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This review gives a survey of the following topics: (i) results on analyticity and asymptotic growth that follow from
axiomatic quantum field theory, (ii) bounds and inequalities involving cross sections at high energies, (iii) theorems
and relations between cross sections requiring special assumptions, and {iv) a discussion of the Pomeranchuk theorem
and of experimental and theoretical results that would hold if it were violated.
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1. INTRODUCTION

1.1 Objectives in This Review

This review will be concerned with high energy
theorems of two main types:

(a) Theorems that have been rigorously derived
from the assumptions of axiomatic field theory of the
type first proposed by Araki and Haag (references will
be given in later sections) .

(b) Theorems whose derivation at present requires
special assumptions additional to those in axiomatic
quantum field theory (QFT) . These will include results
that follow rigorously from QFT if one assumes certain
experimental conditions, for example, asymptotic
constancy of total cross sections. However, they will
not include results corresponding to special models
except where these are used as illustrations.

High energy theorems are most conveniently derived
from some intermediate properties of collision ampli-
tudes that can themselves be derived from QFT. These
properties involve:

(i) domains of analyticity,
(ii) unitarity,

(iii) polynomial bounds on the asymptotic growth. of
an amplitude F(s, t) at fixed t as s tends to infinity.

These intermediate properties and their relation to
QFT will be discussed in Sec. 2 of this review. The main
emphasis in this and other sections will be on reviewing
results rather than describing methods, but in some
instances the general idea behind the method of deriva-
tion will be qualitatively described, and in other cases
some of the most important methods will be described
brieRy.

In Sec. 3 we will describe axiomatic results, which
are those high energy theorems or bounds that are
based on QFT and do not require additional special
assumptions. These include the Froissart bound on
total cross sections, some inequalities involving elastic
cross sections, and other inequalities that are concerned
with the phase of a forward scattering amplitude and
properties of the forward peak.

High energy bounds that require special assumptions
that have not (yet) been derived from QFT are
described in Sec. 4. The special assumptions range from
limitations on the possible oscillatory behavior of
amplitudes to assumptions that require the validity of
the Mandelstam representation including its subtraction
requirements. The results concern improved upper
bounds and lower bounds, especially bounds at a fixed
angle of scattering.

In Sec. 5 we are also concerned with results arising
from special assumptions. These include general
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results on the phase and the rate of growth of the
modulus of an amplitude at large energies. The Pomer-
anchuk theorem on cross sections for particle —target and
antiparticle —target collisions is shown to follow from
special assumptions on the asymptotic phases of
amplitudes. A number of possibilities that form alterna-
tives to the Pomeranchuk theorem are described. Their
relevance is suggested by new experimental results on
total cross sections which will be briefly described in
Sec. 6. Some of these alternatives to the Porneranchuk
theorem are illustrated by special examples in Sec. 7,
and some of the difficulties associated with oscillations
and zeros are briefIy discussed. Finally, a summary of
axiomatic bounds and inequalities based on QFT is
given in Sec. 8.

1.2 Historical Background

Research in particle physics takes place in islands.
Some of these islands are very stable and have good
foundations, but others are quite unstable or even
volcanic in character. This instability, which applies to
even the most respected areas of research in their
infancy, makes the task of a bridge builder very
difficult, and the connections between the islands of
research are often quite tenuous. In this respect the
fact that certain high energy theorerns follow rigorously
from the axioms of quantum field theory represents a
triumph of the first magnitude for the intellectual
bridge builders.

In the past twenty years the quantum field theory
island of research has changed its form extensively.
It began this era as old fashioned renormalized quantum
field theory in which the convergence of the perturba-
tion series for the S matrix was only slightly suspect.
Then it developed with the Lehmann —Symanzik-
Zimmermann (1955) formalism from which the first
reasonably rigorous results on analyticity were derived.
Next followed the Wightman axioms (see, for example,
Streater and Wightman, 1964), from which some
analyticity of scattering amplitudes was also derived
(Bros, Epstein, and Glaser 1964, 1965). However, the

polynomial bound on the growth of a scattering
amplitude as the squared energy s tends to infinity
appears, in Wightman theory, to depend crucially on
the use of tempered distributions in coordinate space.
This unsatisfactory feature has now been removed by
the proof of analyticity and polynomial boundedness
by Epstein, Glaser, and Martin (1969) from the theory
of localizable observables due to Araki and Haag
(see Araki, 1961—1962, 1968; Haag and Schroer, 1962;
and Borchers, 1967) .

At no stage before 1966 was the development of

quantum field theory adequate for rigorous bridge
building to the island concerned with high energy
theorems. This island was founded by Pomeranchuk
in 1956 when he used isospin invariance and intuitive
assumptions to prove asymptotic equality of particle
and antiparticle differential cross sections. Two years

later Pomeranchuk (1958) used forward dispersion
relations to establish a similar result for total cross
sections. However, his proof involved the additional
assumption that forward scattering amplitudes become
pure imaginary at high energies, and it is still not
known whether this assumption is correct.

The first high energy bound was derived by Froissart
(1961), who used the Mandelstam (1958) representa-
tion and unitarity to show that

0 (total) &C(log s)',

where s denotes the square of the center-of-mass
energy. It was later shown by Martin (1963) that this
result could be obtained with much weaker assumptions
about analyticity, but these still exceeded what had
been proved in QFT. At that time the proven analy-
ticity yielded only the Greenberg —Low (1961) bound

o (total) &Cs(log s)'.

A number of further bounds at fixed energy or fixed
angle were obtained within the framework of the
Mandelstam (1958) representation by Kinoshita,
Loeffel, and Martin (1964) and Cerulus and Martin
(1963). Some of these bounds, or slightly weaker
bounds, hold under weaker analyticity assumptions on
the scattering amplitude, but these are still stronger
than the Lehmann (1958) ellipse analyticity of QFT.

In 1966 Martin made the very important step re-
quired for building the bridge between axiomatic field
theory and the theorems on high energy bounds. By
using unitarity and the two-variable analyticity of a
scattering amplitude, he extended the Lehmann
ellipse analyticity to the kind of domain that had been
expected from perturbation theory. This was sufficient
to derive the Froissart bound and some other bounds.

However, all was not well at the field theory end of the
bridge due to the close connection between the poly-
nomial boundedness result and the use of tempered
distributions. As noted earlier, this remaining difhculty
was removed in 1969 by Epstein, Glaser, and Martin,
who established the polynomial bound from Araki-
Haag theory, which does not assume tempered dis-
tributions.

Further details of the historical development and
further references will be given in context with the
results in later sections.

1.3 Exyeriments at High Energies

This review will not contain a detailed account of
experimental results, but it is useful to recall some of
their main features since they provide a guide to the
types of high energy theorems that are most useful to
study.

a. Total Cross Sections

Present results up to 70 GeV/c indicate that total
cross sections are either asymptotically constant or
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slowly varying at high energies. In Sec. 5 we will
consider various possible extrapolations from present
experimental results with special reference to the
Pomeranchuk theorems, which are concerned with the
question of whether asymptotic equality holds for
particle —target and antiparticle —target cross sections.

b Di.gerentiat Cross Secti ons

When the colliding particles have nonzero spin, the
differential cross section will in general depend on
several independent invariant amplitudes. It may
be possible, as in pion —nucleon scattering, to choose
amplitudes so that one of them doroinates near the
forward direction. However, most of the high energy
theorems for nonforward scattering do not apply
unless a spin average is taken. Most of our discussion in
this review will be concerned with collisions of spinless
particles; but where results with spin have been
established, these will also be given.

c. Phases of Scattering Amptitmdes

1.4 Notation

We will use the conventional notation s, I,, I for the
relativistic invariants in a two-body collision,

1+2—&3+4,

s= (p,+p,)', t= (p,+p4)',

(1.4. 1)

4

zz= P m,'—s—t.
1

(1.4.2)

In the case of equal-mass particles and in the center-of-
mass system for Process (1.4.1),

s =4 (m'+ k'),

t = —2k'(1 —cos 8),

zz= —2k2(1+cos 8). (1.4.3)

In the case of scalar bosons in collision, there is a single
scattering amplitude F(s, t). This case will be used for
illustration through most of this review. In the next
section we will indicate what analyticity properties and
what growth properties have been proved for F(s, t)
from QFT.

Near the forward direction, Coulomb interference
provides a method for measuring the phase of a forward
scattering amplitude. We will 6nd that this is of great
importance in connection with results related to the
possible violation of the Pomeranchuk theorem. For
nonforward scattering, it would be valuable to have
measurements of polarization at asymptotic energies,
not only because of their possible use to test high
energy theorems, but also in connection with tests of
phenomenological models.

2. ANALYTICITY) UNITARITY, AND
POLYNOMIAL BOUNDS

In this section we will begin by indicating some of the
basic assumptions and properties of axiomatic quantum
field theory. We will then describe the sequence of
results through which one progresses from initially
limited analyticity and growth properties to the full
results that are required for high energy theorems. We
will pay special attention to the result on polynomial
boundedness of a scattering amplitude and we will see
that this result is now firmly established from minimal
axioins in QFT and that it appears to be as fundamental
as the properties of analyticity.

2.1 Axiomatic Quantum Field Theory Assumptions

The first application of quantum field theory (QFT)
to the problem of analyticity of collision amplitudes
was made by Eden (1952), who used perturbation
theory to indicate the branch-point character of normal
thresholds. Three years later Goldberger (1955) wrote a
dispersion relation for pion —nucleon scattering which
was the prelude to the golden era for studying analy-
ticity properties. At about the same time, Bogoliubov
(1957) and Lehmann, Symanzik, and Zimmermann
(1955 and 1957) provided the first reasonably rigorous
formulations of QFT. These formulations were used by
Bogoliubov, Medvedev, and Polivanov (1958), by
Symanzik (1957), and by Bremermann, Oehme, and
Taylor (1958),to derive dispersion relations at fixed mo-
mentum transfer for forward scattering or near to the
forward direction. Also in 1958, Lehmann established a
domain of analyticity in the (cos 0) variable at fixed
energy (the Lehmann ellipse). There is an excellent
review of the forgoing work by Froissart (1964).

The next stage in QFT was the development of the
Wightman axiomatic formulation (see Streater and
Wightman, 1964) . Dispersion relations have been
derived from the Wightman axioms by Hepp (1964).
These axioms can be qualitatively described by the
following assumptions (Epstein, 1968):

(1) There exists a unique vacuum 0 and a minimum
mass (greater than zero) for all states orthogonal to Q.

