Crossing Matrices for SU(2) and $SU(3)^*$

CLAUDIO REBBI,† RICHARD SLANSKY‡

California Institute of Technology, Pasadena, California 91109 (Received 6 June 1969)

The SU(2) crossing matrices for the scattering of $I=0, \frac{1}{2}, 1, \frac{3}{2}$ particles and antiparticles, and the SU(3) crossing matrices for the scattering of singlets, octets, and decimets are listed. The s-t, s-u, and t-u crossing matrices and their inverses are given for each case. The relative phases of the crossing matrix are discussed in detail.

CONTENTS

Ι.	Introduction	68
II.	Derivation and Phases	68
III.	Isospin Crossing Matrices	71
IV.	SU(3) Crossing Matrices	75
	Acknowledgments	80
	Appendix	80

I. INTRODUCTION

Many calculations of amplitudes for high-energy processes require a knowledge of the crossed-channel processes. The idea that amplitudes related by crossing may be given by the same analytic function has met with success in both phenomenological applications and dynamical models. To use this idea in practice, one must be able to project the quantum numbers of a crossed channel onto the direct channel. The crossing matrix determines which linear superposition of crossedchannel amplitudes compose the direct-channel amplitudes. In this paper we consider the crossing matrices that are obtained when the amplitude is assumed to be SU(2) or SU(3) invariant.

Because of the importance of the crossing matrices, much good work has gone into the examination and ennumeration of their properties, and many explicit crossing matrices may be found in the literature.§ In fact, the problem has been completely solved for a number of years, at least for the two-body amplitude. However, to the best of our knowledge, no complete compilation of crossing matrices has appeared in the literature. The object of this paper is to present a compilation of SU(2) crossing matrices in which all possible combinations of $I=0, \frac{1}{2}, 1, \frac{3}{2}$ particles and antiparticles may scatter off one another, and SU(3)crossing matrices in which all possible combinations of singlets, octets, and decimets may scatter off one another. We have listed the crossing matrices between the s, t, and u channels, along with their inverses. This list is complete, as long as the particles that are scattered are those of a quark model in which the mesons appear as $q\bar{q}$ and the baryons as 3q states.

The SU(2) and SU(3) crossing matrices are derived in Sec. II, where a detailed analysis of the phases is given. We discuss the rules for transforming our crossing matrices to the crossing matrices for reactions in which the order of particles has been reversed, or in which particles have been replaced by their antiparticles. We also relate the isospin crossing matrix to the 6-*j* symbol. Section III contains the SU(2) crossing matrices.

Section IV catalogs the SU(3) crossing matrices.

II. DERIVATION AND PHASES

The invariant amplitude is the S-matrix element with the energy-momentum delta function and the $1/(2E_i)^{1/2}$'s factored away. When spin is involved, certain kinematical singularities depending on the spin basis must also be removed. The invariant amplitude is assumed to be an analytic function of the Lorentz invariants, s, t, and u. We make the usual assumption that this amplitude, when continued to the values of s, t, and u corresponding to the physical process in one of the cross channels, is just the amplitude for the crossed-channel process. Let us define the s, t, and uchannels as

> $\begin{array}{c} A + B \rightarrow C + D \\ A + \bar{C} \rightarrow \bar{B} + D \\ A + \bar{D} \rightarrow \bar{B} + C \end{array}$ (s channel), (t channel), (*u* channel).

Then the crossing condition is

$$\langle CD \mid \mathfrak{M}(s, t, u) \mid AB \rangle = \langle \bar{B}D \mid \mathfrak{M}(t, s, u) \mid A\bar{C} \rangle$$

= $\langle \bar{B}C \mid \mathfrak{M}(u, s, t) \mid A\bar{D} \rangle,$ (1)

where $|A\rangle$, $|B\rangle$, $|C\rangle$, and $|D\rangle$ are particle states and $|\bar{A}\rangle, |\bar{B}\rangle, |\bar{C}\rangle, |\bar{D}\rangle$ are antiparticle states. Incoming particle states of momentum k are transformed into outgoing antiparticle states of the same momentum by CPT. Thus, in Eq. (1) we have chosen the phase of the CPT operation to be +1. This is always possible because the phase of T is arbitrary.

If the S matrix is invariant under an internal symmetry group, then we may expand the invariant amplitudes into eigenamplitudes of the group. We call these eigenamplitudes $A_s(I)$, $A_t(I)$, and $A_u(I)$, where the subscript labels the channel in which the expansion is performed, and I labels the representation. The eigenamplitudes in one channel are linearly related to the eigenamplitudes of the crossed channels by Eq. (1).

^{*} Work supported in part by the U. S. Atomic Energy Commis-sion under Contract AT(11-1)-68 of the San Francisco Operations Office, U. S. Atomic Energy Commission.

On leave of absence from University of Torino, Torino, Italy.

The matrices of these equations are the "crossing matrices."

The expansion of the invariant amplitudes into isospin or SU(3) eigenamplitudes involves the vectorcoupling (V-C) coefficients. After expanding the amplitudes, it is straightforward to solve Eq. (1) for the crossing matrices.

Tables of V-C coefficients are available for SU(2)and SU(3).* However, the use of these tables requires some care since phase factors may be needed to relate the particle states to the isospin or SU(3) states, i.e., to the vectors which are used in the construction of the V-C coefficients.

Suppose that the particle state $|C\rangle$ transforms according to the representation \mathbf{R}_{C} . Then, if $\langle C |$ is an outgoing state, it transforms according to the complex conjugate representation, \mathbf{R}_{C}^{*} . Moreover, to maintain Eq. (1) and the SU(2) or SU(3) invariance of the Smatrix, the *t*-channel incoming state $|A\bar{C}\rangle$ must transform according to $R_{A} \otimes R_{C}^{*}$.[†] In expanding the *t*-channel amplitudes we are then faced with the problem of reducing the direct product $R_{A} \otimes R_{C}^{*}$.

Let us first consider SU(2), where all the representations are self-conjugate. Since R and R^* are equivalent (but not equal), the tables for the V–C coefficients display only the reduction of $R_A \otimes R_C$, and not $R_A \otimes R_C^*$. The basis for R_C^* is related to the equivalent basis for R_C by the operator, $\exp(i\pi I_2)$. Let us denote the isospin state $|I_c, I_{3c}\rangle$ by $|c\rangle$ and the isospin state $|I_c, -I_{3c}\rangle$ by $|-c\rangle$. Then the vectors

$$|c^*\rangle = \exp(i\pi I_2) |c\rangle = (-1)^{I_c + I_{3c}} |-c\rangle \qquad (2)$$

span the representation conjugate to R_c . We may identify the states $|c^*\rangle$ with the antiparticle states $|\bar{C}\rangle$. The choice $|\bar{C}\rangle = (-1)^{I_c+I_{2c}} |-c\rangle$ is convenient for

The choice $|C\rangle = (-1)^{I_c+I_{3c}} |-c\rangle$ is convenient for the half-integer-isospin states. However, when I_c is an odd integer (as in the case of the π multiplet), exp $(i\pi I_2)$ sends the neutral member of the multiplet into minus itself. Using the arbitrariness of the over-all phase between the antiparticle states and the isospin states, we may identify the antiparticle states with $|\tilde{C}\rangle =$ $(-1)^{I_{3c}} |-c\rangle$ [instead of $(-1)^{I_c+I_{3c}} |-c\rangle$] when I_c is an integer. (At this point it is easy to recover the *G*-parity operation from the transformation that takes $|C\rangle$ to $|\tilde{C}\rangle$. The extra phase we used in the integerisospin case corresponds to the assignment G=-1 for the π multiplet since the charge parity of the π^0 is +1.)

The situation is slightly more complicated for SU(3). Not all of the representations of SU(3) are selfconjugate. For the self-conjugate representations $(1, 8, 27, \cdots)$, a basis for the conjugate representations

is given by*

$$|c^*\rangle = (-1)^{I_{3c}+Y_c/2} |-c\rangle = (-1)^{Q_c} |-c\rangle$$

where $|c\rangle = |N, I_c, I_{3c}, Y_c\rangle$ and $|-c\rangle = |N, I_c - I_{3c} - Y_c\rangle$. Moreover, by convention, this same factor has been retained in the construction of the V-C coefficients for the reduction of products in which non-self-conjugate representations appear, like $\mathbf{10} \otimes \mathbf{10}^*$ (de Swart, 1963; McNamee and Chilton, 1964). In other words, these tables do not list the V-C coefficients for the reduction of $\mathbf{R}_A \otimes \mathbf{R}_C^*$, but for the reduction of $\mathbf{R}_A \otimes \mathbf{R}_C'$, where \mathbf{R}_C' is equivalent to \mathbf{R}_C^* . The basis for \mathbf{R}_C' is given by $(-1)^{Q_c} |-c\rangle$.[†]

In summary, the antiparticle states in Eq. (1) are related to the isospin or SU(3) states by the phase η , where

$$|\bar{A}\rangle = \eta_a |-a\rangle. \tag{3}$$

$$\eta_a = (-1)^{I_{3a}} \tag{4}$$

for SU(2), integer isospin;

The phase η_a is

$$\eta_a = (-1)^{I_a + I_{3a}} \tag{5}$$

for SU(2), half-integer isospin; and

$$\eta_a = (-1)^{I_{3a}+Y_a/2} = (-1)^{Q_a} \tag{6}$$
 for $SU(3)$.

