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A detailed investigation of various aspects of the populations of interacting biological species is made, using Volterra's
and other models. For a system with two species, a detailed analysis is possible, and we plot the time variation of the
population of two species for a set of values of the parameters. For a many-species system, it is shown tha, t the time
average of the population N; of the ith species is equal to its steady state value q;. For time averages of other functions
of N; and N;X;, only the equations satisfied by them are derived. The population growth of a species is studied by as-
suming that the effect of other species is to introduce a random function of time in the growth equation. The resulting
Fokker —Planck equation is shown to have the same form as the Schrodinger and Bloch equations. The "potential" of
the Schrodinger equation depends upon the form of the number-dependent term in the growth function. For the Gompertz
form, it is a simple harmonic oscillator potential and, for the Verhulst form, the Morse potential. For both the forms,
the Fokker —Planck equation is explicitly solved to obtain the probability distribution P(X, t) of the population as a
function of time. It is shown that considerable simplification is achieved in the calculation of the steady state concentra-
tions (q; s} of the component species if Pfa%ans are used. Since q,. is equal to the time average of the population of the
ith species, a great deal can be said about the stability of the population in the sense of the rarity of explosion or extinction
of one or more species. If the interactions between various species and their growth coeScients (in the absence of inter-
actions) are known, we show that a priori one can determine whether the population will be stable or not and, if not,
Vehich of the species will disappear. Also, the stability of the population is discussed when several new species are introduced.
Ke show that the stability is dependent on how the newly introduced species interact with each other and with the
population into which they are introduced. If the information about the detailed interactions between various species
is absent, as is usually the case, then a statistical mechanical treatment of the population is desirable. Ke show that for
small deviations from steady state populations, the necessary and sufhcient condition for such a treatment is that the
number of species is large. I or arbitrary deviations the latter is a necessary condition and may not be su%cient. This
statistical mechanical treatment provides an empirical method for calculating the interaction between two species and
the stability of the population. A measure of the stability of an ecology is defined which could be used to compare the
relative stabilities of two ecologies with the same macroscopic properties. The eRect of changes in the interactions between
various species, due to changes in temperature, humidity, age distribution, etc. , is studied by assuming the rate constants
to be random. A master equation for the probability distributions of N; s is derived. It is shown that the stationary
population distribution is Poisson only if the variation in the rate constants is not too rapid. A brief outline of another
stochastic model for the population growth in terms of the probabilities of birth and death of the individuals is given.
Since the members of the population do not react instantaneously to any change in the environment, the prey —predator
interaction does not affect the population of either prey or predator instantaneously, and the egg is not converted into
an adult instantaneously, the effects of the time lags in the above processes on the behavior, in particular the stability,
of the population are studied. Further generalizations of the Volterra model are discussed, and a brief review of other
systems of interacting species, e.g. , systems of biochemical oscillators, nervous systems, multimode lasers, systems of
simultaneously growing bacteria, etc. , is given. Finally, a sampling of the experiments which throw some light on the
validity of Volterra s model and the statistical mechanical treatment is given.
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INTRODUCTION

There exist numerous examples of assemblies which
consist of a number of elements that inRuence each
other through competition or cooperation. Some
important cases are: populations of various biological
species; political parties; businesses; countries; coupled
reacting chemical components in the atmosphere, in
bodies of water, and in organisms as a whole or in part;
components of the nervous system; and elementary
excitations in fluids (for example, eddies in a turbulent
fluid) .

One can construct models of many of these assemblies,
either from first principles or intuitively, for the
description of the competitive or cooperative phe-
nomena. They yield rate equations, generally non-
linear, which contain a number of rate constants which
must be determined empirically or be calculated from
some auxiliary equations. When the number of inter-
acting variables is large, the rate equations may become
difficult to solve and, as is the case in the application of
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classical mechanics to physical problems, one might not
even know all the initial conditions of the problem. It
is, therefore, of interest to try to develop a "statistical
mechanics" for many coupled rate equations. Some
important aspects of any assembly of elements which
can be studied using statistical mechanics are its
inherent stability, its stability relative to small changes
in the rate constants, and its stability relative to the
introduction of a new element. One is also interested in
the basic relaxation times of the assembly.

With the currently developing interest in the in-

vestigation of social and biological mechanisms, it is of
considerable importance to find a model which might
be amenable to a detailed investigation. Such a model
might play the same role that the harmonic oscillator
or the Ising model plays in theoretical physics.

An interesting model for the interaction between a
number of different biological species was introduced
by Volterra a number of years ago' (1928, 1931, and
1937). The two-species version of the model and its
similarity to autocatalytic reactions had already been
discussed independently by Lotka (1910, 1920, 1956).
The model was, for a while, considered as a basis for
ecological processes. It was strongly criticized because
certain features of ecological systems were omitted. We
are under the impression that the fall from favor oc-
curred because of general notions about the omissions
and oversimplifications and not because calculations
based on the model were in strong contradiction to ob-
servations. Indeed, few nontrivial deductions were made
from the model since it is a nonlinear one. If the same
kind of criticism had discouraged people from the
investigation of models (such as the van der Waals
model, the Ising model, the I.ee model in quantum
field theory, the Kronig —Penney model, the mass and
spring model of lattice vibrations, the Heisenberg
model of ferromagnetism, model of electrons imbedded
in a continuous positive charge background, etc. ) used
in many-body physics, physicists would have never
developed the intuition necessary for the understanding
of the behavior of complicated real materials. The
model as introduced by Volterra is described in the
next section where we have also discussed the implica-
tions of the model for the two-species case. In addition
we show that for the model there is a constant of
motion. However, if one includes the effect that a
population, surviving on limited resources, approaches
saturation, there is no constant of motion. At various
points in this paper and in a later one we will investigate
the influence of this and various other omissions and
simplifications of the Volterra model. Our main aim
here, however, is to consider it as one of the simplest
of nonlinear competition models. Because of certain
accidental aspects of the model which might not have

' An excellent English review of the original Volterra theory
and its use for the interpretation of experiments involving a
small number of species can be found in the book of D'Ancona
(1954) .

been planned by Volterra, we will be able to carry out a
program which would be desirable but not always easy
to pursue in other models.

In Sec. 2 we study the population growth of a species
by assuming that the effect of other species is to
introduce a random function of time in the growth
equation. The resulting equation has the same mathe-
matical form as the Schrodinger and Bloch equations.
That equation is solved to obtain the probability dis-
tribution I' (1V, 3) of the popula, tion as a function
of time.

In Sec. 3 we discuss various necessary conditions for
the existence of an equilibrium concentration of the
component species. We show that a great deal can be
said about this question from knowledge only of the
graph which describes which species interact with each
other (the "organization chart" for the ecology).

As mentioned above, in the absence of detailed
information about the interaction between the species,
a statistical mechanical treatment of a population is
very desirable. The first statistical mechanical con-
siderations of the Volterra model were made by Kerner
(1957, 1959, 1971). His theory, though elegant, has
been criticized because he has given no justification for
the validity of the application of the statistical mechanics
to the problem of population of interacting species.
We know that, even in physics, the justification of
statistical mechanics is rather tricky. Perhaps its most
simple and convincing justification in that field lies in
its connection with thermodynamics. No such connec-
tion, which is close to experiment, exists for the Volterra
model. Kerner's treatment has also been applied to the
study of an assembly of interacting biochemical
reactions ( Goodwin, 1963), to the nervous system
(Cowan, 1968), and to a system of simultaneously
growing cells (Goodwin, 1970). En these assemblies the
validity of statistical mechanics is also assumed.
Because of the importance and simplification of a
statistical treatment, we have attempted to justify it in
Sec. 4. We start with the dynamics of the system
described by the Volterra's equations, (sometimes with
some modifications) and determine the conditions
under which the results obtained by a statistical
mechanical analysis are consistent with the results
obtained directly from the Volterra equation. In
particular, we determine under what conditions the
canonical averages satisfy the equations by the time
averages of arbitrary functions of a number of various
species.

In Sec. 5 we discuss the stability of systems in terms
of the statistical properties of their population fluc-
tuations. We define a measure of the stability of an
ecology which could be used to compare the relative
stabilities of two ecologies with the same macroscopic
proper ties.

One might expect the "rate constants" appearing in
Volterra's model to be affected by changes in tempera-
ture, humidity, age distribution of various species, and
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other ecological factors. On this basis we assume the
rate constants to be random and derive and discuss the
master equation for the probability distribution of
iV s in Sec. 6. We show that the stationary population
distribution is Poisson only if the variation in the rate
constants is not too rapid. We also brieRy outline in
Sec. 7 another stochastic model for the population
growth of interacting and competing species in which
the equation satisfied by the probability distribution is
expressed in terms of the probabilities of birth and
death of the individuals.

In general, the members of the population do not
react instantaneously to any change in the environ-
ment; the egg is not instantaneously converted into an
adult and the prey —predator interactions do not affect
the population of both the prey and the predator
instantaneously. In Sec. 8 we discuss the effects of the
time lags in the above processes on the behavior, in
particular the stability, of the population.

In Sec. 9 we review some of the work done in recent
years in an attempt to generalize and to modify the
Volterra equations. These generalizations throw some
light on the behavior of the population if Volterra's
model is changed; also, the generalized equations may
be more realistic in describing the behavior of other
systems of interacting species. In the latter category,
we specifically point out the nervous system, a system
of biochemical oscillators, a system of growing bacterial.
cells, and the multimode optical maser.

In Sec. 10 we give a sampling of the experiments
which throw some light on the validity of Volterra's
model for two or three species and the application of
statistical mechanics to many-species case within the
same model.

dNi/dt = cziNi —XiNiN2, (1.1a)

dN2/dt c22N2+ ~2A 1N2. (1 1b)

The term —Xl3~lÃ2 represents the loss rate of small

1. VOLTERRA MODEL

Volterra was motivated to investigate competing
species by discussions with his friend D'Ancona (1926),
who made a statistical analysis of fish catches in the
Adriatic. It was apparently observed that the popula-
tions of two species of fish commonly found in these
catches varied with the same period, but somewhat out
of phase. One of these was a species of small fish which
we identify as "1," and the other was a species of a
larger fish which we identify as "2."It seemed as though
the large fish ate the small ones, grew, and multiplied
until the population of small ones diminished to such a
level that there were insufficient numbers for the
survival of the large ones. As the population of large
ones declined, that of the small species prospered to the
degree that a larger number of large fish could be
supported, etc. This qualitative mechanism was
described by Volterra through the pair of equations

fish due to "collisions" with larger ones, and X2/~$2
represents the growth rate of the population of the
species of larger fish through the same collisions. In
this model, species 1 would grow exponentially in the
absence of species 2, while species 2 would die out with-
out the availability of 1. Lotka (1910) had independ-
ently investigated these equations in the theory of
autocatalytic chemical reactions, as well as in the
theory of competing species (Lotka, 1920) .

The pair of equations (1.1) has been generalized by
Volterra to the n-species set

n

dN;/dt = te;N, +P, ' Q a,zN, N;.
j=l

(1 2)

Except under certain conditions which we discuss
below, we have

a;,=—0 for all i. (1.4)

We define the steady state of our assembly to be
characterized by that set of populations IN, } for which
dN, /dt=0 for all j.The quantity g; is defined to be the
value of Ã, under this condition so that the defining
equations for Iq, } are

q, (tz~P,+ Q a;,q,]=0. (1.5)

When none of the q's vanish, they satisfy

n

tt,P,+ g a;tq, =0
j=l

1=1,2, ~ ~ ~, e. (1.6)

It is important to note, as was first shown by Volterra,

The first term describes the behavior of ith species in
the absence of others; when k, &0, the ith species is
postulated to grow in an exponential Malthusian
manner with k; as the "rate constant. "When k;(0 and
all other E,=O, the population of the ith species would
die out exponentially. The quadratic terms in Eq.
(1.2) describe the interaction of the ith species with all
the other species. The ith term in the quadratic sum is
proportional to the number of possible binary encoun-
ters Ã;A, between members of the ith species and
members of the jth species. The constants a;; might be
either positive, negative, or zero. A positive a;, tells
us how rapidly encounters between ith and jth species
will lead to an increase in S;; a negative a;; tells how
rapidly these encounters will lead to a decrease in E;,
and a zero a,; simply denotes the fact that ith and
jth species do not interact. If, during a collision between
ith and jth species, jth species are gained, then ith
species are lost. Hence a;, and a, ; have opposite signs.
The positive quantities P, ' have been named "equiva-
lence" numbers by Volterra. During binary collisions
of species z and j, the ratio of 2's lost (or gained) per
unit time to j's gained (or lost) is P, '/P, '. With this
definition, we have

(1.3)
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If we define

qi= n2/X2, q2 ——ni/X, .

fr=»(t) l 2/~» f2 +2(t) 4/~1) (1.12)

and note that

1) cfl l)D
EAT+ IQF

that there is a constant of motion which depends on the
1 q, I for our assembly. ' We define

v;= log SHIIT;/q, or lV, =q, exp (v, ). (1.7)

Clearly, as Ã,—+q, , ~,~0 so that ~, is a measure of the
deviation from equilibrium. The rate equation (1.2) is
easily expressed in terms of the v, [by expressing k;P,
through Eq. (1.6)]:

P;dv, /dt= P I2, ;q,[exp (v, ) —1]. (1.8)

If we multiply both sides of this equation by
q, [exp (v, ) —1]and sum over all j, we find

d/dt g p, q, [exp (v, ) —v,]
2

= g Ii;,q;q, [exp (v;) —1][exp (v, ) —1]=0,

the double sum vanishing because the summand is
antisymmetrical in i and j.Then, we find

G= QP, q, [ v, + exp —(v, )]= const = gG; (1.9a)

FIG. 1. Geometric scheme used to prove the periodicity of
the solution (1.14) of the Volterra equations (l.l). For discussion
of the scheme, see text.

v, = log f, with j=1,2, (1.13)

uiu~= const (1.16)

which is plotted in Fig. 1(a). Figures 1(b) and 1(c)
show the behavior of ui and u2 as functions of fi and f2,
respectively. An important feature of these two figures
is that Ni and n2 attain maximum values which are
identified by M& and M& in these figures. Hence the
relevant region of the hyperbola in Fig. 1(a) is bounded
by points 3 and B.Note that a typical point 0 between
A and 8 corresponds to two va. lues of f2 (a and b) and
to two values of fi, I2' and b' Hence o. n Fig. 1(d) which
relates fi and f2, the point 0 corresponds to the four
points C, D, 8, and F. As one goes from points A to 8
in Fig. 1(a,), one traces out the closed curve in Fig.
1(d) . The end points A and 8 correspond, respectively,
to extrema in f2 and fi on Fig. 1(d) .

Equations (1.1a), (1.1b), and (1.12) imply that the

we see tha, t (1.9a,) is equiva. lent to the statement that,
at any time t,

[fi exp ( —fi)]' '[f2 exp (—f2)]" '= const. (1.14)

The periodic character of this solution can be seen
through the aid of the four diagrams in Fig. 1. If we let

»=Lfi e'.p ( —fi)]'"; ~2= Lf2 exp (—f2))"",
(1 15)

then (1.14) becomes the equation of a, hyperbola

so that G is our desired constant of motion. Every
individual term in G is positive since in case (a) v, )0
implies exp (v, ) )v, and, in case (b) v, (0, —v,)0, and
the exponential is positive whether v, is positive or
negative. Hence we have G)0. Since g p, q; is con-
stant, one also finds that

Aj ki) a2= —kg,

~1P1 I212 I121 l12P2.

(1.10a)

(1.10b)

Go= —g P,q;[1+v,—exp (v,)]= const. (1.9b)

The constancy of G in the case of two competing
species can be used to show that they vary periodically
in the manner described above. Equations (1.1) are
equivalent to (1.2) when 22= 2 if one sets

0—
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1'IG. 2. Variation of f1
with respect to f2 for
various values of the
parameters and initial
values f1(0) and f2(0).
(a) (o.1/cv2) = —with
the values of f1(0) and
f2(0):, 0.2 and 0.8;—-, 2.0 and 0.$; ~ ~ ~

0.
n2) =1 with the values
of fi(0) and f2(0): —,
0.2 and 0.8; —-, 0.5 and
2.0; ~ ~ ~ 1.0 and 0.8.
(c) (n1/o. 2) =2 with the
values of f1(0) and
f, (0): —,0.2 and 0.8;
--, 0.2 and 2.0 ~ ~ ~ 2.0
and 0.5.

0
Let us now restrict ourselves to the stable case of physical

interest with all q;) 0.
.5 I 15 2
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Hence the time averages of the populations of our n
species satisfy the same equations as the equilibrium
values LEq. (1.5)j so that

{}'N]]=q; i=1, 2, ~ ~ ~ n (1.18)

Time averages of other functions of E; are derived in

Appendix A. In particular, we show that for two-
species systems

where

{}NiN2]} =qiq2i

Pl{jyi )/qi=p2{}$2//q2 ~2

(1 19)

(1.20)

y;=E;—q;, i=1 2 (1.21)

and 02 is a constant. For {}y,i']], the expressions similar
to (1.20) exist. It is further shown that if we know

{})Vi"j], we can calculate {tiV2"]jand {}Nii'N2i'j]. In addition
to the time averages of polynomials of N& and E2, time
averages of polynomials of ej and ~& and their time
derivatives are also calculated. In particular, it has
been shown L(A23) and (A24) ] that

ii12/pl {}fili 2p/{t.2/2]j

= lt o' ll/{b '1}.

(1 22)

(1.23)

8p/Bt+ P 8 (pv;) /Bn, = 0 (1.24)

Since, from (1.8),

(1.24) becomes
Bid;/a~, =0, (1.25)

Dp/Di= (Bp/Bt)+ g 8, (cjp/Bv;) =0 —(1.26)

These equations can be used to calculate a»/P&, one of
the "rate constants" in (1.2), if the time-dependent
variation of Ni(t) and N2(t) is known. The latter,
presumably, can be measured experimentally.

We have also derived the equations which satisfy the
time averages of various functions of S; in systems of
many species. The two-species averages given above are
consistent with these equations.

The fact that G as given by (1.9a) is a sum of
individual terms, each relating to a separate species, is
of considerable importance. It allows a natural specifica-
tion of the "components" of the system in the sense
usual in statistical mechanics. This was recognized by
Kerner (1957), who constructed a statistical mechanics
of the Volterra system. He constructed a Gibbs'
ensemble of the Volterra systems such that all systems
were controlled by the dynamical equation, (1.2), and
such that each system represented one of the possible
sets of initial values of {n,} consistent with the constant,
G. The state of each member of the ensemble was
represented by a point in the phase space ~& ~ .v„; that
of the ensemble, by the collection of phase points. As
the ensemble evolves in time, the collection of points
moves in the phase space. If p(vi. ~ v„) denotes the
density of phase points at (vi ~ ~ v„) in the phase space,
the equation of continuity is

which is the Liouville's theorem of the conservation of
density in phase space.

If, in addition, one assumes (a) that in the ensemble
we contemplate all possible copies of a system com-
patible with whatever information we have about it
(e.g. , G) and weigh each copy equally, and (b) that
time averages over a single system are the same as the
averages over a suitable ensemble (ergodic theorem),
then one can construct a statistical mechanics of the
system. This is exactly what Kerner assumed.

Suppose our knowledge about the system is limited
only to the initial value of G, G(0) . Then we can define a
microcanonical ensemble such that the ensemble
average E{f} of any function f(v&, ~ ~ ~, v„) of phase
coordinates is

where
E{f}=fpfd /f. d, (1.27)

(1.29)
(0&

where ds is an element of area on a surface of constant
G, the surface integral extends over the surface G=GO,
and

.V'G= Q (BG/Bv, ) ii;, (1.30)

where 2; is a unit vector in the v; direction. In Appendix
8, using (1.29), we have calculated the microcanonical
averages of va, rious functions of .V;. In particular, we
show that these averages are

E{N,} =q, ,

E{iV,iV, } =q, q, ,

(1.31a)

(1.31b)

(1.31c)

(1.31d)

where 02 and 0& a,re constants. Expressions similar to
(1.31c) can be derived for E{y,"}, p an integer. In
addition we show that if E{N,"} is known for alii and

p, E(.'Vp'iV2"' ~ N„»} can be calculated. We further
show that if we assert that

E{Ã~~iV ' . N»}=E{N~ }E[iV~
} E{N»}

(1.32)

then all the microcanonical ensemble averages can be
expressed in terms of q, , P, , and E{N,'},and

E{r'"}= (p —1) (~/&') {E{y' '}+q'E{X' '}l. (133)
Thus all the averages of polynomials in E; can be
expressed in terms of q;, P, , and 0~. In Sec. 4 we will
determine the conditions under which (1.32) is true.

To study the behavior of a part, or component, con-

p = pob {6—G(0) }, (1.28)

the integrals extend over all the phase space, and po is
an unimportant normalizing factor.

Using a well known trick (Khinchin, 1959) we find
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sisting of, say, only v of the total e species, Kerner
(1957) assumes that the phase points corresponding to
these components are distributed according to the law

exp (—G„/e)

f exp (—G„/e) dr„
(1.34)

which defines the Gibbs' canonical ensemble. The
canonical average (f) of any function f is

(f)=ffp d ' (1.35)

we have

(f~(y~)f2(y2) " f-(y-) ) = (ft(yt) ) (f2(y2) ) "(f-(y-) ).
(1.36)

In Appendix C we have derived the expressions for
various functions of S;, v;, and their time derivatives.
In particular, we show that

(y, ) =0, i.e., (N;) = q, , (1.37)

equal to the time average and the microcanonical
average. Furthermore, we have

(y'') = eq~/t3'

(1.34), e is a constant characterizing the dis-
tribution. Because of the decomposibility of G, into its
components, i.e.,

G= QG;,

saturate and not continue to grow indefinitely. This
point was first made by the Belgian mathematician,
Verhulst (1845), when he was asked if the population
of Belgium would grow exponentially in the manner
proposed by Malthus. The Verhulst population growth
equation (which was rediscovered by Pearl and Reed,
1920) is

dN/dt = klan(0 N) —/0, (1.40)

0 being the saturation level. If such a term is introduced
into (1.2), the resulting set of equations is

dN, 0,——,'[1+ sgn k, ]N,'=kN, ' ' ' '+P, 'N, as,N;.
dt 0,. 1

(1.41)

The influence of such saturation terms is to damp out
fluctuations in the population of species j. However,
the time scale may be so long for that damping effect
that an enormous number of oscillations may occur
during the damping relaxation time. In Sec. 3 we will
retain this term only when it is necessary to keep a
population from exploding.

