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The recent proliferation of literature on the Regge pole model has made it evident that a general review of the model
is needed. This paper summarizes work done in the Geld prior to October 1968.It reviews the types of singularities thought
to exist in the complex angular-momentum plane, the symmetries of Regge amplitudes and trajectories with special
emphasis on four-dimensional symmetry associated with zero momentum transfer, properties of both meson and baryon
trajectories, predictions of the model, and suggested experimental tests of various assumptions made in the model. The
paper is written for the general reader with an interest in the field and for those in the field interested in areas in which

they are not directly involved. There is as little use of mathematics as possible, with emphasis essentially on the results
and conclusions of recent papers.
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I. INTRODUCTION

In the last two years there has been a proliferation of
literature related to the Regge pole model. This paper
summarizes and reviews the recent developments that
have taken place in the theory and the evolution of the
model as an attempt to explain experimental phenom-
ena. '

Although a complete Regge pole theory for strong
interactions does not yet exist, those theories which are
concerned with analyticity in a complex-angular-
momentum plane are described by the term. In high-
energy physics, the angular-momentum variable for a
cross channel is continued to complex values. The model
thus attempts to describe direct-channel reactions in
terms of the analytic properties of the cross-channel
amplitudes as a function of the cross-channel angular

f Sections which should be of most interest to people not
engaged in field.' This review was prompted by and is based in part on a status

569 discussion meeting for the Regge pole model held in March 1968
in Eugene, Ore.
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momentum. The concept of analyticity in the cross-
channel angular-momentum variable, j, sets the Regge
pole model apart from other peripheral models.

A cross-channel theory is desirable because experi-
mentally high-energy reactions are characterized by a
definite correlation between the peaking (or lack of it)
of a reaction in the forward or backward direction and
the existence (or lack of it) of particles with the
quantum numbers exchanged in the respective cross
channel L319].*

The simplest interpretation of the feature that
reactions are governed by the exchange of particles was
embodied in the one-particle-exchange (OPE) model
and its later modifications. The most famous of these,
the absorptive OPE model, comes close to treating
angular momentum as a nondiscrete variable because
absorptive corrections destroy the exchange of a
definite value of angular momentum in the cross
channel.

One of the failures of the OPE and related models is
their inability to predict correctly the energy depend-
ence of reactions when exchanged particles with spin of
unity or greater are involved. The Regge pole model
avoids this dif6culty by associating particles with the
same quantum numbers, but diferent discrete values of
angular momentum, with poles in the complex-angular-
momentum plane. These "Regge" poles are assumed to
move or trace out trajectories as a function of the
moinentum transfer variable t sThe sy. mbol n (t)
designates the position of the poles as a function of t.

In a mathematical sense, the "Reggeization" of
amplitudes is completely divorced from the concept of
particle exchanges unless the poles are associated with
trajectories of physical particles. Consequently, many
people have attempted to make a connection between
the asymptotic behavior of amplitudes due to Regge
poles and the asymptotic behavior of the exchange of
particles in the cross channel.

In particular, Van Hove L531] and Durand $214]
have obtained the asymptotic behavior characteristic
of Regge poles by considering the exchange of an
infinite number of narrow-width particles in the cross
channel. Regge asymptotic behavior of elastic ampli-
tudes has been obtained from Feynman graphs con-
taining the exchange of ladder diagrams in the cross
channel whose rungs are reminiscent of unitarity' in the
direct channel $367. Regge asymptotic behavior has
also been obtained by assuming that the absorptive
parts of the amplitude satisfy certain asymptotic
properties L261].

Recently a crossing symmetric function which can
show asymptotic Regge behavior in all channels has
been found L534]. Its discontinuity across any of the

*Numbers in brackets t' j refer to the Bibhography, Sec.XVIII
at the end of the paper.

'%e use the Mandelstam variables s and E to designate the
squares of the center-of-mass energies in the direct and cross
channels, respectively.

axes exhibits behavior characteristic of resonances and
thus illustrates how trajectories can describe both
direct-channel resonance and cross-channel exchanges.

It is appropriate to mention a few of the charac-
teristic properties of amp1. itudes due to the exchange of
Regge poles and some of the experimental consequences.
The contributions of a single Regge pole to amplitudes
have the following asymptotic properties:

(a) For axed t, the contributions to all amplitudes
have an s dependence given by s "&.'

(b) The phase of all contributions is the same and is
given by 1+r exp [—is.cr(f) ], where r is the signature
factor. See the Appendix for its dehnition.

(c) The residue of a Regge pole is thought to satisfy
factorization; i.e., the residue function can be written
as a product of two functions, one describing the
coupling of the trajectory to the initial state, and the
other, the coupling to the Anal state in the cross channel
(see Sec. VII.E).

(d) The residues also satisfy the symmetry of line
reversal (see Sec. VII.F); i.e., two residues which
describe cross-channel reactions with initial and/or
Qnal states related by an operation such as charge
conjugation or G parity are equal up to a sign given by
the respective quantum number of the trajectory.

(e) In addition to values of a corresponding to the
angular momentum of physical particles, there are
values of 0.—integral for bosons, balf-integral for
fermions —at which the dynamics of the trajectory
determines whether its contribution is zero or finite.

If the only signi6cant contribution to a reaction is
due to a single Regge pole, the following experimental
features will result:

(a) The differential cross section do/dt will be asymp-
totic to s'~ "& '. (From the optical theorem one would
also conclude that the total cross section for all reactions
resulting from the initial state will be asymptotic to
sa(0i—1 )

(b) The differential cross section will shrink as a
function of s at Axed t, and the degree of shrinkage will

depend on the derivative of n(f) s

(c) Relationships exist between differential cross
sections for reactions whose amplitudes are dominated
by the same Regge pole and are related by some sym-
metry such as factorization or line reversal. (By using
the optical theorem, one can similarly write relation-
ships between total cross sections. )

3 This statement must be modified when the magnitude of the
cosine of the cross-channel scattering angle is near unity. This is
called the "cone" effect $333).

4 It can be argued that (b) follows from (a) by real analyticity,
but the converse is not true; e.g. , complicated behaviors such as
(log s) "s &') also lead to (b).

~Though shrinkage is usually assumed to be a pure Regge
pole phenomenon, it has been obtained within the Wu and Yang
diffraction model P44$ for pp scattering by Durand and Lipes
6218j.
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FIG. 1. Trajectory of an odd-sig-
natured Regge pole. The kinematical
points (m ~nsq)2 at which t-channel
amplitudes may be singular are
shown. The diagram, for example,
could be for the co trajectory where
a and b might represent particles in
the initial state such as 71 and p. Trajectory of

Regge

p
(m -m ) (m +mb}

3 —channel physical region t —channel physical region

(d) Dips in di6'erential cross sections can be ex-
plained in terms of the dynamics of the dominant
Regge poles. However, the principle of factorization
strongly restricts such explanations since it demands
that corresponding dips occur in other reactions
dominated by the same Regge pole.

(e) Once n(0) of the dominant trajectory is deter-
mined from the total cross section, the phase relation-
ship allows the forward elastic cross section to be
predicted exactly.

(f) The phase relationship also predicts that if only
one Regge pole contributes, the polarization (P) is
zero. If two Regge poles contribute, then (do/dt)P~
s '+

One should be able to associate a known particle
with each trajectory (see Fig. 1). The trajectory and
residue function should also extrapolate smoothly to
their value at the pole of physical particles. One notable
exception, the Pomeron trajectory, which is postulated
to account for the apparent constancy of total cross
sections at high energy, is not associated with a known
particle. (See Sec. XI.B for a review of the unusual
properties of the Pomeron. )

The Regge pole model avoids the difficulties asso-
ciated with the exchange of elementary particles of spin
greater than unity by requiring n(t) &1 for physical
values of t in s-channel reactions. However, most of the
concepts and properties associated with single-particle
exchanges are retained. This feature makes the Regge
pole model very appealing to enthusiasts of the boot-
strap hypothesis.

The concept of complex angular momentum in the
context of nonrelativistic potential theory was proposed
by Regge in his 1959 duomo Cimeefo article. Theorists
have continued to turn to potential theory as a guide
for the analytic properties of the trajectory and residue
of a Regge pole L7, 8, 9, 21, 68, 148, 338, 339, 408$.

One feature of the model is both an asset a,nd a

liability: there is almost complete functional freedom of
the trajectory and residue function for negative values
of f. Consequently, an unlimited number of parameters
can be introduced into the theory to patch up the t
dependence at Axed s. The curve fitter can consider not
only additional trajectories, but also other types of
singularities in the j plane such as cuts and, in certain
circumstances, fixed poles.

Consequently, while the basic theory is simple and
explains many features of experimental data, it has
considerable freedom to go to great extremes of com-
plexity to attain agreement with experimental data.
Once the basic assumptions for formulating a complex
j-plane representation of amplitudes are justified, the
essential question is whether such a representation is
economical in terms of the number of parameters
required to obtain agreement with experiment. This
paper thus describes what is being done within the
model to reconcile the requirements of analyticity and
a simple intuitive explanation of experimental data.

The paper attempts to provide an informative survey
of the recent literature and is divided into various
sections, each summarizing the work on a given topic.
The next section, II, is concerned chieAy with ampli-
tudes that are used to discuss Regge pole contributions.
Section III is an involved discussion of the types of
singularities believed to exist in the complex j plane.
It is unessential to the novice and may be avoided on a
first reading. The possible dynamical choices thought
to exist for residue functions at special values of the
trajectory are discussed in Sec. IV. Section V is con-
cerned with the analytic structure of helicity amplitudes
at kinematic points. Though little detail is presented, it
should be of interest to general readers. Section VI
reviews daughter trajectories, constraint equations, a
proposed higher symmetry of amplitudes and trajec-
tories at zero momentum transfer. It is probably too
involved to be of value to the novice. Section VII is a
general discussion and review of symmetries of ampli-
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tudes and trajectories and should be informative to the
general reader.

Because most reactions receive contributions from
many Regge trajectories, it is useful to isolate individual
contributions by combining results of different experi-
ments or by performing particular experiments;
methods for this are presented in Sec. VIII. Section IX
discusses the backward mS scattering and the E and 4
trajectories that contribute. These trajectories are
discussed in the light of MacDowell symmetry. The
first two parts of this section should be very useful to
the general reader.

Section X, which should also be of interest to a wide
range of readers, reviews the few predictions the model
makes about angular distribution and how successful
these have been. Both known and speculated features
of the boson trajectories are discussed in Sec. XI,
which is rather detailed. ; the novice would be wise to
skim through it rapidly. Section XII reviews various
areas of research which are somewhat different from the
traditional Regge pole model; it probably contains
clues to the future development of the model.

Section XIII is intended primarily for experimen-
talists who are looking for new experiments or ways to
extract more information from their present data. The
experiments suggested there hopefully will help to
unravel some of the confusion that exists in the present
model.

Although the paper reviews a considerable number
of topics related to the Regge pole model, many have
not been included. In particular, it does not consider
such topics as the f dependence of the trajectories (e.g. ,
inlnitely rising trajectories and universal slopes) or
restrictions on the residue function (e.g., those due to
unitarity) . It also overlooks the large number of papers
that deal with Regge pole behavior in potential theory
and Feynman diagrams. Undoubtedly the list of
relevant topics is inexhaustible, but the author hopes
that those selected illustrate the recent developments
and trends in the Regge pole model.

For the reader interested in a more detailed discussion
there are many books L157, 236, 424) and excellent
review papers $76, 98, 24'7, 391, 428, 518, 539).
I Although it is assumed that the reader is familiar
with the basic terminology of the modd, the Appendix
discusses some of the terms and expressions in more
detail. Readers unfamiliar with the basic concepts of
the Regge pole model may want to consult one or more
of the books mentioned in the previous paragraph.

A table listing various reactions, ~he trajectories that
are thought to contribute, and references has been
included (Sec. XVII). Though incomplete, it should
prove helpful to people interested in particular reactions.

6 For those interested in such topics, some recent papers are
given for infinitely rising trajectories f116,220, 269, 329, 387, 534$,
universal slopes $79, 312, 387J, restrictions on residue functions
at large values of momentum transfer t 39, 476). Regge poles in
potential theory L7-9, 21, 68, 148, 338, 339, 408j and Regge pole
behavior in Feynman diagrams t'94, 105, 106, 254, 520$.

II. CHOICE OF AMPLITUDES

Since the early days of Regge pole theory when a
simple procedure for the "Reggeization" of amplitudes
was put forth by Frautschi, Gell-Mann, and Zachariasen

$237), many different procedures and variations have
been suggested L17, 125, 188, 213, 332, 445, 523). It is

commonly agreed that the use of so many sets of
amplitudes can cause great confusion and that the
Reggeization procedure for helicity amplitudes pro-
posed by Gell-Mann ef al. t 260) should be used. This
general procedure is reviewed in the Appendix. Many
sets of amplitudes that have special properties will

continue to be used when their unique properties
simplify proofs and calculations, e.g., the so-called
transversity amplitudes $13, 245) for which the
crossing matrix is diagonal.

There appears to be a principle of complementarity
between the use of t-channel helicity amplitudes and
the use of s-channel helicity amphtudes in describing

Regge poles in the f channel. Factorization (see Sec.
VII.E) of t-channel amplitudes is true only to leading
order in s. Recent work has shown this also to be true
for s-channel amplitudes L230). Consequently, to
leading order in s, the principle of factorization is

equally applicable to both channels. The complemen-

tarity arises from the fact that phenomena such as dips
in differential cross sections associated with certain
values of a are best expressed in terms of t-channel

amplitudes, while those difhculties associated with

analyticity in t are best avoided by the use of s-channel

amplitudes which, except for known half-angle func-

tions, are free of kinematic singularities in t. Recent
work has also shown that in certain situations, infinite

sums of daughter trajectories (Sec. VI) can be avoided

by using s-channel amplitudes $153, 356). There re-

rnains the question whether the "cone" effect L333)
can be easily expressed in terms of s-channel amplitudes.

III. SINGULARITIES IN THE j-PLANE

A. Poles and Families of Poles

As its name suggests, Regge pole theory is mainly
concerned with simple poles in the complex-angular-
momentum plane. However, there is no reason why
other types of singularities should not be encountered

and, in fact, other singularities such as cuts do exist.
Actually, the naive picture of a single Regge pole in

the complex j plane, independent of all others, has
recently been rudely destroyed. A more complete
description of the events that led to the abandonment
of the simple picture is given in Secs. VI and VII. It is

sufhcient to point out here that for each trajectory
there exists an infinite number of daughter trajectories,
equally spaced by a unit of angular momentum at
t=0; in certain cases there are correlations between
trajectories with the same and sometimes with different

quantum numbers. Ig. Sec. VII, it is shown that if
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certain conditions are satisfied, MacDowell symmetry
can lead to nearly coincident parity-doublet trajectories.
The symmetry associated with exchange degeneracy
discussed in Sec. VII.C also encourages trajectories
with the same rt parity (rP) and isospin to coincide.
Consequently, trajectories rarely, if ever, are independ-
ent.

The existence of second-order poles, or dipoles, in
addition to first-order poles, has also been suggested
P50). Such poles do not result in the same phase for all
amplitudes and can therefore lead to nonzero polariza-
tion effects.

aAB&'&(x) =aABLx, y(x))
where @=I'~', y is solution of

(III.1)

B. Cuts

One of the first serious arguments for the existence
of cuts was given by Amati, Fubini, and Stanghellini
P6), who proposed from a study of Feynman graphs
that a cut could be generated from the simultaneous
exchange of two Regge poles (see Fig. 2). Mandelstam
pointed out that in the absense of the third double-
spectral function, such a cut would be canceled by other
diagrams corresponding to multiparticle channels
P84), but that for more complicated diagrams can-
cellation does not appear to take place and such cuts
should be present P85). Mandelstam, using analytically
continued elastic unitarity, was also able to show that
these cuts invalidated the proof of the existence of
essential singularities proposed by Gribov and Pomer-
anchuk L279) which occur at wrong signature points
L(—1) = r) and at—which a=s,+s&—1. Recently
this relationship and other properties of Mandelstam
cuts (e.g. , signature) have been elucidated L438).
t- '. In addition to the original Mandelstam cuts which
resulted from diagrams where the intermediate state
consisted of a ladder (Regge pole) and an elementary
particle, Fig. 3, Schwartz (489) finds the motion of the
Mandelstam cuts (Type 2) must be shielded by another
type of cut (Type 1) in the physical scattering region.

, Although at present there is little known of the
behavior of the discontinuities across cuts L113), the
motion of the branch point is fairly well understood.
The motion of the branch point of the first type of cut
is given by

I I I I I I I

bi I I I l 1 I I

T~e 2 T~e I
Pro. 3. Diagrams for cuts due to the exchange of a particle

and a Regge pole (type 2 cut}, and due to the exchange of two
Regge poles (type l cut}. Lowest-order Feynman diagrams
responsible for cuts are also shown,

aAAu&(t'I ) =2aA(t'ls/2) —1. (III.4)

For the case when trajectories can be approximated as
linear functions of I,, one obtains

aAB &'& (t) =aA (0)+aB(0)—1+faA'aB'/(aA'+aB') )t.
(III.5)

For the exchange of a cut and a trajectory —which is
equivalent to the exchange of three trajectories —one
obtains

aABc &'& (t) =aA (0)+aB (0)+ac (0) —2

+ faA aB ac /(aA aB +aB ac +aA ac ))t. (III.6)

For e identical trajectories one obtains

a„A&'&(t) N/a=A(t/es) 1)+—1) (III.7)

which is also true without assuming a linear t depend-
ency P81, 384, 385). For the simultaneous exchange of
e linear trajectories of type A and one of type 8, one
obtains

and aAB(x, y) =aA(x —y)+aB(y) —1. (Note aAB"i is
symmetric in A and B.) The branch point of the cuts
of the second type is given by

aAB "&(x) = aA (x—tisB) +sB—1=aAB (x, mB), (III.3)

where 8 is considered an elementary particle L489).
In the discussions of certain papers it will be useful

to have expressions for ay~(o in various situations. For
the case of A and J3 being the same trajectory one has

baAB/by= 0, (III.2) a„AB&'&(t) =II aA(0) —1)+aB(0)
+(cxA'aB'/(aA'+naB') )t (III.8).

PIG. 2. Simplest diagram illustratin origin of cuts
proposed by Amati et at. 36/.

Type 1 cuts, whose position is dependent on masses,
are located on an unphysical j sheet for t((mA+mB)s
and thus do not contribute to the amplitude in the
physical s channel $458, 489). Their branch points are
of the form log Lj—a(t)) L458, 489). To obtain
agreement with Bronzan and Jones L113)who, working
with elastic unitarity, found that the discontinuity
across a cut must be singular and vanish at the branch
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point, such log terms must be multiplied by a function
which is singular and vanishes.

Several groups [328, 389, 489) have demonstrated
how the Mandelstam cut for a signatured amplitude
permits the Gribov —Pomeranchuk essential singularity
to be replaced by a simple fixed pole which gives no
contribution to the physical amplitude. The removal of
the Gribov —Pomeranchuk singularity was necessary
to avoid a conRict with the Froissart bound for channels
that couple to states for which s +sq) 2. (See in par-
ticular the arguments of Muzinich [411)for a pp cut. )
Olive and Polkinghorne [418], who verify the con-
clusions of Schwarz [307), find that the mechanism
responsible for avoiding the Gribov —Pomeranchuk
essential singularity also works for states of low spin
where the Froissart bound is unimportant.

The validity of certain convergence relations in the
presence of these fixed poles and cuts is discussed by
Schwarz [489, 490). (See Mandelstam and Wang
[389)). The Mandelstam-cut mechanism has been used
to argue that the Pomeron is probably not a fixed pole
[223). The concept of a cut shielding a ffxed pole has
been used in postulating a fixed-pole di6raction model
[416). A theoretical treatment of the contribution of
Mandelstarn. cuts to forward XX scattering has also
been discussed [110,212).

The generation of cuts proposed by Mandelstam,
together with the assumption that the intercept of the
Pomeron trajectory is identically unity, leads to an
infinite sequence of Regge cuts [262j. This feature, at
least for high energies, results in either vanishing total
cross sections or essentially constant diffraction peaks
[262j. These difficulties have encouraged the postula-
tion that n(0) =1—c, which would predict twisting or
curving effective trajectories for t(0 [448, 506].

Theoretical studies which consider the effects of cuts
in the Regge pole theory have also been made [209,
226, 466, 487, 515). Papers proposing tests for cuts are
discussed in Sec. XIV.

Double-charge-exchange reactions should be domi-
nated by cuts due to exchanges such as pp, pE*, or
E"E* [398, 432). Consequently, sup erconvergence
relations based on the nonexistence of a known trajec-
tory or contributions corresponding to double charge
exchange with a&0 are in doubt.

In conclusion, it appears that the mechanism for
generating cuts in the complex-angular-momentum
plane is well established. In general, the importance of
cuts depends on the magnitude of the third double-
spectral function. Consequently, many people in the
field hope that the effects due to double-spectral func-
tions are small. As will be pointed out in the discussion
of fixed poles, the famous dip in charge-exchange
scattering associated with n, =0 would be absent or
strongly modified if contributions from third double-

spectral functions were important. Another argument
for the unimportance of cuts is the experimental fact
that reactions for which eo known particles can be

exchanged in the crossed channel, such as reactions with
double charge exchange, are much smaller than those
for which known particles can be exchanged. Perhaps
the vanishing of discontinuity across the cut at the
branch point [113) could be sufficient to reduce the
importance of cuts in the scattering amplitude.

C. Fixed Poles and Kronecker Delta Functions

The last section reviewed how the violation of the
Froissart limit by the Gribov —Pomeranchuk singu-
larities necessitates the introduction of Mandelstam
cuts and fixed poles at the position of Gribov —Pomeran-
chuk singularities [328, 489). We have not yet con-
sidered that if there is a third double-spectral function,
there will be Regge amplitudes of both signatures
[383). The singular contributions to an amplitude of
signature, r, from the third double-spectral function
cancel at right signature values of j[(—1)'=r) and
add at wrong signature values of j[(—1) '= ~). —
Consequently, fixed poles occur only at wrong signature
values of j. Mandelstarn and Wang [389] (see also
Refs. [209, 328, 406, 407)) have recently studied the
consequences of such singularities and concluded that at
wrong signature points, residue functions for trajec-
tories that would otherwise choose sense or nonsense
have the same 0. dependence. The existence of such
fixed poles implies that the Schwarz [490) supercon-
vergence rules are invalidated and the question of dips
at wrong signature such as mV charge exchange at
u, =0 must be reconsidered. Possible experimental
evidence for a fixed pole in the spin-Rip amplitude of
mX scattering has been found [198,499].

In addition to the fixed poles that occur only at wrong
signature points, there are arguments for fixed poles
at both right and wrong signature points [5, 520, 327].
Fixed poles for weak amplitudes exist at both types of
signature points and exist even in the absence of a third
double-spectral function [5). Fixed poles occurring in

spin-Rip amplitudes at both types of signature points
were found in a perturbative field theory model without
a third double-spectral function [520).

Many people have shown that nonunitary amplitudes
such as Compton amplitudes have a ffxed pole [5, 111,
112, 209, 389, 406, 501).The fixed pole in the Compton
amplitudes is necessary to allow the Pomeron to con-
tribute to the total Compton cross section and to avoid
having the total cross section vanish asymptotically
faster than the elastic cross section [6, 410, 500). The
total cross section would vanish asymptotically because
the only amplitude contributing in the forward direction
is a sense —nonsense amplitude which is proportional to
[n(t) —1) in the absence of a fixed pole. In the Compton
scattering of charged photons by pions, a fixed pole was
found at j= j. by the consideration of the Fubini sum
rule [361) and the assumption of only moving Regge
poles [501j.If the photons are replaced by rho mesons,
the assumption of only moving Regge poles is suKcicnt.
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and thus the argument for a fixed pole in Compton
scattering is not applicable to purely strong inter-
actions [501).

The possibility of a fixed pole in a Compton ampli-
tude, e.g. , yy~m, follows naturally [3) from consider-
ing the amplitude [4)

A =Fii'/(s —m') '= 2Fii'/(t —4es2)" (III.9)

which is free of kinematic singularities in s and t [3, 4);
while the Born amplitude Ae=2e'/(s —m') (u —m') is
finite at t =0, the positive-signatured amplitude
A+e=2e'/t(m' —s) diverges at 3=0. Consequently, if
one assumes that there are no fixed poles at j=1,which
implies

00—+ ds Im A+(s)Po(s) =0,
4 2

one obtains 2e /t+P (s/so) ~~0 since

Im A„~g(n —1)s

Since the first term is divergent at t,=0, one must con-
clude that either the residue is singular at t,=0, i.e.,
P 1/t, or that there is a fixed pole at j=1. It is the zero
value of the photon mass which causes the fixed pole,
and therefore a fixed pole is not needed if the photon had
a nonzero mass.

Sum rules for weak amplitudes imply that the real
parts of certain weak amplitudes cannot be Reggeized
[74). A mechanism for such behavior due to a
fixed pole at j=1 has been given [112).A fixed pole
would result in a non-Regge 1/s asymptotic behavior
for the full amplitude, while the imaginary part would
have the normal Regge asymptotic behavior except for
the absence of a factor of [n(t) —1).The possibility has
been discussed of a j=0 fixed pole in pion photoproduc-
tion amplitudes [289). (This is a right signature point
for the ~ trajectory). A formalism has been proposed
[334) that provides a natural description of fixed poles
in photoproduction reactions.

Rubinstein et al. [469) use a perturbative model to
discuss the fixed poles in the asymptotic behavior of
weak amplitudes. They conclude that the existence of
fixed poles is model dependent: it depends on whether
the weakly interacting particles are considered ele-
mentary or composite. They criticize the existence of a
fixed pole in pion photoproduction [289) and argue that
if the pion is a composite particle, the amplitude has a
normal Regge behavior. The PCAC assumption, which
equates the pion field to the divergence of an axial
current, would introduce a fixed pole whose e6'ects are
inconsistent with their results.

Difhculties associated with t.=0, in the case of scatter-
ing particles with unequal mass, are usually described in
the context of daughter trajectories, but fixed poles
may also cancel the undesired contributions [332, 353,
434).

In conclusion, fixed poles can exist in strong and weak
amplitudes as well as in reactions involving photons.
Many uncertainties concerning fixed poles remain: the
analytic structure of their residues, whether they are
additive or rn.ultiplicative to Regge poles, and how
they are related to other singularities in the complex-
angular-momentum plane.

Regarding the latter question, fixed poles in spin-Qip
weak. amplitudes at nonsense points are in general
accompanied by Kronecker delta functions at sense
points of spin —nonflip amplitudes [208, 283). The
existence of Kronecker-delta-function singularities has
also been discussed by other authors [205, 388, 439,
507). In particular, in the Lee model, the delta functions
of elementary particles are canceled as a Regge trajec-
tory moves to the position of the elementary particle
pole [439).

