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L. E. BALLKNTINE
Department of Physics, Simon Fraser Unieer'sity, Bnrnaby, J3.C., Canada

The Statistical Interpretation of quantum theory is formulated for the purpose of providing a sound interpretation
using a minimum of assumptions. Several arguments are advanced in favor of considering the quantum state description
to apply only to an ensemble of similarily prepared systems, rather than supposing, as is often done, that it exhaustively
represents an individual physical system. Most of the problems associated with the quantum theory of measurement
are artifacts of the attempt to maintain the latter interpretation. The introduction of hidden variables to determine the
outcome of individual events is fully compatible with the statistical predictions of quantum theory. However, a theorem
due to Bell seems to require that any such hidden-variable theory which reproduces all of quantum mechanics exactly
(i.e., not merely in some limiting case) must possess a rather pathological character with respect to correlated, but spacially
separated, systems.
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INTRODUCTION

1.0 Preface and Outline

This article is not a historical review of how the
quantum theory and its statistical interpretation came
to be. That task has been admirably carried out by
Max Jammer (1966) in his book The Conceptual
Detetopntertt of Quarttunz Mechartics, and also by van
der Waerden (1967). Our point of departure can
conveniently be introduced by considering the follow-
ing statement made by Peierls (1967) in a review of
Jammer's book:

"Chapter 7 ~ ~ ~ is headed 'The Copenhagen Inter-
pretation. ' ~ ~ ~ the phrase suggests that this is only one
of several conceivable interpretations of the same
theory, whereas most physicists are today convinced
that the uncertainty relations and the ideas of comple-
mentarity are essential parts of the structure of quan-
tum mechanics ~ ~ . A discussion of alternative inter-

If, as appears to be the case, the latter remarks by
Peierls refer to the models known as hidden-variable
theories (see Sec. 6), we agree that these should be
treated as new theories, and that they are not new
interpretations of quantum mechanics "any more than
quantum mechanics is a new interpretation of classical
physics. "However we shall show, contrary to the view

expressed by Peierls, that the Copenhagen interpreta-
tion contains assumptions which are not "essential
parts of the structure of quantum mechanics, "and that
one such assumption is at the root of most of the
controversy surrounding "the interpretation of quantum
mechanics. " It is the assumption that the quantum
state description is the most, complete possible descrip-
tion of an individual physical system.

An interpretation which is more nearly minimal in the
sense of including all verifiable predictions of quantum
theory, but without the contestable features of the
Copenhagen interpretation, we shall call the Stutistical
Interpretation The distinc. tion between these inter-
pretations (which share many features in common)
will be made in the following sections. SuKce it to say,
for now, that if we identify the Copenhagen Inter-
pretation with the opinions of Bohr, then the Statistical
Interpretation is rather like those of Einstein. Contrary
to what seems to be a widespread misunderstanding,
Einstein's interpretation corresponds very closely with
the one which is almost universally used by physicists
in practice; the additional assumptions of the Copen-
hagen interpretation playing no real role in the applica-
tions of quantum theory.

The outline of this paper is as follows. I'irst we give a
brief summary of the mathematical formalism of
quantum theory in order to distinguish the formalism,
which we accept, from the physical interpretation,
which we shall examine critically. %'e then consider
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di8erent interpretations, and expound the Statistical
Interpretation in detail.

The Secs. 2, 3, and 4 could be prefaced by Appendix
*xi of Popper (1959) on the proper use of imaginary
experiments, in which he points out that Gedanken
experiments can be used to criticize a theory but not to
justify or prove a theory. Our discussions of the Gedanken
experiment of Einstein, Podolsky, and Rosen, of the
uncertainty principle, and of the measurement process
are undertaken to criticize the assumption that a state
vector provides a complete description of an individual
system. Although arguments of this type can refute the
hypothesis being criticized, they cannot, of course,
"prove" the Statistical Interpretation but can only
illustrate its advantages.

Sections 5 and 6 deal with two concepts (joint
probability distributions for position and momentum,
and hidden variables) which have often been thought
to be incompatible with quantum theory. That belief,
however, was based in an essential way upon the above
hypothesis which we criticize and reject. It turns out
that, within certain limits, the formalism of quantum
theory can be extended (Not modified) to include these
concepts within the Statistical Interpretation.

Finally we summarize our conclusions.

1.1 Mathematical Formalism of Quantum Theory

Quantum theory, and indeed any theory, can be
divided Lsee Prugovecki (1967), or Tisza (1963)$
into:

(a) A mathematical formalism consisting of a set of
primitive concepts, relations between these concepts
(either postula, ted or obtainable by given rules of
deduction), and a dynamical law.

(b) Correspondence rules which relate the theoretical
concepts of (a) to the world of experience.

This division is not absolute —clearly one must have
a formalism in order to make correspondence rules, but
unless one has at least some partial idea of corre-
spondence rules, one would not know what one was
talking about while constructing the formalism—
nevertheless it is convenient for the present task.

The mathematical formalism of quantum theory is
well known and can be abstracted from any of several
textbooks (Dirac, 1958; Messiah, 1964). The primitive
concepts are those of state and of observable.

F1 An observable is represented by a self-adjoint
operator on a Hilbert space. It has a spectral repre-
sentation,

R= Qr„F', (1.1)

where the P„are orthogonal proj ection operators
related to the orthonormal eigenvectors of E by

with
P&p„&f (1.3b)

Zp-=1 (1.3c)

This state operator formalism is reviewed by Pano
(1957).
F3 A pure state can be defined by the condition p'= p.
It follows that for a pure state there is exactly one
nonzero eigenvalue of p, say,

p&1 =0 for sQ's .
In this case we have .= I ~-&(~- I, (1.5)

and so a pure state may be represented by a vector in
the Hilbert space. A general state which is not pure is
commonly called a mixed state.

F4 The average value of an observable E in the state
p is given by

(R)= Tr (pR), (1.6)

where Tr means the trace of the operator in parentheses.
For a pure state represented by the normalized vector
~ P&, (1.6) reduces to (R)=(P

~
R

~
f&. By introducing

the characteristic function (e'&'~&, we can obtain the
entire statistical distribution of the observable E in the
state p. It follows that:

FS The only values which an observable may take on
are its eigenvalues, and the probabilities of each of the
eigenvalues can be calculated. In the case of a pure
state represented by the normalized vector

~ P&, the
probability of eigenvalue r„of R is g ~ Q ~

tt, r.) ~'.

This is a generalization of Born's (1926) famous
postulate that the square of a wave function represents
a probability density.

So far we have only given necessary, but not sufhcient,
conditions for the mathematical representations of
observables and of states. To complete the specification,
the following is usually postulated:

Here the numbers r are the eigenvalues of E., and the
parameter a labels the degenerate eigenvectors which
belong to the same eigenvalue of E. The sums become
integrals in the case of continuous spectra. Equation
(1.1) is equivalent to the statement that an observable
must possess a complete orthogonal set of eigenvectors.

F2 A state is represented by a state operator (also
called a statistical operator or density matrix) which
must be self-adjoint, nonnegative definite, and of unit
trace. This implies that any state operator may be
diagonalized in terms of its eigenvalues and eigenvectors,

P= ZP I 0-&(4. I,

I'„=P ~
a, r„&(a, r„~. F6 The Hilbert space is a direct 'sum of coherent

(1 23
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subspaces, within each of which (almost) every vector
may represent a pure state. This is a formal statement
of the superposition princip/e with allowance being
made for superselection rules. ' The set of all mixed
states can be constructed from the set of all pure states
using (1.3) .

F7 Any self-adjoint operator which commutes with
the generators of superselection rules, or equivalently,
all of whose eigenvectors lie within coherent subspaces
of F6, represents an observable. This postulate may be
criticized on the grounds that it is dificult to imagine a
procedure for observing a quantity like (x'p, '+p, 'x'),
which should be an observable according to this
postulate. The general form of F7 is unnecessary
in most, if not all practical applications, but it is used
in Von Neumann's theorem (Sec. 6.1) .
FS The dynamical law or equation of motion depends
in detail upon the physical system under consideration
(i.e., number of degrees of freedom, whether relativistic
or nonrelativistic), but in every case it can be written
in the form,

to arise in practice. We can, for example, unambiguously
determine the Hamiltonian operator for any 6nite
number of particles interacting through velocity-
independent potentials in the presence of an arbitrary
external electromagnetic 6eld.

The diferent interpretations of quantum theory are
most sharply distinguished by their interpretations of
the concept of state. Although there are many shades of
interpretation (Bunge, 1956), we wish to distinguish
only two:

(I) The Statistical Interpretation, according to which
a pure state (and. hence also a general state) provides
a description of certain statistical properties of an
ensemble of similarily prepared systems, but need not
provide a complete description of an individual system.

This interpretation is upheld, for example, by Einstein
(1949), by Popper (1967), and by Blokhintsev (1968).
Throughout this paper the capitalized name "Statistical
Interpretation" refers to this specific interpretation
(described in detail in Sec. 1.3) .

in general, or
p(t) = Up(to) U '

I4(~) &=UI4(~0) &

(1.7a)

(1.7b)

(II) Interpretations which assert that a pure state
provides a complete aud exhaustive descriptiou of au
indkviduat system (e.g., an electron).

1.2 Correspondence Rules

The correspondence rules must relate the primitive
concepts of state and observable to empirical reality.
Xn so doing they will provide a more specific inter-
pretation for the averages and probabilities introduced
in F4 and F5.

The natural requirement placed upon an observable
is that we should be able to observe it. More precisely,
an observable is a dynamical variable whose value can,
in principle, be measured. For canonically conjugate
va, riables the corresponding operators are obtained
through Dirac's canonical commutation relation,

qP Pq = fii. — (1.8)

There is no general rule for constructing a unique
operator to represent an arbitrary function f(q, p)
because of the noncommutability of q and p (Shewell,
1959). Fortunately the most general case does not seem

' A superselection rule (Wick et ul. , 1952; Galindo et a/. , 1962)
is a restriction on the superposition principle. For example, a
vector which is a linear combination of integer and half-integer
angular momentum' eigenvectors cannot represent a physical
state. A coherent space is one in which the superposition principle
has unrestricted validity.

for a pure state, where U= U(t, to) is a unitary operator.

The above is not intended to be an axiomatization of
quantum theory, but merely a compact summary of
the mathematical formalism of the theory as it exists at
present and in practice. Except for the reservation
noted in F7 it should be noncontroversial. Such is not
the case with the correspondence rules.

This class contains a great variety of members, from
Schrodinger's original attempt to identify the electron
with a wave packet solution of his equation to the
several versions of the Copenhagen Interpreta, tion. '
Indeed many physicists implicitly make assumption II
without apparently being aware that it is an additional
assumption with peculiar consequences. It is a major
aim of this paper to point out that the hypothesis II is
unnecessary for quantum theory, and moreover that it
leads to serious di6iculties.

1.3 The Statistical Interpretation

The term, Statistical Interpretation, will be used
throughout this paper in the specific sense here ex-
pounded, and should not be confused with the less
speci6c usage of this term by other writers (e.g.,
Messiah, 1964, Chap. 1V) who do not distinguish it
from the Copenhagen interpretation.

Of primary importance is the assertion that a quantum

' Bohr (1935, 1949) argued against Einstein, who rejected II.
Heisenberg's position is somewhat unclear. One reference (1930,
p. 33) contains a statement fully in accord with the Statistical
Interpretation; however, in a later writing specifically in defense
of the Copenhagen interpretation (1955, p. 26) he states "an
individual atomic system can be represented by a wave func-
tion. . .".His interpretation of probability (1958, Chap. 3) was
based on the Aristotelian notion of "potentia", which is quite
different from the Statistical Interpretation. Messiah (1964) is
quite explicit (p. 152, 158) in favoring II over I. Although both
claim orthodoxy, there now seems to be a difference of opinion
between what may be called the Copenhagen school represented
by Rosenfeld, and the Princeton school represented by Wigner
(see Rosenfeld, 1968 and references therein). But since both fac-
tions appear to accept hypothesis II, our criticism will apply to
both.
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state (pure or otherwise) represents an ertsemble of
similarly prepared systems. For example, the system
may be a single electron. Then the ensemble will be the
conceptual (infinite) set of all single electrons which
have been subjected to some state preparation tech-
nique (to be specified for each state), generally by
interaction with a suitable apparatus. Thus a rnomen-
tum eigenstate (plane wave in configuration space)
represents the ensemble whose members are single
electrons each having the same momentum, but dis-
tributed uniformly over all positions. A more realistic
example which occurs in scattering problems is a finite
wave train with an approximately well-defined wave-
length. It represents the ensemble of single electrons
which result from the following schematically described
procedur- acceleration in a machine, the output from
which can take place in only some finite time interval
(due to a "chopper"), and collimation which rejects
any particle whose momentum is outside certain limits,
We see that a quantum state is a mathematical repre-
sentation of the result of a certain state preparation
procedure. Physical systems which have been subjected
to the same state prepa, ration will be simila, r in some of
their properties, but not in all of them (similar in
momentum but not position in the first example).
Indeed the physical implication of the uncertainty
principle (discussed in detail in Sec. 3) is that no state
preparation procedure is possible which would yield an
ensemble of systems identical in all of their observable
properties. Thus it is most natural to assert that a
quantum state represents an ensemble of similarily
prepa, red systems, but does not provide a complete
description of an individual system.

