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This article attempts to present a comprehensive review of the literature dealing with singular potentials through
March 1969.The treatment is confined principally to nonrelativistic quantum mechanics, i.e., to solutions of the partial-
wave Schrodinger equation with a singular potential. Some general physical and mathematical properties are given.
Exact solutions are presented for those potentials for which they are available. Techniques which have been used in
obtaining approximate solutions are outlined. Formal and physical applications of singular potentials are presented.
Formal applications are those for which singular potentials have served as mathematical models illustrating concepts
in elementary particle physics. These include applications to the Regge pole formalism, quantum field theories, and
the peratization approximation. Physical applications entail those which have been made to molecular physics and
to high-energy phenomenology.
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I. INTRODUCTION

This article is concerned primarily with singular
potentials in nonrelativistic quantum mechanics.
Singular potentials within the context of nonrelativistic
physics are those having a singularity at least as great
as the inverse square at the center of force. What dis-

tinguishes such potentials as a class and how are such
potentials relevant in physics? One answer to these
questions can be found in a simple example.

The familiar Coulomb potential V(r) =Z~Z2e'r ' is
well known to describe the motion of two charged
particles with charges Zi and Z„., in the absence of other
interactions. Thus one can compute scattering as well as
bound-state problems in classical and quantum me-
chanics in excellent agreement with experiment.
However other charge configurations lead to different
forms for the potential. For example, the interaction
between a charge Z and an induced dipole of polariz-
ability n has the form V (r) = ', Zne'r ' —Th—is attrac. tive
potential is singular according to our opening statement.
In sharp contrast to the Coulomb case, it does not
admit physically meaningful solutions with the usual
boundary conditions. In classical mechanics a particle
moving under the inhuence of such a potential falls to
the center with infinite velocity. In the absence of
additional physical assumptions„an inbound trajectory
can be connected with an infinite number of outbound
trajectories. In quantum mechanics one finds that both
solutions of the Schrodinger equation satisfy the
physical boundary condition of the vanishing of the
wave function at the origin. There is no apparent way
to determine the arbitrary phase factor between these
solutions.

One might hasten to note that the r-' potential in the
example above represents, of course, only the long-range
part of the potential between the two particles. However
this restriction is also true for the Coulomb potential
which, nevertheless, leads to well-defined solutions. The
force between two charges presumably does not
become infinite as the separation decreases, the force
eventually being cut off by some unspecified mechanism.
Thus, in the singular case, the long-range part of the
force between particles does not alone suffice to deter-
mine their behavior; some cutoff mechanism apparently
must be provided.

In contrast to the attractive potential, the repulsive
singular potential offers no problems regarding physical
interpretation. Physical solutions can be determined
uniquely. However in both attractive and repulsive
cases, mathematical difficulties are inherent as regards
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techniques of solution. This is fundamentally because
the solutions of thc Schrodinger equation for a singular
potential gV(r) are not analytic functions of g at g= 0.
Hence the usual technique for obtaining scattering
amplitudes —the Born approximation —fails, aud some
other calculational method must be devised.

Because of the problems concerning the physical
interpretation of attractive singular potentials, physi-
cists concluded for a long time that no significance
could be given to any singular potential as regards the
singularity at the center of force. Furthermore the
mathematical difIj.culties made the problem of under-
standing singular potentials even more formidable.
But it was finally realized that many aspects of singular
potentials are physically meaningful, and that certain
of their properties are relevant. In addition, mathe-
matical techniques were developed for handling the
calculational problems of singular potentials.

Singular potentials first attracted attention in a
relativistic context, where in fact the threshold for
singular behavior occurs for the physically interesting
Coulomb potential when it entails a charge Z satisfying
Z/137&1. The difficulty involved in the choice of
a physical solution for this case was first. discussed
in detail by Plesset (1932) (see Secs. II.C and II.G).
The problem of nonunique solutions was also noted
by Case (1950). He suggested that the arbitrari-
ness can be resolved by specifying one bound-state
energy, and determining the rest of the bound-state

spectrum by imposing orthogonality on the wave func-
tions. Other papers dealing with this problem had
appeared from time to time, but there had been no
sustained interest for quite a while.

An important paper by Predazzi and Regge (1962)
helped to stimulate. interest in singular potential theory.
In this work the authors argued that as inasmuch as
real world interactions were likely to be highly singular,
the study of singular rather than regular (nonsingular)
potentials might be more relevant physically. In
addition they showed that the Regge behavior for
singular potentials was much simpler than for regular
potentials (see Sec. IV.A). This concept, though not
explored in great depth by them, was very important
in generating interest in many aspects of singular
potentials.

A further stimulus to the study of singular potentials
emerged from efforts to hnd effective potentials to
describe held-theoretic interactions by means of the
Bethe-Salpeter or quasipotential equations. Needless
to say, such correspondences were made in approxima-
tions which entailed retention of only selected diagrams,
usually those of the lowest order. A fair amount of
work has gone into calculating such effective potentials
for field-theoretic interactions. A most intriguing
observation was made by Bastai, 8ertocchi, Fubini,
Furlan, and Tonin (1963a) who found a correspondence
between the renormalizability attributes of a held
theory and the regularity or singularity of the effective

potential. The effective potential for a superrenor-
malizable theory was found to be regular, that for a
renormalizable theory was found to be transitional
(see definition in Sec. II.A), and that for a nonren. or-
malizable theory was found to be singular (see Sec.
IV.B).

The work of Feinberg and Pais (1963, 1964) which
introduced the peratization approximation in connec-
tion with a held-theoretic study of weak interactions
aroused much interest in singular potentials. In this
approximation it was found by Feinberg and Pais that
in a particular case the sum of the most singular parts
(as a function of a cutoff parameter) of each term of an
infinite series yieMs a hnite result in the limit in which
the cutoff was removed. This procedure had no mathe-
matical justification. It was soon realized that a nearly
identical mathematical technique could be tried on the
Born series for scattering by a singular potential, where
in some cases the exact answer is known. Such situations
were studied as a test of the peratization idea (see
Sec IV.D).

The preceding examples illustrate those applications
in which singular potentials serve as mathematical
models for certain concepts in held theory and ele-
mentary particle theory. The interest in such applica-
tions arises because of the resemblance of a singular
potential to the light cone singularity of the propagator
function characteristic of a nonrenormalizabje quantum
held theory. In addition, they illustrate the mathe-
matical difhculties entailed by nonanalyticity in the
coupling constant g at g =0. However singular potentials
have also found applications in various physical
problems. They have appeared extensively in molecular
physics for quite some time (Sec. V.A). They have also
been used occasionally in descriptions of the scattering
of elementary particles (Sec. V.B).

In molecular physics, potentials are used as
descriptions of the interatomic or intermolecular
force. This force consists of a long-range and a short-
range part. The long-range force arises from the electro-
static interaction between two atoms or molecules.
Such forces include purely electrostatic forces between
polar molecules, as well as induction forces between a
polar and nonpolar molecule, and dispersion forces
between two nonpolar molecules. However, as the inter-
particle separation decreases, a repulsive force develops
because of the overlap of the electron clouds of the
particles. This force is frequently represented by a
repulsive singular potential whose parameters are
determined phenomenologically. The Lennard- Jones
potential which describes the interaction between two
nonpolar molecules is an example.

In applications involving elementary particle scat-
tering, repulsive singular potentials have been used to
simulate the strong repulsion which characterizes the
short-range part of the interaction between such
particles. The use of a repulsive singular potential as
opposed to a simple hard core provides a greater
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generality in the parameterization of physical situa-
tions.

In this review we have attempted to give a compre-
hensive and critical survey of the published physics
literature about both the mathematical and physical
aspects of singular potentials. The review covers the
litem. ture up to March, 1969. We have indicated the
problems that have been considered and have tried to
draw attention to significant features. We have in our
survey found a seemingly large number of inaccuracies,
some of which are rather basic, as well as some con-
fhcting results, which have not previously been re-
ported. These are pointed out and discussed. The level
of presentation of this review should suit anyone with a
genera) background in quantum mechanics. However,
some applications in Sec. IV and U presuppose a
familiarity with their context. The larger portion of
this article deals with nonrelativistic quantum me-
chanics. We have touched only brieQy upon aspects
pertaining to many-body theory or to physical chemis-

try. There exist several fine review articles which discuss
both calculations and mathematical techniques in this
area (see, e.g. , Bernstein, 1966).

Section II surveys the general mathematical and
physical aspects of nonrelativistic singular potentials.
It also includes a brief outline of some of the features of
singular potentials in the contexts of classical mechanics
and relativistic quantum mechanics. Section III deals
with purely mathematical aspects pertaining to solu-
tions of equations with singular potentials. Section IV
deals with formal applications of singular potentials,
i.e., applications where singular potentials serve as
mathematical models for certain concepts in field

theory and elementary particle theory. Section V deals
with physical applications such as calculations in
molecular physics and phenomenological applications to
elementary particle physics. A few concluding remarks
are presented in Sec. VI. A consistent notation has been
employed throughout the article with little exception.
Some of the notations are indicated in an Appendix.
The reader should take cognizance of the fact that the
notation generally does not agree with that of the
papers being reviewed, and the same symbol may have
a different meaning in this article and in the paper
under discussion.

f(r ) = (k/Ir)"'(4Irkr) —' g (21+1)i'EI(cos 9)NI (r),
L=0

where k is related to the energy E by k= (2ME/V)II',
and PI (cos 0) are the Legendre polynomials. In the case
of bound states of angular momentum /, only one term,
appropriately normalized, would appear from this
summation. The radial wave function ni(r) satisfies
the differential equation

Much of the investigation of singular potentials is
concerned with a study of this equation and its solu-

tions.
In addition to the restrictions mentioned above, we

further demand that the behavior of the potential for
asymptotically large r be subject to one of a number of
alternative conditions as suits the context:

dr
~ V(r) ~(~, (a)

d« I V(.) I( (b)

drr'
~ V (r ) ~ ( ao, (c)

finite' for aI1 r&0, and have at most a finite number of
changes of sign.

Eomrelutivistic Case. The domain of nonrelativistic
quantum mechanics is the principal concern of this
article. The motion of a single nonrelativistic particle
under the inQuence of a spherically symmetric potential,
V (I r I )—=V (r), obeys the three-dimensional, time-
independent Schrodinger equation

—(fP/2M) V'P(r)+/V(r) Efg(r—) =0.

In this article we generally regard fi =2M =1, although
these factors can easily be recovered if the coupling
constant g associated with the potential V(r) is under-

stood to contain the factor 2M/A, '. The wave function

f(r) can be resolved into a sum of products of an
r-dependent factor and an angular factor. Thus, in the
case of scattering one obtains the familiar partial-wave
expansion,

II. GENERAL PROPERTIES

A. DeQnition and Characterization

The present article deals with singular potentials as
a distinguished subclass within a large class of poten-
tials. The larger (universal) class consists of local,
velocity-independent, time-independent, spherically
symmetric potentials. This class is restricted for con-
venience by the conditions that the potentials be

with C some fixed positive constant. Note that the class
of potentials satisfying condition (c) includes the class

satisfying (b) which includes the class obeying the
condition (a). The condition (a) is necessary for the
finiteness of the partial-wave phase shift 8I(k), for any

This would exclude potentials with a hard core, i.e., po-
tentials which are infinite for r &r„where r, &0. Hard core po-
tentials share many of the properties of singular potentials, and
we may include them by allowing the universal class to include
potentials which are infinite for r &r, for some r, )0, and finite
for all r&r, .
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lim r'V(r) =0, (2.1)

physical l and k&0.' The condition (b) specifies the
necessary large r behavior for the finiteness of the total
cross section, a as weH as of the zero-energy phase
shift. ' The condition (c) is the necessary large r
behavior for the finiteness of the S-wave scattering
length' as well as of the forward differential cross
section. '

A potential V(r) in the universal class is said to be
regular at r=0 if

is zero for all e&0, and infinite for all e(0. Examples of
transitional potentials are of the form

where V'(r) is not as singular at r =0 as the first term in
Eq. (2.4). When p(0, the potential of Eq. (2.4) is a
regular transitional potential, while when p)0, the
potential is a singular transitional potential. The class
of transitional potentials can also be characterized by
the condition

and singular~ at r =0 if
lim I

—Pln V(r) j/ln rI =2. (2 3)

r 0
(2.2)

lim r'+'V (r)
r 0

(2 3)

'For regular potentials (as we presently define them), the
existence of the phase shift for k&0 is inferred from the existence
and nonvanishing of the Jost function if condition (a) is satisfied.
See Newton (1966), p. 334, Kq. (12.18), for the S-wave case,
and pp. 371—374 for the case of higher partial waves. The condi-
tion (a) excludes potentials with Coulomb-like tails, for which
the phase shift in its conventional sense is known not to exist.
The existence of the partial-wave phase shift for a repulsive
singular potential can be concluded from a limiting procedure on
a regularized potential. See Frank (c).' For regular potentials see e.g. , Landau and Lifshitz (1960),
pp. 399—400, and Wu and ohtnura (1962), pp. g—9. The condi-
tions reported there imply a slightly weaker condition for finite
total cross section in the form

drr' [ U'(r)
) & ~,

for some A&0. The conclusion remains valid for repulsively
singular potentials as is easily verified by a limiting procedure
(see Frank c).

4 The finiteness of the zero-energy phase shift for regular po-
tentials satisfying condition (b) is an immediate consequence of
Levinson's theorem and the Bargmann —Schwinger inequality,
Newton (1966), pp. 355—357. The conclusion is valid for repul-
sively singular potentials, as can be verified by a limiting pro-
cedure (See Frank c) . Levinson's theorem does not hold directly
for singular potentials. See Aly and Okubo (1967).' See e.g., Newton (1966), p. 322. N.B. that condition (c)
does not guarantee the finiteness of the scattering length, due to
the possibility of bound states.

.
6 For regular potentials see e.g. , Landau and Lifshitz (1960),

pp. 399—400, and Wu and Ohmura (1962), p. 9. The imaginary
part of the forward cross section is of course finite, by the optical
theorem, if condition (b) is obeyed. The dispersion relation for
th= forward scattering amplitude is discussed for powerlike po-
tentials by Martin (1966).

~ There are di6ering definitions of singular in, the literature; see
e.g., Guttinger and Pfaffelhuber (1966), Footnote, p. 427, and
Aly and Taylor (1968). These authors call a potential singular
if it does not possess a Fourier transform. In Sec. IV. C we con-
form to this definition for the sake of the context. For another
definition, see Wu and Ohmura (1962),p. 47.

If the limiting value in Eqs. (2.1) and (2.2) is 6nite, the
potential is said to be a transition potential. A singular
potential is called repulsively or attractively singular
according to whether the limiting value in Eq. (2.2) is,
respectively, +oo or —oo, regardless of whether the
potential maintains one sign for r&0. We shall call a
potential a transitional potential (N.B. the sufEx) if

Potentials of the form in Eq. (2.4) are discussed in
Sec. II.B.

The physical characteristics of singular potentials are
to be found in the attractive case. In the context of
classical mechanics, a particle moving under the
inQuence of an attractive singular potential undergoes
well-defined scattering only if its impact parameter is
greater than a certain critical value. In other cases,
which include bounded motion, the particle falls to the
center of force with infinite velocity. In addition, the
scattering or bound-state trajectory is not well defined
unless trajectory tangents are matched, and conserva-
tion of energy and angular momentum is assumed at the
origin (see Sec. II.F). In the context of quantum
mechanics, the scattering problem for an attractive
singular potential is not resolved as in the classical case,
and is never well defined without a further physical
assumption. An arbitrary (phase) parameter remains.
In addition, an attractive singular potential supports a
nonunique bound-state spectrum with an infinite
number of bound states, and with no lower bound on the
energy (Sec. II.C). Classical scattering is, in some
instances, well defined without additional assumptions
because the centrifugal barrier may prevent the particle
from falling under the inRuence of that portion of a
potential which is attractive singular. On the other
hand, in quantum-mechanical scattering, a particle can
always "sense" an attractive singular potential. Thus
the basic feature of an attractive singular potential is
seen to lie in the fact that physical processes are not
uniquely determined. This gives rise to the possibility of
imposing unusual or unconventional boundary condi-
tions in physical problems as a means of representing
particular physical processes. An example of a process
of this type is provided by particle absorption or
capture. Another example is contained in the work. of
Vogt and Wannier (1954) (see Secs. III.A.1, V.A).

'This fact can be inferred from the infinite number of nodes
of the zero-energy radial wave function as found from the WEB
method. For the relation between nodes of the zero-energy wave
function and bound states, see e.g., Calogero (1967), p. 168.
One can easily verify the lack of a lower bound on the spectrum
from the fact that the expectation value of the Hamiltonian
can be made arbitrarily negative by choosing appropriate trial
wave functions whose support is restricted to a small neighborhood
of the origin.
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In contiast to the attractive potential, the repulsive
case poses no problem as regards physical interpreta-
tion. The solutions to physical problems are uniquely
given. Certain features of the transition inverse-square
case differ somewhat and are discussed in Secs. II.B,
II.C, and II.F.

The reason why r ' is the transition point in non-
relativistic quantum mechanics can be seen by the fol-
lowing argument due to Landau and Lifshitz (1960).
Consider a particle confined to a small region of
radius ro about the origin. The uncertainty in the posi-
tion of the particle is of the order of ro, and hence the
uncertainty in its momentum is of the order of 1/r,
(A=2M=1). For potentials of the form gr, the
average value of the energy is approximately

F. (1/r, ')+ (R/r, ").

For g negative, corresponding to an attractive potential,
one sees that if m&2 there is no lower bound on the
energy. The particle in this case "falls" to the center in
seeking its ground state. However, if m(2, the energy
cannot take arbitrarily large negative values, and the
discrete spectrum must have a lower bound. This
behavior is seen to correspond to that discussed above.
Similar considerations show that the transition from
regular to singular in the relativistic case occurs with
the Coulomb potential.

There are many mathematical characterizations
which set singular potentials apart from regular
potentials. When the potential is singular, the radial
wave equation for any partial wave has a non-Fuchsian
singularity, i.e., an irregular singular point, at r=0.
This means that there is no indicial equation and that
the radial wave function has an essential singularity at
r=0. In the case of regular and transition potentials,
the indicial equation has solutions which specify a
powerlike behavior of the wave function in the neighbor-
hood of r =0. For repulsive singular potentials, a
unique (to within normalization) physical solution
exists to the partial-wave radial equation. For attractive
singular potentials, no unique physical solution exists.
This is discussed in greater detail in Secs. II.B and II.C.

In addition, one encounters 6ne points pertaining to
the application of various techniques. For example the
WXB approximation for singular potentials gives the
correct radial behavior of the wave function in the
neighborhood of r =0, whether or not the I.anger
transformation is employed (Langer, 1937 and Sec.
III.B.2). This is in contrast to potentials, including
transition potentials, which are unbounded and not
singular at r =0. The WEB solution for singular
potentials also supplies the correct nonanalytic coupling-
constant dependence (to within a normalization) of
the wave function near r =0. In a second instance the
variable phase equation, even in the case of repulsively
singular potentials, does not yield a unique solution

limr
~
V(r) ~,

r 0
(2 7)

in contrast to Eq. (2.2). The class of regular potentials
would be defined by a vanishing value of Eq. (2.7). A
6nite value of this limit defines the class of transition
potentials, which includes all potentials with Coulomb-
like behavior at r =0, In contrast to the nonrelativistic
case, all singular potentials appear as attractively
singular in the equations of motion. As a result the
singular potentials in the classical case all give rise to
orbits which spiral into the origin. In the quantum-
mechanical case, singular potentials appearing in
relativistic equations such as the IGein —Gordon, Dirac,
and the spin-one equations give rise both to an infinite
number of bound states and to non-Fuchsian singu-
larities of the wave function at r=0. (See Secs. II.C,
II.F, and II.G for further discussion. )

The description of the scattering of particles inter-
acting via a field-theoretic interaction can be cast into

See Calogero (1967), Chap. 15.

with the usual boundary condition of the vanishing of
the variable phase at r =0.' (See Sec. III.B.3.)

A phase shift can be uniquely de6ned for repulsive,
but not attractive, singular potentials when the condi-
tion (a) is obeyed. Only repulsive singular potentials
are considered in the ensuing discussion. The behavior
of the scattering phase shift for repulsive singular
potentials as a function of energy, angular momentum,
and the coupling constant is distinguished from the
behavior for regular potentials. The high-energy
limit of a partial-wave phase shift for a singular poten-
tial is in6nite in the convention where the phase shift
is defined as a continuous function of energy which
vanishes for all energies at zero coupling (see Frank, c) .
This contrasts with the result for regular potentials.
I,evinson's theorem fails to hold for repulsively singular
potentials (which by definition may be attractive for
nonzero values of r) (Aly and Okubo, 1967). The
scattering phase shift as well as the S-wave scattering
length for a singular potential is not analytic in the
coupling constant g (Sec. II.D.2). The 5-matrix for a
singular potential at any given energy, as a function of
the complex angular momentum X=l+-,', displays the
symmetry property in the complex X plane (Sec. IV.A)

5P, , 0) =exp (2iriX) 5(—X, k). (2.6)

This provides a simple relation between the Regge poles
in diagonally opposite quadrants of the complex plane.
This contrasts with the Regge behavior for regular
potentials which displays no such relationship.

Relativistic Case. The kinematics of relativistic
motion lead to a different criterion for the singularity
of a potential. The characterizations of singularity in
the nonrelativistic case have their analogy in the
relativistic case in the class of potentials whose behavior
near r =0 gives an in6nite value for the limit
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the form of a relativistic wave equation with an
eRective potential, as for example, the Bethe —Salpeter
equation. The characterization of these effective
potentials in these relativistic equations as singular
potentials depends on the order of the differential
equation which, in turn, depends on the spin of the
scattering particles. For example, the description of
the scattering of spin-zero particles leads to fourth-order
radial partial-wave equations (Sec. IV.B)."The charac-
teristics of singular potentials in this case would apply
to potentials defined as singular by the infinite value of
the limit

limr4 I V(r) I.
r 0

(2 8)

Thus the wave function has non-Fuchsian singularities
at r=0 for such singular potentials. Regular potentials
correspond to a vanishing value of the limit in Eq. (2.8).
Potentials with inverse fourth-power behavior at
r =0 are transition potentials. In the equations deriving
from a Bethe —Salpeter equation, repulsive as well as
attractive potentials are possible.

B. Stages of Singularity

The transition from regular to singular potentails
takes place in stages marked by diRering thresholds
for different aspects of singularity. These thresholds
generally lie in the range of transitional potentials
winch are characterized by Eq. (2.5)."This class has
also been referred to as the Class II case in another
context (Sec. IV.B). Various transition points in this
range are conveniently indexed by the value of p in
potentials of the form of Eq. (2.4).

p(0. The transitional potentials for which p(0 are
not singular according to our definition, but certain
singular aspects are anticipated as p increases. When
p= —2, a change in the strong coupling limit of the
Jost function is found which is precursive of singularity.
LThe Jost function is defined as the Wronskian" of the
Jost and regular solutions, where the Jost solution

f(k, r) is defined by its asymptotic behavior f(k, r)~
exp (—ikr). 7 The partial-wave Jost function for a
regular potential is finite and is an entire function of
the coupling constant g, while for a singular potential
this quantity is infinite. " It has been found (Frank,

'0The restriction of a universal class to velocity-independent
potentials is to be understood in the present case. One might
conceivably encounter velocity-, and higher derivative, dependent
interactions in a Bethe —Salpeter equation which may make the
differential equation higher than fourth order for scattering of
scalar particles.

"One might note that the high-energy limit of the S-wave
phase shift, which can be found by the Born approximation,
shows a characteristic change from 1/k behavior for potentials
which are already as singular as r ' near r =0. The behavior of
the high-energy limit of the phase shift is conveniently tabulated
in Calogero (1967),Table I, p. 220.

"The Wronskian is defined by 8'(F, G} —=FG' —F'G.
"By the partial-wave Jost function here is meant the value at

r=0 of the ratio of the Jost solution to the scaling function
(2L—1}!!(kr} '. For a regular potential this definition agrees with
the definition by means of the Wronskian.

1967, 1968) for a general regular potential (unless
P) —2) that the Jost function is an entire function of g
of exponential order 2.' This means, roughly speaking,
that the Jost function for large g grows in certain
directions in the complex g plane (in the positive g
direction, in particular, when the potential is purely
repulsive) like exp r

~ g ~"'. The quantity r, the type for
a purely repulsive, nonincreasing potential is equal to

d&( V(r) ~its,

which has a threshold of divergence when P= —2.
When q= —p(2, one finds that the Jost function is
still an entire function of g, but that the exponential
order of the Jost function is no longer fixed at —', but
becomes 1/q.

In the range 0(q(1 a change takes place in the
radial behavior of the solutions near r =0. The small r
behavior of the solution of the radial differential
equation for the 3th partial wave is no longer of the
power form r~l"'+l& (where e=1 for the regular solu-
tion, and s= —1 for a singular solution). The behavior
is more complicated and depends on whether 1/p is an
integer. When 1/q= —1/p is not an integer, and
X(1/q(%+1 (iV=1, 2, 3 ~ ~ ~ ) one finds that the
small r behavior of the 1th partial-wave function has
the form (Cornille and Predazzi, 1965b)

ui(r)~r~"+'i exp $ e(l+—si) g d, (ln r ')' &'&7, (2.9)

where the constants dj are given in Cornille and
Predazzi. When 1/q=lV, one finds

&&exp $—e(i+sr) Q d, (inr ')' &'&7, (2.10)
j= 1

where the constant b~ is given in Cornille and Predazzi.
For the special case q= —p=1 (Charap and Dombey,
1964), one finds that the regular solution behaves for
small r like ei(r, „, (2.11)

One notes, in particular, that this leading term depends
on both coupling constants, l and g, and is not analytic
in g=l+srat X=O, which is also true of the general
expressions, Eqs. (2.9) and (2.10). One also finds that

q = 1 is the threshold for the divergence of the coupling-

'4 The function f(s) is said to be an entire function of s, if it is
analytic in the whole finite plane. An entire function f(s} is said
to have exponential order p if, for every positive but no negative
&,

~
f(s) ~

& exp
~

s)&+' for ail sufficiently large [ s t. If f(s) has
exponential order p, its type ~ is defined by

lim sup s &
~

in f(z) (.
!z!
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constant expansion of the partial-wave Jost function
as derived from iteration of the integral equation for the
Jost solution. The Jost function for 0(q(1 remains
an entire function of g with exponential order 1/q,
as for 1&q&2. However the coupling-constant ex-
pansion requires modification through introduction of
Weierstrass convergence factors. A higher-order factor
is required as q~0 each time 1/q reaches an integer. The
exceptional behavior of Eq. (2.10) for the case that
1/q is an integer is related to the corresponding modifica-
tion of the coupling-constant expansion of the Jost
function necessitated by the introduction of a Weier-
strass convergence factor (Frank and Land d).

p= 0. One finds the characteristics of the solutions for
the transition potential gr ' to depend critically on the
value of the coupling constant g. A solution has a
powerlike behavior r' near r =0, with the two possible
values of the exponent s+ ——2& (g+~) ' ' as determined
by an indicial equation which depends on g. (The two
values coincide at ~ when g= —4, and the two solutions
behave near r=0 like r" and r"' ln r. ) For the range
g&43, only one square integrable solution is possible.
In the range —~&g&4, both solutions to the indicial
equation lead to square integrability at r=O. In the
"weakly" repulsive case 0&g&4, the less singular
splution vanishes at r=O, while the more singular
solution is infinite. For the "weakly" attractive case
—4&g&O, both solutions vanish at r=0. In both cases
it is customary to select the solution with the less
siiigular behavior at r =0 as physical. The Hilbert space
aspects of this situation are presented in Sec. II.C.
In the "weakly" attractive case, there are only a finite
number of bound states. The high-energy limit of the
phase shift for transition potentials with g& —

4 is
finite and nonvanishing. At g= ——„, the characteristic
aspects of attractive singular potentials appear. The
two solutions of the indicial equation for g& —

~ are
complex conjugates, with the common real part —,'.
This has the consequence that all solutions are square
integrable at the origin, and there is no evident manner
of selecting any linear combination of these two solu-
tions. All the solutions moreover have an infinite
number of oscillations in the neighborhood of the
origin, which reQects the presence of an infinite number
of bound states. Similar considerations apply, of course,
to other potentials with r ' behavior near the origin,
such as V(r) =g sinh 'Pr (see Sec. III.A. 1). Further
details on this situation are discussed in Sec. II.C.

The radial behavior of the physical solution near r =0
for a potential with leading inverse-square behavior
can be obtained by employing the WEB method in the
Langer form (Sec. III.B.2) . One finds that the S-matrix
for such potentials possesses a branch cut in the
complex angular-momentum plane.

p)0. Almost all of the characteristics of singular
potentials enumerated in Sec. II.A hold for singular
transitional potentials with p) 0. The radial behavior
of the wave function for r near zero is obtainable from

either the Langer or the non-Langer form of the WEB
approximation. " The phase shifts now diverge in the
high-energy limit. One also finds, in contrast to more
strongly singular potentials, that the Born series for the
scattering length has finite coeKcients, but is asymp-
totic (Calogero and Cassandro, 1964; Frank and
Land d). If one regularizes the potential by cutting it
off in some small neighborhood r&e, one finds that the
wave function is factorable in the +~0 limit into a
product of an r-dependent and an n-dependent factor.
This "wave function renormalization" is discussed
further in Sec. IV.C.

C. Attractive Case

Perhaps the most manifest difference between singu-
lar potentials and regular potentials is found in the
properties of the attractive potential. Historically,
Case (1950) was the first to notice that singular
attractive potentials do not lead to physically reason-
able results. One finds that both solutions of the radial
Schrodinger equation for all energies lead to radial
wave functions which go to zero at the origin while
oscillating infinitely rapidly. This behavior is in fact
given by (see Sec. III.B.2)

u+(r) I V(r) I

—'"
r 0

Xexp &i —V r "'dr . 2. 12

By way of contrast, one may note from this equation
that, if V(r) is repulsive or has a negative imaginary
part (to guarantee probability less than or equal to
unity) in the neighborhood of the origin, there is a
unique solution which vanishes at the origin.

For positive energies, Eq. (2.12) implies that no
unique scattering may be defined since any linear
combination of I+ and I forms an acceptable solution
at the origin. In consideration of various problems,
workers such as Vogt and Wannier (1954) and Aly and
Miiller (1966a) have made particular choices of
boundary conditions to correspond to the physical
situation (see Secs. IV.A and V.B).

Equation (2.12) also implies that bound states exist
for all negative energies. In order to approach this
problem, Case utilized orthogonality of solutions to
produce a discrete bound-state spectrum as described
in Sec. III.A.1.Thus, from an arbitrarily selected bound
state, one can by orthogonality construct a spectrum
of bound states. One interprets this arbitrariness by
thinking of the attractive potentials as being physically
cut off at some point near the origin by some un-
specified mechanism, the formal attractive potential
providing a physical description outside of the cutoff
region. For singular attractive and strongly attractive

"Qne may note the similarity in form of the small -r behavior
of the radial wave function for p(0 and p)0. See Eqs. l15),
(16), (19),and (20) in Cornille and Predazzi {1965b),
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(i.e., g& —4) transition potentials there is a continuum
of bound states which is unbounded from below, i.e.,
there is no ground state. The Case procedure produces a
discrete spectrum with no lower bound.

Case (1950) and Meetz (1964) have explicitly found
such discrete bound-state spectra for the strongly
attractive transition potential gy '. Scarf (1958) found
the same for the potential gy '+ay '.—Scarf a—lso found an
infinite number of bound states with a lower bound
when —

4 &g(0, but the infinitude of states in this
case originates in the Coulomb tail. Tietz (1959)
claimed to have derived for the same potential "correct
eigenvalues without any extra boundary conditions, "
but did not mention that this spectrum is not unique.
Scarf (1958) claimed to have found an infinite number
of bound states with a lower bound for the potential

g csc' y considered in the interval 0&y&s/2 with a
repulsive wall at y =or/2. He concluded from this that
unbounded spectra are not a general feature of the
Schrodinger equation for singular potentials. Such a
result, which would be quite surprising, is, in fact,
unfounded and arises from a mathematical error in the
analysis of the potential g csc' r."

Scarf has also attempted to obtain bound-state
spectra by reQecting the wave function past the
singularity at r =0 into negative r by analytic continua-
tion. In this way he found complex spectra which are
unbounded for the potentials g csc' y (—s/2&y&s/2),
gy

—s+gy —i (—oo &y& oo ), and for the relativistic
Coulomb case. Not much physical significance can be
attached to these states (see Sec. III.A.1).

Even more surprising is the fact that, for singular
attractive potentials at least as singular as —gr

—4 at
the origin, the full three-dimensional Schrodinger
equation has ylo solutions at all (in the space of distribu-
tions in which partial differential equations are usually
solved). First suggested by Newton (1966) and
subsequently proved generally by Spector (1967a), the
trouble occurs because at the origin the radial part of
the formal solutions which behave like P+ =u+/y
does not satisfy the differential equation. Simply
illustrated, the difficulty is the same as occurs if one
claims r ' to be a solution to the three-dimensional
Laplace equation. It is not, of course, since

V'(y-') = 4rrb (r)—
In fact, the correct radial portion of the Laplacian
operator must then be written as (Spector, 1967a)

V'~(r)'/r)y )+ (2/y) (P/gy)+o(y) (r)/r)y) (2.13).
The last term in Eq. (2.13) gives a contribution at the
origin when operating on P+(y) for m&4. We note that
by adding a suitable delta-function term to the poten-

"The error consists of the improper evaluation of the argument
of the quantity B,(s) = exp (2Lp, (s))l of Eq. (12) in Scarf's
paper. Scarf claimed that y(q) is bounded as q—+c . One can
verify, from the asymptotic behavior of the gamma function,
that y (g) is unbounded and behaves like ln g as in Kq. (10) of
Scarf.

tial, the last term in Eq. (2.13) may be canceled. A
similar approach in which higher derivatives of the
delta function appear as compensating terms, in the
potential, has been investigated in detail by Guttinger
and Pfaffelhuber (1966) (see Sec. IV.C). We note
that if the potential is repulsive or has a negative
imaginary part in the neighborhood of the origin, solu-
tions of the three-dimensional equation do exist
(Spector, 1967a).

The contrast between attractive and repulsive
singular and/or transition potentials can be charac-
terized in the language of operators in Hilbert space.
For physical interpretation one requires an operator to
be self-adjoint. '~ The condition of self-adjointness of an
operator guarantees the existence of a real spectrum,
and the corresponding resolution of the identity
operator into a family of projection operators spanning
the Hilbert space. The requirement of self-adjointness
may be replaced by the weaker condition of essential
self-adjointness, whereby a unique self-adjoint extension
is possible. It can also be replaced by the condition of
the existence of a physically reasonable self-adjoint
extension. Self-adjointness or essential self-adjointness
fails to hold when there is a subspace of the Hilbert
space which belongs to a complex (i.e., nonreal)
eigenvalue of the operator. The deficiency indices
(m, I) of the operator are defined as the dimensionalities
of these eigenspaces belonging to a complex eigenvalue
in the upper and lower open half-planes, respectively.
The deficiency index of each half-plane is characteristic
of the half-plane; i.e., it is the same for all complex
numbers in that half-plane. The deficiency indices
of a self-adjoint or essentially self-adjoint operator are
(0, 0). If m=e& ~, self-adjoint extensions are charac-
terized essentially by m independent parameters. If
m=e= ~, self-adjoint and non-self-adjoint extensions
are possible. If m/e, no self-adjoint extensions are
possible. For real potentials, the Hamiltonian commutes
with complex conjugation, and self-adjoint extensions
must exist.

