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This review is divided into three parts. First, we survey the general features of nonforward scattering. We comment
on two large-angle scattering models (the statistical model and the proposal for explaining the ‘“breaks” in the differ-
ential cross section in terms of production cross sections) and discuss the axiomatic results on lower bounds and the
asymptotic angular dependence. Second, we review the motivation and the general formalism of the multiple-scattering
model and the qualitative success of the model—in particular, its application to the nonforward scattering. Third, we
discuss the impact of the multiple-scattering model on high-energy phenomenology. Here, we emphasize that, in addi-
tion to providing a concrete model for large | ¢| scattering, the multiple-scattering model contains virtues from both
the optical model and the Regge-pole model. Similar to the absorption model, it helps to explain problems encountered
in a pure Regge-pole model. On the other hand, it preserves the past success of the Regge-pole model and opens new

possibilities for it.
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1. INTRODUCTION

At this stage there is no general theory available for
describing high-energy hadron collisions over the entire
angular range. For the convenience of discussion, we
shall divide, in an approximate way, this entire range
into three regions:

(A) The forward- and backward-peak regions.
(B) The intermediate momentum-transfer region.
(C) The large-angle region.

In region A, i.e., near the forward and backward
direction, peripheral mechanisms generally dominate.
At this stage, Regge-pole models seem to give an ap-
proximate description to the data, at least for inelastic
and backward-elastic scattering. For forward-elastic
scattering, the situation is more controversial; some
authors prefer to have the exchange of the Pomeranchon
trajectory with a relatively small slope to be the domi-
nant contribution, while others prefer to introduce some
non-Regge components (Chan, 1968). For scattering
in the intermediate momentum-transfer region (re-
gion B), there has been considerable interest in describ-
ing the data by a multiple-scattering picture®*: One
describes scattering in this larger momentum-transfer
region in terms of successive small momentum-transfer
scatterings. So far, the multiple-scattering formalism
used by various authors involves small-angle approxi-
mations, so this formalism is not suitable for describing

* For examples, see Amati, Cini, and Stanghellini (1963),
Contogouris (1966), Anselm and Dyatlov (1967a; 1967b; 1967¢),
Chou and Yang (1968a, 1968b), Durand and Lipes (1968),
Chiu and Finkelstein (1968a; 1969), and Frautschi and Margolis
(1968a; 1968b.)
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large-angle scattering. We define region C to be the
one where the present multiple-scattering formalism
is not applicable. This region could start, for example,
at | | ~2-3 GeV? at some present energies, where ¢ is
the square of the four-momentum transfer. But in
practice, some authors were obliged to push this bound-
ary much further out in | £ |. At this stage no comparable
phenomenological model is available in the third region.

In this paper, we shall be concerned with the experi-
mental features, phenomenological models, and theories
available for scattering in regions B and C, or the non-
forward scattering region, and with the connection be-
tween this nonforward region and the forward- and
backward-peak region. We do not aim at a systematic
coverage of all work available in connection with our
proposed considerations. Instead, we will only review
a few selected topics from our own point of view. The
general content and the plane of this paper is as fol-
lows. In Sec. 2, we give a brief summary of the general
features of the data in the nonforward scattering re-
gion. We comment on two specific models for large-
angle scattering: the statistical model and the proposals
for explaining the breaks in the differential cross section
in terms of production cross sections; the axiomatic
results in connection with lower bounds and the asymp-
totic angular dependence of the differential cross section.
In Secs. 3 and 4, we review the motivation and the
general formalism for multiple-scattering models. In Sec.
5, wesurvey the applications of various multiple-scatter-
ing models to scattering, especially in the intermediate
momentum-transfer region (region B). We shall see
that the multiple-scattering picture gives a reasonable
description of the data. In view of this success, we
study in Sec. 6 the multiple-scattering correction for
those cases where the Regge-pole model gives an ap-
proximate description of the data, and comment on
the impact of the multiple-scattering model on high-
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Fi1c. 1. The pp differential cross section versus ¢ The differ-
ential cross section is normalized to 1 at £=0. The dotted lines
indicate the behavior of the angular dependence at several
energies (from Cocconi et al., 1965).
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energy phenomenology as a whole. In Appendix A, we
give some details of the axiomatic results mentioned
previously. As an example of the multiple-scattering
model, we include in Appendix B a specific multi-
Pomeranchon exchange model constructed from the
eikonal approximation.

2. A SURVEY OF NONFORWARD SCATTERING

A. Early Large-Scale Data and on Statistical Model

The first extensive experiment on large-angle scatter-
ing was performed by the Brookhaven National
Laboratory—Cornell group in 1963 on p—p scattering
(Cocconi et al., 1965). These results are illustrated in
Fig. 1. Here the differential cross section is normalized
to unity in the forward direction and plotted versus .
The dotted lines indicate the ¢ dependence at different
energies. These lines stop at 90°; for identical-particle
scattering, the cross section is symmetric about 90°.
Near the forward direction, the differential cross section
is sharply peaked and is exponential in ¢ or linear in the
plot. As ¢ increases, the differential cross section deviates
from the exponential falloff and eventually flattens out
towards 90°. At any fixed angle, the differential cross
section falls off rapidly as a function of energy. These
data are well described by an empirical expression,
known as the Orear formula (Orear, 1964):

s(do/dQ) =a exp (—p sin 6/b), (2.1)
where @ and b are constants, p and 6 are,the momen-
tum and the scattering angle of the proton in the c.m.
system, respectively, and s the square of c.m. energy.
For fixed angle, s(do/dQ)—exp (—s¥2). This form is
applicable away from the forward-peak region. At a
fixed energy, when 0 is small and yet finite, the differen-
tial cross section behaves like exp [— (—t)V%] as a
function of ¢. In the large-angle region, especially toward
90°, sin@ varies slowly. This results in the general
flattening effect in the differential cross section. Be-
cause of the symmetry, the cross section must be flat
at 90°. The #p elastic differential cross section averaged
over neutron laboratory momenta from 5.9 GeV/c¢ to 7.2
GeV/cisillustrated in Fig. 2 (Allaby ef al., 1968a) .* The
pp cross section at 7 GeV/c is also included for compari-
son. Although from the symmetry argument the #p
cross section at 90° can have any slope, the data indi-
cate that this is rather flat and is similar to the pp slope.

The fixed-angle energy dependence exp (—s'?) and
the flat distribution near 90° in the pp differential cross
section was first explained in terms of the statistical
model (Fast and Hagedorn, 1963; Fast, Hagedorn,

*The np data in Fig. 2 are from Kreisler e al. (1966). The
dotted curve is from Manning et al. (1966). The pp data at
7 GeV/c is from Clyde (1966).
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Fic. 2. The np differential cross section, averaged over neutron
momenta between 5.9 and 7.2 GeV/¢, compared to the pp cross
section at 7 GeV/c from Allaby et al. (1968a). [The np data are
from Kreisler ef al. (1966). The dotted curve is from Manning
et al. (1966).]

and Jones, 1963). In this model, when two protons
collide, they form a compound system which then de-
cays into any of the possible channels. The probability
for decaying into any specific channel’jisdirectly pro-
portional to the relevant phase space available. The
higher the energy, the more channels opened. This in
turn implies that there is less chance that the com-
pound system will decay back into its original elastic
channel. As a result, the pp differential cross section is
expected to fall off rapidly as the energy increases. De-
tailed calculations indicate that the behavior exp (—s'/?)
is indeed what one expects from the consideration of
phase space alone. Also, since phase space is all that
has been considered, one expects the general flattening
of the differential cross section in this large-angle re-
gion where the statistical model is applied. However,
as was pointed out by Ericson (1966), if the large-
angle scattering process is governed by the statistical
mechanism, the phases and the magnitudes of the par-
tial wave amplitudes are expected to be randomly
distributed. This in turn will cause observable fluctua-
tions in the differential cross section. In an experiment
designed to look for such effects, no expected fluctua-
tions were found (Allaby et al., 1966). This strongly
suggests that the large-angle scattering is not governed
by some purely statistical process. Nevertheless, the
phase space consideration mentioned above still remains
an attractive interpretation for the exp (—s'?) en-
ergy dependence, especially near the 90° region.

B. Breaks in the pp Differential Cross Section

In 1967, a large body of the pp differential-cross-
section data were summarized by Krisch (1967b)* on
a plot of the differential cross section versus $%p.2; this
is shown in Fig. 3. Very little theory has been advanced
to explain the significance of this variable, 82p.2=tu/s,
where #=4m?—s—1. Nevertheless, when the data are
plotted in this variable, one sees that the experimental
points, which are stretched out over 12 orders of mag-
nitude, can be approximately represented by the sum
of the three exponential functions. This indicates that
the pp differential cross section at any fixed angle is
divided into three energy regions, each of which has its
own characteristic slope. It has been suggested that
the three different slopes could be a reflection of the
dominance of different types of inelastic processes. For
example, Krisch (1967a) has associated these three
regions with the effects due to the production of pions,
kaons, and antinucleons, respectively. Allaby et al.
(1967) and Kokkedee and Van Hove (1967) have
suggested that the second break could be due to the
onset of the baryon-antibaryon pair production, espe-
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Fic. 3. The pp differential cross section plotted versus 3%p.2.
The lines indicate the three characteristic slopes in the differ-
ential-cross-section data (from Krisch, 1967b).

* We refer the reader to Krisch (1967b) for the details of the
data. Also the do*/dt shown in Fig. 2 is not, strictly speaking,
the differential cross section. It is the differential cross section
multiplied by a monotonically decreasing factor, which equals 1
at #=0°, and equals 0.5 at 90°.
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cially near the 90° region. We shall see later in this
section that the energy dependence of the position of
the break could be in favor of this latter interpretation.
These suggestions are attractive since, in an approxi-
mate manner, they correlate the positions of the breaks
with the different production thresholds. To test these
ideas more quantitatively, however, one requires some
detailed knowledge of inelastic scattering. Krisch has
formulated an ambitious phenomenological model and
has explicitly taken into account all the inelastic pro-
duction processes within it (Krisch, 1967a). Unfortu-
nately, some simplifying assumptions of the model have
recently been shown experimentally to be incorrect

sin®

(Asbury et al., 1968).* At this stage the correlation
between simple features of inelastic scattering and the
different slopes in the elastic differential cross section
remains a conjecture.

In Fig. 4 the pp differential cross section is plotted
as a function of sin 8. We see the oscillatory pattern,
which is most complete at 12.1 GeV/c. There is a
minimum in the slope between |#|=~1 and 2 GeV?

