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This paper deals vrith ordinary material systems whose elementary constituents are fermions. It is pointed out that
in such systems there can occur two kinds of bosons with quite diferent physical and mathematical characteristics.
Type I bosons are bound complexes of an even number of fermions (such as 'He); and type II bosons are elementary
excitations which are bound complexes of fermions and their holes (such as excitons). When the 6rst type condenses,
a superQuid state results with so-called off-diagonal, long-range order; while when the second type condenses, there is
no super6uidity, but a change in spatial order. Thus both kinds of long-range order are related to Bose condensation.
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1. INTRODUCTION

Bose condensation is one of the most striking phe-
nomena exhibited by macroscopic systems. The con-
densation of a macroscopic fraction of the particles of
an ideal Bose—Einstein gas into the lowest-energy
single-particle state at suKciently low temperatures
was erst predicted theoretically by Einstein in 1924.
By considering 'He atoms as bosons, London (1938)
showed that the condensed Bose gas provided a model
for the explanation of the remarkable superQuid proper-
ties of helium (II). The work of London and the
pioneering paper of Bogoliubov (1947) on a microscopic
model of a weakly interacting Bose gas, in which again a
single momentum state is macroscopically occupied at
low temperature, have laid the basis for much of our
present theoretical knowledge about liquid helium. f
Penrose and Onsager (Penrose, 1951; Penrose and
Onsager, 1956) generalized the concept of Bose con-

*Supported in part by the U. S. Once of Naval Research and
the National Science Foundation.

[For more recent work on helium II the reader is referred
to articles in the book Quantum Ptuids, D. F. Brewer, Ed. (1966)
and to I.M. Khalatnikov (1965), Theory of SNpergltCity

densation to apply also to strongly interacting Bose
systems. They characterized the Bose condensed state
by the following form of the one-particle density matrix:

p(r, r') =x (r)}r(r')+g(r, r'),

where g(r, r') —4 as
I
r—r'

I
~co and

J'
I x(r) I'«

is a macroscopic number. This Bose condensation gives
rise to superQuidity in helium II.

In real material systems the basic constituent
particles are fermions, but often there exist complexes
of even numbers of fermions and/or fermion holes
which obey Bose-Einstein statistics at least in an
approximate sense. The present paper is concerned with
such composite bosons and related Bose-condensed
states. *

Helium 4 is the most familiar example of a system of
composite bosons and, below the condensation tem-
perature, is a superfluid. Superconductors cannot quite
so easily be regarded from this point of view since, above
the condensation temperature, there exist no welloa

dined composite bosons. Nevertheless, as has been
shown by Yang (1962), below the superconducting
transition temperature, the two-particle density matrix
has a form analagous to Eq. (1.1), so that the super-
conducting state can also be naturally considered as a
Bose-condensed state. (Schafroth, 1954; Schafroth,
1955;Bardeen, Cooper, and Schrieffer, 1957).$ Qualita-

*All particles will be considered in the nonrelativistic limit.
1' For more discussion of metallic superconductivity the reader

is referred to the standard texts; for example:'J. R. Schrie8er
(1964), Theory of SNpercomdlctioity; J.M. Blatt (1964), Theory of
SNpercondkctieity; G. Rickayzen (1965), Theory of SNpercoe
decHoity.

Copyright 1970 by the American Physical Society



2 REYIEws oF MoDERN PHYsIcs JANUARY 1970

tively one may regard the Cooper pair as the underlying
boson.

Both 'He atoms and Cooper pairs consist of an even
number of fermions. Recently there has also been much
interest in condensates of bosons which are complexes
of equal numbers of fermions and fermion holes. In
particular there have been studies of condensates of
real excitons* and of the so-called excitonic phase. f
The latter is predicted to occur when a normal semi-
conductor or semimetal becomes unstable against the
formation of a coherent condensate of bound electron-
hole pairs. By analogy with helium II and super-
conductors, some authors f. have been led to believe that
these Bose condensates will also exhibit superAuid
behavior. However, explicit calculations showing that
the excitonic phase does not exhibit a Meissner effect
(Jerome, Rice, and Kohn, 1967), is not electrically
superconducting (Zittartz, 1968a), and does not possess
superthermal conductivity (Zittartz, 1968b) have
strongly implied that this view is incorrect.

In the present paper we hope to clarify this situation
by highlighting the existence of two entirely diferent
types of composite bosons and Bose condensates, and
exhibiting and relating their fundamental physical and
mathematical characteristics,

A boson of type I is a bound complex which consists
essentially of an even number of fermions, or an even
number of fermion holes. A 4He atom is an example of
this type. Such a boson, when in motion, carries real
mechanical momentum. When a system of such bosons
condenses, the resulting state is superQuid. In this state
there is what London called an order in momentum
space, or, in the terminology of Yang (1962), off-
diagonal long-range order (ODLRO) .

On the other hand, a boson of type II is an elementary
excitation of a many-body system which is essentially a
bound complex of equal numbers of fermions and their
holes. An exciton is an example of this type. Bosons of
type II, when in motion, may or may not carry mechani-
cal momentum. When they condense, the resultant state
is not superQuid. In the terminology of Yang (1962)
there is no ODLRO but there is a change of long-range
order in coordinate space, i.e., of the diagonal long-range
order (DLRO) . The appearance of a superlattice is an
example of such a change of order.

In the following portions of this paper we shall
demonstrate these properties for two representative
examples. We shall also exhibit and contrast the general

*J. M. Blatt, K. W. Boer, and W. Brandt (1962), J. Casella
(1963), S. A. Moskalenko (1962), V. M. Agranovich and B. S.
Toshich (1967), L. V. Keldysh and A. N. Kozlov (1967), L. V.
Keldysh and A. N. Kozlov (1968),V. A. Gergel', R. F.Kazarinov,
and R. A. Suris (1968).

t For recent reviews (including bibliographies) see W. Kohn
(1968), "Metals and Insulators, " in Nl'any-Body Physics, C.
DeWitt and R. Balian, Eds. ; B. I. Halperin and T. M. Rice
(1968a, 1968b) .

