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The graphical representation of angular momentum is used as the basis of a procedure for the complete evaluation
of the matrix element of a Coulomb or multipole interaction operator bet~veen atomic states having any number of open
shells. The method is presented in the form of a step-by-step procedure and is designed to permit straightforward extension
to the evaluation of the matrix elements of other types of tensor operators and of sums of products of Coulomb matrix
elements, such as occur in the perturbation theory of configuration interaction.
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1. INTRODUCTION

In atomic and nuclear physics, many-particle wave
functions are usually constructed as Slater determinants,
i.e., as sums of products of one-particle wave functions.
In a central-field approximation the one-particle
functions are themselves products of radial, angular,
and spin functions. The angular functions describe the
symmetry of the wave functions under rotation and a
many-particle wave function of a certain symmetry is
obtained by coupling the one-particle angular wave
functions in a specified way. In a sequence of papers,
Racah (R42a, R42b, R43) developed calculational
techniques for the evaluation of matrix elements of
tensor operators between such many-particle wave
functions. The original development concerned matrix
elements which occur in theoretica1 atomic spec-
troscopy, but since then the methods have been used
extensively in nuclear shell theory (deST63). In this
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paper the discussion will be from the standpoint of

189
atomic calculations.

191 Racah's guiding thought regarding spectroscopic
191 calculations was that multiple integrations over

94 angul ar coordinates reduce to standard, high ly sym-

19g metric numerical functions of angular momentum
quantum numbers, known today as 3n-j coefficient.

196
199 This reduction has been performed over the years by a
199 variety of techniques, utilizing points of view developed

202
to unrave1. specific aspects of problems with increasin~
complication.

209 Today, sums of products of interaction matrix
elements are carried out, or contemplated (R%63);
these too can be reduced to a, single operation (RS67,

212 % 68) . The diagrammatic methods of Yutsis, Levinson,
214 and Vanagas (YLV62), which ca,n be combined with

219 Feynman diagram techniques (J67), have been particu-
larly effective in extending the range of application of

228 Racah's concept. Several other points of view, men-
229 tioned below, have contributed to recent progress. It

seems possible now to attempt a unified formulation
which contains features from various sources and can
be presented in a fairly self-contained manner.

A general approach of theoretical spectroscopy has
been to utilize the analytical results of angular integra-
tions without any attempt to evaluate radial integrals.
Coefficients representing these integrals were deter-
mined by fitting large numbers of experimental energy
levels. Thus the theory was used for the limited purpose
of dctci mining relationships among lcvcls which ai c
implied by angular momentum proper ties, i.e. , by
symmetries under rotation. Lately, interest has returned
to radial integrations. This trend implies a shift in
emphasis from a concentration on the effects of rota-
tional symmetries to a more complete formulation
which includes all relevant factors. It has been realized,
of course, from the beginning that the effects of inter-
action of an atom with external, static or radiative,
multipole fields could be treated on an equal footing
with particle interactions within an a,tom (FR59,
Cha, ps. 17—19). Nowadays, the methods of theoretical
spectroscopy are normally applied to the collision
phenomena; indeed, the relationship of the two fields
is increasingly emphasized (FP63, Se66, SAI68).

189
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Features of the theory which have been stressed by
various authors and which will be combined in this
paper include the following:

(1) Racah's basic formulas for the evaluation of the
electrostatic interaction matrix elements concern a
pair of electrons with given L and 5. For multielectron
systems, this interaction is evaluated by first recoupling
each state of the matrix element so tha, t. the interacting
electrons are paired together with given L and 5. Basic
formulas are then applied and the result is summed over
all alternative values of L and S. Simplifications occur-
ring in sums of this type suggest the existence of more
flexible and convenient procedures. This consideration
led Fano, Prats, and Goldschmidt (FPG63) to a
procedure which reduces the angular integration in a
matrix element between many-particle states to a single
recoupling coefficient. The many-j coefficient can then
be broken down into a product of simpler recoupling
coefficients, or a sum of such products, in whichever
way appears most expedient.

(2) Clebsch —Gordan (C—G) coefTicients, recoupling
coefficients, and the 3»-j coefficients can be represented
gra, phically and algebraic operations with these quanti-
ties translated into graphical rules. The graphica, l

representation of angular momentum coupling ha, s
found wide use, not only as a means of demonstrating
symmetry properties (E57, FR59, J63), but in the
actual performance of angular momentum calculations.
The graphical method has the obvious advantage that.
it is easier to recognize relationships between pictorial
representations of symmetric quantities than between
the algebraic expressions themselves. The graphical
representa, tion of Yutsis, Levinson, and Vanaga, s
(YI U62) has proved the most useful. The original
formulation, based on a representation of the Wigner
3-j coefficient was subsequently extended to include
C—G coetficients (YB65). Further developments, using
the basic ideas of YLV62 were made by El-Baz and
co-workers (ME1.67, E69), who extended the graphical
representation to include quantities, in addition to
the 3-j coefficient, which appear frequently in the theory
of angular momentum, for example, spherical har-
monics, tensor opera, tors, and elements of the rotation
matrix. An importa, nt new fea, ture was the gra, phical
evaluation of reduced matrix elements of coupled
tensor opera, tors.

(3) In a product of intera, ction matrix elements such
as occurs in the perturbation theory, a sunimation noway
be made over the states of the intermedia. te configura. —

tions of electrons. Since the one-electron sta, tes genera. ted
in the same central potential are orthogonal, each
interaction operator in the product can be replaced by
a "curtailed" operator. The niatrix element of this
operator is equal to that of the interaction operator
when taken between the configurations in question and
zero for all other configurations. The summation can
then be extended over all states of the system since

intermediate configurations other than those in the
initial product have zero matrix elements, A closure
over the intermediate states allows the sequence of
interaction matrix elements to be replaced by a single
ma, trix element of an effective operator acting between
the initial and final states only. The structure of this
effective operator depends upon the intermediate
configurations of particles. The replacement of per-
turbation terms by matrix elements of effective opera-
tors was first discussed by Bacher and Goudsmit
(BG34). The first, explicit calculations of the effective
operators were by Rajnak and Wybourne (RW63).
Racah and Stein (RS67) refined the calculations by
introduction of the "curtailed" operators.

(4) In a second-quantization formalism the inter-
action operators are represented by Feynman graphs.
Since the Feynman graphs are topologically equivalent
to the angular momentum graphs of YLV62, these
graphs automatically represent the angular momentum
recoupling involved in the interaction. This equivalence
between Feynman and angular momentum graphs has
been utilized by Judd (J67) in analysing the tensor
structure of the effective operators discussed in (3)
above. Sandars (S69) made full use of the equivalence
between Feynman and angular momentum diagrams to
include all angular a»d radial factors in the graphical
representation of a Coulomb interaction operator. Also,
he showed specifically how to treat one-, two- and
three-electron effective operators.

(5) The angular momentum recoupling involved in
an interaction matrix element can be expressed, either
a,lgebra, ically or graphically, as a single recoupling
coe%cient. This recoupling coefficient is obtained from
the procedure of FPG63 and is represented by a single
graph. This procedure may be applied to the matrix
element of any coupled tensor operator and also to
sums of products of such matrix elements (Br70).
Alternatively the graph may be obtained directly in
two steps:

(a) bracketing the graph of the interaction
operator by diagrams which represent the coupling of
angular momenta. in the many-particle states on the
left- and right. -hand sides of the matrix element (or
product of matrix elements) .

(b) combining the three graphs by joining all
corresponding "open lines, " This operation actually
represents the integration or averaging over all orienta-
tion coordinates or magnetic quantum numbers. This
fully diagrammatic procedure has been outlined by
Matulis and Bandzaitis (MB65) and by Tolmachev
(T69) but applied only to simple examples.

(6) Situations involving many electrons distributed
in several open shells require an appropria, te compact
treatment of antisymmetrization for electrons in
different shells and of the combined contribution of
different equivalent electrons in any single shell. A
standardized procedure introduced by Fano (F65) for
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this purpose will be utilized in this paper. Consistent
application of the creation operator algebra, using the
commutation rules to take care of phase factors, leads
to fully equivalent results as demonstrated by Armstrong
(A68) .

Bordarier (Bo70) has recently given a method for
the evaluation of matrix elements which is based mainly
on the graphical formulation of El-Baz (E69) and
which overlaps considerably the method which will be
given here. The scope of Bordarier's treatment is broa'd
and encompasses many different types of matrix
elements. It includes the graphical treatment of anti-
symmetrization and fractional parentage. The cost of
such generality is, of necessity, an increase in the
number of gra, phical symbols. In this work the main
objective will be more restricted, specifically the
evaluation of matrix elements of Coulomb or one-
electron tensor interaction operators (and products of
such operators) between states with LS coupling. The
point of view will be that of the user rather than the
specialist. Ke will take advantage of the extreme
simplification which is possible for this restricted class
of examples in an attempt to give the easiest possible
working procedure. Nevertheless, the method is capable
of simple extension to the case of more complicated
tensor operators and other schemes of coupling, as we
will indicate in Sec. 8.

A recurring dilemma in the graphical method has
been whether to use a representation based on the
highly symmetric 3-j coefficients or on the C—G coeffi-
cients, which occur naturally in the calculation of
matrix elements, but have lower symmetry. Attempts
to resolve this question by the introduction of a graphical
representation which can accommodate both coefficients
simultaneously, notably by Brink and Satchler (BS68)
and by El-Baz (E69), have resulted in a picture which
is more coherent mathematically, but perhaps graphi-
cally less convenient. In this paper, again with a view
to simplifying the working procedure, we find it ex-
pedient to use alternately both C—G and 3-j coefficients.
In constructing a graphical representation of a matrix
element, the simpler basis of C—6 coefficients is more
appropriate; in the reduction and evaluation of angular
momentum graphs, where it is desirable to make use of
symmetry properties, the basis of 3-j coefficients will
be used.

The general rules of graphical calculation are con-
tained in YI V62. Various workers have given selective
summaries of these rules or the application of the rules
to specific exa,mples (BS69, E69, J67, S69, T69). In
Sec. 4 of this paper a scheme will be developed for the
systematic reduction of any angular momentum
diagram to products (or sums of products) of 6-j
coefficient diagrams. The 6-j coefficients are the only
3e-j coefficients which have received sufficiently
extensive tabulation (RBMW59) . The rules for
graphical calculation are derived in this paper using

only the orthornormalization properties of C—G
coefficients; it is assumed only that the reader is
familiar with the properties of C—6 coefficients, Wigner
3-j coefficients, and 6-j coefficients. The aim is to
provide a self-contained procedure by which a complete
numerical evaluation of the angular factor may be
made, without recourse to tables of "standard" diagrams
(YI V62) or to auxiliary computer programs. Neverthe-
less, the approach will be sufficiently flexible for it to be
clear at which stage the individual user may take
advantage of available alternative procedures to
minimize the effort of calculation.

The development of techniques in this paper proceeds
as follows. Section 2 describes the graphical representa-
tion firstly of the Coulomb interaction, secondly of the
multipole interaction operators, and finally of the many-
electron wave functions. In Sec. 3, the evaluation of
matrix elements of the Coulomb operator is considered.
The recoupling of angular momentum involved in each
matrix element is obtained in the form of a single
diagram. Section 4 gives the development of the
graphical methods for the evaluation of this angular
factor. In Sec. 5 the evaluation of matrix elements of a
multipole interaction operator are considered. Section 6
summarizes the results of previous sections and gives a
prescription which is illustrated by a worked example.
In Sec. 7, sums of products of Coulomb and multipole
interaction matrix elements a,re considered and in
Sec. 8 some extensions of the method are discussed.

2. GRAPHICAL REPRESENTATION

In this section, interaction operators will be repre-
sented as sums of graphs which describe the interaction
of particular sets of atomic subshells. The graphical
representation is achieved by an expansion which
separates the radial integrals and reduced matrix
elements of tensor operators from other factors which
are functions of magnetic quantum numbers.

Wave functions of atomic states will be also repre-
sented graphically. Integration over all electron
coordina, tes will be performed symbolically by com-
bining each interaction graph with the graphs of
the atomic states involved in the matrix element.
Each combined gra, ph describes the recoupling of
angular momenta involved in a single term of the final
sum. Finally, rules will be derived for including relevant
numerical factors, specifically a weight factor and a
phase factor.

The graphical treatment parallels the algebraic
evaluation of single matrix elements given by Fano
(F65) and the notation of that paper will be used
extensively.

2.1 The Interaction Operators

The states of one electron in a central field are
specified in the usual notation of spectroscopy by the
quantum numbers e/masm, . The wave function of
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electron i in the state
I

nlm~sm, ) will be written

(i
I

nlm~sm, ) = (r,
I

ril) (fl
I

lmE) (Z
I
sm, ), (2;1)

where r, , 0,, 2, are the radial, angular, and spin co-
ordinates, respectively, of electron i. The set of one-
electron wave functions (i I

nqlim~sim, ) with alternative
magnetic quantum numbers will be indicated by
(i I h} for brevity.

The Coulomb interaction operator between electrons
i and j is usually expanded in the form

U;, = e'/I r, —r, I

= e' g r&" /r&'+'P 1(r,'r, ) . (2.2)

Here r& and r~ denote the greater and lesser of r;, r, ,
respectively, and I'I, is a Legendre polynomial. I'I, may
be written as a scalar product of Racah tensors:

Pl, (r,'r, ) = Ci'i (0,) ~ Ci"i (0,)
= Q (—1)'C,'"&(0;)C,i'i(Q, ), (2.3)

where the components C~'~' are spherical harmonics
I'I„normalized so that'

1.e.)

C,&"i = $47r/ (2k+ 1)g'"Ui, .

The tensor components C, '~' in Eq. (2.3) may be
separately expanded by making use of the Kigner-
Eckart theorem, i.e.,

C,~~&(0,) = g P (0; I
fm) (lm

I c, '~'
l
l'm') (l'm'10, )

lm l ~m~

= g g Ll]
—'~'(lm

I
l'm'kq) (0; I

lm)

x(i 11
ci i

II i') (f'm'
I n, ), (2.4)

where a factor ( —1)'~ has been canceled since k is
integral. Here the sums over m, m' are no longer
independent but are subject to the restriction m'+ q= m.
Also, here and throughout, we make the now customary
abbreviation Llj—=2l+ 1.

By applying the transformation (2.4) to both com-

'We will use the normalization convention which has V/;. p=
(24+1/47r)'"PI, (cosg). This gives the following formula for the
reduced matrix element of C~k~,

t u t'
(1 fi C'"&&I 1') = ( —1) '(LGL1'3)"'

0 0 0

This is the normalization. convention of R42b and CS35. The
Vkq defined by Fano and Racah (FR59) contain an additional
factor i~. The phase convention of FR59 is used in F65, RS67,
and A68. Consequently the (1(( OW((l') given by Eq. (14.12) of
FR59 should be used in the results of these papers. Also, it must
be emphasized that the atomic states of FR59 differ in phase from
those commonly used (which are those used in this paper) since
the angular part (0 I tm) of the one-electron wave functions of
FR59 contain the additional factor i'. This phase difference
must be recognized when making comparison between matrix
elements involving many-electron wave functions defined ac-
cording to the two phase conventions.

ponents of the Racah tensor on the right-hand side of
Eq. (2.3), substituting the resulting expression in Eq.
(2.2), extending the summation over all quantum
numbers, and performing the radial integration, we
obtain the result

U;, = Q Q Q R"(nylon„l„, isa lg.n„ l„) (jill Ci"i
11 i),.)

