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This paper reviews, analyzes, and integrates the various quantitative results that have been obtained for the process
of pair production by photons. Included in this summary is a detailed review of total and di8erential cross sections for
pair production in an atomic and in an electron Geld, with a critical evaluation of the conditions of validity and the accu-
racy of the results. In addition, a summary is given of the important kinematic relations, theoretical considerations,
and the polarization eGects that occur in pair production. The paper does not include a treatment of radiative corrections
to pair production, thick-target pair production, or pair production by electrons in the Geld of a nucleus (trident produc-
tion) . Otherwise, the review is intended to include results on pair production available up to January 1969.
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*This report is the third in a series on Coulomb processes for
electrons and photons, which includes a review on bremsstrahlung
(Koch and Motz, 1959) and on electron scattering (Motz, Olsen,
and Koch, 1964).

L INTRODUCTION

The radiation process which occurs when an electron
collides with an atomic nucleus, the bremsstrahlung
process, was recognized and studied as early as 1923

(Kramers, 1923) .On the other hand, the pair-production
process, which on a theoretical basis is closely related to
the bremsstrahlung process, was discovered much later.

The Dirac equation which was discovered in 1928
(Dirac, 1928) predicted states of particles of negative
energy. These negative-energy states were subsequently
interpreted by Dirac (1930) by his hole theory as
giving rise to real physical particles with charges
opposite to those of the electrons. Actually, Dirac
assumed in his paper that these particles were protons.
It was only later that Oppenheimer and Dirac made the
bold assumption that the holes might describe new
particles, antielectrons, with the same mass as the
electron, but with positive charge. The theory was,
however, not readily accepted, as indicated. in the
following translated quotation by Pauli (1933):

"Dirac has therefore recently made an attempt,
which has already been discussed by Oppenheimer,
to identify the holes with antielectrons, particles
with charge +e and the same mass as the electron.
There should then likewise exist antiprotons
besides the protons. The obvious lack of such
particles is then traced back to a special initial
condition for which only one kind of particle is
present. This seems to be unsatisfactory already,
because the laws of nature in this theory regarding
electrons and antielectrons is exactly symmetric.
It follows that (in order to satisfy momentum and
energy conservation at least two) p-ray photons
might spontaneously convert into an electron and
an antielectron. Thus, we do not believe that the
attempt can be taken seriously. "

Shortly after Pauli's article was written, the matter was
settled when the antielectron, the positron, was dis-
covered experimentally by Anderson "with due reserve
in interpretation in view of the importance and striking
nature of the announcement" (Anderson, 1932) .
The experimental findings were confirmed in later
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experiments (Anderson, 1933) and the existence of the
positron was established.

The Grst calculations pertaining to the pair-production
process in the Geld of a nucleus appeared shortly after
Anderson's discovery, by Nishina and Tomonaga
(1933), Oppenheimer and Plesset (1933), and Heitler
and Sauter (1933).Later, relativistic calculationsgfor
the production of electron-positron pairs by photons
and for the related process of bremsstrahlung (Koch
and Motz, 1959) were carried out by Bethe and Heitler
(1934).Although the Bethe-Heitler theory depends on
the Born approximation, it has proved to be remarkably
successful in predicting the important features of these
processes. Meanwhile, more accurate and detailed
calculations and experimental studies of these processes
have become available (Bethe and Ashkin, 1953;
Heitler, 1954; Olsen, 1968).

The present paper reviews, analyzes, and integrates
the various quantitative results that have been ob-
tained for the process of pair production by photons.
This summary includes a detailed review of total and
diQerential pair cross sections with a critical evaluation
of the conditions of validity and the accuracy of the
results. In addition, a summary is given of the impor-
tant kinematic relations, theoretical considerations,

and the polarization eGects that occur in pair pro-
duction.

This paper does not include a treatment of radiative
corrections to pair production (Olsen, 1968), thick-
target pair production, or pair production by electrons
in the field of a nucleus (trident production). Other-
wise, the review is intended to include results on pair
production available up to January 1969.

Section II defines the symbols, notation, constants,
and energy —momentum relations used in this report.
Section III gives the important kinematic relations for
pair production in the field of a nucleus and in the Geld
of an electron. Section IV discusses the type of calcula-
tions and approximations that have been used for this
process. Section V summarizes the polarization effects
in the pair process, which may involve linearly or
circularly polarized photons or longitudinally or trans-
versely polarized electrons or positrons, and gives the
important relations for using this process to determine
the polarization of a photon beam or to produce
polarized electron or positron beams. Sections VI and
VII give the available cross-section formulas for pair
production in an atomic and an electron field, respec-
tively. Finally, Sec. VIII compares and evaluates the
various cross-section results.

II. DEFINITIONS

The following definitions and relationships are given for the symbols and constants used in this review. The con-
stants are given with three significant Ggures although more accurate values are available.

dQ+, dQ, dQ„= sin 8+d0+dC+, sin 8 d8 dC, sin O,de, dC „
= element of solid angle in the direction of p+, p, or q, respectively, relative to k.

dQ= sin OdedC = element of solid angle in the direction of p~ relative to p .

=Pair cross-section diGerential with respect to the positron energy. The polarization effects for this
+ cross section are specified by the functional dependence on the various combinations of the

polarization variables which are shown in Table 6.03.

— =Pair cross-section differential with respect to the positron energy and the solid angle in the direction
+ + of p+ relative to k. The polarization eGects are specified by the functional dependence on the

various combinations of the polarization variables which are shown in Table 6.03.

=Pair cross-section diGerential with respect to the positron energy and the angle 8 between p~ and
+ p, where 8= (k/E~ )7'.

3

=Pair cross-section differential with respect to the positron energy and the solid angles in the
+ + — direction of p+ and p relative to lr. The polarization e8ects are specified by the functional de-

pendence on the various combinations of the polarization variables which are shown in Table 6.03.

=Pair cross-section differential with respect to the solid angle for the recoiling target particle in
the direction of q relative to k.

=Pair cross-section differential with respect to the resultant pair momentum P„acquired by the
electron and positron.

—=Pair cross-section diGerential with respect to the momentum transfer g to the target particle.
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E+, E =Total energy of the positron or electron, respectively, for pair production in the laboratory
system, * in ~a~ units.

Ep, E„=Initial and final (recoil) total energy, respectively, of the target particle for pair production in the
laboratory system, ~ in tnpc' units with +=tn, /mp.

e, e~= Complex unit vectors for photon polarization such that e e'= 1, e k=0, and that e exp j-i(k r-
kt) j is proportional to the electromagnetic-vector potential. These vectors are complex or real
when applied to photon beams with elliptical or linear polarization, respectively.

e=Unit vector for linear photon polarization such that e-e=1 and e.k=0.

F(q), Gz(q) =Atomic- and nuclear-charge form factors, respectively, for static charge density of the atom or
nucleus, p(r) (per electron or per proton)

=f exp (iq r) p(r) d'r.

Fi(q), Fz(q) =Dirac and Pauli invariant form factors related to Gx(q) and G~(q) by

G~ Fi (q~=/4m—„')«Fp, GM Fl+«FR

where « is the anomalous magnetic moment of the nucleus in units of the Bohr magneton, e/2m, .
G~(q) =Magnetic nuclear form factor, for static magnetic moment density, p(r), of a nucleus

=f exp (iq. r) p(r) d'r

G~(q), G~(q) = Invariant electric and magnetic nuclear form factors.

k, k =Initial photon energy and momentum, respectively, in moc' and ~c units in the laboratory system. *

k=Unit vector for the photon momentum such that k=k/} k }.

k= Four-component vector = j k, k} such that I'= k' —k'.

k&= Threshold photon energy for pair production in the laboratory system, in woe units.

n+, n =Unit vector for the positron and electron momentum, such that p+= p+n+ and p =p ~.
n=Unit vector perpendicular to the scattering plane (k, p+) or (k, p ) such that n= (k xp+)/

} k xp (, or n= (k xp )/} k x p

p+, p =Momentum of the positron or electron, respectively, for pair production in the laboratory system,
in ~c units.

p+=Four-component vector= jp+, E+} such that p+' ——p+p —E+'.

yo, p„=Initial and Anal momentum, respectively, of the target particle for pair production in moc units.
In the laboratory system, *

p& =0 and p„=g.

go=Four-comPonent vector= jPp Ep} such that Pp =Pp Epz= —(m,/mp)z.

p„=Four-component vector= jp„E„},such that pp =p p —E,p= —(tn„/ygp) p.

P,=Vector for the circular polarization of a photon beam. The magnitude of the vector gives the
degree of circular polarization for the beam in the direction of the vector g such that P,=P,).

Pl =Magnitude of the linear polarization of the photon beam.

Po=p++p =resultant pair momentum equal to the vector sum of the positron and electron momenta.

P+, P =Polarization vector for the positron or electron beam, respectively, produced by photons in the
pair process. The magnitude of the vector gives the degree of polarization for the beam in the
direction of the vector, and is equal to the average expectation value of the spin operator for the
beam. Then P+.(+ is the component of P~ along the chosen quantization axes (+.

*Primed symbols refer to the center-of-momentum system.
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P+L, P L =Longitudinal polarization vector for the positron or electron beam in the direction of the positron
or electron momentum. The magnitude of the vector gives the degree of polarization for the
beam in the direction parallel to the positron or electron momentum such that P~ Il+ ——P+L or
P ~ n =I' ~. This vector is a component of the polarization vector P~, such that

{ (~ Z)2y (p T)2]1/2

P+~, P =Transverse polarization vector for the positron or electron beam in the direction perpendicular to
the positron or electron momentum. The magnitude of the vector gives the degree of polarization
for the beam in the direction perpendicular to the positron or electron momentum such that
P+~.g+ ——0 or P ~ n =0. This vector is a component of the polarization vector P~ such that

y L(p z) 2+ (p T) jl/2

@=Momentum transfer to the target particle in pair production in the laboratory system. ,* in ygop

units= (ir—p~ —p ) =p,.

q=Four-component vector={&, q&} such that P=q' —qo', where qo=k E~—E—=E, (/I, /mp—) =T„.
r= Radius vector from the center of the nuc1eus in units of Ko.

p+, T =Kinetic energy of the positron or electron, respectively, for pair production in the laboratory
system, * in ~c' units.

70, 7"„=Initial and 6nal kinetic energy, respectively, of the target particle for pair production in the
laboratory system, ~ in mac' units such that TO=0.

u= Component of p~ perpendicular to k, such that p+ ——u+ (p+. lr) lr.

e= p+ sin 0~ E~O~ (for extreme-relativistic energies and small angles).

v= Component of p perpendicular to lr, such that p =v+ (p —lr) k.

w= p sin O~EM (for extreme-relativistic energies and small angles).

w= (E~ /k)8.

Z= Atomic number of the target atom.

Zep(r) = Charge density for the atom or nucleus, with normalization such that jp(r) d'r = 1.

A. Greek Symbols

p~, p =Ratio of the positron or electron velocity, respectively, to the velocity of light

poM =Ratio of center-of-momentum velocity in pair production to the velocity of hght.

P =Exponential screening constant= 111Z—'/3.

(+, ( =Unit polarization vector for the positron or electron, respectively, produced by photons in the pair
process. These vectors are defined as the expectation values, (+—I *o.z
u~ and I are eigenstates for (~ o' and ( o, respectively, such that (+ o~ =I
where o' is-the Pauli spin operator. The unit vectors (+ and (+ may be chosen to have arbitrary
directions which can be specified in terms of the coordinate system given by the unit orthogonal
vectors n, ~, n+xn, or n, n, n x n.

P+, 9, 9„,8„=Angle between k and p+, p, q, and P„, respectively.

0=Angle between p+ and p .

p(r) =Nuclear magnetic moment density, such that fp(r) d r is equal to the ratio of the nuclear magnetic
moment p to the Bohr magneton (e/2m, ).

)=i(e xe*)=Unit vector for circular photon polarization with a direction that is parallel or anti
parallel to k for right-handed or left-handed polarization, respectively.

0 =Total cross section for pair production by photons.

*See footnote~on page 583.
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C+, C, C,=Azimuthal angle for the positron, electron, or recoil target particle, respectively, measured in a
plane orthogonal to k from a reference line originating from the point of emission, as shown in
Fig. 3.01(a).

C =Azimuthal angle equal to ~—(C —4+). For linearly polarized photons discussed in Sec. V, C is
also de6ned as the azimuthal angle between the polarization vector e and the 6xed direction e&'~

which are both orthogonal to k.

y=x —C =C+—C =dihedral angle which is equal to the difference in the azimuthal angles of the
positron and electron.

B.Useful Relations

C. Constants

'+=pVE+
E+'= p+'+1

Ep=T'+1,
1/(1 P s)1/s

k=E++E +T„
p+=LT+(T++2) j'"
'.='4(1-")'".

+,=p/~, /= 137~„=(137)'ro——0.530X10 'cm (Bohr radius of hydrogen atom).

A=Z+& (number of neutrons) ~2.6Z for high Z, 2Z for low Z (mass number of nucleus).

a='/Bc=1/137.
a=3.00X10'o cm/sec (speed. of light in vacuum).

a= 1.6X10 ' C (electron charge).

g=1.44X10-» MeV-cm.

fr=6.58X10 22 MeV-sec=1.05X10 ~ erg sec.

ho=12.4 keV L.

Sc=1.9/X10 "MeV cm.

Xo=h/mac=3. 86X10 " (Compton wavelength).

mo ——9.11X10 ~
g (electron rest mass).

nsoc'= 0.511 MeV.

mr AX1.66X10 "g (rest mass of the atomic nucleus).

mo/m, =5.5A 'X10

ro ——e'/moo'=Ko/137=2. 82X10-"cm (classical electron radius).

RTp=0.885~ 't' (radius of the Thomas-Fermi atom).

III. KINEMATICS

The following subsections give some of the important
&inematic relationships for the pair-production process.
These results are based on a relativistic treatment
(Borsellino, 1947) of the conservation laws for energy
and momentum. A schematic representation of the
momentum vectors in the laboratory (unprimed) and
the center-of-momentum (primed) systems is given in
Figs. 3.01(a) and (b), respectively. These vectors
include the electron and positron momenta y+ and p,
the photon momentum k, and the recoil momentum q
of the target partide (nudeus, atom, or electron). The

recoil momentum q is required in order to conserve
energy and momentum and is a key parameter in the
pair-production process.

A. Energy and Momentum Re1ations in the
Laboratory System

The energy conservation equation in terms of the
photon, positron, electron, and recoil-target-particle
energies, k, T+, T, and T„, respectively, is given as

k=(T~+1)+(T+1)+T„, (3.01)
where it is assumed that the target particle is initially at
rest in the laboratory system such that 2'p=0.
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The energy T„and momentum q of the recoiling
particle are related by

T,= t (m, /mp) '+q']"' —(m, /mp) . (3.08)

For small values of q (q«m„/mp), T„ is given by the
approximation

(mo/m, ) -', q'. (3.09)

(0) LASORATORY SYSTEM

B. Energy and Moment~~m Relations in the Center-
of-Momentum System

The energy and momentum conservation equations
in the center-of-momentum system shown in Fig.
3.01(b) are given as

k'+Tp'= (T+'+1)+(T '+1)+T,', (3.10)

P0
and

&'+Po'=0,

P++P—+P~ =0~

(3.11)

(3.12)

(b) CENTER-OF-MOMENTUM SYSTEM

The momentum conservation equation in terms of the
momenta vectors is'given as

&=p++p—+q
From Fig. 3.01(a) and Eq.'(3.02)

(3.02)

FIG. 3.01. Schematic representation of the momentum vectors
for pair production in (a) the laboratory system and (b) the
center-of-momentum system. The symbols in the diagrams for
the momentum and emission angle of each particle are defined
in Sec. II.

k'=kt (1—pcM)/(1+ pcM) g»'. (3.13)

The momentum balance in this system (see Fig.
3.01(b)j requires

k'= (m, /mo) PcM(1 —Pcm') "'. (3.14)

where To', po' and T„', p„' are the kinetic energy and
momentum of the target particle before and after the
interaction, respectively.

The relation between the photon energy k' in the
center-of-momentum system, and the photon energy k
in the laboratory system, which is determined by the
center-of-momentum velocity Pcm in units of the
velocity of light, is given as

qs ks+P 2+P 2

+2p+p Leos 8+ cos 8 +sin 8+ sin 8 cos (C+—C )j
—2p+k cos 8+—2p& cos 8, (3.03)

It follows that

k

k+ (m, /mp)
(3.15)

where the angles 8+, 8, 4+, and 4 are defined in Sec.
II and shown in Fig. 3.01(a). Another expression for q
which involves the recoil angle 0„, defined in Sec. II
and shown in Fig. 3.01(a), is given as

q sin 8„=Q~' sins 8++P ' sin' 8

+2P+P sin 8~ sin 8 cos (C+—C )1'~'. (3.04)

aIld

and conversely

(m, mp)

[2k+ (m„/mp) j (3.16a)

m (m 2 1/2

k'+ k"+
~

—' . (3.16b)mo/m„(m,
Some of the above equations can be simplified by

introducing the resultant pair-momentum vector P„and
its corresponding angle tI„measured with respect to k.
This vector is defined as

(3.05)

In terms of P„and 0„,the expression for q can be written
as

C. Threshold Photon Energy for Pair Production

The threshold photon energy for pair production is
designated as k~' in the center-of-momentum system and
k& in the laboratory system. In the center-of-momentum
system, the energy and momentum conservation laws
at threshold become

and
q cos O„=k—P„cos0„

q sin 0,=P„sin 0„.

(3.06)

(3.07) kc' —(m„/mo) pcm(1 —pcm')-r» =0. (3.18)

k'+(m/mo)((1 —Pcm) 'i' —1j=2 (3.17)
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TABLE 3.01. Threshold photon energies~ (in megaelectron volts) in the laboratory system for pair production.

Target+ Pair
particle~article Electron Muon Pion E Meson Proton

Lead

Copper

Carbon

Proton

Electron

1.02

1.02

1.02

1.02

2.04

2.12X10'

2.12X10'

2.14X10~

2.40X10~

4.43X10'

2.8OX10~

2.81X10'

3.51X10'

4-19X10'

7.7OX104

9.90X10'

9.96X102

1.03X10'

1.48X10'

9.56X10'

1.89X10'

1.90X10'

2.03X10'

3.75X10'

3.45X10'

~ These energies were evaluated from Eq. (3.19b).

From Eqs. (3.17) and (3.18), the threshold energy in
the center-of-momentum system becomes

kg' =2)(mp+m, ) /(2mp+m, ) j. (3.19a)

k, =2(1+~/m„). (3.19b)

Values of the threshold energy are given in Table 3.01
for the pair production of various particles with
diferent target particles. These values are obtained
from Eq. (3.19b).

Prom (3.16b), the threshold energy in the laboratory
system is

D. The Minimum Recoil Momentum

The minimum recoil momentum q; is obtained
when all the momentum vectors are pointing along the
photon direction such that 8+=0 =0. This condition
gives

q- =k P.+ P— — (3.20)

From Eq. (3.20) and the energy-conservation relation

k+(m, /mo) =E++E +{q;.'+( m/ m)p] I,
it is found that the absolute minimum of q; occurs at
E+——E .This absolute minimum is given as (8orsellino,
1947)

/min = k{(mr/mp) t k+ (m,/m, )j—2I —t'k+ (m„/mp) g{{ (mr/mp) k—2)'—4(m, /mp)'I'I'

(m, /m, ) {2k+ (m,/m, ) g
(3.21)

It is to be noted that at threshold where k~ —— (b) Por photon energies at threshold where k=k, =2,
2t 1+(m,/mp) J, according to Eq. (3.19b), q is always from Eq. (3.19b) and where p+ ——p =0, the expression
given by its minimum value q;: for q; in Eq. (3.22) becomes

2L1y(m„/~) g

1+2(m„/mp)

(3.25)qmin =2p(3.22)/=(min=

Z. Electron Field Pair Pro-duction (Triplet Production
Explicit expressions for q; are given below for pair with m, =mp). For m, =mp, Eq. (3.21) may be written
production in the field of (1) a nucleus and (2) an in the form
electron:

q; =k —(k' —4)'~'. (3.23)

It is interesting to note that this result is valid for any
photon energy (i.e., for k(m„/mp as well as for
k) m„/mp) . Thus q; is independent of the mass of the
recoiling atom.

