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The SV(2) crossing matrices for the scattering of I=O, ,', 1, 2 particles and antiparticles, and the SII(3) crossing
matrices for the scattering of singlets, octets, and decimets are listed. The s—t, s—u, and I—u crossing matrices and their
inverses are given for each case. The relative phases of the crossing matrix are discussed in detail.
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I. INTRODUCTION

Many calculations of amplitudes for high-energy
processes require a knowledge of the crossed-channel
processes. The idea that amplitudes related by crossing
may be given by the same analytic function has met
with success in both phenomenological applications and
dynamical Inodels. To use this idea in practice, one must
be able to project the quantum numbers of a crossed
channel onto the direct channel. The crossing matrix
determines which linear superposition of crossed-
channel amplitudes compose the direct-channel ampli-
tudes. In this paper we consider the crossing matrices
that are obtained when the amplitude is assumed to be
SU(2) or SU(3) invariant.

Because of the importance of the crossing matrices,
much good work has gone into the examination and
ennumeration of their properties, and many explicit
crossing matrices may be found in the literature. f In
fact, the problem has been completely solved for a
number of years, at least for the two-body amplitude.
However, to the best of our knowledge, no complete
compilation. of crossing matrices has appeared in the
literature. The object of this paper is to present a
compilation of SU(2) crossing matrices in which all
possible combinations of I=a, ~, 1, ~ particles and
antiparticles may scatter off one another, and SU(3)
crossing matrices in which all possible combinations of
singlets, octets, and decimets may scatter off one
another. We have listed the crossing matrices between
the s, t, and I channels, along with their inverses. This
list is complete, as long as the particles that are scat-
tered are those of a quark model in which the mesons
appear as qq and the baryons as 3q states.

*Work supported in part by the U. S. Atomic Energy Commis-
sion under Contract AT(11-1)-68 of the San Francisco Operations
Once, U. S. Atomic Energy Commission.

t On leave of absence from University of Torino, Torino, Italy.
$ Present address: Yale University, New Haven, Conn.
$ Mandelstam et al. (1962), Yang (1963), Foldy and Peierls

(1963), Barut and Unal (1963), Carruthers and Krisch (1965),
Lee (1967), de Swart (1964), Nieto (1965), Lin and Cutkosky
(1965), Fairlie (1966), Sharp (1968), and M~ani et al. (1966).
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The SU(2) and SU(3) crossing matrices are derived
in Sec. II, where a detailed analysis of the phases is
given. We discuss the rules for transforming our crossing
matrices to the crossing matrices for reactions in which
the order of particles has been reversed, or in which
particles have been replaced by their antiparticles. We
also relate the isospin crossing matrix to the 6-j symbol.

Section III contains the SU(2) crossing matrices.
Section IV catalogs the SU(3) crossing matrices.

II. DERIVATION AND PHASES
l

The invariant amplitude is the S-matrix element with
the energy —momentum delta function and the
1j(2E;)""s factored away. When spin is involved,
certain kinematical singularities depending on the spin
basis must also be removed. The invariant amplitude
is assumed to be an analytic function of the Lorentz
invariants, s, t, and u. We make the usual assumption
that this amplitude, when continued to the values of
s, t, and I corresponding to the physical process in one
of the cross channels, is just the amplitude for the
crossed-channel process. Let us define the s, t, and I
channels as

(s channel),
(t channel),
(u channel) .

Then the crossing condition is

(CD [ OR(s, t, u)
~
AB) = (BD

~
OR(t, s, u)

~
AC)

=(BC

D'OR(u,

s, t) i AD), (1)

where
~
A),

~
B),

~
C), and

~
D) are particle states and

) A), [B), [ C),
~
D) are antiparticle states. Incoming

particle states of momentum k are transformed into
outgoing antiparticle states of the same momentum by
CPT. Thus, in Eq. (1) we have chosen the phase of the
CPT operation to be +1. This is always possible be-
cause the phase of T is arbitrary.

If the S matrix is invariant under an internal sym-
metry group, then we may expand the invariant
amplitudes into eigenamplitudes of the group. We call
these eigenamplitudes A, (I), Ar(I), and A„(I), where
the subscript labels the channel in which the expansion
is performed, and l labels the representation. The
eigenamplitudes in one channel are linearly related to
the eigenamplitudes of the crossed channels by Eq. (1).
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The matrices of these equations are the "crossing
matrices. "

The expansion of the invariant amplitudes into
isospin or SU(3) eigenamplitudes involves the vector-
coupling (V—C) coefficients. After expanding the
amplitudes, it is straightforward to solve Eq. (1) for the
crossing matrices.