When the physical system is a single particle, as in
the above examples, one must not confuse the ensemble,
which is a conceptual set of replicas of one particle in
its experimental surroundings, with a beam of particles,
which is another kind of (many-particle) system. A
beam may simulate an ensemble of single-particle
systems if the intensity of the beam is so low that only
one particle is present at a time.

The ensembles contemplated here are different in
principle from those used in statistical thermodynamics,
where we employ a, representative ensemble for cal-
culations, but the result of a calculation may be com-
pared with a measurement on a single system. Also
there is some arbitrariness in the choice of a repre-
sentative ensemble (microca, nonical, canonical, grand
canonical). But, in general, quantum theory predicts
nothing which is relevant to a single measurement
(excluding strict conservation laws like those of charge,
energy, or momentum), and the result of a calculation
pertains directly to an ensemble of similar measure-
ments. For example, a single scattering experiment
consists in shooting a single particle at a target and
measuring its angle of scatter. Quantum theory does
not deal with such an experiment, but rather with the
statistical clistribution (the differential cross section)

of the results of an ensemble of similar experiments.
Because this ensemble is not merely a representative or
calculational device, but rather it can and must be
realized experimentally, it does not inject into quantum
theory the same conceptual problems posed in statistical

thermodynamics.
In general quantum theory will not predict the result

of a measurement of some observable E. But the
probability of each possible result r„, ca,lculated ac-
cording to F5, may be verified by repeating the state
preparation and the measurement many times, and
then constructing the statistical distribution of the
results. As pointed out by Popper (see Korner, 1957,
p. 65, p. 88), one should distinguish between the
probability, which is the relative frequency (or measure)
of the various eigenva, lues of the observable in the
conceptual infinite ensemble of all possible outcomes of
identical experiments (the sample space), and the
statistical fretIuency of results in an actual sequence of
experiments. The probabilities are properties of the
state preparation method a,nd are logically independent
of the subsequent measurement, although the statistical
frequencies of a long sequence of similar measurements
(each preceded by state preparation) may be expected
to approximate the probability distribution. If hy-
pothesis I is adopted, we may say simpIy that the
probabilities are properties of the state.

The various interpretations of a quantum state are
related to differences in the interpretation of proba, —

bility (see Popper, 1967 for a good exposition of this
point). In contrast to the Statistical Interpretation,
some matherna, ticians and physicists regard probability
as a measure of knowledge, and assert that the use of
probability is necessitated only by the incompleteness
of one's knowledge. This interpretation can legitimately
be applied to games like bridge or poker, where one' s
best strategy will indeed be inQuenced by any knowledge
(accidentally or illegally obtained) about an opponent's
cards. But physics is not such a game, and as Popper
has emphasized, one cannot logically deduce new and
verifiable knowledg- statistical knowledg- literally
from a lack of knowledge.

Heisenberg (1958), Chap. 3, combined this "sub-
jective" interpretation with the Aristotelian notion of
"potentia. " He considers a particle to be "potentially
present" over all regions for which the wave function
P(r) is nonzero, in some "intermediate kind of reality, "
until an act of observation induces a "transition from
the possible to the actual. " In contrast, the Statistical
Interpretation considers a particle to always be at some
position in space, each position being realized with
relative frequency

~
P(r) ~' in an ensemble of similarily

prepared experiments. The "subjective" and Aristotelian
ideas are primarily responsible for the suggestion tha, t
the observer plays a peculiar and essential role in
qua, ntum theory. Whether or not they can be con-
sistently developed, the existence of the Statistical
Interpretation demonstrates that they are rot necessary,
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and in my opinion they bring with them no advantages
to compensate for the additional metaphysical com-
plication.

If the expression "wave —particle duality" is to be
used at all, it must not be interpreted literally. In the
above-mentioned scattering experiment, the scattered
portion of the wave function may be equally dis-
tributed in all directions (as for an isotropic scatterer),
but any one particle will not spread itself isotropically;
rather it will be scattered in some particular direction.
Clearly the wave function describes not a single scat-
tered particle but an ensemble of similarily accelerated
and scattered particles. At this point the reader may
wonder whether a statistical particle theory can account
for interference or diffraction phenomena. But there is
no diS.culty. As in any scattering experiment, quantum
theory predicts the statistical frequencies of the various
angles through which a particle may be scattered. For a
crystal or di6raction grating there is only a discrete set
of possible scattering angles because momentum
transfer to and from a periodic object is quantized by a

multiple of hp=h/d, where Ap is the component of
momentum transfer parallel to the direction of the
periodic displacement d. This result, which is obvious
from a solution of the problem in momentum repre-
sentation, was first discovered by Duane (1923),
although this early paper had been much neglected
until its revival by Lande (1955, 1965). There is no
need to assume that an electron spreads itself, wavelike,
over a large region of space in order to explain diffrac-
tion scattering. Rather it is the crystal which is spread
out, and the electron interacts with the crystal as a
whole through the laws of quantum mechanics. For a
longer discussion of this and related problems such as
the two-slit experiment, see Lande (1965).' In every
case a diffraction pattern consists of a statistical
distribution of discrete particle events which are
separately observable if one looks in fine enough detail.
In the words of Mott (1964, p. 409), "Students should
not be taught to doubt that electrons, protons and the
like are particles ~ ~ ~ The wave cannot be observed in

any way than by observing particles. "
Although we sh'dl discuss his work in greater detail

below, we should emphasize here the great contribution
of Einstein to this subject. His "Reply to Criticisms"
(Einstein, 1949), expressed very clearly his reasons for
accepting a purely statistical (ensemble) interpretation
of quantum theory, and rejecting the assumption that
the state vector provided an exhaustive description of
the individual physical system.

' I note in passing that I.ande's ambitious program to derive
all of quantum theory from a few simple principles has not yet
been completely successful. Reviewers of his book (Shimony,
1966; Mitten, 1966) have pointed out additional assumptions
implicit in his argument which are virtually equivalent to assum-
ing some of the results he wishes to derive. However, these criti-
cisms do not detract froni his discussion of diffraction scattering.

2. THE THEOREM OF EINSTEIN, PODOLSKY,
AND ROSEN

The tenability of hypothesis II, Sec. 1.2, was chal-
lenged in a paper by Einstein, Podolsky, and Rosen
(1935) (abbreviated EPR) entitled "Can Quantum-
Mechanical Description of Reality Be Considered
Complete?" Their argument is often referred to as the
Paradox of EPR, as though it ought to be capable of
resolution as, say, Zeno's paradox. LRosenfeld (1968)
has scurrilously referred to it as the EPR fallacy. ] We
shall show however that, properly interpreted, it is a
well dined theorem, paradoxical only to the extent
that the reader may not have expected the conclusion.

In order to precisely answer the question posed in
their title, EPR introduce the following definitions:

D1 A necessary condition for a complete theory is that
"every element of physical reality must have a counterpart
in the physical theory. "
D2 A sufficient condition for identifying an. element of
reality is, "If, without in any way disturbing a system,
we can predict with certainty (i.e., with probability equal
to unity)' the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity. "

Their argument then proceeds by showing, through
consideration of a thought experiment, that two non-
commuting observables should, under suitable condi-
tions, both be considered elements of reality. Since no
state vector can provide the value of both of these
observables, they conclude that the quantum state
vector cannot completely describe an individual
system, but only an ensemble of similarily prepared
systems.

2.1 A Thought Exyeriment and the Theorem

The experiment described below was introduced by
Bohm (1951,p. 614ff) . By considering measurements of
spins rather than of particle positions and momenta
(as in the original EPR experiment), we avoid any
unnecessary complications with the position —momentum
uncertainty principle which may arise from the mini-
mum degree of particle trajectory definition needed to
perform an experiment.

Two particles of spin one-half are prepared in an
unstable initial state of total spin zero. The pair
separates, conserving total spin, and one of the par-
ticles (which are chosen to be distinguishable, for
convenience) passes through the inhomogeneous inag-
netic field of a Stern-Gerlach apparatus (see Fig. 1).

4 As a nearly pedantic refinement, we would prefer to replace
this phrase by with probubility 1—e, cohere e muy be mude urbi-
trurity smul/. This allows for arbitrarily accurate approximations
to problems which may not be formally solvable, and it allows
one to Ivoid certain igrejevant critIcisms. (See Footnote 5).
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=0, for t(0 or t) r, (2.2)

where r is the transit time of the particle through the
magnetic field which is of gradient II' and is directed
along the s axis.

Omitting the position-dependent factors, we can
write the initial state vector, a spin singlet, as

f(0) = Iu+(1)u (2) —u (1)u+(2) }/K2. (2.3)

Here I+ and I are the two-component spinors corre-
sponding to the eigenvalues ~1 of o.„and the argu-
ments I or 2 refer to the two particles. Since

t

r(t)= ~xp (
—— e(&') « r(o), ('24)

the eGect of the interparticle interaction V~2 will be
negligible if

(2 5)

a condition which can be realized by making the transit
time r short enough. s By { V»

~

we mean the modulus
of the relevant matrix elements of Vi~ in (2.4) .

The unceitainty princip]. e is trivially satisfied since we
require only that p, = p, =0 approximately, and that.

dy be small enough so we know which particle has
entered the magnetic field.

The translational motion of the particles can be
treated classically, and the spin can be described by a
spin Hamiltonian in which the magnetic field at the
position of the particle is treated as a function of time,

H= Viz+ Vrr (2.1)

V12 V(ras, (ri, trz) is the interaction between the
two particles, and V~ is the interaction with the
magnetic field.

V&(t) = sH'~„, for 0&t(r,

At time t=7-, after the particle has interacted with
the magnetic field, the state vector will be

P(r) = {exp (—iH're/5)u+(1)u (2)
—exp (iH'rzi/A, ) zt (1)u+(2) }/W2. (2.6)

The result of the interaction is to produce a correlation
between s components of momentum and spin of
particle 1, and spin of particle 2. If pi, = H'r—, then
o.i,——+1, and (rg, ———1; or if pi, = H'r then (ri, ———1 and
(rz, ——+1. It is only necessary to make the magnetic
field gradient H' large enough so that the two values of
pi, are unambiguously separated.

Ke have thus shown that the s component of the
spin of particle 2 can be determined to an arbitrarily
high degree of accuracy by a measurement which,
because of the spacial separation and negligible effect
of V», does not in any way disturb particle 2. Thus
according to definition D2, o.~, is an elenzerzt of reaHty.

However the initial singlet state is invariant under
rotation, and can equally be expressed as

4 (0) = {~+(1)~-(2)—~-(1)~+(2)}/v2 (2 &)

where the spinors v+ and v are eigenvectors of 0- . If
the Stern —Gerlach magnet were rotated so that the
field was directed along the x axis, then by an identical
argument we would conclude that 0.~ was an element

of reality. Since no state vector can provide a value for
both of the noncommuting observables o.2~ and a-2„
EPR conclude, in accordance with D1, that the state
vector does not provide a complete description of an
individual system.

One might try to avoid this conclusion by adopting
an extreme positivist philosophy, denying the reality
of both cT&, and o-&, until the measurement has actually
been performed. But this entails the unreasonable,
essentially solipsist position that the reality of particle
2 depends upon some measurement which is not con-.
nected to it by any physical interaction.

In any case, the conclusion can be stated, as was
first. done by Einstein (1949, p. 682), as the following
theorem':

Q2))) (l(Q&

FIG. 1. Schematic illustration of the apparatus for the
Einstein, Podolsky, and Rosen experiment.

~ This overcomes the objection of Sharp (1961) that any inter-

actionn

(even gravitational) would prevent us from writing P(t)
as a product of two factors; one for particle 1, and one for par-
ticle 2. Such an objection is quite irrelevant because any state
vector can be expressed as a linear combination of product-type
basis vectors, and the interaction only afFects the time depend-
ence of the expansion coefficients which we treat to an arbitrary
degree of precision.

The following two statements are incompatable:

(1) The state vector provides a complete and
exhaustive description of an individual system;

(2) The real physical conditions of spatially separated
(noninteracting) objects are independent.

Of course one is logically free to accept either one of
these statements (or neither). Einstein clearly accepted
the second, while Bohr apparently favored the first.
The importance of the EPR argument is that it proved
for the first time that assuming the first statement
above densmds rejection of the second, and vice versa,
a fact that was not at all obvious before 1935, and which
may not be universally realized today.
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2,2 Discussion of the EPR Theorem

It should be emphasized that the result of the EPR
experiment is in no way paradoxical. The implication
of (2.6) in the Statistical Interpretation is that if the
experiment is repeated many times we should obtain
the result p~, = —H'r, Oq, =+1, 02, = —1 in about
one-half of the cases, and the opposite result in the
other half of the cases. This correlation between the
spins of the two particles will be the same no matter
which components are measured.

