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Expressions are derived for the total energy loss and photon-production spectrum by the processes of Compton scatter-
ing, bremsstrahlung, and synchrotron radiation from highly relativistic electrons. For Compton scattering, the general
case, the Thomson limit, and the extreme Klein-Nishina limit are considered. Bremsstrahlung is treated for the cases
where the electron is scattered by a pure Coulomb field and by an atom. For the latter case the effects of shielding are
discussed extensively. The synchrotron spectrum is derived for an electron moving in a circular orbit perpendicular to
the magnetic field and also for the general case where the electron’s motion is helical. The total photon-production spec-
trum is derived for each process when there is a power-law distribution of electron energies. The problems of the effects
of the three processes on the electron distribution itself are considered. It is shown that if the electron loses a small frac-
tion of its energy in a single occurrence of a process, the electron distribution function satisfies a continuity equation
which is a differential equation in energy space. For the more general case where the electron can lose energy in discrete
amounts (as in bremsstrahlung and extreme Klein—Nishina Compton losses), the electron distribution function satisfies
an integro-differential equation. Some approximate solutions to this equation are derived for certain special cases.
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1. INTRODUCTION

In a number of areas of astrophysics, for example in
considerations of models of cosmic radio sources,
problems involving the interaction of a highly rela-
tivistic electron with its surrounding medium are
common. This “medium” is usually a low-density
partially ionized gas with a cosmic element abundance
(consisting mostly of hydrogen and helium) which is
permeated by a radiation field and a magnetic field.
The electron interacts with this medium by means of
essentially four processes: (i) by making elastic and
inelastic collisions with the atoms and ions of the gas,
(ii) by emitting a bremsstrahlung photon during these
same scatterings, (iii) by undergoing Compton scat-
terings with the photons of the radiation field, (iv) by
being deflected by the magnetic field, emitting syn-
chrotron radiation or “magnetic bremsstrahlung” in the
process. The first process (i) is important only at low
energies v.=E./mc* <1000 (cf. GB67) and will not be
considered in this review. There are two reasons for
treating the other three processes together in a single
review. First, all three are photon-producing processes!
and can therefore be directly responsible for gaining
information about the interaction of the electrons with
the medium through the detection of these photons.
Second, each process is essentially a special case of one
basic process; this process is Compton scattering.
Bremsstrahlung [process (ii)] can be considered as
Compton scattering of the virtual photons of the
Coulomb fields of the particles in the scattering system;
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1 The pure Compton-scattering process (iii) does not produce
a new photon. However, in collision with a highly relativistic
electron, a low-energy photon from the radiation field has its
energy increased by a large factor, so that a new hkigh-energy
photon is produced.
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synchrotron radiation [process (iv)] can be viewed as
Compton scattering of the virtual photons of the static
magnetic field.

In this review we shall confine ourselves mainly to the
physics of the three processes. However, in working out
the details we have tried to present the final results in a
form useful in applications, especially in applications to
the general area of high-energy astrophysics (including
cosmic-ray physics). As we have mentioned above, an
obvious example of a type of problem where these
processes come into play is the cosmic radio source. It
is generally accepted that the radiation from these
objects is produced by the synchrotron process. Since we
know that there must be high-energy electrons in these
sources, the other two processes, Compton scattering
and bremsstrahlung, must also come into play due to
the presence of a photon gas and a matter gas (con-
sisting mostly of partially ionized hydrogen and helium)
in the same volume. Recently, much of the effort in
radio and optical astronomy has been devoted to the
quasistellar sources. These compact objects may, in
fact, be the best example of a natural configuration
wherein all three processes are important. Another area
of recent development in astrophysics where the
processes are believed to be important is x-ray and
y-ray astronomy. For example, one popular idea for the
origin of the diffuse isotropic background of cosmic
x rays is that they are due to Compton scattering of
high-energy electrons by the recently discovered
cosmic blackbody radiation. Also, models of discrete
x-ray sources are often very similar to those for radio
sources and, in fact, some x-ray sources, for example,
the Crab Nebula and M87, are also strong radio
sources.

For the reader interested in applications of the results
derived here to problems in astrophysics we can recom-
mend several books in particular. In the field of general
radio astronomy the fine work by Shklovsky (S60) is
still very useful. For the very special quasistellar
objects, we are fortunate to have the excellent, fairly
up-to-date (at this time) work by Burbidge and
Burbidge (BB67). A useful reference for cosmic-ray
phenomena is the book by Ginzburg and Syrovatsky
(GS64a). Two recent reviews on x-ray astronomy are
by Gould (G67) and Morrison (M67b).

Other reviews have been written on the basic physics
of bremsstrahlung, synchrotron radiation, and Compton
scattering, but with a different point of view. An
oft-cited review treating (among other subjects)
bremsstrahlung is that of Bethe and Ashkin (BAS3)
which, however, is concerned primarily with bremsstrah-
lung when the target scatterer is a heavy (kigh-Z)
atom. Our review treats only the case of low-Z atoms,
namely the cosmically abundant species H and He.
Many reviews of synchrotron radiation have been
written, and for this reason our treatment has been
fairly brief, focusing mainly on some special difficulties
which we have tried to clarify. A good recent review is

that of Ginzburg and Syrovatsky (GS69). No review
of Compton scattering resembling our treatment has
been presented before; however, Felten and Morrison’s
paper (FMG66) is a common reference giving a special
application. Finally, we should like to give some
references here for the basic cross sections derived from
quantum electrodynamics. For these the reader is
referred to the books by Heitler (H54) and Jauch and
Rohrlich (JRS5) and the article by Olsen (068).
Throughout this review we shall refer again to many of
the articles we have just cited above.

Although we have tried to produce practical results
in this review, we have also made every attempt to
increase understanding of the basic physical phenomena.
Thus, in this review we have outlined a number of
alternative derivations of particular basic results.
Often, to simplify the derivations, use is made of the
invariance of certain factors or the covariance of certain
equations. Simple arguments of symmetry are also
frequently employed. The three processes of bremsstrah-
lung, Compton scattering, and synchrotron radiation
are really excellent examples of applications of classical,
semiclassical, and quantum electrodynamics.

In the last major section of this paper, we discuss the
energy distribution function of the collection of high-
energy electrons emitting radiation by these three
mechanisms. It will be seen that not only is this function
crucial in determining the total radiation spectrum, but
also that this distribution function is in turn dependent
upon the processes causing the electrons to lose energy.
This distribution function satisfies an integro-differential
equation in the independent variable, the particle
energy. Although some articles (FM66) use a differen-
tial equation to obtain an approximate solution, an
integro-differential equation is really necessary essen-
tially because for the bremsstrahlung process and the
Compton process at high energy the electron can lose a
large fraction of its energy in one occurrence of the
process. Because of the nature of the problem, this last
section is somewhat mathematical. We indicate some
approximate solutions to this equation which are valid
in certain special cases.

2. COMPTON SCATTERING

The effects of Compton scattering during the passage
of a high-energy electron through a photon gas have
been treated by a number of authors with a view toward
astrophysical applications (FP48, D51, HOTY64,
GS64, FMo66, GB67, G67, BSL67). The general
problem is the following. We have a photon gas with a
differential number density dn=n(¢, ig) ded@=number
of photons per cm?® with energies within de moving in
the direction defined by the unit vector ig and the
element of solid angle dQ. An electron of energy ymc?
moves through the gas in some direction and undergoes
Compton scattering, its energy being reduced in the
process. We ask: what is the distribution in energy
(designated &) and solid angle () of the scatiered
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photons? In a more general case we might have a dis-
tribution of electrons dn.=mn.(E.,iq,)dE.dQ passing
through the photon gas and could ask for the total
spectrum of Compton photons, scattered per unit
volume and time dN;/didVde;dQ. The solution for this
problem in the completely general case is very com-
plicated and has not even been attempted. However, a
number of simplifications result in certain limiting
cases which, in fact, correspond to conditions in some
problems in astrophysics. In particular, we shall con-
sider the interactions of highly relativistic electrons,
v>1. A further simplification results when the energy
of the photon before scattering in the electron rest
frame (e&’) is much less than mc?; this corresponds to
the Thomson limit in which the Compton cross section
is independent of the energy of the incoming photon.
The opposite case (&>>mc?) corresponds to the extreme
Klein-Nishina limit in which the Compton cross
section can again be approximated by a convenient
expression.

The simplest problem is the calculation of the electron
total energy-loss rate which, in the Thomson limit, is
related in a simple way to the total energy density of
the photon gas. We treat this problem first in this
section and then outline the derivation of the expres-
sions for the Compton-scattered photon spectra in the
general case and in the various limiting cases.

2.1 A Useful Invariant

The ratio, dn/e, where dn represents a differential
photon number density? can very easily be shown to be
an invariant. In terms of the differential number of
particles dN (an invariant), the three-dimensional
spatial volume element dV, and the four-dimensional
invariant volume dX = dxoduidxsdxs= dxodV,

dn=dN/dV = (dN/dX) dx. (2.1)

Thus dn transforms as the time component (x,) of the
photon position four-vector. Since the photon four-
momentum p, and position x, are ‘“‘parallel” four-
vectors in that their spatial components are related to
their time components in the same way (that is, /%=
pi/po), the ratio dw/po=(Lao/dx,)/(Xan'ps) =
dxy'/py’. Then, since dN/dX is invariant, we have in
terms of photon energy py=c¢,

(2.2)

This result has been indicated in other papers® (FP48,
FM66), but the above derivation seems simpler.

dn/e=1invariant.

2 The differential number density may represent, for example,
the total number density within de, or the number density within
de and within the solid angle dQ defining the direction of the
photon momenta, or the total number of particles moving within
Q.

3 The other method of deriving (2.2) is to consider the trans-
formation properties of cedn which is the differential energy flux
or Poynting vector d.S, and express dS(c 4?) in terms of the
amplitude A of the associated electric and magnetic fields. One
finds 4/A"=e/é for a plane wave moving in any arbitrary direc-
tion making an angle 8 with the axis of relative motion.
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A further result can be given, since the ratio @®p/e is
an invariant (d®p is the three-dimensional momentum
volume element). Taking the ratio of (2.2) and this
invariant yields

dn/d*p=invariant. (2.3)

2.2 Relativistic Kinematics in Compton Scattering

Consider a highly relativistic electron moving through
a photon gas in the direction of, say, the x axis of a
coordinate frame in the lab system (K). The electron
suffers Compton collisions with photons moving at
various angles § with respect to the x axis (see Fig. 1).
In the electron’s rest* frame the corresponding angle
¢’ is given by

tan 8’ =sin 8/v(cos §—28), (2.4)

where v and B¢ are the Lorentz factor and velocity of
the electron in the lab frame. When ~>>1, then
B—~21—3772 and for all except those photons moving
practically along the x axis in K, ¢’ is very small. In
fact, as B—11in (2.4)

tan 8'——~y~1 cot (6/2). (2.5)

Thus in the electron rest frame K’ the photons are
incident in a narrow cone in the direction of the negative
«’ axis. Moreover, the photon energy in K’ is

€ =~ve(1—B cosf) (2.6)

and so varies (for given €) from enin’e/2y for =0 to
emax X 2ve for §=m. Thus, the photons with f near 0 are,
in K’, soft photons which produce only very small
recoils of the electron in the Compton scattering, and
are therefore unimportant.

In scattering off the electron in K’ the photon goes off
at an energy &' and scattering angle 6,' (see Fig. 2).
The energy e’ after scattering is given by the well-

* At rest before an individual photon gives it a recoxl during
the scattering.
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- 1+ (¢ /me?) (1—cos 6,)
In the lab system this energy is

a=ve&' [ 148 cos (7—8)) J~ve/ (1—cos b)), (2.8)

and we have € waxX2ve)’. Now in the Thomson limil
€<<mc?, and so by (2.7), &/x€; in this case the electron
is given a very small recoil in the scattering. Then

(2.9)

/ 2
€1 maxk’/z’yfl max %47 €,

so that the maximum energy of the scattered photon is
greater than the initial energy by the large factor 4v2.
The maximum corresponds to a head-on collision of the
electron and photon. Instead of deriving the result
(2.9) by considering two Lorentz transformations, one
could also proceed by more elementary means, applying
momentum and energy conservation to the head-on
collision of a photon and an electron of energy >>mc?.
Although in the Thomson limit the characteristic
energy (~n?%) of the scattered photon is very large, it
is still small compared with the electron energy, so the
electron loses a small fraction of its energy in each
Compton scattering. This is nof true in the extreme
Klein—Nishina limit where the scattered photon carries
away a large fraction of the electron energy. Thus in
the K-N limit the electron does not lose its energy con-
tinuously. We shall treat this limiting case and the
effects of the discrete energy losses later on in this review.

2.3 Total Scattering Rate

Expressions for the number of Compton scatterings
per unit time per electron can be gotten quite readily in
the general case (including the Thomson or Klein-
Nishina limits), since here only the total cross section
is involved. This simple case also illustrates the use the
relativistic invariant dn/e and transformations to the
electron’s rest frame (K’). The expression for the total
scattering rate is most readily written down in terms of
the rate in K’. In K’ immediately before a scattering
the electron is at rest; time intervals are related by
dt=+dt', and the scattering rate is

AN/di=~"1dN'/dl =vy~icfo dn'.  (2.10)

The integration is over the number density of photons
in K'; o is the total Compton cross section. However,
using the invariant (2.2) and the energy transformation

(2.6), we have
dN/dt=c[a(1—8 cos ) dn. (2.11)

At this point we might remark on the meaning of the
factor ¢(1—B cos ) ; it is just the relative velocity of
the photon and electron along the direction of the
latter’s motion. Since the electron is the particle for
which we compute the collision rate, it is clear that such
a factor must come in if we consider the problem only
in the lab frame.’

In the Thomson limit and where the photon distribu-
tion is isotropic, the cos # term in (2.11) integrates to
zero and we have, very simply

dN/dt=aycn  (for dn isotropic). (2.12)
In many astrophysical problems, the photon gas is
isotropic, but in a number of cases already considered
it is not. Compton scattering has been computed in
models of discrete sources such as the Crab Nebula
(G65, M67, RW69) which do have anisotropic spectra,
and in these treatments the anisotropy effects (such as
the factor 1—p cos 6) have been ignored. For the casc
where the electron distribution is isotropic even though
the photon distribution is not, averaging over electron
directions eliminates the cos 6 term in (2.11). However,
usually the Compton spectrum of scattered photons
rather than the total scattering rate is computed, and
in this case anisotropy effects do indeed come in.

2.4 Total Energy-Loss Rate—Thomson Limit

In the Thomson limit we can make use of the fact
that the energy of the scattered photon in the lab
frame is much larger than its energy before scattering.
Then we can write for the electron energy-loss rate

—dE,/di=dEy/dl, (2.13)

where £ is the energy of the scattered radiation. But
dEy/dt is an invariant since it is the ratio of the same
components of two parallel four-vectors. Since in the
Thomson limit

&’ =€ =photon energy in K’ before scattering,
we have

—dE./dt=dEy/dl' = [orce dn' =opc8’, (2.14)
where o= (87/3) 7 is the Thomson cross section and
&' is the total photon energy density in the electron’s
rest frame K’. Here &' is related to the energy density in
K; by (2.2) and (2.6) with g—1

&' =[e2(dn' /€)=~ (1—cos 8)%dn. (2.15)

For an isotropic distribution for dn, averaging over

5 In collisions with two massless particles, for example the colli-
sion between two photons, one cannot, of course, go to a particle
rest frame [see, for example, (GS67) .
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angles,
((1=cos 0)%)iso=1%, (2.16)
and
8,=%72f5 d”iso='§’y28iso, (2.17)
—dE,/dt=%07c¢Y*8is0. (2.18)

Thus the total energy loss in the Thomson limit for an
isotropic photon gas can be derived very easily, in fact
without evaluating any integrals. One might also note
that only the total cross section comes in; the angular
dependence of the scattering does not enter. Actually
the result has another application. As we have men-
tioned earlier, synchrotron radiation can be considered
as Compton scattering of the virtual photons of the
static magnetic field. We can then carry over the results
(2.14) and (2.18) to the synchrotron problem. How-
ever we must verify that the Thomson limit is applica-
ble. The characteristic virtual photon energy in the
electronrestframeis ~fiw, , wherew,” = eB’ /mc~~yeB/mc
is the cyclotron frequency. This is the frequency of
variation of the fields in the electron’s frame (which is
not an inertial frame). In an inertial frame in which the
electron is instantaneously at rest or moving with a
nonrelativistic velocity, »,” would be the frequency of
its cycloidal motion. Then the energy of the synchrotron
photon in the lab frame would be, as in Compton scat-
tering of “real” photons, [see (2.8, 2.9)]

(2.19)

For the validity of the Thomson-scattering approxi-
mation we must have

es~yhiw, ~v%B/mec.

yhwLmc. (2.20)

For all but extremely high-energy electrons this relation
is satisfied. In the derivation of (2.18) an assumption
of isotropy was made. For the synchrotron application
the angle averaging analogous to (2.16) would be an
averaging over random directions of the electron
motion with respect to the direction of the magnetic
field B. Then, having already performed this averaging,
we can write in analogy with (2.18) for Compton
scattering in the Thomson limit,

— (dE./dt) s=%0rcy*6s, (2.21)
where the magnetic-field energy density is
&p=(B*)/8m, (2.22)

doex act
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and the average is of the mean-squared magnitude of B.
Note that (2.21) would fail (and, in fact, be too large)
at very high energies when (2.20) would fail to be
satisfied.