Tables of V—C coefFicients are available for SU(2)
and SU(3).* However, the use of these tables requires
some care since phase factors may be needed to relate
the particle states to the isospin or SU(3) states, i.e.,
to the vectors which are used in the construction of the
V—C coefficients.

Suppose that the particle state
~
C) transforms

according to the representation Rc. Then, if (C ( is an
outgoing state, it transforms according to the complex
conjugate representation, Rt.-*. Moreover, to maintain
Eq. (1) and the SU(2) or SU(3) invariance of the S
matrix, the f-channel incoming state

~
AC) must

transform according to RASEo*.j' In expanding the
t-channel amplitudes we are then faced with the problem
of reducing the direct product R~E~*.

I.et us first consider SU(2), where all the repre-
sentations are self-conjugate. Since R and R* are
equivalent (but not equal), the tables for the V—C
coefficients display only the reduction of RzRz, and
not E~E~*. The basis for Eg* is related to the equiva-
lent basis for Rc by the operator, exp (isrj&). I.et us
denote the isospin state ~I„Is,) by ~c) and the isospin
state ~I„—Is,) by ~

—c). Then the vectors

I
c*)= exp (i7rjs) I

c)= (—1)r,+is"
I c) (2)

span the representation conjugate to E~. We may
identify the states

~
c*)with the antiparticle states

~
C).

The choice
~
C)= (—1)r~+r"

~

—c) is convenient for
the half-integer-isospin states. However, when I, is an
odd integer (as in the case of the sr multiplet), exp (trrjs)
sends the neutral member of the multiplet into minus
itself. Using the arbitrariness of the over-all phase
between the antiparticle states and the isospin states,
we may identify the antiparticle states with

~
C)=

(—1)r"
~

—c) /instead of (—1)r~r"
~

—c)j when I, is
an integer. (At this point it is easy to recover the
6-parity operation from the transformation that takes

~
C) to

~
C). The extra phase we used in the integer-

isospin case corresponds to the assignment G= —1 for
the 7r multiplet since the charge parity of the srs is +1.)

The situation is slightly more complicated for SU(3) .
Not all of the representations of SU(3) are self-
conjugate. For the self-conjugate representations
(1,8, 27, ), a basis for the conjugate representations

—( 1)Isa+&at2 —( 1)Qa (6)
for SU(3).

Now that we have identified the'particle and anti-
particle states with basis vectors of the SU(2) or
SU(3) representations, we may write Eq. (1) as

(c, d
(

OR, (s, t, u)
~
a, b) =rtpr/ ( b d

~
OK(t, s, u)

~
a, —c)

=rtt, rta( b, c D'OR—(u, s, t)
i a, —d),

where the matrix elements in Eq. (7) can be expanded
into isospin or SU(3) amplitudes with the tables of
V—C coeKcients. For example,

( b, d
i OR(f, —s, u) ( a, c)—

=QC(a, —c; I)C( —b, d; I)A (I), (8)

where

C(a, —c; I) = (I,js., I.—Is, i I,I.; I) Is.—Is.) (9)

for SU(2), and
pg pc pgp

!C(a, —c; I) =
i

Vfg Pt; Pl
for SU(3).

is given by*

I
c*)=(—1)r"+rds

f

—c)=(—1)@
/

—c),

~h~~~
f c)= J N, I„js„F.) and

/ c)—= f N, I,—I„lr,).—
Moreover, by convention, this same factor has been
retained in the construction of the V—C coeScients for
the reduction of products in which non-self-conjugate
representations appear, like 1010* (de Swart, 1963;
McNamee and Chilton, 1964). In other words, these
tables do not list the V—C coefficients for the reduction
of R~|3Rt.-*, but for the reduction of R~R~', where
R&' is equivalent to Rz*. The basis for Rz' is given by
(—1)'

I

—c) t
In summary, the antipa, rticle states in Eq. (1) are

related to the isospin or SU(3) states by the phase
q, where

(3)
The phase g is

n. = (—1)'"
for SU(2), integer isospin;

if
—( 1)&a+&au

for SU(2), half-integer isospin; and

*de Swart (1963), McNamee and Chilton (1964), Edmonds
(1957), and Rotenberg et al. (1959).

t We also recover the known result for unitary groups that
incoming particles and outgoing antiparticles must transform
according to the same representation, whereas incoming anti-
particles and outgoing particles transform according to the con-
jugate one.

