REVIEWS OF
MODERN PHYSICS

Vorume 43, NUMBER 1

January 1971

Landau, Brueckner-Bethe, and Migdal Theories

of Fermi Systems

G. E. BROWN

NORDITA, Blegdamvej 17, DK-2100, Copenhagen, Denmark

and

Institute for Theoretical Physics, State University of New York, Stony Brook, New York*

The Landau theory for infinite Fermi systems is discussed, and it is then shown how one can apply the Landau tech-
nique of functional differentiation of the energy with respect to quasiparticle occupation numbers to obtain the effective
interaction, beginning from the Brueckner-Bethe approximation to the energy. Calculations of this effective interaction
by Bickman from a nucleon—nucleon potential arediscussed and criticized. Results of Béickman’s calculation are compared
with the parameters in Migdal’s effective force, evaluated at the center of the nucleus, the latter parameters having been
derived phenomenologically by fitting various nuclear phenomena. There is a large discrepancy between the calculated
value of the compressibility of nuclear matter and that obtained phenomenologically. The advantages of introducing a
model space in order to improve the accuracy of the calculated results is discussed, and it is pointed out that such an
introduction would also be advantageous in recent calculations by Barrett and Kirson of third-order terms in the effective
interaction; also, that a model space is effectively introduced in recent calculations with the Midgal theory when it comes to
deriving the quadrupole-quadrupole interaction. Calculation of the effective force between two atoms in 3He is discussed
briefly, and it is pointed out that this is a much more ambitious task than in nuclear matter. Calculations carried out
within the Brueckner—Bethe formalism are reviewed.
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1. INTRODUCTION

The three theories in the title all claim validity in
the description of strongly interacting, or moderately
strongly interacting, fermions. We shall discuss here the
application of all three to nuclear matter and to finite
nuclei. Here, Migdal’s theory of finite Fermi systems is
a derivative of the Landau theory, with certain (major)
added assumptions. We also discuss briefly the applica-
tion of both the Landau and Brueckner-Bethe theory to
liquid *He, noting that the latter must be supple-
mented by adding spin fluctuations before one can hope
to achieve a successful description of this system.

The Landau theory gives a phenomenological
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description; the Brueckner-Bethe theory, on the other
hand, starts from the force between two isolated
particles and provides a framework within which one
may be able to calculate the effective interactions
between quasiparticles in the many-body system. Thus,
one can try to calculate the parameters entering
into the Landau theory within this latter framework.
As will be shown, at the present time this can at best be
done semiquantitatively.

My particular goal is to show the connections
between the phenomenological Landau and Migdal
theories, on the one hand, and the calculational
Brueckner-Bethe theory on the other hand. I hope,
in this way, to overcome the psychological block of the
adherents of the phenomenological theories to con-
sideration of the calculational one. It seems completely
clear to me that one must at least begin within the
Brueckner-Bethe framework, if one has any hope of
making a microscopic description. This is because in
the first step one must, in some way, get from the
bare forces with hard cores to effective interactions
(pseudopotentials) which are well behaved at short
distances. The Brueckner—Bethe theory shows how to
combine the strong short-range repulsion with correla-
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tions in the wave function which keep the particles
apart over the range of this repulsive interaction, so as
to give a well-behaved effective interaction. Of course,
this effective interaction must then be used to include
necessary many-body effects, as shall be indicated.

The main reason for the lack of interest among
many-body physicists in the Brueckner-Bethe theory
seems to me to be a philosophical one. Landau always
wanted a small parameter; however, since he did not
see one in, say, liquid ®He, rather than expanding
in powers of something not small, he preferred to
parameterize the quantities determining physical
phenomena, taking values from a given set of experi-
ments, and using these to predict other phenomena.
In this way he predicted zero sound, and his theory has
great aesthetic advantages in unifying phenomena;
in fact, it can even be extended to describe transport
processes as shown by Pethick (1969).

The Brueckner-Bethe theory was applied in breadth
and depth to nuclear matter, largely because one can
actually calculate quantities starting from the “ele-
mentary’” two-body force. Within the theory, as
modified by Bethe (1965), one has a parameter «
which is small in the case of nuclear matter (¥k=20.15),
but is admittedly not very small in liquid *He (x=20.55).
This parameter, which is the one in which the expansion
is carried out, is discussed in detail by Brandow
(1967). We can understand it roughly in the following
way.

On the average, each nucleon occupies a volume the
size of a sphere of radius 7y, given by

srrd=V/N=nv, €))

where V is the volume and NV the number of particles.
Because of interactions with other particles which
trespass into this domain, the particle is, on the average,
excluded from part of this sphere, from a volume, say,
of 4md3, d<r,. Think, for example, of a gas of hard
spheres, each of radius ¢. Then it is clear, if we consider
particles interacting pairwise, that the ratio of volume
excluded to each particle by the presence of other
particles to the average volume 4m7r® is ~c3/r¢® since
the average distance between pairs is ~7y. In fact,
quantum mechanically the ratio is somewhat larger,
~4-8 times ¢*/r?, since the wave function of the
interacting pair not only must be zero inside the region
of hard core, but needs take some time to ‘heal”
outside. An expression for « will be given later, but we
note here that «, in the Brueckner-Bethe theory, is
essentially 1—a, where the ¢ of the Landau theory is
the residue at the quasiparticle pole, describing the
probability that the excitation is a quasiparticle. It
seems completely reasonable that if an excitation is a
quasiparticle most of the time, more complicated
configurations being admixed with only small prob-
ability, then it should be possible to make a microscopic
theory in terms of quasiparticles.

2. THE LANDAU THEORY

Landau (1952, 1957, 1958) began from the idea of a
system of quasiparticles—excitations which behave
like particles, with properties modified by the interac-
tions. He wrote down a Boltzmann equation for these:

on  On de

o T o P I(n), (2)
where 7 is the quasiparticle number, ¢ and p are the
energy and momentum of the quasiparticle, respec-
tively, and I is the collision term. He then tried to
construct a momentum flux, te obtain conservation of
total quasiparticle momentum, by multiplying by p:
and integrating,

d on Je dn de
— i il——— — — ]dr=0, 3
at[pndr—l— /P (ax p Ip 6x> ! 3

dr=g[d’p/(2m)*], (3.1)

with g the degeneracy of each state (equal to 2 for
liquid ®He). As a result of conservation of momentum in
the collisions, the integral [ p.J(n)dr is zero. By
algebraic manipulation and integration by parts, one
can bring Eq. (3) to the form

where

8/‘ d+8/ aend+6/d
N P 9 (.,
) P o ] Py T G ] e

l¢]
—~ /e =0 (4)
We would like to be able to write this as

in terms of a momentum flux tensor m;. If this can be
done, then it is trivial to obtain the conservation of
total momentum

(8/0t) [ d*x [ pndr=0, (4.2)

assuming 7a to be zero on the surfaces of the spatial
volume integrated over. The term

[ €(3n/0x;)dr

on the left-hand side of Eq. (4) is of the requisite form
only if the d/dx; can be taken outside the integral, in
other words, if e(p)d7(p) is the differential of some
quantity E. If we have

8E= [ e(p)on(p)dr, (5
(5.1)

then
[ €(dn/0x;)dr= (9/dx;) E.