Limic (1963) has proved the essential self-adjointness
of a Hamiltonian entailing a repulsive singular, twice
differentiable potential V (y) satisfying condition (a).
He considered the Hamiltonian —V'+V(y) over the
Hilbert space I-'(Es) of square integrable functions in
Euclidean three space, as well as the partial-wave
Hamiltonian

Hi —(d'/dy')+ )l (3+1)/y'——$+ V (y) (2.14)
» An operator A (unbounded in the instances of interest) is

said to be symmetric (or Hermitian) if (Ag, f) = (g, Af), when
f, g range over everywhere dense domains of the Hilbert space.
An extension of an operator is an extension of the everywhere
dense domain over which the operator is dered to act, and the
extension is symmetric if the symmetry property is maintained.
A symmetric operator is said to be self-adjoint (or hypermaximal)
if it is maximal, i.e., if it has no proper symmetric extension.
This means that the everywhere dense domains of the Hilbert
space in which f and g lie are identical. A self-adjoint extension
is a maximal symmetric extension. See e.g., Akhieser and Glazman
(1961).
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over the Hilbert space I.'(0, ~) of square integrable
functions over the interval 0&r(~. In this paper,
Limic also proved the existence and unitarity of the
scattering operator for repulsively singular, spherically
symmetric potentials. This is proven from the existence
of the wave operators" by first deriving the validity
of the expansion of functions in L'(0, oo) in terms of
eigenfunctions of the Hamiltonian operator H~. In a
second paper, Limic (1965) has extended these results
to repulsively singular, nonspherically symmetric
potentials where partial-wave methods do not apply.

The corresponding situation for transition potentials
was studied by Meetz (1964) with respect to the
Hilbert space L'(0, ~ ). He found the deficiency indices
for the pure inverse-square potential gr ' to be (0, 0)
when g) 43, corresponding to essential self-adjointness.
%hen g(4, all solutions are square integrable in the
neighborhood of r =0. In this case the deficiency indices
are (1, 1), and one parameter is sufhcient to specify a
condition on the domain of the operator in order to
determine a self-adjoint extension. The situation that
a]l solutions of a differential equation in the neighbor-
hood of a singular point are square integrable is known
as the "limit circle" case, in contrast with the "limit
point" case (Akhiezer and Glasman, 1961)."There is,
however, a difference between the ranges —4(g(4
and g( —4. Only in the former range can a self-adjoint
extension be selected by means of a regularization
procedure (Sec. III.B.6), whereby the potential is first
made regular by cutting it off in some small neighbor-
hood r(n, and the limit of the solution as 0.~0 is then
taken. This procedure selects the solution which is less
singular in the neighborhood of r=0, which has been
the intuitive procedure applied in both the nonrela-
tivistic and rejativistic cases." This would be an
example of a self-adjoint extension specified by "physi-
cal" considerations. This consideration is of practical
importance in the selection of the physical wave
function of the Dirac equation in a Coulomb field (Sec.
II.G)."Behncke (1968) has in fact pointed out that
the deficiency indices are (1, 1) for the S-wave with a
regular potential, but not for the higher partial waves
and not for a repulsive singular potential. The self-
adjoint extension which selects the solution vanishing
linearly with r near the origin is determined in this
case by the full three-dimentional Schrodinger equation.
For transition potentials the spectral resolution of
the unit operator has been explicitly constructed by
Meetz for the radial operator in the self-adjoint case

~8 The wave operators are also termed the Moiler wave matrices.
The scattering operator is the unitary operator dered over the
whole Hilbert space and is generally termed the S-matrix. See
e.g., Wu and Ohmura, Chap. S. Note that this reference some-
what confusingly employs the indices ~, respectively, for limits
taken as t~~ ~."See Scarf (1958), Footnote 7."Landau and Lifshitz (1960), Sec. 35.

"References on the treatment both of this problem and the
case of S waves for regular potentials can be found in Scarf,
Footnotes 1, 3, 4, and 5. See also, Armstrong and Power (1963).

(g) ~3), and for the cases where a one-parameter family
of extensions is necessary. The dependence of the
bound-state energies on the extension parameter is
found, and is in agreement with the resuls of Case
(1950).

The situation for attractive singular potentials has
been considered by Meetz for powerlike singularities in
the Hilbert space L'(0, ~ ), and by Behncke (1968)
generally, for the Hilbert space L'(E.'). The deficiency
indices are shown by Meetz to be (1, 1), and the
explicit form of the self-adjoint extensions is indicated.
The parameter specifying the extension is related to the
phase parameter introduced by Case (1950) in his
discussion of singular attractive and transition poten-
tials. Meetz found that regularization does not lead to
any self-adjoint extensions. Behncke has analyzed the
equation from the point of view of the three-dimensional
Schrodinger equation and found the deficiency indices
for an attractive singular potential in the Hilbert space
to be (~, ~ ). These correspond to the infinite number
of parameters necessary to specify the self-adjoint
extensions; one parameter for each value of l and m
which specifies a partial wave. The parameters might
be chosen as Case phase parameters for each value of
t and m. Since the deficiency indices are infinite, non-
self-adjoint extensions are possible which would
correspond to boundary conditions which describe
inelastic scattering. In the context of Hilbert space
theory, self-adjoint extensions do lead to solutions of the
three-dimensional Schrodinger equation for attractive
singular potentials.

D. Energy and Coupling-Constant Behavior

The singular nature of the potential manifests itself
conspicuously in the energy and coupling constant
dependence of the scattering functions, partial-wave
phase shifts, and (5-wave) scattering length. Specifi-
cally, the singularity of the potential at r =0 is reQected
in the high-energy behavior of the phase shif t, and in the
small g behavior of the phase shift and the scattering
length. In contrast, the low-energy behavior of the
phase shift and the large g behavior of the phase shift
and scattering length reflect the "tail," i.e., the large r
behavior, of the potential. The association of small
(large') r behavior of the potential with high-(low-)
energy behavior of the phase shift is well known, and
qualitatively reQects properties of the Fourier trans-
form. One readily recognizes that the strong-coupling
limit emphasizes the effect of the tail of the potential
which is first encountered by the incident particle,
especially for a potential which is repulsively singular.
In the weak-coupling limit, on the other hand, the
particle is not much affected by the tail of the potential,
and for a repulsive singular potential registers the
effect of the strong repulsion near the origin. One can
readily recognize this correspondence between the
infiuence of the origin and tail of the potential and the
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weak- and strong-coupling limits from the scattering
length for the potential V(r) =gr ' exp (X/r) as calcu-
lated by Calogero and Cassandro (1965), Eq. (3.70).
The strong-coupling limit of the scattering length is
—g'I which is identical to the scattering length for the
potential r ' LEq. (2.18)$, while the weak-coupling
limit of the scattering length, X/ln (g/X')+27j ',
which is larger than that for any pure power potential,
clearly reflects the singularity at the origin. The
association of the weak-coupling limit with the behavior
at the origin has been noted by Tiktopoulos and
Treiman (1964).

Because of the fact that the pure power potential is
the most commonly used illustration of a singular
potential, we are including a discussion of the low-

energy behavior of phase shifts. This will help the
reader to discern which aspects of phase-shift behavior
for pure power potentials originate in the singularity
at the origin, and which in the nature of the tail. %e
shall also comment, for the same reason, on the weak-
and strong-coupling limits for the pure power potential.
A brief review of the large l behavior of phase shifts is
also included, though this is not associated with the
singular nature of the potential.

For pure power potentials V(r) =gr, one finds the
dimensionless parameter y —=k' " g'I as the natural
argument. This parameter for m& 2 is a monotonically
increasing function of k and g, so that, for example,
large values of p may correspond to large values of
k or g. One notes, however, that the k dependence for
k& 1 is a monotonically increasing function of m, while
the g dependence for g) 1 is a monotonically decreasing
function of ns. This situation reflects the fact that the
large k behavior is determined by the singularity at
r =0 which becomes stronger with increasing m,
while the large g behavior is determined by the tail
which becomes weaker with increasing m. An analogous
situation applies to the m dependence of y for k(1 and
g&1. It should therefore not be surprising in the case of
a sum of two power potentials that the regime of small k

and small g do not correspond as pointed out by
del Giudice and Galzenati (1965b) at the end of their
article.

1. I;rlergy Behavior

Lozv-ErIer gy Behg,vi or

The low-energy behavior of the phase shifts is not an
aspect of singular potentials since this behavior is
dependent on the potential tail (Landau and Lifshitz,
1960). For pure singular inverse powers, however,
completeness demands that the low-energy nature of the
phase shifts be examined.

The familiar low-energy phase-shift behavior is such
that

lim k"+' cot g~(k)~~ —(A~) '+ ~~r~k'+ ~ ~ ~, (2.15)

where A~ is the scattering length, and r~ the effective
range. LWe adopt the usual convention that 8g(0) =O.j
In fact, the right-hand side of Eq. (2.15) is a power
series in k'. It was long ago realized (O'Malley, Spruch,
and Rosenberg, 1961) that this series breaks down
somewhere for potentials with powerlike tails. The exact
place of breakdown and its nature (whether fractional
powers of k or ln k terms appear) depend on whether
2l+3—m is positive, negative, or zero. A general
discussion for powerlike tails is given by Levy and
Keller (1963).

The general breakdown of the expansion of Eq. (2.15)
may be described in the following way. I.et us write

k"+' cot 6g (k) = Q a;k' (2.16)

for regular potentials where only even j appears. For
potentials with powerlike tails this series breaks down
at j=J=m—2l—3, where, if J is an even positive
integer or zero, an exceptional term in k~ ln k appears.
If J(0, the series begins with the positive power k ~.
If J&0 is not an integer, an exceptional term in the
form of a fractional power of k causes Eq. (2.16) to
break down. Higher fractional powers also appear.
Finally, if J is an odd positive integer, exceptional
log terms appear. For J)0, the even integer powers
preceding the exceptional term can be obtained from
the Born approximation.

Pure power potentials have been studied by a number
of workers. The methods used to derive low-energy
expressions for 8&(k) are varied and are generally com-
plicated. (See Secs. III.B.1 and III.B.3.) Bertocchi,
Fubini, and Furlan (1965b) have employed an iterated
Voltera equation combined with certain reQection
properties of the wave function to find the low-energy
behavior of 8~(k) for the r 4 potential. del Giudice and
Galzenati (1965a) have solved the k/0 integral
equation for the wave function by an iterative matching
method which is a generalization of the Bertocchi,
Fubini, and Furlan method. They were able to 6nd the
Jost functions and hence the phase shifts to any
desired order. Their method is valid only for pure
powers. They noted that for m(21+3 a few terms of
the Born approximation are valid for the phase shift.
This is not true for m& 23+3 Explicit res. ults are given
for m= 2k+3, m =2l+5, and m not integral.

Stanciu (1967) used a method which is simpler than
those just mentioned, and is not necessarily restricted
to pure powers. He employed a variable-phase method
(see Sec. III.B.3) which involves the variable-phase
function. T~ (r) = tan 8~ (r, k) which satisfies a differential
equation with certain boundary conditions (see e.g. ,
Eq. (3.102)j. Here T&(~ ) gives 8&(~, k) which is the
same as b~ (k). For r smaller than some rp T[ (r ) may be
expanded in a power series, while for r&ro, the phase
equation for 2"&(r) may be linearized and solved. The
solutions can be matched at r=ro and then T~(~ )
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may be found. His results are similar to those of
del Giudice and Galzenati but less comprehensive.

Finally, Handelsman, Pao, and Lew (1968) have
used a variable-phase method applicable only to pure
powers, and which involves finding T(r) in the two
regions kr((1 and g'~" 'r&)1. These regions overlap,
and the solution may be joined to any desired order.
Their explicit results hold for m not integral.

All the above papers reach consistent expressions for
the low-energy 8& (k) behavior. Each deals with a
slightly different set of restrictions on m and 1, and they
carry out their expressions to differing numbers of
terms.

For m) 2t+3, the usual low-energy leading term is
obtained as (Carter, 1952)

tan 8/(k)~k"+' (2. 17a)

"See Landau and Lifshitz (1960),p. 405.

while for m(23+3, unusual behavior sets in, and we
And

tan 8/(k) k" '. (2. 17b)

The results of Eqs. (2.17a), and (2.17b) may be
easily obtained as done by Landau and Lifshitz (1960)."
For tv=21+3, we have

tan 8/(k)~k2/+' ln k. (2.17c)

The S-wave scattering lengths may be easily found
from the exact k =0 solutions (see Sec. III.A.2).
These are (Khuri and Pais, 1964)

A, =—(/g"')'"(r(1 —v)/r(1+v)7, v= (m —2) ',

(2. 18)

where m&3 is required since the scattering length does
not exist otherwise. For 2&m&3, the asymptotic form
of the wave function has the fractional power r™
appearing between the usual linear and constant terms.
For l/0, of course, the asymptotic wave function does
not behave as r plus a constant, but has a term in
r'+' plus a term in r ' (for m) 2l+3)

In terms of the dimensionless variable y' '~ gl™,we

quote the 3=0 results in three cases. These hold for
y((1 which means low energy or weak coupling. These
are (y is the Euler —Mascheroni constant)

tan 80(k) = L37—~3+in 27x'+3x' ln x+0 (x'), m =3,

tan 50(k) =—x'+-', x@4

+ (~8
—V)x'+ax' ln 2x+ Oh'), no=4,

«na, (k&=3- Lr(—3)/r(3)7x/

+L~'6+ —,'s ln 3—
3 ln 2—9y—(s./643) 7x'—ax' ln x

3—
5/3Lr ( 1)/r (1)7x20/3+O (x25/3) gg —5 (2 ]9)

For I=0, and m=3, the quantity k cot 5p(k) begins like
(ln"k) ', and the scattering length does not exist.

del Giudice and Galzenati (1965a) give the more

complicated expression for the case when m is not an
integer. Expressions for 1& 1, for m not integral, may be
found to several orders in x in their second paper
(1965b). Handelsman, Pao, and Lew (1968) point out
that a term of order k™4 which they include is omitted.
The general expression is not given here. A breakdown
in the power series occurs because of the appearance of
fractional powers of x. No logarithmic terms appear. ;
such terms occur only when m is an integer. They also
give lengthy expansions in the two cases m= 2l+3, and
m =21+5, where only log x terms and integral powers of
x occur.

~/(k) = -a,grk'-'&= —aox, (2.20)

Hi gh-Energy Behavior

One manifestation of the special properties of
singular potentials is, not surprisingly, the nonvanishing
high-energy limit of the phase shifts. For the repulsive
centrifugal potential /(1+1)r ', one sees this in the
energy-independent phase shif t ——',Ar. The constancy of
the high-energy limit is easily seen to hold for any
locally repulsive r—2 potential singularity. For a poten-
tial ever so slightly more singular than r—' at the origin,
the phase shift diverges as k~~ (Frank, b). For large
k, I 8(k)

~
can never grow faster than linearly in k.

This is consistent with the weak causality condition of
Wigner (Wigner, 1955)

d5/dk) —R,

where R is a measure of the range of the potential. In
fact, if condition (a) holds, the phase shift will have
weaker than linear growth as k-+~ (Frank, b).

The high-energy limit of the scattering phase shift
has been calculated by essentially two methods: the
WKB method and the variable-phase method (Secs.
III.B.2 and III.B.3) . Jabbur (1965) has calculated the
high-energy scattering limit for pure power potentials by
constructing asymptotic (in k) solutions to the scat-
tering integral equation, which is equivalent to an
approximation of the WKB method (see discussion
in Sec. III.B.2). Bertocchi, Fubini, and Furlan (1965b),
and Paliov and Rosendorff (1967) have explicitly
worked with the %KB method. The former have
worked only with pure power potentials, while the
latter have also considered forms e &"r™for small u.
Paliov and Rosendorff have also used energy-dependent
coupling constants (see Secs. III.B.2, III.V.A). The
variable-phase method has been employed by Calogero
(1964, 1967) to determine the leading behavior in k
for a wide class of potentials. Either method allows the
development of a high-energy expansion.

While all authors are agreed on the leading k de-
pendence of the high-energy phase shift for power
potentials, there is no such agreement on the eoeKcient
of this term. For V(r) =gr ", the high-energy phase
shift behaves like (f =no ')
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where ao is independent of /, and of other less singular
terms which may be added to gr .The following values
of ao are offered:

TABLE I. Comparison of numerical values of co as
given by diferent authors.

ap ——
t

2'—'r/I'(3 —2g)j (wf/sin s.f'),

(Calogero)

(Bertocchi, et al. ,
Paliov and Rosendorff)

(Jabbur)

Jabbur

1.50
1.25
1.1667
1.10
1.0

Bertocchi et al. ,
Paliov and
Rosendorff

m./2
1.2934
1.1977
1.1195
1.0

Calogero

~/2
1.2795
1.1811
1.1049
1.0

These three expressions are indeed in conflict, though
they do give very similar numerical values (see Table I).
Jabbur's calculation is based on an approximation to
the WK.B method and is discussed in more detail in
Secs. III.B.1 and III.B.2. However, between the WEB
calculations of Bertocchi et al. , and Paliov and Rosen-
dorff, and the variable-phase calculation of Calogero,
the reviewers can find no clear cut preference. " The
reader might take note of certain features of these two
methods of calculation. The WEB method provides an
explicit dependence of the phase shift on the local
behavior of the potential in the allowed region. The
phase shift depends on the potential in the forbidden
region in higher approximations through the coeKcients
of a Taylor series expansion of the potential about
the turning point. The variable-phase method, on the
other hand, accumulates the phase shift outward from
r =0, and depends on the local behavior of the potential
everywhere. However the approximation used by
Galogero in obtaining the phase shift breaks down in the
allowed region. No error bounds have yet been provided
for this method. Galogero in his Table II makes
numerical comparisons for a number of potentials of
the form V(r) =gr exp ( —pr) for several energies
between the variable-phase approximation, the WEB
approximation, and the exact result, computed numeri-
cally. Both approximation schemes give generally good
agreement. The variable-phase approximation is most
accurate for the smallest value of m considered (no=4),
where the forbidden region is largest. The WEB method
yields very accurate results for all potentials at high
energies where the criterion for its validity is best
satisfied, but fails badly at low energies.

Schemes for the calculation of higher-order terms are
offered in Calogero, Bertocchi et al. , and Paliov and
Rosendorff, and the second and sometimes third terms
of the expansion are explicitly exhibited. The reader
should be warned that different physical effects have
been considered by different authors in obtaining
these higher-order correction terms. The expansion of
Bertocchi et al. is based on higher-order WEB correc-
tions (see Bertocchi el al , 1965a, in whic.h the details

2' If the WEB results truly constitute asymptotic expansions,
then the WKB method ought to provide the correct high-energy
behavior.

of the WEB method are presented), while the correc-
tions of Pahov and Rosendorff receive their contribution
only from the Langer centrifugal term —(4r') ' (see
Sec. III.B.2). The former considered only the S wave,
while the latter also considered higher angular momenta.
In the S-wave case, both expansions are of the form

'[8(-k) ,'vr)—=—as+—Q a„y-' . (2.21)
n=&

The a~ coefficients of Bertocchi et al. , and Paliov and
Rosendorff are similar but not the same. The expansion
of Eq. (2.21) does not apply directly to the calculation
of Galogero because the correction terms exhibited
there are due in part to the addition of a potential of
the form C'r' to the original gr potential. We note
that the —n./4 is obtained by Calogero as the second
term in his expansion when m&4. 24

The leading k dependence for potentials with the
behavior for small r,

V(r} g& (~ lnr ()"(ln
~

lnr ~)i', (2.22)

Complex k Behaeior

Not much has been systematically determined
regarding the behavior of the wave functions or the
S-matrix as a function of complex k for repulsive
singular potentials. The soundest and most systematic
study was made by Limic (1962). He showed that the
regular solution of the partial-wave Schrodinger equa-
tion is an entire function of k as in the nonsingular case.
The S-matrix for a potential which has essentially an
exponential or powerlike tail is shown to have cuts along

~4 The —m/4 was found by Calogero for the case m&4 only,
since the next to the leading term due to the additional potential
C'r' grows faster than a constant when m)4. Calogero's Eq.
(I.14) would give, in fact, —w/8, and not —x/4, but this is due
to a typographical error which resulted in L1+2{1+a)/m j!having
been written in place of L1—2{1+e)/mg! in this equation.

was found by Calogero (1967) (in his Appendix III)
to have the form

8(k} k' &'! &(ln
( k [)"I (ln [ln ( k ~~)» (2.23)

where at least one of the three numbers nz —2, e or p js
positive. For V(r) exp (cr &), (c)0), one finds that
B(k) k(ln ( k ~)

—'.
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with r—' singularities they correctly concluded that one
subtraction is sufficient.

Z. CoNPlimg Col-siant Behavior

It has been noted earlier that the singular nature of
the potential manifests itself in the small g behavior of
quantities of interest. One can conclude from Poincare's
theorem'I that the Jost solution is analytic in the
entire g plane for all real energies, and for r real and
unequal to zero. However the physical wave function is
not analytic in the entire g plane. It can be shown to be
analytic in the first sheet of a multisheeted surface with
a cut along the entire negative real axis. See, e.g. ,
Eq. (3.26) for pure power potentials at zero energy.
Tiktopoulos and Treiman (1964) have argued these
results for k&0 explicitly on the basis of a Volterra
integral equation for potentials whose k=0 wave func-
tion is known. Meetz (1964) has constructed the spec-
tral representation in the complex g plane of the
Green's function (resolvent) for a fixed negative
energy. He has shown the resolvent for. a singular poten-
tial to be analytic in the half-plane Re t+ (g'i')])0
and to have a cut along the negative real axis, and
possibly as well some discrete poles along the negative
real axis corresponding to bound states. The dis-
continuity across the cut is expressible in terms of the
Jost function, and a dispersion relation can be written
for the resolvent. For the transition inverse-square
potential, the cut extends along the negative real axis
up to g= —4. The existence of this type of dispersion
relation is conjectured by Meetz for positive energy.

For pure power potentials, the complete k and g
behavior of the 5-wave phase shift is exactly determined
by the same function in view of the dependence on the
single variable x=kl 2™gl™.The low-energy expansion
obtained for the phase shift for pure power potentials
which has been previously described implicitly contains
the small g dependence in view of the correspondence
of the regime of small y to low k and small g Lsee
Eqs. (2.19)j. For higher partial waves when J='m-
2l—3&0, one can find the terms of the expansion
preceding the exceptional term from the Born ap-
proxima'tion. These are also expressed in terms of x,
and so the g dependence is determined. Bertocchi et al.
(1965b) have discussed the particular case of the S
wave for m=4. Jabbur (1965) has deduced a branch
point or essential singularity at g=0 in the scattering
amplitude for pure power potentials by showing that
this quantity does not possess a power series expansion
about g =0. The general scheme of the small g expansion
for pure power potentials has been giveu by Tiktopoulos
and Treiman (1964).

The small g dependence of the scattering length has
been explicitly determined for several potentials. The
exact scattering length for the pure inverse-power
potentials gr is given by Eq. (2.18).An approximate

drr'V(r) & ~,

the imaginary axis, and poles at the zeros of the Jost
function as for nonsingular potentials. The uniqueness
of the singular potential lies in the asymptotic behavior
along different rays in the complex k plane. He studied,
for illustrative purposes, potentials of the form r W(r)
with 2 (m(4, W (0))0, and W (r) analytic and
bounded in the right-half r plane. For the case W (r) = 1, —
Limic showed an exp (—2ik

~
y/k ~

const) behavior
(x=—g" k' " ) of the S-matrix for large

~

k ~. Jabbur
(1965) has calculated for pure power potentials a
high-energy asymptotic expression for the S-matrix
having the behavior exp (—2ix const). We note that
this behavior differs from that derived by Limic. Both
Jabbur, and Aly and Wit (1967) have tried to conclude
from this behavior the exponential growth of the
S-matrix in some complex k direction. Such a result is
quite plausible. However, no discussion has been
provided to show in what region of the complex k plane
this form of the S-matrix holds. Exponential growth
would not follow if it were valid only for real k. '"" One

may, however, correctly conclude the presence of an
essential singularity at k = ~.

Martin (1966) and Aly and Wit (1967) have
addressed themselves to the question of the validity of
dispersion relations for repulsive singular potentials.
Martin showed that for potentials with power singu-
larities' which cut off beyond a finite range E, the
forward scattering amplitude is an analytic function of
k' in a cut plane. For potentials with singularities no
stronger than r ', the forward amplitude was shown to
diverge no faster than linearly in any direction of the
cut k' plane. Thus a once-subtracted dispersion relation
can be written in this case. Aly and Wit considered only
partial wave dispersion relations, and concluded that
an infinite number of subtractions would be necessary
for singular potentials. They reached this conclusion
on the basis of exponential growth for the partial-wave
amplitude deduced from the behavior of the phase shift
on the real k axis. However, as discussed above, this
conclusion need not follow in general. Moreover, it
was not shown in what direction exponential growth
occurred. Exponential growth on the unphysical sheet
of the k' plane would not.prevent one from writing a
dispersion relation for the scattering amplitude on the
physical sheet, if the amplitude were polynomially
bounded there. Hence the conclusion of an infinite
number of subtractions seems not to be justified. The
employment by Aly and Wit of Phragmen —Linelof
methods seems promising, however. For potentials

"It does not follow from f(g) ~e" for large real s that f(s)
must have exponential growth in some complex direction. Two
connterexamples are f(s) =Ps '+ exp ( is) j ', an—d f(s) =
s In (1+e"/s) .

"Martin works explicitly with singularities for which

but notes in the conclusion that the method can be extended to
include any powerlike singularities. '7 See e.g., R. G. Newton (j.960), Footnotes 8, 9.
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has been suggested by Wu (1964). It was found that
(Sec. III.A.2)

X I1—"'L2».+2—P (1+.)—P(1—.)7+0(")I,
where

v= (m—2) ', a=in —' r,

and v is given by the solution of the transcendental
equation

gym
—2 ln 7" ]

From this equation, one finds, to a second approxima-
tion,

~=in—' r = fin (1/g") —ln ln" (1/g") j—'.

The small g dependence of the scattering length has
also been determined for the exponentially singular
potential r ' exp P/r) /see Eq. (3.71)j. This result
has been generalized by Land (a) to the potentials
r exp P/r), m)3, by means of an analysis which is
similar to that of Wu (1964) for the logarithmically
singular potentials discussed above. The first approxi-
mation for the scattering length was found to be
Lcf. Eq. (3.71)j

A~ (X/2r) PE'o' (r )/Eo (r ))~~2K/Pln (2r) ~+y7,

where r is again determined by the solution to a trans-
cendental equation

(2/y)m —2gr2 inm —4 r 1

In Sec. III.A.2 an outline of the method of Wu is
given along with a comment on this analysis. However
the approximate expressions presented above for the
scattering lengths corresponding to these logarithmically
and exponentially singular potentials are consistent
with some inequalities for the scattering length dis-
cussed by Frank and Land (c).

3. EeaL L Behavior

We consider in this section the real L behavior, since L

plays the role of a coupling constant (see Sec. II.E).
The calculation of the total cross section from the
partial waves entails a knowledge of all the phase
shifts or of a finite number, if one knows from the high L

limit how many terms of the series are sufFicient to
achieve a specified accuracy. We mention here some of
the work pertaining to the real large L behavior of the
phase shifts despite the fact that this behavior depends
on the tail of the potential and does not reQect the
singular nature of the potential. The behavior of the
scattering amplitude for singular potentials in the

expression, valid in the small g limit for the scattering
length due to the logarithmically singular potentials of
the form

V(r) =gr "lnr '

complex angular momentum plane is discussed in
Sec. IV.A.

Bertocchi, Fubini, and Furlan (1965b) have claimed
that the phase shift for a singular potential ought to
yield a resonance in each angular-momentum state at
sufIiciently high energy. Dombey (1965) has argued
that there should be no resonances for purely repulsive
potentials, and that the phase shifts should damp for
sufficiently large angular-momentum states. Dombey
suggested a very crude estimate for the high L behavior
of the phase shift for a pure power potential by analogy
with a repulsive hard core potential and found the
total high-energy cross section to behave as k 4™.For a
potential with an exponential attenuation factor he
conjectured that the total high-energy cross section
behaves like a constant. Tiktopoulos (1965) has found
the differential cross section for pure power potentials
by applying the %KB approximation to determine the
high L behavior of the phase shifts. He confirmed the
k~j behavior of the cross section for large k in the
absence of absorption (Secs. III.B.2 and V.A).

Paliov and Rosendorff (1967) have derived expan-
sions for the large k behavior of the phase shift valid for
the complementary regimes of low and high angular
momenta. They have considered potentials with
energy-dependent coupling constants as a model for
high-energy scattering. The potentials they considered
have the form

V (r) =gk'F (r)/r", (2. 24)

with F(r) =1, e "" or e &~"", and s=1 favored as the
value suggested by experiment. Their starting point is
the WEB expression for the phase shift LEq. (3.93),
see Sec. III.B.2j

oo g2 1/2 oo y2 1/2

&wxs = dr O'———V (r) — dr k' ——,
rp r'

P
r'

which they expanded alternatively in powers of X

("the X representation") or g ("the p representation").
Here ro is the classical turning point, and p=X/k is the
classical impact parameter. The expansion in the
X representation is valid for sufficiently small X with a ra-
dius of convergence proportional to co (A—= (gk'+ ')"~j.
In the p representation one obtains an expansion in the
parameter (a&/X), and the expansion is valid for X

constant for sufficiently large k. The leading term in
the phase shift for large X in the s =0 case is found to be
proportional to y A.

'
An interesting classification of three cases according

to the sign of q=te+s —2 was found. For the case q) 0,
termed the "strong interaction" case, the classical
turning point at high energy is determined by the
potential, while for the case g&0, termed the "weak
interaction" case, the turning point at high energy is
determined by the centrifugal barrier. The q=0 case is
termed the "intermediate interaction" case. In the
strong interaction case such as for singular potentials
with Ops&2, the expansion parameter co is an in-
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creasing function of k, in the weak interaction case ~ is a
decreasing function of k, while in the intermediate
interaction case the phase shift is entirely independent
of energy.

Paliov and RosendorG have constructed the form of
the double series in X or g and the parameter 1=iI/k
for the case F(r) =e &" and for the particular potential
V (r) =gkr 'e '&"i' Th. e expansion in l contains fractional
powers and sometimes a logarithmic term.

E. Sum of Two Singular Potentials

While the failure of analytic coupling-constant ex-
pansions for singular potentials has been well known
(Sec. II.D), there has been interest in the analytic
properties in the coupling constant of the weaker
singular (or transition) potentials for the case of the
sum of two singular potentials. We consider a singular
potential gVI(r)+fUs(r), where the condition (a) or
(b) is assumed to hold for both Vi(r) and Vs(r), and

lim Vs(r)/UI(r) =0. (2.25)

Regge and Predazzi (1962) have considered this
question with particular interest for the case in which
the weaker potential is the inverse-square potential
whose coupling constant depends on the total angular
momentum. Their object was to ascertain the validity
of the maximum analyticity principle of Chew for the
angular-momentum variable. They investigated in
detail the specific potential

V(r)=gr 4+fr '+l(l+1)r '+8'(r),
where W(r) is a nonsingular potential which can be
represented as a superposition of Vukawa potentials.
They set up the Volterra integral equations for the
radial wave function (regular solution), and the Jost
solution for this potential with energy. They concluded
from standard considerations that the wave function
is an entire function of f and X'= (l+s)', and that the
Jost solution as well as the Jost function are entire in f
and X and analytic in the k plane cut along Im k& ~g
(44

—' is the range of the Yukawa potential). From
this they concluded the meromorphy of the S-matrix
in the angular-momentum plane and in the cut k
plane, as well as the symmetry relation Eq. (2.6).
Their demonstration of the analyticity in X' and f from
the integral equations for the regular and Jost solutions
can be carried out for any potential for which a zero-
energy solution is known explicitly as pointed out by
Tiktopoulos and Treiman (1964) with regard to X'.
del Giudice and Galzenati (1965b), who have also used
the integral equation method, have noted that analy-
ticity of the wave function in the weaker coupling
constant can also be inferred directly from Poincare's
theorem "

Pais and Wu (1964a) have considered analytic
properties in the stronger and weaker coupling constants

with regard to application of the peratization procedure
to a double series expansion in these coupling constants
(Sec. IV.D). They studied the specific potential
gr "+"&+fr &'+'& (r) 1), and found the scattering
length to be expressible as an asymptotic series in g for
fixed f, and as an analytic power series in f for fixed g.
del Giudice and Galzenati (1965b) have studied the
energy dependence of the S-wave phase shift for the
potential considered by Pais and Wu by means of the
integral equations for the regular and Jost solutions.
They calculated the 6rst few terms of the asymptotic
series in g which entails fractional powers and in some
cases logarithmic terms and of course only integer
powers in f. Another singular potential containing two
independent coupling constants [Eq. (3.33c) with
g=07 has been used by Gale (1967), and his calcula-
tions for the wave function and scattering length verify
the analyticity in the weaker coupling constant. Other
solvable potentials entailing two independent coupling
constants can be found in Sec. III.A. See Eqs. (3.33c)
and (3.72).

Frank (a) has proved the analyticity in the weaker
coupling constant. This proof utilizes the concept of the
"relative Jost function. " In analogy to the lth partial-
wave Jost function for a potential V (r) which is equal to

lim [(2l—1)!!$'(kr)'f(k, r),
r-+0

the Jost function for the potential gUI(r)+fV~(r)
"relative" to gVI (r) is defined by

lim [f (k, r)/V (k, r)],

where f(k, r) is the Jost solution for gV, (r) jfV2(r),
and q (k, r) is the Jost solution for gVI(r). The relative
Jost function, which is proportional to the Jost func-
tion, is shown to be an entire function of the weaker
coupling constant when the condition

Vs(r)

I U (r) I"'

X 1 ds t/'q s '~ (~ 2.26

is satisfied for some P with 0(P(1.The meromorphy
in f of the S-matrix would follow from this. [The
quantity A in Eq. (2.26) is some finite positive number;
condition (a) is to hold for gVI(r)+fVs(r). ]

F. Classical Singular Potentials

For the sake of completeness we summarize here the
most important properties of classical nonrelativistic
singular potentials. These are discussed in Newton
(1966) and in Landau and Lifshitz (1958).

For all repulsive singular potentials, the classical
scattering is well defined since there is a distance of
closest approach. By well defined we mean that the
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integraI for the scattering angle, ~'

oscatt
"m in

&& I(B U(—r)]2Ml '—r 'I "' (2.27)

exists, where M is the mass of the scattering particle,
and r;„is the distance of closest approach. The forward
cross section diverges unless the potential becomes
rigorously zero beyond some 6nite r. This phenomenon
is familiar from classical Coulomb scattering. In
quantum mechanics, the potential need only fall
off faster than r—' at infinity to make the forward cross
section finite.