In the steady state, the populations of the various
species {q,I are given by

0 —-'l1 s nk

e,. 1

Hence, in terms of ~, , we have

P,v, = —-', k, [1+ sgn k, ](q;/0, )
=q'(y'v') (1.38) X [exp (v, ) —1]Pt+ g a, ,q, [exp (v, ) —1]. (1.43)

(y'") = (e/P*) (P—1)[(y'" ')+q. (y'" ')] (139)
Equation (1.38) is exactly the same as for the micro-
canonical ensemble if we identify e with 02 [Eq.
(1.31c)] of the microca, nonical ensemble. All other
averages are also the same, provided we a.ssume (1.36)
to be true also for the microcanonical ensemble. This
can be true for the microcanonical ensemble, but need
not be. The validity of (1.36) enables us to describe all
the averages in terms of a single parameter O. If it is
not valid, we need a number of parameters, one for
each of the averages of l"tt,', S,', ~ ~ ~ . Thus it is impor-
tant for us to test the validity of the canonical ensemble,
i.e., whether canonical ensemble averages are the same
as the corresponding time averages, i.e., whether the
ergodic theorem is true for canonical ensemble averages.
This will be investigated in Sec. 4.

It should be noted that there exists a constant of
motion only because of the special form of the Volterra
equation (1.2). If one adds other terms in (1.2) to
include other aspects of the population, in general there
will not be any constant of motion. For example, one
aspect which is neglected in the Uolterra model (al-
though it was well known to him) is the approach to
saturation of a population which must survive on
li)nited resources. If a species is not preyed upon by
other species, it is expected that its population will

with
-', k, {1+sgn k, I =0 if k, (0

if k;&0.

(1 44)

The quantity G is no longer a constant of the motion
when the Verhulst term is included. Instead it con-
tinually decreases in time until each Ã, with 0;)0
(with nonvanishing Verhulst term) approaches q, ,

and then, since v, = log N, /q, =0, dG/dt +0. Hence we-
conclude that lV, , for all those species with k, &0,
approaches q, asymptotically, and for those species
with k, (0, Ã, is bounded.

When one or more of the q s has the nonphysical
characteristic of being negative, the definition (1.7)
of n, is no longer appropriate. Instead, we define ~,

' by

where
.V, =q, s, exp (v, '),

s,.= 1 if q&0
= —1 if q(0

(1.45a)

(1.45b)

If we follow the idea, s used in the derivation of (1.9),
we find that

dG/dt= —-', P P,k, (1+ sgn k, ) (qP/0, ) [exp (v, ) —1]'(0
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'lnd
G'= g q, s,P, [exp (v, ') —s,v, ']= P G, '. (1.46)

After some algebraic manipulation, we find that

dG'/dt= ——,
' g P,k, (1+ sgn 1~;) (qP/0, )

days, in using the method of least squares to fit observa-
tional data (Davis, 1941).

Generally one might consider arbitrary saturation
inducing functions G(iV/0) with the property

G(x)~0 as x~1
X I exp (~, '3 —~,. l'(0 ( 1.47')

and which lead to the differential equation
If the Verhulst term is absent for all the species, we
have dG'/dt=O, i.e., G' is a constant of motion. With
this new definition (1.45a) of G, it can be shown (see
Sec. 3) that if one or more q, 's are negative, at least
one of the species with q, negative will eventually
vanish.

2. A PRIMITIVE STATISTICAL MODEL OF
POPULATION GROWTH

Most of this paper is concerned with statistical
aspects of the population growth of individual species
and of the correlations between population variation of
different species. Ke start our presentation of this
topic with a simple stochastic model.

Consider the Verhulst equation for the population
growth of a single species with saturation level 8,

LV/dt = kiV(0 —cV) /0. (2.1a)

The solution of this equation is

with
(2.1c)

.It is well known that the time variation of the popula-
tion of many countries can be fitted quite well by Eq.
(2.1) [see, for example, Pearl (1924) and Montroll
(1968)].An excellent guide to the literature of popula-
tion growth and its theory has been given by Glass
(1967). The Malthusian exponentiation of population
growth is just the 0—+~ limit of (2.1a):

d!V/dt=«A or V(t) =1K(0) exp (kt). (2.1d)

There are differential equations besides (2.1a) which
lead to population saturation. One is the equation of
("ompertz (1825)

d!V/dt = k!V log .V/0, 0(."V—&0, (2.2a)

which was invented for the investigation of mortality
rates rather than population growth. lt was, however,
used for fitting growth statistics. Equa, tion (2.2a)
implies that

log log [.V(t)/0] —log log PV(0)/0]= kt—
;l,nd, therefore, that

JV (t) =0 exp I e "'[log E(0)/0]} (2.2b)

which approaches the saturation level 0 as t—+~. The
(romper tz form apparently became unfashionable
because of computational difficulties, in precomputer

dX/dt =«NG(1V/0) . (2.3)

Often G(x) —+1 as x~O as in the Verhulst case in which
G(x) =1—x.

Now let us suppose that our species of interest is not
only influenced by other specific species of the set of e,
but. also by species, say bacteria, (if the n species are
larger a,nirnals) and other parasites, plant life which
varies in intensity from season to season, and un-
specified migrating species, etc., which affect the
population of our n species in a random way. Then our
basic equations for population growth might be con-
sidered to be of the form

dE; A;' =k, iV,G —' +V, IU, (t)+P; 'g a, ;!V,}, (2.4)

where G(x) is a saturation-inducing term and U;(t)
represents random unspecified influences. When the
number of specified related species, m, is large and each
species interacts with a fairly large number of others,
one would expect rr, q's of both signs to appear in (2.4)
for most j. Since the population of each of the species
ÃI, iV~, ~ ~ ~ varies with the time when each is influenced
by random unspecified species, the sum in (2.4) might
also be considered to be a random function of time.
The combination of U, (t) and the sum might then be
considered as a random function of time, F,(t). This
consideration would lead to the species being coupled
in only a random way. Since only terms with index j
will appear in the resulting equation, we suppress the

j in the following, and develop the consequences of
postulating F,(t) to be a random function. Then (2.4)
becomes

d V/dt= «.rVG(.V/0)+.VF(t). (2.5)

We a, iso a,ssume that the average value of F(t) vanishes,
i.e.)

(2.6)

As is shown at the end of this section, nothing is
basically changed when this is not so. The Fokker-
Planck equation for this process follows from the
standar d hypothesis made in the theory of Brownian
motion and random processes that

It may be noted that (2.5) also represents the growth
of a species (in the absence of other species) in a random
environment, or equivalently the growth when growth
coefficient is k+F(t), where « is the average growth
coefficient.
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V= log A'/0, (2.8)

this being more physically meaningful. Thus our
basic equation for deriving the Fokker-Planck equa-
tion is

(2 9)dV/(tt=kG(exp (V) )+F(t).
In a short. time 5t, the variation in V is

Instead of investigating the Fokker —Planck equa-
tion for the variable S, we will investigate that for the
variable V defined by

malizing constant,

P=Po exp (2U/o')

=Io exp 217 G(exp (V) ) dV . (2.19)
0 J

Gompertz: P =Po exp ( —k V'/o'),

Verhulst: P=Po exp {2k[V—exp (V)]/o'}.

(2.19')

In the Gompertz and Verhulst cases, this distribution
becomes, respectively,

6V= kG(exp (V) )bt+ F(t,) dt, +O(at)' (2.10. ) (2 19//)

Then, if (2.6) is valid, we find

A = lim (AV)/At =kG(exp ( V) ), (2.11)

while

((b V)') =k'[G(exp (V) )]'(At)'

Equa. tion (2.19") wa. s first derived by Leigh (1969).
Leigh also derived the special form of the Fokker-
Planck equation (2.15) which is appropriate for the
Verhulst case.

The normalization constants are easily obtained for
the two special cases (2.19') and (2.19"). The dis-
tribution functions in terms of the population variable
al e

(F(tg) E (t2) )dt's dt2+O(ht)'. (2.1 ) Gom ertz. P(iver ~) (k/2~o2) 1/2ilr —1

If the classical Brownian motion postulate (2.7) is
made, then

8= lim ((AV)')/At=o'. (2.13)

If one assumes that F(t) is generated by a Gaussian
random process, the standard form for the I'okker-
Planck equation for the probability that V(t) has a
value V at time t is (Wang and Uhlenbeck, 1930)

BP/Bt = —(B/BV) {AP}+-'(B'/BV') {BP}. (2.14)

When A is given by (2.11), this becomes

P(U, t) =4(V, t) exp ko '
0

Then we find

G(exp (V)) dV

(2.21)

&& exp {—k(log Pr/e]) /2o~}, (2.20a)

Verhulst: P(A, ~) =[BI'(2ko ')] '

X (2kN/Oo') '""exp ( —2Ek/go') (2.20b)

where I'(x) is the classical gamma function.
An alternative form of the Fokker. —Planck equation

of our process, (2.15), is obtained by letting

—{[BG(exp (V) )/BU]+ko '[G(exp (V) )]'}+
(2.22)

It may be noted that the Fokker —Planck equation
for the variable E derived by using (2.5) when trans-
formed into the variable U is different from (2.15).

The steady state distribution function for this case
is obtained by setting BP/Bt=0 and letting

This is to be compared with the Schrodinger equation

hi%', = (P/2m) +„—U(x) + (2.23a)

BP/Bt= k(B/BV) —{PG(exp (V) )}+-,'o'(B'P/BV').
(2/k)+, =o'k 'Ifvv

(2.15)

G(exp (V)) dV with dU/dV=kG(exp (V)).

(2.16)

Then (2.15) becomes

(B/BU) {—P(BU/BV)+' o'(BP/BU) }=0 (—2.17)

from which we see that

(B/BV) {exp (2V/o') (B/BV) [P exp (—2V/o')]} =0.

(2.18)

The solution of this equation is, with I'o being a nor-

and the Bloch equation in which —it/5 is replaced by
P = 1/kT (which is used in statistical mechanics):

+s = (ti'/2m) 4„U(x)4.— (2.23b)

If, in the Bloch equation, we choose the mass to be ~

and identify P with —,kt, 5' with o'/k, and U(x) with

W(V) —=ko. '[G(exp (V) )]'+BG(exp (U) )/BV,

(2.23c)

it has the same form as our basic equation (2.22) . Of
course, there is no connection between the physical
significance of the two equations. However, there
is a mathematical convenience in their similarity
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Vk'"o. '=$ (2.26)

Then/�

( V), in terms of $, is an eigenfunction of Hermite s
equation which is familiar in the theory of the harmonic
oscillator:

dQ/dP+ (li —P) $=0. (2.27)

Since our probability distribution P(U, t) must vanish
as V~&~, this is also a property of P(v). The
appropriate characteristic values and normalized
characteristic functions of (2.27) are (Titchma, rsh,
1937)

because the literature on the Schrodinger and Bloch
equations is immediately available for our problem.

We begin our investigation of the statistical develop-
ment of an initial population distribution by considering
the Gompertz case G(x) = —log x, or G(exp (V))=
—V. Then (2.22) becomes

(2/k) %r ——o'k '4'vv —
I
—1+ko-'V'}4' (2.24)

which is essentially the Bloch equation for a harmonic
oscillator. Let

4(v, t) =P(v) exp {——', (X—1)kt} (2.25)
and

combining (2.21), (2.29), and (2.31) gives

P(V t) = (k/pro')'" exp (—kV'/o')

+ P c„P„($)exp (—rrkt —kV'o '). (2.32)
n=l

The c„s for e&1 depend on the initial conditions while
the first (time-independent term), which gives the
equilibrium distribution, is independent of the initial
distribution and is in agreement with (2.19 ).

There is an alternative form for P(V, t) which
contains P(V, 0) explicitly, instead of the c s. First
suppose that

P(V, 0) =8(V—Vp) with fo Vo—=k'"/o. (2.33)

Then, from (2.30b) and (2.26), we have

c„=(k"'/o) P„(&o) exp (Vo'k/2o') (2.34)

and, from (2.32),
Pl/2 (V 2 V2)k

P(V, Vo, t) = —exp
0 20'

X =2ri+1, (2.28a) X g P ($)P ($o)[exp (—kt) j". (2.35)
n=o

ed by

(2 28 )
Z 4' (k)4' ($0)~"

Using Mehler's formula, for the sum (Titchmarsh ].937),
the H„($) being the Hermite polynomials defin

so that

Hp ——1, H, =2); Hp 4P, ——H3 = 8P—12$; etc.

(2.28d)

The solution of (2.27) is a linear combination of
the f„'s:

'fr (V, t) = g c„P„($)exp (—rrkt),
n=o

(2.29)

where the c„'s are to be obtained from the initial (t=0)
distribution function P(V, 0) by employing the
orthogonality of the lt„'s. When 3=0, 4'(V, 0) can be
expressed in terms of P(V, 0) using (2.21) and (2.26):

2—ko' (t—h~) 'i= [m (1—a') ]—'~' exp
I

(2.36)
1—n' )

we find that an initial delta function distribution
develops according to

k 1/2

P(V, Vp, t) =
'Ll —e..p (—2ki) ])

[V—Vo exp ( —kt) ]'k1
X exp— (2.37)o'[1 exp (——2kt)] f

'

An arbitrary initial distribution develops according to

+(V, 0) =P(V, 0) exp (kV'/2o')

=P(V, O) exp (~P). (2.30a)

P(U, t) = P( V Vp' 3) P( Vp 0) dvp. (2.38)

Hence, we have

c„= „ I' V, 0 exp ~ d 2.30b

and, in particular,

The first few moments of (JV/0) are easily found from
the distribution function (2.37) when X is known to
have the value .Vo when t=0. The calculation of

((IV/8)'") = (exp (2liV) ) (2.39)

using (2.37) as the weight function leads to easily
carried out Gaussian integrals. One finds that

c =~-I~4
0

since P(V, 0) must be normalized to unity. Then,

P(V, 0)k'~ a ' dV=k'r /orr'r (2.31) ((~/0), x) (l {2V ( k()

+X(o'/k)[1 —exp (—2k/)]}) (2.40)
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which implies that easily solved by using Fourier transforms. Define

(N/0)= exp {V() exp (—kt)+(o2/4k) [1—exp (—2kt)]} p(t, X) by

=(tp/tt)t'* e'&exp (( '/4tt)(t —exp (—22t)]), p(t V) =(2 ) "'f exp (t1V) 1(&t&) &21, (221e)

(2.41)
while

((N—N) ')/(N) '
t&(t, 2) =(2 ) "'f exp ( (2V)P—(t, V) 2V.

= —1+ exp {(o'/2k) [1—exp (—2kt)]}. (2.42)

The next special case which we consider is the
Verhulst case with

alld
dp/dt+ (iB.+-'a'X') p=0

(2.51b)

(2.52)

G(x) =1—x. (2.43) p(t, X) =p(0, 'A) exp [—(iB.+~ao9.') t7 (2.53)

The basic equations (2.21) and (2.22) then become

P(V, t) =4'(V, t) exp {—ko '[1+V—exp (V)]}

so that, from (2.51),

P(t, V) =(22r) ' P(0, V')

and X exp [ il), (kt—V+ V—') ——',tr9.2t]dk dV'

(2/k)42 =a'k-'0'vv

—{—exp (V)+ko '[1—exp (V) 7'}+. (2.44b)
= (2t2ra') "' P(0, V')

With a few trivial definitions, we can put this equation
into the same form as the Bloch equation for a diatomic
molecule whose atoms interact according to the Morse
potential.

We note from (2.23c) and (2.44b) that P(0, V') =t)(V' —V()), (2.55a)

X exp [—(V—V' kt)'/2t—a'] d V'. (2.54)

In the case in which the population is precisely To
at time t=O, we have

where

fV(V) =ko. '[1—exp (V)72—exp (V)

=A[exp (2x) —2 exp (x)]+ko. ', (2.45)

where
V' —Vo= log (N'/No), (2.55b)

N'/N() ——exp ( U' —V()) . (2.55c)

ko—2(1+lo2k —1) 2 (2.47)

If we introduce a new function 4 by

4(V, t) =C exp {——',k(ko. '+E) t} (2.48)

then the equation for 4 is

(o'/k) C„+{L~'—A[exp (2x) —2 exp (x)]}C=0 (2.49)

which is just the Schrodinger equation for a diatomic
molecule with a Morse potential when the reduced
mass is taken to be ~, and 6' is again identified with
o'/k. Generally our x is replaced by —x in studying
diatomic molecules. Mathematically this difference is
of no importance. We seek solutions of (2.49) such
that

2tt (x) po as x—p& tc .
I,et us examine several regimes in the population

growth process. First consider the Malthusian regime
for which 8—pa() . When G(z) —+1 as x—&0, which is the
case for the Verhulst but not for the Gompertz model,
the basic equation (2.15) becomes

V—V() ——kt or N/N() exp (kt) . ——(2.57)

The probability that N lies between N and N+dN
at time t, generally, is

P(t, N) dN

dN exp {—(log [(N/N()) exp (—kt)])'/2to'}
N (2t)ro') 2/2

0(N( ~. (2.58)

The first two moments of this distribution are

/V=N() exp (k+-', o') t, (2.59a)

The probability that U lies between V and V+d V is

exp [—( V—V() kt) '/2to']d —U
P(t, U)dV=

2t2ro' '/'

—t2() (U( tx), (2.56)

so that, as o-~0, V follows the Malthusian exponential
trajectory

Pt = —kPv+ ',o'Pvv-(2.50) ((N —2V) 2)/tV2= —1+ exp (ta') . (2.59b)

in the Malthusian limit independent of the detailed The next regime we consider is that in which V is
form of G(x), provided that G(0) =1.This equation is small. This corresponds to a population which deviates
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only slightly from sa, turation, i.e., N/0~1 so that

V= log (N/0) = log [1+(N/~ —1)] (N/8) —10.
(2.60)

At the same time that we let V—+0, we work in the
i eglme

so that
k/o2~ ~ or o'/k~0

vt = Vk'"/o. (2.61)

is finite. Under these conditions, since we are restricting
ourselves to examples for which G(1) =0, we find

G(exp ( U) )=G(1+[exp (V) —1])= VG'(1) +0(V'),

(2.62a)
V

2ko. ' G(exp (V) ) dV
0

=ko 'V'G(1)+ko '0(v')~ —n~' (2 62b)

U~e have defined the parameter n as

n = —G'(1) . (2.63)

dG(exp ( V) )/d V—+G'(1),
while

ko. '[G(exp (V) )]'=ko. 'V'[G'(1)]'

(2.65b)

Hence in our regime
+ko '0(V')~n'q' (2.66)

IV( V) = —n+it'n'. (2.67)

In the Verhulst case with G(x) =1—x, we have n=1.
Other sa, turation inducing functions G(x) lead to other
values of n. From (2.22), (2.23c), and (2.67) we find

Now let
(2/k) e,=e„,+ (n —n'g') e. (2.68)

+(n, t) =P(q) exp [—-', k(E—n) t], (2.69a,)

then we have

oi

if we define

|t'„„+(E—n'q') 4 = 0

At+ (~—P)4 =o

X =P- ~n and $ =qn'~'-

(2.69b)

(2.69c)

On this basis, the equilibrium distribution function of
V is (see 2.19)

P(V) = (nk/ircr')"' exp ( —nkV'/0'). (2.64)

The function W(V) defined by (2.23c) and which
appears in our basic rate equation (2.24), is found in
the regime of interest from (2.62a) and

dG(exp (V))/dV= exp (V)G'(1)

+2[exp (V) —1]exp (V)G"(1)+~ ~ ~ . (2.65a)

As V~O, we have

Equations (2.69a)-(2.69c) are essentially the same
as those obtained for the Gompertz model (2.25)—
(2.27). The ideas presented for the investigation of
that case are immediately applicable here. One finds
that if initially the population is 260 so that
V&

——log N&/tl, then

P(V, Vo, t) = (nk/ma'[1 —exp (—2nkt)])'t'

X exp —{[V—Vo exp ( nkt)—]2kn/o'

X[1—exp (2nkt) ]I. (2.70)

If the initial distribution of population is P(vo, t),
then again we have

J'(v, t)= f J (v, v, ;t}v(v„o) uv, .

7Ve can summarize our results for the two regimes:

(a) 0-+~,
(b) V~O and o'/k —+0 such that (Uok 't') = const,

by stating that, as long as G(0) =1 (as is the case for
the Verhulst model), (i) the population distribution
develops according to (2.58) in the Ma, lthus range
(a), and (ii) that when the population is near satura-
tion, it fluctuates according to the distribution function
(2.70) independent of the details of the model. The
only parameter which distinguishes one model from
another is

n = —G'(1)

which has the value 1 for the Verhulst distribution.
The population distribution in other regimes besides

(a) and (b) depends on the detailed behavior of G(x).
We now consider the Verhulst model over all regimes
by returning to Eq (2.49). , which is the Schr6dinger
equation for the Morse potential if one identifies 5'
with o'/k.

The energy levels of a Morse oscillator are known
to be

E„=—2 {1—(k'/A) 't'(e+-,') }' (2.71a)

In terms of our parameters (which are related to ft
and A by (2.23c) and (2.47), it is easy to show that

2k(E+ko. ') =uk(1 —no2k '), m=0, 1, 2& ~ ~ ~ [k/o'],

(2.71b)

where [x] is the integral part of the number x, i.e. , the
largest integer less than or equal to x.

The general solution of (2.44b) is then

[Ico ]

+(V, t) = g c p (x) exp [—ek(t —ito'k —')]
n=0

+ continuous spectra contribution, (2.72a, )

where the function P„(z) is the eth of the orthonormal
wave functions of (2.49). The constants c„must be
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—,'(q —2n —1) =ko ' n, — (2.73c)

n ( —s)' n n!
P„(,) =P, =, (2.73d)

i (q —2n),
' i i!(n—i)!'

1 (q —2n)„
n! I'(g —2n —1)

'

the definition of (a) being

(2.73e)

(a)„=1 if n=o
=a(a+1) ~ ~ ~ (a+n —1) if n) 1. (2.73f)

In particular, we find

Fo(s) =1, 3Io'= {I'(2ko ') } ', (2.74a)

ito($) = {r(2kiT ') } '"(2k' ')"' '

X exp {—ko. '[exp (V) —V]}. (2.74b)

determined from the initial distribution P(V, 0) which
is related to 4( V, 0) by (2.44a) .

