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The application of the single-particle model to nonspherical nuclei is reviewed. The band-head (I=K) energy data
for intrinsic states of predominantly one-quasiparticle character are compiled for odd-A nuclides in the region 150&
A (190.The data are analyzed in two steps: first, the rotational and vibrational contributions to the energies are sub-
tracted to give quasiparticle excitation energies; second, single-particle level schemes are fitted to the quasiparticle
energies by BCS blocking calculations. The resulting schemes are presented graphically. The single-particle energies and
the pairing calculation parameters are made available so that they can be utilized for various purposes in nuclear structure
work. As a result of the analysis, we find indications that the zero-point rotational contributions to the band-head energies
may have appreciable variations. The level systematics is compared with various single-particle model calculations,
assuming local, axially symmetric potentials, and the potential and shape parameters entering are discussed. The potentials
used offer satisfactory interpretation of the re&evant features of the systematics. The use of a diffuse potential well with
proper parameter choices is of significance, particularly for the single-neutron levels. The values of the deformation
parameters e& and e4 (or p2 and P4) preferred by the level systematics are compatible with other evidence concerning the
nuclear surface shapes.
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I. INTRODUCTION

Since the advent of the nuclear shell model about
20 years ago, the interpretation of spectra from nuclei
with odd mass-numbers in terms of the motion of the
odd particle has been highly successful (Bohr and
Mottelson, 1969, Chap. 2 and 3) . The extension of the
single-particle' model approach to nonsphericaP nuclei—
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t.he Swedish Atomic Research Council, and the French National
Center for Scientific Research.

t Present address: Division of Theoretical Physics, Royal
Institute of Technology, Stockholm 70, and Research Institute
for Physics, Stockholm 50, Sweden.

f Present address: Institut des Sciences Nucleaires, Cedex No.
257, 38-Grenoble-Gare, France.

' The "single-particle model" concept of the nucleus generally
refers to a description where the nucleons move independently
in a common average field. The Hamiltonian for the system then
consists of a sum of individual terms for all the particles. Each
term contains the spatial and spin coordinates of one particle,
and consists of a kinetic and a single-particle potential energy
contribution.

'We prefer to use the term "nonspherical" for nuclei where
the equilibrium shape of the mass distribution deviates from
spherical symmetry. This is synonymous to the term "deformed",
frequently used in the literature. We often use the term "de-
formation" for the deviation from spherical symmetry, and
occasionally the term "distortion" for the deviation from any
defined shape.

424



OGLE AH/, BoRN PIEPENBRING AND FREDRIKssoN Single-Particle Levels of 1Vonspheri ca/ ENclei 425

characterized by the presence of rotational bands' in
their level structure —was made in the pioneering work
by Nilsson (1955). Reviews of the relationship between
the models and the data have been given by Mottelson
and Nilsson (1959), and by Nathan and Nilsson
(1965). A careful analysis of the present experimental
situation for intrinsic4 states of odd-A nuclides in the
rare-earth region is presented in the preceding review

by Bunker and Reich (1971).
In our conception, the single-particle model is

essentially phenomenological. Its validity depends on
its usefulness in interpreting the data and predicting
systematic trends. It contains parameters which are
eGective quantities and not necessarily predictable by
any "fundamental" theory. The interest in this model
is based on its stability, i.e., the smooth variation of the
parameters with changing nucleon numbers.

In the present review, we use the single-particle model
as a basis for interpreting the band-head' energy level
data, which are attributable to one-quasiparticle'
excitations of odd-A nuclides in the region 150(A & 190.
This interpretation has two main objectives: to derive
from an analysis of the data semiempirical single-
particle level schemes which can be applied in various
nuclear-structure considerations; and to discuss the
relevant features of these schemes in terms of potential
model calculations, whereby one may learn about the
appropriate potential and shape parameters.

We envisage many possible uses of the information
contained in this review. Both the theoretical and
experimental aspects should be of interest to the
specialist. The semiempirical single-particle level
schemes can be utilized in several ways: for more

' A quantum-mechanical system having a nonspherical, axially
symmetric, static mass distribution exhibits rotational motion
associated with level sequences of the type

E(I, X) =const. +AOI(I+1),

where I is the total angular momentum, and the difference (I—E)
takes nonnegative integer values. Such a sequence is called a
"rotational band, " and the member with minimum angular
momentum, I=E, is called the "band head".

4 Kxcitations related to the motion of particles relative to the
rotating core are called "intrinsic" (this terminology should not
be taken to imply that the two degrees of freedom can be strictly
separated) . The intrinsic coordinates (x, y, z) refer to a system
fixed in the nucleus t'these coordinates are frequently denoted by
(xi, xs, xil in the literature). We assume the nuclei of interest
here to have axial symmetry with respect to the z axis, and
reQection symmetry with respect to the xy plane. The coordinates
((, q, t ) refer to a space-fixed system.

'The concept of "quasiparticle" state generalizes the concept
of "particle" or "hole" state by including the effects of the diffuse
Fermi surface due to the presence of pairing correlations. Since
these correlations conserve "seniority" (the number of particles
not occupying pairs of time-reversed orbitals), the classification
of the one-quasiparticle states remains the same as that of the
single-particle orbitals. See further Appendix C.1 and Sec.
III.A.1.

'The "potential parameters" are such quantities as, e.g. ,
the depth and the average radius of the potential, which remain
well defined independent of the surface shape of the nucleus.
The "shape parameters" characterize the deformation of the
nuclear surface and are assumed to vanish in the spherical limit.

detailed nuclear-structure calculations; for comparison
with other theoretical approaches as a guide in the
experimental search for new intrinsic states; etc.
Furthermore, we have attempted to make the presenta-
tion readable for as large an audience as possible,
including, for instance, graduate students in other
fields of physics. The sections of the article are relatively
independent of each other. Background and technical
materials are presented in Appendices.

The single-particle model with a local potential,
adapted for nonspherical nuclei with axial symmetry,
is described in Sec. II. In Sec. III, we discuss the
relation between the band-head' energy data and the
single-particle levels. The analysis of the data involves
the application of corrections due to collective' effects,
and 6tting of the resulting quasiparticle energies by
BCS blocking' calculations. The compilation of data
and the single-particle level schemes obtained from the
analysis are presented in Sec. IV. The level systematics
and the potential model calculations are compared and
discussed in Sec. V. The conclusions are summarized in
Sec. VI. The Ave Appendices contain the following
material: (a) Presentation of the simple rotor-plus-
particle model; (b) Details on models with axially
symmetric potentials; (c) Brief account of quasi-
particles and their interactions (within the framework
of the BCS' and RPA" theories); (d) Bibliography for
experimental level data; (e) The odd-mass ytterbium
isotopes as a case study.

II. THE SINGLE-PARTICLE MODEL FOR
NONSPHERICAL NUCLEI

As stated in the Introduction, the single-particle'
model furnishes a basis for the description of intrinsic'
states in nuclei. Since the single-particle potential is

It should be noted that the single-particle level schemes
discussed in this review, whether calculated from a potential
model or derived from experimental information, cannot be
directly compared with results of Hartree-Fock or other self-
consistent theories. Such theories necessarily lead to nonlocal
potentials, and the residual interactions are defined in a different
framework. Also the rearrangement energies complicate the
comparison with experimental levels.

8 By "collective" motion, we mean both the rotational and
the vibrational motion of a nucleus (the vibrational motion,
being intrinsic, consists of dynamic oscillations around the
static equilibrium shape). The "collective" and "quasiparticle"
degrees of freedom are not in reality distinct.

The initials BCS stand for Bardeen, Cooper, and Schrieffer
(1957), who introduced a scheme for treating the pairing cor-
relation effect in superconductors. This scheme provides a useful
approximation in nuclear-structure theory. By "blocking, " we
mean, in brief, that the nuclear pairing correlation problem is
solved for each quasiparticle excitation separately, omitting
from the single-particle spectrum the level or levels occupied, by
the unpaired particles. (The physical significance of this procedure
is discussed in Secs. III.A and III.C.)

The abbreviation RPA stands for "random-phase approxima-
tion. "This provides a general theoretical scheme for the micro-
scopic description of harmonic vibrations in many-fermion systems.
The main features consist of linearizing the equations of motion,
including the "field-producing" interactions, and of accounting
for the seniority-nonconserving ground-state correlations, in
addition to those of the pairing type.
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expected to vary in a smooth way with the nucleon
numbers, it should also furnish a natural framework for
analyzing and systematizing data on such states. In the
present review we base our analysis and discussion of
the quasiparticle' level data on the single-particle
model, assuming a local, axially symmetric potential.
In this Section we outline the main features of this
model and its use for various calculations. We restrict
ourselves to such static potential wells as are of interest
for the region of nuclides considered in this review.

In Appendix A we indicate how the particle and
rotationaP motion enter into the description of spectra
of nonsphericaP nuclei, using the simplified case of the
rotor-plus-particle model. Further details about axially
symmetric potential models are presented in Appendix
B.For more information about the single-particle model
for nonspherical nuclei and its applications we refer the
reader to the original article by Nilsson (1955) and to
the following books and review articles: Moszkowski,
1957, pp. 497—516; Kerman, 1959, pp. 467—477;
Nemirovskii, 1963, pp. 115—127; Preston, 1963, pp.
261—278; Nathan and Nilsson, 1965, pp. 659—673;
Rogers, 1965, pp. 257—280; and Davidson, 1968, pp.
66—78 and pp. 183—224.

A. The Hamiltonian and the Shape Parameters

The single-particle Hamiltonian with a static average
field can be written

H, p
—(5'/2m) 6„+—V—(r)

+V„(r; spin)+(-', ) (1+rp) Vc,„~(r), (2.1)

where the intrinsic4 coordinates r= (x, y, s), and the
Laplacian A„refer to the motion of the particle relative
to the core. We assume m to be the actual nucleon
mass. " The potential terms represent the average
interaction between the particle and the core (cf.
Appendix A). The term V(r) is the nuclear potential
well. The spin —orbit term is assumed to have the
invariant form"

V„(r; spin) = —«„o [grad U(r) )&p/fi], (2.2)

where «„ is a constant, U(r) is a potential well, 0'= 2s
is the Pauli spin vector, and p the momentum vector

"One might introduce an "effective mass, " sr~, instead of the
regular mass, »z, to represent, in a very crude approximation, the
possible energy dependence of the potential. For excitations near
the Fermi surface, one should then choose m~(nz. However,
there is no apparent need for such a choice in connection with
the potential models discussed here. For details on the "effective
mass" approximation, see Preston (1963) Chap. 10, and I.emmer
(1960).

"In the case of a central potential well with U(r) = V(r),
the invariant expression for the spin-orbit term reduces to the
form

«..P V'(r) /r gt. e, —
which is analogous to the well-known Thomas term in atomic
physics.

of the nucleon. " The Coulomb term, which vanishes
for a neutron due to the factor" (1+rp), is obtained
from an assumed charge distribution, p, (r), for the
nucleus, giving

Vc,„&(r) = efp, (r')
~

r—r'
~

' d'r'. (2 5)

The volume integral of the density p, (r) equals the
total nuclear charge Ze.

The nuclea, r potential well V(r) is furnished by a
generalization of the shell model potential, V(r), for
spherical nuclei to the case of nonspherieal symmetry.
This generalization is not unique, and there are various
possible choices of the potential V(r) to be generalized.
In the Nilsson (1955) model, the potential V(r) is
taken to be an anisotropic harmonic-oscillator potential.
In several approaches, use has been made of the
Woods —Saxon potential form for V(r) (Woods and
Saxon, 1954), applying different methods for generaliza-
tion to V(r). In either approach, the formulation of
V(r) involves some kind of parameterization. We can
suitably distinguish two types of parameters' —the
potential parameters [related to the spherical well,
V(r) ], and the shape parameters (describing the
nuclear surface shape). A general discussion of these
matters is outside the scope of this review. Here we
shall only briefly discuss some generalizations of the
static Woods —Saxon potential to axially symmetric-I
nonspherical shapes. Further details and comments on
alternative approaches are given in Appendix B.

In the spherical case, the Woods —Saxon potential is
defined by the Fermi function radial form function
(cf. Appendix B.1),

V(r) = —VpF(r; Rp, ap), (2.4)

'3The angular momentum vectors, e.g., d=2s, 1, R, j=1+s,
I=J+R, are throughout expressed in units of A. The linear
momentum vector, p, however, has its proper dimension, so that
51= rX p holds.

'4We define the third component of isosopin- in such a way
that ~3=+1 corresponds to a proton, and 73= —1 corresponds to
a neutron.

F(r; Rp, ap) = {1+exp [(r—Rp)/ap]I ', (2.5)

where Vo is the potential depth, Eo is the "potential
radius, " and ao is the "surface diffuseness" parameter.
There are various ways of parameterizing the nu-
clear surface shape for the nonspherical potential
V(r). For example, one may use either one of the
following two types of expression for the equation of
the nuclear surface (cf. Faessler and Sheline, 1966)
(we assume here reflection symmetry with respect to
the xy plane)

(a) Introducing an angular-dependent nuclear. radius
R(8) expressed in terms of a multipole expansion,
describing the surface shape; this leads to an equation
which may be written (it is conventional to use here
spherical harmonics)

r =R(8) = bp[1+Pp+PpVpp(8) +P4V4p(8) + ' ' ']. (2 6)
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(b) Substituting for the square of the radial co-
ordinate an expression r'S(8), the shape function S(8)
containing the angular dependence; this leads to an
equation which may be written (it is conventional to
use here Legendre polynomials)

r'S(8) = r'[1 +ztp—ztpEp(cos 8) +zt4P4(cos 8) + ' ' j= cp'.

(2 7)

The constants bp and/or Pp in case (a), and cp and/or
ztp in case (b), may be used to make the surface described
by Eq. (2.6) or (2.7) enclose a given volume, (4zr/3) Rp'.
The further parameters pL or ztL, with 1.=2, 4,
evidently describe the deviation from spherical sym-
rnetry. For 6nite deviations, the shapes described by
Eqs. (2.6) and (2.7) are quite different if only one term
(e.g. , L=2), or a few terms, are included in the func-
tions E(8) and S(8). Thus, in practical cases, there is
no exact one-to-one correspondence" between the
parameterizations expressed by Eqs. (2.6) and (2.7).
We emphasize this by using a distinctive terminology
to classify the shapes of interest. "

The parameterization of the type (a), Eq. (2.6),
has been most frequently represented in the literature,
e.g. , in the work by Faessler and Sheline (1966),
Nemirovskii and Chepurnov (1966), Gareev et Gl.

(1967, 1968, 1969), and Ford, Hoffman, and Rost
(1970). The type (b) implies a simultaneous gener-
alization. of the Nilsson and Woods —Saxon potentials.
The parameters p2 and p4 are closely related" to the
parameters e2 and e4 used in recent years in Nilsson
model calculations (see Appendix B and Gustafson
et al. , 1967; Lamm, 1969; and Nilsson, 1969). Woods-
Saxon potential calculations with this parameterization
have been performed, e.g. , by Chasman (1969), and
Ehrling and Wahlborn (1970, 1971).

Due to the imprecise nature of the concept of "nuclear
surface, " the procedure described —assuming Eqs.
(2.4), (2.5), and (2.6) or (2.7)—still leaves a certain
ambiguity in the definition of the potential V(r). A
unique de6nition involves, in principle, a prescription

'5 For small or moderate deformations, an approximate relation
holds between the two main sets of deformation parameters
used in the literature (cf. Careev, Ivanova, and Pashkevitch,
1969),

p2 = 1.0662+0.2062 1.8&64)

p4 =—1.18&4+0.2762 1.26264)

where e2 and e4 are the Nilsson model parameters,

3'g2/4& e4 TJ4/2.

For the Bohr and Mottelson (1953a) distortion parameter,
p&M =0.9p2 holds.

"With the multipole expansion, Eq. (2.6), the deformations
associated with p2, p4, etc. , are called, respectively, "quadrupole, "
"hexadecapole, " etc. With the substitution, Eq. {2.7), the
parameter q2 (or e2) evidently describes "spheroidal" deforma-
tions. For the distortion introduced by finite q4 (or e4), we suggest
the term "tetroidal". In either type of parameterization, the
surface shapes associated with positive p2, ~2, or q2 are called
"prolate, " while negative p2, c2, or q2 describe "oblate" shapes.

for all the equipotential surfaces, V(r) =const, and a
precise formulation of the volume conservation criterion
adopted. However, these details are mainly of technical
nature and hardly affect the essential physical features
already expressed above. A brief discussion of these
questions is given in Appendix B.

B.The Potential Parameters

Vp(rp, Z, S) = VI+rpV2(X —Z)/A, (2.8)

where the constants V~ and V~ have the approximate
values"

Vi 52 MeV, V~ 33 MeV. (2.9)

The potential radius and diffuseness parameters have
roughly the values"

Ep ——rod'~3, rp~~1. 25 fm, ap 0.65 fm. (2.10)

In the expression for the spin —orbit term, Eq. (2.2),
the potential well U(r) is also determined. on the basis
of evidence from spherical nuclei. In principle, V(r)
might be different from V(r) . On the other hand, there
is no decisive evidence against setting them equal

which has the desirable property of concentrating the
spin-orbit coupling effect in the surface region. Actual
optical-model fits, as well as results of shell-model cal-
culations, indicate the near equality of the two wells

"The suitable unit of length for nuclear physics is the "femto-
meter", 1 fm = 10 "cm. A natural unit is provided by the reduced
Compton wavelength of the proton, tz'/zn„c=0. 2103 fm. The
energy units used most frequently are keV and MeV; 1 MeV=10'
keV=10' eV. Other standard notations in nuclear physics are:
Z =proton. number =atomic number; X=neutron number;
A =Z+1V =mass number.

For definiteness we continue to discuss the Woods-
Saxon potential. In its generalizations, the potential
parameters, Vo, Eo, and ao, are customarily chosen in
the same way as for spherical nuclei. Although the-
oretical estimates of these parameters are available
(see e.g. , Myers, 1970), semiempirical values are used
as a rule. The information on the size and depth of the
potential well, and the strength of the spin —orbit
coupling, is derived primarily from optical-model
analysis of elastic nucleon-scattering data (see Elton,
1961; and Collard, Elton, and Hofstadter, 1967). For
nuclei in the heavy-mass region (A &100), this in-
formation is known to be consistent with the shell-
model interpretation of bound state data, using the
static potential obtained from the energy-dependent
real part of the optical-model potential in the zero-
energy limit. These matters are discussed in some detail
by Bohr and Mottelson (1969), paragraph 2—4 (see
also Blomqvist and Wahlborn. , 1960). For the energy-
independent potential depth, Vo, the 6ndings can be
summarized by the phenomenological expression" "
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to within &5. The variations of P„should compensate
in an approximate way for the possibly inadequate
representation of the spin —orbit term by Eqs. (2.2)
and (2.11).

In the Coulomb term, Eq. (2.3), one couM use a
charge distribution in accordance with experimental
measurements such as the electron scattering data.
From spherical nuclei it is known that these data can
be fitted with Fermi functions, i.e., p, (r) F(r; E„a,)
[Eq. (2.5) 7, where the charge radius, E„and diffuse-
ness, a„are both smaller than the corresponding
potential parameters, Rs and as (see e.g. , Bohr and
Mottelson, 1969, pp. 158—165). One might, therefore,
obtain the nonspherical distribution p, (r) by a gener-
alization analogous to that leading to V(r). However,
the results of single-particle bound state calculations
are not very sensitive to the details of the charge dis-
tribution. A good approximation results from inserting
into Eq. (2.3) a uniform charge distribution, which
has the value

p
uniform (3/4zr) geg —z (2.13)

and is bounded by the actual —spherical or non-
spherical —nuclear surface, Eq. (2.6) or (2.7), which
encloses the conserved volume.

The single-particle level schemes of nonspherical
nuclei depend both on the potential parameters, the
choice of which we have just discussed, and the shape
parameters, as introduced e.g. , in Eq. (2.6) or (2.7).
The shape parameters —primarily P&, zi&, or s&

—have a
major inAuence on the levels. Illustrations of this
dependence are given in Sec. II.D. There are theoretical
predictions of the values of shape parameters from
equilibrium deformation calculations (cf., Sec. V). It
is one of the main objectives of this review to relate
significant features of the empirical systematics of
single-particle levels to possible effects of both shape
and potential parameters via potential model calcula-
tions. These matters are discussed in Sec. V.

C. The Single-Particle Eigenstates

The single-particle eigenstates are obtained from the
solution of the Schrodinger eigenvalue problem, "

+sp4'K sKQK) (2.14)

' Since we assume axial symmetry with respect to the z axis,
the intrinsic angular momentum component, j„is a constant of
motion for II,~. The absolute magnitude of the eigenvalue is
denoted by E, which is a good quantum number in the single-
particle model. Since we assume reQection symmetry with re-
spect to the xy plane, parity (~=&1) is also a good quantum
number. We occasionally use the notation E~ or just X to label
an eigenstate of II,~.

(Bohr and Mottelson, 1969, pp. 233—240). In terms of
the dimensionless parameter A..„the phenomenological
strength of the spin —orbit term is'

X„—= (2zzzc/fi) 'zz„~ (90 fm s) zz„~35, (2.12)

Details on the form of the basis eigenstates are given in
Appendix 8.2, where the transformation between the
two representations is also discussed. The numbers
(zz, f, j) give the usual classification of the spherical
shell-model states [functions of (r, 8, p) and spin7,
the angular and spin parts being coupled" to an angular
momentum eigenstate (j=1+s), and zz being the radial
quantum number. We have the rules"

8= i) 2) 3)

zr= (—1)' (2.17)

(2.18)

The numbers (v, , z, A) characterize the cylindrical
eigenstate, which is a product of functions of each of
the coordinates (p, P, s) and the spin; iM and z being the
number of oscillator quanta, and A. being the magnitude
of the orbital angular momentum component (l.)
eigenvalue. We have the rules" (Appendix B.2)

v —=e,=0, 1, 2, ~ ~ ~, (2.19)

itz
—A=even number )0, (2.20)

(2.21)

The first published works with the representations
(2.15) and (2.16) were done with the Nilsson model:
by Chi (1966), using the expansion (2.15) [Nilsson
(1955) utilized the "uncoupled" components"7, and by
Rassey (1958), using the expansion (2.16) .

For the classification of the component states it is
practical to introduce the total number of oscillator

' The "coupled" angular momentum eigenstates, X~; (r;
spin), are expressed in terms of the "uncoupled" product states
F~ (r)y "(spin) according to the relation

Xz;~(r"; spin) = Z (l, nz', —z, zzz zzz'
~ j, zrz) I zm (rl—x (spin).

mi'

Thus, the orthogonal matrix of Clebsch- Gordan coefficients (see,
e.gs) Rose, i957; and Edmonds, 1968) transforms between the
"coupled" and "uncoupled" spherical representations.

where the boundary conditions require
~ QK ~' to

approach zero for r—+~, and to stay finite or approach
zero for r~o, in all directions r. Among all the possible
methods of solving this problem, one of the most
efFicient ways consists of diagonalizing the Hamiltonian,
Eq. (2.1), in a suitably chosen representation.

The use of the three-dimensional harmonic-oscillator
wave functions as a set of basis functions offers several
advantages (see Appendix B). We consider here the
following two possible expansions of the eigenstates QK

in such a basis, assuming B.~ to have axial symmetry
(s axis), and reflection symmetry (xy plane)

(a) Spherical harmonic-oscillator representation

~ 4K) = Z &K(N, 1, g) ~
&; zz, &, j).,h. (2.15)

n, l, j
(b) Cylindrical harmonic-oscillator representation

~
lPK)= P CK(p, z, A)

~
E;p, z, A), i. (2.16)

p„,v, A
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quanta, ss Xp, which for the two representations (2.15)
and (2.16) is given by the relations

.Vp ——2(n —1)+I,
Ãp 14+——v= n4.—+n„

respectively. We have the rules"

~lto —0) 1) 2)

(2.22)

(2.23)

(2.24)

SPHERICAL

WOODS-SAXON

POTENTIAL

WITH

PRO=0. I

The eigenstate Px is in general a mixture of components
with different even values of Eo, or with different odd
values of Xo. However, components with different Eo
values (t i4icVp~ &2) have large energy differences in.

the spherical limit —more than 5 Mev in the region
under consideration —and their mutual matrix elements
of H„normally have reduced magnitude compared to
those which are diagonal in lVo. Consequently, the
eigenstates f& are as a rule markedly pure in Xp; The
possible exceptions occur when two or more different
single-particle states, having the same parity and the
same value of E, come together at some hnite de-
formation2 close enough in energy to interact signifi-
cantly. Appreciable mixtures of two or more Vo values
may then occur.

For many applications it is suitable to express the
eigenstates in spherical components s' Eq. (2.15) .
However, in the case of finite deformations, the expan-
sion in cylindrical components, Eq. (2.16), can be
made to converge better, and the use of this repre-
sentation therefore furnishes in general a more efficient
method of solution (see e.g. , Damgaard et al. , 1969).
This matter is discussed in Appendix B, where we also
show that one component (t4, v, A) usually dominates
the expansion in deformation regions between quasi-
intersections, " particularly for large prolate" dis-
tortions. Since well-established quasiintersections occur
only in a couple of cases for the distortions considered
in this work, we can take the numbers (y, , v, A) for the
dominating component at large distortion to classify
each single-particle eigenstate. This has in fact been

"We use the notation No for the total number of oscillator
quanta in an eigenstate of a three-dimensional harmonic-oscillator
potential (the notation N is reserved for the neutron number).

"The spherical representation is usually preferable if multipole
expansions are involved. For some applications, however, the
cylindrical representation may be more advantageous —e.g. , in
the calculation of two-body matrix elements with certain types
of nucleon- nucleon interactions (see Chasman and Wahlborn,
1967).

