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Expressions are derived for the total energy loss and photon-production spectrum by the processes of Compton scatter-
ing, bremsstrahlung, and synchrotron radiation from highly relativistic electrons. For Compton scattering, the general
case, the Thomson limit, and the extreme Klein —Nishina limit are considered. Bremsstrahlung is treated for the cases
where the electron is scattered by a pure Coulomb field and by an atom. For the latter case the effects of shielding are
discussed extensively. The synchrotron spectrum is derived for an electron moving in a circular orbit perpendicular to
the magnetic field and also for the general case where the electron's motion is helical. The total photon-production spec-
trum is derived for each process when there is a power-law distribution of electron energies. The problems of the eBects
of the three processes on the electron distribution itself are considered. It is shown that if the electron loses a small frac-
tion of its energy in a single occurrence of a process, the electron distribution function satisfies a continuity equation
which is a differential equation in energy space. For the more general case where the electron can Jose energy in discrete
amounts (as in bremsstrahlung and extreme Klein —Nishina Compton losses), the electron distribution function satis6es
an integro-differential equation. Some approximate solutions to this equation are derived for certain special cases.
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1. INTRODUCTION

In a number of areas of astrophysics, for example in
considerations of models of cosmic radio sources,
problems involving the interaction of a highly rela-
tivistic electron with its surrounding medium are
common. This "medium" is usually a low-density
partially ionized gas with a cosmic element abundance
(consisting mostly of hydrogen and helium) which is
permeated by a radiation field and a magnetic field.
The electron interacts with this medium by means of
essentially four processes: (i) by making elastic and
inela, stic collisions with the atoms and ions of the gas,
(ii) by emitting a bremsstrahlung photon during these
same scatterings, (iii) by undergoing Compton scat-
terings with the photons of the radiation field, (iv) by
being deAected by the magnetic field, emitting syn-
chrotron radiation or "magnetic bremsstrahlung" in the
process. The first process (i) is important only at low
energies y, =E,/rrtc' &1000 (cf. GB67) and will not be
considered in this review. There are two reasons for
treating the other three processes together in a single
review. First, all three are photon-producing processes'
and can therefore be directly responsible for gaining
information about the interaction of the electrons with
the medium through the detection of these photons.
Second, each process is essentially a special case of one
basic process; this process is Compton scattering.
Bremsstrahlung [process (ii) j can be considered as
Compton scattering of the virtual photons of the
Coulomb fields of the particles in the scattering system;

' The pure Cornpton-scattering process (iii) does not produce
a. new photon. However, in collision with a highly relativistic
electron, a low-energy photon from the radiation field has its
energy increased by a large factor, so that a new high-energy
photon is produced.
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synchrotron radiation Lprocess (iv) j can be viewed as
Compton scattering of the virtual photons of the static
magnetic field.

In this review we shall confine ourselves mainly to the
physics of the three processes. However, in working out
the details we have tried to present the final results in a
form useful in applications, especially in applications to
the general area of high-energy astrophysics (including
cosmic-ray physics). As we have mentioned above, an
obvious example of a type of problem where these
processes come into play is the cosmic radio source. It
is generally accepted that the radiation from these
objects is produced by the synchrotron process. Since we
know that there must be high-energy electrons in these
sources, the other two processes, Compton scattering
and bremsstrahlung, must also come into play due to
the presence of a photon gas and a matter gas (con-
sisting mostly of partially ionized hydrogen and helium)
in the same volume. Recently, much of the effort in
radio and optical astronomy has been devoted to the
quasistellar sources. These compact objects may, in
fact, be the best example of a natural configuration
wherein all three processes are important. Another area
of recent development in astrophysics where the
processes are believed to be important is x-ray and
&-ray astronomy. For example, one popular idea for the
origin of the diffuse isotropic background of cosmic
x rays is that they are due to Compton scattering of
high-energy electrons by the recently discovered
cosmic blackbody radiation. Also, models of discrete
x-ray sources are often very similar to those for radio
sources and, in fact, some x-ray sources, for example,
the Crab Nebula and M87, are a1.so strong radio
sources.

For the reader interested in applications of the results
derived here to problems in astrophysics we can recom-
mend several books in particular. In the field of general
radio astronomy the fine work by Shklovsky (S60) is
still very useful. For the very special quasistellar
objects, we are fortunate to have the excellent, fairly
up-to-date (at this time) work by Burbidge and
Burbidge (BB67). A useful reference for cosmic-ray
phenomena is the book by Ginzburg and Syrovatsky
(GS64a). Two recent reviews on x-ray astronomy are

by Gould (G67) a,nd Morrison (M67b).
Other reviews have been written on the basic physics

of bremsstrahlung, synchrotron radiation, and Compton
scattering, but with a different point of view. An
oft-cited review treating (among other subjects)
bremsstrahlung is that of Bethe and Ashkin (BA53)
which, however, is concerned primarily with bremsstrah-
lung when the target scatterer is a heavy (Itigh-Z)
atom. Ou. review treats only the case of /os'-Z atoms,
namely the cosmically abundant species H and He.
Many reviews of synchrotron radiation have been
written, and. for this reason our treatment has been
fairly brief, focusing mainly on some special di@.culties
which we have tried to clarify. A good recent review is

that, of Ginzburg and Syrovatsky (GS69). No review
of Compton scattering resembling our treatment has
been presented before; however, Felten and Morrison's
paper (FM66) is a common reference giving a special
application. Finally, we should like to give some
references here for the basic cross sections derived from
quantum electrodynami. cs. For these the reader is
referred to the books by Heitler (H54) and Jauch and
Rohrlich (JR55) and the article by Olsen (068).
Throughout this review we shall refer again to many of
the articles we have just cited above.

Although we have tried to produce practical results
in this review, we have also made every attempt to
increase Nederstmdksf, of the basic physical phenomena.
Thus, in this review we have outlined. a number of
alternative derivations of particular basic results.
Often, to simplify the derivations, use is made of the
invariance of certain factors or the covariance of certain
equations. Simple arguments of symmetry are also
frequently employed. The three processes of bremsstrah-
lung, Compton scattering, and synchrotron radiation
are really excellent examples of applications of classical,
semiclassical, and quantum electrodynamics.

In the last major section of this paper, we discuss the
energy distribution function of the collection of high-
energy electrons emitting radiation by these three
mechanisms. It will be seen that not only is this function
crucial in determining the total radiation spectrum, but
also that this distribution function is in turn dependent
upon the processes causing the electrons to lose energy.
This distribution function satisfies an integro-diGerential
equation in the independent variable, the particle
energy. Although some articles (FM66) use a differen-
tial equation to obtain an approximate solution, an
integro-differential equation is really necessary essen-
tially because for the bremsstrahlung process and the
Compton process at high energy the electron can lose a
large fraction of its energy in one occurrence of the
process. Because of the nature of the problem, this last
section is somewhat mathematical. We indicate some
approximate solutions to this equation which are valid.
in certain special cases.

2. COMPTON SCATTERING

The effects of Compton scattering during the passage
of a high-energy electron through a photon gas have
been treated by a number of authors with a view toward
a,strophysical applications (FP48, D51, HOTY64,
GS64, FM66, GB67, G67, BSL67) . The general
problem is the following. We have a photon gas with a
differential number density de=e(e, ia) d~dQ= number
of photons per cm' with energies within de moving in
the direction dined by the unit vector iz and the
element of solid angle dQ. An electron of energy &mc'
moves through the gas in some direction and undergoes
Compton scattering, its energy being reduced in the
process. We ask: what is the distribution in energy
(designated ei) and solid angle (Qi) of the scattered
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photonsP In a more general case we might have a dis-
tribution of electrons de, =l,(E„io,)dE,dQ, passing
through the photon gas and could ask for the total
spectrum of Compton photons, scattered per unit
volume and time dN~/dtdVdo~dQ~ Th.e solution for this
problem in the completely general case is very com-
plicated and has not even been attempted. However, a
number of simplifications result in certain limiting
cases which, in fact, correspond to conditions in some
problems in astrophysics. In particular, we shall con-
sider the interactions of highly relativistic electrons,
p)&1. A further simplification results when the energy
of the photon before scattering in the electron rest
frame (oo') is much less than mc'; this corresponds to
the Thomson limit in which the Compton cross section
is independent of the energy of the incoming photon.
The opposite case (oo ))tÃc') corresponds to the extreme
Klein —Nishina limit in which the Compton cross
section can again be approximated by a convenient
expression.

The simplest problem is the calculation of the electron
total energy-loss rate which, in the Thomson limit, is
related in a simple way to the total energy density of
the photon gas. We treat this problem first in this
section and then outline the derivation of the expres-
sions for the Compton-scattered photon spectra in the
general case and in the various limiting cases.

2.1 A Useful Invariant

The ratio, dm/o, where de represents a differential
photon number density' can very easily be shown to be
an invariant. In terms of the differential elmber of
particles dN (an invariant), the three-dimensional
spatial volume element dV, and the four-dimensional
invariant volume dX= dxodx~dx~dx3= dxod V,

de= dN/d V = (dN/dX) dxo. (2.1)

Thus de transforms as the time component (xo) of the
photon position four-vector. Since the photon four-
momentum p„and position x„are "parallel" four-
vectors in that their spatial components are related to
their time components in the same way (that is, x;/xo ——

p;/po), the ratio dxo/po= (P~o&'dxo')/(P~oo'po') =
dxo'/po'. Then, since dN/dX is invariant, we have in
terms of photon energy po = 6,

FIG. 1. Electron —photon
collisions in the lab system
and electron rest system. «b System (K)

e~. «st System (Kj

A further result can be given, since the ratio d'p/o is
a,n invariant (dop is the three-dimensional momentum
volume element). Taking the ratio of (2.2) and this
invariant yields

dn/d'p = invariant. (2 3)

tan 0' = sin 0/y (cos 0—P), (2 4)

where p and Pc are t:he Lorentz factor and velocity of
the electron in the lab frame. When y&)1, then
P~ 1—-,'y ', and for all except those photons moving
practically along the x axis in E, 8' is very small. In
fact, as P~1 in (2.4)

tan 0'~ —p
—' cot (0/2). (2.5)

Thus in the dectron rest frame E' the photons are
incident in a narrow cone in the direction of the negative
x' axis. Moreover, the photon energy in E' is

2.2 Relativistic Kinematics in Comyton Scattering

Consider a highly relativistic electron moving through
a photon gas in the direction of, say, the x axis of a
coordinate frame in the lab system (E). The electron
suGers Compton collisions with photons moving at
various angles 8 with respect to the x axis (see Fig. 1) .
In the electron's rest4 frame the corresponding angle
8' is given by-

dm/o = invariant. (2.2) o' =yo (1—P cos tt) (2.6)
This result has been indicated in other papers' (FP48,
FM66), but the above derivation seems simpler.

'The differential number density may represent, for example,
the total number density within de, or the number density within
de and within the so]id ang]e dQ defining the direction of the
photon momenta, or the total number of particles moving within
dQ,

3 The other method of deriving (2.2) is to consider the trans-
formation properties of cedn which is the di6erential energy Aux
or Poynting vector dS, and express dS(~x:A') in terms of the
amplitude A of the associated electric and magnetic fields. One
finds A/A'=e/~' for a plane wave moving in any arbitrary direc-
tion making a,n angle 0 with, the axis of relative motion.

and so varies (for given o) from o; '
o/2y for 8=0 to

2ye for 8= x. Thus, the photons with 8 near 0 are,
in IC', soft photons which produce only very small
recoils of the electron in the Compton scattering, and
are therefore unimportant.

In scattering off the electron in E' the photon goes off
at an energy oz' and scattering angle 8&' (see Fig. 2).
The energy t.&' after scattering is given by the well-

' At rest before an individual photon gives it, a recoil during
the sca, ttering.
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FIG. 2. Scattering angle in
the electron rest system.

known relation

(2.7)1+ (e'/mc') (1—cos 0r')

In the lab system this energy is

(2.6), we have

dX/dt= cfo.(1—P cos 0) dN . (2.11)

At this point we might remark on the meaning of the
factor c(1—P cos8); it is just the relative velocity of
the photon and electron along the direction of the
latter's motion. Since the electron is the particle for
which we compute the collision rate, it is clear that such
a factor must come in if we consider the problem only
in the lab frame. '"

In the Thomson limit and where the photon distribu-
tion is isotropic, the cos 8 term in (2.11) integrates to
zero and we have, very simply

er ——per'[1+ p cos (x —0r') jager'(1--cos 0r'), (2.8) rfLV/df = eyes (fol (f1'I isotropic) . (2.12)

and we have e1„,„.„2ye1'. Now As the Thompson, limit
e'((mc', and so by (2.7), er' e'; in this case the electron
is given a very small recoil in the scattering. Then

&1 max'~2+&1 tnt' ~4P &y (2 9)

2.3 Total Scattering Rate

Expressions for the number of Compton scatterings
per unit time per electron can be gotten quite readily in
the general case (including the Thomson or Klein-
Nishina limits), since here only the total cross section
is involved. This simple case also illustrates the use the
relativistic invariant dl/e and transformations to the
electron's rest frame (K'). The expression for the total
scattering rate is most readily written down in terms of
the rate in X'. In K' immediately before a scattering
the electron is at rest; time intervals are related by
dt =ddt', and the scattering rate is

dN/dt=p 'dÃ'/df'=y 'cfo dn

The integration is over the number density of photons
in X'; cr is the total Compton cross section. However,
using the invariant (2.2) and the energy transformation

so that the maximum energy of the scattered photon is
greater than the initial energy by the large factor 4y'.
The maximum corresponds to a head-on collision of the
electron and photon. Instead of deriving the result
(2.9) by considering two Lorentz transformations, one
could also proceed by more elementary n~eans, apply ing
momentum and energy conservation to the head-on
collision of a photon and an electron of energy))mc'.

Although in the Thomson limit the characteristic
energy (~y'e) of the scattered photon is very large, it
is still small compared with the electron energy, so the
electron loses a smal. l fraction of its energy in each
Compton scattering. This is not true in the extreme
Klein —Xishina limit where the scattered photon carries
away a large fraction of the electron energy. Thus in
the K—N limit the electron does not lose its energy con-
tinuously. We shall treat this limiting case and the
effects of the discrete energy losses later on in this review.

In Inany astrophysical problems, the photon gas is
isotropic, but in a number of cases already considered
it is not. Compton scattering has been computed in
models of discrete sources such as the Crab Nebula,
(G65, M67, RW69) which do have anisotropic spectra,
and in these treatments the anisotropy effects (such as
the factor 1—P cos 8) have been ignored. For the case
where the electron distribution is isotropic even though
the photon distribution is not, averaging over electron
directions elimina, tes the cos 0 term in (2.11). However,
usually the Compton spectrlm of scattered photons
rather than the total scattering rate is computed, and
in this case anisotropy effects do indeed come in.

—dE./df = dE, /dt, (2.13)

where I'1 is the energy of the scattered radiation. Hut
dE&/df is a,n invariant since it is the ratio of the same
components of two parallel four-vectors. Since in the
Thomson limit

~
' = e' =photon energy in E' before scattering,

we have

dE,./dt = dEr'/dt' —= foz ce' dn' = op cg', (2.14)

where or ——(8n./3) r,' is the Thomson cross section and
8' is the total photon energy density in the electron's
rest frame K'. Here G' is related to the energy density in
E; by (2.2) and (2.6) with P~1

g'= fe"(de'/e') =p 'f (1 c-os -0)-'e d—l. (2.15)

Fo an 'sot op'c distributio f de, aver g g o

' In collisions with two massless particles, for example the colli-
sion between two photons, one cannot, of course, go to a particle
rest frame Lace, for example, (GS6'/) j.