In a system described by the Hartree~Fock theory, it is
clear that E is just the energy (per unit volume), and
Landau then made the assumption that, quite generally,

SE/on(p) =e(p), (6)



i.e., that the quasiparticle energy e(p) is obtained by
varying the energy with respect to quasiparticle
number. We see that Landau was led to this assumption
by his construction of conservation laws for the quasi-
particle momentum. (I am indebted to Professor
I. M. Khalatnikov for explaining this to me.)

Now the energy E is a functional of occupation
number 7(p) of all of the quasiparticles,

EZ‘E{%(PI):”(P2)’ "°}1 (7)

and if one varies many of the #(p) away from their
equilibrium value #,(p) by, e.g., exciting a collective
excitation, then the resulting £’ is a functional

E'=E’{6n(p1), 5”(P2)7 e }

Thus, for our present considerations,
Eq. (6) is, in general, a functional of the n(p)’s. To
describe collective phenomena, where many of the éz’s
enter, one needs to carry the variation of E to second
order,

SE=E'—FE
= > 9(p)on(p)+3 > Z,f(p, P’

(7.1)

)on(p)on(p’),
(7.2)

defining f (p, ’). Here we have had to indicate vectors
exphcltly, since the dependence of f on angle between
p and p’ is crucial. Spin variables have been suppressed
here, as elsewhere, for simplicity. It follows from
Eq. (7.2) that

e(p) =3E/on(p) (7.3)

=e®(p)+ 2 f(p, p)on(p").
P

The quantity f(p, p’) turns out to be the interaction
between quasiparticles, as might be deduced from
Eq. (7.2), since it is the change in energy with removal
of quasiparticles in states p and p’. We shall see later
that it is really a quasiparticle-quasihole interaction.

The “theory” part of the Landau theory consists in
relating various physical phenomena to f(p, p’), which,
once determined, predicts other phenomena. To show
this we repeat here Landau’s famous argument, based
on Galilean invariance, which gives the relation
between the quasiparticle effective mass m* and
(o, ).

Consider the Fermi sphere, shown in Fig. 1. Varia-
tions é7(p) in the system are then made by displacing
the Fermi sphere by a small momentum ¢ (giving the
system a uniform velocity) without changing the size or
shape of the sphere. Then the energy per unit volume is
increased by pg?/2m, i.e.,

SE=pg*/2m, (®)

where p is the density. On the other hand, we can
compute 8E from Eq. (7.2). If a quasiparticle is
assumed to have an effective mass expansion near the

the e(p) in -
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Fic. 1. Displacement of the Fermi
sphere corresponding to a uniform velocity of
the system as a whole.

Fermi surface, then e,9=p?/2m* for p~pp; in other
words, the quasiparticles behave like particles with
effective mass m*, changed from m by the interactions
with other particles. Changing the sum to an integral,
we have

Zp: &on(p)= 2y / d(cos 0) 2w pp?
q cos 0 6
X/ (PF—’- P) () = p?/2m*%, (8.1)
0
where we have used
p=pr’/6m?, (8.2)

appropriate for spinless fermions. The limit ¢ cos 6 on 6p
is understandable if one looks at Fig. 1. The én(p) are
equal to 41 for 0<8<%w, and 0<dp<gcosf. Also,
on(p) is —1 for Ir<o<.

Because of the quasiparticle-quasiparticle interaction
f(p, p'), there is a second term in SE [see Eq. (7.2)],
and this is

3 Z,,f(p, p’)én(p)én(p’)

1(27rj)p2)2 )
2 2 /d( 050)/ d(cos @)

q cos 0 q cos 6§
xﬁ (mmA d(5p"f(p, ),

Ipl=]p"|=pr

We have here neglected the dependence of f(p, p’) on

8p and §p’, which would lead to terms of order ¢ and

higher. Thus, the magnitudes of p and p’ are equal to pp.
If we make the expansion

f(p, )= ;fLPL(x),

(8.3)

©)

where x is the cosine of the angle between the two
vectors p and p’, we find, carrying out the elementary
integrals in (8.3),

pg*/2m= (pg®/2m*) +3 (ppr/67*)frg®.  (9.1)
Defining
Fy= (prm*/2m%)fi, (9.2)
we find
m*=m(1+3F;). (10)

Phenomena described by the Landau theory require
a knowledge of f(p, p’) only for | p |=| p’ |=pr. Thus,
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F1c. 2. Variation in n(p) introduced by a small temperature.

just as m* they depend only on the numbers f1 or,
equivalently, Fr.

Now f, can be determined from the compression
modulus, which can be evaluated, given the velocity of
ordinary sound. This is very reasonable, since sound
propagation involves alternate local compressions and
rarefactions, and these are spherically symmetrical
distortions of the Fermi sea. The compression modulus
also depends on the effective mass m*, which must be
determined before f; can be obtained.

The specific heat ¢, depends upon the number of
states per unit energy just at the Fermi surface, and
can be used to determine m*, so that F; can be obtained
from Eq. (10). We repeat briefly this standard argu-
ment. By introducing an infinitesimal temperature
T=6T, we vary the quasiparticle distribution from the
one at zero temperature, as shown in Fig. 2. Then the
on introduced by this small temperature variation is
proportional to

F(e) = (e(e—ﬂ)lkT+ 1)—1_ 1’
= (g(e—n)lkT+1)—1,

e<u
e (11)

expressed in terms of the Fermi distribution for quasi-
particles; % is Boltzmann’s constant. Here €(p) can be
replaced by @ (), since the correction term gives only
terms of higher order in 7'=67. We then find

SE=Qc,6T= > e(p)on(p)
=[Q/ (27)*Jdwm*pr [ edeF (¢)

=Q[m*prp/22%](kT)? [ xdxF(x), (11.1)
where Q is the volume of the system, and
F(x)= (e =041)"1—1, x< %o
= (ev201), x>x0.  (11.2)
The value of the integral is
[ xdxF (x) =%/3, (11.3)
so that
Co=m*ppk?T /6, (11.4)

and depends directly on m*. Hence, knowing ¢,, one
can determine m*.