IV. ALPHA FACTORS AND GHOST-KILLING
MECHANISMS

In this section we review the analytic behavior of
residues at integer values of a. A channel with helicity
X is normally called a sense channel if X&~ and is
denoted by the subscript s; for A. &a, it is called a non-
sense channel, denoted by a subscript e. As mentioned
in Sec. III.B, Mandelstam and Wang [389)have shown
that if there is a nonzero third double-spectral function,
then at a wrong signature point p, the residues have
the following behaviors:

Care must be taken in using these expressions for p(0;
the reason is given below. It will be assumed that the
0. values correspond to right signature points or that
the third double-spectral function is zero.

In the Gell-Mann et al. [260)Reggeization procedure,
the amplitude is proportional to the product of a
signature factor, a residue function, and a function
Eq„~(s), which can be shown to have square-root
singularities in a at point p satisfying m&p&e, or
—m&p& —m, where m= Max([X), ( p, )) and e=
min (( X [, ) p )). Consequently, for an amplitude to
omit undesirable branch points, the residue function
must contain square-root singularities of the form
[(n—p) (n+p+1))'" for each p.'

Factorization, (8, )'=P„P„„,implies that square-root
zeros of P,„must occur as full zeros in the product
l3„8 . Since a square-root singularity in P„and 8
would result in branch points in their respective
amplitudes, either P., (1), P „(n—p) or P„
(a—p), p„„(1)near n=p. The first mechanism is

7 For a given p, only one of the points corresponds to a right
signature point; consequently the discussion should be considered
limited to that point if the Mandelstam argument applies. Also,
only at n= p&0 is the residue a sense —nonsense residue; a square-
root singularity occurs at the negative value of a given by n=
—p —I, where the residue is a nonsense —nonsense residue. To
avoid this confusion, the subscript sn will be used for a at any
of the p points.
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called the sense-choosing mechanism since the trajectory
couples to sense-sense amplitudes, while the second
mechanism is called Gell-Mann mechanism or nonsense
mechanism, since the trajectory couples to nonsense—
nonsense amplitudes.

It is also possible to assume P,„~(cr—P) s". In this
case, two of the four solutions are preferred. They are
called the Chew mechanism and the no-compensation
mechanism and are (n —P) times the sense-choosing
mechanism and Gell-Mann mechanism, respectively.
In summary, for P =0 the various mechanisms are

P, P P cr 1js

Sense-choosing j. a
Gell-Mann cx 1 1
Chew A A A

No compensation ns rr cr. (IV.1)
Similar discussions and expressions can be found in the
literature L98, 136, 138, 209j.

If a trajectory uses the same mechanism at all points
within —s&j&s, s&te, and if the eGects of the third
double-spectral function can be neglected, then one
obtains the general expressions:

Sense-choosing

p -t (~+~)!(~+N)!/(n—~)!(~—~)!j«s,

Gell-Mann
P-t (~+s) l/(~ s) Q(P—*)

Chew
P-l.(-+ )!/(-- ) tX,

No compensation
P-L(~+s)!/(~—s)!7(P') ' (IV.2)

In the Gell-Mann ef at $2601 m. ethod of Reggeizing
there is a (cr!) ' factor which always removes the poles
of (sin z.o.) ' for negative a's. If an unwanted pole were
to occur at +=0, the trajectory could choose any of the
four mechanisms except the first. In the Gell-Mann
mechanism, the pole is removed by assuming a com-
pensating trajectory whose contribution cancels the
pole (260$. A pole at o.(f) =0 for negative values of t
is called a ghost state and if not canceled or "killed, "
would result in an infinite cross section. Ghost states
and ghost-killing mechanisms have been discussed for
the S/D Equation L163, 517j.
7. KINEMATIC SINGULARITIES AND CON-

STRAINT EQUATIONS AT NORMAL
AND PSEUDOTHRESHOLDS

In addition to the many advantages of using helicity
amplitudes, e.g., the ease with which angular momentum
and. parity properties can be written and the simplicity
of their crossing relations, there are also some disad-
vantages. In particular, unlike invariant amplitudes
which can be selected to be free of kinematic singular-
ities $87, 229, 482$, helicity amplitudes in the general

8 The vanishing of residues of nonsense values ofj has a natural
interpretation when viewed from the method of Reggeization of
invariant amplitudes of Jones and Scadron L331$.

spin case contain kinematic singularities. ' Due to the
appeal of helicity amplitudes to Regge pologists, there
has been considerable eGort to disentangle their
kinematic properties L1, 18, 234, 298, 321, 345, 511,
512, 541, 545].

A. Kinematic Singularities of Helicity Amplitudes

The existence of kinematic singularities in helicity
amplitudes for particular reactions can be easily
illustrated by writing the helicity amplitudes in terms
of invariant amplitudes L188, 548$. However, it is
usuaHy difBcult to use this method to consider arbitrary
reactions.

One of the most elegant methods to isolate kinematic
factors is based on the analytic properties of the crossing
matrix t 541, 545$. The approach due to Wang $247)
depends on the realization that s-channel amplitudes,
except for their known half-angle functions, are free
of kinematic singularities in t. By relating the t-channel
amplitudes through the crossing matrix to the s-
channel amplitudes, the kinematic singularities of the
t-channel amplitudes can be isolated. Though this
approach is simple and elegant in principle, it is any-
thing but that in reality.
f„'.;If the amplitudes of Gell-Mann et al L260j .are con-
sidered, the structure of the kinematic singularities
can be easily understood in terms of elementary prin-
ciples of angular-momentum coupling L'298, 321). In
particular, for a given j value in a partial-wave expan-
sion, the order of the singularity is determined by the
product of the e function $260), which has a singularity
of order j—m (m= max (( X ~, ~

1r ~) and the parity-
conserving partial-wave amplitude. The partial-wave
amplitude reduces the singularity of the e function by an
amount given by the minimum possible value of orbital
angular momentum. The order of the singularity is
greatest forj)s,+ss, where it is independent ofj and is
the sum of the particle spins, minus m and one or zero,
depending on the parity being considered.

Explicitly, the kinematic singularity factors asso-
ciated with the external particles u and b in a parity
"conserving" amplitude with p parity, p, are given by

(m, +ms)sg &'l@—*+Pt—(m, ms)s5 —""&" (V.1)

with Ky=s +ss 5$ s(1—rirf, rfs( —1)'~+" "),where v=
0, sr, such that s,+ss—v is an integer, s; and rf, are the
spin and intrinsic parity of particle i, and the labels a
and b are assigned such that te &m~.""

' "Kinematic" here refers to nonzero values of t associated vrith
the masses of the particles in the initial and final states. In par-
ticular, for the t-channel reaction eh~cd, the points (m +my)'
and (m, +m~) ' are referred to as threshold points, vrhile the points
(rN, —ms}s and (m, —nssl' are referred to as pseudothreshold
points (see Fig. 1).

~0 The restriction of mo&my is only important for half-integral
values of j (i.e., v=&), vrhere the equations are written for
tI"~0. The singularities for t'/2(0 are easily found by using
MacDovrell symmetry (see Sec. VII.D) and have been written
out explicitly by Henyey! 295$.

~~ The situation vrhen one or more of the external particles has
zero mass must be treated specially $17, 164, 245, 273, 334).



GERALD E. Hnz Eegge Pole 3fodel 677

B. Kinematic Constraint Equations for Helicity
Amplitudes

Since physical quantities such as s-channel differen-
tial cross sections are free of kinematic singularities in t,
there must be relations among the amplitudes which
remove such singularities in the physical s channel
$149, 150, 262, 321, 394].

The required constraint equations can be easily
found for simple reactions by using invariant amplitudes
$188j. The method used. by Wang $541) to isolate
kinematic singularities can also be inverted to find the
constraint equations. In particular, by expressing the
s-channel amplitude in terms of the t-channel ampli-
tudes, the constraint equations can be obtained by
demanding that s-channel amplitudes be free of kine-
matic singularities in / (see Sec. VI.A). However, this
method has not been attempted except for constraint
equations associated with the point t =0 $13, 238, 303j.
Kinematic constraint equations are also obtained from a
consideration of angular-momentum coupling in the
f channel $321, 511).

The requirement that helicity amplitudes satisfy
constraint equations and thus lead to physical quan-
tities free of inverse powers of kinematic factors causes
a modi6cation of many of the expressions used pre-
viously in comparing Regge pole theory to experiment
$3211. Such modifications are important when m —tnb

is small, such as with an Sh vertex.
The complications resulting from kinematic singu-

larities and constraint equations have caused people
to seek other amplitudes L149, 332j. In particular, s-
channel helicity amplitudes L3321provide a natural way
to avoid the complications associated with t-channel
kinematics.

VL CONSTRAINT EQUATIONS, DAUGHTER
THEORY, AND DYNAMICAL SOLUTIONS FOR
REGGE TRAJECTORIES ASSOCIATED WITH

THE POINT t=O

A. Constraint Equation at t=O

The existence of constraint equations among helicity
amplitudes at t =0 was 6rst pointed out by Goldberger
ef al. $271j and later by Volkov and Gribov $535j for
elastic ES amplitudes. These constraints are essentially
due to the relation s, (t=0) = 1, which implies that all
s-channel amplitudes for which A,/ p,, vanish. By
expressing these vanishing s-channel amplitudes in
terms of the t-channel amplitudes, one obtains con-
straint equations among the latter.

This section reviews the more recent work in this
area L13, 150, 231, 238„303,335, 354j.For completeness
we consider constraint equations occurring at any of the
zeros of the product of f&&TP (see the Appendix).
As mentioned in Sec. V, the constraint equations can

easily be obtained by relating the s-channel amplitudes
to the t-channel amplitudes through the crossing
matrix and demanding that s-channel amplitudes with
half-angle functions removed have only dynamical
singu1arities in t.

In the following discussion, it will be useful to con-
Sider the parameter eP= (fib s—fl,s+mj —mba) fOr the
t-channel reaction a~cd. Consider the vector equation
f'= Mf', where M is the crossing matrix. Since s-channel
amplitudes f' are finite functions of t except for dynami-
cal poles, f' can only diverge at the points at which M
diverges. The cosines of the crossing angles diverge at
t values given by the equation TT'=0. If t=0 is a
solution of TT'=0, the cosines of the crossing angles
will diverge only if m'/0, i.e., when only one pseudo-
threshold is at the point t=0.

In the inverted equation f'= M' 'f', the left-hand side
will vanish at z, =~1 if X,&p,/0. Only s,=+1 can
occur at a t value independent of s and, then only for
elastic scattering in the s-channel, i.e., m'=0. For
nP/0, no nontrivial constraint equations exist at
s', = i. To understand this, it is only necessary to realize
that if nPWO, z, =1 implies s~=1 and thus f'=0 if

p&W—O Sinc. e X~ fbi=A—o Xb (—X,——X~) =Xq Ab—'

(X,—X,) =X,—ib„ the same number of amplitudes vanish
in each channel and there will be no nontrivial con-
straint equations. For elastic scattering, i.e., m =0,
vanishing of the s-channel amplitudes results in con-
straint equations at t=0 of the type found by Gold-
berger et al. L271$. For a recent discussion of this
situation, see Abers and Teplitz $13).

The matrix 3f ' has the same divergent properties as
M. Since f' is finite, the divergent terms in the product
M 'f' cancel. If we write f'=E f', where X is the most
divergent factor in f, this cancellation implies con-
straint equations among the functions P and possibly
their derivatives. The number of derivative relations
will depend on the values of the helicities and spins of
the reaction being considered L321j. This technique
has been used in the literature for the point t=0
$13, 359].

In conclusion, for the various mass configurations, '~

one finds $228):

(a) UU, general mass case (ePAO) . Constraint
equations for helicity amplitudes occur only at normal
and pseudothresholds and not at t=0.

(b) EU, only one set of masses equal (rw, =mb or
m, =rrbz, ms/0). The constraint equations are of the
same form as above, with the pseudothreshold con-
straint corresponding to the equal pair of masses now
occurring at t=0.

(c) EE, both sets of masses equal (rl, =mb, m, =nbq,
yg'=0). The constraints at the normal thresholds are

'2 In the following, it is assumed no masses are zero. For con-
straint equations for photoproductions, see Refs. L196, 240, 273,
334, 509, and 525j.
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the same, but now there is only one other set of con-
straint equations which occurs at t=O. I3

The amplitudes involved in constraint equations at
t =0 for m'=0 and m'/0 are, in general, not the same.
This has led some authors to argue that constraint
equations for m'=0 are not the equal mass limits of
constraint equations for msWO (see Refs. [13and 303]).
This seemed reasonable, since the divergence of M for
m'=0 arises from s-channel half-angle functions, while
for m'/0 it results from the crossing matrices. Stack
[508] has shown that if all quantities are carefully
expanded in terms of the mass difference, the limit of
the unequal-mass constraint equations is indeed the
equal-mass constraint equations.

The above method is useful for the identification of
constraint equations, but is impractical for actual
calculation. The use of invariant amplitudes free of
kinematic singularities provides an easier method when
such amplitudes can be identified. The constraint
equations found by Goldberger et a/. were found in
this way.

B. Daughter Trajectories

In the general mass case, individual Regge pole con-
tributions do not retain the asymptotic form s &"

for small values of f [58] because s& (i=0) is unity
independent of s. Seemingly different arguments by
Freedman and Wang [248] and Goldberger and Jones
[272] were originally given to show that the behavior
s &'~ is maintained at small t, even though s& approaches
unity. A later paper by Freedman, Jones, and Wang
[246] shows that the arguments were compatible and
could be combined to give a more complete proof. The
asymptotic behavior is maintained by Regge trajectories
which occur in families whose intercepts at t=0 are
equally spaced by integers. The lower or so-called
"daughter" trajectories cancel the undesirable terms in
the amplitude of the parent, so that the full amplitude
retains the s &') behavior at small t.

The proofs of the existence of daughter trajectories
mentioned in the above paragraph are mathematical
and not very intuitive. Consequently, various authors
have proposed arguments to demonstrate that the
existence of daughter trajectories is natural. Durand
[215, 217] was one of the first to associate daughter
trajectories with lower spin components inherent in
oG-mass-shell generalized Feynman propagators for
bosons coupled to unequal-mass channels. He [215]
pointed out that the amplitude for an intermediate
boson of spin j and mass p is given by

where

2p = [f—2m.'—2mss+ (m '—m ') '/u']'"

27i' = [f—2m ' —2m/+ (m ' ma—s) '/p']"'

z= —,'[s—u+ (m,'—mss) (m s—mg')/p'] (pp') —'.

When j is replaced by 0. and p,
' in pp', and z is replaced

by t, this is the normal Regge amplitude. The factor
p,
' instead of t in the expression pp'z allows the domin-

ance of the term (s—u) for all f and ensures that this
amplitude, unlike a Reggeized amplitude, will retain
the normal asymptotic behavior of (s—u)' at small t
and large s. In terms of the functions pp' and s, which
are the above expressions with pP replaced by t, one can
write

(4pp') '&~(~) = (4PP')'I'2(s) (u' —f)—(m.'—ms')

X (m,.s—mg') u't-'(4pp') ~'E i(s)

plus terms involving lower order I', 's.
The leading term is the normal Regge contribution,

and the lower-order terms have the correct 1/f singu-
larities for terms due to daughter trajectories. (If either
pair of external masses is equal, the dauhgter trajec-
tories decouple. ) Durand also demonstrated that the
same terms were obtained in the infinite momentum
limit of Regge trajectories in potential scattering.

Sugar and Sullivan [515]used the Van Hove model
and amplitudes similar to those above, but with self-
energy insertions in the propagators to study the
motion of the daughter trajectories. They concluded
that although the results were model dependent, the
daughter trajectories would probably not be parallel
to the parent and found that the slope of the first
daughter was negative at t=O if rrD(0) )—5/2. The
existence of daughter trajectories has also been demon-
strated in perturbation theories containing ladder
diagrams [519,521] and in a dynamical model based on
superconvergence equations and the hypothesis that
amplitudes are described asymptotically by Regge poles
[468].The study of daughter trajectories in the Bethe-
Salpeter equation, erst pointed out by Freedman
and Wang [248], is being continued [146, 147, 204, 277,
381].

Oakes [62] has proposed that, to avoid difliculties
at f=0 for unequal-mass scattering (see also Pasches
[427]),amplitudes be expanded in terms of Gegenbauer
polynomials C„'(0).'4 The argument of the Gegenbauer
polynomials is

&= (s—u) [(s+u)'—(m,'—m,s+mss —mas)']r~',

"Bardakci and Segre [727, who obtained constraint equations
for the EE, mass case by considering invariance properties of the
amplitude at t=0, established a connection between constraint
equations and superconvergence relations for amplitudes.

"It might be argued that since the Gegenbauer polynomials
(see Bertocchi t'222)) are irreducible representations of 0(4),
this approach is equivalent to those discussed in Part C of this
section.
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which has the property that Q(t~0) = ts(s—u) /
(nz, '+ebs) (nz,'+nzs'). With the asymptotic property
that C '(0) 0, the normal (s—u) behavior for all t is
easily obtained; Oakes then expands the Gegenbauer
polynomials C ' in terms of I' „and finds daughter
trajectories (tb = 1, eo) having the required residue
properties. He concludes, like Durand L215], that
daughters are essentially extra spin components which
are present in tensor fields describing elementary
particles when the intermediate particle is o6 its mass
shell. He goes on to conclude that daughter trajectories
should consequently be parallel for all t, and in analogy
with free fields, whose extra spin components are
eliminated by subsidiary conditions, daughter trajec-
tories should not contribute at physical values of
angular momentum. This last argument would, of
course, imply that daughter trajectories would not lead
to any physical particles.

The argument for daughter trajectories results from
the fact that if an amplitude, which behaves for some
reason as (s—u) ~o for all t, is expanded at 6xed t in a
Legendre series of argument s, the resulting series will
always contain components with spin rr (/) —I (e=0,
1, 2, ~ ~ ). The coeKcients in the expansion will be
proportional to $4pp'z —(s—u)]; i.e., they will vanish
if a pair of masses is equal and otherwise decrease as t
moves away from zero. The question whether daughter
trajectories are parallel or not is thus equivalent to the
question whether the amplitude varies as (s—I) "&

for all t or only in a small neighborhood of t =0 and only
approximately as (s—u) &'& for other values of t.

Arguments similar to this have recently been given
by Sheftel et al. L498], who believe the hypothesis that
equally spaced daughter trajectories can be built into a
theory by making definite dynamical assumptions about
the behavior of amplitudes as a function of n. They
conclude that the existence of daughter trajectories is
equivalent to assuming some type of dynamical sym-
metry.

The crossing symmetric amplitude proposed by
Veneziano L534] which demonstrates many of the
properties of Reggeized amplitudes corresponds in
terms of Regge poles to an infinite sum of parallel
daughter trajectories.

C. Four-Dimensional Symmetry

In the first paper by Freedman and Wang L248] in
support of their conclusions on daughter trajectories,
they state that daughter trajectories exist in all solu-
tions of the Bethe —Salpeter equation which Reggeize.
They stated that this follows from the four-dimensional
symmetry of the Bethe —Salpeter equation at t=0.

Prior to this, several authors $203, 526-528] had
already proposed that amplitudes for equal-mass
scattering obey a four-dimensional symmetry at 1=0.
In particular, Toiler $526, 527] "Reggeized" expansions
of amplitudes in terms of O(3, 1), the homogeneous

Lorentz group. "Toiler found that a pole in the four-
dimensional representation led to an infinite family of
Regge poles when the amplitudes were expanded in
terms of the three-dimensional representations, Dq„', of
O(3). Poles associated with the four-dimensional group
are usually referred to as Lorentz or Toiler poles.

One way to understand how amplitudes could be
invariant under a four-dimensional group is to consider
the total four momentum K= P~+Pb =P.+Ps of a
reaction (249]. If E is timelike, it is invariant under
the rotation group 0(3). If amplitudes are assumed to
obey the symmetry of O(3), their Jacob and Wick
t 322] expansion in terms of Dq„' is a natural con-
sequence. If E is zero, it is invariant under four-
dimensional rotations in the homogeneous Lorentz
group 0(3, 1). Consequently, one might assume that
for E=0, the amplitudes also possess the larger
symmetry.

The fact that t=E2 vanishes does not imply that
E=0. Only when m. =nb and m, =m~, does the vanish-
ing of t correspond to E=O. This is the mass configura-
tion originally treated by Toiler and more recently by
Freedman and Wang L247].

Freedman and Wang L249] have also discussed the
equal-mass ES amplitudes and classified the various
types of Regge families that contribute according to the
O(4) quantum numbers of their Toiler poles. This
classification and its relevance to solutions of the t=0
constraint equations is given in Part D of this section.

It appears that while the O(4) symmetry is only a
true symmetry in the pairwise equal-mass situation at
t=0, the resulting classi6cation is still true for the
traj ectories independent of the external-mass con-
figuration L201, 205]. The trajectories should retain
the exact symmetry classification for all external-mass
configurations because although the coupling (i.e.,
residue function) of trajectories depends on the masses
of the external particles, the trajectories themselves are
the same for all reactions.

Domokos and Tindle [205] have considered Lorentz
invariance of scattering amplitudes for particles of
arbitrary finite mass and spin. They make a clear
distinction between the "invariance group" of the
amplitudes and the "classification group" of the
trajectories. While the former is dependent on external
masses, the latter is independent of external masses.
They derive an expansion for amplitudes in terms of
Toiler poles for arbitrary masses which reduces to the
normal expression for the equal-mass case.

Domokos $201] uses the Bethe —Salpeter equation to
demonstrate how the inequality of external masses

"In the literature, some authors work with the group 0(4)
and others with 0{3,1). Which group is applicable depends on
whether the variable s is continued to unphysical values (Wick
rotation) where 0(4) symmetry applies or is kept in the physical
region when the amplitudes are Reggeized. The equivalence of
the two approaches has been studied by Akyearnpong et al. [28$.
In potential scattering, the analogy of the I.orentz group is the
Galilei group, and the analogous daughter trajectories form a
continuous sequence L148).
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forbids continuing amplitudes with exact O(4) sym-
metry to the mass shell and then letting t go to zero.
He proposes a breaking of the symmetry due to mass
differences and concludes that only in the limit of
perfect symmetry are all trajectories of a family
parallel. He also deduces a one-parameter formula to
describe the deviation of the slopes of the trajectories
from the exact symmetry value (see Domokos L200,
201]). Essentially the same expressions for the slopes of
daughter trajectories have been obtained from a study
of daughter trajectories in the Bethe —Salpeter equation
L146, 147].

Schwarz L488] considers the O(4) amplitudes and is
able to carry out an analog of the Mandelstam form
of the Sommerfeld —Watson transformation, as a con-
sequence of the absence of Gribov —Pomeranchuk 6xed-
pole singularities at right signature points. He points
out that the asymptotic contribution of a single Lorentz
pole cannot be used near the s-channel threshold in the
forward direction for elastic amplitudes and suggests a
mode. ed form to be used at intermediate energies.

Before leaving the discussion of the "Reggeization"
of amplitudes with respect to parameters of the Lorentz
group, one should point out that the recent work of
Feldman and Mathews t 221], Iverson L318], Rubin
$467], Roffman (455], and Chiu and Stirling $143]
have considerable bearing on the problem. The papers
of Iverson L318] and Rubin $467] verify the existence
of daughter trajectories as a natural consequence of the
Lorentz group symmetry. Although the paper by
Feldman and Mathews 1221] is not directly concerned
with Regge poles, it provides a manifestly covariant
formalism for Regge pole theory.

The contributions of Toiler poles to various reactions
near the forward direction, such as pion photoproduc-
tion t 289, 400, 479] and vector meson production $99,
358, 479, 480, 499] have been considered. The study
$153] of the contributions of evasive Toiler poles to
s-channel helicity amplitudes has been extended to
include exchanges of more general Toiler poles for the
unequal-mass situation L356]. Many of the papers
consider families of Regge poles resulting from indi-
vidual Toiler poles and how they conspire to give
contributions to forward scattering. It is useful, there-
fore, to consider the Toiler poles that provide solutions
to constraint equations.

D. Solutions of Constraint Equations and Their
Classifications According to 0(4) Symmetry

Before the importance of four-dimensional symmetry
to the solution of constraint equations was realized, the
constraint equations at t=0 were known to be different
from the purely kinematic constraint equations at
normal and nonzero pseudothreshold points. One
difference is that solutions for the t=0 constraint
equations can involve relationships between different
trajectories. Constraint equations that relate contribu-

tions from different trajectories are commonly called
conspiracy relations.

In the unequal-mass case UU, the t-channel helicity
amplitude is free of kinematic singularities in s, and
the coeflicient of the half-angle functions (i.e., the
barred amplitude) can only contain singularities at
t=0 that are removed by the powers of sin 8& in the
half-angle functions. This results in constraint equations
between "parity-conserving" combinations of the barred
amplitudes. (See Frautschi and Jones L238] and Arbab
and Jackson L47] for a more detailed explanation. )
The constraint equations for the UU mass case thus
relate either trajectories contributing to the same
amplitude with opposite parity or those with the same
parity whose total contribution vanished at t=0.

For the case where only one vertex has equal masses,
the EU case, the t-channel half-angle functions are not
singular at t =0, but the pseudothreshold corresponding
to the equal-mass vertex has moved to t=0 and results
in constraint equations between diferent amplitudes.
When expressed in terms of "parity-conserving"
amplitudes, these constraint equations can relate
trajectories with either parity that contribute to
different amplitudes. (See Frautschi and Jones L238].)

For the case of equal masses at each vertex, the EE
case, the constraint equations result from the vanishing
of s-channel half-angle functions. Here, as in the EU
case, the t-channel half-angle functions are regular at
t =0 and the constraint equations relate Regge trajec-
tories contributing to different amplitudes which may
or may not have the same p parity.

In earlier papers (231, 238, 354], three types of
solutions were considered:

(1) The evasive solution for which residues satisfy
certain relations but no conditions are imposed on
intercepts. If all residues separately vanish at t=0, the
solution is called a trivial evasive solution.

(2) Conspiratorial solutions in which the residues
and intercepts of different Regge poles (i.e., poles with
different internal quantum numbers) are related in
satisfying the constraint equations,

(3) Daughterlike constraint solutions in which a
parent trajectory conspires with a sequence of Regge
poles with the same internal quantum numbers.

For the general mass situation, UU, if factorization
of individual residues holds, then even baryon number
trajectories (e.g., boson trajectories) need not conspire
$354] In. contrast, for fermion trajectories MacDowell
syrrunetry t 378] implies trajectories must conspire or
totally decouple at 1=0 [354]. This latter fact is a
generalization of the situation found by Gribov et al.
L278], i.e., trajectories that couple to mE must occur
in parity doublets whose trajectories intercept at t=0.
For the EE case with arbitrary spins, the constraint
equations can always be satisled by evasion L354].
For all mass cases, the leading asymptotic contributions
of each pole to the s-channel helicity amplitudes vary
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like t'I'& '+"'& near t=0 in the absence of conspiracy
L354].