The mean energy of the Compton-scattered photon
{¢) in the Thomson limit can be found readily by
combining the results (2.12) and (2.18) since

—dE./di= (& )dN/dl. (2.23)
This yields, for an isotropic photon gas,
() =387%(e), (2.24)

where (¢) is the mean energy of the photon gas (before
scattering). For example, for a gas with a blackbody
spectrum

(e)=[3¢(4) /¢ (3) kT =2.70kT,

where the {’s are Riemann ¢ functions.

(2.25)

2.5 Corrections in the Thomson Limit

Two basic approximations have been made in
deriving the result (2.18): (i) the scattered photon
energy is assumed much larger than the energy before
scattering; (ii) the Thomson limit of the Compton
cross section has been employed. Approximation (i) is
better than (ii), since, as we have seen, e~v2%, while
the relative correction to the Thomson cross section is
of a lower order. Another approximation made [implied
essentially by (ii)] is that the energy € before scat-
tering in the electron’s rest frame is equal to the energy
of the scattered photon (e'); the relative error made
here is first order in ve/mc?. Therefore the correction to
the Thomson-limit energy loss cannot be computed as
easily as the limiting expression (2.18). In fact, it is
convenient to write the basic expression for the energy
loss in terms of lab system quantities, although the
(invariant) differential cross section is most con-
veniently expressed in terms of electron-rest-system
variables. Neglecting ¢ compared with ¢, -our basic
energy-loss expression would be

—dE./dt= [ [ec(1—cos ) dndoe;  (2.26)

here the factor ¢(1—cos 6) is just the relative velocity
of photon and electron along the direction of the latter
(see Sec. 2.3). The exact Compton cross section
(Klein—Nishina formula, cf. JRS5S5) and its approximate
form in the Thomson limit are given by?®

ne 7 ’ ’
2;23> (f_ 1_~20,)5(,_ ¢ )
dQde 2" (e' A A R Ty ey pp—

’

2 ’
372 (14cos? 6) (1— ——6—5 (1—cos 01’)) 8 [el’—e’ (1—— < (1—cos 0{))]
mc mc?

2¢
oror—op | 1— —+ =+ |,
m

(2.27)

6 An average over initial photon polarizations, and a sum over final photon polarizations has been performed.
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Substituting e =€'y(1—cos6’) and the approximate
form of do from (2.27) into (2.26), integrating over
dQ/, and averaging over angles for the initial photon
distribution (assumed isotropic), we get

—dE,./dt=30rcy?8[1—$5(v{e®)/mc*{e)) ++++]

in terms of the mean and mean-squared photon densi-
ties. For a blackbody photon gas the correction term
in the parentheses of (2.28) has a large coefficient; the
term is 24.15vkT /mc2.

(2.28)

2.6 Compton Spectrum in the Thomson Limit

Some of the results derived in this section have been
obtained previously by a number of authors. We shall
follow most closely the treatment of Jones (J68).
The final results will be given for the case where the
photon distribution before scattering is isotropic.
However, it will be clear how the formulation should be
generalized to include the anisotropic case. We derive in
detail the results for the spectrum of Compton-scat-
tered photons in the Thomson limit. The derivation in
the more general case follows along precisely the same
lines except that the Klein—Nishina cross section must
be used. We proceed by computing the Compton
spectrum produced by a high-energy electron of energy
ymc? scattering off a segment of the initial photon dis-
tribution having energies within de. The total Compton
spectrum would then be obtained by integrating over e
and over the distribution of electron energies.

Agalin, it is convenient to consider the process in the
rest system of the electron. As we have already seen
(Sec. 2.2), in this system the photons isotropic in the
lab system are incident on the electron essentially in a
parallel beam. The basic problem is the determination
of the spectrum of these photons in the beam. Let
x=cos 0, where 8 is the angle the photon’s velocity
makes with x axis along which the electron moves (see
Fig. 1); then —1<x<41, and the differential photon
density in the lab system K is, for an isotropic dis-
tribution,

dn=mn(e, x) dedx=3n(e) dedx. (2.29)

Here 7(e) de is the total differential density (integrated
over x). Then, by the invariance of dn/e,

ten(e)dedx=€1dn' (¢'; €) de,

(2.30)

where dn'(€';e)de’ represents the total differential
photon density in the beam in K’ (that is, integrated
over all the small angles in the beam) within de’ which
are due to photons within de in K. By (2.6), | d¢’/dx | =

YBe—ve, so that
dn'(€'; €) =n(e) (€/2ey) S(€; /2y, 2ve)de, (2.31)

where we have inserted a step function to designate the

range of €'

S(z;a,b)=1 a<z<b

=0 otherwise. (2.32)

The distribution for the photon density is linear” in €.
In K’ the distribution in energy and angle of the
scattered photons is, per electron per interval of €’

AN, /A de A%’ de’ = dn' (€'; €) c(do/dQ'dey”), (2.33)
where
do’/dﬂl’dfll——)%foz ( 14+ cos? 01/) 0 (61/ - Gl) (234:)

in the Thomson limit® [compare the exact formula
(2.27)7]. We are interested in the energy distribution of
the scattered photons in the lab frame. This is obtained
from (2.33) by

dNy.e /’ / dN,.. di' ddd/de’
B dt'ded/de’ &t de

dide;
(6,Y")

and the variables which are eventually integrated over
are indicated. However, it is convenient to integrate
over, instead of @/, the variable

(2.35)

m'=1—p cos 6;/~1—cos 6/, (2.36)
since, as a result of (2.8)
a=ve'n'. (2.37)

Then, since df'/dt=1/v, de&'/da=1/yn/, and d%'=
2wdy, the result (2.35) can, by substituting (2.33)
and (2.34), be cast into the form

dN, .
dtdél

w12 n(e) de
2,-y3 62

X [[ 5 0-amtarss (2 —¢) deins. (239
m YM

The integration over € is then performed using the 6
function. Before integrating over #;/, the step function
must be expressed in terms of 7, instead of ¢. We
then have

S(€; €/2v, 2ve) =S (m'; e/ 2v%, 2a/¢),
and the integral over n, is
S/ =2 (2= 20/ 40" S dny' = (= 2/ —2Inny"+1) L7,
(2.40)

(2.39)

where the limits are

U=min (2, 2¢/¢) =2; L=max (0, e1/2v%). (2.41)
71t is interesting to note that while this distribution is linear,
if we were considering the transformed distribution of a given
fixed number of photons isotropic in K, that distribution would
be flat.
8 This formula can be derived by purely classical electro-
dynamics (cf. J62).
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Finally we have
dN, .,
dtdel

wr%c n(e) de ( a €’ )
= 2¢ In — 4y%e— — ).
2yt & e 4% et 2v2%

(2.42)

This result is perhaps better written by expressing the
scattered photon energy in terms of its maximum value

€= 46"/261. (2.43)
Then
AN, ./ dtdey=8wricn(e) def (&), (2.44)
where the distribution function is
f(él) =2¢ In &+¢&+1—2¢2 (24:5)

This distribution is plotted in Fig. 3; it has no peak and
in fact has its maximum value at =0. Thus, the dis-
tribution is quite broad and favors the low-energy end.
The moments of the distribution are

ff(él) dél:%)
Jaf(a) da=3,
so that (2.12), (2.18), and (2.24) are checked.

(2.46)

2.7 General Case and Extreme Klein-Nishina Limit

The derivation of the spectrum of photons scattered
by a high-energy electron from a segment of an isotropic
photon gas of differential density dn=n(e)de, for the
general case of arbitrary +ve, follows along the lines of
Sec. 2.6. The essential difference is that the exact
Klein—Nishina formula (2.27) must be used for the
Compton cross section. Here we shall merely quote the
result, first obtained by Jones (J68).

In this general case the electron recoil is more impor-
tant in that a large fraction of the electron energy can be
lost in one Compton scattering. It is convenient to
express the energy of the scattered photon in units of
the initial electron energy, that is

€= ’Y’WLC2E1. ( 2 47)

Then the general result for the scattered photon spec-
trum per electron is

ANy, 2mrmc® n(e)de
dtdEy v €
1 (PeQ)2 :I
291 14+2¢) (1— - (1—
X[ g In ¢+ (14-2¢) ( q)+21+req( 91,
(2.48)
where
Te=4dey/met, q=FE/T(1—FE). (2.49)

The dimensionless parameter I'. determines the domain
of the scattering; the Thomson limit corresponds to
T'<<1. In the Thomson limit also, F;<<1 and the last
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F16. 3. Scattered photon distribution function
in the Thomson limit.

term in the brackets in (2.48) is negligible, the whole
expression reducing to (2.42). However, (2.48) is
exact for any T'; the only assumption or restriction
made in its derivation is that y>>1.

The range of values of £y, which follows purely from
the kinematics of the problem, is

1>>e/ymE<EL<T./(1+4T). (2.50)
The corresponding range for ¢ is
1>>1/4v2<¢<1. (2.51)

Further, as we did in the Thomson limit, we can express
the scattered photon energy in terms of its maximum
value

Ey=T (14T )",

and the range of E; is essentially from 0 to 1. The
spectral distribution of the scattered photons is con-
tained in the expression in brackets in (2.48). Here T,
is a parameter in this distribution which we denote as
F(FEy; T.). We also normalize the distribution

(2.52)

1
| B(@s 1) ami=1. (2.53)
0
The function F(£;; T',) is plotted in Fig. 4 for several
values of the parameter I'.. For all T'. the distribution
goes to zero at the maximum, F(1, T'.) =0; however, it
has quite a different form for different values of T..
For T'«<1 the distribution approaches the Thomson-
limit curve of Fig. 3 (normalized) which is peaked at
the low-energy end. In the extreme Klein—Nishina
limit corresponding to I':>3>1 the distribution has a peak
near the high-energy end; thus in this limit large energy
losses in individual Compton scatterings are dominant.
In fact,
1 (Tg)?

(Tg)® (1—q>), (2.54)

F(By; T) — Inl"e‘1<l—f—
(B )r€>>1( ) 2141
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5.0

40—

Te=0

F1G. 4. Normalized scattered photon distribution function in the
general case for I',=0, 1, 10, 100.

and since ¢<<1 except for £y near 1, we have
F(E;notnear 1; T>>1)—(In T')~[1—E+ (1—E)].

(2.55)
In the above expressions the factor In T'c arises from the
normalization.

2.8 Total Energy-Loss Rate—Extreme
Klein-Nishina Limit

We have already derived (Sec. 2.4) the simple
expression for the total energy loss in the Thomson
limit; in that case the total loss rate is proportional to
v? and to the total energy density of the photon gas. In
the general case the total loss rate per electron would
be computed from

—dE/dt= [(e—e¢) (AN /dide) de. (2.56)

In (2.56), for all the cases of interest, € can be neglected
in comparison to ¢. The distribution dN/dide should be
taken from (2.48) in the general case, and an integration
over e should also be performed. Jones (J68) has
obtained an expression for dE/dt from (2.56) by inte-
grating over e; however, the formula is a little com-
plicated, and, more important, no integration over e
(the initial photon spectrum) had been performed.

In the extreme Klein—Nishina limit a simple expres-
sion for dE/dt can be found by using the distribution
(2.54) in the factor dN/dtde in (2.56). Integrating over

€1, one readily finds

dE
NGO
dt r>1 €

dey 11)

— — —)de. (2.57
me 6)° (257)
For an electron passing through a blackbody distribu-
tion for which

n(e) =[n*(fic)* [/ (e*"—1)],  (2.58)
integration over e in (2.57) gives
dE (mckT)? NRT 5
- E éllloz ﬁ:" (ln mcz - '6 —‘CE—CI) .
(2.59)
In (2.57), Cx=0.5772 (Euler’s constant) and
6 > Ink
Ci= =X == =0.5700. (2.60)
2o B

Note that in the extreme Klein-Nishina limit —dE/d}
increases only logarithmically with £ (or v) and is
essentially proportional to 72 (or (8)/(e)?), while in
the Thomson limit, —dE/dt< E*T*. However, in the
extreme Klein—Nishina limit the total energy loss does
not have the same meaning as in the Thomson limit,
where in each Compton collision the electron loses a
small fraction of its energy. In the extreme Klein—
Nishina limit, that is at very high energies, the electron
loses its energy in discrete amounts which are a sizeable
fraction of its initial energy. The energy of an electron
as a function of time might be as in Fig. 5. We shall
consider this problem again in Sec. 5.3.

2.9 Total Compton Spectrum—Integration over
Electron and Initial Photon Spectra

We have derived the spectrum of Compton-scattered
photons dN, ./dide; resulting from the interaction of
electrons of energy ymc* with an isotropic density
segment, dn=n(e)de, of photons of energy within de.
The total Compton spectrum results from an integra-
tion over v and e. If the differential number of electrons
were dN,=N,.(y)dy, the total Compton spectrum
would be

dNor/dtde= [ [N.(y) dv(dN,./dide), (2.61)

where the last factor would be taken from (2.48) in the
general case, and the integration would be over v and
e. These integrations can be performed to give useful
formulas for the case where the electron energy dis-
tribution is a power law:

N.(v)=Ke?,
=O’

'Y(]<'Y<'Vm

otherwise; (2.62)

vo and v, are the cutoffs in the distribution. For the
domain where dN, ./dide, may be approximated by
the Thomson-limit expression (2.42), the lower limit
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on the v integration in (2.61) would be®

Ymin=mMax E% (61/5) 1/2, 'Yo]-
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t
Fic. 5. Sketch of a typical time evolution of an electron’s energy due to losses by Compton scattering.
where the parameter
(2.63) F(p) =270 (p*+4p+11)/(p+3)*(p+1) (p+35)]
XT3 (p+35) Iz (p+5)]1.  (2.66)

We shall assume that we are always away from the Jow-
energy end of the Compton spectrum and are con-
sidering photons energetic enough so that % (e;/€) 12> ,.
Moreover, we assume we are away from the Aigh-energy
end so that 3(e/e)V’Ky, and the upper part of the
v integration in (2.61) does not contribute. We then
obtain @ power law in €,

dZ\'Tt ot

—_— P2+4P+ 1 —(pt+1)/2
dtdél

(p+3)2(p+1) (p+5)

=77’ c K 273

X / Do) de. (2.64)

When #(e) is the blackbody distribution (2.58),
AN o/ dtdey =11 (rd/T3¢2) K, (RT) @D 12F (p) e~ w112
(2.65)

TaBLE I. The function F(p) in Eq. (2.66).

? F(p)
0 3.48
0.5 3.00
1.0 3.20
1.5 3.91
2.0 5.25
2.5 7.57
3.0 11.54
3.5 18.44
4.0 30.62
4.5 52.57
5.0 92.90

9 Jones (J68) incorrectly took ymin=1 in his treatment.

We have evaluated the I' function and Riemann ¢
function for several values of p and give the values of
F(p) in Table 1.

