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INTRODUCTION

*Qn leave from Department of Mathematics, West6eld College,
London iV.W. 3, England.

This article presents a list of definitions of some of the
basic concepts arising in the theory of linear graphs
and their applications, particularly to problems in
statistical mechanics and combinatorics. It was pre-
pared by the authors mainly in an endeavor to sys-
tematize and specify precisely the terminology found

-in the literature. We have attempted to present —in
sequenc" —complete, unambiguous definitions in which
the "exceptional cases" (often a cause of confusion or
imprecision) have not been overlooked. Doubtless we
have not been completely successful in these tasks.
Equally the choice of "basic" definitions must remain
largely subjective; indeed the selection presented here
is strongly influenced by our own interests. Nonetheless,
the results of our labors may be of some value to others
using graph theory —if only as a convenient reference
point from which to depart!

Although our main aim has been to specify a con-
sistent terminology, we have, at various places, stated
without proof certain theorems (some trivial, some
profound) which illustrate the significance of the
de6nitions. The material has been organized into
sections with, generally, the more elementary and
widely applicable definitions placed near the beginning.
We have frequently mentioned alternative terms (in
parentheses); the order of these indicates our relative
preferences although these are sometimes not very
strong.

The reader's attention is drawn to the index of terms
at the end of the list of definitions, which enables the

list to be used as a dictionary of graph theory. We have
consulted a range of references in assembling this list.
Our main sources are listed in the bibliography which,
needless to say, is in no way meant to indicate the
scope of the literature on graph theory or its applica-
tions, even in the restricted fields with which the
authors are familiar.

1. VERTICES, ARCS, EDGES, AND GRAPHS

1.1 A vertex set V is a set of objects a, b, c, ~ ~, i, j, ~ ~-
called vertices (or points, or sites). ' These are conven-
tionally represented by labeled geometrical points in
the plane. The number of vertices in V is denoted below
by v.

1.2 An arc (or directed or oriersted, edge or l&w) is an
ordered pair of distinct vertices from a vertex set V.
The arc (i,j ) is said to be incident with the vertices
i andj, being incident out of the initial vertex i (or tail
of the arc) and incident into the terminal vertex (or
head of the arc). The initial vertex is joined to the
terminal vertex by the arc. The arc (i,j ) is conven-
tionally represented geometrically by a continuous
directed line from points i to j.
1.3 A multiarc of multiplicity s is a set of s distinct
arcs all incident out of one vertex and all incident into a
second vertex. The members of such a set may be
denoted (i, j)&, (i, j)2, ~ ~ (i,j ), and are said to be
strictly Parallel arcs LThe arc. s (i,j) and (j, i) are
purg/lel but not strictly parallel. )
7.4 An arc set A associated with a vertex set V is a
set of arcs or multiarcs or both with vertices in V.
1.5 An edge (or Hee, bond' or liuk or, in electric
network theory, branch) is an unordered pair of distinct
vertices from a vertex set V. The edge fi,jj is said to
be Accident with the vertices i and j and to conrIect
them. An edge may be represented by a continuous line
connecting the points i and j.
1.6 A multiedge of multiplicity t is a set of t edges
incident with the same pair of vertices. The members
of such asetmaybe denotedby (i, jj&, Li, j)2, fi, j$&
and are said to be parallel edges

' In electric network theory the term node is sometimes used as
equivalent to vertex. We feel it is useful to specialize the meaning
of this word somewhat: see 1.23.

2 We prefer to retain the term bond to denote the graph E(2)
of two vertices and one edge (2.12).
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1.7 An edge set E associated with a vertex set V is a set
of edges or multiedges, or both, with vertices in V.
The number of edges in E is usually denoted by e in
the definitions below.
1.8 A /oop is the pair obtained by taking the same
vertex twice from a vertex set V. The loop (i, i) is said
to be incident with the vertex i and may be represented
by a continuous line beginning and ending on the point
i. A loop is not an edge' and may be considered either
ordered or unordered.
1.9 A multiloop of multiplicity u is a set of u loops
incident with the same vertex. The members of such a
set may be denoted by $i, i)i, fi, i)2, ~ ~ (i, i)„
1.10 A /oop set 0 associated with a vertex set V is a set
of loops or multiloops, or both, with vertices in V.
1.11 A directed (or oriented) graph' G= (V, A—, E) is a
vertex set V of v(G) vertices having at least one member,
together with an associated arc set A, of a(G) arcs.
Since it is often convenient to ignore the directions of
the arcs, it is supposed that a directed graph has an
edge set E of e(G) edges which contains the edge Li, j)
if and only if the arc set contains the associated ere
(i,j ) . If both the arcs (i,j ) and (j, i) are contained in
A, then E contains a multiedge, I i,j )i, Li, j)2, of multi-
plicity two.
1.12 An undirected graph G= (V, E) is a vertex set V,
having at least one member, together with an associated
edge set E. The term multigraph may be used to
emphasize that multiedges are allowed.
1.13 A null graph has an empty vertex set. It may be
denoted by Q.
1.14 A graph with loops (or general graph): If any
graph G, directed or undirected, also has a loop set 0,
it will be called a graph with loops, i.e., G=—(V, A, E, 0)
or G= (V, E, 0), respectively. The term abstract graph
may be used to emphasize the set-theoretic character
of these definitions of a graph in contrast to its possible
geometrical representations drawn on some surface,
etc. /see (7.24) and (7.25)).
1.15 A graph. It is useful to retain this term for graphs
directed or undirected which have no loops (empty
loop set) since this frequently avoids tedious com-
plications in the statements of definitions and theorems.
Where it is wished to emphasize that a statement
applies also to graphs with loops, the explicit phrase
"graph with loops" will be used. In other cases the
necessary extensions and conditions may generally be
provided by the reader. A graph of any type is fznite if
both its vertex and edge sets are finite; otherwise it
is infznite

' In some applications it may be useful to regard a loop as a
special kind of edge. In this case the term /ink may be used
speci6cally to indicate an edge which is not a loop.

4 The term digraph has been used as an abbreviation of "di-
rected graph" but since the word already has a well-known tech-
nical meaning, especially in cryptanalysis, namely "pair of let-
ters, "we feel its use in graph theory should not be encouraged.

1.16 Simp/e: a simple arc or edge is a multiarc or
multiedge of multiplicity one; a simple directed graph
contains only simple arcs; a simple graph contains only
simple edges.
1.17 An s gra-ph is an undirected graph in which no
multiedge has a multiplicity exceeding s. (Evidently a
one-graph is a simple graph. )
1.18 An isolated vertex of a graph is one having no
incident arcs, edges, or loops. If every vertex of a
graph is isolated, the graph is degenerate (and has no
arcs, edges, or loops).
1.19 The zza/ence or degree (or coordination number)
of a vertex of a graph G is the number of edges of G
incident with that vertex. Multiedges are counted with
appropriate multiplicity. In a graph with loops, each
loop is counted twice.
1.20 The in zza/ence-(or in degree) of -a vertex of a
directed graph G is the number of arcs of G incident into
that vertex. In a graph with loops, each directed loop is
counted once.
1.21 The out zza/ence -(or out degree) -of a vertex of a
directed graph G is the number of arcs of G incident out
of that vertex. In a graph with loops, each directed
loop is counted once,
1.22 A pendant vertex of a graph is a vertex of valence
one. ' (An isolated vertex has valence zero. )
1.23 A node (or principal point) of a graph is a vertex
of valence three or more (but note that in electric
network theory, mode is sometimes used to mean a
vertex of any valence. )
1.24 An aetieode is a vertex of a graph of valence one
or two.
1.25 A closed graph: a graph is closed if and only if it
has no vertices of valence zero or one (i.e., no isolated
or pendant vertices) . A graph is open if and only if it
has vertices of valence one, i.e., pendant vertices.
1.26 A graph (with loops) is locally finite if and onlv if
the valence of each vertex is finite.
1.27 A graph of valence or degree d is a graph in which
each vertex is of valence d. It is said to be d-valent,
e g , triva. len. t, quadrirza/ent, etc. (or regular, d regular, -

etc.) .
1.28 In a closed directed graph the out-valence of each
vertex is equal to the in-valence of that vertex.

THEOREM 1.1. In a finite graph (with loops) the
number of vertices of odd valence or degree, is even.

1.29 Adjacent' arcs: two distinct arcs are said to be
adjacent if they have a vertex in common (which may
be either an initial or a terminal vertex of either arc) .
1.30 Adjacent edges: two distinct edges are said to be
adjacent if they have a vertex in common.
1.31 Adj acent (or neighboring) vertices: two distinct

5 The term terminal node or terminal vertex is sometimes used
in this sense, but see 1.2, 1.23, and 2.27.
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vertices are said to be adjacent if they are incident
with the same edge (or arc) .
1.32 Consecutive arcs: two arcs are consecutive if the
terminal vertex of one is the initial vertex of the other.
1.33 A symmetric (directed) graph is a simple directed
graph (1.16) in which any two adjacent vertices i and j
are connected byboth the arcs (i,j) and ( ji,).An anti
symmetric (directed) graph never contains both the
arcs (i, j) and ( j, i) .
1.34 A ref/exile (directed) graph has a directed loop at
each vertex.
1.35 Transitively directed: a directed graph is transitive
(or transitive/y directed) if and only if it contains the
arc (i, k) whenever it contains both the arcs (i, j) and

( j, k), and it never contains both the arcs (/, m)
and (m, /) .
1.36 A comparability graph is an undirected graph the
edges of which may be oriented {i.e., for each edge
Li, j] either the arc (i,j ) or the arc ( j,i) is selected to
form an arc set} such that the resulting directed graph
is transitive.
1.37 An intersection graph of a family of sets I S,} is a
simple graph which has a vertex i for each set S; and
which contains the edge $i, j] if and only if the inter-
section, S,AS;, of the sets S; and S; is not empty.
1.38 An interval graph is the intersection graph of a set
of intervals on a line.