Whereas the O(4) results were obtained for the EE
mass case, the original work on daughter trajectories
was done for the UU mass case. By using factorization,
these results can be used to obtain the behavior of
residue functions for the EU mass case L47]. By writing
the amplitudes for the ZU and the UU mass cases as
sums of Regge pole contributions and demanding that
the amplitudes satisfy the constraint equations, one can
detail the necessary daughter and conspirator trajec-
tories. This analytic approach has been used to verify
the original results of Freedman and Wang for the UU
case $323].Though this analytic method does not work
in the EE mass case, if the results for the UU and EU
mass cases are combined with factorization, results can
be obtained for the EE mass case, and these verify the
O(4) conclusions L114, 190, 194, 196, 335].

Freedman and Wang L247, 249] have shown that
Regge pole families of related trajectories which satisfy
the t=0 constraint equations can be identified with
Regge pole families that result from Toiler poles in the
O(4) symmetry. Since it is fashionable to use the
classi6cation scheme of Freedman and Wang L247, 249]
to discuss how various Lorentz poles that couple to the
NN channel satisfy the constraint equations, we will list
the three classes.

For NX—+NX process there are only three types of
Toiler poles which are designated by the O(4) quantum
numbers M, s, and eLe=—n(0)] of the parent. " Any
trajectory which does not completely decouple from
NX—&NX at t=0 must belong to one of the following
classes:

Class I (3E=O, s=0). This Lorentz pole results in a
family of natural ri-parity (i.e., rP=+) trajectories
with charge conjugation equal to the Lorentz signature
(i.e., C=r~) and can only provide evasive solutions to
the NN —+NS process. Only the daughters of even order
(i.e., r =+r~, a =e—2, e—4, ~ ~ ) couple to equal-mass
vertices. The odd-order daughters (i.e., r= rt, cr=-
e—1,e—3, ~ ~ ~ ) couple only to vertices of unequal mass.
Candidates for the parent trajectories are P, P', Q, c0,

4, and A2 trajectories.
Class II (M=0, s= 1) . This Lorentz pole results in

families of unnatural ri-parity (i.e., rP =—) trajectories
with charge conjugation equal to minus the Lorentz
signature (i.e., C= —r~) and can provide daughterlike
solutions to the constraint equations for the EX-+NE
process. Both even- and odd-order daughter trajectories
couple to the NX vertex. The only candidate for the
parent trajectory (C= r) appears to be th—e At (8 has
C=r), while candidates for the first daughter trajec-
tories are z.(1640), 8 and vr.

Class III (3II= 1, s= 1). This Lorentz pole results in
families of trajectories that contain parity doublets

For a given reaction, only Toiler poles with &&min (s,+s&,
s,+ssl can contribute; see Bertocchi $222j.

whose charge conjugation is equal to the Lorentz
signature (i.e., C= r&) and provides conspiratorial
solutions to the constraint equations. Each member of a
parity doublet has its own set of even- and odd-order
daughter trajectories. While both sets of even-order
daughters contribute to NX—+NX, only the odd-order
daughters with unnatural sr parity (rP= —1) con-
tribute to NX—+NE.

Candidates for the unnatural ri-parity (i.e., rP= —)
trajectories are x, g, 8 and A~, though the A~ is some-
what undesirable since it would require the existence
of other high-lying trajectories. Candidates for the
natural tr-parity (i.e., ~P=+) trajectories are m (1030)
and p', which are possible doublet pairs of x and 8,
respectively.

Jones and Shepard L335] suggest that the restriction
of coupling to NX states reduces the number of Lorentz
classifications of families of Regge poles. They suggest
that for M=O there could be leading trajectories with
Cv negative for natural p parity, and leading trajectories
with C7 positive for unnatural p parity. This would
permit x and 8 mesons to be leading trajectories without
having 3f&0. Similarly, they propose a %=1 con-
spiracy with leading trajectory having C~ negative.
These three Lorentz poles correspond to evasive solu-
tions for XX scattering. Mueller L405], in studying the
Bethe —Salpeter equations, found, in addition to the
three types of Toiler poles discussed by Freedman and
Wang, the three proposed by Jones and Shepard L335].

Blankenbecker et al. L106]used Feynman diagrams to
study conspiracies for equal- and unequal-mass con-
Gguration and concluded that factorization forbids
Class II and III conspiracies to occur in the same
diagrams. A study of the contribution of an 3f= j
Toiler pole in a Geld-theoretic model concludes that
parity doubling of boson trajectories is natural L30].

E. Solution of Constraint Equations Continued
Away from t=o

There are two reasons for the interest in the behavior
of solutions to the constraint equations at nonzero
values of t. The first reason is that for the unequal-Inass
situation, forward scattering does not correspond to
t=0, and one wants to know how diGerent Toiler poles
contribute to forward scattering for such reactions.
The second reason results from attempts to learn how
the parent and daughter trajectories behave away from
t=0.

To review the first question, let us consider the con-
clusions that Sawyer t 477] (also Sawyer and Shepard
L481)) obtained concerning the leading asymptotic
contribution of Toiler poles to s-channel helicity ampli-
tudes. For the s-channel process ab—&cd, described by
the amplitude f,q, ~', the amplitude f,t„,q' is referred to
as a nonQip amplitude, f„*,while f,+$,t+1;gb is referred to
as a double-flip amplitude, fqt'. In the forward direction,
only amplitudes with X,=p, are nonvanishing; i.e.,
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spin-fiip amplitudes f,+j Q;gQ and f, , o~~,, o' vanish.
Sawyer [477) found that with any mass configuration
for a Toiler pole with M=O

fuf ~s fg p~s

Class II:
f~,~*=fn f'~$",

Class III:
f~,o+'=f r'-s

f 8~f 8 sa—1 ~

fr+;o '=fas'-
Class I poles cannot contribute to this reaction since

Class I trajectories only appear as poles in the XE

and for a Toiler pole with M=1

fnf $ j fdf $ ~

The same result can be written in the more compact
form [165):

f.a,aa'($, 0.=o) ~.-c;o-ds

It is surprising that these results could be extended
from the equal-mass case (EE) to both the equal—
unequal (EU) and the unequal —unequal (UU) mass
cases, since between the point t=0 and the point t;„
defined by 0,(t;„)=0, s& varies rapidly. For example,
in the UU case, z& has unit magnitude but opposite
sign at the two points [5g, 471); consequently,
channel amplitudes with X&= p& will contribute at one t

value and not at the other and conversely for those
amplitudes with Xt, = —p&.

Some insight into the unequal-mass situation has
been given by recent papers [99,499) in which Sawyer's
results were obtained by considering the behavior of
t-channel kinematic factors in the residues along the
curve 0,=0 for large s. The approach is easy to under-
stand. For the EU or UU mass case, z, =1 implies
z&= ~1, where the correct sign depends on the inequali-
ties between masses and the phase convention. Since the
argument is essentially the same either way, we assume
the plus sign. For z& ——1 the only nonzero t-channel
helicity amplitudes are those for which p, &=X&. For
0,=0, all crossing angles are either 0 or m. ,

' i.e., indepen-
dent of s. Consequently, along the curve t(s) where
0,=0,

f'9'=t .) =f'= ~f'(~~=a) =~f'(~~= t ~)

=u g p&.[t(s))s-"t,
where the sum is over all Toiler poles. The residue
functions P(t) for each Toiler pole contain the correct
kinematic singularities in t and satisfy the t=0 con-
straint equations in the manner appropriate to that
Toiler pole. Along the curve t(s) the only s dependence
on the right-hand side is in the residues and in the
terms s ". Solving the equation z, (t, s) =1 for t (i.e.,
t~1/s for UU and. t~1/s' for EU) and knowing the
kinematic structure of the residues for each Toiler pole,
one easily obtains Sawyer's results. For the reaction
xE-+pE, one obtains:

partial-wave amplitude, fu', which has X~g=O, and
states of positive q parity cannot couple to mp states
with t4„=0 [499]. Consequently, Class I trajectories
cannot have X&=p& and thus will not contribute to
forward scattering. This is slightly paradoxical since co

is thought to be a Class I trajectory, but it contributes
to fqo+, which does not vanish in the forward direction.

The above work illustrates how the same results can
be obtained by using either analyticity properties of
amplitudes or group theory, as does the use of analytic
techniques to verify the 0(4) conclusions for daughter
trajectories in the EF. mass case [114, 190, 194, 196,
335). The two approaches complement each other
when they overlap and supplement each other when
one method cannot be easily applied [335).

A second reason for considering the solution of the
constraint equations continued to nonzero values of t

is to obtain information on the motion of trajectories.
The problem has been studied with group theory and
also with a method based on analyticity and factoriza-
tion. (For a more generIal discussion of daughter
trajectories, see Part 8 of this section. For a review on
the work of particular trajectories, such as the pion,
see Sec. XI.)

Those using the group-theoretic approach include
Domokos [200, 201, 202, 204), Cosenza et al. [164, 165),
and Delbourgo et al [174, 17.5]. Domokos argues that
the inequality of external mass breaks the exact 0(4)
symmetry and uses a symmetry-breaking term to
obtain a one-parameter formula to describe the devia-
tion of the slopes from the exact symmetry value.
Cosenza et at. [164, 165) present a formalism which
permits one to discuss families of conspiring Regge
poles for nonzero values of t. They And a solution which
is not the most general since it predicts parallel daughter
trajectories. Delbourgo et al. [175) obtain expansions
of amplitudes with arbitrary external masses and spins
in terms of the homogeneous Lorentz group. Their
expressions satisfy 0(3, 1) constraint equations and
should provide a useful formalism if trajectories are
approximately parallel. Many groups have used these
formalisms, particularly that of Delbourgo et al. , to
study various reactions [40, 41, 42, 344, 379, 412].

As mentioned in Part D of this section, analy-
ticity and factorization can be used to verify the group-
theory description at t=0 for the equal-mass case. Di
Vecchia et at. [193)and Bronzan and Jones [114]have
also used the approach to obtain expressions for the
expressions relate the positions of possible Regge
recurrences, they are generally referred to as "mass
formulas. "

After reviewing the work on the complications
associated with the point t=0, the comment of Leader
[354) seems appropriate. In discussing whether there
should be phenomenological consequences resulting
from the various solutions to the constraint equations,
he comments: "Our present feeling is that the require-
ments [imposed by solutions of constraint equations)
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are so artificial, and even arbitrary, that it is much more
likely that their existence is simply a manifestation of a
weakness in our standard method of Reggeizing relativ-
istic problems!"

It is certainly unfortunate that of all the kinematic
singularity points, the one at t=O, which is the closest
to the physical region, should be the one at which Regge
theory encounters so many complications.

VII. SYMMETRIES OF REGGE AMPLITUDES
AND TRAJECTORIES

A. Four-Dimensional Symmetry and Daughter
Trajectories

As the discussion in the last section has indicated,
amplitudes for the equal-mass case are believed to
satisfy four-dimensional symmetry for t=O. This sym-
metry is apparently broken by mass difference terms
even at t=O for the EU or UU mass cases [201, 205).

The spectra of Regge poles, i.e., intercepts of trajec-
tories, at t=O obey an 0(4) symmetry independent of
external masses. The external-mass situation determines
only which trajectories are coupled to a reaction at
t=O. Toiler poles resulting from O(4) symmetry
decompose into families of Regge trajectories with
related residues and t =0 intercepts equally spaced by
a unit of angular momentum. The original daughter
trajectories of Freedman and Wang are members of a
family of Regge poles from the same Toiler pole which
couple in the unequal-mass case U. U.

The possible Toiler assignments of particular trajec-
tories are discussed in Sec. XI. For a general classifica-
tion see Ahmadzadeh and Jacob [25). If daughter
trajectories are considered as extra spin components
resulting from the exchange of oG-mass-shell particles
[215, 415), it is reasonable to expect equal spacing of
trajectories for nonzero values of f. Work using 0(4)
arguments gives credence to at least an approximately
equal spacing [201).Perhaps arguments for the absence
of physical particles on daughter trajectories, like the
one presented by Oakes (see Sec. VI.B), could explain
the difFiculty found in identifying daughters. Though
identification of daughter trajectories is very difFicult
due to the probable existence of secondary nondaughter
trajectories [232), a tentative identification of some
meson daughter occurrences has been made [503).
The situation for baryon daughter occurrences is some-
what more promising and is discussed in Sec. IX.

B. SU(3) and Other Possible Internal Symmetries

The large number of free parameters associated with
residues and trajectories has encouraged attempts to
relate parameters through exact or approximate sym-
metries. SU(3) symmetry has been known for several
years to be an approximate symmetry of strong inter-
actions that could be used to relate couplings and, with
suitable symmetry breaking, to relate masses within

multiplets. Mesons have been classified into singlets and
octets, or, in the case of symmetry mixing between a
singlet and an octet, into nonet representations of
SU(3), while baryons have been classified into singlet,
octet, and decouplet representations. In addition to
the generally assumed meson classifications of ~, g, E
into a 0 octet and p, co, P, E* into a 1—nonet, A2

(1320), f (1250), f' (1500), E* (1430) have been
assigned to a 2+ nonet and I' to a 2+ singlet [85, 184,
477). There has also been interest in assigning A~

(1080) or 8 (1220) and E* (1175) to a 1+ octet [22].
SU(3) Predictions of residue functions h-ve been

compared to experimental total cross sections via the
optical theorem. Deviations due to symmetry bre~.king
[517) were found to be on the order of 15%—20% [84,
85, 86). For example, the Pomeron couplings to ~m. and
EE differed by 20% from that expected of a pure
SU(3) singlet [86).This small amount of disagreement
between experiment and exact SU(3) symmetry is
quite surprising considering the large breakdown of
SU(3) symmetry found in bootstrap calculations and
comparisons of decay widths. It is possible though
that SU(3) symmetry is abetter symmetry at (=0 than
at the poles of physical particle [401).

A study of E* (1 ) and E** (2+) trajectories found
agreement between trajectory intercepts determined
from forward hypercharge-exchange reactions and
those determined from total-cross-section data by
assuming the Porneron had a small SU(3), I=O octet
component ['473). This symmetry breaking can also
explain the suppression of the reaction yp~p [473).

Bootstrap calculations for entire SU(3) multiples
have been attempted [14, 392]. By using exchange
degeneracy it is possible to obtain a mass relationship
between the vector, tensor, and pseudoscalar octets [14,
392). Photoproduction of pseudoscalar, vector, and
tensor mesons has been discussed with the assumptions
of exact SU(3) symmetry for the residues and broken
SU(3) symmetry for the trajectories [26]. As is quite
popular [51, 56), this study also considers the con-
sequences of assuming exchange degeneracy between
various SU(3) multiplets. The simplification of expres-
sions due to exchange degeneracy is discussed in Part C
of this section.

In analogy with mass splitting, it is generally assumed
that trajectories and, in particular, their intercepts obey
a broken SU(3) symmetry. Present experimental data
are incapable of answering such questions as whether
the members of SU(3) multiplets have the same ghost-
killing mechanism and whether SU(3) muitiplets result
from SU(3) multiplets of Toiler poles (i.e., if they
satisfy t=0 constraint equations in the same manner) .
The latter question was proposed for the m and E
conspiratory mechanism in a study of photoproduction

Before leaving this section on internal symmetries,
some of the work involving symmetries other than
SU(3) should be mentioned, The assumption that
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Direct Exchange

I'IG. 4. Example of diagrams in Potential theory that would.
contribute to the direct and exchange potentials, respectively.

, residue functions possess the algebraic structure of
[U(3) SU(3)]s greatly reduces the number of free
parameters in the couplings of vector and axial vector
nonets to baryons and pseudoscalor mesons [123, 270].
Chiral U(3) SU(3) has been used to study relations
between residues at zero momentum transfer for 5 pro-
duction in'ep and en interactions and has made predic-
tions [401] for 6 production from pp scattering and
forward charge exchange in mp scattering in reasonable
agreement with experimental data. The concept of a
U(3) SU(3) algebra of residues applied to meson-
baryon and baryon —baryon processes is able to repro-
duce quark model results and other relations that are in
good agreement with existing experimental data [413].

Delbourgo et al. [172, 173]have suggested that quark
numbers, in analogy to angular momentum, be Regge-
ized. Perfect quark symmetry would lead to two master
trajectories, one with baryon number zero and the other
with baryon number unity. In such a scheme quarks
would no longer need to be thought of as physical
entities. A study [265] of the Regge pole model and the
bootstrap hypothesis supports the assertion that
residues obey a chiral SU(2) 8SU(2) algebra. Baryonic
recurrences imply that there is some experimental

justification for assuming that baryon trajections belong
to a representation of U(6) SU(6) SO(3) whose
residues satisfy U(6) SO(2) symmetry [251].

It is evident that Regge pole theory has revitalized
the quest for higher symmetries whose predictions are
in reasonable accord with experiment.

where F~' and FE,' are partial-wave amplitudes resulting
from the direct and exchange potentials, respectively
(see Fig. 4). In order to avoid the bad behavior of
(—1)& for complex j, one Reggeizes the so-called
signatured amplitudes f+, defined by

f+(s, t) = g (Fn'&F»')P;(s). (VII.2)

C. Exchange Degeneracy

Exchange degeneracy can be understood most easily
through potential-scattering theory, where one speaks
of direct and exchange potentials [424]. These poten-
tials result in angular decompositions of the form

f'(s, t) = X. [F»'(t)P;(s,)+F ~(t)P, (—s,)]
= P LF.J+(—1)'F.]P,(.), (VII.1)

The full amplitude is given by

f~(s, ~)

=l[(f+( ~)+f (s ~))+(f+(— ~) —f (— ~))]
= l[(f"(», &)+f'(—s, &) )+(f-(s, &) f-—( s—, &) )]
=

~ (1+ exp (—i».~) )f+(s, &)

+~~(1—exp ( i—»n ))f (s, t), (VII.3)

where the Anal expression results from the assumption
that f+ is dominated by a Regge pole at n+, and f, by
the Regge pole at 0. .

Exchange degeneracy is the statement that f+ and f
are equal. This, of course, is true if the exchange
potential is zero. In such a case the equality of odd- and
even-signatured amplitudes implies that there is only
one trajectory (i.e., u=o+=0. ) and only one residue
function (i.e., P =/+ =P ) . Approximate exchange
degeneracy would result if the exchange potential were
small compared to the direct potential, or if the ex.
change potential were not very small, but had a shortei
range than the direct potential [19].In such a situation
both the residues and the trajectories of even and odd
signature would be approximately equal.

In relativistic scattering, one does not work with
potentials but with discontinuity and spectral functions.
Dispersion relations for the barred amplitudes are
written in the form (suppressing helicity indices)

A'(t, s(x)), A (t, u( —x) )
s—s x+»

(VII.4)

where A' and A" are discontinuity functions across the
s and u cuts, respectively [157, 523]. The functions A'
and A" play much the same role as the direct and
exchange potentials in potential theory. A partial-wave

decomposition of the above expression contains the
same undesirable factor (—1) ~ as a coefficient of the
contribution from A". Consequently one again defines
even- and odd-signatured amplitudes and Reggeizes
each separately.

Exchange degeneracy implies A" is zero. Using the
Mandelstam representation, the functions A' and A"
can be written as sums of two dispersion integrals
involving the double-spectral functions. While A'
depends on the double-spectral functions p, and p, &,

A" depends on p,„and p,„[157].Thus, exchange
degeneracy is equivalent to the hypothesis that the
contributions from the spectral functions p,„and p&„are
negligible compared to that from p, & [53].

The above argument used unsubtracted dispersion
relations for simplicity. Supposedly, exchange degener-
acy could be formulated in the presence of subtraction
terms and conceivably might not depend on the exist-
ence of nonzero double-spectral functions.

The implications of exact or even approximate ex-
change degeneracy are very strong. In addition to even
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and odd trajectories being coincident, the equality of
the residues implies that they must have the same
ghost-killing mechanism and result from exchange-
degenerate Toiler poles. The connection between ghost-
killing factors and 3f classilication of Toiler poles, as
explained by Toiler at Coral Gables, implies that
trajectories resulting from exchange-degenerate Toiler
poles do have the same 0. factors.

There has been considerable interest in establishing
approximate exchange degeneracy between the pairs
L (0 ) &(1+)) LK'(1 ) K'*(2+)] and Lp(1 ),
A~(2+)). Since Sec. XI is concerned with the properties
of particular trajectories, only a few comments will be
made about these trajectories in this section. Exchange-
degenerate pairs of trajectories have the same values
of isospin and g parity (rF); the difference in their
parities implies that their trajectory and residue func-
tions have diferent threshold behaviors.

Many authors have used exchange degeneracy to
reduce the number of free parameters in fitting data.
Exchange degeneracy for (p, A&) and (K*,K~~) and
SU(3) symmetry have been used to predict high-
energy photoproduction branching ratios [26) and to
relate various total and differential cross sections such as
cr» =O„„and cr~+„=o.~+„,which are in reasonable agree-
ment with experiment [19, 20, 23). The same assump-
tions have also been used [24) to obtain

and

2da (K p~Eon) =do (7r p +~on)+3do (—~ page)

which are in very good agreement with available data
[24, 309).The choice a, =n~~0 5and ax*=.&xx**~035.
give reasonable energy dependence for the total cross
sections.

Arnold [51) has done an extensive study of charge
and hypercharge reactions assuming SU(3) symmetry
and exchange-degenerate pairs [(p, A2) and (K*,K**)).
By assuming linear trajectories for each exchange-
degenerate pair, he had only two free parameters and
was able to obtain agreement with all available high-
energy small-momentum-transfer data for 18 diferent
inelastic reactions with initial states of either vr+p, K+p,
or E+e. The energy dependences of his fit involve no
free parameters and are in very good agreement with
the data. An SU(3) exchange-degenerate Regge pole
model has also been used to describe and predict
polarization data for elastic sp, Kp, pp, pp reactions
[56].A recent study [22) classifies conspiring trajec-
tories according to SU(3) symmetry, Lorentz sym-
metry, and exchange degeneracy [516).A classification
of nearly all known mesons in terms of exchange
degeneracy and SU(3) symmetry has also been made
[224].

The proposed (p, A2) exchange degeneracy is the
easiest to verify experimenta11y and consequently has
caused the most controversy [232]. In particular, con-

sider the results of a study [85) of the reactions
~—p--+s'e and. ~ p-~n, which found n, =0.57&0.03
and 0.~=0.34~0.03. This is a significant deviation from
exchange degeneracy. Recently two types of exchange
degeneracy have been proposed: strong exchange
degeneracy (i.e., equal residues and trajectories) and
weak exchange degeneracy (only trajectories equal)
[76].The former type of exchange degeneracy requires
an n factor in the nonQip residue corresponding to the
ghost-killing a factor needed by the Am residue [76).
The suggestion [76) that this would cause an absolute
zero in do. (m. p—+n.0N) at the value of t for which n is
zero is not correct since polarization measurements
imply the existence of a contribution in addition to the

p, which would produce the experimentally observed
dip. Since the p is dominant, one would still expect to
see a strong dip in the polarization where 0., is zero. An
exchange degeneracy in which residues are not identical,
but have the same value at their respective lowest
recurrence, has also been suggested [463).

Exchange degeneracy implies the same SU(3) f to d
ratio for both members of a degeneracy [23).The f to d

ratios for p and A& are found [84, 473) to be essent. ially
the same and thus give some support to their exchange
degeneracy. Recently, it has been found [313) that
both the A2 and p residues appear to have zeros for
t~—0.2 which explain the crossover effect in K+p and
s.+p differential cross sections [232).A study of various
known Regge trajectories has shown that exchange
degeneracy appears to hold for leading trajectories, but
not for secondary or daughter trajectories [232].

Before concluding the discussion on exchange degen-
eracy, we should point out that U(3) 8U(3) has been
used to study the possible dynamic origin and conse-
quences of exchange degeneracy; it was concluded that
exchange degeneracy [53) may not hold for two meson
intermediate states, since such states give equal con-
tributions to the spectral functions p, & and pt„and thus
would split even and odd trajectories [401).

In view of the values of p and A2 intercepts, i.e.,
a,~0.57, oz(0.4 [85), it appears that exchange
degeneracy like SU(3) symmetry is not an exact sym-
metry but is fairly well satisfied and a good approxima-
tion.

D. MacDowe11 Symmetry and Baryonic Parity
Doublets

Considerable recent experimental data suggest that
baryonic trajectories occur in parity doublets [75)
related to a symmetry of amplitudes erst proposed by
MacDowell [378). This symmetry, which considers
half-integral j amplitudes as functions 8" instead of
t(= W'), relates partial-wave amplitudes with opposite
parities but the same quantum numbers by F'+(W) =

F& ( W) [75, 142—, 182, —260]. This implies that if
F~ were dominated by a Regge pole at W, F&+(W)='
P+(W)/[ j—n+(W)), then a corresponding trajectory
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ah R FIG. 5. Factorization for con-
tribution to 5-channel reaction
ab—+cd due to trajectory R.

cd& ob — ob od

must occur for F' at —W; such that P+(W) =
—P (—W) and cr+(W) =cr (—W) near Wd.

The point —S; corresponds to negative energy, and
since physical particles occur at positive energies, the
existence or nonexistence of physical particles depends
on the continuation of o| to positive values of W'. It is
becoming evident that trajectories are even functions
of W, at least for positive values of W' [78]. This
implies that a(W) or( W)—or rr~(W) n (W) and
thus that baryonic trajectories differing only in parity
should be approximately degenerate.

The fact that baryonic resonances occur as approxi-
mately degenerate trajectories which are linear in t/t/'2

has recently been demonstrated [75, 79] by the assign-
ment of all known baryonic resonances to four sets of
trajectories. For each of the two values of isospin, 1/2
and 3/2, there are four types of trajectories: (cr) J~=
1/2+, 5/2+, ~ ~ ~ ; (P) J~= 1/2 , 5/2 , ~ ~ ~ ; (y) P= 3/2 ,
7/2 , ~ ~ ~ ; and (6) J~=3/2+, 7/2+, ~ ~ . The first two
and the last two types are found to be nearly degenerate
[79]. Considerable evidence also indicates that
MacDowell parity doublets exist for complete SU(3)
baryonic multiplets and possibly for secondary
trajectories which are equally spaced by a unit of
angular momentum below the leading trajectory [79].
This work and other related work are discussed in more
detail in Sec. IX.

pcd;ab Ycd rab& (VII.5)

where the function y,b (or y,d) for a given Regge pole is
the same for all reactions that involve particles a and b

(or c and d) [135, 230, 259, 280, 493, 536, 537, 546].
The theorem, as given, is for a single Regge pole.

Recently it has been concluded that residue functions
of at least the first daughter trajectory factorize [335].
However, absorption corrections destroy factorization
which is easily understood by considering them as
multiple exchanges of Regge trajectories.