The result (2.65), first derived by Ginzburg and
Syrovatsky (GS64), has an important application
because it is thought that the cosmic x-ray spectrum,
which has a power-law form (cf. G67), is due to
Compton scattering of high-energy electrons by the
cosmic blackbody photons (FM66). Unfortunately, in
the considerations of this effect, an approximate
expression has been employed [instead of (2.65) ] which
essentially results from making a delta-function
approximation to dN, ./ dide. However, (2.65)  is
exact as long as ¢ is not near the end points where the
effects of the cutoffs vy and «,, are important. In fact,
the range of validity of (2.65) is

702kT<<61<<’Ym2kT. . (267)
Of course, the Thomson-limit criterion is also imposed:
e~y T<<ymc? (2.68)

or
(akT)V2<Kmc?. (2.69)

In the general case, when the Thomson-limit condi-
tion need not be satisfied, it becomes necessary to use
the general result (2.48) for dN, ./dtde in (2.61) for
the total Compton spectrum. In this spectrum, which
again results from an integration over electron and
initial photon energies, we shall ignore “cutoff effects.”
That is, since we are assumed away from the Thomson
limit,

Yoe>mc?,

(2.70)
and the characteristic energies of the scattered photon is

(2.71)

€~YmeE,
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It is assumed that we are away from the endpoints of
the Compton spectrum, or that

YoKer/ MK Y m. (2.72)

This assumption allows us to ignore the mutual restric-
tions on € and v in their integration to give dNyo/dtder.
In this integration it is convenient to introduce the
dimensionless quantity

(2.73)

5= ee1/mc,

and to transform the vy integration to an integration
over the dimensionless ¢ introduced in (2.49). The
parameter s, like T'., determines the domain of scat-
tering, with sY2«1 corresponding to the Thomson
limit, and s$>>1 corresponding to the extreme Klein—
Nishina limit. In terms of these quantities, (2.49) gives

v=(me*/2e)s(1+[(1+s9) /sq ). (2.74)

This procedure is convenient since ¢ varies between the
limits 0 and 1 (2.51). We then have for the general
total Compton spectrum, for the power-law electron
spectrum (2.62) :

1
N0t = 11 2cK 27 e @D / dec®D12y(¢) f dgq@Dr2
dtdél 0

[2gIn g414¢—2¢*+25¢(1—¢)]
(14-[sq/ (14s9) JV2}#+2(14-sq) wHa/2 7

This expression' is exact; the restriction s>>1 has
not yet been made. Unfortunately, the ¢ integration
cannot be performed in the general case. We shall,
however, make two applications of (2.75): (i) the
Thomson-limit correction and (ii) the extreme Klein—
Nishina limit formula.

In the Thomson limit, when 52«1, the integral over
¢ is independent of s, and the scattered photon spectrum
reduces to (2.64). It is now possible, however, to
calculate the first-order correction to the spectrum in
the Thomson limit. This is done by expanding the
integrand in (2.75), keeping only the first-order term
in (gs)V2. We then obtain the spectrum

(2.75)

dNM_ 2 p+3 pitap+11 —(p+1)/2
dde T D (p19)2 1) ¢
) /
D% fdee(p—l)l2n(e) (1~G(p) (6;2: 2), (2.76)
where
Gy~ LHPHOGED G+3(045)

(p*+4p+11) (p+4)*(p+6)

For a blackbody photon distribution, integration over
e gives the result (2.65) multiplied by the first-order

10 Jones (J68) derived a similar expression but with an error
of a factor of 2 in the last term in the brackets. This term is
most important in the extreme Klein—Nishina limit.

correction factor

TL(p+6) /2K [ (p+6) /2] (akT)V?
TL(p+5)/2K[(p+5)/2] me?

fcorr: I_G(P)
(2.78)

The total Compton photon spectrum deviates from a
pure power law at high energies when (2.69) is no
longer strictly valid.! The result (2.78) gives the form
of this correction and shows that the spectrum will begin
to steepen from the e~®*V/2 power law. Of course,
deviation from the restriction (2.67) &<<y.%T would
also produce a steepening.

The procedure in obtaining a formula for the total
Compton spectrum in the extreme XKlein—Nishina
limit (s$>1) is more complicated because of the diffi-
culty in finding an expansion valid for the whole range
of ¢ in (2.75). In this limit the ¢ integrand in (2.75) is
zero at the endpoints and has its maximum around
g~1/5K1. Over most of the range of ¢, gs>>1, and the
integrand is essentially of the form 2-(®HDs—+bi2g—1,
Therefore the integral over ¢ must be of the form

Io(s; p) —> 27t @E[In s+ C(p) ], (2.79)
s>1

where C(p) is a parameter of order unity. Note that
this result differs from that of Jones (J68) whose
expression is too large by a factor of 2. To evaluate this
expression (2.79), that is, to determine C(p), we proceed
by separating the integral over ¢ into two parts:

1 1/s 1
/ - f + /. (2.80)
0 0 1/s
Now, these integrals are of the form (see 2.75)
[ dgg®" [N (q,s)/D(g, s; p) ], (2.81)

where N is the expression in brackets in (2.75) (the
numerator of the last term), and D is the complicated
denominator. For ¢>1/5<1, D approaches the asymp-
totic value

D,=2v+2(sq) w2, (2.82)

Thus in the integral from 1/s to 1 in (2.80) we write
1/D=1/D,+(1/D—1/D.); (2.83)

the second term in parentheses approaches zero for
¢>>1/s. In integrating the term 1/D, over ¢ in (2.80) we
can approximate, N=~14-2sg(1—g). For s5>1, we then
get,
1 ]V
dggw=vl2 <_) = 2- DD (I s—1),  (2.84)
1/s Da
In the integral from 0 to 1/s, N=¢1+2sq. In the integra-
tion of the term (1/D—1/D,) over 1/s to 1, only the
lower end contributes, so again N~1+42sq. Changing

11 This means that (ek7)V? begins to approach the order of
magnitude of mc?, although it must still be strictly less than mc2.
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the integration variable to x=s¢, and collecting terms,
we see that C(p) in (2.79) is given by'?

1dx 14-2x @ dx D,
=1+ [ S5+ [(Far (3 -1)
(2.85)
where
D/Dy= (33 (1) T2} pha(1+1/2) w072, (2.86)

The parameter C(p) is plotted in Fig. 6.

The total Compton spectrum in the extreme Klein—-
Nishina limit is then given by
dN tot
dtd€1

=1r2cK . (mc?) PHig—wtD

X /(—ifn(e) (m%Jrcq;)). (2.87)

Thus we see that the spectrum (o« ®D) is much
steeper than in the Thomson limit (2.64) where it is of
the form ¢ ®tD/2, When #n(e) is a blackbody dis-
tribution
dN tot

dtdel

Y 02

R

Ko (me2) 71 (kT) 2% +D

X (ln T ey —crcl) , (2.88)
m?c
where Cz=0.5772 and C;=0.5700 as in (2.60). Again,
the assumption has been made that the endpoints, v,
and vy, of the electron distribution do not contribute to
the total spectrum. In the Klein-Nishina limit this
condition has the form

Yo <K e <L ymmc?. (2.89)

3. BREMSSTRAHLUNG

Although the exact bremsstrahlung cross section can
be derived only by the methods of quantum electro-
dynamics, limiting formulas such as the expressions
when the bremsstrahlung photon energy is small may
be arrived at by simple applications of classical or semi-
classical electrodynamics. Indeed, some useful insights
into the quantum mechanical results may be gained
through the semiclassical approach to the problem. For
this reason we begin this section by deriving the low-
frequency limits to the bremsstrahlung cross section by
these elementary semiclassical methods. As in our
treatment of Compton scattering we consider only
incident electrons which are highly relativistic (y>>1).
We give two derivations of the low-frequency
bremsstrahlung cross section. In the first method, the
result is obtained by computing the probability of
emission of a soft photon during the Coulomb scattering
of a high-energy electron. In the second method, which
can also be used to derive an accurate expression not

12 The upper limit in the second integral isreally s which is
a large number (—®).

=Clp) |
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Fi1G. 6. Graph of the function —C(p).

restricted to the low-frequency limit, we make use of the
Weizsiker-Williams method whereby the bremsstrah-
lung process is treated as Compton scattering of the
virtual photons of the Coulomb field of the scattering
charge. Since the basic formulation for these methods is
probably not too familiar to the general reader, a brief
derivation of the fundamental formulas is given in an
appendix at the end of this paper.

3.1 Low-Frequency Limit

Perhaps first of all we might quote the exact formula
for the bremsstrahlung cross section for high-energy
electrons incident on an unshielded static charge Ze.
This formula is based on the Born approximation which
is valid at high energies where the effects of the Coulomb
field of the scatterer on the incoming and outgoing
electron are negligible.® Then the differential cross
section for emitting a bremsstrahlung photon of energy
within 7%dw in the scattering of an electron of initial
energy F; and final energy E;= E;—#w is (cf. JR55)

do 1 2EE; 1
do =472 ary® — E} (E2+EpP—32E.E)) (In P 5) .
(3.1)

In the low-frequency limit this expression reduces to

do —— B2 (dw/w)[In (2E2/mchw) —17]. (3.2)
(sm w)

This formula can be derived quite easily, uncertain
to within a factor ~1 in the (large) argument of the
logarithm, as we show in the following. The procedure
is to compute the probability that in a Coulomb
scattering a single soft photon is emitted. The basic
expression for the low-frequency bremsstrahlung cross

13 Effects of the deviation from Born approximation have been
computed by Davies, Bethe, and Maximon (DBM54).
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section is then
(3.3)

do=dosdw,,

where dos. is the differential elastic Coulomb-scattering
cross section and dw, is the probability of emitting a
soft photon of frequency within dw in the Coulomb
scattering. Both do,, and dw, are functions of, say, the
scattering angle 6, which would eventually be inte-
grated over in (3.3) to get do. The elastic Coulomb cross
section would be given by the Born limit of the “Mott
formula” (cf. MMG65)

dose _ AT ' 1 1—p2% sin? (0/2)50' (3.4)

dQ  4m**sin® (0/2) s, 2

The formula differs from the nonrelativistic Rutherford
formula by the factors v and 1—p?sin? (6/2)s. This
latter factor arises due to effects of the electron’s
magnetic moment; in the Coulomb scattering of a
relativistic spinless particle such a factor would not
occur. However, in Coulomb scattering (and in Coulomb
bremsstrahlung) small angle scaiterings are the most
important, and for these the spin-dependent factor is
unity. The physical reason for this is elementary: the
magnitude of the spin or magnetic force on the electron
decreases with distance from the scattering center
faster than the pure Coulomb force; since small angle
scattering corresponds to large impact parameters, the
magnetic effects should be negligible for small 6.
Thus for small scattering angles and highly relativistic
energies

0o/ Ao =81 221y, (3.5)

The factor v=2 can also be easily understood, since
(3.5) can be derived from a simple classical-Born or
impact approximation method; y~2 appears essentially
because the scattered particle momentum is ymv(—ymc)
instead of mv in the nonrelativistic derivation, and
dose/dQ < (pv)~2 The probability factor dw, in (3.3)
can be taken from the expression (A.15) derived in
the Appendix which is, in terms of 65,

dw,(0se) = (20/37)v20:2 (dw/w) . (3.6)
Then by (3.3), (3.5), and (3.6) we get
do =371 (dw/w) [(dBse/bse) - (3.7)

The logarithmic integral in (3.7) can more conveniently
be written in terms of the minimum and maximum
impact parameters

J (dbse/bsc) =In (bmax/Dmin) . (3.8)

For the determination of the ratio of the maximum and
minimum impact parameters it is convenient to con-
sider the process in the electron’s initial rest frame.
Since the impact parameters are fransverse distances,
&’ =5. The minimum impact parameter is dmi'~7%/mc,
a result due to quantum-mechanical effects which can
be understood in terms of the uncertainty principle.

The electron cannot be localized to smaller distances
without introducing enough energy to produce a sur-
rounding cloud of electron-positron pairs. The
(bremsstrahlung) emission from such a configuration
would be reduced, since the total charge (¢) would no
longer be distributed in a coherent manner as in a
single particle of charge e and mass 7. The maximum
Impact parameter can be understood in terms of purely
classical effects, essentially based on the material within
Egs. (A18)~(A21) in the Appendix; in these equations
quantities should really be primed, since they refer to
the electrons rest frame. The result is buax'~7yc/w';
then since w=vw’(14cos #) and the emission is over a
wide range of angles 6’ in the frame where the electron
motion is nonrelativistic, w’~w/v. Thus we have

bmax/bmin = bmax’/bminlN72mCz/ﬁw, (3.9)

which is to be substituted in (3.8) and (3.7) to give
the bremsstrahlung cross section. The result (3.9)
obtained is, of course, uncertain to within a factor ~1;
in fact, comparing with the exact expression (3.1), we
see that (3.9) should be multiplied by 2/e!2. However,
since (3.9) is a large number and appears in a logarith-
mic factor, the simple derivation giving the results
(3.7)-(3.9) yields a fairly accurate expression for the
Cross section.

While the developments in this section are limited to
the domain of low-frequency bremsstrahlung, there is a
method of getting essentially the general expression
(3.1) valid not just for small w. This procedure, the
Weizsiker-Williams (W-W) method, does, however,
require the use of the Klein-Nishina formula (2.27)
which can be derived only by detailed methods of
quantum electrodynamics. Nevertheless, the W-W
method is quite an interesting little trick, and is of some
help in at least providing a better understanding of the
exact result of quantum electrodynamics. Moreover,
it is a general method for problems of this type, and its
application to the bremsstrahlung problem is instruc-
tive.

3.2 Weizsaker-Williams Approach

The basic idea here is that bremsstrahlung is con-
sidered as Compton scattering, by the incoming elec-
tron, of the virtual photons of the Coulomb field of the
scattering center. The basic relation giving the
bremsstrahlung cross section is

do=dNdoc, (3.10)

where dV is the differential number of incident virtual
photons in the electron’s rest frame and would be given
by the expression (A.22) in the Appendix (with, how-
ever, b and w primed), and do¢ is the differential
Compton cross section. Let us first derive the low-
frequency limit expression (3.7). This limit corresponds
to Thomson scattering with 7w’ mc? o' being the
photon frequency before scattering in the electron
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initial rest frame K’. Then w/=w’, where w,’ is the
scattered frequency. In the lab frame, wy~yw’, (we now
drop this subscript of w) so “low-frequency’” means
fiwlymc®. Then we can take the total Thomson cross
section o7 = (8m/3) 7. for do¢ in (3.10) and get
do=2LaZ(dw/w) [(db/b), (3.11)
that is, the same expression as (3.7), but derived in a
different manner. The consideration of the logarithmic
integral in (3.11) is the same, giving the result (3.9).
In the derivation of the more general expression not

restricted to low frequencies it is convenient to express
photon energies in the following units:

lab system (K)—units of ymc?;
electron rest system (K’)—units of mc?2.

We also drop the subscript 1 on the scattered photon
energy ¢ in K. Then the kinematic and transformation
relations are

o'=¢/[14¢ (1—cos ;') ],
€=E1=61’(1—COS 61/),
¢=[e/(1—e) J(1—cos 6) =&’/ (1—e).

For fixed ¢, the minimum photon energy in K’ before
scattering is

(3.12)

€min’ =€¢/2(1—¢). (3.13)

The maximum energy is gotten from wuax’~v¢/bmin~
ymc?/h [see (A21) and Sec. 3.1], so

6max,’\"")’>>€min,. (3.14)

Now with the help of the kinematic relations (3.12) the
Klein—Nishina formula (2.27) can be written as a
function of ¢ and ¢, with the differential solid angle
transformed in terms of a differential de. Then

Ay =2md(1—cos 0,) = (2n/€') [de/ (1—e€)%], (3.15)

and the differential Klein—Nishina cross section becomes

i R ll:l n 1 2 € i 1 < € )2 d
=mr—|1— - = —— .
ge=m 4 € 1—e €1—e €2\1—¢ €

(3.16)

Substituting

_ 2aZ*db' de
I
and (3.16) into (3.10), an integration over ¢’ and then
b’ can be performed. By virtue of (3.13) and (3.14)

only the lower limit (3.13) contributes™ in the integra-
tion over ¢ and we get

do=40r?Z*(5(1—e)+€) (de/e) [(db'/b"). (3.18)

14 More precisely, in the ¢ integration ~v (8'min/d’) should be
taken for ‘emas’; however, this is still >eni’ for all except the
very low end of the integration over ¥'. Since the b’ integration
is logarithmic, this would give a result essentially the same as
that taking ema,'~7 (independent of &’).

dN (3.17)
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for bremsstrahlung in scatter- X / X
ing by an external potential
(X). 1\ /

Now, again byin'~%/mc, while

, e <ﬁ)(i) _ 2(#/me)(1—¢)

bm ax

~Y = ’
Wmin MC/ \€min €

(3.19)

We have, finally, to within a factor ~1 in the argument
of the logarithm,

do=4ar®2(3(1—e)+e®)(de/e) In[2y(1—¢) /e], (3.20)

which is essentially the same as the exact expression
(3.1).