2. HOMEOMORPHIC) ASSOCIATED, AND
SPECIAL GRAPHS

2.1 An automorphism of a graph is a one —one corre-
spondence between the vertices of the graph which
induces a one —one correspondence between its edges and
between its arcs (if any).
2.2 The graph group g of a graph G is the abstract
group formed from the set of automorphisms of G.
2.3 A free (or unlabeLed) graph is best defined as an
equivalence class of graphs G under the automorphisms
of G constituting the graph group. In less abstract
terms it is a graph in which the vertices are considered
to be indistinguishable. (Notice that in the original
definitions of a graph, the vertices of the vertex set V
are distinguishable or, equivalently, LabeLed so that any
associated graph, G—= (V, ~ ~ ~ ), is implicitly labeled. )
2.4 The symmetry number s(G) of a graph G is the
order of the graph group. There are thus Lo(G)]!/s(G)
(labeled) graphs corresponding to a given free graph
of n(G) vertices. In the case of a graph with multi-
edges (1.6) of multiplicities tq(G) (k=1, 2, ~ ~ ~ ), it
is useful to define the modified symmetry number
s'(G) = s(G) II~Lt~(G) ]-
2.5 Isomorphic graphs: two graphs (with loops) Gr and
G2 are isomorphic if there is a one-one correspondence
between the vertex sets V~ and V~ which induces a
one —one correspondence between their edge sets Ej and
E2 and their arc and loop sets (if any). The graph Gi
is said to be an isomorph of G2.

2.6 The insertionof , a vertex of valence two on an
edge, Li, j], loop (i, i) or arc (i,j) means (a) the
removal of the edge, loop, or arc from its respective set,
(b) the addition of a new vertex k to the vertex set, and
(c) the addition of the new edges $i, k] and (k, j], or
multiedge (i, k],, [i, k]~ to the edge set or the new
arcs (i, k) and (k, j) to the arc set, respectively. This
process is also known as the subdivision or decoration
of the edge Li, j].
2.7 The suppression of a vertex of valence two: If a
graph G& can be obtained from a graph G2 by the inser-
tion of a vertex k of valence two, one may, alternatively,
say that G2 is obtained from G& by the suppression of
the vertex k. One may write G2= G &~I,).
2.8 Homeomorphic graphs: two graphs are said to be
homeomorphic (and to be homeomorphs of one another)
if they may be made isomorphic by the insertion of one
or more vertices of valence two on either, both, or
neither of the graphs (or equivalently by the suppres-
sion of vertices of valence two) .
2.9 Basic topology: two homeomorphic graphs are said
to have the same basic topology. LNote that all home-
omorphic graphs have the same cyclomatic number
(5.10) and weak k-weight (5.34).]
2.10 Topological type: a graph of a given basic topology
which is homeomorphic to no graph with fewer vertices
is said to represent faithfully the topological type of all
its homeomorphs.
2.11 A comp/ete graph E(n) (or E„) of n vertices is a
graph the edge set of which contains each of the possible
2n(n —1) vertex pairs once and once only.
2.12 The bond or dimer (or /ine or edge) is the complete
graph E(2). A directed bond or dimer is a graph of two
vertices, one arc, and one edge.
2.13 The double bond (or digon or /une) is a graph of
two vertices and two edges (constituting a multiedge of
multiplicity two) . The tri p/e bond, quadrup/e bond, ~ ~ ~,

multibond is a graph of two vertices and a multiedge of
multiplicity 3, 4, ~ ~ ~, t, respectively.
2.14 The triang/e is the complete graph E(3). The
tetrahedron is the complete graph E(4) .
2.15 A comp/ete bichromatic graph E(mr, m2) Lor
E, ,] is a graph of n='mr+f2 vertices whose vertex
set is partitioned into a subset V~ of m~ vertices, and a
subset V2 of m2 vertices and whose edge set consists of
all of the m~m2 possible vertex pairs with one vertex in
V~ and one in V~.
2.16 A complete p chromatic graph-E(mi, m2, ~ ~, m„)
is a graph of n=gqmI, vertices whose vertex set is
partitioned into p subsets Vq of mi. , vertices (k=1,
2, ~ ~, p), and whose edge set consists of all the
g~&~mqm~ possible vertex pairs in which the two
vertices belong to different subsets.
2.17 A polygon is any graph of n & 2 vertices which is
homeomorphic to a triangle Lor to the double bond
(2.13), or to the graph of one vertex and one loop].
An n-gon is a polygon of n vertices. A quadrilateral is
a 4-gon, etc.
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2.18 A theta gr-aph is any graph homeomorphic to the
complete bichromatic graph E(2, 3) (or to the graph
of two vertices and three edges, i.e., the triple bond).
A theta-graph has cyclomatic number two (5.10) .
2.19 An alpha grap-h (or tetrahedral graph) is any
graph homeomorphic to the tetrahedron E(4) .
2.20 A beta grap-h is any graph homeomorphic to the
graph of four vertices with edges [1,2]q, [1,2]s,
[2, 3], [3, 4]z, [3,4]„[4,1].
2.21 A garrzrrza graph is-any graph homeomorphic to
the graph of three vertices with edges [1,2]z, [1,2]s,
[2, 3], [3, 1]z, [3, 1],.
2.22 A delta graph -is any graph homeomorphic to the
complete bichromatic graph E(2, 4) (or to the graph
of two vertices and four edges) .

Note that polygons, H-graphs, n-, P-, y- and tz-graphs,

exemplify all the possible topological types of multiply
connected graphs, (5.19), of cyclomatic numbers,
(5.10), three or less.
2.23 The comp/errzentary graph 6 of a simple graph G
of n vertices (1.16) is obtained by removing from the
edge set of the complete graph E(n) all those edges
contained in the edge set of G.
2.24 The rezzerse graph CP of a directed graph G is the
graph obtained by reversing the sense (i.e., the orders
of the vertices) of each arc.
2.25 The cooering gruph G"' of an undirected graph G

(or interchange graph of G) is constructed as follows:

(a) with each edge of G is associated a new vertex;
these new vertices constitute the vertex set of G~;

(b) any two distinct vertices of Go corresponding to
udj acent edges (1.30) of G, but not belonging to the same
multiedge of G, are connected by a single edge of G~;

(c) any two distinct vertices of Ga corresponding to
components of the same multiedge of G are connected
by two edges of G (i.e., by a multiedge of multiplicity
two). [Notice that the covering graph of a simple
graph G is just the intersection graph (1.37) of the
family of edges of G.]A graph which is a covering graph
is sometimes called a line graph.
2.26 The covering graph Go of a directed graph G is
constructed as follows: (a) with each arc of G is asso-
ciated a new vertex; these new vertices constitute the
vert, ex set of Go; (b) any two distinct vertices a and b

of G~ corresponding, respectively, to the consecutive
arcs (i,j) ( j, k) of G are connected by an arc (a, b) of
Go. [Note if k=i, the arc (b, u) is also in Go.]
2.27 The terrnina/ graph Gr of an undirected graph G
(with no loops) is constructed as follows: (a) with each
vertex i of valence d, in G is associated a cluster (or
city) of d, new vertices (terrnina/s), one for each edge
incident with i; these vertices or terminals form the
vertex set of Gr; (b) two terminals of Gr corresponding
to the same edge of G (and hence belonging to adjacent
clusters) are connected by an edge (external edge) of
G~; (c) within a cluster each terminal is connected to
every other terminal by an edge (internal edge) of G~. .

Note that the external edges of G~ correspond to the

edges of G, while the internal edges correspond to the
edges of the covering graph G~.
2.28 An expanded graph Ga of an undirected graph G
(with no loops) is constructed in the same way as the
terminal graph, except that in step (c) only the (d;—1)
internal edges [iz, i2], [i:,ie], ~ ~, [is, z,. id,.] are in-
cluded in the edge set of G (iz, i2, ~ ~ ~, ie, denotes any
labeling of the d, terminals within the cluster i). The
degree of any vertex of an expanded graph does not
exceed three.
2.29 An n dime-nsiona/ lattice (or Point lattice) is an
array of points (or sites) in n-dimensional Euclidean
space with position vectors r„=vza~+ ~ ~ +v„a, where
az, ~ ~ ~, a„are n linearly independent prirrzitise vectors
and where v~, ~ ~, u„are integers which take a con-
secutive series of values. The lattice is a finite
XxX1VsX Xjt/„ lattice if vh runs from 1 to Nh (k=1,
2, ~ ~ ~, n) . The lattice is infinite if all vz, run from —~
to + zzo. (For a lattice with bonds see 2.35—2.39 below. )
2.30 The linear chain, the (plane) square lattice, the
simp/e cubic lattice, and the hypercubical lattices are
lattices of I=1, 2, 3, &4 dimensions, respectively, in
which the e primitive vectors a~ are orthogonal and of
a uniform length a, called the luttice spacing
2.31 The (p/une) triangular lattice is generated by the
primitive vectors az ——(a, 0), as ——(-', a, -',v3a); the
body-centered cubic lattice is generated by the vectors
az ——(a, 0, 0), a2 ——(0, a, 0), ae ——(-', u, -', a, -', a); the face
centered cubic lattice is generated by the vectors
ag ——(u, 0, 0), as ——(-', u, -',&3a, 0), as ——t-2a, -',V3a, -', +6a).
In each of these cases the (nearest-neighbor) lattice
spacing is u.
2.32 A genera/ized lattice (or a crystal lattice) is derived
from an n-dimensional lattice (2.29) of points with
position vectors r„by replacing the point at r„by m
points with position vectors r„&z& = r„+bz (l= 1, 2,
~ ~ ~, rn) . The basis zzeciors b z specify the positions of the
m points in a cell of the lattice described by the vectors
az, (2.29) .
2.33 The plane hexagonal or honeycorrzb lattice of
lattice spacing a is a generalized lattice with primitive
vectors a~ ——(v3a, 0), a2 ——(-',%3a, —,'a), and basis vectors
bq= (0, 0), b2= (0, a) . The close packed hexag-onal
lattice and the diamond and ice (tetrahedral) lattices are
three-dimensional generalized lattices.
2.34 In a (generalized) luttice with periodic boundary
condztzons the Points rr and 1'„t z v= (vz ' ' ' v ) are
identified modulo N = (Eq, ~ ~ ~, /z/„) .
2.35 A lattice graph L is a graph whose vertices are the
points of a lattice or a generalized lattice and whose
edges (or bonds) correspond to lines between the points.
(No regularity of the bonds is implied at this stage
although one may require that L be a subgraph [partial

' Note that in abstract algebra the term 4ttice is used with a
completely diferent meaning (namely, a partially ordered set in
which any two elements have a greatest lower bound and a least
upper bound). See G. Birkhoff and S. MacLane, A Survey of
Modern Algebra (Macmillan Co., New York, 1953).
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graph (3.6)$ of a uniforin infinite lattice graph, (2.36) .)
2.36 A uniform infinite lattice graph (often abbreviated
to lattice ) is a graph whose vertices are the points of an
infinite lattice (2.29), or generalized lattice (2.32), and
whose edges (or bonds) are assigned in a translationally
invariant manner (i.e., if Lr„"&, r„.&'"$ is an edge, then
so is Lr„'"+r„, r„.~"i+r„g for all la, ttice vectors r„).
In applications, edges are frequently assigned only to
pairs of points which are geometrical nearest neighbors.
The primitive vectors, the basis vectors, and the set of
edges incident with the vertices in a typical cell specify
the strzIcture of the lattice.
2.37 A regzdar infinite lattice graph of coordina(ion.
number q (often abbreviated to a lattice6 of coordination

g) is a uniform infinite lattice graph in which each
vertex has the same valence, or coordination number q,
and, furthermore, in which aO points are equivalent
under translations, reflections, and rotations of
Euclidean space.

