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The nature of the chemical bond in crystals is discussed. The general theories of L. Pauling based on thermochemical
data and of C. A. Coulson based on valence bond concepts are compared with a recent spectroscopic theory. Particular
emphasis is placed on binary crystals of formula A&BS N which includes most tetrahedrally coordinated semiconductors
as well as crystals of the rocksalt (NaCl) family. A wide range of physical properties is discussed, including crystal
structure, energy bands, elastic constants, ionization energies, and impurity states. The role of quantum-mechanical
sum rules and spectral moments in constructing simpli6ed models of bond and band behavior is explored. Stress is laid
throughout on methods for incorporating quantum-mechanical effects into properties of chemical bonds through algebraic
relations rather than through variational solutions of the wave equation.
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1. WHY STUDY THE CHEMICAL BOND
IN CRYSTALS'?

One of the many apocryphal stories about the great
men of science concerns the illustrious mathematical
physicist P. A. M. Dirac. His theory of the relativistic
electron was abstract and mysterious to a generation of
physicists nurtured on the concepts of classical
mechanics. An intrinsic feature of his theory was the
symmetry between electrons in positive energy states
and holes (or positrons) in negative energy states.
When the positron was discovered, Dirac's reaction

epitomized the attitude of the pure physicist. "The
rest, " he is reported by his colleagues at Cambridge to
have said, "is chemistry. "

Dirac's prediction has proved correct. The neutron
was discovered to be the catalyst of nuclear reactions,
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and there may well be as many "elementary" particles
as there are hydrocarbons, although the world is
possibly not large enough to accommodate the cyclotron
needed to 6nd all of them. In any event, if by chemistry
one means substantive concepts concerning the struc-
ture of matter, then this is as much the domain of
modern physics as it is of modern chemistry.

Unfortunately, many physicists who cannot emulate
Dirac's mathematical accomplishments have adopted
an attitude of lofty indifference to substantive theory.
Vet today the need for such theories is greater than
ever. Marvellous experimental techniques have been
developed to synthesize new materials and to measure
their properties on an atomic scale. The experimental
mathematicians with their giant computers produce
reams upon reams of numbers, but then interpret them
using makeshift concepts introduced two or three or
more decades ago, when an intelhgent guess at what was
needed was all that could be achieved.

The thesis of this article is that many new concepts
can be generated by studying the chemical bond in
crystals. This thesis is in direct conQict with the
philosophy of classical physical chemistry, which starts
with individual atoms and constructs more complex
systems by bringing atoms together one at a time to
form larger and larger molecules. According to this
viewpoint, the simplest system of aggregate atoms is the
diatomic molecule, and the most complex is the macro-
scopic crystal.

This atomistic view is, in fact, not that of organic

chemistry. The organic chemist begins with building
blocks, such as the benzene ring, which are appropriate
to the large molecules of interest. Similarly, crystals
may actually be simpler than molecules in some respects.
It is possible to find crystals which contain only one
type of bond and no unbonded electrons. For example,
sp' bonds between 8 and N are best studied in cubic
BN, and sp2 bonds in layer BN. The closest molecular
approximation to the former is the ethanelike molecule
H3BNH3, and to the latter the benzenelike molecule
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B&NSH6. In covalent systems the itinerant character of
the valence electrons means that the study of one kind
of bond is necessarily more complicated when other
kinds of bonds are present.

There is another good reason for studying the
chemical bond in crystals. Molecular orbital theory,
as a method of calculation, is unavoidably dependent
on the use of a definite kind of representation, that
based on atomic orbitals. Thus it is customary to
de6ne bond order, bond populations, etc., in terms of
the coe%cients of these atomic orbitals. But such
quantities are not observables, and according to the
operational philosophy of the underlying quantum
mechanics, it is not desirable to introduce such "hidden
variables" into the theory. I have dealt with the
problem of representation-independent concepts at
considerable length elsewhere (Phillips, 1970), and so
will not give an extended discussion here. Suffice it to
say that by using dispersion theory it is possible to
discuss the chemical bond in crystals employing
quantum mechanics, but without reference to any
particular representation.

As an example of the kind of problem to which we
address ourselves, consider the question of ionicity. A
typical predominantly ionic bond is Xa+Cl . From
studies of both crystals and molecules it is known that
there is a qualitative relationship between the dipole
moment of such a bond and its ionicity. But if one
wants to take full advantage of such a concept, one
must be able to treat not only strongly ionic situations
involving closed-shell atoms, as in the example of
Na+Cl, but also cases of weal» and intermediate
ionicity involving open-shell conhgurations. Here the
correlation between ionicity (as defined, for example,
through differences in electronegativity or differences
in ionization potential) and dipole moment practically
disappears. This leads one to question the utility of
ionicity as a tool for structural analysis of predomi-
nantly covalent materials. This question, one should
note, is basic to the treatment of heteroatoms in
theories of the Huckel, valence bond, or molecular
orbital type. It will be answered here for crystals, and
it will turn out that the answer is representation
independent.

Another question of great structural significance is
the validity of the one-electron approximation. For
light diatomic molecules some information is available
on this question from elaborate computer calculations,
but it is not easy to see how to apply this knowledge to
larger molecules and crystals. Because our theory is
representation independent, by implication it provides a
basis for analyzing this question. Most of our discussion
will utilize one-electron language for convenience,
because this is the language that will be most familiar
to most readers. Most of our results, however, do not
depend on this approximation. Those results which do
can be Inodifjted. to include the effects of electron

correlation and exchange in a systematic manner that
is rot representation dependent.

2. PAULING'S THEORY OF ELECTRONEGATIVITY
AND IONICITY

"What we cat/ quarttum theory Iisj the euterirlg

wedge of scientific bolshevism "G.. 1V. Lewis, Valence
(1916)

The concept of the relative electronegativity of the
elements is an old one which arose in connection with
oxidation —reduction potentials in the eighteenth cen-
tury. Crystallographers early noted that binary com-
pounds of atoms A and B with large differences in
electronegativity tended to form rocksalt structures,
while smaller differences in electronegativity favored
more open covalent structures. W'hen the difference in
electronegativity is large, the heat of formation of the
AB bond is large, providing a thermochemical use for
the concept of electronegativity. The greater the
difference in electronegativity, the more ionic the bond
is said to be, and the greater is its heat of formation.

With the advent of quantum mechanics it appeared
that chemistry would finally be put on a quantitative
footing, and the qualitative ideas with structural,
electrochemical, and thermochemical origins would be
precisely defined. Now, more than forty years after the
establishment of the wave equation and the explanation
of the properties of atoms and of diatomic molecules,
we seem to be farther than ever from agreeing on the
meaning of these terms.

Why is this the caseP In practice, because the wave
equation is so dificult to solve, workers have often
become so enmeshed in the details of their work that
they lose sight of the broad empirical ideas that formed
the basis of classical theory. For this reason the two
broad approaches to electronegativity, ionicity, and
bond energies —the thermochemical one and the
molecular orbital one—are no closer to each other now
than they were three decades ago. At the risk of creating
further disagreement, a third approach to the problem,
based on spectroscopic considerations, is presented here.
The third approach makes possible comparison of the
first two approaches. It shows that, at least concep-
tually, all approaches have a great deal in common in

spite of their use of quite different operational methods.
The great precision achieved spectroscopically permits
evaluation of the relative merits of each approach.

The thermochemical approach, pure, simple, and
unsullied by quantum-mechanical paraphenalia, is
advocated by Pauling (1960). He defines electronega-
tivity as "the power of an atom in a molecule to attract
electrons to itself. " This dehnition, which reflects the
historical origins of the concept of charge flow in
electrochemistry, focuses attention on the actual charge



PHiLLzps loni city in Crystals 319

centered on each atom. However even if the complete
charge distribution of the molecule or crystal were
known precisely, one would still need a prescription for
decomposing the total distribution into a superposition
of distributions centered on component atoms.

To circumvent this difhculty, Pauling turns from
charge distributions to bond energies, which are known
from heats of formation. The cohesive energy of diamond,
for instance, is 160 kcal/mol, and since each C molecule
corresponds to two bonds, the C-C single bond energy
is about 80 kcal/mol. (A hydrocarbon value of 85
kcal/mol is also quoted at times. Here we are primarily
concerned with crystals, and so quote the diamond
value. ) In this case the difference in electronegativity is
zero by dehnition.

When two elements, e.g., A and 8, differ in electro-
negativity (denoted by XA and XB, respectively), one
6nds that in general the heat of formation D~B of the
AB bond satisfies the relation

DAB+ (DAA+ DBB)/2y (2.1)

where D~~ and Dg~ represent the bond energies of the
elements A and 8, respectively. Of course the AB bond
energy generally refers to a structure in which the
coordination numbers of A and B are diferent from
what they were in the pure A or pure 8 structures.
Thus, in the language of atomic orbitals, the states of
hybridization of A and 8 are diferent in the AB com-
pound than they were in the pure A and pure B com-
pounds, which raises the question of the orbital de-
pendence of electronegativity.

The ionization energies of free atoms are known to be
quite different for different multiplets, and when a
suitable average over multiplets is taken corresponding
to each state of hybridization, one finds substantial
variations in the ionization energies. This led Moffitt
(1950) to suggest that differences in hybridization
inQuence the properties of predominantly covalent
bonds to a greater extent than do differences in electro-
negativity. Moffitt substantiated this claim by studying
C-H, N-H, and O-H bond lengths. However, the
proton potential is much more singular than are other
atomic valence potentials, because in other atoms the
valence electrons do not penetrate the core region
because of the exclusion principle. At the same time the
electron-electron interactions which are responsible for
multiplet formation in polyvalent atoms are less
important in large molecules and crystals, where the
spacing of energy levels is much smaller than a typical
bond energy. One is therefore justified in retaining the
concepts of electronegativity and ionicity. Differences
in hybridization states can be taken into account by
following the usual Hiickel approach (Streitweiser,
1961), and allowing the parameters of the theory to
vary with bond length in a smooth manner, thereby
allowing quantitatively for most hybridization effects.

Ideally one should stndy homologous systems in which
the hybridization states vary as little as possible, in
order to isolate trends associated entirely with elec-
tronegativity and ionicity. That is the procedure
followed here in studying A~B' ~ crystals.

Pauling resolves this problem by using the concept
of resonating bonds. In simple situations, e.g. , A~8~+
crystals, the number of resonating bonds 3f per atom is
equal to its classical valence, i,e., M=A. In diamond,
%=4; in cubic BN, %=3; and in BeO, %=2. When
the number of bonds is different from the coordination
number of the atom, one has "resonating" bonds. Thus
in diamond each C atom shares four single bonds with
its tetrahedrally coordinated neighbors, but in BeO
only half of the valence electrons are in bonding states
where they resonate from one neighbor to another. The
other half of the valence electrons are localized about
the oxygen anions. For more complicated structures,
the rules for determining 3f become quite elaborate
(Pauling, 1960) .

Whenever (2.1) holds, Pauling defines the "extra-
ionic" energy 6+8 by the relation

DAB DAB (DAA+DBB) /2y (2.2)

and relates this to the electronegativities Xg and Xg
and the number of resonating bonds/mole by

DAB ———23M (XA—XB)' (2.3)

The heat of formation can be obtained from (2.3)
after allowing for the extra stability of 02 and N2

bonds. Let eN and eo be the number of nitrogen and
oxygen atoms per AB molecule. Then the heat of
formation AII p,~ is given by

AHAB —DAB+ 55.4e——N+ 26.0iio. (2.4)

If one accepts Pauling's prescriptions for M, then from a
collection of heats of formation one can prepare a table
of values of XA. It has been found (Pritchard and
Skinner, 1955) that the most consistent results are
obtained by studying polyatomic molecules of the type
ST (where T is an univalent atom) or SR„(where R
is an univalent radical) . In this way one is more likely
to be treating single bonds. The most recent compilation
of this type appears to be that of Allred (1961), who

used 16 homoatomic and 38 heteroatomic bond energies
to determine his values of X~ for 69 elements from
162 computations.

It is interesting to check Pauling's basic formula (2.3)
by using the values of X& derived from polyatomic ST„
or SR„molecules to calculate the mean value of M in

tetrahedrally coordinated crystals A~B' ~.
For E= 2, one finds 3II= 2.2 with an rms deviation of

1.2 (computed using hH itself as a weighting factor in

performing averages, so as to minimize errors from
cases like CdTe, where hH is itself small). For the
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case X=3, one 6nds &=4.2~1.5. Thus the approxi-
mation M =S is not bad for X=2, but assuming there
are as many bonds per molecule for %=3 as for %=4
gives better results, i.e., assuming that all bonds are
present and equal the coordination number gives good
results for the more covalent crystals. Perhaps the
resonating-bond prescription for determining M is
better suited to molecules than it is to crystals, where
the valence electrons are spread throughout a large
volume and interact with each other to a lesser extent.

In spite of the ambiguities attached to 3II (and hence
to the entire table of electronegativities), Pauling goes
on to use these values to make rough estimates of the
fraction of ionic character f;(AB) of an AB bond. He
assumes that f;(AB) is a function of (X~—XH) only,
and is independent of other quantities (e.g. , the bond
length r~E). Clearly f; must be an even function of
X~—X~, and as it measures the fraction of ionic
character it should lie in the interval between zero and
one. The conditions

f, (A, B) =f;(B, A),

0&f;(AB) &1,

(2.5)

(2.6)

There is a rough correlation between f; as defined by
(2.7) and dipole moments of diatomic molecules
(Pauling, 1960) .

3. VALENCE BOND THEORY

Many diferent attempts have been made to for-
mulate the concepts of electronegativity and ionicity in
the language of molecular orbital (MO) theory. For
our present purposes the work of Coulson, Redei, and
Stocker (1962) is most relevant. These authors, here-
after referred to as CRS, have studied the electronic
properties of tetrahedrally coordinated crystals of the
A B~ family using a simple MO description. Their
prescription for treating electronegativity differences is
the one advocated by Mulliken (1949). According to
this approach, apart from an additive constant, the
electronegativity of element A, denoted by X+, should
be proportional to the quantity n~ dined by

n~= (I~+E~) /2, (3.1)

where I~ and E~ are the ionization energy and electron

amenity, respectively, of the neutral atom A. The dis-
advantage of (3.1) is that it refers to the isolated atom,
whereas what we want is something that describes the
atom in its bonded state in the molecule or crystal.
This can be achieved if the net charge Q on atom A is
known from some other experiment, or Q can be

are satisfied by all the definitions of ionicity that we
discuss, including Pauling s definition:

f;(AB) = 1—exp L
—(X~—XII)2/4]. (2.7)

determined self-consistently (MOKtt, 1949). Let us
write

Ng =Ag Ng (3.2)

To determine Q and to determine the electronic dis-
tribution in the crystal A~B, let p~ and y~ denote
hybridized sp2 orbitals suitable for tetrahedral co-
ordination. In the (p~, ps) representation, the matrix
elements of the Hamiltonian are

HII= n~(Q),

K2=na( —Q),

II12 p

(3.3)

(3.4)

(3.5)

P(BeO) =P (BN) =P(C) = —40 kcal/mol

= —1.76 eV.

Another representative value is P(Si) = —1.05 eV. The
model wave function (bonding state) is

k=P "'(v +&s )

P= 1+F2

and the secular equations are simply

n~ —E+XP= 0,

p+li(nn —E) =0.

(3.7)

(3.8)

(3.9)

(3.10)

The fraction of valence charge on atom A is I ', while
that on atom B it is 72//P. From this one can determine

Q and solve (3.9) and (3.10) self-consistently. This
leads to an interesting quartic equation for X, which is

PX'+JV+EX P= 0, —(3.11)

By charge neutrality Qz ——Q= —Qs, and according to
Mulliken 0,~' and nB' can be determined from ionization
energies of the neutral and singly positive atoms, and
the electron affinity, which fix the slopes of energy
from A to A' to A+.

We must now determine the overlap parameters p.
The first basic assumption made here (which is justified
later in comparison with pseudopotential and spec-
troscopic models) is that P is a function only of the
average principal quantum number of the valence
electrons. Thus P is the same for diamond, BN, and
BeO. One needs for interpolation purposes only the
values of p in the crystals formed from Group IU
elements, diamond, Si, Ge, and grey Sn. We refer to
these collectively as P (IV) .

From a thermochemical view, the proper choice of

P (IV) is obvious: These energies are just the energy
gained per electron from formation of the crystal, and
since there are two electrons per bond,
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where J and E are given in the general case by

J=up+Em',

It = no —(8—&V) n',

with np and n' given by

(3.14)

The CRS equations can be used to define an ionicity
scale. In the crystal cell containing one ANB~N pair,
the valence electrons are centered on the A atom P '
of the time, on the B atom (1—P ') of the time. This
suggests the definition

f;(AB) = 1—2P '

(3.23)

( 1 ) To zeroth order in ao/n' and P/n', (3.23) reduces to

For BN, one finds ap 16.5 eV; for Beo, ap 26 eV.
Thus P is very much smaller than no or J and E. The'
complex quartic equation (3.11) reduces within an
accuracy of a few percent to

) '= [(8—&)a' —no)/(&0. '+no) . (3.16)

(3.18)

In general n~' is of the same magnitude as ca~. Thus
from (3.14) and (3.15) there will be cancellation in no

between o.~ and OtB, but addition in 0.', and n' is several
times uo. This means that (3.16) can be reduced
further,

'A'~[(8 —LV)/lVj{ 1—[E '+ (8—iV)
—if(~0/~') I

(3.17)

to first order in (ao/n') . The net charge Q is given by

f (AivB8—N) —] (3.24)

The limit 0.'—+~ thus corresponds to the picture of
"neutral bonding, " in which each atom A has about it
just enough electrons X to neutralize the core charge.
The reader may note, to avoid confusion, that (2.6)
and (3.23) imply X)1. By redefining X in the trial
function (3.7), one could have had X& 1. Then the sign
of (3.23) should be reversed. The actual values of )
quoted by CRS are less than one.

4. POLARIZABILITIES IN THE ONE-ELECTRON
APPROXIMATION

The electronic polarizability tensor n;, of a crystal
or molecule can be obtained by perturbation theory.
Let 0 denote the complete many-electron wave func-
tion, and 3'.p the unperturbed Hamiltonian with 6xed
nuclear coordinates. The perturbation is

where E represents the core charge of atom A. As one
would expect, the leading term in (3.17) is canceled by
the second term in (3.18), leaving quite simply

(4.1)

where F is the electric field, and the total dipole operator
for X electrons is

(3.19)

One notes that upon reversing A and 8 on the right-
hand side of (3.19), the numerator reverses sign, while
the denominator is unchanged. This verifies the charge
neutrality requirement Qs ———Q~.

With the values of P proposed by CRS the terms
first order in P are small. As we shall see, larger values of

P may actually be more appropriate. In this case,
working to first order in both no/n' and P/a', one finds
corrections to (3.17) and (3.19).The first of these is

1—[lV '+(8—lV) 'j —+—8 E, — ~o P 16(X—4)
E n' a' iV"'(8—Ã) ""

(3.20)
and the second is

(3.21)

gP') =2(&—4) /P'(8 —&)g'" (3 22)

With the sign convention /&0, one can verify that
both terms in the bracket are positive for /&4, and
both satisfy Qs = —Qg.

(4 2)

The Schrodinger equation

(~+K')4 =E% (4.3)

While the foregoing prescription is quite general and
is applicable to both small molecules and crystals, it is
not the one actually used for crystals. Dielectric proper-
ties of crystals are generally treated by the random-
phase approximation (RPA). The application of the
RPA to calculating the dielectric response has been
shown to be equivalent to the Hartree approximation
(Ehrenreich and Cohen, 1959).

is solved by perturbation theory to order Ii'. If tk.e
system under study has no permanent dipole moment,

(4.4)

and the second-order term can be transformed to
principal axes. Then one finds

(4.5)
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For small molecules the Hartree approximation
generally gives poor results for Ep, so its use in cal-
culating 8" is suspect. However, it has been shown
(Bell and Long, 1950) that even for the hydrogen
molecule H2 the Hartree approximation gives better
results than any other one-parameter wave function.
Thus one does not go far wrong in making the one-
electron approximation.

