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I. INTRODUCTION

The algebraic formulation of chiral symmetry by
Gell-Mann (1962; 1964) has opened up a new, fertile
field of study in elementary particle physics.f The
postulated local commutation relations for the vector-
and axial-current densities,

L 7o (%), 7 (¥) Jeomvo=[ Fs0* () 3 756 (%) Jeo=vo
= ifapy jo" (%) 6(X—Y),
L7o*(%), 750 () Jeomuo= tfapy Joa? () 8(x—Y),

bring the problem of determining the current matrix
elements into the realm of quantum field theory, with
the accompanying difficulties that arise from multi-

(1.1)

* Supported in part by the U.S. Atomic Energy Commission
under contract AT-(11-1)-1764.

t Permanent address.

T A survey of this field may be found in the two excellent
monographs of Adler and Dashen (1968) and Renner (1968).

particle states. In most calculations, therefore, little use
has been made of the locality of the current commuta-
tors. The content of (1.1) has only been used in inte-
grated form in “Ward-Takahashi identities”* and a
number of approximations have been made.

(i) Ithas generally been assumed that the divergence
of the axial current, when used as the interpolating
field for the pseudoscalar mesons, yields the smoothest
possible off-shell continuation for matrix elements
involving such mesons. In a Lagrangian model, the
relation

3#3su(2) = (const) ¢ (), (1.2)

where ¢(x) is the pion field, certainly satisfies this
condition in lowest-order perturbation theory. We shall
refer to (1.2) as the partially conserved axial-current
condition, or PCAC.{

(ii) The idea of the vector dominance of current
matrix elements] has been implemented by the replace-
ment of the currents by the interpolating fields of vector
mesons (Kroll, Lee, and Zumino, 1967), treated as
stable particles.

(iii) The most important assumption has been the
replacement of the sum over intermediate states of
certain quantum numbers by a sum over a few low-spin,
single-particle states. With this assumption only con-
tact terms (which may be polynomials in some of the
scalar variables) and single-particle pole terms appear
in the calculations.

* See the papers of Schnitzer and Weinberg (1967), Geffen
(1967), Brown and West (1967), Das, Mathur, and Okubo
(1967), Arnowitt, Friedman and Nath (1967), Gerstein and
Schnitzer (1968), and Arnowitt, Friedman, Nath, and Suitor
(1968). A recent discussion of chiral symmetry may be found in
the articles of Dashen (1969) and Dashen and Weinstein (1969).

1 Gell-mann and Levy (1960), Nambu (1960), and Chou
Kuang-Chao (1961) ; Bernstein, Fubini, Gell-Mann, and Thirring

1960).
t Sakurai (1960); Gell-Mann and Zachariasen (1961).

531



532 REviEws oF MopERN Puysics - Jury 1969

A number of people* observed that these techniques
could be more completely represented by appropriately
constructed effective Lagrangians,} with which lowest-
order perturbation calculations, not involving any
closed loops, were to be carried out. The effective
Lagrangian method suffers from the defect that if one
wishes to include more particles, one has to start all
over again. A corresponding advantage is that one is
sure of consistency of the calculations, whatever the
reaction involving the particles included at the start.
Thus in a system involving #’s, p’s, and 4’s one must
simultaneously deal with =, mp, and w4 scattering to
ensure consistency in a current-algebra calculation: this
is automatically satisfied by a Lagrangian. Effective
Lagrangians are also useful models which can be used to
test the particular assumptions made in any more con-
ventional current-algebra calculation. In addition, there
is still a great deal of arbitrariness in the construction
of effective Lagrangians, especially for the case of
SU(3) X.SU(3). This is due partly to the intrinsic
abitrariness of the approach and partly to the experi-
mental uncertainty about the existence and properties
of axial-vector and scalar mesons. The study of these
Lagrangians, therefore, can give us a feeling for the
limitations of the current-algebra approach and an
understanding of the enormous variety of the assump-
tions made and predictions resulting that have recently
been appearing in the literature.

Finally, a word about our references. This is a review
of the use of effective Lagrangians and field algebras for
exploring some of the consequences of current algebra
and PCAC. Consequently, we have made no attempt to
give a complete bibliography for all the work done on
current algebras using non-Lagrangian methods. The
references we do cite are only some of the many excellent
current-algebra and Ward-Takahashi identity treat-
ments of the problems we discuss. They are mentioned
so that the reader can make the connection between
these methods and the use of effective Lagrangians.
For a more complete bibliography in current algebra the
reader is referred to the monographs by Adler and
Dashen (1968) and by Renner (1968) that were
mentioned at the beginning of the Introduction, to the
rapporteur talk by Weinberg (Vienna, 1968), and to
the other references appended in a postbibliographic
note.

The plan of the paper is the following: In Sec. IT we
discuss the Lagrangian formalism, i.e., how currents are
defined so that their integrated densities obey the

* Weinberg (1967); Schwinger (1967); Wess and Zumino
(1967) ; Bardeen and Lee (1968); Lee and Nieh (1968); Cronin
(1967) ; Arnowitt, Friedman, and Nath (1967). Minamikawa and
Miyamoto (1967); Shiozaki (1968); Yamaguchi (1968); and
Sabo (1968).

T Some early papers are Schwinger (1957); Polkinghorne
83:23; ; Gursey (1960; 1961); and Kramer, Rollnik, and Stech

required algebraic properties. In this section we also
discuss the tree-graph approximation and show that the
symmetry of the Lagrangian is maintained by it. In
Sec. III we discuss various ways of implementing chiral
SU(2) XSU(2) for pions. We discuss in some detail a
model containing an isoscalar 0t meson, and show that
in the limit that the mass of this particle goes to infinity,
we obtain a nonlinear realization of the symmetry. The
uniqueness of the nonlinear realization is established,
and the connection with the Goldstone bosons is briefly
discussed. In Sec. IV we discuss the Yang-Mills
Lagrangian and show that its use allows us to construct
a theory in which the currents are proportional to the
spin-1 meson fields. The commutation relations of the
currents are discussed and the Schwinger terms derived.

In Sec. V the Yang-Mills theory, as modified above,
is generalized to satisfy chiral symmetry by the inclusion
of axial-vector mesons. Covariant derivatives for the
scalar and pseudoscalar fields are constructed. These
ideas are used in Sec. VI to construct a Lagrangian
which is then studied in detail. We describe how a
mixing between the pseudoscalar field and the axial-
vector field can be diagonalized, and we derive expres-
sions for the prm and Apm couplings in agreement with
current algebra results. We also show that a nonlinear
realization for the axial field is possible, but not likely.
In Sec. VII the Yang-Mills formalism is generalized to
SU(3) X SU(3). A convenient 3)X3 matrix notation for
octets is introduced. The various ways in which octet
SU(3) symmetry breaking can be introduced into the
theory are discussed. Section VIII generalizes the
developments of Sec. IIT to unitary symmetry. The
different invariants are discussed, as is octet symmetry
breaking. The model is further considered in Sec. IX,
where nonlinear realizations are treated. In Sec. X we
discuss in some detail a Lagrangian containing nonets
of scalar and pseudoscalar mesons interacting with
nonets of vector and axial mesons. Some numerical
results are presented.

In Sec. XI some miscellaneous topics, which could
not be discussed in depth, are briefly touched upon.
They are (i) the question of coupling to photons, (ii)
chiral symmetry for baryons, and (ili) a new way of
obtaining further relations between coupling constants,
due to Weinberg. In the five appendices we discuss
(i) the transformation properties of fields under
SU(2) X SU(2), (ii) the transformation properties of
fields under SU(3) X.SU(3), (iii) our conventions for
calculating decay widths, (iv) the Gell-Mann matrices,
and (v) some mathematical material appropriate to the
nonlinear realizations of transformation groups. The
bibliography includes literature available to us through
May 1969.

II. THE LAGRANGIAN FORMALISM

The equations of motion for a system described by
a Lagrangian density function of certain fields ¢4(x)



and their derivatives

L£=2(pa(x), 0upa(x)) (2.1)

are the Euler-Lagrange equations, which take the form
0,[0£/0(3upa(x) )]=0L/9¢a(x) (2.2)

when the Lagrangian density is of second order in the
derivatives. The labels 4 here refer to internal sym-
metry states such as the ¢-spin state, as well as to the
space-time components if the field is a tensor or a
spinor.

The canonical momentum is defined by

m4(x) =0£/d0(pa(x)).

We shall later treat the fields as operators, and assume
for them the canonical commutation relations

[w4(x), ¢B(y) ]zo=yo= —16p43(x—Yy).

The distinction between covariant and contravariant
indices is irrelevant for the internal-symmetry indices
but is necessary for the spatial indices as we are using
the (1, —1, —1, —1) metric.

The quantity of central interest to us is the current
associated with some internal symmetry. We arrive at
its definition by considering the fields to be altered by an
infinitesimal space-time-dependent gauge transforma-
tion of the form

¢4 (%) —da () +0¢a(x) =¢a(x) +iCapcar(x) pc(x),
(2.5)

(2.3)

(2.4)

so that

Oupa () —0uba (%) +iCancdu(as(x) do(x) ).

The constant C4p¢ depends on the internal variables
(such as 7 spin) alone, as does the function ap(x). Thus
this equation holds for every space-time component of
the field. The change induced in the Lagrangian density
by this transformation is

9L L

= 20a@ T @)

(2.6)

9u0¢4 (%)

9L

= au(m ¢4 (x))

= au(ias (%) Cance(x) ) . (2.7)

0L
3(9ua(x))
Here the equation of motion (2.2) has been used in the
second step. For a constant gauge transformation (ap
independent of x) the inmvariance of the Lagrangian

density implies the existence of a conserved current
defined by

7B (%) = —i[0£/8(9*¢pa (%) YICanche(x). (2.8)
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If the internal indices were separated from the space-
time indices, it would be manifest that in (2.8) the
latter are summed over. The proportionality constant
—1 is determined by consideration of the unitary trans-
formation that implements (2.5). Consider the general-
ized charge Qp defined by

On= [ daji(a), (29)
in which the index B refers to the internal variable
alone. Using (2.3) we may write this in the form

Qz(%9) = —iCunc /

20/=x0

Bx'wA () pe(x').  (2.10)

Hence
[0a(), éo(a)]= —iCaze [ &¥Trt(x),d0(x) el

= —Cppepe(%). (2.11)
From this it follows that the unitary transformation
U= exp [—iap(x)Q5] (2.12)
with infinitesimal ap(x) transforms ¢4(x) as follows:
Ua(x) U™¢pa(x) —iap(x)[Qp, (%) ]
=¢4(x) +iCapcap(x)pc(x). (2.13)

This is just the transformation law postulated in (2.5).

With this definition of the current we may rewrite
(2.7) in the form

88= —ap(x) 047" () —0*ap(x)ju(x)  (2.14)

from which we obtain the important equations (Gell-
Mann and Levy, 1960)

7B () = —9(8£) /9(3*an (%)),
04, B (x) = —3(68) /oan (). (2.15)

The coefficients Capc can be determined from the
commutation relations for the Qp required by the group
property of the unitary transformations U. If the Lie
algebra is characterized by

[Q4, Qs]1=1fa5cQc,

then using (2.10) we have
[0, 051=—CaranCrao [ = [ vy
Xr () g (2), 7(5)9a(3) ]
=i f (@2 CaranCrran® (x) o ()
—CauanCoraam™ () a(x) ]
=ifane —iCuco [ Por oo | (217

(2.16)
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provided that
CuanCnpo—CuenCrag=1ifancCuca.
We may write this in the form

(Ca) un(CB)ne— (CB) un(Ca) ne=1fac(Cc) mq. (2.18)

Thus the Cyan must be chosen to be the M N matrix
element of a matrix representation C4 of the generalized
charges Q4. For example, if the Q4 obey the commuta-
tion relations of SU(2), then

Caan=(T*) un, (219

where the 74 are i-spin matrices. The multiplicity of
possible labels is three here (4=1, 2, 3) and in general
matches the number of generators of the transforma-
tions U (as the Q4 are sometimes called), as can be seen
from (2.12) and (2.13). The indices M and N, on the
other hand, have the multiplicity of the fields under
consideration.

The scattering matrix for a physical system described
by the Lagrangian density (2.1) and the canonical
commutation relations (2.4) can formally be obtained
by writing £ in the form

£ (¢A; a#¢A) = £0+£int,

where £, is the Lagrangian density describing the
system without interaction, and then “computing” the
matrix elements of the operator

(2.20)

o 47
§= 525 [ dne - diaT (@) -+ L) (221)
n=0 7.

The terms in this series are given by the collection of
all Feynman graphs computed according to rules ap-
propriate to the spins of the particles involved and the
vertices that appear in £ins (%) . There are two important
properties of this formal* series solution that should be
noted. The first one has to do with the behavior of the
scattering matrix under a point transformation of the
fields

oa(®) =xa(x)g(x(x));  g(0)=1. (2.22)
As was shown by Chisholm (1961) [see also Kamefuchi,
O’Raifeartaigh, and Salam (1961)7], the scattering
matrix elements, in contrast to the Green’s functions,
are unchanged by such a local transformation that does
not involve the derivatives of the fields. This result may
be viewed as a concrete illustration of the general result
that the scattering matrix, connecting the “in” and
“out” fields, does not specify a uniquelocal interpolating
field (Haag, 1958; Nishijima, 1958; Zimmermann, 1958;
and Borchers, 1960) ; if ¢4(x) is a suitable local inter-
polating field, so is a local function of it.

* The formal character of the expansion should be stressed as
one frequently deals with unrenormalizable theories for which no
real meaning can be ascribed to the series.

The second one has to do with the properties of the
“tree-graph’ approximation (no closed-loop graphs)
to the scattering matrix. As was noted by a number of
authors (Nambu, 1968; Lee and Nieh, 1968; Boulware
and Brown, 1968; and Coleman, Wess, and Zumino,
1969), the ‘‘tree-graph” approximation may be con-
sidered as a first term in a systematic expansion of the
scattering matrix. We outline the argument following
the discussion of Coleman et al. Given a Lagrangian
£(¢) consider

£(o, M= (1/¥) (7). (2.23)

A given connected Feynman diagram can be seen to
have a definite power of the parameter \ associated
with it. Let E be the number of its external lines, I the
number of internal lines, L the number of loops (the
number of internal integrations), ¥V the number of
vertices, and N; (¢=1,2,-++, V) the number of lines
attached to the ith vertex. Since a vertex with N; lines
comes from a term involving N, field operators multi-
plied together, and there is a factor A2 in front of the
Lagrangian, each vertex carries the power N;—2 of the
parameter. Thus the diagram carries a power given by

P= f (N:i—2). (2.24)

Since a line is either an internal line or an external one,

14
> Ni=E+2I. (2.25)
i=1
Thus
P=E+2I-2V. (2.26)
The number of loops is given by
L=1-V+1, (2.27)
so that
P=FE+2L-2. (2.28)

Thus for a given process, characterized by a fixed E,
terms with different numbers of loops carry different
powers of A. The tree graphs, for which L=0, are thus
the lowest order terms in a systematic expansion of
powers of A, If follows from this that invariance proper-
ties of the Lagrangian are maintained by the tree-graph
contributions alone, as is the invariance of the tree-
graph approximation to the scattering matrix under
point transformations. For the latter it is only necessary
to introduce A into the transformation via

da=x48(Mx). (2.29)

Then

Lhg(M), N =1/ Lxg(M)).  (2.30)
Thus the power counting is the same, and a tree graph
is again characterized by

P=E-2. (2.31)



From the equality of the scattering matrices for £(¢
and £'(¢) =L(dg(¢) ) follows the equality of the terms
proportional to NF—2*

A final comment which leads us naturally into the
next section is that if all of the fields ¢4 are independent,
the transformation law (2.5) is a linear one, whereas if
some of the fields are functions of the others, we speak
of a nonlinear realization of the symmetry.

III. CHIRAL SYMMETRY FOR PIONS

The symmetry which will be considered here is one
first proposed by Gell-Mann (1962), namely SU(2) X
SU(2). The transformations are generated by a set of
six generalized charges, Q4 and Q54 (4 =1, 2, 3), which
obey the commutation relations

[04, Q%]=ieancQ°,
[Q4, Os® 1=teancQs°,
[Os*, Qs®]=1eancQC. (3.1)
The nomenclature is related to the commutation rela-
tions

[0.4, Q;{:B] =1e4pcQ+C,

[0+, 0-]=0, (3.2)
obeyed by the operators
QuA=3(Q4=£0:). (3.3)

The construction of Lagrangians which are invariant
under unitary transformations generated by these
operators is made nontrivial by the requirement that
parity be conserved, and

PQAP1=Q_A4, (3.4)

Let us construct some simple invariant Lagrangians
containing the pion field of 4 spin 1. The statement that
the 7 spin of the pion is 1 is equivalent to writing

dpa=—i[apQP, ¢4 ]=epacanpc
=—(axd)a.
This is just the infinitesimal version of
exp (—ia- Q)¢ exp (iw- Q) =¢s[exp (—ie-T) Jpa,

where the T are the 3X3-dimensional i-spin matrices
with (T%)pa= —iexpa. In order to test the invariance
of a Lagrangian, i.e., to see whether

[0, £]=0, (3.6)

we need to know [Qs4, ¢5]. This must be a scalar. A
linear realization involving the pion field alone would

(3.5)

* The parameter % (if one expresses the Lagrangian in now
unfamiliar units!) quite naturally plays the role of A in the ex-
pansion, so that the tree-graph approximation bears a formal
resemblance to the WKB approximation, as noted by Nambu.
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require that
[Q5Aa ¢B]=O: (37)

which is inconsistent with (3.5) and the Jacobi identity

1054, [Os2, 11107, [ 054, dc 1= (054, Qs%], ¢cl.
(3.8)

Thus, to construct a linear realization of the symmetry
known as chiral symmetry, we must introduce other
fields.