The nearest-neighbor linear chaz~z, sqlare lattice,
hexagonal lattice, etc. , (see 2.30, 2.31, 2.33) are regular
lattice graphs.
2.38 A (Nniform or regular) torus or toroidgl lattice is
a (uniform or regular) lattice graph defined on a point
lattice with periodic boundary conditions (2.34) .
2.39 A ring is a one-dimensional toroidal lattice. (It is
isomorphic to a polygon. )
2.40 A whee/ W(n) I or W„) of order n (&3) is a graph
constructed from a polygon of n vertices called its rim
by adding one further vertex, called the hub, and n
further edges, or spokes, connecting the hub to the n
vertices of the rim.
2.41 A vertex star of n edges is a graph of n+1 vertices
consisting of one vertex incident with n edges Lthe
remaining n vertices are pendant (1.22) ).Alternatively,
it is a complete bichromatic graph E(1,n), (2.15) . The
term star is sometimes used in place of vertex star, but we
reserve this term for a more important use (5.12) .
If' The vertex star of u vertex i in a graph G is a subgraph
of G (3.5), consisting of the vertex i and all edges and
multiedges of G incident with i, a,nd of all vertices of G
adjacent to i.

3. SUBGRAPHS, EMBEDDINGS, AND
LATTICE CONSTANTS

3.1 The deletion of a vertex i from any graph G (with
loops) means the removal of the vertex i from the
vertex set of G and the removal of all incident arcs,
edges, and loops from the arc, edge, and loop sets of G.
The resulting graph may be denoted G~(;~.

3.2 The deletioe of cn are (i, j) from a directed graph
G means the removal of the arc (i, j) from the arc set of
G and the removal of the corresponding edge from the
edge set of G; the resulting graph may be denoted
G (',j) ~

3.3 The deletion of an edge $i,j5 from a graph G means

or intersection, AG, ,
E=l

of a se& IG&I of n graphs (not necessarily subgraphs) is
the graph whose vertex, arc, edge, and loop sets (as the

the removal of the edge Pi, j7 from the edge set of G
(and, in the case of a directed graph, the removal of the
corresponding arc from the arc set); the resulting
graph may be denoted G~i, ,,t. The deletion of a loop
is defined similarly.
3.4 The contracA on of'an edge $i,j], or of a set of edges
f Li, j)i-, I constituting a multiedge (1.6), means the
deletion of the edge or multiedge and the identification
of the vertices i and j (thereby reducing the number of
vertices in the vertex set by one). The graph resulting
on contracting Li, j) may be denoted G&~, ,,~.

Note that the contraction of all the internal edges of a
terminal graph Gr (2.2'7) transforms it into G, while the
contraction of the external edges transforms G~ into
the covering graph Gc (2.25) .
3.5 A subgruph G' of a graph G (with loops) is a
graph obtained from G by deleting subsets (which may
be null sets) of its vertices, arcs, edges, and loops; G' is
said to be contained in G which is a supergraph of G'.
One may write O'C:G.
3.6 A partial graph or spanning subgraph of a graph G
(with loops) is a graph obtained from G by deleting a
subset (which may be the null set) of its arcs, edges, and
loops (but retaining all the vertices of G),
3.7 A section, graph G* of a. graph G (with loops) is a,

graph obtained from G by deleting a subset (which may
be the null set) of its vertices. (Note that edges and
loops may not be deleted. ) Both section graphs and
partial graphs are subgra, phs, but the converse is not
necessarily true.
3.8 An associated section graph of a subgraph is the
section graph having the same vertex set. Two sub-
graphs may have the same associated section graph.
The a,ssociated section graph of a partial graph or
spanning subgraph of a graph G is G itself, thus all
partial graphs have the same associated section graph.
3.9 A proper subgraph, section graph, etc. , of a graph G
is one which is not G itself. One may write G QG,
G*QG, etc.
3.10 A maximal slbgraph, section graph, etc., pos-
sessing a given property is one which is contained in no
other subgraph, section graph, etc., possessing that
property. A minimal subgraph, section graph, etc. ,
possessing a given property is one which contains no
other subgraph, section graph, etc. , possessing tha, t
property.
3.11 The Mnion (or sum graph), G"L/G" (or G'+G"),
of two slbgraphs of a graph G is the minimal subgraph
of G containing both G' and G". Similarly, the inter-
section, G'AG", is the maximal subgraph contained in
both G' and G". More generally, the union
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case may be) are the unions or intersections, respec-
tively, of the vertex, arc, edge, and loop sets, respec-
tively, of the G).
3.12 A set IGt} of graphs or subgraphs is disjoint (or
vertex disj oint) if the intersection of any distinct pair,
G,AG~, is the null graph. Thus two disjoint graphs have
no common vertices. Two graphs are edge-disjoint if they
have no common edges.
3.13 An overlap partition IG', G", ~ ~ ~, G&»} of a
graph G is a set (unordered) of subgraphs whose sum
graph O'UG" U. ~ UG&» is G itself.
3.14 The difference graph, G*—G**, of two section
graphs of a graph G is the section graph of G obtained
by deleting from G* any vertices also contained in
Qgg

3.15 Weak embedding: A subgraph G' (3.5) of G which
is isomorphic with a graph Gi is said to represent an

embedding of G~ in G in the weak sense.
3.16 Strong embedding: A section graph G* (3.7) of G
which is isomorphic with a graph G~ is said to represent
an embedding of G~ in G in the strong sense. A strong
embedding is also a weak embedding, but the converse
need not be true.
3.17 The weak lattice constant (Gi, G) of Gi in G is the
number of weak embeddings of G~ in G, i.e., the number
of subgraphs (3.5) of G isomorphic to Gi.
3.18 The strong lattice constant $Gi, G] of Gi in G is the
number of strong embeddings of G~ in G, i.e., the number
of section graphs (3.7) of G isomorphic to Gi.

THEOREM 3.1. (Sykes, Essam, Heap, and Hiley).
H G& has v& vertices and G is any graph,

(Gi' G) = Q (Gi' Gz) LGti G]i

where the sum runs over all graphs G; of e, = ~~ vertices.

3.19 The overlap constant IGi&GQ~ ~Gy G} of
the set IGi, G2, ~, G„} in a graph G is the number of
overlap partitions (3.13) of G isomorphic to }Gi,
G2 ~ ~ ~ G }

THEOREM 3.2. (Sykes, Essam, Heap, and Hiley).
If Gi and G& are two disjoint graphs with v& and tt&

vertices, respectively, and G&'UG2 is their union (5.9),
then

(GiUG2, G) = (Gi; G) (Gm, G)

Z IGi~G2=Gz }(G~; G),
&k+ &1+5

where the sum runs over all graphs Gz, of oq(v, +e2
vertices, and where the 6rst term must be multiplied
by a factor —', when G~ and G2 are isomorphic.

THEOREM 3.3. The weak and strong lattice con-
stants of any finite graph G in any sufficiently large,

locally finite, uniform lattice graph with periodic bound-
ary conditions, or toroidal lattice L (2.38), of fixed
structure (2.36), are finite polynomials without constant
term in the variable N= e(L), the number of (distinct)
vertices of L, with fixed coeKcients depending only on
the structure of the lattice.

3.20 The weak and-strong latti c-e cons-tant polynomials,
(G; L

~
N) and $G; I.

~ N], of a graph G in a uniform
toroidal lattice graph I. are the polynomials specified
in Theorem 3.3. Note that the degree n(G) of these
polynomials will be equal to the number of (connected)
components (5.9) in G.
3.21 The weak and strong lattice constants per site of an
inhnite uniform lattice graph L, are defined in terms of
the corresponding lattice-constant polynomials for the
associated toroidal lattices (with periodic boundary
conditions) by

