative many-body ground-state
energy at a suitable density because of the relative
many-body enhancement of potential energy over
kinetic energy. ' (This effect is evident in the nuclear
case from an examination of the experimental binding
energy per particle among the light elements Lsee, for
example, Blatt and Weiskopf, 1952)$. However, as we
showed in Sec. IV.D, for very low density, we have

(Em/Xh') = sakes+ (3rr) 'akps+- ~ ~ ~, (5.39)

where kp is the Fermi momentum, and is proportional
to the cube root of the density. Hence the energy is
positive at very low density. By choosing X=1—e, the
scattering length u, is finite; although a is infinite for
X= 1, which would vitiate this argument at that poten-
tial, a is finite and analytic for all 0&X(1. For high
densities, the energy per particle becomes indefinitely
great as the available amount of attraction per particle
is bounded (because of the hard cores and finite range
and depth), but the repulsive kinetic energy from re-
stricting the available volume is not. The energy curve
for a spatially homogeneous system must look like
Fig. 37. Ke shall assume that the energy curve varies
continuously with temperature as T goes to zero for
fixed density (see the proof by Luttinger and Ward,
1960) .

We now use the following rigorous result of statistical
mechanics. The Helrnholtz free energy (per particle)
is convex (Ruelle, 1963; Fisher, 1964)
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that range. In the low-density (large-volume) limit for
any T& 0, however, 0 tends —~ because E is bounded,
and 5—++ oo. This argument establishes a region where
4 is positive. Therefore, the Helmholtz free energy
under these assumptions fails to be convex, which is a
contradiction. Ke conclude that the ground state is not
one spatially homogeneous phase. %'e may, however,
construct a convex 4 by taking the convex hull of the
spatially homogeneous +, i.e., by drawing the tangent
line across the reentrant portions, as in Fig. 38. This
tangent line is realized by a two-phase system of
suitable proportions of spatially homogeneous systems
at densities A and 8 to construct the required inter-
mediate density.

Let us now consider our system at very high tempera-
ture. By the correspondence principle (Wigner, 1932),
quantum e6ects become negligible and we may con-
sider classical behavior. The attractive interaction
energies, having a 6nite maximum, become inconse-
quential compared to the kinetic energies, and hence the
possibility of a liquid —vapor-type phase change ceases
to exist'. if we imagine a liquid droplet formed, the
attraction would be too weak to bind a particle having
even the average kinetic energy, and hence the droplet
would immediately evaporate. Ke concluded, therefore,
that, as there is a two-phase region for very low tem-
perature and no two-phase region for very high tem-
perature, there must be a positive least upper bound to
temperatures for which two phases are possible. This
temperature we call the critical temperature. Although
we recognize that the boundary of the two-phase region
could have a, flat top (up as in Fig. 36), we will continue
to treat the simpler case where the top is a single point,
which seems to be the usual circumstance observed in
many analogous cases.

Having established the existence of a critical tem-
perature, we may ask how its location varies as a func-
tion of the strength of the attractive pa, rt of the poten-
tial X. For weaker X, there is less binding energy
available and a stronger tendency for droplet;s to evap-
orate. Hence the critical temperature decreases as X

decreases. When X is zero (hard cores only), there is no
possibility of a, liquid, as a droplet would have no
binding energy at all.

This argument implies the convexity of E at T=O
(except for a possible order —disorder transition a,t
higher density) . Hence, interpolating between X = 0
and Fig. 37, there must be a greatest lower bound to
P 's which have nonconvex E-vs-~ curves under the
spatially homogeneous constraint. Consequently, there
exists a critical potential 0(P 0(1 for which the critical
temperature is exactly zero. There is a corresponding
critical density p, (or perhaps a range of densities) . The
significance of this critical point (X„p,) in the (potential

4 There may still be a solid —Quid phase change at high density
on account of the hard cores, but we are not presently concerned
with this. See Gaunt and Fisher (1965).

