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Models for High-Energy Processes*

J. D. JACKSON
Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

Recent developments in the concepts and models used to describe high-energy collisions of fundamental particles are
reviewed. The areas of appreciable activity in research in high-energy physics are surveyed briefly and the general frame-
work for the description of processes at high energies is outlined. There follows a sampling of recent experimental data
designed to show the extent and detail of present-day experimental results. Recent applications of Regge pole models are
reviewed with emphasis on the difficulties as well as the successes of models employing only Regge poles. The various
multiple-scattering models are then discussed and correlated by means of the methods of Glauber. The connection of
these models with amplitudes having branch cuts in the angular-momentum plane (Regge cuts) is described, as well as
some comparisons with experiment. Finite energy sum rules as a means of relating the low-energy and high-energy domains
are discussed in some detail. Next, the far-reaching concept of duality whereby the direct-channel resonances are (in some
sense) the crossed-channel Regge exchanges is described, along with the related ideas of exchange degeneracy, the special
role of the Pomeranchon Regge pole, and duality diagrams. An explicit realization of duality is achieved in the Veneziano
model. This model is discussed in some detail for the relatively simple and interesting example of pion—pion scattering.
Brief mention is also made of the extensions of the Veneziano model to the n-particle amplitude, attempts at unitarization,
and various applications. The topic of multiparticle final states is covered relatively briefly with emphasis on the applica-
tions of double Regge pole exchange to three-body final states, the calculation of proton and pion energy and angular
distributions in proton—proton collisions by means of the multi-Regge exchange model, and the generation of self-
consistent Regge singularities with the multi-Regge exchange model and unitarity. The final section of the review concerns
recent results on pion—pion scattering phase shifts and also K~ phase shifts, and some remarks on theorems connecting
decay correlations of resonances with the mechanism of production. The literature survey ended, with a few exceptions,
in May 1969.
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nomenology at the Lund International Conference on
Elementary Particles, June 25-July 1 1969. The meet-
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ing in Lund was the fifth of a series of European
“off-year” conferences on high-energy physics, begun
in Aix-en-Provence in 1961 and alternating with the
“Rochester” conferences. These conferences are pri-
marily for presentation of the latest results of research
and discussion among experts. The purpose of review
talks on the opening day of such a meeting was partly
educational and partly to survey topics not covered at
the conference. The Lund meeting was devoted to
hadronic processes. The reviews of Lipkin (resonances)
and myself were within the bounds of this subject
matter, while those by Lohrmann (electromagnetic
interactions) and Steinberger (weak interactions)
provided status reports on otherwise neglected areas.

An invitation to present a review at a conference
affords a reviewer the opportunity to survey afresh the
subject matter, to collect his own thoughts about it,
and to present a hopefully concise and clear picture,
emphasizing the good and fruitful and omitting the
spurious and bad. The opportunity requires sufficient
effort that it is natural to decide to prepare something
more than the manuscript for a one and a half hour
lecture. Thus it is that I went to Lund with a manu-
script of 147 typed pages and 41 figures. This text
appears in the Proceedings of the Lund Conference,
and, with modest alterations, forms the present paper.
The review is intended to give a picture of the field in
mid-1969. The literature survey ended, with a few
exceptions, in May 1969.

Before beginning the review proper, it is worthwhile
to examine what specific subjects high-energy experi-
menters and theorists work on. As a measure of the
thrust of their activities, I have chosen publication in
two letter journals, Physical Review Letters and Physics
Letiers. The time period covered is roughly 1968 and
the first half of 1969 (actually three volumes of each
journal). The over-all picture is displayed in Fig. 1
where the areas of the circles for experiment and theory
are in proportion to the numbers of papers (304 and
360, respectively) in each field. The 10 categories in
experiment and 11 in theory are somewhat arbitrary.
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In the experimental area, the finding and study of
resonances accounts for 289, of all the publications.
When production mechanisms are included the total
resonance or resonance-related effort amounts to 409.
The great bulk of this research is done with bubble
chambers. Counter experiments on elastic or quasi-
elastic scattering account for roughly 169, while
photon- and electron-initiated processes provide 249,
and experiments on weak interactions contribute 209
of the publications.

The theorists’ activities appear to be slightly more
uniformly distributed (is this just a reflection of a
better choice of categories?), with no one subdivision
contributing more than 139, of the total. It is note-
worthy, however, that various aspects of S-matrix
theory, with its ideas of analyticity, crossing and
unitarity, account for 35% of the theoretical publica-
tions. Study of the time derivatives shows that the
situation is far from static. The percentages shown in
Fig. 1 have already changed. For example, current and
field algebras are on the decline, while Veneziano
models are rising with meteoric speed.

2. Framework

Let us assume that high-energy phenomenology has
to do mainly with collisions of hadrons at incident
momenta above, say 2 GeV/c. Then the framework of
gross empirical facts and main theoretical concepts
consists of the following:

(i) There exists SU(3) singlets and octets of mesons,
and singlets, octets, and decimets of baryons, of a
variety of different spins and parities. Some of these
mesons and baryons are stable, apart from electro-
magnetic or weak decays. Others appear as resonant
states in scattering or production experiments.

(ii) The quantum numbers of the observed meson
and baryon multiplets can be generated by the mnemonic
of the quark model, with (gg) for the mesons and (gqq)
for the baryons. (This particular empirical fact will
need modification as soon as any ‘“‘exotic”’ resonance is
firmly established.)
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Fic. 2. Differential cross section for elastic 7—p scattering at 9.7
and 13.6 GeV/c (from Orear ef al., 1968).

(iii) Two-body and quasi-two-body processes are
peripheral, showing peaking at forward directions
(small #) and/or backward directions (small #).

(iv) Integrated cross sections, or differential cross
sections at fixed momentum transfer, show approximate
power-law behavior in the energy. In particular, total
cross sections seem to become constant asymptotically
and obey Pomeranchuk’s theorem.

(v) Virtually all occurrences or nonoccurrences of
peripherality in a given process (iii) can be understood
in terms of the exchanges of the internal quantum
numbers of the known SU(3) multiplets of mesons and
baryons (i).

(vi) A modest amount of analyticity in the kinematic
invariants, plus crossing symmetry, relates the phase of
an amplitude at high energies to its power-law behavior
(iv). This connection is the same as, but more general
than, that given by Regge pole theory.

(vii) The known mesonic and baryonic states (i) can
plausibly be placed on Regge trajectories, and the
trajectories are approximately linear in the square of the
masses. This gives great impetus to the use of Regge
exchanges to unify items (iv), (v), and (vi) into an
aesthetically pleasing whole.

In the subsequent sections we explore some of the
recent developments in various models and ideas in
order to show the diversity of the attempts to cope with
ever increasing amounts of data whose quality also
improves, as well as to expose some of the limitations,
difficulties, and unanswered questions. The existence
of proceedings from the Berkeley, Heidelberg, and
Vienna Conferences, along with some recent books (for
example: Eden, 1967; Collins and Squires, 1968;

Kokkedee, 1969; Barger and Cline, 1969),* allows me to
omit specific references to much of the earlier work. Van
Hove’s report at Berkeley (Van Hove, 1966b), with an
Appendix by Wetherell, surveys both theory and experi-
ment. Subsequent developments on the experimental
side have been reviewed at Heidelberg™ by *DiLella
(1967), at the CERN Topical Conference by Colley
(1968), Derrick (1968), and van Rossum (1968) among
others, and at Vienna by Bellettini (1968). The theo-
retical side of high-energy collisions has been surveyed
by Bertocchi (1967) at Heidelberg, by Barger (1968),
Bialas (1968), and Salin (1968) at the CERN Topical
Conference, and by Chan (1968) at Vienna. There is, in
addition, a massive survey with a very complete
bibliography of Regge pole theory through mid-1968 by
Hite (1969).

To assist the reader through or past some of the
terminology and jargon associated with Regge theory,
there is a glossary and some brief explanatory notes in
the Appendix.

II. SAMPLING OF RECENT DATA

A discussion of models for high-energy processes
inevitably involves comparison with experiment, but
the motivation for the various models can be better
appreciated by first examining the quality and range of
data presently available. Accordingly there follows a
sampling of recent data with only brief comments. Some
of these and other data are elaborated on in the subse-
quent sections dealing with the various models. The
data shown are only representative; they are not neces-
sarily the best and certainly not the worst available.

1. 7~p Elastic Scattering

The data of the Cornell-BNL collaboration (Orear
et al., 1968) on 7 p elastic scattering at 9.7 and 13.6
GeV/c are shown in Fig. 2 together with earlier results
of experiments at Brookhaven. The noteworthy
features are: (i) the well-known diffraction peak for
| t] <0.6 (GeV/c)2, (ii) a secondary convex shoulder
leading to a pronounced local minimum at #~—3
(GeV/c)?, (iii) a relatively flat (e4t, 4~0.5) region
from ¢=-—4 to —10, where there may be unresolved
structure and the cross section is of the order of 10—5-
107 times its value at £=0, and (iv) a steep, but small,
backward peak (e8*, B~4). Comparison with data at
lower energies shows that the convex shoulder is the
remnant of a broad secondary maximum that followed a
dip at #~—0.6. There is thus a pronounced energy
dependence in the shape of the cross section, at least in
the energy range up to.10 GeV/c. Above that, one may
be seeing the beginnings of a stabilization of do/dt

* References are cited in “standard” British fashion, with
papers and books listed at the end in a bibliography arranged
alphabetically by first author. One abnormality occurs: Pro-
ceedings offjconferences are cited fully in a special list at the
beginning of the bibliography. This permits an abbreviated
entry by author, for example, Bellettini, G. (1968). Vienna, p. 329.
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Fic. 3. Differential cross section for p—p elastic scattering at 19.2 GeV/e, along with results at other incident momenta
(from Allaby et al., 1968a).

towards an energy-independent shape, as expected
from some models (see Sec. IV.2 below).

2. Nucleon-Nucleon Elastic Scattering

Even more spectacular are the proton—proton scat-
tering data taken at CERN by Allaby et al. (1968a)
and shown, along with results at lower energies, in
Fig. 3. These results have received widespread attention.
Mention need be made only of the apparent tendency
at fixed £ for the cross section to approach an asymptotic
energy-independent value, with the cross sections
approaching the limit more slowly the larger the | ¢|
value. The break at |t]|~1 (GeV/c)? is the out-
standing feature of the data at the highest energy.

Corresponding data for antiproton—proton elastic
scattering are shown in Fig. 4 (from Orear ef al., 1968).
There are three observations here: (i) The diffraction
peak at very small | ¢| is larger and narrower than for

proton—proton scattering. (ii) There is structure,
perhaps a dip and definitely a shoulder, at i~—0.6
(GeV/c)2. This is considerably closer in than the
structure seen in the p—p data. (iii) There seems to be a
sudden increase in slope again beyond i~—3 (GeV/c)2.

3. Inelastic Proton~Proton Collisions

A number of experiments have been done on inelastic
proton—proton interactions using a missing-mass spec-
trometer (Ankenbrandt et al., 1968; Allaby et al.,
1968b). Figure 5 shows the results of Allaby ef al.
(1968b) on the differential cross section for pp—pN*+
at 19.2 GeV/c, where the N*s are defined by the
indicated areas of the 1520- and 1688-MeV regions.
Beyond | #| =1 (GeV/c)?, the slopes of all the inelastic
cross sections are similar to the elastic slope, while for
| £] <1, the inelastic cross sections seem flatter than the
steep diffractive elastic peak. At lower energies the
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inelastic cross sections for N*(1520) and N*(1688)
production tend to be flatter at all momentum transfers
than the elastic cross section, the effect being greatest at
the lowest energy (Ankenbrandt et al. 1968). In con-
trast, it should be recalled that the mass region around
1400 MeV has long been known to be produced very
peripherally. It may be that the small | £ | behavior can
be understood in terms of the details of the inelastic
transition (spin and parity of the resonance, quark
model wavefunction, etc.), and that the large ||
behavior at high energies stems from some common
cause for all processes (see Sec. IV.2 below).

4. Polarization in 7—N and K-N Scattering

Polarized targets continue to be used to provide
additional information on the amplitudes that enter
into high-energy elastic scattering. Limitations on
intensity have generally restricted the high-energy
polarization data to the region | | <1 (GeV/c)?, but
some accurate data at larger momentum transfers are
now available. One such set of measurements made at
Argonne (Esterling ef al., 1968) on 7*p scattering at
5.15 GeV/c is shown in Fig. 6. The range of momentum
transfers is 0.2< | #]| <2.0 (GeV/c)2 The interesting
features are (i) the approximate reflection symmetry,
P(ntp)~—P(np), (ii) the quadratic extremum near
zero at i~—0.6 (GeV/c)?, and (iii) the relatively large
polarization for | £| >1 (GeV/¢)2. Other data at higher
energies show that there is little change in the polariza-
tion for |£] <0.6 (GeV/c)? up to 14 GeV/c (see
Fig. 37 of Bellettini, 1968), but that for larger |¢|
values the polarization probably decreases in magnitude
with energy. The rough relation, P(ntp)~—P(x~p),

indicates that the polarization is caused mainly by
interference between C=-1 and C=—1 exchange
amplitudes with different phases. Since the obvious
Regge exchanges are P, P’; and p, the near vanishing of
the polarization at t=~—0.6 (GeV/c)? correlates nicely
with @,=0 and the known dominance of the ¢ channel
spin-flip amplitude B, in the process #~p—n'n. The
double zero at i~—0.6 (GeV/c)2 and the possible
behavior of the polarization at larger | ¢ | values, even
beyond | ¢| =2(GeV/c)?, are discussed in Sec. ITI.2(b)
below.

Polarization measurements on K+p elastic scattering
at 1.22 and 2.48 GeV/c by Andersson et al. (1969)
throw light on the possible existence of .S=--1 baryonic
states at ~1900 MeV and also on aspects of exchange
degeneracy and duality. These data are shown in Fig. 7.
The positive polarization at 1.22 GeV/c agrees well
with a calculation by Lea, Martin, and Oades (1968)
without any resonant states (dashed curve), and dis-
agrees with the prediction involving an I=1, JP=#%t
resonance at 2020 MeV (solid curve). The higher-
energy results show a relatively featureless positive
polarization that remains remarkably large at forward
angles. The two curves are from a calculation involving
a purely imaginary diffractive amplitude (P exchange)
and exchange-degenerate spin-flip contributions from
p and A, exchange (Blackmon and Goldstein, 1969).
The solid curve has a negative relative sign between the
p and A, amplitudes; the dashed curve has a positive
relative sign. The data indicate somewhat better agree-
ment with the negative relative sign. This is consistent
with the duality picture which couples the absence of
s-channel resonances in the K*p channel and the
flatness in energy of the total cross section to the
cancellation of the imaginary parts of the contributions
from exchange-degenerate partners. (See Sec. V.3 below
for more on duality and exchange degeneracy.)

5. Resonance Production

Since bump hunting and related activities occupy a
large fraction of the effort in experimental high-energy
physics (see Fig. 1), selection of a representative experi-
ment is difficult and arbitrary. I have chosen the work
of Crennell ef al. (1968) on the properties of the g(1650)
meson. Their results on the two-pion mass distributions
in 7 p—rwtn, 7 p—r1%, and wrp—ortrtn at 6
GeV/c are shown in Fig. 8. The upper histograms show
the mass distributions, while the lower panels show the
mass dependence of the coefficients 4 r, where L=2, 4, 6,
in the Legendre polynomial expansion of the =—m
“scattering” angular distribution (not the amplitude)
in the two-pion rest frame. One of the characteristics of
bubble-chamber experiments nowadays is the large
number of events (over 5000 in =~#t%, 3000 in 7%,
and 1200 in the “blank” run of #t=tx).

The Q=2 7 system is featureless with a smooth
mass plot and 4, coefficient. The Q=0 configurations
show strong p° and f° signals, as well as a small but clear
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bump at 1.6 GeV (the g meson). The Q=0 Legendre
polynomial coefficients behave in just the manner
expected for the known spins (1~ and 2+) of the p° and
f% In A, there is evidence for resonant behavior at
1.6 GeV, but nothing is seen in A4 or 4g for Q=0. In
view of the background under the small peak at 1.6
GeV, the absence of signals in A4 and Ag is not sur-
prising.

The Q= —1 configurations reveal a strong p~ and a
reasonable g~ peak. [There is no sign of a peak in the f°
mass region. This means that there is no /=1 ==
state (p’) degenerate with the f9, at least not with

appreciable elastic width.] Again the behaviors of the
Az below 1 GeV are consistent with a p spin of 1~. In
the region of the g, all three coefficients seem to show
resonant structure, although Ag cannot be taken too
seriously. The quantitative behavior is in agreement
with JP=3~ (or greater, e.g., 5—, 77) for the g meson.

6. Tests of Quark-Model Predictions on Decay
Correlations

One of the most peculiar phenomena in high-energy
physics is the continuing success of the “realistic”
quark model. The use of quarks as a mnemonic has
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gained widespread acceptance, but the idea of dynamic
or even kinematic considerations with “real” quarks
leaves some segments of our community cold. Nonethe-
less, intrepid theorists push the model further and
further. One area of prediction is that of joint decay
correlations in double-resonance production (Bialas
and Zalewski, 1968). These predictions have been
tested in several experiments (Alderholz et al., 1968b;
Bockmann et al., 1968; De Baere ef al., 1969; Friedman
and Ross, 1969). Figure 9 shows a portion of the results
of Friedman and Ross (1969) on K—p—K*A at 2.6
GeV/c (3300 events). The predictions of the quark
model are divided into classes (A, B, C) depending on
how many assumptions are made about the individual
quark—quark scattering amplitudes. The comparisons

‘1.01.0 cos 6¢c.m. -1.0

+10

shown in Fig. 9 are for the five class-A predictions con-
cerning the correlations in the average values of various
combinations of powers of the direction cosines of the
decay particles of the two resonances. The agreement
between model and experiment is very impressive for
these predictions which depend only on the assumption
of additivity of the quark—quark amplitudes. Class-B
predictions usually work out well, but the success of
the more detailed Class-C results is spotty.

The enemies of the quark model may eventually be
able to find alternative explanations for these correla-
tions, but in the meantime one must ponder the
meaning of such detailed successes.

7.Backward K+p and K—p Scattering

One of the empirical facts cited in Sec. 1.2 is that
forward or backward peaks occur if, and only if, the
quantum numbers allow the exchange of a member of
an SU(3) singlet, octet, or decimet. K*p and K—p
backward scatterings afford illustrations of this fact,
and recent data make it quantitative. For K*p the
u-channel exchange requires B=1, ¥=0Q=0, =0, 1.
Thus A, 2% VY1*0 exchanges are possible and there
should be a modest amount of backward scattering. For
K~p, the corresponding quantum numbers are those of
the K*p channel, B=1, Y=Q=2, I=1. A state with
such quantum numbers lies outside the known SU(3)
multiplets. No good evidence for such states exist (see
Sec. I1.4 above, and Tripp, 1968, Sec. 3). Hence the
K~p backward scattering should be negligible at high
energies, as should backward peaks in K—p—K%,
K—p—K*p, etc.

Lundby and co-workers at Brookhaven (Carroll
et al., 1968) and CERN (Baker et al., 1968; Baker et al,.
1969; Banaigs et al., 1969) have studied K*p backward
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scattering at a number of incident momenta from
~1.4 to 6.9 GeV/c. Some of their results are shown in
Fig. 10. The solid points are the cross sections (do/du) u—p
for K*p, while the open circles (none above 2.5 GeV/c¢)
are for K—p. The straight lines indicate power-law
behavior, as s~ for K*p and s71° for K—p. The dashed
curves give the behavior of the backward cross sections
for m%p. Two comments here: (a) The s~* dependence
for K*p, corresponding to an effective a(0)~—1,
seems very reasonable for the exchange of a strange
baryon (A, 2° ¥1*®). (b) The very rapid falloff for
K—p, if it can be shown to hold at higher energies,
implies oeet S—4 and thus has direct bearing on the
importance of Regge cuts. This point was made by
Chew at the Vienna Conference (page 364) and is
discussed in Sec. IV.3 below.

8. Forbidden Exchanges

Having just explained the absence of a backward
peak in K—p elastic scattering in terms of the absence of
“exotic” resonances, it is only fair to mention some
evidence that seems to run counter to our simple view.
Data on strange-particle production at incident
momenta from 2 to 4 GeV/c show some peculiar
peakings (Abolins et al., 1969) . First of all, the ¥;*(1385)
production reactions,

7= p—KOV 0,
KTV,
aHp KV

which can proceed via K* exchange in the ¢ channel, do
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Fi1c. 9. Comparison of experimental results on combined decay
correlations in the process, K~p—K*A at 2.6 GeV/c, with quark-
model predictions of class 4. In each histogram the correlation
predicted by the quark model is stated in terms of the direction
cosines of the decay particles of the two resonances. The solid and
open points refer to the left- and right-hand sides of each equation.
The abscissa in each diagram is the cosine of the production angle
in the c.m. system (from Friedman and Ross, 1969).

show forward peaks (direction being defined by
following baryon number). The reactions

T p— KtV *,
rtn— K0V %,

on the other hand, show not only the expected backward
peaks from baryon exchange, but also forward peaks.
The forward peaks imply that the quantum numbers
B=0, I=$%, V=1 are exchanged in the ¢ channel.

Whether these anomalies indicate the existence of
““exotic” resonances or have some more complicated
but mundane explanation remains to be seen. They
serve as a possible warning against blind acceptance of
the idea that the world is made up of only singlets,
octets, and decimets.

III. REGGE POLE MODELS

The idea that scattering amplitudes possess poles in
the complex angular-momentum plane is ten years old
(Regge, 1959), and the hope that such poles in the ¢ or
# channels dominate peripheral processes at high
energies in the s channel is roughly eight years old. The
impartial observer may say that, despite the thousands
of papers written about Regge poles, their importance
and significance is still only a hope. He will not argue,
however, against the notion that the concepts of Regge
poles and the complex-angular-momentum plane have
proved, and still are proving, enormously fruitful and
stimulating in our search for understanding of high-
energy processes. Many books have been written about
Regge poles, the latest by Collins and Squires (1968).
I will merely remind you of the aspects of greatest
interest in the past year or two and then survey the
diversity of activity in Regge pole phenomenology. The
question of models with poles and cuts in the J plane is
deferred to Sec. IV, although I begin with some of the
troubles encountered by pure pole models.

1. Difficulties with Pure Pole Models

Two and one-half years ago at Heidelberg, Regge
pole theorists were in a happy (?) state of immense
technical complexity. Unequal mass kinematics and the
need for daughter* trajectories, conspiracies* among
trajectories of different quantum numbers (apparently
required by experiment), Lorentz poles* and the
question of the identification of the M quantum number*
of known particles—all these are documented thoroughly
in Bertocchi’s report (Bertocchi, 1967). A year later, at
Vienna, various ramifications of these questions were
being pursued (see Chan, 1968), but at the same time
certain difficulties with pure pole models were emerging.
Some of these troubles follow from the hypothesis of
factorization of Regge pole residues, a concept firmly
rooted in the idea of a pole, and in unitarity. If the
residue of a Regge pole of definite quantum numbers,
including parity, in the amplitude for a transition
from state a to state b (the label a specifies the particles
and their helicities in state @) is s, then factorization
of residues requires the residues of the pole for a—b,
a—a, b—b be related according to

ﬁba2 = BusBaa-

A well-known difficulty occurs with the residues of
the w trajectory: The conventional analysis of high-
energy pp and Pp elastic scattering involves the Regge
pole combinations (P4 P'4w), where the trajectory
symbol stands for the corresponding amplitude. Since
the differential cross section for pp is larger at {=0 and
falls away from ¢=0 more rapidly than the pp cross
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B Fic. 10. Energy dependence of the backward differential cross
section do/du at #=0 for K*p (solid points) and K—p (open
circles) elastic scattering. The dashed curves are the corresponding
results for w*p scattering (from Baker et al., 1968).

* See the Glossary for brief explanations of these terms.



section, there is a “crossover” point which is attributed
to the vanishing of the residues 8’ of the w trajectory
there. Factorization then implies that the residues
Boa@ () =0 at ~—0.15 (GeV/c)? for all processes.
Inelastic reactions like TN—pN (with an w contribution
that is difficult to extract) and K+p—K*tp (with what
is believed to be a large  contribution) show no sign of
a dip that could be associated with this zero in 8.
Secondary trajectories (w’) can be invoked to avoid
contradiction with factorization, but Regge cuts in
the J plane are more likely.

Another famous example that bears on conspiracies
is discussed by LeBellac (1967). The use of a parity-
doublet conspiracy for the pion (M =1 pion) in inter-
preting the forward peaking in pn—np and yp—ortn
leads, via factorization, to the prediction of a zero at
t=0 in the pion’s contribution to the amplitude for
production of p° with zero helicity in the process
wHp—p?At +, Data at 8 GeV/c (Alderholz et al., 1968a)
show that (a) the great bulk of the p”s are produced
with zero helicity near {=0, and (b) the cross section
shows a very strong forward peaking, rather than a dip.
Again, the failure of factorization can be avoided by
the use of additional unnatural parity trajectories
(e.g., 41) to give a forward peaking (Arbab and Brower,

1968), but this leads to further complications with

factorization in other processes (unpublished analysis
by Fox). The excellent fits, obtained with the absorp-
tion model, to the shape of the cross section at | £| <0.2
(GeV/c)? and to the density matrix elements for this
reaction, argue for Regge cuts, as well as poles, as the
most plausible explanation (see Sec. IV.4).