The bremsstrahlung cross section was first derived by
these methods by von Weizsiker (W34). It should be
emphasized, however, why the W-W method works
for this problem. Basically it is because the main con-
tribution to the total cross section comes from the soft
virtual photons. Had this not been so, this semiclassical
method would not have given the right answer. The
W-W method has been applied to a number of other
problems with a lesser degree of success in some cases.
Nevertheless, it always provides helpful insight into
the problem.

3.3 Pure Coulomb Bremsstrahlung—Momentum
Transfer Distribution

We have already quoted the exact (in the highly
relativistic limit) expression (3.1) for the cross section
for emitting a bremsstrahlung photon of energy within
fidw, in the scattering of an electron of initial energy
E;(>>mc?) by a static unshielded charge Ze. We shall
not derive this expression here; it is derived by the old-
fashioned perturbation theory methods in Heitler’s
book (HS54) and by the modern covariant perturbation
theory in the book by Jauch and Rohrlich (JRSS).
Only a rough outline of the general procedure will be
given to facilitate discussion of the associated problems
of electron—electron and electron—atom bremsstrahlung
in the following sections.

The problem is closely related to the simpler one of
radiationless Coulomb scattering; that problem is one
of first-order perturbation theory while bremsstrahlung
involves second-order perturbation theory. In the
static Coulomb approximation, the scattering center (a
heavy nucleus) plays only the role of providing the
field which scatters the incoming electron; the small
recoil it receives has a negligible kinematic effect on the
photon emission, although it is necessary for the process
to occur. The scattering Coulomb field is considered an
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external potential and is represented by an X in the
Feynman diagrams for the process (Fig. 7). The
electron makes a transition from an initial state 7 to a
final state f. In the process it is scattered by the Coulomb
field and a photon is emitted (as in Fig. 7, “before” or
““after” the scattering). The total transition amplitude
is given by an expression of the form (in noncovariant

perturbation theory)
VisoraH emri . VisorriH em fII)

K= 3.21

d Z( E—Er E—Eqr , (320)

where the sum is over spin and energy states of the
electron in intermediate states (I and I7). The matrix
elements of the scattering potential V. are given in
terms of the recoil momentum q=k;—k;=k;r—k;;
since the initial, final, and intermediate electron states
are plane waves in the Born approximation,

Vioa=Veorri= [ dVea™(Q/r) =4xQ/¢*; (3.22)

here Q is the charge of the scattering center. Thus, a
common factor appearing in the amplitude Ky; is the
Fourier transform'™ of the scattering potential; it is a
simple function of only the momentum transfer q. In
terms of the initial and final electron momenta k; and
k; and the photon momentum k

q=kr—kf—k.

(3.23)

The other factors in (3.21) are the matrix elements of
the part of the interaction Hamiltonian H () corre-
sponding to the ‘“photon emission from the electron
lines” in Fig. 7.

The differential cross section is gotten essentially from

do 330 3 3 | Ky |* dissdk, (3.24)
7 f pol

that is, an average over initial electron spin states (7),
a sum over final spin states (f), a sum over polariza-
tions of the emitted photon, and eventually a sum over
the phase space of the outgoing electron and photon.
Actually, instead of integrating over the total photon
phase space, an integration only over photon angles is
performed, yielding the cross section differential in
photon energy (3.1). Bethe (B34) has shown how this
integration can be transformed and integrated so that
all that remains is an integration over the magnitude of
the momentum transfer ¢. This development by Bethe
is especially important for considerations of electron—
electron and electron-atom bremsstrahlung, which we
discuss in the following sections.

From now on in our discussion of bremsstrahlung it
is convenient to adopt mc? as energy unit and mc as
momentum unit for both photon and electron. Then,
in these units, and in our high-energy limit, E;, E>1;

BIn (3.22), =1, and r represents the coordinate of the
scattered electron. Also, it might be remarked that the integral
(3.22) is not convergent as it stands. To get the meaningful
result 47Q/q?, one must modify the long-range Coulomb po-

tential by a factor exp (—ar), evaluate the integral, and then
take the limit «=0.

also, significantly, we consider only bremsstrahlung
photons of high energy, 2>>1. For given E,, E;, and &
one can readily convince oneself that the minimum
momentum transfer gmin corresponds to the case where
ks and k in (3.23) are both along the direction of k;.
This minimum momentum transfer is very small and
thus % is very close to E;— E;; the actual value of gmin
is easily found to be

Gmin = 0= k/2E£f

More important is the effective maximum value of q.
The actual maximum value is of the order of E;, but
values of ¢ larger than one do not contribute much to
the bremsstrahlung cross section. This was shown
originally by Bethe (B34) and more recently (and in
greater generality) by Suh and Bethe (SB39). The
physical reason for this result can be seen quite readily
(G69). Since E;, Ey, B>>1, we can have ¢KE;, E;, k
even for values of ¢ appreciably larger than one for
which #=~FE,—E;. Since the momenta k; and k are
(on the whole) at small angles to k; for all except the
very minimum value (3.25), q must be approximately
perpendicular to k;: ¢g=¢1. Now consider the process in
the (primed) reference frame of the incident electron
and from the point of view of the Weizsiker-Williams
approach. Since q1'=g1=g¢, values of ¢ greater than 1
necessarily involve, for a large fraction of the solid
angles of the outgoing electron and photon, Compton
scatterings in the Klein—Nishina domain, where the
Compton cross section is reduced below its large value
in the Thomson limit. This means that we can break up
the momentum transfer distribution into the domains
(i) g=48 to 1 and (ii) ¢=1 to ~E,;. Then in (ii) only
the lower end will contribute since in (i) over all except
the upper end (where it begins to drop off) the dis-
tribution goes as ¢~'dg (B34, SB59).

(3.25)

3.4 Electron~Electron Bremsstrahlung

A number of authors (B47, V48, AB53, JR55, JR58,
SBS59, BFK66, M67) have investigated this problem or
the associated one of pair production in the field of a
free electron. The exact solution to the general problem,
including the necessary integrations over the phase
space of the outgoing particles, has not been carried
through analytically due purely to the mathematical
complexity. Eight Feynman diagrams are involved, the
four in Fig. 8 plus the four exchange diagrams. However,
a considerable simplification results for the case where
one of the electrons (for example, electron 1 in Fig. 8)
is initially at rest in the lab frame and the other particle
(electron 2 and the outgoing photon) energies E;, Ey,
k are >1. For this case only Diagrams (a) and (b)
contribute; the reason is basically the arguments given
in the previous section..As we have seen, in bremsstrah-
lung involving the scattering of an electron by the
Coulomb field of the scattering center, the recoil
momentum given to the scatterer has an effective
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maximum ~1. But since we are considering photon
energies £>>1, these photons cannot be emitted by the
system with low momentum. Therefore diagrams (c)
and (d) should not be expected to contribute appre-
ciably.’® This argument is really based on the self-
consistency of the result, since the reasoning leading to
an effective maximum g¢g~1 involved consideration of
an (virtually static) external scattering potential.
However, Heitler (H54) has shown by direct applica-
tion of the Weizsiker—Williams method, that the
contribution to the bremsstrahlung cross section from
Compton scattering of the virtual photons of electron
2 by electron 1 [corresponding to Diagrams (c) and
(d)] is negligible compared to the contribution from
scattering of 1’s photons by 2 [Diagrams (a) and (b)].
Exchange effects are negligible for the circumstances
(E:, Es, B>>1) considered; because of the low recoil
momentum of electron 1, the two electrons are essen-
tially distinguishable by means of their vastly different
momenta.??

Thus only two (a and b) diagrams contribute for
electron—electron bremsstrahlung. In fact, due to the
low recoil momentum of electron 1, its field (which
scatters electron 2) can be considered essentially static,
that is, that of an external potential (Fig. 7). We
conclude that, away from the low photon energy end of
the spectrum, the cross section for e-e bremsstrahlung
where one electron is initially at rest should be identical
to that for electron—proton bremsstrahlung (p at rest).
Actually, several detailed calculations (B47, SBS59,
BFK66, M67) have yielded this result. A discussion has
been given here because a number of authors (V48,
ABS53, H54, JR55, JRS58) have suggested slightly but
significantly different (and incorrect) results for the
e—e problem. Our elementary discussion is taken from
G69. Experimentally, the equivalence of the e-¢ and e—p
bremsstrahlung cross sections can be considered to have
been essentially demonstrated by measurements
(HCCS59, M59, J60) of pair production in the fields of
electrons and protons. Pair production is closely related
to bremsstrahlung, having essentially the same Feynman
diagrams and associated matrix elements. The impor-
tant theoretical work of Mork (M67a) [see also
discussion by Olsen, (068)7] on pair production in the
field of an electron should also be mentioned. Mork
calculated the cross section numerically by using
Monte Carlo methods to integrate over the phase
space volume. He included all eight Feynman diagrams
and did indeed find that at high (photon) energy the
cross section approached that corresponding to pair
production in the field of a proton.

Finally, on the basis of the elementary discussion
given here, it is clear that for the conditions considered
(E:, E;, F>>1) bremsstrahlung from incident positrons

16 For bremsstrahlung photon energies at the low-energy end
(k~1 or smaller) this conclusion would not be valid, and Dia-
grams (c) and (d) would contribute (see BFK66).

17 The exchange corrections given in (JR38) are erroneous.

PR’

(a) (b)

9

(c) (d)

Fi6. 8. Feynman diagrams for electron—electron bremsstrahlung;
there are four additional “exchange’ diagrams.

would also be equivalent. That is, for any combination
of signs, bremsstrahlung from e*—e+°*¥ and e+—p=or¥
are all equivalent.’® Bremsstrahlung in collisions of
electrons and positrons and (anti-) atomic species
would also be equivalent.

3.5 Electron-Atom Bremsstrahlung

The results of the discussion in the previous section,
although they were for free electrons, are very relevant
to problems involving bound electrons. Since we found
that the scattering-electron recoil and exchange effects
are negligible, the basic formulation of the problem of
electron-atom bremsstrahlung is a straightforward
generalization of that for pure Coulomb and electron—
electron bremsstrahlung. The scatterer, that is the
atom, can still be considered as producing an external
potential. However, now the total potential is

Vieoy=2Ze/r—e) | r—1; |7 (3.26)

K
where r is the position of the scattered electron, r, the
position of the rth atomic electron, and the nucleus
(Z) is at the origin. With the atom as scatterer, the
effects of atomic transitions during the scattering
process must be included. The matrix elements of
V s must now be between the plane-wave states of the
scattered electron and also between the electronic states
of the atom. Denoting the initial and final atomic
states by 0 and # respectively, this total matrix element
is

(| J QV exp (ig-1) (Ze/r—eS | 1—1]70) | 0)

=4dreq(n| Z|0), (3.27)

18 However, at nonrelativistic incident energies, et—e~ brems-
strahlung>>e*—¢* bremsstrahlung, since the et—¢~ system has a
dipole moment. Although this is very clear from considerations
of classical electrodynamics, a good deal of confusion has arisen
concerning this question. Some references to the literature on
this subject may be found in the paper by Stabler (S65).
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where we have defined

Z=7Z—73 exp (iq-1;). (3.28)
7

The bremsstrahlung total cross section will be propor-
tional to the squared absolute value of the matrix
element (3.27) then summed over final atomic states 7.
In this summation we can make use of the closure
relation (3 | #){(n| =1) based on the completeness of
the atomic eigenfunctions. This summation must
include the continuum (ionization). Then the purely
atomic factor occuring in the differential cross section
is (WL39)

Sl =2 [ (n|Z]0) I2=Z"2<0 | z* [ n)(n|Z0)
=(0|Z*Z|0).

Thus the scattering factor is just the expectation value
of | Z |2 for the initial atomic state. Further, we can write

Caolq) = 222250 | exp (ig°1;) | 0)

+ Z]:C (0 exp [q- (r;—1:) ]]0).  (3.30)

(3.29)

The expectation values in this expression vary from
1to 0 as g varies from O to « . The characteristic change-
over in the units (mc) we use is gehar~aZess, where « is
the fine structure constant and Z.s is the effective
nuclear charge. The second term on the right of (3.30)
is just 2Z times the “atomic form factor” F(gq).

The above result, that the atomic-scattering factor
is a function of ¢, is essentially the reason why Bethe
(B34) worked out the transformation of the phase
space integration in (3.24) into an integration over g.
The result of this work is that the differential
bremsstrahlung cross section can be written in the form

do=®(k)dk=ar®(dk/k) (E2)™
XUEPHEf)d1—3E:Ed ], (3.31)

¢ and ¢, are functions of E;, E;, and k(=E,—Ey).
When the scattering system is an unshielded charge Ze,
then ¢ = ¢o = Z%p, where [see (3.1)]

du=A4[ln (2E:E;/k)—%].
For a general atom the ¢’s are gotten from (B34, G69)
¢1=4ff1<Q) Ei; Ef, k)g‘sc(Q) d‘] (333)

For the whole range of ¢, there are no simple expressions
for the f;’s. However, one can proceed in the following
manner. The expression (3.30) for {.(¢) can be broken
up into terms which are of the form of a constant, a
term in 1—F, and perhaps a term in 1—F2 These
latter terms approach 0 and 1 for ¢ and >aZes,
respectively. The constant term in {.(g), say co, simply
gives a term copu to ¢;. The 1—F and 1—F? terms can
be integrated in (3.33), since analytic expressions can
be found for the f; in the limits ¢<K1 and ¢4, aZ:.
Moreover, a value g; can be found where both domains

(3.32)

overlap. In the domain of small ¢, the f; (designated f;)
are simple expressions, while for large ¢ the expressions
(designated f.) are complicated. However for large ¢,
F— 0 and we can then write, for the terms in 1—F
(or 1—F?),

fa " fg) (1~F) dg

= [ i@ a=p et [ 1) dg
5 a4

= Aqmaxfs(q)(l—F) dg+ /qmu [f.(9)—f.(g) ] dg.
(3.34)

This last integral can be evaluated, using the f’s derived
by Bethe (B34), tobe 1—In gmax (forf1), and —1In gmax
(for f5); that is, gy does not appear. Also the integral
from 6 to gmax can be broken up into an integral from
6 to 1 plus an integral (over which F—0) from 1 to
gmax. The latter integral is, for both f; and f,, just
In gmax which cancels!® the logarithm from the last
integral in (3.34). We can now express the basic result
in the following manner. Suppose {s(g) can be ex-
pressed as a sum of terms of the form

$se(@) =0+2_cp(1—F7), (3.35)

that is, with the form factor appearing in powers. Then
by (3.33) and (3.34),

1
simcpo4Zor (ack [ 100 1=F) dg), (330
P 8
where ey =1, an=§, and the f; are the simple fucntions®
of g and 6:
f1=‘l—3(9*5)27
fe=q""[¢*—68¢ In (¢/5)+35%—46*].  (3.37)

For a hydrogenic atom or ion (nucleus Z, one elec-
tron), ¢ derived from (3.30) is very simple:

§50(1)=(Z—1)2+2Z(1—Fz), (3.38)
where the atomic form factor is
Fz(q) = (14+az’¢*) %, (3.39)
and
az=(2aZ) '=a/Z=68.5194/Z. (3.40)

The ¢; computed from (3.36) and (3.37) are slowly
varying functions of & (and az). In Fig. 9 ¢; and ¢, for

¥ We have gone through all this in some detail (see also G69)
because apparently some confusion has arisen on the ¢ integra-
tion. Bethe (B34) did not indicate all the steps explicitly and
some authors seem to have gotten the false impression that the
integration was cut off at a maximum value ¢=1. That was not
the case, as we have shown above.

20 These functions are such that if F=0 in the integrand in
(3.36), the resulting term multiplying each ¢, is just ¢, aside
from small terms of order s.
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atomic hydrogen (Z=1), and 2¢, [ twice the unshielded
expression (3.32)7] are plotted as a function of the
dimensionless [see (3.25) and (3.40) ]

A=ad. (3.41)

The curves illustrate the transition from complete
screening (A1, corresponding to kigh-energy incident
electrons) to weak screening (A>>1 corresponding to
low, but still relativistic, electron energies). Essentially
Fig. 9 compares the bremsstrahlung cross section for an
electron incident on a hydrogen atom, with the total
cross section for an electron incident on an unshielded
free proton and an unshielded free electron. We see that
the hydrogen cross section is reduced for small A,
essentially because of the reduced contribution of small
momentum transfers below g~1/a. In fact, the asymp-
totic values are”

AKL1: ¢—8(In a+3%) =45.79,
¢:—8(In o+ %) =44.46; (3.42)
A>1: dr—¢r—2¢,=8[In (a/A) —%].