For the attractive inverse-square potential V(r) =
—g/r', with g)0, the scattering is well defined for
l& (2cVg)'/', which corresponds to an impact parameter
fi satisfying t/& (g/E)'/'. However for 1& (23lgl'/'. the
particle spirals into the center, and the scattering angle
given by Eq. (2.27) is infinite. These results are some-
what analogous to those discussed in Sec. II.B for the
weakly attractive (g& —4) and strongly attractive
(g& —~) transition potentials in quantum mechanics.
The former display nonsingular characteristics while
the latter have essentially all the difhculties of singular
potentials.

For an attractive potential more singular than an
inverse square at the origin, there are several contrasts
between the classical and quantum-mechanical situa-
tions. As mentioned previously, there is an arbitrariness
in the quantum-mechanical case in that the boundary
condition does not specify a unique solution. It is even
possible to select a boundary condition which describes
complete absorption (Vogt and Wannier, 1954; see
Secs. III.A.1, V.A). By contrast, in the classical case,
the scattering problem presents no particular difhculties
if the impact parameter exceeds a certain critical
value b„it. If the impact parameter is less than this
value, the particle falls to the center in a finite time.
However, the scattering angle at the origin is well
defined, since the integral for the scattering angle in
Eq. (2.27) is finite. However, as discussed by Behncke
(1968), there is an ambiguity in that infinitely many
orbits go through the origin with a given tangent. One
can connect the incoming orbit with a unique outgoing
orbit if one assumes energy and angular-momentum
conservation as the particle passes through the origin.

Ke may understand this general behavior in the
following way. The effective potential, composed of the
potential itself and the repulsive centrifugal barrier,
has a repulsive hump at a value r=rp. For energies
below the top of this hump, there is a distance of
closest approach, and the scattering is well defined. For
energies above this hump, the particle falls to the
center, but the scattering is still well defined. If the
energy is exactly equal to the top of the hump, the
integral in Eq. (2.27) does not exist. In this case the

' See Newton (1966), Eq. (5.4).

particle spirals in a trajectory wh'ich asymptotically
approaches, but never attains, a circular orbit with
radius rp. This behavior, called spiral scattering, is not
peculiar to singular potentials (see Newton, 1966). For
the attractive inverse power potential V(r) =—gr™,
m)2, for example, the critical value of the impact
parameter is given by

(gm/2E) i/2L2E/g (~ 2) j(m—2) /2m

and the radius ro by (mgM/P)'/&
An interesting feature for potentials that behave like

—gr at the origin, with 4&m)2, should be noted.
Newton (1966) has observed that in these cases the
curvature of the particle trajectory does not exist at
the origin, and concludes from this that one cannot
define a scattering angle unambiguously. This should
not affect the scattering, however, because the tangent
to the trajectory, and hence its direction, do exist."

Scarf (1958) has applied the virial theorem to deter-
mine the permissible range of energies for periodic
orbits for a given potential in the classical case. This
theorem states that for periodic or asymptotic orbits
the energy is given by

E= (V)+,'(r(dV/dr)-),

where the angle brackets denote time averages. For the
one-dimensional potentials —Vo(1+cxx)x ', n)0, and
—gx, m&2, he has shown that singular periodic
orbits have —~ &E&0 and E= (-,'m —1)Vo(x ),
respectively. For the potential —Up csc' x, with
0&x&m./2, and V(7r/2) = m, singular periodic orbits
have —-', Up& E,& ~.

Felder (1968) has numerically evaluated the classical
differential cross section for the class of potentials
gr and has presented some approximate forms for
this. Other references to such calculations can be found
in this article.

For relativistic classical scattering, singular behavior
sets in for r ' potentials because of the appearance of
LE—V(r) j' in the relativistic version of Eq. (2.27).
The same result is true in the quantum-mechanical
case as discussed below.

G. Relativistic Quantum-Mechanical Case

Our discussion of relativistic quantum-mechanical
singular potentials is limited to the Klein —Gordon and
Dirac equations with nonzero mass. The first investiga-
tion of the relativistic case is due to Plesset (1932) who
studied singular power potentials in the Dirac equation.
He observed for this situation the general property of
the relativistic quantum-mechanical case that the
essential distinction between attractive and repulsive
potentials is lost: all potentials look attractive near the
origin. Both attractive and repulsive potentials produce

» For example, the curve y =x'» is continuous with a continuous
tangent in the neighborhood of the origin, but it has infinite
curvature there.
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large and small components of the wave function that
behave very near the origin like a power of r times a
factor

III. SOLUTIONS AND CALCULAYIONAL
TECHNIQUES

A. Exact Solutions

exp ~i V(r)dr Z. k&0

This contrasts with the nonrelativistic case in that the
quantity V(r), rather than U'"(r), appears in the
exponent. The same situation occurs with the Klein-
Gordon equation due to the appearance of the dominant
term —V'(r) in the differential equation.

This general behavior is a consequence of the advent
of negative energy states which become important in
regions of strong potentials which are either attractively
or repulsively singular. The single particle Dirac or
Klein —Gordon equations lose their meaning in this
region because of these negative energy states. Thus it is
impossible to meet the usual boundary conditions at
the origin. The existence of negative energy states also
has the consequence that discrete bound states must
lie between &mc', in contrast to the nonrelativistic
case. We also note, from the foregoing considerations,
that r ' is the transition potential for these relativistic
wave equations.

The solutions in the case of the Dirac equation were
shown by Plesset to be power series in r times the
oscillatory factor given above. Spector (1967a) ex-
plicitly computed the coefFicients in the power series.
These power series are asymptotic and not convergent
(see Sec. III.A.1). Rose and Newton (1951) have
pointed out that these solutions violate unitarity
because of the nonreality of the wave functions.

Case (1950) has investigated the Dirac, Klein-
Gordon, and Gunn (spin-one) equations for the
Coulomb potential. The potential in the Dirac equation
becomes singular when nZ) j+i~, and in the Klein-
Gordon equation when nZ)l+ —', . Here n is the fine
structure constant, Z is the nuclear charge, j is the
total spin, and l is the orbital angular momentum. In
these cases the solutions are subject to the same
maladies at the origin as we have just discussed. Case
imposes orthogonality on the wave functions for bound
states to obtain a discrete but nonunique spectrum, in a
manner identical to our treatment of the inverse
square in the Schrodinger equation in Secs. II.C and
III.A.1. Scarf (1958) has also discussed bound-state
solutions for the singular Coulomb potential in the
Dirac equation by a procedure of analytic continuation
of the wave function past the origin to negative r in
coordinate space, as outlined in Sec. II.C. He obtained
complex energy levels of the form E„=P'„&i(—',)P„
representing nonstationary states, with energy 8"„,and
lifetime y„=h/P .

Because relativistic quantum-mechanical equations
are intrinsically unrealistic for both attractive and
repulsive singular potentials due to the appearance of
negative energy states, they are of little interest.

Unfortunately the completely general radial Schro-
dinger equation with a singular potential can be solved
exactly in only two cases for nonzero energy and for all
angular momenta. In one case, the inverse square, the
potential is not truly singular. In the other case, the
inverse fourth, the solutions are in terms of the very
complicated modified Mathieu functions of generally
complex argument. In addition, the potential V(r) =
g sinh ' Pr (g) 0) may be solved for 5 waves. It is also
possible to find energy-dependent potentials which are
exactly solvable, for example

u"+. Ik' —Pl(l+1)/r 'j—V(r)-}u=0,

where 8=23II=1. Putting V(r) =g/r', gives

u"+Pk' P /r—') ]u =0,

(3 1)

(3.2)

with X =l (l+1)+g.
This is the equation for a free particle with non-

integral (possibly negative) angular momentum. For a
repulsive potential (g& 0 and k'& 0), the unique
solution which vanishes at r =0 is

u(r) =r'/'J„(kr), (3.3)

with p = (X+ ~)"'. This case is clearly not singular, but
for an attractive potential (g(0) the situation changes
when g is sufFiciently negative so that p is imaginary.
(See Secs. II.B, II.C.) This occurs for X(—

~ or
g( —

4
—l(l+1). Then, for any energy, there are two

linearly independent solutions, both of which vanish
at the origin. The general solution now contains two
arbitrary constants, and becomes

u(y) —Ayl/2J (ky)+Byl/2J (kr)

where now q = (—X—&)'/') 0.
At the origin we have

(3.4)

r '/'u(r) A (kr)'/+B(kr) "
r O

=A exp (i/i ln kr)+B exp (—i/i ln kr), (3.5)

and u(r) oscillates infinitely rapidly while going to
zero. The wave function is square integrable at the
origin. This feature is characteristic of all truly singular
attractive potentials regardless of the magnitude of g.
We conclude that since no unique wave function exists

V(r)=A'r 4 2Ar '+2—/'Akr '

The inverse square does possess some features in
common with true singular potentials and is deserving
of study. We follow Morse and Feshbach (1953) to
develop the solution in this case. The equation for the
radial wave function of the 1th partial wave is
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at the origin, no unique scattering may be defined. We
will return to this point.

The case of A& —~» and 42&0 produces a most in-

teresting aspect of Eq. (3.2). We choose the solution
that vanishes exponentially fast at infinity which is
(with &=i~)

u(r) =r"'H, ,~'& (i~r)

= (r'"/sinh 7rq)ge 'J;, (kr) J;,—(irr) j, (3.6)

where

u(r) (2/siK)"' e p P Kr—i(—x/2) (iqyg) j,

u(r) ~ (e «'/z sinh xq)Pr'~'/l F(1+iq) lj

analytically continued r space. The energy levels so
generated are unique and are complete. He cautioned
that such states are not to be considered physically
meaningful, however. A method suggested by Tietz
(1959) to 6nd the bound-state spectrum does not
produce a unique spectrum (Sec. II.C).

There exist, of course, regular potentials which can be
solved with angular momentum in the presence of
energy, such as the Coulomb potential or the square
well. Ke do not list these here.

Turning to the case of the inverse fourth power, the
problem separates into only two cases, attractive and
repulsive. To solve this potential exactly, we follow
Spector (1964), and draw on the results of Vogt and
Wannier (1954), and Aly and Miiller (1966a) . Putting
u(r) =rU p2(r) in Eq. (3.1) with V {r)=g/r', we obtain

Xsin Lq ln (~~r) —C,j, p" (r)+r 'q'(r)

with P(1+iq) =l F(1+iq) l exp (i4,). We see that for
any negative energy there is a solution which is square
integrable at the origin and goes to zero at infinity.
Thus there is a continuum of bound states. This again
is a characteristic feature of all bound-state singular
potential problems.

If we impose the further requirement (Case, 1950)
that solutions for different bound states be orthogonal,
then we obtain a discrete, though nonunique, spectrum.
This requirement gives

K K2

e'll Q K2

=4g sin q ln —,(3.7)
l P(1+iq) l'sinh'sq a~

and orthogonality obtains only when q ln (~2/~&) is s.

times an integer. If one bound level. is fixed at —Ko', then
the other levels are given by

E„= ~0' exp (2s.u/q),

I= ~ ~ ~, —2, —1, 0, +1, +2, ~ ~ ~ .

The most significant feature of this spectrum is that
it is not bounded below. Generally, singular attractive
potentials have no ground state and also lack a unique
scattering phase shift for positive energies. Both result
from not having a unique square integrable solution at
the origin.

The orthogonality method was utilized by Case for
the strong Coulomb potential, which is also a singular
potential in the Dirac, Klein —Gordon, and spin-one
equations, to find discrete, nonunique spectra. These
three spectra are bounded below, unlike the normal
singular potential problem (Case, 1950).

By imposing other constraints, the bound-state
spectrum for a general attractive singular potential
may be made unique, and, possibly, bounded below.
Scarf {1958)proposed an additional set of (artificial)
conditions on the behavigp of the wave functions in an

We make the further substitution x= Xr, where X is to be
determined and set

to obtain

x=e '

x=e'

0&1 x l(1,
1(l g l(~,

+1~ (s)+ ( (Q/) )2e+2z g) 2e+2z (i+x)2)+ (s) 0

where we always have Re s&0. Setting

k'/X'= —gX'=h' and a= (i+-')'

we obtain

q" (s)—(a—2h' cosh 2s)y (s) =0. (3.9)

Mz"'&" (», h) = )rlez (0 k')) '

X g (—1)"C"2 (0')H~.+;„)&3)&4) (2h cosh z), (3.10)

where

La—( +2r)']uC" h2 '(C",„,+C",„+,) =0,

This equation is the modified Mathieu equation, i.e., the
Mathieu equation of pure imaginary variable (McLach-
lan, 1947; Meixner and Schafke, 1954; Wannier, 1953).
The theory of Mathieu functions, though extensive, is
very complicated, since the solutions to Eq. (3.9)
involve three-term recursion relations for the coe%cients
appearing in the infinite Bessel series solutions. These
recursion relations (given below) contain a parameter v

(the Floquet parameter, often denoted P) which is a
complicated function of a and h, v=p(a, h'). The
determination of v is a major problem and can be done
only by approximation for certain ranges of a and h.
Once v is determined, the solution to Eq (3.9) may be
written in conventional notation as
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and

2/2e„(0, k2) = g C"2„(h2).

N(r) =dr'/'M. i'& (&in Xr, 12)

+Sr"M &'& (&in Xr, k), (3.11)

where the plus sign is taken if I Xr I
& 1, and the minus

when I Xr l&1. Note that the behavior of N(r) at both
the origin and at inanity comes from the large s be-
havior of M„&'&'4& (s, k). Actually the solution given by
Eq. (3.11) is valid only for I Ar I) 1 or I Xr I (1, since
the derivative of Eq. (3.11) does not exist at r =X ' as
mentioned earlier. We may connect across this point by
matching the logarithmic derivative with another form
of solution valid for all finite s which is

Me~„(s, k') = g C"2„(k') exp { & (2/2+y)s].

When this is done we obtain the following expressions:
I/2 (—g) I/2

N(r) r exp z —-', vm. ——,'x
(—g)'" r

( g) I/2

+8 r exp —i
~(—g)"' r

N(r) 2'(2/2rk)I/2 exp {2t kr —-', RIr —-'„Ir)I

1/2

P7l 7l
1 1
2 4

+8' (2/2rk )I/2 exp {—2lkr+r12RIr+ A2r) I. (3.12)

In general, A/A' and 8/8' because the small r and
large r solutions must be joined across r=A. ' as de-
scribed. Note that in Eq. (3.12) all solutions are square
integrable at the origin. In fact they go to zero whi1e
oscillating infinitely rapidly.

Vogt and Wannier (1954) chose a boundary condition
B=O at the origin to correspond to a totally incoming
wave, so that they could calculate the quanturn-
mechanicai "capture" cross section. They wished to
compare this quantity with the classical cross section
for fall to the center, which they chose to call the
classical "capture" cross section. This problem is of

In Eq. (3.10)& H/" (y)—=H&'&(y) and H&4&(y)=—H~" (y)
are Hankel functions which behave at infinity like e@

and e @', respectively. These series are known to
converge for I cosh s I&1, but uniformly so only for
I cosh s I) 1. Since the asymptotic behavior in s of
each term in Eq. (3.10) is independent of n, we see that
M'@ and M(4~ have the same asymptotic behavior for
large s as do H„"&(212 cosh s) and H„&'& (2k cosh s).

We consider first the attractive case (g(0) and
k2&0 so that

X = tk"'/( —g)'"))0 and k'=k (—g)"')0

and then a=+in Xr is real. The general solution be-
comes

The "capture" cross section becomes

( g)1/2
AI

I g(0) I2 d
k

" 21+1
k2 I=2 1+e2+

(3.13)

where e~=i sin 2'/sin Irp, with y another parameter
which is a complicated function of u and h'. It can be
expressed as

e*' &=M '" (0)/M '" (0)
with

Mg, "&(0)= (CS+") '

X Q (—1)"C+"2.J~ (i"2k)J~N~ (2"2k) (3 14)

The evaluation of Eq. (3.13) for various energies is
given in Sec. V.

No one has as yet investigated the bound-state
properties of this potential.

In the case of the repulsive (g&0} potential for
k') 0, it is easily seen from Eq. (3.12) that a solution
that goes to zero at the origin occurs only for 8=0.
This solution is unique. By means of the matching
described earlier the partial-wave 5-matrix may be
calculated. Note that in this case s=&ln XrW (i2r/4)
After a lengthy calculation, the result is

S(k, 1)= exp L22&I (k)]
=i ( 1)'

I (R2—1 }/LR2—exp —(—2i2rg )jf,

(3.15)
with

E.=M „&I& (0)/M „&I& (0).

The sign in the numerator and denominator in Eq.
(3.15) is incorrectly given as plus in Spector (1964),
while Aly and Muller (1966a) are missing an over-all
factor of —(—1)'. The correct sign in the fraction may
be determined by examining the Regge pole structure
as given by Challifour and Eden (1963).Only with the

interest physically and we discuss their results in Sec. V.
We merely indicate their method here.

With this boundary condition, the usual scattering
cross section contains complex phase shifts (due to the
complex nature of the chosen wave function), and is
not unitary. Vogt and Wannier did rot calculate this
cross section, but rather the "capture" cross section,
defined as the Aux entering the sink divided by the Aux
density of the incoming plane wave. By decomposing
the wave function into a partial-wave expansion, they
adjusted the coefficient in each term so that the in-
coming wave part agrees with their chosen boundary
condition at the origin. The total wave function then
has the form

~t (r) —exp L2 (—g)"'/~3g (e)
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minus sign does Eq. (3.15) have the correct pole
structure. Alternately, the 5-matrix may be written as

S=i( —1)'Lsin aery/sin m (y+p)5,

or, for the partial-wave amplitude,

a(t, k) =ie' '/f2I i cos ~v —(e '~+sin' harp)'t25} (3.16)

None of these forms is very simple. However Eq. (3.16)
may be used to examine the Regge pole structure of this
potential (Chaihfour and Eden, 1963). (See Sec.
IV.A. )

Aly and Muller (1966b) have solved the repulsive
potential V(r)=g sinh 'Pr exactly for 8 waves only.
This potential is similar to the inverse-square potential
as regards the existence of a critical value of the
coupling constant at the point at which the potential
becomes attractively singular (Sec. II.B).The solution
is readily found to be

energy-dependent strengths can probably be con-
structed but are not of interest to us here.

This exhausts the singular potentials familiar to us
for which solutions with energy can be found. However
(Spector, 1967a), some further insight may be gained
as to the general nature of the solutions for other
singular potentials when k/0. In the three cases of
r ', r—', and r—'e &" there exists an asymptotic power-
series solution in a sense to be speci6ed. It is always
true that we may write for inverse powers, gr

N~(r)=r t exp f&L2g t /(m —2)5r'~"}x(r). (3.20)

A similar form is true even for more general potentials
(see Sec. III.B.2 on WEB methods). The function
X (r) satisfies

2 4x"(t)+ -+ g"'t-' x'(t)
1n—2

t4(r) = (sinh Pr)PF (a, b; c; —sinh' pr),

where

(3.17)

g =O'P(P 1), —K2 k2/P2 where X=l(t+1)+~4m(i4m —1), b= (8—2m)/(m —2),
and r= P~& ".Clearly, near 3=0 we have

a= ,'(P+-iK), b=-,'(PaiK), c= (P+-;).
Here F (a, b, c; s) is the hypergeometric function. The
S-matrix in this case is

So(k) = Li'(P —iK) I'(1+iK)/I'(P+iK) I'(1—iK)5.

(3.18)

Since this potential has an exponential tail, the small k
phase shift behaves like 60 k, rather than like the ln k
characteristic of the pure inverse square.

Scarf (1958) has considered the potential V(r) =
g csc'r in the presence of energy in connection with
the bound-state problem (see Sec. II.C).

One other exactly solvable case has been briefly
discussed by Vasudevan, Venkatesan, and Jagannathan
(1967)." The Schrodinger equation for the complex,
energy-dependent potential,

V (r) = (A'/r4) (2A/r')+ ( i2Akr/'), — (3.19)

has the general solution,

y (t) 1+P/g" (rN 2)5—t+ ~ .

However the power series in t continues only for
rN=4 or 6 Dor r~e &" such a power series for x(t)
exists with the multiplying function in Eq. (3.20)
somewhat different). For all other values of m, the
next term in g(t) is riot a power of t. The general
nature of x(t) in such cases is indicated by Spector
(1967a), and is extremely complicated. In the Dirac
case, however, all inverse powers have such an asymp-
totic (not convergent) power-series solution.

The analyticity properties in k of the wave functions
and phase shifts of the inverse square and inverse fourth
power are the same as other singular potentials and
have already been dealt with (Sec. II.D). The general t

(Regge) properties will be discussed in Sec. IV.A.
We note again that there are no solutions to the

three-dimensional problem for the purely attractive
case, though there are solutions for a complex-coupling
constant with a negative imaginary part, as discussed
in Sec. II.C.

N(r) =e ~t'e'~' a+b exp I (2A/x) —2tkx5 dx
Z. k=0

with u and b arbitrary constants. The regular solution is
obtained by putting b=0. This potential is of some
interest in view of its similarity to the potentials in
Eqs. (3.8) and (3.33b). Other singular potentials with

'0 Vasudevan et al. claim that the potential

v (r) = —(e4/16m'r4) + (e4/sinr') + (ine4/2r),

for which exact solutions are available from solutions of the Hill
equation, can be made real and energy independent. The energy
term k' occurs in the Schrodinger equation in the form cP02. It
can easily be seen that the assertion of the energy independence
of the potential is not correct.

Unlike the case of k/0, there exist a variety of
potentials for which one can solve the Schrodinger
equation exactly in the limit of zero energy, some for all
partial waves, and some for the S wave only. This is
certainly not unexpected, because considerable sim-
plicity is gained by dropping a term (the k' term)
from the radial Schrodinger equation, Eq. (3.1)."
The importance of this case lies not only in the inherent
interest of having exact solutions for a variety of

8'Fubini and StroffoliIo (1965) point out that this simplicity
arises because the Hill determinant associated with the zero
energy Schrodinger equation is triangular (see Sec. III.B.7).
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singular potentials, but also in the fact that exact
solutions serve as a standard with which to compare
the results of calculational techniques. In particular, the
calculation of the scattering length, which can be ob-
tained from the zero-energy wave function, is frequently
used as a testing ground for the regularization and
peratization procedures; the latter concept having been
introduced originally in a field-theoretic application.
Solutions to certain of these potentials have not been
discussed in the literature to the knowledge of the
present authors. Table II contains a list of the potentials
solvable at zero energy and is given at the end of
this section.

The simplest and most frequently discussed singular
potential which can be solved exactly at k=0 is the
pure inverse power potential (Khuri and Pais, 1964),

I'(r) =g/r" (3.21)

By making the transformation

u, (r) =r / ~,b), y=Pr',

we obtain the standard form of the Bessel equation
LBateman, Vol. 2, p. 5 (11)],

(d ~,/dA+X- (d«/dX) —{:Iy(.o/X2)]o, =o, (3.aS)

where the constants ), P, o are given by

In fact, this potential can be solved for all partial waves.
The zero-energy radial Schrodinger equation for the
/th partial wave is

(d2ui/dro) —P(l+1)/r ]ui (g/r )u—i ——0. (3.22)

12) of the two solutions of Eq. (3.22) is given by

W{ri/'K (Pr ) r"'I„(Pr') I =o. (3.28)

From the zero-energy wave function, one can com-
pute the scattering length. The reader is referred to
Sec. II.D.i for a general discussion of the low-energy
behavior of the phase shift. For potentials which vanish
sufFiciently rapidly at large r (e.g. , short-range poten-
tials), the low-energy /th partial-wave phase shift has
the behavior

k"+' cot 6$(k) ~~(A$) '[/-ior[k'+ ~ ~ ~ (3.29)

where A i is the "scattering length" (A i) 0 for purely
attractive potentials in the absence of bound states;
A&(0 for purely repulsive potentials), and ri the
effective range. In the asymptotic r region, the wave
function for these potentials is given by the solution of
Eq. (3.1'! with the potential term absent:

ui(r) (kr)"'{J[+*,(kr)+ (—1)' tan 8iJ &i+,) (kr)],

where J„(x) is the Bessel function of the first kind. In
the limit of zero energy, the wave function, expanded in
descending powers of r, becomes

tan 6i(k) { (21)!]'(21+1)
k2[+i 22l () [)2

~r'+'+ Ci (k)r '+ ~ ~ ~— (3.30)

where Ci(k) denotes the coefficient of the r ' term when
the r'+' term is normalized to unity. The scattering
length is therefore obtained from the second term of the
expansion and is given by the expression

v= (21+1)/(m —2), P =2gi/'/(m —2),
=1—(~/2). (3.24)

Ai=lim L2 '/(21+1)]{(l!) /$(2l)!] ICi(k).
k-+p

ui(r) =r"'
K&Q$ +)/i( Q){L2g'/'/(rn —2)]r &~ ')/'I

(t'm —2 '
1~1/2 J rm/4

p & gl

(3.26)

2gl/2
)&exp — r (m ')/' 3.27'

m —2

We see from Eq. (3.27), as well as from Eq. (3.32)
below, that neither the wave function nor the scattering
length is an analytic function of g at g=0. This fact
illustrates a general property of singular potentials
discussed in Sec. II.D. The Wronskian (see Footnote

The general solution of Eq. (3.22) is

ui(r) =ri/'$n K„(Pr')+/)/oI„(Pr~)], (3.25)

where K„(x) and I„(x) are the modified Bessel func-
tions. The physical solution must satisfy the boundary
condition u&(0)=0. This implies that no=0 in Eq.
(3.25). The small r behavior of the wave function is
found from the asymptotic expansion of the Bessel
function {Bateman, Vol. 2, p. 23 (1)]:

We note that for the S wave, Eq. (3.30) becomes
simply

uo(r) ~ r+Ao
p~ao

(3.31)

We now calculate the scattering length for the pure
inverse-power potential of Eq. (3.21). An expansion of
the zero-energy wave function for this potential gives

2gl/2
~ [p)=p/+ ~f& —)ll)

m —2

gl/2 [I
V gl/2 2P

Lr (1—&)]-'
~

r�&+-ir~ —2)m —2

I'(1—) ) gX r '+ (1—p)
—' rl m+o+. . . —

& (1+)) (m —2)'
where ) is given in Eq. (3.24). It is clear that the r '
term is the second leading term in the expansion only
when r/i) 2l+3; i.e., only when this condition is
satisfied is the potential sufficiently well cut oG for a
given value of / that the usual phase shift behavior of
Eq. (3.29) is obtained. In this case the scattering
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length for the /th partial wave is written

22/(/!!)2 gl/2 )2 r(1 v)
Ag ——— (3.32}

(2l+ j)L(2t)!)' m —2) r(1+.)
When m&21+3, the phase-shift behavior of Eq. (3.29)
does not hold. We do not discuss this case but mention
that one could make an alternative definition of the
scattering length, based on the behavior given in
Sec. II.D.1, and relate this to the asymptotic wave
function. For the 5 wave, the condition which gives
rise to the normal behavior of the phase shift for the
potentials gy ~, Eq. (3.29), reduces to m)3. When
evaluating the scattering length in this section, we shall
consider only those potentials and orbital angular-
momentum states which entail the usual behavior of
Eq. (3.29). Finally, for the 5 wave, Eq. (3.32) clearly
reduces to the expression obtained by Khuri and Pais
(1964), with v= (y/z —2) '.

There are several potentials which are given by a
sum of inverse powers with arbitrary coefficients which
are exactly solvable at k=0. These include

~()=(g/'")+(fl' )

l'(y) = (g/~)+ (fily')+ (f2ly'),

I'(y) = (g/y')+ (fily')+ (f2/~).

(3.33a}

(3.33b)

(3.33c)

y= 2g'"/«'.N, (y ) = e "/2i/ (y),

Then p(y) satisfies the equation

y (d'~/dy")+ L(1+1/y) y) (dv ldy)—
', [&+1/r+f/(gi/—~y-)]p=o.

We put
(3.35)

These are discussed in turn.
The erst of these potentials was studied by Pais and

Wu (1964a), whose particular interest was to determine
the analytic properties of the scattering length in the
two coupling constants g and f. As usual, g must be
positive, while f may be of either sign. We follow here
the paper of Pais and Wu who considered only the S
wave; however the solution is later generalized to all
partial waves. Furthermore, we restrict ourselves to
7&1 in the present discussion in order that the usual
behavior for low-energy phase shift be obtained. The
Schrodinger equation is

(d2N/dy2) I (g/y2+2T )+ ( f/y2+T ))~—0 (3 34)

Ke set

O(u, c;y) - y-.
g-+ 00

The wave function may be written

r (—1/y)

(3.41)

1/2

XC — 1+y '+ — &+& '
gl/2y

r(1/ ) 2g'" "'
~f-*'o+(~/ )+if/g"")1 ( ' )

f 2gl/2

Xye — 1—y
—'+ 1 7 )

2 gl/27
' '

~p r
(3.42)

Using Fq. (3.40) to determine the asymptotic behavior
of the wave function for large y, and recalling Eq. (331},
one finds the 5-wave scattering length to be

!t'2g"2 '/2 F —1 v-

r (1/y}

rI-,'I 1+(1/ )+f/(g ',)]}
r I 2 I:1 (1/ —)+f/(g"'y)) I

It is easily seen that, for f=0, this expression reduces
to Eq. (3.32) for the pure inverse power Lnz=2y+2,
v= (y~—2) = (2y) ):

We write the solution of this equation in terms of the
0' functions for convenience in later use, since these
functions exist for all values of the parameter c. If c is
not an integer or zero, which is the case with v & 1, the
4 function may be expressed in terms of another set of
functions 4 (u, c; y) by the relation I Bateman, Vol. 1,
p. 257, (7))
4'(u, c; y) =

I
r (1—c) /r (u—c+1)]C (u, c; y)

+I r(c—1)/r(u))y' 'C (u—c+1, 2—c; y), (3.39)

where the C functions have the familiar small y ex-

pansion I Bateman, Vol. 1, p. 248, (1))

4 (u, c; y)=1+ +uy u(u+1) y'—+ ~ ~ ~ (3.40)
c 1! c(c+1}2!

The physical solution satisfying e(0) =0 is obtained

by setting +2=0, since the 4' function, for r small or y
large, has the asymptotic behavior I Bateman, Vol. 1,

p 278 (1))

c=1+1/y, u= 2 L1+1/y+f/ (g"")), (3.36) ~o(f=0) = (4~g'")"I:r(—2 )/r (l —))
so that Eq. (3.35) reads

y (d'~/dy')+ (c—y) (d~//dy) —uv =o (3 37)

This is the standard form of the conQuent hyper-
geometric equation having the solution (Ba,teman,
Vol. 1, p. 258)

XI r(-;+v)/r(2v))

=—(~g'")'"I r(1—)/r(1+ )), (3.44)

where we have used the identity LBateman, VoL 1,
p 5 (»))

&p(y}=n&% (u, c; y)+n2ev% (c—u, c; —y). (3.38) I'(2v) = 2'" 'n.—"'I'(v) (v+-')
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The analytic properties of Ap can be seen at once"
from Eq. (3.43). The function 1/F(s) is an entire
function of s, with simple zeros at a=0, —1, —2, ~ ~ ~ .
Thus Ap cannot be analytic in g because of the factor
gi/(2"&. However, it is analytic in f about f=0 in a circle
limited by the first pole arising from

P I l[1+(1/r)+f/(g'"r) lI
its radius is given by

I f I &gi/2 (1+ x) .
When g is negative (attractive potential), the scattering
length is not well defined; when g is positive, one may
use Stirling's formula for the I' function of large argu-
ment to obtain an asymptotic expansion of Ap about
g=0.

The potential

I'(') = (g/")+ (f /r')+ (f /r'), (3.33b)

where g, fi, and f2 are arbitrary (but g) 0), is clearly
solvable for all partial waves, since we may set f2
l (3+1). This potential was, in fact, studied by Predazzi
and Regge (1962) precisely to determine the analytic
properties of the scattering amplitude in the angular-
momentum plane in the case of a singular potential
(see Sec. IV.A). The Schrodinger equation

p. 257 (6))
%(a, c; x)=xi &((I—c+1, 2—c; x),

N(r) may also be written

N(r) —r1(I+(I+4f2)'(2/ exp ( gl/2/r)

&&+(2[1—(1 4f2&—"'+ (f /gv")3

L1—(1—4f )"'3; (2g'"/&) I (3 48)

This expression could have been obtained in place of
Eq. (3.47) by choosing the minus signs in Eq. (3.46)
for u and c. Similarly the choice n= —g'~2 would
require ni ——0 in Eq. (3.38) in order to obtain the
physical solution of Eq. (3.47) or (3.48). Finally we
mention that the solution is analytic in the parameters
&I, f2, a, c, but not in g."

With the foregoing solution available, one can now
generalize the potential of Eq. (3.30a), considered by
Pais and Wu (1964a), to all partial waves. In addition,
the following technique allows one to generate further
potentials that are exactly solvable at k=0. Suppose
one can solve the Schrodinger equation

(3.49)

If we put

(3.45) y pl/r (3.50)

under the transformation

N(r) =y&e»2&(y), y=2U//r,

reduces again to the conQuent hypergeometric equation,
Eq. (3.37), whose solution is given by Eq. (3.38).
We must choose

then Kq. (3.49) becomes

d2(p 72g r2f r9' ——,
'

�dp 7 (m—2)+2 r(n—2)+2+ + (/2=0, (3.51)
2

and the point y=O corresponds to r=0. Thus, if we can
solve the Schrodinger equation for the potential

/
=2~—2 (1+4f2&"'

and the parameters a and c of the conQuent hyper-
geometric equation are given by the expressions

we have the solution for the potential

r(m 2i+2 r(n —2—/+2 2
(3.53)

c= 1&(1+4f2) '"
(I= I~I (1+4f2)I/2~[fi/(2gi/2) j (3 46)

where

g =Kg, X'= rX. (3.54)

Despite the apparent ambiguity in signs, the physical
solution is nevertheless unique. If we choose 42=+gi/2,
the boundary condition 24(0) =0 is satisfied by setting
0.2——0, so that

24(r) =y's(I (I+4f2)' J eXP (-gi/2/r)

&&+ t 2[1+(1+4f2)"'+(fi/d") 3,

[1/ (1+4f )I/2) (2gi/2/r) I . (3.47)

Here we have taken the plus signs in Kq. (3.46) for
a and c. However, from the identity [Bateman, Vol. 1,

In particular, by choosing m=4, 24=3 in Eq. (3.49), the
potential Eq. (3.53) reduces simply to the potential
Eq. (3.33a) considered by Pais and Wu but for arbi-
trary angular momentum, while the potential Eq. (3.52)
is simply the potential of Eq. (3.33b) which was
studied by Predazzi and Regge, and whose solution
is given in Eq. (3.47) above. Thus, upon recalling the
transformation of Eqs. (3.50) and (3.54), one finds that
the wave function for the potential Eq. (3.53), which
satisles the Schrodinger equation Eq. (3.51) and the
boundary condition p(0) =0, is given by

'2 We mention that one can determine immediately by Poin-
care's theorem that the wave function and scattering parameters
of the potentials of Eq. (3.33) are analytic functions of all the
coupling constants except for g, the coupling constant associated
with the most singular term in the potential near the origin (see
Sec. II.E) .

