
REVIEWS OF MODERN PHYSICS VOLUMF, 43, NUMB ER 3 JULY 1971

Atoms anc. '.V. ;o..ecu. .es

.4evisitec. *

::ne..astic Co... .isions oI: '. .'ast C'.~argec. '. . artie. .es wit. ~
'.

. xe '. Bet.ie '. .'. xeory

MITIO INOKVTI
Iosnt Institute for Laboratory AstroPhysicst of the Unr'oerssty of Colorado and of the National Bnrean of Standards,
Boulder, Colorado 8030Z
Argonne National Laboratory, i Argonne, Illinois 60439

The current understanding is summarized from a unified point of view, which Bethe initiated four decades ago and
which enables one to put a variety of theoretical and experimental data into a coherent picture. Properties of the generalized
oscillator strength, which plays the central role in the theory, are treated in detail. The integrated cross section for in-
elastic scattering and related quantities at the high-velocity limit also are discussed. The theory provides a series of
criteria for testing the compatibility of cross-section data and atomic (or molecular) properties that may be obtained
from theory or independent experiments.
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1. 1;NTRODUCTION

Theoretical treatments of inelastic collisions of
charged particles (regarded as structureless) with
atoms and molecules may be conveniently classified.
into two kinds: those dealing with fast collisions and
those dealing with slow ones. The criterion used in
making this classihcation is that the particle velocity
is "fast" or "slow" relative to a mean orbital velocity
of atomic or molecular electrons in the shell (or sub-
shell) that pertains to the inelastic process under
consideration. Electrons of a fewkeU kinetic energy, for
example, are "fast" with respect to any discrete-level
excitation of He, whereas they are not fast with
respect to the X-shell ionization of Ar.

For suKciently fast collisions, the inhuence of the

*Work performed under the auspices of the U.S. Atomic
Energy Commission.

t Visiting Fellow 1969-1970.
f Permanent address.
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incident particle upon an atom or molecule may be
regarded as a sudden and small external perturba-
tion. This picture leads to elementary, though sys-
tematic, formulations. Early in the century, Bohr
(813, 815, 848) developed a theory of the stopping
power of materials for fast particles in terms of an
impulse approximation, which regards the collision as
producing sudden transfer of energy and momentum
to atomic electrons. Thus, the Bohr theory indeed
gave the general structure of cross-section formulas
correctly, but certain dynamical details remained
"phenomenological" (i.e., not calculable within the
scope of the theory) owing to the lack of quantum
mechanics at that time. In 1930 Bethe (830) estab-
lished a quantum-mechanical theory based on the
Born approximation, and thereby derived a number
of important results (832, 833, BJ68) concerning col-
lision cross sections and the stopping power for fast
particles.

An indication of some general characteristics of fast
collisions may be in order at this point. The expres-
sion for the cross section for a process in which a fast
particle transfers a given amount of energy and mo-
mentum consists of two distinct factors, one dealing
with the irtcident particle ordy and the other dealing
with the target only. The first factor is nearly trivial;
the second, the generalized oscillator strength of an
atom or molecule, constitutes the central object of
study. In this sense, the study of fast collisions is,
in essence, that of a target property, a kind of spec-
troscopy. Besides, a close relationship exists between
fast collisions and photoabsorption, so that the theory
of fast collisions provides a means of cross-checking
data from these two independent sources, a procedure
that proves valuable in many instances. The problem
of slow collisions, on the other hand, is essentially
concerned with a combined system of the incident
particle plus the target in which the former has lost
its mechanical individuality, at least for a short period
of time. Thus, for example, a theory of slow-electron
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collisions with He deals with the dynamics of He in
its excited continuum states. Obviously, the cross sec-
tion of slow collisions, unlike that for fast collisions,
permits no simple factorization.

Experimentation on detailed features of inelastic
collisions dates back to the celebrated work of Franck
and Hertz (FH14), who measured energy losses of
electrons passing through gases and thereby demon-
strated individual discrete excitations of atoms or
molecules. Modern versions of the Frank. —Hertz ex-
periment by various groups (Lassettre and coworkers,
and Simpson and coworkers, for example), are charac-
terized by remarkably improved resolution both in
electron energy and in beam collimation (K68, L69,
KMC69, TRK70). These experiments are capable of
providing precise differential cross-section data. Mea-
surements of the total (or integrated) cross sections
for excitation of a discrete level or for ionization have
been carried out in numerous cases since the 1930's,
but the results (KD66, MS68, MBG69, Ki69) still
remain very incomplete and often discordant.

An important motivation for the study of inelastic
collisions of charged particles, most notably of elec-
tgons, stems from the ever-increasing need for reliable
cross-section data in such diverse fields as radiation
physics, plasma physics, atmospheric physics, astro-
physics, and electron microscopy. It should be strongly
emphasized that most of these applications primarily
r'equire absolute cross sections over a wide energy
region, as opposed to those relative variations of cross
sections over a narrow energy region, which are of
great significance in atomic physics per se. While no
universal theory applicable to the entire energy region
is likely to come forth in the near future, some re-

stricted aspects of cross sections are amenable to
rigorous theoretical analysis. An example of such an
analysis is provided by the detailed. -balancing rela-
tionship between the cross sections for inverse proces-
ses (p. 423 of WO62, p. 554 of LL65). Another such
example is found in various dispersion relations (p. 447
of WO62, p. 557 of GW64). Although these theo-
retically rigorous relations alone do not suSce to de-
termine cross sections, they often prove powerful as
a control on cross-section data, obtained either theo-
retically or experimentally. The Bethe theory for fast
collisions, when properly applied, should serve a sim-
ilar end. As will be illustrated later, the theory can
be utilized in many ways for testing the compatibility
between high-velocity cross sections and independ-
ently obtained atomic properties, and sometimes even
for making an educated guess about cross sections at
lower velocities.

Though Bethe worked out the major- theoretical
consequences of his treatment, the physical content
of the theory has not yet been fully appreciated.
Besides, a systematic and detailed investigation of the
generalized oscillator strength, both theoretical and
experimental, still remains a goal of current study.

The purpose of the present article is to summarize
recent developments in the understanding of fast col-
lisions and to indicate some worthwhile aims for future
work on the subject. Its scope will be limited in the
following respects. Neither elastic scattering nor mo-
lecular rotational and/or vibrational excitation will be
discussed, because these subjects are significantly dif-
ferent from the main theme. Since this discussion is
intended to be heuristic in nature, the coverage of
the materials and references will be illustrative rather
than exhaustive. In particular, no attempt is. made to
present pertinent .cross-section data in a comprehen-
sive way; discussion of such data is left to original
references and to other reviews (KD66, MS68, Ki69,
D69, KMC69, L69, MBG69, TRK70).

2. THE DIFFERENTIAL CROSS SECTION

2.1. The Basic Formulas

Consider a process in which a particle of velocity v,
mass Mi, and charge ze (where —e is the electron
charge) collides with a stationary atom with mass M&
in an initial state (most often the ground state) de-
noted hereafter as state 0, and gets deRected into
the solid-angle element den along the direction with
polar angles 0, p measured in the center-of-mass sys-
tem. Concomitantly, suppose the atom undergoes a
transition to state e, discrete or continuum, at ex-
citation energy E„measured from state 0, and the
kinetic energy associated with the relative transla-
tional motion is thereby reduced by E„. When the
particle is sufficiently fast but still nonrelativistic, the
differential cross section do.„, calculated in the lowest
order in the interaction V between the particle and
the atom (i.e. , in the first Born approximation), be-
comes (B30, p. 571 of LL65, and p. 294 of Bj'68)

da„=(2ir) —'3PS '(k'/k)
~ I exp(iK r)u„*(ri, ~ ~, rz)

)( Vup(ri ' ' ' rg) dri ~ drzdr ~'dko, (2.1)

where M=MiiV2/(Mi+cV. ) is the reduced mass of
the colliding system, r is the position of the particle
relative to the center of the atom, Sk is the momentum
of the particle before the collision, Ak' is the same
after the collision, 5K=6(k—k') is the momentum
transfer, and I's are the eigenfunctions in the co-
ordinates r; of the atomic electrons, whose total
number is Z. )The spin coordinates of the atomic
electrons are suppressed in Eq. (2.1)j.

When the interaction is Coulombic, i.e., when V is
written as

(2.2)

where Z~e is the charge on the atomic nucleus, Bethe
recognized that it is advantageous to perform erst
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the integration over r by using the relation'

f I
r—r,

I
'exp(iK. r)dr=4zrE 'exp(iK r,.) . (2.3)

Thus, Eq. (2.1) transforms into

do„=4z'(Me'/its)'(k'/k) E '
I c„(K) I'dto (2.4)

where «„(K) is an atomic matrix element,

e„(K)= (n I g exp (iK.r, ) I 0)

z
= f N„*g exp (iK r;)ztsdri ~ drz. (2 5)

The nuclear interaction represented by the second
term in Eq. (2.2) gives no contribution, owing to
the orthogonality of states e and 0. Under most cir-
cumstances, one may consider dg.„as independent of p,
either because state 0 is spatially symmetric or be-
cause the atoms under study are oriented at random.
In the latter case, the average over all atomic orien-
tations is customarily implied, as is done throughout
this article. Furthermore, one often uses the term
"state m" to mean a set of all substates at E, in
which case the sum over these degenerate substates
is also implied in Eq. (2.4). I Exceptions arise in
discussions on spin-polarized atoms (Ke68) or on the
polarization of light resulting from excited atoms
(MS68) j. Under these stipulations,

I
c (K) I' is a

function of a scalar variable E, which actually is more
convenient than 0 for the classification of inelastic
collisions. Therefore, one writes hereafter

I e„(E) I'

instead of
I
e„(K) I'. Further, since E is independent

of y, one implies integration over y when one ex-

presses do- in terms of dK. One thus replaces den by
2zr sin0dg=zrd(Es)/kk' in Eq. (2.4) to obtain

do„=4zrz'(Me /f't')sk 'K '
I e„(E) I'd(E') (2.6)

Alternatively, one may use the variable Q= (SK)'/2m
with the dimension of energy, where m is the electron
mass, and write

dzr„=2zrz'e'(mn') 'Q '
I e„(E) I'd(ln Q). (2.7)

This completes the derivation of the basic formula in
the simple case of nonrelativistic collisions with an
atom. Extensions to more general cases will be given
in Secs. 2.2—2.4.

2.2 Commentary

Several remarks should be made about the Bethe dif-
ferential cross section (2.7) . First, for any incident par-
ticle, it explicitly contains v rather tha, n the kinetic

' Strictly speaking, the integral on the left-hand side of Eq.
(2.3) is divergent, because the integrand behaves as O(r ~) for
r—+~. The replacement meant by Kq. (2.3) is justifiable, how-
ever, so long as it is used under another integration symbol, i.e.,
fdr, in the treatment of the text. For detailed discussions of
this point, see pp. 332, 333 of B30, pp. 296, 297 of BJ68, and p.
333 of S68.

where

f„=(E„/E)M„', (2.10)

M '=
I I st~* Z x,atsdri ~ drz Is/ctss (2.11)

is the dipole-matrix-element squared, and x, is a com-
ponent of r, As long as the wavelength X is suf6-
ciently large compared to the atomic size, f„ is pro-
portional to the cross section for absorption of a
photon with energy E =bc/'n by the atom, and the
totality of f„ for all possible transitions embodies most

energy, and thus shows that v is the decisive variable.
Second, the entity do-„may be considered to consist of
two factors of different nature. The factor 2zrz'e4(mo') 'X
Q 'd(ln Q) is evaluated from the observable quanti-
ties k, k, 8 concerning the incident particle only.
In fact, it is nothing more than the famous Rutherford
cross section (R11) for the scattering of a particle
with charge ze by a free and initially stationary electron,
which upon the collision receives a recoil energy rang-
ing from Q to Q+dQ. Notice that a given momentum
transfer 5E results in a unique value Q of energy
transfer in this simplified situation. Because of the
peculiar nature of the Coulomb force, the Rutherford
cross section retains its form upon passing from clas-
sical to quantum mechanics (W45, B48). Actually,
a dehnite amount of momentum transfer to the atom
us a whole still leaves it with a choice of the resulting
degree of internal excitation. The reason for this lack
of unique correspondence between momentum transfer
and energy transfer is that the atomic electrons re-
sponsible for internal excitation are initially bound
rather than free and are moving around the nucleus.
This situation is precisely described by the remaining
factor

I
e„(E) I' in Eq. (2.7), which gives the con-

ditional probability that the atom makes the transi-
tion to a particular excited state e upon receiving
a momentum transfer ftE (B33, F63). The quantity
«„(E) reflects the dynamics of the atom and is known
a,s the inelastic-scattering form factor, a term widely
used in nuclear and particle physics and sometimes
in solid-state physics as well (Sec. 2.4).

In atomic physics, however, one more often uses a
slightly diferent quantity, the generalized oscillator
strength

(2.8)

introduced by Bethe (B30). For convenience and ease
of memory, one may use the Bohr radius ao=f'ts/me'=
0.52918X10 ' cm and the Rydberg energy R=me4/
25'= 13.606 eV and put Eq. (2.8) in the form (MP57)

f„(E)= (E„/E) (EGQ) s
I e„(K) I'. (2.9)

A reason for using f„(E) is that it is a straightfor-
ward generalization of a more familiar quantity, the

- optical (dipole) oscillator strength f„, defined by
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Fio. 1. Kinematics for proton impact. Plot (a) refers to T/R=100 (2.50 MeV kinetic energy) and plot (b) to T/R=1000 (25.0
MeV kinetic energy). The abscissa is E/R and the ordinate (Eao), both on logarithmic scales. The curve ABC corresponds
to (Lao); ', i.e., to (Eat))' at 8=0, and the curve DC corresponds to (Ea0) „,', i.e., to (Lao)' at 0=180'. The intermediate curves
correspond to (E'uo}' at 8=1', 2', 5', 10', 30', and 60', respectively, in order from bottom to top (Sec. 2.2}.The chained 1 ne OB
shows the position (Xuo) = E/R of the Bethe ridge discussed in Sec. 3.2. In reference to Sec. 4.3, the domain of integration pertinent
to 0&„or p.,t is ABCD, where the vertical line AD corresponds to the lowest excitation energy (which in the figures is set at R/R = 1) .
The point 8 is defined as the intersection of the curve ABC with the position of the Bethe ridge. Then the major contributions to
o-t,& arise from the region ABO, because the generalized oscillator strength nearly vanishes in the region BCD. Notice by comparing
plot (a) and plot (b) with each other that the area ABCD expands on going from T[R= 100 to T/R = 1000.

of the optical properties such as dispersion (FC68).
Expanding the exponential of Eq. (2.5) into the
familiar power series and noting the orthogonality of
the atomic eigenstates 0 and e, one can easily show
that

limf (E) =f„, (2.12)

an important relationship that connects the collision
of fast charged particles with photoabsorption. As will
be discussed in Sec. 3.1 in detail, the limit E—+0 is
closely approached for forward scattering (8=0) at
high velocities gas can be seen from Eq. (2.17)j.

Bohr (B13), in essence, arrived at Eq. (2.7) by an
impulse approximation, but had no method of evalu-
ating

~
e„(E) ~' or f„(K). Nevertheless, on the basis

of his correspondence principle, he surmised certain
crucial facts. For example, he argued that the average
of the energy transfer to the atom over all modes of
internal excitation for a given Q should be the same
as the energy transfer to Z free electrons (B48, F63).

where the summation is taken over all excited states e,
discrete and continuum. Equation (2.13) is the Bethe
sum rule (B30), one of the general properties of f„(E)
that can be rigorously derived from its definition (2.8)
(as will be shown in Sec. 3.3).

It is often convenient to use the variable T=-',m~',
which represents the kinetic energy if the incident
particle is an electron or a positron, but which in
general is m/M& times the kinetic energy in the labo-
ratory system. Thus, T/R simply means the square
of the velocity measured in units of the Bohr velocity
e'/5. Then, Eq. (2.7) transforms (MP57) into

4irup's' f„(E')
do„= "

dLln (E~)'j.TR E„R (2.14)

For efficient handling of data, it is worth noting that
4xao'X=4. 788)&10 "cm'eU.

In our notation, this means

gz ( e„(E) ('/g=gf„(E) =Z, (2.13)
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Fio. 2. Kinematics for electron impact. Plot (a) refers to T/R=100 (1.36 keV kinetic energy) and plot (b) to T/R= 1000 (13.6
keV kinetic energy). The scale and the labeling are the same as in Fig. 1, except as noted below. The principal distinction from Fig.
1 is that the point B now coincides with the point C of Fig. 1 so tllat (loop) = (Xop) = T/R. The area ABCD of Fig. 1 is much
greater than the area ABC of Fig. 2 at the same incident velocity. Nevertheless, oz„ for protons differs from oz,z for electrons (or
positrons) at the same velocity only by O(R2//T~), because the generalized oscillator strength has substantial magnitude only in the
optical region (near the lower left corner) and in the Bethe-ridge region. The difference in O,t between protons and electrons (or posi-
trons) at the same velocity is O(R/T), because fT,t includes more signi6cant contributions from the Bethe-ridge region (near the point
B).

An additional remark concerns the kinematics of
the collision. The energy-conservation relation

(fit) '= (f'tk') '+2ME„

and the definition of K=k—k' lead to.- = ()(;)' —:(=)('-'~

(2.15)

(2.17)

~"-~--= (i)(.-)' —:(:;)"~ ~',.';)' ~

(2.18)

f zzz E„
cos8 . (2.16)

klV T

For a fixed. value of E„, the minimum value of (ICtto)'
occurs at 8, and the maximum value at 8=m. For
E„/T«1, for which the basic theoretical framework
is valid, one obtains from Eq. (2.16)

The interval of permissible (Etta) ' values expands
both upwards and downwards as the velocity in-

creases Further, .for a fixed E„/R«(3II/rN) (T/R), the
value of (X+)' increases very rapidly with 8 near
8=0. The behavior of (Ezro)' as a function of E„/R
and |I is displayed in Figs. 1 and 2 for typical cases
of proton impact and of electron impact, respectively.
These figures will be quoted often in later stages of
discussion.

Whereas the above (Eas)',„of Eq. (2.18) is cor-
rect for the collisions resulting in a specified value of
energy transfer E„, a different upper limit (gzts)',
applies in practice when one deals with the totality
of inelastic collisions for a given incident velocity,
e.g. , in evaluations of stopping power (830, 833, F63)
and of the total inelastic-scattering cross section (dis-
cussed in Sec. 4.3).

Consider all inelastic collisions with given values
of X and k. Then, the smallest possible k', therefore
the largest possible E„, occurs for 8=0, in which case
k'=k —E and

E = (f'zs/2M) (2kE—X')

according to Eq. (2.15). The kinematics of the col-



302 REVIEWS OF MODERN PHYSICS ~ JULY 1971

per unit range of E. Thus, an adaptation of Eq. (2.14)
to this case gives the differential of do/dE . as

/do. 4a'ao's' R df(K, E)
d

I

—= — '
dgln (Kaa) 'j. (2.20)

&dE T/R E dE

FIG. 3. Diagram for kinematics. The fixed initial momentum
Ak of the relative motion is represented by the vector l OA].
Given the magnitude hE of momentum transfer, draw a circle
with its center at A and its radius AE. Draw another circle with
its center at 0 and its radius equal to the largest possible mag-
nitude hk' of the final momentum, namely (h'k' —23fE1)"',
where E1 is the lowest excitation energy. Call the intersections
of the circles B and C. Any point P on the arc BDC of the circle
around A represents a possible end point of vector hk'=(OP],
and 8=angle POA is the scattering angle. The largest energy
transfer, thus the smallest hk'= (5'k' —21IIE„)'/', occurs when
P coincides with the intersection D of the arc BDC and the
line OA.

lision is displayed in Fig. 3. Suppose, for a moment,
that the binding of an atomic electron to the nucleus
is insignificant when one considers a large energy
transfer, as is actually the case for excitation of outer-
shell electrons. Then Q= (SK)'/2M is the approximate
value of the energy transfer, which must not exceed
the energy E„derived above, i.e.,

(M/2M) (2kK—K') ) (SK) '/2m.

This inequality leads to K& 2k'/(M+m), and hence to

(Kaa)'((Kaa)' . =4(T/R) I 1+(m/M) j ', (2.19)

a limit far more restrictive than that given by Eq.
(2.16) for M))m.

Collisions with. K values such that (Kaa) ', )
(Kaa)') (Kaa)',„can take place nevertheless, pro-
vided that electrons pertinent to the inelastic process
are subject to sufficiently strong binding. For example,
a proton with 1.84 MeV kinetic energy in the center-
of-mass system, for which (Kaa)', = (4/R) keV ac-
cording to Eq. (2.19), does actually have fair proba-
bilities (M68) of exciting those K-shell electrons of
heavier atoms (Z&30) whose binding energies are
roughly Z'R &10 keV.

When one deals with excitation to continua (i.e.,
with ionization), the excitation energy is no longer
a discrete variable, but is a continuous variable E
taking all real values greater than the first ionization
threshold Iy. Then it is appropriate to consider, in
place of o.„, the density' do/dE of the cross s. ection

'To avoid confusion, one may paraphrase the definition of
da./dE, The cross section (as a fixed T) for excitation to con-
tinuum states between E and E+dE is (do-/dE) dE. Alternatively,
one may interpret 0-(E) as the cross section for excitation to all
states up to E and hence da/dE as the derivative of o.(E). The
use of "d/dE" in df(E, E}/dE and other continuum properties
are to be understood in similar ways.

with

(2.21)

eg, n(K) = (» fl
I Z exp (iK rf) I o) ~

j=l

where the final continuum state is specified by E and
a set 0 of all the other quantum numbers (such as
the angular momentum or the direction of electron
ejection) and is normalized as

(E, fl
I E, 0 ) =6(E—E') 8(Q —0') .

An equivalent but more compact definition is

df(K, E)/dE=g (E„/R) I „(K) I'/(K o)'16(E„—E),

(2.22)

where the summation, like that in Eq. (2.13), runs over
all excited states —discrete as well as continuum.
Equation (2.22) may be considered to be a formal
definition of df(K, E)/dE also in the discrete spec-
trum (as will be discussed further in Secs. 2.4 and 3.3) .