*No operator in SU(3) performs this operation. %e wish to
thank Dr. JefI'rey Mandula and Professor oval Ne'eman for a
discussion of this point.

[This choice of phases is convenient for constructing the
isoscalar factors for representations having zero triality. For other
representations, such as the 3 or 3*, this phase convention gives
complex isoscalar factors (de Swart, 1963;McNamee and Chilton,
1964).
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TABLE I. The phases p, &, (,„,and (&„for Eq. (13).These phases
depend on whether the particles that are crossed have integer or
half-integer isospin. See Eqs. ('4) and (5).

Isospin

difterently or some particles have been replaced by
their antiparticles. When the order of states is reversed,
the crossing matrix may differ by some phase factor.
This phase results from the symmetry of the V—C
coefficients,

C(a, b; I) = PIC(b, a; I), (1&)

Integer
Half-integer
Integer
Half-integer

Integer
Half-integer
Integer
Half-integer

Ic

Integer
Half-integer
Integer
Half-integer

Integer
Integer
Half-integer
Half-integer

Integer
Integer
Half-integer
Half-integer

Integer
Integer
Half-integer
Half-integer

( 1) I+Ir

( 1) I+Ir+I b

( 1) I+Ir—Ic

(—1) I+Ir+I b Ic

(—1) Ii+Ic+Ig

( 1) Ir+Ic+Iq+I b

(—1) Ii+Ic

( 1)Ir+Ic+I b

) 2I b Ig+Ic

( 1)2I y
—Ig

(—1)»b+Ic

( 1)2Ib

where )t is (—1)I I' I' for SU(2), and is given in Table
11 for SU(3). It: follows that the crossing matrix for
amplitudes in which the order of states is reversed is
obtained simply by multiplying the corresponding
amplitudes by the phase factor pt.

Let us consider the crossing matrix for the reaction
where a particle is replaced by its antiparticle, if the
particle and antiparticle belong to equivalent repre-
sentations. In deriving the crossing matrices, we may
use the same isospin or SU(3) state for the particle or
the antiparticle, so that exactly the same V—C coeffi-
cients are needed. Compare the crossing condition

&Aa
I
m.

I cD) = &AC
I
m

I
aD&

with

In terms of the isospin or SU(3) basis, these equations
are

Finally, Eq. (7) may be solved for A, (I) in terms of
A, (I) or A„(I) to find the crossing matrices X,& or X,„,

A, (I) = Zz (X„)z,r A (I'),
A, (I) = Zz (X,„)r,r A„(I'). (11)

We relate the isospin crossing matrices to the 6-j
symbols. For example, one may solve Eq. (7) for A, (I)
in terms of A&(I) using the orthogonality properties
of the V—C coefficients. Then (X„)z,z is given by

(a, b
I
~

I
c d) =»~ (a, —c

I
~

I

—b, d)

~~ta, b
I

Oft. '
I c, d) = ~ &ai c

I
~~'

I

——b, d &

TABLE II. Phase factor for reversal of order of states, (I, and
"conjugation" of the V—C coeKcient, (8. See Eqs. (14) and (16).

(X.~)r,r =k.i(2I'+1)

(X.„),, = c,„(2I'+1)

(X,„),, =P,„(2I'y1)

Ig Ib I
Id I, I'

I, Ib I
I, Ig I'

I I, I
Ib Ig I'

(13)

where t„, t,„, and &,„are the phases given in Table I.
It may be necessary to relate the crossing matrices we

give to others in which the t and N channels are defined

*The 6-j symbol may be related to the Racah coe%cient
(Edmonds, 1957).

(X„)I z. = g It IJ,C(a, b; I)C (c, d; I)
abed

XC(a, —c; I') C(—b, d; I'). (12)

The right-hand side of Eq. (12) is proportional to a
6-j symbol. Some of the crossing matrices for SU(2)
in terms of the 6-j symbols are*

10

10

10

10

10

10

1

8,
4.