X(V II
C'"'

ll fs)L(sl) }(jl~}»'I~) I~'I j)3
x g ( —1) P.g-'~'I 4g-'&

X (l),my I ly m&, kq) (l„m„ I
1„m„k—q), (2.5)

where R~ (eiliri„l„,mi li e„l„) is the Slater radial
integral defined by Condon and Shortley (CS35) .
Henceforth we will use an abbreviation introduced by
Rajnak and Kybourne (RW63), viz. ,

X(k; iXph'p') =—R"(nial) ri„l„, mi lg.e„ l„)
x (i, II

ci'&
ll f, ,) (s„ fl

ci i
fl r„). (2.6)

Using the transformation properties of C—G coeffi-
cients we can write Eq. (2.5) in the form

U* = Z Z Z &(k ) ~~'~')
I. Xp X~p~

Xl:(s I
) } (j I ~}I) '

I s) f~'
I j)3(—1)'2 I f~) "'

xD„] "'(l~mq
I

f&, m~ kq) (l„m„ I &, mkq), (2.7)

where we have also used the fact that f,„+k—l„. is
even. This follows since /„. is integral and the factor
(l„ II

C'"'
ll f„) vanishes unless (7„+k+1„.) is an even

integer.
Each C—G coefficient on the right-hand side of Eq.

(2.7) will be represented graphically by a vertex at
which three lines meet. Each line is labeled with one of
the momenta involved in the C—G coefficient. The
coupling scheme amongst the three momenta is indi-
cated by a sign on the vertex (or node, as it will be
called) and by drawing a thick line to distinguish the
resultant from the compounded momenta. If the
sequence of angular momenta ( ji j&)j in the C—G
coefficient ( jimi j&m. I jm) is obtained by rea.ding the
lines in clockwise order about the node, the node carries
a minus sign. If the sequence is reproduced by reading
the lines in anticlockwise order, the node carries a plus
sign. This is the convention adopted by Yutsis and
Bandzaitis (YB65). For example, the coeKcient
(limy

I
lq my kq) has the following graphical repre-

sentation:

When divided by the factor Dzjt", the C—G coeK-
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cient (l&,snz
I

/&, rn&, kq) equals, to within a phase factor, will be writ:ten
the 3-j coefficient

(/), k lx

(m ~ q
—nz ) U* = ZZZ

XX~ p/M~ A:

(2.9)

in which the three momenta appear on an equal footing.
For this reason, the factor I /q] "'(/&mq

I
/q my kq) will

be represented by a graph in which the three lines are
of equal thickness. Further, from the transformation
properties of the C—G coefficient, a change in the
orientation of the node (i.e., in the sign) is equivalent to
multiplying by a factor ( —1) '&+" '~, which is positive
in this case as discussed above. This means that the sign
on the node becomes redundant in the representation
of the C—G coefficients on the right-hand side of Eq.
(2.7) . Therefore the signs will be omitted.

The two C—G coefficients on the right-hand side of
(2.7), multiplied by the factors Ll ] "' and

I /„] '/'

will be represented by the following graphs:

Here the labels X, X', p, p,
' denote alt one- electron

quantum numbers. The line labeled X, with the left-
hand end free and labeled i, represents the one-electron
wave function (i

I
rsvp/qm/sqrrs, ) . Similarly the line labeled

p' with the right-hand end free and labeled j represents
the one-electron wave function (n„ /„mt's„sss, '

I j), etc
Also, the cross on the closed line represents the factor
( —1)"X(k; XpX'p') .

The same principles can be applied to the multipole
moment operator P, AC, '"'(f/;). Use of the trans-
formation (2.4) gives the result

r,"C, " (n;) = P I(k;»')L(i! XIIX'!i)]

where we define

X I ly] "'(/ynzy
I lg mg kq), (2.10)

The summation over q is achieved symbolically by
joining the two free k lines to give the graph

1(k»') =—(n~/~
I

r"
I

n~ /~ ) «~ II
C'"'

ll /') (2 11)

The right-hand side of Eq. (2.10) ca,n similarly be
represented graphically to give

r kC [k/ (f/ ) (2 12)

(2.8)
In this case, the double bar on the k line represents a
factor J(k; »') and the label q on the k line denotes
the component q of the tensor operator. 2

In this graph the k line is closed, i.e., both ends terminate
in nodes, corresponding to the fact that the algebraic
expression it represents is not a function of q after
summation.

The graph (2.8) represents only the coupling of
orbital angular momenta in the sum over products of
C—G coefTicients in Eq. (2.5) and so may be deformed
in any way so long as the nodes represent the triads of
momenta (/qk/q ) and (/„k/„). The graph has been
drawn with the X, p lines open to the left and the X'p, '

lines open to the right so that its meaning may be
extended to include all factors on the right-hand side of
Eq. (2.5) . Accordingly, the interaction operator U,,

2.2 Many-Electron Wavefunctions

Different configurations of atomic electrons will be
denoted by the letters 3, 8, C, etc. These configurations
are specified by the number of equivalent electrons
occupying each atomic subshell. In accord with our
previous notation, the successive atomic subshells 1s,
2s, 2p, etc. , will be denoted by successive values of
the index X.

Fano (F65) has given a detailed discussion of the
construction of a fully antisymmetric wave function for
a state of a configuration A of E electrons having A~
electrons in the 3th subshell. In an LS scheme of

'Clearly, any tensor operator of the form Z,f(k, r, ) C~~~~(Q, )
can be represented by a form like the right-hand side of (2.12).
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coupling (which we will use throughout), the Xq elec-
trons of subshell P are coupled to total subshell quantum
numbers nqI qSqML„qMq, q, where nq denotes all other
quantum numbers (e.g. , seniority) necessary to specify
the state uniquely. The one-electron variables r;0;Z, of
the X) electrons of subshell 'A will be prescribed to be
ordered in the sequence of irEcreosirIg i. The ordered
set of such variables will be indicated by q), . An anti-
symmetr ized wave function of subshell X will be
indicated by (»zlP"a&L&S&Mr. &M, + z l qz) and the set
of such wave functions with. alternative M quantum
numbers by

electrons amongst the subshells is

K=X!/(g X !).

The set of normalized i'lt-electron gati symmetrised'
wave functions with diferent M quantum numbers is
obtained by summing (2.14) over all distributions
q, i.e.,

~—1/2 Q ( 1)Pq

{»dP"~&Lx»
l q~) . (2.13)

An Nesymmetrised wave function of the N electrons
is constructed by multiplying together all subshell
wave functions (2.13) and coupling their angular
momenta according to some scheme, denoted by 0.,
to give resultant I, and S total quantum numbers, i.e.,

LS
Aa

a2L2 S

a) L) S),—q X

(A~LSMrMs
l q)

=[g {»&4' "ngLgSgl q),)$~,~8&

Here A denotes the configuration and q denotes the
aggregate {qqI of ordered sets of subshell variables.
Such a wave function will be represented graphically
by drawing a single line to represent each subshell
wave function and joining the lines according to the
prescription denoted by n. The scheme n can remain
unspecified for the moment so that the set of un-
symmetrized atomic wave functions with alternative
ML, , Mz quantum numbers will be represented by

(2.15)

Similarly, the wave functions of the N-electron state
l
Bo.'L'S'), having X&,

' electrons in the P,th subshell will

be written

a2L2 S2
q2 Ba

L S

LS
Aa

l I l

2L2 S2
(2.16)

(2.14)

For the purpose of subsequently establishing a stand-
ardized phase convention, the subshells are ordered
vertically downwards in the direction of increasing X.

The index q specifies the distribution of electrons
amongst the subshells. Each distribution is assigned a
parity I', according to the number of permutations by
which it differs from the standard order 1, 2 ~ N of
the electrons, i.e., from the distribution with electrons
1, 2 in the 1s subshell, electrons 3, 4 in the 2s subshell,
etc. The number of distinct distributions of the N

2.3 Fractional Parentage Expansion

In the evaluation of matrix elements it is necessary
to separate one or more electrons from the subshell of
iV& equivalent electrons such that they are coupled
onto, but no longer antisymmetrized with, the rema, in-

ing electrons. This is achieved by a fractional parentage
(f.p.) expansion, which for one electron is

{»~1~~"~~L~S~
l v~)

= Q (i& " &L&S&,{l lgv" '&,L),8g, lg)--
f.p.

X[{»qlq'v" 'aqLqSq
l gq) x {X

l
i) ]'~"'~"'. (2.17)

Here and throughout, a summation sign labeled "f.p."
will be used to denote a summation over fractional
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parentage. In all cases, the quantum numbers to be
summed over will be those which carry a bar or a tilde,
e.g. , nqL), sq or nqLq8q. Here i is the largest of the
indices in the set q~, and g~ denotes the set which
remains after the removal of i. The fractional parentage
expansion will be represented graphically by making the
substitution

a), L) S~

f.p.

ayLysg — aXLysX0

(2.18)

in the diagrams like (2.15) . The full square on the node
represents the coefficient of fractional parentage (c.f.p. )
(lP"n~L~S~}

I
lP" 'n~L~8~, 4) in (2.17). The diagram

on the right hand side of (2.18) represents the C—G
coefficient describing the coupling of momenta on the
right hand side of (2.17) . fn a similar way, when two
electrons are separated out of the same subshell, we use
the two-electron coe%cient of fractional parentage
de6ned by Racah (R43) and make the substitution

LgSg
C

f, p.

C

(2.19)

where the full squiz. re represents the two-electron c.f.p.
(lP"ngLgSgII lP" '

n), I~g5'g, lg2Lg8g)-and i and j are
the largest and next. -largest values of the indices in
the set qq.

3.1 Integration over Electron Variables

Since each term V;; contributes equally to the matrix
element (3.1) we have

M= —ill (E 1)—(A, nLS
I

V~ y, ~ I 8, n'L'5 ) . (3.2)

(1) The summation over Xpk'p' in the operator
representation (2.9) is restricted to a small number of
terms. The operator changes the quantum numbers of
only two electrons so that M vanishes if the configur-
ation A and B differ in the quantum numbers of more
than two electrons. If the configurations diGer in the
quantum numbers of just two electrons, then there are
contributions from a single set of interacting subshells
}X@,X'p'}. Otherwise there are alternative choices of the
set IX@, X'p'}. However, the contribution to M of each
term in the summation, which we will call M(X@X'p'),
may be evaluated iridepemdeetly This mean. s that the
summation over Xp,P 'p' may be brought outside the
matrix element, i.e., we put.

M = Q M (XgX'p') . (3.3)

This form of the matrix element singles out electrons
Ã —1, X as interacting electrons while the rest remain
"spectators. "

The evaluation of the matrix element proceeds by
bracketing the representation (2.9) of the Coulomb
operator V~ q ~ by the representations (2.15) and
(2.16) of the atomic wave functions. The interacting
electrons X—1, E are distinguished from other equiva-
lent electrons by fractional parentage expansions, such
as (2.18), of the relevant subshell wave functions.
Integration over electron coordinates aed summation
over magnetic substates is achieved symbolically by
joining free lines corresponding to the same electron or
group of electrons. This graphical operation will be
ca,lied "contraction. "

The orthogonality of one-electron wave functions
means that the joining of free lines gives a nonzero
result only when the lines represent the same electron
or group of electrons and ca,rry the same quantum
number labels. This property results in a drastic reduc-
tion in the number and kind of terms contributing to
M in the following two ways:

3. THE COULOMB MATRIX ELEMENT

We will consider the matrix element of the Coulomb
interaction between the sta, tes (A, nLS

I
and

I 8, n'L'5'), i.e.,

M= (A, nL5
I 2 V',

I
8, n'I-'5'). (3.1)

The Coulomb matrix element is diagonal in the total
magnetic quantum numbers 3EzM8 which have been
suppressed in (3.1) for brevity.

Henceforth we shall consider the contribution of one
particular term in the sum (3.3), say M(po.p'o. '), and
assume that p(o. , p'&o. '.

(2) The summations over qq' in (2.15) and (2.16)
are restricted to those terms which are diagonal in the
distributions g= Iqq} and tl'= }gq'} of spectator elec-
trons among the subshells. Again this follows from the
fact that the interaction operator changes only the
quantum numbers of ieteracHwg electrons. Each diagonal
term contributes equally so that we need consider
specifically only one such distribution q and multiply
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by the number

~= (N —2) '/(ll Nx')

of such distributions.

the form,

(3.4) M (po p'o ')

=L-,'N(lV —1)K '"BT,'—'"Z,](—1) ~+ "P P
Ic f.p.

There now remains only the permutation of the
interacting electrons. The term M(po p'o') is the matrix
element of the operator

LS
Aa --

k Ba
LS

p'
N-I

('3.5)

N
C7 0

in the sum (2.9) for V~ r,~. Therefore, the distribution
of interacting electrons is fixed, with electrons N —1, A
in the p, 0. subshells in the left-hand wave function and
the p'0-' subshells in the right-hand wave function
respectively.

The distributions q, q' are now fixed. After separation
of the interacting electrons by f.p. expansions of the
type (2.18), the integration over spectator electrons is
achieved by contracting corresponding free lines in the
terms with the required electron distribution in (2.15)
and (2.16). The graph resulting from this contraction
is of the form

Lp Sp

LS
Aa

N I

Lp Sp~

N-i~P

L~ S~
Ba'

LS

+
Lcr' $0.'

(3.6)

The remaining integration over the coordinates of the
spectator electrons is performed by contracting the
operator graph (3.5) with graph (3.6) . This contraction
completes the integra, tion. From (3.2), (2 15), (2.16),
and (3.4) the term M(pop'o. ') has been obtained in

(3.7)

The phase factors in this expression will be given
explicitly in Sec. 3.2. The central block in the diagram
in (3.7) represents the coupling of the interacting
electron lines with the k line. The diagram is multiplied
by the factor (—1)"X(k; po p'o ') and the cross on the k
line is erased. Similarly the full squares on the nodes in-
volved in the f.p. expansions are erased by multiplying
the diagram by the appropriate c.f.p. The diagram now
is a function of angular momentum quantum numbers
only, since the radM/ integration contributes to the
factor X(k; pop'o. '), which has been removed from the
diagram. The evaluation of the numerical function
which the angular diagram represents will be given in
Sec. 4.

For a given set of subshells Ipo, p'o. '} there are other
terms contributing to the sum (3.3). These must be
added to M(pop'o') . Then the sum of contributions
from all other sets of interacting subshells are added to
complete the evaluation of the Coulomb matrix element
lV as indicated by Eq. (3.3) .