So far the target has been called "an atom, " but
the discussions are equally applicable to a molecule,
except that one should consider all of its internal
degrees of freedom when one specifies the states 0
and m. Thus, the symbol 0 or e now represents a set
of quantum numbers (electronic, vibrational, and rota-
tional) that designates a molecular state. Then, the
differential cross section do„LEq. (2.7) or Eq. (2.14)j
is given in terms of

I e„(K) I' of Eq. (2.5) or f„(K)
of Eq. (2.9). Further, one usually treats quantities
do, I

e (K) I', or f„(K) as averaged over effectively
degenerate initial substates and summed over effec-
tively degenerate final substates. The precise meaning
of the term "effectively degenerate" depends on the
individual physical situation of interest. Except for H&,
rotational-level spacings of molecules are much smaller
than the energy resolution width of current collision
experiments and also smaller than the thermal energy
at room temperature. Therefore, rotational levels are
usually considered as effectively degenerate. Alterna-
tively, one can treat molecular rotation as adiabatic
(i.e., slow compared to the duration of collision),
which is a good approximation for fast collisions. One
then computes

I
e„(K) I' for alternative fixed molecu-

lar orientations and takes the average of the results.

Here df (K, E) /dE, the density of the generalized
oscillator strength per unit range of E, may be de-
fined by

df(K, E) /dE= (E/R) (Kao) ' Q I
ego(K, ) I',
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The application to molecules will be discussed more
fully in Sec. 3.5. (See also p. 827 of MBG69.)

The last point of the commentary concerns the spin
multiplicity of the states 0 and rt. For light atoms in
which the spin —orbit coupling is negligible, the atomic
eigenfunction may be written in the IS coupling
scheme. Since the operator in the matrix element
«„(E) of Eq. (2.5) deals exclusively with the con-
figuration space and thus commutes with the electron-
spin operator, «„(E) vanishes for all transitions be-
tween states with different spin multiplicities and so
does f (E). For example, f„(E)=0 for a singlet-
triplet transition in He to a good approximation.
When one takes into account the spin —orbit coupling,
f„(K) for such a transition is finite, as is especially
true with heavy atoms or molecules containing heavy
atoms.

When the incident particle is an electron, it is in
principle indistinguishable from the atomic electrons.
Consideration of this situation leads to "electron-
exchange effects, " which are not included in the first
Born approximation as treated here. It is commonly
believed (MS68) that these effects are unimportant
at sufficiently high velocities. Atomic transitions be-
tween states with different spin multiplicities, men-
tioned in the previous paragraph, are made possible
as a result of the electron-exchange effects also, but
the probability of such transitions for fast collisions
is known to be small on both theoretical and experi-
mental grounds. The electron-exchange effects will be
discussed further in Secs. 4.4 and 5.2.

2.3. Relativistic Effects

When the ratio P=v/c of i/ to the light velocity c
approaches unity, relativistic modifications of the for-
mula for do.„and on the kinematics are required.
Since T/R= (6v/e')'= (P/n)', where n '=Bc/e'=
137.04, one sees, for example, that P'=0.053 for
T=10' 8=1.36&&10' eV. One thus anticipates that
relativistic effects may amount to several percent
around T 104 eV and be greater at higher velocities.

In the following brief sketch of the relativistic ef-
fects, it is presupposed that the incident kinetic energy
is still low enough to permit neglect of radiative eRects
(such as coupling with bremsstrahlung), i.e. , that the
processes involved are not extremely relativistic (BS57,
R59, MOK64, BG70). It should be emphasized, how-
ever, that this situation actually prevails over a wide
energy region T &10' eV, and that the theory in this
region is well established.

As Bethe has shown (832, 833), the relativistic
version of Eq. (2.4) is

da =4z'e46 'c 4WW'(k'/k)
I r/„(K) I'

X [E' (W—W')'fi 'c '] 'da& (2—.23)

where H/' and W represent total energy inclusive of
the rest energy Mc' of the incident particle, before

and after the collision, respectively. (In this section,
one takes the atom as infinitely heavy so that M =Mi. )
That is, we have

W = (~2c4+ c2f/2k2) 1/2

(~2c4+c2fj2k~2) 1/2 —W

(2.24)

(2.25)

in close analogy to Eq. (2.7). The ratio W'/W tends
to unity both for v/c((1 and for v/c —&1, and may be
set equal to unity without appreciable errors in most
physical situations. Thus, the interpretation given to
Eq. (2.7) in the beginning of Sec. 2.2 largely applies
to Eq. (2.27) also. A subtle distinction concerns the
meaning of Q defined by Eq. (2.26). First, the above
Q contains E„and thus is no longer a variable inde-
pendent of E„. Second, in the simplified situation in
which a free and initially stationary electron receives
momentum SE, the energy transferred to the electron
is not quite Q except when Q is large and is nearly
equal to E„.The exact amount Q„of the recoil kinetic
energy is

Q = (///, 'c'+ c'O'K') "' nsc'. —(2.28)

Fano (F63) uses this variable rather than Q, though
the differential cross section do- takes a slightly more
involved form [Eq. (16) of F63] when expressed. in
terms of Q, instead of Q.

As to the relativistic form factor g„(E), only those
properties essential to the theme of this article will
be commented upon. For detailed discussions, the
reader is referred to Refs. B32, B33, F54, F56a, and
F63. The precise evaluation of q„(E). requires the
relativistic eigenfunctions for states e and 0, but
Bethe (832, 833) showed that, to a good approxi-
mntion, z„(E) may be related to the nonrelativistic
form factor «„(K) in the following way. For E/Jo&1,
one may neglect relativistic effects and set

I ~-(E) I'—=
I «-(K) I' (2.29)

The relativistic form factor p„(E) is defined by Eq.
(50.2) of 833. In the nonrelativistic limit, WW~
(Mc')' and

I r/„(E) I'—+
I
«„(E) I', so that one recovers

Eq. (2.4). The factor c 4WW' arises because of rela-
tivistic kinematics, and the quantity (W—W')% 'c '
appears in the bracket because of the relativistic
retardation of the interactions.

In order to cast Eq. (2.23) in a form similar to
Eq. (2.7), one must define a variable Q that tends
to (SE)'/2m in the nonrelativistic limit, a procedure
that is not unique. (Hereafter m always represents
the rest mass of an electron. ) Bethe (833) defines

Q= (fi'E' —g„'c ')/2nz (2.26)

so that dQ= (fi2/2') d(E') . Then replacing dkv by
7rd(E')/kk' under the same stipulations as in Sec. 2.1,
one rewrites Eq. (2.23) as

do.„=27rz'e'(mi/') '(W'/W)
I g„(E) I'Q 'd(lnQ) (2.27)
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so long as E„&(mc'=0.5110 MeV, a condition satisfied
in most excitations of not very heavy atoms. For
E~&&1, in contrast, one should put

~
rt~(K) ~'=

~
p. (K) ~' —M '(1—P') E '/(2Rmc') (2.30)

The alternative form is

df(K, E) E/R
dE (Kap)'

y(K, t)

where M„ is the nonrelativistic dipole-matrix-element
squared, as defined by Eq. (2.11). Equations (2.29)
and (2.30) show that the dynamics of the atom or
molecule with respect to collisions at relativistic ve-
locities is still mainly described in terms of

~
p„(K) ~,

a fact that makes
~

p (K) ~' or f„(K) of basic im-
portance beyond the nonrelativistic region.

An analysis by Fano (F56a, F63) shows that
~
rt„(K) ~' consists of two distinct parts, one that

results from the Coulomb force acting parallel to K,
and another that stems from virtual photons giving
rise to forces perpendicular to K. These two parts
excite atomic states of different parity, and give ad-
ditive contributions, no interference between them
being present.

Although Bethe (832, 833) gave Eqs. (2.27), (2.29),
and (2.30) specifically for electron collisions, these
results (as well as their consequences such as the
integrated cross section discussed in Sec. 4.1) apply
to collisions of any charged particle (regarded as
structureless). This point is apparent from the treat-
ment of Fano (F56a, F63).

The kinematical limits for (Kap)' again follow from
the energy conservation, Eq. (2.25). The results are

(Kap)';~= (k —k')' 'ap~E„'/(2 mRp) (2.31)

(Kap) ' = (k+k') 'ap'~(2mp'/R) (M/m) ' L(1—P') ]—'

(2.32)

for collisions with a fixed value of E„. These limits
obviously reduce to the nonrelativistic ones given in
Eqs. (2.17) and (2.18). The upper limit (Kap)' that
effectively applies to the totality of inelastic collisions
at a given v turns out to be

(Kap) ' = 2mp'/pR(1 —p') ], (2.33)

from the same argument as in the nonrelativistic case
PEq. (2.19) and the passage above it].

2.4. Conceptual Generalizations

The concept of the generalized oscillator strength
may be adapted to a variety of physical situations
such as charged-particle interactions with condensed
phases. A heuristic starting point for consideration is
to rewrite the expression (2.22) for df(K, E)/dE in
a different form. (Equation (2.22) was introduced
specifically for transitions into continua, but is for-
mally applicable to a discrete spectrum as well. Since,
except for atomic hydrogen, significant values of
df(K, E)/dE occur mostly in continua (E)Ii), it is
advantageous to consider discrete spectra as a secondary
and exceptional case.)

X exp (—Et/5) dt, (2.34)

where p(K, t) is defined by initial-state expectation
values (denoted by angular parentheses) through the
expression

@(K, t) =g Q (exp (—iK r, ) exp LiK rI, (t)])

—
~ g (exp (iK r;) ) ~', (2.35)

rl, (t) being the Heisenberg position operator at time t
for the 4th electron in the atom described by the
Hamiltonian H, i.e.,

ri(t) = exp (iHt/ti) rp exp ( iHt/f't)—. (2.36)

The equivalence of Eq. (2.34) with Eq. (2.22) is read-
ily verified by insertion of the completeness relation
g„~e) (e j

=1 for atomic eigenstates
~
e) between

the two exponentials on the right-hand side of Eq.
(2.35). The expression (2.34) is a special case of the
Kubo general formula for the linear response of a sys-
tem at equilibrium to a small external perturbation
(V54, K59, K63, N64); the function g(K, t) then
may be called the time correlation of electron-density
fluctuations associated with the propagation vector K,
and df(K, E)/dE is (E/R) (Kap) ' times its Fourier
component with angular frequency E/5. Notice that
df(K, E)/dE of Eq. (2.34) is given as an expectation
value in the initial state (most often the ground
state) rather than in terms of an off-diagonal matrix
element

~
p„(K) ~' of Eq. (2.21), a fact that makes

Eq. (2.34) useful for considerations of some general
properties of the generalized oscillator strength (as in
Secs. 3.2, 3.3, and 4.4) . Equation (2.34) also might serve
as the starting point for numerical evaluation in cer-
tain cases; this possibility is beginning to be explored
(Sc70) .

A more important aspect of Eq. (2.34) arises from
its extended interpretation. Because Eqs. (2.34) —(2.36)
contain no explicit specification as to the description
of the target, they are readily applicable to an ag-
gregate of atoms or molecules as well as to an isolated
atom or molecule. A particular mode of description
of the physical system under consideration, i.e., a
model, becomes explicit only upon evaluating the
initial-state expectation value in Eq. (2.35) . Fano
(F56b) ha, s shown that df(K, E)/dE as given in Eq.
(2.34) is virtually equal to Imf —1/p(K, E)], where
p(K, E) is a generalized complex dielectric constant
describing the response of any medium to a small
electromagnetic disturbance with angular frequency
E/fi and propagation vector K. This relationship be-
tween charged-particle scattering and p(K, E) is util-
ized in the treatment of the density effect on stopping
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power (F40, F56b, F63, CF70), as well as in the
interpretation of electron energy losses in solids (R65,
Po67, Ge68). In the limit E z0,—the quantity c(K, E)
reduces to the optical dielectric constant that is often
studied in solid-state spectroscopy.

The notion of the (elastic and inelastic) form factor
applies to a wide class of physical phenomena, well

beyond those associated with charged-particle inter-
actions. Indeed, the term "form factor" was first in-
troduced in x-ray scattering. Whenever one tries to
use collisions of a fast projectile to learn about the

strlctzere of titty physical object the primary information
to be obtained is described in terms of an appro-
priately defined form factor as a function of momen-
tum transfer, and of energy transfer if the collisions
are inelastic. A classic example is the famous experi-
ment on O.-particle scattering by Geiger and Marsden
(GM9), which led Rutherford (R11) to the recogni-
tion that the sufficiently frequent occurrence of large-
angle scattering (i.e. , large momentum transfers) must
arise from the presence of the atomic nucleus —i.e.,
the presence of a positive charge concentrated within a
volume much smaller than the atomic dimension already
known to him at that time. A modern version of the
same experiment is the nucleon-structure study by
means of electron and proton scattering at very high
energies, where the data are most conveniently ex-
pressed in terms of form factors (DZ61). A subject
more similar to our present theme is Coulomb excita-
tion, by which one investigates the scattering of fast
charged particles associated with excitations of nuclear
energy levels (BB65, DW66). Finally, the scattering
of neutrons by solids, particularly by magnetic ma-
terials, provides knowledge of the crystal structure via
form factors (P52, V54, K63, N64). All these exam-
ples indicate the fundamental importance of the study
of form factors. And the form factor, or equivalently
the generalized oscillator strength, of an isolated atom
or molecule is probably the most precisely understood
property in such phenomena.

It may be added that the generalized oscillator
strength also governs the Compton scattering of pho-
tons by atoms, when the photon energy is much
smaller than mc' but is much greater than the binding
energy of atomic electrons (W29, B34, EP70).

3. THE GENERALIZED OSCILLATOR STRENGTH

3.1. Experimental Studies

Despite its conceptual simplicity, the generalized
oscillator strength is dificult to evaluate theoretically
by means of Eq. (2.8) because a sufficiently accurate
eigenfunction of an atomic or molecular system in its
ground state and especially in its excited states is
seldom available. For the quantitative knowledge of
the generalized oscillator strength of individual atoms
and molecules, one actually owes much more to ex-
periment than to any theory.

How does one learn about the generalized oscillator
strength from experiments An answer is provided by
the phenomenological introduction of an apparent
generalized oscillator strength f„(E, T), a procedure
initiated by Lassettre and coworkers in their exten-
sive investigation of electron scattering (LF64).

Suppose an experiment determines the differential
cross section do„/dzo; expressed in the center-of-mass
system, for collisions of a charged particle with an
atom or molecule. One defines

(3 1)

where all the quantities on the right-hand side can
be determined experimentally. For sufficiently large
T=—', mv', where the first Born approximation is valid,
the above f„(E, T) should be equal to the Bethe
generalized oscillator strength f (E) defined by Eq.
(2.8), as one may easily see by inserting do„/Cho of
Eq. (2.4) into Eq. (3.1); that is,

f„(K, T)~f (K) (for large T). (3.2)

An important implication of this statement is the
following. A necessary, though not sufficient, condi-
tion for the validity of the first Born approximation
is that experimental values of do /zfco at different T
should produce the same E dependence of f (K, T),
independent of T. This criterion does not assume
theoretical knowledge of f„(K), and thus can be used
entirely operationally as soon as experimental data
are at hand. In contrast, experimental dzr„/dzo at
smaller T may in fact yield f (K, T) that depends
on T, in which case a departure from the first Born
approximation is evident.

Although Eq. (3.1) defines f„(K, T) for collisio'ns of
any (structureless) charged particle, in practice it has
been utilized only for electron impact. The reason for
this is twofold: first, it is only for electron beams that
the feasible energy resolution and angular collimation
are sharp enough to make the resulting data signi-
ficantly precise; second, owing to their small mass,
electrons afford an ample opportunity to scan f„(E,T)
over a substantial interval of (Kzro)' values by mea-
suring do /dzo at different 8 even with a relatively
modest angular resolution. In contrast, for collisions
of heavy particles, the variation of (Kzto)' with 8 near
8=0 is very rapid (as seen in Fig. 1) so that an ex-

tremely fine angular resolution is required to bring
out significant data of f„(E, T). Nevertheless, the use
of proton impact is beginning to be explored (PS69)
in this respect also.

Another advantage of electron scattering in the
study of f„(E, T) is that the difference between the
center-of-mass system and the laboratory system
usually is negligibly small, again owing to the small
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electron mass. Thus, one can safely insert the labo-
ratory differential cross section in place of dp.„/d&u on
the right-hand side of Eq. (3.1) and can identify T
with the laboratory kinetic energy.

The procedure of defining f„(E, T) can be gener-
alized readily to relativistic particles by means of
Eqs. (2.27), (2.29), and (2.30) . For efTicient han-
dling of data, a tabulation of relativistic kinematics
(MMH56) is helpful.

It should be emphasized that the determination of
f„(E, T) in general requires a highly precise experi-
mental determination of the energy and direction of
the incident and scattered beams, because the ratio
E„/T and the scattering angle involved in interesting
cases are often quite small. It is beyond the scope of
this article to discuss the technology necessary to
meet this requirement, and the reader is referred to
excellent reviews (K68, KMC69, TRK70) for detailed
treatments of this aspect.

The analysis in terms of f„(E, T) evidently assumes
a data set of do.„/des at various 0 for fixed E„and T.
However, experimental data for electron scattering
usually are taken in a diGerent way. For a fixed T,
the intensity of scattered electrons emerging in the
vicinity of a fixed angle 0 with kinetic energy T—E„
is recorded. This (usually relative) intensity, con-
sidered as a function of E„, is called the electron eeergy-
loss spectrum measured at 0 and T. In general, it ex-
hibits level structures of the atom or molecule as the
photoabsorption spectrum does. Within the validity
of the first Born approximation, the electron energy-
loss spectrum is proportional to do.„/des as given by
Eq. (2.4). In particular, the same spectrum taken for
forward scattering (0=0) is proportional to

clM g—p

=4,' 1—— . (3.3)T (Eap) ';„(E„/R) ~ ~

By use of Eqs. (2.12) and (2.17) one can easily
show that

do„/dcp
i
p=p = 16ap'R'TE„'f„ (for E„(&T), (3.4)

where f„ is the optical oscillator strength. In other
words, the electron energy-loss spectrum for forward
scattering and for E„((T is equal to E„' times the
optical spectrum (i.e., f considered as a function
of E„).

Although Relation (3.4) is often useful for quick
comparison of electron scattering with photoabsorp-
tion, the influence of a finite angular resolution upon
the forward energy-loss spectrum sometimes becomes
appreciable on closer examination ( GW65, GS68) .
Suppose that an experiment measures the intensity
of electrons that are inelastically scattered into the
small cone defined by the interval 0&0&0((1 of the
scattering angle 0. Then, the result of the measure-

ment is the ratio Ap.„/Aa&, where

Aa„= dg„)
p«&f

for sufficiently small (R'ap)', where f ~" is a property
of the target treated in detail in the passage below Eq.
(3.13) .

The result of an elementary calculation is then

Aa~/A(v = 16a 'R'TE„' [f„I ' In (1+()

+ (E„/4RT)f„"'j (for E„&(T), (3.5)

where the aperture angle 0 enters only through

I- =4(0E./T) 2.

Usually the departure of the function t ' In (1+f')
from unity is the primary portion of the correction
to the idealized relation (3.4) . Notice also that
t

' ln (1+I) is a monotonically decreasing function
of |)0. The second term in the bracket of Eq. (3.5)
is independent of 0 and is usually less important so
long as f„"~ and f„a,re comparable to each other.
(The treatment of GW65, justifiably in its context,
neglects this term. ) In general, however, due atten-
tion should be paid to the second term, because the
magnitude of f "~ is only poorly known in advance
for most cases.

A remark on the practical application of Eq. (3.1)
in electron scattering may be useful. The computation
of (Zap)' by means of Eq. (2.16) usually is incon-
venient because of the high precision necessary to
maintain sufficient accuracy of data handling. In the
practically important cases in which 8 and $=—(nz/M) X
(E„/T) are small, evaluation of the function

x($, 8) = 1—-', $—(1—$) "' cos 8 (3.6)

on the right-hand side of Eq. (2.16) sulfers from near
cancellation. To avoid this difficulty, it is advanta-
geous to transform Eq. (3.6), for example, into

)c ($ 0) = ip L] + (1—$) '~2j—'+ 2 (1—() i~~ sinp (0/2)

(3 7)

LThis transformation was pointed out to the writer
by Dr. G. E. Chamberlain. Other similar transforma-
tions are given by Eq. (2) of LF64 and by Eq. (1.1.20)
of K68.j

8

d&u = 2~ sin 0 d8= 4~ sin' (8/2) .
p&e&8 0

In order to evaluate Ao„by use of Eqs. (2.14) and
(2.16), one may assume that

f„(K)=f„+(Eap) 'f„'"+~ ~ ~
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Fro. 4. Generalized oscillator
strengths for the transitions from the
ground state to the n=2 level of
H (I66). The abscissa represents ln
(Eao)'. The curve labeled "TOTAL"
represents the sum f2(E) =f2, (E)+
f2„(E).The line labeled "opt" shows
the optical oscillator strength f2„=
0.4162. These remarks apply, .with
obvious modifications, to Figs. 5-7
as well.
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3.2. The Bethe Surface

Because atomic hydrogen is the only system for
which the generalized oscillator strength for every
transition is rigorously known, one may utilize this
simplest case to exemplify and illustrate the general
understanding. Some of the properties discussed below
are indeed valid for any atom or molecule, but others
are peculiar to atomic hydrogen. In what follows,
efforts will be made to distinguish these two kinds
of properties as clearly as possible.

The literature abounds in mathematical expressions
related to the generalized oscillator strength of atomic
hydrogen, both in the ground state and in some ex-
cited states (B30, B33, MM31, W51, W52, W56, E55,
S61, LLS61, Om65a, Om65b, KM66a, KM66b, BK67,
H69b, to name only representative references). For
the discrete excitations from the ground state, the
standard references are MM65 (p. 480) and B30. Some
numerical data are given in I63 and I66. For excita-
tion from a spherically symmetric state (an 5 state)
of any atom, the treatment of the generalized oscil-
lator strength becomes easiest if one chooses the axis
of orientational quantization of the atom along the
vector K. Then, the dependence of the matrix element
of g, exp (iK r;) upon the azimuthal quantum num-

ber ML, of the excited state is simple: only the sub-

state with HEI, =0 gives a nonvanishing value, whose
absolute square is identical to the sum

~
e„(E) ~' of

absolute squares of the matrix elements over 3fI,
when the axis of quantization is chosen arbitrarily.
For instance, Eq. (92) on p. 480 of MM65, originally
derived by Massey and Mohr (MM31) for atomic
hydrogen, should be understood in the above context.