( (y)=y' "'«p
I
—g"/(ry')j

1 2X' f' 2V 2g"
X+ — 1+ —+ „,1+ —;—

2 7 'Pg ' '7 T'p
(3.55)
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It is readily verified that, for 5-wave scattering for
which X'=-'„Eq. (3.55) is identical to Eq. (3.42).

The Schrodinger equation for the third of the power
potentials of Eq. (3.33c) is written (Vasudevan
et c/. , 1967)

(3.56)

We set

u( ) =«xp [ lg""—' '(fi—/g-'")r-'5~{y)

tials which have as their dominant singularity a pure
inverse power. We turn next to a class of potentials
which are exponentially singular at the origin:

V (r) =g(e""Ir4)+ (f/~), »0 (3 65)

This potential is discussed by Newton (1966) and,
with X=2, by Aly, Riazuddin, and Zimerman (1964b)
and by Galogero and Cassandro (1965) in connection
with the peratization approximation (see Sec. IV.C).
The 5-wave Schrodinger equation is written

y= g'"[r '+ (f/2g)]'

p (y) satisfies the confluent hypergeometric
equation, Eq. (3.37) with

(d'ul«') Lg (—e"'"/")+ (fl")]u =0

Put
u(r) =rp(y), y= (2/X)g»'e"t'"

(3.66)

~= -' —(f '/16g'")+ (f /4g»"), e= l (3 57)

The physical solution satisfying u(0) =0 is given by

u(r) =r exp [—(i)g't2 (1/r') —i (j,/g»2)r —i]

The foregoing solution simplifies for the potential of
Eq. (3.33c) with g=O. The resulting potential, now
written as

I'(r) = (g/r')+ (flr4), (3.33d)

has been discussed by Gale (1967) in connection with
peratization, and by Vasudevan et al. (1967). The
Schrodinger equation,

(d'ul«') [(g/~)+ (flr4)—]u= 0, (3 59)

under the transformation

u(r) =r9 (y), y= g»'[(1/r)+ (fig)], (3 6o)

becomes
(d'~/dy') —

yv =o. (3.61)

This is the Airy equation with the solution (National
Bureau of Standards Handbook, pp. 446—7)

p (y) =n&Ai (y)+o.2Bi (y) (3.6. 2)

The Airy functions Ai (y) and Bi (y) are simply related
to the modified Bessel functions of order &s (cf. the
National Bureau of Standards Handbook, p. 447).
Using asymptotic expansions for the Bessel functions,
we see that the physical solution satisfying u(0) =0
must have 0.2 ——0, so that

u(r) =rAi[g»'(1/r+f/g)] (3..63)

The scattering length is readily found to be

„,»'(f/g't')
»(f/g'")

Neither the wave function nor the scattering length is
analytic in g about g=0, but both are analytic in f
about f=0; the region of analyticity in f being limited
by the occurrence of the first bound state for f sufli-
ciently negative.

So far we have considered only those singular poten-

A (f= ') = ' g-»'—-—
when f=0, we have

„,Z, '[(2/) )g» ]
&o[(2/) )g»']

(3.69)

(3.70)

(3.71)
g 0ln (g/)i')+2y '

where y =0.5772 is the Euler —Mascheroni constant.
This class of potentials is especially interesting

because, apart from the power potentials, it is the only
potential for which the peratization program appears
to be successful.

There is one further general class of singular poten-
tials, those having a logarithmic singularity at the
origin. There are three potentials of this type which
are exactly solvable at k=O (in addition, these are
solvable for all partial waves). I et us consider the
potential

I'(r) =giDn (~')"/r']+g=Dn (r ')'ir'] (3 72)

This potential with p=1, and g&
——0 is discussed by

Arbuzov, Filippov, and Khrustalev (1964) in connec-
tion with both renorrnalization (Sec. IV.C) and
peratization (Sec. IV.D).

The Schrodinger equation for the /th partial wave for

Then Eq. (3.66) is transformed into the Bessel equation
Eq. (3.23), where

v= (2/X)f»2.

The general solution is

u(r) =r fn]I„[(2/P, )g"'e"t"]ycxmZ„[(2/X)g't2e"t"]I

(3.67)

and the solution which satisfies u(0) =0 is obtained
by setting ng ——0. The scattering length is given by

„,&.'[(2/) )g"']'='"~.[(2/ )g"]
Two cases are of particular interest in connection with
the application of this potential in the peratization
program. When f=~~, the scattering length becomes
simply
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The S-wave Schrodinger equation has the solution

g
—2J/ (x)

24(y) =(2(yey(')+0(2yyy(" ()/$

8 g'

F (y') =gl/2L(in y+1) /y]

the general potential of Fq. (3.72) is

(O'I /dy') f g
—fin (y

—') /y']

+g2Dn (y ')'/y2]+D(~+I)/y2]}N/=0 (3 73)
where

Under the transformation (Cornille and Predazzi,
1965b)

~4(y) =yl/2y '«b) y= Dn (1ly)]-',

one obtains

(d'~ /4') —
f (g /y"")+ (g /y'+')+ f (I+ l)'/y']} v =o.

(3.74)

This equation is nothing but the 5-wave Schrodinger
equation for the potential

~(y) = (gl/x~4)+ (g2/y'+4)+((I+ 2)2/y']

With p=2, q=1, gl&0, and g2&0, V(y) is the potential
of Eq. (3.33d). Furthermore, the boundary condition
Nl (0) = 0 is equivalent to the boundary condition
4/)1(0) =0. Hence, upon making the obvious substitu-
tions, one obtains the physical solutions. For example,
for P=1, gl/0, and g2=0, one obtains from Eq. (3.63)

(l+1 )2 1/2

n, (r) =r"'(Inr '+

2gl/2 I 1 2 3/2

XK(/2 ln y 1+ ' (3 75)
3 g

while for P=2, gl&0, g2=0, one has from Eq. (3.58)

Il (y) =y"' ln y ' exp L
——'g'/' In' (y ')]
(I+-')'

3+ ' 2 g'/'ln'y-' . (3.76)

We omit the explicit expression for the more general
case (P=2, (7=1) because of its complexity. The fore-
going technique also allows one to obtain solutions for
some nonsingular potentials. For example, if p= —1,
and I7= —2 in Eq. (3.72), the potential in Eq. (3.74)
reduces to the potential of Eq. (3.33b) whose solution
has been given above $Eq. (3.47)]. See Charap and
Dombey (1964).

The foregoing discussion exhausts the potentials
(known to us) exactly solvable at zero energy that
may be written either as a single term or as the sum of
terms, each term multiplied by a coupling strength
which is independent of the other coupling strengths.
There are certainly many potentials which are exactly
solvable at k=0 which are written as sums of terms
where the coupling strengths are related. " One po-
tential of this type which has been discussed by Gale
(1966a, b), and by Aly, Riazuddin, and Zimerman
(1965) is

V(y) = Lg(ln' y/y4) —g'/'(1/y')]8(R —y). (3.77)

"Some potentials of this kind are given by Vasudevan, Venka-
tesan, and Jagannathan (1967).

The condition N(0) =0 implies that (22 ——0. The exact
scattering length is given by

A =g'/' ln EL1—g'/' R—' ln R] ' (3 78)

under the transformation

becomes

~(y) =«(x),

(d'&/dS') y '(1+2» y) &=—0. —

Here we have set

gw~
—' ln x=1,

2= (Iny) '.

Another potential of this type may be generated
from Eq. (3.33d) and is given by

V(y ) = (g(2+rrn)/2/y4)
f

y 1+ (f/g)]~

The transformation of Eq. (3.60) reduces the S-wave
Schrodinger equation to

(d'( /dX') —X"( =0

and this equation has a solution in terms of Sessel
functions:

(2 (y) —yl/2 [(21El/( +2) f L2/ (222+ 2)]y(m+2)/2 }

+(2211/( +2) f L2/ (2/2+ 2)]y' +""I}
These potentials are not particularly interesting or

useful because one cannot distinguish the functional
dependence in the wave function or scattering parame-
ters of the coupling strengths associated with the more
singular and less singular terms in the potential. In
particular, the potential of Eq. (3.77) has been used
as an example of the peratization procedure applied
to a logarithrnically singular potential which is not
transitionally singular (Gale, 1966). (The potentials

gy
' In" (1/y) are transitionally singular; see Sec. II.B.)

However the interpretation of the results is not without
ambiguities because of the above difficulty.

We conclude this section with a discussion of an

interesting class of potentials for which only an ap-
proximate treatment is possible. The potentials

U (y ) =gy~ In y ', 4/2) 3,

have been studied by Wu (1964) who suggested an

approximate expression for the 5-wave scattering
length. The Schrodinger equation

(d224/dy2) gr min y '24=0—
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This differential equation was treated perturbatively by
Wu who found the S-wave scattering length to be

xi= (g" /')"[I (1 )/I'(1+ )]
X{1—e'[2 ln v+2 —P(1+v)—P(1—r )]+0(e')I,

where I „(Pr ) is the regular solution at zero energy
[Eq. (3.25), with as ——0], and

G(r, r') =o. '(rr')"'

where v = (m —2) ', and P (x) is the logarithmic
derivative of the gamma function. The lowest-order
result is simply the scattering length for the pure-
inverse-power potential g'r™,where g' is to be inter-
preted as g'=g/e. This result of Wu is quite plausible.
However, one aspect of the perturbative treatment of
this problem was not clarified. The nature of the
solution of the differential equation for p(y, s) for large

y is qualitatively modified under a change of sign of e.
This suggests that the solution is not analytic in e

about &=0. Moreover, the second term in the solution
for p(y, s), obtained by iteration, is not uniformly
small with respect to the first term over the positive
real axis. It is not clear to the reviewers whether the
scattering length, obtained as an integral of the iterative
solution (in e) over the entire positive real axis, is
indeed given by a valid asymptotic series.

in the notation of Sec. III.A.2. Iteration of this integral
equation will lead to a convergent expression for I(r, k)
in the form of a power series in O2. This expression is not
very useful as it is extremely dificult to determine the
phase of the asymptotic oscillating r dependence of
u(r, k) from such a representation.

One may, on the other hand, set up integral equations
which are based on G~(r, r'; k), the free particle (with
angular momentum l) Green's function, and which
determine wave functions based on a boundary condi-
tion at r = ~.For example, the integral equation for the
Jost solution is written'4

f)(k, r) =krh(' '(kr)-

+gk dr'rr'[k&' ~ (kr)j&(kr') —k&' ~ (kr') j&(kr)]

Xr™f~(k,r'). (3.81)

TABLE II. Singular potentials solvable at zero energy. The
general and/or physical solutions are given by the equation
number in the Table. Discussion of these solutions is found in
the text accompanying these equations.

Potential
Solution (general
and/or physical)

(g/ ")+L~(t+1)/'3
(g/r'"") +(f/r") +Lt (~+&) /r'3
(g/r4) + (fg/r') + (f2/r')
(g/r') + (f~/r') + (f2/r )
(g lr') + (flr4)
g (s"'/r4) + (f/r4)
g&(ln'r '/r') +g2(inr '/r') +Pl(l+1) /r']

3.25, 3.26
3.38, 3.42, 3.55
3,38, 3 ~ 47
3.38, 3.58
3.62, 3.63
3.67
3.38, 3 ~ 75, 3.76

B. Calculational Techniques

sf(r k) =r'~'X„(Pr')+k' dr'G(r r')u(r' k) (3. '79)

/. Matching Methods

When an exact solution to a quantum-mechanical
equation is not known, one generally expands in terms
of the solutions to a solvable "part" of the problem.
Such a procedure is naturally suggested for the study
of the energy dependence of phase shifts for power
potentials, in view of the known exact solutions to the
k=0 case (see last section). In this way, the regular
solution N(r, k) for power potentials can be written as
the solution to the Volterra integral equation

The physical solution can be constructed from this
function. This integral equation may be iterated to
give a convergent series for r&0, but gives a divergent
quantity at r=0. A similar situation obtains with
regards to solution of the variable-phase equation
(Sec. III.B.3) where solutions which can be con-
structed for small (large) r prove useless when extended
to large (small) r One cop. es with this situation by
constructing solutions beginning from both extremes
and matching them at some intermediate point,
frequently the classical turning point or some nearby
point. We refer to these as "matching methods. "
One generally expands the solutions in terms of a param-
eter, e.g., the dimensionless parameter y=gl™01~2™
for the power potentials, and matches up to a given
order in the parameter to find an expansion of the
physical quantity (tan 8 or e'") to that order.

The method was applied by Jabbur (1965) to study
the high-energy limit of scattering for S-wave power
potentials. The two integral equations for the physical
wave function, Eq. (3.79), and an equation based on
Eq. (3.81), were considered, and solutions were pre-
sented which were purported to be correct to the neglect
of terms of relative order p '. They were matched as to
value and slope at the classical turning point. The
mechanics of solution were not exhibited. In fact, the

'4 An alternative integral equation may be written based on the
Green's function for the l =0 case, where the potential l (l+1)r '+
gr™appears in the kernel, see e.g. , Giffon and Predazzi (1964).

"One is aware that a higher-order term in an expansion based
on a parameter may become very large for special values of the
argument and therefore dominate. It would therefore not be
correct to extrapolate a WEB solution for large values of energy
(where it ought to be good) out to a turning point.
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solutions found represent an approximate form of
WEB solution (see end of Sec. IIJ'.B.2), corresponding
to the neglect of terms which are really O(x). The
results do not agree with those of other calculations
(Sec. II.D.1), but seem nevertheless to be a good
approximation (Table I). The matching seems to have
been an attempt to continue a WEB solution through
a turning point in an approximation in which the
critical behavior disappears. "This example illustrates
the pitfalls inherent in matching expressions which are
improperly expanded.

Bertocchi, Fubini and Furlan (1965b), and del
Giudice and Galzenati (1965a,b) have derived the
low-energy expansion of the phase shift by a matching
approach. They availed themselves of a symmetry of
the radial wave equation to relate the regular solution
for small r to the Jost solution for large r Thus .by
calculating only one of these solutions (the Jost solu-

tion), they automatically obtained the other to the
same accuracy. They found tan 6 from the Wronskian
of these two solutions. The radial wave equation for
power potentials with energy and angular momentum
has the form

(O'I/dr')+ Ik' —(g/r )—L(lt' —~)/r'j}u=O. (3.82)

The quantity q (p) =r '~'u(r), in terms of the dimen-
sionless variable p=r/rs jr,= (g/k')" j, obeys the
equation

dp X2 )2
+n ' —+ x'— ——

q =0 (3 83)
dp2 dp p2+2JP p2

The notation P= 2/(ns —2) has been used. The solution
y' '(p) of Eq. (3.83), which corresponds to the Jost
solution e& l(r) of Eq. (3.82), behaves for large p like

q' &(p) p "'exp (—exp), (3.84)

while the solution y„s(p), which corresponds to the
regular solution of Eq. (3.83) LEq. (3.27)], behaves for
small p like

-.( )-"'"' p (—P ") (3 85)

The substitution $=p
' i' transforms Eq. (3.83) into the

differential equation

ds~ d~ Psxs Psgs+t-' —+ —P'x'+ — =O, (3 86)
des dg (2P+2 t2

which shows Kq. (3.83) to be invariant under the
substitutions

p~p ", P~P ' x~—sPx, X~plt. (3.87)

One finds that these substitutions transform the
regular and Jost solutions into each other, leading to
the identity

~-s(n, x, l, p)=v' '(~ "', spx P»P ')-(3 88)

By means of this expression, del Giudice and Galzenati
were able to derive the terms of an expansion in x of

p„g from that for p( &. Bertocchi et al. originally applied
this technique to the case m=4 (p=1), where the

symmetry was well known, while del Giudice and
Galzenati extended it to general powers. The matching
was done through evaluation of the Wronskian at an
arbitrary point r.

A matching technique was employed by Stanciu
(1967) and Handelsman, Pao, and Lew (1968) in

studying the low-energy expansion of the phase shift
via the tangent equation, Kq. (3.112) of the variable-
phase formalism. Again solutions for small and large r
are feasible, but may not be extended to the comple-
mentary asymptotic limit. Stanciu and Handelsman
et al. demonstrated the technique for the pure power
case. They expanded the tangent function for small r
in powers of k, and explicitly evaluated the two leading
terms. They used slightly different techniques to solve
the tangent equation in the region of large r. Stanciu
linearized the nonlinear equation, while Handelsrnan
et al. constructed a solution by iteration. Stanciu
matched corresponding terms at the classical turning
point, on the basis of the intuition that this would be
the most logical place at which to match solutions.
However, he found that changing this point somewhat
does not a8ect the results. Handelsman et al. proved
that the two expansions have a large region of overlap.
Both results agree.

Z. The 5'EB Method

The most commonly applied technique in the study of
singular potentials is the familiar semiclassical or
WEB method. "As the method is discussed in virtually
every quantum mechanics text, it is not necessary to
present the fundamentals in this article, so much as to
point out the reasons for its usefulness as well as some
lesser known aspects regarding its applicability to
singular potentials. We are concerned with the method
only as applied to the solution of partial-wave radial
equations. The method is well suited to the study of
effects which depend on the singular nature of the
potential, as the criterion for the validity of the ap-
proximation is well satisfied in the neighborhood of the
singularity. The interest of physicists in singular
potentials derives to a large extent from considerations
in high-energy physics, and it is fortunate that the high-

energy regime validates WEB calculations, not only in
the neighborhood of small r, but over the entire range
r=o to ~, provided the potential is smooth. The
method is also good for high angular momenta, even
at low energy, and is well suited to the study of large
complex angular momenta (Jaksic and Limic, 1966a, b) .
It is not applicable as a low-energy calculational
technique.

The approximation known in the physical literature as the
WKB method is also known as the JWKB method (J for Jeffreys)
and as the Liouville —Green method. The name WEB approxima-
tion sometimes refers only to the connection formula at a turning
point. A history of the approximation is presented in the first
chapter of Heading's monograph (1962).
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U (r) gr™, (3.90)

one finds
(dg/dr) ~ g

—1/&r&/(pm)-1

r 0
(3.91)

which goes to zero for m) 2, and is small at m=2 if g
is large. The approximation is not valid near r=0 for
0(m&2. The correct behavior of the radial wave func-
tion for small r, for a singular repulsive potential, is
easily calculated from the %KB expression

tt (&) NwKB (&) = LV (&)7 '"

&& exp — dx V (x)"', (3.92)

(c)r) which is independent of k and /. The irregular
solution would have the positive sign in the exponential,
and for an attractive potential (Sec. II.C) one would
have imaginary exponents or their linear combinations
(Case, 1950).

The criterion, I dX/dr l&(1, one knows is necessarily
violated in the neighborhood of a classical turning
point, where A.—+~. It is well known that there is a
prescription for continuing around such a point, " and
converting in a unique fashion the oscillating solution
on one side to the exponentially damped solution on
the other. This prescription leads, for example, to the
WEB approximation for the phase shift due to a
repulsive potential with, say, one turning point,

&wxn (k) =
00 (/y i )2 1/p

dr k' —V (r)—
r2

TP

= -', ir (/+-', )—krp

00 (/+ r )2ii/p
dr kr-

rp )

00 (/+ & )2 1/2

+ dr k' —V(r) — ' —k, (3.93)
rp r2

"It is also always assumed that the singular potentials ap-
proach their singularity monotonically within some small neigh-
borhood of r =0. The situation is expected to be different when
the potential oscillates infinitely rapidly near r =0.' Connection formulas are presented in standard texts, e.g. ,
Schitf (1955), Sec. 28, or Landau and Lifshitz (1960), Sec. 47.
More rigorous treatments can be found in Heading (1962), Chap.
3.4, Froman and Froman (1965), or Bertocchi et a/. (1965a).

The criterion for the applicability of the WEB
method is usually expressed as the requirement that
the local (radial) wave length 'A be slowly varying, i.e.,

I dP. /dr I
=

I (d/dr)t k' V—(r)7 '"
I

=
I -,'V'(r)/Lk' —V (r)7»' l«1. (3.S9)

For the moment we disregard turning points. For large
r, this condition is automatically satisfied if t|&0 and
U'(r) —+0. For large k, the criterion tends to be satisfied
over intermediate ranges. For small r, the criterion is
ideally satisfied for very flat potentials t V'(0)=07
and, paradoxically, for singular potentials also. 37 For
example, if

where rt ——(/+z)/k, and rp is the turning point, i.e.,
the point where a classical particle would have zero
kinetic energy I V(rp)=k'+(/+rz)'r '; see below for a
discussion of the (/+-,')' term].

We note certain aspects of the applications of the
WEB method to scattering problems. As k—+~, ro

clearly approaches zero; however, in the singular case,
NeBke the regular case, the quantity kro does not go to
zero as k~~, and in fact its contribution is of the same
order of magnitude as the integral. For V(r) =gr, we
find

Pr —gl/mal
—2/m —~

k-&ca
(3.94)

Q'(r) =k'- V(r) —D(/+1)/r'7 (3.96a)

~(r) =-,'ILQ'(r)]'/Q'(r) I
—-',

I
Q" (r)/Q(r)]. (3.96b)

In order that the WKB solution of Eq. (3.92) be a
satisfactory solution to Eq. (3.95) with the tp term
absent, it is at least required that the relative error

while the contribution of the integral in Eq. (3.93) is
also proportional to x. In the S-wave case, the quantity
kro is, in fact, just the 5-wave phase shift due to an
infinitely repulsive core extending out to r=ro. Thus,
apart from the constant term ir/4 (in the S-wave
case), the lowest-order or semiclassical approximation
is classical in that it treats a classically forbidden
region almost as an impenetrable core. There are correc-
tions to the phase shift from higher-order W'KB
approximations. These depend on the behavior of the
potential within the forbidden region only through the
coefficients of a Taylor series expansion of the potential
about the turning point (see Bertocchi et a/ , 1965a, b. ,
for an evaluation of some of these correction. terms).

We call attention to the existence of two forms of the
WEB approximation which we term the "standard"
and "Langer" forms (see Bertocchi et a/. , 1965a and
Froman and Froman, 1965). These differ with regard
to the treatment of the centrifugal barrier term in the
potential. If the potential U(r) in the WKB wave
function of Eq. (3.92) should contain the centrifugal
barrier term, the coefficient of this r ' term in the
Langer form would be (/+rz)', while in the stan. dard.
form it would be the familiar /(/+1). The original
motivation for the Langer prescription was that the
expression for the WKB physical wave function in the
presence of a regular potential have the correct behavior
r'+', while the expression corresponding to the irregular
solution has the behavior r '. Langer (1937) has
argued the necessity of this prescription for the case of
regular potentials with angular momentum (including
/=0) from the condition that the relative error term
due to the WKB solution be small. To see this, we note
that the WKB wave function ttwxn(r) of Eq. (3.92),
with Q' replacing V, satisfies the differential equation

d NwKn (r)/dr'+ LQ' (r )—a& (r )]ttwKn (r ) =0, (3 .95 )

where
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term satisfy
~ (F)/Q'(~)&&1 (3.97)

This leads to a more refined criterion than the condition
of Eq. (3.89). For regular potentials with angular
momentum, this quantity is not small. Langer has
shown that, by means of the variable changes r=e*,
a=e ~2y, which transform the interval 0(r( ~ to
the interval —~ (x&~, the relative error in terms of x
does become small. This transformation gives rise to
the Langer prescription /(1+1)-+(1+sI)' (see Langer,
1937, or Morse and Feshbach, 1953). The Langer
prescription leads to Eq. (3.93) for the phase shift.

The reasoning in the case of singular potentials is
different. Unlike the situation for regular potentials,
both the standard and Langer terms for the %KB
wave function in Eq. (3.92) give the correct behavior at
the origin, since the replacement l ((+1)~(l+R)'Idoes
not afIect the behavior there. This can be seen, for
example, for the pure inverse power potential V(r) =
gr from Eq. (3.27). In addition, one notes that for
singular potentials, the relative error term &u/Q' is

vanishingly small at r=0. For the pure inverse power
potential, the relative error is

(o/Q' ~~[m (m 4)/16—g jrm ' —
(3 98)

which vanishes identically at the origin, so that the
criterion is ideally satisded. The two forms for the
WEB wave function generally differ for large r, since
the Langer form saddles the potential with an additional
(4r') ' tail. One Inay note that for m=4 with k'=0
and l=0, the quantity co vanishes identically, and the
standard forxn gives the exact solution for all r. One in
fact finds that both forms have been used for the wave
function in the study of singular potentials.

The Langer form is nevertheless to be preferred for
the WEB expression for the phase shifts, Eq. (3.93),
in the case of singular potentials, The expression of
Fq. (3.93) is obtained by taking the difference of the
phase of the wave function for large r, in the presence
and absence of the potential V(r). The Langer form is
necessary in the second term of Eq. (3.93) to represent
the phase of the wave function in the absence of the
singular potential, but in the presence of the centrifugal
barrier. The condition that the WKB phase shift
vanish in the absence of an interaction implies the
Langer form in the fIrst term of Eq. (3.93).

For the high l behavior there is very little difference
between the two forms. Limic (1962), in fact, has
employed the standard form in his study of the large l
behavior of the S-matrix, while Paliov and Rosendorff
(1967) used the Langer form. For large k, the leading
term, which is independent of l, can be found from
either form. However, higher-order terms depend on l
and, as mentioned above, the Langer form is to be
preferred, at least for nonzero values of l.

For singular potentials in the case of S-waves there
appears to be no clear-cut choice between the two

forms. The wave function in the absence of interaction
does not require the Langer form; furthermore the
standard form is preferable at the origin. The S-wave
WKB phase shift in the standard form is given by

Swxs (k) =—kro+-,'~

+ d~I Lk' —V (r)]I~I—k ~. (3.99)
ro

This expression, however, does not vanish at g=0,
and hence is valid for large k with g&0.

Higher-order corrections to the WKB approximation
have been considered in connection with singular
potentials. Schemes for calculating higher-order terms
generally have been given by Bertocchi, Fubini, and
Furlan (1965a). They found corrections to the leading
WK8 contribution for singular power potentials at
high energy in the form of an asymptotic series in
negative odd powers of the dimensionless parameter

(see Sec. II.D.l). Limic (1962), and Jaksic and
Limic (1966a, b), have written integral equations for
the Jost solutions to singular potential radial equations
(for real and complex 1) in terms of the Green's func-
tions constructed from the exact solution to a suitably
chosen equation of the form of Eq. (3.95). In this way,
they constructed solutions with WKB-type leading
terms and bounds on the corrections to the leading
terms.

Tiktopoulos (1965) has studied scattering by a
power-type singular potential with a complex energy-
dependent coupling constant. He showed that the
WKB approximation provides an asymptotic form for
the phase shift in certain restricted regions of the
complex k=I+2, g, or k planes, which include the
positive real axes in these variables. He found the
scattering amplitude in the high-energy strong coupling
limit from the WKB values of the phase shifts for
complex l, by applying the Watson —Sommerfeld
transformation in which the contour integral is esti-
mated by steepest descent techniques. Error bounds on
the WKB expressions for the phase shift are determined
(see Sec. V.B).

In addition, one also finds that approximations have
been made on the WKS expressions. Paliov and
Rosendorff (1967) wished to determine the large real /

behavior of the phase shift for large k in order to sum
the partial-wave series approximately. They therefore
expanded the WKB expression for the partial-wave
phase shift into two complementary expansions, one
appropriate for P/gk small (the "A representation"),
and the other for P/gk large (the "p representation").
In essence, they distinguished between the situations
when the turning point is determined by the centrifugal
barrier, and when it is determined by the singular
potential (see Sec. II.D).

Jabbur (1965) has employed a matching technique
intended as appropriate to power potentials in the
high-energy limit (see Sec. III.B.1). It is in fact an
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approximation on the %KB technique. Thus the
asymptotic solution for large 7t—=g"~k' "~ in Eq. (23)
of his paper for the region of small r is merely the WEB
solution. The approximations [V (r)—k']'I'~ V'" (r)—
i~k'V 'I'(r) and [k'—V(r)]'~'~~k (2—k) 'V(r) in the
exponents in his Eq. (24) give his asymptotic (in k)
solution for large r.

The reader interested in some of the more rigorous
and detailed aspects of the %KB approximation may
consult the recent monographs by Heading (1962),
and Froman and Froman (1965).

3. The Variable-I'hase Method

A very useful method in scattering theory which is
well suited to singular potential investigations is the
variable-phase method. Some reviews of this method
can be found in Calogero (1963) and Babikov (1967),
as well as in Calogero's well written monograph
Variable Phase Approach to Potential Scattering (1967).
The quantity one deals with in this method is the
variable phase bi(p, k), which represents the phase shift
at energy k' due to the potential V(r)tt (p r) [8(—x) is
the step function which vanishes for @&0 and is unity
otherwise]. It follows by definition that 8& (0, k) =0, and
b~(eo, k)=bi(k) which is the /th partial-wave phase
shif t. It obeys a first-order, nonlinear differential
equation which for the l=0 case is

doe(r, k)/dr= —k 'V(r) sin' [kr+h&(r, k)]. (3.100)

For nonsingular potentials, the boundary condition
be(0, k) =0 determines a unique solution. The phase
shift described by Eq. (3.100) is automatically con-
tinuous in k, and is zero at V (r) =0, and thus has no
mod x ambiguity. For higher partial waves, the variable-
phase equation has the form

dbms(r, k)/dr= k 'V(r)D'—(kr-)

S waves, "one has

A'(r) =—V (r)[r+A (r)]'. (3.103)

These equations have proven fruitful in theoretical and
numerical applications of scattering theory, 4' and have
certain advantages as well as disadvantages as compared
to the straightforward Schrodinger equation approach.
Some advantages of the method are ease of interpreta-
tion, convenience for generation of approximations and
recursive procedures, and determination of bounds on
the error, for all ranges of energy, coupling constant,
and angular momentum. It is useful for numerical
computation in certain cases, but not when the potential.
is strongly repulsive, though bounds are available.
Levy and Keller (1963) derived the low-energy
behavior of regular potentials very conveniently by
this method.

The variable-phase equation has also proven useiul in
the study of singular potentials, and is suited to
investigation of both high- and low-energy behaviors.
Here, the boundary condition 5&(0, k) =-0 in fact does
not uniquely specify a solution. A unique solution is
obtained from the condition b~(r, k)& —b~(kr), where
5~(kR) is the phase shift for a hard core potential of
radius R. One fmds that bi(r, k) for small r is expressible
as a sum of terms, " where each term vanishes more
rapidly near r=O than the succeeding term. For the
l=0 case, one 6nds

60(r, k) = kr+k[V —(r)] 'I'

+ ',kV'(r)V-(r) 2+" .-(3.104)

This expression has been used to calculate the high-
energy behavior of the phase shift, which is deterxnined
by the singularity of the potential at r =0 (Sec. II.D.1).
For the leading high-energy behavior, one 6nds

&&sin' [8~(kr)+b, (r, k)], (3.101)
8e(k) —k ' drV (r) sin' I k[V (r)] "'}. (3.105)

where D&(x), 8&(x) are, respectively, the modulus and
phase of xn& (x)—+ixj ~ (x) [ji (x), n& (x) are the
familiar spherical Bessel functions). Forms and
properties of these functions can be found in. Appendix I
of Calogero (1967). One can also write a nonlinear
6rst-order differential equation for various functions of
the variable phase. 39 For example, Ta(r, k) = tan ba(r, k)
obeys the "tangent equation"

Note that the integral always converges if condition
(a) is satisfied. Calogero has shown4' that Eq. (3.105)
gives, in fact, the leading high-energy behavior for all l.
One notes, however, that the first two (or even three)
terms of Eq. (3.104) clearly do not represent the
variable-phase function for large r, since 8~(~, k), the
phase shift, must be finite. Calogero (1964, 1967) has
suggested an approximate form for the phase function
in place of Eq. (3.104),

dTe(r, k)/dr
b (r k)= —kr+kr[1+rV(r)"'] ' (3.106)

=—k 'V(r)[sin kr+To(r, k) cos kr]2, (3.102)
which, in turn, leads to the expression for the 5-wave

and T&(0, k) =0. Similar equations can be written for
T~(r, k)=tan 8~(r, k), Si(r, k)=exp 2ib~(r, k), and
A &(r, k) =+ (2i) '[S&(r, k) —1]."An equation for the
"variable scattering length" can also be written. For

39 Calogero (1967), Chap. 3, Kqs. (10), (19a), and (19b).

"Calogero (1967), Kq. (9) of Chap. 11.The variable scatter-
ing length for general l is given in Eq. (7) .

4' Bibliographies may be found in Calogero (1967) and Babikov
(1967). An approximate guide to the bibliography by topic is
given in Chap. 1, and on p. 238 of Calogero (1967).

4' Calogero (1964), Sec. II, and Chap. 15 of the book.
4' Appendix II of Calogero (1964).



66 REVIEWS OE MODERN PHYSICS ' JANUARY 1971

phase shift

bs(k) = —k ' drU(r)

&&sin' IkrL1+rV(r)'i'1 'I (3.107)

as an approximation appropriate at all energies for
l=o. A corresponding expression is constructed for
higher partial waves. 4' The expression of Kq. (3.106)
reproduces the first two terms of Eq. (3.104) for small r,
and agrees in order of magnitude with the third term
for power potentials, but has little to recommend it
for large r. It might be expected to have some validity
for potentials with long tails, since /ie(r, k) tends to
grow like —kr in strongly repulsive regions. Equation
(3.107) leads to the expression4'

drr'V (r)

t 1+rV'(r) j' (3.108)

for the 5-wave scattering length. It gives satisfactory
numerical agreement" which, for power potentials, is

best for small values of m where the potential tail is
longest.

The low-energy behavior of phase shifts, as was
mentioned earlier (Sec. II.D ), is not properly an aspect
of singular potentials. Additional mathematical con-
siderations, however, are necessary in the study of the
low-energy behavior for singular potentials. Stanciu
(1967) and Handelsman, Pao, and Lew (1968) have
both employed the tangent equation to derive the
low-energy expansion for repulsive singular potentials.
The method solves the tangent equation in the domains
of small and large r by recursive methods. For small r,
the solution is expanded in powers of k as in Levy and
Keller (1963). For power potentials, the r-dependent
coefficients of powers in k can be constructed in terms
of the known zero-energy wave function, Kq. (3.26).
The nonlinear tangent equation for large r is solved

by Stanciu using a sequence of linearizations and by an
iterative method in Handelsman et a/. The coefFicients
of like powers of k (ln k terms may also be present) are
matched at the classical turning point4I to give a low-

energy expansion of the phase shift. Both authors

agree in their results, although the treatment of

Stanciu is more concise. Both claim that the method
can be extended to nonpower potentials. The results
are in agreement with other calculations (Bertocchi
e/ a/. 1964b; del Giudice and Galzenati, 1965a, b), ex-

cept for a k' ' term (see Sec. II.D).
Calogero and Cassandro (1964) have shown from the

5-wave variable-phase equation that the coeKcients of

44 Equation (6.7) of Calogero (1964), and Chap. 15, Eq. (23),
of the book.

4'Equation (6.8) of Calogero (1964). Note that Eq. (26) in
Chap. 15 of the book contains a typographical error.