Recently, the factorization proof has been generalized
[341] to amplitudes resulting from any singularity in
the j plane that can be written for j near n as

fed;ab =Pcd;ab f +g&d;&&b &

lim ( p/g. d .b) b ~ (VII.6)

As mentioned in Sec. VI.D, factorization is a main
ingredient in the analytic approach to the solution of

E. Factorization

Consider the t-channel reaction ah~(Regge Pole) ~
cd (see Fig. 5). The factorization theorem states that
the residue function for a Regge pole can be written as

ab 2 — »»aa bb (VII.7)

The residue P&,p»
b is known to vanish as t'is independent

of the Toiler classi6cation of the pion. If the ~ belongs
to a Class III Toiler pole, then P;,*,;;"as indicated by
the strong forward peaking in ep~pn, is finite at 1=0
and consequently /os, s»"~t near t=0. Le Bellac then
considers the factorization relation between the residues
of the reactions

zp—+~,
For c—=AX,

7Tp~71 p

,&bc 2 — bb ,z z,cc (VII.8)

The residue function Po»;;
' is analytic at 3=0. The

residue P, ,;;" cannot have a (1/t) kinematic behavior
at 3=0, and one is led to conclude

Poo;;" (VII.9)

Though this should lead to a dip in the forward
direction for the s-channel reaction rrp-+ph, the broad
widths of the p and 6 complicate the effect [253].The
argument can be similarly applied to 7rX~foh and
E1V~E*E.Recently a dip in rr+p~p+p has been found,
but the reaction rr+P~poh++, which is apparently
dominated by pion exchange, does not exhibit a dip in
the forward direction [18].This implies a breakdown
of the simple pion conspiracy plus factorization hypoth-
esis used in I.eBellac's argument.

A study of the pion residue function for various pro-
duction processes has been made to see if the pion con-
spires (Class III) to produce forward peaks in these
reactions [253]. This work concluded that in the j
plane there must be singularities more complicated

'7 Arbab and Jackson (47) explain how the Le Bellac argument
will fail if the pion has M =0. The suggestion I 46, 243, 244, 478,
514j that there are two trajectories, one with 3E=O and the
other with 3II=1, which have the quantum numbers of the pion
also leads to a breakdown of Le Bellac's argument,

the constraint equations and the identi6cation of Regge
poles resulting from Toiler poles. Factorization has been
used to argue the necessity of boson and fermion trajec-
tories to conspire or evade [354], and to relate analytic
properties of residues for various mass configurations
(see Sec. VI.E).

Factorization imposes stringent limitations on the
parameterization of related residues and complicates
the explanation of certain phenomena (discussed
below) . However, proofs of factorization are, in general,
based on some form of the unitary equation and are
dificult to discredit.

The recent argument given by Le 3ellac [357]which
assumes a simple pion conspiracy leads to an apparent
contradiction between experiments and the principle
of factorization. "He considers the pion residue function
in the t-channel reactions xp~XA, xp~m-p, EE~XA.
With the states XX and xp designated by a and b

respectively, factorization implies
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than a simple pole, associated with the pion in order to
avoid a violation of the principle of factorization. One
such mechanism could be for a simple evasive pion to
interfere with a Class III parity doublet with the same
quantum numbers [46].

A recent interpretation of Mandelstam's argument
concerning a M = 1 Toiler pole assignment of the m. and
PCAC has been given in terms of factorization [47].

The simplest mechanisms for explaining crossover
effects (see Sec. X.A) encounter inconsistencies when
the principle of factorization is applied. Consider the
crossover point t=t„at which the difference between
the pp and pp elastic differential cross sections changes
sign. There appears to be a similar crossover in E P and
E+p near the value of t, [102, 168, 197].The simplest
explanation is that the residue function of the co

trajectory vanishes at t, [434]. By factorization, this
zero should manifest itself as a dip in the reactions
+%~pe and yX~n-S. There seems to be no evidence
of a dip in the reaction yP —+n'P [83, 195]. The com-
bination do(~+P~p+p)+d~(~ P~p P—) do—(~ —P~p'~—),
which depends only on trajectories with quantum
numbers of the co, shows no evidence for a zero near t,
[158].

Although the crossover effect in ir+P can be explained
by a cancellation between the p Qip and nonQip ampli-
tudes, the simplest explanation assumes that the p
nonRip residue vanishes. There appears to be no dip at
t, in the reaction ir p—&a&m to substantiate a vanishing
of the p nonfhp residues [199, 442]. One would also
expect to see a dip due to factorization in the angular
distribution of ir p —+~e at n, =0 corresponding to the
dip in ~ pair'e [98].

Tests for factorization involving polarization meas-
urements have been suggested [442]. There appear to
be several ways to avoid difficulties with factorization.
One of the most popular is to assume the existence of
secondary trajectories such as co', p', and ~'. Absorptive
corrections that do not involve double counting may
also introduce nonfactorizing contributions [197].
Perhaps other j-plane singularities such as square-root
branch points which do not factorize could account for
small violations of factorization [487]. Whatever the
modifications, hopefully they will be small enough not
to negate a great amount of work which relies heavily
on factorization, e.g. , the application of Regge poles
to multiperipheral reactions.

F. Line Reversal

Factorization, when combined with Regge poles
having definite quantum numbers, leads to a symmetry
usually referred to as line reversal [428, 537]. This
symmetry results when two states are related by an
operation such as G or charge conjugation. In such a
case, the corresponding vertex functions for a given
Regge pole will be related by the appropriate eigenvalue
of the Regge pole (e.g. , G or C). For example, in revers-

ing a set of proton lines (i.e., pp to pP), the phase
between the two vertices will be the charge-conjugation
eigenvalue, C, of the Regge pole. For the case of spinless
particles (e.g. , x-+ir to ir ir+), the channel spin of the
two particles is zero and C= (—1)~= (—1)'=r; i e.
the phase is just the signature factor. (The relation
C=7 holds for all nons trange mesons except possibly
Ai. ) An example of two states related by G conjugation
are en and p7i. A very beautiful application of line
reversal has been made to ES scattering involving the
P, P', p, and A2 trajectories [428]. The essential
ingredient in this example is that the relative signs
between the amplitudes for E P, E+e, E e compared
to E+P are C=+r, G= (—)rr, and CG= (—)r for the
various trajectories. Vertices such as m'E+ and ~+K'
are also related by the signature factor v. of the Regge
pole involved [537].

VIII. METHODS OF ISOLATING CONTRIBU-
TIONS OF INDIVIDUAL TRAJECTORIES

Few, if any, reactions receive contributions from only
one Regge pole. Consequently it is difficult to obtain
information from a given reaction about a particular
trajectory without making assumptions about con-
tributions from other trajectories. By using charge
conjugation and isospin invariance (i.e., line reversal)
or higher symmetries such as SU(3), one can form
linear combinations of experimental quantities (e.g. ,
total or differential cross sections) to isolate contribu-
tions from trajectories with definite sets of quantum
numbers.

In the following, we wiH designate total cross sections
by 0., differential cross sections by do-, and the density
matrix for a resonance by p „. The argument of 0. will

be the initial state in the s-channel reaction, while that
of do- will be a particular s-channel reaction. We will
consider meson trajectories for which quantum numbers
are isospin I, signature v., charge conjugation C, and
~t parity (v) =rP).

We will first consider total cross sections and illustrate
how linear combinations can isolate contributions with
definite C and I values [76, 84]. Because only meson
states with C= I' =7- contribute to the spin-averaged
total cross section [84], only mesons with natural q

parity are involved. It is useful to define the symbols
Z(AB) and 6(AB) by

Z (AB) = o (AB) +o(AB),
5(AB) =o(AB) —o.(AB) . (VI.II.1)

By line reversal, one finds that trajectories contributing
to Z and 6 have C values of plus and minus, respec-
tively.

Using Clebsch —Gordan coefficients and the isospin
crossing matrices [69], one can write 7rJV amplitudes in
terms of the definite t-channel isospin contributions T,

f(~+p) =f(~+p~~+p) = 'T—'+ 1/6'~ T', —-
f(~ p) =f(~ P~~ p) =k&'+—II6'"&',
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or
T'= ( / )'"p(7r p~—mp).-+f(rr"p~rr+p) ) T' f(rr p~—rr p)

—f(—rr+p~rr+p). (VI I. )

By the optical theorem, 2 (~+p) has I=0 and C=+, while A(m+p) has I= 1 and C= —.In a similar manner,
the following classification L84j can be obtained:

I= 1, C= — A(m+p)

J=1, C=+
J=O, C=-
S=O, C=+ Z(~+p);

A(Z+p) —A(Z+~) .

z(z+p) —z(z+e);
A(Z+p)+a(Z+~) .

z(z+p)+z(z+~);

&(PP) —& (P~)

~(pp)+A(p~)

~(pp)+~(p. ) P, P' (VIII.3)

These combinations also can be obtained easily
by using line reversal. From f(AB) =Cf(AB), it is
apparent that C is positive for Z and negative for h.
By using charge and G conjugation successively on the
nucleon vertex, one has f(Ap) =(—1)rf(Ari). These
expressions, together with f(~ ri) =f(rr+p) and f(7r+ri) =
f(rr p), give the above result. Several of these entries
can be related. by SU(3) invariance; i.e., for large s
A(E+p) —A(E+n) =A(~+p) $76, 84j.

Unlike total cross sections, differential cross sections
can only be related to squares of amplitudes; conse-
quently it is more difficult to write combinations that
isolate definite sets of quantum numbers. As an example,
we list the expression used to isolate the I=O, C=-
contribution to p production used to study the ~
trajectory $76, 138, 158$:

do(I=O) =do (ir+p~p+p)+do-(ir p~p 0)— —

do (np +p'—rt) . (.VI—II.4)

This can be obtained by considering that the ampli-
tudes f(m+p) and f(ir p) have the same isospin decom-
position as those in p production and f(rr pompon, ) =
1/V2T'. By replacing the p by a rr, one can use the new
expression to isolate the I=0, C=+ contribution
to rriV scattering, P+P'. The definite value of C for the
two cases is fixed by the meson vertex.

In resonance production, it is also possible to isolate
contributions from particular trajectories by considering
certain helicity decay matrix elements. For example, in
vector meson production, because of the unnatural

it parity (rP= —) of the pion —vector state, only trajec-
tories with unnatural q-parity contribute to poo do.
Similarly, for the same reaction one can show that
(pii+pi i)do' and piodo receive contributions from only
unnatural g-parity states, while (pii —pi i)do receives
contributions from only natural ~-parity states (231).

Ringland and Thews L447] have derived a set of rela-
tions that the density-matrix elements should satisfy if
the reaction is dominated by a t-channel exchange with a
definite set of quantum numbers. As they demonstrate,
these expressions are useful in establishing the presence
of other contributions. Ader et al. L16$ have extended
this work and demonstrated that differential cross
sections and density-matrix data, can be used to separate
natural (rP=-+) and unnatural (rP= —) ii-parity

contributions. They conclude that if either initial
particle is spinless, one need only consider simple linear
combinations of p and p, otherwise one has to
perform a single, well-de6ned polarization experiment
to achieve the separation.

The methods used to isolate contributions of trajec-
tories mentioned so far, except for resonance produc-
tion, involve reactions with unpolarized beams and
targets. Recently it has been suggested that polarized
photons in photoproduction of mesons act as a "parity
filter" in that only trajectories with a given value of

g parity contribute for certain polarizations $159, 161].
In summary, contributions of trajectories with

definite values of charge conjugation and isospin can be
isolated from total and differential cross sections.
Contributions with definite g parity 7.P can be isolated
by considering combinations of density matrices for
reactions that involve resonance production. It is
possible to restrict the types of trajectories contributing
to a reaction by the use of polarized beams or targets.

IX. BACKWARD eX SCATTERING AND
BARYONIC TRAJECTORIES"

A. Analysis of m +P Scattering Data in the Backward
Hemisyhexe"

Backward xS elastic scattering provides an oppor-
tunity to study the E and 6 Regge trajectories. The
elastic reactions n.+p~n. +p are both peaked in the
backward direction. There is a pronounced dip in the
angular distribution of m+p scattering, while there seems
to be no such structure in ir p scattering. Since both the

and the hq trajectories contribute to ir+P and only
the Aq trajectory contributes to m P, this dip is attrib-
uted to a vanishing of the contribution due to the E
trajectory. In support of this hypothesis, in the region
of the dip, the ratio of the differential cross section for
ir p to that of ~+p is about 9 to 1, as expected for pure
Aq exchange $781.

The backward ~+p data have recently been analyzed
(78, 128, 142, 414j. A rather complete discussion has

'8 In this section we discuss the data in the asymptotic energy
region. For a discussion of the 6ts to the data in the intermediate
energy region, see "The Interference Model, "Sec. XII.A.
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pro. 6 Chew —Frautschi iiiagrani for baryon trajectories supporting linearity of trajectories with W'(I) (Ref I-S&3).

era =0.15+0.90Ws

o.s =0.15+0.90W',

nq (not given),

az =0.19+0.87W',

crN (not needed);

ou = —0.33+0.11W+1.06W',

a~= —0.34+0.09W+ 1.05W',

a~ ———0.38 +0.88W',

for Carnahan [128], Noirot et at. [414], Chiu and
Stack [142], and Barger and Cline [78), respectively
These should be compared to the trajectories obtained

been given of the amplitudes used to describe the reac-
tion [142).By demanding that the amplitudes satisfy
MacDowell symmetry, the expressions essentially in-
clude the parity-doublet trajectories (N, Np) and

(6„,&) (see Sec. VII.D).
The contribution due to the S trajectory vanishes

when it is assumed that a~= ——, in the region of the dip.
This is a wrong signature point for the X trajectory,
and the amplitude vanishes in the absence of fixed poles
in the j plane (see Sec. III.C or Ref. [389)). Most fits
to the s.+p data [80, 142, 414] include a zero in the
residue of the E trajectory at the value of n where the
parity doublet of the nucleon would otherwise be
expected.

In general, the theoretical 6ts to the data are good,
though there is some arbitrariness in the determination
of the dI) parameters. If the residues for the E and dg

trajectories are extrapolated to the respective poles,
then parametrizations, which assume the residue func-
tions to be constant except for the zeros due to the
missing parity doublets, do not give the Born value [80)
whereas those which included exponential factors do
give the Born values [142).

The trajectories used in the fits to the data are

from (".hew —Frautschi plots [78):

an ——0.15+0.90W', o.~= —0.39+1.01W'.

Barger and Cline [78) suggest that the slight difference
in slopes and intercepts is due to a Qattening out of the
trajectories for 8"(0.

If the trajectories are approximately even functions
of TV, MacDowell symmetry implies the existence of
parity doublet trajectories (see Sec. VII.D). The fact
that the amplitudes for the N trajectory in rr+P back-
ward scattering could vanish implies that odd powers of
t/t/' in o. must be small„since they contribute to Im 0. and
the amplitude is proportional to (a+sr) Ima in the
region of the dip. This is rejected in the smallness of the
coeScient of W in the trajectories found in Gtting the
data.

One would expect [78) a similar dip in the differential
cross section for ~ P scattering where the d q trajectory
passes through a wrong signature point; e.g. , at m=
—3/2. If one extrapolates the 6& trajectory to —3/2,
the dip should occur at about 8"= —1.9; but there is no
indication of dip in the vr p data (Ref. [78), also see
Ref. [44]) . If the mechanism that allows the contribu-
tion from the S trajectory to vanish is assumed to work
similarly for the 6 trajectory, the only conceivable
conclusion appears to be that the trajectories do not
continue to decrease as rapidly with Ws(0 [78).

Igi et al. [317) have found that the vr p backward-
peak data suggests a zero of ~the 6 residue at wrong
signature sense point o.~= ~. They conclude that the
6& trajectory should favor the Chew or Gell-Mann
ghost-killing mechanism. Zeros in the 6 residue can be
confirmed by experiment on backward vr p charge-
exchange data since it should be sensitive to the relative
sign between the Ã and 6 contributions.
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FIG. 'I. Proposed classification of 7I-X resonances on MacDowell-symmetric Regge trajectories. The notation for the resonances is
(g) established, () probable, (L) interpretation in doubt, (Q) unconfirmed, (Q) indication of increasing absorption in partial
wave, (Q) predicted, (+) extinguished state, (7) no information available (Ref. [79)).

B. Classi6cation of Baryonic Resonances as
Regge Yrajectozies

Recent xX phase-shift analyses have revealed the
existence of many new inelastic baryonic resonances
(see [79]).Barger and Cline [75, 79] assign these and
other baryonic resonances to a very systematic classi-
fication scheme. For each value of isospin, rs(X-type
trajectories) and 3/2 (6-type trajectories), there are
four trajectories: (n) J =1/2+, 5/2+ . (P) J~=1/2,
5/2 —,~ ~ ~; (y) J =3/2, 7/2, ~ ~ ~; and (8) J =3/2+,
7/2+, ~ ~ ~ . Previously, only resonances on the E, X~,
As, and Q trajectories had been assigned (see Fig. 6).
Of these, the assignment of four and Ave resonances to
the X~ and Aq trajectories, respectively, gives clear
evidence that trajectories are approximately linear in
W'. New phase-shift data has allowed resonances to be
assigned to the Ep, Xs, 6 and h~ trajectories [75, 79].

Because the resonances assigned to 1Vp, X~, d, and
A~ are inelastic and thus do not dominate xX elastic
scattering as strongly as E, E~, hp, and 5&, they are
referred to as nondominant trajectories; the latter set
of trajectories are referred to as dominant trajectories.
Nondominant trajectories obey the selection rule

j—&= ——,(—1)r+'Is, while dominant trajectories obey
the selection rule j—3 =+a (—1) +'".

The classi6cation scheme as given in Fig. 7 has several

very striking features. One is that trajectories with the
same isospin and signature but opposite parity are
approximately degenerate; this is suggested by Mac-
Dowell symmetry for trajectories that are approxi-
mately even functions of 8' (see Sec. VII.D). If the
trajectories of a parity doublet are extrapolated to
iV=0, (i) they have the same intercept"; (ii) the
value of the slope and intercept for the E,p and hq, ,
trajectories are approximately the same as those deter-
mined experimentally from m+P data (see Barger and
Cline [78]): (iii) secondary trajectories which are
roughly parallel to the leading trajectories have inter-
cepts equally spaced by a unit of angular momentum.
Point (iii) is very interesting in terms of the theory of
daughter trajectories (see Sec. VI.B) . The orderly
arrangement of trajectories appears to be evidence that
the trajectories belong to a Toiler trajectory with half-
integral M.

Barger and Cline [75] have investigated the conse-
quences of SU(3) symmetry. Figure 8 shows the pre-
dictions and some condrmations of the assumption that
multiplets of SU(3) lie on trajectories whose mass
splitting is the same for higher recurrences (i.e.,

"Actually, as Leader L354j has shown, solutions to the t=0
constraint equations for fermions demand that these trajectories
conspire and occur in parity doublets and thus have to have
the same intercepts.
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Pro. 8. Evidence and predictions for SU(3) syrnnretric baryon tra&ectories (Ref. L77)) .

trajectories of members of a multiplet are parallel).
It appears (see Fig. 9) that at least for the leading
trajectories, those with opposite parities occur as
approximate parity doublets. Since trajectories in the 0.
octet are approximately parallel to those of the 8
decuplet, some encouragement is given to the sugges-
tion [251) that these multiplets are numbers of a
representation of U(6) SU(6) I30(3).

Several models have been used to generate E and 6
trajectories. One interesting attempt [130)used a boot-
strap model to explain the trajectories. The positions
and widths of known resonances have been used in a
doubly subtracted dispersion relation to generate the
trajectories for negative W [185).A calculation using a
broken 0(3, 1) symmetry [201, 204) found that the E
and 6 trajectories were rather symmetric in W [202).

C. Absence of Lowest Nondominant States

One striking feature in both Figs. 7 and 9 is the
absence of the lowest state of each leading nondominant
trajectories; i.e., Es (940, 1/2 ), Es (1500, 3/2+), and

6„ (1240, 3/2 ). Several explanations are proposed for
their absence; in particular, that these resonances may
be too inelastic to be observed by present measurements,
that their residue functions vanish at mass values where
they would otherwise occur [75, 79), and that the
trajectories have cusplike behavior for small values of
t/V' which cause the resonance to be more massive than
otherwise expected [330, 377). It is possible, but un-
likely, that their measured masses are in error due to
eR'ects of background phases in phase-shift analysis.
The latter possibility may also explain [213) the break
in the X~ trajectory at small values of H/.

The most promising of the explanations, is that the
absence is due to a zero of the residue function [75, 79).
That this zero is the one whose existence was proven by
Desai [182) is doubtful; Desai argued, using unitarity
and MacDowell symmetry, that if the potential theory
result that Ima(W) &0 in the neighborhood of the
threshold is applicable, then a zero should occur for 8"'
less than the square of the threshold energy; e.g., for the
E trajectory, W'( (m+p) s. Recent analyses [80, 142,
414) of all available backward e.+p elastic data, in
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PARITY DOUBLETS OF BARYON RESONANCES

P OCTET TRAJECTORIES a OCTET TRAJECTORIES

FIG. 9. An assignment of baryon reso-
nances to MacDomell parity doublets,
SU(3) symmetric trajectories (Ref.
L7sl).

which the residues were assumed to contain this zero,
have been reasonably successful. In fact, one 6t assumed
the X and 6 residues could. be parametrized by P (W) =
(W—Wo)y, and it gave reasonable fits if Wo —— M~i-
and 8'0 ———M& for the S and 6 trajectories, respectively
[80].

The explanation that trajectories are asymmetric
functions of S' and have cusplik. e behaviors as a func-
tion of kV' is based on the difference in threshold
behaviors due to the parity difference of members of a
MacDowell doublet [330, 377].Such cusplike behavior
should be apparent, at least for the X trajectories, in
abnormal parity trajectories like Ep [330]. This
explanation makes it seem accidental that the trajec-
tories, when extrapolated to 8'=0, have the same slope
and intercept values obtained from its to experimental
~+p data [28].Mixed support for the argument is given
by a doubly subtracted dispersion-relation calculation
which generated a symmetric X and an asymmetric
h~ trajectory [185,441].

ln conclusion, we have seen that the ~+p backward
elastic-scattering data could be reproduced with the
E and 6& trajectories and their MacDowell symmetric
pair Xp and 67, respectively. Baryonic resonances can
be 6t into a very elegant trajectory scheme in which
trajectories occur as approximate parity doublets and
trajectories of each set are approximately parallel with
equally spaced intercepts. Dominant and nondominant
trajectories have J—l=-', e(—) +'I', where e is plus or
minus, respectively.

X. CROSSOVERS, DIPS, AND PEAKS AND THEIB
REGGE THEORY EXPLANATIONS

Generally speaking, the Regge pole model makes
predictions about the dependence on energy, s, of
high-energy reactions, but says very little about their
dependence on momentum transfer, t. The theory does
provide definite ways in which amplitudes should vary
when a trajectory passes through special values, i.e. ,
integers for boson and half-integers for fermions (see
Sec. lV) . Consequently once the trajectory is known as
a function of t, the behavior of amplitudes is restricted
for values of t corresponding to special values of n.
Also, once the t dependence of a vertex function describ-
ing a Regge pole coupling to two particles is known,
factorization demands that the behavior of the vertex
function be the same for all reactions it enters. In this
section we review some t-dependent effects that Regge
pole theorists have recently attempted to explain.
Harari [291]has given an excellent summary of reac-
tions that the Regge pole model has difficulty describ-
ing.

A. The Crossover EGect

If the diGerential cross sections for AB—&AB and
MB~A j3 are plotted together as a function of t, it is
usually observed experimentally that the two curves
cross over each other for some small value of t. This
phenomenon is called the "crossover" effect and the
value of t at which it takes place is called the crossover
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point (t,). If we identify the antiparticle —particle sys-
tem AB with the two-particle system which couples to
the greater number of direct channels (e.g. , ir p,
K p, 7ip) and AB with the system which couples to the
lesser number of direct channels (e.g, ~+p, K+p, pp),
then the difference

D(AB) =do(AB) da(—AB)

is positive for small values of t and negative for —t& —t, .
The fact that the differential elastic cross section for

A B (e.g. , n. p) is larger at i= 0 and more sharply peaked
than that for AB (e.g., m+p) seems [353j to be a diffrac-
tive eQ'ect associated with the larger number of channels
open to the AB system. Consequently, an explanation
of this phenomenon in terms of cross-channel exchanges
such as Regge poles is difficult. A priori the Regge pole
theory cannot predict at what point the two differential
cross sections should be equal.

Line reversal implies that the same trajectories
contribute to both processes and the contribution of
trajectories with positive values of charge conjugation
is the same in both processes, while the contribution of
those with negative values of charge conjugation
changes sign. Thus D(AB) can be written

D(AB) =4 Re (T *T ),
where a sum over all helicity states is understood and T,
is the sum of all contributions from Regge poles with
charge conjugation C; e.g. , T+ P+P'+A2——+~, T =
p+~+@, Thus, to explain the crossover effect in terms
of Regge poles some mechanism must be found which
will allow this interference term to vanish at t,. Another
unpleasant feature for Regge pole theorists is that while
the dominant trajectories for s.+P, KP, + PP, and pP are
not the same, the value of t seems to be essentially
the same for all of the reactions; i.e., 0.10&—t &0.15.

To underscore the confusion resulting from the cross-
over effect, we review the situation. It is generally
argued that only the imaginary part of the helicity
nonQip amplitude of T+ is important; and thus D(AB)
can change sign only if the helicity nonQip part of T
changes sign [83$. It is thought that the coupling of
the P to EX is very weak and if both p and &u contribute
to a, reaction, the &v exchange is dominant [83j.

In the crossover effect for Kp and pp, it is believed
that the nonQip contribution of the co changes sign at t,.
Factorization implies that co amplitudes in every reac-
tion should also vanish at t, [442]. From studies of
residue functions for the co in Kp scattering using finite
energy sum rules, FESR (see Sec. XII.B), there is
evidence for a zero in both the nonflip (A') and fhp (B)
helicity amplitudes at t [168, 197].But, on the other
hand, the co contribution to mS—+pX shows no evidence
for a zero or dip near i [158j."Similarly FESR studies

"The latter conclusion is based on curves that are subject
to large errors, both statistical and systematic; e.g., norInaliza-
tion errors in cross sections.

and high-energy its to ~' photoproduction'. fail to
indicate a zero in the a& contributions [97).

Thus, the explanation of crossovers for D(PP) and
D(K+p) is in trouble. Perhaps reliable intermediate-
energy phase-shift data for pp and pp will help swing
the evidence to one side, but the present inconsistencies
must be resolved. A solution couM be provided by an
o&' for which Im (cv+cu') vanishes and Re (a&+&a') is
finite for the nonflip amplitudes [83, 291$. This could
also resolve diKculties with the absence of dips in
yp~'p [195j.

The situation for D(m+p) also appears to be confused.
In this case the only major contribution to T is from
the p trajectory. A FESR study [199) of n.P data has
found a zero in the spin-nonQip amplitude A'( & near

0.1, consistent with a fit to the high-energy harp data
(442). However, an interference model fit to x p—+ir'ri

has failed to find a change in sign for the spin-Qip
amplitude bi(t) in the region of t [549j.A p' similar to
the co' has been suggested to avoid difficulties [76, 83,
232j. In general, only some sort of conspiracy mechan-
ism such as this is likely to give a reliable explanation
to the crossover phenoinenon [76, 83). This particular
mechanism would modify present Regge pole predic-
tions and could be tested [76, 83j.

