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We survey some recent progress in constructing models of local, relativistic quantum mechanics. These Geld-theory
models have nontrivial scattering.

L CONSTRUCTIVE QUANTUM FIELD THEORY

In this paper we review some recent progress in
quantum dynamics —progress made possible by a closer
tie between mathematics and physics.

Relativistic quantum mechanics provides a general
framework for dynamics and leads naturally to quantum
field theory. The basic assumption of quantum Geld

theory is that each field —the electric-current density,
for exampl- is an operator on the Hilbert space of
physical states. Field-theory dynamics may be specified

by a Lagrangian or by some other scheme.
Despite the simplicity of this starting point, examples

of interacting Gelds are very scarce. Even quantum
electrodynamics, which gives incredible agreement
between calculations and experiments, has not been
shown to be internally consistent. Thus the funda-
mental question Geld theory faces today is the same one
it faced many years ago: namely, "Is quantum Geld

theory consistent)" A more concrete form of the same
question is "Can we construct model Geld theories)"

Constructive Geld theorists have approached this
problem with Lagrangian Geld theories and attempted
to solve particular model Lagrangians. Because of the

difhculty of the problem, we have felt justiGed in

beginning with the simplest possible interaction
Lagrangian. Once a simple model has been solved we
can proceed to a more realistic and technically more
de.cult Lagrangian.

With the Lagrangian chosen, we can proceed with the
construction of the dynamics. First we delve into the
details of the particular Hamiltonian in order to get
quantitative control over the interaction. Ke derive
estimates to prove, for instance, that the renormalized
Hamiltonian is positive. Second we combine these
specific estimates with modern mathematical analysis in

order to complete the construction. Thus, recent
progress on constructing models has been the result of
using modern functional analysis to control these
physics problems. Among physicists, Wightman' has
continually encouraged this point of view. Some
mathematicians have encouraged this view as well."

The program just described is, however, unrealistically
simple. Neither the specific estimates nor the mathe-

Ia.atical theorems appropriate for quantum field theory
can be found in books; we must Gnd and prove them
before we can use them. Ke have found it necessary,
then, both to develop the mathematical tools and to
apply these tools to speciGc problems of quantum Geld

theory. This procedure has led to productive crossing
of boundaries between mathematics and physics. In
fact, much of the work that I shall now describe has
been the result of my collaboration with J. Glimm, a
mathematician. 4 '

Ke have constructed a simple Geld-theory model-
the theory of a scalar field p with a pe self-interaction in

space —time of two dimensions. We have already estab-
lished for this theory many of the properties desired in a
model. The remaining properties are valid on the level
of perturbation theory. In particular, this (r)b') 2 theory
provides an example of a local quantum field theory
with interaction. It is the Grst step toward constructing
a more realistic field theory.

II. RESULTS FOR (@e)

I will now describe this (@')v model.
The field P in the (P')v model satisfies a nonlinear

equation of motion

(Z+m') y(~, t) = —4l y'(x, t)

Here Q is the two-dimensional wave operator

p = (a&/ate) (a'/ate'). —

Furthermore, the field (Ib is quite singular, so that the
nonlinear term @' has no a priori meaning. Part of the

problem of constructing the theory is to degrte the P'
which appears in the equation of motion.

For orientation, I shall now give a list of the results
afterwards I shall discuss them in detail.

(1) The Heisenberg picture Geld (t (x, t) is known to
exist. Expectation values of the field ()P, (f)(x, t))P) are
defined for a dense set of vectors (p in Fock space.
Mathematically, (f)(x, t) is a densely defined bilinear
form.

(2) The average field

e(f)= f e(~, t)f(~0««,*Presented to the American Physical Society, February 1969,
New York, N.Y.
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test function f(x, t) vanishing outside a bounded region,
p( f) is a self-adjoint operator.

(3) The field is local:

In terms of the average fields, p( f) commutes with y(g)
iff and g have space-like separated supports.

(4) By a general result, called Haag's theorem, the
Hamiltonian for p cannot exist on Fock space. This
result applies to the Hamiltonian, but not to the Geld.
In order to write down the Hamiltonian for P, we must
construct the space of physical states. We call it K„~
to distinguish it from Pock space. The construction of
BC„has been carried out.

(5) On X„ there is a renormalized Hamiltonian
operator H', which is self-adjoint and gives rise to the
Schrodinger picture time development

P(t) = exp ( iHt)ifr. —

(6) On X,. we also construct a self-adjoint momen-
tum operator P, which cone+utes with H. The unitary
operator

U(x, t) = exp ( iHt+iPx—)

gives the correct space —time translation for the theory.
(7) There is a vacuum vector 0 in R„.The re-

normalized Hamiltonian H is positive, H&0, and

Writing P(x, t) in terms of its time-zero value

y(x, t) = exp (iHt) @(x) exp (—iHt),

we see that p(x, t) formally satisfies the correct equation
of motion. To verify this we compute

(a'/at') y(x, t) = [iH, PiH, y(x, t) 17=[iH, ~(x, t) j
= (am/ax~ —rrt') y(x, t) —4XqP(x, t),

where p'(x, t) is defined by

Q'(x, t) = exp (iHt):$'(x): exp (—iHt).