*In the Krisch model, the exponential dependence on B%pi?
of elastic scattering before the first break is assumed to be the
same as that of (do/dt) (pp—pp—+n’s) over the entire region of
B%p1? for pion production. The experiment showed that this
assumption is incorrect.
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Fic. 5. The pp differential cross section in do/d¢ plotted versus ¢. Note the movement of the break which occurs at ~8.1 GeV/c
at 90°; as the energy increases, the corresponding scattering angle decreases (from Allaby ef al., 1968b).

and another between |{|~6 and 8 GeV2 The dips
here more or less correspond to the breaks in Krisch’s
plot. The angular distribution (Allaby et al., 1968b)
plotted versus ¢ is shown in Fig. 5. This plot essentially
summarizes the present status of pp scattering. It in-
cludes latest CERN data at ~19.3 GeV/c, the highest
energy at which the differential cross section has been
measured over the entire angular region. The exp (f)
behavior near the forward direction, the exp [— (—1) 2]
behavior in the intermediate momentum-transfer re-
gion, and the general flattening of the differential cross
section in the large-angle region are well mapped out
by the data. The exp [— (—¢)Y%] behavior is more
clearly illustrated in Fig. 6. Beyond 6~60°, the data
deviate away from this behavior. The fixed-angle en-
ergy dependence of the cross section is given in Fig. 5.

Along the 90° line, the break occurs at ~8 GeV/c,
and it moves to higher energies as the angle decreases.
At 80° it is at Pr~9 GeV/c, and at 60° at Pr~12
GeV/c. As mentioned in the beginning of this section,
Allaby et al. (1967) and Kokkedee and Van Hove
(1967) have associated this break with the effect of
baryon-antibaryon pair production. They observed that
the production threshold is relatively close to the posi-
tion of the break and argued that this production must
affect first the s-wave elastic amplitude and, as energy
increases, the higher partial waves are affected as well.
Consequently, one expects the break to move to higher
energies as the angle decreases; this qualitative state-
ment is in agreement with the data. However, detailed
calculations must be made in order to make it con-
vincing.
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F16. 6. The pp differential cross section plotted versus (—¢)12 at ~ 19.2 GeV/c. The ¢ dependence of the cross section in the inter-
mediate momentum transfer is given by ~exp [— (—#)1/2/0.160]. Data points are from Allaby et al. (1968b).
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F16. 7. The n*p differential cross sections versus #, by Chiu, Chu, and Wang (1967). The data points
are from Coffin et al. (1966; 1965), Foley et al. (1963a), and Orear et al. (1966).

C. The 7*p, p~p, and K—p Differential Cross Section

The n*p differential cross section from /=0 to t=—2
GeV2isillustrated in Fig. 7.* The general features of the
wTp and the #~p cross sections in this momentum-trans-
fer interval are similar. Their forward peaks have a weak
energy dependence. This peak extends to around | ¢ | =
0.8 GeV2. In the low-energy region, the cross section has
a minimum here. As | ¢ | further increases, this minimum
is followed by a secondary maximum. This secondary
maximum has a strong energy dependence. The =2
data by the Cornell-BNL collaboration are illustrated
in Fig. 8 (Bellettini, 1968; Ashmore, 1968; Orear,
1968a). Here the data are extended to || =6 GeV?
for the laboratory momenta from 5.8-13.6 GeV/c. More
structure is found in the large-momentum-transfer
region; note in particular the pronounced dip near
|t] =3 GeVa

The =*p data shown in Fig. 7 were analyzed in
terms of the Regge-pole model by Chiu, Chu, and
Wang (1967); those curves illustrated are their fits
to the data. Here they assume that the secondary
maximum is mainly due to the contribution of the P’
trajectory, where ap—0.5 to —1. The energy de-
pendence of the cross section when dominated by one
Regge pole is given by do/di~s**2. As energy in-
creases, this secondary maximum falls off rapidly.
Barger and Phillips (1968; 1969) and also Booth (1968)

* Data points are from Coffin e al. (1966; 1965), Foley ef al.
(1963a), and Orear (1966).

and Beretvas and Booth (1969) have associated dips
in the 7—p cross section (e.g., at |t]|~3 GeV?) and
those in the K—p and pp differential cross sections
(which we shall come to later on) with some speculated
zeros in the Regge-pole residue functions. Barger and
Phillips (1968) also have produced impressive fits to
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Fic. 8. Differential cross section for =~p scattering between
~6 and ~13.5 GeV/c incident laboratory momentum (from
Bellettini, 1968; Ashmore et al., 1968; Orear et al., 1968a).
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the = differential cross section data from pra.n=3.5
GeV/c to 13 GeV/c for |¢| 54 GeV? and the nmp
polarization at 5.15 GeV/c for | ¢| $2 GeVZ. In these
fits, the Regge-pole residue functions having these spec-
ulated zeros incorporated are left to be freely adjusted
and several pole terms are used to fit the data. At this
stage, it is not clear whether their fits should be re-
garded as evidence for the dominance of the Regge-pole
contributions in the large |¢]| region. In fact, within
the multiple-scattering model, for large | ¢ |, the ampli-
tude is dominated by the exchange of multi-Reggeons
or Regge cuts, but not the Regge-pole terms.

The pp differential-cross-section data® are illustrated
in Fig. 9. The curves shown in the same figure are the
pp cross sections at comparable energies. They are in-
cluded for comparison. The pp forward peak is sharper
than the pp peak. As energy increases the 7p peak
expands while the pp peak shrinks. The pp differential
cross section appears to have more structure than the
pp cross section. In the pp cross section, there is a dip
near | ¢| =0.5 GeV?; there is another suppression in
the differential cross section near | ¢ | =1.8 GeV2 Note
in particular the oscillatory pattern in the data.

The K—p differential cross section® is shown in Fig.
10. The full line represents the data at 10 GeV/c
multiplied by a factor of 100. From the comparison
between this line and the forward peak at 5.5 GeV/e,
indicated by the data, one sees that the K—p forward

Bp > b

us.7 GeV/c, BOCKMANN et al.
@5.8 - 5.9 GeV/c, CORNELL-BNL
Os.9 GeV/c, FOLEY et al.
O9n GeV/c, CORNELL-BNL

mb/(GeVic)?

do
dt

1 L

L . .
00 10 20 30 40 50 60
1tl (GeVic)?

Fic. 9. Differential cross section for pp elastic scattering at
~5.8 and 9.7 GeV/c. The pp cross sections at ~7 and ~10
GeV/c indicated by the curves are included for comparison (from
Bellettini, 1968; Ashmore et al., 1968; Orear ef al., 1968a; Bock-
mann et al., 1966; Foley et al., 1963b).

* The pp data: Cornell-BNL collaboration (see Ashmore éf al.,
1968;)0rear et al., 1968a; Bockmann ef al., 1966; Foley et al.,
1963b).

tThe K—p data. Cornell-BNL collaboration (see Ashmore
et al., 1968; Orear ef al., 1968a) ; Mott et al., 1966.
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Fic. 10. Differential cross section for K—p scattering, The full
line shows the qualitative behavior of ‘the 10-GeV/c data after
multiplying by a factor of 100 (from Bellettini, 1968; Ashmore
et al., 1968; Orear ef al., 1968a; Mott et al., 1966).

peak expands somewhat as the energy increases, similar
to the pp peak. At 5.5 GeV/c, there is a dip in the
cross section near | ¢| =1.0 GeV? and another possible
one at 2 GeVZ There is a significant oscillatory pattern
in the cross section, although at 10 GeV/c¢ this pattern
appears to be much less pronounced.

To sum up, we see that the oscillatory pattern in
the differential cross section is present one way or an-
other in all the cross-section data that we have looked
at. For some processes these patterns are pronounced,
whereas for others, less so. These patterns also vary as
a function of energy. We shall see later that in a diffrac-
tion or multiple-scattering model, it is natural to expect
an oscillatory pattern in the differential cross section
which could, in general, vary as a function of energy.
This suggests that these models could be of relevance
in describing hadron collisions at high energies. We
also have mentioned the qualitative behavior of the
forward peak for the various processes. We have men-
tioned its ¢ dependence, the sharpness of the peak, and
its s dependence, which is the shrinkage property of
the peak. We shall see that the diffraction model and
multiple-scattering model also provide some qualitative
statements on these features.

D. The Generalized Cerulus-Martin Fixed-Angle
Lower Bound and the Tiktopoulos-Treiman Angu-
lar Dependence

We comment on some formal results obtained from
an axiomatic approach here. In Fig. 3, if the differen-
tial cross section after the second break persists in
behaving like exp (—B2p12), then

o fixed 0
g Tee P (—s). (2.2)
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This violates the Cerulus-Martin fixed-angle lower
bound (Cerulus and Martin, 1964) which states that
at any fixed angle the scattering amplitude cannot fall
off asymptotically faster than exp (—s'?Ins). How-
ever, it was pointed out by Tan and the author (Chiu
and Tan, 1967), by Eden and Tan (1968), and also
emphasized recently by Epstein (1968) that this bound
is sensitive to the domain of the polynomial bounded-
ness assumed in the original derivation. If one alters
this domain, one can obtain different lower bounds.
For example, for the domain corresponding to a lin-
early rising Regge trajectory, the bound becomes
exp (—slns), and the behavior exp (—82ps?) in the
differential cross section will not violate this bound.
We refer the reader to Appendix A for further details.

Although the variable $2p.? has not been motivated
at this stage, Tiktopoulos and Treiman (1968) have
recently given a special meaning to the angular de-
pendence sin 8 occurring in the exponential function of
the Orear formula [cf. Eq. (2.1)]. With certain axio-
matic assumptions, they show that the sin 6 depend-
ence necessarily follows. We again refer the reader to
Appendix A for further details. The experimental data
(Allaby et al., 1968a) plotted against p sin 0 are shown
in Fig. 11. The dotted line is the Orear fit. The average
behavior of all the points beyond p sin =1 GeV/c is
well described by the fit, although there is some
systematic deviation at smaller values of psiné.
The over-all fit to the data is reasonable; this suggests
that the axiomatic assumptions of Tiktopoulos and
Treiman could be reasonable. We remark here that
for both the fixed-angle lower bound and the asymp-
totic angular dependence discussed here, one is con-
cerned with the asymptotic behavior of the amplitude.
If in the future the differential cross section continues
to_show breaks at the higher-energy regions, these
comparisons might not be relevant.