The quantity ppm*/(27%) which appears in Eq.
(9.2), and in many other places, is just the density of
statesjper unit energy per unit volume at the Fermi

surface, coming from
AN /de s = (dN/dp) (dp/de) |,
= [/ (2)*Jamps*(m*/ pr)
=Q(m*pp/22%) =QN (0). (12)

With introduction of spin, one must multiply this
density [and also the right-hand side of Eq. (11.4)]
by 2. Isospin introduces another factor of 2 in nuclear
matter.

In liquid ®He, the value of F, determined from the
velocity of sound is equal to 10.77, the F; determined
from the specific heat, is 6.25, both at a pressure of
$=0.28 atm. Knowing these, one can calculate the
velocity of zero sound, if one assumes only Fy and F,
to be nonzero.

Zero sound is the phenomenon predicted by Landau
to exist at low temperatures, where the collision term on
the right-hand side of the Boltzmann equation [Eq.
(2)] is negligible. (At low temperatures, few quasi-
particles are present, and the Pauli principle inhibits
scattering processes; this is just a consequence of the
small phase space.)

Given

on  Inde  Onde

5;'1‘5;6—1)———:0, (13)

one then sees whether excitations of the form

(13.1)

where 67 is now a function of p, x, and ¢, will propagate.
The quasiparticle energy e varies with x only through’
its dependence on é#n, since there is no driving force—
such as, e.g., temperature difference—as is usual in
transport processes. Here we are investigating whether
there are self-sustaining oscillations in 6z, Using

n=mny+on; on=>on(p) exp (tkx—iwt),

In/dt=—iwon(p) exp (ikx—iwt),
In/dx=ikdn(p) exp (kx—iwt),

Jde/dp=,

In/AP=20ny/dp= (8n0/3€) (de/dp) = V(dny/de),
de/0x={ik [ f(p, p")on(p’) 2%’/ (27)¥]}

X exp (tkx—iwt), (13.2)
the linearized Boltzmann equation is
—iwdn(p) +ik- vén(p) =ik~ v(dno/de)
X [ f(p, p")on(p)[2d%/(2r)*]. (13.3)

To solve this, set dn=y(dny/de), where

Ono/de= (9no/p) (m*/p) = —o(p—pr) (m*/pr) (13.4)

at zero temperature. Because of this ¢ function, we need
know én and f(p, p’) only for | p |=]| p’ |=pr, again. In



terms of »,
(o—k-v)r=k-v [ F(p, p’)v'(d /4x),
Ipl=|p|=pr (13.5)

where F(p, p’) = (m*pr/7*)f(p, p’), the factor of 2 for
spins now being included. Now, Eq. (13.5) is an
integral equation for », involving, in principle, all
multipoles of f in the expansion, Eq. (9). However, if
one assumes that two terms in this expansion are
sufficient, one predicts for a pressure of 0.28 atm

(Co— 61) /61 = 0.034,

where ¢, is the velocity of zero sound and ¢; is the
velocity of ordinary sound, and it was found experi-
mentally (Abel, Anderson, and Wheatley, 1960) that

(6o—¢1) /er=0.035--0.003.

The predictive power of Landau theory exemplified
here was a great success. Later, Pethick (1969) showed
that the fz determined as discussed above could be used
to describe quantitatively transport properties.

3. THE BRUECKNER-BETHE THEORY

In the Brueckner theory it is realized that, because
of the strong short-ranged interactions between
nucleons or between *He molecules, ordinary perturba-
tion theory cannot be used, and the pair interactions
must be summed to all orders. One defines a G matrix
(also called K matrix) by

G=V=V(Q/e)G,

where Q is the Pauli projection operator which excludes
any states occupied by other particles, and e is the
energy denominator. The diagonal matrix elements of G
are given by

(klkz I G ' klkg) = (klkz l V l k1k2)

ek | V| k) (k| G [ lk)

(ks2/2m) + (k2/2m) —e1—e

where the Pauli principle has been put in explicitly.
Exchange is assumed to be included, i.e., the matrix
elements of V are direct minus exchange terms. Here ¢

and e are the hole energies, inclusive of self-energy
insertions, i.e.,

e(k) = (K*/2m)+ kE: (kk; | G | kks).

o<k

(14)

—1
2
k3, ks>kp

(15.1)

It is usually convenient not to put self-energy insertions
into particle lines, but rather to group them with other
three-body clusters and to evaluate the entire sum by
the use of the Fadeev equation (Bethe, 1965). Thus,
there is a gap between particle and hole energies.

We now explain briefly what the parameter of con-
vergence is in the Bethe-Brueckner theory. Let us
consider a potential, as shown in Fig. 3, which has both
a hard core and an external attractive region. The un-
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I'tc. 3. Correlated and v r¢ = sin kr
uncorrelated wave func- ry
tions in nuclear matter, >

Here sin (k7) is (kr) times
the .S wave function 74 (k7).

Tt

perturbed wave function ¢ of relative motion can be
expressed as (kr)~'sin (k) in the case of S waves. A
correlated function ¢ can be defined through

VY =Go.

It must, of course, be zero inside the hard core. We can
then define a “defect” wave function x by

X=¢_‘l/) (15'3)

and [ x2dr is then just the “hole” in the wave function
produced by the interaction. With inclusion of other
partial waves in ¢, ¢, and x, the parameter x mentioned
in the Introduction is

(15.2)

k=p [ x*dr, (15.4)

where p is the density. Thus, « is just the ratio of the
“hole” to the average volume occupied per particle.
Of course, P and higher partial waves must be included
in x. The quantity & will turn out to be what one calls
the “renormalization at the quasiparticle pole” in the
Landau theory.

In finite Fermi systems; e.g., nuclei, the G matrix is
defined similarly to Eq. (15), but with %; and &, replaced
by the relevant shell-model states. That is, for finite
systems, we have

(b1, &2 | G| b1, 82) = (¢, 2| V | b1, 62)
13y (1, 62 | V| ks, k) (s, b | G | b1, )
fhke (k/2m)+ (ke/2m) —e—e

and off-diagonal matrix elements are also easily found
by appropriate generalization. The sum

ZI

k3,ka

(16)

is to be carried out over intermediate plane-wave
states, but only after they are orthogonalized to the
occupied shell-model states, so that the Pauli principle
is properly taken into account. This is a difficult, but
workable (Wong, 1967), procedure.