Probably the most interesting result for general one-
electron ions is contained in the expression (3.38) for
$sey. It shows that one term in the bremsstrahlung
cross section is (Z—1)2 times the cross section do,
for an electron incident on an unshielded proton (or
electron). For ultrahigh incident energies (Eq—o,
AK1) this term increases logarithmically and dominates.
For a more detailed discussion and results of calcula-
tions for the general one-electron atom (Z>1) the
reader may be referred to the paper G69.

Finally, it is of interest to compare the expressions
which determine the total cross section with the result
where summation over # in (3.29) had not been per-
formed. The result, which would then correspond to
bremsstrahlung with the atom left in the initial (ground)
state only, is

1 (0] z0)P=[¢in (3.38) ]— (1—Fz)

so that the last term represents the contribution of
excited states. The effects of excited states (and, in
general, atomic electrons) are therefore largest for
low-Z atoms. In fact, for hydrogen they contribute
about half the total cross section. In the original
Bethe-Heitler treatment (B34, BH34) of bremsstrah-
lung and electron shielding effects, this summation over
final atomic states was not performed, and it remained
for Wheeler and Lamb (WL39) to emphasize the
importance of excited states. However in their initial

(3.43)

21 For A>>1, the expressions for ¢; computed from (3.36) ac-
tually do not approach the unshielded expressions due to ap-
proximations made in deriving the f; in (3.37). This discrepancy
is due to the “small terms” mentioned in Footnote 20, and comes
in only for AZ3, making the ¢; calculated from (3.36) a little
too large (see also Table I). Thus once the asymptotic unshielded
expression is approached (around A~1), for larger A the un-
shielded asymptotic expression should be used.
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F1c. 9. The functions ¢; and ¢» for atomic hydrogen, as well as
the unshielded function 2¢,.

treatment, Bethe and Heitler were interested in
applications to stopping power of electrons traversing
high-Z material like Pb. For that problem it did not
matter much how the atomic electrons were treated
(in fact, they employed a Thomas—Fermi model for the
atom). The total bremsstrahlung cross section is
roughly proportional to Z24-Z,;, where Z is the nuclear
charge and Z.; the number of atomic electrons. Thus the
relative contribution of electrons is about 1/Z and is
especially important for low-Z atoms. In this paper we
have in mind applications to astrophysics. Since the
cosmic abundances of hydrogen and helium are much
larger than that of all the heavy elements combined
(even when the abundances are multiplied by Z2
factors), it is only these elements and their ions which
we treat.

For two-electron or heliumlike atoms with the
electronic wave function approximated by a product
¥ (11, 12) =¢(11)¢¥(12), as with a one-parameter Hylleraas
or with a product Hartree wave function, the atomic-
scattering parameter (3.30) reduces to

S = (Z—2)*+4Z(1—F1) —2(1—Fp). (3.44)

The result is valid for any Z, including Z=1 (H~ ion),
but would be more accurate for large Z where a product
expression is a better approximation to (1, Is).
In (3.44), F; is the single-electron form factor
(0] exp (iq-11) | 0), which for a one-parameter
Hylleraas function is the same as the hydrogenic
expression (3.39) with ¢z now replaced by

az,=0/Z,=68.5194/(Z—7%). (3.45)
The functions ¢; and ¢» to be used in (3.31) are again
given by the general expression (3.36) which for
heliumlike atoms contains terms with p=1 and 2, in
addition to the constant term. In this case four integrals
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TasiLE II. Cross-section factors® when scattering system is p (or e), H, Het, He.

He: Hylleraas

H He* (one parameter) He: Hartree-Fock
pore
A bu b1 b2 é1 2 b1 23 é1 b2

0 © 45.79  44.46 © © 121.54  117.54 134.60  131.40
0.01 33.33  45.43  44.38 113.50  111.14 120.99 117.47 133.85 130.51
0.02 30.56  45.09 44.24 110.37 108.27 120.46  117.31 133.11 130.33
0.05 26.89  44.11  43.65 105.67  104.13 118.89  116.61 130.86  129.26
0.1 24.12 42.64 42.49 101.28 100.34 116.89 115.51 127.17 126.76
0.2 21.33  40.16  40.19 95.56 95.21 112.00  111.53 120.35 120.80
0.5 17.68  34.97  34.93 84.90 84.87 101.28  101.26 104.60  105.21
1 14.91  29.97  29.78 74.00 73.72 88.86 88.43 89.94 89.46
2 12.14  24.73  24.34 61.45 60.70 74.03 72.90 74.19 73.03
S 8.49 18.09  17.28 44.66 43.04 54.26 51.84 54.26 51.84
10 5.70  13.65 12.41 32.99 30.52 40.94 37.24 40.94 37.24

2 See text and Footnote 21 concerning the values for A =5 and 10.

are needed
1
L (A; Z) = / (1—Fy")fi(g; 8) dg,  (3.46)
s

where p=1, 2; i=1, 2. The asymptotic values of these
integrals are, with F; computed from one-parameter
Hylleraas functions,

1®(0; 2) =1, (0; Z) =In az,+3,

I®(0; Z) =1,9(0; Z) =In az,+%%; (3.47)
A>1:
LO(A; 2)—0L2(A; Z)—idu—1,
LY(A; Z2) - LP(A; Z)—i¢u—3,  (3.48)

The large-A limits are, of course, just the unshielded
expressions. For general intermediate A, values for the
integrals (3.46) may be read from the curves in (G69).

The results have a very weak dependence on the
particular approximate wave function for the heliumlike
atom, since essentially the wave function only deter-
mines the precise effective lower limit gemin in the
integral over the momentum-transfer distribution.
This small-q effective cutoff is the shielding effect and
depends on the spatial spread of the electron wave
function. However, because of the nature of the
integrands in (3.46), these integrals are roughly
—1in ¢e—min SO that the dependence on ¥'ue 1 1s approxi-
mately logarithmic. To illustrate this, Table II gives
the values of ¢ and ¢, for atomic helium, for a one-
parameter Hylleraas function, and for a representation
of a Hartree-Fock function consisting of the sum of two
exponentials (MMG65, G69). The Hartree-Fock values
should be the most accurate since the Yur gives a more
accurate representation of the charge distribution. At
low energies (large A) the ¢’s approach the unshielded
expressions, independent of yYm.. The dependence on

Yme is greatest in the strong-shielding limit (A—O:
high energies).

Also given in Table 2 are the cross-section factors
when the scattering system is an unshielded proton or
electron, a hydrogen atom, and a singly ionized helium
ion. These are the most important species in a gas with a
cosmic element abundance. It should be noted, however,
that for A=35 and 10, rather than the tabulated values,
(Z24Z.1) ¢ should be used.?

3.6 Bremsstrahlung Spectrum and Total Energy
Loss from Individual Electrons

For an electron passing through a medium containing
various species (atoms, ions, and electrons) with number
densities #n,, the bremsstrahlung spectrum per electron is

AN/ dtdk=cX ne(dos/dk). (3.49)

Here dN; represents the number of photons emitted
with energy (or momentum) within dk, by an electron
of initial energy E;, and do,/dk=®,(k) would be taken
from (3.31) with the appropriate ¢;¢). The bremsstrah-
lung spectrum is of the form £~ for small %, exhibiting
the well-known “infrared divergence.” In this section
we should first of all like to show the form of the spec-
trum for general £ and its dependence on both the
energy F; of the incident electron, as well as on
whether the target species is ionized or not. These
effects can be illustrated readily for the case where the
target species is neutral atomic hydrogen and ionized
hydrogen. For the latter we consider the combined
effect of the free protons and free electrons. Also, as in
Sec. 3.2, it is convenient to denote the bremsstrahlung
photon energy in terms of the initial electron energy
E:(me?)

Ei—E;=k=FE,. (3.50)

Moreover, to avoid the divergence at k=0, we shall
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Fic. 10. Bremsstrahlung energy spec-
trum (3.51) for electrons incident on
atomic hydrogen and on ionized hy-
drogen. For the latter the contribution
from the target protons and electrons is
summed; that is, 2¢, is used in (3.51) in
place of ¢ and ¢ (see Fig. 9).
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plot the energy emission spectrum k(do/dk). This is
given essentially by the factor

fleg=[14+(1—e)2pr—2(1—€)¢.  (3.51)

With the ¢’s taken from Fig. 9, this expression is plotted
in Fig. 10 for E;=10, 10?, 10% and <. This figure
illustrates several things. It shows how the magnitude
and shape of the spectrum depends on whether the
hydrogen is ionized or not. It also shows how, in
particular, the shape of the spectrum depends on E;;
for more highly relativistic incident electrons the
spectrum is more flat-topped. Some remarks must be
made concerning the form of the spectrum for E;=10
near the upper end. Figure 10 shows the distribution
going to zero around e=0.925, but this should not be
taken very seriously. The spectra were computed from
Born-approximation expressions where, in addition, the
extreme relativistic approximation (Z; E/>1) was
made. Because of this one can expect inaccuracies in
the bremsstrahlung formula for e near 1 where E;,~1.
However, the qualitative form of the E;=10 spectrum
for large e should still exhibit the main effect correctly,
and hence, the spectrum decrease slowly to zero and
does not plunge to zero like the spectra for the more
highly relativistic electrons.
Explicit simple expressions for the total energy loss,

—dE/dt= [ dkk(dN/dtdk), (3.52)

can be found only in the strong-shielding and weak-
shielding limits. The latter case corresponds to low
incident energies where ¢~(Z?4Ze1) . Then for an
over-all neutral plasma where >_Z.1=>_Z, one readily
finds by integrating (3.52),

— (dE/dt) =4arg?c (X nzZ(Z+1) (In 2E,—3}) E;
z

(weak shielding or completely ionized). (3.53)

In (3.53), the units of E are the same as the units
(mc?) of E;. The expression would be appropriate for
E; $30/Z but would be exact for all E; for a completey
ionized medium. In the strong-shielding limit
(E;230/Z), for the neutral components of the medium
(or for the shielded components® of the bremsstrahlung
cross section for ions) the ¢’s are constants (designated
bi)) and

— (dE/dt) = ar®c2_ns (51— 52t0)) Ei

(3.54)

In the intermediate case where neither the strong- or
weak-shielding limit applies, the integration (3.52) must
be done numerically for each energy E; using the
appropriate ¢;(A) =¢;(k; E;). However, $12¢: always,
and the integral to be evaluated is essentially

1
E?
Since ¢ is a slowly varying function of %, it may be
taken out of the integral and set equal to its value at
the characteristic 23 E; (corresponding to A=a/2E,).
In this approximation, a simple expression for the

energy loss from the neutral species (or neutral com-
ponents? of ions) can be written:

— (dE/dt)yRar@c[Y_nbe (A=a/2E;) JE;

(strong shielding).

E; .
/ ($E2—4E;+12)$(k; Es) dh.
0

(3.55)

Thus the total energy emission rate is essentially
proportional to the instantaneous value of the electron
energy. This does nof mean that the electron energy
decreases exponentially with time. Instead, in each

(general case).

22 For the explicit expression for the components for ¢ and
2 for the Het ion, for example, see G69.
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bremsstrahlung event the electron loses (on the whole)
a large fraction of its energy. This effect is similar to
that for Compton losses in the extreme Klein—Nishina
limit (see Fig. 5) and will be discussed in more detail in
the last part of this paper.

3.7 Bremsstrahlung from a Distribution of Electrons

As we did for Compton scattering, we now derive the
total spectrum of bremsstrahlung photons resulting
from a distribution of high-energy electrons. In the
notation of this section where E; (units: mc?) is the
(initial) energy of the incident electron and the differ-
ential number is dN.= N,.(E;)dE;, the total bremsstrah-

lung spectrum would be found from
dNyor/dtdk= [ dE:N.(E;) (dN;/dtdk), (3.56)

where the last factor in the integral would be taken
from (3.49). Again, we take a power law for N (E,):

]\TC(Ei) =K9Eihp, E0<E{<Em

=0, otherwise. (3.57)

To simplify our formulas we shall assume that k<<E,,
so that the upper limit to the integration in (3.56)
does not contribute. The lower limit is

Er=max (k, E).
By (3.49) and (3.31), with % in units of mc?,

dNgo
ot = arg2c K k> _ns
dtdk s EL

X[(2E2—2Ek~+k) ¢p15)—3Ei(Ei—k) ¢20) ]
Ea1’02CKek_IZnsIs(ky EL; P) ’

(3.58)

dEE i—(p+ 2

(3.59)

where we have defined I, the integrals which determine
(in addition to the factor £71) the magnitude and form
of the bremsstrahlung spectrum.

For species (s), or components? of species, and
energies where the strong-shielding approximation
applies, and the ¢’s are constants, the integral /, over
E; can be evaluated exactly, giving

I (strong shielding)
2E,~wD  QRE,~» RE L—(p+1>)
—( =1 oy pr1 /T
2 (E,;~D  RE,-P
- = <——L———- i )(f)g(s). (3.60)
3\ p—1 P

When E.=k, I, in (3.60) is proportional to k=@,

In the unshielded case or weak-shielding limit where
species (s) consists of a nucleus (Z) and Z, electrons,
¢1 and ¢, approach

¢weak=4(Z2+Zel) {ln I:ZE'L(Ez—k) /k]_%}' (3*61)

With this function for ¢ in 7, the integral cannot be
evaluated exactly in terms of simple functions. How-
ever a simple approximate formula may be obtained by

bringing the slowly varying factor ¢ outside the
integrand and setting it equal to some typical value .
That is, we set

I, (weak shielding) =1’ @weak, (3.62)
where
I'= f dEE ™ ($E2—4E k4 k2)
EL
4E,~%» D  4kE;P RRE;[®D
== - - (3.63)
3 -1 3 p P+

For E=F,, we can simply set E;=FE, in (3.61) to get
Pweak; for Ep=Fk or for kxXE,, we can set E;X~2k in
(3.61). Thus

Bweak A (24 Ze1) {In [2E,(Eo—k) /k]—3}

(k< Ey)

(k> or x~Ey).

~A(Z2+Zo1) (In 4k—3 (3.64)

In the case of general or moderate shielding we can
do essentially the same thing [approximating, as in
(3.55), b1 Ropac I:

I,(moderate shielding) & I'$) (A),  (3.65)
where
A= (a/2E) [k/(Eo—k)]  (R<Ey)
a/4k (k> or x~Ey). (3.66)

4. SYNCHROTRON RADIATION

The problem of synchrotron radiation due to an
electron traversing a magnetic field has been treated in
numerous articles and reviews (W59, GS65, S49,
GS64A, GSS68, GS69). In astrophysical applications,
synchrotron radiation from a distribution of electrons
may account for the radio, optical, or x-ray flux from
an object, or, as believed is the case for the Crab
nebula, all three fluxes. In this section we hope to
clarify some of the conceptual problems in the deriva-
tion of the synchrotron formulas.

An electron of energy E=+ymc? spiraling along a
magnetic-field line with pitch angle « (the constant
angle between its velocity and B) spirals with angular
frequency Q=eB/ymc independent of «. The spectrum
of emitted photons can then be calculated either by
considering the classical Liénard-Wiechert potentials
seen by a distant observer, or by transforming to the
electron’s rest frame and calculating the Compton-
scattered spectrum due to the virtual photons of the
magnetic field. Because of the difficulties involved in
transformations to the noninertial rest frame, we shall
adopt the former approach here. To obtain the syn-
chrotron spectrum, we first calculate the radiation
emitted by an electron always moving perpendicular to
the magnetic field; Bessel functions are introduced
only near the end of the calculation. Lorentz trans-
formations are later used to generalize this spectrum to
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arbitrary pitch angle. This method of introducing the
pitch angle after the detailed calculation is completed,
helps to clarify the difference between the emitted and
received synchrotron spectra. In the final portion of this
section, the radiation received from a distribution of
electrons is calculated. Here the treatment is generally
kept brief since synchrotron radiation is discussed in
many articles and textbooks. For the same reason, the
polarization properties of the spectrum and the effect of
the medium through which the electron travels are not
treated here; the interested reader is referred instead

to (W59) and (GS65).

4.1 Synchrotron Total Energy-Loss Rate

We have already calculated the total synchrotron
power from a highly relativistic electron moving in a
magnetic field in Sec. 2.4. That derivation was from
the Weizsiker—Williams approach and was specialized
to the case where the electron’s velocity was at a random
direction to the magnetic field (a directional average
was taken). The more general expression can also be
derived very easily, however, with the help of the
principle of covariance, and we shall outline its deriva-
tion here.