The crossover phenomenon could also be due to cut
corrections that represent multiple scattering [242j or
a,bsorption [49, 54, 297j effects. In such models the
total contribution of cuts and Regge poles would cause
D(AB) to vanish without requiring the residues of
individual trajectories to vanish. For the crossover in
D(~+p) the cut contributions are estimated to be too
small to explain the effect at t, [452) although an
eikonal absorption model [54j has produced a crossover
between —0.3 and —0.4.

B. Diys of Differential Cross Sections Associated
with Special Values of 0,

In addition to the zeros of residues that seem to be
imposed by the crossover phenomena, there are some
natural zeros associated with special values of n
appearing in n factors as discussed in Sec. IV. In the
following all special values of u are assumed to be
integral; i.e., for fermions we work with n=cxp —2.
To determine whether an amplitude is infinite, finite
but nonzero, or zero at a particular value, one has to
consider the a factors coming from three sources: (i)
from the signature factor [1+r exp( —&ra)

j/sinatra,

which is finite at wrong signature points [i.e.,
exp( —i~a) = —r] and inlnite at right signature points
[i.e. , exp (—&ra) =+r$; (ii) from the residue function
which, in addition to the four usual ghost-killing
mechanisms, may have Axed poles at wrong signature
points (see Sec. IV); and (iii) from the Gell-Mann et al.
[260j E-functions. Of these three sources only the a
dependence of the residue function is effected by
dynamics.
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Instead of giving tables of a factors for general cases,
we will review the literature on supposed O.-dependent
dips in differential cross sections associated with various
trajectories.

The classic example of a dip associated with a special
value of rr, the dip at t~ —0.6 in the reaction w p-+rrow,

is explained by the p choosing sense at rr, (—0.6) =0 (see
Refs. L76 and 353) for references). This is a wrong
signature point and would not be a possible explanation
if 6xed poles were important. Similarly one would
expect dips in s.+rs-+cop and s+p~s&h++ due to p
exchange, but they do not seem to appear $41, 353).
One argument used to explain their absence is that the
contribution of the 8 trajectory is large enough to 611

in the dips. The zero near b —G.5 of the mS spin-Qip
amplitude 8& ' was found using FESR's, in agreement
with the findings from fits of high-energy data f199).

In reactions dominated by the or trajectory one would
expect a dip similar to those due to the p trajectory.
Whereas p exchange fails to give a dip in or production,
co exchange does give a dip in p production. A dip in the
cv contribution to p production has been found at
t —0.5 L158). The reaction &P~oP is dominated by
the co (and 8) and has the expected dip L353, 366). The
point 0.„=0is a wrong signature point and one needs to
explain the absence of axed pole eGects. In contrast, for
the Ep data, for which co is important, there is no zero
in the nonfhp amplitude (at least for —t(0.8 L168))
although the helicity-Qip and nonflip amplitudes do
vanish near —1.0 [197).

The ris trajectory contributions to s. p—+rtrs, E p~
Eors, E+P~Eok++ L43, 348, 433), and xX~h L40
have been recently studied. The latter reaction does not
exhibit a dip at erg =0 L347). The point cry =0 is a right
signature point, but it is uncertain which ghost-killing
mechanism the As uses t43).

Recently the s.+p elastic data has been fitted; it was
assumed that the dip seen in each at 3 —0.8 is due to
the P' trajectory 1138,442). The point n& = 0 is a right
signature point, and in order to produce a sizeable dip,
it was necessary to have the P' choose the no-compensa-
tion mechanism. To associate the dips with the P'
trajectory of the two solutions previously obtained in

studying wS data L434), only the solution with a large
slope for the P' trajectory was possible $138, 442).

Fits to the pp and pp data need to explain the exist-
ence of a dip in the elastic pp data at t~ —0.5 and the
lack of a corresponding dip in the elastic pp data $138,
442). Since both pp and pp receive contributions from
the same trajectories and only diGer in the relative sign
of the C= —i contributions, a delicate interference
effect must take place between trajectories with C=+
and C= —.In particular, such an interference could
exist between the P and P' amplitudes and the co

amplitude $442). If the P' and ro trajectories are
degenerate, one can use P„~sin' (srscr), P ~ coss (srmcr)

as a crude mechanism to explain the effect L89, 300).
A pronounced dip is found in m.+p but not in rr p in

the backward elastic data (see Sec. IX). In that case
the dip is attributed to the passing of the E trajectory
through the wrong signature point —~. But there
appears to be no dip in m p associated with the passing
of the 6 trajectory through —~, also a wrong signature
point.

Barger and Phillips L89) summarize the latest
experimental evidence for dips or inflection points in
various reactions. Barger $76) also gives a very good
review of the recent work done on explaining dips in
differential cross sections.

In conclusion, the dip mechanism associated with
special values of n has had some remarkable successes,
but also some discouraging failures. The recent work of
Mandelstam and Wang L389) clouds the theoretical
picture at a time when the experimental picture is also
confused. Assuming the difhculties can be resolved, dips
may provide a useful way to determine how trajectories
fall with t. Barger and Phillips L89) suggest that if their
interpretation of primary and secondary dips is correct,
the existence of the dips constitutes the first experimen-
tal evidence for linearly falling trajectories.

C. Forward Peaks and Regge Pole Theory

For many reactions a simple Regge pole model cannot
explain the forward peak of the differential cross sec-
tions. A more complicated mechanism, such as con-
spiracy (see Sec. VI.D) or absorptive corrections (see
Sec. XII.E) or combinations of both, is necessary to
obtain agreement between theory and experiment.

Some of the reactions which require complicated
Regge explanations are pn~p, pp~n, s.lV—+pX,
re +pb„yp~rrE—; these have been discussed theoreti-
cally t 162, 210, 479, 480) and fitted with conspiracy
schemes $35, 46, 311), (Also see Sec. XI.F which dis-
cusses 7r conspiracy. )

The Regge pole model does not provide as simple an
explanation of peaks as do models like the OPE model
with absorptive corrections. In the above reactions the
pion would normally be expected to be the dominant
contributor. Whereas the OPE model with absorptive
corrections worked best when pion exchange was
possible, in the Regge pole model the pion is almost
forgotten in the ensuing conspiracy between other
trajectories (see Refs. L44) and $46)).

In conclusion, the Regge pole model cannot easily
explain the angular dependence of many reactions. Its
greatest success, that of correlating dips in angular
distributions with special values of the trajectories, has
encountered diAiculty both experimentally and theor-
etically. The model has explained too much experimen-
tal data to be easily dismissed, but it is being severely
harassed by the complications mentioned in this
section. "

"See Harari $291) for a review of the diKculties a simple
Regge pole model encounters for particular reactions.
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XI. ACCUMULATED FOLKLORE ON BOSON
TRAJECTORIES

In this section we will review properties of the
dominant trajectories and will discuss what is known
about their participation in reactions; their proposed
intercepts and slopes, their choice of u factors; their
O(4) classification; and whether they are exchange
degenerate with other trajectories.

A. The p and p'Trajectories (r= —,C= —,8= —,
I= 1)

Of the major Regge poles (E, I", p, co, A&, m) the p is
the only one that can participate in the charge-exchange
reaction m ~'e, where it appears to be responsible
for an u-dependent dip at t 0.6; —i.e., n, (—0.6) =0
(45, 138, 304, 369, 434, 4427. The p trajectory is also
thought to be a leading participant in other charge-
exchange reactions such as Pe~P, P7I &en, E—~
K'e, ~X=coA, yp-+pe, m.p-+noh++. There have been
many 6ts to these reactions $41, 43, 46, 51, 85, 141,
180, 227, 275, 284, 307, 309, 325, 367, 369, 375, 412,
436, 442, 46G, 461, 463, 493, 4947. The participation of
the p trajectory in sum rules, including FESR's, has
also been studied $34, 199, 307, 316, 395, 411, 493, 5227.
The p trajectory is apparently linear in t though the
quoted values of the intercept vary between 0.52 and
0.65 $3077, and those of the slope, between 0.64 and 1.0,
The most popular parametrization seems to be o.,=
0.58+0.90t. A p trajectory with a slight curvature has
also been obtained from a doubly subtracted dispersion-
relation calculation L27.

Since the earliest papers on the p trajectory, its role in
the crossover for m.p elastic cross sections (see Sec.X.A)
has been uncertain. Usually the crossover is attributed
to the vanishing of the spin —nonQip p amplitude. The p
trajectory is capable of being bootstrapped L282, 314,
4857 and appears to be a Class I (M=G) trajectory
L29, 41, 83, 232, 2497 (see Sec. VI.D) .

Though the question of which O.-factor mechanism
the p chooses at a=0 is still unresolved $43, 138, 232,
349, 4527, it is generally thought that the p uses the
sense-choosing mechanism. The residue behavior found
by Mandelstam and Wang L3897 is hopefully assumed
to be unimportant at 0.=0, since the connection between
the dip in do (~ p-wr I) and the vanishing of cx,

[45,304, 4347 would otherwise be destroyed. Supposedly
this dip can be explained with any of the o.-factor
mechanisms if other poles (e.g. , p') that are needed for
nonzero values of the polarization are included t 4857.
Perhaps the new mp charge-exchange data L2847 will

help to resolve what is happening at the dip. The energy
dependence at the dip should determine whether any
amplitudes due to the p contribute at a=0. The energy
dependence of the bump after the dip that occurs at
about I= —1.0 decreases very rapidly with increasing
energy L5027. If the dip is due to the vanishing of

certain p amplitudes, the energy dependence of the

bump should be given by the p trajectory.
The p trajectory is often considered exchange degen-

erate with the It. or A2 (see Sec. VII.C). Exact degen-

eracy requires that the residues of the A~ and p trajec-
tories be equal. Since there cannot be a ghost pole at
~=0, either a lower compensating trajectory exists

$2607, or all the residues for the Aq must contain a
ghost-killing factor of a, which similarly must be con-
tained in the residues for the p. This would imply that
the p has any of the 0. factors discussed in Sec. IV
except that corresponding to sense-choosing. The
relations between total and differential cross sections
resulting from this exchange degeneracy have been
compared to experimental data t 19, 20, 22, 23, 26, 51,
309, 4947. Experimentally determined values of residues
and trajectories for p and A2 (e.g., n, (0) =0.58, nz(0) =
0.34) suggest that the symmetry is broken L76, 857.
Some similarities of their residues have been found, and
these suggest at least an approximate exchange degen-

eracy (313). The approximate equality of the two

trajectories ( ag —a,
~

&0.1 for 0 6&t—&—. 0.2 L305,
4337 and their dominance in photoproduction have
been used to relate differential cross sections for pion
photoproduction to vector meson production L1897.

There has been considerable interest in a second
trajectory (i.e., p') with the same quantum numbers as
the p. Its physical manifestation could $3707 be the
8 (965 MeV). It was 6rst introduced to account for. a
discrepancy between the p+A2 model and the experi-
rnental differential cross sections for forward pe and

pp charge exchange $3017. An intercept of n, (0)
—0.6 gives the necessary corrections $3017.

Since the A2 cannot contribute to ~ p—+7r e, the
p+A2 model predicts that polarization should be zero.
Many groups have used a p' to account for the nonzero
experimental value of the polarization (92, 98, 107,
256, 370, 493, 4957. With n, (0) constrained to be 0.58,
values of cx,'(0) have been found ranging from —0.5 to
0.25 L2567 and even as high as 0.34&0.10 L4937. A

positive intercept is needed to obtain agreement with
the experimental polarization which is about the same
at 5.9 GeV/c and 11.2 GeV/c L1077.

Several recent papers consider the necessity of a p'

contribution in sum rules L74, 119, 168, 198, 419, 4937.
A study of ~X data using FESR found. n;(t) cx,(t)—
0.4 (119, 1987, while a similar calculation using CMSR
found a,.(0)~0 |4217. The residue function of the
p' at, 1=0 was also found to be less than one-tenth that
of the p L4217. Studies of ~X data using CMSR's show
that the p' decouples at t =0 $415, 421, 4957 or does not
exist $4937. A sum rule for m X scattering demonstrates
that within experimental accuracy the p contribution is
unnecessary L3167. This encouraged a recalculation
L2567 of earlier results t 3707 which found that two
solutions (i.e., a, (0) = —0.5 and cx, (0) =+0.2) gave
agreement with the sum rule result.

Fitting the high-energy diBerential cross sect;ions for
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the reactions E+ri, +K p, 7r P—~x'n, E P &K'e, a—nd
~ p~e required addition of a p' to the p+Ae model
with cx, = 0 48+1—44t .[491].. This result was criticized
[168], at least for the reaction E+n +E'p, sin—ce a fit
can also be obtained within the p+Ax model if the
residue of the A2 is allowed to change sign.

The p' could be used. to explain the crossover e6ect
in AX scattering [76, 83]. The n-factor mechanism of
the p' might result from a Mandelstam-Wang [389]
fixed pole [232].In an 0(4) classification the p' and the
B are assumed to form a Class III (M=1) parity
doublet [22, 98, 232, 495].A p' has also been postulated
to avoid having the p be a mixture of two Toiler poles
[29].

B. The I' and IP' Trajectories (r= +, C= +, P = +,
I=O)

To'explain certain features of high-energy reactions—
such as the apparent constancy of total cross sections as
a function of energy —in terms of simple Regge poles,
a trajectory which is called the Pomeron or Pomeran-
chuk trajectory I', is postulated. For constant total
cross sections, the optical theorem demands u~(0) = 1.
Since many elastic amplitudes involve a two-pion
vertex, the Pomeron must have rP=+ and G=+ and
thus r =+ [518]. This naturally implies that the
Pomeron contribution to an elastic amplitude is
imaginary at t=0; this is consistent with a diGraction
point of view.

Pomeranchuk has provided several rules [236] for
the high-energy behavior of reactions. One of these rules
implies that cross sections in the limit of high energy are

independent of isospin, e.g., fTgg &=0~~ &. This implies
that the Pomeron has zero isospin. Another of the
rules implies o (AB)~o (AB) at high energies. Then by
line reversal, the Pomeron must have positive charge
conjugation. This also follows from I=O and G=+ or
from the fact that only mesons with C=7 contribute
to spin-averaged total cross section [76].

Morrison [404] recently considered the contribution
of the Pomeron to inelastic reactions such as pp —+pX*
and m+p~n. +Ã*. He noted that while other inelastic
cross sections decreased with energy, there is one con-
stant-energy case: that in which an E*is produced from
an initial nucleus for which the change in isospin is zero
and the change in parity (dP) and. the change in spin

(LU) obey AP= (—1)a~. In terms of X and 6 trajec-
tories this would imply that the Pomeron could play a
role in the formation of an E or X~ but not an Ãp, Xq,
or any d trajectory from a nucleon (i.e., X trajectory).
Similarly for meson resonance production Morrison
found that for reactions where the change in quantum
numbers between the resonance and the initial meson
obey EI=G and dd'= (—1)a~, the cross sections are
nearly constant; e g , .E.+P +Eel, K*—(1320), or
E*(1/90)."

The Pomeron is generally assumed to be a SU(3)
singlet [76]. Recently, however, it has been argued
[473] that some deviations from exact SU(3) sym-
metry can be explained if the Pomeron has a small
I=0 octet component. In the Freedman and Wang 0(4)
classi6cation, the Pomeron is assumed to be a Class I
trajectory.

So far the only experimental fits involving the
Pomeron have been to elastic scattering [102, 108, 138,
181, 183, 227, 326, 356, 442, 456]. The Pomeron has
been used in a I'+I"+p model [141]to fit total cross
sections for ~+p scattering and in a I'+P+&v model
[227] to make a study of the 1V1V and XX elastic data.
(For a discussion of I", see below. ) Recently these two
models. have been used in a combined study of m.p, pp,
and Pp elastic data [442].

To explain the absence of shrinkage in m p, the slope
of cxr needs to be rather small (e.g. , ~0.3), in contrast
to the more or less universal value of 1.0 for other
trajectories [102, 181, 183].In an analysis of vr+P total-
cross-section data, two solutions were found [141]:
(a) ni'=rxi ' ——0.34, and (b) ap'=0. 23 and re~. '=0.93.
The study of XX and XE elastic data found 0.25&
ni '(0) (0.4 and 1.1(ap.'(0) (1.4, with typical values
for a best fit of np 1+0.3t, rxp =0.7+1.21t, and rx„=——
0.5+0.7t [227]. The combined study of xp, pp, and

pp elastic data found that solution (a) could not give
agreement with the data [442].In fact, four reasonable

"Tf the "eactions are crossed into the E channel, the hP=-
(—1I~~ la~.r is equivalent to (—1)&'~& '&= ( —1)"+'& where
j,f, aT1d t,& are any total and orbital angular-momentum values
contributing in a partial-. wave decomposition. Written in this
way the rule implies that the Pomeron couples to whichever
parity state allows the smallest value of l q for a given value
of total angular momentum, g I, I',when', f,&s +sq).
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its were found which gave ranges on the slope for the
Pomeron trajectory of 0&a+ (0) &0.29, and param-
etrizations such as a~.=0.75+1.5$ and ai =0.57+
2 17.t for the I" trajectory [442].

The residue and trajectory of the Pomeron have been
studied using dispersion relations, sum rules, and
FESR's [87, 120, 167, 168, 233, 264, 267, 275, 276,
306, 372, 420, 493] with results, in general, consistent
with those mentioned above. Similarly the incorrectness
of solutions (a) for m+p data [94] was found using
inverse dispersion relations [306]. The 8+ amplitude
used in the combined study of m.p, pp, and pP does not
satisfy the sum rules [87]; but since the high-energy
Gts are not very sensitive to 8+, the parametrization of
the trajectories is unaGected. The intercept of the
Pomeron trajectory, which cannot be accurately ob-
tained from high-energy data, has been determined
from an application of continuous moment sum rules to
low-energy ~E total-cross-section data [44] to be unity
within an uncertainty of 0.02—0.03.

There has recently been considerable discussion of
the implications of the unit intercept and small slope
of the Pomeron. The unit value of the intercept has been
used to derive two high-energy theorems for amplitudes
[362].A recent discussion of the analytic properties of
trajectories and their residues as the mass of their first
physical occurrence approaches zero suggests that the
small value of the slope is closely tied to the fact that
the intercept is unity [423]. In order for residues to
obey the algebra of U(3) SU(3), the intercept must
be less than one (i.e., n~(0) =0.93) which implies that
all cross sections tend asymptotically to zero [124,308].
A calculation [117]of the shift due to electromagnetic
interactions of the intercept, which was assumed to be
unity in the absence of such interactions, found ap(0) =
0.94 [117].A value of ca~(0) &1 would also avoid the
inconsistency mentioned in Sec. III.C associated with a
factor of (np —1) in Cornpton scattering [5, 500].

As mentioned in Sec. III.B, a Pomeron can be ex-
changed simultaneously with another trajectory to
produce a cut [110, 223, 242, 262, 310, 357, 432, 440,
487, 493, 504, 506]. If the intercept of the Pomeron is
unity the branch point of the cut will have the same
intercept as the other trajectory and a slope less than
that of either trajectory, i.e., nz ——a&'o.&'/(a&'. +a2') (see
Sec. III.A). To avoid the accumulation of the branch
points of an infinite number of cuts at j= 1, it has been
suggested. that a~(0) = 1—e [262, 506]. The cut mech-
anism is not sufhcient to allow the slope of the Pomeron
to be zero and, consequently, it is unlikely that the
Pomeron is a fixed pole [223].The Pomeron may actu-
ally represent some types of singularities in the j plane
other than a simple pole [487].

Perhaps the Pomeron does not bootstrap from cross-
channel resonances because it is the result of the non-
resonating background in the cross channel, in contrast
to other trajectories that appear to result from cross-
channel resonances [88, 155, 291, 293, 351]. Similarly

the Pomeron is perhaps the Regge pole mechanism for
describing difFractive scattering [291, 293].If this were
correct, the Pomeron trajectory would not pass through
physical particles. It has been argued that if trajectories
pass through physical particles and if some technical
assumptions are valid, then the slopes of the trajectories
would be the same; i.e., there would be a universal
slope [312].This implies that the unusual value of the
slope of the Pomeron is related to the absence of its
physical occurrences. The usual argument that the
2+ meson, f (1250 MeV), is on the Pomeron trajectory
is incorrect [76, 184].

Discussions of the role of multiple Pomeron exchange
in multiperipheral reactions [66, 225, 226, 551] show
that in the absence of cuts multiple Pomeron exchange
leads to a violation of the Froissart high-energy bound
[66], even if the Pomeron has a nonzero slope [551].

In conclusion, it appears that the Pomeron is a rather
unusual trajectory and that we have just begun to
understand its role in high-energy scattering.

The unusual properties of the Pomeron I' require the
existence of a second trajectory E' with a lower intercept
and a more normal slope [315].It has the same quan-
tum numbers as the Pomeron and presumably the same
0(4) classification (Class I).Unlike the Pomeron, it is
thought to belong to an octet representation of SU(3)
and pass through the f (1250 MeV) 2+ meson instead
of the f' (1520 MeV) 2+ meson as once thought [184].
Since the P' has the same quantum numbers as the
I', most authors who 6t the experimental data or use
FESR to study the Pomeron also include the param-
eterization of the I" trajectory.

Although the small slope of the Pomeron prevents a
determination of its n-factor mechanism, a study of
xX and S scattering shows that the I" probably
chooses the no-compensation mechanism [138].This
conclusion has also been reached from studies of xX
[87] and EX [168]scattering amplitudes. A dip in the
n.+P elastic cross section at t = —0.8 has been attributed
to the vanishing of the helicity nonAip amplitude of the
P' at ni =0 [138].Similar dip —bump phenomena in
E p at t= —1.0 and pp at 3= —0.5 are thought to be
due to the I" trajectory [76, 89, 353].These dips do not
occur at the same value of t possibly because the more
slowly varying contribution of the Porneron tends to
shift the position of the dip outward as the energy
increases [138].An example of this has been given where
u~ passes through zero at —0.5, while the dip occurs at
—0.8 [138). Perhaps contributions of the E'. and co

interfere to produce dips in pp but not in pp elastic
scattering [89]. Equal intercepts for the co and I"
trajectories can explain the constancy of the total cross
section for pp scattering [183, 227, 443]. Such pro-
posals require approximate degeneracy between the co

and I" trajectories (see Sec. XI.C) . Recent work [138]
using the no-compensation mechanism for the I"
suggests that the trajectory of the I" is close to that of
the p and co for negative t.
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In general, the parameters obtained for. the I"
trajectory depend on what assumptions are made about
those of the Pomeron. For example, Logan and Razmi
(Ref. [373); also see Ref. [372)) assume a~(0) =1
and find nz (0) =0.67; but if they assume ex+(0) =0.93,
as suggested by Cabibbo ei al [1.24), they find &xi (0) =
0.64 with a poorer Gt.

There has been some speculation on the existence of
a P" [420). It is dificult to distinguish whether con-
tributions are due to a P' Regge pole or to a cut [493).

In summary, the I" trajectory appears to be similar
to other trajectories in that it appears to be responsible
for dips in diGerential cross sections, to pass through
physical particles, and to have a slope and intercept
very similar to that of rd or p [138].

C. The &u and o&' Trajectories (r= —,C= —,P = —,
I=0)

The co trajectory is assumed to be a member of a
Class I 0(4) trajectory and to belong to a vector octet
of SU(3). Since its isospin (I=O) allows it to play a
dominant role in elastic scattering, the co trajectory is
usually studied along with the I' and I" trajectories
(see the previous section for references). It is assumed
to play the dominant role, along with the A~, A2, and
~, in p production. (The ~ trajectory appears to be
important only at very small values of —t, on the order
of 2 or 3' ' [44, 158, 298, 299).) In p production the dip
in the differential cross section is assumed to be due to
cx„passing through zero in the same way as o., does in
m p charge exchange. This assumption is supported by
the observance of a dip in the co contribution to p-

production data [158).There is also a dip in yP~x'P
which is apparently due to the rd trajectory [38, 195,
292, 366). A study of this reaction shows that the co

trajectory chooses nonsense at n =0 [51]. The &u

trajectory is possibly responsible for the crossover e6ect
in EÃ and EE reactions (see Refs. [76, 83, 158, 195,
263), and Sec. X.A). For small t at high energies the
reaction E20~EioP is dominated by the co trajectory
and should supply useful information on the co trajectory
[263).

The co is thought to be approximately exchange
degenerate with the I" trajectory. This degeneracy is
usually based on one or more of the following experi-
mental features:

(a) The total cross section for Pp scattering is nearly
constant in s, whereas that for pp decreases toward the
corrirnon asymptotic value [183, 227, 443).

(b) The total cross sections for E+n and E+p are'
approximately equal and nearly constant in s [86).

(c) There are no dips in the pp differential cross
section corresponding to those in 7ip [89).

Interference of the ao with the I' and I" trajectories
can explain the shrinkage in pp and antishrinkage in 7ip
differential cross sections [86). Such effects would

suggest that not only the residues, but also the trajec-
tories, for I"and cv should be related. Evidence for this is
rather controversial [86). In particular, a study of E1V
scattering using FESR's found that the residues, but
not the trajectories, are approximately degenerate
[168). Typical trajectories [227) used in fitting EX
data (i.e., n„=0 7+1. 25t, . a„=0.5+0.7t) also imply
that the trajectories are not degenerate although those
found in a combined study [138]of mlV and XX data,
are similar (see Fig. 10). A fit of ~P, PP and pp data,

[442] showed a large curvature and variation of param-
eters for the cu trajectory (i.e., n„(0) from 0.21 to 0.47,
n„'(0) from 0.31 to 1.66) which could result from lower
trajectories (e.g. , @) being included in the effective
&u amplitude. One recent calculation [326) found inter-
cepts of 0.5 and 0.75, while another [302) found inter-
cepts of 0.52 and 0.50 for the cv and I", respectively. A
study of pp total cross sections using FESR's found
u„=0.22 and n~ =0.58 [120).The present conclusion is
that if there is exchange degeneracy between the I"and
co, it is at most only approximate. Consequently, the
explanation of the experimental features that lead to the
proposal of some sort of degeneracy must be more
complicated.

The existence of an &u' [22, 83] could remove some
difficulties present in a single co model; such a difhculty
is the crossover phenomena in Pp and pp elastic scatter-
ing. Of course, such a trajectory may just be another
way of describing contributions from less important
trajectories such as the Q, or from cuts due perhaps to
I'co or px exchanges.

D. The A2 Trajectory (r= +, C= +, P= +, I=1)
The A2 or R trajectory is associated with the J~ =

2+ (1310MeV) meson and is assumed to belong to
the same SU(3) octet as the P' and to be a member of
a Class I Toiler pole family. It is assumed to be the
dominant trajectory in ~ P—&qn [43, 51, 85, 302, 374,
435, 446, 492, 550) and vrE~rlh (40, 51), to be im-
portant in photoproduction [115,189, 233, 533], and to
share a dominant role with the p trajectory in charge-
exchange reactions like E p &Eon, E+n +E—DP [43, 51-,

85, 115, 361, 446], and m+p~vr b++, E+p~E'6++ [51,
523), and to play a minor role with the p in pn —+np
and pp —+nn [115,227, 361).

