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Inhomogeneous broadening has been observed in resonance lines in solids over the wide range of energies spanned
by nuclear magnetic resonance, electron spin resonance, optical, and Mossbauer methods. The broadening arises from
random strains, electric fields, and other perturbations from the defects in the lattice containing the centre whose transi-
tions are studied. This paper reviews the calculation of the shapes of such resonance lines. The most important method
used is the so-called statistical method. This method determines the line shape as a function of the distribution of the
defects with respect to the centres studied, the density of the defects, and the perturbation fields of the individual defects.
Emphasis is laid on the physical assumptions and approximations in this method and on its relation to other approaches.
The theory is applied to a variety of broadening mechanisms, both in the widely used continuum approximation for
the lattice containing the defects and in the more realistic discrete-lattice model. Two classes of experimental work are
reviewed. The first deals with the ways in which resonance lines are recognised as being inhomogeneously broadened.
These methods show that a wide range of phenomena can be used to check the theory of the line shapes. The second
discussion of the experimental work compares theory and experiment for each of the various broadening mechanisms.
These mechanisms include broadening by the strains from dislocations and point defects, by the electric fields and field
gradients from charged defects, and by unresolved hyperfine structure. In each case theory and experiment are compared
in detail for the system for which the most complete data are available. The conclusion is that the statistical method
provides a satisfactory approach in all cases for which there are adequate data.
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1. INTRODUCTION

Defects in solids give rise to sharp absorption lines
over a very wide range of energies. These are seen in

nuclear magnetic resonance (NMR) (~1072 eV), elec-
tron spin resonance (EPR) (~10* eV), optical ab-
sorption (0.1-10 V), and using the Mossbauer effect
(usually 14.4 keV) with an over-all range of 102 in
energy. These lines give information about both the
static and dynamic features of the environment of the
defect. Further, for sharp lines, low integrated intensi-
ties can be measured, so that weakly allowed transitions
and strong transitions from rare defects can both be
observed.

The transitions differ widely in nature. Thus, the opti-
cal lines are essentially electronic phenomena, whereas
the Mossbauer transitions are nuclear in origin. The
factors which determine the skapes of the lines are,
however, very similar in all cases, and a number. of
broadening mechanisms are common to the various
transitions. The theory of the line shapes reflects this
unity in that calculations are based on a small number
of rather general methods which emphasise the points
of similarity. For example, much of this review uses
the “‘statistical method.” This method has been used
in the literature in many special cases,’2! although it
has not always been emphasised that there were special
cases of a method of great generality and wide applica-
tion. Such points will be stressed in the present review,
and the ground common to all branches of spectroscopy
emphasised. We will also try to indicate any essential
physical assumptions and the limits they impose. The
broadening of a resonance line can be described by one
of three labels. Extreme examples of homogeneous and
inhomogeneous resonance lines® are illustrated in Fig.
1. A third class, intermediate, includes the inevitable
borderline cases between the other two categories. The
observed line is, of course, the superposition of the
individual contributions. For homogeneous broadening,
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all the centres responsible for the resonance line give
contributions which have the same peak frequency
and width. The most obvious case occurs when the
linewidth is caused by the finite lifetimes of the states
between which the transitions occur.? For inhomo-
geneous broadening the centres have a wide variety of
peak frequencies. Their widths are usually similar but
are appreciably less than the width of the distribution
of peak frequencies. Examples of mechanisms giving
inhomogeneous broadening are strain broadening (due
to dislocations and point effects in the host lattice
containing the centres), broadening due to the random
electric fields and field gradients of charged defects,
and the hyperfine interaction of the wavefunction of
the centre with the nuclei of neighbouring ions. Inter-
mediate cases are usually those in which several mecha-
nisms give similar contributions to the broadening;
some of these mechanisms favour inhomogeneity, others
favour homogeneity. It should be emphasised, however,
that the description of a line as homogeneous or in-
homogeneous depends on the type of experiment in-
volved. The usual criterion is “if the resonance line
is excited in some narrow band of frequencies, are the
other parts of the line affected appreciably in a time
of the order of the characteristic time of the experi-
ment”’? A very clear illustration of this point comes
from Wagner’s study of the recovery of inverted spin
systems. In the “phonon avalanche” region** the
characteristic time is 107 sec and the line behaves
inhomogeneously; in the “phonon bottleneck” regime
the time constant is 1072 sec and the line behaves
homogeneously.

Three methods have proved particularly fruitful.
Kubo and Tomita’s work, based on the method of
cumulants, has been especially valuable for homogene-
ous lines.?* The method of moments has been widely
used? % and gives the moments

M= /_ o;dww"l(w) / L :dwl(w)

of the line shape I (w), rather than the line shape itself.
Although the moment method gives a number of ele-
gant exact results, these results are often misleading if
the qualitative features of the line shape are not clearly
understood.?® The third method, on which this review
will concentrate, is the statistical method (or Markoff
method). It has proved useful in the theory of in-
homogeneously broadened resonance lines and contin-
ues to be useful even when homogeneous broadening
also occurs. Later the detailed relationships of these
approaches will be examined. The three methods do
not, of course, exhaust the possible approaches (for
example, a separate treatment is needed to deal with
the effects of mosaic structure®) but are sufficient to
treat all the problems of the shapes of the resonance
lines of centres in single crystals.

(b)

F16.F1. Schematic diagram showing the two extreme classes of
broadening. (a) Homogeneous broadening; (b) inhomogeneous
broadening.

Inhomogeneous broadening is common to all branches
of solid-state spectroscopy. Other mechanisms of line
broadening are important in more restricted fields. For
completeness, we briefly describe the most important
of these mechanisms and indicate some recent articles
which review them in detail.

The other types of broadening fit into two major
classes: the interaction with collective excitations, such
as phonons or magnons, and the interaction between
the centres responsible for the resonance line. The
interaction with collective excitations takes two main
forms; both become more important at high tempera-
tures. First, if the transition energy is much larger
than the typical collective excitation energy, the transi-
tion will be accompanied by the absorption and emis-
sion of quanta of the excitation. Thus, in the optical
absorption of the F centre in alkali halides, large num-
bers of phonons are emitted. This type of line broaden-
ing is discussed in Ref. 30(a). Second, the lifetimes of
the states involved in a transition may be determined
by the interaction of the centre involved with collective
excitations. In spin resonance, for instance, spin-lattice
relaxation may broaden the resonance line; it is then
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the rate of exchange of energy between the spins and
the phonons which is important. Such cases are dis-
cussed in Ref. 30(b). Finally, the interaction between
centres is particularly important in spin resonance,
where dipolar and exchange interactions affect the line
shape. These phenomena are discussed in Ref. 30(c).
Three main questions are considered in this review.
The first is, “How does one distinguish between homo-
geneous and inhomogeneous lines experimentally?”” This
question is treated in Sec. 2, where the methods which
have proved useful are outlined with emphasis on the
qualitative features of the experiments. The second
question deals with the calculation of the line shapes
of inhomogeneous lines in terms of the distribution of
the defects responsible for the broadening. The statis-
tical method and the physical assumptions implicit in
its use are given in Sec. 3. Its detailed application is
given in two degrees of sophistication in Secs. 4 and 5.
In Sec. 4 the host lattice is treated as an isotropic
homogeneous continuum. The simplicity is removed
in Sec. 5, where the lattice structure is taken into
account directly. The final question concerns the agree-
ment between theory and experiment. This can only
be answered in a small number of cases, as one must
know both the inhomogeneous line shape and the na-
ture and distribution of the defects responsible for the
broadening. Such cases are described in Sec. 6.

2. THE IDENTIFICATION OF
INHOMOGENEOUSLY BROADENED LINES

Certain experiments identify a particular resonance
line as inhomogeneously broadened. These experiments
suggest features which can be compared with theory
and most give some quantitative results, although the
data which can be extracted from them will not be
analysed in detail until Sec. 6. Most of the important
methods will be discussed, but not every paper which
has used them will be mentioned.

Most of the methods are specific to one class of
resonance lines alone; for example, they may only apply
to spin-resonance lines. Two techniques, however, can
be applied to all classes of resonance line, at least in
principle: varying the number of defects, and compar-
ing the effects of defects on different resonance lines.

The first general method is to change the concentra-
tion of the defects causing the broadening while keep-
ing other factors constant. Thus, Bloembergen and
Rowland?® observed that dislocations produced in hard-
working copper broadened the satellites observed in
the nuclear magnetic resonance of ®Cu and that an-
nealing tended to restore the lines. Reif? found a
variation in the intensities of the ™Br and ®Br reso-
nances in AgBr on adding Cd** and on the creation
of intrinsic defects by heating. Similarly, defects are
removed on annealing radiation-damaged crystals, and
annealing is often essential to getting reasonably sharp

zero-phonon lines. The extent of the inhomogeneotis
broadening can be estimated for both the original and
final lines from the change in linewidth.

The second technique with wide application is to
compare the widths and shapes of a number of lines
in any one specimen and to see if these are consistent
with the same distribution of microscopic strains or
fields. This method is particularly common in spin
resonance. Thus, McMahon3! was able to compare the
line shapes of the AM =1, AM =2, and double-quantum
transitions in the EPR of MgO:Fe**. Feher® com-
pared the linewidths of Fe** and Mn*t in MgO and
their variation with magnetic-field orientation. The
ENDOR linewidth and the variation of EPR linewidth
with hyperfine line for MgO: Co* are consistent with
strain broadening.®® Schawlow’s comparison® of the
EPR and optical R linewidths of Cr** in ruby also
suggests that the lines are strain broadened. Again,
strain broadening has been identified recently in the
antiferromagnetic resonance of RbMnF;.%¥ Here the
crystal changes under stress from a state in which the
magneto-elastic anisotropy is dominant to one in which
the intrinsic cubic anisotropy dominates. In each re-
gion the observed transition energy is linear in the
strain, but the coupling coefficients are different. The
linewidths are consistent with the assumption that the
distribution of strains is the same in both cases.

The approach of comparing different lines in the
same crystal is open to a number of dangers. First, if
the lines considered come from different species of
centre, there is the possibility that one of these centres
is strongly correlated with the defects which broaden
the lines. The comparison will then suggest that differ-
ent mechanisms are responsible for broadening in the
two cases. Second, the widths of the lines concerned
may have contributions from several mechanisms, and
allowance must be made for all of them. As an exam-
ple, in comparing spin resonance and optical lines one
must allow for dipolar broadening of the EPR line
and for the broadening of the optical line from the
interaction of the centre with phonons. Third, it must
be recognised that the combination of strain or electric-
field components which appears in the transition energy
will differ for various transitions. If the transition en-
ergy is related to the strain tensor e by

ﬁw=ﬁwo+ﬁwl Z a4i€5, (21)
2,7

then the a;; for optical transitions need not be propor-
tional to those for EPR transitions. In fact, the EPR
coefficients vary with the direction of the magnetic
field. Thus, different transitions sample different com-
ponents of e and may give different shapes and widths
a simple comparison of the widths is possible only to
order of magnitude.

In addition to these general methods there are others
with restricted application; these apply to EPR transi-
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tions almost exclusively. The first utilizes the fact that
the defects causing broadening are usually quite differ-
ent from those whose resonance is studied. Thus, the
inhomogeneous width will be independent of the spin
concentration, unlike the case of the dipolar contribu-
tion.14 This is the case for MgO:Fe*t (Ref. 34) and
is, in fact, seen for low concentrations of most transition-
metal ions in MgO. The second group of methods takes
advantage of the fact that only a small fraction of the
spins contribute to a given part of the resonance line.
The line can then be saturated in a narrow region using
one microwave signal (“burning a hole” in the line)
while the saturation is observed with another signal.
This has been done at microwave frequencies with
conventional EPR%® by saturating with microwave pho-
nons®® and also optically.# The third set of methods
recognises that the variation of linewidth with magnetic
field and hyperfine line is different for inhomogeneous
lines. For simplicity we illustrate this for spins of S=3%
with an isotropic g factor and hyperfine interaction.
The unperturbed transition energy is

Foe=gBH+AIL; (2.2)

second-order terms are omitted. Under a strain de the
energy is changed by

Ai(w—wo) =[(3g/0e)BH (04 /3€)I,] de.

If the strain distribution in the crystal has width eys,
the observed width of the resonance line will be

(0g/9€) eysBH+ (3A/0¢€) €121 5.

Clearly for a species with no nuclear spin (I=0), the
width is proportional to the magnetic field. With pure
dipolar broadening the width is independent of H, as
shown by van Vleck’s moment results.? If 7 is finite,
the width varies with the hyperfine line because of
the term in I,. The variation with I, and H has been
seen for MgO: Co?+.384 For systems with spin greater
than %, Egs. (2.2)-(2.4) contain additional terms which
lead to a dependence of the S,—S,+1 transition on
S;. For non-Kramers ions, inhomogeneous effects can
split levels which are degenerate when unperturbed
and in a zero magnetic field; this can lead to enhanced
absorption in zero magnetic field.

Fourth, Portis® has shown that inhomogeneous lines
can be recognised by their saturation behavior. As the
saturating power is raised, the absorption signal should
saturate (i.e., tend to a finite limit), whereas the dis-
persion should be proportional to the square root of
the power. This has been observed in the EPR of the
F centre (Ref. 44 and references therein) and in para-
electric resonance.®® Finally there is a suggestive tech-
nique based on an approximate result. Equation (2.1)
relates the transition energy of one centre to the local
strain. It can also be taken to relate the peak of the
observed resonance line to an externally applied strain.