The basic procedure is to start from the well-known
Larmor formula valid in the nonrelativistic limit:

Pemittea= —“dE/dt= 29232/363, (41)

where a is the acceleration of the charge ¢(=—e).
We try to find a covariant equation whose component
reduces to this expression in the nonrelativistic limit,
the idea being that (by the principle of covariance) if a
covariant expression is found which is valid in one
frame (where the electron is nonrelativistic), it is valid
in all frames. A covariant factor which reduces to a?
in a frame where the velocity, acceleration, and energy
loss are small is m~2(dp./dr) (dp./dr). Here p,=
(tE/c,p) is the energy momentum four-vector. In
terms of the four-vector velocity v,=+v(ic, V), p.=mu,,
and dr is the invariant proper time such that dr=
y~ldt= (yic)'dxy. Then (4.1) can be cast into the
covariant form?
2
e L dndn
33 mic? dr dr

The covariant equation of motion is, in terms of the
four-vector force K, and electromagnetic field tensor
Fy,

(4.2)

dpu/dr=Ku=(¢/¢) Fuuvy. (4.3)

For motion in a magnetic field with the z axis of a
coordinate system lined up along B, the only non-
vanishing components of F,(u,»=0, 1, 2, 3) are
Foy3=—F3=B. Evaluating (4.3) and (4.2) we then

2 The radiated power is thus, for synchrotron losses, an in-
variant. This is because for this process the energy is lost in the
form of radiation, and for photons AE and Af are parallel four-
vectors (see Sec. 2.1).
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(k)

B

Fic. 11. Trajectory of electron in synchrotron calculation when
the pitch angle is 7/2.

get (ro=e/mc?)

dE/dt=— (2r0*/3¢) v B2 (v2+1v,2). (4.4)
Or, introducing the angle « between v and B,
dE/dt=— (274%/3¢)y*B%2 sin? a. (4.5)

For an electron moving through a randomly oriented
magnetic field, the average over angles in (4.5) yields
(2.21).

Before proceeding to the problem of the synchrotron
spectrum, we should like to make some remarks con-
cerning the radiation reaction force due to synchrotron
radiation. It should be noted, for example, that in
(4.3) we include on the right-hand side only the force
due to the external field and do not include a term T,
corresponding to radiation reaction. Such a term would,
in fact, be essential at very high energies if one were
interested in determining the time evolution of the
electron’s orbit. For the appropriate form of T', in the
extreme relativistic case the reader should be referred
to the book by Landau and Lifshitz (LL62). The
reaction force is, of course, due to the energy loss (4.2)
itself and is opposite to the direction of motion. How-
ever, for the problem of the total energy loss this term
in (4.3) can be ignored.?* This is evident when one
considers the process from the Weizsiker—Williams
approach. Then, clearly all that comes in is the flux of
virtual photons incident on the electron in its instan-
taneous rest frame. Thus (4.4), (4.5), and (2.21)

2¢When it is included and substituted into (4.2), the total
energy loss becomes proportional to K,K,+2K,I',+T,T,, where
K, is the force due to external fields and T, is the radiative re-
action force. The first term yields just the standard expression
(4.5). However, for a particle in a magnetic field, K,=0, and
K is perpendicular to p. Then since T, the radiative force, is
parallel to p, the cross term K,I', vanishes. To calculate the
third term we note that I', is approximately ¢™1(:d E/dr, n cos 0
dE/dr), where n is the direction of the force and #~+1 is the
angular spread of the emitted radiation. Then, I',T'y~ (cy)~2X
(dE/dr)?. But this term is only significant when By>e/r® which
is far above the energy at which quantum mechanical effects
become important (see Sec. 2.4).
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should be exact up to energies where quantum-
mechanical effects come in (see Sec. 2.4). For the
determination of the synchrotron spectrum, however,
radiation reaction can be important, while at the same
time not affecting the total energy loss result. This is
because for the synchrotron spectrum it is the time
evolution of the electron orbit which is crucial. Then it
is necessary to consider radiation reaction. One can
show that these effects come in for v2BZe/r?, or, in
terms of the synchrotron frequency (ws~~%B/mc), for
ws 2 ¢/7. The corresponding synchrotron photon energy
is €, =7ws> 70 MeV. This criterion (y2BZe/7?) corre-
sponds to the situation where the electron loses a large
fraction of its energy in one turn of its orbit. Clearly,
extremely high-energy (70 MeV) synchrotron photons
would be involved, and it is by no means clear that this
case ever occurs in nature. In all that follows we shall
assume that we are not in this domain and that v is
indeed essentially an adiabatic constant of the motion.

4.2 Radiation from an Electron Moving Perpendicular
to the Field

We consider here the situation shown in Fig. 11: an
energetic (v>>1) electron spiraling around a magnetic-
field line with a=m/2. The electron’s velocity is then
given by

B=B( cos Qi+ j sin Qf). (4.6)

To find the spectrum of synchrotron radiation, we
work in the laboratory frame and apply the expression
for the energy emitted by a relativistic electron per
unit observer’s time () per unit solid angle in the
direction n (see Fig. 11) given by (J62, p. 473),

dP(t) ¢ |nx[(n—B) xB] |2
aQ, (1—n-B)* '
The total power as a function of time is then propor-

tional to the square of a vector. Using the results
(A1)-(AS) of the Appendix, the spectrum of radiation

(4.7)

4me

becomes,
dl,/dQ,= (62/47726> [ f, 127 (48)
where
_ [cax[@-B)xB] . .
f,= ‘/;w (1—n-p)* exp (iwl) dI.  (4.9)

Here, 7 is the observer’s time, while ¢ is the time at the

electron’s position: ¢=i+c¢R(f), where R(f)=
| Vors—V(£) |, s0
di/dt=1—n-B. (4.10)
For very distant observers, { may be approximated
I~t—cm-r(8), (4.11)

where a constant term has been ignored as contributing
only an over-all phase factor to f,. After a change in
variables in (4.9) from { to ¢, f, may be integrated by

parts using the relationship
(d/dt)[nx (nxp)/(1—n-B)]
=nx[(a—B) xB)/(1-n-B)* (412)

to obtain
fo—w / dinx (nxB) exp[iw(i—cn-1)]. (4.13)

It is well known that the angular distribution of
radiation in the rest frame of an accelerated charge
is a dipole distribution, which is roughly isotropic.
Therefore, using the angle transformation (2.4),
in analogy with Compton scattering for y>>1, (in
the lab) nearly all of the emitted synchrotron radia-
tion makes at most an angle 6~~~ with the instan-
taneous velocity vector. Thus, the electron radiates
in a given direction for a time Aé~(Qy)~L. For times
significantly greater than this, the exponential in
(4.13) oscillates very rapidly, essentially making the
integrand zero. Therefore, for small ¢ we may use the
expansion (see J62, page 482)

t—cnex(2) =3[ (62 1+92/3].

The double cross product in (4.13) is most easily
evaluated by using a different coordinate system.
Letting e=n x j, the velocity (4.6) becomes,

(4.14)

B=p(j sin Q¢+e sin @ cos Qé—+n cos § cos Q). (4.15)
Then, to lowest order in § and Q¢,
nx (nxp)=(ef+ju). (4.16)

Substituting these expressions back into (4.13) and
letting £=Q¢, we have,

fo= (sﬁzf_: dE(Jtef) exp {(i“’/ 20) [(02+'y“2) + ij]} '

(4.17)

With p=w/2Q and n?=6>+~72, it is clear from (4.17)
that f, will be largest for u~v*>1. Using these param-
eters, the square of f, becomes

2 00 00
£, 2= 32/ dx/ dy(xy+6%)

X exp {z,u [rf"(x—y)-l— _(_xfgzi)_:” . (4.18)

This expression can be simplified by changing variables
to x=u-+v and y=u—v, and noting that the Jacobian
is 2:

2w*

(o= o [ doexp D2iuato+3u0)]

X /w du(2—1*+6%) exp (2iuve?). (4.19)
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The # integration can now be performed to yield
2 ()12
(‘”) o / dv exp [2iu(n>v+30%) ]

X[(Zw)"“%””“(@z—v?)——(Zuv) —sl2g-inld], (4.20)

To calculate 7, from (4.8) it is necessary to integrate
over solid angle. Then, since 6 is the colatitude, dQ,=
27 sin [ (7/2) —0]d0~2xd9. The factor of 27 arises
because I, is the energy emitted per revolution, not just
that seen by observers in one particular plane. Because
the integrand falls off long before §=m/2, the limits on
the # integration may be extended to infinity. Then,
substituting (4.20) into (4.8) and using n*=624-vy~2, the
0 integration becomes identical to the # integration in
(4.19) and we obtain,

| [*=

Lo=—— [ dv[v— (2uiv*)~"] exp [2ui(vy™

= )1

(4.21)

The second term in brackets may be integrated by
parts to yield,

/j do[2v— (v%) 1] exp [2ui(vy2+30%) ].
(4.22)

— %l

I,=

The above expression can be simplified by setting
I,=— (wt/Qc) [ 1,04 1,@7], (4.23)

where the 7, correspond to the integrals of the two
terms in brackets in (4.22). In calculating the first
integral, we set v=x/v and §=4y3u/3:

I,0= 27—2/ x dx exp [136(x+343)]. (4.24)

The integrand of this expression can itself be expressed
as an integral to yield

I,0= :;/ d&/ dx(3x2+x*) exp [3&(x+1a%) .
Y J20/39y3
(4.25)
To calculate I,,?, we note that

2, @ = / dvvexp [2iu(vy 24308 ];  (4.26)

differentiating with respect to y~2 and then integrating
from 2 to infinity yield

— © 0
1,0= _21;1./ dy/ dv exp [2iu(vy+343)].  (4.27)
Y y? —o0

Finally, since u=w/2Q, the change of variables x=y~1/2
and £=3uy? yields
I,®= _t

72 240/397

ds/ dx exp [138(x+3a%) ). (4.28)

To obtain the total spectrum, we substitute these
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results into (4.23) and get
&

%4

—— de [ dw(1+3a2
g Lw/3ﬂy E/ x( + x+x4)

X exp [i§E(x+52%) 1. (4.29)

However, the integral over x is just — (2/V3) Ks/3(£),
and the spectrum is?

L= 2o [ ke
“ \/37296 2w/39'y3 o8 ’

where K;;3(§) is the modified Bessel function of 5/3
order (see Fig. 12). Since (4.30) is the spectral energy
per revolution, to obtain the power emitted, (4.30)
must be multiplied by (27)~'Q. Doing this and changing
from w to »=(27)"'w, the spectral power becomes
(see Fig. 13)

(4.30)

V3eB
Po)= S T [ dekin®, 43
where the critical frequency, v,, is defined as
=33 /4w = 3eBy?*/4nmec. (4.32)

Equation (4.31) gives the total instantaneous power
emitted by an electron spiraling around a B field with
pitch angle a==/2. The distribution P(») is peaked
near »_lv.. At high frequencies, >, the spectrum

26 This can most easily be seen by using the relationship, Kjs=

'—K1/3—2K2/ s, and the standard forms for Ki; and Ky given
in (J62).
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Fic. 13. Synchrotron spectrum from a
single electron as a function of x=»/..

approaches
P(n)=(En)12(eB/mc?) (v/ve)V2e v, (4.33)

Meanwhile, at very low frequencies, v<<v., the spectrum
(4.31) may be approximated by

P(»)=[4re*B/T (3) mc*](v/2v,) 3. (4.34)

In our derivation of the synchrotron spectrum,
(4.31), we failed to take account of the fact that the
electron’s motion repeats itself with period 2m/Q.
Therefore, the spectral decomposition should be per-
formed using Fourier series rather than integrals. Such a
calculation as performed in (W59) and (GS65) shows
that the synchrotron spectrum is really discrete with
the emitted frequency, », being an integral multiple of
/2w, the gyration frequency. However, since most of
the power is emitted at frequencies »>>Q, it follows that
for all but the very low frequency part of the spectrum,
the synchrotron radiation distribution may be regarded
as continuous, and (4.31) may be used.

4.3 Radiation from an Electron with Arbitrary
Pitch Angle

In the previous section we calculated the spectral
power emitted by an electron spiraling in a magnetic
field with pitch angle =/2. In that situation, the power
emitted by a single electron is equal to the power
received by a distant observer. Here, we calculate the
power emitted and received from an electron moving at
arbitrary pitch angle «; it will be seen that the power
emitted does not equal the power received because the
average distance between electron and observer changes
with time.

4.0 5.0

Consider now an electron with pitch angle « spiraling
along a magnetic field in the lab system K. This electron
then has the equation of motion,

d(ymcPB)/dt=—eB xB, (4.35)

from which it follows that 3, v, and 8); (the component
of B parallel to B) are all constants of the motion. Then,

(ZB.L/dt= Q x By, (4.36)
where,

Q=eB/ymc (4.37)

as before. Thus the frequency of rotation is independent
of pitch angle.

To calculate the synchrotron distribution in the lab
system K, we transform to a coordinate system K’
moving with velocity B, with respect to K. Then, in
K’, the electron spirals with pitch angle o’=/2. Since
Bi1=8 cos a, for y>1 and o>y, the Lorentz factor T'
connecting K and K’ is given by

I'=(1—p2 cos? )21 /sin a. (4.38)

Since the relative motion between the two frames is
parallel to the magnetic field, B’= B. Also, transforming
v=E/mc?, the zeroth component of a four-vector, yields

v =T"ly=+sin a. (4.39)

Because the same equation of motion (4.35) is applicable
in K’ as well as in K, it follows that the frequency of
rotation in K is given by

Q' =eB'/y'mc=8Q/sin a. (4.40)

To connect the spectra in K and K’, we make use of the
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Doppler-shift formula

» =T-1(14- cos ')y, (4.41)

where 6’ is the angle the radiation makes with the
direction of B’. However all of the radiation in K’ is
within a cone of angle ~1/4'<1 around the direction
of the electron motion. Therefore, ¢'=m/240(y"1),
which means that cos ’<<1, and (4.41) reduces to

(4.42)

v =y sin a.

In Sec. 4.1 it was shown that for radiative losses the
electron’s energy loss rate is a Lorentz invariant.
Therefore, Pemittea=P’, which implies that

Pemittea(v) = (&' /dv) P’ (v') =sin aP' (). (4.43)

Since P’(»") is given by equation (4.31) calculated for
o' =7/2, Pemitea(v) 1s obtained from (4.43) by sub-
stituting the correct expressions for »’; v/, and B’
obtained above. The result is

V3eBsina v

Pcmitt.cd(V) = 2
mc Ve

/ /” dEKsp(8), (4.44)

where v, is now redefined as
(4.45)

This is the standard expression for the synchrotron
spectrum.

It has recently been pointed out (EF67, S68, GSS68)
that when asw/2, the power emitted by an electron
does not equal the received power. To calculate
Preccived, We nOte that power received is proportional to
the flux at the observer:

Precoivea(v) dv o< v?[dn(v) /v ].
Then, using the invariance of ydn, we have
Prowsivea(v) = (v/v'®) (dv'/dv) P (v') = (sin a) 712" (+').
(4.47)

ve=(3eBy*/4nmc) sin a.

(4.46)

The received spectrum thus becomes
(4.48)

where Pemittea 1s given by (4.44). One can easily see that
the total power follows the same relationship as (4.48).
From (4.5), using Pemittea=P’ we have

Preoeived(”) =Pomitted(1/) /Sin2 o,

(4.49)

and therefore the total received power is independent
of pitch angle.

The physical cause for the received power not equaling
the emitted power can be seen from Fig. 14. Since the
period of emission, 7=2xQ~!, does not equal the ob-
served time between pulses,

—2
P, received — 570203272,

Treceived — T sin? a.

(4.50)

This can also be seen by applying the Doppler formula
(4.41) to (4.40) for Qreceivea- From energy conservation,

261

the energy emitted in one period must equal that
received in one period which gives

(4.51)

Actually, (4.51) can be obtained by considering a
conservation-of-energy equation in which the total
emitted power equals the energy flux through a surface
at the observer, plus the change in total energy con-
tained within the surface; this change being due to the
changing distance between electron and observer (see
Fig. 14).

Thus, we see that the equations calculated for an
electron spiraling with pitch angle m/2 are easily
generalized to arbitrary a. The complication that the
power emitted does not equal the power received is
essentially due to the ever-changing average (over
period) distance between electron and observer. For a
distribution of electrons confined within a given region,
however, the emitted and received powers are identical
since on the average the distance between the electrons
and the observer does not change with time. This
problem is treated in the next section.

i 12
I)received = Pemitt.edT/Trcceivcd = Pemitted/snl .