4' Calogero (1964), Table I and Fig. 1, p. 110, of the book.
47 Stanciu chooses ro, the classical turning point, as a "logical"

connection point, but does not prove the validity of both ex-
pansions there, though he indicates that connection at Xro(X =1)
yields the same results. Handelsman eg ul. prove the validity of
the small-r expansion up to x 'ro and beyond x'I("' ')ro, which
for small x provides generous overlap.

the Born series for the 5-wave scattering length for
potentials of the form4' g ln& (r I)/r' are finite though
the series is only asymptotic. Thus upon making the
substitutions A (r) = rB (r), ln r '= s", in Eq. (3.103) one
finds

(dB/dx) B—=x"(1+B)' (3.109)

which is formally solvable in a power-series expansion
with finite coefFicients.

4. Jost FNet,.tioe Methods

for which they constructed iterative approximations,
either by Laplace transform techniques or by solving
the integral equations in coordinate space. These
iterations generally do not result in finite approximate
values of F(k, 0), and Cornille and coworkers have
devised the method of "limiting dependences" to obtain
finite converging approximations from the iterations.

Let f(%k, r) be the Jost solutions" corresponding to
the asymptotic behavior exp (Wik, r), respectively, for
large r. The behavior of f(&k, r) near r=0 is specified

by the %KB approximation

f(&k, r)~V "'(r) exp + dr'$V (r')]"' . (3.111)

48 Calogero and Cassandro (1964) consider only p=1, but the
result is clearly valid for integral and nonintegral positive p (See
Frank and Land d).

49 We follow Jost's convention of dehning the Jost solution

haik,

r) by the asymptotic behavior e *'s" for large r. The opposite
convention is employed by Newton (1966). Most of the present
discussion is limited to 1=0 partial waves. The considerations for
higher / values are virtually identical in principle, and are pre-
sented in Cornille (1964, 1965a). Most of the ensuing discussion
is limited to 0&0, and the condition (a) is assumed to hold.

The Jost function can be utilized for the calculation
of partial-wave scattering by singular repulsive poten-
tials, just as for regular potentials. There are, however,
distinct features characteristic of the singular case
which call for detailed consideration. The Jost func. tion
may be defined in terms of the Wronskian of the regular
solution and the Jost solution f (k, r) For. regular poten-
tials, the /=0 Jost function is identical with the value
of the Jost solution at r =0. For /) 0, the Jost solution is
infinite at r =0, but the Jost function is expressed as the
value at r=0 of the ratio of the Jost solution to the
singular scaling function (2/ —1)!!(kr)

In the case of potentials which are repulsive and
singular at r = 0, the Jost function is likewise expressible
as the value at r =0 of the ratio of the Jost solution to an

appropriate energy-independent singular scaling func-
tion Z(r). It is possible to determine this scaling
function to within a positive constant factor, and thus
determine the Jost function to within a trivial nor-

malization. This point of view has been extensively
dealt with in a series of articles by Cornille and co-
workers who have made this the basis of certain
approximation techniques. They have considered an
4'effective" Jost solution F (k, r) defined by

(3.110)
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It is clear that one can determine an energy-independent
Z (r), with the property that F (&k, 0) is finite. Such a
factor is not unique, and it is convenient to impose on
Z(r) further conditions: i.e., that Z(r) be positive and
continuous for real r, and Z(r)~1 as r~~ . It is further
convenient for practical purposes to have a manageable
analytic form for Z(r). The form

Z(r) =exp dr'y (r')

Lap/ace Transform Method

The Laplace transform method applies when the
potential is expressible as a sum of a singular part
Vi(r), and a regular part V~(r), which can be repre-
sented as Laplace transforms whose supports vanish
when 0&o.&p, i.e.,

dne —'o, (n), (3.114)

where ot.'o~ (a)—0 as n~~ which, expresses the

'0 This expression for the S-matrix, valid for repulsive singular
potentials, is derived in Limic (1962), and Pais and Wu (1964b).
See Sec. III.B.6.

has been suggested. Cornille (1964) has applied it to
V (r), expressible as a Laplace transform and possessing
a r ' singularity. Cornille and Predazzi (1965a, b) have
constructed a function Z(r) of this form, when the
singular part of V(r) can be expanded in terms of
elementary functions. For the singular part of V(r)
expressible as a sum of negative powers of r, as powers of
a logarithm times a negative power of r, as the ex-
ponential of a negative power of r, or as a sum of
such terms, they showed how to construct x(r) as a
finite sum in terms of such singularities. Here x(r) is
not affected by the addition of any regular potential to
the singular part. The quantity F(k)—=F(k, 0) serves
as an "effective" Jost function in that the 5 matrix for
the partial wave is expressible as

5(k) =lim [f(k, r)/f( k, r)j-
r~0

=F (k, 0)/F (—k, 0), (3.112)

and the complex zeros of F ( k) locate th—e bound states
One finds that the "effective" Jost solution F(k, r)
obeys the differential equation

[(d'/dr')+2x(d/dr)+k'jF(k r)
= (V—x' —x')F(k, r) =WF (k, r). —(3.113)

This differential equation has the merit that its solu-
tions are finite at r=0. One may now seek approxima-
tion procedures for the solution of this differential
equation to determine the value of the effective Jost
function, i.e., the value of the effective Jost solution at
r =0. Cornille and coworkers have prescribed two
methods for the construction of solutions to Eq. (3.113)
by successive approximation, the Laplace transform
method and the coordinate space method.

p(k, n) =6(n)+[n(a+2ik)] ' dip(k, P)

where
X[2(~k+0)5(~ P)+—~(~ P)]—, (3 116)

(3.117a)

and

(3.117b)

One may write the solution by iteration to Eq. (3.116)
as

p(k, n) =8(n)+ Q p„(k, n),
n=1

(3.118)

from which one can construct F (k, r) for all r&0. The
iterations display a range-order correlation where the
term obtained from the nth iteration gives the exact
value of p(k, n) for n in the interval Ng&a( (I+1)p.
In the case in which the sum in Eq. (3.115) contains
only one term, then, for m1&4, the individual terms in
the expansion of the effective Jost function,

F„(k,0) = f do.p„(k, ix),

are 6nite, and the sum over e is convergent. %hen
mi&4, the individual terms F„(k, r) are divergent as
r~O, the singularity becoming stronger with increasing
ri. In this case, truncation of the series of Eq. (3.118)
would not even serve as an approximation for the
effective Jost function. For Vi (r) of the form of
Eq. (3.115), it is possible to determine the leading
behavior of p(k, n) for large n which determines the
behavior of F(k, r) for small r. When the sum in

Eq. (3.115) consists of only a single term mi=m, one
finds the behavior of p(k, n) for large n to have the
form (Cornille and Predazzi, 1965a; Cornille, Burdet
and Giffon, 1965)

[m/2]

exp ( g c,n' '~' +c inn) (3.120)

[m] denotes the integral part of m, and the c, can be
calculated. This behavior obtains for large cx only when
nz& 2 as one would expect. One has Re c1&0 for no&4.
Despite the divergence of F„(k, 0) of Eq. (3.119) for
mi&4, Cornille and Predazzi (1965a) have demon-
strated, by means of steepest descent estimates, the
convergence of the effective Jost function when the

regularity of V&(r). Gornille (1964), and Cornille and
Predazzi (1964, 1965a) have explicitly shown how
this method can be conveniently applied .to a Vi(r)
of the form

V

V, (r)=e i'" g a,r "~' (m, &m,+i&2). (3.115)
y=1

Application of the Laplace transform method due to
Martin (1961) leads to a Volterra integral equation for
p (k, e), the inverse Laplace transform of e'""F(k, r),
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large n behavior of p(k, n) is given as in Eq. (3.120).
A knowledge of the large n behavior of p(k, a) might be
used to estimate F (k,O). Alternatively, Cornille
(1965a), Cornille and Predazzi (1964, 1965a), and
Cornille, Burdet, and Giffon (1965) have developed
the method of limiting dependences to derive approxi-
mations to the effective Jost function from the iterative
solution Eq. (3.118).This is discussed subsequently.

Coordinate Space Method

One may approach the calculation of F (k, r) by con-
sidering the integral equation in coordinate space
based on the Green's function for the differential
operator (d'/dr')+ k'

F(k, r) =exp (—ikr)+k ' dr' sin k(r —r')

Method of Limiting DePenderices

The finite quantity F (k, 0) is expressible as a double
limit

F (k, 0) = lim lirn g F (k, r),
r~0 y-+Do n=p

(3.123)

Q F„(k, O)
n=0

would not do. Instead one evaluates the truncated sum

where F„(k,r) is the eth term of an expansion of F (k, r)
obtained by iteration. One would like to reduce this to a
single limiting procedure, where a finite stage of the
procedure provides a useful approximation. As we have
seen, the finite sum

—2X r' ', H/ r' Il k, r' . 3.121
dF(k, r') G„(k)= Q F„Lk, r (p)j

n=P
(3.124)

For l&0, one may alternatively treat the centrifugal
potential in the potential term 8'(r), or in the Green's
function, as part of the inverted operator (Cornille,
1965a). We may attempt to solve these equations by
iteration. For m~ = 2, the individual iterations are
finite at r=O, and iteration thus serves as an effective
approximation procedure. For m~&2, one finds that
the individual iterations diverge at r=0, even though
F (k, 0) is finite. The degree of divergence as r~O in-

creases as r ™2)n, where e is the order of iteration.
This reflects the essential singularity of F (k, r) at r= 0.
The iterations can be exploited to obtain approximate
answers through the method of limiting dependences.

One can also attempt a calculation of F(k, 0) by
using Eq. (3.110), and iteratively solving the integral
equation for the Jost solution (for /=0, say)

f(k, r) =exp (—ikr)

+k ' dr' sin k(r' —r) V (r')f(k, r'). (3.122)
r,

One would, however, find that any finite iterative
approximation,

f'"'(»r)= Zf. (»r)
n=p

to the solution of Eq. (3.122), would have the property
f&» (k, r)/Z(r)~0 as r—+0. Alternatively, one could em-

ploy the iterative approximations to Eq. (3.122) in the
ratio given by the middle expression of Eq. (3.112),
and go to the limit r—+0. It can be shown that, although
this gives a nontrivial answer, it would converge very
badly to the true answer. A modification of such an
approach which enables one to utilize finite orders of
iteration to obtain good convergence to the Qnite value
of F(k, 0) or S(k) is afforded by the method of limiting
dependences. This method makes feasible the exploita-
tion of 6nite orders of iteration for solution of any of the
above-mentioned Eqs. (3.116), (3.121), and (3.122).

at a point r(p) which is chosen to correspond to the
order of truncation p in such a way that

lim G (k) =lirn g F„fk, r(p))=F(k, 0). (3.125)
y-&&e n=p

In the situations considered in connection with Eq.
(3.122), the iteration procedure starts with the zeroth-
order Jost solution exp (—ikr) valid at asymptotically
large values of r. Each successive iteration approximates
the exact solution over a larger and larger range of r,
extending inward from r= ~; the accuracy improving
for larger r. Thus a choice of an order of iteration p
provides the solution with a given preassigned error
down to some r (p) which goes to zero as p—+~ . There
is an approximate "limiting dependence" ri, (p) with
the property that, if r(p) in Eq. (3.125) is chosen so
that r(p)/rz, (p)~~ as p~~, then Eq. (3.125) is

valid. The same limiting dependences ri, (P ) are
appropriate to the iterative solution either of Kq.
(3.121) or Eq. (3.122), and would also apply to the
numerator and denominator functions of a Fredholm
solution (Cornille, 1965c). The limiting dependences

rc(p) depend only on the most singular part of the
potential. The dependence ri, (p) has been worked out
for a variety of singular potentials, those of the power

type, the power type with logarithmic factors, and
those with exponential type singularities (Cornille,
1965b). Cornille has worked out a numerical example to
illustrate the convergence properties of this procedure.

The method of limiting dependences can also be
applied to sum the iterative solution of Eq. (3.116) for
the inverse Laplace transform of the Jost solution. The
iterative solution to Eq. (3.116) was noted to possess a
range-order correlation. The behavior of the Jost
function at r=0 is determined by the value of the
Laplace transform for asymptotically large o., which as
we see cannot generally be represented satisfactorily
by any finite order of iteration. Unlike the iterative
expansion of the radial dependence of the Jost solution
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discussed previously, finite partial sums of the F„(k, 0)
of Eq. (3.119) give finite results when mi of Eq.
(3.115)&4 (Cornille and Predazzi, 1965a). However,
when m~&4, the individual terms of the iteration are
not finite, and the method of limiting dependences
may then be resorted to in order to estimate F(k, 0).
Under these circumstances, one would evaluate the
truncated sum Fo')(k, r) at the value r=r(P) appro-
priate to the order of iteration p. Once again there is a
limiting dependence rr, (p) such that rr, (p)~0 as p~~,
and the r(p) should be chosen so that r(p)/r i(p)~ 0!)

as p~~. For potentials where the singular part is of
the form of Eq. (3.114), rr, (p) is found to be of the
form (Cornille and Predazzi, 1965a)

rr. (p) = (const) p '(ln p)~. (3.126)

By means of the limiting dependence procedure one
may alternatively work directly with the Jost solution

f(k, r) in order to find the S matrix. Thus one can write

S(k)=lim I f'»Lk, r(p))/f&&)[ k, r(p—))I, (3.127)

where f'»(k, r) is the Jost solution obtained by iter-
ating Eq. (3.122) p times; r(p) is chosen so that
r(p)/rr, (p)~~, and ri, (p) is the same as discussed in
connection with Eq. (3.125).

Optimum uMethod-

The iterative solution of the integral equation,
Eq. (3.122), for the Jost solution leads to a power
series in g, the coupling parameter of the potential.
This power series has been analyzed by Frank (1967,
1968), and by Masson (1967), and shown to represent
generally an entire function" of g of exponential order —',

and type

dx [ V(x) f"',

if the potential is nonincreasing and does not change
sign, and also r&0. A general entire function

with P„(k, r) &1 for potentials which do not change
sign, and are nonincreasing. This, of course, implies that
p= g, and

dx
[ y(x) [i)2

as stated. Iteration of Eq. (3.122) p times reproduces
the terms off(k, r) up to the term of order g". In view of
the above discussion, one would. expect iteration p
times to well represent the Jost solution for values of r
down to rI, which satisfy

p=n(g) = ',g-dx
[ V(x) ['t' (3.133)

Inversion of this relation for r as a function of p gives
the rr, (p) determined by Cornille and co-workers. When
the coefficients of the power series are all positive as in
the case k=0, the optimum-e method can be used to
evaluate the ratio of power series of the same order and
type. This method has been applied by Frank and
Land (a) in. the peratization of the scattering length due
to potentials of the form r exp (X/r), when m&4.
The method also reproduces the scattering length for
power potentials at some saving of labor.

in the sense that, for asymptotically large
~ g ~, we have

ln M(l g I) =ln m(l g I)+0(ln I g I). (3.131)

The value of the function for any large value of
~ g I is

dominated by the terms in a neighborhood of specified
width about the optimum term, and the contribution
from terms outside of this range is negligible.

These considerations allow very simple determination
of the limiting dependences rr, (p) appropriate to the
method of Cornille and co-workers. The work of Frank
and Land (1970a) has shown that f„(k, r), the eth term
in the iteration of~~Eq.~(3.122) for large e, has the form

~(g)= Z C(u)g"
n=o

(3.128) 5. Phase Amplitude Method-

of exponential order p and type v has growth properties""'
in the complex plane which conveniently provide
certain types of estimates. One can determine that the
index of the maximum terms of the power series Eq.
(3.128) for large I g I lie in the neighborhood of

n(g)=tr I gI'. (3.129)

m(g) —=C(u)g" ~-=.-(.), (3.130)

"Some of these properties are referenced in Frank and Land
(1970a), and can be found in Valiron (1949), Chap. 2.

%e call this value of n the "optimum-e" of the function.
It can be shown that the maximum modulus M(~ g ~)
on a large circle of radius

~ g ~

can be estimated by the
"optimum term" in the series

It is well known that the partial-wave phase shifts
can be obtained as the phase of the Jost solution4'

fo(k, r) (in the l=0 case, say) at r=0 The phase-.
amplitude approach is another method by which one can
extract the phase shift and related scattering quantities
from the Jost solution. The method is an exact one
and has some very significant features vis-a-vis singular
potentials. It provides an expression for the phase
shift which is valid without qualification for both
regular and singular potentials, and the same expression
may be applied for all physical angular momenta. It is
also amenable to convenient approximation. It is very
convenient for analyzing the strong- and weak-coupling
limits (Sec. II.D).

Letfi(k, r) and fi(—k, r), respectively, be solutions of
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the partial-wave radial equation obeying the boundary
conditions' for asymptotically large r,

scattering length" (Wu, 1964; Calogero, 1965b),

ft, (&k, r) exp {%i{kr —(lir/2) j}. (3.134)
(3.140)

Qne readily verifies the identity"

(3.135)
d fi(k, r) —2ik fi(k, r)
dr fi(—k, r) fi(k, r)fi( k, r—) fi(—k, r)
where the %ronskian identity is used. One finds by
integration that

ft(k, r) fi(» o)
fi( k, r) —f(( k, 0)—

dx
Xexp —2ik, , 3.136

f( k, x 'j'
where f&(k, x) =f&*(—k, x) has been employed (k real).
Equation (3.136) remains valid for k complex if

Eq. (3.135) is integrated without this gratuitous
replacement. If we let r~~ in Eq. (3.136) we find,
considering Eq. (3.134),

exp L2j8i(k) j=exp (ill) Lfi(k, 0)/fi( —k, 0)]

=exp 2ik dr(~ fi(k, r) ~

'—1)

(3.137)
so that

(3.138)

where the convention of continuity of 6~ (k) in k, and the
vanishing of b~(k) at zero coupling, have been imposed.
This is the phase-amplitude expression for the phase
shift. Note that, though condition (a) is sufhcient for
the phase shift to exist for k real and nonzero, the
expression of Eq. (3.138) does not apply unless condi-
tion (b) holds. This condition is required for con-
vergence at the upper limit of the integral. An alterna-
tive derivation of this expression in the case of the
5-wave can be found in Newton (1966), in which
expressions for the phase and modulus of the Jost
function fp(k, r) at any r are also derived. "A similar
expression for the scattering amplitude,

Ao(k) =k ' exp (i5o) sin 80

This converges at the upper limit if condition (c) is
obeyed. For a repulsive singular potential with l=0, or
any repulsively singular or regular potential with
l/0, the Jost solution becomes unbounded at r=0.
Equation (3.138) shows the contribution from this
region to be small, so that the contribution to the
phase shift at a 6xed energy, or to the 5-wave scattering
length from the repulsive region, is in fact unimportant.
This is as it should be since the particle hardly pene-
trates strongly repulsive regions. Iff(0, r) =0 for some
r)0 in Eq. (3.140), the integral is evaluated by
deforming the integration path (Calogero and de
Stefano, 1966).

Frank and Land (c) have used Eq. (3.140) to derive
inequalities for the scattering length, which are useful in

studying its g dependence. Calogero and de Stefano
(1966) have indicated how the complex k singularities
for the scattering amplitude can be read from Kq.
(3.139). Wu (1964), Calogero (1965b), and Calogero
and de Stefano (1966) have employed an approxima-
tion procedure for calculating the scattering length
proceeding by solution of the integral equation

f(0, r) =1+ ds(s r)V(s)f—(0, s) (3.141)

for the zero-energy Jost solution. Equation (3.141) is
solved by an iterative approximation procedure which
constructs the successive terms in the power-series
expression for f(0, r). These iterates, when substituted
into Eq. (3.140), provide convergents to the scattering
length which is known to be nonanalytic in g at g=o.
Calogero and de Stefano (1966) have proven the
convergence of this procedure for the scattering length
as well as for the phase shift. Calogero (1965b) has
found that the second iterate yields exceptionally
accurate results for the scattering length of r poten-
tials, with agreement at m=3 and ng= ~, and a maxi-
mum error of 4% for intermediate values. Wu (1964)
has applied Eq. (3.140) toward the calculation of the
first two orders of peratization for the scattering length
of the potential —gr ' ln r (Sec. IV.D).

dr 0
—' —k, r —exp —2~kr, 3.139

0

or the related 5-matrix element is also derived by
Newton (1966) and by Wu (1964).'4 Equations (3.138)
and (3.139) both lead to the expression for the 5-wave

"This derivation is found in part in Limic (1962), Sec. 3, and
in Jaksic and Lirnic (1966a), end of Sec. I, where an expression
is derived appropriate to all l.

"Newton (1966), pp. 348—349, Newton (1966), pp. 395—396,
and Wu (1964), Appendix C.

'4 See also Calogero and de Stefano (1966), Eq. (2.3), where
another expression of a somewhat similar type, Eq. (2.3a), is
presented. The generalization to higher l values is derived and
presented in Jaksic and Limic (1966a).

6. Regulavisatioe 3Athods

The mathematical problems of quantum field theory
have led to the wide use of regulator techniques in
calculations. In these situations, the divergent quan-
tities, which appear essentially or inessentially in the
intermediate stages of a calculation, are made finite
through the introduction of arbitrary cutoGs or

"The subscript 0 for /=0 is draped in the fall&wing. The
quantity f(0, r) exceeds unity for nonattractive potentials, as can
be seen from the iteration of Eq. (3.141).This shows the scatter-
ing length to be negative. An expression for the scattering "length"
for higher / values has not been derived.
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regulators. In some cases, the final result has a cutoff-
independent finite limit, which is presumed to represent
the physical answer. In other cases, the limit is not
finite, and judicious physical interpretation enables
one to make physical sense of such a calculation. The
method has given rise to the technique of peratization
as a possible calculational tool. The theory of singular
potentials has been employed as a testing ground for
these ideas. Clarification of some of these concepts has
been possible in the limited context of potential theory.
Khuri and Pais (1964) have noted a limitation in the
analogy of potential theory to relativistic field theory
(RFT), in that a regularized RFT is not a RFT,
though a regularized singular potential is still a poten-
tial. Further aspects of regularized singular potentials
vis-a-vis field-theoretic ideas can be found in Secs.
IV.B and IV.D.

Some aspects of the conventional scattering formalism
require modification in the case of repulsive singular
potentials. As indicated in Secs. II.B and III.B.4 the
partial-wave Jost functions do not exist, and the ex-
pression for the 5-matrix element as the ratio of Jost
functions is meaningless. The same applies to expres-
sions for the partial-wave scattering amplitude or
scattering length" in terms of a ratio. Ii. has been shown

by I.imic (1962), and a bit more thoroughly by Pais
and Wu (1964b), that these relations remain valid if one
generalizes these ratios to limits of ratios, as in the
relation

5 (k) = lim [f(k, r) /f ( 0, r)]. (3.—142)
r 0

Pais and %u found that a desirable aspect of this

prescription is that it provides an "intrinsic" cutoff.
This is because the physical answer is found as the
limit of finite quantities without the introduction of an
arbitrary cutoff into the interactions. The intrinsic
cutoff idea, however, does not immediately sug-

gest practicable approximation procedures. ' Spector
(1966a) has remarked that a separate proof is required
for some of the relations of scattering theory which
remain valid for singular potentials.

The standard approximation procedure of scattering
theory, the Born expansion, is inoperative for singular
potentials because of the divergence of the expansion
coefficients. ~ This has led to regularization by means of
externally imposed cutoffs. In this procedure, the
singular potential V (r) is replaced by a "regularized"
potential V(r, n) which depends on an additional real
parameter n, and which obeys the conditions: (i)
V(r, cx) is nonsingular for a/0, and (ii) V(r, n)~U(r)
pointwise as n—+0. One generally demands that V(r, ~)
be real for n real.

The Born series for the regularized potential can in
principle be calculated. If it is feasible to calculate and
sum the series, the limit of this sum as n—+0 is presumed
to represent the physical answer. There has been no real
use of this method as a direct calculational technique in

potential theory to give answers not already known;
rather it is used as a technique to be tested a posteriori
with otherwise derived answers. Frank and Land
(1970b) have however calculated the 5-wave scattering
length for pure power potentials through explicit cal-
culation and summation of power series for the regu-
larized potentials. They deal with the scattering length
as a ratio of two power series in the form"'

dr,
n=0 O

r2

f2 ~ ~ ~

dr2 ~ ~

(3.143)

The nature of the singular dependence of the Born
terms for n/0 has been analyzed for the pure power
case without explicit calculation by Tiktopoulos and
Treiman (1964) and Khuri and Pais (1964). The
nature of the singular dependence on n is also explicitly
exhibited by Calogero and Cassandro (1965) for the
regularized potential

V (r, n) =g(r+n) —' exp [2/(r+n)].
It can, of course, be explicitly determined for any of the
exactly solvable potentials (Sec. III.A.2).

"An expression for the scattering amplitude as a ratio is given
in Pais and Wu (1964b), Eq. (1.8) . This quantity can be written
as a power series in the coupling constant LNewton (1966), p.
334$. The limit as 0~0 of the numerator and denominator in
the above formula for the scattering amplitude leads to an ex-
pression for the S-wave scattering length as a ratio, which is
given in Eq. (3.143).

The regularizations most commonly employed are:
V(r, cx) =0(r—a) V(r), "0 regularization" [g(r) is the
step function which is unity for positive values of the
argument, and zero for negative valuesf, and V (r, n) =
V (r+a), "+ regularization. " A special form of
regularization was employed by Khuri and Pais
(1964) for pure power potentials of the form U (r, n) =
n U(r/n), where U(r) =r~ as r—&~. We shall call
this "U regularization. "

A number of fundamental questions are raised by the
regularization procedure. Under what conditions does it

"In fact, the "method of limiting dependences, " discussed in
Sec. III.B.4, serves as just such an approximation, as pointed
out by Cornille.

5g Strictly speaking, for transition" lly singular potentials of
the form (ln&r ') r ', the Born coefficients are actually finite, but
the series is asymptotic (Sec, II,B),
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give finite answers' Under what conditions are such
answers correct or well-defined approximations? Con-
vergence to the correct answer has been checked for the
solvable potentials employed in connection with
peratization investigations (Secs. III.A.2 and III.D).
A bit of a flurry was raised by Calogero (1965a)
who adduced a class of regularized singular potentials
whose scattering lengths did not converge to the
scattering length of the limiting singular potential. The
wave functions of these regularized potentials con-
verged to an irregular solution, not the regular solution,
of the limiting potential. Calogero's example consists
of the set of regularized potentials.

V(r, n)=r 'Pg exp (—2n/r)
—(2m+1)g'~ exp (—n/r) j (3.144)

(e integer), which converge pointwise as n—+0 to the
singular potential V(r) =gr '. Further counterexamples
have been found by Cornille (1966), and by Vasudevan
et al. (1967).

Following this, several investigations have dealt with
attempts to clarify and justify the regularization pro-
cedure. Cornille (1965b, c, 1966) has shown that the
physical result is always obtained in the limit both for
zero and nonzero energy in the 0 and + regularizations.
A more concise proof of the correct limit of the scat-
tering length in 8 and + regularization can be found in
Gale (1967) 5'

Some of the counterexamples found by Cornille

(1966) and Vasudevan et ul. (1967) apply to regulariza-
tion of the Khuri —Pais type. The. Khuri —Pais calculation
has also been criticized by Calogero (1965a) who

showed that an exchange of limits performed by them
is not generally justified as in the instance of his
counterexample, which does not, however, involve the
U regularization. Part of the criticism of the regulariza-
tion procedure of Khuri and Pais is a result of their
having failed to represent their intention clearly.
For their purposes it was sufficient that some regulariza-
tion of the form they propose, i.e., some choice of the
function U(r), lead to the correct limit. They do
not say, though they do suggest, that every choice
of U(r) obeying the speci6ed conditions would be
satisfactory. They present a specific form of U for which

regularization is valid, and briefiy indicate that, in fact,
if n were chosen complex, one would obtain the wrong
limit as o.—+0. Their interchange of the a~0 limit with
the gratuitous 0--limiting procedure is not of general
validity, as pointed out by Calogero. It is valid for the
"right" functions U as illustrated in their example.
The introduction of the o- limit in the integrals is

actually a form of 0 regularization which makes the U
regularization vacuous in the k=-0 calculation. The

"The reader should be warned of the misleading notation in
this paper. The quantity C'( ~) in Sec. II represents the deriva-
tive of C (7) with respect to 1/r at the point r = ~. Gale's state-
ment following his Eq. (9) that the more singular of two functions
also has a more singular derivative is not true generally, but is
tgu|; in the present context;,

U regularization plays a role only in the discussion of
the Lippmann —Schwinger equation with energy, for
which the 4=0 results are only a background.

The question of conditions under which a regulariza-
tion procedure gives the correct limit, for other than 0
or + regularizations, has been discussed by Cornille
(1965b, c, 1966). Cornille (1966) has shown for k=0,
that if the regularized potential V (r, a) is repulsive in a
fixed neighborhood of r=0 for sufficiently small 0.,
then the limit o,—&0 leads to the correct physical limit.
When the regularized potential V (r, n) is attractive in
the neighborhood of r =0, as it is in the various counter-
examples to regularization, then three things may
happen: (i) if the number of bound states supported by
the elements of the potential sequence is finite, and the
o~0 limit is not the threshold of a new bound state,
then regularization in the limit gives the physical wave
function, and the correct answer, (ii) if the number of
bound states is finite in the limit, and the limit is the
threshold of a new bound state, then the limit of the
wave function is an irregular solution of the differential.
equation, and one does not get the correct physical
limit, '" and (iii) if the number of zeros grows without
bound in the limit, then the limiting wave function
is not a solution of the differential equation in the
neighborhood of r=0 as ig. the attractive singular case
(Sec. II.C). For k&0 Cornille has shown that if the
wave function approaches the physical solution in the
limit, then so does the scattering amplitude. Frank (c)
has drawn attention to the fact that pointwise con-
vergence is the wrong topology in which to discuss
limiting procedure for potentials, and that convergence
of the potential sequence in appropriate integral norms
is required for convergence of the phase shifts and the
scattering length.

Meetz (1964) has considered the use of a regulariza-
tion limit to obtain a proper self-adjoint extension of the
radial scattering differential operator (see Sec. II.C).
He has shown in the case of repulsive power potentials
that a cutoff type of regularization leads to the unique
self-adjoint extension. He found that the less singular
behavior is selected as the self-adjoint extension in the
weakly attractive transition potential (Sec. II.B),
while no self-adjoint extension is selected for other
attractively singular potentials.

Finally we mention that regularization techniques
have been applied by Arsenev (1968) to the scat-
tering by hard core potentials in order to construct a
Lippmann —Schwinger equation whose kernal is a
bounded integrable function.

7. Other 3Eethods

One finds a number of methods which are suggested as
apphcable to singular potentials, and which are brieQy

"The reader should not be surprised that though the limiting
potential is repulsive, the sequence of regularized potentials may
develop a new bound state in the limit. Such a situation is easily
realized with a sequence of square wells. Such examples are dis-
cussed in detail jn Fgank (c) .
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developed and applied to a single example by way of
illustration. We take note of them here. We recall first
that Laplace transforms have been applied to singular
potentials, and have been discussed in Sec. III.B.4 in
connection with Jost function methods. In Sec. IV.C
another method is described based on renormalization
ideas and the use of distributions. In the present
section, we mention the Mellin transform method due
to de Alfaro and Predazzi (1965), the Hill determinant
method due to Fubini and Stroffolini (1965), and
methods based on higher-order differential equations.

Mellirt Trartsform 3fethod. The Mell'n transform has
been suggested by de Alfaro and Predazzi (1965) as a
convenient technique for solving the singular integral
equation arising in connection with singular potentials,
where nonanalyticity in the coupling constant is antici-
pated. The Mellin transform p(s) of the function u(g)
is defined by

y(s) = dgl(g)g' ', (3.145)

and the inverse Melhn transform is given by

u(g) = (2mi)-'
g—joo

dsq (s)g ', (3.146)

where C is a real number, such that p(s) is analytic
along s=C+ir. It is characteristic of the inverse
Mellin transform, Eq. (3.146), that it maps a function
y(s) (s=o+ir) which is analytic in the strip oi&o&o2,
and obeys ~ &p(s) I

&const exp (—0O I r I) into a function
N(g) (g= pe") which is analytic in the angular sector
I 01&80 and possesses a uniform exponential bound of
the form

I u(g) I
&const p 'for

I p I
&1.Such a mapping

would be appropriate to the study of the coupling-
constant dependence of the wave function of a singular
potential which shows analytic behavior of uniform
exponential bound in angular sectors of the coupling-
constant plane. One would choose the path of integra-
tion in Eq. (3.146) to lie within a strip which would
make the solution of the integral equation yield the
free solution as g

—+0. The method is intended to
determine the nature of the singularity for small r
and g. The method is explicitly applied by de Alf aro
and Predazzi to pure power singularities, and the
results agree with those derived by other methods.

Application of the Mellin transform, Eq. (3.145), to
the coupling constant dependence in the integral
equation for the radial wave function,

u(r, g) = (sin kr/k)

For a potential with a pure power singularity, an
ansatz of the form

V

v (r, s) =h(s)P (r)LZ (e'r) '] '
i= 1

(3.149)

One makes the substitution I(r) = r"'v (r), and finds for
w(r) the differential equation

Dd'/dr')+r '(d/dr) P—'/r')+O—' V(r)]v—(r) =0.

(3.151)

We now consider this equation for r complex and of the
form r =e", with s real. The differential equation now
reads"

I
(d'/ds')+X'+U(s)]q (s) =0, (3.152)

where
U(s) r'$ k'=+V —(r)], (3.153)

and p(s) = v(r). For a potential V (r) which is analyti-
cally a single-valued function of r, the potential U(s)
in Eq. (3.152) is of period 2~ in z space. One can
apply considerations from the theory of differential
equations with periodic coefficients to Eq. (3.152).
From Floquet's theorem, "known familiarly as Bloch's
theorem in solid state physics, one can infer that there
are solutions of the general form

for the small r, large s behavior of p(r, s) leads to solu-

tions with p depending on the singularity. In particular
for 2 &m& 4, one has v = 1. One finds more than one
solution corresponding to differing behaviors in different
sectors.

The method is also applied to the solution of an in-

tegral equation arising in a field-theoretic problem. This
is discussed in Sec. IU.B.

Bil/ Determieaet Method. Fubini and Stroffolini
(1965) have made an interesting application of the
theory of differential equations with periodic coefhcients
to singular potentials. The basic formalism, which
involves the Hill determinant and its properties, can
be found in standard mathematical physics texts such
as that of Morse and Feshbach (1953), or that of
Whittaker and W'atson (1927). The method leads to
very interesting insights and provides a calculational
technique as well.

One considers the radial differential equation
(x=3+-,')

I (d2/dr )+k' I P.'—4i)/r~]——V(r) }u(r)=0. (3.150)

+g f dr'G(r, r')V(r')e(r', g), (3.147) ~p, (s) =exp (io;z)P, (s) (i=1 2) (3.154)

fG(r, r') is a Green's function] leads to the integral-
difference equation

p (r, s) = (sin kr/k)

+ f dr'G(r, r') V (r')p(r', s+1). (3.148)

where the P, (s) have periodicity 2~. There are well-

"The reader should note sign errors in the corresponding Eq.
(6) of Fubini and Stroffolini.