Further indirect documentation on the limitations of
pure pole models comes from the somewhat more
theoretical question of a M =1 pion and its relation to
the hypothesis of a partially conserved axial vector
current (PCAC). The M =1 assignment for the pion,
deduced from experiment assuming a minimum of
poles, was used by Mandelstam (1968a) to derive
Adler’s self-consistency condition, PCAC, and soft-pion
results. This successful intrusion of S-matrix theory into
the domain of current algebras was, however, short-
lived. Mandelstam himself (unpublished) and Sawyer
(1968) showed that factorization required a decoupling
of the M=1 pion as m,—0, not only for soft-pion
processes but for all processes (see also Arbab and
Jackson, 1968). This seems to be a devastating criticism,
but is not quite definitive because the pion mass is not
zero, just small. None the less, it appears that within
this framework ridiculous answers can only be avoided
by modifying the smoothness assumptions of PCAC.
At present there is no evidence which requires an M =1
assignment for the pion (see Sec. V.2).

The existence of appreciable polarization in =N
charge-exchange scattering has been used as an argu-
ment against models with only Regge poles. The
quantum numbers in the ¢ channel are those of the p
meson, and the differential cross section over a wide
range of energies can be interpreted in terms of the
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exchange of only the p Regge pole. Such a model gives,
however, zero polarization at high energies (strictly
speaking, as | cos 8, | — ) because all amplitudes have
the same phase. If secondary trajectories (p’) are
invoked, it is difficult to fit simultaneously the mag-
nitude of the polarization (comparable at small | ¢]| to
that shown in Fig. 6 for 7*p elastic scattering) and the
energy dependence of that polarization. A natural
explanation is found in the existence of Regge cuts
which provide amplitudes with the required phase
differences (see Sec. IV.3 and 4). The assumption of
Regge cuts is not necessary, however. Meng, Schlaile,
and Strauss (1968) show that use of a modified Regge
pole representation (a Khuri-Jones-Kretzschmar repre-
sentation, see Collins and Squires, 1968, page 83),
which has the standard asymptotic Regge form but
differs at finite energies, can give a fit to existing
differential cross section and polarization data to within
the rather large errors on the latter.

In the same category of difficulties, but not absolute
failures, of Regge models using only poles, are the
predictions of decay correlations of unstable resonances.
Comparisons with experiment show more disagree-
ments than agreements. Typical are the spin density
matrix elements of w mesons produced in peripheral
processes (rtn—wp, tp—wAt t) . The simplest produc-
tion mechanism is exchange of the p Regge pole. This
exchange [or the exchange of any systems of natural
parity P=(—1)7] implies that pn=0, where pmm is
the density matrix for the » expressed with respect to
the #-channel axes (Gottfried and Jackson, 1964).
Experimentally, pp~3 in the forward direction,
indicating an appreciable amount of unnatural parity
exchange. The pure pole model can be partially saved
by invoking the B meson (a bump seen in 7w mass
plots at ~1220 MeV and believed to have JP=1t),
but the calculated density matrix elements have marked
¢t dependence and agree only marginally with the data.
Again, Regge cuts are presumed to play an important
role.

2. Recent Developments in Models with Poles Only

In spite of the limitations and difficulties discussed
above, phenomenologists (there must be a better name
for theorists interested in experiment!) continue to
correlate data with models involving the exchange of a
small number of Regge trajectories. There are several
reasons for this:

(i) The gross features, and even some details, do
seem to be described by trajectories (P, w, p, A2, ™;
N, A) identified with more or less well-known sequences
of particles, plus the Pomeranchuk trajectory (P).

(i) Secondary trajectories (o', w’, ') can be used to
produce effects akin to more complicated J-plane
behavior.

(iii) Pole models with exchanges of SU(3) multi-
plets can be used to test SU(3) and higher symmetries.
Of course, failures of such tests are difficult to interpret
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if other J-plane singularities are important, similarly
for successes.

A good example of a relatively straightforward, but
systematic and thorough, analysis of a large sample of
high-energy data is that of Dass, Michael, and Phillips
(1969). They concentrate on K*p scattering, but use
high-energy data from all sources and finite energy sum
rules (see Sec. V.1) to constrain the possibilities.

We now discuss briefly some specific recent applica-
tions of Regge pole models.

(@) Dips, Front and Back

The classic dips seen in 7~ p—n% and xtp—nlAt+
at I~—0.6 (GeV/c)? need no discussion. The standard
explanation involves the vanishing of a f-channel spin-
flip amplitude at the point where @,(f)=0. An even
more dramatic dip occurs in the backward scattering,
mtp—prt, as can be seen in Fig. 11, where the data of
Baker ef al. (1968) on m+p—prt at 5.2 and 6.9 GeV/c
and 7—p—pr— at 6.9 GeV/c are displayed. The curves
are the result of a Regge pole fit using the A trajectory
for 7p, and the A (determined by isospin rotation
from the 7—p fit) and the N trajectories for =p. The
dip at u~—0.15 (GeV/c)? is explained as a result of
the vanishing of (ay+%) at that point.* Other Regge
pole fits to these and other data have been made by
Barger and Cline (1968) and Paschos (1968). One
aspect worthy of comment is the empirical evidence
from the spectrum of baryonic states that the trajec-
tories seem to be approximately even in W= (u)!2
even though e priori there is no reason to expect states
of opposite parity to be degenerate.f Most of the
evidence for a=a(u), rather than a=«a[ (%)Y2], comes
from fitting sequences of states with W >0, but there is
the approximate degeneracy of the I'=3, Y=B=1
states of spin—parity 5+ and §~ at ~1685 MeV. Exten-
sion of the approximately linear A trajectory towards
negative # leads to the expectation of a dip (indeed, a
zero) in the cross section for mp—pr— at u~—1.9
(GeV/c)?, where aa+3=0.%'Although the data of Fig.
11 do not extend far enough to cover this region of #,
other data (see Fig. 14 of Bellettini, 1968) show no
evidence of significant structure all the way out to
| # | =2.4 (GeV/c)2. This discrepancy can, of course, be
remedied by modifying the A trajectory at negative u
values either by having it asymptotically level off to
some negative constant larger than —% (Barger and
Cline, 1968) by assuming the form aa=a+b(%)24-cu?
so that for negative #, Im ax%0 even if Re (aa+%) =0
(Paschos, 1968), or by other easily conceived modifica-
tions.

* Called a wrong-signature, nonsense point—see our Glossary,
and also Chan (1968), Sec. 2 for an explanation of these terms
a;ld a summary of the behavior of Regge residues at such values
oI ar.

t The fact that a partial-wave amplitude of definite 7 in meson—
baryon scattering, viewed as a function of complex W, describes
a state of one parity (and ! value) for positive W, and the opposite
parity for negative W, was first pointed out by MacDowell (1960).

A somewhat puzzling aspect concerns the magnitude
of the 7~p backward cross section shown in Fig. 11 (and
at other energies). It is much smaller than expected.
The residue of the A pole at W=1.236 GeV is known
from the experimental width for A—»=N. If the residue
is chosen to have the minimal dependence on W
necessary to give the requisite analytic properties to
the amplitude, one finds a cross section in the physical
region (# $0) one or two orders of magnitude too large.
To obtain agreement with experiment, it is necessary to
assume that the residue varies rapidly from #=0 to
the physical pole, perhaps possessing one or two zeros
near #=0, a not entirely satisfactory state of affairs
[Igi et al. (1968). See Berger and Fox (1969) for a
discussion of this problem].

Another example of structure in the backward
direction and its interpretation in terms of Regge
exchanges is the process m p—KO°A. The #u-channel
quantum numbers are B=1, ¥=0, Q=1, I=1, corre-
sponding to Z-like trajectories, Z,(3*, §+, --°),
E’Y(%—: %—, o ')7 ZB(%_, %—; °* '), and 25(%+, %+1 o ')'
Preliminary data of Michelini et al. (1969) on the back-
ward differential cross section and polarization of the
outgoing A are shown in Fig. 12, together with the
theoretical curves of Barger, Cline, and Matos (1969).
The cross-section data and, more dramatically, -the
polarization show evidence of structure at #~—0.7
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Fic. 11, Backward differential cross section for #*p elastic
scattering at 5.2 and 6.9 GeV/c, and 7~ at 6.9 GeV/c (from
Baker et al., 1968).
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(GeV/c)2. The Regge pole model, using exchange-
degenerate =, and Z, trajectories, gives a more than
adequate description of the cross section and the
large, momentum-transfer-dependent polarization. The
change in sign of the polarization at #u~—0.7 (GeV/c)?
is associated in the model with a wrong-signature,
nonsense zero at az,=—3. It should be noted that in
order to produce a large polarization the residues cannot
be exchange degenerate, even though the trajectories
are.

(8) Cyclic Residues to Give Structure at Large | t |

The true believer in Regge poles leaves no application
untried, no challenge unaccepted. If there is structure
in a cross section at i~—3 (GeV/c)?, as in the 7
cross section shown in Fig. 2, he will fit it. Never mind
that the model is normally applied to small | ¢ | values,
say | £| <1 (GeV/c)?; it may also work in the large | ¢ |
region. Of course, in applying the model over a wide
range of momentum transfer, it is necessary to make
detailed assumptions on the ¢ dependences of the
residue functions which determine the shapes of the
differential cross sections. Barger and Phillips (1969)
have made exploratory calculations, using cyclic residues
to generate dips at large | ¢ |. There is, on the one hand,
evidence for zeros in amplitudes at wrong-signature
points [e.g., 7 p—1n, a,(—0.6)=0; wrp—prt,
ay(—0.15) = —37]. With a relatively flat Pomeranchuk

pole, the structure in the average of the =+p and »~p
differential cross sections at t=~—0.5 and —2.8 (GeV/c)?2
can be explained by an oscillating residue for the P’
trajectory, with zeros at ap.=0, —2 (Booth, 1968;
Beretvas and Booth, 1969). These are right-signature
points for the P’ trajectory. Barger and Phillips use
only nonflip #-channel amplitudes for the P and P/,
but both flip and nonflip for the p. They postulate
linear trajectories and assume that the residues for the
P’ and p behave for negative ¢ as

B(1) =£(1) sin jma(l),

where the £(2) is a “smooth function” and the ampli-
tudes are written as

A=pi"exp [—i(r/2)ap*™,

with m=1{or p, m=2for P and P’, n=0{or the {-channel
nonflip amplitude (A4), and =1 for the flip amplitude
(B). For the P trajectory, their slope is so small that
0<ap<1 for |t| <4 (GeV/c)?% and the question of
vanishings at ap=—1, —3, -+ - never arises. The curves
shown in Fig. 13 illustrate the application of this model
to m*p elastic scattering and polarization for 0< | ¢| <4
(GeV/c)2. The behavior of the cross section with
incident momentum is well reproduced as are the
polarization data of Fig. 6. The choice of almost the
same trajectory for P’ and p, together with the cyclic
residue assumption for both, causes the double zero in
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cyclic residue functions (from Barger and Phillips, 1969).

the polarization at i~—0.6 (GeV/c)? and the traversals
back and forth across zero in the region t~— (2.5-2.7)
(GeV/c)2. Polarization data beyond | ¢| =2 (GeV/c)?
are devilish difficult to obtain, but given the challenge
of such interesting predictions, the builders and users of
polarized targets can be expected to respond ultimately.

(¢) SU(3) Tests and Exchange Degeneracy

Over the years a number of tests of SU(3) in Regge
exchanges have been made, most often on total cross
sections. One recent analysis of a set of elastic and
inelastic reactions has been made by Mathews (1969).
He examined all the data on the six reactions

T p—rn (p) atp—oalAt +
o (As) oAt
K—p—K% (p+A42) K+p—KOA++,

The left-hand column contains the “elastic” processes,
the right-hand the “inelastic” processes with the final
nucleon replaced by a A(1236). At high energies the
two reactions on each line are believed to proceed in a
common manner via the exchange of the Regge trajec-
tories indicated in parentheses between them. Several
interesting conclusions emerge from an intercomparison
of these processes:

(i) The trajectory inferred from the ‘elastic”

reaction compares reasonably with that from the less
accurate data on the “inelastic” process for the p, but
not very well for the 4,. In particular, while the values
of «(0) are in accord, the “inelastic” data imply a much
steeper slope for the A4, trajectory at negative ¢, steeper
even than for the p.

(i) Exchange degeneracy between the p and the 4,
trajectories is approximate at best. The «(0) values
may differ by as much as 0.2.

(iii) The differential cross sections for the corre-
sponding “‘elastic” and “inelastic” reactions have
remarkably similar shapes.

(iv) The shapes of the cross sections for the three
pairs are very different. The first (#° in the final state)
has a relatively sharp forward peak and a dip at
| £| >~0.6 (GeV/c)?; the second (%°) is rather broad and
bell shaped; the third (K°) process is intermediate
in shape.

(v) The assumptions of exchange degeneracy and
exact SU(3) vertices allow the prediction of the cross
sections for K~p—K% and K+p—K°A++ from the 70
and 7° reactions:

do 1do 3do
— (K% = = — (794 2 ZZ (50).
dt( ) > (7r)+2dt ()

As can be seen in Fig. 14, this test works quite well for
the “elastic” reaction and moderately for the “inelastic”
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Fic. 14. Tests of exchange degeneracy and SU (3) with the “elastic” reactions, 7~ p—n%, 7~ p—n"z, and K~p—K%, and the inelastic
processes, 7tp—adAt +, xtp—PA+ +, and K*p—KOAt *, at incident momenta from 3-5 GeV/e. The separate cross sections are shown
at the left; the SU(3) components from #° and »° final states appear in the center; the sum of cross sections from the center are com-

pared with the K° and K° data at the right (from Mathews, 1969).

process, when judged relative to the very different ¢ de-
pendences of the component cross sections.

(vi) Evidence in support of exchange degeneracy in
its strong form (for residues as well as trajectories)
comes from the decay correlations of the A** in all
three reactions. Admittedly with sizeable errors in
some instances, the decay correlations are the same
in all three reactions, independent of energy and in
rough agreement with the Stodolsky-Sakurai model of
vector meson dominance and magnetic dipole coupling
for the vertex yN—A.

The anticipated use of neutral K-meson beams at
SLAC for the study of collision processes has led Gilman
(1969) to examine the connection between the various
quasi-two-body processes initiated by K and K. The
inference from Mathews’s work of significant amounts
of p and A, exchange in K—p—K% and K+tp—K°A++
means that exchange degeneracy and crossing can be
tested by comparison of cross sections and decay
correlations for K~p—K°A° and K'p—K+A°.

Further remarks on exchange degeneracy are deferred
until the idea of duality is described in Sec. V.

(@) Higher Symmetries

In the category of higher symmetries I lump both
internal symmetries (and their union with external
degrees of freedom like spin) and the Lorentz symmetry
of scattering amplitudes at vanishing 4 momentum.
About the latter I will say virtually nothing. Both
Chan (1968) and Frazer (1968) touched on Lorentz
poles at Vienna, remarking that the powerful group-
theoretical considerations of Toller, Domokos, and
others could be duplicated by more pedestrian means,
using analyticity and factorization for scattering proc-
esses with unequal masses in the initial and final states
(UU), equal masses in either initial or final state (EU),
and equal masses in both initial and final states (EE).
The question of assignment of the Lorentz pole quantum
number M to physical particles is only slightly clearer
now than a year ago. As mentioned already in Sec. III.1
and also in Sec. V.2 below, there are serious difficulties
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FiG. 15. Data at various momenta on the “elastic’” and inelastic reactions of Fig. 14 are compared with a two-parameter Regge model
based on [U (6) QU (6) ]X0(3) (from Delbourgo and Salam, 1969).

with an M =1 assignment for the pion, and no compel-
ling evidence from experiment favoring it. Explanations
alternative to the parity-doublet conspiracy can be
found for the forward peaking in np—pn and yp—rtn.
The present status is thus that there is no experimental
evidence from collision processes requiring anything
except M =0 for all mesonic trajectories.

On the higher internal symmetry front, I comment
on only one paper concerned with the six “elastic” and
“inelastic” reactions discussed in the last section

(Delbourgo and Salam, 1969). These processes, which
involve both octets and decimets of baryons, are unified
by means of the symmetry scheme, [U(6) ® U(6)]X
0(3). This symmetry, with its U(6)w vertices, is
basically the quark model with orbital excitations. The
assumption of exchange degeneracy for the p and A,
trajectories and residues allows the description of all
six processes with so and an over-all scale as the only
parameters. How well this model works is shown in
Fig. 15, where the model is compared with data on the



three “elastic” reactions in the top row, and the “in-
elastic” processes in the bottom row. The comparison
is not perfect in all respects, but the authors suggest that
their model is a good starting point from which to make
improvements (symmetry breaking, absorptive Regge
cut corrections, etc.).

IV. MULTIPLE SCATTERING, OPTICAL MODELS,
AND REGGE CUTS

We have seen in Sec. II that elastic-scattering data
(see Figs. 2-4) can be interpreted as approaching a
regime at high energies where do/di becomes inde-
pendent of s and only a function of ¢. This behavior is
reminiscent of the classical scattering of waves by
opaque obstacles. Furthermore, the structure seen in
the cross sections (dips, changes in slope in different
| | regions, etc.), has similarities to the scattering of
fast nucleons by nuclei, where multiple-scattering
effects are known to be important (Glauber, 1967;
Bassel and Wilkin, 1967; and many others). These
considerations led Yang and collaborators to explore
the use of the concepts of the optical model and multiple
scattering in an attempt to understand do/d! in terms
of the extended structure of particles, as evidenced by
their electromagnetic form factors.

In a parallel development, the successes of the
absorptive model for pion-exchange processes as well as
inadequacies in the Regge pole model (described to
some extent in Sec. III.1) led a number of theorists to
consider multiple #-channel exchanges, the most con-
crete schema being the Regge eikonal model of Arnold
(1967).

The formalism of impact parameters and two-
dimensional Fourier transforms can be used to discuss
all models of high-energy scattering at moderate angles.
It is not surprising, then, that the models of Chou and
Yang (1967, 1968a, 1968b) and of Arnold (1967) bear a
formal resemblance to Glauber’s theory of the multiple
scattering of nucleons by nuclei (Glauber, 1959, 1967),
even though the physical bases and interpretations are
quite different. We first present a sketch of the impact-
parameter formalism, the eikonal approximation, the
nuclear optical model, etc., and try to show the differ-
ences among the various models. Then we turn to
specific applications. We will use the term “multiple
scattering” rather loosely, including circumstances
where we are merely referring to successive terms in
the expansion of exp (245) in powers of (248), as well as
real multiple-scattering processes, such as those occuring
in nuclei. The reader should be aware that this usage
is imprecise.

1. Impact-Parameter Formalism for Multiple
Scattering and Optical Models

For simplicity we consider small-angle elastic scat-
tering and ignore spin. At high energies where many
partial waves enter significantly, the discrete partial-
wave sum can be replaced by an integration over impact
parameter [b~~(l4+3)X] in a well-known manner. It is
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convenient to deal with the amplitude,
a(k', k) = (—i/k) (K, k), (Iv.1)

where f(k’, k) is the center-of-mass scattering amplitude
and % is the magnitude of the momentum in the center
of mass. In terms of @, the differential scattering cross
section is

do/di=7 | a(K', k) |2, (1Iv.2)

and for diffractive scattering at high energies, a is
predominantly real and positive at {=0.

The scattering amplitude ¢ can be represented by
the two-dimensional Fourier transform,*

a(k',k) = (2m)~'f &’ exp (iq-b) (1—S(b)),

where

(Iv.3)

S(b) = exp [2i5(b)]

is the “partial-wave” .S matrix, and q=k—k’ is the
momentum transfer [{= — (q)2]. In this approximation,
a=a(q).

(@) Scattering of a Structureless Particle by a Potential

If a structureless particle of velocity v is scattered
by a potential V(r), the assumption of small-angle
deflections (almost linear path) and high energies
leads to the following expression for the eikonal (25(b)):

25(b) = — (fin) 1 / " &V (b+ks), (IV.4)

where ft, a unit vector parallel to k [or (k+k’)],
defines the 2z axis.

(b) Scattering of a Structureless Particle
by N Fixed Scatterers

For N fixed scattering centers located at rj=ﬁzj—l—sj,
where s; is the transverse coordinate vector, the wave-
function of the incident particle accumulates phase
from each one of the scatterers according to (IV.4).
Thus

N
S(b) = II exp [2i8;(b—s;) 1. (Iv.5)
=1
This expression for S(b) can be written in a more
suggestive and useful form by considering the individual
scatterings. The amplitude for the scattering of the
incident particle by the jth center of force is

a;(q) = (2m)7'f &b exp (ig-b) {1— exp [2:;(b) }.
(1v.6)

* The more familiar expansion
-]

a= / abbTo(B(—H2)(1—S(d))
0

comes from assuming S(b) is independent of azimuthal angle ¢
and performing the angular integration in d?b=0bdbd¢. The
representation involving Jo(b(—¢)12) is valid at small and
moderate angles (0<51). A rough criterion is |¢|<(s/4), or
| t] (Gev/c)2<0.5P;.,(Gev/c) for a nucleon target. At larger
angles, a Bessel representation using Jo(bk sin ) is possible, but
then the connection between impact parameter and partial
waves is lost.
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We define the two-dimensional inverse Fourier trans-
{)orm of a;(q) (called the profile function by Glauber)
g @;(b) = (2m)~'f d?q exp (—iq-b)a;(q).
Then the .S matrix for the jth scattering is
exp [2i8;(b) J=1—a;(b),
and the complete S matrix for the NV fixed scatterers is

N

S(b) =11 [1—a;(b—s;)].

=1

av.r)

(Iv.8)

The expansion of this product of N factors leads to
Glauber’s multiple-scattering expansion, with the
lowest-order terms yielding the impulse approximation,
and the highest containing N successive scatters, as
befits a model with forward collimation.

(¢c) Scattering of a Structureless Particle
by a Composite System, Optical Model

For scattering by a composite system, the internal
motion of the scatterers must be taken into account.
The assumption of a short collision time, implied by
the other assumptions of the model, allows mere aver-
aging by taking an expectation value of S(b) for the
ground state of the target. If independent particle
motion is a reasonable approximation, we obtain

Q] S®) |i)= ﬂ [ @55 [1—5(b—5) ],

where p;(r) is the probability density for the jth
particle.

With the further approximations that all the scat-
terers are the same (or that we average the different
contributions) and that the spatial extension of &;(b)
is small compared to the distances over which p;(r)
changes appreciably, we obtain

(i] S(b) | i)y~{1—[2ra(0)/N1D(b)}"¥, (IV.9)

where @(0) is the average forward (q=0) amplitude
for an individual scattering and the two-dimensional
density,

D(b) = [ dzp(b, 2), (IV.10)

is a measure of the interacting matter encountered by
the incident particle passing through the system at
impact parameter b. In (IV.10), p=Np; is the total
density of interacting matter. For a large nucleus the
approximate of N—w, but p independent of N, is
legitimate. Then (IV.9) becomes the standard optical-
model result,

(i| S(b) | i)~ exp [—27a(0)D(b)]. (IV.11)

This type of formula plays an important role in the
interpretation of the data on coherent photoproduction
of p® mesons in nuclei and the extraction of interesting
quantities like o(pN) and +v,2/4r (see Lohrmann
1969; Drell and Trefil, 1966; and as one specific
example, McClellan et al., 1969). Another interesting

application is to the coherent production of 4; mesons
from nuclei (Goldhaber et al., 1969). The inferred
magnitude of the total cross section ¢ (41N) is such as
to argue against the Deck mechanism (Deck, 1964)
wherein the 4, is merely a 7 and a p produced in close
proximity, but with little interaction.

(d) Scattering of One Composite System by Another

If the incident particle itself is a composite system,
the formulas of the preceding sections have simple
modifications. The S matrix (IV.8) has the gen-
eralization

N M
S()=IT II [1—a;y(b+sj—s;)], (IV.12)

1 =1

where d;;(b) is the inverse Fourier transform of the
amplitude for scattering of constituent j in one com-
posite by constituent 7/ in the other. If we are con-
sidering the elastic scattering of *He on *He or a realistic
quark model, we proceed by taking expectation values
of (IV.12) with respect to the nuclear ground states
(see Czyz and Maximon, 1969, for specific examples).

If we view hadrons as extended objects made up of
finely divided interacting “stuff,” we proceed differently.
Imagine that the numbers, NV and M, of constituents in
each hadron become very large. Correspondingly, the
strength of the constituent-constituent scattering
becomes very small, with &@;;» proportional to (N X M)~
Then the first nontrivial term in the expansion of
S(b) =exp[2i6(b)] can be equated to the sum of
single-scattering terms on the right-hand side of (IV.12) *
With assumptions paralleling those made in going from
(IV.8) to (IV.11), we obtain

2i5(b) = — Kag[ d®0’Da(b—b") Dp(b’), (IV.13)

where K4p is a complex interaction parameter for the
propagation of composite A through composite B, and
D4 and Dp are the two-dimensional densities of inter-
acting matter defined by (IV.10). If one of the densities
is taken to be very highly localized, we recover the

optical-model result (IV.11) for a structureless particle
propagating through a medium.

(e) Multiple-Scatiering Series and its Inverse

It is instructive within the continuum approximation
[as represented by (IV.13) or in the original (IV.3)]
to expand S(b) in powers of §(b) so that the “multiple-
scattering” series (infinite now) can be exhibited. With
the definition

A(q) =— (2r)7f d% exp (iq-b)[2:6(b)], (IV.14)

* This corresponds to neglecting the scattering of one infini-
tesimal constituent in one composite by more than one constituent
in the other composite. Examination of (IV.12) shows that for
N, M—>», a;jc (NM)™, this procedure is legitimate. The kth
term in the multiple-scattering series, (IV.15) below, is then the
sum over all possibilities of the simultaneous scattering of & pairs
of uncorrelated constituents, one member of a pair from each
composite.



one finds
a(Q)=A(q)—(1/2))A(q)®A(q)

+(1/3)A(Q) @A(Q) ®A(q)—+++, (IV.15)

where
F(q)®G(q)=(2m)'[ @*¢F(q—q')G(q) (IV.16)

is a convolution in momentum space. The corre-
sponding expansion for A(q) in terms of the scattering
amplitude is

A(q) =a(q)+(1/2)a(q) ®a(q)
+(1/3)a(q) ®@a(q) ®@a(q)+---.