Another essential point, which has not always been
realized, is that the EPR theorem in no way contradicts
the mathematical formalism of quantum theory. It was
only intended to exhibit the difBculties which follow
from the assumption that the state vector completely
describes an individual system; an interpretive assump-
tion which is not an integral part of the theory. In his
famous reply to EPR, Bohr (1935) said, "Such an
argumentation Las that of EPR], however, would
hardly seem suited to aGect the soundness of quantum-
mechanical description, which is based on a coherent
mathematical formalism ~ ~ ~ ." It would appear that
Bohr failed to distinguish between the mathematical
formalism of quantum theory, and the Copenhagen
interpretation of that theory. Einstein's criticism was
directed only at the latter, not at the former. Con-
versely the self-consistency and empirical success of
the former are no defense against specific criticism of
the latter. Such an erroneous perception of the KPR
paper as being an attack on quantum theory itself may
explain (psychologically) the often repeated statement
that Bohr had successfully refuted their argument. In
fact Bohr's paper offers no real challenge to the validity
of the EPR theorem as stated above, nor does the EPR
theorem pose any "paradox" or threat to the validity of
quantum theory.

Bohr's reply to EPR is really a criticism of their
definitions of completeness and physical reality, but it is
of a rather imprecise character. A satisfactory pursuit
of this line of attack should first admit the validity of
the EPR theorem with their definitions. Second it
should propose alternative definitions with arguments in
favor of the superiority of the new definitions. Finally
it should show that the state vector provides a complete
description of physical reality in terms of the new
definitions. Bohr has done none of these.

In the succeeding years numerous comments on the
EPR paper have been published, many of which are
less than satisfactory. A discussion of a paper by Furry
(1936) is given in Footnote 13, Sec. 4.3 of this paper.
Breitenberger (1965) has criticized many authors for
contributing to confusion, including Bohr for suggesting
that the observation of particle 1 "creates" the physi-
cally real state of particle 2—a position approaching
the absurdity of solipsism. ' Breitenberger correctly

' I have not found an explicit statement to this e6ect in Bohr's
writings, although essentially this position has been taken by
some followers of Bohr.

emphasizes that there is nothing paradoxical about the
EPR experiment, which is a prototype for many
coincidence experiments, but he seems to forget the
original purpose of the EPR argument.

Several people have proposed experiments similar in
principle to that of EPR (Day, 1961; Inglis, 1961;
Bohm and Aharonov, 1957). While these experiments
are interesting in their own right, it should be em-
phasized that their results will not distinguish between
Einstein's and Bohr's interpretations of quantum
theory. If the results of experiments were to di6er
from the theoretical predictions, this would contradict
the formalism of quantum theory itself, not just one of
the interpretations.

3. THE UNCER'MINTY PRINCIPLE

3.1 Derivation

where AA is known as the standard deviation of the
distribution. Although states exist (at least as mathe-
matical idealizations) for which the variance of the
distribution for any one observable is arbitrarily small,
it can easily be shown, as was first done by Robertson
(1929) and Schrodinger (1930), that the product of
the variances of the distributions of two observables
A and 8 has a lower bound,

where AB—BA=iC. The first term may vanish, but
for canonically conjugate observables )see Eq. (1.8)]
we must always have

hqAp& h/2. (3.3)

The meaning of these results is unambiguous. The
averages of quantum theory (postulate F4) are realized
by performing the same measurement on many similarly
prepared systems (or equivalently by performing the
measurement many times on the same system which
must be resubmitted to the same state preparation
before each measurement). In order to measure AA

(or AB) one must measure A (or 8) on many similarily
prepared systems, construct the statistical distribution
of the results, and determine its standard deviation.
The results (3.2) and (3.3) assert tha, t for any par-
ticular state (i.e., state preparation) the product of the
widths of the distributions of A measurements and of 8
measurements may not be less than some lower limit.
A term such as the statistical dispersion principle would
really be more appropriate for these results than the
traditional name, uncertainty principle Adiscussion.
similar to this is given by Margenau (1963).

To a given state there will, in general, correspond a
statistical distribution of values for each observable.
A suitable measure of the width of the distribution for
an observable A is the variance,

(3.1)
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3.2 Relation to Experiments

There exist many widespread statements of the
uncertainty principle which are diGerent from the one
that is derived from statistical quantum theory. Very
common is the statement that orIe carlrlot measure the
two quantities q and p simultaneously without errors
whose product is at least as large as fij2. This statement
is often supported by one or both of the following
arguments:

(i) A measurement of q causes an unpredictable and
uncontrollable disturbance of p, and vice versa. LThis
was first proposed by Heisenberg (1927) and is widely
repeated in text booksj.

(ii) The position and momentum of a particle do not
even exist with simultaneously and perfectly well
defined. (though perhaps unknown) values (Bohm,
1951, p. 100).

Clearly the statistical dispersion principle and the
common statement of the uncertainty principle are not
equivalent or even closely related. The latter refers to
errors of simultaneous measurements of q and p on one
system, and it is plausible that one of these measure-
ments could cause an error in the other. On the other
hand, the former refers to statistical spreads in ensembles
of measurements on similarily prepared systems. But
only one quantity (either q or p) is measured on any
one system, so there is no question of one measurement
interfering with the other. Furthermore the standard
deviations hq and tIp of the statistical distributions
cannot be determined unless the errors of the individual
measurements, 8q and 8p are much smaller than the
standard deviations (see Fig. 2) .These points have been
emphasized by Margenau (1963) and by Popper
(1967). Prugovecki (1967) has pointed out that, far
from restricting simultaneous measurements of non-
commuting observables, quantum theory does not deal
with them at all; its formalism being capable only of
statistically predicting the results of measurements of
one observable (or a commutative set of observables).
In order to deal with simultaneous measurements he
proposes an extension of the mathematical formalism,
to which we shall return in Sec. 5 of this paper.

We now consider to what extent the common state-
ment of the uncertainty principle may be true, even

=i,h, q

+ C
/

L

q I Q 5p
FrG. 2. Illustration of the uncertainty principle. The two histo-

grams represent the frequency distributions of independent meas-
urements of q and p on similarly prepared systems. There are, in
principle, no restrictions on the precisions of individual measure-
ments Bq and Bp, but the standard deviations will always satisfy
dgnp) ti/2.

Ji
, 5y

X) Xg

FIG. 3. An experimental arrangement designed to simultane-.
ously measure y and p„, such that the error product Bybp„can
be arbitrarily small.

though it is not derivable from quantum theory.
Argument (ii) is easily seen to be unjustified. It is
based on the obvious fact that a wave function with a
well de6ned wavelength must have a large spacial
extension, and conversely a wave function which is
localized in a small region of space must be a Fourier
synthesis of components with a wide range of wave-
lengths. Using de Broglie's relation between momentum
and wavelength, p=h/X, it is then asserted that a
particle cannot have definite values of both position
and momentum at any instant. But this conclusion
rests on the almost literal identification of the particle
with the wave packet (or what amounts to the same
thing, the assumption that the wave function provides
an exhaustive description of the properties of the
particle) .The untenable nature of such an identification
is shown by the example of a particle incident upon a
semitransparent mirror with detectors on either side.
The particle will either be re.ected or transmitted
without loss of energy, whereas the wave packet is
divided, half its amplitude being transmitted and half
reQected. A consistent application of the Statistical
Interpretation yields the correct conclusion that the
division of the wavepacket yields the relative proba-
bilities for transmission and reRection of particles. But
there is no justification for assertion (ii) .

Argument (i) must be considered more seriously
since Heisenberg (1930) and Bohr (1949) have given
several examples for which it is apparently true. How-
ever, Fig. 3 shows a simple experiment for which it is
not valid. A particle with known initial momentum

p passes through a narrow slit in a rigid massive screen.
After passing through the hole, the momentum of the
particle will be changed due to diGraction eGects, but
its energy will remain unchanged. When the particle
strikes one of the distant detectors, its y coordinate is
thereby measured with an error by. Simultaneously
this same event serves to measure the y component of
momentum, p„=p sin 8, with an error 8p„which may be
made arbitrarily small by making the distance L,



366 REviEws oz MQDERN PHYsIcs ' OcTQBER 1970

arbitrarily large. Clearly the product of the errors bp„
need not have any lower bound, and so the common
statement of the uncertainty principle given above
cannot be literally true. One may raise the objection
that p„has not been mea, sured, but only defined in the
above equation. However this method of measuring
momentum by means of geometrical inference from a
position measurement is universally employed in
scattering experiments. It rests upon the assumption of
linear motion in a, field-free region (Newton's First
Law), which remains valid in quantum mechanics
(at least for L much greater than a, de Broglie wave-

length) .
The distinction between experiments xvhich satisfy

and which violate the uncertainty principle can be
cia,rified with the help of the concepts of state preparation
and measu~ememt; the distinction between these having
been emphasized by Margenau (1958, 1963) and by
Progovecki (1967).

State preparatiozz refers to any procedure which will

yield a statistically reproducible ensemble of systems.
The concept of state in quantum theory (see Sec. 1.3)
can be considered operationally as an abbreviation for a
description of the state preparation procedure. ~ Of
course there may be more than one experimental
procedure which yields the same statistical ensemble,
i.e. , the same state. An important special case (which is
sometimes incorrectly identified with measurement)
is a filtering operation, which ensures that if a system
passes through the Alter it must immediately afterward
have a value of some particular observable within a
restricted range of its eigenvalue spectrum.

On the other hand, measlremeet of some quantity E
for an individual system means an interaction between
the system and a suitable apparatus, so that we may
infer the value of R (within some finite limits of
accuracy) which the system had immediately before
the interaction (or the value of R which the system
would have had if it had not interacted, allowing for the
possibility that the interaction will disturb the system) .

The essential distinctions between the two concepts
are that state preparation refers to the future, whereas
measurement refers to the past; and equally important,
that measurement involves detector of a particular
system, whereas state preparation provides conditional
information about a system if it passes through the
apparatus.

The statistical disPersion PriizczP/e (3.2, 3.3), which
follows from the formalism of quantum theory, is a
statement about the minimum dispersion possible in

any state preparation. It is significant that experiments
v hich satisfy the uncertainty principle can be employed
as state preparations, whereas experiments which
violate the uncertainty principle cannot.

Consider, for example, Heisenberg's (1930, p. 21)

~ Lamb (j.969) has described an idealized method of preparing
an arbitrary single-particle state.

famous microscope for measuring the position of an
electron. If the angular aperture of the microscope is
e and the wavelength of light used is X, then the accuracy
of the position measurement will be limited to

bx=X/sin c, (3.4)

by the resolving power of the instrument. (We use the
symbol b to indicate the uncertainty or error in an
individual measurement, while 6 refers to the standard
deviation of an ensemble of similar measurements).
Because the direction of the scattered photon is un-
known within a cone of angle e, the x component of
momentum of the electron will be changed by some
unknown increment in the range &sine(h/P, ). Note
that this experiment is not an example of simultaneous
measurement of x and p, . Only x is measured here.

Suppose now that we have a state preparation
apparatus which will produce an ensemble of electrons
with a negligible spread in momentum (i.e., Ap, 0).
Suppose that we try to select from this ensemble a
subensemble which has as small as possible a spread
Dx. We do this by measuring the x coordinate of each
particle and selecting those which fall within the
minimum resolvable range Bx of a particular value, say,
x'. Thus our subensemble will have a spread

Ax= X/sin E. (3.5)

Because the recoil momentum absorbed by an electron
may vary, the spread in momentum among the members
of this subensemble will be

6pg~ Slil E( hP/) . (3.6)

Hence the ensemble which we have selected will have
statistical dispersion of magnitude hxAp, h.

Contrast the above result with the experiment
illustrated in I'ig. 3. In this case we are able to determine
the values of the position and momentum of a particle
to an accuracy bybp„«5. But this information refers to
the motion of the particle during a certain interval
before the measurement. We cannot use it to generate
an ensemble of par ticles with statistical spreads
AyAp„(&fi, because the scattering of the particles by the
detector will cause a spread of momentum in the final
ensemble, Ap„))bp„. If we try to avoid this scatter by
removing one of the detectors from the array at the
plane x=x~, and inferring from a negative response of
all the remaining detectors that the particle passed
through the hole, then the momentum spread of the
ensemble formed in this way will not be hp„(the error of
measurement described above) . Rather it will be
hp„by/5 (due to diGraction effects). The spread of
particle positions in the ensemble will be dy by (the
size of the hole), and so the statistical disperszozz

prizzci pie will be satisfied.
In conclusion, the uncertainty principle restricts the

degree of statistical homogeneity which it is possible to
achieve in an ensemble of similarly prepared systems,
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and thus it limits the precision which future predictions
for any system can be made. But it does not impose
any restriction on the accuracy to which an event can
be reconstructed from the data of both state preparation
and measurement in the time interval between these
two operations. Heisenberg (1930, p. 20) made nearly
this distinction in his statement, "

~ ~ the uncertainty
relation does not refer to the past. " His subsequent
remark, "It is a matter of personal belief ~hether ~ - ~

the past history of the electron
I

as inferred from an
experiment like that of Fig. 3$ can be ascribed any
physical reality or not, "—based on the fact that it
cannot be reconfirmed by any other future measure-
ment, seems unduely cautious. In fact, the majority of
real physical measurement are of just this type. Indeed
for every future oriented experimental operation which
yields verifiable information, there must be another
past oriented operation whose function is not to be
verifiable but to verify (Popper, 1967, pp. 25—28). It
is just this essential fact which is emphasized by the
distinction between state preparation and measurement

D&phL, & A/2 (wrong) . (3.7)

But (3.7) is obviously wrong since AL, can be arbitrarily
small, and y has a meaningful range of only 2m radians;
hence, dy&2x.