The use of plane-wave intermediate states is not
meant as an approximation, but, rather, is a way of
taking into account the fact that the self-energies of
intermediate particles are off the energy shell. Consider
the case which we shall use in the next section, where V'
is well behaved, and it is adequate to compute G to
second order in V, i.e., we can replace the G on the right-
hand side of Eqgs. (15) or (16) by V. In this case, the
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Fi1c. 4. Second-order self-energy
insertion in a graph contributing
to the second-order energy. Up-
going solid lines depict particles;
3 down-going solid lines depict

holes. The dashed lines stand for
the potential V.

second-order contribution to G is as shown in Fig. 4,
where we have also included a second-order self-energy
insertion in one of the particle lines “3.” One can talk
about particle 3 going to a two-particle, one-hole
intermediate state, as shown. The energy denominator
in this intermediate state is, however,

Ei—E=eatete—a—a—e,

where the €’s are the various single-particle energies,
since it must be reckoned from the ground state of the
system, which is the state with no particles or holes.
On the other hand, if only the single particle 3 were
present to begin with, its self-energy insertion would
look as shown in Fig. 5. The energy denominator here
would be

(16.1)

Ei—Eo=€5+€m—€3— €,y (162)

particle 3 being present in the initial state. Thus, the
energy denominator (16.1) has an additional

ata—a—e

as compared with (16.2), and this will affect the self-
energy of the particle 3 in the process, Fig. 4. This is
what we mean by saying that the self-energy is off
the energy shell.

One can easily understand the nature of the effect
by thinking about the uncertainty principle. In making
the virtual excitation leading to particles in states 3 and

4, and holes in 1 and 2 at the bottom of Fig. 4, one is
already an amount of energy AE=e+e—e—e away
from energy conservation. If one “borrows” an addi-
tional amount of energy e-texn—e—e;, to make the
virtual excitation entering into the self-energy insertion
in Fig. 4, then the time that this virtual excitation can
last is
T Lott shell= &+ em—— €+ AL,

determined by the total amount of energy which is not
conserved. Thus, the time of such virtual excitations is
considerably smaller than the on-shell ones, shown
in Fig. 5.

It is a complicated matter to calculate the off-shell
energies of intermediate particles in all detail because
of their dependence on the virtual excitations accom-
panying them, but estimates show (Brown, 1967) that,
about as well as one can calculate the self-energies,
they are zero, and thus, the replacement by plane waves,
as shown in Egs. (15) and (16) is justified. Such a
replacement cannotbe accurate justin the neighborhood
of the Fermi surface, and we shall discuss later, with the
introduction of a model space, how one can augment the
accuracy of the treatment there.

Finally, we note that the hole energies ¢ and e
should be taken on the energy shell. The proof of this is
given by Bethe, Brandow, and Petschek (1963), and
repeated. in Brown (1967). This asymmetrical treat-
ment of particle and hole self-energies in the Brueckner
theory arises from the fact that only particle-particle
ladders are taken into account in calculating the G
matrix. The rationale for this is that the phase space
available for particles is much larger than that for
holes, and the strong short-range interaction tends to
make use of this large phase space.

4. A SIMPLE MODEL OF NUCLEAR MATTER

Our simple model to show the connection between the Landau and Brueckner-Bethe theories in the case of
nuclear matter is to begin with the Brueckner expression for the energy

E= 3 (k¥/2m)n(k)+3 2 (ki | G | kuke) 7 (k1) 7 (k)

(17)

in which we explicitly write in the dependence on particle occupation number, and then carry out the variations to
obtain €(p) and f(p, p’). Equations (15) and (15.1) are then rewritten

(ks | V | egks) (1—n(ks) ) (1 — (k) ) (koks | G | Kaks)

(kik; | G | kike) = (kiks | V | kik) — >

(ks2/2m) + (kd/2m) —e—e; , (18

e(k) =8E/on (k) = (K*/2m)+- kE (kk; | G | kky)n(ks) +3 ka? (k| 6G/on (k) | kdo)n (k) n(ke).  (15.17)

The e(k) above in Eq. (15.1’) is distinguished from that in Eq. (15.1) and from those to be used in the de-
nominator of Eq. (15’) by the last term involving §G/én(k). This is often called a rearrangement term, and enters
into the Landau €(%), so that the Landau e(kr) corresponds to the actual removal energy of the quasiparticle,

whereas the Brueckner e(kr) in Eq. (15.1) does not.

Now the variations can be carried out to obtain f(k, k’). Whereas the (%) refer to be occupation numbers
in the noninteracting, reference state (think of Rayleigh-Schrédinger perturbation theory), removal of a particle
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in this state leads to the removal of a quasiparticle, since particles are assumed to transform smoothly into quasi-

particles as the interaction is included.
Note from Eq. (15.1") that the variation

de(k) /on (k')

has to be carried out with respect to

(1) the n(ky),
(ii) the n(ks) and z(k,) in Eq. (15) for G,

(iii) the n(k) appearing in ¢ and e in the denominator of Eq. (15).

Terms arising from (ii) and (iii), which are, respectively, corrections to the Pauli operator, and self-energy coming
from removal of a particle in state k', are often called rearrangement terms.

Let us carry out these variations, replacing, for simplicity, G by V on the right-hand sides of Egs. (15’) and
(15.1"). This gives a theory which is essentially second-order Rayleigh-Schrédinger perturbation theory, but with

the Hartree—Fock single-particle energies for the holes, i.e., we simplify Eq. (15.1") to
(k)= (B/2m)+ 3. (kk: | G | kk;)n (k).
k2

(15.1")

We obtain the following contributions to f(k, k’) from the variations listed as (i), (ii), (iii):

(Kk' | V | keky) (ks | V| KK)

Joo (g, &) = (K&’ | V [ KK') 43 32

(1_n3) (1—1’L4),

sk &t — (Rs?/2m) — (ki/2m)

"N (kk; | V | K'ky) (K'ke | V | ko)
San (&, K = k§4 e (2 2m) — (ke/2m)

(k' | V | Kky) (kk, | V | kok')

1 (1— 1)

(kiky | V | k') (kKk' | V | kiks)

a ko,kq 62+6kl— (k2/2m) _ (k42/2m)

o (B, &) = — (KK’ | V | Kk') 37

) Y e ) — (B am) "
(e, | V |l (i | V [ W)
. Certerm (ke 2m) — (ka2 p "2 L) (1)
i | D) O |V Vi) Gk | VK)o

ko, k3 kg

We draw these terms graphically as shown in Fig. 6.
Terms with two internal hole lines, except for Fig.
6(ii) c, have been consistently dropped since they are of
higher order in «. The graphs, Figs. 6(i), would both be
included in the G matrix (kk’ | G | kk’), but otherwise
one can go directly to the G-matrix case with the full G
in the right-hand side of Eq. (15), simply by changing
all matrix elements of ¥ into those of G. One also has
further graphs in the G-matrix case, but these are of
higher order in « than those here, and we shall not
consider them here, although they may be numerically
important in the case of liquid *He.

