
1. E. 13ALLENi'zNE Statzstical Interpretation of Quantunzirlectzanics

Tisza, I ., 1963, kev. Mod. Phys. 35, 151.
Vzzn der Wa,erden, 3. L., 1967, Sources of Quantum Mechanics

(North-Holland, Amsterdam) .
Von Keumann, J., 1955, Mathematzcal Founztations of Quantum

Mechanics (Princeton U. P., Princeton, N.J.).This is a trans-
lation of Mcthematische Grurldlagen der QNuntenimechutuk
(Springer, Berlin, 1932).

Wakita, H. , 1960, Progr. Theoret. Phys. {Kyoto) 23, 32.
—, 1962, Progr. Theoret. Phys. (Kyoto) 2V, 139, 1156.

Whitten, R. C., 1966, Am. J. Phys. 34, 1203.

Wick, G. C., A. S. Wightman, and E. P. Wigner, 1.952, Phys.
Rev. 88, 101.

Wigner, E. P., 1932, Phys. Rev. 40, 749.
--, 1962, in The Scientist SPeculutes, edited by I. J. Good
(Basic Books, New York), p. 284.
—,1963, Am. J. Phys. 31, 6.

, 1970, Am. J. Phys. 38, 1005.
Witmer, E. E., 1967, Am. J. Phys. 35, 40.
Wu, C. S., and I. Shaknov, 1950, Phys. Rev. 7'7, 13().
Yanase, M. M. , 1961, Phys. Rev. 123, 666.

REVIEWS OF MODERN P HY SIC S VOLUME 42, NUMBER 4 OCTOBER 1970

C:barges anc. Generators o): Symmetry
'. .ransI:ormations in Quantum '. .'ie.c '. .'ieory"
CI AUDIO A. ORZAI ESIt
Department of Physics, Coluznbia Uniperszty, tztezo Fork, Sezo Fork

Within the Wightman approach to quantum 6eld theory, we review and clarify the properties of formal charges, defined
as space integrals for the fourth component of a local current. The conditions for a formal charge to determine an operator
(generator) are discussed, in connection with the well-known theorems of Goldstone and of Coleman. The symmetry
transformations generated by this operator —given its existence —are also studied in some detail. For generators in a
scattering theory, we prove their additivity and thus provide a simple way to characterize them from their matrix elements
between one-particle states. This characterization allows an immediate construction of the unitary operators implementing
the symmetry transformations, and implies that all internal symmetry groups are necessarily compact. We also indicate
how to construct interacting fields having definite internal quantum numbers. The present status of the proof of Noethcr s
theorem and of its converse is discussed in the light of the rather delicate properties of formal charges.
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1. INTRODUCTlON

Following the results of Goldstone et al. (Goldstone,
1961; Goldstone, Salam, and Weinberg, 1962) and of
Coleman (1966), in recent years there has been a
continual interest in the properties of forrnal charges.
A formal charge Q is defined here as the space integral

~ Research supported in part by the U, S;-Atomic Energy Com-
mlsslon.

t Present address: Department of Physics, New York Uni-
versity, New York, N.Y. 10012.

of the zeroth component of a local four-vector current:

Q(xp) = f dip(x). (1.1)
Quantities of this kind appear in the discussion of

symmetries and broken symmetries in quantum Geld
theory, and are one of the basic tools in the modern
"current-algebraic" approach to elementary particle
physics (Gell-Mann, 1962; Adler and Dashen, 1968).

It has been repeatedly emphasized (Kastler,
Robinson, and Swieca, 1966; Schroer and Stichel, 1966;
Dell'Antonio, 1967;Swieca, 1966;Katz, 1966;Fabri and
Picasso, 1966; Fabri, Picasso, and Strocchi, 1967; and
De Mottoni, 1967) that equations of the type (1.1)
have rather delicate convergence properties, and that a
certain care has to be exercised when considering such
expressions. This fact limits the extent to which Q can
be thought of as a generator of symmetry or broken
svmmetry transformations. ' The same convergence
properties are at the basis of Goldstone's theorem
(Goldstone, 1961; Goldstone, Salam and Weinberg,
1962; Kastler, Robinson and Swieca, 1966), and of
Coleman's theorems (Coleman, 1965 and 1966;
Pohlmeyer, 1966; Schroer and Stichel, 1966; and

'The nomenclature as well as the mentioned restrictions will
be clari6ed later on. For present purposes, a generator of sym-
metry transformations is to be identihed with a self-adjoint
operator which commutes with P, the momentum operator, and
commutes with the S matrix. A conserved current leads to an
exact symmetry if the associated charge is a generator of symmetry
transformations. Spontaneously broken symmetries occur when
current conservation does rot imply the existence of a symmetry.
Intrinsically broken symmetries arise when the current is not
conserved.
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Dell Antonio, 1967), which impose severe restrictions
on the conditions for having a spontaneously broken
symmetry and, respectively, on the formulation of
theories exhibiting intrinsically broken symmetries.

The main purpose of this paper is to review and
clarify the properties of formal charges and to provide a
unified treatment of the above-mentioned problems.

The content of the following sections can be sum-
marized as follows.

In Sec. 2, we outline the main criticisms which can be
held against the existing proofs of a quantum Noether's
theorem, state the problems of our concern somewhat
more precisely, and give a few basic definitions and
theorems.

In Sec. 3 we state, comment on, and finally prove
some relevant properties of formal charges. The most
important outcome of this section is the emphasis on
the fact that a formal charge Q is always a divergent
quantity and determines an operator 6 if and only if
the current is conserved. Even then, the connection
between a formal charge and its associated operator is
rather indirect, and one cannot, strictly speaking,
identify Q with G. We also discuss the extent to which
these results are independent of the particular definition
one adopts for the formal charge.

In Sec. 4 we discuss a constructive definition of the
operator associated with a formal charge. This definition
is consistent provided no Goldstone-type phenomena
are present. After a brief digression on the Goldstone
theorem, we discuss the construction of the symmetry
transformations generated by a formal charge.

In Sec. 5, we take a more practical attitude and
describe a simple way to characterize a formal charge
from its matrix elements between. one-particle states in
a scattering theory. This characterization corresponds
to the usual textbook expression of a charge in terms of
creation and annihilation operators, an expression
which is thus derived in a rigorous way. This allows for
a convenient way of characterizing the symmetry
transformations generated by the formal charge. Ke
then show how it is possible to construct interpolating
fields having the same internal quantum numbers as
those of the corresponding asymptotic free fields.

In the final section we summarize and discuss the
main results.

Apart from the style of the presentation, several
scattered remarks, and the above-mentioned con-
struction of Sec. 5, not many new results are derived
here. Thus, one of the main intents of the paper is to
provide a pedagogically useful review of the problems
outlined above.

2. PRELIMINARIES

A. Some Preliminary Remarks on the Quantal
Noether Theorem

Let j„(x) be a local current; its associated "formal
charge" Q(xo) is defined as the expression

Q(xo) = fjo(x) dx. (2.1)

(At this stage, we do not worry about the meaning of
this definition. )

The importance of formal charges „is most easily
understood by considering the case of a Hermitian
conserved current j„ in a Lagrangian field theory.
According to the usual arguments, Q is actua, lly time
independent, and the unitary transformations

U(r) = exp LiQrj, r real (2.2)

See, e.g. , Hill (1951), Schroeder (1968), and Bogoliubov and
Shirkov (1959) for more complete treatments.

are symmetries of the theory. Thus, the formal charge
associated with a conserved current is the generator of a
one paran-zeter continuous Abetian group of symmetry
transforngtions. In the following, this statement will be
referred to as "the converse of Noether's Theorem. "

Noether's theorem itself states that, in a theory
described by a given Lagrangian 2, if the action integral
is invariant under a continuous group of point trans-
formations in the field variables, then these trans-
formations are symmetries of the theory —described by
unitary operators —and the corresponding generators
are of the form (2.1), with j„a conserved current.
Furthermore, the explicit (formal) expression for j„can
also be specified once one is given 2 and the infinitesimal
transformation properties of the fields.

In summary, Noether's theorem and its converse
provide the bridge between global invariance properties
and local conservation laws. Since the idea of locality is
one of the main ingredients of quantum field theory, it
is of vital importance to have a solution to the problem
of characterizing symmetries which are associated with
local conservation laws and which act locally on the
fields. In view of this, we need not emphasize the great
importance of Noether-type theorems.

%e assume that the reader is familiar with the usual
(textbook) discussions of Noether's theorem, o and thus
omit its standard proof. YVe do, however, make the
following comments so as to emphasize why such
standard proofs cannot be accepted as satisfactory:

(i) In quantum field theory, Lagrangians are no
longer seen as fundamental objects. Rather, they are
used as a tool to generate a perturbative expansion of
the 5 matrix.

(ii) The usual heuristic forms of Lagrangians involve
ill-defined products of quantized fields at the same
space —time point. This, among other things, usually
makes the action integral an ill-defined quantity.

(iii) The existing proofs of Noether's theorem
involve the use of formal operations, such as functional
differentiation of operators. These operations are
particularly problematic when applied to already ill-
defined expressions involving products of fields at the
same space —time point.

Thus, a rigorous formulation of a quantal action
principle is still lacking. Furthermore, the following
additional difficulties undermine the usual treatments
of charge operators.
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(iv) Canonical commutation relations (CCR's) are
usually invoked in order to determine the commutation
relations (CR's) between a charge and a field (this is
done in order to verify that the charge generates the
right transformations on the field variables). CCR's
are not necessarily valid for interacting fields. Further-
more, the formal charge involves nonlinear expressions
in the 6elds at the same space —time point; such expres-
sions might violate associative-type laws for products
appearing in commutators, thus preventing the use of
CCR's in order to deduce the above-mentioned trans-
formation properties.

(v) While a classical current density p(x) is required
to vanish as

I
x

I
—+~, and thus a classical charge is

usually well-defined, the same property breaks down
for a quantal current density. Indeed, one of our tasks
will be to prove and discuss the lack of convergence of
fir je(x) dx as the volume V tends to ~, for a general
current operator j„.

A typical consequence of this state of affairs can be
recognized in the modern formulation of renormalized
perturbation theory in terms of local field equations
(Wilson, 1965; Brandt, 1967; 1969; Zimmermann,
1967).In the example of quantum electrodynamics, the
electromagnetic current is constructed from the basic
(ill-defined) Noether current 47„%by adding suitable
(infinite) counterterms which make the total expression
meaningful. In this construction, the local conservation
of the renormalized current is heavily used in order to
determine the form of the counterterms. In other
words, the original Lagrangian and the associated
Noether current%'p„%' are only used as a general guide
in order to construct a meaningful current from the
renormalized perturbation expansion dictated by Z
and 0"yet+.

A more serious dif6culty seems to arise in y5-invariant
spinor electrodynamics, where one is unable, in per-
turbation theory, to construct a gauge-invariant local
conserved current such that the associated charge
generates the unitaries implementing the y5 invariance
(Adler, 1969; Brandt, 1969a). To the extent that
perturbation theory is a guide, this indicates the
possible existence of counterexamples to Noether's
theorem.

These examples and remarks (i)—(v) are mentioned.
only so as to support our belief that a rigorous and clear
understanding of the Noether problem is lacking in a
quantum field —theoretic framework. In rigorous quan-
tum field theory, where formal Lagrangians and formal
manipulations are excluded from the game, any attempt
at seriously investigating the Noether problem faces
prohibitive dHFiculties. While we shall return to this
point, we will de~ote most of our atterttiort to the corteerse

'Thus, e.g. , for a free spinor field +, the electric charge is
Q~fdx:0't( )N(x):. xOne then calculates LQ, 4'j by using the
associative-type law LAB, C]=A(C, Bg+—LA, C]+B and the
canonical anticommutation relations. This associativity, while
valid for ordinary products, may break down for quantities such
as &:Ct(x)N(x):, which are not ordinary products but suitably
de6ned limits.

of Noether's theorem T.hus, given a local current, we will

study the properties of the associated formal charge:
this is clearly a necessary Grst step in tackling the
problem at hand.

B. Some Basic Definitions and Theorems

We now provide some basic definitions and theorems
which will be used in the following sections. The content
of this section is included only as a convenient reminder;
it cannot be a substitute for the existing excellent
treatments of the general theory of quantized fields
(see e.g. , Streater and Wightman, 1964; and Jost,
1965).

We will work in a Wightman field theory (Streater
and Wightman, 1964) determined by a set {$,(x) I;=is
of local and relatively local fields. "Locality" 4 for a
field @;means that

I 4'(&) 4'(r)3=0 «r' &-3' (2 3)

while "relative locality" of P; rela, tive to P; means that

The fields P; are fields in the sense of Wightman. In par-
ticular, the Q s do not necessarily crea, te one-particle
states from the vacuum (e.g. , for some i, P, might be a
current operator). The vacuum

I 0) is defined a,s a
Poincare-invariant state and is assumed to be unique.

We recall that a (test) function f is of class S if it is
C" (i.e. , continuous together with all its derivatives)
and f as well as all its derivatives are fast decreasing;s

f is of class 5) if it is C" and it vanishes (together with
all its derivatives) outside of a bounded set.

A Wightman field P; is an operator-valued dis-
tribution over S; this means that, for each f Q S, one is
given an (unbounded) operator p, ( f) acting in the
Hilbert space K of all physical states. The smeared
field @,(f) is indicated by the following (formal)
integral:

(2 5)

4 Also called "local commutativity".
'Notation: x y~- (x—y)'(0 in our metric, i.e., g„„=0 for

pW&, gpp = 1 = —gI k, k = 1 2, 3. Thus, x y means "x spacelike
relative to y." If, for given i, j, @; and p; are fields with half-
integer spin, the anticommutator should be substituted for the
commutator in Eqs. (2.3) and (2,4). We choose the natural
units c=5=1. We will indicate by I

x
I

the Euclidean norm
xos+ x I' of x.

More precisely, for a function f of n real variables, fFS if it is
C and it satisfies, for all r, s( ~,

Ilfll ..—= & ~ Sup I
x"'D'f(x)I&",

Ikt, k(r I LI, l(s
where

x= (x1 ~ ~ ~ g ) xIkI =—xik1 - xikn, k=—k1+. - ~ +k„, k;&0)

Dl'I a'/(ax, ) 't =~ ~ (ex ) ' ].~
When needed, we write f&S(R") for a function of class S de-

pending on e real variables. R" is the Euclidean space in e
dimensions. If f'GS, then also B„fFS. This allows to de6ne, for a
distribution v, its derivative 8„+ by (d„p) ( f) =— rp(s„f), —
&f&$. Thus, distributions are always di6erentiable and their
derivatives are also distributions. 1'or a Wightman Geld, it is
easily shown that its derivatives are also Wightman 6elds.
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Let '2 be a common domain of vectors in K where the
@;(f) are defined, for all i=1, 2, ~ ~ ~, 7 and all f&S;
X) is assumed to be dense in K, to contain the vacuum

I 0) and to be stable upon application of all @;(f):
y, (f)cp.

Concerning the vacuum
I 0), it is assumed to be

cynic with respect to the given set of fields I@,I; t~,.
this means that the set of all states obtained by applying
polynomials in the smeared fields on

I 0), is dense in K.
In a theory with non-negative mass spectrum, it can

be shown that, for a set of fields P, , i = 1, ~ ~ ~, J, satis-
fying the usual properties, uniqueness and cyclicity of

I 0) imply that the set IQ;I;=t is irreducible, i.e., that
any operator which commutes with all bounded func-
tions of the {g;(f) I (for all i, and fgS) is a constant
multiple of the identity operator. ~

If f(xt, ~ ~ ~, x„) is of class S in all variables
I
i.e.,

fg S(R'")j, one can show that f can be approximated
arbitrarily well by sums of products

rra-, )
i=l

of functions in S(R4). This allows the consideration of
states of the form

Given a local or quasilocal operator A+ and the
corresponding state

I
%'), we can translate them by

using the translation operator 2'(x):

Ay-+Ay(x) =T(x—)Av,Tt(x),

I ~) 2'(x)
I ~)=A.(x) I 0)

(2./a)

(2./b)

%e can also consider superpositions of these operators
and states, such as

Be=f dx—h(x)Ae(x), (2.8a)

(2.8b)l~)=fl. l»,
for some suitable averaging function h(x).