(2.3)

(24)

As the direction of the magnetic field changes in an
EPR experiment, the a;s change, and as the local
strains all remain constant, the linewidth changes. Usu-
ally one of the a;; is of dominant importance; because
of the particular form of the strain distribution and
the magnitudes of the coupling coefficients, the corre-
sponding e;; is the most important strain component.
The change in width with field orientation then reflects
the variation of a,;. If a static stress producing a strain
which is predominantly e;; is applied, then the varia-
tion in the position of the peak of the line will again
reflect the variation of a;;. Comparing the two experi-
ments, the line shift under a static stress and the
linewidth should both vary in the same way as the
magnetic-field orientation is altered. If the linewidth
and the shift under stress do vary similarly, then strain
broadening is suggested. Correspondingly, if the width
and the shift under an external electric field vary
similarly, broadening by random fields is suggested.
The approximation occurs because the components of
the local strain other than e;; have been dropped; the
difficulty of the method is that one must guess which
es; to ignore. The method does not work equally well
for all systems. The approach has been used for electric-
field broadening®® and strain broadening.*

Finally we note that dipolar or exchange narrowing
may complicate the analysis of inhomogeneous broaden-
ing in magnetic-resonance lines.#—¥ This effect is im-
portant in ferromagnetic resonance and also in para-
magnetic resonance when the perturbing field is small
compared with the magnetisation. The linewidth then
depends on the shape of the sample and decreases with
the magnetisation.*

3. THE STATISTICAL METHOD

This method provides the most powerful approach
in calculating inhomogeneous line shapes. This section
treats the assumptions, limits, and results of the method
itself and relates the method to other approaches.

3.1 The Range of Application of the Statistical
Method

Here we review the physical assumptions made in
applying the method to inhomogeneous broadening.
These are the basic assumptions common to most cases,
rather than the special expedient assumptions peculiar
to individual problems. The basic assumptions will be
illustrated by particular reference to broadening by
random strains and by random electric fields.

The first assumption is that the transition energy is
linear in the local strain, i.e.,

Fiw=Tiwwo+Tieon Z ij€ijy (3.1)
i
or the local electric field, i.e.,
fiwo=TuntHion D, aiFif B, (3.2)



86  REviEws OF MoODERN PHysics » JANUARY 1969

In these equations 7w @;; and 7w, are coupling coeffi-
cients which can be measured in separate experiments
in which the transition is observed under an externally
applied stress®-% or electric field.! The relative values
of the a;; and «; are determined largely by symmetry;
this will be discussed again later. To simplify our nota-
tion we write (3.1) and (3.2) in'a common form:

fiw=Tiwo+Rwie, (3.3)
where
€= Z @565 (34)
%7
for strain broadening, and
€= Z o:Ei/E, (3.5)

for broadening by electric fields. The electric field E,
is introduced to ensure that e is dimensionless. The a;;
and «; are also dimensionless and depend on the sym-
metry of the centre and the host lattice and on the
direction of any applied field.

This assumption is essentially that of first-order per-
turbation theory and means that we may calculate
the line shape (i.e., the distribution of #w) by calculat-
ing the distribution of e. We calculate directly the
probability 7(e) de that e lies in the range € to e4-de.
The observed line shape is related by scaling, i.e.,

Tops[i(w—wp) J=I[e= (w—wp) fwr]. (3.6)

The assumption can be generalised in a number of
ways. The work can be extended to treat terms quad-
ratic in the strain or field components. This extension
is described later and is not trivial, largely because
the second basic assumption (stated below) fails in
this case. A second-order theory is needed for the
AM=2 and double-quantum lines in MgO:Fe**, for
example.3 A further useful generalisation treats transi-
tions which split under stress. If the ith component
has a transition energy

Frwr = oyt B e (3.7)

and a fraction f;(¢) of the total intensity, then the
intensity at frequency w due to all the components is

Ions[B(w—w0) J= 2 fil (0—w0) B JI[ (0—wo) /wiBi].
(38)

This should be compared with (3.6); (3.8) applies to
the rather large number of optical zero-phonon lines
which split under stress.5 %

The second assumption is that the contributions to
e of all the defects* which cause broadening simply

* We will use the term “centre” to describe whatever gives
rise to the resonance line. The word “defect” will be used for any
imperfection which causes broadening of a resonance line. Thus, a
particular species may be referred to as a “centre” in one context,
when its own transitions are being studied, and as a ‘“defect”
elsewhere, when its effect on another species is being discussed.
All other terms, such as ‘“colour centre,” will be used conven-
tionally, and will not indicate the role played by the species.

add linearly. If we define Z; as a variable which gives
the position r; and any relevant internal variables 7,
of the 7th defect, the contributions to e are then addi-
tive; i.e.,

N

€(Z1, Zo, ++, Zy)= D e(Z3).

=1

(3.9)

For broadening by microscopic strains, this is the as-
sumption of linear elasticity, i.e., we may ignore terms
in the free-energy quadratic in the strains. Nonlinear
effects usually become appreciable for strains greater
than about 1072, As the half-widths of internal strain
distributions are typically 1074 nonlinear terms should
be negligible. We will, however, return to this point
later. If the resonance line is broadened by microscopic
electric fields, (3.9) is equivalent to the assumption
that nonlinear effects are negligible. The terms in the
dielectric constant which depend on the field become
significant for electric fields of the order of 10°~107 V/cm,
which is considerably greater than the 10° V/cm typical
of the widths of observed internal-field distributions.

The third and final assumption is that the defects
which cause the broadening are not correlated with
each other. In general, the probability of a specific
configuration of the defects {Zi, Z,, +++, Zy} is a func-
tion of the positions and internal variables (given by
Z;) of all the N defects, P(Zy, +++, Zy) dZ1+++dZy.
Our assumption is that P(Zi, +++, Zy) may be factor-
ised in the form

P(Zy, +++, Zn)=p(Z2) p(Zo) - - p(Zy).

This relation cannot be exact; the restriction that de-
fects cannot occupy the same site means (3.10) is
approximate, even in the absence of other interactions
between the defects. Correspondingly, the assumption
(3.10) is only good for low defect concentrations. In
practice, for the most interesting cases, the defect con-
centrations rarely exceed 1072 (0.1 at.%,) and we might
expect the approximation to be reasonable. At higher
concentrations a more sophisticated theory is needed,
possibly developing along the lines of Ref. 55.

(3.10)

3.2 The Statistical Method

This section outlines the statistical method in a form
suitable for treating all the line-shape problems of
interest. The assumptions outlined in Sec. 3.1 are
adopted, so we assume the transition energy to be
linear in the perturbation e:

Fiw=Fiwo+Fiene; (3.3)
that the contributions of the various defects to e are

simply additive:
e(Zy, o+, Zw)= 2 €(Z);

=1

3.9

and that the defects are uncorrelated in the sense that
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the probability of a particular configuration can be
written as

p(Z1) dZy+ - p(Zy) dZy. (3.11)

We now calculate I(e) de, the probability that e lies
in the range e to e1-de, in terms of the perturbations
of the individual defects €(Z;), and the statistical dis-
tribution of the defects, given by p(Z;).

Each configuration {Zi, +++, Zy} corresponds to a
specific arrangement of the N perturbing defects in
which the positions (r;) and the other parameters
(n:) which describe every one of the centres have
definite values. The statistical assumptions about the
probability distribution of each of the Z; are contained
in a statistical weight function p(Z;). If the centre
whose transition is observed is at R then p(Z;) is the
probability that the ¢th defect is at R4r; with internal
variables given by 7. Clearly $(Z) is closely related
to the pair distribution function of the position of the
defects with respect to the centres whose transitions
are studied. We normalise p(Z) by

/ dZp(Z) =0 (3.12)
and define the density of defects by
p=N/. (3.13)

The explicit form of p(Z) will be given later in a num-
ber of cases. We will assume, for simplicity, that there
is only one type of defect. This assumption will be
generalised subsequently.

The fraction of all the defect configurations which
produce a given value of e at the point of observa-
tion is

I(é) =y / lep (Zl) LRR]

X / AZyp(Zw) [e—e(Zs, +++, Zn) ] (3.14)

The delta function singles out the configurations for
which e(Zi, +++, Zy) has the value e. For this reason,
singularities in €(Zy, +++, Zy) do not cause difficulties,
as the configurations to which they correspond have
been excluded. Such singularities are, however, very
important in calculating the moments of 7(e¢) which
are discussed in Sec. 3.3.

Equation (3.14) may be rewritten using the spectral
representation of the delta function:

10)= o [ dvew (), (315)
y—2ﬂ 5 x exp (ixy), .
giving
1 /o
I(€)=W_N'2—7;/;m dx/lep(Zl)---/ dZNp(ZN)
Xexp {1x[e—e(Zy, <++, Zn)]}. (3.16)

The spectral variable x in this equation has no special
physical significance. The contributions of the defects
to € add linearly, so (3.16) may be factorised using
(3.9):

1 o
I(e)= — / dx exp (ixe)
27:' —

X (v‘l f dZp(Z) exp [—ixe(Z) ])N. (3.17)

We introduce a function J(x) where

vl / dzp(z) exp [—ixe(z) ]=1—v"J (%)

=1—N-"J(x). (3.18)

The density of defects p is given by (3.13). Thus,

J(x)= f dzp(a) {1—exp [—ize(x) ). (3.19)

Recalling that in the limit of large N, (1—A/N)¥
tends to exp (—4), we finally obtain

1 o
169= 5 /_ " drexplize) exp[—p/ (1)1 (3.20)

This equation, together with the definitions (3.19) and
(3.13), gives the distribution in magnitude of the per-
turbation e in terms of the perturbation fields of the
individual defects e(z), the density of the defects p
and their statistical distribution p(z).

Our final result (3.20) can be simplified in one case,
expecially useful in practice, where I(e) is symmetric
about e=0. Then I(e) and I(—e¢) are equal, and

I(e)=n1 / ” dx cos(xe) exp [—pT ()], (3.21)
0

T(x)= f dzp () {1—cos [xe(z) T} (3.22)
3.3 Extensions of the Fundamental Results
The fundamental equations (3.13), (3.19), and

(3.20) are sufficient to calculate line shapes in many
cases of interest. It is convenient to extend these equa-
tions in several ways. Two which are useful approxi-
mations are the moment method and an approximate
method which gives the linewidth directly. These are
useful in broadening from unresolved hyperfine struc-
ture as the analytic results based on (3.20) are usually
intractable or inappropriate. Two are straightforward
extensions of Sec. 3.2 and treat the simultaneous
broadening due to several species of defect and the
distribution of the sum of the two components e;-+es;
here it is shown that, as a general rule, the dipolar
and inhomogeneous contributions to an EPR linewidth
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should simply be convolved in predicting the line shape.
Finally, we will consider second-order effects and cal-
culate the distribution of the product of two compo-
nents ee;.

3.3.1 The Moments of the Line Shape

Theories of line shapes?# often calculate the mo-
ments of the shape, defined by

M,= /;:dee"f(e)/[_:del(e).

The moments are not measured directly in experiment;
their one advantage is that they can be calculated
without difficulty in some cases. Such calculations
should be contrasted with our discussion in Sec. 3.2
in which the line shape 7(e¢) was found directly. The
few advantages of calculating moments are usually
lacking for inhomogeneously broadened lines. Indeed,
as the moments are dominated by the regions where
e is large they are not even finite unless great care is
taken.

The moments are best expressed in terms of inte-
grals .S, where

(3.23)

Sa=p f dap () [e(2) T (3.24)

The S, vanish for symmetric lines when # is odd; Sp is
equal to N by (3.12) and (3.13). The moments can be
found by the method of Ref. 29, which is to expand
the term exp (ixze) in (3.20) and then differentiate
with respect to x. Thus,

M,= lim (—1)"[d~/d(ix)"] exp[—pJ (x)] (3.25)
20

which gives as the first few moments
Mo=1,
Mi=3S,,
My= S+ S12,
M= S3+ 3515+ S2,
M= S4+45155+ 352465252+ it
= (Ss+4515:— 2514 +3(M2)%  (3.26)

In the case of symmetric lines there is some simplifi-

cation:
M;=0,
M2= Sz,
M3=0,
M= Ss+-3M 2. (3.27)

For a Gaussian shape M,=3M3, which would require
Ss to be zero. This happens in rather unusual circum-

stances, so that whilst predicted shapes may be asymp-
totically Gaussian they are rarely exactly so.