"Unless the matrix of the Hamiltonian H, ~ for given E~
reduces further due to some accidental symmetry (which in
practice does not occur), all the eigenvalues from the diagonaliza-
tion of this matrix are strictly nondegenerate, except for the
fundamental degeneracy due to time reversal invariance. From
this follows the famous "noncrossing rule": single-particle levels
having the same E~ and considered as functions of the deforma-
tion parameters, "normally" never cross each other in any part
of the parameter space. They may approach to within a closest
energy distance at which they are strongly mixed with each
other. We refer to this situation as a "quasi-intersection". The
crossings occurring in the usual Nilsson model schemes are a
spurious effect, arising from neglecting the interaction between
¹

shells (cf. Appendix 8).

SPHEROIDAL

POTENTIALS

TETROIDAL DISTORTIONS

OF SPHEROIDAL POTENTIAl

FIG. 1. Equipotential contour curves for a Woods- Saxon
potential well with spherical and various deformed'5' shapes.
The curves correspond to O.i, 0.3, 0.5, 0.7, and 0.9 of the potential
depth. (For further details see Sec. II.D, and Appendix 8.3.)

D. Illustrations and Applications

For illustration we present results of calculations with
a Woods —Saxon type of potential, generalized to
nonspherical shapes with a parameterization according
to Eq. (2.7) . We utilize a scheme developed by Ehrling
and Wahlborn (1970) for the formulation of the
potential V(r) and the solution of the Schrodinger
equation. The details are briefly described in Appendix
B. The kinds of equipotential surfaces describing the
potential well V(r), for several choices of rt, and rt4, are
illustrated graphically in Fig. 1, showing the contour
curves p(s) for several values of p, characterizing equi-
potential surfaces by the equation

V(r) = —pVp ——const. (2.26)

The cases with its=0.7 or
~

r14 t
=0.1 represent fairly

"We prefer to use the term "cylindrical" instead of the some-
what misleading word "asymptotic" for the quantum numbers
and classification according to Eq. (2.25). It should be noted
that the cylindrical classification actually diag onalizes the
Nilsson (1955) model Hamiltonian in the limit of vanishing
spin-orbit term ( ~,„=0) .

24 In a situation where two states with the same E and with
~

nXp ~=2 may actually be strongly mixed lclose to a quasi-
intersection), we set the cylindrical classification (X0, n„p)
within parentheses, e.g. , 3/2+ (402) .

done in earlier literature —on the basis of the Nilsson
(1955) model —whereby usually Xp is given instead of

(See Moszkowski, 1957; Rassey, 1958; Kerman,
1959; and Mottelson and Nilsson, 1959.) Setting v=n„—
and using bars to indicate the "average" quantum
numbers dominating the "asymptotic" component, we
define the cylindrical classification" by the conventional
set of numbers

(2.25)

These numbers can be defined in a more general way
than done here, and they play a~ important role beyond
mere classification. These matters are brieAy discussed
in Appendix B.1 and Sec. II.D (see also Bunker and
Reich, 1971). In cases of quasi-intersection, " two or
more states, classified according to Eq. (2.25), are
strongly mixed. '4
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rp=1.25 fm, ap ——0.70 fm, X..= 32. (2.27)

The diagrams show the single-particle levels as func-
tions of q~, with q4=0. It should be noted that in the
region under consideration, q2 has its maximum, not
exceeding 0.4, roughly at 3=170, where we expect
ri4 to be 0 (cf. Sec. V). For each assignment ac-
cording to the cylindrical classification (2.25), we
indicate, by an arrow, the "trajectory" along which the
classification is valid. At points of quasi-intersection, "
the levels (considered as functions of qs) exchange
character within an interval of p2 where they mix. The
diagrams in Figs. 2 and 3 illustrate several of the main
features of single-particle level schemes entering in the
discussions throughout this review.

There are many applications of single-particle model
schemes for nonspherical nuclei, such as that described
here. In deriving information from experiment, the
analysis of the data may involve model calculations.
For the low-lying intrinsic states (quasiparticle excita-
tions)4 ' of odd-A nuclei, the da, ta available in the
presently considered region can essentially be divided
into the following types:

(a) Information on energies, spins, and parities of
levels, particularly the band heads. ' Such information
can be obtained from various kinds of experiments.

(b) Spectroscopic data on the rates of beta- and
gamma-ray transitions (branching ratio and lifetime
measurements; internal conversion studies).

(c) Cross-section. data from one-nucleon transfer
experiments, particularly measurements of intensities
and angular distributions in reactions leading to several
members of rotational bands. '

The band-head energy information of type (a) is
discussed in this review Lsee particularly Sec. IV and
also the review article by Bunker and Reich (1971)7.
Data of type (b)—e.g. , measurements of gamma-ray
branching ratios between and within rotational bands,
and lifetime measurements of retarded multipole
transitions —have so far played a great role in deriving
detailed information on intrinsic states. In particular,
the use of approximate selection rules, based on the
cylindrical classification, " often makes it possible to
determine the quantum numbers, Eq. (2.25) (see,
e.g. , Alaga, 1955, 1957; Chasman and Rasmussen,
1956; and Mottelson and Nilsson, 1959). In recent

large distortions which rarely occur in the region under
consideration.

The eigenvalue problem, Eq. (2.14), is solved by
diagonalization of the Hamiltonian matrix in the
cylindrical representation (2.16) . The result of this
procedure is illustrated in Figs. 2 (proton) and
3 (neutron) for a somewhat schematic case, where we
have assumed 2 = 176 and Z = 70, and used the follow-

ing potential parameter values":

Vs(proton) =60 MeV, Vs(neutron) =45 MeV,

years, "in-beam" experiments —especially at beams of
heavy ions or high-energy protons —have given a
wealth of new information of type (a) as well as (b) .

The data of type (c) have turned out to be perhaps
the most important source of detailed information on
the structure of quasiparticle states in nuclei in general.
%ith the availability of beams of deuterons, tritons,
'He particles and alpha particles of sufhcient intensities
and energies, it is nowadays possible to perform stripping
and pickup reactions, with transfer of proton as well as
neutron, in the region of A and Z considered here. For a
discussion of the nucleon transfer reaction data for
nuclides in this region, we refer the reader to the review
article by Bunker and Reich (1971).The angular dis-
tributions give information on the angular momentum
and parity of the transferred nucleon and hence of the
final state, and the intensity pattern" for the excitation
of several members of a rotational band depends
sensitively on the structure of the quasiparticle wave
function (see Satchler, 1958; and Elbek and Tjgm,
1969). To first approximation, the intensity for a
member J&K is proportional to the weight, Pg;, of
the spherical components (e, 1,j) with givenj =I and
l=j&—, (determined by parity) in the single-particle
wave function Pic. From the coupled spherical repre-
sentation, " Eq. (2.15), this weight can be evaluated
by the equation

p» = Q Sx (tt, l, j) '. (2.28)

Such calculations —and similar ones for the analysis of
various data —furnish important applications of the
single-particle model for nonspherical nuclei.

III. RELATION BETWEEN BAND-HEAD
ENERGIES AND SINGLE-PARTICLE

LEVELS

"The relative intensity pattern for the excitation of the
various members of a rotational band in a one-nucleon transfer
reaction on an even-even nucleus is often referred to as the
"finger prints. "If the transferred angular momentum, l, is known,
the I value of the populated state also fixes. j and thus selects
the "active" spherical component of the intrinsic state Lthis
is the basis of Eq. (2.28) j. In addition, the spectroscopic factor
(Elbek and Tjgm, 1969) contains the BCS population amplitudes
u~ and v~ (Appendix C). In general, stripping reactions lead
preferentially to particle excitations, and pick-up reactions lead
preferentially to hole excitations (see further Bunker and Reich,
1971). Together with the Q values (or nucleon separation
energies), which can be obtained from the reactions as well, the
u and v factors give information on the "Fermi surface, "
specifically on the BCS parameters )~ and A~ (also indirectly
on ep). The use of one-nucleon transfer reactions for the study
of nuclear structure is described by Satchler (1958), and in the
book by Tobocman (1961)~

The extraction of information on single-particle
states from experimental data is not a straightforward
procedure. In general, considerable care is needed to
take into account correlations and other possible effects
of residual interactions. For nonspherical nuclei, the
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FIG. 2. Illustrative graph of single-
proton levels from a deformed Woods-
Saxon potential field as functions of the
spheroidal"" deformation parameter q~
{with q4=0; for further details see Secs.
II.B and II.D and Appendix B.3).
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neutron levels from a deformed Woods-
Saxon potential field as functions of the
spheroidal'~" deformation parameter g2

(with g4=0; for further details see Secs.
II.B and II.D and Appendix B.3).
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TABLE I. Standard scheme of 39 single-proton levels (MeV)"' for the region 150&3&190.

Fixed' Varied" Fixed'

[1/2 3107
[1/2+ 4407
[3/2+ 4317
[5/2 3037
[5/2+ 4227
[3/2 3017
[7/2+ 4137
[1/2+ 4317
[1/2 3017
[3/2+ 4227
[9/2+ 4047
1/2+ 420'

2 550c

—6.7
—6.5
—6. 1
—5.3
—5. 1
—3.7
—3.5
—3.0
—2.8
—1.7
—1.0

p
—0. 1

3/2 541
5/2+ 413
5/2 532
3/2+ 411
7/2 523
1/2+ 411
7/2+ 404
9/2 514
5/2+ 402
1/2 541
3/2 532
1/2+ (mix) e

3/2+ (mix)s

(~p 5)
(1.5~0.5)
(1.5+0.5)
(=2)
(~2 5)
( ~3)
(3.5~0.5)
(4~0.5)
(4.5~0.5)
(5~1)
(6a0.5)
(7&1)
(7.5~1)

1/2
—530c

11/2 5050

[3/2+ (mix) 7s
[1/2+ (mix) 7'
[5/2+ 6427
[3/2 5217
[5/2 5237
[7/2+ 6337
[9/2+ 6247
[5/2 5127
[7/2 5147
[1/2 5217
[1/2 7707

7.2

7.2

7.8
7.8
8.2

8 ~ 7
8.8
9.3

10.8
11.0
11.8
12.5
13.5

~ The cylindrical classi6cation in brackets is irrelevant for the present
purposes.

The energy values in parentheses indicate roughly the variation al-
lowed for each level.

Expected to appear in this mass region, but not yet observed.
~ In the middle of the region, the mixed single-proton levels 3/2+ (651)

and 3/2+ (402) are expected to be located relatively close together, with

3/2+ (651) probably being the lower. At the ends of the region 3/2+ (651)
is expected to be higher than 3/2+ (402).

In the middle of the region, the mixed single-proton levels 1/2+ (660)
and 1/2+ (400) are expected to be located relatively close together, with
1/2+ (660) probably being the lower. At the ends of the region 1/2+ (660)
is expected to be higher than 1/2+ (400).

rotationaP motion, and also its coupling" to the
intrinsic4 motion, must be taken into account. We
present in Sec. III.A the theoretical basis for the
relation between the observed band-head' energies and
the model-dependent single-particle levels. The dis-
cussion is appropriate to the region of nonspherical
nuclei considered here.

In the present review we have undertaken a fairly
elaborate analysis of the band-head energy data to
derive semiempirical, single-particle level schemes.
We have not systematically taken other spectroscopic
data into account, but have used such information
when needed for the energy analysis. For a more
complete discussion of this subject we refer the reader
to the review article by Bunker and Reich (1971).
Since the single-particle level schemes furnish the main
result of our analysis, and because of the large role they
play for our discussion, we describe the methods
applied in some detail in Secs. III.B and III.C. The
reliability of the results is discussed in Sec. III.D.

The approach we utilize is based on a phenomeno-
logical model for quasiparticles' and their interactions.
In Appendix C we give a brief account of the theory
(BCS and RPA)' 's and furnish references for back-
ground reading. For the rotational effects, we use in
essence the description presented schematically in
Appendix A, assuming axial symmetry.

"The motion is called "adiabatic" if the rotation is slow
enough that the intrinsic motion can be considered to be inde-
pendent of the rotational motion at every moment. The two
degrees of freedom can then be separated. Effects which couple
them and make them no longer independent are called "non-
adiabatic. " The coupling affects mainly close-lying levels (I, E)
and (I, X') of bands with the same parity and

~

E&IC' ~=1.
For band heads, the energy contribution is in most cases insigni-
ficant.

A. Theoretical Background of Energy Relations
and Analysis

1. Description of the Physical Effects

The gross, qualitative resemblance between the
predictions of single-particle models and the experi-
mental band-head' properties in odd-A nonspherical2
nuclei was early an established fact (see Mottelsori and
Nilsson, 1959). Specifically, such agreement is found,
as a rule, for the ground state assignments, as well as
the approximate order of the observed excited states.
However, there is much evidence showing that a
detailed, direct, quantitative comparison between the
measured energies and the single-particle levels is
hardly meaningful. If the simple model of independent
particles moving in the average single-particle Geld were
valid, the excitations associated with the motion of the
odd particle would simply have the energies given
by""

~
err —er ~. With reasonable model assumptions,

the comparison with experiment shows this not to be
true, not even for the average excitation energies. There

"As a rule, we use the lower case k (or x) to label a set of
arbitrary single-particle levels, including states in the continuum,
while capital E denotes a definite, bound, single-particle level
with energy eigenvalue ~E (see Sec. II). The symbol s=~i
(or r= ~1) is used to distinguish, if needed, the two time-reversed
orbitals having the same energy, ch (or ~,). The eigenvalue of
j, in the state (sk) or (sE) is denoted by JIz or Mz, respectively
(note that X=

~

M'x ~).
2'The Fermi level, ~p, is the highest occupied single-particle

level in the ground state of the uncorrelated many-fermion
system. In the BCS approximation for pairing correlations, the
solution without blocking gives the relevant parameters P 4 —the
"Fermi-energy parameter", which is on the average approxirrately
equal to e~ t it is also related to the "chemical potential, "g; see
Belyaev (1959)7—and A~—the "gap parameter, " characterizing
the diffuseness of the Fermi surface. For further notations related
to BCS theory, see Sec. III.C and Appendix C.1.
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are important energy contributions arising both from
the rotationaP motion and from correlations in the
intrinsic4 motion. We must consider both types of
effects, starting here with the latter.

From several kinds of evidence, primarily the
existence of an energy gap in the excitation spectra of
noncollective' states in even —even nuclei (see, e.g. ,

Belyaev, 1959; Soloviev, 1963; Nathan and Nilsson,
1965; and Bes and Sorensen, 1969), we know that the
pairing correlations are important. These are associated
with the comparatively strong interaction between
particles which occupy pairs of time-reversed orbitals'7
(Ask). The gap is formed since the pairing correlations
are much more effective in the ground state of the even
system than in the excited states which require the
breaking of pairs. [The largest part of the energy gap,
or about 1 MeV, is caused by the nondiagonal correla-
tion effects in the ground state, and the smaller,
remaining part is due to the diagonal energy con-
tribution associated with the breaking of a pair; cf.
Wahlborn (1966)].

Now consider the odd system with only one unpaired
particle. The effect of the pairing correlations is then
reduced since the "blocked" level cannot be occupied
by a pair. The energy depression, associated with the
gap (see above), is therefore diminished. This effect is
particularly strong when a level close to the diffuse
Fermi surface is blocked, and usually strongest for the
ground state, i.e., when ~~ is blocked. ' In general, the
effect decreases with increasing excitation energy.
As a consequence, the low-lying excited states appear
to be "compressed", their energies being smaller than
expected from the expression

t ex—eE ~. From data, one
can estimate the compression effect to be roughly a
factor of 1.5 to 2 for the first few excited states, in

agreement with estimates based on pairing-correlation
calculations (Wahlborn, 1962, 1966). We refer to the
excitations of an odd particle in the surrounding "sea"
of correlated pairs as "one-quasiparticle excitations". '
Detailed pairing-correlation calculations are needed to
properly take into account the effects of blocking on
the excitation energies.

Vibrational states (collective, nonrotational excita-
tions) are known to be present in all nuclei (see, e.g. ,

Bohr and Mottelson, 1953a; Nathan, 1964; Nathan and
Nilsson, 1965; and Davidson, 1968), their presence
usually being most obvious in even —even nuclei. In
odd-A nuclei, there is significant coupling between the
quasiparticle motion and the vibrational modes. This
"particle —phonon" interaction often makes a con-
siderable contribution to the energy. For nonspherical
nuclei in the region considered here, the quadrupole
gamma vibrations, intrinsically characterized by
0 = 2+, are particularly important. Therefore, any
members of fairly low-lying pairs of quasiparticle states
having the same parity and

~

EWE'
~

=2 may be
appreciably affected. In particular, this is often true
if one of the affected states is the ground state, Ko.

2. A Simp/i/ed I'hettometsologicct/ iVodel

The total model Hamiltonian can be schematically
written

+model +intr++rot++rper (3.1)

(3.2)

where H; t, is the Harniltonian of the intrinsic (particle)
notion, 4 H„~ describes the rotational motion, and
H p represents the nonadiabatic coupling" between
the two degrees of freedom (see Appendix A) . The
intrinsic Hamiltonian consists of an independent-
particle part, H;„and the residual interactions, H„,.
The main effects of the residual interactions are the
correlations —pairing correlations and collective correla-
tions. The remaining interaction effects are disregarded
in our analysis.

The pairing correlations are approximately taken into
account by transforming H;„t, from an independent-
particle basis to a quasiparticle basis. ' The collective
correlations, caused by the quasiparticle interactions,
consist of vibrational motion and its coupling to the
quasiparticle motion. Details of the approach are given
in Appendix C in the framework of the BCS and RPA

The observed band heads with E=
~
Ee—2

~
located

below or about 0.7 MeV usually have lower energies
than the pure quasiparticle excitations would have.
These shif ts occasionally may amount to a few hundred
keV, and it is necessary to take them into account in a
comparison between predictions and data.

In addition to the intrinsic effects, there are con-
tributions due to the rotational motion. The rotation,
of course, is responsible for the band structure' observed
in the energy spectra of nonspherical nuclei [see, e.g. ,
Bohr (1952), Bohr and Mottelson (1953a, b), Nathan
and Nilsson (1965), and Davidson (1968)j. For the
band heads, the main effect comes from the "rotational"
energy, which is proportional to I(I+1) and therefore
does not vanish for I=E in an odd-A nucleus. This
effect is modified due to the presence of an intrinsic
J2 term [arising from the expa. nsion of R = (I—J) j.
However, there remains a term linear in E, and a less
well known positive correction, y(E), which takes the
precession into account (see Sec. III.B.1). In certain
situations, the rotational energy contribution is crucial
and should be taken into account (shifts of a few
hundred keV may occur, e.g. , in the neighborhood of
the E=11/2 neutron states). Another, usually less
important effect for band-head energies, arises from the
nonadiabatic" (Coriolis) coupling between the intrinsic
and the rotational motions. It is straightforward to also
take this effect into account, if it is needed.

In Sec. III.A.2, we present a somewhat simpli6ed
theoretical model which includes, at least qualitatively,
the main physical effects discussed here. In Sec. III.A.3,
the analysis, in terms of single-particle level schemes, of
experimental band-head energy data is outlined.
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theories. " In the simple phenomenological version of
the model used here, we set

on the assumption that the experimental and theoretical
excitation energies can be compared by the relation

Hintr~H0+Hqp+Hvibr+Hpvct (3.3) E(K) —E (E'p) E,.p, (X), (3.9)

3. Basis and Outline of the Energy Analysis

Applying the model, defined by Eqs. (3.1) and
(3.3), to the band-head' energy E(E), we can decom-
pose this approximately in the following way:

E(g )~E intr+ E rot+E rpc (3.7)

intr~E qp+E vibr+E pvc (3.8)

Since we do not consider vibrational states, the "phonon"
contribution [E&v'br in Eq. (3.8)] enters only in
admixed vibrational components. Our analysis is based

where Ho is a constant, intrinsic contribution of the
core (may be disregarded here), H„ is the contribution
from independent quasiparticles, II;b, is the con-
tribution from vibrational motion, and H~, is the
particle-vibration coupling contribution. As shown in
Appendix C, this Hamiltonian can be written in
the form2?

H;.t, =Ho+ g ei,~ i,'~,b+ Q &~z~Ozsr'Ozsr
sk IM

X,'t, .p [Oz~ + (—1) Oz iiz]nrtta, 'i . ,

LM s'kI, st

(3.4)
Here the "quasiparticle energy" given by

e =et(X, itt) —=[(e-—X)'+le]'t"-(35)
where A, and 5 are BCS parameters, "is known to be a
poor approximation to the actual blocking calculation
(see Sec. III.C).

The presentation here, Eq. (3.4), essentially follows
Piepenbring (1966), and Monsonego and Piepenbring
(1966, 1968). In Appendix C we explain the notations
and discuss the structure of the intrinsic wave func-
tions —i.e., the eigenstates of H;„t„Eq. (3.4), (see also
Sec. III.B.2) .

The rotational ternis of the Hamiltonian, Eq. (3.1),
can be written in the following way, for the case of an
even-core rotor plus intrinsic motion with angular
momentum J:
Hrot+Hrpc

= (h'/2~~) [(I' J,'+-J—'+J ') —(I+J +I&~)]. (3.6)

The form of these terms is derived, and the notations are
explained, in Appendix A.

The model presented by Eqs. (3.4) and (3.6) serves
as a basis for the discussion given in the following parts
of this Section. For the calculation of the total energy
in an approximate eigenstate of the Haniiltonian, Eq.
(3.1), we take the expectation value. This gives energy
contributions which we identify according to the
various effects described in Sec. III.A.1.

where Eo denotes the ground state. Due to the fact that
the single-particle energies, el„enter into the expression
for E(E), we can obtain information on single-particle
spectra. This procedure is briefly described below.

The collective energy contribution, 8

coll —E pvo+E rot+E rpc
7 (3.10)

can be estimated in such a way that the result does not
depend sensitively on the single-particle energies used
[cf. Eqs. (3.13) and (3.18)]. We can, therefore, cal-
culate it initially, and subtract its effect from the
experimental energy, E. pt(K). This correction gives an
"empirical" (extracted from experimental data) quasi-
particle' excitation energy, Eqp' p(E), which in our
treatment is model dependent. The method of separa-
tion is described in Sec. III.B.We then make the second
assumption that the excitation energy, calculated with
the BCS method of "blocking, '" can be compared
with the empirical value,

Bcs (It)~E cmp (Q) (3.11)

Since the theoretical quasiparticle energy expression
depends crucially on the single-particle energies—
primarily on ex—Eq. (3.11) can be used for the deter-
mination of single-particle levels from data.

The second stage, i.e., the procedure based on Eq.
(3.11), is the most difficult part of the analysis. The
primary parameters of the theory are the single-
particle levels, and there are many more of these than
there are available empirical quasiparticle energies.
One might formulate the problem in a more definite
way by considering several nuclides simultaneously,
and perhaps also using other experimental data, such as
spectroscopic factors from one-nucleon transfer re-
actions, which may depend (though not so sensitively)
on the single-particle states. However, in that way we
might lose some of the information on detailed level
variation, which we consider significant (see discussion
in Sec. V).

Our approach consists in using "standard" schemes
of single-particle levels, chosen to represent in an
average way the possible single-particle spectra ac-
cording to general theoretical predictions for the
region considered (cf. Sec. II) . The "peripheral"
parts of these spectra, i.e., the levels far from the Fermi
energies encountered, are kept fixed throughout the
analysis. The levels belonging to the "central" parts,
on the other hand, are treated in three different ways
depending on the available information" ":

(a) Whenever the value of Eqp' p(E') is known, the
corresponding single-particle energy ez is determined
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TABLE II. Standard scheme of 49 single-neutron levels (MeV)" "for the region 150&A & 190.

Fixed' Varied" Fixed'

[3/2+ 422]
[1/2+ 420]
[9/2+ 4047
[5/2+ 413]
[1/2 550]
[3/2+ 411]
[3/2 541]
[5/2 5327
[1/2+ 411]
[7/2 523]
[7/2+ 404]
[5/2+ 402]
[9/2 514]
1/2 541~

—6.0
—5.4
—5.4

0
—3.7
—3.4

3.1

2 ~ 7
—2.2
—1.7
—1.0
—0.7
—0.2

0.6

1/2+ (400)'
3/2+ (402)o
1/2 530
3/2 532
11/2 505
1/2+ (660)o
3/2+ (651)0
3/2 521
5/2 523
5/2+ 642
1/2 521
7/2+ 633
5/2 512
7/2 514
9/2+ 624
1/2 510
3/2 512
7/2 503
11/2+ 615
9/2 505
3/2 (501)
13/2+ 606

(i.5m 1)
(1.5+1.5)
(2~0.5)
(2.5~0.5)
(2.5+1)
(3~1)
(3.5~1)
(=3.5)
(=3.5}
(4~0.5}
(=4 5)
(5&0.5)
(5~1)
(5.5&0.5)
(=6)
(6.5a0. 5)
(7a0.5)
(7+1)
{7.5~1)
(8.5~1)
(9~1)
(9.5+1.5)

1/2+ 65id
LS/2 503]
[7/2 743]
[3/2 761]
[5/2 752]
L1/2 (501)]
[3/2+ 642]
[1/2 770]
[9/2 734]
[5/2+ 6337
[1/2+ 640]
[3/2+ 631]
[5/2+ 622]

9.9
10.9
10.9
11.0
12.3
12.7
12.8
13.0
13.2
13.2
13,7

13.8
15 F 4

~ The cylindrical classification in brackets is irrelevant for the present
purposes.~ The energy values in parentheses indicate roughly the variation al-
lowed for each level.

The expected cylindrical classification of these single-neutron levels
throughout the region.

~ Expected to appear in this mass region, but not yet observed.
Fixed at 10.3 MeV in Version I.

by Eq. (3.11) through a BCS blocking calculation
(the Fermi level, ev, is considered fixed).

(b) If Eqo™(K)is known in some, but not all,
members of a sequence of odd-Z isotopes or odd-T
isotones, the unfitted levels ez are roughly fixed by
interpolation or extrapolation.

(c) If neither situation (a) nor (b) applies, the
level ~I, may be kept Axed or varied smoothly with
nucleon numbers, whichever appears compatible with
model expectations.

Details of the steps in the procedure outlined here are
described in Sec. III.C.