(2a) Each stable particle has an isolated mass
hyperboloid (at least in the sector corresponding to its
quantum numbers) and the restriction of the represen-
tation of the Poincare group to the corresponding
subspace is irreducible.

(2b) Each stable particle is represented by at least
one local field (i.e., at least one local field has non-
vanishing matrix elements between one-particle states
and the vacuum state 0) .

(3) The asymptotic states are complete.
(4) The "generalized retarded functions" can be

defined as tempered distributions with "sharp" support
properties.

Assumption (4) is not necessary for many of the
results on analyticity that have been derived from
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Wightman theory. However, it does feature in a
significant way in the derivation of asymptotic growth
properties of scattering amplitudes, as we will indicate in
Sec. (2.3). These properties play an essential role in
proving dispersion relations and it is therefore of great
importance that the required properties of analyticity
and polynomial boundedness of scattering amplitudes
have now been derived without an assumption like (4)
from the Araki —Haag theory of localizable observables
(see Araki, 1961—1962, 1968; Haag and Schroer,
1962; and Borchers, 1967).

Although we will refer to the Araki —Haag theory as
axiomatic quantum field theory (QFT), it does not
necessarily imply that fields exist in the usual sense.
The basic assumptions are outlined by Epstein, Glaser,
and Martin (1969); they involve:

(a) physical state vectors are elements of a Hilbert
space;

(b) there exists inva, riance under the Poincare group,
and certain reducibility properties;

{c) there is a unique vacuum state, and states
orthogonal to the vacuum have masses larger than a
strictly positive mass mop 0;

(d) a local Araki —Haag field is defined by means of a
von Neumann algebra in which the property of local
causality is defined by commutation of operators that
correspond to spacelike separation. It is not necessary
to assume the existence of interpolating fields as in the
theory of Lehmann, Symanzik, and Zimmermann
(1954, 1957; see also Hepp, 1966). Neither is it neces-
sary to make an assumption that restricts expectation
values of operators to tempered distributions as in
Wightman theory (Streater and Wightman, 1964) .

From the assumptions of Araki —Haag QFT, Epstein,
Glaser, and Martin (1969) have derived the analyticity
and polynomial boundedness properties of two-body
collision amplitudes that are required for most high
energy theorems and bounds. Their derivation makes
use of earlier results, some of which will be indicated in
the next subsection.

2.2 Results on Analyticity

F(s, t) is regular in the s plane except for poles due to
stable particles and cuts along the real axis from the
leading threshold in s to s=+ ~, and from the leading
threshold in I to s= —~ . The limit on to the latter cut
(the left-hand cut) gives the antiparticle process

F(1+3~2+4)= lim F(s I'e, t)—(2.2.4)
&
—&0+

when u& (mi+m, ) '.

The proofs of analyticity hold provided the masses
of the theory satisfy certain inequalities. These hold for

m~~EA,

KK~KK, s.(A or Z)~s-(A or Z).

In Wightman theory, polynomial boundedness was
derived using the assumption about tempered distribu-
tions mentioned in Sec. 2.j., thus establishing dispersion
relations (Hepp, 1964, 1966; Bogoliubov et a/. , 1959).
More recently, polynomial boundedness has been
derived from Araki —Haag theory (without this tem-
peredness assumption) by Epstein et al. (1969) giving
for some S

~
F(s, t) ~&[ s P, for s)ss, and —t (t(0.

(2.2. 5)

The proof by Epstein ef a/. is given only for spinless
neutral particles, but the authors note (i) tha, t it cari
easily be extended to all cases of charge and spin and
(ii) that it can be generalized to particles that can be
described by regularized products of Wightman fields or
Jaffe fields )the latter are discussed by Jaffe (1966,
1968, 1969), who gives further references]. The
derivation of both analyticity and polynomial bounded-
ness (2.2.5) will be qualitatively described in Sec. 2.3.
Given these results, dispersion relations follow for t real
in —ts&t&0, (where for equal-mass particles, to= 8ms,
for example),

s~ "dxFI(x, t) uN "dyF, (y, t)
F(s, t) = — ' +-„x~(x—s) s. „, y~(y —u)

+ (pole terms)+ (polynomial in s and u), (2.2.6)

General references: Froissart (1964), Hepp (1966), where ss and us denote threshold values.
Epstein (1966 and 1968), and Martin (1967a, 1969).

F(s, t) =F*(s*,t),
such that for s& (mI+m2)',

F(physical) = lim F(sos, t)

is the scattering amplitude for the process

1+2~3+4.

(2.2. 1)

(2.2. 2)

(2.2.3)

a. Fixed t Dispersion Relations

For ts(t&0, the sca—ttering amplitude F(s, t) is the
boundary value of a real analytic function,

b The Lehma. nn Ellipse

References: Lehmann (1958, 1959) (see also Leh-
mann, 1964, and Froissart, 1964) .

For elastic scattering (2.2.3) the amplitude F(s, t)
is analytic for s (real) ) (mi+m2) ', in the domain
t = t(cos 8) corresponding to the Lehmann ellipse. This
is an ellipse in the cos tt plane, with foci at cos 8=+1
and —1, and with semimajor axis

(mA —mI) '(me —ms) '
cos its ——1+

k'i s—(mg —ma) 'J

where nsg denotes the lowest-mass intermediate state
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having the same quantum numbers as particle 1; i.e.,
such that the matrix element (A

~
ji(0)

~
0) is nonzero,

where 0 denotes the vacuum, and ji is the current
operator for particle 1.The mass m& is similarly defined
using js(0). Thus if 1 denotes a pion, m&=3m on
account of 6 parity.

It was also proved by Lehmann that the absorptive
part of Ii is analytic inside a larger ellipse. However, in
both cases, one finds that the ellipse extends only to
include positive values of t, in the range 0&3& t~ where

ti(s) ~C/s as s~~ ) (2.2. 8)

d. 3Earldelstam arId I.ehmame Domains

References: Mandelstam (1964) and Lehrnann

(1966).
Mandelstam used the above results to prove that the

srsr scattering amplitude (for example) is analytic in

both s and t in the domain

~
sl ~&256m' (minus the cuts), (2.2.9)

where nz denotes the pion mass. Lehmann obtained a
domain of analyticity for the scattering amplitude
F (s, l) in both s and t, which interpolates between the
dispersion relations and the Lehmann ellipses.

e. Tzvo-Variable AealyHcity rIear Physical Points

Reference: Bros, Epstein, and Glaser (1964).
Each physical real point has a complex neighborhood

(in both variables) in which F(s, t) Lor a reaction
amplitude T(s, t)] is analytic except at those points
actually on the relevant s, t, or I cut.

f Enlargement .of the Lehmann Ellipse near Threshold

Reference: Bessis and Glaser (1967).
For xx scattering, the Lehmann ellipse extends to

cos Ho= (1+9m, /h's) "' (2.2.'10)

where C is a constant (9m' for equal masses) . This may
be contrasted with the analyticity out to t = 4m',
which is expected from perturbation theory. This
additional analyticity has now been established in
axiomatic QI'T via the steps indicated below.

c. Crossing and Analytt'city for General Masses

Reference: Bros, Epstein, and Glaser (1965).
The results described above in Sec. 2.2.a have been

extended to the case of general masses. A general two-

body reaction amplitude T(s, t) is analytic for real
negative values of t in the complex s plane minus the s
and tc cuts, and minus a finite (but possibly large)
region

~

s
( &R(t) .

The above results describe only single-variable
analyticity in either s or in t. Analyticity in the two
variables simultaneously is required as an essential
preliminary to the extension of the above limited
domains.

Near the threshold s=4m', this corresponds to a value
t~ of I, given by

ti(s) = —2h'(1 —cos ee) (2.2. 11)

(2.2. 12)

The fact that this tends to zero at threshold is a kine-
matic accident arising from the technique used by
Lehmann. Using a more general method, Bessis and
Glaser have shown that (for example) in srsr scattering
there is a domain of analyticity near threshold that
extends to 3=4m'. A similar result holds for xE or xA
scattering.

i F(s, t) i&i (s/si) +'F(si, t) i, as s~~. (2.2. 13)

This result holds for all l in
~

l
~
&to, where to is a fixed

constant. It follows that

(i) F(s, l) is analytic in
~

t ~&to, where to is found
from the analyticity domain of F(si, t), and is therefore
independent of s.

(ii) The scattering amplitude F(s, t) is polynomial
bounded, for

~

l
~
& t, , as s~~ .

From the partial wave series for F(s, t), one obtains
immediately the result that the domain of analyticity
can be extended to the Martin —Lehmann ellipse in the
cos 0 plane, which has foci at +1 and —1, and extends
so that the fixed point 3= to is included.

g. Martin's Extension of the Lehmann Ellipse

References: Martin (1966a, 1967, 1969).
Using the analyticity properties noted above, and

for negative l the polynomial bound (2.2.5), Martin
has extended the known analyticity of F(s, t) to a,n
ellipse that includes a fixed positive value of 3, to, say,
which is independent of s. His method also extends the
polynomia, l boundedness (2.2.5) to the same larger
domain. The essential steps in Martin's method are the
following:

(1) A dispersion relation defines F(si, l) for si&se, in
terms of Im F(s', t) for s'&so. (The subtraction terms
and the left-hand cut cause some technical complica-
tions which will not be discussed here. )

(2) Using the partial wave series and unitarity,
which gives 0&Imft(s') &1, for s'& sroestrictions are
obtained on Im F(s', t) and its derivatives at l= 0.

(3) Combining (1) and (2), Martin justices the
differentiation of F(s, t) in terms of differentiation
under the integral sign in the dispersion relation
(2.2.6) and hence obtains a bound on the n-fold deriva-
tive of F (si, t) at l = 0, for si& so. This is then extended
to complex s not on the cut along the real axis.

(4) The bound at l = 0 on (d/dt) "F(s, t) is used to set
a bound on the Taylor expansion of F(s, l) giving the
result:
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h. Further FxterIsiorIs and CompletiorIs

(i) The optimum value of to, giving analyticity of
F (s, t) in

~

t
~
& to, can be found for any reaction by a

method due to Sommer (1967a) . This method subtracts
out finite parts of the s cut and u cut so that s~ in
(2.2.13) can be chosen on the real axis above threshold.
Then to is found from the analyticity of F(sI, t) inside
the extension of the Lehmann ellipse near threshold,
which was found by Bessis and Glaser (1967). By
optimizing to by choice of s~, one obtains to= 4m for x~,
EE, ~Ã, and m.A scattering.