3,2 Phase Factor and Weight Factor

The phase factors and weight factors can be con-
veniently separated into two contributions. First, there
is a contribution from the summation over different
distributions }qq} of the spectator electrons. Second,
there is a contribution from different ordering of the
interacting electrons themselves. The former depends
upon the subshell occupation numbers only and will be
considered first.

The relevant weight factors have been given in
(3.7). Where the interacting electrons occupy subshells

p, 0 on the left and p', 0-' on the right, we find

—',N (lV —1)%(XX')—'l'

= ~2)lVe(lV, bp.)lVe '(lV. ' —8e, )j"' (3.8)—

by using (3.4). Aside from the factor —',, this weight
factor is the square root of the product of the number
of electrons which can be drawn from each of the
relevant interacting subshells.

There is a phase factor ( —1)~~+~~' associated with
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the distributions of the electrons in left-hand and
right-hand wave functions. Since the parity P; of the
distribution of spectator electrons is the same in both
wave functions, we need considei only the parity of the
permutation which shifts the interacting electrons from
their "natural" order» —1, 1V (see Sec. 2.2). The
permutation which shifts the pair of interacting elec-
trons into the appropriate subshells without regard to the
order of the interacting electrons themselves has parity

Z»i,+ Z &'i
X=p+1

for the left-hand state and

(3 9)

&it = Q»x+ P &Vx (3.10)

P P
N -

I N-I

N N N-l

for the right-hand state. This expression can be simplified
because only the difference P& —P& is relevant at this
point. However, we postpone the simplification because
the generality of (3.9) and (3.10) will be of use in Sec.
6. Phase factors such as (3.9) and (3.10) which come
fi.om the antisymmetrization of the many- electron
wave functions will be called "Pauli phase factors. "

The factors (3.8) —(3.10) depend only upon ivanich

subshells are involved in the interaction, and so are the
same for all terms M(Atty. 'tt') contributing to the inter-
action among the set {Xtt, X'tt'}. In Sec. 3.1 we con-
sidered the particular term M (po.p'o'). We now con-
sider the other terms in (3.3) arising from the same
choice of subshells. The set of subshells {po, p'o '}
contributes four terms, M (pa p'o '), M (pa o'p'),
M(app'a. '), and M(opo. 'p'), to the matrix element M.
These terms arise from the following four terms of the
sum (2.9) for the operator V~ i,~,

p&o and p'&o', and followed the convention that sub-
shells are ordered vertically downwards.

In (a), the electrons are in standard order on both
sides of the interaction graph so that by convention we
associate a phase + 1 with this graph. The graphs (b)
and (c) have a single permutation of the electrons and
so contribute a phase factor ( —1) . The graph (d) has
the electrons interchanged on both sides and so has a
phase +1.

Clearly, when the graphs are drawn with subshells
ordered vertically downwards, a permutation of the
electrons between subshells results in a crossing of one-
electron lines. This leads to the simple rule that a phase
factor —1 is included for each time that one-electron
lines cross.

Ke now take advantage of the fact that permutation
of electrons .V—1 and X on both sides of the matrix
element has no net effect. Graph (a) includes the factor
X(k; po p'o. ') and graph (d) includes the factor
X(k; a pa'p'). These factors coincide on account of the
symmetry of the Slater radial integral in (2.6). Simi-
larly, graphs (b) and (c) include thefactorsX(k; poa'p')
and X(k; o.pp'o. ') respectively, which a,re equal. Further-
more, since the orientation of the nodes involving a
k line is not significant, graphs (a) and (d) give the
same result upon contraction with the appropriate
graphs like (3.6). { The ordering convention fixes the
relative vertical positions of the free lines and so graph
(d) can be made coincident with graph (a) by rotating
the k line of graph (d) through 180' about a horizontal
axis in the plane of the paper. ]By the same argument,
graphs (b) and (c) also lead to equivalent diagrams.
This means that we need consider only the graphs which
are distinct in the pairs of subshells coupled by the
k line.

Each distinct graph then has a weight factor 2 which
cancels the factor a in (3.7). Accordingly, for the case
pro, p'Qo', the part of the Coulomb interaction
attributable to interaction among the subshells po-p'o. ' is
obtained by taking the matrix element of the operator

I (pa, p'a')

= g V,, (po, p'a') = g Pi' iQj I

(a)

P
N —I N

(b)
P'

)(k

N-I

(c) (d)

(3.11)

In drawing the graphs (3.11) we have assumed that

(3.12)

between the states (Ao.
~

and
~

Bot'). The form (3.12)
is equivalent to the "curtailed" operators used by
Racah and Stein (RS67). As in that paper, we will use
this form in the discussion of products of matrix
elements in Sec. 7.
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The matrix element of the curtailed operator (3.12)
between the states (Aa

~
and

~

Ba') gives the sum of
the contributions to the full Coulomb matrix element of
the terms involving the set of subshells Ipo., p'o'I.
Indicating the matrix element of the curtailed operator
by M (po, p'o '), we have

M(po, p'cr')

=M'(po p'a ') +3l (po o 'p') +M (opp'o ') +M (a po 'p') .

(3.13)

The case where two electrons are transferred out of
the same subshell in one state only is typified by the
situation p=o-, p'&o. '. Here, there are just two con-
tributions to the interaction operator U~ I,g, viz. ,

factor —1. Therefore the contributions of graphs (a,)
and (b) to the matrix element are equal. Again, only
graph (a) need be considered, with a weight factor 2,
which cancels the factor —', in (3.8). For the contribution
of the set of subshells Ipp, p'o'I to the Coulomb inter-
action we will use the operator

U(pp, p'o')

= g U, , (pp, p'o. ') = Q gi' iQj k

I

p r.
N-I N-I N-1

N N N-I

(3.16)

in Sec. 7.
Denoting the matrix element of the curtailed operator

(3.16) between (An
~

and
~

Bn') by M(pp, p'o'), we
have

(a) (b)

(3.14)

The graph (b) has a phase ( —1) with respect to graph
(a) and at first sight the graphs appear distinct.
However, the graphs include coincident factors
X(k; ppp'o') and X(k; ppo'p'). Also, both graphs are
contracted with graphs like (3.6) in which the inter-
acting electrons have been separated from the p sub-
shell by a two-electron f.p. expansion (2.19). The
terms of the f.p. expansion are represented by graphs,

N-I

p ., p'

(3.18)

+(pp p o ) = ll'f(ppp'o')+~(ppo'p') (3»)
Finally, in the case where p=o- aed p'=o-', there is

only one term which contributes to the operator
Vg —i,g, VIZ,

Lp Sp

N-I

and the factor —,
' is not canceled from (3.8). En this case

the contribution of the interaction between the sub-
shells p and p' is given by the matrix element of the
operator

&~(pp, p'p')

= Z Uv(pp, p'p') = Z Z
i&j i(j A,

(3.15)

When the graph (b) of (3.14) is contracted with
graph (3.15) and the positions of the two p lines are
then interchanged, the result is identical to the con-
traction of (a) with (3.15) . interchanging the
two p lines corresponds to changing the coupling
(l~,~ ll~, ~)L&8~ to the coupllllg (l~ ~lz ~ i)L„8~. Tllls
change introduces a factor ( —1) &~ &~+"~+', where
both electrons have spin 2. The orbital momentum /,
is integral and (L,+8,) is even for a pair of equivalent
electrons, so that the interchange of p lines introduces a

p n p'

l%

p p

(3.19)

where the i(j condition rep/aces the factor ~ in (3.8).
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Trivially, in this case we have

~(tt, t't') =tl-'f(tt p't') (3.20)

(4.2)

The coeKcient on the left-hand side of (4.2) is a re
couplirtg coefficient (FR59), also called a transformation
matrix (YLV62) . The numerical evaluation of re-
coupling coefficients of increasing complexity has been
developed over the last 20 years. The introduction to

It has been demonstrated that the contribution of a
particular set of subshells to the Coulomb interaction
between states of the configuration 3 and 8 is equal to
the matrix element of a curtailed operator between the
same states. The graphical representation of the
curtailed operators (3.12), (3.16), or (3.19) contain
only those graphs which are distinct in the pairs of
subshells which are coupled by the interaction. The
full Coulomb matrix element M is then equal to the
sum of the matrix elements of the curtailed operators
corresponding to each set of subshells which contributes
to the Coulomb interaction. From (3.13), (3.17), and
(3.20) we see that the sum M in (3.3) may be replaced
b

M = Q 3I (Xy, X'tt'), (3.21)
,'),p,

up&�}

where the summation is now over the distinct sets of
subshells which give a nonzero contribution.

4. EVALUATION OF THE ANGULAR FACTOR

After removal of the cross on the k line
I denoting the

factor ( —1)"X(k; Atty'tt')) s,nd the full squares on
certain nodes (denoting the c.f.p.), the diagram on the
right-hand side of (3.7) is a function of k and the
angular momentum quantum numbers only. The labels
X, etc. , on one-electron lines can now be replaced by
the corresponding angular quantum numbers l),s)„etc.
Also, other quantum numbers denoted by cx)„etc., can
be removed from the diagram. We will call this diagram
the "g diagram, " or simply "g."

The g diagram may be regarded as the inner product
of two wave functions of the same basic angular
momenta coupled by different schemes of addition,
i.e., as a coefficient of the form

((j ij "j.) ~ftI
I (jij'"j-) Jfttf), (41)

where n, n' denote the coupling schemes. In the coefh-
cient represented by the diagram on the right-hand
side of (3.7), the coupled momenta ji j2 ~ j„are the
momentum k, the interacting electron momenta t),s)„
etc., and the momenta I ),8)„etc., of groups of spectator
electrons.

The coefFicient (4.1) is independent of M and so is
equal to its average over all magnetic substates, i.e. ,

((jij2" j-)~J
I
(jij" j-)~~)

Z ((jij' i.)~J~
I ( ji j2 j )~ ~ftl)

LS

4.1 THE COUPLING SCHEMES

(4 3)

In an LS scheme of coupling, the spin and orbital
momenta are coupled separately. This means that the
diagram g factors into a product of an orbital diagram
and a spin diagram, i.e. , g = 2&( S.

The orbital diagram 2 is the g diagram with all lines
labeled with the corresponding orbital momenta. The
spin diagram S is the same diagram labeled with the
corresponding spin momenta, except that, since the
Coulomb interaction is spirt independent, the k line
together with the nodes at its ends is omitted. However,
since most of the following procedure is applicable to
both spin and orbital diagrams, for the moment we will
continue to work with the composite diagram P. For
brevity, we will use the label j when we wish to refer to
either spin or orbital momentum.

the tables of RBMW59 includes a comprehensive
bibliography of the literature dealing with the evalu-
ation of coefficients involving the recoupling of not
more than five angular momenta. Fano and Racah
(FR59) have indicated the method of reduction of a
recoupling coefFicient of arbitrary complexity to sums
of products of simpler coefficients. In particular, the
diagrammatic methods of YLV62 have provided
guidance for the classification and evaluation of coeffi-
cients which depend upon many j quantum numbers.
A general computer program has recently been provided
by Burke (B70) for the evaluation of any recoupling
coefficient. At the end of Sec. 6 we shall show how the
recoupling coefficient represented by the diagram in
(3.7) may be obtained. The recoupling coeflicient is
exactly that given by the orbiton method of F65 and
may be evaluated using Burke's program. This pro-
cedure for the evaluation of the g diagram may be
used as an alternative to the graphical method which is
given below.

In this section we describe the essential procedures
that are utilized by computer programs. We do this by
graphical methods derived from YLV62. The summa-
tion over M on the rhs of (4.2) is represented graphically
by contracting the open lines on the rhs and lhs of the
diagram in (3.7) . The resulting form of g has rto further
open lines Moreover .the contraction applies separately
for the spin and orbital total angular momenta, i.e.,

p = b(LL') 5(55') (I L]I 5]) '
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For the numerical evaluation of the recoupling
coefficient, i.e., the closed diagram, it is necessary to
specify explicitly the coupling schemes u, n' of the
many-electron wave functions which have hitherto been
denoted by blocks in the g diagram.

Algebraically, the coupling scheme is specified by a
particular product of C—G coefficients summed over
appropriate magnetic quantum numbers. Graphically,
each C—G coefficient ( jimi j&m&

~
jm) is represented

by a graph with one node

the subshells coupled sequentially and interacting
electrons in subshells p', 0-' is drawn,

I2 I2

(4 4)
IL, S, L, S

+i+

X, s
IL, S, L, S

(4.6)

and the summation over magnetic quantum numbers is
represented by joining appropriate free lines in the
product of graphs like (4.4). This was the procedure
used in Sec. 2.1 in representing the Coulomb interaction
operator graphically.

In Sec. 2.2 we prescribed that the lines representing
successive subshells of electrons be ordered vertically
downwards in drawing the graphs. This convention
means that, in the usual situation where subshell
momenta are coupled sequentially, all nodes in the
graph of the left-hand wave function have a —sign
(clockwise ordering of the first and second factor in a.

product) and all nodes in the graph of the right-hand
wave function have a + sign (anticlockwise ordering) .
For example, the scheme u which has the subshells
coupled sequentially and the interacting electrons in
subshells p and a is drawn

L(S

LS

The "state graphs" (4.5) and (4.6) a.re contracted with
the appropriate interaction graph to form the g diagram
as was done in Sec. 3.1 to obtain the diagram in (3.7).

Simplifications can often be made in drawing the
state graphs (4.5) and (4.6). Any closed subshells of
spectator electrons may simply be ignored in the
schemes n, n' because a closed subshell has total I.=O,
total $=0. Further, any groups of spectator subshells
which precede aa of the interacting subshells pp'ag'

may be replaced by their resultant momenta. This
result follows from the orthonormality of C—G coeffi-
cients

g (jm
~
jimi j~m2) ( jimi j&m~

~

j'm') =8( jj')b(mm'),
m] m2

(4 7)
which is represented graphically by

L(P S(2 L2 S2

L S
P P Lp Sp

(4.5)

L~S~ L~S~

LS
S

(4.8)

where the dashed lines indicate intervening subshells of
spectator electrons. Similarly, the scheme n' which has

For example, in the contraction of (4.5) and (4.6),
subshells 1 and 2 could be replaced by a single resultant
line LI2$I2. This replacement does not affect the results
of Sec. 3.2 since groups of spectator subshells which
precede all interacting subshells do not contribute to
the weight factor or Pauli phase factor.
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4.2 The j-Coefficient Diagrams

For graphical evaluation it is desirable to work with

j coefficients, i.e., products of 3-j coefficients summed
over all magnetic quantum numbers, rather than
recoupling coefficients which are products of C—G
coefFicients summed over all magnetic quantum
numbers. This is because the j coefficients are more
symmetric under permutation of their arguments. The
necessary transformation is achieved by replacing each
C—G coefFicient by the corresponding 3-j coefficient.
For each node on the left-hand side we have

( j2/2
~
jljj21 j2m2)

(j j
= ( 1)jl j2+j$j—71/2( 1)j m~-

I (4 9)
8$$ 589 5$

or graphically

In drawing the right-hand side of (4.10) we have
followed the convention of YLV62 that the sign of the
magnetic quantum number in a 3-j coefficient is indi-
cated by an arrow on the appropriate line. For a minus
sign the arrow enters the node, and for a plus sign the
arrow leaves the node. The 3-j coefficient is invariant
under cyclic (even) permutation of its arguments and
is multiplied by (—1)"+"+'under odd permutation of
its arguments. Correspondingly, in the graphical
representation of the 3-j coefficient, a change in the
cyclic order of the momenta (i.e., a change in the sign
on the node) is equivalent to multiplication by a
factor ( —1) j'+j2+j. This property and the fact that
( jl+j2+j) is integral has been used in deriving (4.11).