3. THE OPTICAL MODEL, EIKONAL APPROXIMA-
TION, AND THE MULTIPLE-SCATTERING
MODEL

A. The Impact-Parameter Representation

We first discuss the impact-parameter representa-
tion. This representation is particularly appropriate
for describing high-energy, small-angle scattering, where
there are many partial waves contributing and the
phase shifts vary smoothly as a function of Z.

Consider a scattering amplitude f, for simplicity with
equal mass and spinless external particles. The partial
wave expansion is defined as

f=(1/2ip) Z,: (241) Po(2) [exp (2i0))—1] (3.1)

and

do/dQ= | f * (3.2)
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For high-energy, small-angle scattering, where (1—3z)
is small, one makes the following replacements:

(H-3)—bp,
260—x(b),
Pi(z)—Jo(xb) with x=(—1)2,

and

(3.3)

Zl—rp/:cdb.

Here b and x(d) are the impact parameter and the
phase-shift function (or the eikonal function), respec-
tively. Thus

(s, ) =ip / * Jo() {1—exp [ix(8) 1} db
=ip(l—exp (ix)),
exp [ix(b)]—1= P f " dedo(xb)f (s, —a) = ;<f>.

0

(3.4)

(3.5)

The symbol { ) denotes the Fourier-Bessel transform.
To proceed further, one has to make specific assump-
tions about x (), the phase shift. Let us first see how
x(b) is motivated in an optical model.

B. The Optical Model and the Chou-Yang Model

We follow the notation of Chou and Yang (1968a)
here. Consider a plane wave passing through an
absorptive slab with thickness d. The transmission
coefficient of the slab is given by

S(b)=exp [ix(d) ]=exp [—a(b)d].  (3.6)

Here the total phase shift x(d) is proportional to the
term —In S=ad, which is referred to as the opaque-
ness of the slab. Similarly, for the scattering of waves
by a spherically symmetric object, one can also define
the quantity opaqueness, —In S, at any impact param-
eter b. Motivated by this picture of classical optics,
hadrons are described in a diffraction or optical model
as objects with an extended structure characterized by
some spherically symmetric “opaqueness density” p(x,
9y, %), which is related to the Fourier-Bessel transform
of the hadronic form factor. Let us consider the colli-
sion of two hadrons 4 and B moving parallel to the z
axis. To each point in 4, B appears to be a disc with
the opaqueness density p being integrated along the z
direction, and vice versa for each point in B. For the
collision one assumes that the phase shift is propor-
tional to the total amount of matter overlapped. In
small-angle approximation it can be shown that this
overlapped amount is given by the Fourier—Bessel
transform of the products of the form factors for these
two hadrons; in other words,

ix o« (FA(t)FB(t) ) (3.7)
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Fi16. 12. The comparison between the calculated matter form factor (curves A and B) and
the electric-charge-form-factor data (from Chou and Yang, 1968a).

Historically, the correlation between the collision
amplitude and the proton form factor was first sug-
gested by Wu and Yang (1965). They proposed that
the pp scattering differential cross section at large
momentum transfer should be proportional to the
fourth power of the proton charge form factor. Later
on, the same relation was noted by several authors
(for example, Van Hove, 1966) to be approximately
valid in the small;| | region. In the droplet model,
Byers and Yang (1966) developed the above diffrac-
tion picture in connection with small-angle inelastic
scattering. The specific prescription of Eq. (3.7) was
suggested by Chous and Yang (1968a; 1968b). They
write for pp scattering

ix (0) = — c{F2). (3.7a)

Here ¢ is some constant which is taken to be independ-
ent of energy. So their amplitude f as defined by Egs.
(3.4) and (3.7a) is an asymptotic amplitude. Here x
is real, which corresponds to the phase shift induced
by a purely absorptive medium.

If the matter form factor is given, for a specific value
of ¢ one can proceed to calculate the asymptotic scatter-
ing amplitude f from Egs. (3.7a) and (3.4). Alterna-
tively, if one makes some conjecture about the asymp-
totic pp scattering amplitude through Eq. (3.5) and
the relation

| Fp (@) e (ix), (3.8)

one can calculate the matter form factor of the pro-
ton, F,,.

Chou and Yang assumed that the asymptotic pp
differential cross section near the forward direction can
be approximated by the present pp data at the highest
available energy. They gave two possibilities:

(A) do/di=const exp (10.3f),
(B) do/di=const[exp (5.5¢)40.015 exp (2¢) .
(3.9)

The matter form factors were then calculated from
Egs. (3.9), (3.5), and (3.8). The results are shown in
Fig. 12 as curves A and B. The data points correspond
to the electric charge form factor of the proton. It is
surprising to see that the curve of the matter form
factor is practically in coincidence with the charge-
form-factor data. This means that the matter distri-
bution and the charge distribution in a proton are ex-
tremely similar. If one takes this coincidence seriously,
it seems to suggest that this is indeed an asymptotic
limit for the scattering amplitude. Also, the near for-
ward differential cross section, as given by Eq. (3.9),
is in fact close to the asymptotic amplitude. It turns
out that this coincidence is not sensitive to the differ-
ential cross section at large ||, so that no statement
can be made about the asymptotic behavior of the pp
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differential cross section in the large | ¢ | region at this
point.

Chou and Yang (1968b) and also Durand and
Lipes (1968) have calculated the pp differential
cross section from the form-factor data and the ad-
justable parameter ¢. They found that the calculated
pp differential cross section in the nonforward region
is particularly sensitive to the detailed ¢ dependence
of the matter form factor and the value of ¢ assumed.
However, over a wide range of the possible values for
the form factor F,(¢) and the parameter ¢, oscillations
were persistently found in the calculated cross section.
This led Durand and Lipes to predict the existence of
the diffraction pattern in the asymptotic cross section.
Among various possibilities, two of their calculated
cross sections are shown in Fig. 13. Curve a is the
asymptotic differential cross section with a real value
of ¢, and curve b is obtained by using a complex value
for ¢. The asymptotic cross section displays two dif-
fraction zeros. These zeros are partly filled in when
the real part of the amplitude is included as indicated
by b. They also investigated some possible spin-depend-
ent effects by fitting the near forward pp polarization
data at 6-12 GeV/c. They found that, due to the pres-
ence of the first diffraction zero in the asymptotic
cross section, the pp polarization has a minimum near
| t| &1-2 GeV2. Apparently this feature is seen in the
recent polarization data by the Chicago—-Argonne group
at 5 GeV/c¢ (Bellettini, 1968).

Finally, although the structure shown in Fig. 13 is
quite reminiscent of the pp differential cross section
discussed in Sec. 2, the asymptotic cross section, espe-
cially in the large | ¢ | region, is far from the experimen-
tal data. To describe the large momentum-transfer
differential cross section, one must incorporate energy
dependence into f(s, ). We shall proceed first to discuss
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Fic. 13. The pp asymptotic differential cross section (curves
a and b) predicted from the Chou—Yang model as calculated by
Durand and Lipes. The dotted lines indicate the behavior of the
data at present experimental energies, for purposes of compar-
ison (from Durand and Lipes, 1968).
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Fic. 14. (a) The trajectory for a scattered ray at an impact
parameter b. (b) Theincident wave and the scattering centers.

the eikonal approximation and topics related to multi-
ple scattering and defer the discussion for incorporating
the energy dependence in the Chou-Yang model to
Sec. 5 and Sec. 6.

C. Eikonal Approximation and the Multiple-
Scattering Model

First we investigate how the interaction potential
is related to the phase shift through the eikonal ap-
proximation.® Consider the scattering of ‘a particle
with mass =% and momentum p from a potential V.
Here the Schrédinger equation is given by

VA+[p—V(r) H=0. (3.10)

We assume the potential V<<p% Let the initial mo-
mentum p; be parallel to the z direction at impact
parameter b [see Fig. 14(a)]. Using the WKB ap-
proximation, one finds the wave function at a point r
near the forward direction given by Glauber (1959;
1967) ;

e |iprti [ p-vi@epe—p)|

~exp {ip;-r— %} /_ ; dz’V[(z’2+b?)1/2:|}. (3.10a)

We are interested in the amplitude for the scattering
from the initial momentum p; to the final momentum
ps [see Fig. 14(a)]. From quantum mechanics this
amplitude is given by

S == 5 [ drep (~ipr D V. (B41)

* Here we follow the notation of Wilkin (1967) and Glauber
(1959).
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Combining Eqgs. (3.10a) and (3.11), after some algebra
one obtains

/== ;—i/d% exp (iq-b){exp [ix(d)]—1} (3.12)

=—ip ["o(1q18){exp [ix(®) 1-1}odb,  (3.13)
where
x(0) == o [ avLE+) )

and

q=p;—Ps | q|=2psin (6/2).
We see Eq. (3.12) is precisely the same as the impact-
parameter representation for an amplitude [see Eq.
(3.4)7]. Thus we refer to Eq. (3.13) as the phase-shift
function for the potential V in the eikonal approxima-
tion. The function x(b) is the corresponding eikonal
function for V.

If there is more than one potential present, such as
in Fig. 14(b),

V(8) =Vi(b—s1)+ Va(b—s3) + Va(b—s3)+ -+, (3.14)

and one finds

x(8) =x1(b—s1) +x2(0—s2) +-x3(b—s3) ++ -+, (3.15)
where the resultant phase shift is given by the sum
over the phase shifts due to the individual potentials.
Expressions identical to Eq. (3.15) can also be ob-
tained for the relativistic wave equations.

Now let us comment briefly on the multiple-scattering
picture in Glauber theory (Glauber, 1959; 1967). We
consider the example of high-energy, small-angle nu-
cleon—nucleus scattering. Here each nucleon in the
nucleus is treated as a scattering center. The phase
shift due to the collision between the incident nucleon
and the individual nucleon in the nucleus is assumed
to be known. The resultant phase shift for the nucleon—
nucleus scattering is obtained by summing over all the
phase shifts due to the interaction between the incident
nucleon and each nucleon in the nucleus, as prescribed
by Eq. (3.15). Note this additivity of phase shifts is
the basic assumption in the Glauber theory. Although
this expression of Eq. (3.15) was originally motivated
by potential scattering, it is postulated that this ex-
pression is valid in general in the small-angle, high-
energy approximation, even if the potential is not de-
fined.