The simplest possibility is to introduce a scalar field
o4 carrying 7 spin 1. We then have

d6=—(axa), (3.9)
and we propose that
8'¢a=—i[Bs0s%, pa]=— (B % 68) 4,
d'oa=—(B%)a. (3.10)

It follows from these relations that
8 (P*+ %) =—2p-3%x6—28-3xdp=0. (3.11)

Thus ¢+ ¢ is a chiral invariant and so, for constant
gauge functions, is

5(0u$)2+5(3,0)2 (3.12)
Thus a satisfactory Lagrangian would be
£=3(8,8)*+3(8,0)— b ¢+ &)
HIN@H ) (3.13)

to which we could also add any ever function of the
pseudoscalar invariant ¢- é.
For space-time-dependent gauge functions we have

0L=—0,0+0*a X $p—9,6-0*a X ¢ (3.14)
and
L= —0,p+0"3 X 6—9,6-0"3 X b, (3.15)
from which we can determine the currents
ju= ‘b X an‘b_}" 6 %X 9,4,
Jou=6 X 9,p+ P %9, 8. (3.16)

If we require these currents to have the same CP
(or GP) transformation properties, then the ¢ must be
an even G-parity field. Such a ¢ (with its “abnormal”
charge conjunction properties) could not couple to two
pions (statistics) or to three pions (G parity). Also
since the G parity of the NN system with .S, orbital
angular momentum L, and 7 spin T is (—1)5++7  there
can be no coupling of the ¢ to a T'=1 3P state. Such a
particle would be, to say the least, difficult to produce.
If the ¢ had odd G parity, its simplest decay would be
into five pions (¢-+3m because of spin and parity), but
it could couple to nucleons. The axial current in this
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case would be a second class current (Weinberg, 1958)
and with CP transformation properties opposite to the
usual axial current could lead to CP violation (Maiani,
1968). These speculations are not really within the
scope of this review, and we continue by considering
an alternate possibility, that of including an 7-spin-0
scalar field o(x). We require that

¥'$=0o,
d'o=—B-b.

[This implies that we are dealing with a (3, 3) repre-
sentation of SU(2)XSU(2). See Appendix A for a
discussion of this.] Again ¢?}o® can be seen to be
invariant, and a chiral-invariant Lagrangian is

3(0,0)5(0u0) =3 (§0?) AN (@0 .
(3.18)

(3.17)

The o can couple to any even number of pions* as well
as to baryons and is a perfectly acceptable particle. It
can also couple to the vacuum, i.e., it can have a non-
vanishing vacuum expectation value without violating
Lorentz invariance, parity or G parity. Such a non-
vanishing vacuum expectation value can, of course, only
arise when chiral symmetry is broken, since of the fields
(o, ) that transform among themselves, one is singled
out. We shall see that if the symmetry is broken by a
term of the form

"CSB =f1rm1r2o'y (3.19)

then necessarily (o )<0. The above choice of symmetry
breaking is particularly interesting to us because from

' Lsp= —famaB (3.20)
it follows that
04 Jsu=frm 2. (3.21)
This, however, is just the PCAC condition referred to
in the Introduction. With this choice of symmetry
breaking, the total Lagrangian (3.18)+(3.19) can be
treated in a conventional way, except for the fact that
the term linear in o leads to “tadpole graphs” (Fig. 1).}
To eliminate these graphs we write

o(x) = (0(x) Joto'(x) =00+0' ()

and determine oy from the condition that terms linear
in ¢’ disappear from the Lagrangian. With our Lagrang-
ian this leads to the condition

- #2a0+ x("()a_l"'fﬂ’n‘lr =0.

The coefficients of —%¢? and —3%¢? may be identified

(3.22)

(3.23)

* Only if additional symmetry-breaking terms are added.
( t Tadpole graphs are discussed by Coleman and Glashow
1964) .

as the squares of the masses so that
M= —A\o¢?,
(3.24)

Note that A may be expressed in terms of f, and the
masses, A= (m.2—m.?)/2f;2. Also, m2—3m2i=—2u,
which implies p?<0 if the ¢ is massive. Combining
(3.24) with (3.23) we find that

mo2= u— 3N\

(3.25)

Thus symmetry breaking introduces a o mass splitting
absent in the symmetric Lagrangian. One may use this
Lagrangian to calculate wm scattering in the tree-graph
approximation. The graphs that contribute are shown
in Fig. 2, and the amplitude is given by*

¢70=f1r-

1 AN, )
T. af= o, 2 2
¥8a8 (Zn)s [5 5576(%2_5 42X ) Oay0ps
aNf,2 a2
e F N +2x)] , (3.26)
meE—t meE—u
so that the predicted scattering lengths aref
11 1203, 8)\2f,,2)
= — —[10)
= T6r ,,( + m,2—4m,,2+ m?2 /)’
11 8)\2]',,2)
= — —{d+ —]. 3.27
“= Tor m,,( me (3-27)

Let us now turn to the possibility of a nonlinear
realization in which we do not admit the existence of
fields other than that of the pion (Bardeen and Lee,
1968; Schwinger, 1968; Weinberg, 1968). The most
general form for §’¢ is

¥o=0/(4")+ (8- $)f2(¢?) (3.28)
or, equivalently,
[Os*, ¢ ]=18k f($*) +itndr f2(§?).  (3.29)

There is a relation between the functions f; and f, that
follows from the Jacobi identity (3.8), which takes the
form

[8w') b Jo=—(B % @) x . (3.30)

After some simple algebraic manipulations one finds

that the relation

14-2f1(%) [dfi (%) /dx ]+ 2xf2(%) [dfi(x) /dx]
—fi(#)f2(x) =0,

* It is easily checked that when one of the pion four-momenta
vanishes, so that s=t=u#=m,2, the amplitude goes to zero as
required by the Adler (1965) condition.

T We use the normalization of states (p’| p)=2p,0(p—p’) as
in Gasiorowicz (1966). The scattering amplitude f(W, 0) is
related to T by f=—(8x%) T/W, where W is the center-of-mass
total energy. We also use 8.58y5=3Po; Oaydgs= P2+ P1+ Po;
8asdgy= Pa— P1+ P,, where the P; are i-spin projection operators.

(3.31)



where x= ¢?, must be satisfied. Thus, given one of the
functions we can always find the other. In the special
case that

fo(x)=0 (3.32)
the differential equation has the simple solution
filw) =L f2(0) —x ]2 (3.33)

This is, in fact, the most general case because if f(x) 0,
then it is always possible to find a new field = related
to ¢ by

b=mg(=?) (3.34)
in terms of which the Jacobi identity is satisfied with
the form

&' m=Bf3(=?). (3.35)

Since

8 o= Bf1(x) +=(6* =) g2 () fa(x)
=08"mg(y) +2=¢'(y) (m-8'x),

where the prime denotes differentiation with respect to
y==?, it follows that

(Fy)g) =f(x); 20 (y) =gy felx). (3.36)
From (3.34) we have
x=3g*(y),
so that
dg _ £*(y) (dg/dx)
dy  1—2yg(dg/dx)’
From (3.36) and (3.31) we have
fl®) _dg 1 14dfi(s)/de
flx) T dyg(y)  fi2(x) —aldfi¥(x) /dx]”
Hence
g(y) =c[a+f2(x) J¥%;
ie.,
=*=£(0) (¢*/{$*+[ £1($) I*}), (3.37)

so that in a power-series expansion =?= 2 ---.
The case fo=0is equivalent to the ¢ model considered
earlier, with the proviso that ¢(«) is not an independent

o

Fi16. 1. A typical tadpole graph.
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field, but satisfies
o?(x) + ¢ (x) =f.2.

We have set f1(0) = f,. This guarantees the correct form
for the pion mass term in (3.44) below. This is the non-
linear model of Gell-Mann and Levy (1960). The most
general Lagrangian containing no more than two

(3.38)

derivatives is
£=3(0,9)*+3(8u0)?,

since o?+ ¢? is not merely a chiral-invariant operator but
is actually a numerical constant. With this Lagrangian
the currents turn out to be

Ju= x 9,
Jsu= $duo— 00,
It is interesting to notice that
Jur 3o 354 = *(8u0) 2— ($+ 9,d) >+ $*(0,0)?
+0%(9u$)*—200,0($+949)
= (¢*+0?) ((9u9)*+ (340)%)
=2f28.

(3.39)

(3.40)

(3.41)

More generally, a simple calculation of the energy
momentum tensor yields*

Ty,= [6£/a (a"‘l’) ] *0yd— gL
=( 1/f1r2) Ej#' ot Joue oo — %g;w(ja * jotJsas 35%) :l
(3.42)

Let us now continue by introducing symmetry

breaking in the form
Lsp=mfro.

(3.43)

This implies the PCAC condition (3.21). In terms of
the. pion field the total Lagrangian reads

£=3(0u9)*+3L($+0u9) Y/ (f— &) J+fem2(f:2— %) 12
= %(an‘b)z—%mwzq)z'*‘ (l/szz) ((])'0,,(1))2

— (m2/8f7) (¢7)7++--. (3.44)

* This form appears in the current model of Sugawara (1968).
Because the Schwinger terms are not ¢ numbers, however, the
model discussed above has a different structure. See also Sommer-
field (1968).
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The terms quartic in the meson field may be used to
calculate the pion—pion scattering amplitude (Lee and
Nieh, 1968)

T(?% Y, P3) 6: PI; o, P2) ﬁ) =[1/(27r)6](1/fﬂ'2)
X [Bapdys (152 —5) ~+ Bary Og5 (122 —1) +Basdpy (M2 —u) ].

(3.45)
From this one finds the scattering lengths
ay=(7/16m) (m:/f:?),
ay=—(1/8x) (m-/f*) (3.46)

in agreement with those obtained by Weinberg (1966)
using current algebra, PCAC, and smoothness condi-
tions which in effect correspond to those implied by
restricting the number of derivatives that appear in the
Lagrangian.

It has been observed by Weinberg (1967) [see also
Bardeen and Lee (1969) ] that the scattering matrix of
the nonlinear realization may be obtained from that of
the linear ¢ model if the mass of the ¢ is allowed to
become very large. The limit m,2—c is obtained if
ut——o and A—>—o such that m,? remains finite
(3.24). In that limit

)\/mf _% 1"23
p/md——%, (3.47)
and
(md/fx)* s
Tses = Gy {M‘Sv-ﬁ[_m,z_ (1= 5z

1 Mgl —S$
= ——-—(21r)6 [6‘15675(—————'&2 )—}— .- ] . (3.48)
This is just the result obtained in Eq. (3.45) above.
One may in fact show that the Lagrangian (3.18) goes
over into (3.39) in that limit, although the proof,
strictly speaking, only holds in the tree-graph approx-
imation. If in the equation of motion for the ¢ field

Oo= —plo+No (a4 $?) (3.49)

one takes the limit Axsp?/f,2— 0, then (3.38) necessarily
results, provided the momenta are small compared with
the o mass. If there are closed loops, one integrates over
the momenta and the limits become very delicate.

The three models discussed in this section show dif-
ferent ways in which chiral symmetry can be satisfied.
The symmetry requirement that for the Hamiltonian H

[0, H]=0 (3.50)

implies that for a discrete state, such as the one-pion
state | p, @),
HQs*| p, a)=Qs'H | p, a)=wp(0s* | p, a); (3.51)

i.e., the state Qs?| p,a) must be a discrete positive
parity state, unless Qs*| p, a)=0. If ¢, .+ denotes the
creation operator for the state | p, a) so that

I'p,a)=¢pat]0),
Q5i l P, a’>=[Q5i; ¢pya+:] } 0):

provided the vacuum is a unique invariant state for
which

then

Qs*| 0)=0. (3.52)

In the first model
[0, ¢p,a" 1=1€iarop it (3.53)

In this case we have genuine parity doublets; the ¢ is

degenerate in mass with the pion. The commutation

relation (3.53) yields i-spin 1 for the state Qs*| p, a).

If there were an 4-spin-2 component, then a subsequent

application of Qs would yield an 4-spin-2 pion, degener-

ate with the ordinary pion, and this is not acceptable.
In the second model

[Q5i1 p-a+] = isaiﬂp+-

Here the neutral ¢ meson, degenerate in mass with the
pion triplet, in effect acts as a parity partner for all of
them.

In the nonlinear model o(x) is just a shorthand
notation for

o (%) =fr— (1/2fs) $*(x) — (1/8f:%) ($*(x) )=+« +.
(3.54)

Thus*
Qs*| p, @)=18ai05™ | 0)

yields on the right-hand side a state containing one,
two, - pairs of pions, whose total energy and momen-
tum are (wp, p). This is only possible if the pions are
massless. Indeed, the chiral symmetric Lagrangian

=3(00) +1(000)?

does not contain a pion mass term. The pion mass arises
as a result of symmetry breaking. Once there is sym-
metry breaking, then in the last two models

(o () Yo=0070.

(3.55)

(3.56)
This implies that (3.52) can no longer be true since

(0 I [Qﬁi; p,a+] I 0>='L.5ai0'0- (3.57)

* Here op* stands for the p-Fourier component of the negative-
frequency part of the operator o (x).



There is nothing pathological about this, since d,js*7#%0
implies that Qs’ is no longer a constant of the motion.
The definition of ¢(x) in (3.54) for the nonlinear model
implies that in this case, even without an explicit
symmetry-breaking term in the Lagrangian,

05| 0)520.

This comes about because oo=f,%0 in (3.57). We
speak of this as “spontaneous symmetry breaking” and
it has been shown (Goldstone, 1961; Goldstone, Salam,
and Weinberg, 1962; Bludman and Klein, 1963) that
in many situations such a spontaneous symmetry
breakdown is accompanied by the appearance of
massless particles, the “Goldstone bosons.” [ This point
of view, which in the symmetry limit identifies pions as
massless Goldstone bosons is originally due to Nambu
and collaborators (Nambu and Jona-Lasinio, 1961;
Nambu and Lurie, 1962) and has recently been stressed
by Dashen (1969). For a recent review and bibliog-
raphy, see Kibble (1967).] In the real-c model, too,
spontaneous symmetry breaking can occur. Without
the symmetry-breaking ‘“driving term,” i.e., with
f==0, the condition that eliminates tadpoles, Eq.
(3.23) reads

(3.58)

0'0()\0‘02"“#2) =0. (3.59)

The nontrivial solution gives ¢p#0 and, by (3.24),
yields massless pions.*

IV. VECTOR MESONS AND FIELD ALGEBRA

The inclusion of vector mesons in a Lagrangian
enormously increases the number of possible couplings
and hence the number of arbitrary constants in the
theory. A very powerful restriction is provided by the
requirement that the current be proportional to the
vector-meson field (Kroll, Lee, and Zumino, 1967).
This is the most direct way of implementing the experi-
mentally well-supported idea of vector-meson domin-
ance of the current matrix elementst (Sakurai, 1960;
Gell-Mann and Zachariasen, 1961). To see how this
restriction works, we note that ordinarily an 4-spin-1
vector meson would transform according to

dou(x) = — e x gu(x). (4.1)
Consequently
5(6;49;»—6119“) =—aX (a;t@v—al'@u)
—(Ouexg—dyaxg), (42)

so that for the conventional kinetic-energy term of the

* In arecent paper, B. Lee (1969) has discussed the renormaliza-
tion of the linear o model and shown that this feature persists
in higher orders.

1 For a recent review of the experimental situation, see Joos
(1967). The paper of Kroll, Lee, and Zumino (1967) contains a
detailed bibliography on vector meson dominance.
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Lagrangian, —%(9.0,—9,0.)? we have
0Lkin=0 @ X g, (34" —0"0*). (4.3)
This leads to
‘ ju= —g' % (8u0v—9,04) (4.4)

which is not what we want.