This formal procedure is not mathematically correct
since the Hamiltonian H is not an operator. Likewise,
exp (iHt) is not an operator. In fact, there is no non-
zero vector P in Fock space such that HP is again in
Fock space. Since the ultraviolet behavior of H is good
after Wick ordering, the difFiculty with H is an inGnite-
volume problem.

By using a spatial cutoff in the (p') 2 Hamiltonian, we
can avoid this diKculty. Let g(x) &0 be a smooth
function that equals 1 for j x

~
&1 and vanishes for

~
x

~
large. Then we define the cutoff Hamiltonian

o+xf.:=e( )':g( I ) ~ e. —

HO=0, PQ=O, =Ho+Hr,

III. DISCUSSION OF THE RESULTS~~

First we write the formal solution of the (Q') e theory
in terms of a canonical time-zero field. Then we shall
see what modifications are necessary to make the formal
procedure mathematically correct.

The time-zero canonical fields qh(x) and m. (x) satisfy
the usual equal-time commutation relations

L'~(x), y(y) j=—ib(x —y),

B(x),4(y) j=0=t:~(x),~&y) j.
We choose to realize the time-zero Geld on Fock spac-—
a convenience for computations. The correct formal
Hamiltonian can be written in terms of the canonical
fields. It is

o=oo+x f:qi'(x): dx—z.

Here Ho is the free Hamiltonian, the interaction is Wick
ordered, and E is a constant chosen to adjust the
ground-state energy of H so that it is zero. Since the
mass renormalization constant and Geld-strength
renormalization constant for this model are Gnite in
perturbation theory, we have chosen to omit them
from H.

The constant E„is chosen so that the low'er bound of H„
is zero, and E„ is known to be Gnite" for all positive
values of the coupling constant X.

Clearly the Hamiltonian H„agrees with the correct
Hamiltonian in the region of space ( x

~
(rt. Noting

that inQuence propagates in the Heisenberg picture at
the speed of light, we conclude that the spatial cuto6 I
does not aGect the field. In fact the well-defined field

y(x, t) = exp (iH„t)y(x) exp ( iH„t)—

is independent of the spatial cutoff e, provided that

Figure 1 illustrates this phenomenon, for the effect of
g(x) W1, which propagates at the speed of light, cannot
be detected inside the diamond rt & )

x
( + [ t [.Hence if

(x, t) lies inside the diamond, the field g(x, t) must be
independent of any cutoff. Thus p(x, t) defined with
H„actually is a solution to the equation of motion. A
similar argument based on the propagation of inQuence
at the speed of light, shows that the field p(x, t) is local.
This method of removing the spatial cutoff was erst
proposed by Guenin. In giving a proof„we use a theorem
of Segal that relies on a theorem of Trotter. See Ref. 4
for a discussion of the literature on that point.
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FIG. 1. In6uence propagates at the speed of 1ight for a local
Hamiltonian.

In order to make these arguments mathematically
precise, we must prove that H„ is self-adjoint. At this
point I want to warn you that self-adjointness is a
subtle mathematical property of an operator. Formal
self-adjointness is insufhcient, and a proof requires some
detailed knowledge of those vectors on which the
operator is defined. I vrill give you a simple instance
of the pathology that may occur with just one degree of
freedom. The formally self-adjoint operator

of the resolvents R„=(H„—s) ' in norm,

II R„v R—„,v. II
=

II A, 'v(+n, s,F +ac',,v')A', F' ll

& const II (I+&0) '(&-, .v —11.,".& ) (&+&0)-'ll

Having established the self-adjointness of H„, we can
define the Geld P. As mentioned before, we have also
proved that the field p( f) is self-adjoint.

The corresponding self-adjointness for the localized
field operator' P( f) is a consequence of the estimate

@(f)'& Ifl'(&+8
where

I f I
denotes a norm off, and b is suKciently large.

The self-adjointness of H„and the self-adjointness
proof for the Geld @(f) are the main results valid on
Fock space. We novr describe a second class of results—
those that deal with the physical Hilbert space and the
Hamiltonian. We saw that Ll„has no limit in Fock
space, and the necessity of changing Hilbert spaces is a
usual renormalization phenomenon in quantum 6eld
theories. Since

lim g(x/n) = 1,

we have the formal identity

However, this limit does not exist in Fock space since
H is ill defined. To de6ne H, vre must at the same time
construct the physical Hilbert space.

The first step toward constructing K„ is to prove
that B„has a vacuum vector Q„:

~=Pf'+ 9'P i
Ilail-II =&, H„Q„=0.

it is not self-adjoint since

where P is the square integrable function

f(~) = &31' exp (—l/4V').

We have shown that this is the case, and in fact that Q„
is unique up to a phase.