$ Moskalenko (1962), Arganovich and Toshich (1967),
Keldysh and Kozlov (1967, 1968), Gergel', Kazarinov, and Suris
(1968), Kozlov and MaksiInov (1966).

where
(1/(I)Z If(tl) I'=1 (2.3)

The total momentum space wave function of the pair
is then

Pj (pt, p, ) =—Q-Ifc, (r„r,)
X exp L

—i(pI rt+pQ rs) jdr,drs

=f(-:(pt—ps) )8(pI+ps —k) Xs. (2 4)

In the notation of second quantization, the state vector
of this boson has the form

+~= (1/fl"') Zf(e) ~*In .lc*~~z+.,t+ - (2.5)
q

where c~* is a plane-wave creation operator and 0' „is
the vacuum state.

We wish to draw particular attention to the occur-
rence of the 6-function factor B(pI+ps —k) in Eq.
(2.4), which involves the suIII of an even number of
momentum variables. This 5-function factor expresses
conservation of total Inomentum. (In type II bosons,
momentum conservation takes an essentially diGerent
form. )

We may also note incidentally that the 1-boson state
carries real mechanical momentum. f

We wish now to pass from this special model to a
general mathematical characterization of type I bosons.

*When such a complex is in a material medium, with which it
interacts, it will of course be "dressed" by virtual excitations.

t By this we mean that during the motion of a wave packet
there is a displacement of the center of mass. Mechanical mo-
mentum is in general different from crystal momentum which is a
translational quantum number.

mathematical features of the states characterizing these
two types of bosons and show how the stated physical
properties follow from these mathematical features.

2. BOSONS OF TYPE I
A type I boson is a complex of an even number of

fermions (or fermion holes) .*
While the 4He atom is the most familiar boson of this

type, we shall, for reasons of simpler exposition, discuss
here the example of a hypothetical bound pair of spin- —,'
fermions. The singlet, 5-state eigenfunction of such a
pair, which corresponds to a total momentum k, is of
the form

4»(rI, rs) = (1/0"') exp (zk L:', (rI+rs) j}sI(rt —rs) ys,

(2 1)

where 0 is the normalization volume, y is the normalized
internal wave function, and xo is the singlet spin
function. The characteristic features of this pair appear
most clearly in momentum space. Hence we Fourier
analyze the internal wave function p, using periodic
boundary conditions on the surface of a cube:

p(rt —r&) = (1/0"') g f(q) exp Liq (rI—rs) P, (2.2)
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ZC(q, q) = I; (2.9)

It is free of the 8-function product occurring in the erst
term. f At the same time, the four-particle density
matrix does not contain terms involving products of
four 3-functions of the type appearing in Eq. (2.8).f.

Extension to bosons consisting of a larger number of
fermions or of fermions of diGerent species is straight-
forward.

We have already noted that our model di-fermion
carries real mechanical momentum. In Appendix I we
show that this is a mathematical consequence of the
sunss of momenta, such as pi+ps occurring in the 3-
function of (2.8). Thus all type I bosons carry mechani-
cal momentum.

In Sec. 4 we shall see that the 8-function structure of
p&@, shown in (2.8), is the mathexnatical basis of the
fact that when type I bosons condense, the resulting
system is superQuid.

*Alternatively, one may use the anomalous, particle non-
conserving density matrix (0 [c»c»

~
1), where (0

~
and

~
1)

denote, respectively, states with 0 and 1 boson present.
t If a periodic crystal potential is present, there will also occur

8 functions of the form B(p&+p2+K„—k), where K„ is a reciprocal
lattice vector.

f This rules out the presence oi more than one boson.

For this purpose we introduce the density matrices (or
Green's functions) which have a well-defined meaning
even for complicated many-body systems, such as a
boson moving in a material medium. For a 2-fermion
boson the two-particle density matrix is appropriate. *
This is defined, (Yang, 1962) in the plane-wave
representation, as

(p', p'I p"'I p, p)—= (;,".,*c.,'„), (2.6)

where ( ) denotes, for a pure state, the expectation
value and, for a thermal ensemble, the thermal average.
Appropriate spin indices, which would encumber the
notation, have been suppressed. In the state 4'i„Eq.
(2.5), in which one di-fermion is present, we find

(pi', ps'
I

p"'
I pi, ps) =3(pi+ps —I )3(pi'+ps' —&)

X (&/fl)f*(l (pi —ps) )f(l (pi' —ps') ) (2 7)

We now present our general mathematical char-
acterization, valid for a general many-body system.
We say that a state contains one boson of type I if the
following conditions are satisfied.

The two-particle density matrix has a structure of
the following form:

(p ', p.'I p"'I p, p ) = &(p +p.-&)&(p '+p.'-I )

Xg(Pi Ps Pl' —Ps')+h(pi, Ps, Pi', Ps'); (2.8)

n is a constant of order unity, independent of the size of
the system; each 8-function contains the slm of two
momentum variables; g is a smooth function of its
arguments with unit trace

3. BOSONS OF TYPE II

A type II boson is an elementary excitation of a
many-body system which is a bound complex of equal
numbers of fermions and their holes. The term "collec-
tive excitation" is commonly used for such bosons.
Examples are excitons, spin waves, zeroth sound in 'He,
phonons in solids, phonons and rotons in 4He, etc.

As an example, we shall treat in some detail a simple
model of an exciton in an insulator. For our present
purposes we consider the nuclei as nondynamical and
merely as giving rise to a periodic potential. We shall
consider only spin-conserving excitations of the spin-up
electrons and hence can omit the spin-down electrons
from further consideration. We denote the (self-
consistent) Bloch functions and energy eigenvalues in
the usual way by y„,~ and e„,„, and the corresponding
(spin-up) creation and annihilation operators by
&N,p* and b~,p.