Figure 4 shows the generalized oscillator strength
for the excitation of the 2s and 2p state from H(1s),
plotted in a suitable way introduced by Miller and
Platzman (MP57). The abscissa variable ln L(Eao)')
is so chosen that the area under the curve between
the kinematical limits given by Eqs. (2.17) and (2.18)
measures to the (integrated) cross section o.„=fda.„
for excitation of the respective state, apart from the
factor 4zras'z'(R/T) (R/E ), as seen from Eq. (2.14).
First, notice the difference between an optically al-
lowed transition (2pz—1s) and an optically forbidden
transition (2s+—1s), with respect to both the magni-
tude and the behavior at the optical limit E~O.
The fact that f„(E) is finite and greatest at E z0-
for lower allowed excitations, indicates the efFiciency
of collisions with large impact parameters in exciting
allowed transitions. ' (The precise connection between
the variable E and the impact parameter will be

' Another way of interpreting the difference between an optically
allowed transition a,nd an optically forbidden transition is to
consider the matrix element V z(r) = (n

~
V

~
0) = fzz *Vzzzdrr ~~.

drz of the interaction V LEq. (2.2)] taken between atomic
eigenstates n and 0. One may regard this function V 0(r) as a
"potential" seen by the incident particle at position r when it
undergoes inelastic scattering. Then the essential factor of Eq.
(2.1) is a squared matrix element of V 0(r) now taken with
respect to the plane-wave states of the incident particle. For
brevity of discussion, one may take the atom as neutral (i.e, ,
Z=Z~). By use of the standard multipole expansion of V, it is
easy to examine the asymptotic behavior of V,.o(r) for large r.
If the transition n+—0 is allowed, one immediately obtains

V„z(r) ~sez(n
~

Z z,
~
0)r

where x, = (r,'r)/r. If the transition n~0 is forbidden, V„z(r)
is of shorter range; V 0(r) varies as r 3 for a quadrupole transi-
tion, and as a decaying exponential for an S~S transition (cf.
p. 103 of BFM50).
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FIG. 5. Generalized oscillator
strength for the transitions from the
ground state to the n=3 level of
H(m6).
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ln(KQQ)

f (K)~K—2(i+v+5) (3.8)

where l and l' are the angular-momentum quantum
numbers of the active electron's orbitals for the ini-
tial and final atomic states, respectively (RF67).

discu. ,sed in Sec. 4.4.) Second, the generalized oscillator
strength decreases rapidly for large (K+)' for the
following reason. An atom or molecule under a weak
external perturbation can receive a momentum transfer
hE because momentum fluctuations of its electrons,
governed by the uncertainty principle, respond to the
perturbation in a manner described precisely by Eqs.
(2.34)—(2.36). Since atomic electrons are never com-
pletely localized, their momenta cannot fluctuate ex-
cessively beyond a limit set by their binding, so that
they cannot receive a correspondingly large momen-
tum transfer without recoiling out of the atom. The
asymptotic behavior of f (K) for K~~ is given by

Figures 5—7 show the same situations for the transi-
tions to tht; states with principal quantum numbers
n=3, 4, and 5, respectively. These are not very dif-
ferent from the m=2 excitation, as far as the allowed
rip excitations are concerned. It is important at this
point to distinguish between the generalized oscillator
strength f„i(K) for the transition to the state el,
l being the angular-momentum quantum number, and
the sum f@„(K) at fixed excitation energy E„=
(1—n ')R. LNotice that f~„(K) corresponds to the
concept of Eqs. (2.22) and (2.34) .] Bethe (B30)
derived

js„(K)=2'n'(e' 1) L-'(—e'—1)+(mK )'j
X L (~—1)'-'+ (/Kg )2]x—3

L (/+ 1)2+ (riKg )2)—x—3

(3.9)

In Figs. 4 7, fz„(K) is repre—sented by the curve

opt 2.899 X IO 2

gxIO

FIG. 6. Generalized oscillator
strengths for the transitions from the
ground state to the n=4 level of
H (m6).

-I
In(Kao)8
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I 5xIO TOTAL

I'so. 7. Generalized oscillator
strengths for the transitions from the
ground state to the n=5 level of
H (I66).

I,O

0.5

labeled "TOTAL." While f@„(K) for 22=2 and 3 are
monotonically decreasing, fz„(K) for 22)4 exhibits a
broad maximum that becomes increasingly more dis-
cernible for larger e, as verified by logarithmic dif-
ferentiation of Eq. (3.9).

For the transitions into the continuum of II, which
occur whenever the energy transfer E is greater than
the ionization threshold energy I&=E., an expression
corresponding to Eq. (3.9) is

df(K, E)
dE

2'[(Kap) '+ (E/3R) ]ER '
[(Kyg)2g 2+1]2[(K—K) 2g 2+1]2

X {1—exp [—22r/(~ao) ]I

~ay ——[(E/R) —1]'~2. (3.10')

This result was derived by Bethe (B30) and by
Massey and Mohr (MM31). Examination of the deri-
vation readily reveals that in Eq. (3.10) one should
use the branch of the multivalued arctangent function
that lies between 0 and 2r (W52, H69b). Notice that
df(K, E)/dE of Eq. (3.10) corresponds to the defini-
tion of Eq. (2.21) and includes contributions from all
angular-momentum states at given E.

Figure 8 shows the behavior of df(K, E)/dE for
1&E/R(4. The curve at the ionization threshold
E/R=1 still is similar to that of f~„(K) for 22)4
(Figs. 6 and 7), but the curve at E/R=1.5 already
exhibits a significantly diGerent shape, characterized
by a clearly discernible maximum at about (K~)2=
0.6. This maximum becomes more and more distinct
with increasing E. The limiting value of df(K, E)/dE

2 2&00
X exp ——arctan (3.10)

kao (Kap) 2 (~ao) '+1—
where A'~ is the magnitude of the momentum of the
ejected electron, and thus is related to 8 by

because all the other factors are slowly varying func-
tions of (K~)2. Thus, df(K, E)/dE is appreciable
only if

i
(Kap)' —(E/R)

~
($(E/R) "' (3.11)

as K—&0 (i.e., the differential dipole oscillator strength)
diminishes fairly rapidly with increasing K The be-
havior for 4&E/R&50 shown in Fig. 9 confirms the
above-mentioned trend. This whole situation is inter-
preted in the following elementary way.

First, consider a process with energy transfer (say
E/R =50) much greater than the binding energy
(Ii=R for atomic hydrogen) of the atomic electron.
Then, the role of the binding must be relatively in-
significant, and the atomic electron will receive the
energy transfer in nearly the same way as if it were
free. In this "free-electron" limit, conservation of
energy and momentum permits only those collisions
in which the recoil energy Q of Eq. (2.7) is equal
to E, or equivalently (Kap) '= E/R. According to the
meaning of the generalized oscillator strength dis-
cussed in the beginning of Sec. 2.2, the df(K, E)/dE
in this case is nonvanishing only at (Kao)2=E/R.

Because the atomic electron in reality is bound
and its momentum undergoes quantum-mechanical
fluctuations, collisions with (K&)2 values unequal but
close to E/R do take place. Therefore, the peaks in
Fig. 9 have 6nite widths, which are largely attribut-
able to the electron binding. In this connection, it
may be instructive to inspect the behavior of df(K, E) /
dE given by Eq. (3.10) when (K&)2 E/R»1. It is
easy to see that the peak mathematically stems from
the denominator factor

[(K+K) 2g 2+ 1]2[(K ~) 2~2+ 1]2

=
I [(K~)2—(E/R) ]2+4 (K~) 2

I
2

-{[(K%)'—(EIR) )'+4(EIR) I'
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0.25

0.20—

O. I 5—

0,10—

0.05—

I

Xn (Kap)

FIG. 9. Density of the generalized oscillator strength per unit range of excitation energy E for the transitions with 4& E/R& 50 from
the ground state into the continuum of H (I66). Note the change of vertical scale from that of Fig. 8.

For H, for which E„=(1—n ')E, this situation be-
comes clear when one verifies that

lim (rt'/2R) f„(K)= df (K, E) /dE Is=it, (3.12)
Q~ OO

where the left-hand side is evaluated by Eq. (3.9)
and the right-hand side by Eq. (3.10).

The Bethe surface embodies all information con-
cerning the inelastic scattering of charged particles by
an atom or molecule within the first Born approxima-
tion. Experimental investigations of the kind discussed
in Sec. 3.1, as well as theoretical calculations of the
generalized oscillator strength, may be regarded as a
topographical survey of this surface, which plays a role
in our present subject similar to that of the better-
known Fermi surface in the electronic structure of
crystals.

The Bethe surface gives one a clear perspective of
the entirety of inelastic collisions. Therefore, it is
especially useful for an analysis of quantities such as
the stopping power and the total inelastic-scattering
cross section (Sec. 4.3). For example, the stopping
cross section Q„E„f do„(where the summation in-
cludes the integration over continua) is equal to the
volume under the surface above a domain of ln (Kao)'

and E determined by kinematics (as seen in Figs. 1

and 2), apart from the factor 4zrs'cto2R'/T.

In Fig. 10, View (a), the curve on the left vertical
plane, which corresponds to the intersection of the
surface at a small value of (Kao) ', approximately
represents the density of the optical oscillator strength
per unit E, i.e. , the photoabsorption cross section
(apart from a universal constant) for photon energy E.
The energy-loss spectrum in the forward scattering of
fast electrons LEq. (3.4)$ closely approximates that
curve for small E except for the kinematical factor
(roughly E '). As E increases, (Kzto)';„of Eq. (2.17)
becomes more and more appreciable and the corre-
spondence between the energy-loss spectrum for for-
ward scattering and the photoabsorption cross section
becomes looser and looser (cf. Figs. 1 and 2).

Figure 10 immediately shows that two distinct do-
mains are important. The first domain where E/R is
small or moderate and (Kao)' is small represents "soft"
collisions, classically associated with large impact pa-
rameters (as noted in Sec. 4.4) . These collisions largely
depend on the dipole property, which governs the
photoabsorption and which is sensitive to the electronic
structure of an individual atom or molecule, especially
for lower E. The second domain where both E/R and
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(E(tp)' are large is characterized by the Bethe ridge,
which peaks around the curve (Eap)'=E/E. This
latter feature of the Bethe surface is common to all
atoms and molecules, as seen from the interpretation
given earlier, and is decisive in the theory of stopping
power (830, 833, F63).

The behavior of the generalized oscillator strength
at small values of (Eap)' deserves particular atten-
tion, because it is equivalent to the differential cross
section at small scattering angles, which often is
studied experimentally. Straightforward Taylor ex-
pansion of the exponential in Eq. (2.5) results (S58,
IP65) in

(3.13)

X„(")= (rt
~ g xt"

~
0) /(tp", (3.15)

and xi=(K r;)/E. In Eq. (3.14) X ('"+' ")* means
the complex conjugate of X„&'"+' '. The first expan-
sion coefficient f„(" is the optical oscillator strength f„
of Eq. (2.10). The absence of terms with odd powers
of Lao is a consequence of the definite parity of any
atomic eigenstate. Furthermore, for optically allowed
transitions, X„("~ vanishes for all even ~; for optically
forbidden transitions, it vanishes for all odd or all even
~ depending upon the parities of states 0 and m.

Properties of the coefFicients f (» are of considerable
importance in several respects. First, when one at-
tempts to determine the optical oscillator strength f„
from electron-scattering data, one encounters the need
for an extrapolation of f„(E, T) to the limit E=0,
which never is physically attained for any inelastic
collision [Eq. (2.17)j. Our present knowledge about
f„(» for )i) 1 is too limited to be of use in the extra-
polation. Theoretical data on f„(") for H (IP65, I66)
and for He (KI68, KI69a, KI69b) may serve as a
guideline for future work. Second, f„(» for P, &1 con-
tains matrix elements X '"' which are in general re-
lated to higher-multipole optical transitions ( G66,
G88) . For example, a value of X„("deduced from f„(')
for an S~D transition immediately yields the electric-
quadrupole moment of the same transition. Notice,
however, that X„&") itself is different from a multipole
matrix element. In this connection, the following two
instances are illustrative. For an 5&—&I' transition,
X„(3& in general is finite, but the octopole-moment
matrix element vanishes owing to the symmetry.
Further, for an S~S transition, which is optically
forbidden with any multipole, X„("in general is 6nite.

Whereas the existence of f (E) as given by the

where

f.'"' = [d/d («p) '$"f.(K) ~K=p

2k+1 ( 1)i—z+1
(z)X (»+2—z)w (3 14)

R „=i K!(2!(+2—(c)!

integral of Eq. (2.5) is ensured for all real E, the
power-series expansion (3.13) converges only for suf-
ficiently small (Eap)'. For the transitions into the
continuum the domain of convergence is given by the
excitation energy E involved via the inequality (E(tp)'(
E/It. (W51, W52), as can be verified in the case of H
by use of Eq. (3.10). The radius of convergence in
general is governed by the asymptotic behavior of the
atomic wave functions involved (L65, V67).

Lassettre (L65) pointed out that the generalized
oscillator strength can be expressed by a power series
in a variable (E(t)'/[(Eap)'+f'j, where f' is a con-
stant determined from the energies of the atomic
states, and that this power series, unlike Eq. (3.13),
is convergent for all real (K(tp)'. For discrete excita-
tions in atomic hydrogen in particular, the series
happens to terminate after a finite number of terms.
In general, the Lassettre series, with appropriate
truncation [Eq. (3.44)), often is useful for fitting
experimental or theoretical data. Vriens (V6'7) and
Crothers (Cr70) have extended Lassettre's analysis
and have given numerical applications (see also VC70) .
It may be added that another representation of f (E),
in terms of a linear combination of exponential functions
of (E(tp)', has been suggested (Gr66, GD67) . In con-
trast to the Lassettre series, this representation lacks
a firm theoretical basis, and therefore must be con-
sidered merely as a means of summarizing empirical
data for numerical work.

3.3. The Sum Rules

In contrast to the local spectral properties discussed
in Sec. 3.2, the following sum rules represent global
properties of the Bethe surface. Consider the j(Ith
(energy) moment of the distribution of the generalized
oscillator strength

S(tt, E) =Q (E„/E)"f„(E), (3.16)

—
i g (exp (zK r;) ) t'j/(Eap)', (3.17)

where the angle brackets ( ) denote the expectation
value in the initial state (most often the ground
state). The right-hand side of Eq. (3.17) may be
written as ZS;„,(E)/(Kap)', where Z is the total

where the summation extends over all excited states.
The portion corresponding to continua should be
understood as the integral

f (E/E.)& [df(K, E)/dE)dE.
Some of the moments S(tt, E) can be expressed in
terms of remarkably simple formulas.

For p, = —1, the derivation is simplest; from Eqs.
(2.5), (2.9), and (3.16), together with the complete-
ness relation, one immediately obtains

S(—1, K) = [Q Q (exp [iK (r),—r, ) j)
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S(—1, 0) =P g (x xi)/ao' (3.18)

number of atomic electrons and S;„,(E) is the in-
coherent-scattering function well known in x-ray
physics (Cu69, Hu69). In the limit E—&0, Eq. (3.17)
reduces to

explicit evaluation of Eq. (3.23) gives

@(»(E, 0) = (i5/2m) E'Z,

which leads to the desired result, Eq. (3.19).
The evaluation of S(1, E) requires

y&»(K, 0)

(3.25)

which is the sum of M„' defined by Eq. (2.11) and
thus may be called the total dipole-matrix-element
squared, M&,P. In Eqs. (3.17) and (3.18) the cross
terms with jAk explicitly indicate the role of electron
correlation (IKP67) .

The calculation of S(0, E) leads to the Bethe sum
rule (B30)

S(0, E) =Z (for any E), (3.19)

y(»(E 0) =-;([A",A(»]). (3.23)

If the Hamiltonian H is of the usual (nonrelativistic)
form

H= (2m)
—'g p,~+U(ri, ~ ~, rz), (3.24)

standard proofs of which appear in many references
(B30, p. 303 of BJ68, p. 581 of LL65). Equation
(3.19) is a remarkable generalization of the Thomas-
Reiche —Kuhn sum rule that corresponds to the limit
E—+0. For illustration of a general point of view ap-
propriate to the treatment of sum rules (P52, K59,
FT64), a slightly formal derivation is given below.
The insertion of Eqs. (2.34)-(2.36) into Eq. (3.16)
followed by the interchange of integrations with re-
spect to E and t yields

S(p, E) = ( if't/R)1'+—'(Kao) '&&I'+»(E) 0), (3.20)

an expression showing that S(p, K) is in essence the
(ti+ 1) th time deriva, tive of the correlation func-
tion Q(K, t) evaluated at t=0, in agreement with
a general theorem (K59) . For p, =0, one must compute
Q" (K, 0). For brevity, denote the Heisenberg operator
g, exp [iK r, (t) ] by A (t) and denote its time de-
rivative by

A "& (t) = (i/ti) [H, A (t) ], (3.21)

where the symbol [,] stands for a commutator. [For
the definition of r, (t), see Eq. (2.36).] Then from
Eq. (2.35) one obtains

P"& (E 0) = a(A*A (t) )/at l,~——(A*A&"), (3.22)

where A&'&—=A "&(0), and A* denotes the Hermitian
conjugate of A—:A(0). So long as the eigenfunction
may be taken as real, i.e., unless magnetic fields are
present, one can easily see that (&t' A

l
I) = (e l

A
l

&i')

and (e'
l

A&»
l

&i) = —(e l
A"'

l
m') for any operator A

which is a function of r; but not of momentum y;.
Therefore, we find (A*A(")= —(A'"A*), the use of
which in Eq. (3.22) results in

= (a'/at') (A*A (t) ) l,~——(a/at) (A*A &» (t) ) l
t~

= (a/at) (A" (—t)A~») l,=,= —(A*~»A~'&)

(3.26)

[Alternative expressions (A*A @&) and (A*"'A) are
disadvantageous for evaluation because they lead to
double commutators. ] By working out the commu-
tator of Eq. (3.21), one arrives at

S(1 E) = —(A'/R)'(Eao) 'y'2&(K 0)
= (2mR)-'(

l p p., exp (iKx, )

+ exp (iEx;)p., l'), (3.27)

where x;= (K r,)/E, and p,, is the x component of
the momentum of the jth electron. Equation (3.27)
can be further reduced to

S(1, E) = (Kao)'Q Q (exp [iE(xI,—x;)])

+ (2/mR) g p (exp [iK(x1, x,)]p,qp„)— .

+ (4/3R) g (p,'/2m). (3.28)

The last term is equal to 4/3R times the total kinetic
energy, which by virtue of the virial theorem may be
equated to the negative of the energy eigenvalue of
the initial state if the potential U in Eq. (3.24) is
entirely Coulombic. In the optical limit, Eq. (3.28)
becomes

S(1 o) =(4/3R) ZZ(p'p~)/2m), (329)

which still contains cross terms ( j&k).
A similar but more tedious calculation gives [cf. Eq.

(32) of FT64]

S(2, K) =Z(Eao)4+(4/R) (Eao)'g (p'/2m)

+8a, g g & l
r,—r, l-q, (K

l
r,-r, I) )

7 & (i/It' )

+ (16irao'/3) Z~ g (a(r, ) ), (3.30)

where j& is the spherical Bessel function of the first
kind and Z~e is the charge on the atomic nucleus.
(For molecules, the last term must be summed over all
nuclei. ) Notice also that only the last term survives
in the limit E—4.

The moment S(ti, E) for p) 3 can be formally
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treated in a similar way, but actually the result will
contain a divergent term for practically any atom or
molecule. Mathematically, the asymptotic behavior of
df(K, E)/dE is given (RF67) as

df(K, E)/dE E " (for E +~ a—nd fixed finite E),
(3.31)

so that $(tt, E) as a function of the continuous vari-
able p is logarithmically divergent at p, =2.5, a fact
well known for E&0 (p'. 217 of BJ68). A physical
interpretation is as follows: As tt increases, $(tt, E')
calculated as above will include higher and higher
derivatives of A, and these include more and more
contributions arising from the region near the nucleus
where the motion of the atomic electrons is most
violent. Indeed, S(2, E) of Eq. (3.30) contains a
8-function term, which is still integrable, but S(3,E)'
formally contains such terms as (r; 4), which are
divergent for an atom or molecule that has a 6nite
electron density at a nucleus.

When the initial atomic state is the ground s/ate,
E„and f„(K) are invariably nonnegative. Then, for
any real $, the expression

is nonnegative. Therefore, one obtains an inequality

S'(tt, E) ($(tt —v, E)$(tt+v, E) (for any real v),

(3.32)

where the equality occurs only if the distribution
f„(E) is concentrated at a particular energy. Although
the inequality (3.32) is nearly trivial, it is sometimes
useful for a check of numerical data. It may be added
that the equality in (3.32) is approached in the limit
Eao +cd. From Eq—s. (3.19), (3.28), and (3.30), one
sees that $(1, E)—&Z(Eao)', $(2, K) +Z(Eao)', and-
therefore S'(1, E) /{ $(2, E)$(0, E)7~1, as Eao~~.
This result is another manifestation of the Bethe ridge
discussed in Sec. 3.2 in connection with Fig. 10.

For illustration, four moments for the ground-state
hydrogen atom are

$(—1 E) = (Eao) '{1—{ 1+-,'(Eao)'] 4I (3.33)

$(0, E) =1, (3.34)

$(1, E) = (Eao)'+4/3, (3.35)

$(2, K) = (Eao) 4+4(Kao) '+16/3 (3.36)

Sometimes it is useful to consider the moment

(3.37)

where f ti& is the Xth derivative of f (K) evaluated
at K=O { Eq. (3.14)7. As long as $(tt, K) is well

defined and well behaved (tt&2.5), one may write

S&"&(tt) =
{ d/d(Kao)'7" $(tt, E) ~rc~. (3.38)

Some properties of Sti&(tt) are known and useful for
applications. For example the Bethe sum rule {Eq.
(3.19)] immediately implies (S58, IP65)

St'&(0) =0 (for X=1, 2, ~ ~ ~ ), (3.39)

(3.41)

and other moments for p, & —3 also are related to
various physical properties (FC68, HBE64).

While the sum rules cannot completely determine
the Bethe surface, they provide a powerful control on
experimental or theoretical data for the generalized
oscillator strength. By virtue of the sum rules, knowl-
edge of the Bethe surface over a limited region of
excitation energies allows one to infer some properties
of the surface over the remaining region.

Considerations of the nuclear motion, so far dis-
regarded, give rise to corrections to the sum rules,
which apparently have not been studied except in the
optical limit (HBE64).

which is a remarkably strong restriction on f„~"&.
A case of interest in a later application (Sec. 4.3) is

St'&(1) =Z—45 ' g g (x;P„xhP,h), (3.40)
j k(jQk)

which is derived by differentiation of Eq. (3.28). The
second term in Eq. (3.40) arises from electron cor-
relation and is expected to be small compared to Z.
(See KI71 for data on two-electron atoms. ) For any
one-electron atom, St&&(1) = 1 since the second term in
Eq. (3.40) is absent.