V

Fxo. 38. Free energy vs volume for a low-temperature many-
fermion system with attractive forces present. The dashed line
is the convex hull or two-phase portion.

strength —density) plane for fixed temperature (zero) is,
as explained above, the reasonable expectation that it
must be an analytic singularity, as is every other known
critical point.

From the foregoing discussion it is plain that the
ground state of such a many-fermion system is a
cooperative state which can rightly be considered as a
liquid. ' Approximation procedures based solely on the
assumption of a dilute gaslike system are not adequate
as the density, rather than being low, is higher than
critical density, which is the relevant density for the
importance of higher-order cluster interactions.

C. The Coexistence Cuxve

Hy the coexistence curve, we mean here that curve in
the kp potential strength plane passing through the
critical point, which forms the boundary of a stable
one-phase region, i.e., the curve where the coexistence
of two phases just becomes possible. In this section, we
will examine whether one may expect the coexistence
curve to be a locus of singularities or not. This question
is important a,s it is precisely on the coexistence curve
(liquid side) that we seek to evaluate the energy of, for
example, in6nite nuclear matter.

Baker and Kahane (1969) have investigated the
nearest singularity in the E matrix for several potential
shapes. It starts, in the limit of zero density, at the
strength needed to form a two-body bound state, and as
the Fermi momentum increases the strength of the
interaction at the singularity generally increases. This
increase is in accord with the idea that as the density
increases the low-frequency states are excluded by the
Pauli principle, and a stronger interaction is required
to form a bound state. That such singularities should

' For a description of the Bohr liquid drop model of the nucleus,
see, for example, Evans (1955). The successful aspects have
long been recognized to be the bulk properties, surface energies,
separation energies, etc. , which one would expect from either
a classical or quantal. liquid, which are, of course, just the aspects
relevant to the present discussion.
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kF

FIG. 39. Path in the X—k~ plane which leads to the occurrence
of a spatially inhomogeneous (two-body) portion of the many-
body wavefunction. The jagged line is a line of singularities
(Axed l).

exist has long been recognized (Emery, 1959; Balian,
1962) . The relevant question, insofar as a study of the
ground-state energy of a many-ferrnion system is
concerned, is their location (in the kl:—X plane) relative
to the coexistence curve. If none of these singularities
lie in the one-phase region, then they are, in principa, l,
no impediment to the calculation of the ground-state
energy. If, on the other hand, they intrude into the
one-phase region, then they proscribe the calculation
of the ground-state energy there. We have argued in
the previous section that, for the type of potentials we
are considering (see Sec. B), the many-body effects
which enhance the potential relative to the kinetic
energy contributions cause the many-body binding
energy per particle to increase when the number of
particles in the system does. Consequently, a weaker
potential is required to cause a given binding energy
per particle for a larger system than for a, smaller one.
Therefore we expect the two-body bound states which
cause singularities in the ladder approxima, tion to occur
for stronger potentia, ls than saturation.

We can give significance to the low-density termi-

nology of bound states in the presence of a Fermi sea

by a discussion in terms of spatial homogeneity. In the
low-density case, the normalization of the wave func-
tion when two particles are close together (in a "bound"
state) is proportional to n '~' (v is volume), instead of

1/v, as it would be if they were uncorrelated. This
region will persist as we increase the density of the
surrounding Fermi sea. The effect of the presence of the
Fermi sea (Gomez et at , 1958) is to .prevent the occur-
rence of most of the low frequencies in the wave
function. They (Gomez et al. , 1958) say that it "heals"
quickly; however, the amplitude of the "healed"
(undisturbed frequency) portion of the wavefunction
will differ from that of the unperturbed wavefunction
when there is a spatially inhomogeneous portion pres-

as well as

E(kp, X) = Q limine„h",
n=0 N~00

(5.42)