We call the operator Be, and the corresponding I e)
quasilocal of order X (X&0) if

»m I*I"I/(x) I
=o" (2.9)

lxl~~

Besides these definitions, we need the following prepara-
tory important theorems:"

THEOREM 2.1 (Reeh and Schlieder, 1961).The set
'Zi, (0) of all states localized in a bounded open space—
time region 8 is dense in K.

where
I e)=Allo),

rr ~*;g-(*., ~ ~ ~, -)~' (*)~ ~ ~', (*-).
ra~ j=1

This theorem has the following important corollary:
~ a

Corollary 2.1 (Schroer, 1958; Jost, 1959; and Feder-
bush and Johnson, 1960).Let P(x) be a local Wightman
field. The following two conditions are equivalent:

(i) 4(x) I O)=0,

Here the term m=0 is defined as proportional to the
identity, and the g 's, for m= 1, 2, ~ ~, M, are of class S
or of class S. States (operators) of the form (2.6a)
frespectively, (2.6b) j, with g of class S and X) are
called, respectively, quasilocal states (respectively,
quasilocal operafors) and strictly loca/ised or /ocal sfafes

(respectively, tocalised operators)
The sets sr and Pi of all qua, siloca, l and local states

are dense sets As K.

(ii) y(x) = 0.

Proof: Choose a space —time region 8 which is totally
spacelike relative to the point x. If A is any operator
localized in 8, by local commutativity we have

I A, g(x) j=0. Upon applying this commutator to the
vacuum, from (i) we obtain $(x)A I 0)=0. But the set
of states IA I 0)I, with A localized in 6, is dense in K;
thus, g(x) annihilates a dense set of states, and it must
be identically zero.

THEOREM 2.2" (Borchers, 1964). A Wightman
field it (x) is a distribution in the time variable, and a
C function in the space variables. By this we mean
that the vector

y(x, g) I
e)—=f dx,y(x, x,)g(x, ) I e), (2.10)

for
I

%')C'Z, r., gC S is a C" function in x, so that the
matrix element

(~ I ~(., g) I ~) (2 11)

is a C" function in x for any I e )Q K.
' Thus, one sees that quasilocal states are quasilocal of infinite

order.
"One says that an operator of the type (2.6b) is localized in

a region e if all g 's vanish for x, f. e, i= 1, 2, ~ ~, m. Operators
which are localized in regions which are totally spacelike separated
commute with each other as a consequence of Eqs. (2.3) and
(2 4)

'2 This theorem is also valid for nontempered fields, i.e., 6elds
which are operator-valued distributions over Q. See, e.g.,
Dell'Antonio (1967).

I ~-)= II 4»; ( f-; *) I x ), if 1T f-;* — g &s (R'"),
i 1 n~

then, ' % ) converges to a vector
I
4 ) CR.

9TIie reader should not confuse between "localization" and
"local commutativity" L'expressed by Eqs. (2.3)—(2.4) g. See
also Footnote 11 and Sec. 4.

r A standard deiinition of irreducibility for a set {A; I of bounded
operators is: if 8 is any bounded operator commuting with all
the A;, then 8 is a constant multiple of the identity. Here,
because the @i(f) are unbounded and given only on the domain
P, we replace this definition with the one given by Ruelle:
{p;I; qs is irreducible if any bounded operator /3 satisfying

&23'~ld'(f)~&=-&d" (f)+121'll"&, &f&s, &I ~&, l~&CE,
is a constant multiple of the identity. The irreducibility of the
6elds gives a precise meaning to the somewhat vague idea that
{d;I; qs determines the theory.

8 Convergence (and thus approximation) in s is de6ned as
follows: { f„h™,f CS is a Cauchy sequence if a finite n(e) exists
for any given e&0, such that, for m&u&u(e), II f~ f~ Il,„(e-
for all r, s. A sequence f„I~ in S has a limit point f in S, and we
write f„~f in S, when I f„fII,,.~ „0 for all r—, s. If f„~f in S
and q is a distribution, then g(~„)~p(f). This implies that,
given states of the form, for

I x)CP,
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for any 37.
Ixl"(~l~(x, g) l~) 0 (2.13)

We now introduce an assumption on the mass
spectrum of our theory:

Assumptioss ("Mass gap" ) Denoting by I'„ the
energy —momentum operators, the spectrum of the
operator I'Qo is in V„+—= {p:pp&0, pop„&m'&ol,
with the exception of the point p = 0, which corresponds
to the projection onto the unique vacuum.

In other words, there are no states, excepting the
vacuum, whose eGective mass is less than m. Unless
otherwise stated, this "strong spectrum cortdifiort"" or
"presence of a mass gap" will always be assumed, and a
field P(x) will be adjusted so as to have

(2.12)

The usual cluster properties (Streater and Wightman,
1964) in a theory satisfying the mass-gap assumption
can then be used to prove also the following property:

THEOREM 2.3 For
I +) and I %') in Pt or or, , as

I xl —+co,

Combining Theorems 2.2 and 2.3, we see that the
matrix element (2.11) is a function in S(R') for I

%')
and I 4') quasilocal.

3. PROPERTIES OF FORMAL CHARGES

A. Generalities

In this section we discuss the convergence properties
of forrnal charges. As was emphasized under (vi) in
Sec. 2.A, when defining the "charge"

Q(xo)=f jo(x) &x, (1.1)

we must proceed with care: the Expression (1.1) is
formal and not necessarily meaningful since it
corresponds to smearing jp(x) with the "function"
1)&8(xp'—xp), which is certainly not expected to be a
good test function for the field jp(x). This is actually the
reason for our referring to (1.1) as to the "formal
charge. "

In order to obtain something similar to the formal
charge, we consider the following expression (Kastler,
Robinson, and Swieca, 1966):

where
j o( f~ f~)=f d*f~ (x)—f~(xo)i p(x),

for I x
I
(8

(3 1)

f~(x)Cs(R'), f,(x)= f, (I x I) for 2&!x I (A+A, A&0,

'
f jr(xp) dxp ——1,

f,(x.) g S(R'), ~

, fr(xo) =0

for
I
x

I &RyA

fr (—xp) =fo (xii) & 0,

for
I

xii I &T.
(3.2)

In Eq. (3.1) we are "cutting" the tails of the charge
for large spatial distances and averaging in time around
the point xp ——0.' The formal expression (1.1) should
then be understood as defined by the limit

lim lim jp( fp fr) —=Q—=Q(0),
T-+0 R~co

(3.3')

where we are still proceeding formally since we are not
specifying what kind of limit we are considering. '5 Our
present problem is to arrive at the exact meaning of the
limit (3.3): After this is understood, we shall explore
the connection between formal charges and generators
of groups of symmetry transformations.

"The weak spectrum condition requires only that the spectrum
of P„PI' be nonnegative.

'4For notational convenience, we are choosing xo=0 in con-
sidering the analog of Eq. (1.1). Clearly, fz—+1 as R—+cx, and
fg +8 as T—+0.

"For varying fzfz, jo( fg z) provides a family of (unbounded)
operators. Given a vector %') in the common domain of def-
inition of these operators, one says that the given family con-
verges strostgly as E~~, T~O ifjp( fafr) )

%') is a strongly con-
vergent family of vectors (see below), while it converges weakly

!f (~ lip( jajr) I ~) converges «»ny (f' ed) vector I ~) We
indicate strong conver ence for vectors by an arrow:

~
%„)~~N)

as e-+ ~ if and only if [ 4 „—4 ) )~0 as ri—+ ~. ([ 4 )( is the norm
of the vector [ W):II w [I=—(W I

+)"s,

In this section, we only consider the problem of the
large-R behavior of formal charges. The importance of
the time smearing and related questions will be dis-
cussed in Sec. 4.

We leave momentarily unsettled the question of how
A. in Eq. (3.2) should be allowed to vary with R.
Unless otherwise speci6ed, we take A to be a fixed
constant; the dependence of our statements on the
choice of A, as a function of E will be discussed in
Sec. 3.E.

B. The Main Theorems

We now state some important theorems on the high-R
behavior of the expression (3.1). We add only very
short comments to the statements of the theorems:
their interpretation and consequences are discussed in
Sec. 3.C, while the relevant proofs are given in 3.D.

The current j„ is assumed to be a local field, " local
relative to the basic fields @;, i=1, ~ ~ ~, J, of our
Wightman theory. We also assume that the domain of

"In particular, j„is assumed to transform like a held under
translations; j„(x+a)= T(a)j„(x)T(a) t. Thus, we are excluding
an exp/icit x dependence in j„(x).Cases in which this condition
is violated require separate consideratjon and we'll not be djscussed
herc.
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j„(f), for all fQ 8, includes %)pz„and that j„(f)E,z,~X)pz„

Vf& S. In short, j„is itself assumed to be a Wightman
field.

We adjust j„as having vanishing vacuum expecta-
tion value:

&0 I j.(*) I 0)=0, (3.4)

and state a 6rst theorem on the behavior of the norm of
the state jp( f~ fp) I 0) for large R:

THEOREM 3.1 (Kastler, Robinson and Swieca. ,
1966; Schroer and Stichel, 1966). As R—+oo,

(o Ijo'(fzfr)i p(fzfr) I
0)&«', (3.5)

with @&0unless j„=0.
This theorem shows that the limit (3.3) cannot be

taken in the sense of strong operator convergence since
the norm of the state jo(fit f&) I 0) blows up as R
increases. '7

Consider now a state of the form (2.8b), but obtained
by taking purely spatial translations:

We now recall that a sesqsiilitMaris form (s.f.)F(O', X),
over 3! is a map from ordered pairs (I %'),

I x)) of
vectors in certain linear manifolds" in $C to the complex
numbers and satisfying the usual linear properties,
i.e. , given any complex numbers n and P, F satisfies

F( ~+a~, x)= *F(~,x)+PF(~., x),
F('I', ~Xi+as) = ~F(~,Xr)+»(~, Xs) (3-1o)

If a sf.F(%', x) is defined for all
I

%') GER~, I x)E X4,
where 5R~ and 9R2 are linear manifolds in $C, then
(ORi, Bms) is called the domaitp of definition of F. In
other terms, a s.f. is something like a matrix.

A smeared field defines an operator, and thus a
fortiori it defines a s.f.via its matrix elements. Thus, the
"Partial charges" jp( fzr fz ) also define s.f.'s which vary
with fzr fg.

Q~(~, x)—= (~lip(f~f~) Ix), (311)
for I

%') and.
I x) in pz„defines a s f. If, for states

I
%'}and I X) in given linear manifolds, the limit

I
e)= fh(x)As, (x) I 0)dx, (3.6) Q(~, x)—= 1 Q.(~, x) (3.12)

lim h(x) I
x I'~0,

tx )~co

lim (e ljo(fzfz) I 0) (3.7)

where A+ is a quasilocal operator, and h(x) is a C"
function. Then we have the following theorem.

THEOREM 3.2 (Kastler, Robinson, and Swieca,
1966; Schroer and Stichel, 1966).If

exists, it will define a s.f. associated. with the formal
charge. As we have seen (Theorem 3.2), we do not
expect the limit (3.12) to exist for arbitrary states;
however, in the presence of a mass gap, we have:

THEOREM 3.4 (Kastler, Robinson, and Swieca, ,
1966; Schroer and Stichel, 1966; Dell'Antonio, 1967).
For

I
%') and

I X) quasilocal, the limit

Q(~, x)= »m (~ Ii p(f~f~) I x) (3 13)

exists and defines a s.f.
In particular,

Q(~, o)—= 1 & ~ I j.(f.f.) I o)

is 6nite for all quasilocal operators A+ if and only if
j„(x)=0.

In other words, if j„(x)WO, one can always find
normalizable states 4), quasilocal of order less than
two, such tha, t (4 j p(fzfz) I 0) becomes arbitrarily
large as R increases. Theorem 3.2 eliminates the possi-
bility of interpreting the limit (3.3) in the sense of weak
operator convergence. Indeed, the sequence of vectors
j p( f& f&) I 0) does not converge weakly, since there are
normalizable states

I e) in R for which the limit
(3.7) diverges.

Theorems 3.1 and 3.2 do not depend on the mass-gap
hypothesis. In the presence of a mass gap, for a con-
served current, we also have the following positive
statement:

(3.14)

exists for
I
%')F 'Zpz.

Thus we see that a formal charge de6nes at least
a sf with doma. in. (Z),z„g,z). The problem is now to
determine some more properties of this s.f. It will turn
out that the crucial point is whether or not Q(%', X) is
bonrided in

I
% ), i.e., if

Q(~, x)«(x) II
'I'

ll (3.15)

for any I %')F%)pz, where the nonnegative number

x(x) is independent of
I

%').
It is in this respect that current conservation plays

the vital role".THEOREM 3.3 (Kastler, Robinson, and Swieca,
1966; Schroer and Stichel, 1966). If cj&j„=O, then

lim (e lj p( fry f~) I
0)= 0

for any state I 4 ) of the form (3.6), satisfying

hm
I
x I'h(x)=0.

"Also (improperly) called bilieeur.
"A linear manifold Bitis a set of vectors in K such that a )%'q l+

P I
%'2 ) E 5R if I

%'r ) and I
%'s ) are in 5R, and o., P are any complex

numbers.
20The mass-gap hypothesis is assumed. The importance of

Theorems 3.5 and 3.6 is particularly emphasized in Schroer and
Stichel (1966) and Robinson (1966).

(3.9)

"The exact E' behavior depends on the choice of the sequence
of functions fa. See Secs. 3.D.c and 3.E.

THEOREM 3.5 For a conserved current, and any
(3.8) fixed. I X)&K),z, Q(%', X) satisfies the boundedness

condition (3.15).
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THEOREM 3.6 For a nonconserved current, and any
fixed I X&CEsr„, Q(e', X) does not satisfy the bounded-
ness condition (3.15).

Thus, we see that current conservation is a accessary
arid sugcisrit condition for the validity of Eq. (3.15).
The importance of this fact will be made clear in the
next subsection.

C. What It A11 Means

Our problem was to determine the meaning of the
formal expression (1.1) or, equivalently s' of the limit
(3.3). The ultimate motivation for investigating this
point is that we want to understand the connection
between a formal charge and the generator of a (broken)
symmetry group. A symmetry group has a generator 6
if the (unitary) symmetry transformations U(r) are of
the form exp LiGrj; for the latter to be unitaries, G
must be a self-adjoint operator. "Our problem can then
be summarized in the following two questions:

(a) Is a formal charge an operator in XP
(b) When and to what extent is it possible to

identify a formal charge with a generator?

To question (a) we found a negative arsstver: a formal
charge is never am operator, since we saw that, as a
consequence of Theorems 3.1 and 3.2, the limit (3.3)
does not exist in the sense of strong or weak operator
convergence. '3 Nevertheless, we saw that a charge can
be identified with a sf Q(%',.X. ), defined for I

%'& and

I X) in E&z, Leaving aside until Sec. 4 the problem of
self-adjointness, which is required of a generator,
question (b) asks whether or not Q(%', X) determines
an operator or, as we now explain, is the form of an
operator.

Suppose that there exists an unbounded operator 6
with domain X),g, and satisfying

(~IGx)=Q(~, x), &I ~), lx&~~,' (3.16)

If such an operator exists, it is called an operator
exterssiors of Q(e', X), and Q(%', X) is called the form of
the operator G. Since X),z, is dense in K, if an operator G
satisfying (3.16) exists, it is easily shown that G is
uniquely deterznined by Q(%', X).

In order to conveniently summarize our analysis so
far, we introduce a simplifying notion of convergence of
derssely dined sesqgi li rsear forms (d.d.s.f.'s).A d.d.s.f.F is

"Apart from the problem of time smearing, i.e., the process of
taking the limit T—+0 in Eq. (3.3) . This problem is irrelevant at
this stage, and will be reconsidered in Sec. 4.

"Rather, 6 should be essentially self'-adjoint and the unitary
transformations should be expressed as expgiGtrj. This point
will be discussed in Sec. 4. For the moment, we choose not to
delve into such mathematical complications.

"Strictly speaking, we proved that the formal charge is not
an operator limit having quasilocal states in its domain. The
limit (3.3) might still converge for states which are not quasilocal.
However, in this case the practical usefulness of the charge would
be highly impaired. For the sa'ke of brevity, we maintain our
approximate terminology and simply say "the formal charge is
not an operator" rather than "the formal charge is not an operator
whose domain includes quasilocal states. "

Proof (i) Since F(%', x) is antilinear in I%') Lsee
Eq. (3.10)],F(%',X)* is" a linear function in I%'& for
any fixed IX)EI)s. If Eq. (3.17) holds, F(%',X)* is
continuous in I%'& for I%'&Q'Zi, and can therefore be
defined on all of K by continuity. By the Riesz repre-
sentation theorem (Akhiezer and Glazman, 1961;
Sec. 16), there exists a unique vector

I y) such that

and thus
F(~, x)"= (x l~&,

F(~,x)=(~ I x).
Define now an operator G by

I x)=G Ix), lx)cs;
G is clearly a linear operator having '2s in its domain,
and it satisfies

F(~,x)= (~ I Gx& (3»)
for all I%'&C%h, I X)CEs. Thus, F is the form of G.