The situation is even more favorable in crystals than
in molecules. In crystals the electrons are free to move
in three dimensions, rather than in two (as in planar
molecules) or one (as in long-chain molecules). The
Coulomb interaction is more singular as r—+0 in effec-
tively one-dimensional situations than it is in three-
dimensional ones. Moreover valence electron densities
are higher in crystals than in molecules, with the result
that the screening of electron-electron interactions
is more complete. Indeed breakdown of the one-electron
approximation in crystals is indicated by the presence of
exciton lines (bound states of electron-hole pairs) in the
spectrum. Elliott (1957) has shown that the oscillator
strength of such states is proportional to Ep ', where 6p

is the low-frequency dielectric constant. For this reason
exciton oscillator strengths are negligible in covalent
crystals, and probably do not represent more than 10%
of the total oscillator strength even in crystals of the
NaCl type.

The complex dielectric function ei(id) +i e2(co) has two
parts, the absorptive e&(co) and the dispersive ei(co).
These satisfy the Kramers-Kronig relation (Landau
and Lifshitz, 1960)

~f2'
ti(M) = 1+Vi (kd ~—ao Gl G7

(4.6)

and are related to the complex index of refraction n —ik
by

(4.7)

e,= 2+k. . (4.8)

5a) =»(k) —»'(k) . (4 1o)

The factor f;; (k) is an interband oscillator strength
defined in the dipole approximation by

f (k) = (2/3~) I I (» I p I
»') I'/L»'(k) —& (k) jl.

(4.11)

Thus it is sufFicient to specify e2(a&). ln the RPA this
is given by (Phillips, 1966)

e'h' f.'(k)
e2((v) = ggQ ' d5i„(4.9)»;Iv,»; I

where 0 ' is the volume of the unit cell, j and j' label
occupied and unoccupied valence bands, k is the crystal
momentum, and the integral is taken over the surface
S~ in momentum space such that

In addition to the Kramers —Kronig relation (4.6),
there is a second integral relation (Nozieres and Pines,
1959) which is analogous to the f-sum rule for atoms.
This may be written

ME'2 GO de= ~CO& &

0

where co„ is the plasma frequency given by

cu,' =4s Ee'/m,

(4.12)

(4.13)

and E is the number of electrons per unit volume. In
crystals not containing d or f electron atomic subshells,
the absorption associated with valence electrons has
been nearly exhausted at a cutoff frequency co, which is
smaller than the frequency needed to excite core
electrons. One may then replace (4.12) by

%f2(67) kd= 2M~'
&

(4.14)

where ~„ is the plasma frequency defined by (4.13),
but E measures the valence electron density only.
More generally, one may define (Philipp and Ehrenreich,
1963)

X.ri(~d) = co'e2((o') d&o' g
71 GOg)& 0

(4.15)

as the fraction of valence electron oscillator strength
exhausted up to co.

The detailed implications of (4.9)—(4.14) have been
analyzed extensively (Philipp and Ehrenreich, 1963;
Phillips, 1966) for A~8~~ crystals. Many of these
details can be explained using pseudopotentials V~ and
VB which in turn can be related to the spectra of free
atoms. For the present, however, we propose to reduce
the complicated bands in k space to simple bonding and
antibonding orbitals pz+Xps and Xpz —

&pn of the type
discussed in the preceding chapter. We do this, however,
not by appealing to the spectra of free atoms, but by
examining the spectra of the crystals themselves. This
removes all questions concerning charge effects and
enables us to focus directly on observable quantities
Sllcll as fl(M) aild E2(~) .

5. DISPERSION THEORY OF A~8' ~ CRYSTALS

For a diatomic molecule, the form of the model
Hamiltonian (3.3)-(3.5) can be made plausible by
reference to atomic orbitals p~ and ya. Here we wish
to use a similar approach to justify using this
Hamiltonian —or one closely analogous to it—for
binary A~B™crystals. These crystals include the
diamond, zincblende, wurtzite, a,nd rocksalt types. All
except the wurtzite have two atoms per unit cell, while
the wurtzite has four atoms per unit cell. The c/a ratios
in all wurtzite crystals are close to the ideal value
1.633, which corresponds to tetrahedral coordination.
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If we describe any physical property as the super-
position of properties of A84 and A48 tetrahedral
units, i.e., neglect interactions beyond those with
nearest neighbors, then one can show (Robinson, 1968)
that all tensorial properties of wurtzite crystals can be
expressed in terms of those of zincblende crystals. Thus
we are justified in constructing models for two atoms
per unit cell.

We choose our origin of coordinates in a symmetrical
way, halfway between the two atoms in the unit cell.
The crystal potential is periodic, and hence can be
represented as a Fourier series

l
t

s
\
\

U(r) = g Vo exp (iG r), (5 1)

where 6 is a reciprocal lattice vector. In order to avoid
problems connected with cases where the cores of A
and 8 are not isoelectronic, it is convenient to assume
that each VG is obtained from the pseudopotentials
V~(r) .and Vs (r) of each atom as follows:

Vo = U& (6) exp (iG R+) + U& (6) exp (iG R&),

(5 2)

V~(G) =0—'f V~(r) exp ( —iG r) dr. (5.3)

One can now separate V into its even (V~+ Vn) and
odd (V~—Vn) parts, and write (5.2) as

VO= [V@(6)+Vn(G)] cos 6 v

+i[Vs(6) —Vn(6)] sin G v, (5.4)

where v is defined by

2v= Rg —Rg.

In the limit of V~ ——0= Vn, the bonding state te~+Xpn
and the antibonding state Xq~—y~ will have the same
energy, which we will take to be zero. This gives

+11 II22 (5.5)

while the form taken by (5.4) between real basis
functions is just (Phillips, 1968)

Hts=Hu*= s (Ea+sC) ) (5.6)

Hrt' ———C/2,

Hs, ' ——C/2,

Hrs' ——Hst =E~/2.

(5.7)

(5.8)

(5.9)

Thus C corresponds to 0.&—n&, and E&, corresponds to
2P. Interchange of A and 8 reverses the sign of C, but
leaves Eq unchanged.

where, to first order in V, EI„arises from the real part of
(5.4), and iC arises from the imaginary part. One can
bring (5.5) and (5.6) into the same form as (3.3)-(3.5)
by partial diagonalization to give

One advantage of writing the Hamiltonian in the
form (5.5)-(5.6} is that the energy gap E, between the
bonding and the antibonding states is obviously given
by

E 2 —E 2+C2 (5.10)

Thus EI, is equal to 8'„ in the case of a purely covalent
Group IV crystal such as diamond or Si. The ionic or
charge-transfer contribution to A, is represented by C.
The symmetry between E&, and C which is present in
(5.6) and (5.10) will be retained so far as possible in
the following discussion.

To determine EI, and |" spectroscopically, let- us
consider the diamond-type crystals where C=0.
A simple model for diamond-type semiconductors has
been proposed by Penn (1962; Van Vechten, 1969).

The energy bands in Penn's model are shown in
Fig. 1. The complicated energy bands of the real
crystal, which are usually shown as multivalued func-
tions of lr in the reduced Brillouin zone (Phillips, 1966),
are represented instead by isotropic bands E(k)
derived from the model Hamiltonian

Ht, ——Pk'/2m,

Hss ——5'(2k' —k) '/2m,

E0/2~

(5.11)

(5.12)

(5.13)

where kf is the Fermi wave number of a free electron
gas with density equal to that of the valence electrons.
The motivation for introducing kinetic energy into the
Harniltonian in (5.11) and (5.12) is that the energy

I' IG. 1. The energy bands of isotropic model semiconductor
which reduce in the limit I:J—+0 to the energy bands of a'lliree
electron gas.
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"cff

50

bands of diamond-type semiconductors do resemble
those of a nearly free electron gas. As can be seen from
Fig. 1, in Penn's model the splitting of the valence and
conduction bands is important only in the shell

kr —k & (Es/4') kr &k—kr (5.14)

0 Ro
F.acVa

FIG. 2. A plot of n„.«(co) =4E,'ff(co) as defined by Eq. (4.15).
Note that for Si (no d electrons) it appears that n„qf(cv) will
levelgoiT near 4 at iarge &a, whereas for the remaining crystals
(which contain d electrons in some or all of the atomic cores)
+ ff (co}Q4 for large ~. The extrapolated curve for InSb is leveling
oGLat 4D, where D is the parameter defined in the text.

Rows 3 and 4 of the Periodic Table, each atom contains
either a 3d subshell or a 4d subshell. The binding
energies of these subshells are only a few rydbergs or
less, compared to nearly 10 Ry or Inore for the last
s-p core subshells. As a result there is appreciable
mixing of valence and conduction band levels with d
levels. This mixing is quite difficult to include in

molecular orbital theory without sacrificing the sim-

plicity of the wave function (3.7), and as it varies with
crystal momentum k, it is doubtful if a simple bonding-
antibonding two-level model is appropriate in any event.

Most of these difhculties are resolved by the use of the
dispersion approach. There are two effects associated
with core behavior which must be considered. The
first of these is the direct contribution of d(core)~p
conduction band transitions to es(~). These are re-
flected by a rise in X,n(&u) as defined by (4.14), and
produce a "knee" in S,it(a&) at the threshold (Philipp
and Ehrenreich, 1963). An interesting feature of the
presence of d states is that extrapolation of X,ff((o)
below this knee gives a limit greater than 1 in InSb,
although the same extrapolation for Si gives about 1,
as it should. This second effect is shown in Fig. 2. As
explained by Van Vechten (1963), because of the
mixing of valence states with d states, the oscillator
strength of valence-conduction band transitions is
increased above expectations even at frequencies below
the threshold for real d(core)~p conduction band
transitions.

Another way of describing this e6ect is to note the
qualitative change in es(ts) which occurs between
diamond and Si on the one hand, and Ge and Sn on the

about k = k~. Here bandwidth eAects are presented by

Ey =5'kr'/2m, (5.15)

and typical values of E,/4E& are 0.1.
The energy gap E, in Penn's model is to be evaluated

from ei(0), the low-frequency limit of the real part of the
electronic dielectric constant. Assuming that there are
no important contributions to ei(0) from polarization
of d or f subshells in the atomic cores, his model gives,
to lowest order in E,/Er, the rela, tion

,(0) =1+(ft' „/E,)'(1—E,/4E, ), (5.16)

from which it can be seen that bandwidth effects are
small. One can apply (5.16) to diamond and Si to
obtain

Es(diamond) = 13.6 eV,

Es(Si) =4.8 eV.

(5.17)

(5.18)

These values diiTer drastically from the values of 2P in
the valence bond theory $Eq. (3.6) ).t The reason for the
differences will be discussed later.

Ke now wish to extend the analysis to obtain energy
gaps in the heavier elements Ge and (grey) Sn. In

40
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FIG. 3. The broad features of ~2(co) for Group IV crystals
plotted in reduced units. The purpose of the figure is to show that
the one-gap approximation is relatively good for diamond, but
that a low-energy peak near A&a/E&=0. 5 or 0.6 develops in Si,
becomes stronger in Ge, and becomes still stronger in grey Sn
(not shown) .
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other. This change is illustrated in Fig. 3, which shows
that although the one-peak approximation is good for
diamond, a lower energy peak develops in Si which
becomes quite prominent in Ge and still more so in
grey Sn (not shown).

Detailed analysis (Phillips, 1966) of the energy
bands of three crystals shows that the energy levels in
the valence bands of these crystals are all quite similar,
but that there is substantial lowering of s-like con-
duction or antibonding levels from Si to Ge, and further
lowering in grey Sn. The mechanism responsible for the
lowering from Si to Ge is partial penetration of the 3d
core subshell by 4s electrons to see the larger core
attractive potential. The further lowering on going from
Ge to Sn is a relativistic effect, as shown in Fig. 4 based
on atomic calculations (Herman and Skillman, 1963).

Neither of these core e5ects contributes significantly
to the bonding-antibonding energy gap E,. It would
be a mistake to include them in the relation (5.16),
because we wish E, to describe valence bond strengths,
not peripheral core properties. The simplest way to
circumvent this problem is to assume (Phillips, 1968b)
that EI, scales with the cubic Lattice constant a accord-
ing to some power s,

d log E~,/d log a= s, (5.19)

0.52

0.50—

0.48— IC

0.46—
Ld

0.44—
hl

0.42—

0.40—

and to determine s from the values of E~ in diamond
and Si. This gives (Van Vechten, 1969; Penn, 1962)
s= —2.5, and from (5.19) and the Si value one can
compute EI, for any tetrahedrally coordinated A~8~~
crystal.

In particular one can use the extrapolated values of
Ez to modify (5.15) . Each value of o&~' is multiplied by
a correction factor D&1 for compounds containing
Row-3 or Row-4 atoms. This corresponds to 1V,ff(M) )1,

HOMOPOLAR

Ge,eo =16.0
&-„=0.0

HETEROPOLAR

ZnSe, eo =5.90
f; =0.68

ANTI BONDING

Ji
E =E„=4.zeY

g
C=O

BONDING

)l
Eg =7.0eY

Eh= A.~eV

C=5.6eY

Fr@. 5. A sketch of the effect of increasing valence difference
hZ=8 —2E in isoelectronic A~88 & atom pairs on the average
energy gap E~ between bonding and antibonding states. The
relevant parameters for Ge and ZnSe are indicated.

as shown in Fig. 3. For the details of one way of deter-
rnining D, see Van Vechten (1969).His method is not
unique, but it is consistent with the physical Inechanisms
that have been discussed, and it has yielded excellent
results for the chemical trends within the family of
A~3~~ crystals. Moreover, it has been checked against
experimental data on the hydrostatic pressure de-
pendence (Van Vechten, 1969) of er(0) and against the
optical spectra of alloys of these crystals among them-
selves (Mott and Jones, 1958) (e.g., GaAs, P, ,). In
both cases the theoretical values are quite sensitive to
the way in which the correction factor D for oscillator
strengths is introduced, and in both cases the agreement
with experiment is excellent. Prior to the introduction
of this spectroscopic bond model, there had been no
theory of either of these effects, apart from the classical
Clausius-Mosotti model, which gives the wrong sign
(Van Vechten, 1969) for the pressure dependence
d log er (0) /d log I'.

Knowing E@(a) and D, one can use (5.16) to evaluate
C. Typical values of this ionic energy are shown in

Fig. 5. Other values are C(BN) =7.8 eV, C(BeO) =
14.1 eV, C(GaAs) =2.9 eV, C(ZnSe) =5.6 eV. Because
the bond lengths in BeO and BN are nearly the same,
and those of GaAs and ZnSe are nearly the same, we
see immediately that C is proportional to the valence
difference, hg, which is 8-2S in A~8' ~ compounds.
It is to be stressed that these values are derived not
from atomic spectra but from the crystalline spectra
themselves, as contained in et(0) .

With spectroscopic values of C(A~BE) available
for nearly 40 tetrahedrally coordinated crystals, one
can seek an analytic formula to describe the observed
values. The following formula works well:

C(AB) = bL(Z~/~~) —(Zn/rn) ]e "'~. (5.20)

FIG. 4. Increasing value of (E,—E„)/E„or decreasing value
of E„//E„as one goes from carbon to lead. Atomic term values
taken from Herman and Skillman (1963).

Here g~ and gg are the valence numbers E and 8—S
of the cation and anion, respectively. The atomic radii
r~ and rg are defined as half the bond length of the
Group IV element belonging to the same rows of the
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(o, oj

FIG. 6. A sketch showing how (E„cp) are polar coordinates
corresponding to the covalent and ionic energies represented as
Cartesian coordinates (E@, C). The polar angle q is called the
ionicity Pjzase angle.

Periodic Table as atoms A and B, respectively. Thus
the atomic radius of 8 is half the nearest-neighbor
distance in diamond, for example. In (5.20) the elec-
tronic charge e= 1, so that b is a dimensionless number.
It is of order unity because of the presence of the
Thomas-Fermi exponential screening factor (Mott and
Jones, 1958) expressed in terms of

Because of its similarity to X&-X&, one may refer
to C(AB) as a spectroscopically defined electronega-
tivity difference. There is an important difference
between the two, however, which is emphasized by
(5.20). Because of the exponential screening factor
which multiplies both terms and depends on r~ and rg
through (5.21), C(AB) cannot be represented as a
difference of two terms, one of which depends only on
A, and one only on B.This is because screening depends
in a nonseparable way on the bond length rI,+ra.

We are now prepared to give a spectroscopic deinition
of ionicity. Both (5.6) and (5.10) suggest that we
regard EI, and C as Cartesian coordinates, and transform
to more symmetrical polar coordinates. Then E, is the
polar radius, and we call y the I'oITicity phase aIIgle,

tan p= C/RI„ (5.24)

f;= sin'pp=C'/E '. (5.25)

The definition (5.25) is not unique; one could use
f,= g(sinP p), with g(0) =0, g(1) =1, and dg/dk) 0 for
0(x(1.Certainly (5.25) is the simplest choice, and it
corresponds to the idea, that a fracti, oe of the bond is
ionic. The covalent fraction f, is simply

where these coordinates are shown in Fig. 6. We want
f, to satisfy (2.5) and (2.6), and also to be zero when
C=0. This suggests the definition

R= (r~+rs)/2, (5.21) f,= cos' P=EI,'/E, ', (5.26)

kg = 4k'/prap.

and the Thomas-Fermi screening wave number k. and the symmetry of f; and f, is appealing. We shall
defined by demonstrate presently that (5.25) is the proper choice

(5.22) with g(x) =x.

Here kf is the Fermi momentum of a free electron gas of
density equal to that of the valence electrons, and ao

is the Bohr radius. In the absence of the Thomas-
Fermi screening factor C(AB) would equal (Phillips,
1968b) Xp—Xs as tabulated by Pauling (1960). The
screening factor varies by about 40%%u~ from diamond to
grey Sn. One can easily recognize it in the ratio
C(BN)/C(InSb), or in C(BeO)/C(CdTe).

Because so many values of C(AB) are known, it is
instructive to make a histogram plot (Van Vechten,
1969; Penn, 1962) of the prefactor b in (5.20). Almost
all the experimental values for tetrahedrally coordinated
crystals cluster in the interval

It is convenient at this point, before entering into
detailed comparisons of theories of A~8~~ crystalline
bonds, to summarize the different approaches to this

TAsLK I. Notation describing theories of covalent and ionic
contributions to A~B' N crystalline bonds.

iKind of bond

Theory Covalent Ionic

6. GLOSSARY OF THERMOCHEMICAL, MOLECU-
LAR ORBITAL, PSEUDOPOTENTIAL AND

SPECTROSCOPIC TERMINOLOGIES

1.4&b & 1.6. (5.23)

In most cases therefore b= 1.5 to within an accuracy of
10% or better, the remaining scatter is probably caused
by variations in core properties which are not wholly
represented by r& and rB. These variations are quite
small, and in any event are reduced in significance by
using empirical values for C rather than the theoreti-
cally based formula (5.20) .

TherIno chemical

(Pauling)

Valence bond —MO
(Coulson)

Pseudopotential

Dispersion theory

Pxv A+ AQ

Vx+ Va,

~J (~~a)

Vx —Va

C(AB)

lf7~, yf~»l/2 i
X„—Xei ~n»Tip
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TABLE II. Experimental origins of parameters of theories.

+Kind of bond

Theory Covalent Ionic

Thermochemical
(Pauling)

Valence bond-MO

Pseudopotential

Dispersion theory

Heats of formation of elements

Heats of formation of homopolar
IV crystals

Three parameters fitted to interband
energies

Dielectric constants of homopolar
IV crystals

Extra-ionic or heteropolar energy

Atomic spectra

Three parameters Gtted to
interband energies

Dielectric constants of hetero-
polar crystal

question. In Table I the four theories are compared in
terms of notation. In Table II the experimental sources
used to determine the parameters of the theories are
indicated.