Glauber showed that if one assumes the energies
transferred during the collision are negligibly small
and the initial nucleon velocities do not alter the
basic interactions, the amplitude for collisions in which
the nucleus goes from an initial state |Z) to a final
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state | f) is given by
Fpi= ;—f:fexp [i(pr—p:) DI T (B, 510+ +54) | ),
(3.16)
where there are A nucleons in the nucleus, and
T'(b, s1+++54) =1—exp [ix (b, s1°*+54)]
=1—exp [xa(b—s1) +x2(b—s2)+ -+

Fxa(d—s4)]. (3.16a)
The initial momentum is p; and the final momentum
Ps, with | p:| = | ps] =p. To evaluate Fy; one must

specify the structure of the initial and final wave func-
tions. We will not go into this here. However, it is
interesting to look at the structure of I'. From Eq.
(3.15)

T'(d, syv++54) =1— ﬁ {1-T(0—s5)}

= 2. T3(0~—s;)— 2 T3(b—5;) T'(b—sn)

i<m
D TTIH---. (3.17)

Terms on the right-hand side of Eq. (3.17) correspond
to single-, double-, triple-, «--, scattering terms be-
tween the incident nucleon and the nucleons in the
target nucleus. This is a multiple-scattering series. Due
to the small-angle approximation in Eq. (3.17), the
same nucleon index never occurs twice in any given
term and one never has more than 4-fold scattering.
Now we come back to the nucleon-nucleon scatter-
ing. Let us start with the impact-parameter representa-
tion for the amplitude and assume that the eikonal
function is given. We expand the factor (e®x—1) in
Eq. (3.12) and obtain
; . x| ()®
L T T

oo, (3.18)

In discussing nucleon—nucleon scattering or, in general,
two-body hadron¥collisions, some authors find* that
it is convenient to borrow the terminology used for
the Glauber series of Eq. (3.17) by formally referring
to the term linear in x as the “single-scattering term”
for nucleon—nucleon scattering, in analogy to referring
to the term linear in the I'Js as the single-scattering
term (the nucleon-nucleon amplitude) for nucleon-
nucleus scattering. In general, one finds that the term
linear in x dominates the small || scattering. As | ¢]
increases, the x? term begins to dominate and suc-
cessively the x® term and the higher-order terms be-
come dominant. In other words, here one formally
describes two-body large | ¢| scattering in terms of a
succession of small | ¢ | scatterings or multiple scatter-

* For examples, see Chou and Yang (1968a; 1968b); Chiu
i.ndsg inkelstein ( 1968a; 1969) ; Frautschi and Margolis (1968a;
968b).
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ing, provided one formally refers to the term linear in
x as the single-scattering term. Furthermore (we shall
discuss this in some detail later), it turns out that if
one identifies x as some appropriate Regge-pole con-
tribution, then terms associated with x2, x% <<+ can
be interpreted as contributions involving the exchange
of two Reggeons, three Reggeons, ««-.

The Glauber theory for nucleon—nucleus scattering
is usually referred to as a multiple-scattering model. For
our present discussion we shall also refer to those phe-
nomenological models constructed from Eq. (3.18), or
analogous series, as multiple-scattering models. As we
have stressed for these latter cases, one describes two-
body hadron collisions in terms of successive small
| ¢| scatterings or, sometimes, more specifically, in
terms of the exchange of single and multiple Reggeons.

4. MULTIPLE-SCATTERING MODELS™ AND
REGGE CUTS

A. Eikonal Approximation and Regge Cuts

In the last section, we saw that the amplitude f can
be expressed in the impact-parameter representation,
and in eikonal approximation the eikonal function is
expressed as an integral over the potential. We do not
really know what a potential in high-energy physics is.
Arnold suggested a prescription for the potential (1967;
1968; see also Arnold and Blackmon, 1968); he pro-
posed that the Regge-pole contributions be identified
with the eikonal function. At this state, the theoretical
justification behind such a procedure is not at all clear.
Nevertheless, as mentioned in the last section, if one
proceeds to make such an identification, then in the

expression
IR SVACK
-0 ).

terms with #>2 in the sum have the analytic struc-
ture of Regge cuts. In particular, they have the same
general cut properties as those deduced from Feynman
diagram models and also from the analysis of multi-
particle discontinuity formulas. We list some of these
properties here.*

(4.1)

(1) The position of the leading branch point corre-
sponding to the exchange of » identical trajectories
a(?) (with reasonable shape) is given by

Aout™ (2) =na(t/n?) —n+1. (4.2)

(2) The contribution of the cut to the amplitude
at large s behaves like

Aout™ (s, £) ={TW(f) stecat®@=11/(Jog 5) -1}

X[14+0(1/logs)]. (4.3)

* Mandelstam, 1963; Polkinghorne, 1963; 1965; 1968a; 1968b;
Gribov, 1968; Gribov, Pomeranchuk, and Ter-Martirosyan, 1965.
For a summary on Regge-cut properties, see also Chiu and Finkel-
stein, 1968a.
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(3) Each cut taken to the leading power in s has a
definite signature factor. The signature of the cut
equals the product of the signature of the Regge poles
exchanged.

(4) When each of the # poles is the Pomeranchon,
the signs of the discontinuities alternate with #, i.e.,
I', contains a factor (—1)=,

Cuts generated by the prescription of the eikonal
approximation, although satisfying the above proper-
ties, are a very special case of all possible solutions.
A priori, it is not clear why this particular prescription
is relevant. The usefulness of this prescription must be
tested experimentally. Later on, we shall also mention
some other multiple-scattering prescriptions for gener-
ating Regge cuts and shall discuss the similarities and
the differences between them. As we shall see in Secs.
5 and 6, this general approach for including the multiple-
scattering corrections or the cut contributions appears
to be favored by the data.

Let us consider Eq. (4.1) in some detail, when the
single-scattering term is imaginary. Here we write
x(b) =1a(b), where @ is real. From Eq. (4.1),

Jip:i[(@— <—;‘2|—>-+%->—]

The amplitude f is again imaginary, and the multiple-
scattering sequence alternates in sign from term to
term. This sign alternation plays the crucial role of
generating the oscillatory diffraction pattern in the
differential cross section. Anselm and Dyatlov (1967)
were the first to observe that the Regge-cut sequence
associated with multi-Pomeranchon exchange, which
has the same sign alternation as deduced from the
analysis of multiparticle discontinuity formulas of
Gribov et al. (1965) (and is also present in the Feyn-
man diagram model), should cause the oscillatory pat-
tern in the differential cross section. They emphasized
that the oscillatory pattern is generally expected over
a wide range of assumptions about the discontinuities
across the Regge cuts. They also pointed out that one
expects the exp [—(—#)¥*] behavior in the large | ¢|
region. To ensure this ¢ dependence, the numerical
coefficient C,, analogous to 1/»! in Eq. (4.1), has to
be in the range between 1/x#! and a constant. This
specific ¢ dependence had also been obtained previ-
ously by Amati et al. (1963) and Contogouris (1966).

(4.4)

B. The Modified Impact-Parameter Representation

In the eikonal approximation, the integral over the
potential V is contained in the exponent which turns
out can easily lead to undesired singularities in the
amplitude. Blankenbecler and Goldberger (1962) sug-
gested the following modifications of the impact-param-
eter representation. They write

f=—ip<1—_%%/7)>=—ip§ (;—X_)—l—> (4.5)
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Here x is the same eikonal function as defined in Eq.
(3.13). By comparing Eq. (4.5) with Eq. (4.4), one
sees that for the parametrization of multiple-scattering
series, the two expressions are identical except for the
coefficient 1/%!, which is now replaced by 1/2*1, For
n<2, the two coefficients are the same; they are differ-
ent beyond #=2. Thus, Eq. (4.5) gives an alternative
prescription for including different cut contributions
for n>2.

Arbarbanel et al. (1968a; 1968b) have parametrized
the multiple-scattering effect using an expression analo-
gous to Eq. (4.5) with a real single-scattering term
(see Sec. 5.A). The effect of multiple scattering here
is quite different when compared with an imaginary
single-scattering term. Denoting x = ¢, one obtains from
Eq. (4.5)

I(s, )/p=(a)+ila*)/2—(a*)/4+---, (4.6)

which is similar to Eq. (4.4) . Here each multiple-scatter-
ing term is 90° out of phase with respect to the adjacent
terms. As a result, there are no appreciable cancella-
tions and the multiple-scattering effects were found
to be weak. Also, no diffraction patterns are observed.
In the terminology of optics, a real phase shift is
associated with the scattering of light waves through
some nonabsorptive medium and no diffraction effects

are expected.
C. Iterations of the Unitarity Equation

The scheme of formulating a multiple-scattering
model from iterations of the unitarity equation was first
considered by Amati, Cini, and Stanghellini (1963).
Here,

TIm fi=Tm Ri+pfi fi* 225 I Re-p | Ri 2, (A7)

where R; is the contribution of a Regge pole. It was
emphasized by Finkelstein and Jacob (1968) that the
iterative series thus obtained for the case xy=ia as
considered in Eq. (4.4) does not have the sign altera-
tion. This is contrary to the results deduced, for exam-
ple as mentioned in Sec. 4.A, from Feynman diagram
models for the Regge cuts. As discussed in Appendix B,
this is also not favored by experiment. We will not
pursue this prescription any further.

D. The Quark Model

Nucleon—nucleon scattering and other two-body had-
ron collisions have also been discussed in terms of the
multiple scattering of quarks. Here the quark-quark
amplitude is the actual single-scattering amplitude.
This single amplitude is to be interpreted in the literal
sense as the nucleon—nucleon amplitude in the Glauber
theory for the nucleon—nucleus scattering. We shall
not discuss this model here, but simply refer the reader
to a recent paper by Harrington and Pagnamenta
(1968). In this paper, the authors have fomulated a
multiple-scattering model within the framework of the
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quark model and have applied their model to various
elastic-scattering processes over a wide angular range.

Let us sum up our discussion here: In this section
we are mainly concerned with the problem of formally
generating a multiple-scattering series from some for-
mally identified single-scattering amplitude. This can
be achieved, for example, by using the eikonal approxi-
mation, the modified impact-parameter representation,
or iterations of the unitarity equation. As mentioned,
the first two procedures are similar, while at this stage
the last one is not preferred. Instead of using a specific
prescription for generating the multiple scattering se-
ries, as mentioned in Sec. 4.A, Anselm and Dyatlov
followed a different approach. They parametrized this
series, using the knowledge of the properties of Regge
cuts as deduced from Feynman diagram models. A
significant range of flexibility is allowed in their para-
metrization. In spite of this flexibility, they were able
to deduce the general qualitative features of the multi-
ple-scattering amplitude, such as the oscillatory be-
havior and the exp [—(—£)2] dependence in the
large | ¢ | region. However, for more quantitative de-
scription of the data, this latter approach seems to
provide too much freedom. We note that the multiple-
scattering model, following specific prescriptions such
as the eikonal approximation, has been considered by
various authors and seems to be promising. In Secs. 5
and 6 we shall discuss phenomenology using the multi-
ple-scattering model, mainly within the framework of
the eikonal approximation.