E„(kp, X) = lim Q ~e X",
N-+oo n=0

(5.43)

ent, as there will be a nonzero fraction of the total
normalization in the correlated portion. As the density
of the I'ermi sea is increased, finally one must use such
high frequencies (high kinetic energies) to construct
the wavefunction that it becomes energetically un-
favorable as compared to the spatially homogeneous
state. (See Fig. 39 for the path followed in this argument
in the iX k~ pla—ne. ) Since the three-, four-, etc. body
scattering matrices appear, as has been emphasized by
Bethe (1965), as part of the energy expa, nsion, one
Ands the same phenomena there as in the two-body
case. An analytic singularity will occur in the m-body
scattering matrix, where the spatially inhomogeneous
case (normalization of the wavefunction when all
particles are remote from each other decreases) be-
comes more favorable than the spatially homogeneous
case. If we consider the limit as e becomes infinite for
the e-body scattering matrix in a sea of Axed density,
the location of the singularity will be the coexistence
curve —as the breakdown of spatial homogeneity (one
phase) is the degeAioe of a liquid —vapor coexistence
curve. Consequently, we conclude that the coexistence
curve is a limit point of singularities of subsequences
which occur in the complete energy. Fortunately, as
we have discussed above, the limit, for potentials of the
sort we are trea, ting, is approached from the more
strongly attractive side, and we are not barred, in
principle, from computing the energy on the coexistence
curve from the less strongly attractive side.

As the coexistence curve is a little bit complex we
have included a sketch of it in Fig. 40. There are three
distinct horizontal bands. Below the critical point
(X(Xc) liquid and gas merge indistinguishably into
one another. The next band has a real gas and a real
liquid. It lies in the range Xz&X&Pz, with X& the
strength of potential interaction required to bind the
liquid pha, se with zero binding. In this band, the system
exerts positive pressure on the walls of the vessel (as it
did in the lowest horizonta, l band). In the top band
(X)Xz) the density of the gas phase is zero, and the
liquid therefore does not fill the container in the two
phase region. It is in this self-bound region that the
saturation point of nuclear matter lies. The liquid co-
existence curve in this band can be obtained in the
usual way by looking for the minimum (approa, ched
from high density) in the energy per particle vs kF for
fixed interaction strength. In the second band, the more
complex Gibbs double-tangent construction (Fig. 38)
must be used to locate the coexistence curve.

Whether or not the coexistence curve is a, line of
singularities of the analytic function
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is clearly of crucial importance to any attempt to
compute the energy on the coexistence curve. Katsura
(1954, 1960) has examined a classical model and shown
that, in spite of Yang and Lee's (1952) results on
(5.43), it is doubtful whether the singularity of (5.42)
coincides with the irregular point of (5.43).

That (5.42) and (5.43) are not necessarily the same
can be seen from the example where ~e„are the series
expansion coefficient of the function

I1+ exp LtV(1 —X) j}
In this case, (5.42) yields E(X)—=0, while E„(X)=,

U(X—1), the unit step at X=1. While E is analytic
(and trivial) everywhere, E„has a line of singularities
on Re (X) = 1.

There is some numerical evidence (Baker, 1967) to
indicate that for the nearest-neighbor lattice gas the
coexistence curve does not contain singularities of
(5.42) except for the critical point itself. Katsura (1955,
1963) and Saito (1961) have proved for the long-range,
Huisimi —Temperley model that the coexistence curve
is not a line of singularities of (5.42). Of course, in both
the above cases (5.43) has a line of singularities on the
coexistence curve.

Thus the fundamental question of whether (5.42)
has a line of singularities along the coexistence curve is

FIG. 40. The solid curve is the coexistence curve for a many-
fermion system at zero temperature. It consists of three parts.
Part I which runs right from point C is the liquid coexistence
curve. Part G which runs from B to C is the gas coexistence
curve, and part V which runs vertically up from 8 is the gas
coexistence curve when the gas phase is a vacuum. Point C is
the critical point, Point Z is where the energy per particle in
the liquid phase on the coexistence curve crosses zero. Point S
is a typical saturation point corresponding to a zero slope in the
energy per particle vs kz curve. The region above the coexistence
curve is the two phase region and that below is the one phase
region,

as yet unanswered —thereby making any calculation of
the saturation properties of such a many-fermion sys-
tem extremely difficult. It is reasonably clear from the
arguments we have advanced tha, t (5.43) does possess
a line of singularities along the coexistence curve. There
is, as we indicated above, some indirect evidence that
(5.42) may not have these singularities, except at the
critical point, or that if they are there they are of such a
nature as to be numerically inconsequential. We will
proceed on the optimistic assumption that we need
take account only of the critical point itself out of this
class of singularities.