(a) For high photon energies where k)&1 and where

p+, p=+1, the expression for q; in Eq. (3.23) becomes

1. 1Vuclear Field Pair Prod-uction (m„&)mp) . For
))mEmqp. (3.21) becomes

q~;a =4k/{k(k —1)+(k+1)p(k —4) gris j. (3.26)

(a) Por high photon energies where k&)1 and where

P+, P ~1, q~;a is given by q~;~=2/k.
(b) For photon energies at threshold where k =k&——4

from Eq. (3.19b), the expression for q; in Eq. (3.22)
becomes

qmin =& (3.27)

It should be noted that for triplet production at
threshold also the pair particles have the same momenta

qmin =2/k (3.24)
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as it should be, since recoil and pair electrons are
indistinguishable particles.

E. The Maximum Recoil Momentum

The maximum recoil momentum g, is obtained,
when all of the momentum vectors P„(or more specifi-

cally p+ and p ), h, and q are colinear,

q--=
I
& I+ I p+ I+ I p- I.

In a manner similar to the derivation of q;„
(Borsellino, 1947), the absolute maximum of q
which occurs for E+=E is given as

k {(m, /mo) [k+ (m,/mo) j—2 I+[k+ (m„/mo) j{[(m„/m )k —2$ —4 (m,/m ) I
&I'

(m,/mo) [2k+ (m,/mo) j (3.28)

The maximum and minimum recoil momenta are
related by

4[(m,/mo) (k+m„/mo) —1]

A comparison of Eqs. (3.28) and (3.27) shows that

q =q; at threshold photon energies, in accordance
with Eq. (3.22).

Explicit expressions for g are given, below for pair
production in the field of (1) a nucleus and (2) an
electron.

F. The Minimum Momentum Transfer for a Given
Positron (or Electron) Momentum

The minimum momentum transfer for a given posi-
tron (or electron) momentum, q; (p+) [or q; (p )],
is obtained when the electron momentum p (or
positron momentum p~) is in line with q and in the
same plane, as shown in Fig. 3.02. Therefore

q-. (p+) = (P+'+k' —2p+k cos 4)"'—{(k—~+)'—1l"'

(3.35)

g. glc)gag-Iliad Pa& Production. I'« ~~&&~o one This minimum transfer is related, to the maximum
finds from Eq. (3.28) or from (3.26) and (3.29) impact parameter r (in units of the Compton wave-

length Xo), which is discussed by Heitler (1954) and isk+ (m,/m0),
)„,) used to evaluate screening effects (Koch and Mots,

2k+ (m„/mo) 1959),by the following equation:

This formula is valid for all values of k as is the corre-
sponding formula (3.23) for q;„. Note that while

q; is independent of m„, q does, for large values of
k(k &m,/mo), depend on the mass of the recoiling atom.

(a) For high photon energies where k))1 and where

P+, P ~1, the expression for q„, becomes

2k[(m, /mo) +kj
2k+(m, /~)

(3.30)

(a) For high photon energies where k))1 and where

ll+, P=+1, the expression for q „becomes

q =k. (3.33)

(b) For photon energies at threshold where k =k, =4
from Eq. (3.19b), the expression for q, becomes

(3.34)

(b) Forphotonenergiesat threshold wherep+ ——p =0
and where k=k, =2 from Eq. (3.19b), Eq. (3.29)
becomes

(max =2 (3.31)

2. Eiectrorl, Field Poir Prod-lctioe (TriPlet Prodlc
tjogz). For m„=mo, Eq. (3.28) becomes

q = {k(k—1)+(k+1)Lk(k —4) 1'"}/(2k+1).

rmnx = 1/qmin. (3.36)

The dependence of r on E+ for different values of
0+, as given by Eq. (3.35), is shown in Fig. 3.03(a)
and (b) for values of k equal to 21.57 and 315.11,
respectively. The solid, lines are obtained for the pair
process, and the dashed lines are obtained for the
inverse bremsstrahlung process in which the initial
electron energy EI and, the photon energy k are sub-
stituted. for —E+ and —k in the pair process. It is
interesting to note that the values for r have a
maximum value in the pair process and become arbi-
trarily large as the photon energy approaches zero in
the bremsstrahlung process.

FIG. 3.02. Vector diagram
for determination of the
momentum transfer q when
y+ is observed at the angle
8+. The minimum momen-
tum transfer g; is ob-
tained when y and q, lie
in the same direction and
same plane.

G. Maximum Recoil and Emission Angles

In a manner similar to the derivation of g in Eq.
(3.28), it can be shown that

cos 0,& (2mo/m„k) [(m„/mo) k+ (m„/mo) '—1$'I' (3 37)
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PIG. 3.03. (a) Dependence of the maximum impact parameter r „(in units of 4) on (E+—1)/(k —2) for the pair process (solid
lines), and on k/(Eq 1) for the bre—msstrahlung process (dashed lines) . Results are given for k equal to 21.57 in the pair process, and
for (Eq —1) equal to 19.57 in the corresponding bremsstrahlung process. The numbers on the curves give the values of the ratio 8+/Hp
for the pair process, where 80 is equal to 1/k, and Hs/80 for the bremsstrahlung process, where Hs is the photon emission angle and 8o is
equal to 1/E&. (b) Dependence of the maximum impact parameter r „(in units of Ko) on (E+—1)/(k —2) for the pair process (solid
lines), and on k/(E~ —1) for the bremsstrahlung process (dashed lines) . Results are given for k equal to 315.1 in the pair process, and
for (Eq—1) equal to 313.1 in the corresponding bremsstrahlung process.

(8,) = cos ' (2/k'ls). (3.39)

The above equations show that at threshold where k is

Therefore for the case of nuclear-field pair production,
the maximum recoil angle (8,) becomes

(8,) . =cos ' {(2/k) $1+k(mII/m, )$'"I, (3.38)

and for the case of electron-field pair production
(triplet production)

given by Eq. (3.l9b), the maximum recoil angle
(8„) is equal to 90'.

Because of the interchangeability of each of the
particles in triplet production, the same limit given in
Eq. (3.36) for (8„) applies to the emission angles
8+ and 8 as well. Therefore, none of the particles in
triplet production can be emitted at angles greater
than (8,) given in Eq. (3.3/). On the other hand, for
nuclear-6eld pair production, there is no limitation on
the emission angles for the pair particles.

H. Maximum and. Minimum Positron Energies for Fixed g+

In general, for a recoiling particle of mass ns„ the formulas for the maximum and minimum positron energies
are different for the two photon energy regions k& 2m, /(m, —ms) and k(2m, /(m, —mI)). The formulas are given
by the following:

(a) For k&2m„/(m, —mII)

(m /mII) Lk+ (m /mII) g (k—1)+k cos 8+ I k' cos' 8++ kg (m /ms) + 1 jg(m /me) (k—2) —kj}'(s
&+- (8+)=

Lk+ (m„/me) j'—k' cos' 8+ , (3.40)

~+min= &- (3.4i)
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(b) For k(2m, /(m„—mp)

(m /mp) [k+ (m /mp) ](k —1)~k cos 8+{k' cos' 8++k[(m /mp) +1][(m /mp) (k—1)—k] I
'»

E+-. '-(8+) =
[k+ (m,/mp) ]'—k' cos' 8+

(3.42)

Explicit expressions for E+ and E+,„are given below for pair production in the Geld of (1) a nucleus and
(2) an electron:

l. XNclear Fiel-d Pair Prodlctiol (rl,»mp). For m,»mp one Ands

(m, /mp) [k+ (m, /mp) ](k—1)+k cos 8+[k' cos' 8 + (m,/m, )pk(k —2)]'»
[k+ (m,/mp) ]'—k' cos' 8+

E+ )~=i.

From these results it follows that for k«m„/mp

E+ ——k—1

for all angles, while for k»m, /mp

(k—1)
1+(mp/m, )k(1—cos 8+)

'

giving the maximum value E+~~=k—1 only for small angles 8+&&(2m,/mpk)'».

Z. Electro'-Infield Pwr ProdectiorI. For m„=m~ one Gnds

k' —1+k cos 8+(k' cos'8+ —4k)'IP

(k+1)'—k' cos' 8+

(3.43a)

(3.43b)

(3.44)

(3.45)

(3.46a)

k' —1—k cos 8~(k' cos'8 —4k) 'I'

(k+1)'—k' cos' 8+
(3.46b)

IV. THEORY

In the theoretical calculation of the pair-production
process, * it is convenient to consider two cases in which
the recoil energy 2'@ of the target particle is (A)
negligible and (3) not negligible compared to the
photon energy k. The interaction between the created
pair and the target particle can be described in Case A

by a static potential interaction, and in Case 3 by the
complete relativistic interaction through the matrix
element of the target-particle, four-vector current
density.

Processes belonging to Class A above include electron
or muon pair production in the Geld of an atom for
energies and angles such that

T,= [q'+ (m„jmo) ']'"—(m, jmp) «k. (4.01)

Since m,»mp, Eq. (4.01) may be written

q'/2m, «k/mp. (4.02)

The potential description of the atomic-field, pair-
production process is thus valid, except for high energies

*The theoretical considerations in this section apply to the
elastic pair-production process which does not involve atomic-
excitation effects. A discussion of the inelastic pair process with
atomic excitation is given by %heeler and Lamb (1939, 195$)
and by Knasel (1968l.

and large angles. Class A also includes pair processes in
the Geld of an electron, provided that the photon energy
is high and the electron and positron emission angles
are small. In such a case, the momentum transfer close
to the minimum value, q;„as given by Eq. (3.26),
satisfies the condition that

q'/2mo«k/mp, (4.03)

which is equivalent to the condition given by Eq. (4.01,) .
Processes belonging to Class 8 include high-energy,

large-angle pair production in the field of an atom or an
electron such that the condition given by Eq. (4.01) is
not ful611ed. In this respect, there is a difference be-
tween atomic-Geld and electron-Geld pair production at
low energies: Atomic-Geld pair production at low
energies may belong to Class A because of the large mass
of the nucleus, while triplet production at low energies
may be excluded from Class A because the kinetic
energy of the recoiling electron, q'/2mp, may be of the
order kjmp.

A. Pair Production in the Potential Field of the
Target Particle

The pair-production cross section for processes
belonging to Class A is given by

d'o=[e'/(2n)'](p pp'E+jk) j M j'dE+dQ+dQL, (4.04)
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where the matrix element is given by

M= 0' r y%'+ r e exp zk r d'r. 4.05

Here 4 and 4+ are the wave functions of the created
electron and positron, respectively, in the field of the
target particle, and y and 74 are the well-known Dirac
matrices (jauch and Rohrlich, 1955).

It is convenient to distinguish between the following
two cases: (1) the Born approximation calculation in
which the electrostatic potential of the target particle is
included in %'+ and %' only to the first order, and (2)
the exact calculation in which 4+ and 0' are exact
wave functions in the electrostatic potential of the
target particle.

1. Born ApProximation Calculations

when the nucleus may be taken to be a point particle.
Here p.) (r) is the average charge densify for one atomic
electron. In this way the atomic form factor F((7) is
introduced through the relation

o(q) =1—~(q)
with

(atomic screening), (4.10)

E(q) = exp (iq r) p,i(r) d'r

In general, when the charge distribution of the
nucleus also has to be taken into account, the charge
density of the atom is given by

t (r) =o (r) —o.i(r)

where p„(r) is the average charge density per proton
inside the nucleus. We Gnd

In the Born approximation calculations, 4+ and 4
are given by the erst-order-scattering wave functions

t (q) =G~(q) -F(q), (4.11)

4g=ug exp (~ip~. r)

+ef Ge(r r )rP(—r )'ee exp '(wr'pe r') d r', (4r.0P)

where I+ and I are the positron and electron free-
particle spinors, respectively, C (r) is the potential of the
target particle, and where the Green's function G(r)
may be written as

o' p+'

(4.07)

From Eqs. (4.05), (4.06), and (4.07), one obtains
the Born approximation matrix element which may be
written in the form

i7 (g) —Ic) —moM =zZe'u
(g) —Ic) '+m()'-

iy (Ic—)()+) —mo 4x+~. V e u, —,&(q), (4.08)
(pg Ic) '+ —m' ()g'

where we have introduced the charge density Zep(r)
of the target particle or atom by means of the potential
equation )Ir'C (r) = —4)rZep(r) . We have further
introduced the Fourier transform of p(r), p(q) =
f exp (iq r)p(r) d'r

All Born approximation calculations are based on
Eq. (4.08). This equation together with Eq. (4.04)
contain all information concerning the pair-production
spectrum, angular distributions, and photon, electron,
and positron polariza tions.

For a target point particle of charge Ze, p(r) is a
delta function b (r), and we get

p(q) = 1 (point particle) . (4.09)

For an atom the charge density is given by

p(r) =b(r) —p„(r)

where the static electric nuclear form factor is given by

Ge(q) = f exp (ep r)p (r) d r. e

When the momentum transfer q is small, of the order
unity or smaller, the extension of the nucleus is un-
important and Eq. (4.10) applies. On the other hand,
for much larger values of I7 Lbut still small enough so
that the condition Eq. (4.01) is fulfilledg the atomic
form factor is negligible and the effect of the charge
distribution is well described by

p(q) =Gz(q) (extended nucleus) . (4.12)

Equations (4.09), (4.10), and (4.12) give the general
eGects of the charge distribution. In the case of Eq.
(4.12), a term describing the effects of the static mag-
netic moment distribution of the nucleus may be added,
as described, for example, by Olsen (1968, Chap. 5.3).

Z. Exact Calculations

When the effective expansion parameters Z(z/P~ in
the Born expansion of 0'+ are not small, i.e., when the
target element is heavy or the velocity of one of the
produced particles is small, the Born approximation
matrix element LEq. (4.05) g based on the Born wave
functions LEq. (4.06)) cannot be assumed to give a
correct description of the process. In this case, exact
scattering-state wave functions should be used in the
matrix-element equation (4.05) . For high energies and
small angles, the Furry —Sommerfeld —Maue wave
functions (Furry, 1934; Sommerfeld and Maue, 1935)
may be used successfully, as shown by Bethe and
Maximon (1954). For lower energies, these wave
functions fail to give a correct description, and an
expansion of N+ and 4 in partial waves has to be used.
This is the method used by Pverbt)t, Mork, and Olsen
(1968). Also in the exact calculations polarization
effects may be taken into account.



$92 REvIEws OP MoDERN' PHY8Ics ~ OcToBER 1969 ~ PART I

B. Pair Production by Relativistic Interaction with
the Target Particle

When the kinetic energy of the recoiling particle T„
is not much smaller than the photon energy k, dynamical
effects of the target particle have to be included. When
we consider the Born approximation, the process to the
lowest order in the interaction between the created pair
and the target particle, Eqs. (4.04) and (4.08) with
certain modifications are still applicable. The present
discussion does not include effects due to the direct
interaction of the photon with the target particle.
LSee the discussion by Banerjee (1958).j

The modification in Eq. (4.04) comes about because
of the appearance of the energy of the recoil particle in
the energy conservation relation which now reads

0+m, /mg =E++E~+E„.
This has the effect that the expression for the cross-
section equation (4.04) is replaced by

(4.08) is obtained from the relativistic theory as given
by Eq. (4.14).

As another example, we consider the case of a spin--',

target particie. For a point particle one has

J„(po, p,) =iu y„ug, (4.16)

where Nj and N~ are the initial- and final-state, free-
particle spinors, respectively, for the target particle.
Equation (4.14) with J„given by Eq. (4.16) describes
for Z =1, for instance, muon pair production in the Geld
of an electron when effects due to the direct interaction
of the photon with the target electron are included.
For the case of triplet production, Eqs. (4.14) and
(4.16) are valid when exchange effects and effects due
to the direct interaction of the photon with the target
electron are included.

For a spin-~ particle with internal structure, J„ is
given by

(4.17)

(4.13)

where the matrix element 3f is given by the relativistic
generalization of Eq. (4.08) as

iy (p —A:) —moM=Ze'u y 6
(p —A:)'+mo'

iy (k—p+) —mo 4n.
+V- —, , V e I+=, J.(7o, 7.), (414)

(P+—A:) '+mp' q'

where ZeJ„(pp, p„) is the four current of the target
particle in momentum space, g is the four-vector
momentum transfer, and po and p, are the four-vector
momenta of the target particle in initial and final states,
respectively. The modifications of Eq. (4.08) are that
q in Eq. (4.08) has been replaced by g in Eq. (4.14)
and that y4 multiplied. by the fourth component of the
(three dimensional) Fourier transform p(q) has been.
replaced by the invariant interaction involving

J„(po, p„) which is essentially the (four dimensional)
Fourier transform of the four-vector current density,
such that

—iy&„(p,, p,) =74p(po, p,) —iY.J(P„p„).
The momentum-space current density J„depends on

the spin of the target particle. For instance, for a spin-9
target particle, J„ in the laboratory system is given by

with ~ the anomalous magnetic moment and, Iiq and Ii2

the Dirac and Pauli invariant form factors, respec-
tively. Again, as for the case of a spin-0 particle, one
finds for small values of the recoil momentum q that J
is given by J„=iGs(q) 8„4 and Eqs. (4.08) and ('4.12)
are obtained in this static limit.

As in the analogous Case A above, the equation for the
cross section $Eq. (4.13)j and for the matrix element

LEq. (4.14)j contain all information concerning the
pair-production process, including polarization effects.
Calculations are based on these equations together with

appropriate expressions for J„(po, y,) as, for example,
given by Eqs. (4.15), (4.16)„and (4.17) .

V. POLARIZATION EFFECTS

A. FerInion Polarization

The polarization of fermions, e.g., electrons, positrons,
or muons, is most conveniently described in the rest
system of the particle (Motz, Olsen, and Koch, 1964) .
The fermion polarization vector for complete polariza-
tion, (, is defined as the expectation value of the Pauli
spin matrix vector r,

(5.01)

for the state I which is an eigenstate of the component
of o' along ( such that

0"(s=N. (5.02)
where G~(q) is the invariant nuclear electric form factor.
In particular, for small values of the recoil momentum

p„, for which E„m,/mo, only J4, of magnitude
J4 i'(q), will be of importance, and Eq. (4.14)
reduces to Eq. (4.08) with p(q) given by Eq. (4.12).
This exempliGes how the stati. c-potential-limit equation do~A+3 ( (5.03)

The differential cross section do. for any quantum-
electrodynamic process involving polarized fermions is a
linear function of the fermion polarization vector (,
with
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where A and B are functions of the momenta of the
particles taking part in the process and of the polariza-
tions of the particles other than the fermion polarization
described by (.

The application of Eq. (5.03) depends on whether the
fermion is emitted in or initiates the process:

(1) When a fermion beam is emit&, ed in a process, the
component of the polarization in the direction ( of that
beam is given by

(5.04)p o(() —o(—()
o(()+o(—()

and the polarization vector of the beam is

(5.05)

where P may apply either to the positron or electron
polarization, P+ or P, respectively, which are discussed
in Sec. II.

(2) When a process is initiated by a partially
polarized fermion beam with polarization P=P(, the
cross section for the process is given by an incoherent
superposition of the contributions from the states with

( and —( with probabilities w+ and w, respectively,

do(P) =w+do(()+w do( —(), (5.06)

where w++w =1 and w+ —w =P. From Eq. (5.03)
one obtains

do(P) A+PB (=A+3 P, (5.0/)

which shows that the partially polarized beam is
described by the complete polarization case (5.03), but
with ( replaced by P.

B.Photon Polarization

Photon polarization is described by means of the
photon polarization vector e which occurs in the vector
potential of the radiation

A=e exp Li(k r—kt)]. (5.08)

The polarization vector e is a complex unit vector,
e e*=1, perpendicular to k, e-k =0.