We take as the insulating ground state the state in
which the band e=o is fully occupied while all other
bands are completely empty. This state we write as

+o= IPs,p 'Pvso,
P

where p runs over the fundamental Brillouin zone.
An exciton of wave vector k must be regarded as a

coherent linear combination of electron —hole pairs whose
net crystal momentum is k. Thus we write the 1-exciton
state as

+~'= (&/fl"') 2f'(q) &*i.vs+e&o.-i is+a'Pe.

The function f' is the internal wave function of the
bound electron —hole pair. Clearly f'(q+K„) =f'(q),
where K„ is any reciprocal lattice vector.

The forrnal analogy of +i,' with the state vector 4'&

of the di-fermion
I Eq. (2.5) ] is evident. However, we

shall see that the physical differences are profound.
Here we note that while all type I bosons carry mechani-
cal momentum, an exciton in an insulator does not.
However, other type II bosons, e.g., plasmons, do carry
momentum. (See Appendix I.)

To pass from this special example to a general
mathematical characterization of type II bosons, we
study again the two-particle density matrix. * The
change of this matrix, due to the presence of an exciton,
clearly contains terms of the form

~(p', p'IP IP P)= '~(p' —Pi—&)

Xb(ps Pi &)g (s(pi+Ps)~ s(ps+Pi))+' 'i (33)
m' is again a constant of order unity, independent of the
size of the system, and g' has unit trace

Zg'(q, q) = I;

*Alternatively, one may use the off-diagonal density matrix
(0

~
c»*c»

~ 1),where (0
~

and [ 1) denote, respectively, states with
0 and 1 boson of type II present.
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there are other terms, not explicitly written down, which
are of similar structure and allow for the antisymmetry
of p(2& and for the presence of Umklapp terms. One
b function comes from the destruction of the exciton
I see Eq. (2.6) j and the other one from its re-creation.

We now present our general mathematical char-
acterization, valid for a general many-body system.
We say that a state contains one type II boson if the
following conditions are met:

The two-particle density matrix contains terms of
the form

~'~(ys' —yr —&)~(ys —yi' —&)g'(s (yr+ys') s (ys+yr') )
(3.5)

and their antisymmetrized and. Umklapp partners.
Each of the 8-functions contains a difference of two
momentum variables, such as y2' —Ip~. The function g'
has a trace of unity Lsee Eq. (3.4) g. At the same time,
the four-particle density matrix does not contain
products of four 8-functions of the form occurring in
(3.5).*

Extension to bosons consisting of a larger number of
fermions and holes, or of fermions and holes of diQ'erent

species, is straightforward.
Concerning mechanical momentum we quote here the

conclusion derived in Appendix I:Some type II bosons
carry mechanical momentum, others do not.

4. CONDENSED STATES OF TYPE I
A system of noninteracting elementary bosons con-

denses below a critical temperature. In the condensed
state, a finite fraction of all particles occupy the state
R=O

Now let us consider the di-fermions of Sec. 2. Let us
assume that they interact with each other in a manner
similar to 'He atoms. Then, if we have a suKciently
dilute system, the interactions between these type I
bosons will be unimportant and, at low temperatures,
they will condense very much like elementary bosons.
For example, at T=0', the ground state will be approxi-
mately given by

(41)
where 80* is the creation operator of one di-fermion in
the state k=0 Lcf. Eq. (2.5) j

&s*—= (1/jl"') Zf(V) e

With X bosons now occupying the state k=0, it is clear,
by reference to Eq. (2.8), and may be checked by
direct calculation, that p"& contains a term of the form

(y ', y
'

I
j"'

I y, y ) =v»(y+y. —o)

&&~(y'+y' —o)G(y —y, y' —y')+", (4.3)
~ This condition rules out the presence of more than one boson.

Vjle do not count here 8-functions of the type b(pq' —y1+K„)
which are.characteristic of the ground state.

with & of order unity and G a smooth function of its
arguments with unit trace. The factor X is of course
characteristic of the Bose condensation.

From this model we arrive at the following general
characterization: We call a state a condensed state of
type I, wave vector k, and degree 2, if the two-particle
density matrix contains a term of the form

(y', y'I ~"'l y, y.) =v& (y+y —1 )

&&~(y'+y' —&)G(y —y, yi' —y'), (44)

where y and G have the same properties as above. *
We now present some discussion:

(a) The degree of the condensed state is the order of
the lowest density matrix in which a delta-function
structure of the type (4.4) appears (for He atoms the
degree would be 6).

(b) The characterization (4.4) implies off-diagonal
long-range order (ODLRO) in the sense of Yang
(1962). This is immediately verified by Fourier trans-
formation;

(rr', r, ' I
pts&

I ri, rs)

= (1/Q')g exp Ls(yr' rr'+iys' rs' —yi rr —ys rs) g

&&(y', y'Ir"'ly, y)
= e-"p I sir' Ls (rr +rs') —s (rr+rs) 31

)&F(rr' —rs', ri—rs), (4.5)
where

F(ri' —rs', ri—r&) —= (yX/0') QG(q, q')

&«xp fsLq' —:(rr'—»') —q l(rr —») 3I (46)
and

JF(ri r&, ri —r—s) drrdr& ——yX. (4.7)

In particular we see that p&-) remains finite in the limit
where ri rs, ri' rs', but ri—rr'~co. As Yang (1962)
has stated, and as we show in detail in Sec. 6, the
structure (4.4) of the density matrix implies super-
Quidity.

(c) A condensed state of type I, as here defined,
occurs—if it does at all—below some critical tem-
perature T,. Above T, we may encounter two kinds of
situations. In some systems, such as 4He, it is appro-
priate to regard the system as a collection of type I
bosons, although, because of interactions, this descrip-
tion is only approximate. The transition through T,
can then be regarded as a modification of a free Bose—
Einstein condensation. On the other hand, for example,
in a B.C.S. superconductor, there are no real bosons
present above T„although below T, one may regard the
system as similar to a condensed state of Cooper pairs.
The transition through T, then of course cannot be
viewed as a condensation of bosons.