D. Evaluation of the E-Matrix Expansion
Through Fourth Order

From the discussion in the preceding two sections, it
is plain that any sequence of successive approximations
to the energy of the ground state of a many-fermion
system with attractive forces must take into account
the critical singularity, and must be designed in such a
way as to avoid its adverse effect on the convergence.
One such procedure is very close to the original program
of Brueckner. It is to fix the density (k&), and then
calculate an expansion in successively higher powers of
the R matrix. In this way we will pass from the non-
interacting system at fixed density (whose solution is
known exactly), through the one-pha, se region, to the
liquid coexistence curve where the in6nite system of
fermions is saturated, i;e. , in equilibrium with the
vacuum. This path should be one along which the energy
is an analytic function of the potential strength, and
so this procedure, leaving aside the problem raised in
Sec. C, gives a well-defined method for determining
the energy of such a system.

The actual execution of such a program requires only
t;echnique and persistence, and does not present any
difhculties in principle. We will review one such cal-
culation by Baker et al. (1970). If one sums out all the
ladder insertions, then the series of diagrams which
remain, with a K(R) at each vertex is, through fourth
order: 81, R3, H3, F3, I.6, IA.1, IA.2, IA.3, II.3, II.4,
II.5, II.7, II.S, II.9, II.10, II.11, II.12, IIA. 1, IIA.2,
IIA.3, IIA.4, IIA.5, IIA.6, III.2, III.9+10, IV.1, IV.4,
IV.5, IV.6, and IV.7. These are pictured in Fig. 27—34.
There are two types of R matrices which occur in these
diagrams. Those in which the Fermi sea is excited, and
those in which it is not excited. The elimination of the
excitation of the Fermi sea is a result of the Hugenholtz
Factorization Theorem, as was explained in Sec. A. Ke
now catalogue the vertex types which fall in each
category. They are illustrated in Fig. 15. The vertices
E, F, G, H, and I have no excitation of the Fermi sea,
but in the vertices 3, 8, C, and D we must include the
effects of such excitation. The vertex J, which is the
sum of self-energy bubbles on all hole and 6lled-state
lines at a given vertex position, is a special case. The
R matrix corresponding to a bubble on a filled-state
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= k'+-', kF'. (5.44)

As 7i)ki, always, it follows from (5.20) that F is never
zero. The value of (q' —k ) is, basically, (2k)~—(k) +
mean square average of a hole momentum. The average
is restricted by the given value of k. This quantity
works out to be

ke4 ——;kp'k+kp'k' —4k4/15
q'(k) —k'= 3k2+

=3k2+ 53kF'.

k&kp

k&kp' (5.45)

The wave function and E matrix follow in the same
manner as described in Sec. A.

Baker et al. (1970) have used these formulas to
produce the desired matrix elements numerically by

line must be corrected for the excitation of the Fermi
sea, while that corresponding to a bubble on a hole line
need not be. We point out that because of the sums in-
volved in the Hugenholtz Factorization Theorem, con-
siderable care must be exercised in writing out the
high-order perturbation terms to avoid over counting.
Ke also mention that, although the E-matrix procedure
sums out all A vertex insertions, there can nevertheless
occur A vertices in the E diagram expansion, when, for
example, there are three or more filled states present at
the same time in a diagram. However, this eRect does
not occur until fifth-order in the expansion.