An alternative form for our basic equation (2.49) is

C'„+ka '{(8+A) —A[exp (x) —1]'}C=0 (2.72b)

whose normalized solutions are (Trischka and Salwen,
1959)

g (x) =M s't'~~'" '& exp (—s/2)F (s) (2 73a)

in the regime of the discrete spectrum. Here we have

s=q exp (V—Vo) with q=2ka [1+(o /2k)],

(2.73b)

where the function F depends on confluent hypergeomet-
ric functions. We will discuss this in detail elsewhere.
The important characteristic of this expression is that
it decays very rapidly with t so that one does not have
to be very far out of the Malthus range before it is
negligible. In the contribution of the discrete spectrum,
E„ is negative so that it subtracts from ho=, while in
the continuous range' it is positive so that it enhances
ko. '. As t—+ oo (2.76) reduces to the equilibrium
formula (2.19b) .

The above ideas can be summarized by dividing the
population growth process into three regimes. In the
first (the 8—+~ regime), the population grows freely
with no interference. This is analogous to a free particle
which accelerates in a field. In the second regime, the
population has grown to the point where it is affected
by other influences such as other species (and, in the
case of human population growth, by Auctuations in
the economy, by changes in personal attitudes, by
agricultural successes and failures, etc.). In our Morse
type equation, this is analogous to the system falling
into the highest energy bound state of the Morse
potential, then dropping into lower energy states until
it reaches the ground state. In the ground state, the
population fluctuates around its average value with
statistics characterized by the equilibrium distribution
(2.19b). These fluctuations are the analogs of the zero
point Auctuations of a Morse oscillator.

We close this section with a remark about the
hypothesis (2.6) that (F(t) )=0. Suppose that this is
not the case and that (F(t) )= a. Then we can let

Since the 4„(z)'s form an orthonormal set, the
constants c„ in (2.72a) have the form

F(t) =a+SF,
where (8P) =0. On this basis, (2.5) becomes

(2.77R)

00 k[V—exp (V)]c„= P (x)P(V, O) exp — dV,
00 0

(2.75a)

where, in particular, since P(V, O) is normalized to
unity,

co ——(2k/o') 'i"{r (2ko-') } "'. (2.75b)

Hence the 6nal form for our required distribution
function P(V, 0) is

(2ko ')""
P(V, t) = exp {—2ko '[exp (V) —V]}I'(2ko. ')

+ Q c itr (g)
n=l

X exp {k[V—exp (V)]o ' nkt(1 n—o'k ') }—

8'=8 exp (a/k). (2.78b)

If one generalizes the Verhulst saturation inducing
function to

G(z) =1—x" (2.79a)

(v=1 corresponds to Verhulst case), then (2.77b) can
be written as

dN/dt =aN+kNG(N/8) +N8F (2.77b).
The parameters 0 and 0 can usually be changed to put
this equation into the same form that it would have
had if (F)=0. In the Gompertz case, we can write

dN/dt =kN log (N/8') +N8F, (2.78a)

where 0' is now defined to be

+ contribution of the continuous spectrum. (2.76) dN/dt = k'NG(N/8') +N8F (2.79b)

The continuous spectrum contribution is of the form

t
—',k[V—exp (V)]P(F, x) exp

0

X exp (——,'kt[E+ko=']) dP,

8'=8[1+(a/k) ]it" k'= a+k. (2.79c)

This generalization (2.79a) is also equivalent to the
Morse potential since (on the assumption that
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0
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FIG. 4. The graph of an example of a
12-species ecology. If species i either feeds
on species j or is eaten by j, a bond con-
nects points i and j.

(F(t) )=o)

W(V) = —v exp (vV)+k[1—exp (vV) ]'0-' (2.80a)

=A [exp (2vx) —2 exp (vx) ]+ko. ', (2.80b)

where now

x= V—V*, exp (vV*) =1+vo'/2k, (2.80c)

A =ka '(1+-'va'k ')'. (2.80d)

The function C defined by

11 (V, t) =I exp [——2'k(ko2+E)t] (2.81)

leads to

(a2/k)C„+ IE—A[exp (2vx) —2 exp (vx)]}C=0 (2.82)

which is the Schrodinger equation again for a Morse
potential. Indeed, if we replace vx by x and 0'/k by
(vo.)'/k, the analysis from (2.71)—(2.76) is immediately
applicable. n as defined by (2.63) has the value v.

3. EQUILIBRIUM THEORY

We now return to the Volterra equations in their
original form and refrain from replacing the sum in
(2.4) by a random function. A rather detailed analysis
can be made of equilibrium populations Iq, } by setting
tU, =O in the basic equation (1.2). This analysis is
important because, as already shown in Sec. 1, the

equilibrium population of a given species is the long
time average of its population. This conclusion is not
vitiated even by the inclusion of the Verhulst term
[see Eq. (1.41) and the discussion following (1.44)].
Further, the calculation of equilibrium numbers can
be used to develop the criteria for the stability of a
given assembly of interacting species. For example, if
by solving (1.6) we 6nd that one or more of q's are
negative, then the system is unstable. To show this we
use the definition (1.46) for G'. In the absence of the
Verhulst term, G' is a constant of motion, similar to G
for the case of all g's positive. However, it is no longer
true that each G,

' is bounded and positive for, if qj40p
i.e. , s, = —1, G, '~—~ as v,—+—~ (tV,~O). Let q, (0.
If none of the species disappear, i.e., iV s are bounded
away from zero, then each G is bounded and, if so,
then from the argument of Sec. 1

X;=q, for all j. (3 1)

Hence, if only one of the g's is negative, e.g. , qj&0, the
population of species j has to cross zero and we arrive
at a contradiction, This can be resolved only if the jth
species disappears. If there are more than one species
with negative q's, we cannot tell which of the species

gigiki +~12/2+ 1313/3] (3 2)

$2+2k2+ &21/1 +1223/3] =0, (3.3)

f3 [I33k3+13311ti++32/2 ]=0. (3.4)

If one of the species, say q&=—0, vanishes, then the
other equilibrium populations are given immediately
with q3

=p2k2/a32 and q2
=p&k3/a23. Since the only

interesting case is one in which q3 and q2 are nonnegative,
k2 and a3g must have the same sign, as must k3 and a~3.

Hence k2 and k3 must have opposite signs. In view of
the importance of signs, we add another convention
to our graphs. When i feeds on j, we direct an arrow
toward i on the bond connecting the points representing
the species. Then the m=2 little fish —big fish case has
the diagram shown in Fig. 5 (b) . The arrows give the
direction of "material fIow. "

Let us seek a solution of (3.2) —(3.4) for which none
of the qj's vanish. Then the qj factors on the left of each
equation can be dropped. In order for this type of
solution to exist, the determinant of the coefFicients of

FIG. S. Two-species graph. The dotted
line indicates that species 2 feeds off
the large natural reservoir and species
1 feeds only on 2. The arrows indicate
the direction of "mass" flow.

will disappear. The indirect way to deal with this case
is to eliminate one of the species with negative q from
the system and then consider the stability. Most
probably the species whose elimination yields a stable
system will then disappear.

The above result for the disappearance of a species
with negative q is true even in the presence of the
Uerhulst term. This is so because, from (1.47), dG'/dt (0,
i.e., G'(t) &G'(0), and if none of the species disappears,
G' will be bounded and the argument presented will
go through.

For the calculation of equilibrium numbers and the
understanding of their connections with the stability
of a system, it is convenient to associate a graph with
an "ecology" (i.e., a specified set of a,,). We represent
each of the species by a point and each pair of species
which infIuence each other directly by a line or bond
connecting the two species points. An example of such
a graph is given in Fig. 4. At least one of the k, 's must
be positive if the populations of all the species are not
to die out. It is sometimes useful to indicate the connec-
tion of those species with k;&0 to the great nutrient
reservoir (the earth, sun, very small organisms which
are not enumerated, etc.) by a dotted line to the
ground. On this basis the big fish —little fish interaction
graph would be given by Fig. 5 (a) .

We start our systematic discussion of equilibrium
values of species populations by examining the case of
three species. Then Eq. (1.6) has the form
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the q, 's must not vanish. That determinant is

0 G]g Gy3

1321 0 1328 tt121323t831+ ttlstt32t321

lr

tt8 I 3

Qtl

I

tl
$88

33&

1

with

psk3(1 q8/ft3) +t—332q2 = o,

k lp1+ 1312q2

k2p2+ 1221ql+ tt23q8 0)

(3.6a)

(3.6b)

(3.6c)

a32(0, aj2&0, klpl&0 and k2p2&0, ksp3) 0.

(3.7)
YVe then have the equilibrium population

q2 =klpl/1821) 0&

q3 03 ( 1 tt32klpl/tt12k3p8),

(3.8a)

(3.8b)

ql (k2p2/tt21) + (t323/1312) 08 ( 1 a82klpl/812k3p3) ~ (3.8C)

If we have

(a32klP, /a12k8P3) & 1, (3.9)

then q3)0. The second term in q~ is also positive while
the first term is negative. The ultimate fate of species
1 then depends on whether or not

(tt23/+12) 03(1 a32klpl/1812k3p3) ) (k2p2/tt 1) . (3.10)

If it is, then species 1 survives. If it is not, then the
equilibrium population of species 1 is negative so that,
from any initial distribution, it will pass zero, the point
of the vanishing of the species in its trajectory toward
the equilibrium point.

The ecology of Fig. 6(c) can be discussed in a similar

Sg 832 0

In view of the antisymmetry of the a;, 's, this deter-
minant vanishes, so that we have the interesting result
(already known to Volterra) that there is no equilib-
rium population distribution between three species
such that the population of all the species is finite and
nonvanishing.

Since in this discussion we postulated that no species
vanished at equilibrium, one way we can avoid having
an equilibrium with a finite population of each species
is to allow at least one to become infinite. When such a
situation arises, one can no longer neglect the Verhulst
term in (1.41) . Let us suppose that species 3 is the only
one for which k; is positive. Then Eq. (3.4) becomes

p3k3 ( 1—q3/83) +tt31qi+ G32q2 =0. (3.5)

Now consider the diagrams of Figs. 6(a), 6(b), and
6(c). Clearly, in Fig. 6(a), species 1 would vanish
because it is eaten by 2 with no source to supply it.
Hence the problem would reduce to a two-species
problem and the discussion below (3.4) would apply.

In Fig. 6(b), a81=1818=0 so that our full set of
equations would be

Pro. 6. Some graphs involving three interacting species.

way. The basic equations for equilibrium are (3.5) and

with

k2p2, +a23q;, =0,

kipl+ ttlsq8 =0,

(3.11a)

(3.11b)

k2p2a31 klplt332) (3 14)

the two species 1 and 2 behave as though they are a
single species and can form an equilibrium system with
3. Under this condition the system is equivalent to a
two-species system.

Qualitatively it is not surprising that the ecology
corresponding to Fig. 6(c) is generally unstable.

Both "1"and "2"nibble on "3"in a manner that is
generally uncorrelated. Let us suppose that the death
rate constant of 1 is smaller than that of 2. In the
absence of 1, the population of 2 and 3 would oscillate.
But now, when the population of both 3 and 2 are both
low in a state such that. 3 would start to recover in the
absence of too many preying 2's, 1 with its smaller time
constant would continue to attack 3 until either 2 or 3
disappeared. If 2 disappeared first, then 1 and 3 would
form an oscillating two-species ecology. If 3 disappears,
then both 1 and 2 would also die out. These implications
come under a beautiful "ecological exclusion principle"
known as Volterra —I otka principle, according to which
two closely similar species will not both indefinitely be
able to occupy essentially the same ecological niche,
but that the slightly more "successful" of the two will
eventually completely supplant the other (Kerner,
1961, and the references therein). The reader might
find it interesting to make an analysis of graph 6(d) .

It can be shown that the determinant of any anti-
symmetrical matrix of an odd order vanishes. This is
related to the facts that the eigenvalues of an anti-
symmetric matrix are purely imaginary and that they
occur in pairs, one being the complex conjugate of the
other. In ihe case of an odd order matrix, the only way
this condition can be satisfied is to have one eigenvalue
zero. Since the determinant of the matrix is the product

k2p2&0; klpl&0; a23) 0 and a») 0. (3.12)

Hence, we find

q8 k2p2/1382) 0 and q3
= klpl/a81. (3.13)

Generally these two equations are inconsistent; hence
the hypothesis that there exists an equilibrium solution
in which no species vanishes is false so that at least one
has to vanish. In the special case
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shown to be

Itl (k2p2a34+k3p3a42+k4p4a23)/Pf A

~
k2p2 k;p3 k4p4

FIG. 7. All the connected graphs involving four interacting
species.

a13 ' ' ' a1,2N

a21 a23 ' ' a2,2N

AO. (3.15)

a2N, 1 a2N, 2 a2N, 3

The determinant of an antisymmetric matrix A is a
perfect square, and, indeed, its square root is an object
called a Pfaffian (Caianiello, 1959; Montroll, 1964)
with

D2N Pf A
~

a12 a13 a14 a1,2N

a23 a24 ~ ~ ~ a2,2N (3.16a)

of all the eigenvalues, it must then vanish. This means
that in every Volterra ecology of an odd number of
species, at least one must eventually die out or that at
least one species would grow indefinitely in the absence
of the Verhulst term. In the latter case, the Verhulst
saturation term would have to be included in the
manner discussed above for the three-species case. We
develop the general theory after we complete our dis-
cussion of the ecology of an even number of species.
We first examine in special cases the necessary condition
for the existence of stable populations in the absence
of a Verhulst term.

When e is even, say, 2N, the necessary condition for
the existence of a set of finite nonvanishing solutions
of (1.6) is

a23 a24 /Pf A, (3.18a)

834

g2 (klpla43+k3p3a14+k4p4a31) /Pf A,

g3 (klpla24+k2p2a41+k4p4a12)/Pf A,

It4= (klpia32+k2p2a13+k3p3a21)/Pf A.

(3.18b)

(3.18c)

(3.18d)

Similar expressions can be derived for the general case
of an even number of species. This will be done later
in this section. All q s can always be expressed as a
ratio of two Pfaffians.

All possible diagrams (without arrows) which involve
four connected species are given in Fig. 7. Equation
(3.17) tells us which of these diagrams corresponds to
the vanishing of one species. In cases (a)-(f), respec-
tively, the Pfaffians, Pf A, are

(a) —ai3a 4

(c)

(e)

a12a34 a13a24

a12a34 a13a24

(b) 0

(d) —a13a24+ a14a23

a12a34 a13a24+ a12a23 ~

(3.19)

Hence, with the exception of case (b), there is some
possibility that there exist appropriate nonvanishing
a;I, such that nonvanishing finite equilibrium popula-
tions exists for all species even in the absence of the
Verhulst terms.

In order for physically reasonable nonvanishing
solutions to exist for the basic equilibrium equation,
all equilibrium populations q; must be nonnegative.
This puts certain restrictions on the ranges of the a, I,'s.
Let us first consider case (a). Then from (3.18), with
a12—=a23= a14=—0, we have

~2N—1,2N

~jp apl 82 ap3p4 p9N —l 4921v

(3.16bl

I71 (k2p2a84+k3p3a42) /a31a24)

$2 (kipla43+ k4p4a31) /a31a24,

q3 =kipi/all and q4
= k2p2/a42.

(3.20a)

(3.20b)

(3.20c)

PI&Pi P8&P4 P'&P3 ' ' and Pl&P3&P'&

(3.16c)

where the summation extends over all permutations of
the integers 1, 2, ~ ~ ~, 2X which satisfy conditions
(3.16c). The signature 8„ is +1 if (pl, p2, ~ ~ ~, p2N) is
an even permutation of the first 2' integers, and —I
if it is an odd permutation. When iV= 2 (four species),
we have

D4 (Pf A) '= (a12a34 a13a24+a——14a23) '. (3.17)

The equilibrium numbers in the case e =4 are easily

4k

4I i3
I

I
I

(i) (ii )

2 4I

32

443
2I

3 4 I

41

I
4I

I' IG. 8. Some of the graphs involving
four interacting species. The graphs
represent some of the interactions ~vith
the nutrient reservoir.

There are a number of diagrams which express the
manner in which graph (a) is applicable. One or more
of our four species can feed on the nutrient reservoir
with a number of possibilities of whether i eats j, or j
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eats i. Some of these possibilities are exhibited in Fig.
8. Consider first case (i) . We ask for a set of conditions
such that each q;&0. Our arrangement of arrows imply

k1&0, k2&0, k3(0, and k4(0

83])0 843&0, and a24) 0.

From these conditions it is clear that q3&0, q4) 0, and
q»0. The stationary population q2 of species 2 can be
positive only if

missing. For example, when E=2, we have

Pf A = (112, 3, 4) =a12(3) 4) —ai, (2, 4)+a14(213)

a12a34 a13a34+ a14a23

as required.
The general set of linear equations (1.6) for equilib-

rium populations II7, } can be solved by Cramer's rule.
After some elementary manipulation, using (3.22),
one Ands

kipia43 & k4p4a13. (3.21) I7, Pf A = ( —1) '+' Q k p

13&0, 843)0) and 024) 0.

The conditions for this system to have an equilibrium
population are

pikia34& k4p4a13, —

kspea24& k2p2a34.

Intuitively one would expect species 4 and 2 to dis-
appear under the conditions of diagram (iii) so that
some I73 would be negative. The characteristics of (iii)
are

Hence once the diagram with the arrow arrangement
(i) is presented to us, an equilibrium population dis-
tribution exists as long as (3.21) is satisfied.

Case (ii) is characterized by

k1(0, k,(0, k,)0, and k4&0,

while

X (j +1,j+2, ~ ~ ~, 2tV, 1, 2, ~ ~, i 1, i+1,—~ ~,j—1),

(3.23)

where the Pfa%an on the right starts with subscripts
j+1 and ends with j—1 with j and i omitted. For
example, when S=3, we have

I71 Pf A k2P2(3)l 4, 5) 6) +k3P3(4) 5, 6) 2) +k4P4(5, 6) 2, 3)

+keps(6, 2, 3, 4) +k,p, (2, 3, 4, 5)
=

k2P2 (3, 4, 5, 6) —
k3P3 (2) 4, 5, 6) + k4P4 (2, 3, 5, 6)

—k P, (2, 3, 4, 6)+kg, (2, 3, 4, 5)

k2P2 k3P3 k4P4 k6P6 k6P6

~23 ~24 ~25 ~26

~34 ~35 ~36

k»0, k, &0, k, &0, k4&0; 845 846

a31&0, a34& 0, u42&0. 856

For these conditions, q4&0. Hence no suitable equilib-
rium conditions with four species exist. As shown in the
beginning of the section, if one of the q s is negative,
the species corresponding to q&0 will disappear. Thus
species 4 will disappear. Since species 2 will then be
isolated, it will also disappear.

The reader can easily work out the conditions for the
existence of positive equilibrium populations for
various other diagrams involving four species.

These ideas can be generalized to the case of 2'
species. For this purpose, the expansion of the Pfaffian
by "line" is useful. The hth "line" is defined as the set
of elements a;I, which have h as one of the subscripts.
In terms of line 1, the expansion of the PfafFian (3.16a)
is

Pf A—= (1, 2, ~ ~, 2N)

2N

(—1)"aIA(2, ~ ~ ~, k —1, 0+1, ~ ~ ~, 2N), (3.22)
A,=2

where (2, ~ ~ -, k —1, k+1, , 2N) represents the
PfaKan of u's with the first subscript starting with 2
and the second ending with 22K, and with subscript k

tt2 Pf A = —
~

kIPI k3P3 k4P4 k6P6 keP6

~13 ~14 d'15 ~16

a34 a36 a36, etc. (3.24)

845 846

Q56

There are two advantages of writing the equilibrium
populations in terms of Pfaffians. First, it is easier to
construct explicit expressions for I tt, } for any number of
species than it would be if we used determinants. Also,
if one knows which a,, s are zero, it is easier to decide
if det A=O, i.e., to see if a set of nonvanishing q .s
exist which are a solution of (1.6) . We now develop the
latter point further and develop a scheme for making a
quick decision to see whether or not Pf A =0.

We are concerned only with interconnected graphs.
There must be some path along which one can go from
any point to any other point. We start our expansion
by choosing a point which is attached to only one other
point, say for species 1, which we postulate to be
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connected only to species 2. Then if we expand Pf A in
terms of line 1, the result would be a» multiplied by a
new PfafFian which we would again reduce by seeking
other loose ends in the diagram which represents our
system. The final unfactorable Pfa%an would have to
be examined to see whether or not it vanishes.

To clarify this procedure, consider the diagram of
Fig. 4. The reader can easily construct the Pfaffian. If
one expands successively by line 2, line 3, line 4, and
line 5, which correspond to loose ends in the figure,
one finds

12 ( a37) a43 (—a59)
~

a6, 10

~12a37a48%59&6,10~11,12+0

a11,12

It is interesting to note that if the doubly connected
ring (10, 11, 12, 8, 7) is cut by setting a», » ——0, the
PfaKan vanishes, while this is not the case when the
cut is made between 10 and 11 since a10,11 does not enter
into the formula.

By inserting a bond between 5 and 6, one can no
longer factor the Pfaffian into a product of a, A,

's. Let us
in this case expand the Pfaffian successively along lines
2, 3, and 4. Then we obtain k, 'p, '+ g a,jqj=0,

j=l
i =1, 2, ~ ~ ~, 275, (3.26a)

should be stable. However, if we introduce two other
species (say 3 and 4) such that they do not interact
with each other but interact with the two species
(7 and 8) of the original eight species, the PfafFlan is
zero and the system of 10 species is unstable.

Let us now consider the general case in which det a,j
vanishes in the absence of the Verhulst term. Through
the introduction of the Verhulst term, we can find the
equilibrium distribution if one exists or determine
which species vanishes if the equilibrium distribution
does not exist.

We first discuss the case of an odd number of species,
say, (273+1), in which only one, namely, species
(272+1), is connected to the nutrient reservoir. Species
(273+1) is the only one which does not depend on any
other. of our selected species for survival. As in the
three-species case, we must include the Verhulst term
in the equation obtained by setting dN2„+1/dt=0 and
~etting S2„+1—=g2~+1. One then finds that

2n

~2n+lp2n+1(1 g2n+1/i2n+1) + p a2n+1, jgj 0y (3 ~ 25)
j=l

where 02„+1 represents the saturation population of
species (275+1) in the absence of all others. The
generalization of (1.6) for i= 1, 2, ~ ' ~, 272 is

2n

Pf A =a12(—a37)a43
~

a56 a59 0 0 0 with

0 a61p 0

a9,10 a'9, 11

a10,11

Iii Pi @Pi+ ia, 2 n1+2itnl+. (3.26b)

Hence if we can determine q2„+1 separately, all the
other equilibrium populations are given by Pfaffians
analogous to (3.24) with the k;P, in (3.24) replaced
by k, 'P, '.