*For some purposes, the equivalent form

-'~(r1+V2 —I
'—I ')~(I +I +I '+I '—»)

oj the e-junction factors is useful (see Sec, 6),
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5. CONDENSED STATES OF TYPE II

As a prototype of a condensed state of type II, let us
consider the following situation. At zero temperature we
shine light on an insulator creating a substantial
number N of excitons. Suppose that their recombination
time is much longer than the time to rea, ch thermal
equilibrium among themselves. Then because of their
Bose statistics and, assuming that interactions between
them play a minor role, these excitons will Bose con-
dense. Suppose that the exciton of lowest energy has
crystal momentum k(WO) a and let us call the operator
creating one exciton with crystal momentum k, Bq'*,
where by Eq. (3.2)

&t'*~ (1/fl' ') Z f'(q) b*l,R/3+a&o, -i /3+a (5.1)

Then the totally condensed state of these excitons will
be given approximately, by

(&I,'*)"+ (5 2)

where 4'0 is the insulating ground state. With N
excitons now occupying the state k, it is clear by
reference to Eq. (3.4) and may be checked by direct
calculation that p(2' contains a term of the form

(pl' pz'
I

p"'
I pl pz) =~'»(pz' —pl —k)

XB(pz—Pl' —k)G'(-', (Pl+P.'), —',(Pl+Pl') )+ ~ ~ ~ (5.3)

plus its antisymmetrized and Umklapp partners as
well as other terms which do not have such a 8-function
structure. f The constant y is of order unity and G' is a
smooth function of its arguments.

From this model we arrive at the following general
characterization: We call a state a condensed state of
type II, wave vector k, and degree 2 if the two-particle
density matrix contains terms of the structure (5.3) .

We now present some discussion:

(a) The degree of the condensed state is the order of
the lowest density matrix in which a b-function struc-
ture of the type (5.3) occurs. Thus the condensed
state of bound pairs of excitons is of degree 4 and gives
rise in p&4~ to a product of 8 functions of the form
~(p3 +p4 pl pz k) ~(P3+P4 pl P2 k) ~

(b) The characterization (5.3) implies long-range
order in the ordinary sense, i.e., in coordinate space, or
diagonal long-range order (as opposed to Yang's "off
diagonal" ). This may be verified by Fourier trans-
formation of (5.3) . In analogy with (4.5) this gives

(rl' rs'
I
p"'

I rl rz) = exp {zk [3' (rip rz') ——,
' (r,+rl') ]I

XF'(rl' —rz, rl —rz') + ~ ~ ~, (5.4)

*Ke also assume that k is incommensurate with the reciprocal
lattice vectors K, and we disregard here the existence of other
equivalent excitons, such as that with crystal momentum —k.

t For some purposes the equivalent form

33 (Pl+Ps Pl P2 )& ((Pz' Pl') + (Pz—Pl) —2&)

of the S-function factors is useful (see Sec. 6).

=(Plo)+ ",
shows no long-range oscillation of wave vector k.

(5.8)

This last conclusion can also be reached directly by
noting that the condensed state in question is an eigen-
state of the crystal translation operators T&, which
move all coordinates through the lattice vectors R~,

TpkN' [exp (zk R——i) J'O'N', (5.9)

from this we conclude at once that

zz(r+Ri) =zz(r), (5.10)

so that rz(r) has only Fourier components with wave
vectors K„.

This state of affairs is analogous to a crystal lattice in
a state N of uniform translational motion, described by
a total wave vector K. Here we have for an arbitrary
translation operator T(R)

T(R)+= exp (iK.R)+,
so that

N(r+R) =rz(r) = zzo (5.11)

Thus the mean density is entirely uniform. However
the density —density correlation function [cf. Eq.
(5.7)] exhibits of course the internal crystal struc-
ture and contains Fourier components of the form
exp [iK„.(rl —rz) ].

(d) There is another kind of condensed state of type
II, in which the one-particle density itself does show a
long-range oscillation proportional to exp (zk r). A
good example is the so-called excitonic state* of a two-
band solid, with a valence band m=0, having its

* See, for example, W. Kohn (1968),Halperin and Rice (1968a),
and Jerome, Rice, and Kohn (196/).

where

F'(rl' —rz, rl —rs') = (y'E/&') gG'(q, q')

X exp {z[q . (rl —rz) g (11—rz ) ]I (5 5)
and

fF (rl rz rl rs) drldrz '7 A (5 6)

In particular we see that the density —density correlation
function shows a characteristic long-range order
governed by the wave vector k:

(zz(rz) N(rl) )= —(rs, rl I
p&@

I rl, rs)

= —exp [ik (rl—rz) ]F(0,0)+ ~ ~ ~ (rldrz).

(5.7)

(c) Although there is long-range order in the
density —density correlation function (5.7), the one-
particle density itself,

N(r) = (X—1) 'f (r, r
I

p&z&
I r, r) dr

=fF'(r—r, r—r) dr+ ~ ~ ~

= (v&/fl) ZG'(q, q)+ -.



6 REmxws Oz MoDERN Pavsrcs ~ JmvARv 1970

I No I'+
I "I'=1 (5.13)

It is elementary to evaluate explicitly the one- and
two-particle density matrices with the following results:

The one-particle density matrix p&o contains 8 func-
tions of the following structure:

maximum at the origin of k space, and a conduction
band m=1, with minimum at k. In Hartree-Fock
approximation the state is written as

+'=II(N *bo.~*—za*bt:~+o*)+ (5 12)

where I and v~ are coefficients which can be determined.

by minimizing the energy. To assure normalization
we set (y1vy +yw) +NoNN'y (5.22)

so that a particular linear combination of the +N must
be established by some small perturbation which does
not have the periodicity of the lattice (e.g. , a local
strain) .f

Now, by (5.17), we may write

structure of a state with one exciton of wave vector k
Lcf. Eq. (3.2) j*; similarly 4'& may be qualitatively
thought of as a state containing X excitons. The
coefficients CN have a sharp maximum at some value
X=Xp, of width AX Xp'I'.