Although $(tt, E) is divergent for tt&2.5, S'»(tt)
as defined by Eq. (3.37) exists for integer tt)3, pro-
vided that X is made correspondingly large; the precise
criterion for finite St"&(tt) is tt —X&2.5, as seen from
the analysis of Rau and Fano (RF67; see also KI/1).
Actually St'&(4), for example, is used in the stopping-
power theory (FT64). Qualitatively, the above situa-
tion may be interpreted in the following way. On one
hand, larger and larger p values weight contributions
from higher and higher E that stem from an inner
region of the atomic system where the electron den-
sity is greater. Thus, S'"&(tt) for any fixed X diverges
for excessively large values of p. For a fixed p, on
the other hand, larger and larger P values render
contributions from the inner region of the atomic
system less and less important Las may be understood
from Eq. (3.14)]. These two trends tend to balance
out, as p, and A. increase together.

No simple general formula for $(tt, E) for tt& —2
seems to be known. In the optical limit E—R, how-
ever, S(—2, 0) is expressed in terms of the dipole
polarizability nq as



316 REvIEws QP MoDERN PHYsIcs ' JULY 1971

It should be emphasized that the sum rules dis-
cussed above apply to the entire atomic system.
Actually an atom or molecule with many electrons
possesses shell structures, which among other proper-
ties manifest themselves in the generalized oscillator
strength. Thus, a portion of its distribution may be
assigned to a definite shell, but only approximately,
because the notion of the shell stems from an inde-
pendent-particle model, which never is exact. For
example, "the total generalized oscillator strength for
excitation from the E shell of Ne" is a convenient
and useful concept, but its imprecise nature should
be borne in mind upon every application. (A value
for the above "quantity" is somewhat less than 2
and should depend on the momentum transfer SE in
a way not well understood. ) No clear-cut formulation
of shellwise sum rules, even in the optical limit, seems
to have been achieved (FC68).

The quantity

L(p) =Q (E /R) "f ln (E /8) (3.42)

appears in several applications; L( 1) conce—rns the
total inelastic-scattering cross section (Sec. 4.3), L(0)
the stopping power (Sec. 4.3), L(1) the straggling
Li.e., statistical fluctuations in the energy loss of
charged particles (F63)), and L(2) the Lamb shift
of energy levels (BS57). While L(p), unlike S(p, , 0),
does not seem to be expressible in terms of simple
initial-expectation values, there is a useful relationship
between L(p) and $(p, , 0). If S(p, 0) is regarded as
a function of a continuous variable p, then L(p) is
simply the derivative aS(p, 0)/ap. Therefore, in order
to estimate L(p), one may sometimes use 5(p, 0)
values at several integral values of p, and take the
derivative either graphically or by means of an ana-
lytical fit (P59, D60). This procedure may succeed
in giving a trustworthy value of L(p) if the variation
of 5(p, 0) near the particular value of p is sufficiently
mild and well determined.

A mathematical relation, sometimes used in the
evaluation of f„(K), may be indicated here. Taking
the matrix element of the commutator [H, A] be-
tween eigenstates e and 0, one readily sees that

where E„ is by definition the difference between the
eigenenergies of n and 0. From Eq. (3.21), the left-
hand side is equal to (5/i) (n

I

A~'~
I
0), and thus in

effect represents the matrix element of the time de-
rivative of A in the Heisenberg picture. If one works
out the commutator with H given by Eq. (3.24) and
uses the result in Eqs. (2.5) and (2.9), one obtains

f.(K) = (R/E„) ap'
I g f exp (iKx, )

)&(uoau„*/ax, u.*a~/ax—,)dr, , ~, «z I', (3.43)

an expression alternative to Eq. (2.9). Because the
operators in Eq. (2.9) and (3.43) reduce for K 0
to g;r; and g,r;, respectively, these expressions are
called somewhat loosely the "length" formula and the
"velocity" formula (BFM50) .

Although the two formulas are equivalent for exact
atomic eigenfunctions, they differ in the weights with
which the contributions from different portions of the
configuration space are included. For example, at least
for K 0, the major contributions to Eq. (3.43) arise
from an inner region of the atomic system, while
those to Eq. (2.9) arise from an outer region. There-
fore, when approximate eigenfunctions are used, the
two formulas usually give different numerical results,
and the difference between them provides a measure
of consistency. However, a close agreement between
the two numerical results by no means should be
taken as a proof of their reHabitity. In fact, one can
devise a scheme of constructing approximate uo and u„,
in such a way that the two formulas give identical
results; an independent-particle model in which all
the atomic electrons move in a single local potential
is an example. (Similarly, the Bethe sum rule may
be satisfied with f„(K) computed from the set of
exact eigenfunctions associated with that highly ideal-
ized model. )

Recently Starace (S71) has given a detailed dis-
cussion on the two formulas, specifically in the optical
limit E—+0. Thus he has identified a class of approxima-
tions to atomic eigenfunctions for which the "length"
formula is logically more consistent. His conclusion
appears to be valid for finite E also, possibly after
minor modifications.

Also, one may consider the matrix element of the
double commutator (H, [H, A]] to obtain

(B I (H, LH, A]]
I
0) =E„'(B

I

A
I 0),

which will lead to another alternative expression for
f (K) that may be called the "acceleration" formula.
This formula weighs the contributions from an inner-
most region of the atomic system even more heavily
than the "velocity" formula does. Inasmuch as stand-
ard variational methods are inadequate for accurately
determining the behavior of wave functions in the
innermost region, the "acceleration" formula seldom
is advantageous for numerical evaluation of f„(K).

3.4. Atoms

The purpose of this and the succeeding section is
to discuss specific atoms and molecules that bring out
some significant aspects of the understanding of the
Bethe surface.

Apart from the hydrogen atom for which theoretical
knowledge is virtually complete but presently avail-
able experimental data (BGR61, W69) appear pro-
visional, the helium atom is the best understood with
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respect to the Bethe surface. Chiefly owing to a series
of investigations by Lassettre and coworkers (L69 and
references therein), the major portion of the Bethe
surface for He is known within several percent.

As early measurements (V31, WT34, WW35) already
showed, the 2'I'&—1'S excitation gives rise to the most
intense peak in the electron energy-loss spectrum at
small scattering angles. The generalized oscillator
strength f2zt (E) for this transition has been repeatedly
studied both experimentally and theoretically and thus
offers a "case history" as sketched below.

The first calculation by Massey and Mohr (MM31,
M33) used hydrogenlike wave functions in the "length"
formula, Eq. (2.5) . Miller and Platzman (MP57)
pointed out that the result of this calculation was
seriously in error; in the optical limit E—+0, the
Masse —Mohr result was frizz =0.19, while Miller and
Platzman had concluded from an analysis of optical
sum rules that the correct value should be about
0.277. They also suggested that the results of Altshuler
(A52), who had used the same pair of wave func-
tions but evaluated the "velocity" formula, Eq. (3.43),
must be more reliable. The calculation by Jones (J48,
LJ64) used a pair of considerably inore accurate wave
functions explicitly including electron correlation in
the "length" formula. Lassettre and coworkers (SL58,
LKS64 and SL64) justifiably regarded this result as
adequately accurate for normalization of experimental
data on He as well as on all other atoms and mole-
cules. In fact, the pair of wave functions used by
Jones had given the optical oscillator strength f~'r
0.268 (W33). As a result of pre-eminent studies on
the two-electron atoms by Pekeris and coworkers, a
conclusively accurate value f2'z =0.27616&0.00001 be-
came available later (SP64). Thus, the Jones result
turned out to be too small by 3% at E—&0.

The remarkably high precision claimed for modern
measurements (K68, KMC69, L69) indicated the need
for an improved calculation. [The sensitivity of
fszz (E) to different approximate wave functions is
well known from studies in the optical limit (W67)
and is demonstrated by numerous calculations (e.g. ,
BKK68a, BKK68b, KK68, VdB69a, V70).] Kim and
Inokuti (KI68) thus computed fs't (E) from the Weiss
wave functions, which are nearly as accurate as the
Pekeris wave functions, by use of the "length" and
"velocity" formulas as well as of the expansion for-
mula, Eq. (3.13). Their result is probably accurate
to about 1% for (Eao) '& 2. An independent and
equivalent calculation (BKK69) confirmed their
"length" result.

The experimental situation up to 1968 is best sum-
marized in L69. Briefly speaking, all measurements at
that time were "relative" in the sense that they de-
termined the differential cross section dzrszt/dec at dif-
ferent 0 within a multiplicative constant only; the
resulting data therefore had to be normalized against

lim f„(E, T) =f„ (at any T). (3.45)

The content of the theorem should be sharply dis-
tinguished from Eq. (3.2), which is based on the first
Born approximation. The proof assumes only a finite
radius of convergence for the Born series as a func-
tion of the interaction strength, and this remarkable
theorem should apply to every transition in any atom

theory in one way or another. Thus, the comparison
at this point with calculation was in essence a test
of the shape of the apparent f2'z(E, T) [Eq. (3.1)].
The data of Lassettre and coworkers (LKS64 for
T=5j.j. eV, SL64 for T=500 eV, LSM66 for T=400
eV) agree with the calculation (KI68), the average
deviation for (Eao)'&2 being about 3%. [Further,
these data are normalized to the Jones theoretical
result in the neighborhood of (Eao)' 0.3, where it
happens to be virtually the same as the new result
of KI68. Therefore, renormalization against the latter
result does not modify the conclusion. ] The measure-
ments of Vriens, Simpson, and Mielczarek (VSM68)
for T&400 eV, however, show a trend somewhat dif-
ferent from the measurements of Lassettre and co-
workers. The data of VSM68 are normalized by fit
to a truncated Lassettre series (L65, V67)

f2zp(E, T)/f~'p= (1+x) '[1+gx/(1+x)], (3.44)

where fzzp is set at the accurate value of Schiff and
Pekeris (SP64), g is a constant, and x= (Ezto)'/3. 391.
Under this normalization, the t2zz (E, T) of VSM68 at
T=400 eV declines with an increase of (Ezto)' some-
what more steeply than the Lassettre data and is
systematically smaller than the calculation of KI68.
Later remeasurements with higher precision (SM69)
at T=400 eV and at 511. eV confirm the shape of
f2'(E, T) reported in VSM68. Thus, these measure-
ments may suggest that there is an appreciable de-
parture from the Born approximation for T &400 eV.
The data of Geiger (G63) verify the validity of the
Born approximation at T=25 keV, though within an
understandably modest precision owing to the photo-
graphic technique used in this experiment.

Lassettre, Skerbele, and Dillon (LSD69), using an
improved apparatus, extended relative measurements
at T=500 eV to the region of small mornenturn trans-
fers, 0.08& (Eao)'&0.41. They normalized their data
through extrapolation to (Ezto)'—+0 by use of the
fitting formula, Eq. (3.44). The result shows good
agreement with the calculation of KI68, the average
deviation of 2.3% being smaller than the claimed
experimental precision. However, the deviation is sys-
tematic in the sense that the experimental data are
slightly larger than theory.

The same paper (LSD69) presents, as a theoretical
justification of the normalization procedure, the theo-
rem of the limiting oscillator strength, namely,
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FIG. 11. Test of the calculated second-order Born amplitude
with the theorem of the limiting oscillator strength. The abscissa
represents Ea0, and the ordinate represents E times the contribu-
tion of the respective labeled intermediate state to the second-
order Born amplitude. Further, the ordinate quantity has been
multiplied by the scaling factor shown in the square bracket.
The data have been taken from KMS60.

The scattering amplitude a„(8, y,' T) is a function of 8, q, and
T, in general complexed valued, and is related to the differential
cross section d~„by do =(k'/k)

~
a„(S, ~,' T)~'du&, as explained

on p. 551 of LL65 and p. 328 of MM65. Thus, the apparent gener-
alized oscillator strength f„(K, T) of Eq. (3.1) may be expressed
as f„(E' T) = (4s ao ) (M/pz) (E /R) (ltao)

~
o~(8& y& T) ~s.

or molecule. A qualification should, however, be borne
in mind in the interpretation and application: the
limit K—:0is never physically attained for any in-
elastic collision. The smallest momentum transfer for
a given E„and T LEq. (2.17)] becomes appreciable
for small T. Then, a check with the theorem will
require an extrapolation of experimental data over
the sizable unphysical region 0( (Etio) '( (Etio) ';,
a procedure that may prevent a unique conclusion. (In
the particular application in LSD69, the unphysical
region is comfortably small and the extrapolation is thus
quite convincing. )

An illustration of the content of the theorem may
be in order. Equation (3.45) follows immediately if
the pth-order term in the Born expansion of the scat-
tering amplitude is bounded (after analytic contin-
uation) at E=O for every p)2. (In contrast, the
first-order Born amplitude behaves as E ' near E=0.)
It is of interest then to see if theoretical results (e.g. ,
for the second-order Born amplitude) reveal the above
property. Figure 11 illustrates such a test in the case
of the 2s~ 1s excitation of the hydrogen atom by
moderately slow electrons (T/R=4). The three curves
depict as functions of E the contributions from the
specified intermediate state to the second-order Born

amplitude multiplied by E. Every curve should then
extrapolate to the origin, in order to be consistent
with the theorem. The 1s and 2s contributions clearly
show this trend, while the behavior of the 2p con-
tribution is somewhat inconclusive though apparently
compatible with the theorem. Similar theoretical data
for the 2p~ls, 3p&—1s, and 3s~2s excitations of the
hydrogen atom likewise conform to the theorem
(H69a) .

The latest development in the case history of the
He 2V' excitation is the advent of absolute measure-
ments of the differential cross section do'srp/dco (CMK70,
LSD70, cf. K69 for a summary. By the term "ab-
solute measurements" one means here determinations
based solely upon experimental parameters without
recourse to normalization to any theoretical result.
Lassettre, Skerbele, and Dillon (LSD70) made their
previous data, (LSD69) "absolute" in the following
manner. In the same laboratory Bromberg (Br69) had
measured absolutely the differential cross section
do, ~/dec for elastic scattering of 500-eV electrons by
the helium atom, using an independent apparatus
especially designed for this purpose. The Bromberg
result combined with the ratio (dos'r/dec)/(do. i/da&),
which was determined from electron energy-loss spec-
tra (including the elastic peak), readily leads to
absolute das'~/d&o. The apparent generalized oscillator
strength f&'i (E, 500 eV) thereby derived agrees well
with the calculation of KI68. The average deviation
of 1.2% is well within the experimental uncertainties.

Chamberlain, Mielczarek, and Kuyatt (CMK70)
independently made absolute measurements for the
2'P (and 2'5) excitation as well as for the elastic
scattering of electrons at 8=5' and T=50—400 eV.
The resulting dos'z/de at T=400 eV is smaller by
9.5% than the calculation of KI68, and the trend of
the data leads the authors to suggest that an asymp-
totic approach within 1% of the Born-approximation
result will occur around T= 1 keV. Further, the more
recent result (unpublished) for dos'i /d&u at 8=5' and
T= 500 eV is again smaller by 6% than the calcula-
tion of KI68. Thus, the conclusion of CMK70 as to
the validity of the Born approximation is different
from that of Lassettre and coworkers (LSD69, LSD70)
although the discrepancy between the two sets of data
may barely exceed the combined estimates of system-
atic errors of the experiments involved.

one should consider the agreement within less than
10% between results of independent investigators as
a remarkable accomplishment of the state of art,
especially when one recalls far more serious discrep-
ancies often found in the integrated excitation cross
sections and total ionization cross sections (Sec. 4.2
and 4.3) . At the same time, the same difference
illustrates the extreme difhculty of absolute measure-
ments with high precision. Clearly the case history of
the 2'E'~ 1'S excitation is still not closed.

The excitation 2'S~1'S exemplifies the situation
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with an optically forbidden transition. The theoretical
calculation is more sensitive to the choice of approxi-
mate wave functions, in part owing to the same sym-
metry of the atomic states involved (A53, VdB69a,
V70) . The calculation of KI68 for this case is, however,
just as dehnitive as for the 2'8~1'5 transition. The
experimental study is more difficult than for the 2'P
excitation, simply because the cross section in the
pertinent velocity region is much smaller. Comparison
of theory (KI68) with experiment (LKS64, SL66,
BGS67, VSM68, CMK70) apparently indicates that
the Born-approximation limit is attained at higher
electron velocities than for the 2'P excitation. (This
point will be discussed further in Sec. 5.2.)

The experimental study of other individual discrete
excitations in He encounters a stringent requirement
of electron-energy resolution. For example, the ap-
parent generalized oscillator strength "for the 3'I'
excitation" reported in LKS64 and in G63 actually
corresponds to the sum f3'r (E, T)+f3's(E, T)+
f3rr) (E, T) because neither of the two experiments
had enough resolution to separate the three states
(KI69b) . Having achieved with 25-keV electrons a
resolution width of about 5 meV, Boersch, Geiger,
and Schroder (BGS67) obtained remarkable forward
electron energy-loss spectra, which show the peaks for
the m'I' excitations up to e=iI and which lead to
relative values of optical oscillator strength f„'r in
satisfactory agreement with theory. Experimental data
concerning the E dependence of f„(E, T), however,
are meager, while reliable theoretical results are avail-
able for several important transitions (068b, KI68,
KI69b, BKK69).

The transition to continua (i.e. , the ionization) of
He has been studied experimentally (LKS64, SL64)
as well as theoretically (069, BK70). Because the
continuum wave function is very hard to evaluate
with high accuracy, the agreement of theory with
experiment within several percent should be considered
as satisfactory at present. A notable feature in the
continuum transition, already detected in an early
experiment (WP34), concerns the double-electron ex-
citation —e.g. , to the 2s 2p 'P state, which is not quite
stationary but is subject to autoionization into the 1s
Ep 'P continuum, where Ep denotes a continuum one-
electron orbital at excitation energy E measured from
the ground state. The electron energy-loss spectrum
in the region around E=60 eV (SL64, 8 GS67) clearly
exhibits an interference pattern due to the configura-
tion interaction between the quasidiscrete state and
the underlying continuum (F61).

The transitions from the metastable 2'5 and 2 5
states of He to other discrete states exhibit another
notable aspect of the generalized oscillator strength.
While the experimental study for these cases is still
in an exploratory stage (BGT69), definitive calcula-
tions (KI69a) resulted in the recognition that the
generalized oscillator strength can sometimes possess
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FIG. 12. The generalized oscillator strengths for the 3'P~2'5
and 33P~235 transitions in He. The minima in these cases are
exact zeros according to the first Born approximation. The data
have been taken from Kl69a.

a zero-value minimum when plotted as a function of
(Eao)', as shown in Fig. 12.

The discussion from this point on will concern atoms
in general rather than He.

The minimum of the generalized oscillator strength
is significant in several respects (KICM68). First,
when the matrix element e„(E)defined by'Eq. (2.5),
presumably a continuous function of E, changes its
sign, a zero-value minimum of f„(E) occurs. A de-
parture from exact zero in the measured f„(E, T)
therefore may indicate failure of the first Born ap-
proximation. Otherwise, it may reveal certain inter-
esting subtleties of atomic wave functions as will be
described later. Second, within the validity of the
Born approximation, the position of the minimum is
related to the node of the orbitals of the electron
active in the transition and therefore provides a
stringent test of calculated wave functions that is
hardly possible otherwise (KICM68). Third, minima
of a similar origin occur frequently in atoms (B62,
Ma69, Mc69, SL70a, Ma71) and in molecules as well
(LW58, M69, MMK69). Finally, one may appreciate
the generality of this phenomenon by noting that its
analog has been observed in inelastic-scattering form
factors for nuclear Coulomb excitations (DW66).

The values of (Eao)' at which a minimum occurs
depend among other factors upon the excitation en-
ergy E. The presumably continuous succession of such
minima for diferent E thus forms a trajectory on the
plane with axes representing E/8 and ln I (Eao)'j,
above which the Bethe surface spans. The trajectory
may (though not always) reach the E=O plane (the
optical limit) at certain values of E, in which case
one finds the better-understood Cooper minimum-
i.e., a minimum of the optical oscillator strength as
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a function of E (S51, C62, Sec. 4.5 of FC68). There-
fore, the minima will appear as a trough of the Bethe
surface, a feature which is absent in Fig. 10 for H(1s)
but which is quite common for many-electron atoms
(KICM68, Ma69, Ma71).

The relationship of the minima to the atomic wave
functions can be studied explicitly with a specific
atomic model. For example, Shimamura (Sh71) and
Miller (M71) have examined the minima for a variety
of atomic transitions in the case of the hydrogenlike
model. Although these authors point out certain
interesting systematics, it is unclear to what extent
the results of the hydrogenlike model should apply to
real atoms, in which the potential field seen by an
active electron usually is known to be substantially
non-Coulombic (FC68) .

In general, the minimum is not necessarily a zero
even within the first Born approximation. Notice that
~
e„(E)~' usua'lly implies a sum

where 0 is a set of quantum numbers precisely de-
scribing degenerate channels for the final state. For
example, in a continuum, 0 may designate the an-
gular momentum or the direction of the ejected elec-
tron, in the same way as in Eq. (2.21) . Each individual
term in the sum will not vanish simultaneously at the
same E and therefore

~
e„(E) ~' should be finite every-

where. If one of the terms dominates in a certain range
of (Eap)' values and changes its sign, then

~
e„(E) ~'

should shorn a near-zero minimum.
This cause for the nonzero minimum may be best

illustrated in the following example. The spin —orbit
coupling makes the radial functions for the final states
different for different j, the quantum number for the
total angular momentum (S51). Since the position of
a minimum depends upon details of the radial wave
functions for each j, the zero-value minimum occurs
at different (Eao)' for different j. The combined con-
tributions from different j at a particular E thus can
never quite vanish in the continuum. Also, the inten-
sity of the electrons ejected as a result of excitation
near a minimum should be strongly dependent upon j,
and therefore one expects marked spin polarization
of these electrons (F69), an effect that has actus. lly
been confirmed in the optical limit (KL70).

Our knowledge of the Bethe surfaces for atoms other
than H and He is still distressingly incomplete, for
reasons that will be apparent below.

Experimental studies have so far been limited to
those several atoms which can be put in isolation for
a sufficiently long period of time and in a sufficiently
large quantity. The valence-shell excitation of the
rare-gas atoms has been studied occasionally (G64a,
KS64, KICM68), but by no means in complete pos-
sible detail. Study on the inner-shell excitation is in
the exploratory stage (AGLS68, VdW70, VW71).

The valence-shell excitation of alkali atoms is prob-
ably the case most systematically studied so far
(HR68a, HR68b, HR69a, HR69b). However, the data
normalization again beclouds comparison with theory
(HR69b, Ma69). A serious discrepancy between ex-
periment and theory exists for the O'1 ~4'S transi-
tion in potassium (G68) and clearly indicates the
need for future study. For small (E~)', the general-
ized oscillator strength in this case should behave as
(Eao)' gas seen from Eq. (3.14)], the constant of
proportionality being related to the octopole transi-
tion probability. The experimental data (HR68a) show
a (Ea,)' dependence and a magnitude far greater
than theoretically expected (G68) although the dis-
crepancy may be in part attributable to a departure
from the first Born approximation.