(G;I.)=N (G;LiN) -i~=„

[G; L]=N 'LG L,
I N]—I&=0,

i.e., by the coefficient of X in the respective polynomial.
LNote that this definition applies irrespective of the
number of components (5.9), in G.]
3.22 A cliqle, or maximal cligle, of a graph G is a
subgraph, or maximal subgraph, respectively, of G con-
sisting of a set of vertices of G any two of which are
adjacent (1.31). (A clique has no edges, arcs, or loops
but in a simple undirected graph the associated section
graph of a clique is a complete graph. )
3.23 A simplicial vertex in a graph G is a vertex which,
together with all its adjacent vertices in G, forms a
clique.
3.24 The clique almoner of a graph G is the maximum
number of vertices which can constitute a clique of G.
3.25 A stable (or independent) set of vertices or of edges
in a graph G is a set consisting of vertices or edges of G,
respectively, no two of which are adjacent (1.30,
1.31).
3.26 The vertex stability mlmber (or coePciemt of
internal stability), n(G), of a graph is the maximum
number of vertices of G which can constitute a stable
set. The edge stability member, P(G), is defined similarly.
3.27 A dominating set of vertices, Viz, in a graph G is a
subset of vertices of G such that every vertex of G is
either in V~ or is adjacent to a vertex in V~.
3.28 A cotzerimg set of vertices, Vo, in a graph G is a
subset of vertices of G such that every edge of G is
incident (1.5) with some vertex in Vo.
3.29 A vertex of attachment of a subgrapk G' in a graph
G is a vertex of G' incident (1.5) with an edge not in G'.
The set of vertices of attachment may be denoted
W(G', G).
3.30 The comPlement, 6', of a subgraPk G'in a graPh G
is the graph obtained from G by (i) deleting all edges of
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G', and (ii) deleting all vertices of G' which are not
vertices of attachment of G' in G. (Note these two
operations commute. )
3.31 A perimeter vertex of a subgraph G' in a graph G
is a vertex of G which is (i) not in G', but (ii) adjacent
to a vertex (of attachment) of G'. The (vertex) perimeter
of a subgraph is the set of its perimeter vertices.
3.32 An edge of attachment of a subgraph G' in a graph
G is an edge of G incident both with a vertex of 6' and
with a vertex not in G'. (Thus one vertex of an edge of
attachment is a vertex of attachment, while the other is
a perimeter vertex. )
3.33 A perimeter edge of a subgraph G' in a graph G is
an edge of G not belonging to G' but adjacent to a
vertex (of attachment) of G'. The edge perimeter of a
subgraph is the set of its perimeter edges. Note all edges
of attachment are perimeter edges, but the converse is
not generally true.
3.34 A subgraph G' of a. graph G is said to have full
edge (or verte~) perimeter if and only if all edges (or
vertices) of G not in G' are in the edge (or vertex)
perimeter of G', respectively.

Note the important topic of the connectivity of
graphs may be approached via the concepts of the
vertices and edges of attachment and, correspondingly,
of detachmerlt modulo a vertex, an edge, or a more
general subgraph (Tutte, Ore). We have preferred a
development which places emphasis on paths and chains
(Berge, Busacker and Saaty). These and related terms
are dined in the next section.

4. PATHS, WALKS, AND CHAINS

4.1 A path (or arc progression) of n steps on a directed
graph is an alternating sequence of n+1 vertices and
n arcs' (the steps) in which each vertex (except the
first, or initial, and last, or terminal, vertex of the path)
is the terminal vertex of the preceding arc and the initial
vertex of the succeeding arc, i.e., the arcs are consecu-
tive. (A single vertex may be regarded as a path. ) A
spanning path includes (visits) every vertex of the
graph.
4.2 In a closed pathi the initial and terminal vertices
coincide; in an open path these vertices are distinct.
4.3 A circuit is a closed path7 of at least one step in
which the initial vertex is not distinguished (i.e.,
sequence is defined only relative to circular order).
4.4 A walk (or edge progression) of n steps on a graph
is an alternating sequence of n edges' (the stePs) and
n+1 vertices (n&0) such that each vertex (except the
first and last) is incident with the preceding, and with
the succeeding, edge. A spanning walk visits every

7 In the case of a graph with loops, paths and circuits may in-
clude directed loops in place of arcs, while walks, chains, and
cycles may include loops in place of edges. A single loop and its
vertex may be regarded as a circuit or chain or unit length.

vertex of the graph. Note that paths and circuits refer
to arcs' and hence have an orierItatioe, , whereas walks,
and chains and cycles (see below) refer to edges' and do
not have a specific orientation (although a walk does
have a sense, namely, from initial to final vertex) .
4.5 A step of a walk on a directed graph is coorieeted
if the initial vertex of the corresponding arc preceeds
the terminal vertex in the walk. Conversely, it is
coetruorierIted if the terminal vertex preceeds the initial
vertex. If all the steps of a walk are cooriented, it is a
path (4.1).
4.6 A chain of n links (or length n) is a, wa, lk of n steps
in which the sequence of steps (now called links) and
the reverse sequence are not distinguished i.e., a chain
has no sense. It has two termiea/ vertices which it
connects and n —1 intermediate vertices (To e.ach chain
correspond two walks. )
4.7 In a closed malk or a closed chaAz the initial and
terminal vertices coincide; open walks and chains are not
closed.
4.8 A cycle of /eegth rl, is a closed chain of m& 2 links in
which the terminal (or initial) vertex is not distin-
guished. (To each cycle correspond 2n distinct closed
walks. )
4.9 A simple path or circuit, is one in which no arc
occurs (is passed through) more than once.
4.10 A simple walk (or a traiL) and a simple, chain or
cycle is one in which no edge occurs more than once.
4.11 An eLementary (or self avoiding) -path, circuit,
malk, chain, or cycle is one in which no edge and no
vertex occurs (or is visited) more than once, except in
the case of closed paths, walks, or chains where the
initial and final vertices coincide.
4.12 A Hamilton path (or a Hamilton circuit, walk,
chain, or cycle) on a graph G is an elementary path
(circuit, walk, chain, cycle) which visits each vertex of
G, once and only once. (Note that a Hamilton path
spans the graph. )
4.13 An Euler path (or Euler circuit, walk, chain, or
cycle) on a graph G is a path (circuit, walk, chain, or
cycle) which contains each arc or edge of G exactly
once. (An Euler path or walk is in general not elemen-
tary. )
4.14 A bridge on a graph is a simple chain the terminal
vertices of which are nodes (1.23), while the inter-
mediate vertices (if any) are of valence two.
4.15 A pendant chain on a graph is a simple chain in
which one terminal vertex is a node (1.23) and the
other is a pendant vertex, i.e., of valence one (1.22),
while the intermediate vertices (if any) are of valence
two.
4.16 The distance l(i, J) between two (ordered)
vertices i and j in a directed or undirected graph is the
number of steps in the shortest path or walk, respec-
tively, with initial vertex i and terminal vertex j. The
distance is conventionally taken as infinite if a path or
walk of the specified class does not exist.
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Note X(i
~
G) = ~ if G is disconnected (5.5).

4.18 The radius p(G) and diameter b(G) of a graph
Q are de6ned in terms of the associated numbers
X(i

~
G) by

p(G) = min ),(s
~ G), B(G) = max X(i

~
G),i' icV

with the convention p(G) = ~ if the minimum does not
exist. For a disconnected graph, b(G) = ~.
4.19 A center of a graph G is a vertex io for which the
associated number X(io

~
G) equals the radius p(G) of

G. A graph may have one, several, or no centers.
4.20 A chord of a path or circuit, or of a walk, chain,
or cycle with vertices i&, ~ ~ ~, iI„~ ~ ~, i&, ~ ~ ~ is an arc
(ij„it), or an edge [iI„i&], respectively.
4.21 A triaegglar chord of a path or circuit, or of a
walk, chain, or cycle with vertices i~, - ~ ~, iI, ~,

it,+i, ~ ~ ~ is an arc or an edge of type (ir, i, i~i) or
Li& i, iI+&], respectively.
4.22 A triangulated (or rigid circuit) graph is a graph
in which every cycle of length greater than three has a
chord.

5. CONNECTIVITY AND COHESIVITY

5.1 Two vertices i and j in a directed graph are
weakly connected (or joined) if either there is a path
(4.1) from i to j, that is, with initial vertex i and
terminal vertex j, or if there is a path from j to i. A
total or weakly connected (directed) graph is one in which
each pair of vertices is weakly connected.
5.2 Two vertices i and j in a directed graph are
strongly (or mutually) connected if there is a path
(4.1) both from i toj and fromj to i Astrong. ly con
nected (directed) graph is one in which each pair of
vertices is strongly connected. The graph consisting of a
single vertex is dehned to be strongly connected.
5.3 Convected vertices. Two vertices in a graph are
connected if there is a chain (of edges) containing both
of them (i.e., connecting them).
5.4 A connected graph C is one in which every pair of
vertices are connected. A single vertex is dehned to be
connected. A strongly connected graph is connected,
but the converse is not necessarily true.
5.5 A disconnected graph is a graph which is not
connected. )It decomposes into two or more (con-
nected) components (5.9) .]

' We propose the new term remoteness number as a preferred
alternative since it is more suggestive of the meaning.

4.17 The associated (or remoteness') number X(i
~

G)
of a vertex i of a graph G is defined in terms of the
distances l(i, j) by

'A(i
~
G) = maxi(i, j).

„-:eV

5.6 A tree (Cayley tree) or finite tree of n edges T(n)
Lor T„]is a connected graph of n (simple) edges which
contains no polygons (2.17). Clearly a tree T(n) has
n+1 vertices. Any tree is planar (7.10). (For a planted
tree see 8.24.)
5.7 A Bethe lattice of degree (or coordination number)
d is an infinite tree in which each vertex has the same
valence d (&2) . (The name of this class of graphs arose
from Bethe's approximation in statistical mechanics
which is exact for such a structure. )
5.8 An arborescence (of n arcs) is a (wealdy con-
nected) directed graph of n arcs with no circuits in
which every vertex except one, the root, is the terminal
of a single arc. The root is not the terminal of any arc.
Every arborescence is a tree.
5.9 A component (or a connected component) of a graph
is a maximal connected subgraph (3.10).A disconnected
graph is said to be the union of all its components and is
denoted byG= C&VC~VC3 -,where C&, C&, C3 ~ ~ ~ are
the components of G.
5.10 The cyclomatic number (or cycle rank') c(G) of a
graph G is dehned by

c(G) =e(G) —v(G)+n(G),

where e(G), v(G), and n(G) are the numbers of edges,
vertices, and components of G, respectively; n(G) and
c(G) are sometimes called the Betti numbers of order
zero and one, respectively.
5.11 An articulation point or cut vertex {or s-eparating
vertex) is a vertex of a connected graph, the deletion of
which produces a graph which is not connected. The
multiplicity of an articulation point is the number of
components resulting upon its deletion. (Note that an
isolated vertex has no articulation point. ) Clearly a
disconnected graph may also be said to have an articula-
tion point if one of its components has an articulation
point. A separable graph has a. cut-vertex; a non
separable graph does not.
5.12 A ster 5 is a connected graph of two or more
vertices having no articulation point. '0 )This includes
the bond E(2) (2.12).] A star subgraph is a -subgraph
which is a star.
5.13 An articulation set of order k is a subset of k
vertices of a connected graph the deletion of which
produces a graph which is no longer connected.
5.14 A k-irreducible graph is a connected graph which
has no articulation set of order k; conversely, if a graph
has an articulation set of order k, it is k-reducible.
5.15 An isolation set of order k is a subset of k vertices
of a connected graph the deletion of which leaves a

9 H. Whitney in his pioneering papers on graph theory called
c(G) the nullity, and r(G) =e(G) —n(G) the rank of the graph,
although the latter may be referred to more specifically as the
cocycle rank (see also Theorem 6.7).' This concept of a star should not be confused with a vertex
star (2.4j.).
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single, isolated vertex. (This concept is needed for
completeness in the following definitions. )
5.16 The coNNectiort rtumber (or corsrsectivity) ee(C) of a
connected graph C is the order of the smallest articula-
tion or isolation set of C.
5.17 A connected graph C is h-corleected if and only if
1&k&ca(C). An isolated vertex is defined to be one-
connected. LNote that a graph which is h-connected is
also (h—1)-irreducible. The converse is also true except
for the complete graphs E(rs) (2.11).j
5.18 lrtdependent chains between two vertices on a
graph G have no vertices of G in common other than the
two terminal vertices. If G is a graph with multiedges,
not more than one chain may have no intermediate
vertex (4.6) .