For orientation purposes and for further discussion
we present in Table I (proton) and Table II (neutron)
the standard single-particle level schemes"" used in
our analysis. For the peripheral (fixed) levels, only the

' In 6xing the positions of the "peripheral" levels and indicating
the ranges of the "central" levels in Tables I and II, we have
consulted the schemes by Gareev et at. (1967) and by C~ustafson
et at (1967) [see also F.igs. 2 and 3], considering the appropriate
deformation variations.

30 The zero of the energy scale in Tables I and II as well as in
Figs. 7-11 has been arbitrarily chosen in such a way that the sum
of the single-particle energies for the occupied orbitals in the
ground states is approximately zero on the average over the
region of nuclides considered.

positions enter. For the central (varied) levels, we
indicate the tentative ranges of variation —the actual
positions are to be determined along the lines outlined
above.

B. The Collective Contributions to Band-Head
Energies

The collective' contribution to the band-head'
energy, Eq. (3.7), is given by Eq. (3.10). The corre-
sponding correction, applied to the excitation energy, is
calculated in two steps. First, we subtract from all the
energies E,„vz(E) t cf. Eq. (3.9)] and the ground state,
the rotational contributions, E~'P' and E~"', estimated
as described in Sec. III.H. 1.This gives us the differences
in intrinsic4 energy, Err'"" LEq. (3.8)]. Second, we
subtract from E~'""' the particle —vibration coupling
contribution. , E~p ', estimated as described in Sec.
III.B.2. This leaves us with the quasiparticle excitation
energies to be analyzed further according to Eq. (3.11)
(see Sec. III.C). It should be noted. that the order of
the two steps described above cannot in principle be
reversed (the evaluation of Errv ' depends on Erc'""'
see Sec. III.B.2). In fact, the various effects on the
band-head energies are not strictly additive, as written
schematically in Eqs. (3.7), (3.8), and (3.10).
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1. The Egects of the Rotati onal Motion

The main features of the rotational motion are
described in Appendix A. The correlations in the
intrinsic motion have certain effects—indirectly on the
rotational parameter fi'/2&, and more directly on the
matrix elements of the operators J' and J~ which are
not constants of motion. We present here the expres-
sions used for estimating the rotational corrections,
from Eq. (3.6).

In principle, we should first apply the correction due
to the nonadiabatic effect, E~'I". If we assume that the
Coriolis coupling in the band-head (I=E) admixes
significantly only one state having E'=E;—1, ~'=x
(there is no such effect if E=—,'), and that the per-
turbation approximation is valid, we find

E."=(E,E I~„.IE, EKE,.„(E) E..„(E)-7
(3.12)

Because of the correlations, the matrix element is
reduced here compared to the single-particle value
(cf. Appendix A). Usus. lly the shifts due to Ex"v' are
insignificant, as known from the studies of '"W by
Kerman (1956), Rowe (1965), and Brockmeier et al.
(1965). Non-negligible shifts are expected in a few
cases, particularly for .V0=6 levels, ' and some of these
have been taken into account. (See further comments
in the text and Tables of Sec. IV.)

The zero-point rotational energy is written in
the form

Ex"'——(h'/2~) PE+p(E) —bx, ii'2G], (3.13)

where the decoupling factor, a, now includes correlation
effects (cf. discussion in Sec. III.B.2). The quantity
y(E) is defined as the contribution of the precession
effect, i.e., of the operator J,'+J„'.To a good approxi-
mation, we can set

+2 Q' vx., i'((k l
j'

l k) —Mi') (3,14)

where we assume that the blocking effects' are included
through vx. i, (see Sec. III.C.1 and Appendix C.1). The
single-particle matrix elements of j have appreciable
varia, tions (see Appendix A) .

For a simple discussion, we may consider the variation
of the approximate expression L j(j+1)—E27, and
disregard the pairing effects. The most relevant cases
are those which have a large value of j, and where E
can be either equally large or much smaller. A particu-
larly interesting instance occurs when the Fermi level"
has E&——j+)&1, whereas a hole state has j=jz, and
E((j. Then 7(E)for the ground sta'te is la, rger than
that for the hole excitation by Ei,". If, e.g. , (h'/2~~) =
20 keV, and E~ 11/2, the difference in ze——ro-point
energy would amount to 600 keV. In practice, we do

not expect such large values, since correlations and
realistic values of (j') tend to level out the variations. "

The situation described above is encountered in a
fairly clear-cut way in the odd-neutron nuclides where a
E= 11/2 level is found at low excita, tion energy. In such
a case, it is conceivable that the single-particle state
K=11/2 is actually the Fermi level, whereas, e.g. , the
lowest hole excitation becomes the ground state, due to
its much smaller value of &(E), Eq. (3.14). The data
do not exclude the occurrence of this type of situation
in actual nuclei. The zero-point rotational energy
would then furnish at least part of the explanation why
the E=11/2 levels have not been found as ground
states.

In the present analysis we discuss two versions,

y(E) =0,

p (E) 0.5E',

"Version I",
"Version II." (3.15)

Version I is the conventional form
I cf. Nathan and

Nilsson (1965), Eq. (4.2.2)7. We have analyzed all
the data in this version. Version II involves a very
rough and fairly extreme estimate of p(E) (see the
preceding discussion) . For the region considered, the
coefficient of E' in Eq. (3.15) cannot be chosen much
larger than 0.5 without destroying the general
qualitative agreement between model predictions and
quasiparticle level systematics. We have applied Version
II only to the iso.tones with X=91, 109, and 111, and
the results should be considered quite tentative. Dis-
cussion is given in Secs. IV.C and V.D.

The rotational parameter fi'/2~~ encountered in the
region considered usually amounts to 10—20 keV. The
values of this quantity, as well as of the decoupling
factor

I
see Eq. (3.13)7, are taken. from an analysis of

the band structure (cf. Bunker and Reich, 1971), or
in some cases estimated from the empirical systematics.

3' With I= Z j (@&=particle index), the precession effect is
represented by the following operator:

J~2+ Jy2 ——Q (j~2—j~z2) + Q g~+j» y

m m/ml

In Eq. (3.13), y(E) is approximately the expectation value of
this operator. In the absence of correlation effects, we find"

&I'+J') = ~ &&»IPI»)—~i') —ll) & l&~'&'la+ I»)I'
sk sk, sric~

where the sums of the single-particle matrix elements are over
occupied orbitals only. The second sum is generally much smaller
than the first one. The same is true in the presence of pairing
correlations, but the expression is then modified.

2. The Particle Vibration Coup—ling

Vile use the simple phenomenological model, formu-
lated by Eq. (3.4), to estimate the contribution of
A~I' ' to the collective correction. ' The nature of the
wave functions is discussed in Appendix C. The descrip-
tion follows closely Piepenbring (1966) and Monsonego
and Piepenbring (1966, 1968), and is based on the
version of RPA "applied by Soloviev and collaborators
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In each term of the sum we assume that the projection
quantum numbers add to E=

~
Ms ~, and that only the

lowest possible I. modes (I.)2) compatible with parity
conservation are included. Furthermore, for each I.3E
mode we use the lowest, vibrational eigensolution of the
RPA equations, having phonon energy AcoLM. In prac-
tice, we include only the L=2 and A=3 modes, i.e.,
the beta, gamma, and octupole vibrations, for which
there is some experimental information at low excita-
tions (cf. Nathan, 1964; and Nathan and Nilsson,
1965, paragraph 4) .

If we assume the amplitudes 50, Saa ~M, and the
eigenvalue, Ea'"", to be given and use the eigenvalue
equation for B;„&„we can eliminate the coupling
coefFicients, X, s. ,,PM )see Eq. (3.4)]. In addition, in
the expression for Erc'"", Eq. (3.8), we use the rough
approximation

Esov ea(X, 6) eo(X, 6—), (3.17)

where es is defined by Eq. (3.5), and eo is obtained with
~a=~p. We can then solve for the particle —vibration
coupling contribution to the band-head energy, '

&av ' Q (&s'""'—factor. se —es (~, &)](&ss /&o)'.

(3.18)

This expression has the essential features qualitatively
correct, and can be considered to give order-of-mag-
nitude estimates of the effects involved.

In Eq. (3.18), Es'"" has the value derived from the
data (see Sec. III.B.1). For the remaining quantities,
one can use experimental and/or theoretical informa-
tion, either of which is, in most cases, available in the
literature. In general, we have taken the phonon
energies, A~L,M, from the systematics of vibrational
states in even —even nuclei. Information on the ad-
mizture amplitudeS, Saa M and So, may in SOme CaSeS

be extracted from transition rates or decoupling factors
(Monsonego and Piepenbring, 1968), and from transfer
reaction or inelastic scattering data. However, for most
cases, a consistent evaluation of the admixture ampli-
tudes is furnished by the calculations of Soloviev and
Vogel (1967), Soloviev, Vogel, and Jun gklaussen

(1967), Kalpazhiu and Vogel (1966), and Malov,
Soloviev and Fainer (1968), in which the force con-
stants and single-particle energies are chosen to fit the
vibrational energies in even —even nuclei. . (See also Bes

(Soloviev and Vogel, 1967; Soloviev, Vogel, and
Jungklaussen, 1967) .

The eigenstates considered can be written schemati-
cally in the following form (the "one-phonon approxi-
mation"; No denotes the correlated ground state):

t e.s) = Son, s'
) 4o)

+ Q Z &ss zMOz~'~, s'
~
+o). (3.16)

LM s~a~

et a/. , 1963, 1965, 1966, 1969).With this approach, the
admixture amplitudes do not depend sensitively on the
single-particle level schemes used. In several cases we
have made use of the detailed discussion of these
questions by Bunker and Reich (1971),particularly in
cases where the available predictions contradict
experimental data. For further quantitative details,
such as values of Acyl. M, the reader is referred to the
literature quoted above.

In most cases, the estimated vibrational shif ts,—Ep ', are small, but in a few cases they may amount
to as much as 0.5 MeV. The estimates are usually not
accurate to better than +30%. States which are found
to be mainly of vibrational character have as a rule not
been included in our analysis.

C. The Blocking Calculations and the Fitting
Procedure

The empirical quasiparticle~ excitation energies,
Eqv' v(E), extracted from level data as described in
Sec. III.B, are analyzed in terms of single-particle
spectra as outlined in Sec. III.A.3. The basic relation
assumed is Eq. (3.11), where we take the theoretical
energy, Eqvncs(E), to be evaluated with the BCS
method for blocking. ' The significance of this method
consists in the fact that it allows us to evaluate, in a
quantitatively satisfactory way, the "compression"
effect, discussed in Sec. III.A.1 (see Wahlborn, 1962,
1966). We shall first, in Sec. III.C.1, show how the
BCS problem is solved and the energy calculated, and
then, in Sec. III.C.2, describe how this method is used
for fitting the energy data. A brief description of the
basic BCS theory is given in Appendix C.1.

I. The BCSMethod

In our version of the BCS method (Wahlborn, 1966)
the following set of equations is solved for each quasi-
particle state, obtained by blocking the single-particle
level27 qa.

Z l~
Es PLs

e, (hs, as xs, s )i '—(3.19)

2t!is/G= P $(hs —xs s )/es (Xs, b,s —xs. s )]; (3.20)

&a;a =~ma;a &a;a; (3.21)

Na;a

&a;a

1 1~ ~; (3.22)
v2 es (4, hs — . xs)fs

es (Xs, ha xs, s) =t (&s—es )—'+ (». —xs;a )']"'
(3.23)

This intricate system can only be solved by means of
iterations (Ogle and Wahlborn, 1969). The solution
consists of values of the BCS parameters Xa and ha,
and the sets of amplitude parameters Na, a, va, a . From
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this result we can compute the energy expression

EPos=e~+2 Q e~ i~, a'—G Q ia;a' —(~~'/G). (3.24)

In Eqs. (3.19)—(3.24), the condition h'Wh holds, and
all the sums therefore exclude the blocked level. The
presence of the quantity (3.21) results from the varia-
tion of the term —G g/, i//„/,

' in the basic BCS energy
expression.

The number of paired particles, mo, is fixed by the
requirement that the system considered in Eqs. (3.19)—
(3.24) has the correct Fermi level(' er. In the BCS
calculation without blocking' (here occasionally referred
to as "NBCS") one solves Eqs. (3.19) and (3.20)
without the condition k Wk, and with mo being the
actual odd mimber of particles. (We also set x/, . k =0.)
The resulting quantities' are the "Fermi energy
parameter, "

A, ~, and the "gap parameter, " 5~. For an
odd-Z nucleus, this solution furnishes an interpolation
between the ground-state SCS solutions for the
adjacent even —even nuclei with proton number Z+1,
and correspondingly for neutrons. For the appropriately
defined odd-even mass difference I', pertaining to an
odd-, 4 nucleus, it can be shown that the approximate
relation

(3.25)

is valid. Since 6* depends fairly sensitively on the
pairing-force constant G, Eq. (3.25) furnishes a criterion
for the choice of G, provided I' has been derived from
data. This procedure has been applied and justified in
the literature (see Nilsson and Prior, 1961; Bang,
Krumlinde, and Nilsson, 1965; and Prior, Boehm, and
Nilsson, 1968). In the present a,nalysis, G is chosen for
each nuclide so tha, t Eq. (3.25) is fulfilled.

The remaining quantities needed for the 8CS
solution are the single-particle energies themselves.
We see from Eq. (3.24) that the quasiparticle' energy
depends most sensitively on the blocked level e&—as
we, of course, expect. This observation together with
Eq. (3.11) furnishes the basis of the "fit ting" procedure
which we describe in Sec. III.C.2. Some questions about
uncertainties and ambiguities are discussed in Sec.
III.D.

2. The Procedure of Energy Fitting

The niain ideas behind the procedure of determining
single-particle level schemes from the quasiparticle
level data are outlined in Sec. III.A, and our theoretical
expressions for computing the quasiparticle energies are
presented in Sec. III.C.1. It is obvious from Eqs.
(3.19)—(3.24) that using the regular (blocking) BCS
solution in every step of a procedure for fitting all the
data would be prohibitively lengthy. We, therefore,
need an approximation to the BCS energy LEq. (3.24) 7
having a simple enough form that it can be inverted to
give eI„but still being considerably more accurate than,
e.g. , Eq. (3.17). We apply this energy approximation

to determine single-particle energies (relative to er)"
which are then used in the regular BCS calculation,
where the final adjustments are made.

For the approximation, we utilize the observation by
Wahlborn (1962) that the BCS energies Lfrom Eq.
(3.24) ], calculated for several blocked states and
plotted against eI„generally follow a hyperbolalike
dependence intermediate between Eq. (3.5) and

j e/, —er ~. In fact, this behavior has also been found
from results of pairing calculations with more accurate
methods than BCS (Wahlborn, 1966). The "com-
pression" effect for the energies of such low-lying
excitations as we consider here can be approximated
by the following expression:

RBCS~L(~ y„)2+ (g D—i) 2]1/2

—L(&r—P„)2+ (P„—D—i) 2]i/2 (3 26)

It can be shown (Wahlborn, 1962) that Eq. (3.26) on
the average (i.e., for er ——X~) reproduces the proper
8CS excitation energies up to second derivatives
in eA, if D is set equal to the average single-particle level
density (this is a general estimate and is used here).
Ke refer occasionally to the "reduced-delta" energy
approximation, Eq. (3.26), as the RBCS method.

The BCS fit to the known (empirical) quasiparticle
energies E~~' i', of an individual nucleus [see Sec.
III.A.3(a)] proceeds in steps as follows:

(1) With an assumed scheme of single-particle levels
[cf. Sec. III.A.3, and Tables I and II], the NBCS
solution P *, 6* is derived. "This solution is repeated as
needed with different 6 values until the condition
(3.25) is fulfilled.

(2) The solutions e/, are obtained from the inverse of
the RBCS equation (3.26) with each E~~™inserted
for Eqp p giving a "new" single-particle spectrum

(3) If necessary, the steps (1) and (2) are repeated
until both the levels eI, and the G values fulfill the
conditions imposed.

(4) With the G value and the "new" single-particle
spectrum thus obtained, the regular BCS solution is
derived, and the energies E~p computed from Eqs.
(3.19)—(3.24) .

(5) If Eq. (3.11) is not found to be fulfilled to
within an accepted tolerance (see Sec. III.D), suitable
changes are made in the single-particle spectrum, and
the steps (1)—(4) are repeated.

In most cases we need to perform the steps (1)—(4)
only once. The calculated BCS and RBCS energies are
found to agree remarkably well, for fitted as well as
unfitted levels. Computer programs for automatizing
part of the procedure have been. utilized (Ogle and
Wahlborn, 1969; Fredriksson, 1969).

The strategy formulated by points (b) and (c) in
Sec. III.A.3 is dificult to put down in quantitative
terms. The results presented in Sec. IV will best express
what we have actually done with the unfitted levels.
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These results are the end product of three series of fits
for the entire region —in addition, several cases have
been refitted once or more. In all likelihood, an in-
dependent repetition of the whole process would
produce a different result. Yet, from our own experience
we are confident that the relative positions of the fitted
levels would not turn out to be substantially different
from our results, assuming the same data for Eqp'
This is not to say that one could change some of the
unfitted levels in our schemes even moderately without
affecting the fit. Particularly when the level density is
high near the Fermi surface, shifting a single-particle
level in that region by, say, 100 keV may put the
quasiparticle energy 6ts for adjacent levels off by
comparable or larger amounts. However, if another fit
is then made, the "new" single-particle levels may
differ much less than 100 keV from their original
positions. In conclusion, we have found the fits to be
generally much more stable than one might expect
off-hand by merely inspecting, e.g. , Eqs. (3.19)—

1.5

P EXP. (ODD- EVEN MASS DIFFERENCE)
(p)

0——W b, THEOR. (GAP PARAMETER FROM NBCS)
(p)

N = 90 92 94 96 98 100 102 104 106 108 IIO 112

0.5
l50 160 l70

A

I 80 I90

FIG. 5. Values of the gap parameter'8 A~(», obtained frown
the NBCS solutions, and the experimental odd-even mass dif-
ferences, P(», for odd-proton nuclides (Version I analysis only).

when the single-particle level scheme is nonuniforn~
near ev, and the difference

~
eR —X~

~

is large Th. e
opposite is true in some other cases—i.e., the excitation
energies may turn out to be only slightly smaller than
j ez —eR I. (see sec. Iv.B.)

0.20
I-
X
I-
CO

Oo
o &O. I5
0 ~

N = 90 92 94 96 98 100 102

Gn

104 106
'
108 IIO 112

Z z 62 64 66 68 70 72 74 76

0.10
I 50

I I

I60
I I I

I70
MASS NUMBER A

I

I80 I90

FIG. 4. Values of the pairing force constant, G, used in the
present BCS calculations for odd-proton (G„) and odd-neutron
(G„) nuclides (Version I analysis only).

(3.24). This feature is no doubt related to the validity
of the single-particle model as a basis for describing
those nuclear excitations which we call quasiparticle
states. '

We note, from Eq. (3.26), that the position of the
Fermi level, " e&, is itself not uniquely determined by

. our procedure as it has been described here. In prin-
ciple, equally good hts could be obtained from either of
two initial choices of position for e~, one leading to
~~&X~, and the other to ep&X*. In most cases the
spectroscopic data are not sufficiently detailed to help
determine the choice from experiment. However, we
have found that uniformity considerations and sys-
tematics, where sequences of isotopes or isotones are
compared, make the choice fairly unambiguous in
practice.

In several cases, the calculated quasiparticle excita-
tion energies turn out to be appreciably reduced
compared to the corresponding single-particle energy
spacing —more than expected from the average "com-
pression" effect. Such reduction occurs particularly

l. 5

ep

I.O

P EXP. (ODD- EVEN MASS DIFFERENCE)

d THEOR. (GAP PARAMETER FROM N B C S)
(n)

.Z= 62 64
0.5

l50 I60

66 68 70
I I

170
A

72 74 76
I I

I80 190

FIG. 6. Values of the gap parameter" A~&"), obtained from
the NBCS solutions, and the experimental odd-even mass dif-
ferences, P("&, for odd-neutron nuclides (Version I analysis
only) .

D. Ambiguities, Uncertainties, and Tolerances

We summarize here the various elements entering
into our analysis with a view to a critical evaluation of
the relevant assumptions and approximations made.
There are obvious ambiguities in the procedure we take,
and there are uncertainties involved in the calculations.
Consequently, we also need to discuss the tolerances in
the 6t to the data and in the determination of the
single-particle energies.

The ambiguities involved in the results arise both
from the methods used and the lack of experimental
information. The prime ambiguity is probably intro-
duced by the treatment of the zero-point rotational
energy, Eq. (3.13) . Problems are especially encountered
in regions where iVS ——6 states and K= 11/2 levels occur
at low energies, since the precession contribution"'
may vary appreciably there. This is why we have
chosen two relatively extreme estimates of the tern~

y(E): Versions I and II LEq. (3.15)]. In Version I,
the rotational shifts are relatively small, while in
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TABLE III. Energy data on quasiparticle excitations in odd-proton nuclides with 63(Z(69.'

Assigned quasiparticle state

Nuclide Assignment ~exp t

Energy (keV)

emp
Qp EqpB~S References and comments

'"63Eu

'" Eu

1556,Tbac

157 Tb

159 5Tb

&@ 5Tb

159 7Ho

'6'67Ho

'655yHo

569Tm

"759Tm

"' Ho

3/2 541
5/2 532
5/2+ 413
3/2+ 411
5/2+ 402

3/2 541
5/2 532
5/2+ 413
3/2+ 411

5/2+ 413
5/2 532
3/2+ 411

5/2 532
5/2+ 413
3/2+ 411
7/2 523
1/2+ 411

5/2 532
5/2+ 413
3/2+ 411
1/2+ 411

5/2 532
5/2+ 413
3/2+ 411
7/2 523

7/2 523
1/2+ 411

5/2 532
7/2 523
1/2+ 411

5/2 532
5/2+ 413
3/2+ 411
7/2 523
1/2+ 411
7/2+ 404

7/2 523
1/2+ 411
7/2+ 404

7/2 523
1/2+ 411
7/2+ 404

5/2+ 413
7/2 523
1/2+ 411
7/2+ 404

(—712)
—98

0
103

(706)

( —1100)
—104

0
246

(—271)
-227

0

—326
( —300)

0
(357)
597

—363
—348

0
(580)

—480
—315

0
417

0
206

—827
0

211

(—1056)
—995
—362

0
429
715

( —150)
0

(69)

—293
0

179

( —876)
0

298
440

(—720)
—110

0
iio

(720)

(—1110)
—110

0
260

( —260)
—230

0

—320

(—290)
0

(340)
(900j

—360
—360

0
[1000j
—480
—300

0
400

0
230

—840
0

240

(—1070)

t
—1000j—380

0
460
710

( —130)
(0)

(50)

—270
(0)

140

( —880)
0

320
430

—697
—124

0
101

—1110
—115

0
238

—267
—231

0

—326
—295

0
347
913

—335
—331

0
970

—491
—306

0
412

0
231

—845
0

232

—1099
—1053
—356

0
443
694

99
0

56

—256
0

130

—879
0

342
456

a, b

a) c) d

b, c, f

d)c, f

g, h, i

g) &

g~&

i, j
b, k
i, j
b, i, j
1) J

l
l

l

h, l

n, o

n, o

p
p
P

h, s

s, t
s

s, u

h, u

u

h, u

b, q
q
n, q, r

q

(R)

(R)
(R)

(R)
(R)

(R)
(R)

(R)
V

(R)
(R)

(R)
(R)

R, (U)

(R)

R, (V)

(R)
R, (V)

U

R, (V)
R

R
ab

R, ab

(R)
ab
R, ab

(R)

R, (V)
(R)
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TABLE III (Contznz&ed)

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment ~expt emp
Qp I'~p References and comments

"~ggTm

"'69Tm

(5/2+ 413)
3/2+ 411
7/2 523
1/2+ 411
7/2+ 404

3/2+ 411
7/2 523
1/2+ 411
7/2+ 404
5/2+ 402

(—1189)
—570
—379

0
316

—676
—425

0
635
913

(—1550)
—600
—360

0
290

—700
—410

0
610
890

—1603
—616
—371

0
299

—700
—443

0
632
902

W

h, l

l, x
l, x

l, x

y) z

y, z

r, y, z

r, y, z

Vibr.
U

R
U
R

R, U
R
U
R
(R)

~ Reference [66B106].
Not well established.
Reference [66Fu11]."Reference [69Un04].' Not fitted.

f Reference 68Ke] .I Reference 64Pe13] .
". Identification probable.' Reference 67B112].
' Reference 66Fu06] .
~ Reference [66Gn].
I Reference [63Di09].

Reference [66Zy02].
Reference 66Bo02 .
Reference 64Ab03 .

P Reference [65Gr3S .

'1 Reference [66Fu04].
r See Bunker and Reich (1971).' Reference [68Bu].
~ Vibrational shift not evaluated."Reference [69Ar23].
v References [64Lo04, 70W109].~ Reference [65De05] .* Reference [65Bo08]."Reference 68Me02] .' Reference [68Gr].
~~ Notations and symbols are explained in the text (Sec. III.A.3

and IV.A).
These two single-particle levels could change order (see discussion

in text).
The 7/2 523 level in»'Tb has been established at 250 keV [J.Jursik,

V. Hnatowicz, and J. Zvolsky, Czech. J. Phys. 198, 870 (1969)].

Version II, the rotational shifts may be large, and may
cause substantial rearrangement of the level order in
certain cases. The results are compared in Sec. IV
(see also Sec. V).

For the single-particle level schemes, derived ac-
cording to the fitting procedure described in Sec.
III.C.2, there are, admittedly, an infinity of choices
which fit the data. However, there are constraints
imposed on the position and variations of the levels
(cf. Figs. 2 and 3, Tables I and II, and the discussion
in Sec. III.A). We have attempted to keep with such
general considerations. Judging from our own experi-
ence, we hardly expect any serious ambiguity to be
involved in the relative determination of the fitted
levels. Also the possible effect of the duality in the
position of the Fermi level is limited.