2.4 Total Energy-Loss Rate —Thomson Limit

In the Thomson limit we can make use of the fact
that the energy of the scattered photon in the lab
frame is much larger than its energy before scattering.
Then we can write for the electron energy-loss rate
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angles,

and
((1—cos 0) ');„=s., (2.16)

8' =~'fe de;,.=~'8;... (2.17)

dEq/df =x0'ger 8jso (2.18)

yko, ((mc'. (2.20)

For all but extremely high-energy electrons this relation
is satisfied. In the derivation of (2.18) an assumption
of isotropy was made. For the synchrotron application
the angle averaging analogous to (2.16) would be an
averaging over random directions of the electron
motion with respect to the direction of the magnetic
field B.Then, having already performed this averaging,
we can write in analogy with (2.18) for Cornpton
scattering in the Thomson limit,

where the magnetic-field energy density is

gii = (B')/8s-,

(2.21)

(2.22)

Thus the total energy loss in the Thomson limit for an
isotropic photon gas can be derived very easily, in fact
without evaluating any integrals. One might also note
that only the total cross section comes in; the angular
dependence of the scattering does not enter. Actually
the result has another application. As we have men-
tioned earlier, synchrotron radiation can be considered
as Compton scattering of the virtual photons of the
static magnetic held. We can then carry over the results
(2.14) and (2.18) to the synchrotron problem. How-
ever we must verify that the Thomson limit is applica-
ble. The characteristic virtual photon energy in the
electron rest frame is ~R,', where &a,

' = eB'/mc~yeB/mc
is the cyclotron frequency. This is the frequency of
variation of the fields in the electron's frame (which is
not an inertial frame) . In an inertial frame in which the
electron is instantaneously at rest or moving with a
nonrelativistic velocity, co,

' would be the frequency of
its cycloidal motion. Then the energy of the synchrotron
photon in the lab frame would be, as in Compton scat-
tering of "real" photons, Lsee (2.8, 2.9) 7

philo, '~y'eB/mc. (2.19)

For the validity of the Thomson-scattering approxi-
mation we must have

and the average is of the mean-squared magnitude of B.
Note that (2.21) would fail (and, in fact, be too large)
at very high energies when (2.20) would fa, il to be
satls6ed.

The mean energy of the Compton-scattered photon

(ei) in the Thomson limit can be found readily by
combining the results (2.12) and (2.18) since

—dE~/(if = (6i )dN/d$.

This yields, for an isotropic photon gas,

(2.23)

(2.24)

where (e) is the mean energy of the photon gas (before
scattering) . For example, for a gas with a blackbody
spectrum

(e)=$3l (4)/t (3)7kT=2.70kT, (2.25)

where the l's are Riema, nn f functions.

2.5 Corrections in the Thomson Limit

Two basic approximations have been made in
deriving the result (2.18): (i) the scattered photon
energy is assumed much larger than the energy before
scattering; (ii) the Thomson limit of the Compton
cross section has been employed. Approximation (i) is

better than (ii), since, as we have seen, ei y'e, while
the relative correction to the Thomson cross section is
of a lower order. Another approximation made Limplied
essentially by (ii) 7 is that the energy e' before scat-
tering in the electron's rest frame is equal to the energy
of the scattered photon (ei'); the relative error made
here is erst order in ye/mc' Therefo. re the correction to
the Thomson-limit energy loss cannot be computed as
easily as the limiting expression (2.18). In fact, it is
convenient to write the basic expression for the energy
loss in terms of lab systeni quantities, although the
(invariant) differential cross section is most con-
veniently expressed in terms of electron-rest-system
variables. Neglecting e compared with e~, our basic
energy-loss expression would be

dE,/dt= ffoie(—1 cos e) diido", —(2.26)

here the factor c(1—cos tt) is just the relative velocity
of photon and electron along the direction of the latter
(see Sec. 2.3) . The exact Compton cross section
(Klein-Nishina formula, cf. JR55) and its approximate
form in the Thomson limit are given by'

~oe~act
& 2

1 1

dQi'dpi' e' ei' e' j 1+ (e'/mc') (1—cos Oi') j
26 , f e'

-', rg(1+cos' ei') 1— (1—cos Hi')
~

b ~i' —e'
~

1— (1—cos Hi')
mc' j & mc'

26
O.

t, q~gy 1—
mc

(2.27)

An average over initial photon polarizations, and a sum over final photon polarizations has been performed.
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Substituting ei ——ei'y(1 —costi') and the approximate
form of do from (2.27) into (2.26), integrating over
dQ~', and averaging over angles for the initial photon
distribution (assumed isotropic), we get

range of e'.

S(s; a, b) =1
=0

a&s&b

otherwise. (2.32)

d—E,/dt= ae~rcy28)1 P—(7(e')/mc'(e))+ ~ ~ .j (2.28)

in terms of the mean and mean-squared photon densi-
ties. For a blackbody photon gas the correction term
in the parentheses of (2.28) has a large coefficient; the
term is 24.15yk T/mc'.

2.6 Comyton Syectrum in the Thomson Limit

Some of the results derived in this section have been
obtained previously by a number of authors. We shall
follow most closely the treatment of Jones (J68).
The Anal results will be given for the case where the
photon distribution before scattering is isotropic.
However, it will be clear how the formulation should be
generalized to include the anisotropic case. We derive in
detail the results for the spectrum of Compton-scat-
tered photons in the Thomson limit. The derivation in
the more general case follows along precisely the same
lines except that the Klein —Nishina cross section must
be used. We proceed by computing the Compton
spectrum produced by a high-energy electron of energy
ymc' scattering oG a segment of the initial photon dis-
tribution having energies within de. The total Compton
spectrum would then be obtained by integrating over c

and over the distribution of electron energies.
Again, it is convenient to consider the process in the

rest system of the electron. As we have already seen
(Sec. 2.2), in this system the photons isotropic in the
lab system are incident on the electron essentially in a
parallel beam. The basic problem is the determination
of the spectrum of these photons in the beam. Let
x=—cos8, where 8 is the angle the photon's velocity
makes with x axis along which the electron moves (see
Fig. 1); then —1(x(+1, and the differential photon
density in the lab system X is, for an isotropic dis-
tribution,

drh, =rh(», x) dedx=-', n(e) d»dx (2.29)

Here e(e) de is the total differential density (integrated
over x). Then, by the invariance of dry/e,

—,'e—'e(e) dedx = e'—'de'(e'; e) de', (2.30)

where de'(e'; e) de' represents the total differential
photon density in the beam in IC' (that is, integrated
over all the small angles in the beam) within de' which
are due to photons within de in E.By (2.6),

~

de'/dx
~

=
pP»~ye, so that

dl'(e'; e) =e(e) (e'/2»'y) S(e'; e/2y2 2ye) de, (2.31)

where we have inserted a step fnrhctiorh, to designate the

The distribution for the photon density is linear~ in e'.
In E' the distribution in energy and angle of the

scattered photons is, per electron per interval of e'

dhV, ,/dt'de'dQi'dei' drh——'(e'; e) c(da/dQi'dei')
2 (2.33)

where

do/dQ, 'de, '—&-'2r '2)(1 +cos' Hi') tI(»2' —e') (2.34)

in the Thomson limit' Lcompare the exact formula
(2.27) ].We are interested in the energy distribution of
the scattered photons in the lab frame. This is obtained
from (2.33) by

d)V~, ,
dtde~

(2.35)

(e, 'Qi')

and the variables which are eventually integrated over
are indicated. However, it is convenient to integrate
over, instead of Q~', the variable

'gi = 1—P cos ei ~1—cos ei, (2.36)

since, as a, result of (2.8)

(2.37)

Then, since dt'/dt=1/y, dei'/d»i=1/p)n', and dQi' ——

22rdp&', the result (2.35) can, by substituting (2.33)
and (2.34), be cast into the form

dhV, , ~roec ri(e) de

dtdeq 2y~ c2

The integration over ~' is then performed using the 5

function. Before integrating over g~', the step function
must be expressed in terms of q~' instead of e'. We
then have

S(e'; »/272 2ye)~S(2ti'2 ei/2p'»2 2»i/c), (2.39)

and the integral over q~' is

f2ti' '(2 —22ti'+2)2") S dr)i' (—2/rti' —21n——2hi'+2), ') c,
(2.40)

where the limits are

U=min (2, 2»i/e) =2; L=max (0, ei/2p'e) . (2.41)

'7 It is interesting to note that while this distribution is linear,
if we were considering the transformed distribution of a given
/gad nlmber of photons isotropic in E, that distribution would
be tItut.

8This formula can be derived by purely classical electro-
dynamics {cf.J62).
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Finally we have

dX, , r,'cn(}d, P

)2ei ln +ei+4y'e
dtd61 2p4 62 4~2~ 2"y 6

(2.42)

I.O—

This result is perhaps better written by expressing the
scattered photon energy in terms of its maximum value 0.5

Then
61=46+ 61~

dNY„/dtd gi = 8xrgcn (e) def (gi),

(2.43)

(2 44)

where the distribution function is

f(ei) =2gr ln gi+gi+1 —2ei'. (2.45)
0.5 1.0

This distribution is plotted in Fig. 3; it has no peak and
in fact has its maximum value at &~=0. Thus, the dis-
tribution is quite broad and favors the low-erIergy end.
The moments of the distribution are

FIG. 3. Scattered photon distribution function
in the Thomson limit.

f f(gi) dci ——s

fgi f(gi) «i = 9,

so that (2.12), (2.18), and (2.24) are checked.

(2.46)

term in the brackets in (2.48) is negligible, the whole
expression reducing to (2.42) . However, (2.48) is
exact for any I'„ the only assumption or restriction
made in its derivation is that y))1.

The range of values of E~, which follows purely from
the kinematics of the problem, is

2.7 General Case and Extreme Klein-Nishina Limit I»./~mc2&E, & I',/(I+ I,) . (2.50)
The derivation of the spectrum of photons scattered

by a high-energy electron from a segment of an isotropic
photon gas of differential density dn=n(e) de, for the
general case of arbitrary ye, follows along the lines of
Sec. 2.6. The essential difference is that the exact
Klein —Nishina formula (2.27) must be used for the
Compton cross section. Here we shall merely quote the
result, first obtained by Jones (J68).

In this general case the electron recoil is more impor-
tant in that a large fraction of the electron energy can be
lost in one Compton scattering. It is convenient to
express the energy of the scattered photon in units of
the initial electron energy, that is

The corresponding range for q is

I» I/4p'& q& 1. (2.51)

Further, as we did in the Thomson limit, we can express
the scattered photon energy in terms of its maximum
value

Ei I', (1+I',) 'Ei, ——

and the range of E& is essentially from 0 to 1. The
spectral distribution of the scattered photons is con-
tained in the expression in brackets in (2.48). Here I',
is a parameter in this distribution which we denote as
F(Ei,' I', ) . We also normalize the distribution

61—pfSC El (2.47)
F(81, I',) dE, =1. (2.53)

I', =4'/mc', q =E,/I', (1—Ei) . (2.49)

Then the general result for the scattered photon spec-
trum per electron is

dN, , 2~r}}2mc' n(e) de

dtdE~

1 (r,q)'
X 2q»q+(I+2q)(1 —q)+ — (1—q)2 I+I',q

(2.48)
where

0

The function F(Ei, I', ) is plotted in Fig. 4 for several
values of the parameter I', . For all I', the distribution
goes to zero at the maximum, F(1, I',) =0; however, it
has quite a different form for different values of I', .
For F,«1 the distribution approaches the Thomson-
limit curve of Fig. 3 (normalized) which is peaked at
the low-energy end. In the extreme Klein —Nishina
limit corresponding to F,»1 the distribution has a peak
near the high-energy end; thus in this limit large energy
losses in individual Compton scatterings are dominant.
In fact,

The dimensionless parameter F, determines the domuirl,
of the scattering; the Thomson limit corresponds to F(E1, I',)
I',(&1. In the Thomson limit also, E&&(1 and the last

1 (I',q)'I',} ' 1+ — 11—q}), (2.54}
r,» I 2 1+I',q
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e&, one readily 6nds

dE e (») 4»y 11
- ~rp'm'c' ln, ——d». (2.57)

d~ r,»1 mc' 6

For an electron passing through a blackbody distribu-
tion for which

2.0

I(») = L~'(hc) 'j-'L»'/(e't'r —1)), (2.58)

integration over» in (2.57) gives

dE, (mck T) ' 4yk T 5—&6m.rp ln ———«L;—«
dt mc' 6

(2.59)

In (2.57), CE=0.5772 (Euler's constant) and

6 "ink
C( ———,Q, =0.5700.

x'A, .=2 k'
(2.60)

l.0

0.2 0.4
EL

0.6 0.8 I.O

FIG. 4. Normalized scattered photon distribution function in the
general case for I', =0, 1, 10, 100.

2.8 Total Energy-Loss Rate —Extreme
Klein-Nishina Limit

We have already derived (Sec. 2.4) the simple
expression for the total energy loss in the Thomson
limit; in that case the total loss rate is proportional to
p' and to the total energy density of the photon gas. In
the general case the total loss rate per electron would
be computed from

dE/dt = f (»& ») (dN—//—dtd»~) d»~. (2.56)

In (2.56), for all the cases of interest, » can be neglected
in comparison to»~ The distribu. tion dN/dtd»~ should be
taken from (2.48) in the general case, and an integration
over» should also be performed. Jones (J68) has
obtained an expression for dE/dt from (2.56) by inte-
grating over e~, however, the formula is a little com-
plicated, and, more important, no integration over c

(the initial photon spectrum) had been performed.
In the extreme Klein —Nishina limit a simple expres-

sion for dE/dt can be found by using the distribution
(2.54) in the factor dN/dtd»& in (2.56) . Integrating over

and since q((1 except for Eq near 1, we have

F (E& not near 1; I',))1)—& (ln F ) '$1—Eq+ (1—Eq)

(2.55)

In the above expressions the factor ln I', arises from the
normalization.

Note that in the extreme Klein —Nishina limit —dE/dt
increases only logarithmically with E (or p) and is
essentially proportional to T' (or (8)/(»)'), while in
the Thomson limit, dE/dt~E'T—'. However, in the
extreme Klein —Nishina limit the total energy loss does
not have the same meaning as in the Thomson limit,
where in each Compton collision the electron loses a
small fraction of its energy. In the extreme Klein-
Nishina limit, that is at very high energies, the electron
loses its energy in discrete amounts which are a sizeable
fraction of its initial energy. The energy of an electron
as a function of time might be as in Fig. 5. We shall
consider this problem again in Sec. 5.3.

dN„, /dtd»g ffN, (y) dp (dN——,, ,/dtd»g), (2.61)

where the last factor would be taken from (2.48) in the
general case, and the integration would be over y and
e. These integrations can be performed to give useful
formulas for the case where the electron energy dis-
tribution is a power tm:

N. (p) =E,y ", vp&v&ym

otherwise; (2.62)

yp and y are the cutoffs in the distribution. For the
domain where dN~, ,/dtd»& may be approximated by
the Thomson-limit expression (2.42), the lower limit

2.9 Total Compton Spectrum —Integration over
Electron and Initial Photon Spectra

We have derived the spectrum of Compton-scattered
photons dN~, ,/dtd»q resulting from the interaction of
electrons of energy &mc' with an isotropic density
segment, de=I(»)d», of photons of energy within d».

The total Compton spectrum results from an integra-
tion over y and e. If the differential number of electrons
were dN, = N, (y) dp, the total Compton spectrum
would be
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log E(t)

FIG. 5. Sketch of a typical time evolution of an electron's energy due to losses by Compton scattering.

on the y integration in (2.61) would be'

y;„=max L-,'(ei/e)'t', yej.

where the parameter

(2.63) I" (P) =2~'L(p'+4P+11)/(P+3)'(I+1) (P+5)j
We shall assume that we are always away from the lom-

eeergy end of the Compton spectrum and are con-
sidering photons energetic enough so that —', (ei/e) '")yo.
Moreover, we assume we are away from the high-energy
end so that 2(ei/e)'t'«y and the upper part of the
y integration in (2.61) does not contribute. We then

obtain a power law irt ci,

~ Q 7n+s —( +i)/&

dtdei (p+3)'(p+1) (p+5)

X et~'&t'n (e) de. (2.64)

When rt(e) is the blackbody distribution (2.58),

dtV~.~/dkdei sr '(r'/5' )——Ict.(kT)is ""F(P)ei O "t2,

(2.65)

TABLE I. The function F(p) in Eq. (2.66).