3.3.2 Approximate Linewidths

The most important parameters measured experi-
mentally are the peak height and linewidth. These
can be obtained approximately without going through
a complex calculation of I(e) and subsequent analysis.
The method®® exploits the fact that, for a line of given
width and peak height, the centre of the line (the
part between the points of half intensity) is nearly
the same for such extremes as the Gaussian shape,
where I(x)~exp (—x*/a?), and the Lorentzian shape,
for which I (x)~1/(x2+a?*). The method fits a Lorentz-
ian to the peak and the point of half-intensity and
height of the fitted curve. Direct application of the
method using (3.20) shows that the width A is given
by the integral equation

s=p [ ap@ @ TFLe()/8],  (328)
where
F(u) =2(u+6) /[ (w*+4) (*+1)],
and the peak intensity is given by
I(0)= ;% exp [—Zp f dzp(2) —A_;j-(Tzﬂ)(_z_)] . (3.29)

These results are exact for a Lorentz line shape. The
integral equation is most easily solved graphically and
offers considerable advantages in complicated cases,
such as oscillating screened interactions, where

e(r)~[A4 exp (—ar) cosprl/r.
3.3.3 Several Types of Defect

In real crystals a number of distinct defects may
broaden the resonance lines. For example, in radiation-
damaged crystals both point defects and dislocations
cause strain broadening. We assume that the statistical
distribution of defects of species A is independent of
the coordinates of the defects of species B, and vice
versa. Thus the two species are not correlated. The
discussion of Sec. 3.2 can be repeated with only minor
changes. In particular (3.16) may be factorised to
give (3.17) as before. Equation (3.20) still holds, but
now pJ (x) is given by

p(x)=pa [ dapa(s) {1—exp [—izer (2) ]

+pB/dzpB(z){1-—exp [—ixes(2)]}  (3.30)

for two species A and B. In this, pa=Na/S dzpa(3),
and so on. The results (3.20) and (3.30) taken to-
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gether mean that the line shape is simply the convolu-
tion of the line shape Ia(¢) when species A alone
causes broadening, with the shape Is(¢) when B alone
broadens the line:

I(e) = f_ " dsIa(s)Is(e—s). (3.31)

3.3.4 The distribution of @ Sum of Perturbations

In the detailed analysis of line shapes, it is conven-
ient to assume that, for example, the distributions of
two components of the strain tensor, e; and e, are
independent. If this were true, the distribution of the
sum of these, e;;+ e, would be given by straightforward
convolution. In more general notation, if 7;(e;) is the
distribution of €; and if I1a(en) gives the distribution
of ea=e€1+¢;, then we would have

I12(€12) = /°° dtIl(t)Iz(élz—t). (332)

It is straightforward to show that (3.32) is only valid if

pJ1z(x) = pJ1 (%) +pJ2() (3.33)
in which

Tix)= f d2p(2) {1—exp [—iwei(3) ).

However, (3.33) is only valid, in general, if ¢ and e
are produced by different defects. This can be seen
intuitively as follows. When ¢, is large, it suggests that
one of the defects is close to the point of observation.
If the defect also produces a component e, e will
probably also be large, so that ¢ and e, are correlated.
As a specific example, in an isotropic crystal contain-
ing only screw dislocations the dilation vanishes every-
where, i.e.,
ezz+eyy+eu=0.

It would clearly be wrong to assume e, €,, and e,,
independent. This equation is, of course, just a special
case of the compatibility relations which must be satis-
fied by the strains.

Equations (3.32) and (3.33) hold in one case of
practical importance, when magnetic-resonance lines
are broadened by microscopic strains and by spin-spin
interactions. The system MgO:Mn?* (Ref. 35) and
MgO:Co* (Refs. 36, 42) are examples of this. If the
sources of strain are nonmagnetic and if the magnetic
ions produce no strain, then e and e are produced by
different imperfections, ¢ from the strains and e, from
the spin-spin interaction. The line shape in this par-
ticularly simple case is the convolution of the shape
due to spin-spin interactions alone with that due to
strain’broadening alone.

In cases where the two components are correlated,
they may still be sufficiently independent for a routine

analysis. If {ee.), the average over all configurations
of &1, is zero, then ¢ and e, are sufficiently independent
for this purpose. By manipulating the moment formulae
(3.23)-(3.26) or by the second-order discussion of Sec.
3.3.5 we can show

(ae=p [ dzp(@)a(z)a(s)

+ (o [ @sp@ate o [ auptat). @39

The usefulness of this relation is that in certain cases
(3.34) can be shown to be zero by symmetry argu-
ments alone. For example, in several cases, such as
broadening by dislocations,

o [ @@tz =0,

and the second term of (3.34) vanishes. Specialising
to cubic crystals in which the p(z) retains the cubic
symmetry, we can choose & and e; to make the first
term of (3.34) vanish. This is done by selecting any
two different members of the set 2e,,— €z:— €4y, €zo— €4y,
oot ey teszy Coyteys, €yateay, and e 16, as & and e,
In an analysis of the line shapes, it should be a reason-
able approximation to treat € and e; as independent.
This is still an approximation, of course, as we have
not shown higher-order correlations to be zero.

3.3.5 Second-Order Terms

Sometimes a transition energy does not shift linearly
with the perturbation (say the local strain). These
resonance lines usually show a shift quadratic in the
perturbation

Tiww="Tuso+Fiwee'e”, (3.35)
where, in analogy with (3.4) and (3.5), €= D a.je;
and €’= ) i a;f’e;; are different linear combinations
of strain components. An equation similar to (3.35)
holds for the AM =2 and double quantum lines in the
spin resonance of MgO:Fe**3 In this section we at-
tempt to find the distribution of

Q=¢e'= Z e,-' Z ej//,
D i

where e/ =¢'(Z;), and so on. The line shape is then
simply found from 7(Q).

The difficulty of this calculation is that the contri-
butions of the various defects to €’¢” do not simply
add, although their contributions to ¢ and €’ sepa-
rately are additive. For this reason, the analysis of
Sec. 3.2 does not carry through, and further approxima-
tion is necessary. Here we give only a brief outline of
the method, which is described in detail elsewhere.”

(3.36)
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We can follow the previous section up to (3.17):

1@ = (¥ [ dp(an) -+

X f dznp(zy) S[Q—Q(z1, + -+, 2x) ]

== (1) I)N/ dx exp (1x%) /dZ1P(Zl)

X deNP(ZN) exp [—ixQ(z, + -, ZN)j

- -2— —I)N/_mdx

Xexp (12Q) /dzlfdzNé(zi, eee, (3.37)

).
The difficulty is that ®, given by

+, zy) =p(21) « - - p(ay) exp (—ix ; e/e’),

’ (3.38)

®(z, - -

does not factorise into N factors, each depending on
only one of the z;. This factorisation is crucial in Sec.
3.2, and is impossible here without further approxima-
tion.

There are three ways around this difficulty. Two of
these avoid the statistical method altogether. Thus,
one could assume some gualitative form for I(Q) and
then use the moments ({¢'¢’’), for example) to fix the
parameters which appear. This method has two diffi-
culties: the moments can diverge (Sec. 3.3.1), and it
is often hard to justify any particular qualitative form
for I(Q2). The moment approach can sometimes be
used when unresolved hyperfine structure causes broad-
ening, but is rarely useful otherwise. The second method
is to assume ¢ and ¢’ are uncorrelated and to find
I(Q) by a suitable convolution. This is often satisfac-
tory for analysing data; one would, however, prefer a
method which took the correlation of ¢ and €’ into
account.

The third method is based on (3.37) and (3.38)
and recognises that ¢’ and ¢ are not strictly independ-
ent. It is, however, still an approximate method. We
first split ®(z;, -+, 2y) symmetrically into NV fac-
tors f;:

<I>( 2, oo

N
) Zy) = I—-Ilf“
fz=P(Z¢) exp(—ixe/e/’)
Xexp [—i(3%) (e Z &' +e’ D &)

7

(3.39)

Each f; depends on all the NV coordinates {z1, *++, zv}

through the exponent:
v =1x(3e; E e/'-l— e D ¢).
=

The distribution of values of this exponent can be found
from first-order theory; if we treat ¢,/ and ¢,/ as known
coefficients, then ¢; is simply a linear combination of
the components of the local strain due to all defects
but the ith. We now average each f; over the distribu-
tion of values of the corresponding ¢,. The distribution
of ¢; is given by

(3.40)

- 1 (=
o)== [ ayesp iy exp[—J. ()], (3.4
2r J—oo

where

Tu9) = [ dupta {1—exp [=igo) ]} (3.42)

and
bi(w) =3[e/e” (u) +e’¢ (u) ]. (3.43)
The averaged f; is F;, where
Fi= [ 6160589 (3.4
and replaces
fi(¢:) =p () exp [—ix(ele!'+6:)].  (3.45)

This is, loosely speaking, a random phase type of ap-
proximation. We replace the (exact) product of the
fs by a product of averaged factors. The result is that
F; depends explicitly on 2; alone, the implicit depend-
ence on the other (N—1) coordinates being built into
1(¢). Since N is large, we can ignore the fact that the
average giving I is over (N—1) defects, rather than .
The product @ is now effectively factorised, in that it
is replaced by

N
=1
Explicit calculation shows

Fi=p(2:) exp [—ixe (z:)¢" () —p] (x, 2:) ],

where J () is given in (3.42) or, in more detail, as

(3.46)

J (@, 2:)

— [ dupu) (A= exp {—BiaTele () +e¢ ) T}).
(3.47)

This method of averaging can also be used in more
complicated cases with several second-order terms, e.g.,
e'e’4¢"’¢’"" replacing €’¢”’. The analogy with Sec. 3.2
can now be continued as the product can be factorised.
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The result is

1) = 51— f “ dx exp (ixQ) exp [—pT'(x)], (3.48)

where

T(x)= [ dep(s) (1—exp [—ine ()¢" () —pT (3, 5) ).
(3.49)

These three equations summarise the second-order re-
sult. It is, of course, considerably more complicated
than Sec. 3.2, and detailed justification and predic-
tions are given in Ref. 57. One simple result can be
derived however. By the use of the general expression
for moments (3.25), we can verify that the result for
the first moment (’¢’’) is given as (3.34). A previous
attempt to calculate second-order effects® dropped
(3.40) altogether. This is equivalent to averaging the
exponent in (3.39), rather than the whole product, and
the result is inconsistent with (3.34). There seems to
be no justification for this more drastic approximation.

3.4 Relation to Kubo~Tomita Theory

The three basic approaches in line-shape theory are
the statistical method, the method of moments, and
the Kubo-Tomita method.® The first two methods were
compared briefly in Sec. 3.3.1; here we compare the
statistical method with that of Kubo and Tomita,
basing our argument on Ref. 26.

The Kubo-Tomita theory predicts a line shape

1 o
Tin() = f_ dtexp (+ie)o(D),  (3.50)

where ¢(¢) is the relaxation function

6(t) = <exp(——i/0t5’(t) dt>>.

The average is over an ensemble of the random process
&(t); the random process is supposed to be a Gaussian
process. Thus, if wy, «+ -, wy are the values of &(¢) at NV
arbitrary times, the probability that they lie in ranges
dw; at w; (=1, N) is proportional to

(3.51)

N N
exp (—3% Z Z @ijwiw;) dwis s+ dwy.

=1 j=1

(3.52)

Further, the Gaussian process is stationary so that
correlation functions like (&(i47)&(f)) only depend
on 7. The statistical method, on the other hand, is
static rather than stationary; none of the variables are
time dependent. Furthermore, the statistical method
considers a Poisson process. All the w; are independent
but are governed by the same distribution function.
Equation (3.52) is replaced by the relation

D= e(zz) )

and

N
Pz, +++, zy) dzy»» ~dzy= H p(zz) dz;.
i1

If the inhomogeneous and homogeneous mechanisms
are independent, the resulting line shape is simply the
convolution of Ixr(w) and the inhomogeneous line
shape. This is valid when, for example, the transition
probabilities giving homogeneous broadening do not
vary appreciably with position in the inhomogeneous
line. More formally we can write

]_ (ool
I(w)= o /~ dx exp (ixw) ¢ (x) exp[—pJ (x/fiwr) ].

(3.53)

With this expression, there is no difficulty in going
from the extreme of complete, homogeneous broaden-
ing to the opposite extreme of inhomogeneous broad-
ening. This expression emphasises the value of working
with the Fourier transform of the line shape, since it
factorises into the product of a homogeneous part and
an inhomogeneous part.

4. THE CONTINUUM APPROXIMATION

The assumptions of Sec. 3 are sufficient to derive
general expressions for the line shape. To find the line
shape explicitly in any real case we must, in addition,
make assumptions about the specific forms of the per-
turbation field of the defects e(z) and the statistical
distribution of the defects p(z). Here we review one
very powerful set of assumptions and their application
to various broadening mechanisms.

4.1 The Continuum Approximation

In this section we will assume that the lattice is an
isotropic, homogeneous continuum. The perturbation
fields we use will be the usual continuum elastic strain
fields and the usual dielectric-continuum results for
the electric fields and field gradients. The statistical
distributions p(z) will take no account of the lattice
structure; the extension to include the discrete struc-
ture will be given in Sec. 5. Our only compromise with
an exact treatment is to assume that the defects cannot
approach within a radius R; of the centres whose tran-
sitions are observed and that the crystal has finite
radius R,. Wherever possible, however, we will assume
R, zero and R, unlimitedly large.

A second approximation is that the defects are dis-
tributed completely randomly with respect to the cen-
tres observed. In principle there is no difficulty in
dealing with other distributions apart from the prob-
lem of choice. In practice, however, the distributions
of the defects may be strongly inhomogeneous (an
example is the tendency of dislocations to form arrays
and subgrain boundaries), and the centre whose transi-
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tions are studied may be correlated with the defects.
Bullough and Newman?®® review the interaction of point
defects and dislocations and the cases where point de-
fects are bound to the dislocations. The transitions of
colour centres produced by irradiation may be broad-
ened largely by the strain fields of point defects pro-
duced at the same time, and again some correlation
of the centres and the defects may be expected. Simi-
larly, when the random fields and field gradients of
charged defects cause broadening, we may often expect
the distributions of positively and negatively charged
defects to be related for reasons of screening, in analogy
with the case of ions in solution discussed by Debye
and Hiickel.