To get the field-current proportionality (hereafter
called field algebra) we recall the work of Yang and
Mills (1954) [see also Utiyama (1956); Bludman
(1955)], who explored the question of constructing
theories in which the notion of space-time-dependent
gauges is extended to i spin. [See also Glashow and
Gell-Mann (1961) for a generalization to other non-
abelian gauge theories.] They showed that if the trans-
formation law for the vector field is written as*

30u(%) = — @ % g,(x) + (1/70) du e, (4.5)
then the field f,,(x), defined by
f;w(x) = an@v(x) —avgu(x) +709ﬂ(x) x Qr(x) P (46)

can easily be seen to transform under (4.5) according to

8f,(x)=—axf,(x). 4.7)
Consequently with
Lo=—1f, -, (4.8)
we have
5£0=%f,w' axfr=0. (49)
If to this totally invariant term we add
L1="3mo’ g 0, (4.10)
we see that
d&1=me*gu[— @ x ¢+ (1/70) 0% ]
= (me?/ 7o) gu* 0+ @ (4.11)
from which it follows that (Lee and Zumino, 1967)
ju=— (md*/70) ou- (4.12)

We now study the canonical commutation relations and
their implication for the commutation relations among
the currents. We start with

L= —ifp o +imdou o*+La(0).  (4.13)
The momentum conjugate to g, is given by
7 (%) =0£/9 (300, (x) )= — (%), (4.14)
so that
7(x) =0,
wt(x) = — f0%(x) = f9(x). (4.15)

* The Jacobi identity for i-spin rotations acting on a field can
be written as [0a, 8 ]x= —daxsx and for a vector field, because
of the distributive properties of the derivative, (4.5) as well as
(4.1) satisfy the condition.
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The canonical commutation relations are

['"'ai(x) » i () Jeomyo= —186;6(x~y). (4.16)

In order to calculate the equal time commutators
among the currents we must express pq in terms of the
m.'. The equation of motion is

—G“f‘“'= mO29"—’Y()f“" x 9,,—*—682/69.,. (417)
If we set »=0 we get
—9:f0=mg?e"—~of™ X p; 4 (3L2/300) ;
ie.,
. Y0 .1 98
0=__ai b — 0 X W— — — ., 4.18
¢ 'm02 = m02 ¢ = 'm02 690 ( )

In the last term we shall only consider those forms of
£, in which the only dependence on g, is through terms
like

3 (uxt+vo0u X %)%
Thus,

9L2/300="0% % (dox+v000 X %) ="r0x X [0£5/3(d0x) 1;

i.e., the last term in (4.18) only involves the fields x
and their conjugate momenta, which commute with p;
and #t. We may thus ignore the last term in calculating
the commutation relation,

Lo (%), 6 (9) Jeomyo=[— (1/m¢?) 'm0 ()
- (70/m02> eamnpmi(x) Win(x) ’ ij(y)]
= — (1/m?) 3*(— 18,7040 (x—Y) )
- (70/7%02) eamnpmi(x) (—’L5z’5nb5(x—Y) )
= (1/m¢") 82075 (X—Yy)
+ (tv0/M0?) Camppm®(%) 6(x—¥). (4.19)
Multiplication by (#5e%/v0)? yields [Lee, Weinberg, and
Zumino (1967) ]
L72(), 76" () Joomyo= 1€ate jo* (%) 6(X—Y)
+ (im?/ve?) da0*6(x—y). (4.20)
The second term is a c¢-number “Schwinger term”
(Schwinger, 1959; Goto and Imamura, 1955). The
existence of such terms is required on very general
grounds, but their form is usually not known or not
very well defined. It is one of the attractions of field
algebra that the Schwinger terms are well defined.
Schwinger terms have been calculated for a renor-
malizable theory by Johnson and Low (1966),
Hamprecht (1967), Polkinghorne (1967), and given a

general discussion by Gross and Jackiw (1967).
It can be easily shown that

L7a2(®), 76°(9) Joomyo=t€ated (X —¥)7 (%) .  (4.21)
It is of course evident that
[jﬂk(x);jbl(y):]:o:yo=0- (4.22)

If we wish to couple the vector mesons to other fields
(e.g., the pion field) and at the same time preserve

field algebra, we cannot include terms like %(d.¢)? in
the Lagrangian, since

8(3(9u9)?)=0"¢+ (—dua x &) (4.23)

leads to additional current terms. If, however, we
consider

Dyd=0ud+v00u X §, (4.24)

we see that

8(Dudp) = =9, xd—axup—vo(ou X (€ x$))
+'YO(”1‘ pe—aXx QIl) xd
Yo
(4.25)

so that the coupling via the “covariant derivative,” as
in the case of £, discussed above, preserves the field-
current proportionality. A useful identity is

[Du, Dy 1= Du(drx+v00s % %) — (u>v)
=8,(dx+v00, X %)
+v00u X (36 +v00y X %) — (ww)
=%ofw X ,

=—axDyd,

(4.26)

valid for all isovector fields .

V. VECTOR MESONS AND CHIRAL SYMMETRY

If chiral symmetry is to be implemented, the triplet
of 4-spin-1 mesons can be supplemented by a triplet of
axial mesons, for which we will also require field—current
proportionality.* We define the fields

V. P =g, ta, (5.1)
where a, are axial-meson fields. With the help of
L= —H(ED) - mE(V2),  (5.2)
we construct
Lo=3F(LM+L,7), (5.3)

a combination which is invariant under reflections.
This Lagrangian, when expressed in terms of g, and a,,
yields

£o=—}(3,0,—vou 7004 X 908, X 2,)*

—%(a#av—arau'}"yo&’p X a,—Yo0y X ap) 2

+imd(ol+as). (5.4)
We introduce the notation
F o =0,0,—0,0ut700x X 051702, X a5,
Gu=0ua,t700u X 8,— 3,8, — V00 X8y,  (5.5)

so that
£o=—1(Fw)?—1(Gw) +3m* (0. 422 . - (5.6)

* This corresponds to assigning the spin-1 mesons to the
reducible representation (1, 0)€p(0, 1) of SU(2) XSU(2).



The gauge transformations now are
dou=—ax gyt (1/70)due,
ba,=—axa,
'ou=—8xa,

'ay=—8 % gut (1/70) 9,8,

and it is easy to show that

(5.7)

&'Fu=—0 %Gy,

3G=—8xF,. (5.8)

Thus the first two terms in £y are invariant, while the
mass term yields

0Lo= (7'102/’)’0) ou0* e,
8'Lo= (me?/v0) 2, 9B,

showing that field algebra is satisfied by both the vector
and the axial currents. Both currents are evidently
conserved and the proportionality constant relating
current to field is the same in both cases. [ This is the
field-algebraic statement of “Weinberg’s Second Sum
Rule,” (Weinberg, 1967).] The current commutation
relations can be obtained from the canonical commuta-
tion relations. For the vector mesons

(5.9)

my*=09L/0(dogr) = —FO*=FH, (5.10)
and for the axial mesons
T4*=09L/9(doar) = — GY%=GM, (5.11)
The equations of motion for the axial field are
—03,G* = F* x a,+v,G*” x g +-mia’, (5.12)
from which we obtain
a0= — mioz dumat— 7—2—2 iyt X 8, — ;—:2 mt g (5.13)

The commutation relations can easily be calculated
with the help of this expression. We limit ourselves to
the remark that the coefficient of drm4* is the same as
in Eq. (4.18) so that the Schwinger terms for the
axial-current commutation relations are the same as
for the vector-current commutators (Weinberg, 1967).
This does not hold for all models. For the ¢ model, for
example, the coefficients of —#9;8(x—y) in [ j2(x),
7591 and [js(%),e*(y)] are dupp—Oad® anP
bathr— 8a50%, respectively.

Let us now turn to the coupling of the vector and
axial mesons to pions (and the ¢ as an independent or
dependent field). With

d0=0; dp=—axd (5.14)

and

Yo=—Bd; &d=0o, (5.15)
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we get

5(du0) =0; §(Dud)=—axD,d. (5.16)
The complication comes in the axial transformation.
We see, for example, that

¥ (3,0) = — 3,8+ o~ B+ dud>-

To compensate for the 3,3 term we need a scalar term
involving a, linearly. The possibility of a,-¢ suggests
itself. We find that

(5.17)

5 (8, 4) = (1/70)8,8+¢—B X gur -+ 2,60 (5.18)
Hence
8 (Qur+v08u* ) = — B (Dup—700a,).  (5.19)
Similarly, a short calculation shows that
& (Dup—vo0a,) =B(duo+voruc §).  (5.20)
Thus, with (Lee and Nieh, 1968)
Aur=0,0+"Yolu" §,
Audp=09,¢+v00u X d—700a,, (5.21)
we find that
8'Dyo=—B+Du,
8 Audp= 040, (5.22)
and thus
2=H(80) HH () = (o) +oe (5.23)

is chiral invariant.

The combination of £, from (5.6) and the above term
give the simplest chiral-invariant Lagrangian. We can,
however, construct other invariant terms which involve
more derivatives. For example, using (5.8) and (5.22)
we can check that

&' (Fu At x A7) =2(8+ 2¢) (G A*)

—28-F,, x oo, (5.24)

where use has been made of the antisymmetry of F,,
and Gy,. Similarly,

' (G A*PL%0) = —B+F,, X AHdANo

~"((.-;'u.u'A”(l)) (H'A”(i)). (525)

Hence
8 (3F e AP x AP+ Gps A*PA’) =0.  (5.26)

We shall actually carry this term along because it
satisfies all the requirements we have imposed. [This
is the counterpart of the x term in Wess and Zumino
(1967) in Sec. V, for example.]

In order to break chiral symmetry in a way which
leads to the PCAC condition we again add

£sg=m,,2fo‘. (5.27)
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The constant f wil! be determined later. It is clear that

9,5+ = mﬁf‘l’ (5.28)

but, as we shall see in the next section, the pion field
will have to be renormalized. It is there that we shall
work out the consequences of the form of

= —1(9u0r—3,0uY00u X 0 +V024 X 2,)?
—1(0u8,— 0,8, +00u X 3 —09, X y)°
me*(gu2+a,2) +3(3u0+v02, §)?
+3(0ub+00 X o =008,
+3x(3u0y—050utY00u X 0sv08s X ) + AkH X A’G
+k(8,2,— 8,8, +7Y00u X & —"00y X &) - A*OA’a

+mHeo, (5.29)

in which we shall also take

(1/200) >4+ - - (5.30)

for convenience. Including real scalar mesons will
change very little.

o=0oto'=09—

VI. COUPLING CONSTANTS IN SU(2)XSU(2)

The predictions of the Lagrangian (5.29) are easily
obtained provided that note be taken of the following
feature:

When =g+’ is inserted into A, then
A, = Dyud—"Y0008u—"00" 2. (6.1)

The square of this contains a cross term of the form
a,-D*$, and this leads to mixing between the axial
meson and the pion as soon as the symmetry is broken.
To get rid of this cross term we introduce a new axial
field A,(x) by means of

ay=A,+£Dud.
The Lagrangian in (5.29) now takes the form
L=— % (fnv+'YOAu xA,+ 'YOEAn % D,o+vo¢Dud X A,
+veE2Dud % Dvd’) -1 1 (DA, — DA+ Eyofw % 4’) 2
+imdel+3md (Au+£Dud)?
+3 (0w’ +v0dp+ Autvobdp- Dudp)?
435 (1 —oo0) Dup—oko’ Dup—v000A . —7v00'A, I
+3x(futvoA, X Ay +votA, x D,
FYtDudp % Ay 708Dy % D)
-L(1—70ko0) Dup —vogoA* — ok’ D g—yo0’ A¥ ]
x [ (1—"ok00) D" —"000A” —vofo’ D" —voo' A”]
-+ K(D,,A,.—— DvAu‘I"'YOEfuv X d))
-[(1—eto0) D dp—yoroA* —~yobo’ D dp—veo A*]
X (070" +v0p* A+t D') +fm’s’.  (6.3)

(6.2)

The cross term A,:D#$ can now be eliminated by a
proper choice of £ It appears in the axial-vector mass
term and in (Aud)% The condition is that

mePE—y000(1—"okoo) =0;

i.e.,
£="000/[me*+ (vo00)*]. (6.4)
The coefficient of 3(D,d)? is now
(1—ok00) *Hme?e2 = me*/[me~+ (voo0)2].  (6.5)

If we now define the renormalized meson field ¢, by

r=27129, (6.6)

then the coefficient of (D,¢,)? will be unity, provided
that

Z=[me+ (vo00) 2]/ mo*. (6.7)

This renormalization of the field brings the kinetic-
energy term into standard form, which is necessary to
allow us to interpret the Fourier components of ¢.(x)
as creation or annihilation operators for properly
normalized one-meson states.

The PCAC condition now reads

*jsu= m,rzle/?(i)rz Iy (6.8)
so that

f=2z-1f,, (6.9)
The pion mass term appears only in ¢’. The coefficient

—%¢.2 is to be m,2 Thus
m’rz—-_- mxzf‘;rzllz/a(l;

ie.,

oo=fZM% (6.10)
Next we consider the coefficient of $A,2 which we call
ma?. We see that

MA2=mO2+ (’)/00'0)2. (611)

The coefficient of 39,2 is the square of the p mass, so
that m¢?=m,? and hence

Z=(ma/m,)>. (6.12)
Note that (6.7) and (6.10) combine to give
Yofat/mpt=1—m,?/ms>. (6.13)
If we set ma=V2m, in Eq. (6.13), we obtain
2yt /mP=1, (6.14)

which is known as the KSFR relation (Kawarabayashi
and Suzuki, 1966; Riazzuddin and Fayazuddin, 1966).
This relation does not follow from our effective Lagrang-
ian which incorporates p dominance, PCAC, and the
current commutation relations. It does seem to hold,
approximalely, using experimentally determined values
for f, and m,? the relation predicts vg/4wr==2.6, a



reasonable, if slightly large, value. Several authors have
obtained the KSFR relation by using an additional
assumption. Sakurai (1966) assumes that the pion-
nucleon scattering length (@;1—as) is given by p exchange.
Wess and Zumino (1967) make the equivalent assump-
tion for their effective Lagrangian involving nucleons.
The same result can be obtained by explaining the «x
scattering lengths by p exchange (Ademollo, 1966). In
all cases the coupling constant v, appears rather than
Yprr ON the mass shell. Brown and Goble (1968) on the
other hand obtain the KSFR relation by <, replacing
vo- They use the current algebra determination of the
P-wave scattering length and use an effective range
approximation to extrapolate the scattering amplitude
to the p resonance. Since v, in effective-Lagrang-
ian models, Brown and Goble’s assumption about the
extrapolation of the P-wave scattering amplitude would
have to be modified when v,-=7%,, because v, has a
dependence on the mass of the p [see Eq. (6.17) below].

We now proceed to calculate the prr and Apw
couplings. The relevant terms in (6.3) are

—1(8,0y— By 0ut 2voEZ12A,, % D402 ZD,pe % D,pr)?
—1(8,A,— 8, A+ 2yt 21?0 ,0, X §y)?
+3(3udrtvo0u X Pr)2
+5x(0u0s—050u) - [Z(1—0k00)?D¥pr X D*r

— ZV2y000(1—otao) (D dr x A’ A% x D',) ].

Upon integrating by parts we find that the term linear
in g, and bilinear in ¢, is

YoOu* (l)r X a”‘br‘*‘ [:%’Yﬁgzz— %KZ< 1 —'YOEG'O) 2]
X 0104 dr X 04y

In the tree-graph approximation for the process p—2mr
we can replace —[Jp. by p?p., where p is the four
momentum of the p. We get*{

Ma2—m.2
‘yp,r,r=‘yo[1—%P2(A—‘—f‘ —

ma’m, pz

2 1
il ——-2)] . (6.15)
Yo ™4
On the mass shell

ma2—m2 1 xkm?m,?
'prwz'YO(l'"_"’L"}'—'_ﬂ_p )

* The implications of this form for the shape of electromag-
netically produced p’s have been analyzed by Schwinger (1968)
and by Geffen and Walsh (1968). Since these analyses have been
made, based on the Novosibirsk et+e —n++7~ colliding-beam
data, ORSAY has reported their measurements of this reaction
at the Vienna high-energy conference. They obtained cross
sections which yield somewhat different values for vy, and v,z
Than were obtained by Schwinger or Geffen and Walsh. Con-
sequently, the experimental situation is as yet unresolved.

This is in agreement with the effective Lagrangian results of
Wess and Zumino (1967) and the current-algebra calculations of
Schnitzer and Weinberg (1967), Brown and West (1968),
Armowitt, Friedman, and Nath (1967), and others.

. Gasiorowicz aNp D. A. GEFreN Effective Lagrangians

543

whereas for p?=0 we get
(6.17)

a result that is required in order to obtain the correct
normalization of the matrix element of the i-spin
current between two pion states with zero momentum
transfer.

The terms linear in A,, g, and ¢, can similarly be
obtained. We leave out some of the algebra and just
write the resulting coupling:

— Y22 g A* X
— kZ Mg (1—v000f) [ gu- A* X §,
+ (6,;9,,—-&9,,) -0*A, x ‘I’?’]

On the mass shell the effective-Lagrangian term is

m 2\1/2 Km, 2
£Apf='yomp(1— J}) (1+ > )PH'A" X &r
ma Yo

Yorr =70,

(6.18)

2\1/2 2
o (1‘ ﬂ) C B u0) A X . (6.19)
mp ma® Yo
The first term is an S-wave coupling of the form
m2\V/2 .2
70m,,(1— —"—é) <1+ —L)e,,-e,,, (6.20)
ma Yo

and the second term includes both S- and D-wave
couplings of the form

2\1/2 2
_ 2(1-%) Do (- Qen-ep—preaQ-e), (6.21)

Yo
where Q is the four momentum of the 4. The calcula-
tion of the decay rates is discussed in Appendix C.

In conclusion we may ask whether chiral invariance,
except for the PCAC symmetry-breaking term, can be
maintained without the existence of an axial field. We
proceed as in our discussion of the o field and try

2,=f10u X ¢+ /20,0, (6.22)

where f; and f; are assumed to be functions of ¢? alone.
Familiar manipulations show that with

fi=1/o,  fi=1/w, (6.23)
the Jacobi identity is satisfied, so that
a,= (1/700) (3up+voeu X §) = (1/700) Dup.  (6.24)
It is also possible to see this by noting that
&L(1/7v00) D= (1/70)0,8—B x g,  (6.25)

and this is just the transformation law for the axial
field. With (6.24) and using 09,0+ ¢-9,$=0, we see
that in this case

Abp=0;  Ao=0. (6.26)
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Thus the original Lagrangian (6.3) becomes

em it L D)
== g\t o Db x Do

1/1 1 1 2
- "1 = fu X ¢+0y — Dyop—9, — Dy
7 Yoo Yoo

+ m,,’[g,,—}— s (Dud) ]+m,,za (6.27)

Note that there is no « term. The following results
emerge after some simple calculations:

(1) The coefficient of %(34¢-)? can be made unity if
the renormalized meson field is defined by
or=| m,/v000 | $- (6.28)

(ii) The PCAC condition allows us to make the
identification

T=fe(vooo/my) (6.29)

(iii) The requirement that the coefficient of —3¢,?
be m,* implies that

Jroo= (ma/v0)*.