2 This extension, by continuity, is illustrated below, following
Eq. (3.20), in the special case

I x)=
I 0).

a s.f.with domain ('Zt, X)s), such that X)i and X)s are dense
in K. In the following, we only need to consider the
case 'Ei ——X)s——X), and thus simply write P for the
domain of P.

Given a sequence IF„li", of d.d.s.f.'s, all defined on a
common dense domain X), if for any I%'), IX&CX),
F„(%',X)~„„F(%', X), F a d.d.s f.with domain%), we

say tha, t F„~Fin the sense of d.d.sf.'s. If, in addition,
I'" is the form of an operator G, we say that I'„converges
to G irs the sersse of d.d.s.f.'s. As we shall illustrate below

Lsee Eqs. (3.20)—(3.21)j, convergence to an operator
in the sense of d.d.s.f.'s is a weaker notion than strong
or weak operator convergence.

Given that strong or weak operator convergence of

js( fz fz) is excluded as R~~, we are asking if the

Qis(~, X) «Eq. (3.11) converge to an operator in the
(weaker) sense of d.d.s f.'s. Theorem 3.4 guarantees that
Qn(%', X) converges, in the sense of d.d.s.f.'s, to the
d.d.s f. Q (%',.x ), for I%'), I x)C X) z, Thus, we only have
to find out whether or not Q(%', X) is the form of an
operator. In order to answer this question, we first
establish the following lemma:

Lemma 3.1 Let F(%',X) be a d.d.s.f. with domain

(Z», Es). Then

(i) F is the form of an operator G with domain Zs
if and only if for each fixed IX&CZ)s there exists a
constant E(X), independent of I%'), such that

I F(~,x) I &&(x) ll~ II, & l~)c&i; (317)

(ii) for Zi ——Es——Z), if (3.17) holds and in addition
Ii is Hermitian in the sense that

F(~,x)*=F(x,~), & l~&, Ix&c+, (3 18)

then G is also Hermitian

(~IGx) = «~lx), &l~), lx)&~.
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Vice versa, if F is the form of an operator G, the
Cauchy —Schwartz inequality gives

operator associated with the sf .Q(gr, X), we find"
that (3.15) must be satisfied and we must have a con=
served current, i.e., an exact synonetry. '8 Thus, it is
impossible to construct the analog of the formal
expression exp[iQr] for a broken syrrimetry, where

Q would be the generator of broken-symmetry trans-
formations. This should perhaps not be too surprising. "
What is surprising is the fact that, if the symmetry is
broken, it must be globally broken in the sense that no
quasilocal state is left strictly invariant upon broken
symmetry transformations. In Sec. 6 we shall discuss
to a greater extent the effect of all this on the formula-
tion of broken symmetries in quantum field theory.

We conclude this discussion of properties of formal
charges by stating the converse of Theorem 3.3:

THEOREM 3.7 (Coleman, 1966; Schroer and
Stichel, 1966; and Dell'Antonio, 1967). If the charge
annihilates the vacuum zveakly, then the current is
conserved.

I p(~, x) I
=

I &~IGx) I
& ll~ll IIGlx)ll

and (3.17) is satisfied withe(x)= II G Ix) II.
(ii) Equation (3.18) and the fact that F is the

form of G imply, for I%'), I x)Q I),

&~ I Gx)=(x I
G~)*=(G~ ix&

and thus G is Hermitian.

8 Returning to the formal charge, we see that Q(%', X)
is the form of an operator if and only if the boundedness
condition (3.15) is satisfied.

For a conserved currerIt, Theorem 3.5 states that
Q(%', X) satisfies~(3. 15) for IX)CX),I.. Thus, Q(%', X)
is the form of an operator G having X),1. as its domain
and whose matrix elements satisfy (3.16) for I4),
I X)C S),z,. G is uniquely determined by Q(%', X) and,
for a Hermitian current, G is a Hermitian operator. "

In the special case Ix)= I 0), by Theorem (3.3)
we have

This means if Q(%', 0)=0 for all I %')QEsr„ then
B&j„=0.

This theorem is a refined version of Coleman's
original theorem (Coleman, 1966), and was proved by
Schroer and Stichel (1966) and Dell'Antonio (1967).In
the original version, Coleman treated the formal
charge as an operator having I 0) in its domain, and
annihilating

I 0). We now know that this hypothesis
cannot be accepted, and Theorem 3.7 only assumes that
Q(%', 0), for

I
%'&C X),r, , vanishes.

(3.20)Q(e, o) =0

for any state
I N& of the form (3.6) satisfying (3.9), and

thus a fortiori for
I
4 & & S),r,.Since

I 0) is in the domain of
G, G is continuous on

I 0), and one has"

(e I
G I

0&=0 (3.21)

D. The Proofs

We now outline the proofs of the main theorems
stated in Secs. 3.B and 3.C. Most of the proofs are
exercises in the use of the integral representation of the
two-point functions of a local field. A knowledge of this
representation is thus required on the part of the
reader (see e.g. , Umezawa and Kamefuchi, 1952;
Kallen, 1952; and Lehmann, 1954).

Proof of Theorem 3.1 (Schroer and Stichel, 1966,
p. 260; Reeh, 1968,p. 692).We only consider the special
case of a conserved vector current and prove that,
as R~~,
llano(f~fr) I 0& II'=—(o list(f~fr)jo(f~f~) I

o)-cR'
(3.22)

with c/0 unless j„(x)—=0.

"Barring difhculties associated with the diBerences between
"Hermitian" and "self-adjoint. "

We recall that we are considering only currents j„which are
Wightman fields, and which thus transform as fields under
translations:

z (~)q„(~)r(a)+=q„(x+u).
This excludes an explicit dependence on x in j„.The case of, e.g. ,
I orentz boosts, which show an explicit time dependence, ought to
be separately discussed."In nonrelativistic quantum mechanics a nonconserved current
may lead to a well-defined charge operator. However, when the
theory is required to be causal, to be I,orentz-invariant, and to
satisfy the spectrum condition, lack of current conservation and
symmetry breaking are tied together to the extent of preventing
the existence of the charge.

for any I 4)FK. This is to be contrasted with the fact
that Q(e, 0) might diverge for

I 4) it%),r,. The reader
can easily convince himself that the reason there is no
contradiction is that (4 I

G
I 0) is the limit of Qit(%, 0)

onlyin thesense ofd.ds f.'s. Thus, the equality of (N I
G

I 0)
and limit Qit(4, 0) need hold for

I e)Q&sz, only. This
point illustrates the di6erence between weak operator
convergence and convergence in the sense of d d s f 's. . . .

To summarize: For a conserved current, the densely
defined sesquilinear form defi, ncd by the formal churgc is
the form of a uniquely determined operator G; G is
Hermitean if the current is Hermitean.

For monconsereed currents, the boundedness condition
(3.15) is tiiolated in X),z, and the d.d.s f. Q(N, X) is not
the form of an operator. Thus, the charge cannot be
defined. as a limit of d.d.s.f.' Ass no time-dependent
generator is associated with the charge, we cannot
exponentiate this nonexisting generator to obtain the
transformations forming the broken-symmetry group.
If we try to postulate that a generator exists as an

25 As we shall see in Sec. 4, Hermiticity is not sufficient for G
to be the generator of a continuous symmetry group: the stronger
condition that G be self-adjoint is needed.

~ In order to illustrate this «extension by continuity, " also
used in the proof of Lemma 3.1, we define &N I G I x) for I N) C

Q,c. Since g,c is dense in K, we can find a sequence I I ~„)}i,
with I N")gQ, s and I N„)~I +).Then

&~ I
G I x)—= »m (~ I G I x) = »m Q(~, x).

One easily shows that, by virtue of (3.15), the above limit is
always finite and independent of the choice of the sequence
{I %~)It, I 4~)Cg)iis, converging to

I %).
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2 " r d sin pr
(2zr)'" p dr

dr —
ftz (r) cos—pr — . (3.26)

pr

We now make the following choice for the sequence
of smearing functions fzz(r):

fit(r) =1 for r&R

=f(r R) for R&—r&R+A.

=0 for r &R+A, (3.27).
where h. is kept constant, and f(r') is C and equals
i for r'=0, while it vanishes for r'&A. . The choice
(3.27) is made mainly so as to simplify things as much
as possible: as R varies, the function ftz(r) is displaced
in a parallel fashion in the region (R, R+h. ); its
derivative satisfies

df~(r)/dr = df(r')/dr' I,, „„. (3.28)

Next, we change the variable of integration, use the
addition formulae for sin p(r+R) and cos p(r+R),
and perform some partial integrations, so as to bring
Eq. (3.26) to the following form:

Pf (p)=L2/(2 )"'j(P 'I:f.(P) PR+f.(p) o PRj
—(p) 'IL(d/dp)f, (p)j sin pr+L(d/dp)f, (p)$ cos pRI

—R(p ')I f,(p) cos pR f,(p) sin PR]), —(3.29)

where

f.(P)= dr' ,f(r') sin pr-',
(&

f.(p)= dr' ,f(r') cos pr'. (3.30—)
G'f

After insertion of Eq. (3.29) in (3.25), the large-R
behavior is determined as follows: The resulting bilinear

The two-point function of a conserved vector current
has the following representation:

(0 I j'(*)j.(y) I 0)
i—f dmz$g „+(88 /m )j6+(x—y'nz )p(m ) (3.23)

where p(m') is a tempered measure.
If one defines g (p) as follows:

g(p) = (2~)-'f dm'I p(m')/2m'(m'+ p')'~'5

)&
I
fry(Ps+ms)it/ lz (3 24)

where a tilde denotes the I'ourier transform, a straight-
forward calculation leads to the result:

llano(f~fr) I 0) II'=f dp I Pf~(p) I'g(p) (3 25)

one also easily finds the following expression for
Pf~(p):

Pf (p)
2

drrftz(r) sin pr

terms in. cos pR andjsin pR, are reduced to sums of
linear terms in cos 2pR and sin 2pR and terms con-
taining no oscillating factor. By the Riemann —Lebesgue
lemma, ' the factors of R and R' containing cos 2pR or
sin 2pR vanish as R-+zc. The remaining highest-order
contribution gives, for large R, the following behavior:

llano(f~fr) I 0&!I'&n 'R'
I f'(P)+j'(P)3g(p) dP,

where" b&0 and
(3.31)

g(P) =f d~.g(p), dp=p'dpd~' (3.32)
Since f,' and f,z are chosen to be positive definite, "

while g(p) is nonnegative, the coefFicient of R in Eq.
(3.31) is seen to be nonvanishing unless p(m') =0, as
follows from Eqs. (3.32) and (3.24). Equation (3.23)
then implies I I j„(f) I 0) I I

= 0 for any f6 8 or, equiva-
lently, j.(*) I

o&=o (3.33)
This and Corollary 2.1 imply that if p(m') vanishes,
j„(x)=0, and the behavior claimed in Eq. (3.22) is
thus proved.

Remarks: (i) From the mass-gap hypothesis and
Theorems 2.2 and 2.3, one can see that

(0 I ~o'(x, f~)jo(y, f~) I 0&

=f d*odypfr(&o)fr(yp)(0 Ijo (&)jo(y) I 0& (334)

is a fast-decreasing C" function in x—y. This in turn
can be seen to imply that g(p) is C" and fast decreasing
in p. Since we can always choose j(r) to be C" and
fast decreasing, the integrand in Eq. (3.25) will be C"
and fast decreasing. This is much more than is needed
for applying the Riemann —Lebesgue lemma. As a matter
of fact, it turns out that the mass gap hypothesis-is super
fllozts: when massless particles are present, the expres-
sion in (3.34) will vanish as x—y—z~ (like some inverse
power of x—y), and this can be shown to be sufficient for
deriving the behavior (3.31). However, the contribu-
tions from p= 0 could now play a more signihcant role,
due to the singular behavior of p(m') for m'=0. Thus,
when massless particles are present, llj p( fzz fr) I 0) II'
might behave worse than R' for large R. These points
are discussed in greater detail in Reeh (1968) where it
is shown that Ilj p( ftz fr) I 0& IIP is always bounded bv
cR' for large R.

(ii) The dependence of our results on the choice of
the sequence of function jtz will be discussed in Sec. 3.E.

(iii) I:n the case of a nonconserved current, one
follows roughly the same steps performed in the proof
given above. The main difference is that, in Eq. (3.23),
one must use a more general integral representation,
since the form (3.23) takes current conservation into
account. We refer to Reek (1968), p. 692 for additional
details.

3 See, e.g. , Titchmarsh (1939).See also our remark (i) below.
"The cuto8 8&0 is introduced to avoid inessential complica-

tions arising from the neighborhood of p=0.
"We recall that fg is taken to be real.
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where the "spectral measure" «E(pp) corresponds to
I er(pp))(e(pp) I dp, . By the mass-gap condition,
«E(pp) vanishes for'4 pp&ns;„, and we can consider
a state

I
e")=—f d&(po)l:(po) '

I ~)l.
which clearly corresponds to (Pp) '

I N), since

(3.41)

Proof of Theorem 3.2 I Schroer and Stichel (1966),
p. 262j Theorem 3.2 states that the limit

lim (e I jp( fis fi ) I 0) (3.7)

cannot be finite for all states
I
4 ) of the form (3.6) with

h(x) satisfying

lim
I
x I'h(x)~0. (3.35)

I x Igloo

The theorem can be proved by performing a calculation
similar to the one given for the proof of Theorem 3.1
and by choosing

I e)= f dxh(x) T(x)f «xo j,(0, x, )fr(xo) I 0) (3.36)

with h(x) satisfying (3.35).

Proof of Theorem 3.3 (I&astler, Robinson, and Swieca,
1966, Lemma II; Schroer and Stichel, 1966, p. 261.)
Theorem 3.3 states that the formal charge associated
with a conserved current annihilates the vacuum
weakly, i.e., the limit Q(e, 0) vanishes for I e ) in the
dense set of all states quasilocal of order" E&2. This
result is intuitively obvious, but one should show that
the pathologies expressed by Theorem 3.2 do not occur
for states quasilocal of order X&2.

In the heuristic proof of Theorem 3.3, one would
proceed as follows: since (0 I jp(x) I 0) vanishes, we can
choose

I
414) to be orthogonal to the vacuum and expand

I e) in a complete set of (continuum) eigenstates of
the energy operator:

I
e&=-f dpo(e'(po) I e) I m(po)); (3.37)

by virtue of the mass-gap hypothesis, the integration
sta, rts at p'& iri; &0, where m;„ is the lowest mass in
the theory. Thus, the energy operator has an inverse on
states of this kind, and we obtain

(+ li p(f~fr) I0&=(+'I L&pip(f~fr) j Io&, (338)
where

I
+'&—= (Po) '

I +) (3.39)

Since
I Pp, jp(x)g= —ic)p jp(x), and, by current con-

servation, 8'jo= V j, we can then use Gauss' theorem to
show that (3.38) vanishes as R—+~.

In a polished version of the proof, the operation of
"dividing" by Pp is still allowed:

I
4 ) can be expressed

as follows:

~i.(f~fr) = i.(d "f~—fr)
and, by current conservation,

P'pj p( fz fr) j=ij p$ f~(dfr/dxp)]

= —2 ij"(&.f.f.)=ij( ~f.f—.)

(3.44)

From Eqs. (3.38) and (3.45) we obtain

(3.45)

(@' I7'p(f~fr) I 0)=i(+'
I i( &fzfr) I 0&, (3.46)

where, by Lemma 3.2, I
4'& is of the form"

I
e')= f dxh(x)T(x) I

%'&, (3.47)

with h(x) satisfying Eq. (3.35), and
I
%') a quasilocal

state. Since Vfz fr is nonvanishing only for

xF Dir= Ix: R&
I x

I
&R+—h, l

xp
I

& T}, .(3.48)

we see that the state

f(.« f ) I o&

is localized in the region Dr4. If one decomposes I
+')

as a sum of two sta. tes:

xl &R/2

dxh(x)T(x)
I
%')

Ix f&B/2
dxh(x)T(x) I e'&, (3.49)

we see that the first state is quasilocal and effectively
localized" around

I
x

I
&Rj2, since outside of this

region it is quasilocal.
As E~~, DR is shifted to infinity, and one can use

the cluster theorem to conclude that

(3.50)

The only open question at this point is whether or not
dividing by Po can destroy the localization properties of

I

e ). A priori this might happen, since division by the
energy corresponds to an integration in the time
variable. However, it turns out that I

4') can be chosen
as localized as the original

I W&. We do not prove this
result, @ but we do state it in the following generalized
fo1 m.