A few of the values proposed for the A2 and p trajec-
tories ng(0) =0.34 cx, (0) =0.34 [85); up=0. 8+3.5t+
3.+2 cx =0.62+0.56t [523)' ay=0.5+0.96t, ap=0.58+
1.11k [115); a~ 05+0 9t=o..,——[51.); and n~=0.40+
0.49t [550), where we have listed n, to emphasize the
status of their exchange degeneracy. It is clear that the
A2 trajectory is not well known. A study of the 6rst
three of these reactions found that for fixed n„ the slope
of the A, is uncertain within a factor of 2 [43).Recent
data on ~ p~xon and m p~n may help to determine
the parameters of the A2 and p independently [284].

As discussed in Sec. VII.C, the A2 trajectory has been
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thought to be exchange degenerate with the p trajectory.
Evidently, this degeneracy at most is only approximate.

There have been attempts to determine the O.-factor
mechanism of A2 at a=0. Because this is a right signa-
ture point, one would expect the trajectory to choose
either the Chew mechanism, the no-compensation
mechanism, or the Gell-Mann mechanism to avoid a
ghost state at u=0 [274]. The n-factor mechanism of
A2 has been studied with I'KSR's by using the EX and
KN elastic-scattering [274, 393) data and charged-
pion-photoproduction data [114, 533). Uncertainties
in the early data and coupling constants prevented a
clear decision but suggested that the A2 uses either
the Chew or the no-compensation mechanism. A more
recent analysis of the KN data [274) gives strong
evidence for the A2 using the no-compensation mech-
anism.

E. The Ar and 8 Trajectories (r= —,C= +, —,
I'= +, I=1)

The A& and 8 trajectories are essentially the peons of
the Regge pole hierarchy. They are held responsible
when no other respectable pole accounts for certain
physical phenomena. Very little is actually known
about their existence, but a brief review of some of their
features is appropriate.

The A& trajectory is associated with a meson peak
recently separated [403] from the As at about 1090
MeV with Jg=1 . At one time the A~ peak was not
thought to represent a resonance, since it could be
explained by the Beck effect which involves only cross-
channel exchanges. The new "Dolen —Horn —Schmid
duality" [198)again leads to a resonance interpretation
by arguing that cross-channel exchanges are closely
tied up with direct-channel resonance effects [137).

The Ar is usually assumed [249) to be a member of a
Class II Toiler pole family with a J~g=O daughter
which might be the ~ (1640 MeV) . The assignment of
the A~ to a Class III Toiler pole cannot be ruled out as
recently demonstrated by a study of n+p~s. 6++ and
s+P~p+P reactions [213).Theoretical discussions of the
contribution of the A~ and its daughter to the forward
direction have been given for p production [99, 480).
The A& trajectory has also been discussed in the con-
text of a Geld theory model [520).

If the A~ has unit isospin, it should be important in
charge-exchange reactions. The A~ and its daughter
have been included in fits to Pn and pp charge-exchange
data [46, 115) and also in p production [523). The
A~ and x trajectories are thought to dominate the
reaction ~+p—+p b++ at small t values [287).

The Ar and 8 are assumed to be members of SU(3)
octets. The 8 trajectory is associated with a meson
resonance at 1220 MeV with a probable Jg assignment
of 1+ [57). The 8 is usually considered a member of a
Class II Toiler pole, but it has been suggested that if the
8 contributes to scattering at t =0, it could be a member
of a Class III Toiler pole [249). The 8 trajectory con-

tributes to photoproduction of pions [27, 70, 109, 115,
292, 297) where a typical parametrization for its trajec-
tory is ns= —0.2+0.8t [115).It is also assumed to play
a minor role in pn and pp charge-exchange reactions. A
fit to these two reactions gives nn= 0—4+. 0 9t. and
o. = —0.025+1.25t [115).The 8 trajectory can also
explain the decay density matrix in to production [91,
298) where an intercept of about +0.05 gives reason-
able agreement with the data [91).The 8 trajectory
may explain the lack of dips in rr+n +top

—and s.+p—+co5+ +

at o.,=0 [41, 253] and the dip in w' photoproduction at
n„=0 which fades away at high energies [38).Recently,
a p+8 model has been used to study s. p~s-m, sr', ,
toe, toA, Atrr, htA, As', and A,A data [232].

As mentioned in Sec. VII.C, ~ and 8 are sometimes
considered exchange degenerate trajectories. At present,
except for a few crude estimates of the trajectory of the
8, no parameters are available to prove or disprove the
assertion. In the Regge pole model the pion has rather
exotic properties. It is de.cult to believe that even one
trajectory could be so complicated.

F. The rr and m' Trajectories (r= +, C= +, I' = —,
+, I=1)

The role of the pion trajectory in Regge pole theory
has always been a little confusing. The recent work on
Toiler poles and conspiring trajectories has caused an
enormous proliferation of literature related to the pion.
This section reviews the course of the recent develop-
ment and shows how complex the situation is becoming.

Consider the role the pion played in the OPE model
with absorption corrections [320).s' The single pion
exchange with absorption connections very adequately
describes resonance production in pseudoscalar nucleon
interactions (e.g. , s.N -+pN, pA, f'6, and Kp-+K*8) in
the few-gigaelectron-volt region for small values of t.
It predicts both di6'erential cross sections and decay
angular distribu'tions for resonances. The model also
successfully uses pion exchange to describe reactions
such as np~pn, yp~rr+m and pp—&hA [216).

The importance of the pion in the OPE model resulted
from the smallness of its mass, which gave a pole near
the physical region, and its strong coupling to the NX
and NrX channels [287). In the Regge pole model, the
nearness of the pole to t=0 is no longer an important
consideration in determining which trajectory domin-
nates. In the following discussion of 6ts to experimental
data with a pion Regge pole, it will be clear that the
magnitude of the coupling constant at the pion pole
is not a help but a hindrance to the its. To be sure, the
unmodified Born amplitude gave incorrect angular
distributions in the OPE model. The absorption correc-
tions were necessary to reduce the size of lower partial-
wave components, i.e., bring them in line with the
unitary limit and consequently produce the experimen-

"For additional references see Arnold (50$ and Durand [216$.
For a discussion of the role of the pion in the "droplet" model,
see Byers L121j and'Byers and Thomas L122j.
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will have a forward dip unless conspiracy takes place
[210].A Class II type pion is also insufhcient and the
data require a Class III type conspiracy [400].

The Toiler pole classihcation of the pion is uncertain.
Since the pion has unnatural p parity, i.e., rP= —,it
cannot result from a Class I Toiler pole. If the residue
of the pion were nonzero at t =0, it could be a member of
a Class III Toiler family [249]. If this were true, the
nonexistence of a physical parity doublet ~' in the
neighborhood of the pion would imply the trajectory
for the +' does not remain parallel to that of the pion or
that it chooses nonsense at o. =0. In the limit of zero
mass, n (0) =0 and a zero-mass pion cannot be a
member of a Class IIIToiler family since this representa-
tion of 0(4) does not contain a zero-spin representation
of 0(3) . Such a pion would be a member of a Class II
Toiler family. Since the mass of the physical pion is very
small, one might expect it too would belong to a Class II
Toiler family. But there are certain complications as-
sociated with the pion being a Class II conspiracy. Since
the quantum numbers of the pion (CI' = —) correspond
to those of an odd-daughter trajectory, there should be a
parent trajectory with J~@=1+ at a mass approxi-
mately that of the pion; this is not observed [384].A
possible classification for the pion (Class IV) has been
suggested in which the pion has a nonvanishing oG-shell
residue even for (=0 but vanishes on shell for zero four-
momentum transfer [479].

Theoretical discussions have been given on how the
amplitudes for xE—+pE should vary as a function of
energy in the forward direction for Class II and III
pions [99, 231, 479, 480]. At high energies a Class II
conspiracy produces only longitudinal p's, whereas a
Class III conspiracy produces only transverse p's [231,
480] (see Sec. VI.E). Experimentally it appears that
longitudinal p's are produced in the forward direction
[177, 547]. Discussion of m conspiracy have been given
for pion photoproduction [26, 400].Le celiac [357]has
presented an argument using factorization to show that
a Class III pion conspiracy would result in the reactions
m.X~pA, EE—+E*A, and z.E +f 6 exhibit-ing a dip in
the forward direction (see Sec. VII.E).

Mandelstam [384] has related the Adler self-con-
sistency condition imposed by PCAC on hadron ampli-
tudes and the conspiracy classification of the pion (see
Ref. [469] also). In particular he has shown that the
Adler self-consistency condition is true without refer-
ence to currents if the pion trajectory is a member of a
conspiracy with 3f&j. In proving this, Mandelstam
showed that the vertex function coupling two equal-
mass particles vanishes at t=0 for a zero-mass pion
coupling. The vertex function at t=0 for a zero-mass
pion must vanish for M = 1 since the M = 1 repre-
sentation of 0(4) does not contain states with j=0.
Since PCAC assumes that amplitudes are smoothly
varying functions of the pion mass, one would expect
this zero of the vertex functions to be in the neighbor-
hood of t=0 for the coupling of equal-mass particles

tal angular distribution. In the Regge pole model it is
not clear how much absorption corrections are included
in Reggeization. It is clear, however, that the contribu-
tion of a simple Reggeized pion (say, in EX scattering)
will still vanish at t=0, whereas the absorption correc-
tions in an OPE model modify the s wave suKciently
that the contribution of the pion no longer vanishes at
i=0.

To obtain a nonvanishing contribution at t=0 and
reasonable decay distributions when

resonances
are

produced, the Regge pole theory must be modified in
some way, for instance, by the introduction of cuts or
conspiring trajectories.

Several reactions have been described by a Regge
pole calculation involving the pion trajectory and
requiring no conspiring trajectories [239, 287, 299, 451,
523]. In a (p, ~, A2, vr) model calculation for E+p +-
E'A++ z.+p~x. 6++ p+p, and z p +f'e, it —was found
that n = 0 08+—0 6. 9t giv. es a good fit; but the pion
residue, when evaluated at the pole, is smaller than the
known coupling constants; e.g. , by a factor of 2 for
z+p—+p+p and by a factor of 10 for 7r p~fon [523]. A
study of reactions involving scattering of m, E, and p
from p that result in 6 production found [287] that
trajectories for negative rP such as the ~ or A& dominate
at small values of t and n = (1.50 to 1.75) (t—p') . The
difference between these two parametrizations of e is
essentially due to the pion contribution being important
only over a range in t of a few p,

' so that estimates of its
slope are statistically dificult [44, 158, 298, 299].

Comment on the various attempts made by I'raut-
schi and Jones [239] in fitting ~E +pA is wo-rthwhile.

They demanded that their value of the pion residue at
the pole be the value of the Born residue. Two of their
attempts are particularly interesting. In the first, they
assumed the residue function has the same t dependence
as the Born residue and found the predicted cross section
to be much larger than the experimental value. This,
of course, was the same diQiculty mentioned above
[523] and results from the fact that a Reggeized evasive
pion for small t is approximately equal to an elementary
pion and that an elementary pion exchange requires
absorption corrections to fit experiment. In the second,
the residue function was assumed proportional to
(t—b); a good fit was obtained with b 0 Actually. this
zero of the residue function results from the failure of
their amplitudes to satisfy kinematic constraint equa-
tions and is unnecessary when the constraint equations
are taken into account [321].

Frautschi and Jones [239]point out that their model
does not help in understanding other reactions which
have a large forward peak such as pe—+np and yp —+m+e.

In addition to these reactions, the reactions xE—+pA,

pp —+Ad, and perhaps n-X—+pX have behaviors near the
forward direction that are diAicult to understand
without the introduction of conspiracy between trajec-
tories [429]. In particular, the forward cross section
for pion photoproduction with a single-pion exchange



GERALD K. HzTE Regge Pole Model 70k

to a Reggeized pion whose physical mass is not zero but
pP. Consequently, many authors include a factor of
(t—Xp') in the pion residue function L70, 115, 192).

An M& 1 pion results not only in the vanishing of the
amplitudes for soft pions(equal-mass scattering), but also
of those for hard pions (unequal-mass scattering) and
vanishes in the zero-pion-mass limit L47, 478]. The de-
coupling of the pion from all reactions in the limit of
zero mass would cast considerable doubt on many
current-algebra results $478]. To avoid this, one would
conclude that M = 0 for pions. It is also possible that the
limit of zero pion rn. ass, which is needed to obtain
current-algebra results, is either not continuous $423) or
is at least exceedingly complicated.

The Bethe —Salpeter equation has been used to study
how a pion could change from a M=1 trajectory at
t=0 to a physical j=0 particle at the nearby point
5=p' L104, 514). In these solutions, the pion residue
function is proportional to n (0) for a nonzero-mass pion
and to 1 for a zero-mass pion L104, 514]. This would
imply a factor like (t—X&2) in the residue. The zero of
the residue function in the interval 1/3( t/p~&—3/5
requires a negative X. The trajectory for the parity
doublet is found to have a negative slope at t =0, which
suggests that it dominates in the cross-channel reaction.
The O(4) classification for massless pions in the Bethe-
Salpeter equation is complicated and implies that a
M= 1 pion is very unlikely L405).

The classification of the pion has been studied in an
off-mass-shell generalization of O(4) symmetry; it is
found that a pion with 3f= 1 at t =0 requires trajectory
mixing in the region 0&t&p' to permit the trajectory
to be pure M = 0 at t= p' $244, 363].

A trajectory with the quantum numbers of the pion
was found in a Geld theory model using Feynman
diagrams P20) and appears to be a Class II and not a
Class III trajectory.

Many fits to experimental data use conspiracy
schemes involving the m trajectory L18, 27, 44, 46,
70, 115, 159, 188, 253, 296, 311,429, 478, 492). A study
of the reactions ÃX—«XA and xS—+pA favors an evasive
pion and deGnitely rules out a zero in the pion residue
function near t= —0.02 commonly associated with a
Class III conspiracy $253]. In order to avoid a violation
of the principle of factorization in these reactions,
singularities more complicated than a conspiring pion
pole must exist in the j plane L253); e.g., conspiring
poles with the quantum numbers of the pion L46, 115).
The experimental data for m p—&pp, pA have been
analyzed with both a Class II and a Class III pion
trajectory L47, 231). A class II conspiracy between an
Ai and its daughter is included with a Class III pion
whose residue function has a zero at negative t L47].
The reaction ~ P—&p'e has been examined for small
values of t, and there is no clear evidence for assigning
the pion to a Class III Toiler pole L492). A dip has been
found. in the forward direction for the reaction s+p—+

p+p, but the reaction s.+p~p'b++, which is dominated

at small t by the pion, shows no dip near the forward
direction L18]. This result cast doubt on Le Bellac's
L357) arguments (see Sec. VII.E) for a Class III pion.

Photoproduction of pions and E mesons has been
considered with Class II and Class III pions L27, 70,
109, 159, 192, 219, 296, 297, 478, 529). Though both a
Class II L296) and a Class III L70) Z trajectories have
been used, the data seem to require a Class III pion
whose residue function vanishes at some value of
negative t, e.g. , for pions t= —0.85@' L70). Studies of
low-energy m.-photoproduction data using sum rules
and the assumption that only Regge poles dominate
have found evidence of a conspirator and of rapid
variations in the pion residue function with a zero at
small values of t; these support the class III assignment
of the pion L101, 114, 192, 465].

A combined study of photoproduction of pions and
Pm and pp charge-exchange data has been done using a
Class III pion with a full zero in the XXvertex function
at t= —2p,' L115].The pe and pp charge-exchange data

- were considered with both a Class III pion and a Class
II pion with a A~ daughter conspiracy. A Class III pion
gave the better fit $46). These data have also been
fitted with a Class II pion and a set of conspiring cuts,
i.e., pP and A2P L311).The Class III pion fit L46) has
been criticized L311)because it requires rapid variations
of the residue functions at small values of t.

Such rapid variations may indicate that the assump-
tion of a Class III pion is incorrect and the variations
are actually due to interference between a Class II pion
and a Class III trajectory L419, 478). Any zero of the
pion contribution could result from a cancellation
between the unabsorbed pion contribution and absorp-
tion corrections L224). From this point of view, the
unabsorbed pion would not conspire, but the absorption
correction which contributes to both parity states would
conspire.

There is far more speculation about the pion than
any other trajectory, except possibly the Pomeron, but
unfortunately the properties of the pion are diferent
to measure and are not known with any degree of
certainty. Perhaps a ~ cut with the pion quantum
numbers and approximate intercept could exist and
might be responsible for some of the present confusion
L26].

G. The E', E*,and X**Trajectories (r= +, —,+,
P= ——+ I=-')

Because the E (0—), E* (1 ), and K** (2+) have
nonzero strangeness, they are expected to be the domin-
ant contribution to hypercharge-exchange reactions. In
an early application of the exchange of a IP trajectory

t 459, 462) to the reactions Pp—+A.A, (AZ+ZA), Z+Z
obtained a trajectory of nz* ——0.4+0.7t. A recent cal-
culation using a SU(3) breaking expression for the
trajectories gave nz*=0.35+0.96t+0.16P and nz**=
0.276+0.41t from the trajectories for p and A2, respec-
tively (446). These trajectories gave adequate fits to
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EoA Ego and E P~ Z+, n.oA [446] A E
and E**model has also been used to analyze hyper-
charge-exchange reactions involving meson (e.g. ,E,~+) scattering by protons that result in a baryon or
baryon resonance [51].This model used air =air* =
0.25+0.9t, in analogy to exchange degeneracy in p and
A~ trajectories. An attempt to determine intercepts for
E* and E**from total-cross-section data using SU(3)
symmetry relations obtained values of 0.24 for both
trajectories [473]. Analyses of E'-meson-photoproduc-
tion data [70, 159, 243, 296] have been made using both
a conspiring [70] and an evasive [296] E* exchange.
The E trajectory may dominate over the E* trajectory
in the forward direction [70]. An attempt to do a
Reggeized bootstrap calculation of the E*meson from
the Em channel has met with reasonable success [532].

In this section, we reviewed what is known about
prominent and some not-so-prominent boson trajec-
tories. Our present knowledge falls short of a complete
understanding of Regge trajectories. We discussed the
necessity for a Pomeron trajectory with unit intercept
and considered the speculation that its lack of physical
occurrences might be associated with its being a Regge
pole description of diGractive scattering. We noticed
how secondary trajectories such as the p', co', m' seem
to be necessary from either experimental or theoretical
reasons. We saw how the mighty work horse of the OPE
model, the pion, has become extremely complicated
and endowed with almost mystical properties in the
Regge picture. One of the most satisfying features of the
model —evidence for trajectories that pass through
known particles —certainly is emerging from comparison
of theory to experiment.

XII. BY-PRODUCTS OF REGGE POLE THEORY
AND RELATED MODELS

This section is concerned with various Gelds of
research that incorporate aspects of Regge pole theory.
Whether such topics as multiperipheral reactions and
FKSR should be discussed here or in another section is
open to debate. Many people working in these newer
areas have also done considerable work in the main-
stream of Regge pole theory and would argue that these
topics represent new trends in the development of the
more general theory. The main criterion for considering
the topics here is that they involve assumptions addi-
tional to those of Regge pole theory.

A. The Interference Model

Low-energy scattering data (incident momentum of
1 or 2 GeV/c) is in general discussed in terms of phase-
shift analysis and direct-channel resonances, whereas a
description of data in terms of cross-channel exchanges,
i.e., Regge pole model, is expected to be valid only at
high energies (incident momentums in general greater
than 4 GeV/c). There have been many attempts to
select and combine the best aspect of both approaches

to describe the data at energies intermediate between
the two regions.

By considering the work of Van Hove [531] and
Durand [214], who show that the sum of an. infinite
number of single-particle exchange diagrams gives a
Regge pole behavior, one might be led to believe that a
complete description should also include sums of
direct-channel-resonance diagrams. The fallacy of this
reasoning is obvious when one realizes that the s-
channel and 3-channel amplitudes each give a complete
description of a reaction, and the Regge pole expansion
is an approximate description of the t-channel ampli-
tudes. Nevertheless, one might hope that the direct-
channel resonances represent terms in the t-channel
amplitude which are neglected in making an expansion
in terms of a finite number of Regge poles; that is, they
would be included in a background integral. Similar
situations hold in potential scattering [213].An equi-
valent statement would be that the Regge exchange
terms form a background for the leading poles or
resonances in the direct channels.

Such "resonance-plus-Regge-pole" models are gener-
ally referred to as interference models, since the two
contributions interfere in such reactions as mS scatter-
ing to give nonzero predictions for polarization. In the
early applications of the model, the direct-channel-
resonance contributions were parameterized by using
Breit—Wigner approximations. In particular, the model
has been used to describe neutron polarization in m p—+

~o+ [33,375] and in m P-+le L374, 550], backward n-+P

scattering [77], and charge exchange and hypercharge
exchange in pseudoscalar meson-baryon scattering
[430, 446]. (See Refs. [213] and [374] for a more
complete description of the model and its application. )

From a theoretical point of view the model has several
serious defects. One of the most apparent is the use of
Breit—Wigner approximations for the direct-channel
resonances. The Breit—Wigner approximation results in
resonance contributions that decrease slowly as a func-
tion of energy. The sum of such contributions, the so-
called Breit—Wigner tails, constitutes a background.
Consequently there is double counting when these
contributions are included with the Regge pole contri-
bution. Possibly, by using a Khuri representation for
the direct-channel poles and by including energy
dependence in the elasticity parameters for each
resonance to account for multichannel eGects, one could
avoid the double-counting problem [185]. This ap-
proach has been used to study ~p charge-exchange
polarization [185]; but, in general, such calculations
still fail to predict correctly the energy dependence of the
polarization [285]. The large number of uncertain
parameters associated with the resonances makes such
an approach somewhat dubious. For example, a study
of backward ~ p elastic scatterings [189] using the
same set of 15 resonances as Barger and Cline [77]
found, by varying a few parameters slightly, that a
Regge pole background was not necessary to fit the
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data. The model also failed to 6t the angular distribu-
tion of the data away from 180' [189].A fit to the
backward vr p data [399] without a Regge pole con-
tribution predicts polarization different from that of the
interference-model predictions [77]. A description of
the angular distribution for backward s p scattering
using an interference model, in which the Regge con-
tribution was modi6ed to account for a background
term, met with moderate success [128].

The discussion in Part XII.B on finite energy sum
rules, FESR, shows that in some sense the leading
Regge pole contribution must be the local average in

energy of the full amplitude. Consequently, in such
cases as the spin-Qip amplitude in vr p scattering, 8& &,

where the resonances all contribute with the same sign,
the inclusion of both direct-channel resonances and
Regge exchange poles amounts to double counting [59,
82, 140, 267].

Thus there are three strong criticisms of the inter-
ference model in its early formulation. First, the use of
the Breit—Wigner approximations for resonances does
not give an adequate description of resonances away
from their poles and leads to a conAict with the assump-
tion that the background is due to a Regge pole.
Second, the use of large numbers of direct-channel
resonances introduces too many uncertain parameters
into the calculation. And, 6nally, unless the resonance
contributions either are small or enter with opposite
signs, there is de6nite double counting in including both
resonances and Regge poles.

The latter objection can be rephrased as an attack on
the assumption that the Regge pole contribution is a
good approximation to the lower-order s-channel poles
that make up the direct-channel background. The
discussion of FESR shows that the Regge pole contribu-
tion appears to be related to the dominant s-channel
resonances, in contrast to the assumption of the inter-
ference model. Perhaps the Pomeron trajectory is not
related to s-channel resonances and can be correctly
added to direct-channel resonance to obtain the full
amplitude [264, 291, 293].

Durand [213]proposes several modifications to avoid
the first two defects of the original model and argues,
using an analogy to potential theory, that the Regge
exchange contribution can be used as a background for
the direct-channel amplitude. Consequently, there
would be no serious difhculty with double counting. He
suggests that the direct-channel resonances be described
in terms of their Regge trajectories rather than in terms
of individual resonance contributions. In addition, he
proposes (similar to Desai [185]) the use of a represen-
tation for which the resonance terms, i.e., direct-channel
trajectories, contribute signi6cantly only for Re n~j.
Previous calculations have been redone using these
suggestions and the results are essentially unchanged
[73].

One way to avoid double counting in the interference
model is to do a partial-wave analysis of the various

contributions and to insist that the resonances only
contribute to Quctuations about the smooth background
given by the Regge exchange poles [73].The Quctua-

tions would give a very small contribution to an energy
average of the amplitude, and the only signi6cant
contribution would be the Regge exchange pole as
suggested by the FESR results.

Concluding the discussion of the interference model,
it appears that the model should provide a useful

method to study reactions and the resonances that
contribute in the intermediate energy range (1 to 5
GeV/c) if contributions of resonances and Regge poles

can be combined in a manner that avoids double

counting.

B. From Dispersion Relations to Finite Energy
Sum Rules

One of the most rapidly developing areas of research
in Regge pole theory has been the merging of dispersion

theory and the analytic properties of amplitudes pre-
dicted by the Regge pole model. In addition to the
familiar terms like dispersion relations, sum rules, and

superconvergence relations, such terms as generalized

superconvergence relations, continuous moment sum

rules, and 6nite energy sum rules are becoming more

prevalent in the literature. Though these terms are
sometimes used interchangeably, this section will review

the various relations and discuss how they have been

used in connection with Regge pole theory.
In general, one assumes for an amplitude free of

kinematic singularities in s and I, that a 6xed-t disper-
sion relation can be written in the variable v= (s—I)/
4m:

F(v) =
" Im F(v')dv'

(XII.1)

Im F(v') dv'=0. (XII.2)
0

Amplitudes for t-channel reactions, free of kinematic
singularities, obey such a relation if a(f) —m+1 is less

than zero for the leading trajectory, where m is the
maximum t-channel helicity flip [530].By demanding

that the residues of fixed poles in the amplitudes vanish,
such relations have also been derived for v" Im F(v),
where e is integral and satisnes 0)e)m —n(t) —1

~4 There is a simple connection between conspiracy and super-
convergence properties of amplitudes f72/.

where the integration includes contribution from both
the cuts and the pole terms. Recently dispersion
relations of this form for Reggeized amplitudes [61]
have been used with xS charge-exchange data to study
the p trajectory [60].

If the amplitude is odd under crossing v~ —v [i.e.,
Im F(v) = Im F(—v) above the cuts) and if vF(v)
goes to zero as v goes to inhnity, one obtains the super-

convergence relation (SCR)'4
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the p trajectory is sufhcient, and additional contribu-
tions such as a cut or p' are not needed [316).A similar
expression has been used to study the p contribution to
vrP charge-exchange data [307) and the P and P' con-
tributions to rrN elastic data [276, 357).

By assuming for sufEciently large energies (say,
&)N) that the contribution of Im (F Frr)—to the
integral is negligible, one can truncate the integration at
E and write

-5 ~ ~

—IO ~-
or

Im (F Fn) d—
& =0 (XII.4)

—I5

Fxs. 1i. Plot of the integrand of the superconvergence relation
LEq. (XII.3)g. The values of (v' —p') "sLO. „(v)—o~„(v)g Lcurve
Aj are taken from experiment, while the values of 4xPF (&/p)
(curve Bg are calculated using n~=0.54 and P, =5.98&&10 'y, '
(y. is the pion mass) (Ref. $316)).