The only quantity of interest, the pmr coupling con-
stant, is obtained from

YoL o br X 04 (1/2m,%) O gu* or X 94 ],

which on the mass shell leads to the relation vprr/v0=1%,
which is in disagreement with experiment. We are thus
led to the conclusion that within the framework of the
effective Lagrangian approach, a real axial meson with
T=1is required.

(6.30)

(6.31)

VII. TRANSFORMATION PROPERTIES UNDER
SU(3)XSU(3)

A straightforward generalization (Glashow and
Gell-Mann, 1961) of (5.5) suggests the following field
quantities:

=anVui—"6vVui+'YO fi:ik( VMjVVk+ @#Javk) (71)

and

G = 0,8, —0,@u 40 fis(V,2QF—V,iQF), (71.2)
where the f;; are the structure constants of SU(3) as
defined by Gell-Mann (1962). These are listed in
Appendix D together with some other relations of

interest in SU(3). With the variations
6Vui= (1/')'0) auai_ iikajVMky

5@“1. = '_f ijkaj@nk, ( 7'3)

and the use of the identity*

Siemn fiit— fromg fink= fom friny (7.4)
we can show that
0F u'= —fijo’Fu*,
0G = —fijadG,,F. (7.5)

Since foi;=0 it follows that the ninth vector and axial
mesons are completely decoupled and only undergo the
trivial gauge transformation. For the axial transforma-
tions we take

'V, i=—fiuBQF (7.6)
and
’GZ,, (1/70) 6,,8‘——fukBJV k (77)
This leads to
o'F, I"‘z" _f iikﬁjGuvk;
IG;wt= _fijkﬂjFuvk- (78)

It follows that F,‘F#¢ and G,'G*? are separately
invariant under the vector transformations, while it is
only the combinations

—1(Fw'FitG'Gr) (7.9)
and
Im2 (V. VFE4@,50H) (7.10)

that are invariant under chiral transformations, with
the latter only invariant under constant gauge trans-
formations. The sum of the two terms yields a chiral-
invariant Lagrangian with the currents salisfying the
field algebra.

Before continuing with the very convenient 3X3
matrix formalism and the transformation of the spin-0
mesons, let us briefly discuss symmetry breaking for
SU(3) alone. We shall introduce oclet breaking in the
form

L= _Z uy (5,,—{-\/35(13”)]("”

+3me Vi (8 V3¢ dsij) V9,  (7.11)
with £ and ¢ giving the magnitude of the symmetry
breaking in the two terms. Terms with fs;; are excluded
by symmetry. For the d;j, see Appendix D. For present
purposes we shall write this Lagrangian by introducing
an 8X8 (or 9X9) matrix Dg defined by

(Dg) ij= dsij- (7.12)

Then
L= —ifwT (1-4V3EDs) for+-3me VT (14-V3E D) V'
(7.13)

* This identity and others we shall use later follow from one of
the following:

[4,[B, C11+[B,[C, 411+[C, [4, B]]=0,
{C,[4, B]}—{4,[B, C1}+[B, {C, 4}]=0,

by replacing 4, B, C by \i, A4, Mk, using the commutation or anti-
commutation relatlons, and multiplying by A and taking traces.
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with f,, and V, forming an eight- (or nine-) component
column vector and f,7, V., forming an eight- (or
nine-) component row vector. The matrix V3D is given
by

(7.14)

&
N
i
I

o

for an octet theory (the boxes refer to rows and columns
labeled 1, 2, 3; 4, 5, 6, 7; 8; respectively), or

(7.15)

for a nonet theory. (By a nonet theory we mean one in
which the ninth vector meson is degenerate in mass with
the octet in the absence of symmetry breaking.) As
noted above, the ninth vector meson does not trans-
form under SU(3) and it is completely decoupled in the
symmetric Lagrangian. For a nonet theory the (8, 0)
submatrix can be diagonalized:

-1 V2 -2 0
o )U< ) oo
V2 0 01

Thus with the appropriate mixing* of the (8, 0) states
the Lagrangian (7.13) now reads

2= =) X (D=1 2 ()

—1(1=28) ( fu®) 2+ 3m(1+-¢) Z (V)2

=0
7
+imE(1—38) 20 (V) Hime(1-2¢) (V)2 (7.17)
=4

To be able to use the conventional commutation
relations we must renormalize the above fields so that
the kinetic energy terms have unit coefficients again.

We thus write

(148 i=0/1,23
Vi=| (1—-%w |V  i=4,5,6,7. (7.18)
(1—2¢)12 1=8

* Mixing was first noted by Glashow (1963) and Sakurai
(1963). The possibility of various kinds of mixing was first
discussed in detail by Coleman and Schnitzer (1964). The most
recent discussion is that of Kroll, Lee, and Zumino (1967) and
Kimmel (1968).
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The current now has the form
14+-¢
2
i B A
Yo
1-2¢
(1+8) (1487
il ICEEICEE DR VANCAD)
Yo
(1-2¢) (1-2)#
and A
7?‘ki=fko". (720)

This implies a change in the nonlinear term in f,,% If
V.i= S, then

flwi: S (anvvi— avvu‘“l‘ ( SfSk/Si)fijkVuvak )= Sifur's
Since we now have

1+¢ & A~
Vi)dees, (7.2
e §0< )2+ (7.21)

£=—1 ;wjfmi_l‘ 3me*

it follows that
(1+£) (145

—orfui=me| (1-3¢)(1=3&)~ |Voit--r (7.22)
(1-2¢) (1=-25)
and therefore
(148 (1+¢)
A 1
Vo= — = [ (1=30) (1=3¢)7 | V-itooe (7.23)
My

(1-28) (1-2¢)~

Thus the commutator

(1+&)2(1+8)
[jok,fmlj=(%)' (1—2¢)2(1—30) [P, V]
(1—28)*(1—2¢)

(7.24)
has Schwinger terms of the form
1+¢
i
%”i 1—1¢ |9.0(x—y). (7.25)
0

1—2¢

Thus if there is symmetry breaking in the mass terms,
the Schwinger terms are #zof invariant under SU(3),
and one cannot obtain a generalization of the Weinberg
sum rules. It is an attractive hypothesis to assume that
£=0 (Oakes and Sakurai, 1967; Kimmel, 1968). One
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consequence of this assumption is, as can be read off
from (7.23), that (Coleman and Schnitzer, 1964)
ml=m=m¢/(14£);
m=mq*/ (1—38);

mg*=mq’/(1—2¢), (7.26)
the Gell-Mann-Okubo mass formula for #»~2 with the
nonet mixing angle (Okubo, 1963) which is satisfied to
within 5%. The w—p mass degeneracy is independent
of the choice of ¢ or £. It follows from our decision to
take the symmetry breaking proportional to ds;.

If the ninth vector meson is split off by the addition
of a term like
— 1o+ 3meBV OV, (7.27)

then the (8, 0) submatrix in (7.11) takes the form
1—¢ V3t 1—¢ o¢

—%fw’ fﬂv._*_%mo?V“T Ve
V2 14« V2§ 148

(7.28)
The two matrices cannot be diagonalized simultane-
ously. The matrices that do diagonalize them are of the

form
cosf sinf
()
—sinf cos@
with tan 20=2V2%/(a+£) for the first matrix and
tan 20=2v2¢'/(B+¢") for the second. The procedure

for dealing with this situation is the following. First we
transform the fields according to

V,)/=U"V,

(7.29)

(7.30)

with U chosen such that

1—¢ V2t A O
U7l U= ;o (7.31)
VIE 14a 0 A

A=143(a—§) +3[ (a+£) 2+ 8£2]V2 are the eigenvalues
of the matrix appearing in the kinetic-energy term in
(7.28). Next, the fields are renormalized by choosing

N2 0
V,,=< )V,/EZWV,/ (7.32)
0 A

so that the kinetic-energy terms have unit coefficient.
The mass matrix appearing with the renormalized fields
now becomes

1-¢ VY
mZ-1 2T UZ-e (7.33)
V2E 148

The eigenvalues of this matrix yield the masses of the
“mixed” vector mesons.

It turns out to be very convenient to work with a
3% 3 matrix formulation of the equations. We define
the matrix V, by

(7.34)
The matrices A; and some of their properties are listed
in Appendix D. Since

Senhe=—(8/2) [\g, M],

dighe= (1/2) {\i, N},
we can write the field strengths in the form
an= aqu—aer- (iVO/\/?) [Vm V.,:]

— (i70/V2)[@y, @] (7.36)

(7.35)

and

Gp=0,Q,—3,Qp— (7:')’0/ ‘/j) [:V,;, @v]

+ (@vo/V2)[Vsy @ul (7.37)
The transformation laws read
V= (1/70) duot (i/V2) (e, V],
3Gu=(i/V2)[e, @u],
V.= (i/V2)[B, @],
¥@u=(1/70) 0,8+ G/ND[B, V], (7.38)

etc. The chiral-invariant Lagrangian (7.9), (7.10) is
seen to be

—1Tr (Fu,F¥+GuGw) +3met Tr (V,VE4-QR.Q4)

(7.39)
when use is made of

Tr )\i)\i= 25” (740)

To construct symmetry-breaking terms like (7.11) we
observe that

Tr (FuhsF®) = 1F,,F»i Tr (Aikg\;)

= dSijFuviF'uyj- (7.41)
We shall construct symmetry-breaking terms somewhat
differently in Sec. IX. We note that a term like (7.27)
can also be written in terms of the F,,. It is given by

—(1/12)a(Tr Fp)24-(1/6) Bmo*(Tr V)2 (7.42)

Let us now turn to the spin-0 fields. We deal with a
set of nine scalar fields ¢; and nine pseudoscalar fields ¢;.
[We are assuming that the mesons belong to the repre-
sentation (3,3)+(3,3) of SU(3)XSU(3). This is
discussed in Appendix B.] For these fields we take the



transformation laws to be

3= — fijnatipr,

doi= —f;jkaja'k, (743)
and
8'bi=dipBio,
6'0’;= —d,','kﬂ,d)k. (744)
In 3X3 matrix notation these have the form
o¢=(1/V2) [, ¢],
do=(3/V2)[a, o], (7.45)
and
6,¢= (1/‘/2) {6) 0'}7
do=—(1/V2) (B, ¢}. (7.46)

As a generalization of Au¢ and Aue in (5.21), we write
Ap=0,b— (3v0/V2) [V, 91— (vo/V2) { @y, 0},
B0 =08y0— (ivo/V2) [Vs, o1+ (v0/V2) { G, ¢}
Thus, for example,
¥ (A) = (1/V2) (9,8, o} + (1/¥2) {B, Oy}
+3vl[B, @J, #1—3(3v0) Vi, {8, 0} ]
+3v6{Cu {8, ¢}}
— (70/V2) {o, (1/70) 8,8+ (i/V2) [8, V. 1}.
Simple manipulations of identities lead to
&' (8u) = (1/V2) {B, uo} — 3 (¥v0) {B, [V, o1}
+370{B, {9, Qul}

(7.47)

= (1/V2) {8, Aus}. (7.48)
Similarly,
& (M) =—(1/V2) {8, Aud}. (7.49)
Consequently,
8 Tr (AupA*p+-AoAra) =0. (7.50)
Thus
3 Tr [(Auw0)*+ (Aup)?] (7.51)

may serve as a chiral-invariant kinetic-energy term for
the spinless mesons.

To construct other invariants it is useful to consider
the quantities

B=o+11¢,
Bi=g¢—i¢. (7.52)
It follows from (7.46) that
&B=(i/v2) {8, B} (7.53)
and :
8'Bt=—(i/V2) {8, BT}. (7.54)
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Hence
&'(BBY)=(i/V2) {8, B} B'—(i/VZ) B{B, B'}
= (4/V2)[B, BB1], (7.55)
and similarly
§'(BYB) = —(i/¥2)[8, B'B]. (7.56)
We can thus immediately see that
8’ Tr BB1=0. (7.57)
Thus
Tr BB'= Tr (o*+¢*+i[¢, o]) = Tr (*+¢%) (7.58)

is a chiral invariant. Similarly, since

8'(BB")*= (i/v2) BB'[8, BBY]+ (i/V2)[8, BBT]BB?
= (i/V2)[B, (BB")?],

we see that
Tr (BBY)2= Tr (o*+¢*—i[o, ¢])2  (7.59)

is a chiral invariant, and so is the even parity part of it,
which has the form

Tr (o*+¢*+ 4022 — 20¢0¢) . (7.60)

Terms like Tr (BBY)* for #>3 can be expressed in
terms of the lower invariants.* Finally, we note that
for transformations that do not involve the ninth meson

Lp= det (c+id)+ det (c—id) (7.61)

is also a chiral invariant (Levy, 1967).}
Symmetry-breaking terms which lead to PCAC are
of the form

Lsp=foootfsos= (1/V2)fo Tr (\eo)

+ (1/72)fs Tr (As0) = Tr (fo). (7.62)
Thus
d'Lsp=—"Tr (fL(1/V2)8, ¢}) =—(1/V2) Tr (B{ 1, &})
(7.63)
and
8&sp= (/V2) Tr (a4, f]), (7.64)
so thatf
a”jyk=f8f8kn0'” (765)
and
*j5u* = ( fodoin+fedsin) ™. (7.66)

* To establish this one may use Burgoyne’s identity (Coleman,
1965) which states that for traceless matrices
Tr(ABCD+ABDC+ACBD+ACDB+ADBC+ADCB)

=Tr (4D) Tr (BC)+ Tr (AB) Tr (CD)

+ Tr (AC) Tr (BD).

t See Appendix B.
} The association of a nonconserved vector current with a
scalar field was first noted by Bernstein and Weinberg (1960).
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We shall see that there are indications that both f, and
fs do not vanish, i.e., there is chiral symmetry breaking
as well as octet SU(3) breaking. All the other f’s must,
of course, vanish if ¢ spin and hypercharge are to remain
good symmetries. We postpone mention of nonlinear

realizations to the next section.

VIII. SPIN-ZERO MESONS IN SU(3)XSU(3)

We begin by considering a chiral-invariant Lagrang-
ian which consists of the kinetic-energy terms

Lxr=% Tr (0,0)*+% Tr (3,4)% (8.1)
a mass term
Lu=—%u* Tr (¢*+7?), (8.2)
and a coupling term of the form
Le=L¢(X, 7, 2), (8.3)
where
X="Tr (¢*+07),
Y="Tr (¢*+¢*+40°¢*—20¢0¢),
Z=det (¢+ip)+det (c—1i¢). (8.4)

We should note the following points:

(a) The presence of Z implies that the 0 component
of the axial current is not conserved and that PCAC is
not satisfied for that current. We shall see in a moment
that this violation is required if the only symmetry-
breaking terms are of the form given in (7.62).

(b) This is still not the most general Lagrangian
involving two derivatives. It is clear from the trans-
formation properties of the fields that the following
combinations are also invariant:

% Tr (8,BB'9*BBt+4-9,BtB3*B*B)
=Tr (8,000*50+93,0p0*dd+ 20,000

+20,040*¢pc— 00,00 d— d,0d*cd)  (8.5)
and
% Tr (8,Bo*B'BB*+0,B19*BB*B)
=Tr {(*+¢?) (0u00*0+0,40*¢)
+[0uo, 3*¢1[¢, ]} (8.6)
If the symmetry breaking enters through
Lsp=Tr (f, o), (8.7

then we have
3#js=[(5)*fot (3) Vfelbr=msfxdr,
0455 =[(3)"*fo— 3 (3)V*fs Jox=mxfudr. (8.8)

The experimental facts that fRfx and m.2<<mx? thus
imply that

F—V2fo. (8.9)

Thus SU(3) symmetry breaking (caused by f;) is of
the same order of magnitude as chiral symmetry
breaking (caused by fs and fy). As was pointed out by
Gell-Mann, Oakes, and Renner (1968), this suggests
that the chain of symmetry violations is more likely
to be

SUB)XSU(3)—>SU(2)XSU(2)—SU(2),
rather than
SU3) XSU3)—SU3)—SU(2).