(ii) Vsing the previously found analyticity, together
with crossirig, Martin has applied methods of analytic

completion to enlarge the two-variable domain of
analyticity. We will not describe the full domain since
it is not required for our later discussion. However, we
should note that he makes an additional ad hoc hy-
pothesis, namely, that o(total) is bounded in any
subinterval of 4m'(s(16tfPj most physicists would
accept this as intuitively reasonable. Further details of
these extensions of the analyticity domain are described
by Martin (1966b, 1967, and 1969). They will not be
required for our discussion of high energy theorems.

(iii) The work of Martin extending the Lehmann
ellipse has been generalized by Sommer (1967b) to
include collisions of particles having nonzero spin (see
also Sec. 3.6).

origin before t= 0, that is, if

A(0, t) =0, for t&0, (2.3.4)

then a((o) is regular in the upper-half complex (0 plane.
Causality in this model requires that there is no

scattered wave at a distance r, until a time r/c after the
incident wave reaches the scatterer at s=o. Thus we
require that

B(r, t) =0, for (ct—r) &0. (2.3.5)

From this condition and the inverse of (2.3.2), analo-
gous to (2.3.3), we see that,

f(o)) a(o)) is regular in Im ((d) )0.

The following points should be noted:

(2.3.6)

(i) With sharp causality (2.3.4), the "wave function"
a(o)) involves only a decaying exponential along any
ray in the upper-half co plane. This provides not only
the convergence giving analyticity of a(o)), but also
indicates that a(co) decreases as u&

—&~ along this
ray, or at least grows no faster than along the real axis.

(ii) Similar remarks apply to the product f(a) a(o)),
and since both a(cv) and this product are analytic, we
see that the "scattering amplitude" f((o) is analytic.
If both a(&a) and the product are polynomial bounded as

~

o)
~

—p~ in Im (o)) )0, so is f((o) .

b. Axiomatic QFT
2.3 Polynomial Bounds

References: Epstein, Glaser, and Martin (1969).
Epstein et al. prove the result

IF(s, t) l&lsl+' as s~~, for ltl«o (2 3 7)

from the axioms of the Araki —Haag theory (see Sec.
2.1) . The central diflIculty that they have to overcome
arises from the fact that this theory does rot assume the
"sharp" support properties of tempered distributions.
Consequently they do not have sharp causality relations
analogous to (2.3.4) and (2.3.5).

If A (0, t) is nonzero for t &0, but decreases faster than
an exponential as t~ ~, we see from—(2.3.3) that, as
(d—p~ alOng a ray in Im (od) )0,

a. 3 Classica/ Analog

References: Toll (1956), Wong (1964), and Eden
et al. (1966).

Let A(E, t) be a wave packet with Fourier com-
ponent a(a&) moving with velocity c in the s direction
towards a scattering center at s =0,

00

d e( ) exp t ——
t) . (2.3.1)

—oo c

The scattered wave may be written

a((0)—exp PC Im ((o) j. (2.3.8)

Our assumed fast decrease of A (0, t) as t~ ~ensures-
convergence of (2.3.3) provided the integral converges
over the positive t range, and this gives analyticity of
a(&u) as before.

Epstein et al. establish the analog of this required fast
decrease of A (0, t) and of B as t &~, by a—method in
which Lorentz invariance plays a vital role. They there-
fore obtain analyticity for their wave function and
product function analogous to a(~) and f(o&)a(o)), in
Im (co))0. In their theory this gives (i) analyticity
of F (s, t) in the cut s plane, for —to& t&0. Their result
analogous to (2.3.8) has sI(' analogous to ca, giving
(ii)

~
F(s, t)

~

has a bound
) exp (Cs'I')

~

as s~&pa
along any ray in the cut s plane. They also establish that

B(r, t) = r I(2~) "'
S

d I( )e( ) exp t — t), (2, 3.2)—
where r is the distance from the origin.

From the inverse to (2.3.1),

dtA(0, t) exp (io)t), (2.3.3)a(cv) = (2~) "'

we see that, if the incident wave does not reach the

In this section we will begin by describing an analo-
gous problem based on the scattering of light. We will
then describe the results for relativistic collisions of
strongly interacting particles that are based on the
Araki —Haag theory (see Sec. 2.1). Finally we will give
an 8-matrix argument for a bound along the real s axis.
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(iii) F(s, t) has a polynomial bound as s—+op along the
real axis, with —tp&t&0. It should perhaps also be
noted that Epstein et a/. have to overcome a consider-
able technical diKculty in disentangling the product of
the wave functions and the scattering amplitude to
obtain the result (ii) . For the result (iii) one scarcely
requires use of QFT as we will see below, in Sec. 2.3.c.

By subtracting the discontinuity along the real
branch cuts, Epstein et al sho.w that F(s, t) consists
of an entire function plus a dispersion integral in the
variable s. However, the entire function also satisfies
(ii) and (iii) above; therefore it must be a polynomial.
This proves that, for t real and —tp&t&0, F(s, t) has a
polynomial bound. Using analyticity, one sees that
F(s, t) satisfies a dispersion relation with 1lt (say)
subtractions, in —tp& t& 0.

This result can then be extended by the method of
Martin (1966a) (see Sec. 2.2.g) to establish a poly-
nomial bound and a dispersion relation for

~

t
~
&tp, in

particular for positive values of t in the range 0&t&tp.
This gives their result (2.3.7) .

c. 3 Comment on Growth for s Real

The derivation of analyticity in the Lehmann
ellipse does not require a polynomial bound on growth
as s—+~. Therefore let us suppose that for t= tp C/s, ——
inside the ellipse,

Im F(s, tp) &exp (s~), as s(real)~~. (2.3.9)

From convergence in the Lehmann ellipse, we can write

s' 2t2
ImF(s, t) = —g (2l+1) Imf~(s)Ft 1+—

p s

(2.3.10)

Since each term is positive and the sum satisfies
(2.3.9), we deduce that

Imf~(s) &exp (s~) exp ( lC'/s'"). — (2.3.11)

Thus the terms in the partial wave series for Im F(s, 0)
become negligible for /& L"=C"s~+'. Using 0&
Im f~(s) &1, this proves that

Im F(s, t) &Cs' +' as s(real) —+~, (2.3.12)

for —tp& t &0. By crossing, this also hoMs for s—+—~ .
Thus a polynomial bound for s(real) —+op must hold

for t&0 if one does not allow growth faster than
exp (s~) for arbitrary /when t&0. This means that the
amplitude can be separated into a dispersion integral
plus an entire function when t&0. The entire function
must be polynomial bounded along s(real)~op since

~

F
~

as well as { Im F
~

can be bounded by using the
partial wave series (see the beginning of Sec. 3 for
general references on techniques). The important new
result of Epstein et a/. shows that the entire function
(for t &0) is bounded in complex directions by exp

~

Cs"'
~

and therefore from (2.3.12) we see that it must be a

polynomial in the variable s. One then proceeds to
t&0 as noted earlier in Sec. 2.2.g.

3.1 Forward Amplitudes and Total Cross Sections

a. The Froissart Bolted

Reference: Froissart (1961), Greenberg and Low
(1961),and Martin (1963a, 1963b, 1966a).

From analyticity in the Martin —Lehmann ellipse,
we can write the partial wave series,

s~s~t2-
Im F(s, t) = g (2l+1)

i=p

XImf (s)r, (1+ ), (3 1. 1)

where our normalization is chosen so that Im F (s, 0) =
2ks"'a (total) . Unitarity requires that

0&
~ f( ~'&Im f(&1. (3.1.2)

Hence, with t=tp&0, each term in (3.1.1) is positive.
The sum of this series of positive terms satisfies the
polynomial bound (2.3.12); therefore each term
satisfies this bound as s—+~,

(2l+1) Imf~(s) P~{1+[2tp/(s—4m')]} &Cs~.

For large values of l and s,

F {1+L2t/(s —4m') ]}& [C'/(»+ I)"']
Xexp {l[4tp/(s —4m') ]'"}

Hence, for large values of l and s,

0&Im f~(s)

&C" exp {—2l(tp/s)"'[1 —e(s)]+X log (s) },
where

e(s) —+0 as s—+~ .

From this result one sees that the magnitudes of the
partial waves decrease exponentially with l and become
negligible when s is large and l& (const) [s"'log (s)].It
follows that for t&0,

8~s~t» 2t
r(s, i)= Z(2t+i)j, (s)r, &+

~ )p

+0(s "), (3 1 3)
where

I =Cs't' log (s/sp). (3.1.4)

3. BOUNDS AND INEQUALITIES BASED ON
AXIOMATIC FIELD THEORY

General references: Martin (1963a, 1967, and 1969)
and Eden (1966a, 1967).

In this section we will indicate the main results that
have been derived from the analyticity and polynomial
boundedness established from QFT and described in
the previous sections.
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In deriving (3.1.3) from (3.1.1), the inequality (3.1.2) Common shows that for any rI & 1,
has also been used. By choice of the constant C in
(3.1.4), the inverse Power dd in (3.1.3) car be made &e& &

+ )(a+ )( ) i (r )0 total
arbitrarily large. ~2 ~2

Using (3.1.2) in the sum in (3.1.3), one can bound
Irn F(s, 0); then using the optical theorem, one obtains
the Froissart bound as s~~, namely,

o (total) &C'/log (s/so) ]'. (3.1.5) + (A+ 1)307r2M„'as', (3.1.12)

C'& m/m' (3.1.6)

where
The constant C' can also be bounded (Lukaszuk and
Martin, 1967), M„=L(2')!(rt/1) "/2" (II)) '(2m+1) "]

Taking N= log (s/m') and letting rI~~, this equation
(m is the Pion mass). This value of C' corresPonds to gives the Froissart bound in the form
C= (1/4m) in (3.1.4).

trh, b, I(s) & (vr/m') Dog (s/so) ]'. (3.1.13)
b. The Forward AmP/itude

Using (3.1.2) and (3.1.3) at t=0, one obtains
The above results have been generalized to other
scattering processes by Common and Yndurain (1970) .

~
F(s, 0) ~&~(s/m') flog (s/so)]'. (3.1.7) 3.2 Elastic Cross Sections and the Forward Peak

c. Bourids Ievolvieg Total Cross Sectioris at AQ Errergies

References: Yndurain (1970), Martin (1967b), and
Common (1970).