THEOREM 5.1. If a graph other than an isolated
vertex is h-connected, any pair of vertices can be
connected by h independent self-avoiding chains (4.11).
5.19 A multiply corsrsected (bicorsrsected) graph is one
which is two-connected. (Note that the bond, the
double bond, etc. (2.13), are Not multiply connected. )
5.20 A lobe (or a block) of a graph G is a maximal
star-subgraph of G (5.12). (Thus a lobe can be a bond
or dimer. )
5.21 A piece of a conwected graph C, relative to ars

articulation pokunt x, is a section graph of C the vertex
set of which is the union of x with the vertex set of some
component isolated by the deletion of x. (A piece may
be a bond or dimer. )
5.22 A minimal or eiemerrtary piece of a connected
graph C is a piece of C which contains no articulation
point and, hence, is a star (5.12). A minimal piece is a
lobe, but the converse need not be true.
5.23 A k piece of a co-nreected graph C, relative to ars

articulatiol set V, of k vertices, is a section graph of C
the vertex set of which is the union of the vertex set V'

of some component isolated by the deletion of V with
those vertices of V, adjacent to vertices in V'.
5.24 A IINsimi tree is a connected graph whose lobes
are all polygons (2.17) or bonds (2.12). Alternatively
it is a simple (1.16) connected graph in which no edge
belongs to more than one simple cycle (4.10). A Husimi
tree is pure if all its lobes are isomorphic; it is mixed if
it contains nonisomorphic lobes.
5.25 A cactus is a pure Husimi tree of triangles (2.14).
5.26 A star tree is a connected graph whose lobes are
all stars (5.12) isomorphic to stars in some star collection
A star tree is pure if all its lobes are isomorphic; other-
wise it is mixed. Note that a general star tree is merely
a connected graph.
5.27 A cut edge (or isthmu-s or separatitsg edge) of a
connected graph is an edge the deletion of which pro-
duces a disconnected graph. A disconnected graph has a
cut-edge if one of its components has one.
5.28 A cut set of edges is a set o-f edges of a connected
graph the deletion of which produces a disconnected
graph.

5.29 The cohesiors rtumber x(C) of a connected graph
C is the minimum number of edges which form a cut-set
of edges for C.
5.30 A connected graph C is h-coherent if, and only if,
1&k&x(C). An isolated vertex is defined to be one-
coherent.
5.31 A cocycle is a minimal cut set of edges.

THEOREM 5.2. If a connected graph is h-coherent,
any pair of vertices can be connected by h edge-disjoint
chains (3.12).

5.32 A forest is a disconnected graph (5.5) whose
components are all trees. Every edge of a forest is a
cut-edge.
5.33 The girth y(G) of a graph G which is not a forest
(and hence contains a polygon) is the least integer rs

such that G contains a polygon of e edges.
5.34 The weak k-weight" of a graph 6 is de6ned
recursively by

k(G) =n(G) —Q' k(G'),

where rt(G) is the number of components (5.9) of G, and
the sum runs over all proper subgraphs, G', of G. The
definition may be re-expressed in terms of weak lattice
constants (3.17) as

Qt (G'; G)k(G') =n(G),

where the sum now runs over all isomorphically in-
equivalent (2.5) subgraphs G' of G.

The weak k-weight of a single vertex is +1.Homeo-
rnorphic graphs have equal weak k-weights; for polygons
k=+1; for theta-graphs k= —1; if G is separable (and
thus not a star), k(G) =—0 (Essam and Sykes. ")
5.35 The strorsg K weight E(G) of-a graph G is defined
recursively by

E(G) =n(G) —Q' E(G*),

where rs(G) is the number of components of G and the
sum runs over all proper section graphs G* of G, (3.7).
In terms of strong lattice constants (3.18), the definition
may be written

gt (G* G]E(G*)=n(G)

where the sum now runs over all isomorphically in-
equivalent section graphs of G.

The strong weight K'(G) vanishes whenever the

"See J. %'. Essam and M. F. Sykes, J. Math. Phys. V, 1573
(1966).The magnitude

~
k(G) ~ of a weak b-weight is aiso known

as the Crape number ot G fH. H. Crapo, J. Comb. Theory 2,
406 (1967)g.
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weak weight k(G) does so; in addition, E(G) =0
whenever G has an articulation set (5.13) which forms
a clique (3.22).

6. THE MATRICES OF A GRAPH

6.1 The incidence matrix of the arcs S is a rectangular
matrix representation of a directed graph G, the (i, k)
element of which is defined by

THEOREM 6.4. The complexity of a connected
graph C with articulation points is the product of the
complexities of its lobes (5.20). (See Uhlenbeck and
Ford. )

THEOREM 6.5. (Kirchhoff) The number of spae-
ning trees, that is, trees which are partial graphs (3.6)
of a graph C, is equal to the complexity of C.

S~k=+ 1

=0

if the arc k is incident out of the vertexi,

if the arc k is incident into the vertex i,

otherwise.

6.6 The orieetatioe matrix D of an antisymmetric
directed graph G (1.34) is an antisymmetric matrix
with rows and columns labeled by the vertices of G and
elements

=0
if the edge k is incident with the vertexi,

otherwise.

THEOREM 6.1. The determinant of any square
submatrix of S has the value +1, —1, or 0.

6.2 The incidence matrix of the edges R of a graph G
is defi.ned by

d;;= —d, ;=number of arcs incident out of vertex i
into vertex j, mills the number of arcs incident
out ofj into i.

The determinant of the orientation matrix can be
related to the number of perfect matchings or dimer
coverings (7.2) of the graph G (Kasteleyn).
6.7 The cycle matrix C of a graph G is defined. by

This is a faithful representation of an undirected graph
but does not give full information about a directed
gl aph.

cp, ——+1

=0

if the edge k belongs to the lth simple
cycle (4.10) in G,

otherwise.
6.3 The adjacency matrix of u graPh with looPs is a
square matrix A, the rows and columns of which are
labeled by the vertices of the graph, the elements being
defi.ned by

The cocYcle matrix C+ is defi.ned similarly
egg=+1 if the edge k belongs to the 1th cocycle

(5.31),

u;, = the number of loops incident with the vertex i, =0 otherwise.

a@=the number of arcs incident out of i into j(iNj)
in the case of a directed graph, or the number of
edges incident with both the vertices i and j in
the case of an undirected graph.

6.4 The graph matrix B of a graph G is a symmetric
matrix the rows and columns of which are labeled by the
vertices of G, the elements being defined by

b;;= the degree of the ith vertex,

b,,= (—1) &&the number of edges incident with both
the vertices i and j (i&j) .

Note that Pb, ,=Pb,;=0.

THEOREM 6.2. B=SS (where S denotes the trans-
pose of S) . (In the case of an undirected graph, the arc
set needed to de6ne 8 may be obtained by giving each
edge an arbitra, ry orientation. )

THEOREM 6.3. If a(G) is the number of vertices in
G, and m(G) the number of components (5.9), then'

rank I 8}= m(G) —e(G)

(see Uhlenbeck and Ford).

6.5 The complexity 6(C) of a connected graph C is the
determinant of any principal minor of B.

THEOREM 6.6. The incidence matrix of edges, R,
and the transpose C of the cycle matrix are orthogonal,
i.e., RC=O, under addition modulo 2.

THEOREM 6.7. Under arithmetic modulo 2 the
ranks of the incidence, cocycle, and cycle matrices of a
graph G are

rank2IRI = rank~} C~}= v(G) —n(G)

rank2I C}=c(G),

where c(G) is the cyclomatic number (5.10) of G. (See
Harary. )

7. MATCHINGS, COLORINGS) AND PLANAR AND
TOPOLOGICAL GRAPHS

7.1 A matching of a graph G or a dimer arruegemeet
on G is a graph G together with a subgraph G' in which
each component is a bond or dimer (2.12) (or directed
bond or dimer). Alternatively, a matching of G is the
assignment of a color to some of the arcs or edges of G
such that no two adjacent arcs or edges are colored.
7.2 A perfect matching of G or a dimer coverieg of G
is a graph G together with a spanning subgraph (pa.rtial
graph, 3.6) of G in which each component is a dimer
(or directed dimer) .
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7.3 A proper (vertex) coloring of a graph G is the
assignment of a color to each vertex of G such that no
two adjacent vertices have the same color.
7.4 A bicolored graph is a graph with a proper vertex
coloring of two colors. Not all graphs are bicolorable
for bipartite or bichromatic, see 7.6], i.e., admit such a
coloring.

THEOREM 7.1. The determinant of any square sub-
matrix of the incidence matrix of edges, R, of a graph
G (6.2) takes the values +1, —1, or 0 if and only if G
is bicolorable.