[490). A recent consideration of the relations imposed
on elastic amplitudes by the constraint equation at
t=0 has shown that whereas the t-channel amplitudes
and thus their SCR are related at I=O, there exists
a set of amplitudes which leads to independent SCR's
[359,361].

Recently SCR's have been used extensively to study
properties of Reggeized amplitudes [289, 294, 307,
354, 411,444, 450, 451, 463, 468, 496, 504), in particular
to investigate EE amplitudes in the backward direction
[354); to determine the p parameters from s.p charge-
exchange data [307); to investigate the pion contribu-
tion in pion photoproduction [289); to consider the
existence of fixed poles in Compton scattering [504);
and to study the existence of an I=2 cut due to the
exchange of two p's in various reactions [411).

If one writes a dispersion relation for F'=F—Fg,
where Fg is a sum of Regge poles that give the asymp-
totic behavior of F, then it might not be possible to
write a SCR for F, but it will always be possible to
write a SCR for F' by including a sufhcient number of
Regge poles in Fg.'5

As an example, consider the SCR

4~8 (2~& 'f &PL("—~—'P'L'~.—.( &
—~+.(~&3

—4s QP~P, (v/p))=0, (XII.3)

where the optical theorem has been used to relate
Im f(& ) to the total cross sections for 7r+p and the pole
term has been put in explicitly (f'=0.081) [316, 376).
(See Fig. 11.) Such expressions are normally called
generalized superconvergence relations (GSCR) but
some authors refer to them as sum rules.

The use of Eq. (XII.3) with w~P data implies that
's The exact n dependence used in Fa (e.g., F(v/p, ) or y~j is

arbitrary as long as it gives the normal asymptotic behavior.

So=—S ' N

ImF dp= QPN (a+1) '. (XII.5)

If »"+'(F F~) for —some nonnegative integer e goes to
zero as v goes to inQnity, one can write the Gnite energy
sum rules (FESR)

N

g +1
0

&

" Im F d» = Q PN (cr+e+ 1) '

(XII.6)

Similar sum rules that suppress the high-energy con-
tributions by using decreasing weight functions have
been derived by using unitarity [48).

By using the experimental low-energy data, one can
determine the residues and trajectories of the dominant
Regge poles with these expressions. Since X is in the
asymptotic region, the importance of lower trajectories,
cuts, etc. is the same as in a fit to high-energy data
[199).The advantage of FESR's is that one can cal-
culate Regge parameters directly, using low-energy data,
and need not work with the meager available high-

energy data or attempt to 6t diRerential cross sections
where the contributions of trajectories with different
quantum numbers must be considered simultaneously.

A tremendous number of papers utilize FESR's to
study Regge trajectories, but in general there are three
areas of endeavor: (1) the use of low-energy rrN and
EE data to study P, P', p, E, and A2 contributions;
(2) the use of pion-photoproduction data to study s.
and As contributions; and (3) the use of FESR as a
new type of bootstrap mechanism. Exceptions to this
classification are: (1) an analysis of NN data to deter-
rnine the intercepts of the P', o&, P, and As trajectories
[120)and (2) a study of the importance of the Pomeron
and other trajectories in nucleon Compton scattering
[167, 233].

Low-energy xX data and FESR's have been used to
study p contributions [34, 166, 199, 376, 395, 422), the
As contributions [393), the P and P! contributions [62,
87, 372, 373, 375, 376), and the P residue (357) .

Charged-pion-photoproduction data and FKSR's
have been used to study the As [114,465] and x [101,
114, 465) trajectories. The w-trajectory results give
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support to its Class III assignment since the pion
residue does not vanish at 1=0 as would the residue of
an evasive pion [101,114, 465], but varies rapidly near
t =0 and vanishes at t = —0.03.

By using the known Born terms and the resonance
spectra to saturate the integral in the FESR, one can use
the FESR to generate bootstrap trajectories in the cross
channel [199].This concept of saturating the FESR
with narrow resonance states has been used to calculate
decay widths of resonances [14, 15, 250, 392].

Reasonable results have been obtained in bootstrap-
ping the p and other trajectories in zx scattering where
the t-channel Regge poles (p, f, g) are also the s-channel
resonances [484]. While generation of the p from the
~E resonance spectrum was successful [88, 199], the
Pomeron could not be similarly bootstrapped [88];
this is consistent with the interpretation of the I'
mentioned in Sec. XI.B.Unlike the Pomeron, the p can
bootstrap itself in a dynamical scheme [387] which
uses, in addition to crossing relations imposed by the
Dolen —Horn —Schmid superconvergence relations, a
Rnite number of Regge poles in all channels. Unitarity
and FESR have been combined to give a bootstrap
scheme that permits not only ratios but also absolute
values of masses and coupling constants to be calculated
[314].

This new bootstrap approach, sometimes called the
"Dolen —Horn —Schmid" duality [198, 199], has been
used to argue that the connection between direct-
channel resonances and cross-channel exchange implies
that if the Aq is due to a peripheral reaction (the Deck
effect), the At is a true resonance or, at least, cannot be
distinguished from a true resonance [137].

Generation of the p trajectory through the use of
mÃ resonances in the direct channel has strong implica-
tions on the interference model [88].'e It essentially
implies that by including the direct-channel resonances,
one has included the cross-channel exchanges, and thus
that the p cannot be a background for the resonances.
The expression

v" Im (P—Fv,) dv=0

implies that in some sense the Regge contribution must
give the average contribution to the amplitude over the
energy range. Since this is only true for certain mo-
ments, a simple formulation of the local average effect
is dificult. A simple version of the interference model in
terms of Regge poles plus resonances will not work for
d~ +„(180'), do +„(0 ), or in polarization for a.+P
where resonances contributions are large and enter with
the same sign; in these cases there would be double
counting [143].

Continuous moment sum rules are obtained by con-

"By contrast, it has been suggested that for the m.N charge-
exchange amplitude at t=0, the p is generated solely by the
nonreaonant background L420j.

sidering dispersion relations for v~ exp ( im—yj2)F (v)
[493] or (v' —p') exp (—ia-7) F'(v) [365, 419, 421],
where y is considered a continuous variable in contrast
to e which was an integer. By using continuous
moments, it is possible to obtain a continuous curve for
5„ instead of a few discrete points and thus to obtain
more information from the data. Continuous moment
sum rules (CMSR) allow both the real and imaginary
parts of the amplitude to enter into the calculation.

Continuous moment sum rules have been applied to
low-energy ~N data to study the p and p' trajectories
[419, 421, 493] in order to determine the intercept of
the P trajectories [493] and the contributions of
vacuum trajectories (in addition to the P and P'
trajectories) [420, 493]. Applications to pion-photo-
production data have been used to study the m trajec-
tory and its conspirators [192] and to study the A2

trajectory [533].

C. Schmid Loops in Argand Diagrams

Recently Schmid [485] has demonstrated that if the

p contribution to the helicity-Qip xS charge-exchange
amplitude is subjected to an s-channel partial-wave
analysis, loops are found in the Argand diagrams. The
masses and widths of these "resonances" are in rather
good agreement with the physical values of the known
N* resonances. Of course the Regge pole contribution is
finite at the N* poles, but Schmid uses this to argue
that the Regge pole contribution is simply the leading
term in an asymptotic expansion of the exact amplitude
which has poles at the masses of the resonances. (See
Ref. [534].)

This hypothesis that partial-wave projections of

Regge pole amplitudes can be related directly to
resonance states has stirred a great amount of contro-
versy. In particular, it is in direct contradiction to the
basic assumption of the interference model.

One of the most compelling attacks on the "Schmid"
hypothesis has been given by Collins et al. [155].They
agree with Schmid that partial-wave projections of

Regge pole amplitudes result in loops in Argand
diagrams, but argue that such loops should not be
associated with physical resonances because (1) Schmid
"resonances" do not cause peaks in amplitudes as
functions of energy (i.e., partial-wave components
compensate each other to give smooth Regge behavior)
and (2) by unitarity, true resonances occur in all proc-
esses with the same s-channel quantum numbers,
whereas Schmid "resonances" are due to t-channel

quantum numbers. For example, both xx~x and
NA"—+ex have the same s-channel but different t-

channel quantum numbers. Thus identification of
resonances by phase-shift analysis is now questionable
[155].

Point (2) has also been emphasized by Allessandrini

and Squires [32], who point out that since Regge pole
theory does not have unitarity built in, it cannot bc
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expected to account for resonances due to "forces" in
other channels which couple to the s channel.

Alessandrini et al. [31) have obtained similar con-
clusions by considering partial-wave projections of a
Regge pole amplitude with a linear trajectory. In
particular, they find "Schmid resonance" with small
masses and high values of angular momentum. They
argue that either (1) such resonances exist, or (2) there
is a theoretical way to distinguish physical resonances
from Schmid loops, or (3) one must be very careful in
identifying Argand loops at low energy and high values
of j as physical resonances [31].A similar calculation
found that linear trajectories in the t channel resulted
in s-channel trajectories rising as s'~' [420].The Schmid
approach also generates parallel daughter trajectories
[31, 468],

Kreps et aL [349)have made partial analysis of Regge
pole amplitudes for mX charge-exchange scattering and
concluded that there is a lack of correspondence
between Schmid loops and measured resonances. This
conclusion is in strong contrast to the results of Lipshutz
[364], who also analyzed s.X charge-exchange data.
Lipshutz was able to identify a large number of Schmid
loops and measured resonances. He was even able to
make several predictions about yet-unmeasured proper-
ties of some of the resonances.

The hypothesis [15) that a sum of s-channel, finitely
spaced Regge trajectories cannot result in asymptotic
behavior characteristics of a t-channel Regge pole has
been disproved by a counter example [266).

The crossing-symmetric, Regge-behaved amplitudes
recently proposed [534) have also given support to
Schmid hypothesis in that they demonstrate that there
is no interference between Regge pole"'amplitudes and
direct-channel resonance.

D. The Use of the Asymptotic Properties of Regge
Poles in Bootstrap CalcuIations

One of the difhculties of traditional bootstrap calcula-
tions is that the energy dependence of the poles used
results in divergent integrals unless a cutoff is used.
%ith the advent of Regge pole theory and the reason-
able asymptotic energy behavior which it predicts, this
difhculty can be avoided. In Part B of this section, we
pointed out that the "Dolen —Horn —Schmid" duality
provides a new bootstrap approach. Previous to this
work there were a number of papers using Regge poles
in bootstrap calculations [10, 11, 61, 64, 129, 154, 239,
241, 265, 524, 532].

Bootstrapping of entire Regge trajectories to avoid
the cutoff problem has been suggested [241].In certain
situations the bootstrap hypothesis can generate the
Regge trajectories of external particles [524). The boot-
strapping of Regge trajectories has been considered in a
modification of the strip approximation [61, 64, 154)
and has led to the interesting feature that, unlike Born
amplitudes, the residue functions for Regge poles must
oscillate in sign [154],Higher boson resonances E, S, T,

and U are incompatible with the bootstrap hypothesis
if they are on the p and Am trajectories [156).

A bootstrap calculation for the p [10) and E* [532)
trajectories was done using a modified Cheng representa-
tion [11).The X and 8, trajectories have been boot-
straped using a generalization of Chew's reciprocal
bootstrap model in - which virtual transitions like
~E—+pS' are the driving forces for Regge trajectories
of inelastic resonances [129, 130). Bootstrap theory
combined with Regge poles can support arguments for
a noninvariance algebra for meson isobar residues
[265).

In many ways the Regge pole concept has helped
enormously to revive the bootstrap theory. The solution
of how to treat particles with large spins has enabled
calculations to proceed where they were previously
questionable because of the use of cutoff parameters.

E. Absorptive Corrections and Regge Poles

As mentioned in the discussion of the pion trajectory,
Sec. XI.F, the Regge pole model has difficuties explain-
ing phenomena which were easily explained by the
one-particle-exchange model with absorptive correc-
tions. Except for the introduction of amplitudes
forbidden by angular-momentum conservation, the
Reggeization of helicity amplitudes at fixed s is more
analogous to the modification of Born amplitudes
through the use of Ferrari —Selleri type form facts than
the modification resulting from absorptive corrections.
For example, whenever a Born amplitude is evasive at
t=0, an amplitude for a simple Regge pole is also
evasive, whereas a Born amplitude with absorptive
corrections contributes at t =0. There is some absorption
introduced by Reggeizing amplitudes, and one must be
very careful in introducing absorptive corrections to
avoid double counting. Just as in the one-particle-
exchange model, where the use of both form factors
and absorptive corrections introduced too many
arbitrary parameters into the theory, the use of Regge
poles with absorptive corrections can involve numerous
parameters that must be determined from experimental
data.

At present there are two closely related methods of
introducing absorptive corrections into the Regge pole
model. The first, proposed by Arnold [49, 50, 52, 54,
and 103] and others [69, 242 and 504), uses an eikonal
approximation; it generalizes the potential theory
concept of an impact parameter to modify Regge pole
amplitudes by using eikonals obtained from elastic-
scattering data. This approach attempts to incorporate
the eGects of unitarity into inelastic reactions by con-
sidering corrections due to elastic scattering in the
initial and final states. This method, identical to the
earlier approach used to introduce absorptive correc-
tions into the one-particle exchange model, has been
extended to consider photoproduction reactions [457).

The other approach, proposed by Cohen-Tannoudji et
al. [152, 402) (also see Refs. [297) and |449)), also
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attempts to incorporate unitarity, and leads to a
multichannel model in which the amplitude is written as

T(s, s,) =A(s, s,)+Z(s, s,)+2i d'pA(s, s;)R(s, zy),

(XII.7)

where s, =p,' jy and s;=p; p and s~——p~ p. The matrix
A is diagonal and is a purely imaginary shadow scatter-
ing amplitude, thus associated with the Pomeron
trajectory. The matrix R is a Regge-type amplitude
containing all trajectories whose intercept is less than
unity. The integral can thus be understood as due to
cuts which come from the simultaneous exchange of the
Pomeron and other Regge poles important in the
reaction. Although it does not appear to be necessary,
the Pomeron is assumed to be a branch point singu-
larity. Though only evasive Regge poles are used, the
amplitude for any inelastic reaction (e.g. , prs charge
exchange) will receive a contribution from the integral,
i.e., from the cut, and need not vanish in the forward
direction. Application of the model to ~S, EE, and
EE scattering gave good agreement with all available
experimental data $152, 402j.

One obvious objection to these models is the assump-
tion that the unmodi6ed amplitude is equal to the Regge
pole amplitude: the old problem of double counting
seems to arise when this assumption is made. '~ Another
objection is that the integral requires knowledge of
Regge pole contributions for much larger ranges of
momentum transfer than is normally needed in a pure
pole calculation. One of the most appealing features of
the model is that it provides a simple way to parametrize
contributions due to cuts.

Several authors $224, 242, 291, 452, 458, 504, 531]
have discussed the connection between cuts and absorp-
tion corrections. While the contribution of cuts in
inelastic amplitudes is small and resembles the eGect
obtained by the application of absorptive corrections
to Reggeized amplitudes, contribution due to cuts
should dominate the high-energy elastic scattering
L504j.

In conclusion, a Regge pole model consisting only of
simple evasive trajectories is not sufFicient to explain
many features of high-energy data; some modification,
such as absorption corrections, cuts (which may be
equivalent to absorption corrections), or complicated
families of conspiring poles is necessary.

F. Multiyeripheral Reactions

The description of reactions that lead to three or
more particles is complicated. Various papers attempt

'7 It might be argued that since the existence of cuts cannot
be denied, there is as much danger in half-counting as in double
counting; this model actually introduces fevrer parameters than
a pure pole model since the input Regge poles are evasive (i.e.,
conspiring trajectories are not required) and have smoothly
varying reduced residue functions (i.e., the contribution of cuts
avoids the necessity of rapidly varying residue functions) .

to describe such reactions in terms of the exchange of
Regge poles (see Refs. 1, 63, 65, 66, 93, 95, 105, 126,
j.27, j.3T—134, 225, 226, 254, 337, 397, 430, 437, 453,
454, and 551)). At present the approach is still largely
theoretical, but there is some experimental evidence
that Regge poles play a role in multiperipheral reactions
in much the same way as in two-body reactions.

The formalism necessary to describe multiproduction
reactions has been discussed L1, 65, 66, 126, 454, 551j.
The value of using the variables introduced by Toiler
in a group-theoretic analysis of kinematics is that, in
addition to the range of each variable being independent
of the values of the others, these variables lead naturally
to a description of the asymptotic behavior of ampli-
tudes

1 65, 66j. The continuation of amplitudes in a
three-body model to complex angular momentum has
been considered L1).Crossing relations L229$, which are
similar to relations for two-body amplitudes, have been
derived L126j. Multiparticle amplitudes do develop the
O(4) symmetry as the total four momentum vanishes
L63$. A recent formalism for three-body reactions treats
spin properly and can be used to describe resonances
between two of the final particles t 1271.

If the Pomeron is a Regge pole, then the total cross
sections are constant asymptotically L5511 since the
particle multiplicity grows asymptotically like ln s, and
the cross section —to produce a given number of
particles —falls off like 1/ln s. This, or course, is con-
sistent with the conclusion obtained using the optical
theorem and with the fact that asymptotically elastic
amplitudes are dominated by the Pomeron. If the
trajectory of the Pomeron is flat, i.e., a 6xed pole,
the exchange of the Pomeron leads to a violation of the
Froissart bound L66). This violation remains even if
the Pomeron has a finite slope, provided that cuts are
not present $225, 226]. Further, either the trajectory
of the Pomeron is not flat or the number of times a
Pomeron can be exchanged is limited t336).

For the reaction mE~pX a deck calculation using
Regge pole exchanges has explained the enhancement
of the m p mass in the region of the A~ in terms of multi-
peripheral exchanges (93$.The enhancement increased
when the exchanged pion was Reggeized L93$. That a
Reggeized pion should work better is consistent with
the argument that the A& is probably a true resonance.
This argument uses the "Dolen-Horn —Schmid" duality
between direct-channel resonances and cross-channel
Regge exchanges to suggest that Regge amplitudes give
a rough representation of resonances even though the
amplitudes do not contain the resonance poles $137).
This duality also results in a .great simplification in
multiperipheral calculations, since one no longer need
consider direct-channel resonances when using Regge
exchanges [1371.The mNenhancement at 1.400 MeV/c
in the reaction pp~pm has been similarly investigated
L9Z

A Feynman diagram model with multiperipheral
Regge exchanges has been used to discuss the origin
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of conspiracies, ghost-killing mechanisms, and the
kinematic structure of Regge pole amplitudes [105].

The multiperipheral Regge model has been successful
in explaining experimental data [95, 97, 131, 133, 134,
437, 453]. In fitting reactions with more than three
particles in the 6nal state, the structure of nonresonant
low-mass clusters is sometimes assumed to be governed
only by phase space [131,392].In multiperipheral cal-
culations the same trajectories dominate as in two-
body reactions; the values of their intercepts and slopes
and the behavior of their residues are consistent with
those of two-body reactions [131,392].

In this section we discussed the rationale for an inter-
ference model to describe reactions in the intermediate-
energy region where the asymptotic Regge behavior is
not dominant and direct-channel resonances are
important. Various relations, such as superconvergence
relations and 6nite energy sum rules, can be used to
study the behavior of residues and trajectories of Regge
poles. The "Dolen-Horn-Schmid" duality and its
implications on the interference model and on a new

type bootstrap theory were discussed. In particular, this
duality destroys the assumptions necessary for a simple
resonance plus Regge pole type of interference model.
tAte also discussed the effect of the Regge pole concept
on the bootstrap model and described attempts to
introduce absorption corrections into the Regge pole
model and how such corrections simulate the effects
of cuts in the complex j plane. For those who would
like a relatively simple model, the use of absorption
corrections is no more appealing than the alternate
choices: i.e., of cuts or the use of large numbers of
complicated Regge poles. Some mention was made of
the heroic work of those groups attempting to describe
multiperipheral reactions using Regge poles.

The Regge pole concept can obviously be useful in
many areas of research. In addition to the uses men-
tioned in this section, the asymptotic behavior of Regge
poles can be used to calculate electromagnetic mass
differences [417, 505]. The success of the concept of
complex angular momentum might suggest that spin
and isospin should be on equal footings, and one should
consequently Reggeize isospin [472]. This, of course,
amounts to a higher symmetry and should lead to
considering the E; and 6; trajectories (i=a, P, y, tt)

as isospin recurrences on isospin trajectories.

XIII. SUGGESTEB EXPERIMENTAL TEST OF
ASSUMPTIONS USED IN REGGE

POLE THEORY

Probably no experiments can deal a death blow to the
theory of Regge poles, but many can help to test basic
assumptions and resolve ambiguities that confront
theorists. In this section, we review some of the sug-
gested experiments and discuss what may be learned
from performing them. All of the experiments need to be
done at energies above the resonance region so that the
high-energy (Regge) behavior dominates.

Perhaps a good test of line reversal (See Sec. VII.I )
would be a measurement of the Z+ polarization in the
two reactions rr+p~K+Z+ and E p-+n Z+ [51, 428].
In these reactions, the polarization can be easily deter-
mined by the decay of the Z+. One would expect that
the only contributions are the exchange of the K* [890]
and K** (1400) trajectories. Line reversal says that the
relative sign between the two contributions changes for
the two reactions, and thus their polarizations multi-
plied by the respective differential cross sections should
be equal in magnitude but opposite in sign. Similarly,
for the reactions rr p +EpA —and E p &rcport, th—e same
K+K* model predicts

Pada (K p~7rpA—) = ',Pa—do-(z. p mph—),
where the factor of ~~ comes from isospin Clebsch-
Gordon coeflicients [51].The data for these reactions
are also very meager and do not provide a true test of
the assumption of line reversal [51].

As mentioned in Sec. VI.C, there is some controversy
about whether the p and A2 trajectories are exchange
degenerate. A measurement of the polarization of the
recoil neutron in K P~EPe could. provide a test of
how much exchange degeneracy is violated since the
polarization would be zero if their trajectories or residues
were degenerate.

An accurate measurement of the polarization in the
reaction w P—+trstt for —t(0.1 should help to determine
whether the p' is a conspiring or evasive trajectory [83,
495].

Several experiments have been proposed to determine
whether the pion is a member of a Class II or Class III
Toiler family. For example, in the reaction xX—+pX,
the t dependence of the decay density matrix for the p
at small t divers depending on the pion classification.
If the pion is Class II, ppp ppy do-p&» and do-p~~ are
approximately 1, (—t)pt', t, and t, respectively; if the
pion is Class III they are approximately (1, (—t) "', t,
and a constant [231].Asymptotically in the forward
direction, ppp would be 1 and 0, respectively [480].The
p data at 8.0 GeVjc seem to imply ppp~1 and pt &,

p+~0 in the forward direction, which would mean the
pion is evasive [177,434]. The data at 4.2 GeV/c seem
to be consistent [547]. What is needed is an accurate
measurement of the density matrix near the forward
direction over a range of t of 1 or 2'. Some results on
this reaction for small values of t have been reported
[18, 492]." The use of polarized photons in pion
photoproduction [160, 162, 206] and Coulomb inter-
ference in pp scattering [119]could also help to deter-
mine the O(4) classification of the pion although the
predictions are based on the assumption that only Regge
poles dominate.

~8 The experimental determination of the 3II value of the pion
tnay be dificult if the suggestion of Sawyer L478$, Frazer et ut
$243, 244) and Sugar and Blankenbecker L314g is true They.
suggest that there must be both M=O and &=1 trajectories
with the quantum numbers of the pion which interfere.
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By considering forward scattering of reactions in-
volving nucleons, such as xE—+pE, cd, 0-E; yE—+~X,
A&E, and EE—+EX, and conspiracy classes contributing
one should be able to conclude which conspiracies
nature is using [479].A measurement of the reactions
P~PP, Ep-+E*p, or ~p-+A2p in the forward direction
might help to determine whether conspiring doublets
(Class III) or cuts contribute to forward cross sections
[212].

A measurement of the second-rank polarization tensor
for EE—+EX in the nonforward direction should deter-
mine the presence of cuts [431].If cuts are an important
contribution, polarization measurements should fall off
like (lns) ' [170]. (A (lns) ' behavior, of course,
would be dificult to observe experimentally. ) Measure-
ments of the differential cross section for yE—+x'E
or yE~~A for photons polarized in the scattering
plane should determine whether cuts are important
[161,292, 297].

Reactions in which two units of charge are exchanged
have no known Regge pole contributions and should
provide a means of determining the importance of cuts
[398,432].Examples of such reactions are E p +E+-

p-+E+Z, and E p~+Z . Since the same cuts (e.g. ,
pE*) contribute to the second and third reactions, they
should have the same energy dependence. With values
for p and E* intercepts, (ln s) 'do. should vary as so and
s~ 4 for the erst two, respectively [432.]

As mentioned in Sec.VII.E, the principle of factoriza-
tion places stringent limitations on the explanation of
particular phenomena. Factorization says that if a
vertex function has certain properties in one reaction,
then it must have the same properties in all other reac-
tions it enters. A test of factorization requires that a
particular property of a vertex function be determined
without making any assumptions. This is where tests of
factorization break down: One invariably makes
assumptions concerning the contributions of other
trajectories, etc., in concluding that a vertex function
has a certain property. Consequently, tests of factoriza-
tion without any assumptions are dificult to propose.

The approximate mirror symmetry of polarizations
for ~+p has led to the conclusion that the contribution
of the P and P' tarjectories is small [442]. Since
factorization requires the P and P' contribution be small
also for EE scattering, the polarization for pp and Pp
should also be mirror syxnrnetric (similarly for EE
system). If the assumptions are correct, measurements
of the polarization for pP (and also E+P) should provide
a test of factorization [442].

By using I.e Bellac's arguments, one can test either
factorization or the Class III pion explanation of the
forward peak in EX scattering by determining whether
the reactions AX-+ph, EX-+E*b,, m.%~fob, exhibit a
dip in the forward direction. The reaction mE—+pd fails
to show the predicted dip in the forward direction [18].

Other reactions in which accurate experimental
measurements could help to resolve certain ambiguities

of the Regge pole mode1 are ones whose di6'erential
cross sections are thought to have dip —bump phenomena
associated with the n factors of amplitudes. (See Sec.
X.B.) In particular, accurate measurements of the Pp
and pp di6erential cross sections in the t region of —1.4
to —1.0 and incident momentum range of 2.0 to 8.0
GeV/c should determine the mechanisms responsible for
the dip in pp and its absence in pp [138].

Polarization measurements of the recoil proton in
vector photoproduction would be useful in determining
the existence of fLxed poles [382]. With the use of
polarized photons in or photoproduction, it should be
possible to study the pion residue function [160].The
reaction Ez~p +EPP —could yield information on the
co trajectory such as its 0, dependence and its role in the
crossover effect [263]. Other polarization experiments
testing assumptions used in Regge pole models have
been suggested [56, 399].