'2 For Floquet's theorem, see Morse and Feshbach (1953), pp.
556—557. For Bloch's theorem, see Kittel (1956), pp. 279—280.
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known classes" for which oj= —Og corresponding to
solutions of Eq. (3.151) which hs, ve 1:he form

(r) =r'x+(r) (3.155)

I'I(p, p')= —pp' «r—'V (r)i I(pr)i I(p'r) (3 15&)

Lthe function jI(Pr) is the familiar spherical Bessel
function]. When V(r) =gr, the integral generally
does not exist unless t) 2Iri2 —

2 (Sec. II.D). One can,
however, ascribe a value to FI(P, P') when this in-

'3Such a result follows from the indicial equation for Eq.
(3.151), when U(r) is single valued and nonsingular, or possibly
transitionally singular. lt also follows for k=0 and V(~) single
valued and singular, in which case the point at inhnity is an
ordinary or regular singular point, and one can 6nd o-1 and 02
from an indicial equation. The authors claim 0-1 ———0.2 to hold
for general single valued U(r) though this is not indicated by
their reference, nor by any result familiar to the reviewers.

(g=o.I), with x+(r) single-valued functions of r. The
"eigenvalue" o. is determined as a zero of the Hill
determinant, based on the Fourier coeKcients of the
periodic potential U(s), which are, of course, related to
the power-series (or generally I.aurent series) coeffi-
cients of the potential V(r). When the potential is
analytic in r, the Hill determinant becomes triangular,
and the eigenvalues are trivially determined and coin-
cide with the quantities specified by the indicial
equation at regular singular points. For potentials
expandable in negative integral powers of r, but
excluding the value —1, the differential equation
(3.152) at zero energy corresponds again to a Hill
determinant which is triangular. It is therefore not
surprising that, through appropriate variable changes,
the zero-energy equations for such potentials reduce
to equations for a regular problem. Not only cT, but also
the power-series coefficients of the solutions, can be
found in terms of Hill determinants. This leads to an
expression for the 5-matrix in terms of Hill deter-
minants which is susceptible to a weak-coupling ex-
pansion.

The authors have outlined these ideas, suggested a
program, and implied that promising results are obtain-
able by this method. They have not made clear how the
method might be adapted to the case when the poten-
tials involve logarithmic singularities or irrational
powers of r.

Higher Order Digere-nti al Equatioris Arbuzov .and
Filippov (1964) and Guttinger and Pfaffelhuber (1966)
have noted that for negative even power potentials,
the coordinate space differential equation can be trans-
formed into a momentum space differential equation of
order equal to the power. The Lippmann —Schwinger
equation for the /th partial wave is

fi(p p" k')=I"~(p p')

"d FI(p, q)fi(q, p' k')
(3 156)

k2 q2+ie

where

equality is violated, either by working with the power
potential as a distribution, or equivalently through
analytic continuation in the / variable. "One finds that
for even rI2, I' I (P, P') involves the step functions
&(p—p'), 0(p' —p). This makes it possible to convert by
differentiation the integral equation, Eq. (3.156),
into an inhomogeneous linear differential equation.
Arbuzov and Filippov find for m=4 the differential
equation Lf(P) =fI (P—, P'; k'), X= t+2I]

f""'(p) —,
' f"(p)+, ' f'(p)

(X'—2o/4) g+, f(P) k,
—, =a~(P P'). —

One imposes, as boundary conditions, regularity of

f(p) at p=0, and the requirement that the behavior of

f(p) for large p guarantee the convergence of the inte-
gral in Eq. (3.156). This sufFices to select a solution.
Arbuzov and Filippov have presented the solution to
Eq. (3.158) for t=k2=0, and have noted that the
leading singular dependence on g for small g involves
terms with g"' and g' ln g. Guttinger and Pfaffelhuber"
have constructed the differential equation in momen-
tum space from the full Lippmann —Schwinger equation
unexpanded in partial waves. They obtained a partial
differential equation containing the Laplacian operator
to the order ~m. They did not, however, present any
solutions.

IV. APPLICATIONS —FORMAL

A. Regge Behavior

Predazzi and Regge (1962) were among the first to
realize the usefulness of singular potentials as a formal
"laboratory" for investigating many physical and
mathematical ideas. They argued that physical inter-
actions among particles in the real world are very
likely highly singular in character. The study of regular
potentials is unlikely to reQect this situation. Rather,
the singular potentials, with their strong repulsion and
lack of analyticity in the coupling constant, would be
more likely to shed some reliable light on the physics
of strong interactions. Others, as we shall see in this
section, have used this argument in one variation or
another to justify the examination of various features
of singular potentials.

Predazzi and Regge confined themselves to the

"The essential object of the article by Guttinger and PfaGel-
huber is the demonstration of procedures based on the ideas of
distribution theory for interpreting solutions to singular potential
problems (attractive and repulsive) in the spirit of renormaliza-
tion methods in 6eld theory (Sec. IV.C). They dwell at length
on the equivalence of the distribution approach, and analytic
continuation in /. Arbuzov and Filippov have also noted the
possibility of extending the meaning of Eq. (3.157) to l(—,'m ——,

'
by analytic continuation in t."Guttinger and Pfaffelhuber (1966), Eq. (3.10), and Sec. 4.
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repulsive potential

S(—X, k) =exp (—2~iX)5(X, k). (4 3)

This symmetry is true for all singular potentials and is
the same as for hard core potentials (Brander, 1963).
The problem of continuing S into the left-half A, plane
is automatically solved. We note that as a result the
Regge poles of S occur in pairs at l and —1—1.

In a number of respects the detailed nature of the pole
structure of S differs from that found for regular
potentials. Giffon and Predazzi (1964) investigated
whether the Mandelstam representation could hold for
singular potentials. Whether it does depends first on
whether there exists, at fixed energy, a Regge pole with a

which may be solved exactly for zero energy. They were
concerned with the analytic nature of the Jost functions
and S-matrix in both k and l. At about the same time,
Limic (1962) investiga, ted the k and / behavior for
singular potentials generally. Their conclusions about
the k behavior of the S-matrix have been dealt with in
Sec. II.D.1. We recall that the singularity of the
potential does not manifest itself in the analytic
properties of the S-matrix in the finite k plane. These
properties are essentially the same as for regular
potentials.

However the 1 behavior for singular potentials is
diferent and is, in fact, simpler than for regular
potentials. In the case of regular potentials, the region
Ref( —2, or Re 3«0 (X=l+—', ) is generally trouble-
some. Special techniques are needed to analytically
continue S into this region, and its properties there
depend on the detailed nature of the potential. The
reason for this is easily traced to the lack of symmetry
in X of the boundary condition imposed on the physical
wave function u(r) at the origin. Though the Schro-
dinger equation contains only X', the boundary condi-
tion demands that one choose the solution which
behaves like r~+' rather than r ~+' near the origin.
When X=O (i=—2), the boundary condition is no
longer well defined.

For singular potentials, the potential term dominates
the centrifugal term near the origin, and the boundary
condition there is iiideperident of X. Hence the Jost
functions, and consequently the S-matrix, are functions
of X'. In fact, it is easily proved that the Jost functions
are entire functions of X' in regions where they are
analytic in k. This is a consequence of Poincare's
theorem. "We may write (Predazzi and Regge, 1962)

5(X, k) =LF PP, k)/F(P', —k)]
&&exp [i~(X—&)], (4.2)

so that

5(—y k) =t FP,' k)/F(X', —k)] exp (iver( —X—-', )),
and therefore one finds

maximum real part. This is certainly true if there are a
finite number of poles, but could be true even if there
were an infinite number suitably distributed. In addi-
tion, the existence of the double dispersion relation
requires that as k—&~ the maximum real part of the
leading pole remains bounded.

Jaksic and Limic (1966b) have proved that the Jost
function F(X', —k) has finite exponential order' for
singular potentials. This fact, together with the
standard result (Predazzi and Regge, 1962; Limic,
1962) that the Jost function is an entire function of X,
means that it must have an infinite number of zeros.
Such a conclusion would fail only if it were a poly-
nomial times an exponential of a polynomial, which
Giffon and Predazzi (1964) and Jaksic and Limic
(1966a, 1966b) showed not to be the case. Hence 5 has
an infinite number of poles, but because of the sym-
metry of Eq. (4.3) and the absence of poles in the
fourth quadrant (proved in the same way as for
regular potentials), it follows that there are an infinite
number of Regge poles in the first quadrant. Gipon and
Predazzi (1964) claimed that as k—+~ the real part of
these poles go to infinity. While their proof is not
clearly given, it is certainly true for the case of r 4 as
will be demonstrated below, and it is probably true in
general.

Jaksic and Limic (1966a) studied the asymptotic X

behavior of the S-matrix for singular repulsive poten-
tials which fall off exponentially fast at infinity. For
positive energies, they concluded that there are an
infinite number of poles in the first quadrant, They also
concluded, without explicit proof, that the poles
accumulate at infinity along the positive imaginary
axis and showed that, along any ray in the right-half X

plane,
lim 5(X, k) =1+0(X "'e—")

Re X-&Do

cosh ca= 1+ (nz'/2k') (4 4a)

The leading & terms in Eq. (4.4a) may be found in
their paper. In their other closely related paper (Jaksic
and Limic, 1966b), in which the potentials need not
have exponential tails, they studied the same limits for
complex energy (but k not pure imaginary). Their
conclusion about the particular ray of accumulation of
the poles is again not explicitly substantiated, though a
proof of this is implied by their results. In the pure
power case, the asymptotic form of 5(X, k) along any
ray in the right-half plane was found to be

lim S(X, k) = 1. (4.4.b)
Re ) ~oo

Equations (4.4a) and (4.4b), assuming they are
uniform limits, require that arg X=m/2 be the line of
accumulation of the poles. It is also known (Dombey,
1965; Pa»ov and Rosendorff, 1967) that along the real
axis

lim 5(X, k) =1+0(P,'—").
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Another important property of the 5-matrix should
be noted. Using the unitarity relation (for real k),

and the symmetry property of Eq. (4.3), it is easy to
derive the exact relation, valid for all singular poten-
tials,

l
SPi, k) i=exp (—iry), (4.5)

for A. =iy, y real. This behavior implies the unbounded
oscillation of S(X, k) as X~—i~, and means that the
usual background integral in the Sommerfeld —Watson
transformation does not converge absolutely for any
value of cos 0.

In order to determine the analytic continuation in
cose of the S-matrix, various authors have applied
di8erent forms of the Sommerfeld-Watson trans-
formation. Giffon and Predazzi (1964) tried to conclude
from Eq. (4.3) that the background integral in their
form of this transformation is zero. This conclusion is
not correct because the part of the integral coming
from the term unity in Ls (X, k)—1j does not vanish in
their version of the integral.

Bowcock and Contogouris (1964) have tried to find
the analytic continuation to unphysical values of cos 0
for a singular potential scattering amplitude. However,
their continuation of the amplitude seems incorrect.
In their form of the Sommerfeld-Watson transforma-
tion, in order to eliminate an integral which diverges
for physical cos 0, they considered a particular region of
the complex cos 8 plane, where this integral vanishes.
However, in this region another integral, which vanishes
for physical cos 0, now diverges.

Aly and Muller (1966a), Challifour and Eden (1963),
and Dombey and Jones (1968)have studied the inverse-
fourth-power potential for Regge behavior. The first
work considers the attractive potential, while the
second and third works deal with the repulsive potential.

For the repulsive potential, both Challifour and
Eden and Dombey and Jones derived the location of the
poles in the X plane. However, their results are in
disagreement. For E(.0, both groups agreed that an
infinite number of poles lie on the positive imaginary
axis. As E—+0, these poles move into the origin (forming
an essential singularity there) and then, as 8 becomes
positive, they jump into the erst quadrant. Challifour
and Eden claimed that these poles are restricted to lie
below the line argX=m/4. However, Dombey and
Jones have concluded that these poles lie above
arg X=m/4. This is illustrated by the expression valid
for large k given in Eq. (4.6) below which shows that
the poles asymptotically approach arg X=ir/4. How-
ever, we note that the claim of Challifour and Eden is in
contradiction with the conclusions of Jaksic and Limic
(1966b), where the uniform limit of Eq. (4.4b) is
derived. The accumulation of poles (for fixed k) along
the positive imaginary axis obviously requires poles

above arg X=~r/4. This resolves the issue in favor of
Dombey and Jones. The discrepancy between these
groups seems to result from a missing i'~' factor in the
pole location formula of Challifour and Eden.

As k~~, the pole locations (for V=g/r, g)0) are
given by

+(k) = (2ig"'k)"'

+&2 (m+-', )i{1+OL(nz+-', )/(g'~'k)'" j}, (4.6)
with no=0, 1, 2, ~ ~ ~ . Equation (4.6) is valid for
l
g"'k ~&) (m+2)2. Note that as k—&~, the real parts of

these poles become infinite; however, for Axed k
there is indeed a pole with maximum real part. For all
energies, all poles lie outside a circle given by

Dombey and Jones analytically continued the r '
scattering amplitude to complex cos 8 by utilizing the
asymptotic X properties of S(X, k). They improved on
the result of Eq. (4.4b) to show that asymptotically in
the right-half plane the following holds:

lim S(X, k) = exp (2ibwxii)/(1+e ~),
lgj-+00

0(arg X& (ir/2),

lim S(X, k)=exp (2ibwxii)L1+exp (—2C)j,
lgl~oo

—(ir/2) (arg X&0. (4.7)

In Eq. (4.7), 8wxa= —(7rk'g/SX'), and 4, which is
defined in Sec. III.A.1, Eq. (3.16) is given by

These results of Dombey and Jones are consistent
with previously derived general results. Along any ray
in the right-half plane, one sees that Eq. (4.4b) holds.
In the f'irst quadrant between the ray arg X=A/2 —e

(e)0) and the positive imaginary axis, S(X, k) declines
from unity to nearly zero along an asymptotic arc
subtending e. In the fourth quadrant between the ray
arg X=—ir/2+& and the negative imaginary axis,
S(X, k) increases from unity to a large value along an
asymptotic arc. Equation (4.5) is also seen to hold on
the imaginary axis.

The form of Dombey and Jones for the Sommerfeld-
Watson transformation differs from the usual one in
that the background integral does not follow the entire
imaginary axis. In the fourth quadrant, where it
divers, it follows a path which asymptotically at
X=—i~ begins on the axis, and then advances to the
origin by going slightly to the right of the negative
imaginary axis in a well-de6ned way. They also proved
that the infinite sum of Regge poles converges. Finally,
they indicated, but could not prove, that such a path
also works for any singular power potential.
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Dombey and Jones gave the residues of the poles as

lim (X—X )S(X, k)

=e' ""cos ~PP„)/(dC/dx)i=i, (4.8)

where P is defined in Sec. III.A.1.For large m, Eq (4.8)
becomes

y =41n [2X /(ig"'k)"'] ' (4.9)

Aly and Muller (1966a) have derived the Regge
pole locations for the attractive r 4 potential. However,
their results for the small

~

k { behavior of the poles are
not correct and would lead to positive energy bound
states. Their formula Eq. (5.3), which they used to
obtain this result is not valid at low energies, and also is
not valid near integer values of the parameter m which
labels the different poles. However, their high-energy
behavior is correct and consistent with Eq. (4.6).
Since they dealt with an attractive potential, they must
arbitrarily choose a wave function at the origin. They
made the same choice as Vogt and Wannier (see
Sec. III.A.1).

For k&0 and large, the poles lie on the imaginary axis
and approach the origin as k shrinks. For large negative
values of energy, the poles lie in the fourth quadrant but
always below the line arg X= —m/4. [Note that they
used X to designate what we would call (9—4).]
They obtain an asymptotic formula similar to Eq. (4.6)
which is (for V=g/r4, g(0)
X~'~~—2k(—g)"'{1+(21S+1)[(—g)"'(k)j "'}

no=0, 1, 2, ~ ~ ~ . (4. 10)

It is interesting that in this case the usual prohibition
in Regge theory against poles appearing in the fourth
quadrant is violated. This occurs because of the non-
unitary choice of boundary condition which makes the
usual proofs fail.

We have not reproduced the techniques of Aly and
Muller, Challifour and Eden, or Dombey and Jones
because they utilized specialized properties of Mathieu
functions, and their derivations are not of general
interest.

Finally a word may be said about the analyticity in X

of the S-matrix for the inverse square. A number of
authors (Sawyer, 1963; Challifour and Eden, 1963)
have proved that an energy-independent branch cut
appears in the S-matrix between the points X=&i(g)"'
for V=g/r' (g)0). The symmetry, Eq. (4.3), holds
provided it is taken to apply to the other Riemann
sheet in the left-half plane. In the Klein-Gordon
equation for the inverse square, energy-dependent
branch points appear.

B. Relation to Field Theory

Numerous authors have investigated various aspects
of 6eld theory with the aim of finding similarities in

some respects to singular potentials. This is generally
done in the hope that the properties of singular poten-
tials, which are more easily studied, may have some
significance for the physical relativistic scattering
amplitudes. Studies of a variety of field theories in
certain approximations by means of the Bethe-
Salpeter (B—S) or quasipotential equations have
suggested a correspondence in which these interactions
may be equivalent, for small interparticle separation, to
potentials which in many cases are singular. An in-
teresting correspondence has been found between the
classification of field theories as superrenormalizable, "
renormalizable, or nonrenormalizable, and the character
of the equivalent potential as regular, transitionally
singular, or singular. An analogy has also been found
between the Jost function of potential theory and the
vertex renormalization constant Z in field theory.
Dispersion relations have been studied briefly for
singular potentials as an analogy with dispersion
relations in elementary particle theory. Regge behavior
for singular potentials has been discussed in Sec. IV.A.
The literature on particle theory is exceedingly vast
and the reviewers do not pretend to exhaust all instances
of comparisons between particle interactions and
singular potentials. Rather they attempt to review
what to their knowledge seem to be the most interesting
eGorts to relate field theory to singular potentials.

Bethe Sa/peter Eq—uation. It has been possible to find a
correspondence between field-theoretic Lagrangians
and local potentials, by studying in certain approxima-
tions the 8—S equation which describes the scattering
of two particles in 6eld theory. While such a cor-
respondence can be at most of conjectural significance,
the picture that emerges seems to be sensible and has
intuitive value. It should be borne in mind that the
order of the 8—S equation depends on the spin of the
scattering particles, and likewise that the definition of a
potential as singular depends on the order of the
differential equation (Sec. II.A).

The 8—S equation for two particles of equal spin has
in configuration space the form (x, denote four-vectors),

+*+*A'(&1 &2) V(&1 &2)f(&1 &2) (4 11)

where E,. denotes the free particle operator for one of
the incoming particles with coordinate x;, Klein —Gordon
for spin zero, Dirac for spin 2. The potential V(xi—x~)
corresponds to the exchange of a particle of specified
spin and mass as calculated from a selected set of
diagrams. In order to obtain an equivalent potential,
one extracts a radial equation from Eq. (4.11). The
center-of-mass dependence of Eq. (4.11) is first
eliminated. The resulting equation in the relative
coordinate variable x»—=x&—x2 is then transformed by
means of a Wick rotation to the Euclidean metric.

"The term superrenormalizable is applied to a field theory,
vrhen either none or, at most, a finite number of primitive dia-
grams are divergent.
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This transformation, which is legitimate for bound-state
problems, transforms the light cone into the origin so
that the potential function U (x») then shows spherical
symmetry. The operator in the equation becomes
rotation symmetric when the total energy is zero, and
this is the case usually considered. The equation can
then be separated in (four-dimensional) hyperspherical
harmonics, and one obtains a radial equation for each
hyperspherical partial wave corresponding to a value
of the total four-dimensional angular momentum.
When the scattering particles are of spin zero, the
partial-wave radial differential equation is of fourth
order, while for spin-~ particles the corresponding
operations give a radial differential equation of second
order.

The resulting radial differential equation describes a
bound state of specified four-dimensional angular
momentum due to the potential U(x») incurred by the
exchange of a particle of specified mass and spin
according to a selected set of diagrams. The second-
order radial equation corresponding to the scattering of
spin-~ particles is similar to the radial scattering
equations of conventional potential theory. The
fourth-order radial equation for spin-zero particles of
mass m scattering with four-dimensional angular
momentum co has the form (x=

l
x» l)

{(d'/dx')+x '(d/dx) —L(%+1)'/x'] —m'}'l//(x)

= U(xg (x). (4. 12)

The boundary conditions for the selection of solutions to
Eq. (4.12) are discussed at length at Bastai, Bertocchi,
Fubini, Furlan, and Tonin (1963a), and by Bastai,
Bertocchi, Furlan, and Tonin (1963b). The potential
U(x), corresponding to a given field theory in the
appropriate approximation, would be characterized as
regular, transitionally singular, or singular, if the
leading negative power dependence of the eRective
potential has exponent less than, equal to, or greater
than the order of the differential equation. Logarithmic
factors do not aRect this classification. Thus an x '-type
potential is transitionally singular for the spin--,'
scattering equation, as it has the same dependence as
the centrifugal potential. Jn the fourth-order equation
the centrifugal potential gives rise to an x 4 term which
is transitionally singular for the spin-zero equation.
Bastai et al. (1963a) term those theories described by
radial equations with regular potentials as the class I
case, equations with transitionally singular potentials
as the class II case, and equations with singular
potentials as the class III case."

Bastai et al, . (1963a) have found the effective
potentials for a variety of field theories in the ladder
approximation. The scattering of spin-zero bosons

"Aly and Taylor (1968) have further subdivided Class III
into IIIa and IIIb, where the former class contains power-type
singular potentials, and the latter includes stronger singularities
such as exponential ones.

through the exchange of a spin-zero boson as in a p'
theory was found to be of class I (x '- singularity).
The scattering of spin-zero particles by exchange of
boson pairs as in a p' theory is of class II (x ' singu-
larity), while the sca, ttering in a p' theory is of class II1
(x ' singularity). The sca, ttering of spin-zero particles
through the exchange of a spin-one boson is of class II
(x ' singularity). The class II character of two scalar
boson exchange and vector boson exchange between
spin-zero particles is also borne out by calculations of
the Regge behavior for these theories in a ladder

approximation by Sawyer (1963), and Cosenza,
Sertorio and Toiler (1964). The amplitudes show a
Regge cut characteristic of a centrifugal-type potential.
Contogouris (1965) has found that the scattering of
scalar particles through exchange of spin-two particles
is of cia,ss III (x singularity). He explicitly verified
that some of the characteristic attributes of singular
potential solutions hold for the solution to the 8—S
equation, such as meromorphy of the partial-wave
equation in angular momentum, and reQection sym-
metry of the S matrix, Eq. (4.3), in the f, plane.

The scattering of fermions through the exchange of a
scalar meson or a photon is of class II, as found by
Goldstein (1953). Scattering through exchange of a
massive vector boson with nonderivative coupling as in
W boson theory is of class III (x ' singularity). If
the vector boson propagator, however, is chosen pro-
portion to g„,, which can be done when the coupled
current is conserved, the class II case is obtained as
found by Guttinger, Penzl, and Pfaffelhuber'8 (1965a).
This result has suggestive support in Sawyer (1963)
who obtained from the 8—S equation a cut in the
angular-momentum plane. Scattering of fermions via
the four-fermion interaction is of class III, as found
by Sawyer (1964), and by Guttinger, Penzl, and
Pfaffelhuber (1965a). Sawyer found the four-fermion
force to be attractive for S and V coupling, and repul-
sive for I' and .4 coupling.

Despite the approximate and therefore conjectural
nature of these results, a most interesting observation
emerges between the class of the potential scattering
description of these field theories, and the r enor-
malizability attributes of the theories. Superrenor-
malizable theories such as p' give rise to class I equa-
tions, renormalizable theories such as p4, or nonderiva-
tive Yukawa coupling theories, give rise to class II
equations, while nonr enormalizable field theoi ies
such as the four-fermion theory give rise to class III
equations. These results are also confirmed both by
studies of the quasipotential equation corresponding
to various field theories (see below), and by studies of
the vertex functions for these theories (see below).
Attempts to apply renormalization ideas Ko singular
potentials (Sec. IV.C) are also consistent with the

' An error should be noted in Guttinger eg al. (1965a) on p.
253 following Eq. (2.23). Read "where u'=0 in V if we neglect
the nondiagonal term in the boson propagator. "
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above classification. This connection follows very
simply for the ladder approximation from dimensional
considerations. The implications of this correspondence
are most interesting. It lends support to the belief
that noni-enormalizable field theories, which lead to
repulsive interactions, have self-damping mechanisms,
and therefore may have solutions. " This is analogous
to equations with repulsive singular potentials which,
though they cannot be solved perturbatively, have
well-de6ned solutions. When the theories give rise to
attractive forces there are ambiguities as in the attract-
ive singular case, which may perhaps be renormalized
away by proper treatment (see Secs. II.C and IV.C).

QNasipoter/tial EqNa/ior/. The quasipotential method
provides another description of 6eld-theoretic scattering
by means of an effective potential. This formalism also
derives from a study of the equation fcr the four-point
Green's function as does the B—S equation. The B—S
equation is essentially the joint equation of motion for
two particles interacting via a 6eld-theoretic inter-
action, and is a description in terms of the independent
coordinates of the two particles. The quasipotential
equation describes the system consisting of two particles
in interaction as evolving in a common time as described
by a Schrodinger-type equation for the time rate of
change of the wave function. The formalism for the
quasipotential equation is described by Logunov and
Tavkhelidze (1963 a), and Logunov, Tavkhelidze,
Todorov, and Khrustalev (1963b).

The quasipotential equation, usually written in
momentum space, has the form

(E2 p2 ~2)@(p) (p2+m2)1/2

One would thus obtain the correct 5 matrix to any
prescribed order. The quasipotential is derived ac-
cording to the prescriptions for constructing an optical
potential, from the relation

6 '(P P' E)—0o '(P P' E) =V(P P' E) (4 15)

Here 6(p, p'; E,) is the exact momentum space, four-
point, equal-time Green's function in the center-of-mass
system, and Go(p, p'; E) is the corresponding free
Green's function.

Logunov et al. (1963b) have deduced, from the un-
subtracted Mandelstam representation, a spectral
representation for the local (i.e. , on-the-mass-shell)
quasipotential of the form

V+(r, E)=ir ' f dpr+(v, E)(/, "/r), (4.16)

where the superscripts ~ refer to the potential in
even/odd states respectively. The quasipotential
deduced from a Mandelstam representation with e
subtractions is valid for angular momenta l&e. The
effect of subtractions in the Mandelstam representation
on the quasipotential is discussed by Filippov (1964),
and Faustov (1964).

One can construct a Schrodingerlike equation in
con6guration space for the partial-wave amplitudes of
the T matrix of Eq. (4.14), in terms of the wave func-
tion u&(r) defined by

n/(r) = (2/ir)'/' f dppj /(pr)4/(p), '(4. 17)

where 4/(p) is the 1th partial-wave amplitude of
0'(p) of Eq. (4.13). One finds that N&(r) satisfies the
differential equation

f dip/V (p pf . E)+ (p&) (4 13 ) (d'/dr')u/ (r)+ Ik' —D (/+ 1 )/r'7I ii/(r)

where p is the momentum of the scattering particles of
equal mass nz relative to the center of mass, and E is
their energy in this system. The "quasipotential"
U(p, p'; E) is generally energy dependent and complex.
One can write an integral equation for T matrix con-
structed in familiar fashion from Eq. (4.13):

T(p p' E)=V(p p' E)

,, V(p, q, E)T(q, p, E)
(E2 q2 i/i2) (//i2+q2)1/2

The quasipotential V(p, p'; E) has been so constructed
that the T-matrix of Eq. (4.14) coincides with the
held-theoretic T-matrix to a specified order, even off
the mass shell. By foregoing agreement between the
quasipotential and field-theoretic T matrices off the
mass shell, one can make the quasipotential "local""
$i.e., a function of (p—p')'7 though energy dependent.

"See, e.g., Lee and Yang (1962),Lee (1962), Feinberg and Pais
(1963, 1964), Guttinger, Penzl, and Pfaffelhuber (1965a, b),
Arbuzov and Filippov (1965, 1966).

"The quasipotential does not make a truly local appearance
in a differential equation in configuration space due to the rela-
tivistic factor (p'+m') '" in Eqs. (4.13) and (4.14). See however
discussion following Eqs. (4.18) and (4.19) further.

= V(r, E) f dr'K/(r, r')u (r/'), (4.18)
where

K/(r, r') =4~r' f [dqq'/(q'+m')'/'7

Xj/(qr) j/(qr'). (4.19)

The kernel K/(r, r') in Eq. (4.18) merely smears the
wave function over a distance of the order of the range
of the Compton wave length of the scattering particles.
It may be approximated in the nonrelativistic domain
by a delta function. The resulting equation is a local
Schrodinger equation in configuration space for motion
in the presence of the effective potential V(r, E).

Filippov (1964) has calculated the weight function
r(/, E) for the q' and q' coupling theories. He found
that the p' coupling theory gives rise to a class I equa-
tion, while the p4 coupling theory leads to a class II case
with V(r, E)~(a+b lnr)r ' for small r. Charap and
Fubini (1959) found the p' theory to correspond to a
class III case with V(r) (a +b ln r)r ' In a la-ter.
paper, however, Charap and Dombey (1964), con-
sidering a few low-order exchange diagrams, found the
modified result V(r) (a+b ln r)r ' in agreement with
Filippov. They also considered a larger class of exchange
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g= lim I'(p),

G= lim I'(p),

(4.20a)

(4.20b)

where Z is defined by Z—=g/G. The potential-theory
analog of I'(p) is (E—k')0'(k), where %(k) is the
momentum space wave function for a particle of energy
E. This correspondence can be seen formally in the
comparison of Eq. (4.22) for the bound-state wave
function in the presence of an external source term and

the integral equation of Eq. (4.24) for the vertex
function I'(p) in the ladder approximation. Thus for a

"The renormalization constant Z, in what follows presently,
will refer only to the vertex renormalization constant Z&.

diagrams contributing to V(r, L~'), namely an infinite
sum over bubbles, and found that, although one obtains
the class II case, the potential is nonsingular. Spe-
cifically, it is of the form

V(r) '(a+A/(ln r)+c/(in r)'+ ~ ~ ~ )r '.

One sees that the potential one obtains depends on the
diagram scheme chosen, as one ought to expect gen-
erally. However, one is encouraged to the extent
that the classification of the equation seems to be main-
tained regardless of the selection of diagrams. The
general result is in agreement with the result arrived at
from the study of the B—S equation.

Vertex Eenormatisatioe. The compositeness condition
Z=O of field theory~' has been studied by a number of
authors in terms of a potential-theory analog. This
analog also confirms the correspondence between the
renormalizability attributes of a field theory and the
class of the corresponding potential-theory equation. A

noteworthy aspect of this correspondence is the
cutoff independence of the bound-state condition
Z=O for class II potential equations, and of renor-
malizable field theories in the ladder approximation.

A number of authors, Bertocchi, McMillan, Predazzi,
and Tonin (1964a), Bertocchi, Fubini, and Furlan
(1964b), and Guttinger (1965), have pointed out the
analogy between the Jost function of potential theory,
evaluated at a bound-state energy, and the field-

theoretic constant Z, which renormalizes the vertex
of an interaction of a particle with "component"
particles. The vanishing of either quantity expresses
the composite nature of the system. The correspondence
between these quantities has been made more intimate
in the work of Bertocchi, et al. (1964a, b), who have
defined unrenormalized and renormalized coupling
constants in potential theory, and have shown that the
Jost function is indeed the ratio of the former to the
latter. The unrenormalized and renormalized coupling
constants g, G, respectively, for the coupling of two

particles of mass m to, say, a mass-zero particle with
four-momentum zero are defined in terms of limiting
values of the vertex function I'(p) by

bound state with energy E=—8, the unrenormalized
and renormalized coupling constants are defined
respectively by

g= lim (—8—k')+(k),

G= lim (—8—k')+(k).

(4.21a)

(4.21b)

In order to illustrate this correspondence, we consider
the coupling of a particle in potential theory to a delta-
function point source of strength g, thus obtaining an
inhomogeneous Schrodinger equation. The momentum
space integral equation describing a bound state of
energy —8 in this situation has the form

(—8—k')%(k) =g+ f d'k'V(k, k')4(k'). (4.22)

Consider the case in which the potential is regular. One
finds that the /= 0 bound state for g@O is described by a
singular solution (in configuration space) to the radial
Schrodinger equation, the strength of the singular part
of the wave function being proportional to g. The
renormalized coupling constant G, on the other hand, is
related to the coe%cient of the asymptotic wave func-
tion in configuration space. Bertocchi et al. (1964a)
have shown that the quantity Z=—g/G is exactly the
Jost function for the potential at energy B. The-
presence of a state, bound by the potential at energy

8, corres—ponds to g= 0; i.e., the Jost function
vanishes (since G is nonzero), and the wave function is
the regular solution at r=0. Bertocchi et al. (1964b)
have shown how to construct a function Z(E) which
is an analytic function of E having a cut on the positive
real E axis, and which agrees with Z at E= —8. The
5-matrix at energy E&0 is expressible as

5 (E)=Z(E ie)/Z(E+ie—)
=Z' '(E)/Z'"(E), (4 23)

and Z(E+ie) clearly plays the role of the Jost function
at energy E.

For a potential with the transitionally singular
behavior U(r)~f(r' near r=0, the (5 wave) Jost
function is known not to exist (Secs. II.B, III.B.4)
although the 5-matrix does. In order to study the Z=O
condition in this case, a short-range cutoff at r=n
can be introduced which makes Z finite. One finds that
the a dependence of Z factors, and the bound states
determined by the Z=O condition, are cuto8 inde-
pendent. The 5-matrix element likewise has a well-
defined limit as u~O. The factorizability of the ot,

dependence of Z can also be argued to hold for potentials
with the behavior V(r)~f(ln r)~/r', which implies the
cutoG independence of the S-matrix and of the bound-
state condition Z=O. Vnlike the case of the simple
j/r' behavior near r=0, the expansions of Z in the
coupling constant in the logarithmic case are asymptotic
and not analytic (cf. Sec. II.B).

The cutoff dependence of the Z=O condition for
various field theories has been studied by a number of
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authors. By appealing to the work of Bastai et al.
(1963a,b) on the class II B—S equation, Bertocchi
et al. (1964b) concluded the cutoff independence of the
S matrix, and the Z=O condition for renormalizable
field theories in the ladder approximation. They argued
that the result remains valid even after all the field-
theoretic renormalizations of the internal masses and
coupling constants have been performed. They con-
jectured that the over-all situation ought to remain
unchanged even after inclusion of internal loops on the
lines.