The resolution of the apparent paradox, as pointed
out by Judge and Lewis (1963) and by Susskind and
Glogower (1964), lies in the observation that the
operator iS(B/B—&p) is Hermitian only on the space of
functions of y which have period 2x, and multiplication
by p destroys this periodicity property. In order to
deduce a correct uncertainty relation, one must replace
the coordinate y by some periodic function. This can be
done in many ways but the most convenient seems to be
the use of cos rp and sin p (Carruthers and Nieto,
1968), from which it can be shown that

(DL,)'L(h cos p)'+ (6 sin q)'j
& (fc/2) '( (sin y)'+ (cos j )') . (3.8)

The derivation of the energy —time uncertainty
relation cannot follow the standard form (3.2) because
time is not usually represented by an operator. In fact
one can show (Susskind and Glogower, 1964) that, if the
energy spectrum has a lower bound, then there does
not exist a Hermitian operator which is canonically
conjugate to the Hamiltonian in the sense of (1.8).
However, the following result can be deduced from

3.3 Angular and Energy-Time Relations

An apparent contradiction of the uncertainty prin-
ciple, which is frequently rediscovered by bright
students, concerns the polar angle q and the s component
of angular momentum I., If L, is represented by

ikey/Bp, th—en. it would appear that
I &p, L,]=i6, from

which it would follow that

(3.2) (Messiah, 1964, p. 319),

aA~z& I
I d(A)/di I, (3.9)

where A is an arbitrary observable, and the averages
are calculated for an arbitrary time-dependent state.
If one defines a characteristic time for the system and
the state as

T= min&» I~a
I
«(~)/«l I-'I, (3.10)

then one may write
7-hE&-', h. (3.11)

Clearly this result does not imply that one cannot
measure the energy of a system exactly at an instant of
time, as is sometimes stated, but rather that the spread
of energies associated with any state is related to the
characteristic rate of change associated with the same

4. THE THEORY OF MEASUREMENT

8 After completion of this manuscript, a paper by Allcock (1969)
containing a fuller discussion of energy-time relations appeared.

The desirability of an analysis of the measurement
process by means of quantum theory was perhaps erst
indicated through Bohr's insistence that the "whole
experimental arrangement, " (Bohr, 1949, p. 222),
object plus all apparatus, must be taken into account
in order to specify well-defined conditions for an
application of the theory. However he never carried
this program to its logical conclusion; the description of
both the object and the measuring apparatus by the
formalism of quantum theory. Such an analysis is
useful for several reasons.

It has frequently been asserted that the acts of
measurement or observation play a different role in
quantum theory than in the rest of physics. Such
claims should be critically analyzed.

Because the measurement apparatus usually
(always?) contains a final stage to which classical
mechanics is applicable, the measurement of a quantal
(i.e., essentially nonclassical) object by such an
apparatus involves the union of micro and macrophysics
in an essential way. Any proposed revisions at the
microscopic level, of the concept of physical real. ity or
of the role of the observer will meet a critical test here.
It is widely believed that Ehrenfest's theorem (Messiah,
p. 216) proves the consistency of quantum theory with
the classical limit, but this is only partly true. Ehrenfest's
theorem demonstrates that the average values of
observables obey the classical equations of motion
provided the quantum state function is such that
sta, tistical deviations of the basic observables (co-
ordinates and momenta) from their averages are
negligible. But this leaves open the question of v hether
or not the state of a macroscopic object coupled to
microscopic objects, as calculated from the quantal
equation of motion for realistic but general initial
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conditions, will necessarily possess this property. As
will be shown, this appears not to be so in the case
of measurement.

It is not the compatibility of the classical and quantal
equations of motion (in the appropriate limit) which
concerns us but rather the compatibility of the classical
and quantal concepts of state. Thus an analysis of
measurement will be very helpful in deciding the ques-
tion raised in Sec. 1.2, that is whether a quantum state
describes an individual system (object plus apparatus
in this case), or whether it must refer only to an
ensemble of systems.

4.1 Analysis of the Measurement Process

The essence of a measurement is an interaction
between the object to be measured and a suitable
apparatus so that a correspondence is set up between
the initial state of the object and the Anal state of the
apparatus. This interaction may or may not change the
value of the observable being measured, the final state
of the object being of no significance to the success of
the measurement.

Suppose we wish to measure the observable R of the
object I, for which there must be a complete set of
eigenvectors,

zl r;r&=r If;r).
Denote a set of states for the apparatus II by I

II; n&,
where the eigenvalue a is the appropriate "pointer
position" of the apparatus, and

I II; 0) is the initial
premeasurement state. The interaction between the
object and the apparatus ideally should, if it is to
function as a measurement, set up a unique corre-
spondence between the initial value of r and the Anal
value of o., o.„, for example. That is, if the initial state
for the system I+II is

I I; r) I
II; 0), then the equation

of motion must lead to the Anal state

vlf;r&ln;0&= lf;r&lff;~'» (4»)
if the observable R is not changed by the interaction' ';
or in the general case

U I I; r& I
II; 0)=

I I; P, ) I II; n„), (4.1b)

where U is the time-development operator for the
duration of the interaction between I and II. Note that
the vectors

I 1; P„) need not be orthogonal since or-

'Many authors give the unwarranted impression that this
highly special case is general.

'OAraki and Yanase (1960) have shown that unless R com-
mutes with all universal additively conserved quantities, then
no interaction exists which could satisfy (4.1a). However, they
also show that this equation can nevertheless be satished to an
arbitrary degree of accuracy, provided the apparatus is made
arbitrarily large. This fact is illustrated in the measurement of
the s component of spin by a Stern-Gerlach apparatus (Sec.
2.1) which used an external magnetic Geld to break the conser-
vation of S and S„.The source of this magnetic Geld is rigidly
Gxed to the earth, and so the apparatus is electively inGnite, as
it must be to satisfy the theorem of Araki and Yanase. See also
Yanase (1961).

thogonality of the 6nal states corresponding to different
r values is guaranteed by the fact that n, &n„, for
r'Nr.

Suppose now that the initial state of the object is
not an eigenvector of R, but rather some linear com-
bination

I f;4&=Z
I f; «&(r

I 0). (4.2)

From (4.1) and the linearity of the equation of motion,
the Anal state for the system must be

v
I 1; y& I zf; o&=Z(& I p& I 1; y ) I

II; n„&
r

= If+fr;f&, say.

A specific illustration of this general analysis is provided
by the EPR experiment discussed in Sec. 2.1. We may
consider the measured quantity R to be the spin of
particle 2, and the "pointer" of the apparatus to be the
momentum of particle 1 (assuming that two detectors
are placed so as to determine its sign) .

According to the Statistical Interpretation and F5
of the formalism, the probability of the apparatus
"pointer" being u„at the end of an experiment is
I (r I P& I'. That is to say, if the experiment were
repeated many times, always preceded by the same state
preparation for both object and apparatus, the relative
frequency of the value n, would be

I (r I P) I'. That this
should be identical with the probability of the object
having had the value r for the dynamical variable R
immediately before interacting with the apparatus II,
is just the criterion that II functions as a measuring
apparatus for R.

4.2 The Difhculties of the "Orthodox" Interpretation

The discussion of the analysis of Ineasurement
according to the Statistical Interpretation was so simple
and natural that further comment almost seems
redundant. But if instead of the basic assumption of the
Statistical Interpretation that a state vector char-
acterizes an ensemble of similarily prepared systems,
one assumes that a state provides a complete description
of an iedividlul system, then the situation is quite
diGerent. Unfortunately this assumption has been
made so frequently, more often tacitly than not, that
it and the resulting point of view have come to be
considered "orthodox".

The "orthodox" quantum theory of measurement
was formalized by J. Von Neurnann (1955) and has
been clearly reviewed by Wigner (1963). The first
diKculty encountered is that if one tries to interpret the
final-state vector (4.3) as completely describing one
system (object plus apparatus), then one is led to say
that the pointer of the apparatus has no definite posi-
tion, since (4.3) is a coherent superposition of vectors
corresponding to diGerent values of n. But the pointer
can be a quite classical object and it mat. es no sense to
say that it has no position at any instant of time,
especially since the diGerent values of o.„are macro-
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scopically distinguishable. Thus if we attribute the
state vector to an individual system, we are inevitably
led to classically meaningless states for a classical
object."

To circumvent this difhculty, the "orthodox" theory
assumes that, in addition to the continuous evolution
of the state vector according to the equation of motion,
there is also an unpredictable discontinuous "reduction
of the state vector" upon "measurement, " from (4.3) to

II @")III; "» (4 4)

where O..„ is the pointer position which is actually
observed. Proponents of this point of view also usually
assume that the value of the observable R is not
changed by measurement, so that in pla, ce of (4.4)
they would obtain

lI;r') lrr;n, ), (4.4')

but this point is not essential. The word "measure-
ment" is enclosed in quotes because its use in this
peculiar context of the "orthodox" theory is not
equivalent to the more physical definition of jiieasure-
ment given in Sec. 3.

It should be emphasized that this reduction cannot
arise from the equation of motion. The form of (4.3),
involving a superposition of macroscopically distinct
pointer positions, depends only upon the linearity of the
equation of motion and not upon any of our simplifying
assumptions. For example, one might object that the
pointer position eigenvalue n is not sufhcient to label a
unique state vector for the apparatus, since there are a
huge number of commuting observables. But this
means only that each vector

l II; n) must be replaced
by a set of vectors, all the sets being mutually or-
thogonal. Komar (1962) has shown that even with
these extra degrees of freedom, a 6nal state of the form
(4.4) is not possible. "If the reductiors of the state vector
is to enter the theory at all, it must be introduced as a
special postulate (often called the proj ectiors postulate)

If one merely applied the projection postulate to the
object I, one would say that upon "measurement" the
state changes discontinuously from (4.2) to

l I; r'),
where r' is the "measured" value of the observable E..
On the other hand, the analysis of the interaction
between the object I and the apparatus II leads to the
state (4.3). To avoid a direct contradiction, Von

"This was first pointed out by Schrodinger (1935), who pro-
posed the following hypothetical experiment. A cat is placed in
a chamber together with a bottle of cyanide, a radioactive atom,
and a device which will break the bottle when the atom decays.
One half-life later the state vector of the system will be a super-
position containing equal parts of the living and dead cat, but
any time we look into the chamber we will see either a live cat
or a dead one. A literal translation of "Schrodinger's cat paradox",
as this is called, has been given by Jauch (1968, p. 185), but his
discussion of the paradox is not adequate, and his volume and
page reference is incorrect.

"His conclusion that no theory consistent with quantum me-
chanics can account for the occurrence of events in nature, how-
ever, is not true if one drops the assumption that a state vector
describes completely an individual system.

Neumann introduced the observer III, who supposedly
performs a "measurement" on I+II (this "measure-
ment" however is merely an observation), and thus
reduces the state vector to (4.4) or (4.4'). He then
shows that it makes no difference whether the apparatus
II is considered to be part of the observer or part of the
object being observed.

Von Neumann's theory of measurement is very
unsatisfactory. It suggests that the passive act of
observation by a conscious observer is essential to the
understanding of quantum theory. Such a conclusion is
without foundation, for we have seen that the Statistical
Interpretation does not require any such considerations.
Moreover, the atoms of the observer's body may, in
principle, be treated by quantum theory, and the
resulting state vector will be similar to (4.3) (with
I replaced by I+II, and II replaced by III). Von
Neumann's theory would require another hypothetical
observer IV to observe III, and so reduce the state
vector. But this can only lead to an infinite regression,
which, in an earlier era might have been taken as a
proof of the existence of God (the Ultimate Observer)!
No one seems to have drawn this unfounded conclusion,
but the equally unfounded conclusion that the con-
sciousness of an observer should be essential to the
theory has, unfortuna tely, bee@ taken seriously
(Heitler, 1949, p. 194; Wigner, 1962) .