Since f(k, k’) enters into the description of phe-
nomena like zero sound, just the way that the particle-
hole interaction enters into the random-phase ap-

F16. 5. Second-order self-energy insertion for 5 m{}x
a single particle. = ===

[€k+€2‘— (ks?/2m) — (k42/2m) ]2

proximation, it is clear that f(k, k') is just the complete
particle-hole interaction in the long-wavelength limit.
We have drawn it that way in Fig. 6, both the particle
and hole having momentum k (or k'), so that the total
momentum is zero. The magnitude of k (or k’) must be
kr, since only on the Fermi surface can a particle and
hole have equal momentum. One can think of f as the
limit of a particle-hole interaction between excitations
of momentum q, as | q |—0.

The fact that f(k, k’) is the particle-hole interaction
in the long-wavelength limit can be made clearer by
the following argument in which we think of a problem
involving a weak interaction ¥ which need be handled
only to first order. Consider first the particle-hole
interaction connecting particle-hole states of total
momentum ¢ as shown in Fig. 7. One can think of this
interaction as

I'= g{ &'+q,k|V|K,k+q)
(18.1)

X (@ Taxryq) (artariq),

that is, the matrix element of T' between particle-hole
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Fic. 6. Graphical representation of the terms entering into

flk, k'), Eq. (18). Exchange terms have not been explicitly
drawn.

states @uppq k| 0) and @ugpiqfox, | 0), where |0)
is the vacuum, will give the interaction

(k2+q{ k I 14 | k2’ k;+ Q)

shown in Fig. 7.

Such matrix elements enter into the description of
collective excitations, the collective excitation being a
linear combination of particle-hole states with coherent
phases. For example, plasma oscillations are described
in the random-phase approximation in such a way,
where the interparticle Coulomb interaction is V. The
momentum of the excitation is q, so that in the long-
wavelength limit, ¢—0. In this limit, the operator pair
(axtaryq) in Eq. (18.1) becomes (axtax) = ny; similarly,
(ax-Taxryq) becomes 7. Consequently, the expectation
value of T' becomes

OT]0)= 3 (ks kn | V | ko, K1) (k) m(ky), (18.2)

i.e., it has the same form as the potential energy term
in Eq. (17). Thus, removing the #’s by functional differ-
entiation gives the matrix element (ky, ki | V | &y, ki).

Fic. 7. Particle-hole interaction con-
necting two states of total momentum gq.

o

kitq kq

o

To this order, we could have carried out the same
considerations for the particle-particle interaction,
with the same conclusions. However, the second-order
particle-particle interaction will have terms like those
shown in Fig. 8. Whereas the matrix element cor-
responding to the process Fig. 8(b) is just that of
Fig. 6(ii)a, with the left-hand line pointing up instead
of down, the matrix element corresponding to the
process Fig. 8(a) is missing in Eq. (18). The reason is
simple. If we redraw Fig. 8(a) as a particle-hole inter-
action as is done in Fig. 9, it is reducible; that is, it
can be obtained by putting together two first-order
interactions of the type shown in Fig. 7. But when the
interaction, Fig. 7, is used as the kernel in an integral
equation such as occurs in the random-phase ap-
proximation, or in Eq. (13.5), it is automatically
iterated to all orders. Thus, reducible diagrams should
not (and do not) occur in f.

The nucleon—nucleon potential which is used to fit
scattering data is complicated, especially because
it includes a large tensor force. It has been found
(Bethe, 1966; Green, 1967), however, that the main
effects of the latter—at least as far as the binding

£k kK
-—= --= F1G. 8. Typical terms in
O G the second-order particle~
T T particle interactions.
K X X X
(a) (b)

energy is concerned—can be taken into account by
giving the potential a density dependence.

We describe now calculations of Bickman (1968,
1969), who used the reaction matrix

G=091[%(3+01°02) J(1—1.16p"%) G,
+0.90[%(1—01°02) J(14-0.290*3) G,  (19)

where G, and G, are the reaction matrices calculated,
respectively, from the singlet and triplet parts of the
Kallio—Kolltveit (1964) potential

Vi(r)=w for r<c¢
=—A;exp [—ai(r—c)] forr>¢, (19.1)
with parameters
c=04, A=475MeV, =252 fm-,
4,=331 MeV; =240 . (19.2)

The parameters of the Kallio-Kolltveit potential were
chosen so as to fit low-energy nucleon-nucleon scat-
tering, as well as’average properties of the S wave
phase shifts at higher energies. Although it was designed
to be used only in relative S states, Bickman uses the



singlet potential in both relative .S and D states, and
the triplet potential in only relative S states since the
density-dependent coefficient is supposed to mock up
the effect of tensor coupling to the D channel.

In nuclear matter, the expression for f(k, k') must be
generalized to a matrix in spin and isospin space
because of the two spins and two kinds of particles. In
general dimensionless form, it can be written!

F(k, k') = (*/m*kr)
X{F+Frrt (G+Griem)oral, (20)

where F, F’, G, G’ are all functions of the angle between
k and k’, and m*kp/7? is half the density of states on the
Fermi surface.? Each is expanded in a Legendre series

F= ZFLPL(COSQ), (201)

Bickman calculates these various quantities by solving
Eq. (15) for the G matrix, then using this G in place of
V in Egs. (18). Note, however, that f((k, k') is re-
placed by (kk’ | G | kk’), both terms in f( (and all of
those higher order in the ladder sum) being included in
G, Eq. (15).

Béckman finds?

etc.

Fy=-—0.30 Fyf=0.14
F1I= 015
Fy’=0.03
F1=—O.4O Go=027
G1=0.12
G2=0.07
Fy=—0.15 G,/=0.20
G/'=0.13
Go/=0.05.

Coefficients of the higher Legendre polynomials have
not yet been calculated for F’, G, and G'.
We shall discuss Migdal’s theory later, but note here

F1c. 9. Figure 8a redrawn as a particle~
hole interaction.

1 Migdal uses the symbols f, g for the dimensionless quantities
we call F, G. Our notation is more usual in other applications of
the Landau theory.

2 Note that the neutron-neutron and neutron—proton interac-
tions are related to those reported here by Fo=%(F¢"+F¢?),
Fy =5 (F"m—F¢®).

3 Bickman uses the density of states 2m*kp/w? natural for
nuclear matter in defining his F, G, etc. Here we use m*kp/m? as
in Eq. (20), so as to be able to effect a direct comparison with
Migdal’s results later.
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F16. 10. Contribution to the energy ,
which, when the lines labeled £ and k k k2 Ky
k' are broken, gives 6a in I'ig. 6(ii). ™ -

that these should be compared with his values (Migdal,
1967) of

Fy=10.2 Fy'=0.3+0.1
| F1]<0.1-0.2 | Fy|<0.1
G=0.5
Gy'=0.5.