Skerbele and Lassettre (SL70a) experimentally
studied the 6'P3~6'So transition of mercury and ob-
served with incident electrons of 500 eV a shallow
minimum of its apparent generalized oscillator strength
between (Eao)'=1.1 and 1.5. This location of the
minimum is significantly different from that of a theo-
retical prediction by Mc69, i.e., (Etio)'=2.3—3;3 de-
pending upon the atomic models used. )The statement
of SL70a about agreement with theory appears to
stem from a misunderstanding of the result of Mc69.
This discrepancy was kindly pointed out to the writer
by Dr. S. T. Manson and Dr. Y.-K. Kim.] Clearly,
the situation calls for further study, both experi-
mental and theoretical.

The theoretical calculation of the generalized oscil-
lator strength for many-electron atoms is invariably
obstructed by lack of sufficiently accurate wave func-
tions. The defect of hydrogenlike approximations is
now well recognized at least in the optical limit and
calls for the use of more realistic atomic models
(FC68) . Systematic studies (Ma69, ACS70, A71,
Ma71, Mc71), which represent an initial but substantial
step toward sound understanding, are based on an inde-
pendent-electron model that includes an effective
potential for the active electron derived from a self-
consistent-field theory. However, the limitations of
this approach again are already known in the optical
limit (FC68) . In particular, the importance of electron
correlations, both in the initial and final atomic eigen-
states, is now very well appreciated (A71). Only for
small atoms such as Li and Be does there seem to be
an immediate hope for calculations nearly as accurate
as those for He.

Numerous publications on the excitation of atoms,
as summarized in Secs. I 4—8 of MS68, report only
the integrated cross sections, thus bypassing a dis-
cussion of the differential cross section, or the general-
ized oscillator strength. Inasmuch as the differential
cross section provides a far more stringent test of
both theory and experiment, it is hoped that future
investigators will publish the differential-cross-section
data in as great detail as possible.
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3.5. Molecules

As compared to studies on atoms, studies on mole-
cules with respect to generalized oscillator strength
have so far been conducted largely with a different
emphasis. An immediate objective of studies on mole-
cules often has been focused on the spectroscopic
aspect, i.e., on the elucidation of the nature of energy
levels, as opposed to the more ambitious task of ex-
ploring the Bethe surface. Since at present there re-
mains much to be learned about molecular energy
levels —far more than about atomic energy levels, the
difference in emphasis is inevitable and the discussion
of this section accordingly will reflect these circum-
stances.

Yet there is a considerable amount of experimental
data on the generalized oscillator strength for at least
lower excitations of commonly occurring stable mole-
cules (B69, L69). In contrast, only sporadic attempts
have been made toward theoretical calculations, evi-
dently because of the difhculty of obtaining molecular
wave functions. For a general reference, the treatise
by Massey, Burhop, and Gilbody (MBG69, Chapters
12 and 13) may be consulted. Only a sketch of the
basic theoretical aspects will be presented below.

By far the best theoretically studied system is the
hydrogen molecular ion H&+ that contains only one
electron and permits exact solution for the electronic
wave functions, so long as the nuclei are taken as
stationary. A series of investigations by Peek (P64,
P65a, P65b, P67, P69) illustrates the complexities of
the molecular generalized oscillator strength, apparent
even in this simplest case. Unfortunately, no experi-
mental data appear to be available concerning the
generalized oscillator strength of H2+, however.

As has been indicated near the end of Sec. 2.2,
the explicit calculation of the generalized oscillator
strength, or of the squared form factor

I «„(K) I', now
requires a specification of the internal degrees of free-
dom. At the outset, one usually assumes the Born-
Oppenheimer separation between the electronic and
nuclear motions simply because of lack of better
alternatives. The assumption is perhaps justi6able for
the ground electronic state, but is in general question-
able for excited electronic states, especially for higher
states that involve near crossings of different molecular
terms. Therefore, the schematic nature of the treat-
ment below should be always borne in mind (M65).

For simplicity of the presentation, the discussion
'4(:low will explicitly deal with a diatomic molecule;
generalization to polyatomic molecules is straightfor-
xvard in principle.

For a Chatowic molecule, one may specify a final
state by a set of electronic quantum numbers n,
vibrational quantum number v, and rotational quantum
numbers J and M. Also, one designates an initial
state by corresponding quantum numbers np, &p, Jp, 3'.
(Spin quantum numbers are irrelevant for the dis-

cussion here, and are thus suppressed. ) Let 0, 4 be
the polar angles of the internuclear axis, and p the
internuclear distance. Assuming the Born—Oppenheimer
separation and neglecting the rotational —vibrational
coupling, one writes the wave functions of the 6nal
state as

I ~sr(0, 4)X.(p)zv„(ri, ~, rz, ~)

and that for the initial state as

Vs,~,(0, 4)X„...(p) tvp(ri, ~ ~ ., rz, y),

where the I"s are spherical harmonics, the X's are
vibrational wave functions, and the w's are electronic
wave functions depending upon the coordinates
r~, ~ ~ ., rg of all the molecular electrons and upon the
nuclear coordinates p(p, 0, C). The form factor for
the transition is then given by

«(E; n, v, J, M«-no, vo, Jo, Mo)

= f f f V,~*(0, C)X„„*(p)«„(Z; p, 0, C)

X VJoMp(0 C') X„„,(p) p dpd (cos 0) dC', (3.46)

where «„(E; p, 8, C) is the electronic part defined by
z

«„(E; p, 0, C) =f w„(ri, ., rz, y) g exp (iK.r;)

Xzv„,(ri, ~ ~ ., rz,' g) dri ~ drz (3.4/)

While
I

«(Iz. ; zz, v, J, M~rtp, vp, Jp& Mp) I' provides the
most precise description of the individual transition,
one is seldom interested in this much detail. Since
rotational levels are not usually resolved in current
experiments, one treats them as effectively degenerate.
Thus, one sums

(«E; n, ,v,J M&
—np, vp, Jo, Mo) I'

over all J and M and takes the average over Jp and
Mp. The result may be written as

I «„(E; v& vp) I'—
and called the squared form factor for the transition
from the vibrational level ~p in the initial electronic
state np to the vibrational level ~ in the final elec-
tronic state n. In this procedure, one usually neglects
the very slight dependence of E upon J and Jp that
results from the kinematics

I as seen in Eq. (2.16))
and uses a representative unique value of E. Then,
the closure property of spherical harmonics leads to

I -(&; v vo) I'=(4 ) 'ff d(cos 0)dC'

&&
I f X- *(p)«-(&; p, 0, +)X-"o(p)p dp I' (3.4g)

The result agrees with the expectation from the adia-
batic nature of molecular rotation;

I «„(E; v&—vp) I' is
equal to the average of the squared form factor eval-
uated for all the possible molecular orientations.

A further simplification is introduced by recognizing
that «„(E;p, 0, Cz) defined by Eq. (3.47) is in general
a more slowly varying function of p than are the
vibrational wave functions, X„,„,(p) and X„.(p). This
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is especially true when vo or r is small. Then, «„(E;
p, 8, C) may be replaced by its value «„(E;p, e, C)
at a representative p value p, which may be taken
as the equilibrium internuclear distance p, if F0=0.
The physical argument for this assertion is that, be-
cause the nuclei are so much heavier than an electron,
they do not move appreciably in the period during
which electrons undergo a transition under the in-
fluence of the incident particle. One thus reduces
Eq. (3.48) to

X
~ f X .*(p)X „,(p) p'dp ~'. (3.49)

This expression consists of two factors. The first deals
primarily with the electronic motion, and thus may
be called the electronic form factor squared. The
second deals exclusively with the nuclear vibration
and is identical to the Franck —Condon factor well
known in molecular spectroscopy. An immediate cor-
ollary of Eq. (3.49) is that the peak height in the
electron energy-loss spectrum (as discussed in Sec. 3.1)
within a single electronic transition is governed almost
entirely by the Franck —Condon factor, a fact that has
been very well borne out from a number of measure-
ments (869, L69).

One should also recognize certain qualifications to
the validity of Eq. (3.49). As explicit calculations for
H2+ (P64, P65) and for H~ (MK67) demonstrate,
«„(E;p, 0, C) is not always a slowly varying function
of p, and therefore the choice of an appropriate rep-
resentative value p is not always easy. In particular,
the representative p in general depends upon E.

The work by Miller and Krauss (MK67) on low-

lying excitations of H2 exemplifies moderately accurate
calculations that are feasible at present. The result
shows fair agreement with experiment ( GS69a) . Ex-
ceptionally accurate results, however, are available
for a few excitations for H&, but only at the optical
limit (RD67, Wo69).

The role of the Franck —Condon factor in electron
energy-loss spectra seems to deserve special attention.
Whereas Eq. (3.49) has been derived under quite
restrictive assumptions, including the first Born ap-
proximation, the Born—Oppenheimer separation, and
the insensitivity of the electronic matrix element to the
nuclear coordinates, Lassettre and coworkers (MSL65a,
LSDR68) point out experimental evidence strongly
suggesting that the Franck —Condon factor is signifi-
cant beyond these limitations. The relative intensities
for vibrational peaks belonging to the same electronic
transition are found to be remarkably independent of
the scattering angle and of the incident electron energy
down to some 30 eV for a number of molecular transi-
tions with excitation energies about 10 eV (LSDR68),

a situation in which the first Born approximation is
clearly inappropriate. Moreover, the same relative
intensities turn out to be very closely proportional to
the respective Franck —Condon factors.

Lassettre and coworkers (MSL65a, LSDR68) ad-
vance a theoretical explanation of the above-men-
tioned fact. They argue that, because the period of
nuclear motion is much longer than the duration of a
collision of an electron having kinetic energies of some
30 eV or higher, a "sudden" approximation should be
applicable to the nuclear vibration. Thus, the proba-
bility of exciting a vibrational level belonging to an
electronic manifold should split into two factors, one
representing the probability of the electronic ex-
citation and the other representing the conditional
probability that the molecule thereby ends up in
the particular vibrational level. Because of the rapid-
ity of the electronic excitation, the latter factor should
be obtained as the square of the inner product of
the vibrational wave functions (i.e., the Franck-
Condon factor) according to the general prescription
of the sudden approximation. This argument is ad-
mittedly plausible, but seems to call for a more quan-
titative justification.

The Franck —Condon principle in the above sense
has been extensively utilized in the spectroscopic study
of molecular energy levels. For example, Lassettre and
coworkers (LSDR68) were able to ascertain that the
benzene molecule has two different electronic levels
'E2, and 'Bj„ in the region of excitation energy be-
tween 6.0 and 6.5 eV. A distinct advantage of elec-
tron energy-loss spectra over the more conventional
photoabsorption spectra is that the former permit a
more detailed study by way of the dependence upon
the scattering angle, or equivalently upon the mo-
mentum transfer (RW63, R64, RW65).

An important theme in the spectroscopic study of
electron energy-loss spectra is their comparison with
photoabsorption spectra. As one expects from Eq.
(2.12), electron energy-loss spectra, taken at small
scattering angles and at incident kinetic energies much
higher than the excitation energies involved, agree
quite well with photoabsorption spectra of the same
molecule in most of the cases studied (L69). How-
ever, several notable exceptions have been observed.
For example, the highest peak in the electron energy-
loss spectrum of N2 of the forward scattering at high
incident energies occurs at an excitation energy of
12.93 eV, while the apparently most intense transition
in the photoabsorption spectrum according to its
earlier measurements occurs at 12.74 eV (LGMS65,
GS65, GS69b). This discrepancy was first attributed
to a failure of the first Born approximation, but was
later resolved in terms of a difficulty in the photo-
absorption measurement (MSL65b) . Actually, a later,
improved measurement (LMD68) of the photoab-
sorption by N& gave a result closely agreeing to the
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electron energy-loss spectrum. The resolution in the
electron energy-loss spectrum is 6xed by the combined
energy spread of the initial beam and of the energy
analyzer for the scattered beam, and the resulting
spectrum corresponds to the electron-energy distribu-
tion convoluted with the "real" spectrum that mould
be obtained with an ideal apparatus with infinitely
6ne resolution. Therefore, even if every structure is
not completely resolved, the relative integrated inten-
sities of different bands in the electron energy-loss
spectra approximate true intensities of the bands, the
precision evidently being dependent upon the resolu-
tion and sensitivity of detection. The basic reason for
this advantage is that the energy-loss process is in-
sensitive by its own nature to the primary kinetic
energy of the electrons.

In contrast, the photoabsorption is a resonant proc-
ess, which requires that the energy of a photon to be
absorbed be exactly equal to an excitation energy of
an atom or molecule, according to the Bohr frequency
condition. Therefore, when the atom or molecule pos-
sesses sharp spectral lines, photons with exactly the
corresponding energies are absorbed strongly, while
photons with only slightly different energies may be
transmitted unabsorbed. If one works with a Qnjte
resolution in the photoabsorption study, the resulting
spectrum represents a weighted average over unre-
solved lines. These weights are extremely sensitive to
the target density, the optical path, and the instru-
mental transmission function in each experimental
setup, as treated in detail in H71. Thus, the inten-
sities obtained for the unresolved lines in the photo-
absorption spectrum are too small (MSL65b, GS69b).
Similar situations occur for H2 (G64b, GT66), Oz,
(GS68), and other cases.

An additional remark in this connection concerns
intensities of a Rydberg series near its convergence
limit. Occasionally in a measured photoabsorption
spectrum, a Rydberg series, when followed with in-
creasing photon energy, shows an abrupt rise in in-
tensity at the limit, as seen, for example, in HTI.63a
and HTI.63b. This rise is a result of the instrumental
effect discussed in the previous paragraph (CS66).
One expects in general that a corresponding electron
energy-loss spectrum, like the "true" spectrum, should
be continuous across the series limit. '

Another advantage of the electron energy-loss spec-
trum for spectroscopic purposes concerns identifica-
tion of the nature of forbidden transitions. By com-
paring the dependence of the spectrum upon the
incident electron energy and upon the scattering angle,
one can sometimes establish, for example, whether a
transition is of the electric quadrupole type or of the
singlet —triplet type (ML65, LS65, ML66, RL66,
LSM66, SDL67, LSDR68, L69).

The minima of the generalized oscillator strength
discussed in Sec. 3.4 appear to be even more com-

mon to molecules than to atoms (LW58, KM69, M69,
MMK69). For molecules as opposed to atoms, the
nodes of the wave functions for the initial and final
electronic states causing the minima belong not neces-
sarily to the radial part, but sometimes to the angular
part. For polyatomic molecules, the minima (and pos-
sibly also the maxima) of the generalized oscillator
strength may sometimes be useful for the determina-
tion of the symmetry property of an excited-state
wave function. The possibility of such spectroscopic
applications has been discussed in the literature
(K61) .

In concluding this section, one must emphasize that
much remains to be done in the study of molecular
generalized oscillator strength, especially in the ex-
perimental determination of its absolute magnitude.
In this connection it may be heuristic to note—
though by no means implying a criticism, that the
foremost pioneers, Lassettre and coworkers (SL70b),
have recently uncovered a correction factor of 0.754
to be applied to all their own earlier data except
for those on He and H~.

4. THE INTEGRATED CROSS SECTION

4.1.The Basic Formulas

By the integrated cross section o.„one means the
cross section for excitation to a specified state e,
discrete or continuum, of an atom or molecule, regard-
less of the angle of scattering of an incident particle.
In the nonrelativistic case, O.„ is simply an integral of
do„given by Eq. (2.14) over all kinematically possible
values of the momentum transfer M, i.e.,

2
4zrg 2z2 (Kap)max f (It) ()z(+a ) &

T/& (x.p);.2 &-/~ %ao)' ' (4.1)

E2„/R =3/4. (4.3)

where (Eao) ';„and (E'ao) ', are given by Eqs.
(2.17) and (2.18) respectively.

Bethe (830, 833) recognized that it is advanta-
geous to express 0-„ in terms of an asymptotic expan-
sion in inverse powers to T=—', me' because the basic
theoretical framework for do-„assumes suKciently large
T. The resulting expression then contains coefficients
that are determined uniquely from the generalized
oscillator strength f„(K). (The discussion below per-
tains to any charged particle. However, m in the
definition of T always is electron mass. )

In order to illustrate the nature of the asymptotic
expansion, one may treat an example that can be
worked out analytically. For the 2p&—1s excitation of
atomic hydrogen, one has (p. 480 of MM65)

f (E)2=2"3 '$1+(4/9) (Eao)'j ' (4.2)'
and
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FIG. 13. Illustration of the Bethe
procedure. The ordinate represents
(R/E )f„(E), and the abscissa
ln (Ea0) '. The plotted curve cor-
responds to the 2p~1s excitation in
H PEq. (4.2)g. The height of the
limiting value for ln (Ea0)'~ —~,
indicated by the point L, is M„'
[Eq. (4.5) ]. The vertical lines
LID 1, L2M2, and L33EI3 show the
lower limit ln (Eco); of the
integration when T/R=25, 50, and
100, respectively. Notice in contrast
that (R/8 )f (E) is utterlynegligible
at the upper limit (Ea0)2,„of the
integration; from Eq. (2.18) one
obtains ln (Eao)2, =4.6, even when
T/R =25 and M =m. Thus, the
integral A„on the right-hand side of
Eq. (4.1) corresponds, for example
when T/R=100, to the area ELSE,
L P being parallel to the horizontal
axis. In the example one thus places
the line PQR at ln (Tao)'= —1.472,
which is the abscissa of the point R.
Then the required integral A„ is given
by the area L3M&RP PEq. (4.13)].
Notice that the ordinate of L3 is
practically indistinguishable from that
of L . As T decreases, the lower limit
moves to the right so that the points
L2 and L1 on the curve progressively
depart from the horizontal line L P.

5

A„=M,„' —In [p. (Eap)'„;„]—Qj '+f (Eap)'„-;„(&+pimsx

=M '
(x.pi. ;.s (1 4 /9)" (44)

Thus, the integra1 on the right-hand side of Eq. straightforward expansion gives
(4.1) is

where

Ms~' fsQ/Es„2 "——3 "=0.55——493 (4 5)

is the dipole-matrix-element squared for the transi-
tion $Eqs. (2.10) and (2.11)].Elementary integration
of Eq. (4.4) leads to

2k'= (&+0)max4$/9 ' 1
A2„=%2„' In +Z

1+4$/9 ~=i j(1+4(/9) ' t=(rc.p);.s
(4.6)

Notice first that, for large T, (Eap)',„4(M/m)'X
(T/R) is a large number. Through straightforward
expansion into inverse powers of (Eap)', , one finds
that the term with $= (Eap)',„in Eq. (4.6) amounts
to O((Eap) ",„)=O((nsR/MT)p) only, the contri-
butions of greater magnitude vanishing after cancella-
tion. Second, (Eap)s;„ is small for large T; in the
present example, it is given by

, , R

according to Eqs. (2.17) arid (4.3) . The term wjth
(Eap)';„ therefore dominates in Eq. (4.6). Again,

+O((Eap) ';„) . (4.8)

Inserting Eq. (4.7) into Eq. (4.8) and recalling Eq.
(4.1), one obtains the (integrated) cross section as„
in the form

where one defines

5

ln cs„=2 ln 2 —gj '= —0.89704, (4.10)
j=l

ys„=2"3 PL1 —(I/M) )=0.20810L1—(m/M)], (4.11)

and M»' is given by Eq. (4.5). LThe argument of
the logarithm in Eq. (4.9) contains a factor of 4
solely for a traditional reason that will be apparent
later. g The expression only with the leading term in
the bracket in Eq. (4.9) is known as the Bethe asytwp
totic cross sectiorI, . For T sufficiently large that the
6rst Born approximation is adequate, the second term
in the bracket usually is a small correction; for an
incident proton with T/R =25 (or with the kinetic
energy of 0.624 MeV), the second term amounts to
0.40% compared to the leading term. (The vanishing
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FIG. 14. Illustration of the cor-
rections to the Bethe asymptotic
formula. This figure shows in
detail the region near the upper
left corner of Fig. 13. While both
the abscissa and the ordinate re-
present the same quantities as in
Fig. 13, the zero on the vertical
scale is suppressed. The correc-
tions arise in two ways. First, the
area L~L&51, tacitly included in
the earlier determination of the
value (Ea0) ~ (corresponding to the
position of the vertical line I'QR
in Fig. 13), should be dropped.
In other words, more precise
determination of (Kao) ' should
stem from the requirement that
the area I'51L1Q be equal to the
area NQR in Fig. 13.This revision
causes the correction to A as
given by Eq. (4.16). Second, the
vertical line L1M1 corresponds to
the exact value of (Eao) 'm;„
Lwhich in this figure is shown for
electron collision (M/in=1) at
T/R=25], while the line Li'Mi'
corresponds to its approximate
value P„P/(4RT) used in the
derivation of the Bethe asymptote
PEq. (4.15)]. The area Li'MiLi
should therefore be excluded fEq.
(4 17)].