10
10
27

8
10
27
35

8
10
27
35

10
27
35
28

1

8
27
64

1

1
—1
—1
—1

1

1
—1
—1

1

1
—1
—1

1

—1

1
—1

1

—1

1
—1

1
1

—1

1
1

1

—1
—1

1
1

—1
—1

1
1

—1

—1
1
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Comparing these equations, it is clear that

Xsg g~'/gag

From Eqs. (4)—(6), we find that rt~rtb= (—1)~b for
SU(2), and st~rtb= 1 for SU(3), as long as 8 is in a
1, 8, 27, ~ ~ .Thus, crossing matrices for reactions which
differ by having a particle in a self-conjugate repre-
sentation replaced by its antiparticle are related by
(—1) if the particle belongs to a half-integer iso-
multiplet and is crossed, and are equal otherwise.

If a particle which belongs to a non-self-conjugate
representation like the 10 is replaced by its antiparticle,

the new crossing matrix is, in general, not simply
related to the old one. However, if all the particles in
the reaction are changed into their antiparticles, then
the relation is a phase coming from

Py P2 P3~ P] P2 P3&

(16)
P] P2 Ps —P] —P2 —Pg

It follows that the crossing matrices are related by a
product of $s factors. The $, are also listed in Table II.

The isospin crossing matrices in Eq. (13) may be
immediately derived from one another using these pre-
scriptions.

III. ISOSPIN CROSSING MATRICES

Isospin Structure

1/2+ 1/2'~0+0'

1/2+0~1/2'+0'

1/2+0' —+1/2'+ 0

Example

KE—+A.g

EX~X~

E&~NX

Channel

A, (0) = (2"')A, (1/2) = (2'")A„(1/2).

1/2+ 1/2'~1+0

1/2+ 1—&1/2'+ 0

1/2+ ~1/2'+ 1

A, (1)= (1/3) (6't')A, (1/2) = (1/3) (6"')A (1/2).

(s)

1/2+ 1/2'-+1/2" +1/2"'

1/2+ 1/2 "~1/2'+ 1/2'"

1/2+ 1/2'"~1/2'+ 1/2"'

A, (0) —1/2 —3/2 A, (0)

rx~x'z'
Ã/' EX'

re'~zr' (u)

1/2 3/2 A„(0)

A, (1)

X„=X„;

—1/2 1/2 A, (1) —1/2 1/2 A„(1)

1/2 —3/2 1/2 —3/2

—1/2 —1/2 1/2 1/2

1/2+ 1/2' —+1+1'

1/2+1 1/2'+1'

1/2+ 1'~1/2'+ 1

(s)

E~~Xr, (tt)

A„(0)

. A, (1)

X(,——

—2/3

—(1/6) (6"')

—(1/6) (6"') 1/2

2/3 A $ (3/2) 2/3

—1/3 4/3
X,„=X„,=

2/3 1/3

—2/3 A„(3/2)
—(1/6) (6'")

—(1/6) (6"') —1/2
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1/2+ 1/2' —&3/2j1/2"

1/2+3/2 —+1/2'+ 1/2"

1/2+ 1/2"—+1/2'+ 3/2

EE~SE'
ES~EE'

(s)

(~)

(u)

A, (1)=A, (1)=A„(1).

A, (0)

1/2+ 1/2' —+3/2+ 3/2'

1/2+ 3/2~1/2'+3/2'

1/2+3/2'~1/2'+3/2
—(3/4) (2"') —(3/4) (2'") A I (1)

SE'~as'
ES~X'Z'

r~'~x'~

(3/4) (2'")

(s)

(u)

(3/4) (2'") A-(1)
'

A. (1) —(1/4) (1o"') (1/4) (1o'") A I (2) —(1/4) (1o"') (1/4) (1o"') A (2)
—(1/4) (2"') —(1/4) (10"') 1/4 —5/4 (1/4) (2Ii') —(1/4) (10'")

X„=
—(1/4) (2'") (3/2o) (1o'")

X,„=X„,=
—3/4 —1/4

X„,=
(1/4) (2"') (3/2o) (1o'")

1+0—+1'+0'

1+1'~0+0'

1+0' 0+1'

xA—+~'A. '

xw' —+Ah'

m A'~Ax'

(s)

A, (1)=—(1/3) (3Ii')A (0) =A„(1).

1+0—+1'+1"

1+1'—&0+1"

1+1" 0+1'

xA.—&x'5

xm' —+AX

m X~A.~'

A, (1)= —A, (1)=A (1).