Let us continue by eliminating the tadpole graphs by
writing

o=3+d (8.9)
with
a 0 O
Z={(o)=f 0 a O (8.10)
0 0 &
and
22=(a+b)Z—abl,
3= (a®+ab+b*)Z—ab(a+d)1. (8.11)

We find that
X=Tr *+Tr¢"?+2 Tro'Z+4+ (2a>+52) (8.12)
and
YV=2a'"4b*+4(a*+ab+8%) Tr Z¢’'—4ab(a+b) Tro’
+4(a+5) Tr Zo’2—4ab Tr ¢"2+4(a+b) Tr Z¢*
—4ab Tr ¢*+2 Tr 0’'26’2—2 Tr ¢Z¢=
+4Tr (2{¢?, o'}) —4 Tr S¢o’¢-+-4 Tr 2o’
+Tr ¢"+Tr ¢*+4 Tr ¢"2¢*—2 Tr o'¢po’p.  (8.13)

Also, using (B.19) we find that, aside from a numerical
factor,

Z=6a?b+6a(a+b) Tr ¢’—6a Tr Z¢’
+3(2a+5) (Tr ¢")2—6 Tr ¢’ Tr Z¢’—3(2a-+5) Tr ¢
+6 Tr 2¢"2—3(2a+5) (Tr ¢)24+6 Tr ¢ Tr Z¢
+3(2a+b) Tr ¢*—6 Tr 2¢?-+ (Tr ¢*)3—3 Tr ¢’ Tr o2
—3Tro’(Tr ¢)2—6 Tr o’¢?+3 Tr o’ Tr ¢

+6Tr¢ Tro'¢p+2 Tre'® (8.14)
With the notation
0Lc(2a+12, 2a*+b%, 6a%h) /dX =L,
AL (2a2+ 82, 2a%+ b, 6a%b) /Y =L,
0L (20402, 2a*+ 08, 6a%b) /0Z=L,,
%Lc (202482, 204+, 6a%0) /0X0Y =L,y etc., (8.15)
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we see that the condition that there be no terms linear
in ¢’ reduces to

Tr fo'—u? Tr o'+ 2L, Tr 0’2
+L,[4(a*+ab+b%) Tr Zo'—4ab(a+d) Tro']

+L.[6a(a+b) Tro'—6a Tr Z¢']=0. (8.16)
If we write
f=uZ+l, (8.17)
we obtain the following equations for # and v:
u—u?+2L,+4(a?+ab+8*) L,—6aL,=0,
v—4ab(a+b) L,+6a(a+b)L.=0. (8.18)

Note that
(&)t (B o= me =2 (a1+9)
=V2a(u?—2L,—4a*L,—6bL,),
3(3) P fs=m*fx=V2[3(a+b)u+v]
—\2}(a+) [
—4(a?—ab+0%) L,—6aL.].
(8.19)

We can also exhibit the mass terms. The terms quad-
ratic in the pseudoscalar fields are given by

— 142 Tr ¢+ L, Tr ¢*
+L,[4(a+b) Tr Z¢p*—4ab Tr $*—2 Tr Z¢pZ¢ ]
+L.[6 Tr ¢ Tr Z¢—6 Tr Z¢*+3(2a+b) Tr ¢?
—3(2a+8) (Tr)?].  (8.20)

The terms quadratic in the scalar fields are somewhat
more complicated:

—3u2 Tr ¢+ L, Tr o2+ L,[4(a+b) Tr 2o
—4ab Tr ¢"242 Tr Z¢'Z¢"]
+L.[6 Tr Z6"2—6 Tr o’ Tr 26’4+ 3(2a+b) Tr o’)?
—3(2a+8) Tr o214+ 2L..(Tr Zo’)?
+8L,,[ (a®+ab+8?) Tr Zo’'—ab(a+b) Tro' P
+18L..[a(a+b) Tre’—a Tr 2o’}

481, Tr 2’ (a*+ab+8%) Tr o’
—ab(a+b) Tr o' J+12L,, Tr Zo’
X[a(a+b) Tro'—a Tr Zd']
+24L,.[ (a®+ab+5?) Tr Zo'—ab(a+b) Tro’]

X[a(a+8) Tro'—a Tr 2o’]. (8.21)

We now observe the following: If £¢ is independent of
Z then the terms quadratic in the meson field appear

(o
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in the form
Tr ¢*= e+ 2¢r t¢s~ +2¢K*¢K +2¢K"¢K“+¢62+¢02
Tr 2¢*=a (¢ +20067)
+1(a+b) (2 *ox~+2¢xdz")

+2a(37 gyt 6712¢g) 24 B[ 37 20— 2(67/%) o I,

Tr Z¢pZ¢=a?(¢r?+ 20 *¢+~) +ab(2¢x *bx~+2¢xr")
+ 202 (3724 671 /2¢pg) >+ B[ 37V 2pg— 2(671/2) s I
(8.22)

The mass terms may be diagonalized by the introduc-
tion of new fields,

= (3) "o (1)1,

ox= (§) V20— (3)*¢s. (8.23)
We now observe that the combination
Gx?+ 2. b+ by (8.24)

appears in all terms, i.e., in the absence of a Z depend-
ence the pions, and one of the isoscalar mesons are
degenerate. This is far from true experimentally, and
we thus see that we must, in effect, abandon PCAC for
the ninth axial current.

If we use (8.22) to work out the pion and K masses
from (8.20), we find that

M=yt~ 2L,—4a2L,—6bL,,
m?=pt—2L,—4(a’—ab+b*) L,—6aL,. (8.25)
Comparison with (8.19) shows that
fr=V2a,
Jfe= (a+0b) V2. (8.26)
Thus the ratio
fe/fr=(a+b)/2a (8.27)

differs from unity if d>£e. This condition is essential,
however, to ensure that mg?s=£m.?.

We shall not bother to study this model further.
Given the masses of the pseudoscalar mesons, m, K, 7,7/,
and the masses of the scalar mesons o, ok, gy, oy (if We
were sure about them) and f, fx we could only deter-
mine 10 of the 12 quantities u?, @, b, Ls,* * *, L., that have
appeared so far. Fixing some of them* and making
models is not really the subject of this paper. Instead,
we shall next turn to the subject of nonlinear realiza-
tions of SU(3) X SU(3).

*If we demand renormalizability we can set Lyz= Lyy=++*
L.;=0. This was done by Levy (1967) and Gasiorowicz and
Geffen (1968). Such a criterion has certainly not played any

role in the development of effective Lagrangians.
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IX. NONLINEAR REALIZATIONS OF SU(3)X SU(3)

In our discussion of chiral symmetry for pions
(Sec. III) we saw that we could arrive at a nonlinear
realization of the symmetry in two ways that turned
out to be equivalent:

(1) We found that the chiral invariant
a*(x) + (%)

could be used to define ¢(x) as a nonlinear function of
the pion field.

(2) We obtained the same result by letting m,—>.

A more systematic approach to the problem has been
developed by Coleman, Wess, and Zumino (1969) and
Isham(1969),* and we shall briefly refer to it in Appen-
dix E. At this stage, however, we shall try to follow the
above procedures in discussing the case of SU(3) X

SU(3).
Let us recall the results from Sec. VII that with
B= ‘7+i¢7

Bt=g—ig, 9.1)

we have
8'BBt=(i/v2)[B, BB'] 9.2)

and

8'BtB=—(i/72)[8, B'B]. (9.3)

1f we now assume that

o= E Cnod™, (94)
n=0
ie., that
Lo, ]1=0, (9.5)
then
B'B= BB, (9.6)
and it follows that
§BBt=0. 9.7)
This implies that we may write
BBt=g?+4¢*=F?I, (9.8)

the analog of (3.38). With this nonlinear relation we
find that X and Y defined in (8.4) are both numerical
constants, so that we have

L£=% Tr (3,0)*+3 Tr (8,9)*+Lc(2)+Tr (fo)  (9.9)
in which we make the replacement
o=FI—(1/2F)¢*— (1/8F%)¢*4-+--.  (9.10)

* The application to SU(3) X SU(3) is discussed by Callan,
Coleman, Wess, and Zumino (1969) and by Bardeen and Lee
(1969), as well as by Isham (1969), Dietz and Honerkamp
(1968), Macfarlane and Weisz (1968), and Macfarlane, Sudbery,
and Weisz (1969).

We see from this expression that

Jh=\gF50k—(1/2\/2F)dklm¢[¢m—"'. (9.11)
In particular
(00)o=V3F, (9.12)
but
(o8 )o=0. (9.13)

The last result implies that in the nonlinear realization
in which no scalar particles exist, b=a; i.e.,

Je=fx. (9.14)

In this model

(9.15)

and
Z=const+6a? Tr o+3a2 Tr ¢*—3a2(Tr ¢)2+ <«

=const—3a2(V3X,)2+ - -. (9.16)

Thus the mass terms come from the term quadratic in
the field in Z and from Tr ( fo), when (9.10) is inserted.
There are three unknown coefficients in the theory:
fo, fs, and the coefficient of the Z term (V2F=fx=f.
and is fixed). When these are evaluated in terms of the
masses of w, K, and °, it turns out that the mass of the
X0 is predicted to lie at 1640 MeV, which is quite
unsatisfactory.

It turns out that another nonlinear realization* of
interest emerges if we look at what happens when we
let some of the parameters go to infinity. If we look at
Egs. (8.20) and (8.21) and introduce the notation

p—=2L=p,
4a’L,=tus?,
6aL,=npr,
b/a=r, (9.17)
we find the following expressions for the masses:
mat=p*(1—E—rm),
mi=pl[1— (1—r+r)—1],
Mox®=pr* (1—3E+mn),
o=l 1= (14747 E+n],

while the masses of the two ¢-spin-0 pseudoscalar

(9.18)

* There are some “uninteresting” realizations. This topic is
thoroughly discussed in Bardeen and Lee (1969).



particles can be obtained by diagonalizing
3ol [1—-5 (1421 =3 (4—1)]
+idul[1—3(24r) 43 (4+2r)1]
+3V2¢spou’[ (P— 1)+ (r—1)5]. (9.19)

Let us now ask what happens when us*>— . If we want
to keep the pion and K masses finite, we must have

1—£(—mrm=0,

1— (1—r+)t—9=0. (9.20)
If 41 this implies that
£=1/(141);  n=r/(1+7). (9.21)

With these values we find that:

(a) The mass m,, of the scalar K remains finite.

(b) The mass of one of the pseudoscalar i-spin-0
particles remains finite while the other goes to infinity.

(c) The mass of the scalar i-spin-1 particle goes to
infinity. The masses of the i-spin-O scalar particles
involves undetermined parameters (Lgs, Lyy,++) and
can be made finite or infinite. If the latter choice is
made, we have a theory in which there exist an octet of
pseudoscalar mesons and a set of scalar K mesons. The
absence of a ninth pseudoscalar meson need not disturb
us: we are, after all, working with SU(3) and not U(3),
and there is no need to connect the ninth meson with
the octet. The scalar K mesons play the role of “Gold-
stone bosons” corresponding to the nonconserved
strangeness changing vector current (Glashow and
Weinberg, 1968). With this choice of parameters we
find

1 1
f=am,? 1 + a(ma2—m, %) 1
r 1
(9.22)
and, as before,
fr=V2a,
fe=V2a[5(147) 1=5(141)fx (9.23)
It follows from (9.22) that
fo= (1/V3) (1—=7) m, 2f x. (9.24)

Hence the coefficient of the scalar field on the right-
hand side of (7.65) is

(1/‘/3‘) (1_7) m¢x2fs45f1=%(1_1’) "tvxsz;

i.e., the scalar K meson (x) decay constant is given by

fe=3(1=n)fx (9.25)
Hence we get, combining (9.23) and (9.25),
fe+fe=ts (9.26)
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It is interesting to compare (9.26) with a result ob-
tained first by Glashow and Weinberg (Glashow and
Weinberg, 1968)* by satisfying two- and three-point-
function Ward-Takahashi identities with meson poles,
including the kappa meson. They found that if the
SU(3)X SU(3) symmetry is broken in the manner
assumed for the Lagrangian discussed here, then the
second-order SU(3) breaking correction to the K.
form factor is given by

1+Q0) = (f2+f—£2) /2fx fr.

For the particular class of effective Lagrangians con-
sidered here so far, with derivative couplings of the form
of Egs. (8.5) and (8.6) omitted, the strangeness chang-
ing vector current defined does not renormalize f, so
long as we restrict ourselves, in the spirit of effective
Lagrangians, to tree graphs. Consequently, we would
obtain f, (0) = 1. Since these effective Lagrangians are
particular models satisfying the assumptions made by
Glashow and Weinberg, (9.27) should also be valid. It
is easy to see that (9.26) is a solution to f,(0)=
(f24+f*—f3) /2 f»=1. More generally, however, as
will be seen in the next section, the addition of the terms
(8.5) and (8.6) and the inclusion of spin-1 fields
introduce the derivative couplings which renormalize
the fields and modify the currents. As a result, f, (0) 1
and Eq. (9.26) is modified. On the other hand, unless
terms with many derivatives are added, our effective
Lagrangians should satisfy Eq. (9.27).

It is worth making a point here about the experi-
mental determination of the value of fx or, more con-
veniently, the ratio fx/fr. One could determine fx
directly from K,, decay provided the axial-vector
Cabibbo angle were known precisely enough. Unfor-
tunately, this angle is not known at present. Until
forced to do otherwise, we can define the axial-vector
Cabibbo angle to be equal to the vector angle. Never-
theless, this angle cannot be precisely determined until
we learn the renormalization effects for the various
semileptonic decay form factors. This is a problem for
the theorist. The best we can do at present is to deter-
mine the Cabibbo angle, using K5 decay, in terms of the
form factor f(0).} This yields the relation based on

(9.27)

* A preliminary, but more extensive discussion of this work
may be found in Glashow (1968). See also Glashow, Schnitzer,
and Weinberg (1967), and Nieh (1967).

1 The cosine of the Cabibbo angle could be determined from
accurate measurements of nonstrangeness changing semileptonic
decays. The cosine is so close to 1, however, that the poorly
known radiative corrections produce large uncertainties in the
angle. Nevertheless, present analyses of the beta decay of O
has led to the value sin §=0.140.01, with a more recent measure-
ment yielding sin §=0.1924:0.01. A value of sin §=0.2 combined
with the most recent average of K3+ decay rates, fixing f, (0)sin 6=
0.22140.003, predicts f4(0) =1.114-0.06. This value for £, (0) is
inconsistent with the models discussed here which favor f,.(0) < 1.
Despite the uncertainties in this method of evaluating 6, unless
-the K3 decay rate is in error, we would be hard pressed to re-
concile the 1O data with a value of £, (0) less than 1 by more than
a few percent.
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a2, Kpo, and K3 decay rates,

fx/fx f+(0) =1.25[1—0.024/1,2(0) ].

A deviation of f4(0) from 1 by 20% only yields a
correction of 1%, to the right-hand side. f,(0) ~0.95

yields*
Je/fr=1.22,(0). (9.28)

Any consistent effective Lagrangian approach to
SU(3)XSU(3) symmetry breaking should predict
values for fx/fr for f1(0) that reasonably satisfy Eq.
(9.28).

In order to calculate matrix elements we may proceed
in one of several ways. One is to calculate the matrix
element with all the scalar mesons present and then
take the appropriate limits

1/(47), o (9.29)

in such a way that the masses that remain finite
approach their experimental value. This approach was
illustrated for the wm scattering length in Sec. III
[Eq. (3.48)]. Another approach is to find an expression
for the fields that represent particles, as in Eq. (9.8),
for example. Such a relation can be obtained by taking
the limit (9.29) in the equation of motion, as was
illustrated in Eq. (3.49). When' this is done for our
Lagrangian (8.1)—(8.4), a horrible implicit equation
for o emerges. It turns out that the relation implied by
that equation can be greatly simplified if a transforma-
tion to a new set of fields is made. The transformation
looks as follows.

If we write the Lagrangian (8.1)-(8.4) in terms of
the fields B and Bt it takes the form

£=1Tr (9,B0*BY)— (s2/2) Tr BB'
+2c(X, 7, Z)+3 Tr [ f(B+B1H] (9.30)

2.
Mmoo,

with
X=Tr (BBY),
Y=Tr (BB'BBY),
Z=det B-}-det B, (9.31)

Now the first nonlinear realization which we considered
satisfied

BBt=B'B=F[ (9.32)

and contained only pseudoscalar fields. A parametriza-
tion that satisfies (9.32) [such as suggested by Chang
and Gursey (1967) and Brown (1967), for example] is

B=Fe®, (9.33)
P=(1/32) 2O NP;
s

where
(9.34)

and the P; are the nine pseudoséalar fields that enter

* The value fg/fsf+(0)=1.28 that has been widely quoted
in the literature was based on an earlier value for the K.5* decay
rate. More recent measurements have increased this rate by 7%.

the theory. (We have the freedom to keep the ninth
pseudoscalar meson or not. Since X and ¥ are numerical
constants, Pp only enters in Z and we can make the
mass of P, whatever we like. This is similar to the
decoupling of the ninth vector meson noted in Sec. VII.)
For the second nonlinear realization Bardeen and Lee
(1969) have shown that the form

B=¢iP¢iSTei8¢iP (9.35)

should be taken. Here, because of the form of Z, only
the strange scalar fields S; (¢=4, 5, 6, 7) remain, and
all eight pseudoscalar fields P; remain. Note that since

BB1=¢iPeiS32eiS¢—iP, (9.36)
it follows that Tr BBt and Tr BBYBB' are numerical
constants. Also, if we ignore the ninth pseudoscalar
meson P, det B is a numerical constant, so that the

Lagrangian becomes, in the absence of terms like Egs.
(8.5) and (8.6),

£=1Tr9,Bo*Bt+3 Tr f(B+B").  (9.37)

X, THE “SUPER LAGRANGIAN”

So far we have discussed effective Lagrangians with
SU(3) XSU(3) symmetry that have been constructed
with either spin-1 or spin-0 fields. In this section we
shall examine the effects of coupling the spin-0 and -1
fields together into a “Super Lagrangian” satisfying
PCAC and the algebra of fields.