Using proven analyticity out to t = 4nz2, for xx
scattering, the t-channel D wave scattering length is
given by

References: Martin (1963c), Kinoshita (1966),
Eden (1966a, 1966b, 1967), Logunov, Mestvirishvili,
Nguyen van Hieu, and Nguyen ngoc Thuan (1968),
and Singh and Roy (1970a).

For practical purposes, provided 3&4m', we can cut
off the partial wave series at t = I.= Cshls log (s) . Then,
using Cauchy's inequality, we obtain

a2' ——1Im L f,(t) /g'] (3F./128)
@2~0

(3.1.8) S
0 a

2 L

ob.„)(s) & Lg t Im f)(s)]'
3 2' Q

= (40m) ' dss 'ImF(s, t=4m') (3.1.9)
4m2 &LZ t If'(s) I]'

Combining this result with the techniques used in
deriving the Froissart bound, Yndurain shows that & LZ t

I fI(s) I']I:2 t]
8'

ds'(s' —4m') trb, b, ) (s')
S—4'' 4m2

Hence,

t oh, t,,)(s)]'&Co (elastic) flog (s/so)]'. (3.2. 1)

og —, 8 — og —,

~

F (s, 0) ~' do (elastic)
16XS2 dt ]=pwhere e&1. The only unknown constant is the scat-

tering length as' (assumed to be finite) .
The above result has been generalized by Common to

give bounds on moments of o„b,)(s). For ~s. scattering,
the Eth moment is defined for E& 1 by

log —, 3.2. 2

The constant C can be shown to be F/m' )for example,
see t.ukaszuk (1970) or Singh and Roy (1970a)].
Using similar methods, the following results can be

2"(e!)' 2N+ (1280)xm' as's, (3.1.10), (2e)! rI+1

(%+1)
(s—4m') ~+'

ds'(s'+4m') "o,.h, )(s) . (3.1.11)
4m2

—log i F(s, t=0)
i

&CL' (startle)3'a ' ). (3.2.3)F s, 0

From (3.2.2) one can obtain a bound on the phase of
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the forward amplitude:

Re F(s, 0) sr s Lo (elastic) ]"'
Im F(s, 0) m' se o.(total)

S
log —

I
a. (total)] 'l'. (3.2.5)m' so

For completeness, we note also the obvious unitarity
bound, which was used in going from (3.2.4) to (3.2.5),

o (elastic) &o (total) . (3.2.6)

3.3 Nonforward Scattering

Refelellces: Mal tlil (1963b) Jill and Mal till (1964}
Logunov et al. (1968), and Singh and Roy (1970a,
1970c).

Using bounds on Pi(cos tl) and the methods of
Sec. 3.1, one obtains the following bounds:

For fixed negative transfer, t& —&&0,

do. (elastic) Llog (s/se) ]o.(elastic) 3.3.1
dt 4~m( —t) 'l'

Using the bounds given in previous sections, this leads
to the bound

IF( t) I& (3 3 2)
2sr"'msl'( t) "4—

for t& —e&0. For positive values of t in (0&t(4m'),

I
F(s, t) I&C(s/se)' ', where e&0. (3.3.3)

For fixed angle 0&g(sr, as s(real)~0c,
do (elastic) s"'Llog (s/se) ]o (elastic) 3.3.4

dQ 8n'm(sin tl)

Using o (elastic) &o.(total) & (sr/m') flog (s/se}]', this
gives for fixed 0&0, as s(real) —+~,

An upper bound at fixed negative t is given by Singh
and Roy (1970a, 1970c),

I
Im F(s, t)/Im F(s, 0) I

&I:1—9z+s(9z)' —~'s'e(9*)'+" ] (3 3 6)

provided x&2.5, where

z= (—t) Lo (total) ]'/4sra(elastic) . (3.3.7)

It is interesting to note that the bound (3.3.5) cannot
be reached in any finite interval 8&&8&02 since this
would give o(elastic) &o (total) for large values of s.
This suggests that a rigorous improvement to this
bound should be possible, but this has only been
achieved by making extra assumptions beyond those
based on QFT Lsee Kinoshita et al. (1964) and Sec. 4.1].

3.4 Lower Bounds

a. The Foulard Eeuk

Reference: MacDowell and Martin (1964).
The partial waveTseriesfjfor Im F(s, t) contains

I
F (s, 0) I&

I
C/s' I. (3.4. 2)

This bound holds rigorously in complex directions and
in an average sense for s(real)~cc . In an average
sense, this gives

const

s"Dog (siso) ]' (3.4.3)

The reason for the appearance of the extra powers of s
and (log s) in (3.4.3) is that (3.4.2) may be dominantly
real, so one cannot use the optical theorem to give
(3.4.3) directly. Instead one has to use the inequality
(3.2.2) giving

o (total) &o (elastic) &, , ', ; (3.4.4)
IF(s o) I'

n. m' s' log s se

substituting into (3.4.2), the inequality (3.4.3) is ob-
tained.

c. The Method of Lagrarsge Multip/iers

This method was first used in the present context by
MacDowell and Martin (1964) for deriving their
lower bound (3.4.1) . It can also be used to obtain other
inequalities and bounds such as those in Sec. 3.3. A
very useful discussion of the method of Lagrange
multipliers generalized to include inequality constraints
has been given by Einhorn and Blankenbecler (1970).
These authors show that their generalized method can
be used to derive many of the rigorous inequalities both
for Im F(s, t) and for Re F(s, t), and it can also be
applied to inequalities based on special assumptions
which will be discussed in Sec. 4.

terms involving the Legendre polynomials giving the t
dependence, and Im fi(s), which is restricted by
unitarity to the range (0, 1).Using this restriction one
can minimize the derivatives of Im F(s, t) at t=0, by
choice of Irn fi(s), assuming that o (total) ando (el. im. )
are given. The latter quantity is the value that o (elastic)
would take if Re fi(s) = 0. This leads to a rigorous lower
bound,

(d/dt) I log Im F(s, t) ],=e

& 9 I I
o (total) ]'/4sro (elastic) —(1/h') I (3.4. 1)

b. The Forward Amplitude aid Total Cross Sectiors

Reference: Jin and Martin (1964).
From the dispersion relation for a symmetric forward

scattering amplitude F (s, 0), one can prove that F (s, 0)
has no more than two zeros in the complex s plane (or on
the real axis between the cuts) . The proof makes use of
the Froissart bound, which limits the number of sub-
tractions, and the positivity of Im F(s, 0) on the cut
s&se. This result permits one to relate F(s, 0) to a
Herglotz function H(s, 0) by dividing out the zeros.
The asymptotic bounds on Herglotz functions then lead
to the following result,
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3.5 Two-Body Inelastic Processes

References: Logunov, Mestvirishvili,
Hieu, and Nguyen ngoc Thuan (1968),
Singh (1969).

For two-body inelastic processes, the
are bounded by unitarity

[
fI""'"(s) ['&Im fI"""(s).

Hence

Nguyen van
and Roy and

partial waves

(3 5 1)

Sec. 2.2.g). As with that theorem, full cut-plane
analyticity at fixed t is not essential, but one can use
instead the analyticity proved by Bros, Epstein, and
Glaser (1965) (sce Sec. 2.2.c).

The derivation of the appropriate kinematic singu-
larity-free amplitudes can be achieved by standard
methods and is described in the above references Lsee
also Wang (1966), and Cohen-Tannoudji, Morel, and
Navelet (1968)].

L

[ F~.~(s, t=0) [& Z (2t+1) IfI'"(s)
I

0

(Cs[ log (s/so) ]', (3.5.2)
giving

[d(r (ab~cd) /dt], ,
&C/o (ab—+cd) ][log (s/ss) ]'. (3.5.3)

Solids

References: Yamamoto (1963),Hara (1964), Cornille
(1964), Martin (1967, 1969), and Mahoux and Martin
(1968).

For a spin-averaged amplitude Ii, orbital angular
momentum is conserved, so F(s, t) will have a similar
partial wave expansion to that for nonzero spin. In
particular, unitarity will impose the usual condition

At fixed angle 0&0&II, s(real) —+~, the bounds are
essentially the same as for elastic scattering, 0&[fI(s) ['(ImfI(s) &1 (3.6.2)

dg(ab +cd)/d—(cos 8) &C's"'Llog (s/so)]

&& $o (ah~cd) ]/sin 0. (3.5.4)

Some "nearly" rigorous results have been obtained
for many-body inelastic processes. These will be given
with references in Sec. 4.3.

3.6 Nonzero Spin

a. ArIatyticIty ProPerties

References: Sommer (1967), Mahoux and Martin
(1968), Mahoux (1969), Bell (1968), and Martin
(1969).

The starting point of our discussion was the analy-
ticity obtained by Lehmann (1958) (see Sec. 2.2) and
by Bros, Epstein, and Glaser (1964, 1965) (see Sec.
2.2). These results still hold for scattering amplitudes
of particles with nonzero spin provided they have no
kinematic singularities. It is also necessary to ensure
that the amplitudes have the right positivity properties
for Im F on both the s cut and the I cut. For example
this is achieved for pion —nucleon scattering by

F+(s, t) = A+(s, t)+L(s—u)/4IM]B+(s, t), (3.6. 1)

where A and 8 are the usual invariant amplitudes (free
of kinematic singularities), and + denotes symmetric
and antiSymmetriC COmbinatiOnS Of Ir+P and Ir P
scattering. In the general case, the key results can be
based on the following theorem (Mahoux 1969):

Given. a scattering amplitude F(s, t) for the scat-
tering of two massive particles having nonzero spin,
that is free from kinematic singularities and satisfies a
dispersion relation in (to & t &0), this amplitude F(s, t)
also satisfies a dispersion relation in

[
t [&R (where R is

a positive constant); the number of subtractions in-
creases by no more than one.

The above theorem is essentially the same as that
proved for spinless particles by Martin (1966a) (see

for the partial wave in the expansion of the spin-
averaged amplitude. This is sufhcient to establish
bounds that are similar to those for the case of nonzero
spin.

If the spin average is not taken, it may be possible to
choose an amplitude that satisfies stronger bounds than
in the nonspin case. This may lead to superconvergence
relations for such an amplitude Lsee Mahoux and
Martin (1968) and Sec. 4.6].

3.7' Form Factors

References: Martin (1965a) and Jaffe (1966).
Jaffe has established from the general principles of

local QFT, that a form factor F(t) is analytic in the t
plane cut from Io to infinity with the possible exception
of a, finite region [

t [&R. He also shows that

[
dt [&cV, (3.7. 1)

(1+[ t I"')
for some finite M, where I' is a straight line in Im t& 0
parallel to the real axis.