(s)

1+0—+3/2+ 1/2 ZA—+A~ (s)

Z6—+A~~1+3/2-+0+ 1/2

1+1/2—&0+3/2 —+Ah

A., (1)=—(1/3) (o"')A, (1/2) = (2/3) (3"')A (3/2)

0+3/2 —+0'+ 3/2'

0+0'~3/2+3/2'

0+3/2'~3/2+0'

gg'—+65'

gA' —+kg'

(s)

A, (3/2) = (1/2)A I (0) =A„(3/2).

1+3/2~0+ 3/2'

1+0~3/2+3/2'

1+3/2'~3/2+ 0

~A—+gA'

xg—+DA'

(s)

(1)

(I)
A, (3/2) = (1/2) (3'")A (1)=—A„(3/2).
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1+1/2~1'+ 1/2'

ex'—&LE'1+1'—&1/2+ 1/2' (/)

1+1/2'~1/2+1' xE'—&Ex' (u)

A, (1/2) —(1/6) (6'~') —1 A, (0) 1/3 4/3 A„(1/2)

A, (3/2) 1/2 A, (1) —2/3 1/3 A„(3/2)

(1/3) (6'") —(2/3) (6'")

—2/3 2/3

(1/6)(6'")

—2/3

1/3 —4/3

—2/3

2/3 1/3

A, (1/2) —1/2

1+1/2—+1'+3/2

1+1'~1/2+ 3/2

1+3/2~1/2+ 1'

—(5/6) (3"') A (1) —2/3

(s)

(~)

(u)

—(1/3) (10"') A (1/2)

X„,=

—(1/3) (3'")
—1/2

A, (3/2) —(1/4) (10"')
—1/3

(1/12) (30'~') A, (2)
—(1/3) (1o'")

(1/15) (3o'")

(5/6) (3"')

(1/6) (10'") —2/3

—1/3 (1/3) (1o'")

(1/3) (3"') (1/15) (3o"')

—2/3 (1/3) (10"')

A-(3/2)

(1/4) (1o'") (1/12) (3o'") —(1/6) (1o"') —2/3

A, (0)

1j1'—+1"+1"'
1+1"—&1'+1"'

1+1"'—+1'+1"

1/3 1

7r7r ~X' 7r
II III

ger ~7r 7r
II I III

III~ I II
7r7r ~7r 7r

5/3 A (0) 1/3 1

(u)

5/3 A„(0)

A, (1) = 1/3 1/2 —5/6 A ( (1) = —1/3 —1/2 5/6 A„(1)

A. , (2) 1/3 —1/2 1/6 A g (2) 1/3 —1/2 1/6 A„(2)

1/3 -1 5/3 1/3 —1 5/3

X],=X,g, Xg„=X„g= —1/3 1/2 5/6 ; X .= 1/3 —1/2 —5/6

1/3 1/2 1/6

1+1'~3/2+3/2'

1+3/2—+1'+3/2'

1+3/2' —+1'+3/2

xA—+m'~'

xA'—+x'6 (u)
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A. (o) (1/3) (3'") (2/3) (3"') 31/2 A$ (1/2)

.(1) = (1/6)(1o'") ( / 5)( 0'") —( / o)(1o"') ~( / )

A. (2) (1/6) (6'") —(4/15) (6"') (1/1o) (6'")
~

A~(5/2)

(1/3) (3'") (2/3) (3"') 31/2 A„(1/2)

—(1/6) (10'") —(2/15) (10"') (3/10) (10'") A„(3/2)

(1/6) (3"') (1/4) (1o"')

(1/6) (6"')

(5/12) (6"')

—(4/15) (6"') (1/10) (6"') A„(5/2)

1/6 —2/3 3/2

(1/12) (6"')(1/6) (3'I') —(3/20) (10'")

(1/6) (3"') —(1/4) (10'")

X„= (1/6) (3'~2) (1/10) (10"') —(1/3) (6'") X,„=X„,= —1/3

1/2

(5/12 ) (6'i')

11/15 3/5

2/5 1/10

(1/6) (3"') —(1/1o) (1o'") —(1/3) (6'")

1/2+3/2~3/2'+ 3/2"

1/2+. 3/2'~3/2+ 3/2"

1/2+ 3/2"-+3/2+ 3/2'

(1/2) (5"') A, (1)