There are evidently several computational un-
certainties involved in the analysis. Appreciable errors
should in general be attached to the vibrational shifts,
particularly to the large shifts applied in some cases
(see Sec. 111.3.2). Also the estimate of the rotational
correction —in either Version I or II—involves uncer-
tainties. We never quote the empirical quasiparticle
energies, 5 E~~' ~, to better than 10 keV, and in several
cases not to better than 50 or 100 keV.

The energy uncertainty inherent in the BCS method
for blocking, due primarily to the particle-number
fluctuations (see Appendix C.1), has been. subject to

previous examinations (see, e.g. , Wahlborn, 1966) .
The error is found to be roughly constant for the
quasiparticle excitations in a given nucleus, and there-
fore the uncertainties of the calculated excitation
energies are relatively small. Pessimistic estimates for
low-lying excited states indicate a possible error of
~100 keV, which should include the worst cases. In
some cases, we have not been able to 6nd an iterative
solution to the BCS Eqs. (3.19)—(3.22), despite at-
tempts to vary the conditions (e.g., the G value)
slightly. We interpret this lack of convergence as the
absence of a solution with b,g/0, and therefore set
5&——0 in such a case. This may lead to increased.
uncertainty.

Including the effects of all possible ambiguities and
uncertainties, we consider &100 keV to be an ac-
ceptable tolerance in the fit of individual quasiparticle
energies, as well as in the relative determination of each
single-particle level from a fit. Usually excitation ener-
gies below 100 keV are fitted to much better than this
value. If the uncertainty is for any reason estimated to
be appreciably larger than 200 keV, we usually do not
perform a fit or include the information on the level. "

32 For the purposes of this review, we may characterize the
quality of a fIt or determination involving an energy level in the
following way, the precision being given in terms of the estimated
energy error: better than 50 keV—good; better than 100 keV—
acceptable; better than 200 keV—tolerable; worse than 200 keV—
bad.
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TABLE IV. Energy data on quasiparticle excitations in odd-proton nuclides with 71 &Z&75.

Assigned quasiparticle state

Nuclide Assignment I expt

Energy (keV)

emp References and comments

1'171Lu

17371Lu

"'71Lu

17771LU

1777 Ta

"'73Ta

18173T

"'73Ta

'8'75R.e

18375Reac

7/2 523
7/2+ 404
1/2 541

7/2 523
1/2+ 411
7/2+ 404
1/2 541
5/2+ 402
9/2 514

1/2+ 411
7/2+ 404
1/2- 541
5/2+ 402
3/2 532

7/2+ 404
5/2+ 402
1/2 541
9/2 514

1/2+ 411
7/2+ 404
9/2 514
5/2+ 402

1/2+ 411
9/2 514
7/2+ 404
5/2+ 402
1/2 541

1/2+ 411
9/2 514
7/2+ 404
5/2+ 402
1/2 541

1/2+ 411
9/2 514
7/2+ 404
5/2+ 402

4

9/2 514
7/2+ 404
5/2+ 402

1/2+ 411
9/2 514
5/2+ 402
1/2 541

1/2+ 411
7/2+ 404
9/2 514
5/2+ 402
3/2+ (402)

(—493)
0

29

—662
—208

0
71

296
470

—425
0

128
357

(888)

0
343
358
396

—570
0

150
458

(—488)
—74

0
71

217

—520
—31

0
239
750

—615
—6

0
482

—73
0

459

—826
—262

0
432

—1102
—851
—496

0
1035

(—490)
0

120

—670
—240

0
160
310
450

—450
0

210
370

(920)

0
360
440
380

—600
0

140
470

( —520)
—60

(0)
90

340

—550
—20

(0)
250
870

—650
(+)3

(0)
500

—80
(0)

470

—850
—240

0
520

—1130
—830

L
—500]

0)1300

—494
0
116

—681
—250

0
165
321
473

—462
0

228
391
952

0
349
426
374

—621
0

154
489

—504
—53

0
100
349

—557
—21

0
222
849

—683
—10

0
531

—80
0

468

—840
—255

0
480

—1094
—816
—457

0

a, b

c) d

c) d

e

e, f
e, f
e, f
e

g

g

b, g

h, i

h, i
h, i

3

k
k, l

k, l

k, l

b, m

m, n

m, n

m, n

m, n

0) p
o) p
0

I) S

r) s
r, s

u

t, u

u

t, u

t, v

R, (V)

(R)
(R)

R, (V)

R
(R)
R

(R)

(R)

R, (V)
U

(R)
(R)

R
R, ab
ab
(R)
R

R
R, ab
ab
R
R

R
U, R, ab
U, ab
R

U, R, ab

U, ab
R

R
R
R
U

R, V
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TABLE IV (Contin&&ed)

Assigned quasiparticle state

Energy (keV)

nuclide Assignment Lexpt Jt' emp
cIP Ir~ B~~ References and comments

185 5Reac

18775Reac

1/2+ 411
9/2 514
5/2+ 402
1/2+ (400)

(3/2+ 411)
1/2+ 411
9/2 514
5/2+ 402
1/2+ (400)

(3/2+ (402))

—880
—387

0
646

—865
—625
—206

0
511
773

—910
[—400]

0

L900'j

—( )2000)
—720
—190

0
760

()2000)

—930
—424

0
1007

—723
—195

0
738

t, W, x

t, w, x
t, w, x

W) Z

W) Z

W) Z

W) Z

W) Z

W) Z

R
R
U

R, U

Vibr.
R, t/'

R
U
V
Vibr.

a Reference [69Ar23].
Identification probable.
Reference [61MeS].

d References [658j01, 68Sk].
c Reference [70Gi] .

Reference [66Ha23] .
g Reference [62Va6].
h Reference [69Ha10].
'. Reference [69Jo16].' Reference 62Ba32].
~ Reference [65He06 .
I Reference [65Ma18].

Reference [69Ad]."References [70Sk04, 70Ba46].
Reference 69Ko18 .

P Reference [63Va28 ~

'1 References [70Ro, 66A105].' Reference [67Mo13].

' Reference 69Mc08] .
Reference 68Ha39] ."Reference [69Hj01

v Not fitted.
Reference [678i10] ~

Reference [69Co16]."Reference 68Al] .' Reference 658i07] .
~a Notations and symbols are explained in the text (Sec. III.A.3 and

IV.A) .
~b The order of these two states might, be reversed (see comments in

text) .
The 1/2 541 level has been identified at 702 keV in»3Re, and at

1.045 keV in»5Re. The 11/2 505 level has been identified at 1309 keV in
'"Re, at 1303 keV in '8sRe, and tentatively at 1208 keV in '8'Re. [See
Bunker and Reich (1971) quoting information from M. T. Lu and W. P.
Alford (1970).]

IV. LEVEL DATA AND SEMIEMPIRICAL
SINGLE-PARTICLE LEVEL SCHEMES

The main result of the analysis described in Sec. III
consists of the central portions of the single-particle
level schemes which have been subject to variation.
Before presenting this result graphically in Sec. IV.B,
we tabulate in Sec. IV.A the compilation of the level
data used. Brief comments on certain details of the
data and the results are given in Sec. IV.C.

The pairing force constant, G, and the NB CS param-
eters", d*, X*, have been determined and calculated as
described in Sec. III.C. The values of G which we have
obtained according to the rough criterion Eq. (3.25),
using the resulting single-particle levels (Sec. IV.B),
are shown in Fig. 4. We note that the behavior of our
G„and G„values, within the region considered, does
not agree with the usually adopted (1/A) dependence.
It also appears that no simple isospin dependence of G
is substantiated t cf. Nilsson el al. (1969)). It would be
of little interest here to fit the points shown in Fig. 4
by an expression" ' containing 73 and powers of A ' '
and (IV—Z)/A. It should also be noted that a com-
parison between our G values and those used for some-
what diferent purposes by other authors, e.g. , by
Nilsson el gl. (1969), Lamm (1969), and Nils son
(1969), is obscured because of the different single-
particle level schemes used; ours containing a bias

through the built-in variations with the nucleon
numbers.

The precision to which we fulfill Eq. (3.25) is
illustrated by Fig. 5 (odd-proton cases) and Fig. 6
(odd-neutron cases). The experimental odd —even mass
differences, P'» and P("), have been taken from Prior,
Boehrn, and Nilsson (1968) (supplemented by Lamm,
1969), and the "gap parameters" 2' A. &» and A. &"&, have
been calculated with the G values of Fig. 4. Naturally,
the approximate nature of the relationship between A~

and P makes a precise fit pointless.

A. The Band-Head Level Data

We have compiled the available band-head energy'
data for excitations of primarily one-quasiparticle' type
in the region 150(A(190. We have restricted our-
selves to a selection of such levels where the cylindrical
classification, " Eq. (2.25), appropriate to eigenstates
of the single-particle model for nonspherical nuclei, is
considered established or probable for the predominant
component of the state. It should be pointed out that
the classi6cation of one-quasiparticle states is exactly
the same as for the single-particle states (see Appendix
C), and that the admixtures discussed in Sec. III.B do
not violate the classification. Details on how the
classihcation is made from the data in individual cases
are discussed by Bunker and Reich (1971), whom we
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TABI.E V. Energy data on quasiparticle excitations in odd-neutron nuclides with 91(E(95"

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment +expt, emp
Qp

BCS References and comments

153sm91

'"Gd91

157Dy

155$m

159Dy

161Erg3

159Qd 5

1/2+ (400)
3/2+ (402)
3/2 532

11/2 505
3/2+ (651)
3/2 521
1/2 521

1/2 530
1/2+ (400}
3/2+ (402)

11/2 505
3/2 521
3/2+ (651)
5/2+ 642

5/2 523
1/2 521

11/2 505
3/2 521
5/2 523

3/2 521
5/2+ 642

5/2 523
1/2 521

1/2 530
3/2 532
1/2+ (400)
3/2+ (402)

11/2 505
3/2 521
5/2+ 642
5/2 523
1/2 521

11/2 505
3/2 521
5/2+ 642
5/2 523

(1/2 521,)

1/2+ (660)
11/2 505
3/2 521
5/2 523

1/2 530
3/2 532
1/2+ (400)
1/2+ (660)
3/2+ (402)

11/2 505
5/2+ 642
3/2 521
5/2 523
1/2 521
7/2+ 633
5/2 512

—415
—321
—127
—98

0
36

696

—423
—368
—269
—122

0
105

(267)
(321)
556

—199
0

344

0
=18
(427)
821

(—782)

(—700)

(—684)
(—475)
—426

0
63

435
704

—354
0

178
310
(538)

( = —400)
—396

0
172

( = —1100)
( —1109}
(—973)
—780
—743
—681
—68

0
146
507

(733)
873

[—400]
[—300]
—120
[-40]

(0)
30

[900]

[—700]
[—800]
[—700]

L
—70]

(0)
120

(220)
(320)

[1000]

[—150]
(o)

330

0
=20
(420)

L1200]

(—800)
( —700)

( —700)

( —480)

[—400]
0

60
420

[1200]

[—300)
0

180
300

(1400)

( = —550)

[—350]
0

160

( = —1100)
(—1110)
(—1000)

—920
—740

L
—650]
—70

0
130

[1100]
(720)
870

—390
—289
—107
—35

0
50

883

—640
—826
—657
—64

0
120
215
316
946

—144
0

338

0
34

442
1160

—780
—673
—724
—457
—378

0
50

374
1069

—329
0

148
302

—591
—370

0
117

—1079
—1107
—987
—922
—741
—643
—76

0
152

1108
705
882

a, b

a, b
b
a
a, b, c
b
a, b, c

d

cl) e
cl) e

cl) f
cl) f

d, h
d

&) 3
~ ~

&) J
1

a, c
a, k
a
a, c

d
d

d, l

d, l

d

d
d

d
d

i, m

i, m, n

i, m, n

i, n

1) 0

p, q, r

pr q) r

pqr
p, q, r

d

d

d

d) s

d

cl) s
cl) s

cl) s
cl

s

d) s

c, (v)
c, (v)

R, ab
ab
ab
V

V
V
V

R, ab
ab
ab

V

R, ab
ab
(R)

(R)
(vibr. )

(R)
(R)
R

(R)
(Vibr. )

(R)
Vibr.

(R)

V

(R), V

(R)

(Vibr. )
(R)
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TABLE V (Continued)

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment ~e xpt empap
BCS References and comments

I61Dy95 3/2+ (651)
3/2 521
5/2+ 642
5/2 523
1/2 521
5/2 512

—551
—75

0
26

367
799

—550
—70

0
10

(1100)
786

—555
—71

0
8

1083
816

i, t
i, t
i, t
i, t
i, t
1

163Er 5 1/2+ (400)
3/2+ (402)

11/2 505
3/2 521
5/2 523
5/2+ 642
1/2 521
5/2 512
1/2 510

(—541)
(—463)
—444
—104

0
(69)
346
609

1074

(—570)
(—480)
P—400)
—120

0
(90)

$800)
610

$900)

—591
—507
—424
—135

0
109
893
658
965

q
q
q, r

q, r

q, r

q, r

q
q, u

q

(R)
(R)
R

(R), (Vibr. )

~ Reference [69Tj].
References [69Sm04, 68Sh].
Reference 65Ke09] .
Reference [67Tj01].

e Reference [69Me].
Reference [70~]~

g Complicated struct, ure.
. Nature of state not well established.
'. Reference [678e].
' Reference [70Bo02].
~ Extrapolated energy.
I Relative positions of 1/2+ and 3/2+ not established.

Reference [68Bo18].

n Reference [66Gr25].
~ Not fitted.
P Reference 69Ha12] .
~ Reference 69Tj01].
& Reference [70Hj].
s Reference 69Kei0 .
& Reference 66Fu07 .
LL Reference [69Gr].

Notations and symbols are explained in the text (Sec. III.A.3 and
IV.A). The extracted energies, E~p' p, in this table should be considered
essentially qualitative (see Sec. IV.C.2),

These states could appear in different order (see Version II).

essentially follow in our selection of data. For further
information we refer the reader to the bibliography for
level data given in Appendix D.

The compilation is presented in Tables III and IV
(odd-proton levels) and Tables V-VII (odd-neutron
levels) . In Columns 3-5, we give the following excitation
energies (see definitions in Sec. III.A): the experi-
mental band-head energies (E, „i); the extracted
quasiparticle energies (E,o' o) in Version I )see Kq.
(3.15)j, evaluated from data as described in Sec. III.B;
and the calculated quasiparticle energies (EaoBcs),
obtained from the final BCS fit (Sec. III.C). In all
three columns, the hole excitations are distinguished

by a minus sign.
In Column 6, the lower case letters refer to the

footnotes which contain certain comments and literature
references. For each level there is given at least one
reference for the experimental information, as listed in
Appendix D (the notation for the references is explained.
there). As a rule, we have chosen to include the most
recent and/or the most complete source of information
known to us. More complete references for each case are
furnished by Bunker and Reich (19"/1) .

The capitalized comments in Column 6 refer to the
various uncertainties which we estimate or anticipate. "
Sy comparison of the Version I and Version II treat-
ments )see Eq. (3.15)g, we estimate the possible error

of E,o' & due to the rotational term. The symbol (R)
denotes an uncertainty roughly between 50 and 100
keV, while R denotes that it is larger than 100 keV. If
the rotational correction is large enough to possibly
reorder two or more levels, including the Fermi level

(see discussion at the end of Sec. III.B.1), we indicate
the affected levels by the Footnote ab, and set the quasi-
particle ground state within parentheses in Column 4.
The cases in which a vibrational correction has been
estimated and applied, as described in Sec. III.B.2,
are usually denoted by the letter V. If a small vibra-
tional correction is expected, but is either not applied or
considered very uncertain, the symbol (V) is used. The
comment "(Vibr.)" means that we have included the
state as if it were mainly of one-quasiparticle nature,
although this might be in doubt. The comment "Vibr."
means that the state is probably mainly vibrational (we
then also set the entire assignment in Column 2 in
parentheses). By the letter LT, we indicate the cases
where the BCS blocking solution fails to converge and
we consequently set 6&=0 (see Sec. III.D). In a few

cases, we have used the letter C to indicate the possible
presence of an appreciable, but unevaluated, correction
due to Coriolis coupling (see Sec. III.B.1).

In Columns 3 and 4, the energy values in parentheses
indicate that the identification of the state is not con-
sidered certain (footnotes may furnish further in-
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TABLE ~.Energy data on quasiparticle excitations in odd-neutron nuclides with 97&X'&103.'

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment &ezpt emp
Qp

BCS R,eferences and comments

1610d

163Dy 7

166Er97

167+b

165Dy

167Er99

169+b 9

3/2 521
5/2 523
1/2 521
7/2+ 633
5/2 512
1/2 510
1/2+ 651

3/2+ (651)
3/2 521
5/2+ 642
5/2 523
1/2 521
5/2 512
1/2 510

1/2+ (400)
11/2 505
3/2+ (402)
1/2+ (660)
3/2 521
5/2+ 642
5/2 523
1/2 521
5/2 512
1/2 510

3/2 521
5/2+ 642
5/2 523
1/2 521

3/2 521
5/2 523
7/2+ 633
1/2 521
5/2 512
1/2 510

1/2+ (400)
3/2+ (402)
5/2+ 642
3/2 521
5/2 523
7/2+ 633
1/2 521
5/2 512
1/2 510
3/2 512

3/2 521
5/2+ 642
5/2 523
7/2+ 633
1/2 521
5/2 512
1/2 510
7/2 514

—313
0

356
446
809

1309
(1489)
—859
—422
—251

0
351
719

(1159)

(—746)

(—551)
(—534)

(—so7)
—243
—47

0
297
478
920

—187
—30

0
212

—574
—533

0
108
184
570

(—1135)
(—1086)

—812
—753
—668

0
208
346
763

1384

—660
—584
—570

0
24

191
813

(960)

—320
0

[800)
450
810

[1200)
(isio)

[—1100)
—430
—270

0
[800)
720

(116O)

( —77o)

(—s2o)
(—550)
( —500)
—260
—60

0
[550)
490

[1100)
—200
—40

0
[=500)
—680
—540

0
140
190

[1400)

(—1140)
{—1090)

—800
—800
—670

0
240
350

[1200)
[1400)
—720
—860

= —600
0

60
190

[1400)
(9so)

—375
0

865
498
845

1231

—1123
—446
—288

0
800
712

1143

—251
—63

0
511
437

1028

—219
—38

0
509

—647
—516

0
155
205

1328

—840
—786
—662

0
269
350

1245
1530

—709
—843
—568

0
68

191
1412
962

a, b
a

a, c

d
d
d

d
d

d, e

e, f

c, g, h

C, 1

c) g
c, g, j
g, h, i, j
h, i, j

g, h, j
b, g, h

g) 3

k
k, l

k, l

k

m, n, o

m, n, o

m, n, o

m, n, o

m, n, o

m, n, o

c, f, g

f, g
g) p~q
g, p, q
g) pi q
gpq
g~ p~ q
g, q, r

giq

k, s
k
k, s
k, s
k, s

k, s

(R), v

R, (Vibr. )
(R)

(R), v

(R), v

R
R
(R)
c, (R), v

(R), v

R, (Vibr. )

(R)
C

(R), (Vibr. )

(R), v
(R)

R, (Vibr. )

(R)
(R)
(R), (v)
(R), v

R, (Vibr. )
(R), (v)

(R), v
(R), v
(v)

(R)

R, {Vibr.)
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TABLE VI (Conlinzzed)

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment I'-ex pt empap
BCS References and comments

169Er

171+b ac

173Hf1p1

171Frlp3

173+b

"'Hf1P3

5/2 523
3/2 521
'I/2+ 633
1/2 521
5/2 512
1/2 510
7/2 514

(3/2 512)

(3/2 521)
7/2+ 633
1/2 521
5/2 512
7/2 514
1/2 510

7/2+ 633
1/2 521
5/2 512

1/2 521
5/2 512
9/2+ 624
7/2 514
1/2 510
3/2 512

3/2 521
1/2 521
7/2+ 633
5/2 512
7/2 514
1/2 510
3/2- 512

7/2+ 633
1/2 521
5/2 512
7/2 514

—850
—714
—244

0
92

562
(823)
1082

—902
—95

0
122
835

=945

—165
0

107

—195
0

(378)
(531)
706

(906)

{—1224)
—399
—351

0
637

1031
(1340)

—207
—126

0
348

[—1600]
[—900]
—210

(0)
60

[1200j
(78o)

[1400j
—(&2ooo)

—60
(0)
90

790
[13003

—140
(o)
70

—230
0

(37o)
(51o)
[900j
(91o)

(—1200)
—430
—360

0
620

1170
(1330)

—210
—160

0
330

—1665
—970
—204

0
80

1241
822

1431

—59
0

127
771

1282

—131
0

113

—212
0

370
525
943
916

—1260
—457
—363

0
636

1189
1350

—178
—134

0
315

g, r, t
g) t
g, r, t

g, t
g, t, u

g, t

c, k
k, v

k, v

k, v

k, v
k

g, r

g) r

g, u

g)u
g, r

k, u
k
k, x

k, x

k, x
k
k, u

y

y

R, (Vibr. )
(Vibr. )
R
ab

(R), ab
R, (Vibr. )
R
Vibr.

Vibr.

(R), ab
ab
(R&

R
(Vibr )

(R)
ab

(R), ab

(R)
U

(R)
(R)
(R), (Vibr. )
(R)

(R), (Vib .)
(R)

V

(R)

(R)
(R)
U

~ Reference [67Tj01].
Evaluated position.

~
Not fitted.

~ Reference [67Sc05].
Reference f69Gr] ~

Collective corrections not applied to this level.
g Reference [69Tj01].
h Reference [68Ku14].
'. Reference 70Hj].
' Reference 68Ku02 ~"Reference [66Bu16].
1 Reference f65Gr20] ~

Reference [67nu05].
Reference [67Bo31]~

Reference 67Ma25] ~

P Reference [65Ko13]~

' Reference [70Mi01].' Reference [68Ha10 ~

8 Reference [68Sh12].t Reference [70Mu]." Identification of level probable.
Reference [69Ba38]."Reference 68Ha39].

x Reference 59Bi11].
~ Reference [60Ha18].
"Notations and symbols are explained in the text (Sec. III.A.3 and

IV.A).
The order of these two levels could be reversed (see discussion in

text)."The level 9/2+ 624 in»1Yb has been established at 935 keV. See
[69Ba38].

formation). Uncertainties in the position of an experi-
mental level —e.g. , if members of a rotational band
have been observed but not the band head' —are also
pointed out. In Column 4 we set within brackets such
v&~lues of Eqp which for any reason are considered to

have large uncertainties (especially in connection with
V and R as mentioned above). This is done if the
estimated uncertainty is larger than 200 keV, and also
in a few other cases, such as, e.g. , if there is expected to
be a fairly large, but unknown, vibrational correction
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TABLE VII. Energy data on quasiparticle excitations in odd-neutron nuclides with 105&%&111.~~

Assign'1ed quasiparticle state

Energy (keV)

Nuclide Assignment Lezpt emp
ap E~p References and comments

178Yb1o5

177Hf

179+7

"'Yb1o7

"9Hf1ov

181W107

1880s1op

181Hf

3/2 521
7/2+ 633
1/2 521
5/2 512
7/2 514
9/2+ 624
1/2 510

(3/2 512)

7/2+ 633
1/2 521
5/2 512
7/2 514
9/2+ 624
1/2 510

(3/2 512)
7/2 503

7/2+ 633
5/2 512
1/2 521
7/2 514
9/2+ 624
1/2 510

7/2 514
9/2+ 624
1/2 510
3/2 512
7/2 503
3/2 501

1/2 521
5/2 512
7/2 514
9/2+ 624
1/2 510
3/2 512
7/2 503

1/2+ (660)
7/2+ 633
7/2 514
1/2 521
5/2 512
9/2+ 624
1/2 510
7/2 503
3/2 512

9/2+ 624
1/2 510

9/2+ 624
1/2 510
3/2 512
7/2 503
3/2 501
13/2+ 606

( —1620)
= —1000

—919
—639

0
265
514
811

—746
—560
—509

0
321

=-590
804

1058

—477
—430
—222

0
309

( =630)

—104
0

333
709

(1226)
(1365)
—614
—518
—214

0
375
720
872

(
—1364)
—953
—409
—385
—365

0
458
662
726

0
171

( —68)
0

255
670

(1063)
(1729)

(—1650)
[=—1000]

—960
—650

0
260
550

[1400]
—760
—600
—520

0
320

[=700]
[1200]

1050

—490
440

—270
0

310
( =700)

—110
0

[400]
960

(1220)
(1390)

[-700]
—530
—220

0
[400]

750
870

( —1360)
[—950]
—410
—400
—370

0
[500]
660
750

0
[200]

( —30)
0

230
620

(1040)
( = 1700)

—1666
—1047
—1001
—680

0
284
608

1466

744
—600
—520

0
337
716

1135
1022

—500
—447
—244

0
331
690

—116
0

380
967

1222
1404

—696
—563
—259

0
483
794
914

—961
—428
—455
—393

0
511
669
777

0
234

—25
0

251
605

1060

a, b
a
a, b

a, b

a, b
a, b
a, b
a, b

c
d

c, d

c) d)e

d, f
d

c, d

g

g, h

g, h

g, h

g, h

g, h, i

a) 3

a, 3

a, j
a 3

a, 3

a, 3

d, k
d, k
d, k
d, k
d, k
d, k
d, k

f, h, l, m

h, l

h, n

h, l

h, n

h, n
h
h
h

d) p
d
d
d
d

d) q

R, (Vibr. )

R
(R)
U

(R)
R
R, Vibr.