&«Cl(P+5) 3f Ll(p+5) j (2 66)

We have evaluated the I' function and Riemann t
function for several values of p and give the values of

F(p) in Table l.
The result (2.65), first derived by Ginzburg and

Syrovatsky ( GS64), has an important application
because it is thought that the cosmic x-ray spectrum,
which has a power-law form (cf. G67), is due to
Compton scattering of high-energy electrons by the
cosmic blackbody photons (FM66). Unfortunately, in
the considerations of this eGect, an approximate
expression has been employed Linstead of (2.65))which
essentially results from making a delta-function

approximation to dN, ,/dtdei However. , (2.65) is
exact as long as e~ is not near the end points where the
effects of the cutoffs yp and y are important. In fact,
the range of validity of (2.65) is

pp2kT&(eg((y 2kT. . (2.67)

Qf course, the Thomson-limit criterion is also imposed:

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

3.48
3.00
3.20
3.91
5.25
7.57

11.54
18.44
30.62
52. 57
92.90

or
eq~y k T((&etc

(„pZ') its«mcs.

(2.68)

(2.69)

gpss) mc2) (2.7O)

and the characteristic energies of the scattered photon is

In the general case, when the Thomson-limit condi-
tion need not be satisfied, it becomes necessary to use
the general result (2.48) for dN7„/dtdei in (2.61) for
the total Compton spectrum. In this spectrum, which
again results from an integration over electron and
initial photon energies, we shall ignore "cutoff effects. "
That is, since we are assumed away from the Thomson
limit,

' Jones (J68) incorrectly took y; =-1 in his treatment. ey~+stc . (2.71)
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It is assumed that we are away from the endpoints of correction factor
the Compton spectrum, or that

G
I'[(A+6) /23L(P+6) /n (ei&2") '"

yp((ei/mc'(&y . p[(p+5)/nt [(p+5)/»
This assumption allows us to ignore the mutual restric-
tions on e and p in their integration to give dlV«)/dtdei
In this integration it is convenient to introduce the
dimensionless quantity

s= eei/m'c', (2.73)

This procedure is convenient since q varies between the
limits 0 and 1 (2.51). We then have for the general
total Compton spectrum, for the power-law electron
spectrum (2.62):

and to transform the y integration to an integration
over the dimensionless q introduced in (2.49). The
parameter s, like F„determines the domain of scat-
tering, with s'"«1 corresponding to the Thomson
limit, and s&)1 corresponding to the extreme Klein-
Nishina limit. In terms of these quantities, (2.49) gives

v= ( '/2 ) (1+[(1+q)/ q3'") (2 74)

(2.78)

The total Compton photon spectrum deviates from a
pure power law at high energies when (2.69) is no
longer strictly valid. "The result (2.78) gives the form
of this correction and shows that the spectrum will begin
tO SteePen fram the ei &"+')" pOWer laW. Of COurSe,

deviation from the restriction (2.67) ei((y„'kT would
also produce a steepening.

The procedure in obtaining a formula for the total
Compton spectrum in the extreme Klein —Nishina
limit (s)&1) is more complicated because of the diffi-

culty in ending an expansion valid for the whole range
of q in (2.75). In this limit the q integrand in (2.75) is
zero at the endpoints and has its maximum around
q~1/s&&1. Over most of the range of q, qs)&1, and the
integrand is essentially of the form 2 (~"s (~')/2q-'.
Therefore the integral over q must be of the form

Ip(s; p) = 2 1'+')s '1 " '[lns+C(p)], (2.79)
s))1

2c+ 29+le —($+0/2 dee P 1) /2n (e)— dqq(u
—1)/2

where C(p) is a parameter of order unity. Note that
this result differs from that of Jones (J68) whose

X
[2q ln q+1+q —2q'+2sq(1 —q) j expression is too large by a factor of 2. To evaluate this

{1+[sq/(1+sq) )1/2} m+2(] +sq) (p+8)/2 expression (2.79), that is, to determine C(P), we proceed(2.75)

by separating the integral over q into two parts:
This expression'0 is exact; the restriction s&)1 has
not yet been made. Unfortunately, the q integration
cannot be performed in the general case. We shall,
however, make two applica, tions of (2.75): (i) the
Thomson-limit correction and (ii) the extreme Iaein-
Nishina limit formula.

In the Thomson limit, when s'/'«1, the integral over

q is independent of s, and the scattered photon spectrum
reduces to (2.64). It is now possible, however, to
calculate the first-order correction to the spectrum in
the Thomson limit. This is done by expanding the
integrand in (2.75), keeping only the first-order term
in (qs) '/P. We then obtain the spectrum

—~1 Pc+ 2u+P P P
e

—/1+0/P

«del
'

(P+1) (p+3)'(P+5)

(ee ) 1/P

X d ' ""n( ) (1—t"(/') ', (2.M)
8ZC

(P'+6P+ 16) (P+1) (P+3) '(P+5)
(P'+4P+11) (P+4)'(P+6)

For a blackbody photon distribution, integration over
e gives the result (2.65) multiplied by the first-order

Jones (J68) derived a similar expression but with an error
of a factor of 2 in the last term in the brackets. This term is
most important in the extreme Klein-Nishina limit.

1/s

0 0

Now, these integrals are of the form (see 2.75)

(2.80)

D,= 2w'(sq) (MI /2. (2.82)

Thus in the integral from 1/s to 1 in (2.80) we write

1/D = 1/D, + (1/D —1/D, ); (2.83)

the second term in parentheses approaches zero for
q)&1/s. In integra, ting the term 1/D over q in (2.80) we
can approxima, te, E~1+2sq(1 q). For s))1, we —then
get,

1 x
dqq($1)/P —2—(u+0s—(m+0/P(ln s 1) (2 84)

1/a Da

In the integral from 0 to 1/s, fq 1+2sq. In the integra-
tion of the term (1/D 1/D ) over 1/s to —1, only the
lower end contributes, so again E~1+2sq. Changing

~~ This means that (e1k T) 'I2 begins to approach the order of
magnitude of mc', although it must still be strictly less than mc'.

I dqq&1 0/p[1V(q, s) /D(q, s; p) 7, (2.81)

where X is the expression in brackets in (2.75) (the
numerator of the last term), and D is the complicated
denominator. For q))1/s(&1, D approaches the asymp-
totic value
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the integration variable to x= sq, and collecting terms,
we see that C(p) in (2.79) is given by"

'dx1+2x "dx D
2C(p) = —1+ —, y —,(1+2.-) ——1 ~,, x' D/D. g

x' D i'
(2.85)

where

DID = I-'+-'L*/(1+*) 3'"I"+'(1+1/*) '"+"" (2 86)

The parameter C(p) is plotted in I'ig. 6.
The total Compton spectrum in the extreme Klein-

Nishina limit is then given by

de, g =~r(PcE'. (mc') "+'et '"+"
dM&1

1.5—

I.O—

x —n( ) l
ln

'
+c(P)) . (2.87)

m'c4

Thus we see that the spectrum (~et '"+'&) is much
steeper than in the Thomson limit (2.64) where it is of
the form et &~'&". When n(e) is a blackbody dis-
tribution

It (gzct) u+&(QT)&et —(u+n
6h'c'

61~T
X ln 3. C —Cz —C& ) 2.88

nz'c4 )
where CE=0.5772 and C~=0.5700 as in (2.60). Again,
the assumption has been made that the endpoints, yo
and y, of the electron distribution do not contribute to
the total spectrum. In the Klein —Nishina limit this
condition has the form

yomc'&(e1((y~mc'.

3. BREMSSTRAHLUNG

(2.89)

Although the exact bremsstrahlung cross section can
be derived only by the methods of quantum electro-
dynamics, limiting formulas such as the expressions
when the bremsstrahlung photon. energy is small may
be arrived at by simple applications of classical or semi-
classical electrodynamics. Indeed, some useful insights
into the quantum mechanical results may be gained
through the semiclassical approach to the problem. For
this reason we begin this section by deriving the low-
frequency limits to the bremsstrahlung cross section by
these elementary semiclassical methods. As in our
treatment of Compton scattering we consider only
incident electrons which are highly relativistic (y)&1).
We give two derivations of the low-frequency
bremsstrahlung cross section. In the 6rst method, the
result is obtained by computing the probability of
emission of a soft photon during the Coulomb scattering
of a high-energy electron. In the second method, which
can also be used to derive an accurate expression not

'2 The upper limit in the second integral is really s which is
a large number (—+~).

FIG. 6. Graph of the function —C(p) .

restricted to the low-frequency limit, we mak. e use of the
8'eissiiker —williams method whereby the bremsstrah-
lung process is treated as Compton scattering of the
virtual photons of the Coulomb field of the scattering
charge. Since the basic formulation for these methods is
probably not too familiar to the general reader, a brief
derivation of the fundamental formulas is given in an
appendix at the end of this paper.

3.1 Low-Frequency Limit

Perhaps 6rst of all we might quote the exact formula
for the bremsstrahlung cross section for high-energy
electrons incident on an unshielded static charge Ze.
This formuIa is based on the Born approximation which
is valid at high energies where the eGects of the Coulomb
field of the scatterer on the incoming and outgoing
electron are negligible. " Then the differential cross
section for emitting a bremsstrahlung photon of energy
within Mcv in the scattering of an electron of initial
energy E, and 6nal energy Er=E,—5&v is (cf. JR55)

d(0 1 2EjEf 1 l
do = 4Z'nr ' — (E,2+Er2 ,E,Er)——

A' nzc%or 2)

In the low-frequency limit this expression reduces to

do -- ~Z'o. r02(d~/&v) [In (2E,2/wc%a&) —-', j. (3.2)
(sm co)

This formula can be derived quite easily, uncertain
to within a factor ~1 in the (large) argument of the
logarithm, as we show in the following. The procedure
is to compute the probability that in a Coulomb
scattering a single soft photon is emitted. The basic
expression for the low-frequency bremsstrahlung cross

~3 EGects of the deviation from Born approximation have been
computed by Davies, Bethe, and Maximon (DBM54).
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section is then

da'= do, O'M„, (3.3)

dg..„/d8,.= SzrZ'rp'y '8.. '. (3 5)

The factor p ' can also be easily understood, since
(3.5) can be derived from a simple classical —Born or
impact approximation method; p ' appears essentially
because the scattered particle momentum is pzzzzi(~yzzzc)
instead of mv in the nonrelativistic derivation, and
do.„/dQ~ (pz~) '. The probability factor dw„ in (3.3)
can be taken from the expression (A.15) derived in
the Appendix which is, in terms of 9„,

where d|T,„is the differential elastic Coulomb-scattering
cross section and dw„ is the probability of emitting a
soft photon of frequency within Ckv in the Coulomb
scattering. Both do;, and dw„are functions of, say, the
scattering angle e„which would eventually be inte-
grated over in (3.3) to get do. The elastic Coulomb cross
section would be given by the Born limit of the "Mott
formula" (cf. MM65)

do;., Z'e' 1 1—P' sin' (8/2) „
dQ 4m'z' sin' (8/2) „

The formula differs from the nonrelativistic Rutherford
formula, by the factors p ' and 1—P' sin' (8/2) „.This
latter factor arises due to effects of the electron's
magnetic moment; in the Coulomb scattering of a
relativistic spinless particle such a factor would not
occur. However, in Coulomb scattering (and in Coulomb
bremsstrahlung) small azzgle scatterizzgs are the most
important, and for these the spin-dependent factor is
unity. The physical reason for this is elementary: the
magnitude of the spin or magnetic force on the electron
decreases with distance from the scattering center
faster than the pure Coulomb force; since small angle
scattering corresponds to large impact parameters, the
magnetic effects should be negligible for small 9„.
Thus for small scattering angles and highly relativistic
encl gles

The electron cannot be localized to smaller distances
without introducing enough energy to produce a sur-
rounding cloud of electron —positron pairs. The
(bremsstrahlung) emission from such a configuration
would be redzzced, since the total charge (e) would no
longer be distributed in a coherent manner as in a
single particle of charge e and mass m. The maximum
impact parameter can be understood in terms of purely
classical effects, essentially based on the material within
Eqs. (A18)—(A21) in the Appendix; in these equations
quantities should really be primed, since they refer to
the electrons rest frame. The result is b,„' yc/co';
then since a& =gad'(1+cos 8') and the emission is over a
wide range of angles 0' in the frame where the electron
motion is nonrelativistic, co ~co/p. Thus we have

bmaa/bmin = bmax. /bmin ~y'zzzc'/5a&, (3.9)

which is to be substituted in (3.8) and (3.7) to give
the bremsstrahlung cross section. The result (3.9)
obtained is, of course, uncertain to within a factor
in fact, comparing with the exact expression (3.1), we
see that (3.9) should be multiplied by 2/e'". However,
since (3.9) is a large number and appears in a logarith-
mic factor, the simple derivation giving the results
(3.7)—(3.9) yields a, fairly accurate expression for the
cross section.

While the developments in this section are limited to
the domain of low-frequency bremsstrahlung, there is a
method of getting essentially the general expression
(3.1) valid not just for small cu. This procedure, the
Weizsaker —Williams (W—W) method, does, however,
require the use of the Klein —Nishina formula (2.27)
which can be derived only by detailed methods of
quantum electrodynamics. Nevertheless, the W—W
method is quite an interesting little trick, and is of some
help in at least providing a better understanding of the
exact result of quantum electrodynamics. Moreover,
it is a general method for problems of this type, and its
application to the bremsstrahlung problem is instruc-
tive.

dm (8,.) = (2n/3zr) y'8..'(did/id) . (3.6) 3.2 %eizsaker-Williams Approach

Then by (3.3), (3.5), and (3.6) we get

do= ",- Zar P(i—did/co) f(d8„/8.,). (3.7)

The logarithmic integral in (3.7) can more conveniently
be written in terms of the minimum and maximum
impact parameters

f (d8,./8, .) = ln (b, ./b;. ) . (3.8)

For the determination of the ratio of the maximum and
minimum impact parameters it is convenient to con-
sider the process in the electron's initial rest frame.
Since the impact parameters are transverse distances,
b'=b. The minimum impact parameter is b, ;

'
5/zzzc,

a result due to quantum-mechanical effects which can
be understood in terms of the uncertainty principle.

The basic idea here is that bremsstrahlung is con-
sidered as Compton scattering, by the incoming elec-
tron, of the virtual photons of the Coulomb field of the
scattering center. The basic relation giving the
bremsstrahlung cross section is

0- =ado.e, (3.1O)

where EV is the differential number of incident virtual
photons in the electron's rest frame and would be given
by the expression (A.22) in the Appendix (with, how-
ever, b and co primed), a,nd do.c is the differential
Compton cross section. Let us first derive the low-
frequency limit expression (3.7) . This limit corresponds
to Thomson scattering with her'«mc', ~' being the
photon frequency before scattering in the electron
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initial rest frame E'. Then coi'=co', where co~' is the
scattered frequency. In the lab frame, &o&~pcs&', (we now
drop this subscript of &u) so "low-frequency" means
Ro&&ymc'. Then we can take the total Thomson cross
section O.r ——(87r/3) rP for do.c in (3.10) and get

FxG. 7. Feynman diagrams
for bremsstrahlung in scatter-
ing by an external potential
(x).

cr= —aZ (Cku/cu) f( b/b), (3.11)

«g' ——«'/[1+ «'(1—cos Hg') ],
«= «y= «y (1—cos Hy ),

«'= [«/(1 —«)](1—cos Oi') '=«i'/(1 —«).