SS~S'S"
XZ'~a~"

1/2

(s)

(u)

(1/2) (5'~') A„(1)

A, (2)

Xts Xst q

—1/2

—1/2 (1/2) (5"') 1/2

A„(2)
—(1/2) (5"')

(3/10) (5"') 1/2 (3/1o) (5'") 1/2

3/2+3/2'-+3/2 "+3/2"'

3/2+ 3/2 "~3/2'+ 3/2"'

3/2+3/2'"~3/2'+ 3/2"
—1/4 —3/4 —5/4 —7/4

gg/~g//pl ll

gg//~g/g/l l

gg///~g/g/l

A, (0) 1/4 3/4

(s)

(~)

(u)

5/4 7/4 A„(0)

A, (2)

—1/4 —11/20 —1/4 21/20 A, (1)

—1/4 —3/20 3/4 —7/20 A, (2)

—1/4 —11/20 —1/4 21/20 A (1)

1/4 3/20 —3/4 7/20 A„(2)

A, (3) —1/4 9/20 —1/4 1/20 A 5 (3)

1/4 -3/4

—1/4 9/20 —1/4 1/20 A„(3)
5/4 —7/4

Xts Xst j Xtu Xut

—1/4 11/20 —1/4 —21/20

1/4 —3/20 —3/4 —7/20

—1/4 —9/20 —1/4 —1/20
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1/4 —3/4 5/4 —7/4

1/4 —11/20 1/4 21/20

1/4 —3/20 —3/4 —7/20

1/4 9/20 1/4 1/20

IV. SU(3) CROSSING MATRICES

SU(3) Structure Example

1+8—+1'+8' XB X'B'

1+1'—+8+8' XX'—&BB

1+8'-+8+ 1' XB' BX'

A, (8) =—(1/8) (8'")A((1)=A„(8).

1+10~1'+10' XA—&X'6'

1+1'~10+10 XX'—+AD'

1'+ 10'~10+1' XA'—+AX'

A, (10)= —(1/10) (10'")A (1)=A, (10).

Channel

(s)

(&)

(u)

(s)

(~)

(u)

1+8—8'+8"
1+8'~8+ 8"

1+8"~8+8'

A, (8, ) 1 0 Ag(8,.)

XB~PB'
XP BB'
XB'—&BP'

1 0 A (8)

(s)

(~)

(u)

A, (8g), 0 —1 A, (8g) 0 1 A„(8~)

Xts Xst j X,„=X„,=X,t,.

1+8—+8'+10 XB—+PA

1+8'—+8+ 10 XP~Ba
1+1()—+8+8' X~~BP

A, (8) =—A, (8) = —(1/2) (5'")A„(10).

1+10—+8+8' XA—+PB

1+8~10+8' XP~SB
1+8'—+10+8 XB—&AP

A, (10)= (2/5) (5"')A (8) = —(2/5) (5'")A (8)

1+10~8+10' XA—&PA

1+8~10+10' XP—&Ah

1+10'—+10+8 XA—&AP

A, (10)= —(2/5) (5'i')A&(8) =A„(10).

(s)

(~)

(u)

(s)

(~)

(u)

(s)

(~)

(u)

8+8r~81l+ 8 II/

8+8fI~81+IIII

8+8'"—&8'+8"

PP'~BB'
PB'~BP'

(s)

(~)

(u)
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1/8 0

0 —1/2

1/2

0

—1/2

X„=X„;

(1/4) (5"') —(1/4) (5'")

(1/4) (5"') —(1/4) (5"')

27/8

X]„=X„g=
1/8 0

—1/8 0

—3/10 —1/2 1/2

1/2 0

1/2 27/40

9/8

(1/5) (5"') (1/5) (5"') 2/5 o 1/4 1/4 9/40

1/8 0

1/8 0

1/5 1/3 1/12 1/12

9/40

7/40

27/8

1/2 —1/2 —(1/4)(5'") (1/4)(5'")

1/2 —1/2 (1/4)(5'") —(1/4)(5"')

X„,=
1/8 0

1/8 0

—3/10 —1/2 1/2

1/2 —1/2 0

1/2 27/40

—9/8

1/8 —(1/5) (5"') —(1/5) (5'") —2/5 0 —1/4

1/8 (1/5) (5"') (1/5) (5"') —2/5 o —1/4

—9/40

—9/40

g1/8 0 1/5 1/3 1/12 1/12 7/40

8+8'—&8"+10

8+8"~8'+10

8+10~8'+8"