(R)
R
(R)
U

R, t/

R, Vibr.
(R)

(R)
R

(R)

R
U
R
R, V

(R)
R

R
R
(R)

R
(R)

R
(R)

R
(R)
R

(R)

R, V
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TABLE VII (Continued)

Assigned quasiparticle state

Energy (keV)

Nuclide Assignment empav E~~ References and comments

"'WI09

185QS ac

185W111

187Qslll@e

1/2+ (660)
7/2- 514
7/2+ 633
1/2 521
5/2 512
9/2+ 624
1/2 510
3/2 512

11/2+ 615
7/2 503
9/2 505

1/2 510
3/2 512
7/2- 503

11/2+ 615

1/2+ (660)
7/2 514
1/2 521
7/2+ 633
5/2 512
9/2+ 624
1/2 510
3/2 512

11/2+ 615
7/2 503
9/2 505

3/2 512
1/2 510
7/2 503

11/2+ 61S

( —1794)
—1072

( —985)
—936
—906
—623

0
209
309
453

(1390)

0
128

{352)
717

( —2059)
—1058

= —1010
( —966)
—888
—716
—24

0
198
244

=785

—10
0

100
257

(—1800)
[—1100]
( —1000)
[-900)
[—900]
[—600]

(o)
190

[200]
400

(1400)

0
110

{300)
[600]

( —2100)
[—1100]

[=—1000]
(—1000)
[—900)
[—700)

—30
(0)

[100)
200

[800]
—4

(0)
60

[200)

—1044
—967
—904
—840
—587

0
209
249
426

1410

0
111
277
579

—1031
—985
—939
—949
—713
—26

0
112
184
774

—3
0

74
190

f, h, l, q
h, l

f, h, l

h, l

h, l

h, r, s

h, l

u, v
u

f, h, l, q
h, l

h, l

f, h, l

h, l

h, l

h, w, x

h, l

y

u, y
U, y

(R)
R
U, ab
ab
R, ab
R
R

R
R

R, (V)
(v)
(R)

R
ab
ab

R, ab
(R)
R

ab
ab
R, ab
R, ab

a Reference 66Bu16 .
Reference 67Bo19 .
Reference [61We11].

d Reference [68Ri07].
e Reference [64A104].
~ Evaluated position.

Reference 68Ha39] .
". Reference 70Ca] .
'. Energy from Ref. [70Ca] adopted.' Reference 63Ve09] .
~ Reference 67Ma24] .

Collective corrections not applied to this level.~ Not fitted.
Reference [60Hai8] .

e Ref. [60Ne2].

~ Identification doubtful.
~ Fitted only in Version II ~

r Reference [69Ku03].' Reference 65Er03] ." Reference [67Ma28]." Reference [69Fo]." Identification of level probable.
Reference [69Da01].

x References [69So, 69Ku07].
~ Reference [62Ha24].

Notations and symbols are explained in the text (Sec. III.A.3 and
IV.A) .~" The order of these single-particle levels can be exchanged (see
Version II).

See also Bunker and Reich (1971).

to the level. Comparison between Columns 4 and 5
shows the actual precision of the BCS fit to the data for
each case (cf. Sec. III.C) ."Several uncertain cases have
not been 6tted, and other cases have only been 6tted in
Version II—see the comments and footnotes.

Ke have supplemented the level data compilation
by a compilation of experimentally substantiated
ground-state assignments in Tables VIII (odd-proton)
and Table IX (odd-neutron). We include primarily
cases where the ground-state spin has been measured.

Tables VIII and IX cover a substantially larger set of
nuclides than do Tables III—VII. By this extension,
certain additional features of the level systematics,
such as possible level crossings, which have a place in
our discussion (see Secs. IV.C and V), are brought out.

B.The Single-Particle Level Schemes from Analysis
of Data

The single-particle level schemes, obtained from the
analysis of data as described in Secs. III.A, III.B, and
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TAsLz VIII. Experimental ground state assignments for
odd-proton nuclides.

Nuclide Exp I Adpptedb assignment Footnote

147Fu
149Fu
'"Eu
153Eu

166Fu

(5/2)
(5/2)
5/2
5/2

(5/2)

5/2+
5/2+
5/2+ 413
5/2+ 413
5/2+ 413

151Tb

153Tb

155Tb

167Tb

159Tb

161Tb

163Tb

1/2
5/2
3/2

(3/2)
3/2
3/2

(3/2)

1/2
5/2 532
3/2+ 411
3/2+ 411
3/2+ 411
3/2+ 411
3/2+ 411

"'Ho
157Hp

159Hp

161Hp

163Hp

165Hp

167Hp

5/2
7/2
7/2
7/2

(7/2)
7/2

(7/2)

5/2 532 or 5/2+ 402

7/2 523 or 7/2+ 404
7/2 523
7/2 523

7/2 523
7/2 523
7/2- 523

69 '6'Tm
"'Tm
'"Tm
166Tm

"'Tm
'69Tm

171Tm

5/2
7/2
1/2
1/2
1/2
1/2
1/2

5/2+ 402
7/2+ 404
1/2+ 411
1/2+ 411
1/2+ 411
1/2+ 411
1/2+ 411

71 169Lu

171Lu

173Lu

"'Lu
177Lu

"'Lu

7/2
7/2

(7I2)
7/2
7/2

(7/2)

7/2+ 404
7/2+ 404
7/2+ 404
7/2+ 404
7/2+ 404
7/2+ 404

175Ta

177Ta

179Ta

181Ta

183Ta

(7/2)
(7/2)
(7/2)
7/2
7/2

7/2+ 404
7/2+ 404
7/2+ 404
7/2+ 404
7/2+ 404

"'Re
"'Re
185Re

"'Re

(5/2)
(5/2)
5/2
5/2

5/2+ 402
5/2+ 402
5/2+ 402
5/2+ 402

77 187Ir

189Ir

191I

193Ir

(3/2)
(3/2)
3/2
3/2

3/2+
3/2'
3/2+
3/2+

a Measured ground-state spins are quoted from Fuller and Cohen (1969)
unless otherwise noted. Values in parentheses have been inferred from
spectroscopic data and are quoted from Lederer, Hollander, and Perlman
(1967), or the references mentioned in Footnotes b and e.

b Where no reference is given, the adopted assignments are from the
Nuclear Data Group (1959—1965, 1966), or from Bunker and Reich (1971).

Reference [70Li].
Reference [69Ek01].' Reference [68Ha39 .

III.C, are presented graphically in Figs. 7 and 8 (proton
levels), and in Figs. 9 and 10 (neutron levels). These
are all based on Version I of the assumed rotational
contribution" (see Sec. III.B).We presen. t also, in Fig.
11, the Version II results for the odd-neutron cases
%=91, 109, and 111, where X=11/2 levels play an
important role. In addition. to setting y(IC) 0.5E' in

Eq. (3.13) for these cases, we have rounded off most of
the adopted Eq, " values to 50 or 100 keV before
fitting. The Version II result should be considered
highly tentative. The dashed line in Figs. 7-11 connects
the values of X* obtained from the NBCS solution in
each case (see Sec. III.C.1) ."The medium width solid
lines connect the single-particle energies in general, and
indicate the levels (ei,) not fitted to the data. The thick
lines indicate fitted levels (err). The Fermi levels are
distinguished by a cross. We note, furthermore, that
the zero of the energy scale has been fixed in an arbi-
trary way, compatible with Tables I and II.'

The symbols R, V, and U in Figs. 7—11 are defined in
essentially the same way as for Tables III-VII (see
Sec. IV.A) . However, their quantitative meaning is here
somewhat different since they are applied to the single-
particle levels, not to the quasiparticle excitations.
Generally, they indicate that the uncertainty in the
position may be larger than 100 keV. If we estimate the
probable uncertainty in the determination of ez to be
larger than 200 keV, we set the level within brackets. "
The parentheses, however, have exactly the same
meaning as in Tables III—VII, i.e., the experimental
identification of a level with this assignment is un-
certain.

The principles concerning the variation and the
htting of the central portions of the standard level
schemes (Tables I and II) have been briefly described
in Secs. III.A and III.C. From Figs. 7—11 we can clearly
see how these principles have actually been applied.
We note that there are, in some cases, appreciable
parallel shifts of several levels when we pass from one
sequence of isotopes (for odd Z) or isotones (for odd 1V)

to another. This is a consequence of our choice of
position for the Fermi levels (see Sec. III.B) relative to
the arbitrarily fixed energy scale (cf. Tables I and II),
and has little significance for the result. We also note
tha, t a few levels for which data are scarce (e.g. , the
proton level 1/2 541) have been varied in a, regular
fashion across the region, in rough agreement with
general model expectations. Such model features,
arising from attempts to make our approach reasonably
realistic, have negligible effects on the positions of the
actually fitted single-particle levels.

For each nuclide, a BCS blocking calculation' (Sec.
III.B.1) with the G value taken from Fig. 4, and with
the single-particle levels taken from Figs. 7—10 (for the
central levels) and from Tables I and II (for the
periphera12' levels), will reproduce the quasiparticle
energies, E B s given in Tables III—VII. For
simpler calculations using NBCS, the values of A~ and
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FIG. 7. The central portions of the sin-
gle-proton level schemes, resulting from
our analysis and BCS fit, for the region
63(Z&71 (Version I analysis only) .
Values of the parameter ' )(~&», resulting
from the NBCS calculations are also
included. (The zero for the energy scale'0
is the same as in Table I. Notations are
explained in Sec. IV.B of the text. )
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TABLE IX. Experimental ground-state assignments for odd-neutron nuclides.

Nuclide Exp I Adopted assignment Footnote Nuclide Exp' I Adopted assignment Footnote

91

93

97

99

147Nd

'4'Sm
151Gd

158Dy

149Nd

'"Sm
153G,d
155Dy

157Er

"'Sm
155Gd

157Dy

159Er

'"Sm
1570d

159Dy

161Er

1590d

161Dy
163Fr

161Gd
163Dy

165Er

167+b

165Dy

167Er

169+b

5/2
7/2

(7/2)
7/2

5/2
(5/2, 7/2)

3/2
3/2
3/2

3/2
3/2
3/2
3/2

3/2
3/2
3/2
3/2

3/2
5/2
5/2

(5/2)
5/2
5/2

(5/2)

7/2
7/2

(7/2)

5/2
7/2
7/2
7/2

5/2
(5/2, 7/2)
3/2 521

3/2 521 or 3/2+ 651
3/2 521 or 3/2+ 651

3//2+ 651
3//2 521
3/2- 521
3/2 521

3/2 521
3/2 521
3/2 521
3/2 521

3/2 521
5/2+ 642
5/2 523

5/2 523
5/2 523
5/2- 523
5/2 523

7/2+ 633
7//2+ 633
7/2+ 633

101

103

105

107

109

113

115

169Er

171+b
"'Hf

171Er

173+b

"'Hf

175+b

177Hf

179+7

1810s

177+b

'"Hf
181~
1830s

"'Hf
183+7

1850s

'"Hf
185QT

870s

187+[

1890s

189+7

"'Os

1/2
1/2

(1/2)

5/2
5/2

(5/2)

(7/2)
7/2

(7/2)
(7/2)

(9/2)
9/2

(9/2)
(9/2)

(1/2)
1/2

(1/2)

(3/2)
3/2
1/2

3/2
3/2

(7/2)
(9/2)

1/2 521
1/2 521
1/2 521

5/2 512
5/2 512
5/2 512

7/2 514
7/2 514
7/2 514
7/2 514

9/2+ 624
9/2+ 624
9/2+ 624
9/2+ 624

1/2 510
1/2 510
1/2 510

3/2 512
3/2 512
1/2 510

3/2 512
3/2 512

7/2 514
9/2

~ Measured ground-state spins are quoted from Fuller and Cohen (1969),
unless otherwise noted. Values in parentheses have been inferred from
spectroscopic data and are quoted from Lederer, Hollander, and Perlman
(1967), or the references mentioned in Footnotes b, f, g, and h.

b Where no reference is given, the adopted assignments are from the
Nuclear Data Group (1959—1965, 1966) or from Bunker and Reich (1971).

Reference [70Li].
d Reference [69An19].

Reference 69Ek01 .
Reference 68Ha39 .*Reference 69Mc08] ."Reference 70Ca] .
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I' IG. 8. The central portions of the
single-proton level schemes, resulting
from our analysis and BCS fit, for the
region 69&Z& 75 (Version I analysis
only) . Values of the parameter 8 ) +&»

resulting from the NBCS calculations are
also included. (The zero for the energy
scale' is the same as in Table I.Notations
are explained in Sec. IV.B of the text. )
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).~ are made available in Figs. 5—11 (e.g. , for estimates
of the 8CS amplitude parameters NI, and v/„see
Appendix C)." For most purposes, the accuracy
obtainable from our figures or from Tables I and II
should be adequate. We note that even the f/tted levels"
may not be determined to better than &100 keV
relative to e&. To any potential user of our single-
particle level schemes, it should furthermore be noted
that we do not claim the urrfitted single-particle levels to
furnish a basis for quantitative predictions in general.
Yet, we do anticipate that the qualitative picture is
generally correct for the levels in the neighborhood of
the Fermi surface. The proper use of the results requires
that due care be taken, however. Specifically, the com-

parison between Version I and II shows this to be
necessary.

For specific nuclides, detailed numerical information
on our single-particle levels and the pairing parameters
may be obtained upon request from either of the first
two authors (W.O. or S.W.).

We can study the "compression" eRect (Sec. III.A. 1)
by comparing the single-particle level spacings in Figs.
7—10 with the corresponding calculated quasiparticle
excitation energies given in Column 5 of Tables III—VII.
A drastic example is furnished by "'Gd (Table V and
Fig. 9). The spacing between the single-particle levels
5/2 523 and 3/2 521 (Fermi level) is 750 keV,
compared with the quasiparticle energy which is only
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FIG. 9. The central portions of the
single-neutron level schemes, resulting
from our analysis and BCS 6t, for the
region 91&N&101 (Version I analysis
only). Values of the parameter26 ) +(&)

resulting from the NBCS calculations
are also included. The results for N =91,
93, and 95 should be considered essenti-
ally qualitative. (The zero for the energy
scale" is the same as in Table II. Nota-
tions are explained in Sec. IV.B of the
text. Isotones with N =91 and N =95
are arranged in order of decreasing A
for clarity of presentation. ) Note: there
is no experimental evidence for the level
5/2 512 in "Yb.
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FIG. 10. The central portions of the
single-neutron level schemes, resulting
from our analysis and BCS fit, for the
region 99&X&111 (Version I analysis
only). Values of the parameter'
resulting from the NBCS calculations
are also included. (The zero for the
energy scale'0 is the same as in Table II.
Notations are explained in Sec. IV.B of
the text. ) Note: the level 7/2 514 in
"'Yb should be marked with a U.
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152 keV. The other particle excitations are also strongly
compressed, while the hole excitations are only slightly
compressed. This skewness is related to the fact that
X*—ev is here fairly large (317 keV) . A similar example
is furnished by '"W in the Version II analysis, where,
however, ev —X* is large (345 keV), and the compression
is strong for the hole excitations but slight for particle
excitations.

C. Comments on Data and Results

In the odd-proton case we have considered about 110
levels in 27 nuclides, and in the odd-neutron case about
220 levels in 35 nuclides. The larger average number of
levels per nuclide in the neutron case is not only due to
the larger level density (compare Figs. 9 and 10 with

Figs. 7 and 8), but is also due to the early use of (d, p)
reaction studies, which have given extensive information
on quasiparticle5 excitations in many odd-neutron
nuclides. '~ However, owing to the larger level density in
the neutron case, and also to the specific nature of the
neutron levels encountered in the region 150&2(190,
the data are generally more difficult to analyze thai for
the odd-proton nuclides. This fact shows up here in the
comparatively large number of symbols, brackets, and
parentheses occurring in Tables V—VII, and Figs.
9—11, indicating uncertainties (see Secs. IV.A and B).'

Certain details concerning the data as well as our
analysis and results for specific cases are discussed
below. For further details the reader is referred to the
review article by Bunker and Reich (1971). In this

FIG. 11. Central parts of the single-
neutron level schemes, resulting from
our analysis and BCS fit with Version
II, for X=91, 109, and 111. Values of
the parameter" ),s("&, resulting from the
NBCS calculations, are also included. The
result should be considered highly tenta-
tive. (The zero for the energy scale"
is the same as in Table II. Notations are
explained in Sec. IV.B of the text. ) Note:
the 7/2 514 and 9/2+ 624 levels are
reversed in the left part of the diagram.
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Section, references are made to experimental work
listed in our Bibliography for Level Data, Appendix D.
For these we use the notations adopted in Appendix D,
setting the reference in brackets.

1. The Odd-ProtorI Euclides

The levej. data for the europium and terbium isotopes
essentially covers a range of the spectrum different from
that for the Z&67 nuclides. In particular, there is little
decisive informa, tion on the 1/2+411, and 7/2 523
states for these isotopes (cf. Bunker and Reich, 1971).
On the other hand, for the holmium and thulium
isotopes there are systematic data on the spacing
between these two levels (this is why we include ""'Ho
with only one excited quasiparticle state known). The
absence of data for the 3/2+ 411 state in all holmium
isotopes except for "'Ho is noteworthy.

In '"Tm, the 7/2+404 excitation has low enough
energy (see Table III) that it might actually be the
Fermi level Lsee Eqs. (3.13) and (3.14), and the dis-
cussion in Sec. III.B.1j, despite the fact that 1/2+ 411
is the ground state. A similar statement can be made for
'"Tm, where the data are less certain, however. This
possibility ties in very well with the systematics of
measured ground-state spins for the thulium isotopes
(Table VIII), in particular the recent results by
Lindgren and collaborators L70Li7 for "'Tm and
"'Tm. It should be noted that the behavior of the
unfitted 5/2+ 402 level for the thulium isotopes is
probably somewhat misrepresented in our graphs (Figs.
7 and 8); a similar statement is true, e.g. , about the
1/2+ 411 level in "'"Lu

The plausible identification of the level 3/2 532 in
"'Lu is, to our knowledge, the only evidence for this
state in the whole region (this single-particle level rises
fairly steeply with decreasing deformation; see Fig. 2).
From Table VIII, we see that the experimental ground-
state assignment is 7/2+ 404 for all lutetium and
tantalum isotopes for which information is available.
This noteworthy feature may have alternative explana-
tions. In Fig. 8, based on Version I, we have interpreted
it as due to the crossing of the 9/2 514 and 7/2+ 404
levels, which is not incompatible with model expecta-
tions (see Fig. 2). However, the 9/2 514 excitation is
so low in energy in all of the tantalum isotopes (see
Table IV) that it might well be the actual Fermi level
(see Sec. III.B.1)—in fact, this is likely to be the case
for "'Ta. This interpretation would give somewhat more
satisfactory single-particle level systematics, con-
sidering the situation in the adjacent sequences of
lutetium and rhenium isotopes.

The 1/2+ (400) level, '4 predicted to decrease in
energy for decreasing deformation (Fig. 2), has actually
been observed in '"Re and "'Re (see Table IV and
Fig. 8). However, since 5/2+ 402 is the ground state,
this 1/2+ excitation gets an appreciable y-vibrational
admixture, which makes the estimated quasiparticle
energy somewhat uncertain.

Z. The Odd-SeutrorI, Suclides

The density of single-neutron levels is particularly
high in the lower central part of the spectrum (see
Table II and Figs. 9—11), which is primarily of interest
for the isotonic sequences S=91, 93, and 95. Further-
more, several E=1/'2, 3/2, and 5/2 levels of both
parities occur there, making the situation favorable for
appreciable Coriolis coupling effects and vibrational
admixtures. The coupling is even possibly enhanced by
the presence of the interacting pairs of $0=4 and
6 states 20,22, 24

)

1/2+ (400) and 1/2+ (660),

3/2+ (402) and 3/2+ (651). (4.1)

In fact, it turns out that the experimental situation is
quite complicated for the nuclides in this region,
particularly for N =91 [see Bunker and Reich (1971)$.
Our analysis for these cases is also rather tentative (cf.
Table V), and the results presented for N=91, 93, and
95 in Fig. 9 and especially in Fig. 11 should be regarded
as essentially qualitative.

It is of particular interest to compare the Version I
(Fig. 9) and Version II (Fig. 11) results for N=91.
In view of the low excitation energy of the 11/2 505
state (Table V) this might be the actual Fermi level
(see discussion in Sec. III.B.1). Whether the ground
state will be 3/2+ (651) or 3/2 521 then depends on
the detailed properties and positions of these levels.
We may in this way obtain an explanation of the change
of ground-state assignments for N=91 (see Table IX)
without invoking substantial level shifts (Fig. 9) (cf.
the discussion in Sec. V) . Furthermore, neutron-
transfer reaction data for 'MGd L67Tj017, indicate that
3/2+ (651), and possibly also 11/2 505, is mainly a
hole excitation, which is compatible with the Version II
result. It should also be noted that a somewhat less
extreme evaluation of the precession term, " y(E),
could here result in the near degeneracy of the three
single-particle levels, 3/2+ (651), 3/2 521 and
11/2 505, the relative ordering in the experimental
spectrum being then almost completely determined by
the rotational contribution, E~"'.

The "partner" 3/2+ levels $Eq. (4.1)j, identified
both in '"Sm and "'Gd, seem to be the only instances
as yet where two interacting

~
ANO

~

=2 states have
been well established. " The 1/2+ (400) state having
been found in both nuclides, it is quite puzzling that
the level 1/2+ (660) has not yet been observed. It is
expected to have a lower excitation energy (cf. Fig. 3),
estimated on the basis of Fig. 1i and Version II to be
between 200 and 300 keV. The reason for its non-
observation is not clear Lalthough its (d; p) and (d, t)
cross sections are expected to be small); in fact, for
'~'Gd the data $67Tj01 and 70Lglj seem to exclude the
presence of another 1/2+ state below 500 keV. For the
interpretation of the data for '~Gd, including Coriolis
coupling, we have utilized the analysis of Borggreen,
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L&vhgiden, and Waddington (1969). A recent reanalysis
of the neutron transfer data for "'Gd, including Coriolis
coupling LKanestrttlm and Tjgm (1970)j, indicates
that the 3/2 532 level may be at about the same energy
as the 5/2 523 level at 321 keV, and mix strongly with
this state.

No theoretical or experimental evidence exists for
large vibrational effects in the observed hole states of
"'Sm. In "'Gd the estimated shifts are large and also
quite uncertain (see Table U).

For the %=93 and 95 nuclides, the information
about the interacting states (4.1) is scarce, and in
many cases uncertain. For %=95, the most note-
worthy feature is the different ground-state assignments
for all three isotones (Table IX). We interpret this as
due to the relatively large variation of the 5/2+ 642
single-particle level (cf. Fig. 3) causing level crossings
(Fig. 9) . No contradiction with other data is found for
this interpretation.

The isotonic sequences with X=97, 99, 101, 103, 105,
and 107 are "well behaved, " i.e., the interpretation of
the available level data offers no appreciable difhculties,
and the single-particle level schemes vary in a relatively
smooth fashion (see Figs. 9 and 10, and Table IX).
This region is also rich in data, particularly due to the
extensive experimental investigations of the erbium
and ytterbium isotopes.

The level 1/2 521, having a decreasing position with
increasing A for the N =97 isotones (Table VI), has an
appreciable vibrational admixture. For '"Yb, there is
little known about its structure, and the estimated
value of E~~' I' is therefore especially uncertain. We
have not attempted to fit the four uncertain hole states
in ' Er. The 5/2+ 642 level in "'Er and '"Yb may have
a relatively large Coriolis admixture, which we have,
however, not taken into account. The position of the
corresponding single-particle level is, therefore, perhaps
more uncertain than indicated in Fig. 9.

In the tV= 101 nuclides, one of the two levels 7/2+ 633
or 5/2 512 has an excitation energy below, or at about,
100 keV (Table VI). It is, therefore, possible that
1/2 521 is not the Fermi level. However, our Version I
interpretation leads to agreeable systematics (Figs. 9
and 10). We note also that the identification of the
level 5/2 523 is quite tentative in "'Er, which may be
the reason for the slightly "anomalous" behavior of this
single-particle level in Figs. 9 and 10.

The identification of the level 9/2+ 624, being
established for the %=105 nuclides, is quite uncertain
in ' 'Er. We note the recent, still uncertain, evaluations
for the position of the 1/2 510 level in "'Hf (cf.
Bunker and Reich, 1971) and "'W L70Ca) from data.
This level is well-established for the X=107 nuclides
(we include '"Os since it contributes to the systematics) .

Extensive new data have recently been obtained from
neutron transfer reactions for the tungsten isotopes
t 70Caf. The experimental level information is included
in Table VII. We have not been able to analyze in

detail several of the previously unknown intrinsic states
in "'W '"W, and''W. As indicated in Table VII and
Figs. 10 and 11, our results are tentative for many of
these levels.

The situation for the isotones with X=109 and 111
is complicated due to the presence of the 11/2+ 615
state at low excitation energies. Some of the levels have
been fitted only in Version II, as pointed out in Table
VII. In '"Hf, the identification of the levels 9/2+ 624
(not fitted in Version II) and 13/2+ 606 is uncertain,
and their Eqp' I' values should be considered at most
tentative.

It is again of interest to compare the Version I and
II results (Figs. 10 and 11).In the iV= 109 nuclides it
is possible that 1/2 510 remains the Fermi level,
although it would seem possible to have 11/2+ 615 as the
Fermi level for '"W (the situation is inconclusive for
"'Hf). In the 1V=111 nuclides, we find an acceptable
interpretation of the level systematics and ground state
data (cf. Table IX) within Version II, taking 11/2+ 615
as the Fermi level (see Sec. III.B.1 and the above dis-
cussion of the iV=91 nuclides) . For '"Os the Version II
result leads to complete reordering of the single-particle
levels for all four known states (see Figs. 10 and 11).

We have found that the results of the Version II
analysis, although tentative and schematic, lead to a
somewhat improved over-all interpretation of the data
for the S=91, 109, and 111isotones, if we consider both
level systematics and ground state assignments. We
do not claim that any of the versions, Eq. (3.15),
should necessarily be correct. However, we take the
result of our comparison as an empirical indication that
there may, in fact, be a substantial variation of the
zero-point rotational energy, " Eq. (3.13), in the
band-head energy expression.