The behavior of Z as a function of the cutoff was
explicitly studied by Furlan and Mahoux (1965) for a
variety of field theories, superrenormalizable, renor-
malizable, and nonrenormalizable. They considered the
vertex function for the interaction of two lines corre-
sponding to particles of mass ns coupled to a composite
particle of four-momentum zero. They worked in the
ladder approximation where the exchanged particle is
conveniently chosen to have mass zero. The vertex
function I'(p) calculated in the ladder approximation
obeys an integral equation of the schematic form

I'(P) =Z+~ f d'P'&(P P')I'(P')»=f'/4~ (4 24)

where Z is to be identified with the bare coupling
constant to which it is proportional, and f is the
coupling strength of the exchanged particle. Here
E(P, P') is a kernel appropriate to the theory. Z is
evaluated from Eq. (4.20a).

As a first example Furlan and Mahoux considered the
superrenormalizable coupling f44%' of three spin-zero
bosons which gives rise to a bound state of arbitrary
spin. The integral equation, Eq. (4.24), can be con-
verted to a second-order differential equation in the
variable 44—=P' (5= spin)

d' 5+2 d X+ + I'(I) =0, (4. 25)dl' u d44 I(I+1)'
obeying the conditions

lim I'(d/dl) I'(I) =0, (4.26a)
u~P

lim $1'(I)+n(d/d44)1'(44)]=Z. (4. 26b)

They found Z to be finite (except for an infrared
divergence for which a cutoff is introduced).

Furlan and Mahoux also considered two examples of a
renormalizable field theory: a four spin-zero boson
coupling fy'4', and a Yukawa coupling f4'y+i4, where

p =p5 or 1. They found a fourth-order class II equation
in r, as well as an equation of the form of Eq. (4.25).
They also found Z can be defined only with a cutoff,
though the Z=O condition is independent of the cutoff
in the "uncritical" range of the coupling constant. There
is a critical range of the coupling constant in which the
effective potential is of an attractive singular nature,
and in which the cutoff dependence of Z cannot be
factored. The limit of the set of cutoff-dependent

bound-state coupling values, as the cutoff is removed,
was found to merge into a line of values extending to
infinity.

The nonrenormalizable interaction f47@@' (y=y4
or 1) was considered by Furlan and Mahoux, and by
Aly and Miiller (1966a) who also included an additional
renormalizable Yukawa interaction for greater gen-
erality. Furlan and Mahoux found the integral equation
for the vertex function I'(P) in the ladder approxima-
tion,

I'(P) =Z-
(24r)4

d4P I (P)
P"+m'

ljm 4,
—~ri/2(44'+44) =0

p~ oo

(4.30a)

(4.30b)lim r (r44' —44) =—2Z.
r P

This equation involves the singular potential r 4 and
can be solved in terms of Mathieu functions (Sec.
III.A. 1). de Alfaro and Predazzi (1965) have also
studied the same integral equation directly in momen-
tum space, and have found the large momentum
behavior of I' (P) by means of Mellin transform methods
(Sec. III.B.7).

Furlan and Mahoux, and Aly and Muller have both
calculated the quantity Z for this interaction in the
presence of a small radial cutoff. While one does not
expect to find bound states in the repulsive case, one
does find that the cutoff dependence of Z factorizes
as the cutoff becomes small. For the attractive case, the
cutoff dependence of Z cannot be factorized as the
cutoff becomes small. Aly and Muller have proposed a
condition that would select a discrete spectrum from
the Z= 0 condition in the attractive case. This condition
consists of the vanishing of the wave function at a
suitably chosen complex radius. This is in line with the
suggestion of Case that one can obtain a discrete spec-
trum for the attractive singular problem by arbitrarily
fixing a parameter in the solution (Sec. II.C). The
condition of Aly and Miiller is of course quite arbitrary,
but they indicated that the condition has the reasonable

d4k
X 4.27

k'(k+P' —P)' '

where X=f'/(2 )4r4rr42and 4=&1 according to the y4
or 1 coupling. This equation is transformed to the
Euclidean metric. One defines a quantity F (x') by

I'(P)i(P'+~') =[ /( ~)'j j d'~ '" J'(~') (4 )

as suggested by the previously noted correspondence
between the vertex function and the quantity
(E—k')'k(k). The quantity 44(r)=rF(r') satisfies the
differential equation (3f= 1)

d' d 1 N(r)—+r ' ————1 u(r) =, (4.29)
dr' dr r' r'

and the boundary conditions
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V (r ) = —gr
—' ln r (4.31)

with angular momentum /=X —~, and at zero energy.
It obeys the integral equation

+ (2X) ' dr'(rr')"'(r'/r)xV (r')n(r'). (4.32)

attribute that the location of the cutoff shrinks to zero
as the energy becomes infinite or as the coupling con-
stant goes to zero.

Dispersioe Relations. The validity of dispersion rela-
tions for singular potentials has been considered
briefly by Martin (1966), and by Aly and Wit (1967).
Martin has proved the validity of a dispersion relation
in energy for a purely repulsive singular potential
-whi'ch has a power-type singularity and is cut off beyond
some finite distance R. Though the proof is explicitly
constructed for a potential whose singularity is weaker
than r ' in which case one subtraction is sufficient, it
appears that the proof can be readily extended to more
singular power potentials as outlined brieRy in the
article.

Aly and Wit have considered the question of the
number of subtractions necessary in partial-wave dis-
persion relations. They concluded that one subtraction
is sufhcient for an r '-type singularity, but that no
finite number will suSce for any stronger power-type
singularity. They have employed Phragmen —Lindelof-
type theorems in arriving at the latter result. However,
their conclusion, which is in contradiction with Martin,
does not seem justified. I t is based on the assumption of
exponential growth of the scattering amplitude. Such
growth, however, has not been established on the
physical sheet, where a dispersion relation would be
written. (See the discussion in Sec. II.D.1.)

C. Renormalization

The idea of renormalization, which has been emi-
nently successful and of profound significance in the
theory of fields and particles, can be applied also to the
theory of singular potentials. Arbuzov, Filippov, and
Khrustalev (1964), and Ahmed and Fairlie (1965)
have shown for a class of transitionally singular poten-
tials, that the wave function for the regularized poten-
tial becomes renormalized by a regulator-dependent
factor in the singular limit. This is analogous to wave
function renormalization in field theory. Guttinger and
Pfaffelhuber (1966) and Aly and Taylor (1968)
have shown that the ideas and techniques of field-
theoretic renormalization can be applied to the Lipp-
mann —Schwinger (L—S) equation describing the scat-
tering by a potential with a power-type singularity.

8'aae Function Renormali sation of Transi ti orially

$6sgllar Potentials. Arbuzov, Filippov, and Khrustalev
have considered the wave function corresponding to the
transitionally singular potential

n(r) =r'+i Q c„(ln r)"
n=0

(4.35)

which is an asymptotic expansion (Sec. II.B). The
coeKcients c„of Eq. (4.35) obey easily derived linear
recursion relations. For k'= 0 and 1V finite in Eq. (4.33),
the recursion relations have a bounded number of
terms for all e/0; otherwise the number of terms
depends on the recursion relation. One can easily show
from the recursion relations that the n dependence of
e(r) is factorable. Ahmed and Fairlie have further
shown how to choose an o.-dependent coefficient for the
exact solution to the potential Eq. (4.31) so that the
iteration solution to Eq. (4.32) (with cutoff) is re-
produced with the proper wave function renormaliza-
tion. They have also shown that, through the choice of
an appropriate relation between o, and g, the explicit
essential singularity of the solution can be made to
disappear in favor of a formal asymptotic series in g.
Bertocchi, Fubini, and Furlan (1964b) have concluded,
on the basis of the renormalization technique of Dyson,
that the potential-theory analog of the vertex re-
normalization constant (see previous section) ought to
have a factorable cutoG dependence for transitionally
singular potentials.

Reriormaliaatiori of Ponder Type Simgntar Potentiats-.
The Lippmann —Schwinger (L—S) equation for a singu-

Iterations do not yield finite results as expected, and
Arbuzov et a/. introduced a regularization in the form of
a lower-limit cutoff at r=n@0 in the integral equation.
One can verify that it suffices to introduce the cutoff
only in the first integral in order to obtain finite results
to every order of iteration, and that the solution
regularized in this way maintains the property of
vanishing at r =0. Arbuzov et' al. found that the iteration
solution takes the form of a product of a factor de-
pending on n only with a factor depending on s only.
The latter is identifiable with the asymptotic series in g
for the known exact solution of Eq. (4.32) (Sec.
III.A.2, Eq. (3.75)$. We note in passing that the
calculation of Arbuzov et al. also provides an illustration
of the fact that by summing leading singularities in each
order one can badly misrepresent the behavior of the
sum (Sec. IV.D).

The multiplicative renormalization property noted by
Arbuzov et al. for the potential of Eq. (4.31) was
shown by Ahmed and Fairlie (1965) to hold for a
potential of the general form

V()= Z La-( r)"/"j (4 33)
n= 1

and at nonzero energy, where one may formally employ
the representation

" 2"(lnr)"k'= — 1+ Q . (4.34)
t

One can then formally solve Eq (4.32.), where V(r)
includes the energy term in the form of Eq. (4.34) if
k'&0, through the ansatz
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lar potential" does not exist because the Born term is
not defined. The Fourier transform for a power-type
singular potential can be defined if the potential is
understood in the sense of a distribution. This gen-
eralized L—S equation which one obtains fails to possess
convenient iterative properties. The distribution-
theoretic redefinition of singular potentials was pre-
sented in detail by Guttinger and Pfaffelhuber (1966).
In two earlier articles Guttinger, Penzl, and Pfaffel-
huber. (1965a, b) presented a more concise version of
these ideas, together with a method of solution. Aly and
Taylor (1968) also employed a distribution-theoretic
redefinition of singular potentials in order to write a
L-S equation, which they can solve iteratively, em-

ploying subtraction ideas analogous to field-theoretic
renormalization.

Guttinger and Pfaffelhuber (1966) defined a regular
potential Vii(r) equivalent in a distribution-theoretic
sense to a singular potential V (r) by the two conditions:

(i) f d'rV (r)q (r) = f d'rVii(r)p(r) (4.36)

for all test functions p(r) which vanish along with a
sufFiciently large (finite) number of derivatives at r 0, =
and (ii) Vii(r) has a finite three-dimensional Fourier
transform Vii(k). These two characterizations define

Vii(r) up to an arbitrary additive distribution of the
form

(4.37)
n=o

(V' is the Laplacian operator). An explicit representa-
tion for Vii (r), the equivalent regular potential for
potentials of the form V (r) =gr, can be constructed
over the space of test functions p(r) which do not
necessarily vanish with derivatives at r=o. This is
given by the limiting procedure"

d'rVzm(r)y(r) = lim d'r gr "'0(r e)—
e-+0

where M is the smallest integer such that 2'�&m—3.
One notes that the expression in Eq. (4.38) corresponds
to the subtraction from V (r) of a multipole core con-
sisting of a linear combination of derivatives of 5(r),
which compensates for the singularity of V(r) at r=0.

"The Born term exists for power potentials V(r) =gr™with
m&3, though such potentials with m)2 would be singular by
our dehnition. In the present considerations regarding the L-S
equation, singularity of the potential will mean a singularity at
least as strong as an r ' potential. The L—S equation which is
defined for 2&m&3 is however not iterable. In connection with
the work of Aly and Taylor who were concerned with iterability
properties of the L—S equation, singularity of the potential would
mean a singularity at least as strong as r . The existence of the
Born term is guaranteed when the large r behavior of the po-
tential is characterized by an exponent m) 1, if k&0, and m) 3
if k=0.

"The validity of Eq. (4.38) entails sufFiciently rapid attenua-
tion of the potential tail for large r. When m is of the form 3+2n
(n=0, 1, 2 ~ ~ ~ ), the term with j =ALII in Eq. (4.38) is modified.
See Eqs. (2.4), (2.13b},and (2,15) in Guttinger and Pfaffelhuber.

The Fourier transform of the equivalent regular poten-
tial has the form

V.-(u) = ' "" -)/" u--', (4.39)r (m/2)

unless m is of the form 3+2m (e a nonnegative integer),
in which case a different expression applies. ~3 Equations
corresponding to Eqs. (4.38) and (4.39) are also
derived for potentials of the more general form V "(r)=
gr ~(—ln r)". When ye is not of the form 3+2m, the
quantities in Eqs. (4.38) and (4.39) coincide with the
analytic continuations from Re m(3, where these
quantities are well defined, to Re m)3. For ns of the
form 3+2m, the quantities in Eqs. (4.38) and (4.39)
have a simple pole. Equations (4.38) and (4.39) are
then defined in terms of the regular part of the Laurent
expansion about this pole. The authors presented a
compact expression in the form of a contour integral
which automatically represents the quantities of
Eqs. (4.38) and (4.39) for all singular potentials.

One can now define the L—S equation in terms of the
Fourier transform Uii(p) of the equivalent potential

&ii(p, k) = Vii(p —k)

+ f d'Vt V~(P g)T~(V, I—)/(&' q'+~~)3 —(4 40)

(Note that the one-the-energy shell L—S equation has
been used. ) For repulsive potentials it can be shown
that one obtains the same T-matrix element as from the
defining expression

T(P, k) =t 1/(2ir)'j f d'rV (r)%'(r, k), (4.41)

where 4'(r, k) is the wave function. This is due to the
very strong damping properties of N(r, k) near r=0
These kill the multipole core additive terms of the
form in Eq. (4.37), which distinguish V (r) from
Vii (r) The prescriptions of Eqs. (4.38) through
(4.40) described previously may be taken to define a
scattering amplitude for the attractive case too. How-
ever, one would not find unique solutions in the attract-
ive case (Sec. II.C), since Eq. (4.41) would be affected
by the addition to V&(r) of terms of the form Eq.
(4.37). The tth partial-wave L—S equation obtained
from Eq. (4.40) coincides with the result of an analytic
continuation in / from the half-plane Re (2l—nz)) —3,
when 2t—m is not of the form —3—2e (e a nonnegative
integer). In the latter case, the partial-wave equation
coincides with the regular part of the Laurent expansion
about the simple pole in /. The alternatives of in-
terpretation through analytic continuation in the
l or m variables follow from the appearance of the
variable 2/ —m in the pole. The idea of analytically
continuing the L—S equation in l for singular potentials
was also noted brieRy by Arbuzov and Filippov (1964).
Guttinger and Pfa6elhuber have also noted that, for
pure negative even power potentials, the L—S equation,
Eq. (4.40), can be converted into a linear partial
differential equation of order equal to the negative of
the exponent —m (Sec. III.B.7).
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In two earlier papers Guttinger, Penzl, and Pfaffel-
huber (1965a, b) studied the radial partial-wave equa-
tion for a singular potential using distribution-theoretic
ideas, though the analysis was much less thoroughgoing.
In these papers they introduced an interesting gen-
eralization of the distribution-theoretic approach, and
explicitly solved for the scattering length due to a
repulsive power potential. The zero-energy radial
equation for the radial wave function is

N(r) =r+ dr'G(r'; r) V(r')n(r')

+ dr'G(r; r') V(r')N(r'), (4.42)

with G(r; s) proportional to r'+'s ' for the 3th partial
wave. For the case under discussion, V (r) has a power-
type singularity, and may include additional logarithmic
factors. One knows that Kq. (4.42) does not lead to
finite iterations. In view of the very damped behavior of
u(r) near r=0, one may treat the singular factor
G (r; r') V (r') as a distribution. This entails the subtrac-
tion from G(r; r') V (r') of an appropriate linear com-
bination of derivatives of the 8 function at r =0.
The resulting integral equation has, of course, the
correct exact solution. In this paper Guttinger et ul.
have suggested a generalization of the distribution
prescription which produces a converging sequence of
iterations which is finite at each stage. The prescription
based on a distribution-theoretic motivation is equiva-
lent to the simple ansatz

dr'G(r'; r) V(r')u(r')

dP2 ~ ~ ~

where

L n" (P"—q) 3' =i u (q P' ')
P2 q2+ 2g

from the iterative solution. They start with the off-the-
energy shell I.—S equation

7'(p, p'; &') =V(p p'—)

+ f d'q(V(P q)2—'(q, P'; k')/(k2 q'+—2e)]. (4.44)

The Born term is a Fourier transform of the singular
potential, and does not exist in the conventional sense.
It is redefined by appeal to the interpretation of the
singular potential as a distribution. One finds V(p)~
p~ 'as p~oo for V(r)~r atr=0. The resulting I;S
equation is not iterable. A Gnite number of subtractions
can be performed on Eq. (4.44) to produce an iterable
form. The subtraction procedure is defined in analogy
to the momentum space renormalization of the Green's
function equations in a renormalizable Geld theory,
particularly as developed in a series of articles by
Taylor (1963).For this purpose, one first differentiates
Eq. (4.44) with respect to the external momentum p,
and then integrates it back, absorbing the constants of
integration into renormalization constants. This is
formally achieved by means of an operation D„—=
d/d I p I. Differentiation and integration of Eq. (4.44)
M times, results in~4

T(p, p'; k2) = V'(p, p'; k2)

dr'G(r'; r) V(r')u(r'), (4.43)

V'(p, p'; k2) = dhg dX2 ~ ~

where the constant 3 is easily recognized as the r'
integral over the whole range of positive r'. More
generally, the prescription entails both the choice of
some convenient constant limit in the integral (which
need not lie along the contour) which makes the
integral convergent, together with a compensating
subtraction of the appropriate constant integral. The
latter may be treated as an indeterminate parameter.
The quantity A in Eq. (4.43) is merely the scattering
amplitude and is to be determined by the condition
I (0) =0.The integral equation, obtained after substitu-
tion of Eq. (4.43) into Eq. (4.42), is iterable and allows
the determination of A by successive approximations.
A similar treatment of the integral equation, Eq. (4.42),
without the elaborate distribution-theoretic rationale,
is given by Pais and Wu (1964b). Guttinger et a/. have
employed this method to calculate the scattering
length due to a repulsive pure power potential.

Aly and Taylor (1968) have applied to singular
potentials procedures, analogous to renormalization in
field theory, with the object of obtaining hnite results

dhirD„" LV(P"—q)$„=& „

~
l pl" df(p p'~2)—Z,=2 rt dl pl"

(4 46)

If m —2 =M, a positive integer, then one can write

V(P)= Z a IPI'+lV(p), (4.47)

"Equations (4.45) and (4.46) are intended to be a corrected
form of Eq. (8) of these authors, which is clearly in error.

where W(p) =O(l p I ') for p large. If only even
degrees of p appear in the first expression on the right
of Kq. (4.47) which Aly and Taylor claimed can
always be arranged, then one finds D„~l V(p —q) j=
D„~W(p—q) in which the polynomial term in p is
absent. The quantity V'(p, p'; k2) has large p behavior
which is 0(l p l~ '), and iteration leads to the same
behavior for T(p, p'; k2). Thus one finds that the
subtracted L—S equation can be solved by iteration.
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Aly and Taylor have not studied these solutions and
their relation to the exact solution.

It is worthwhile to contrast the work of Guttinger and
co-workers with that of Aly and Taylor. The primary
intention of Guttinger and co-workers was to define a
Lippmann —Schwinger equation for scattering by sin-
gular potentials. This was done by a careful distribution
theoretic analysis. This leads to a L—S equation which
produces solutions which agree with correct scattering
solutions for a repulsive singular potential, and which
provides nonunique solutions for an attractive potential.
Aly and Taylor, on the other hand, dealt with the
problem of defining a Born term only very briefly, and
focused primarily on how to obtain meaningful solu-
tions of the L—S equation by iteration. Their procedure
led them to the limitation that nz be an even integer.
One may also note that Guttinger and Pfaffelhuber
have worked with the L—S equation on the energy shell,
while Aly and Taylor found it necessary to work with
the L—S equation off the energy shell.

expansion about g=0 diverges. Thus it is appropriate to
investigate peratization by means of singular potentials.

Let us now consider in more detail the peratization
idea as applied to potential scattering. As the starting
point in the field-theoretic context, an (invariant)
cutoff parameter which renders all divergent quantities
finite, is introduced into the theory. Analogously, in
potential scattering, a regularized (parameterized)
nonsingular potential V(r, n) is introduced such that

lim V (r, n) = V (r),
cz—&P

(4 4g)

where V(r) is singular. Conditions under which the
wave function and scattering parameters, corresponding
to the regularized potential, converge to the wave
function and scattering parameters of the singular
potential as 0.—+0, have been discussed previously
(Sec. III.B.6 under Limiting Procedures). Two forms
of regularization commonly employed in peratization
calculations are the + regularization,

D. Peratization

Peratization ' was suggested by Feinberg and Pais
(1963, 1964) as a method of evaluating higher-order
correction terms to the scattering amplitude in non-
renormalizable field theories. Basically the method is
the following. In a nonrenormalizable theory, the
individual terms of the Born series do not exist, and
moreover, taken together, cannot be made to exist in
terms of a finite number of renormalization constants.
A cutoff parameter (regulator) is introduced into the
theory so that the terms of the Born series become finite.
Of course, they would be expected to diverge as this
parameter becomes infinite. A set of the most divergent
parts, either from each term of the Born series or from a
class of diagrams, are retained and summed, after which
the cutoff is made infinite. In some cases this pro-
cedure has been shown to yield finite results.

However, in the case of a full-blown field theory,
there exist no results which are either exact solutions or
good approximations. Hence one had no way of judging
the correctness of the results of the peratization pro-
cedure as employed by Feinberg and Pais. Peratization
was therefore applied by many authors in calculations
involving singular potentials, for which exact solutions
are known, as a test of the validity of the method
itself. It was indicated in an earlier section that some
nonrenormalizable field theories effectively give rise in
some approximations to singular potentials in con-
figuration space (see Sec. IV.B). Furthermore, the
scattering amplitude associated with a singular potential
has a singularity such as a branch point in the coupling
constant g at g =0, and hence the perturbation series

75The term "peratization" was developed by Feinberg and
Pais (1963) from the Greek language; the negative form means
boundless, infinite, that "in which one is entangled past escape, "
while the afFirmative means "to cut a long story short. "

and the 0 regularization,

V, (r, n) = V(r)0(r —a).

With divergences thus removed, one now calculates
the Born series which has a finite, although small,
radius of convergence which depends on o.. Insofar as
most authors, in their studies of per atization for
potential scattering, calculate the zero-energy scat-
tering amplitude, i.e., the scattering length, we apply
the notion here to the scattering length also, although
the method is applicable at nonzero energies. We write
the scattering length A (n) corresponding to the
regularized potential V(r, n) as

A(a)= Q g"b„(n).
n=l

(4 49)

Because the unregularized potential is singular, the
coefficients b„(a) become infinite as n 4 Th—ese.
coefficients can generally be expanded in terms of an
appropriate set of quantities which are singular in n,

b-(a) = Z y-(a)b- (4.50)

Here the set ty„(n) I is a set of singular basis functions
such that

0.-+0

Generally the functions y„(a) have the form

y-(n) = L*(a)]"N-(a).

The function x(n) becomes infinite as n—&0, while the
functions 1„(a) are usually non singular, except
perhaps for the first few values of nz. It should be
emphasized that the choice of singular basis functions

Iy„(n) I in Eq. (4.50) is not unique. In an actual
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calculation, one set usually emerges as the most
convenient.

At this point we introduce the concept of peratization.
This consists first of retaining in each order in g in the
Born expansion terms of the highest singularity in n,
and then of summing these terms, after which n is
allowed to approach zero. ~' By erst peratization we
mean that only the most singular term in each order in g
is retained; by second peratization we mean that the
fust two most singular terms (in each order in g) are
retained, and so forth. We denote by A&' the result of
performing s peratizations in the calculation of A,
which in the above context is the scattering length. The
erst and second peratized scattering lengths are, for
example,

A "&= lim Q [gx(n)]"u„i(n)b.i,
a~0 n=l

A&" = lim Q [gx(n)] [u„i(n)b„i+u,2(n)b 2].
n —&0 n=l

This process in general can be continued to give higher
steps in the approximation scheme. The problem in
investigations of the peratization technique is to
determine whether the elements of the set fA'i} so
obtained are finite (neither zero nor in6nity), and
whether the set forms a sequence of approximations to
the exact solution A.

We illustrate the notion of summing a series, all the
terms of which diverge, by calculating the scattering
length for the singular potential gr 4. With 9 regulariza-
tion, the Born expansion is readily found to be

A (n) =—[gn
—'——',g'a —'+ (2/15) g'n —' ~ ]

= —g"' tanh g'"(n.

In the n~0 limit, we have

gl/2

This is the exact scattering length for the potential
gf

This potential, and in fact, the entire class of the pure
inverse power potentials V(r) =gr ~ at zero energy, do
not really constitute a test of peratization as an ap-
proximation procedure. In each order in g in the Born
series for the regularized potential, each term is of the
form n &, where p is a positive number. Thus, with the
singular basis functions n &, there are no lesser singu-
larities in the Born series. Upon summing the series and
setting n—+0, one obtains the exact. scattering length.
The fact that the result is exact should not be surprising
since nothing has been neglected. However, these
potentials do illustrate the possibility of summing a

"See Eq. (2.17) of Khuri and Pais (1964), as well as Sec.
III.B.6 of the present work.

series of divergent terms and getting a finite result
which is related in a definite way to the exact answer.

Before discussing the various investigations of
peratization which have been performed for potential
scattering, we ought to emphasize the distinction be-
tween regularization and peratization. This distinction
has been a frequent source of confusion in the literature.
Regularization consists essentially of two steps. First,
the singular potential is replaced by a parameterized,
nonsingular potential, according to Eq. (4.48), and
this is then used in the calculation of physical quantities.
The second step consists of a limiting process wherein
the regularization parameter is allowed to approach
zero. Peratization, on the other hand, consists of three
steps. First, physical quantities, calculated from a
regularized potential, are expanded in the Born series.
Second, only leading singularities from the individual
terms of the Born series are retained, and these are then
summed. Third, as with regularization, the regulariza-
tion parameter is put equal to zero by a limiting
pl ocess.

It has been observed by Feinberg and Pais (1963),
Khuri and Pais (1964), and Tikotpoulos and Treiman
(1964) that, at least in some cases the leading singu-
larities of the Born series for the scattering amplitude
at nonzero energy give rise to the scattering amplitude
at zero energy, i.e., the scattering length. Several
authors have, therefore, calculated the scattering length
by a regularization technique, and claimed that such a
calculation is a test of peratization. However, as we
shall see shortly, the literal application of the peratiza-
tion procedure as a systematic isolation and summation
of successive leading singularities of the Born series
usually fails to yield a sensible result. Hence, studies
which merely compute the regularized scattering length
do not probe the mechanism of peratization. Regulariza-
tion, if successful, yields exact answers since nothing in
the problem is neglected (see Sec. III.B.6). Peratiza-
tion, on the other hand, if it is successful, would
generally be expected to give a sequence of approxima-
tions only. Of course, it would certainly appear that
the success of regularization is a necessary prerequisite
for the success of peratization, but again it is empha-
sized that these are separate problems.

The above discussion clearly implies what we mean by
saying that peratization is successful. Namely, we say
that peratization is successful if it leads to a systematic
sequence of results which are related in a definite and
sensible way to the exact answer. In fact, when suc-
cessful, peratization gives a sequence of approximations
valid in the small-coupling limit. One should not expect
an exact result. It is the purpose of the studies of
peratization in potential scattering to see when this is
indeed the case.

We mention in this connection a general result due to
Cornille (1966): If the wave functions corresponding
to two di6erent regularizations converge to the proper
limit (regular solution) as n—+0, then the first peratiza-
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tion of each is the same. It is understood that leading
singularities are to be obtained from expansions in the
same set of singular basis functions.

Classes of Singular Potentials. There are three classes
of singular potentials which are discussed most fre-
quently in connection with peratization. The first class
includes potentials having, as the leading singularity at
the origin, a pure inverse power

these are called simply exponential-type singularities.
The second and third classes of singular potentials
listed above will be generalized in the following. In all
cases the second term V&(r), which may or may not
depend on g, is taken to be less singular than the first
(it could be zero). We note that condition (c) must be
satisfied if we wish to calculate the scattering length.
Ke now discuss peratization as applied to these
specific classes.

Inverse power singularity Among th. e first authors to
study peratization in connection with singular potentials
were Khuri and Pais (1964), Tiktopoulos and Treiman
(1964), and Pais and Wu (1964a). All of these authors
consider potentials which are given exactly by a pure
inverse power or whose leading singular behavior of
the origin is that of an inverse power.

Khuri and Pais (1964) applied the peratiza, tion idea
to the pure inverse power potential gr™at arbitrary
energy. They proposed the general regularization

V (r, n) =a™U(r/n), (4.51)

where the function U(i) is arbitrary but subject to
certain integrability and asymptotic conditions. Since
the leading singularities in the Born expansion of the
scattering amplitude for nonzero energy are associated
with the scattering problem at zero energy, these
authors concentrated on this case. It was shown
that the zero-energy amplitude is a good, approximation
to the amplitude for nonzero energy provided the condi-
tion kg"«1 is satisfied, where k is the momentum
of the scattering particle, and v= (m —2) '. Khuri and
Pais therefore developed a regularization procedure,
the 0--limiting procedure, in order to evaluate the
scattering length. ' This procedure, however, has been
criticized by several authors PCalogero (1965a),
Cornille (1966), and Gale (1967)] because of an

The second class includes potentials which have a
logarithmic-type singularity together with an inverse
power, e.g. ,

U(r) =gg(lnr —')&/r ]+Up(r).

This type of singularity will generally be referred to in
this section as a logarithmic singularity. The third class
includes potentials which have an exponential-type
singularity with an inverse power, e.g. ,

unjustified. exchange of two limits and has been dis-

cussed by us previously under "Regularization
Methods, "Sec. III.B.6. In addition, the 0--limiting pro-
cedure has subsequently been applied by some authors,
under the guise of peratization, in calculations of the
scattering length for various singular potentials. Ke
emphasize again that this procedure examines only
regularization at zero energy, and that nothing can be
concluded about peratization.

Tiktopoulos and Treiman (1964) also applied
peratization to the pure inverse power potential
V(r) =gr for arbitrary energy in the weak-coupling
limit. They showed. that an expansion. of tan 6&(k; g) in

g about g=0 is asymptotic, and that peratization
(i.e., first peratization) gives the leading term in this
expansion. These conclusions are essentially the same
as those reached by Khuri and Pais (1964), but the
work of Tiktopoulos and Treiman is a bit more detailed
as regards peratization. In addition to the simple
power potential, peratization for the more general
potential

V(r) =ger m+V'(r)], rmV'(r) —+ 0,

is discussed briefly. The authors point out that, in
first peratization, the less singular term in the potential
does not affect the scattering parameters and they
suggest that this is the case in general in the weak-
coupling limit.

Pais and Wu (1964a) have discussed peratization in
connection with the sum of two power potentials for the
particular class

(4.52)

The condition r) 1 implies our condition (c), and is

imposed in order that the scattering length exist. This
potential has an exact solution which is given in
Sec. III.A.2. Pais and Wu did not explicitly peratize
this potential, but rather studied the analytic properties
of the exact scattering length as a function of both g
and f LSec. III.A.2, Sec. II.E, and Frank (a)]. Their
purpose in this study was to discuss some of the
problems that arise in peratization when dealing with
two physical interactions, and, in particular, to develop
a procedure for handling the double infinite series in

g and f However the. ir discussion is limited to the
potential of Eq. (4.52).

Gale (1967) has evaluated the first and second
peratized scattering lengths for the potential

This potential can also be solved exactly and is dis-
cussed in Sec. III.A.2. Peratization is performed with
0 regularization, and with the potential expressed as

(4.53)

where p=f/g It was shown .by Gale that the first
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peratized scattering length for this potential is exactly
the scattering length for the potential with &p=f=0,
and that the second peratized scattering length is
equal to the first plus a correction term linear in p.

Gale's results can easily be extended to the s-peratized
scattering length I Frank and Land, (1970a)$. This
quantity can be found from the exact solution, and is
given by a polynomialjin p of degree s —1. In fact, the
terms of this polynomial are merely the first s terms in a
Taylor series expansion of the scattering length in y
about @=0. This comes about because, in each order in

g, different orders of singularities differ only by integral
powers of 0.. Furthermore, the parameter n, and
coupling constant p, always appear in the product ap,
except for an over-all factor a '". Hence each order of
peratization contributes successively to one and only
one degree in q. We see in this example that the power of
the parameter q labels the order of peratization.

Having examined in detail one particular potential
given by the sum of two pure inverse powers, we may
safely generalize this behavior to an arbitrary sum of
two pure inverse powers,

m& m'. (4.54)

where L(r) is a slowly varying function, defined by
(Evgrafov, 1961)'"

Examples of functions L(r) include

L(r) = (ln r ')&, ln ln r ' (1—ln r) ',

L(r) = exp (Xr&), cos" rI', p) 0.

p)0,
(4.55a)

(4.55b)

A significant property of slowly varying functions is

"We note that Evgrafov (1961), Chap. II, Sec. 1, denotes
the functions L(r) as slowly increasing functions, even if the
function actually is decreasing.

In the general case, different orders of singularities
differ by a&, where p = rl —m', and the coupling constant
q appears in the product pn.". Each peratization thus
contributes to only one order in q, and so we conclude
that s peratizations give s terms in a Taylor series
expansion in q of the scattering length.

LogoritIIrrtic type singltar-ity The seco. nd general class
of potentials which have been used in the peratization
program are potentials having logarithmic-type singular
behavior at the origin, together with an inverse power.
An example of this class of potentials is given by

V(r) =gr—"(lnr ')", p)0.
However, this class may be expressed most generally
by the form (Spector, 1966b; Gale, 1966b; Frank and
Land, b)

that (Evgrafov, 1961)

lim
I L(ap)/L(a))=1.

This relation provides the first term in a singularity
expansion of a slowly varying function, and enables
one to calculate the first peratized scattering length.

It is useful to introduce a very general subclass of
these functions, which are called tempered slowly
varying functions (Frank and Land, 1970b), by the
requirement that the function X(r) be itself slowly
varying. The examples of Eq. (4.55a) are tempered
slowly varying functions. For these functions, we
have the re'.ation

lim I L( ap)/L( a)1=1+/In p/X(a) jI 1+o(1)j,

which provides a second term in the singularity ex-
pansion of L(ap), and enables one to calculate the
second peratized scattered length.

Aly, Riazuddin, and Zimerman (1964) have
evaluated the first peratized scattering length for the
potential g ln' r/r4 with 0 regularization. They calculated
the first few terms of the Born series, and kept the
leading singularity in each term to obtain

A'"(a) = —Lg(ln a ')a '——
g (ln a ')a 3

+(2/15)g'(ln'a ')a '+ ~ ~ ]
= —g"'(ln a ') tanh (g" (ln a ')/a)

This limit is not defined. Hence they concluded that
peratization is not successful.

The class of potentials

P (r ) =gr
—m ln r—~

has been studied by Wu (1964). This author has
calculated the asymptotic (a—4) limit of every con-
tribution to the infinitely peratized scattering length.
For m=4, the first two contributions in the asymptotic
limit give rise to the first and second peratized scat-
tering lengths

A "~ = —g't' ln'" (1/a),

A "&=—-'g"' ln'" (1/a).