More generally, for point defects which interact with
the centres, one should weight p(2) by exp [—¢(2) /kT],
where T is the temperature and ¢(z) the defect—centre
interaction energy. This weighting is exact for two-
body interactions ¢(z) in the limit of low defect con-
centrations.®:® These two restrictions are closely re-
lated to the two assumptions of the statistical method
contained in (3.9) and (3.10), i.e, the defects are un-
correlated and their contributions to the perturbation
field are additive. The assumption of complete random-
ness is that ¢(z)/k is much less than the lowest tem-
perature at which the defects are mobile. The cases
in which we might expect the assumption of randomness
to be quite good are those in which the centres observed
do not distort the lattice appreciably and have the
same charge as the ions they replace. Transition-metal
ions in MgO such as Fe*t, Co?*, and Mn?* satisfy
these requirements fairly well, as should F centres in
alkali halides.

One further point common to all the cases to be
discussed is the effect of the presence of the centre
studied on the local properties of the lattice. Near the
centre the elastic properties and the dielectric constant
will be altered, and the question is whether these
changes should be included in some way in calculating
the line shape (i.e., the intensity as a function of
energy). The answer is that these should #of be in-
cluded if the coupling coefficients used have been ob-
tained by observing the changes in transition energy
under externally applied electric fields or stresses. This
is equivalent to the assumption that the local-field
corrections needed because of the altered dielectric con-
stant near the centre are the same for the uniform,
externally applied field and for the nonuniform field
due to a charged defect. The corresponding assumption
in strain broadening is that the local change in force
constant affects the response to an external applied
stress and the stress field of a defect equally. These
points can be checked using the statistical method,
which shows that the perturbation field only varies
appreciably over distances of the order of the mean
defect separation. This is plausible intuitively, and it
confirms that at low defect concentrations, the pertur-

bation field is approximately uniform over the dimen-
sions of one of the centres studies. Thus, in general,
we will make no allowance for these local changes. As
a result the widths of the deduced distributions of
internal electric fields and internal strains will give
“effective” internal fields and “effective” strains, the
values which would give the correct local fields and
atomic positions if there were no local changes, rather
than the exact fields and atomic positions.

If, on the other hand, the coupling coefficients are
theoretical estimates based on the exact configuration
of the ligands or the exact applied field or field gradient
then local corrections must be made. These are nearly
always needed for the field-gradient case, as it is ex-
ceptionally difficult to measure the coupling coefficients
directly. For the field and field-gradient cases, we may
treat the centre whose transition is observed as a sphere
of dielectric constant k; in a lattice of static dielectric
constant kz. The relation between the field ¥’ and field
gradient V" with and without the local corrections is
then62,83

VL’ = Vo,[ ( K1+ 2K2) /3/(2]

Vi =V"[ (2k43ks) /55]. (4.2)

In these, the subscript L means the local corrections
are included and the subscript 0 omits all local correc-
tions. We will not give the corresponding results for
strains. Not only are they more complicated, but their
derivation uses more dubious assumptions about the
boundary conditions between the host and the defect.

We now apply the theory to various broadening
mechanisms. Detailed comparison with experiment is
postponed until Sec. 6.

(4.1)
and

4.2 Strain Broadening by Dislocationg!6:19:20

In the simplest example we consider an elastically
isotropic crystal in which the only strain sources are
straight-edge or screw dislocations.’® Each of the dis-
locations is described by five dislocations.!® Each of
the dislocations is described by five variables 7, b, 6, ¢,
and « which correspond to the z; used earlier. These
variables are shown in Fig. 2 for screw dislocations.
The variable 7 is the distance of the centre whose
transition is observed to the nearest point of the dis-
location line; & is the magnitude of the Burgers vector,
and the dislocation axis t is specified by the angles 8
and ¢. For edge dislocations, « is the angle between
b and r; for screw dislocations, a is shown in the
figure. The angle « is only necessary because of the
anisotropy of the dislocation strain field; the magni-
tude of a particular strain component referred to local
axes at the centre studied is not given uniquely by 7,
b, 6, and ¢.

It is an oversimplification to assume that the dis-
locations are pure edge or pure screw. A better assump-
tion is that the Burgers vectors b of the dislocations
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lie along a small number of directions determined by
the crystal structure. For example, the Burgers vectors
in MgO and Si (and analogous structures) are in the
(110) and equivalent directions and are of magnitude
V2a and (2v2/3)a, respectively, where @ is the nearest-
neighbour distance. The strain field of a dislocation
whose axis makes an angle n with its Burgers vector
is given by

(4.3)

where ¢,77" and e;,°d#° are the strain fields of pure-edge
and pure-screw dislocations with the same axis. The
strain field is a more complicated function than before,
as 7 is a function of 6, ¢ and b/ |b|. Some caution
must be taken to ensure « is defined consistently in
;"% and e;;?dee, We will write

G(Z) = (b/ﬂ'f)\P(o, 9, o, b/b)

for the strain field of a single straight dislocation in
an elastically isotropic crystal. This form is sufficiently
general to include the pure-screw and pure-edge cases,
in addition to the more realistic example just described.
The exact form of ¢ will also depend on which particu-
lar combination of strain components is of interest as
well as on the parameters describing the dislocation.

We assume that the dislocation distribution is sta-
tistically isotropic and homogeneous. By this we mean
that the axes of the dislocations are distributed iso-
tropically and that, for dislocations of given b and t,
the points of intersection of the dislocations with an
arbitrary plane are distributed homogeneously on the
plane. When we consider pure-edge dislocations we will
also assume the Burgers vectors are isotropically dis-
tributed. For an isotropic distribution the probability
that the dislocation axis lies within a particular solid
angle is simply proportional to the solid angle, i.e.,
to d¢ d sin . The probability of given values of  and
a is proportional to drr da for a distribution which is
homogeneous. Then integrals of the form [ dzp(2)f(z),
where f is an arbitrary function of 2, should be inter-
preted as

/‘:desinf)/:rdqﬁ‘/:’r da /derrf(o, ¢, 0,7) (4.5a)

€ij =€, cos 1+ ¢€;°%% sin 1,

(4.4)

Ry
for pure-edge or pure-screw dislocations or

T . 2 Zr
ZF.'/ dﬂsinﬂj dd:./ dx
s 0 0 0

R2
X drrf(G, $, a,7, b/ I b; l ) (45b)
¥:3}

if the Burgers vectors are restricted to discrete values
b;. In both these formulas we have omitted a constant
of proportionality; this simply cancels out in the line
shape. In the second expression we have assumed that
the fractional probability that the Burgers vector lies

L
XbisLocATION
Axis (8,90)

\or
N

POINT OF 7
OBSERVATION
4 B
/

Z AXIS

F1G. 2. The variables 8, ¢, , r and b for a screw dislocation.

along b; is F;, where

> Fi=1. (4.6)
In most of this section we will assume that the prob-
ability that there is a dislocation with vector b is ex-
actly equal to the probability that there is a dislocation
with vector —b but with the other parameters un-
altered. This assumption is implicit in our assumption
of isotropic axes and Burgers vectors for pure-edge or
-screw dislocations, but it must be made explicitly
when the Burgers vectors are only along discrete di-
rections.

The lower limit R; on the radial integral can be used
to take account of atomic structure of the lattice. We
will find, however, that in calculating I(e), it is a good
approximation to put R;=0. This would not be pos-
sible if we needed the moments of 7(e), since the strain
field of the dislocation diverges as 1/7 as » becomes
small. The upper limit R, simply means that we con-
sider a finite crystal; as R, becomes infinite, the usual
logarithmic divergences met in dislocation theory ap-
pear. Since a finite crystal is considered, 7(e) will depend
on the geometry of the surface and will be unreliable
for the small values of ¢ (of order 8/R;, typically 10-5)
for which dislocations near the surface are particularly
important. Recalling that linear elasticity [Eq. (3.9)]
is only valid for strains e less than about 1072, we see
that the calculated distribution of strains I(e) will
only be reliable for

1072>€> 1075, 4.7

The observed half-widths are typically 1074, so these
inequalities do not cause much difficulty in practice.

In calculating p, J(x), and I(e), we will assume

R,=0. Thus, for a sphere of radius R we have

= / d5p(z) = 4m°R2, (4.8)

If the total length of dislocation per unit volume is L,

including all possible Burgers vectors, the total length
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of dislocation in the crystal is $wR?L. The number
of dislocations N which pass through the sphere is
$7R3L/(mean length of dislocation) =7 R?L for a homo-
geneous distribution, so

p=N//dzp(z)=%.

This is, of course, independent of R.

J(x) is given by Egs. (3.22), (4.4), and (4.5). Thus,
for the case in which the Burgers vectors are along
specific directions only

T 2T 2m R
J(x)=ZF,~/ desinaf d¢/ da/ drd
U 0 0 0

X {1—cos [x(b/ar)¥ (6, ¢, a, bi/ | bs|)]}. (4.10)

This is evaluated in Appendix I, where it is shown
that for Ry=0

(4.9)

oJ (x)=22LB*(A—Bln|x|), (4.11)
in which
A=1{[0.9228+1n (wRy/b) Uo+Is} (8%,
B=Iz/87r3,

T 21 2T
L=>F.| dosin0 | do [ da|v],
= Tr o e | ely

T 27 2
L= F; [ dosing [ do [ de|¢ltln|y].
= EE e e delviiniy]

(4.12)

The line shape is given by our earlier result, (3.21),
and (4.11), as

I(e)=n"1 /m dx cos ex exp [—x2Lb?*(A—Blnx)].

(4.13)

If B were zero, this would describe a Gaussian shape,
for which pJ(x) is proportional to x?; the width of this
Gaussian would be proportional to LY2, the square
root of the dislocation density. The term Bln (x) re-
duces I(e) at larger values of e.

The qualitative form of I(e) is determined by the
integral over 7 in J(x); the subsequent integrals over
6, ¢, and « affect the magnitudes of the parameters 4
and B, but do not affect the functional form of I(e).
Thus, if the observed shape of a resonance line is
attributed to broadening by dislocations alone and it
has a shape qualitatively different from (4.13), then
either the dislocation distribution is inhomogeneous or
the centres observed are correlated in position with
the dislocations. If the correlation is important, both
the line shape and its width should differ from the
values predicted without it.

The assumption of isotropy for the dislocation dis-
tribution can be checked less directly. If I(e) can be

measured for several different combinations of strain
components (e, €, €/, <+, etc.), then the relative
widths of the corresponding distributions are sensitive
to the extent to which the dislocation distribution is
anisotropic.

We may also estimate the shift of the resonance
line when Burgers vectors b and —b are not equally
probable. In this case we must find the imaginary part
of J(x) which is, using (4.3a),

T 2m 2 Ra
ImJ(x)=ZF.~/ desina/ dqbf da/ drr
g 0 0 0

Xsin [x(b/mr)y]. (4.14)

This is calculated in Appendix I, where it is shown
that

LR d
pIm(J)=x[—-—éZF¢/ dag
dr 7 o

2 2
XSine./ (&ﬁ/ dapi(ey ¢; a)nﬁ(&, ¢; «, Z)]
0 0
=2xA,
(4.15)

in which p;(8, ¢, «) describes the (possibly anisotropic)
dislocation distribution; in the isotropic case p=1. We
see from (3.20) that the resonance line is shifted rigidly
by an amount — A proportional to L, b, and the crystal
dimension R. The shift is only finite if p; depends on
all of 6, ¢, and . Thus, the distribution of the dis-
location axes (given by 6, ¢) must be anisotropic, and
the defect distribution must also be inhomogeneous, so
that p; depends on c.

Crystals containing anisotropic, inhomogeneous dis-
location distributions usually show macroscopic distor-
tion. Faces which would be parallel in a perfect crystal
have slight angles between them. The angle for any
given pair of faces is proportional to LRbf, where R is
the separation of the faces and the numbers of disloca-
tions with Burgers vectors +b, —b are in the ratio
(14f) : (1—f). Thus, the shift of the resonance line,
A, is proportional to the change in the angle between
two of the external faces of the crystal. The constant
of proportionality depends on the choice of faces and
the p:(0, ¢, @). This proportionality is similar to results
for other broadening mechanisms where the shift proves
to be proportional to some macroscopically measure-
able quantity.

Strain broadening by dislocation dipoles: A dislocation
dipole is a pair of dislocations with parallel axes and
opposite Burgers vectors. Its strain field has the follow-
ing form at large distances 7 from the dipole:

e(z) = (0l/r)¥ (0, b, @, B, bi/ | b: ),

where all the variables except / and B are the same as
in the previous discussion; / is the separation of the
dislocations which constitute the dipole, and 3 specifies
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the orientation of the dipole. We show that unless
essentially every dislocation in a crystal is paired to
form a dipole, their contribution to the broadening is
negligible (contrary to the result of Ref. 20). We will
also show that the results give an alternative procedure
to that used in the discussion of dislocations (where we
assumed a finite crystal) for removing the apparent
divergence at large R,.

In Appendix IT we show that dipoles give a Lorentz
line of width

(L/327) | b1 | Zi-/‘:”w‘/fda/:wdﬁ/:docoso|¢l

if we were to assume the long-range form of ¢(z) valid
for all . The width is thus of order Lbl, as opposed to
order 1056LY2 for isolated dislocations. Dipoles are only
important if JLY? is large, and this is rarely the case.
If a fraction (1—f) of the dislocations in a crystal form
components of dipoles and a fraction f are present as
single dislocations, their respective contributions to the
width are $(1—f)Lbl and 10fLb. The dipolar contribu-
tion is largest when

1LY2/20> 12/ (1—f).

With /=100 & and L=102 cm/cc, the dipolar contribu-
tion dominates only if less than one-quarter of 19, of
the dislocations are present as isolated dislocations.
Dipoles can certainly be neglected at reasonable densi-
ties in real crystals.