We note that A(q) is analogous to the Born approxi-
mation for potential scattering or to the impulse
approximation in the scattering of nucleons by nuclei.
For potential scattering with a real phase shift (b),
the successive terms in (IV.15) have phases such that
the odd terms are imaginary and alternate in sign,
while the even terms are real and also alternate in sign.
For the more realistic limit of real A(q), successive
terms are real and alternate in sign, giving the possi-
bility of interference minima, as seen in the data. If
A(q) is approximated by a Gaussian, A(Q)«
exp (—Ag?), it is easy to show that the wth term in
(IV.15) is proportional to exp (—M\g%/#). Successive
terms in the “multiple-scattering” series thus tend to
give flatter and flatter contributions that dominate at
larger and larger angles.

Detailed studies of the convergence of the multiple-
scattering series and other aspects of the Glauber
approach have been made recently by Czyz and
Maximon (1969) and by Kofoed-Hansen (1969). I
refer you to these papers for information on the relia-
bility of terminating the series (IV.15) after only a
few terms.

(IV.17)

2. Chou~Yang Model, Hybrid Model, and Multiple
Pomeranchon Exchanges

(@) Chou-Yang Model

The model of Chou and Yang (1967, 1968a, 1968b)
and the earlier models of Wu and Yang (1965) and
Byers and Yang (1966) are based on the idea of hadrons
as extended objects whose ability to interact is given by
a well-defined density D(b). For definiteness, the
electromagnetic form factors are used as the indicator
of how the ability to interact is distributed in space.
Thus, the hadronic density D(b) to be employed in
(IV.13) is given by

D(b) = (2m)7!f &g exp (—iq-b)Fem(t=—¢?), (IV.18)

and the first term in the “multiple-scattering” series
(IV.15) is

A(q) = (const) [Fem? (¢?) Fan®(g?) T, (Iv.19)
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Fic. 16. Differential cross section for p—p scattering predicted
by the Chou-Yang model with a dipole electromagnetic form
factor. Curve a is based on a purely imaginary scattering ampli-
tude [A(q) real], while curve b includes a small real part. The
trend of the data shown in Fig. 3 is displayed for comparison
(from Durand and Lipes, 1968).

as can be verified from (IV.13) and (IV.14).* For
particles with spin, there is some ambiguity as to what
electromagnetic form factor to use. Chou and Yang
choose the Dirac form factor, F1(g?), for proton—proton
scattering.

A number of calculations have been made with the
Chou-Yang model. The originators themselves made
two empirical fits to the high-energy p—p scattering
data for | | <1 (GeV/c)? and then used the expansion
(IV.17) to deduce the momentum-transfer dependence
of the electromagnetic form factor of the proton. They
showed that the higher terms in (IV.17) were important
only for | t]| 1 (GeV/c)? and that the inferred elec-
tromagnetic form factor of the proton was in general
agreement with experiment for | #| values as large as
20 (GeV/c)2. Of more immediate interest to us are the
calculations of Durand and Lipes (1968) who compare
the asymptotic Chou-Yang differential cross section for
p—p scattering with data of 11-30 GeV/c¢ incident
momenta and 0< | | <16 (GeV/c)2 Their results are
shown in Fig. 16. The solid curves are those of the
model, while the dashed curves give the trends of the
experimental data shown in more detail in Fig. 3. The
curves are calculated with a ‘dipole” form factor
Fon(g?) « (u2+¢*) 2, with u?=1 (GeV/c)2 Curve a has

* The approximate relation,

doap/dt>(const) | FomA(g?) FemB (g% |%,

holding at small | £| values, was arrived at from the quark model
by Van Hove (1966a), and earlier, by Wu and Yang (1965) for
large | ¢] values.
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a real constant in (IV.13), K,,, which is chosen to give
the correct asymptotic total cross section for p-p
interactions (~36 mb). Curve b has a complex con-
stant K,,, with the ratio of real to imaginary part
chosen to yield the experimental value of a=
Re f(0°)/Im f(0°) at 26 GeV/c. The presence of the
complex interaction parameter washes out the deep
diffraction dips and gives structure at |¢|~1.3
(GeV/c)? remarkably like that seen at 20 GeV/¢ in
Fig. 3. Within the framework of this model the deep
diffraction minima are expected to become more and
more visible as the incident energy increases, but if «
vanishes slowly [e.g., (Ins)~1], the approach to
“Infinite energies”” may be rather slow.

While discussing the connection between the elec-
tromagnetic form factors and hadron-hadron scat-
tering, mention should be made of the specific model of
Abarbanel, Drell, and Gilman (1968, 1969). These
authors return to the idea of Wu and Yang (1965) that
the large-angle scattering of hadrons is related directly
to the electromagnetic form factors. They propose a
model with an empirical diffractive contribution at
small ¢, presumed to be generated by normal hadronic
dynamics, plus an elementary local current-current
interaction whose manifestation at large | ¢| is via the
vector and axial-vector form factors measured in
electromagnetic and weak processes. Care is taken to
incorporate, at least approximately, the requirements
of unitarity. One result of this is the observation that
the deep minima of curve a in Fig. 16 may be a conse-
quence of the neglect of direct-channel unitarity in the
Chou-Yang model. ‘

Inelastic processes, corresponding to excitation of the
collision partners without change in internal symmetry
quantum numbers (G, I?, I, ¥, B), are discussed by
Chou and Yang (1968b). Selection rules for these
diffractive excitation processes are inferred by imagining
that the densities p(r) in D(b), (IV.10), are not
¢ numbers, as assumed so far, but rather quantum-
mechanical operators. These operators can cause
excitation of the incident particles, but not transfer of
internal attributes like charge or hypercharge. The
selection rules are those obtained by assuming that the
diffractive mechanisms can transfer only orbital angular
momentum and its associated parity.

(0) Hybrid Model

The basic idea of the Regge eikonal model of Arnold
(1967) is that the eikonal phase shift, (IV.4) or its
generalizations, is given by the sum of the Fourier
transforms of the relevant /-channel Regge pole ex-
change amplitudes which provide the “potential.”
This means that the first term A(q) in (IV.15) is given
by the sum of the Regge pole amplitudes themselves.
Successive terms in the multiple-scattering series then
provide corrections presumably important at larger
angles, as already described.

Chiu and Finkelstein (1968a, 1968b) proposed a
hybrid model which reduces to the Chou-Yang model at

infinite energy, but has corrections at finite energies
from Regge poles whose «;(0)<1. In Regge pole
language, the hybrid model fits into Arnold’s framework
with a set of “normal” Regge poles (P, p, w, 4, etc.,)
plus a fixed pole at J=1 instead of the Pomeranchon.
The “Born term” for the multiple-scattering series
is thus

A(s, £) = Aaiee ()
+2285() exp [— (im/2)e;(#) 1(s/50) %0, (IV.20)

where Agige(£) is the diffractive Chou-Yang amplitude,
and the sum is over the remaining Regge poles.*

The presence of the Regge contributions in (IV.20),
with their s dependences and their ¢-dependent phases,
means that at finite energies the multiple-scattering
series (IV.15) will yield cross sections quite different
in detail from the asymptotic behavior exemplified by
curve a in Fig. 16. Calculated cross sections for p-p
scattering, where the P’ and w trajectories dominate,
are shown at several energies in Fig. 17. At 25 GeV/¢
there is no sign of a dip at = —5.8 (GeV/c)?, and onlya
shoulder, rather than a deep minimum, at ~—1.3
(GeV/c)?, in agreement with the data shown in Fig. 3.
By 200 GeV/¢ incident momentum, the calculated

10-6L1 L L 1 1 P4 L
08 1 2 3.

.
-t GeV?
Fic. 17. Differential cross section for pp scattering predicted

by the hybrid model at various incident momenta (from Chiu and
Finkelstein, 1968b).

* Note that B;(#) is real for odd-signatured amplitudes and
purely imaginary for even-signatured amplitudes.



curves show clearly discernable minima at t~—1.3
and —5.8 (GeV/c¢)?, as well as some shrinkage towards
the asymptotic shape. Another feature is the explanation
of the “crossover” effect (see Sec. II1.1) for p—p and
P—p scattering without the requirement that the residue
of thew Regge pole vanish at i~— (0.15-0.20) (GeV/c)2

Essentially the same hybrid model was used by
Arnold and Blackmon (1968) to discuss w[V scattering
and polarization. They used a dipole for the elec-
tromagnetic form factor entering (IV.19) and included
the P’ and p Regge poles. The spins of the nucleons were
handled in the impact-parameter formalism in the way
described by Arnold (1967). Generally good agreement
with all available data on differential cross sections and
polarization is found for incident momenta above
roughly 5 GeV/cand | ¢| <0.5 (GeV/c)2 The crossover
effect at small |¢]| is obtained provided all the p ex-
change amplitudes vanish at a,=0 (p chooses nonsense) .

(¢) Multiple Pomeranchon Exchanges

The Pomeranchuk or vacuum trajectory has occupied
a special position in the hierarchy of Regge poles
because (i) it is the highest lying trajectory, (ii) its
slope seems abnormally small [ap’~0-0.3 (GeV)~2],
and (iii) there is serious doubt that it is a simple Regge
pole. Some of the doubts concern the apparent slope and
the lack of particles to associate with this trajectory;
others stem from a belief that diffractive scattering is a
complicated shadowing effect, far more involved than
the exchange of a single Regge pole. The Chou-Yang
and hybrid models make a clear distinction between
diffraction and the exchange of other quantum numbers
—these models contain a degenerate Pomeranchuk
trajectory of zero slope. The other extreme is to assume
that the Pomeranchon is a normal Regge pole with an
ordinary slope, but that multiple-scattering corrections
are important. The observed flat trajectory is then a
consequence of approximating the multiple-scattering
series (IV.15) by a single Regge-pole amplitude.
Frautschi and Margolis (1968a,b) consider this ap-
proach, simplifying their model to include only the
Pomeranchuk trajectory in (IV.20) and, of course,
omitting Agiz(f). They obtain an elastic cross section
which, at any one energy, resembles those of the Chou-
Yang or hybrid models. But because of the finite slope
[ap’ (0)=~0.8 (GeV/c)~2], the whole diffraction struc-
ture exhibits shrinkage. Present data are probably
consistent with either behavior. Presumably, 70 GeV/¢
data from Serpukhov will begin to determine whether
there is appreciable s dependence to do/dt above 30
GeV/e.

Two perhaps bothersome points concerning the
picture of multiple P exchanges should be mentioned
here. With ap(0) =1 and ap’(0) >0, the “Born term,”
A(t), in (IV.15) is real and positive at =0, but has a
small positive imaginary part for moderate physical
| t]. The double-scattering term, with its convolution
over physical f values, will subtract off a term that has
its phase in the first quadrant. This means that at =0,
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~ the first correction to A(0) diminishes it in magnitude,

and gives it a negative imaginary part. The total cross
section will thus approach its asymptotic value, 4rA(0),
from below, and = Re f(0°) /Im f(0°) will be positive.
Neither of these predictions agree with data at ~20-30
GeV/c. Perhaps the incorporation of lower Regge poles,
as in the hybrid model, will remove these difficulties. If
so, the predicted behavior of ¢,(s) and a(s) should set
in at higher energies (another reason for still more
powerful accelerators!).

While on the subject of multiple Regge exchanges,
mention should be made of the Reggeon graph tech-
niques of Gribov (1967b). The methods encompass
the multiple-scattering and absorptive models and
generate alternating signs for the successive terms in
the multiple Reggeon exchange series [just as in
(IV.15) ] as well as the behavior of ¢,(s) and a(s) just
described. Another application of multiple P exchange
is that of Ansel’'m and Dyatlov (1967), who show that
at large | ¢ | there are oscillations produced in do/dt.

3. Cuts in the J plane

Thefact that Regge poles are not the only singularities
in the complex-angular-momentum plane has been
known for a long time. I refer you to Chapters V and
VII of Collins and Squires (1968) for some of the details
and references to the literature. Mandelstam (1963)
showed that there was every reason to expect that, in
addition to Regge poles, there would be Regge cuts in
the J plane. Such a cut will give a contribution to a
transition amplitude of the general form,

ac(t) s J
As, t)=/ dJ(S—O)

disc A(J, 1),
where disc 4 (J, t) is proportional to the discontinuity
of the partial-wave amplitude across the cut, and «.(?)
is the end point of the cut. If the discontinuity behaves
as [ae(#) —J]* at the end point, it is easy to show that
the large s behavior of the amplitude is

(Iv.21)

Sac(t)
[In (s/s0) —%iwJrtt’
where the phase in the denominator comes from keeping
track of the phase of the signature factor.
The most popular way to generate Regge cuts is to
allow multiple Regge pole exchanges. The location of
the end point «,(f) depends on the details of the

trajectories of the poles exchanged. For the simple case
of two linear trajectories,

a1() =a1(0) +ai’ (0) ¢,
(1) = a2(0) +a2'(0)¢,
the expression for a,() is
o () =1(0) +02(0) —1
+a1'(0)ay’ (0) /[’ (0) +a’ (0) J¢.  (IV.23)
The slope of the cut is smaller than either slope (if

lim A (s, ) «

$§>0

(Iv.22)
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F1c. 18. Energy dependence of a Regge cut factor [see Eq.
(IV.22)]. The cross section for a pure pole goes as o522, while
for a typical Regge cut amplitude, goes as gocs?2/f(s). The
dashed Olizrge is a power-law approximation corresponding to
Aa=—0.25.

ai>0). The intercept at ¢{=0 is generally below the
lower of the two intercepts, but for one of the trajec-
tories having «(0) =1, the intercept of the cut and the
other pole coincide.

At first glance it would seem easy to establish em-
pirically the presence of a Regge cut. All one needs to
do is examine the high-energy behavior and identify the
presence of the logarithm in (IV.22). In order to
disabuse you of that idea, I display in Fig. 18 the
absolute square of one power of the logarithm from
(IV.22). Over presently accessible energies, the
standard methods of extracting a Regge trajectory
from a cross section would be unable to see the logarith-
mic dependence and would infer instead an effective «
value roughly Aa=—0.25 below whatever s* was
present. The actual situation will undoubtedly be more
involved. On the theoretical side, the logarithmic
dependence shown in (IV.22) may not set in until quite
high energies. And in any given process there may be a
combination of effects, with a pole perhaps dominating
at small | £| and the cut or cuts only contributing (by
virtue of their smaller slopes) at moderate or large | ¢ |.
Then the equivalence of the logarithm to an additional
factor of s7'4 in the amplitude will only mask the
flatter slope of the cut and simulate a continuation of
the trajectory of the pole.* Multiple Regge pole ex-
changes give higher powers of logarithms in (IV.22)
but also flatter slopes to the end point of the cut.

If the logarithmic manifestations of the cuts are not
identifiable in the energy dependence, how can one
expect to verify their presence? One place to look is in a
process where the exchange of a single Regge pole of

* An apparent counterexample to my pessimism about ex-
tracting evidence for the existence of Regge cuts is given by
Huang and Pinsky (1968). Their Fig. 1 displays an effective
a(f) for p—p elastic scattering that is qualitatively similar to
model calculations made by Rivers (1968) and can be taken as
showing shrinkage according to single P exchange for |#|<5
(Gev/c)?, double P exchange for 5<|¢|<12 (GeV/c)? etc.
While this is suggestive, it does not correspond quantitatively to
the multiple-scattering calculations [ Sec. IV.2(b), (c) ], for which
the successive P exchanges begin at much smaller values of | #].

normal quantum numbers is forbidden (Phillips,
1967a). A good example of such a reaction is backward
K—p scattering, discussed in Sec. II.7. The #-channel
exchange must have B=1, Y=0Q=2, and I=1. This is
provided by the exchange of a proton or A and a K+ or
K*t+, The effective «(0) for ¥ =41 meson exchanges is
ax+(0)=0.2540.25, while the corresponding inter-
cept for the A is aa(0)~~4-0.15. The end point of the
A-K or A-K* cut should therefore have an intercept
a,(0)~—0.640.3; this leads to a power-law behavior
of s737 in the cross section if allowance is made for the
logarithm in (IV.22). This can be contrasted with the
empirical s~ dependence seen in Fig. 10 for incident
momenta from 1.8 to 3.5 GeV/c. If the cross section
continues its precipitous fall with increasing s, the only
conclusion open to us is that for this reaction at least,
multiple Regge pole exchanges and their associated
cuts in the J plane are unimportant.*

While the unambiguous verification of the presence
of cuts in the J plane is difficult, their importance is
indicated in a number of ways. In Sec. III.1 we de-
scribed some of the problems with models employing
only poles—the need for conspiracies, the breakdown of
factorization of pole residues, etc. Regge cuts were
suggested, first on a purely empirical basis, as an
alternative. The literature here is extensive. We cite
only two representative examples:

(i) Polarization in #— p—a%% (de Lany et al., 1967;
Chiu and Finkelstein, 1967): The p pole amplitude
interferes with a cut amplitude of different phase to
produce polarization.}

(ii) Forward peaking in #np—pn and pp—in
(Kaidalov and Karnakov, 1968): The 7 and p pole
amplitudes vanish at ¢=0; interference with the cut
amplitude, assumed to come from the exchange of =
and P trajectories, gives a sharp forward peak just like
the fits using two conspiring poles (Phillips, 1967b).

The evidence for important contributions from
Regge cuts in the J plane, while circumstantial, is quite
convincing to me. Theory expects and needs the cuts;
experiment is more comfortable with them. There is,
however, the suggestion of a peculiar absence of a cut
contribution in K—p backward scattering. Is it possible
that the only important Regge cut amplitudes come
from Pomeranchon exchange in addition to an ordinary
Regge pole?

4. Absorptive Model Recipe for Generating
Regge Cuts

One of the difficulties with Regge cuts is the lack of
knowledge of the discontinuity function in (IV.21).
At present there is no really satisfactory way to estimate
the cut discontinuities, although some progress is being

* Michael (1969) estimates ~5 GeV/¢c as the momentum at
which the double exchange contribution should begin to dominate.

t See, however, Meng, Schlaile, and Strauss (1968) for an
alllterngtive approach using a modified Regge pole model to fit
these data.



made via the multiperipheral bootstrap. The standard
approach is to use the ideas of the absorption model
(Jackson, 1965) or, equivalently, the Regge eikonal
model, with a sum of Regge poles as the Born approxi-
mation. The generalization of (IV.3) for inelastic
processes in which the transition interaction is treated
in lowest order, but full account is taken of the elastic
scattering in the entrance and exit channels (the
analog of the distorted-wave Born approximation of
nuclear physics), is

a:(s, £) = (2m)~1f d% exp (iq-b)
X exp [d:(b) JA;;(b) exp [6;(b)], (IV.24)

where §;(b) and §;(b) are the elastic-scattering phase
shifts (complex at high energies) for the channels 7 and
7, and A;;(b) is the inverse transform (IV.7) of the
lowest-order transition amplitude (to be approximated
by a few Regge poles). Use of the equation above
(IV.8) for the elastic phase shifts leads to the approxi-
mate expression*®

;=0 — 3 (dﬁ@ Ay A5® lljj) (Iv.25)

with the convolutions defined by (IV.16). This result
can also be obtained from the “multiple-scattering”
series (IV.15) by assuming that A(q) is a matrix with a
large diagonal part and small off-diagonal elements.
Equation (IV.24) or (IV.25) are the basic formulas of
the absorption model and have been used with con-
siderable success for processes dominated by pion
exchange. They also serve as the starting point for the
generation of Regge cut amplitudes. Clearly the absorp-
tion model, the multiple-scattering models described
in Sec. IV.2, and models with Regge poles and cuts are
all closely related, differing in their input for the elastic
and inelastic amplitudes. Equation (IV.25) is essen-
tially the first two terms in the “multiple-scattering”
series (IV.15); this is expected to be a good approxi-
mation in the small | | region.

Amati, Stanghellini, and Fubini (1962) showed that
the convolution implied in (IV.25) generated an
amplitude possessing cuts in the J plane. Indeed, con-
sider (IV.16) in the spirit of (IV.25), where one of the
amplitudes is elastic scattering, and approximate F(q)
by an exponential in ¢?=—1¢:

F=AC exp [— (4/2) ¢]. (IV.26)

Here A4 and C may be energy dependent {if F represents
P exchange, for example, 4 =2ap'(0)[In (s/s0) —im/2]
and C « s2PO-1} With G=G(s, ¢?) it is straightforward
to show that (IV.16) can be written as

0
F®G=1(AC) / v

X exp [(4/2) () Wo[A (1) 2]G (s, ¥'), (IV.27)

where Io(z) is the modified Bessel function of order zero.
IfG(s,t) isa Regge amplitude with a factor (8/50) =),

*If 8;=3;, (IV.25) follows exactly from (IV.24).
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Frc. 19. Cross sections for a Regge pole exchange plus a Regge
cut generated by absorptive corrections (schematic). The pole
and cut amplitudes interfere to produce a dip, as seen in =V
charge exchange (from Henyey et al., 1969).

a change of variable will cast (IV.27) into the form
(IV.21) with a definite expression for disc 4(J,?).
Spins can be incorporated as in the impact-parameter
version of the absorption model by replacing Io(z) by
I,(2), where n= | \—pu| is the net s-channel helicity
flip in the transition (See Jacob and Wick, 1959, for a
discussion of helicity amplitudes).

Equations (IV.25) and (IV.27) or closely related
expressions form the basis for numerous calculations of
peripheral processes with ‘‘absorbed” Regge poles
(Cohen-Tannoudji, Morel, and Navelet, 1967;
Schrempp, 1968; White, 1968; Michael, 1968; Rivers
and Saunders, 1968; Henyey et al., 1968, 1969; Henyey,
Kajantie, and Kane, 1968; Jackson and Quigg, 1969;
Kajantie and Ruuskanen, 1969). A number of these
papers address themselves to the polarization seen in
N charge exchange to which we referred above (see
also Arnold and Blackmon, 1968) as well as to the
shape of the differential cross section. There are two
viewpoints here. One is that the basic Regge pole
amplitude Ay in (IV.25) should be a traditional
amplitude with appropriate factors to cause its residue
to vanish at “nonsense” J values (J<|J,|). The
presence of one such factor, a,(f), in the B amplitude
is the customary explanation for the dip in the =V
charge-exchange cross section at i~—0.6 (GeV/c)2
If G(s,t) in the convolution (IV.27) changes sign in
the region of integration, there will be cancellation in
the integral, and the resulting cut amplitude will tend
to be small. Thus the absorptive correction will cause
only modest changes from the pure pole term. Dips
will still be mainly a consequence of the structure of
the pole amplitude itself. An alternative view, espoused
by Henyey et al. (1969), is that in the presence of
absorptive corrections all prior notions-about sense-
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nonsense factors should be discarded. This idea draws
support from the work of Jones and Teplitz (1967) and
Mandelstam and Wang (1967), who showed that the
standard arguments for the presence of sense-nonsense
factors may fail because the residues can become singu-
lar at wrong-signature nonsense points when the third
double-spectral function is present.* In any event, if
G(s, t') has no « factors and so does not change sign, the
cut integral (IV.27) will be much larger. Then the
mechanism for a dip in the cross section is the destruc-
tive interference between the pole and cut amplitudes,
as shown schematically in Fig. 19. This kind of behavior
is closely connected to the effects seen in Figs. 16 and 17
for the Chou-Yang and hybrid models.

The choice between structureless pole amplitudes,
plus sizeable absorptive corrections, leading to structure
in cross sections, and pole amplitudes with the standard
« factors, plus more modest absorptive corrections, will
not be clear for some time, if ever. I personally favor the
more conservative idea that the pole amplitudes
possess the sense—nonsense factors, partly from preju-
dice and partly because of the successes of exchange
degeneracy in correlating the presence or absence of
direct-channel resonances with the Regge poles in the
crossed channels (see Sec. V.3).

One important point should be made about ¢=0.
There are a number of processes (prn—mnp, vp—rntn,
mtp—p’At +) that appear to be dominated by the
exchange of a single Regge pole (in the examples listed,
the pion). In some of these processes, the amplitude of
the single Regge pole must vanish at ¢=0 for kinematic
reasons (see Bertocchi, 1967). The differential cross
section is then expected to vanish in the forward
direction. The observations show, on the contrary,
sharp forward peaks. Such peaks find a natural ex-
planation in terms of absorptive corrections. The cut
amplitude (IV.27), being a convolution over ¢, is
smoothly varying and nonzero at {=0. The pole ampli-
tude increases away from {=0, causing destructive
interference and a sharply falling cross section. This
mechanism explains all the sharp forward peaks and
avoids the difficulties of conspiracies (Sec. IIL.1).
Examples of recent calculations can be found in the
work of Jackson and Quigg (1969) on charged pion
photoproduction using the absorptive model as motiva-
tion for the cut amplitude, and also in the work of
Kaidalov and Karnakov (1969a, 1969b) on 7p charge
exchange and photoproduction using the closely related
Reggeon diagram methods of Gribov (1967b).