(3.12)

For fixed e, the minimum photon energy in E' before
scattering is

«min = «/2 (1 «) ~ (3.13)

The maximum energy is gotten from u„„'~pc/b;„
pic'/5 [see (A21) and Sec. 3.1], so

/
&m ax. &»&m in ~ (3.14)

Now with the help of the kinematic relations (3.12) the
Klein —Nishina formula (2.27) can be written as a
function of e and e', with the differential solid angle
transformed in terms of a differential de. Then

dQg' = 27rd (1—cos eg') = (27r/«') [d«/(1 —«) 2] (3.15)

and the differential Klein —Nishina cross section becomes

Substituting

2nZ' db' de'
d&V=

7l b

(3.16)

(3.17)

and (3.16) into (3.10), an integration over «' and then
b' can be performed. By virtue of (3.13) and (3.14)
only the lower limit (3.13) contributes'4 in the integra-
tion over e' and we get

do =4ny 2Z2(3 (1—«)+«') (d«/«) f (db'/b') . (3.18)
"More precisely, in the e' integration y(b'; jb') should be

taken for c „'; however, this is still )&e; ' for all except the
very low end of the integration over b'. Since the b' integration
is logarithmic, this would give a result essentially the same as
that taking ~ „' y (independent of b').

that is, the same expression as (3.7), but derived in a
different manner. The consideration of the logarithmic
integral in (3.11) is the same, giving the result (3.9).

In the derivation of the more general expression not
restricted to low frequencies it is convenient to express
photon energies in the following units:

lab system (E)—units of &me';

electron rest system (E')—units of mc'.

We also drop the subscript 1 on the scattered photon
energy e& in E. Then the kinematic and transformation
relations are

Now, again b;„' 5/mc, while

b--'- ye ( 5 f y 2y(5/me) (1—«)

min kmC (&min

(3.19)

We have, finally, to within a factor 1 in the argument
of the logarithm,

do =4nro2s'(s (1—«)+«') (d«/«) ln [2y (1—«) /«], (3.20)

which is essentially the same as the exact expression
(3.1).

The bremsstrahlung cross section was first derived by
these methods by von Weizsaker (W34) . It should be
emphasized, however, why the W—W method works
for this problem. Basically it is because the main con-
tribution to the total cross section comes from the soft
virtual photons. Had this not been so, this semiclassical
method would not have given the right answer. The
W—W method has been applied to a number of other
problems with a lesser degree of success in some cases.
Nevertheless, it always provides helpful insight into
the problem.

3.3 Pure Coulomb Bremsstrahlung —Momentum
Transfer Distribution

We have already quoted the exact (in the highly
relativistic limit) expression (3.1) for the cross section
for emitting a bremsstrahlung photon of energy within
Aden, in the scattering of an electron of initial energy
E,(»mc') by a static unshielded charge Ze. We shall
not derive this expression here; it is derived by the old-
fashioned perturbation theory methods in Heitler's
book (H54) and by the modern covariant perturbation
theory in the book by Jauch and Rohrlich (JR55).
Only a rough outline of the general procedure will be
given to facilitate discussion of the associated problems
of electron —electron and electron —atom bremsstr'ahlung
in the following sections.

The problem is closely related to the simpler one of
radiationless Coulomb scattering; that problem is one
of 6rst-order perturbation theory while bremsstrahlung
involves second-order perturbation theory. In the
static Coulomb approximation, the scattering center (a
heavy nucleus) plays only the role of providing the
field which scatters the incoming electron; the small
recoil it receives has a negligible kinematic effect on the
photon emission, although it is necessary for the process
to occur. The scattering Coulomb field is considered an
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q =k;—kj—k. (3.23)

The other factors in (3.21) are the matrix elements of
the part of the interaction Hamiltonian II(, ) corre-
sponding to the "photon emission from the electron
lines" in Fig. 7.

The differential cross section is gotten essentially from

do. ~ -',P P P ~
Eg; ~' dkrdk '(3.24)

f pol

that is, an avera. ge over initial electron spin states (i),
a. sum over final spin sta.tes ( f), a sum over polariza-
tions of the emitted photon, and eventually a sum over
the phase space of the outgoing electron and photon.
Actually, instead of integrating over the total photon
phase space, an integration only over photon angles is
performed, yielding the cross section differential in
photon energy (3.1). Bethe (B34) has shown how this
integration can be transformed and integrated so that
all that remains is an integration over the magnitude of
the momentum transfer q. This development by Bethe
is especially important for considerations of electron—
electron and electron —atom bremsstrahlung, which we
discuss in the following sections.

From now' on in our discussion of bremsstrahlung it
is convenient to adopt mc' as energy unit and mc as
momentum unit for both photon and electron. Then,
in these units, and in our high-energy limit, E;, Ef))1;

'~In (3.22), 5=1, and f represents the coordinate of the
scattered electron. Also, it might be remarked that the integral
|,'3.22) is not convergent as it stands. To get the meaningful
result 4+Q/g', one must modify the long-range Coulomb po-
tential by a factor exp {—nr), evaluate the integral, and then
take the limit a=0.

externaL PoteetiaL and is represented by an X in the
Feynrnan diagrams for the process (Fig. 7) . The
electron makes a transition from an initial state i to a
final state f. In the process it is scattered by the Coulomb
field and a photon is emitted (as in Fig. 7, "before" or
"after" the scattering) . The total transition amplitude
is given by an expression of the form (in noncovariant
perturb ation theory)

I
»» » »»'» &»)

(V H V II
fz E,—Er E' Err—

where the sum is over spin and energy states of the
electron in intermediate states (I and II) . The matrix
elements of the scattering potential U~„) are given in
terms of the recoil momentum q=k~ —kz ——kzz —k;;
since the initial, final, and intermediate electron states
are plane waves in the Born approximation,

V( o)jj V( )rr ' —I dVe'&'(Q/r) =4'irQ/q'; (3.22)

here Q is the charge of the scattering center. Thus, a
common factor appearing in the amplitude K~, is the
Fourier transform" of the scattering potential; it is a
simple function of only the momentum transfer q. In
terms of the initial and final electron momenta k; and
k~ and the photon momentum k

also, significantly, we consider only brernsstrahlung
photons of high energy, k&)1. For given E,, Ef, and k
one can readily convince oneself that the minimum
momentum transfer q; corresponds to the case where
k~ and k in (3.23) are both along the direction of k;.
This minimum momentum transfer is very small and
thus k is very close to E;—E~, the actual value of q;
is easily found to be

q; =o=k/2E, Ey. (3.25)

More important is the effective maximum value of q.
The acti@/ maximum value is of the order of E;, but
values of q larger than one do not contribute much to
the bremsstrahlung cross section. This was shown
originally by Bethe (B34) and more recently (and in
greater generality) by Suh and Bethe (SB59). The
physical reason for this result can be seen quite readily
(G69). Since E,, Er, k))1, we can have q((E;, Ef k
even for values of q appreciably larger than one for
which k—E;—E~. Since the momenta k~ and k are
(on the whole) at small angles to k, for all except the
very minimum value (3.25), q must be approximately
perpendicular to k;: q= q&. Now consider the process in
the (primed) reference frame of the incident electron
and from the point of view of the Weizsaker —Williams
approach. Since q~'=qi=q, values of q greater than I
necessarily involve, for a large fraction of the solid
angles of the outgoing electron and photon, Compton
scatterings in the Klein —Nishina domain, where the
Compton cross section is reduced below its large value
in the Thomson limit. This means that we can break up
the momentum transfer distribution into the domains
(i) q=8 to 1 and (ii) q=1 to E;. Then in (ii) only
the lower end will contribute since in (i) over all except
the upper end (where it begins to drop off) the dis-
tribution goes as q 'dq (B34, SB59).

3.4 Electron-Electron Bremsstrahlung

A number of authors (B47, V48, AB53, JR55, JR58,
SB59, BFK66, M67) ha, ve investigated this problem or
the associated one of pair production in the field of a
free electron. The exact solution to the general problem,
including the necessary integrations over the phase
space of the outgoing particles, has not been carried
through analytically due purely to the mathematical
complexity. Eight Feynman diagrams are involved, the
four in Fig. 8 plus the four exchange diagrams. However,
a considerable simplification results for the case where
one of the electrons (for example, electron 1 in Fig. 8)
is initially at rest in the lab frame and the other particle
(electron 2 and the outgoing photon) energies E,, Er,
k are ))1. For this case only Diagrams (a) and (b)
contribute; the reason is basically the arguments given
in the previous section. ,As we have seen, in bremsstrah-
lung involving the scattering of an electron by the
Coulomb field of the scattering center, the recoil
niomentum given to the scatterer has an effective
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maximum 1. But since we are considering photon
energies k))1, these photons cannot be emitted by the
system with low momentum. Therefore diagrams (c)
and (d) should not be expected to contribute appre-
ciably. " This argument is really based on the self-
consistency of the result, since the reasoning leading to
an effective maximum q~1 involved consideration of
an (virtually static) external scattering potential.
However, Heitler (H54) has shown by direct applica-
tion of the Weizsaker —williams method, that the
contribution to the bremsstrahlung cross section from
Compton scattering of the virtual photons of electron
2 by electron 1

I
corresponding to Diagrams (c) and

(d)] is negligible compared to the contribution from
scattering of 1's photons by 2 LDiagrams (a) and (b) ].
Exchange effects are negligible for the circumstances
(E;, Er, k»1) considered; because of the low recoil
momentum of electron 1, the two electrons are essen-
tially distinguishable by means of their vastly different
momenta. "

Thus only two (a and b) diagrams contribute for
electron —electron bremsstrahlung. In fact, due to the
low recoil momentum of electron 1, its field (which
scatters electron 2) can be considered essentially static,
that is, tha, t of an external potential (Fig. 7). We
conclude that, away from the low photon energy end of
the spectrum, the cross section for e—e bremsstrahlung
where one electron is initially at rest should be identical
to that for electron —proton bremsstrahlung (p at rest) .
Actually, several detailed calculations (B47, SB59,
BFK66, M67) have yielded this result. A discussion has
been given here because a number of authors (V48,
AB53, H54, JR55, JR58) have suggested slightly but
significantly different (and incorrect) results for the
e—e problem. Our elementary discussion is taken from
669. Experimentally, the equivalence of the e—e and e—p
bremsstrahlung cross sections can be considered to have
been essentially demonstrated by measurements
(HCCS59, M59, J60) of pair production in the fields of
electrons and protons. Pair production is closely related
to bremsstrahlung, having essentially the same Feynman
diagrams and associated matrix elements. The impor-
tant theoretical work of Mork (M67a)

I
see also

discussion by Olsen, (068) 7 on pair production in the
Geld of an electron should also be mentioned. Mork
calculated the cross section numerically by using
Monte Carlo methods to integrate over the phase
space volume. He included all eight Feynman diagrams
and did indeed find that at high (photon) energy the
cross section approached that corresponding to pair
production in the field of a proton.

Finally, on the basis of the elementary discussion
given here, it is clear that for the conditions considered
(E;, Er, k»1) bremsstrahlung from incident positrons

'6 For bremsstrahlung photon energies at the low-energy end
(k 1 or smaller) this conclusion would not be valid, and Dia-
grams (c) and (d) would contribute (see BFK66).

'7 The exchange corrections given in (JR58) are erroneous.

FIG. 8. Feynman diagrams for electron-electron bremsstrahlung;
there are four additional "exchange" diagrams.

would also be equivalent. That is, for any combination
of signs, brernsstrahlung from e+—e+"+ and e+—p+ '+
are all equivalent. ' Bremsstrahlung in collisions of
electrons and positrons and (anti-) atomic species
would also be equivalent.

3.5 Electron-Atom Bremsstrahlung

The results of the discussion in the previous section,
although they were for free electrons, are very relevant
to problems involving bound electrons. Since we found
that the scattering-electron recoil and exchange effects
are negligible, the basic formulation of the problem of
electron —atom bremsstrahlung is a straightforward
generalization of that for pure Coulomb and electron-
electron bremsstrahlung. The scatterer, that is the
atom, can still be considered as producing an external
potential. However, now the total potential is

(3.26)

where r is the position of the scattered electron, r, the
position of the rth atomic electron, and the nucleus
(Z) is at the origin. With the atom as scatterer, the
effects of atomic transitions during the scattering
process must be included. The matrix elements of
V(„) must now be between the plane-wave states of the
scattered electron and also between the electronic states
of the atom. Denoting the initial and fina1 atomic
states by 0 and e respectively, this total matrix element
1s

(e I f dV exp (t'q r) (Ze/r eP I r—r; I
')—

I 0)

=4ireq '(n
I 2; I 0)~ (3 27)

"However, at nonrelativistic incident energies, e+-e brems-
strahlung))e+-e+ bremsstrahlung, since the e+-e system has a
dipole moment. Although this is very clear from considerations
of classical electrodynamics, a good deal of confusion has arisen
concerning this question. Some references to the literature on
this subject may be found in the paper by Stabler (S65) .
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where we have dined
Z=Z —p exp (irl r,).

7

The bremsstrahlung total cross section will be propor-
tional to the squared absolute value of the matrix
element (3.27) then summed over final atomic states r4.

In this summation we can make use of the closure
relation (P I

44&(44 I
= 1) based on the completeness of

the atomic eigenfunctions. This summation must
include the continuum (ionization). Then the purely
atomic factor occuring in the diGerential cross section
is (WL39)

overlap. In the domain of small q, the f, (designated f,)
are simple expressions, while for large q the expressions
(designated f,) are complicated. However for large q,
Ii ~ 0 and we can then write, for the terms in 1—Ii

(or 1—F')

1—F dq

f, (q) (1—F) dq+ f.(q) dq

l ..(q) =P I
(i~

I
x

I 0& I-'=&(0
I

x"
I ~&&~ I

&
I 0)

= (0 I
z*Z

I
0). (3.29)

@max

f.(q) (1—F) dq+
Orna*

Qp

Lf (q) f (q)—7 dq

(3.34)

Thus the scattering factor is just the expectation value
of

I
Z I2 for the initial atomic state. Further, we can write

|'-(q) =Z' —2Z& &0 I exp (iq. r ) I o&

+&(0I-pl'~ (;-")7Io) (33o)
j,I

The expectation values in this expression vary from
1 to 0 as q varies from 0 to ~ . The characteristic change-
over in the units (mc) we use is q, ),„nZ,44, where n is
the fine structure constant and Z, ff is the effective
nuclear charge. The second term on the right of (3.30)
is just 2Z times the "atomic form factor" F (q) .