We will generalize the SU(2)XSU(2) effective
Lagrangian of Sec. V to SU(3)XSU(3), with the
additional difference that the scalar fields will describe
real OF mesons. There is growing experimental evidence
for 0% resonances, a T=0 ¢ meson with mass around
700 MeV, with the rest of the nonet clustered around
1 GeV. Their existence is still in doubt, but so is that
of some of the axial mesons. Why not, therefore, treat
the 0+ and the 1* mesons on the same footing? Thus in
generalizing Eq. (5.29) to SU(3) X SU(3) we no longer
take o?>+¢? as a ¢ number; we will therefore add
invariant meson—-meson terms of the type discussed in
Sec. VII to £, and, for added flexibility, include the
invariant 0+-0~ interaction terms given by Egs. (8.5)
and (8.6) (with 9, replaced by the chiral-covariant
derivative A,). Next we generalize Eq. (5.26) to
SU(3)XSU(3). To do this, we make use of the simple
chiral transformation properties_of F,,==G,, A*BA*B¥,
and A*BtA’B: :

8 (FutGu) ==£(i/N2)[B, FutGy],
§'ABA*B'= (i/V2)[B, A*BA*B 1],
8 A*BtA’B=— (i/N2)[8, A*Bt, A’B].
Clearly o
- Tr [(Fu+G.) A*BA*BYH-(F,,—G,,) A*B1A*B]

is parity and SU(3) X SU(3) invariant and Hermitian.
Since B=g¢+1i¢, this is easily seen to reduce to (5.26)
for the case of SU(2) X SU(2).

(10.1)



The chiral-invariant Lagrangian tha.t we have con-
structed so far appears as

LTt (P Fo-GuGo) +3mg Tr (V. V44 @,a%)
+3 Tr (AwoAbo+A,pA*P) —3u* Tr (o®+¢%)
+3\[Tr (¢*+02) F+1N Tr [(BB')+(B'B)]
+4m Tr (A.BA*B'BB'+-A,B'A*BB'B)
+%n: Tr (A.BB'A*BB+A,B'BA*B'B)
+ (v0d/2m¢?) Tr [(Fu+G,) A*BA’BY
+ (Fu—Gu,)A*BTA’B].  (10.2)

We have by no means exhausted the possibilities for
adding chiral-invariant terms to £. We could, for
example, add higher powers of the coefficients of u?
and \'.* We must, however, add one additional term, as
we will see in a moment. Since the observations on
symmetry breaking made in Sec. VIII still apply, we
must add to £, the symmetry-breaking terms

£1=Tr (fo)+3ug(det B+det BT)  (10.3)

given in Egs. (7.61) and (7.62). £, leads to PCAC for
eight of the nine axial currents and introduces non-
vanishing vacuum expectation values for o and o3 that
lead to symmetry-breaking effects in £. It is not hard
to see, however, that (10.1)4 (10.2) maintains the
mass degeneracy of the nonstrange vector mesons. The
K* are shifted by contributions from 3 Tr (AcA%s)
analogous to the 4;— p mass splitting seen in SU(2) X
SU(2); this mass shift is interesting and we will come
back to it later. The axial mesons are all shifted by the
mass term arising from § Tr (A,$A#¢). Since the ninth-
vector and axial-vector fields do not transform under
SU(3)XSU(3), as pointed out earlier, we could add
terms like those in Eq. (7.42) to split off the ninth-
vector and axial-vector mesons from the nonet, and
these would be enough to permit a fitting of the spin-1
meson masses since, in fact, m,~m,. Such a procedure
would, however, identify the ¢ meson as a pure unitary
singlet, with the decay ¢—KK occurring purely as a
result of a SU(3) breaking interaction not contained
in our Lagrangian. This is very unattractive, since the
coupling is consistent with the conventional SU(3)
mixing approach.

The conventional SU(3) symmetry-breaking term
Tr (V. AsVE+@,AG*), which is the simple chiral exten-
sion of the mass term in Eq. (7.13), will produce ¢—w
mixing. It has the disadvantage of destroying the
equality of the Schwinger terms in SU(3)XSU(3)
and, more important, is chiral invariant only under
SU(2) XSU(2), so that PCAC is only satisfied by the
pion. A kinetic-energy mixing term Tr (Fu sF*--
G, G*) also violates PCAC for the K and 5 although
it maintains the equality of the Schwinger terms. While

* If one wishes to go to the limiting case of the scalar masses
(other than the o,) going to infinity, such higher powers are
necessary.
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we cannot rule out the possibility that either or both
of these symmetry-br ea.king terms will be necessary, it
is interesting that ¢—w mixing can be obtained W1thout
them by adding the chiral invariant

Tr [(Fu+Gy) (F*+G) BBt
+ (F—Gw) (F»—G»)B'B] (10.4)

to £o0. When gy, o3 acquire nonzero vacuum expectation
values through the addition of £1, BB' and BYB acquire
constant terms which produce, in (10.4), vector and
axial-vector kinefic-energy mixing terms. A chiral-
invariant term like Tr [(V.+@,)(V+*+@*) BB+
(V.—@,) (V#—@*)BtB] which yields mass-mixing
terms after -symmetry breaking, contributes to the
currents, breaking the current—field proportionality.
We see, therefore, that in the effective-Lagrangian
approach, the combined conditions of field~current
proportionality and PCAC for the pseudoscalar meson
octet requires that ¢—w mixing arises in the kinetic-
energy term only (Mitter and Swank, 1968; Gasiorow-
icz and Geffen, 1968, unpublished). The field-current
proportionality, it will be recalled, has the attractive
feature of generating ¢-number Schwinger terms. The
additional term (10.4), which preserves field algebra
and PCAC, yields mixing and hence SU(3) breaking
in the vector-meson nonet, while maintaining the
equality of all the Schwinger terms in SU(3) X.SU(3).
This is a very interesting result and lends support to
the conjecture made by many authors that this equality
was indeed correct.

We can now complete our “Super Lagrangian” by
adding to £ [Eq. (10.2)] and £; [Eq. (10.3)] a final
contribution £, consisting of (10.4) and an additional
kinetic-energy term which breaks V.—Vx(p—w) and
A.— Ax degeneracies:

£=£o+£1+£2 (105)
with
Ly=1%¢ Tr [(Fu+Gw)BB ™+ (F,—G)*B'B]
—5v (Tr F) 2 — 1584 (Tr Gu)2  (10.6)

A similar Lagrangian has been discussed by Mitter and
Swank (1968) who also obtained some of the results
given below. We repeat that the Lagrangian is by no
means unique, as there are many additional terms that
could be added to (10.5), terms that preserve PCAC
and the field algebra; in particular, the meson—meson
part of £ contains only a very special form of £¢ [as
defined in Eq. (8.3)]. Our aim in this section, however,
is not to write the most general Lagrangian, but rather
to provide the techniques and to give some insight into
the problems of SU(3) X.SU(3) in a field algebra.

In what follows we shall outline the steps taken to
obtain the final expressions for the meson masses and
renormalization constants. We shall then discuss the
couplings of the vector mesons to the vector currents
(related to the p, w, ¢~ couplings), and then show
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how the many parameters in the Lagrangian are sur-
prisingly and severely restricted by the requirement
that the particle masses and the value of fx/f~ f1+(0) be
fitted to their experimental values.

As shown earlier, the tadpoles can be eliminated by
introducing new scalar fields ¢, with zero vacuum
expectation values:

e 0 O

o=240'; Z=1 0 a O (10.7)

0 0 d

The relation between f, written in the form #Z4v1,
and 2 is unaffected by the presence of vector mesons
and is therefore the same as obtained for the spin 0
Lagrangian of Sec. VIII. With our choice of the meson—
meson interaction it reads

w= 2 —\(2a2+ %) — N (a2+ab+ %) +2uga,
v=a(a+b) (Nb—2ug). (10.8)

In order to obtain expressions for the masses of the
various particles we must examine the quadratic terms
and the kinetic-energy terms for the various fields.

(1) The quadratic terms in the scalar fields are again
the same as in Sec. VIII. They read*
— 304 (i — 30N+ 2ugb)

—3ox?[u?—N (a*+ab+0%)+2pga]
—3os?[p?— 5N (a—b)2—N (a?+2b%) +3ug(4a—0b) ]
—3o¢ Lt — BN (204D)2-N (202+1?) — $ug (20+0) ]

+%3V20500(a—b) [N (2a+b) +3N (a+b) —pg], (10.9)
where we have written
pit=u2—N\(2a2+5?). (10.10)

Similarly, the terms quadratic in the pseudoscalar fields
are unchanged and have the form

—1¢.2(u2—Na?—2ugb)
—1or?[u2—N (a2 —ab+8%) —2uga]
— 3¢’ — 3N (a*+25) — 3ug(4a—b) ]
— 300’ — 3N (20*+8%) +5ug (2a+0) ]

+3V2¢sdo(a—b) [N (a+0)+ugl  (10.11)

(1= (1/¥2)70(2a0a) ]-

D~ (1/V2)7o{Dus, Z}=| [1—(1/V2)70(2¢a) ]-

[1— (1/v2)ve(2ac) -
[1— (1/V2)v(20e) ]+
[1—(1/V2)vo(a+0)B] [1—(1/V2)yo(a+b)B]:

Before we can find expressions for the spin-0 meson
masses, we must first isolate their kinetic-energy terms
in £ and renormalize the fields. One contribution to the
kinetic energy comes from the coupling to the vector
and axial mesons: the case of such a coupling of 7 to 4;
in SU(2) X SU(2) was treated in Sec. VI. The second
contribution comes from the terms proportional to
and 75 in £o when the substitution (10.7) is made.

(2) Consider first the generalization of Sec. VI, the
elimination of the direct pseudoscalar-axial-vector-
meson couplings for the nonets. We do this by intro-

ducing a new axial-vector field 4,, defined by
A,=—D,¢. (10.12)

The matrix D,¢ (not the transpose) can be defined as
follows: if D,¢ is symbolically denoted by

(10.13)

Do=| - - -],
then
a ar B
D= a+ a B |; (10.14)

ﬁo ﬁ- v

ie., the (11), (12), (21), (22) components of the
matrix are multiplied by «; the (13), (23), (31), (32)
components, by 8; and the (33) component, by 7. The
matrix in (10.14) is the most general form permitted
that preserves ¢-spin and hypercharge invariance. The
chiral-covariant derivative now becomes

8= Dup— (1/V2) 10{ G, o}
=Du— (1/V2)vo{ Ayt D, Z+0'}
=Dup— (1/72) 1o{ Dy, Z}
—(AV2)vfd,, 2}

The first two terms on the right-hand side, which will
contribute to the pseudoscalar kinetic energy, can be
written as

(10.15)

[1—(1/V2)ve(a+0)B]:
[1—(1/V2)vo(a+2)8]-

[1—(1/7V2)vo(2bv) ]-
(10.16)

* We use the notation o,2=0y?+20,+0x- and ox?=20g+0x-~+20k,0k, and similarly for the pseudoscalar, vector, and axial mesons.



The terms in £ that will contribute to the pseudoscalar-
meson kinetic energy after the substitutions (10.7),
(10.12), and (10.15) are

3 Tr AypA*dp+3me Tr @R+ +3m Tr (AupA¢do?)
—1n, Tr (AupoA¥do). (10.17)

The constants @, 8, and v defined in Eq. (10.14) are
determined by the condition that the new fields 4, have
no direct coupling to d,¢, i.e., that coefficients of terms
like 4,%9#¢’ vanish. The proper choice is

SO+ (m—mr)a*]

Moot = 1+f2[1+(771“‘772)02] , (10.18)

_ 3(r+1)f[143m(a*+5*) —n2ab]
"= U@ —mab]’ (1
rf[ 14 (m—mn2)b%] (10.20)

R LA YT iy —y ey
with f=V2vyea/me, r=0/a.

(3) Unlike the case of SU(2)XSU(2), where we
deal with only a T=0 ¢ field, the extension to SU(3) X
SU(3) with nine scalar fields results in a direct coupling
term between the K* field, VX, and the scalar K field
(the kappa meson) ox. This arises from i[V,, o] in
Ay [Eq. (7.47)] when g acquires a nonvanishing
vacuum expectation value. We eliminate this coupling
by defining new vector fields U, by

Vu=U,+ik[Aw’, 27, (10.21)
where

Auo’ = Byo+ (ivo/V2) [V, Z]. (10.22)

Since Z contains only the diagonal matrices Ag and s,
and [ s, \;]=0 unless j=4, 5, 6, 7, only the strangeness
+1 parts of U, differ from V,. In using (10.22) to
eliminate A,o in £, (10.21) must be used to introduce
U, into (10.22). Thus

Ao =By’ + (kvo/V2)[[Awe’, 2], 2]

— (ivo/V2)[U,, Z].  (10.23)
If Ao’ is denoted by the matrix
Agd'=] - , (10.24)
then
0 0 (b—a)
[Al’, Z]= 0 0 (b—a)- (10.25)

(a—b). (a—b)- 0
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Elimination of the A’ U* cross terms from the kinetic-
energy terms

% Tr AyoAbo+3m Tr (Z2A,00%)
+1n Tr (A0ZA%E)  (10.26)

and the vector-meson mass term 3mg* Tr V,V* yields
the expression

_ - (1/V2)vo[1+3m(a®+5?) +n.ab]
1+ 52 (r— 1) 1+-3m(a*+5%)+maab]
(4) Given o, B, v, and «, it is straightforward though

tedious to rewrite £ in terms of the new fields o, 4,,

and U,. In isolating the pseudoscalar and scalar kinetic-

energy terms there is mixing between the 0 and 8

components which can be removed by introducing the

new fields ¢, ¢x, 04, ox’, related to the old fields by the

nonet transformation discussed in Sec. VII, i.e.,

&= (3)"70t (3) ¢,

éx = (3)do— (3) Vs, (10.28)

and similarly for the scalar mesons. The kinetic-energy
terms now turn out to be

14+ (m—mny) a®

14201+ (m—mn2)a?]
1+ 3m(a?+-0%) —mnaab
TG+ DT+ (0 5) = maad]
14+ (m—mny) 8
147214 (m—n2)b*]
for the pseudoscalar mesons, and
3L(Auox) - (Buoy) 21+ (mt-n2) 0]
143 (a?+ %) +-120b

142 (r= 1)L 1+3m(a*+ %) +-n2ab]

+3(Awox'Y[14 (m+n2)82]  (10.30)

for the scalar mesons.
To make the coefficients of the kinetic-energy terms
unity we introduce renormalized fields

b= Zw_llz‘l’m Gr= Zwr_llzan $K =Zox V¢x .

(10.31)

M()2 K

(10.27)

iL(Du$)*+ (Do) ]

+%(Dﬂ¢K) 2

+%(Du¢x)2

(10.29)

+%(AM0-K,) 2

The Zy™, Z,»7Y, etc., are given by the coefficients of
3(Aupr)?, 3(Auor)?, etc., in Egs. (10.29) and (10.30).
With the notation

Pe=14+f 14 (m—n2)a],
PKE 1"‘%(7“*' 1)2f2[1+%’r]1(112+b2)—1720b],
Tx=1+42[1+ (m—n2)b%],

T=143(r— 1) [14-3m(a®+82)+neab], (10.32a)
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these may be rewritten as
Zont=Zo t=T"[14 (m—mn2) a*],
Zsx ' =Tx"[1+3m(a®+b?) —nyab],
Zyx7'=Tx"[ 14 (1 —n2) b*],
Ze = Zo = 14 (b m) @2,
Zox7t=14 () 0%,
Zox =T 1+3m(a*+8%) +neab].  (10.32b)

When the renormalized fields are introduced into (10.9)
and (10.11), we find that the masses are

M= Zgr (a2 —N'a>—2ugh),
mi= Zyx[ > — N (a?—ab+-b?) —2pga],
Mox®= Zox (2®—3N 6>+ 2ugh),
Mox*= Zox[ p®— N (a*+ab+0?) +-2pga], (10.33)

while the masses of the isoscalar spin-0 mesons are
obtained by diagonalizing

30x (2 —Nb%) Zyx+ 56,2 (u?—N'a*+2ugh) Zy,

+2V2uga(ZonZox) Vdxd, (10.34)
and
16x2 (u?—2N02—3N'b2) Zox
+36,2 (ulP—4Na?— 3N a?—2ugh) Z.,
—2V2a(\b+1ug) (ZoxZoy)?8x6,,  (10.35)

respectively.

(5) The vector and axial-vector fields are treated
similarly. Just as in the case of 7—4, mixing treated in
our earlier discussion of SU(2)XSU(2), the spin-0
kinetic-energy terms also contribute to the masses of
the axial-vector mesons and to the mass of the K* vector
meson. In addition we must take into account the
contribution to the spin-1 kinetic-energy terms that
comes from £; [Eq. (10.6)7], which implies that here
too the kinetic-energy terms have to be renormalized.*
After some computation one finds that the vector-
meson kinetic-energy terms are

—H(1—50?) (Fo)*— 1= 30+ 5) J(F)?
—[1— 360 +8) +4 (=) (wr—) J(F)?
— 31— 3600+ (=) () (Fa)?

(10.36)
with

wy=3ty/ (0*—a?), Av=[88+ (&+uv)*]".

The fields Ux, U, that enter into F,,* are related to

(10.37)

* For simplicity we have omitted terms like —£//12(Tr V,)?
and —£4'/12(Tr 4,)2 from £,.