5. Two-body Unitarity Corrections versus
Absorptive Corrections

The generation of Regge cuts in the multiperipheral
model of Amati, Stanghellini and Fubini (1962) occurs
through the application of unitarity in the s channel. If

* We will see in Sec. V.3 that exchange degeneracy may bring
back the factors of o in spite of this argument. There is also some
question as to the necessity of singular residues (i.e., multiplicative
poles) (Oehme, 1968). )

the many-particle intermediate states are assumed to
give rise to the Regge pole, it is perhaps plausible to
consider only the quasi-two-body channels as inter-
mediate states in the unitarity equation where the
individual amplitudes are given by Regge pole ex-
changes. If this is done, then in the usual high-energy,
small-angle approximation, the unitarity equation
reads

Re [ vt Re A,‘j+'21‘ (aii® Aij*"’- A,’j@ djj*) y

where there are real parts instead of imaginary parts
because of our definition (IV.1). In the approximation
that a;;=a;; we have unitarity and absorptive correc-
tions giving the following different expressions for the
modification of the real part of the amplitude:

Rea;j— Re A;~Re (a:*® As)
~— Re (¢;;®A;;) (absorption).
(1V.29)

Finkelstein and Jacob (1968) observed that, to the
extent that the elastic amplitude a;; is real, these two
corrections are equal in magnitude but opposite in sign.
Various comparisons with experiment—the sign of the
polarization in wN charge exchange, the forward
peakings in np—pn and yp—=tn, the general success of
the absorption model for pion exchange—favor the
second sign in (IV.29) (Finkelstein and Jacob, 1968;
Rivers and Saunders, 1968).

The fact that the two-body unitarity correction of
ASF gives the wrong sign empirically is no cause for
alarm. It has been appreciated for some time that the
use of two-body unitarity at high energies means that
the cut in the J plane implied by the ASF correction is
on an unphysical sheet of the energy variable. Mandel-
stam (1963) showed, in fact, that on the physical sheet
the ASF cut is canceled by contributions from many-
particle intermediate states in the unitarity equation
(see Collins and Squires, 1968, p.128 ff and p.183 ff).
There are more complicated diagrams, suggested by
Mandelstam, that do give rise to Regge cuts. These
diagrams involve four or more particles in the inter-
mediate state and resemble multiple scatterings of the
constituents of composite systems via Regge exchanges.
The sign of the correction term from these diagrams is
the same as the absorption-model sign in (IV.29) and
in agreement with Gribov (1967b). It is interesting to
note that a multiperipheral bootstrap using unitarity
may generate self-consistent Regge singularities with
the absorptive sign for the cut, provided the production
amplitudes have absorptive corrections to begin with
(Caneschi, 1969).

Another method of applying the constraints de-
manded by unitarity is used by Jacob and Pokorski
(1969) to study elastic scattering. The first-order
corrections are similar to those of the absorption model
or the Glauber multiple-scattering series, but higher-
order terms are different. This analysis shows that the
absorption recipe, (IV.25), and the double-scattering

(IV.28)

(two-body unitarity)



term in (IV.15) are useful first-order unitarity correc-
tions, but cannot be expected to form the basis of a
rigorous treatment of unitarity.

V. FINITE ENERGY SUM RULES AND DUALITY

The subject of finite energy sum rules (FESR) or
generalized superconvergence relations is a large one
with several aspects. Fortunately it has been covered
by both Chan (1968) and Frazer (1968) at Vienna and
by Horn (1969) and Dietz (1969) at Schladming. The
early developments of the concept of duality were
discussed at Vienna by Harari (1968), and the more
recent aspects were discussed at Schladming by Jacob
(1969). At Lund, Lipkin (1969) described the use of
FESR, exchange degeneracy, and duality in his dis-
cussion of resonances. The existence of these reviews
allows me to concentrate on those aspects that bear
directly on models for high-energy processes, omitting
much interesting material on bootstraps and resonances.

1. Equations and Basic Results

The use of fixed-momentum-transfer dispersion
relations and asymptotic behavior in order to correlate
low- and high-energy properties dates back to Igi
(1962). Two historical observations can be made here.
The first is that Igi was concerned with using his sum
rule as a test of whether Regge cuts existed in the J
plane. The second, more personal, observation concerns
a conversation with Professor Chew in Urbana in late
1961 or early 1962 in which he described Igi’s work,
then just beginning, whereby Igi was subtracting out
the Pomeranchon contribution from the forward dis-
persion relation for CH(y) =AD (»)+vBHP (v). The
dispersion relation for C® (v) is divergent without
subtractions and the hope was that, once the P con-
tribution was removed, the then convergent integral
would yield the threshold scattering length. I said,
“Geoff, if that works, I’ll really begin believing in
Regge poles.” Professor Chew went home and nothing
was heard for six months. Then Igi’s letter appeared;
the trick had not worked; Igi had discovered the P’
trajectory instead! Much has happened in the inter-
vening seven years. I now believe in Regge poles with
associated Regge cuts. The interesting question of
whether FESR can distinguish poles from cuts is
touched on in Sec. V.2 below.

(a) Standard Formulas for Finite Energy Sum Rules
(FESR) and Continuous Moment Sum
Rules (CM SR)

For two-particle processes it is convenient to use the
variables y= (s—u) /4m and ¢, where m is the mass of
the target. The amplitudes A® (»,¢), even and odd
under (s—u) crossing (v——v), are assumed to satisfy
fixed ¢ dispersion relations in »:

AD (v, ) =71 / T @ Im A, §)
0

XLE' =) £0"+»)71], (V.1)
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where the »" integral has discrete (pole) contributions
for 0<»'<ws, and continuum contributions for »”>v4p.
Equation (V.1) is equivalent to Cauchy’s theorem
applied to a function that is analytic in the cut » plane,
apart from isolated poles on the real axis. There are
several ways of getting from (V.1) to a FESR. One is to
observe that an amplitude with power-law behavior in
» and definite crossing properties satisfies the dispersion
relation, (V.1). Now suppose that for | v | >»;, A® (v, 1)
can be written as an expansion in Regge poles (or
power-law terms) :

AB(», 1) =RD (», 1) (lv|>rn), (V.2)
where*
i— cot (7/2)q;
R (v, 1) =2 Bi()ri® { (V.3)
i i+ tan (7/2)a;

Then the difference A(v, ) =A(v,{)—R(v, 1) satisfies
(V.1) and vanishes for |»|>»;. Furthermore, the
integrand on the right-hand side of (V.1) vanishes for
v'>»;. By considering »>»; and expanding the de-
nominators in (»'/v), this dispersion relation for
A(v, t) yields the set of integer-moment, finite energy
sum rules (FESR):

fldw" Im A® (v, 1) = / L Tm RO (5, 1), (V.4)
0 0

where #=0, 2, 4, <+ for A©, and =1, 3,5, +++ for
A, Since the right-hand side of (V.4) involves only
powers of », the integral can be done explicitly and
one finds

v (t aj(t)+n+1
/ 1 dwwm ITm A(i)(,,} t) =Z é’.(_)l‘___ (V.S)
0

7 ai(t)+nt+1

Another way to obtain (V.5), or its equivalent, is to
assume that 4@ (p, t) is given by an asymptotic form
Apsym® (v, £) for | » | >»1. Then Cauchy’s theorem for
" A& can be applied around the contour shown in

* Note that R™ and R have different Regge poles con-
tributing. When spins are present, «; may be replaced by («aj—m),
where m is a positive integer depending on the s-channel helicities
[m=max (JX|, | #]), A=NM—DXs, p=NA2—A¢]. See the Appendix of
Hite (1969) for details and further references.
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Fic. 21. The integrands for the two sides of the finite energy sum rule (V. 4) for the crossing-odd forward-scattering amplitude in =N
scattering, 4 +»BC), with #=0 (from Igi and Matsuda, 1967a).

Fig. 20. This yields

/ ' dw™ Tm A (v, 1)
0

——1Re / 0 (7169) " A geya™® (16, 1) . (V.6)
0

If Aasym(v,?) is given by the Regge pole expansion
(V.3), we recover the right-hand side of (V.5), but
(V.6) has the virtue that more complicated asymptotic
forms, including Regge cuts, can be evaluated in terms
of an integral over a semicircle of radius » in the
complex » plane (Michael, 1968). Nothing need be
explicitly assumed about the behavior of Aaym®
at small ».

Continuous moment sum rules (CMSR) are generated
by considering dispersion relations for »4® or A,
multiplied by a factor (vgn2—»?)?2 which is even in »,
real and positive for real | » | <wsn, that is, between the
left and right unitarity cuts shown in Fig. 20, and has
the phase exp (—4my/2) just above the cut for »>wn.
The finite energy sum rule for A (», £) is then

21
/ dy (P2—pep2) 72
0

X [cos (3yx) Im A (v, ) — sin (3yr) Re AP (v, 1) ]
< Bi@)pyeatri [COS (ej+7) (7/2)
"5 ety cos (a;m/2)

Here we have assumed that the high-energy behavior
is given by a sum of Regge poles. For 4™ the sum rule
has the same form but with a;j—a;j+1 (and Regge

] . (v

poles of opposite signature contributing, of course).
When v is equal to an even integer, we recover the
integer-moment FESR, (V.5). If v is an odd integer,
the left-hand side involves the real part of A—this is a
“Gilbert” sum rule.*

(b) Classic Results

Equations (V.5) or (V.7) relate the low-energy
properties of a scattering amplitude, expressed as an
integral up to v=wv;, to the high-energy properties in
terms of Regge poles (or perhaps something more
complicated). Since the low-energy region is often
dominated by direct-channel resonances while the
high-energy behavior is given by a few exchanges in
the crossed channel, FESR give fruitful constraints on
the possible parameters used to describe high-energy
processes. The classic work of Logunov, Soloviev, and
Tavkhelidze (1967), Igi and Matsuda (1967a, 1967b),
and Dolen, Horn, and Schmid (1967, 1968) does not
need to be described again here. It is sufficient to
display in Fig. 21 the famous and elegant figure of Igi
and Matsuda which shows the integrands on the two
sides of (V.4) for the non-spin-flip, crossing-odd ampli-
tude in 7V scattering at £=0. The resonant, low-energy
contribution can be expressed in terms of the difference
of total cross sections for #~p and =*p, while the high-
energy side is given by the exchange of a p Regge pole.
Figure 21 shows that high-energy Regge parameters
can be determined (in favorable instances like this one)
or at least constrained by low-energy experimental data.
It further illustrates an important aspect of our present

* Named after Walter Gilbert, a well-known molecular biologist.



thinking about asymptotic (Regge) behavior, the idea
of semilocal averages. The Regge amplitude extended
all the way down to »=0, far below the energy where we
think of asymptotic behavior as setting in, provides a
good average description of the resonance region. The
implication here, as we will discuss in Sec. V.3, is that
t-channel and s-channel descriptions are complementary
in some average sense. This is the essence of duality.

The original applications to wN scattering demon-
strated how FESR provide a beautiful insight into the
interplay of low-energy and high-energy behaviors.
The main results* are:

(1) The p trajectory is consistent (although not well
determined) with the form deduced by fitting high-
energy data.

(ii) The sum rule for »B™(»,t) as a function of ¢
demonstrates convincingly that the residue £, (%)
has a linear zero at t~—0.5 (GeV/c)? as required by
the Regge pole fits to #~p—n%s at high energies.

(iii) The sum rule for A’ (v, ¢) as a function of ¢
implies a zero in the residue 8,4(¢) at small physical
¢ values. This is consistent with the interpretation of
the crossover phenomenon in 7=p and #tp elastic
scattering as being the result of a zero in the p residue of
A’ at i~—0.2 (GeV/c)2.

(iv) The magnitudes of the residues deduced from
FESR are in reasonably good agreement with the range
of values used in various parameterizations at high
energies, with a large positive residue for vB&) compared
to that for 4’0,

(¢) Further Results

With the realization that FESR provided powerful
constraints on high-energy Regge parameters, theorists
struck out in all directions hoping to determine trajec-
tories and residues for all important Regge poles. Low-
energy data on 7*N, K=N, and pion photoproduction
were used with integer-moment FESR and CMSR to
learn about the P, P/, w, As, No, N,, and A Regge poles
in addition to the p. We can only list a representative
sample:

(i) Properties of the A, deduced from K*N elastic
scattering (Matsuda and Igi, 1967): The residuet of
the 4, in the nonflip amplitude 4’™ shows a parabolic
behavior in ¢ with two zeros in the interval 0.2< | {| <0.5
(GeV/c)?, while the A4, residue in B has one “ghost-
killing” zero at as,=0 and may or may not have an
additional zero near {=—0.5 (GeV/c)?2, depending on
the choice of pole-term contributions to the low-energy
integral.

(ii) Properties of the 4, deduced from pion photopro-
duction (Chu and Roy, 1968; Vasavada and Raman,
1968): The residue of the A, in the combination

* See the Appendix for definitions of the various amplitudes,
e.g., A'C) BO),

1 When we refer to residues we mean the 8’s defined in (V.3),
unless otherwise stated.
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(4:9—2mA4) is found by the first authors to have a
quadratic zero at i~—0.5 (GeV/¢)?, implying an
additional factor of «(f) beyond the single power
needed for ““ghost killing.” The second authors disagree,
finding two distinct zeros in the interval 0.2< | | <0.6
(GeV/e)e.

(iii) Properties of the P’ deduced from «N elastic
scattering (Barger and Phillips, 1968): The ratio
B /A'® is found to be positive and of the order of
unity, at least for moderate | ¢| values, and the P’
residue in 4’™ seems to vanish as ap.? near ap =0.

(iv) Properties of w, P’, and A, from K*N elastic
scattering (Dass and Michael, 1968a, 1968b) : Integer-
moment FESR yield (»B/A4’')~1-3(w), ~1(P'),
~10(4,), disagreeing with some published Regge pole
fits but yielding the correct sign for K—p polarization.
The detailed ¢ dependences of the various sum rules
indicate BpW~a?, BpB~a?; (s, B~a; B4 and
B.® both have a zero at i~—0.15 (GeV/c)?% but
BB does not seem to vanish at ay,=0 (or else the w
trajectory is very flat).

(v) Properties of the P’ from N and KN elastic
scattering (Gilman, Harari, and Zarmi, 1968): With
an ansatz concerning the P contribution to the FESR
(see Sec. V.3 below), these authors deduce the ¢ de-
pendence of the P’ residues of 4’™® and B® in 7N
and KN scattering. Their results are shown in Fig. 22.
[Note that their residues for the B® amplitude differ
from those defined in (V.3) by a factor of «(¢) ]. For the
A’ amplitude it is not clear whether the residue is pro-
portional to a? or to a times another factor which
vanishes at i~—0.25 (GeV/c)2 For the B amplitude,
the 7V data, at least, make a clear statement that, in
our notation, Bp/B~e, not o2.

(vi) Properties of N,, N,, and A trajectories from
fixed-# FESR (Chiu and DerSarkissian, 1968): The
s-channel contributions of #N resonances plus a
~channel contribution from the p imply residues for
the N, and A trajectories consistent with the presence
of a dip in w+p backward scattering at high energies,
and no dip in #p (See Fig. 11). The coupling of the
N, trajectory in w+p scattering is found to be small.

The reader who has paid attention to the details
summarized in items (i)—(vi) will have noted certain
disagreements among the different analyses. For
example, the conclusion of Barger and Phillips (1968)
that the P’ trajectory chooses the ‘“no-compensation”
mechanism* at =0 is contradicted by the results of
Gilman, Harari, and Zarmi (1968). Similarly, the
behavior of the residues of the 4, near =0 is unclear.
These disagreements and uncertainties should not be
allowed to obscure the fact that much is learned from
FESR. The signs and magnitudes of (vB/A4’), for
example, are of great interest. The conclusion that
(vB/A')~-+10 for the A, supports the concept of

* See the Glossary and also Table 3 of Bertocchi (1967) for an
explanation of these terms.
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(a) B:f("’N)

(c)

exchange degeneracy of the A, and the p [see item (b),
(iv) above].

2. What Do FESR Actually Prove? A Case Study of
Pion Photoproduction

One of the most striking applications of finite-energy
sum rules was the apparent elucidation of the mecha-
nism for the sharp forward peaking in charged pion
photoproduction. The data are summarized by Richter
(1968) at Vienna and by Lohrmann (1969) at Lund.
Since the exchange of a Regge pion alone leads to a
zero in the cross section at =0, Ball, Frazer, and Jacob
(1968) and Henyey (1968) introduced a conspiring
trajectory corresponding to a parity-doublet partner of
the pion in order to fit the data. Such a conspiracy was
well received in some quarters because of the implication
of a Lorentz pole assignment of M =1 for the pion.
We have already discussed some of the difficulties with
this assignment in Sec. III.1. But at the time these
difficulties were unforseen. Strong independent support
for this pion conspiracy came from the application of
FESR (Bietti et al., 1968; Roy and Chu, 1968) and
then CMSR (DiVecchia ef al., 1968a, 1968b; Raman
and Vasavada, 1968) to determine the residues and
trajectories of the pion and its conspirator from the
low-energy data. With the assumption that the small ¢
region is dominated at high energies by the pion (for
unnatural parity exchanges) and the conspirator (for
natural parity exchanges), the sum rules can be used to
deduce a,(t), B.(f), ac(¢), B.(¢). The results showed
that 8,(0)#0 and that $.(0)/8.(0) had the value
required by the conspiracy relation. All this was a
happy conjunction of concepts from different parts of
high-energy theory.

As the difficulties discussed in Sec. III.1 became
known, the FESR and CMSR results began to be

F1c. 22. Residues of the P’ Regge pole

-0 -8 -6 ¥ 5 o in the 4’™ and B™ amplitudes as func-
tions of ¢ for 7N and KN scattering, as
inferred from FESR (from Gilman,
Harari, and Zarmi, 1968). Note that to

(d) obtain the residue g®),, of the B™M

amplitude, as defined in the text, it is
necessary to multiply the residue shown
here by a,- ().

quoted as the only convincing proof of the M=1
assignment for the pion. Indeed, everywhere in
peripheral processes where pion exchange appears to
dominate, the absorptive model gives a good fit to cross
sections and density-matrix elements at small |:].
This implies that an evasive (ordinary) pion, with
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Fi6. 23. FESR integrals vs 7= —¢ for the #-channel pion photo-
production amplitudes Fs) (¢2) and F3) (gs). These amplitudes
are defined in the Appendix Part B(e). The solid curves are the
low-energy (left-hand§) sides of (V.7), while the dashed curves are
the high-energy sides calculated from a model with an evasive
pion plus absorptive corrections. The circles refer to a ““pseudo-
model” (see text) (from Jackson and Quigg, 1969).



accompanying m—P generated cuts, is a more reasonable
and plausible model than a pion conspiracy.

Then what about the FESR results on the con-
spiracy? It is perhaps obvious to the reader that FESR
cannot really distinguish between different models.
Equations (V.4) and (V.6) contain the analyticity of
fixed-/ dispersion relations and the assumption of
asymptotic behavior, but they become (V.5) or (V.7)
only when it is assumed that the asymptotic behavior is
given by a sum of Regge poles. For charged pion
photoproduction an explicit demonstration has been
given of the lack of discriminatory power of FESR or
CMSR (Jackson and Quigg, 1969). It has been known
to some for a long time (see Harari, 1967, p. 359) that
at =0, at least, the Born term so dominates the
forward dispersion relation that little can be learned
about the mechanism responsible for the high-energy
cross section. Nevertheless, it is a useful exercise to
construct explicitly a model which simultaneously fits
the high-energy data at small | ¢| and also satisfies the
finite energy sum rules but does not involve a parity-
doublet pion conspiracy. The model involves evasive
pion and 4. poles modified by absorptive corrections
according to Eq. (IV.27). The forward peak results from
destructive interference between a Regge cut amplitude
and the pion pole contribution which is proportional
to ¢ for small £, Once the high-energy fit has been
accomplished, the right-hand sides of the FESR or
CMSR can be compared with the integrals over the
low-energy region. This comparison is shown in Fig. 23
where the solid curves are the low-energy integrals
[for n=0 in (V.5) or y=0 in (V.7)] and the dashed
curves are from the model with poles plus absorptive
cuts. For | ] <0.1 (GeV/c)?, the agreement is satis-
factory. In particular, at {=0 the proper conspiracy
relationship occurs, but this time because of ‘“‘con-
spiring” cuts, not poles.

The dots and open circles in Fig. 23 are indicative of
an interesting result of the construction of the model.
One can show that, for a large class of models of pion
photoproduction involving poles and cuts, the right-
hand side of (V.4) or (V.6) with =0 is approximately
equal to (—mv1/2) Re A(vy, £), where A (v, £) is the
appropriate high-energy amplitude evaluated at v=v;.
The agreement of the dots with the dashed curves in
Fig. 23 demonstrates this for the particular model in
question. The empirical observation that (do/df) is
closely proportional to s=2 implies that all the ampli-
tudes are essentially real at high energies (Phragmén-—
Lindeloff theorem; see Eden, 1967, p. 193). Conse-
quently, the high-energy cross section is given almost
entirely by the squares of the real parts of the ampli-
tudes, and because of the connection just discussed,
these are given by the low-energy sum-rule integrals.
This allows the construction of a ‘“pseudomodel” in
which the cross sections for both unpolarized and
linearly polarized photons can be expressed directly in
terms of the sum-rule integrals over the low-energy
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region without the necessity of any explicit model for
the high-energy behavior. The good agreement of this
“pseudomodel” with existing data for |# | <0.4 (GeV/c)?
is a very satisfactory example of the power of analyt-
icity. At the same time it demonstrates clearly the
limitations of FESR. Basically it reduces to this: One
must know or assume what the model is at high energies.
Then FESR can help determine parameters inside the
framework of that model, but they are unlikely to be
able to discriminate between different models.

3. Duality and its Evolution

(a) Simple Duality and Schmid Circles

It has already been observed in connection with Fig.
21 that a Regge amplitude, when extrapolated into the
low-energy region, provides an average description of
the true amplitude. This implies that, at least in some
average sense, the s-channel resonances are the {-channel
Regge exchanges, and vice versa. This is duality in its
simplest and vaguest form. Support for the idea comes
from the detailed behavior in ¢ of the p Regge residues
and the properties of the dominant s-channel resonances
in mN charge exchange (Dolen, Horn, and Schmid,
1968). The contributions of the major resonances have
zeros at i~—0.2 (GeV/¢)? in 4’9, and at t~—0.5
(GeV/c)? in B9, These zeros at low and medium
energies can be viewed as the cause of both the “cross-
over” zero in the p residue of 4’ and the “sense-
nonsense’’ zero in the p residue of B at high energies.

Further impetus to the idea of duality was given by
Schmid’s calculation of the s-channel partial-wave
projections of the B&) amplitude given by p exchange
(Schmid, 1968). These calculations gave resonancelike
circles on the Argand diagram with the energies at the
tops of the circles correlating remarkably well with the
positions of known 7N resonances. Somehow the smooth
Regge amplitude contains the s-channel resonances!
Much has been published on the interpretation of the
Schmid circles. Harari (1968b) discusses most of the
work in his Vienna report. Schmid himself gives a
rebuttal to his critics (Schmid, 1969b). I mention only
two further papers that illustrate the limitations of the
idea (Chiu and Kotanski, 1969; Sertorio and Wang,
1969). The circles on the Argand diagrams are caused
mainly by the changing phase exp [—imra(f)] in the
signature factor, but their detailed properties (positions
of the “resonances”, etc.,) depend crucially on what is
assumed about the ! dependence of the residues,
relative signs of different Regge terms, etc. The general
conclusion is that Schmid was lucky, and that the best
that can be hoped for at present is semiquantitative
agreement, both for the location of resonances and for
the behavior of the full amplitude at low energies.

The idea of duality runs counter to the assumptions
of the interference model (Barger and Cline, 1967) in
which the amplitude is built up from direct-channel
resonances plus ¢- or #-channel Regge pole contributions.
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F1c. 24. Total cross sections for K+p and K—p interactions vs »,
the K-meson energy in the laboratory. The dashed curve on the
right is a rough Regge-pole representation of the average cross
section, o ~~217+416(»—mx) V2 mb.

A controversy can be traced in the literature about
whether or not the interference model involves serious
“double counting” (Durand, 1968; Dolen, Horn,
Schmid, 1968; Chiu and Stirling, 1968; Barger and
Durand, 1968; Donnachie and Kirsopp, 1969). It is not
profitable for us to go into the details here. Most, if not
all, of the controversy stems from the latitude available
in dividing an amplitude into ‘“resonances” and
“background.” This is particularly relevant for the
special treatment of Pomeranchon exchange discussed
in (c) below.

() Exchange Degeneracy and the Presence or
Absence of Resonances

It is well known in potential scattering that the
presence of Majorana exchange forces causes the force
to be different in even / and odd ! states, giving rise to
two distinct families of bound states or resonances.
Conversely, the absence of exchange forces implies that
states with even and odd ! values can be treated
together. In the language of Regge poles this means
that trajectories will be exchange degenerate, with
even- and odd-signature poles (e.g., 45 and p) really
being one Regge pole. In particle physics the mechanism
for exchange-degenerate trajectories is essentially the
same. Consider a process like K—p—K~p. This reaction
can be viewed alternatively in other channels. The three
possibilities are called s channel, ¢ channel, and
channel, and for our example are

st K p—Kp,
t:  KYK—pp,
u:  Ktp—K*p.

For physical values of the energy in each channel, the
other channels can be viewed as providing the ordinary
and exchange forces via resonant intermediate states.
It is assumed that if there are no resonances in a given
channel the corresponding force is weak. The absence of
resonances in the # channel above medns that the
forces governing the scattering in the ¢ channel are
predominantly ordinary forces. Any resonances formed
in the KK or NN system will therefore be exchange

degenerate. Of course, our argument is incomplete
because the B=0 system involves many coupled
channels, but consideration of nucleon—nucleon scat-
tering leads to the same conclusion since there are no
resonances in the NN system. The above argument for
exchange degeneracy of mesonic Regge trajectories was
first given by Arnold (1965). It leads, when coupled
with the idea of duality, to a remarkably coherent
qualitative understanding of the implications of the
presence or absence of resonances for high-energy
amplitudes.

Figure 24 shows the total cross sections for K—p and
K+p interactions as a function of ». The presence of
numerous resonances in the s channel and the re-
markable absence of appreciable structure in the
channel are clearly visible. How does exchange degen-
eracy bear on this behavior? At high energies the elastic
amplitude for K—p is customarily described in terms of
five Regge poles,

A(K~p) =P+ P'+otAstop,

where the trajectory symbol stands for the complex
amplitude of that Regge pole. For the crossed reaction,
K+p elastic scattering, the odd-signatured amplitudes
change sign,

A(K*+p) =P+ P —w+As—p.