Because of the diAiculties inherent in the projection
postulate, we must critically examine the reasons given
in support of its introduction. Dirac (1958, p. 36)
argues that a second measurement of the same ob-
servable immediately af ter the first measurement
must always yield the same result. Clearly this could
be true at most for the very special class of measure-
ments that do not change the quantity being measured.
A statement of such limited applicability is hardly
suitable to play any fundamental role in the foundations
of qua, ntum theory. In fact this argument is based on
the implicit (and incorrect) assumption that measure-
ment is equivalent to state preparatiors, the contrasting
definitions of which were given in Sec. 3, The necessity
for distinguishing between these two concepts has been
pointed out by Margenau (1958; 1963). For example,
a polaroid filter placed in the path of a photon beam
constitutes a state preparation with respect to the
polarization of any transmitted photons. A second
polaroid at the same angle has no further effect. But
neither of these processes constitutes a meusuremeet.
To measure the polarization of a photon one must also
detect whether or not the photon was transmitted
through the polaroid 61ter. Since the detector will
absorb the photon, no second measurement is possible.

It has also been claimed (Messiah, 1964, p. 140) that
a discontinuous reduction of the state vector is a
consequence of an alleged uncontrollable perturbation
of the object by the measuring apparatus. A counter
example to this claim is provided by the EPR experi-
ment (Sec. 2.1), in which the spin of particle 2 is
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measured indirectly, without any disturbance of that
particle whatsoever. In general the apparatus will
interact with the object, but the eGect of this is not
such as to bring about the hypothetical redlctioe. Ke
do not consider as credible the occasional statement
(Dirac, 1958, p. 110) that a mere observation (i.e., an
experimenter looking at his apparatus) could affect the
state of the system in a manner incompatible with the
equation of motion.

Although it is not essential to the theory, Popper
(1967) has pointed out that the redlced state vector
(4.4) can be interpreted in a natural way. According
to the Statistical Interpretation, the state vector (4.3)
represents, not an individual system, but the ensemble
of all possible systems (object plus apparatus), each of
which has been prepared in a certain way and then
allowed to interact. The state vector (4.4) represents
the subensemble whose definition includes the additional
specification that the result of the measurement (pointer
reading) be ee, . There is no question of reduction of the
state vector being a physical process.

Margenau (1963, p. 4/6) has taken a more sym-
pathetic attitude toward Von Neumann's theory of
measurement on the grounds (gathered from personal
conversation) that he regarded his projection postulate
as convenient but not necessary. In reply I would say
that I And no evidence of this interpretation in Von
Neumann's writings. Moreover, the great amount of
confusion generated, as well as the theoretical eGort
expended trying to explain the redgctiors of the state
veclor, suggest that the projection postulate has been
much more of an inconvenience than a convenience.

interaction between the object I and the apparatus-II,
the final state operator for the combiried system I+II
will be the pure state

(4.5)

(4.3')

where c,= (r [P) in the nota. tion of (4.3). Now the
mixed state formed from reduced vectors of the type (4.4),

p, =P
[ c, [ [ I; $, ) [ II; er, )(I; 4, [ (II; n,

[ (4.6)

is not equivalent to p~. Even though they both yield the
same probability distribution for the position of the
apparatus "pointer" n, their predictions for other
observables may disagree. "Because time development
is effected by a unitary transformation (1.7a), which
preserves the pure state condition p'= p, it is impossible
for the pure state (4.5) ever to evolve into the mixed
state (4.6).

Realizing this fact, many authors (Feyerabend, 1957;
Wakita, 1960, 1962; Daneri et a/. , 1962; Jauch, 1964)
have proposed that, nevertheless, (4.5) and (4.6) may
be equivalent for all practical purposes. Specifically,
they suggest that if the macroscopic nature of the
apparatus and its relevant observables are taken into
account, then the average of any macroscopic ob-
servable M will be the same for these two states. With
the abbreviated notation

[ P„n)=—[ I; g„) [ II; n), these
averages are, respectively,

4.3 Other Approaches to the Problem of
Measurement

An enormous number of papers have been written on
the problem of measurement in quantum theory.
Margenau (1963), lists over 60 separate articles, and
promises a list of about 200 on request. The reader can
shorten his task greatly by ignoring all papers which
try, without modifying quantum theory, to accornodate
a reductioN of the state vector, and which also assume the
state vector to describe an individual system. The
preceding arguments have demonstrated the impossi-
bility of such programs.

Bohm and Bub (1966) propose a nonlinear modifica-
tion of the Schrodinger equation of motion which is
supposed to be effective only during the measurement
process, and which causes the reducfioe. However we
do not consider that the postulation of a new interaction
peculiar to measurement should be taken seriously.
Moreover, the simplicity of the account of measure-
rnent provided by the Statistical Interpretation under-
mines the motivation for any drastic modification of
the mathematical formalism.

To discuss the next approach it is convenient to
restate the results of our analysis in the language of
state operators (or statistical operators). After the

(4.8)

The problem is then whether these expressions are equal
under suffi. ciently general circumstances.

Now if M commutes with A (the pointer position,
whose eigenvalues are er,), it will be diagonalizable in
this representation, and the interference terms {rAr')
will be absent from (4.7). Hence the two expressions
will be equal. However, (contrary to Jauch's assump-
tion) the set of macroscopic observables is n.ot Abelian
(consider the pointer momentum, which does not
commute with A), so the macroscopic nature of cM is
not sufhcient to guarantee equality of (4.7) with (4.8) .

In the case where the observable 3f belongs entirely

"A proof of this fact is contained in a paper by Furry (1936).
But his comments on the work-of Einstein, Podolsky, and Rosen
(Sec. 2) are based upon a misconception. Furry interprets the
EPR conclusion that-certain dynamical variables such as 0-2, in
our Eq. i2.6l are elemerits oj reality, as meaning that the state
of the system after interaction between the object and the appa-
ratus is a mixture of eigenstates of the element of reality; i.e, a
mixed state related to (2.6) in the same way as (4.6) is related
to (4.5). But EPR do not claim that the equation of motion
yields the wrong quantum state, as Furry has misinterpreted
them, but rather that no quantum state, pure or mixed, can
provide a complete description of an individual system. This
makes Furry's argument irrelevant.
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to the measurement apparatus II (i.e., if M= 1Mzz), ze

then

=(I;P lI;f ~ )(II;er lMzzlII;n ). (4.9)

Thus if the states l I; P,) are mutually orthogonal,
which would be true, in particular, if the measurement
of R did not change the value of R, (l I; P„) then becomes

l I; r)), then there would be no difference between
(4.7) and (4.9). Clearly a similar result holds for
observables belonging entirely to the object I, but of
course no such result is valid for observables which
belong to I and II jointly. '

Daneri, Loinger, and Prosperi (1962, 1966) (DLP)
consider the pure state (4.5) or equivalently (4.3) to
be the final state of the combined system immediately
after interaction between the object and the apparatus.
They then concentrate on the amplification aspect of
the measurement necessary for a microscopic object to
trigger a macroscopic response in the apparatus, and
invoke the ergodic theory of quantum statistical
mechanics in order to treat the transition of the appa-
ratus from its initial "metastable"" condition to
equilibrium. They claim, in essence, that the equilib-
rium state can be represented by the mixed state
operator (4.6) .

The attitude of DLP is well expressed in the words of
Rosenfeld (1965, p. 230), who endorses their approach:
"The reduction of the initial state of the atomic system
has nothing to do with the interaction between this
system and the measuring apparatus: in fact, it is
related to a process taking place in the latter apparatus
after all interaction with the atomic system has ceased. "
Rosenfeld also emphasizes the view that the presence or
absence of a conscious human observer is irrelevant to
the problem. '7

The above remarks show that DLP and Rosenfeld
explicitly rej ect the "orthodox" interpretation discussed
in Sec. 4.2 (as does the present author), but they do so
without actually confronting the question of whether
the state operator (or vector) represents a single system
or an ensemble of similarily prepared systems.

The analysis of generalized quantum amplification
devices by DLP is interesting and correct, at least to
the extent that their ergodic hypothesis is valid. But it
does not constitute the essence of measurement in
general. To paraphrase an example given by jauch

' The tensor product notation A 8 means that A operates
on the ( I l vectors, and 8 operates on the ( II l vectors.

"This illustrates the fact that the state of a two-component
system cannot be uniquely determined by measurements on each
component separately. Jauch (1968, Secs. 11-7 and 8') gives a
good discussion of the mathematical aspects of this problem, and
in particular of the tensor product formalism.

"As pointed out in DLP (1966), this is not necessarily the
thermodynamic definition of metastability.

"On this point Rosenfeld seems to have modi6ed his earlier
views, as expressed in a discussion exchange with Viger (see
Korner, 19/7, pp. ].8$-{j).

(1968,p. 169), if the measuring device is a photographic
plate, then the essence of measurement may be per-
formed by a single silver-halide complex. The am-
plification process does not take place until the plate is
developed, which may be months later. Although
interesting in its own right, the DLP theory does not
answer the questions which lead us to study the'theory
of measurement.

4.4 Conclusion —Theory of Measurement

This section on measurement theory is lengthy
because of the great length of the literature on this
subject. However, the conclusions are quite simple. The
formal analysis of a measurement has been undertaken
not for its own sake, but only to test the consistency of
alternative interpretations of quantum theory. Using
only the linearity of the equation of motion and the
definition of measurement, we see that: the interaction
between the object and the measuring apparatus leads,
in general, to a quantum state which is a coherent
superposition of macroscopically distinct "pointer
positions. " In the Statistical Interpretation this dis-
persion of pointer positions merely represents the
frequency distribution of the possible measurement
results for a given state preparation.

But if one assumes that the state vector completely
describes an individual system, then the dispersion
roust somehow be a property of the individual system,
but it is nonsensical to suppose that a macroscopic
pointer has no de6nite position. None of the attempts
to solve this problem using some form of reductt'ore of
the state vector are satisfactory. No such problem arises
in the Statistical Interpretation, in which the state
vector represents an ensemble of similarily prepared
systems, so it must be considered superior to its rivals.

We have neglected the frankly subjective inter-
pretation (Sussmann, 1957; Heisenberg, 1958), ac-
cording to which the quantum state description is not
supposed to express the properties of a physical system
or ensemble of systems but our krlomledge of these
properties, and changes of the state (such as the sup-
posed reduction of state during measurement) are
identi6ed with changes of knowledge, not so much
because it is wrong as because it is irrelevant ' One can,
of course, study a person's knowledge of physics rather
than studying physics itself, but such a study is not
germane to this paper. For example, someone's knowl-
edge of a certain system can change discontinuously as
a result of a blow to the head which causes amnesia,
as well as through the receipt of new information from a

~8Another area in which the subjective interpretation causes
confusion is the relationship between entropy and information.
It is true that the aquisition of information requires a corre-
sponding increase of entropy (Brillouin, 1962); hence the associa-
tion of information with negative entropy is useful. But the con-
verse proposition that entropy is nothing but a measure of our
].ack of information is a fallacy. Entropy also has a thermody-
namic meaning, dS=dQ/T, which is valid regardless of the exist-
ence or nonexistence of Maxwell's demon.
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measurement, although the subjectivists tend to ignore
the former while stressing the latter.

~(~;O) =(-p (W))
= f exp (i]A)P(A;iP) dA, (5.3)

hence E(A; P) is equal to the inverse Fourier transform
of M((; f) . By expanding the exponential

(5 4)
0 Q 0

we see that a knowledge of the characteristic function is
equivalent to a knowledge of all the moments of the
distribution. According to the formalism (see F4),
these are given by"

(5.5)

By analogy we may introduce a characteristic
function for the joint probability distriubtion

(8)"(ix)m

m(g X y) = P &q"P"), (5.6)
e ~ SImt

"We shall consider only pure states since these illustrate the
essential problems. The generalization to mixed states is straight-
forward.

"In this section it is necessary to distinguish between a phys-
ical observable and the mathematical operator which represents
it. The operators will be distinguished by a circumQex.

5. JOINT PROBABILITY DISTRIBUTIONS

In contrast to the previous sections, which were
concerned entirely with interpretation of the existing
formalism (summarized in Sec. 1.1), this section and
the next consider possible extensions of the formalism.
These will not be modifications of the established
formalism, but additions to it which are compatible
with both the established formalism and the Statistical
Interpretation.

As discussed in Sec. 3 with regard to the uncertainty
principle, quantum theory is not inconsistent with the
supposition that a particle has at any instant both a
de6nite position and a definite momentum, although
there is a widespread folklore to the contrary. Of course
we are not compelled either to accept or to reject this
supposition, but it is of interest to explore it on a
tentative basis.