5. APPLICATIONS OF THE MULTIPLE-SCATTER-
ING MODEL TO ELASTIC AND LARGE ||
INELASTIC SCATTERING

In this section we are concerned with the application
of the multiple-scattering model, especially in the non-
forward region where the asymptotic theory of Chou—
Yang is particularly inadequate (see Sec. 3.B and Fig.
13). We shall discuss the application of elastic scattering
in Secs. 5.A-5.D and to the inelastic scattering in
Sec. 5.E.

A. The Single-Scattering Amplitude

Parametrizations of the single-scattering amplitude
for elastic scattering can be grouped into four categories.
We consider these four cases in some detail here.

(1) The Optical Amplitude

Since multiple elastic scatterings occur at a fixed
energy, one can discuss the multiple-scattering ampli-
tude at any given energy. A convenient and crude
parametrization for the single-scattering amplitude is
of the form

fB/s"?=1ic exp (at), (5.1)

where for simplicity one assumes @ and ¢ to be real,
although in general they need not be. Contogouris
(1966) has used Eq. (5.1) to analyze large | | pp, 7p,
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and Pp data. He found that the qualitative behavior
of the differential cross section in the large | ¢ | region
can be plausibly correlated with the small-angle scatter-
ing parameters. At different energies these parameters
are, in general, different. To proceed from here, one
would incorporate the energy dependence explicitly into

Eq. (5.1).
(2) The Pomeranchon Exchange Amplitude

Here one incorporates the energy dependence into
Eq. (5.1) by Regge theory. The single-scattering am-
plitude here has the form

f/s12=cs* ! exp[ir (1—a/2)],

a=1+a't. (5.3)

This form was considered by Amati e al. (1963) in
the context of iterations of unitarity equations and
later by Anselm and Dyatlov (1967) in connection
with the Regge-cut series. Recently this form has been
discussed extensively by Frautschi and Margolis
(1968a; within the framework of the eikonal approxi-
mation. The parametrization of Frautschi and Margolis
is summarized in Appendix B. As discussed there and
also in Sec. 5.B, although the multi-Pomeranchon ex-
change amplitude so obtained has energy dependence,
it still only gives a crude approximation to the scatter-
ing amplitude near =0, since it gives the wrong sign
for the ratio of real part to imaginary part of the
forward scattering amplitude and the wrong energy
dependence for the total cross section. Also, since a’#0,
the significance of the Chou-Yang asymptotic theory
is not clear in this model.

(3) The Hybrid Model

This model was suggested by Finkelstein and the
author (Chiu and Finkelstein, 1968a) and also inde-
pendently by Arnold and Blackmon (1968). The latter
authors were concerned mainly with the small | ¢ | phe-
nomenology, while the former authors were concerned
with the larger | £ | region as well. To retain the Chou—
Yang asymptotic theory, to remedy the discrepancies
mentioned in (2), and to minimize the parameters
associated with the Pomeranchon contribution, we
write

(5.2)
with

f5/s2=P+R, (5.4)

where P denotes the contribution of the Chou-Yang
type (which we formally call the “Pomeranchon” con-
tribution) and R the proper Regge-pole contribution.
In terms of the multiple-scattering picture, schemat-
ically,

f/s?= P4 (R+RP")+ (RR+RRP")+-++, (5.5)

where P denotes the sum of all the terms involving
pure Pomeranchon exchanges and is the asymptotic
amplitude. The RP* term denotes the sum of all the
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multiple-scattering terms which are linear in R. The
RRP" term denotes those bilinear in R, etc. In prac-
tice, the parameters of P are given by the Chou-Yang
model and those of R are left to be determined through
fits to the data. We shall defer further discussion on
the applications of the hybrid model until Secs. 5.C
and 5.D.

(4) The Multi-Regge-Pole Amplitude

In principle the P term in Eq. (5.4) does not have
to be a fixed pole, i.e., with &’=0, where a(f) =14a't.
Frautschi and Margolis (1968a) suggested instead,
ap’~1 GeV~2 Here one is obliged to determine the
parameters of P and those of the secondary trajectories
simultaneously. A more elaborate analysis work com-
parable to (3) above is required. No results are available
at this stage.

The amplitude of Arbarbanel et al. (1968b) again
has two pole terms. However, it differs somewhat
from both (3) and (4) mentioned above. We shall
comment on it here. They assume that the pp ampli-
tude is dominated by a local current—current term /%
plus a diffraction term %p. To unitarize the amplitude,
they write

iT _< hethp
(4m)2 " \1— (he+hp)

Ip he
- <1—kp+ (1—hp) (l_hc“hD)>’ (56)

(5.7
(5.8)

with
hp/(1—hp) ={— (atBi) exp ({/R?)),
he=((iAG*/ (4m) 2);

a, B, R, and A are the parameters and Gur, the proton
magnetic form factor. In the context of multiple scatter-
ing, Eq. (5.6) implies that they have treated the term
{hp/(1—hp) ), rather than {kp), as the single-scattering
term. In the limit 2. >>kp, the multiple-scattering series
is given by
iT/ (4m) e (D b, (5.9)
n=1
which is comparable to Egs. (4.4) and (4.6).
The calculated differential cross section of Arbarbanel
et al. (1968b) is indicated as the solid curve in Fig. 15.
For large | t | this curve differs insignificantly from the
term 0.4 Gu*. Also, no oscillatory pattern is present in
the calculated differential cross section. These authors
emphasized that the calculated differential cross sec-
tion is essentially explained by the single-scattering
term; the multiple-scattering effects are not important.
Presumably, these features are closely tied to the fact
that the term 4./7 is real, as discussed in Sec. 4.B.
They pointed out that the curves in Fig. 15 fit the
observed pp differential-cross-section data at s~60
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F1c. 15. The comparison between the calculated differential
cross section given by Arbarbanel ef al. and the contribution of
the proton form factor, Gu,t. The solid curve is the calculated
differential cross section and the dotted curve is the form factor
Gup* (from Arbarbanel ef al., 1968b).

GeV? to within a factor of ~2-3 over the measured
range out to | £ | 15 GeV2.

In principle, the same model can also be applied to
Pp scattering with the sign of %. reversed. Since this %,
term contributes significantly near {=0, with the sign
change noticeable effects will be expected in pp scatter-
ing in the same ¢ region. So far in high-energy phe-
nomenology, there has been no convincing evidence for
introducing an odd signature amplitude with «(0) =1.
It would be interesting to look for experimental evi-
dence to investigate this possibility. The presence of
such an odd signature amplitude would imply, for
example, at asymptotic energies

(Re/Im) (pp) = — (Re/Im) (pp) #O0.

B. The Multi-Pomeranchon Exchange Model

In this section we take a close look at the work of
Frautschi and Margolis (1968a). They have applied
the multi-Pomeranchon exchange model using the
eikonal approximation to pp, pp, and wp data. Their
parametrization, as mentioned earlier, is summa-
rized in Appendix B. In Fig. 16 we show their best fit
to the pp differential cross section. Their calculated
differential cross section has about the right exponen-
tial falloff at large | ¢ |; it shrinks suitably and has the
“break” near t=—1.2 GeV2 The fit looks encourag-
ing. One expects that the quality of the fit will be
improved with the inclusion of thejproper trajectory
contributions.

As emphasized by various authors (Chiu and Finkel-

REVIEWS OF MODERN PHysics « OCTOBER 1969 « Part I

stein, 1968a; Frautschi and Margolis, 1968a) and
also discussed in Appendix B, the multi-Pomeranchon
amplitude obtained from the eikonal approximation
can, at best, be a crude approximation to the near
forward scattering. For example, it has the following
discrepancies as compared with the data:

(1) The ratio of real part to imaginary part of the
forward amplitude is calculated to be positive, whereas
the data for pp scattering is ~—209%,.

(2) The calculated pp total cross section increases
slightly with the increase of energy while the data de-
creases slightly.

We mention here that the quantity (o,— 0pp) /0ppS
0.2 at 20 GeV/¢, whereas in a multi-Pomeranchon
exchange model this difference should be zero. In the
next section, we shall discuss phenomenology with the
inclusion of the secondary trajectory’s contribution.
As we shall see, with this modification the above dis-
crepancies are overcome. Furthermore, within the frame-
work of the hybrid model, the features of the Chou-
Yang asymptotic theory are retained.

10-25 -
02 PROTON-PROTON
-ELASTIC SCATTERING
107
0B A 12.1GeVic
a4 "
10-2k = 184
o' =082 (GeVic)?
10-301 £=7
Sy 1 (GeV)?
0
e
3 10 10 GeVic
S s
. 20
i)
8w €
10 %%
0
107
w07
0%
1600 GeVic
o 1 1 )

3 4 5
It (Gevic)?

F16. 16. The pp differential cross section calculated pyjFrautschi
and Margolis using the multi-Pomeranchon exchange model.
The data points are included for comparison (from Frautschi
and Margolis, 1968a).
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Fi6. 17. The fit_to pp differ-
ential cross section using the 10
hybrid model (from Chiu and
Finkelstein, 1969).
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C. Application of the Hybrid Model to pp and pp
Scattering

This work is by Finkelstein and the author (1968a;
1969) . Here we take P of Eq. (5.4) to be essentially that
given by Durand and Lipes (1968), and R to be domi-
nated by the f° and «° trajectories, with a=3-t. We
assume that f° and «° are exchange degenerate, so that

20 25 30 35 40 45 S0 55 60
-t Gey?