We may remark that, because of crystal momentum
conservation,

~(p '—yi —K.),
&(pi' —yi —K.~k) (5.14b)

(+', p"'+') =gC~*CN (+~, p"'+~ ), Z 1 2 0

(5.23)

St+sr ——Lexp (zk Rt) g~4rr

Z I CN I'=1.
N

(5.18)

(5.19)

'ye= IPo,o 'yva0,

%= (1/~"') Z f(q) &t.~+a*&o.u+o~

f(q) = (const) L~*(q) /n*(q) 3,
etc.

(s.20)

(5.21)

Clearly 0'0 is the insulating ground state; 4'~ has the

and the two-particle density matrix p&@

b(pi'-y -K.)~(p -y '-K ) (S.1Sa)

8 (y,
'—y,—K„—k) 8 (y,—y,'—K„—k) (5.15b)

b(pi' —y,—K„)h(y, —y,
'—K„ak) (5.15c)

8(yt' —yi —K„&k)8(ps—ps' —K„ak) (5.15d)

and their antisymmetrized partners.
The one-particle density matrix, characterized by

(5.14), gives rise to a density of the form

n(r) =+A„exp (iK„r)++A„'exp Li(K„+k) rj+c.c.

(5.16)

showing an additional long-range order characterized
by the wave vector k. This additional order comes from
(5.14b) or, after contraction, from (5.15c) .

We shall now try to explain the relationship between
the state Ntr' of E condensed excitons, Eq. (5.2), and
the excitonic state O', Eq. (5.12). It is evident by
inspection that the excitonic state is rot an eigenstate
of the crystal translation operators since qp, ~ and

p],&+p correspond to diferent eigenvalues of this
operator. However N' may be written as a super-
position of such states

'y =ZCx'ya,
where

Only terms with E'—E=O, &1 contribute in the case
of po& Eq. (5.14a) comes from E' lV= 0 a—nd (5.14b)
from E'—X=&1. Only terms with 1P—S=O, ~1,
&2 contribute in the case of p"&. Equations (5.15a)
and (5.15b) come from E' X=O, E—q. (5.15c) from
Ã E=&1, and—Eq. (5.15d) from E' X=&2. —

Thus we see that, for example, the coefficient of
(5.14b) depends on the relative phase of Ctv and Ctr+i,
and in view of (5.22), this phase is determined by some
external nonperiodic perturbation. $ Only such a, per-

- turbation can "pin" the additional density Quctuations
of wave numbers &M+K„ in a definite phase relation-
ship to the periodic background density associated
with (5.14a) .

(e) We observe that, according to our definition, the
electrons of an ordinary crystal (like Na or NaCl) are
in a condensed state of type II, wave vectors K„, and
degree 2 because of the presence in p&@ of b-function
products of the type (5.15a). If an ordinary insulator
undergoes an excitonic transition, it remains a con-
densed state of type II and degree 2, but its char-
acteristic wave vectors are augmented by the set
k+K„.

(f) A type II condensed state may or may not arise
as a result of a process of condensation of type II
bosons. An example where the condensate of wave
vector k arises from such a process was given at the
beginning of this section. On the other hand, for a
system with an excitonic phase there are (at least
according to the present theories) no free excitons above
the transition temperature. f

(g) The point of view of this section appears to have
some relevance for several classes of phase transitions.
Many distortive transitions can be viewed as due to the

*%hen the normal insulator has just become unstable against
the excitonic transition, f(g) is exactly the exciton wave function
(see W. K.ohn, 1968).

$ This conclusion holds only if )1 is noncommensurate with the
K„; on the other hand, e.g. , for k=K, /2, higher-order terms in-
troduce couplings between%'~ and +~+1.

.f See, for example, W. Kohn (1968),Halperin and Rice (1968a)
and Jerome, Rice, and Kohn (1967).
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formation of type II condensates consisting of soft
phonons; magnetic phases can be viewed as condensates
of magnons or paramagnons; and certain liquid-to-solid
transitions (e.g. , noble gases) may usefully be thought
of as type II Bose-like condensations of soft phonons
in the liquid.

(h) Some systems are simultaneously Bose con-
densates of type I and II (e.g. , a crystalline super-
conducting metal); they combine the physical and
mathematical characteristics of both types.

the velocity of rotation coE remain Gnite. Then H can be
written as

H= Hrr+ ', M-(roR)' (6.2)

where 3f is the total mass of the particles and

Hrr g—(—1/2srt) (k—K) 'c*(k)c (k)

+ Q (k i
V

i 1)c*(k)c (1)
R1

+-', g (kl
~

U~ mn)c*(k)c*(1)c(m)c(n); (6.3)

6. NECESSARY AND SUFFICIENT CONDITION
FOR SUPERFLUIDITY

here
K=nz((o—R); K—= (K, 0, 0), (6.4)

In this section we shall show that a system is super-
Auid if and only if it exhibits o6-diagonal long-range
order (ODLRO) . This result has already been indicated
by Yang (1962) but without formal proof.

We consider the system to be contained within two
closely spaced concentric circular cylinders which may
be rotated together with small angular velocity oo (see
Fig. 1) .We use the following characterization of normal
and superAuid systems. A normal system rotates rigidly
with the cylinders and its free energy differs from the
free energy of the system at rest only by the classical
inertial kinetic energy. In a super Quid there are
(periodic) deviations from this behavior. *

The Hamiltonian in the rotating system is (Blatt,
Butler, and Schafroth, 1955)

H= Hp —(gL, (6.1)

where Hp is the Hamiltonian in the stationary system
and L is the angular-momentum operator. For simplic-
ity we discuss here systems in which there is only one
kind of dynamical particle, e.g. , electrons. When there
is also an external lattice, this is regarded as rigidly
attached to the walls of the cylinder. We consider the
limiting situation in which the average radius E of the
cylinders becomes large, while their separation d and

FIG. 1. Geometry used in
Sec. 6. A and 8 are concentric
cylinders between which the
system under consideration is
contained. R»d»uq (inter-
atomic distance). The system
rotates with an angular
velocity co. The coordinate sys-
tem is such that the x direction
is everywhere circumferential.