The calculation of q2„+1 is performed by writing
(3.26) in the alternative form

a12 ( a37) a48a11,12$+56a910 a59a6, 10,] 2n+1

kp, = Q ajqj, i= 1, 2, ~ ~ ~, 275, (3.27a)
which will not vanish unless 85689,10=Cg986, 10, a singular
situation.

One can derive the conditions for all q; to be positive
in the above two cases, but of course it requires a little
more effort than it did in our cases with four species.

We should point out that associating a graph with
an ecology and then determining whether the Pfaffian
is zero or not has interesting implications about the
stability of the population when new species are
introduced. To illustrate let us consider a system of
eight species. Let us number them 5, 6, 7, 8, 9, 10, 11,
and 12 and let them be connected as in Fig. 4, with the
exception that 11 and 12 are not connected. Since the
Pfaffian of this population is not zero, in general, this
population is stable. Suppose we introduce two new
species, 1 and 2, with the interactions in the manner
shown in Fig. 4 (i.e., 2 interacts with 1 only, and 1
with 6 only). One can ea, sily see that the Pfaffian is
still not zero and, in general, the system of 10 species

and (3.25) as
2n+1

~2n+1P2n+1 Z a2n+1, jgj
j=1

(3.27b)

f(z) —= det a,;—=
821

(3.29)

g2 +1 1 ~ ~ ~ ~ ~ ~

If we set x equal to zero, deta;j becomes an anti-
symmetrical determinant with an odd number of rows

with the definition

a2n+1, 2n+1= ~2n+1P2n+1/tj2n+1= +. (3 ~ 2g)

The determinant of the coefFicients of qj has the form

a12 ' ' ' ~1,2n+1
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~»2 ' ' ' ~1,2n

f(x) =x
~2 2n

+ const. (3.30)

~2n, » ~2n, 2

However, since f(0) =0, the constant must vanish.
Hence, from (3.29), we have

det a,;=X(Pf A)'= —{k2n+1P2n+1/82n+1I (Pf &)', (3.31)

where Pf A is the Pfa%an of the antisymmetric matrix
of 2e rows and columns.

The final equilibrium population of species (223+1)
is then

q2n+1=—

&»2

0

—kipi

—k2p2

tt2n+1, 1 tt2n+1, 2 tt2n+12n k, 2n+ip2n+1

X82n+1/k2n+Ip2n+1(Pf 4) '

~
klpl k2p2 k3p3 ' ' ' k2n+1p2n+1

G»2 G»3 +»,2n+1

+2n, 2n+1

X82n+1/k2n+1p2n+1 Pf ~. (3.32)

As was mentioned above, once q2„+» is known, it can be
substituted into (3.26b) so that k, 'p are known. Then
from (3.26a), tti, q2, ~ ~ ~, q2„can be determined from
generalizations of (3.24) in which k,P; are replaced
byk p.

When several k; are positive, it can be shown that

g,A= (i+1, i+2, ~ ~ ~, 23, 1, ~ ~ ~, i 1)E, (3.33)—
where

n

E= Q k,P, (j+1,j+2, ~ ~ ~, rt, 1, ~ ~ ~,j—1), (3.34a)
j=»

6= —Q (k,P~/8;) (i+1, i+2, ~ ~ ., rt, 1, ~ ~ ~, i 1)'—
yo(1/8, 81), (3.34b)

and columns which, as we mentioned earlier, vanishes
and we find

f(0) =0.

By expanding the determinant by the bottom row,
we find

where the summation over i extends over all i for which
k, &0. Generally, the saturation levels 0, would be
expected to be much greater than populations which
could be achieved under competitive conditions. Hence
the terms of 0(1/8,:81) can be neglected, compared with
those of order (1/8;) .

In the expression (3.33) for q;, the only quantity
which depends on the Verhulst term is 6, which from
(3.34b) is always negative. Therefore, the sign of tI, as
determined by keeping the Verhulst terms is the same
as in the limit of Verhulst term going to zero. If from
(3.33) and (3.34), we find that all the q's are positive,
then the system will be stable. (Of course, we will need
some Verhulst terms to have a finite value for g's. ) If,
on the other hand, we find that only one of the q's, e.g. ,
q;, is negative, then as argued in the beginning of this
section, the ith species will disappear. If more than one
of the q's are negative, we can not determine directly
which of the species will disappear. The indirect way to
deal with the problem is to eliminate one of the species
with negative q and consider the stability of the
remaining system anew. The species whose elimination
will lead to the stable system will be the one which
will disappear. Since, in general, E is nonzero, one of
the q's, say q;, will be zero, provided the Pfa%an in
(3.33) is zero. In this case one has to examine the
higher order terms and then determine whether q; is
positive or negative. The chances are that the ith
species will survive because the Pfaffian in (3.33) equal
to zero implies that the system without ith species
forms an unstable system.

For an even number of species when det u;j =0, one
can proceed basically in the same fashion as for the
odd number of species. However, to obtain q s, one
must have two species with nonvanishing Verhulst
terms. This can be seen by an equation similar to
(3.29) for an even number of species. If only one
diagonal term is nonzero, det (a,,) is still zero because
the coe%cient of the diagonal term in the expansion
of the determinant is an antisymmetric determinant of
odd order. We may add that we were unable to get an
expression as simple as (3.33) for a general system of
2e species with an arbitrary number of species having
nonzero Verhulst terms.

4. TIME DEPENDENT FLUCTUATIONS
IN POPULATIONS

It was mentioned in the previous section that
systems composed of an odd number of species either
reach an equilibrium set of populations or decay into
systems containing an even number of species. There-
fore, if one wishes to discuss fluctuations, it is su%cient
to investigate the general set of Volterra equations for
an even number of species. We shall consider the time
dependence of the population of various species when
the deviation from equilibrium populations is small.
This case is discussed for two reasons:

(i) Since, experimentally, it is difficult to measure
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k; and a,;, the next best thing one might attempt is to
see how much qualitative information can be derived
about an ecological situation in terms of statistical
properties of the a, s and k s. Kerner (1957, 1959)
has done some elegant work in this direction by applying
the techniques of statistical mechanics to the Volterra
model of competing species. His ideas have been
extended by Goodwin (1963) to a system of interacting
biochemical oscillators and of simultaneously growing
cells ( Goodwin, 1970) and by Cowan (1968) to
the nervous system. A gap in these investigations is the
justification of the application of the techniques of
statistical mechanics to the respective biological
situations. For example, Kerner (1957) (see Sec. 1)
recognized that Volterra's system of difterential
equations admits a Liouville theorem (when log I1V, I

are used as variables) and that there is a constant of
motion. Hence he can define a microcanonical ensemble
such that the time averages over a single system can
be equated to the phase averages over the micro-
canonical ensenible. This last equality (an ergodic
theorem) has been shown to be true only for the
averages of E;. Its general validity, for arbitrary
functions of one or more S;, is not established. Kerner
then proceeds to define a canonical ensemble by intro-
ducing a quantity 0 analogous to the temperature of a
physical system and assumes that micr ocanonical
ensemble averages are the same as the canonical
ensemble averages. The only justification for the
introduction of the canonical ensemble is that it works
in physics and, therefore, with luck, it should work
here also. We know that its justification in physics is
very tricky and that it is true only if certain conditions
are satisfied by the system (Khinchin, 1959). The
study of the time-dependent fluctuations in populations
lets us find conditions, if any, under which certain
techniques of statistical mechanics can be applied to
the system of interacting species, i.e., conditions under
which Kerner's treatment is valid. We will find these
conditions, if any, in this section. A similar analysis
can be made for the system of interacting biochemical
oscillators, the nervous system or growing cells.

(ii) If one is concerned with the stability of an
ecology under various disturbances, this small deviation
regime is sufficient to tell whether a specified perturba-
tion leads to an instability even though the under-
standing of the full development of the instability
follows only by application of the complete nonlinear
equations. This small deviation regime also allows a
comparison of the stability of two systems in the sense
of rarity of explosions and vanishing of species.

Then, , if each 8; is small, (1.2) becomes

(4.2)

If we let

(4 3)

(4 4)

then (4.2) becomes

x;= QC,,x; (4.5a)

ol
x(t) =Cx(t), (4.5b)

where x(t) is a column vector with components x;(t)
and C is an e&(e antisymmetric matrix with C;; as
elements.

It is well known that the characteristic values of an
antisymmetric matrix such as C are purely imaginary
and that they occur in pairs so that, if one is ior&,

another is —ice~. Let A, ~ be the ith element of the /th
characteristic vector (corresponding to the char-
acteristic value Xt) of C, i.e.,

Q CiaAai=&iAi) (4.6)

Let A be the matrix whose elements are A;~ and A~

one whose elements are A~,*. If we normalize the
characteristic vectors properly, we can choose

A~A =I, (4.7a)

where A ~ is the Hermitian conjugate of A, and I is the
identity matrix. Taking the complex conjugate of (4.6)
and using the identity P &*=—'A&, we get

(4.7b)

Thus AI, ~* is the kth element of the characteristic
vector which corresponds to the characteristic value
—P ~. Further, using the identity C;,.= —C... we get

g (A') tI,CI„X((At)——(,. (4 g)

x, (t) = Q a(A, ( exp (tX)), (4 9)

Therefore (A~), t is the ith element of the lth char-
acteristic row vector corresponding to the characteristic
value X~.

The solution of (4.5) can now be written as

We will emphasize only the first reason in detail in
this section and postpone the question of stability to
the next section.

Let us write

where a~ are constants to be determined from the
application of the orthogonality relationship (4.7)
to x,(0), i.e.,

(4.1)
Q x, (0)A;„,*=a . (4.10)
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Substituting (4.10) into (4.9), we get

x, (t) = Q A, tA;t*x;('0) exp (tlat).

This is of course the small deviation from the equilib-
rium version of (1.9b) when t=0. We define R' by

(4.11)
-', Q xt'(0) =-',R'. (4 13)

This equation thus gives the time evolution of the
population near equilibrium. Since qi s are functions
of te, and a... from (4.4) the C,,'s are functions of t'e, ,

P;, and a,;, the parameters describing the growth and
interaction of the various species. Thus, in principle,
A and Xt, and from (4.11) for the given initial values
of N, , x, (t) too can be expressed in terms of k;, P;, and
u, , If the population is far away from the equilibrium,
we have to use a perturbation theory. Such a per-
turbation theory is due to Kryloff and Bogoliuboff
(1947). Its application to two-species cases is described
in Bak (1963) and, for a system of anharmonic oscil-
lators, in Ford (1961) and Ford and Waters (1963).
In this perturbation theory, the expansion parameter
is proportional to x, (0). Thus any statement about
average of any function of E,'s should be true for all the
terms in the perturbation theory involving different
powers of x, (0) . In particular, it should be true if we
calculate IV, using only first order terms, i.e., (4.11).
From (4.11), since 'A, 's are imaginary, we have

{tx'(t)l =o= {I3'(t)1

which is what we should expect since {}N;j]=q,. Also,
K{IV,} and (N, ) both are equal to q, . Therefore, the
ergodic theorem is true for N, . However, from (1.31b),
E{x,x;} and (x,x, ) (i&j) are both zero. If the ergodic
theorem is true in general, {}x,x,$ should also be zero.
But, from (4.11), since x; is real, we have

{}.x;x,j]= {}x,x,*jj

where 3f;j is defined by

x, (t) = Q M,, (t)x;(0), (4.15a)

- i.e.
M;;(t) = P A, iA, i* exp (tlat), (4.15b)

when at t=0, all sets of {x,(0) } (with jWi) which are
consistent with

R'= Q x '(0) = Q xtz(0) —x'(0) (4.16)

are given equal weight. This problem has been solved
by Mazur and Montroll (1960) in the context of vibra-
tions of crystal lattices. When n is large, the probability
distribution of Y(t) is Gaussian (for all zz&1, see
Montroll (1961)):
fLY(t) 7=aLx'(t) I *'(0)]= {L~/(2~) '3'"/«}

X exp {—zz{ x;(t) —M, ,(t) x( 0) ]' /2R'o' } (4.17a)

where

o'= P M '(t) = g M '(t) —M '(t). (4.17b)

We notice from (4.15b) that

The problem posed above is that of finding the
statistics of

Y(t) =x,(t) —M;, (t)x, (0) = P M,,(t)x, (0), (4.14)

p A, tAAt*A, „*A, [{'exp {(l~t+)„*)t})xi(0)x,(0). 2 M'z'(t) = Z A'tAzt*A* Az *exp L(&t+& )t].
mqk l

Since X&'s are imaginary, we find

l,m

(4.18)

{tx,x,)= Q A, tAAt*A;t*AotxA(0)x, (0)
A:ttq

= pA, ,A, t*~ pAAtx, (0)
~

Thus the ergodic theorem for arbitrary function of x, 's
for an arbitrary system of interacting species is not
valid. We will now find the conditions under which not
only {}x,x,)=0, but time averages of all other functions
of x s are equal to ensemble averages.

Let us first find the probability distribution of x, (t),
for a fixed i, as a function of time when (a) it is known
at time t=0 that x; has the value x;(0), and (b) equal
probability is given to every initial distribution of
other x, 's which are consistent with

= Q A;iA;i* ——1
l

(4.19)

and, therefore, from (4.17b),

o'= 1—M,,2(t) . (4.20)

It remains to consider M;, (t) . Since the characteristic
values 'A =ice and —ko both appear, one can write

Since the summation over m extends over all char-
acteristic values {li }, we see that from (4.7) we can
replace X by —P if, at the same time, we replace A;
by A; * and A, * by A; . Hence, in view of (4.7),
we have

g M;t2(t) = P A, iA;i*A,„A,„*exp { t(Xt —X„))
j, l,m

Go= P P;$&V, (0) q, ]'/2q, = ', P x'(0—) = const. - N

M, ;(t) =2 g A; A; * cos toz, N = —,'zt. (4.21)

(4.12) If all the co are distinct, M;, (t) is almost periodic so
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that, if it achieves any value once, it will achieve it an
infinite number of times.

In view of the normalization of the 2;, (4.7a), each
A; is 0(N 't') so that

~
A, ~'=0(N '). Since M;, (0) =

1, 0'(0) =0.'Now let us write (4.21) as

M;;(t) = (2/N) Q i
A; Ni" ~' cos ted, . (4.22)

If at a given time the various cosines are completely
out of phase so that there are roughly as many positive
as negative ones, one might consider the sum to be that
of N random independent variables, each 0(1). Then
by the central limit theorem for the sum of random
independent variables the expected value of the sum
would be 0(N'! ) so that M;, (t}=0(N ' ) and
as the number of interacting species becomes large,
M, ,(t) would become small so that the term M, ;(t)x, (0)
could be neglected in (4.17a). In that case, V(t)
would have a Gaussian distribution which is inde-
pendent of x,(0) . This is in accordance with Kerner's
distribution (1957) for an ecology which suffers
only small displacements from equilibrium.

The above heuristic remarks can be put on a more
rigorous basis by phrasing the discussion of M,;(t) in a
somewhat different manner. Since M;, (t) is an almost
periodic function, we know from the work of Wintner
(1933) that we can rigorously find the fraction of time
spent by M;, (t) within a given interval $ and f+d(
Since the qualitative behavior of M;, (t) is the same as
that of its average over i, we will, for mathematical
convenience, deal with this average

n

p))) (t) =n 'Q M-, , (t)
i=1

N
=N ' g coscd t,

a=1

!V=n/2, (4.23)

where the last step follows from (4.21). It is known
that if we assume co to be linearly independent, it is
possible to define a distribution function P($) for p)) (t)
defined by the following equation:

f($)d$= lim meas {$(p))i(t)& j+d$; T}/T, (4.24)

P(2) —(2 )
—f e..p ( —22S)[J (S)]edS (422)

We will evaluate this quantity when $&bN't', where
b is some preassigned number 0(1) and show that

where {((p)))(t)&$+d$; T} denotes the set of all those
points t for which both the inequalities $& p))i(t) ((+de,
t& T are satisfied, and meas {$(p))).(t) &f+d$; T} is the
Lebesgue measure of this set. In more physical terms
P($) measures the probability density of finding p with
the value j. It is shown in Wintner (1933) that for
p~(t) as given above, the function P($} is given by

p($) = (22rblV"') ' exp —ig ——dgQ2

= (2rlV) "' exp ( P/N) . — (4.26)

We next try to find the probability that
~

p)) (t)
~

has a
value greater than b.V'f'. This is given by

Prob {~
pv (t)

~

)b!V'"}

bN (2=1—(2rN) '" exp ——d$S

exp (—rt') dit=1 —E&(b), (4.27)

where E2(b) is the standard error integral. For small
values of b, this expression approaches zero. For
example, for b = 2, the above probability is 0.005. Since
the region in which the integration is carried out is
confined within the region ~bX' ', our asymptotic
probability density function is accurate, and without
investigating regions of the order of iV, we can say that
p~(t) is almost always confined to the region &bN"',
b any preassigned small number. Hence p&(t) is almost
always confined to the noise region and in the limit
n,—+~, p)) (t) —+0. In the limit n—+~ the distribution
function of the ith species about its equilibrium value
q; is then Lsee (4.17a), (4.13), (4.3), and (4.1)]
p(N, ) = (27';/Iq;) ')' exp [ P; (N; -q;) '/2Iq~]—(4.28)—

since the noise band becomes vanishingly small. The
parameter I=R'/n has the value given in (4.13). When
written in terms of populations, it has the form

I=n ' Q x22(0)

=n ' Q (P,/q, ) L!V,(0) —q;]'=2GO/n, (4.29)

where (Go/n) is our constant of motion per species

su%.cient information can be extracted from this
region for our purpose.

We know we can write Jo(5) as

Io(5) = {1—-'(5/2) '+o(5') } e. p ( —5'/4) (4.25')

Hence, on making this expansion, we can write

OQ g2
P(&) = (22r) ' exp (—i]5) exp — —N

—QO 4

X {1—q N( ~5)'+ higher order terms) d5. (4.25")

We write )=bN)"

St
=$5= SbN" '

Kith this substitution we have

P($) =(22r) '(bN"') 'f exp (—iit) exp ( —SP/4b')

X {1—,'1V(rt/b!V—"')4+ ~ ~ ~ } de

Hence for large Ã, b finite, we get
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o'=nl'+n22+ +n '
—[nlM11(t) + ~ ~ ~ +n„M 1(t)]'

—[nlM1 (t)+ ~ ~ ~ +n„M „(t)]'. (4.35)

[see Eq. (4.12)] in the small vibration regime. This is we see that
just the canonical distribution conjectured by Kerner
(1957) for this regime.

These results can be generalized to a selected set of
m out of e species where m((e. The joint distribution
function of m species is to be found from the joint dis-
tribution of Vl(t), I"2(t), ~ ~ ~, I' (t), where

—~ ~ ~ —Ml (t)x„(0)=
j+1,2, ",m

M, ;(t)x, (0),

Fl(t) =xl(t) M11 (t)xl(0) M12 (t) x2(0) The joint distribution function of Vl, V2, ~ ~ ~, V is
obtained by taking the Fourier transform of the
characteristic function

7'2(t) =x2(t) —M»(t)xl(0) —M22(t)x2(0)

00

X[I'1 I'2
(22r)"

~ ~ ~ exp (—in I')

—~ ~ ~ —M2 (t)x (0) =
j+1,2, ,m

M2, (t) x;(0), etc.
where

X exp (—-', o'R2/n) dnl ~ dn, (4.36)

(430) n V=nlV1+ ~ ~ ~ +n V, (4.37)

The joint characteristic function of I"1(t), I"2(t), ~

I' (t) is

m

(exp [i Q n„V„(t)])
1

0'=u A nI (438)
A being the matrix of the coefficients of n,n, of (4.35) .
For example, when m =2, we have

nl ( 1 Mll M12 ) 2nln2M21M11

2n2nlM12M22+n2 (1 M22 M21 ) ~ (4 39)= (exp {i p [nlM1;(t)+ .+n M;(t)]x, (0) }),
jul, ,m The well-known formula for the Fourier integral

(4 31)
of a Gaussian is

1 Q x,2 (0) 1R2 (4.32)

where all sets of x, (0) which lie on the 1V—rtt dimensional
hyper sphere

m/27r QO

d"n exp (in y) exp ( n'Bn)—

= (det A) "' exp [—(x'/2) ], (4.40a)
j&1,2, ~ ~,m where, if 8 ' is the inverse of the matrix 8,

x'= —'(I"' B 'V)
Hence (4.36) becomes

(4.33a) f(y, 1r2 . . . y )exp (—-', o'R2/rt),
where

If m is fixed and Ã is very large, our required char-
acteristic function is known to be Gaussian, i.e.,

(4.40b)

R2=
jul 2 ~ ~ ~ m

= eXp I
—-', (I"B 'I') }/2"sr~t2(det B)'" (4.41)

Now let

a'= Q [nlM1;(t)+n2M2;(t)+ ~ ~ ~ +n M, (t)]'
j81,2 . ,m

= Q [nlM1, (t)+ ~ ~ +n M„,(t)]'

[nlM11 ( t) +n2M21 (t) + ' ' ' +nmMna1 (t)]
[nlM 12 (t) +n2M22 (t) + ' ' ' +n Mms (t) ]

B=2(AR'/n) and -B '= 2rtA '/R' (4.42a)

det B= (R'/2rt)" det A. (4.42b)

Hence we find

exp ( ——2'rt V'A-'I'/R2)
V ~ ~ ~ V 4.43

(22rR2/rt)""(det A) 't2

In the special case, m= 2, we have

—[nlM'1 (t)+n2M2 (t)+ ~ ~ ~ +n„M (t)]'.

~11 ~ ~11 ~12 )

+21 2~12~22)

+12 2~21~11) (4.44a)

822 = 1—M22' —M21', (4.44b)

Since

g M;,MA, ——8g„

(4.33c)

(4.34)

~22 ~12

~21 +11

(all%2 a12tt21) ~ (4 45)

The theorem which was discussed in connection with
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M, ;(t)~0 as t~~, (4.46)

the distribution function of one or more species about
their equilibrium value is a Gaussian distribution, the
same as the canonical distribution (1.34) for small
deviation from the equilibrium value.