R is real. One can see this readily, since

R(s, 1) =f*—o’={[—1—exp (ira) ]

—[1—exp (ime) ]} bse—1=—2bs>1, (5.10)

Our fit is illustrated in Fig. 17. The curves reproduce
the general trend of the ¢ dependence and indicate the
presence of structure near {=—1 GeV2 The calculated
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Fic. 18. Decomposition of the contribution to the pp differ-
ential cross section from various multiple-scattering terms in the
hybrid model: curve I=P» II=(R+RP*), and IlI=
(RR+RRP") (from Chiu and Finkelstein, 1968a).

energy dependence of the differential cross section is
reasonable. The detailed decomposition of the contri-
bution due to various terms in Eq. (5.5) is shown in
Fig. 18. Curve I corresponds to the asymptotic con-
tribution; II, to terms linear in R; and III, to terms
bilinear in R. One sees that the breaks in the slope of
the pp differential cross section are directly correlated with
the dominance of these three contributions.

In order to calculate the pp differential cross sec-
tion, we reverse the sign of the . More explicitly, in
analogy to Eq. (5.10),

R(s, ) =f"+o’={(—1—exp (—ima)]
+[1—exp (—ima) ]} bs*1=—2b exp (—ima)s>L
(5.11)

We do not expect that the pp differential cross section
predicted from our solution would fit the data. How-
ever, there are several qualitative features worth point-
ing out.

(1) Att=0, the pp differential cross section is larger
than the pp differential cross section, and the total
cross section for pp is also larger than that for pp. These
properties can easily be seen from Egs. (5.10), (5.11),
and (5.4).

» OCTOBER 1969 . Partr I

(2) The pp forward peak is sharper than the pp
peak. The crossover point for pp and pp differential
cross sections is at t=—0.37 GeV? as compared to
t=—0.2 GeV? in the data (Foley ef al., 1965). In
a pure Regge-pole model, one cannot get this cross-
over point without violating factorization (Chan, 1968).

(3) The diffraction pattern in the pp differential
cross section is more pronounced than that for the pp
differential cross section. In fact, a dip is observed in
the calculated differential cross section at /~—0.65
GeV? and PL=12 GeV/c. As energy increases, the dip
moves to the larger | ¢| region, and it is at t=—1.3
GeV? at the asymptotic energy. The experimental dip
positions in the pp differential cross section are as fol-
lows (see Figs. 9 and 19):

Py, (GeV/e) t (GeV?)
5.9 ~—0.5,*
8 ~—0.6,t

16 ~—0.8.F

The shift of the dip is quite pronounced here.
There is an amusing relation which is obeyed by
the pole terms, approximately obeyed by the multiple-

CARNEGIE MELLON - BNL
pp—PpP

102

8 GeVic

Fic. 19. Differential
cross section for pp

~ 107 — L L L elastic scattering at 8
J2 0 02 04 06 08 10 and 16 GeV/c. The full
Ele It1 (Gevic) curves on both plots

= show the behavior of

the 8-GeV/c data (from

g5 Bellettini, 1968; and
02 = Birnbaum et al., 1968).
o - 16 GeVic
00k
E 8 GeVic
o'k
ity ;
10“21::—
1020 . 1 s

1 1
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* The pp data. Cornell-BNL collaboration (see Ashmore et al.,
1968i) Orear et al., 1968a); Bockmann ef al., 1966; Foley et al.,
1963b.

T Birnbaum e al. (1968).



scattering terms in our model, and which is independ-
ent of many of the details of our parametrization.
From Egs. (5.10) and (5.11), one predicts that

Re A, (s, 0)/Im A,,(s, 0) = (oopT —05p") [oppT. (5.12)

We have used this relation together with the experi-
mental values for o,," and Re 4,,/Im 4,, to predict
o7¢ and compare it with the experimental data. We
find that the agreement is satisfactory.

D. Combined Features of the Optical Model and the
Regge-Pole Model

From the examples of pp and pp, one sees that the
general features of the elastic scattering predicted by
the hybrid model are closely correlated with the phase
of the proper Regge amplitude R near the forward
direction. In Table I we list the comparison between
the situation when R is purely real, such as in the pp
case [see Eq. (5.10)], and when it is purely imaginary,
such as in the fp case [see Eq. (5.11)]. We note that
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the hybrid prescription includes both the optical model
features, (e.g., the blacker the disk, and hence the
larger the total cross section, the sharper the peak and
the more pronounced the diffraction pattern) and the
Regge-pole model features (e.g., the energy dependence
of the total cross section and the shrinkage effect).
From the KN total-cross-section data one finds that
the proper Regge-pole contributions to the K*p for-
ward amplitude are mainly real, while that to the K—p
forward amplitude are mainly imaginary. [See for ex-
ample, Phillips and Rarita (1965b).] This in turn
implies that the qualitative contrast between the K+p
and the K—p amplitudes should bear some resemblance
to that between the pp and pp amplitudes. We recall
the experimental data as discussed in Sec. 2.C. One
finds this qualitative resemblance is indeed present.
Here the K—p peak shrinks while the K*p peak ex-
pands, and the K—p peak is sharper than the K*p
peak. Also, oscillatory structure in the K—p differential
cross section has been observed at 5.5 GeV/c, although
at 10 GeV/c this structure seems to be much less pro-

Tasre I Comparison between the situation when R is purely
real, as in the pp case [see Eq. (5.10) ], and when R is purely
imaginary, as in the pp case [see Eq. (5.11) ].

Example PP pp
Proper trajectories fo—a® fo4aw?
Amplitude R Real Imaginary
near =0
or ~ Constant Energy dependent
Shrinkage Shrinks Expands
Forward peak Less sharp Sharp
Diffraction pattern Less pronounced  Pronounced

4 5
1t] (GeVic)?

F1c. 20. A comparison between the calculated pp differential
cross section and the calculated isobar-production cross section
given by Frautschi and Margolis 1968b). The curves for the
isobar production differential cross section are calculated with
two different assumptions.

nounced (see Fig. 10). At this stage, comparable data
for K*p scattering are not available. This model pre-
dicts a relatively smooth differential cross section. It
would be interesting to see if future K*p measurements
can verify this prediction. For the n*p scattering, from
the data of the real part of imaginary part of the
forward amplitude (Foley ef al., 1967), one can easily
check that, for both the #=tp and =—p amplitudes,
the proper trajectory contributions lie in the second
quadrant of the Argand diagram. One does not expect
much contrast between these two differential cross sec-
tions, and this agrees with the data. Also, from Table I
we find that it is not surprising that the w%p experi-
mental differential cross section does not show much
shrinkage (Foley et al., 1963a).

E. Multiple-Scattering Features for Large ||
Inelastic Scattering

For large |¢| inelastic scattering, one could con-
jecture that the process proceeds as follows: As two
hadrons collide they undergo multiple elastic scatter-
ing in the initial state, then a small | ¢ | inelastic transi-
tion, and eventually multiple elastic scattering in the
final state. If the initial and the final elastic-scattering
amplitudes are comparable, then the ¢ dependence in
the large || region for inelastic scattering will be
similar to that for elastic scattering. Frautschi and
Margolis (1968b) have studied in some detail the
multiple-scattering model for isobar production. Figure
20 indicates the calculated curves for isobar produc-
tion, involving what they referred to as one-step
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Fi6. 21. The comparison between the behavior of pp differential cross section and the isobar-production cross section. The solid
curve indicates the experimental pp differential cross section; the points are the experimental isobar-production cross section (from

Allabv et al.. 1968c).

and two-step inelastic transitions (i.e., ¢—j and
i—m—y, respectively, with 2, m, § different channels).
The elastic differential cross section is illustrated in
the same figure for comparison. Beyond | ¢ | =1 GeV?
the elastic differential cross section and their one-step
curve are similar. Beyond |t| =2 GeV?, the elastic

and the two-step curves are similar. The recent CERN
data (Allaby et al., 1968c) on N* (1512) and N* (1688)
production are illustrated in Fig. 21. Note the similarity
in the ¢ dependence between the isobar-production dif-
ferential cross section and the elastic differential cross
section. These data support the above interpretation.
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6. THE IMPACT OF THE MULTIPLE-SCATTERING
MODEL ON HIGH-ENERGY
PHENOMENOLOGY

We have seen that the multiple-scattering picture
provides a qualitative description of elastic and in-
elastic scattering in the intermediate |#| region. It
also contains the virtues of both the optical model and
the Regge-pole model, which account for the general
behavior of elastic scattering near the forward direc-
tion. Let us proceed to discuss those cases where a pure
Regge-pole model describes the data to a first approxi-
mation. The multiple-scattering correction to a Regge-
pole contribution, to first order in the Regge-pole cou-
pling, is equivalent to the absorptive correction to the
same Regge-pole, as discussed by Kimel and Miyazawa
(1967), Cohen-Tannoudji, Morel, and Navelet (1967),
Squires (1968), and others. This equivalence was em-
phasised recently by Finkelstein and Jacob (1968).
In other words, the effect of the multiple-scattering
corrections that we shall be concerned with is equiva-
lent to that of the absorptive corrections and, as we
have discussed earlier, to that of the Regge cuts. Since
the Regge power law and the nonsense-wrong-signature
dips are the two main successes in the phenomenology
of the Regge-pole model, we shall investigate the influ-
ence of multiple-scattering corrections on both of these
aspects.

A. Multiple-Scattering Corrections and the Regge
Power Law

Near =0, the power behavior associated with the
multiple-scattering correction or the cut [e.g., the RP»
term in Eq. (5.5)] is close to the power behavior of
the pole term [e.g., the R term in Eq. (5.5)], and we

1 n

s " "
-060 =040 =020 ]

tlicever]

Fi1c. 22. The effective power law for a model amplitude at
various energies calculated by Rivers. Curve a is the input p
trajectory; curve b is the branch point associated with the pp cut.
The dotted curves are the effective power law obtained at differ-
ent energies (from Rivers, 1968).

expect that the energy dependence will not be dis-
turbed. On the other hand, in the large | ¢ | region, the
effect of corrections could be important. Rivers (1968)
has investigated the influence on the power behavior
of a model amplitude caused by the cut corrections.
One of his plots of e°ff versus #, where a°ff is the effec-
tive power is shown in Fig. 22. The solid line (a)
indicates the input trajectory a,, the line (b) indicates
the branch point associated with the pP cut, and the
dotted lines are the effective power «°ff at various
energies. For this particular example, the cut con-
tribution does not affect the energy dependence near
t=0. On the other hand, it completely dominates the
energy dependence beyond {=—0.4 GeV2 We do not
suggest that the quantitative features are necessarily
relevant to the physical situation. Nevertheless, this
calculation at least hints that, in the large | ¢ | region,
because of the presence of multiple-scattering correc-
tions, the situation could be complicated.