I.ergrria 3.2 Let IC&1 be a fixed integer, and I N)
be a quasilocal state of order lV& 2. derider the 444ass-gap

hyPothesis, there exists another sta. te I
+'&xi ), a.iso

quasilocal of order E, such that

P"
I
+" '&=

I
4

&
—« I e) I 0& (3 43)

YVe now outline the rigorous proof of Theorem 3.3. Hy
the dehnition of derivative of a distribution, one has

Ppl ~'&=
I +&. (3 42) the limit being approached faster than any inverse

"Compare Sec. 2.8 for the definition of quasilocal state of
order 37.

44 We take (4 } 0)=0; see also below.

"See Kastler, Robinson, and Swieca (1966), Lemma III.
"Since (0 }j„}0) =0, N) can be taken to be orthogonal to

I 0) and there is no contribution from the last term in Kq. (4.43) .
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(3.55)

uasilocal state.
The commutator Lj,(x, fz ), A„j is fast decreasing in

x, as follows from local commutativity. LThis can be
most easily understood by considering the special case
of an A~ which is strictly localized in some region 0.
For I

x
I

sufFiciently large, the segment (x& I xe [ &T)
becomes spacelike with respect to 0, and thus je(x, fz)
commutes with A„).oe On the other hand, we can use the
Cauchy —Schwartz inequality and obtain

I &~ I Lie(f~f~), ~xl I 0)
& II ~ II

~
II Lj,(f,f,), a,j[0)ll. (3.56)

dyh, (x)h(y) &%' [ T(x—y) [ %')
fx f&R/2fxfgRI2

1/2

&0[jt( &f f )3( &f f ) I o) (351)

By the cluster theorem, &iIr'
I T(x—y) I

%") is fast
decreasing'r in x—y. This, and the assumed behavior of
h(x), can be shown to imply that the first factor
decreases faster than R 't' as R-+m

For the second factor, we can proceed as in the proof
of Theorem 3.1 and evaluate the high-E behavior.
Rather than choosing the usual fit, it is convenient to
choose

Since L jp(x fz'), A&$ is fast decreasing in x, the rhs has
a limit as E.—+~, and we conclude that the first term in
the rhs of Eq. (3.54) satisfies the boundedness criterion
(3.15).

Thus everything depends on whether or not Q(%', 0)
satisfies, for all quasilocal states

I
%'&,

Q(~'o)&& ll ~ II (357)

fJt(x) =f(r/R), (3.52)

where f(0)= 1, and f is a smooth C" function. '8

Now, since &0 I j„(x)j„(y) I 0), for (x—y)'~ —,is
fast decreasing by the cluster theorem, while df/dr&
const 1/R, one can easily derive the majorization

for some constant X.
If the current is conserved, we already known

(Theorem 3.3) that (3.57) holds with E=0.
Vice versa, let us assume that (3.57) holds for soine

finite E. If we can prove that E must necessarily
vanish, we will fall within the conditions of Theorem 3.7.

The proof of the fact that (3.57) implies E=O is as
follows (Robinson, 1966):we kno4' from Sec. 3.C that,
if (3.57) is satisfied, there exists an operator G such that

[[j( Vf~ fa) [0) [I & constR't'

(Kastler, Robinson, and Swieca, 1966, p. 114; Schroer
and Stichel, 1966, p. 262). This, combined with the
faster-than-E 'I' behavior of the 6rst factor, leads to
the conclusion stated in Theorem 3.3.

I'roofs of Theorerrts 3.4—3.7 We must prove that
the limits

power of R. For the second matrix element, we use the where
Cauchv-Schwartz inequality and obtain:

&I'a[ j( &fafr) I
0)& II +'all ~

II j( &fzf~) I o) Il

Q(~ x)= »m &~ I jo(f~f~) I x)
R~to

Q(~, 0)= I &~ Ij.(f.f.) [0),

for I
'ir) and I x) quasilocal,

(3.13) Q(~ 0)=&~ IG [0) (358)

for any quasilocal I
%'). On the other hand, if

I
%'(x) )=

T(x) [ %') is "translated" by x of
I %"), it is not

dificult to show that

(i) exist and define bilinear forms;
(ii) satisfy the boundedness condition (3.15), if

and only if, the current is conserved.

Property (i) is an immediate consequence of
Theorems 2.2 and 2.3,"and of the fact that the set of
all quasilocal states is a linear manifold.

In order to prove (ii), we begin by considering a
quasilocal operator A~ such that

~.[0)= Ix) (3.53)
Then we have

&~ li o(hf~) I x)= &~ I Ei e(f~f~), ~.j I o)

+(~'lio(f f ) [0), (354)

"The mass-gap hypothesis is used here for the second time. It
was also crucial for Lemma 3.2.' See the next subsection for a discussion on the dependence of
our results on the choice of the sequence fR.

oo fd&ofr (ao) (%' [ jo(x, ao) [ 0) and fdao fr (ao) (%'
[ jo(», *o) [ x )

are C and fast-decreasing functions of x; thus, they are integrable
functions of x.

Q(~( ), 0)=Q(~, 0). (3.59)

Q(e, 0)=0 (3.62)

is implied by Eq. (3.57).
Equation (3.62) says that the charge annihilates the

vacuum weakly and is exactly the condition for the
validity of Theorem 3.'7. Thus, we have reduced the

"See Theorem 4.1 below for a precise statement and. proof of
the properties of the commutator appearing in Eq. (3.54).

We now take [ x
[
—+aa and use the cluster theorem,

which implies

hm &W I T(x)G
I
0&~&ir [ 0)(0 [ G [ 0). (3.60)

fx f~oo

Thus, since I
%') is any quasilocal state, and quasilocal

states from a dense set,

G[0)=&0 I G[0) I0), (361)
and (0 [ G [ 0) must vanish in view of &0 [ jo(x) [ 0)=0.

From this and Eq. (3.58), we conclude that
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j~(d„f~fr) I o&; (3.64)

then by a calculation similar to the one performed in
the proof of Theorem 3.1, one can conclude that
Q(%'iv, 0) behaves a,s X'I' as X—+ oo .

E. Additional Remaxks

As we have shown in the preceding subsection, the
study of the large-R behavior of a formal charge is
carriedoutbyevaluatingthebehavioroflj ls(fsfr) I 0) II

or of closely related expressions. The question arises
as to how our results depend upon the choice of the
sequence of functions fs considered in Eqs. (3.1)—(3.3).

With the choice (3.2), where A is kept fixed, we found
the behavior (3.22), i.e.,

IIi.(f~f') I o) II -«. (3.65)

problem of proving the equivalence of current con-
servation and boundedness of Q(%', X), for an arbitrary
I X)Q Rsz, to the same problem for Q(%', 0).We already
know that Q(%', 0), I %'&EX)si, is bounded for a, con-
served current. Thus, we need only to prove the fol-
lowing: If the current is not conserved, then Q(%', 0)
is unbounded as I

%') varies in X),r, . For this, we follow
Schroer and Stichel, 1966, p. 263 and look for a sequence
I I

'triv&Ii" of qnusilocal states all having unit norm and
such that Q(%'iv, 0) diverges as X-+co. Proceeding as
in the proof of Theorem 3.3, we use Lemma 3.2 to
divide

I
%'iv& by the energy operator, and obtain:

Q(e, o)= 1' &e' 'I1( vf, f~) I 0&
R~ot)

+ lim &
tI iv'

I 7 (8„f&f,) I 0), (3.63)

where I
%'iv'& is a quasilocal state of the form

(Po)-'
I ~~).

The first term in the right-hand side of Eq. (3.63) is
seen to vanish by an argument similar to the one given in
the proof of Theorem 3.3. Now, if B&j„/0, we make the
choice (Schroer and Stichel, 1966)4'

question cannot be settled without further knowledge
of g(p) Ldefined in Eq. (3.24)]. This fact can perhaps
be qualitatively recognized as a consequence of the
Reeh —Schlieder Theorem (see Theorem 2.1).

Indeed, by this theorem, given an fz(x), we can
construct fs(x) such that

fit(x)=f~(x) for
I
x

I
&R,

and find some operator A, localized in the region where

fs(x)Wfs(x) and in —T&xs&T, such that A I 0)
approximates arbitrarily well the state js(fn fr) I 0).
If in turn A

I 0& could be well approximated by
jsL( fit. f&)f—r J I 0), we see that, by changing fir outside
of the region 0&

I
x

I
&R the value «

I Ijs ( f~ fr) I
o & I I

could be changed at will.
~' In view of these qualitative remarks, one might
wonder if, by a suitable choice of functions fir such that
fs(x)—+1 as R—+~, one could make the limit as R~~
«

llano(

fz fr? I 0) II finite. However, this possibility is
excluded and we now show that, independently of how

fn~«& R~oo,
I I jo( fafr) I 0) II cannot remain bolnded

aS E—+~.44

In order to prove this property, we first remark that,
for a general current operator j'„, , we have the integral
representation (Umezawa and Kamefuchi, 1952;
Kallen, 1952; and Lehmann, 1954)

&0 I j.(~),j,(x) I 0)=f dPc'"'-"'p„(P), (3.6g)

with p„, the derivative of a measure having support in
V +. With the notation

g(y)= f dPo I fr(ps) I'pss(p),

g(l y I)=f ~f1.g(y), (3.69)

one finds (Reeh, 1968, p. 692) that g(y) and g(I y I)
are a C" and fast decreasing as

I y I
—+~.

Consider a state of the form

I
~,&=f &*io( )t,(x)f ( o) I 0), (3.70)

h. (y) L(I y I'+ )"+'] ', )0, ,)l's)0. (3.71)

However, the choice

fs(x) =f(l x I/R), fs(0) =1, (3.66)

I
%',

& is not quasilocal but is-normalizable, since g is
integrable and

)-f &
I y I g(l y I)CI y I'/(~ y I'+e)"""']

II jo(f~fr) I 0& II-c'R'" (3.67)

The problem of determining the optimal choice for
the sequence f f~I has no general answer; in special
cases one can conclude that the least divergent behavior
is as expressed in Eq. (3.67),4' but in general the

4' States )%'~) which are quasilocal and which satisfy Ps~%'iv) =
) %'iv) with

I
%'iv) given below are easily constructed.

4'Alternatively, the choice Acr. R leads to the same behavior.
4' This is the case for free fields and is probably the best possible

behavior in the general case.

leads to a better behavior:4' by a calculation parallel to
the one carried out in Sec. 3.D (proof of Theorem 3.2),
one can easily show that (3.66) leads to, for a con-
served current,

One also finds
«~. I

~.)!.=.=—(-'

44&i )) jo(fafr))0)I were bounded in R but did not have a
limit as R-+~, we cou d still conclude that for the given sequence
[ foal there exists a subsequence l fsl such that js(ge fr)I 0)
converged weakly. (This is so because any bounded sequence of
vectors in 3!contains a weakly convergent subsequence) (Akhiezer
and Glazman, 1961).This would contradict Theorem 3.2.

&~, I fs(f~fr) 10)-f zyf,'(y) g(y) I (I y I'g. )'+i]-t.

As R—+~, fR(y) —&(2s.)'6(y) in the sense of distribu-
tions. S'ince p(y)L(l y I'+e) s+'] ' is a good test function
in p, we can take the limit with impunity and obtain

&~ Ij o( f~ fr) I
0)- const (e) ~'
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By virtue of the Cauchy —Schwartz inequality,
we have

IIi p(f~fp) IO) II &(II ~. II) 'I &~, I jo(fgjT) Io) II.

(3.72)

Thus, as R-+~, the left-hand side of (3.72) becomes
bigger than (e) ~ ' times a constant independent of e.

Since e can be chosen arbitrarily small, we conclude that
II jo( fz fr) I 0) II cannot be bounded as R~~, what-
ever choice is made for the sequence l f~l (provided,
of course, that fit—+1 as R-+~ ).

For a conserved current, it is instructive to look for
more explicit examples of states

I
%') for which

lim (%' Ijt ( fa fr) I 0)WO. (3.73)

Clearly, I
%') cannot be quasilocal and thus must

describe long-range correlations. Furthermore, the
quantum numbers of

I
%') must be the same as those of

jo( fg fp) I 0).For a Hermitian current, this implies that
I%') can only contain particle —antiparticle pairs. In
order to further illustrate this point, we consider the
simple example of a free charged scalar field &p(x), with

the usual current j„=i:q*B„y: With . a+(k), b+(k) the
creation operators for particles and antiparticles of
momentum k, consider the state (Swieca, 1966)

I 2)=—ff(ki kz) l [(ki+k~) (ki —k2)7/(ki+k2)'I

Xet+(ki) b+(k, )dkidk& I 0), (3.74)

with a wave function f(ki, kz) )0 and such that
(2 I

2)=1. It is then easily verified that, with the
choice

I
%')=

I 2), Eq. (3.73) is satisfied in this model,
although I 2) is a neutral state (and thus G

I
2)=0).

Thus, we see that the origin of our troubles lies in the
possibility of having pairs produced from the vacuum

by the current j„.This and the translation invariance of
the "formal" state Q I 0) provide an intuitive explana-
tion of the origin of the divergence of II Q I 0) I I. In fact,
translation invariance implies that these vacuum
fluctuations must appear "everywhere in the same way"
and add up to an infinite value for II Q I 0) II. These
considerations also indicate the reason why similar
difficulties do not appear in nonrelativistic quantum
mechanics.

An interesting problem, and one which is still totally
open, is the one of finding a relation between the
"deviation" of the formal charge from an operator, and
the lack of current conservation. So far, all we know is
that the formal charge coincides on a dense set with an
operator if and only if the current is conserved. How-
ever, no relation is known between the "amount" of
current noncgnservation (symmetry breaking) and
properties of the charge.

For the sak.e of completeness, we also mention that a
formal charge can be defined as the limit of a sequence
of operators, provided one takes the limit in a "super-
weak" topology. This amounts to a further enrichment
in the structure of the Hilbert space in the sense of

embedding it in a larger space. Improper vectors (i.e.,
vectors having infinite ordinary norms) can then be
treated as ordinary vectors, with the proviso that their
scalar product is defined only with vectors in a subset of

the original space. 4' Although one might believe that an

approach along these lines could be helpful. for answering

the mentioned problem of characterizing nonconserved

charges, the existing work on the subject (Katz, 1966;
De Mottoni, 1967) does not shed much additional light
on the properties of formal charges. Thus, we feel

justified. in not giving an account of this approach.
Finally, we recall that Theorems 3.1 and 3.2 do not

depend on the mass-gap hypothesis, while we made use

of this assumption in the proof of Theorems 3.3—3.7.
However, Theorems 3.4-3.7 can also be proved under

the weaker assumption that no massless particles are
present (Ezawa and Swieca, 1967; Swieca, 1970).
Thus, the mass spectrum could be allowed to come
arbitrarily close to the point zero, provided no discrete
eigenstates beIonging to the eigenvalue zero of I"
exist that are different from the vacuum.

[[,A77=A; LL, A77-L, A7,

L.[,A77=L, L;.[,A77

Thus, one obtains forntally

(4 5)

A.= Z, [LQ, A77. (4.6)

Vice versa, given a continuous one-parameter group
of unitary transformations V(r), —oa (r(+oa, there
exists a self-adjoint operator that generates it. (This is
Stone's Theorem, see the Appendix)

In the case of symmetries associated with a Hermitian
conserved local current, at a more rigorous level the
identification of a charge with a generator has to be

To be precise, one constructs from the original space a
"rigged" Hilbert space (Gel'fand and Vilenkin, 1964).

"Throughout this section, we only consider Hermitian con-
served currents. The mass-gap hypothesis will be explicitly
stated whenever needed.

4' See the Appendix.

4. CHARGES AS GENERATORS OF SYMMETRY
TRANSFORMATIONS46

At the heuristic level, a charge Q is identified with

the generator of the one-parameter continuous Abelian

group of unitary operators V(r), r real, defined as'r

~(.)—= «p [iQ 7. (4.1)

When acting on operators A, these unitaries induce
the transformations

A—+A, =—exp [iQr5A exp [—iQr7.

If this map is C" in v, one finds

A ipi
——A, dA, /dr I, (& i[Q=, A——7, (4.3)

d"A,/dr" I, ,=i"[„[Q,A77, tt=O, 1, 2, ~ ., (4.4)

where [„[,A77 is inductively defined as follows:
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reconsidered. In fact, by Lemma 3.1, we know that,
when it exists, the operator G, associated with the
formal charge, is Hermitian. However, self-adjointness
is a stronger condition than Hermiticity, and G must be
self-adjoint in order to be a generator of symmetry
transformations (see the Appendix). Furthermore, G is
only defined on a dense set, and there are domain
problems which restrict the validity of Eqs. (4.2)—(4.6).