To prove that the canonical average of a function of.V s is equal to the time average, i.e., to prove the
ergodic theorem, we first show that the canonical
average is equal to the microcanonical average and
that the latter average is equal to the time average.
To show the equality of the first two averages, we note
(a) that a canonical average of any function of y, can
be written in terms of (y 2) (see Sec. 1) and (b) that if
(1.32) is satisfied, then the relation between E{y,"j
and E{yP} is the same as that between (y,") and

(y ) [see (1.33) and (1.39)). Therefore, if we can
show that

(4.47)

and that (1.32) is true, then the equality of the first
two averages is proved. But, from (4.28), we have

Eq. (4.21) implies that, as n +—~, the terms M;;(t) =
O(n 't') +-0 so that the matrices A and A ' become
identity matrices. In this limit, f(I'i, ~ ~ ~, I' ) factors
into a product of m one-species distribution functions
of the form (4.28) when transformed back to population
variables.

Thus if

uncorrelated. From (4.11), (4.7a), and (4.52), we have

E{x,(t+r)xp*(t) j =E{ Q A, iA, i*x;(0)
/ jms

X exp [(t+r)Xi)Ai,„*A. x, (0) exp (tX„*)}
= Q A, tA, (*A, Ag *

ljms

X exp [t(ht+X *)+rhi)E{x;(0)x.(0) j

=02 Q A;(A, i~Ay~*A, ~
ljm

X exp [t(Xi+A *)+rX&)

=02 Q A, (Aii* exp (rX()

since Xi*=—Xi. From (4.51), this implies that in-
dependently of t

Mg(r) =p(—i, k; r), (4.53a)

where M,q(r) is the correlation function defined above.
M;, is thus a normalized autocorrelation function, i.e.,

M;, (r) =p„(i, r) =E{x,(t+r) x;(t) }/E{x,2(0) j.
(4.53b)

To prove the ergodic theorem for a microcanonical
ensemble, we make use of a theorem on ergodic func-
tions (Khinchin, 1959; Mazur and Montroll, 1960)
according to which, if

p(r) =E{f,(t+r)f;*(t) }—+0 as r +~, (4.—53c)
(x ') =I=2G,/n

and from (1.31c) and (4.3) we have

E{x } =92 ——const.

Therefore, from (4.29), we find

E{x j =2GO/n

(4.48)

(4.49)

(4 5o)

then the function f;(t) of the variable x;(t) is ergodic.
If (4.46) is satisfied, then from (4.53c) x, is ergodic.
We had already shown this rigorously in Sec. 1. To
show the ergodicity of a general function, we consider
the following two normalized autocorrelation functions:

P-(i, t) =E{[x"(t) —02)Lx''(o) —~2) }/E{[x''(0) —0~)'}

(4.54a)

p„(i, k;t, r)

=E{*'(t+r)»*(t)}/[E{x'(0)}E{»'(0)I)'" (4»)
where the averaging is to be done over the initial
conditions

E{x,(0)xg(0) j =026,i, . (4.52)

Equation (4.52) follows from (4.49) and the assump-
tion that the populations of diferent species are initially

which proves (4.47) and, hence, if we also show that
(1.32) is satisfied, then the equality of canonical and
microcanonical averages is proved. To prove this
equality with the time averages and (1.32), we first
discuss the physical significance of the quantity M;, (t)
which has been central to so much of our discussion.
The physical significance is clear if we consider the
correlation function

Q-(i,j, t)

=E{x;(t)x, (t) x;(0)x, (0) j/E {x (0) }E{x, '(0) j,
iWj, (4.54b)

Substituting for x, (t) from (4.11), and using (4.7a)
and (4.52), one can easily show that for large n,

and
P-(', t) =[p-(', t))'=M, (t) (4.55 )

Q„(i,j, t) =p„(i, t) p„(j, t)

=M,,M, ;, i Wj (4.5.5b)

Thus if (4.46) is satisfied, both P„and Q„~O as t~~,
and from the theorem mentioned above, x,'(t) and
x, (t) x, (t), iAj, are both ergodic. Further Q„,~O implies
E{x,x, }=O=E{x,}E{x,}. By considering function
Q„(i,j, k, ~ ~ ~, t), defined similarly to (4.54b), one
can show that Q„—+0, which implies E{x,x,'
E{x,}E{x,} . Generalizing the argument further will
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imply (1.32), thus proving the ergodic theorem for
both microcanonical and canonical averages. Thus, if
the number of species is large, the ergodic theorem is
true, at least in the linear approximation. This condition
is met in our ecological system because the number of
species is perhaps several million or more. Hence we
may apply statistical mechanics with some confidence.
It should be noted that the above-mentioned conditions
are only necessary conditions for the nonlinear case and
need not be sufhcient. To determine whether they are
or are not we must investigate the ergodic theorem for
each term in the perturbation theory of the type
mentioned earlier in the section. This is beyond the
scope of this paper.

It is interesting to find the manner in which x,'(t)
achieves its equipartition value 2Gp/n. Since we have

We now define the function lb;($) by

P, ($) d$= lim meas {$(x;(t)&$+d$; T}/T, (4.62)

4'(5) =(2n) ' exp ( i)—S) g Jp(r, tS) dS. (4.63)

By an analysis similar to that used for the derivation
of p~(t), it can be shown that to a first approximation
it is valid to replace Jp(r,ft5) by exp (—l«r, pS ) .
Hence we have

where {$(x,(t) ($+d$; T} denotes the set of all those
points t for which both the inequalities $(x, (t) ($+d$,
t& T are satisfied, and meas {$(x,(t) (f+d&; T} is the
Lebesgue measure of this set. It is shown in Wintner
(1933) tha, t iP, ($) is given by

&*,'(t) ),= &Lx;(t) —*,(0)p-(', t) ]')
+2*'(o) -(, ) &I:*'( ) —*'(o) -(, )])

+x (0)p„'(i, t), (4.56)

+;(k)=(2 ) '

Now we define

exp ( i]S—) exp (—«5' P r,P) dS

(4 64)

where ( )& denotes the average over the distribution
(4.17a.), from (4.17a) we have

(x,'(t) )(= 2n 'Gp} 1—p„(i, t) ]2+x,2(0) p '(i, t) . (4.57)
Hence we have

r"=E 'Qr '
l=l

(4.65)

This follows from the fact that the first average on the
right of (4.56) is just the dispersion of the distribution
function (4.17a) and the second one vanishes. As
t~~, (x,'(t)), +2G /n—p, while as t—+0, (x,2(t)),—+x,2(0)
since p„(i, t) ~0 as t +op and p„(—i, t) «1 as t~0.

Further, from (4.48), if two systems of populations
with n1 and n2 species and with their values 01 and 02
are connected to each other (through some prey—
predator interaction), then the value of the combined
system is

We put $5 =st to get

O;(~) =(2 )-'

X

(4.66)

2
2

exp ( ist) exp——Er f2 — dit
4)2

00 S2
1t,($) = (22r) ' exp ( i)5) exp —fVrf2 —— d5.

00

e = (elnl+ e2n2) /(nl+n2) .
Putting $ = bE"2, we get

4.58

r'.2
exp (—ill) exp ——2t2 dlt

4/2

= (1/m't2) (b/r, $) exp ( 2P/nr ')—
(4.67)=

I
1/(22r)'t'a. ] exp (—P/2o ')

x, (t) = P A;tA;i* exp (&tt)x, (0). (4.59)

In the end we would like to point out that the
statistical method of 6 intner (1933) used in evaluating y,.(() = (22r])

—i

the properties of p&(t) could be used directly to evaluate
the distribution for x, (t) which themselves are almost
periodic functions of time. From (4.15a) and (4.15b)
we have

Coupling terms of P ~ of the form ~ice~, we get

Xj(t) = Zr I P;, exp (2~it) +P;l* exp (—itptt) ]
N N

=2 g I p t I
cos (catt+St) = p r'i cos (tdtt+Bt)

1

Obviously we have
o,2= (ttr 2/4) .

n/2

a 2=-'str'=-'Q r '
l=1

n/2

Z p ip tZ p tp t''''
(4.68)

(4.69)

if we now extend back the sum over all tt. Thus we get
with P;l= I P;ft I

exp (ibt), where

r't=2
I p*t I

=2
I 2 A'tA i** (o) I

j=l
(4.61)

n n n

o f2= Q Q Q A, tA, t*A, i*Aptx, (0)xrr(0) = I}x,pj}.
l=1 j=l It:=1

(4.70)
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We see that each x, (t) is distributed in a Gaussian
manner with its own 0, In a given physical situation,
the initial conditions are totally unknown and it is
appropriate to use an average value 0. in place of a.;,
the average being taken over all the species. If we do
this, we obtain

n 2GO
o.=e 'Q 0.,=e '+xi, '(0) = (4.71)

agreeing with expression (4.68). We thus get back the
distribution which we derived on a more physical basis.

S. DIVERSITY AND STABILITY IN
ECOLOGICAL SYSTEMS

We now shall use the results of the previous section
to study diversity and stability of species in an ecological
system. Diversity and stability are much talked about,
but poorly defined, concepts in ecology. Recently a
whole symposium at Brookhaven National Laboratory
was planned by the organizers "to examine the meaning
of these two terms as used by students of natural
systems ~ ~" (Woodwell and Smith, 1969) . By glancing
through the papers published in the report of the
symposium, one can see that the definitions are quite
subjective.

In a rough sense, diversity is the number of species
per unit area. The diversity is known to have changed
during the evolution of our present ecological system.
Based on geological and fossil records, it is believed
that there were times when the diversity was "richer"
than the present one and there were times when it was
"poorer. " The basic questions are: what determines
the diversity and can we account for the present
diversity?

Stability can be put into three categories (Preston,
1969): (a) physiographic stability —the stability of a,

particular geographic region; (b) local and global
stability (constancy) of the number of species, and,
(c) stability of the number of individuals of a particular
species in the sense of rarity of the crashes or explosions.
Perhaps the answer to the question about diversity
posed in the preceding paragraph is that the diversity
at any time is that for which the stability of all the
three types is maximum. The present section is devoted
to the investigation of the relation between diversity
and stability.

For simplicity, we limit ourselves to the stability as
defined above in the third category. The problem then
is to investigate the type of species which will form a
stable population. Given an ensemble of M species, a
species i being characterized by the parameters a,,
(with j ranging through all species which are connected
to i) and k, , one can choose a variety of subsets of e
species out of the M and compare the stability of an
ecology of one of the subsets with that of another.
Perhaps nature even works this way. After many
thousands of years of evolution, one would expect to

find in isolated regions an ecology that is more stable
than others which might have developed. In comparing
the stability of various possible ecologies, one might
compare those which had certain similar macroscopic
properties which depend on the equilibrium populations.
Two such macroscopic properties which appear fre-
quently in the literature are the biomass and produc-
tivity which at equilibrium are defined by

(5.1)

and

(5.2)

The biomass has an obvious meaning, while the
productivity is the rate of Aow of mass between species
at equilibrium.

One way to investigate the stability of a number of
species is through the autocorrelation function p„(i, t)
[Eq. (4.53b)] of the population of various species. In
a completely stable assembly in which each species
approaches an equilibrium population independent of
the initial distribution, the autocorrelation function
would vanish after a long time. In our model, each
population varies around its equilibrium population
with an average amplitude that depends on the total
number of species. One measure of the stability of an
ecology would be the frequency with which the nor-
malized autocorrelation function would pass some
preassigned level of deviation from its equilibrium
value, zero. Fluctuations of animal populations as a
measure of community stability were suggested by
McArthur (1955).

Since the level of stability of the ecology should not
depend on any one species, we will choose as our
measure of stability the frequency with which the
average autocorrelation function

(5.3)

crosses a preassigned level. Those ecologies for which
this frequency is very high will be considered to be less
stable than those for which it is low.

From (5.3), (4.52b), (4.21), and (4.7a), we have

p~(t) =tV ' g cosa& t.
a=i

(5.4)

L(cX 't~) = (uo/n) exp (—c~/2). (5.5)

Let us define L(u) to be the mean frequency (averaged
over a very long time) with which pz(t) achieves the
value u. As shown in Sec. 4, piv(t) is confined mostly
to the noise range. We will be primarily interested in
values of u in this region, i.e., u= cX '" where c=O(1)
and is independent of tV. As shown by Kac (1943; see
also Montroll, 1961) we have
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The frequency ~p is defined by

zeo' ——X-r Q ze '.
a=1

Equation (5.5) is valid when

N

lim X ' P ze '= 0
n~oo a=1

(5.6)

(5 7)

On the other hand, from (4.27), the mean frequency of
the achievement of a value a (with cz close to 1) by
ptz(t) is (Slater, 1939)

I (zz) = (a&e/2zr'") I (1—a) /zre}'"' '). (5.8)

For large E this frequency is negligible. An important
interpretation of this result is that, on the average, one
has to wait a time which increases exponentially with
the number of species n for an undisturbed ecology to
suffer wild Quctuations outside of the noise range. This
tells us that the more species one has, the more stable
the ecology in that each species will tend to have very
small fluctuations about its equilibrium population.

Most of the time tz„(t) is restricted to a range &clV rt'

where c~O(1) . For a given 1V and c, the stability will
be great when I.(cN"') is small, i.e., when zeo is small,
since the sum of the square of the eigenvalues of a
matrix is the trace of the square of the matrix. We see
from (4.4) and (4.5) that

zeo'= n ' Q a~z'q, qz (P;P;) ' —.(5.9a)

One of the simplest hypotheses is to assume (a) that
the set of equilibrium populations is known (we know
the present situation) and that the a,, 's can have any
real value (still with a,,= —a;,); (b) the network of
interaction, the "food web" is fixed; (c) the produc-
tivity (5.2) is fixed; (d) for simplicity we choose
Pi P2——=~ ~, P„=1. In view of (1.6), once the q s and
a;, 's are chosen, the rate constants kl, k2, ~ ~ ., k„become
fixed. Since the t'e's do not appear explicitly in (5.9) nor
in the expression for the productivity, we need not
consider them unless we wish to And their explicit
values after the a;, 's are chosen to minimize ~p'. Once
the q,' s.are given, the biomass (5.1) is determined.

To achieve the minimization, we use the standard
method of Lagrange undetermined multipliers, i.e., we
minimize the expression

Ri= g I
a,, I'q;q; —7 (-', P I a;; I q, q, P) (5.1—0)

~72

with respect to
I
a,, I, keeping q's constant. Since q's are

kept constant and a,, 's are varied, from (1.6), lz; is not
fixed. In other words, we are assuming that the growth
rate of the species will change (presumably through the
change in the environment) such that (1.6) is always
satisfied. Thus a;;s obtained by minimizing Rl will
correspond to the conditions that productivity and q;
are 6xed, but that the growth rates are changing. Rl
is minimum for

I a;;
I

given by

»r/~
I
a't

I

=o= 2
I
a',

I q'qz 7q'qz, a—'t&0 (5 11)

A measure of stability would then be the magnitude of
o)p . This gives a basis for the comparison of several
ecological situations. That which yields the smallest
value of ~p has the most stable population. It should be
noted that our analysis depended on the conditions
(5.7) . This condition is satisfied if every species inter-
acts with only a limited number of other species.

The rate constants I a;, } in Eq. (5.9a) and the
equilibrium population Iq, } are not independent
parameters, but are related by (1.6). Hence, if one
wishes to find the most stable ecology when some
macroscopic constraints are applied, say,

& (Ia,,})=tz. , a=1, 2, ~ ~ ~, s, (5.9b)

the tz s being constant, then (5.9a) is to be minimized
under these constraints using Lagrange multipliers.
Let us suppose that in some sense the present dis-
tribution of species populations in isolated regions
developed because they represent the most stable
population relative to some restrictions of the form
(5.9b) . As far as we can see, there is no a priori way of
choosing these constraints. On this basis, the only
course available to us is to make some guesses of restric-
tions and deduce the conditions on the a,,'s which
would lead to the greatest stability. We will consider
several hypotheses here and deduce their consequences
to indicate how one might proceed. The number of--

possibilities is large; we examine a few examples.

or

f
a,; f

=7/2. (5.12)

a*"
I

=2P/8 (5.14)

Therefore, the food web structure of maximum stability
is that for which all the nonvanishing

I
a;, I

are equal.
If we make an additional assumption of q;~8/n,
then, from (5.13),

8'= (8'/n') Q e;7 (5.15)

where c,(«n) denotes the number of species with which
the species i interacts. If e denotes the average e, , i.e.,

e=n-' Q e;, (5.16)

then from (5.14), (5.15), and (5.16), the maximum
stability occurs for

I
a'

I
=(»/8')(n/).

Substituting for
I
a;,

I
into (5.9), we get

ze
' =4P'/8'e

(5.17)

(5.18)

Substituting in (5.2), we get

48=X g' q, q, =XB', — (5 13)
7 J1

where the prime over the summation indicates that the
sum is to be taken over those i and j for which a;;40.
From (5.12) and (5.13),
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Thus the stability is positively correlated to the biomass
and the average number of food links per species and
negatively correlated to the productivity.

Before we study the stability under other fixed
macroscopic conditions, we will briefly review the work
of Leigh (1965, 1969), who employs a definition of
stability similar to ours. He takes the stability of
species i to be inversely proportional to the frequency
with which log cV;/q;= v; crosses the line v, = d, d being a
constant. Within the linear approximation, this fre-

quency can be expressed as a certain time integral.
Since Leigh was unable to evaluate this time integral
exactly, he replaced it. by an integral over phase space
of the variable v~ ~ v„. On evaluating the phase integral
approximately, the frequency of vi crossing the line

vi d is

~ =~ 'I r. & 'q q }
'" exp ( —q d'/20)

Leigh then postulated that for maximum stability of
the community, the average of this frequency, i.e.,

co=n ' co;,
~l2

should be minimum, subject to the condition that I' is
constant. It turned out that he could not minimize
under these conditions, so he restricted himself to
the case of qi fixed, i.e., biomass fixed. Even with these
simplifications, the minimization could still not be
performed and he hoped that the minimization of

under the assumption of fixed productivity would
attain the same end. The minimization is the same as
that required for our analysis. However, in our defini-
tion of stability, J appears in a natural form rather
than due to an approximation as in Leigh's definition.
On minimization he gets the result that the stability
is maximum for

alii, j, (5.20)

rather than
~
a;,

~
given by (5.14) or (5.17). In other

words, the food web structure of maximum stability is
that in which every species feeds on all other species
that do not feed on it. Substituting (5.20) into (5.19)
and making the assumption that q,~B/m, cv, becomes

co;= (2/tr) (P/B) n, '" exp ( —q,d'/20~). (5.21)

Thus the stability is positively correlated to the number
of species rather than to the average number of food
links per species, as implied by (5.18). It should be
noted that Leigh's result of all the ai, 's nonvanishing
and equal in magnitude is inconsistent with our
formalism because then (5.7) is not satisfied and
L(CE '~') is no longer given by (5.5).

We now minimize J by keeping some other
combination of macroscopic parameters (other than P

where X and 4p s are the undetermined multipliers.
Differentiating (5.22) with respect to a,t and q, and
equating the differentials equal to zero, we have

a;t =
I (p,/q, ) —(pt/q, ) I, if a;,~0, (5.23a)

(5.23b)

where the i over the summation sign in (5.23b) denotes
the sum over those j's for which a;, /0. Substituting
(5.23a) into (5.23b), and (5.23a) into (1.6), we get

i =1, , e, (5.24a)

i = i. . . e, (5.24b)

P q, =B. (5.24c)

Equations (5.24a) and (5.24b) can, in principle, be
solved for the 2m+1 variables X, p, 's, and q, 's which,
when substituted into (5.23a) will give u;; s for maxi-
mum stability, In general, clearly these a; s are not
equal and it is not possible to write a compact expres-
sion. The form will depend upon which of the a; s and
how many of them are zero. It should be noted that the
form (5.23a) for a;; implies that there will be one species
which always feeds on others and is never eaten by
any one of them and, also, a species which is always
eaten by others and never eats any one of them. These
two species

'"' are characterized, respectively, by the
highest and lowest values of p~/q, . If only the environ-
ment is fixed, then the corresponding results are ob-
tained by putting X=0 in (5.22), (5.23b), and (5.24a),
and eliminating (5.24c). We leave as an exercise for
the reader the discussion of stability when I', 8, and
0 s are all fixed.

6. VOLTERRA EQUATIONS WITH RANDOM
RATE CONSTANTS

All of our previous calculations have been made on
the basis of constant "rate constants. " One might
expect the "rate constants" to be affected by changes
in temperature, humidity, age distribution of various
species, time of year, and other ecological factors. On
this basis we assume that the a;, 's are random variables.
Then the N, 's are characterized by a probability dis-
tribution. We will derive a master equation for this

and B) fixed. We will show that if we do so, all the
nonvanishing

I
rr t'

I
'need not be equal. Suppose we

keep both the biomass and the environment, i.e., all
k s fixed. The proper quantity which has to be mini-
mized is

R2 ——P a~t'q, qt+Z (B g—q, )
~t2

+(—Q k,—4Q u, ,q,p, ), (5.22)
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dlogX;
P, =k,P,+ Q a;,E, .

dt
(6.1)

distribution and show that, at equilibrium under certain
conditions, this distribution has the Poisson form con-
jectured by Kerner (1957).