Let us now discuss the physical trajectory functions
in some detail. From Regge-pole models* one has

@,=0.57+1.01,
@a,=0.34+0.35L.

The A, trajectory function quoted here was determined
by Phillips and Rarita from the n~p—z differential-
cross-section data.t Due to the inaccuracy of the data,
this trajectory function is poorly known at present.
For example, Arbab, Bali, and Dash (1967) showed
that the energy dependence of the data is also compat-
ible with the trajectory function

@4,~0.540.85%. (6.1a)

With the inclusion of the multiple-scattering correc-
tion, Henyey ef al. (1968) obtained

(6.1)

a,=0.374+1.2, (6.2)
whereas Arnold and Blackmon (1968) gave

a,=0.504-0.80¢,

ap=0.47+1.0¢. (6.3)

With the assumption of the extended-exchange-degen-
eracy hypothesis (Harari, 1968; also Freund, 1968) one
predicts that

a,=a=0a,0= a4,~0.44-0.93¢, (6.4)

where the trajectory function is obtained by a linear
extrapolation from the physical mass spectra. (Chiu
and Finkelstein, 1968b). Taking into account the ex-
perimental uncertainties of the data and also the extra
degree of freedom due to the inclusion of the cut con-

* Hohler, Schaile, and Sonderegger (1966), Arbab and Chiu
( 196?), Phillips and Rarita (1965a), and Arbab, Bali, and Dash
(1967).

1 Phillips and Rarita (1965a).
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F1g. 23. The degenerate trajectories suggested by
Chiu and Finkelstein (1968b).

tribution, we are led to conjecture the approximate
validity of Eq. (6.4) in the {<0 region, and perhaps
a similar possibility for the other vector and tensor
trajectories. According to the extended-exchange-
degeneracy hypothesis (Harari, 1968) the vector and
tensor nonets are divided into three groups:

(P, w, Az,fo), (K*y K**)) and (fOI, ¢)-

In the linear approximation, these three groups are
respectively described by

a® (£)~00.44+0.93¢,

I (£)~20.294-0.871,
and
D ($)~0.154-0.82¢.

This situation is illustrated in Fig. 23 (Chiu and
Finkelstein, 1968b). It will be interesting to see if the
present high-energy data are consistent with this
relatively simple picture of the Regge trajectories.

B. Multiple-Scattering Corrections and the Dip-
Bump Structure in the Differential Cross Section

(1) The ntp Backward Differential Cross Section

We recall the pronounced dip in the =tp differential
cross section near #=—0.16 GeV, which was explained
in the Regge-pole model (Chiu and Stack, 1967) as due
to the nucleon trajectory passing through a nonsense-
wrong-signature point, ey = —3. Since then, the experi-
mental data have been greatly improved in accuracy
and have become available at higher energies. These
results further confirm this interpretation (Orear,
1968b; Barger and Cline, 1968). Following Chiu and
Finkelstein (1969), we would like to show that the
multiple-scattering correction does not obscure this
simple interpretation. This is due to the fact that
the zero in the nucleon amplitude at axy=—% is close
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to the backward direction; this in turn causes the
multiple-scattering correction to be relatively small
near the dip region. In Fig. 24, we illustrate the results,
where the solid curve stands for the pole term alone.
The dotted line is the differential cross section after
the inclusion of the multiple-scattering correction. We
note that the position of the dip is essentially not
shifted, as expected, and that the secondary peak is
greatly suppressed. Leaving the trajectory function as
before, we readjusted the #-dependent parameter in
the residue function. The result is illustrated in Fig.
25. We see that, even with the inclusion of the multiple-
scattering correction, fits to the data for # 2 —0.8 GeV?
are still adequate.

(2) The mp—nn Differential Cross Section

Recently, Henyey et al. (1968) suggested that the
dip in the 7p—n" differential cross section near c,=0
can be generated by an absorption mechanism alone
or, in our language, by the multiple-scattering correc-
tion alone. To demonstrate this effect, they chose to
parametrize the spin—flip amplitude of the p, B,, such
that it does not vanish at a,=0. Their fit to the data
is illustrated in Fig. 26. The data are not fitted in the
x? sense. In fact the contribution of the nonflip ampli-
tude of the p is not included in the calculated differen-
tial cross section. Also, they had to multiply the ab-

*p—= purt
p,=5.9 GeVic

£fs ol

01

1] 1
10 08 06 04 02 0
-u (GeVic)®

F1G. 24. The n*p backward differential cross section versus .
The solid curve corresponds to a fit with the nucleon contribu-
tion alone, with ay=—0.34-+u%. The dashed curve indicates the
differential cross section after the inclusion of the multiple-scat-
tering correction, with the same trajectory function (Chiu and
Finkelstein, 1969) .
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sorption correction by a factor of 2 to fit the data. In
spite of these adjustments, their dip~bump structures
look impressive. Needless to say, the same angular
distribution has been fitted in the past by the p tra-
jectory alone® and by the p trajectory plus the multiple-
scattering correctionf having B,>#0 at «,=0. The
latter fit, shown in Fig. 27, is given by Arnold and
Blackmon (1968) using the hybrid prescription. It
seems likely, as far as the dip and secondary bump
structure for the #~p—n% differential cross section is
concerned, that both the nonsense-wrong-signature
mechanism and the diffraction mechanism are operating.

S
¢

g5 og

1 1 1 1 1 1
10 038 06 04 02 0

-u (GeVic)?
Fic. 25. A fit to the #*p differential cross section with the
inclusion of the multiple-scattering effect, where we keep the

same trajectory function, ay=—0.34+u%, as was used for the
Regge-pole fit (from Chiu and Finkelstein, 1969).

(3) Dips in pp Differential Cross Section

In the hybrid model, the presence of this dip is re-
lated to the diffraction effect. As mentioned before,
since o5,>> 0p, the diffraction phenomenon in pp scatter-
ing is expected to be more pronounced than that in pp
scattering. In the language of the optical model, this
means that the blacker the disk, the sharper the peak
and the more pronounced the diffraction pattern. As
the energy increases, the disk becomes less black and
as a result the diffraction peak is broader. It is interest-
ing to recall that in the Regge-pole model, this dip-

( * Hohler, Schaile, and Sonderegger (1966); Arbab and Chiu
1966).

1 Arnold and Blackmon (1968) ; Kimel and Miyazawa (1967);
Cohen-Trnnoudji, Morel, and Navelet (1967).
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Fi16. 26. The fit to 7~p—n% differential cross section
by Henyey et al. (1968).

bump structure is mainly due to a delicate interference
between P and «? in the region where the contribution
of the P’ (or f°) is relatively unimportant. As the
energy increases, one also expects the dip to move
slowly to the larger | ¢ | region (Chiu, Chu, and Wang,
1967; Barger, 1968).

To sum up, with the introduction of the multiple-
scattering picture, in addition to the nonsense-wrong-
signature zeros and the interference effects between
different Regge-pole amplitudes, diffraction effects can
also lead to the dip-bump structure. Consequently,
one has to be more cautious about explaining the
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structure of the differential cross section. As |¢| in-
creases, the multiple-scattering correction becomes more
and more important. We observe that it seems unlikely
that the dip structure in the differential cross section
beyond f=—1 GeV? can be directly associated with
specific values of a. On the other hand, we have given
a concrete example, that of =+p backward scattering,
where the dip near #=—0.16 GeV? is still interpreted

as due to ay=—%.

C. The Role of the Multiple-Scattering Model and
High-Energy Phenomenology

The role of introducing the multiple-scattering idea
in high-energy phenomenology can hardly be over-
estimated.

(1) It provides a model for large | ¢ | scattering. We
have discussed the work of Chou and Yang and of
Durand and Lipes, where they explain the asymptotic
pp differential cross section in terms of an optical-
diffraction model, which is equivalent to the multiple-
scattering model. We have illustrated that the multiple-
scattering picture gives a qualitative description of
scattering in the intermediate-momentum-transfer re-
gion, such as for pp elastic scattering and isobar-
production scattering.

(2) It contains features from both the optical model
and the Regge-pole model: In this model the magni-
tude of the total cross section is correlated with features
of the diffraction pattern and the energy dependence
is correlated with the parameters of the proper Regge
poles. Within the prescription of the hybrid model,
the shrinkage, antishrinkage and nonshrinkage effects
arise automatically. We have seen that these features
are in a qualitative agreement with present pp, Pp,
7n¥p, and K*p elastic data. This model predicts a rela-
tively smooth K+p differential cross section in the large
| t| region. It would be interesting to see if the future
K*p measurement can verify this prediction.

(3) To the first order in the proper Regge-pole cou-
plings, the multiple-scattering model is the absorption
model. As an absorption model, it helps to explain
problems encountered in the Regge-pole model, such
as the crossover effect, the nonzero polarization in
7~ p—n scattering, and it provides the peak in the
pn—np differential cross section without introducing
conspiracy, etc.

(4) It essentially preserves the Regge power law
near =0 (or #=0), which has been proved to be
relatively successful experimentally (Chan, 1968).

(5) It provides a more general explanation of the
dip-bump structure in the differential cross section.
Within the Regge-pole model this structure comes from
either the nonsense-wrong-signature zero in a Regge
amplitude or from the interference effect between dif-
ferent Regge amplitudes. However, multiple-scattering
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corrections can also generate a dip-bump structure.
Thus one has to be particularly cautious and consider
these various possibilities in explaining this structure
in the differential cross section. We have seen that for
the dip in the #*p backward differential cross section,
the explanation within the framework of the multiple-
scattering model remains the same as that in a pure
Regge-pole model.

(6) It reopens possibilities for simple Regge trajec-
tory functions. We have mentioned the possibility of
the approximate exchange degeneracy among various
trajectories. We recall that, in fitting the secondary
bump structure in w*p elastic scattering (Chiu, Chu,
and Wang, 1967) within the framework of the Regge-
pole parameterization, it was necessary to introduce a
curved trajectory for the P’. Similarly, curved trajec-
tories were also introduced for N and A (Barger and
Cline, 1968) in order to analyze the backward w*p
differential cross section in the large |#| region.
With the introduction of multiple-scattering effects
in thelarge | ¢| (or | « |) region, the multiple-scattering
term is generally more important that the single-
scattering term. Thus the requirement of a curved
trajectory is no longer necessary. We speculate that
the data could tolerate linearly falling trajectories in
the negative ¢ region, in analogy to the linearly rising
trajectories observed in the positive ¢ region.