We shall proceed as follows: we first consider the
commutator between the "partial charge" jo(fr fr)
and a 1ocalized operator 2, and show that the limit

lim lim [js ( fz fz ), A 7—= [Q, A j
T~o 8~co

exists and is independent of how fit—+1,final. This will

provide a tool for constructing the multiple commuta-
tors [„[Q,Ajf. It will also allow us to complete our
discussion of the properties of the operator 6 associated
with a formal charge. Indeed, (4.7) leads to a con-
structive definition of G

~
%') for any localized state

~
%'). We check tha, t this definition coincides with the

less direct one discussed in Sec. 3.E.For the definition to
consistently define an operator, we find that Goldstone
phenomena must be absent.

In order to make our discussion fairly self-contained,
in Sec. 4.8 we brieRy digress on the Goldstone Theorem
for spontaneously broken symmetries. We emphasize
there that the Goldstone Theorem can be stated as the
impossibility of consistently defining an operator for the
formal charge when spontaneously broken symmetries
are present, a property which (as we saw in Sec. 3) is
shared by intrinsically broken symmetries (non-
conserved. currents).

In Sec. 4.C we brieRy consider the more mathematical
questions of the self-adjointness of 6, the domain
problems, etc., that were mentioned above.

A. Commutators Involving Charges and Definition
of Generators

We first prove the following theorem.

TIMOREM 4.1 (Kastler, Robinson, and Swieca,
1966) Let A be a localized opera, tor, and j„a local,
locally conserved current. The commutator

C(A) = Ljo(f~fr), A3 (4.8)

is independent of fir and of f& for sufficiently large R.

Since js(f~fz) is only defined on the Wightman
domain X) (see Sec. 2.B),Eq. (4.8) and all the operator
relations to be written below should be understood as
relations valid where each side is applied to a vector in
X). Theorem 4.1 is valid independently of the mass-gap .

hypothesis. We remark that this theorem is of crucial
importance if the identification (4.3) is to be preserved.
In fact, Theorem 4.1 shows that the limit (4.7), which
corresponds to [Q, A], for A localized exists and is
independent of how one approaches the formal limit Q.

Proof. Let A be localized in a, (bounded) region 8.
I or sufficiently large t., we cg,n construct two light cog.es

having apexes at (L, 0), ( L—, 0), and such that their
intersection, the diamond O, contains all of 0 (see
Fig. 1).

For
~

x
~

greater than L+T, the segment: x fixed,
0& xs

~

&T is totally spacelike relative to O. Thus,
for x

~
&L+T, js(x, fi) commutes with A by local

commutativity. Since fir(x) = 1 for
~
x

~
(R, one easily

sees that C(A) does not depend on the choice of fp for
R&I-+T.

[We rema, rk here that this part of the proof is
independent of current conservation as well as of how A
in Eq. (3.2) is allowed to depend on Rj.

In order to prove that C(A) is independent of fr,
we define f as follows:

f(xo) =
XP

[fr, "'(xs') —fr, '" (xo')j dxo, (4.9)

(4.11)

Since f(xs) vanishes outside of (—T, T) and since
8'fir(x) vanishes for

~

x
~
(R, we see that, for R&L+T,

j s(B"fzf) is localized in a region which is totally space-
like relative to O. Thus, js(Bsfit f) commutes with A for
all R&L+T. From this and Eqs. (4.9)—(4.11), the
second part of the theorem is immediately proved.

One easily shows that C(A) is a strictly localized
operator. By applying Theorem 4.1 to the commutator
between the partial charge and C(A), one also shows

X0

I:IG. 1. The operator 3 is localized. in the space —time region 0;
jp( fs fr) is localized in the strip having width 2 T for

~
x ))I+2';

all points in the strip are spaceljke relative to ().

where, sav, T& Ti& Ts, and f~,ui, fr, is& are functions of
the type considered in Eq. (3.2). Here f is a good test
function since it is C" and by (3.2) it vanishes outside
of ( —T, T). Clearly,

joLf (~f/d o)j=jo(f f "') jo(f f '—") (4 1o)

and, by current conservation, we obtain

joLf~(dfldxo) l= (~i'o)—(f—~f)
3

=+ 2 (~is)(f~f)
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GA [0) = IQ, Allo), (4.13)

with LQ, A$ defined as in Eq. (4.12) fo; rt = 1.By taking
A for the identity operator. , we see that

G
I
0)=O. (4.14)

Of course, we must check that Eq. (4.13) does indeed
consistently define an operator. If

I
%') is a quasilocal

state and if the mass-gap hypothesis is satisfied, G is the
operator determined by Q in the sense of Sec. 3. In fact,
Theorems 3.3 and 4.1 imply that, for

I
%') a quasilocal

state, and A a local operator,

(e [GA I 0)= lim lim ( I fjo(f,f, )A
I
0)

= lim lim (%'
I

tj o( fit fr ), A j [ 0),

the existence of all multiple coininutators

L„LQ, A]j= lim lim L L jo( Jtt fz ), Afj (4 12)

for any local A. The commutator I „Ljo( fg fr) Ajj,
for A localized, is independent of fit fz for 2 greater
than some finite E„.4'

We now proceed with the definition of the generator
G associated with the formal charge Q. We define it as
follows: t" has all localized states in its domain and, for
any localized operator A,

provided the vacuum is the only discrete eigenstate of
the mass operator belonging to the eigenvalue zero).

Thus, in the absence of zero-mass particles,

»' «I bio(f f ), Aj[0)=0 (4.17)

for all localized operators A.'
This property is intimately connected with the

impossibility of having spontaneously broken sym-
metries" in the absence of zero-mass particles. In fact,
Eq. (4.17) can be taken as a, sta, tement of the Goldstone
theorem ( Goldstone, 1961; Goldstone, Salam, and
Weinberg, 1962) (see below), a point which we now

briefly discuss.
Spontaneously broken symmetries arise when one is

given a conserved local current, but the formal charge is
riot the generator of symmetry transformations (i.e.,
unitary operators). As we shall illustrate in Sec. 4.C,
the transition from the formal charge to the finite
transformations corresponding to (4.1) is rather
delicate from the mathematical point of view. In view
of this fact, we will assume that such transformations
have been defined in some way and that they are
"generated" by the formal charge in a very weak sense
to be specified below.

We specify our assumptions as follows": for all
localized operators A in the Hilbert space $C of physical
states, and for all real r, a, map

(4.15) A—+A, (4.18)

and the existence of G is guaranteed by Theorem 3.5,
while property (4.14) is satisfied in view of Eq. (3.21).4'

Thus, when no massless particles are present, Eq.
(4.13) consistently defines an operator 'G on any
localized state

I
% ).

Eq. (4.14) is a consistency check for the definition
(4.13), and for it to be violated, massless particles must
be present. The connection between this and the
occurrence of spontaneously broken symmetries will be
considered next. Then following this digression, we will
return to our study of the finite transformations
generated by G.

(AB), =A,B„
(A+8),=A,+13„

(A').= (A.)'. (4.19)

is given. This map is assumed to satisfy the following
conditions:

(i) It is "internal": If A is localized in a region 8,
A, for all r, is also localized in the same region.

(ii) A—+A, is compatible with the usual operations
with operators:

for the domains of A and A„.

B. Symmetries and Syontaneously Broken Symmetries

We now investigate the consistency of the definition
(4.13) of the generator G.

From (4.13) and (4.14), we see that

(iii) A—&A, is a continuous map:
If

(4.20)

(0[ [Q, Aj fo)=O,
then

VA localized, (4.16) (4.21)
is a necessary condition for (4.13) to be a consistent
definition. We have already proved (Theorem 3.3)
that Eq. (4.16) is satisfied in the presence of a mass gap.
It can be shown (Ezawa and Swieca, 1967; Swieca,
1970) that Eq. (4.16) also holds under the weaker
assumption that no massless particles are present.
(The mass spectrum can come arbitrarily close to zero,

"We shall return to this point in Sec. 4.C.' Equation (4.14) is also satisGed under the weaker assumption
that there are no massless particles in theory. (See Sec. 4.8.)

A~A„ is also continuous in r.
(4.22)

' In view of Theorem 4.1, we need not take the limit T—+0 since
the commutator (4.8) is independent of fp for large R."A precise definition of a spontaneously broken symmetry
will be given below."See Kastler, Robinson, and Swieca (1966),where an analogous
formulation is given within the algebraic approach to quantum
Geld theory of Haag and Kastler (1964).
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for

~ I ~&6 A %)a„AE~
n=l

(4.20), (4.21), and V
I

%'}&g)~ in (4.22).
(iv) The maps A~A, form an Abelian group: With

additive notation

(A,),.=A,p, , (4.23)

and U(r) is continuous in r.
(4.26)

Proof of Theorem 4.2 In the absence of massless
particles Eq. (4.17) hoMs, so that Eq. (4.24) implies

(d/d7)(0 I A, I 0) I, o=0 (4.27)

this Abelian group is continuous in view of (iii).
(v) The formal charge associated with s. given local,

locally conserved current j„ is the generator of the
transformations A—+A, in the following sense: For all
strictly localized A, (0 I A„ I 0) is differentiable in
v atv =Oand

(d/d&)(0 I A I 0) I
o= hm &(0 I fjo(fzfr) Aj„l 0),~hajj

R~co

(4.24)

This is clearly a minimal ".requirement for the map
A—+A, to be in some way generated by the formal
charge.

Goldstone's theorem can now be stated as follows
(Goldstone, 1961; Goldstone, Salam, and Weinberg,
1962; Kastler, Robinson, and Swieca, 1966; Ezawa and
Swieca, 1967; Swieca, 1970; Streater, 1965 and 1965a).

THEOREM 4.2 The map (4.18), satisfying (i)—(v)
is a symmetry of the theory in the absence of zero-mass
particles. Thus, if there are no massless particles, there
exists a family I U(r)} of unitary operators imple-
menting the map (4.18):

A,= U(o.)A U(r) t. (4.25)

Furthermore, these unitary operators satisfy the
following conditions:

apply Eq. (4.30) to BtC, and from (ii) we obtain

(0 I B, C, I 0)= (0 I a C I 0}. (4.31)

Thus, the map (4.12) leaves invariant the scalar
product of any two localized states. Since the set of all
localized states is dense in K, one easily sees that the
continuity requirement (4.21) implies that the scalar
product of any two states in $C is left invariant under
the transformation (4.18),~ and the transformation
must be a unitary operator U(r). The invariance of the
vacuum is a consequence of the so-called recorIstructio~s
2'heorem (Streater and Wightman, 1964, Sec. 3—4),
which states that the knowledge of the vacuum expecta-
tion values of all the quasilocal operators or of all
localized operators is sufficient to completely and
uniquely reconstruct the corresponding 6eld theory.
Equa, tion (4.30) states that the expectation value of any
localized operator in the transformed vacuum

lo} =U(r) IO} (4.32)

Goldstone's phenomena will not be discussed here in
detail; excellent reviews can be found in Robinson
(1966), Reeh (1968), Swieca (1970), Kastler (1967),
Kibble (1967), Guralnik, Hagen, and Kibble (1968),
and Katz and Frishman (1967).The Goldstone theorem
states that, in a theory having the usual local structure,
the occurrence of massless particles is a necessary
condition for having a "spontaneously broken sym-
rnetry" (SBS). In our non-Lagrangian framework, a
spontaneously broken symmetry can be precisely
defined as a map (4.12) satisfying (i)—(iv) and asso-
ciated with a conserved current in the sense of (v),
which is not a symmetry of the theory (i.e., which
cannot be unitarily implemented). ~

From the proof of Theorem 4.2, we see that a neces-
sary and sufhcient condition for having a SBS is that
there exists at least one localized operator A such that

equals the one in the original vacuum
I 0). From this to

conclude that I 0}„=I 0) requires some technical
arguments which the reader can easily reconstruct by
adapting those in Kastler, Robinson, and Swieca
(1966), p. 117. There, the reconstruction theorem is
replaced by its analog for the Haag-Kastler algebraic
approach (called the Gelfand —Naimark-Segal con-
struction).

for all localized A. From (i), A, has the same localiza-
tion properties as A, and, by choosing A, instead of A,
Eq. (4.27) gives

(0 I A, I O)W(0 I A
I 0}.

By (v), Eq. (4.32) implies

(ollQ, A) IO}~0,

(4.33)

(4.34)

thus, for all ~,

(d/dr) (0 I A, I 0) I. ..=0; (4.28)
and a necessary condition for this is the presence of
massless particles.

(d/dr)(O I A, I
0)=0, (4.29)

or, equivalently,

(0 I
A

I 0)= (0 I
A

I 0} (4.30)

Given any two localized operators 8 and C, we can

"Since the localized states form a dense set, any vector )
%')

can be arbitrarily well approximated by A
l 0) for some suitably

chosen /ocul operator A. The transformed vector
l
%'), is then

defined by continuity from A, l 0).
54 This situation is to be contrasted with the case of an ietriesic-

ally brokel symmetry, which arises when the current is not exactly
conserved.
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If Eq. (4.34) holds, according to our discussion in
Sec. 4.A it is impossible to consistently de6ne an
operator. G associated with the formal charge and
having the vacuum in its domain.

A situation that seems to be relevant in practice is
the one in which a SBS is an approximate symmetry in
the following sense (Reeh, 1968):The transformations
(4.18) are loca/ly unitarily implementable but cannot be
globaOy implemented by unitary transformations.

Local Unitary irrtPlerrterttability for (4.18) means that,
for each region 8 in space time and for all A localized
in 8, the map A~A, is unitarily implementable:

A~A, = U(8, r)A U(e, r)t. (4.35)

C. Symmetry Transformations Generated
by a Charge55

Given a conserved current in a local theory without
massless particles, we know that the formal charge Q
defines an operator G. For a Hermitian current, by
Lemma 3.1, G is a Hermitian operator. This however is
not sufficient for exp fiGrj to be a unitary operator
depending on v. in a continuous fashion. If G can be
closeQ, and if its closure is a self-adjoint operator, then
exp tiGtr) is a unitary operator, since Gt=Gtt, and
Gtt is the closure of G.

Equivalently" we can say that if G is essentially
self-adjoint, its adjoint Gt is the generator of unitary
transformations

U(r)= exp fiGtrj.

Furthermore, by Eq. (4.14), we have

U(r) i
0)= I 0),

(4.36)

(4.37)

while the converse of Stone's theorem'~ implies that the
transformations (4.36) form a continuous Abelian

'5 We collect in the Appendix some mathematical definitions
and theorems used in this subsection.

"The term expteGtr) is not necessarily given by its power
series on all vectors in the domain of G . See the Appendix, in
particular the discussion on Nelson's theorem."See the Appendix.

]'f there is no unitary operator U(r) which performs
the transformation (4.35) and is irtdepertdertt of the
region of localization for A, the map A~A, is not
globally unitarily implementable.

Transformations of this kind will not leave global
entities invariant, a situation mirrored by Eq. ,4.32),
which reRects the noninvariance of the vacuum.

A thorough discussion of these points can be found in
the quoted literature, especially Reeh (1968) where

they are discussed within the Haag —Kastler algebraic
appl oach.

We remark that, in this section, the transformations
(4.18) were assumed as being given a priori. The
problem of the actual construction of transformations
generated by a formal charge will be discussed in
outline in the next subsection.

group:
U(r) U(r') = U(r+r'),

II P(r) —U(r') j ~ ~) II -0. (4.39)

At this point one ought to look for conditions to be
satisfied by the current jo that are equivalent to the
essential self-adjointness of G.

No general answer to this highly mathematical
question is presently available, and probably the
problem can only be solved in some concrete examples.

I,et us make the technical assumption" that the
partial charges jo( fz fv) are essentially self-adjoint
operators; this allows us to consider the unitary
operators

Utr s (r)—= exp Ljio'( fir fr)rg (4.40)

~ 0)ttTl 1= exp $j~o'( fz fr) r ] ~
0) (4.42)

does rtot cortverge& a any sense to I 0) as E~~ .' Recalling
Eq. (4.37), we see that

)=U( ) I )&» U ( ) I0). (443)
B~~,T~O

For
~

% ) a localized state, we have" Lcf. Eqs. (4.13-
4.14)$:

(4 44)

with E greater than a suitably chosen Eo. We remark
that, from Theorem 4.1, one easily proves that the
multiple commutators P„Pjo(fz fr ), A+gj exist, are
localized in a region which does not depend on n, and
become independent of fg f~ for all 8 greater than a
suitably chosen Ro, independent of e.

8 If the vacuum is an analytic vector for a (Hermitian) Wight-
man field smeared with (real) test functions of compact support,
one says that "the vacuum is analytic. " Borchers and Zimmer-
mann {t963) proposed to adopt the analyticity of the vacuum
as an extra postulate for quantum fields. They have shown that,
if the vacuum is analytic, the smeared field has a dense set of
localized analytic vectors and thus, by Nelson's Theorem (see
Appendix), it is essentially self-adjoint. Furthermore, analyticity
of the vacuum was shown by Borchers and Zimmermann to be

- the condition to be satisfied in order for a functional formulation
of the theory to be possible. However, it must be emphasized
that the physical significance of the analyticity of the vacuum
is unclear and there are Wightman fields for which it is not
satisfied.