In a similar way, for each node on the right-hand
side we make the substitution

(jlmlj 22122 tj 212) = ( —1) jl—j2—j

(~x[j71/2( 1)jl™l+j2™2
~ (4.12)

SS& SSp 'PS

which is represented graphically as

( 1) j1-j2+j[j71/2( 1)'j™

( 1) jl—j2-jt j71/2( 1) jl—ml+jl-m2

(4.10)

(4.13)

We will also use the alternative form

Again we will use the alternative form

—( 1)2j2t j71/2( 1)j—m

—( 1)2jlL j71/2( ] )jl ml+j2 m2—-
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In the graphs of 3-j coefficients the joining of two free
lines labeled with the same j and with similarly directed
arrows corresponds to summing the pioduct of the two
3-j coefficients with the factor ( —1)' . The magnetic
quantum number m has opposite sign in the two coeffi-
cients. For example, the graph

step':

(iii) reverse the direction of the arrows on all lines in
the spin diagram which appear as "2nd coupled" at
each node of the diagram of the left-hand wave function
and as "1st coupled" at each node of the diagram of the
right-hand wave function. For some lines this may
involve two such reversals, in which case they cancel.

l25

corresponds to the summation

(4.15)

The change of orientation of the nodes in the trans-
formations (4.11) and (4.14) is achieved by the
following step:

(iv) reverse the signs on all nodes in the spin diagram.
Finally, the factors [j]"'are included:

(v) multiply each diagram by a factor Lj]"' for
each thick line j and then omit all "thick-line" labeling
in accordance with (4.11) and (4.14).

(ji
g ( 1)in mu —

~

m12 m2 —mI2 m3 m~& —mI23

(4.16)

The right-hand side of (4.11) and (4.14) are designed
so as to provide the ( —1) ' factors just where required
to carry out the summations implied by joining the
open lines. Since m is an index of summation, one can
verify that changing the direction of an arrow on a
closed line j is equivalent to changing m into —m and
hence to multiplica. tion by a factor ( —1) ' = ( —1)".

The transformation of the diagrammatic representa-
tion of a recoupling coe%cient, formed by contracting
(4.5) and (4.6) with the interaction graph, to the
diagram of a j coefficient is made by using the relations
(4.11) and (4.14). The fact that all orbital momenta
are integral means that the transformation of the
orbital diagram becomes trivial. The first step in the
transformation is

(i) separate the spin and orbital diagrams in the
manner indicated at the beginning of Sec. 4.1.

For the spin diagram the transformation is completed
by the following procedure:

(ii) introduce an arrow on each line of the state
graphs (4.5) and (4.6). For the nodes of the left-hand
state graph, each thick line has an arrow entering the
node; each thin line has an arrow leaving the node. For
the right-hand state graph, arrows on thick lines leave
the nodes and arrows on thin lines enter the nodes.
This means that, in the contracted graph, lines Row
through the diagram all in the same direction.

The phase factors introduced by the transformations
(4.11) and (4.14) are of the form ( —1)"and so may be
canceled by reversal of the direction of appropriate
arrows on the closed diagram. Hence we have the next

For the orbital diagram, the transformation to a
j coefficient diagram involves only step (v); steps (ii)
and (iii) are unnecessary since all factors ( —1)"are
positive for orbital momenta, i.e., arrows are not
required on orbital diagrams. Further, for a closed
orbital diagram, changing the signs of all nodes is
equivalent to multiplication by the positive factor
( —1)", where x is the sum of all the momenta. Hence,
step (iv) is also unnecessary.

The total L line and the total 5 line each have two
thick portions so that step (v) gives a factor PL]$57
which cancels the factor (LL]LS]) ' introduced in
(4.3) .

The spin and orbital diagrams now represent
j coe%cients.

Henceforth the diagrams may be deformed at will,
subject only to the rule that if the deformation changes
the cyclic ordering of momenta at a node, the sign on
that node is reversed.

4.3 Reduction of Diagrams

The spin and orbital diagrams are now evaluated
separately. The goal of diagrammatic evaluation is to
reduce the diagram to a product (or sum of products) of

(a) standard irreducible diagrams of two kinds:
(i) the "unit diagram" representing the triangular
delta 6( j&j& j3), which is unity if j&j2 j3 form a triad
(i.e. , a node) and zero otherwise, and (ii) the diagram
which represents the 6-j coefficient,

(b) weight factors of the type C
j]'",

(c) phase factors of the type ( —1)@, where 4 =P,j;.
The triangular delta 6( j&j2 j3) is simply the ortho-

normality relation (4.7) averaged over all orientations,

'This procedure is an alternative to that given in Sec. 22 of
YLV62: it has the advantage that the correct phase to be as-
sociated with the diagrams is obtained by purely graphical
operations.

4 Strictlv speaking, the triangular delta is the "3-j coefficient"
in the hierarchy of 3n-j coefficients. However we will adopt the
common usage and reserve this name for the "Wigner" 3-j co-
efficient which appears, for example, on the right of (4.9).
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i.e.,

~( j~ j~ j3)
L j8] '( jam3

~
jgmg j2nsg) ( jism& j2mg

~
jsm3) .

m1m2m3

(4.17)

Using the transformations (4.10) and (4.13) we have

Q ( jr j2 j3) —( 1)2ii+2im p ( ]) A—~i+i~—~~+i3—~3

m1m2m3

mutation of triads can be verified. Any diagram or
subdiagram which is obtained with the same structure
a,s (4.20) but with alternative nodal signs and arrow
orientation may be put in the standard form. A factor
( —1)"+"+"must be included for each reversal of a
nodal sign and a factor ( —1)"for each arrow reversal.
The phase factor introduced in this way will be called
the geometric phase factor.

The techniques for reducing closed diagrams to sums
of products of diagrams like (4.18) and (4.20) mirror
the algebraic expansion of the j coefficients into sums
of products of 6-j coefficients. A preliminary simplifica-
tion is to erase any line corresponding to j=o. This
erasure leaves two nodes at which only two lines meet.
These nodes may be removed by the transformation

j —Q

(4.18)

Since j~+j2+j3 is an integer, this diagram is unchanged
by reversing both signs or by reversing all three arrows.

The 6-j coefficient is a sum over a product of four
3-j coefficients, i.e. ,

jl j2 j3

tg t. l3

=(i7 "'~(i')
which derives from the relation

(4 21)

(j m
~

00j2m&) =5( j2j)6(m&m). (4.22)

By cha, nging the orientation of the node in (4.21), we
have the alternative form,

( j,
xi

PE&

j3 ) |' ji f2 t3)

SZ2 8$3 —tÃy —B2 'Pl 3

t, )( j,
(4»)

S] m3 P1] g2

j)=0

where

4=j i mi+j2 m+j—3 nz3+ l—i xi+ f—n2+—l3 rt3- —
Diagrammatically, the 6-j coefficient is represented by

= Ljj '"~(j j) (4.23)

Any node involving a zero line in a closed diagram may
be brought to the form of the left-hand side of (4.21)
or (4.23) by reversing arrows and including the appro-
priate phase factors.

Any closed loops can also be removed at the outset
by use of the orthonormality relation (4.8), which in
terms of j-coefficient graphs is

(4.20)

The full symmetry of (4.19) and (4.20) under per- =&(j~j2)t:j~l ' (4.24)
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The basic idea of the diagrammatic reduction is that
if two parts of a closed graph, each containing more
than one node, are connected by a single line, that line
must have j=0 owing to the invariance under rotations.
The diagram then splits into two parts by erasure of the
connecting line and removal of the two nodes involved
according to (4.21) or (4.23), i.e.,

j=0

orthonormality property of the C—G coe%cients, i.e.,

6(mimi') 8(m2m2 )

= P ( jimi j&m2
~ jm) ( jm

~
jimi'j9m2'). (4.27)

jm

The expansion (4.26) may be verified by the sub-
stitution of the transformations (4.10) and (4.13) in
(4.27). Note that the signs on the nodes in (4.26) are
only required to be different since reversal of both
introduces a factor ( —1)'~'+'i'+~' which is positive.

The first corollary of (4.26) is that if a diagram is
separable on two lines, then, from (4.25), only the j=0
terin is allowed. The result is

a'

j)
x a' (4.25)

Again, a diagram with the same topology can always be
made identical to the left-hand side of (4.25) by suitable
reversal of arrows and signs.

The first step is to determine the minimum number of
lines which must be cut to separate the diagram into
two parts, each containing more than one node. If only
one line need be cut, then (4.25) is applied. If two or
more lines connect two parts of the same diagram, we
can always reduce to the form of the left-hand side of
(4.25) by successive application of the expansion

(4.28)

Note that the arrows in the diagram on the left-hand
side of (4.28) are in directions such that, after cutting
the lines j& and j&, the arrows on lines connected to the
same block have the relative direction necessary for
their joining to form the product of diagrams on the
t.ight-hand side.

The second corollary of (4.26) is the application to a
diagram separable on three lines. Here two summations
are introduced:

, (4.26)

(4.29)

where the dashed line indicates any number of other
connecting lines. This expansion derives from the second
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Owing to (4.25), j' must vanish. Moreover, (4.23) then
requires that j=j3 so that the summation over j and j
in (4.29) disappears. The final result is that a diagram
separable on three lines is expressible as a simple
product, i.e.,

reduction, a method of choosing the most efficient
sequence, i.e. , the one involving the minimum number
of intermediate summations has been derived (RBY65) .
This method is described in detail by Bordarier (Bo70) .
The final step is the numerical evaluation of the dia-
grams representing 6-j coefficients. The numerical
values of the 6-j coefficients have been tabulated
extensively by Rotenberg et al. (RBMW59) . Computer
subroutines for their evaluation are widely available.

4.4 Examples

(4.30)

As specific examples of the application of the pro-
cedure of Secs. 4.1—4.3, we will consider the evaluation
of the recoupling coefficients of quintuple products of
angular momenta of resultant zero. The graphical
representation of the recoupling coefficients involves the
contraction of diagrams Hke (4.5) and (4.6) . Of
course, the interaction graphs do not appear, but these
do not figure in the procedure of Sec. 4.2.

According to Chapter XII of Fano and Racah
(FR59), the transformations of quintuple products of
degree zero fall into three groups characterized by the
recoupling coefficients

~i—= ((jij )j», (i si 4)i 34,i 5
l ( ji j2)ji2, j3, (j 4j 5)j 45)' ',

%=—((jij )ji2, (j sj 4)j 34 j5
~ ji, ( j2 j3)j23 ( j4j5)j45)' ',

Since no more than three lines meet at one node, clearly
three is the maximum number of lines on which a
diagram may be separable in order to be expressible as
a simple product of two diagrams.

In the general case of a diagram separable on no less
than rt lines, (rt 3) interm— ediate summations (4.26)
are necessary for reduction to a diagram separable on
three lines, to which (4.30) may then be applied. Again,
any diagram separable on three lines may be brought to
the form of the left-hand side of (4.30) by the reversal
of arrows. Also, the requirement is only that the signs
on the nodes on the right-hand side of (4.30) be
different since reversing both signs involves the positive
phaSe faCtOr ( —1) 'tz+'tz+'tz.

Once a graphical representation of a j coefficient has
been obtained in accordance with steps (i)—(v) of Sec.
4.1, its numerical evaluation is carried out by devising
a sequence of operations which breaks it up into com-
ponents no larger than the 6-j coefFicient (4.20). Each
operation will be one of those represented by the
sequence (4.21), (4.24), (4.25), (4.28), and (4.30)
or the introduction of an intermediate summation by
use of (4.26). The result will be a product, or sum of
products of diagrams representing the 6-j coefficient
(4.20) or the triangular delta (4.19). For very large
diagrams, where there may be alternative sequences of

~3=—((jij2Vi, (jsj4)j34 j l(jij3)j», (-jij4V24, j5) .

(4.31)

(~ 34J

(4.32)

j =0

In terms of C—G coefficient diagrams, the left-hand
side of the recoupling coefficient R& is represented by
the diagram
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and the right-hand side by The two nodes involving the j=0 line can be removed
by application of (4.23) to give

(4.33)

j 45
+

j=o

(4.36)

Upon contraction of (4.32) and (4.33), the lines j& and

j2 form a closed loop which is removed by the use of
(4.8) to leave the diagra, m

Reversal of the signs of the two minus nodes in this
diagram and reversal of the arrow on the j45 line give
the diagram of the 6-j coefficient

j=0 j3 j4 j34

j4s
j5 j12 j45.

multiplied by the phase factor (—1) 22+2'4+&2+&'12.