Now that we have identified the particle and antiparticle states with basis vectors of the SU(2) or SU(3) representations, we may write Eq. (1) as

$$\langle c, d \mid \mathfrak{M}_{s}(s, t, u) \mid a, b \rangle = \eta_{b} \eta_{c} \langle -b, d \mid \mathfrak{M}(t, s, u) \mid a, -c \rangle$$

$$= \eta_{b} \eta_{d} \langle -b, c \mid \mathfrak{M}(u, s, t) \mid a, -d \rangle,$$

$$(7)$$

where the matrix elements in Eq. (7) can be expanded into isospin or SU(3) amplitudes with the tables of V-C coefficients. For example,

$$\langle -b, d \mid \mathfrak{M}(t, s, u) \mid a, -c \rangle$$

= $\sum_{I} C(a, -c; I) C(-b, d; I) A(I), (8)$

where

$$C(a, -c; I) = \langle I_a I_{3a}, I_c - I_{3c} | I_a I_c; I, I_{3a} - I_{3c} \rangle \quad (9)$$

for SU(2), and

$$C(a, -c; I) = \begin{pmatrix} \mu_a & \mu_c^* & \mu_{I\gamma} \\ \\ \nu_a & -\nu_c & \nu_I \end{pmatrix}$$
(10)

for SU(3).

^{*} de Swart (1963), McNamee and Chilton (1964), Edmonds (1957), and Rotenberg et al. (1959).

[†]We also recover the known result for unitary groups that incoming particles and outgoing antiparticles must transform according to the same representation, whereas incoming antiparticles and outgoing particles transform according to the conjugate one.

^{*} No operator in SU(3) performs this operation. We wish to thank Dr. Jeffrey Mandula and Professor Yuval Ne'eman for a discussion of this point.

[†] This choice of phases is convenient for constructing the isoscalar factors for representations having zero triality. For other representations, such as the 3 or 3^* , this phase convention gives complex isoscalar factors (de Swart, 1963; McNamee and Chilton, 1964).

70 Reviews of Modern Physics • January 1970

TABLE I. The phases ξ_{st} , ξ_{su} , and ξ_{tu} for Eq. (13). These phases depend on whether the particles that are crossed have integer or half-integer isospin. See Eqs. (4) and (5).

Iso	spin	
I _b	Ic	Est
Integer	Integer	$(-1)^{I+I'}$
Half-integer	Integer	$(-1)^{I+I'+I}b$
Integer	Half-integer	$(-1)^{I+I'-I_c}$
Half-integer	Half-integer	$(-1)^{I+I'+I_b-I_c}$
I_b	I_d	Ęsu
Integer	Integer	$(-1)^{I'+I_c+I_d}$
Half-integer	Integer	$(-1)^{I'+I} \mathfrak{c}^{+I} \mathfrak{d}^{+I} $
Integer	Half-integer	$(-1)^{I'+I_c}$
Half-integer	Half-integer	$(-1)^{I'+I_{d}+I_{b}}$
Ic	I_d	ξ_{iu}
Integer	Integer	$(-1)^{2I}b^{-I}d^{+I}c$
Half-integer	Integer	$(-1)^{2I}b^{-I}d$
Integer	Half-integer	$(-1)^{2I}b^{+I}c$
Half-integer	Half-integer	$(-1)^{2I}b$

Finally, Eq. (7) may be solved for $A_s(I)$ in terms of $A_t(I)$ or $A_u(I)$ to find the crossing matrices X_{st} or X_{su} ,

$$A_{s}(I) = \Sigma_{I'}(X_{st})_{I,I'}A_{t}(I'),$$

$$A_{s}(I) = \Sigma_{I'}(X_{su})_{I,I'}A_{u}(I').$$
 (11)

We relate the isospin crossing matrices to the $6 \cdot j$ symbols. For example, one may solve Eq. (7) for $A_s(I)$ in terms of $A_t(I)$ using the orthogonality properties of the V-C coefficients. Then $(X_{st})_{I,I'}$ is given by

$$(X_{st})_{I,I'} = \sum_{abcd} \eta_b \eta_c C(a, b; I) C(c, d; I)$$
$$\times C(a, -c; I') C(-b, d; I'). \quad (12)$$

The right-hand side of Eq. (12) is proportional to a $6 \cdot j$ symbol. Some of the crossing matrices for SU(2) in terms of the $6 \cdot j$ symbols are^{*}

$$(X_{st})_{I,I'} = \xi_{st}(2I'+1) \begin{cases} I_a & I_b & I \\ I_d & I_c & I' \end{cases},$$

$$(X_{su})_{I,I'} = \xi_{su}(2I'+1) \begin{cases} I_a & I_b & I \\ I_c & I_d & I' \end{cases},$$

$$(X_{tu})_{I,I'} = \xi_{tu}(2I'+1) \begin{cases} I_a & I_c & I \\ I_b & I_d & I' \end{cases},$$
(13)

where ξ_{st} , ξ_{su} , and ξ_{tu} are the phases given in Table I. It may be necessary to relate the crossing matrices we give to others in which the t and u channels are defined differently or some particles have been replaced by their antiparticles. When the order of states is reversed, the crossing matrix may differ by some phase factor. This phase results from the symmetry of the V–C coefficients,

$$C(a, b; I) = \xi_1 C(b, a; I),$$
 (14)

where ξ_1 is $(-1)^{I-I_a-I_b}$ for SU(2), and is given in Table II for SU(3). It follows that the crossing matrix for amplitudes in which the order of states is reversed is obtained simply by multiplying the corresponding amplitudes by the phase factor ξ_1 .

Let us consider the crossing matrix for the reaction where a particle is replaced by its antiparticle, if the particle and antiparticle belong to equivalent representations. In deriving the crossing matrices, we may use the same isospin or SU(3) state for the particle or the antiparticle, so that exactly the same V-C coefficients are needed. Compare the crossing condition

$$\langle AB \mid \mathfrak{M}_{s} \mid CD \rangle = \langle A\bar{C} \mid \mathfrak{M}_{t} \mid \bar{B}D \rangle$$

with

$$\langle A(-\bar{B}) \mid \mathfrak{M}_{s'} \mid CD \rangle = \langle A\bar{C} \mid \mathfrak{M}_{t'} \mid (-B)D \rangle$$

In terms of the isospin or SU(3) basis, these equations are

$$\langle a, b \mid \mathfrak{M}_s \mid c, d \rangle = \eta_b \eta_c \langle a, -c \mid \mathfrak{M}_t \mid -b, d \rangle$$
 and

$$\eta_{-b}\langle a, b \mid \mathfrak{M}_{s'} \mid c, d \rangle = \eta_c \langle a_1 - c \mid \mathfrak{M}_{t'} \mid -b, d \rangle.$$

TABLE II. Phase factor for reversal of order of states, ξ_1 , and "conjugation" of the V–C coefficient, ξ_3 . See Eqs. (14) and (16).

μ_1	μ_2	μ_3	ξ1	ξa	
8	8	$ \begin{array}{r} 1 \\ 8_s \\ 8_A \\ \frac{10}{10} \\ 27 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \end{array} $	1 -1 1 1 1	
8	10	8 10 27 35	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	-1 -1 1 1	
8	10	$\frac{8}{10}$ $\frac{27}{35}$	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	$ \begin{array}{r} -1 \\ -1 \\ 1 \\ 1 \end{array} $	
10	10	10 27 35 28	1 1 1 1	1 1 1 1	
10	10	1 8 27 64	$ -1 \\ 1 \\ -1 \\ 1 $	-1 -1 1	

^{*} The 6-j symbol may be related to the Racah coefficient (Edmonds, 1957).

Comparing these equations, it is clear that

$$X_{st}' = \eta_{-b} \eta_b X_{st}. \tag{15}$$

From Eqs. (4)-(6), we find that $\eta_{-b}\eta_{b} = (-1)^{2I_{b}}$ for SU(2), and $\eta_{-b}\eta_{b}=1$ for SU(3), as long as *B* is in a **1**, **8**, **27**, \cdots . Thus, crossing matrices for reactions which differ by having a particle in a self-conjugate representation replaced by its antiparticle are related by (-1) if the particle belongs to a half-integer isomultiplet and is crossed, and are equal otherwise.