Jaffe's assumptions do not include the ternperedness
of the fields, and are at least as general in character as
those discussed in Sec. 2. From the bound (3.7.1) using
theorems on growth rates (Boas, 1954), it follows that

[F(t) [&A exp f b[ t ['"] —as t~ ~. (3.7.2)

This result had been obtained earlier by Martin (1966a)
assuming analyticity of F (t) and a bound on its growth
rate. The work of Jaffe shows that it follows rigorously
from QFT.

3.8 Zeros of Amplitudes

References: Jin and Martin (1964), Wit (1964),
Bessis (1966), and Eden and Lukaszuk (1967).

It is evident, from discussions on the problem of
duality of scattering amplitudes, or from the phe-
nomenology of Regge theory, that the distribution of
zeros of scattering amplitudes is very important both
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for consistency and for experimental comparison. The
number of zeros of F (s, t) in the s plane for t = 0 also
plays an important role in the discussion of lower bounds
as s~~ (see Sec. 3.4) . We will see later (Sec. 4.2) that
the number of zeros in the t plane for fixed (large) s is
also important for the study of fixed angle bounds.

The following results about zeros have been proved
rigorously:

(i) F (s, 0) has no more than two zeros in the cut plane
provided the cut corresponds only to physically allowed
scattering (as in the equal-mass case) .

(ii) The zero of Im F (s, t) in t &0, which is nearest to
t= 0, cannot be closer than a distance of order (log s)
as s~~ .

(iii) The number 1V of zeros of F (s, t), inside a circle
of radius

~

t
~

=b& r& to, satis6es the bound

4log s
E(s, b) & . (3.8. 1)

log r b

4. BOUNDS REQUIRING SPECIAL ASSUMPTIONS

General references: Kinoshita (1964), Kinoshita,
Loef'fel, and Martin (1964), and Eden (1967).

The special assumptions that are used to give addi-
tional results on high energy behavior can all be stated
in precise mathematical terms, but not all have a clear
physical meaning. Alternative special assumptions
include (i) the validity of the Mandelstam representa-
tion, (ii) the asymptotic constancy of total cross
sections, (iii) analyticity and polynomial bounds in
domains where these results have not yet been proved
from QFT, (iv) nonoscillatory behavior or some
knowledge about the distribution of zeros of an ampli-
tude, (v) restrictions on the asymptotic phase, and
(vi) a simple form of a particular model for high energy
scattering, such as the Regge pole model.

The reason for studying special assumptions is that
their consequences may be subject to experimental
tests. Although such tests cannot prove or disprove
asymptotic theorems, it is possible for them to appear
either as reasonable or unreasonable in comparison with
experiments at high, but 6nite, energies. We will
illustrate some of these special assumptions and their
consequences in this section.

4.1 Fixed Angle Upper Bounds

Reference: Kinoshita, Loeffel, and Martin (1964).
At a Axed angle 0, differential cross sections appear to

decrease experimentally like exp (—s"') or exp (—s).
The bounds (3.3.4) and (3.3.5) are very far from this
behavior, and they would even violate unitarity if they
were saturated for a range 8~&8&0~. Improved bounds
have been obtained by Kinoshita et a/. , who assume the
following:

A ssumPti oris

(i) Unitarity for partial waves.
(ii) Analyticity in the cut s= cos 8 plane for

Im F(s, t).

(iii) Polynomial boundedness in the variable z, in the
cut s plane.

The last two assumptions are additional to the results
obtained from QFT. They are contained in the Mandel-
stam representation, but assumption (iii) would not
hold if, for example, Regge theory was valid with
indefinitely rising trajectories.

The main results of Kinoshita et al, are the following:

(a) For forward scattering no improvement is
possible. An explicit counterexample satisfying (i),
(ii), and (iii) was constructed.

(b) For 8/0 or ir, they obtained the i~proved bound

For the differential cross section this gives

do. C[log (s/so) g'

dQ s sin'0
(4. 1.2)

It is possible to obtain these results with less than full
cut-plane analyticity in s= cos 8, but it is necessary by
present methods to exceed the analyticity and bounded-
ness that has been proved from QFT.

4.2 Fixed Angle Lower Bounds

References: Cerulus and Martin (1963) and Eden
and Tan (1968b).

The method of Cerulus and Martin was originally
based on the Mandelstam representation, but it can
be used in more restrictive conditions. The essential
ingredients are

(i) the lower bound (3.4.1),
~
F(s, 0) ~)Cs ',

(ii) special assumption: F (s, t(cos 8) ) is analytic in a
'certain bounded domain D(s) in the cos 8 plane con-
taining the real interval (—p, p), with p= 1+C'/s,

(iii) special assumption:

i
F (s, t (cos 8) ) i

&M (s), (4.2. 1)

on the boundary of D(s), where M(s) is a known
function.

Cerulus and Martin take M (s) = s~, which is the
boundedness of the Mandelstam representation, and
they take a large domain D(s), giving the result, for
0&0&~,

~

F (s, t (cos 8) ) ~) exp [—C (8) s'I' log (s/so) j. (4.2. 2)

This appears to be fairly close to experimental results.
If one either uses a smaller domain for D(s) or

allows M(s) to be larger, the bound becomes weaker.
For example, using the value M(s) = exp (s/sp) that is
indicated by rising Regge trajectories, the lower bound
will become,

~

F(s t(cos8) ) ~)exp [—C(8)slog (s/s, )$. (4.2.3)

4.3 Angular Dependence

Reference: Tiktopoulos and Treiman (1968a) and
Kinoshita (1964).
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P(s, cos 8) = —log
~

F (s, l (cos 8) ) t. (4.3.4)

The method can still be used if a limited number of
zeros E(s) is allowed inside D(s) as s—+po, but it
breaks down if X(s) s as s~~. This is in fact the
number of zeros that is to be expected if there are
linearly rising Regge trajectories (Eden and Tan,
1968a, 1968b; Chiu, Eden, Green, and Guerin, 1969).
The main conclusion here is that information on the
distribution of zeros of collision amplitudes plays a
vital role in asymptotic behavior.

4.4 Inelastic Processes

I ehmann's derivation of analyticity in the small
ellipse has been generalized by Ascoli and Minguzzi
(1960) to give rigorously from QFT a domain of
analyticity of a production amplitude As ore variable.
However, it has not been established that there is a
neighborhood of analyticity in all variables as for
two-body scattering (see Sec. 2.2.d) . It seems therefore
that results on production amplitudes do not have a
full rigorous foundation.

Bounds for production amplitudes have been
studied by Tiktopoulos and Treiman (1968b) and by
I ogunov et al. (1968). They use unitarity for the
partial waves,

j Z p I
Ti (s, li ''lp) I'&0 'Imfi(s) &b '. (4.4. 1)

f~(s) denotes the partial wave for a+b~a+b Using.
Schwarz's inequality, one deduces

do (inelastic) /d (cos 8)

&CisLlog (s/sp)],

do (inelastic) /d (cos 8)

cos 8= &1, (4.4.2)

&C2S I'Llog (s/sp) O' I'(sin 28) ' ' (4 4 3)

If, in addition to the Cerulus —Martin assumptions
of Sec. 4.2, one assumes that F (s, t(cos 8) ) has no zeros
for cos 8 in D(s), it is possible to obtain restrictions on
the angular dependence PD(s) is a certain bounded
domain in the cut cos 8 plane, whose size depends on sj.
Thus, if F (s, t (cos 8) ) is analytic for cos 8 in the domain
D(s), and if

IF(~ l(cos8)) I

&Q(s) L1+ (p' —cos2 8) 1/2jM(8) (4 3 1)

then, for 0~&02,

4($, cos 8i)/(p' —cos'8])'I'

&&(s, cos 82)/(p' —cos'8i)'I' (4.3.2)
and

(p —cos 82) I $(s, cos 82)

& (p' —cos'8i)'"@(s, cos 8i), (4.3.3)
where

4.5 Lower Bounds

References: Jin and Martin (1964), Sugawara
(1965), and Wit (1965a, 1965b).

The bound on the forward amplitude given in Sec. 3.4
can be improved if assumptions are made about the
low energy behavior of F(W, 0), where W= ip (s—u).
These conditions for pion —nucleon scattering are ex-
pressed by Sugawara (1965) in the form

1 " 1 M+m 2g'Wp
o (W) dq) — (ai+2ap) +

(4.5. 1)

where o.(W) is the average of the ~+p and z. p total
cross sections, f4 and q denote the laboratory pion
energy and momentum, Wp

——m'/231, and g'=0.08;
a~ and a3 denote the s-wave scattering lengths for isospin
—,
' and —,', respectively.

The condition (4.5.1) ensures that the symmetric
forward amplitude has at least two zeros in the 8'
plane. From this, using the phase representation of
Sugawara, or factoring out zeros to get a Herglotz
function, one obtains the bound

~
F(W, 0) ~)C/(log W)'", as W~~, (4.5.2)

provided one excludes oscillations (or takes some
average). In practice, the (3, 3) resonance alone is
sufficient to satisfy the inequality (4.5.1) so the bound
(4.5.2) follows for pion —nucleon scattering.

For nonforward scattering, lower bounds can be
obtained only by assuming a limit on the allowed
oscillations of Im F (for example, see Jin and Martin,
1964). The problem of oscillations of an amplitude
has also been considered by Cornille (1970a, 1970b),
who seeks suitable averaged amplitudes whose behavior
is less oscillatory (see also Sec. 7 of this review, and
Eden and t.ukaszuk„1967; and Gervais and Yndurain,
1968).

4.6 Some Related Topics

In most of this review we are concerned with high
energy theorems for strongly interacting particles.
Some of these theorems are closely related to other
topics either by the mathematical techniques involved
or through physical associations. A few related topics
will be listed very brieQy in this section, mainly to
provide some useful references.

a. Sum Rules and Superconvergence Relations

Rigorous proofs of sum rules depend only on analy-
tlclty and asymptotic behavior of an appl opl lately
chosen amplitude. References relating to rigorous and
heuristic results have been given in Sec. 3.6.

b. Sum Rules and Bounds for Forward
Compton Scattering

Reference: Truong (1970).
The zero mass of the photon prevents the use of

many of the techniques discussed in this review. With
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(
F (s, 0) ~' h(s)

— &o total .
S

(4.6.3)

In the general case this inequality will lead only to
bounds of the type described in Sec. 3.2, but for a
Regge theory in which one uses only simple Regge
poles, it leads to the result (Oehme, 1963; Leader,
1963; and Eden, 1967)

a(0) &1 (4.6.4)

for the leading trajectory.
This method has also been used by H. Sugawara

(1963) in Regge pole theory. We will return to it also
in connection with a more complicated form of Regge
theory in Sec. 7.2.