Our first problem is to construct, for the noncom-
muting observables q and p, a joint probability dis-
tribution I'(q, p; f) for any state

I $),i9 such that the
single variable distributions constructed from it agree
with the established formalism, i.e. ,

P'(q, P; 0) dP= I'(q; 0) =—
I 8 I q) I', (5 1)

fI'(q, P; 0) dq= I'(P; &) =—
I (& I P) I' (5 2)

Additional conditions will be considered later.
Let us first consider the method by which the single

observable probability distribution function can be
constructed. The characteristic function for the dis-
tribution of an arbitrary observable A is given by

(e'I „
qnpm~2 np I

qm
——iIimqi

i=o E&)

then one obtains (Moyal, 1949)

(5.8b)

-P(q, P; 4)
= (2m.)-'f Q I q

—-', riri) exp (—irp) (q+-', rh
I p) dr,

(5.9)

which was first introduced by Wigner (1932).Because
this expression may become negative it cannot be
interpreted as a genuine probability distribution, and
Wigner proposed it only as a calculational device.
Another distribution which suGers from the same defect
has been derived by Margenau and Hill (1961) using
the correspondence

q"P" l (q"p +I"q") . (5.10)

Since every correspondence rule which associates an
operator with a classical function of q and p,

g(q, P) G(q, I), (5.11)

provides a joint probability distribution, it is possible to
formulate the most general form of P(q, p; p) which
will satisfy (5.1) and (5.2). We refer to the original
papers for details (Cohen, 1966; Margenau and Cohen,
1967). These authors investigated the possibility of
constructing a joint probability distribution such that

Q IO(q, p) I4)=ffg(q, p)&(q, p;4) dqdP, (512)

from which, by a Fourier inversion, we obtain,

&(q P 4)

= (2ir) 'f fM(e, X; f) exp P i—(Hq+Xp) ) dedx. (5.7)

As long as the moments (q") and (p ) are given by
(5.5), then (5.7) will automatically satisfy (5.1) and
(5.2).

The difficulty now evident is that that there is no
unique way in which to take products of noncommuting
operators. For example q'p' may be represented by
l (qv'+7'q'), :(q7+—Iq)', l (qA71+fqA), » any of
several other forms. In these examples we have already
used the additional plausible restrictions that the
product be a self-adjoint operator, and that it be sym-
metric under interchange of q and p. Shewell (1959)
has considered several correspondence rules which have
been proposed, and found none to be fully satisfactory.
Some of the rules do not yield a unique operator, while
others yield an operator for a power of the Hamiltonian,
[H(q, p))", which is not equal to (H)". Each such
possible choice will yield a different joint probability
distribution which satisfies (5.1) and (5.2).

If one chooses

exp Li(ttq+XP) )—+ exp (ioq+ imp), (5.8a)

or equivalently
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and also such that for any function E
(4 I &(&(q, p)) I4)=ff&(c(q, P))I'(q, P;4) dqdP.

(5.13)

In other words, they asked whether there exists a joint
probability distribution such that the averages of all
observables can be calculated by a phase-space average
as in classical statistical mechanics. "

Their answer was negative. Although it is always
possible to satisfy (5.12), (5.13) could be simul-

taneously satisfied only if the correspondence

&(g(q, P) ) ~&(t'(q, 7) ) (5 14)

can be satisfied for all functions E with the same
correspondence rule as tha, t leading to (5.11). This
they- prove to be impossible. " With the wisdom of
hindsight, we should not be surprised that (5.12) and
(5.13) cannot be satisfied, for if it were otherwise, then
quantum mechanics could be expressed as a special
case of classical mechanics.

To deal with simultaneous values of position and
momentum variables in a logically consistent fashion
we need only require that a joint probability dis-
tribution exists which satisfies (5.1) and (5.2), and

I'(q P; 4') & o (5.15)

for all quantum states. These conditions are obviously
satisfied by the function

I'(q p p) =
I (y I q) Is

I (y I p) Is (5.16)

but this form is probably not unique. Indeed, it cannot
be applicable to scattering experiments (see Fig. 3),
where, merely by geometry, there must be a close
correlation between position and momentum at large
distances from the scattering center. The investigation
of possible joint probability distributions is clearly not
complete.

Bopp (1956, 1957) has undertaken not only to
represent quantum mechanics in terms of ensembles in
phase space, but also to derive the statistical equations
from simple principles —an a priori derivation —not
merely a translation from the vector-operator formalism
of quantum theory. Bopp's work divers from the above
in that his joint probability distribution does not satisfy
(5.1) and (5.2) . Nevertheless, there is a definite relation
between the averages calculated in Hopp's theory and
those of quantum theory (denoted by subscripts 8 and
Q). For example,

(q&o= (q)q, (P)o= (P&o,

«).= «).+i/4,
(p &.=(p &.+~V1

"Because (5.1) and (5.2) are satisfied, this will clearly be
true for any function of q only, ,or of p only."It would seem inevitable that arbitrary functional relations
involving q and p cannot be preserved by any quantal operator
correspondence rule, since the equation qp —pq=0 for classical
variables becomes jp —pq=i7i in quantum theory. Clearly one
cannot map hiero onto ih in a consistent fashion.

I, = Iz:q,&z&q:},

Ii= [t
'.pi&ts& p2}, (5.17)

and the imaginary part of P represents the uncertainty
associated with the previous statement. Certain
conditions must be satisfied in order for this inter-
pretation to be sensible. Since q and p are certain to be
somewhere in their spectra, we must have Rer' —+1,
and Im I'—+0, as I~ and I~ are enlarged to include the
entire spectra from —~ to + ~ . If Ii and I2 are smaller
than the irreducible errors in a single measurement,

"The naive interpretation (Matthews, 1968, Chap. 3) of the
operator product AB as corresponding to a measurement of 8
followed by a measurement of A is refuted by the example of the
Pauli spin operators for which 0;0-„=io;. A measurement of a„
followed by a measurement of 0 is in no way equivalent to a
measurement af 0,

Here / is some constant with dimensions of length
(interpreted by Bopp as the finest accuracy of a
position measurement) .

The problem of defining a satisfactory joint proba-
bility distribution for position and momentum may not
be entirely mathematical, for we must also decide on
"the empirical definition of the concept 'simultaneous
values of position and momentum, ' " according to
Prugovecki (1967). To this end he studies various
operational methods of measuring both these observables
simultaeeously on the same individual system, not
merely on different individual systems representative of
the same state preparation. He suggests that the
irreducible errors in individual measurements ought to
be taken into account in a generalized formalism (in
addition to the statistical fluctuations in an ensemble Of

similar measurements, which are treated in the estab-
lished formalism) . It should be emphasized that
simultaneous measurement of noncommuting ob-
servables, even with a finite precision, has no counter-
part in the established formalism which treats only
measurement of a single observable (or a commuting
set of observables). "Now to experimentally determine
a probability distribution, one must perform a number
of measurements and construct a histogram of the
results (see Fig. 2) . Each point on the curve will have a
vertical uncertainty due to the statistical uncertainty
of using a finite sample, and a horizontal uncertainty
due to the error involved in a single measurement.
(In the case of simultaneous measurement of q and p,
a single measurement would be a pair of ni.mbers

(q, p), and the error would be an area in the qp plane) .
If the latter cannot be reduced to zero, we cannot
determine a probability distribution exactly, even if we
eliminate statistical uncertainties by repeating the
measurement an arbitrarily large number of times.

To deal with such a circumstance Prugovecki defines
a complex probability distribtttiort, Pea "(Ii)&I2), with
the following properties: the real part of P represents
the probability that q will be in the interval, I& and
simultaneously p will be in the interval I2, where
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then Im 8 shouM be very large because one cannot
determine whether or not a measured value of (q, P)
lies within such a small region of phase space, and
therefore one cannot determine the relative frequency
(probability) of such an event. Of course the complex
probability distribution must reduce to the real proba-
bility distribution of the established formalism in the
case of commuting operators.

The specific expression proposed by Prugovecki for
the complex probability distribution is

where Ej and E2 are projection operators which project
onto the subspaces spanned by the eigenvectors of j
corresponding to the spectral interval I~, and of j
corresponding to I2, respectively This form, although
perhaps the most obvious choice, may not be satis-
factory because he shows that for any nontrivial
intervals Ij and I-. there exist states for which Re E(0,
This would be tolerable if simultaneously we had a
large value for Im P, so that we could say that the
probability was not well defined in such a case. But in
fact one obtains Im P=O for that state which makes
Re E most negative. Since a "well defined" but negative
probability makes no sense, some modification of either
(5.18) or the interpretation seems in order (such as,
perhaps, a restriction on the states P which are to be
considered physically realizable). This objection does
not necessarily invalidate the concept of a complex
probability distribution, but the usefulness of such a
distribution is yet to be determined.

6. HIDDEN VARIABLES

Quantum theory predicts the statistical distribution
of events (i.e., the results of similar measurements
preceded by a certain state preparation). But if the
prepared. state does not correspond to an eigenvector of
the particular observable being measured, then the
outcome of any individual event is not determined by
quantum theory. Thus one is led to the conjecture that
the outcome of an individual event may be determined
by some variables which are not described by quantum
theory, and which are not controllable in the state
preparation procedure. The statistical distributions of
quantum theory wouM then be averages over these
"hidden variables. "

The entirely reasonable question, "Are there hidden-
variable theories consistent with quantum theory, and
if so, what are their characteristics?, " has been un-
fortunately clouded by emotionalism. A discussion of
the historical and psychological origins of this attitude
would not be useful here. We shall only quote one ex-
ample of an argument which is in no way extreme
(Inglis, 1961, p. 4), "Quantum mechanics is so broadly
successful and convincing that the quest [for hidden
variables j does not seem hopeful. "The vacuous charac-
ter of this argument should be apparent, for the success

of quantum theory within its domain of definition (i.e.,
the calculation of statistical distributions of events)
has no bearing on the existence of a broader theory
(i.e., one which could predict individual events).

The question of hidden variables has also been
subject to a genuine confusion (i.e., not merely due to
the conflicting personalities or metaphysical ideas of the
principal characters in the debate), for Von Neumann
proved a theorem from which he concluded that no
hidden-variable theory could reproduce all of the
statistical predictions of quantum theory. Although his
mathematical theorem is correct, his physical conclusion
is not, and the first example of a hidden-variable model
was published by Bohm (1952). However, a clear
analysis of the nature of Von Neumann's theorem and
its relation to hidden variables was not achieved until
much later (Bell, 1966), and the 14 year interval
between these papers yielded many inconclusive dis-
cussions pro and con, as well as some "improved
proofs" of the impossibility of hidden variables, We
shall expound briefly the content of Von Neumann's
theorem, and the reason why it does not rule out hidden
variables in quantum theory. Other relevant theorems
will also be discussed.

The Statistical Interpretation, which regards quan-
tum states as being descriptive of ensembles of similarily
prepared systems, is completely open with respect to
hidden variables. It does not demand them, but it
makes the search for them entirely reasonable [this
was the attitude of Einstein (1949)g. On the other
hand, the Copenhagen Interpretation, which regards a
state vector as an exhaustive description of an in-
dividual system, is antipathetic to the idea of hidden
variables, since a more complete description than that
provided by a state vector would contradict that
interpretation.

6.1 Von Neumann's Theorem

Von Neumann's mathematical theorem concerns the
average of an observable, represented by a Hermitian
operator, in a general ensemble subject only to a few
conditions. The original derivation (Von Neumann,
1955, pp. 305-325) is lengthier than necessary, and. we
shall follow the more concise version given by Albertson
(1961). Von Neumann makes the following essential
assumptions which in his book are identified by the
symbols in brackets:

(i) [Ij If an observable is represented by the
operator R, then a function f of that observable is
represented by f(E) .

(ii) [II) The sum of several observables represented
by R, 8, ~ ~ ~ is represented by the operator 8+5+ ~ ~ ~,

regardless of whether these operators are mutually
commutative.

(iii) [p. 313, not identifiedf The correspondence
between Hermitian operators and observables is one
to one,
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+ Q I
V" ' ReR„,„+IF'" ' ImR I, (6.2)

m, n; m&n

where R =R *= (rt
~

R
~
nt) is a number, and

U-'=I &( I,

Vt™=
i n&(nt i+ i m&(n i,

IF&" &= —i(l n&(rn )
—

[ nt&(rt )) (63&

are Hermitian operators. According to assi, mption
(iii) these operators are all to be regarded as observables,
and hence (ii) and (v) may be applied to obtain

(R&=Z(U- )R,
n

+ Q I (V'""') Re R„„+(IF'""') Im R „. (6.4)
m, n; m&n

This result may be rewritten as

(R)= Z p ~ = Tr (pR), (65)
ml +

if we define the matrix elements of the statistical
operator p to be

p (U(n) )

p „=—,'(V&" ~&+.—', iPV

p, = -', (Vt m&) -', i(IF
(nt&rt),

(rn(B&. (6.6)

Since the averages of observables are real, the operator
p is Hermitian by construction, and assumption (iv)
implies that it is nonnegative definite ((@ ~ p ~

$)&0
for all P).

This completes the theorem of Von Neumann, which
may be summarized by saying that the statistical
operator representation of states (F4 of our Sec. 1.1)
need not be introduced as a postulate, but may instead
be derived from assumptions (i) ~ . ~ (v) . This theorem,
which is clearly of interest outside of the question of
hidden variables, is discussed in more detail in Chapter
5 of Jordan (1969).

Hidden variables are, by definition, hypothetical
variables whose values must be specified in addition to
the values of a complete commuting set of observables
in order to uniquely determine the result of any meas-
urement on a system. Quantum states, with their
characteristic statistical distributions, would represent

(iv) LA'$ If the observable R is nonnegative, then
(R)&0.

(v) $8'$ For arbitrary observables R, S, ~ ~ ~ and
arbitrary real numbers a, b ~ ~, we must have

(aR+ bS+ ~ )=a(R)+ b (S)+ ~ ~ ~ (6.1)

for all possible ensembles (or states) in which the
averages may be calculated.