We may, however, take advantage of the #? falloff
of the dipole strain field at large 7 to avoid the diver-
gence at large R; for isolated dislocations. The method
we describe has no major advantages but provides an
alternative which may be useful in some cases. For our
dislocation distribution we assume that for each dis-
location with a given axis and Burgers vector b there
is another dislocation with a parallel axis and Burgers
vector —b. We assume that on the average, the separa-
tion of these dislocations is Rs, of the order of normal
crystal dimensions. For 7<XR; we may neglect the cor-
relation between the dislocations and repeat the dis-
cussion as if for isolated dislocations. For >R, how-
ever, the 2 falloff means that the divergence at large
7 is eliminated without the need to introduce the singu-
larity of a crystal boundary. The separation R, is now
interpreted as a correlation length rather than a crys-
tal size.

4.3 Broadening Due to Point Defects by Random
Strains and Field Gradients?®1718

A point defect can perturb other centres by a num-
ber of different mechanisms: by the electric field or
field gradient of the defect or by mechanical distortion
which gives a strain field. For several cases the per-
turbation fields e(2z) are qualitatively identical. The
continuum form of the distribution function p(2) is,

of course, independent of the mechanism of interaction,
so we may treat all these mechanisms together.

The variables z for point defects are the Cartesian
coordinates (x;, ¥s, 2;) or polar coordinates (7, 8;, ¢:)
of the defect with respect to the centre studied. We
will label the different species of point defects in any
one crystal by &.

Since the defects are randomly distributed, we have

$(2) da~r? dr d¢ sin 0 db, (4.16)

and p=N/[ dzp(z) is simply the number of defects per
unit volume. The perturbation fields we consider in
this section all have the form

top= A (1/7%) [6apg— 3 (xas/7?) J= Ax[Was (8, ¢) /7],
(4.17)

where Ay is the strength of the defect. This excludes,
for example, broadening due to random electric field
of charged defects, which have a different form for
€(z) ; these will be treated in Sec. 4.4.

It is convenient to distinguish between strain broaden-
ing and electric-field-gradient broadening. The distinc-
tion is an artificial one in the sense that even un-
charged defects perturb other centres by disturbing
the distribution of the electronic and nuclear changes
near the centre, and the disturbance can be repre-
sented (to lowest order) by a field gradient. The divi-
sion into two types of mechanism—the effect of local
strain and the direct effect of the defect charge—is
useful for two reasons. First, the response of a centre
to strains is usually measured directly by observing
the resonance of a centre under external stress; the
response to a field gradient is usually calculated theo-
retically and so needs some sort of local-field correc-
tion. In NMR, additional corrections are needed for
antishielding and covalency effects.’ Second, sources
of strain (which may or may not be charged) produce
changes in the x-ray lattice parameter and macroscopic
size of the crystal. Charged defects which have the
same ionic radius as the ions they replace will only
change the lattice parameter if the crystal has a net
charge; usually, crystals are electrically neutral because
of charge compensation, so no alteration of lattice
parameter would be expected.

The two extreme cases are sometimes described as
the “‘size” and “‘charge” effects. They are the following:

(i) Strain broadening. Ay is the strength of the defect,
usually of order @®, where a is the nearest-neighbour
distance of the host lattice. In this case,

Uaf= €ap,y

where ¢ is the strain tensor, and we calculate the dis-
tribution of the dimensionless scalar

€= Z Qopglhap= Z (129 2.

The strength of the defect Ay is related to the volume

(4.18)
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dilation per defect By by

_ A {1420 (1-20)/(142) ]}
Q

=12a[(1—2)/(14») ](4:/Q), (4.19)

where we have assumed linear isotropic elasticity the-
ory and that the crystal has a large but finite radius;
Q is the atomic volume and » is Poisson’s ratio. These
expressions are most nearly exact in cases where the
impurity has the same charge as the ion or atom it
replaces, for example, K+ in NaCl or Si in Ge.

The other extreme is

(ii) Field-gradient broadening from the direct effect
of the defect treated as a point charge. This is the im-
portant mechanism when the net charge of the defect
differs from that of the ion it replaces (if any), but
which causes no appreciable strain; that is, the atomic
volumes of the displaced ions and the defect are closely
similar. Fe*+ in MgO is quite a good example. If we
expand the potential due to a defect about a centre at
x=0, then

V=V (0)+ X 2.(0V/3%) ot 5 (/) oot .

(4.20)

The first term V' (0) does not affect the transition en-
ergy. The second term, which gives the local electric
field, only affects the transition energy to first order
in special circumstances; these will be treated in more
detail in the next section. The third term, giving the
electric field gradient, is the one of interest here.

If the defect charge differs from that of the ion it
replaces by Z | ¢ |, then the field gradient has the form

Jel 2 ¥(6,6)
@ ket (7/a)%

It is simpler to calculate the distribution of a dimension-
less quantity, so we find the distribution of the field
gradient in units of | e | /a3. The strength of the defect
is then Ax=Z;a%/k.ss. The effective dielectric constant
is the static constant «o; if local corrections are needed,
then xesi= (3x01+2) /5, using (4.2) with ke=ro and x=1.
¥ In general, neither of these extremes is exact and
considerable care is needed in defining the strength A4;.
This difficulty has been recognised for a long time in
attempts to calculate defect strengths, interaction ener-
gies, and formation energies, and systematic treatments
of the electrical and mechanical effects are only now
becoming available.® One result is that it may be hard
to predict skifts of resonance lines accurately; there
are terms which appear in the strain case because the
crystal is finite,"but not in the field-gradient case, and
which may give difficulties in practice [see (4.23)].

" (iii) Magnetic dipole broadening. As this has been
treated in great detail by Grant and Strandberg we
simply draw attention to the close relation of their
work to the mechanisms treated in this section.

By,

VagE

(iv) Field broadewing from an electric dipole. This
will only be observed for centres without inversion
symmetry. For other centres the coupling coefficient
fiwy vanishes for reasons of parity. We define A4; as
Zi | €] Axa?/xets and calculate the distribution of some
combination of field components E,(|e]| /a?)~L The
dipole moment of the defect is ZyAx|e|, and #qg is
the 8 component of E( | e | /a?)~! due to the @ compo-
nent of the electrical dipole moment; ket here is g or
ko/%(k+2) depending on whether the local-field cor-
rections are needed or not.

The line shape is calculated in Appendix II using
(4.16) and (4.17). I(e) proves to be Lorentzian with
full width at half-intensity

%r(/:dOSinG/:WdtiJ[z//(O, ®) |>Xk:pklAk] (4.21)

shifted from its unperturbed position by

B %(/ofd“in”f:"dwlnwl ) > pde (422)

We give here the results generalised to cases where
there are several species of point defect present; ¢ is
D a8 Gagas by (4.18). The width and the shift are
both linear in the defect concentration.

Equation (4.22) is incomplete for strain broadening
in a finite crystal. The reason is that in a finite crystal
there must be no surface tractions on the free surface.
The main consequence is, as Eshelby showed,% a uni-
form dilatation® such that (in Cartesian coordinates)

e = (8r/3)[(1—=2)/(1+») ] };_‘, Arpr,

where v is Poisson’s ratio. The amended version of
(4.22) is
1

8r 1—2 o
(-3— " Z,,:"“““S/o asing [ d¢¢m|¢|>
X 2 medp.  (4.23)
k

The “Eshelby” term is more likely to be important in
optical transitions than in spin resonance. In spin reso-
nance the transition is one between states which mainly
differ in spin alone, so the transition is less sensitive
to hydrostatic pressure; Y o @aq is small. Optical tran-
sitions are between different electronic configurations
and may be very sensitive to hydrostatic pressure (see
Sec. 6.3, where the Eshelby term gives over 809 of
the total shift).

As in the case of dislocations, the shift is propor-
tional to another measureable quantity; for strain
broadening this is the fractional change in x-ray lattice
parameter, Aa/a. This and the fractional change in
macroscopic length, AL/L, are often measured in stud-
ies of radiation damage.?”:® They are given by

5L/L=1‘[Pi(Bi’_ 1) +p.(Bot 1) Jﬂa

da/a=3%(p:Bitp.B:)Q, (4.24)



A. M. StoNEHAM Inhomogeneously Broadened Resonance Lines in Solids 97

when specialised to the case where vacancies (») and
interstitials (¢) alone are present. It is clear that the
linewidth (4.21) gives information additional to §L/L
and da/e as it only involves the magnitudes of the
strengths of the defects, | Ay |. This should be particu-
larly valuable in cases (as in Si and Ge) where 4; and
4, have different signs.

4.4 Broadening by Random Electric Fields®

Since the electric field at a defect is a vector, it has
odd parity. The transition energy of a centre will only
change linearly with the field if the centre itself lacks
inversion symmetry so that its eigenstates have no
definite parity, or if there is a very close® state with
opposite parity to one of those between which the
transition occurs. For this reason far fewer centres are
sensitive to random electric fields than to strains or
field gradients.

As in the previous section (Sec. 4.3) the distribution
of the point defects which cause the broadening is

p(2) dz=72 dr sin 6 d do; (4.25)

p is again the number of defects per unit volume. The
perturbation is some linear combination of the compo-
nents of the electric field from one of the defects so
that we can always write ¢ in the form

szm‘l' byEyi+ szzi =b- Ei,

where b is a unit vector. If we choose b to be the polar
axis =0, then

ei~ | E;| cos0;=(—Z,| e| /xo) (cos 8/r2).

As it is convenient to make e dimensionless, we express
the electric field in units of | ¢ | /a2, so

€(2,) =—Z;a% cos 0;/r2. (4.26)
We have included #o local-field corrections in this ex-
pression. The line shape is evaluated in Appendix IV.
The main features are that the shape is that sometimes
known as the Holtsmark distribution,™

I(e) = l /m dx exp (ixe) exp [— A (x)%2], (4.27)
o2 Voo

which is intermediate between a Lorentzian and a
Gaussian, and that there is no shift of the line. The
absence of a shift is a direct consequence of our simple-
continuum approximation (4.25) in which inversion
symmetry is implicit. The shift comes from™a term in
pJ (%) which'is

. +1 e . [—zcosd
ip / do d(cos 6) / drr? sin (—-—-2—‘ x) ;
0 -1 Ry r
the integral over 6 vanishes because the integrand is an

odd function of cos@. In the discrete-lattice case (Sec.
5) the corresponding term does not vanish. The line-

width of the distribution of electric fields is™

7.5(lel/x) (Zk: pe | Z [*2)%5, (4.28)
where we have generalised the result to apply when
there are several defects of different charge present.

Despite the relatively complex form, several features
found in the previous cases recur. First, the width
depends only on the magnitudes of the charges and
not on their signs. Second, if we keep the distribution
unaltered and simply scale the strengths of the defects,
the linewidth scales in exactly the same way.

It is sometimes convenient to measure the peak-to-
peak differential width A’ of a resonance line instead
of its full width at half-intensity, A. For the shape given
by (4.27), A/A’ is 1.309, compared with 1.732 for a
Lorentzian and 0.9901 for a Gaussian.

4.5 Asymptotic Results at Large Perturbations

The line shape I(e¢) can be derived very directly
when the perturbation field e is large. In practise, the
results are only of use in the case of strain broadening
by dislocations, for in other cases the breakdown of
the continuum approximation leads to the appearance
of structure and satellite lines.

It is assumed that the contribution of one defect
alone dominates at large perturbations. Configurations
in which several defects are close to the centre studied
are ignored; this has some justification from the as-
sumption of low defect concentrations.

The probability that the nearest defect to the centre
studied lies between R and R+4dR of the centre is
W (R) dR, normalised so that

/  RW (R) =1.
0
If p(2) dz is proportional to R* dR, then
R
W(R)NR"<1— / er(r)) ,
0

where the second factor is the probability that there
is no defect closer than R. If the distribution is not
completely random (for example, of the defect and
centre interact with an interaction energy depending
on R), then we should include an extra function
¢(R) in p(2).

At very small R the integral

f )

is negligible, and W(R)~R". In the same range the
perturbation e(z) varies as R, The long-range con-
tinuum approximation for e will be used here, although
it is straightforward to treat a more general inter-
action. We can write e~R™ as R~¢ 1/ so R* dR can
be written as (¢Ym)me"Um de. Since I(e) de is pro-
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TaBiE I. Data used in estimating the ranges of importance of the
various mechanisms. The sources are given in Ref. 72. &

Property Si MgO
Static dielectric constant K, 12.0 9.8
Nearest-neighbor distance a (&) 2.35 2.104
(Volume per atom/a?) =V /a3 1.54 2.00
Burgers vector (&) 3.84 2.975
AV/V for neutral or anion vacancy  +0.6(72a) —0.4(72b)
Poisson’s ratio [ Voigt 0.218 0.172

average (72c) ]

portional to this,
I(e) de~(1/e+HDIm) de,

This is the asymptotic form of I(e), valid when the
perturbation is so large that one close defect dominates,
vet where the discrete crystal structure is not impor-
tant. For the specific cases of interest the results are
as follows:

(a) Strain broadening by dislocation (n=m=1);
I(e)~es.

(b) Strain broadening by point defects and equiva-
lent cases (=2, m=23);

I(e)~e?,

as expected for a Lorentzian line (Sec. 4.3).
(c) Electric-field broadening (n=m=2);

I(e)~e52,

It is hard to check these experimentally because the
wings of the resonance line are usually obscured by
noise and by other transitions. The 5234-A line due
to N centres in LiF 5 appears to be strain broadened
by dislocations, and its wings (i.e., beyond the points
of half-intensity) fall off roughly as e, where 4.5>
M>25. If this does illustrate the asymptotic form,
then the result suggests that the strain field diverges
less rapidly than 1/R near the dislocation, thus raising
M slightly. In practice, the technical difficulty of ana-
lysing the data makes it hard to be sure that the
region of validity of the asymptotic form has been
reached.