» See Kastler, Robinson, and Swieca (f966) for a proof of this
statement. We remark that Unr (r) ) 0) might still converge weakly
to a vector X ( 0), with ) X

~
&1. See Reeh (1968) for a discussion

of this point.
60In the following, we omit taking Gt and jo~ instead of G

and jo.

and to make some comments on the connection between
U(r) and t'he limit

lim exp $ijo ( fg fr)r j. (4.41)
B~~,TM

We remark that this connection cannot be very
simple. Indeed, the vector
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If a vector
j

ttIt') is analytic for G, then

exp [tGrj
~
%) P

)
G

~

iI")'.
n=o

(4.45)

finding the operators A for which

A,=—U(r)AU(r)t

equals the following limit:

(4.47)

If, in addition,
~

%') is strictly localized, we see from

Eq. (4.44) that
llm AR, T,r y

g~oO, Q~Q

(4.48)

ca (~'r )n

exp[fGrj I
~)= 2, [.[io(f~fr), A~j.'I o) I~)&,.

n=0

(4.46)

At this point, we need to make a dis. inction between
internal and external symmetries. An internal symmetry
is defined here as a symmetry which maps all operators
localized in a region 6 into operators localized in the
same region 5. An external symmetry is a symmetry
which is not internal.

For an internal symmetry generated by G, it is at
least plausible that there exists a dense subset of
localized vectors which are analytic for G. This is

probably the case when the theory is described by a
:finite set I @;I of Wightman fields having definite
internal quantum numbers (see Sec. 5.C). Thus, the
series (4.45) is expected to be convergent for internal
symmetries and! %') in a dense subset of all localized
states. If one could actually prove this property, by
Nelson's Theorem" the essential self-adjointness of G
would follow. Furthermore, Eq. (4.46) would allow

one to explicitly calculate the effect of U(r) on localized
states.

For an external symmetry, the constructive definition
of G given in Sec. 4.A becomes clumsier for constructing
exp [iGr] Indeed. , although Eq. (4.44) retains its
validity, one does not expect the series in Eq. (4.45)
to be convergent for localized states. The intuitive
reason for this can be most easily understood in the
rase in which G is one of the generators P„of space —time
translations. If I %') is strictly localized, it will contain
components belonging to arbitrarily large eigenvalues
of the energy and momenta. Thus, the series (4.45)
might not have a finite radius of convergence. "

The above qualitative remarks are not compelling,
since the convergence of (4.46) for

~

%') localized might
still hold. However, we conjecture that if. G had a dense
set of localized analytic vectors, the symmetry generated

by G would necessarily be internal. Thus, in the case of
an internal symmetry we suggest that one ought to
look for an extension of the definition of G given in

Sec. 4.A so as to include, say, quasilocal states which
are not strictly localized.

Related to the above problems is the problem of

See Appendix.
's In such cases, exp PiGrg~ %') is Not defined by (4.45), but by

continuity from its values for ~%'s )'s satisfying ( %'tr)~~ %') and
such that the series

~ (") G" (~ )nt

converges. Alternative definitions of exp[iGr]( %') can be found
in the literature quoted in the Appendix.

with

Aii r,—= exp [ij tt(fz fr)r)A exp [ ij p(f—~ fr)r1. (4.49)

If t.he limit (4.48) exists for a, localized A, we can
explicitly compute the transformation (4.47) for this
particular A. If the limit (4.48) exists for an irreducible
set of loca, lized operators, Eq. (4.46) provides a tool for
explicitly calculating the transformed operators.

The mathematical problems mentioned in this
section (essential self-adjointness of G, convergence of
Uter (r) to U(r), etc. ) are to a large extent unsolved at
present. One of our main purposes in mentioning them
is to give the reader some idea of what remains to be
done in order to completely clarify the mathematical
content and the practical usefulness of the converse
of Noether's Theorem.

We refer to Reeh (1968) and Maison (1969) for a
more detailed discussion of some of the paints raised in
this subsection.

S. CHARACTERIZATION OF CHARGES AND
SYMMETRIES IN SCATTERING THEORY

We now study the concrete problem of characterizing
charges and internal symmetries in scattering theory.
We shall find a simple expression for a charge in terms
of the asymptotic free fields of the theory. "This will
provide us with a useful practical tool for dealing with
charges and symmetries: As typical applications, we
consider the cases of the generators of Poincare trans-
formations and of internal symmetries. The mentioned
characterization also provides a simple way to prove
that internal symmetry groups must be compact in a
theory in which the multiplicity of each mass multiplet
is finite. ~

We then obtain the same characterization of internal
symmetry transformations from the action of the
symmetry transformations on the interpolating fields,
following a method due to Lopuszansky (1969).

We suggest that the combined use of these methods
should provide a useful shortcut for bypassing some of
the problems mentioned in Sec. 4.C;

Finally, we indicate a method for constructing
interpolating fields having de6nite internal quantum
numbers. The conceptual importance of this property
for interpolating hejds is briefIy discussed.

Throughout this section, currents are taken as
Hermitian and conserved, and the mass-gap hypothesis

"This problem was discussed in Orzalesi, Sucher, and Woo
(&968) .

'4This statement needs the quali6cation that the symmetry
group be semisimple and faithfully represented by unitary trans-
formations.
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is made. + We consider only theories satisfying usyrrtp-
totic corrtp/etertess, i.e., theories in which the asymptotic
free fields form an irreducible set.

We assume that the reader is familiar with the usual
asymptotic conditions in quantum field theory, at least
at the level of the classic I.SZ papers (1955 and 1955a).
In order not to obscure the practical value of our dis-
cussion, we shall avoid the most technical points, and
occasionally make use of semirigorous arguments. We
do, however, indicate how these arguments ought to be
modified in order to make them more rigorous.

A. Characterization of Charges

Perhaps the most important property of the genera-
tors of symmetry transformations is that they can be
used without any detailed knowledge of the dynamics
involved. This, in a sense, is the main motivation for
considering symmetries at all: to obtain restrictions on
physical qiiantities without having to study the
dynamical details of the processes involved.

In scattering theory, the kinematics is fully described
by the asymptotic configurations, whereby each
particle, being well separated from all other particles,
can be thought of as free. A symmetry implements the
fact that certain properties are preserved by the dy-
namics of the system; such properties can thus be
completely characterized by looking at the asymptotic
configurations. All this is best described by the property
of additivity that ought to be satisfied by the generator
of symmetry transformations. " Thus, e.g., the total
electric charge of a state describing E protons and M
antiprotons is (X—M)e, irrespective of the configura-
tion properties of this (%+M)-particle state.

In the introductory textbooks on quantum fieM

theory, the additivity of generators is made apparent
by writing expressions for them such as

f dkf(k)ur(k) u(k), (5.1)

with f(k) a c-number function, and ut(k), u(k) the
usual creation and annihilation operators Iwe consider
the simplest case of a single scalar Hermitian field p:

4(~) = ( /( n)"')f dk(1/(»~)'")

XI e'"*ut(k)+e '"*u(k)j (5.2)

with &oq
——ko ——(rrt'+k')'t' rrs being the mass of the

particles associated with the field gI.
Now, while expressions such as (5.1) are meaningful

for free fields, the presence of interaction makes the
creation and annihilation operators time dependent in a
possibly discontinuous way, and this might make (5.1)

"Thus, we want to avoid the occurrence of broken symmetries,
whether arising from lack of current conservation or from Gold-
stone-type phenomena. The mass-'gap hypothesis is also made
because no rigorous scattering theory is presently available for
massless 6elds.

"A,n operator G is additive if g1+g2 is in the spectrum of G
whenever g1 and g2 are in the spectrum of G. For the group-
theoretical notion of additivity and a more complete and rigorous
analysis of it, see Doplicher, Haag, and Roberts (1969, 1970).

(k I
G

I
k')=f(1 )~(k—1') (5.6)

of G between one-particle states, together with its
property of being additive, completely characterize G.

We now observe that, conversely, Kqs. (5.4) and
(5.5) completely characterize G. Indeed, by asymptotic
completeness, any operator that commutes with the
"in" or "out" fields is a c number. Thus, Eq. (5.4)
determines G up to a c number, which is fixed by Eq.
(5.5). Hence, if we want to prove that a given operator
I- equals G, we only have to check that I. satisfies the
same CR's as G with the "in" and "out" fields, and that
the vacuum expectation values of I and G coincide.

We now return to our problem of proving additivity
for the generator associated with a formal conserved
charge.

We know that the formal charge determines an
operator, defined as in Sec. 4.A. Let us call L this
operator associated with the formal charge having the
density jo. One easily sees that L is translationally
invariant and time independent. Thus, its matrix
elements between one-particle states' will be of the
following form:

(k I
J.

I
k')=f(k)5(k —k') (5.7)

"The function f(k) in (5.3) is the same whether one expresses
G in terms of the "in" or "out" operators. In fact, G on the one-
particle states determines f, and the "in" and "out" one-particle
states', coincide.

We momentarily neglect the problem of whether or not I
has such states in its domain. See remark (iii) below.

a meaningless expression for interacting fields. Further-
more, an interacting field effectively describes infinitely
many (virtual) particles, and (5.1), even when it is
meaningful, is not guaranteed to be additive.

Our problem is to show that the generator associated
with a formal charge, for a conserved current, does
indeed satisfy the property of being additive on the
asymptotic configurations. In order to prove this
property, we ought to look for a simple expression of
the generator in terms of the asymptotic fields.

In the simplest case of a theory describing only one
type of scalar, neutral stable particle with mass m, we
will find that a generator G can indeed be written as

G:f dkf(k)u j~,o~i(k)u'n o~i(k) (5 3)

in terms of the asymptotic "its" and "out" creation and
annihilation operators. We already mentioned that the
expression (5.3) is meaningful since it involves only
time-independent free operators. '~ In order to make it
more transparent that the expression (5.3) is indeed
additive, we use the CCR's to write

LG, u"-,-i(k) j=f(k)u' ..-i(k)
I:G, u -.-«(k) j=—f(k)u'-, . i(k) (5 4)

and remark that, since the integrand in (5.3) is normal
ordered,

(0 I
G I o)=o (s.s)

Thus, the matrix elements
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for some function f(k). We take Eq. (5.7) as dePrsing

f(k) and then cotistruct an operator G from Eq. (5.3)
or, equivalently, from Eqs. (5.4—5.5).Thus, G is defined
so as to be additive and to agree with I on the sub-
space of one-particle states. We want to prove the
following theorem:

THEOREM 5.1 (Orzalesi, Sucher, and Woo, 1968)
The generator L associated with the formal charge for a
local, locally conserved current j„satisfies the CR's"

in, out (&)$=f(&)is in, out (&) q

$L, a;„,.„,(k)$= —f(k)a;„,„,(k). (5.8)

Equivalently, since (0
~
L I 0)=0, we must prove that

J=G, (5.9)

with G defined by (5.4) and (5.5), and with f(k)
given by (5.7).

In order to prove Theorem 5.1, we Grst prove the
following lemma.

Lemma 5.1 Let if be a local field, local relative to the
local conserved current j„.The commutator

C(*)—=LL, 4(*)j—= »m Cjp(fz fr), 4(x)j (5 10)
B~oci, T-+0

is a local field. Thus, C(x):

(i) transforms like a field under translations:

T(a)C(x)T(a)t=C(x+a); (5.11)

(ii) commutes with itself for spacelike separations:

LC(x), C(y) j=0 for x y; and (5.12)

(iii) commutes for spacelike separations with any
local field f which is local relative to P and jp'.

property (i) follows from the fact that g(x) is a local
Geld and L commutes with the space —time translation
operators. We now prove (iii); since the proof of (ii) is
completely analogous but slightly more involved. '

For x y and x, y, s all different from each other, we
have

t Ljo( ), 4( )j 4(y)7=LLjo( ), 4(y)j, 4(*)j, (5 14)

where we used the Jacobi identity" and dropped the
term containing LP(x), f(y) j which vanishes by local
commutativity.

' Equation (5.8) and Eqs. (5.10)—(5.16) below are to be
understood as relations valid when both sides are applied on a
quasilocal state. As a general rule, in this section we will not
enter into any details concerning domain problems. We under-
stand that such problems ought to be taken care of by consistently
working with limits of d d s f 's and ma. k.in. g. all the needed as-
sumptions.' To be more precise: when Theorem 5.2 below applies, (ii)
follows immediately from (iii) )see remarks (a) —(c) beiowj.
Otherwise, a direct proof of (ii) can be given by iterating the
proof of (iii).

"We emphasize that we are taking x, y, z all diGerent from
each other. Thus, we are using the Jacobi identity for the smeared-
out fields only.

For x y, we can choose s0 in an open interval Z0 in
such a way that, for all z, the four-vector s is spacelike
separated from at least one of the two points x, y (see
Fig. 2). From (5.14), it follows that, for x y,

&L jp(s), 4 (x)$, 4 (y) j=0 for sp6 Zp. (5.15)

By taking f&(sp) concentrated in Zp and by integrating
over s, we obtain

LL2p(f~fr), 4 (*)j, it (y)]=0 for x-y (5 16)

By Theorem 4.1, C(x) is independent of fq, and
Lemma 5.1 is proved.

We make the following remarks:

(a) Often in the literature, locality is invoked in
order to conclude that, for equal times,

L jp(z, xp), @(x)j=F(x)8(x—z)

+Fr(x) ~ V8(z —x)+ ~ ~ ~, (5.17)

where the dots indicate a Gnite sum of terms involving
higher derivatives of 8(z—x).Equation (5.17) expresses
the fact that, for equal times, only the point x= z is not
spacelike relative to z, so that the commutator can be
nonvanishing only at that point. From (5.12), the
locality of C(x) formally follows upon integration. We
emphasize that in our argument me did rot meed to Nse
eglal-time consmltators. The formal proof indicated in
(5.17) is faulty in many respects, chieQy because
equal-time commutation need not be well defined on
general principles. ~'

(b) In all practical circumstances, one is faced with
basic local and relatively local fields Ip;I which form an
irreducible set, and with currents j~«) which are related
to the basic fields by local field equations, and thus are
local and local relative to the basic Gelds. Furthermore,
the currents are used to describe the dynamics of the
system, and thus are usually assumed to be themselves
elements of an irreducible set of local and relatively local
fields. In such cases, the following two theorems, due to

FIG. 2. The points x and y are spacelike separated. All z in the
strip having width Zo are spacelike separated with respect to at
least one of the two points x, y.

See, e.g., Orzalesi (1968) for additional details on this point.
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Borchers (1960), are of the greatest importance:

THEOREM 5.2 Relative locality is a transitive
property.

More precisely, let there be given two irreducible sets
of local and relatively local fields t @;I, IX,I, and a third
set of fields If;I which are local relative to the P, 's,
and let all three sets of 6elds have a common Wightman
dense domain X). Then, the P s are local and local
relative to the x s. Thus, locality is an equivalence
relation, and we can consider the equivalence class of all
local fields which are local relative to the fields of a
given irreducible set (Borckers class for the given set
of fields).

THEOREM 5.3 Two irreducible sets of local fields
in the same Borchers class have the same S-matrix.

(c) As a consequence of Theorem 5.2, we see that in
all cases of practical interest, P(x) is local relative to

j„, if it is local relative to P. Thus, we inight drop the
"and j„"in our statement of property (iii). Further-
more, (5.12) becomes an immediate consequence of
(5.13) and Theorem 5.2.

(d) Since we are assuming that the current j„is local
relative to the interacting field P, we cannot assume
that j„is also local relative to the asymptotic field P; .
Indeed, in the spirit of remark (b), by Theorem 5.2 we
would have that P and it; are relatively local. But
then, by Theorem 5.3, P would have S matrix equal to
one, since @; is a free field.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 Since C(x) is a local field, we

can apply the LSZ asymptotic condition and write, in
the sense of (weak) asymptotic convergence:

LI s if'in, out(x))

lim C(x)

lim I dkI (k II PL, P(x)) I 0)at;„,,„t(k)

+(0 I LL, e(x)) I k)a;..-t(k) I

=ydkI( IIL„y,....t(x)) Io).t;....,(k)
+(0

I C~, @i-,-t(x)) Ik&a'-.-t(k) I

=I dkI (1 I LG, y;...„,(x)) I
0)at;...„t(k)

y (0 I I G, qb;„...t(x)) I k&a'-,. t (k) I

=LG, ~'-,- ( )). (5.18)

It:. In deriving Eq. (5.18), we made use of the fact that
I. is time independent, and satisfies I. I 0)=0 Lcf Eq.
(4.1.4)). We then used the fact that it;„,,„t only creates
and destroys one particle, and L coincides with G on the
subspace of one-particle states. Finally, in the last step
we used the fact that G is defined to be additive.