In the cross section for a quantum-electrodynamic
radiation process the photon polarization vector e
always occurs bilinearly. The cross section for any
process involving an emitted or absorbed photon of
polarization specified by e is of a form proportional to

M;;e, ;*=-',I {M;,+M;;), ;*—{'/2) {M;; M;;) b;; g, —
(5.09)

where M;; is a function of the momenta of the particles
taking part in the process and of the polarizations of the
particles other than the photon and where i and j are
the indices for summing over the spatial components.
In Eq. (5.09) we have introduced the circular polariza-
tion vector g defined by

g=ie xe*, (5.10)

1. Linear polarization

In the case of linear photon polarization the radiation
field oscillates in a plane. From Eq. (5.08) it follows
that e for this case is a real vector. The cross section is
then, according to Eq. {5.12), proportional to

do (e) (Re M„)e;e,. (5.13)

In an arbitrary coordinate system with axes e&" and
e"' such that e&'& e&'& and k form a right-handed
orthogonal coordinate system, the polarization vector
may be written

e=cos 4'e&'&+sin Ce&'& (5.14)

with C the angle between e and the e&'& axis. The
expression (5.13) may then be written

do(4')~M11+M2s+(Mll Mss) cos 24'

+2(Re Mil) sin 24. (5.15)

This then gives the inQuence of the linear polarization
on the cross section pertaining to a radiation process.
The application of this expression depends on whether
the radiation is emitted or absorbed.

(a) For the case that a photon beam is emitted, the
observed linear polarization of this photon beam
referred to the direction e is

do {e)-do (e')
Pr, (e) =

do(e)+do(e') '

where e' is perpendicular to e; specifically,

e'= —sin Ce&n+cos Ce&'&.

(5.16)

(5.17)

The polarization may most conveniently be expressed
in terms of 4 as

P~(4') = do(4) —do (4+s&/2)

do(4)+do(4+~/2)
'

By the use of the expression (5.15) one obtains

PL, (4') =Pz, cos (24 —2y).

(5.18)

(5.19)

and the antisymmetric tensor 8;,I, which is defined by

Siss
——1 and b,sl,

——b;,—&,
=—b,g,s. (5.11)

Because the cross section is a real quantity, M;;=
M;;* and Eq. (5.09) may be written as

do (e) -', I2(Re M@)e,o, +(Im M;;) b;sj,&I,I, (5.12)

where Re and Im stands for real and imaginary parts,
respectively. The form of the cross-section equation
(5.12) holds whether the process is completely differen-
tial or when some of the particle momenta or polariza-
tions are not observed. In Eq. (5.12) the linear and
circular polarization eQects are completely separated in
that the first and second terms describe linear and
circular photon polarization eGects, respectively.
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Here y is given by

tan 2y =2 Re M12/(Mll —M22),

constant amplitudes. From Kq. (5.08) it follows that
e is given by

e = (1/v2) {e&'&+ibe&2&} (5.30)
and P'I, is the maximum linear polarization

IL {(Mll M22) +4(Re M12) I /(Mll+M22) ~

The direction of the maximum polarization is, according
to Kqs. (5.19) and (5.20), given by 4' =7, or

tan 24 =2 Re M12/(Mll —M22). (5.22)

Equation (5.21) may also be written in the form

M11M22 (Re M12)
PI.= 1—4

(Mll+M22) '
do (g) M„+M,2+ (Im M;;)5,,2)2

where 8 is +1 and —1 for right-handed and left-banded
circular polarization, respectively. The circular polariza-

(5 21) tion vector g, Eq. (5.10), is given by

)=be&'& xe&2& =8k (5.31)

where k=-k/k. A right-handed-polarized photon is thus
characterized by $ =k and a left-handed-polarized
photon by g=- —k.

The expression (5.12) proportional to the cross
section for this case becomes

or
do =wldo (e) +w2do (e') (5.26)

do =wido (4) +w2do (4'+ir/2), (5.27)

where mz and m2 are the probabilities for photon
polarizations in the directions given by e (or 4) and
e' (or 4'+2r/2), such that wl+w2=1 and wl —w2

——PL,
the magnitude of the linear polarization of the initial
photon beam. One finds, using the expression (5.15)
that

Mll+M22+PL[(M11 M22) Cos 24'

+2 (Re M12) sin 24]. (5.28)

which shows that complete linear polarization occurs
when

(Re M12) M11M22 (5.24)

and that a 6nite diGerence between &~~%22 and
(Re M12) ' results in a decrease of linear polarization.

When the coordinate axes e&" and e&" are oriented so
that e&'& is along e, the linear polarization given by
(5.23) becomes

IL (Mll M22) /(Mll+M22) p

and complete linear polarization occurs only when one
of the functions M~~ or &~2 vanish, i.e., when the
intensity of the radiation polarized along e&'& or e&'~

vanishes.
(b) For a process in which a partially linearly

polarized photon beam is absorbed, the cross section is
given as an incoherent; superposition of the contribu-
tions from the two polarization states described by e
and e', Eqs. (5.14) and (5.17),

(a) For the case that a photon beam is en22tted in the
process, the component of the circular polarization of
the radiation along g is given by

P, g=
do. ($) —do ( —g)
do (g) +do ( —g)

'

or according to (5.32)

(5.33)

P, g =- [(Im M,;)5.„g,j(MllyM22) ](„, (5.34)

so the circular polarization vector of the photon beam is

P, =[(Im Mg) 8,;2fc2/(Mll+M22) $k

= [2 Im M,2/(Mn+M22) $k. (5.35)

(b) For a process in which a partially circularly
polarized photon beam is absorbed, the cross section is
given as an incoherent superposition of the contribu-
tions from the two polarization states specified by g
and —$,

do =wldo ($) +w2do ( —g), (5.36)

where zv~ and m2 are the probabilities for circular
polarizations in the directions g and —f, respectively,
such that wl+w2=1 and such that the circular polar-
ization of the photon beam is

=Mll+M»+28 (Im M12) . (5.32)

This expression gives the dependence of the cross
section on the circular polarization of the radiation.
As for the case of linear polarization the application of
(5.32) depends on whether the radiation is emitted or
absorbed:

In most cases it is convenient to choose the polarization
direction as one of the coordinate axes, e.g., e=e&'&

(i.e., 4 =0), and thus Eq. (5.27) becomes

P,= (wl —w2) $.

From (4.32) we find

(5.37)

Mll+M22++L(Mll M22) ~

Z. Circular polarization

(5.29) do Mll+M22+ (Im Mg) 8„2P2.

3. Elliptic polarization

(5.38)

For the case of circular polarization, the electric and The general case of elliptic polarization of a photon
magnetic field strengths of the radiation rotate with beam is described by Eq. (5.12). Analogous to the case
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a'+b'=1 (5.40)

and 8 is equal to +1 and —1 for right-handed and
left-handed elliptic polarization, respectively. The ratio
a/b is the ratio of the axes of the polarization ellipse, so
that a/b = 1 for circular polarizations and a/b is infinite
or zero for linear polarization. The angle C is the angle
between the e&') axis and the ellipse axis represented by
u. The special cases of linear and circular polarizations
are obtained from (5.39) by setting ah=0 and a=b=
1/v2, respectively.

When this expression for e is introduced into Eq.
(5.12), one obtains

do (e) M»+Mm+L(M» —M») cos 24

+2(Re Mil) sin 24$(a' b') +—48 ab(I mMiz). (5.41)

The polarization vector e' describing the opposite
state of elliptic polarization relative to e in Eq. (5.39)
is obtained by interchanging the axes of the polar-
ization ellipse, i.e., interchanging u and b and by
reversing the sense of rotation of the radiation field
(i.e., changing the sign of 8) .One finds

e'= (b cos 4'+isa sin 4)e&'&+ (b sin 4' —iba cos 4) e@&.

(5.42)

We note that as for the case of linear polarization the
polarization vectors corresponding to opposite states of
polarization are orthogonal to each other; here e e'~ =0.

Corresponding to Eq. (5.41), we find

d&(o ) Mll+M22 { (Mll Mm)

+2 (Re Mil) sin 24 j(a' —b') —4bab(Im Mi&t) . (5.43)

From Eqs. (5.41) and (5.43) the special cases of linear
and circular polarizations are obtained by setting
ab=0 and a=b=1/V2, respectively /compare Eqs.
(5.15) and (5.30)j.

(a) For a process in which a photon beam is emitted,
the elliptic polarizatioD of the beam is

of linear polarization in Eq. (5.14), the vector e may
for the case of elliptic polarization be written

e = (a cos 4 ibb—sin 4') eo&+ (a sin 4+iamb cos 4) e&'&,

(5.39)

where the real„positive numbers a and b satisfy

i
M&2

i

—MuMm,

and we find from Eq. (5.46) that

P,=1.

(5.49)

(5.50)

Photons emitted in a completely differential process are
thus completely elliptically polarized.

(b) The cross section for a process initiated by the
absorption of a partially elliptically polarized photon
beam is given by

do = wdai. (e)+ wdoz(e'), (5.51)

where wi+w2 ——1 and w, —wz=P, . From Eqs. (5.41)
and (5.43) we find

M»+Mm+Pe{ L(M» Mm) cos 4'

+2(Re M&2) sin 24)(a' —bz)+48ab Im Mtz}, (5.52)

where C is determined by the directions of the axis of
the polarization ellipse, a/b by the ratio of the ellipse
axis, and 6 by the handedness of the polarization.

C. Deyendence of the Pair Cross Sections on the
Polarization Variables

elliptic polarization of the beam is found to be given by

P,= {(Mii —Mm)'+4
i Miz i'}"'/(Mu+Mm) (5.46)

which, according to Eqs. (5.21) and (5.35), may
be written

P —{P 2+P 2 }1/2 (5.47)

The elliptic polarization is thus given by the observed
linear and circular polarization. The magnitude P, is
determined by Eq. (5.47). The direction of the major
axis of the polarization ellipse is determined by the
linear polarization (through the angle 4) and the
handedness of the elliptic polarization is determined by
the circular polarization (through the quantity 8) as
is apparent from Eq. (5.41) .

It should be noted that for a completely differential
process, where no integrations over angles and no
summation over polarization spin states for any of the
particles have been performed, then 3f,; is proportional
to the absolute square of the matrix element, so that

M,;=M~
where 3f,e; is proportional to the matrix element. It
then follows immediately that

do (e) -do (e')
do.(e)+ do (e') (5.44) The differential cross section for pair production

including polarization eBects is of the form
which according to Eqs. (5.41) and (5.43) becomes

P,(a, b, 8, 4')

= {{(Mu —Mm) cos 24+2(Re Miz) sin 24)(a' —b')

+4&ab(Im Mm) }/(Mii+MI2) . (5.45)

The maximum elliptic polarization, usually called the

d'o e, g, ~,+' =g{p&+p~+pl. g+pr+ (++Fr (. —
dE+dQ+dQ

+Fr+ ~ (+pi ~ (+. Fr+ 8 ~ (++. pr—8 ~ (
+Ftts'" f+;f .t+P'tr'" "-f+.'I ,t+P'tr'" '-1+;f .t}-

(5.53)



596 REvIEws oF MoDERN PHYBIcs OcTQBER 1969 ~ PART I

ALE 5.0j.. Polarization e6'ects in pair production.

Incident photon beam

Unpolarized With linear polarization, I'I., 0 With circular polarization, P,

Exact
Born

Exact

Born

Exact
Born

Exact
Born

Exact
Born

Exact

2CEo

jFP+/Po

0

2CI'o

4C/P'+P~' J
4CPPo+PrF' J
(F»'+PrF»")/(P'+PzP')
0

2CTPo+PrI'{1—2(u. e) '}J
~ ~ ~

(F" +Pr,F»"')/(P'+PrP)
0

2C/Fo+P~o J
~ ~ ~

4CLP+P. P»J

4CP'

(F»++P F»+»)/(Po+P .F5)

p~», g/po

2CE0

(F»++ P.F»+A) /Fo

P,F»+.»/Po

2C™E0

P,F»+ o/Fo

PF»+»/P

where

(- =kLZ'~~o'/(2~)']{E+E-L1 —F (q) ]'// YI
and where the F coefficients give the correlations be-
tween the various polarizations and momenta of the
photon, positron, and electron. These coeKcients are
given in Table 6.10 for the cross-section formulas with
polarization dependence for Born approximation cal-
culations and for high-energy, exact calculations. The
coeKcients F&, I't+, F&+' and Ii;,&+&-& describe polar-
ization —momentum correlations and are accordingly
absent in the first-order Born calculation (Olsen, 1968).
The rest of the coefficients describing terms in the cross
section which contain two of the polarization vectors
(+, ( or $ are polarization —polarization correlation
coeS.cients. These coeflicients have in general finite
values also in first-order Born calculations.

The cross-section diGerential in positron energy and
emission angle is obtained by integrating Eq. (5.53)
over electron emission angles. The result may be
written

d'~(e 5 (+) = (, {F'+F'(1—2 { u e ~')+F»+ (+
dE+dop

+&»+' (++F"+'.(+I (5 54)
where

(;= (roZ'ro2/2or) (E+/k') .
The unit vectors e and (+ are dined in Sec. II, u is
de6ned in Table 6.10A, and the coeQicients F, P', etc.,
which have been calculated, are given in Table 6.09 for
Born approximation formulas and for high-energy,
exact, formulas. It is to be noted that the coefBcient
F& corresponding to F& in Eq. (5.53) vanishes, since the
only scalar which may be formed of the vectors k, p+

and the axial vector g, viz. g.k x p+ vanishes, since g is
parallel to k.

The cross-section differential in the positron energy,
obtainable from Eq. (5.54) by integration over positron
emission angles, is of the form

d (5, «.)/dE, =~i~'+~» 5 «.], (5.55)

where
C =xiaZ'ro'k '.

The coefficient II' gives the spectral dependence of the
cross section while Pg»+/P (Table 5.01) gives the
magnitude of the average polarization of the positron
beam, a quantity only meaningful for high energies,
produced by a photon beam of circular polarization I',.
The coeflicients Fo and P»+ are given in Table 6.08.

The more complete expression containing also the
correlations between the positron and electron polar-
ization is given for high energies as (Olsen and
Maximon, 1959)

=C&Po+P».g «,+1»g(-
—(E+'+E-') (A—8'~) (+ &«-.&

+2E+E-{(A—3A) (+ (-+kA(+'&(-'4
—&kg, {(+~ ~ ( ~—2 Re L(+.e( e*]I ), (5.56)

where F» is obtained from -the Formulas for P»+ in
Table 6.08 by interchanging E+ and E .

The polarization dependence of the above pair cross
sections makes possible the detection of photon polar-
ization and the production of polarized electrons and
positrons by the pair process. This dependence is given
by the various F coefficients which are introduced in
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Eqs. (5.53), (5.54), and (5.55), and which are de6ned
in Tables 6.08, 6.09, and 6.10.As shown in the following
sections, D and E, these coefhcients have the following
significance:

(a) F' or F' is associated with the detection of linear
photon polarization, (b) Iiz is associated with the
detection of circular photon polarization, (c) Fr+ S,

Fr+1, or Fr+ 1 is associated with the production of
polarized electrons and positrons by circularly polarized
photons, (d) Fr+ r , Fr+ r-, or P-r+ r is a-ssociated with
the production of correlated polarizations of electrons
and positrons by unpolarized photons, and (e) Ilr+ is
associated with the production of polarized electrons or
positrons by unpolarized photons.

Examples of the quantitative effects of polarized and
unpolarized photon beams on positron (or electron)
polarizations and on cross sections involving positron
(or electron) detection with polarization insensitive
detectors are given in Table 5.01. A summary of the
various cross-section formulas which may be derived
from Eqs. (5.53), (5.54), (5.55), and (5.56) is given in
Table 6.03. These formulas may be used to determine
the polarization of a photon beam as described in Sec.
V.D, or to produce polarized electrons or positrons as
described in Sec. V.E.

D. Determination of Photon Polarization by the
Pair Process

l.4

0 I.2

I—

CL

l.O
I—
LLI

(A

.6

4
0

I I I I I

2 4 6 8
~p/p

FIG. 5.01. The asymmetry ratio RL„which is defined in Eq.
(5.58) and is calculated by Maximon and Olsen (1962), for the
analysis of linear photon polarization. RL, is evaluated for equal
energies, E+——8 =k/2, as a function of BC/P for complete
screening where P=gr/s/111. The azimuthal angle C is defmed
in Fig. 5.02 and it is equal to zero when the pair particles are
coplanar. Curve a gives the exact small-angle results valid for
bC«1, with the pair particles observed emergent over angular
region 2bC. Curves b and c give all pair particles observed except
those absorbed by a wedge of angular width 264 «1, with Z =29
in curve b and Z=78 in curve c.

1. Linear Polarisafion

The linear polarization of a photon beam may be
detected by the pair process, as proposed by Yang
(1950) and Berlin and Madansky (1950).This method
has been discussed in further detail by Wick (1951)
and Maximon and Olsen (1962).

The linear polarization PI, of the incident photon
beam is determined from measurements of the pair
particles emitted in diferent azimuthal directions with
respect to a given photon polarization plane (e, k).
The number of particles, N~ or Xg, which are measured

by a detector positioned parallel or perpendicular,
respectively, to the polarization plane are given by the
equations

Xz ——ALwrda. (e, C~ ——0)+wsdo(e', Cg ——0)g,

Ns ——ALwrdo (e, C~=-',a.)+wad(e', Cg ———',z) 7, (5.5'I)

where A is a constant that depends on the incident
number of photons and the number of atoms per cm'
in the scattering foil, mj and mm are the probabilities for
photon polarizations in the orthogonal directions e and
e', respectively, and C~ is the azimuthal angle of the
pair particle measured with respect to the (lr, e) plane.
The cross sections do in Eq. (5.57) have a functional
dependence on 4+ and on the unit vectors e and e' for
linearyhoton polarization as given by the coefficients
F' or F' in Tables 6.10 and 6.09. In addition, these cross

sections are integrated over the solid angle subtended

by the detector, and they may have the form that is
differential with respect to the partide energy if the
particle detector is a spectrometer.

The linear polarization PI, may be expressed in terms
of the measured asymmetry ratio rz, =Xz/zvs, and the
theoretical asymmetry ratio E~ which is given as

Rz, =do (e, Cp 0)/do (e,——C~=-', gr)

=do (e', C~=-,'z)/do (e', C+ ——0). (5.58)

The theoretical ratio EI, is obtained for complete linear
polarization (Pz, = 1), and the factor by which it differs
from unity may be considered as a figure of merit with
which to gauge the sensitivity of the pair process to
linearly polarized. photon beams. From Eqs. (5.57) and.

(5.58), the linear polarization is given by the equation

& =E(& +1)/(& —1)3L( —1)/( +1)j (559)

Maximon and Olsen (1962) give quantitative results in
which EI.is evaluated for the case of all nearly coplanar
pairs and of all except the nearly coplanar pairs. The
latter arrangement oGers better discrimination for the
measurement of linear photon polarization, as shown by
the curves for EJ. in Fig. 5.01 for the case of equal
energy partition (E+=E =-rsk), with the pertinent
angles defined in Fig. 5.02,
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k

Z

P

FIG. 5.02. Pair-pro-
duction angles related
to the detection of lin-
ear photon polarization.
The azimuthal angles
C+, and 4, and C are
measured in the XF
plane, such that C =
s —(C —C+). The an-
gular region covered by
C, from zero to a max-
imum value of m, is des-
ignated as BC.

and complete screening give

(E+'+E ') 2a ln 2
Rg = rlZ

(E~'+E '+~EpE ) ln (183Z 't') —srE~E

(5.61)

VA'th the above available data for R„ the circular
polarization is given by the following equation:

P, )=I (R,+1)/(R, —1)]I (r,—1)/(r, +1)j, (5.62)

where r, is the asymmetry ratio measured in the
particular geometry and at the azimuthal angles for
which R, was evaluated.