5. HIGH ENERGY THEOREMS REQUIRING
SPECIAL ASSUMPTIONS

General references: Greenberg (1964), Van Hove
(1964), Kinoshita, and Eden (1967).

In this section we will begin by considering relations
between the phase and the asymptotic rate of growth
of scattering amplitudes. These relations provide the
mathematical basis for results like the Pomeranchuk
theorem. YVe also discuss situations where the Pomeran-
chuk theorem does not hold.

Eota60e: In this section and later sections it is more
convenient to use the symmetric energy variable
W=-,' (s—u) instead of the variable s.

5.1 Asymptotic Phase and Growth Rate

References: Sugawara and Tubis (1963), Logunov
et al. (1963), Van Hove (1964), Jin and MacDowell
(1965),Khuri and Kinoshita (1965),and Eden (1967).

some reasonable extra assumptions, Truong is able to
obtain bounds from which sum rules can be derived.

c. Bounds ore the Two Pio-l Scattering Amplitude

References: Martin (1969), Lukaszuk (1966),
Lukaszuk and Martin (196'7), Wit (1970b), Bonnier
and Vinh Mau (1967), and Common (1969).

Using the experimental fact that there is no stable
bound state in the mw system, it is possible to obtain
bounds and inequalities on the x~ scattering amplitude.
These bounds are rather weak unless assumptions are
made additional to those of QFT. For example, at the
symmetry point s=t=u= (4m'/3), for ores scattering
it is found that

—50&F(4m'/3, 4m'/3) &8, (4.6. 1)

the bounds permit inequalities for certain scattering
lengths. For example,

a, ( ' ') = ,'a, (I=O)+-,'a, (I=2))-—4/m. (4.6.2)

d. Boureds for Special Models

The inequality o (elastic) &o (total) can be used in a
variety of special situations to limit the rate of growth
of the amplitude in the forward direction. Qualitatively,
if h(s) denotes the width of the elastic forward peak,
we will have

If the asymptotic behavior is given by

[ F,(W, t) f-C
/

W [-,

it follows from (5.1.1) that

(5.1.2)

Fs(W, t) aCW exp Lkr(1 ——
2&x) $. (5.1.3)

Similarly, for an antisymmetric amplitude

Im F~(—W+iO, t) =+Im Fq (W+i0, t), (5.1.4)

giving

F~(W, t) +CW exp Li7r(-,' ——,'n)]. (5.1.5)

The above results are familiar from the phases as-
sociated with even and odd signature Regge poles.
They can be generalized to include functions having
more subtle asymptotic behavior in a variety of ways
including

(a) the direct use of dispersion relations;
(b) the use of the Phragmen —Lindeloff theorem (see

Meiman, 1962; Logunov et al. , 1963; and Van Hove,
1964);

(c) the use of the phase representation of Sugawara
and Kanezawa (1961, 1962) (see Sugawara and
Tubis, 1963; and Jin and MacDowell, 1965);

(d) the use of results from the theory of univalent
functions (see Khuri and Kinoshita, 1965; Khuri, 1969.

The last method, in particular, can be used to set
bounds on the rate of growth even when there are
severe oscillations. Some general classes of oscillating
amplitudes have also been studied by Gervais and
Yndurain (1968) with special reference to high energy
results including the Pomeranchuk theorem.

5.2 Pomeranchuk Theorem for Differential
Cross Sections

References: Pomeranchuk. (1956),Logunov, Nguyen
van Hieu, Todorov, and Krustalev (1963), and
Van Hove (1964).

Let H/' denote the symmetric energy variable

W=-', (s—u) = s+-', t—-', Q m'. (5.2. 1)

Let Ii~ and F~ denote amplitudes for particle —target and
antiparticle —target scattering

Fg.'A+B +A+B, —

F2'.A+B—&A+B. (5.2. 2)

Crossing and Hermitian analyticity gives the relations

Fg( —W—i0, t) =F2(W+i0, t), (5.2.3)

Fg*(—W+iO, t) =Fg(—W—iO, t). (5.2.4)

Relations between the asymptotic phase and growth
rate follow from the symmetry between the right and
left-hand cuts in the W plane, where W= 2(s—u) at
fixed t. For a symmetric amplitude Iiz, with 8' real,

Im Fs(—W+iO, t) = —Im Fs(W+iO, t). (5.1.1)
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Hence

Fi (W exp (i«r), t) =F«*(W+iO, t), (5.2.5)

where t/t/' is real.

AssumPtion: For fixed real t, as W(real)~~,

F„(W+i0, t)/W~ (log W —-,'iir)e —+C, (t), r=1, 2.

(5.2.6)

Using analyticity and polynomial bounds, one obtains
via the Phragmen —Lindeloff theorem, as t/t/' —+~,

F,*(W+iO, t)/Fi(W+iO, t)

—+e'
I (log W+si«r)/(log W——',i«r)]e—+e' . (5.2. 7)

This gives the Pomeranchuk theorem for differential
cross sections, at Axed t,

(do/dt) (A+B +A+.B)——+1, as W—+~, (5.2.8)
(do/dt) (A+B +A+B)—

Note: (i) The assumption (5.2.6) excludes oscillations
of the phase when t/I/' is suSciently large. In Sec. 7 we
give an example that violates this assumption. (ii)
Specializing to t = 0 we obtain

Fi (W+iO, 0)/Fi (W+iO, 0)
I

—+1. (5.2.9)

The result (5.2.9) gives no information about oi(total)
and o&(total) unless Fi and Fi are dominantly pure
imaginary in the forward direction.

5.3 Pomeranchuk Theorem for Total Cross Sections

Reference: Pomeranchuk (1958).

a. Statement of the Theorem

Using also the dispersion relation for (Fi+Fi), one
finds that assumption (ii), Eq. (5.3.3), is violated
unless C~= C2 and the Pomeranchuk theorem is satished.

Note: Assumption (ii) has not been derived from QFT
but is introduced as an ad hoc hypothesis. Intuitive
arguments suggesting that Im F&)Re Ii as 8'~~
appear to be based on models in which only a number
1.'=cd'I' of partial waves are important in the series
(3.1.3), whereas in the simplest Regge picture, L"=
cWIt'(log W) "' partial waves are important, and
rigorously from QFT, L=cWIt'log W may be irn-
portant.

c. Proof When Cross Sections Diiierge AsymPtoticalty

References: Eden (1966b) and Kinoshita (1966).
In this case the special assumption Eq. (5.3.3) is

not an additional requirement since it follows rigorously
from unitarity and QFT since, for example, Eq. (3.2.5)
gives

Re F„(W, 0) /(log W) Im F„(W, 0)

&( /«r'm)I o.„(total)] 't'. (5.3.5)

For example, let us assume that total cross sections
behave asymptotically like

o-i(W)~CI(log W), o. (WS)~CS(log W), (5.3.6)

where n is strictly positive. It follows from the dispersion
relations that the QFT result (5.3.5) is violated unless
CI=C«. This proves the Pomeranchuk theorem (5.3.1) .

Limited oscillations of o.(total) could be introduced
without invalidating this result (for example, see
Cornille, 1970b) .

d. Bounded Growth Rate for (oi oi)—Let o««(A+B) and o«,«(A+B) denote total cross
sections for particle —target and for antiparticle —target
collisions. Then

We replace Eq. (5.3.6) by a form consistent with the
result (5.3.5), but allowing a nonzero diRerence be-

o««(A+B)/o««(A+B)~1 as W~op (5 3 1) tween oi and o&, namely,

o«.«(A+B)—&CI, o«.«(A+B)~CS.

Assumption (ii)

(5.3.2)

b. Proof When Cross Sections Are
Asymptotically Constant

References: Pomeranchuk (1958) and Martin (1965).

Assuniption (i)

o.i(W) C(log W) ~+D(log W) e, 0&/ &n,

oi(W) C(log W) —D(log W)e, 0&P&c«. (5.3.7)

From the dispersion relations, we can obtain Re F/Im F
for each amplitude. In particular, the dispersion relation
for the antisymmetric amplitude will lead to a term in
Re F(W, 0) involving W(log W)e+I. Substituting in
Eq. (5.3.5), one obtains the consistancy requirement

Re F„(W, 0) /(log W) Im F„(W, 0)~0 (r=1, 2) D(log W)e& (m'/2m') (log W)
'*(5.3.8)

(5.3.3) from which we deduce that P& —,'o.. Hence as W~~,
where Fi and Fi are defined in (5.2.2). From the
dispersion relations and the optical theorem, it follows
from (5.3.2) that

I Co«.«(A+B)/o«. «(A+B) 5 1—
&C/(log W) & . (5.3.9)

(5.3.4)

Re (FI—F,) —(2/«r) (CI—C,) W log W

Im (FI—F,) (CI—CS) W.

This may be written in the form

r=1 2 (5.3.10)
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Re F,(W, 0) /Im F„(W, 0)

L(C,—C,)/C„](1/zr) log W, r=1, 2. (5.3.12)

f Proo.f of a Pomeranchuk like T-heorem from QFT

References: Kinoshita (1970).
Using only results that have been established from

QFT, Kinoshita has proved the following theorem:

If oz(total)zCz, oz(total) —+C2, as W~~, then
either one of the following relations, or both of these
relations, must be satisfied as 8'—+~,

(i) oz(total)/oz(total) —+1, (5.3.13)

(ii) doz(W, t(W) )/doz(W, t(W) )zi, (5.3.14)

where do denotes da/dt, and

t(W) = —$C/(log W)'] (5 3 15)

The proof can be achieved by the following steps: If
(5.3.13) does not hold, then Re (Fz —Fz) given by
(5.3.4) will dominate both forward amplitudes. The
t derivative of the forward amplitudes satisfies the
rigorous inequality (3.2.3), which in view of (5.3.4)
becomes, in this case,

(d/dt) log
~
F(W, t=0) ~&C(log W)'. (5.3.16)

This can be generalized to give a bound on the eth
derivative and sets a bound on the Taylor series for
F(W, t). From this bound one can see that if C in
(5.3.15) is chosen suKciently small, F, (W, t(W) ) will
still be dominated by Re F„coming from the anti-
symmetric combination of F& and F2. This proves that
(5.3.14) must hold if (5.3.13) is violated. If (5.3.13)
holds, it is not known whether any general statement
can be made about the validity of (5.3.14). The fore-
going outline proof is based on a method of Eden and
Kaiser (1970a, 1970b) and differs from the elegant
but more complicated proof of Kinoshita (1970).