Since Migdal discusses finite Fermi systems, i.e.,
nuclei, his effective interaction varies in strength from
the center of the nucleus to the surface, more or less as
the nuclear density varies [see our later Eq. (23)7].
We assume here that the values at the center of the
nucleus are the ones that should be equated to the
values for nuclear matter at the same density as the
central density of the nucleus.

Before discussing the comparison with the results of
Migdal, we make some remarks on Bidckman’s calcula-
tion. The main contributions in his theory come from
the processes shown in Fig. 6(i) and 6(iii). (Remember
that we replace the potential V there by the G matrix.)

The contribution to f(%, #') from Figs. 6(i) is just

fo (& K) = (k&' | G| Kk'), (20.2)

i.e., just the bare G matrix. Inclusion of the process
(a) in Fig. 6(iii) simply modifies this by multiplying by
(1—2k), i.e., it expresses the renormalization at the
quasiparticle pole in this theory to the order that this is
treated. The process (b) in Fig. 6(iii) similarly has the
effect of cutting f down. The value of « for the potential
Eq. (19.1) is found to be

xk=0.07.

For potentials with tensor forces it is considerably
larger, ~0.15.

The processes, Fig. 6(ii) contribute very little in
Bickman’s calculations, but this is probably incorrect.
Let us consider process (a) under Fig. 6(ii). Define the
momentum transfer @ by q=k’—k. Now the energy
denominator in this second-order process is

AE= (ke?/2m)+ (ki®/2m) —ev—er,,  Ku=kytq,
(20.3)

and this does not go to zero as ¢—0 (k—k’ or x—0),
because of the gap between particle and hole spectra.
However, the phase space in the summation does go to
zero, so that this graph does not contribute for x=0.
Had one been more careful, however, and not used an
average gap—which is good enough for energy calcula-
tions but not for the effective interaction—one would
have found that just for processes like those shown
in Fig. 10, when |k|=|k’|=Fp, there is no gap
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TaBiE I. Values of the various quantities using kr=1.39 fm™.

Quantity Béackman Migdal
K 128 MeV 700 MeV
B 22.5 MeV 20 MeV
m* 0.74 ~1.0

between particle and hole spectra, and the energy
denominator goes to zero at the same rate as the phase
space.

To improve the treatment, one should go over to a
“model space” in which the energies of particles and
holes are continuous, as we discuss in Sec. 6.

We have given no justification here of the validity of
the procedure of starting from the particular approxi-
mate expression of Brueckner for the energy, and then
carrying out the functional differentiations. This, of
course, gives usionly a few graphs of the totality
envisaged in the complete theory. In particular, our
procedure can be dangerous in cases where the effective
interaction is especially sensitive to excitations just
in the neighborhood of the Fermi surface, which might
not be very important for the total energy of the
system, and are neglected in the Brueckner expression
for the energy. We shall see such an example in the case
of the paramagnons in liquid *He.

5. DESCRIPTION OF PHYSICAL PHENOMENA
IN THE MIGDAL THEORY

If one had systems of infinite nuclear matter, then
the various constants Fy, F1, Fy/, etc., would be directly
measurable. The derivation of the following formula
is completely standard [see the book by Migdal (1967)]
and we quote only the results:

(i) Compression modulust:
K=r2(RE/drs*) = 6(ks?/2m*) (14-2F,),

where E is the energy per particle.
(ii) Symmetry energy: If one has an excess of neu-
trons, a term appears in the energy per particle

B L(N—-2)/AT,

(21)

and 8 is given by

B=3(ks*/2m*) (1+2F¢). (22)
(iii) Effective mass:
m*=m(1+%F) (22.1)

as derived in Eq. (10), but with the additional factor 2
for the two kinds of particles. Thus, as can be seen, the
compression modulus, symmetry energy, and sus-

4This K is the one defined by Brueckner; it is a factor of 9
larger than in Migdal’s formula [which corresponds to defining
K as po*(d*E/dpe?) ].

ceptibility all depend upon Fi, through the effective
mass.

The situation with the susceptibility is rather compli-
cated, because of the many corrections (exchange
currents, etc.), which must be made in order to obtain
magnetic moments in nuclei.

We show in Table I the values that Migdal and
Bickman would obtain for the three quantities X, 8,
and m*.

Migdal’s value for K is clearly much too large. The
compression modulus is rather directly related to the
surface energy, and Bethe (1968) obtains about the
right value for this with the K of 157 MeV calculated
by Dahlblom with the full nucleon—nucleon potential.
Later work by Krainov (1968) in fitting the properties
of the three state in 2Pb gives Fy=20, and this would
give a much more reasonable value for the compressi-
bility. The original value of F¢=<1 came chiefly from
the fit to the isotope shift (Bunatyan and Mikulinskii,
1965). It is clear that a strongly repulsive interaction
in the interior of the nucleus helps in obtaining isotope
shifts of the right magnitude (Barrett, 1966; Lande,
Molinari, and Brown, 1968).

The symmetry energy obtained by both authors is
reasonable, in the range of the experimental value of
20-25 MeV.

As far as the effective mass is concerned there is some
indication that in heavy nuclei, m*=1 (Brown, Gunn,
and Gould, 1963). The fact that this value is larger
than that normally calculated in Brueckner theory has
been explained (Bertsch and Kuo, 1968) as coming from
a rearrangement effect. Bickman effectively neglects
this by his essentially dropping the contribution
from 6a in Fig. 6(ii), as discussed earlier. A better
treatment of this term will increase both his w* and F.

In the application of Migdal’s theory to finite nuclei,
one needs further assumptions about the variation of
the effective interaction with density. The assumption
made (Migdal, 1967) is that F, is not constant, but
varies as a function of 7 as

Fo(r) =Fot[(Fo)ex—Fol/{14exp [~/ (r—R') 1},
(23)

where 7 is the center of mass of the two colliding
particles. The quantities o’ and R’ differ little from the
corresponding values « and R for the density variation.
The Fy/, Go, Gy’ seem to need no variation with density.

In fact, no empirical data determines the quasi-
particle interaction in the center of the nucleus; all
phenomena depending on either some interaction
averaged over center and surface or, in the case of the
isotope shift, the difference of interaction in the surface
and in the center. Thus, Fy, the value of Fy(7) in the
interior, depends upon assumptions about the behavior
of Fo(r) as a function of 7. The Fermi liquid theory,
however, gives no guide to the behavior of Fy(r) in the
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region of varying density. Thus, the value of F, that
Migdal finds depends upon his assumption, Eq. (23).

It should be emphasized that the » in Eq. (23) is
that of the center of mass of the two particles. The
truncation of the expansion (20.1) of F, etc., is equiva-
lent to using a 6 function for the dependence on inter-
particle distance; i.e., an effective interaction

Veff= (Tz/m*ki') {Fo(rc.m.) +F0,TI'T2
+ (Got+Go'T1em2) (01°02) }6(ri—12), (23.1)

where we have put the lower suffix “c.m.” on 7 in the
argument of Fy to emphasize that this is the center-of-
mass coordinate.