If a particle which belongs to a non-self-conjugate representation like the 10 is replaced by its antiparticle,

the new crossing matrix is, in general, not simply related to the old one. However, if all the particles in the reaction are changed into their antiparticles, then the relation is a phase coming from

$$\begin{pmatrix} \mu_1 & \mu_2 & \mu_{3\gamma} \\ \nu_1 & \nu_2 & \nu_3 \end{pmatrix} = \xi_3 \begin{pmatrix} \mu_1^* & \mu_2^* & \mu_{3\gamma}^* \\ -\nu_1 & -\nu_2 & -\nu_3 \end{pmatrix}. \quad (16)$$

It follows that the crossing matrices are related by a product of ξ_3 factors. The ξ_3 are also listed in Table II.

The isospin crossing matrices in Eq. (13) may be immediately derived from one another using these prescriptions.

III. ISOSPIN CROSSING MATRICES

Isospin Structure	Example	Channel
1/2+1/2'	$ar{K}N{\longrightarrow}\Lambda\eta$	(s)
$1/2+0 \rightarrow \overline{1/2}'+0'$	$ar{K}ar{\Lambda}{ o}ar{N}\eta$	(t)
$1/2+0' \rightarrow \overline{1/2}'+0$	$ar{K}\eta { ightarrow} ar{N}\Lambda$	(u)
$A_s(0) = (2^{1/2}) A_t(1)$	$/2) = (2^{1/2})A_u(1/2).$	

$$1/2+1/2' \rightarrow 1+0$$
 $\bar{K}N \rightarrow \Sigma \eta$ (s)

$$1/2+1 \rightarrow \overline{1/2}'+0 \qquad \bar{K}\bar{\Sigma} \rightarrow \bar{N}\eta \qquad (t)$$
$$1/2+0 \rightarrow \overline{1/2}'+1 \qquad \bar{K}\eta \rightarrow \bar{N}\Sigma \qquad (u)$$

$$A_{s}(1) = (1/3) (6^{1/2}) A_{t}(1/2) = (1/3) (6^{1/2}) A_{u}(1/2).$$

$$1/2+1/2' \rightarrow 1/2''+1/2''' \qquad NK \rightarrow N'K' \qquad (s)$$

$$1/2+\overline{1/2}'' \rightarrow \overline{1/2}'+1/2''' \qquad N\bar{N}' \rightarrow \bar{K}K' \qquad (t)$$

$$1/2+\overline{1/2}'' \rightarrow \overline{1/2}'+1/2'' \qquad N\bar{K}' \rightarrow \bar{K}N' \qquad (u)$$

$$\begin{bmatrix} A_s(0) \\ A_s(1) \end{bmatrix} = \begin{bmatrix} -1/2 & -3/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} A_t(0) \\ A_t(1) \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} A_u(0) \\ A_u(1) \end{bmatrix};$$

$$X_{ts} = X_{st}; \quad X_{tu} = X_{ut} = \begin{bmatrix} 1/2 & -3/2 \\ -1/2 & -1/2 \end{bmatrix}; \quad X_{us} = \begin{bmatrix} 1/2 & -3/2 \\ 1/2 & 1/2 \end{bmatrix}.$$

$$\begin{split} & 1/2+1/2' \rightarrow 1+1' & \bar{K}N \rightarrow \Sigma \pi & (s) \\ & 1/2+1 \rightarrow \overline{1/2'}+1' & \bar{K}\bar{\Sigma} \rightarrow \bar{N}\pi & (t) \\ & 1/2+1' \rightarrow \overline{1/2'}+1 & \bar{K}\pi \rightarrow \bar{N}\Sigma & (u) \\ \\ & \begin{bmatrix} A_s(0) \\ A_s(1) \end{bmatrix} = \begin{bmatrix} -(1/3)(6^{1/2}) & -(2/3)(6^{1/2}) \\ -2/3 & 2/3 \end{bmatrix} \begin{bmatrix} A_t(1/2) \\ A_t(3/2) \end{bmatrix} = \begin{bmatrix} -(1/3)(6^{1/2}) & -(2/3)(6^{1/2}) \\ 2/3 & -2/3 \end{bmatrix} \begin{bmatrix} A_u(1/2) \\ A_u(3/2) \end{bmatrix}; \\ & X_{ts} = \begin{bmatrix} -(1/6)(6^{1/2}) & -1 \\ -(1/6)(6^{1/2}) & 1/2 \end{bmatrix}; \quad X_{tu} = X_{ut} = \begin{bmatrix} -1/3 & 4/3 \\ 2/3 & 1/3 \end{bmatrix}; \quad X_{us} = \begin{bmatrix} -(1/6)(6^{1/2}) & 1 \\ -(1/6)(6^{1/2}) & -1/2 \end{bmatrix}. \end{split}$$

$$\frac{1}{2} + \frac{1}{2'} \rightarrow \frac{3}{2} + \frac{1}{2''} \qquad NK \rightarrow \Delta K' \qquad (s)$$

$$1/2 + \overline{3/2} \rightarrow \overline{1/2'} + 1/2'' \qquad N \overline{\Delta} \rightarrow \overline{K} K' \qquad (t)$$

$$1/2 + \overline{1/2''} \rightarrow \overline{1/2'} + 3/2 \qquad N \overline{K'} \rightarrow \overline{K} \Delta \qquad (u)$$

$$A_s(1) = A_t(1) = A_u(1).$$

$$\begin{split} & 1/2+1/2' {\rightarrow} 3/2+3/2' & NN' {\rightarrow} \Delta\Delta' & (s) \\ & 1/2+\overline{3/2} {\rightarrow} \overline{1/2'}+3/2' & N\overline{\Delta} {\rightarrow} \overline{N'}\Delta' & (t) \\ & 1/2+\overline{3/2'} {\rightarrow} \overline{1/2'}+3/2 & N\overline{\Delta'} {\rightarrow} \overline{N'}\Delta & (u) \\ & \begin{bmatrix} A_s(0) \\ A_s(1) \end{bmatrix} = \begin{bmatrix} -(3/4)(2^{1/2}) & -(5/4)(2^{1/2}) \\ -(1/4)(10^{1/2}) & (1/4)(10^{1/2}) \end{bmatrix} \begin{bmatrix} A_t(1) \\ A_t(2) \end{bmatrix} = \begin{bmatrix} (3/4)(2^{1/2}) & (5/4)(2^{1/2}) \\ -(1/4)(10^{1/2}) & (1/4)(10^{1/2}) \end{bmatrix} \begin{bmatrix} A_u(1) \\ A_u(2) \end{bmatrix}; \\ X_{ts} = \begin{bmatrix} -(1/4)(2^{1/2}) & -(1/4)(10^{1/2}) \\ -(1/4)(2^{1/2}) & (3/20)(10^{1/2}) \end{bmatrix}; \quad X_{tu} = X_{ut} = \begin{bmatrix} 1/4 & -5/4 \\ -3/4 & -1/4 \end{bmatrix}; \quad X_{us} = \begin{bmatrix} (1/4)(2^{1/2}) & -(1/4)(10^{1/2}) \\ (1/4)(2^{1/2}) & (3/20)(10^{1/2}) \end{bmatrix}. \end{split}$$

$$1+0\rightarrow 1'+0'$$
 $\pi\Lambda\rightarrow\pi'\Lambda'$ (s) $1+1'\rightarrow 0+0'$ $\pi\pi'\rightarrow\bar{\Lambda}\Lambda'$ (t) $1+0'\rightarrow 0+1'$ $\pi\bar{\Lambda}'\rightarrow\bar{\Lambda}\pi'$ (u)

 $A_{s}(1) = -(1/3)(3^{1/2})A_{t}(0) = A_{u}(1).$

$$\begin{array}{ccc} 1 + 0 \rightarrow 1' + 1'' & \pi \Lambda \rightarrow \pi' \Sigma & (s) \\ 1 + 1' \rightarrow 0 + 1'' & \pi \pi' \rightarrow \bar{\Lambda} \Sigma & (t) \\ 1 + 1'' \rightarrow 0 + 1' & \pi \bar{\Sigma} \rightarrow \bar{\Lambda} \pi' & (u) \end{array}$$

$$A_s(1) = -A_t(1) = A_u(1).$$

$$\begin{array}{ccc} 1 + 0 \rightarrow 3/2 + 1/2 & \Sigma \Lambda \rightarrow \Delta \Xi & (s) \\ 1 + \overline{3/2} \rightarrow 0 + 1/2 & \Sigma \overline{\Delta} \rightarrow \overline{\Lambda} \Xi & (t) \\ 1 + \overline{1/2} \rightarrow 0 + 3/2 & \Sigma \overline{\Xi} \rightarrow \overline{\Lambda} \Delta & (u) \end{array}$$

 $A_{s}(1) = -(1/3)(0^{1/2})A_{t}(1/2) = (2/3)(3^{1/2})A_{u}(3/2).$

$$\begin{array}{ccc} 0+3/2 \rightarrow 0'+3/2' & \eta \Delta \rightarrow \eta' \Delta' & (s) \\ 0+0' \rightarrow \overline{3/2}+3/2' & \eta \eta' \rightarrow \overline{\Delta} \Delta' & (t) \end{array}$$

$$0 + \overline{3/2}' \rightarrow \overline{3/2} + 0' \qquad \eta \overline{\Delta}' \rightarrow \overline{\Delta} \eta' \qquad (u)$$