C
hJ

0.55

0.54—

-6.5
l

-6.0
I

-5.5
In (Kaa)

SI SI

MI MI

-5.0 -4.5

ln (Eao)'= fin (Eao)'j

1— d Lin (Eao) '7 (4.12)
f-(E)

of ys„ for M/rrt=1, which approximately applies to
electrons, is peculiar to the example and should be
taken as accidental. )

A general procedure of the asymptotic expansion,
which does not presume an analytical form for f„(K),
is best explained with reference to I'ig. 13, which
shows a typical situation with a low-lying optically
allowed excitation (MP57). The integral A„on the
right-hand side of Eq. (4.1) is represented by the
area under the curve limited by ln (Eao)';„and
ln (Etio)',„. First of all, because the integrand de-
creases rapidly for large values of (Eao)', as seen
from Eq. (3.8), the upper limit of the integration is

sg large when T is large that it may be replaced by
infinity without an appreciable error, as has been
verified in the example. Second, (Eao)';„ is in general
small and decreases with increasing T (cf. Figs. 1
and 2 for kinematics) . Therefore, the required area
is given in the limit of large T as the product of
ln (Eao)'—ln (Eg&)'; and the dipole-matrix-element
squared M„'=f„R/E„defined by Eqs. (2.10) and
(2.11), if (Ktto)' is so chosen that the areas L„QI'
and QER on Fig. 13 are equal. When analytically
expressed, this choice amounts to

Thus, (Eao)' is independent of T and the integral
A„becomes

2
)n IKap) max f (K)

(d ln (Eao)']
)n(Icap)~;~2 E'n/R

=M„' In [(Eas) '/(Eao) ';„j+O(E„/T)
=M„' ln $(Kao) ' (4RT/E„') j+O(E„/T), (4.13)

where the last equality follows from Eq. (2.17). Fol-
lowing Bethe (B30), one usually expresses the argu-
rnent of the logarithm in the last line of Eq. (4.13)
by 4c„T/R, thereby defining

ln c = ln L (Eao) ' (R/8„) ']. (4.14)

Consequently, one arrives at the Bethe asymptotic
formula

The nature of this result may be clarified further
by the following examination of the next-higher-order
term O(E„/T) in the bracket of Eq. (4.15). For this
purpose, one refers to Fig. 14, where the region of
small (Etio)' in Fig. 13 is shown under great magni-
fication. First, the choice of (Eas)' according to Eq.
(4.12) is not quite precise, unless f„(K) is constant
in the interval 0( (Eao)'((Eas); '. More precisely,
one should revise Eq. (4.12) through replacing the
lower limit —~ of the second integral by ln (K)
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FIG. 15. The parameter ln cz for
excitation and ionization from H(1s)
as a function of E. The data are
taken from I63 and I66. The abscissa
is E/R, so that the interval 0.75&
E/R&1 corresponds to the discrete
spectrum and the interval 1(E/R to
the continuum. The points shown
on curve (i) represent ln c„ in the
discrete spectrum for n=2, 3, 4, 5, 6,
7, 10, and 15. Curve (i) in the
continuum shows ln c@. Notice the
smooth continuation at the ionization
threshold E/R = 1, where lim„„
ln c„=0.092955. Curve (ii) re-
presents iR'/E) (df/dE) 1n c@ in
the continuum, and the open circles
on curve (2) show -', n'M„' ln c„ in the
discrete spectrum again for n=2, 3,
4, 5, 6, 7, 10, and 15. The plot is also
smoothly continuous at E/R = 1,
where lim„-', n'M, ,2 ln c„=0.07264.

The modified (Ego)' will slightly depend upon T.
This correction to A„ is shown by the area L„L~L2
and is given by

2

E„/R

„t) E„
E„/R 4RT T'0, 4.16

where f '" is df (K)/d(Kas)' evaluated at K=O )as
defined by Eqs. (3.13)—(3.15)]. Second, the replace-
ment of (Kos)'~;„by its asymptotic value E '/(4RT)
also caused the inclusion of the excess area L~'MI'M~LI
that amounts tof„(aK)'s;

ln
E„/R E„'/4RT s„/R2M 2' (r')
Finally, the error due to the replacement of (Kas) s,
by infinity is easily verified to be smaller than
0(E„'/T'). Thus, combining Eqs. (4.16) and (4.17),
one writes

where p„ is defined by

y„=—(m/2' )f„(E„/4R)f "&. (4.—19)

For an analytical derivation of this result, the reader
is referred to the Appendix of KI68.

The optically forbidden excitation, for which f„=0,
is easier to treat. The asymptotic cross section 0„ in
this case is simply

4map2S2 y„E„2"=
T/R '+T/R+' T

where 6„ is defined by

"f-( )
E„/R

(4.21)

and y„ is again given by Eq. (4.19), the first term
there vanishing because f„ is zero by definition (KI68) .

A further extension of the foregoing treatment to
terms of still higher orders in E„/T is formally straight-
forward, but is of questionable value because eRects
disregarded in the first Born approximation must in-
huence such higher-order terms in the true cross sec-
tion (cf. Secs. 4.3 and 5.2). In other words, as far
as o.„ is concerned, the essentially meaningful content
of the first Born approximation is embodied in a few
parameters, which thus obviate the need for tabula-
tion of |7„at diferent T.

Much too often the meaning of the Bethe asymp-
totic cross section is misunderstood, and the term
"Bethe approximation" is used somewhat loosely in
the literature (MS68, MBG69). The "Bethe approxi-
mation" usually implies a more or less arbitrary choice
of (Eau)' for an estimation of the order of magnitude
of o„,' the causal suggestion to set (Eau)'= 1 on p. 377
of 830 is an origin. In the foregoing discussion, as
in more fundamental treatment by Bethe (B30, B33),
the quantity (Eon)' is precisely defined in terms of
f„(K)/f„(or the angular distribution of inelastic scat-
tering). Thus, (Eas)', or ln c„ in turn, is a property
of the transition to state e and depends upon E„.

For transitions into continua (usually resulting in
ionization in the case of atoms), the integrated cross
section' do/dE per unit range . of excitation energy E
may be defined by an equation which is similar to
Eq. (4.1) but in which the differential generalized
oscillator strength df(K, E)/dE appears in place of
f„(K) Las in Eqs. (2.20)—(2.22)$. The Bethe procedure
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8irao'z', p'
M„' ln —p' +C„, (4.26)

mn' R 1—P'

where m is the electron rest mass and C„ is given by

C„=M„' fin c„+ln (2mc'/R) )= M„' [in c„+11.2268].

(4.27)

For a forbidden excitation to state m, one has simply

0 = 8ira02z'(R/mv') fi (4.28)

For small velocity, Eqs. (4.26) and (4.28) reduce to
the leading terms of Eqs. (4.18) and (4.20), respec-
tively, as they should. According to Fano's analysis
(F56a) the structure of Eq. (4.26) may be interpreted
as follows: The portion

87ra(Pz'(R/mv') M„' ln (2nzi'c„/R)

arises from interactions due to virtual photons whose
polarization vectors are parallel to the momentum.
transfer i%K and approaches a constant value as p—&1.

The remainder

8~g 2z2(R/~p2) ~ 2
L ln (1 P2) P2]

stems from virtual photons whose polarization vectors
are perpendicular to 5K and represents the cause for
the "relativistic rise. " This contribution behaves as P'
for small P.

Strictly speaking, Eqs. (4.23) and (4.24) literally
apply to the hydrogen atom, in which case e is taken
as the principal quantum number. For any other atom
or molecule, however, they must be reinterpreted. One
considers a Rydberg series and the continuum asso-
ciated with it. Then the relations (4.23) and (4.24)
are expected to hold for the Rydberg series, when
e is taken as the effective quantum number including
the quantum defect. 4

As explained in detail later t Eq. (4.89) ], ln cz
asymptotically behaves as

(R'/E) (df/dE) ln c~~Z(R/E) ' (4.25)

for large E, where Z is the number of electrons in
the atom or molecule. Equation (4.25) is an important
consequence of the Bethe ridge (Fig. 10). In contrast,
the coefficient (R/E)df/dE of the T ' ln T term of
Eq. (4.22) declines much faster with E, i.e., as E' "
Lcf. Eq. (3.31)).

For relativistic velocities (T &104 eV), the asymp-
totic cross section t Eqs. (4.18) and (4.20)] needs
modifications. As shown by Bethe (B32, B33) and
explained in detail by Fano (F54, F56a, F63), the
cross section is again given in terms of the same basic
parameters as in the nonrelativistic case. The treat-
ment is based upon Eqs. (2.29) and (2.30), and the
result is as follows: For an optically allowed excita-
tion to state e, one has

4.2. The Fano Plot and Its Applications

As first pointed out by Fano (F54), the analytical
form of the Bethe cross sections )Eqs. (4.18), (4.20),
(4.26), and (4.28) ] suggests a plot of L(T/R) a„]
(47r~'z') ' against ln (T/R) in the nonrelativistic re-
gion, and a plot of L(mv'/2R)0„] (47rao'z') ' against
ln (P'/(1 —P'))—P' in the relativistic region. In either
case, the plot extended to suSciently large velocities
will become a straight line, whose slope corresponds
to M„' and whose intercept with the vertical axis
relates to M„' ln c„or b„(An. analysis of data in the
relativistic region is greatly facilitited by use of tabu-
lations such as MMH56. )

Figure 17 is an example of the Fano plot. In this
particular instance, accurate theoretical values of the
slope and the intercept are known. Thus, the plot
provides a method of clear-cut comparison of experi-
mental data with theory; the set of data represented
by open circles is most consistent with theory. LThe
apparent continuation of the straight-line behavior of
the data to the region T &200 eV (where the first
Born approxima, tion is unrealistic) is unexpected and
probably fortuitous. ]

Actually the Fano plot presumes no theoretical
values of the slope and the intercept, and therefore
can be applied to any set of data on the integrated
cross section 0.„. From such a plot one can draw a
number of inferences about the parameters charac-
terizing o-„. First, if the plot shows a straight-line
behavior over an interval of large T values, it sug-
gests, but not necessarily establishes, the applicability
of the Bethe theory in that interval. (It should be
borne in mind, however, that judgment of a straight-
line behavior of data points with some random errors
always requires caution. ) Second, values of the slope
and the intercept then may be extracted from the
plot. The slope value 3f„' can be converted into the
optical oscillator strength f„and then can be compared
with photoabsorption data. If the slope turns out to
be zero within numerical uncertainties, then the op-
tically forbidden character of the transition is sug-
gested. Third, sometimes cross-section data are de-
termined only relatively, that is, within a multiplicative
factor that is independent of T. One may still plot
such data in the same manner and then adjust the
vertical scale so that the asymptotic slope corresponds
to a value of f if it is known. In this way the origi-
nally relative data may be put on an absolute scale
(as is done, for example, in VDj70). All these ad-
vantages of the Fano plot have been amply demon-
strated by a series of systematic studies on many
atoms and molecules by the Amsterdam group
(SDVK65, SBK66, S66, SMSD66, SVDM66,
SDMBK66, MD67, ADV68, MDS69, VEU69, VD69a,
VD69b, VD69c, EVD70) . Further examples of the
Fano plot are found in RP65—RP70, DV67, PWD69,
and P%D70.
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FIG. 17. The Fano plot for the excita-
tion of the 3'P state of He, taken from
KI68. The solid straight line represents
the Bethe asymptotic cross section PEq.
(4.15)g for any charged particle. The
broken (———) curves represent the same
with the y„ term PEq. (4.18)g for an
electron or positron (labeled "e") and
for a heavy charged particle such as
proton (labeled "~").The dots show the
electron-collision data of SML64, and the
circles those of MDS69. The square shows
the measurements of GH60 and the
dashed curve (- ——-, labeled "Z") those
of Z66. (See also VDJ70 for additional
data not included in this figure. )
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understanding of df/dE (FC68) are enabling one to
obtain trustworthy M values for more and more
atoms and perhaps even to start studying their sys-
tematics across the Periodic Table.

The possibility of multiple ionization, i.e., ejection
of more than one electron from an atom as a result
of a single encounter of a charged particle, requires
a more precise dehnition of the term "ionization cross
section. " One may define the probability rt, (E) that,
as a result of energy transfer E by a single collision,
r electrons are ejected (i.e., a r-fold ionization oc-
curs). The quantity rt, (E) is a definite property of
the continuum states at E although a mathematical
formulation to compute it from corresponding con-
tinuum wave functions may be highly complicated.
Then, the cross section 0-;, for the ~-fold ionization
is an integral of rt, (E)do/dE over E, where da/dE is.
given by Eq. (4.22). Thus, the leading term for the
asymptotic cr,, is expressed as

Whereas the Pano plot is applicable to any inte-
grated cross section, it has been utilized most fre-
quently and fruitfully for analyses of ionization cross
sections. Therefore, it may be appropriate to make
some detailed remarks concerning the meaning of the
parameters characterizing the ionization cross sections.

For an atom, one may simply integrate do/dE of
Eq. (4.22) over the continuum energy E and obtain
the ionization cross section

4~co'S' (E.'
M ' ln (4c~T/R) + +0

~

—,(4.29)
T/R T/R i, T'

where

(4.30)

R f'df
M,' ln c,= —

~

—ln c~dE.
(dE (4.31)

;,=4 ao's'(R/T) LM;,' ln (4c,,T/R) +O(I,/R) ],
The integrations in Eqs. (4.30) and (4.31) have been
extended to infinity, the kinematical limitation having
been thereby disregarded. This procedure is justihed
as far as the quantities M and inc; are concerned
because kinematically impossible excitations with E &

(M/m) T contribute very little to the integrals so long
as T is suKciently large. A treatment of the quantity
p;, however, requires more detailed considerations, and
is thus deferred until Sec. 4.3. The quantity M,',
which one may call the dipole-matrix-element squared
for ionization, is an important index of the distribu-
tion df/dE of the optical oscillator strength (F54).
Recent advances in measurements and theoretical

where

„,(E)( —
(

—
[ dE,

t'R Pdf )
kdE)

(4.32)

(4.33)

M;,' ln c;,=
R df Wt

rt, (E) — —
~
ln cstdE, (4.34)E QEj

and I, is the threshold energy for the v-fold ioniza-
tion. Applications of Eqs. (4.32)—(4.34) are found in
SBK66, S66, VEV69, EVD70, and V%71.

The ionization cross section 0-; as given in Eqs.
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(4.29)—(4.31) is the simple sum

0'i = &ir (4.35)

and is sometimes called the "counting" ionization cross
section. If an experiment measures the number of
ioeizatioe enemas regardless of how many electrons are
ejected in each of the events (as in the case in M53
and RP65—RP70), then the result of the experiment
corresponds to 0-;. If another kind of experiment mea-
sures the total current produced by all diA'erent ioniza-
tion events (as is the case in SDVK65), then the
result corresponds to the "gross" ionization cross
section

&ig = &&i7' (4.36)

Although o.i, is expressed in the same analytical form
as 0., LEq. (4.29)), the coefficients there are different;
they include contributions from the 7-fold ionization
with weight ~. For example, the slope M;g' of the
Fano plot for 0-;, is

M,0' ——g rM, ,', (4.37)

(4.38)

which is in general greater than M,' of Eq. (4.30).
This point is utterly elementary but has caused oc-
casional confusion in the literature (K65, KSD65).

For a molecule, even Eqs. (4.29) —(4.31) require
modifications. As Platzman has forcibly shown (P60,
P62, P63), an excitation to a state above the first
ionization energy does not always give rise to an
ionization, but sometimes leads to atomic rearrange-
ments such as decomposition into neutral products.
One may introduce the (quantum) yield for ioniza-
tion ~i(E) as the probability that the molecule ionizes
when it has received an energy transfer E. )In the
present discussion, the quantity ii(E) includes con-
tributions from all multiple ionizations possible at E.
In other words, it is to be understood that ii(E) =
g, ii, (E).) Then, the ionization cross section o., is an
integral of q(E)da/dE over E and i. s expressed in the
same analytical form as Eq. (4.29) but with the
coefficients redefined by

less significant role in ln c; because ii(E) is likely to
approach unity for E»Ii and (R/E) (df/dE) ln cE
weighs relatively higher portions of the continuum.

In many cases, 3E,' has been evaluated by use of
the photoionization cross section, which is equal to
ii (E)df/dE apart from a universal multiplicative factor.
This procedure provides a useful estimate which may
be compared with data on 0-i if available.

The ionization yield p(E) depends upon several
phenomena; in particular it depends upon atomic
rearrangements in a highly excited molecule, and
therefore is expected to be influenced by an isotopic
substitution. It follows then that 0-i may have an
isotope effect. Furthermore, Platzman has predicted
that, when p(E) (1, substitution by a heavier isotope
could increase ii(E), and hence a, . Experimental data
on o, of some hydrocarbon molecules (MGV63,
SVDM66), for example, support the prediction, while
isotope effects on ii(E) appear more involved in detail
(Per65, PN68, PN70).

The emission of light as a consequence of charged-
particle impact may be treated similarly. The condi-
tional probability pi(E) that, upon excitation to a
state at E, a molecule (or its fragment) emits a photon
of a specified kind / is customarily called quantum
yield of luminescence, where / may designate the fre-
quency and/or the polarization vector of the photon.
The cross section 0-~ for the luminescence / is given
by an integral of &&(E)da/dE. Thus, it has the same
analytical form as o, of Eq. (4.29), but the coefficients
therein are different. For example, the slope 3f~' of
the Fano plot for o-~ is

(4.40)

where J& is the threshold energy for the luminescence 1

and often may be smaller than the first ionization
threshold II, in which case the integration includes
contributions from discrete excitations as well. Anal-
yses of emission cross sections in terms of the Fano
plot have been fruitfully applied to Lyman and Halmer
lines resulting from dissociation of molecules contain-
ing hydrogen (VD69a, VD69b, VD69c), as well as to
some atomic lines and molecular bands resulting from
excitation of N~ and CO (ADV68, DA70, AD70a,
AD70b, AD71).

M ln ci= g(R)(—)(—) Inc dE. (4.39)

4.3. Total Cross Section for Inelastic Scattering and
Stopping Power

As is often the case with polyatomic molecules,
ii(E) t p&(E) in effect) may be substantially smaller
than unity in a region of E near Ii, where (R/E)
(df/dE)

'

has appreciable values. The introduction of
ii(E) in Eq. (4.38) then is essential for correct evalu-
ation of M 2. In contrast, ~i(E) may play a somewhat

The total cross section for inelastic scattering Ot, &

is defined as the sum of o.„LEqs. (4.18), (4.20),
(4.26), and (4.28)) over kinematically accessible ex-
cited states of an atom or molecule, including discrete
as well as continuum states. The dependence of 0.&,&

upon T, again presumed to be su%ciently large, is
obviously of the same analytical form as that of 0.„
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where Mt, t', ct,t, and yt, t are constants to be discussed
below.

The use of appropriate sum rules (Sec. 3.3) provides
a powerful method' for evaluating the coefficients in
Eq. (4.41) (IKP67, KI71). In the following discus-
sion, as in Sec. 3.3, the symbol

means the summation over all excited states including
integration over continua. First,

M,.z'= PM„' (4.42)

is nothing more than S(—1, 0) given by Eq. (3.18).
Second, manipulations based on Eqs. (3.17), (4.12),
(4.14) and (4.21) give (IKP67)

or 0-;. In the nonrelativistic case, one may thus write

4~%j ~
2

4ctot T +toto;„= M,.zs ln + +0 —,
T R

(4.41)

restricted to E&E, (T), where E, (T) is an ap-
propriate upper limit of energy transfer at given T.
The consideration of this kinematical limitation leads
to contributions that are of the same order of magni-
tude as the sum of y„ terms, Eq. (4.46). The upper
limit may be set at R(Ezto)', „, where (Ezto)', is
defined by Eq. (2.19) (see also Figs. 1 and 2). Thus
for heavy particles (M))rn) we have

while for M=m

E . (T) =4T,

E . (T) =T.

(4.47)

(4.48)

R df ZR——ln c~dE=
@ms~(r) dE Em ax (T)

The contributions that have been included in the sum-
rule evaluation of Mz, z' In cz, z LEq. (4.43)j and that
now should be removed therefrom, are estimated by
means of Eq. (4.25) to be

M„z' In cz,z = Q M„' In c„+Q li„=—2L(—1)+6—6,
and hence

vzoz= gvn ZT/E .—(T), (4. 49)

ZS;„,(E) (Eao) 4d(Eao)' (4.44)

where L( 1) is an optic—al quantity defined by Eq.
(3.42), and the quantities dt and di are integrals con-
taining the incoherent-scattering function S;„,(E), an
initial-state property (Sec. 3.3). They are given by

yz. z
————,'Z —-', S"i(1)
= —-'Z —-'S'" (1)

for M))m

for M =ni. (4.50)

A more rigorous derivation of this result is given in
KI71. If one neglects electron correlations in an atom
or molecule, one obtains So (1) Z LEq. (3.40) j
so that

1

$M,.zi ZS;„,(E)/(E—ao) 'j(Eao) 'd (Ecto) ' vtot~ Z/2

—7Z/4

for M))m

for M=nz. (4.51)

(4.45)

According to Eq. (4.43), ln cz, z can be computed from
two items of information, namely, the optical oscil-
lator-strength distribution and the wave function of
the initial state (most commonly the ground state).

The third coeKcient yt, t is slightly more involved;
it is not simply the sum of individual p„

Q y„=——,
' (ni/M) S(0, 0) —-'„S&n (1) (4.46)

Las derived from Eqs. (3.19), (3.3/), and (4.19)$,
but includes additional contributions. In the deriva-
tion of Eqs. (4.42) and (4.43), the summation (ac-
tually integration) over final states has been extended
to in6nity. More rigorously, the summation should be

6 A similar method is used in the discussion of the cross section
for the excitation of a definite molecular term, i.e., the cross
section including transitions to all the vibrational and rotational
states belonging to that electronic manifold (P69, PG69).

t
——',+ In (8/T) )Z, (4.52)

where 8 is an average binding energy of atomic elec-
trons and is assumed to be much smaller than T.
The result (4.52) should be distinguished from Eq.
(4.51) in two respects: it is based on an additional
argument beyond the fj.rst Born approximation and is
weakly dependent upon T.

The considerations leading to Eqs. (4.50) —(4.52)
also apply to the ionization cross section 0;. Thus,

It may be added that the above result for 3f=ws
applies literally to positron collisions but requires a
modification for electron collisions. The indistinguish-
ability of an incoming electron from atomic electrons
actually influences the yz, z term in Eq. (4.41). An
approximate treatment (KI71) of this "exchange"
effect by the use of the Mott formula LEq. (4.90)$
gives

—-'Z —-'S"'(1)+Z In (8/T)
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For relativistic velocities T=—' ' 4, eo ies =-', mt)' &10' eV), the
a cross section is given bn y

M... in(,) lP —+C... , (4.55)

where

C«(=3E«z Pln c«&+ ln (2mc'/R) $

3
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0
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part is the stopping cross section

a.,= g (E./R) a.. (4.58)

(Kap)',„, is defined as the intersection of the Bethe
ridge with the curve (Eap)'= (Eap)',„;„.