7.5 A p co/orab/-e graph is a graph which admits a
proper vertex coloring of p distinct colors. Equivalently,
the vertex set admits a partition into P disjoint sets
such that no two vertices from distinct sets are adjacent.
7.6 A p chromat-ic graph is a graph which is p-colorable
but not (p —1)-colorable. Evidently the complete
p-chromatic graph E'(mi ~ .m„) (2.16), is p-chromatic.

THEOREM 7.2. (Konig) A graph is bichrornatic if
and only if it contains no cycles (4.8) of uneven length.

7.7 The chromatic number 7(G) of a graph G is the
least number p for which G is p-colorable. The chromatic
polynomi al,

of a graph G of v vertices is the total number of distinct
proper colorings given p distinct colors.
7.8 A proper edge (or arc) coloring is the assignment
of a color to each edge (or arc) of a graph G such that
no two adjacent edges (or arcs) have the same color.
7.9 The chromatic Asdex of a graph G is the least
number of distinct colors required for proper edge
coloring of G. Note that the chromatic index of a graph
is the chromatic number of its covering graph (2.26),
namely y(Go).
7.10 A planar graph is a graph (with or without loops)
which can be embedded in the plane, that is, can be
faithfully represented by points and lines drawn in the
plane in such a way that no two lines meet except at a
vertex. In the case of a directed planar graph with
loops, the loops of the embedded graph are assigned an
orientation (with respect to one side of the plane).

Note that a given planar graph G may be embeddable
in the plane in several topologically distinct ways Le.g. ,
consider a beta-graph (2.20) j.Each distinct embedding
represents a p/ane graph.
7.11 A finit (orinner) face of a planar graph embedded
in the p/ane is a connected domain of the plane bounded
by lines representing the arcs, edges, and loops of the
graph. The bounding edges form the edges of the face
The bounding edges (and loops) taken in sequence
form the contour or contour cycle (4.8) of the face.

7.12 The irifinite (or outer) face of a planar graph
embedded in the plane, is the domain of the plane which
is rot bounded by lines representing the edges, etc., of
the graph.
7.13 The term face means either a finite or an infinite
face. (The word region is sometimes used in place of
face but we do not recommend it.)
7.14 Distinct faces are adjacent if they have a common
boundary edge or loop.
7.15 A simp/e face of n=3, 4, 5, ~ ~ ~ edges and vertices
has no loops as any part of its boundary and contains
no edges within its boundary. A simp/e planar graph
(or mosaic) is a connected planar graph in which every
face is simple.

THEOREM 7.3. (Euler's law of the edges) The
number of finite faces f(G) of a planar graph embedded
in the plane is equal to the cyclomatic number c(G) =
e(G) —v(G)+n(G), (5.10). Thus the number of faces
is independent of the embedding.

THEOREM 7.4. (Kuratowski's theorem) The neces-
sary and sufhcient condition for a graph to be planar is
that it should contain no subgraphs homeomorphic to
the complete graph E(5) or to the complete bichro-
rnatic graph E(3, 3) )see 2.8, 2.11, and 2.15J.

Any tree is clearly planar.

THEOREM 7.5. Every planar graph is five-colorable.
(The four color pro-blem is to prove that every planar
graph is four-colorable) .

7.16 The dual G~ of an undirected connected planar
graph G embedded in the plane is constructed as follows:
(a) a new vertex is placed within each face of G; these
vertices constitute the vertex set of Gn; (b) for each
edge or loop of G which separates two distinct faces, an
edge of G is drawn which joins the vertices in the two
faces and crosses no line except the edge or loop of G,
which it crosses once only; (c) for each edge of G which
does not separate two distinct faces (and which thus
lies wholly within one face) a loop of Gn is drawn, from
the vertex in the same face, which crosses no line
except the edge of G, which it crosses once only.

Note that (i) a bridge (4.14) of G having two or more
edges gives rise to a rnultiedge of G, and (ii) the dual
of an isolated vertex is an isolated vertex.
7.17 The (c/ockwise) dual G of a directed connected
planar graph embedded in the plane is constructed as
for an undirected graph except that each edge and loop
of G is assigned an orientation by the convention that
the direction of the arc or loop of G at the crossing
point is rotated clockwise (with respect to the front of
the plane) to yield the sense of the corresponding arc
(edge) or loop in G .

THEOREM 7.6. The dual of a directed or undirected
connected planar graph is a directed or undirected
connected planar graph, respectively.



7.18 The dial 6 of a general planar graph G is ob-
tained by taking the union of the duals of the separate
components of G (5.9) .

THEOREM 7.7. The dual of the dual of an un-
directed graph G is G itself. If G is directed, the clock-
wise dual of the clockwise dual is the reverse graph
Gs (2.24).

7.19 The four color -probLem for pLanar maps is to
prove that the faces of any (undirected) planar graph
may be colored using only four distinct colors in such a
way that no two adjacent faces are the same color.
(This is equivalent to proving the dual graph is four-
colorable).
7.20 The decoration or comptetion of a simpLe face
(7.15) of n&2 vertices of an undirected plane graph is
the addition of ~~n(n —3) new edges constructed by
drawing, within the face, all possible diagonal lines.
This converts the face with its boundary edges to a
complete graph E. (n) drawn with crossing lines (for
n) 3) which is termed a muttiface in distinction to an
ordinary face. (Note that a triangular face remains
invariant under completion. )
7.21 A semipLanar graph G is derived from an under
Lying graph Go, which is a planar graph embedded on the
plane, by completing some or all of the simple faces to
multifaces.

THEOREM 7.8. (Euler's extended theorem) If G is a
semiplanar graph with fz(G) ordinary faces and with
multifaces of m&, e2, ~ ~ - eI„~ ~ ~ vertices, respectively,
then

fg(G) = c(G) —Q ', (nI, 1—)(n~——2),

where c(G) is the cyclomatic number of G (5.10).
7.22 A simpLe semipLanar graph (or a decorated mosaic)
is a connected semiplanar graph having only simple
faces and multifaces.
'7.23 The matching graph G~ of a simple semiplanar
graph G is obtained from the underlying 'graph Go by
completing all those faces of Go not completed in G.

Evidently the matching graph of G~ is G itself. The
significance of semiplanar graphs and their matching
graphs is that the covering graph (2.25) of any (suitably
restricted) planar graph Gq can be represented as a
semiplanar graph G. The matching graph of G is then
isomorphic to the covering graph of the dual G~D.

7.24 A topoLogicaL graph on a given surface is a graph
whose vertices are geometrical points on the surface
and whose edges are line segments on the surface ending
at the corresponding points. Note that the line segments
may cross or meet at interior points of one or both
segments but such points of intersection are rot identi-
fied as vertices of the graph. A topological graph is said
to be dravon on the surface and to represent the graph
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(or, for emphasis, abstract graph) to which it is iso-

morphic.
7.25 A graph G is embeddable in a surface if and only

if there exists a topological graph which represents G

faithfNLLy, that is, such that no line segments meet

except at a vertex point. (Compare with 7.10; there are
no crossing lines in an embedding. )
7.26 A graph G is of geels g if it is embeddable in a
surface of genus g but cannot be embedded in a surface
of lower genus. A planar graph is of genus zero. (Note
that every closed two-sided surface is topologically
equivalent, or homeomorphic, to a "normal surface"
of genus g, namely a "sphere with g handles" or a
"pretzel with g holes". )
7.27 A graph is called poLyhedraL (or n polyhedr-aL) if

its vertices and edges may be identified with the vertices
and edges of a convex polyhedron in a Euclidean space
(of n dimensions) . The complete graph K(n) is (n —1)-
polyhedral; the corresponding polyhedron is an (n —1)-
s compte'x

THFORFM 7.9. (See Busacker and Saaty). Every
complete graph &(n) on n) 5 vertices is 4-polyhedral.

8. ROOTED GRAPHS

A rooted graph of some type (directed, undirected
with loops, etc.) has one or more vertices, called roots

(or root points or externaL vertices), which are specially
distinguished from the remaining, ordinary or ietemcl
vertices. (Root points may be represented as open

circles drawn in the plane, the remaining vertices being
represented by solid circles. )
8.2 A tvoo rooted or bi-rooted graph has precisely two
roots. An r rooted graph-has precisely r roots.
8.3 An antomorphism of a rooted graph is a one-one

correspondence between its root points and a one-one
correspondence between its remaining vertices which

induces a one—one correspondence between its edges and
between its arcs (if any). The graph group of a rooted

graph is the group of its automorphisms. The symmetry

number s(G'&) of a rooted graph G&'& is the order of its

graph group.
8.4 Isomorphic rooted graphs: two-rooted graphs are
isomorphic if there is a one-one correspondence between

their roots and a one-one correspondence between
their remaining vertices which induces a one—one
correspondence between their edge and arc sets (if
any) .
8.5 IIomeomorphic rooted graphs: two-rooted graphs
are homeomorphic if by the insertion of any number of
ordinary vertices of valence two (2.6) they can be
made isomorphic.
8.6 Snbgraphs, section graphs, and. partiaL graphs of a
rooted graph G are delned as for unrooted graphs (see
Sec. 3) and may have fewer roots than G.
8.7 The weak and strong Lattice constants, (G~, G) and
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(Gt, Gj, are defined as for unrooted graphs, (3.17) and
(3.18), and vanish identically if Gi has more roots than
G.
8.8 A rooting of an unrooted graph G (with loops) is a
designation of some of the vertices of G as roots. An
r-rootieg is a rooting in which precisely r vertices are
designated as roots.
8.9 The number of rootiugs, ((G&'&; G)), of an r-rooted
graph G("~ in an unrooted graph G, is the number of
distinct rootings of G yielding a graph isomorphic
to G'"'. In terms of symmetry numbers (2.4, 8.3) we
have ((G&'; G)) = s(G) /s(G&"&) .
8.10 The product graph Gt+Gs of two r-rooted graphs
GI and G2 with roots labeled 1, 2, 3, ~ ~ ~ r is constructed
by taking the union of G& and G2, and then identifying
each root of Gt with the root of Gs bearing the same label.
More generally, if GI and G2 have different numbers of
roots (including none) and the roots are labeled in some
general way, the product graph is defined as above
except that only pairs of roots bearing the same label
in Gi and Gs are identified. (Roots with unmatched
labels remain unaffected. ) The graphs Gi and Gs are
said to be joined in paralle/ in Gt+Gs. (See Stell. )
8.11 A /irked graph" is a rooted graph which has at
least one root in each component (defined as for a
graph, 5.9) . (The idea is that the rooted components are
linked to one another through the "ground. ")
8.12 An unlinked graph is a rooted graph in which at
least one component has no root.
8.13 The derived graph of a rooted graph G is the
unrooted graph which has the same vertex set as G
(the distinction between root points and other vertices
being ignored), and the edge set of which is the union of
the edge set of G with the edges formed by taking all
pairs of root points of G once and once only. These
additional edges are called licking edges.