4.6 Ranges of Importance

Here we attempt to outline the circumstances in
which one would expect to detect one mechanism rather
than another. In general, it should be possible to detect
inhomogeneous broadening when the perturbation dis-
tributions have the following half-widths:

2107

>10°V/cm;

22108 V cmtecm™!
~5.10%(e/a?).

(1) strains
(ii) electric fields
(ii) electric field gradients

The inhomogeneous contribution may, of course, be
hidden by relaxation broadening or other effects. We
now calculate defect densities which give distributions
with these widths.

The circumstances which determine the relative im-
portance of the different mechanisms depend on the
defect species and the host lattice. To some extent
they also depend on the centre studied, in that electric
fields do not broaden lines from centres with inversion
symmetry to first order. Rather than present a multi-
tude of calculations for different defect species, centres,
and hosts, we present a set of ‘“typical” results for
silicon and magnesium oxide. Thus, we calculate the
concentration of a particular defect which gives a dis-
tribution of the width quoted above. The data used
are given in Table I?; no local field corrections are in-
cluded, so these results may underestimate the electric-
field-gradient contribution:

(i) Strain broadening:

Dislocation
density Point defects
Si 7X10° cm/cc 40 ppm
(neutral vacancy)
MgO 108 cm/cc 70 ppm

(anion vacancy).

(ii) Electric-field broadening by charges Ze:

Si Z=1 30 ppm
MgO Z=1 11 ppm
Z=2 4 ppm.

Very few centres in MgO lack inversion symmetry.
The R-like colour centres of Ref. 33 lack it and may
be sensitive to electric fields.

Very small defect concentrations are needed to give
large random fields. It may be possible to use these
random fields to test the symmetry of centres under
inversion. This is an extension of more direct Stark
effect experiments which suffer from the difficulties of
applying really large external electric fields:

(ili) Field-gradient broadening by charges Ze:

Si Z=1 130 ppm
MgO zZ=1 80 ppm
Z=2 40 ppm.

5. THE DISCRETE LATTICE

It is clear from our discussion of the isotropic con-
tinuum case that while the results were suggestive,
they would be invalid in real crystals because of the
atomic structure of the lattices. Corrections are neces-
sary for both the perturbation fields of the individual
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defects €(z) and for the distribution of the defects
with respect to the centres observed, given by p(z).
The effects of these changes are discussed here.

5.1 Qualitative Features

The continuum formulae for (2) fail in two respects.
First, they should be adequate at large distances from
the defect, but short-range corrections will be neces-
sary. The exact form of the corrections will depend on
the details of the defect and the lattice; such corrections
are found (in principle, at least) in atomistic calcula-
tions for defects.” In cases where these calculations
have not been made, the €¢(z) may be treated as em-
pirical parameters. The second failure of the simple
continuum e(z) is that it neglects the microscopic ani-
sotropy of all crystal lattices (even those which are
isotropic in macroscopic elasticity). In principle, of
course, anisotropy can be included in a continuum
model; in practice the problem is intractable. Thus,
some lines which are not broadened in a continuum
treatment may be broadened in this more exact ap-
proach. An example would be a line which shifted
linearly with the dilatation

fiw =Tiwo+Non ( ezetepte.2) .

In an isotropic, homogeneous continuum containing
only point defects the line would be sharp, as ¢,.+ e+ ¢..
is constant in space. In a real crystal, however, the
dilatation is not constant and the line will be broadened.
We will assume in this section that e(z) is a known
function of 2, and we will continue to assume that the
contributions of the various defects to e simply add
linearly. It is, in fact, no longer obvious that, for ex-
ample, linear elasticity is still valid very near to the
defects we are considering, and we will return to the
question of nonlinear effects later.

The statistical distribution function $(z) also differs
from its continuum value. The microscopic enisotropy
of the lattice is again important. In our discussion of
electric-field effects we found that the resonance line
was not shifted and that it was symmetric simply
because of the implicit inversion symmetry of the lat-
tice. Real lattices often lack this symmetry, so that
we may expect to find asymmetric or shifted lines in
practice. The inhomogeneity of the lattice has a more
profound effect. Essentially, the function $(z) has
sharp peaks which lead to structure in the resonance
lines. For example, if the defects are substitutional
point defects, p(2) is only finite when z=(r, ) corre-
sponds to a lattice site. This often leads to structure
in the form of satellite lines, and these have been
observed in NMR,”*% in EPR,”" in optical absorp-
tion by colour centres®® and transition-metal ions,®
and in Mé¢ssbauer transitions. In the case of strain
broadening by dislocations, we do not expect to see
such satellites. The atomic structure of the lattice does,
of course, limit the values of r for which p(z)=p(r, 1)

is finite to certain discrete positions. However, for a
given r there is an essentially continuous distribution
of the other variable n which gives the axis of the
dislocation and the direction and magnitude of its
Burgers vector. The distribution in # smears out any
structure of the line. In our discussion in Secs. 5.2 and
5.3 we will concentrate entirely on point defects.

5.2 The Structure of the Resonance Line*

In this section we show the origin of satellite lines
in more detail. We divide the crystal around the centres
whose transitions are observed into two regions. For
defects in the inner region (region I) the lattice is
treated as discrete, and in the outer one (region II)
we use the continuum approximations outlined in Sec. 4.
As a rough criterion in choosing the boundary between
the regions we may require that if we treated the whole
crystal as discrete and if there were no defects in the
inner region, then the resulting line shape should show
no significant resolvable structure.

In the inner (discrete) region the continuum forms
of p(2) and e(2) are not valid. We will define two
corresponding functions f, and e,; f, is the fractional
probability that there is a defect at the discrete site r
in the discrete state n. The correspondence between
f and p is that f,=pp(2) dz. Similarly we will replace
€(2) by e, and assume that f, and €, are known (here
unspecified) functions of 2. Care must be taken in
defining e,; for example, the strains in the continuum
case must be properly defined in terms of relative dis-
placements in the discrete case. The line shape is again
given by

I(e) = ——1— /m dx exp (ixe) exp [—pJ(x)], (5.1)
27 J—

in which pJ (%) is now given by

pJ (x) = Zlfztl—exp (—ize;) ]

o [ dsp(s) {1—exp [—ine(s) T}
II

pJ (%) =— zI:fz exp(—ixe,)

+( 2 pte [ dzp(z) [1—exp [—ine()])

=— Elf, exp (—ixe,) +pJ (). (5.2)
We have transferred ), 1f,, the probability that there
is a defect in region I, to the continuum-contribution
to pJ.(x) simply because we will find later that there
is a term in the contribution from region IT with which
it tends to cancel. It is a constant and, in any case,
makes essentially no difference to the line shape or
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width. Substituting (5.2) in (5.1)
1 )
I(e) = ——/ dx exp (ixe) exp [+ D f. exp (—ixe,)]
2r /o 1
Xexp [—pJo(x)]
_ L / " dx exp (ive) J
=5 % exp (ixe) exp [—pJc(x) ]

X[+ Zlf, exp(—ize,)+++ -]
—_ 1 = N
= o= [ arew (120 ewp [~p()]
+ 3 £(2m) [ e exp Lin(e—e) Texp [—p/u(a)]

+3 Ei:lefzz(%r)‘l /;m dx exp [1x(e—es—ez,) ]

Xexp [—pJ(x) JH+higher terms. (5.3)

In expanding the exponential, low concentrations are
assumed so that the f, are small. The final expression
(5.3) shows that I(e) consists of a main line (given
by the first term) on which is superposed satellite lines
with the same shape and of relative intensity f, centred
on €, and so on. The assumption of low concentrations
actually takes a slightly different form here than in
the discussion of Sec. 3. Here we want the f, small so
that only a few terms in (5.3) need be considered. In
Sec. 3 we wanted the distribution of the defects to
factorise into a product of factors such as p(z), and
configurations in which two defects were at the same
lattice site caused difficulty. In the expansion in (5.3),
it is trivial to exclude such configurations by omitting
terms which contain squares or higher powers of f, for
any particular z.

The expansion also suggests that a Monte Carlo
treatment might give useful results. This would cal-
culate e for a large number of randomly selected con-
figurations of defects within a relatively large region I.
Such a calculation has been made in Ref. 79 for the
line shape of Cr®* in ZnWO; and was able to predict
the appearance of satellite lines.

5.3 Relation to the Continuum Approximation

The shape of the main line is given by

1 fo
Tau(e) = — / dx exp (ixe) exp [—plo(x) ], (5.4)
27!‘ —c0

Apart from a rigid shift and corrections for nonlinear
terms, discussed later, the shape of the satellites is
given by the same function. This line shape is, in
general, different from the line shape Iy(e) calculated
using the continuum approximation for the whole crys-
tal. The exclusion of region I in calculating pJ.(x) is
reflected in the line shape Iz (e). What we find, how-

ever, is that Io(e) and I (e) will often be sufficiently
similar so that for practical purposes we may ignore
the difference between them. Qualitatively the reason
is this. The usual choice of the region to be treated
discretely is the region within a sphere of radius R of
the centre observed. If R is reasonably small, then
a defect at most of the sites within the sphere would
produce a large perturbation, appreciably larger than
the perturbation corresponding to the half-width of the
line. Thus, on the whole, the elimination of the region I
only affects the far wings of the resonance line, and
changes here are generally unobservable. This argu-
ment is, of course, an oversimplification. Defects at
some positions within R sometimes produce small per-
turbations, usually for symmetry reasons. By eliminat-
ing region I in calculating I (e¢) we expect to find
differences between Iy(e) and Iy(e) of the order of
the fraction of the defect configurations which have
defects at sites within R giving small perturbations.
This fraction is generally small and independent of
concentration for random defects.

Exactly the same conclusions hold quantitatively.
When J.(x) is calculated explicitly (as in the Appen-
dices), we find pJ, differs from its value when R=0 by
two types of term. The first is (D, f,—4rR%), which
is identically zero for a completely random defect dis-
tribution and which, in any case, only introduces a
constant factor into Iy (e). The second type of term
vanishes when R=0 and may be expanded as a func-
tion of 1/xe(R). Here e(R) is the perturbation in the
continuum approximation for a defect at the boundary
between regions I and II. In general ¢(0) is infinite.
As the line shape is found from the Fourier transform
(5.1), the half-width of the line ey, is of order 1/%, so
the expansion parameter is eys/e(R). Again we see
that those defect positions where ¢(R) is small cause
problems, but that in general es/e(R) is small if R is
small. Estimates of upper limits for R for this expan-
sion to be acceptable are generally in the region of
10-15 . As a working approximation we find, there-
fore, that the shape of the main line Iy (e) is usually
given to sufficient accuracy by the continuum approxi-
mation with R=0.

Nonlinear effects may cause deviations from this
rule for the satellite lines which, from (5.3), should
have the same shape as the main line. As the perturba-
tion from a nearby defect is usually large the defect
may cause changes in the local elastic constants or
dielectric constants. These will primarily affect the
coupling coefficients, fiwias; or fiwe; of (3.1) and (3.2).
The main result is likely to be a change of scale of the
satellite line; that is, a change in width without change
in qualitative shape.

5.4 Broadening from Hyperfine Structure?!.4:83

The electrons associated with colour centres spread
over atoms adjacent to the centre, and the hyperfine
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interaction of these defect electrons with the nuclei
of the neighbours broadens the spin resonance lines of
the defect. For relatively compact centres, such as the
F centre in alkali halides, the lattice must be treated
as discrete. When this is coupled with the practical
difficulty of calculating pJ, of (5.2), it can be seen
that the statistical method is not very helpful. The
moment method proves to be a useful substitute.®#
The transition energy in EPR is

ﬁw=ﬁwo—{— Z d"I,,', (55)
where I; is the spin of the ith nucleus and a; is a hyper-
fine coupling constant which can be measured in a
separate ENDOR experiment, for example. The sum
is over all nuclei in the crystal. Their distribution is
known when the crystal structure near the defect is
known. The second and fourth moments of the line
shape can be found from (3.26) or (3.27); we follow
Ref. 83 in using (3.27) since the line is symmetric
when the temperature is appreciably larger than a;/k.
Then,

(i (wo—w)?)=} 2 a?L(I+1), (5.6)

(P (w—wo))=1% Z adfl(IA-1)[T:(I:+1)—%]

+31 3 > ataI2(IA41) (5.7)
>j 7
Moments can only predict a linewidth, given a reason-
able qualitative assumption about the shape. The as-
sumption here is that the shape is Gaussian. It can be
shown quite easily®'® that if the perturbations from
all the IV defects are of the same magnitude but of
either sign, then the line shape tends to Gaussian in
the limit of large N. This is an example of the central
limit theorem.® For the hyperfine interaction all the
nuclei in a shell of atoms around the centre have the
same a; and have I,; which are positive and negative
with equal probability. The number of atoms in each
shell (of order 10) is large enough to make the assump-
tion of a Gaussian plausible. The envelope of the EPR
line is thus Gaussian of width

(31n2)2[ 3 a2L(1:41) T (5.8)
We can make drastic assumptions and calculate the
continuum result corresponding to (5.8). This is par-
ticularly useful in estimating the effect of summing
over only a few shells in (5.8) and ignoring nuclei in
more distant shells. As an approximation we assume

that a./,; of (5.5) is replaced by
e(z:) =4 exp(—ary), (5.9)
as the defect-electron wave function falls off roughly
exponentially. Ignoring the interaction with shells in-
side a radius R and assuming a Gaussian shape, the
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width due to these distant nuclei alone is Ag, where
Ag?=2In 2(dmpA?) / " dr exp (—2ar);  (5.10)
R

p is the number of nuclei per unit volume. Alternatively,
we may use the approximate method of Sec. 3.2. This
makes no assumptions (or predictions) about the shape.
In the limit where the linewidth A, is appreciably
larger than 4 exp (—aR), the function F (%) of (3.28)
tends to 3. This limit is approached for widespread
wave functions (« small) and large R. Equation (3.28)
yields

Ag=3(dmpA?) f T i exp (—2ar),  (5.11)
R

so that Au~1.47Aq. The agreement between A4 and
Ag improves when (3.28) is solved graphically. When
the nuclei inside R are the only ones considered, dis-
crete lines result. The nuclei outside R broaden these
discrete lines by about A4. This additional broadening
is negligible if A4 is appreciably less than (5.8), which
gives the spread of the component lines due to the
nuclei within the “discrete” region.