Through fourth order in E, we may use the following
special feature to restrict the number of parameters on
which the E. matrix in the presence of an excited Fermi
sea depends. To this order, every excitation consists of a
single filled-state, hole pair which combines with a
filled state at the previous or next vertex to form an
unexcited fermi sea. Therefore, except for a hole
momentum, over which we must integrate in any case,
the excitation energy is directly related, by momentum
conservation, to either the initial or final relative
momentum at that vertex. Hence, by averaging over
the allowed values of the hole momentum in a manner
similar to (4.11),we may again reduce the R matrix to
a dependence only on k, k', and /. If one wishes to
proceed to higher order than four, one must then know
R as a general function of the excitation energy. One
further special simplification is available on this account.
One finds (we will see this result below) that the
averaged excitation energy always exceeds the energy
of the incident state, so that E and A are equal in this
case. The calculational formulae are now (5.32), case
q') k'. The definition of the average value of p changes,
because we now have a vertex with one incident 6lled-
state line instead of an unexcited Fermi sea, as in (4.11).
It is

kp4+ k4/15'
&p2-

kI:2—-', k'

means of a high speed digital computer. For the details
of this aspect one should consult their paper. They
selected the following potential for consideration in
their paper. First, for states of even relative angular
momentum, we have

V~(r) = Vi,

Vi(r) =V,

V, (r) = V, (r) =0

V, (r) = V,

v, (r) = v.,

0&r&c,

c&r&d

(5.46)

where V8 is the singlet potential and Vz is the triplet
potential. For states of odd relative angular momentum,
they chose

Vs(r) = V, 0&r(c

c&r. (5.47)

The parameters in this potential were chosen as follows:

c=0.4f, d = 29c/7

Vi= V4= V;= V4=10%'/Mc'

V3 = 1.25 (74r/44) ~Pi~/Mc2 V4
——0.96 (7z-/44) %~/Mc~

(5.48)

They have fitted the two-body data a+=5 39f, ror .——

1 71f, and a. s —— 23.7f to de—termine these parameters.
In addition, they computed L'z = —2.20 MeV, and rps =
2.14f instead 2.6f. Here f is fermis, a is scattering length,
rp is effective range, and Ep is the triplet ground-state
energy. The singlet phase shif't, 8p equals 0 for k around
150 MeV instead of 200 MeV as it should.

In the evaluation of the contributions to the R-
matrix expansions one must sum over the various spin
and isotopic spin states, in addition to the integrals
over the intermediate momenta. Through fourth order
in E., up to four independent spins and isospins can
occur, a total of 256 different states for this type of
potential, Although this sum needs to be performed only
once for each diagram, the formulas that result are
rather awkward and may indeed contain as many as
256 terms. Baker et al (1970) give . a group theory
procedure, va, lid through fourth order, which reduces
these sums to the evaluation of at worst the trace of
3)&3 matrices instead of 256&(256.

As it is necessary to evaluate many multidimensional
integrals I Eq. (2.41)j in which the E-matrix elements
appea, r in the integrand, Baker et al. (1970) used an
empirical representation to make their calculations
feasible. The integrals were evaluated by Monte-Carlo
integration procedures.

As a partial guide to the accuracy to be expected,
Baker and Kahane (1969) have performed an analogous
calculation on a model taken from classical statistical
mechanics, which however retains many of the essential
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features. It is the "lattice gas. "For this system (Rush-
brooke and Scoins, 1962, 1963) there is extensive per-
turbation series data available, equivalent to terms of
the order of V'. They summed the series through the
highly effective Pade approximant method, ' (Baker,
1965b; Baker and Gammel, 1970). They found that
while the very earliest approximations are rather
wide of the mark, the improvement is quite rapid and
that, except near the critical point, the location of the
coexistence curve is determined to within about 0.02%.
Even the

I 2, 2] Pade approximant, which uses only
four terms in these series, gives about 2% in accuracy,
except near the critical point where it is only 10% off.
They evaluated the energy (actually the free energy)
at the corresponding approximate locations deter-
mined for. the coexistence curve. Using all terms avail-
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able, they obtained (except near the critical point) at
least four figure agreement with the known answers,
and even better results on the gas side of the coexistence
curve. Using only four terms (the [2, 2] Pade approxi-
mant), they obtained an accuracy of about 1%, except
near the critical point. The results for the problem of
Baker el al. (1970) may not be quite so rapidly con-
vergant, as the second term in the E-matrix expansion is
anomalously small, and their potential is more com-
plex than the model one.