Uy, Us by the mixing angle found in Sec. VII [see Egs.
(7.29), (7.30), (7.31)7], with uy replacing e:

Us=cos U,+sin §Ux,
Uy= —sin 0U,+cos 0Ux, (10.38)
tan 20=2V2¢/ (&+uy). (10.39)

Actually, with the exception of Ug, the U and V fields
are identical. The axial-vector kinetic-energy terms and
mixing are obtained by replacing £y by £4, and hence
pv by p4 in the above expressions. Analogously to Eq.
(10.31) the renormalized spin-1 fields are given by
I’}r: ZVW—1/2U‘K,
szzAr_llz E2)

(10.40)
and

Zyi=Za =11,
Zyg'=Zax ' =1—3(1+1)t,
Zyy ' =Zyg ' —§(r*—1) ([82+ (t+sv) 2] —sp),
Zyxr=Zyg 5 (r*—1) ([824 (t+sv) ]V2+sv ),
: (10.41)

where t=£a% sy=uya?, and sa=pa0® For Zu; ! and
Zax71, replace sy by s4 in Zy, ! and Zyxt. With the
exception of the K* meson, the vector-meson masses
are only changed by the renormalization constants

my*=Zyme*  [V=m,0,X(=p, ¢, )],
mus? = ZyrLume?; (10.42)
the axial-vector mesons have masses given by
Mart=2 V1rI‘1rm02,
mag*= Zyx Txmy?, (10.43)

while m4,’ and m4x? are obtained by solving
max*+mag=sme(Lat Tx)(Zax+Zag)+mHZax—Zay),
max®—ma= {3 (Trd-Tx)2(Zsx— Zay)*mgt
+[32ZanZ axua®/ (Ok+ua) Imit} 2,
i/t = (72— 1) (1) 8+ () 7T
X1+ (m—m) (B+a®)].  (10.44)

(6) Before discussing these various mass formulas,
it will be valuable to use the results of the last two
paragraphs to discuss the vacuum-to-one-particle mat-
rix elements of the currents, i.e., fr, fx, fx, F,, etc. The
quantities f, and fx can easily be obtained by combining
Eqgs. (8.17), (8.19), (10.8), (10.31), and (10.33). In
fact they are given by just Eq. (9.23) with a correction



made for the renormalization of the fields:
fr ='\/2-(1«Z¢,r_”2,
fe=(1/V2) (a+b)Zsx™. (10.45)

We omit the expressions for f, and fx here since they are
not presently observable. The scalar K decay constant,
S« 1s similarly found to be [see Eq. (9.25)]

fe=(1/V2)(a—b) Zox™12. (10.46)

A glance at Eq. (9.27) shows that f,(0), the zero-
momentum-transfer K.; form factor, is no longer unity
because of the renormalizations of the fields. It should
be noted that (9.27), obtained by Glashow and Wein-
berg, must still be valid for the super Lagrangian. The
relation f4.(0) = ( f>+72—f2)/2fx f» follows if one
assumes PCAC (or the use of the divergence of the
axial currents to extrapolate to zero w and K masses),
SU(3)XSU(3), current commutation relations, and,
most important, that f,(0), when extrapolated off the
w and K mass shells, does not depend on the extrap-
olated values of these masses. In an effective-Lagrang-
ian calculation of 1 (0) in the tree-graph approximation,
only the graph involving the K* but not the kappa,
ok, contributes to f,. It is easy to see from the Lagrang-
ian that the K*Kw interaction must have the structure

glKu* (¢K5;¢1r) +g2 (G“K,*—G,K,,*) a"¢Kav¢m

analogous to the structure of the prm interaction in
Sec. VI. Direct calculations show that such terms do
not yield any K or = mass dependence in f,, though
they do give a mass dependence (proportional to
pr®—pa?) for f_. In this connection it is important to
note that the PCAC conditions 9#5,™=m.*f,é., etc.,
which follow from the effective Lagrangian do not
ensure the absence of a dependence on the masses of
the pseudoscalar mesons for every extrapolation.

Consequently, the experimental decay rates for
w2, Kuo, and K5 [Eq. (9.28) ] imply that*

L1+ (f2/fe®) — (f/f*) ]=0.82 (£5%)  (10.47)

if the axial and vector Cabibbo angles are taken as
equal. This numerical condition, we shall see, severely
restricts the values of the parameters in our Lagrangian.

Consider next the matrix elements of the currents
connecting the vacuum to one-particle spin-1 states.
The currents are given by the field algebra

Jut=—(m/v0) Vi,
]'5;4‘= - (mOz/’Yo) @,‘i, (1048)

where V. @,° are the original unrenormalized and

* The experimental errors in the decay rates are small (<2%)
but the radiative corrections are not known and we estimate
that they could make the right-hand side of (10.47) uncertain
by as much as 5%,
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unmixed fields. We examine the case of vector currents;
similar results follow for the axial currents.* In terms
of the renormalized, physical vector fields, Eq. (10.48)
becomes

= =m0 Zv 2V, i=1,2,3(p),
Jut=—(mi/v0) Zvi*V '+ (me?/o) (2/V3) k

X (a—0b)fijsAuo, i=4,--7(K* «),
Gi8=— (me*/v0) [ Zyq!"? cos OV 74 Zyx'2 sin 6V X ]

(w’ ¢) )
30= = (me?/~0) [~ Zy,""? sin 6V 14+ Zyx 2 cos OV, X ]
(10.49)

with tan 20=2v2¢/(i+sy). With the constants F,, Fxs,
etc. (sometimes called G,, Gx»,***, g, g% **, Mm,2/v,,
--., etc.), defined in the usual way,

©159 | 0% )=Fyen 011 | 6, )=Fye, etc. (10.50)
Eq. (10.49) yields
F,=—Zy M (mi/vo),
Frs=—Zyx"*(me?/vo),
Fo=—Zyx'"? sin 0(me/,),

Fy=—Zy,\2 cos 0(m¢/v,). (10.51)

We assume that the hadronic electromagnetic current
is given by 7,9+ (1/V3)7,® and therefore omit con-
sideration of matrix elements of 7,®. With this assump-
tion Fj F.2, Fy® can be obtained from the leptonic
decay rates of the vector mesons, e.g., p—ete~. With
the help of the mass relations (10.42) we can calculate
ratios like (Zy,/Zy.)"? and finally obtain

Fp = - mpm0/707
Frs= —myg *mo/ Teyo,
F,= —sin 8(mamo/vo),

Fy=—cos 0(mgmq/vo). (10.52)

The coupling constant 1, is defined byt F,=—m,?/y,,
so that mo/yo=m,/v,. Equation (10.52) is not sur-
prising if we note that the c-number Schwinger terms
in our Lagrangian are just F,*/m,>? and (F,%/m42)+
(Fu?/m.?) for the i=1,2,3 and i=8 vector currents,
respectively. From (10.52) it follows that

F¢ _ (m¢) Fw My .
F, =\, cos 6, 7, = (;ﬂ—) sing, (10.53)

(4 P

* Equation (10.48) extends to the unitary singlet currents in
the absence of terms like (Tr ¥,)? in the Lagrangian.
t Some authors use a v, which is one-half the value defined here.
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so that 6 is often referred to as the generalized mixing
angle; it differs from the standard angle because of
renormalization effects and is fixed by the two mass
ratios m,2/mg* and m,2/m,? which determine ¢ and sy
(or ¢ and py) by (10.41) and (10.42). With new

variables defined by
a=3(P—D[/(1-0],
y=3("—D[sv/(1-1)],

we obtain
%[(mpz/mwz) + (mg2/mg?) ]=1 —a+3y,
[(m2/m2) — (m2/mg?) =3[ 8+ (y+=)2]V2 (10.54)

The solution of this equation is straightforward, though
sensitive to m,2—m,? With the presently accepted
values m,=765 MeV, m,=783 MeV, and mys=1019
MeV, it turns out that 6=40.3°. This is to be compared
with the standard nonet angle §=33.3" for m,=m,
(i.e., sy=0). A generalized mixing angle of 40° agrees
quite well with the present experimental value obtained
from p, w, and ¢ leptonic decay rates measured at Orsay
and Desy, fOexpt1=240° (Vienna, 1968). The ‘“super-
Lagrangian” predictions for F,, F,, and F, come close
to those of Das ef al. (Das, Mathur, and Okubo, 1967),
who assumed the equality of all the vector Schwinger
terms, assumed a Gell-Mann—-Okubo type of relation
for the Fy? and neglected all Ot contributions to the
V.E Schwinger terms (effectively taking f2=0).

The importance of the 0 contributions can more
accurately be gauged if we note that the assumptions
that go into the construction of the “super Lagrangian”
correspond very closely to those made by Oakes and
Sakurai (Oakes and Sakurai, 1967), who take a kinetic-
energy mixing-mass formula in addition to the Weinberg
sum rule and treat f,2=0. The equation that they obtain
for the generalized mixing angle is

sin? @ 4 1
- -,

7%“,2 3mK*2 3m,,

cos? 6

. (10.55)

My
which yields §=28°. The “super Lagrangian” mixing
angle satisfies a similar equation [these results only
follow if there is no (Tr V,)? mass term in the La-
grangian]:

cos’ ~sin?@ 4T

M¢2 ‘ﬂ’l,,,d2 - 3mK*2 3m,,2’
obtained by combining (10.39), (10.41), and (10.42).
The two equations coincide for I'y=1. That this indeed
corresponds to f&=0 can be seen as follows: Writing

Te=14e  (ex0.08) (10.57)

(the numerical value follows from the value of § and the
masses), we find that f,? is proportional to e by equating
the V& and V™ Schwinger terms,

(Fg»*/mxs?) +1é=F/m,

(10.56)

(10.58)

and inserting the expressions for Fx« and F, from
(10.52) which yields

Jé=(F/m) e/ (1+€) ].

If we write F,=m,/v,, we may cast the above
equation into the form

J/f2= (mg/2f2v,*) [2¢/ (1+4¢) 1.

The first factor on the right-hand side is unity when
the KSFR relation holds, or when the A4; mass is used
[Eq. (10.43) or Eq. (6.13) with v, replaced by ~v,],
it is given by

M2/ 22y 2= mas/2(mas2—m2).

The present experimental value for v, (v,2/4r=2)
corresponds to a value of m4,~980 MeV rather than
ma=VZm,=1080 MeV, but the experimental situation
for both 4. and 7, is still uncertain.

The value of f2/f.? is thus of the order of 0.16. This
is much smaller than the estimate of Glashow and
Weinberg (Glashow and Weinberg, 1968), who obtain
[/ f0.34 by setting mar-=V2m, and max=VZmg=.
As pointed out earlier, all the equations used by
Glashow and Weinberg hold for the “‘super Lagrangian”
so that our relations for the much better known vector-
meson masses tend to rule out the axial-vector mass
choices made by them, though the addition of a (Tr V)2
term would give us more freedom to increase e. As we
shall see, and as also noted by Glashow and Weinberg,
an increase in f,2 leads to a lower value of the kappa
mass. In view of the lack of evidence for a lower-mass
kappa and a suggestion that the K= 0%, T'=% phase
shift rises through 90° in the 1-1.2-GeV region, we
prefer to use the low value of € to fit the parameters in
the “super Lagrangian.”

(7) Let us now consider the problem of fitting the
spin-0 masses using Egs. (10.32) and (10.33) and the
results of paragraph (6). The equations are really
simpler than they look. Using our result that mg/vo=
m,/v, we see that (10.45) implies 2=~ 2f,2Z./m2, so
that if we define

(10.59)

(10.60)

(10.61)

Ar=14 (m—n2) @4, (10.62)
then T’y and Z,, become
Ta=1+f%A,; Zoe=(1412A,)/ A,
We may thus write
7{2 2 2 1
fi= Lyi_/ln_"_ - (10.63)

- 1-f, 7r2792/ m? Ar '

We saw in the last paragraph that f,2y.2/m,? may be
related to experiment or to m4,2/m.?; in view of the
experimental uncertainties it is probably safe to say
that f,%y,2/m,2is in the neighborhood of  to within 259,



We define the parameter

- fvet/mg _

1-f 127/:2/ mpl
which can vary between 1 and %. Another parameter
that we know something about from the work in the
last paragraph is I',=1-+}¢; the vector-meson mass

equations yield e=£0.08; we may want to vary it a little
but still keep it small. As a third input we shall take

e f+(0) /fe=1—w=0.8240.04. (10.65)

Folding in the arbitrarily chosen 5%, error discussed in
the last paragraph, we see that w can vary between
0.14 and 0.22. With the help of Eq. (9.27) for f,(0)
and (10 60) for f2/f.% we may use (10.64) to express
sz/ /fx%in terms of ¢, 4, and w. Indeed ¢, 4, and w deter-
mine all parameters of Eq. (10.32), e‘(cept for r=b/a.
Although the three input parameters vary only over
relatively narrow ranges, it turns out that the solutions
are particularly sensitive to their values (especially e
and w). The requirement that the renormalization
constants Zs and Z, remain positive (and hence the
renormalized fields Hermitian) severely restricts the
allowable range of the parameter ». This can be seen
as follows: Let us rewrite our equations in simplified
form by introducing the quantities

=1(r+1)[1+3(7—1) (m—m)a*/A.],
=1(r+1)°[3(r—1)*na’/ A,

2
AT 1 (10.64)

My

x=(r—1)/(r+1), (10.66)
which satisfy the following relations
Ri0= . N //
X R_I_Q A ? R+Q I_A(fKZ/fﬂ-z_"l) 2
2 —_
LS . (10.67)

2 (1=2w) (14¢)

We can thus solve of R and Q in terms of ¢, 4, and w.
The definition (10.62) of A, implies that

_4R 1[72+1_ 1'2—1]= R+Q—¢/4 _ Z_\_79
A, r 4
(10.68)

The requirement that A,>0 [see (10.63) ] leads to the
inequality

r(r241) > 2N, (10.69)

As an example of the scale involved, we see that with
e small (e £0.10), fx%/f.? tends to be close to 1.5, so that
with 4 close to unity, N, varies between 2 and 4. For
the lower value, (10.69) then implies that »>1.4. We
cannot choose 7 very much larger because then some
other renormalization constant may become negative.
The first one to doso is Z.x. After some tedious algebra
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we find the following inequality for 7:
(4r+2—2r) No—r(r+1)24[1612/ (r—1)2](e/A) > 0.
(10.70)

To illustrate the implications of this let us set r=2.
Then (10.70) and (10.69) combined imply that e/4> %.
We cannot vary N, as much as we like since w is so
restricted and N, decreases as e increases. Hence with
e~0.08 and A~1 we may expect 7 to lie in the range
1.4<r<1.8.*

The restrictions on the parameters arise from the
conflict between the fact that the vector-meson masses
come close to fitting a nonet theory and the very large
deviation of f, f1(0) /fx from unity (if a single Cabibbo
angle is assumed). The effective Lagrangian does not
naturally lead to a nonet theory unless symmetry-
breaking effects are small, while the value of f, f1.(0) /fx
indicates large symmetry breaking. For values of
f=f+(0)/fx closer to unity, the ranges of parameters
become much more acceptable.

Let us now consider the kappa-meson mass since this
plays a key role in SU(3) symmetry breaking. We can
simplify our algebra by taking m,2=0 in (10.33). We
then find

1A SRR
With 4/(144) 53, fx*/f2 $1.6, and 7 $1.8 we have

Mo /mgr<0.23(14¢€) Je.

(10.71)

For ¢=0.08 given by the vector-meson masses, #.x <
865 MeV. The much larger value for ¢ (and smaller
value for fx*/f,*) required by Glashow and Weinberg
yields a lower value for this bound. If we want m.x 2
1 GeV, we must take ¢<0.08, i.e., relax somewhat the
precise fit of the vector-meson masses. This is reason-
able: for example, a value of e=0.05 would be consistent
with Eq. (10.65) with nonet symmetry (§=235°is within
the experimental errors) and m,=1019 MeV, mgs=
891 MeV, and m,=m,= 770 MeV. If one further chooses
A=1, ie., m4,=1080 MeV and w=0.2, r=1.7, then
one ﬁnds m,,K2=4.1mK2. The K and = masses can be
fitted, but the T'=0 mesons are slightly off: m,=>565
MeV, mx=948 MeV. A computer search of solutions
was made with 4 =1, fitting the pseudoscalar and vector
masses (but taking sy=0 so that m.=m,) and the
pseudoscalar meson masses (allowing a 19, variation in
the » and X° masses). The value taken for e is flexible,
however, since it is so sensitive to the value taken for the
p mass. fx/fr f+(0) was varied between 1.15 and 1.25

*It is_interesting to note that |(0]cs]0)/(0]a0|0)|=
V2| (1—r)/(2+7) |~i, ie., the octet tadpole is quite a bit
smaller than the chiral symmetry violating, SU(3) preserving
tadpole (Gell-Mann, Oakes, and Renner, 1968).
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and we required that m,,>900 MeV. The only ac-
ceptable solutions with m.x>1 Gev were found with
J&/f+ f+(0) <1.21. In all cases, 1—f;(0)~0.02 showing
that the second-order SU(3) symmetry-breaking
deviation of f;(0) from 1 (Ademollo and Gatto, 1964)
is very small. The fact that f,(0) <1 is in agreement
with the arguments of Bjorken and Quinn (1968).
None of these solutions can be regarded as entirely
satisfactory since the K, mass is consistently found
close to a value of 1.65 GeV, quite far from the presently
favored range of 1.2 to 1.3 GeV. Taking a smaller
value for the 4; mass, however, would greatly improve
the value for msx. It was not possible to find any
solutions when the X is identified as the £(1420).
Given the sensitivity of the equations to the input data,
the results of a computer search are not very meaning-
ful, at least until better values of the scalar and axial
meson masses are obtained;. perhaps fits to decay
widths will be helpful.