4.4 Synchrotron Spectrum from a Distribution
of Electrons

In the last section we showed that for a given elec-
tron, the power emitted differs from the power received
by a factor of sin?ea. In this section we calculate the
total power received per unit volume per unit frequency,
dW /dvdt, from a distribution of electrons in a magnetic
field. Tt will turn out that for electrons emitting from a
fixed region of space, the received spectrum obeys the
classical formulas (W59) and equals the emitted
spectrum (GSS68).

Let Nobs(v, a, T, £) dydQar2drdQ be the total number
of observed electrons within 72drdQ with energy within
dy and pitch angle within dQ,. Then, using Preccivea(v)
from (4.48), the received synchrotron spectrum
becomes

AW /dvdt= [ [ Precoivea(v) Novs (v, &, T, 1) dydQq.

This is the energy received from a fixed unit volume at
the position r at the observer’s time ¢. Since Nops 1S
not a very useful quantity to work with, we define
N(v, e, 1, t)dvdQ, as the density of electrons at r at
time ¢ with pitch angle within dQ, and energy within dv.

Now, consider the electrons within the volume
element 72drdQ shown in Fig. 15. Letting o’ be the angle
between B and the observer, we see that &’ =a+0(y?).
This figure therefore shows that if the electron spends
a time ¢ within #2drdQ, it is observed to radiate only
for a time,

(4.52)

(4.53)

An electron within that volume element is therefore
observed to radiate only for a fraction sin? « of the time
it spends within the volume. Taking into account
retardation effects, one can relate N and Nops. The

tops=1(1—p cos a cos a’) Rt sin? ax.
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F16. 14. Distance between received pulses, ¢7rec.

result obtained by (GSS68) is
Novs(v, @, 1, f) =sina N(v, o, 1, t—7/c). (4.54)

Using this, along with the result (4.48) in (4.52), we
obtain for the received spectrum

AW /dvdt= [ [ Pemistea (?) N (v, o, T, t—7/¢) dydQe.
(4.55)

But this is just the synchrotron emission spectrum per
unit volume at the time ¢{—7/c. Therefore, when the
distribution function N is not time dependent, the
emitted and received synchrotron spectra from a fixed
volume in space are equal. If synchrotron emission from
a given moving volume of electrons is being considered,
then the integral over all space of equation (4.55) will
give the correctly Doppler-shifted result for the total
received flux. Indeed, if the distribution function for a
single electron (a delta function) is used in equation
(4.55), the result (4.48) is recovered.

We now calculate the total synchrotron emission
spectrum per unit volume from a power-law electron
energy distribution. We further assume that the dis-
tribution function can be put in the form

N(v, e, 1,8) =ky?N(a)/4m, (4.56)

with v contained within some range v; <y <. Then,
if £ contains no time dependence, substituting this
form of NV into (4.55) also gives the total received
spectrum per unit volume. The factor of 1/4w appears
above so that the spectrum reduces to #y~? when there
is no pitch angle dependence.

Substituting the above spectrum into (4.55) for the
total synchrotron emission yields

aw V3ke!B
dvdt  Amme®

/anN(oz) sin «

x / vy 2 7 aeKes(®).  (457)
Y1

Ve dvlve

In order that the result be expressible in terms of

known functions, we make the assumption that the end
points of the electron energy spectrum do not con-
tribute. This will be true when v; and . are such that
v.(1)<<» and ».(2)>>v. Then, the limits on the v in-
tegration may be replaced by zero and infinity. This
integral is then performed in (W59) to yield

dl _ V3ke3B (27rmcu
dvdt  drme \ 3eB

—(p—1)/2
) vt ep-1]

XTI (3p+19) ] f dQ0u(sin @) P2V ().  (4.58)

In the case of local isotropy, N (o) =1, and the integral
over « can be performed. The final result is

dW _ 4rkeBwtor ( 3e

w-1)/2
) a(p)r e, (4.59)

dvdt mc? 4mce
where
a(p)
_ 2073T[(3p—1) /12]P[(3p+19) /121T[(p+5) /4]
87 (p+ D)L (p£7) /4] '
(4.60)
vicosa

vt cosacosa’

F16. 15. An electron of pitch angle « spiraling through the fixed
volume element 7%drd Q.
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A table of values for a(p) is given in Table III, but for
1.5<p<5, a(p) is approximately equal to 0.1. Equation
(4.59) then represents the total synchrotron emission of
an isotropic distribution of electrons.

Finally, it is worthwhile noting from (4.58) that
starting from a power-law electron spectrum with index
p, the emitted (and received) synchrotron distribution
becomes a power law with index (p—1)/2. This is
exactly the same situation as for Thomson scattering
found in Sec. 2 of this review.

5. EFFECTS ON THE SPECTRUM OF
HIGH-ENERGY ELECTRONS

So far in this review, we have calculated the photon
spectrum due to Compton scattering, bremsstrahlung,
and synchrotron radiation from a single very high-
energy electron. We have also used a power-law electron
energy spectrum in order to calculate the fofal radiation
spectrum for the above processes. In general, this
radiation spectrum depends very strongly upon the
electron energy spectrum.

In this section it will be seen that the electron energy
spectrum is in turn determined by the processes causing
the electrons to lose energy. When electrons lose only a
very small portion of their energy in one collision,
their energy spectrum is governed by a differential
equation. On the other hand, when electrons are likely
to lose a significant portion of their energy in one
collision, it becomes necessary to use an integro-
differential equation to calculate their spectrum. The
latter occurs in the case of bremsstrahlung or Compton
scattering in the Klein—Nishina limit when an electron’s
energy may change with time as in Fig. 5. Previous
articles (FM66, K62) have often used just a differential
equation to obtain an approximate solution in this case,
but the results of this section indicate that, for example,
for bremsstrahlung losses, the exact result may differ
by about thirty percent.

After considering the general equation for the electron
distribution function, we shall present solutions for
certain special cases of astrophysical interest. Because
this section is rather mathematical, no attempt is made
to present all possible solutions to these equations;
instead the reader is referred to other sources (FMG66,
GS64a, K62, M61). Perhaps this section could be used
as a starting point for future, more detailed treatments
of these problems.

5.1 Continuity and Integro-differential Equations
for the Electron Distribution

a. Continuity Equation

In certain energy-loss mechanisms for high energy

electrons, such as Thomson scattering or synchrotron
radiation, the energy lost by one electron or the emitted
photon energy in one collision is much less than the
energy of the electron. Denoting E = the total rate of
energy loss for an electron as a function of E, we have
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TasLe III. a(p) in Eq. (4.60) [from (GS65)].

? a(p)

0.283
0.147
0.103
0.0852
0.0742
0.0725
0.0922

wn

TUHS WNN
wn

the condition

—E/E<Nco, (5.1)

where o is the total cross section for the processes con-
sidered and NV is the number density of objects scat-
tering off the electrons. We assume 8—1, or the relative
velocity is equal to ¢. The above inequality states that
the fractional loss of energy in a given time interval
must be much less than the number of collisions in that
time interval.

When the above relation holds, it is possible to write a
differential equation for the electron energy spectrum.
If N.(E, t)dE is the number of electrons with energy
within dE at time ¢, then N(E,{)E(E) is the
flux of electrons entering the internal df, and
N (E-+dE, t) E(E+dE) is the flux leaving the interval.
Equating the increase of electrons within dE to the total
flux entering the interval, we obtain

ON o+ (3/0E) (BN ) =SQuE, ), (5.2)

where the Q.(E, t) represent sources and sinks of high-
energy electrons corresponding to possible production,
annihilation, or gradual leakage from the region of space
considered. The above equation is the continuity
equation in energy space for electrons. Often, when
there is a loss of electrons to the system by either
annihilation or leakage, it is possible to set one of the
Q.(E, t)=—N,/T, where T is the characteristic time of
the loss of electrons.?® The continuity equation then
becomes

N o/0t+ (8/9E) (EN ) +N/T=LQ:(E, 1). (5.3)

Ginzburg and Syrovatskii (GS64A) obtain the general
solution of (5.3):

t
NJ(E,t)= den/ dtG (E, t; Eq, Zo)ZQi(Em k),
(5.4)
where the Green’s function is given by

G(E, t; Es to) = | B[P T8(t—to—7),  (5.5)

26 For example, if electrons are completely removed from the
system by collisions, 7'~ (Nco)7, or if leakage occurs, T is the
characteristic time for an electron to leave the system.
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/E dE
T= -—.
20 I (E)

For most energy-loss processes for electrons, there is
a spread in the photon distribution emitted from a single
electron. Therefore, an electron loses energy in random
increments determined by the photon spectrum. For this
reason it may be necessary to include on the left-hand
side of (5.3) an energy-space diffusion term of the form,
—30*(DN,)/0E?). Here D represents the mean-
squared energy change per unit time. For the electron
interactions considered in this review, the fluctuations
are small, and the diffusion term becomes unimportant.
This term is usually kept, however, if statistical accel-
eration is being considered. This is described in further
detail in (GS64A) and (M61).

with

(5.6)

b. Integro-differential Equation

Processes such as bremsstrahlung and Compton
scattering in the Klein-Nishina limit cause an electron
to give up a large fraction of its energy to one photon,
and therefore condition (5.1) will not hold. It then
becomes necessary to consider the random-walk char-
acteristics of an electron’s energy and to use an integral
to represent the flux of electrons into the interval dE.

Let P(E, E—e¢)dedt be the probability that an elec-
tron with energy £ will undergo a collision causing it to
lose an amount of energy between e and e-de in time d?.
Again, equating the flux of electrons entering dE to the
increase in density, we obtain the integro-differential
equation
AN (E,t) ]

+

ot é—E [ENG(Ey t) :H_ZVG(E7 t)

X /m JAEP(E, B) - /E " AE'N (B, 1) P(E, E)
—S0uE, ). (5.7)

Here E represents the total energy loss due to those
processes for which (5.1) is valid, while P(E, E’)
represents the total probability of emitting a photon
within de by those processes for which (5.1) does not
hold.

5.2 Solution for Synchrotron and Thomson-
Scattering Losses

When an electron loses energy by Thomson scat-
tering and synchrotron radiation only, it is not likely to
lose a large fraction of its energy to one photon, and
condition (5.1) holds. This follows from (2.18) since

—E/E=4%07cN[v{e)/mc*]<KarcN.

Since (2.18) is valid for both Thomson scattering and
synchrotron radiation, it follows that the continuity
equation (5.2) may be used to describe the electron

(5.8) -

distribution function. Using (2.18) for the total energy
loss

— B ="407pc(E/mc*) (8)=ak?, (5.9)

we obtain the continuity equation

AN ./dt— (3/0E) (aE*N,) =3_Q:(E, t). (5.10)

In many astrophysical applications, the source
function for high-energy electrons takes the form
(GB67, GS64)

Q(E,)=KET. (5.11)

This is essentially the source function for secondary
cosmic-ray electrons (cf. GB67) or for particles
accelerated by statistical mechanisms (cf. GS64A).
Then, assuming steady-state conditions, as we will for
the remainder of this section,” (5.10) becomes

—(8/0E) [aF2N (E) ]=KE-T, (5.12)

with solution

No(E)=[K/a(T—1)JE-T+D, (5.13)

Thus, both synchrotron radiation and Thomson scat-
tering steepen the electron distribution spectral index
by one. This is just the power-law electron spectrum
used earlier to obtain the total flux of photons due to
these processes.

When the leakage loss, —N./T, is present along with
synchrotron and Thomson scattering, it is possible to
use the Green’s function (5.5) to obtain the solution®

K exp (—1/aTE)

NE) = aF?

/a
(aT)™1 /l i dgET 26k,
0
(5.14)

If the losses due to leakage are much less than those due
to radiation, then 7>>1/aE, and the exponentials may
be expanded to obtain to first order

N(E)=[K/a(I'—1)JE-"P[1— (aTET)™]. (5.15)

5.3 Solution for Klein-Nishina (Compton) Losses

Compton scattering in the Klein-Nishina limit may
become an important energy-loss mechanism for
electrons sufficiently energetic so that (e)E>>mc!,
where (e) is the characteristic photon energy of the field
in which the electron is immersed. In Sec. 2.8 it was
shown that in this case an electron is likely to give up a
significant portion of its energy to one photon. It there-
fore becomes necessary to use the integro-differential
equation (5.7) to describe the electron distribution
function.

27 For a discussion of the solutions of the continuity equation
as a function of time for various source functions and for various
energy-loss mechanisms, see (K62).

28 We assume I'>1. For I'<1, one must use different limits
of integration in (5.14).
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Then, assuming a power-law source function for the
electrons and assuming that no other energy-loss
mechanisms are important, (5.7) becomes

B
N.(E) / JP(EE) dE

- / * NJ(E)P(E', E) dE'=KE-T. (5.19)
E

Here, the probability P(E, E’) is related to the photon
spectrum by the relation®

P(E, E')=P(E, E—e) = /

L

°° ((ZN%e

de, (5.17
dtdedq) & (517)

where the lower limit L corresponds to the lowest value
of € from which a photon of energy ee=E—E’ may be
obtained. From (2.50),

min (e) = L=m?"*/4E’. (5.18)

Thus, the total probability P(E, E’) is obtained by
integrating over the initial photon spectrum, #(e). To
simplify the solution of (5.16), we first assume a mono-
energetic initial photon distribution of the form
n(e) =nd(e—¢). In this case, using (2.48) the proba-
bility becomes

P(E, 1Y) = Tt

€)

m2ct(E—E")
4e FE"?

21 T2
X (E T2 (AEE'—[2—

E3E'

-

(5.19)

In performing the first integral in (5.16) it is now
necessary to replace the lower limit by the minimum
value of E’ that can occur when an electron of energy £
Compton scatters with a photon of energy €. This is

obtained from (5.18):
E'>m*/ 4 (5.20)

Then, to lowest order in m?c*/4Ee, the integral equation
becomes

TmEcSren

«lf

V() (in 2% 1)

—KET+ / CAE'N(EVP(E,E). (5.21)
E

Although an exact solution to this equation would be
very difficult to obtain, an approximate solution can be
obtained by assuming N.(E) to be nearly a power law
of the form

N.(E)=A(E)E. (5.22)
Here, the function 4 (E) is assumed to vary much more

2 Note that dN,;./dide is the spectrum from one electron
with Lorentz factor v, or, equivalently, with energy E.
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slowly as a function of £ than E~?. Then, if
dA/dE
//1 <p/E, (5.23)

or if the relative rate of change of A (%) is much less
than the relative rate of change of £, A(E’) may be
removed from the integral in (5.21), and the integration
can be performed over a pure power-law spectrum.
This gives, to lowest order,

/“’ P(E',E)N.(E") dE'= Z_WAE—@M _(fill
“ & »(p+2)
(5.24)

Substituting this into (5.21) and equating equal powers
of E, we find p=T—1 and obtain the spectrum
KeETH ( 4eF 1 r

Tm3corein

N.(E)=

—1

nmzc“ 5 I‘2—1) . (5.25)
This is the steady-state distribution for electrons
undergoing Compton scattering in the Klein—Nishina
limit with a monoenergetic photon field. Note that
since A(E) is essentially logarithmic and since the
argument of the logarithm is much greater than one,

dA/AE [ 4eET*  p
TNE[lm_] <%

E (5.26)

and therefore condition (5.23) is satisfied.

When electrons undergo Compton scattering with a
black-body photon field,

n(e) =[n*(fic) ][/ (eT—1) ], (5.27)

and it becomes necessary to perform two integrals for
each term in the integral equation. An integration of
the photon spectrum must be performed to obtain
P(E,E’) as in (5.17) and integrals over P(E,E’)
must be performed in Eq. (5.16). The integration in
the first term of (5.16) becomes

e T ® ANy e
/ P(E,E)dE=/ dE/ de —Lrme ),
me? me2 m2c4/487 dedid(E—E")

(5.28)
Interchanging integrals, we obtain

B mc2/4 N
[ P(E,E) dE'=f d/ ( R )
me2 m2c44E 2,4/4¢ dedid(E—E")

© 7 dn.
d / dE’' (*-”‘ ) )
+ ‘/mc2/4 ¢ me? dedtd(E—'El) (5 29)

If the mean photon energy in the distribution (5.27) is
not too high or if {(e)~ (k7" )<<mc?/4, the second integral
in (5.29) can be set approximately equal to zero.
Furthermore, the upper limit of the e integration of the
first term can be put equal to infinity. Then, since
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{e)E>m?**/4, (5.29) becomes

/E P(E, ) dE /wd /E ZE’( A0y« )
Fo B dE = d /-
2’ 0wt \dedtd(E—E)

(5.30)

With these simplifications, the procedure for ob-
taining the electron distribution in the case of a thermal
photon spectrum, (5.27), is exactly the same as in the
monoenergetic case. The electron spectrum is then

given by
»6ﬁ2KE—I‘+1
1rm2621’02(kT) 2
[ 4ERT 1 2T
X |In

| —1
mict + 2 I—1 —CE—CI} (551

N.(E)=

where Cx=0.5772 and C;=0.5700. Besides the Klein-
Nishina condition kTE>>m?c*, we have imposed the
additional condition k7'<mc?/4 to obtain the result
(5.31).