Z. Circular polarisation

The circular polarization of a photon beam may be
detected by the pair process, as discussed by Olsen and
Maximon (1962) and Kolbenstvedt and Olsen (1965).
This method requires azimuthal asymmetry measure-
ments of the electrons emitted with respect to any
specified emission plane (k, p+) for the positron.
Analogous to the treatment of linear polarization in
Sec. V.D.1, the theoretical asymmetry ratio R for
circular polarization is given as

R.=do(g, C )/do(g, C +m)

=do (—g, —C ) /do (—g, —C —x), (5.60)

where the cross sections do. have a functional dependence
on the electron azimuthal angle 4, which is measured
with respect to the positron emission plane (h, p+),
and on the unit vector g for circular photon polar-
ization, as given for example by the coeKcient Ii& in
Table 6.10. For the speci6c geometry shown in Fig.
5.03 where 8+=8, E+=-,'k, and 4 =-', m such that
k=k/~ h [=uxv/~ uxv), Kolbenstvedt and Olsen
(1965) have evaluated R, as a function of t)+ for differ-
ent photon energies, and their results are given in Fig.
5.04. For the case in which the cross section is integrated
over the angles, ti+, 0, and (C+—C ) from 0 tom, the
Olsen-Maximon calculations (1962) for high energies

Fxo. 5.03. Pair-production angles related to the detection of
circular photon polarization. In this geometry, the azimuthal
angle C in Fig. 5.02 is equal to s./2, such that the momentum
components u and v are orthogonal.
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E. Production of Polarized Electrons and Positrons
by the Pair Process

l. I'olarised electrons and positrons by
circularly polarized photons

The electron or positron beams emitted in certain
directions by circularly polarized photons in the pair
process may have a certain degree of polarization, as
shown, for example, in Table 5.01. For the case where
the positron is not observed, the longitudinal and
transverse polarizations I and P, respectively, of
the electron beam are given by the following equations:

d'o(P„( )/dE dQ d'o(P„()/dE d—Q—
d'o (P„( ) /dE dQ +d'o (P„—( ) /dE dQ

(5.63)

Fxo. 5.04. The asymmetry ratio R„which is defined in Eq.
(5.60) and is calculated by Kolbenstvedt and Olsen (1965),
for the analysis of circular photon polarization. The ratio aZR,
is evaluated as a function of the emission angle 0+ for right-handed
circularly polarized photons, with e+ ——e and E+ E=h/2. The-—
numbers attached to the curves give the photon energies in
megaelectron volts.
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with p ~ ( =1 or n ( =0 for longitudinal polar-
ization, and

d'o(P„( )/dE dQ —d'o (P„()—/dE dQ

d'o(P„( )/dE dQ +d'o(P„()—/dE dQ

(5.64)

with p ( =0 or n ( =1 for transverse polarization.
These polarizations involve the coe%cient F&- &, which
is given in Table 6.09. For high energies, Olsen and
Maximon (1959) have shown that

k((E +E+) (3+2I')+2E+(I+4LL'pl') j
(Eps+E ') (3+2I') +2E+E (1+4ltc'Pl') '

(5.65)

where the various quantities are de6ned in Table
6.098 and in Sec. II. As shown in Fig. 5.05, the trans-
verse polarization is always small while the longitudinal
polarization may be large. The mean (integrated over
the electron emission angles) longitudinal polarization
of the electron beam is shown in Fig. 5.06, and for
photon energies greater than approximately 20 MeV
this polarization may be written in the simple form
(Olsen and Maximon, 1959)

P z=(4E k)h/(3k' —4E+E ).— (5.66)

I.O

loo

50

DJ
C3
CL
LIJ

0

I

.2
I

.4 .6 .8 I.o

Fj:G. 5.06. Longitudinal polarization I' I of electrons produced
by 100% circularly polarized photons in lead, as calculated by
Olsen and Maximon (1959) with the inclusion of Coulomb and
screening effects. Also, results are given for the spin correlation
terms de6ned in Eq. (5.67), CL and Cs., for longitudinal and
transverse spins, respectively. The results are integrated over the
electron emission angles and are shown for incident photon ener-
gies of 20 MeV and 1 BeV.

2. Correlated polarisations of electrons and
positrons by Nnpolarized photons

If the polarizations of both pair particles are recorded,
a correlation C of polarization is obtained:

C= «((+=(-) -d~((+= -(-)
«((+ =(-)+«((+= -(-) (5.6/)

CL

C)
l—

4
CL

O
CL

.2
CO
CL

C3
, LLJ

LU 0

-4
0 .4 .6E/k .8 I.O

FIG. 5.05. Longitudinal, I' ~, and transverse, P +, polariza-
tion of electrons produced by 100% circularly polarized 500-MeV
photons in lead, as calculated by Olsen and Maximon (1959).
The numbers attached to the curves give the values of 8 in
milliradians. t Numerical errors occurring in Figs. 7 and g of
Olsen and Maximon (1959) have been corrected here. g

In particular, the average polarization correlation of the
electron —positron beam may for energies k&20 MeV be
written in the simple form

C=$4E E —(( It)']/(3k' —4E E ). (5.68)

Curves for C 1 (for longitudinal spina, (+ k= 1) and for
Cx (for transversal spins, (+ k=0) are given in Fig.
5.06.

3. Polarized electrons or positrons by

Nn polarized photons

When the momenta of both pair particles are ob-
served in coincidence it is possible to obtain polarized
electrons or positrons through momentum-polarization
correlations (Olsen and Maximon, 1964) of the form
(p+xp g+). It should be pointed out that pair
production, through this correlation, is the only elec-
tromagnetic process in which strongly polarized high-
energy particles are produced from initially unpolarized
particles. The longitudinal and transverse polarizations
may be considerable as displayed in Fig. 5.07.
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FIG. 5.07. Longitudinal and transverse polarization, P I andP, respectively, of electrons which are detected in coincidence
with the corresponding positron for the case where the emission
planes are orthogonal, as given by Olsen and Maximon (1964).
The data for P is given for the case of maximum polarization
where E =k, and the data for P ~ is given also for the optimum
case where 8 =k/v2. These polarisations are produced by un-
polarized photons.

VI. CROSS-SECTION FORMULAS FOR PAIR
PRODUCTION IN ATOMIC FIELD

The cross-section formulas for pair production in an
atomic Geld are given for the various differential and
integrated, forms that have been calculated. The
formulas for a particular cross-section form are classihed
according to the approximation used in the calculation
(first Born or exact with relativistic, screening, or
nuclear-size approximations as discussed in Sec. IV),
A quantitative summary of these approximations is
given in Table 6.01, and each formula is accompanied

by a list of the conditions of validity which are identiGed

by the letters in Table 6.01.
Each cross-section formula is identiGed by a label

with six elements. The Grst two elements are a number
and a letter which are used to uniquely identify the
process under consid, eration; in this case, the pair-
production process as distinguished from other Coulomb
processes. With regard to the pair process, the next four
elements are digits which serve as convenient indices for
locating a particular formula: the Grst digit gives the
number of differential variables in the formula, the
second, digit gives the number of polarization variables
in the formula, the third digit is an index which uniquely
speciGes a particular combination of the variables given

by the Grst and second d,igits, and the fourth digit is an
index (ranging from 0 to 9) which identifies the 10
types of calculations successively listed by the different
columns in Tables 6.02(a) and 6.02(b).

Summaries of the available cross-section formulas for
pair production in an atomic Geld are given in Tables
6.02(a), 6.02(b), and 6.03. Tables 6.02(a) and 6.02(b)
give the formulas which are summed over the photon
and electron polarization states and. therefore which are
not dependent on the polarization variables for these
particles. Table 6.03 gives the formulas in the forms

TABLE 6.01. Conditions of validity for pair-cross-section formulas.

A. First Born approximation:

ol
nZ/P+, nZ/P «1

o.Z/p+«1

such that E+=E =k/2, with p+
——p = (1—4/k')"'

or

t nZ/(1 —4/k') '"g«1

B. No screening: aZ'I3k«1

C, Complete screening aZ"'k&&1

D. Extreme-relativistic energies: 8+, 8, k)&1

E. Negligible nuclear recoil: g~&&km„/m0

This condition is obtained if ~&&km„ i.e, , always for
small-angle pair production, or if k&&m„ for large-angle pair
production.

F. Small angles: 8+=0(1/E+), 8 =O(1/E )

G. Large angles: 8~)&1/L'~

H. Exponential screening: P(g) =$1+(RTxg)'$ '

which show their functional dependence on various
combinations of the polarization variables for these
particles. The application of the formulas in Table 6.03
for determining the polarization of the particles in-
volved in pair production is discussed in Sec. V. The
blank spaces in each table indicate that a formula is
not availab/e.

The formulas for the various differential cross
sections are given in a form which is diGerential in the
Possiron variables. To obtain corresponding formula
diOerential in the electron variables, the following
changes should be made in the diGerential formulas
given below:

(a) Replace E+, E, p+, p, and Z, respectively, by
E, E+, p, p+, and —Z to convert da/dE+ to d~/dE .

(b) Replace E+, E, p+, p, 8+, and Z, respectively,
by E, E+, p, p~, 0, and —Z to convert d'o/dE+dQ+
to dso/dE dQ . For the polarization-dependent for-
mulas, also replace (+ by ( .

(c) Replace E+, E, and Z, respectively, by E, E+,
and —Z to convert d'o/dE+dto to d'o./dE did.

For most cases, the nuclear recoil is negligible so that
k =E++E, and the conversion procedure for the above
differential formulas is simple. For these cases of
negligible nuclear recoil, the cross sections differential
in the positron variables may be interpreted in terms of
the cross sections differential in the electron variables
by making the simple substitution that E+——k —E .
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TABLE 6.02. Cross-section formulas for pair production in an atomic Geld without atomic excitation. '

Formulas'

Pair cross
section

First Born

UPN UPN-ER SPN SPN-ER

Exact

UPN UPN-ER SPN SPN-ER

3D-0000 BD-0001
Racah Heitler-

Sauter

BD-0003
Bethe-
Heitler

3D—0006
pverbfl-
Mork-
Olsen

3D—0007
Davies-
Bethe-
Maximon

3D—0009
Davies-
Bethe-
Maxim on

do/dE+b BD-1000 3D-1001
Bethe- Bethe-
Heitler Heitler

3D-1003
Bethe-
Heitler

BD-1006
Pverb+
Mork-
Olsen

3D-1007
Davies-
Bethe-
Maximon

3D-1009
Davies-
Bethe-
Maximon

BD-1010
Jost-
Luttinger-
Slotnick

do/dP„ 3D-1020
8orsellino

3D-1032
Jost-
Luttinger-
Slotnick

d'o /dE+dQ+b 3D—2000
Sauter-
Gluckstern-
Hull

3D—2003
SchifF

3D—2007
Olsen-
Maximon

3D-2009
Olsen
Maxim on

d'o/dE+dmb 3D-2011
Olsen

BD-2013
Olsen

d'o/dE+dQ~ b 3D-3000 3D-3001
Bethe— Bethe-
Heitler Heitler

BD-3004
Bjorken-
Drell—
Frautschi

3D-3007
Bethe-
Maximon

3D—3009
Bethe-
Maximon

This process is also designated as elastic or coherent pair production.
The formulas are classified under the two main categories of First Born
or Exact with the following subdivisions: UPN =unscreened point nucleus;

FN =finite nucleus; ER =extreme relativistic; SPN =screened point
nucleus.

The cross sections which are differential in P. rather than Z+ may be
obtained by the procedure discussed in Sec. VI.

TABLE 6.02(b). Cross-section formulas for pair production in an

atomic Geld with atomic excitation. ~

Pair
cross section Formulas

BD-0005
Wheeler-Lamb

BD-100S
Wheeler —Lamb

This process is also designated as inelastic or incoherent pair production.
The only~formulas available for this process which are given in the above
table are calculated with the nrst Born approximation.

For example, in Pigs. 6.04 to 6.08 and in Pig. 6.12, where
the differential cross sections are given as functions of
the positron energy E+, the corresponding differential
cross sections as functions of the electron energy E are
obtained by substituting ~=k—E . This substitution
procedure is equivalent to reading the abscissa from right
to left since (E+—1)/(k —2) =1—(E —1)/(0 —2).

Pair production in an atomic 6eld. may occur without
atomic excitation (also designated as "elastic" or
"coherent" pair production) and with atomic excitation
(also designated as "inelastic" or "incoherent" pair
production). These two processes which have different
final states are independent of each other, and the cross
sections for the thoro processes are additive. Therefore,
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any given form of the pair cross section, such as r or
do/dE+, is equal to the sum

I
o (elastic)+o (inelastic) j

{or )do/dE+ (elastic)+do/dE+ (inelastic)] I. The
major contribution to this sum comes from the "elastic"
component, and except for low-Z atoms (as shown in
Fig. 8.01), the "inelastic" component is negligible.
The formulas in Table 6.02 (a) apply to pair production
without atomic excitation ("elastic" or "coherent" ),
and the formulas in Table 6.02(b) apply to pair
production with atomic excitation ("inelastic" or
"incoherent" ) .

Cross-section calculations for pair production with
atomic excitation must account for the contributions of
the atomic binding, the exchange character of the inter-
action, and the energy transfer to the recoil electron.
The only calculations for pair production with the
inclusion of atomic excitation and ionization eRects
have been made in the first Born approximation by
Wheeler and Lamb (1939), and their results are given
by Formulas 3D-0005 and 3D-1005 in Table 6.02 (b) .
It is important to note that these formulas apply to the
process in which pair production occurs in ae atomic
field. If atomic ionization is involved, an electron is
liberated with the production of a triplet. This process of
triplet production in an atomic 6eld should not be
confused with the triplet production in an electron field
which is discussed in Sec. VII.

At extreme-relativistic energies, it is necessary to
account for nuclear recoil and size eRects for the
observation of large-angle pair production. Such
calculations are given in the erst Born, { 6nite-nucleus
(FN) j column in Table 6.02(a). Otherwise, the for-
mulas in Table 6.02 (a) apply to pair production with a
negligible energy transfer to the nucleus (negligible
nuclear recoil) such that q'((km, /~.

It should be noted that the crass-section formulas in
Sec. VI and the kinematic relations in Sec. III may be
applied to all processes involving the production by
photons of any pair of particles (such as muon pairs),
providing the rest mass of the pair particle is substituted
for the electron mass ~. Also, certain bremsstrahlung
formulas may be derived from the corresponding pair
formulas as follows:

(a) The bremsstrahlung differential cross section
d'o(k, pq)/dkdQq is obtained from the corresponding
pair cross section d'o(p+, k)/dE~dQ+ by substituting
—Ey, —

yy for E+, y+, k, R for —k, —k, and dkdQI, for
dE~dQ~, and by multiplying d'o (p+, k) /dE~dQ~ by the
factor k'/pP. In these expressions, pq and Eq are the
initial electron momentum and energy, respectively, in
the bremsstrahlung process, and dQI, is the element of
solid angle in the direction of k relative to y~.

(b) Provided the recoil energy is negligible such that
k=E++E, do(k, yq)/dk is directly obtainable from
do (p+, k)/dE+ by substituting —Eq for E+, k for —k,
dk for dE+, and by multiplying do(y+, k)/dE+ by
k2/p 2
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Formula 39-0000

[The Racah Formula: Unscreened Point Nucleus]

692+468e+76e'+108c' 692+360e+692e' 4(1—e ' ' E sf drt

27(1+e)' 27(1+e)' (1+a)' o 1—rt

(
e= (k —2)/(k+2).

3D-M00 h been reduced by Maximon (1968) to the following simple analyticalA. The above Racah Formula 3D—0000 as een re uce
expressions containing rapidly convergent series expansions:

(1) For k near threshold such that k—2 &1,

2s (k—2)' 1 23, 37, 61

120 1923& k j 2 40

16(1—e)' ' df rE(rt) drt

(1+e)', 1—P, 1—rt

where% x) and E(x) are the complete elliptic integrals of the

first

an secon ', psecond kind res ectively, of argument x
Abramowitz and Stegun, 1964, p. 589), and

2m (k—2)s 1 23, 11, 29
1+ —sr+ —e'+

6
e'+ er3E k ) 2 40

where the second series is more rapidly convergent, and

e= (k—2)/(k+2), and e,=2./P+(1 —e ) t j.
The first term in erat er o e a ove e

'
h f th b ve expansions reduces to the threshold form p yula reviousl obtained by Racah

r ula 41934, Formula (12)j and by Nishina, Tomonaga, and Salcata [1934, Formu a ( )).
(2) For larger photon energies with k) 4,

7r2
6 ln 2k——+ —ln' 2k —ln' 2k ——ln 2k+ —+2f'(3)o=ctZ'res —ln2k —

~

—
~

6 n —— — n — ' —— — 3
9

(2)l' 3 1 (2' 29
1 2k — 77 + ~ ~ ~

9X256
"

27&&512kk] 16

OO

f'(3) = Q —,=1.2020569. . ..

to the hi h-energ Formula 3D—0001 given by Racah $1936,The first two terms in the above expansion reduces to t e ig -energy
Formula (12)j, by Bethe and Heitler L1954, Formula (14)& p. 260], and by Hough

(I) Conctitions of Validity

Table 6.01:A, B.

(Z) References

Racah (1934), Formula (10) with correction given by Racah
L1936, Formula (10), p. 69j.

Maximon (1968), Formulas (9), (10), and (12).

(3} Notes

a. The Racah formula has been evaluated by Maximon (1968)
as a function of the photon energy. Maximon's results are given

in Table 6.04 and in Figs. 6.01 and 6.02. Figures 6.01 and 6.02
compare the pair cross sections predicted with Born approxima-
tion calculations (3D-0000) and with exact calculations (3D-0006
and 3D-0009) for Z=82. General agreement with the exact
calculations has been obtained from various experimental results,
examples of which are given in the following references: Rosen-
blum, Shrader, and Warner (1952) (5.3, 103, and 17.6 MeV);
Dayton (1953) (1.33 and 2.62 MeV); Staub and Windier (1954)
6.3 MeV); West (1956) (1.17 and 1.33 MeV); Rao, Laksh-

minarayana, and Jnanananda (1963) (1.12 MeV); Yamazalti
and Hollander (1965) (=1.1 to 2.0 MeV); Titus and Levy (1966)
(2.62 MeV); Roche, Avah, and Isabelle (1968) (2.62 MeV);
and Garritson and Miller (1968) (=1.1 to 2.0 MeV)
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Formula 3D-0001

[The Heitler-Sauter Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

28 218
o =aZsres —ln (2k)—

9 27

(1) Conditions of Validity

Table 6.01:A, 8, D.

(Z) References

Heitler (1933).
Heitler (1954), Formula (14), p. 260.

Formula 30-0003

[The Bethe-Heitler Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

28 2
o =ctZ'r, ' —ln (183Z "')——

9 27

(1) Conditions of Validity

Table 6.01:A, C, D.

(Z) References

Heitler (1954), Formula (15),p. 260.

(3) Votes

a. Formula 3D-0003 is obtained with the above complete
screening approximation from an analytical integration of For-
mula 3D-10033. For intermediate screening, Bethe and Heitler
(1954, Table Vl, p. 262) give cross-section values for aluminum

and lead, which were obtained by a numerical integration of
Formula 3D—1003 (Secs. C and D of Formula 3D-1003).

Formula 3D-0005

[The Wheeler-Lamb Formula: Screened Point Nucleus with Atomic Excitation for
Extreme-Relativistic Energies]

o =crZrss(22. 6—2.08 ln Z)

Table 6.01:A.

(1) Conditions of Validity

(Z) References

Wheeler and Lamb (1939), integrated form of Formula (20) „
as given by Olsen (1968).

(3) Votes

a. For low atomic numbers, Formula 3D-0005 and Fig. 8.01
shovr that there is a substantial contribution to the pair cross
section from processes in which atomic excitation occurs. A de-

tailed study of the incoherent scattering function used in this
process and the corresponding pair cross section for helium is
given by Knasel (1968).

Formula 3D-0006

[The gtverbff Mork Ol-sen Fo-rmula: Unscreened Point Nucleus]

where do/dE~ is given by Formula 3D-1006.
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Table 6.01:8

(2) Conditions of Validity in the form

da/de =nZ'r p'x'(k 2)—

(2nnZ}'S(crZ, k)
X

t'exp (2vaZ/P+) —1){1—exp (—2xnZ/P ) g

(2) References

gverbtt, Merit, and Olsen (1968).

(3) bootes

a. This formula is evaluated by Pverbg, Mork, and Olsen

(1968) in Figs. 6.01 and 6.03. These figures give the dependence,
respectively, of the cross section 0. and the cross-section ratio
o/oa on the photon energy in the region 2&k&5, where aa is
the unscreened Racah cross section given by Formula 3D—0000
or by the integration of Formula 3D-1000. In the energy region
where 6&k&30, Pverbtt, Morlr, and Olsen (1968) give the fol-
lowing semiempirical formula for lead (Z=82}:

o =oR—4.02+ (16.8/k) In (k —0.75)

b. Higher-order calculations for the total pair cross section
in the threshold region have been carried out previously by
Nishina, Tomonaga, and Sakata (1934). However, their calcu-
lations have been superseded by the more accurate calculations
of {2lverbtt, Mori', and Olsen (1968). The threshold-region formula
given by Nishina, Tomonaga, and Salrata (1934) may be written

where S(aZ, k) was calculated to the 6rst order in nZ only:

S(nZ, k) =1+[3(nZ)'/64(k —2)j(x'+8)+. ~ ~ .
The formula gives reliable results in the threshold region k —2((1
for light elements aZ«1. For the condition that L2(k —2) /is«
nZ«1, the formula (¹shina, Tomonaga, and Salrata, 1934) for
the total cross section is

o =aZsrp (n/12) (k 2) (3/m') {xe+(1/x ))
)& {2lruZ/L2(k —2) y'I' exp {—2ÃuZ/{ 2(k —2) j"'{

and for o.Z«{ 2 (k —2) )'"«I the formula is

0' =aZsr ps (s'/12 ) (k —2) s.

c. More data are needed in the threshold energy region in
order to determine the e6ect of atomic screening on the cross
sections predicted by Formula 3D-0006, although the results

by Pverbtt, Morlr, and Olsen (1968) indicate that this effect
may be as small as a few percent.

d. The various measurements of the pair cross section are
described in the references of Note a for Formula 3D—0000. The
results of these measurements show good agreement with the
values obtained from the Jaeger —Hulme calculations (1936)
which are in agreement with the values predicted by Formula
3D—0006 and by the curves in Pigs. 6.01 and 6.03.