We start with Eq. (1.2):

We also see that

AU, EVk ——(At) ' g Q,Q,a;;a„t

X[—1+ exp (V;)][—1+ exp (Vt)]P,-'p„-'

+P; 'P 'ht Q Q, a;;[—1+ exp (V,)]

and now consider the a;; to be random variables with
mean values a;, . We define a set of mean equilibrium
populations I Q, I by

X Q Qt[exp (Vt)] rtlet(t2) dtz
l t

+P, 'P~ '~t Z Qt@t[—1+ exp («)]
n

u,P;+ P a;,Q, =O.
j=l

(6 2) X ZQ, [exp (V,)] zt;;(tg) dtt

We also define +O' 'P~ 'Z QtQ«xp (Ut+Ut)

V, = log (X,/Qt) or Il't=Q; exp (V,). (6.3)

Then one finds from (6.1), (6.2), and (6.3) that

p,dV~/dt= g Q,[a,, exp (V;—a,,)],

P~d V,/dt = g Q,a,,[—1+ exp ( V, )]

rt, ;(4)rtt, t (t2) d4 dt, . (6.7)

If one averages over the ensemble from which the
a;; are generated, then, in view of (6.5c), the middle
two terms in (6.7) vanish and

(b,U;lz Vt, ) = (At)' Q Q,Qta, ,at, t

+ g Q;rt;, exp (V,), (6.5a)

where g;, is the variation of a;; from its mean value a;;,

X[—1+ exp (V;)][—1+ exp (Vt))P; 'P~-
+t3' 'P. 'Z Q-,Q --p (V,+V)

a;;(t) = a,,+rt, , (t), (6.5b)
t+At t+ht

(rt, , (tt) rtkt(tz) )dt~ dtz (6.8).
(g;, )=0 and (6.5c)

In a small time ht, the variation in V; is, to within
terms O([ht]'),

AU; =p; 'Iz t g Q;a,;[—1+ exp ( U, )]

+&' '&Q [«p (V)] q;, (t,) dt,

so that, if we average only the a;;, we find

(~U') =P' '~t Z Q a' [—1+ exp ( V )] (6 6)

The average is calculated subject to the hypothesis
that V; is known to have the value V;(t) at time t
The fact that V; depends on a;, is irrelevant since we
are only concerned with its average variation when
V; (t) is specified. In averaging over a,; exp (V;) in the
time interval dt, the dependence on the variation of
exp (V;) is O(ht) compared with exp (V;). Hence
exp (V;) is essentially constant during the averaging
period.

where
A, (V) = lim (d V;)/dd,

b, t 0

8;t(V) = lim (hV;hV, )/ht.

(6.10a)

(6.10b)

The appropriate averages are (6.6) and (6.8). A;(V)
has been obtained explicitly and 8;; depends on the
correlation functions appearing in (6.8) .

One would expect the various rate constants to be
independent of each other so that the time variation of

The behavior of the second term in (6.8) depends on
the character of the time correlations of variations of
a;, and aA, ~, i.e., g;, and gI, ~. The remarks made above
concerning the irrelevance of the dependence of the
V;(t) on a,, have been employed again in the derivation
of (6.8).

We now derive a Fokker-Planck type of equation
for P(Vo, to

~
V, t), the probability that in time t to, —

V varies from V' to V. The general form of the Fokker-
Planck equation is

BP/Bt = —Q (tt/8 V, ) I PA, ( V) }

+a 2 (~'/~U'~U) IP&' (V) } (69)
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their deviations from the mean would be uncorrelated.
If the variation in rate constants is generated by a
stationary random process, then correlations should
depend only on

} t& t2
}

—and we can write

hie(t~) rtU(tg) )= (6'tb~, 0'~ 5p() F''g(l tg t2 }) (6 11a)

with

p(V), by setting BP/rtt=0. Then p( V) must satisfy

Z a' Q [—1+ exp (U )]P: '&P(V)/~V'=0 (61~)

A solution p(V) which has a, product form can be
found. Let

F,, (t) =F,, (t) (6.11b) p(U) = $$ p, (V,). (6.16)

The Kronecker deltas ensure that the correlation
vanishes unless (i, 0) =—(t, j) or (j, t) (since
—g, t). In the classical theory of Brownian motion,
one sets

Then we find

BP(U)/BU, =P(V)d log P., (V,)/dU, (6.17)
(6.12)

so that
This corresponds to the physical situation that is
encountered when a large molecule or colloidal particle
suffers many collisions with small molecules such that
no correlations exist between individual collision with
small molecules. An a,lternative form for F,I, (t) would
be one in which the driving force of the fluctuation
persists for a while so that F,q(t) would change more
slowly with time. That is, whatever causes the changes
in dietary habits of species has a relaxation time which
might persist over, say, ~ to 5% of the lifetime of a,

member of a species.
V~e treat the latter case first for it is the one which

leads to the sterner distribution. Consider the double
integral in (6.8):

p ( V) p p, 'a;I,pe[—1+ cxp ( V i ) ]d log p, ( U, ) /d V, = 0.

(6.18)

In view of the antisymniet. ty of the c,l„we see that
if we set

d log p, (V,)/dV, =Q,p;[1—cxp (V;)]/I, (6.19)

(where I is a constant yct to bc determined), then
(6.18) is satisfied.

The factor p, (V, ) is found by integrating (6.19)

P;(V, ) = c, exp IQ,P,[V,—cxp ( V, ) ]/I}, (6.20a)

(q;, (tg) gI„.((t,) )dt's dt,

= (~'tent, ~'uter) F,, (t,—t, ) dt, dt,

where c, is an integration constant such that p, (V,) is
normalized. If we return to our basic variable E; and
choose c; so that p, (lV, ) is normalized according to

= (8,,8A,
—8,(8g, ) F;A(~) dr

p, (.V;) dtV,;=1, (6.20b)

(6;,5y) 8,(5I,;)At—F,~(t tg) dt2— substitution of (6.20a) and thc employment of (6.3)
yield

~,,~„)(gt) 2F,„(0) P, (V;) = d, exp IQ;P,[1+V,—cxp ( V, ) ]/I} (6.21a)

as At~0 Hence, if F. ,q(t) is not a delta function, but. is with
more spread out, we have

aIld
(aU, A V, ) =0((at)' )

P;, ( V) —+0 as At~0.

(6.13) d exp I Q;P,[1+U, —cxp ( V;) ]/I } dlV,

=Q, (eI/Q, P, ) o'~ "r (P;q);/I), (6.21b)
On this basis, the second derivative terms in the
Fokker —Planck equation (6.9) vanish, and when (6.6)
is introduced, (6.9) becomes

r (x) being the classical gamma, function. In terms of 1V;,
the distribution p(1V) has the Poisson form

M'/R= Q (8/rtV;) }PQ,a,,[—1+ exp (V,)]}P,-'

= g a,,Q,P, '[—1+ exp (V, )](itP/BV, ). (6.14)

P;IV, &'~"r exp ( P,N,/I)—
, IV, = . 622

Q'r(p'Q'/I)

The significance of the paranleter. I is obtained by
Now let us seek the equilibrium distribution function, calculating the mean value of the constant of the
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motion Go [see Eq. (1.9b) ]:
Go= —&Z P Q [1+V —exp (Vt)])~-

Hence, from (6.8), as ttt~0, we find

(~t)-'(~V.~V.)=P,—P- I-Q.Q,-,.'
X exp (V,+V),)+5;),g Q,

' exp (2V;)a,t2}

P;—'Pt -'Q) -Q,a,t' exp (V;+ Vk) if i&k (6.31a)

P, l:&+V ex—p (V)] d~X exp 2

0

= —Pd log

Pt(1+V,— p (V,
exp 2

0

= —Qd(log d, ')/dI '. (6.23)

Go- P ,'I—
so that, as long as Q,p,/I is large,

I 26p/rt.

(6.25)

(6.26)

In the regime of small deviations from equilibrium
[see (1.9b)], we have

2Go/tt=rt 'g t)I2-P, q,-rt 'g (1V-, q, ) 'P,—/q, (6.27)

which is essentially the mean square dispersion from
equilibrium population.

The condition Q,P;/I large is equivalent to

' 2 I (I1' Q)'P /P'Q'Q —
} ll, (6 2g)

i.e., the mean relative deviation from equilibrium
population is small compared with the equilibrium
population.

Now consider the case which is analogous to classical
Brownian motion in that we set

(nv(ti) n.-t(t2) ) = (~'.~~t I't~r') a*r'~(t~ t2) —(6 29)—
Then we have

t+6 t t+At

(rt,, (tt) rtt, t(t2) )dtt dt~

Then, from (6.21b), we have

Go ———p Qtp, log +d log
' ', . (6.24)

r(Q,p,/I)
Q» d(QPI ')

When x is large, the Stirling approximation for F(x)
yields

d log F(x)/dx= log x—(1/2x) —'(1/12x') ~ ~ ~ .

If only the first two terms are retained in the expansion
of the derivative of the gamma function in (6.24), the
expression for 6'0 is

p, 'p Q, 'exp (2V, )a,,' ifi=k .(6.31b)
jAi

The Folder —Planck equation for the probability
distribution P follows from (6.9), (6.6), and (6.31).
We have (prime implies that terms with i=j are to
be omitted)

»/~t = Z(P/P V—') (PP' 'Q o' [ 1+—e p (V,)]}

, ct'[exp (2V, )P]
+k '

p' 'Qt'a't'

—k 2'P' '4 'QtQ'a't'(~'/~V'~Vt) (P «p (V'+Vt) }

(6.32)

A product form for the stationary solution of this
equation can be sought by setting»/ctt=0 and
postulating that P(Vt, ~ ~ ~, V„) =gp,. (V, )

—=Qp;. One
finds that

o= Z' P' 'Q, d'[1—e p (V,)]dlogp,
dV;

d+ ', P; 'Q,'a;,'-exp (2V, )p„—'
dV'

+ 2p' 'p 'Q*QIa.r'(P'Pr) '

d[p; exp (V;)] d[p, exp (U, ) ] (6.33)

If the population lV, is to have the Poisson distribution
(6.22), then V, has the distribution whose derivative
is given by (6.19):

d log p, /d V, = Q,p, [1—exp ( V, ) ]ct,

where t). is a constant. If this is substituted into (6.33),
the first term vanishes. However, the remaining
combination does not, even if 0.;,' has a product form,
say tr;t'= (const) /Q, Q, . Hence the equilibrium dis-
tribution function does not have a product form.

In conclusion, if the "rate constants" are considered
to be random variables, the stationary population
distribution is Poisson if the variation in the "rate
constants" is not too rapid. If the variation has an
autocorrelation function of a delta function form as
postulated in the classical theory of Brownian motion,
then the equilibrium distribution is not Poisson.

= (tIaA, t
—~,t~;) )a;,'

= ~«'r'(~a ~r t t')'8,7,) . —
5(tg —t2) dtt

'7. POPULATION GROWTH AS BIRTH
AND DEATH PROCESSES

In this section we will brieAy discuss another
(6.30) stochastic model for the population growth of inter-
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acting and competing species. In this model, which
originally is due to Chiang (1954), the number of
individuals of the various species are taken to be random
variables and a differential equation for the probability
distribution of these variables having certain values is
derived in terms of probabilities of birth and death of
the individuals. The probability distribution can then
be used to calculate the average population.

Let us consider a two-species (Si and S2) system and
let X(t) and Y(f) be the random variables which
denote the population sizes of the two species. Let
P(x, y; f), x, y=0, 1, ~ ~ ~ be the joint probability dis-
tribution function for X(t) being x and Y(t) being y.
The events which can cause a change in the population
sizes of the two species and, hence, in P(x, y; f), are
as follows:

ps= ~ix) g~ = Ayxp,

p. =l xX (7.3)

Substituting (7.3) into (7.1), we obtain a differential
equation which can, in principle, be solved. The
standard method for solving (7.3) is to introduce a,

generating function defined by

G(s, s; t) = Q g s*s&P(x, y; t). (74).
x=0 y=0

Multiplying (7.1) by s's& and summing over x and y,

(a) Birth of one individual of species Si during the
time interval (t, t+At). Let the probability of this
event be p, At +0(ht).

(b) Death of one individual of species Si during the
time interval (t, t+LU). Let the probability of this
event be q,At+0(dd) .

(c) and (d) Events corresponding to (a) and (b)
but for the species S2. Let the corresponding proba, -

bilities be p„At+0(ht) and q„At+0(AI), respectively.
The p's and q's depend on the interaction between the
species.

Let us also assume that the probability of a change of
absolute value greater than one in the number of
individuals of Si and S~ in the interval (t, (+At) is
O(ht) . 1t is now easy to see tha, t P (x, y; t) satisfies the
differential equation

dP(x, y; i) /dt= —(p.+q.+py+q„) P(x, y; t)

+p. ,P(x 1, y; t)+P„ —i(x, y —1; t)

+q,+iP(x+1, y; t)+q„+&P(x, y+1; f). (7.1)

Since negative population is unphysical, we have

P(x, y; t) =0 x(0 or y(0 or x, y(0 (7.2)

The solution of (7.1) depends on the type of interaction.
Let us consider the case of prey —predator interaction:
Let 5~ be the prey and 5~ be the predator. In analogy
with the deterministic case, we make the following
assumptions for the coefficients p and q of (7.1):

E(x) = Q Q xP(x, y; t),
0 0

(7.6a)

E(X) = Z Z XP(x, y; ~);
0 0

from (7.1) and (7.3)

dE(x) /dt = n&E (x) —Z,E(xy),

dE(y)/«= .E(y)+—~,E(xy).

(7.6b)

(7.7a)

(7.7b)

These equations a,re to be compared with the deter-
ministic equations (1.1). E(x) and E(y) are the
analogs of lV~ and -V2. Owing to the fact that one species
feeds on the other, the population sizes of 5~ and 52
are mutually dependent. Hence

E(xs) &E(x)E(X)

Therefore, this stochastic model is different from the
deterministic one.

There are several ways in which this process can be
discussed systematically. One is to solve Eq. (7.5) and
then calculate the various expectation values E(x),
E(y), E(xy), etc. Another is to construct a hierarchy of
equations for expecta, tion values of x, y, xy, x', y', x',
etc. Equations (7.7) are the first in such a, hierarchy.
A first approximation to the solution would be found
by making the independence approximation E(xy) =
L'(x)E(y), which would yield the Volterra equations.
A second approximation might correspond to writing

E(x3) =E(x)E(7)+LE(R)—E(x)E(3)j
and treating the term in the bracket as a random
driving force. Higher approximations would involve
truncation of the hierarchy at a higher level.

Lefever, Nicolis, and Prigogine (1967) (see, also,
Nicolis, 1970) have been conducting a systematic
investigation of processes of this form.

8. TIME LAGS IN POPULATION

In the preceding sections we have been assuming that
the members of the population can react instantaneously
to any change in the environment a,nd that the prey—
predator interactions instantaneously affect the popula-
tion of both the prey and the predator. Further, we
ha ve been a,ssuming that all the members of the species
survive to the same age, a,nd the egg is instantaneously

we get the differential equation satisfied by G(s, s, t),
i.e.,

BG/Bt=nis(s 1)—(BG/Bs) —a2(s —1) (BG/Bs)

+P2s(1 —s) +Kiss(s —1) ](O'G/clsBs) . (7.5)

P is the coefficient of s s& in the expansion of G. Without
solving (7.5) for G, some insight into the model can be
gained by studying the equations for the moments of
x and y. Let E(x) and E(y) denote the expectation
value of x and y, i.e.,



GoEL, MAiiRA, ANn MoNrRoLL Models of Interacting PoPNlatjons 263

s(t) = (k/0) rN(tr),

The steady state solution of Eq. (8.2) is

(8.3a)

(8.3b)

converted into an adult. In other words, we assume that
all the members of a species have the same age. In this
section we will make some remarks about the population
when these assumptions are relaxed.

Ke shall first consider the single-species case. One
model which partly takes into account the effect of
age distribution is governed by the equation

dN(t)/dt =0/1 —(1/tl) N(t —r) ]N(t), r&0. (8.1)

In this model it is assumed that the birth rate coe%.cient
is diminished by a quantity proportional to the popula-
tion of the preceding generation, v being the generation
time (the time required in going from an egg stage to
the adult stage). Equation (8.1), which is an ordinary
difference-differential equation, has been investigated
by several investigators (Cunningham, 1955; Wright,
1955; Kakutani and Markus, 1958; Jones, 1961). In
particular, they studied the stability of the solution for
various values of v and other parameters. In other
words, for what range of values of the parameter, does
N (t) oscillate, asymptotically approach zero, or
asymptotically go to infinity? We will give only some
of the results without derivation.

Let us rewrite (8.1) as

ds(t) /dt = $a z(t 1)—]s(t)—, (8.2)
where

N(t)= k+
T

P(N(t —a) ) ds(a) N(t) . (8.7)
T

This equation represents the population growth for
which k is the constant birth rate, s(a) is the fraction
of Ã surviving to age u, T is the maximum life span,
and 7. is the time it takes for an increase in population
to increase the death rate, and P measures how much
an increase in S increases the death rate. I.et the
equation

P(N) =k/s(r) (8.8)

have a unique and positive solution Ã*. Then Dunkel
(1968) shows that for (8.7), the following are true:

(1) All solutions are uniformly bounded and

(5) For a)1/e, no solution z(t) is asymptotic to
s=a (except z(t) =a).

(6) From Theorems (4) and (5), therefore, if
1/e&a&1, then every solution is a damped solution
tending to the limit value of a.

(7) For a&1/e, let the interval between the zeros of
s(t) —a be at least one for large t. Then the solution
s(t) is asymptotic to s= u.

There are other theorems for a(0 and g(1) &0, but
they are more of mathematical interest than of practical
usefulness. An additional theorem was given by Jones
(1961).According to this theorem, for all a& —',s, there
exist nonconstant periodic solutions. Jones (1961) also
computes numerically the periodic forms. Dunkel
(1968) generalizes (8.1) to the equation

s(t) =u. (8.4) 0(N(t) & max IN(0); N*e"r}. (8.9)
Let P(t), 0&t&1, be a continuous real-valued function
representing the initial condition fs(t) =p(t), 0(t&1].
In addition to proving theorems about the existence and
uniqueness of the solution, Kakutani and Markus
(1958) prove the following theorem:

(1) The intersections of the solution curve s=s(t)
with the line s =a are discrete on 0& t & ~ if there are
a finite number of zeros of p(t) —a on 0& t&1.

The following theorems are true only for a&0,
y(1) )0:

(2) 0&rtt&s(t) (cV(~, 1&t&~, where

M= max Imax s(t), ae },
1&5&3

rtt= min Imin s(t), ae' ~}. (8.5)
1&1&3

(3) Either s(t) is asymptotic to s= a, i.e.,

lim s(t) =a, lim s'(t) =0 (8.6)
g-+ Do t~ ao

or s(t) oscillates about s=a. For sufficiently large t,
each zero of s(t) —a is simple and there is exactly one
zero of s'(t) between consecutive zeros of s(t) —a.

(4) For a&1, if s(t) —a oscillates with discrete zeros,
then the oscillations are damped and lim, „„s(t)=a.

N(t) ~iV* as t~cc. (8.10)

(5) For r)0, k suKciently large, and if P(N) &
ktV(N&N*), P(tV) &kN(N&N*), then there exists
a periodic solution.

Levin (1965, 1969) further generalizes (8.7) by
taking k to be time dependent and finds the conditions
under which the solution is oscillatory, asymptotically
stable, etc.

Since the study of the stability of the nonlinear
equation is rather involved and dificult, it is desirable
to know whether any conclusions can be made about
the solutions of the nonlinear equations by studying
their linearized forms.

As an example, let us consider (8.2). Substituting
s=a+tc into (8.2) and keeping only linear terms, we

(2) If kr)1 and P(tV*) =nN*, n a constant, then,
if f(N) &nN, no nontrivial solution is forever increasing
and, if P(N) &nN, no nontrivial solution is forever
decreasing.

(3) As a corollary of (2), if $(N) (kN(N&N~),
and $(N) )kN(tV) N*), then all solutions oscillate.

(4) Let P(iV*) =, nN*. If P(N) &kN(N&N*),
P(N) &kN(N&N*), and kT&1, then we have



264 REvIEws 07 MoDERN PHYsIcs ~ APRIL 1971 PART I

find
du/dt = a—u(t 1—) .

Making the substitution

I=Ae"'

(8.11a)

(8.12)

order. This procedure is an invalid one and the results
obtained may give wrong conclusions about the exact
linear or nonlinear equation. As an example of a linear
equation, let us consider

du/dt = an —(t r)— (8.1ib)
into (8.11a), we have

Xe'+a=0. (8.13)

The roots of this equation were derived by Wright
(1959; see also Appendix D) . One finds that

and find for small r, for which values of a, iV(t)~0 as
t~~. Expanding the right-hand side of (8.11b) in a
Taylor's series and keeping terms linear in r, we get

dN/dt+ [a/(1 —ar) ]N =0. (8.17)

Re (g) (0 jf 0(a(v/2 ' (8 14) Theret'ore, we have N(t)~0 as t~~ if and only if,

Therefore, we have N(t)~0 as t +~ pr—ovided (8.14)
is satisfied, which, as mentioned earlier in the section,
is also true for the nonlinear case. In fact, there exists
such a theorem (Bellman and Cooke, 1963; see also
Pinney, 1958, and Halanay, 1966) which is applicable
for small perturbations from the steady state values for
the population (all time derivatives=0). According to
this theorem (Theorem 11.2, Bellman and Cooke, 1963),
any solutions of

ap[du(t) /dt]+ bpu (t) +biu(t r)—
=f[u(t), n(t r) ], —t) r, (8.15)

with initial condition

u(t) =g(t), 0&t(r,
with g and f having the properties,

inax
f g(t) f

0(t~r

suKciently small and f(u, v) a continuous function of
u and v in a, neighborhood of origin

f
n

f
+ f

v
f

&ci and

lim
f
f(u, v) f/(f u

f +
f

v f) =0,
|uf+ f 1if~o

can be continued over the interval 0&/& ~ and each
such solution sa, tisfies

lim
f
u(t)

f

~0
t~ oo

provided e~ery continuous solution of the linear equation qi = —kp/ap, qp
——ki[1—qi8-']aip) (8.21)

a(1—«)-'&0, i.e. , 0(a&1/r, (8.18)

a condition which differs from the exact condition

0&a&rr/2r (8 19)

This la, tter condition is obtained by the method similar
to that used for obtaining the condition (8.14) .

As an example of nonlinear equation, let us consider
(8.1). Expand N(t r) in p—owers of r keeping terms
only up to d'N/dt'. This procedure has been followed

by Cunningham (1954) . He studied the resulting
equation and found that the sustained oscillations
occurred when kr)1.0, which is different from the
exact result kr)~/2 obtained by Jones (1961) and,
also, by Cunningham (1954) by numerical solution
of (8.1).

A more dramatic example is the prey —predator
population model with time lag studied by Wangersky
and Cunningham (1957). In the model they use, the
population is governed by the equations

dhVi/dt =kitVi(t) [8—Ni(t) ]/8+aipNi(t) )Vp(t), (8.20a)

dNp/dt = kpNp (t) +apiNi(t —r) lVp (t—r), (8.20b)

i.e., the change in the number of predators (N2) de-
pends on the number of preys (Ni) and predators
present at some previous time. In (8.20a) and (8.20b),
we have ki&0, 02&0, ai2&0, a2i&0. On linearizing the
equations around the equilibrium point, we find

a [du(t)/dt]+b, u(t)+b, u(t r) 0 (8 16) i.e. , substituting

goes to zero as f~~ .
In other words, if all the solutions of linear equation —&0

as t +~, i.e., Re (X) (0 (X—being any of the roots of
the characteristic equation) for all X, then all the
solutions of nonlinear equations will ha, ve the same
asymptotic behavior. This theorem can be extended to
set of equations in many variables.