The concept of exchange degeneracy groups the P’ (not
the P) with the w, and the A, with the p. Duality
implies that an imaginary part, evidenced by resonances,
at low and medium energies, goes along with an
imaginary part at high energies. Hence in K—p and K
the imaginary parts of the P’ and » (and also those of
45 and p) must add, while in K*p, they cancel. The
K+*p amplitude at high energies is thus expected to be
predominantly real,* apart from the Pomeranchon
contribution. The amplitudes for the charge-exchange
process, K*n—K%, will be mainly real. For K—p
processes at high energies, one expects, on the other
hand, complex amplitudes with #-dependent phases.
Similar arguments on zr and mp scattering with
the absence of resonances in the nt#+ or #tpt channel
lead to exchange degeneracy between the P’ and p,
and the w and 4. We therefore have approximate
exchange degeneracy among all four trajectories, P/,
w, As, p. The dashed curve on the right side of Fig. 24
is a rough representation, 17416 (v—mx)~V2mb, of the
average K—p cross section, and is consistent with the
idea of a common intercept of a(0)~% for all four
trajectories. Better evidence comes from K—p—K%
at high energies—exchange degeneracy and «(0)=3%
imply that do/dt(0°) is given by the optical-theorem
value, a result in agreement with experiment from
5 to 16 GeV/c (see Fig. 12-A13 of Van Hove, 1966b).
* The imaginary part is zero because of the absence of reso-
nances, but the real part is not zero because in a dispersion-
relation sense the K+p amplitude (on the left in Fig. 24) receives

contributions from the distant KX~p resonances (on the right in
Fig. 24).



For K*p elastic scattering at ¢=0 we expect a largely
imaginary contribution from the Pomeranchon, and a
real contribution from the other trajectories. This is
consistent with the data from 4 to 16 GeV/¢, sum-
marized by Chien et al. (1969a), where the observed
do/dt(0°) is 25%-30% larger than the optical-theorem
value.

The assumption of exchange degeneracy for the
mesons correlates well with the presence or absence of
resonances in the direct channel, and via factorization
arguments predicts the decoupling of f/(1515) from
pions, and of ¢ from mp, in agreement with experiment
and SU(3) magic mixing angles* (Chiu and Finkel-
stein, 1968c). In addition, the absence of resonances in
K*p (called the # channel above) implies exchange
degeneracy not only of the mesons but also of the ¥*
baryons in the s channel. Such degeneracy has potential
for the determination of d/f ratios, partial widths, etc.,
but the complexity of the ¥* spectrum makes conclu-
sions difficult (Schmid, 1969a; Capps, 1969).

Exchange degeneracy also bears on the question of
the origin of dips in cross sections at wrong-signature
nonsense points (Finkelstein, 1969). As already
remarked in Sec. IV.4(c), the traditional explanation of
the dip in the cross section for #—p—n% at ~—0.5
(GeV/c)? is put in jeopardy by the possible presence of
fixed poles at wrong-signature nonsense values of J
(Jones and Teplitz, 1967; Mandelstam and Wang,
1967). Finkelstein points out that, independently
of these considerations,f exchange degeneracy assures
the presence of the dips. Briefly the argument is as
follows. Consider n*w+ elastic scattering with exchange-
degenerate P’ and p trajectories in the ¢ channel. The
absence of direct-channel resonances means that the
amplitude of P’+p is real. At a nonsense point such as
a=—2, the P’ amplitude is real because a=—2 is a
right-signature point, but the p amplitude is purely
imaginary. Since the sum is real, the p contribution
must vanish at a=—2. Now consider #tr—n'7?
where only the p enters the ¢ channel. The p coupling is
the same as before, apart from isospin factors, and
consequently leads to a vanishing of the amplitude
for charge exchange at a=—2. The same kind of
arguments, along with factorization, establish that the
p contributions to both A’™ and B®) in 7 p—n'n
vanish at a,=0. The empirical fact that the cross
section does not vanish at i~—0.5 (GeV/c)? but only
shows a dip argues for other contributions (e.g., Regge

* The quark model makes the ¢ and f’ from (AX), where A is the

“strange” quark with 7=0. This has as a consequence the de-
coupling of the ¢ and f’ from everythmg except KK or KK* and
K*K. In terms of an SU (3) mixing angle, ¢=cos fws--sin 6w, and
w=—8in fws+cos Ow;, where w; and ws are the /=Y =0 members
of the unitary singlet and octet of vector mesons, and tan?8=1%.

T The independence of Finkelstein’s argument is not completely
clear. Matsuda (1969), in his discussion of FESR and bootstraps,
claims to show that exchange degeneracy implies the absence of
the third double-spectral function (which led te the fixed poles at
wrong-signature nonsense points), and vice versa. In any event,

approximate exchange degeneracy seems to permit restoration of
the simple-minded dip mechanism.
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cuts), as does the existence of polarization. Neverthe-
less, the successes of duality and exchange degeneracy
lead me to conclude that no matter how important
cuts are in the detailed interpretation of experiment,
the basic Regge pole amplitudes possess, at least
approximately, the sense-nonsense and other factors
traditionally expected of them. I thus believe that the
dip in #~p—n is probably caused by the presence of a
factor of «,(¢) in the B amplitude, not by the can-
cellation between a pole contribution and a cut con-
tribution, as advocated by Henyey et al. (1969) and
shown schematically in Fig. 19.

(6) The Special Role of the Pomeranchon Regge Pole

At the beginning of Sec. IV.2(c), we commented on
the pecularities of the Pomeranchon trajectory in high-
energy scattering. In finite energy sum rules it also
occupies a special position. It was first observed by
Freund (1968), in discussing the FESR bootstrap for
wm scattering, that the narrow resonance approxi-
mation works for the I;=1 amplitude, but fails for the
I;=0 amplitude due to the presence of the P in addition
to the P’'(f°). He suggested associating the P con-
tribution with the background and identifying the P’
trajectory with the s-channel resonant contributions to
the sum rule for the I;=0 amplitude. Soon after,
Harari (1968a) made the conjecture that for all pro-
cesses the normal Regge trajectories (P, p, w, 45) are
associated in the sense of FESR and duality with the
direct-channel resonances alone, and that the
Pomeranchon is associated with only the background.
The two sides of Fig. 24 graphically illustrate this idea.
It appears strikingly obvious that the Pomeranchon
contribution is present for both K*p and K~p, but that
K=p has resonant contributions superimposed. The
almost exact constancy with energy of the total cross
sections for K*p, K*n, pp, and np follow directly from
Harari’s hypothesis, as does the approach from above
towards constancy at s— of the total cross sections
for K=p and other channels possessing resonances at low
energy. Exchange degeneracy also emerges, as is obvious
from our previous arguments in (b) above.

Gilman, Harari, and Zarmi (1968) and more recently
Harari and Zarmi (1969) have analyzed the P and P’
Regge poles in N and KN elastic scattering. The
FESR for the background do not serve to determine
the P trajectory accurately. But if ap(0) =1 is assumed,
the calculated residue 8p(0) agrees quite well with the
values from high-energy fits. The results of Gilman,
Harari, and Zarmi for the P’ residues are shown in
Fig. 22 and have already been discussed.

# Just as with duality and the interference model,
questions have been raised about the division of the
low-energy amplitude into resonances and background,
and whether the s-channel background does generate
the Pomeranchon pole in the ¢ channel (Dance and
Shaw, 1968; Donnachie and XKirsopp,% 1969). The
argument revolves around how one parameterizes the
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Fi1c. 25. Argand diagrams for linear combinations of s-channel 7 =% and I =$ partial-wave amplitudes for 7V scattering corresponding
to I=0 and I=1 in the ¢ channel [see Eq. (V.8)]. The first seven partial waves are shown (from Harari and Zarmi, 1969).

resonances, especially how large one allows the high-
energy tails of the resonances to be. Evidence in
support of the Harari idea comes from the phase-shift
analyses of mN scattering. By means of the isospin
crossing matrix we can construct linear combinations
of s-channel partial-wave amplitudes that correspond
to =0 and 7=1 in the ¢ channel. These combinations

are

[ =5(fu!42f1?)

fue' =3P —f1®?). (V.8)
The I,=1 amplitude should be accounted for entirely
by s-channel resonances in every partial wave. The
I;=0 amplitude, on the other hand, should have a
smooth, largely imaginary background in addition to
the s-channel resonances. This means that 7,=1 partial
waves should execute approximate circles centered
more or less around the origin in the Argand diagram,
while the I;,=0 partial waves should show the “circles”
displaced by a largely imaginary term which changes
slowly from partial wave to partial wave. Figure 25
shows the Argand diagrams for the first seven partial
waves from the phase-shift analysis of Donnachie,
Kirsopp, and Lovelace (1968), combined according to
(V.8) into I,=0 and I,=1 (Harari and Zarmi, 1969).
These diagrams show very clearly the presence of
something other than resonances in the /,=0 com-
binations.

4. Duality Diagrams

The ramifications of duality and the absence of
“exotic” resonances can be codified neatly by means of
duality diagrams (Harari, 1969; Rosner, 1969). One
assumes that all known particles and resonances which
appear as internal as well as external lines have internal
quantum numbers (Q, I, Is, ¥, B) given by the simple
quark model in which mesons are (¢§) and baryons are
(¢99) - In drawing a duality diagram for a given process,
each external particle is represented by a line for each
component quark, with ¢ lines running in the direction
of the particle and ¢ lines running oppositely. During
the interaction, the quark content rearranges itself
among the particles. In the diagram, the quark lines,
each retaining its identity, trace out these rearrange-
ments or annihilations to form the outgoing particles.
If the diagram can be drawn so that no lines cross, the
diagram is said to be planar and exhibits duality in
the two channels shown. That is to say, the intermediate
states (resonances) in each channel will be symbolized
on the diagram by the presence of three and only three
quark lines if the channel has baryon number unity, and
by a quark and antiquark line and no more if the
channel has baryon number zero. If the diagram con-
tains lines that cross, it is nonplanar and will possess
intermediate states that are ‘“‘exotic.” Planar duality
diagrams lead to high-energy amplitudes with imaginary



parts, while nonplanar diagrams imply purely real
amplitudes at high energies.*

Many, if not all, of the predictions based on duality
diagrams can be obtained by use of exchange de-
generacy, SU(3), factorization, etc. It is a matter of
taste which hypotheses one regards as more funda-
mental. Because the diagrams make no reference to
characteristics such as spin, it is not clear how one goes
beyond the implications of the optical theorem at {=0.
Rosner (1969) explicitly states that his derivation of
the diagrams from SU(3) couplings applies only to the
A’ (v, t) amplitude of (0~, %) scattering and requires
purely f coupling of the vector mesons and d coupling of
the tensor mesons to the pseudoscalar mesons in order
to get connectedness of the quark lines. Harari (1969),
on the other hand, says that he does not know how to
include spin effects quantitatively. Nevertheless, he
predicts that whenever a diagram is nonplanar, all
helicity amplitudes should be purely real, leading to
vanishing polarizations.

Two examples will illustrate the use and limitations of
duality diagrams in their present form. For each example
we also give arguments based on exchange degeneracy
and factorization in order to compare assumptions and
predictions. The first reaction is backward =~p—KCA.
The experimental cross section and polarization for this
reaction are shown in Fig. 12 along with a Regge fit.
The schematic Regge exchange diagram and the
duality diagram are given in the top half of Fig. 26.

A K®

(b)

F1c. 26. Regge exchange diagram and duality diagram for
(a) = p—K°A (backward), and (b) K~n—=n"A (forward). The
upper duality diagram is a planar one, while the lower duality
diagram is nonplanar.

* The first use of what amounts to duality diagrams seems to
have been made by Imachi et al. (1968) within the context of a
semirealistic Sakaton (quark) model. Arguing directly from the
behavior of the high-energy data, as in Sec. V.3(b) above,
Imachi et al. conclude that what we have called planar duality
diagrams (called H-type by them) lead to imaginary parts at
high energies, while nonplanar diagrams (X-type) give purely real
amplitudes. .
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The lower case letters (p, #, \) denote the three quarks.
The duality diagram is a planar one for s—u duality.
The implication is thus that the s-channel resonances
give an imaginary part to the #-channel Regge
exchange amplitude at high energies. This is consistent
with the existence of appreciable polarization of the A,
as seen in Fig. 12, but does not require it. From the
point of view of exchange degeneracy and factorization,
we do not expect the mA—Z; vertex to satisfy any
particular exchange-degeneracy requirement because
wA—wA has resonances in all three channels. There is
thus no expectation of a common over-all phase for the
A and B amplitudes in 7~ p—K°A, and every expectation
of polarization at high energies. The exchange de-
generacy of the 2; trajectories assumed by Barger,
Cline, and Matos (1969) is viewed here as an accident.
In any event, their residue functions are far from
exchange degenerate.

The second example is the polarization of the A in
K—n—7~A at forward angles. The relevant diagrams are
shown in the bottom half of Fig. 26. The Regge ex-
changes are the K*(890) and K*(1420). The duality
diagram is a nonplanar one and implies that the
amplitude for K~n#—m~A is purely real at high energies.*
If we adopt Harari’s viewpoint that both A’ and B are
real, then we expect no polarization at high energies.
Unfortunately, experiments at 3 and 4.5 GeV/c show a
large positive polarization of the A over a wide range of
| t| (Barloutaud et al., 1969; Yen et al., 1969). There
are at least three ways out: only the A’ amplitude is
related to duality diagrams; 3 and 4.5 GeV/c¢ are not
high enough energies (unlikely!); Regge cuts are
important.

Now we look at this reaction with exchange de-
generacy and factorization arguments. The extreme
left-hand vertex in Fig. 26(b) presumably satisfies the
requirements of exchange degeneracy because there are
no I=% resonances in Km scattering. For the other
vertex (pA—K*), the standard argument of Arnold
(1965) on antibaryon—baryon scattering and no B=2
resonances leads to the expectation of exchange de-
generacy for this vertex, too. Then we are left with the
same result as Harari. But it is possible that arguments
on exchange degeneracy involving antibaryon-baryon
scattering are suspect. The duality diagrams for such
processes always involve more quarks in the inter-
mediate states than (¢d) or (gqq), even if lines do not
cross. [See Lipkin (1969) for a discussion of these
points.] If one considers only duality for meson-meson
and meson-baryon scatterings, it is impossible to
deduce anything about the K*(890)—AN couplings.re-
lative to the K*(1420)—AN couplings without further
assumptions, e.g., d/f ratios for the vector and tensor
mesons. We do have the evidence from FESR of the

* This process is just one of many in which the transfer of a A
quark from an initial meson to a final baryon inevitably leads to
the crossing of quark lines, e.g., K~p—nr =+, K p—wA. See
Table IV of Imachi et al. (1968), and Harari (1969).
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F1c. 27. Chew—Pignotti duality. The diffractive production of
massive mesonic and baryonic states can be described in the
average sense of duality by the multiperipheral diagram at the
right, in which only the lightest mesons and baryons appear.

approximate exchange degeneracy of the (p, 4,) and
(w, P’) residues [Sec. V.1(c) (iv) above] to argue for
(K*(890), K*(1420)) exchange degeneracy by SU(3)
analogy. The data quoted above seem to say that this
is not true.

5. Duality, the Deck Effect, and Multiperipheralism

The production of a low-mass enhancement in the mp
system in the reaction #N—mpN by means of a double-
peripheral mechanism, known as the Deck effect
(Deck, 1964), has made the analysis of the 4; and
As mesons difficult, and has occasionally cast doubt
on the very existence of the 4;. Chew and Pignotti
(1968a) , who coined the name “duality,” observed that
this concept makes empty a discussion of whether
there is an 4; or just an enhancement by some peripheral
mechanism. Resonances generate and are generated by
peripheral exchanges. The Regge (or elementary) pion-
exchange amplitude is the appropriate high-energy
description of the mp system. When extended down to
threshold, it provides an average description of that
mass region. If the smooth average is large at low mass,
duality requires the existence of resonances.

There is an interesting point here in connection with
duality and pion exchange (private communication
from Berger, Chew, and Ranft). The Schmid circles
that correspond to resonances are generated mainly by
the changing phase ¢~**® in the signature. For pion
exchange, however, the immediate proximity of the
pion pole to the physical region means that the partial-
wave projections come from the very small ¢ region,
and the phase does not change appreciably. The ampli-
tude is mainly real where it matters. This could imply
that the 4; and similar objects (e.g., L meson) generated
by pion exchange and having zero orbital angular
momentum are less fully developed as resonances than
objects like the p or the f°. They could conceivably be
“virtual bound states,” that is, poles on the real energy
axis of the unphysical sheet, below threshold.

Chew and Pignotti make another point of interest to
theorists who wish to calculate the gross properties
of multiparticle processes or who are interested in the
effects via unitarity of multiparticle channels on elastic
scattering. One of the concerns in the use of Regge
exchanges in multiperipheral models is their lack of
validity for small subenergies where there are known
resonances. Duality assures that the Regge exchange
represents the low-energy behavior, at least in an

average sense, and makes it unnecessary even to inquire
into the details of the usually messy low-mass regions.
Duality does even better than that. If the peripheral
Deck diagram for the mp system can give an average
description of the Ay, A,, -+ region, then in the same
way a peripheral link between the two pions in the p
can give an average description of that resonance and
its recurrences. Thus, if only average effects are relevant,
a complicated #-particle final state involving numerous
heavy resonances can be replaced by a multiperipheral
Regge exchange diagram involving only the lightest
particles in the final state, as indicated in Fig. 27 for a
relatively simple example. This allows an enormous
simplification in calculation of multiparticle effects.

VI. VENEZIANO MODELS

The single most striking development in high-energy
theory in the past year is the creation of Veneziano
models. With hints gleaned from his participation in
extensive work on a FESR bootstrap of wr—mw
(Ademollo et al., 1968), Veneziano (1968) wrote down a
relatively simple closed form (Euler’s beta function!)
for the invariant amplitude for rm—rw. The remarkable
properties of this amplitude include possession of
resonances at low energy in every channel, Regge
behavior at high energies, duality, and crossing sym-
metry. Despite some limitations to be mentioned
below, Veneziano’s amplitude answered so many
prayers that there has been a veritable explosion of
papers on the subject, with generalizations and modifica-
tions in every conceivable direction. Clearly a proper
review cannot be made of such a rapidly developing
subject. I can only discuss some of the basic ideas and
comment on some of the directions being explored.
Here again I am fortunate in being able to refer the
reader to Jacob’s paper at Schladming (Jacob, 1969),
to the thorough unpublished notes of Yellin (1968,
1969a) and Sivers and Yellin (1969a), and an invited
paper of Lovelace (1969).

1. Pion-Pion Scattering

While the reaction #w—rw considered by Veneziano
has the considerable advantage of being purely I=1
and identical in all three channels, it suffers from being
difficult to study experimentally and having the slight
complication of spin (of the w). Of more immediate
interest is pion-pion scattering where some of the
predictions of the Veneziano model can be compared
with experiment. The wr—wr problem has been dis-
cussed by Shapiro and Yellin (1968), Lovelace (1968),
Shapiro (1969), Kawarabayashi, Kitakado, and Yubuki
(1969), Yellin (1969b), and Sivers and Yellin (1969b).

(@) Resonances and Regge Behabio(

When Bose statistics, isospin conservation, and
crossing symmetry are taken into account, the s-channel



isospin amplitudes can be written
AP =3[F (s, ) +F(s,u) 1-3F (4, u),
AP=F(s,t)—F(s,u),

Ar=F(t, ), (VL.1)

where F (¢, ») is symmetric in ¢ and #. The presence of
only even ! values in 4, and 4. and only odd ! values in
Ay is evident from the symmetry or antisymmetry in ¢
and #. If there are to be no 7=2 resonances, F (i, %)
must not possess poles for positive s, but it can and will
possess poles in ¢ and # corresponding to /=0 and I=1
resonances in the ¢ and # channels.*

If exchange degeneracy is assumed, all the resonances
lie on one trajectory which is the same for all channels.
One further assumes that the trajectory is linear and
entirely real (at least at low energies). The resonances
are thus approximated by poles on the real axis. This is
called the zero-width approximation and is at odds with
the requirements of unitarity. The Veneziano ansatz
for F(s, 1) is

_ =B T(m—a(s))T (r—a(?))
7 T(mtntp—als)—alt))

F(s, 1) + (mesn),

(VL.2)

where 8 is a constant, m, #, (m>#%) and p are integers
chosen so that the amplitude does not possess double
poles, and a(s) =a-bs is the real linear trajectory. The
ratio of gamma functions in (VI.2) can be written as a
polynomial (in the numerator or denominator) times a
beta function and is a trivial generalization of
Veneziano’s use of the beta function itself. Inspection
of (VI.2) shows that when a(s)=N (N a positive
integer) F (s, t) has a simple pole in s with a residue that
is a real polynomial in a(f) of degree N at most, pro-
vided —#< $<0. Since a(?) is linear in ¢, and # is linear
in cos 6,, this real polynomial corresponds to resonant
partial waves in the s channel with L N. The resonant
content of (VI.2) is therefore as shown in Fig. 28. The
trajectory a(s) is the leading Regge trajectory with
equally spaced (in M?) resonances having L=N.
Accompanying each of these resonances are N other
simultaneously resonant partial waves with 0<L<N.
These secondary resonances are loosely called daughters,
even though they occur in an equal-mass problem where
daughters of the Freedman-Wang (1967) variety de-
couple.

In the 7 problem, the requirement of no resonance
at a(s) =0, and a p-wave resonance at a(s) =1, restricts
the integers in (VI.2) to #=—p=1. For simplicity we
will also put m=1. It should be remembered, however,
that sums of terms like (VI.2) can be used, giving
great flexibility (and arbitrariness) in the properties of

* In all of this the Pomeranchon is ignored, in conformity with
the Freund—Harari hypothesis described in Sec. V.3(c), above.
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TRAJECTORIES AND PARTICLES
IN VENEZIANO MODEL FOR 7r T SCATTERING
6

(NUMBERS ARE ELASTIC PARTIAL
WIDTHS IN MEV)
C!p (t)=0.48+0.90 t

s s
2
M” (Gev)?
Fic. 28. Trajectories and particle content of the Veneziano
amplitude (VL3) for m— scattering. With the leading trajectory
given by a,(#) =0.484-0.90¢, the elastic partial widths (in mega-

electron volts) are the numbers beside each dot, normalized to
T,=112 MeV (after a table of Shapiro, 1969).

the daughter trajectories.* For our purposes then, we
consider as typical the amplitude appropriate for wta—
elastic scattering,

_ BT(U—a(s))rd—a(?))
r(1—a(s)—a(?))

The symmetry in s and ¢ means that there is a spectrum
of resonances of the form indicated in Fig. 28 in both
the s and the ¢ channels, but no resonances in the
u channel. The asymptotic behavior of (VI.3) can be
inferred from

i Lata)
im ——e
lzl>e0 I (440)
For large s and fixed ¢ this implies the asymptotic form,

—a(t)B[—a(s) J®
esco; ¢ tixed T (2 (£)+1) sin wa(2) ’

provided we stay away from the real axis in 5.7 Equation
(VL5) has been written in standard Regge high-energy
form in order to display more clearly several features:
The first is the power-law behavior, s*®. The second is
the specification of the scale parameter so in (s/s0) ¥
as the reciprocal of the slope of the trajectory. The
third feature is the presence in F(s,f) of the phase

F(s,t)= (VL3)

=(x)*? (Jargx | <m—e). (VI4)

F(s,t) (VL5)

* See, for example, Mandelstam (1968b) for a model with
trajectories spaced by two units in angular momentum.

+ There are equally spaced poles on the positive real s axis
out to infinity. This is a flaw of the zero-width approximation.
With finite widths these poles would move off on the unphysical
sheet and result in smooth behavior above the physical cut at
large enough s.



46  ReviEws OF MODERN PHYVSICS * JANUARY 1970

e~ a5 expected from duality arguments. A final
aspect is the factor of «(Z) in the numerator. This is the
“ghost-killing” factor that eliminates a particle of
spin-parity Ot from the leading trajectory. If a(2) is
the p trajectory, this scalar particle would occur at
negative .

To see that the Veneziano construction contains the
appropriate signature factors, consider the /=1
t-channel amplitude,

Ay=F(t,s)—F(t,u). (VL6)

At large s and fixed ¢ this should go over into the
standard p-exchange Regge amplitude. The asymptotic
form of the first term in (VI.6) is given by (VL5).
For the second term we merely note that with linear
trajectories, a(s)+a(#)+a (%) =D, where D= 3a-}4bu?
is a constant. For large s and fixed ¢, «(#)——a(s). The
asymptotic form of (VI.6) is therefore

a(H)p [1— exp [—ima(?)]
soo; ¢ fixed I (@ (2) +1) sin e (£)

][a(s) o,
(VL.7)

Ayt

This amplitude is the standard p-exchange amplitude
with negative signature, but with an additional factor
a(f) that is present because of exchange degeneracy.
The I=0 amplitude in the ¢ channel has the same form
as (VI.7) but with the opposite signature and a
numerical coefficient (—3/2).

(8) Detailed Properties

We now turn to some of the subtleties of the Veneziano
model. The first of these is the question of the elastic
widths of the resonances. For a(s) =N, the residue of
the pole is a polynomial of Nth degree in «(f) and
therefore in cos f;. This polynomial can be expanded
in Legendre polynomials of order LXN. The coefficient
of Pr(cosf;) is related to the elastic width of the
resonance with angular momentum L at a(s)=N.
Consequently, the relative values of the partial widths
for decay into two pions can be determined for all
the resonances, even though the total width of each
state has been taken to be zero.* The results of one such
calculation are shown in Fig. 28 where a reasonable
trajectory was chosen (to give the very low-energy =
phase shifts) and the widths are scaled to an elastic
width of 112 MeV for the p meson (Shapiro, 1969).