$A_s(3/2) = (1/2)A_t(0) = A_u(3/2).$

$$1+3/2 \rightarrow 0+3/2' \qquad \pi \Delta \rightarrow \eta \Delta' \qquad (s)$$

$$1+0 \rightarrow \overline{3/2}+3/2' \qquad \pi \eta \rightarrow \overline{\Delta} \Delta' \qquad (t)$$

 $1 + \overline{3/2}' \rightarrow \overline{3/2} + 0 \qquad \pi \overline{\Delta}' \rightarrow \overline{\Delta} \eta \qquad (u)$

 $A_s(3/2) = (1/2) (3^{1/2}) A_t(1) = -A_u(3/2).$

$$\begin{split} \mathbf{1} + \mathbf{1}/2 - \mathbf{1}' + \mathbf{1}/2' & \pi N \to \pi' N' \quad (s) \\ \mathbf{1} + \mathbf{1}' - \mathbf{1}/2 + \mathbf{1}/2' & \pi \pi' \to N N' \quad (l) \\ \mathbf{1} + \mathbf{1}/2' - \mathbf{1}/2 + \mathbf{1}' & \pi \sqrt{N'} \to N'' \quad (l) \\ \mathbf{1} + \mathbf{1}/2' - \mathbf{1}/2 + \mathbf{1}' & \pi \sqrt{N'} \to N'' \quad (l) \\ \begin{bmatrix} \mathbf{4}, (1/2) \\ \mathbf{4}, (3/2) \end{bmatrix} = \begin{bmatrix} -(1/3) (6^{1/3}) & -1 \\ -(1/6) (6^{1/3}) & \mathbf{1}/2 \end{bmatrix} \begin{bmatrix} \mathbf{4}, (0) \\ \mathbf{4}, (1) \end{bmatrix} = \begin{bmatrix} \mathbf{1}/3 & \mathbf{4}/3 \\ -2/3 & \mathbf{1}/3 \end{bmatrix} \begin{bmatrix} \mathbf{4}, (1/2) \\ \mathbf{4}, (3/2) \end{bmatrix}; \\ X_{u} = \begin{bmatrix} -(1/3) (6^{1/3}) & -(2/3) (6^{1/3}) \\ -2/3 & 2/3 \end{bmatrix}; & X_{ts} = \begin{bmatrix} (1/3) (6^{1/3}) & -(2/3) (6^{1/3}) \\ -2/3 & -2/3 \end{bmatrix}; \\ X_{ut} = \begin{bmatrix} (1/6) (6^{1/3}) & -1 \\ -(1/6) (6^{1/3}) & -1/2 \end{bmatrix}; & X_{us} = \begin{bmatrix} 1/3 & -4/3 \\ 2/3 & 1/3 \end{bmatrix}. \\ 1 + 1/2 - \mathbf{1}' + 3/2 & \pi' \to \pi' \Delta \qquad (s) \\ 1 + \frac{1}{3/2} - \mathbf{1}/2 + \mathbf{1}' & \pi \Delta \to N \pi' \qquad (u) \\ 1 + \frac{3}{2} - \mathbf{1}/2 + \mathbf{1}' & \pi \Delta \to N \pi' \qquad (u) \\ \begin{bmatrix} \mathbf{4}_{s}(1/2) \\ -(1/4) (10^{1/3}) & (1/12) (30^{1/3}) \end{bmatrix} \begin{bmatrix} \mathbf{4}, (1) \\ \mathbf{4}, (2) \end{bmatrix} = \begin{bmatrix} -1/2 & -(5/6) (3^{1/2}) \\ -(1/3) (3^{1/2}) & (1/15) (30^{1/3}) \end{bmatrix}; & X_{us} = \begin{bmatrix} -1/3 & (1/3) (10^{1/3}) \\ (1/3) (3^{1/3}) & (1/15) (30^{1/3}) \end{bmatrix}; \\ X_{u} = \begin{bmatrix} -1/2 & (5/6) (3^{1/3}) \\ -(1/3) (1/15) (30^{1/3}) \end{bmatrix}; & X_{us} = \begin{bmatrix} -1/3 & (1/3) (10^{1/3}) \\ (1/3) (3^{1/3}) & (1/15) (30^{1/3}) \end{bmatrix}; \\ X_{ut} = \begin{bmatrix} -1/2 & (5/6) (3^{1/3}) \\ (1/4) (10^{1/3}) & (1/12) (30^{1/3}) \end{bmatrix}; & X_{us} = \begin{bmatrix} -2/3 & (1/3) (10^{1/3}) \\ -(1/3) (10^{1/3}) \end{bmatrix}; \\ X_{ut} = \begin{bmatrix} 1/3 & 1 & 5/3 \\ 1/4 & 1/2 & 1/6 \end{bmatrix} \begin{bmatrix} 1/3 & 1 & 5/3 \\ 1/3 & 1/2 & -5/6 \\ 1/3 & 1/2 & -5/6 \end{bmatrix}; & X_{us} = \begin{bmatrix} 1/3 & 1 & 5/3 \\ -1/3 & -1/2 & 5/6 \\ 1/3 & -1/2 & 1/6 \end{bmatrix} \begin{bmatrix} 1/3 & 1 & 5/3 \\ -1/3 & -1/2 & 5/6 \\ 1/3 & -1/2 & -5/6 \\ 1$$

74 Reviews of Modern Physics • January 1970

$$\begin{bmatrix} A_{4}(0) \\ A_{4}(1) \\ A_{4}(2) \end{bmatrix} = \begin{bmatrix} (1/3) (3^{1/3}) & (2/3) (3^{1/3}) & 3^{1/3} \\ (1/6) (10^{1/2}) & (2/15) (10^{1/3}) & -(3/10) (10^{1/3}) \\ (1/6) (3^{1/3}) & -(4/15) (6^{1/3}) & (1/10) (6^{1/3}) \end{bmatrix} \begin{bmatrix} A_{4}(1/2) \\ A_{4}(5/2) \end{bmatrix} \\ = \begin{bmatrix} (1/3) (3^{1/3}) & (2/3) (3^{1/3}) & 3^{1/3} \\ -(1/6) (10^{1/3}) & -(2/15) (10^{1/3}) & (3/10) (10^{1/3}) \\ (1/6) (3^{1/3}) & (1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & (1/10) (10^{1/3}) & -(1/3) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(3/20) (10^{1/3}) & (1/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(3/20) (10^{1/3}) & (1/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/3) (1/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/6) (3^{1/3}) & -(1/4) (10^{1/3}) & (5/12) (6^{1/3}) \\ (1/2 + 3/2 - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ 1/2 + 3/2 - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ (1/2 + 3/2 - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ (1/2 + 3/2 - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ (1/2 + 3/2 - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ \end{bmatrix} \begin{bmatrix} A_{*}(1) \\ A_{*}(2) \\ 1/2 + 3/2' - 3/2' + 3/2'' & N\Delta - \Delta'A'' & (x) \\ (3/10) (5^{1/3}) & 1/2 \end{bmatrix} \begin{bmatrix} A_{*}(1) \\ A_{*}(2) \\ A_{*}(3) \end{bmatrix} \begin{bmatrix} A_{*}(1) \\ A_{*}(2) \\ -1/4 & -3/4 & -5/4 & -7/4 \\ -1/4 & -11/20 & -1/4 & 21/20 \\ -1/4 & -3/20 & -3/4 & 7/20 \\ -1/4 & -3/20 & -3/4 & 7/20 \\ -1/4 & -3/20 & -3/4 & -7/20 \\ -1/4$$

$$X_{us} = \begin{bmatrix} 1/4 & -3/4 & 5/4 & -7/4 \\ 1/4 & -11/20 & 1/4 & 21/20 \\ 1/4 & -3/20 & -3/4 & -7/20 \\ 1/4 & 9/20 & 1/4 & 1/20 \end{bmatrix}.$$