We may further ask the question whether any
conclusions ca,n be made about the solution of the
linear or nonlinear equation by making Taylor's
expansion in r and keeping terms up to a certain order
in r. This procedure in effect enables one to approximate
a,n infinite order differential equation by one of finite

p = t/r, yi'=—dy, /dp,

A = —k2r&0,

8= —Qy2$3r) 0,

C= 8/(s —1), a=0/qi.

(8.24a)

(8.24b)

(8.24c)

(8.24d)

Ni(t) =qi+yi(t), Np(t) =qp+yp(t) (8.22)

into (8.20a,) and (8.20b), retaining only linear terms,
and eliminating y2, we obtain

yi"+ (~+C)yi'(p) —~yi'( p) +~Cyi (p)

+A (13 C) yi(p 1) =0, —(8.23)—
where
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Substituting

into (8.23), we have

y (P) erat (8.25)
Substituting

we find that

y = exp [( ++)P] (8,36)

e"$2+ (A+C) X+AC]—AX+A (B C) =—0. (8.26)

To determine the roots of this equation it is convenient
to make the substitution

1 A(B C) ——C
2 1+A+ (A/2) (B C)— (8.37)

X'='A —(B C).— (8.27)

A+2B—C&0,

A+B C&0, —

and ai., (k)0) is the sole root of the equation

(8.30)

(8.31)

tan a= [B(A+B C) a']/(A+—2B —C) rl, (8.32)—
which lies on the interval (kyar —v./2, k7r+v/2), and ~
is the even k for which ai-, lies closest to I B(A+ B—C) I

'I'.
If

I

—Aec ~/(A+2B —C) I
(1, (8.29) is always

true and this implies Re X'&0. From (8.30), (8.31),
and (8.27), we see that

Equation (8.26) then becomes

e"'[X"+(A+2B C)X'+—B(A+B C)] —Ae~ —X'=0.

(8.28)

The roots of this equation have been investigated in
the literature (Bellman and Cooke, 1963). According
to Theorem 13.10 of Bellman and Cooke (1963), all
the roots of (8.28) will have real part less than 0 if
and only if,

1—Ae~ (A+2B—C) ' cos a )0 (8.29)

provided

and P') 0 if s) s„where

A+ [A2+ (1+A)2(4A/B+4A2/B+A2) ]i/2
8.=1

(4A/B+4A'/B+ A')

(8.38)

From (8.36), we have yi(t)~0 as t—&~ if o,(0, i.e.,
from (8.36), if

[A/(1+A) ]B&C(2(1+1/A)+B. (8.39)

The lower limit obtained without expanding into a
Taylor series [Eq. (8.34a)] is higher than the lower
limit obta. ined by using the Taylor's expansion [Eq.
(8.39)]. However, if A and B are large enough and
still (8.34c) is satisfied, then the upper end of the region
of asymptotic stability as given by (8.34a) could be
significantly la,rger than that given by (8.39) .

We now make a few remarks about the population of
several interacting species which grows according to
conditions some time earlier. Let the dynamics of the
population be described by the equations

dN~/dt = k,N, (t) + (1/P, ) g a,,N, (t) N; (t r) . (8.4—0)

We first show that G, as defined by (1.9a), is not a
constant of this system. From (8.40) we have

t3'v'(t) = 2 ~'q Iexp [v (t—)]—1I, v;= ln (N, /q, ),

and

Re X(0

B&C&A+B

Aeo ~/(A+2B C) (1. —

(8.33)

(8 34b) dG/dt= (d/dt) p p;fq,f[exp (:v;) —v,]

(8.41)

where q, is the steady state value of N;. Therefore,
we find

Substituting the upper limit of C from (8.34a) into
(8.34b), we have

= g a;,q,fq;I exp [v, (t r) ]—1—I I exp [v, (t) ]—1I 40

de~(B. (8.34c) (8.42)

Thus, if (8.34a) and (8.34c) are satisfied, the population
will be asymptotically stable (even for the nonlinear
case, according to the theorem stated earlier in the
section) .

Let us now compare the above results with the
corresponding results obtained by Wangersky and
Cunningham (1957) by expanding (8.23) in a Taylor
series and retaining terms up to second derivatives of
y&. The equation thus obtained is

[1+A+A (B—C) /2]yi"

+[C—A (B C) ]yi+A Byi 0. (8.35)— ——

which proves the assertion that 6 is not a constant of
motion. We have been unable' to find any other con-
stant of motion for the system described by (8.40). In
the absence of a constant of motion, the applicability
of methods of statistical mechanics is questionable.

We will now show that in the limit of small deviations
from the stationary values of the populations of
various systems, .V; increases exponentially, independ-

' However, Dr. P. Xowasad has pointed out that if det a;;=0
and Z,a;,c;=0, 2;k;P;c;=0, then from (1.2), II;N ' is a constant
of motion even with the time lag. These two conditions involving
c, are the necessary conditions for the existence of q s.
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ent of the magnitude of r. In this limit, (8.40) becomes

x, (t) = g C;,x, (t—r), (8.43)

where C,, is defined by (4.4) . Let

x, (t) =A,e"' (8.44)

be the solution of (8.43) . Substituting (8.44) into
(8.43), we find

g CgA;=Re"'A

Comparing this equation with (4.6) we have

),e~'= ice,

(8.45)

(8.46)

where i~ is the eigenvalue of the matrix C. As shown in
the Appendix D, for any value of r, however small, the
real parts of all the roots of the above equation are not
negative and, therefore, x; does not go to the limit 0 as
t~~. Therefore, from the theorem mentioned earlier
in the section, there are no values of v- for which X,—+0
as t~~. We cannot say on the basis of analysis of the
linear equations whether E; will oscillate or ~~ as
$—+oo .

Let us now investigate the effects of the Verhulst
terms and determine whether the solution is asymptoti-
cally stable and, if so, for what values of the parameters.
The dynamics of the population is assumed to be
described by

N, = [k,+ P a;,Ã, (t—r) ]N;(t), a, ,&0. (8.47)

Substituting
N, =q, +y, , (8.48)

x;(t) = P C,,x, (t r), —(8.49)

where C,, is given by (4.4) and

C;;=a,;q, = —p, ,
Let

x, =A;e~'

P,)0. (8.50)

(8.51)

be the solution of (8.49). Substituting (8.51) into
(8.49), we have

g C,,A, =A;(Xe'+P, ) .

The characteristic equation is

det [(hei'+P ) 8"—C "]=0
This algebraic equation can be written as

II (~e"'+V.) =o,

(8.52)

(8.53)

(8.54)

where q, are the equilibrium values, and linearizing the
equation, we find

This follows from an extension of the theorem given
earlier (Bellman and Cooke, 1963) for many-variable
systems.

We conclude this section by mentioning another
model for single-species growth which is slightly
different than the one studied by Kakutani and Marcus
(1958) which has been numerically investigated (Smith,
1969). In this model the population is governed by

dX(t) /dt= k[1 tt 'X—(t r) ]Ã—(t—r) —k'&(t) .

In other words, though it is assumed that the growth in
population is proportional to the preceding generation,
the death rate at any instant is proportional to the
instantaneous value of the population.

9. GENERALIZATION OF THE
VOLTERRA EQUATIONS

We had noted in the Introduction that Volterra's
model for the population of interacting species does not
include some features about the population. Among
these features, we have already pointed out population-
dependent rate constants (Verhulst term), members of
the population of a particular species having different
ages, time lags in the reaction of the members of the
population to any change in the environment, and
interaction with members of the population of other
species. We have also briefly investigated the change in
the behavior of the population when these effects are
included. We will now briefly mention some of the work
done in recent years in an attempt to generalize and to
modify the Volterra equations. These generalizations
serve at least two purposes. First they throw some
light on the behavior of the population if the model is
changed, and, second, the generalized equations may be
more realistic in describing the behavior of other
systems of interacting species.

The generalized equations have been studied, both
analytically and numerically.

Gause and Witt (1935) studied analytically Volterra's
equation with Verhulst terms for a two-species system
and showed that the theory of growth of mixed popula-
tions of two species is directly connected with the
problem of natural selection. They also showed that,
under the action of a temperature (or any other)
gradient, mixed populations separate into a number of
distinct types. Further discussion of these same equa-
tions can be found in the books by Kostitzin (1939)
and Slobodkin (1961). Hutchinson (1947) also studied
the Volterra's equation with Verhulst term, except that
the prey —predator interaction term is taken to be
ternary instead of binary, i.e. , the prey —predator
system is modeled by the equations

where —y~, —y2, ~ ~ ~, —y„are the roots of the algebraic
Eq. (8.53) . Therefore, the sufficient condition for
V;~g; as t~~ [see Appendix D] is

dN1/dt = CXlrVl(kl Nl riilit 2 ) )

dN2/dt=CY2-l 2(k2 3 2 rii23 i ) ~

(9.1a)

(9.1b)

m/2 —
~
0„~ (p„, for all n, y„=p„exp (i8„). (8.55) Cunningham (1955) generalized the equations
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studied by Hutchinson (1947) to

dN, /dt = ~,!V,{ ki —Ni —Fi(N2) j, (9.2a)

dNi/dt = tVrF, (N, ),
dlVg/dt =N2Fg (Ni)

(9.3a)

(9.3b)

and found the sufficient conditions for the existence of
periodic solutions, but these conditions do not describe
a prey —predator situation. Equations (9.3a) and
(9.3b) also occur in the theory of war (Richardson,
1960). Waltma, n (1964) generalized these equations
further to

dN~/dt = tV,K, (iV„N2), i=1 2 (9 4)

and found conditions for the periodic solutions using a
certain bifurcation theorem. Rescigno and Richardson
(1967) further studied Waltmann's equation (9.4) for
various functions E,'s. Later on, the study was
generalized to the three-specie. case (Rescigno, 1968) .

In addition to analytical work, some numerical work
has been done on the two-and-three-species system.
Garfinkel (1962) considers the system of two and three
species, grass (prey) and rabbits (predator), and grass,
rabbits, and foxes (predator for rabbits), and does
numerical computations for various values of the
efficiencies with which the predators attack their
appropriate preys. This work and some aspects of the
method are reviewed in Garfinkel (1965). The studies
were extended (Garfinkel, 1967a) to eight ecological
systems, consisting of up to 10 species, belonging to the
trophic levels of plant, herbivore, carnivore, and
supercarnivore. It was shown that the Verhulst terms
tend to stabilize the system, but the extent depends on
the trophic levels of the species for which the Verhulst
term is nonzero; the lower the trophic level, the more
the stabilization. Five of these eight ecosystems were
studied further (Garfinkel, 1967b) to determine the
effect of imposing strict territorial limits. It was shown
that setting a territorial limit on the population of a
species stabilizes the system, the stability being maxi-
mum for the herbivorous species. It may be noted that
the growth rate of the population of a species in which
the Verhulst term is introduced decreases continuously
as its population increases, while, in the present case of
territorial limits, population increases equally easily
until it is su%cient to occupy the last vacant territory,
but not at all thereafter. Pennycuick et al. (1968)
describe a computer program which simulates the

dN2/dt a!2N2[k2 N2 F2 (Nl) ]~ (9.2b)

However, he did not 6nd a general condition for the
existence of periodic solutions. Some solutions were
also found using an analog computer. Vtz and Waltman
(1963) found the sufficient conditions for the existence
of periodic solutions for the equations studied by
Cunningham. In addition, they also studied the
equations

which can be transformed into the Volterra's equations
with Verhulst terms by making the transformation

U =&V™.

Equation (9.5) can represent the population of inter-
acting biological species with a population-dependent
growth rate constant and prey —predator interactions
different from the one we studied in this paper.

Another set of equations is

n

dN~/dT=(k, +P, 'g a,,N, )tV, (l N, ); i=1, 2,—~ ~ ~

01.

(9.6)

d log N, (l N, ) '/dT= k;+P—, ' P a,P, . (9.7)

These equations admit

G= g P, {ln { 1+q, exp (V,) $—q, V, I; V, = log N, /q;,

(9 8)

as the constant of motion and can be studied using
statistical mechanical Inethods described earlier in this
paper. Equations (9.6) were derived by Cowa.n (1968)
to represent the change in the nervous activity in the
central nervous system arising from the interactions

growth of a population of two species divided into age
groups and which allows fecundity and survival density
dependence. King and Paulik (1967) describe a com-
puter program for single-species growth which is very
flexible in the sense of incorporating the fine features
of the growing population.

To assist in determining the accuracy of Volterra's
model for the two-species system, Bellman et al (19.66)
gave a method (based on the technique of quasi-
linearization) of computing the six parameters Ni(0),
N2(0), ki, kg, are and a~i of the Volterra model for a
given set of values of Ni(t), Ny(t) at a set of time
intervals.

A large number of models for oscillating chemical
reactions have been studied on an analog computer by
Higgins (1967).These models, which are similar to the
Lotka model for autocatalytic reactions, can easily be
adapted to the study of population of interacting
biological species.

The work on the generalization of the many-species
Volterra's model is not as extensive as that for the few
species, in particular, two-and-three-species system.
Analytical study of any generalized model is difficult
and the numerical study is expensive. The only study
which has been made is the statistical mechanical
study of those equations which are equivalent to the
Volterxa's equation. One set of such equations is

dU~/dt= (y$,k, ) U, —(sic,a,,) U 'i~+''
+ (m;/P;) Q a;,U, U,""! (9.5)
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M;„

irX;

FIG. 9. Biochemical metabolic oscillator.

equations admit a constant of motion

G=n, (XP/2) P,—X,+b,I; (a—,/k, ) ln (A,+k, I', ),

(9.10)

Mi

dX;/dh= a,/(A, +k;F;)—b, ,

dI';/dh=n, X,—P, ,

(9.9a)

(9.9b)

where a, , b;, A;, k;, n;, and p; are constants. These

within and between assemblies of nervous nets. e is the
number of neurons and S; is a dynamic variable
measuring the sensitivity of the ith neuron in a net. It
measures the fraction of time in a long-time interval
during which the neuron is not refractory, i.e., the
fraction of time in which it can be fired. T is a dimen-
sionless variable and is in seconds ~ ', where 7- is the
mean intercellular transmittal time for neural activity
from a certain point of one cell (say the end where the
impulse enters) to the same point of the neighboring
cells, the mean being taken over all the neighboring
cells. k, is a "growth coefficient" and is a function of the
various electrical parameters of the neural membrane,
as is P, . In general, k, may also depend on stimuli. The
nature of the coupling coefficients a;; depends on
whether the synapse between ith and jth cells is
excitatory or inhibitory. Cowan performs the statistical
mechanical analysis similar to the one described in this
paper and cites experimental data to support the model
for the nervous system. In obtaining (9.6), Cowan
makes several assumptions and among them is the
one involving going from finite difference to differential
equations. A critical analysis of various dynamical
theories of nervous systems is under preparation and
will be communicated in the future.

Another system which has been subjected to the
same statistical mechanical analysis is a system of
interacting biochemical metabolic oscillators (Goodwin,
1963). The oscillator is schematically shown in Fig. 9.
I., represents the genetic locus (on the DNA molecule)
which synthesizes mRNA in quantities represented by
the variable X,. R is the cellular structure (a ribosome)
where the information carried by mRNA is used in the
synthesis of a particular species of protein in quantities
denoted by the variable Y,. C is a cellular locus where
the protein influences (e.g. , by enzyme action) the
generation of the metabolic species in qua. ntity M;.
If M; exceeds some preassigned value, the excess
interacts with the genetic locus and represses the
activity of L;, i.e., synthesis of mRNA. Sy making
several assumptions, the control equations for protein
synthesis are simplified to

and, therefore, a plot of X, vs Y; is a closed curve and
both X,(h) and F,(h) are periodic. Various oscillators
can be coupled through feedback of the metabolite of
an oscillator to not only its own genetic locus, but also
to the genetic loci of several other oscillators. It may
be pointed out that Eqs. (9.9) are obtained by making
several simplifying assumptions, some of which are
probably not quite justified. Goodwin (1963) carries
out in detail a statistical mechanical treatment of the
system in which each oscillator is coupled to two
"nearest neighbor" oscillators. The time lag in this
system corresponds to the time for the diffusion of a
metabolite from the location where it is made to the
genetic loci. This time is assumed to be zero in Good-
win's analysis. Woolley and DeRocco (1970) have
generalized the statistical mechanical analysis of
systems of biochemical oscilla, tors to arbitrary strong
coupling and for arbitrary parallel coupling of metabolic
pools a,nd genetic loci.

Recently Woolley (1970) has used Goodwin's model
for the bacterial growth cycle. It is very common in
bacterial growth that the generation time changes if the
environments (culturing medium) are changed appro-
priately, but the generation time changes to the original
value if the environments are changed back. Woolley
(1970) has given a set of five equations Ltwo coupled
equations like Goodwin's equation (1963) for the
biochemical oscillator which represent a highly pro-
tected circuit, two coupled equations which represent a
hemeostat which responds to the perturbation, and an
equation which couples the two systems —the highly
protected system and the control system], without any
biochemical justification of the equations for the control
system. He shows that the system of equations can
describe the growth of a single bacterial cell.

Goodwin (1970) has studied the case of many cells
simultaneously growing and applied the statistical
mechanical techniques described earlier in this paper to
an ensemble of oscillators, each oscillator controlling
the gromth of one cell ~

Lastly, we mention a model of an optical maser
(Lamb, 1964) in which the intensities of various modes
satisfy the Volterra's equation with the Verhulst term,
with the exception that the interaction matrix a;, is
symmetric. 4 In deriving the equations, Lamb considers
a high-Q multimode cavity in which there is a given
cIussica) electromagnetic field which acts on a collection
of two-level atoms described by the laws of qnaetlm
mechanics. The macroscopic electric polarization
produced by the electromagnetic field is taken to be the

4 '9'e are thankful to Dr. H. M. Xussenzveig for bringing to
our attention this theory of optical masers.
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source for the electromagnetic field in accordance with
Maxwell's equations. The self-consistent calculations
then yield the amplitudes and frequencies of the
possible oscillations. For a two-mode maser, the
intensities Ij and I& of the two modes satisfy the
equations

Il 2I1(csl plIl 012I2),

I2 ——2I2 (c22—p2I2 —021I1),

(9.11a)

(9.11b)

where cei, c22, pi, p2, 012, and 021 are certain parameters in
the model. u~ is the net single-pass unsaturated gain and
is simply related to the negative absorption coe%.cient
of the medium at frequencies of mode 1. plI1 is the
decrease in that net gain due to saturation (population
depletion) of the gain curve by mode 1, and 0»I2 is the
decrease in the gain due to saturation by mode 2. o,2,

p2, and t41I1 have similar meanings. Some discussions of
the equations (9.11a) and (9.11b) is given in Lamb
(1964) and Fork and Pollack (1965).

For a laser with lV modes above the threshold of
oscillation, the differential equations describing the
competition among the modes are of the form

mgn

where I„ is a measure of the intensity of mode m, a„ is
the over-all gain resulting from the balance of pumping
and losses, P„ is a saturation parameter representing the
decrease in gain due to the depletion of population
inversion, and 0 „=0„ is the interaction coefficient
between modes m and e.

No statistical mechanical treatment of the several-
mode optical maser has been done. However, consider-
able attention has been given to the noise in masers
and lasers. The resulting Fokker —Planck equation has
been studied, both analytically and numerically. For
details of the equation and the solutions, we refer the
readers to two recent reviews (Louisell, 1969; Haken,
1970).

10. EXPERIMENTAL VERIFICATION OF
VOLTERRA'S MODEL

In this section we will describe some of the experi-
ments which throw light on the validity of Volterra's
model. The relevant experiments fall into two categories.
In the first category, we have observations in a natural
ecological system which may provide some evidence for
the model. In the second category are the controlled
experiments which have been specifically designed to
test the model through its predictions. An excellent and
exhaustive review of the experiments and their connec-
tion with Vol terra's model is given by D'Ancona
(1954). We will give, in the following, only a, sampling
of these experiments.

In the first category we have the classic investigations
by D'Ancona (1926) on the fish populations of the

Upper Adriatic which inspired Volterra to his detailed
study. Among other things, what D'Ancona observed
was that there was an optimum in the intensity with
which fishing is exercised. When the intensity is
diminished below a certain limit, the more voracious
species are more numerous than others, and when this
optimum is exceeded, there is a reduction in numbers in
both groups of species. This is in accordance with
Volterra's model, for, from (1.1), the steady state
population of two species in a prey —predator system is

ql ——n2/ll2, q2
——nl/Zl.

Removing both species in quantities proportional to
their numbers is equivalent to increasing o.2 and
decreasing o.~ and, therefore, q~,

. hence, the number
of individuals of the 6rst species (prey) will increase
while those of the second (predator) will decrease.
However, if the intensity is large enough to make u&

negative, then the number of individuals of both
species will decrease. (Volterra called the above con-
clusion the Law of the Disturbance of the Averages. )

Volterra's theory for many species implies that if the
number of species is large, the Quctuations are not
periodic. The data collected 1924—1942 by Klton and
his collaborators at the Bureau of Animal Populations
in Oxford on the rodents and fur animals of the northern
regions of America (Elton, 1942) support this implica-
tion. Probably, physical environmental factors con-
tribute to some extent to these fluctuations, but it is
also obvious from these experiments that interactions
between various species contribute significantly to
these fluctuations.

A spectacular verification of the law of disturbance of
averages is provided in the field of insecticides. This is
quoted in MacArthur and Connell (1966). The cottony
cushion scale insect (Icerya pttrchasi) was accidentally
introduced from Australia in 1868 and threatened to
destroy the American . citrus industry. To counteract
this, its natural Australian predator, a ladybird beetle,
Eovils cardiealis, was introduced. This kept the scale
to a low level. When DDT was discovered to kill scale
insects, it was applied by the orchardists in the hope of
further reducing the scale insects. However, in agree-
ment with the above principle, the effect was an
increase of the scale insect itself.