In Tables VII and VIII we list the numerical results
of Baker et al. (1970) for the various diagrams. The
density A;p=0. 625 was chosen at which to evaluate the
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analytic continuation where a ratio of polynomials is used to
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convergent and asymptotic series.
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Diagram Value Deviation

IA. 1

II.3
4a

II, 5

II.7

II.10

II. i in

II.12'

IIA. 1

IIA. 2

IIA. 3

IIA. 4'
IIA. 5

IIA. 6

III.2

III.9+10
IV. 1

IV.4

IV.5'
IV.6

II.7"'

5 084X10 '
—2.66X10 4

—2.52X 10 '
—1 56X10 "'

—2.37X10 "

6.1X10-'
6. 1 X10-5

—9.1X10-3
-1.40X10-4
—2.29X10 4

—7. 7X10-5

2.0X10-"
—2.29X10 4

—1.40X10-4
—0.1516
—5.3X10-4
—6.4X10 4

—5 3X10 4

4.45X10-3

4.32X10-3
—3.23X10 3

3.68X10 '
—0.1117

8.6X10 '
8.6Xl0 "

—1.637 X10-2
—1.637X10 '

&8X10 '
a9.5 X10-5

WS. 5 X10-5

&1.2X10 '
~9X10 '
a9X10 '
aSX10-4
&7X10 '
~2 8X10 5

+6X10 '
~SX1.0 6

W2, 8X10-5

~7X10 '
a9.5 X10-4

~4X10-5
~SX10-5
~4X10-5
W8, 5X10-6

a i.OX10-4

~9X10 '
a7.5 X10-"

a8.SX10-4

~2.5 X10-4

a2. 5X 10-4

&3 SX10 4

~3.SX10-'

TAmE VIII. E'our-order .R-matrix exparision data for k~c=0.625
(units 1 = 259.2 MeV) .

It is to be noted that the fourth-order term is sub-
stantial (larger than the first-order term in this ex-

ample), and that many diagrams make imports, nt con-
tributions to it. Numerically the largest contributions
in fourth order come from the three-body cluster terms
(IIA.1 and II.5) and. the self-energy insertions (Class
IU) .

These results are in accord with experience with the
coexistence curve in classical liquid systems. An ac-
curate result cannot be obtained by considering only
the result of pair interactions, even in the presence of a
medium, taken account of in an averaged manner. The
higher clusters behavior is essential. Indeed this aspect
is the essence of the name given to the field, i.e. , co-
operative phenomena. By use of sophisticated summa-
tion procedures such as the Pade method, one can
sensitively extrapolate the trends apparent in the low-
order clusters and thus obtain accurate estimates
sooner than would otherwise be possible.

In classical systems, procedures based on the sum-
mation of terms corresponding to two-particle clusters
or special classes of diagrams have not been very
successful when applied to the liquid coexistence curve
(Levesque, 1966), even though some of them do well

on the gas side. We know of no reason to suppose that
the quantum problem of a many-fermion system with its
more complex interaction and quantum complexities
should yield to such methods. We do feel, however,
that the methods, as outlined in this section, which
have proved successful (Baker and Kahane, 1969;
Gaunt and Baker, 1970; Baker and Rushhrooke, 1970)
in other analogous systems will be powerful enough to
solve the many-fermion problem, although one may
need to go to higher than fourth-order perturbation
theory to do justice to the complex nucleon —nucleon
interaction.

Total —0.2878 ~ 1 .6X10 "

a Identical to a previous diagram (but inust be added to find tlie t,otal
fourth-order coefficient) .

[2, 2]=—25.6 MeV,

E1, 3j= —24.3 MeV (5.49)

for kj;c= 0.625.
They also summed the available terms by the Sorel

method, and obtained closely similar results.

fourth-order terms since it seems close to saturation for
their potential.

In order to analyze what this data implies about the
ground-state energy of a many-fermion system inter-
acting with this potential, Baker ef, .al. (1970) used the
Fade approximant method. Ke show in Fig. 41 a plot
of their results for successively more accurate Pade
approximants. The most accurate Pade approximants
are
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