IV. SU(3) crossing matrices

SU(3) Structure	Example	Channel
1+8→1'+8'	$XB \rightarrow X'B'$	(s)
1+1′→8+8′	$X\bar{X}' \rightarrow \bar{B}B$	(t)
1+8′→8+1′	$X\bar{B}' \rightarrow \bar{B}X'$	<i>(u)</i>
$A_s(8)$	$= - (1/8) (8^{1/2}) A_{t}(1) = A_{u}(8).$	
1+10→1′+10′	$X\Delta {\rightarrow} X'\Delta'$	(s)
$1+1' \rightarrow \overline{10}+10$	$X\bar{X}' { ightarrow} \bar{\Delta} \Delta'$	(t)
$1+\overline{10}'\rightarrow\overline{10}+1'$	$X\bar{\Delta}' \rightarrow \bar{\Delta}X'$	(u)
$A_{s}(10) =$	$-(1/10)(10^{1/2})A_t(1) = A_u(\overline{10}).$	
1+8→8′+8″	$XB \rightarrow PB'$	(s)
1+8′→8+8″	$XP \rightarrow \overline{B}B'$	(t)
1+8″→8+8′	$X\bar{B}' \rightarrow \bar{B}P$	<i>(u)</i>
$\begin{bmatrix} A_s(8_s) \\ \\ A_s(8_A) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} A_t(8_s) \\ A_t(8_A) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_u(8_s) \\ A_u(8_A) \end{bmatrix} $;
$X_{ts} = X_{st};$	$X_{tu} = X_{ut} = X_{st}; \qquad X_{us} = X_{su}.$	
1+8→8′+10	$XB \rightarrow P\Delta$	(<i>s</i>)
1+8′→8+10	$XP \rightarrow \overline{B}\Delta$	(t)
$1+\overline{10}\rightarrow 8+8'$	$X\bar{\Delta} \rightarrow \bar{B}P$	(u)
$A_s(8) = -$	$-A_t(8) = -(1/2)(5^{1/2})A_u(\overline{10}).$	
1+10→8+8′	$X \Delta \rightarrow PB$	(s)
$1+8\rightarrow\overline{10}+8'$	$XP \rightarrow \overline{\Delta}B$	(t)
$1+8' \rightarrow \overline{10}+8$	$X\bar{B} \rightarrow \bar{\Delta}P$	(u)
$A_s(10) = (2/2)$	$5) (5^{1/2}) A_t(8) = -(2/5) (5^{1/2}) A_u(8).$	
1+10→8+10′	$X\Delta \rightarrow P\Delta$	(s)
$1+8\rightarrow\overline{10}+10'$	$XP \rightarrow \overline{\Delta}\Delta$	(t)
$1+\overline{10}'\rightarrow\overline{10}+8$	$X\bar{\Delta} \rightarrow \bar{\Delta}P$	(u)
$A_{s}(10) =$	$= -(2/5)(5^{1/2})A_t(8) = A_u(\overline{10}).$	
8+8′→8″+8‴	$PB \rightarrow P'B'$	<i>(s)</i>
8+8"→8'+8""	$PP' \rightarrow \bar{B}B'$	<i>(t)</i>
8+8'''→8'+8''	$P\bar{B}' \rightarrow \bar{B}P'$	<i>(u)</i>

$\lceil A_t(1) \rceil$	$A_t(8_{As})$	$A_t(8_{sA})$	$A_t(8_{ss})$	$A_t(8_{AA})$	$A_t(10)$	$A_t(\overline{10})$	$\left\lfloor A_t(27) \right\rfloor$	Г	*	(1	<u> </u>	A) /			
27/8	0	0	27/40	9/8	9/40	9/40	7/40	$\left\lceil A_{u}(1) ight angle$	$A_u(8_A)$	$A_u(8_{s_s})$	$A_u(8_{ss}$	$A_u(8_A)$	$A_u(10$	$A_{u}(\overline{10}$	$\left\lfloor A_{u}(27\right.$
	[/2]	[/2)		I	I	1		27/8	0	0	27/40	9/8	9/40	9/40	7/40
5/4	$-(1/4)(5^{1})$	$(1/4)(5^{1})$	-1/2	0	1/4	1/4	-1/12	4	$[/4)(5^{1/2})$./4)(5 ^{1/2}) (7		4	4	' 12
	(5 ^{1/2})	(5 ^{1/2})						5/	(1	(1	-1/	0	-1/	-1/	-1/
5/4	(1/4)	-(1/4)	-1/2	0	1/4	1/4	-1/12	/4	l/4)(5 ^{1/2})	[/4) (5 ^{1/2})	/2		/4	/4	'12
	0	0	1/2	1/2	0	0	- 1/3	5/	- (1	- (1	-1/	0	-1/	-1/	-1/
Ţ	0	0	-3/10	1/2	- 2/5	- 2/5	1/5 -	1	0	0) 1/2	-1/2	0	0	-1/3
			I		- (1/2)	1/2) -		1	0	0	-3/10	-1/2	2/5	2/5	1/5
0	-1/2	-1/2	0	0	-(1/5)(5)	(1/5)(5)	0		/2	/2			(1/5) (5 ^{1/2})	$(1/5)(5^{1/2})$	
					$(5^{1/2})$	$(5^{1/2})$		0	1	-	0	0	\bigcirc		0
0	-1/2	-1/2	0	0	(1/5)	-(1/5)	0		/2	/2			l/5)(5 ^{1/2})	l/5) (5 ^{1/2})	
$^{-1/8}$	0	0	1/8	1/8	1/8	1/8	_1/8	0	1/	-1/	0	0	- (1	(1	0
r				II				1/8	0	0	1/8	-1/8	-1/8	-1/8	1/8
$\left\lceil A_s(1) \right\rceil$	$A_s(8_{As})$	$A_s(8_{sA})$	$A_s(8_{ss})$	$A_s(8_{AA})$	$A_s(10)$	$A_s(\overline{10})$	$[A_s(27)]$	L							L

where $A_s(8_{As}) = \langle 8_{A \text{ out}} | \mathfrak{M}_s | 8_{s \text{ in}} \rangle$, etc. (This definition is crucial for computing the phases for reversing the order of particles in the initial or final state.)

			X_{i}	$s = X_{st};$				
	1/8	0	0	1	-1	-5/4	-5/4	27/8
	0	-1/2	1/2	0	0	$(1/4)(5^{1/2})$	$-(1/4)(5^{1/2})$	0
	0	1/2	-1/2	0	0	$(1/4)(5^{1/2})$	$-(1/4)(5^{1/2})$	0
	1/8	0	0	-3/10	-1/2	1/2	1/2	27/40
$X_{tu} = X_{ut} =$	-1/8	0	0	-1/2	1/2	0	0	9/8 ;
	-1/8	$(1/5)(5^{1/2})$	$(1/5)(5^{1/2})$	2/5	0	1/4	1/4	9/40
	-1/8	$-(1/5)(5^{1/2})$	$-(1/5)(5^{1/2})$	2/5	0	1/4	1/4	9/40
	_ 1/8	0	0	1/5	1/3	1/12	1/12	7/40
	[1/8	0	0	1 -	-1 –	5/4	-5/4	27/8
	0	1/2	-1/2	0	0 —	$(1/4)(5^{1/2})$	$(1/4)(5^{1/2})$	0
	0	1/2	-1/2	0	0	$(1/4)(5^{1/2})$	$-(1/4)(5^{1/2})$	0
	1/8	0	0 -	-3/10 -	-1/2	1/2	1/2	27/40
$X_{us} =$	1/8	0	0	1/2 -	-1/2	0	0 -	-9/8
	1/8 -	$-(1/5)(5^{1/2})$	$-(1/5)(5^{1/2})$ -	-2/5	0 —	1/4	-1/4 -	-9/40
	1/8	$(1/5)(5^{1/2})$	$(1/5)(5^{1/2})$ -	-2/5	0 —	1/4	-1/4 -	-9/40
	_1/8	0	0	1/5	1/3	1/12	1/12	7/40
		010/.0						
		8+8'→	$3^{\prime} + 10$ $3^{\prime} + 10$		$PB \rightarrow P' \Delta$ $PP' \rightarrow \bar{R} \Lambda$	7	(s)	
		8+10→8	8'+10 8'+8''		$P\bar{\Delta} \rightarrow \bar{B}P$		(<i>v</i>) (<i>u</i>)	
Г	$A_s(8_s)$	[2/5	$(1/5)(5^{1/2})$) (1,	$(4)(2^{1/2})$	27/20	$\left \left[A_t(8_s) \right] \right $	
	$A_s(8_A)$	$(1/5)(5^{1/2})$) 0	(1/	$(4)(10^{1/2})$	- (9/20) (5	$(1/2) \qquad A_t(8_A)$	
	$A_{s}(10)$	= (1/5) (2 ^{1/2}) $(1/5)(10^{1/3})$	(2) - 1/2	2	-(9/20)(2	$(1/2) A_t(10) $	
	$A_{s}(27)$	_2/5	$-(2/15)(5^{1/2})$	(2) - (1)	$(6)(2^{1/2})$	1/10	$A_{t}(27)$	
		[-2/5]	(1/5)(5	^{1/2}) —	$(1/4)(2^{1/2})$	2) 27/20	$\left A_u(8_s) \right $	
		(1/5)(5	$5^{1/2}) = 0$		$(1/4)(10^{1})$./2) (9/20)(5	$(1/2) A_u(8_A)$	
		= (1/5)(2	$(2^{1/2}) - (1/5)(1)$	$0^{1/2})$ -1	l/2	(9/20)(2	$A_u(\overline{10}) \mid A_u(\overline{10}) \mid$;
		2/5	- (2/15) ((51/2)	$(1/6)(2^{1/2})$	²) 1/10	$\left[A_{u}(27) \right]$	