I'B~P'6

PP'—+Bd

I'6 BI"

(s)

A, (8,)

A. (8A)

A, (10)

2/5

(1/5) (5"')

(1/5) (2'") (1/5) (10"') —1/2 —(9/20) (2"') A, (10)

A, (27) 2/5

—2/5

—( /15& (5"') —(1/6) (2"') 1/10

(1/5) (5"') —(1/4) (2"') 27/20

A, (27)

A„(8,)

(1/5) (5'") (1/4) (10'") (9/20) (5"') A„(8A)

—2/5

(9/2o) (2'")
)

A. (10)

A„(27)
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(1/5) (5"')

—(1/5) (5'") (1/4) (2"') 27/20

—(1/4) (10'") (9/20) (5'")

(1/5) (2'")
—2/5

—2/5

—(1/5) (5"')

(1/5) (1o"') 1/2

(1/5) (5"') (1/4) (2"')

0 (1/4) (1o"')

1/10

—27/20

(9/20) (5"')

(1/5) (2"') —(1/5) (1o"') 1/2 —(9/20) (2"')

2/5 (2/15) (5"') (1/6) (2"') 1/1o

(1/5) (5"') (1/4) (2"') —27/2o

(1/5) (5"') —(1/4) (1o"') —(9/20) (5'")
—(1/5) (2'~') (1/5) (10't') —1/2 (9/20) (2'")

(2/15) (5"') (1/6) (2'I') 1/10

8+8'~10+ 10'

A (1o) ': (2/5)(2"')

8+10 8'+10'

8+ 10'—+8'+ 10

(9/1o) (2"') A (8)

88'~AD'

8~~B'Z'
a~'~B'~

—(2/5)(2"')

(s)

(~)

(u)
—(9/1o) (2'") A (8)

A, (27) (2/15) (10'") —(1/5) (10'~') A, (27)

(1/2) (2"') (9/20) (10"')

(1/3) (2"') —(1/5) (1o'")
—(1/2)(2'")

(2/15) (10'") —(1/5) (10'") A. (27)

1/5 —9/5

,

—8/15 —1/5

(9/20)(10"')

A, (8)

A, (10)

A, (27)

A, (35)

—(1/3 )(2'") —(1/5) (1o"')

8+ 10—&8'+ 10'

8+8'—+10+10'

8+10'~10+8'

(1/5) (2"')

BA 8'6'
aB'~az'
BA'—+68'

(1/5) (1o'")

(s)

(~)

(u)

(9/2o) (7'") A (1)

(1/2o) (5'") (1/1o) (2'") —(1/1o) (1o"')

1/5 1/2 9/20 7/4 A„(8)

(9/140) (7'i') A, (27)

(1/2o)(5'") (3/1o)(2'") (1/1o)(1o'") —(9/2o)(7"') A~(8. )

(1/2o)(5'") —(3/1o)(2'") (1/3o)(1o'") —(1/2o)(7"') A~(8~)

—2/5 —3/4 9/4O 7/8 A. (10)

—2/15 1/12 —37/40 7/24 A„(27)

2/5 —1/4 —9/4O 1/8 A„(35)
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(2/5) (5"') (1/2) (5"') (27/20) (5"') (7/4) (5"')

(1/5) (2'~') (3/8) (2"') —(81/80) (2'") (7/16) (2'~')

(1/5) (1o'") (1/8) (1o"') (9/8o) (1o'") —(7/16) (1o'")

( /15) (7'") —(1/6) (7'") —(1/20) (7"') (1/12) (7'")

(2/5) (5"') —(1/2) (5'") —(27/2o) (5'") (7/4) (5'")

(2/15) (7'I') (1/6) (7'~') (1/20) (7'I')

(1/2o) (5"') (1/5) (2"') —(1/5) (1o'")

(1/12) (7"')

(9/20)(7'")

(1/20)(5Il') (3/10)(2In) (1/10)(10't') (9/20)(7'/')

—(1/2o)(5"') (3/1o)(2"') (1/3o)(1o'") (1/2o)(7"')

(1/20) (5"') (1/10) (2'~') (1/10) (10"') (9/140) (7'")

1/5 —1/2 —9/20 7/4

2/5 3/4 9/40 7/8

2/15 1/12 —37/40 —7/24

2/5 1/4 9/40

8+1~10'+10"