Formula 3D-OO07'

[The Davies-Bethe-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

28 28 218
o =crZ'res —ln 2k— f(Z)——

9 9 27

where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Maximon (1954) and eval-
uated in Table 6.05.

(1) Conditions of Validly

Table 6.01:8, D.

(Z) References

Davies, Bethe, and Maximon (1954), Formula (44).

Formula 3D-OO09

[The Davies-Bethe-Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

~g2p02$ —3 ++2 p 2 "tII1 23g+g—+2 d~+

where 4q and 0'~ are given in Formula BD—1009.

(a) For the case of complete screening such that nZ"'k»1, Davies, Bethe, and Maximon (1954) give the fol-
lowing simplified formula:

28 28 2
o =rrZsrs' —ln (183Z—'t') — f(Z) ———

9 9 27
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where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Maximon (1954) and eval-
uated in Table 6.05.

Table 6.01:D.

(f) Conditions of Validity

(2) References

b. The cross-section data for lead can be used to evaluate the
pair cross section o (Z, k) for any arbitrary atomic number and
photon energy within the accuracy that can be obtained with
the Thomas-Fermi-Moliere form-factor approximation. This
evaluation can be made by the following scaling formula:

Davies, Bethe, and Maximon (1954), Formula (45). The
general form for Formula 3D-0009 is given by the integral form
of Formula 3D—1009.

(3) Notes

a. Formula 3D-0009 has been evaluated by Sttrenssen (1965,
1966) for various elements with the Thomas —Fermi —Moliere
form factor and the more accurate Hartree-Pock-Slater atomic
form factors. Sgfrenssen's results show that there is less than

4% differences in the cross sections obtained with the diBerent
form factors. For accuracies better than 1'%%u~, form factors other
than those used by Sgrenssen are required, particularly for low-Z

elements, as pointed out by Knasel (1968). Sttrenssen's results
for lead (Z=82) with the Thomas —Fermi —Moliere form factor
are given in Fig. 6.02 and in Table 6.06. For any other value of

Z, the cross section may be evaluated from the formula given
below in Part b with the scaling function S(Z, Ze) given in
Table 6.07.

cr(Z, k) =aZ'rp'{ Lo(Zp, kp) /nZp'rosg —S (Z, Z0) I,

where o (Ze, ks) is the pair cross section which is shown for a
reference atomic number Ze (in this case, Ze=82) and for ko

equal to k(Z/Zz)r+, and where the scaling function S(Z, Ze) is
given as

S(Z Ze) = (28/27) (» (ZIZo)+3Ef(Z) f(ZO)—3l

with f(Z) defined in Table 6.05. Values for the function S(Z, ZD)

for Zo ——82, are given in Table 6.07. In the threshold region, there
are no calculations which include both screening effects and
Coulomb corrections, and therefore the accuracy of the above
scaling formula in this region is uncertain.

A scaling formula of the above type was given first by Bethe
and Ashjrin t Segre, 1960, p. 340, Eq. (126b) j.However, it should
be noted that their equation, which has a misprint, should be
given as

boa, t (Z, k) 4„(,(Zg, k (Z/Zs) "s) 28 ~(Z

C (Z) C (Ze) 27 kZ&

Formula 39-1000

[The Bethe-Heitler Formula: Unscreened Point Nucleus]

do, , p+p 4 2E+E (p+'+p ') E+L EM+ L+L ) k'

dE+ k' 3 p+'p 'p--' p+' p+p &p+'p-
8 E+E k (E+E=p ' E+E=pcs 2kE~ )

s
—+ s ++ s s~ p+p 2p+p &-p ' --p+' p+'p-' &

where L+=2 ln (E++p+), L = 2 ln (E +p ), and L= 2 ln t (E+E +p+p +1)/k j.

(1) Contfi talons of Validity

Table 6.01:A, B, E.

(2) References

Heitler (1954), Formula (8), p. 258.

(3) Notes

a. Hough (1948) has given simplified formulas which approx-
imately reproduce Formula 3D-1000 in the regions where k=2
L(Segre, 1960, Formula (117b)) and where 2&k(15.

b. FormuIa 3D-1000 gives a symmetric energy distribution
between the electron and positron. This result is erroneous par-
ticularly in the region where either P+ or P &(1, because the
nucleus repels the positron and attracts the electron. The ex-

pected asy~~etry in the energy distributions for the electron
and positron are brought out in the higher-order calculations of
Nishina, Tomonaga, and Santa (1934), which are also discussed

by Heitler (1954, p. 259). These latter calculations have been

superseded by the more accurate calculations of Pverbgf, Mork,
and Olsen (1968), whose results are given in Formula 3D—1006
and in Figs. 6.04, 6.05, 6.06, 6.07, and 6.08.

c. Cross-section values derived from Formula 3D-1000 are
given by the dashed lines in Figs. 6.04, 6.05, 6.06, 6.07, and 6.08,
for photon energies of 1.07, 133, 1.79, 2.55, and 3.32 MeV,
respectively.

d. The cross-section formula for 3D-1000 which was given

originally by Bethe L1934, Eq. (21), Proc. Roy. Soc. (London) g,
erroneously contains a plus instead of a minus sign before the
expression in the last set of square brackets. This error was
corrected in the formula given by Heitler $1954, p. 258, Eq. (8) g.
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Formula 39-1001

The Bethe-Heitler Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

do, , E+'+E '+-,'E~E f2E+E l 1k'(k2*
(i) Conditiorts of Validity

Table 6.01:A, 3, D, E.

(Z) Zeferertces

Heitler (1954), Formula (9), p. 258.

Formula 3D-1003

[The Bethe-Heitler Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

QfZ T
f (E+2+E ~) Lcr(y) —x ln Zj+s2E+E Lcs(y) —xln ZjI,

where the screening functions Cr(y) and Cs(y) are defined as

Cr(~) =4 (q—b)'Ll —F(q) y —+4+' ln Z,
dq

Cs(y) =4 q'-Q'q ln
~

—~+3b'q —45' L1—F(q) g' —+ tt'-+x ln Z,
t'q) dq co
k~j

with &= 100k/(E+EM'ts) and b=k/(2E+E ). F(q) =atomic form factor which is de6ned in Sec. II and which
is evaluated for different screening approximations by Motz, Olsen, and Koch (1964, Formula 1A-102) .

A. For exponential screening where F(q) = L1+ (111qZ '")'$ ', Formula 3D-1003 can be written as follows
after the proper substitutions have been made in the inverse bremsstrahlung formula given by Schiff (1951),
such that the Schiff formula is multiplied by the phase-space ratio P+dE+/k dk„and E& and E2 are replaced by —E+
and E, respectively:

2AZ fy
(E, +E s+-',E,E ) in'(0)+1 —-t~-ib

where b =2E+EM'"/111k, and

2, 4(2—b') 8 2—E+ —ln (1+b') + tan 'b ——+-9 3b' 3b' 9

1/3E(0) = (k/2E+E )'+ (Z't'/111)'

B.For complete screening where y« i with the Thomas —Fermi form factor, Formula 3D-1003 can be written as
(Bethe, 1934)

L(E+'+E-'+eE+E-)» (183Z '")+oE+E-j.

C. For intermediate screening where 0&y&2 and for the Thomas —Fermi form factor, the screening functions
C r (y) and 4 s (y) in Formula 3D—1003 are given (Bethe, 1934; Segre, 1960, p. 262; Koch and Motz, 1959, Fig. 1) in
Fig. 6.09.

The following approximate analytical expression for these screening functions is given by Butcher and Messel
(1960):

C'r (p) =20.868—3.242G+0.625G',

C's (y) =20.209—1.930G+0.086G',
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for G&1 where G= 136k/E+EM'Is=1. 3&y, and for G&1,

C'r(y) =21.12—4.184 ln (G+0.952),

c.(~) =c (~).
D. For intermediate screening where 2&y&15 with the Thomas-Fermi form factor, Formula 3D—1003 can be

written as (Bethe, 1934)

d'0 4''ro'. . . 2E
(E+'+E '+-',E+E ) ln

where c(y) is evaluated from the curve in Fig. 6.10.

1———c(y)
2

(1) Cond@sons of Vcd&esy

Table 6.01:A, D, E

(2) References

Bethe (1934).
Segre {1960),Formulas (114) and (115).

(3) Notes

a. The difterential pair cross section predicted by Formula
30-1003 for aluminum is given as a function of the positron

energy E+ in Fig. 6.11 for k =20.

Formula 3D-1005

[The Wheeler-Lamb Formula: Screened Point Nucleus with Atomic Excitation]

=crZ«'k —'I (E+'+E ') $@~(yr) —~e ln Zj+-,'E+E L%'2(yr) —v ln ZjI,

where yq is equal to 100k/E+EM"', and %(yr) and 4r(yr) are the screening functions given by Wheeler and
Lamb (1939, Fig. 1).

A. For extreme-relativistic energies such that k»(nZ'I') ', Wheeler and Lamb (1939) obtain the following
formula:

dE+
=crZ«'k 'I (E+'+E-') (29 1—ve ln Z) +~aE+E (28 4 e'er ln Z-) j. —

(I) Condetions of Volsdhty

Table 6.01:A, E.

{2) References

Wheeler aud Lamb (1959, 1956), Fig. 1 aud Formula (20) .

Formula 3D-1006

[The gfverbp-Mork-Olsen Formula: Unscreened Point Nucleus]

where

(L+ss) l t'1 " I'(a)
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s,nd

(2p+)~,—»2(2p ) v=rts ezp Lrssr(y++y )) [ F(p++iy+) [ P(p +iy )
1'(2p +1)F(2y +1)

V(alp'M) = (2L+1)L(2L+1)/(2l+'+1) g'tsCt L(l+'0; 00)Ct L(l+'M; MO),

R... =Im {ezp (—i ,'sr) (-y~+y=L 1)$E—+Eels(a; b+, b; C~, C; X+, X )

~E+K *F2(a; b+, b= 1; c+, c; x+, x )WE+*EW2(a; b+—1, b; c~, c; x+, x )
—E+*E ~F2(a; b+ 1, b=—1; c+, c; x~, x )jI,

2 (Z~) 2)1/2 ~

Kg zp&0 Ky—1 KyQ 0

and q+ is dined by

b~ yg+——i'+ 1,

—x~—1 rcp&0 —Ky Kp(0

cy=2v++1 E~= (v++sy+) exp ('rt+)

s~—(y+/~+) 2P+
ezp (2irl~) =— . ; xp=

p~+iy+
' k+P++P

'

Ct L(l~ M; MO) is the Clebsch-Gordan coefficient and Fs the hypergeometric function of two variables (Appell
function) .

Table 6.01:B.
(I) Conditions of Validity

(2) References

pverblt, Mork, and Olsen (1968).

(3) bootes

a. This formula is evaluated in the energy region 2&k&7 by
@verbal, Mork, and Olsen (1968) in Figs. 6.04, 6.05, 6.06, 6.07

and 6.08, in which comparisons are made with the symmetrical

energy distribution predicted by the 6rst Born Bethe-Heitler
Formula 3D-1000. These results show that the asymmetries in
the energy distributions persist even up to values of k=6.50.

b, More data are needed in order to determine the effect of
atomic screening on the cross sections predicted by Formula
3D-1006 in the threshold energy region.

Formula 3D-1007'

[The Davies-Bethe-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

,
' (F++F +,F+F. ) iin

' —-——y(Z) i,

where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Mazimon (1954) and eval-
uated in Table 6.05.

(t) Conditions of Validity

Table 6.01:B, D, E, F.

(2) References

Davies, Bethe, and Maximon (1954), Formula (35).

Formula 3D-1009

[The Davies-Bethe-Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

=crZsros& 2L(&+2+& 2)%+22&+& +2),
Q+
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where

4't ——C t(y) —xs ln Z—4f(Z),

+,=Cs(~) —x4ln Z—4f(Z),

where for Thomas —Fermi screening, C»(y) and C»(y) are given in Formula 3D-1003 and in Fig. 6.09 with& equal
to 100k/(E+EM'ts), and the Coulomb correction function f(Z) is given in Table 6.05.

For an arbitrary form factor F(q) (Thomas —Fermi or Hartree —Fock), 4'z and %s may be written in the following
form (Olsen and Maximon, 1959):

4't= 6+4 I'($) d$,

%=6+24 8(1—5) I'(5) d5,

where
I h) =l. (1/5) -2-f(Z)+~W~),

f&l q' —(5/~)'
f [1—~(q) l'—1I dg)

sty

with F(q) =atomic form factor defined in Sec. II, and

5= /t/2EpE,

p= (1+I') ', tt=p~e+.

A. For complete screening where y&(1 with the Thomas —Fermi form factor,

6'(5/t) = ln (111'/200&), I' = ln (111Z 'ts/P) —2—f(Z) .

Then, Formula 3D-1009 can be written as

der/dE+ ——(4crZsrps/ks) j (E+'+E '+-'sE+E ) Dn (183Z-'")—f(Z) )+-sE+E I.
B. For intermediate screening where y &1, the function P(5/P) is—evaluated in the following table (Olsen and

Maxirnon, 1959):

6Z'ts/1215

-~(5/~)

0.5
0.0145

1.0
0.0490

2.0

0.140

4.0

0.331

8.0
0.676

15.0

1.13

20.0

1.37

6Z'ts/12 15

-~(5/r)

25.0

1.56

30.0

1.73

40.0

2.00

50.0

2. 22

60.0

2.39

80.0

2.68

100.0

2.90

120.0

3.08

The screening functions Ct(y) and Cs(y) are evaluated with the Thomas —Fermi form factor in Fig. 6.09.

C. For intermediate screening where 2&y(15 with the Thomas —Fermi form factor, Formula 3D—M09 can be

written as

do 4nZsrps. . . 2E+E 1

dE+ k' k 2
(E, +E '+lE.E ) l - - —(v)-f(Z),

where c(y) is evaluated from the curve in Fig. 6.10 and is discussed, by Bethe (1934).

(f) Conditions of Validity

Table 6.01:D, K, F.

(Z) References

Davies, Bethe, and Maximon (1954), Formulas (43) and (42) .

(3) Votes

a. A comparison of Formula 3D-1009—A with Formula 3D-
1003-3 shovrs that the Coulomb correction can be applied to

the Born approximation formula for do/dE+ by the addition of
the term

—(4o.Zsre'/P) (E+'+E '+ ,'E+E )f(2), -

as shown by Davies, Bethe, and Maximon (1954), and Olsen

(1955).
b. The differential pair cross section predicted by Formula

3D—1009 for aluminum (solid line) and lead (dashed line) is

given as a function of the positron energy 8+ in Fig. 6.11 for
% =1000.
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Formula 3D-1010

[The Jost-Luttinger-Slotnick Formula: Unscreened Point Nucleus]

a~'ro'
[Il+Is[ )

where

with

2 g7 14 ) f11 4 'I ks 73 14 5 (29 10'l
Ir= —

I

———n' I&—
I
—+ —I& + —— + n' —I&+ I

—+ —I&
k9 9 j &9 3rt'J 2gs 9 9 j &9 3rtsj

Is= (1—ks/4rt') (4/st) Er,

rt = -', (k cos 8r),

Eg= —E)
d$

and Z and E are the complete elliptic integrals of the 6rst and second kind, respectively (Abramowitz and Stegun,
1964, p. 589), of argument (1—1/rts) 'ts with rt replaced by ( in the integral for E&.

(1) Cortditions ef ValÃity

Table 6.01:A, 3, K.

(Z) Referertces

Jost, Luttinger, and Slotniclr (1950), Formulas (49), (51),
(52), and (53).

(3) Notes

a. The angular, "distribution of the recoil nucleus predicted

by Formula 3D-1010 is given by Jost, Luttinger, and Slotnick
(1950, Fig. 4) for selected photon energies of 4.08, 6.12, 10.2,
and 16.3 MeV.

Formula 3D-1020

[The Borsellino Formula: Unscreened Point Nucleus]

where

dP„(k'—P,')' '

P.=I p++p- I

W W ( W )P„F= Fr+ —(Fr—6) sech ' ——
I
Fs+ —Fs

I

—"
2k' k & 6k' j k

=Fr ln (2k/W) Fs for W«k—,
Fr = (2+1/2W' —1/16W') L—(1+1/4W') 6,
Fs= s (16+21/4W' —17/32W') L—I's.(28+17/4Ws) t), ,

Fs= —', (4—1/16W') L—-', (2+ 1/4W') 5,
W= (k'—P„')'",
g —(1 1/Ws) 1/2

L=cosh ' F'.

A. The cross-section diGerential with respect to 8', which is functionally related to P„and is equal to the energy
of the electron —positron pair in the center-of-momentum system, of the pair p++p =0'is given by &orsellino
['1953, Eq. (7)$ as

do/dW = 16ctZA'ssF/W'
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(f) CorIditions of Validity

Table 6.01:A, B, E.

(Z) References

Borsellino (1953), Formulas (4) through (9) as corrected by
Hart et al. (1959, footnote 15).

(3) Notes

a. Examples of the distributions of the pair momentum I'~
and the energy TV predicted by the above formulas for selected
photon energies are given by Borsellino (1953, Figs. 1 and 2).

Formula 3D-1032

[The Jost-Luttinger-Slotnick Formula: Screened Point Nucleus]

where

do rrZ'rosL1 —F(q) j'
sks s (qi ) 1

g g

r 4'
—4 f 2k 2q' —4)

I(q~ k) = (1 rsq')I&+
I

1 q' 2qk+ ln L(y)'"+(y—1)"'j+ ( 3+ —+ I Ly(y 1)j'"
3qk 3q 3qk )

y=4(2qk —q') Lk—(k'—4)'"j(q&Lk+ (k' —4)"'j
Jt= Ls(—xt) +Ls (—xs) +os'+ s (ln X) '+-', (ln z) '—(ln z) (ln 2qk),

where Ls(x) designates Euler s dilogarithm or the Spence function (("robner and Hofreiter, 1961, p. 71, Part 2;
and Motz, Olsen, and Koch, 1964, Table XIII), and

xt ——(8,)—', xs ——X/z,

) =-:Lq+(q'+4)'"j'
z =L(y—1)'"+y't'3'.

(a) For q«k or y qk/2,

I(q k) ~(1 tsq')I&+ra[1 4y (2/3y) j ln z+ srLy(1 —1/y) '"jI11—tta(1 —1/y) —2L1—(1/y) j'I.
If in addition q((1,

(q'/2) )I&~ 2L, (1/z) —(ln z) (ln 4y) +-'s'+ s (ln z) '.

(b) For k))1, and qk 2, Suh and Bethe L1959, Formula (6)j have shown that I(q, k) in the above cross-section
formula can be expressed as

2 ( 2 't'/7 25 2 I 2 1—ln (2kq) 4 1+(1—2/kq)"
I(q, k)=32~sksqs -~1—— ~-+ ln

3 l. kq 'E6 6kq (kq) ' kkq (kq) ' 3 (kq) ' 1—(1—2/kq) "'

2 1+(1—2/kq) "' (1—(1—2/kq) '"5

(k)

(c) For k, qk))1 and q«k, Suh and Bethe L1959, Formula (12)$ have shown that I(q, k) in the above cross-
section formula can be expressed as

where

g= (rN, /ms) Ttt.
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(d) For pair production in the Geld of a nucleus where nt,))1 and P= q s/2, Bethe (1934) has shown that

64 'k'rt' 1ntp' +(p+1)''] I )ntp'~+(p+1) '])}1—
pt/s(p+ 1)1/s gs ,U (,+1) /.

where /o= gs/4.