THEOREM 8.1. (self-evident) A rooted graph is
linked if and only if its derived graph is connected.

8.14 An h linked g-raph is a linked graph the derived
graph of which is h-connected (5.17) .
8.15 An articu/atiors set of a rooted graph is an articula-
tion set for the derived graph (5.13).
8.16 A k irreducible roo-ted graph is a rooted graph for
which the derived graph is k-irreducible (5.14).
8.1/ A k piece of a linked g-raph, relative to an articula-
tion set V, of k vertices, is a section graph (3./) the
vertex set of which is the union of the vertex set V' of
(a) some unrooted component, or (b) the maximal
linked subgraph (3.10) isolated by the deletion of V„
with those vertices of V adjacent to vertices in V'.
8.18 Asimp/eorte irreducib/etwo rooted-graph" is-atwo-

"See C. Bloch, Studies in Statistical Mechanics, J. de Boer and
G. E. Uhlenbeck, Eds. (North-Holland Publ. Co. , Amsterdam,
(1965) Vol. III."The following classification of one-irreducible two-rooted
graphs is used in the study of pair correlation functions. /See, for
example, J. M. J. van I.eeuwen, J. Groeneveld, and J. de Boer,
Physica 25, 792 (1959).7

rooted graph in which the root points are not adjacent
(1.29), and for which the root points do not constitute
an articulation pair (5.13).
8.19 A /adder graph is a one-irreducible two-rooted
graph which is not simple in the sense of 8.18, and which
is not a two-rooted bond. (A two-rooted multibond
(2.13) is thus a ladder graph. )
8.20 A composite orse irredu-cib/e two rooted-graph is a
ladder graph in which the root points are not adjacent.
8.21 A coda/ point is a vertex on a simple one-

irreducible two-rooted graph the deletion of which
separates it into two components each of which con-
tains a root point. LNote that a nodal point is distinct
from a node as defined in 1.23.$
8.22 A Noda/ orle irred-ucib/e two rooted g-raph is a simple
one-irreducible two-rooted graph containing one or
more nodal points.
8.23 An e/emetstary orle irreduci b/e-two rooted g-raph

is a simple one-irreducible two-rooted graph which is
nonnodal.
8.24 A p/anted tree is a tree with a single root at a
vertex of valence one.

INDEX

Abstract graph, 1.14, 7.24
Adjacent

arcs, 1.29; edges, 1.30; faces, 7.14; vertices, 1.31
Alpha-graph, 2.19
Antinode, 1.24
Antisyrnmetric graph, 1.33
Arborescence, 5.8
Arc, 1.2

~ ~ coloring, 7.8; multi-, 1.3 ~ ~ set, 1.4 ~ ~ progres-
sion, 4.1; simple, 1.16

Arcs
adjacent, 1.29; consecutive, 1.32; parallel, 1.3

Articulation
point 5.11; ~ » set of a rooted graph, 8.15; ~ ~ set of

order k, 5.13
Associated number of a vertex, 4.17
Associated section graph, 3.8
Attachment

edge of, 3.32; vertex of, 3.29
Automorphism, 2.1

~ ~ -of a rooted graph, 8.3
Basis vectors, 2.32, 2.33
Beta-graph, 2.20
Bethe lattice, 5.7
Betti numbers, 5.10
Bichromatic, 7.4, 7.6
Bicolorable, 7.4
Biconnected, 5.19
Bipartite, 7.4
B1ock, 5.20
Body-centered cubic lattice, 2.31
Bond, 1.5, 2.12, 2.35, 2.36

directed, 2.12; double, multi-, triple, 2.13
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Branch, 1.5
Bridge, 4.14
Cactus, 5.25
Cayley tree, 5.6
Center, 4.19
Chain, 4.6

closed, 4.7; elementary, 4.11; Euler, 4.13; Hamilton,
4.12; open, 4.7; pendant, 4.15; self-avoiding,
4.11;simple, 4.10

Chains
independent, 5.18

Chord, 4.20
Chromatic index, 7.9
Chromatic number, polynomial, 7.7
Circuit, 4.3

elementary, 4.11; Euler, 4.13; Hamilton, 4.12; self-
avoiding, 4.11;simple, 4.9

City, 2.27
Clique, 3.22

~ ~ number, 3.24
Closed

graph, 1.25; path, 4.2; walk, 4.7
Cluster, 2.27
Cocycle, 5.31;

~ ~ matrix, 6.7, Theorem 6.7; ~ ~ rank (see Footnote 9)
Coefficient of internal stability, 3.26
Cohesion number, 5.29
Coloring, 7.3
Comparability graph, 1.36
Complement of a subgraph, 3.30
Complementary graph, 2.23

Completion of a simple face, 7.20
Complexity, 6.5
Component, 5.9
Composite one-irreducible two-rooted graph, 8.20
Connect, 1.5, 5.3
Connected

components, 5.9; graph, 5.4, 5.17, 5.26; mutually,
5.2; strongly, 5.2; vertices, 1.5, 4.6, 5.3; weakly,
5.1

Connection number, 5.16
Connectivity, 5.16
Consecutive arcs, 1.32, 4.1
Contained, 3.5
Contour cycle, 7.11
Contraction of an edge, 3.4
Coordination number

of a lattice point, 2.37; of a vertex, 1.19
Covering

graph, 2.25, 2.26; set of vertices, 3.28
Crapo number, 5.34 (see Footnote 11)
Crystal lattice, 2.32
Cut

-edge, 5.27; -set of edges, 5.28; -vertex, 5.11
Cycle, 4.8;

co-, 5.31; contour, 7.11;elementary, 4.11;Euler, 4.13;
Hamilton, 4.12; ~ ~ matrix, 6.7, Theorem 6.7;
~ ~ rank, 5.10; self-avoiding, 4.11; simple, 4.10

Cyclomatic number, 5.10
Decoration

of a simple face, 7.20; of an edge, 2.6
Degenerate, 1.18
Degree

in-, 1.20; ~ ~ of a graph, 1.27; ~ ~ .of a vertex; 1.19,
out-, 1.21

Deletion
~ ~ -of an arc, 3.2 ~ ~ .of an edge, 3.3' ~ ~ of a vertex, 3.1

Delta-graph, 2.22
Derived graph of a rooted graph, 8.13
Diameter, 4.18
Difference graph of two section graphs, 3.14
Dlgon 2.13
Dimer, 2.12

~ ~ .arrangement, 7.1 ~ ~ covering, 7.2; directed, 2.12
Directed graph, 1.11
Disconnected graph, 5.5
Disjoint, graphs, subgraphs, 3.12
Distance, 4.16
Dominating set of vertices, 3.27
Double bond, 2.13
Drawn, 1.14, 7.24
Dual of a planar graph

directed connected, 7.17; undirected connected,
7.16; general, 7.18

Edge, 1.5, 2.12
cut- 5.27; ~ ~ coloring, 7.8; directed, 1.2; -disjoint,

3.12; external, 2.27; internal, 2.27; linking,
8.13; multi-, 1.6; oriented, 1.2; perimeter, 3.33;
~ ~ progression, 4.4; separating, 5.27 ~ ~ set,
1.7; simple, 1.16

Edges
adjacent, 1.30, parallel, 1.6

Elementary
chain, 4.11; circuit, 4.11; cycle, 4.11; one-irreducible

two-rooted graph, 8.23; path, 4.11; piece, 5.22;
walk, 4.11

Embedding
in a plane, 7.10; in a surface, 7.25; strong, 3.16;

weak, 3.15
Euler

chain, circuit, cycle, path, walk, 4.13
Euler's law, Theorem 7.3
External vertex, 8.1
Face, 7.13

completion of a, 7.20; decoration of a, 7.20; finite or
inner, 7.11; infinite or outer, 7.12; multi-, 7.20;
ordinary, 7.20; simple, 7.15

Face-centered cubic lattice, 2.31
Faces

adjacent, 7.14
Faithful representation, 2.10, 7.10, 7.25
Finite

graph, 1.15; lattice, 2.29; locally ~ graph, 1.26
Forest, 5.32
Four-color problem for planar maps, 7.19
Free graph, 2.3
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Full perimeter, 3.34
Gamma-graph, 2.21
Genus, 7.26
Girth, 5.33
Graph, 1.15

abstract, 1.14; alpha-, 2.19; antisymmetric, 1.33;
associated section, 3.8

beta-, 2.20; bichromatic (p-chromatic), 7.6; bi-
colorable (p-colorable), 7.5; bicolored, 7.4; bi-
connected, 5.19; birooted, 8.2

closed, 1.25; closed directed, 1.28; h-coherent, 5.30;
complementary, 2.23; complete, 2.11; complete
bichromatic, 2.15; complete p-chromatic, 2.16;
comparability, 1.36; composite one-irreducible
two-rooted, 8.20; connected, 5.4, 5.26; h-con-
nected, 5.17; covering, 2.25, 2.26

degenerate, 1.18; delta, 2,22; derived, 8.13; difference,
3.14; directed, 1.11; disconnected, 5.5

expanded, 2.28
finite, 1.15; free, 2.3
gamma-, 2.21; ~ ~ .group 2.2, 8.3; general, 1.14
infinite, 1.15; interchange, 2.25; intersection, 1..37;

interval, 1.38; irreducible, 5.14, 8.16—8.23
labeled, 2.3; ladder, 8.19; lattice, 2.35; line, 2.25;

linked, 8.11; h-linked, 8.14
matching, 7.23; ~ - matrix, 6.4; multi-, 1.12; multiply

connected, 5.19
nodal one-irreducible two-rooted, 8.22; nonseparable,

5.11; null, 1.13
open 1.25; oriented, 1.11
partial 3,6, 8.6; planar, plane, 7.10; planted, 8.24;

polyhedral, 7.27; product, 8.10
reflexive 1.34; reverse, 2.24; rigid circuit, 4.22;

rooted, 8.1
s-graph, 1.17; section, 3.7; semiplanar, 7.21; separ-

able, 5.11; simple, 1.16; simple directed, 1.16;
simple planar, 7.15; simple semiplanar, 7.22;
strongly connected, 5.2; sum, 3.11; symmetric,
1.33

terminal, 2.27; tetrahedral, 2.19; theta-, 2.18; topo-
logical, 7.24; total, 5.1; transitively directed,
1.35; triangulated, 4.22; two-rooted, 8.2

underlying, 7.21; undirected, 1.12; unlabeled, 2.3;
unlinked, 8.12

weakly connected, 5.1
Graphs

disjoint, 3.12; homeomorphic, 2.8, 8.5; isomorphic,
2.5, 8.4; union of, intersection of, 3.11