Finally, we have the result

(4.34)

The angular momenta involved in (4.31) may be
half-integral so that in transforming (4.34) to a j-coeS-
cient diagram we must follow the procedure given in
Sec. 4.2 for the spin diagram. Application of the pro-
cedures of steps (ii), (iii), (iv), and (v) of Sec. 4.2
converts diagram (4.34) to the diagram of a j coeiTi-

cient. The result is

((j'X j343Lj"3Lj423) "'X

+1= (j 22j 24j; ~j 12j 2j 42) "'

= (i 24' 2 I j2 j45) ""'
j3 j4 j34—(—1) /2+2'4+2'4+/12L y24]1/2L g 4„)1/2

, j5 j12 j45

The right-hand side of E2 is represented by

(4.37)

(4.35) (4.38)

/ IL

j=o
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Contraction of this diagram with the diagram (4.32) shown to be equal to the product
of the left-hand side gives the diagram

j=0

(4.41)

Each of the diagrams in (4.41) can be brought to the
standard form (4.20) of the 6-j coefficient by reversal
of appropriate nodes and arrows. Finally, we obtain
t,he result

(4.3'))
~2= ( jl2 j34 j3 Ij 1 j23 j45)

Application of steps (ii), (iii), (iv), and (v) of Sec.
(4.2) and subsequent removal of the nodes involving
the j= 0 lines converts (4.39) to a j-coeKcient diagram.
The result is

24'. = ([j12][j34j[j23j[j43])'"

—( ] ) Jl+t2+8+t45+ts+t4+t44't12([ jl2][j23)[j4 ][j34]) /2

J3 g2 j123 g3 J"4 $34

, J1 $45 $12, J5 f12 $45,

(4 42)

For the third type of recoupling coefFicient E3, the
left-hand side is given by (4.32) and the right-hand
side by

f t l as . (4.40)

j=o

The diagram in (4.40) separates on the three lines
jl2, j3, and j43. Using the result (4.30), the diagram is (4.43)
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Contraction of (4.43) with (4.32) gives the diagram the four, for example, j2 and j3. This gives

+3 (L j»jC j343I j»jL j24j)"' Z L j3

+ . (4.46)

j=0

The diagram in (4.46) is separable on the three lines
&.,j,j» and again on the three lines j34 j,j24. Application
of (4.30) to each set of three lines gives a product of
three diagrams, i.e.,

&3= (Cj»]Cj3~3Cj»jCj243)'" Z Cjj(4 44)

Application of steps (ii), (iii), (iv), and (v) of Sec.
4.2 and removal of the nodes involving the j=o lines
converts (4.44) to a j-coefficient diagram. The result is

~3= (I:j»3C j34jCj»Xj~4j) "'

(4.45)

The diagram in (4.45) is separable on a minirnurn of
four lines. Therefore we apply (4.26) to two lines of (4.47)
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The second diagram is redrawn in "tetrahedral" form
and each diagram brought to the form (4.30) by
suitable change of nodal signs and reversal of arrows.
This procedure leads to the final result

+3 ( j12j34
~
j13j24)

= ([j12j[j34$[j13)[j24])112(—1) s P [j$(—1) r

5.1 Integration over Electron Variables

Each term in the sum over i in (5.1) contributes
equally to the matrix element. Designating the Ãth
electron as the interacting electron we have

T= tU(A, nLSJM
~

r„"C,t"~ (011) ~
8, n'L'S'J'M')

(5.2)

j3 j2 j34 j24 j j3 j2
The matrix element T(pp') is obtained by bracketing
the operator

4.48
j1 j12 j13. , j5 j13 j12, j4 j24 j34,

where S= (j 1+j 2+j 3+j 4+j 3+j 12+j 34+j 13+j 24), i.e., is
equal to the sum of the 9 momenta in diagram (4.45).

The recoupling coefficient E3 is used to define the
9-j coefficient (FR59), i.e.,

( j12j34
~
j13j24) ""= (L j12][j34][j13][j24]) '"

(5.3)

X~ j3

j2 j12,

(4 49)

with the many-electron wave functions

~—1/2 Q ( 1)Pq

13 j24 . j5~

By comparison of (4.49) and (4.48) we obtain an
expansion of the 9-j coefficient in terms of 6-j coeffi-
cients.

From the right-hand sides of (4.49) and (4.45) we
can see that the diagram in (4.45) is a representation of
the 9-j coefficient. Where appropriate computer routines
or tables of 9-j coefficients are available, it may be
convenient to use this diagram as a "standard" diagram.

S. MULTIPOLE OPERATORS

In this section we will evaluate the matrix element of
the multipole transition operator (2.12). This matrix
element is not diagonal in the total angular and mag-
netic quantum numbers of the states, i.e., is of the form

T= (A, nLSJM
i Q r,"C t"j (0;) j 8, n'L'S'J'M') .

and

Ot' '"g ( —1) "

3 3 I

aILISI
qI

Aa

I I I

qI

'2'2 2
q2

X X X (5.4)

(5.1)

The matrix element of a one-electron operator vanishes
unless the configurations A and 8 differ at most by the
nl quantum numbers of a single electron. When the
configurations differ in the quantum numbers of a
single electron, the sum over X, X' in (2.12) is restricted
to the pair of subshells which differ in their occupation
number Xq, X),' in A and B. When the configurations
are the same, there are alternative choices X='A' of the
interacting subshells. However, as for the Coulomb
operator, the contribution T(XX') of the matrix element
of each nonhero term in (2.12) may be calculated
separately, i.e., T=g&,&,

. T(P,X'). We will consider the
contribution of one term T(pp') .

I 4 3'2'2 2
q2 ea'

XXX
q

X

(5.5)

The orthogonality of one-electron wave functions
requires each spectator electron to remain in the same
subshell. Therefore, only those distributions q, q' having
electron X in the p subshell on the left and in the p'

subshell on the right and with the same distribution q
of spectator electrons give a nonzero result upon con-
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traction of the state graphs (5.4) and (5.5) with the
interaction graph (5.3). Each term in the sum over

q, q' which is diagonal in the distribution of spectator
electrons contributes equally. We will consider one such
distribution and multiply by the number X of different
distributions, where

from the k line, to give

2'(pp') =(—1) "' '(»~ ')"'I(& pp')

x & (t."'~.l-.s.l I I. '~.1.~., ~,)
f.p.

%= (X—1)!/(II'~!). (5 6)

The interacting electron Ã is separated from other
electrons in the same subshell (p on the left and p' on
the right) by the f.p. expansion (2.18). Contraction of
the state graphs with the interaction graph (5.3) gives
the result

T(pp') = 1V(XK') 't2X( —1)~~+~~

Here, g is the diagram in (5.7) with the full squares
removed from the nodes and the double bar removed
from the k line. The diagram g is a function of angular
momentum and magnetic quantum numbers only and
is evaluated by the techniques of Sec. 4.

Where there are alternative choices of the interacting
subshells, each term T(XX) is evaluated in the form
(5.10) and the partial results added. In the case of a
one-electron operator there is only one term in the sum
(2.12) for each set IXX'I of interacting subshells. The
curtailed operator is then just the appropriate term in
the sum (2.12), e.g. , the contribution T(pp') given by
(5.10) is the matrix element of the curtailed operator

Aa

ap Lp sp apLpsp

a, L,S,
P P' P' P P'P'

Ba

p p

(5.11)

The weight factor for the term T(pp') is

lV(KX') '"K= (SpXp ')"'

(5.7.)

(5.g)

5.2 The Angular Factor

The evaluation of the diagram g is complicated by
the presence of the open line k which refl. ects the tensor
nature of the operator. Application of the trans-
formations (4.11) and (4.14) to the (IS)J and (I,'S')J'
nodes in the diagram g gives

which again is just the square root of the number of
electrons available for transfer out of each interacting
subshell. The Pauli phase factor is simply the parity of
the permutation necessary to transfer the Xth electron
into the subshell p in the left-hand state and p' in the
right-hand state. As in (3.9) or (3.10) for the pair of
interacting electrons, we have

a, a

I'13 QSg. ——(5 9)

The right-hand side of (5.7) is multiplied by the
relevant c.f.p. and the factor I(k; pp') with simul-
taneous removal of the full squares and the double bar.

(5.12)

where the block n, n' denotes the rest of the diagram in
(5.7) and does not concern us at this point.

The diagram in (5.12) has three open lines. By the
same reasoning as led to (4.30), any such diagram can
be expressed as a closed diagram (a j coeKcient) and
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the diagram of a 3-j coefficient, e.g.,

y —( 1)J &if[—J]1/2[JI]»2

Note that the signs on the LSJ and L'S'J' nodes have
been changed to compensate for the change in the
orientation of these nodes between (5.13) and (5.16) .

The diagram (5.16) can be separated firstly on the
two lines S and S' and secondly on the three lines
L, L', k. Application of (4.28) and (4.30) gives a
product of three diagrams, i.e., the diagram (5.16)
becomes

(5.13) I:S] '~(SS')

The open graph in (5.13) represents the 3-j coefficient X ( Q(X

(~' q

(5 14)
S

L

The graphical procedure used to obtain (5.13) from
(5.12) has been given by MEL67 and is a particular
case of a general procedure for handling diagrams with
open lines given in Sec. 14 of YLV62. In the case where
there are three open lines, two labeled with the total
momenta of angular wave functions and one with the
rank of a tensor operator, the procedure is called the
Wigner —Eckart theorem. Algebraically the Wigner-
Kckart theorem is represented by the equation

Since spin and orbital momenta are coupled sepa-
rately, the block (n, n') in the closed diagram on the
right-hand side of (5.13) may be separated into two
blocks, one representing the coupling of orbital momenta
and the other representing the coupling of spin momenta.
Since the interaction is spin independent, the k line is
attached to the orbital block, i.e., the closed diagram
becomes the diagram

(5.17)

By reversing the sign of the LSJ node and the direction
of the arrow on the J' line, the third diagram is brought
to the form (4.20) of a 6-j coefficient. We will call the
second diagram in (5.17) the orbital diagram 2 and
the first diagram the spin diagram S. Note that the
graphical procedure leading from (5.16) to (5.17) is
equivalent to application of the standard formula
(FR59)

(LSJ II
T'"'

II L S'J') = [J]'"[J']"'(—1)~'+'+"~(SS')

J J'
(L II

T'"'
II L'), (5.18)

where the operator TI~' operates in the orbital space
only.

Finally upon substitution of (5.17) for the closed
diagram in (5.13), we obtain the result

X ( —1) r —s+~ ~(SS') [S]-'&XS. (5.19)

(5.16)
This result is then used to calculate g in Eq. (5.10) for
the matrix element T(pp'). The diagrams 2 and 8 are
then evaluated by the steps (i)—(v) of Sec. 4.2.

All factors in (5.19) other than the diagrams 2 and
S are functions of total quantum numbers only and so
are the same for all terms which contribute to the
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matrix element T. This suggests that each term T(XX')
can be evaluated by initially ignoring the coupling of
total L and 5. The sum of all terms is then multiplied
by the factors in (5.19) which involve J or J'. In this
way, the state graphs (5.4) and (5.5) can be drawn
with L and 5 uncoupled as in (2.15) and (2.16).After
contraction with the interaction graph, the following
diagram replaces g in (5.10) and (5.12),

LS
a,a'

(5.20)

Joining the three lines in a node whose orientation
represents the order LkL' and separation of spin and
orbital diagrams give

6. SUMMARIZED PRESCRIPTION

In this section the results of Secs. 2, 3, and 5 will be
summarized in the form of a step-by-step procedure by
which matrix elements of Coulomb or transition
multipole operators may be evaluated. In this way the
method of the previous sections may be considerably
simplified. For example, in the graphs of Sec. 3, the
open lines are labeled i, j, q)„etc., according to the
electron or group of electrons whose wave function they
represent. The purpose of this labeling is to enable the
Pauli phase factor and the weight factor to be cal-
culated, as is done in Sec. 3.2. After integration over all
coordinates (i.e., contraction of the graphs) the labels
no longer appear, of course. By giving a prescriptioe
for the calculation of the weight factor and Pauli phase
factor, the electron labels need never be specified on the
diagrams. Also, from the development which led to the
curtailed form of the operators, we need consider only
those graphs which are distinct in the pairs of subshells
which are coupled by an interaction line.

(5.21)

The factors 8(»')$5j ' arise because closure of the
5, 5 lines implies the application of (4.2) . The diagrams
in (5.21) are the 2 and S diagrams of (5.17). By com-
parison of (5.21) and (5.19) we see that g' includes all
factors in g which do not depend upon the total angular
momenta J and J'. This means that the results of the
graphical procedure leading to (5.19) may be obtained
by drawing the state graphs with L and S uncoupled as
in (5.20), applying Eq. (5.21), and finally multiplying
by the factors

A'&, & min (kg, X),') (6.1)

g tVi, =iU e—(6.2)

6.1 Step-by-Step Procedure

The matrix element M LEq. (3.2) ] of the Coulomb
operator or the matrix element T [Eq. (5.1)] of the
transition multipole operator is evaluated by the
procedure described in the following paragraphs.

(i) Identify the possible choices of subshells which
contain interacting electrons as distinct from those
which contain only spectator electrons. This is equiva-
lent to enumerating the sets of subshells which give
nonzero contributions M(XtiX'ti') to M as described in
Sec. 3.1, or nonzero contributions T(V,') to T as
described in Sec. 5.1. Each set of interacting subshells
is characterized by a particular configuration of the
spectator electrons. The configurations of spectator
electrons a,re determined by the requirements (F65)

)( ( 1)L s+J[Jjil2$J~]II2, —
L L'

J' J 5
(5.22)

which involve the total J and J' quantum numbers.
The f'actor

LJ)il2p 'ji/2,
L L'

J' J 5

is, to within a phase factor, the line factor of atomic
spectroscopy, which has been tabulated by Menzel and
Shore (MS68) for dipole transitions.

for an m-electron operator. For a Coulomb operator, we
have n= 2; for a multipole operator, we have ~& = 1. The
possible choices of interacting subshells are listed, their
contributions calculated separately and added at the
end. We shall consider the contribution of the inter-
action between subshells p, 0- on the left and p', 0-' on the
right for a Coulomb operator, or p on the left and p'

on the right for a multipole operator.
(ii) Draw all distinct interaction graphs. This means

all interaction graphs which are distinct in the pairs of
subshells which are coupled by the interaction. In the
case p~o-, p'&0-' there are two such graphs; in all other
cases there is only one interaction graph. This expresses
the results of Sec. 3.2, where it was shown that the
interaction between each set of subshells may be cal-
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culated by using the curtailed form (3.12), (3.16), or
(3.19) of the Coulomb operator. For a multipole
operator each "set" of subshells is a single pair, so that
clearly there is only one interaction graph, which is
given in (5.11).

The Coulomb interaction graphs are drawn, as in
(3.11a) and (3.11b), for example, with the open ends
of the one-electron lines ordered vertically downwards.
However, the electron labels N —1, N are omitted for
the reasons discussed above. A cross is placed on the
k lines in the Coulomb operator graphs and a double bar
on the k line of the transition operator graph.

Each graph represents an operator whose matrix
element is calculated by the procedure given below. In
the case p/0. , p'&fT' the contributions of the two graphs
are calculated separately and the results added. YVe will
consider the calculation of the matrix element of a
single interaction operator graph.

In Sec. 7 we will consider sums of products of Coulomb
and multipole operators which give rise to m-electron
interaction operator graphs which may contain more
than one interaction line. The interaction graphs
representing a single Coulomb (two-electron) operator
or a single multipole (one-electron) operator are
paiticular cases of these e-electron graphs. Therefore,
the procedure given below will refer to the evaluation
of the matrix element of an e-electron interaction graph
so as to be applicable also to the results of Sec. 7.

(iii) Multiply the interaction graph by a factor
( —1) for each time that one-electron lines cross. This
is in accordance with the phase rule established in
Section (3.2) .

(iv) Draw the state graphs representing the wave
functions of the left-hand and right-hand states. These
graphs are drawn as on the right-hand side of (2.15),
with the interacting electrons separated from the
spectator electrons in the same subshell as in the graphs
on the right-hand side of (2.18) or (2.19) . The coupling
schemes u, n' need not be specified at this point and the
electron labels i, j, q)„etc., can be omitted from these
graphs. Closed shells of spectator electrons may be
ignored. Lines representing groups of spectator elec-
trons must be labeled with the same momenta L),8),
in the left-hand and right-hand state diagrams. Also,
from the results of Sec. 4.1, the spectator subshells
which precede in order a/t the interacting subshells
po.p'a' may be represented by a single line labeled with
the same resultant momenta in both graphs.

The state graphs should be drawn with the resultant
lines labeled with the total LS, L'S' momenta of the
left-hand and right-hand states respectively, i.e., the
coupling of L and 5 to resultant J is ignored at this
point.