*This characterization, which refers to the most literal aspect
of a superfluid —namely incomplete dragging by slowly rotating
walls —appears first to have been used by Blatt and Butler
(1955). It is directly applicable to neutral superfluids. For
charged superfluids, equivalent criteria are the Meissner eGect
(Schafroth, 1955b) or iiux quantization (Byers and Yang, 1961;
Brenig, 1961; and Yang, 1962). Strictly speaking we leave open
the possibility that a system which is not superfluid in our sense
might have some other superfluid property, e.g., superthermal
conductivity. No example of this kind is known. Furthermore,
having recognized that a Bose condensate of type II is simply a
system with long-range spatial order, such a possibility would
now appear about as unlikely as the possibility of superfluid
properties in solid NaC1.

Gy, e(kltl) kst2) ' ' '
) kl tl ) k2 t2 )

' ' ' ) q

e See, e.g., L. P. KadanoG and G. Baym (1962).

(6.7)

and the x, y, and s directions have the meaning shown
in Fig. 1; V is the external lattice potential (if present)
and U is the interparticle interaction.

A system is then normal if the free energy Iiz,
calculated in the usual way from H~, is independent of
E; and it is superAuid if Iiz depends on E. We may
remark that for a singly connected bounded system E
could be removed from Hz by a simple gauge trans-
formation, and I'z is then formally independent of E.
In the present geometry such a gauge transformation in
general violates the periodic boundary conditions which
follow from the equivalence of the points x and x+2'.R.
Only for X= /sRt(st an integer) can E be formally
removed from Hz by a gauge transformation involving
the phase factor e'~~.

We shall prove the assertion, stated at the beginning
of this section, by a consideration of the hierarchy of
thermal Green's function equations. The first of these,
which is representative for our purposes, has the form

Li(d/Bt) —(1/2~) (k—K) '+t 3Gt,z(kt; k't')

+Z(k I
V

~
1)G1,K(it k't') =8(k—k')

l

+i Q (kl
~

U
~
mn) Gs,&(mt, nt;lt+, k't'), (6-.5)

1,m, n

where ts is the chemical potential, t =t (), &=1+(—),
and G~,~, G2,~ are the X-dependent one- and two-
particle Green's functions. *

We now translate all momentum variables, k—K—&k,

etc. , and, recalling that V and U depend only on
momentum transfers, obtain

[i(cj/cjt) —(1/2sss) k'+ts]G, ,&(k+Kt; k'P Kt')

+g(1
~

V~ l)G, , (1+Kt;k'+Kt')
l

=B(k—k')+i g (kl [
U

) mn)
I,m, n

XG ~(s+mKt, n+Kt; 1+Kt+, k'+Kt') . (6.6)

From the structure of this equation, and the similar
higher-order equations of the hierarchy, we see that if
the Green's functions,
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TABLE I. Single bosons of types I and II.

He atoms Exciton

pe II

Complexes of even number of real fermions Particle-hole bound complexes

Form of Green's functions

and. density matrices

Singular as functions of momentum sum

variables

Singular as functions of momentum

difference variables

Momentum properties Carry mechanical momentum Nay or may not carry mechanical momentum

for Z=O are known, then formally, for ENO, we have

Gy,K(kl/1) k2$2) ' ' ' j kl /j ) ka /2 )
' ' ' )

= Gy, 0(kl K f1) k2 K $2( ' ' '
) kl K/1 ) k2 K/2 q

' ' ') ~

(6.g)

However G, ,a(qr4, ~ ~ ~ ) is defined only for the discrete
values

g;,=e;(1/R), e, =O, a1, ~ ~ ~, (6.9)

so that for arbitrary values of E, the right-hand side is,
in general, undefined.

To proceed further we introduce as new variables the
sum variables Q, and the difference variables q„, q;,
and Q;:

Q =(4+k2+" k )+(kr'+k2'+" k ')

q„=—(kt+k,+" k„)—(k,'+k, '+ ~ "k„'),

q =—k;„'-k (~=1, ~ ~ ~.—1). (6.1O)

Then, suppressing the time arguments, Eq. (6.8) can
be written as

G.~(Q 'q. e, q. ""qt q. " )
=G„,&(Q„—2 K; q.; q, q, ";qt', q ', ~ ~ ) . (6.11)

We now have two possible cases:

(A) Every G,.e is a smooth* function of the discrete
sum variable Q„. This is the situation for systems
without ODLRO. For in such systems, singular be-
havior in momentum space occurs only in the difference
variables q„, q;, and q . Thus a factor 8(q,) is common
to all systems with translational invariance, and factors
like 8(q +g;—2k) occur in condensed states of type II
/see Eq. (5.3) and asterisk footnote on p. 5$. In this
case, the right-hand side is to be interpreted in the sense
of an interpolation between the discrete values of Q„.
The G„,z, so dined, satisfy the equations of the
hierarchy, such as (6.5) . This follows at once, sine- in
view of the smooth dependence of the G, ,~ on the suan

variables —summation over these variables may be
~ For the present [purpose, "smooth" means absence of

Kronccker b-functions.

replaced by integrations and, by a shift of variables,
the equations can then be reduced to those for E=o.
Similarly the free energy FE, which is expressible as an
integral involving G&,z and G2,z, can by a shift of
variables be shown to be identical to Fo. Hence such a
system is normal.