There are some interesting aspects to Table II.
First, we note that Pauling employs the heats of
formation of the elements A and B. If X&4, then these
elements will generally have diferent structures and
different coordination numbers than the A~8' ~
crystals. From Pauling s viewpoint this is no obstacle,
since as long as all the bonds involved are normal
single bonds involving a single pair of electrons, the
fact that the coordination numbers are greater than
the respective valences is explained in terms of res-
onating bonds.

The remaining three theories take a quantum-
mechanical approach in which the potential energy is
separated into its even and odd parts, as indicated
most clearly for the pseudopotential in Table I. How-
ever, Coulson's theory determines these two terms in
quite different ways. This leads to serious errors, as we
shall see presently.

The pseudopotential treats both energies on an even
footing and evaluates them spectroscopically. From a
chemical point of view, however, the pseudopotential
approach is ambiguous because U~(G) +Un(G) must
be evaluated at three different inequivalent nonzero
reciprocal lattice vectors G. This is accomplished by
adjusting the shape of the spectrum to fit three or more

peaks in the optical spectra e2(~). (See Fig. 3, for
example. ) Such an adjustment is necessarily subjective
and corresponds to weighting certain portions of the
spectrum much more heavily than others. (Mathe-
matically speaking, the weighting function is singular,
consisting of 6 functions at the peak energies which
have been selected for fitting. ) The Kramers-Kronig
transform (4.6), on the other hand, uses a inuch more
reasonable weighting function. The use of ei(0) corre-
sponds to putting ~=0 in the weighting function
(~'—co) ' in the K-K transform. This has the effect of
treating both right- and left-hand polarized light on the
same footing. The choice co=0 corresponds to zero
exchange splitting, and zero is the only value of co

consistent with nonmagnetic bonds.
We now turn to definitions of ionicity. These are

summarized in Table III. In the Pauling theory the
ionicity of the chemical bond is determined only by
extra-ionic energies, covalent energies not being used to
define f;. In the Coulson theory, f, is determined to
zeroth order by the condition (3.24) of charge neu-
trality, and to first order by electronegativity diGer-
ences in charged and uncharged states, the degree of
charging being determined self-consistently. The values
of P used are so small that covalent effects are an order
of magnitude smaller than ionic ones. Finally the dis-
persion theory determines E~ and C symmetrically,
and these enter the definition of ionicity on an equal
footing. This symmetry plays a key role in the theory.

TABLE III. Nature of definitions of ionicity.

+Kind of bond
Theoryg Covalent Ionic

Thermochemical

Valence bond —MO

Dispersion theory

Not included

Included in second order only

Depends on both C and EI,

Depends on DAB only

(~A ~B)/ C,~A +~B )
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TABLE IV. Comparison of even terms in A B' crystal en-
ergies for X=4. The second column is based on cohesive or reso-
nance„energies; the third column on spectroscopic dispersion
theory. All energies are in electron volts.

Hamiltonians, together with the self-consistency condi-
tion used by CRS to determine Q, leads to the approxi-
mate result

Crystal 2p/E&I,

Diamond

Si

Ge

Sn

3.7

2. 0

13.6

4.3

3.1

0.27

0.42

0.35

7'. COMPARISON OF MOLECULAR ORBITAL AND
SPECTROSCOPIC ENERGIES

To understand further the differences between the
CRS valence bond and molecular orbital model and
spectroscopic theory, it is helpful to consider the
numerical values for 2p and n~ ns co—mpared to those
for E~ and C», respectively. These are listed for a few
representative examples in Tables IV and V.

From Table IV, we see that 2P((Ei„ i.e., the reso-
nance or thermochemical estimate of covalent energies
yields a much smaller value than the spectroscopic
estimate. This is not surprising to those familiar with
the literature of the Huckel theory of hydrocarbons.
According to Streitwieser (1961),resonance estimates of
Pco for m bonds in benzenoid hydrocarbons have often
been placed at 0.7-0.8 eV, compared to spectroscopic
values of about 2.5 eV. Thus one would expect the CRS
resonance value to be 0.3-0.4 times the spectroscopic
value, as it is here for sp' crystalline bonds.

Turning now to the odd part of the bond energy
shown in Table V, we must distinguish two sets of MO
values. The first set is represented by n~(0) —nn(0);
it is a measure of the difference in ionization energies of
the free atoms. As recognized by CRS this is a gross
overestimate of the ionic energy in the bonded state,
because charge will Row from one atom to the other to
partially neutralize the electronegativity difference.
The corrected values are represented by n~(Q)—
ns( —Q), and as one can see from Table V, these are
less than 10% of the initial values. The comparable
spectroscopic values are also shown in Table V, and
they fall between the atomic and self-consistent MO
values.

From Table V one can see that CRS have grossly
overestimated the degree of neutralization of the ionic
potential by electron redistribution. The reason for this
is that if p were zero, there would be no covalent energy
to oppose the charge Aow, and one would find, apart
from rounding errors, n~(Q) —ns( —Q) =0. As we have
seen in discussing Table IV, the actual covalent energies
2P used by CRS are about three times smaller than
the spectroscopic values. The similarity of the model

8. COMPARISON OF THERMOCHEMICAL AND
SPECTROSCOPIC PARAMETERS

We saw in Sec. 6 that the ionic energy C~B is analogous
to Pauling's electronegativity difference XA —Xg. A
simple formula for the electronegativities X~ in Pauling s
table (Pauling, 1960) which holds quite well for

TABLE V. Comparison of odd terms in ANBS + crystal en-
ergies for selected examples. The second column gives the diGer-
ence in A and B energies without charge transfer, according to
molecular orbital theory. The third column gives the difterence
after allowing for charge transfer. The fourth column lists the
comparable spectroscopic values. All energies are in electron volts.

Crystal ~A (0) ~B(0) 0-'A (Q) 0-'B ( Q) ~AB

Diamond

BN
BeO

Ge

GaAs

ZnSe

0
16.5

26. 3

16.0

1.5
3.3

0.5

1.2

0
7.8

14.1

2.9
5.6

which means that the values in the third column of
Table V for 6rst-row compounds can be approximately
obtained by multiplying the values from the fourth
column by the value of 2P/Et, shown in Table IV for
diamond; similarly the third-row compounds use the
Ge ratio.

The foregoing comparison shows that the numerical
values of the CRS theory would be at least approxi-
mately consistent with those of the spectroscopic theory
if p were determined spectroscopically rather than
thermochemically. (Determining a spectroscopically
and p thermochemically is, metaphorically speaking,
like mixing oil and water. ) However, even if this were
done, there would still be the substantial difference
between [n~(0) —ns(0) ] and C~s which would have to
be removed by the self-consistency procedure. This
difference, which is about a factor of 2 for the 6rst-row
compounds, and a factor of 3 for the third-row ones, is a
very large correction to build into a theory. It almost
necessarily leads to washing out of the very chemical
trends which the theory was constructed to explain in
the first place. It follows that the dispersion approach is
likely to be more accurate because it determines these
parameters correctly at the outset. However, in some
contexts comparison with atomic energies might still
be useful.
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TABLE VI. Comparison of thermochemical and spectroscop-
ically de6ned electronegativities for elements from Group IV of
the Periodic Table (see Phillips, 1968b).

Element Pauling Dielectric

Si

2. 5

I.8

2. 50

1.41

1.35

1.15

elements from Groups IIb-VII of the Periodic Table is

X+—0 5cc ZJ/r» (8 1)

where rA is half the nearest-neighbor distance in the
diamond-type crystal corresponding to the row of the
Periodic Table to which element A belongs. The electro-
negativity defined by (8.1) refers to hybridized s-p
bonds, and does not describe electronegativities of
transition or lanthanide series elements, or Ia, Ib, and
IIa elements where d and f states are important.

The spectroscopic values for C~B are similar to that
for Xa—Xn derived from (8.1), but include the density
dependence of the Thomas-Fermi screening wave
number k,. Specidcally the formula for CAB which gives
the best fit is (5.20) which is

Ca'Q —1.5L(Z&/r+) —(Zs/rn) $ exp (—k,R). (8.2)

For compounds all of whose atoms belong to a given
row of the Periodic Table (e.g. , Ge, GaAs, ZnSe) the
valence electron density is sensibly constant, and
C~ncc $(Za/ra) —(Zs/rs) j~ (Xa—Xn). This suggests
that we define (Phillips, 1968b) a dielectric elec-
tronegativity by

Ya ——4.0(Z~/ra) exp (—k,R~) +0.5, (8.3)

which can be compared directly to Pauling's values
providing that r~ is given in atomic units. Because both
are proportional to Z+, in Table VI we list only the
values for the Group IV elements, from which the
remaining values can be obtained immediately using
(8.1) and (8.3). The similarity of the thermochemical
and dielectric values is encouraging.

When the atoms A and B no longer belong to the
same row of the Periodic Table, the decomposition
(8.3) of Formula (8.2) is no longer possible. Moreover,
in some of these cases, the experimental value of C~B
corresponds to a numerical factor in (8.2) which differs
somewhat from 1.5. Therefore it is of interest to com-
pare the tabulated values (Van Vechten, 1969; Penn,
1962) of Cits with X~—Xn. This is done in Fig. 7.
There is considerable scatter, which is thought to arise
chieAy from the absence of the Thomas-Fermi ex-
ponential screening factor from (8.1) .
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Fio. 7. Comparison of thermochemical electronegativity dif-
ferences aX&n gas defined by Pauling (1960)g with spectros-
copically de6ned ionic energies Cp, B, for AN88 ~ crystals.

Is the electronegativity difference by itself a mean-
ingful quantity, or is it more useful to treat C and Eq
simultaneously, in terms of the polar coordinates E,
and q? We shall now examine a number of structural
features of A~B' ~ crystals to see whether electro-
negativity (i.e., C) or ionicity (i.e., sin y) plays the
more important role in determining the observed
chemical trends.

9. CRYSTAL STRUCTURES OF A B~
COMPOUNDS

In the entire field of crystal physics there is one
question which is without doubt the fundamental one.
This is the question of why a given compound is formed
in a definite crystal structure. This question may be
broadened to include the larger one of the correlation of
crystal structure and constitutive properties. Empiri-
cally it is well established that magnetism, super-
conductivity, ferroelectricity, and semiconductivity
tend to occur in de6nite structures and to be absent in
other structures. Many qualitative explanations for
this behavior are known, but in practice the explana-
tions are unconvincing because of the lack of quantita-
tive predictions. Of course, before one considers the
many different constitutive properties, the basic
question of crystal structure should be understood.

Here we take up this problem from the point of view
of chemical bonding in the A~B~~ crystals which are
either fourfold or sixfold coordinated. This is the
simplest possible case, and in the language of directed
valence bonds, the question has a simple qualitative
answer. In the fourfold coordinated crystals, the s-p
valence electrons are fully hybridized and form s'+ p' =
(sp') (Streitweiser, 1961) directed valence orbitals.
In the sixfold coordinated crystals, the atoms are much
closer to the ionic or closed-shell limit, and interatomic
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interactions not of an electrostatic type are much
weaker. As a result, the s and p' bonds do cot hybridize,
and the dominant valence orbitals are the p„p„, and

p, valence orbitals. (In the language of energy-band
theory one would say that the bandwidths of the s and

p bands become, in the ionic limit, small compared to
the anion s—p energy difference. ) Thus in the ionic
limit the nearest neighbors are symmetrically dis-
tributed along the Cartesian coordinate axes, and the
atom is sixfold coordinated. (The unhybridized p
orbitals do not distinguish between +x, etc.)

This is a good explanation of the facts so far as it
goes. However, if one inspects the energy bands of
many Group II-VI semiconductors (Cohen and
Bergstresser, 1966; Walter and Cohen, 1969) one finds
that the s and p bands are already quite well separated
even though the atoms are still fourfold coordinated.
The residual s-p hybridization must be great enough to
produce the fourfold coordinated structure, but the
presence of this residual hybridization is dificult to
measure or to identify either in the energy levels or in
the wave functions.

The straightforward approach to the problem of
predicting crystal structures is the following: Starting
from the wave equation one calculates electronic energy
levels and wave functions in the one-electron approxi-
mation; from these one calculates a crystal charge
density and produces a new crystal potential; the
process is iterated until it converges. Many-body
exchange and correlation interactions are added through
some approximate method. Then the total energy is
calculated, and the lattice constant is varied to minimize
the ground state energy. Finally the entire procedure
is repeated for alternate lattice structures, and the one
with the lowest energy is the predicted structure.

This procedure has never been carried through to
conclusion for any insulator. The closest approximation
to it is the work on more ionic crystals which assumes
that each ion has a closed-shell or rare-gas electronic
configuration. In this case one is reasonably justified in
discarding the quantum-mechanical kinetic, exchange,
and correlation energies, and calculating the total
energy following Born and Mayer by using classical
electrostatics and a phenomenological core-core repul-
sive interaction. This classical model has been the
subject of many review articles (e.g. , Tosi, 1965) . The
calculations have led to the conclusion that theoretical
predictions of the relative stability of fourfold and
sixfold coordinated structures have been generally
unsuccessful from a quantitative point of view, even
when confined to Group I-VII crystals.

A more productive approach to this problem was
taken by Mooser and Pearson (1959;Pearson, 1960) on
purely phenomenological grounds. They observe that
two factors must inAuence the tendency towards
formation of directed bonds. The first is the obvious one
Of charge transfer between anion and cation, which
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FIG. 8. The separation of fourfold and sixfold coordinated
structures, according', to Mooser and Pearson (1959).The abscissa
isjPauling's electronegativity difference; the ordinate is the
average principal quantum number of the valence electrons.

they measure in terms of Pauling's electronegativity
difference XA —Xg. The second is the extent of de-
hybridization (or, as they term it, metallization) of
directed s-p bonds through admixture of d, f ~ states.
The metallization is weakest for elements from the C
row (principal quantum number of valence electrons
v=2) because of the large energy required to promote
an electron from a 2s or 2p state to a 3d or 4f state.
The degree of metallization increases as e increases,
and is responsible for the decreasing stability of diamond-
type crystals against transition to a metallic structure.
Thus for e= 5 one finds Sn in both metallic and diamond-
type structures, and for m=6 one finds Pb only in
metallic structures.

To exhibit the dependence of crystal structure on
these two factors, one makes a Mooser-Pearson plot
with abscissa n = (@~+en)/2. As a general rule,
crystals lying in the upper right quadrant will then
prefer the ionic structure, those in the lower left will
prefer the covalent one. The Mooser-Pearson plot for
A~B' ~ crystals is shown in Fig. 8. Also included in the
plot are some tetrahedrally coordinated crystals of the
type A~ ~B~+~C2' ~, which can be regarded as a
superlattice of the A~B'—~ zincblende structure.

As one can see from the 6gure, the domains of four-
fold and sixfold coordination are almost disjoint.
Actually there is a small overlap, with seven open
circles (fourfold coordinated crystals) lying in the
sixfold coordinated region, and one solid circle (sixfold
coordinated crystal) lying in the fourfold coordinated
region. This is a total of eight errors for over 100 crystals,
and as we shall see, it is better than par for the course.



PHnr. xps Ionicity in Crystals 331

(1) We have already seen in Fig. 7, and in the
discussion of C and AX, that the values of AX given by
Pauling are not an accurate measure of the ionic
energy C.

(2) The situation is worse for Ey„and n We have.
E~~ a ", while a is not a smooth function of n. In
fact, a(n) changes by 50% from n= 2 to n= 3, by only
4% from n=3 to n=4, and by 15% from n=4 to I=5.
This means that n. for skew compounds behaves quite
differently from a. Since lattice constants or bond

Ia Ib
Li Na K Rb Cu Ag

F 6 6 6 6 4 6

Cl 6 6 6 6 4 6

Br 6 6 6 6 4 6

6 6 6 6 4 4

ZIa IIb

Ca Sr Ba Be Mg Zn Cd Hg

0 6 6 6 4 6 4 6 6

S 6 6 6 4 6-4 4

Se 6 6 6 4 6M 4

4 6

4

Te 6 6 6 4 4 4 4, 4

FIG. 9. Coordination numbers (4 or {ior in cases of metastable
structures, both) of A~8' N crystals with N=1 or 2. These
structures are the ones that are stable or metastable at STP.

How difficult is the problem of predicting the co-
ordination numbers of the family of A~BS ~ crystals)
All the nonmetallic crystals with /=3 or X=4 have
fourfold coordination. A tableau showing the co-
ordination numbers for E= 1 and 2 is given in Fig. 9.
If one simply uses the classification of the elements
implicit in the Periodic Table itself, one would expect
sixfold coordination when A is a, Group Ia or IIa
element, and fourfold coordination when A is a Group
Ib or IIb element. This classification makes nine errors,
and any theoretical model should do better. Actually
the Periodic Table contains so much chemical in-
formation that a theoretical model which makes only
nine errors is really doing quite well, even if it does not
improve the situation appreciably.

By this standard the Mooser-Pearson plot is mod-
erately successful, although it is clear that the curve
separating the two coordination domains is equivalent
to several free parameters. The real purpose of the
Mooser-Pearson paper, however, was not to discuss
the crystal structures of insulators but to discuss the
structures of intermetallic compounds. Although this
topic will not be discussed in this review, we remark
here that it appears to us that the approach adopted by
Mooser and Pearson has great potential for future
research, especially on the structures of transition-
metal compounds. Ke have in mind, of course, that the
Mooser-Pearson analysis can be refined by methods
analogous to those discussed here for A~8~~ com-
pounds.

By now the reader will have recognized that hX is
analogous to C, and that n plays the role of E~. The
correspondence for each pair of variables is not one to
one, however:
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FIG. 10. The separation of fourfold and sixfold coordinates
structures, using the spectroscopically defined covalent and ionic
energy gaps Ez and C, respectively.

This suggests that if we were to use EI, and C as
coordinates, rather than AX and n, a better separation
of crystal structures might be obtained. This is done in

Fig. 10. The result is spectacular. The straight line

passing through the origin E~——0=C exactly separates
the fourfold and sixfold coordinated structures. There
are no errors. The straight line corresponds to q =q,
or to

F,= sin' q, =0.785&0.010. (9.1)

For all values of f, (AB) (F,, the crystals are fourfold
coordinated. For all values of f;(AB))F;, the crystals
are sixfold coordinated.

lengths are observables while principal quantum
numbers are not, there is every reason to believe that
a is more fundamental than n. For example, n(Mg Te) =
n(GaAs) =n(CdS), but the bond lengths are 2.76,
2.44, and 2.53 A., respectively. This represents a range
of more than 10%, or a range in Eq of more than 30%,
without even including any atoms for which e= 2.
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20 P; about the minimum point F; required to double
N(F;), i.e.,

N(F;o AF—; ) =2No,

cV(F 0+AF;+) =2ND.

(9.2)

(9.3)

l5—
0.25 + 0.25-0.I5)

932

C9

D

10—
LLJ

m

z 8

/
fj ( min ) =0.80+ 0.05
PAUL I N 6- f939

fi (min ) =0.785 —0.008 DIELECT

I I

0.I 5 0.25 0.55

fi (PAULING)

0,50 0.65 0.75 0.85
f

i
(DIELECTRIC)

Fro. 11. The statistical test of the ability of an ionicity scale
to predict crystalline coordination numbers is applied to Pauling's
molecular thermochemical scale and to the spectroscopic crystal-
line scale based on dispersion theory.

The result (9.1) shows that it is the ionicity f, of the
bond, not its electronegativity difference AX, that is the
critical factor in determining the crystal structure.
Mooser and Pearson already anticipated this result by
using the two variables hX and n. However, because of
their phenomenological approach several inaccuracies
are introduced, and the results are less convincing. In
this case a connection has been made between phe-
nomenology and quantum mechanics, and surprisingly
enough this connection actually improves matters by
several orders of magnitude.