(v) Contract the two state graphs with the inter-
action graph by joining corresponding lines representing
interacting electrons or groups of spectator electrons.

(vi) For each subshell in the left-hand and right-

hand states containing one or more interacting elec-
trons, multiply the diagram resulting from step (v)
by the appropriate c.f.p. and sum over all alternative
parentage.

(vii) Replace the cross on each Coulomb line in the
result of step (vi) by the appropriate factor
(—1)"X(k;XpX'p'). Sum over all k. Where an open
k line representing a multipole operator occurs, remove
the double bar and multiply the result of step (vi) by
the factor I(k; U.').

(viii) Multiply the result of step (vii) by a weight
factor LNq!/(Nq —

n&, )!]'~' for each interacting subshell
in the left-hand state and a factor LNq'!/(Nq' —nq') !]'t'
for each interacting subshell in the right-hand state.
Here e),eq' are the numbers of interacting electrons in
subshell X on the left-hand side and right-hand side,
respectively.

For a one-electron operator graph, the weight factor
is (iV,N, ')'~'. For a two-electron operator graph the
factor is

v X=v+1

and the summation v runs over the interacting subshells
in the configurations A and 8, respectively. For a two-
electron operator with interacting subshells p, o on the
left and p'0-' on the right, the exponent can be written
(F65)

P =p+'1 )I =p I+1

(x) If the diagram resulting from step (vii) does not
contain a free lr interaction line, join the total LS
angular momentum line of the left-hand state with the
total L'5' angular momentum line of the right-hand state
and multiply by a factor t I] 'LS] '8(II')5(55'),
as given by Eq. (4.3). If a free k line does occur, join
the LS and L'5' lines with the k line to form a node in
which the lines have the cyclic order L'kL and multiply
by the factor t 5] '8(55') in accordance with the
results of Sec. 5.2. The orientation of this node is
opposite to that specified in Sec. 5.2. This reversal is
necessary since step (iv) of Sec. 4.2 is omitted for the
orbital diagram.

(xi) Reduce the diagram to a product or sum of
products of 6-j coefficients by applying steps (i)—(v)
of Sec. 4.2 and the methods of Sec. 4.3.

Step (xi) completes the evaluation of the matrix

~(p~) )Nn' (N ' ~(p & ) )]"' (6.3)

For a single Coulomb interaction graph which has
p=o., p'=o' the factor (6.3) is multiplied by an addi-
tional factor —, in accordance with the condition i(j
in (3.19).

(ix) Multiply the result of step (viii) by the Pauli
phase factor ( —1) " o where
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element of one e-electron interaction graph. Steps
(iii) —(xi) are then repeated for all other interaction
graphs contributing to the matrix element and the
partial results added. There remains the additional step.

(xii) For the matrix element involving a multipole
operator between a state on the left with total quantum
numbers LSJM and a state on the right with total
quantum numbers L'5'J'M', multiply by a factor '

( 1)I+s-M([Jj[Jj) i/2((SS )

Xi
(M' g

—3E) S L' L

which was derived in Sec. 5.2.

Step (iii). Graph (a) has a phase +1 and graph
(b) has a phase ( —1).We will consider graph (a) first.

Step (iit). The state graphs are

LS

6.2 Example

The step-by-step procedure of Sec. 6.1 will be applied
to a particular example of a Coulomb matrix element.
We will consider the matrix element

"."or the left-hand state, and

(6.8)

M= ((rr~ L S, (po) Lh), LS
i Q V;, i

z(j

X (7r~='L S., p'I pSp) L'8', r, LS), (6.5)

where iV = (4/ +2), i.e. , the m subshell is closed on the
left. Also, we assume that all subshells which precede
subshell x are closed and therefore can be ignored. An
example of a matrix element of this type is that con-
sidered by Armstrong (A68), i.e.,

ig= (5d" 'S (Ss6p) 2e+'p
~ g y

L7r S7r

Lp sp

LS

X 'D Ss' 'S 7p ' +'I'). (6.6)

Step (i). The configurations differ in the quantum
numbers of just two electrons so that there is a unique
choice of interacting subshells. These subshells are
x, 0. on the left and p, v- on the right.

The corresponding configuration of the spectator
electrons is

(6.9)

for the right-hand state. In this example, graph (6.8)
stands for the coupling scheme

Vp ——1, Ã.=0, N, =O,

which gives gq A q= iV in accordance with (6.2) .
Step (ii) . The interaction graphs are

LS
(6.10)

0 ~q 7
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and graph (6.9) stands for the coupling scheme obtained in the form

Mo(zro, pr) = —2D~] P ( —1)"X(k; zro, trr) Xg,

where
(6.15)

Az AzLS

A A
L S

(6.11)

Step (o) . Contraction of (6.7) —(6.9) gives the
dlagl aII1

LS LS

Ls

L~S~ L~s

yak

psp
LS

(6.16)

The diagram g is obtained from (6.12) by specifying
the coupling schemes as in (6.10) and (6.11). The
(l,l, ) L,S, node has a minus sign to compensate for the
change of its orientation with respect to diagram
(6.11).

Steps (x) artd (xi). Contracting the LS lines in
(6.16) and application of steps (i)—(v) of Sec. 4.2 give

where

Z = (LL.]Li]LL,][i'])zt2

(6.12)

Step (oi) . AH the c.f.p. are trivially unity. In
particular, for the p shell we have the condition

(tz
~ I p'L, S,) = 1 L,+S, even

=0 Lo+ So odd. (6.13)
L7l.

Step (vzz). Remove the cross on the k line and
multiply the diagram (6.12) by ( —1)"X(k; zro pr) .
Sum over all k'.

Step (oiii) . The weight factor is

(1V &(2) 't' = 2D ]'t'. (6.14)

Step (ix) . The Pauli phase factor is —1, since
Pg —1, Pg ——0.

The matrix element of the part of the Coulomb
interaction represented by graph (a) has now been (6.17)
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and

X s Ji )is'
(6.18)

S
(6.20)

Comparison of each diagram with (4.20) gives the
result

~ = Lf-j "'(tI-.XL '7) "'~(4J.) ~(LI)

The diagrams in (6.17) and (6.18) are evaluated by the
procedure of Sec. 4.3 as follows.

(a) The orbital diagram. Since ir is a closed subshell,
then L =0. Removal of the L line gives the result

L,
X ( 1) ip+Lp+l~+L,

L'

k

Ll Ip

(6.21)

g=D j-ii~(LI jLL, g)ii2g(f L, )g(1"I,)
(b) The spin diagram. Removal of the 5 line gives

S= 2-'i'(PS, )LS'j) ' '~(8.—',) S(SS)

(6.19)

~p
))S

/2

S

(6.22)

Removal of one closed loop gives the unit diagram
(4.18) and the final result.

The diagram in (6.19) separates on the three lines

8= P' j'"(2 ~(~~-k) ~(~~) ~(~.k) ~(~2k) (6 23)

By substitution of the results (6.21) and (6.23) into
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Eq. (6.15) we obtain where

Lp lp

)( ( 1) tr+Lr+l~+L Q,
ttt:

tp
C

L

l,

I' Ip

X ( —1)~X(k; sro pr) . (6.24)

We now consider the contribution of graph (b) of
step (ii) to the matrix element. Step (iii) gives a phase
factor ( —1). Steps (iv)-(ix) yield exactly the same
factors as for graph (a) since these factors depend only
upon which subshells are concerned in the interaction.
From step (ix) we have the result

Mt, (m.a, pr) = 2D Jt2 P ( —1)"X(k; sra rp) g, (6.25)

where

and

(6.27)

L~S~

"vr svr
L S

LS LS

A t)S

S

(6.26)

Steps (x) ttrtd (xi). Application of steps (i)—(iv) of
Sec. 4.2 gives the product

(6.28)

The orbital diagram is evaluated by 6rst removing
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the L line (since L =0) to give

Z=P $ '"(LL,)PL'])"'8(l L )8(LL).

Removal of the 5 line in the spin diagram gives

$=2 '"(Ls ]L8'1)'"b(s8)b(s -')

)illy . (6.31)

Ai
L

The diagram in (6.29) can be deformed into

(6.29)

Removal of one closed loop reduces the diagram in
(6.31) to the unit diagram (4.18), so that

8= (2jS,))—'"(8'g"'b(S8) 6(8.-', ) b(S,S)6(-', -', S).
(6.32)

By substitution of the results (6.32) and (6.30) in
Eq. (6.25) we obtain the final result

3IIy(7ro, p7) = (2LL ]PL'jLS'j)'I

XLS $ '1'6(SS ) g ( —1) f'+'+~X(k; movp)

k L Lp k I p L
X (6.33)

lp lp lg L l7'

In the example (6.6), we have L'= 2 and 8'= —',, i.e.,
a 'D state. Substituting the appropriate numerical
values in (6.24), we find, since k= 2 only,

0 0 0 2 1 1

Separation on the lines L„L,and k gives

~= L~-j "(L~.JV'3) '"~(1-L-)~(LL)

.'lII, (7ro, pv') = —5'12

2 2 2 1 2 0

X X(2; Sd6p5s7p)

(6.34)

'X ~

001 212

= —1/(15)'"X(2; 5d6pSs7p).

=v2/5 R'(Sd6pSsjp).

Similarly for (6.33) we have k = 1 only and

Mi (7ro, pr) = —(2XSX2) 't 8(SO) X(1;Sd6p7p5s)

1 1 0 1 0 1

= —2/3 8(SO) X(1;Sd6pjpSs)

= —2&2/3 8(SO) E'(Sd6pjpSs) . (6.35)

)( ( 1)P+l»,

lp lp

X
L'

= D-j '"(t L.jf.L'j)'"~(f-L-) ~(LL)
k L Lp k Lp L

(6.30)

The results (6.34) and (6.35) have been given pre-
viously by Armstrong (A68) .'

As mentioned at the beginning of Sec. 4, an alterna-
tive to the graphical evaluation of the g diagram
Lstep (xi) j is to derive the corresponding recoupling

"" Armstrong uses the spherical harmonics of FR59, Eq. (5.17)
to define the Racah tensors Cl~~ and the one-electron angular
momentum eigenstates. Hence, to agree with our result (6.34)
and (6.35) one must substitute in the result of step (f) of A68
the (l

~ ~
Cl~l(l l,') of FR59 Eq. (14.12) ond multiply by

(—1)'f'(—4—ff+fc+«), where g, $ are the interacting subshells in
the left-hand wave function and c, d are those in the right-hand
wave function. See also Footnote 1.
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coeKcient which is then evaluated using Burke' s
computer program. The recoupling coeKcient is
obtained by separating the zi diagram into two parts
by an imaginary line which bisects the A' line and each
line representing spectator electrons. The two parts of
the separated diagram represent the lhs and rhs of the
recoupling coefIicient. The free lines represent the
momenta which are coupled according to the schemes n
and 0.' of the lhs and rhs, respectively. For example, the
g diagram (6.12) is separated as follows:

with which side of the recoupling coe%cient. For
example, we can separate the diagram (6.12) by a line
which bisects the lines m and 7 rather than the lines p
and 0. as was done above. This procedure leads to the
recoupling coe%cient

/=Do] —'&2Ll.]—"'((L 8„l.)L.S, l,"', (kl, )l., n
i

XL 8, $l, "&, (l k) l,&'&]LoS„,, l„ez')'~s&,

which may be shown to be equal to (6.36) .

7. SUMS OF PRODUCTS OF MATRIX ELEMENTS

LS

Lvr S7r

Lp Sp
LS

Thus far we have considered the matrix elements of a
single Coulomb or multipole interaction operator
between states of the same qr different configurations.
In the perturbation theory of configuration interaction
there has arisen the need to evaluate sums of products
of matrix elements between states of different con-
figurations (RW63, RS67, W68) . For example (W68),
the interaction (An

~
P,~, U,, ~

Aez') between the
states o., n' of a particular configuration A is subject to
a second-order correction,

P=(1II~") Z (A-
I 2 U„

I
Ii~) (I~~

I 2 U.. I
A-')

s(j r&a

(7.1)

and corresponds to the recoupling coefficient

P = (D.]t l,])—'t'(LL.8., (l, t'&k) l.]I..S., l po&, l„~z&
L.8., (lr&'&l, '-") LrSr, (kl, ) l„, n')ii s&. (6.36)

(D.][i,])—"- appears since the "thick-
labehng" of the lines zr and r in (6.7) wa, s omitted in
Sec. 2. In the recoupling coefFicient it is necessary to
distinguish the two electrons which carry orbital
momentum l, The coef.Ficient (6.36) separates into a
product of spin and orbital coefficients

~= (D-]D.])-"'(EL-(l."&k)l-]L., l, '", l.,
L, (lou&lp"&) I.p, (kl,)l„n')'i& (6.37)

aild

8= ((8, s,t")S, s,~i&, s„z&.
~

8,(s,ti&s, '2&) S„s„n')is&,
(6.38)

where s,=s,= az. The recouPling coefficients (6.37) and
(6.38) are those obtained by the orbiton method of
Fano (F65). The above procedure of bisecting the
0 line and associating one vertex of the interaction graph
with the lh state graph and the other with the rh state
graph corresponds to the "emission" and "absorption"
of an orbiton in Fano's method.

The coefficients (6.37) and (6.38) can be evaluated
by use of the computer program given in 870 or by a
direct expansion as used in FR59. Finally, it is imma-
terial which vertex of the interaction graph is associated

due to interaction with the states P of another con-
figuration 8. In this expression, AE~~ is the difference
between the zero-order energies of configurations A
and B.

Perturbation terms of the type (7.1) were first
studied in detail by Rajnak and Wybourne (RW63),
where it was shown that the second-order perturbation
sum can be replaced by the matrix element of an
egectiz&e operator acting within the configuration A.
The analysis of RW63 was subsequently refined by
Racah and Stein (RS67) by the introduction of
"curtailed" operators (see Sec. 3) and Wybourne
(W68) has since given a comprehensive discussion of
the application of this method. The primary aim of this
work has been to derive and to investigate the strlctlre
of the effective operators. In the following, the emphasis
will be on the explicit numerical evaluation of the
perturbation terms. The graphical representation of the
curtailed operators of RS67 introduced in Sec. 3 will be
used. As has been demonstra, ted by Judd (J67) and
Sandars (S69,) the graphical representation is also very
convenient for the study of the structure of the effective
operators.