Collecting all the terms, one arrives at

For sufFiciently large (but still nonrelativistic) T, the
leading term of Eqs. (4.15) and (4.20) may be used
so that, recalling Eq. (2.10), one writes

a;z 4zra——p's'(R/T) $Q f ln (4c„T/R)

+Q (E„/R) b„+O(R/T) ]. (4.59)

By use of Eqs. (4.12), (4.14), and (4.21), one puts
the content of the square bracket in the form

g f„ ln (4c„T/R)+P (E„/R) b„=gf ln (4T/R)

jV—2Zf. » —"—Z Lf. f (E—)](«) 'd(Eap)'
n n p

+ Q f„(E)(Eap)
—'d(Eap)'. (4.60)

n p

An exact evaluation of Eq. (4.60) requires knowl-

edge of the totality of f„(K), i.e. , knowledge of the
Bethe surface. The asymptotic behavior for large T,
however, can be determined in the following way.
The summation in the first term as well as that in
the second term on the right-hand side of Eq. (4.60)
may be extended to infinity because the optical oscil-
lator strength declines rapidly for higher portions of
continua; more precisely, df/dE behaves as E "for
large E (RF67). One thus obtains asymptotic esti-
mates, Z ln (4T/R) for the first term and —2L(0)
LEq. (3.42)] for the second term. The summation in
the third term, after being placed under the integral
sign, may be extended to infinity again. Then accord-
ing to the Bethe sum rule LEq. (3.19)], the third
term vanishes. To estimate the last term, one recalls
that, for large (Eap)', the function f„(E) is non-
vanishing only in the neighborhood of the Bethe ridge
E/R (Eap)' (Sec. 3.2, Fig. 10). Therefore, one may
exchange the order of the summation and the inte-
gration if one simultaneously sets the upper limit of
the (Eap)' integration at (Kap)',„of Eq. (2.19).
Then we have

zrzz=4zrap's'(R/T) LZ ln (4T/R) —2L(0)

+Z ln (Kap) ',„+O(R/T) ). (4.61)

It is customary to introduce the "mean excitation
energy" Io defined by

ln (Ip/R) =Z 'L(0) =Z ' g f„ ln (E„/R) (4.62)

and to write the result as

z1n(—)+0(—) for zz»m

Sm~2S2 2T't E
Z ln —

~
+0 — for 3f=m. (4.63)

T/R Ip j T

LFor electrons, the indistinguishability between a pri-
mary electron and a secondary electron in ionizing
collisions again makes a modification necessary. Fol-
lowing Bethe (832), one may define the faster of the
two as the primary electron. Then, ln (2T/Ip) should
be replaced by ln (T/Ip) +-,'(1—ln 2) (p. 521 of
832) .)

The structure of Eq. (4.63) is similar to that of
Eq. (4.41) for zrz, z, but the following differences are
notable. The factor in front of the bracket of Kq.
(4.63) is twice the corresponding factor in Eq. (4.41) .
The coefficient Z in Eq. (4.63) is a property much
simpler than the coefficient Mz, zz in Eq. (4.41). Equa-
tion (4.61) contains L(0), in contrast to L( 1), Ii, —
and I2 in Eq. (4.43). The remainder of the asymp-
totic expression, represented by O(R/T) in the bracket
of Eq. (4.63), is customarily called the inner-shell
correction, since it stems primarily from contributions
of inner-shell excitations (F63). While the asymptotic
expansion of fr.t has been extended to the next-higher
order in 1/T (FT64), the inner-shell correction usually
has been evaluated numerically from explicit data of
f„(E) based, for example, on the hydrogenlike model
(850, W52, W56, KM66a, 871). Since more realistic
data on f„(E) are becoming available (Ma69, ACS70),
one hopes to see in the near future improved calcula-
tions of the inner-shell correction.

For relativistic particles (T &10' eV), Eq. (4.63)
must be modified. The result is (833, F63, BA53)

f„(K) (Eap) 'd(Eap)'
n 1

2
(Za0)

0'st = 16m ao's'Z 2m''
ln P2

mzl'/R Ip(1 —P')
(4.64)

Q f„(K)(Eap)-'d(Eap)'
1 n

=Zln (Kap)', .

The meaning of this procedure may be seen from
Figs. 1 and 2. The point 8, where E„/R= (ICap)'=

for a heavy particle (M))m), and

asz ——8zrap's'Z(R/tlat') Iln(( mzTl. I/)p(1 —P') ')
-r2(1—~ ) "+~']1 2+1—~'+!Ll—(I-~')'"]'I

(4.65)
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for an electron,

T.=mc'L(1 —P') ' '—1j (4.66)

being the electron kinetic energy. ln either case, the
mean excitation energy /0 is the only nontrivial prop-
erty of the atom or molecule appearing in these ex-
pressions. At extremely high energies, further modifi-
cations are necessary because of the density effect and
radiative corrections (F63, CF70).

The final remark of this section deals with the cross
section da.t, t, (0)/dku for the total inelastic scattering
into a given solid-angle element d~ near 0 regardless
of the final state of the atom or molecule. This cross
section is defined by

(4.67)

where the summation runs over all the final states e
(discrete and continuum) that are kinematically ac-
cessible. The use of Eqs. (2.6) and (2.9) enables one
to write

4.4. Relations to Other Theories

The purpose of this section is to indicate points of
logical contact between the Bethe theory and certain
other treatments of fast collisions. The following dis-
cussions will be limited to the most significant aspects
considered from the standpoint of the Bethe theory.

When the de Broglie wavelength associated with
the relative motion of a colliding system is sufficiently
small compared to the size of a spatial region in which
interactions with the atom or molecule take place,
one is justified in treating the relative motion in a
classical-mechanical sense —i.e., in describing it in
terms of a well defined trajectory. Such a situation
actually obtains when the incident particle is heavy
(M»m) and at least moderately fast. In this case,
collisions are classified by means of the impact pa-
rameter t, i.e., the distance between the initial line
of motion and the center of the atom or molecule.
Thus, one may first evaluate the probability P (b, v)
that the atom or molecule becomes excited to the
state e as a result of a collision with impact parameter b

and relative velocity v. Then the integrated 'cross sec-
tion 0-„will be given by

(4.68)

The summation here is in general complicated because
the three fa,ctors k'/k, (Zap) ', and (R/E„)f„(K) all
depend upon the final state e. A simplification is
possible, however, if one limits the discussion to an
interval of 0. When R /T (((0(1, for example, Eq. (2.16)
may be approximated by

(Ka ) '~ (T/R) (M/111) '0' (4 69)

an expression that is independent of e. On Figs. 1

and 2 one sees indeed that in the "interior" region
within ABCD or ABD the curves for (Ego)' exhibit
a nearly horizontal behavior corresponding to Eq.
(4.69). Notice at the same time that the curves for
(Eao)';„are never horizontal, i.e. , that Eq. (4.69)
breaks down near zero scattering angle. Under the
same condition, k'/k may be set effectively equal to
unity. One thus obtains the Morse formula (Mo32)

do.„.,(8) /da) = 4s'ao'(M/m) '(Eao) —'ZS;„,(E), (4.70)

where E is given by Eq. (4.69). Equation (4.70)
also relies upon the sum rule (3.17) and therefore
assumes that higher continuum states with E„&
(M/m) (T/R) do not contribute appreciably to the
summation involved. Analogs of Eq. (4.70) appro-
priate for greater scattering angles also have been
discussed in the literature (TB69).

Although Eq. (4.70) is often useful, the range of
its validity must be borne in mind. For instance, an
attempt (such as in MS41) to derive 0&,& from Eq.
(4.70) and its analogs invariably involves some am-
biguity because the correspondence between 0 and K
in general depends upon m.

P„(b, v)bdb (4.71)

Ana, lyses based on this point of view (F24, W37) are
known as impact-parameter theories, and their rela-
tion to the Born approximation has frequently been
discussed in the literature (F31, M31, B133, S62, M66,
p. 321 of BJ68). A major result is that, if one treats
P„(b, v) to the lowest order in the interactions be-
tween the colliding partners, the resulting O.„given by
Eq. (4.71) is identical to that of the Bethe theory,
Eq. (4.1) . This fact, which might sound almost trivial,
has an important implication in regard to the ap-
plicability of Eq. (4.1) and of many results derived
therefrom (H33, BJ68). While the first Born approxi-
mation is justified if the incident velocity v is much
larger than that of a,tomic electrons Lconditions (i) j,
the impact-parameter theories are justified if the de
Broglie wavelength is sufficiently small (i.e. , if the
incident momentum is sufficiently large) Lcondition
(ii) j. For the E-shell excitation of an atom with
nuclear charge Z~e, for example, condition (i) is

v))Z~e'/5 or T= —',nw'&&RZ~', (4.72)

and condition (ii) is

Mv)&mme'/5 or T= ~mv'&&(m/M) 'RZ~'. (4.73)

Clearly for 3f»m, the latter condition is far less
restrictive than the former.

The above justification of Eq. (4.1) under the wide
condition (4.73) has been the logics, l basis of a num-
ber of calculations on the inner-shell excitation by
protons and other heavy particles with kinetic energies
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above a few MeV (KCM69, CM69, CM70). In par-
ticular, the evaluation of the inner-shell correction to
stopping power by means of Eq. (4.1) is considered
to be meaningful also in this context (W51, W52,
W56, B71). Actually, Eq. (4.1) is sometimes used
even for discussion of the cross section for the inner-
shell excitation near its threshold energy (H33).

It may also be added that Bloch (B133) used an
impact-parameter formulation of the stopping power
to show a logical connection between the Bethe theory
and the Bohr theory.

The classification of collisions according to the im-

pact parameter 6 is complementary to the classihca-
tion according to the momentum transfer SE; in other
words, the majority of collisions satisfy

situation is especially remarkable when one recalls,
for example, the scattering of a neutron by a nucleus,
for which the predominant forces are short ranged so
that quantum-mechanical results are entirely diRerent
from classical-mechanical results. )

The approach of Thomson and Bohr is occasionally
used at present in an extended form, which is referred
to as the binary-encounter theory (reviewed in BP68,
a,nd V69) . For sufficiently fast collisions, this theory may
be considered as an approximation to the Bcthe
theory. In order to clarify this point, one may rewrite
Eqs. (2.34)—(2.36) in a different form.

When the Hamiltonian H of the atom or molecule
is given by Eq. (3.24), one obtains

[H, exp (iK r),)]= exp (iK r), )
Eb 1. (4.74)

X[(5E)'/2nt+t'tK p), /rrt j. (4.77)

with

K= KJ.+K(( (4.75)

Although this situation is intuitively plausible, a pre-
cise statement of the relationship between E and b is
not quite simple. (For example, an apparent difficulty
in this context is that E is an observable quantity,
while lr is not. ) Analyses of the relationship, carried
out in several diA'erent ways (BJ68, M66, F70), show
that b is conjugate, in the sense of the Fourier trans-
form, to the component Ki that is perpendicular to
the incident direction and is de6ned by

Therefore, one can write

exp [iK.rh(t) j= exp (iHt/t't) exp (iK.ri)

X exp (—iHt/tt)

= exp (iK.re) exp I (it/5) [H+(M')/2rrt

+5K pi/rrtjI exp (—iHt/t't) . (4.78)

By use of the operator calculus (F51), one can further
rewrite the last two factors as

exp I (it/tt) [H+ (5E)'/2rrt+5K p),/rn) I

Et =E-/(&»). (4.76)
X exp (—iHt/t't) = exp (i/5)

For those collisions upon which the incident particle
imparts a sugcierttly large ertergy (E»Ii) to one of
the atomic electrons, the binding of the atomic elec-
trons to the nucleus plays a secondary role so that the
energy transfer and the momentum transfer are cor-
related nearly a,s if the electrons were free (Sec. 3.2).
Emphasis on this fact leads to a class of approxima-
tions that may somewhat loosely be called impulse
approximations. (The term "impulse approximation"
is used in the literature (GW64) sometimes in a far
more specific sense. ) In this approach, one initially
regards a collision as merely causing a sudden transfer
of momentum to the atomic electrons. Consequently,
one assumes that, during the collision process, the
electrons hardly interact with the nucleus or among
themselves. Then, one may take account of the eRect
of the binding in succeeding steps of the formulation.

This point of view was utilized in earlier studies
on the ionization cross section by Thomson (T12)
and on the stopping power by Bohr (B13). These
studies were remarkably successful in part because of
the fortunate and intriguing fact that the same dif-
ferential cross section for scattering by the Coulomb
field (the Rutherford cross section) is exactly valid at
any velocity both in quantum mechanics and in clas-
sical mechanics. Moreover, the 6rst Born approxima-
tion also gives the identical result (W45) . (This

[(5E)'/2nt+SK. p (t') /rrt jdt', (4.79)

df(E, E) z/z
2nS(Ea()) ' dt exp

X r r (exp(iK (r;—r,.)]

—
I Z &em (iK r ) ) I' (4 81)

Though Eq. (4.81) is still exact, one now restricts

where the Heisenberg momentum operator p), (t) at
time t for the kth electron is given by

pi(t) = exp (iHt/5) pi exp (—iHt/5) (4.80a)

= p~+(it/&) [H, p~l+2(it/&)'[H, LH, p~hj+" .

(4.80b)

The use of Eqs. (4.78) and (4.79) in Eqs. (2.34)
and (2.35) leads to
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the discussion to the case where E is large and in-
troduces an impulse approximation. Notice that the
right-hand side of Eq. (4.81) requires taking the
Fourier component of the quantity in the brace. For
large E, the only significant term in the brace is the
one that varies most slowly with t. Thus, one may
put pi instead of pq(t') in the t' integration. In other
words, one neglects all but the first term in Eq.
(4.80b). Then, the integrations with respect to t and
t' may be performed to give

'f' '" = '",ZZ -p['K (,-")]
dE (Kao) '

X8 —E . 482

into Eq. (4.1) and write

do- 4~ap's' R df(K E) d(Kap)'
dE T/R E dE (Kao)'

= 47rao2z'(R'/T) R

xz (~ e-~+(—')"'~.;)e-~e, (4«)

where Q= (SK)'/(2m) =R(Kao)' and p„= (K p;)/K.
Further, one takes here the interval of the Q integra-
tion as including the point Q=E (i.e., the Bethe ridge
discussed in Sec. 3.2). Notice also that the delta func-
tion makes the lower limit of the Q integration ir-
relevant to the calculation. It follows from Eq. (4.84)
that

[The second term in the brace on the right-hand side
of Eq. (4.81) makes no contribution for any finite E.]
The argument of the delta function may be rewrit-
ten as

(SK)' SK pi. (5K+pi, )' pg'

2m m 2m 2m

and thus permits an elementary interpretation: The
gain of the kinetic energy of the kth electron, which
has momentum pA, before the collision and momentum
pi, +5K after the collision, is equal to the energy E
transferred from the incident particle. That is to say,
the electron behaves as if it were free, precisely in
accordance with the neglect of the forces acting upon
it within the atom, as represented by the term

[H, pi,]= i@ViU

in Eq. (4.80b). The delta function in Eq. (4-.82) also
implies that df(K, E)/dE is appreciable only for large
(tiK)'/(2m), so long as E is large. Then,

«/dE=4~a's'(R'/T) Z &e '(4) de(4) /Ri) lt,~,

(4.85)

where the function Q($;) is defined implicitly by

4 =Q(4) —E+I 2e(4) /m]'" p. (4 86)

Assuming the momentum p„of the atomic electron
as sufficiently small compared to the momentum trans-
fer AE, one expands through elementary calculation
the right-hand side of Eq. (4.85) into a power series
in p„ to obtain

do. 4irao'z' 1 3 p„4 p,P
T/R . E2 E~&5 (2m) il~

The second term always vanishes because (p„)=0.
Thus one obtains

do. 4m.ap's' 1 48
ZR — ~ ~ ~, 4.87

dE T/R E' 3E'

where 8 is defined as

exp [iK (r,—ri,)] 8=Z ' Z p '/(2m), (4.88)

df(K, E) E/R x( ((5R)' BK P));
(4.83)

a standard expression of the binary-encounter theory
(V69). The same formula also appears in the non-
relativistic theory of the Compton scattering of pho-
tons by weakly bound atomic electrons (EP70).

In order to obtain an expression for do/dE [Eq.
(4.22)]' valid at large E, one may insert Eq. (4.83)

is a rapidly oscillating function of r, —rA, and makes
no significant contribution unless j=k. (That is to
say, electron correlations are unimportant for collisions
with large momentum transfers. ) Therefore, one may
safely neglect the term with j/k to obtain

and, by virtue of the virial theorem, is equal to the
average binding energy of the atomic electrons.

Comparison of Eq. (4.87) with the general result
(4.22) of the Bethe theory leads to a few significant
observations. First, the approximate result (4.87) lacks
the T ' ln T term, which is decisive for large T. This
is understandable from the argument leading to Eq.
(4.87) which assumes large E and, in turn, large Q,
while the T ' In T term in Eq. (4.22) stems from
collisions with sniall Q. Second, Eq. (4.87) may be
put in the form

(R/E) (df/dE) In cE ZR[E '+4BE '/3+——. ].
(4.89)

This proves Eq. (4.25), an important fact utilized a,
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few times in Sec. 4.3. LThe coeflicient of the second
term in Eq. (4.89), however, is subject to qualifica-
tions, inasmuch as it has been derived through ap-
proximations such as the neglect of terms with j@k
in Eq. (4.82).] Explicit calculations for atomic hy-
drogen (I66, Om69a) verify Eq. (4.89).

The binary-encounter approach is useful for an ap-
proximate treatment of the electron-exchange effect in
collisions of fast etectroms with an atom or molecule.
This effect arises because an inelastically scattered
electron is indistinguishable from an electron ejected
as a result of an ionizing collision. While a fully de-
tailed theory of this effect must include intricacies of
the many-body problem (Sec. 5.2), an approximate
treatment is made possible by the simple recognition
that the indistinguishability must be most important
for those collisions in which the incident electron
transfers a large amount of energy to the atom or
molecule. For these collisions, the major fraction of
the energy transferred then appears as the kinetic
energy of the ejected electron, and the binding of
atomic electrons plays a secondary role. One may
thus start with the cross section for a collision of
two free electrons and consider the binding at a suc-
ceeding step. In the nonrelativistic case, the Mott
formula (M30, see also pp. 525 and 575 of LL65)
gives. the differential cross section expressed in terms
of the kinetic energy ze of the slower electron after
the collision; that is, we have

doMO" 4z.ap'E
—

1 1 1
(4.90)

dw T/R w' w(T w) (T—w)'—

where T= ~m~' is the kinetic energy of the incident
electron. (Incidentally, the Mott formula is exactly
valid for any T and m, so long as the two electrons
involved are free. ) The first term in the bracket is
the direct term corresponding to the leading term of
Eq. (4.87) and merely represents the Rutherford cross
section. The exchange effect is described by the second
and third terms.

This idea of treating the exchange effect was first
applied to the stopping-power theory by Bethe (p. 521
of B33, see also p. 575 of LL65). Later it was adapted
to the evaluation of the ionization cross section by
Platzman and Miller (Fig. 7 of F63, M56; see also
KI71). The same approach is readily applicable to
the relativistic case (T& 10' eV), for which one should
replace the Mott formula by the Mgller formula
(M32, see also p. 817 of MM65); for example, Eq.
(4.65) was derived in this manner. The exchange
effect will be discussed further in Sec. 5.2.

An additional remark concerns an extended applica-
tion of the generalized oscillator strength to inelastic
collisions between atomic systems. For example, sup-
pose that an atom A and another atom B, both in
the ground state, collide with each other at relative
velocity v much greater than the velocities of the

atomic electrons involved, and that after the collision
A and B become excited to electronic states e~ and
zziz, respectively. The cross section o.(«, rzs) for this
process is given, within the erst Born approxima-
tion, as

&(«rts) =4~ap'(R/T) I I «(«; E) I'

X
~

piz(rtn, —E) ~' (Eap) —'d(Eap)' (4.91)

where T= ', rip', -zzz is the electron mass, and e~(«, E)
and eiz(ns, E) are matrix elements defined by Eq.
(2.5) in reference to A and B, respectively (BG54,
BG55). Here again, the limits of the (Eap)' integra-
tion are dictated by kinematics. )The quantity (E'ap)'
is still given by Eq. (2.16) with E replaced with the
sum of electroiuc excitation energies in A and B.]
Since the matrix elements eg(«,' E) and erz(ns, E)'
are simply related to the corresponding generalized
oscillator strengths (Eq. (2.9) ], p («, rtn) can be
evaluated if these are known either theoretically or
experimentally. The integrand in Eq. (4.91), in con-
trast to that in Eq. (4.1), is nonsingular at (Eap)'=0.
Therefore, in the limit of large T, the integral tends
to a constant and o.(«, rtn) varies as 1/T.

This kind of approach may be extended to cases
in which the colliding partners are molecules and also
to cases in which their 6nal electronic states belong
to ionization continua. A modification is necessary if
either one of the partners, say B, remains in the
ground state af ter the collision. Then, the matrix
element eiz(nn, E) must be taken as an elastic-scat-
tering form factor. A considerable number of applica-
tions of this approach are found in the recent literature
(G67, PGW67, GP68, BDK69, BDK70).

S. CONCLUDING REMARKS

5.1. Areas for Further Studies Within the
Bethe Theory

Having summarized the current understanding, I now
wish to indicate some problems that may be attacked
fruitfully in the not too distant future. The discussion
in this section will be limited to theoretical problems

. within the framework of the first Born approximation.
It is obviously desirable to carry through reliable

calculations of the generalized oscillator strengths for
different transitions in as many atoms and molecules
as possible. In this respect, the following alternative
lines of approach seem to deserve attention at present.

First, it is important to understand the gross but
realistic features of the Bethe surfaces of atoms and
to search for the systematics across the Periodic Table.
The merit of the calculations within one-electron models
(Ma69, ACS70, A71, Ma71, Mc71) is seen precisely
in this context. Further extension of similar calcula-
tions to many atoms is entirely feasible and will serve
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at least two immediate ends. On the one hand, the
resulting data themselves will be useful for many
applications for which only estimates of cross sections
are required. On the other hand, the same data may
reveal specific aspects that are especially appropriate
for detailed experimental investigations. The occur-
rence of the minima of the generalized oscillator
strength (as discussed in Sec. 3.4) is a ca,se in point.

Second, evaluation of the generalized oscillator
strength from improved wave functions including
electron correlation is desirable for several atoms.
Even for He, existing calculations on transitions into
continua are based on atomic models of modest ac-
curacy. The generalized oscillator strengths for tran-
sitions into doubly excited states (apart from the
optical limits) are only beginning to be computed
(BK70). Most of the published reports on double
excitation and double ionization of He (BJ66, W70,
A69 and references therein) present only the cor-
responding integrated cross sections, but clearly attest
the important role of electron correlations in the atom.
Progress in the photoionization calculations on rare-
ga, s atoms (S70, A71) seems to open up the possi-
bility of reliable calculations of the generalized oscillator
strength for ionization with explicit consideration of
electron correlation. Work in this direction will provide
a test of continuum' wave functions and, in turn, of
the methods by which they are constructed, when
su%cient dependable experimental data are available
for comparison.

Third, it appears worthwhile to explore theoretical
formulations that are different from the traditional
scheme of computing first a' pair of wave functions and
then the matrix element e„(E) LEq. (2.5)] to obtain
the generalized oscillator strength. For example, an
appropriate approximation to the correlation function
g(E, T) LEq. (2.35)j will be an alternative that may
prove useful for certain purposes. Such an approach
may be regarded also as an approximate evaluation
of the Green's function, which is discussed often in
the context of many-body problems in solid-state
physics (N64). An initial exploration along these lines
is found in Sc70.