5.4 Invariance Properties and Exchange Cross
Sections

References: Okun and Pomeranchuk (1956) and
Roy and Singh (1969).

For illustration we consider pion —nucleon scattering:

Assunzption: (i) Isospin invariance is asymptotically
exact. This gives, as W~~,

F~=F~(~'p~~'p)-F (k), (5.4. 1)

Fz=Fz(~ P~ P)-3LF(2)+2F(2)], (5 4 2)

F =F ( P 'n)-Y~LF(l) —F(-:)] (5.4 3)

e. ColrItertheorem

In Sec. 6, we will see that the situation,

o z (total) ~Cz, oz (total) —+C2, Cz W Cz, (5.3.11)

may be important. In this case the Pomeranchuk
theorem is violated and from the dispersion relations one
obtains the countertheorem

01~C1) 02~C2. (5.4.6)

Ilsing the dispersion relations for (Fz —Fz) and substi-
tuting in (5.2.14) we obtain

1(C,—C,) l&C(,) t-. (5.4. 7)

In their derivation of this result, Roy and Singh
evaluate the constant C to give, as 8'~~,

&total ~ atotai

&$(2zr)zt'/2m][0 .g(zr P—+zr'n)]"'. (5.4.8)

The Pomeranchuk theorem (5.3.1) can be deduced
from (5.4.8) if one makes the following extra assump-
tion:

Assumption: (iii) The exchange cross section
tends to zero as the energy tends to infinity. Then, if
the previous assumptions (i) and (ii) are also valid, the
result (5.3.1) follows from (5.4.8).

If the Pomeranchuk theorem (5.3.1) does not hold,
the inequality (5.4.8) provides a possible experimental
test for the validity of isospin invariance at asymptotic
energies (see Sec. 6.3.c) .

6. EXPERIMENTAL RESULTS AND HIGH
ENERGY THEOREMS

6.1 Total Cross Sections and Dispersion Relations

References: I indenbaum (1968, 1967a, 1967b), Foley
et at. (1967), Allaby et at. (1969), and West and
Yennie (1968).

Dispersion relations may be used to determine the
phase of a forward amplitude from measurements of
total cross sections only if assumptions are made about
cross sections at energies beyond those obtained
experimentally. Asymptotic smoothness together with
bounds on asymptotic cross sections and the use of
simple functions of energy will set limits on the phase
(or Re F/Im F) in the forward direction. These limits
can be tested experimentally by directly measuring the
phase by its eGect on Coulomb interference at small
angles of scattering. This provides a valuable check on
the reasonable nature of the asymptotic assumptions
(however, see the comments in Sec. 6.4.g).

6.2 Tests of High Energy Bounds

References: MacDowell and Martin (1964) and
Singh and Roy (1970b, 1970c).

Apply the inelastic bound (3.5.3) to the exchange
process, giving

~
F, (W, 0) ~'&CW'(log W), ( p -'n). (5.4.4)

Hence, from isospin invariance,

i
F F —i/W log W&C( )"'. (5.4 5)

Assumption: (ii) For total cross sections,
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The phase measurements by Foley et al. (1967)
indicate that from 8 to 30 GeV, forward amplitudes are
dominantly imaginary. The bounds on Im F(s, t) may
therefore be relevant near the forward direction, so
long as Im F))Re Ii.

MacDowell and Martin give the bound (3.2.6),
namely,

(d/dt) log Dm F(s, t) ),=p

On the assumption that both F and dF/dt are pure
imaginary at t =0, it appears that this bound is nearly
reached for the case of pion —nucleon scattering (as-
suming spin independence of the unpolarized cross
sections near t=0).

Singh and Roy have made a comparison with experi-
ment of their upper bound on Im F(s, t) given in Eq.
(3.3.6), assuming a,iso that do/dt is.dominated by Im F.
In the near-forward direction I where do/dt& [s (do/dt)
with t=0)I they find the bound differs by only about
10% from experimental values for pion —proton scat-
tering between 7 and 13 GeV energies.

6.3 The Serpukhov Data on Total Cross Sections

References: Allaby et al. (1969).

a. The EppPerimerItal Results

The IHEP—CERN collaboration at Serpukhov
(Allaby et al. , 1969) gives results as follows (o denotes
0 total

(i) o (pp) continues to decrease at Serpukhov
energies and may be asymptotically equal to o.(pp).

(ii) o (s. p) is nearly constant from 30 to 60 GeV/c
at about 24.7 mb. This value is about 1 mb greater than
o (n. m), which (assuming charge symmetry) should be
equal to o (m.+p) . In view of the experimental errors and
the uncertainty about allowing for the Glauber effect,
this difference may not be significant (see, for example,
Wit, 1970a) .

(iii) o (E p) is nearly constant from 20 to 60 GeV/c
at about 21 mb. This compares with o (E+p), which has
a constant value of about 17 Inb from 5 to 25 GeV/c.

b. Theoretica/ Discussioe

At 6rst sight it appears that the Serpukhov data on
o(total) for E p taken with previous data for E+p
contradict the Pomeranchuk theorem (5.3.1) . This
naive interpretation supposes that cross sections that
appear to be experimentally constant over a large
energy range remain constant out to asymptotic
energies. Many alternative interpretations are possible
depending in part on the value of the energy that one
chooses for the onset of "asymptopia. "Since most of the
interpretations are likely to be ephemeral in character
(or not susceptible to an experimental test), they will be

mentioned only briefly. They include the following
possibilities:

1. SimPle siolation of the FomerarIchuh theorem:

o(E P)—~CIA o(E+P)~C» CIRC, . (6.3.1)

In this case the countertheorem (5.3.12) applies (see
Eden, 1970), giving

Fg(W, 0) =F(E p) F(E—+p), (6.3.2)

F~ (W, 0)~—(2/Ir) (CI—Cp) (log W ',i—Ir-) . (6.3.3)

From (6.3.1) and the rigorous inequality (3.2.2), we
see that

C„&o;(elastic) &4m'/Ir'(CI —Cs)', r= 1, 2. (6.3.4)

Therefore, in this case, the elastic cross section will be
bounded above and below by constant values.

From the rigorous inequality (3.2.3), we see that in
this case

(d/dt) log $F(W, t) j,=p&C'(log W)'. (6.3.5)

We will see from an example in Sec. 7.2 that this last
inequality does not need to be saturated. However, if
one also takes account of higher derivatives, the
"effective" width of the forward peak must shrink hke
(log W) s so that o (elastic) does not exceed o (total).
Further theoretical and experimental consequences of
(6.3.1) have been discussed by Eden and Kaiser
(1970a, b).

Z. A mirII'mum il o (total) . References: Frautschi and
Margolis (1968), Barger and Phillips (1970), and
Rarita (1970). In Regge theory it is possible for
minima to arise in total cross sections due to inter-
ference between Regge pole terms and cut contributions
of opposite sign. Taking advantage of this, Barger and
Phillips and Rarita have shown that existing data can
be fitted by a suitable choice of parameters in Regge
theory. Their choice leads to Oat minima, which agree
with the nearly constant experimental values in E p
and E+p collisions, but make asymptopia rather
distant.

3. OscillatiorIs in o(total). Reference: Arnowitt and
Rotelli (1970) . There is some theoretical evidence that
Regge trajectories may be complex even below threshold
(Chew, 1969; and Ball and Zachariasen, 1969). This
could lead to oscillations in the total cross sections due
to interference between different terms in the Regge
series for a forward scattering amplitude. Making use of
the uncertainty in fitting Regge theory to data at low
energies, Arnowitt and Rotelli have obtained a reason-
able 6t to the Serpukhov data.

6.4 Comments on Experimental Tests

The following aspects of high energy theorems appear
to offer the most favorable possibilities for experimental
tests. However, it should be emphasized that no amount
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of accurate experimental information will prevent a
theorist from avoiding the issue as far as general theory
is comcemed by postulating ever increasing values for
the energy where asymptopia commences. In terms of
particular models, or real theories which actually make
predictions (without having an indefinite number of
variable parameters in reserve), these experimental
tests may be much more decisive.

a. The Phase of Forward AmpHtudes

If the Pomeranchuk theorem is violated as suggested
in (6.3.1), then sl (W) = (Re F/Im F) should grow
logarithmically as in (5.3.12) . Qualitatively one would
expect a change in the slope of g (W) in about the same
region that oi(total) and a2(total) take on nearly
constant (unequal) values. Different results hold if
alternative explanations of the Serpukhov data are
assumed, such as Regge-cut-pole interference minima
in total cross sections. But, in any event, the experimen-
tal values of the phases would give useful theoretical
restrictions.

b. Differential Cross Sections

In the near-forward direction the axiomatic "Pomer-
anchuk-like" theorem discussed in Sec. 5.3.f can be
tested in principle. In practice, it seems most unlikely
that Re Ii will dominate over Im Ii at accessible
energies sufficiently to make (5.3.14) even approxi-
mately correct on that account. One is more likely to see
the effect of Re Il through an increase in the separate
differential cross sections very-near-the-forward direc-
tion.

Away from the very-near-to-forward direction it
is possible that { F(W, t) { will develop oscillations if
the Pomeranchuk theorem is violated as in (6.3.1).
These oscillations would arise from zeros in F(W, t)
near to t =0 and may be detectable in the differential
cross section (see Sec. 7).

If the Pomeranchuk theorem is violated as indicated
in (6.3.1) the width of the forward peak should shrink
like (log W) . This will be discussed further in Sec. 7.2
(see also Eden and Kaiser, 1970a, 1970b) .

c. Tests of a Iower Bound on the Forward Peak

The rigorous bound (3.4.1) has already been dis-
cussed in relation to experiment in Sec. 6.2.

d. Comment on Asymptotic Isospin, or SU3 Invariance

Reference: Roy and Singh (1969).
Asymptotic isospin invariance gives the inequality

(5.4.8). If oi,t(7r p) —o&,i(sr+p) does not tend to zero,
then either o.,„, (m. Pi—+sren) is also nonzero asymp-
totically, or isospin invariance does not become exact at
asymptotic energies. The corresponding situation for
kaons with asymptotic SU3 invariance is less simple.