Table 6.01:A, E.
(1) Conditions of Validity b. The relative dependence oi do/dg on )I is given by Bethe

(1934, Formulas 65, 66, and 69) as

(Z) References

Jost, Luttinger, and Slotniclc (1950), Formulas (39) and (43)
as corrected by Borsellino (1953, Footnote) .

(3) Notes

(d /4) = (a/rt) E(C V) )/—el*

= (b/g) D-P(V) 3'

= (c/)I') (In g+d)

fOr g /min

for q i «g&&&

for g))1

a. Examples of the momentum distribution predicted by For-
mula 3D-1032 are given by Jost, Luttinger, and Slotniclr (1950,
Fig. 3).

where u, b, c, and d are constants and g is the minimum mo-

mentum transfer.

Formula 3D-1229

[Exact Polarization Formula with Dependence on (P„(+}:Screened Point Nucleus for
Extreme-Relativistic Energies]

(P., ~.) =(:L&'+P'~At j,
dE+

where C, P', and Pt+ are given in Part B of Table (s.08, and P„and (+ are defined in Sec. II.

(1) Conditions of Validity

Table 6.01:D, E.

(Z) References

Olsen and Maximon (1959), Formula (10.8).

Formula 3D-2000

[The Sauter-Gluclrstern-Hull Formula: Unscreened Point Nucleus]

dE+d+ 4srks

4 sin' 8+(2E+'+1)

p 2D 4

(SE~s 2EM++ 3) —(P~s—k')

p+'D+' D'D+'

l. 2E+ sin' 8+(3k+p+'E )

p p+ p+'D-+'

k(E„' E+E 1) 2E+—'(E+'+E—') —(7E+s+3E~++E ')+1
p+'D+ p+ +

vrhere

// so 2 3k

i,pM D~s D+

D= } p+—lr }=(p+'+k' —2p+k cos8+)'"

E+E—+1+p+p-
I

E—+p—)

EA-+1 p+p /'--
k(p '—k') 2s

V'D+ p D+

i/D+p ')i

iD—p t' D+=E+ p+ cos 8+. —
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(I) Cornfitions of Validity

Table 6.01:A, 3, E.

(Z) References

Gluckstern and Hull (1953), Formula 17.1.
Sauter (1934), Formula 11.

(3) Notes

a. The cross sections predicted by Formula 3D-2000 are given
in Fig. 6.12 for various values of k, 8+, and E+.~

b. Formula 3D—2000 is a factor of 2 larger than Formula
(17.1) given by Gluckstern and Hull (1953). This factor was
erroneously omitted in Formula (17.1) in the process of averag-

ing and summing over the initial and 6nal polanzation states
of the particles.

c. Olsen L1963, Formula (A2)g has shown that for high

energies and for equipartition of energy (R+ R——=k/2), the

average value of 8+ can be calculated in terms of N, =8+8+ from
the equation

15~ ln (k/2) —(2/5) ( 12 l

32 ln (k/2) (1/2) k 5kj

d. For large angles and high energies, Hough $1948, Formula

(2) g has given a simplified formula for this cross section. Calcu-

lations based on the Hough Formula have been made for various
cases by Miller (1954) in order to predict the energy and angular
distribution of pair electrons produced by a bremsstrahlung

photon beam.

Formula 3D-2003

[The Schiff Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

2aZ rss E+' (E+ E)' 16u'—E+E
gr ks (u'+1)' (u'+1)'

(E+'+E ') 4ugE+E

(u'+1) ' (u'+1) '

where N,=E+8+ and

1 / k )' / Z"'

M(u) &2E+E i &111(us+1)I+I

(1) CoeCktions of Validity

Table 6.01:A, D, E, F, H.

(Z) References

Schiff (1951),Formula 1.

(3) Notes

a. Formula 3D—2003 is obtained from the inverse bremsstrah-

lung cross-section formula after the proper substitutions as given

in Formula 3D-1003—A.

where

Formula 3D-2007

[The Olsen-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

d o/dE+tK+ = [d o'/d'E+d(1+]sggg,

[d o/dE+Qdj+sggg = formula 3D—2009,

(f) Condzteons of Validity

Table 6.01:R, D, E, F.

(Z) References

Olsen and Maximon (1959), Formula (10.4) with P (8/&) =0.
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Formula 3D-2009

[The Olsen-Maxirrron Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

d ~/dE+dQ+ (2~——Z rosE+sP/wks) [ (E+'+E ') (3+2r)+2'+(1+4Nsgr) j,
where $, 1', and I are defined in Formula 3D-1009.

(1) Conditions of Vrdidity (3) Notes

Table 6.01:D, E, F.

(Z) References

a. The cross sections predicted by Formula 3D-2009 for Z=82
are shown by the dashed lines in Fig. 6.12 for photon energies
of k equal to 1000 and 100.

Olsen and Mawi~on (1959),Formula (10.4) .

Formula 3D-2011

[The Olsen Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

k' (1+w')' & k k k k k 2k' (1+ws)'j

mr here

+8E+E
~

ln ——,—1
~

— . (E~'+E ') (1+w')+4~
(1+w')' ( k' E+ 2ks j sinh y & k j

w= (E+R /k)tj, dw= (E+E /k)dQ/edC,

0=opening angle between electron and positron as de6ned in Sec. Il,

d0=8d8dC,

and p is given by the equation
cosh (y/2) =k[4E+E /(1+w') j-'t'.

(1) Conditions of Validity

Table 6.01:A, 3, D, E, F.

(Z) References

Olsen (1963),Formula (7).

(3) Notes

a. Integration of this formula over e with 8+ Axed gives
Formula 3D-1001. Similarly, integration over E+ with y 6xed
gives the high-energy, small-angle approximation of the Borsellino
Formula 3D—1020, do/dW, as shown by Olsen (1963). For high
energies and small angles, W=y/2.

Formula 3D-2013

[The Olsen Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

dE+dw k' (1+w')' & k k k k 2k' (1+w')'

+8E+E
s E sln: — + —1 ——. (E '+E ') (1+w')+4

~



6l6 REVIEWS' OF MODERN PHYSICS ' OCTOBER 1969 ~ PART I

where
u = (E E /k) 0, dw = (E+E /k) dQ/ed@,

0= opening angle between electron and positron as dined in Sec. II,
dQ =edttdC,

y is given by the equation

cosh (y/2) = kr 4 E+E/(I+w') j—xts

tz=ln (2E+E /k)+r(o/i),
where the screening function, 5(5/t) Lwith 5=k/2E+E and in this case t = (I+w ) x] is defined and evaluated in
Formula 3D-2009 including Parts (a) and (b) for the cases of complete and partial screening.

A. For the case where the electron and positron share equal energy (equipartition of energy) such that E+=
E =k/2, the formula becomes

1 3w

dE+dw k' (1+xos)' (I+to') '

(I) Condftsons of Vattdfty

Table 6.01:A, D, E, F.

(Z) References

Olsen (1963), Formulas (21) and (22).

(3) Notes

a. Theoretical distributions predicted by Formula 3D—2013(a)
show good agreement (Olsen, 1963) with available experimental
results for photon energies of 6, 50, and 100 MeV.

b. The mean opening angle between the electron and positron

for equipartition of energy is given in terms of m as

15s. In k —41/30 24
&~) =

32 ln (k/2) —xs 5k

for no screening with a large-angle correction, and as

15m. In (888Z'") —3/5
&~)=

32 In (182Z xis) —1/24

for complete screening. The most probable value of k for a meas-
ured opening angle 8 is given as

0=3.2/e.

Experimental data and multiple scattering corrections pertaining
to these results are also discussed by Olsen (1963). For further
experimental applications, see the works of Khubeis et ol. (1964);
Bertin et al. (1966);Castor et al (1966);and .Avgerat et al. (1966).

Formula SD-2132

, [Born Polarization Formula with Dependence on (Px,, e): Screened Point Nucleus]

(dsrr/dE+dQ+) (P„e)=2('LF'+P&F'(1 —2(u e)') j,
where C, Fs, and F' are given in Part A of Table 6.09, u is given in Part A of Table 6.10, and Pr, and e are defined
in Sec. II.

Table 6.01:A, E.

(I) Condktt'ons of Valtdsty

(Z) References

May (1951) and Gluckstern and Hull (1953) for F'.

(3) Notes

a. Exponential screening is assumed in the above results, such
that V(r) = —: (nZ/r) exp —(r/P) with P =111Z 'Ie. The case of
no screening is obtained by choosing P '=0.

b. For the case of no screening (P '=0 in Table 6.09) and

for the special cases where (u.e) =1 and (u ~ e) =0, Formula

3D-2132 is given by doxx (Eq (17.2)) and dozzz LEq. (17.3)g,
respectively, in Gluckstern and Hull (1953).It should be noted
that the latter Eq. (17.3) contains a misprint in which the
addition sign (+) before the expression in the curly bracket
should be replaced by a multiplication sign (X). For these
cases, it follows that Formula 3D-2000 which is averaged over
the initial photon polarization states, is equal to —,(daxx+doxxx)

c. The dependence of the cross-section ratio for linearly polar-
rized photons in a plane perpendicular (u ~ e=0) and parallel
(u.e =1) to the emission plane (lr, p+) on the positron energy
is given in Fig. 6.13 for values of k equal to 10 and 50, and for
diGerent values of kg+. The cross sections were evaluated for the
case of no screening from Eqs. (17.2) and (17.3) in Gluckstern
and Hull (1953).
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Formula 3D-2139

[Exact Polarization Formula with Dependence on (I'» e): Screened Point Nucleus for
Extreme-Relativistic Energies]

(d'o/dE+dQ~) (Er,, e) =Formula, 3D—2132, with C,f&', and F, given in Part B of Table 6.09.

(I) Conditions of Vali dity'

Table 6.01:D, E, F.

(Z) References

Olsen and Maximon (1959), Formula (4.10); Olsen (1968).

Formula 3D-2242

[Born Polarization Formulas with Dependence on (P„(+),(P„(+~~), and (P„(+~):
Screened Point Nucleus]

where

(d' /d& dQ ) (P., ( ) =CL~s+(P'k) (F""4)j
Ft,.r—Pt, l tp++ Pt, s.u.

p+=p+/I p+ I, u=u/~;

C, Fe, E&+, and F&+s are given in Part A of Table 6.09; and P„k, (+, p+, and u are defined in Sec. II.

(d' /dE+dQ+) (P. i+ ) =C[;~'+(P'k) ((+ p+)~"'1
where C, F', and F&+~~ are given in Part A of Table 6.09; P„k, and $+ are defined in Sec. II; and l+~~- g+ p+
with p+ given in A above.

C.
(d' /d&+dQ+) (P i'+ ) =CL~'+ (P'k) (4 u~" 3,

where C, Fe, and F&+& are given in Part A of Table 6.09; P„k, f+, and u are defined in Sec. II; and i+&= (+.u.

Table 6.01:A, E.

(1) Conditions of Validity Bobel (1957) and Fronsdal and Uberall (1958) for F&+~~

and Il&+~.

(Z) References

McVoy (1957) for Ft+~~. As in Formula BD-2132.

(3) Notes

Formula 3D-2249

[Exact Polarization Formulas with Dependence on (P„(+),(P„(+~~), and (P„(+~):
Screened Point Nucleus for Extreme-Relativistic Energies]

(d'o/dE+dQ+) (P„(+)=Formula 3D—2242—A,

with C, Ea& F&+", and P&+& given in Part B of Table 6.09.

(d o/dF+dQ+) (P„i'+~ ~) = Formula 3D—2242—3,
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with (,, Fe, and Fr+~' given in Part B of Table 6.09.

C.

(dso/dE+dQ+) (P„i+&) =Formula 3D—2242—C,

with C, I', and E&+& given in Part 3 of Table 6.09.

(1) ConCitions of Validity

Table 6.01:D, E, F.

(3) References

Olsen and Maximon (1959), Formula (4.10).
Olsen (1968).

Formula 3D-3000

[The Bethe-Heitler Formula: Unscreened Point Nucleus]

d'o. frs ~' p+p p+' sin'8+, , p ' sin'8
(4E-' q)+—

2P~P sin8+sin8 cos (C~—C ) . . . (P+ssin'8~+P 'sin'8 )4EpE +q' 2ks —2ks-
D-D+ (E=p cos 8 ) (E+—p+ cos 8+)

where q is defined by Eq. (3.03) in Sec. III, and D~~ E~—p~ cos 8~.

(I) Conditions of Validity

Table 6.01:A, 8, E.

(Z) References

Heitler (1954), Formula (6), p. 257.

(3) fiotes

a. This formula is symmetrical as between the positron and

the electron, as a consequence of the Born approximation which

is proportional to the square of the charge. However, the sym-
metry is destroyed by higher-order calculations, as shown for
example by the results of ¹ishina, Tomonaga, and Sakata (1934),
and by the more accurate results of Pverbg, Mork, and Olsen
(see Formula 3D-1006).

b. The azimuthal angle C+ given by Heitler (1954) above, is
equal to the di6erence of the azimuthal angles C+ and C deGned

in Sec. II.
c. The dependence of the cross section predicted by Formula

30-3000 on the positron energy is evaluated for the geometries
shown in Fig. 6.14, and is shown in Fig. 6.15(a), (b), (c), and

(d) for photon energies of k =10 and 3.

where

Formula 3D-3001

[The Bethe-Heitler Formula: Screened Point Nucleus]

d'o./dE+dQ+dQ = $dso/dE+dQ+dQ jseoo(1—F(q) j',

[dso/dE+dQ~dQ ]ewe= Formula 3D—3000

and F(q) is explicitly de6ned in Formula 3D-1003.

A. For high energies (k, E+, E ))1) and small angles $8+ = 0 (1/E+), 8 =0(1/E )j, Olsen and Maximon (1959)
have shown that this formula is given by the following expression Lsee Olsen (1963), Formula (1)$:

d'a/dE+dQ+dQ = (2crZsresEp E s/sr keq')L(E+s+E s)prtqs. +2E+E ($—st)sjL1—F(q)gs,
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where

$=(1+I') ', rt=(1+s') ',

p+ p-

gz= —u —v= component of q perpendicular to k.

(1) CortCitioms of Validity

Table 6.01:A, E.
(2) Referemces

Heitler (1954), Formula (6), p. 257, multiplied by the screen-
ing factor $1—P(q) g'.

Formula 3D-3004

[The Bjoriren-Drell-Frautschi Formula: Finite Nucleus for Extreme-Relativistic Energies]

otZ'res E+E 2k' - ttte

(2sr)s k'q (k )s )(k p+) E rrt,

where

S,= (k P,) + (k P ) +q (P, P ),
Ss= (F/&') {:(1s+&)'+(P- ~) s3~

P Gss'
X Gtt'(St+ Ss)—,(Ss—Ss)4m„rwss &

A= four vector with components I p„T„I for nucleus initially at rest,

k, p+, p, q are four-component vectors defined in Sec. II, such that

k p~=h p+—kE+,

lu+'p-=p+ p-

qp=k —E+—E )

and G~ and G~ are the nuclear form factors defined. in Sec. II.

A. For small angles such that 8+«1, recoil eGects are negligible and Formula 3D—3004 can be written as

tPrrldE+dQ+dQ = Pd'aldE+dQ+dQ t~tG. tts(q),
where

fdsa/dE+dQ+dQ gstwe= Formula 3D-3000.

B.For the special case of symmetric pairs with E+=E and ~+.=0, this small-angle formula can be written as

d'o 4crZ'res Gs'

dE+dQ+dQ m' k'8 '

C. For nearly symm. etric pairs such that E+ E«E+, 0+—8 «8~, and q—s.=
~
u+v {&&1 (with n and v equal to

the perpendicular components of p+ and p, respectively), the small-angle formula becomes

D. In the above formulas, ~ has been neglected compared to k, E+, and m, .%hen ~ is not neglected, the cross
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section may be written in the form

with

$G '(5 +8 ) —
L (G /Z) —

q (rwp/rN, )y (S —8 )j,
d o' crZ ro p+p- 2k srs,p /rip

dE+ rKL 2pr ' k' (p+.k) (p k) E p 71, E„

X(2(g&+ 7 )(7+ k)(7 &)+(2/&)L(7+ k)(7+ E) —(77 &)(77- &)3+L(7+ k)'+(7- k)'jJ

(I) Corpdiiiopps of Validity

Table 6.01:A, 3, D, G.

(Z) Refcreppcos

Bjorken et al. (1958): The Bjorken —Drell —Frautschi Formula
3D—3004 is obtained from the more convenient form given in
Blumenthal es ol. (1966).

Olsen (1968),Formulas (10.16), (10.1/), and (10.18) on p. 1/5
for small-angle approximation.

Drell (1952), Berg and Lindner (1958), and Sarkar (1964)
for the formula in Part D above. This formula in the form given
was obtained by S. Waldenstrom (unpublished).

(3) Notes

a. The formula in Part D reduces to the Bjorken-Drell-
Frautschi Formula 3D-3004 for S+»1/k and pgp«pa„, k E+ and
to the Bethe —Heitler Formula 3D—3000 for gp«gapa, /pap.

b. Some experimental tests of Formula 3D—3004 are given in
Blumenthal ei ol. (1966),Ashbury et ol. (1967) and Eisenhandler
ot ai. (1967).

c. Second-Born corrections and hard-photon radiative correc-
tions to @ride-angle, high-energy pair production are given in
Brodsky and Gillespie (1968), and Huld (1967), respectively.

Formula 30-3007'

[The Bethe-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

do 2a'Z'rp' E+'8 '
f q 4Vs(x) Lks(N'+v') $r/

—2E+E (I'P+v'r/')+2(E+'+E ') river/ cos 4j
dE+dfl+dQ (smh rrnZ) s k'

where
+cr'ZsW'(x) Pr/sgk'(1 (I'1v') $r/)——2E+E (I'P+v'r/') —2(E'+E s) Iver/ cos I)I,

v= pM

g= 1/(1+pc'), v= 1/(1+v'),

x= 1—q')pi,

and V and W are hypergeometric functions (Abramowitz and Stegun, 1964, p. 556), such that

V(x) =F( icxZ, io.Z; 1;x), —

W(x) = (aZ) —'(dV/dx).

The functions V and W have been evaluated by Olsen and Maximon (1964, Fig. 3) for copper and lead.

(1) Corpditiows of Validity

Table 6.0j.:8, D, E, F.

(Z) References

Bethe and Maximon (1954), Formula (7.14).
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Formula 3D-300g

[The Bethe-Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

dsrr/dE+dQ+dQ = ttd—'cr/dE+dQ&dQ3~go7-51 Ii (—q) j'

where

[ d'o/dE+dQ+dQ jsssv= Formula 3D—3007.

(1) Conditions of Validity (Z) References

Table 6.01:D, E, F. Bethe and Maximon (1954), Formula (7.14).
Device, Bethe, and Maximon (1954),p. 790 and Formula (27) .

Formula 3D-3119

[Exact Polarization Formula with Dependence on (+. Screened Point Nucleus for
Extreme-Relativistic Energies]

(d'o/dE+dQ+dQ ) ((+) =2CEFo+Fr+ i;+3,

where C, Fs, and Fr+ are given in Part B of Table 6.10, and (+ is defined in Sec. II.

(1) Conditions of Validity

Table 6.01:D, E, F.
(Z) References

Olsen and Maximon (1959), Formula (4.10).
Olsen (1968).

Formula 3D-3132

[Born Polarization Formula with Dependence on (Pl., e): Screened Point Nucleus]

(dsg/dE+dQ+dQ ) (Pz, e) =4C)P'+PIJ; ej
where C, P', and Ii' are given in Part A of Table 6.40, and I'1. is defined in Sec. II.

Table 6.01:A, E.

(1) Conditions of Validity (Z) References

May (1951), Giuclrstern et at. (1951), Glucltstern and HuU
(1953),Bobel (1957), Claesson (1957), McVoy (1957), Fronsdsl
and Uberall (1958), and Baneriee (1958).

Formula 3D-313g

[Exact Polarization Formula with Dependence on (PI,, e): Screened Point Nucleus for
Extreme-Relativistic Energies]

(d'o/dE+dQ+dQ ) (Pz„e) =4C)P'+Prll'j, ,

where C, P', and Ii' are given in Part 3 of Table 6.10, and PJ. is defined in Sec. II.
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(1) Conditions of Validity (3) Notes

Table 6.01:D, E, F.