Fourth, the generalized oscillator strength of nsole-

cnles has been calculated for only a few cases. Cal-
culation of lower discrete excitations of H2 by use of
correlated wave functions may prove valuable as a
guide for thorough understanding of intricacies of the
molecular generalized oscillator strength. At the same
time, studies on other basic diatomic molecules such
as N2, 02, NO, and CO, even within a modest model
(say, a single-configuration description), will be valu-
able for comparison with a large amount of experi-
mental data already available. A particular point of
interest will be the sensitivity of the electronic matrix
element e„(E;p, 8, C) LEq. (3.47) ) to the internuclear
distance p and how this sensitivity affects the role of
Franck —Condon factors.

Fifth, precise evaluation of the re1ativistic form
factor /appearing in Eq. (2.23) j, even for atoms,
belongs to the future program. Although the approxi-
mate relations (2.29) and (2.30) are adequate for
most excitations, rigorous relativistic form factors are
desirable for detailed treatment of inner-shell excita-
tions in very heavy atoms. Existing calculations on
the relativistic form factor are all based on hydrogenic
models (M68) . Recent progress in the relativistic
Hartree —Fock theory (as reviewed in G70) is en-
couraging in this respect, although no readily usable
results on excited-state wave functions appear avail-
able at present.

Finally, it is important to discuss a finer classifica-
tion of the generalized oscillator strength. The defini-
tion of df(K, E)/dE LEq. (2.21)) includes the sum
over all degenerate final states of the atom or mole-
cule. Consider, for example, ionizing collisions in which
a given amount of energy E and a given amount of
momentum 5K are transferred to an atom. Even in
this simple case, electrons will be ejected in general
into nonunique directions (depending upon the sharing
of fiK among atomic electrons) and with nonunique
energies (depending upon the electronic states of the
ion left behind). The resulting distribution of the
ejected electrons with respect to the direction and to
the kinetic energy may be considered as a finer clas-
sification of df(K, E)/dE. So far this distribution has
been treated theoretically in a few instances only
(065, 067, GI68, CM69, CM70, CK71), while per-
tinent experimental data are rapidly becoming avail-
able (Sec. 5.3).

For molecules, the energy distribution is more in-
volved because of the internal degree of freedom of
the ion left after electron ejection. Furthermore, a
molecule excited into the continuum (E)Ii) may
take decay channels alternative to ionization such as
dissociation into neutral fragments and internal con-
version. In general, excitation to states at given 8
may lead to emission of corpuscles (electrons, photons,
and dissociation fra, gments), and the distribution of
these corpuscles in terms of direction and energy is
important as a potential source of information about
the dynamics of molecular excited states.

Among a variety of such distributions, the angular
distribution of fluorescence from atoms is perhaps the
best understood, and the knowledge of it is utilized
in measurements of the excitation cross section by
optical methods (MS68). Other instances discussed
so far concern atomic fluorescence resulting from
molecular dissociation (VZ68) and dissociative ioniza-
tion (DK63, GP69, VK70) . Further theoretical studies
on these and similar problems appear desirable.

5.2. Departures from the Bethe Theory at
Low Velocities

As the incident velocity decreases and approaches
the velocity of atomic electrons, it becomes less and
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less justified to treat an inelastic collision as a small
perturbation. It is indeed well known that true cross
sections at such low velocities depart from the pre-
diction of the first Born approximation. But the precise
way in which departures from the first Born approxi-
mation occur remains only poorly understood at
present. Following are the writer's tentative points of
view based on fragmentary evidence concerning this
question. The discussion here will concern still mod-
erately fast collisions, for which the departures first
become apparent as the velocity falls below the Bethe
asymptotic domain.

Traditionally the departures have been discussed
most often in connection with the velocity depend-
ence of the integrated cross section o-„ for discrete
excitation of a specified kind e or of the ionization
cross section o., (MM65, MS68). For sufficiently high
velocities, the Fano plot (Sec. 4.2) of experimental o„-
or o-; should asymptotically approach a straight line.
The inclusion of the y term (Eqs. (4.18), (4.20),
(4.29)] causes a deviation from the straight line at
lower velocities. The nature of this deviation is well
understood LEqs. (4.19), (4.53), (4.54)]. Any further
deviation at even lower velocities may be attributed
to a breakdown of the first Born approximation.

Although the analysis sketched above is concep-
tually straightforward, its application is often dificult,
simply because experimental data on O.„or 0-; are not
always reliable (KD66, MS68). The o, of He, one of
the most frequently studied cases, exemplifies the dif-

ficulty. All the symbols in Fig. 18 represent experi-
mental data, which should be compared for sufIi-

ciently large T/R with the accurate theoretical straight
line labeled "ION". The serious discrepancies be-
tween the asymptote and the data sets represented
by open circles and filled triangles are alarming espe-
cially when one notices that these sets are the most
recently reported among all the quoted data. Im-
proved measurements of integrated cross sections are
thus highly desirable.

Another important point is that the Bethe asymp-
tote is theoretically well known only in exceptional
instances such as He. It is essential that trustworthy
calculations within the first Born approximation be
carried out before one may confidently ascertain any
departures from it.

In view of the above qualifications, it is dificult
at present to make a quantitative statement on the
magnitude of the departures for given T. For discrete
transitions with excitation energy E, it is commonly
believed that the ratio E„/T is a measure of the
validity of the first Born approximation. However,
data for He on o.„ for the 2'P, 3'P, 2'S 3'S, and 3'D
excitations, all with comparable E, apparently sug-
gest that the nature of each transition plays an im-

portant role in this context; at intermediate electron
kinetic energies (T 200—400 eV), the departures
for the optically forbidden transitions are clearly

appreciable, while those for the optically allowed
transitions are hardly significant (KI68, KI69b).

For the ionization cross section, one might be in-
clined to consider naively the ratio Ii/T as a pa-
rameter pertinent to the departures. Actually, one
should keep in mind at least two qualifications. First,
the ionization energy Ij by definition merely repre-
sents the minimum energy transfer —not a "typical"
energy transfer « involved in all ionizing collisions.
The latter may be in effect an average of E over all
the relevant region of the Bethe surface, and will be
in general substantially greater than I~, because the
excitation spectrum (R/E) df(K, E)/dE is appreciable
in higher portions of the continuum. Since « is a
global property of the spectrum, one expects « to
differ from one atomic system to another in a way
not necessarily parallel to the difference for I&. Second,
an appropriate value of «depends upon the electron
shell. Thus, departures of the ionization cross section
from the Born-approximation result must be con-
sidered for each individual shell or even subshell.

The differential cross section do.„/dho, or equivalently
the apparent generalized oscillator strength f„(E, T)
LEq. (3.1)], provides in general more conclusive evi-
dence regarding the departures at lower velocities.
Again, the 2'P+—1'S excitation in He seems to be the
best studied in this respect (CMK70, TRKTC70).
The extensive data of TRKTC70 for electrons with
intermediate kinetic energies ( &82 eV), however, can-
not be summarized briefly.

A very recent development in this connection must
be mentioned. Skerbele and Lassettre (SL70b) mea-
sured with electrons of kinetic energies 300, 400, and
500 eV do /der for two optically forbidden transitions
g 'Il+—X '2 + and a" '2,+~X '2 + in N~. The ap-
parent generalized oscillator strength for the former
transition turned out to be the same for the three
kinetic energies; this constancy is a necessary (though
not sufficient) condition for the validity of the first
Born approximation. In contrast, the apparent gen-
eralized oscillator strength for the latter transition
markedly depended upon the kinetic energy. There is
little difference in the excitation energy E„; it is about
9.2 eV for the former transition and about 12.3 eV
for the latter transition. Guided in part by that ex-
perimental result, Lassettre (L70) theoretically showed
that the deviation from the first Born approximation
at a given T can be more appreciable for a transition
between states with the same spectroscopic designa-
tion than for a transition between states with different
designations. This same theoretical result also seems
to account for the observation that the apparent
generalized oscillator strength fs's(E, T) of He mea-
sured for T 200—500 eV depends upon T but that
f2's (K, T) is practically independent of T in the same
interval.

An obvious extension of the first Born approxima-
tion is the study of higher-order terms in the Born
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series of the scattering amplitude' (KMS60, MP65,
HM68a, HM68b, H69a). Unfortunately, explicit eval-
uation of the second Born amplitude is already so
complicated mathematically that no rigorous result
has been given even for discrete excitations in atomic
hydrogen. The higher-order Born approximation phy-
sically amounts to inclusion of virtual intermediate
states of the atom or molecule during a collision, and
the main difficulty of the calculation stems from the
infinitely many possibilities of these intermediate
states. Under certain circumstances, however, one may
be able to argue that only a few intermediate states
are decisive and to estimate their effects approxi-
mately.

In this connection, it is important to recognize a
distinction between an optically allowed transition and
an optically forbidden transition. To be specific, con-
sider a transition e~O. The second-order Born am-
plitude for m~0 is a sum of terms, each of which
corresponds to a virtual process e+—e'+—0, e' being an
intermediate state. First, suppose that the transition
n~O is allowed. For example, take the 2V'~1'5 tran-
sition in He. It is easy to see that, for any choice
of e', at least one of the two virtual transitions (i.e. ,
n~m' or n'~ )0is opticaiiy forbidden. Assuming that
the virtual transitions are largely associated with
small momentum transfers, one expects that the in-
direct process may be inefficient compared to the
strong direct process v~0 described by the first-order
Born amplitude. )An alternative statement of the
above assumption is that the asymptot c behavior of
the coupling potentials V„„(r) and V„o(r), as dis-
cussed in Footnote 3, is decisive. The plausibility of
this assumption must be considered in individual
cases. $ The situation is different when the transition
e+—0 is optically forbidden. It is sometimes possible to
have intermediate states n' for which both virtual
transitions (m+—e' and m+—0) are allowed. In this case,
the indirect process may be nearly as eScient as the
weak direct process n~0. For example, notable de-
partures of the integrated cross section for the 4'D~
1 5 excitation in He from the Born-approximation
result are attributed in part to the intermediate 2'P
state; indeed, the two virtual transitions here (O'D~
2'P and 2'8~1'5) have oscillator strengths of ap-
preciable magnitude (VP68).

From the above point of view, several significant
findings of recent years appear quite understandable.
The theoretical result of Lassettre (L70), quoted
earlier, is an example. Lin and coworkers (CL69,
SSLF70, and references therein) have arrived at vir-
tually the same point of view after a series of ex-
perimental and theoretical studies on electron-impact
excitation of many atoms. For electron collisions on
He, close-coupling calculations including various sets
of atomic eigenstates (CL69) seem to demonstrate
an important role of the indirect processes for for-
bidden transitions at electron kinetic energies below

100 eV. As for proton collisions, experimental data
on the 4'D+—1'S excitation of He at kinetic energies
around 1 MeV disagree seriously with the Born-ap-
proximation result, as noted by Thomas (T67). Mo-
tivated in part to elucidate this discrepancy, van den
Bos (VdB69b) applied to proton collisions on He an
impact-parameter treatment including the close cou-
pling of several atomic eigenstates. His result for the
3'D+—1'S excitation shows an appreciable deviation
from the first Born approximation even at proton
kinetic energies of 1—10 MeV, but his result for the
2'P~1'5 excitation is virtually indistinguishable from
the Born-approximation result in the same energy
range. (The calculation of VdB69b does not include
the O'D state, however. )

Other evidence of departures of a similar nature
concerns the stopping power and the range of charged
particles, both of which are now being measured with
high precision (B71). Measurements with Z+ hyperons
(BDH63) and with pions (BOSS65, HL69) indicate
that the stopping power, in nuclear emulsions, of a
negative particle is smaller than that of a positive
particle with the same mass and the same velocity,
the relative difference amounting to several percent
for P &0.2. This observation clearly represents a de-
viation from the first Born approximation, according
to which all cross sections —and consequently the
stopping power LEq. (4.64)]—have a quadratic de-
pendence on the particle charge s'e. Roughly speaking,
one may interpret the stopping-power difference in
terms of a charge polarization of the target during a
collision; a negative incident particle tends to repel
atomic electrons away from itself, thereby rendering
energy transfer less scient, while a positive incident
particle tends to attract atomic electrons toward itself
thereby rendering energy transfer more efficient. The
second Born approximation certainly includes this ef-
fect, and will give rise to a s' term in the stopping
power, in addition to the usual s' term. A recent
analysis (AEB71) based on an impact-parameter for-
mulation may be considered as an initial attempt at
quantitative understanding of this s' term. The charge-
dependent deviation from the Bethe formula has been
studied also through comparison between the stopping
power of a doubly charged particle and that of a
singly charged particle at the same velocity (ASS69).

A remarkable effect recently discussed by Salin
(S69) and by Macek (M70) exemplifies the wealth
of physics involved in the angular distribution of the
ejected electrons and at the same time illustrates a
failure of the first Born approximation. For example,
consider an ionizing collision of a fast proton with a
helium atom. Sometimes an electron will emerge with
a velocity comparable to the proton velocity, which
presumably does not change much during the collision.
For a considerable period of time, such an electron
is subject to the field of the moving proton, as well
as to the field of the residual He+ ion. (The first Born
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where

V= Vo+V',

Vo =s (Z~—Z) e'/r

(5.1)

(5 2)

represents the net Coulomb interaction between the

approximation includes only effects of the latter field. )
Calculations have shown (S69, M70) that the dis-
tortion of the electron wave function due to the
moving proton significantly affects the angular distri-
bution of ejected electrons near the forward direction.
A convincing experimental verification of this effect
has been reported recently (CR70).

Another effect not included in the first Born ap-
proximation for electron impact is the exchange of the
incident electron with one of the atomic electrons. As has
been discussed in Sec. 4.4, this effect is reasonably
well understood for those collisions in which the energy
transfer is much greater than the binding energy of
atomic electrons. Various theories have been designed
to treat the effect for a more general situation, but
none of them appears to be very well established.
Indeed, applications of these theories to concrete
examples (JM65, TCK68) give widely different re-
sults, particularly with respect to differential cross
sections.

Transitions involving a change in the spin multi-
plicity in a light atom or molecule are especially
interesting in connection with the electron-exchange
effect, because the first-order Born approximation
gives (near) zero cross sections for these transitions.
For example, the 2'S~1'S excitation of He by elec-
tron impact is possible only through an electron ex-
change although other remote possibilities have been
considered as well (M67) . Experimentally, the angular
distribution of scattered electrons resulting from this
excitation is peaked forward at incident kinetic ener-
gies as high as 200 eV (VSM68). In contrast, most
theories predict a distribution peaked at a fairly large
angle (MK68, JV70) although a recent calculation
qualitatively reproduces the forward peaking (SLi70).
For other singlet —triplet transitions (2'E~1'5 in He,
b'Z„+&—X'Z,+ in H~), the angular distributions are
peaked at finite angles (SLi70, TCRBK68). As for
the velocity dependence of the integrated cross sec-
tion, presently available evidence indicates that the
integrated cross section for this kind of transition
varies as T ' for large T, so that O.t, i of Eq. (4.41)
needs no modification to the order explicitly given.

An additional remark concerns collisions with an ion.
Deviations from the first Born approximation are ex-
pected to be more apparent in this case than in the
case of collisions with a neutral atom or molecule.
Suppose an incident particle of charge se collides with
an atomic ion having Z electrons and a nucleus of
charge Z~e. One may split the interaction V of Eq.
(2.2) into two parts as

incident particle and the ion, and

(5 3)

represents the interaction directly causing the inelastic
scattering. Here one may regard Vz as a part of the
unperturbed Hamiltonian for the system consisting
of the incident particle and the ion and treat V' as a
perturbation. Then, one obtains an expression for der„
similar to Eq. (2.1) but with the matrix element
replaced by

f LA'(r) ]*~-*(ri,",rz)

XV'P~ (r)~(ri, ~ ~, rz)dri. ~ drz dr,

where Pq+(r) and P~ (r) are the Coulomb wave func-
tions defined on p. 522 of LL65. This procedure is
known as the Coulomb —Born approximation and has
been applied to a number of cases (as reviewed in
MS68 and MB G69) .

For suKciently high incident velocity, the Coulomb—
Born approximation reduces to the first Born approxi-
mation; but the precise way in which the Bethe
asymptotic cross section LEq. (4.15) or (4.20) $ is
affected by the net Coulomb field Vt. has been analyzed
only incompletely. From the analyses of MG51 and
Ga66, for example, one sees that the leading (T—' ln T)
term in the asymptotic cross section o. is still given
in the same form as in Eq. (4.15), but possible modi-
fications of other terms remain obscure. (The standard
evaluation of the Coulomb —Born approximation starts
with the partial-wave expansion of the Coulomb wave
functions. For high velocities, the resulting series con-
verges slowly at best and therefore does not seem to
be advantageous for the examination of an analytic
form in the asymptotic region. )

Comparison of the first-Born-approximation results
with experiment for H (IK68), Li+ (KI70), and He+
(KI71) seems to suggest that the effect of the net
Coulomb field Vz on the asymptotic cross sections is
not outstanding as compared to all other causes for
the departures from the first Born approximation so
long as

~

Z—Z~
~

=1. Also, a recent Coulomb —Born
calculation (BS69) on the electron-impact ionization
of H gives an asymptotic behavior in close agree-
ment with the Bethe asymptote (IK68) . When

~

Z—Z&
~

is large compared to unity, however, the
result of the Coulomb —Born approximation is very
different from the result of the first Born approxima-
tion (as seen in the cases quoted in MS68).

Numerous theories have been proposed for the de-
scription of lower-velocity collisions for which the first
Born approximation is inapplicable. Most of these
theories are reviewed in standard references (WO62,
GW64, MM65, MS68). Among the theories that ap-
pear most relevant to the theme of this section are
the eikonal approximation (GW64), the Glauber ap-
proximation (TBGF70), and a class of theories callecl
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the impulse approximation (GW64, S68, C69). Chiefly
because of computational difficulties, these approxi-
mations have been applied to only a few concrete
examples.

The concluding remark of this section represents a
point of view that may be important for further
developments. It seems to be common to many prob-
lems in physics that, when a simple schematization
breaks down, it does so in a variety of ways, and not
just in one way or another. When the true cross
section departs from the asymptotic behavior as the
velocity decreases, there are many causes that are
mutually related. These causes are commonly referred
to as the distortion of the incident wave, the charge
polarization of the target, effects of compound states,
exchange effects (for electron collisions), and so on.
In order to understand low-velocity collisions, one
must attempt to devise a balanced treatment of all
these effects. An unbalanced theory, which over-
emphasizes one of these effects, is bound to be at
most tentative, and may often be seriously misleading.

5.3. Desirable Exyeriments

As may be apparent from the discussions in the
two preceding sections, a great deal of what is learned
about fast collisions will continue to come from ex-
periment rather than from theory. In this respect,
the following areas are suggested for experimental
study in the near future.

First, both for discrete excitations and for ioniza-
tions, reliable absolute measurements of integrated
cross sections at high velocities still remain of basic
importance. The measurements should be precise
within several percent or better, in order to be sig-
nificant for elucidation of the asymptotic behavior
and of the departures therefrom. It is also desirable
to extend the variety of atoms and molecules beyond
those which form static-gas targets in traditional mea-
surements. For example, cross-section data on open-
shell atoms, metastable atoms, ions, and radicals are
very scanty at present. Recent developments of cros-
sed-beam techniques are encouraging in this respect
(D69) .

A related topic is measurement of the electron at-
tenuation in gases. To make the resulting data ac-
curate, one must use well-collimated electron beams
and low-pressure gases. The result will give the total
scattering cross section of an atom or molecule, in-
cluding the contributions from elastic and inelastic
collisions. This information will be useful in several
respects. For example, it is an important item of the
input data in a dispersion-theoretical analysis of all
the cross sections (BM69, BM70) . Further, if the
elastic-scattering cross section is known either experi-
mentally or theoretically, the total inelastic-scattering
cross section 0.&,& may be obtained by subtraction.
Data on O.

t,,& are sometimes useful simply as upper
limits on any individual inelastic-scattering cross sec-

tion, for example, the (counting) ionization cross sec-
tion. Besides, o-t,,& at sufficiently high velocities may
be compared fruitfully with theoretical results derived
by sum rules (Sec. 4.3). Finally, data on total scat-
tering are sometimes required in the design of other
experiments —e.g., on angular distribution of scattered
electrons. Since the early pioneering studies (B25,
N30), however, the electron-attenuation measurement
appears to have been unduly negIected, except at very
low velocities (GB65, GB66, GBS66, SN70).

Second, electron energy-loss measurements need to
be extended to more varied targets, most notably to
atoms and molecules that do not usually form per-
manent gases. An initial exploration of electron col-
lisions with atomic beams has already proved feasible
and valuable (HR68a, HR68b, HR69a, HR69b).

Third, electrons ejected from various atoms and
molecules as a result of ionizing collisions deserve
detailed investigations. Actually a considerable number
of reports already seem to promise riches of knowledge
to be obtained from analyses of the ejected electrons
(RSB66, DM68, RS68, ER68, ESTW69, KSLCM70,
CMPK70, CMKr70, MDPM70, T71, OPB71, VCM71).
The distribution of these electrons with respect to the
kinetic energy and the angle of ejection is important
in several different ways. First, of all, data on the
distribution over wide ranges of the variables involved
are needed in radiation physics, atmospheric physics,
and other areas of application, in which the ejected
electrons play a key role in many phenomena. Next,
the most energetic electrons emerge nearly as if they
were initially free and stationary, and the deviations
from the free-electron behavior reveal information
about the electron binding in the atom or molecule
(RG69, MDPM70, CK71). Further, if one analyzes
the electron kinetic energy with su%ciently high re-
solution, one may learn much about the intricacies of
ionization processes such as autoionizing states of
Auger effects following inner-shell excitations (RS68,
ER68, KSLCM70, CMPK70, CMKr70, ONT70,
SKYW70, YS71). Finally, analyses of the ejected
electrons (ESTW69) and of ions (VdW70), in co-
incidence with the determination of the energy loss
of the incident particle, provide even more detailed
knowledge. Studies of the light emission in coincidence
with the energy-loss determination will also be valu-
able. The merit of the coincidence measurements is
that the resulting data will pertain to final states of
an atom or molecule at a definite excitation energy
and therefore will permit conceptually simple inter-
pretations.

Fourth, experimental data on collisions of positrons
with atoms and molecules may give a valuable guide
to theory in regard to the departures from the first
Born approximation. Whereas this approximation pre-
dicts an identical cross section for electrons and posi-
trons at the same velocity, the departures at the lower
velocities arise from quite different causes for electrons
and positrons. For example, instead of the exchange
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effect for electron collisions, positron collisions involve
the effects of virtual and real positronium formation.
The technology of positron-collision experiments seems
to be on the verge of promising developments
( GCMH69) .

This article has chiefly aimed at presenting a frarne-
work of thinking. It is hoped that coming years will
see the advent of such experiments as suggested above
so that one may put the framework to full use and
learn the detailed dynamics of atoms and molecules
as manifested in their Bethe surfaces.
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