Several things should be noted in this array. The
most glaring is a negative width for the N=2, L=0
state. When one thinks about it, it is obvious that there
is no a priori reason why the polynomial in cos 8, should
yield a positive coefficient for every Legendre poly-
nomial. I have not seen a completely general proof yet,
but it can be shown that if «(0)>0.496 (for physical
pion and p-meson masses), the L=0 widths are

* This is exactly what one does in calculating to lowest order the
decay of an unstable particle, e.g., K—.

all positive (Shapiro, 1969). For large N and
L<[N In NJ"2, the elastic widths go as

bMyT (N, L)~[C18N*/xT'(a) In N']
X exp (—L*)/NInN), (VLS8)

where Cr=3$, 1, 0 for I=0, 1, 2. For L[N In N "2,
the behavior of the width is complicated, but it can be
shown to fall exponentially towards the value for the
leading trajectory, which can be exhibited in closed form
(Yellin, 1968), and is asymptotically

bMyT (N, N)—[CiB/7(8)"2] exp [— (a-+4bu?) I(3e)?.
(V1.9)

For large fixed NV, we see that the widths decrease
monotonically from L=0 to L=N. Thus the positivity
of the s-wave widths assures the positivity of all the
partial widths.* Figure 28 shows the beginnings of the
decrease in widths as N—c for fixed L and also along
the leading trajectory. In passing, we note that the
expressions (VI.8) and (VI.9) imply that the rms
value of L increases with energy as (slns)¥2, as is
appropriate for a Regge amplitude which shows
shrinkage.

Another significant aspect of the tabulated values in
Fig. 28 is the very large width for the I=0, s-wave
resonance at the position of the p. This s-wave ==
phase shift is known to resonate close to the mass of the
p meson, but its width is a subject of some controversy
(see Sec. VIIL.1 below). One serious difficulty of the
simple Veneziano formula (VI.3) is the prediction of an
I=1 p-wave resonance (p’) at the position of the
£°(1260), with an elastic width roughly equal to that of
the p meson. Examination of the center column of Fig.
8, which shows the =~#° mass distribution and Legendre
coefficients for the data of Crennell et al. (1968), yields
no evidence for a p-wave resonance between the p and
the g peaks. Estimates of production indicate that if the
p’ is largely elastic and if its width were greater than
roughly 15 MeV, it would have been visible in the data
shown in Fig. 8 (Shapiro, 1969). The only escape
seems to be that its fotal width is so large that it is not
seen as a discernable bump in Fig. 8. This does not seem
very plausible.

The high-energy behavior has been exhibited in
(VLS5) and (VL7). In order to show clearly the inter-
play of the resonances and the Regge behavior, i.e.,
duality, we display in Fig. 29 the Dalitz—-Mandelstam
diagram for F (¢, u). There are poles in ¢ and poles in .
There are also lines of zeros at negative s, arranged so
that there are no double poles simultaneously in ¢ and #.
The asymptotic behaviors in the six directions are
indicated. Since there are resonances in the ¢ and #
channels, the amplitude for large ¢ and fixed , or large
» and fixed {, has an imaginary part to its Regge be-

*It has been remarked by Yellin (1969b) that, except for

‘(VI._S), each: term of the form (VI.2) individually contains an
infinite number of resonances with negative elastic widths.



havior. For large s and fixed ¢ or %, on the other hand,
the Regge amplitude is real because the s channel has
no resonances. For large # or ¢ and fixed s, the amplitude
vanishes faster than any power because there are no
Regge poles to be exchanged in the s channel.

(¢) Soft-Pion Results

Although it is somewhat far from models of high-
energy processes, brief mention should be made of the
relation of the Veneziano model of 7— scattering to the
low-energy or soft-pion results of current algebra. A
remarkable feature of the simple form (VI.3) is that
F(0,0)=0fora=1%,and F(4u2,0) =0 for a=%(1—4u2b).
This means that both Ay and A4, have zeros near
threshold (s=4u?, t=#=0), provided e~3. This is
just the self-consistency condition of Adler (1965).
Lovelace (1968) extrapolates (VI.3) off the mass shell
in order to conform exactly to Adler’s requirements and
then determines the ratio of the 7=0 to I=2 scattering
lengths in agreement with the results of current algebra.
Since the ratio depends very sensitively on the value
of a, and the literal off -mass-shell extrapolation can be
questioned in view of the approximate nature of (VI.3)
as a representation of reality, it may be best to be
content with the self-consistency condition alone. A
current-algebra result that is relatively insensitive to
a is the combination of scattering lengths, L=
(2a9—5a») /6. Weinberg’s result is L=0.10/u (Wein-
berg, 1966), while (VI.3) gives L=0.11/u (Shapiro and
Yellin, 1968; Shapiro, 1969). Yellin (1969b) discusses
these results and a number of other aspects of the
connection between the Veneziano model and the
algebra of charges and finite energy sum rules.

Lovelace (1968) and subsequently Kawarabayashi,
Kitakado, and Yabuki (1969) and Ademollo, Veneziano,

\ Poles ————--

Zeroes —~---——-

rals)® (t)

_maelsl
T (a(t))sin wa(t)

e—ivra(t)a(u)u(?)

T(a{t)) sin 7 al(t)

F1c. 29. Dalitz—Mandelstam diagram for F (¢, ), (VIL.3). The
lines of poles in ¢ and » are shown, as are the lines of zeros from the
denominator. The asymptotic behavior in all six directions is
indicated (from Shapiro, 1969),
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5

s.s=a'(j)

sp=a’ (j)

Fic. 30. Five-particle diagrams for the generalization of the
Veneziano formula (from Bardakci and Ruegg, 1968).

and Weinberg (1969) applied the self-consistency
condition to deduce mass formulas and coupling-
constant ratios in general agreement with experiment.
In particular, by considering the process 7+ A4—B-+C,
Ademollo, Veneziano, and Weinberg showed that
Regge trajectories of opposite parity sequences than can
be connected by pion emission (e.g., p and w, A and N)
should have the same slope and differ in intercept by
an odd half-integer. There are several examples that
seem to work.

2. Generalizations to » Particles

A number of workers have generalized the Veneziano
model to more than four external particles. The essential
idea for the generalization to 7 particles is contained in
the 5-point amplitude found by Bardakci and Ruegg
(1968) and Virasoro (1969). To indicate the idea we
first consider the Veneziano model for the 4-point
function in terms of the integral representation of the
beta function:

_T@)T(y)

B(x,y) = / g (1— v, (VIA0)

I'(2+y) 0

In Veneziano’s original example, x=1—a(s), y=
1—a(f), but the essential point is that x and y are
related to —a. The beta function has simple poles in x
and y at zero and the negative integers, and no double
poles. In terms of the integral representation, these
poles develop at the ends of the range of integration.
They can be exhibited explicitly by integration by
parts.

For the five-particle amplitude there are five in-
dependent kinematic invariants. These can be chosen as
the squares of the sum of adjacent pairs of the 4
momenta shown on the left in Fig. 30. The requirements
of the generalization are that (i) it possess resonances
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(simple poles) in all possible channels and have crossing
symmetry, (i) it possess simultaneous poles only in
those invariants for which a suitable Feynman diagram
can be drawn, e.g., the right-hand side of Fig. 30 shows
a diagram which can have simultaneous poles in s;2 and
ss5, (iii) the residues of poles be finite polynomials in
the other invariants (so that there will be a leading
trajectory and possibly daughters), (iv) it possess
Regge behavior when one or two subenergies become
large and the momentum transfers remain fixed.

The recipe for the amplitude is a multiple integral
with as many variables as there are allowed simul-
taneous poles (two for the five-particle amplitude) and
the integrand consisting of a product of factors, each of
which varies from zero to one over the range of integra-
tion and is raised to the power [ —1—a(s;) J; there being
as many factors as there are independent subenergies.
The five-particle amplitude is

1 1
Bs (%1, %, X3, X4, X5) = f duy / Autaths ™ U™ U U5 U U5,
0 0

(VI.11)

where wy= (1—wttz), ws= (1—uoms), us= (1—ustrr),
and x;=—1—a(s;i1). The verification of all the
duality properties of a Veneziano-style amplitude is
left to the reader in consultation with the original
literature.

For the general n-particle amplitude, methods of
construction have been given by Chan (1969), Chan
and Tsou (1969), Hopkinson and Plahte (1969),
Goebel and Sakita (1969), and Koba and Nielsen
(1969). The method of Hopkinson and Plahte is note-
worthy because it is an iterative construction and may
be useful for approximate forms when # is large.

While the n-particle amplitude is elegant in its manner
of exhibiting duality, it is sufficiently complicated that
little in the way of application has been made for any-
thing but #=4 (to be discussed below). For the
five-particle amplitude, Bialas and Pokorski (1969)
have studied the high-energy behavior of the amplitude
in detail, while Bardakci and Ruegg (1969) have
examined processes like KK—wrr and KK—KKr.
Bardakci and Ruegg show that the four- and five-
particle Veneziano amplitudes give consistent results,
including the standard mixing angles for w and ¢, f and
f’, a universal relation for 2* and 1~ meson decays, and
pure F coupling for the decay 2+—170".

Another interesting and somewhat disturbing facet
of the m-particle Veneziano amplitude concerns fac-
torization. A proper amplitude possessing resonance
poles should give pole residues which factor into
appropriate products of lower-order amplitudes. Studies
show that the residues of the various poles in the
n-particle amplitude do factor in a finite number of
terms, the number of which corresponds to the de-
generacy of the energy level, but that the degeneracy

grows exponentially with the square root of the number
of daughter trajectories present (Fubini and Veneziano,
1969; Bardakci and Mandelstam, 1969). In addition to
the extremely rapid increase in the number of daughter
trajectories necessary to preserve factorization, there
appear states with negative partial widths. Some
families of these unphysical states can be canceled,
but a general elimination of them has not yet been
accomplished.

3. Attempts at Unitarization

The most immediate difficulty in applying the
Veneziano formula and its generalizations to the real
world is the presence of poles on the real energy axis.
The zero-width approximation can be employed in
limited regions, for example near threshold in the ==
problem where the I=0, 1, 2 phase shifts can be repro-
duced approximately (Shapiro, 1969; Kawarabayashi,
Kitakado, and Yabuki, 1969). If the energy range
spans one or more resonances, however, there is obvious
trouble. One recipe is to give the trajectory function
a(s) animaginary part (Lovelace, 1968). This generates
resonances with finite total widths, as desired, but
causes the amplitude to possess resonances simul-
taneously in all partial waves (ancestors, as well as
daughters!), something not desired. Such a procedure
is quite ad hoc. It gives equal total widths to all partial
waves that resonate at the same mass. An alternative
approach to unitarity is to treat the partial-wave
projections of the Veneziano amplitude as the K
matrix. This suggestion, also due to Lovelace (see
Lovelace, 1969), is in direct analogy with nuclear-
reaction theory. Unitarity is satisfied in one channel
but at the expense of crossing symmetry [see also
Arbab (1969) for a related proposal for unitarization].

Another attack at the problem of a unitary theory
based on Veneziano-like amplitudes has been made by
Kikkawa, Sakita, and Virasoro (1969). These authors
attempt to develop a diagrammatic approach in which
the basic Veneziano amplitude is equivalent to the
lowest-order term in the normal Feynman calculus.
Details are inappropriate at this point. There may, in
fact, be very serious shortcomings to this perturbative
approach (Bardacki, Halpern, and Shapiro, 1969).

Still another treatment of unitarization is that of
Atkinson et al. (1969). This is a ‘“nuts and bolts”
approach in which the lowest pole or lowest few poles
are replaced by a finite cut on the energy axis, the dis-
continuity across the cut satisfying unitarity. The
resulting nonlinear equation is solved by the N/D
method. While not entirely ad /oc, this method is likely
to lead so far from the original Veneziano amplitude as
to make the starting point forgotten (or forgetable).

The most elegant approach to unitarization of the
four-particle Veneziano amplitude is that of Martin
(1969). He smears the Veneziano amplitude (VI.3)



as follows:
T'(1—a—bxs)T(1—a—bxt)
Ir(1—2a—b(s+t)x) °’
(VI.12)

Fis,0= [ do(o)

where ¢(x) is a positive function that vanishes at the
end points of integration. Note that the crossing sym-
metry is preserved. Martin shows that for a suitable
class of functions ¢(x), the poles on the real axis in s
or ¢t move off onto the second sheet, as required. At
high energies, the integral in (VI.12) corresponds to
Eq. (IV.21) with a particular discontinuity function
across the cut in the J plane. The unitarized amplitude
thus shows power-law behavior modified by logarithmic
corrections, as discussed in Sec. IV.3, rather than pure
pole behavior.

Clearly the last word has not been said on the creation
of a unitary replacement for the Veneziano amplitude,
but perhaps the first has. I am personally attracted to
Martin’s idea, not the least because it leads to cuts in
the J plane.

4. Applications

The applications of the Veneziano model are legion
and growing; we give only a sampling. The applications
to pseudoscalar meson elastic scattering have. been
described above. Some other applications are

(i) pn—wrr (Lovelace, 1968) ;

pp—omrT (Jengo and Remiddi,
1969).
(i) wN—7N (Igi, 1968; Berger and

Fox, 1969);

KN—KN, KN—KN (Igi and Storrow, 1969;

Berger and Fox,
1969).
(i) #N—mrN (Wagner, 1969; Roberts
and Wagner, 1969) ;
(iv) #N—wrN (Bender and Rothe,
1969).

The annihilation process fin—mrr can be viewed as
the decay of an isovector pseudoscalar particle of mass
2my into three pions and hence is describable in terms
of the Veneziano amplitudes for #r scattering, suitably
extrapolated in the mass of one of the pions. Since the
Veneziano form, (VI.2) or (VL.3), depends explicitly
only on the linear trajectories, it is natural to assume
that the extrapolation is done by altering the connec-
tions s+i+u=4p? to s+i+u=2, where 2 is the sum
of the actual masses involved. The coefficient 8 of each
term can depend on the external masses, of course, but
for a single term this represents only a scale change. In

analyzing pn—rtr—nr~, Lovelace initially considered a
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F16. 31. Comparison of the Veneziano model (VI.13) with the
w+r~ mass distribution for pn—n*nr~n~. The dash—dot curve is
after Lovelace (1968), with B=0. The solid curve is the fit of
Berger (private communication).

two-term formula,

T(1—a(s))T(1—a(y)
T(—a(s)—al(l))

i I(l—a(s))T(1—a())

T —a®)

but ended up setting =0 in his comparison with

experiment. The coefficient of 8 is our standard ==

amplitude (VI.3). The coefficient of v is a “satellite”

term in which the leading trajectory (p, f, <--) is

suppressed. Lovelace felt compelled to eliminate the

coupling to the p and f in this annihilation process

because of the apparent absence of an appreciable p
signal in the data (Anninos et al., 1968).

Figures 31 and 32 show comparisons of some repre-
sentative aspects of the data with Lovelace’s model
and with an alternative fit (private communication
from Berger). Both calculations use Lovelace’s ansatz
for the trajectory function

[e(s7) =0.4834-0.885s;-10.28 (s;—4u?) V2]

Lovelace has =0 in (VI.13), while Berger puts
B=—1, y=1.95.* Figure 31 is the mass distribution for
the Q=0 combination of =; it shows peaking at the p
and f° masses, although in Lovelace’s model the peaks
are caused by the daughters (e and p’, €’). Figure 32
shows the decay angular distribution for the a*a—
system in the f° mass region. There are several points
to be made in the comparison of the two models with
the data. First, it is not surprising that Berger obtains
somewhat better fits to the various distributions—he
has more parameters. Second, the experimental data of
Fig. 32 show a sharp forward peak that needs an L=2

A=—8

(VI.13)

_* Changes in the coefficient of the imaginary part of a by 30% in
either direction can be compensated by changes in the ratio 8/y
without destroying the fit.
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F16. 32. Decay angular distribution of the #* in the mass region
of the f° for pn—=*r~n~, as shown by the shaded region on the
Dalitz plot. The curves have the same meaning as in Fig. 31.

contribution, present in Berger’s model but absent in
Lovelace’s. A third point is that neither model does
very well in fitting the decay angular distribution in the
mass region of the p. Finally, without entering into
questions of taste, one can say that these figures
indicate a certain degree of arbitrariness in the use of
sums of terms of the general form (VI.2) in fitting data.
Considerably more work needs to be done before we
learn how much of the detailed partial-wave content of
the Veneziano amplitude is really necessary in fitting
m— distributions in inelastic processes. It is probably
significant, however, that the lines of zeros shown in
Fig. 29 and the general increase in the amplitude away
from the center of the diagram seem to be reflected in
the experimental data.

The work of Igi and others on wV and KN elastic
scattering is an ambitious attempt to compare the
Veneziano model with the great abundance of data
available. Many trajectories are necessary and con-
sequently numerous beta functions must occur. There
are problems of parity doubling here, as in other
applications with spin (e.g., Abers and Teplitz, 1969).

Theidentification of the partial wavesin the Veneziano
amplitude with the K-matrix elements is the approach
used by Wagner (1969) and Roberts and Wagner
(1969) in their treatment of #N—wwN. The peripheral

production process involves the scattering wr—mm,
with one of the pions virtual. The off-mass-shell
extrapolation is done as suggested by Lovelace, with
the momentum transfer to the nucleon, A?, appearing
only in the expression for ¢ (of the 7r scattering) :

t=—%(s— 3u?+ A2—4gonGois cos ).

A direct consequence of this assumption is that the off-
mass-shell corrections of the m—r partial-wave ampli-
tudes, while more or less standard for /540, are different
from unity for the s waves, and not the same for 7=0
and /=2. Wagner’s paper contains numerous com-
parisons with experiment for both w—p—mx% and
7~ p—atw~n. There is general agreement with experi-
ment (after adjustment of an arbitrary form factor in
A? and one other parameter in the unitarization pro-
cedure), although some important comparisons with
the data are missing. Evidence is presented for the
necessity of the specific off-mass-shell corrections for the
s waves at low 7 masses.

VII. SOME ASPECTS OF MULTIPERIPHERALISM

Multiperipheralism has two major aspects—one is as
a model for the analysis of many-particle (#>2) final
states in high-energy collisions, and the other is as a
model for the 2—n amplitude used in the unitarity
equation to generate self-consistent Regge singularities
for high-energy elastic amplitudes. Both ideas date
back to 1962 or 1963, but they have received renewed
attention as significant amounts of data on many-
particle final states began to accumulate. Present
versions of the model involve a chain of Regge pole
exchanges, as indicated on the right-hand side of Fig.
27. The experimental and theoretical aspects of many-
particle final states and the multi-Regge exchange
model were treated in detail by Chan, Czyzewski,
Turkot, and Ratti at the 1968 CERN Conference. In
addition, at Vienna, Czyzewski (1968) presented a
very complete review, while Chan (1968) summarized
the salient features deduced from comparison of the
model with experiment. Accordingly, I comment only
briefly on some of the applications published mainly in
the last year. On the subject of multiperipheralism and
the generation of self-consistent Regge singularities,
my remarks are also brief, partly because Frazer
(1968) covered some aspects at Vienna, partly because
the technical details are difficult, and partly because
results are just beginning to emerge.

a F16.33. Double Regge

exchange diagram for a
4 three-body final state.
) Here @ and b denote the
b Regge trajectories.




1. Three-Body and Quasi-Three-Body Final States

The simplest multi-Regge process is 2—3, indicated
in Fig. 33. Numerous comparisons between theory and
experiment have been made for this configuration.
Examples of the more recent ones are listed below.
Before going into specifics, however, a few qualitative
observations are in order. The Regge exchanges, ¢ and
b, in Fig. 33 are, in general, different trajectories. Let
us suppose that the slopes of the trajectories are not
wildly different, but that «,(0)<as(0). It is not
difficult to show that the form of the multi-Regge
amplitude and the kinematics are such as to cause the
mass distribution of particles 3 and 4 to peak near
threshold, and the corresponding distribution for
particles 4 and 5 to be considerably broader and perhaps
peak at higher masses. This is a general effect—it is,
of course, the basis of the original calculation of the
Deck effect, where a=m, b=P, 3=p, 4=m, and 2=35
(Deck, 1964). Ranft (1969) has investigated a number
of examples in detail, using the duality arguments of
Chew and Pignotti (1968) to justify the use of the
asymptotic Regge form down to threshold (see Sec.
V.5) . Her specific examples verify the qualitative picture
stated above.

If particles 2 and 5 are the same and so are ¢ and 4,
the possibility arises of using either on-mass-shell
elastic-scattering data or some suitable off-mass-shell
extrapolation, instead of the Regge exchange(s) b.
This has been done in a number of the calculations and
fits nicely into the framework of the multi-Regge model
via duality.

Table I contains a representative sample of three-
body and quasi-three-body final states which have been
analyzed in terms of the double Regge exchange model.
The configurations and exchanges of Fig. 33 are tabu-
lated. In some reactions (e.g., Ktp—Ktwp) several
diagrams are used; the one listed is then merely an
example. The main features to emerge from these
comparisons are that use of a Regge amplitude for the
pion enhances the peaking at low masses for the two
particles on either side of the pion link and gives rise to
appreciable modulations in certain azimuthal (Treiman—
Yang) angular distributions. Both features are in
general accord with experiment and are not given by
elementary pion exchange. The reader is referred to the
references for the numerous mass plots and angular
correlations for each reaction.

2. Four Bodies and More in the Final State

The work of Chan and his collaborators at CERN
on comparison of the multi-Regge exchange model with
various experiments has resulted in a long series of
papers. I mention only the applications to wN—
N(n—1)7 and KN—A(n—1)x by Chan, Loskiewicz,
and Allison (1968), the application to pp—rtatar—zn—
by Ranft (1968), and the incorporation of low-energy
resonances into the model by Plahte and Roberts
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Fi1c. 34. Multiperipheral diagrams considered by Caneschi and
Pignotti (1969): (a) meson exchange for the proton spectra,
(b) baryon exchange for the proton spectra, (c¢) and (d), cor-
responding diagrams for the pion spectra (from Caneschiand
Pignotti, 1969).

(1969). A comparison of data on three-, four-, five-,
and six-body final states from K*p interactions at
5 GeV/c¢ with the multi-Regge model has been made by
Bassompierre ef al. (1969). When resonances are
included, the model agrees reasonably well with
experiment.

Two examples of experiments on four-body final
states may be cited. The first is the work of Rush-
brooke and Williams (1969) on pp—pprta— at 16
GeV/c. These authors interpret their data in terms of a
multi-Regge diagram with the protons as the outer legs
and the pions as the inner legs. The Regge link between
the pions is taken as a pion, while the outer links are
replaced by the elastic-scattering amplitude for rm+p—
m£p. The various mass plots and momentum-transfer
dependences are not sensitive to whether the exchanged
pion is elementary or a Regge pole, but the sizeable
variation in intensity as a function of Treiman-Yang
angle favors the Regge pole description, in agreement
with the results on the three-body final state.

The other four-body final state occurs in the reaction
7 p—rwtrp studied by Lipes, Zweig, and Robertson
(1969) at 25 GeV/c. The data are searched for evidence
of the double Regge exchange diagram of Fig. 33 with
1=3=7", 2=5=p, and particle 4 decaying into wt7—.
The data favor o,(0)~%, o(0)=~1, consistent with
known trajectories (p, P’; P), and definitely rule out
double P exchange as a dominant mechanism. The
presence or absence of multiple P exchange bears on
unitarity and the multiperipheral bootstrap, as is
mentioned below.

Before leaving n-particle final states, I draw attention
to the work of Van Hove (1969) on a new type of
phase space plot for longitudinal momentum in multi-
particle processes. These new constructions aid in
handling the complicated kinematics of a many-particle
state and exhibiting various aspects of multi-Regge
behavior.
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F16. 35. Comparison of Caneschi-Pignotti model with the data of Anderson ef al. (1967) on proton and pion spectra from inelastic
- collisions at 30 GeV/c. Upper left: proton momentum spectra at various angles. Lower left: corresponding pion spectra (z* and 7).
Upper right: proton and pion longitudinal momentum spectra at fixed perpendicular momentum. Lower right: comparison of the model
with proton data at 18.8 GeV/c, and predictions for 70 and 200 GeV/c. (From Caneschi and Pignotti, 1969.)

3. Particle Spectra in Inelastic Proton-Proton
Collisions

Our final example of the use of multi-Regge models is
the work of Caneschi and Pignotti (1969) on the energy
and angular distributions of the pions and protons
produced in multiparticle pp collisions. This application
is complementary to the calculations for a specific
number of particles in the final state, since it is con-
cerned with the inelastic spectra of one particle, summed
over all final states kinematically available. Caneschi
and Pignotti include both meson and baryon links in
their multi-Regge chain and find empirically that the
baryon exchanges account for roughly half the cross
section.

The relevant diagrams and kinematic quantities are
shown in Fig. 34. Diagram (a) at upper left represents
the meson-exchange contribution to the proton spectra.
The laboratory cross section for this diagram is

d2a. PI2 (S )20:M(l) (S' )ap(o)
Lot (S — VIL:1
dp'dQ “E P s m? > )

where (E, p) and (E’, p’) are the incident and outgoing
energy and momentum of the proton in the laboratory,

¢ is the momentum transfer squared to the proton, and
s'=m*+t+2m(E—E’') is the mass squared of the
unobserved particles. The factor exp (at) describes the
behavior of the Regge residue; the next factor is the
Regge propagator of the exchanged meson; the last fac-
tor describes the Pomeranchon behavior of the meson—
proton total cross section at energy s’ (resulting from
an approximate summing of all the different final states
accessible at energy s’). Equation (VII.1) can fit the
small-angle, small-energy-loss region of the proton
spectra but falls off much too rapidly at large momen-
tum transfers.