(Z) References

a. Experimental agreement vrith the theoretical results pre-
dicted by Meximon and Olsen (1962) is obtained by Barbiellini
et al. (1967).

As in Formula 3D-3119, Maximon and Olsen (1962), for
coplanar case.

Formula 3D-3149

[Exact Polarization Formula with Dependence on P, :Screened Point Nucleus for
Extreme-Relativistic Energies]

(deer/dE„dQ+dQ ) (P,) =4C[P'+P. F&],

where C, F', and F& are given in Part B of Table 6.10, and P, is dedned in Sec. II.

(1) Conditions of Validity

Table 6.01:D, E, P.

(2) References

As in Formula 3D-3119.

Formula 3D-3229

[Exact Polarization Formula with Dependence on (El., e, (+):Screened Point Nucleus for
Extreme-Relativistic Energies]

(dsa/dE, ,dQ„dQ ) (Z„e, ( ) =2CP +Fr+.g,+ra'r+' (,],
where C, P', F&+, and F&+' are given in Part B of Table 6.10, and Pg is dined in Sec. II.

(1) Conditions of ValiCkty

Table 6.01:D, E, P.

(Z) References

As in Formula 3D-3119.

Formula BD-3249

[Exact Polarization Formula with Dependence on (P„g+):Screened Point Nucleus for
Extreme-Relativistic Energies]

(d'o/dE dQ+dQ ) (P„(+)=2C[P+P. F&+F&+ (++P,(Fr+ & ~ (~)],

vrhere C, P', F&, F&+, and F&+ & are given in Part 8 of Table 6.10, and P„$, and (~ are defined in Sec. II.

(1) Conditions of Validity

Table 6.01:D, E, P.

(Z) References

As in Formula 3D—3119.
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TABLE 6.04. Total pair cross sections evaluated by Maximon
(1968) from the Racah Formula 3D-0000.

TABLE 6.05. Evaluation of the Coulomb
correction function, f(Z) .'

Photon energy
(MeV)

1.03

1.05

1' 10

1' 15

1' 20

1.25

1.30

1.40

1~ 75

2.00

2.50

3.00

4.00

ojaZPrps

9.79X10 ~

3.99X10 ~

7.61xf0-4

2.98X10 3

7.13X10

1.34X10~

2.19X10 ~

4.51X10~

7-58X10 '
1.78X10 '

3.03X10 '

5.84Xf0-~

8.72X10

1.42

1

6

13

20

26

29

32

36

42

4/

50

56

73

78

82

92

f(Z)

6.40X10-&

1.02X10 '
2-30X10 '
1.07X10 '
2.52X10 ~

4.20X10 ~

5.19X10 ~

6.27x10~
7-84X10~

1.05X10-~

1-29X10 '
1.44X10 '

1.76Xfo-i

2.76X10—'

3.07X10 '

3.32X10 '
3.95X10 '

5.00

6.00

8.00

10.0

15.0

1.90

2.33

3.05

3.65

4.78

As shown by Eqs. (36) and (38) in Davies, Bethe, and Maximon
(1954), f(Z) = (aZ) ~t f 1+(0.'Z) 2) 1+0.202 —0.0369 (nZ) ~+0.0083 (nZ) 4—
0.002 (nZ) e);

TABLE 6.06. Total pair cross sections evaluated by Sprenssen
(1963) from Formula 3D-0009 with the Thomas —Fermi —Moli6re
screening approximation for Z =82.

20.0

30.0

40.0

50.0

60.0

80.0

100.

150.

300.

400.

5oe.

600.

800.

1 000.

10 000.

100 000.

5.62

7.70

8.38

8.94

9.82

10.5

11.8

12.7

13.9

15.5

16.1

1"/. 0

17.7

24.8

32.0

Photon energy
tMeV)

10.0
12.6
15.9
20.0
25.1

31.6
39.8
50.1

63.1
79.4

100

126

200

316
631

1.00X10'
3.98X10'
1.00X104

1.OOX10

/on rZp
PP

2.67

3.25

3.83

4.41

4.98
5.54

6.07

6.58

7.05

7.49

7.89

8.25

8.86
9.33

9.82

10.0
10.4
10.5
10.5
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TABLE 6.07. Evaluation of the scaling function

S(Z, Zs)'for Zs=82.

S(Z, Zo)

20

—5.60

—4.16

—3.7'4

—2.91

—2.42

N

Lb

lo

26 —2.09

—1.95

32 —1.81

36 —1.64

—1.40

—1.21

lo
l.O l.2 IA

PHOTON ENERGY, MeV

—1.20

—0.8&0

—0.295

—0.130

FIG. 6.01. Dependence of the total pair cross section 0' (divided
by the factor o.Z'ro') on photon energies in the threshold region.
The solid line was evaluated by Maximon (1968) from the Born
approximation calculations of Racah in Formula 3D-0000, and
the dashed line is predicted for Z =82 from the exact calculations
of @verb/, Mork, and Olsen, in Formula 3D—0006. Note that
the photon energy is given in megaelectron-volt units and is
equal to 0,511k.

82

+0.316

~ As shown in the Notes of Formula 3D-0009, this function is defined
as $(Z, Zp) =(28/27)[ln (Z/Zp)+3] f(Z) —f(Zo) I] ~

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I.

TABLE 6.08. Polarization coeKcients in the formulas for da'/dZ+.

C=aZ'r '(1/4k') ' coo
Ol

M

IO—

A. Born approximation results: Not available

B. Exact results for extreme-relativistic energies for Formula
3D—1229 (Olsen and Maximon, 1939):

so= (z+'+z ')e&+-',z+z e2

fr't+=k(Z+ J.r)e,+ ;kE a, —-
pt'+= p"L'+(

where Nq and N2 are the screening functions given in Formula
3D-1009.

~ This coefBcient is the same for Parts A and B.

I.O—

I I I I IIIII I I I I IIII I I I I IIII I I I I llil

IO IO IO IO IO

PHOTON ENERGY, M e V

FIG. 6.02. Dependence of the total pair cross section 0 (divided
by the factor ~Z'r pm} on photon energy. The solid line was evalu-
ated by Maximon (1968) from the Born approximation calcu-
lations of Racah in Formula 3D—0000, and the dashed line was
evaluated by Sgrenssen (1965, 1966) with Thomas-Fermi-Moliere
screening from the exact calculations of Davies, Bethe, and
Maximon (1954) in Formula 3D—0009. Note that the photon
energy is given in megaelectron-volt units and is equal to 0.511k.
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TABLE 6.09. Polarization coefficients in the formulas for d'o-/dE+dQ+.

C = (aaZsros/2ar) {P+/ka) '
A. Born approximation results for Formulas 3D-2132 and

3D—2242b:

(3) P t, rj

All —k/p+ C, ll —4E (E D ) P-s

F' = —'A'L (2P-/cs) (c—2g') Caa+ (2P-g/c) Cn'

+ (2p /d) {(b/c') (cCs' bC—a') —(1/a) (aCa' bco'—) }

+ (La/calo) P gc—Cs'+ {3gb 2(—E +D+)c }Ca'5

+ ( La/c' Is) Lcc»' —bC»'j —(Ls/aa's) 2 (E +D+) Coo

+(L /aals) Caa' —Ca~La)

a=4(2kD++p ')

b=2P '(E +D+)+4D+ItkD+ (E+E +—1)g

c= (2E+D++P )' 4(D+'+—P ')

d=(2kD++P ')'+4P sP '

g=P '+2(E+D+ 1)—
P =111S-&j'3

L,=2 ln { {2D+(E+E +1)+P 'E +P c' }dIsaisg

L —2 ln f {P
—s+(1alls+P )s}d-1/s$ j —2 ln (E +P )

Other quantities, such as D+ and aa, that also appear in coeKcients
below are given in Part A of Table 6.10.

CoeKcients in E':

Ca = 2E+k/D—+, C5=0

(4) Fty J.

~ Aa. =k/aas, Caa =2N'+g(p+s+Eos E+D+), —

C~~ =P+'+E+'—E+D+

Csa = (2/D+) $4Eo.E 2D+(2E+sE—=E++E )

D+'(2E+' E—+E +1 kD—+)g+P sc—ssa.

C» = —(2/D+) (»'+E+E= E D+)-

+2D+'(1—E s+2EpE )g+P scaaa.

Call
—(2/D+) Q 4E~E 2(E+ E )D~+kE+D+s j+p sC„.I I—

C» = (2E+/D+) (E+—E-—D+)

Ca = (4E-/D+') (E-+D+)+O'C»,

Caa I = (1/D+') (1—2E+D+)

(1) Fo

(2) Fo

Ap=1, Cjp=4E+'+p, Cgp=1

Coo= (2/D+) (—4E+E —ksD+' ——,'P ')+P 'Css'

Casa= (2/D, ) (P+syE—s+kD+yP ')-
Cao —(4E s/D+s) +PsC„o Ca,o —(1/D s) (1—2kD+)

Co' ———{2k'/D+), Ca'= —(1/D~)

A, = 1 Cg'= —Cg' Cg,'= —1

Ca'= 2D+ {k'+$4E+s(E+—E +1 kD+) /aasg }—
+p '(Css'+Csa') Cs' fj9 '(E +D+)—/aa'g—

C»' 2{{.s (4E+'=+g+P ') (E-+D+) / 3»
—E=k'D+ '}—Caa'

Ca' ———4ks+Lsaa(4E„s+P ') /Nsg —Ca'

Caa'= ($a/ass) —Cas'

C» =(1/D+)(I+E+D+—D+),

« = (2/D+) (E+E-+1—kD+)

B. Exact results for extreme-relativistic energies for Formulas
3D-2139 and 3D—2249 (Olsen and Maxinaon 1959):

Fo 2E+f(E+s+E s)—(3+21 ) +2E+E (1+4aaspI') g

I' = —16E+~E &Per

FR+II =2E L(E '-E ') (3+21')+2kE (1+4gs5sl')J

F&~=8E+E kk(1 2))gf'—
where

k
—(1+ass)

—a

Z'=in (2E+E /k)-2 —j(Z)+8 (k/2E+EQ),

C4'=0, c:={.(E +D,)/ 3—c: as given in Formula 3D-1009

This coeKcient is the same for Parts A and B.
s May (1951) and Gluclrstern and Hull (1953) for F'; McVoy, (1957, 1958) for Ft+,' and Bobel (1957) and Fronsdal and Uberall

(1958) for F"+I I and Fg+~.
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eKci ' f rmulas for d'a/dz+dQNdo .eKcients i ormuTABLE 6.10. Polarization cocci n the

r extreme-relativistic energies for Formulas

and Maximon, 1959;Olsen,

=-'k'
I J I'—EA- I J I'

Z'=EN-{I J~ I'—
I J e I'—

I
J.e' '

pf = —k(z+'+E ') &JxJ'J
'z '—-E ')L~JxJ*J,F&.= w-'kzvLs JxJ'Jgw-,

~ xJ*Jg 2R—e(piJx J*J e*s.F&+'= +-,'kz+{[~Jx z — ' * .e*s

F&+&=-'k{(z —EF) I J lm+2zv I J. Zv ~, I'}kakzv e ~

Z &+& ="—k-Relz (Ji);, ;— ~
g~ *(J*')~

—E-(J~)~(J') ~7

'-I J e I'-I J e' '';"'f-'=E,z-(k';-»'k;) {IJ I
— ~ ~ ' '

+-,'k' J I'{8;;—k;k;) —2 Re (e;; ) }

+kE+ Re (L(Ji) (—(J,) gJ{(Ji*;
—* e*e —J* ee'*})+kz-Re (L(J)'—(J.) ~7

- f= —-' E '+E ') (&;&—2khz~) K I.
"

~ iJXJe7.S+g'-5—
ig

&= 2L~Z+o'/(2~)'J(P+f /k -)L—1—Z(a) 7'/d '
n results for Formula 30-3132b:A. Born approximation resu ts or

Z'=(»/D+D ) (u+v)&+-, g L(ul +-' -'' u D+) (vlD—)7'-
l L(2Z—+v/D )+(2E-ulD+) 7-'

+ 7'—2 I I:(u/D+) —(v/D-) J.e I'Z = —-', g'{I (u/D ) —(v/D ) —,— .e '

+-:{I:(2E+v/D-)+ (2E-u/D+) 7'

-2
I P(2z~v/D )+(2E u/D+) J.e '

= ~ ~ (k-{4)-p,x (p,xk) 7&"'t= (.lr(LE~p+p+

-'{I:(2E+/D-)—(2E-/D+) 7 rf —+ —1'—'I:(1/D+) —1X2

~ E,P,q (P —RP,) —P,X(P,Xg) JD+-

X + P(D+/D-) —(D lD+)7}—-X {L(2E+/D-) —(2E-/D+) 7— +

~p+(u+v)'D '(D+ '-D='))
where

D =Eg—Py cos 8y where

~*=k2L(2E+E-)'"/P'(1) 7

X{(k-v)&(*)+f Zku'(0+v —1)ii'(*) }

Ji=L2(2E+E )—'"/i'(1) J
X {(++vv) V(a) +kZ@g'(uk —vv x

J=J~+J.
k) v= p- —k(p- k)p+ k(p+'

@=PMI=pp+
$= (1+I'+ ' ' e=(1+v') '

F(1)=Lsinh (s.o Z) 7/(so Z)

tt= u/I

er endicular to k—k( .k) =component of p+ perpQ=p+ — p+

Q=P+ sin g+

ker endicular to= ——Ke( —k) =component of p perpv=p — p

e=P sing

4 p+/ +

F + —;,~ —, -&+&- & are not availa le in Born cal-

p+—p-

F;, +-, F;, +- andFg, +-and B.F~, F&, F~ ', F;, + —, , +

1957) McVoy

This coeKcient is e s

snd Hull (1953); Bb e1951); Gluclrstern sn
d Banerjee (1958).d Uberall (1958; sn11'obdP

ts for the exact ca cu a ion' These coeKcients or e
h re.e been correcte ere.in that equation have be

{ I I

2.0

I.O

tal air cross section for the
th th ho ldthe photon energies in

hi ]1 tt, hh tomic numbers w iand on t e a o
ction cr is o ainrves. The exact cross sec

erbg, Mork, and Olsen

e 6.04 and in Figs. 6.0is ev
l t ltis iven in mthe photon energy

' g'
equal to 0.511k.

{.0 2.0{.5
MeVPHOTON ENERGY, M e

2.5



J. W. MoTzq H. A. OLsENq AND H. W. Koca Pasr Produotsol by Photols 627

2.0

V)

CQ

Ol

+
U U I,O

2[N

ON

0
0 0.5

(E;) )/(k-z )
I.O

0
0 0.5

(E -))/(k-2)

I

I.O

FIG. 6.04. Dependence of the differential pair cross section
do./dE+ on the positron energy E+ for an incident photon energy
of 1.07 MeV. The dashed curve gives the Born approximation
cross sections for an unscreened point nucleus derived from the
Bethe-Heitler Formula 3D-1000. The solid curves give the exact
cross sections for an unscreened point nucleus derived from the
Pverbg —Mork —Olsen Formula 3D—1006 for the various atomic
numbers attached to each curve.

FIG. 6.06. Dependence of the differential pair cross section
do/dE+ on the positron energy E+ for an incident photon energy
of 1.79 MeV. The meaning of the different curves is explained in
Fig. 6.04.
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FIG. 6.07. Dependence of the differential pair cross section
do/dE+ on the positron energy E+ for an incident photon energy
of 2.55 MeV. The meaning of the different curves is explained
in Fig. 6.04.
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FIG. 6.05. Dependence of the diff erential pair cross section
dtJ/dE+ on the positron energy E+, for an incident photon energy
of 1.33 MeV. The meaning of the different curves is explained in
Fig. 6.04.

FIG. 6.08. Dependence of the differential pair cross section
do/dE+ on the positron energy E+ for an incident photon energy
of 3.32 MeV. The meaning of the different curves is explained
in Fig. 6.04.
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Fzo. 6.09. Screening factors C»(v) and C2(y) for tbe Bethe-
Heitler Formula 3D-1003, where v = 100 II/(E+E~II) . The curve
for the "hydrogen atom" was calculated by %heeler and Lamb
(1939) with exact wave functions. The curves for the Thomas-
Fermi atom and the bare nucleus differ by the factor 4c(v),
where c(v) is evaluated in Fig. 6.10.
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Fxo. 6.12. Dependence of the diGerential pair cross section
d'o/dE+dQ+ on the positron energy E+ for incident photon
energies of k equal to 1000, 100, and 5. The cross sections are
calculated for different values of the parameter k8+ shown by the
numbers over the curves. The solid lines were calculated with
the unscreened, Born approximation Formula 3D—2000, and the
dashed lines were calculated for Z=82 with the screened, exact
Formula 3D-2009.
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TABLE 7.01. Cross-section formulas without polarization dependence for pair production in an electron Geld

Pair
cross section in

electron Geld 4&k&4.002 4&k&16

Photon energy region

k&16 k&100 k&104

43-0000
Votruba

43—0001
Mork

43—0002
3orsellino-
Gh.zeta

43—0003
3orsellino

43—0004
3ethe-
Heitler

43-1003
Suh-Bethe

d'o/dE+drt+do 4B-3001
Votruba-
Mork

43—3002
3orsellino

VII. CROSS-SECTION FORMULAS FOR PAIR
PRODUCTION IN AK ELECTRON FIELD

Electron —positron pair production in the held of an
electron is called triplet production. This process
involves two additional eGects which do not occur in
the Geld of an atom. These are (1) the exchange effects
involving the two electrons and (2) the effects in which
the quantum is absorbed by the target electron (desig-
nated as the p-e interaction in the terminology of
Feynman diagrams). Because of these effects, the
cross-section calculations are complicated and most of
the available results ( Ghizzetti, 1947; Borsellino, 1947;
Votruba, 1948; Rohrlich, 1955; Suh, 1959; Kopylov,
1964; and Mork, 1967) contain various approximations,
as discussed, for example, in the summary by Joseph
and Rohrlich (1958).

Borsellino (1947) calculated the triplet cross section
by neglecting the exchange and p—e interactions. In this
same approximation, Borsellino (1947) and Ghizzetti
(1947) derived a high-energy formula for the triplet
cross section. On the other hand, Votruba (1948)
calculated the diGerential triplet cross section with the
inclusion of the exchange and y-e interactions. How-
ever, Votruba's total cross section contains many

approximations and is not reliable except near threshold.
Likewise, Rohrlich and Joseph (1955) obtain a cross
section which is not reliable because it is based on
Votruba's approximate expressions as shown by Suh
and Bethe (1959).

Mork (1967) has carried out accurate calculations
for the triplet cross section and has veri6ed the accuracy
and limitations of the previous calculations. For example,
for the total triplet cross section, Mork has shown that
(a) the Votruba results (Formula 4B-0000) are valid
near threshold and (b) the Borsellino results (Formula
4B—0004) are valid at high energies (k) 16) where the
exchange and y-e interactions are negligible. These
latter effects give a 4% decrease of the cross section at
6.0 MeV, and 6% at 5 MeV. At extremely high photon
energies, the triplet cross section approaches the Bethe-
Heitler cross section such that at 100 MeV, the exact
cross section is approximately 10% lower than the
Bethe-Heitler value.

A summary of the various formulas that are available
for the total and diGerential triplet cross sections are
given in Table 7.01. These formulas are classified
according to the diferent energy regions in which their
validity has been con6rmed by Mork's results.

Formula 4B-0000

[The Votruba Formula for Triplet Production Near Threshold]

a =ceres(z V3'/4X3') (k—4)'.

Votruba (1948).
(Z) References

(I) Conditions of Validity

Threshold photon energies: 4&k &4.002.

(3) Notes

a. The validity of Formula 43—0000 in the threshold energy
region has been veriGed by the calculations of Mork {1967).

b. Fear experimental results are available near the threshold
region (for example, see Frei et al. 1965), and more data are
needed for quantitative comparisons arith the Votruba Formula.
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Formula 48-0001

[The Mork Formula for Triplet Production at Intermediate Energies]

o = (ApH+ hp+ gapa) (1—EM),

where b, M is the Mort correction term (Mork, 1967, Fig. 4) which is given in Fig. 7.02. The quantity, (bpH+hp+
4po), has been evaluated by Borsellino (1947) and Ghizzetti (1947) for this intermediate energy region, 4(k(16,
and their results are given in Table 7.02.