6. COMPARISON WITH EXPERIMENT

In the previous sections it has been shown that the
shapes of inhomogeneous resonance lines can be calcu-
lated in terms of various properties of the defects
causing broadening and of the centre whose transitions
are observed. Thus, one needs to know the defect
perturbation field €(2), the defect concentration p, and
the distribution of these defects with respect to the
centres observed. Similarly, the coupling coefficients
[the fiwa:; of (3.1) and the %wie; of (3.2)] must be
known, and one must be able to separate the inhomo-
geneous broadening from any other contributions pres-
ent. Ideally, one would like to measure the defect dis-
tribution and concentration in the crystals for which
the line shapes were measured. This ideal is rarely
achieved. In other cases one has to be content with
concentrations obtained from different specimens or
from the starting material used to grow the crystals,
and it is usual to resort to a continuum approximation
for the distribution.

The various mechanisms will be discussed in the
same order as in Secs. 4 and 5. Thus, we treat strain
broadening by dislocations and by point defects and
broadening by random electric field gradients, random
electric fields, and by hyperfine interaction. No attempt
is made to describe all experiments on inhomogeneous
broadening; the experiments described are those for
which the most detailed comparison of theory and ex-
periment is possible.

6.1 Strain Broadening by Dislocations

This is one of the most common examples of inhomo-
geneous broadening, simply because of the practical
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TasrE II. Full widths at half-intensity of strain distributions
calculated from spin resonance data for ions in MgO. The strains
are in units of 1074 ey is 2¢,,— sz —€yy and e 1S ay+€y:1-€2z,
where we do not use engineering notations. The references given
are Refs. 89 (a)-(h).

Ion Ref. €01 e o/t
Cr3t a 1.7
Mn2t 1.8
c 2.0 0.64 3.1
Fe3t c 2.1 0.53
Fert d 2.0 0.60 3.2
b 1.7 0.69 2.5
Felt e 1.5
Co*+ f 2.3
g(ENDOR) 2.8 2.8 1.0
Niz+ h 0 0.64 3.1
Theory 16 0.7 0.3 2.3

difficulty of growing crystals with low dislocation densi-
ties. The optical, EPR, and ENDOR properties of
MgO doped with transition-metal ions provide com-
prehensive data for comparison with theory. We con-
centrate on the spin-resonance data, since the form of
€= Y a;e; depends on only the direction of the mag-
netic field for ions in cubic sites, and data from differ-
ent ionic species may be compared. When the field is
along the [001] axis, € is €1 =2¢,,— €,.— €,,; When the
field is along the [1117] axis, € is ex+ eyt €m=€n. As
the coupling coefficients %w; are known from other
experiments,:40.50.8-88 the observed spin resonance line-
widths can be used to give the full widths at hali-
intensity of the distributions of €y and €. These are
given in Table IT'%-®; the differences arise partly from
the analysis of the data (for example, it is often hard
to subtract off the dipolar contribution to the width)
and partly from differences in the defect content of
the specimens. All the data have been analysed by the
present author to ensure common notation.

For dislocations the strength of a defect is the length
of the Burgers vector. This is mainly determined by
the crystal structure; for MgO the Burgers vectors are
oriented along (110) directions; their length is VZa,
where @=2.104 A is the nearest-neighbor distance.
Lang and Miuscov® have studied the dislocation struc-
ture of MgO. They find the dislocation distribution
to be markedly inhomogeneous with the dislocations
concentrated into polygonal cell walls within individual
subgrains. The precise structure depended on the source
of the crystals and thus on their mechanical and ther-
mal history. The total dislocation content in one par-
ticularly good crystal was estimated to be 2.5X10°
cm/cc. ‘

Any comparison of the continuum theory Sec. (4)
with data for MgO must note some important differ-
ences. In the real crystal the dislocations are not
straight nor are they distributed homogeneously. Fur-

thermore, the distribution of the magnetic ions with
respect to the dislocations is not known; any tendency
to congregate near the dislocations is omitted in the
theory. These differences will lead to differences be-
tween the predicted and observed line shapes. In addi-
tion, the crystals used in the experiments from which
the results in Table II were culled may have been
appreciably poorer than those used by Lang and
Miuscov. We will adopt a dislocation density L=
5X105 cm/cc to take some account of the greater
imperfection.

The observed shapes of the I(e) are nearly Lorentz-
ian 3 although there is some dependence on the com-
ponent of strain studied.® Thus, the observed I (ey1)
appears to be remarkably Lorentzian, whereas I(em)
shows a slight tendency to Gaussian, being narrower
in the wings. The predicted shapes in both cases are
nearly Gaussian, being given by Eq. (4.13). The differ-
ence between the predicted and observed shapes is
attributed to the assumption of a homogeneous dis-
location distribution. This view is supported by the
zero phonon line shapes of colour centres in NaCl, as
these (described later in Sec. 6.2) are nearly Gaussian
when broadened by dislocations. The simple continuum
theory does, however, predict the change of line shape
with strain component correctly. The ratio of 4 and
B of (4.13) depends on the form of ¢ (0, ¢, «), and
this, in turn, depends on the component of strain
considered. The ratio varies within quite narrow limits
and predicts that the line shape I(em:) should be nar-
rower in the wings than I (o) .®

The calculated widths for e and e are 0.7X10~*
and 0.3X10™* respectively, for a dislocation density
of 5X 105 cm/cc. For MgO: Fe* these would correspond
to linewidths of 250 and 175 G at X band. Although
these are of the right order of magnitude, they are
rather less than the observed widths of about 600 and
350 G. To give the same half-widths, a dislocation
density L of about 3)X10% cm/cc would be needed, as
the linewidth varies roughly as LV2. This is about an
order of magnitude larger than the estimate of Ref. 90.
Part (and possibly most) of the discrepancy can be
attributed to the neglect of the subgrain structure,
which is also responsible for the differences of the
observed and calculated line shapes. The remaining
differences in width reflect a higher dislocation density
in the crystals used than in the crystals of relatively
high perfection studied in Ref. 90.

The ratio of the widths, e/, is predicted to be
2.3. This is within the rather broad limits set by ex-
periment. This verifies, very crudely, the assumption
of (110) Burger’s vectors and isotropically distributed
dislocation axes.

In summary, the line shape is not predicted well; on
the other hand, the predicted variation of the shape
and width with the magnetic field direction and the
magnitude of the width agree well with experiment.
The discrepancies can probably be attributed to the
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complexity of the real dislocation structure as com-
pared with the simple model assumed.

6.2 Strain Broadening by Point Defects

The defects considered here are elastic misfits but
have the same charge as the ions they replace. Thus,
only the “size” effect is important. The best examples
are given by the mixed alkali halide systems, for ex-
ample NaCl,_,Br,. These systems were used in early
NMR experiments,” although the particular param-
eters of those experiments are not suitable for an accu-
rate quantitative test of the theory. More recent ex-
periments have shown the effect of strain broadening
on the zero-phonon line of the N, centre in NaCl.# The
results are described here.

The defect concentrations in mixed crystals were in
the range 0.1-1.0 mole 9, and were measured chemi-
cally. The strengths of the defects are found from the
change in lattice parameter per defect (the details are
given in Appendix V). Since the concentrations were
low and neither the colour centres studied nor the
defects themselves are charge misfits, it is reasonable
to assume that both are randomly distributed, and
the line shapes observed seem to confirm this. The
only remaining parameters needed are the coupling
coefficients of the colour centres to the local strain.
These were found in separate experiments in which
external uniaxial stresses were applied.®

The experiments used NaCl crystals doped with one
of the following ions: Lit, K+ F~, Br~, or I~. The
only real differences between the different dopings arose
from the different strengths of the various defects.
There were also some differences in the satellite lines.

The predicted line shape was confirmed. At low defect
concentrations the zero-phonon line is strain broadened
by dislocations and is nearly Gaussian in shape. As
the point-defect concentration is increased the line be-
comes progressively Lorentzian. The agreement of the
observed line shape with theory and the fact that the
chemical nature of the defects is unimportant both
tend to confirm that the defects and colour centre are
distributed at random.

The line shift, the point-defect contribution to the
linewidth, the fractional change in x-ray lattice param-
eter, and the concentration should all be related linearly.
This is observed. The ratio of shift and width does not
depend on the defect strength nor on the absolute mag-
nitude of the coupling coefficients. It does, however,
depend on Poisson’s ratio ». This is not uniquely defined
for cubic crystals, although there are fairly severe lim-
its (for NaCl 0.167<»<0.363). The value »=0.2 gives
best agreement with experiment, although it is smaller
than the Voigt value of 0.238. The same choice of »
works equally well for all the chemically different spe-
cies of defect. With this choice of », roughly 879 of
the shift comes from the Eshelby term in (4.23). The
ratio of shift to change in lattice parameter depends

on the coupling coefficients 7wia;; but not on the
strengths of the defects. There is a discrepancy here
as the ratio of shift to lattice parameter change is
some 309 more than predicted. Up to half this differ-
ence may come from errors in the coupling coefficients;
the remainder is not yet understood. Possibly, the
rest comes from the effects of anisotropy or from dif-
ferences in the displacements of the anions and cation
lattices.1%8

The defects also introduce satellite lines. These satel-
lites appear to have the same shape as the main line
(consistent with the predictions of Sec. 5.2) but it is
difficult to establish the exact atomic configurations
which give rise to them.

6.3 Broadening by Random Field Gradients

Point defects can be charge misfits as well as elastic
misfits. Because centres sensitive to strains are also
sensitive to field gradients, the charge itself can cause
broadening. When both electrostatic and elastic effects
are important, the results may be hard to interpret,
as was discussed in Sec. 4.3. Here we consider the
“charge” effect rather than the ‘“size” effect.

No case of a charge misfit which is not an elastic
misfit seems to be given in the literature. The closest
appears to be MgO:Er%, where Er** has an ionic
radius some 35% larger than that of the Mg?* it re-
places.®® Even here the ‘size” and ‘“charge” effects
should be comparable. In this system, random field
gradients appear to broaden the EPR line.’® The Er?t
is both the centre whose transitions are studied and
also one of the defects responsible for the broadening.

In Ref. 18 the defect concentration was estimated
from the degree of doping of the MgO and was checked
later by direct measurement. The coupling coefficients
were not measured but estimated theoretically. These
calculations are very similar in nature to the calcula-
tions of spin-lattice coupling coefficients which have
proved reliable in rough order of magnitude.® The
theoretical values need a local field correction, as in
Eq. (4.2).% In view of the approximations, including
the neglect of other species present for charge compen-
sation, the predicted and observed linewidths are in
acceptable agreement. In addition the dependence of
the width on magnetic field orientation is satisfactory.
No attempt was made to check the concentration de-
pendence of the width or to subtract off the contribu-
tion of the dislocation strain broadening.

The line shape observed was nearly Lorentzian. This
agrees with the predicted shape, although it should
be noted that other mechanisms which may have been
important make the same prediction (notably strain
broadening by point defects and, possibly, by disloca-
tions in subgrain boundaries).

6.4 Broadening by Random Electric Fields

This is only important when the centres studied are
at sites which lack inversion symmetry. The shift in
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TasLe III. A comparison of F-center linewidths observed and
predicted. The table is taken in part from Ref. 44; Refs. 97
(a)—(d) gives the original references.

Measured width Predicted width

Crystal (gauss) (gauss)

LiCl 68 a 90

NaCl 165 a, b 190

NaBr 353 a 240

RbBr 450 (natural) ¢ 360(¥Rb), 750(]Rb)
RbI 750 (natural) ¢ 440(%Rb), 790(Rb)
CsCl 800 d 1020

energy due to internal electric field is, of course, just
the Stark effect of conventional spectroscopy.

Most of the work on this mechanism has been done
on the tungstates doped with paramagnetic ions, in
particular CaWO; containing Ce*, Er*, and Mn>*
(Ref. 15) and ZnWO,: Cr**.” The magnetic ions sub-
stitute for the divalent cations and are at sites with
Sy point symmetry. The charged defects which cause
the random electric fields are mainly the magnetic ions
themselves (when they are not divalent), other ions
which have been introduced for charge compensation,
and the vacancies remaining after crystallisation from
the melt. The concentrations of impurity ions can be
measured chemically.’ It is harder to obtain the con-
centration of intrinsic defects, although data taken
near the melting point of CaWO; are available®® and
provide an upper limit to the vacancy concentration.
The coupling coefficients [the a; of Eq. (3.2)] are
found by observing the shift of the resonance line under
an external applied electric field.® The strengths of
the defects are known in terms of their charge and of
the host-crystal dielectric constant.