V. THE SINGLE-PARTICLE LEVEL SYSTEMATICS

If there are no appreciable residual effects in addition
to those considered in our analysis (Sec. III), it should
be appropriate to compare our resulting single-particle
level schemes (Sec. IV) with results of single-particle
model calculations (Sec. II).'7 Such a comparison
should have a bearing on the validity of the model, as
well as on the potential and shape parameters' entering
into the model. In the systematics, we restrict ourselves
entirely to the levels determined from a P to the data.
Furthermore, we confine ourselves to considering the
spacings of the single-particle levels re1ative to a few
well-established levels. We use the schemes presented in
Figs. 7—11. For the %=91, 109, and 111 nuclides, we
consider only the Version II results.

Single-particle level schemes calculated from poten-
tial models with varied assumptions are presented in
Sec. V.A, and the systematics of semiempirical levels is
presented in Sec. V.B. An over-all comparison is made
in Sec. V.C, and a more detailed discussion of individual
levels is given in Sec. V.D. We consider only gross
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We summarize schematically the various experi-
mental and theoretical endings in Fig. 12. The equilib-
rium values of e2 and e4, compatible with data and pre-
dictions, are located between the inner and outer curves
for various parts of the "rare-earth" region as roughly
indicated by the mass numbers. Shapes of moderately
eccentric spheroidal type (or quadrupole distortions)
should predominate in the center of the region. Slightly
"diamondlike" shapes are expected for lower-mass
nuclides, and slightly "boxlike" shapes for higher-mass
nuclides in the region (see Fig. 1) .

A. Results of Potential Model Calculations

-0.08-

0 100.0
I

O. l

I

0.2
eq
2

I

0.5 0.4

I'ro. 12. Schematic graph showing the region of equilibrium
spheroidal (e2e~) and tetroidal (~4'~) deformations ' '6 com-
patible with theoretical predictions and experimental evidence
for nuclear shapes in the region 150&3(190. The various
nuclides are expected to be scattered between the curves as
indicated roughly by the mass numbers.

features in the behavior of the single-particle levels,
such as: average spacings estimated from theory and
from experiment; trends in the relative positions of
levels in terms of varying parameters and nucleon
numbers; and level crossings (information from Tables
VIII and IX may then be of interest) .

For comparison with model calculations, it is relevant
to know the expected equilibrium shapes' of the nuclear
surface for nuclides in the region considered. Measure-
ments of quadrupole moments and intraband E2
transition rates yield values of the "intrinsic" quad-
rupole moment (Qo) which is primarily related to the
quadrupole (P2) or spheroidal (e2, Y/2) deformation
parameter. ""A compilation of such data is given by
Stelson and Grodzins (1965). Experiments with
inelastic scattering of alpha particles have in addition
given information, about the hexadecapole (P4) or
tetroidal (e4, rt4) deformation parameter"" (Hendrie
et a/. , 1968). Theoretical "equilibrium deformation"
calculations, performed by various authors using
varying assumptions, have in general led to good or
fair agreement with the data. Both the Nilsson model
and the Woods —Saxon potential (see Appendix B) have
been utilized for calculating the single-particle energy
contributions. The combined microscopic —macroscopic
approach (according to the prescription by Strutinsky,
1967, 1968) is of particular interest, apparently being
reasonably realistic and allowing moderate extrapola-
tions along nucleon numbers. For current approaches
with different schemes see Lamm (1969), Nilsson
(1969), Gareev, Ivanova, and Pashkevitch (1969),and
Nilsson et at. (1969). (An early approach was made by
3es and Szymanski, 1961).

In Figs. 13 (proton) and 14 (neutron), we present
the relevant parts of single-particle level schemes cal-
culated with varied assumptions, appropriate for the
region under consideration. In each figure, the graphs
(a) —(c) have been computed with the current version
of the Nilsson model (Gustafson et aL, 1967; Lamm,
1969; Nilsson, 1969; see also Appendix B)," while

graph (d) has been obtained from the Dubna cal-
culations with a Woods-Saxon potential ( Gareev
et a/. , 1967; see also Appendix B).Furthermore, in each
figure, graph (a) shows the level variation with e2 for
e4= 0, graph (b) shows the level variation with e4 for
e2

——0.25, graph (c) shows the possible changes of level
positions for a combined variation of e2 and e4 (cf.
Fig. 12), and graph (d) shows how the binding of the
levels increases with mass number for P2

——0.28. Pre-
dicted effects of the e4 variation are associated. primarily
with the asymmetries which may be seen in Figs.
13(c) and 14(c).

In addition to the results displayed in Figs. 13 and
14, we have studied the level variations with potential
and deformation parameters' from several other
approaches (Gareev, Ivanova, and. Pashkevitch, 1969;
Gareev, Ivanova, and Shirikova, 1969; Bolsterli, Fiset,
and Nix, 1969; Ford, Hoffman, and Rost, 1970;
Ehrling and Wahlborn, 1970, 1971;cf. Figs. 2 and 3) . We
have found that the relative level variations with the
parameters e2 and e4 (or P2 and P4),"within. the restricted
ranges considered (see Figs. 12—14), are generally
very similar for all the various approaches. Due to the
choice of potential parameters, the binding energies of
many levels may, however, be quite diferent in different
schemes. This is particularly true of the relative posi-
tions of levels having diHerent values of the quantum
number 1VO LEq. (2.25) j, especially those which are
sensitive to the spin-orbit coupling term (see Sec. II).
A notable example is the Xo= 6 levels" which originate
in the 1iI3~2 shell model state. Comparison of the results
shown in the various graphs of Figs. 2, 3, 13, and 14
gives an idea of the possible variations involved. When a
level spacing depends in a characteristic way on a

"The Nilsson model calculations (see Appendix B.3) utilized
in the text of this review have been made with the computer
program of Ehrling (1969).
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FrG. 13 (a) and (b). Results of Nilsson
model calculations for single-proton
levels, with varying spheroidal (~2) or
tetroidal (c4) deformation. " (Rings indi-
cateintersecting"

~
/5Nv

~
=21evelshaving

equalE . (c) and (d). Results of Nilsson
model calculations with simultaneously
varying e2 and ~4 (c), and of deformed
~oods-Saxon potential calculations (d),
for single-proton levels. )In graph (c),
the rings indicate intersection, as in
graphs (a) arid (b). In graph (d), the
predicted position of the Fermi level is
indicated for certain Z values. ] See Sec.
P.A for further comments. (e =—~2, P—=P2
here. )
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potential or shape parameter, the data may furnish
information on this parameter.

As the discussion will show, the set of parameters
used appears sufficient to 6nd a satisfactory inter-
pretation of the available level systematics. No ap-
parent need exists for considering deviation from
axia1 symmetry or for introducing a nonlocal potentia1,
e.g. , in the effective-mass approximation.

B. Systematics of Relative Level Positions

From Figs. 7 and 8, we see that the single-proton
levels 1/2+ 411 and 7/2+ 404 have been determined by

6tting in a comparatively large number of cases. From
Fig. 13, we see that these levels vary in quite different
ways with the deformation parameters. lt is, therefore,
of interest to study the variations of other fitted single-
proton levels relative to 1/2+ 411 and 7/2+ 404. These
systematics are presented in Figs. 15 and 16, respec-
tively.

For the sing1e-neutron levels (Figs. 9—11), the
situation is less clearcut. In the lower- and medium-
masspartof the region, thelevels3/2 521and1/2 521
are frequent1y known, and their predicted deformation
variations are roughly "parallel" (Fig. 14). In the
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FIG. 14. (a) and (b) . Results of
Nilsson model calculations for single-
neutron levels, with varying spheroidal
(6p) or tetroidal (e4) deformation. "
(Rings indicate intersecting"

I
r5ND ~=2

levels having equal E . Note: the 9/2+
level should read 9/2+ 624. (c) and (d).
Results of Nilsson model calculations
with simultaneously varying e& and ~4 (c)
and of deformed Woods-Saxon potential
calculations (d), for single-neutron levels.
( n graph (c), the rings indicate inter-
section, as in graphs (a) and (b). In
graph (d), the predicted position of the
Fermi level is indicated for certain 1V
values. j See Sec. V.A for further coDn-
ments. (6=ER p:pg here. )
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htgher-mass part of the region, the levels 7/2 514 and
3/2 512 are relatively well-known, and their predicted
variations with deformation are also rou hl " ll l"
F 14ig. 'j, they vary in a way different from those

mentioned above, however. We have have c osen to present
the systematics of the fitted single-neutron levels in the
following way: relative to 3/2 521 in Fig. 17, relative
to 1/2 521 in Fig. 18, and relative to 7/2 514 and
3/2 512 (Version II) in Fig. 19.

In Figs. 15—19, we have only included those relative
energies where at least one of the tw l

'
ie wo sing e-particie

levels involved is considered to be well-established, and
determined within an uncertainty of less than 200

keV. Parentheses around a point have the same32

meaning as in Tables III—VII, and Figs. 7—11 (iden-
ti cation of level uncertain). Brackets around a point
indicate that the spacing may be uncertain by more
than 200 keV. The definition of the symbols (R) R,
~ V'I V , and U follows the same pattern as explained in

) 2

Secs. IV.A and IV.B, with the modification that the
are here applied to relative energies. In cases where the
symbol U occurs, we have usually introduced "error

of
ars" to in icate the estimated increase in uncert

' t
o the BCS blocking solution. We use dashed lines to
connect points with the same classification if the odd
nucleon number changes by more than two units.
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We want to emphasize that care should be taken in
interpreting the information displayed in Figs. 15-19.
Each symbol introduced indicates a possible source of
uncertainty. "However, features such as major trends
in the relative positions of the levels can be considered
significant.
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FIG. 15. Systematics of 6tted single-proton levels, normalized
with respect to the level 1/2+ 411. (Version I analysis only.
Notations are explained in Sec. V.B.)

The values are given in Table X, where the mass
numbers indicate approximately the centers of the Ave

subregions considered. In plotting the circles, we have
used the ps values of Table X, and taken p4 ——0. The
6lled and open circles differ mainly in the treatment of
the spin —orbit term. We have obtained the positions of
the open squares from those of the open circles by
adding the shifts estimated from the calculations by
Gareev et at. (1969), using the p4 values given in Table
X.We have found that this procedure gives an adequate
approximation for the "p4 effect" on the single-particle
levels considered here (cf. Figs. 13 and 14) .

The fitted levels (from Figs. 7-11),in the cases where
the reference level is known, are represented by plus
signs for Version I, and x.s for Version II, in Figs. 20
and 21. Points where large uncertainties are expected
are put within brackets (cf. Figs. 15—19 and comments
in Sec. V.B),"although these uncertainties are usually
negligible here considering the accuracy obtainable
from the graphs.

C. Variations of Some Calculated and Empirical
Level Spacings

We have plotted both theoretical and semiempirical
single-particle levels relative to 1/2+ 411 for protons in
Fig. 20, and relative to 1/2 521 for neutrons in Fig. 21.
As indicated in the figures, connected points denote
values of the spacings obtained from the calculations
by Ford, Hoffman, and Rost (1970), and Gareev et al.
(1967, 1969)—see brief descriptions in. Appendix B.3.
In the plotting, we have assumed values of the de-
formation parameters roughly according to the expected
averages in different parts of the region (see Fig. 12).
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FIG. 16. Systematics of fitted single-proton levels normalized
with respect to the level 7/2+ 404. (Version I analysis only.
Notations are explained in Sec. V.B.)

Although the diagrams in Figs. 20 and 21 are useful
for orientation purposes, we should keep in mind the
incomplete and schematic character of this presenta-
tion. Both the selection of data and the sets of potential
and shape parameters' used are fairly restricted. The
systematics presented in Figs. 15—19 are far more
complete.

TABz,E X. Expected average deformation parameters e2 and
64 and the approximately equivalent' values of I82 and p4 (assumed
for Figs. 20 and 21).

f2 t4

155
163
171
179
187

0.18
0, 24
0.27
0.24
0.18

—0.04
—0.02

0
0.03
0.05

0.21
0.27
0.30
0.25
0.18

0.06
0.05
0.02

—0.03
—0.06

D. Discussion of Level Systematics and Potential
Models

We have taken care to present both the systematics of
6tted single-particle levels and the results of model
calculations in an unbiased way. Neither of these two
sides of the presentation has had any direct infiuence
on the other; the fitting of levels to the data (Secs. III
and IV) has no relation to the various sources of cal-
culations we utilize throughout Sec. V. Consequently,
we may hope to learn something from a comparison. To
make this discussion also unbiased, we should leave it
entirely to the reader. However, we believe that a few
features should be pointed out here, and we do so below,
commenting on the proton and neutron systematics in
terms of the potential model calculations.

One type of bias is actually inherent in our analysis,
although. it has little eGe( t on the fitted levels: we have
assumed that the central part of the single-particle
level schemes (cf. Tables I and II) should vary in a
smooth way for odd Zisotopes a-nd for odd Aisotones-.
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FIG. 20. Comparison between fitted (Version I) and theoretical single-proton level spacings relative to the level 1/2+ 411, versus
mass number. (For further explanations, see Sec. V.C. and Table X.) Proton levels relative to 1/2+ 411.Notations: ~—~, theory
(Ford, Ho&'man, and Rost); Q- - -Q, theory (Gareev e$ al. , P4=0); P ".P, theory (Gareev et ut. , plus P4-effect). + from present
analysis of data.

However, one might alternatively impose the analogous
requirement for sequences of odd-Z isotopes and odd-g
isotopes. This "orthogonal" procedure would be more
dificult to pursue, since each sequence considered
would involve a larger number of single-particle levels.
Ke have chosen the well-examined odd-iV ytterbium
isotopes as a case study discussed in Appendix E. We
6nd that the alternative presentation gives equally
agreeable systematics in this case. The indication is,
therefore, that the residual interaction effects which
have not been explicitly accounted for in our analysis,
and which would enter differently in the two kinds of
systematics, are not important, and that consequently
the single-particle' model. should indeed be an appro-
priate basis for comparison with our type of systematics.

I. The SAI,gee-I'rotor J.evels

For an orientation, we consider Fig. 20. The over-all
qualitative agreement between systematics and pre-
dictions is apparent. The agreement is generally best for
the Gareev calculations with the P~-effect added,
particularly if we consider the more sensitive levels
(such as 7/2+ 404). The detailed trends are displayed
in Figs. 15 and 16:see also Figs. 7 and 8 and Table VIII.
These trends can be compared with the predictions
presented in Fig. 13 (see also Fig. 2). We limit our

discussion to a few significant features concerning the
relative positions of levels within the following sets:

1/Z+ 411, 7/Z 5Z3, 3/Z+ 411, and 5/Z+ 413 (see
Figs. 7, 15, and 20). The predictions for the relative
positions of these four levels are quite stable in the
region of interest and (except for minor differences in
the spacings) agree well with each other. The agreement
with the systematics is good, even quantitatively, and
little can be learned about the potential and shape
parameters from these levels alone.

7/Z+ 404 ortd 5/Z+ 40Z (Fig. 16). Most calculations
predict a fairly constant spacing between these two
levels. However, Fig. 2 shows that the levels as func-
tions of Its may actually cross, and Fig. 13(d) indicates
that they may approach each other for decreasing mass
number. The systematics show such an approaching
trend, and the variation of the spacing seems rather
large. The order-of-magnitude agreement is fair.

1/Z+ 411 artd 7/Z+ 404 (Figs. 15, 16, and 20). The
spacing is predicted. to increase strongly with both &
and ~4, and the combined variation, therefore, should
be quite pronounced across the region, particularly at
the "lower end [cf. Figs. 13(c) and 20$. The systematics
show clearly this expected qualitative behavior. More-
over, good quantitative agreement could hardly be
established with reasonable assumptions unless the
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P4 e']feet were included. This can readily be seen from
Fig. 20, which also indicates that the ]r4 deformation
might be lower for odd-proton nuclides than we have
assumed (Table X) for mass numbers below about 170.

7/Z+ 404, 9/Z 514, and 1/Z 541 (Fig. 16) . Ac-
cording to the predictions, the first two levels strongly
approach each other with increasing e4, and the same
effect is accordingly expected with increasing /1 [cf.
Fig. 13(c)). The systematics clearly exhibit this trend.
Since the decrease of e2 would actually counteract this
trend (see e.g. , Fig. 2), we again And fairly clear
evidence for the e4 dependence in accordance with the
expectations (Fig. 12). According to the models, the
level 1/2 541 varies strongly relative to the others as
a function of e&, and markedly relative to 9/2 514 as a
function of e4. The predicted combined variation is
rather drastic Lcf. Fig. 13(c)7, and agrees with the
systematic trend.

1/Z+ 411, 5/Z+ 40Z, 0/Z 514, and 1/Z 541 (Figs.
g, 15, and 20). The data are here restricted to the
region A&170, and we can confine ourselves to con-
sidering I'ig. 20. The predictions are seen to reproduce
the qualitative trends of the systematics. However,

assuming larger values than we have used (Table X)
for P2, and possibly also for

~
P4 ~, in the region

170(2&180 would improve the quantitative agree-
men t.

It should be noted that the present discussion is based
on data from Version I. In some cases, the Version II
analysis might bring about changes (cf. discussion in.

Sec. IV.C.1), such as, e.g. , shifting the order between
the levels 1/2+ 411 and 7/2+ 404 for the lower-mass
thulium isotopes. Such possible changes never appear
large enough to invalidate any of the points in our
present discussion —however, the zero-point rotational
energies might be of importance for a more detailed
comparison with potential models.

We find that the current potential model calculations
can reproduce the single-proton level structure well.
The relative positions of single-proton levels are some-
what less sensitive to the potential parameters' than are
the single-neutron levels. This is possibly an effect of
the Coulomb barrier (see cc,mments at end of Sec.
V.D.2). The shape parameters, ' however, enter in a
sensitive way into the variations of a few level spacings,
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and a more detailed comparison should yield informa-
tion about the values of t2 and e4 (or P2 and P4) in various
parts of the region. Already the present comparison
shows that deformation values in rough accordance with
the expectations (Fig. 12), with an apparent maximum
of e2 in the region 170&A&175, are preferred by the
systematics.

Z. The 5iegle-/entropy Levels

For an orientation, we may consider Fig. 21. The
qualitative agreement between the systematics and
any of the predictions is somewhat less apparent than
for the proton levels. In particular, certain level
spacings may show consistent deviations, which we
discuss below. The more detailed trends are displayed
in Figs. 17—19; see also Figs. 9—11, and Table IX. These
trends can be compared with the predictions presented
in Fig. 14 (see also Fig. 3). We limit our discussion to
significant features in the relative positions of levels
within the sets listed below (we use the Version II
results for IV=91, 109, and 111).

3/Z 5ZI, 3/Z+ (65I), artd II/Z 505 (Fig. 17) .'4
Calculations for the lower-mass end of the region with
e4=0 tend to place the level 3/2 521 above 3/2+ (651),
and the level 11/2 505 below both of them (cf. Figs.
3 and 14). An appropriate negative value of e4 brings
the levels 3/2+ (651) and 11/2 505 close together and
within 1 MeV below 3/2 521. This agrees with the
systematics. Thus we seem to confirm both the negative
value of e4 for the region A(165 (Fig. 12) and the
preference for the Version II result for /V=91 (cf.
Sec. IV.C.2) .

3/Z 5ZI, 5/2 5Z3, and 5/Z+ 64Z (Fig. 17).The pre-
dictions consistently place the level 5/2 523 less than
1 MeV above 3/2 521 (see Figs. 3 and 14). The level
5/2+ 642 is estimated from Woods —Saxon potential
calculations LFigs. 3 and 14(d)] to be above 5/2 523
fOr e4 ——0. HOWeVer, negatiVe e4 bringS it dOWn [Fig.
14(b), (c)$, and for increasing e2 in the region A (170,
5/2+ 642 approaches 3/2 521. The trend of the
systematics agrees with these expectations (it should be
noted tha, t the position of the level 5/2+ 642 in IesEr is
not established with certainty).

I/2 5ZI artd 3/Z 5ZI (Figs. 17, 18, and 21) .
According to the predictions, this level spacing should
be roughly 1.5 MeV, and insensitive to parameter
variations. The systematics show a variation between
1 and 2 MeV with a possibly decreasing trend for in-
creasing mass number below A = 175. The level spacing
is related to the relative position of the shell model
states 3p3/g alld 1h9/Q (Fig. 3), which is strongly in-

Quenced by the spin —orbit term.
I/Z 5ZI, 5/Z

—51Z, /Jrtd 7/Z+ 633 (Figs. 18 and 21).
These spacings are not greatly influenced by e4, however,
increasing e2 raises the level 5/2 512 relative to the
two others. The spin —orbit term affects the positions
appreciably, particularly the level 7/2+ 633 which

originates in 1i»/2. The systematics show the three
levels to lie in all cases within an interval of less than
1 MeV, and the position of 5/2 512 has a broad
maximum at A 173 (cf. Appendix E).

I/Z 5ZI, 7/Z 514, artd 9/Z+ 624 (Figs. 18, 19, and
21). The levels 7/2 514 and 9/2+ 624 are predicted to
lie above the level 1/2 521, the spacings increasing
with ~2, but being insensitive to e4. The relative position
of 9/2+ 624 depends st.rongly on the spin —orbit term.
The systematics agree with the expected trends and
indicate a drop in the value of ~~ compared to our
assumption for A 180 (Table X) .

I/Z 5ZI artd I/Z 510 (Figs. 18 and 21; see also Fig.
19) . The spacing is predicted to increase with 42, to be
insensitive to e4, and to be on the average more than
2 MeV for the "rare-earth" region. The systematics
show the expected variation with mass number (a
maximum at A = 173 or 175; see also Appendix E).
However, they indicate an average spacing of around
1.5 MeV. This is a striking deviation in our comparison
between predictions and systematics, as seen from Fig.
21. From Fig. 3 we see that the two levels approach the
shell model states 3P3/g and 2'/2 in the spherical limit.
The spacing of these states depends particularly on the
surface diffuseness ao, and the spin —orbit strength,
X,„Lsee Blomqvist and Wahlborn (1960)j. Yet,
decreasing either parameter alone does not seem to
reduce the spacing between the two 1/2 states enough
to account for the discrepancy. However, by simul-
taneously decreasing e&, one could reduce the average
spacing by the required 0.5 MeV. It appears that
suitable adjustments of all of the potential parameters
(Sec. II) and of e2 (deviations from Table X are
allowed; cf. Fig. 12) might improve the agreement in
this case without destroying the agreement found in
any of the other cases discussed here.

I/Z 5ZI artd 3/Z 5IZ (Figs. 19 and 21). The level
3/2 512 is predicted to have a position a few hundred
keV above 1/2 510, and to have practically the same
dependence on e2 and e4 as this level. Therefore, the
considerations made in the preceding paragraph should

apply to the spacing between the levels 1/2 521 and
3/2 512 as well. The deviation between systematics
and predictions is in this case somewhat less pronounced,
however, and appears related to the possible drop of e2

at mass numbers below A=170 (cf. Sec. V.D.1). (We
note that 1/2 521 and 3/2 512 both approach 3pe/,
in the spherical limit. )

7/Z 514, 3/Z 5IZ, zmd 7/Z 503 (Fig. 19). The
spacing between the levels 7/2 514 and 3/2 512 is
predicted to be about 1.5 MeV, independent of e~ and
e4, while the relative position of the level 7/2 503
depends fairly strongly on both e& and e4 ~ In the region
A&170, the levels 3/2 512 and 7/2 503 are expected
to be nearly degenerate. All of these predictions are
substantiated by the systematics, which are therefore
compatible with the expectations for the e2 and c4

dependence in this case (Fig. 12) .
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3/? 512 amd 11/2+ 615 (Fig. 19) . The relative
position of the level 11/2+ 615 is strongly affected by
the spin —orbit term, and diverse potential model cal-
culations give different results (cf. Figs. 3, 14, and 21).
The spacing between the levels 11/2+ 615 and 3/2 512
increases with e~, but is not sensitive to ~4. The near
degeneracy of the two levels shown by the systematics
is compatible with the model calculations for A &180
t cf. Fig. 14(c)].

It should be noted that the level systematics for.V= 109 a,nd 111 from Version II (Figs. 11 and 19) is at
least as convincing as the Version I result (Fig. 10),
and is compatible with model predictions as discussed
above. Considering also the E= 91 case discussed
earlier, we therefore find some preference for Version II.
Ke again conclude, as in Sec. IV.C, that the variation
of the zero-point rotational energy" appears important.
For the odd-E nuclides with 93&%&107, the differ-
ences between the Version I and II results are never
large enough to invalidate any of the qualitative con-
clusions drawn from our discussion in this Section
(the possible level shifts for %= 101 are not important) .
More detailed analysis and more detailed calculations
involving Eqs. (3.13) and (3.14), are required for
further quantitative comparisons.

The single-neutron levels appear to be relatively
sensitive to the potential parameters related to the
surface-concentrated effects, i.e., the diffuseness, Qp,

and the spin —orbit strength, P„, (see Sec. II.B).This is
at least partially due to the absence of a Coulomb
barrier (wave functions with large tails may better
"feel" the surface properties). In addition, several of
the single-neutron states in the region of interest
originate in the 1ii~~& shell-model state and, therefore,
depend strongly on the spin —orbit term.

Ie conclusion, the systematics of the single-neutron
levels seem to offer somewhat better possibilities of
studying the potential parameters, such as the spin—
orbit term, than do the single-proton levels. However,
certain features of the systematics (e.g. , the spacing
between the levels 1/2 510 and 1/2 521) indicate
that such a study is not quite straightforward in all
cases. There appears to be a somewhat complicated
relation between certain level spacings and both the
potential and shape parameters. ' The values preferred
for e~ and ~4 seem to folio~ the same pattern for both the
single-proton and the single-neutron levels and to agree
with the over-all expectations according to Fig. 12.
The systematics seem to indicate a peaking of e& for
mass numbers in the interval 171&A &175 and a
somewhat larger drop outside of this interval compared
to our average assumptions (Table X) .

VI. SUMMARY AND CONCLUSIONS

As stated in the Introduction, this review has two
main objectives, besides furnishing a general orientation
on the subject, particularly on the single-particle' model

for nonsphericaP nuclei. These objectives are to derive
semiempirical single-particle level schemes for various
uses, and to discuss the systematics in terms of potential
model calculations.