An arbitrary Hermitian operator E.may be written as

(R') = (R&', (6.7b)

for all observables E, since by hypothesis every quantity
would have a unique value. Applying the result (6.5)
to (6.7b) for the case of R=

~
P)(cb ~, where (Q ~

@&=1,
yields

(& I t I
&&= (& I t I

@&' (6.8)
for all normalized vectors

~
P). This implies (P I p l @)= 1

or 0 for all
~ P), and since this expression varies con-

tinuously with l P&, the constant —1 or 0—must be the
same for all

~
Q). Hence we must have either

p= 1 or p=o (6.9)

for dispersion-free ensembles.
The case p=o is ruled out because it would imply

(R)=0 for all R in any subquantal ensemble, and so
averages of these could never yield the correct averages
in quantum ensembles. The case p= 1 does not in fact
yield a dispersionless ensemble if the vector space is
greater than one dimensional. In this case

(6.10)

d being the dimensionality of the space (usually oo),
and the left-hand side of (6.7a) becomes

(R')—2 (R)'+ (R)'(1) (6.11)

which is not zero. Thus Von Neumann concludes that,
provided his assumptions (i)-(v) are accepted, there
are no dispersion-free ensembles, and hence there can
be no hidden variables. Since these assumptions are
generally considered to be a part of quantum theory,
he states "It is therefore not, as is often assumed, a
question of a reinterpretation of quantum mechanics, —
the present system of quantum mechanics would have
to be objectively false ~ ~," in order for even hy-
pothetical hidden variables to be introduced in a
logically consistent fashion.

The above conclusion is incorrect, but before we dis-
cuss the reasons why, let us dispose of two minor
points of confusion. Albertson (1961, 1962) makes

misleading and incorrect statements to the eGect that
Von Xeumann's theorem does not assume the existence
of noncommuting observables, and that the theorem is
independent of, and additional to, the uncertainty
principle. But the assumption (iii), which Von Neumann
did not distinguish by any symbol, in eGect assumes the
existence of an infinite number of noncommuting
observables, and this assumption plays a very central
role in the proof. '4 If one assumed that all observables

'4 Oddly enough, Jammer (1966') repeats Albertson's incorrect
statement on p. 369, while on p. 370 he mentions Von Neumann's
assumption that every projection operator is an observable, with-
out being aware of the contradiction l

ensembles of systems with different values of the hidden
variables, but if all hidden variables were fixed, the
resultant subquantal ensemble would be dispersionless.
That is,

(6.7a)
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were commutative, then a simultaneous eigenvector of
all the observables would represent a dispersion-free
ensemble.

The second minor point concerns the observation
that (iii) is trivially false if there are superselection
rules, which divide the full Hilbert space into coherent
subspaces such that no observable may have matrix
elements between vectors of different subspaces and no
physical state vector may be a superposition of vectors
from different subspaces (Wick et g/. , 1952; Galindo
et a/. , 1962). But Von Neumann's theorem can still be
proven in each coherent subspace individually, so the
question of superselection rules is irrelevant.

6.2 Bell's Rebuttal

There is nothing wrong with the mathematics of
Von Neumann's theorem. Nevertheless his conclusion
that no hidden-variable model can be consistent with
the statistical predictions of quantum theory is false
for such models exist (Bohrn, 1952). The difficulty lies
in the relation between the mathematics and the
physics, as was clearly analyzed by Bell (1966).

The result of Von Neumann's theorem LEq. (6.5)]
seems to imply that any ensemble can be characterized
by a statistical operator, whether this ensemble is a
quantum state or a subquantal hidden-variable state.
But since we know that a statistical operator char-
acterizes just a general quantum state, we should
immediately become suspicious of the assumptions
which lead to this result. As Bell pointed out, it is
(6.1) of assumption (v) which is at fault. At first sight
the requirement that the average of the sum of two
observables be equal to the sum of the averages of the
observables separately may seem reasonable. But the
nontrivial nature of this additivity property becomes
apparent when we realize that it is not true for in-
dividual measurements of noncommuting observables.
Consider for example the spin components of a particle.
The measurement of 0., can be made with a suitably
oriented Stern-Gerlach magnet. The measurement of
0-„requires another orientation. There is no way of
relating a measurement of (o.,+o.„) to the results of
the first two measurements. This requires a third and
different orientation of the magnet. Moreover, the
result of the measurement, an eigenvalue of (o.,+o„),
will not be the sum of an eigenvalue of 0-, plus an eigen-
value of o-,„. That the ensemble average of many
measurements of (o,+o.„), ((o,+o„)), should be equal
to the sum of the averages of two other measurements
involving different experimental arrangements,
(o,)+(o„), is a peculiar and nontrivial property of
quantum states. But in a hypothetical dispersion-free
state every observable would have a unique value equal
to one of its eigenvalues, and since there is no linear
relationship between the eigenvalues of noncommuting
observables, in general, it is obvious that (6.1) could
not possibly be satisfied for dispersion-free states.
When this impossible condition is removed it is possible

to construct a hidden-variable model which reproduces
the correct statistical distributions for quantum states,
as Bell showed by means of a simple example.

Bell also considers the relevance of some more recent
mathematical work by Jauch and Piron (1968) and by
Glea, son (1957) to the problem of hidden variables, and
we refer the reader to his paper for very clear dis-
cussions. Although the mathematical theorems of Von
Neumann and the above authors do not in fact exclude
liidden variables from quantum theory, they are not
entirely devoid of value. With proper analysis, such as
Bell provided, they help to point out some of the
features which a successful hidden-variable model must
possess.

The work of Gleason (1957) is particularly interesting,
for he shows that the additivity assumption (6.1) for
commuting obsermbles owly is incompatible with the
requirement that every projection operator have a
unique value (either 0 or 1) in a dispersion-free state.
Bell shows that one may still introduce hidden variables
by invoking the dependence of a measurement result on
the "whole experimental arrangement" (Bohr, 1949,
p. 222) in a very strong way. In his model the particular
result obtained when measuring a certain observable
may depend upon which other commuting observables
are being measured simultaneously.

One undesirable feature of Gleason's work, in common
with that of Von Neumann, is the assumption that every
proj ection operator represents an observable. Since
every Hermitian operator is a linear combination of
commuting projection operators, this is essentially
equivalent to the assumption that every Hermitian
operator represents an observable (see F7 of Sec 1.1).
We are not concerned with the comparatively trivial
restrictions on observability imposed by superselection
rules, but with the question of whether an operator such
as x'p, 'x' really represents an observable quantity.
One might conjecture, as this author has, that the
restrictions Gleason's theorem imposes on hidden
variables might be met in a less drastic fashion than
that proposed by Bell, if only essential observables,
rather than all projection operators, were required to
have unique values (eigenvalues) in a hypothetical
dispersion-free state. The problem of enumerating
"essential observables" has not been seriously con-
sidered, but an important example due to Bell (1964),
to be discussed, indicates that such a proposal would
not be adequate.

It seems appropriate to reply here to Jauch and
Piron (1968) and Misra (1967), who have commented
somewhat unfavorably on the work of Bell (1966).
Misra (p. 845) states, "The quest for hidden variables
becomes a meaningful scientific pursuit only if states,
even physically unrealizable states, are somehow
restricted by physical condition, ~ ~

"with the implica-
tion that they have done this but that Bell's analysis is
only "a drastic ad hoc modification of the notion of
state" (Jauch and Piron, 1968). While agreeing with
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((trt. tt)(trs b))= —a b, (6.12)

according to quantum theory.
We now suppose that the results of individual

measurements, which are not determined by the quan-
tum state, are determined by some set of parameters
denoted P. The result A of measuring r~ a is deter-
mined by a and A., and the result 8 of measuring 02 b is
determined by b and A, ; these results necessarily being
eigenvalues of the operators, i.e.,

(6.13)

But in accordance with Einstein's assumption, the
result A of measurement on particle 1 should not
depend on the direction b of the magnet which acts on
particle 2, and 8 should not depend on a. If p(X) is the
probability distribution of the hidden variables
then the average of the product (ot a) (trs b) will be
given by

P(a, b) = JA(a, X)B(b, X)p(X) dk. (6.14)

Bell then proves that (6.14) cannot be arbitrarily

"In spite of the publication dates, it is clear from the contexts
that this paper was written later than Bell (1966).

the first quoted statement above, I would contend that
Misra, 's abstract algebraic approach, and the proposi-
tion-lattice theoretic approach of Jauch and Piron,
fail to meet this requirement in that they impose only
abstract muthemuticul conditions whose physical im-

plications are obscured by their abstractness. The
danger inherent in such an approach is underlined by
the 34 year interval between Von Neumann's abstract
attack on the hidden-variable problem and Bell' s
demonstration that one of his assumptions was physi-
cally unreasonable, and even impossible.

6.3 Be11's Theorem

Although hidden-variable models which reproduce all
the statistical predictions of quantum theory are known
to exist, they would be more interesting if they could
be made to satisfy the very reasonable assumption
(Einstein, 1949, p. 85) that the real factual situation of
a system is independent of what is done with some other
system which is spacially separated from, and not
interacting with, the former. Bell (1964)" has con-
sidered this problem for the experiment which we
discussed in connection with the EPR theorem, the
measurement of arbitrary components of the spins of
two, spin one-half particles, which were initially
yrepared in a singlet spin state, and which have
separated.

The spin components cr~ a and o2 b can both be
measured by means of two Stern-Gerlach magnets
oriented along the directions of the unit vectors a and
b. The results of these two measurements will exhibit a
statistical correlation, which for the singlet state is
given by

where the bar denotes a smoothed function, with 8

tending to zero with size of the range of angular aver-
aging. Suppose that the difference between the smoothed
functions is bounded,

l~(tt, b)+a b l
&e (6.16)

From a straightforward argument based on (6.13)-
(6.16), Bell deduces the inequality

4(e+8) &&2—1, (6.17)

from which it follows that as the range of angular
smoothing, and hence 8, is made arbitrarily small, e

cannot be arbitrarily small. Hence (6.14) cannot be an
arbitrarily accurate approximation to the quantum
theory result (6.12) .

Bell shows that it is easy to make a hidden-variable
model to agree with (6.12) if the result A(a, X) of the
measurement on particle I is allowed to depend also
upon the direction b of the other magnet. However, if
Einstein's hypothesis of independence of separated
noninteracting systems is accepted, then the above
theorem demonstrates that no such hidden-variable
model can agree with all the predictions of quantum
theory. This result can be interpreted as an illustration
of Gleason's theorem as analysed by Bell (1966),
according to which a hidden-variable model is possible
only if the result of a measurement of o'I. a depends
upon which one of the observables o'2. 1 (out of all the
possible directions b) is being measured simultaneously.
This example appears to rule out the possibility, con-
jectured in the previous section, that one might avoid
the consequences of Gleason's theorem by narrowing
one's attention from all Hermitian operators to only
"essential observables, " for there seems no doubt that
o~ a and (r2 b for all a and b are genuine observables.

Pote added irt proof: Recently Wigner (1970) has
given a somewhat simpler version of Bell's argument,
which yields some insight into its mathematical nature.

We shall not discuss specific hidden-variable theories
in detail because none seems to be at all definitive, and
any that reproduce ull the results of quantum theory
exactly must, as a consequence of Bell's theorem, be
physically unreasonable (though they may be logically
self-consistent) . This remark would not apply to
theories which depart from the formalism of quantum
theory and only agree with it approximately in some
limit. For descriptions of specific hidden-variable
theories we refer the reader to a review by Freistadt
(1957), and an article by Bohm (1962).

close to the result of quantum theory (6.12). To avoid
the possibility that the differences might occur only at
isolated points, he first averages (6.12) and (6.14)
over small cones of angles about the mean directions
of a andb. Wemay write

(6.15)
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6.4 Suggested Exyeriments

As emphasized by Bohm, the postulates of quantum
theory can be tested only if we consider what it would
mean to contradict them. Therefore, at the very least,
the study of hidden variables will have served a useful
purpose if it leads to the suggestion of interesting
experiments, regardless of whether or not the outcome
of those experiments is favorable to the hidden-variable
hypothesis.

The additivity of averages of noncommuting ob-
servables in quantum ensembles (6.1) is a very powerful
assumption, as Von Neumann's theorem shows, since
it and a few other postulates allow one to derive (6.5)
from which all the statistical predictions of quantum
theory flow. Von Neumann (1955, p. 309, Footnote
164) suggested an experiment based upon the fact that
the Ha, miltonian operator is the sum of two non-
commuting terms, the kinetic and potential energies.
For some suitable state, one should measure the average
kinetic energy by measurements of the momentum,
measure the average potential energy by measurements
of position, and measure the average energy by spec-
troscopic methods (each measurement being preceded
by the same state preparation) . Then the additivity of
the quantum averages (expectation values) could be
directly tested. A similar experiment which would
probably be easier to perform could be based on the
spin components o„a„,and (0,+o„)=v2 (component
ofo at 45' to the x andy axes).