Recognizing that ionicity is the critical factor, we can
utilize the family of A 8 ~ crystals to test statistically
any given definition (Phillips, 1969). If a general
prescription for ionicity is proposed, we use that
prescription to list f;(AB) for the seventy crystals not
containing transition-metal atoms. We then suppose
that there is a critical ionicity F; such that forf, (AB) &F,
the crystal is fourfold coordinated, while for f, (AB))F,
the crystal is sixfold coordinated. In general the ionicity
scale will not be wholly accurate, so for each value of
F; we calculate N(F, ), the number of mistakes made
in predicting coordination numbers this way. We then
vary F; to minimize N(F;). Call the minimum point
F 0 and the minimum value No ——N(F;0). The accuracy
of the ionicity scale is determined by the excursion in

The number of ionicity scales to which this statistical
test can be applied is rather small. For example, the
valence bond-molecular orbital calculations of CRS are
deliberately restricted to (sp')-fourfold coordinated
crystals, because a (p') -hybridization scheme is better
suited to sixfold coordination. Apparently only Pauling's
ionicity definition, Eq. (2.7), is suKciently general to
be tested in this way. The result is shown in Fig. 11.
Pauling's scale produces about the same number of
errors as the Mooser-Pearson plot, although the latter
is actually somewhat more accurate. (Some transition-
metal compounds are included in Fig. 8.) Note that
constant ionicity as defined by Pauling implies AX=
const, and corresponds to a vertical boundary line in
Fig. 8. Clearly the Mooser-Pearson curved line repre-
sents an improvement. However, much better results
are obtained using EI, and C as coordinates, because as
indicated in Figs. 10 and 11, no errors are made in
this way.

Our understanding of any structural property which
may depend or E~„on C, or on some other variable, can
be greatly enhanced by finding out what the functional
dependence is, without necessarily carrying through an
ab initio calculation. (The latter might be of little
interest even if it were possible, which is very seldom
the case. ) Thus for structure itself in the A~Bs-&

family, it is the ionicity phase angle p which is impor-
tant. Other physical properties can be examined in the
same way.

Note added iN proof: Professor Pauling has drawn my
attention to the fact that the values of his ionicity f;
discussed in Sec. 2 are those relevant to single boeds
only, and that a different definition f, is appropriate in
crystals. My error arose through reliance on the third
edition of his book (1960), which contains only the
definition f;. The definition f; is given on pp. 72ff. of
the first edition of his book (1939). Professor Pauling's
viewpoint, together with my reply, may appear in a
1970 issue of Physics Today.

The definition of f given by Pauling proceeds as
follows:

I et the coordination number of an A~8' ~ crystal
be 3f. The new definition is

fg' 1 f,' = (N/3I) fj,=——(N—/M) (1—f,)

= (N/M) expI —~(X~—Xn)'$. (9.4)

The physical interpretation of (9.4) is that the total
covalency Nfq is being shared among 3II resonating
bonds (&=4 or 6). The median deviation between f,'
defined by (9.4), and the spectroscopic ionicity defined
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Crystal
ft

Type Phillips

f'
Pauling
(1932)

f~ f~
Pauling Coulson

(1939) et a1.

C
BN
BeO
LiF
BPt
SiC

BeSt
A1N

LiC1
MgO
NaF
Si
BAs~
AlP
MgS

BeSet
GaN~

ZnO
LiBr
NaC1
Cao
KF
CuF
8eTe
AlAs

GaP
ZnS

MgSe

LiI
Cdo
InNt
CuC1

CaS
NaBr
KCl
SrO
RbF
AgF
Ge
Alsb
GaAs
InP
MgTe
ZnSe

D
Zb
W
R
Zb

Zb,
W'

Zb
W
R
R
R
D
Zb
Zb

W,
R

Zb
W
W
R
R
R
R
Zb
Zb
Zb
Zb

Zb,
W

W,
R

R
R
W
Zb,

W
R
R
R
R
R
R
D
Zb
Zb
Zb
W
Zb,

W

0
0.256
0.602
0.915
0.006
0. 177

0.312
0.449
0.903
0.841
0.946
0
0.002
0.307
0. 786

0.299
0.500
0.616
0.899
0.935
0.913
0.955
0.766
0. 169
0.2'?4

0.374
0.623

0. 790

0.890.
0. 785
0.578
0.746

0.902
0.934
0.953
0.926
0.960
0.894
0
0.426
0.310
0.421
0.554
0.676

0
0.22
0.63
0.89
0.00
0. 11

0.22
0.43
0.63
0.73
0.91
0
0.00
0.01
0.34

0. 18
0.39
0.59
0.55
0.67
0.79
0.92
0.67
0.09
0.06
0.06
0. 18

0.29

0.43
0.55
0.34
0.26

0.43
0.59
0.70
0.79
0.92
0.67
0
0.04
0.04
0.04
0. 18
0. 15

0
0.42
0.81
0.98
0.25
0. 11

0.61
O. 56
0.94
0.88
0.98
0
0.25
0.25
0.67,

0.78
0.59
0.55
0.80
0.93
0.94
0.97
0.99
0.92
0.55
0.27
0.27
0.59

0.65,
0.77

0.91
0.85
0.50
0.82

0.81
0.93
0.95
0.93
0.99
0.95
0
0.26
0.26
0.26
0.59
0.57

0
0.35
0.64

0.33
0.06

0.60
0.36

0.37

0.60
0.-36
0.65

0.60
0.37
0.37
0.61

0.36
0.85

0
0.36
0.37
0.3'?

0.64

TAsl, K A. Parameters of the 68 compounds considered. In the
6rst column the structure(s) in which the compound is found is
indicated using the abbreviation: D for diamond, Zb for zinc-
blende, W for wurtzite, and R for the rocksalt of NaC1 structure.
For compounds followed by a f, the values are predicted. For
purposes of comparison, the last three columns contain the fi
values predicted by the theories due to Pauling and Coulson.

TAaLE A (Couttnued)

Crystal

fi fi
fi Pauling Pauling Coulson

Type Phillips (1932) (1939) et al.

Cds

CuBr

Zb,
W

Zb,
W

0.685 0.18 0.59

0.735 0. 18 0.80

0.63

0.85

AgCl
NaI
CaSe
SrS
KBr
RbC1
GaSb
InAs
ZnTe
CUI
CdSe
CaTe
AgBr
KI
SrSe
RbBr
Sn
InSb
CdTe
AgI

R
R
R
R
R
R
Zb
Zb
Zb
Zb
W
R
R
R
R
R
D
Zb
Zb
Zb,

0.856
0.927
0.900
0.914
0.952
0.955
0.261
0.35'?

0.546
0.692
0.699
0.894
0.850
0.950
0.917
O. 957
0
0.321
0.675
0.770

0.26 0.82
0.47 0.91
0.39 0.90
0.43 0.91
0.63 0.91
0.70 0.95
0.02 0.26
0.02 0.26
0.06 0.53
0.09 0.78
0. 15 0.58
0.26 0.88
0. 18 0.86
0.50 0.92
0.39 0.80
0.63 0.94
0 0
0.01 0.25
0.04 0.52
0.09 0.80

0.36
0.37
0.66
0.84
0.61

0
0.37
0.61
0.84

SrTe
RbI

R
R

0.903
O. 951

0.26 0.75
0.51 0.92

f = (N/M)f, +(1 N/M). —

Clearly the inequalities

(95)

imply that
0(f,&10(N/M & 1,

0&f,'(1,
(9.6)

(9.7)

by (5.25), is only 0.06, and the f,' scale does much
better than the 1932 f; scale in predicting crystal
structures. See Fig. 11, which has been revised to
exhibit this fact. Thus Pauling's new scale (9.4) appears
to be quite satisfactory, at least for qualitative pur-
poses.

To analyze these differences in ionicity scales in
greater depth, the reader should examine Table A,
which shows for 68 A~B~~ compounds the values of
f; (spectroscopic), f; t Pauling, 1932, Eq. (2.7) ),
f,' LPauling, 1939, Eq. (9.4) ), and f, (Coulson, 1962).
The vast improvement in over-all agreement with

f, (spectroscopic) and f, (Coulson, 1962) achieved by
f,' (Pauling, 1939) compared to f; (Pauling, 1932) is
obvious at a glance. However, a more quantitative
analysis of the correlation of these 272 numbers re-
quires a little organization.

First note that (9.4) can be written
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TABLE B. Ranges spanned by various definitions of ionicities

f; (A~Hs Nl as a function of N. Ionicities are listed in detail in

Table A.

f; (Phillips, f, (Pauling, f (Pauling, f; (Coulson,
1969) 1932) 1939) 1962)

0.69-0.96 0.09-0.92 0.78-0.99 0.84-0. 85

2 0. 17-0.91 0.09-0.79 0.55-0.97 0.60-0. 66

0.00-0.58 0.00-0.43 0.25-0. 56 0.33-0.37

so that the new scale is confined (as it should be) to the
unit interval. However, for the new scale, f is generally
shifted to higher values because of the constant term in
(9.5) .As one can see from Fig. 11, this shift is necessary
to predict crystal structures better, and indeed part of
its success stems from this shift.

Some of the limitations of the new definition (9.5)
off,' are the following:

(1) The spectroscopic definition treated covalent
effects (Es) and ionic effects (C) symmetrically.
Pauling s first definition of f, is asymmetrical because it
depends only on Xz—XE (see Table 3). The crystal
definition is asymmetrical in a di6erent way, because it
assumes that it is the covalency fs' which is "shared"
Laccording to the factor (E/M) in (9.4) j rather than
the ionicity f,' To some. extent these asymmetries
balance each other, which partially accounts for the
improved agreement.

(2) A large part of the improved agreement stems
from a device in the definition (9.5) which one could
easily overlook. In order better to distinguish between
fourfold and sixfold coordination, the factor M is
introduced indicating that covalency is shared between
M = 4 or M =6 neighbors. This automatically guarantees
that the ionicity per bond will be greater (all other
things being equal) for IM'=6 than for &=4, because
the former makes a larger constant shift in the last
term of (9.5). But of course, this is what we were

trying to show in the first place. For the crystals MgS,
MgSe, and HgS which are found with M=4 and 6,
the definition (9.5) of f,' assigns a different ionicity to
each, depending on its structure; the two values
diGering by about 0.12. It is therefore difFicult to
understand why these particular crystals are found in
both structures. The spectroscopic theory explains
this because all have f; defined by (5.25) equal to the
critical ionicity F, within 0.01.

(3) Although the deviations of f (Pauling, 1939)
and f; (spectroscopic) are small in many cases, there
are some glaring discrepancies. These can be sum-
Di@rizcd in Table 8, which shows the range spanned by

all four definitions for crystals with %=1, 2, 3. The
table once again shows the improvement in f resulting
from the upwards shift produced by the constant term
in (9.5). It is seen that the center of each group of
values of f for constant IV agrees well with Coulson's
values for f;, which are almost constant for a given E.
This table also shows that the factor (N/3f) multi-
plying f; in (9.5) has the effect of narrowing the interval
spanned by each group. LNote that this narrowing
factor must be present in (9.5) in order that (9.6)
will ensure the validity of (9.7).j The ranges are
narrowed so much that overlap of f (/=2) and
f,' (1V=3) is virtually eliminated, whereas ac-
cording to the spectroscopic scale, for example,
f;(BeTe)«f, (InN) .

(4) An individual pair of crystals which is particu-
larly striking is BP ( f,=0, spectroscopically) and SiC
( f,=0.18).According to Pauling's new scale, f,'(BP) =
0.25, which is more than twice f (SiC) =0.11. The
effective charge (see Sec. 12) of BP is too small to
measure, whereas that of SiC is quite large (even larger
than the spectroscopic scale would predict) .

The interested reader can use Table A to multiply
these examples. The linear transformation (9.5)
corrects many of the shortcomings of Pauling's old f,
scale, especially near f = 0.8, but it appears to introduce
equally serious new shortcomings of its own. All these
difhculties appear to stem from the asymmetrical treat-
ment of covalent and ionic eAects in the original
definition (2.7) .

There is another point of overlap between Pauling's
definition and the spectroscopic one. In discussing the
Ag halides, Pauling suggests that their covalent char-
acter should probably be doubled because Ag is fre-
quently divalent. This would give 46% covalent
character, or 54% ionic character, instead of the 77%
given by f . Obviously there is an ambiguity here,
because the halides remain univalent. In the spec-
troscopic theory, this ambiguity is readily resolved
(Van Vechten, 1969) by setting Z(Ag) equal to 2 in
Eq. (5.20) for C.

10. COHESIVE ENERGIES AND HEATS
OF FORMATION

As we saw in Sec. 2, one can use observed heats of
formation of molecules to construct a table of elemental
electronegativities based on Pauling's formula (2.3)
for the extra-ionic part h~p of the bond energy D~p,.
One can then apply this formula to crystals and
estimate heats of formation with an accuracy of
30%-50%. This accuracy is not high, but considering
that the input data are obtained from molecules,
the results are not bad. More serious, from our present
viewpoint, is the absence from the theory of the covalent
or homopolar energy, denoted by P in molecular
orbital theory, and by EI, in dielectric dispersion theory.
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The absence of this factor may be correlated with the
fact (Sec. 2) that the resonating-bond concept works
well for A~B' ~ crystals with E=2, where C)EI„and
less well with X=3, where C&Eg.

Knowing both EI, and C, one feels that it should be
possible to develop a general theory of bond energies in
A B crystals that works well for both X=2 @ed
X=3. Because the cohesive energies of A and B as
pure crystals may arise not from sp' covalent bonding,
but from the kind of bonding appropriate to quite
diferent structures, we should express this theory sot
in terms of the heat of formation AH~g of the AB
crystal from A and B crystals, but rather in terms of
the (~ibbs free energy AG» at STP required to convert
the crystal to atoms. This energy has three parts,

AGJ s = "oG~a+ ~GJ +~Gs. (10.1)

Here AG& and AGB are the free energies required to
atomize the elements, and 6G» is the free energy of
formation.

In order to say something useful, our theory of the
dependence of AG» on E~ and C must be quite accurate.
The reason for this is that in most cases

I
~G~ I« I

~G I+ I
~G I. (10.2)

Thus according to (10.2) most of ass comes from
AGE and AG&, and the interesting quantity 6G» is an
order of magnitude smaller than the quantity AG~B
which appears naturally in the theory. This is why pre-
dicting heats of formation is so difficult.

To determine the dependence of AG~B on E~ and C,
consider the diamond-type crystals with A=B and

Z
Cl

cdTe/Znsb p
/

PAULlNG /

/
~ZnSe/GaAS

AMgs~Azp

BeO./ BN

5 ROW4
I I

I I

lo l2

o ( LATTIC E CONSTANT) / ao

Fro. i2. Tire ratio (a) =AH(2)/AEI(3) for each series of
crystals A~8' ~, with the cores of A and 8 .isoelectronic, and
with lattice constant a for %=4. The value for this ratio given
by Pauling's thermochemical theory is 8/3.

X=4. Because Ey, is a function of lattice constant a,
one may investigate the equivalent question of the
dependence of egg on a. If one assumes that

(10.3)

then one 6nds (broadly speaking) that m=2 gives a
good fit. Because kinetic energy also scales like (10.3)
with e= 2, and because a convenient measure of
kinetic energy is the Fermi energy E~ of a free electron
gas of density equal to that of the valence electrons, one
may measure AG&+ in units of Ep. When this is done
(Phillips, 1969b), the results shown in Table VIII are
obtained. Clearly AG&z/Ez is not constant. This is
because there is an important contribution to AG~~
from p-d hybridization. This contribution is virtually
absent in diamond, because of the large energy required
to promote 2p states to 3d states. It reaches a peak in
Si, just before the 3d transition series begins. It is
reduced in Ge and Sn, because the 4d and Sd valence
wave functions, respectively, are orthogonal to 3d and
4d core states. This explanation of p-d hybridization
has also been utilized to explain (Pauling, 1960) trends
in the molecular binding energies of diatomic halides
and polyatomic hydrides.

More interesting than the trends in AG~g are the
trends in AG~g when the cores of A and B are isoelec-
tronic, i.e., when A and B belong to the same row of the
periodic table. Two examples of such sequences are:
first row: /=4, diamond; S=3, BX, and 37=2, Beo;
third row: S=4, Ge; S=3, GaAs, and E= 2, ZnSe.
According to Pauling, in cases where both atoms belong
to the same row, AXas(1V=2) is just twice AX~a for
%=3. The number of resonating bonds in each case is
just 1V. Therefore the heats of formation AH&s(1V)
will have the ratio

Z = AHAB (2) /AHas (3) = -,'(2) '= 2.67. (10.4)

In the first-row series, corrections are required for N
and 0 multiple bonds. When these are made, the
effective experimental ratio " corresponding to (10.4)
can be plotted against lattice constant in Fig. 12. The
value given by Pauling's theory is seen to straddle the
experimental values, but there is an interesting trend
in (a) which is omitted by the molecular model.

The cases where the cores of A and B are isoelectronic
are of particular interest because in such cases u is
virtually independent of E, i.e., only C varies appre-
ciably as a function of X. This also holds true for any
sequence A B' ~, providing either A or 3 belongs to
one row, and B or A belongs to another. In Fig. 13 we
therefore plot AG, (AB) for all such sequences, with the
single exception of compounds with one and only one
first-rom atom. In this case the size disparity between
the cores of the two atoms is so great that there is no
simple pattern.
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where dHI and a& are the heat of formation and lattice
constant of a reference crystal (e.g. , GaAs) and the
scaling index s is about three. It was found that the
best functional form of D(Ep, Ei, Ep) was

D(Ep, E„Ep)=1—b(Ep/E)', (10.9)

where E could be any average of Ep and Ei. (They used
2E= Ep+Ei. ) The value of b is given by

b= (L'/Ep) '~" s- (10.10)

which incorporates dehybridization and metallization

(grey Sn—white Sn) in a natural way. By adjusting DHi
and s, (10.8) can be made accurate to about 10%. The
very small heats of formation of crystals like InSb are
explained through the combined effects of f, and D. One
can also use (10.10) to explain the nonformation of
tetrahedral structures by TlSb and T1Bi, because for
these crystals D is negative.

Apart from the dehybridizing factor D, the presence
of f;(AB) in (10.8) implies that =AH(2)/DH(3) has
a different meaning than in the Pauling theory, i.e., the
heats of formation of II—VI compounds compared to
III—V compounds are explained quite differently. As
C' or (hX) ' increases, both theories give a saturating
behavior. In Pauling's theory this occurs because the
discrete variable S, which measures the number of
bonds per A,' 8 —~ molecule, has dropped from 3 to 2.
In the spectroscopic theory, C also doubles (if the bond
length does not change, e.g., on going from GaAs to
ZnSe), but saturation is achieved because of the
denominator (E@'+C') ' in the definition

f —C2/(E 2+C. 2) (10.11)

One may compare this with Pauling's expression

N(X~ —Xnl ' (10.12)

by rewriting (10.11) as

f'= (C'/E ') LE 'i(E"+C') j= (C'/E")f (1o »)

where f, is the fraction of covalent character defined by
Eq. (5.26) . One sees that the factor C'/Ep' corresponds
to (X~—Xn) P, while f, corresponds to N. The variation
of N is integral, while f, is a continuous spectroscopic
variable which has no artificial atomistic character
(i.e., counting s and p states in a partial wave expansion
as one does to define valence). In general f, is not
proportional to N, i.e., f, is not the same for all N=3
crystals, and the average value of f, for all N=2

Phillips and Van Vechten found (1970) that b,H~n
in more than 20 zincblende and wurtzite-type tetra-
hedrally coordinated semiconductors could be fitted
very well by the formula

~zn ——DH, (ai/aAB) 'f, (AB) D(Ep, Ei) E2) y (10 8)

crystals is not 2/3 the value of f, for all N= 3 crystals.
(The actual ratio is closer to 3/7. ) This explains to
some extent the point (CRS, 1962) discussed pre-
viously in Sec. 2, that Pauling's choice of molecular
parameters gives good results for S= 2 crystals, but not
for X=3.