$$\begin{split} X_{uv} = \begin{bmatrix} -2/5 & -(1/5) (5^{1/3}) & (1/4) (2^{1/3}) & 27/20 \\ (1/5) (2^{1/3}) & (1/5) (10^{1/3}) & 1/2 & (9/20) (2^{1/3}) \\ -2/5 & (2/15) (5^{1/3}) & -(1/6) (2^{1/3}) & 1/10 \end{bmatrix} \\ X_{uv} = \begin{bmatrix} -2/5 & (1/5) (5^{1/3}) & 0 & (1/4) (2^{1/3}) & -27/20 \\ -(1/5) (5^{1/3}) & 0 & (1/4) (2^{1/3}) & -27/20 \\ -(1/5) (5^{1/3}) & 0 & (1/4) (2^{1/3}) & -27/20 \\ (1/5) (2^{1/3}) & -(1/5) (10^{1/3}) & 1/2 & -(9/20) (2^{1/3}) \\ 2/5 & (2/15) (5^{1/3}) & (1/6) (2^{1/3}) & 1/10 \end{bmatrix} \\ X_{uv} = \begin{bmatrix} -2/5 & (1/5) (5^{1/3}) & (1/6) (2^{1/3}) & 1/10 \\ -(1/5) (2^{1/3}) & 0 & -(1/4) (10^{1/3}) & -(9/20) (5^{1/3}) \\ -(1/5) (2^{1/3}) & 0 & -(1/4) (10^{1/3}) & -(9/20) (5^{1/3}) \\ -(1/5) (2^{1/3}) & (1/5) (10^{1/3}) & -1/2 & (9/20) (2^{1/3}) \\ -(1/5) (2^{1/3}) & (1/5) (10^{1/3}) & -1/2 & (9/20) (2^{1/3}) \\ -(1/5) (2^{1/3}) & (1/5) (5^{1/3}) & (1/6) (2^{1/3}) & 1/10 \\ \hline & 8+8' - 40 + 10' & B\overline{\Delta} - \overline{D}^{1}\Delta' & (i) \\ 8+\overline{10} - 8' + 10' & B\overline{\Delta} - \overline{D}^{1}\Delta' & (i) \\ 8+\overline{10} - 8' + 10' & B\overline{\Delta} - \overline{D}^{1}\Delta' & (i) \\ 8+\overline{10} - 8' + 10' & B\overline{\Delta} - \overline{D}^{1}\Delta' & (i) \\ 8+\overline{10} - 8' + 10' & B\overline{\Delta} - \overline{D}^{1}\Delta' & (i) \\ (1/3) (2^{1/3}) & -(1/5) (10^{1/3}) \end{bmatrix} ; \quad X_{uv} = \begin{bmatrix} 1/5 & -9/5 \\ -8/15 & -1/5 \end{bmatrix} ; \\ X_{uv} = \begin{bmatrix} (1/2) (2^{1/3}) & (9/20) (10^{1/3}) \\ (1/3) (2^{1/3}) & -(1/5) (10^{1/3}) \end{bmatrix} ; \quad X_{uv} = X_{uv} = \begin{bmatrix} 1/5 & -9/5 \\ -8/15 & -1/5 \end{bmatrix} ; \\ X_{uv} = \begin{bmatrix} -(1/2) (2^{1/3}) & (9/20) (10^{1/3}) \\ -(1/3) (2^{1/3}) & -(1/5) (10^{1/3}) \end{bmatrix} \end{bmatrix} . \\ \begin{array}{c} 8+10 - 8' + 10' & B\overline{\Delta} - \overline{\Delta}\Delta' & (i) \\ 8+\overline{10} - 8' + 10' & B\overline{\Delta} - \overline{\Delta}\Delta' & (i) \\ 8+\overline{10} - 10' & B\overline{\Delta} - \overline{\Delta}\Delta' & (i) \\ 8+\overline{10} - 10' & B\overline{\Delta} - \overline{\Delta}\Delta' & (i) \\ 8+\overline{10} - 10' & B\overline{\Delta} - \overline{\Delta}\Delta' & (i) \\ 8+\overline{10} - 10' & 0' (1/3) (2^{1/3}) & (1/3) (10^{1/3}) & (9/20) (7^{1/3}) \\ \end{bmatrix} \begin{bmatrix} 4_{v}(3) \\ -(1/2) (5^{1/3}) & (1/3) (2^{1/3}) & (1/3) (10^{1/3}) & (-1/20) (7^{1/3}) \\ (1/20) (5^{1/3}) & (1/3) (2^{1/3}) & (1/3) (10^{1/3}) & (-1/20) (7^{1/3}) \\ (1/20) (5^{1/3}) & (1/10) (2^{1/3}) & (1/10) (10^{1/3}) & (-1/20) (7^{1/3}) \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} 4_{v}(3) \\ = \begin{bmatrix} 1/5 & 1/2 & 9/20 & 7/4 \\ -2/5 & -3/4 & 9/40 & 7/8 \\ -2/5 & -3/4 & 9/40 & 7/8 \\ -2/5 & -1/4$$

C. REBBI AND R. SLANSKY Crossing Matrices for SU(2) and SU(3) 79

$$\begin{split} X_{4i} = \begin{bmatrix} (2/5) (5^{1/2}) & (1/2) (5^{1/2}) & (27/20) (5^{1/2}) & (7/4) (5^{1/2}) \\ (1/5) (2^{1/2}) & (3/8) (2^{1/2}) & -(81/80) (2^{1/2}) & (7/16) (2^{1/2}) \\ (1/5) (10^{1/2}) & (1/8) (10^{1/2}) & (9/80) (10^{1/2}) & -(7/16) (10^{1/2}) \\ (2/15) (7^{1/3}) & -(1/2) (5^{1/3}) & -(27/20) (5^{1/3}) & (7/4) (5^{1/3}) \\ (1/5) (2^{1/3}) & -(3/8) (2^{1/3}) & (81/80) (2^{1/2}) & (7/16) (2^{1/3}) \\ -(1/5) (10^{1/3}) & (1/8) (10^{1/2}) & (9/80) (10^{1/2}) & (7/16) (10^{1/3}) \\ (2/15) (7^{1/3}) & (1/6) (7^{1/3}) & (1/20) (7^{1/3}) \\ (1/5) (2^{1/3}) & (1/5) (2^{1/3}) & (1/20) (7^{1/3}) & (1/12) (7^{1/3}) \\ (2/15) (7^{1/3}) & (1/5) (2^{1/3}) & (1/20) (7^{1/3}) & (1/20) (7^{1/3}) \\ (2/15) (7^{1/3}) & (1/5) (2^{1/3}) & (1/10) (10^{1/3}) & (9/20) (7^{1/3}) \\ -(1/20) (5^{1/3}) & -(3/10) (2^{1/3}) & (1/10) (10^{1/3}) & (9/20) (7^{1/3}) \\ -(1/20) (5^{1/3}) & (1/10) (2^{1/3}) & (1/10) (10^{1/3}) & (9/140) (7^{1/3}) \\ (1/20) (5^{1/3}) & (1/10) (2^{1/3}) & (1/10) (10^{1/3}) & (9/140) (7^{1/3}) \\ (1/20) (5^{1/3}) & (1/10) (2^{1/3}) & (1/10) (10^{1/3}) & (9/140) (7^{1/3}) \\ (1/20) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/20) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/20) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/20) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/30) (10^{1/3}) & (1/20) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/30) (10^{1/3}) & (1/30) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/4, (27)) \\ = \begin{bmatrix} (2/15) (5^{1/3}) & (1/10) (7^{0/3}) \\ (1/4, (27)) \\ (2/5) & -(9/70) (14^{1/3}) \\ (1/4, (27)) \end{bmatrix} \begin{bmatrix} A_{1}(8) \\ A_{1}(27) \end{bmatrix} = \begin{bmatrix} (2/15) (5^{1/3}) & (1/10) (7^{0/3}) \\ (2/15) (14^{1/3}) & (1/6) (14^{1/3}) \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ \end{bmatrix}, \\ X_{44} = \begin{bmatrix} (9/20) (5^{1/3}) & 7/4 \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ \vdots \\ X_{44} = \begin{bmatrix} (9/20) (5^{1/3}) & -7/4 \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ \vdots \\ X_{44} = \begin{bmatrix} (9/20) (5^{1/3}) & -7/4 \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ \end{bmatrix}, \\ X_{44} = \begin{bmatrix} (9/20) (5^{1/3}) & -7/4 \\ (1/10) (7^{0/3}) & (1/6) (14^{1/3}) \\ \end{bmatrix}, \\ X_{44} = \begin{bmatrix} (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4)$$

 $\Delta \bar{\Delta}^{\prime\prime\prime} \rightarrow \bar{\Delta}^{\prime} \Delta^{\prime\prime}$

(u)