We will restrict the detailed discussion to second-
order terms of the type (7.1) but the extension to
higher-order-perturbation terms can be made in an
obvious way. The modification necessary when a
multipole interaction matrix element is substituted for
one of the Coulomb matrix elements will be indicated.
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V= Q V(Xp, X'p')
{Xp,X~p~j

(7 2)

and V(Xp, X'p') is one of the operators (3.12), (3.16),
or (3.19). The summation in (7.2) runs over the sets
f&y, X'y'} of interacting subshells which contribute to
the Coulomb matrix element between the configurations
A and B. In this way the perturbation term I' may
be written

P= (1/&~~a) 2 (An
I 2 V(~~ ~'v')

I &(3)
P fXp, X~p~J

&& (BP } g U(ver, v'm')
i

An' ). (7.3)
{r~,v~vr~J

7'. 1 Effective Operators

In Sec. 3 it was shown that the matrix element of the
Coulomb operator P;&, V;, can be replaced by the
equivalent matrix element of the curtailed operator
V where

XQ p, X'&p', v Qx'. (7.6)

Consequently we use the form (3.12) of the cur-
tailed operators, i.e.,

U(~~, ~'~') = Z Z
2Ãj k

matrix element. of the single Coulomb operator (2.9).
However, each Coulomb operator V is a two-electron
operator so that, as we shall see, the product operator
can be expressed as a sum of four-, three-, and two-
electron operators. Each m-electron operator gives rise
to a different weight factor and Pauli phase factor.
The remainder of Sec. 7.1 will be mainly concerned with
the evaluation of these factors.

For greatest generality we will assume that in the
product V(hp, X'p') V(vm, v'vr'), we have the conditions

Since the curtailed operators connect configuration A

only with configuration 8, the summation over states P
can be formally extended over the states of all other
configurations of the X electrons. Furthermore, since
we will deal with symmetric operators which connect
the antisymmetric states (An

~
only with other anti-

symmetric states, the sum may be extended over states
of all symmetries. In this way the sum over states in
(7.3) can be extended formally over the complete set
of states of the E-electron system, so that by closure
we have

P = (1/DEg~)

X(An
~ g g V(Xp, X'p')V(vm-, v'7r')

~

An' ).
{P Ij„h~p~) f v~, v~n. ~J

(7.4)

The perturbation sum has now been replaced by the
matrix element of an effective operator. As in (3.21) for
the single Coulomb operator, the matrix element in
(7.4) can be written as a sum of contributions from
different sets of interacting subshells, i.e.,

P = (1/AE~e) P P P (XpX'p", vav'm '), (7.5a)
{Xp,X~y~J fv~, v~~~)

)(k

V(vm, v'm') = P g
res k~

r W/

— S
7T

(7.7a)

7/ ~ 7T
Wl r

(7.7b)

where

P(XpX'p", v7rv'~') = (An
~

V(Xp, X'p') V(v7r, v'vr')
~

An' ).
(7.5b)

We will consider the evaluation of the matrix element
P (Xpk'p", v7rv'm ') . First we will obtain a graphical repre-
sentation of the product operator V(Xp, X'p') V(vn. , v'vr')

from the representation (3.12), (3.16), or (3.19) of each
operator U. The matrix element (7.5b) is then evaluated
by bracketing the graphical representation of the
product operator with the graphical representations
Lof the form (2.15)j of the states (An

~
and

~

An' );
The procedure is the same as was used in Sec. 3 for the

In general the operators (7.7a) and (7.7b) do not
commute.

In the product of the operators (7.7a) and (7.7b)
there are various classes of terms which are char-
acterized by the number of electrons involved in the
effective interaction. The enumeration of the four-,
three-, and two-electron operator graphs corresponds to
writing down all the Feynman graphs which contribute
to the second-order interaction as is done in Chapter 4
of Judd (J67), for example. The operator (7.7b)
transfers the pair of electrons r, s out of the subshells
v', 7r' into the subshells v, 7r and the operator (7.7a)
transfers the pair of electrons i, j out of the subshells
P', p' into the subshells P, p. The various e-electron
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graphs in the product of these operators are obtained
as follows:

(1) If the subshells V, iii' are both distinct from the
subshells v, m-, then clearly owly terms with i&j&r&s
are allowed in the product of (7.7a) and (7.7b). For
example, the product of the first graph of (7.7a) with
the first graph of (7.7b) gives the four-electron operator

(3) If the pair of subshells X', @' is identical to the
pair of subshells v, m, then the pair of electrons shifted.
by the operator (7.7b) may be shifted again by (7.7a) .
In this case there will be four-, three-, md two-electron
terms in the product of (7.7a) and (7.7b) . The two-
electron operator graphs are obtained by contracting
two open lines on the right of the graphs (7.7a) with
two open lines on the left. of the graphs (7.7b). For
example, if X'=v and p, '=m-, the product of the first
graph in (7.7a) with the first graph in (7.7b) contains
terms with i = r, j= s, i.e.,

)(k
I

'~~~~~s II~
V

(7 8)

I

7r /g 7r

)(k )(k

(2) If either of X' or p' is the same subshell as either
of v or ~, then it is possible that one of the electrons
shifted by the operator (7.7b) will be shifted again by
the operator (7.7a) . In other words, only three electrons
take part in the interaction. Therefore, in addition to
the four-electron terms of the type (7.8), in this case the
product of (7.7a) and (7.7b) contains three-electron
terms. These three-electron operator graphs are ob-
tained by contracting a line on the right of the graphs
(7.7a) with a one-electron line carrying the same
electron OrId subshell labels on the left of the graphs of
(7.7b). For example, if p'= p and X'W7r, the product. of
(7.7a) and (7.7b) contains four three-electron graphs.
The first is obtained by putting j= r in the product of
the first graph of (7.7a) and the first graph of (7.7b)
and contracting the corresponding lines, i.e.,

iQ jets kk~

)(k

(7.9)

(7.10)

AH graphs formed from the product of (7.7a) and
(7.74) do not necessarily give a nonzero conti ibution to
the term P (Xp'A'p, '; virv'm. ') . This follows from the
orthonormality of one-electron wave function which
corresponds to the requirement that two lines repre-
senting the same electron give a nonzero contraction
only if they carry the same subshell label. Clearly, for
each subshell X, the number of lines entering and
leaving each operator graph must not exceed the
occupation number of subshell P in the left-hand and
right-hand states, respectively.

The first step in the evaluation of the matrix element
P(Xp, X'p'; v7ri 'm') of the operator l~(Xp, X'p') V(vm-, p'7r')

is to enumerate the various four-, three-, and two-
electron terms in the product of (7.7a) and (7.7b)
according to the conditions (1), (2), and (3) above.
The contribution of each v-electron teim is then ob-
tained by contracting each operator graph with the
graph of the wave functions of the states (Ao.

~

and
i

An' ).
In each rt-electron interaction graph of the form

(7.8), (7.9), or (7.10) the interacting electrons i, j ~ ~,

etc. may be labeled (E m+1), (E——ii+2) ~ ~ X and
the sum over i4j& ~ ~ ~ replaced by the factor
1((7—1) ~ ~ (iV g+ 1) . The —graphs of the wave
functions of (An

~

and
~

An') are of the form (2.15)
and (2.16) with the I interacting electrons separated
by fractional parentage expansions like (2.18) or
(2.19). We shall consider the matrix element,
P„('ApX'p, ', virv'ir') of one n-electron operator graph,
say the mth, in the product V(Xp, X'p') V(ver, X'7r'),
i.e., in the product of (7.7a.) and (7.7b) . As in Sec. 3.1
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for the two-electron single Coulomb matrix elements,
the matrix element of each e-electron operator graph
must be diagonal in the distributions q, q' of the
(X—e) spectator electrons. We need consider only one
such diagonal distribution and multiply by the number

I see Eq. (3.4)$

(7.11)

of such distributions. The distribution of the interacting
electrons amongst the subshells in (An

~

and
~

An') is
fixed by their distribution on the left and right, respec-
tively, of the operator graph. The operator graph is then
drawn with the open lines ordered vertically downwards
according to the order of the subshell with which each
line is labeled. Integration over all electron coordinates
is performed symbolically by bracketing the e-electron
operator graph with the wave function graphs and
contracting corresponding free lines. This procedure,
which is the same a,s led from (2.15), (2.16), and
(3.6) to (3.7), gives the matrix element P„~(XpX'IJ,",
v+v'7r') in the form

P (XpX'p' vxv'vr') = ( —1) "+ ~'+ ~~tF„~ P P
kk~ f.p.

LS kk LS

(7.13)

where e~, e~' are the numbers of interacting electrons in
subshell A. in the lef t-hand and right-hand configurations,
respectively. The factor (7.13) has already been given
in step (viii) of Sec. 6.1 with reference to the two-
electron interaction graph. Similarly, the Pauli phase
factor is given in step (ix) of Sec. 6.1 by

v X=v+1 vl X=v~+1

where the summation v is ovei the interacting subshells
in the left-hand state (An

~

and the summation v' over
those in the right-hand state

~

An') .
The Pauli phase factor ( —1)v t in (7.12) comes

from the permutation of the interacting electrons

where the central block, labeled kk', represents the
v-electron interaction graph. The weight factor F„,for
any e-electron graph of the form (7.8), (7.9), or (7.10)
is given by, from (2.15), (2.16), and (7.11),
F„=t ($—m+1) ~ ~ $3(KOl. ') 'i'BT,

themselves t see Sec. 3.2$. As in the case of two-electron
operators, this factor is obtained by drawing the
e-electron interaction graph with the free lines ordered
vertically downwards according to the ordering of the
subshells. Then I'; ~ is equal to the number of times
that one-electron lines cross. For example, if in the
three-electron interaction (7.9) we have the order
X(x&p on the left and the order v'(A. '&x' on the
right, then the graph is drawn

igjQs kk~

(7.14)

fn the matrix element of (7.14), the lines i, j, and s are
labeled E—2, .V —1, and X, respectively, and the
summation over i, j, s replaced by the factor
X(Ar —1) (X—2). Each crossing of one-electron lines
then represents a single permutation of the electrons
V—2, E—i, E from their standard order. Hence, in
this example, P;„&.in Eq. (7.12) is equal to 2. The
evaluation of the matrix element P„~(P,ph'p", v7rv'm. ')
proceeds by replacing the crosses on the interaction
lines in the central block of the diagram in (7.12) by
the corresponding factors of the type ( —1)~X(k; Xp&'p') .
For each subshell containing interacting electrons the
full squares on certain nodes arising from f.p. expansions
like (2.18) or (2.19) are replaced by the corresponding
c.f.p. The remaining diagram in (7.12) is a, g diagram
and is evaluated by the method of Sec. 4.

The matrix element P (XyA'p", v7rv'7r') is then obtained
by repeating the above procedure to obtain the matrix
elements of all two-, three-, and four-electron terms in
the product of (7.7a) and (7.7b) and adding the
partial results.

Thus far we have considered effective operators
formed from the product of curtailed operators both of
which a.re of the type (3.12). Each curtailed operator
(7.7a) and (7.7b) is a sum of two distinct interaction
graphs. For any pair of graphs in the product Le.g. , the
pa, ir in (7.8)j the three- and two-electron pa.rts were
formed by contra, cting the pair in a unique way Le.g. ,
by putting j= r to obtain (7.9)j. However, when
curtailed operators of the type (3.16) or (3.19), which
have a pair of electrons on the left or right with the
same subshell labels, occur, there may be more than one
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contraction leading to the same three- or two-electron
term. Furthermore, curtailed operators of the form
(3.19) have an additions, l weight factor 2. In these
cases it is obviously desirable to compute at the outset
the weight of each distinct type of e-electron graph,
aside from the weight factor (7.13), which arises from
the summation i/ j/ ~ ~ ~ . Rather than attempt to
give a prescription for these weight factors, we will
indicate the procedure to be followed by considering
a specific example.

We consider a term in the summation (7.5) of the type
P(VA'X', X'X'zrzr) which is the matrix element of the
effective operator V(XX, X'X') V(X'X', zrzr) . The curtailed
operators are both of the form (3.19), i,e. ,

To obtain three-electron terms in the product of
(7.15a) and (7.15b) we can contract either of the lines
labeled i,j on the right of (7.15a) with either of the
lines labeled r, s on the left of (7.15b). This gives four
terms corresponding to i=r, i=s, j=r, j=s. However,
since the graphs in (7.15a) and (7.15b) can be rotated
through 180' about a horizontal axis in the plane of the
paper without changing their matrix elements and
since each summation is symmetric in its indices, one
can see that each of the 4 three-electron terms will be
equal. Consequently we need consider just one term,
say that with j=r and cancel the factor 4. Then the
three-electron par t is given by

iQ jets kk~

(7.15a)

and

k (7.15b)

The four-electron part of the product of (7.15a)
(7.15b) does not involve contraction but comes from
terms in which (i, j)4 (r, s), i.e. , the four-electron part
is the operator

(7.17)

Again, the summation i4j4s contributes the weight
factor (7.13) to the matrix element of (7.17) .

Finally, there are 2 two-electron terms in the product
of (7.15a) and (7.15b) corresponding to z=r, j=s or
i == s, j= r. Clearly these two terms are not distinct, so
that we need consider only one of them and cancel one
factor —'„ i.e., the two-electron part is

ig j kk~

iQjgrQs kk~

k

(7.16)

X' vr
4/ W/ I

In the matrix element of (7.16), the summation over
i4j/ rQ s leads to the weight factor F„given by
(7.13) so that in this case the total weight is F„ /4.

Perturbation terms which contain a multipole inter-
action matrix element occur in the theory of crystal
field interactions (RW64) and in perturbation correc-
tions to the dipole matrix element in the calculation of
photoionization cross sections (MB65, CM68). In this
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case the product of curtailed operators such as appears
in (7.4) contains a multipole operator of the type
(5.11). Again the e-electron terms of the effective
operator are obtained by performing all possible con-
tractions of the product of curtailed operator graphs.
Each graph is then contracted with the state graphs to
give a contribution to the perturbation term of the type
(7.12). However, in this case the diagram contains a
free k line. This diagram is evaluated by the procedure
which was used in Sec. 5.2 for the single multipole
matrix element.

The foregoing procedure for the evaluation of
perturbation terms like (7.1) can be summarized by
the following sequence of operations:

(i) For each matrix element, identify and list the
possible sets of interacting subshells according to step
(i) of Sec. 6.1. Replace each Coulomb operator by the
sum of the curtailed operators, i.e.,

(7.19)

(J67), who listed the interaction graphs which con-
tribute to the perturbation of the configuration (el)~.

Specifically we will treat the perturbation of the
configuration (closed shells +p'vpa"~' ) by the configura-
tion (closed shells +p~p '0'v p'). In the state which is
perturbed, the subshell p is closed, i.e, V„=4/,+2 We.

will ignore interactions other than those between the
subshells p, o., and p', on the assumption that inter-
actions with closed shells are canceled in the perturbation
by matrix elements of the potential used to define the
one-electron basis. See J67 for a discussion of this point.

We wish to evaluate the second-order perturbation

I'= (1/AE) g (p' 0' n1.5
~ Q V"

~

p~ 'o'v p' PI.5)

r(s

5)ep (i). For the first matrix element there is a
single set of interacting subshells {pu, O.p'} with the
spectator electron configuration

where U(Xp, X'p') is of the form (3.12), (3.16), or
(3.19). A multipole interaction operator is replaced by
the sum of curtailed operators (5.11). The matrix
element of each term in the product of operators like
the right-hand side of (7.19) can be evaluated sepa-
rately. For each term, proceed as in the next step.