By asymptotic completeness, Eq. (5.18) and the
equality of the vacuum expectation values of G and L
imply Eq. (5.9), so that Theorem 5.1 is proved.

Remarks: (i) In the following, we return to our usual

notation and write G for the generator associated with a
conserved formal charge. In view of Theorem 5.1, no
confusion between I.and the G defined in Eqs. (5.4—5.6)
could possibly arise, since 6=L.

(ii) According to the discussion of Sec. 3, the domain
of definition of G is the set of all quasilocal states. In
Sec. 4, we provided a constructive definition for the
action of G on the localized states. We remark that G
not only commutes with the energy —momentum
operator on the localized states, but also on the quasi-
local states. This property and the corresponding
generalization of Theorem 4.1 for quasilocal operators A
can be easily seen to be a consequence of Theorems 3.3
and 3.5, and of Theorem 2.4.

Thus, although the constructive definition indicated
in 4.A becomes clumsier for quasilocal states, we are not
restricted in applying G to a quasilocal state.

(iii) The above remark is relevant to the proof of
Theorem 5.1. In fact, the smeared-out field @(f) will,
in general, create many-particle states from the vacuum.
However, if f is suitably chosenr' in the class 8, then
g(f) I 0) is a one-particle state. Furthermore, the set
of states obtained in such way is dense in the subspace
of one-particle states, which are thereby guaranteed to
be in the domain of the generator. If the domain of G
only contained the strictly localized states, for f strictly
localized, f would not vanish for large p' and the state
p( f) I 0) could not be a one-particle state.

(iv) It is not in the spirit of this section to seek
absolute rigor. However, we remark that our Theorem
5.1 can be proved in a completely rigorous way by
working within the Haag —Ruelle scattering theory
(Haag, 1958; Ruelle, 1962; Hepp, 1965; and Araki and
Haag, 1967). Once Lemma 5.1 is proved, since

(k I C(x) I 0)eo, (5.19)
one can directly apply the Haag —Nishijima —Zimmer-
mann (1958) theorem to conclude that C; (x) and
g;, (x) must differ at most by a polynomial in the
derivatives 8/Bx„This p.roof expressed by Eq. (5.18)
ought to be regarded as an application of this theorem,
and thus is also subject to the same limitations as most
theorems proved within the Haag —Ruelle scattering
theory; see especially Hepp (1965) and Araki and
Haag (1967).

(v) The CR's (5.8) have a simple intuitive meaning:
since L commutes with energy and momentum, it
cannot change the support properties of a field, in
momentum space. Thus, $L, @;,,„t(x)) must have the
same energy —momentum support properties as P;,(x).
By asymptotic completeness, the only fields" satisfying

"The Fourier transform 1' of f ought to have support con-
centrated around the one-particle mass nt hyperboloid. J(p)
should vanish for p'&m', with m(2m. See Haag (1958), Ruelle
(1962), Hepp (1965), and Araki and Haag (1967) for additional
details.

'4In arriving at this conclusion, Lemma 5.1 is of crucial im-
portance. In fact, e.g., i; (k)+u, „~(k) has the same support
properties as c; (k), but it cannot be the asymptotic limit of
a field local relative to ts. Thus, it is the locality of I L, p(n) j
relative to @(g) that e»mfnates possibilities like this.
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this property should have creation and annihilation
operatots of the form f(k)a', „,,t„(k)) etc. In what
follows, we will often use this more intuitive picture
rather than its rigorous version, expressed by the use of
the asymptotic condition.

B. Generalizations and Ayylicatii. ons

1. Geeeratisatio@s

If more than one type of particles is present, we can
group the stable particles in mass multiplets. Thus,
there will be E; particles for each value m; of the mass
that corresponds to stable one-particle states. X, will be
assumed to be 6nite for each i, but we will impose no
restrictions on how iV, might vary as the mass m;
increases. This situation appears to be realized in

nature by the existing particles and resonances.
By energy —momentum conservation, the matrix

elements of a conserved generator G~ between one-

particle states will vanish unless the particles belong to
the same mass multiplet. Following arguments parallel

-to those given in Sec. 5.A, one easily sees that Theorem
5.1 admits the following generalization:

TIIEOEEM 5.4 In a theory which is asymptotically
complete, satis6es '-'.

.the mass-gap hypothesis, and
describes the interaction between E& types" of stable
particles of mass m&, E2 of Inass m2, etc. , a TCP-
invariant generator Gq associated with a locally con-
served Hermitian local current j„&satisfies

LGrq a t';in, out(k) j g fr~j(k)a j;in,o'ut(k)y
j=i,m;=m;

LGt, a;, ;„,.„t(k)g=- — Q f(„(k)a;.;„„.,„t(k),
j=l,mj=mi

held. , transforming like a symmetric tensor and satis-
fying c)&T„„(x)=0; (ii) T„„ is local relative to all
elements of an irreducible set of local fields, in an
asymptotically complete theory satisfying the mass-gap
hypothesis; (iii) the generator A „associated with the
space integral of To„commutes" with all operators
whose eigenvalues serve to distinguish single-particle
states degenerate in mass. Then: A„ is proportional to
the energy —momentum operator I'„.

In view of Theorem 5.4, all that is needed in order to
prove Theorem 5.5 is to show that 2, and cI'„, with
c a constant, coincide in the subspace of one-particle
states. We refer to Orzalesi, Sucher, and Woo (1968)
for a proof of this property.

Under minor additional assumptions, it can also be
shown (Orzalesi, Sucher, and Woo, 1968; Divgi and
Woo, 1970) tha, t the generators associated with
f (x&Tp„—x„Tp&) dx coincide with oM„„, where M„„are
the generators of the homogeneous I.orentz trans-
formations. '7

3. Interval Symmetries

We now apply Theorem 5.4 to the study of internal
symmetries. We adopt here a notion of "internal" that
is probably not stronger than the one defined in Sec.4.C:
an internal symmetry transformation is defined here as
one which commutes with all Poincare transforma-
tion s.78

If a generator G~ commutes with all Poincare trans-
formations, the f&;; (k) appearing in Eq. (5.20) are
actually independent of k, their dependence on I being
absorbed into the index i. Thus, a generator. G~ of
internal symmetry transformations satisGes

LGt, a', , ;....,(k) j=j&,,a';.„....,(k), etc. , (5.25)

«I G I0)=0,
(5.20)

(5.21)

where j is summed from 1 to E;.
Some additional properties of fr,; can be inferred if

one specifies the properties of the 6elds having atj-;,„&,

5(k—k')f(, , (k)—= (j, k
~

G&
~
i, k'), (5.22)

~

t', k) a one-particle state of type i and momentum k,
and at;. ;„,„t(k), a, .;„,„,(k) the creation and annihila-
tion operators for the corresponding asymptotic free
Geld.

Z. The Gerterators of the I'o6scare Group

We 6rst discuss the case of energy —momentum
operators. Clearly, our theorem finds application in all
cases where one is given a local, conserved energy-
rnomentum density T„„(x), sa, tisfying ctl'T„„=O. The
arbitrariness of T„„is best expressed by the following
theorem which speci6es sufhcient conditions for a local
Geld T„„ to be the density of the energy-momentum
operator.

THEOREM 5.5 (Orzalesi, Sucher, and Woo, 1968)
Given: (i) T„„(x)is an (essentially) self-adjoint local

'~ The particle type is here determined by the internal quantum
numbers and by the spin.

"For unbounded operators A and B, PA, Bj=0 is to be under-
stood as meaning (At&

[ B%')= (Bt& [ A tI" ), Y
~
4 ), [ ~ ) 6

P(A) f)g (B) so as to take care of a domain problems.
"See Divgi and Woo (1970) for a detailed analysis and proof

of this property. The explicit coordinate dependence in the density
of M„„does not create additional difficulties since it is particularly
simple and known.

"The notion of "internal" dered: in Sec. 4.C is not weaker
than the one introduced here, at least for symmetries associated
with conserved vector currents and for symmetries which act
locally or almost locally on the interpolating 6elds (see Sec. 5.C,
Theorem 5.6 for the characterization of such symmetries). In
fact, in the case of a conserved, vector current, it is not difficult
to show that the correspondingIItgenerator is Poincar4 invariant.
For the case of an internal symmetry V acting locally or almost
locally on the fields, one can show that V must commute with
space —time translations as a consequence of properties of the
two-point function of the transformed and original fields. For a
Lorentz transformation h., one observes that U(h) VU(h) t=—Vg
is an internal symmetry acting locally on the fields if V is such.
According to Theorem 5.6 below, Vaj, ,„&(k)V~ =g(k) ajn, o~t, (k),
g(k) a c-number function, for symmetries of this kind. It can
then be shown that Vgej, ,„&(k)Vgt=g(k)aj, , &(k), with the
same g(k), so that g is actually independent of k, so that Vg= V,
and V commutes with Poincarb transformations. )The details
can be found in Landan and Wichmann {1970) and Landan
(1970).]
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a;., ;„o„~as their creation and annihilation operators, but
we shall not provide a detailed analysis of such proper-
ties."

From Eq. (5.23), since X, is finite, we see that
f f&} is a square finite-dimensional matrix. "Thus, we
can easily iterate Eq. (5.23) and find the effect of the
finite symmetry transformations on the asymptotic
fields. In configuration space, we obta, in, using a
matrix notation,

exp [tGir ]&i;in,oui(x) exp [ iGir ]:4i; in, out(x) ill

= exp [if'']p;, ;„,,„&(x), r real. (5.24)

If Gi is (essentially) self-adjoint, the matrices
exp $ifir'] will be unitary. If furthermore these matrices
form a unitary representation of a continuous group,
this representation is finite dimensional, and one can
conclude that interrsal continuous symmetry groups are
comPact s' This. result follows only from current con-
servation in any local theory satisfying: (i) the mass-
gap hypothesis, (ii) asymptotic completeness, and
(iii) finite multiplicity for each mass multiplet. That
internal continuous symmetry groups are necessarily
compact under a,ssumptions (i)—(iii) has been known
for some time in a different context (Lopuszanski,
1969; and Doplicher, Haag, and Roberts, 1969). Our
proof presents the advantage (over the other existing
proofs) that we need. no additional assumptions
regarding the action of exp [iGir'] on the interpolating
fields. (We shall return to this point in the next sub-
section).

Remark: By virtue of Eq. (5.23), for an internal
svmmetrv, G leaves invariant the subspace of all one-
particle states having fixed energy and momentum.
The converse of this statement is also true and can be
heuristically formulated as follows:

Statement 5.1 [Coleman (1965)] Let j„be a local
current in a theory satisfying asymptotic completeness
and the mass-gap hypothesis. If the formal charge
associated with j„ leaves invariant the subspace of
one-particle states with fixed energy and momentum,
then the current j„must be conserved.

Thus, the symmetry associated with j„must be
exact. We leave it to the reader to reformulate State-
ment 5.1 in rigorous terms by using the cha, rge "matrix"
rather than the formal charge. s'

"See Lopuszanski (1969) for the details in a special case.
"This property considerably simplifies the problems connected

with the fact that 6 is only defined as a limit of d.d.s.f.'s. In fact,
it allows for an explicity calculation of the action of G on
scattering states. However, not all is well since our results depend
on the validity of Lemma 5.1, the proof of which did not take
domain problems into due consideration.

"We are assuming that the symmetry group is a semisimple
Lie group and is faithfully represented. Our assertion then follows
from the fact that for a semisimple I.ie group to have 6nite-
dimensional faithful unitary representations, the group must be
compact.

"Statement, 5.1 has been rigorously proved in Pohlmeyer
(1966) and, in a generalized form, in Dell'Antonio (196'I).

C. Characterization of Internal Symmetries

In the preceding subsection, we described a simple
characterization of generators in a scattering theory.
From this, we indicated how one can construct the
action of the unitary operators implementing the
symmetry on the asymptotic states.

In this process of "geometrization" of the charges and
associated symmetries, nothing was said of the action
of the unitary operators exp fiGr] on the interpolating
fields, and the discussion of Sec. 4.C indicates that it
might be very dificult to specify such action.

Here, we consider the case in which a certain sym-
metry transformation is defined for the interpolating
fields and satisfies a rather weak. assumption that is
expected to hoM for internal symmetries associated with
a conserved current.

We then prove, following the arguments given by
Lopuszanski (1969) that such a symmetry trans-
forrnation acts on the asymptotic states in very much
the same way as described in the preceding subsection.

We assume —throughout this section —that asymp-
totic completeness and the mass-gap assumption are
fulfilled by our theory. We also assume that the theory
describes the interaction of only J scalar stable particles,
all having the same mass m&0. This assumption is
made mainly in order to simplify the discussion, and it
could be weakened to cover a case as general as the one
considered in Sec. 5.8.

Thus, let the theory be specified by an irreducible
set of J local and relatively loca, l interpolating fields
it;(x), i=1, ~ ~,J, with

(k, i
~ @,(x) ~ 0) 8„const e*'" (5.25)

Suppose now that we are given a unitary operator V
such that

(Oi Vi 0)WO (5.26)

and such that V commutes with the Poincare trans-
formationss' and the TCP operator.

We define new fields iP; as follows:

iP, (x)=—V@,(x) V (5.27)
and assume that V is such that iP, is local or almost
local (see below) relative to the fields @,. "Almost
local" in this context means that, for any X,

(*—y)'"[4'(x), A(y)] —, -o (5.2g)
(X~)~~oo

Then, we have the following property:

THEOREM 5.6 (Lopuszanski, 1969) Under the
above assumptions, if the fields iP, form an irreducible
set, V commutes with the S-matrix, and

J
i'; in, out(x) = V4i; inout (x)V =

, P cris4'j; in, oui (x) & (5.29)

where Iu} is a unitary matrix.
» I or an internal symmetry V satisfying the condition of

"locality" or "almost locality" dered below, V commutes with
the Poincard group (see Landau (1970)g. Here, we list this
property as a hypothesis in order to simplify the proof of Theorem
5.6.
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This theorem can be generalized to the case in which
one is given unitary operators U(ri, ~ ~ ~, r„) which
form a unitary representation of a continuous group.
In this case, the corresponding matrices tx(ri, ~ ~ ~, r„)
will form a finite-dimensional unitary representa, tion of
the given group, which confirms the already sta, ted
result that internal continuous symmetry groups must
be compact when only finite mass multiplets are
present.

Proof of Theorem 5.6 From the fact that U commutes
with all Poincarb transformations, and from the
Poincare invariance of the unique vacuum, Eq. (5.26)
im liesp

UIo)= "Io) (5.30)
with P a, real number. We can absorb the phase factor
exp PiP] in the de6nition of U and limit our discussion
to a V satisfying

D. Interpolating Fields With De6nite Internal
Quantum Numbers

In the ordinary introductory treatments of quantum
6eld theory, it is implicitly assumed that dednite

U
I

o&=
I o). (5.31)

At this point, one uses a generalization of Theorem
4.3 LAraki, Haag, and Schroer (1961)] that applies
under the weaker condition of rehtive almost locality.
This theorem implies that the asymptotic 6elds ttt;, ;„,„,
are proportional to the asymptotic fields Pj in out, The
proportionality constants can be obtained, by a pro-
cedure similar to the one used in Sec. 4.A, from the
matrix elements of V between one-particle states.

We omit all additional details and applications, which
can be found in Lopuszanski (1969), where the reader
can also find a generalization of the Carruthers (1967)
theorem.

Theorem 5.6 generalizes the applications of Theorem
5.4 discussed in Sec. 5.8 in that V need not be of the
form exp [iGir'], with Gi the generator associated with
the charge for a. conserved current. On the other hand,
we ha, d to make the extra assumption —not needed for
Theorem 5.4—that P; as defined in Eq. (5.27) is almost
local relative to ttt;. According to Lemma 5.1, and to
the discussion of Sec. 4.C, it is plausible that

exp LiGir']ttt; exp $ t'G p'] —(5.32)

is local or almost local relative to ttt; for the case of
internal symmetries.

However, from the discussion in Sec. 4.C, we also
know that very little can be said about the locality of
(5.32) relative to ttt;.

From Eq. (5.29), one sees that the knowledge of U'

on the one-particle states determines V on the many-
particle states. The relation between V defined on the
one-particle subspace, and the unique operator induced

by it on all of K by equations of the type (5.29), has
been investigated in great. generality by Segal (1959).
Here, no domain problems arise since V is unitary and
thus bounded.

e"tt (a) dr (5.36)

is the desired field satisfying Eq. (5.34). Indeed, since

(~Id )~.= LG, ~.], ~.-=~.=~, (5»)
Eq. (5.34) is clearly satisfied. Furthermore,

hatt is a local
field since the $„0&r& 2' are local fields, while g and P
have the same 5 matrix since they are relatively
(almost) local and have equal asymptotic fields (Araki,
IIaag, and Schroer, 1961).