80 REVIEWS OF MODERN PHYSICS • JANUARY 1970

$$\begin{bmatrix} A_{*}(\overline{10}) \\ A_{*}(27) \\ A_{*}(35) \\ A_{*}(28) \end{bmatrix} = \begin{bmatrix} -1/10 & -2/5 & -9/10 & -8/5 \\ -1/10 & -4/15 & -1/10 & 16/15 \\ -1/10 & 0 & 9/14 & -16/35 \\ -1/10 & 2/5 & -27/70 & 4/35 \end{bmatrix} \begin{bmatrix} A_{i}(1) \\ A_{i}(8) \\ A_{i}(27) \\ A_{i}(64) \end{bmatrix}$$
$$= \begin{bmatrix} 1/10 & -4/15 & -1/10 & 16/15 \\ 1/10 & 0 & -9/14 & 16/35 \\ -1/10 & 2/5 & -27/70 & 4/35 \end{bmatrix} \begin{bmatrix} A_{u}(1) \\ A_{u}(8) \\ A_{u}(27) \\ A_{u}(64) \end{bmatrix};$$
$$X_{ts} = \begin{bmatrix} -1 & -27/10 & -7/2 & -14/5 \\ -1/2 & -9/10 & 0 & 7/5 \\ -1/3 & -1/10 & 5/6 & -2/5 \\ -1/4 & 9/20 & -1/4 & 1/20 \end{bmatrix};$$
$$X_{tu} = X_{ut} = \begin{bmatrix} 1/10 & -4/5 & 27/10 & -32/5 \\ -1/10 & 3/5 & -9/10 & -8/5 \\ 1/10 & -4/15 & -47/70 & -32/105 \\ -1/10 & -1/5 & -9/70 & -1/35 \end{bmatrix};$$
$$X_{us} = \begin{bmatrix} 1 & -27/10 & 7/2 & -14/5 \\ 1/2 & -9/10 & 0 & 7/5 \\ 1/3 & -1/10 & -5/6 & -2/5 \\ 1/3 & -1/10 & -5/6 & -2/5 \\ 1/4 & 9/20 & 1/4 & 1/20 \end{bmatrix}.$$

ACKNOWLEDGMENTS

We are grateful to Dr. Jacques Weyers and Dr. Jeffrey Mandula for their encouragement and suggestions. We wish to thank Professor Yuval Ne'eman for advice and careful reading of the manuscript. The authors are also grateful to Professor J. J. de Swart for permitting the reproduction of his tables of isoscalar factors.

APPENDIX

The isoscalar factors

The vector coupling coefficients for the group SU(3) can be obtained from those of SU(2) by means of the "isoscalar factors," according to the following relation (de Swart, 1963):

$$\begin{pmatrix} \mu_{a} & \mu_{b} & \mu_{c\gamma} \\ \nu_{a} & \nu_{b} & \nu_{c} \end{pmatrix} = (I_{a}I_{3a}, I_{b}I_{3b}; I_{a}I_{b}, I_{c}I_{3c}) \\ \times \begin{pmatrix} \mu_{a} & \mu_{b} \\ I_{a}Y_{a} & I_{b}Y_{b} \\ I_{c}Y_{c} \end{pmatrix}.$$
(A1)

 $\begin{pmatrix} \mu_a & \mu_b & \mu_{c\gamma} \\ I_a Y_a & I_b Y_b & I_c Y_c \end{pmatrix}$

depend upon the SU(3) representations, the isospins and hypercharges of the particles involved, but not on the third components of their isospin.

The isoscalar factors can be used to derive the crossing matrices for SU(3) directly, without using the SU(3) V-C coefficients, once the SU(2) crossing matrices are known.

for $8\otimes 8, 8\otimes 10, 10\otimes 10, 10\otimes 10^*$.	8}; given are the isoscalar factors	8 44	$I_2 Y_2 IY \rangle$	27 } \oplus {10} \oplus {10*} \oplus {8} ₁ \oplus {8} ₂ \oplus {1}	$Y=2 \ I=0$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$V = -1 I = \frac{3}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1, 0; \frac{1}{2}, -1 (2^{1/2})/2 (2^{1/2})/2$	$\begin{vmatrix} Y_{1} & Y_{1} & Y_{2} \\ I_{1} & Y_{1} & I_{2} & Y_{2} \end{vmatrix} = 27 \qquad 8_{1} \qquad 8_{2} \qquad 11 \mu_{\gamma}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \hat{z}_{2}, -1; & 0, & 0 \\ 0, & 0; & \hat{z}_{2}, -1 \end{vmatrix} = 3(5^{1/2})/10 & -(5^{1/2})/10 & -1/2 & -1/2 \\ 3(5^{1/2})/10 & -(5^{1/2})/10 & 1/2 & -1/2 \end{vmatrix}$	Y = -2 $I = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TABLE III. Isoscalar factors f	Isoscalar factors for {8}⊗{8	8		for the CG series $\{8\} \otimes \{8\} = \{2\}$	Y=2 $I=1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$V = 1 I = \frac{3}{2}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Y = 1 I = \frac{1}{2}$	$I_1, \ Y_1; \ I_2, \ Y_2$ 27 8_1 8_2 $10^* \ \mu_{\gamma}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Y = 0 \ I = 2$	$I_1, Y_1; I_2, Y_2 27 \mu_\gamma$	1, 0; 1, 0 1	Y=0 I=1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Q Ø Q C. REBBI AND R. SLANSKY Crossing Matrices for SU(2) and SU(3) 81

(Continued)	; given are the isoscalar factors 10 $ \mu_{\gamma}\rangle$	$\left Y_{2} \right \left IY \right\rangle$	$= \{35\} \oplus \{27\} \oplus \{10\} \oplus \{8\}$	$Y=1$ $I=\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$, 1; 1, 0 $ -2(5^{1/2})/5 - (5^{1/2})/5$	Y=0 $I=2$	$I_1, Y_1; I_2, Y_2$ 35 27 μ_1	$\begin{bmatrix} 1, & 0; & 1, & 0 \\ \frac{1}{2}, & -1; & \frac{3}{2}, & 1 \end{bmatrix} \begin{bmatrix} (3^{1/2})/2 & 1/2 \\ 1/2 & -(3^{1/2})/2 \end{bmatrix}$	Y=0 $I=1$	$I_1, Y_1; I_2, Y_2 \mid 35 27 10 8 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Y = -2 $I = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 2 & -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ (3^{1/2})/2 & -1/2 \end{bmatrix}$		$I_1, \ Y_1; \ I_2, \ Y_2 \ 35 \ 10 \ \mu$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		$Y = -3 I = \frac{1}{2}$	$I_1, Y_1; I_2, Y_2$ 35 μ_{γ}	$\frac{1}{2}$, -1; 0, -2 1
TABUE III (Isoscalar factors for {8} {10}	$\langle I_1 Y_1 I_2 \rangle$	for the CG series {8} \$\\$10]		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y=2 $I=1$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	V = 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V = V = V	$I_1, \ Y_1; \ I_2, \ Y_2$ 35 27 10 μ_{γ}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}, 1; 1, 0$ $(10^{12})/4$ $(2^{12})/4$ $1/2$	V=0 $I=0$	$I_1, V_1; I_2, V_2$ 27 8 μ_{γ}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Y = -1$ $I = \frac{3}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$Y = -1$ $I = \frac{1}{2}$	$I_1, V_1; I_2, V_2$ 35 27 10 8 μ_{γ}	1, 0; $\frac{1}{2}$, -1 $-1/4$ -7(5 ^{1/2})/20 (2 ^{1/2})/4 (5 ^{1/2})/5 0, 0; $\frac{1}{3}$, -1 $3/4$ -3(5 ^{1/2})/20 (2 ^{1/2})/4 -(5 ^{1/2})/5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{2}$, -1; 1, 0 -1/2 ($5^{1/2}$)/10 ($2^{1/2}$)/2 - ($5^{1/2}$)/5

82

REVIEWS OF MODERN PHYSICS • JANUARY 1970

TABLE III	(Continued)
Isoscalar factors for $\{10\} \otimes \{10\}$	}; given are the isoscalar factors
/ 10	$10 \mid \mu_{\gamma} \rangle$
	$\left Y_2 \right IY ight)$
for the CG series $\{10\}\otimes \{10$	$= \{35\} \oplus \{28\} \oplus \{27\} \oplus \{10^*\}$
Y=2 $I=3$	$Y=1$ $I=\frac{1}{2}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Y=2 $I=2$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y=0 I=2 I_{2} V_{2} I_{3} Q_{3} Q_{7} I_{1}
2i 1, $2i$ 1 $-1V=0$ $I=1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$I_1, Y_1; I_2, Y_2 \mid 27 \mu_{\gamma}$	
23, 1; 23, 1 1	Y=0 $I=1$
	$I_{1,}$ $V_{1;}$ I_{2} , V_{2} 35 27 10* μ_{γ}
$\begin{array}{c cccc} Y=2 & I=0 \\ \hline I_1, & Y_1; & I_2, & Y_2 & 10^* & \mu_1 \\ \hline \frac{3}{2}, & 1; & \frac{3}{2}, & 1 & -1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 5	Y=0 $I=0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1, 0, 3, 1 (2-)/2 - (2-)/2	$Y = -1$ $I = \frac{3}{2}$
$Y = 1 I = \frac{3}{2}$	$\frac{I_{1,1} Y_{1,1} I_2, Y_2 \mid 28 35 27 10^* \mu_7}{2 0 1 (10) 4.0 1.0 2.1 (10) 4.0 1.0 $
$I_1, Y_1; I_2, Y_2$ 35 27 μ_{γ}	$\begin{bmatrix} \frac{3}{2}, & 1; & 0, & -2 \\ 0, & -2; & \frac{3}{2}, & 1 \\ & & & & & \\ & & & & & & \\ & & & &$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 1, & 0; & \frac{1}{2}, & -1 \\ \frac{1}{2}, & -1; & 1, & 0 \end{vmatrix} \begin{vmatrix} 3(5^{1/2})/10 & \frac{1/2}{2} & -(5^{1/2})/10 & -\frac{1/2}{2} \end{vmatrix} - \frac{3^{1/2}}{2} - \frac{1/2}{2} \end{vmatrix}$