Graph with loops, 1.14
Group of a graph, 2.2, 8.3
Hamilton

chain, circuit, cycle, path, walk. , 4.12
Hexagonal lattice

close-packed, 2.33
Homeomorphic

graphs, 2.8; rooted graphs, 8.5
Honeycomb lattice, 2.33
Hub of a wheel, 2.40

Husimi tree, 5.24
Hypercubical lattice, 2.30
Incidence matrices, 6.1, 6.2, Theorem 6.7
Incident, 1.2, 1.5, 1.8
Independent

chains, 5.18; set of vertices or edges, 3.25
Infinite graphs, 1.15
Initial vertex

of an arc, 1.2; of a path, 4.1, 5.1
Insertion of a vertex, 2.6
Internal

stability, 3.25; vertex, 8.1
Intersection

graph, 1.37,: of a set of graphs or subgraphs, 3.11
Interval graph, 1.38
Irreducible graph, 5.14, 8.16
Isolated vertex, 1.18
Isolation set, 5.15
Isomorphic

graphs, 2.5; rooted graphs, 8.4
Isthmus, 5.27
Joined, 1.2, 5.1,

~ ~ ~ in parallel, 8.10
K(m~, ~), K (mr, ~ ~ ., m„), 2.15, 2.16
K(e), K„, 2.11
Kirchho6's Theorem, 6.5
Konig's Theorem, 7.2
Kuratowski's Theorem, 7.4
Labeled, 2.3
Lattice, 2.29

Bethe, 5.7; generalized, 2.32; plane square, simple
cubic, etc., 2.30, 2.31; toroidal, 2.38

Lattice constant
for a rooted graph, 8.7; per site, 3.21; strong, 3.18;

strong ~ polynomials, 3.20; weak, 3.17;weak. ~ ~

polynomials, 3.20
Lattice graph, 2.35

regular infinite, 2.37; uniform infinite, 2.36; ~ ~ with
periodic boundary conditions, toroidal, 2.38

Line 1.5, 2.12
directed, 1.2; ~ ~ graph, 2.25; oriented, 1.2

Linear chain, 2.30
Link, 1.5, 4.6
Linked graph, 8.11
Linking edges, 8.13
Lobe, 5.20
Locally finite, 1.26
Loop, 1.8

multi-, 1.9; ~ ~ set, 1.10
Lune, 2.13
Maps, 7.19
Matching, 7.1

perfect, 7.2
Matrix

adjacency, 6 3; cycle, cocycle, 6 7; graph, 6 4;
incidence ~ of the arcs, 6.1; incidence ~ .of the
edges, 6.2, Theorem 7.1; orientation, 6.6

Maximal, 3.10
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Minimal, 3.10
Mosaic, 7.15

decorated, 7.22
Multi

-arc, 1.3; -bond, 2.13; -edge, 1.6; -face, 7.20; graph,
1.12; -loop; 1.9

Multiplicity of an articulation point, 5.11
Multiply connected, 5.19
e-gon, 2.17
Nearest neighbors, 2.36, 2.37
Nodal point, 8.21
Node, 1.23
Nonseparable graph, 5.11
Null graph, 1.13
Nullity, 5.10 (see Footnote 9)
Open

chain, 4.7; graph, 1.25; path, 4.2; walk, 4.7
Orientation

of edges, 1.36; of paths and circuits, 4.4; of steps, 4.5
Oriented graph, 1.11
Overlap

~ ~ constant, 3.19 ~ ~ .partition, 3.13
Parallel

arcs, 1.3; edges, 1.6; joined in ~ ~, 8.10
Path, 4.1

closed, 4.2; elementary, 4.11; Euler, 4.13; Hamilton,
4.12; open, 4.2; self-avoiding, 4.11; simple, 4.9

Partial graph, 3.6
~ ~ of a rooted graph, 8.6

Perimeter
edge, 3.33; full, 3.34; vertex, 3.31

Periodic boundary conditions, 2.34, 2.38
Piece

elementary, 5.22; k-piece, 5.23, 8.17; minimal, 5.22;
~ ~ .of a connected graph, 5.21; ~ ~ of a linked
graph, 8.17

Pendant
chain, 4.15; vertex, 1.22

Planar graph, 7.10
Plane

graph, 7.10; square lattice, 2.30; triangular lattice,
2.31; hexagonal lattice, 2.33

Planted tree, 8.24
Point, 1.1

articulation, 5.11;lattice, 2.29; nodal, 8.21; principal,
1.23; root, 8.1

Polyhedral, 7.27

Polygon, 2.17
Primitive vectors, 2.29
Product graph, 8.10
Progression, 4.1, 4.4
Proper

arc coloring, 7 8; edge coloring, 7 8; subgraph,
section graph, etc. , 3.9; vertex coloring, 7.3

Quadrilateral, 2.17
Quadrivalent graph, 1.27
Radius, 4.18

Rank, 5.10 (see also Footnote 9), Theorem 6.3, Theorem
6.7

Reducible, k-reducible, 5.14
Region 7.13
Regular

graph, 1.27; lattice graph, 2.37
Remoteness number of a vertex, 4.17
Representations of a graph, 1.14, 7.10, 7.24, 7.25
Reverse graph, 2.24
Rigid circuit graph, 4.22
Rim of a wheel, 2.40
Ring, 2.39
Root, 5.8, 8.1

~ ~ point, 8.1
Rooted graph, 8.1

irreducible, 8.16;
one-irreducible two-rooted graph: composite, 8.20:

elementary 8.23; nodal, 8.22; simple, 8.18
Rooting, 8.8

number of ~ -s, 8.9
Section-graph, 3.7

associated, 3.8; maximal, 3.10; minimal, 3.10; ~ ~ .of
a rooted graph, 8.6; proper, 3.9

Self-avoiding
chain, circuit, cycle, path, walk, 4.11

Semiplanar graph, 7.21
Sense of a walk, 4.4
Separable graph, 5.11
Separating

edge, 5.27; vertex, 5.11
Simple, 1.16

arc, 1.16; chain, 4.10; circuit, 4.9; cubic lattice, 2.30;
cycle, 4.10; directed graph, 1.16; edge, 1.16;
face, 7.15; graph, 1.16; one irreducible two-
rooted graph, 8.18; path, 4.9; planar graph, 7.15;
semiplanar graph, 7.22; walk, 4.10

Simplex, 7.27
Simplicial vertex, 3.23
Site, 1.1, 2.29
Spanning

path, 4.1; subgraph, 3.6; tree, Theorem 6.5; walk, 4.4
Spokes of a wheel, 2.40
Stability numbers, 3.26
Stable set of vertices or edges, 3.25
Star, 5.12

tree, 5.26; vertex ~, 2.41
Steps, 4.1, 4.4

cooriented, 4.5; contraoriented, 4.5
Strong

embedding, 3.16; E-weight, 5.35; lattice constant,
3.18, 8.7

Subdivision of an edge, 2.6
Subgraph, 3.5

maximal, 3.10; minimal, 3.10; ~ - of a rooted graph,
8.6; proper, 3.9; spanning, 3.6; star-, 5.12

Sub graphs
union of two, 3.11

Sum graph, 3.11
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Supergraph, 3.5
Suppression of a vertex, 2.7
Sykes et al. , Theorems 3.1, 3.2
Symmetric graph, 1.33
Symmetry number, 2.4, 8.3
T(e), T„,5.6
Terminal

graph, 2.27; vertex, 1.2, 1.22, 4.6; vertex of a path,
4.1, 5.1

Terminals, 2.27
Tetrahedron, 2.14
Theta-graph, 2.18
Topological

graph, 7.24; type, 2.10
Topologv

basic, 2.9
Toroidal lattice, 2.38
Torus, 2.38
Total graph, 5.1
Trail, 4.10
Transitive,

transitively directed, 1.35
Tree

Cayley, 5.6; Rnite, 5.6; Husimi, 5.24; star, 5.26
Triangle, 2.14
Triangular

chord, 4.21; lattice, 2.31
Triangulated graph, 4.22
Triple bond, 2.13
Trivalent graph, 1.27
Union

of components, 5.9; of graphs or subgraphs, 3.11
Valence of a vertex, 1.19
Valent, 1.27
Vertex, 1.1

associated number of a, 4.17; cut-, 5.11; ~ ~ coloring,
7.3; degree of a, 1.19; ~ ~ disjoint;, 3.12; external,
internal, 8.1; isolated, 1.18; of attachment, 3.29;
ordinary, 8.1; pendant, 1.22; perimeter, 3.31;
separating, 5.11; . set, 1.1; star, 2.41; valence
of a, 1.19

Vertices
adjacent, 1.31; connected, 4.6, 5.3; covering set of,

3.28; dominating set of, 3.27; joined, 5.1;
neighboring, 1.31; stable set of, 3.25; strongly
connected, 5.2; weakly connected, 5.1

Visits, 4.1, 4.4
Wa]k

closed, 4.7; elementary, 4.11; Euler, 4,13; Hamilton,
4.12; open, 4.7; self-avoiding, 4.11; simple, 4.10

Weak
embedding, 3.15; k-weight, 5.34; lattice constant,

3.17, 8.7
Weakly connected, 5.1
Wheel, 2.40
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