(B) Some Green's functions G„,o have a 5-function
dependence on the sum variables Q,. For example, in
the B.C.S. theory we have 8(Q2) occurring in G2,0. In
view of Sec. 4 (see especially Eq. (4.4) and footnote on
p. 4j this is the case only for a condensed state of
type I, or equivalently, for a state with ODLRO. In
this case, for a general value of E, we, of course, cannot
use interpolation over the discrete sum variables to
obtain G„,~ from G„,e from Eq. (6.11).* Thus G. ~ is
not expressible in terms of G„,o by a simple shift of
variables. )Since all Green's functions are interconnected
by the equations of motion, it follows that in particular
G~,~ and G2,x (even if themselves free of the critical
8 functions) cannot be expressed by a shift of variables
in terms of G~,o and G2,0. Thus, for a general E, the free
energy Fz cannot be reduced to Fo and hence such a
system is superQuid.

7. CONCLUDING REMARKS

In the preceding sections we have pointed out the
existence of two quite different types of bosons. We have
observed that when the first type condenses, the
resulting system shows a macroscopic "off-diagonal"
order which leads to superRuid properties; while when
the second type condenses, there results a long-range
macroscopic order of the usual type as is familiar from
crystalline solids. In this way we have related both
known kinds of long-range order to Bose condensation.

This point of view gives some insight into many
kinds of phase transitions, such as superQuid, super-
conducting, distortive, excitonic, magnetic, and liquid—
solid transitions.

Some systems may be viewed as simultaneously
containing condensates of several type II bosons. Thus a

*For special discrete values of E', G„,~ can be expressed in
terms of G„o. This gives rise to the well-known periodic behavior
of Ii~ as a function of /C (Byers and Yang, 1961;Brenig, 1961).

f In fact, for example for small I, the arguments of the critical
b functions remain unshifted.
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TAm.z II. Condensed states of types I and II.

ape II

EKample

~ of additional order

He II

Off-diagonal long-range order

Zxcitonic Phase

Diagonal long-range order

Superfluidity Yes No

Form of Green's functions

and density matrices

Macroscopic singularities as functions

of momentum sum variables

Macroscopic singularities as functions

of momentum difference variables

crystal may be regarded as a simultaneous condensate
of three bosons, with wave vectors corresponding to
three principal reciprocal lattice vectors, Ky, K2, and
K3. Other systems, such as a crystalline superconductor
may be viewed as a condensate of type I bosons (Cooper
pairs), in a condensate of type II bosons (the normal
host crystal) .

Thus we have a broad framework for describing all
manifestations of macroscopic order in terms of con-
densates of appropriate bosons.

For convenience, we summarize the main points of
this paper in Tables I and II.

We wish to make two other closing remarks,
Our discussion has been limited to systems with

translational invariance. This was done since one is
accustomed to associate definite wave vectors with
isolated bosons. However, Yang's (1962) work on
oG-diagonal long range order indicates an approach for
dealing with systems lacking such invariance.

Secondly, the reader may be puzzled by our dis-
cussion of distortive transitions in ter'ms of Bose con-
densations since, e.g. , a distortive lattice transition
might very well be discussed in terms of purely
classical (i.e., nonquantum) lattice dynamics. In fact
there is no paradox in this. We show in Appendix II
that a classical lattice distortion can be regarded as a
Bose condensation of phonons.

APPENDIX I. MOMENTUM PROPERTIES OF THE
TWO KINDS OF BOSONS

We show erst that a type I boson, characterized by
Eq. (2;8) (or its generalization), carries mechanical
momentum. The essential feature of (2.8), for the
present purpose, is the appearance of momentum sums
such as pt+ps in the arguments of the 8 functions.

For simplicity we discuss a many-fermion system,
consisting of a single species, in which a single 2-fermion
boson is present jsee Eq. (2.8) g. An insulator, with an
additional two fermions in a bound state, might be an
example. We consider the system enclosed in a cube of
volume 0=1.3, on which periodic boundary conditions
are imposed.

It is convenient to introduce, as a formal device, a

here V and U represent, respectively, interaction with
an external potential and mutual interaction. Let the
set E (K) be the complete spectrum of H(K) for all
crystal momenta k, each E (K) being an analytic
function of K. Then, from (AI.2) we obtain directly
for the x component of the total momentum

dH t dE (K)
(n/ P.

f
a) =m/ u u/=m

dK zm j dK xm

(AI.3)

Thus we see that the system carries momentum in the
state rr if and only if E (K) has a K dependence
(barring accidental vanishing of the derivative) .

For certain discrete values of E,
K„=(2~/z, )N, ~=0, a1, ", (AI.4)

K may be removed from H(K) by the unitary gauge
transformation

C -+C exp [ iK„(xt+x—,+ ~ ~ xg), E~E (AI.S)
I

on the wave function. *
Hence the spectra of H(0) and H(K„) must be'

identical:
IE.(o) ) = IE.(K„)I.

This of course does not imply that, for a g&p&+ 0,

E~(K„)=E (0). Instead one could have E&(K ) =
E (0) Lsee Fig. 2, where, e.g., E,(K;) =E,(0)j

Now let p~"~(0) and E (0) be, respectively, the
two-particle density matrix and eigenvalue of H(K)
corresponding to the 1-boson state of wave vector k,
and K=o; also let p &s~(K) and E (K) be the analytic
continuations of these quantities. Let pe"&(Kt) and
Ee(Kt) L= E (0)j be the density matrix and eigenvalue

* For other values of K, the transformation (AI.5) violates the
periodic boundary conditions.

constant vector potential in the x direction

A= —(r/e) K, K= (K, O, O), (AI.1)

and to de6ne the following E-dependent Hamiltonian
(Kohn, 1964),
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P=k, which follows at once from the translational
invariance of the Hamiltonian. Thus we see that type
II bosons may or may not carry mechanical momentum.