The construction of @ indicated above is clearly
independent of G being the cha, rge for a, conserved
current. The essential ingredients are the group
properties of the map f~, and the relative (almost)
locality of P and P,.

Doplicher, Haag, and Roberts (1969, 1970) used
constructions of the type indicated above to study
theories with internal symmetries within an algebraic
approach to quantum field theory (Haag and Kastler,
1964). There, the main problem was to study the

'4For simplicity, we restrict our discussion to the case of a
single generator and a single scalar field. AVe only consider
generators which commute with Poincar6 transformations. See
Doplicher, Haag, and Roberts (1969, 1970) for a study of the
case in which non-Abelian gauge groups are allowed. ."We normalize G so as to have exp [~G2ntr )= 1 for all
integers e.

internal quantum numbers can be ascribed to inter-
polating fields. The motivation for this assumption is,
once more, the fact that, when the theory admits a
continuous internal symmetry, certain properties will
be unaffected by the dynamic changes that the system
might undergo.

However, in the spirit of the converse of Noether's
theorem, one ought to Prove that interpolating fields can
indeed be taken as having definite internal quantum
numbers. Thus, for example, given a conserved current
and given that, according to Sec. 4, the associated
generator G satisfies 4

L t 4 in, out(&)]= &gin, out(&) t

one ought to prove that the corresponding interpolating
field tt (x) can always be chosen so as to satisfy

LG 4(*)]=z4(~), (5.34)
i.e. , it is a field having G charge one.

We now prove the above statement in a weakened
form. Thus, suppose that there exists a local inter-
polating field P, having asymptotic fields ttt;„,o i. Let us
assume that8'

P, (x)=—exp I iGr]$(x) exp I
—iGr), 0&r&2 tr

(5.35)
is a, local field, which is local or almost local relative to
p. Furthermore, we assume that the maps /~it, form
a continuous, differentiable Abelian group, and that the
domain of definition of P, ( f) is not smaller than the
domain of P( f), for Vf6 S.

Under the above assumptions,
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interrelation between formulations of such theories in
terms of gauge-invariant quantities only or in terms of
charge-carrying fields.

According to the discussion in Sec. 3, the formal
charge associated with a local current always has rather
delicate convergence properties. The partial charges
corresponding to jr jo(x) dx do not converge in any
simple operator mathematical sense as the volume V
tends to infinity. At least for states

~

%') of physical
interest (states which are localized or qua, silocalized of
6nite or infinite order), the convergence as V-+~ of
1'rjo(x) dx

~

%') cannot be taken in the natural strong
and weak topologies in the Hilbert space $C of physical
states.

We mentioned in Sec. 3.E that a precise rnathe-
matical meaning can be given to the limit as V—+~ of
the above vectors. This can be done by introducing a
"rigged" Hilbert space. However, the physical meaning
of the additional structure thus introduced is unclear,
and the existing results in this approach do not appear
to clarify the issue in any significant way.

On the other hand, we found a convenient and
mathematically precise way of dealing with formal
charges by considering them as limits of sesquilinear
forms defined on a dense set. Ke proved that the limit
Q(e, e') of (e )jo(f&f&) (%') as R~~ exists for (4')
and ~%') quasilocal and de6nes a sesquilinear form.
We then reduced the problem of the inhnite-volume
behavior of the formal charge to the question of whether
or not Q(4, %') is the form of an opera, tor.

This infinite-volume problem is probably the simplest
example of divergences that can occur in quantum
field theory. In spite of its simplicity, this problem
creates a number of technical difFiculties in the study of
the converse of Noether's theorem:

(a) In the case of an exactly conserved current, and
uihen massless particles are absent, we found it possible to
construct an operator corresponding, to the formal
charge. This is somewhat gratifying, since it excludes
the occurrence of very pathological situations. However,
the mere existence of an operator G which "extends"
the formal charge is not enough to answer the problem
of constructing the symmetries associated with local
current conservation. For this, one ought to prove that
G is essentially self-adjoint, and that it does satisfy all
the properties expected of a generator of continuous
symmetry transformations.

The question of the essential self-adjointness of G
was merely touched upon in Sec. 4.C. In all known
relevant examples, questions of this kind appear to be
extremely diKcult to solve, ~ and we fear that little
progress mill be made in the near future in the case of
general current operators.

S6 See JaRe (1969) for a discussion of problems of a similar
kind in the case of Hamiltonians in "constructive" quantum
Geld theory.

In a scattering theory, and neglecting the mentioned
delicate mathematical problems, we found that the
operator G satisfies all the properties expected of a
generator, summarized in the notion of "additivity" on
the asymptotic states. This con6rms our expectations
from the Lagrangian formalism, and provides a simple
way to characterize charges and symmetries associated
with conserved currents.

We did not at all solve the problem of proving
relative (almost) locality between a field and its
transform under the symmetry generated by G. This
problem also appears to be of the highest diKculty, as
are most questions in the study of the structure of the
Borchers class of a given field.

Leaving this last mentioned problem aside, a large
class of symmetries which transform local fields into
fields which are almost local relative to the untrans-
formed ones were characterized by their simple action
on asymptotic configurations. For continuous internal
symmetries of this kind, we also found that the sym-
metry can be "dynamically" implemented, in the sense
that the interpolating field can always be chosen as
having a definite value for the internal quantum
numbers.

We could not prove that the symmetry transforma-
tions associated with a conserved current satisfy the
requirement of transforming the interpolating fields
in a "local" or "almost local" fashion, although
Lemma 5.1 indicates that this is likely to be true, since
the commutator LG, @$ of the generator G with the
field P is local and local relative to @. Thus, in order to
apply the construction of Sec. 5.D to symmetries
associated with conserved currents, one presently needs
the additional technical assumption that the trans-
formed field be almost local relative to the original one.
However, we can still conclude that our treatment and
construction of interpolating helds having definite
internal quantum numbers is to be considered as a
remarkable improvement over the standard treat-
ments, which are based on much more questionable and
stronger assumptions (e.g. , the validity of CCR's, the
use of formal expressions for the charge density, etc. )

Once the existence and properties of the generator of
symmetry transformations are proved, the converse of
Noether's theorem is to a large extent established, in
the sense at least that (barring pathological domain
problems) the characterization of charges given in
Sec. 5 is sufFiciently general for all practical applica-
tions.

(b) In the case of nonconserved currents, whereby the
symmetry is intrinsically broker, we found that the
divergence properties get worse. The formal charge no
1onger admits a physically interesting operator exten-
sion (having quasilocal states in its domain). We can
restate Coleman's theorem in a strengthened form by
saying that whenever the formal charge determines an
operator having the vacuum in its domain, the current
mes( be conserved.

Thus, we 6nd a con6rmation of the fact (Fabri and
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Picasso, 1966; Fabri, Picasso, and Strocchi, 1967) that
a unitary group describing an internal symmetry which
does not commute with the Hamiltonian cannot be
used for describing broken symmetries. To be more
precise, we found that the generators of such one
parameter unitary groups would either not be related
to a formal charge or would have no quasilocal states in
their domain of definition. In both cases, the practical
usefulness of broken symmetries in this formulation
would be highly impaired. It seems quite remarkable
that we needed not recur to the study of many-point
functions in order to draw our conclusions. Indeed,
only two-point functions were used. This can be seen as
one more instance of the power of the Reeh —Schlieder
theorem (1961) Lsee also Jost (1969);Schroer (1958);
Federbush and Johnson (1960); and Lopuszanski
(1961)$.

We remark that the additional difFiculties inherent to
the study of nonconserved charges do not appear to be
rel.evant for the present current-algebraic formulation of
broken symmetries ( Gell-Mann, 1962; Adler and
Dashen, 1968). Indeed, this approach, based on equal-
time commutators and regularity conditions such as
"partial axial-vector current conservation", can be
formulated in rigorous terms in a way that takes cage of
the difficulties discussed here as well as of other difficul-
ties that couM be met in using equal-time commutators
(Schroer and Stichel, 1966; Orzalesi, 1968).

In recent times, integrals of local densities over
infinitesimally thin lightlike slabs have been the center
of increasing attention. Their commutators "on the
light cone" have been fruitfully investigated by several
authors (see, e.g. , Klauder, Leutwyler and Streit, 1970;
Brandt, 1970; Leutwyler, 1968; and Jersak and Stern,
1969), as they are an important tool for studying the be-
havior of scattering amplitudes in certain high-energy
domains. We emphasize that our results do rot apply to
such generalized "lightlike" charges, since we only con-
sidered integrals of local densities over spacelike slabs
(and, in the limit T~O, over spacelike surfaces). In
particular, Coleman's theorems are rot expected to
hold for lightlike charges. To the contrary, there are
indications that an opposite theorem takes place, in the
sense that a lightlike charge is always expected to
annihilate the vacuum, irrespective of current con-
servation.

(c) In the case of spontaneously broken symmetries,
whereby the current is conserved but there is no
associated exact symmetry, we found that a generator
cannot be consistently defined from the formal charge.
Again, the fact that no charge operator exists was
recognized as a consequence of the large-volume be-
pavior of formal charges in the presence of massless
harticles: these are such as to make it impossible to
define an operator extension of the formal charge
having the vacuum (assumed to be unique) in its
domain. Thus, Goldstone's Theorem is recognized as
following from the fact that, in the presence of zero-
mass particles, a formal charge can become, in a precise

sense, "more divergent" than in the absence of zero-
mass particles.

In a sense, spontaneously broken symmetries provide
counterexamples to the converse of Noether's Theorem.
On the other hand, some salient features of these
counterexamples can be understood within the
Lagrangian framework as well as in a more axiomatic
setting (Kastler, Robinson, and Swieca, 1966; Swieca,
1966; Streater, 1965, 1965a). Of course, this does not

, imply that we possess a clearcut and complete under-
standing of Goldstone phenomena.

We can conclude that the converse of Noether's
Theorem is to a large extent understood and proved in
quantum field theory. Still, a great deal remains to be
done: we lack, on the one hand, a satisfactory study of
the mathematical properties of the operator extensions
of charges (essential self-adjointness, etc. ) and, on the
other hand, a deeper and more complete study of the
exceptions to the theorem (spontaneously broken
symmetries).

Concerning Noether's theorem itself, little can be
said: What emerges from our analysis of its converse
is that a satisfactory study of the complete Noether
problem should face the highest difficulties. Given that
a certain continuous symmetry exists, one ought to
prove the existence of a local conserved current whose
associated charge operator generates the symmetry
transformations. This statement is probably false as it
stands, and a more promising attitude is to look for a
classification of symmetries for which the statement is
true. In any case, the fact that generators and formal
charges only coincide on a dense set and cannot be
strictly identified with each other, is expected to cause
serious difficulties. Most likely, the proof of existence
and the analysis of the properties of conserved local cur-
rents for given symmetries will face difficulties com-
parable to thos- not yet solved'. —that are met in the
construction of a nontrivial Wightman quantum field.
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APPENDIX

We collect here some mathematical definitions and
theorems that might prove useful especially for the
understanding of Sec. 4.C. In the spirit of that section,
we provide only the minimal amount of information
necessary to get across some idea of the mathematical
problems involved.

We only consider /kseu~ operators in a Hilbert space
$C. Such an operator, A, is defined on a domain, X)~, a
linear manifold of SC, and satisfies

A(~ [e)+p [ e ))=nA [a }+pA [ e') (A1)
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l~)e», A l~)= I4). (A3)

If A is not closed, then one can look for its closed
extensions. If it has any, there will be a smallest, whose
graph is the closure I'(A) of the graph, I'(A), of A.
However, it can happen that I'(A ) is not the graph of a
linear transformation, because it violates the above
single valuedness condition. If I'(A) is the graph of a
linear transformation A, A is called the closure of A.

Next we introduce the notion of the adjoint of an
operator. This will be done in a geometrical way and
then it will be verified afterwards that it coincides with
the usual definition. Consider the orthogonal comple-
ment, I'(A)~ of the graph I'(A) of a linear trans-
formation A. It consists of all pairs of vectors {%',X}
such that the scalar product in $CQ+$C satisfies

for all complex numbers u and P, and all ~4z) and

~
%') in». To visualize the relations between linear

operators it is helpful to use the notion of graph. The
graph, I'(A ), of a transformation A is the set of ordered
pairs {~4z),A ~4z&}, where ~4z) runs over». It is
therefore a linear subset of NO+K. Then (A1) can be
stated geometrically as: the graph of a linear trans-
formation A, is a linear subset of KQ+$C. Not every
linear subset of $CQ+$C is the graph of a linear trans-
formation. The crucial point is that if {}4z),0} is a
point of the graph of a linear transformation then
}4z)=0; this is a condition that guarantees that A is

single valued.
An operator, 8, is an extension of an operator, A, if

the domain of B contains tha. t of A: X)eg», and
B ~4z&=A

~
4') for all vectors ~4z& in». Under these

circumstances we write AQB or BQA. In terms of the
graphs of A and 8 this relation is equivalent to
I'(A)QI'(B), where here the relation Q is ordinary
set-theoretical "contained in."

An operator, A, is called closed if its graph I'(A) is a
closed linear subset of KQ+$C. This can be seen to be
equivalent to the condition that

I ~-)C» I
'I'-)~

I
'I')«,

A
~
e„)~[4)gXC (A2)

imply

ACAt, (A7)

or in words, if for every+ and%'Q X)z, a dense linear set

(A I )4)=(1 iA4). (AS)

Clearly, this implies immediately that At is densely
defined, (because A must be so for Ai to exist) and

A QAtt =AQAt. (A9)

An operator, A, is self-adjoizzt if

A =A~.

It is essentially self adjoin/ if-
Att=A~.

(A10)

(A11)

An essentially self-adjoint operator is one whose closure
is self-adjoint. Every essentially self-adjoint operator is
Hermitian, but not conversely /for examples, see
Wightman (1966)].

The importance of self-adjoint operators in quantum
mechanics arises from Stone's theorem. To state it we
need the notion of a continuous orze parameter Ab-eliazz

group of unitary operators. That is, a family of unitary
operators U(r) defined for —~ (r(~ and satisfying

and
U(ri) U(r2) = U(ri+r2)

(~ I
U(.) I ~)

(A12)

is continuous for all v- for each fixed pair of vectors
~4z&, ~iY). Stone's theorem says that every such can-
tinuous one-parameter group is of the form

for all4z&». Then%'=AtX by definition. A& is called
the adj oint of A. Since I'(A )Q I'(B) implies I'(A ) z Q
I'(B)& we have immediately that

AQB implies At&Bt. (A5)

Clearly, since (I'(A)&)~=1'(A), (At)t exists for a
densely defined A if and only if 'Zzi' is dense, and
(A t) t is the closure of A

A= (A")t. (A6)

An operator, A, is HermitM, g if

({~,x},{4' A4})=—(~14')+(x I
A4)=0 («) U(r) = exp LiAr], (A13)

for all4zg». We ask whether I'(A ) & is the graph of a
transformation from the second $C in KQ+$C back to the
first, i.e., whether there is a linear transformation A&

such that the {4,X} satisfying (A4) are of the form

{A ~x, x}.Applying the above-mentioned single-valued-
ness criterion we see that A& will indeed exist if
(%' ~4 )=0 for all 4$» implies

~
4)=0. Thus, A~

exists if A is defined on a dense set. Notice that the
usual definition of the adjoint for an everywhere
defined operator A is just given by A~= —A&. More
generally, if A is a densely defined linear operator,
XF X)~t if there exists a vector%' such that

(~ l~)=(x I A~)

where A is a self-adjoint operator. Since there is a
standard operator calculus for bounded functions of
self-adjoint operators that says that for every self-
adjoint A, (A.13) defines a continuous one parameter
group of unitary operators, the significance of A being
self-adjoint is clear Lsee Wightman (1966) for some
examples that are relevant in physics).

In the operational calculus, 'r exp PiAr] is not
defined by its power series, but there are useful things to
be learned from a study of the power series. To sta, te
one of them, we introduce the notion of an aealytic
vector for an operator A. + is an analytic vector for A

' See, e.g. , Kata (1966).
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if A"W is dered and if the series

converges in some disk
~
s

~
(R.By the usual arguments

about power series, this criterion is equivalent to the
absolute convergence

=o mf

in all smaller disks,
~

s
~

(R—e, e(0. Now we can state
nelson's theorem: a Hermitian operator s's essentially
self adjoi-nt if and only if it possesses a dense set of
arIalyti c vectors.
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