Our main concern here is with the relation of different
theories for infinite systems, so we shall not go into this
further,

6. INTRODUCTION OF A MODEL SPACE

The concept of model space has been formulated in
detail by Brandow (1967), following the early idea of
Brueckner, Eden, and Francis (1955), and the work of
Bloch and Horowitz (1958). We follow Brandow’s
work here.

The complete many-body wave function ¥, satisfying

HY=EY, (24)
can be expanded in states ®;, which satisfy
From this, one immediately obtains
(E_Ei)aiz <(I)1‘, V‘I,>7 (26)
where
V=H—H,. (27)

A certain number of the ®,’s, spanning a model space,
which Brandow calls D, are selected. With this choice
of D, one has a model wave function

‘I’D= Z d,‘I),':P‘I/,

ieD

(28)

and a Green’s function

8= %[l ®;)(®: |/ (E—E:) ]=Q/(E—Ho), (29)

where Q is defined so that (24) and (26) can be com-
bined in the form

V=Up+gVT. (30)

It is convenient to define a wave operator Q by
V=Q¥p, (31)

and a reaction matrix or “effective interaction”
G=TQ. (32)

\ |1£ 50
E ] 2pl2
s ] 2p32
172
1d 32
2512
1d 52
F
1pl2
1p 32

F16. 11. Single-particle levels in 0.

Substitution of these in (30) gives

Q=1+gVQ (33)

and
G=V+VG. (34)

In practice, the use of a model space is extremely
useful in gaining an increased accuracy, for reasons
which we shall discuss. But first, let us give an example
of a useful type of model space. Consider calculations
for nuclei in the region of €0, with single-particle
levels as shown in Fig. 11, and Fermi energy as drawn.
Here we have drawn the levels as if all were found,
whereas the 2p, 1f levels certainly are not; i.e., we
pretend, however, that they are.

We consider our model space to be the space of levels
shown in Fig. 11. More precisely, if we take the ®; to
be of the form of antisymmetrized products of single-
particle functions, then &; lies within the model
space if the states of all particles in ®; lie within the
space of levels shown in Fig. 11. Thus, the model
space for the many-body functions ®; can be discussed
in terms of the model space for the single-particle
functions.

One could think of these single-particle functions as
the single-particle Hartree-Fock eigenfunctions, but
in practice in nuclear physics, harmonic oscillator
functions are usually used.

An evaluation of the matrix elements of G has
been carried out in the above scheme (Brown and
Wong, 1967). Although this is tedious, most accurate
results for the binding energy and other quantities
can be obtained by using such matrix elements as
effective interactions within the model space, and then
solving the problem within the model space as best
possible.

We note that (Krainov and Malov, 1968) one must
often effectively employ a model space within the
Migdal theory if one wishes to begin from a §-function
interaction of the type (23.1), and obtain the type of
effective forces observed in nuclei. For example, the
quadrupole-quadrupole interaction (P, force) observed
in nuclei comes mainly from the core-polarization
process, Fig. 12. The same situation was found within
the framework of the G-matrix theory (Brown and
Kuo, 1967), except that there the wavy lines in Fig. 12
represent the G matrix.
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T1c. 12. Core-polarization process which
gives rise to most of the quadrupole-quad-
rupole interactions in nuclei. In the Migdal
theory (Krainov and Malov, 1968), the
wavy line represents the interaction, Eq.
(23.1). All particles and the hole are as-
sumed to lie within the model space.

In the case of infinite systems, the model space
should be taken to be somewhat larger than the Fermi
sphere, as shown in Fig. 13.

It should be clear by now, but we emphasize the fact,
that the particular G one calculates depends upon the
choice of model space. This dependence comes from the
dependence of the Pauli operator Q [Eq. (29)] on the
model space.

There is one unaesthetic feature of working with a
model space. In a two-body collision, one of the particles
may go to a state outside of the set of single-particle
states defined to be within the model space, the other
particle staying within. According to our above defini-
tion, we have to define the many-body intermediate
state ®; as being outside of the model space in such a
case.

Now, if one wants to go back and make a connection
with the Migdal theory by functionally differentiating
the energy with respect to quasiparticle occupation
number, one must write down an expression for the
energy in terms of the occupation numbers within this
model space. Of course, in principle, one would like to
diagonalize the effective interaction G within this model
space, but aside from certain formal troubles, in
practice the amount of work is prohibitive.

The approximation employed by Brown and Wong
(1967) was to take the bubble sum, Fig. 14, for the
energy. Functional differentiation of the process,
Fig. 14b, would give graphs which look like those of
Fig. 6(ii), but with the difference that the particle and
hole to be summed over [e.g., those corresponding to
ks and k4 in Fig. 6(ii) b must now lie within the model
space. Thus, one obtains certain terms essentially left
out by Bickman. (See the discussion at the end of
Sec. 3.)

It is clear that the scheme advocated by Brandow,
and described briefly here, can lead to a more accurate
evaluation of the various quantities than the scheme
employed by Béckman. Using the model space, one can
first calculate the G matrix in a way which involves
only rather high-lying intermediate states, which
should be adequately represented by plane waves.
Then one uses G as an effective interaction to solve the

Frc. 13. Model space in the case of an
infinite system.

problem to whatever accuracy is needed, within the
model space.

We return now to a discussion of single-particle
energies to be used for the particles within the model
space.’ As explained in Sec. 3, single-particle energies
in the Brueckner-Bethe theory are, in general, to be
calculated off the energy shell. Suppose we consider a
virtual excitation of the type shown in Fig. 4, where the
two particles 3 and 4, and the two holes 1 and 2 all lie
within the model space. The amount particle 3 is off
the energy shell is AE=e+e—ea—e, as explained
following Eq. (16.2). Now, one can show® that the
correction to the single-particle energy is then kAE,
where « is the quantity defined in Eq. (15.4). In the
case of excitations in an infinite system from just below
to just above the Fermi sea, as shown in Fig. 15, we find

_ (p’—q)2+ (r+9?* p*»
2m* 2m* 2m*  2m*

= (gpr/m*) (cos p+§—cos p’-§).

Thus, the off-energy-shell correction to the
particle energy goes to zero with q. This is

O m g

a b c

AE

single-
highly

F16. 14. “Bubble” sum for the binding energy.

relevant to the discussion of the process (a) of Fig.
6(ii) carried out at the end of Sec. 4.

In general, it is probably sufficiently accurate to
take the single-particle energies in the model space on
the energy shell, but if this is not so, the above provides
a framework for putting in the off-energy-shell effect.