Thus the effect of including the second leading singu-
larities in the Born series is to change only the numerical
coefficient and not the functional form of the first
peratized scattering length which diverges. The con-
tributions from higher peratizations maintain this
property. Wu also showed for the case m=4 that the
asymptotic contributions, when summed, give zero.
Analogous expressions are also given for arbitrary
m&3. The first peratized scattering length in the
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V (r ) = L (ln r ')v/r j
V (r) =gl:L(r)/r'j,

m&3, p&O,

respectively, and by Spector (1966b) and Frank and
Land (1970b) to the entire class of potentials V(r) =
gL(r)r, with m&3. The first peratized scattering
length, obtained by a di6erent technique by each
author, is found to be

g[1} L[U[na—2}[ (0)g

where A is the scattering length for the power potential
gr™.Thus it is found quite generally that the first
peratized scattering length does not exist whenever
L(0) does not. The second peratized scattering length
has been investigated by Frank. and Land for those
potentials in which L(r) is a tempered slowly varying
function. It is found that A() is proportional to A('~,

and hence second pei atization overs no improvement if
L(0) does not exist. These results are in agreement
with those of Wu (1964) which were derived for the
potentials gr ln (1/r).

For those functions L(r) which are finite at r=0, it
is not clear how good an approximation is obtained in
first peratization. Certainly the two functions exp (Xrv)
and cos~ rv (ti& 0) are quite different, and yet both give
rise to the same 6rst peratized scattering length. The
validity of first peratization in this case remains a
subject for further study.

The preceding investigations of peratization for
potentials involving logarithmic-type singularities are
somewhat hampered by the fact that for none of these
potentials is an exact solution available, though a
sequence of approximations was derived by Wu (1964)
for the potentials gr ln r '. However, it was shown in
Sec. III.A.2 that the potential

V(r) = tg(ln' r/r') g"'(1 r/'))g(R ——r) (4.56)

can be solved exactly at zero energy. This potential
has, as the leading singularity at the origin, the behavior
r 4 ln'r. It has been used in studies of peratization by
Aly, Riazuddin, and Zimerrnan (1965a), and by Gale
(1966b). Aly et a/. , however, use the Khuri-Pais
cr-limiting procedure for the calculation of the scattering
length which they consider to be peratization. As
discussed above, such a calculation is not a test of
per atization.

' Equation (E21) of Wu (1964) from which this result is
obtained appears to contain a typographical error and should read
Bv(A) =2vm" '[r (v) g 2(g [n it)vt K„q(Q)/I, q(r}) —vw/ sin ave.

general case can be written"

A'"=in["'~ '}} (1/u)A

where A is the scattering length for the potential gr
Further generalizations of these potentials have been

made by Cornille (1965b) and by Gale (1967), who
considered the forms

[P(r)~b(n) (r"'/I ln r ('[')

)(exp I
—~gi[2

( ln r [@2} (4 57)

while the calculation of the contribution of the leading
logarithmic terms to each order implies a behavior of
the form

[p(r) c(n)r~+l exp L
—~rgb ' ln' r]. (4.58)

Here b(u) and c(a) are factors which become infinite
as the regularization parameter is set equal to zero.
One notes that the contribution for the leading logarith-
mic term is analytic in g, while the exact behavior is not.
Thus the dependence of the index e of the leading
logarithm in the Born series produces a convergent
series, while the rI, dependence of the less singular
logarithmic terms in fact corresponds to an asymptotic

Gale (1966b) presents the results of a calculation of
both the first and second peratized scattering lengths
for this potential, first peratization giving the ap-
proximate result

A(') =g'" ln E.,

and second peratization yielding the exact result of
Eq. (3.78)

A '"=A =g'[' ln E (1 g"' E —' ln E).
However this potential is given by the sum of two
terms, and hence it must be specified how peratization
is to be performed. If the potential is expressed in the
form

V (r) =g[(ln' r/r4)+ (v}/r')]8 (R r), —
with q set equal to g

't'2 at the end, and peratization is
performed with respect to the coupling constant g,
then the previous result for tempered slowly varying
potentials holds, and neither first nor second peratiza-
tion yields a finite answer. On the other hand, it
might seem most natural to consider a Born series in
the variable g"'. However, the present reviewers have
not been able to reproduce the results presented in this
paper within this context, and hence are skeptical of
this result which strikes an unjustifiably optimistic
note for the success of peratization.

The limitations of the approximation of summing only
leading singularities are well illustrated by a calculation
of Arbuzov, Filippov, and Khrustalev (1964). They
considered the zero-energy scattering by the marginally
singular potential

U(r) =gr 'lnr '.

The wave function for this potential is known exactly
(see Secs. III.A.2 and IV.C). They found with the
regularization of the singular integral in the integral
equation for the wave function that the exact solution
has the behavior for small r
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series. Thus the e dependence of the coe%cients can be
more significant than the strength of the singularity
with regard to the dominant behavior of the solution.

Exponential type -singularity We consider next the
class of potentials having an exponential-type singu-
larity at the origin. An example of a potential of this
type is

U( ) = g ( "'/ ')+f (1/ ') (4.59)

This potential has been studied by Aly, Riazuddin, and
Zimerman (1965b) and by Calogero and Cassandro
(1965), both groups setting l). =2.

Aly et al. (1965b) evaluated the scattering length for
this potential with f=4 by means of the Khuri —Pais
0--limiting procedure. However, as commented pre-
viously, this formalism tests only regularization and not
peratization. In addition, these authors stated that the
sum of the leading singularities from each order of the
0-regularized Born series for the scattering length
gives zero in the o~O limit. They conjectured that
the second leading singularities would give the correct
result. These statements, however, are ambiguous
in that it is not indicated how the leading singularities
are to be obtained. In addition, in support of the claim
that the first peratized scattering length is zero, the
authors used a calculation they performed in which it
was found that the scattering length for the potential
ge2/"/r4, which is the most singular part of the potential
of Eq. (4.59), is zero. This result is clearly incorrect,
since a purely repulsive potential cannot have a
vanishing scattering length. The claim of these authors
that peratization succeeds is thus not justified.

Calogero and Cassandro (1965) presented a careful
analysis of the peratization procedure as applied to the
potential of Eq. (4.57), also with X= 2. The scattering
length, computed from the +-regularized potential
U (r+n), and with X arbitrary, is readily found from the
solution presented in Sec. III.A.2 to be given by '

A = lim A (o/) = g'/'[X ' (gl/2)/E, (g"')7 (4.61)

where ) =f1/2

In the special case where f= 4, Eq. (4.60) simplifies to

A (n) =—-' —g"' coth (g"'e"/'a 1)+n. —(4.62)

A (a) =g'/'

(gl 2gX /2 )/Ia1 (gl/2) j (gl/2gX/2a)Q 1 (gl/2)
X

(gl/2~l/2a)1 (gl/2) I (gl/2~) /2a) Q (gl/2)

(4.60)

By expanding the hyperbolic cotangent, one has

A (~) — l P ~ gaL~X/2a 1]2a—l+~ (4 63)
n=0

and on keeping the most singular term in each order in

g, and summing, one reproduces the exact scattering
length in the n~O limit. Thus first peratization suc-
ceeds. This appears to be the only nontrivial case
(excluding the pure inverse-power potentials) for
which this is true. The success seems to be a eke
arising from the particular choice of parameter f= 4.

YVe consider next a more interesting situation with
f=0, and X still arbitrary. The scattering length, which
is given by Eq. (4.61) with i =0, is most conveniently
written as a ratio

A (n) =1V (n)/D(n),

&(~)= Z g"&-(~),
n=1

D(~)= Z g"D-(~).
n=O

X [11/1+1)—P(e—1+1)j (n
—1+— ——(22—l)

2A

n ~l)) /a

D-(~) = —ZX2" =0 l!2(/2 —l)!'

2CL
1——

I:4 (l+1)—4 (~—l+1)] (4 64)

The erst peratized scattering length, obtained by
keeping the most singular term in g and D in each
order in g, was readily found to be zero. Calogero and
Cassandro then proceeded to calculate the second
peratized scattering length. They showed that keeping
the first two most singular terms in Ã and D in Eqs.
(4.64) is not quite correct, because the second leading
singularity in the numerator, which involves the factor
exp I (/2 —1)X/a$, is a less singular basis function than
the second leading singularity in the denominator,
which involves the factor exp (Ill/n). Therefore, in
order to keep only the leading two singularities con-
sistently in the ratio, the term involving the lower-order
exponential exp /) (22 1)l)/u7 mu—st be dropped. They
then found that

Here D(12.) is the Jost function for the regularized
potential U(r+n). One finds that

n gl) /a

ill„(n) =——Q
o l/2(22 —l) I2

"Equation (8) of Calogero and Cassandro (1965), which cor-
responds to our Eq. (4.60), omits the additive term +a. This
omission is reflected in their Eqs. (9), (10}, (15), and (17a),
and is corrected in our Eqs. (16), (17), and (18) . This error does
not affect the conclusions of their work.

g (~)— X/2
—', ln (g/ll2)+y

This result is precisely the first term in a convergent
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expansion of the exact scattering length about g= 0; see
Sec. III.A.2, Eq. (3.71).

It is interesting to look at higher peratizations for
this potential (Frank a,nd Land, 1970a) . One can easily
verify that the third peratized scattering length, ob-
tained by keeping terms up to and including the leading
term of the coefficient of exp P.(e—1)/n] equals +2.
This result is in no sense an approximation to the exact
answer. On the other hand, if we keep the complete
polynomial factor (in n) of exp P.(e—1)/n] in 1V„(n)
and D„(a), we obtain (in fifth peratization)

g (&)— X/2

-,'ln (g/X')+y

X I 1+ (g/X') [ln (g/X') —2+2'] I . (4.65)

These are the first two terms of a convergent expansion
of the exact scattering length Eq. (3.70) about g=o.

This example illustrates the concept of the "ap-
propriate singular unit. " We see that it is not neces-
sarily true that successive peratizations give suc-
cessively improved results even for a peratizable
potential ~ One could still get a nonsensical answer, e.g. ,
the value +2 noted above. Rather, it seems from this
potential, that one must perform successive peratiza-
tions with respect to an appropriate singular unit, in
this case the exponential factor e"~' together with a
polynomial coeKcient, in order to obtain a successive
approximation scheme.

The peratization of a generalized class of potentials
of the form

V(r) =g(e"'"/r~) m an integer, &4

has been performed by Frank and Land (1970a). The
scattering length was calculated to third peratization.
Only in the case of m=4 does peratization (second
peratization, as discussed above) give a finite, nonzero
result, which is the weak-coupling limit of the exact
scattering length. In all other cases, the first three
peratizations give zero.

Cornille (1965b) has studied the class of potentials

V(r) = g[exp (X/r~)/r-], X&O, P&0,

but in erst peratization only, and found that the first
peratized scattering length always vanishes.

The preceding results have been further generalized
by Land (a) to include a wide class of potentials
having an exponential-type singularity at the origin.
These potentials are written

V(r) =a[R(r)/r"],
where R (r), which we call a rapidly varying function, is
dehned by the expression

R'(r)/R (r) = —[%(r)]= —[1/r$ (r) ],
((r) =0(1),

r('(r) =0(1).

Examples of R(r) include exp (X/rs), exp (g in'' r),
p& 1, exp (e~~" ), etc. It has been shown that the first
peratized scattering length for these potentials vanishes.
Thus the result 2")=0, found by Calogero and Cas-
sandro for the potential geit"/r4 and by Cornille for the
potentials g exp (X/rs)r, is indicative of a very general
situation. The second peratized scattering length has
also been calculated. However, no form of R(r) could
be found, apart from e~'" with m=4, for which peratiza-
tion gives a nonzero result to this order.

The foregoing summary of the results of peratization
calculations suggests that peratization is not a par-
ticularly viable approximation technique in potential
theory. It works as a successive approximation scheme
for the class of potentials consisting of the sum of two
inverse powers, and for the single potential V(r) =
ge~'"r '. It also succeeds for the truncated pure inverse
power potentials V(r) = gr ""0(R—r). First peratization
generally gives an approximate result for potentials
whose leading behavior is that of a pure inverse power
at both zero and nonzero energy.

Fairly general classes of potentials having logarithmic
or exponential singularities at the origin have been
studied by Frank and Land (1970a, b) and, among these
potentials, none could be found (but for the one
exceptional case gr 'e~'") for which peratization is
successful. There are two general features concerning
the customary expansion into singularities of the Born
series that seems to emerge from their analysis. The
first is that the explicit dependence on the summation
index e in the various terms of the Born series contains
an implicit. dependence on n. In particular, in the o~o
limit, those terms indexed by larger values of m are the
most important (e—+~, in fact). This effect was dis-
cussed above in connection with the singularity
structure of the wave function for the potential
gr 'inr 'as studied —b—y Arbuzov et al. (1964). This
eRect also is felt in the peratization of the potential
gr 'e"' It was sho. wn in Frank. and Land (1970a) that a
first term with a stronger singularity in a is canceled
by a second term which is explicitly less singular in n,
but whose e dependence, along with the explicit a
dependence, gives rise to a singularity as strong as the
first term.

A second feature is that the eth term in the Born
series consists in general of a sum of products of a
dominating singularity with a series of less singular
terms. Consider the series with the greatest singularities.
Even if this series is finite with, say, e terms [or more
generally 0 (n) terms], the preceding remarks about the
0.~0 limit suggests that these series behave eRectively
as in6nite series, thus implying that an infinite peratiza-
tion is necessary to gain even a first approximation.
The reader might contrast this situation with what
actually occurs for the gs 'e"I" potential for which the
series described above consists of at most three terms
[see Eq. (4.64)].

There has been an attempt by Gale (1966a, 1967)
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to draw some general conclusions about whether
peratization might be successful. The author claimed to
present a general argument for the success of peratiza-
tion as an approximation scheme. However his specific
conclusions are brieRy stated, and seem rather cryptic
to the reviewers who are unconvinced by his arguments.

V. APPLICATIONS-PHYSICAL

A. Molecular Physics

One of the earliest appearances of singular potentials
in physical problems was in the area of molecular
physics. Potentials that are singular in form may
enter in both the long-range and short-range parts of
the interatomic or intermolecular force. The long-range
part arises from electrostatic, induction, or dispersion
forces (see below). The related potentials are attractive
singular when extended to the origin. However, as
the atoms or molecules approach each other, their
electron clouds overlap, thus creating a strong repulsive
force at smaller distances. This force is frequently
represented phenomenologically by a repulsive singular
potential, but sometimes also by a repulsive nonsingular
potential. In some cases, particularly in low-energy
calculations, where only the long-range part of the
potential should be important, the attractive singular
potential is simply cut off.

Because the attractive singular potential arises only
incidentally and the repulsive singular potential is a
purely phenomenological representation, there appears
not to have been much emphasis in molecular physics
on unravelling the theoretical difficulties associated
with the singularity at the origin. This contrasts with
the interest of elementary particle physics in singular
potentials. The most frequently employed analytical
technique for obtaining solutions to the Schrodinger
equation is the WEB method (Sec. III.B.2). However
solutions are also obtained numerically with the help of
electronic computers. As stated in the introduction, we
do not attempt in this review to cover the vast field of
applications of singular potentials in molecular physics,
but rather we point to a few significant features. The
reader interested in calculations which have been
performed and in the techniques that are employed is
referred to the excellent review article by Bernstein
(1966) which contains many references.

An application by Vogt and Wannier (1954) of
singular potentials to the scattering of ions in a gas is of
particular interest. In this work the authors studied
solutions to the Schrodinger equation for an attractive
singular potential without imposing a cutoff on the
potential, but by choosing an acceptable boundary
condition based upon physical considerations. When
gaseous ions or electrons move through a dilute gas
whose molecules are not too large, the interaction is
given by the polarization potential,

P'(r) = I2e2nr ', u—=molecular polarizability. (5.1)

This expression follows by computing the quantity
mb„;~2, where b„;& is the critical impact parameter for
fall to the center (see Sec. II.F). Vogt and Wannier
argued that the analogous quantum-mechanical cross
section is obtained by treating the origin as a sink, and
hence they chose a boundary condition to give rise to
totally incoming waves. The description of this calcula-
tion is given in Sec. III.A.1.Vogt and Wannier found in
the low-energy limit

Q M ~ 2& class
cap ~ cap

k—»0

and more generally

class cc 2)+ 1
QM

2k(—g)"2 I~ 1+e2~ ' (5 2)

in the notation of Sec. III.A.1. The actual evaluation of
Eq. (5.2) is very difficult. They concluded that the
quantum-mechanical cross section oscillates about the
classical value as the energy increases. The amplitude of
deviation becomes monotonically smaller while the
period remains nearly constant as the energy increases.
They also derived the high-energy limit for the potential

"Strictly, one cannot talk of the total cross secticn for this
potential in the classical case, since the total cross section does
not exist because the forward cress section diverges (see Sec.
II.I) . Instead one uses a kinetic cross section, defined by oi„=
5(1—cose) do- (see Vogt and Kannier, 1954).Particles scattered
into randoin directions have (cos8) =0, while particles defiected
slightly give only a small contribution to o-i,; .

This form holds only away from the origin, and repre-
sents the interaction of a charge with an induced dipole.
Vogt and Wannier argued that in many physical
situations (such as helium ions in helium) the exact
close-in repulsion mechanism is unimportant. If the
wave function of the moving particle oscillates rapidly
in the neighborhood of the molecule, then the location
and nature of the cutoff to Eq. (5.1) is washed out by
the small energy spread 5E of the particles. In the
case of an electron in helium, however, the details of
the cutoff are important.

The quantity which Vogt and Wannier calculated as
an application of these ideas is the cross section for a
particle to pass through the origin, which they called
the "capture" cross section. The physical revelancy of
this quantity is derived from the fact that, in the
classical case, it should be a good approximation to the
total cross section, since particles which do pass through
the origin are deRected into random directions, while
those that do not are deRected only slightly. " The
classical cross section for a particle of velocity v to fall
to the center or be "captured" by the potential of
Eq. (5.1) is

class —2~ (e2~/~ll2) I/2
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+ {4/Lk(—g)'~']'~'} exp (—2~v2)

)&{sin 4vrL2k( —g)"']"'+0{1/Lk(—g)'"]"'})
+higher order terms in { k(—g)"'] "'. (5.3)

We note again, as in Sec. III.A.1, that this is not the
usual scattering cross section as it violates unitary.

Thaler (1959) investigated the induced electric
polarization of the neutron in the field of a nucleus. The
interaction is again taken to be of the form of Eq. (5.1),
with n now the neutron polarizability. In particular, he
calculated the low-energy phase shifts by employing a
cutoff on the potential.

Singular power potentials are of great importance in
describing intermolecular forces (Hirschfelder, Curtiss,
and Bird, 1954).Two nonpolar molecules are frequently
represented as interacting via the Lennard —Jones
potential,

V ( ) = (d/ ")—( / ')

or sometimes via the Buckingham potential,

V (r) = be '"—(c/r') —(c'/r') a, b, c, c'&0.

Modifications of the latter potential have been proposed
to eliminate its undesirable feature of approaching —~
as r—4.

The long-range attractive inverse-sixth power is
characteristic of the interaction of nonpolar molecules.
This form of interaction, first derived by London, is a
quantum-mechanical result known as the dispersion
contribution to the potential, and originates in the
mutual interaction of two instantaneously existing
dipoles. The Buckingham potential also includes the
contribution from an induced-dipole —induced-quadru-
pole interaction. On the other hand, the repulsive
interaction has been given various phenomenological
representations, such as a singular inverse power
d/r, with 9(8&15, or as a regular exponential be '".
The general Lennard —Jones potential which employs a
repulsive singular interaction with variable exponent is
perhaps the most frequently considered intermolecular
potential. However, in some instances more satis-
factory experimental agreement has been obtained by
means of a regular rather than a singular potential
(see, e.g. , Hartmann and Slawsky, 1967).

We also mention a few long-range interactions
between molecules which result from induction and
electrostatic forces. Interactions of a polar molecule
with a nonpolar one (when averaged over angular
orientation with an appropriate Boltzmann weighting

of Eq. (5.1) (g=-', e'n),

QM ~ 1—{4/Lk(—g)'~2]"'} exp (—n-V2)
class

fTcap k~~

&& {sin 2x{ 2k (—g) 'I']'~'+ { (42~+1)/8Lk (—g)"']"'}l

factor) are given by

V(c, ind p) —1/r4,

V(p, ind p) —1/r',

where the first expression represents a charge inter-
acting with an induced dipole, and the second a dipole-
interacting with an induced dipole. Interactions be-
tween two (angular averaged) polar molecules have
the forms

U(c, p, ) —1/r4,

V(c, Q) —1/r',

V(p, p) —1/r',

V(~, Q)-—1/",

V(Q, Q)-—1/r"

where Q means quadrupole.
The various molecular potentials just discussed do

not hold for the interaction of long molecules, excited
states, free radicals, or free ions. In such cases, however,
the interaction may still be expanded in a power series
in r ', the inverse separation of the molecules. See, for
example, Chang (1967).

A considerable amount of eGort is presently being
devoted both theoretically and experimentally to the
determination of intermolecular potentials. There are
two basic theoretical approaches to this problem. One
method consists of calculating the matrix element of the '

interaction energy between appropriate molecular
states. Needless to say, these results are fairly ap-
proximate because molecular wave functions are not
well known. A second method consists of the calculation
of some macroscopic quantity which is related via
statistical mechanics to the intermolecular potential.
Such quantities include viscosity coefficients, ionic
mobilities, or virial coe%cients. The work of Larsen,
Witte and Kilpatrick (1966) gives an example of the
use of numerical solutions for the Lennard-Jones
potential in the calculation of the quantum-mechanical
pair-correlation function for 4He gas at low tempera-
tures. For the experimental determination of the
potential, one of the most direct techniques is by
means of molecular-beam scattering. A discussion of
various theoretical and experimental methods cur-
rently employed may be found in Hirschfelder (1967).
In addition, the review articles of Amdur and Jordan
(1966), and Pauly and Toennies (1965), on molecular-
beam techniques are also of interest.

B. High Energy and Nuclear

Another physical application of singular potentials
has been to the phenomenological interpretation of
high-energy scattering. Tiktopoulos (1965) has used
singular potentials of complex strength to investigate
the sharp forward elastic peak in high-energy scat-
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tering. The general form of such scattering in p—p and

p—a experiments is

(do/d0) l,).,g;. c exp f b—(8, k)], (5.4)

where the Drear form for b(tt, k) is k sin 0, and c is
taken to be a slowly varying function of 0 and k.
Tiktopoulos reasoned that nonforward scattering comes
from particles passing very close to the scattering
center and that, if these were strongly absorbed (by a
complex potential), there would be a sharp dropoff in
elastically scattered particles away from the forward
direction. Potentials less singular than the inverse
square were investigated by Serber (1963, 1964a, b),
and do not give the exponential falloff of Eq. (5.4).
Tiktopoulos employed a potential of the form

V(r) =ge '~r—, with ng) 2, 6)0,
and

g=g(k)) 0,

where g(k) is assumed to fall off more slowly thank'™at high energy, since the dimensionless parameter
which determines the scattering, g=k 'ge '~, would
otherwise correspond to weak coupling at high energy
(see Sec. II.D). Paliov and Rosendorff (1967) have
also used energy-dependent singular potentials in their
high k phase shift investigations (see Sec. II.D).

Tiktopoulos derived a WEB expression for the phase
shifts at high energy for fixed l which is
bwKa (~) =1~(1+k)

00 (1+-)'
1— 1—,—— dp —po, (5 5)

PO P P

where po is a certain (complex) root of the square root in

Eq. (5.5), and the integral is evaluated along a certain
ray in the complex p plane. By writing the scattering
amplitude in a Sommerfeld —Watson form, a steepest
descent technique can be employed along with Eq. (5.5)
to find useful, though very complicated, expressions for
the scattering.

In the case of 6=0, the high-energy scattering
becomes classical except in the forward and backward
directions. Such a result, for energy-independent
coupling, was also shown to be true by Spector (196'7b,
1969). He derived the large-angle high-energy cross
section in this case which may be given as

sin Ho (8) =Ar '(m —8)+4A2Ag '(n.—8)'

+OL(m —0)'], (5.6)
where

I'(1/m)
I'L (1/m)+-,']

and

2'"'
m rL(3/m) —-',] '

with X=g/k'. Equation (5.6) is va, lid, for large ns, for
0& (~—0) &6'~'.

q sin (6/2) =2.53X10—"cm (+2%). (5.7)

Except at angles greater than 80' in the center-of-mass
system (which is symmetrical about 90'), the agree-
ment with experiment is good.

Kouris (1966) extended these calculations to the
complex inverse fourth power, and to p—m scattering.
The analysis is much more involved and requires a
computer. He used the potential

V(r) =g4k'e '~r—4

and found a good fit to p—p scattering at angles less
than 60' in the center of mass, with

q=20. 124X10 ' cm,

6=46'14.48'.

At 0, )60', he found a reasonable fit, except near 90',
in two lab momentum ranges

11&pL~a & 12 8eV/c 20& pLga &26 BeV/c

g=8.727X10 '4 cm

6= 137'44'

g=8.64X10 '4 cm

a=126'44'.

Fits to m p and ~+p scattering at pz~s ——8 BeV/c and
12 BeV/c are not as good as in the p—p case. Kouris also
calculated the ratio of elastic to total cross sections by
means of a standard optical approximation (impact-
parameter method). This model has the unfortunate
feature that o-t,,&,&~~ as the energy increases. He found

2—'~'~sin 5~'~'

Ot, ~, ~ sin L(26/3)+ (vr/6)]
'

and R is independent of g. For p—p scattering at pL~a=
12.8 BeV/c, the values a,re

&aeory=0. 26 )

R, pgi
——0.265 —0.276;

however for ~ p, R„h„,„is too large. As indicated by the
diverging total cross section, the theoretical basis for
the optical model in this case is rather weak. Also,
both Tiktopoulos and Kouris neglected exchange
effects.

Spector and Chand (1968) have investigated the
low-energy interactions of the E and K mesons with
nucleons, where the E-meson lab momentum is less
than 250 MeV/c. Using an energy-independent form

V (r) ge
—

iver
—m

they treated both isospin zero and isospin one for both
EE and AlV systems. By utilizing the experimental
scattering length data, they found that only m=4 is

For the computationally easiest case of m = 2,
Tiktopoulos fitted p—p scattering satisfactorily with

V (r) =q'k'e —'~r—'

and g=3.5X10 "cm (+100%, —50%),



FRANK, LAND, AND SPKCTOR Singz~laz Potentials 95

allowed. This contrasts to the high-energy papers just
discussed where the exponent was arbitrarily chosen.
The coupling strengths found for the four physical
systems give consistent values for the average interac-
tion energy in each case. Typical results are, for EE,

adjoint extensions which depend on a single arbitrary
parameter. The physical consequences of an operator
not being essentially self-adjoint can be illustrated with
an example suggested by Wightman (1967).

Consider the operator

and for EN,

I=O

6=0

8 =0.29

I=O

0 =46'40'

R= 200

I=1
6=0

g =5.06,

I= j.

~= &70'&0'

g = 28.5.

~= (P/dx'+ cx", c)0,

X0

dx(E+cx") " c "' dxx n/2.

whose domain in the Hilbert space consists of all
infinitely differentiable functions of compact support.
Under the action of the potential in this operator, a
particle can accelerate from the point xo to infinity in
a time given by

Treacy has recently investigated the srn. all l phase
shifts for low energy a—n scattering by means of a
singular potential. He found that a potential of the
form (g)0)

I'(r) = (a/r') —(~'/") ~.I'.—(r)+ (4"/r) (5 9)

produces a reasonable fit to the 1=0, 2, and l =4 phase
shifts up to 15 MeV in channel energy. In Eq. (5.9),
V, is a constant, and I', (r) is a sum of three Yukawa
potentials. The best fit occurs for g2=0.412, 8= 3.054,
and 1/" =648.5. The l=2 fit is the poorest, falling below
the experimental value by 25%%u~ or so at points. How-
ever, the general fit is superior to that which can be
obtained without the r 4 term.

It is of interest in high-energy phenomenology to
compute scattering parameters for exponentially at-
tenuated power potentials, i.e., potentials of the form

I'(&)=C(c "'/r )

Spector (1967a) has performed such a calculation for
the case m=4 by applying the Born approximation.
He has noted that the scattering length so obtained
does not reduce to the gr 4 potential in the p—+0 limit.
This result is, of course, due to the fact that the Born
approximation is not valid in the neighborhood of p=O.
This is because the wave function for the exponentially
attenuated potential divers suKciently from that for
the pure power potential as to invalidate such an
approximation.

VI. CONCLUDING REMARKS

The essential complication associated with singular
potentials is seen to lie in the phy. ical interpretation
of the attractive case. Though the "usual" boundary
conditions are imposed, a unique solution of the
Schrodinger equation is not obtained. In Sec. II.C this
circumstance was attributed. to the mathematical
property that the Hamiltonian for an attractive singular
potential is not a self-adjoint or essentially self-adjoint
operator in the Hilbert space of state vectors in which
it acts. Rather it possesses an infinite number of self-

If e) 2, the particle reaches infinity in a finite time.
Hence it is necessary to specify reQection conditions at
infinity to obtain a unique dynamics. For each reAection
condition there corresponds a self-adjoint extension of
H. On the other hand, if m&2, a particle does not reach
infinity in a finite time and so reflection conditions at
infinity are irrelevant. It can, in fact, be shown that this
II is essentially self-adjoint, at least for the case of a
linear potential (Stark eBect) .

The situation for an attractive singular potential is
similar, with the origin in this instance playing the role
of the point at infinity in the example above. Classical
considerations show that a particle indeed reaches the
origin in a finite time. (The angular momentum barrier
which may be present is of no consequence, as a quantum
mechanical particle can penetrate through it. ) Thus in

this case it is also necessary to specify reAection condi-
tions at the origin, in order to obtain a unique dynamics.
The usual boundary condition for the vanishing of the
wave function at the origin does not specify the phase
of the wave function upon reflection. In the case of any
repulsive potential or of a regular potential with
angular momentum, a particle never reaches the origin,
and so no reQection condition is necessary and a unique
solution to the Schrodinger can be obtained. (The
reader might recall that the case of the 5 wave with an
attractive regular potential requires a different con-
sideration; see Sec. II.C and Behncke, 1968.)

We mention again the possibility of exploiting the
arbitrariness connected with the attractive singular
potential in constructing representations or parame-
terizations of appropriate elementary particle processes.
An example of such a process is particle absorption.
This type of application has not, to our knowledge, been
considered in the literature. The "capture" process of
Vogt and Wannier (1954), which in a sense illustrates
the technique, was nevertheless intended simply as the
quantum Inechanical analog of the classical fall to the
center for an elastic scattering process.

We conclude finally with a comment on those formal
applications in which singular potentials have been
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VII. APPENDIX

We present in this appendix a summary of the
notations used in this article.

Three different notions of limit occur. Given two
functions f(x) and g (x), we say that

f(x) —+ g(x) (A1)

used as models for investigating nonrenormalizable
quantum 6eld theories. It is frequently noted by the
investigators of rigorous quantum field theory that any
connection between nonrenormalizable held theory and
singular potential theory is at best very hazy or does
not exist at all. This conclusion is reached on the basis
that (a) only subsets of diagrams are ccnsidered from
which the singular potential emerges, or (b) the trans-
formation from the Minkowski space of the quantum
field theory to the Euclidean space of the singular
potential theory is not a legitimate one. The work of
Halpern (1966) might particularly be noted in this
respect. The present reviewers do not dispute such
criticisms. However we do feel that an intuitive con-
nection between the two theories is suKciently well-
established for the qualitative picture which emerges
from singular potential studies might, in some instances,
to serve as a useful guideline for rigorous investigations
of nonrenormalizable field theory as well as for phe-
nomenological representations of elementary particle
processes. After all, to give an oft-cited example, Regge
pole theory, which is successfully applied in elementary
particle physics, has its origins in nonrelativistic
potential theory whose connection with a full relativistic
quantum field theory is not entirely unambiguous.
Perhaps singular potentials may at some time find a
corresponding application.

Note added in proof: Since the completion of this
manuscript, several articles of interest dealing with
singular potentials have appeared. Aly, Guttinger, and
Muller (1970) in two articles have discussed a number
of topics on the singular interactions in both non-
relativistic and relativistic quantum mechanics. These
articles are more specialized and more detailed than our
work. The methode of Pade approximants has been
applied recently in the context of singular potentials by
Kloet and Zimerman (1970) and by Garibotti, Pellicoro,
and Villani (1970).

implies

implies

implies

lim I f(x)—g(x) 1=0;
z~xp

f(x) = g(x)
x~xp

lim [f(x)/g(x)]=1;
s~xp

f (x) —g(*)
x~xp

lim [f(x)/g(x)]=-c, 0(l c l(~.
s~sp

(A2)

(A3)

Clearly Eq. (A1) implies Eq. (A2), which in turn
implies Eq. (A3), but the converse is not true.
I'~ The "order of" symbols 0 and o in the limit x~xo are
defined by the relations

f(*)=o[g(x)],

if f(x) g(x),

f(x) = o[g(x) ]
if lim If(x)/g(*) I

= 0.

Standard Notations

The following is a list of our standard notations:

Scattering length
Airy function
Airy function
Particle energy
Coupling constant
Jost function
Jost solution
df/dx I. „
ConAuent hypergeometric function
Hypergeometric function
Coupling constant
Spherical Hankel functions

A
Ai (s)
Bi (z)

f(k)
f'(k, 1 )
f'(*0)
F(a, b; s)
F(a, b; c;z)

h"' (s),
h~'& (s)

This article is concerned mainly with scattering
problems in the context of partial waves. The symbol I
is attached as a subscript to such quantities as the wave
function or phase shift to denote the lth partial wave.
When this subscript does not appear, the S wave is
usually (but not always) understood.

Three dimensional vectors as denoted as a.
The notation and normalization for various functions

used in the text are conventional and may be found in
the Bateman Manuscri pt Project (1953) or the National
Bureau of Standards Handbook of Mathematical
Functions (1964).
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H "& (z),
+is) (z)

I (z)

J (z)
k
k (z)

M
M, &'&&4& (z, k)

Pi(cos 0)
s(k), s(k, ),)
T(r, k)
I (r)
J'(r)
Jf'(f, g)

5(k), 5(k; g)
5(r, k)

5 (x)

0(*)
C(a, b;z)

lt (r)
4 (z)

@(a, b; z)

Handsel functions

Modified Bessel function
Spherical Bessel function
Bessel function
(2MB/V) "'
Modified Bessel function
Orbital angular momentum
Exponent in the pure inverse-power

potential
Particle mass
Mathieu functions
Particle momentum
Legendre polynomials
S matrix
tan 5(r, k) (Sec. III.B.3)
Radial wave function
Potential function
Wronskian: fg' f—'g-
Regularization parameter (length)
Euler-Mascheroni constant =

0.5&r216
Scattering phase shift
Variable-phase function

(Sec. III.B.3)
Dirac 6 function
)+ r

Step function: =0, x&0; =1, x&0
ConRuent hypergeornetric function
kl—2/mgll~

Three-dimensional wave function
Logarithmic derivative of gamma

function
ConAuent hypergeometric function
Four-dimensional angular momen-

tum
Laplacian operator
d'Alembertian operator
Klein-Gordon operator
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ANNOUNCEMENT

The Review of Particle Properties will appear as a Supplement in the April 1971
issue of Reviews of Modern Physics.