Mort (1967).
(Z) References

(I) Conditions of Validity

Intermediate photon energies: 4&k &16.

(3) Notes

a. The energy dependence of the cross section predicted by
Formula 4B-0001 for 4&k &16 is shown in Fig. 7.01.

b. A comparison of the cross sections predicted by Formula
43-0001 with various experimental results is given in Fig. 8 of
Mori (1967).

Formula 43-0002

[The Borsellino-Ghizzetti Formula for Triplet Production at High Energies]

a=~pH+~p+i) po,

where I)pH and hp are given in the Borsellino Formula 4B-0003, and for high photon energies (k) 16)

8 1 I 1 f 106 49 16.8 0.27
~po=crros ——(ln 2k)' —

~
4——

~
(ln 2k)s ——

~
168+ + —ln 2k —11.8—

k' 3 k& 18 I, k ks k'

(I) Conditions of Validity

High photon energies: k &16.

(Z) References

Borsellino (1947) and Ghizzetti (1947).

(3) Notes

a. The energy dependence of the cross section predicted by
Formula 43-0002 for k &16 is shown in Fig. 7.01.

Formula 4B-0003

[The Borsellino Formula for Triplet Production at Very High Energies]

where

DpH ——orssPP ln (2k) —-s r-g= Bethe-Heitler Formula 4B-0004,

hp = —crrssk 'Lp. (ln 2k) s—3(ln 2k) s+6.84 ln 2k —21.51j.

(I) Conditions of Validity

Borsellino (1947) .

(Z) References

Very high photon energies: k&100.

(3) Notes

a. Borsellino's results (1947) contain a misprint in which the

sign in the last term for bB above is incorrectly given as +21.51
rather than —21.51.

b. The energy dependence of the cross section predicted by
Formula 4B—0003 for k &100 is shown in Fig. 7.01.

c. Experimental results in this energy region are given in

Sondhu es al. (1962) .
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Formula 4B-0004

[The Bethe-Heitler Formula for Triplet Production at Extremely High Energies]

o =o.resBP ln (2k) ——s",-$

(1) Cond@fons of ValHf2y

Extremely high photon energies: k) 10'.

(Z) References

Heitler (1954), Formula (14), p. 260.

(3) Notes

a. The energy dependence of the cross section predicted by
Formula 48—0004 for k&104 is shown in Fig. 7.01.

Formula 43-1003

[The Suh-Bethe Recoil Formula for Triplet Production at Very High Energies]

do/dq= err, s ssLq/(T„+1) T„sjf1+L(2T„—1)/q J ln (T,+1+q) I,

where the momentum transfer q is defined in Sec. II, with q given by Eq. (3.03) in Sec. III.

(I) Conditions of Validity

Very high photon energies: k&100.
Intermediate q values: q&&k, kq»1.

(Z) References

Suh and Bethe (1959), Formula (16).

(3) Notes

a. The triplet recoil momentum distributions which are de-
rived by Morlr (1967) are given in Fig. 7.03 for values of b equal
to 1000, 100, 50, and 20. The curves for k equal to 1000 and 100
are given by the Suh-Bethe Formula 48-1003.

b. The momentum distributions predicted by Formula 48-1003
have shown agreement with available experimental results (Hart
et ol 1959; Gat. es et al. 1962), except in the region of large recoil
momentum where the theoretical values are larger than the
experimental values. Other experimental results are given in
Sondhu et al (1962) . .

Formula 43-3001

[The Votruba-Mork Formula for Triplet Production in the Laboratory System]

where

dZ+dn+dn 4 (;~ Z„ 1—(p p„/p )
(XiJ Xv+ Xw ),

Xt = U+ SiU+SsU+ SsU+ SsSiU+ SsSiU+ SsSsU+ SsSsSiU;

S~, S~, and Sq denote the following substitutions

Po~ P+~

where, as dined in Sec. II, po is the initial four momentum of the target electron, p„ is the four momentum of the
recoiling target electron, and p+ and p are the four-momentum vectors of the positron-electron pair. The expres-
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sions for Xz and X~ are identical to XU with V and S' substituted for U, respectively. U, V, and W' are given by

U = 2 (l+Tl) {KS f —KS(K1TS+Kpo3) +'T1KS T2—01 'Ts—o'3+ K1T2+ Kpo 8 —KBKB+Ks+Tl+ 2KS—0'2+ 2)

+ (KBKS) 'f—
o 2 (Kl (TS+rs) o—lrs o—srs )+Ics(olrs+crsrs —2rso 1)+02(rl —cr2+ 2KB) —K,K1—TBK2+2o2—Ksj },

V= 3 (l+Tl) (l—0'2) {(KSKB) f2(KS—
KS
—2TS)+ Kp(K1+Tl+0'1—cr2+O8) +'KS( KS—rl+T2+02 crs)—

+T3( Kl KB+202 2T—1)+Kp (ol(02 T2) 2crs(KB+1 3) )+KB(rlrs+olr2+2osrs)'+rs (2(rsol+osrs) I l—rs+Kscri ))I
—the same expression with the substitution p+&—p,

3(l+Tl) (crl l) (2K2 f2K1K2TS+K2( Kp Kl+KB Tl+TB+01)+2TS(os Kl)+Icp+Kl 2K2 KB Tl

—72+TS+01+02 '03 '2—j+'—(KSKp) {2fo'3 (KSTS+ K3TS Kp(0—'2+Ts)+2rsrs)+rs(KBrl Klrs) j-
+�2Ic(K1 Ks+—rl+ rs rs—2o—1 o2—+ o '3) +Kl (2Ics rs+o 2—)+ Ics (2rs+ o1 2rl '—2rs)—

+Ks (Tl—0'3) —2T2 (rl+ T2 TS 0'1—02—+ITB—)+2Kl KS+K—p Ks 4—TB}-
+(KBKS)

—
'{2fcrs(KBT2 K3T3 K2TS KS02+202T3)+TB(01K2 K102) j+Kp(2K1+2KB 01 Irs)+Kl(2KS+TS+TS)

+KS(rl—2rs —2ol —2os)+Ks(rl+2(rs —rs —01—os+03) )+202( rl Ts+—Ts+—o'.+as os-)—
+ ( 2KS 2K1+KB+ KB 40'2) }+(KpK3) f40'3(K3+TS) (Kp TS) + 2TB(T1+T2 T3 crl cr2+crs)

+Kp( —2rs+ 2rs —2KS—3o3)+Kl (2K2—rs+2TS+ os) +K2(2KB+rl+2rs —01)+Ks( —2rs —2o 2+303)

+2K1 2KB+3—KS 3Kp+4—TSj}
Here

&&=p+'pn

T2 Pp 'P—
y

02=P+'P—~

K2=P k, T3 pQ p+ 63=Pg'P

K3
——P+.k.

Only five of these quantities are independent. The energy —momentum conservation laws give Ave relations:

K3= Kp
—

Ky
—

K2) T3 Kp 1 Ty T2&

crs = Kp+ l —Irl —02& 0'y = Kp
—K2—T2&

02= Kp
—

Ky
—Ty.

(1) Conditions of Validity

Threshold and intermediate photon energies: 4&k &16. Moric (1965).

(Z) References

Formula 48-3002

[The Borsellino Formula for Triplet Production in the Laboratory System]

d'o csrps p+p 2k2 p '
dE~dQ+dQ (22r)2 its/' (p k) (p k) E p p,+E,

where S~ an(I S2 have the same meaning as in Formula 3D—3004, and D and p+, p, p„k, and q are the four-
component vectors dined in Sec. II of this paper.

(1) Conditions of Validity

High photon energies: k& Ig, 3orsellino (1947),

(Z) References
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TABLE 7.02. The Borsellino-Ghizzetti cross sections' for inter-
mediate photon energies in the region where 4&k&20.

o/aros

1.0—
/

I
I
I
I—I

P I I I I I I I I I l I I I I I ! I I I I I I I I I I I I I I I I I I I I l I I J I I I I I

IO IP IP IP IO IP
PHOTON ENERGY, Me'I/

4.8

5.2

0.004

0.017

0.038

12.4

13.2

13.6

0.989

1.049

1.108

1.167

FIG. 7.01. Cross section cr for pair production in an electron
Geld (solid line) and proton Geld (dashed line). For the electron
6eld, the cross-section curve is given by Formulas 48—0001,
48-0002, and 48-0003, in the photon energy regions from approx-
imately 2.04 to 8 MeV, 8 to 50 MeV, and 50 to 104 MeV and
above, respectively. For the proton 6eld, the cross-section curve
is given by the Racah Formula 3D—0000. Note that the photon
energy is given in megaelectron-volt units and is equal to 0.511k.

5.6 0.067

0.102

1.226

1.285

0.8

6.4

6.8

0.142

0.186

14.8

15.2

1.343

1.401

O
0.6

7.6

0.234

0.285

0.338

0.393

15.6

16.4

16.8

1.458

1.514

1.570

1.626

Z',

9o4
I—0
LLI

0
O
~ 0.2

O

8.8 0.450 17.2 1.681

9.2 0.509 1.735
8 IO

PHOTON ENERGY, k

I4

9.6

10

10.4

0.627

0.687 18.8

1.789

i.842

1.895

Fro. 7.02. Correction term 6 which is given by Mork (1967)
in the triplet-cross-section Formula 48-0001 for the intermediate
energy region where 4&k&16. Note that the photon energy k
is given in moc' units.

10.8 0.747 19.2 1.947 lo

11.2

11.6

0.808

0.868

0.929

19.6

20

1.999

2.050

lo—
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~ These cross sections were evaluated by Borsellino (1947) and Ghizzetti
(1947). The cross section a' in this table is equal to the quantity (ABH+
AB+tst~G) which is given in Formula 4B—0001. -2

lo

-5
IO

IO I I.O IO IO

FIG. 7.03. Dependence of the triplet differential cross section
do/dq on the momentum q of the recoiling electron for values
of the photon energy k equa& to $000, 100, 50, and 20, as given
by Morley (1967),
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TABLE 8.01. Selection of pair formulas from Table 6.02(a) for different regions of the incident photon energy.

Pair cross
section k&6

Formulas
6&k&30 Comments

3D-0006 Interpolate 3D-0009
between curves
given by 3D—0006
and 3D-0009

Experimental results are listed
in Notes for Formula 3D-0000

do'/rfE+ 3D—j.006

3D-2000

3D-3000

3D-1000

3D-2000

3D-3000

3D—1009

3D-2009
(8~&1/E+)

3D-3009
(4&1/E+)
3D-3004

(4»1/E+)

Accuracy uncertain for
6&4&30

Accuracy uncertain for 3D-2000
with Z&10, and for 3D-2009
at large angles (S+»1/Ea)

Accuracy uncertain for 3D-3000
with Z&10, and for 3D—3009
at large angles (e+»1/E+)

VIII. DISCUSSION OF PAIR CROSS-SECTION
FORMULAS

The various cross-section formulas for pair production
by photons are summarized in Tables 6.02 (a), 6.02 (b),
6.03, and 7.01. In Tables 6.02(a), 6.02(b), and 7.01,
the formulas are classi6ed according to the different
approximations used in the calculations, and the con-
ditions of validity for these approximations are quan-
titatively summarized in Table 6.01. In Table 6.03, the
formulas are classi6ed according to their dependence on
different polarization variables, and the approximations
are identified under the conditions of validity for each
formula.

The fact that different formulas exist for each form
(total or differential) of the pair cross section indicates
that there is no single formula that is valid for every
set of conditions. At best, such a single formula would
not be analytical and would be difficult, if not imprac-
tical, to evaluate. Therefore, it is necessary to select a
formula from the above tables according to the physical
conditions that are imposed in a given experimental
situation. If the conditions of validity are satis6ed, the
accuracy of a given formula is expected to be better
than a few percent; otherwise, the accuracy cannot be
speci6ed unless comparisons have been made with
experimental results.

The formulas in Table 6.02 (a) apply to the process of
pair production in an atomic 6eld without atomic
excitation (designated as coherent or elastic pair
production). These formulas are classified in two main
categories, according to whether the calculations are
"First Born" or "Exact" as described in Sec. IV. The
subdivisions in each category indicate whether the
calculations contain screening or high-energy approxi-
mations, or nuclear-size effects. Guidelines for the
selection of the pair formulas in Table 6.02(a) are
given in Table 8.01 for different regions of the incident
photon energy and the atomic number of the target.

The most accurate formulas are derived with the
"exact" calculations; however, for particle energies that
are not very large compared to the electron rest energy,
these formulas have a limited application because (a)
they are only available for the total and differential
cross sections o and do/dE+, (b) .they are not given in
closed form, and (c) they do not include screening
corrections. As shown in Table 6.02(a), exact calcula-
tions are not available for the differential cross sections
do'/df)„, do/dP„, do jdq, and d'o/dE+dw, and as pointed
out in Table 8.01, the accuracy of the cross sections
predicted by these formulas is uncertain in the photon
energy regions where the Born condition,

is not satisned.
The formulas in Table 6.02(b) apply to the process

of pair production in an atomic field with atomic
excitation (designated as incoherent or inelastic pair
production). For this process, only the Wheeler-Lamb
(1939, 1956) calculations are available, and they
provide Born approximation formulas for the total and
differential cross sections o. and do/dE+, respectively.
The accuracy of the cross sections predicted by these
formulas depends on the atomic number and the
atomic incoherent scattering function for the target
atom. For low atomic numbers, the Born condition is
satisaed (except near threshold), but it is more diflicult
to formulate accurate expressions for the incoherent
scattering function (Knasel, 1968), and for high
atomic numbers, the reverse conditions are true.

The relative contributions of the inelastic and elastic
pair processes described above must be evaluated in
order to determine the total number of pairs that are
produced experimentally. For this evaluation, the total
pair cross section is given by the sum of the elastic and
inelastic cross sections, o (elastic) and o (inelastic), and
the formulas for these cross sections are listed in Tables
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FIG. 8.01. Comparison of the cross-section ratio 0. (inelas-
tic)/o(elastic) for helium (Z=2) and lead (Z=82). The cross
section o (inelastic} refers to pair production in an atomic field
with atomic excitation, and is evaluated by Formula 3D—0005
for Z=82 and by Knasel (1968} for Z=2. The cross section
0 (elastic) refers to pair production in an atomic field without
atomic excitation, and is evaluated by Formula 3D-0009 for
S=82 and 2. Note that the photon energy is given in mega-
electron-volt units and is equal to 0.5iik.

6.02(a) and 6.02(b), respectively. The cross-section
ratio a (inelastic) /&r(elastic), which is predicted. by
Formulas 3D—0005 and 3D-0009, is given in Fig. 8.01
for photon energies in the region between 10' and 104

MeV. The results in Fig. 8.01 indicate that this ratio is
negligible ((0.02) for the high-Z (lead) target and is
large ()0.5) for the low-Z (helium) target. Because
the relative contribution of the inelastic pair process
increases as the atomic number decreases, it is important
to obtain more accurate data for the low-Z inelastic pair
cross sections such as provided by Knasel (1968). On
the other hand, the experimental data (references in
Note a, Formula 3D—0000) that are available for the
total elastic cross section sho%' good agreement with the
predictions of the exact Formula 3D—0006 for high-Z
targets and for photon energies below 10 MeV.

The accuracy of the polarization formulas in Table
6.03 is uncertain because there are no experimental data
on polarization e6ects that can be compared with the
theoretical predictions. However, based on comparisons
of experimental and theoretical total cross sections, the
cross sections predicted by the exact formulas, 3D-2139,
3D—2249, 3D—3139, 3D-3229, 3D—3149, and 3D—3249,
are expected to have better than 1% accuracy if the
conditions of validity for the formulas are satisGed.

For pair production in an electron field, the cross
section. formulas are specified in Table 7.01 for different
regions of the incid. ent photon energy. As discussed by
Mork (1967), the cross sections predicted by these
formulas show good agreement with the available
experimental results (references to these results are
given in the notes of the formulas in Sec. VII). The
accuracy of the Votruba Formula 48—0000 is uncertain
in the threshold region (&~~4). Otherwise, the triplet
formulas in Table 7.01 are expected to give cross
sections with an accuracy of the order of the fine

structure constant (a = 1/137) provided that the
specified conditions of validity are satisfied, .

The experimental data that are presently available on

pair production in an atomic Geld pertain mostly to the
total pair cross section. Unfortunately, most of these
data which are partially summarized in Note a of
Formula 3D-0000 give relative values for the cross
section, and comparisons with theory are made vrith

various normalizing constants. There are few direct
measurements of the absolute total cross section (for
example, see West, 1956; Rao et ul. , 1963; Titus and.

Levy, 1966; Garritson and Miller, 1968).These absolute
measurements have been carried out with monoenergetic
photons in the energy region from approximately 1.1. to
3.0 MeV, and the experimental results show good agree-
ment (within accuracies of 10% to 20%) with the
cross sections that are predicted by the exact Formula
3D-0006 (Jaeger and Hulme, 1936;Pverbff, Mork, and
Olsen, 1968) and summarized in Figs. 6.01 and. 6.03.
Additional experimental results recently obtained by
Piowaty and Miller (1969) in the threshold energy
region from 1.1 to 1.5 MeV also show good agreement
with the cross sections predicted by Formula 3D—0006
for lead. In this energy region below' 3 MeV, the results
show that for high-Z targets, the experimental cross
sections and the exact theoretical cross sections given

by Formula 3D-0006 may be factors of 2 larger than
the Born approximation cross sections predicted. by the
Racah Formula 3D—0000. For low-Z targets, the
experimental cross sections include contributions both
from the elastic and the inelastic pair-production cross
sections discussed above and in Fig. 8.01.

In addition to the experimental data on total cross
sections discussed above, there are very few absolute
measurements of the various differential pair cross
sections summarized in Table 6.02. Experimental data
on differential cross sections are valuable not only
because they provide more detailed information on the
pair process, but also because they provide more
sensitive tests of the theory. Among the fear experi-
mental studies in this category are the measurements by
Plimpton and Hammer (1963) of the positron energy
spectrum produced in high-Z targets at an emission
angle of 90' with the photon beam from a 75-MeV
synchrotron. * Also in this category are the large-angle
pair measurements (Blumenthal et al. , 1966; Ashbury
et a/. , 1967; Eisenhandler et a/. , 1967) which were
carried, out in the billion-electron-volt region with
carbon targets in ord.er to test the predictions of the

*The experimental results in these measurements show an
order-of-magnitude disagreement with the predictions of the
Born approximation theory. Although this disagreement may be
attributed in part to the breakdown of the Born approximation,
a contributing factor may arise from the experimental difIiculties
in determining absolute cross sections with bremsstrahlung pho-
ton beams which have a continuous energy distribution. More
studies are required to resolve this uncertainty, including meas-
urements with monoenergetic photon beams and exact calcula-
tions of the differential cross section for large-angle pair produc-
tion.
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Bjorken —Drell-Frautschi Formula 3D—3004 and the
validity of quantum electrodynamics at high energies. *

The above summary indicates that the present experi-
mental results on pair production are not suKciently
comprehensive to establish the accuracy of the pair
formulas listed in Table 6.02. For the total cross section
below 3 MeV and above 15 MeV, the data show' that
within the experimental uncertainties, the most accurate
cross sections are obtained. from the exact Formulas
3D—0006 and 3D—0009, respectively, as shown in Table
8.01.. Because of the success obtained with the exact
calculations for the total cross section, it is expected
that the most accurate diGerential pair cross section
may likewise be obtained from the exact differential
Formula 3D—1006 for the energy region below 3 MeV,
and Formulas 3D-1009, 3D—2009, and 3D-3009 for the
energy region above 15 MeV and for small angles,
However, for the other cases shown in Table 8.01, there
are considerable uncertainties. To remove these un-
certainties, there is a need for (a) more experimental
data with good accuracy on the total pair cross sections
in the intermediate energy region, 6&k &30, where only
interpolation procedures and semiempirical formulas
exist, (b) experimental data on the various differential
pair cross sections in the energy region where &&30,
(c) absolute pair cross section measurements in the
energy region where k) 30, and (d) studies of the total
and differential pair cross sections for targets with'low
atomic numbers in order to determine the relative con-
tributions of the elastic and inelastic pair-production
processes which are examined in Fig. 8.01.
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