The convergence of the perturbation expansion for
the effective interaction in mass-18 nuclei has been
investigated by Barrett and Kirson (1968, 1968a, 1970).
They use the Kuo-Brown (1966) G matrix in a more or
less straightforward G-matrix expansion of the effective
interaction, some terms of which are shown in Fig. 16.
Like Biackman, they are not working in a model space,
and consequently, they do not include terms such as
that shown in Fig. 17, since, in the calculation of the
G matrix, the ladder sum has already been carried out,
and this term is supposed to be included in the process,

® We follow here an unpublished treatment by H. A. Bethe.

6 The relevant development in Bethe, Brandow, and Petschek
(1963) is briefly sketched here. If one has two G matrices G4 =
V—V(Q/ea)Gq and Gp=V—V (Q/eg) Gp differing only in energy
denominator, then it is shown that G4 —Gp=Gg(Q/es—Q/es) G4-
One can take G4 to be the on-shell ¢ matrix, and Gp to be the
off-shell G matrix, so that eg—eq=AE=e+e—e—e for the
case in hand. Thus, the diagonal matrix elements of Gg—G4 in
states 3 and i, summed over 1, will give the desired correction for
being off-energy shell to the single-particle energy, which is
found to be kA E.



G. E. BRowx Landaw, Brueckner-Bethe, and Migdal Systems 13

Figs. 16(a) and 16(b), respectively. However, it is
clear that if one uses the model-space approach, such
terms—where the particles and holes in intermediate
states lie within the model space—should be included.
In the Kuo-Brown G-matrix, low-lying intermediate
states are handled inaccurately by the approximation
of plane-wave intermediate states, so that only a small
part of the processes, Fig. 17, are included in the
Barrett-Kirson treatment.

In summary, in both the infinite and finite cases, the
accuracy of the treatment could be increased by going
over to the use of the model-space approach.

7. THEORIES OF LIQUID *He

The Landau theory has been applied widely to liquid
%He, in the way outlined in Sec. 2. Results of the
Brueckner—Bethe theory are not so well known, and we
review them here.

First of all, it is a much less ambitious task to
calculate the energy of the system than to calculate the
Landau parameters giving the effective interaction.
The latter are expressed as the second functional
derivative of the energy, and it is well known that
differentiation of a series worsens the convergence. In

E‘—q Q E‘ P O_:O
- LA
____i___

addition, long-wavelength excitations of particle-hole
type—and we shall discuss the case of paramagnons
later—may play quite a role in the effective interaction
on the Fermi surface, but may not contribute much to
the total energy of the system if important only over a
small range of momenta.

In a series of papers, Qstgaard (1968, 1968a, 1968b,
1969) has worked out various bulk properties of
liquid *He within the Brueckner-Bethe formalism,
beginning from various forces of the van der Waals type
between two free *He atoms. He does not find a par-
ticularly good convergence, even for the energy of the
system. In fact, with the Frost-Musulin potential,
he finds the contribution of the two-body clusters to be
—3.05°K per particle, whereas that from the three-body
clusters is —1.95°K per particle. He obtains a binding
energy of —2.00°K per particle at a &r of 0.78 &, to be
compared with the experimental binding energy of
—2.5°K per particle at a &g of 0.79 A. (stgaard finds a
compressibility of 4.39, per atmosphere, compared with
the experimental value of 3.8%, per atmosphere.

Bertsch (1969) has used @stgaard’s G-matrix ele-
ments to calculate the effective interaction on the Fermi
surface, evaluating processes such as those shown in
Figs. 16(a) and 16(b), with the wavy lines representing
G-matrix elements. Bertsch finds large differences

F1c. 15. Excitation from just below
to just above the Fermi sea, with
small momentum transfer q.

a b ¢
Fie. 16. Examples of a first-, second-, and third-order term,

shown by a, b, and c, respectively, in the Barrett— Kirson calcu-
lation. The wavy line represents the G matrix.

in the contribution from the process Fig. 16(b) de-
pending on whether or not he uses a gap in the single-
particle spectrum (no gap corresponding roughly to the
model-space calculation). In any case, the second-order
processes are tremendous, of sufficient magnitude to
change the signs of the F’s from the lowest-order
calculation. It is clear, therefore, that one must go
beyond this theory.

It is tempting to try to make a theory of quasi-
particles and collective excitations. A zero-sound
excitation can, for example, be viewed roughly as a
phonon. (It is actually made up out of fermion degrees
of freedom.) Pictorially, the exchange of one zero-sound
excitation will give the contribution to the effective
particle-hole interaction shown in Fig. 18. Now, in the
long-wavelength limit, zero sound can be viewed as a
fluctuation in quasiparticle occupation &xz(p). If we
expand

n(p) = dmo(p) +om(p) Py(pk) 4+,

where [ is the direction of the (vanishing) zero-sound
wave vector, then dn= >, dno(p) is just a density
fluctuation, and the coupling of zero sound to the quasi-
particle or quasihole is just foon at each vertex. The
on1(p) P1(p-k) represents a velocity field which could,
in principle, couple to the quasiparticle velocity, but
does not, in this case, because the directions of velocity
field and quasiparticle momentum are perpendicular,
so that the dot product is zero.

One could hope, then, the total effective interaction
to be composed of a short-range part, which we would
propose to represent by the G-matrix interaction, and a
long-range part consisting of the interaction induced by
phonon exchange. The coupling at the vertices between
phonon and quasiparticle is given essentially by Fy,
which is equal to 10.77 at a pressure of P=0.28 atm, so
that the phonon-induced reaction is certainly not
negligible.

However, it is clear that at least one more ingredient
must be added, the persistent spin fluctuations, called
“paramagnons.” These have been found to give very
important contributions to the effective mass of the 3He

F16. 17. Terms which do
not enter into the Barrett—
Kirson evaluation.
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F16. 18. Contribution of a virtual zero-sound
excitation (shown by the wiggly line) to the effec-
tive particle-hole interaction.

atoms (Berk and Schrieffer, 1966). Exchange of such
objects can also be expected to contribute importantly
to the effective interaction. In fact, in recent calcula-
tions by S. Babu and the author, most of the effective
force came from such a mechanism. However, the
model used was speculative, and those calculations are
certainly not sufficiently well founded to be included in
an article which is primarily a review. Also, our main
object is to discuss connections of the Landau-Migdal
and Bethe-Brueckner theories, and here we are pointing
out the case of liquid *He that one has to go beyond the
latter theory to obtain the effective interaction.

Another interesting Fermi system is the liquid *He
in 3He—*He mixtures, in which much of the effective
force between *He atoms comes from exchange of “He
excitations. Again, not much has been done here within
the framework of the Brueckner-Bethe theory and we
won’t go into these matters.
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