Perturbation theory predicts that as n—+~, E„~—~
and Q„converges weakly to zero. Although perturbation
theory is inapplicable, " the exact vacuum energy
diverges no faster than the perturbation-theory bound',

Detailed investigations shovr that such pathologies
do not occur in (Q4) g. We have proved that H„ is self-

adjoint. 4' An essential nevr point of the proof is the
quadratic estimate4

+2++ 2(g(+ +I'i)2

This estimate allows us to approximate H„by a self-
adjoint operator' H„,„,y and then to remove the
approximation while preserving self-adjointness. ~ We
show that the resolvents of the H„,, p converge to the
resolvent of a self-adjoint operator. Here rc denotes an
ultraviolet cutoG and t/ denotes a periodic box.

In fact, vre use this inequality to prove convergence

Hence the average energy density E„/e is bounded
belovr.

Though Q„does not converge as e~~, we can
construct the physical representation by taking limits
of vacuum expectation valuese i~ (Wightman func-
tions) .We deGne the expectation values

o)„(A) = (0„,AD„),

where A is a local function of the field. Technically, A

belongs to a C* algebra 5.
As n~~, a generalized sequence of the ~„(A) con-

verges to a limit co(A) for every A. These limiting
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Wightman functions determine a Hilbert space X„.
The relation between the o&(A) and R„„is summarized

by the Gelfand —Segal construction, and this relation is
similar to the Wightman reconstruction of a Geld theory
from its vacuum expectation values. According to this
construction, there exists a vector Q EX„such that

o~(A) = (0, AQ);

and so we call 0 the vacuum vector.
I will show you now how vacuum expectation values

will converge properly while vectors give the wrong
answers. Consider the linear interaction

space-time region, and tt is large; also

exp (iH„t)0„=0„.

Thus the approximate expectation value (0„,A (t)BQ )
equals

(0„,A(t)BQ„)= (0„,exp (iH„t)A exp (—iH„t)BQ )
= (0„,A exp (—iH„t) BQ„).

We can write the Wightman function

(Q, A(t)BQ„)= lim (Q„, A(t)BQ )

The vacuum for H„ is

m. (x) dx E„. — = lim (0„,A exp (—iH„t)BQ„)

= (0, A exp (—iHt) BQ).

e
0„= exp i y(x) dx 0„

In this sense H„converges to a limit IJ:

A (t) = exp (iHt) A exp (—iHt) .

For f in Fock space the scalar products (f, Q„) con-
verge to zero. For instance, if Q=Qo, the no-particle
state, then

n n

(Qo, 0 ) = exp —— dx dyi '5&+&(x y)—2— n

& exp (—3IN)

Since H„&0, H is positive too, and HQ =0.The operator
H is the renormalized Hamiltonian. A modi6cation of
this construction yields the momentum operator I'. A
suitable choice of g ensures that both H and I' are
self adjoint.

In summary, the construction has proceeded sche-

matically as follows:

converges exponentially to zero. It is in this manner
that the vacuum for the (@')& theory converges to zero.
We cannot use this answer. However, Wightman func-
tions do converge. For example,

ren =

to„(m.(f))=(0„,vr(f)0„) (x,t}

=
i

Qo, ~(f)+ f(x) dx Qo
ii

Using the convergence of Wightman functions, we
construct the physical Hilbert space K„ for the
(P') 2 theory.

On the physical Hilbert space BC„, we construct a
global Hamiltonian H. We arrive at H, a limit of the
approximate H„'s, by studying a limit of Wightman
functions.

Recall that

We start from a formal Lagrangian 8 and construct a
cutoG, but locally correct, Hamiltonian H„. Using B„,
we branch out in two directions. On the one hand, we
construct the correct local field P(x, t) and the bounded
functions of the field I:.On the other hand we prove
that H„has a (unique) vacuum vector Q„which give
rise to vacuum expectation values or„. Combining the
local functions g and the vacuum expectation values

co„, we pass to the limit e~~ in order to construct the
physical Hilbert space K„„.On X„we have the self-

adjoint operators H and P.
We would lik.e to determine more about the spectrum

of H and the S matrix in the (P4) & theory.

IV. THE FUTURE

The (p') 2 theory described fits into the spectrum of

A(t) = exp (iH„t)A(0) exp (—iH„t), models illustrated by the "field-theory tree, " Fig. 2.
The difhculties of constructive Geld theory increase with

where A is a local observable associated with a bounded the order of divergence. We chose ($4) ~ because it is the
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(&($) + Q($) pp)2

instance, we can check the predictions of perturbation
theory to see how badly the renormalization constants
diverge. Up to now, all the predictions of perturbation
theory hold. Once we have exact solutions for the
Green's functions or the S-matrix elements, we can
determine whether the Feynman perturbation series is
asymptotic.

We can check for broken symmetries. The vacuum
vector 0 is not known to be unique, and its uniqueness or
nonuniqueness may help to determine whether broken-
symmetry solutions exist.

We can test di6'erent axiom schemes against results
obtained by constructing a model. 'O' We could make
sure, for example, that time translation is given by a
unitary group of operators.

These constructive methods will lead, we hope, to new
techniques for calculations. Meanwhile, we can practice
climbing the field-theory tree.
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