(ii) Express the product of curtailed operators as a
sum of e-electron interaction graphs by contracting
corresponding free lines as was done in steps (1)—(3)
above for the product of (7.7a) and (7.7b). Where
curtailed operators of the type (3.16) or (3.19) appear,
compute the weight of each A'stimct e-electron graph
as was done in (7.16)—(7.18). This procedure gives the
sum over electron labels in the form i / j&r ~ ~ for each
graph. At this stage the electron labels i, j, etc, may be
omitted and the summation over them removed from
each graph. This summation is replaced by the weight
factor (7.13) in step (viii) of this prescription.

p p p

)(k

(7.22a)

for the first matrix element and

Similarly, in the second matrix element there is a single
set I op', po} with the spectator electron configuration
(7.21) . The curtailed opera, tors are

The matrix element of each e-electron graph is
obtained by drawing the graph with the free lines
ordered vertically downwards according to the subshell
ordering and then following steps (iii) —(xi) of Sec. 6.1.

Steps (ii) —(xi) are then repeated for all other terms
of the effective operator obtained in step (i) and the
partial results added.

7.2 Example

p
S

p, p

The procedure of Sec. 7.1 will be illustrated by the
evaluation of certain terms contributing to the per-
turbation of states of the configuration (ml)~' outside
closed shells. This example is chosen for comparison
with previous work on effective operators (RW63,
RS67). We also make contact with the work of Judd

(7.22b)

for the second matrix element.
5fep (ii). In the product of (7.22a) and (7.22b),

contraction of the 0- and p' lines gives four distinct
graphs. These are the only two-electron graphs. Con-
sequently, the two-electron interaction is the sum of
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the matrix elements of the graphs

)(k )(k'
cr, P ., cr

(0) (b)

results added. Ke will consider as example only one
graph of each class, say (7.23c) and (7.24b). The con-
tribution of each graph is obtained by following steps
(iii) —(x) of Sec. 6.1. First we consider graph (7.23c),
whose matrix element we will denote by I'& (7.23c) .

Step (iii). There is a single crossing of one-electron
lines so that the graph is multiplied by a factor ( —1) .

Step (isz) . The state graphs are

LP SP

(c)

k

p p
%V

)(» )(»'
li 0 I 4

LS

(7.23)

There are four distinct three-electron graphs obtained
by contracting only the p' lines in each pair of graphs for the left-hand state and
in the product of (7.22a) and (7.22b). These four
graphs are the only three-electron graphs. The three- LP sP
electron interaction is obtained by adding the matrix
elements of the graphs

('7.25)

LS

P

)(k
cr „P

(b)

(7.26)

for the right-hand state. Since the coupling schemes
0., n are trivial in this case, they have been specified in
(7.25) and (7.26).

Step (v) . Contraction of (7.23c) with (7.25) and
(7.26) gives the diagram

Lp Sp

LS LS

(c} (4)

(7.24)

Since the subshell p' is unoccupied in the perturbed
state, the contribution of all four-electron graphs (i.e.,

pairs of graphs with no lines contracted') is zero. To
obtain P in (7.20) the matrix elements of the eight
graphs (7.23) and (7.24) must be evaluated and the

(7.27)

An important simplification can be made at this
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point. Since the p subshell is closed, we have I.p= I.p =0,
5,= 5,'=0. This means that the corresponding lines in
the diagram (7.27) and the nodes at their ends may be
removed. The removal of the nodes involving the
LS lines in (7.27) follows from the relation (4.22) . The
removal of the two nodes involving the p lines gives a
single p line from the relation

g (00
~
L,lid, l,m, ) (L~,l,'m, '

~
00)

Mp

= Ll,7
—'8(l,l, ') 6(m, m, ') (7.28)

Step (xiii) . The weight factor is

(N,N.N,N, ) 't'=.V,iV.. (7.32)

The factor N, in (7.23) cancels the factor N, ' intro-
duced in step (iv), in accordance with the fact that the
effective operator (7.30) transfers electrons from the o.

subshell only. This means that we can use the simplified
form (7.30) of the interaction graph from the outset
of step (iv).

Step (ix) . In the Pauli phase factor,

and a similar relation involving the corresponding spin and
momenta. In this way the diagram (7.27) becomes

so that the Pauli phase is +1.
Step (x) . Application of steps (i) —(v) of Sec. 4 to

the diagram in (7.29) gives the result /= AX g, where

LS

La.sa.
LS

Xf—(L-', 7Ll,7)-'8 (L.L) 5 (S,S)

X&(L.'L) &(S.'S) 7. (7.29)

This simplification has been performed at this stage
to demonstrate that the two-electron interaction graph
(7.23c) can be represented by the one elec&'oe effecti-ve
operator

Lg

(7.33)

(7.30)

and

In other words, when an electron is excited out of a
closed subshell on the right and an electron falls into a
single hole in the same subshell on the left, we may
contract the corresponding lines. This condition holds
for all the p lines in (7.23) and (7.24). This means that
all the two-electron graphs represent effective one-
electron operators of the type (7.30) and, a,s we shall
see, all the three-electron graphs (7.24) reduce to
two-electron effective operators. The factor (P27/i, 7)
introduced by removal of nodes is equal to E, '.

Steps (ni) and (vii) give the expression

—(L27Lt.7) ' Z (—1)"'&(&;pop'o) &(&'& p'«p)

(7.34)

The orbital diagram, after removal of the closed loop
according to (4.24), can be drawn in the form

X Q (l~ FALSI~ l.~' 'L,S,l.)
Lrr Srr

X (l.~' 'L.S.l. |I lg.o.'LS) Xg, (7.31)

where g is the diagram (7.29) with the crosses on the
k, k' lines removed: k has even values only.

z = D.7-'x (7.35)
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The diagram in (7.35) is the 6-j coefFicient

k tp

l, l,

The spin diagram 8 is the unit diagram &(S.—,S).
These results mean that the factor g in (7.31) is in-
dependent of any quantum numbers appearing in the
c.f.p. Consequently, the sum over the c.f.p. gives the
factor 5(nn') by closure. Finally we have the result

P, (7.23c) = —(tV./D. 3)b(~~')

X P X(ie; pop'o)X(k', p'oop) ( —1)"'
kk~

(7.36)

and for the right-hand wave function

L~ S~ LS

Step (o). Contraction of the two state graphs with
the interaction graph (7.37) gives the diagram

We now consider graph (7.24b), whose matrix
element we denote by Pe (7.24b). We repeat steps
(iii) —(x) of Sec. 6.1.

Step (iii). There is a single crossing of 1-electron
lines which gives a factor ( —1). We will make the
simplification used to derive (7.30) from (7.23c) to
convert (7.24b) to a 2-electron interaction graph, i.e.
since the p subshell is closed in both left-hand and
right-hand configurations we can contract the two p
lines in (7.24b) to give

L S L~ S~ LS

(7.38)

Steps (oi) artd (rii) give the expression

( —) P X(it; pa o p') X(le', p'o po) (—1)"+"'

X P (l.~ LS I ~

L.S./. 'LS) (L.S./. 'L'S'
~ I l.~ LS) X c{,

(7.37)

Ke will use this form henceforth: however, the factor
( —1) must be included from step (iii) before con-
tracting the p lines.

Step (iv). The state graph for the left.-hand wave
function is

(7.39)

where g is the diagram in (7.38) with the crosses
1eITloved.

Step (xiii) . The weight factor is cV, (N, 1) . —
Step (ix). The Pauli phase factor has

&~=~a=o
giving a phase of +1.

Step (x). Application of steps (i)-(v) of Sec. 4 to
the cliagram in (7.32) gives cI= 2)&8, where

LS L~ S~

X (t L]$L'$) "' (7 40)
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and

s)i J& s'

(7.24) are the two-electron graphs F&, F,, F,, and F4
of Judd.

The graph (7.23b) is of the same structure as
(7.23c) and one can show that its matrix element is
given by (7.36), except that k and k' are interchanged,
which does not alter its value. Similarly, the graph
(7.24c) is of the same structure as (7.24b) and again
one can show that their matrix elements are the same,
i.e., P3(7.24c) = P3 (7.24b) .6 The sum P2(7.23b) +
P~(7.23c) and the sum Pg(7.24b)+P3(7.24c) a,re the
one- and two-electron parts, respectively, of the term
C3 given in Eq (6.1) of Racah and Stein (RS67).
8. GENERAL FORM OF THE MATRIX ELEMENT

X (I.8728 3) ' (7 41)

After removal of the closed loop, the orbital diagram
may be separated on the three lines l„k', l. to give

Since k' is even, we have the result

5(LL') . (7.42)

S= (
—1)r

k' lp l p

k l, l,

k' l l,
S(LL') . (7.43)

L l l,

The spin diagram reduces to the unit diagram, i.e.,

S=6(88') 6(-,'-,'8). (7.44)

The final result is then

P3(7.24b) = —.V.(lV.—1)

X g X(k; poop')X(k'; p'opo) ( —1)"
kk~

k' l, l p

k

x Q (l Ls f ~
L.s./. 'Ls) (L.s./. 'Ls

~ I 1."Ls)

X(—1)~
'k' l, t.

L l, l.
(7.45)

Finally, we compare the results obtained here with
other treatments of the perturbation term (7.20) . After
contraction of the p lines, the 4 two-electron graphs
(7.23) become one-electron graphs of the type C~ and
C2 listed in Chapter 4 of Judd (J67). Again after con-
traction of the p lines, the 4 three-electron graphs

In this section we will indicate how the particular
interaction operators (3.1), (5.2), and (7.4) which we
have considered, form part of a general scheme for the
evaluation of interaction. matrix elements from a
graphical representation of the angular factor. The
essential point is that any coupled product of tensor
operators may be represented by a graph. By use of the
transformation (2.4), each one-electron operator gives
rise to the graph of a C—6 coeKcient involving a free
k line. The operator graph is assembled by coupling the
free k lines according to the coupling scheme of the
operator product. The matrix element is then repre-
sented by bracketing the e-electron operator graph
with the graphs of the X-electron wave functions. The
point which must be emphasized is that this graphical
representation of the interaction operator separates the
process of antisymmetrization from the recoupling of-
angular momentum. The antisymmetrization of wave
functions gives rise to a weight factor and a Pauli phase
factor, which depend only upon the number and
location of the interacting electrons. Hence, the com-
plexity of the general form of the interaction operator
arises mainly in the coupling of angular momentum,
i.e., in the g d|agram.

8.1 Graphical Representation

In the following, we shall show how the graphical
representation of any interaction operator is obtained
and indicate the broader application of the methods of
preceding sections, but we will not attempt to give
detailed procedures for the wide variety of operators
which occurs in practice.

The general form of the interaction operator is

Z f(, -, )C~, ~-, ",~S.t.]

$QQQ e ~ ~

Here, f(r~, r, . ) represents the radial part of the
operator and E, denotes the rank of a tensor operator
acting in the space of electron i. In general, both an

'Note that the graphs (7.23b) and (7.23c) and the graphs
(7.24b) and (7.24c) nevertheless are distinct within the meaning
of section (7.1) . The equality of their matrix elements is "ac-
cidental" in that it arises because (7.23b) and (7.24b) are the
respective mirror images of (7.23c) and (7.24c) and the same
configuration A occurs on both sides of the matrix elements.



J. S. BRIGGs Matrix I''len~ents frown a Graphica/ Representation 229

orbital operator L'""(l) and a spin operator S'"'~(i)
will operate in the space of electron i. Their com-
ponents are transformed using (2.4), i.e.,

L, f&lJ+, f&sl

(n & ~ lsm)m, ) (imp
I
I.q'"'~

I
l'm(')

lmlams l~ml~a~m&~

X (sm,
I 5, &"'

I
s'm, ') (l's'mt'm, '

I
Q,Z;)

(n,Z,
I

lsm, m, ) (l II 1.~ «
II l')

lmlsms l~ml~s~m&I

X(s II
5"'

ll s') ( —1)'"'+'"'Ll7 '"I s7 "'(lmt
I

l'm('kgq)

X (sm,
I

'sm'k, q') (l's'mt'm, '
I

Q~Z, ) . (8.2)

The two C-G coeScients in (8.2) are represented
graphically by

where E is the radial integral and X is the e-electron
operator graph

(8.3)

In the simplest case the spin and orbital parts are
uncoupled (as for the Coulomb operator, where k, =0).
Where the spin and orbital parts of the operator acting
in the space of particle i are coupled, as in the operator

I L~~«xS~" ~7o~xj= g L,,~'&~5, .~" ~(ktqk, q'
I KQ), (8.4)

e, e'

the graphical representation is

(8 7)

Here, the block P represents the coupling of the free
0 lines in m graphs like (8.3) or (8.5). The graphs (2.9),
(2.10), and (7.8) —(7.10) are particular examples of
the form (8.7).

The matrix element of each term in the sum over
Xu ~ ~ VN' ~ ~ ~ in (8.6) is obtained by bracketing the
appropriate graph (8.7) with wave function graphs
like (2.15) a,nd contracting corresponding free lines.
The result can always be written as a product of a
weight factor, a Pauli phase factor, and a g diagram. In
addition, there will be the appropriate integrals in-
volving one-electron quantum numbers from (8.7) and
a possible summation over fractional parentage. The
g diagram is of the form

(8.5)

a'

As in Sec. 2.1, the complete representation of the
interaction operator is obtained by applying the
expansion (8.2) to each one-electron operator, extend-
ing the summation over all one-electron quantum
numbers, and performing the radial integration to
obtain

(8.8)f(«, &, " )X~, &, , P7o
&W&Y ~ ~

where the lines P, etc. , now represent both the orbital
lines lq and spin lines sq.g &X I ((—1)"+'"(Ll 7L.,7)-'~'

thug - ~ Xp ~ ~ ) ~Is~ ~ .

X(1 III-'""(&) lll )(s II5"'«) ll ~ )) "IXX 8.2 Evaluation of the Matrix Element

The g diagram is evaluated by the procedure of
(8.6) Sec. 4. Where an 1. 5scheme of coupling is use—d, it is
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usually possible to separate the diagram into a diagram
containing the spin interaction, a diagram containing
the orbital interaction, and a diagram involving only
"total" angular momenta. Bordarier (Bo70) has given
a comprehensive discussion of the separation of P
diagrams involving J=S coupling schemes. Where j-j
coupling is used the one-electron lines l~, sq, etc. , which
issue from the operator block are coupled to resultant
j)„etc., in the wave function blocks o., o, '. Hence, it is
not possible in general to separate spin and orbital
recoupling.

The Pauli phase factor which arises from the shift of
interacting electrons from the standard order can be
obtained from the procedure of (F65) as used in
previous sections. The weight factor arising from the
summation t/I@ ~ ~ ~ is independent of the coupling
scheme used and is given by (7.13) .

We have briefly indicated the general scheme of
matrix element evaluation by the use of graphs, of which
the matrix elements trea, ted in previous sections are
particular examples. Bordarier (Bo70) has given further
specific examples of the application of these techniques
to the matrix elements of other interaction operators.
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