Thus, we have seen in this section that in the extreme
Klein—Nishina limit the steady-state electron spectrum
can be represented as a power law times a function
whose dependence on E is slow enough for it to be taken
out of the integral in (5.16). However, in Sec. (2.9) we
assumed a pure power-law electron spectrum when we
integrated dN, /dtde over the electron distribution to
obtain the total photon spectrum. But since the factor
in brackets in (5.31) has such a slow relative rate of
change, it could have been taken out of the integral in
Sec. (2.9) anyhow. In that case, it would be necessary
to substitute e in the argument of the logarithm in
both (5.31) and (5.25) in order that the total Klein—
Nishina photon flux not be a function of E.

It should be noted that at very high electron energies,
losses in pair-producing electron—photon collisions will
dominate Klein—Nishina losses. We have not treated
this process here.

5.4 Solution for Bremsstrahlung Losses

When an electron traversing a dilute gas loses energy
predominantly by means of bremsstrahlung, it once
again becomes necessary to employ the integro-
differential equation (5.7) to determine the electron
spectrum. Even though the bremsstrahlung infrared
divergence do~k~'dk implies that a large number of
low-energy photons are radiated, it is seen from Fig. 10
that the energy emitted by an electron per unit photon
energy, the energy emission spectrum, does not drop off
very fast until £~ZE. Therefore, an electron is likely to
lose a significant portion of its energy to one photon, and
its energy will change in discrete jumps with time.

In this section we consider the case where bremsstrah-
lung is the only significant energy-loss mechanism. With
a power-law source spectrum for electrons and with
leakage losses present, the steady-state integral equation

becomes

No(E) / "B P(E )

N.(E)
T

As in Sec. 3, energy is expressed in terms of mc?. The
probabilities

=KET.

- /; T AENJ(E)P(E, E)+ (5.32)

P(E, E') =cY_n,(dos/dk), (5.33)
s

where k=FE—FE'. We consider here only the case of

electrons traversing a gas of pure hydrogen. The

generalization of the results derived here to higher Z

elements readily follows from the considerations of

Sec. 3.35.

In the case of extremely high-energy electrons (£> 30)
traversing neutral hydrogen, it is appropriate to use the
strong shielding (A<<1) expression for the cross section.
Then, since ¢iR%p=¢, the probability matrix (5.33)
becomes

P(E, E') =ar@engo(E—E")!
X—=3(E'/E)+ (E"/E) ].

Because of the infrared divergence or (E—E")~! factor
in P(E, E'), it is clear that both integrals in (5.32) will
exhibit a logarithmic divergence at E’'=E. However,
since (E—E') P(E, E') is well behaved near E'= E, the
divergence problem can be avoided by integrating the
first integral from 1 to E—n, and integrating the second
from E+-7 to infinity. Then, in the limit of 7—0, the
diverging contributions of both integrals exactly
cancel.

To solve (5.32), we assume the solution to be a pure
power law:

(5.34)

No(E) =AE-», (5.35)

Then, with corrections of order £, the first integral
in (5.32) becomes

E—1
NoJ(E) / dE'P(E, E')
1

4 9 5
3 lnE —+ 6) . (5.36)

Meanwhile, the second integral gives

= — AE Pardcnge (

©

dE'P(E', E)N(E') = — AEPardcnye

E+q
x[f%i Tiic -
S+ 3O~ D e+ |,

(5.37)

where Euler’s constant=Cp=0.577, and the psi
functiony/(p) is the logarithmic derivative of the gamma



G. R. BLuMENTHAL AND R. J. GourLp High-Energy Electrons in Gases

function:
Y(p) = (d/dp) InT(p). (5.38)
Thus, the diverging terms in (5.36) and (5.37) do
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indeed cancel each other. Finally, by substituting the
above terms into the integral (5.32) and equating
powers of E, we find that p=T and obtain the steady-
state electron spectrum

KET

N.(E)=

The spectrum (5.39) is valid for electrons losing energy
by bremsstrahlung collisions with hydrogen atoms in the
strong-shielding limit £>30. This solution is nearly
exact, the first-order correction being of order E—.
The effects of gradual leakage, the T7IN ,(E) term in
(5.32), have been included in the electron spectrum.
The distribution (5.39) would not be valid if 7" were a
function of E but for very high-energy electrons this is
not usually the case.®®

We now consider the spectrum of very high-energy
electrons in a region of completely ionized hydrogen. In
Sec. 34 we showed that the electron—electron
bremsstrahlung spectrum for %23>1 is essentially the
same as the pure Coulomb bremsstrahlung spectrum.
For smaller %, exchange effects must be considered.
However, since exchange effects are important only in
the low-energy end of the spectrum, their effect upon
the electron distribution corresponds to a continuous
energy loss process. Furthermore, since E>>1, this
energy loss will be much less important than high energy
bremsstrahlung in determining the electron spectrum.
We therefore assume do,..=do..,, and obtain the
transition probabilities

P(E, E') =8an,rck [ 1+ (E"?/E*) —%(E'/E)]
X{ln (2EE'/k)—%}, (5.40)

where k= E—E’. Since the integral equation cannot be
readily solved with this form of P(E, E'), it is useful to
reduce (5.40) to a simpler function. Most of the %
dependence of P(E, E—Fk) is in the &' factor; and
therefore if we substitute the characteristic photon
energy AVE'RE/2 into the logarithm in (5.40),
we obtain

P(E, E')~8anyr)c(E—E)'In 2E, (5.41)

where the £ has been ignored as small compared to

In 2E. Also, the bracket in (5.40) has been set equal to
unity; when the total energy loss [ [kP(E, E')dE] is
computed, the terms with (E'/E)? and —2E'/3E
effectively cancel, so this should be a good approxi-
mation. This approximation is equivalent to assuming
the energy spectra in Fig. 10 to be horizontal straight
lines. The mean absolute error due to this assumption is
about 209, for E=10% However, one can see from Fig.
10 that most of this error occurs in the low-energy end

30 If the electrons leak from a region of space of dimension R,

the characteristic leakage time, 7'~ R¢™'g71. But since E>30 in
our discussion, 8 can be set equal to 1 for all the electrons.

ardenae[—§+4Ca ¥ (D) =T+ D+ T+ H T

(5.39)

of the spectrum where In (2EE’/k) becomes large. This
error can then be corrected by adding a continuous
energy-loss term to the integral equation. Since the
difference between the total energy loss predicted by
(5.40) and that found from (5.41) is nearly zero any-
how, we will ignore the continuous energy-loss correc-
tion term.3!
To solve the integral equation (5.32), we define

¢(E)=N,.(E) In 2E. (5.42)
An integration of (5.32) by parts yields
8anyre’c In E ¢(E) +8anyric
® $(E)
X [ deinzg (ot B —KE™. (5.
i x1nx ¢ (x+ )+T1n2E KE~- (5.43)

In obtaining (5.43) the divergence problem is handled
in the same way as in the strong-shielding case. Using
the same approach as in Sec. 5.3 for Klein—Nishina
losses, we assume

¢(E)=A(E)E, (5.44)

where A (E) is a very slowly varying function of E.
Again, substituting this into (5.43), we find p=T and

A(E) =K {8anyr?c Ce+y/(T) ]+ (T In 2E) 1},
(5.45)

Therefore, A(E) is indeed much more slowly varying
than £7, and the steady-state electron spectrum

No(E) =KE/{8an,r In 2E [Cu+y¢(T) J+T-1},
(5.46)

is a self-consistent solution of (5.43). As in the Klein—
Nishina case, the bremsstrahlung solution (5.46) is
not the pure power law used in Sec. 3 to calculate the
total photon spectrum from a distribution of electrons.
However, the denominator in (5.46) can be taken out
of the integrals in Sec. 3.7 by setting £/2k in the argu-
ment of the logarithm. :

Finally, when high-energy electrons traverse a

3 This correction term can, however, be estimated. Setting
P(E, E—k) =k7Yf(E), f(E) is obtained by demanding that
(k?), the mean-squared photon energy, be the same as that
found from (5.40). Then, the continuous energy-loss correction
is given by the difference of (3.53) and the energy loss found
from P(E, E—~k) =k7Yf(E). Using (%) to normalize P(E, E’)

weights the high-energy (discrete loss) end of the spectrum in
P(E, E").
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partially ionized gas, the electron spectrum is obtained
by setting P(E, E’) equal to the sum of the contribu-
tions due to the two components. Then, the electron
distribution becomes

N (E)=(KET/ar)
X {nge[ —§+35Ce+¢ (1) =3 (T+1)+¢(T+2) ]
+8n, In 2E [Cp+y(T) T+ (ar2cT) 1)L (5.47)

Thus, in general, both bremsstrahlung and leakage
losses do not change the power of the electron injection
spectrum.

We have assumed in this section that electrons lose
energy only through bremsstrahlung. If, for example,
synchrotron losses are also present, the electron
spectrum is more difficult to obtain. However,
(dE/dt) vrem < E, while (dE/dt)synen< E2 Therefore
synchrotron losses dominate for E>>E,, where E, is the
energy at which the two energy losses are equal, and
bremsstrahlung is most important for 1<<E<KE,. The
electron spectrum is then given by the synchrotron
spectrum (a T'+1 power law) for E>>F,, and by the
bremsstrahlung loss electron spectrum for E<Ey. The
spectrum near E, can be estimated by treating the less
important energy loss as a perturbation.
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APPENDIX: SOFT PHOTON EMISSION—
VIRTUAL PHOTON SPECTRUM

A very useful formula can be derived in radiation
theory which gives the probability of the emission of a
soft photon of energy within Zidw accompanying a change
in velocity of a charged particle. The nonrelativistic
formula is derived in a number of textbooks (cf. J62).
We give a simple outline of its derivation here for the
case where we are not interested in the direction of
emission of the photon; that is, we give the emission
probability integrated over the emission solid angle.
This simplifies the derivation considerably. Also we give
the relativistic generalization of the formula for the
special case where the change in velocity of the particle
is approximately perpendicular to its initial direction,
corresponding to small angle scatterings.

Consider the radiation flow through a perpendicular
element of area dA = R%dS}, where dQ is the element of

solid angle defined by d4 at a large (and retarded)
distance R from a moving charge. Let the unit vector
n denote the direction of d2 from the radiating charge.
In a finite time interval, the energy flux Jw=dW/dA
can be written as the time integral of the radial Poynting
vector, or as an integral over a frequency spectrum:

Jw=[S{) dt=[I(w) dw; (A1)

here 7(w) is the energy flux per unit frequency or the
Fourier amplitude of the energy flux. In terms of the
electric and magnetic fields which are mutually perpen-
dicular, perpendicular to n, and of equal magnitude

S(O) = (c/4m) | E()) = (c/4m) | B(1) 2. (A2)

The field intensities are given in terms of their Fourier
components:

E(l) =[Euet du,

E,= (2m)"[E() et dt, (A3)

(similarly with B(#) and B,). Substituting (A3) into
(A2) and (A1), and making use of

fe—i”te"“""dt=21r6(w-—w')y (A4‘)

we get I(w) =3¢ | E, [*=4%c| B, |>. Now both positive
and negative frequencies are contained in 7(w). If we
include these together by writing 7,=1(w)+1(—w) =
2I(w), the total Fourier amplitude of the energy flow
per unit area is

I=c|E,’=c| B, |~ (A5)

Relating the energy dWW,, radiated in dw to the proba-
bility of emitting a photon of energy within fidw by

AW ,=hwdw,, (A6)
and since
dWy=dJwdA = I,dwR2dQ, (A7)
we get the basic result:
dw,=dw(cR*/Tw) [[| B, |* or |E,|*]dQ. (A8)

This last expression, which is exact, can be put in a
convenient form by relating B, to the velocities v, and
vy of the charge(s) before and after scattering. Intro-
ducing the vector potential

B,=(2m)" | curl A(2) | et dt, (A9)
making use of the relation
curl A(f) =c'A xn (A10)

valid for a propagating plane wave for which A is a
function of n-r—ct (n is the direction of propagation;
A=0A/dt), and taking the low-frequency limit [e*t—1
in (A9)—this is the first approximation made], we get

B,~— (2wc)™1| AA xn |. (A11)
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Here AA is the change in the vector potential; in terms
of the particle velocity

e v
A=|—-———| . A12

[R 1—n-v/ c]m (A12)
For a nonrelativistic particle, (A8) then yields, on
integration over dQ, the very simple expression
(a=e¥/fic21/137)

dw, (nonrel) = (2¢/37) (Av/c)2(dw/w). (A13)

This formula can also be derived by the methods of
quantum electrodynamics (cf. JR55).

We are interested in a formula of the type (A13)
applicable to the scattering of a hkighly relativistic
particle. In particular, the case of small angle scattering
is most important. For this case the final and initial
velocities are related by

Vi=vVo+Av, (A14)

with Av<vy, vy and Av approximately perpendicular to

vp. One can then derive the relativistic generalization of
(A13) by substituting (A11) and (A12) into (AS8),
integrating over df, and then expanding the integrand
to lowest order in Av. This integration over the photon
emission angle is a little tedious but yields the simple
and more general result

dwa(| AV | &) = (2a/3) (vAV/¢)*(dw/w),

that is, just v* times (A13). That this should be the
result can be seen from a simple invariance considera-
tion. Since dw, is a probability, it must be an invariant:

(A15)

dw, (AV) =dw', (AV'). (A16)
We can consider one reference frame (K’) where the
particle velocities are small and (A13) applies. Now
consider the process in the lab frame (K) which has its
x axis aligned with the x axis of K’, with the relative
motion along these axes. The initial particle velocity is
along the x axis and Av is taken to be in the y direction.
Then, from the Lorentz transformation of velocities,
Av,

B/ = (1) =

e (A17)

Now v,~v, so that Az,/~jyAv,. Then, since dw/w=
dw'/w’, we see how (A15) follows from (A16) and
(A13).

The developments we have just outlined here can be
applied to obtain quite readily an important result
associated with the so-called Weigsiker—Williams
method. The idea behind this special method or
approach, which is applied to the bremsstrahlung
problem in Sec. 3.2, is based on the following result.
The electric and magnetic fields produced at a fixed
point by a highly relativistic charged particle of charge
¢ passing at an impact parameter & are principally the
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transverse fields® E(¢) and B(#) which are mutually
perpendicular and both equal to, in the extreme
relativistic limit,

E(8) =B(1) = qvb/ (b*+%c*) 2 (A18)

This result is derived in a number of textbooks (cf. J62,
PP62) as well as in the original papers (W34, W35) and
follows from a straightforward Lorentz transformation
of the static Coulomb field of the particle in its rest
frame. Because of this result, the effects of the fields of
the incident particle are the same as produced by a
pulse of incident photons with the total time-dependent
fields given by (A18). The spectrum and equivalent
number of these photons can be easily found from our
previous developments. If N is the differential number
of these photons incident on an element of area dA4,
then

fiwdN/dAdw=1,=c| E, % (A19)
The Fourier component E, is given by
Ea= () [ B(@eissat
o @3 lwb.
q_ [*exp liwbw/ve) \ o ang)

T 2rcb o (1P

For w<yc/b the integral in (A20) approaches 2, so that
for a given w, say,
E,—q/mcb,

0K bmax v/ w. (A21)

If the charge is incident at random impact parameters,
we can take d4 = 27bdb. Then, for the number of virtual
photons incident in the frequency interval dw due to
incident charges (¢=Ze) with random impact param-
eters within db, we get

AN = (2a2%/7) (db/b) (dw/w). (A22)

We emphasize that this result holds with the restriction
(A21) on b and w. For b larger than bumax, for example,
the spectrum (A22) drops off due essentially to the
oscillatory exponential factor in the integral in (A20).
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