The above result, that the atomic-scattering factor
is a function of q, is essentially the reason why Bethe
(B34) worked out the transformation of the phase
space integration in (3.24) into an integration over q.
The result of this work is that the differential
bremsstrahlung cross section can be written in the form

do=4(k)dk=nro'(dk/k) (E,') '

&&5(E'+EX')4i SE.Efe—7; (-3 31)

Pi and p~ are functions of E,, Er, and k ( =E; Er) . —
When the scattering system is an unshielded charge Ze,
then 4t)i 4f) =Z'P„——where Lsee (3.1)7

t..(q) =cp+gc„(1 F~), —(3.35)

that is, with the form factor appearing in powers. Then
by (3.33) and (3.34),

1

4;=c4,,+4+c„r(;+ j;fq) (1 F) dq ~, (3.3—6)

where ni ——1, a& ——6, and the f, are the simple fucntions'0
of q and5:

fi=q '(q ~)',

f.= q 4/q' 6Pq ln (q/8) +—3Pq 48'7. (3.37)—

For a hydrogenic atom or ion (nucleus Z, one elec-
tron), l „derived from (3.30) is very simple:

This last integral can be evaluated, using the f's derived
by Bethe (B34), to be 1—ln q, (for fi), and -', —ln q,„
(for f~); that is, qo does not appear. Also the integral
from b to q,„can be broken up into an integral from
8 to 1 plus an integral (over which F +0) from—1 to
q, . The latter integral is, for both fi and f2, just
lnq, „, which cancels" the logarithm from the last
integral in (3.34). We can now express the basic result
in the following manner. Suppose l„(q) can be ex-
pressed as a sum of terms of the form

y„=4/in (2E;Er/k) ——', 7. (3.32) (i) = (Z 1) +2Z(1—Fz), (3.38)

For a general atom the g's a,re gotten from (B34, G69) where the atomic form factor is

y;=4f f, (q; E,, Er, k) l „(q) dq. (3.33) Fz(q) = (1+az'q') —' (3.39)

For the whole range of q, there are no simple expressions
for the f,'s. However, one can proceed in the following
manner. The expression (3.30) for l„(q) can be broken

up into terms which are of the form of a constant, a
term in 1—F, and perhaps a term in 1—I'. These
latter terms approach 0 and 1 for q(( and »o.Z, ff,

respectively. The constant term in l „(q), say co, simply
gives a term co& to P,. The 1 Fand 1—F~ terms —can
be integrated in (3.33), since analytic expressions can
he found for the f, in the limits q((1 and q»8, 4)Z,ff.
Moreover, a value qo can be found where both domains

az ——(2nZ) —'= a/Z = 68.5194/Z. (3 40)

The @, computed from (3.36) and (3.37) are slowly
varying functions of 8 (and az) . In Fig. 9 pi and g2 for

~~We have gone through all this in some detail (see also G69}
because apparently some confusion has arisen on the q integra-
tion. Bethe (B34} did not indicate all the steps explicitly and
some authors seem to have gotten the false impression that the
integration was cut off at a maximum value q= i. That was not
the case, as we have shown above.' These functions are such that if I" =0 in the integrand in
(3.36}, the resulting term multiplying each c„ is just @„, aside
from small terms of order B.
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atomic hydrogen (Z= 1), and 2$„[twice the unshielded
expression (3.32)j are plotted as a function of the
dimensionless [see (3.25) and (3.40) j

(3.41)

70—

60

l I 1
i

I I I t / 1
[

I I / I

The curves illustrate the transition from complete
screening (A«1, corresponding to high-energy incident
electrons) to weak screening (A))1 corresponding to
low, but still relativistic, electron energies). Essentially
Fig. 9 compares the bremsstrahlung cross section for an
electron incident on a hydrogen atom, with the total
cross section for an electron incident on an unshielded
free proton and an unshielded free electron. %e see that
the hydrogen cross section is reduced for small 6,
essentially because of the reduced contribution of small
momentum transfers below tt 1/a. In fact, the asymp-
totic values are"

50

40

50

20

l0—

0 I « ttt

lo IO I.O l0

A»1:

qh~8(ln u+-,') =45.79,

$2~8 (ln tt+ x) =44.46;

4g~gs~2@„=8[in (tt/6) ——,'].
(3.42)

so that the last term represents the contribution of
excited states. The effects of excited states (and, in
general, atomic electrons) are therefore largest for
low-Z atoms. In fact, for hydrogen they contribute
about half the total cross section. In the original
Bethe —Heitler treatment (B34, BH34) of bremsstrah-
lung and electron shielding effects, this summation over
final atomic states was not performed, and it remained
for Wheeler and Lamb (WL39) to emphasize the
importance of excited states. However in their initial

Probably the most interesting result for general one-
electron ions is contained in the expression (3.38) for
f'„o~. It shows that one term in the bremsstrahlung
cross section is (Z—1)' times the cross section do„
for an electron incident on an unshielded proton (or
electron) . For ultrahigh incident energies (F.,~~,
A«1) this term increases logarithmically and dominates.
For a more detailed discussion and results of calcula-
tions for the general one-electron atom (ZW1) the
reader may be referred to the paper G69.

Finally, it is of interest to compare the expressions
which determine the total cross section with the result
where summation over rt in (3.29) had stot been per-
formed. The result, which would then correspond to
bremsstrahlung with the atom left in the initial (ground)
state only, is

(
(0 )

Z [ 0) ('= [t' in (3.38) g
—(1—Fz') (3.43)

FiG. 9. The functions gtI and @2 for atomic hydrogen, as well as
the unshielded function 2@„.

treatment, Bethe and Heitler were interested in
applications to stopping power of electrons traversing
high-Z material like Pb. For that problem it did not
matter much how the atomic electrons were treated
(in fact, they employed a Thomas —Fermi model for the
atom) . The total bremsstrahlung cross section is
roughly proportional to Z2+Z, &, where Z is the nuclear
charge and Z, ~ the number of atomic electrons. Thus the
relative contribution of electrons is about 1/Z and is
especially important for low-Z atoms. In this paper we
have in mind applications to astrophysics. Since the
cosmic abundances of hydrogen and helium are much
larger than that of all the heavy elements combined
(even when the abundances are multiplied by Z'
factors), it is only these elements and their ions which
we treat.

For two-electron or heliumlike atoms with the
electronic wave function approximated by a product
P(r&, rs) =P (rz) P (rs), as with a one-parameter Hylleraas
or with a product Hartree wave function, the atomic-
scattering parameter (3.30) reduces to

. l,,(s) = (Z—2) '+4Z(1 —Fg) —2 (1—FP) . (3.44)

The result is valid for any Z, including Z= 1 (H ion),
but would be more accurate for large Z where a product
expression is a better approximation to P(r~, rs).
In (3.44), Fj is the single-electron form factor
(0

~
exp (iq r&)

~ 0), which for a one-parameter
Hylleraas function is the same as the hydrogenic
expression (3.39) with az now replaced by

"For D)&1, the expressions for p; computed from (3.36) ac-
tually do not approach the unshielded expressions due to ap-
proximations made in deriving the f; in (3.37) . This discrepancy
is due to the "small terms" mentioned in Footnote 20, and comes
in only for A&3, making the @; calculated from (3.36) a little
too large (see also Table I) . Thus once the asymptotic unshielded
expression is approached (around 6 1), for larger 6 the un-
shielded asymptotic expression should be used.

ttz, = g/Z, = 68.5194/(Z —rz) . (3.45)

The functions Pq and g to be used in (3.31) are again
given by the general expression (3.36) which for
heliumlike atoms contains terms with P=1 and 2, in
addition to the constant term. In this case four integrals
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TABLE II. Cross-section factors~ when scattering system is p (or e), H, He+, He.

Pore
H He+

He: Hylleraas
(one parameter) He: Hartree-Pock

0
0.01
0.02
0.05
0.1
0.2
0.5
1

2

5
10

33.33
30.56
26.89
24. 12
21.33
17.68
14.91
12.14
8.49
5.70

45.79
45.43
45.09
44. 11
42. 64
40. 16
34.97
29.97
24. 73
18.09
13.65

44.46
44.38
44.24
43.65
42.49
40. 19
34.93
29.78
24.34
17.28
12.41

113.50
110.37
105.67
101.28
95.56
84.90
74.00
61.45
44. 66
32.99

111.14
108.27
104.13
100.34
95.21
84.87
73.72
60.70
43.04
30.52

121.54
120.99
120.46
118.89
116.89
112.00
101.28
88.86
74.03
54.26
40.94

117.54
117.47
117.31
116.61
115.51
111.53
101.26
88.43
72.90
51.84
37.24

134,60
133.85
133.11
130.86
127.17
120.35
104.60
89.94
74. 19
54.26
40 94

131.40
130.51
130.33
129.26
126.76
120.80
105.21
89.46
73, 03
51.84
37.24

~ See text and Footnote 21 concerning the values for 6 =5 and 10.

are needed

I,&»(A; Z) = (1 Fp)f, (q—; 8) dq, (3.46)

where p= 1, 2; f = 1, 2. The asymptotic values of these
integrals are, with Ii~ computed from one-parameter
Hylleraas functions,

Ig"&(0 Z) =Ig&'&(0 Z) =ln ag, +-', ,

I ~'& (0; Z) = I~ "&(0; Z) = ln ax,+—'„'; (3.47)

Ig"' (6; Z)-+Ig "&(5; Z) ~4y —1,

I,o~(~; Z)~I,&»(~ Z) -'y —-' (348)

The large-6 limits are, of course, just the unshielded
expressions. For general intermediate 6, values for the
integrals (3.46) may be read from the curves in (G69) .

The results have a very weak dependence on the
particular approximate wave function for the heliumlike
atom, since essentially the wave function only deter-
mines the precise effective lower limit q, ,„; in the
integral over the momentum-transfer distribution.
This small-q effective cutoff is the shielding effect and
depends on the spatial spread of the electron wave
function. However, because of the nature of the
integrands in (3.46), these integrals are roughly
—in q, ; so that the dependence on gH, ~,;k, is approxi-
mately logarithmic. To illustrate this, Table II gives
the values of gq and g& for atomic helium, for a one-
parameter Hylleraas function, and for a representation
of a Hartree —Fock function consisting of the sum of two
exponentials (MM65, G69). The Hartree —Fock values
should be the most accurate since the PHF gives a more
accurate representation of the cha, rge distribution. At
low energies (large 6) the @'s approach the unshielded
expressions, independent of QH„The dependenc. e on

PH, is greatest in the strong-shielding limit (6~0:
high energies) .

Also given in Table 2 are the cross-section factors
when the sca, ttering system is an unshielded proton or
electron, a hydrogen atom, and a singly ionized helium
ion. These are the most important species in a gas with a
cosmic element abundance. It should be noted, however,
that for 5=5 and 10, rather than the tabulated values,
(Z'+Z. ~) @ should be used"

dN, /dtdk =cPn, (do, /dk) . .(3.49)

Here d3~, represents the number of photons emitted
with energy (or momentum) within dk, by an electron
of initial energy Z, , and da.,/dk= 4, (k) would be taken
from (3.31) with the appropriate P,~,~. The bremsstrah-
lung spectrum is of the form k ' for small k, exhibiting
the well-known "infrared divergence. " In this section
we should first of all like to show the form of the spec-
trum for general k and its dependence on both the
energy E; of the incident electron, a,s well a,s on
whether the target species is ionized or not. These
effects can be illustrated readily for the case where the
target species is neutral atomic hydrogen a,nd ionized
hydrogen. For the latter we consider the combined
effect of the free protons and free electrons. Also, a.s in
Sec. 3.2, it is convenient to denote the bremsstrahlung
photon energy in terms of the initial electron energy
E,(me')

E;—Eg= k = eE,. (3.50)

Moreover, to avoid the divergence at 4=0, we shall

3.6 Bremsstrahlung Spectrum and Total Energy
Loss from Individual Electrons

For an electron passing through a medium conta, ining
various species (atoms, ions, and electrons) with number
densities n„ the bremsstrahlung spectrum per electron is
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bremsstrahlung event the electron loses (on the whole)
a large fraction of its energy. This effect is similar to
that for Compton losses in the extreme Klein —Nishina
limit (see Fig. 5) and will be discussed in more detail in
the last part of this paper.

3.7' Bremsstrahlung from a Distribution of Electrons

As we did for Compton scattering, we now derive the
total spectrum of bremsstrahlung photons resulting
from a distribution of high-energy electrons. In the
notation of this section where E, (units: mc') is the
(initial) energy of the incident electron and the differ-
ential number is dIkI, =I)I.(E,) dE;, the total bremsstrah-
lung spectrum would be found from

where
I, (weak shielding) ~I'kP „)„ (3.62)

dE;E, &"+"(sEP——,'E;k+k')

4 kEg I'

(3.63)
3 p —1 3 p p+1

For Ec Eo, we —c—an simply set E,=ED in (3.61) to get
)„ for Er, kor for——k Eo, we can set E,~2k in

(3.61) . Thus

bringing the slowly varying factor (fk out'side the
integrand and setting it equal to some typical value @.
That is, we set

dÃ„,/dtdk = f dE,X,(E;) (dN, /dtdk), (3.56)
4 Z'+Z, i ln 2EO Eo—k k ——',

where the last factor in the integral would be taken
from (3.49) . Again, we take a power law for 1V,(E,):

.V.(E,) =If,E, ",

=0)

E,&E,&E

otherwise. (3.57)

To simplify our formulas we shall assume that k«E,
so that the upper limit to the integration in (3.56)
does not contribute. The lower limit is

Er, ——max (k, E()).

By (3.49) and (3.31), with k in units of mc',

d+tot = &).r02cK,k '+14 dE E&"+').
Adk s

XL(2EP—2E,k+k') $1(k) ——,'E, (E,—k) ktk2(.)]
=&kr, 'cK,k—'pe, I,(k, Er, , p),

(3.58)

(3.59)

2E —(u—&)

—1

2kk, ' ' k'k, ' "+")
p p+1

+ $1(s)

E —(2 ~)

(3 60)
3 p —1 p

When Ez, k, I, in (3.60) is propor——tional to k (k

In the unshielded case or weak-shielding limit where
species (s) consists of a nucleus (Z) and Z, i electrons,
$1 and ktk2 approach

krak~„),
——4(Z2+Z, i) (ln L2E,(E,—k)/k) —12 i. (3.61)

With this function for @ in I, the integral cannot be
evaluated exactly in terms of simple functions. How-
ever a simple approximate formula may be obtained by

where we have defined I„the integrals which determine
(in addition to the factor k ') the magnitude and form
of the bremsstrahlung spectrum.

For species {s), or components" of species, and
energies where the strong-shielding approximation
applies, and the Q's are constants, the integral I, over
E, can be evaluated exactly, giving

I, (strong shielding)

(k(EO)

4(Z'+Z 1) (ln 4k ——',) (k) or E()). (3.64)

In the case of general or moderate shielding we can
do essentially the same thing Lapproximating, as in
(3 55) k &1& )=&~( )j:

where
I, (moderate shielding) ~I'&1k&,) (6), (3.65)

tkk (&)/2Eo) $k/(EQ —k) $

a/4k

(k(Eo)

(k) or E()) . (3.66)

4. SYNCHROTRON RADIATION

The problem of synchrotron radiation due to an
electron traversing a magnetic field has been treated in
numerous articles and reviews (W59, GS65, S49,
GS64A, GSS68, GS69). In astrophysical applications,
synchrotron radiation from a distribution of electrons
may account for the radio, optical, or x-ray flux from
an object, or, as believed is the case for the Crab
nebula, all three cruxes. In this section we hope to
clarify some of the conceptual problems in the deriva-
tion of the synchrotron formulas.

An electron of energy E=pmc2 spiraling along a
magnetic-field line with pitch angle &k. (the constant
angle between its velocity and B) spirals with angular
frequency 0= eB/&mc independent of &). The spe. ctrum
of emitted photons can then be calculated either by
considering the classical Lienard —Wiechert potentials
seen by a distant observer, or by transforming to the
electron's rest frame and calculating the Compton-
scattered spectrum due to the virtual photons of the
magnetic field. Because of the difhculties involved in
transformations to the noninertial rest frame, we shall
adopt the former approach here. To obtain the syn-
chrotron spectrum, we first calculate the radiation
emitted by an electron always moving perpendicular to
the magnetic field; Bessel functions are introduced
only near the end of the calculation. Lorentz trans-
formations are later used to generalize this spectrum to
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arbitrary pitch angle. This method of introducing the
pitch angle after the detailed calculation is completed,
helps to clarify the difference between the emitted and
received synchrotron spectra. In the final portion of this
section, the radiation received from a distribution of
electrons is calculated. Here the treatment is generally
kept brief since synchrotron radiation is discussed in

many articles and textbooks. For the same reason, the
polarization properties of the spectrum and the effect of
the medium through which the electron travels are not
treated here; the interested reader is referred instead
to (W59) and (GS65).

„(k)

,sk

P.„;„,a —— dE/dl = 2q'a'/3—c', (4.1)

where a is the acceleration of the charge q(= —e).
We try to find a covariant equation whose component
reduces to this expression in the nonrelativistic limit,
the idea being that (by the principle of covariance) if a
covariant expression is found which is valid in one
frame (where the electron is nonrelativistic), it is valid
in all frames. A covariant factor which reduces to a'
in a frame where the velocity, acceleration, and energy
loss are small is m '(dp„/dr) (dp„/dr) . Here p, =
(iE/c, p) is the energy momentum four-vector. In
terms of the four-vector velocity e„=p(ic, v), p„=mv„,
and dv. is the invariant proper time such that di-=

p 'df= (pic) 'dxs. Then (4.1) can be cast into the
covariant form"

2q 1 dp~ dp~

dpi'

= —— de, . (4.2)
3/3 ~2/2 d7' (g7

The covariant equation of motion is, in terms of the
four-vector force E„and electromagnetic field tensor
p

dp„/dr =K„=(q/c) F„„v„ (4.3)

For motion in a magnetic field with the s axis of a
coordinate system lined up along B, the only non-
vanishing components of F„„(p,v=0, 1, 2, 3) are
F2s= —Fss=B. Evaluating (4.3) a,nd (4.2) we then

23The radiated power is thus, for synchrotron losses, an in-
variant. This is because for this process the energy is lost in the
form of radiation, and for photons AE and At are parallel four-
vectors (see Sec. 2.1).