ABLE III (Continued)	$0 $ {10}; given are the isoscalar factors	$\begin{pmatrix} 10 & 10 \\ \mu_{\gamma} \end{pmatrix}$	$igvee I_1 Y_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$0\} \otimes \{10\} = \{35\} \oplus \{28\} \oplus \{27\} \oplus \{10^*\}$	Y = -2 $I = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Y = -3$ $I = \frac{1}{2}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 { 10* }; given are the isoscalar factors	$\begin{pmatrix} 10 & 10^* \\ \mu_{\gamma} \end{pmatrix}$	$egin{pmatrix} I_1Y_1 & I_2Y_2 \ IY \end{pmatrix}$	$\{10\} \otimes \{10\}^{*} = \{64\} \oplus \{27\} \oplus \{8\} \oplus \{1\}$	$Y=1$ $I=\frac{5}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Y = 1 I = \frac{3}{2}$	$ \left \begin{array}{c ccccccc} I_1, & Y_1; & I_2, & Y_2 & 64 & 27 & \mu_{\gamma} \\ \hline \frac{3}{2}, & 1; & 1, & 0 & (14^{1/2})/7 & (35^{1/2})/7 \\ 1, & 0; & \frac{1}{2}, & 1 & (35^{1/2})/7 & -(14^{1/2})/7 \\ \end{array} \right $	$Y=1$ $I=\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} \overline{3}, & 1, & 1, & 0 \\ 1, & 0, & \frac{1}{2}, & 1 \\ \overline{3}, & -1; & 0, & 2 \end{vmatrix} \begin{vmatrix} (14^{1/2})/7 & (35^{1/2})/35 & (10^{1/2})/5 \\ (14^{1/2})/7 & -3(70^{1/2})/35 & (5^{1/2})/5 \end{vmatrix}$
T	Isoscalar factors for {1			for the CG series {1	$Y = -1 I = \frac{1}{2}$	$\left[rac{I_1, Y_1; I_2, Y_2 35 27 \mu_{\gamma} \ 1. 0: rac{1}{2} -1 -(2^{1/2})/2 -(2^{1/2})/2 \ \end{array} ight]$	$\frac{1}{2}$, -1; 1, 0 -(2 ^{1/2})/2 (2 ^{1/2})/2	Y = -2 $I = 1$	$I_1, Y_1; I_2, Y_2 \mid 28$ 35 27 μ_{γ}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Isoscalar factors for {			for the CG series	$Y=3$ $I=\frac{3}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V=2 $I=2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y=2 $I=1$	$I_1, V_1; I_2, Y_2 = 64 27 \mu_z$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 Reviews of Modern Physics • January 1970

84

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \bigotimes \{10^*\}; \text{ given are the isoscalar factors} 10 10^* \left \mu_{\gamma} \\ 1Y_1 I_2 Y_2 \right IY \end{pmatrix} \\ \bigotimes \{10\}^* = \{64\} \bigoplus \{27\} \bigoplus \{8\} \bigoplus \{1\} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Isoscalar factors for $\{10\}$ $\begin{pmatrix} I \\ I \end{pmatrix}$ for the CG series $\{10\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C. REBBI AND R. SLANSKY Crossing Matrices for SU(2) and SU(3)

TABLE III (Continued)

85

86 **REVIEWS OF MODERN PHYSICS • JANUARY 1970**

Indeed, take any reaction $AB \rightarrow CD$ (s channel) with corresponding t channel $A\bar{C} \rightarrow \bar{B}D$. Let the amplitudes for the reaction to occur in a state of total isospin I be A(I), and the SU(3) eigenamplitudes be $A(\mu_{\gamma})$. We have

$$A_{s}(I) = \sum_{\mu_{\gamma}} \begin{pmatrix} \mu_{A} & \mu_{B} & \mu_{\gamma} \\ I_{A}Y_{A} & I_{B}Y_{B} & IY_{A} + Y_{B} \end{pmatrix}$$
$$\times \begin{pmatrix} \mu_{C} & \mu_{D} & \mu_{\gamma} \\ I_{C}Y_{C} & I_{D}Y_{D} & IY_{C} + Y_{D} \end{pmatrix} A_{s}(\mu_{\gamma}) \quad (A2)$$

with an analogous equation holding for the *t*-channel amplitudes.

On the other hand, $A_s(I)$ and $A_t(I)$ are related by Eq. (11):

$$A_s(I) = \sum_{I'} (X_{st})_{I,I'} A_t(I').$$

The various relations that can be obtained from Eqs. (A2) and (11) by a suitable choice of the external particles can finally be used to express the SU(3)amplitudes $A_s(\mu_{\gamma})$ by $A_t(\mu_{\gamma})$, i.e., to derive the SU(3)crossing matrix.

A word of caution, however: The SU(2) phase factors $(-)^{I_3}$ (integer isospin) or $(-)^{I+I_3}$ (halfinteger isospin) do not always coincide with the SU(3)phase $(-)^{Q} = (-)^{I_{3}+(Y/2)}$. Therefore, if the isoscalar coefficients are used to derive the SU(3) crossing matrices, a phase -1 should be added wherever one of the following particles is crossed: $\Delta, \overline{N}, \Xi, \Omega, \overline{\Omega}$.

For convenience of the reader, we reproduce in Table III the isoscalar factors for $8 \otimes 8$, $8 \otimes 10$, $10 \otimes 10$, $10\otimes\overline{10}$.* Other isoscalar factors can be obtained by using the identities:

$$\begin{pmatrix} \mu_{1} & \mu_{2} & \mu_{\gamma} \\ I_{1}Y_{1} & I_{2}Y_{2} & IY \end{pmatrix} = \xi_{1}(-)^{I_{1}+I_{2}-I} \begin{pmatrix} \mu_{2} & \mu_{1} & \mu_{\gamma} \\ I_{2}Y_{2} & I_{1}Y_{1} & IY \end{pmatrix},$$

$$\begin{pmatrix} \mu_{1} & \mu_{2} & \mu_{\gamma} \\ I_{1}Y_{1} & I_{2}Y_{2} & IY \end{pmatrix}$$

$$= \xi_{3}(-)^{I_{1}+I_{2}-I} \begin{pmatrix} \mu_{1}^{*} & \mu_{2}^{*} & \mu_{\gamma}^{*} \\ I_{1}-Y_{1} & I_{2}-Y_{2} & I_{3}-Y_{3} \end{pmatrix}.$$
(A4)

REFERENCES

Barut, A. O., and B. C. Unal, Nuovo Cimento 28, 112 (1963). Carruthers, P. A., and J. P. Krisch, Ann. Phys. (N. Y.) 33, 1 (1965).

deSwart, J. J., Rev. Mod. Phys. 35, 916 (1963).

, Nuovo Ćimento 31, 420 (1964).
Edmonds, A. R., Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N. J., 1957).
Fairlie, D. B., J. Math. Phys. 7, 811 (1966).
Foldy, L. L., and R. F. Peierls, Phys. Rev. 130, 1585 (1963).
Lee, H., "On the Isospin Crossing Matrix," University of California Radiation Laboratory Report UCRL 17485 (1967).
Lin, K. Y., and R. E. Cutkosky, Phys. Rev. 140, B205 (1965).
Mandelstam, S., J. E. Paton, R. F. Peierls, and A. Q. Sarker, Ann. Phys. (N. Y.) 18, 198 (1962).
Mani, H. S., G. Mohan, L. K. Pande, and V. Singh, Ann. Phys. (N. Y.) 36, 285 (1966).
McNamee, P., and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964).

 M. F. Job, 263 (1960).
 McNamee, P., and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964).
 Nieto, M. M., Phys. Rev. 140, B434 (1965).
 Rotenberg, M., R. Bivens, N. Metropolis, and J. K. Wooten, The 3-j and 6-j Symbols (Technology Press, Cambridge, Mass., 1000 (1990). 1959).

Sharp, R. T., Phys. Rev. **168**, 1753 (1968). Yang, C. N., J. Math. Phys. **4**, 52 (1963).

* Reproduced from J. J. de Swart (1963) with permission of the author.