Recently, Frautschi and Margolis suggested that with
the introduction of multiple-scattering corrections there
might be a possibility that a,’~1 GeV~2 This is not
obvious since, in the small | ¢| region (e.g. |¢|~0.5
GeV?) at our present energies, the shrinkage rate asso-
ciated with]Pomeranchon exchange when the multiple-
scattering effect is included is about the same as that
for single Pomeranchon—pole exchange alone. Neverthe-
less, they argued that the role of the secondary trajec-
tories is expected to be somewhat different from that
in a Regge-pole model. It would be interesting to find
out if quantitative fits to the experimental data can be
achieved in the future with a,’/~21 GeV—2,

APPENDIX A: THE FIXED-ANGLE LOWER BOUND
AND THE ASYMPTOTIC ANGULAR
DEPENDENCE

1. The Generalized Cerulus-Martin Fixed-Angle
Lower Bound

The Cerulus-Martin fixed-angle lower bound for pp
scattering is given by

fixed 0,
fug(s, cos 6;)—exp [—C(6:)s"2 In 5.

s3>

(A1)

To arrive at Eq. (A1), they assumed: (1) the ampli-
tude f is analytic within some domain D in the 2 plane,



with the boundary of D tangential to the real axis at
the right- and the left-hand branch points z=2p=
+(14-4/2k2), [see Fig. 28(a)]; (2) f is bounded
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eralized Cerulus—-Martin lower bound is given by
fixed 0,
fL(s, cos 0,)——exp [—C,(0,)s"Ins], (A3)

by s¥ in D, where N is independent of s and z; (3)
In|f(s 1) | =0(e, Ins) with a<AN.

It turns out in the Cerulus and Martin result that
C(#)—= at z=0. But we observe that one can obtain a
finite lower bound which includes the point z=0 if one
assumes that the lower bound for the function f® (s, £)
is the same as that for f(s, t) for 6< /2 (Chiu and Tan,
1967). Here f® is defined as follows:

f(s, =fO(s, )+ (s, 1), (A2)
v 1 [=Dds,t)
£ (s, 1) = Tfm o, (A2a)
and
f9 (s, )= - f wM d'.  (A2b)
wJuy W—u

For simplicity, we have ignored subtractions in Eqgs.
(A2a) and (A2b). Note that the function f® now has
only one cut, and a domain D’ of boundedness and
analyticity comparable to D is assumed [see Fig.
28(b)]. In general, one can choose the domain D’
to be confined within some cone 4’4 A" [see Fig.28(c) ],
with its boundary tangential to the lines 4’4 and
and AA"”, and LCAA'= LCAA" =6. Then, the gen-

(a)

F1c. 28. (a) A schematic sketch of the domain D, where the
analyticity and boundedness are assumed for the amplitude f,
in the z plane. The boundaries of D are tangential to the real
axis at the branch points z=zp=:t(144,/2%,2). (b) A schematic
sketch of the domain D’, where analyticity and boundedness are
assumed for the function f® in the z plane. The boundaries of D
are tangential to the real axis at p and the point P, where P is
some point along the real axis and zp<—p. The dotted line
indicates the left-hand cut which is absent for f®. (c) The cut
plane of f®. The domain D’ discussed in Appendix’A.1 is_chosen
to be confined within the cone A”44’.

8>

where y=7/26. For the result of (Al), the angle 6=
It can be shown for a linearly rising trajectory, that
0=m/2, and thus y=1. We refer the reader to the work
of Chiu and Tan (1967), Eden and Tan (1968), and
Epstein (1968) for further discussions concerning the
generalization of the fixed-angle lower bound.

2. The Tiktopoulos-Treiman Asymptotic Angular
Dependence

In Sec. 2.D we mentioned that a special significance
of the sin 6§, dependence in the Orear formula (1964)
had recently been discussed by Tiktopoulos and Trei-
man (1968). We outline their assumptions and one of
the methods for deducing this sin 8, dependence.* We
refer the reader to the original paper for further details
and their general results on various angular constraints,

Let f(s, 2) be the spin-averaged differential cross
section. We are interested in the asymptotic angular
dependence of f in the physical region —1<z<1. The
assumptions made on f(s, 2) are as follows:

(1) f(s, 2) is analytic in some domain Dp in the z
plane with cuts [p, ] and [—p, — o . For simplicity
we shall only discuss the case for R=1 for which the
domain Dg= D corresponds to the full cut plane. The
possibility of weakening this condition was considered
in the original paper.

(2) |f(s, 2) | Ke?®@ | 14 (02— 22) 12 |¥® for any z in
D,. Where the symbol “<&” denotes the asymptotic
inequality, i.e., if <<y, then

8>

(3) f(s, Z) has no zero in Di.
Define
G(s,2) =—Inf(s,2)+Q(s) +M (s) In [1+(—2)"].
From assumption (2), as s— 0,
ReG(s, 2) =—In|f(s, 2) | +-Q(s)
+M(s) In| 1+ (P—2)" | >0. (A4)

To proceed further, one maps the domain D onto a
unit circle, using the transformation

w=[(o+8) "= (=) Y [(p2) ¥+ (=) ). (AS)

* The author would like to thank Professor R. E. Cutkosky
for helpful discussions on this sin 6, dependence.
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It can be shown that Re G(s, 2) satisfies the following
Poisson integral representation:

1 [ 11—
ReGls 2= o0 | 1w cosoter
X {Re G[s, 7' (¢*') 1} do'
=[(—m, ). (40

For s— o and —1<2<1, for ¢(s, 2) =In | f(s, 2) |, we
have

(s, 2)Re G(s, 3) =01+ 1, (A7)
where
Li=I(—}r—e —3m+e)+I(3r—¢ jute)
and
L=I(Gm+e —im—e)+I(—jm+e, j7—e),
with e£1. (A8)

Then one assumes that f(s, z)<<f(s, 2;) for any 2, 2,
where —1<2,<1 and 2,<—p or 2> p. This, together
with assumption (2) and Eq. (A8), implies that

Re G(S, Z) >, (A9)
Finally, from Egs. (A7) and (A9), one obtains
o(s, 2)=Ni=[(1—u?)/(1+?) Jg(s) =sin O,¢(s), (A10)
where
1 —7[24-€ .
g(s)= - { / Re G[s, 2/ (e™') Jd¢'
T \J—n/2—e
T/24€
+ Re G[s, 7' () ]d¢>’} .
w[2—e

It turns out that Eq. (A10) is still valid even when
there are zeros in the z plane, provided that

N(s)
#(s, 2)

—0, where —1<z<+1, (A11)

§>00

and N(s) is the total number of zeros present in the
z plane at fixed s.

APPENDIX B: MULTI-POMERANCHON
EXCHANGE IN THE EIKONAL
APPROXIMATION

We discuss here the behavior of the full multiple-
scattering amplitude (Frautschi and Margolis, 1968a)
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when the Born amplitude, or the single-scattering
amplitude, is given by
f8/s12=1C exp (at). (B1)

From Eq. (3.4) we have

I —iC i (—d)*exp (at/n) ’ (B2)

nen!
where
d=C/2a.

For sufficiently large value of |at|, using the saddle-
point method, one arrives at

f~exp [—(—atln )], where 7= (—at/In7@)l2,
(B3)

If the single-scattering term corresponds to single
Pomeranchon exchange (let a,=14-ot and assume in

general that &’'£0), then
fa/s'P=Cs*1exp [ir(1—a/2)]. (B4)

The leading branch point associated with #-Pomeran-

Ref

(a) (b)

P (a#0)

~0

F1G. 29. (a) The plot of o versus ¢, where ap, @@, and a4 are,
respectively, the Pomeranchon trajectory, the branch point of
PP cut, and the effective o for the phase of PP cut contribution
at a given energy. (b) The Argand diagram for f, and f®, where
fo is the single Pomeranchon amplitude and f® is the double
Pomeranchon cut amplitude. Note that 6 =map/2 and ¢/ =nwa®/2.
(c) The ratio of real part to imaginary part of the forward
amplitude versus Pr. The solid line indicates the behavior of
the data, and the dotted line the contribution from multi-Pom-
eranchon exchange with a,'0. (d) The total cross section
versus Pr. The solid line indicates the behavior of the data.
The dash-dot line indicates the asymptotic total cross section,
and the dashed line the contribution due to multi-Pomeranchon
exchange with ap’ 0.
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chon exchange is given by

a®=1+4a't/n. (BS)

One can easily check that the 1/# factor in Eq. (BS)
is closely related to that in the exponent in Eq. (B2).
At this stage it is instructive to look at the phase
associated with the Pomeranchon and the Pomeranchon
cuts. Since at =0 in the asymptotic limit, the two
Pomeranchon cut is the leading cut, we shall consider
only the single- and the double-scattering terms. In
Fig. 29(a) we plot @, and a®. At any fixed momentum
transfer, the cut contribution corresponds to the ex-
change of a continuum of the angular momentum with
its maximum at a® (#). At a given energy, there is an
effective angular momentum characterizing the result-
ant phase associated with the cut contribution. We
denote this effective angular momentum by the dotted
line. The phases of the P pole and the PP cut are
illustrated in Fig. 29(b). At ¢=0, P is purely imaginary
and the PP cut is in the fourth quadrant; there is an
extra minus sign associated with the eikonal expansion
[see Eq. (4.4)]. From Fig. 29(b) one can easily see
that, due to muli-Pomeranchon exchange, one expects
the ratio of real part to imaginary part of the forward-
scattering amplitude to approach zero from the posi-
tive side [see Fig. 29(c)] and o7 to approach or( )
from below [see Fig. 29(d)]. These two features are
in contradiction to the presently observed behavior.
These points have been noticed by Finkelstein and the
author (1968a) and recently emphasized by Frautschi
and Margolic (1968a; 1968b). There are three possible
factors which can help to correct this behavior:

(1) a,'~0, as suggested by Chou-Yang model; it
is used explicitly in the hybrid model.

(2) @, has a nominal slope; at present energies the
secondary trajectory contribution masks the effects of
the cut. As emphasized by Frautschi and Margolis,
we expect to see these features only at extreme asymp-
totic energies.

(3) @, has a nominal slope, but the alternating sign
prescription for the cuts is incorrect. We feel this last
possibility is unlikely in view of the experimental evi-
dences favoring this sign alteration. We mention the
following evidence: (a) the existence of the diffraction
pattern; (b) the cross-over effect; and (c) the sign of
the n—p—7®% polarization (Finkelstein and Jacob,
1968).
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