11. INTERATOMIC FORCES

The usual molecular approach to the interatomic
forces which determine molecular vibration frequencies
in covalent rnolecules (e.g., hydrocarbons) is a parame-
tric one based on what is called a valence force field
(VFF) .' It is assumed that the interatomic forces are
primarily short-range ones connected with stretching of
covalent bonds, or bending of the angle between
covalent bonds. This model is particularly well suited
to atoms whose valence electrons normally have
principal quantum number v= 1 or 2. As we saw in the
preceding section, this effectively confines the electrons
to a subspace of s and p states, because the energy of
promotion to 3d or 4f states is so large. Then the bond
angles are not easily changed, and bond-bending
characterizes the noncentral forces quite well. Xearest-
neighbor bond-stretching forces are simply nearest-
neighbor central forces such as one would expect to
find in any model.

It is not obvious a priori that nearest-neighbor
central forces, characterized by the parameter 0., and
next-nearest-neighbor bond-bending noncentral forces,
denoted by P, will be suKcient to describe the lattice
vibrations of tetrahedrally coordinated crystals. Indeed
for vibrations of very short wavelength, such forces are
not adequate. However, it has been shown by Keating
(1966) that the two-parameter n—P model gives very
good results for the three cubic elastic constants cII,
cI~, and c44 of diamond, Si, and Ge. The extention
(Martin, 1970) of Keating's model to zincblende
crystals such as GaAs requires the inclusion of long-
range Coulomb forces between the cation and anion
sublattices. These can be determined independently
from experimental values of the splitting of the longitu-
dinal and transverse optic frequencies at k=o, and so
introduce no additional parameters.

The proof that the two-parameter model gives a
good account of the three elastic constants is obtained
by eliminating n and P from the expressions for c», c»,
and c44, This leads to an identity which is satisfied to
within 10% for diamond, Si, and Ge (Keating, 1966)
as well as for most zincblende crystals (Martin, 1970) .

Because P is a measure of the strength of the non-
central forces while ~ measures the strength of central
forces, the dimensionless ratio P/n measures the

An interesting exaInple of the precision attainable with the
use of a VFF is provided for zigzag long-chain hydrocarbons by
Schactschneider and Snyder (1963).
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FIG. 14. The directionality ratio p/a as determined from elastic
constants plotted against Pauling's ionicity.

importance of the covalent bond in determining the
stability of the tetrahedral structure. This is a non-
trivial point, because one would not expect the open,
low-density diamond or zincblende structure to be
stable in the absence of bond-bending forces. Indeed in
the limit P~O both shear constants Lc44 for (100)
transverse modes, and cii—ci~ for (111) transverse
modes) tend to zero (Keating, 1966). Interestingly
enough, the value of this ratio is about the same for Si,
Ge, and presumably grey Sn, where it has the value of
about 0,3, much smaller than the diamond value which
is near 0.7. If we confine ourselves to the family of
zincblende crystals composed entirely of atoms rot
from the diamond row, we Inay 6nd interesting trends
in P/cr. as a function of either E, or y.

%hat trend would one expect to find? Presumably +
and P depend on E, in the same way, because the ratio
P/a does not change from Si to Ge. Indeed Keyes
showed some time ago that n scales like u 4, where a is
the lattice constant. (This is a result that can be
obtained by dimensional analysis. ) Thus u scales like
Er," with m=8/5, since Er„scales like rr, '5, according
to Eq. (5.19).

The interesting trend is therefore the dependence
of P/u on q. As f;= sin'y tends toward unity, the
binding tends towards the fully ionic or closed-shell
limit. In this limit it is known from studies of rare-gas
solids (which always have close-packed structures)
that bond-bending forces are negligible. One would

0.
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FIG. 15. The directionality ratio p/n plotted against ionicity
as derived by Coulson et al. , from valence bond and molecular
orbital theory.

should give a good 6t to the experimental data. Two
questions arise: which of the ionicity scales we have
discussed fits (11.1) best, and what is the value of mr'

In Fig. 14 we show the values for P/n plotting against
f; as defined thermochemically by Pauling, Eq. (2.7).
For most of the crystals composed of atoms from the Si,
Ge, and Sn rows, Pauling's definition makes f; much too
small. All the points are crowded to the left-hand side of
the figure, and no satisfactory plot is obtained.

The molecular orbital values of f; on CRS discussed
in Sec. 3 are used as coordinates for plotting P/u against
f; in Fig. 15. The CRS values of f; are nearly constant
for all A~8' ~ crystals with the same value of S,
provided neither A nor 3 is a erst-row atom. As a
result, chemical di8erences between GaSb and InP,
the least and most ionic crystals with N =3 of this type,
are not brought out. However, the over-all trend of
P/n towards zero as f; tends to unity is indicated
approximately. Thus the CRS index of ionicity is
superior to Pauling's index so far as directionality (as
manifested by P/n) is concerned.

The spectroscopic values of f; as determined by dis-
persion theory are used as coordinates for plotting P/n
against f, in Fig. 16. The high accuracy of a completely
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and of course cp itself is a monotonic function of y,

p= tan ~y (11.3)

However, the particular form of the functional de-
pendence of f; on q or on y should be determined in
such a way that structural properties such as the
cohesive energy and the strength of directional bonding

CO
I

K .2
O
O
hl

O

spectroscopic theory is brought out by this plot. The
relation (11.1) is satisfied with m= 1, just as one would
have expected from the linear behavior of cohesive
energies as a function of ionicity as described by Eq.
(10.5). The inost ionic crystal shown in Fig. 16 with
Ã =3 is InP, the least ionic with X=2 is Zn Te. The two
ionicities are almost equal, as are the respective values
of P/a. Even CuC1, which has X= 1 and is just barely
stable in the zincblende structure, falls on the line
extrapolated to P/n= 0 at f;= 1.

The results of the preceding section and this section
are of special interest because they test the functional
dependence of ionicity on electronegativity. As we
indicated in connection with Eq. (10.5), any monotonic
increasing function of the ionicity phase angle p will

predict with equal success the coordination numbers of
A'vB' crystals. The statistical test of ionicity discussed
in Sec. 9 demonstrates that the proper combination of
ionic and covalent energies is the obvious dimension-
less one

(11.2)

behave in the simplest possible way, i.e., linearly. The
fact that this is achieved by (11.3) using y rather than
2y or y/2 is a consequence of the symmetrical way in
which EI, and C enter the spectroscopic definitions,
especially Eq. (5.10).

GOgo 6s 60 GOgo (12.1)

known as the I.yddane —Sachs—Teller relation. ' Here
e0 is the low-frequency limit of the electronic polariza-
bility measured in the infrared at frequencies above the
lattice vibration absorption bands. On the other hand,
e, is the quasistatic polarizability of the crystal meas-
ured at frequencies below these absorption bands, and
it includes contributions to the polarizability associated
with ion motion.

If one chooses a particular electrostatic model, one
can use the splitting co~,'—art,,' to deGne an eGective
charge. Two definitions (Callen, 1949; Burstein et al. ,
1967) which are useful for semiconductors are derived
by considering a sample with the geometry of a slab.
If the ions vibrate in the plane of the slab, one finds that
the induced dipole moment per ion pair displaced
relative to each other by x is:

12. IONICITY AN'D EFFECTIVE CHARGES

In lieu of a theoretical scale of ionicity for crystals,
for some time it has been customary to use as an
empirical measure of ionicity the dynamic effective
charges associated with optic modes of vibration at
k=0. The situation is particularly simple for crystals of
the zincblende A~8~~ class. There are three acoustic
modes as k—+0 which are described by the elastic
constants discussed in Sec. 11. There are also three
optic inodes, and if we let k~0 along a (100) or (111)
symmetry axis, two of these are transverse and one is
longitudinal. In the absence of long-range forces the
transverse and longitudinal optic frequencies co&, and
co&, would necessarily become degenerate at k=0,
since for short-range forces the modes are indistin-
guishable. The Coulomb force, however, gives rise to
surface forces which split the lo mode off from the to
model. One may derive the general phenomenological
relation

Pz =Cz X. (12.2)
O

'C
Here eq* is the transverse or Born effective charge
(Burstein et al. , 1967). On the other hand, when the
ions vibrate normal to the plane of the slab (corre-
sponding to a longitudinal mode in an infinite crystal),
there is a macroscopic internal field E. Since D=O,
outside the crystal one has

0 0.2 0.4 0.6
IONICITY f )

0.8: I.O E= —4n-Pl„ (12.3)

Fro. 16. The directionality ratio P/n plotted against spectros-
copic ionicity. Also shown are the averages of the Coulson values
for the E=2 and /=3 groups shown in Fig. 15.

'For a discussion of this relation and its generalization to
cases containing more than two atoms per unit cell, see Cochran
and Cowley (1962).
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where PL, is the longitudinal polarization. This is
given by

(12.4)pr, ——er*x+ (pp —1/4s. ) E.

One can use (12.3) to rewrite (12.4) as

pr, ——eJ.*x= (er"/pp) x. (12.5)

(g(,'—ppg,
' ——(4s pp/MQ) (er,*)'

u,.—m,.'= (4~/Mn) L(er*) '/pp].

(12.6)

(» 7)

One can use (12.2) and (12.5) to calculate ~~,'—co~'.
The results are (here 3f is the reduced mass of the two
atoms in a unit cell of volume 0)

are the same crystals which produced a simple pattern
for the directionality parameter P/n discussed in the
preceding section. %'e noted there that in crystals
composed of first-row atoms like diamond and cubic
BN, P/u is much larger. This may be an indication
that the role played by bond stretching, as measured
by cx, is different from that of bond bending as measured
by p. Apparently bond bending makes a greater con-
tribution to 5 than does bond stretching because all the
tetrahedrally coordinated crystals containing first-row
atoms exhibit values of 5 which are not shown, but
which lie well above the line drawn in Fig. 17. (The
one that lies farthest above is BN with f,=0.26,
5=1.36.) Similarly, in the sixfold coordinated rocksalt
structure cases (also not shown), all the experimental
values of 5 lie well below the line.

The foregoing picture, although incomplete, shows
that the splitting ~i,'—or~,' is indeed a measure of
ionicity through the parameter 5 for some tetra-
hedrally coordinated crystals. Because the concept of
effective charge varies with the geometry assumed, it is
perhaps more useful to study the splitting cubi,

'—co&,'
directly rather than construct a specific model.

The concept of ionicity can also be used to elucidate
trends in piezoelectric constants (Phillips and Van
Vechten, 1969a). These are even more sensitive to
geometrical factors, and so will not be discussed in
detail here.

13. SUBSTITUTIONAL IMPURITIES

The replacement of an atom in a tetrahedrally
coordinated A~B semiconductor by an impurity
ato&n of valence Z may create shallow impurity states.
Let the valence of the replaced host atom be Zp then
the valence difference is

The e6ective charge eL,
* was introduced by Callen

(1949), and e&* was introduced by Born. It has been
pointed out (Burstein ef al. , 1967) that er* is much
more nearly constant in semiconductors than e&*. The
difference between the two arises from the way in which
allowance is made for polarization of the crystal during
the optical vibration.

It has been suggested by Martin (1970) that perhaps
one should not attempt to factor the splitting

S= (e,*)&/.,= p, (e,*)& (12.8)

into effective charges and polarization factors, neither
of which is measurable separately. Instead Martin has
proposed to study S itself as a function of f;. The
results of such a study are shown in Fig. 17, where the
spectroscopic values of f; are used as abscissas. As
f„+1,it appears t—hat S tends to slightly more than one.
Moreover, 5 is nearly linear in f;.

The crystals which are exhibited in Fig. 17 are the
zincblende ones not containing first-rom atoms. These

~Z= Z—Zo. (13.1)

E= E/e'—(13.2)

for n& 2. Because of the complexity of the energy-band
structure of semiconductors near the bottom of the

In general, shallow impurity states are obtained for
hZ= +1, 0. For hZ=+1, the impurity is said to be a
donor; for DZ = —1, it is said to be an acceptor, and for
hZ=0 it is said to be isoelectronic. Transition-metal
impurities lie outside the scope of the present discussion,
although it is possible that the generalization of the
Mooser —Pearson theory discussed in Sec. 9 would yield
useful insight into their properties as well.

The early work on shallow substitutional impurities
concerning the cases hZ=~1 was reviewed by Kohn
(1957). At that time it was recognized that with the
exception of the ground state all the remaining bound
states of the impurities tended to have hydrogenic
character, i.e., their energies conformed approximately
to a Rydberg series
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conduction band or top of the valence band, (13.2) is
not the whole story (Kohn, 1957) . One must allow for
the multiplicity of conduction-band edges, which
exhibit ellipsoidal symmetry, and for the degeneracy of
the valence-band edge, which produces spheroidal
surfaces of constant energy. When this is done and use
is made of the most recent experimental data, one can
show (Faulkner, 1969) that the part of the donor
potential seen by p donor electrons with e&2 has the
dielectrically screened Coulomb form

V;, (r) = ~Z/e, r— (133)

to an accuracy of better than 1% for donor impurities
in Si and Ge.

In view of these results, it seemed natural to as-
sume (Kohn, 1970) the validity of (133) right into
r=E„where E, is a cuto6 radius approximately equal
to the atomic radius of the impurity. Within this model
short-range effects associated with the potential interior
to R, are presumably not large. This expectation was
upset by the discovery (Thomas and Hopfield, 1966)
that bound states occur for hZ=0, e.g., N replacing P
in GaP, or Bi replacing P in GaP. This discovery was
surprising for two reasons:

(1) Because the long-range part of the impurity
potential (13.3) is zero for hZ=0, there must be an
appreciable short-range part which presumably arises
from differences in electronegativity (or some related
quantity) between the impurity and the host atom it
has replaced. Any rough order-of-magnitude estimate
will then show that if a similar short-range potential is
present when hZ= ~1, the ground-state energies would
depart from the hydrogenic values by much more than
is observed to be the case. Stated diGerently, if an

upper limit is imposed on the magnitude of the interior
potential by the deviations of the 1s energies from the
hydrogenic value for hZ =~1, then that interior
potential will be too weak to produce binding when
hZ= 0.

(2) There is a minimum strength for a short-range
potential to produce a bound state. (In a square-well

model, the strength is measured by VOR', where Vo is
the depth of the well and R is its radius. ) If the strength
exceeds the minimum value, the binding energy
rapidly increases and soon becomes comparable to the
energy gap AE„between the bottom of the conduction
band and the top of the valence band. Thus it seems

very unlikely that Vo will be close enough to the critical
value to produce binding energies which are &0.0168„.
Nevertheless, this is the range of observed binding
energies for most isoelectronic impurities. It is clear
that some physical mechanism must be operating to
reduce binding energies to smaller values than one would
have expected from electronegativity arguments alone.

To these problems one should add another, which
concerns the hyperfine coupling between the donor

electron and the nuclear spin of the impurity. This
hyperfine coupling is proportional to the expectation
value in the 1s ground state of the singular operator
8(r), i.e., it is proportional to

I 4(0) I'. From many
studies of atomic wave functions it is known that
I @(0) I' is more sensitive than any other observable to
small changes in the potential. For example, one may
know the potential well enough to calculate the ground-
state energy (which satisfies a variational condition) to
a few hundredths of a percent, and still err in calculating

I
4(0) I2 by a factor of 2 or more. Moreover, the

parts of the potential that affect I%'(0) I' strongly,
such as the potential in the neighborhood of the atomic
core 1s state, have almost no effect on valence energies
corresponding, say, to atomic 3s or 3p states.

In spite of these obstacles, Kohn and t.uttinger
(1955) proposed the following method for calculating

I
0'(0) I'. The wave function %'(r) of the donor electron

is written (schematically) in the product form

%(r) ~ F(R) qi, (r), (13 4)

where qi, (r) is a Bloch function associated with the
conduction-band edge. The envelope wave function
F(R) satisfies an effective wave equation containing
the potential (13.3) for R)R, . The potential for
R&R, is left unspeci6ed. In order to compensate for
incomplete knowledge of the Hamiltonian, the observed

value A' of the 1s binding energy, not the hydrogenic
value E~~, is inserted into the effective wave equation,
which is then integrated inwards from r= ~. Of course
in the potential (13.3) only wave functions corre-
sponding to hydrogenic eigenvalues would be finite at
r =0. Therefore the integration is stopped at r =R„and
it is assumed that

e(0) I
=s

I
F(R,) I I ~,(0) 12, (13.5)

where s is a multiplicity factor measuring the number of
equivalent band edges.

When (13.5) is used to study the hyperfine coupling
constant for P impurities in Si, one finds that the
observed value of

I
%(0) I' is about 10 times greater

than that which would be obtained from (13.5) using
the hydrogenic ground state energy EII'. The factor of
10 is, however, explained by (13.5) using the observed

value of the binding energy E' and setting R, equal to
the atomic radius.

This remarkable result appeared most impressive
some 15 years ago. As more information has accumu-
lated concerning impurity properties, however, it has
become more difficult to understand. For example, it
seems strange that when one knows so little about the
Hamiltonian that one is unable to calculate the ground-
state energy, one should be able to calculate the expecta-
tion value of a singular operator which depends on the
behavior of the wave function at the center of the region
of which one disclaims any knowledge. Because the
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wave function is diverging as r~0, aey value of
~
%(0) ~~

greater than the hydrogenic value can be obtained by a
suitable choice of the cutoff radius E,. In fact the latter
constitutes the one adjustable parameter which ex-
plains the one observable.

From the viewpoint of information theory, to have a
meaningful model it is necessary that there be fewer
adjustable parameters than there are observables
explained. This means that in order for the K.ohn-
Luttinger theory to be meaningful, it is necessary that
E, remain equal to the atomic radius when fitting the
hyperfine coupling constants of impurities other than
P in Si (e.g. , As, Sb in Si, or P, As, Sb in Ge). Even if
the fit is not quantitative, one would hope that the
observed values of

~

4'(0) ~' would correlate monotoni-
cally with deviations of the observed binding energy E'
from the hydrogenic value EII'. Unfortunately this is
not observed to be the case. With Sb impurities in
Si,

~
F(E,) ~' is found experimentally to be twice as

large as for P impurities in Si, even though E —Eq is
smaller for Sb than for P.

Kohn and Luttinger explain the failure of their
theory to account for the hyperfine coupling of As and
Sb impurities compared to P by stating that the As and
Sb perturbations are "violent" compared to the P
perturbation, presumably because only the P atomic
core is isoelectronic to the Si atomic core. However,
by direct calculation based on studies of interactions
between rare-gas atoms, one can show (Phillips, 1969a),
that when Si is the host crystal, core—core interactions
are negligible, except possibly in the case of Bi.

All these problems become much less serious when
one realizes that the chemical shifts of ground-state
energies are indeed a chemical problem, and that before
proceeding to try to understand something so complex
as

~

4'(0) ~', one should first try to understand Eo. This
is the procedure ordinarily adopted in most quantum-
mechanical problems, and if it has not always been
applied to substitutional impurities in semiconductors,
that may be partly explained in terms of the lack of a
quantitative theory of electronegativity and ionicity
in crystals.

To begin with, we should understand why ground-
state binding energies tend to be small, regardless of
whether DZ is zero or nonzero. The simplest hypothesis
seems to be (Phillips, 1969a) that the lattice relaxes in
such a way as to reduce the amount of bound charge
e, which accumulates in the impurity cell. In Si it
appears that the total donor charge e.* in the atomic
cell seldom exceeds 0.1e, while in Ge, the total donor
charge which can accumulate is even less. As the crystal
becomes more ionic, e.g., X=3 and then X=2 in
A~Bs ~ crystals, possibly more charge (say 0.2e) can
accumulate, but in any case really large binding energies
(of order dE,„) do not usually occur, because this
would lead to an unreasonably large charge accumula-
tion.