The first objective is accomplished as described in
Secs. III and IV. The main results are presented
graphically in Figs. 7—11. We emphasize that in using
these level schemes one must exercise care and judgment;
there are ambiguities and uncertainties involved in the
analysis, as discussed in the text. However, we expect
the relative positions of the actually htted levels to be
well-determined (within the acceptable tolerance of
100 keV, or else as indica. ted)." It is a noteworthy
feature that the systematics indicate the presence of
large variations in the zero-point rotational energy"
contribution to the band heads. This feature is illus-
trated by the comparison between the results of the
"Version I" and the "Version II" analyses for the
cases A = 91, 109, and 111.

The second objective is represented by the discussion
in Sec. V, dealing mainly with various gross features of
the systematics, such as level crossings and trends in
the relative positions of fitted levels. The conclusions
that might be drawn are, therefore, fairly independent
of the detailed level positions, and hence of the specific
assumptions and approximations underlying our
analysis. The single-pa, rticle model calculations, on
which we base the discussion, are of the type described
in Sec. II, i.e. , we assume local potentials, having axial
symmetry. The comparison with the systematics shows
no departure which must necessarily be attributed to
violation of these assumptions. Only major features of
the model, represented by a few potential and shape
parameters, ' enter into the discussion. The relatively
smooth variation of the semiempirical single-particle
level schemes with the nucleon numbers )7 and Z
shows that the interpretation along these lines is
appropriate. The absence of significant discontinuities
in the relative positions of fitted levels, as well as the
comparison between alternative presentations of the
schemes (cf. Appendix E), also shows that residua, l

interactions, which have not been accounted for in our
analysis, do not seem to have any important effects on
the energy levels considered.

Given a reasonably realistic potential well, the details
of the single-particle level structure are mainly related
to the surface properties of the average &eld LEq.
(2.1)]. Therefore, besides the shape pa ra meters, the
surface diffuseness and the spin —orbit term, which is
surface-concentrated, are the items of primary interest
in the comparison of the model and the data. This is
particularly true in the discussion of the single-neutron
levels in the region considered here.

The values of the surface shape parameters preferred
by the systematics are compatible with expectations
based on other types of evidence, both experimental and
theoretical (Fig. 12). The spheroidal deformation, e~,

appears to be peaked in the interval 171 &A &175,
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and usually to decrease rather markedly for adjacent
mass numbers. The tetroidal deformation, ~4, should
change sign from negative ("diamondlike" shape) at
A 155, to positive ("boxlike" shape) at A 185.

More data pertaining to the quasiproton and quasi-
neutron excitations' are desirable for making feasible a
more detailed quantitative analysis in terms of model
parameters than done in this review. The most promising
experiments are the one-nucleon transfer reactions, "
which populate primarily these types of excitations and
yield crucial information about the wave functions.
The pace at which such data presentIy accumulate will
certainly make more detailed model studies possible in
the near future. Yet, as demonstrated in this review,
the present energy level data already tell us that the
single-particle model, with smoothly varying param-
eters, should furnish an appropriate basis for describing
the intrinsic' excitations of the odd-mass nuclides in
the region 150(A (190.
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APPENDIX A: THE ROTOR-PLUS-PARTICLE
MODEL

To bring out the main quantum-mechanical features
of a rotating system with intrinsic4 degrees of freedom,
such as a nonsphericaP nucleus, let us consider the
following simplified Inodel: The bulk part (core) of the
rotor is assumed to create an average 6eld, , by which the
particles interact with the rotor; we consider several
fermions to move independently in orbitals fairly close
to the Fermi energy. We assume the system to have
axial symmetry and an effective moment of inertia,
~=/, =3„.The total angular momentum, " i= R+J,
consists of the rotational part, R, and the total intrinsic
part, J. From symmetry considerations we realize that

the relation E,=o or I,=J, holds, and that I is a con-
stant of motion, but J is not.

The Hamiltonian for this model is obtained by
quantizing the classical expression for the rotational
energy'4 and adding the contribution II;~ from the
intrinsic motion of the independent particles. After
elementary manipulations we And,

Hrpm = Haeiab+Hrpc(

where the "adiabatic"" part has the form

(A1)

H,p, —(ft'/——2~~) (I+J +I&~), (A3)

the ladder operators being defined as usual (I~=I,&iI„,
I~=I,-rciI„). The component I, (but in genera, l not
J') commutes with Hae;ab. , and the corresponding
eigenvalue, 0, is therefore a good quantum number for
that part of H,~„,. Operating with H,„,on a state with
given 0 produces a linear combination of states with
quantum numbers j Q+1 ~.

The general form of the eigenstates of II,g;,b and
their symmetry properties are discussed by several
authors, e.g. , Bohr and Mottelson (1953a), Nilsson
(1955), Alder el al. (1956), M os zkowski (1957),
Kerman (1959),Preston (1962, Cha, p. 10), Nathan and
Nilsson (1965), Rogers (1965), and Davidson (1968,
Chaps. 3 and 4). For half-integer Q or integer Q)0,
the normalized wave function can be written (we take
here Q to be positive, by definition)

Csrn' ——[(2I+1)/16Ir'j"'

X[+nDMn'+( 1)I+n+ no—~, n'] (A4).
Here, the intrinsic wave function, 0'q, is an eigenstate
of H;p with eigenvalue E;.p(Q). sv The rotation matrix, "
D~D~, is a simultaneous eigenstate of I, with eigenvalue
I(I+1), of the component Ir. (i is an arbitrary fixed

'4 lf the core of the rotor has internal degrees of freedom, one
may represent the effects of these in a simple way by adding
higher powers of R' to the basic rotational energy expression,
AOR'+BOR4+ ~ ~, where Ao= (6'/2~) . The constant 80. is
empirically found to be small. For the purpose of the present
review, this term can be ignored.

"The relation between the wave furictions, 4'Q and, + o, is
discussed in the literature. We assume the same phase conven-
tions as Nathan and Nilsson (1965) paragraph 4.1, or Rogers
(1965).

"The symbols D~gI are the elements of the transformation
matrix of the (2I+1)-d'imensional irreducible representation of
the three-dimensional rotation group. They are functions of the
Euler angles for the transformation between the (z, y, s) and
(P, q, P) systems. 4 The following relatiorrs hold:

PD~gI ——I(I+1)D~gl, Ig.D~Q' ——M D~g,', I,D~gl ——OD~DI,.

I+Deeps= f (I—0+1) (I+0)g"'Dsr, n, i

I Dsrni L(I 0) (I+rt+1) guaDsc n+,I

See further Rose (1957), Kerman (1959), Edmonds (1968), and
Bohr and Mottelson (1969),paragraphs' 1A-4 and 1A-6.

H.a;,b= (5'/2~~) (P+J'—2J.s)+H;p, (A2)

and the "rotation-particle-coupling" (or "Coriohs")
part has the form
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TAaLE XI. Theoretical expectation values of j' for single-particle
states.

set" (cf. Sec. II.C)

J=j=l+s, 0=K, &'.(ll) =
I

~x—~~ I, (A8)
State lplp=0. 28 Lj(j+tl gd f.=0

9/2 514
7/2 523
7/2+ 404
5/2 532
5/2+ 402
3/2+ 411
1/2 541
1/2+ 411

11/2+ 615
11/2 505
9/2+ 624
7/2+ 633
7/2 514
5/2+ 642

5/2 523
3/2+ (651)
3/2 521
3/2 512
3/2+ (402)
1/2+ (660)
1/2 510
1/2 521
1/2+ (400)

36.63
35.68
16~ 94
34.55
10.52
11.73
14.91
7.69

49.25
36.03
48.35
47.05
23.67
45. 62
21.26
44 49
19.31
12.06
5.41

43.89
10.89
12.48
3.33

35.75
35.75
15.75
35.75
8.75
8.75

15.75
3.75

48. 75
35.75
48. 75
48. 75
15.75
48. 75
15.75
48 ' 75
24. 75
3.75
3.75

48. 75
8.75
3.75
0.75

20. 25
12.25
12.25
6.25
6.25
2.25
0.25
0, 25

30.25
30.25
20. 25
12.25
12.25
6.25
6 ' 25
2.25
2.25
2. 25
2.25
0.25
0.25
0.25
0.25

= —(fi'/2~) L(I—0() (5+0))J '(0'
i Jp i 0), (A7)

where
~

O' —0
~

=1, and where J+ applies if 0& ——

0') Q=O&, and J applies if Q&=0&0'=0& holds. The
mixing of wave functions of the type (A4) introduced
by these matrix elements is a nonadiabatic" effect,
i.e., the particle and rotational degrees of freedom are
not independent.

Considering an odd number of independent particles,
one of which is unpaired ("seniority one"), we may

direction in space), with eigenvalue cV, and of J,=J„
with eigenvalue Q. It is straightforward to derive the
expectation value of H„, , Eq. (A1), for the adiabatic"
eigenstate Eq. (A4) . It reads

~(J, fI) =» (1I)+ (f '/23) P(I+1)
+ &n

~

J2
~

n& —2n~+~, »(—1) + ~ (I+-)a j (AS)

where the "decoupling factor, " a;~, is given by the
expression

(A6)

The matrix elements are taken with respect to the
intrinsic wave function +g.

The contribution H,~„Eq. (A3), has nondiagonal
matrix elements in the representation dehned by Eq.
(A4) . For nonzero 0 and 0' we derive the expression"

where ex is the single-particle eigenvalue fEq. (2.14)j,
and e& is the Fermi level. " The other quantities ap-
pearing in Eq. (AS) can then be replaced by the follow-
ing expressions

&J'&=&It
I
j'I &&"+2 2 (9 I

j'I &&.p
—~a'), (A9a)

&&K

(It
I

j2I Jt)"= Z ~x(~, l, j)'j(j+1); (A9b)
n)lr j

n Z1

Here we assume any spherical representation, e.g. , Eq.
(2.15).Values of (j'&,~, Eq. (A9b), calculated from the
wave functions by Gareev et al. (1967), are given in
Table XI for some proton and neutron orbitals of
interest in the region considered here. Values of the
decoupling factor, a,~, Eq. (A10), are tabulated, e.g. ,
by Bunker and Reich (1971).

The presence of correlations modifIes the description
presented in this Appendix (see further Appendix C).
If they may be considered to affect only the intrinsic
motion, the adiabatic part of the description, in
particular Eq. (A4), is still valid, and 0 remains a good
quantum number. Also Eq. (AS) is valid in principle,
but E;,(0) is replaced by a more general intrinsic
energy expression, and the evaluation of the expectation
value, (J'), and of the generalized decoupling factor, u,
is complicated by the correlations. Even for such
intrinsic states, which have predominantly one-quasi-
particle' character, the deviations from the "single-
particle" expressions, Eqs. (A8) —(A10), may be con-
siderable $a similar statement is true of Eq. (A7)$.
These questions enter into the discussion in Sec. III.

If axial symmetry is not assumed, the theory is
considerably complicated. For a discussion of these
matters, see Preston (1963, Chapt. 10), and the
original papers on the subject by Davydov (1959) and
Davydov and Filippov (1958). (See also Hecht and
Satchler, 1962) . With the methods of analysis pursued
in this review, and the nuclides we have considered,
no apparent need exists for discussing deviations from
axial symmetry.

APPENDIX B: AXIALLY SYMMETRIC
POTENTIALS AND MODELS

1. General Considered ops

The general problem is formulated by Eqs. (2.1)-
(2.3) and (2.14) . We introduce the three dimensionless,
nonnegative "form" functions z(r), u(r), and w(r),
de6ned by

P'(r) = —P'g (r), V(r) = —U'ON(r), p, (r) = p, ,ge(r).

(B1)
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We assume that each of these form functions has its
minimum value equal to zero, and its maximum value
equal to one, in a finite region, 0&'r&R )this is approxi-
mately true of the Fermi function, Eq. (2.5) ).Further-
more the spatial extensions of the form functions are
6xed by volume conservation requirements (the
constant p, ,o is then fixed by setting the total charge
equal to Ze). All three functions, Eq. (81), are ex-
pected to be of a similar form; in practice, their angular
dependences should be compatible, but their average
radius and surface diffuseness might be different. We
restrict ourselves to axial symmetry and reQection
symmetry (one could readily relax the latter condition,
however) .

We represent implicitly the form function o(r) in
terms of the equipotential surfaces (EPS: s; this is
suitable for general considerations and also for certain
computational purposes) by an equation. of the type

P'= c'f(II; z), (82)
where It enters as a parameter, and (p, z) are the
cylindrical coordinates. The "characteristic, " dimen-
sionless function f(II; z) is assumed to be a continuous
function of m and 2', and for each t value between 0 and
1 is required to be nonnegative in a finite domain of the
8 axis. The constant c is fixed by the volume conserva-
tion requirement, which we here assume to have
the form"

c' f(-I z) dz=4RO'/3,
f&0

(83)

where Ro equals the nuclear radius (see Sec. II) .
The eigensolutions of the problem are briefly dis-

cussed in Sec. II. Different states with identical
quantum numbers" E are in practice always non-
degenerate. "In the absence of the spin —orbit term, the
eigenvalues of l, and s„ i.e., fi and 2, respectively t Eq.
(2.21)], would also be good. quantum numbers. How-
ever, in the presence of a spin —orbit term, A and Z
remain approximately good quantum numbers, if the
deformation is large enough to cause appreciable
polarization of the spin along the s axis. Take the form
function u(r) $Eq. (81)] to be defined by p'= c'g(u; z)
and consider prolate shapes. " Setting p'=x'+y', we

6nd readily

grad u= L(2x/c') x+ (2y/c') y —(ctg/ctz) z](Bg/Bu)

(84)
from which we can show the identity"

c'(Bg/Bu)tr Lgrad u(r) xp)
=25l, ,a+2(oXr),P, c'(Bg/Bz)—(p xo), (85)

3'Short of elaborate self-consistent calculations, there is no
unique prescription for the volume conservation criterion. The
present recommendation —to conserve the volume enclosed by
the equipotential surface at 50% of the potential depth —is in
rough accord with Fermi gas model considerations for the density
of nucleons. (However, it is feasible to utilize Thomas-Fermi
calculations for the nucleon density. )

(for spherical shapes" this expression becomes 251 a).
With increasing deformation, the expectation value of
each of the last two terms tends to zero $(o' x r), and
ctg/Bz becomes small). The first term of Eq. (8.5) is
diagonal in A and Z, having the eigenvalue 45AZ.

The tendency of one A and Z component to dominate
is a feature of the eigenstates of H„(Eq. (2.14)]found
in actual calculations already at moderate deformations.
Furthermore, from expansions in three-dimensional
harmonic-oscillator components, we know that one
value of the total oscillator number, 'o Xo LEqs. (2.22)
and (2.23)] usually dominates, as expected (see Sec.
II.C) . The same is true, however to a lesser extent at
moderate deformations, about the numbers ei and m„
separately. We may more generally consider e, as being
the expectation value of the number of nodes a given
wave function has along the s axis. For large prolate
deformations, the potential can only accommodate a
certain, relatively 6xed number of such nodes, and e,
tends to become an approximately good quantum
number.

For spherical or slightly deformed shapes, a spherical
representation is clearly more eKcient than the cylin-
drical one. However, for a de6nite shell-model substate,
M=X (or E), the t—wo possible (h., Z) components
are mixed according to the ratio of the appropriate
Clebsch —Gordan coefficients. "In these cases, there is no
great disadvantage in expanding the eigenstates in the
cylindrical representation —only the relative purity in
terms of (A, Z) is lost. (See also Chasman and
Wahlborn, 1967) .

Z. Tbe Harmonic Oscillator Repres-entations

The three-dimensional harmonic oscillator wave
functions considered are eigenstates of the Hamiltonian

Hh. ,= —(ft'/2m) &+(m /2A) (*'+y')+(nu '/2)z'

(86)

The Schrodinger equation can readily be separated in
Cartesian (x, y, z) or cylindrical (p, P, z) coordinates.
Using the latter alternative and excluding the spin
eigenfunction, we find the normalized wave function
Lsee Rassey (1958)]
P,~t (p, P, z) = (2Irb, b A') "'

X exp (iA@)P„A(s)q„(t) exp $—(s'+t')/2], (87)

and the energy eigenvalue

E(tt, I, A) = (tt+1)htoi+(I+-', )h(o.. (88)

Here we define

s= p/bi, l= z/b„bi= (ft/moIA) '", b, = (ft/mto, ) It2.

(89)

The numbers p and v take values according to Kq.
(2.19). The polynomials P„A(s) and q, (t), normalized
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~niax

P.~(s)= & ~"(~)s" ",
a=0

where

&.~(~)/~.~(o)

cx,„, = (p —A)/2)0,

(810)

with the Gaussian factor in Eq. (87), have the follow-

ing forms: q„(t) is just proportional to the Hermite
polynomial, H„(t), and we find

1966) . For diffuse nonspherical potentials, such as
those discussed in Sec. II, the spherical expansion, Eq.
(2.15), with the oscillator basis states as given here,
has not been very extensively used for diagonalization
of II„. The convergence is slow, except for small
deformations. Generally, a better method is to hrst
diagonalize H, ~ in the cylindrical representation, giving
the components Cx(p, v, A) [Eq. (2.16)], and then to
compute spherical components, Sx(n, ij ) [Eq. (2.15)],
as needed, e.g. , according to the expression

a
={II[( —2P+2)' —A']I[ 4 (—1)"] '

P=l

for n) 0, and (cf. Chasman and. Wahlborn, 1967)

(811) Src(n, ij )

[(l, A, ~, K A~ g, —K) Ip (p, p; g, &,)gx(p, p, A) ].
p, v, A

op~(0) =v2I[(~+A)/2] L(p —A)/2] I
'" (812) (813)

Here, the first factor in the bracket is a Clebsch —Gordan
coefficient, " and the factor I~ is an overlap integral,
performed in cylindrical coordinates, between the
spatial parts of the cylindrical and the (conjugated)
spherical basis functions.

The use of harmonic-oscillator wave functions in
general as a basis set for expanding bound-state, single-
particle nuclear wave functions oGers several ad-
vantages. In particular, if one knows the expansion
coefficients, one can easily reproduce the wave functions
for various applications. One can also make use of
general rules for transforming the component states
(Talman, 1970) .

In the spherical limit, it is found that a small number
of harmonic-oscillator components can describe the
radial wave function quite well out to a distance con-
siderably larger than the nuclear radius. Expansions
along e (i and j are fixed) show that the purity of a
Woods —Saxon wave function in terms of one spherical
oscillator componen. t is rarely less than 80'%%uo, and
usually larger than 90/o. As a rule, only one of the
admixed oscillator components has a considerable
amplitude.

3; Some Specific Potential Models

We list below, with brief descriptions, the models
utilized in various parts of the present review.

The Nilssori Model. Detailed accounts of the current
formulation have recently been given in the literature
(Gustafson et a/. , 1967; Lamm, 1969; Nilsson, 1969;
and Nilsson et al. , 1969). The model, which is based
on the anisotropic harmonic oscillator, is suitably
formulated with the use of the "stretched coordinates, "
i.e., x and y are expressed in uni. ts of bi, and s in units
of b, [Eq. (89)]. After this transformation is per-
formed in Eq. (86), the following terms are added to
the Hamiltonian:

'8It is possible, at least for moderate, finite deformations, to
assign the appropriate cylindrical quantum numbers to a set
of single-particle orbitals, without analyzing the wavefunctions,
by simply considering the order of the energy eigenvalues. As-
suming given X, and disregarding quasi-intersections, the energy,
apart from a constant, is approximately given by an expression
of the type

E(Np, A, A) =. (Np —8 )vs(e) +8 8 (e) —A(E —A)up(6),

Including the spin part, as we assume in the basis
vector

~
K; p, v, A. ),» [Eq. (2.16)], amounts to

multiplying the spatial wave function [Eq. (87)]
by the appropriate spin eigenstate xg, where
K—A= ~-'.2'

Details concerning the calculations of the matrix
elements of H,~ in the cylindrical representation and
the diagonalization of the matrix are discussed by
Damgaard et ol. (1969) and Chasman (1970). Due to
the possibility of choosing both the oscillator constants
bi and b, [Eq. (89)] in an optimal way, the con-
vergence of the cylindrical expansion, Eq. (2.16), can
be made fast enough to give accurate eigensolutions with
moderate computing eSorts, even for complicated
nonspherical potentials. "

If the frequencies are equal, ~i=co,=~0, in Eq.
(86), the Schrodinger equation can be separated in
spherical coordinates. The eigenvalues are found to
equal (No+3/2) &coo [cf. Eq. (2.22) ]. The radial
equation has the eigenfunctions R„i(r), each of which
is proportional to an associated Laguerre polynomial in
r/b, , times the product (r/b, ) ' exp (—r'/2bo') [see
de-Shalit and Talmi (1963)]. The radial quantum
number, rs [Eq. (2.18)], is the number of nodes of the
function rR„i(r) in the interval 0(r( ~ . The oscillator
constant is bo (h/mero) '".The——angular and spin part of
the wave function has the well-known form for a spin-2
particle in a central potential"; it can be given the
"uncoupled" form Fig(r)xs (with X=K A) or the-
"vector coupled" form Xi,rc(r; spin) (see, e.g. , Chi,

where v~(c), v, (e), and zsp(e) are positive quantities, depending
on the deformation, which we symbolically denote by
ei&e, holds for prolate deformations (cf. the Nilsson model,
Appendix 8.3). In practice, then, the order of levels with the
same Np value is determined by n, .

P„=—~p5cop[21 s+pp(P —(12) i, ii) ] (814)

H4 Egh(dprsp P4(rsg) (815)

Not only r„, but also 1, is referred to the stretched
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coordinates. The quantities G)p, Kp, and pp are constants.
The parameter ~4 determines the tetroidal" deformation,
and the spheroidal deformation, e2, is defin. ed by the
relations

coA=cop('2& '4) (1+'2/3) ~
co,= cop(e2) e4) (1—2e2/3) .

(816)

The ratio cop(e2, e4)/cop is determined by the volume
conservation condition (for e4 ——0 this reduces to setting
Ioi24o. = tops= const. ) . The Hamiltonian is diagonalized
for each Xp space" at a time, which is a reasonably
good approximation when stretched coordinates are
used (the

~
d,

¹
~

=2 couplings are then mainly pro-
vided by H4). The energies are obtained in units of
&cop(e2, e4); the constant fitop has roughly the value
41A '~' MeV. We have used the following parameter
values for the calculations discussed in the text (Lamm,
1969):

&p~ = l(p =0.0637; pp& =0.60, tip" ——0.42. (817)

The model by Gareev et at. Several articles on this
approach have been published by Gareev ct al. (1967,
1968, 1969) in Dubna (see also Nemirovskii and
Chepurnov, 1966). The model is formulated by Eqs.
(2.1)—(2.3), and the potential used. is of the Woods-
Saxon type [Eqs. (2.4) and (2.5)]with the generahza-
tion according to Eq. (2.6) . The spin —orbit and
Coulomb terms are dined by the form functions, Eq.
(81), being equal, v(r) =24(r) =24I(r) . The representa-
tion used for diagonalizing B,~ is of the "coupled"
spherical type. " Instead of harmonic-oscillator wave
functions, however, a set of generalized radial functions
are used to make the expansion for bound states
converge relatively fast (for details, see the above-
mentioned articles). For the calcula. tions quoted in
this review, the potential parameters used are roughly
in accordance with Sec. II.B, including Eq. (2.8), the
values being" U~= 53 MeV, V~=33.5 MeV, rp ——1.24 fm
(for P4= 0) and ap

——0.63 fm [cf.Eqs. (2.9) and (2.10)].
For the spin —orbit strength [cf. Eq. (2.12)] the expres-
sion n„=0.263[1+2(X—Z) /A]fm' is used [with
Eq. (2.11)].

Ford, Ho+man, ttnd Rost (1970) also use a model
defined essentially by Eqs. (2.1)—(2.3) with the Woods—
Saxon potential [Eqs. (2.4) and (2.5)] generalized
according to Eq. (2.6) . However, they choose a spheri-
cally symmetric spin —orbit term, "setting V(r) = V (r),
and take the charge distribution to be uniform [Eq.
(2.13)] inside the actual nuclear surface. Only quad-
rupole (p2) deformations" are considered. . The matrix of
the Hamiltonian is diagonalized in a "coupled" spherical
representation. " The radial factors, R„I,(r), are taken
to be the radial wave functions obtained in the spherical
limit of the potential used. This choice leads to certain
problems concerning convergence and component
states belonging to the continuum. The following
potential parameters (cf. Sec. II.B) have been used

in the calculations quoted in the text": Vp=45.3 MeV
for neutrons, Vp ——49.2+50(X—Z) /A MeV for protons,
rp —.

—1.26 fm, ap ——0.60 fm, P.„=39.5.
Fhrlirtg ctrtd Wahtborn (1970, 1971) have used a model

defined by Eqs. (2.1)—(2.3) with a Woods —Saxon type
of potential [Eqs. (2.4) and (2.5)] generalized by the
substitution according to Eq. (2.7), including spheroidal
and tetroidal deformations. " The form functions
[Eq. (81)]have been chosen equal, v(r) =u (r) =24I(r),
but other choices are possible. This common form
function is defined implicitly by the equation for the
EPS:s [cf.Eq. (82)].We can, e.g. , choose this equation
to have the form

p2IRs. +us. ln [(1/v) —1]} '

+s2IR,+a, ln [(1/v) —1]I-'

1+(35/8) (~ /R 2) p2s2/(p2+s2) (818)
where one sets

RA=R. (1+It2/2+3rt4/8) "',

R,=R*(1—rt2+rt4) '",

and determines E.* by the volume conservation condi-
tion, Eq. (83). With v(r) defined by Eq. (818), it is
possible to vary the surface thickness by choosing ui
and a, suitably. Examples of EPS:s from Eq. (818)
with ate=a, =up are shown in Fig. 1. The matrix of
II p is diagonalized in the cylindrical harmonic-oscillator
representation [Eq. (2.16)]; see Appendix 82. The
matrix is limited by the choice of the maximum value
of

¹
for the oscillator shells" included (typically,¹,„„„15).The potential parameters for the illustra-

tive cases shown in Figs. 2 and 3 are given by Kq.
(2.27) . (The equilibrium spheroidal deformation
evaluated, in this example is rt2 0.3.)