In the second class, Gause (1934, 1935) was the
earliest worker to do extensive experiments on prey—
predator systems in laboratories in order to test
Volterra's model. He was particularly interested in the
maintenance of oscillatory systems and this he was
able to achieve on a number of occasions. In none of the
experiments quoted in his book (Gause, 1934) was this
possible without arranging for small daily additions at
a regular rate of one or the other of the species. This was
regarded by Gause as immigration. The apparent
contradiction with Volterra's model is generally
explained by the fact that the number of animals
present was too small to avoid accidental extinction of
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one or another species. However, in the experiments
(Gause, 1935) on Paramecium bursaria feeding on
Saccharomyces pombe and P. aurelia on 5. exiguus,
several complete cycles of oscillation were maintained
before extinction occurred.

Next we mention the work done by L'Heritier and
Teissier (1935) on mixed cultures of the two species
Drosophi7a melanogaster and Drosophila furtebris, which
have the same food requirement and obtain food from
the same sources. A stable equilibrium comes to be
formed between them which is independent of the
initial proportions of the individuals of each species in
the culture. There are fluctuations around the equilib-
rium level. This is in accordance with Volterra's model
for two species which are competing for the same food
rather than having a prey —predator relation.

DeBach and Smith (1941) made cultures of the
common domestic fly and the species Mormon' ella
2)itriPe2222is, which parasitizes the pupae of the fly under
controlled environments. They observed fluctuations
in the number of individuals of both species, proving
that the fluctuations were due to the prey —predator
interaction and not to fluctuations in the environment.

Utida (1957) and his collaborators have carried out
complex work on the host —parasite population of
Azuki bean weevil and its parasitic wasp. They have
shown that the interacting populations of host and
parasite exhibit cyclic fluctuations from generation to
generation, but that with advancing generations, the
intensity of fluctuation diminishes. This slow settling
down to equilibrium is just what we expect from
Volterra's model when the Verhulst term is present.

We should make mention of the very good account
of the interplay of theory and experiment, as described
in Neyman, Park, and Scott (1956) . There they discuss
the experiments of Park and his collaborators on the
flour beetle Tribolilm. The main result was that the
repetition of the experiment many times over long
periods showed that the outconie of a particular com-
petition situation, beginning with certain definite
proportion of the two species in a fixed amount of flour
medium, is not rigidly fixed but is subject to statistical
probability. These experiments point to the need of
introduction of stochastic processes in the theory.

Finally we turn to the analysis of data to verify the
statistical aspects of Volterra's theory. Leigh (1969)
has made two such analyses. First he analyzed the data
of Huffaker (1957), who created a prey —predator
oscillation in the laboratory using a prey mite feeding
on oranges and another species of mite as its predator.
Using the random noise theory, Leigh calculated the
various coefficients in the equation through the use of
autocorrelation functions. Two points are of interest.
First, the Verhulst term is comparable to the inter-
action term. Second, he theoretically obtained a period
of 100 days, which compares not unfavorably with the
observed period of 70 days. He made a similar analysis

of the catches of Canadian lynx and its primary food,
the varying hare. He detected oscillation through the
use of autocorrelation function which changed sign with
time. Here also the Verhulst terms are comparable to
other terms which reflect crowding eGect. However, his
theoretically computed period of 25 years is very far
from the observed period of 10 years. This leads him to
believe that the oscillation must have a different cause.

Kerner (1959) has made a statistical analysis of the
data on catches of fox by the Moravian missions in
Labrador from 1834 to 1925 as compiled by Elton
(1942) to check his hypothesis about the canonical
distribution. He computes the value of 8 from various
averages on the fox-catch data and finds a reasonably
uniform value, which is a test of the canonical hy-
pothesis. He then uses the data to calculate the fre-
quency of crossing of zero by the variable v= log X/q.
His theoretical results compare not unfavorably with
the experimental results. While this is hardly a justifica-
tion of the theory, it gives some idea of the validity of
statistical mechanics in Volterra's system.

APPENDIX A: TIME AVERAGES OF VARIOUS
FUNCTIONS OF E, AND S,

In this appendix we will first calculate the time
averages of various functions of E; and A, for a two-
species system directly by using. the dynamical equations
(1.2) . We will then use the same method for calculating
the time averages of some corresponding functions for a
many-species system and, also, for deriving the equa-
tions satisfied by the time averages of other functions.

Equations (1.2) for two-species system are

dK/dt ~1+1+81 a12+1+2)

~~ 2/dt ~~2+2+t32 a21A 1+2.

Using (1.6), we can write these equations as

d2)1/dt ( 1/pl) a12Y2)

d&2/dt ( 1/P2) a21$1)

where

y, =Ã,—q, ,

2), = ln (X;/q, ),

(Ala)

(Alb)

(A2a)

(A2b)

(A3a)

(A3b)
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We have already shown in Sec. 1 that the calculation of II»12P to get

1.e.,
Ij»~P =q, , (A4a) klP13[t»,3P+ k,P23Ij»23P =0

IIy'P =o

pl Ijyl lj/ql= p2 Ijy2 p/q2=03) a constant (A17)
ol

which, together with (A10), gives

To calculate It»1»2P, we take the time average of
(Ala) to obtain

tt12I]»1»2D klpl I]Nip k1plql (A5) (E13D= [[N12pql+ 202 (q12/pl) +83 (ql/p12) . (A18)

which, when (1.6) is used

It»1»2D = qlq2

or, from (A3) and (A4),

To calculate Ij»12»22P, we take the time average of
(A6) the identity

d(»1'»2) /dt = 21V1/V2tU1+IU2»1'

Ityly2D =0. (A7) = (2k1+k2) /Vl lV2+ (t221/P2) »1 »2

pll/1+ p2$2 ' k1plyl+ k2p2y2

Therefore, we have

d(plyl+p2y2) /dl=2(plyl+p2y2) (klplyl+k2p2y2).

Taking time average of both sides and using (A7),
we find

(A9)klplI] yl'p+k2p2II y2 p

To calculate It»12P, we note that due to the anti-
syrnmetry of a» from (Ala) and (A1b), + (2/pl) a»»1'»2'.

If we use (A16) a,nd (1.6), the resulting equation
simplifies to

Ij »1'»2'lj = Ij»1'pq2'+ (pl/2p2) q2 (It»1'p —qlIt»1'p) .

(A19)

By using (A12) and (A18), we further simplify the
above equation to

Since, from (1.6), we have

klplql+ k2p2q2 0p

Eq. (A9) gives

(A10)
Ij»1 »2 p It»1 ljq2 + (02q2/p2) [ql + (t 3/2tt2) (ql/pl) ]

(A20a)
which can be written as

ol
plI] yl lj/ql p2Ij y2 l]/q2 = tt2 (A11) Ityi'y2'p = (03/2) (qiq2/plp2) . (A20b)

i=1, 2,It»''P = q''+02(q'/P'), To calculate ItiV1'P we use the same method as used for
calculating Ij1V12P and Ij»13P. On doing so we findwhere 02 is a constant. We now calculate the time

averages of cubic functions of N, 's. From (A1a) we p3[ 4 3( 2/ 2) p]/ p 3[[[ 4D 3( 3/p 2)p]/

d (Pl»1') /dl = 2[klP1»1'+ tt»»1'tV2]. (A13) =04, a constant (A21)

Taking the time average of both sides and using
(1.6), we find

a (K/U'tvp —II»2Pq) =o,
1.e.)

It/V1'/V2D =
Ij tV1'pq2 or Ij'yl'y2D = 0. (A14)

In general, since

d(p, lI», II)/dt=p[k, p,»', +.„/V, »,], (A»)

taking the time average of this equation and using
(1.6), we get

which can be used to calculate Ij »14P.
From the above discussion it is clear that if we know

Ij tV1&P, we can ca,lculate Ij»2vP and It1V1"1V2']j.
Let us now calculate the time averages involving

vl, v2, and their time derivatives. Since, from (A2a),
we have

d(vl ) /dl = 2vltl»y2/pl,

Ij.vly2D = 0.

It»l »2]j —Ij» 1 ljq2 or Ijyl y2]j =0 P integer.

(A16)

However, since from (A2) we have

(d/dt) (vlv2) (812/pl) v2y2 (812/ p2) vlyl) (A22)

To calculate Ij»lsp, we follow the procedure used for pltvlylp =p2tv2y2D =@2) a constant. (A23)
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Also, from Eq. (A2), we have

[[vijj=0,

[['Ul'2J] (~12/pl) [[y2&2]] &12/2/plp2

[[vlyi]]=(a12/p1) [[yly2]J 0,

[['Vly2) (~12/pl) (y2) '1202q2/ply

plV2]] (~12/pl) [['V2y2]J 0

[['1jl (o12/pl) [j'ly2]] '1282q2/pl p2,

[fd'vi/dt'jr=0.

Qk,P,q, =O,
4b) we conclude that

(A24c) p.lb. 'll/q, =e., a constant,

(A32)

(A33)
(A24d)

(A24e)

(A24f)

(A24g)

is a solution of (A31). If we extend the procedure to
calculate the time averages of high powers of E,, we
continue to find an underdetermined set of equations.
However, it can be easily seen that if

[['"i»172"' ~ cV„&"jj=[pVi"')[[2V2»j] ~ pV„""]j

cannot solve for the variables [[yP]]. However, since

(A24) from(1. 6)

Using (A1), (A2), (A23), and (A24), we can calculate
all the averages of polynomials involving v1 and v2 and
their time derivatives.

To calculate the time averages for a many-species
system, we follow the same procedure as for a two-
species system. Taking the time average of (1.2), we get

O=k, [jcV,j]+(1/P,) Q a;,(E,1V,]J

is assumed to be true, then

lIy'"ll=(p —1) (~~/p') (lry'" 'jl+q'try'" 'Il),

i=1, 2, ~ ~, m, (A34)

is consistent with the equations for the time averages
of various functions of A s.

which, using (1.18) and (1.6), becomes

Q u, ,(p', iV,]] q, q, ) =0—
or

~ &' lIy'yII=o

(A25a)

(A25b)

APPENDIX B:MICROCANONICAL AVERAGES OF
VARIOUS FUNCTIONS OF E;

In this appendix, we will calculate the microcanonical
averages of various functions of E; for a many-species
system. The basic formula which we use is given in
Sec. 1[Eq. (1.29)], i.e. ,

llyiy'Il=o.

To calculate [[cV,']] we note that

n

d,
(Z P'y. )'=2(Z Pe") Z P4

i=1 k=1 i=1

(A26)

(A27)

But from (1.2), due to the antisymmetry of a... we have

Equation (A25b) is a, set of e equations, one for eachi,
involving e' variables [[y,y,]] (i= 1, ~ ~ ~, n; j=1, ~ ~ ~, e)
and thus represents an undetermined set. A solution
consistentwith (A25b) is

@{f}= fd/I vGI
G(0)

ds/l vG l, (81)

where ii is a unit vector in the vi direction. To calculate
E{f},we write f as a derivative of G and substitute in
(81).Let us first calculate the microcanonical ensemble
averages of the following functions:

where ds is an element of area on a surface of constant
G, the surface integral area over the surface G=G(0),
and

vG= Q (BG/», ) v, ,

n n

Z p4= Z&'p'y' (A28)

Substituting (A28) into (A27), and taking the time
average, we find

Since

f =y'=(V' q') =p' '(~G/»'), — (83a)

f2 (lV;—q, ) ln (V——,/q, ) =P, 'v, (BG/», ), (83b)

f =y'y, =(P'P, ) '(~G/»') (~G/») (83c)

or

Z &'p*p.k'y"11=0 (A29)
06

f vG{ =n.i, ,
8'v,

(84)

Z I p.'Ib"II+ 2 &'p.p.lIy, y.II=o where n is a unit vector normal to the surface G=t,'A30)

constant, we have

If we assume that (A26) is true, then this equation
becomes

d5
fi- ——p, ' ni;ds=p, ' V.6, dr=0.

Z &'p''lIy''II=0. (A31) (85a)

Since in this equation there are e variables, we To obtain the last integral, we have used the Gauss
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divergence theorem. Thus we have To calculate the average of y,', we extend the proof
of (87b) to get

Similarly, we have

f f2ds/I G I= p' 'f.,n v, ds

=P; 'f-V v;dr=P, 'fdr= ro/P, —,
where ro is the volume enclosed by G(0), and

f fsds/I VG I=(P,P, ) 'f(aG—/av, )n v, ds

=(O'P') 'f(a/»*) (aG/»r) dr

if i&j

which, when (89) is used, becomes

fy"ds/I vG

=(2/P, ') [f(aG/av;) ~ dr+q, P,f(aG/av;) dr j
= (2/P's) f(aG/av )' dr (816)

To evaluate the integral on the right-hand side, we note
that

= (1/PP) f(a'G/ave) dr ifi=j.
f(aG/»;) ~ dr= fV ~ (aG/», ) ~v, dr j arbitrary, j~i,

= f(aG/», )'v, (aG/», ) ds/I vG
I (817)

Thus we find
(87b) which can further be written as

f(aG/av;) dr= fn fv, (aG/av, ) (aG/av, )]v, ds
E{y,y, }= 0=8{ xx, }, if i&j. (88a)

By extending the proof of (Bga), one can easily show
that

= fv, (aG/av) (O'G/av') dr

=q,P,fv, (aG/av;) dr. (818)

Z{x;,x,," x,„}=O,

Z{x,,x,''" x -}=O
ifirgigg ~ ~ ~ gi„, (88b)

if ~g&i2, ~ ~ ~ &i„. (88c)
To calculate E/y 2], we note that from (1.9a)

O'G/av '=a'G, /av, '= (aG/av, ) ~q;P, = (aG/av, ) ~q,P;.

Since j was arbitrary, the integral on the right-hand
side of j in the above equation should be independent
ofj.Therefore, from (816) and (818), we have

'{y,'}= (q./p )a', (»9)
where

Therefore, from (87b), we have

fy,'ds/I VG
I

= (q,/P, ) ro+(1/P, ') f(aG/av, ) dr.

But we also have

(89)
BG

'vg —d7
80,.

4$
(820)

Proceeding in a similar fashion, one can show that

E{y,'}= (3q,/P, ') $84/3+q;P, es/2] (821a)
Oi

f(aG/av, ) dr= fV.Gv; dr= fGn v, ds

=Gfn v, ds=G. fv v, ds=o.. (811)
p''I ~(y,') :(q,'/p, ')-0 -j

gi
(821b)

(&*/q*) }. (813)

Therefore, (810) becomes

fy' ds/I VG
I

= (q'/P').

=q,fy, ln y, /q, )ds/I VGI, (812)
where ro is the volume enclosed by the surface G=G(0).
Therefore, we have

where

BG BG
04= 3 I 'v, vA,

—d7.
8'v&

(822)
dS

vG

This procedure can be generalized to calculate the
average of Ã,".Let us now evaluate E{y2ys }.Using the
procedure followed for calculating E{yP}, and using
(89), one can show that

Further, if we write

7p

fds/I vG
I

~{y"}= (q'/p') a.,

'{y' ln (-~''/q') }=as/p',

(814)

(815a)

(815b)

fy"y 'ds/I VG
I

=(P'P ) '[f(aG/av, )'dr+q, P,f(aG/», )'dr j
Since the first integral vanishes, using (818) and
(820), one finds that the above equation becomes

'{y"y'}= :(q'/p') p'{y-'}

Eq. (815a) for the microcanonical average is con-
sistent with (A31) for the time average.

=-:(q;q'/p, p, ) a'. (823)

The above procedure can be generalized to calculate
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{y;vyp}. It may be noted that if we know Z{Ã,v} for
each p and i, we can calculate E{Np'X2"' ~ 1V„""}.

If
P{y 2y,2} E{y,2}E{y.2}

then from (823) and (815a), we have

In general, if we demand that

which, when (89) is used, reduces to

(y,")= (0/p, ) (p —1){ (y, ')+q, (y," ')]. (C4)

Also, we have

(r'1 (&'/v') ) = t3' '& '(aG/a ') )

= {—0/P, [v, exp (—G~/0)] „"
+ (0/p, ) f exp (—G;/0) dv, }/f exp (—G,/0) dv;

Z{y&v y v . . .y vn} —Z{yp }Z{y2 }.. .P{y vn} = 0/ta' = &r*')/q'. (C5)
then all the 0's and, hence, all the microcanonical
averages, can be expressed in terms of 02.

APPENDIX C ' CANONICAL AVERAGES OF
VARIOUS FUNCTIONS OF E,) &;, AND

THEIR TIME DERIVATIVES

In this appendix, we will derive the expressions for
the canonical averages of various functions of E,, v;,
v, , dvP/d't, etc.

The basic equation which we use is (1.35), i.e. ,

f = f f exp (—G„/0) dr
C1

f exp (—G„/0) dr '

where (f) denotes the canonical average of a function
f. Since, from (1.9a),

y, =X,—q, =p, '(aG/av;),
we have

&y') =O' 'Lf (aG/»')

(exp (Xv, ) ) =
exp (Xv, ) exp {—x,Lexp (v, ) —v,]}dv;

exp {—x, r exp (v, ) —v,]}dv,

As pointed out in Sec. 1, because of the decomposibility
of G into its component, i.e., G=P, G, ,

(fi(r~)f2(r2) "f-(y-) ) = &f~(ri) ) (f2(y2) )."(f-(y-) ).
(C6)

Equations (C2), (C3), (C4), and (C6) can be used to
calculate canonical average of any polynomial function
of E;.

To calculate the averages of polynomials in v;
(Kerner, 1959), we note that from (C1) and (1.9a),

X exp (—G,/0) dv, /f exp (—G,/e) d.,]
(0/tt, ) Lf—(a/av, ) ol

=x;—' t"+ '—'e—' dt
0

t' 'e 'dt

ol

X [exp ( —G;/0)] dv~/f exp (—G~/0) dv;]

= —(0/P;) [(exp {—P,q,

X [exp (v;) —v,7}) „"/f exp ( —G,/0) dv;]

(exp (Xv, ) )= r(X+x,)/I (x,)x,-&. (C7)

The averages of polynomials in. v; can be calculated by
repeated differentiation of (C7) with respect to X and
then letting 'A~O. For example, we find

(r.)=o
The average of y is given by

(C2) (v, ) = (a/aX) (exp (Xv, ) ) =y(x;) —ln x;, (CS)

(v ) =p'(x„)+Lp(x;) —ln x,]', etc. , (C9)
&r'') = (—0/0'') Lf (aG/a ') (a/»')

X Lexp (—G;/0) ] dv~/ f exp ( —G,/e) d.,].
Integrating the integral in the numerator by parts,
we get

&r'') = (0/0") [f(a'G/»*')

X exp (—G,/0) dv, /f exp ( —G;&0) dv, ]
which, when (89) is used, reduces to

&r') = (0~'/~. )+(0/~') (aG/», ) = eq/t3, (C3).
Extending the above calculations for (y,&), we get

(y'") = (0/0'") (p 1) Lf (aG—/»') ~'(a'G/av, ')
X exp (—G,/0) dv;/f exp ( —G,/0) dv, ]

= Z a.,y, = 2 {:a' (1/0 ) (aG/» )] (C1o)

Taking canonical averages of both sides and using
(C2), we get

Further, since
(v, ) =0. (C11)

P„(dv,'/dt ) = g a,,q, exp (v, ) i,

where p is the digamma function and p' is the trigamma
function.

The averages of polynomials involving derivatives
can be calculated by using Eq. (1.8), i.e. ,

P,v;= P a;,kl exp (v„:)—1]
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and since &, is independent of v, , we find

(dvP/dt') =0 (C12)

As pointed out by Kerner (1959), the averages of
quantity like vA&; can be used to observe the micro-
scopic parameter a;;/P, of the Volterra's equation. This
can be seen by multiplying (C10) by vt, and taking the
averages of both sides of the equation, i.e.,

su%.cient that one of the following conditions be
satisfied:

(a) All the zeros of F(y) and G(y) are real and
alternate, and inequality (D4) is satisfied for at least
one value of y.

(b) All the zeros of F(y) are real a.nd, for each zero
y=y, , inequality (D4) is satisfied.

(c) Same as (b), except for G(y).

For the function H($) given by (D3), we have

F(y) =p (y+—ft)»ny,

G(y) = (y+tt) cos y.

(C13)= tt;a(yui i)

(C14) The zeros of G(y) are

yo= —0,

yo= a(rt+a) ~, e=o, 1, ~ ~ ~

ct;a/l3, = (t,s ~)/qa(ya') (c15)

which, when (C5) is used, becomes

( tl') = . 't/t3A

When (C3) is used, this equation transforms to

(D5a)

(D5b)

(D6a)

(D6b)

which is the required equation for calculating tt,q/P;
by measuring cV; and EVE as a function of time. Averages
of other functions of v; and its time derivatives can be
calculated by procedures similar to the one described
above.

and, for these roots,

G'(yo)F(yo) =p cos 0= Re (y), (D7a)

ze'+ pe' =0 7=pe', p, 0 real, (D1)

are negative. If we make the substitution

APPENDIX D: ROOTS OF THE EQUATION
ze*+y=0, y COMPLEX

In this appendix, we will derive the condition for
which the real parts of all the roots of the above equa-
tion, i.e., of equation

If Re (y) &0, condition (D4) is not satisfied, at least
for y=yo= —0, and, therefore, the real parts of all the
roots of Eq. (T)1) are not less than 0. For Re (y) &0,—sr/2(8(sr/2, and (rt+-', ) sr&tt&0. Therefore, from
Eqs. (D7a) and (D7b) and (b) of the above theorem,
for Re (y) &0, we find real parts of all the roots of
(D1) (0 provided

~m.&8&p,

$=s—6, (D2)
—.,'-7r —

f el &p, 7—pe (D8)
Eq. (D1) becomes

H ($) $e&+ige=—&+p =0.
For 0=(), i.e, , y=p, the above condition reduces to

(D3) 2sr& p, which is equivalent to the condition (8.19).

G'(y) F (y) —G(y) F'(y) &o (D4)

for each y. Uiloreover, in order that all the zeros of the
function lie to the left of the imaginary axis, it is

"' The term a;,x'y2 of the polynomial Z,„,„a„ittx'"y", nz, n non-
negative, is called the principal term if for each a„„tx"'y" with
a „AO, we have either i &m, j&n or i =m, j&n, i&m,j =n.' That is, between two roots of F'(y) there is a root of G(y),
and vice versa.

Since Re (z) = Re (t), the conditions for Re (z) or
Re ($) to be less than 0 are identical. To find these
conditions we use a theorem (13.7) from Bellnian and
Cooke (1963). According to this theorem, let H($) =
h($, e&) be a polynomial with a principal term"" and
H(iy) =F(y)+iG(y). If all the zeros of the function
H(() lie to the left side of the imaginary axis, then the
zeros of the functions F(y) and G(y) are real, alter-
nating, ' and
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