The next step, of course, is to explain why large
charge accumulations do not occur (Phillips, 1970).
The reason for this is that each unit cell in the crystal
has four covalent bonds and therefore the valence
energy is minimized (maximum binding energy) when
there are exactly eight valence electrons in each unit
cell. The extra energy associated with binding a donor
electron, of course, makes it favorable to attract the
donor electron. Because all these semiconductors are
highly polarizable, if a certain amount of charge e,*
associated with the donor electron accumulates in the
central cell, then an amount of valence charge of order
(1—1/eo)e, * will be displaced from the central cell.
With eo 10, this means that accumulation of donor
charge displaces a nearly equal amount of valence
charge, which of course costs energy. Because e,* is of
order

~
F(0) ~', and because

~
F(0) ~'~ (E')' in a

hydrogenic approximation, it is clear that when E' is
small enough, the displacement effect is unimportant.
As E' increases, a point is reached where the rate of
reduction in total energy associated with binding the
additional carrier is equal to the rate of increase in
total energy associated with the displacement of
valence electrons. This stabilizes the total energy and
determines the amount of donor charge which is
allowed to accumulate.

The foregoing discussion assumes that the additional
potential seen by the bound carrier is not independent
of the wave function of the bound carrier, but that it
changes self-consistently with e,*. We do not really
need to know how this happens, but it is useful to have
an explicit model. One possible model, which is con-
sistent with the importance of valence energies, asserts
that it is the strain field which sets up a repulsive
potential proportional to r ' near the impurity which
stabilizes the ground state (Phillips, 1969a). Thus the
potential near the impurity has tmo parts, an attractive
well which binds a carrier in the 6rst place, and a
repulsive shell around this well, which keeps the binding
energy small. The net binding is related to differences
in valence bond energy between the impurity and the
host which determine the point of stability.

At this point it would be helpful if we knew how to
calculate these differences. As we indicated in dis-
cussing alternative crystal structures in Sec. 9, such a
calculation appears to require extremely accurate
determinations of each bond energy separately, and
this is just what no one has done. (The situation is even
more complicated here, because one must determine the
local strain field as well. ) One can therefore have
recourse to the same maneuver here as we used in
discussing crystal structures. One asslmes that E'—EII'
is related to the differences in Eq and C for the two
bonds, or equivalently is some function of the differ-
ences in E, and p for the two bonds. Because these can
be estimated from the formulae given in Sec. 5, it is
then a relatively simple matter to examine the eight



PHrx, zus IonicityirI, Crystals 343
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FIG. 18. Theoretical contributions of the central cell correction
AE to hydrogenic donor {P, As, Sb, Bi) binding energies in Si
and Ge. The term d, Ef, results from differences in E, between
host —host and host —impurity bonds, while AL&„z arises because of
differences in p—d hydridization.

known experimental values of A' —EII and find the
desired functional relationship. It is

g(host) —E,(imp«ity) I (13 6)

for a given host. To improve the agreement of (13.6)
with experiment, it turns out that one can make a small
correction d,E~z for the effects of p—d hybridization,
which we saw in Sec. 10 inQuences cohesive energies,
especially in the Si row. The theoretical values (Phillips,
1970) for AE& and d,E~ are shown in Fig. 18, and they
are compared with experiment in I'ig. 19. In only one
case (Bi in Si) is agreement with experiment poor.

Ke remarked previously that a satisfactory theory
would attribute an approximately constant volume to
the region over which the impurity potential departed
from the asymptotic hydrogenic form (13.3) . The way
to test this point using the relative chemical model
(13.6) is to introduce I', =

I
+rr(0) I' as a macroscopic

scaling factor for each host crystal, Si or Ge. Here
Vrl(r) is the hydrogenic wave function which char-
acterizes the ground-state wave function in presence of
the simple Coulomb potential (13.3). When this is
done, one finds that the remaining constant of propor-
tionality required in (13.6) for donor impurities in a
Ge host is about five times larger than it is when Si
is the host. This is a satisfying result, because the
conduction-band edge in Ge is of the symmetry type
I.~, while that in Si belongs to h~. Studies of these band
edges, either in Ge—Si alloys or by hydrostatic pressure,
have shown (Phillips, 1966) that the Ii edge in Ge is
indeed about five times more sensitive than the h~

edge in Si. An attractive feature of this result is that it
reduces the calculation of all eight values of E'—XII'
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FxG. 19. Comparison of theory (see Fig. 18) and experiment
for central cell corrections AE to hydrogenic donor binding
energies. The agreement is good for all cases save Bi in Si, where
there must be a giant contribution arising from differences in
size between the Si core and the Bi core.

to two free parameters, while simultaneously avoiding
the question of the detailed nature of the volume
affected by the impurity potential and the impurity
strain field.

An interesting feature of (13.6) is that it is the first
time that we have found a chemical trend which
depends on E, rather than on the ionicity phase angle
p. This is probably because this is the first case which
involves a departure from having eight electrons per
unit cell. Because of the compensating effects of the
strain field, however, there remain nearly eight elec-
trons per unit cell, i.e., e,*«e.Kith a greater departure
from the normal complement of eight valence electrons,
one would probably have to solve the entire quantum-
mechanical problem, as one usually does in treating the
effects of heteroatoms in hydrocarbons (Streitweiser,
1961). However, in the crystal the degree of localization
is so small that a simple result such as (13.6) is not
unexpected. Indeed the fact that eo depends only on

E~, and not on &, means that the appearance of only
E, in (13.6) qualitatively describes a central cell
interaction which can be interpreted as arising from
dielectric mismatch between the impurity and the host
lattice. Such a concept is appropriate for small degrees
of charge localization, because the dielectric constant
describes the response of the crystal to weak electric
fields.

Rote added in proof: The spatial dimension of wave
packets associated with shallow impurity states are
large compared to an atomic radius. When these wave
packets are transformed to momentum space (Kohn,
1957), the amplitudes are large only for crystal momen-
tum very near the conduction-band edge (donor states,
hZ= 1) or valence-band edge (acceptor states,
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hZ= —1). Accordingly, one might expect that E„
which represents conduction-valence-band energy dif-
ferences averaged over the entire Hrillouin zone, would
not be so appropriate to the description of central cell
corrections as band differences at the k corresponding
to the appropriate band edge. This has recently been
shown to be the case (Phillips, 1970c) for acceptors in
Si and Ge.

E=P/(«+ 2) jP. (14.1)

The electric moment m, of the sphere is given by

(14.2)

where ~, is the polarizability of the sphere. The volume
of the sphere is 0=4IrR'/3, and P is the electric moment
per unit volume such that

14. CLASSICAL ELECTROSTATIC THEORY

The classical model of the polarizability of ionic
crystals predates quantum mechanics. The model was
introduced in the middle of the nineteenth century by
Mosotti (1850) and Clausius (1879).A brief description
of the theory as applied to alkali halide and related
ionic crystals follows.

Each ion is idealized as a sphere of radius E. of
continuous uniformly polarizable dielectric. Allowing
for depolarization effects the field E produced inside the
sphere by an applied Geld P is

ordinarily is explained in terms of the formation of
hybridized sp' or sp' directed valence orbitals. Such
orbitals imply a sharing of valence electrons between
atoms, and in that case the condition of nonoverlapping
charges is violated.

If the total polarizability o., of an ion is a constant
independent of its environment, then one should have

nAG +nBD =nA D +nBG = nA, +nB +no +n D ~ ( 14.6)

For most alkali halides, (14.6) is valid to a few percent
(Roberts, 1949) .

There is still a problem in separating o.gg' into ng'
and nB'. So long as one considers only diatomic crystals,
a constant can be added to all the anion polarizabilities
O.g' and subtracted from all cation polarizabilities a~'
and leave the compound polarizabilities o,~B' unchanged.
Triatomic crystals such as Cu20 resolve this ambiguity.
One may also choose a reference value for one ion and
show (Roberts, 1949) that this gives halide polariza-
bilities roughly proportional to their volume Pcf.
(144)3.

A similar analysis of electronic polarizabilities only
has been carried out by Tessman, Kahn, and Shockley
(TKS) (1953) who found agreement for quite ionic
crystals to within a few percent by assigning fixed
polarizabilities to each ion. Their results were similar to
those obtained earlier by Fajans and Joos (1924), Born
and Heisenberg (1924), and Pauling (1927) . Their
work contained two new features:

m, =PQ= (pp —1)EQ/4pr,

from which one obtains

(14.3) (1) A statistical analysis was made of the suitability
of the spherical or I orentz —Lorenz depolarization factor
which occurs in (14.1).More generally, (14.4) may be

(pp —1)/(pp+ 2) = (4s./30) n, =n,/R'. (14.4)

For a conducting sphere &0
—+~, and n,—+E.'. When

pp))1, (14.4) can be used to estimate E, and this was
useful before x-ray and electron diffraction were avail-
able for precise structural determinations. When more
than one kind of molecule is present in a total volume
V, one has

n=Qn;= (3V/4pr) (pp —1)/(pp+2) (14.5)

as a natural generalization of (14.4). In writing the
additive relation (14.5), we have assumed that the
presence of other molecules does not alter the polariza-
bility of any single molecule. This means that the
charge densities of the molecules cannot overlap
appreciably if (14.5) is to hold.

Empirically it has been found that the additivity
assumption works well for the total polarizability
(electronic plus ionic) in crystals such as those of the
rocksalt type in which each ion is a center of inversion
symmetry, at least with respect to its nearest neighbors.
From a chemical point of view this is what one would
expect, since the absence of inversion symmetry
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FIG. 20. A sketch showing the parentage of the energy-band
levels in diamond-type crystals at k=x in the Brillouin zone
near the energy gap between the valence and conduction bands.
The highest valence-band level is X4('); the lowest conduction-
band level X1(2). In (a) the levels are described in pseudopotential
language; in (b) they are described in atomic orbital or tight-
binding language. The levels X4{') and X1(» are each occupied
by two electrons per atom. Thus (b) shows how the initial C
atomic valence configuration of 2s'2p' becomes 2s2p' in diamond.
On the other hand, (a) shows how simply the crystal energy gap
AE between valence and conduction bands is calculated in
pseudopotential language.
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written

a, =Q[(eo—1)/(Leo —L+4m) j, (14 7)

where I. is a depolarization factor. One may write

L=y4s/3, (14.8)

and the value y = 1 is the Lorentz —Lorenz choice
corresponding to (14.1). It was found that for the
alkali halides, y=1 did indeed give the best fit, but
y=0.5 or 2 raised the mean-squared error (normalized
by the mean polarizabilities) by less than 15 /~. This is
most disappointing, and it rather suggests that the
success of the model rests in part on the large number
of parameters used.

(2) IIaving determined "best" values for alkali and
halide polarizabilities, an attempt was made to estimate
divalent anion and radical polarizabilities in more
complex structures by subtraction. Again rather
variable results were obtained, but one striking result
emerged for the 0= ion. There the polarizability was
found to vary by a factor of three. This variation was
explained by taking the measured molecular volume in
a number of oxides and subtracting the cation volumes
as estimated from ionic radii, to yield effective 0= ion
volumes. As shown in Fig. 20, this yields quite good
results, with cx(O=) linear in Q(O=) for about two-
thirds of the cases studied.

The microscopic Clausius —Mosotti theory is now
nearly 120 years old, and it is still robust and vigorous.
Perusal of citations to TKS (1953) in the year 1968 by
only those authors whose names begin with A or B
shows two papers discussing surface relaxation of ionic
crystals, one paper discussing the energetics of ionic
powders, another calculating lattice energies of layer
and chain transition-metal salts, another paper using
dielectric properties to determine the solvated structure
of ZnBr2 in ether, another discussing collisions between
atoms and diatomic molecules, and several others
which were at the bindery. Thus the utility of the
classical model is beyond question. We now attempt to
understand this model in quantum-mechanical terms.

15. DISPERSION THEORY OF IONIC CRYSTALS

The dispersion theory of A B ~ crystals discussed
in Sec. 5 and applied to a variety of problems in other
sections of this article starts from completely covalent
diamond-type crystals in which the ionic energy C
described by Eq. (5.20) is zero. One then treats crystals
in which C&0. It might have been expected that the
treatment was valid only for predominantly covalent
crystals for which C«Ei, and f;«1. In fact, C is defined
by Eqs. (5.10) and (5.16), which are not based on
perturbation theory. Thus EI, and C remain useful

parameters for describing A~B' + crystals up to about
f;= 0.9, i.e., up to C about equal to 3E&. For more ionic

crystals, dispersion theory based on the Penn model is
probably not so useful.

Although the region 0&f, &0.9 encompasses all
tetrahedrally coordinated crystals and some crystals of
the rocksalt type, there are many ionic crystals which
lie outside this range, and there are also many ionic
crystals which are not binary. In order to develop a
meaningful spectroscopic theory of these crystals, one
needs at least two observables which can be manipulated
algebraically to determine optical model parameters.
(For A~8' ~ crystals, the two observables used were
the lattice constant a and e&(0), which det. ermined
Ei, and C, respectively. ) It has been suggested
(DiDomenico and Wemple, 1969; Wemple and
DiDomenico, 1969) that the Sellrneier formula

ei ((o) = 1+8/[ep' —(Sa)) '] (15.1)

may prove useful in this connection. Of course (15.1) is
valid only for ~ &o», where coj is the lowest frequency for
which appreciable absorption associated with electronic
transitions of the pure crystal take place. For each
crystal there are already two parameters, 8 and ep,

which can be obtained by fitting experimental data to
(15.1) . Thus one does not need to have an ideal refer-
ence crystal (e.g. , the diamond-type crystals), and one
is not restricted to binary compounds.

At first one might expect to find no similarities
between values of 5 and ep in such diverse materials as
Mg0 and Ba2NaNb50». However, all strongly ionic
materials ( f, &0.9) are characterized by localization of
most of the s—p valence electrons around the anions,
0- in these two crystals. Moreover in each case the
cation coordination number E, is six. Thus the con-
figuration seen by most of the 0 valence electrons in
Ba2NaXb50» is not very different from that in MgO,
which has the rocksalt structure. With a suitably
chosen optical model, the differences between the two
structures could turn out to be small.

The Wemple —Didomenico model (1969) for ionic
crystals assumes that

6062= 4' Op 6g (Scan &, beg)

otherwise, (15.2)

(egeo) '= S' (15.3)

by the equations derived from taking a Kramers-
Kronig transform of (15.2):

Ed =v3800(b 1)/(1+ 3+2—) '"

(fo/~ )2—3p/(1+/+@) &/2

(15 4)

(15.5)

The values of ep, ~~, ~„and b are computed from the

i.e., a constant or rectangular conductivity, Oo=&ve2/4z.

over a frequency band between eg and beg. These two
energies are related to eo and a dispersion energy eq

defined by
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experimental data. The results for more than 50
crystals, most of them strongly ionic, are:

(1) oq is much more nearly constant within a group
of chemically similar crystals than is either eo or e, . In
fact the relation

og PN——,Z,N, (15.6)

is found to hold with about 15% a.ccuracy for all
crystals containing a single anion species. Here Z, is
the valence of the anion, and N, is the number of s—p
valence electrons per anion. The energy parameter P
has the value

P =P,=0.26~0.04 eV (15.7)

for ionic compounds (halides and oxides), and the value

P=P, =0.39~0.04 eV (15.8)

for more covalent nonhalide zincblende compounds.
Again E, is the cation coordination number.

(2) The results (15.6)—(15.8) can be reformulated
in terms of a "broad" covalent optical band width

b, =3.4, (15.9)

and a "narrow" ionic band width

b;= 2.1, (15.10)

and a "universal" conductivity constant

(&o/N. Z N ) =80+12(Q cm) '. (15.11)

One may criticize the W—D model by noting that it
is accurate to only 15%, whereas the C—M model is
accurate to a few percent. However, as TKS (1953)
shows, the accuracy of the C—M model stems primarily
from the large number of parameters employed. The
W—D model is accurate to 15% using three parameters
for 50 crystals, so that with a score or more of free
parameters" it is not surprising that the C—M model
works well. ,On the other hand, if the discrete variables
E, and P, of the W—D model could be replaced by
functions of suitably determined continuous variables
such as bond length and ionicity (as is the case for the
dispersion theory of binary compounds), then very
good accuracy might be achieved. This is a promising
problem for further research.

The striking feature of the analysis of Wemple and
Didoinenico is that the constant anion and cation
polarizabilities of the Clausius —Mossotti model have
been replaced by anion polarizabilities which exhibit
dependences on the discrete environmental factors E,
and Z of the kind that one might expect from Pauling's
resonating bond theory. Thus this model represents the
first advance over the classical Clausius —Mossotti
model in more than a century.

16. MODELS AND MOMENTS

The dispersion theory discussed in the preceding
section employs a model optical spectrum described by
Eq. (15.2) which is quite different from the one asso-
ciated with the Penn model illustrated in Fig. 1. The
spectrum of the Penn model is quite complicated, but
to a good approximation it is given by (Bardasis and
Hone, 1967)

3aokp (5a ) ' L(5(u) '—E 'O'I' '

where ao ——5/me' is the Bohr radius, and k~ and Ep are
the Fermi momentum and energy, respectively, of a
free electron gas with density equal to that of the
valence electrons. In (16.1) it is assumed that Ro)E„
for 5~(E„ofcourse, &2=0.

Because (16.1) has been generated by an isotropic
energy-band model, there is an analytic singularity in

o&(oo) of the one-dimensional type, i.e., as 5o&—+E„
oo(&o) becomes infinite in proportion to (~—E,)'~'.
This divers from the weaker singularities found in
realistic three-dimensional band models (Phillips,
1966) .

The question arises whether the model spectrum
(16.1) or the model spectrum (15.2) provides a more
useful basis for describing the over-all properties of the
optical spectra of a broad class of crystals, be they
semiconductors or insulators. This question is not quite
the same as the much debated one as to the best choice
of a set of basis functions in which to expand the trial
function in the Schrodinger equation for a crystal or
some other system. In the latter case, any set of com-
plete functions used in the same equation should
eventually give the same answer, so that the problem
of choosing one representation over another reduces
to the questions of which method converges more

rapidly, or of which gives better answers at an early
stage of calculation. It has often been supposed (but
never demonstrated) that good answers at an early
stage are indicative of a good choice of basis functions,
whose matrix elements have particular physical

significance.

Criteria of this type must be used to decide between
different forms of model spectra. One of the physical
properties which is characteristic of crystals of high
polarizability Lo(0)))1] is that each atom is approxi-
mately neutral (see Sec. 3). This means that it is

important that the model incorporate plasma oscilla-
tions which give rise to charge fluctuations, even

though the plasma energy Sco„ is much larger than the
average energy gap E,. Detailed comparison between
experiment and theory on this point is hindered by the
fact that most experimental data on semiconductors,
for example, exhibit excess absorption near and above
the plasma frequency because of contamination of the
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surface by an oxide layer. In this spectral region such a
layer is much more absorptive than the semiconductor
itself. There may also be many-electron effects
(Bardasis and Hone, 1967) which enhance oscillator
strength for ~ above the plasma frequency co„, but these
easily obscured by the surface oxide. In any event, it
has been shown (Bardasis and Hone, 1967) that the
Penn model gives a good qualitative account of the
shape of e2(co) in semiconductors for Sar &1.2E,. On the
other hand, the Penn model fails completely to describe
the absorption in spectral region Scv(E,.

How important is the region 5~(E,P The answer
to this question depends on the physical observable
being studied and the nature of the bonding. Obviously
if one is interested in finding the energy Ep of the
threshold for intrinsic electronic absorption, then it is
just the anisotropy of the energy gap (which is neglected
entirely in the Penn model) which is of crucial impor-
tance. Because of the cubic symmetry of the crystal and
the tetrahedral configuration of the nearest neighbors of
each atom, there are many properties of semiconductors
for which Penn's model is adequate. An exception is the
heats of formation (Sec. 10), which are particularly
delicate because they involve small differences between
the cohesive energies of metals and the nearly equal
cohesive energies of semiconductors. Here too the
chemical trends in E, are important, however, after
allowance is made for the dehybridizing effects asso-
ciated with the low-energy structure labeled Ji p and Ey.

The situation is different for the more ionic crystals.
In the case of semiconductors, interactions between the
electron and hole which are excited by photon absorp-
tion have little effect on ~(0), because the Coulomb
interaction between the electron and hole is screened by
e(0). In particular, the oscillator strength associated
with the formation of bound electron —hole states
(called excitons) is small. Indeed in a hydrogenic model
it can be shown (Elliott, 1970} that this oscillator
strength is proportional to Le(0}j '.