4. Other APProciches ComParative Studies.

We first list some additional references and then
comment briefly on a comparison between different
approaches.

The Nilsson (1955) model has been extended to
shapes deviating from axial symmetry by Newton
(1960), and to a, nonstatic potential (in the effective-
mass" approximation) by Lemmer (1960), and
Lemmer and Green (1960). An account of these
approaches is given by Preston (1963),Sec. 10.6.

Early calculations with nonspherical Woods —Saxon
potentials were made by Chepurnov and Nemirovskii
(1963). Further work was made by Nemirovskii and
Chepurnov (1966), and Faessler and Sheline (1966).
Rost (1967) in.troduced the method of coupled channels
to this problem.

Calculations with energy-dependent, nolispherical
Woods —Saxon potentials were made by Roper (1966),
and Bennewitz and Haug (1968). In the latter article,
generalizations are discussed for the use of single-
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particle calculations in fission theory. This line is.
further developed for static potentials by Pashkevitch
and Strutinsky (1969), and Damgaard et al,. (1969),
who make use of the cylindrical harmonic-oscillator
representation for diagonalization. This method is also
used by Chasman (1970) .

Another approach, appropriate for fission theory, is
made by Bolsterli, Fiset, and Nix (1969).The class of
potentials used is obtained by folding a uniform pseudo-
density of prescribed shape with a Yukawa interaction.
The eigensolutions are obtained by a method of finite
di6'erences.

It is of interest to make a comparison between
different approaches with respect to the formulation
of the potential as well as the method of solution.
We have, specifically, compared results of calculations
obtained from the different but fairly general schemes
formulated by Bolsterli, Fiset, and Nix (1969), and by
Ehrling and Wahlborn (19'?0, 1971). As an extreme test
case, we have considered the potential generated by
two tangent spheres (each radius appropriate to

120), folded with a Yukawa interaction, for the
problem of single-neutron eigenstates, Eqs. (2.1),
(2.2), and (2.14). The solutions are then derived by
the numerical method of finite differences, and by
diagonalization in cylindrical harmonic-oscillator repre-
seiitation, respectively. The results for the eigenvalues
of all bound states from the two methods agree, to
within the expected accuracy. The accuracy is found to
be quite high (error less than 50 keV) in the diag-
onalization method with, e.g. , Eo,„„=17. To obtain a
comparable accuracy with the finite-difference method,
a computing time at least one order of magnitude
longer is required. A direct comparison has also been
made for the eigenvalues of the spheroidal" potential
presented in Figs. 2 and 3. Except for the most loosely
bound states, the different schemes are compatible.
Kith suitably adjusted potential depths, the individual
curves for err(g&) agree to within a fraction of one MeV
for 0(q2(0.7.

In conclusion, a direct geometrical characterization
of the nuclear surface, as utilized by Bolsterli, Fiset,
and Nix (1969), appears preferable to multipole expan-
sions of one type or the other (Eqs. (2.6) and (2.7) ).
In solving for the eigenstates, the diagonalization in
cylindrical representation (see, e.g. , Damgaa, rd ei al. ,
1969) is equivalent or superior to other possible
methods. The construction of the Hamiltonian matrix
is a nontrivial problem and various techniques are
necessary to make it feasible on available computers.
The diagonalization usually then takes the major part
of the computing time.

APPENDIX C: QUASIPARTICLES AND THEIR
INTERACTIONS

In principle, at least part of the nucleon —nucleon
interactions in a nucleus can be accounted for, on the

average, by a self-consistent field. In the single-particle
model, ' this field can be represented, in a phenome-
nological way, ' by the potential well plus spin —orbit and
Coulomb terms, as described in Sec. II. Here we
consider essentially only those residual forces which are
not accounted for in a single-particle description, and
which lead to important correlations in the motion of
the nucleons.

The Hamiltonian for the nucleus in the framework
of the model for the intrinsic motion considered here
can be written in the form,

IIintrinsic ~ &kiosk +sk
sk

—(-', ) Q Q (s'k', OV
~
6

~
sk, o~)a..„.ta, .p ta„a.„, (C1)

where the indices (sk), etc. , denote all relevant quantum
numbers, including 7-3, for a nucleon orbital. ""The
fermion creation (a,q ) and annihilation (e,q) operators
fulfill the anticommutation relations

L~', &"'7+=7~"' & "j+=o,
(C2)

if (sk) and (s'k') refer to identical nucleons, but are
assumed to commute if the labels refer to normdentical
nucleons. The sums in Eq. (C1) extend over the single-
particle orbitals, with energy el„of both proton and
neutron potential wells. The operator 6 represents the
residual nucleon —nucleon interaction.

The following references contain discussions of
approaches based on the phenomenological Hamil-
tonian, Eq. (C1), or on some version of the more
general Hartree —Fock—Bogoliubov theory: Mottelson
(1959, 1962), Belyaev (1959), Baranger (1960, 1963),
Baranger and Kumar (1968a, b), Kumar and Baranger
(1968). See also the books by Lane (1964) and Brown
(1967). The book by Thouless (1961) contains basic
theory of many-fermion systems and deals with the
methods discussed in this Appendix.

The presentation we have chosen is especially adapted
to the intrinsic4 motion of nonspherical nuclei. However,
most of the considerations are, with some modifications,
applicable to spherical nuclei as well. In that case, the
degeneracies of the shell model orbitals and the angular
momentum coupling have to be taken into account.

1. Quasiyarticles and the BCS Theory

A treatment of the pairing correlations in a many-
fermion system, appropriate to the theory of super-
conductivity, was presented by Bardeen, Cooper, and
Schrieffer (1957a, b). Its applicability as an approxi-
mation in nuclear physics was suggested by Bohr,
Mottelson, and Pines (1958). The theory was further
developed for use in nuclear structure by Soloviev
(1958/59), and by Belyaev (1959), who also discussed
the application to collective properties. Other dis-
cussions have been presented by Mottelson (1959, 1962)
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I
'4 )= II (zzk+»krz. k rz k) I 0), — (C3)

where normalization implies

and Nathan and Nilsson (1965), and in the books by
Lane (1964) and by Brown (1967).

For nuclei of medium and large mass numbers, there
are negligible pairing correlations between neutrons
and protons in states at low excitation energies (cf.
Soloviev, 1963). The neutron and proton systems may
therefore be considered separately for that part of the
intrinsic' model Hamiltonian which represents the
single-particle motion and the pairing correlations. We
restrict ourselves here to discussion of one of the
systems. Pairing correlations mean that the interaction
considered takes place between particles only when they
occupy pairs of time-reversed orbitals (Ask). In Eq.
(C1), therefore, we select the matrix elements of G
between pairs of identical particles, setting o-~= —sk,
o'~' = —s'k'.

Consider the ground state of the system with an even
number of fermions. In the BCS approximation, the
wave function is written"

(C10)

and for the quantities (zzk, ek),

= 2 "'[—1+(ek X)—/ek(A, 6)7"' (C11)

Here we define [cf.Eq. (3.5) 7

ek(X, 6) =I (ek—X)'+LV7'r' (C12)

We now return to a more complete model Hamil-
tonian (not restricting ourselves to one kind of particle) .
We substitute for the fermion operators u,j„u,~t the
"quasiparticle" operators 0.,&, 0.,&t according to the
canonical transformation (Bogoliubov, 1958a, b;
Valatin, 1958),

introduce the "correlation parameter, "6, delned by

6=G P zzk pk (C8)

The solution gives the famous BCS equations for (K, 6),
zzp ——g I

1—(pk —x) /ek(x, 6) 7, (c9)

zzk +ek = 1. (C4) O'sa =Nj~sa —~VI~—se) rx~k= zzkrzek svkrz Ik, (C13—)

We determine the (nonnegative) amplitude parameters
(zzk, ek) by requiring the expectation value of the
Hamiltonian for independent particles plus pairing
interactions to be stationary, with the subsidiary
condition

(Ot) = zzp, rrsk rrak,
Sk

(C5)

where K is the number operator, and eo is the number
of particles. This condition is necessary to assure a
correct location of the Fermi energy. The wave function,
Eq. (C3), contains a mixture of components with
different particle numbers. The physical meaning of
Nk and pk can be read from Eqs. (C3) and (C4): vkz

means the probability that the pair of time-reversed
single-particle orbitals (Ask) is occupied by a pair of
particles, and vice versa for uI, '.

We consider the solution of the problem under
simplifying assumptions. First, we represent the
attractive pairing-force matrix element in Eq. (C1) by
a positive constant, G, being an average independent of
(k, k') and defined in a symmetrized way,

(-,') Q ss'(s'k', —s'k'
I

G
I

spaz,
—sk) G. (C6)

S,SI

The expectation value of the Hamiltonian considered—XK, where X is a Lagrangian parameter, then reads

Ep' 2 Q (pk —X) pkz —G(Q zzkvk) '.

Here we have made the further approximation of
replacing X—(Grtk'/2) by a constant X (the "chemical
potential" ). In solving this problem it is suitable to

which preserves the anticommutation relations, Eq.
(C2) . The Hamiltonian can then be split into different
parts,

H =Hp+Hrr+Hzp+H;„zp&, (C14)

where EIO is a constant term, representing the energy of
the "core." In the simplified description, Eqs. (C6)—
(C12), H, i has the form I cf. Eq. (3.4)7

H, i ——p eka.,ktn, k( =H„), (C15)

i.e., a Hamiltonian for independent "quasiparticles. "
The operator B&0 would contain terms of the type un
and 0.~0.~, which break pairs; however, our treatment as
described above leads to II20—=0. The remaining term,
II;„;~, being biquadratic in the operators a and cx~,

represents the true quasiparticle interactions, an
important aspect of which will be discussed in Appendix
C2.

The particle and quasiparticle number operators
I
cf. Eqs. (C5) and (C13)7 do not commute with each

other. Therefore, a particle number Auctuation is
inherent in the description, as mentioned earlier Lsee
also Kq. (C3)7. This is an important feature of the
BCS theory. The diffuse Fermi surface allows us to
consider the "quasiparticle", Kq. (C13), as being a
"hybrid" of a particle excitation (with probability Nk')

and a hole excitation (with probability pk') .
If we neglect H; zp&, the Hamiltonian is Hp+Hii,

where Hp has the (approximate) eigenstate
I Np ),

Eq. (C3), which is therefore denoted as the "quasi-
particle" vacuum, and where II» has the form given by
Eq. (C15). For the odd. system, where the orbital (sk)
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2. Vibrations and the RPA Theory

The theory of nuclear vibrations originated within
the framework of the collective model by Bohr (1952)
and Bohr and Mottelson (1953a) (see also Alder et al. ,

1956). Microscopic descriptions in terms of the quasi-
particle picture were given by Arvieu and Ueneroni
(1960), Marumori (1960), and Baranger (1960),
utilizing the random phase approximation (RPA), also
called the "method of linearization of the equations of
motion. "Extensive applications of these schemes have
been made to quasiparticle motion and surface vibra-
tions in spherical nuclei (Kisslinger and Sorensen,
1963) and in nonspherical nuclei (Bes et al. , 1965;
Bes and Cho, 1966; Soloviev and Uogel, 1967; Soloviev,
Vogel, and Jungklaussen, 1967) . Reviews of these
subjects and related matters have been given by Green
(1965), and by Bes and Sorensen (1969). The vibra-
tional phenomena in nuclei are reviewed by Nathan
(1964) and by Nathan and Nilsson (1965). For ac-
counts of theory and comparisons with experiment, see
also the books by Preston (1963, Chap. 10), Lane
(1964), Brown (1967), and Davidson (1968).

We briefiy outline here the microscopic description
of harmonic surface vibrations in nuclei. We present
schematically the RPA method, using the quasi-
particle approximation (Appendix C1) and disregarding
blocking effects. . In H;„&„„„,[Eq. (C1)], we consider
only the long-range quasiparticle interactions, H; t'II'

[cf. Eq. (C14)$, including the neutron —proton inter-
action, which -lead to collective oscillations.

The relevant Hamiltonian is here simply denoted by
H. We consider first the even system (even Z, and
even X) and assume, in principle, that the groun. d-state
wave function, 4'o, is known (this is distinguished from
the quasiparticle vacuum, 0'0, which is an eigenstate of
the pairing Hamiltonian only) . The equations of
motion of a harmonic vibrational mode (L, M) then
read, generally,

y OLM j fi&LMOLM) [H, OLM ]=A~LMOLM .

(C17)

Assuming ~LM&0 and setting H
I +o)=0, one can

show the relations

is occupied by the odd particle, the wave function has
approximately the form

Bcs) ~ t
I
@Bcs) (c16)

which we denote as a "one-quasiparticle" state. ' This
description is somewhat deficient —in particular, the
effect of "blocking" (Sec. III) has not been. properly
taken into account. For a more complete discussion of
the odd system and blocking, see Secs. III.A and III.C.

where we define

~kk™=[~,k'~, k'ELM, (C21)

where the orbitals involved are combined to form the
proper coupling, "

M+kMkI =L, Mk+Mk = M (C22)

(in the spherical case, a tensor operator of rank L is
formed) . We consider here only modes with L) 1.
The commutator with the Hamiltonian can be written
in the form

[+,LMt Hj Q [P, ,LMQ, LMt+g, ,LMQ, LMj
KK~

+terms in ntn+biquadratic terms. (C23)

An analogous equation holds for the corresponding anni-
hilation operator, A» ~~. The coefficients I'»,„„~~
and EI,A, „,~~ are the matrix elements of the quasi-
particle interaction considered (H;„k~I') between two-
quasiparticle states, and between

I Vo) and four-
quasiparticle states, respectively.

The basic approximation in RPA is the following:
for the description of collective motion, only the linear
terms in 3» and A» are important in Eq.
(C23), and the "phonon" operator, OLMt, is a linear
combination of these operators; in keeping with this
assumption one also treats the "double-quasiparticle"
operators as if they were boson operators ("quasiboson"
approximation). A suitable choice of this linear com-
bination transforms Eq. (C23) to the form, Eq. (C17),
which describes harmonic vibrations. Finding this
transformation is, therefore, equivalent to solving the
liras earized equations of motion for the collective
oscillations created by the part of H;„t&I' considered.

We set

OLM Q [Xkk' +kk' I kk' +kk' ) (C24)

where the terms are compatible with the coupling, Eq.
(C22), and where the coefficients Xkk LM and I'kk.™are
to be determined. "The conditions discussed above give

(C20)

Thus, the operator OLM (OLM) creates (annihilates) a
"phonon", i.e. , a vibrational quantum, of energy AwL~,
and O'I,~ is the wave function of the "one-phonon"
vibrational state. We require OLM (OLM) to be a
boson operator.

We now introduce the "double-quasiparticle" creation
operators, defined by

OIM
I
+0)=0,

H
I

IILM) =&~LM
I +LM)~

(C18)

(C19)

39 Normalization of the phonon state, +L,~, requires

g ((gkk, LM)2 (I~kk, LM)2] —t
kk~
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equations of the form

P [P, , LMX,LM+g, ,LMIr, LM] II',LM

(C25)

Q [P, LMQ, LM+ g LMX LM] PT Ir LM

KK~

(C26)

which we refer to as the "RPA equations". These
equations define an eigenvalue problem with an
asymmetric matrix, the eigenvalue denoted by 8'. For
the nuclear surface vibrations considered here, -the

solution of interest' is the one with the lowest positive
eigenvalue, W =heel ~. The Hamiltonian for the
relevant collective contribution of the quasiparticle
interactions (in the even system) may then be written

(Hl„pp)..„=Q AosLMOLM OLM(=H~Ibr) (C27)
LM

[cf. Eq. (3.4)]. (We consider here only L&2.)
If one approximates the ground state by the quasi-

particle vacuum, 0'p,—the "Tamm —Dancoff" approxi-
mation —one can see that only the X terms [Eq.
(C24)] will be effective. This is known to be a poor
representation for nuclear vibrations (see, e.g. , Lane,
1964) . It is an important characteristic feature of RPA,
therefore, that 4'p contains the so-called ground-state
correlations, i.e., admixtures of two particle —two hole,
four particle —four hole, etc. , excitations. Both types of
terms in Eq. (C24) are then of significance. The "one-
phonon" state, +LM [Eq. (C20) ], contains corre-
sponding components with 2, 4, 6, ~ - - quasiparticles.

It is of interest to consider the schematic case of a
separable interaction, i.e., one where the elements of
the matrices P and R [Eq. (C23)] are factorable with
respect to (kk') and (etc'). This is, e.g. , true of the
quadrupole or octapole models for surface vibrations
frequently used (see Bes and Sorensen, 1969), if the
exchange effects are neglected. If the unperturbed
two-quasiparticle energies are denoted by E»
and the two-body matrix elements are written as

XLMqLM (kk'—) ELM (xn'), the RPA equations give
simply for the neutron or proton system

2X, P[&, (kk) z„.(z„.—w)-]=1, (c28)

the X and V coe%cients being proportional to
qLM(kk') (EkA &8') '. A graphical presentation of a
quadratic dispersion equation like Eq. (C28) is instruc-
tive40 [see Nathan and Nilsson (1965) and Bes and
Sorensen (1969)]. The description is complicated

' For a stable solution of the RPA equations to exist, cor-
responding to a vibrational mode IM, the strength of the relevant
part of the quasiparticle interaction must not exceed a certain
critical value. On the other hand, if the interaction is too weak,
the lowest eigensolution with W&0 ceases to describe a collective
mode. (See Res and Sorensen, 1969).

slightly if the neutron-proton YL,~ interaction is
included.

When an odd particle is present in the system, we
have to take into account the particle —vibration
coupling. The terms in cetce of Eq. (C23) are then no
longer negligible, since they can cause scattering of the
odd quasiparticle. We assume that the phonon [Eq.
(C24) ] has only a small amplitude for any particular
orbital, and that, hence, the commutation relations,

[cea&, OLM ]=0, [cI,A, OLM ]=0, (C29)

are approximately fulfilled. If only vibrational and
quasiparticle degrees of freedom are considered, the
relevant coupling part of the quasiparticle interactions
can generally be written in the following form (L&2
assumed):

(H;.e0p)...,i= —g g X, A, ,"
LM ak, s~kj

X[OLMr+ (—1) OL, M]ce,Atn, I (=Hp, ) (C30)

[cf. Eq. (3.4)]. The coefficients X, A, ,A™,which are
evaluated from two-body matrix elements, characterize
the particle-surface coupling. If we consider only one
quasiparticle and zero or one phonon present in the odd
system with the coupling, Eq. (C30), included, the
wave functions are in general linear combinations of
components of the type

Q,,A I &0) and OLM'ot;A'
I 40) —Gt, O'

I +LM),

(cf. Sec. III.B.2). Each of these components has a.

highly complex structure, due to the ground-state
correlations. However, the X and I' coefficients [Eq.
(C24) ]are suflicient for the evaluation of the collective
properties of the components.

After all the approximations made in Parts 1 and 2 of
this Appendix, the resulting Hamiltonian consists of the
three terms, Eqs. (C15), (C27), and (C30), for the
types of applications discussed here (see Sec. III.A.2).
Frequently, the approximation of taking a spin-
independent quadrupole or octupole force has been used
in actual calculations. The evaluation of Au&, as well as
of the X and I' coefFicients, is then highly simplified
[cf. Eq. (C28) ], and the results are found to lead to at
least qualitative agreement with experiment. In Eq.
(C30), the coupling coefficient in this case has sche-
matically the form

X"','LM= ELM(N»' —»» ) ("k'I rLI'LMI »» (c31)
where uA, » are the BCS amplitudes (see Appendix
C.1), and A LM is a constant determined by the strengths
assumed for the I.-multipole parts of the nucleon—
nucleon forces.

APPENDIX D: BIBLIOGRAPHY FOR LEVEL DATA

The experimental energy level data presented in
Tables III—VII, as well as our comments in the text
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pertaining to these data, are essentially based on
information that was available to us when we closed our
search of the literature around March 1, 1970. (Some
recent references were added later ).In quoting specific
references, we set in brackets the abbreviated notation
listed below. Here the first two numerals denote the
year of publication or of receipt of information, and the
following two letters are the erst letters of the first
author's surname. The last two numerals agree in most
cases with the numeration given to these references by
the Nuclear Data Journal. These numerals are omitted
for the most recent references, except where duplicate
notations would result.

In the text we occasionally omit the reference
notation in referring to early, frequently quoted data.
In these cases—as well as, of course, for other speci6c
information —the reader is referred to the review
article by Bunker and Reich (1971), to the Table of
Isotopes (Lederer et aL, 1967), and to the publications
by the Nuclear Data Group (1959—1965, 1966).

APPENDIX E: A CASE STUDY: THE
YTTERBIUM ISOTOPES

Throughout this work, we have considered the
behavior of the single-particle levels in sequences of
odd-proton isotopes and odd-neutron isotones. It is of
interest, however, to study the "orthogonal" sequences
of odd-neutron isotopes and odd-proton isotones (cf.
Sec. V.D). We have not systematically studied this
alternative presentation, but have limited ourselves to
a discussion of the ytterbium isotopes. Due to the
extensive (d, p) and (d, t) work by Burke et al. (1966),
these form one of the best studied sets of nuclides in
the region. Generally, sequences of odd-neutron isotopes
are advantageous for this kind of study, since several
levels may be known in a long sequence of nuclides and
the effect of a varying Coulomb Geld is not present.

Part of the "central group" of single-particle levels
for the ytterbium isotopes are presented in Fig. 22,
normalized to the 1/2 521 state. These levels are taken
directly from the result of our analysis, presented in
Figs. 9 and 10, and have only been rearranged for the
purpose of the present discussion. The notations used
for the single-particle levels and for the uncertainties in
their determinations" are the same as in Figs. 9 and 10
and are explained in Sec. IV.B. Comments on some
individual nuclides are given in Sec. IV.C.2.

We consider for the discussion the ten levels in Fig.
22, each of which has been htted to the data in at least
two isotopes. Although no rules of smooth behavior
have been applied to this sequence, we see that the
relative variations of the individual fitted levels are no
larger than those found in the schemes shown in Figs.
9 and 10. This indicates that the possible residual
interaction effects, which we have not taken into
account, should be relatively unimportant. The result
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FrG. 22. Central parts of the single-neutron level schemes for
the odd-mass ytterbium isotopes with 167&A&177 from the
present analysis (Figs. 9 and 10). On the left is presented an
appropriate theoretical single-neutron level scheme from a
deformed Woods-Saxon potential. The result of the analysis by
Chasman (1966) is presented on the right. (Notations are the
same as in Figs. 9 and 10 and in Sec. IV.B of the text. ) Note:
there is no experimental evidence for the level 5/2 512 in "rYb.

also seems to verify our basic assumption of the stability
of the single-particle' model.

Ke see that the best established features of Fig. 22
are the near degeneracy of the levels 1/2 521 and
7/2+ 633, and the parallel variations of the levels
5/2 512, 7/2 514, and 1/2 510, which have maximum
spacing relative to 1/2 521 in "'Yb. These features are
compatible with the model calculations (Figs. 14 and
21) and support the conclusion (Sec. V.D) that the
spheroidal" deformation parameter, e2, has a maximum
between A = 171 and A = 175. Equilibrium deformation
calculations (cf. Sec. V) by Lamm (1969) and Nilsson
et al. (1969) give, for the ytterbium isotopes, a maximum
deformation, e2'& 0.27, for 2=171, 172, or 173. The
calculations by Gareev, Ivanova, and Pashkevitch
(1969) give a maximum deformation, for even —even
ytterbium isotopes, of Pse'4 0.27 ' for the region
172&A(176. We expect here also that e4 0 (cf.
Fig. 12).

Comparison between the theoretically predicted
equilibrium deformations and the interpreted de-
formation dependence of the empirically found level
variations presents a critical test of the model used.
The evidence of agreement in the ytterbium isotopes is
partial proof that the close relationship between the
level structure at the Fermi surface and the "total
energy, " predicted by the use of the single-particle
model, has an empirical basis in nuclear structure.
Further proof must await further theoretical results.

The question of uniqueness in the determination of
the single-particle level schemes may also be discussed
in connection with this case study, where we can com-
pare with the work of Chasman (1966). He has fitted
eleven single-particle levels to the known level data for
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all the odd-A ytterbium isotopes simultaneously. He
has chosen the remainder of a total of 30 levels accord-
ing to the Nilsson (1955) model and made an essentially
exact solution of the pairing model with a constant t"
value. Corrections due to collective eRects are not
applied. Such contributions can be considered relatively
unimportant for most ytterbium isotopes (note, how-
ever, the comments in Sec. IV.C.2, specifically for
'"Yb). The result of the fit is shown to the right in
I'ig. 22. We see that it agrees quite well with the average
empirical situation for the six ytterbium isotopes
tChasman (1966) also presents an alternative, but
similar, spectrum with the 11/2 505 level depressed].

To the left in Fig. 22, we also show a Woods —Saxon
scheme ( Gareev et al. , 1967), appropriate to the
average situation for the ytterbium isotopes. We And

good average agreement between this scheme and
Chasman's scheme (excluding 11/2 505), as well as
our systematics, with the exception of the spacings of
the 1/2 510 and 3/2 512 levels relative to 1/2 521.
As discussed in Sec. V.D.2 and illustrated in Fig. 21,
the current predictions overestimate these spacings.
For 1/2 510 in Fig. 22, the average deviation is
about 0.7 MeV.

However, no important qualitative differences
appear in the results of these apparently quite different
approaches to the level data analysis, and both ap-
proaches agree reasonably well with the approximate
model predictions. This indicates that the effect of the
ambiguities (Sec. III.D) in the semiempirical deter-
mination of the levels is less than might be suspected.

The experience of this case study strengthens our
conMence in the conclusions drawn from the behavior
of the semiempirical single-particle levels, and in the
validity of the single-particle model.
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