4.1 Synchrotron Total Energy-Loss Rate

We have already calculated the total synchrotron
power from a highly relativistic electron moving in a
magnetic 6eld in Sec. 2.4. That derivation was from
the Weizsaker —Williams approach and was specialized
to the case where the electron's velocity was at a random
direction to the magnetic field (a directional average
was taken). The more general expression can also be
derived very easily, however, with the help of the
principle of covariance, and we shall outline its deriva-
tion here.

The basic procedure is to start from the well-known
Larmor formula valid i' the eoerelutivistic limit:

Fio. 11. Trajectory of electron in synchrotron calculation when
the pitch angle is s./2.

get (r, = e'/mc')

dE/dt = —(2rs'/3c) y'8'(e~'+ e„') .

Or, introducing the angle o, between v and B,

dE/df, = —(2rs'/3c) y 8'v' sin' a.

(4 4)

(4.5)

For an electron moving through a randomly oriented
magnetic field, the average over angles in (4.5) yields
(2.21) .

Before proceeding to the problem of the synchrotron
spectrum, we should like to make some remarks con-
cerning the radiation reaction force due to synchrotron
radiation. It should be noted, for example, that in
(4.3) we include on the right-hand side only the force
due to the exterea/ field and do not include a term I'„
corresponding to radiation reaction. Such a term would,
in fact, be essential at very high energies if one were
interested in determining the time evolution of the
electron's orbit. For the appropriate form of I'„ in the
extreme relativistic case the reader should be referred
to the book by Landau and Lifshitz (LL62). The
reaction force is, of course, due to the energy loss (4.2)
itself and is opposite to the direction of motion. How-
ever, for the problem of the total energy loss this term
in (4.3) can be ignored. " This is evident when one
considers the process from the Weizsaker —Williams
approach. Then, clearly all that comes in is the flux of
virtual photons incident on the electron in its instan-
taneous rest frame. Thus (4.4), (4.5), and (2.21)

24 goshen it is included and substituted into (4.2), the total
energy loss becomes proportional to I~„IC„+2K„F„+F„F„,where
IC„ is the force due to external fields and F„ is the radiative re-
action force. The first term yields just the standard expression
(4.5). However, for a particle in a magnetic field, ICO ——0, and
K is perpendicular to p. Then since F, the radiative force, is
parallel to p, the cross term IC„F„vanishes. To calculate the
third term we note that F„ is approximately c '(idE/dr, n cos 9
dE/d7-), where o. is the direction of the force and 0 y ' is the
angular spread of the emitted radiation. Then, F„F„(cy) 'g
(dE/d7-)'. But this term is only significant when By&e/rP which
is far above the energy at which quantum mechanical effects
become important (see Sec. 2.4).
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should be exact up to energies where quantum-
mechanical effects come in (see Sec. 2.4). For the
determination of the synchrotron spectrum, however,
radiation reaction can be important, while at the same
tijne not affecting the total energy loss result. This is
because for the synchrotron spectrum it is the time
evolution of the electron orbit which is crlcial. Then it
is necessary to consider radiation reaction. One can
show that these effects come in for y'B&e/rP, or, in
terms of the synchrotron frequency (co, y'eB/mc), for
~,&c/r, . The corresponding synchrotron photon energy
is e,=5~.&70 MeV. This criterion (y'B&e/r02) corre-
sponds to the situation where the electron loses a large
fraction of its energy in one turn of its orbit. Clearly,
extremely high-energy (70 MeV) synchrotron photons
would be involved, and it is by no means clear that this
case ever occurs in nature. In all that follows we shall
assume that we are not in this domain and that y is
indeed essentially an adiabatic constant of the motion.

4.2 Radiation from an Electron Moving Perpendicular
to the Field

We consider here the situation shown in Fig. 11:an
energetic (y))1) electron spiraling around a magnetic-
field line with n=m-/2. The electron's velocity is then
given by

P = P (i cos Qt+ j sin Qt) . (4.6)

becomes,

where
dI„/dQ„= (e'/4m'c)

~

f„~' (4 g)

To find the spectrum of synchrotron radiation, we
work in the laboratory frame and apply the expression
for the energy emitted by a relativistic electron per
unit observer's time (t) per unit solid angle in the
direction n (see Fig. 11) given by (J62, p. 473),

dP(t) e'
~

n x L(n —p) x p] ~'

(4 7)dQ„4m. c (1—n P)'

The total power as a function of time is then propor-
tional to the square of a vector. Using the results
(A1)—(A5) of the Appendix, the spectrum of radiation

dt n x (n x p) exp [ia& (t—c 'n r) 7. (4.13)

It is well known that the angular distribution of
radiation in the rest frame of an accelerated charge
is a dipole distribution, which is roughly isotropic.
Therefore, using the angle transformation (2.4),
in analogy with Compton scattering for 7))1, (in
the lab) nearly all of the emitted synchrotron radia-
tion makes at most an angle 8~y ' with the instan-
taneous velocity vector. Thus, the electron radiates
in a given direction for a time At~(Qy) '. For times
significantly greater than this, the exponential in
(4.13) oscillates very rapidly, essentially making the
integrand zero. Therefore, for small t we may use the
expansion (see J62, page 482)

t—c 'n r(t) = '$(8'+y ')-t+Q't'/3). (4.14)

The double cross product in (4.13) is most easily
evaluated by using a different coordinate system.
Letting e=n x j, the velocity (4.6) becomes,

p =p(j sin Qt+e sin 0 cos Qt+n cos 8 cos Qt) . (4.15)

Then, to lowest order in 9 and Dt,

n x (n x p) = (e8+j Qt) . (4.16)

Substituting these expressions back into (4.13) and
letting (=Qt, we have,

d$(j$+e8) exp (i&a/2Q) (8'+y ') f+ ——
3

(4.17)

With p=co/2Q and q'=8'+y ' it is clear from (4.17)
that f„will be largest for p, y'&&1. Using these param-
eters, the square of f„becomes

parts using the relationship

(d/dt) $n x (n x p) /(1 —n p) j
=n x [(n—P) x P]/(1 —n P)' (4.12)

to obtain

"nxL(n —p) xp$
(1—n P)'

(g2 00

exp (i(ut) dt. (4.9) Q'— dx dy (xy+8')

(g3 y3)
Xexp ip g2 x—y+ . 418

3
Here, t is the observer s time, while t is the time at the
electron's position: t= t+c 'R(t), where R(t) =
i
v.b, v(t) i, so—

dt/dt=1 —n P.

This expression can be simplified by changing variables

(4 10) to x=u+v and y=u —v, and noting that the Jacobian
1s 2:

2'
(4.11)t=t —c—'n. r (t),

For very distant observers, t may be approximated

dv exp [2ip(&Pi+-', v') )
where a constant term has been ignored as contributing
only an over-all phase factor to f„. After a change in
variables in (4.9) from t to t, f„may be integrated by

X du(u' —5'+9') exp (2ipvu') . (4.19)
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The u integration can now b'e performed to yield

2 (~) 1/2~2 co

~
f„~'= dv exp [2i/i(r/2v+-', v') )Q'

X [(2pv) '/—'e'~/'(0' v—') —-'(2@v)—3/'e '~") (4 20)

To calculate I„from (4.8) it is necessary to integrate
over solid angle. Then, since 0 is the colatitude, dQ„=
2v sin [(v/2) —9)d8 2v.d9. The factor of 2v. arises
because I„is the energy emitted per revolution, not just
that seen by observers in one particular plane. Because
the integrand falls off long before 8= v./2, the limits on
the 0 integration may be extended to infinity. Then,
substituting (4.20) into (4.8) and using g'=e'+y ', the
0 integration becomes identical to the I integration in
(4.19) and we obtain,

8 GolI„=— dv[v (2/t'ai—v') '7 exp [2/ii(vy '+ iv') 7
Qc

(4.21)

The second term in brackets may be integrated by
parts to yield,

—8 cd'
dv[2v —(p'v) ') exp [2pi(vy '+—', v')).

(4.22)

The above expression can be simplified by setting

IO—
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4.0—

2.0—

|.0 2.0
X

5.0

FIG. 12. Graph of the function IC513 (x) .

t

40

(2 /fl )[I (/+I (2)7(423)results into(4. 23)and get

where the I„(&) correspond to the integrals of the two
terms in brackets in (4.22). In calculating the first
integral, we set v = x/y and (=4p '/i/3:

p Qc 2„/3@~3
dx(1+3x'+x')

)& exp )i 2&(x+ i3x') ). (4.29)

x dx exp [v3322$(x+-', x') ). (4.24)

~2I (2) dvv ' exp [2'(vy '+ ', v')); (—4.26)

The integrand of this expression can itself be expressed
as an integral to yield

00

I &" = d( dx(3x'-+x4) exp [i-', ](x+-',x') ).
2'�/3 Qy 3 —oo

(4.25)
To calculate I„(2),we note that

However, the integral over x is just —(2/v3)%/3($),
and the spectrum is"

28 CO

dkE: / (5), (430)
3'pQC 2(g/soya

where E5/~($) is the modified Bessel function of 5/3
order (see Fig. 12). Since (4.30) is the spectral energy
per revolution, to obtain the power emitted, (4.30)
must be multiplied by (2v.) 'Q. Doing this and changing
from cu to v= (2v.) '~, the spectral power becomes
(see Fig. 13)

differentiating with respect to p 2 and then integrating
from p ' to infinity yield

—2'
I„& '/= dy dv exp [2iv, (vy+~~v3)). (4.27)

~-2 —00

%3e'P p
P (~) = , — dN / (3),

Vc v/vc

where the critical frequency, v„ is defined as

v, =3+ '/4v. =3eBp'/4v-mc.

(4.31)

(4.32)

Finally, since /i =o&/20, the change of variables x= vy '/'

and f= ~vy'/2 yields

I (2)— d$
2'/3 Qy3

2
dx exp [i,'&( x-',+)x-) (4.28).

To obtain the total spectrum, we substitute these

Equation (4.31) gives the total instantaneous power
emitted by an electron spiraling around a 8 field with
pitch angle cx=v./2. The distribution P(v) is peaked
near v v, . At high frequencies, v)&v„ the spectrum

25 This can most easily be seen by using the relationship, IC513 ——

—E'1/3 —242/„, and the standard forms for E1/3 and IC2/~ given
in (J62).
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0.6—

FIG. 13. Synchrotron spectrum from a
single electron as a function of x =v/s, .

0.4—

l.0 2.0 5.0 5.0

approaches

P (v) (-', 7r) '~'(e'B—/mc') (v/v, ) ' 'e " "' (4 33)

Consider now an electron with pitch angle n spiraling
along a magnetic field in the lab system E.This electron
then has the equation of motion,

Meanwhile, at very low frequencies, v&&v„ the spectrum
(4.31) may be approximated by

d(ymcP)/dr= —eP xB, (4.35)

P(,) =L4 .B/r(-;):7(,/2„)
In our derivation of the synchrotron spectrum,

(4.31), we failed to take account of the fact that the
electron's motion repeats itself with period 2ir/Q.
Therefore, the spectral decomposition should be per-
formed using Fourier series rather than integrals. Such a
calculation as performed in (W59) and (GS65) shows
that the synchrotron spectrum is really discrete with
the emitted frequency, v, being an integral multiple of
Q/2ir, the gyra, tion frequency. However, since most of
the power is emitted at frequencies v))Q, it follows that
for all but the very low frequency part of the spectrum,
the synchrotron radiation distribution may be regarded
as continuous, and (4.31) may be used.

4.3 Radiation from an Electron with Arbitrary
Pitch Angle

In the previous section we calculated the spectral
power emitted by an electron spiraling in a magnetic
field with pitch angle ir/2. In that situation, the power
emitted by a single electron is equal to the power
received by a distant observer. Here, we calculate the
power emitted and received from an electron moving at
arbitrary pitch angle ~; it will be seen that the power
emitted does not equal the power received because the
average distance between electron and observer changes
with time.

from which it follows that P, y, and P~~ (the component
of P parallel to B) are all constants of the motion. Then,

where,
dPi/d]=Q x Pi,

9=eB/pic

(4.36)

(4.37)

~'= r-~y=y sin u. (4.39)

Because the same equation of motion (4.35) is applicable
in E' as wel] as in E, it follows that the frequency of
rotation in E' is given by

Q' =eB'/y'nzc =Q/sin n. (4.40)

To connect the spectra in K and K', we mak. e use of the

as before. Thus the frequency of rotation is independent
of pitch angle.

To calculate the synchrotron distribution in the lab
system E, we transform to a coordinate system E'
inoving with velocity P~~ with respect to E. Then, in
E', the electron spirals with pitch angle ci'= sr/2. Since
P~ ~

=P cos n, for y&&1 and cx&&y ', the Lorentz factor I'
connecting E and E' is given by

I'= (l.—P~ cos' u) '" 1/sin n. (4.3g)

Since the relative motion between the two frames is
parallel to the magnetic field, 8'= B.Also, transforming
p =E/@ac', the zeroth component of a four-vector, yields
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Doppler-shift formula

.'=r-i(1+P cos 0')-, , (4.41)

where 0' is the angle the radiation niakes with the
direction of 8'. However all of the radiation in E' is
within a cone of angle ~1/7'&&1 around the direction
of the electron motion. Therefore, 0'=7r/2+O(y' '),
which means that cos 8'((1, and (4.41) reduces to

/ ~

v =v Sln o.. (4.42)

t.= (3eBy'/4trme) sin n. (4.45)

This is the standard expression for the synchrotron
spectrum.

It has recently been pointed out (EF67, S68, GSS68)
that when nWtr/2, the power emitted by an electron
does not equal the received power. To calculateI'„;,d, we note that power received is proportional to
the Aux at the observer:

~received(ir) dP rr. P P (PN) /Pj (4.46)

Then, using the invariance of v 'de, we have

&-'-.( ) = ("/ ")(~ '/~ ) P'( ') = (
'

) '~'( ')

(4.47)
The received spectrum thus becomes

&received(&) &emitted(&) /sin tty (4 48)

where remitted is given by (4.44) . One can easily see that
the total power follows the same relationship as (4.48).
From (4.5), using Pem;tted =I"we have

2 2 02 2I received 3rD &~ p ~ (4 49)

and therefore the total received power is independent
of pitch angle.

The physical cause for the received power not equaling
the emitted power can be seen from Fig. 14. Since the
period of emission, r=2~Q ', does not equal the ob-
served time between pulses,

7reeeived = 7' Sin2 (4.50)

This can also be seen by applying the Doppler formula
(4.41) to (4.40) for Q, ;,d. From energy conservation,

In Sec. 4.1 it was shown that for radiative losses the
electron's energy loss rate is a Lorentz invariant.
Therefore, I-', ;«,d ——E', which implies that

E. ;tt.d(t) = (dt'/dv)E'(t') =sin nE'(p'). (4.43)

Since P'(ir') is given by equation (4.31) calculated for
tt'=7r/2, Eem;«ed(p) is obtained from (4.43) by sub-
stituting the correct expressions for v', p', and 8'
obtained above. The result is

v3e'8 sin a v
+emitted(ir) = — dtlttit($), (4.44)

tgC Vc v/ vc

where v, is now redefined as

the energy emitted in one period must equal that
received in one period which gives

+received +emitt dct/'rr eeicv de+emitted/Sin ~ (4 5 )

Actually, (4.51) can be obtained by considering a

conservation-of-energy equation in which the total
emitted power equals the energy Aux through a surface

at the observer, plus the change in total energy con-

tained within the surface; this change being due to the

changing distance between electron and observer (see
Fig. 14).

Thus, we see that the equations calculated for an

electron spiraling with pitch angle ~/2 are easily

generalized to arbitrary 0.. The complication that the

power emitted does not equal the power received is

essentially due to the ever-changing average (over
period) distance between electron and observer. For a
distribution of electrons confined within a given region,
however, the emitted and received powers are identical

since on the average the distance between the electrons
and the observer does not change with time. This
problem is treated in the next section.