Large momentum transfers to the proton can be
generated by a diagram of the type shown in Fig. 34(b).
The resulting formula for the cross section has the
appearance of the product of two expressions like
(VII.1), one for the right-hand and one for the left-hand
side of diagram (b). The left-hand part is just the same
as before, while the right-hand part has the meson
trajectory aa(f) replaced by the baryon trajectory
ap(t), and the Pomeranchon ap(0) replaced by a4(0),
a trajectory intercept appropriate for the energy de-
pendence of the total annihilation cross section of a
baryon and antibaryon. To obtain the proton spectra,
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TaBLE L. Examples of double Regge exchanges. (See Fig. 33 for the notation.)

» Particles Regge exchanges
(Gel\nlh/c) 1 2 3 4 5 a b Reference
8, 11 T P p T P T P Berger (1968a)
28.5 P b n =t P T P Berger (1968b)
6.6 P P b L AT+ Elastic data T Berger et al. (1968)
7.3 K+ P K* gt p T P Chien et al. (1969b)
9 K+ P Kt P w P Alexander et al. (1969)
12.6 K- b K* 7= p ™ P Andrews et al. (1969)
K- P K- 7 AT+ P T Andrews et al. (1969)
28.5 P b b ™  At* P T Berger (1969)

a numerical integration over the ‘“masses” squared
s/ and s,/ must be performed.

In the interests of simplicity, the authors neglect
interference terms in the cross section and determine
empirically the relative amounts of the two diagrams
(a) and (b) necessary to fit the 30 GeV/c data of
Anderson et al. (1967). Their choices of the various
trajectories are ap(0) =1, aa(0)=0.5, ay(f)=0.55+
0.85¢, and ap(f) =—0.3840.2t. The resulting fits to
the proton momentum spectra at various angles are
shown in the upper left-hand corner of Fig. 35. The
corresponding spectra for £ at 30 GeV/c, calculated
from the lower two diagrams in Fig. 34, are shown at
bottom left in Fig. 35. At upper right are some of the
same data and calculations, this time displayed as a
function of longitudinal momentum for fixed values of
perpendicular momentum. The general agreement is
quite satisfactory over several orders of magnitude.
The very flat longitudinal momentum distribution for
the protons at fixed pi is a result, in the model, of a
rising contribution from the meson exchange part and
a decreasing contribution for the baryon exchange term.
Since a certain number of parameters have been fed in,
it is useful to test the model at other incident energies.
The lower right-hand plot in Fig. 35 shows calculations
of proton spectra at lower and higher energies. The
comparison at 18 GeV/c is reasonable. Predictions are
then shown for fixed angle (10 mrad) at 70 and 200
GeV/e.

The success of this particular model hinges on the
inclusion of baryon exchanges in the sense shown in
Fig. 34. This seems surprising at first, but Caneschi and
Pignotti argue that, because multiplicities increase with
increasing energy, subenergies stay roughly constant on
the average and hence allow lower-lying trajectories to
compete with the leading ones. This leads to a plausible
picture of high-energy collisions with forward and
backward “fireballs” consisting of a nucleon and an
energy-independent number of mesons emitted by the
baryon links in the multi-Regge chain, and a cloud of
pions originating from the meson links and growing in
number logarithmically.

4. Self-Consistent Regge Singulaﬁties and
the Pomeranchon

The idea that s-channel unitarity can be used to
determine, in a self-consistent way, the parameters of a
t-channel Regge exchange is very attractive and has
been worked on by many people. Since the original
multiperipheral calculations of Amati, Stanghellini, and
Fubini (1962), there has been the question of cuts in
the J plane accompanying the poles. Initially unwanted
and proved spurious, the ASF cuts, or at least their
counterparts in multi-Regge theory, are with us again
and are now respectable. They seem necessary, in fact,
as we have already discussed in Sec. IV. Present
attempts at the problem divide into two groups, those
that try to make the input Regge poles emerge in a self-
consistent or bootstrap way and those that aim to
generate the Pomeranchon singularity from the exchange
of mesons. Inside each group there is a diversity of
techniques. On the technical side, we note the gen-
eralization of the ASF integral equation to a form
suitable for the more complicated dependence on the
kinematics that accompanies the multi-Regge ex-
changes (Chew, Goldberger, and Low, 1969).

In the first category are the works of Halliday and
Saunders (Halliday, 1969; Halliday and Saunders,
1969b) and the works of Chew and Pignotti (1968b)
and Chew and Frazer (1969). The first named authors
base their calculations on a high-energy approximation
to the unitarity equation in terms of Sudakov variables
(Halliday and Saunders, 1969a; Sudakov, 1956).
Chew and collaborators give approximate solutions to
the generalized ASF integral equation at ¢t=0. Chew
and Pignotti, using the duality ideas described in Sec.
V.5, show that the total cross section arising from a
multi-Regge chain with average trajectory intercept
& has an energy dependence.

g s2(¢—l)+a2’

where g2 is a coupling strength characteristic of the
internal vertices (averaged over momentum transfers)
and related to the average multiplicity by (z)~g?In s.
If & is associated with multiple Pomeranchon exchange
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(ap(0)=1), the constancy of high-energy total cross
sections can only be understood if g* is very small.
Data on multiplicities indicate g2~1 and therefore
imply a@a~%. If this model has even approximate
validity, the conclusion is that multiple Pomeranchon
exchange is not significant.

The incorrect energy dependence accompanying
multiple Pomeranchon exchange has been known for
some time (see, for example, Verdiev, Popova, and Ter-
Martirosyan, 1964). Kajantie (1968) and Finkelstein
and Kajantie (1968) have re-examined the energy
dependence of the #n-particle production cross sections
for both Regge and elementary particle exchanges.
For fixed poles (a;’=0) and for amax occurring 7 times
in the chain, the energy dependence of the z-particle
cross section is

o, (In 5) ™ Ls2(@max—D),

For the analogous situation with Regge exchanges
(a,-'?f()),

- [In (Ins) J*!

s2 (otmax—1) .
Ins

n

The energy dependence of o, (let alone o¢) is seen to be
unreasonable if the Pomeranchon is a fixed pole at
ap=1and it occurs in the chain at all. If the slope of the
Pomeranchon trajectory is finite, o, decreases even if
ap(0) =1, independently of the value of m. But this
decrease with energy is so slow that there will certainly
be difficulties with the total cross section. All these
arguments favor a limited number of P exchanges,
e.g., one. Many physicists favor this conclusion because
of an intuitive feeling that the physics attributed to the
Pomeranchon pole is a complicated shadowing phenom-
enon that should, almost by definition, occur only once
in any collision process.

The properties of the output pole and its associated
cut in the J plane are considered by Chew and Frazer
(1969). They find a self-consistent solution for the
Pomeranchon pole at a(0) =1—a, where a 20.01, with
the end point of the cut at a.(0) =1—2a. The impor-
tance of the cut relative to the pole can be expressed in
terms of the integral of the discontinuity along the cut
relative to the residue of the pole. The ratio of cut to
pole is roughly the ratio cetastic/Tinelastic Which is 209
or less. A similar conclusion about the relative impor-
tance of cuts and poles in elastic scattering has been
reached by Freund and O’Donovan (1968). The model
of Chew and Frazer, with the input a pure pole,
generates a pole accompanied by a cut in the J plane,
with the sign appropriate for a unitarity correction
rather than an absorptive correction. As already
mentioned in Sec. IV.5, Caneschi (1969) has shown that
if poles modified by absorptive corrections are used as
input in the production amplitudes, the sign of the cut
contribution in the elastic amplitude is that given by
the absorptive model. This leads to the hope that a
self-consistent set of J-plane singularities can be

generated with features in accord with the suggestions
from experiment.

Examples of the second category, generation of the
Pomeranchon singularity by multiple meson exchange,
are the original work of Amati, Stanghellini, and Fubini
(1962), very recent attempts (still in progress) by
Chew, Rogers, and Snider with essentially the ASF
model, and the work of Freund (1969). This last is
noteworthy for its use of duality in a sense opposite from
that described in Sec. V.5. Freund uses duality argu-
ments to replace n-particle intermediate states in the
unitarity equation by quasi-two-body channels in-
volving towers of resonances! (He goes from right to
left in Fig. 27, whereas Chew and Pignotti go from left
to right.)

A final remark concerning the ¢-dependence of the
diffractive elastic scattering can be made. Attempts to
generate the forward diffraction peak e4f, with A~8
(GeV/c)~2, via the unitarity equation, have succeeded
only when the multiparticle amplitude possesses rapidly
varying phases (Michejda, 1968). In particular, a
multi-Regge-exchange model with a phase given by the
product of phase factors exp [—ima;(2;)/2], one for
each link in the chain, yielded reasonable agreement
with experiment. The same model without the phases
yields A~1.5 (GeV/c)™? (Michejda, Turnau, and
Biatas, 1968). An interesting by-product of this work is
the result that contributions to the imaginary part of
the elastic amplitude from larger and larger multi-
plicities show steeper and steeper ¢ dependences. This
suggests that higher-multiplicity states are produced
more peripherally than low multiplicities, an idea that
runs counter to intuitive belief that central collisions are
“hard” and peripheral collisions “soft.” With what
turns out to be considerable foresight, Michejda
emphasizes that these results are not conclusive. A
contribution to the Lund conference by Ajduk and
Stroynowski (1969) shows that the neglect of spin in the
previous work is a serious deficiency. Spin effects can
give roughly the observed value of 4 without the
necessity of Regge phase factors, and they may well
make the behavior in ¢ for different multiplicities agree
with our intuitive ideas.

VIII. MISCELLANEOUS ASPECTS OF
PRODUCTION PROCESSES

1. Pion-Pion Phase Shifts

The extraction of the physical pion—pion scattering
phases from experimental data on the production
process mN—wmN has a long history, dating from the
days of the Goebel-Chew-Low extrapolation idea and
the discovery of the p meson. In relatively recent years
there has been a gradual refinement of the method of
analysis and the accumulation of very large numbers of
events. About two years ago, the beginnings of a
reasonably consistent picture emerged with the analyses
of Baton, Laurens, and Reignier (1967) for the I=1



and I=2 phase shifts, and of Gutay et al. (1967),
Walker et al. (1967), and Malamud and Schlein (1967)
for the /=0 and 7=1 phases.

The treatment of the peripheral production data can
be understood from Fig. 36. At small momentum
transfers, the one-pion-exchange diagram can be
assumed to dominate. Then the amplitude for rtN—wrN
can be factored into a NNw vertex and a wr—wr
amplitude, connected by a pion propagator. The
various methods of analysis (Schlein, 1967; Baton,
Laurens, and Reignier, 1967; Marateck ef al., 1968;
Gutay et al., 1969) differ in their treatment of the =—r
amplitude and the NN= vertex, but all depend on the
idea of factorization of the production amplitude, at
least implicitly. Below 1 GeV in the 7—r cms it is safe to
assume that only s and p waves are significant.

For the 7=1 and I=2 phase shifts, the analysis is
fairly straightforward. The p resonance is predominantly
elastic and known to be JP=1~. Its unitarity limit of
127X% is therefore a check on the normalization or
extrapolation procedures. Figure 37 shows the results
of Baton and Laurens (1968) for sin?§ in the I=1
p wave and the s wave phase shift for 7=2. These
phases were obtained by extrapolation to the pion pole
in the classic manner of Chew and Low. The p-wave
phase is fitted by a nonrelativistic Breit-Wigner
resonance with I'=110+£9 MeV and M= 75545 MeV.
This is consistent with other determinations of the
parameters of the p meson.

For the I=0 s wave deduced from the 7tz~ system,
there are ambiguities in practice although not in
principle, as first pointed out by Gutay et al. (1967).
The angular distribution of the pions can be written,
assuming only s and p waves, as ‘

AW /dQ= A (42, A2) + B(m..2, A?) cos 0
+C (442, A?) cos? 8,

where 0 is the “scattering” angle of one of the pions
measured relative to the incident pion’s direction in the
rest frame of the two pions in the final state. The
coefficients 4, B, C depend on the invariant mass of the
two pions (#,..) and the momentum transfer to the
nucleon (A?) as well as the incident momentum and the
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F16. 36. Peripheral one-pion-exchange diagram for #N—mrrN
showing the decomposition into =—r scattering and #/VN vertex
(from Gutay et al., 1969).
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F1c. 37. I=1 and I =2 pion—pion phase shifts. (a) sin?é for the
I=1 pwave, (b) phase for =2 s wave (from Baton and Laurens,
1968).

Treiman-Yang angle. For small momentum transfers,
the distribution in the azimuthal Treiman—Yang angle
is isotropic, consistent with the pion exchange shown in
Fig. 36. Extrapolation of the observed values of 4, B,
C to the point A?= —y? should give an unambiguous
determination of both s- and p-wave phases. Because
of relatively rapidly varying corrections to 4, it is not
possible to make a useful extrapolation of this coefficient
which, at the pion pole, involves only the s-wave phase
shifts. An indirect method is necessary. The ratio B/C
at the pion pole yields the 7=0 s-wave phase shift,
provided the =2 s-wave phase (which enters B along
with the =0 s wave) and the /=1 p wave (present in
B and C) are known. By extrapolation of B and C
separately, or better, as a ratio B/C, the I=0 s-wave
phase can thus be determined as a function of #...
Unfortunately, there is a twofold ambiguity; &° and
(8¢%)'=81—00"+7/2, as shown at the top left in Fig. 38.
Since & is near 90° at the position of the p, there are
four solutions: These are referred to as ‘“up-up,”
“down—up,” “up-down,” and “down-down”’ depending
on which branch below 750 MeV is connected with
which branch above. The “down-up’ solution corre-
sponds to an s-wave resonance at roughly the p mass
and a width of ~140 MeV, while the “up-down”
solution represents a very broad s-wave enhancement
with a phase between 60° and 90° over the range
500 MeV <m,,<1000 MeV.

On the basis of a fitting of production amplitudes,
Malamud and Schlein (1967) favored the ‘“‘up—up”
solution, while Marateck et al. (1968) preferred the
“down-up”’ solution shown separately at top right in
Fig. 38. A further analysis has been made of basically
the same compilation of data as used by Marateck
el al., with the claim that a unique solution is determined
(Scharenguivel et al., 1969). This analysis uses
an extrapolation of the ‘front-to-back” ratio,
B/(24+2C/3), to A= — 2, combined with a fit to the
production amplitudes based on the factorization
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implied by Fig. 36. With nine parameters, a maximum
likelihood fit strongly favors the ‘“down—up” solution,
corresponding to a relatively narrow s-wave resonance
and agreeing closely with Marateck et al.

There are other experiments, however, that challenge
the correctness of the ‘“down-up” solution. Evidently
the process wr——n7?, involving only the symmetric
I=0 and I=2 amplitudes, is an obvious reaction to
study in order to elucidate the s waves without the
domination of the resonant p wave. Published experi-
ments have given conflicting results—Feldman et al.
(1969), who studied mp—n'z% at 1.27 and 1.53
GeV/¢ with spark chambers, favored a narrow reso-
nance, while Braun, Cline, and Scherer (1968), who
studied wtd—n'7%(p) at 2.15 GeV/¢c in a bubble
chamber with tantalum plates, favored the “down”
solution above 800 MeV. Both experiments suffer from
limited statistics. A Karlsruhe—-Cern contribution to the
Lund conference (Deinet ef al., 1969) seems to point
unambiguously(!) to the “up-down” solution, in exact
opposition to the conclusion of Scharenguivel ef al.
(1969). The experiment is 7 p—7'n% at 1.77 GeV/c
with a neutron time-of-flight spectrometer and thick-

plate spark chambers to detect the gammas from the «°
decays. The number of events with 3u?<A2<15u% is
sufficient for a Chew-Low extrapolation for the total
cross section of 7tr——7%70. The results are shown in the
bottom half of Fig. 38, along with the /=0 s-wave
unitarity limit and the expectations of the various
solutions shown at the upper left in the same figure.
There are, of course, possibilities for error in this
experiment. The gamma rays are not fitted to the two
7%s, and hence no Dalitz plot is available. Questions
about reflections and interferences from a process like
7 p—7°A® cannot be answered. Taken at face value,
these data are in agreement with the predictions of the
Veneziano model which has a broad s-wave resonance at
the position of the p (see Fig. 28) . Preliminary data from
another counter experiment at higher incident momenta
(2.55-18.2 GeV/c), also presented at Lund, give roughly
the same results (Sonderegger and Bonamy, 1969).
The question of the I=0 s-wave phase shift is
evidently still open, although the balance is shifting in
favor of the “up—down” solution or at least a phase
shift that changes very little from 700 to 900 MeV.
The contrary deduction from the experiments on



7~ p—wtr~n may be caused by too heavy a dependence
on a particular model for the production amplitudes.

2. K- Phase Shifts

The same kinds of analysis that have been done on
the pion production processes can be done with incident
K mesons. Various aspects of the analysis of the three-
and four-body final states (KN—KrN and KN—
KnwN) have been given by Schlein (1968). The model
used is that of one pion exchange with each vertex
multiplied by a Diirr-Pilkuhn form factor (Diirr and
Pilkuhn, 1965). For a process like K¥p—K+r—ntp, the
events with small momentum transfers to the =*p
system are described by a differential cross section
that has a product of the K*»~ and #+p off-mass-shell
scattering cross sections times suitable phase space
factors and form factors divided by the square of a
pion propagator. A fit is made to the mass and ¢ de-
pendences of the data by adjusting the radius param-
eters in the Diirr-Pilkuhn form factors as well as the
K and N scattering amplitudes. For the 7.3 GeV/¢
data of Trippe et al. (1968) on K+p—K+r~A++ and
K%%A+ *+, the results of such a fit are shown in Fig. 39.
The lower curves display the ¢ dependences of the
differential cross section for various mass cuts on the
K system. From the left, they are for the K*(890)
region, the K*(1420) region, below the K*(890),
between the two resonances, and above the K*(1420),
respectively. The upper half of the figure shows the
K*r— and K°®° cross sections at small momentum
transfers. The K*(890) and K*(1420) peaks are clearly
visible. Since the spins, positions, widths, and elasticities
of the K*(890) and K*(1420) are known reasonably
reliably, the cross section can be processed to subtract
out the p- and d-wave resonant contributions and leave
a remainder. The insert in the upper right-hand corner
of Fig. 39 shows this remainder now expressed as an
elastic-scattering cross section. It is suggestive that the
data points approach the unitarity limit for an I=3%
s wave near 1 GeV. Trippe ef al. state that these results
imply the existence of an I=3% scalar resonance at
1.1 GeV. It is desirable to have confirmation of this
resonance in other, preferably very different, experi-
ments. The hazards of subtracting large contributions,
parametrized in a particular way, to obtain a small
remainder are obvious, even when, as in this instance,
there are good normalization points on either side in the
form of well-known resonances. I have presented these
data, not so much as convincing evidence for a new
resonance, but as an example of the type of analysis
possible in pion exchange processes where known
resonances provide benchmarks for calibration of
one’s model.

3. On the Connection Between Production Mecha-
nism and Decay of Resonances at High Energies

Almost six years ago Gottfried and I published a
paper with the above title, pointing out that the
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F16. 39. Spectra for the reaction, K*p—KwrA*t + at 7.3 GeV/c.
The upper histogram shows the cross section do/dm for the K*n—
and K°r° systems. The insert displays the elastic (Kw) scattering
cross section after removal of the resonant p wave [K*(890) ]
and 4 wave [K*(1420) ] by a subtraction. The lower histograms
show the ¢ dependence of the production cross section for various
cuts on the K mass spectrum (from Trippe ef al., 1968).

density matrix for the spin population of an unstable
resonance carried an imprint of the mechanism of
production (Gottfried and Jackson, 1964). Special
examples had been known, of course, before that time.
Since then many developments have occurred. Van
Rossum (1968) gave a comprehensive review at the
CERN Conference. I therefore restrict myself to a few
comments. Mention should be made of the work in the
Soviet Union, contemporary with our original work
(Berkov, Nikitin, and Terent’ev, 1964) and subse-
quently (Kaidalovand Karnakov, 1966; Gribov, 1967a).
Gribov suggested looking for the contributions from the
Pomeranchon pole and the P-P cut in the decay correla-
tions of KN—K*N. Unfortunately, even the highest-
energy data on this reaction show little if any evidence
for the presence of Pomeranchon exchange.

In photoproduction of pions there is a famous theorem
due to Stichel (1964) which states that the cross section
for photons linearly polarized in (perpendicular to) the
production plane corresponds to the exchange of
unnatural (natural) parity in the ¢ channel. The general
problem of circular and linear polarization of the
photons in quasi-two-body photoproduction of mesonic
and baryonic states of arbitrary spins and parities has
been considered recently, notably by Cooper (1968a, b)
and Thews (1968), who discuss what can be learned
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F16. 40. Progress in theory, 1911—1968. Cross-section formulas, then and now.

about the f-channel exchanges from the polarization
dependence of the cross section. Interesting theorems
in a similar vein are presented by Ader et al. (1968)
who discuss in detail how to isolate the cross section
corresponding to natural or unnatural parity exchanges
by taking certain linear combinations of decay density
matrix elements times the differential cross section.

I wish to issue a warning about the use of the theorems
of Stichel, Cooper, Thews, and Ader et al. They are
generally only correct to leading order in powers of s.
At present laboratory energies there can be sizeable
corrections. An example is revealing. For vector-meson
production, e.g., Ktp—K*tp the combinations
(putp1,-1) and (pr—p1,—1) measure the amounts of
natural and unnatural parity exchanges, respectively,
according to Ader et al. If only natural parity exchange
occurs, then p;,_1=p;; is predicted. An elementary
perturbation-theory calculation using only vector-
meson exchange shows that this equality is only true as
s— [see Eq. (16) and Fig. 2 of Jackson and Pilkuhn,
19647. At 3 GeV/c, theratio p1,—1/pn at small momentum
transfers ranges from 0.7 to 1.0, depending on the
details of the couplings of the exchanged vector meson.
In terms of Regge exchanges, the reliability of these
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Fi1c. 41. Progress in experiment, 1919—1968.
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theorems will be especially poor when the “other”
parity corresponds to Regge poles whose trajectories lie
higher (typically by half a unit) than those appropriate
to the parity being measured. In these circumstances,
the error will be of order s7+42, In all of this, it appears
that the only theorem that holds without approximation
is the original one on the vanishing of pg for vector-
meson production when only natural parity is ex-
changed, plus some trivial extensions (Jackson, 1964).

Other developments on the use of decay correlations
include quadratic relations among density matrix
elements to test for single Regge pole exchanges
(Ringland and Thews, 1968) or for certain classes of
exchanges (Kaidalov, 1967). Here again the relations
are valid only to leading order in s.

Calculations of cross sections and density matrix
elements for the reaction #N—pN, especially in the
small ¢ region, have been made by Dass and Froggatt
(1968) using a Regge pole model. At small ¢, the process
is dominated by pion exchange, and the density matrix
elements and cross section have different behaviors at
t—0, depending on whether one has an evasive pion or a
pion conspiracy (or a conspiring cut). The limiting form
of the different behaviors as s— are as follows:

Evasive pion Pion conspiracy

puw(da/dt) 1/ (t—u?)? t/ (t—p2)?
pu(da/dp) ¢ const
pw(da/dt) B2/ (1—u?) 12/ (t—u?)
p1,-1(da/di) t ;

For an evasive pion, the cross section dips toward =0
in the forward direction and pyp remains large. For a
conspiring pion, the cross section stays finite at ¢=0,
while pp goes to zero there. These very different be-
haviors can, in principle, be used to elucidate the types
of t-channel exchanges. The situation does not look too
promising at the moment, however. The calculations of
Dass and Froggatt show that the differences occur at
extremely small ¢ values (|| <w?). On the experi-
mental side, data on m—p—p" indicates a finite cross
section and a large value of pg at {=0. Perhaps this is
just a reflection of corrections of order s to the theory,
on the one hand, and of finite bin size in the experiment,
on the other.

CONCLUDING REMARKS

As a final comment on the state of our art and its
development over the past 50 or 60 years, I offer Figs.
40 and 41. Figure 40 is evidence for progress in theory.
The top equation, taken from a paper in Philosophical
Magazine of 1911, is perhaps the first scattering-cross-
section formula in particle physics; it is certainly the
most famous. Since 1911 theory has progressed—the
second cross-section formula, typical of many in T/e
Physical Review in 1968, shows that equations have
become longer, more numerous and, I fear, less famous.
The experimental side, too, has changed drastically over
the years. Progress of sorts is indicated by the acknowl-
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edgments shown in Fig. 41. In 1919, good physics was
done with simple apparatus and an able assistant to
help with the tedious work of observing a zinc sulfide
screen, but 50 years later the completion of almost any
experiment in high energy-physics requires a galaxy of
professors, Ph.D. physicists, engineers, and technicians
to assist, support, and encourage an international team
of researchers assembled from the far corners of the
earth, as is evidenced by the daggers, asterisks, and
other symbols on almost every name.

What will the next 50 years bring?

APPENDIX

The Appendix is designed to aid the reader in under-
standing this and other papers concerned with Regge
pole theory. Part A is a modest glossary of some of the
commoner terms used by the experts. If some of the
definitions sound like gibberish worthy of Lewis Carroll
or Edward Lear (for example, see Compensation), I
apologize. My hope is that a careful use of the glossary
will, by stages, lead to an explanation of any term in
words that a mere mortal (or experimenter) can under-
stand. Part B consists of a number of definitions and
examples of invariant amplitudes, crossing, Regge
trajectories, etc., that provide background material for
several of the sections of this review.

A. Glossary

AFS cut. A cut in the complex angular-momentum
plane, first found by Amati, Stangehellini, and Fubini
(1962) by applying two-body unitarity in the s channel,
and later shown to be canceled on the physical sheet
by more complicated diagrams. See Sec. IV.5 and the
references cited there.