Experiment and theory are in accord. The line shapes
observed are intermediate between Gaussian and Lo-
rentzian. The shapes observed in Ref. 15 were close
to the Holtsmark shape predicted, whereas those of
Ref. 79 were between the Holtsmark and Lorentz
shapes. The enhanced intensity in the wings found in
Ref. 79 may be due to correlation between the Cr®*
ions and the Lit+ added for charge compensation. Satel-
lite lines have been detected due to defects close to
magnetic ions,” but it has not proved possible to sort
out the detailed configurations concerned. The pre-
dicted widths agree reasonably with those observed.
For example, in ZnWO,: Cr*+ charge compensated with
Li*+, the predicted width at a Cr* concentration of
0.05% is 0.9X10° V/cm; the experimental width is
1.18X10° V/cm.” Similar agreement is reported in
CaWO.*® The width depends on the magnetic field
direction and on the concentration of defects. The
concentration dependence is confirmed approximately,
being (concentration)!? rather than the dependence
(concentration)?? expected.” The dependence on mag-
netic field orientation has also been verified.?®” This
dependence was one of the first observations which

suggested the resonance lines were inhomogeneously
broadened by random electric fields (see Sec. 2).

6.5 Broadening from Unresolved Hyperfine Structure

Electrons trapped at negative-ion vacancies in alkali
halides (F centres) have spin resonance lines broadened
by hyperfine interaction with the nuclei of the host
lattice. The F centre wave function is fairly compact,
so that the interaction is only important over a short
range from the centre. As a result, continuum models
are not really adequate, and it was necessary to recog-
nise the discreteness of the lattice. However, semi-
quantitative arguments can be given (Refs. 9, 16, 83;
see also Sec. 5.3) suggesting a Gaussian line shape for
which the width can be found from the second moment.

The distribution and concentration of the nuclei
which cause the broadening are known in this case,
as the lattice structure and isotopic abundances are
known. Some allowance for local distortion of the lat-
tice should be made, but this is rarely important for
the linewidth. It is much harder to obtain the perturba-
tion field e(z). The only really satisfactory way is to
resolve the hyperfine structure by ENDOR and to
measure the parameters directly. A less satisfactory
alternative is to use a purely theoretical estimate. When
€(2) is known, all the necessary data are available.

The observed lines are indeed Gaussian, and it can
be seen from Table III that the widths are given with
reasonable accuracy.

7. CONCLUSION

In this review the most fruitful method of calculat-
ing inhomogeneous line shapes has been the statistical
method. Other approaches, particularly the moment
method, are sometimes useful. The predictions have
been compared with experiment for a number of broad-
ening mechanisms with satisfactory agreement. The
discrepancies are often the result of incomplete experi-
mental data; there is a strong case for checking the
theory by further experiments in which all the impor-
tant parameters are measured.

The theory also predicts the relative magnitudes of
the various inhomogeneous mechanisms (see especially
Sec. 4.6). When the mechanism is known the observed
shapes and widths can be used in several ways. First,
some information can be obtained about the distribu-
tion of the centres studied relative to the defects. Thus
the relative distribution of two different types of centre
can be compared, at least qualitatively, to see if one
centre is more strongly correlated with the defects
than the other. In principle, the distribution function
#(2) can be obtained from the line shape, but the
practical difficulties of inverting the fundamental equa-
tions [(3.13), (3.19), and (3.20) ] with an experimen-
tally determined I(e) are immense. Second, one can
compare the response of different centres of the internal
perturbation field. If they are assumed to experience
the same distribution of perturbations, then the widths
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of the resonance lines in the two cases gives a measure
of the coupling coefficients (%v@;; or fiwi; in our earlier
notation) of these centres. This can be done for strains
in the lattice (see, for example, Ref. 88) and should
be even more useful for random electric fields. In the
case of broadening of electric fields, the coupling coeffi-
cients should tell if the centre involved has inversion
symmetry and thus distinguish between various models
of the centre. Third, one can obtain an estimate of the
strength of the defects responsible for the broadening,
for example the A for point defects described in (4.17).
This may prove useful when several species of point
defect are involved, for the linewidth depends only
on the magnitudes | Ax | of the strengths. Other meas-
urements, such as the fractional change in x-ray lattice
parameter or in macroscopic length, depend on the
relative signs of the A for the various defects; the
cancellation between the effects of defects with opposite
sign strengths makes analysis of these cases difficult.

The problems remaining lie in more complicated situ-
ations. The treatment of cases where second-order
effects are important is still incomplete. Also, more
realistic models than the continuum approximation of
Sec. 4 are needed; one example would be to take ac-
count of the subgrain structure in crystals with dis-
locations. It remains to be seen if the statistical method
is as fruitful in these situations.
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APPENDIX I: STRAIN BROADENING
BY DISLOCATIONS

Here we calculate J(x) and I(e). J(x) is
T 21 27 Ra
ZF,-/ dﬂsin(}/ dd)/ da drr
i 0 0 0 R1

X{1—exp[—ix(b/mr)¢y]}. (Al1)
We concentrate on the inner integral. Its real part is

Ra b 1 %
/ drr [l—cos (x—xp)]:Rgz/ dvv(l—cos —)
R1 wr Ri1lR2 v

=5Ru*{ f(u) —flu(Ro/R1) ]}, (A1.2)
where v=7/R,, u=2x(b/wRs)¥, and

F(@)=[L(1—cos #)/#]+[(sin £) /t]—Ci(1).
Ci(¢) is the cosine integral of Jahnke and Emde.® It
is straightforward to show that Ry=0 is a good ap-
proximation. Using the asymptotic form of Ci(¢) for
small ¢ (A1.2) becomes §R4[0.9228+1n (1/ |%]|)].
Combining this with (A1.1) we obtain (4.11 and 4.12).
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In practice the integrals

= ;F;Aﬂdﬂsinoézwwj;zrda|¢[2,

I= ZiF‘/:dﬂsinO'/ohM/:’da[¢|2lnl¢l

are obtained by numerical integration.
The imaginary part of the inner integral in (A1.1) is

R3 b 1
drr sin (x — ¢)= Ry? / dwv sin (/)
wr Ri/R2

=R ' (u) —f [u(Re/R0) 1},

B

in which
f()=Si(¢)+ (sin t/£) 4 (cos t/£).
Si(¢) is the sine integral of Jahnke and Emde. Again

R1=0 is a good approximation, and with the asymp-
totic form of Si(¢) we obtain (4.15).

APPENDIX II: BROADENING BY
DISLOCATION DIPOLES

For simplicity of notation we abbreviate (6, ¢, a, 8,
b;/|b|) by @ and denote the corresponding sums
and integrals over these variables by [ d. J (x) is given
by (3.22), where p(z) dz~r dr and e(z)~bly(Q) /72
Thus,

J(x) = /dﬂ j:zdrr{l—cos [xbly(Q)r27}.

The substitution y= | [xbly(Q)]/7*| simplifies this.
Making the further approximations Rr—0 and Ry—,
we have

J(z)= %fdmxw(sz) |/°°dy
0

1—cosy
y2

=i1r|x[bl/dﬂ|;b].

Recalling that p=L/8x? for dipoles, the result of Sec.
4.2 is obtained.

APPENDIX III: STRAIN BROADENING
BY POINT DEFECTS

Here we calculate
Ro x
oJ (%) =p f d / drr [l—exp (—i,w —)]
R1 73
R2 X
=p f dﬂf drr? [l—cos (Agb —3)]
Ry 7

R2
+ip f & / dre® sin (A¢ ri:) (A3.1)

RB1
The integral over @ is simply an integral over angles:

T 2T
fdQE/ dﬁsin()/ do.
0 0
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The substitutions y=1/7%, Y =1/Ry*, and B=AV¥x re-
duce (A3.1) to the form

1 Y {—cosB
J(x) == / do [ ay——82
3 /RS y?
Y 2 B
+1 / i [ a2 (A32)
1/R23 y

The first term [the real part of J(x)] presents no
difficulties in the limit Ry—c0, that is, for an unlimitedly
large crystal. Direct integration yields

Re[/(1=3(1411=]) [ da|v]si(
+1R? f dQ cos (A¢ ;{%) —4rR3 (A3.3)

X
Ay —
‘//Rﬁ

Si (x) is the sine integral of Ref. 98. Re (J) is also
finite when R;—0 when

ReJ(x)=%1r]A|]x[(deZ]¢|>. (A3.4)

This result has been used in (4.21).

The second term in (A3.2) must be solved more
carefully, keeping R; and R, finite. Direct integration
prior to taking the limit Ry—c0 yields

—ImJ(x)=1R:? / dQ sin (A:/z %)
1

)

X
Ay —
¢R23

—1(xd) /dw Ci<|A.p-;—13

+ lim «4 danCi(

R2>

) . (A3.5)

We now use the asymptotic form of the cosine integral
IimCi(|%|)=Invy+In|=],

u->0

where v is Euler’s constant. The condition

f Ay =0 (A3.6)
is valid for all ¥,;, where
V=0~ (3wix;/7*) ; (A3.7)

the zero angular integral is able to ensure convergence
of (A3.5).* On reduction we obtain

—Im [J(x)j=%Ax/dQ¢ In|y|

. 4
+iR? f dQ sin (Ax E)

—34z [ doy Ci( Axx% ) (A3.8)

* For a more detailed discussion in the special case ¥=V¥,,, see
the Appendix to Grant and Strandberg’s paper.!

In the limit R;—0 we obtain the result used in (4.21):
—Im](x)=%Ax/dQ¢xln{x/x I

The over-all form of pJ(x) in the limits of Ri=0,
R2= ® is

W= (tr14] [daly])ial

—i(%A/dQ\plnlxp])x
=ag | x| —iarx.
I(e) is given by
I(e)= -21”/:: dx exp (ixe) exp (—agr | % |) exp (4orx),
which is a Lorentzian of width 2az centred on e= —aj.

APPENDIX IV: BROADENING BY RANDOM
ELECTRIC FIELDS

Here we find 7(e) and pJ (x). By (4.25) and (4.26)

2 T Ra
oJ(x)=p f do / df sin 6 / drr?
0 0 R

5 [ 1—exp (zxZ :205 0)]

21 T Ra
=p / do / df sin 0 drr?
0 0

R1

xZ cos 6
X [1——cos( 5 )]
7

27 2 1 7 (i)
—ip / d¢ drr® | d(cos ) sin (x :20 > ) .
0

R
Ry -1

The second integral vanishes since its integrand is
an odd function of cos . This means that the resonance
line is not shifted and is a direct result of our assump-
tion of an isofropic continuum.

We let Ry— (the large crystal limit) and intro-
duce #=cos 6 and v=1/7%:

1 o 1 1/Rp % 1— VA
oT(X)=p= / o [ au f gy 1 C08 (Zaun)
2 0 s 0 2512

1Z1121/Ry? —si
=2,.-plzls/2[x|a/2/ o dww_ﬂ
0 w2

The innermost integral can be evaluated in terms of
the integral

cos (az)
Uz

Cla)= /l“’dz
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related to the Fresnel integrals of Ref. 99. Finally
pJ (x) =15 (2m)*%p | Z [ | x PP— 37 Rip
+18mp | Z 2| » 23 (sin X/X5/%) +5 (cos X/ X*%)
— (sin X/X2%) —X12C(X)].

X is | Zz/R:|. In the limit Ri—0, only the first term
remains; this has been used to obtain (4.28).

APPENDIX V: STRENGTHS OF POINT DEFECTS

The long-range displacement field around a point
defect in an isotropic lattice is 4 (r/7%), where 4 is the
defect strength. Measurements of these strengths are
rather isolated in the literature, so a number of useful
results are collected here.

Occasionally the strengths are given explicitly. Thus,
Ref. 100 gives 4=1.44-0.3 A? for B in silicon. More
usually AV/V, the fractional change in volume per
defect, is given. This is related to the strength by

A=[(1+»)/12x(1—»)] AV,

where v is Poisson’s ratio. These results assume iso-
tropic elasticity theory, so for cubic crystals the Voigt
average of v is used,” viz,,

V= %[(4612— 2644+Cn) / (3612+ cut 2611) ]

As an explicit example for a mixed crystal of KBr
containing a little KCl,

(AV/V)~3(axci— @xpr) /GKEr,

where @, is the nearest-neighbour distance for pure
crystal x. Then pA, which appears in the expressions
for the linewidth and shift [Eqs. (4.21) and (4.23) ] is
14v akc1—axe:
pASfoy (4) 1_+_” K01 aK:

4

(A5.1)

aKBr

in which fo; is the ratio of the numbers of Cl- and
Br~ ions.

In the list below, E and T denote experimental re-
sults and theoretical predictions, respectively:

Crystal Defect AV/V Refs.
MgO O> vacancy —04 E, 72b
O?%~ interstitial +3.0 E, 72b
F centre +0.075 T, 101
Si Vacancy +0.6 T, 72a
B substitutional +0.07 E, 100
Ge Vacancy +0.7 T, 72a
KCl  F Centre 0.5840.3 E, 102
F Centre 0.31 T, 103
Ca?* substitutional —0.524-0.05 E, 104
Sr?** substitutional —0.134:0.04 E, 104

The expression (A5.1) assumes that the lattice pa-
rameter of mixed alkali halides changes linearly with

concentration at all concentrations. Such formulae must
be used with caution. In particular they are usually
invalid when solid solutions of the two species cannot
be found in any concentration ratio. 1
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