4.4 Synchrotron Spectrum from a Distribution
of- Electrons

In the last section we showed that for a given elec-

tron, the power emitted differs from the power received

by a factor of sin'~. In this section we calculate the
total power received per unit volume per unit frequency,
dW/dvdh, from a distribution of electrons in a magnetic
held. It will turn out that for electrons emitting from a
fixed region of space, the received spectrum obeys the
classical formulas (W59) and equals the emitted

spectrum ( GSS68) .
Let Q,b, (y, n, r, h) dydQ r'drdQ be the total number

of observed electrons within r2drdo, with energy within

dy and pitch angle within dQ . Then, using P,„;.d(v)
from (4.48), the received synchrotron spectrum
becomes

dg /dpCh= ffI'„;..d(~) cV.b, (y, n, r, h) dydQ . (4.52)

This is the energy received from a fixed unit volume at
the position r at the observer's time t. Since )V.b. is

not a very useful quantity to work with, we define

X(y, tt, r, h)dydQ as the density of electrons at r at
time t with pitch angle within dQ and energy within dp.

Now, consider the electrons within the volume

element r2drdo shown in Fig. 15.Letting n' be the angle
between 3 and the observer, we see that n' = tt.+0(y ') .
This figure therefore shows that if the electron spends
a time t within r2drdo, it is observed to radiate only
for a time,

h.b, ——h(1 —p cos n cos n') h sint a. (4.53)

An electron within that volume element is therefore
observed to radiate only for a fraction sin2 o. of the time
it spends within the volume. Taking into account
retardation effects, one can relate X and iV,»„. The
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FIG. 14. Distance between received pulses, cr„,.

result obtained by (GSS68) is

Nabs (r cL, r, t) = sin2 n cV (r, 0!, r, t v/c) .—(4.54)

Using this, along with the result (4.48) in (4.52), we
obtain for the received spectrum

dW/dvdt= ffP, ;t~,q(v) N(y, a, r, t r/c) dydQ .—
(4.55)

But this is just the synchrotron emission spectrum per
unit volume at the time t r/c. Therefo—re, when the
distribution function N is not time dependent, the
emitted and received synchrotron spectra from a 6xed
volume in space are equal. If synchrotron emission from
a given moving volume of electrons is being considered,
then the integral over all space of equation (4.55) will

give the correctly Doppler-shifted result for the total
received Aux. Indeed, if the distribution function for a
single electron (a delta function) is used in equation
(4.55), the result (4.48) is recovered.

We now calculate the total synchrotron emission
spectrum per unit volume from a power-law electron
energy distribution. We further assume that the dis-
tribution function can be put in the form

N(y, a, r, t) =kg vN(n)/4m, (4.56)

with y contained within some range y~(y &y~. Then,
if k contains no time dependence, substituting this
form of N into (4.55) also gives the total received
spectrum per unit volume. The factor of 1/4~ appears
above so that the spectrum reduces to ky & when there
is no pitch angle dependence.

Substituting the above spectrum into (4.55) for the
total synchrotron emission yields

dW v3ke'B
dQ N(n) sin n

dvdt 4+me'

known functions, we make the assumption that the end
points of the electron energy spectrum do not con-
tribute. This will be true when y~ and y2 are such that
v, (1)«v and v. (2)))v. Then, the limits on the y in-
tegration may be replaced by zero and infinity. This
integral is then performed in (W59) to yield

eke'B 2mnzcv
—&v—"~'

(p+ 1)-'I
I —:,(3P—1)3

XI'[»(3P+19)$ dQ (sin ~) &"+"t'&V(n). (4 58)

In the case of local isotropy, N(a. ) = 1, and the integral
over a can be performed. The final result is

t t/' 4~gt, 38(s &) f2 3z tu —&)/&

a (p) v
—&~'&''-(4.59)

dvd$ mc 4z'mc

where

~(p)
2&~'&~'v3r[(3 p —1)/12]r[(3p+19) /1211'[(p+5) /4]

8~'"(P+1)I'[(P+7)/43
(4.60)

vt cos 0

72 V

X Av ' — d&5(3($). (4.5&)
Pl Vc v/v~

In order that the result be expressible in terms of
FIG. 15. An electron of pitch angle n spiraling through the axed

volume element r2drd Q.
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A table of values for a(p) is given in Table III, but for
1.5&P&5, a(p) is approximately equal to 0.1.Equation
(4.59) then represents the total synchrotron emission of
an isotropic distribution of electrons.

Finally, it is worthwhile noting from (4.58) that
starting from a power-law electron spectrum with index

P, the emitted (and received) synchrotron distribution
becomes a power law with index (p —1)/2. This is
exactly the same situation as for Thomson scattering
found in Sec. 2 of this review.

S. EFFECTS ON THE SPECTRUM OF
HIGH-ENERGY ELECTRONS

a(P)

1
1.5
2
2.5
3

5

0.283
0.147
0.103
0.0852
0.0742
0.0725
0.0922

TABLE III. u(P) in Eq. (4.60) /from (GS65) J.

So far in this review, we have calculated the photon
spectrum due to Compton scattering, bremsstrahlung,
and synchrotron radiation from a single very high-

energy electron. We have also used a power-law electron
energy spectrum in order to calculate the total radiation
spectrum for the above processes. In general, this
radiation spectrum depends very strongly upon the
electron energy spectrum.

In this section it will be seen that the electron energy
spectrum is in turn determined by the processes causing
the electrons to lose energy. When electrons lose only a
very small portion of their energy in one collision,
their energy spectrum is governed by a differential
equation. On the other hand, when electrons are likely
to lose a significant portion of their energy in one
collision, it becomes necessary to use an integro-
differential equation to calculate their spectrum. The
latter occurs in the case of bremsstrahlung or Compton
scattering in the Klein —Nishina limit when an electron s
energy may change with time as in Fig. 5. Previous
articles (FM66, K62) have often used just a differential
equation to obtain an approximate solution in this case,
but the results of this section indicate that, for example,
for bremsstrahlung losses, the exact result may diGer

by about thirty percent.
After considering the general equation for the electron

distribution function, we shall present solutions for
certain special cases of astrophysical interest. Because
this section is rather mathematical, no attempt is made
to present all possible solutions to these equations;
instead the reader is referred to other sources (FM66,
GS64a, K62, M61) . Perhaps this section could be used
as a starting point for future, more detailed treatments
of these problems.

5.1 Continuity and Integro-differential Equations
for the Electron Distribution

u. Coetielity Equation

In certain energy-loss mechanisms for high energy'
electrons, such as Thomson scattering or synchrotron
radiation, the energy lost by one electron or the emitted
photon energy in one collision is much less than the
energy of the electron. Denoting E = the total rate of
energy loss for an electron as a function of E, we have

the condition
E/E—«iVc~, (5 1)

where the Q;(E, t) represent sources and sinks of high-

energy electrons corresponding to possible production,
annihilation, or gradual leakage from the region of space
considered. The above equation is the continuity
equation in energy space for electrons. Often, when
there is a loss of electrons to the system by either
annihilation or leakage, it is possible to set one of the

Q, (E, t) = X,/T, where T—is the characteristic time of
the loss of electrons. '6 The continuity equation then
becomes

BN,/Bt+ (B/BE) (EN,)+&V./T=QQ, (E, t). (5.3)

Ginzburg and Syrovatskii (GS64A) obtain the general
solution of (53):

t

&,(E, t) = dEo dtoG(E, t; Eo, to) QQ;(Eo, to),

where the Green's function is given by

G(E, t;E, t,) =
~

E
~

'e .~'B(» t, .)-, ——
(5 4)

(5.5)

26For example, if electrons are completely removed from the
system by collisions, T~(Eco-) ', or if leakage occurs, T is the
characteristic time for an electron to leave the system.

where o- is the total cross section for the processes con-

sidered and E is the number density of objects scat-
tering off the electrons. We assume /~1, or the relative
velocity is equal to c. The above inequality states that
the fractional loss of energy in a given time interval
must be much less than the number of collisions in that
time interval.

When the above relation holds, it is possible to write a
differential equation for the electron energy spectrum.
If X,(E, t)dE is the number of electrons with energy
within dE at time t, then Ã, (E, t) E(E) is the
Aux of electrons entering the internal dE&, and

E,(E+dE, t) E(E+dE) is the flux leaving the interval.
Equating the increase of electrons within dE to the total
Aux entering the interval, we obtain

BN,/Bt+ (B/BE) (EcV.) =QQ, (E, t), (5.2)
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with

dE
7'= (5.6)

eo E(E)
For most energy-loss processes for electrons, there is

a spread in the photon distribution emitted from a single
electron. Therefore, an electron loses energy in random
increments determined by the photon spectrum. For this
reason it may be necessary to include on the left-hand
side of (5.3) an energy-space diiTusion term of the form,

,'B'(DN, )—/BE'). Here D represents the mean-
squared energy change per unit time. For the electron
interactions considered in this review, the fluctuations
are small, and the diffusion term becomes unimportant.
This term is usually kept, however, if statistical accel-
eration is being considered. This is described in further
detail in (GS64A) and (M61).

distribution function. Using (2.18) for the total energy
loss

E—= ',o,c-(E2/m2c4) (8)—=aE', (5 9)

In many a,strophysical applications, the source
function for high-energy electrons takes the form
(GB67, GS64)

Q(E, t) =KE (5.11)

This is essentially the source function for secondary
cosmic-ray electrons (cf. GB67) or for particles
accelera, ted by statistical mechanisms (cf. GS64A).
Then, assuming steady-state conditions, as we will for
the remainder of this section, " (5.10) becomes

we obtain the continuity equation

BN,/Bt (B—/BE) (aE'N. ) =PQ;(E, f) . (5.1O)

b. Integro diferent-ial Equation —(B/BE) faE'N. (E)]=KE ", (5.12)

Processes such as bremsstrahlung and Compton
scattering in the Klein —Nishina limit cause an electron
to give up a large fraction of its energy to one photon,
and therefore condition (5.1) will not hold. It then
becomes necessary to consider the random-walk char-
acteristics of an electron's energy and to use an integral
to represent the Qux of electrons into the interval dE.

I.et P(E, E—e) dedt be the probability that an elec-
tron with energy E will undergo a collision causing it to
lose an amoun. t of energy between e and e+de in time Ch.

Again, equating the flux of electrons entering dE to the
increase in density, we obtain the integro-differential
equation

BN.(E, t) B+ —[EN.(E, t) ]+N.(E, r)
Bt BE

X dE'P (E, E') — dE'N. (E', t) P (E', E)
mc2 jV

=ZQ'(E, &) (5 7)

Here E represents the total energy loss due to those
processes for which (5.1) is valid, while P(E, E')
represents the total probability of emitting a photon
within de by those processes for which (5.1) does not
hold.

~.2 Solution for Synchrotron and Thomson-
Scattering Losses

When an electron loses energy by Thomson scat-
tering and synchrotron radiation only, it is not likely to
j.ose a large fraction of its energy to one photon, and
condition (5.1) holds. This follows from (2.18) since

E/E = so pcN )y (c—)/mc']((o AN. (5.8)

Since (2.18) is valid for both Thomson scattering and
synchrotron radiation, it follows that the continuity
equation (5.2) may be used to describe the electron

with solution

N. (E) = $K/a (I'—1)]E—&r+n. (5 13)

Thus, both synchrotron radiation and Thomson scat-
tering steepen the electron distribution spectral index

by one. This is just the power-law electron spectrum
used earlier to obtain the total Aux of photons due to
these processes.

When the leakage loss, ¹/T,is p—resent along with
synchrotron and Thomson scattering, it is possible to
use the Green's function (5.5) to obtain the soiution2'

K exp ( 1/aTE)—
N, E = aT r—1

aE'

1/aTE
a'~~r —2e(

(5.14)

If the losses due to leakage are much less than those due
to radiation, then. T»1/aE, and the exponentials ma, y
be expanded to obtain to first order

V (E) ~E/a(I' 1)]E—~r+OI 1 (aTEI') —'] (5 15

5.3 Solution for Klein-Hishina (Comyton) Losses

Compton scattering in the Klein —Nishina limit ma, y
become an important energy-loss mechanism for
electrons suKciently energetic so that (e)E»m'c',
where (e) is the characteristic photon energy of the field

in which the electron is immersed. In Sec. 2.8 it was

shown that in this case a,n electron is likely to give up a
significant portion of its energy to one photon. It there-
fore becomes necessary to use the integro-differential
equation (5.7) to describe the electron distribution
function.

27 For a discussion of the solutions of the continuity equation
as a function of time for various source functions and for various
energy-loss mechanisms, see {K62).

28e assume I')1. For I"(1, one must use diferent limits
of integration in (5.14).



265Qz 1z-I„ne&gy E/ectro ns zn GasesAND R I. G«R gLU~»HAL

en'@hensowyaas a function osource fUIlCtlo n foi- theThen, as u""' g
hat no

~

er aw sou
ero r-lossassuming that no

nlS111S al e IITlpol tan dA/dE
(5.23)

iV. (E)
mc 2

P(E, E') dE'

'=KE-r. (5.19)iV. E')P(E', E) dE'=KE

e pi
' ' E E') is related to pE ~

'
the hotonHere, t epihe probability P(E,

n"by the relationspectrum y

P(E, E') =P(E, E—pi) = dp, (5.17)
d /dade'

onds to the lowest valuee lower limit L correspon s o
hoton of energy e =

o a' . . 2.50),
f e from which a p o o

obtained. From ( .

(5.18)min (p) =L=m'c4/4E'.

E, E') is obtained by1 robability P(E, iThus, the tota p
ver the initia p

ssume a mono-5.16), fi'm lif the solution of

bility beconles

of 2 (E) is much lessif the relative ratte of change o
ofE ", A(E) may

or I

ate of change o
l (521), d hd f om the integral in

can e pb erformed over a
Thi , to lowest os gives, to low

( +1)27I18 C 1'(p1$P(E', E)E,(E) dE =/ /

(p+2)

(5.24)

e ual powers»»nto (5.21) and equating q
d b h=I —1 an 0 aiof E, we find p

«pE r+' ( 4ppE 1 2p
~

ln

e ectronsdistribution for ele
h Klein-Nishina

This is
Compton scat gterin in t eundergoing

etic photon e'th a monoenerge
'

limit wi
'

ll logarit mic ay esiilce
argument of the ogai-I

P(E E') = mm2c'r 02m dA/dE p (5.26)

E" m'c4(E E')—
+X EE. 4E

(5.19)

obtained from (5.

(5.20)E' &I'c /4pp

' 4/4Epp, the integral ql e uationThen, to lowest order in m2c

ITleSbeco

4ppE@Pc'w,'e

(ppE

dE'¹(E')P(E,E). (5.21)IC

would betion to this equation wou h an exact soluAlthoug a

¹(E)to be near y a p0 abtained by assuming X,

(5.22

of the form

)—A (E)

A,E) is assumed to vary rnuc mHere,

e s ectrum from onPNo ~g,
Wlt h Lorentz facto r or, equ'

'
te ral in (5.16) it is now

}1h lo lmit 4necessary
ccur when an e ecvalue o

f hith a photon o en .m ton scatters wi

P(E, E') dE'= dA, ,
~&~4t4@/ &dadoed Q—g

(5.28)
inte rais, we obtainInterchanging integra s,

mc /4
/P(E, E') dE = dX,„dE'

mc2/4 dpdtd(E E'))—mc

ner in the distribution 5.27) isP ''"' gy'n
24 h ~ d()-( )&not too ig o

a roximate y equapp
u er limit of the & in

I ifi
ur

e ut equa o ifirst term can e p

ition (5.23) is satisfied.an
nder o Comp on

o integrals forssar to perform two
'

g-
te ral equatio

tain
eac e the in g

m must be per
/17 '"d

hoton spectru

5.16). The integration inbe erformed in Eq. (5.16 .
(5.16) becomesthe 6rst term oof



266 REvIzws oz MQDERN PHYsIcs APRIL 1970

(o)E&)m'c4/4, (5.29) becomes

E 00

P(E, E') dE'= dc
mc 0 tn2c4I4 Ededtd (E E') ]—

(5.30)

With these simplifications, the procedure for ob-
taining the electron distribution in the case of a thermal
photon spectrum, (5.27), is exactly the same as in the
monoenergetic case. The electron spectrum is then
given by

&V, (E) = gPEE—r+

7rm'c'roo(kT) '

48k T 1 2I' —1

ln + —— —C~—Cg, (5.31)
m2C4

When an electron traversing a dilute gas loses energy
predominantly by means of bremsstrahlung, it once
again becomes necessary to employ the integro-
differential equation (5.7) to determine the electron
spectrum. Even though the bremsstrahlung infrared
divergence do-~k 'dk implies that a large number of
low-energy photons are radiated, it is seen from Fig. 10
that the energy emitted by an electron per unit photon
energy, the energy emission spectrum, does not drop oQ

very fast until k E. Therefore, an electron is likely to
lose a significant portion of its energy to one photon, and
its energy will change in discrete jumps with time.