Amncestor states. States with spins higher, for a given
mass, than that given by the usual linear Regge tra-
jectory. For example, states with L>V that arise when
the Veneziano amplitude (VI.2) is mutilated by replac-
ing the real trajectory function by a complex function in
order to obtain resonances with finite widths. When
Re a(s) =N, the numerator in Eq. (VI.2) is no longer a
real polynomial of degree N in ¢, and so the partial-wave
content is no longer restricted to LS N.

Chew mechanism. See ghost killing.

Choosing sense or nonsense. See Nonsense-choosing or
Sense-choosing.

Compensation (mechanism). The use of a com-
pensating trajectory of opposite parity to cancel a pole
occurring in a nonsense-nonsense amplitude at a right-
signature nonsense point for a Regge pole that chooses
nonsense. If a pole chooses nonsense, the leading terms
in the helicity amplitudes behave as (cosf,)* times
1,1, 1 for Aes, Asn, Ann, respectively, at a right-signature
nonsense point. For A,, alone there is a lower-order
term, (cos@;) *1(a—J)?, that has a pole at a=J
(J>0). The compensating trajectory is such that
a,=—J—1 when a=J and its residue is such as to
cancel the pole. The situation is symmetrical around
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J=—4% with poles occurring when either J or — (J41)
is a nonsense point. (See Gell-Mann et al., 1964,
Appendix D).

Conspiracy (conspiratorial solution). Relations at
t=0 among the trajectories and residues of a finite
number of different Regge poles such that certain
conspiracy relations are satisfied.

Conspiracy relation. An equation, usually holding at
t=0, relating ¢-channel helicity amplitudes which
receive contributions from different parity sequences
(different Regge poles). For an example, see Part B (e)
of this Appendix. For details and references, see Collins
and Squires (1968), p. 109ff., and Hite (1969).

Crossing (symmetry) . The replacement of some of the
momenta (and energies) by their negatives such that
su is called s—u crossing. An amplitude that is even or
odd under this transformation is said to have a definite
crossing symmetry (crossing symmetric or crossing
antisymmetric, or just even or odd under crossing).
The transformation s<>u generates y»——v». Other
crossings for the four-particle amplitude are s<¢
and f—u.

Cut (in the J plane). See Regge cut.

Daughter trajectory. See Trajectory, daughter.

Evasion (evasive solution) . The inserting of zeros in the
residues of Regge poles so that conspiracy relations are
trivially satisfied without restrictions on the trajectories.

Exchange degeneracy. If two Regge poles of opposite
signature and coupling to the same particles have the
same trajectory function, they are said to be exchange
degenerate. This equality of trajectories is sometimes
called “weak” exchange degeneracy. “Strong” exchange
degeneracy requires equality of corresponding residue
functions as well as trajectories.

Factorization. An almost intuitive property of Regge
residues that follows from the definition of a simple
pole of definite quantum numbers and unitarity. If
Bra(?) is the residue of such a pole in an amplitude
describing a transition from state ¢ to state & (a,d
specify particles and their helicities), then factorization
of residues requires that B.2= w8, for all values of ¢.

Fixed pole. A pole in the complex-angular-momentum
plane that does not move with the energy. In relativistic
Regge theory there may be fixed poles in the angular-
momentum plane at nonsense, wrong-signature points
if the third double-spectral function is nonvanishing
(see for example, Mandelstam and Wang, 1967, and
Oehme, 1968).

Froissart bound. A bound on the rate of increase of
the total cross section, first proved by Froissart (see
Eden, 1967, page 168),

a:<C[ln (s/s9) 2, as s—0.
This has the consequence in Regge pole theory that no
Regge trajectory can have an intercept greater than
unity at £=0.

Gell-Mann mechanism. Same as nonsense-choosing
mechanism.

Ghost  killing (factor, mechanism). The standard
Regge pole amplitude for spinless particles has its
singularity structure determined by

(£14¢") /T (a+1) sin 7a

times a reduced residue. For odd signature, this set of
factors gives the desired poles at =1, 3, 5, < -+ and no
other singularities. For even signature, however, there
are poles at =0, 2,4, « -+ and the point a=0 may lie at
negative #, corresponding to imaginary mass and often
in the physical region of some process where poles are
obviously not allowed. To eliminate this ‘“ghost” pole
it is necessary to make the reduced residue proportional
to a(f). This factor of a(#) is called the ghost-killing
factor. If the amplitude describes spin-flip and the
residue “chooses sense,” there will already be one or two
factors of « present in the residue. Then it becomes a
matter of taste (at this state of the art) whether any
additional factor of « should be postulated, provided
the requirements of factorization are satisfied. Chew’s
ghost-killing mechanism inserts a factor of a in all
even-signature Regge amplitudes, independently of
whether or not they need them to prevent a pole at
a=0.

J parity. Same as signature.

Kinematic singularity. A square-root or power of a
square-root singularity, of an amplitude at a threshold
or pseudothreshold determined by the masses of the
external particles, or at s, ¢, or # equal zero.

Kinematic variables (s, t, u). See Mandelstam
variables.

Line reversal. Equivalent to s—u crossing for ¢-
channel Regge poles. If the {-channel configuration of
the two particles whose lines (4 momenta) are reversed
has a definite C or G, the residues of the Regge pole for
the original and for the line-reversed process are
simply related (see Barger and Cline, 1969).

Lorentz pole. In equal-mass scattering at zero total
energy (¢{=0), the scattering amplitudes possess
0(3, 1) symmetry. Lorentz poles are the O(3, 1) analog
of Regge poles (which occur in the context of O(3)
invariance and ordinary angular momentum). Lorentz
poles are sometimes called Toller poles. They possess
quantum numbers of the same type as Regge poles,
plus an additional quantum number M (see M quantum
number). A Lorentz pole is equivalent to an infinite
sequence of Regge poles (one or more leading poles,
plus all their daughters).

M quantum number. A quantum number char-
acteristic of a Lorentz pole and important in deter-
mining the Regge pole content. A Lorentz pole with
M =0 corresponds to one ordinary leading Regge pole of
definite parity and signature, plus its daughters. A
Lorentz pole with M =1 is equivalent to a parity doublet



of leading Regge poles of the same signature, having
the same « values at ¢=0, plus all their daughters. See,
for example, Freedman and Wang (1967). The quantum
number M has the following physical significance: If
the s-channel process 14-2—3-+4 is mediated by the
exchange of a Lorentz pole in the ¢ channel, the domi-
nant amplitudes (going as s*) in the forward direction
have | M—As| = | A\—\¢| =M, where the \’s are s-
channel helicities.

Mandelstam variables (s, t, #). Lorentz invariant
kinematic variables.

In a process, a+b—c+d,

s=— (patps)?= (total c.m. energy)?,

= — (pa— po)?*= — (4-momentum transfer)?,
#=— (pa— pa)?=— (crossed 4-momentum transfer)2.

For the f-channel process, a-+é—b+d, ¢ becomes the
energy variable and s and # are momentum-transfer
variables. For the #-channel process, ¢+b—ad+d, « is
the energy variable. The variables are related by

s+t u=m~+m+md+mgl.

A usefulvariable in dispersion relations is v = (s— ) /4ms,
where particle & is the target. For forward elastic
scattering, » is the total energy of particle ¢ in the rest
frame of d.

No-compensation mechanism. An alternative to com-
pensation. The pole in 4, at a right-signature nonsense
point a=J for a Regge trajectory that chooses nonsense
can be eliminated and still satisfy factorization by
postulating that all the residues have an additional
factor (e—J). No additional compensating trajectories
are necessary. The leading terms of all the nonsense-
choosing Regge amplitudes then behave as (a—J)
at a right-signature nonsense point, independent of
helicities. The terms of relative order (cos ;)21 are
proportional to (a—J), (a—J), 1 for sense-sense,
sense-nonsense, and nonsense-nonsense amplitudes,
respectively, (J>0). See Bertocchi (1967), page 219.

Nonsense-choosing. The residue of a Regge pole is
said to choose nonsense when the o dependences of the
sense-sense and nonsense-nonsense amplitudes are
reversed (their product must equal the square of the
sense-nonsense dependence, by factorization). Specifi-
cally, near a=J the residues are proportional to (a—J),
(a—J)¥2, 1 for sense-sense, sense-nonsense, and
nonsense-nonsense amplitudes, respectively. The lead-
ing terms of the helicity amplitudes then behave as
1, 1, 1, respectively, at a right-signature nonsense point,
and as (a—J), (a—J), (a—J) at a wrong-signature
point (J>0). For J<0 and/or for lower-order terms in
cos 0, the nonsense-nonsense amplitude has a pole at
a=J. See compensation and no-compensation mecha-
nisms.
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Nonsense-nonsense amplitude. See sense-sense, etc.

Nonsense point. An integer (or half-integral for
channels with odd baryon number) value of angular
momentum that is unphysical for a particular set of
helicities, i.e., J< | J. |. Some authors define only non-
negative integers as possible nonsense points (for
example, Gell-Mann et al., 1964, Appendix B).

Pole (in the J plane). See Fixed pole, Regge pole.

Regge cut. A branch cut in the complex-angular-
momentum plane, a possible singularity of a relativistic
partial-wave amplitude. Regge cuts arise naturally by
the exchange of two or more Regge poles, and occur in
perturbation theory from the summing up of certain
sets of crossed graphs (see Mandelstam, 1963; Collins
and Squires, 1968).

Regge pole. A pole in a partial-wave amplitude
A(J,t) considered as a function of complex angular
momentum J. The position of the pole, J=a(t),
depends on the energy variable ¢ In potential theory,
with some restrictions on the form of the potential,
Regge poles are the only singularities possible in the
complex angular momentum plane.

Regge recurrence. A state with angular momentum
J=Jo+2n, (n=1,2, --+), lying on a Regge trajectory
whose lowest state has J= J,.

Residue. The residue (in a Cauchy sense) of a Regge
pole in a partial-wave amplitude. Loosely, the true
residue multiplied by a number of kinematic and
a-dependent factors designed to give the product
reasonable analytic properties in ¢. This last is some-
times called a reduced residue.

Right- and wrong-signature points. A Regge tra-
jectory has a definite signature. A boson trajectory with
even (odd) signature will have physical particles at
J=0,2,4,+-- (J=1,3,5, +++). For a trajectory with
even signature, the points J=0, =2, 4=4, - - - are called
right-signature points, while /=1, 43, + -+ are called
wrong-signature points. For a trajectory with odd
signature the two sequences are reversed. For fermion
trajectories the J values are shifted up by half a unit.

Satellite term. Veneziano amplitude whose leading
trajectory is one or more units of angular momentum
below the leading Veneziano amplitude, or has the same
leading trajectory but has one or more resonant states
missing on that trajectory. For an example of the first
kind see Eq. (VI1.13).

Sense-choosing. The residue of a Regge pole is said to
be sense-choosing (or chooses sense) if it vanishes when
the trajectory passes through nonsense points. In
particular, the residue is proportional to 1, (a—J)2,
(a—J) for sense-sense, sense-nonsense, and nonsense—
nonsense amplitudes, respectively, near a=J. These a
dependences of the residues imply that at a right-
signature point the leading terms (highest powers of
cos 0;) in the helicity amplitudes are proportional to
(a—J)™1, 1, (a—J), respectively, at least for J>0.
At wrong-signature points all the amplitudes are less
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singular by one power of (a—J), provided there are no
multiplicative fixed poles (see Oehme, 1968, and
Mandelstam and Wang, 1967). For more details, con-
sult Bertocchi (1967), pages 215ff.

Sense point. A physically allowed value of angular
momentum, i.e., an integer (half-integer for fermions)
value of J with J> | J, |.

Sense—sense, sense-nonsense, and nonsense—nonsense
amplitudes. Consider the process ab—cd and a partial-
wave or Regge amplitude in which the initial helicities
are Aq, N with difference A=X,—X\;, and the final
helicities are A;, A\; with difference u=A,—\4. Let the
angular momentum be J. If J> | X |, | u |, the amplitude
is said to be a sense-sense amplitude with respect to J
(J is physical for both initial and final state). If
[N >J>|u] or |p|>J>]|N]|, the amplitude is
called sense-nonsense. If /< | A |, | u |, the amplitude is
said to be a nonsense-nonsense amplitude. When dis-
cussing the o dependence of amplitudes near a particular
value of a=J, the helicity amplitudes are often labeled
Ass, Asny Ann for the three categories of helicities.

Signature. An amplitude possesses definite signature,
even or odd, if it is even or odd under the transforma-
tion, cosf—— cosf. A Regge pole always has definite
signature, i.e., its contribution to an amplitude possesses
definite signature. Such a pole gives physical particles
at only every second integer in J (see right- and wrong-
signature points).

Signature factor. (4=1+4¢-%). This factor arises from
the representation of an even- or odd-signatured
amplitude by a Regge pole expansion involving
[Pa(—2) EPa(z) ] (—2) % (2).

Threshold, mnormal and pseudo-. The normal and
pseudothresholds are energies where the c.m. momen-
tum in the initial or final state vanishes. If the masses
are m; and mas£my, the normal threshold in the s
channel is at s= (m1-+m,)?2, and the pseudothreshold is
at s= (m1—my)?. For my=ms,, the momentum vanishes
only at the normal threshold.

Toller pole. Same as Lorentz pole.

Trajectory, daughter. A trajectory with an «(2)
differing from its parent or leading trajectory by a
negative integer at =0 and possessing quantum num-
bers related to those of the parent. Daughter trajectories
were first found important at =0 for unequal mass
kinematics. Then they turned up in the expansion of
Lorentz poles into a series of Regge poles. Most recently
they appeared in Veneziano amplitudes.

Trajectory, leading. The highest-lying Regge tra-
jectory in a family, or entering a given process, i.e., the
trajectory corresponding to the largest value of angular
momentum at a given energy.

Trajectory, parent. The leading trajectory of a family.

Trajectory, Regge. The function «(f) that gives the
location of a Regge pole in the complex-angular-
momentum plane, or sometimes the real part of «(?)
viewed as a function of .

Trajectory, secondary. A Regge trajectory that has a
smaller Re a(?) than some other trajectory. A secondary
trajectory is not necessarily a daughter trajectory, nor
spaced below by an integer at {=0.

Wrong-signature point. See right- and wrong-signa-
ture point.

B. Miscellaneous Definitions, Formulas,
and Relations

(a) Imvariant Amplitudes and t-Channel Helicity
Amplitudes for Meson—Baryon Elastic Scatlering

Let the meson mass be u, the baryon mass m, and g,
$, ¢, ¢’ be the 4 momenta of the initial meson, initial
baryon, final meson, and final baryon, respectively.
The invariant Feynman amplitude for scattering with
initial and final helicities A and N, respectively, is
written as

M= (p') { —A+iv-[(¢+¢)/21Blm(p), (A1)
where #(p) is a Dirac spinor normalized to wu=2m.
The amplitudes 4 and B are functions of the Mandel-
stam variables s and ¢ [or alternatively v= (s—u)/4m
and t]. They are Lorentz scalars and are free from

kinematic singularities. A convenient normalization via
the optical theorem is

Im [A (v, 0)+»B(», 0) ]= (*—pu*) Y20, (v). (A2)
The invariant amplitude 4’ (s, £) is defined by
A'(s,0)=A(s, )+ [m(s—u)/(4m*—1) I1B(s, t) (A3)
or
Ao )= Ay, )+ 22D (A3")

[1—(/4m?) ]

The use of A’ and B, instead of 4 and B, stems from
their relation to the nonflip and spin—flip helicity
amplitudes in the ¢ channel. Explicitly, the #-channel
helicity amplitudes [(A1) evaluated in the {-channel
c.m.s.] are

frot=— (1—4m?)124’, (A4)

Jiioo'=2()"2prg, sin 0,B/ (i—4m?) 2, (AS)
where p; and g, are the ¢~channel c.m. momenta of the
baryon-antibaryon pair and the pair of mesons,
respectively.

() Crossing and Even and Odd Amplitudes for
K=p and K+p Elastic Scattering

Let the K—p elastic-scattering amplitudes be 4 (v, #)
and B(»,t), and the K*p amplitudes be A (v, ) and



B(»,t). The concept of line reversal and the accom-
panying s—u crossing (»——v) requires that

A_.(V,t)=A(—‘V,t), (A6)

B, t)=—B(—w,1). (A7)
Note that if » has a small positive imaginary part
(above the real axis on the right in Fig. 20), then —»
has a small negative imaginary part (below the real
axis on the left in Fig. 20). The minus sign in (A7)
arises because of the way B enters (A1). Line reversal
of the mesons changes (¢+¢)——(§g+q’). The rela-
tions (A6) and (A7) are what gives meaning to the
display of the K—p and K*p total cross sections in
Fig. 24.
Amplitudes that are even or odd under s—# crossing
are
AD, ) =340, )£A(, 0], (A8)

BB (v, 1) =3[B(y, ) B (», 1) ]. (A9)
Note the A®D and B are even, while A< and yB&)
are odd under »——v». The amplitudes defined by (A8)
and (A9), and analogous ones for =tp and = p scat-
terings, are what are used in Sec. V on finite energy
sum rules.

(¢) Connection Between s—u Crossing Symmetry
and t-Channel Signature

Crossing involves s«>u or y——v, while {-channel
signature (usually of a Regge pole amplitude) is asso-
ciated with cos §7—— cosf,. A heuristic derivation of
the relation between these two symmetries follows
immediately from the kinematic relation (for elastic
scattering in the s channel),

4p4q; cos 0y=s—u. (A10)
An s-channel amplitude that is even (odd) under
crossing will involve only #-channel Regge poles of
even (odd) signature at high energies.

(d) Short Catalog of Regge Trajeclories
(¢) Boson trajectories

P Pomeranchon, named after I. Ya. Pomeran-
chuk because of his theorem on asymptotic
behavior of cross sections (see Eden, 1967,
page 213). This trajectory has even signature
and carries the quantum numbers of the
vacuum (the unity representation of all
known and yet-to-be-discovered internal sym-
metries). It does not seem to have any par-
ticles associated with it. Exchange of the

J. D. JacksoN Models for High-Energy Processes 63

Pomeranchon supposedly describes diffraction
scattering as s—oo, although such scattering
may be describable only by more complicated
J-plane singularities in the ¢ channel. If the
P pole exists, it has ap(0) =1 provided total
cross sections are asymptotically constant.
P’ This even-signature trajectory apparently has
the same quantum numbers as the P (at least
it has even parity, charge conjugation, and G
parity, =Y =0). The f°(1260) meson with
JP=2% is the only well established member on
the P’ trajectory. The intercept of the P’
trajectory is apr (0)~0.5-0.6.
An even-signature trajectory whose lowest
physical state is the 4, meson at 1315 MeV
with JP=2+, The internal quantum numbers
of the trajectory (and the Aj) are I=1,
Y=0, G=—1, and P=+1. Its intercept at
is @4,(0)~0.3-0.5.
p The trajectory of odd signature associated
with the p(765) meson has I=1, Y=0,
G=+1, and P=—1. The g(1650) meson is
probably the first Regge recurrence, with
JP=3". A popular parameterization of the p
trajectory is o, (£)=>20.54-0.92.
w The w trajectory has I=0, ¥=0, G=—1,
P=—1, odd signature, passes through the
«(783) meson, and is roughly equal to the p
trajectory.
This trajectory (and its antiparticle partner)
has I=%, Y=1(—1), P=—1, odd signature,
and is associated with the K*(890) meson
with JP=1~, Its intercept is very poorly
known: ags(0)~0.1-0.5.
This is a trajectory of even signature with
I=1, V=1, P=+1. It is associated with the
K*(1420) meson with JP=2+, Its intercept is
also very poorly determined: agss(0)~0.1-
0.5.

Asor R

K*

K**

All of the above trajectories are associated with
states of natural parity [P=(—1)7]. They are rela-
tively well known because they occur in pseudoscalar-
meson—spin-i-baryon processes. The unnatural parity
states (m, 5, 41, etc.,) presumably also lie on Regge
trajectories. Only the pion trajectory has received
much study in high-energy processes, and even there
the proximity of the pion pole to the physical region-
means that its Regge pole nature is relatively unimpor-
tant, apart from questions of conspiracy.

(#6) Baryon trajectories

The large number of baryon states precludes a
systematic listing of all the baryon trajectories. A
common notation to systematize the sequences of states
is the use of subscripts «, 8, v, & to signify the spin-
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parity sets:
a: 3t 5+ 9+ ... (even parity, even signature),
B: 3,5, 9, - (odd parity, even signature),
v 81, 12—“ «+ (odd parity, odd signature),
6: &t I+ L+ ... (even parity, odd signature).

Note that for the baryons signature is associated with
(7—%). Examples of baryon trajectories and associated
particles are:

N.[N(938), JP=1+; N*(1688), JP=5+; [=1, V=1],
A.;[A(1236),JP 3+ A(1040), JP=T+; T=3, ¥ =17,
ALP(1520), JP =35 V65(2100), JP =5 T =0, T = 0].

For more details on the baryon trajectories, consult
Collins and Squires (1968), pages 187ff, or Hite (1969).

(e) Invariant Amplitudes, t-Channel Helicity
Amplitudes, and Conspiracy Equations
for Pion Photoproduction

Let &, p, q, " be the 4 momenta of the photon, initial
nucleon, pion, and final nucleon, respectively, and
define P= (p+p’)/2. The nucleon mass is m; the pion
mass is p. The invariant Feynman amplitude for a
photon of polarization e incident on a nucleon of helicity
\ leading to the production of a pion and a nucleon of
helicity A\’ is written as

M= (p") L4101+ A420:+ 4305+ 4400 (p), (Al1)

where the 4; are four invariant amplitudes and the four
O; are gauge-invariant Dirac operators,

O1=1vsv e vk,
®g=2”i’Yﬁ(P'e Q‘k—P'k Q'E),
Os=7vs(v+€q-k—v-k g-e),

0s=2vs(vre Prk—y-k Pee— imy-ey-k). (Al2)

The invariant amplitudes A4; are Lorentz scalars,
functions of s and £, and free of kinematic singularities.

The #-channel helicity amplitudes f%ox are cus-
tomarily related to the invariant amplitudes A4; through
the intermediary of the so-called parity-conserving
i-channel amplitudes F;, defined to be free of kinematic
singularities. The F; are related to the helicity ampli-
tudes according to

e i e ) (A13)
1= (1—/.1.2) Sin0, 10,4 + —10;+ +/
—2i(tyue
Fy= (=) = 50, (fo+ +— w104 +), (A14)
—Zi(i)1’2< S0+ — f‘—10;+—>
_ ' , Al5
¢ t—u?  \cosf,4+1 + cosf,—1 ( )
! t t . -
F,= 2 (f“”‘ Loy ) (A16)
(1—p?) (1—4m?) Y2 \cosb,+1 cosf,—1

The amplitudes F; and F, receive contributions from
natural and unnatural parity sequences in the ¢ channel,
respectively, and for charged pion photoproduction are
further restricted to even signature and odd G parity,
or odd signature and even G parity. In leading order
(in powers of cos®,) F; and F, involve natural and
unnatural parity sequences, respectively. The amplitude
Fj; has the same signature-G-parity relation as F; and
F,, while for F, it is opposite. In terms of well-known
particles, pion exchange contributes only to Fs, and p
and A4, exchanges contribute to both F; and Fs.
The connections of the F; to the 4; are

Fi=—A:1+2mA,, (A17)
Fy= (t—p?) (A1+-14,), (A18)
Fy=2mAs— 1A, (A19)
Fa=— A, (A20)

These equations imply certain relations among the F;
at special values of ¢ and all s values. For example, at
t=4m?, Eqs. (A17) and (A19) imply that Fy= —2mFy.
Because this relation holds at i=4m? (p,=0) it is called
a threshold relation. Since Fy and Fj both involve natural
parity sequences with the same quantum numbers, the
threshold relation can generally be satisfied for all s by
each exchanged trajectory separately. Of more interest
are relations at ¢{=0. Equations (A18) and (A19)
require that at =0, Fo=—p2F3/2m. Since F, and F3
involve different parity sequences, this relation must be
satisfied either by “evasion” or “conspiracy.” Suppose
that the pion Regge pole and the p-meson Regge pole
contribute respectively to F, and to F;. Since o, (0)#
a,(0), there is no possibility of satisfying the relation
Fo= —u2F;/2m for all s, except by requiring Fo=F3=0
at #=0. This is called the evasive solution and leads to a
dip in the forward direction in the cross section for pion
photoproduction. One way to avoid requiring F,=0 is
to postulate a natural parity partner for the pion
(a conspirator) with a trajectory a.(f) such that
a:(0) =a,(0), and a residue adjusted to satisfy Fa=
—u2F3/2m. This last relation is called a conspiracy
equation for obvious reasons. Such a conspiratorial
solution to the observed forward peaking in high-energy
photoproduction is referred to in Sec. III.1 and in
Sec. V.2. Regge cuts offer another conspiratorial
solution since the Regge cut amplitude corresponds to a
mixture of parity sequences and will in general con-
tribute to both Fy and Fj.

The reader may wonder at the physical significance of
the conspiracy equation, Fo= —u?F3/2m. Certainly the
derivation from Egs. (A18) and (A19) does not exhibit
much physics. A satisfactory understanding can be
found in terms of the connection with the s-channel
helicity amplitudes, at least in the limit of s—oo.



Examination of the s—¢ crossing matrix (see Jackson
and Quigg, 1969) shows that to leading order in s,
the helicity double-flip amplitude in the s channel is

S IF] Fg F‘;)
11/2= —= —]. 2
Zo—1/2;,—1,1/2 7 <4m2 oy + o (A21)

This s-channel amplitude must vanish as  in the forward
direction because of conservation of the component of
angular momentum along the beam direction. Thus,
independent of any dynamical assumptions, the
t-channel conspiracy relation, Fo= —p2F3/2m, at t=0
is required by conservation of angular momentum in
the s channel.
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