The experiment involving the correlation of spin
components of two particles from an initial singlet state
is of interest because Bell (1964) showed that, while it
is easy to construct a hidden-variable theory to repro-
duce the results of quantum theory for measurements
on a siege spin, it is not possible to do so for two-spin
correlations without violating Einstein's assumption.
Moreover, from (6.17) we see that the hidden-variable
prediction must diGer from the result of quantum
theory by at least e)0.10, so a clear cut experimental
test is possible.

A measurement of the correlation in the polarizations
of photons emitted frorri the deca, y of singlet posi-
tronium, which is similar in principle to the experiment
above, has been performed by Wu and Shaknov (1950),
but only for two angles. As Bell (1964) has pointed out,
it is easy to make a hidden-variable theory a,gree with
quantum theory at certain fixed angles, but not at all
angles.

The hidden-variable theory of 8ohm and Bub
(1966) has been tested by Papaliolios (1967). Ac-
cording to the theory, when a photon from an arbitrarily
linearly polarized beam is incident on a Polaroid filter
(whose polarization axis is not exactly parallel to the
polarization vector of the beam), the photon is or is not
transmitted depending upon the value of some hidden
variable. In a normal beam, the hidden variables are
uniformly distributed, yielding the usual transmission
probability. In the experiment, the beam is 6rst passed

through two nearly crossed polaroid filters. According
to the theory, the transmitted beam should then have
almost unique values for the hidden variables. These
are presumed to relax once more to a uniform dis-
tribution within some relaxation time 7., but if the beam
is incident on a third rotatable polarizer (whose axis is
at a variable angle 0 to the axis of the second), before
this relaxation takes place the intensity transmitted
through it is predicted to deviate from the cos' 0 law in a
definite fashion. In the experiment, the third polarizer
was placed as close to the second as possible, but no
deviations from the cos' 0 la,w were observed. Papaliolios
concludes that the hidden variables, if they exist, must
relax to a uniform distribution in a time v&2.4&10 '4

sec, which is two orders of magnitude smaller than the
value suggested by Bohm and Bub.

7. CONCLUMNG REMARKS

The central theme connecting all of the topics in this
paper has been the superiority of a purely statistical
interpretation of quantum theory, in which a state
vector represents an eesemMe of similarly prepared
systems, as opposed to the stronger assumption that a
state vector provides a complete description of an
individual system. By the criterion of logical economy,
the Statistical Interpretation is preferable because it
makes fewer assumptions. The stronger a,ssumption
plays no role in any application of quantum theory,
and so Occam's razor ma, y be invoked to discard it.

A more serious argument against the stronger
assumption above is that it leads to conceptual diffi-
culties. One such difficulty is exhibited by the Theorem
of Einstein, Podolsky, and Rosen (Sec. 2) which
demonstrates that this assumption is incompatible with
the physical independence of spacially separated
objects which may have interacted in the past. Although
from a purely logical point of view one could retain
either of these assumptions, it seems most unreasonable
to discard the independence of separated noninteracting
objects.

It used to be argued that the peculiarities consequent
upon the assumption that a system is completely
characterized by a wave function were confined to the
microscopic domain, and that these peculiarities were
justified by "the unavoidable disturbance of the system
by the measuring apparatus. " The latter of these con-
tentions is refuted by the example due to EPR, in
which it is possible to measure some observable of an
elementary particle, without the apparatus interacting
with that particle in any way. It appears (see Witmer,
1967, p. 45) that Bohr recognized this implication of the
EPR argument, for he subsequently cautioned against
such phrases as "disturbing of phenomena by observa-
tion" (Bohr, 1949, p. 237), but this lesson has been
forgotten by some modern authors (e.g. , Messiah,
1964, p. 140; Matthews, 1968, p. 27) .

The former contention is refuted by an analysis of a
measurement of a microscopic object by a macroscopic
apparatus (Sec. 4). It follows from very simple con-
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siderations that the final state of the system (object
plus apparatus) mztst, in general, be a coherent super-
position of macroscopically distinct "pointer positions. "
If the state vector is assumed to comp/etely describe the
individual system, i.e., if one assumes that the system
simply does not have a value for a,ny observable except
those for which the state is an eigenvector (or perhaps
those whose dispersion is very small), then one will be
forced to the absurd conclusion that the "pointer" of
the apparatus (a macroscoPic object) has no definite
position. The supposed reductiort of the state vector, and
all the difIj.culties and complications associated with it,
are only artifacts of the vain attempt to retain the
above assumption. But to what purposely Under the
more modest assumption that a state vector represents
an ensemble of similarily prepared systems, the measure-
ment process poses no particular problem.

The criticisms above also apply to certain hidden-
variable theories in which a zP field is associated with
each individual system (Bohrn, 1952; Bohm and Bub,
1966). Like Von Neumann's theory, these theories
must also invoke a reduction of the P field upon meas-
urement, which in the example of the correlated but
spacially separated systems considered by EPR, would
necessitate a signal passing instantaneously across the
macroscopic distances between the systems. Since, as
we have seen, such a drastic assumption is rot accessary
for a satisfactory interpretation of quantum theory,
we see no reason for considering it further.

The Urtcertairzty Prirtcip/e (Sec. 3) finds its natural
interpretation as a lower bound on the statistical dis-
persion among similarily prepared system (this inter-
pretation being dedlced, not introduced ad hoc), and
is not in any real sense related to the possible dis-
turbance of a system by a measurement. The dis-
tinction between measurement and state preparatiorz
is essential for clarity. It is possible to extend the
formalism of quantum theory by the introduction of
point probability distribzttiorzs for position and moinentum
(Sec.5) .This demonstrates that there is no conflict with
quantum theory in thinking of a particle as having
definite (but, in general, unknown) values of both
position and momentum, contrary to an earlier inter-
pretation of the uncerta, inty principle.

The Statistical Interpretation does not prejudice the
possibility of introducing bidder variables which would
determine (in principle) the outcome of each individual
measurement (Sec. 6). Although such models exist,
Bell (1964) showed that they cannot, . in general, satisfy
the requirement that measurements on spacially
separated noninteracting objects should be independent.
It is ironic that this requirement which Einstein,
Podolsky, and Rosen first used to refute the belief that a
wave function could completely describe an individual
system (a belief which stood opposed to hidden varia-
bles), should also prove disasterous to at least the
simplest idea of hidden variables.

Many of the ideas expounded in this paper were
expressed, in essence, by Einstein (1949) in his Reply

10 Criticisms. In support of his thesis that a wave
function must be considered to represent an ensemble
of systems, and cannot reasonably be assumed to
provide a complete description of an individual system,
he considers the decay of a, radioactive atom, with an
automatic recording detector to register the decay
time. This example is a prototype of the one used in
the Theory of Measurement, and it embodies all the
essential physical content of the more general argument.
In this Reply he also restated the conclusion of the EPR
argument in the form which we have called the Theorem
of EPR, and gave a brief discussion of the nontrivial
aspect of the classical limit of the quantal state descrip-
tion.

A serious reading of Einstein's Repty should clear up
any misconceptions to the effect that he rejected
quantum theory or misunderstood its foundations. In
fact, he understood the essentially statistica/ nature of
quantum theory as well as any of his contemporaries,
and better than many. His only objection was against
the assumption that a wave function or state vector
could exhaustively describe an individual system, which
we have seen to be an unwarranted and troublesome
assumption. This fact, and the fact that Einstein
advocated a fully viable interpretation of quantum
theory (essentially the Statistical Interpretation of this
paper although he expressed himself more briefly), do
not seem to have been appreciated by his critics."

The foundations of quantum theory are subject to
continuous discussion, and two almost coincident
papers in the Americazz Jomrrtal of Physics, taking
nearly opposite points of view, deserve comment.
Hartle (1968) has made a novel attempt to derive the
statistical assertions of quantum theory from a quantal
description of individual systems. The conceptual basis
of this attempt is questionable, for, as Hartle admits, a
quantum state is rot an objective property of an
individual system. That is to say, in the words of
Blokhintsev (1968, p. 50),

"If Lthe wave function were a characteristic of a
single particlej it would be of interest to perform such a
measurement on a single particle (say an electron)
which would allow us to determine its own individual
wave function. Xo such measurement is possible. "
But whereas Blokhintsev (and the present author)
regards the quantum state as describing an eesembte of
similarily prepared systems, Hartle considers it to
describe the information possessed by some observer.
The irrelevance of that interpretation has already been
commented upon (Sec. 4.4) .

"Messiah's (1964, p. 158) reply to this argument is essentially
that there are experimental arrangements from which it is im-
possible to determine a definite decay time. (His wording to the
efFect that they are incompatible with the existence of a time of
decay is an unjustified overstatement). But this is irrelevant.
The point is that it is sometimes (i.e., with suitable apparatus)
possible to measure the decay time of a single atom, but this
decay time is never predicted by quantum theory."See the articles by Pauli, Born, Heitler, Bohr, and Margenau
in the volume edited by Schilpp I1949). However, Margenau's
recent papers are more compatible with Einstein's views.



380 RKvtxxvs 07 MQDERN PHYsIcs OcTo&ER 1970

On the other hand Park (1968) has carefully studied
the relations between ensembles and individual systems
in statistical theories. He shows how one may proceed
logically from the description of ensembles to individual
systems in classical statistical mechanics, and-how the
attempt to proceed similarily in quantum statistical
mechanics to an identification of a pure state operator
with an individual system fails. The present paper is
consistent with his conclusion; moreover we have shown
that such an identification would lead to serious
difhculties in principle.

Although this article has been concerned primarily
with a consistent interpretation of quantum theory as
it is presently formulated, one is naturally led to ask for
hints of future developments. Except for eliminating
some false starts, such as theories of wave function
reduction, such hints are hard to find. Recognition that
quantum states should refer to ensembles of similarily
prepared systems would seem to open the door for
hidden variables to control individual events. On the
other hand, Bell's theorem seems to present a severe
obstacle for any hidden-variable theory which repro-
duces exactly all of the predictions of quantum theory,
but this need not be so for a, theory which departs from
the formalism of quantum theory and recovers it only
in some limiting case. Presumably the next step must
be a bold departure from the familiar formalism, as
Einstein's theory of gravitation departed from that
of Newton.
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'. .ransI:ormations in Quantum '. .'ie.c '. .'ieory"
CI AUDIO A. ORZAI ESIt
Department of Physics, Coluznbia Uniperszty, tztezo Fork, Sezo Fork

Within the Wightman approach to quantum 6eld theory, we review and clarify the properties of formal charges, defined
as space integrals for the fourth component of a local current. The conditions for a formal charge to determine an operator
(generator) are discussed, in connection with the well-known theorems of Goldstone and of Coleman. The symmetry
transformations generated by this operator —given its existence —are also studied in some detail. For generators in a
scattering theory, we prove their additivity and thus provide a simple way to characterize them from their matrix elements
between one-particle states. This characterization allows an immediate construction of the unitary operators implementing
the symmetry transformations, and implies that all internal symmetry groups are necessarily compact. We also indicate
how to construct interacting fields having definite internal quantum numbers. The present status of the proof of Noethcr s
theorem and of its converse is discussed in the light of the rather delicate properties of formal charges.
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1. INTRODUCTlON

Following the results of Goldstone et al. (Goldstone,
1961; Goldstone, Salam, and Weinberg, 1962) and of
Coleman (1966), in recent years there has been a
continual interest in the properties of forrnal charges.
A formal charge Q is defined here as the space integral
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mlsslon.
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of the zeroth component of a local four-vector current:

Q(xp) = f dip(x). (1.1)
Quantities of this kind appear in the discussion of

symmetries and broken symmetries in quantum Geld
theory, and are one of the basic tools in the modern
"current-algebraic" approach to elementary particle
physics (Gell-Mann, 1962; Adler and Dashen, 1968).

It has been repeatedly emphasized (Kastler,
Robinson, and Swieca, 1966; Schroer and Stichel, 1966;
Dell'Antonio, 1967;Swieca, 1966;Katz, 1966;Fabri and
Picasso, 1966; Fabri, Picasso, and Strocchi, 1967; and
De Mottoni, 1967) that equations of the type (1.1)
have rather delicate convergence properties, and that a
certain care has to be exercised when considering such
expressions. This fact limits the extent to which Q can
be thought of as a generator of symmetry or broken
svmmetry transformations. ' The same convergence
properties are at the basis of Goldstone's theorem
(Goldstone, 1961; Goldstone, Salam and Weinberg,
1962; Kastler, Robinson and Swieca, 1966), and of
Coleman's theorems (Coleman, 1965 and 1966;
Pohlmeyer, 1966; Schroer and Stichel, 1966; and

'The nomenclature as well as the mentioned restrictions will
be clari6ed later on. For present purposes, a generator of sym-
metry transformations is to be identihed with a self-adjoint
operator which commutes with P, the momentum operator, and
commutes with the S matrix. A conserved current leads to an
exact symmetry if the associated charge is a generator of symmetry
transformations. Spontaneously broken symmetries occur when
current conservation does rot imply the existence of a symmetry.
Intrinsically broken symmetries arise when the current is not
conserved.