APPENDIX II. LATTICE DISTORTION AS BOSE
CONDENSATION OF PHONONS

Consider a monatomic crystal in an original con-
figuration C at T=O'. Let the mass 3f be very large,
so that quantum zero-point Quctuations are smaH, and
write the wave function as

C (u(1), u(2), ~, u(A) ), (AII.1)

0 ki k~ k$
k

kQ

Fio. 2. Dependence of the one-boson energy spectrum on the
gauge parameter E (schematic) .

of H(E) for E=Ei and the same physical 1-boson
state. Then, by (AI.5),

(pi', p.' I
pe"'(E) I pi, p.)

= (pi'+Ki ps'+Kil p "'(0) lpi+Ki ps+Ki) (AI 7)

Now (pi, ps I
p~"'(0) I pi, pz) contains a factor

5(pi+ps —k) and hence, by (AI.7),

(pi' ps'
I pe"'(Ei)

I pi ps)

contains a factor 8(pi+ps+2Ki —k) . As the arguments
of the two 8-functions are discrete and diferent, we see
that ps&'& (Ei) is rzoi the analytic continuation of

p &'&(0). Thus PAn. Since, however, by definition,
Es(Ei) =E (0), it follows that (barring accidental
de eneracies)g

Z.(E,) ~Z.(0).
Thus Ei(E) is E dependent and hence,

(1IZ. I
1)~0,

(AI.S)

(AI.9)

*The absence of momentum may also be derived more formally
from the "disconnectedness property" of the many-body wave
function discussed in Kohn (1964).

except for special circumstances such as k= 0.
We now turn to type II bosons. The discussion through

Kq. (AI.7) applies equally to them. However the two-
particle density matrix p 'si(0) now contains 8-functions
whose arguments are digererzces of momenta such as
h(pi' —pi —k), and. hence, by (AI.7), ps&@(Ei) contains
the same h function B((pi'+Ki) —(pi+K,) —k) =
h (pi' —yi —k) .Therefore we can no longer conclude that
Petr or that E (Ei) AE (0), and thus we cannot use
the previous argument to show that the momentum is
nonvanishing.

Do type II bosons then carry momentum or notP
An exciton in an insulator does not. This follows at
once from the fact that the motion of a bound pair of
fermion and fermion hole in an insulator does not shift
the center of mass of the system. * On the other hand,
zeroth sound in 'He has a real momentum given by

where u(l) is the displacement of the 1th nucleus from
its equilibrium position R(l) .

Next consider a slightly distorted configuration C'
in which the nuclei vibrate about new lattice positions:

R'(l) =R(l)+v(l). (AII.2)

(AII.4)

since, by Taylor's theorem, the operator exp La(8/Bx) j
is just a displacement operator.

The sum occurring in the exponent can be written in
terms of phonon operators. As an illustration we con-
sider the formation of a simple superlattice in which the
atomic displacements are alternately v(l) =&v. We
may write this as

v(l) =v exp I
zks. R(l) g,

kp ——Ki/2

(AII.5)

(AII.6)

and Kq is an appropriate reciprocal lattice vector.
We recall the normal mode expansion for a Bravais

lattice,

zz, (l) =g{fi/2M/~(s) g'~'e;(s)

&& {a(s) exp Lzk. R(l) j+a*(s) exp {—zk R(l) jI
(AII.7)

where s stands for both k and the polarization index j,
e(s) is a polarization vector, and a(s) and a*(s) are
phonon destruction and creation operators satisfying

Let the new wave function be

C"(u(1),u(2), ~ ~ )= 4'(u(1) —v(1), u(2) —v(2), ~ ~ ~ ),
(AII.3)

where, while we allow for the changes of the equilibrium
positions, we ignore as unessential other changes in the
wave function. This is reasonable when both the
excursions u(l) and displacements v(l) are small com-
pared to the lattice spacing. The new wave function can
evidently be written in the form

C"(u(1), u(2), ".)
= exp {—Z s'(~) L~/»'(i) 7IC'(u(1), u(2), " )
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the commutation rules

La(s), a'(s') ]=~*". (AII.8)

u/n"a=1, or for
sz = (Mroe'/2lri) jest'. (AII.18)

where

and

n—= (MEro/2js) "'

a=—a(kp, 1), po—=co(kp, 1);

(AII.12)

(AII.13)

and Eq. (AII.4) now becomes

C"= exp [—n(a —a*)]C'. (AII.14)

Of course the exponential acts only on the wave
function of the oscillator (kp, 1). In second-quantized
language, the state of this oscillator is changed from
the original zero-phonon ground sta, te

~
0) to a new

state
~
n) given by

~
n) = exp [—n (a—a*)] I 0). (AII.15)

This is just a coherent state in the sense used by
Glauber (1963) for photon oscillators. Using the fact
that [a, ae]= 1, we have the identity

exp [—n(a —ae) ]= exp (——,'n') ~ exp (nae) exp ( na)—
(AII.16)

which gives

~
u) = exp (—-', n') exp (na*)

~ 0)
= exp (—-,'n') Q[n"/(n!) +']

~
n). (AII.17)

f4

Thus the new state is a coherent linear combination:of
m-phonon states. The maximum amplitude occurs for

From (AII.7) we derive

~/»'(i) = ('/h) p;(i) =i(M/f) ~'(j)
=g(Ma)(s)/2!1$) "'e;(s)

X Ia(s) exp [ik R(l)]—a*(s) exp [—ik.R(l)]j.
(AII.9)

Combining now (AII.5) and (AII.9) gives the desired
result

Z '(l)[cj/»'(!)]=K[M& (k, i)/2&]"'[e(ko, j) v]
i, l

X [a(k„j)—a*( „f)]. (A11.10)

Let us further assume for simplicity that v is parallel to
one of the polarization vectors, say e(kp, 1). Then
(AII.10) simplifies to

g n;(!)[8/r)u, (l)]=n(a a*)—, (AII.11)

We may verify that the excitation energy of these
phonons,

E= ssji(u = j)t'(Mco'/2) e', (AII.19)

is just the classical potential energy of distortion. Since
the new state has present a macroscopic number of
phonons in a single mode, it is a Bose-condensed state.
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