There are many experiments that can unravel am-
biguities in the Regge pole model and test some of its
basic assumptions. Among the most useful experiments
from the Regge pole point of view are those at small t
that help establish if and how trajectories conspire,
those which determine the importance of cuts such as
double-charge exchange reactions, and those which
measure differential cross sections in regions of t where
certain amplitudes may have dynamical zeros (n
factors, crossover zeros, residue of Class III pions, etc.) .
When more complicated polarization experiments (e.g.,
CN~) are possible, many of the present ambiguities of
Regge pole theory may be resolved.

XIV. SUMMARY

This paper has attempted to review the recent
developments in the Regge pole model. In addition to
the simple poles related to known particles, it has
become necessary to postulate the existence of other
poles, families of poles, and various other j-plane
singularities such as cuts and possibly 6xed poles. There
appear to be very good theoretical arguments that cuts
and fixed poles at wrong signature points shouM give
important contributions; but experimentally there
presently seems to be no compelling evidence of their
existence unless one interprets the rapid variations of
residue functions required in pure pole models as
indicative of cuts.

The need for 0. factors in residue functions and the
various proposed n-factor mechanisms was reviewed.
It is unclear why some dips in differential cross sections
can be explained in terms of 0. factors at wrong signature
points, when the existence of fixed poles should invali-
date such explanations.

A discussion of the intuitive origin of kinematic
singularities of t-channel amplitudes at normal and
pseudothreshold points was given, and it was pointed
out that the amplitudes must also obey constraint
equations at these points. The solutions of the constraint
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equation then give physical cross sections that are free
of kinematic polelike factors.

Many complications arise from demanding that
Regge amplitudes have the correct analytic properties
at I,=O. In particular, the concept of daughter trajec-
tories seems to be a natural consequence of a higher
symmetry obeyed by the trajectories at zero four
momentum. If large numbers of correlated trajectories
are postulated, the analyticity of the resulting ampli-
tudes permits contributions to cross sections in the
forward directions that were not allowed for simple
poles. The obvious objection to the introduction of
daughter and conspiring trajectories is that they
destroy the simple, appealing Regge pole model that
needs only a few simple poles related to physical
particles. Since the introduction of such poles is due to
mathematical complications and has no physical basis,
one is led to believe that their need implies a basic
fallacy in the mathematical statement of the Regge
pole model.

A review of the basic symmetries that Regge trajec-
tories and amplitudes are assumed to obey—such as
internal symmetries like SU(3), exchange degeneracy,
factorization, and line reversal —was presented with a
brief discussion of their implications. Most of these
sylnmetries are common to other pole models and are
not fundamental to the basic theory of Regge poles.
The importance of factorization, its restrictions on the
present model, and the difhculties in formulating a
definite test of factorization were pointed out. Sym-
metries such as line reversal and charge independence
can be used to isolate the contributions of various
trajectories to a, given set of reactions. The example of
how the co contribution to mN —+pN has been isolated
was mentioned.

Backward xN scattering reactions can be explained
in terms of the N and 6 trajectories. The identification
of recurrence of N and 6 trajectories appears to be
definite evidence for MacDowell-synUnetric trajectories
and indicates that lower trajectories are parallel and
equally spaced by a unit of angular momentum from
each other. This is very reassuring and indicates that
physical particles actually lie on Regge trajectories that
are approximately linear functions and have slopes and
intercepts consistent with those obtained from scatter-
ing experiments.

The success of the Regge pole in explaining features
of differential cross sections such as dips, crossovers, and
forward peaks was discussed. Of the three, only the dip
Inechanism associated with a factors had a simple
explanation in terms of Regge poles. Because of the
recent work on fixed poles at wrong signature points,
even this correlation between dips and 0, factors must
be viewed with skepticism.

In a discussion of the more important trajectories, it
was seen that the pion has a diKcult time fitting into the
Regge pole model and seems to play a role which is
greatly diminished compared to its role in other models

and one's intuitive feeling of its fundamental role in
nature. Those who feel the pion has a complicated
behavior can point to recent fits of experimental data
and studies of its residue using finite energy sum rules
(I'ESR) .Their arguments are rather circular since their
fits incorporate the present Regge pole model of the
pion and FESR owes its very existence to the assump-
tion that Regge poles provide an accurate description
of high-energy phenomena.

Apparently the Pomeron is unlike any other trajec-
tory. In particular, it has a rather low slope, appears to
have no physical occurrences, and seems to be incapable
of fitting into a bootstrap model. A dynamical model to
describe the Pomeron appears to be emerging; it relates
these and other features which distinguish it from other
trajectories.

The interference model which has grown out of a
merging of the Regge pole concept and the use of direct-
channel resonance has several theoretical difhculties.
Suggested modifications to avoid these objections were
discussed.

FESR's are important as a tool for studying the
residues and trajectories of Regge poles. In general, they
give results consistent with Regge pole fits; e.g., they
find that the pion is conspiring and that its residue has
a zero quite close to the forward direction. The FESR
are derived with the assumption that above some energy
the amplitude is given exactly by the Regge pole con-
tribution. It would be a dreary world if cross sections
failed to show any features at high energies. Perhaps
some fluctuations due to higher resonances must always
be included; this seems quite natural, even from a Regge
point of view, since trajectories appear to have higher
recurrences. FESR's are possible only if these effects
average out at higher energies. Only then could a
duality such as that of Dolen —Horn —Schmid be made.

Partial-wave projections of Regge amplitudes have
caused considerable controversy about the meaning of
the resulting loops in Argand diagrams and concern
about the identification of loops in Argand diagrams
with resonances.

The Regge pole concept has been applied to other
problems such as multiperipheral reactions and boot-
strap calculations. Attempts to incorporate absorption
corrections into the Regge pole model have been Inade
with rather successful results.

In the last section there are suggestions for experi-
ments that might help to resolve various difhculties in
the present Regge pole interpretation of experimental
features. In particular, there are experiments that could
test the symmetry of line reversa, l, the importance of
cuts, and the mechanism responsible for the presence
or lack of certain dips in differential cross sections
associated with a factors.

In conclusion, the Regge pole theory has certainly
accounted for a large amount of high-energy data and
has given new life to other fields of endeavor such as the
bootstrap theory. It remains to be seen whether the
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model will continue to increase in complexity as it
attempts to explain new data or whether a new formula-
tion of the model will emerge that will avoid the diS.-
culties of the present model and provide a simple
explanation of experimental data. Either way, the
elegance of a Regge pole approach to strong interactions
has definitely been established and should remain with
us for some time to come.
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XV. APPENDIX

The Regge pole theory attempts to describe an s-
channel reaction A+8—+C+D or d+b~c+a by con-
sidering the amplitudes for the reaction as seen from a
cross channel, designated here as the t channel. Ke will
use the notation a+b +c+d to des—ignate the t-channel
reaction.

C (c)

D (a)

where s and t are the usual Mandelstam variables. It is
also customary to use the symbols S(T) and S'(T') for
S~(T~) when x and y designate particles in the initial
or anal states, respectively, of the s channel (t channel) .
In terms of these functions the initial and final center-
of-mass momentum (p and p') in the s and t channels
can be written as

p, = S,„/2s'I'= S/2s»~,

p, '= S.,/2s'"= S'/2s'"

P,= Tgb/2t"'= T/2t '

P (' ——T,d/2t'i'= T'/2t'I'. (A.2)

cos x~ = L
—(s+m '—m ') (t+m ' mP) —2m 'm' j—/S'T

cos Xb L (s+mP —md') (t+mP m, ') ——2mb2m2j/ST,

cos X.= L (s+mP m.') (—t+mP md') 2—m 'm—m)/S'T')

cos Xd= P—(s+mP mP) (t—+mP m, ') 2m/m j/S——T',

m'= (m.'—mb') —(mp md2)— (A.S)

x; is the crossing angle for the ith particle with reaction
and helicity amplitudes for the s and t channels desig-
nated by

s channel d+b—bc+a, f, ,db', -.

t channel a+ b +c+d, f.d,b'. —

The cosines of the center-of-mass scattering angles for
the s and t channels can be written as

s.—= cos 8,= Ls(t—u)+ (m.'—mP) (mP —md') j/SS',
s,=—cos 8,= $t (s u)+—(m '—mP) (m '—md') j/TT'

(A.3)

By using the Kibble boundary function P(s, t, u)
where

y(s, t, u) = stu —s( m.' m.' +mp md) t (m.'mp+—m 'md')

—u (m 'md +mb2m ') +2m 'mPm 'md'

X (1/m, '+ 1/mP+ 1/mP+ 1/md ) (A.4)

and s+t+u= m,2+mbm+m, 2+m/, one can write

sin 8,= 2Lsgg'I /SS', sin 8&= 2 Ltgg'~/TT',

The mass, spin, intrinsic parity, and helicity of the
ith particle mill be denoted by m;, s;, g; and A, ;, respec-
tively. For the simplicity in labeling amplitudes the
helicity will be denoted by i.

The crossing relation is

fca;db ~ cVica;db ' Je'd', gg '
tslbf g/df

(A.6)

A. Kinematic Notation

It is customary to define the symbols

S~=L(s—(m +m )')(s—(m.—my)')]»2

T =L(t—(m,+m )')(t—(m, m)') j»2—
(A.1)

or simply

f'= 3'',
where the cross matrix 3f is given by

cn;db 'a '(Xa) b'b (Xb) ae'e '(Xc) ~d'd (Xd) ~

(A7)
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B. Reggeization of Helicity Amplitudes

In the following we do not attempt to present a new
approach but only to introduce the notation commonly
used in the literature. In so doing we follow the Regge-
ization procedure outlined by Gell-Mann et al. [260].
For the reader who is interested in the details of
Reggeization we also suggest the excellent papers by
Abers and Teplitz [13],Ader ct al. [17],Calogero et al.
[125], Drechsler [213], Jones and Scadron [332],
Rebbi [445], and Thews [523].

In the Jacob and. Wick"[322] helicity formalism the
t-channel helicity amplitude has a partial-wave expan-
sion given by

fez;ai, '= Q (2j+1)F~;.~'d),„'(Hi), (A8)

where A=a —b, p=c—d. (Note that our amplitude
differs from that of Jacob and Wick by a factor of
—8»r(&T/T')'12, which also results in a corresponding
difference in our F"s.)

Since the d functions can be written as

d& ~'(8,) = (1+s,) ~ "+~~i'(1—s,) ~"-~~»P& ~'(s,), (A9)

where Pi„&(s) is a polynomial of si= cos ei, the barred
amplitudes f defined by

1' .~—(1+s )
—l&+&l»(1—s )

—~&—&~»f . i (A10)

contain only dynamic singularities in s.
Sy using the parity properties of F', one can define

a partial-wave amplitude Ii&'& that corresponds to
scattering between states of definite parity I' by

F,g .g&'»=F,g .g&+qg,.gg( 1)".+'" "F ~,—~', (A-11)

the p-parity factor is given by

Using the e functions of Gell-Mann ei al. [260], one
can define a so-called "parity-conserving" amplitude
j"by

f~;.~»=f.a—;.~+ ( 1)—"+"qn.n~( 1)—"+" "f

= p (2j+1)(e'+F,q,q'»+e' F,q,q'
, »), (A13)

~h~~~ ~= »ax (I ~ I, I ~ I)
One normally assumes that the amplitudes Ii'& have

poles in the complex j plane (i.e., Regge poles) with

g parity, g (e.g. , poles due to trajectories such as the p
and A~ could occur in F&+, while trajectories such as the
»r and Ai could occur in F' ).

In order to Reggeize the amplitudes F''I, one must
have an expression for P'™that can be continued to
complex values of j.This is usually done by assuming f
or f» obeys dispersion relations involving its discon-
tinuity across the s and u cuts [125, 213, 523]. In doing
so, one finds that the contribution from the cut in u
introduces a factor (—1)~"which is not well behaved
for complex j. Consequently one cannot continue
F~», but must 'define two new functions, F&»'(r=+),
by replacing (—1) i " by r in the expression for F'».
The functions Ii&'&' are then continued to complex
angular momentum and are assumed to have Regge
poles with definite p parity, p, and signature v.

When the "parity-conserving" amplitudes f» are
expressed in terms of the f'»' amplitudes and a Som-
merfeld —Watson transformation is made, one expects
Regge pole contributions of the form

(1+r exp (—i»rn') )
fc4 elk g P'»IS;c5

~ i ~ py ~
~X/4

(sin»rn') j

q=P( 1)~"=Pr, — (A12)

where v is 0 or ~ depending on whether j is integral or
half-integral and 7[= (—1) &' "] is called the signature
factor.

(sin»rn')

where n=n, 'f, 0.'=n —v, and the E~„~+ are the con-
tinuations of the functions @„1+to complex j.

C. Glossary

s= —(2+8)'= —(a—c)' '

t = —(A —C) '= —(a+b) '

I=—(A —D)'= —(a—d)'

ss cos ~s

&t= cos et

m„s„g„X,(or x)

At=a —b

Mandelstam variables written in terms of the four momenta of the s-channel
reaction (AB~CD) and the t-channel reaction (ab +cd), respectively—

Cosines of the center-of-mass scattering angles in the s and t channels, respec-
tively

Mass, spin, intrinsic parity, and helicity of particle, respectively

p,=—c—a,

The t-channel and s-channel helicity diGerences in the initial and Anal states,
corresponding to the components of angular momentum along the incoming
and outgoing directions in the respective centers of mass
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C, G, I, andP

n(t)

a;db

;ah

fs or ft

Angular momentum

Energy variables used in dispersion relations for xE scattering

Factor equal to 0 or ~ which makes j—v integral for physical values of j
Signature factor $7.=+ (—) for trajectories which can lead to physical particles

a,t values of j such that (—1)' "=+(—)$

Possible quantum numbers of particles denoting charge conjugation, G parity,
isospin, and parity, respectively

The tt-parity factor Lthe symbol 0. is sometimes used when working with O(4) $

Trajectory function which describes the location of a Regge pole in the complex

j plane

Residue of partial-wave amplitude at the Regge pole described by n(t)

Helicity amplitude for s-channel reaction d+b~c+u

Helicity amplitude for t-channel reaction u+b +c+d-

Bared amplitudes formed by removing the respective half-angle functions from
fs or t

"Parity-conserving" amplitude

Partial-wave amplitude corresponding to definite angular momentum j
Partial-wave amplitude corresponding to definite angular momentum j and

g parity, g

Partial-wave amplitude corresponding to definite angular momentum j, p

parity, and signature r

A "right signature point" is one at which (—1)~=+r
A "wrong signature point" is one at which (—1)

A "sense value of n" is one that n& max (( & (, ~
tt ~)

A "nonsense value of n" is one that n( max (( X [, ( tt ()

An "evasive trajectory" is one whose amplitudes satisfy the t=0 constraint equations independent of other

trajectories

A "conspiring trajectory" is one whose amplitudes satisfy the t=0 constraint equations with the assistance of

other trajectories; i.e., their intercepts and residues are related at t=0

SR

SCR

FESR

Sum rule

Super convergent relation

Finite energy sum rule

CMSR Continuous moment sum rule

PCAC

OPE

Partially conserved axial current

One particle exchange

Units for st t, and tt are (GeV/c)' or (GeV)'

Units for da/dt are millibarns per (GeV/c)2

Units for m are GeV

Units (5=c= 1)
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mP

Reacfion Principal truj ectory

CutP, P, p)u) p

p) p

A2) ) Ay) 'r

A2

I
P) P

B, p

A2, x

I' eferences

56, 76, 87, 89, 102, 138, 141, 181, 183, 242, 275, 276, 300,
306, 316, 317, 391, 396, 421, 440, 442, 456, 493, 522, 548

22, 33, 49, 51, 58, 76, 85, 92, 107, 138, 141, 179, 185, 211,
224, 256, 284, 285, 316, 369, 3/0, 375, 420, 446, 491,
493, 495, 502, 513, 518, 538, 549

18, 44, 99, 158, 207, 216, 231, 238, 239, 291, 298, 333, 479,
480, 489, 492, 523

90, 239, 287

16, 44, 52, 76, 216, 231, 239, 287

44, 51

51, 391, 412, 461, 523

298, 333, 428

461, 495

239, 333, 523

22, 51, 75, 85, 211, 284, 285, 286, 367, 374, 426, 428, 446,
491, 538

~LA) xZ) 51, 446

Crossover D(sr+ p) p) cuts

333

242, 297, 442

EN and NE

pp~xA

pp~pp

Pfi~P77

Ps~pe

pn~pn

p's~p'g

pn~np

pp-+ArX

pp —&A.A

pS)~nn

pp~m'+m

Crossover D(pp)

P, P', co, p, ~, A2

P) P) 0)) p) x') Ag

P) P) CO) p) Ã)A2

P) P ) co) p) x') Ag

B, Ap, m., p

B, A2, x) p

E, E*

B, A2, x

F, hg

co) CutS

287

23, 76, 89, 102, 118, 138, 181, 183, 227, 242, 310, 400, 442,
443, 463, 470, 539

23, 76, 89, 102, 138, 183, 227, 242, 405, 442, 443, 539

23 227

23, 76

227

22, 46, 116, 227, 239, 311,478

216, 287

46, 115, 311

22, 82, 286, 391, 422, 442
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Ep(ts) —+Ep(r/)

E+n~E'p

Ep~E' —'rs

Ep +E*—A

Ep +EA-

Crossover D(E+p)

P~P2M) A2

A2y p~ p

p, A2

23, 76, 89, 102, 181, 274, 428

5i, i68, 284, 49i

51, 'I, 85, 367, 371, 446, 460, 491

239, 287

5i, 39i, 46i

49, i68, 242

Compton

yp~+ts (z'p)

p 5, 6, 112, 16/, 233, 294, 382, 500

6, 16, 22, 26, 27, 35, 38, 97, 109, 115, 118, 159, 162, 189,
191, 192, 195, 210, 216, 219, 289, 291, 292, 297, 334, 400,
436, 469, 478, 529, 533

26, 118, 160, 196, 273, 382, 436

70, 296, 525
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XIX. NOTE A33DED IN PROOF

Since the completion of this review in October 1968
there have been many developments related to the
Regge pole model. The most significant of these has been
the Veneziano model, but other topics such as duality,
multi-Regge bootstrap models, and non-double-counting
interference models have created their share of interest.
Much of this work has been reviewed by Jackson (1969)
at the Lund Conference and we will only briefly discuss
some of the developments and menti. on papers which
should be informative.

In the past year the Veneziano model has eclipsed the
traditional Regge pole model as a source of new ideas.
Its main attraction lies in it being a simple compact
expression (Euler beta function) that has crossing
symmetry, shows resonant structure and, with the
assumption of infinitely rising trajectories, shows
asymptotic Regge behavior in all channels and is
capable of being generalized to multiparticle processes.
The two classic papers on the Veneziano model are the
original paper of Veneziano (1968) and that of Lovelace
(1968). In the first, Veneziano proposes a supplementary
condition on trajectories which predicts slopes and
intercepts for the p and A2 trajectories in reasonable
agreement with experiment, derives xm. scattering
lengths, and demonstrates that FKSR's are satisfied.
Lovelace recognized that the Veneziano model provided
an expression for describing three-particle decays and
for continuing external pion masses to zero as required
by the Adler-self-consistency condition and other
current algebra constraints. More recent work on two-
body reactions such as xm scattering has been done by
Abers and Teplitz (1969), Goldberg and Srivastava
(1969), Igi (1968), Igi and Storrow (1969), Kawara-
bayaski, et al. (1969), Lovelace (1969), Phillips and
Ringland (1969),Roberts and Wagner (1969), Shapiro
(1969), Shapiro and Yellin (1968), three-body decays
by Jengo and Remiddi (1969), and on current algebra
constraints by Ademollo, et al. (1969), Arnowitt, et al.
(1969), and Osborn (1969). The results of these papers
and others have been discussed by Jacob (1969) and
Yellin (1968, 1969) .

The Veneziano model was first generalized to reactions
involving five particles (i.e., the five-point function) by
Bardakci and Ruegg (1969I) and Uinasoro (1969) and
was studied for particular situations by Bardakci and
Ruegg (1969 II), Bialas and Pokorski (1969), and
Burnett and Schwarz (1969).Extension to iV particles
was made by Chan and Tsun (1969), Goebel an.d
Sakita (1969), and Hopkinson and Plahte (1969). A
general review of the generalized X-particle Veneziano
model has been given by Chan (1969).

The merging of field theory concepts and the Venezi-

ano E-particle amplitude has created a great deal
of interest in an approach analogous to that in QED,
for which the amplitude is written as a product of
vertex functions and propa, gators (Fubini, Gordon, and
Veneziano, 1969; Fubini and Veneziano, 1969; and
Kikkawa, Sakita, and Virasoro, 1969). Kikkawa,
Sakita, and Virasoro propose a perturbative approach
in which the Veneziano amplitude plays the role of the
Born term and which should preserve crossing sym-
metry and satisfies unitarity.

There have been several other attempts to unitarize
the Veneziaoo model. In particular, Roberts and
Wagner (1969 I and II) and Wagner (1969) use a
E-matrix formation with the Ueneziano amplitude as
the Ematrix to obtain ~x scattering results comparable
with experiment. Attempts to incorporate the Veneziano
amplitude in an X/D approach have been. attempted by
Atkinson, et al. (1969) and Balazs (1969). Unfortu-
nately, these attempts sacrifice crossing symmetry. The
new approach by Atkinson and Balazs using the strip
approximation overcomes this drawback. Huang (1969)
and Martin (1969) have shown by averaging or smear-

ing the Veneziano amplitude that cuts can be introduced
to allow the poles to move to the second sheet, and have
given suggestions for unitarizing the new amplitudes.
This procedure, unfortunately, does not give the normal
asymptotic Regge behavior, but this may be the price
paid for a model with cuts in the j plane necessary for
unitarity.

Interest has continued in the concept of duality in the
sense of a relationship between the resonances of one
channel and the cross-channel Regge trajectories as
first suggested by the Dolin —Horn —Schmid interpreta-
tion of FESR's (see Sec. XII.B) and later extended by
Schmid (see Sec. XII.C). Many of the recent develop-
ments have been reviewed by Jacob (1969) and only a
few will be mentioned here. The interpretation and
discussion of loops in Argand diagrams has continued
(Chin and Kotonski, 1968; Coulter, Ma, and Shaw,
1969; and Schmid, 1969) and it is generally agreed
(Horari, 1968) that a loop signifies the existence of a
resonance.

The various interpretations of the term duality are
discussed in several papers (Childers, 1969;Lichtenberg,
Newton, and Predazzi, 1969; Mandula, Meyers, and
Zweig, 1969; and Oehme, 1969). Oehme has give
support to the concept of duality by proving that an
amplitude in the narrow width approximation (i.e.,
amplitude is meromorphic in s and t) cannot have
complete Regge behavior, (—s) &0, in a given channel
without having an infinite number of resonances in the
same channel.

Duality has been very successful in correlating the
resonance structure in one channel with the degree of
exchange degeneracy (Sec. VII.C) of the Regge trajec-
tories in a cross channel. In particular, if there are no
nonexotic resonances coupling to a given channel at
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lower energies, duality implies the imaginary part of the
amplitude is zero for all energies. Consequently, the
amplitude for either cross channels will receive contri-
butions from only one discontinuity function t see Eq.
(VII.4)7 and will predict exchange degenerate trajec-
tories in those channels. The argument works similarly
in the other direction. The conditions for which this
situation leads to approximate exchange degeneracy are
discussed by Mandula, Weyers, and Zweig (1969).

Harari (1969) and Rosner (1969) have combined
duality with the elementary quark model to give a
simple graphical method of determining when the
imaginary part of an amplitude is zero. These "duality
diagrams" are also useful in connection with unitarized
theories (Freund and Rivers, 1969; and Kikkawa,
Sakita, and Virasoro, 1969) and with production
amplitudes (Fubini, Gordon, and Veneziano, 1969). In
particular, I'reund and Rivers, in unitarizing an ampli-
tude (i.e., putting duality diagrams together), obtain
cuts and a singularity that is built up from nonresonant
background much like the Pomeron should according to
Harari /see Sec. XI.B and the recent work of Dance
and Shaw (1968) and Gilrnan, Harari, and Zarmi
(1968)j.

There has been interest in formulating interference
models (Sec. XII.A) which avoid the double counting
problem. Jengo (1969I and II) has proved the validity
of a generalized interference model and gives an example
which does not show duality. Mo8att (1969) has given
an interference ozodel for ~x scattering which is able to
give the Weinberg scattering lengths and to satisfy the
Adler self-consistency condition. Coulter and Shaw
(1969) have argued from the behavior of terms in a
Veneziano amplitude that one can avoid the problem of
double counting by replacing the Euler beta function,
which has poles in s and t, by a sum of direct-channel
resonances and keeping the asymptotic form of the
other contributions. This amounts to replacing the part
of a signatured Regge amplitude which contains the
exponential by a sum of resonances. This is quite
reasonable, since this term results from the contribution
of the direct channel [see Eq. (VII.4)), and is the term
which generates the Schmid loops. The model thus
represents a self-consistent way of adding contributions
due to cross-channel Regge trajectories and direct-
channel resonances without double counting. In the
model the resonances and Regge pole contributions are
not independent, since the residue function for the
Regge poles can be determined by saturating the
I'ESR's with the resonances. This model overcomes the
difhculties of pure resonance or pure Regge pole its and
gives a good fit to st backward scattering (Sec. IX.A) .

The use of absorptive corrections (Sec. XII.E) has
become common recently, presumably because of the
complexity of conspiracy schemes and the inability to
distinguish experimentally between cuts and conspiring
trajectories Lsee Jackson and Quigg (1969)j. The

controversy of whether absorptive corrections and
unitarity or rescattering corrections have opposite signs
(Finkelstein and Jacob, 1968; and Rivers and Saunders,
1968) has been set. tied by Caneschi (1969) who showed
that a consideration of absorptive corrections to in-
elastic amplitudes electively changes the sign of the
unitarity correction.

An especially interesting paper by Avni and Harari
(1969) has considered pion contributions to forward
scattering and, except in photoproduction, concluded
that structure from pion exchange exists only if there are
non-helicity-Qip t-channel amplitudes.

With the availability of production data and recent
theoretical developments, the multi-Regge model has
become increasingly popular. The experimental support
for the model has been reviewed by Ranft (1969),while

some of the theoretical results have been reviewed by
Chan (1969). The most interesting theoretical develop-
ment has been the multiperipheral bootstrap model of
Chew and Pignotti (1968) t see also Caneschi and
Pignotti (1969)j. The model, based on unitarity and
the multi-Regge hypothesis, yields self-consistency
equations for Regge trajectories. A similar model has
also been presented by Halliday (1969) and Halliday
and Saunders (1969). The role of the Pomeron (Sec.
XI.B) in multiperipheral reactions has been studied by
Satz (1969), Caneschi and Pignotti (1969), and Chew
and Pignotti (1969). The latter two papers found a
Pomeron type singularity which is generated by lower-
meson trajectories and consequently has a slope similar
to that of other trajectories.

This discussion does not come close to including the
many developments of the last year, but it should serve
as a guide to the current trends of the Regge pole model.
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