In this section we consider the case where bremsstrah-
lvng is the only significant energy-loss mechanism. With
a power-law source spectrum for electrons and with
leakage losses present, the steady-state integral equation

where C~ ——0.5772 and C~=0.5700. Besides the Klein-
Nishina condition ATE&)m'-'c', we have imposed the
a,dditional condition kT&rnc'/4 to obtain the result
(5.31).

Thus, we have seen in this section that in the extreme
Klein —Nishina limit the steady-state electron spectrum
can be represented as a power law times a function
whose dependence on E is slow enough for it to be taken
out of the integral in (5.16) . However, in Sec. (2.9) we
assumed a pure power-law electron spectrum when we
integrated dE~, /dtdo o,ver the electron distribution to
obtain the total photon spectrum. But since the factor
in brackets in (5.31) has such a slow relative rate of
change, it could have been taken out of the integral in
Sec. (2.9) anyhow. In that case, it would be necessary
to substitute E e~ in the argument of the logarithm in
both (5.31) and (5.25) in order that the total Klein-
Nishina photon Aux not be a function of E.

It should be noted that at very high electron energies,
losses in pair-producing electron —photon collisions will

dominate Klein —Nishina losses. We have not treated
this process here.

5,4 So]ution for Bremsstrahluug Losses

becomes

1V.(E) dE'P(E, E')
1

dE'N. (E')P(E', E)+
T

As in Sec. 3, energy is expressed in terms of mc2. The
probabilities

P(E, E') =cQn, (do,/dk). , (5.33)

where k=E—E'. We consider here only the case of
electrons traversing a gas of pure hydrogen. The
generalization of the results derived here to higher Z
elements readijy follows from the considerations of
Sec. 3.5.

In the case of extremely high-energy electrons (E&30)
traversing neutral hydrogen, it is appropriate to use the
strong shielding (6«1) expression for the cross section.
Then, since o» &p&—=p, the probability matrix (5.33)
becomes

P(E, E') = pro'~nrrq (E E')—
&«1—:(E'/E)+(E'o/Eo)j (5 34)

X.(E) =RE &. (5.35)

Then, with corrections of order E ', the first integral
in (5.32) becomes

1V.(E) dE'P (E, E')
1

AE ~pro'cnIrq ——ln —+ — . (5 36)
3

Meanwhile, the second integral gives

dE'P(E', E)X,(E') = AE "o.roocnrrq-
E+y

4 g 4 2
&&

—l —+ C +4'(P) 4'(P+1)+4'(I+2)

(5.37)

where Euler's constant =C~ ——0.577, and the psi
function/(p) is the logarithmic deriva, tive of the gamma

Because of the infrared divergence or (E E') ' factor- —

in P (E, E'), it is clear that both integrals in (5.32) will
exhibit a logarithmic divergence at E'=E. However,
since (E E')P(E, E') is —well behaved near E'= E, the
divergence problem can be avoided by integrating the
first integral from 1 to E—g, and integrating the second
from E+rI to infinity. Then, in the limit of g—&0, the
diverging contributions of both integrals exactly
cancel.

To solve (5.32), we assume the solution to be a, pure
power law:
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function:

p(p) = (d/dp) ln. r(p). (5.3S)

Thus, the diverging terms in (5.36) and (5.37) do

indeed cancel each other. Finally, by substituting the
above terms into the integral (5.32) and equating
powers of E, we find that p= I' and obtain the steady-
state electron spectrum

EE ~
1V,(E) =

nr&'cnrrp[ s+—sCs+P(I') —sp(I'+1)+f(I'+2)]+T ' (5.39)

The spectrum (5.39) is valid for electrons losing energy
by bremsstrahlung collisions with hydrogen atoms in the
strong-shielding limit E&30. This solution is nearly
exact, the erst-order correction being of order E '.
The effects of gradual leakage, the T 'E, (E) term in
(5.32), have been included in the electron spectrum.
The distribution (5.39) would not be valid if T were a
function of E but for very high-energy electrons this is
not usually the case."

We now consider the spectrum of very high-energy
electrons in a region of completely ionized hydrogen. In
Sec. 3.4 we showed that the electron —electron
bremsstrahlung spectrum for k))1 is essentially the
same as the pure Coulomb bremsstrahlung spectrum.
For smaller k, exchange effects must be considered.
However, since exchange effects are important only in
the low-energy end of the spectrum, their effect upon
the electron distribution corresponds to a t,"oetAslols
energy loss process. Furthermore, since E))1, this
energy loss will be much less important than high energy
bremsstrahlung in determining the electron spectrum.
We therefore assume do-, .=do-, ~, and obtain the
transition probabilities

P(E, E') = Scrs„ro'ck '(1+ (E"/E') —-'(E'/E) j

where k=E—E'. Since the integral equation cannot be
readily solved with this form of P(E, E ), it is useful to
reduce (5.40) to a simpler function. Most of the k

dependence of P(E, E—k) is in the k ' factor, and
therefore if we substitute the characteristic photon
energy k E' E/2 into the logarithm in (5.40),
we obtain

P(E, E') Snm, r 'c(E—E') ' ln 2E, (5.41)

where the 2 has been ignored as small compared to
ln 2E. Also, the bracket in (5.40) has been set equal to
unity; when the total energy loss LfkP(E, E')dkj is
computed, the terms with (E'/E) ' and 2E'/3E—
effectively cancel, so this should be a good approxi-
mation. This approximation is equivalent to assuming
the energy spectra in Fig. 10 to be horizontal straight
lines. The meum absolute error due to this assumption is
about 20oro for E= 10'. However, one can see from I'ig.
10 that most of this error occurs in the low-energy end

'0 j:f the electrons leak from a region of space of dimension R,
the characteristic leakage time, T=Ec 'P . But since E&30 in
our discussion, P can be set equal to 1 for all the electrons.

of the spectrum where ln (2EE'/k) becomes large. This
error can then be corrected by adding a coetielols
energy-loss term to the integral equation. Since the
difference between the total energy loss predicted by
(5.40) and that found from (5.41) is nearly zero any-
how, we will ignore the continuous energy-loss correc-
tion term. "

To solve the integral equation (5.32), we deine

P(E) =1V,(E) ln 2E.

An integration of (5.32) by parts yields

Scrn, rase ln E p(E)+Snn„rs'c

(5.42)

g(E) =A(E)E—r, (5 44)

where A(E) is a very slowly varying function of E.
Again, substituting this into (5.43), we find p= I' and

A(E) =KIS~~,r, cLCs+y(1) j+(T ln 2E)-i}-.

(5.45)

Therefore, A(E) is indeed much more slowly varying
than E &, and the steady-state electron spectrum

X,(E) =KEr/I Sr'„rs'c ln -2E PC~+/(I') j+T 'I, —

(5.46)

is a self-consistent solution of (5.43). As in the Klein-
Nishina case, the bremsstrahlung solution (5.46) is
not the pure power law used in Sec. 3 to calculate the
total photon spectrum from a distribution of electrons.
However, the denominator in (5.46) can be taken out
of the integrals in Sec. 3.7 by setting E 2k in the argu-
ment of the logarithm.

Fina]ly, when high-energy electrons traverse a
"This correction term can, however, be estimated. Setting

I'(E, E—k) =k 'f(E), f(E) is obtained by demanding that
(ks), the mean-squared photon energy, be the same as that
found from (5.40). Then, the continuous energy-loss correction
is given by the difference of (3.53) and the energy loss found
from E(E, E—k) =k 'f(E). Using (k') to normalize E(E, E')
weights the high-energy (discrete loss) end of the spectrum in
z(z, z').

00 4 (E)dxlnxg'(x+E)+ —=KE r. (5.43)Tln 2E

In obtaining (5.43) the divergence problem is handled
in the same way as in the strong-shielding case. Using
the same approach as in Sec. 5.3 for Klein —Nishina
losses, we assume
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partially ionized gas, the electron spectrum is obtained
by setting P(E, E') equal to the sum of the contribu-
tions due to the two components. Then, the electron
distribution becomes

Ã, (E) = (KE-"/~~, 'c)

solid angle defined by dA at a, large (and retarded)
distance R from a moving charge. I.et the unit vector
n denote the direction of dQ from the radiating charge.
In a, finite time interval, the energy flux Js =dIV/dA
can be written as the time integral of the radial Poynting
vector, or as an integral over a frequency spectrum:

X ( „L——',+-,'C +y(r) ——,'4 (r+1)+P(r+2) ] Js ——JS(t) dt=fI(id) did; (A1)
+Sr~in 2E $Cx+P(1') j+(ni''cT) 'j ' (547)

Thus, in general, both bremsstrahlung and leakage
losses do not change the power of the electron injection
spectrum.

We have assumed in this section that electrons lose
energy only through bremsstrahlung. If, for example,
synchrotron losses are also present, the electron
spectrum is more

dificult

to obtain. However,
(dE/Ch) b,. ~ E, while (dE/d/)», q ~ E'. Therefore
synchrotron losses dominate for E))EO, where Eo is the
energy at which the two energy losses are equal, and
bremsstrahlung is most important for 1&(E(&EO. The
electron spectrum is then given by the synchrotron
spectrum (a 1'+.' power law) for E))EO, and by the
bremsstrahlung loss electron spectrum for E«EO. The
spectrum near Eo can be estimated by treating the less
important energy loss as a perturbation.
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APPENDIX: SOFT PHOTON EMISSION—
VIRTUAL PHOTON SPECTRUM

A very useful formula can be derived in radiation
theory which gives the probability of the emission of a
soft photon of energy within Ad~ accompanying a change
in velocity of a charged particle. The nonrelativistic
formula is derived in a number of textbooks (cf. J62) .
We give a simple outline of its derivation here for the
case where we are not interested in the direction of
emission of the photon; that is, we give the emission
probability integrated over the emission solid angle.
This simplifies the derivation considerably. Also we give
the relativistic generalization of the formula for the
special case where the change in velocity of the particle
is approximately perpendicular to its initial direction,
corresponding to small angle scatterings.

Consider the radiation Qow through a perpendicular
element of area dA =R'-'dQ, where dQ is the element of

here I(~) is the energy flux per unit frequency or the
Fourier amplitude of the energy Aux. In terms of the
electric and magnetic fields which are mutually perpen-
dicular, perpendicular to n, and of equal magnitude

~(') = (c/4~)
I E«) I'= (c/4~)

I
&(&) (' (A2)

The field intensities are given in terms of their Fourier
components:

E(t) =JL„e '"'
ck&,

—

E =(2m) —'JE(t)e"'dh, (A3)

(similar!y with B(t) a,nd 8„).Substituting (A3) into
(A2) and (A1), a,nd making use of

fe '"'e'""dt = 2~5((u —cu') ) (A4)

we get I(co) =-', c
~

E„~'=-',c
~

8„~'. Now both positive
and negative frequencies are contained in I(cd). If we
include these together by writing I„=I(co)+I(—a&) =
2I(co), the total Fourier amplitude of the energy flow
per unit area is

Relating the energy dS"„radiated in de to the proba-
bility of emitting a photon of energy within Ada by

and sJ.nce
dt V„=L)dm„

dS'„=dJg dA = I„dcoR'dQ)

(A6)

(A7)

we get the basic result:

d" =«(«'/fi~)JLI & I' or
~

E„~'j dQ. (Ag)

This last expression, which is exact, can be put in a
convenient form by relating 8„ to the velocities vo and
vf of the charge(s) before and after scattering. Intro-
ducing the vector potential

& = (2') 'J
~

curl A(t)
~

e'"' d],

make. ng use of the relation

curl A(t) =c-'A xn (A10)

8„-:(2nc)-'i gAxn i. (A11)

valid for a propagating plane wave for which A is a
function of n r—ct (n is the direction of propagation;
A= BA/Bt), and taking the low-frequency limit Le'"'~1
in (A9)—this is the first approximation made), we get
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Here 5A is the change in the vector potential; in terms
of the particle velocity

e vA= 8 1—Ii V/k'
(A12)

For a nonrelativistic particle, (AS) then yields, on
integration over dQ, the very simple expression
(ks = e'/Sc 1/137)

dw„(nonrel) = (2u/3ir) (hv/c) '(dke/ke) . (A13)

This formula can also be derived by the methods of
quantum electrodynamics (cf. JR55) .

We are interested in a formula of the type (A13)
applicable to the scattering of a highly relativistic
particle. In particular, the case of small angle scattering
is most important. For this case the Anal and initial
velocities are related by ScodIq/dAdko=I„=c

i
&„('. (A19)

transverse fields" E(t) and B(t) which are mutually
perpendicular and both equal to, in the extreme
relativistic limit,

E(t) =B(t) =qyb/(bs+y'kst') st'. (A18)

This result is derived in a number of textbooks (cf. J62,
PP62) as well as in the original papers (W34, W35) and
follows from a straightforward Lorentz transformation
of the static Coulomb field of the particle in its rest
frame. Because of this result, the effects of the 6elds of
the incident particle are the same as produced by a
pulse of incident photons with the total time-dependent
fields given by (A18). The spectruin and equivalent
number of these photons can be easily found from our
previous developments. If dE is the differential number
of these photons incident on an element of area dA,
then

vr =vs+ Av, (A14) The Fourier component E„is given by

with Qv((vp, v~ and 5v approximately perpendicular to
vo. One can then derive the relativistic generalization of
(A13) by substituting (A11) and (A12) into (A8),
integrating over dQ, and then expanding the integrand
to lowest order in Av. This integration over the photon
emission angle is a little tedious but yields the simple
and more general result

e. (2 j-' fE(t)s'"=dt

q
" exp (ikdbx/yc)

de. (A20)

For kd«yc/b the integral in (A20) approaches 2, so that
fol a given M~ say)

dW (~ hV
~

&&C) = (2kk/3v) (yhv/k:)'(de/ke), (A15) E„+q/v cb, -b«b, y c/ke (A21)

that is, just &' times (A13). That this should be the
result can be seen from a simple invariance considera-
tion. Since dw„ is a probability, it must be an invariant:

dw (av) =dw' (Av'). (A16)

We can consider one reference frame (E') where the
particle velocities are small and (A13) applies. Now
consider the process in the lab frame (IC) which has its
x axis aligned with the x axis of E', with the relative
motion along these axes. The initial particle velocity is
along the x axis and Av is taken to be in the y direction.
Then, from the Lorentz transformation of velocities,

~v.'=(V) '1

Now v, v, so that Av„' yAv„. Then, since dke/a&=

dw'/k0', we see how (A15) follows from (A16) and
(A13) .

The developments we have just outlined here can be
applied to obtain quite readily an important result
associated with the so-called 8'eissdker —8'illgms
method. The idea behind this special method or
approach, which is applied to the br emsstrahlung
problem in Sec. 3.2, is based on the following result.
The electric and magnetic fields produced at a fixed
point by a highly relativistic charged particle of charge

q passing at an impact parameter b are principally the

If the charge is incident at random impact parameters,
we can take dA = 2xbdb. Then, for the number of virtual
photons incident in the frequency interval Cko due to
incident charges (q=Ze) with random impact param-
eters within db, we get

dÃ= (2nZ'/vr) (db/b) (dke/kd) . (A22)

We emphasize that this result holds with the restriction
(A21) on b and ke. For b larger thats b,„, for example,
the spectrum (A22) drops off due essentially to the
oscillatory exponential factor in the integral in (A20) .
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