One obtains, as H/'~~,

~
a(E+p) a(—Ep)

—~(—K'p)+~(E'p) {& (~ st2/ m)

+min {$o;,i,(E'p E+n) )'i'
L .„,&(E—

p E'n) j"'I
(6.3.6)

where m denotes the pion mass.

e. E' Regeeeratio~

E' regeneration experiments determine the phase of
the amplitude

F (Kiep +Kg'p—) = ,'F (K+n~—K+n)

,'F(K—n—~K n), (6.3.7)

in the forward direction. If the total cross sections for
E e and X+e are asymptotically unequal constants,
the amplitude (6.3.7) will be dominated by the part
that leads to violation of the Pomeranchuk theorem,

F(E,'p~E, 'p) -(2s/vr) (Ao) flog (s) ,'in—.]—(6..3.8)

Thus the phase will tend to zero as s—&~. The way in
which the phase approaches zero has been estimated in
various Regge type models by Barger and Phillips
(1970).

f. Charge Exchange

If oi,i, i(n. p) —oi,i, i(sr+p) does not tend to zero, and
if isospin invariance becomes asymptotically exact, then
the charge exchange amplitude F(sr P~sren) will con-
tain a term F~(W, 0) like (6.3.3) which is responsible
for violating the Pomeranchuk theorem. This term
means that the charge exchange cross section should
grow like (log W)' at t=0 and it should have a sharp
forward peak that shrinks like (log W) s as W~~.
Since this peak is to be compared in this case with
ce, p contributions (instead of P, P contributions as in
the elastic case), there should be a better chance of
observing it.

g. Coulomb Interference

References: Eden and Kaiser (1970a, 1970b) and
West and Yennie (1968).

In Sec. 6.2 we remarked that the phase of a forward
amplitude F(W, 0) could be measured by Coulomb
interference. This deduction requires an extrapolation
from measurements of (do/dt) at small t in the region
t —0.003 ( GeV) ', where Coulomb scattering and
strong (nuclear) scattering are comparable in magni-
tude. The extrapolation requires an assumption about
the smooth behavior of the nuclear scattering in the
Coulomb interference region. If the Pomeranchuk
theorem is violated, the nuclear scattering contains a
(log W)' forward peak in addition to the usual well-
known peak. This may induce a rapid change in the
part of (do/dt) due to strong interactions as t varies
within the Coulomb interference region. It therefore
becomes very important to measure (do/dt) precisely
in the Coulomb-dominant region

~

t
~
& (0.003) in order
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to investigate whether there is a narrow nuclear peak
in this region. This possibility also creates some doubt
about the experimental estimates of total cross sections
that also involve an extrapolation through the Coulomb
region to zero scattering angle.

7. MODELS AND EXAMPLES OR
COUNTER EXAMPLES

o4.4.l(E p)~Ci,. a total (E p) ~C2 i (7.1.1)

with C~/C2. Let Fq and F~ denote the symmetric and
antisymmetric amplitudes,

7.1 An Amylitude for Violating the Pomeranchuk
Theorem

Reference: Finkelstein (1970).
We will assume that total cross sections are asymp-

totically constant:

The Finkelstein amplitude (7.1.4) can clearly be
generalized, for example, to

FA(W, t)

CW'+'{Q aa sin [ba( —t)'I'(lOg W—
—2,iir) j}'

t(log W—-'2iir)

(7.2. 1)

By choice of constants we could arrange that

(d/«)Liog I
FA(W t) 17l=o=0 (7.2 3)

Thus the inequality (6.3.5) need not be saturated.
However, if the conditions (7.1.1) hold, we can deduce
some rigorous conclusions about F(W, t) near the
forward direction, where F corresponds to either
E+p, or to E p, scattering:

(a) F (W, 0) is dominated by CW log W as W~~ .

(b) Since 0 (elastic) &0 (total) & const,

we can deduce from
~7. 1.2~Fs= 2p'(E p)-+F(E"p)],

FA= 2P'(E p) F(E+p)—j. F(s, t)
dt

S

(7.1.3)
(7.2.4)0 (elastic) &

that (do/dt) must d. ecrease so that the effective width
of the forward peak 6(eRective) satisfies

F8 presents no problem since it has Re F8&Im Fq in
the forward direction. However FA(W, t) must satisfy
conditions which include

(i) analyticity for
~

t
~
& to, and the Froissart bound as

8'—+~,
(ii) the polynomial bound (3.3.3) for positive real t,
(iii) the bound (6.3.5) on the slope of the forward

peak,
(iv) unitarity, 0 (elastic) &0 (total),
(v) Re FA(W, O) =CW(log W)

Im FA(W, 0) =C'W.

The Finkelstein amplitude satisfying these conditions
has the form

FA(W, t)
CW~'+' {siln L(—t) 'i'(log W 22iir) ]I— (7.1.4)

t(log W——', iir)

This amplitude has several interesting properties and
consequences:

(i) It can be derived in Regge theory from a partial
wave amplitude having two branch cuts running from
t=1+t to t=1+tai( —t)'i2.

(ii) It has zeros near (—t) =4222r2/(log W)'. Thus the
differential cross sections will have oscillations within
the forward peak since F~ dominates over F8 near to
t=o.

A(eRective) &Ci/(log W)'. (7.2. 5)

The constant C& has been bounded by Eden and Kaiser
(1970a, 1970b), giving Cl 102 ( GeV) '. They also
obtain a lower bound

C2/(log W) '& h(eRective), (7.2.6)

where C2 10 4 (GeV)'.
(c) By studying the rate of growth of the amplitude

(3.1.3) for small positive t as s—+~, Eden and Kaiser
also obtain lower bounds on

~
F(s, t)

~

for t&0. Com-
bining their results with (6.3.3), which follows from the
(assumed) violation of the Pomeranchuk theorem, and
with the unitarity condition (7.2.4), they show that
F (s, t) must have zeros as s~~ which lie in the range

C,/(log W)'&~ t }&C/(log W)', (7.2. 7)

where C2 10 ' (GeV) ' and C4~102 (GeV)'. There
cannot be any zeros closer to t= 0 than is allowed by
the lower bound in (7.2.7).

(d) The possibility of observing the above behavior
of the forward peak in, for example,

(do/dt) (E p~E p)

depends on the value of l4l(eRective) within the allowed7.2 Zeros near the Forward Direction
range (7.2.5) and (7.2.6). With favorable values the

References: Bessis (1966), Eden and Lukaszuk peak could lie outside the Coulomb-dominant region
(1967), Casella (1970), and Eden and Kaiser (1970a,

~

t ~) (0.003) (GeV)' (see the discussion in Sec.
1970b). 6.4.g). It would be relatively more important in the
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charge exchange process,

E P IPn,

for which one might also be able to see the effects of
oscillations due to zeros of F(W, t) if these were at
experimentally favorable values in the range (7.2.7).
In this situation a positive observation of oscillations of
(do/dt) would be most valuable, but failure to observe
them would be indecisive.

'7.3 Saturation of the Froissart Bound

The Finkelstein amplitude (7.1.4) can be adapted to
give a symmetric amplitude that saturates the Froissart
bound (3.1.5) and also satisfies all the conditions that
we have noted in Sec. 3 as derivable from QFT. A

suitable amplitude is given by

Fe(W, t) ~iCW(log W —', iz-r) '

X
sin [(—t) '"(log W —', iz-r) ) "

(7.3.1)
(—t) 't'(log W—-', izr)

for any integer e&2. This amplitude can be further
generalized as in (7.2.1) if this relatively simple form is
found to contradict new conditions that may be derived
in the future from QFT. The most likely source of such
conditions lies in the combination of unitarity in the t

channel with crossing symmetry. However, Regge
theory already takes some (nonrigorous) account of
t-channel unitarity and crossing; the reader is therefore
invitt.'d to verify that the expression (7.3.1) has a
representation in the complex t plane analogous to that
for (7.1.4).

8. SUMMARY OF AXIOMATIC RESULTS

The following results as s—+op have been proved from axiomatic QFT.

Statement of Bound

Forward Scatter&tg

o (total) & (zr/nz') [log (s/s, ))'
m= pion mass

General spin

~
F(s, 0) ~( (zr/nz') flog (s/sp)]'

Normalized with Im F sa(total) .

[do (elastic) /dt) ~=p & (1/16nz') (log s/sp) 'o (elastic)

[o (total) ]'& (zr/nz') (log s/s, ) 'o (elastic)

~

Re F(s, 0) /Im F(s, 0)
~

& (zr/nz') (log s/sp) [o.(elastic) ]"'/o (total)

~

Re F (s, 0)/Im F(s, 0)
~

& (zr/nz') (log s/sp) [o (total) ] 't'

Section of Review
giving References

3.1

3.1

3.2

3.2

3.2

Digracti orz Peak

—log
( F(s, t) )

&C[o (elastic)]'t'
s[log (s/sp) ]'

dt ',~ ~F(s 0)
~

[(d/dt) log
~

Irn F(s, t) ~]~=p) p I [(o (total) )'/4zro (elastic) )—(1/k') I

Fixed Tramsfer (t& —e&0)

do. (elastic) flog (s/sp) )o.(elastic)

dt 4zrnz( t)'l'—
sLlog (s/so) )"'

F s, t
2zr'"nzet'( —t) "'

~

Im F(s, t)/Im F(s, 0) ~&[1—px+-', (px)' —x'p'p( —',x)'+ ]
if 2.5)x=—(—t) [o (total) ]'/4zro (elastic)

Fixed Transfer (0& t(4nz')

i F(s, t) i&C(s)'—'

3.2

3.3
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Fixed AngLe 0&0&~

3.3

do (elaStiC) SIt'$1Og (S/Ss) 7a (elaStiC)

dn 8m+'(sin 8)
3.3

Lover Bognds

Exact for complex s, average for real s:

i F(s, o) i&C/s' 3.4

3.4

Statement of Bound

Inelastic Tao-Body Reactions

o (ab~cd) [log (s/so) ]'
16m'

da(ab &cd)—
dt

At fixed angle:

do (ab~cd)/d(cos 0) & ICstts(log s/so) fo (ah~cd)/sin 8]I

Section of Review
giving References

3.5

Form Factors

~
F(t)

~

&2 exp ( b~ t ~It') aS—theo 3.7

Zeros of F(s, t)

E(s) &C log (s), in
~

t ~&to

Conc1uding Remarks

3.8

I wish to apologize to those authors whose work has been mentioned only briefly or has not been listed fully in
the references. The various review articles noted in the text give a wider list of references to which the reader may
refer for the many interesting methods and results that could not be contained in this short survey.
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