8+10'~10+10"

8+10"~10+10'

as~a/a//

as/~as//

a~//~as'

A, (27) (2/15) (5"') (1/10) (70'") A (8) (2/15) (5'") (1/10) (70'") A„(8)

A, (35) 2/5

(9/2o) (5'") 7/4
Xtu Xet

—(9/70) (14"') A, (27)

—2/5

(9/70) (14I~') A„(27)

(9/20)(14"')

(1/10) (7Q'I') —(1/6) (14»')

(9/20) (5Ii') —7/4

(2/15) (14"') 2/5

(1/10) (70"') (1/6) (14"')

10+10-+10 "+10"'

10+10//~10/+ 10Ili

10+10'"—.~1Q'+ 10"

gg/~g//g///

gg//~g/g/ l l

gg/l /~g/g//

(s)
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A, (1o)

A. (27)

A, (35)

A, (28)

—1/10 —4/15 —1/10 16/15 A & (8)

—1/10 0 9/14 —16/35 A g (27)

—1/10

1/10

2/5 —27/70 4/35 A, (64)

2/5 9/10 8/5 A„(i)

—1/10 —2/5 —9/10 —8/5 A I (1)

—1/10 —4/15 —1/10 16/15 A„(8)

1/10 0 —9/14 16/35 A„(27)

—1/10 2/5 —27/70 4/35 A„(64)
—1 —27/10 —7/2 —14/5

—1/2 —9/10 0 7/5

—1/3 —1/10

—1/4 9/20 —1/4 1/20

1/10 —4/5 27/10 —32/5

X, =I„,, =
—1/10 3/5 —9/10 —8/5

1/10 —4/15 —47/70 —32/105

—1/1O —1/5 -9/7O —1/35

1 —27/10 7/2 —14/5

1/2 —9/10 0 7/5

1/3 —1/10 —5/6 —2/5

1/4 9/20 1/4 1/20
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APPENDIX

The vector coupling coefficients for the group SU(3)
can be obtained from those of SU(2) by means of the
"isoscalar factors, " according to the following relation
(de Swart, 1963):

(~. u~ s.,)
!

l
!
= (I,I... IgI,g, I.I,, I,I„)

Va Pb Pc

Pa Pb P ~

X! (A1)
(I I' IgFg I,V,)

The isoscalar factors

Pa Pb Pcy

! !

(I.I'. I&V& I,Y,)
depend upon the SU(3) representations, the isospins
and hypercharges of the particles involved, but not on
the third components of their isospin.

The isoscalar factors can be used to derive the
crossing matrices for SU(3) directly, without using the
SU(3) V—C coeKcients, once the SU(2) crossing
matrices are known.
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Indeed, take any reaction AI3-+CD (s channel) with
corresponding t channel AC~BD. Let the amplitudes
for the reaction to occur sn a state of total isospin I be
A(I), and the SU(3) eigenamplitudes be A(p„).
We have

pg p@ p&

A. (I) = Z!
I&F& Isa IF~+Fr)

(uc Sa
x! I

A. (~7) (A2)
(I,F, I~Fn IF,+Fn)

1010. * Other isoscalar factors can be obtained by
using the identities:

py pg pv pg py p7

! ) rt+rs-r!
!

(IiFt IsFs IF) (IsFs IiFi IF)
(A3)

p] p2 pg

! !II F, IF, IF)

with an analogous equation holding for the t-channel
amplitudes.

On the other hand, A, (I) and A, (I) are related by
Eq. (11):

A. (I) = Z (X.~)r,r A~(I').

The various relations that can be obtained from Eqs.
(A2) and (11) by a suitable choice of the external
particles can finally be used to express the SU(3)
amplitudes A, (pv) by A, (pv), i.e., to derive the SU(3)
crossing matrix.

A word of caution, however: The SU(2) phase
factors (—) r' (integer isospin) or (—) r+r' (half-
integer isospin) do not always coincide with the SU(3)
phase (—) o= (—) &+i"I'i. Therefore, if the isoscalar
coefficients are used to derive the SU(3) crossing
matrices, a phase —1. should be added wherever one of
the following particles is crossed: 6, N, ",0, Q.

For convenience of the reader, we reproduce in
Table IIl the isoscalar factors for 8138, 810, 1010,
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