In ionic crystals, e(0) is much smaller. This greatly
increases the oscillator strength of excitons, which are
prominent (Phillips, 1966) in the spectra of crystals of
the NaCl type. One can associate the exciton states
with a shift of interband oscillator strengths to lower
energies. Such a shift also occurs for all states in the
continuum, and it can even produce resonances in the
continuum (Phillips, 1966). In bonding language these
spectroscopic effects are usually described in terms of
greater localization of valence charge near the anions,
a localization which becomes much more pronounced as
the anion valence electron configuration approaches the
closed-shell limit. In this limit, the electronic con-
figuration may approximate for example Xa+Cl,
which means that the neutral binding picture appro-
priate to more covalent crystals has been abandoned in
favor of a classical valence picture. This may account
for the appearance in (15.6) of the discrete variables

X, and Z, which are important in Pauling's resonating
bond theory.

Qualitative discussions of this type can be made
more quantitative by considering spectral moments.
Define the rth moment of the optical spectrum of a
crystal by the relation

(16.2)

ej(0}=1+M,. (16.4)

On the other hand, the parameters F and eo in (15.1)
are given by (DiDomenico and Wemple, 1969;Wemple
and DiDomenico, 1969)

e„'= (r/eo) '= M2'/M3,

eo' ——M2/M3.

(16.5)

(16.6)

Thus the dispersion model of Sec. 5 involves M~ and
3I2, while that of Sec. 15 involves M2 and M3. Because
~„'=4+We'/m, where S is the valence electron density,
one would expect that M& should be a necessary element
in any general theory. The fact that this moment is
omitted from the model of Sec. 15 may explain the
somewhat limited range of applicability of the theory
to primarily ionic crystals. The same is true of the
Clausius —Mosotti theory.

The Penn spectrum (16.1) is derived from an energy-
band model. This gives dispersion theory based on the
Penn model a more solid foundation than would other-
wise be the case, for some physical assumptions must be
included in the theory beyond algebraic relations
among the parameters of the theory and moments of
the spectrum.

Hopfield (private communication) has derived an
interesting relationship between the Mp moment and
the total bare ionic pseudopotential denoted by Vb(rl.
Let the number of valence electrons per unit cell be e,
and separate the valence charge density p(r) into a
constant part po and a spatially varying part bp(r).
Then Hopfield's relation, derived from an argument
involving translational invariance, is

co„e2

~m+ all space
bp(r) V'V~(r) d'r. (16.7)

By separating both 8p and V& into symmetric and anti-

In the following discussion use atomic units, i.e., fi, = 1.
In (16.2), co, is the threshold frequency for optical
absorption.

One can insert either (15.2) or (16.1) into (16.2),
compute the moments, and compare the two models
algebraically. The f—sum rule (4.12) is written

(16.3)

and the Kramers —Kronig relation (4.6) gives for eq(0)
the result
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symmetric parts bp„bp, V&', and V&, respectively, one
can rearrange (16.7) and utilize (16.3) to obtain

(~ )=~0/~i= —(&/3~&) j(8p.V'Ut'+8p 'PU~') ip&

(16.8)

In pseudopotential theory (Phillips, 1970), one sirnpli-
fies (16.8) further by transforming to k space. In this
space, the Fourier components of 8p, (k) are linearly
related to those of Ut,'(k), and similarly for bp, . Thus
(16.8) contains only terms of the form U&'V'Ub' and
t/'~ V'V~, with no cross terms or terms of higher than
second order. This inakes (16.8) closely resemble
(5.10), the basic rela, tion Eg'=Eq'+C' of dispersion
theory.

This formal parallel may be appealing to readers
seeking a more mathematical justification of the basic
relation (5.10). Notice that the use of translational
invariance to derive (16.7) is analogous to using the
structure factors cos 6 c in (5.4). The condition of
translational invariance is customarily used in lattice
dynamics to prove that phonon frequencies co tend to
zero like ck, where c is a suitable sound velocity. How-
ever, c depends (Phillips, 1970) on ion —ion forces as
well as electron —ion forces of the type (16.7), so that
there is no direct relation between BIO and the inter-
atomic forces discussed in Sec. 11.

I'7. DISPERSION THEORY AND BAND THEORY

Most studies of the electronic structure of crystals
have utilized the full symmetry of the crystal to classify
and describe states in the one-electron approximation.
In this approximation the states form energy bands
specified by E„(k),where k is the crystal momentuin or
eigenvalue associated with translational invariance, and
m is a band index. By contrast valence bond theory
describes certain properties of the crystal which involve
averages over the one-electron band states. Although
quantum mechanics gives us a prescription for obtaining
the band states, at least after making plausible sim-
plilcations of the one-electron type, there is no general
set of rules governing the kind of average that should be
used to determine valence bond parameters.

The situation is similar (Phillips, 1970b) to the one
involved in deriving thermodynamic relations from
classical mechanics. Newton's laws do not contain any
prescription for determination of thermodynamic
variables such as entropy. The connection between these
two topics is provided only by an entirely new approach,
statistical mechanics.

The view taken here is that the proper choice of
averages depends on the kind of bonding involved.
For example, different approaches are probably re-
quired to treat binary metallic compounds AX, where
A is a nontransition element and X is a transition
element, than are required for binary compounds A&.

Even among the binary nontransition compounds
A~B~ ~ it appears that different values of 3f give rise
to quite different structural properties.

All of this is in accord with classical valence theory,
much of which is unfamiliar to most physicists who have
studied the electronic structure of solids. What has been
shown by dispersion theory is that at least for the large
family of semiconductors and insulators with M =8, the
variable T is not important. Indeed in the ionicity
range 0&f, &0.9, even the question of nearest-neighbor
coordination number is not essential, as is shown by
extending (Van Vechten, 1969; Penn 1962) the treat-
ment of bond ionicity in tetrahedrally coordinated
crystals to crystals of the sixfold coordinated NaCl type.

In spite of the success of dispersion theory in phe-
nomenological terms, many theorists may welcome a
discussion relating the results to those of band theory.
It should be noted in advance, however, that band
theory in its present state cannot tell us what kind of
average we should take. It may, however, for a given
average give a more explicit relation between the bond
parameters and the ionic potentials.

A. Pseudopotentia1s and the Jones Zone

The feature that distinguishes metals from nonmetals
in the energy-band picture is that in the case of non-
metals there is an energy gap between the valence
bands (which are full) and the conduction bands
(which are empty). In the language of Brillouin zones,
the Fermi surface is congruent with the mth Brillouin-
zone boundary, where no= M/2, and M is the number of
valence electrons per unit cell. The volume of k space
so occupied is called the Jones zone (Heine and Jones,
1969).

From Fig. 3 one can see that in diamond-type crystals
the largest peak in e2(cu), labeled E2, falls quite close to
the average energy gap Eq introduced in dispersion
theory. The same holds true for E2 and E, for zincblende
and wurtzite crystals (Phillips, 1970), and this co-
incidence apparently rejects the suitability of an
sp'-hybridized bond model for describing these crystals.
Heine and Jones (1969) have proposed to relate the
energy of the peak E2 to the actual energy levels E„(k)
by making the following approximations:

(i) E, is identified with the energy E(Xi)—E(X4) ~

Here k= X, and X~ and X4 label the lowest conduction
and highest valence bands at X. The justification for
this is that the Jones zone in this case is a dodecahedron,
and I lies at the center of each face. Actually band
studies have shown (Van Vechten, 1970) that E(Xi)—
E(X4) is always 0.2—0.3 eV below E2. This is a small
error compared to the basic one of identifying E2 with
E„and in itself need cause no concern.

(ii) The energies E(Xi) and E(X4) would be
degenerate in the free-electron limit with the crystal
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AEp/2=2V, (111)V.(111)/AT. (17.7)

In the limit V,~O we see that hE~AE& which is to
be identified with E~. Thus AE2 is to be identified with
C. Froin (17.7) we see that AEp is odd with respect to
interchange of atoms A and B because it is first order
in V,. One can evaluate (17.7) numerically very simply
by noting that AT = (2prap/a) ' Ry, where ap is the Bohr
radius, a the cubic lattice constant, using ap/a from
(Van Vechten, 1969; Penn, 1962), and taking V, (111)
and V (111) from (Cohen and Bergstresser, 1966;
Walter and Cohen, 1969). The result for GaAs is

potential V=o. This suggested that one carry out
quasidegenerate perturbation theory to estimate

E(Xi) E(X—4) = AF. Ep Ep. (17.1)

There are four plane waves at Iwhich must be treated
exactly: (0, &1, &1) in units of 2pr/a. Two others
(+1, 0, 0) are treated by second-order perturbation
theory. The result is expressed in terms of V(G),
which is the pseudopotential form factor evaluated at
the reciprocal lattice vector G. One finds

AE= 2/V(220)+ I V(111)}'/ATj, (17.2)

where the difference in free electron energies is

AT = (5'/2m) (2pr/a) 'L(110)'—(001)P] (17.3)

The values of AE calculated from values of V(G)
adjusted to 6t experiment and obtained by solving a
complete secular equation (about 100 plane waves)
agree fairly well (Heine and Jones, 1969) with those
obtained from (17.2) .

The first term in (17.2) is the only one that is retained
in simplified theories of metals (Phillips, 1970). The
second term is the one characteristic of covalent bond-
ing. The Heine —Jones model shows how covalency
enters pseudopotential theory.

One can ask whether it is possible to extend this
model to include ionic effects as well. To do so one
introduces symmetric and antisymmetric pseudo-
potentials (Cohen and Bergstresser, 1966; Walter and
Cohen, 1969) according to

2V. (6) = V~(G)+ Vp, (G), (17.4)

2V (G) = V~(G) —Va(G). (17.5)

The structure factor for G= (220) is zero for V., and
is 90' out of phase for V, (111) compared to V, (111).
Thus if by AE we mean the energy difference between
the average of the two conduction-band energies and
the two valence-band energies, the generalization of
(17.2) is AE=

~
AE,+iAEp

~

with

AEi/2= V, (220)+ I V, (111)}'+I V, (111)}'/AT,

(17.6)

AEp ——V, (220)+ I V, (111)}'/AT,

ap
——1+AEpAT/8I V, (111)}',

a4 ——(AT) '/I4V, (111)}4.

(17.9)

(17.10)

(17.11)

A careful survey of the behavior of all optical peaks
in diamond and zincblende crystals as a function of C'
has been made (Van Vechten, 1970) . The result for the
E2 peak is

Ep'= Epp'+ C'. (17.12)

This corresponds in (17.8) to

a4= 0. (17.13)

At first one is inclined to dismiss the differences
between (17.10), (17.11) on the one hand, and (17.13)
on the other, as artifacts of the truncation process
Lconfining the calculation to (110) plane waves per-
turbed to second order by (001) plane waves'. How-
ever, there is a good deal more to be said. Notice that
the additional terms in (17.10) and (17.11) both
increase hE above what is found experimentally and
described by (17.13) . If one compares ZnSe with GaAs,
one experimentally finds C(ZnSe) = 2C(GaAs) . LOther
horizontal sequences such as BN—BeO and InSb —CdTe
also give C(II—VI) =2C(III—V).) However, the extra
terms in (17.10) and (17.11) increase AE more rapidly
for IV—VI compounds than for III—V ones. This means
that if the band calculation were to be stopped in the
(110)+(001)= (*) subspace the values of C~(ZnSe)
and C*(GaAs) required to fit the observed values of Ep
would satisfy the inequality

C*(ZnSe) /C*( GaAs) (2. (17.14)

The band calculations of Cohen and Bergstresser
(1966) on the other hand, have been carried to con-
vergence (~ subspace). Because V, (111) and A,T are
the same in GaAs and ZnSe, AE2 and effectively C are
proportional to V (111), which takes the values 0.07
and 0.18 Ry, respectively. Thus in an obvious notation

C"(ZnSe) /C" (GaAs) = 2.3. (17.15)

When we compare (17.14) and (17.15) with the
experimental ratio derived by dispersion theory

C-p"'(ZnSe) /C'"p" ( GaAs) = 2.0, (17.16)

AE2 ——2.5 eV, compared to C=2.9 eV as determined
spectroscopically.

A more severe test of the utility of the truncated
expressions (17.6) and (17.7) is obtained by expanding
(AE) ' in powers of C'= AEpP

(AE)'= (AEp)'+ap(AEp)'+a4(AEp)', (17.8)

where a term-by-term comparison with (17.6) and
(17.7) gives
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we arrive at a very interesting result. By choosing as
truncation parameter the size of our subspace, it should
be possible to adjust this in such a way as to satisfy
(17.16) . The size of the subspace should be greater than
the * subspace (Heine and Jones, 1969), but less than
the ~ subspace (Cohen and Bergstresser, 1966; Walter
and Cohen, 1969).

The conclusion that (17.16) can be satisfied in this
way is of particular interest if we choose to take the
values of V~(G) and VE(G) not from a fit to semi-
conductor spectra, but instead from free atom term
values as given in tables by Animalu and Heine (1965).
These values also satisfy (17.16). This suggests that
there may be something inherently unsound about the
semiempirical pseudopotential form factor values
V "(G), where a=A or B, and the superscript
means that adjustments to experiment have been made
based on convergent secular equations.

The use of a partially truncated plane-wave expansion
in pseudopotential calculations is not new. In the
original work (Phillips, 1958) on diamond-type crystals,
the expansion was confined to about 30 plane waves,
partly for reasons of computational economy and partly
because this was the smallest subspace which gave
accurate results for all E„(k) of interest. More recently
studies of Ga, In~, As alloys appeared to indicate
(Jones and Lettington, 1969) that the Heine —Animalu
atom-based form factors gave much better results in a
truncated subspace than in a convergent one. Again
the optimal cutoff was found to be at about 30 plane
waves. However, in both cases the results are rather
fragmentary.

Is there anything special about 30 plane waves?
Apparently this is about the number of plane waves
required to synthesize wave functions for states near
the energy gap in the region outside the atomic cores.
Adding further plane waves "improves" the wave
functions in two regions of the crystal: in the region
where the atomic potentials overlap most strongly,
which is where the atomic radii touch, and also in the
core regions. This second effect however is not an
improvement at all. Particularly in pseudopotential
calculations but actually in all other approaches as well,
it is assumed that the regions of the atomic cores are the
same in the crystal as in the free atoms. For homopolar
semiconductors or metals this assumption never causes
any great difficulty. For partially ionic crystals, how-

ever, problems do arise.
The point is that the energy level shifts in a calculation

based on U,"(G) relative to VP(G) are largely based
on charge transfer from the region of the cation core
to the region of the anion core. This effect is probably
spurious, because through the exclusion principle the
ion core electrons keep the valence electrons from

accumulating in the core regions. In empirically
adjusted orthogonalized plane-wave calculations, it has
been found (Stukel et al, 1969) that satisfactory results

can be achieved only through the introduction of
so-called "core (energy) shifts. " So far no explanation
of these core shifts has been given, but from the present
point of view it appears that such shifts may be used to
simulate the changes in the cores which take place to
prevent valence charge transfer.

The foregoing remarks can be used to formulate a
program for treating the e6ects of ionicity on crystalline
energy bands. First notice that truncation of the secular
equation to a fixed number of plane waves has certain
disagreeable features, in particular it introduces
diGerent apparent degrees of convergence at different
points k in the Brillouin zone. This difhculty can be
minimized as follows. Truncation of the function space
to T plane waves is equivalent to replacing the o6-
diagonal matrix clem. ents H;; in the original secular
equation by H;;0,0,, where i and j label reciprocal
lattice vectors G; arranged in some sequence. Here
0,= 1 for i&%, and 0,=0 for i)X. One may refine this
process by using the cutoff function

0(x) =8,(G,) =1 if x=
~
k+G, ~'&s.

=0 if x=
~
k+G; ~') e., (17.17)

where fi'e, /2m is a cutoff energy.
The weakness of (17.17) is its discontinuous char-

acter. Therefore, replace the step function 8(x) by a
smooth function such as the Fermi function. In such a
function, one could use e, for both the Fermi energy and
a multiple g of the Fermi temperature, i.e., replace
(17.17) by something like

F(G;) = I1+ exp Lg(x—e,)/e, ]I ', (17.18)

where g is 5 or 10.One then adjusts e, and g to reproduce
(17.16) as well as possible.

The reason that this point has been discussed at such
length is that it shows how dispersion theory can be
used to derive a criterion for efficiently introducing
self-consistency into energy-band calculations in par-
tially ionic crystals. The discussion given here has been
rather abstract, and there are no doubt some readers
who will feel that it has also been unnecessarily corn-

plicated. Why not settle all these matters simply by
looking at atomic charge densities and representing the
wave functions by atomic orbitals? What could be
simpler?

In fact, the straightforward atomic approach is not
simple at all, and it soon gets bogged down in con-
vergence probleins and unphysical parameters. (We
have already seen an example of this in Sec. 7 and
Table V.) As a result the literature on the atomic
approach is much less coherent than is the pseudo-
potential literature (Cohen and Heine, 1970). For the
benefit of readers who would appreciate a short sum-

mary of the difficulties involved, a partial discussion is

given in the following sections.
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B. Atomic Potentials and Energy Levels

It has been customary in almost all energy-band
calculations to use the one-electron approximation in
setting up the crystal potential. Of course everyone
knows that the effective potential seen by valence
electrons is not merely the average Coulomb potential
of the other electrons. To achieve the level of accuracy
required to reproduce differences in electronic structure
from one crystal to another (e.g. , Si and Ge, or GaP
and GaAs) one must also make allowance for the
exchange interactions between electrons of parallel spin
required by Fermi statistics, and dynamical correlations
between electrons of both parallel and antiparallel
spins which at high energies give rise to collective
plasma oscillations.

Unfortunately no prescription is known at present
for treating these effects accurately in covalent systems.
Even if one were known, incorporating it into actual
one-electron calculations would be dificult, because
exchange and correlation eBects are described by a
nonlocal energy-dependent potential '0 (r, r', ~), whereas
for practical purposes one-electron calculations use a
local, energy-independent potential V(r) corresponding
to r'=r, and co=a.

Some idea of the magnitude of these effects in
covalent systems can be obtained by examining the
ionic terms in the potential more closely. In molecular
orbital theory, as we saw in Sec. 7, efforts have been
made to incorporate exchange and correlation energies
into estimates of V;,„;,by using ionization energies and
electron amenities of free atoms. These are nearly all
polyvalent or open-shell cases, and consequently
somewhat misleading. For whenever an electron
is ionized from a polyvalent atom, the remaining
electrons alter their orbitals considerably, and their
energies are lowered. Moreover, in the original orbitals
electron —electron interactions are much greater than in
the crystal, because in the latter case the electrons are
delocalized and their interactions are reduced by
plasma screening by the other delocalized valence
electrons.

Because the one-electron approximation works so
well in crystals, better results are perhaps obtainable by
replacing the ionization energies used to estimate
nz(0) —nn. (0) by differences in one-electron atomic
energies. These energies, calculated with the so-called
Slater exchange terms included, are given in (Herman
and Skillman, 1963). When one tries to use these
energies, one immediately encounters the problem of
whether to use the es or ep valence energy. Because the
levels near the top of the valence band are of p char-
acter, the p valence energy seems more suitable. For
atoms from Columns I or II this requires calculations of
excited states, not given in Herman and Skillman
(1963).We therefore quote values of n~(0) —ns(0) in
two A~8~~ crystals with /=3. These two cases are

BN and GaAs, and they are sufficient to illustrate what
is happening. We let AEJ,B represent EJ, (ep) —E&(ep),
and compare this with n~(0) —na(0) = ha~a (cf.
Table V) and C~n. The results for BN are

Ao.gg = 16.5 eV, DEg8=9.5 eV, CgB ——7.8 eV.

(17.19)

The values of Cg~, which are based on observed spectra,
are self-consistent thanks to nature herself. Thus the
one-electron value AE~B looks quite good; unlike An~~
it is already almost self-consistent. This may be an
accident, however, so consider the numbers for GaAs,

Ange = 11.6 eV, DEgB= 6.0 eV, Cp 8=2.9 eV.

(17.20)

Again DEgp is about half as large as Aura, and again it
is closer to being self-consistent. However, in this case
C~s AE~s/2 Anion/4, so that for larger atoms the
one-electron estimates of V;,„;,are still far from being
self-consistent.

If one now considers other compounds, the same
general pattern holds, as one could have inferred from
the formula (5.20) for C~s. The agreement between
DEgp, and C~~ is best for small erst-row atoms and
poorer for larger atoms from other rows; As suggested
by (5.20), screening plays an important role, and for
first-row atoms this is similar in the crystal as in the
free atom. For other rows this is not the case, pre-
sumably because the larger atoms are more polarizable.

C. Atomic Orbitals

If we consider the two quantities EI, and C, we see
from (5.20) that C has a simple semiclassical inter-
pretation in terms of differences in potential of screened
point ions. On the other hand, E~ is a measure of a kind
of interference effect produced by V„,&,„& which leads
to an energy gap between bonding and antibonding
states. Although the dependence of E~~a "on the
lattice constant e given by (5.19) is quite simple, no
semiclassical interpretation of this behavior has yet
been found. This might lead us to think that, in view of
the difhculties the atomic picture encounters in esti-
mating C quantitatively, it might even fail to aid us in
understanding qualitatively the effects of V„,~, ~.

This indeed proves to be the case: billiard ball models
tell us little about interference effects and thus little
about covalent bonding.

The best description of the atomic orbital approach
to the electronic structure of crystals has been given by
Slater and Koster (1954). The electronic energy levels
are described in terms of overlap integrals between
atomic orbitals which involve the crystal potential
which is represented as a sum of atomic potentials.
There are two kinds of such overlap integrals, de-
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0E=E(Xi) E(X4)—
2DE= E(X,)+E(XI) 2E(X4)—

(diamond),

(zincblende),

(17.21)

which means that so far as AE is concerned, we can
treat the conduction levels in zincblende as degenerate
as well.

To make clearer the connection between the pseudo-
potential and atomic orbital descriptions of levels at X,
the two pictures are compared in Fig. 20. First, note
that the scale of energy is about twice as large in the
pseudopotential picture as in the AO one. Second,
note that while AE arises quite simply in the Jones
zone, or nearly free electron picture, through splitting
of degenerate states, the AO description is much Inore
complex. This is because the atomic energy levels E.
and E„are such that the ground-state con6guration of a
four-valent atom is s'p', whereas the crystalline con-

pending on whether the orbitals and the atomic potential
have a common center or not. In the latter case it is
assumed that the largest terms arise when the two
orbitals are centered on nearest-neighbor atoms, and the
potential is also centered on one of the atoms. The
average energy for a given band is determined by the
one-center term, and its k dependence is determined by
the two-center terms.

In realistic calculations based on atomic orbitals it
has been found that a great many two-center terms are
required to produce satisfactory convergence for E„(lt)
in covalent crystals. For this reason Slater and Koster
(1954) suggested that an alternate approach would be
to determine empirically the overlap parameters for the
first few neighbors. This proposal has since been carried
out (Dresselhaus and Dresselhaus, 1967) but the
resulting parameters in the only cases studied (Si'and
Ge) were rather unphysical (Phillips, 1970). One can
demonstrate this point in more analytic terms by
studying the form in which ionic effects appear in the
overlap parameters.

In order to make the discussion specific and also to
facilitate comparison with results previously discussed,
attention is focused on the energy levels at k=X=
(27r/a) (1, 0, 0) . From the viewpoint of atomic orbitals
X is significant because it makes equal angles with all

(111) valence bonds. Thus it constitutes the Bloch
analog of hybridized sp' orbitals. Moreover, the valence
level (labeled X4 in the diamond structure, X5 in the
zincblende) contains p„and p, valence orbitals, while
the conduction level (labeled Xi in the diamond struc-
ture and twofold degenerate there, and labeled XI and
X3 in the zincblende structure) contains s and p,
orbitals. It is a special consequence of the symmetry of
the diamond structure which does not hold for zinc-
blende cases that these s and p orbitals are degenerate
in the diamond structure. However, the energy gap
that concerns us is

figuration is sp'. This means that as the atoms are
brought together the s and p levels split, and a level

crossing must occur. This is exactly what happens at
X, as shown in Fig. 20(b) . The splitting parameter for
the p„, p, levels is denoted by p„. One can see from the
fact that X makes equal angles with (111) bonds that

&.= I (pp )+2(pp ) I/3 (17.22)

D. Phase Shifts

The difficulties encountered by the atomic orbital
method have been well known for more than 30 years.
In 1937 Slater proposed a method that appeared to
overcome most of these difficulties. Spheres are in-
scribed around each atom A of radius r~. Inside the
spheres wave functions of atomic (spherical) symmetry

while the splitting parameter P,„ involves the more
complicated combination

p,„=I (sso) +p„+2(spa) I/2. (17.23)

The notation for overlap integrals in (17.22) and
(17.23) is the standard one (Slater and Koster, 1954).

What happens to the energy level scheme shown in
Fig. 20(b) when we pass from the AA diamond to the
AB zincblende structure? This question has not been
studied systematically because the AO representation is
so clumsy. However, qualitatively one can see by
comparison with the discussion of Sec. 3 that P~ and

P,„should change little, but E~ and E=(E,+E~)/2
should split into E„+,E„and E~, E so that we have
an X4 and an X~, 2)&2 matrix to solve, analogous to
Eqs. (3.3)—(3.5) .

It follows then that the ionic contribution to AE
should appear indirectly through the ionic contributions
to E„and E. Clearly, each of these energies can be
expanded to order C', but equally clearly when this is
done one will And terms in AE of order C', C4, C', etc.
Thus the basic experimental fact that AE depends only
on C2 and not C4, C6, etc. , is not apparent in the AO
approach. Indeed because of the level crossing shown in
Fig. 20(b), dE appears to be a sensitive difference of
several large and nearly equal energies E„E„,ssg, spa,
Ppo, and ppz. In the AO representation, the fact that
5E behaves so simply as a function of C' seems to be
nothing short of miraculous.

From the physical point of view it should not be
surprising that the description of crystal bonding in
terms of atomic orbitals is so poor. After all, the specific
features of atomic orbitals arise from the spherical
symmetry of the atom. But the covalent bonds which
we seek to understand represent directional effects
which are not present in the free atom. On the other
hand, plane waves in the crystal are at least already
partially directional, which makes possible the relative
simplicity of the energy level scheme in Fig. 20(a)
compared to Fig. 20(b) .
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are used to represent the wave function, while outside
the spheres plane waves are used. The eigenvalue
condition is that +'/%' is continuous at the spherical
boundary.

Slater's idea was later cast into the language of
scattering theory by Korringa (1947), and later Kohn
and Rostoker (1954) (KKR). By using partial-wave
expansions, KKR were able to present the eigenvalue
condition in I. (angular momentum) space, and
evaluate the matrix elements of their secular equation
using Kwald summation techniques. Because the
geometrical basis of Slater's augmented plane waves
(APW) and the KKR scattering or Green's function
method are the same, it has been possible to show that
the two methods are essentially equivalent (Ziman,
1965) .

If the KKR method is used with real spherical
harmonics, the matrix elements 8'I.z, of the secular
determinant have the form (Ziman, 1965)

WIL'=AzL'+K cot 'gl8I L', (17.24)

to describe covalent and ionic effects. Ke again con-
centrate on k=X and attempt to compute hB=
E(Xi) E(X4) in the app—roximation that only terms
with k+G= (011) or (100) are retained. This recovers
the plane-wave simplicity of Fig. 20(a), while retaining
the phase shifts g~ to describe the atomic potentials.

The snag in the prescription is that we need to know

j&(~ k—G
~

R&) for each G and for each atom A. Of
course in principle we can take these numbers from
tables, but in practice if we seek malytic expressions
for AE similar to (17.8), etc., we soon find ourselves
bogged down in algebra. Thus for monatomic transition
metals where one has to do with a d-band resonance
crossing a nearly free electron s—p band, a great deal of
algebraic manipulation is required to establish a simple
analytic picture (Heine, 1967; Jacobs, 1968). In a
diatomic lattice where the energy level diagram is more
complicated (Fig. 20) a great deal of effort would be
required to separate covalent and ionic effects. It would
be problematical whether this would lead to a relation-
ship of the AE'=Ez'+C' type. What would be more
likely would be a criterion for choosing r& and r&, which

where the phase shift q~ is that associated with a single
atom A with potential truncated at r =R~ (Fo.r
simplicity one ordinarily considers only monatomic
crystals. ) Here E=E"in atomic units, and the struc-
ture of Al. z, involves reciprocal lattice vectors G,
Bessel functions, and spherical harmonics.

At jrst sight the form of (17.24) is rather appealing.
Our old friends, the g~, are present, and perhaps we
could introduce symmetric and antisymmetric com-
binations

(17.25)

(17.26)

would be interesting but not essential. Another problem
implicit in the phase shift approach is determination of
the zero of energy used to define E= I& ~'. This represents
some kind of average of the crystal potential in the
region outside the atomic spheres, and how this average
would depend on ZA, r~ and Z~, rB is not known.
Calculations to date have treated the zero of energy as
an adjustable parameter which gives rise to rather large
discontinuities in potential (of the order of 1 Ry) at
the atomic spheres (Phillips and Sandrock, 1968) .

18. PROSPECTS FOR FUTURE WORK

Predictions of the course of future research are un-
likely to be accurate if the problems involved are as
difficult as those in solid state physics. Nevertheless to
conclude this article it seems appropriate to review
what is known so far and what the implications of this
knowledge are for future work.

Anyone who surveys the properties of crystals is
immediately struck by the many interesting relations
and trends which are obvious even in the macroscopic
properties. Our knowledge of the quantum structure of
crystals has increased very greatly in the last decade,
and now trends are apparent in these properties as well.
In this article we have attempted to relate both macro-
scopic and quantum trends largely to trends in ionicity.
7Ve have been successful in discussing many properties,
and our success confirms many of the assumptions of
valence bond theory as formulated by Pauling and by
Coulson. %e have been able to discuss band structures,
ionization potentials, and work functions (Van Vechten,
1970); nonlinear optical properties (Phillips and Van
Vechten, 1969), alloys (Van Vechten and Bergstresser,
1970; Jones and Lettington, 1969), heats of formation
and cohesive energies (Phillips and Van Vechten, 1970),
interatomic forces (Martin, 1970), effective charges,
impurity energies (Phillips, 1970a), and so on.

The discussion so far has focused chieQy on tetra-
hedrally coordinated A~B~~ semiconductors. This is
because the experimental data are far more complete for
this family of materials. But as shown in Mooser and
Pearson (1959) and Pearson (1962), regularities similar
to those of the A~8~~ family are found in many other
binary compounds. ' Although the prescriptions em-
ployed for A~B' ~ compounds cannot be applied with-
out further thought to these other families, it would
appear that there are lessons to be learned from the
case about which we have the most information, and
that some of these lessons can be applied to the other
families as well.

In closing, I should like to direct an appeal to younger
theorists to involve themselves in problems of this
kind. The number of man-years spent by younger

See the interesting collection of semiempirical models discussed
in Rudman, Stringer, and Jaffee (j.967).
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theorists on formal problems such as the Kondo eRect
or the properties of the free electron gas must now
number in the hundreds. Such mathematical exercises
eventually take on a Byzantine quality which enriches
neither the practitioners nor the scientific community
as a whole. On the other hand the richness of patterns
of crystal structures and properties is now accessible to
explanation in quantum-mechanical terms by those
who are willing to consult and survey experimental data
on a wide scale. It is my hope that this article has made
work of this kind seem attractive and interesting.

Postscript: I am often asked the question: Can the
spectroscopic ideas developed here for crystals be used
to discuss bonding in molecules? Because of the struc-
tural similarities between crystals and molecules, the
answer in a larger sense must be yes. Speculations about
how this might be done can be found in Ref. 1. There
is a close similarity in over-all view between my ideas
and those of Pauling (Ref. 2), but his empirical basis
is thermochemical, whereas I believe the spectroscopic
approach is more accurate for crystals.

If one tries to apply the spectroscopic approach to
molecules, one immediately encounters difhculties
connected both with paucity of data and with the
de6nition of bond polarizabilities in molecules con-
taining more than one kind of bond. (Similar problems
arise in ternary, quaternary, etc. , crystals. ) Tradi-
tionally, these problems have been resolved for qualita-
tive purposes by assuming that bond polarizabilities
are additive and transferable. These two assumptions
are only roughly valid, and their use tends to vitiate
many of the advantages of the spectroscopic approach.

It appears that there is no universal prescription
which can be applied to all structural problems. Perhaps
the best way to appreciate the signi6cance of the
present approach is to regard the A~B crystals as a
kind of ideal system. This system is used to give an
absolute definition of ionicity, just as the ideal gas is
used to construct an absolute scale of temperature.
(See my article in Physics Today, February 1970,p. 23.)
In measuring temperature using a thermometer made
out of real materials, one must make corrections to the
Kelvin scale for calibration purposes. Working out
these corrections is a serious task in each case.

On a more practical level, there is one important
lesson to be learned from the present work. In estimating
ionic eGects, it is natural to calculate an ionic energy.
In many cases there is a tendency to overlook the
covalent energy, which is equally important, but which
has no simple classical meaning. The results for A~B' ~
crystals demonstrate how important it is to treat both

effects on an equal footing.

The pedagogical object of this review has been to
make the subject of ionicity in crystals appear simple.
Treated in the proper spectroscopic perspective the
results are indeed strikingly simple. However, some of
my colleagues have drawn the mistaken conclusion that
the subject itself really is simple. The purpose of this
Appendix is to disabuse the reader of such a naive
notion by making explicit some of the real quantum-
mechanical problems inherent in attempts to define
ionicity which arise with definitions based on over-
simpli6ed atomic models. In order to make the dis-
cussion specific, I shall use as an example spin —orbit
splittings at k=o in cubic A~B~~ crystals. '

At first sight the spin —orbit splitting of the threefold
orbitally degenerate levels at k=0 (which correspond
to the p states of the free atoms) appears to provide an
excellent measure of the parameter A. in the valence-
band wave function discussed in Sec. 3. This wave
function may be written in the AB unit cell in the
atomic orbital approximation as

fA+ ~ABPB) (A1)

where f~ is a valence p orbital centered on atom A, and
similarly for PB. Denote the spin —orbit operator by

BC„=UL S, (A2) .

If fg and QB were orthogonal, and cross terms of U
between atoms A and 8 could be neglected, (A3)
would reduce to

Ko"B= (~Ho"+&~B'& B)/(1+&~B') (A4)
where

and similarly for X„~. Given experimental values of
E„"~, if some way could be found to evaluate K„"
and K„~ as invariant parameters characteristic of the
respective atoms only (i.e., independent of the nearest-
neighbor atoms), then (A4) could be solved for X~B,
and the definition of ionicity given in Sec. 7 could
be used.

From the foregoing it is clear that unless some
independent way can be found to evaluate 3'.,", this
procedure requires at least as many independent param-
eters (one for each atom) as the Clausius —Mosotti
theory. One might imagine that these numbers could

where L and S denote orbital and spin angular momen-
tum. The coupling factor U will be discussed in more
detail below. The spin —orbit splitting is determined by

(A3)

APPENDIX

Can spin —orbit splittings serve as an accurate
measure of ionicity?

4 Braunstein and Kane (1962) were careful to note that using
the same sharing time for all III—V compounds gives good agree-
ment with experiment, and so does not reflect the diferent ionic
character among the compounds. See Sec. 7, where the Coulson
theory gives a sim&lar result,
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(AS)

then (A4) becomes

AB —($QmA+ ~AB2~ B)/ (1+2XAssAB+ ~AB2) (A6)

To simplify the situation, consider an AA elemental
crystal, where X= 1.Then

E ""=X,.""/(1+5 ) (A7)

The magnitude of S&& may be obtained as follows. The
bonding state is given by (A1) with X=1; the anti-
bonding AA state by (A1) with 'A= —1. As a result the
antibonding spin —orbit splitting is

E AA —~ AA/ ( 1 sAA) ~ (A8)

From (A7) and (AS) we see that the spin —orbit split-
ting of the antibonding state is larger than that of the
bonding state by the factor

f (1+sAA)/(1 sAA) ~ (A9)

with 5~~&0. In Ge, however, these two splittings at
k=0 are known from cyclotron resonance experiments

be taken from free-atom term values, but it turns out
that in elemental crystals (e.g., Ge) E.,""differs from
the atomic value by 50%. Even this, however, is not the
most serious shortcoming of this approach.

Let the nuclei of atoms A and B be located at R~
and R&, respectively, and let rz=

~

r—Rz ~, and
similarly for r&. Let Wz(rz) and W&(rs) represent the
parts of the total crystal potential, including the core
potentials, which are spherically symmetric about
atoms A and B. One can then show that 3'.„"depends
on Q"

~

&'W~/Br&'
(
f")/(f" ) P ) and similarly for

X,,s. If we approximate Wz by Ae ~'/r, where A is the
total charge on the A nucleus, then O'W~/Br~' involves
several terms, the largest of which is proportional to
rz '. The energy gap between bonding and antibonding
states, as we have seen, depends on the valence pseudo-
potential near the atomic radius. The spin —orbit
splittings, on the other hand, involve the second deriva-
tive of the tota/ potential, and the largest contribution
comes from the core region where r~ ' is large.

This discussion can be made more quantitative by
expanding P~ in terms of the core states of atom A and
a smooth outside or valence function. Such an expansion
has been carried out in great detail for Ge (Liu, 1962) .
The reader may refer to this paper for quantitative
instances which illustrate the effects discussed.

Because O'Wz/Br&' and 8'Ws/Bra' are large only in
the nonoverlapping regions of the atomic cores, neglect
of cross terms of U between atoms A and B, mentioned
in connection with Eq. (A3), is justified. However,
neglect of cross terms of P+ and f& is not justified. Let

(Hensel and Suzuki, 1969) . The spin —orbit splitting of
the antibonding state is only half that of the bonding
state.

I have led the reader down the garden path to this
paradox in order to dramatize how misleading appar-
ently simple arguments based on atomic orbitals can be.
The atomic concept so popular in ancient Athens still
enjoys an intuitive appeal to many physicists in
situations where they ought to know better.

The paradox presented here was first recognized and
resolved (Phillips and Liu, 1962), long before experi-
mental data conclusively demonstrated that anti-
bonding spin —orbit splittings are actually smaller than
bonding ones. The paradox arises because of the initial
assumption that the bonding and antibonding wave
functions can be confined to the I.=1 subspace of
atomic functions. In actuality the crystal wave func-
tions involve considerable p—d hybridization. The
valence wave functions involve (p bonding —d anti-
bonding) states, the conduction ones (p antibonding —d

bonding) ones. Clearly the admixture of d states is
greater in the level of higher energy, which makes its
spin —orbit splitting smaller. This is what one would
expect on general grounds from the fact that 82W/Br'
is large in the core region. But equally clearly d admix-
ture must be allowed for, and the amount of this
admixture will depend significantly on the various
energy gaps in the AB crystal. Thus the parameters
BC„~ and BC„~ really have no invariant significance.

In closing this short lesson, I should mention that
there are qualitative trends in E„which correspond
roughly to the values of Pz& obtained in the Coulson
model. For the reasons discussed above, however, one
should not attempt to make these trends the basis of an
accurate scale of ionicity. Ultimately the reason for this
is that O'W~/Br~' is a poor weighting factor compared
to V~, because the former is too singular near r~=0.
The same remark is doubly applicable to values of the
nuclear contact interaction which depends on the even
more singular operator 8(r—R~), and great care should
be exercised in basing even qualitative estimates of
ionicities on values of

~
P(0) P measured in nuclear

magnetic resonance experiments.
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