It may be that the trouble lies with the conventional
approach, which ignores representation mixing [for a
discussion of this see Gilman and Harari (1968)]: in
the symmetry limit, the spin 0 mesons fit into a (3,3) ®
(3, 3) representation (nonet), while the spin 1 mesons
fit into the (8,1) ® (1, 8) representation, which is not
a nonet. The observed facts, m,~m,, m,<m,, mx are
quite different, a situation that seems to be difficult for
the “super Lagrangian” to adjust to. There certainly
seem to be limitations to the accuracy to which these
methods may be used in the study of symmetry
breaking in SU(3) X.SU(3).

XI. MISCELLANEOUS TOPICS
A. Coupling to Photons

There is increasing evidence for the utility of the
notion of the “vector dominance” of the electromag-
netic current, i.e., of the connection between the
processes

v+A—B
and
o

1) +A—B.

¢ transverse

This connection is implicit in what we have done, as
long as we (i) accept the identification of the hadronic
electric current in terms of SU(3) generating currents
(Coleman and Glashow, 1961; Cabibbo and Gatto,

1961)
o= e 5P+ (1/13)j,]

with a possible additional unitary singlet term (Nauen-
berg, 1964) and (ii) implement vector dominance of the
SU(3) currents, as was done in Secs. IV and X, for

(11.1)

example. In processes involving more than one photon,
gauge invariance of the photon couplings is not trivial
(e.g., the need for “sea-gull graphs” in Compton scat-
tering) , and it is therefore useful to exhibit explicitly how
electromagnetic couplings enter effective Lagrangians.

Recall that the transformation law for the vector
mesons, obtained in Sec. VII, is

6Vu= (1/70) 8uat(3/V2) [, V.. (11.2)

When the “direction” of « is in the (3, 8) plane, then
the transformation law for the vector mesons V3 and V3
simplifies to

SV.b=(1/v0)du0*; k=3, 8. (11.3)

The electromagnetic potentials e®, must appear in the
Lagrangian in such a way that under the transformation

ed,—ed,+9,x, (11.9)

the Lagrangian remains invariant. A trivial way to
satisfy this is by using the field strengths ®,,=9,®,—
9,®, as in the free-photon Lagrangian

L= —1d,, 3w, (11.5)

Another “minimal” coupling is obtained by noting that
if

of=Ckyx,

(11.6)

then the combinations

ViF—(eC¥/vo)®u;  k=3,8 (11.7)

are invariant under a combination of (11.4) and (11.2)
with the special choice of vector gauge function given
by (11.6). Now the transformation (11.2) leaves all
but the vector-meson mass terms invariant. Hence the
gauge-invariant coupling of the electromagnetic field
may be achieved by replacing 3m@(V,®)%' by
me (VB —e/vC®®,)* for k=3, 8 and adding
—3(8,2,—9,%,)? to the Lagrangian. With the usual
definition of the electric current by

7D =02/a%", (11.8)
we have
e L0 08 LB 9%
T = vo OVE® vo OVHE®
_ eCOmg V.o eCOmg V.®4.oe. (11.9)
Yo Yo

For photon—vector-meson couplings (corresponding to
calculating (V'|7,©?|0) in the “tree-graph’” approxi-
mation), we see that since

Ju®=—(me/v0) V. ®
the condition (11.1) requires that we choose

CW=1; CO®=1/3.

(11.10)

(11.11)



The direct coupling from the mass term leads, in
general, to a photon—vector-meson “mixing.”’ This is
diagonalized by the introduction of new vector-meson
fields corresponding to the unitary spin components
k=3 and 8. We forego a detailed discussion and instead
refer the reader to the papers of Kroll, Lee, and Zumino
(1967), Lee and Zumino (1967), Schwinger (1964;
1968), Lee and Nieh (1968), Wick and Zumino (1967),
and Gerstein, Lee, Nieh, and Schnitzer (1967) for
further study.

B. Baryons

In order to do justice to the subject matter in a paper
of reasonable length, we have concentrated on treating
systems of spin 0 and 1 in great detail. Since many
applications of effective Lagrangians involve spin-}
particles, and since there is a very large literature
dealing with this subject, we feel that completeness
demands a brief description of the complications caused
by spin-§ particles.

A spin-} octet transforms as follows under SU(3):

0Ya=—iYp(a*F)pa= —facpacys. (11.12)
We take the transformation law for the chiral trans-
formation to be
(11.13)

We may combine the two transformation laws and
write them in 3)X3 matrix form

8"Va= —facpocys¥s.

Sa=(1/V2) [, ] (11.14)
and
3Yy=t(e/V2) [, ¥ ], (11.15)
where
Ya=(1£vs)¥. (11.16)
Note that
Pa=¢(1Fs) (11.17)
and it transforms like ¢4, i.e.,
= (1/V2)[e, ¥ ] (11.18)
and
8= (i/V2) [e, s ]. (11.19)

Thus it is easy to see that terms like Tr (J.y) are
chiral invariant. Since vz?=1 it follows that

P1¥:=0. (11.20)

Terms like
Vv o, Vavilas

do not vanish. Thus, as is well known, mass terms,
which, unlike kinetic-energy terms, appear in the
combination ¢y¥_+J_y,, break chiral symmetry.
This does not cause any serious difficulties because we
may use the spin O fields B and Bt [Eq. (7.52)] to
construct spin § objects for which mass terms emerge

(11.21)
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when chiral symmetry is broken through:
a—a'+2. (11.22)
We now observe that
8 B=(i/V2) Lo, ¥1. 1B+ (i/V2) ¥ { o, B}
= (i/V2) {e, ¥ B (11.23)
and
&' By_= (i/V2) {e, BY_}; (11.24)
i.e., these combinations transform like B. Similarly,
§BYWy=—(i/V2) (e, B, } (11.25)
and
§Y-B'=—(i/V2) {a, B}, (11.26)

so that these combinations transform like BT. The
adjoints of these four combinations are

B, ¢y Bf~B?t (11.27)
and
VB, By_~B. (11.28)
Possible invariants are schematically shown below
B *$+§Z¢+B
VAN
Jy_Bt By
B By,
N S
By_ Y. BT, (11.29)

where the solid lines indicate ‘“mass”-type invariants
such as

TrBYWy By, Try_BW.B,

and the dotted lines indicate ‘kinetic-energy”’-type
invariants such as

Tr BN,y 0B, + -

or terms which are invariants when coupled to vector
or axial mesons such as

Tr [BWv" s B(Vu—@y) ] (11.30)

and
Tr [BWy0uBy—(F»—G*) ].

Note that, in addition to ¥, ¥, =0, J.0u¥+=0 as well.
The number of invariant couplings is restricted by
parity:

P ‘P:hP—. 1=\b:‘:,

PBP-'=B", (11.31)
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We may also use nonlinear realizations for the spin-0
fields.

When parity is taken into account, there is only one
possible “mass”-type term,

1 Tr (§4BY_B'+J_B'Y,B)
=Tr (Joyo-+Pd¥s)
+i Tr (ysopd—vsdio).

This term does give a contribution to the mass when we
let o—0'+2. If we wish to preserve field algebra, we
must use covariant derivatives for the “kinetic-energy”’-
type terms. We note that (7.47) implies that

Ay(oig) =0u(oid) — (#70/V2) [V, o i ]

(11.32)

F (ivo/V2) {@, oip}  (11.33)
transforms like B and B, respectively. Hence
8,($1B) =0,(¥4B) — (iv0/V2) [V, ¥1.B]

= (1v0/V2) {@u, ¥+ B} (11.34)

will, for example, transform like B.

To illustrate the kind of couplings that emerge, let
us consider the following, quite general Lagrangian
involving baryons and spin zero mesons:

£=31 Tr (Y47, 044 +P-v,.0")
+1e Tr (4 BY-B'+J_BW,B)
+%ib: Tr (Jyv 1 0#BBTH-- )
+1ibe Tr (Pyvup4 BO*B 1+« -
+4ibs Tr ($4.9"BB Yyt
+31bs Tr (P Bo*Blypy+ -
+ Cocsonie (11.35)

The coefficient of the leading term can be chosen to
be unity by appropriately renormalizing the baryon
field. For the same reason we do not gain any generality
(for what we want to discuss) by including terms like
Tr (Yyvu, 0" BBt+-++). Such terms are necessary,
however, if we are to obtain the observed values of the
baryon octet masses. When this Lagrangian is written
in terms of the o, ¢, and ¢ fields, and the shift o—0o¢'+ 2
is made, the terms that give the mass and contribute
to meson—baryon scattering are

i Tr (Py,0") +-a Tr (JZYZ)+a Tr (Ydyo)
+a Tr (YZyo’) +a Tr (Yo'yZ) +ia Tr (YvsZye)
—ia Tr (Jvs¢yZ) +1ib1 Tr (Jv,9*¢e)
—b1 Tr (Pywysdd49Z) +ibs Tr (Yybdd e)
+b2 Tr (PvuysyZ04e) +ibs Tr (Py,0*ddY)
—bs Tr (Pyuys0*¢yZ) +ibs Tr (Jry,$0 )
+b4 Tr (PyuysZorey). (11.36)

2
2
*)

Let us, for the sake of simplicity, restrict ourselves to
SU(2) X SU(2), which we do by writing

0 p
¢=< );

0 =

((0+1r°)/\/7 at
T (e—m)/V2

>= (ANV2) (o+=- ).

(11.37)

We take o= (f2—d») 12 ie., Z=(f/V2)I and o¢'=
— &/ 2V2fr++++. The relevant terms in (11.36) now
are

W0+ af Py — 3ol o — Fiafdvse &
+3(bs—ba) Pyued- o x4
+3 (ba—bs) felvuvswy - 4.
We note the following:

(11.38)

(a) The nucleon mass is
m=—%af.2. (11.39)
(b) Making use of the fact that
8(0mp) =%ie-0rat-- e,
&'(0mp) =Fim-0 Byt v,
&' (04 ) =frd*B+ -+,

we see that the baryonic part of the vector current is

(11.40)

v (11.41)
and the baryonic part of the axial current is
Wvwvssd[1— (ba—b3) 7], (11.42)
so that
Ga/Gy=1—(bs—bs) f=* (11.43)

(c) The coefficient of #Wyswy¥-d obtained from the
fourth term of (11.38) and the last one (upon inte-
grating by parts and omitting irrelevant terms) is

§=—%afr— (ba—bs) mf:
= (m/fr) [1— (ba—bs) f*]
= (m/fx) (Ga/Gv).

This is just the relation of Goldberger and Treiman
(1958).

(11.44)

We may eliminate the pseudoscalar coupling term
¥yswy & by introducing a new nucleon field N defined by

v=exp (I\ysz-G) N (11.45)
with A=1/2f,. The transformed Lagrangian now has



the form
iN‘Yna"‘lV"“mIVIV— (g/2m) 4v7p751lv '6"4)
—(1/2fA) NyuaN - X 94+« + -

We have omitted a pair term NN¢? since we only want
to look at the amplitude proportional to 3[73, 7.]. In
the soft-pion limit the gradient term does not contribute
and the remaining term yields the threshold result

$(a1—as) = (W/8xf?) (1+p/m)~". (11.47)

This is the relation of Adler (1965) and Weisberger
(1965).

There is a large literature dealing with the implica-
tions of chiral symmetry for the interactions of baryons.
We quote the papers that have come to our attention:
in addition to the pioneering papers of Schwinger
(1957), Kramer, Rollnik, and Stech (1959), Gell-Mann
and Levy (1960), and Gursey (1960), we refer the
reader to the papers of Weinberg (1967), Schwinger
(1967), Wess and Zumino (1967), Bardeen and Lee
(1968), Cronin (1967), Chang and Gursey (1967),
Brown (1967), Mani, Tomozawa, and Yao (1967), Lee
(1968), Kramer (1968), and Schechter, Ueda, and
Venturi (1969).

(11.46)

C. Representation Mixing

The techniques developed above lead, in the calcula-
tion of three-point functions (vertices), to the same
results as have been obtained by the standard current
algebra treatments with their pole dominance and
smoothness assumptions (Schnitzer and Weinberg,
1967; Arnowitt, Friedman, and Nath, 1967; Brown and
West, 1968; Gerstein, Schnitzer, and Weinberg, 1968;
Gerstein and Schnitzer, 1968). We have also seen in
several examples (the 7 scattering lengths in Sec. III
and the threshold theorem form of the Adler—Weisberger
relation in Sec. XI.B) that threshold results for the
four-point functions are similarly reproduced. There
exists, however, a class of sum rules which are derived
on the basis of assumptions which have no place in the
Lagrangian formalism: these are integral sum rules
whose convergence is justified by an appeal to the
Regge model for high-energy behavior. An example of
such a sum rule is the Adler-Weisberger relation in the
original form

@) -

which, after a resonance-saturation assumption (which
does have a Lagrangian counterpart in the tree-graph
approximation), yields further relations between
coupling constants. Such a sum rule does not have
anything to do with chiral symmetry. The above equa-
tion (11.48) follows from Eq. (11.47) in the previous
subsection, and from the assumption that the pion—

2 [ody
1+ = f — [ow™ () =0t (1) ], (11.48)
0 14

wg?
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nucleon scattering amplitude corresponding to a T'=1
exchange in the f channel needs no subtractions in a
dispersion-relation representation. Nevertheless, like
PCAC and vector dominance, it might be interesting
to “build in” the extra assumption and extract addi-
tional information from it. This has recently been
suggested by Weinberg (1969) and by Wess and
Zumino (unpublished). The procedure suggested is the
following:

(a) Scattering amplitudes are constructed in the
usual tree-graph approximation. These have a poly-
nomial dependence on the energy that comes from the
derivatives in the vertices, from the energy dependence
of the coupling constants, and from the propagators.

(b) The energy-independent part of the amplitude is
set equal to zero for those amplitudes which should go
to zero at high energies according to the Regge model.
(The higher powers of the energy are not discussed in
this heuristic prescription.)

The results obtained by Weinberg in considering the
forward scattering of massless pions (w+ A—n'+B) are
the following:

(1) A matrix element of the axial current, [ X. (M) Ja,
which depends on the helicity A and the ¢-spin labels of
the initial and final target states 4 and B, is defined.*
The requirement that the T'=1 exchange amplitude
vanishes at high energies (i.e., has a vanishing energy-
independent part) leads to

[Xa(N), Xs(\) J=1€apy T (11.49)

This implies that the one-particle states of any given
helicity must form representations (not necessarily
irreducible) of SU(2) XSU(2).

(2) If a mass matrix is defined

(M) pa=m4*p4, (11.50)

then the requirement that the T'= 2 exchange amplitude
has the required behavior implies that

[Xa(N), [Xs(N), M*]] o< Gap. (11.51)

It is then shown that this relation implies that the mass
matrix may be written in the form

M*=m¢*(N\) +mi(N),

where m@*(\) is a chiral invariant [i.e., it commutes
with X,(A\)] and m2(X\) is the fourth component of a
chiral four vector, i.e., it transforms like the ¢ in the
(3, %) representation (¢, o). If the =0 amplitude also

(11.52)

* Weinberg defines (Xa(N))a by (B, ', N | fu+7ss* | 4, p,7)
o E&\\(Xa(N)) B4, where A and B are one-particle states with
the given helicities and momenta in the z direction, « is the
isovector index, and E=p- (p2+m %) V2= p' 4 (p"2+mp?) 22, This
definition has the advantage that the definition of X,(\) is in-
variant under boosts in the z direction, since for a four vector

exp (i¢Ks) (Vo Vs) exp(—itKs) =eX (VoVs)  (sinh = p/m).
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went to zero at high energies, m,(\) would vanish and
then M? would be a chiral invariant, i.e., all the masses
would have to be equal. In the real world this is not the
case, and therefore, particle states of definite mass must
belong to reducible representations of SU(2) X SU(2).
If it is further assumed that differences of the forward-
scattering amplitude for different helicities vanish at
high energies, then m¢®(\) and m2(\) are independent
of helicity.

(3) Weinberg also shows that for A=0 states of self-
charge conjugate isomultiplets (i.e., nonstrange bosons),
all the vectors in the reducible representations of
SU(2) XSU(2) must have the same value of the
quantum number GP(—1)7 (where P is the parity).
Thus a representation of SU(2) X SU(2) may contain
the particles m, p, o, Ay, f,*+* or 9, w, ¢, X, B,+--. If we
want to build up a reducible representation that con-
tains the pion and a certain number of its chiral
“partners,” none of which have I'=2, we must con-
struct it out of irreducible representations which contain
only T=0and T=1, i.e., out of (0,0), (3,3 (1,0)®
(0, 1), and (1,0)© (0, 1). The equivalence of SU(2) X
SU(2) and SO(4) allows us to use the nomenclature
appropriate to the rotation group, and the irreducible
representations are labeled scalar, vector, and tensor
(magnetic and electric). If we want to have a mass
term (quadratic in the fields) that transforms as a
vector V, the fields must contain ¥ and S or T at least
once since in the square, V must appear in the reduc-
tion. The simplest reducible representation S@ V' turns
out to be uninteresting (it contains two scalar isosing-
lets and the pion). The next nontrivial representation
is V®T, and it contains a ¢, the pion, p, and 4;.
Straightforward algebraic manipulations of the SO(4)
algebra, for which we have no space, leads to the con-
clusion that the = and the 4, are both mixtures of V
and the “electric” part of T, the o belongs to V, and p,
to the “magnetic” part of 7. The decay rates for p—2m,
A—pm, etc., depend on the mixing angle between Vi
and T4 There is a ¥V mass and a 7" mass, and the mass
matrix depends on these and the mixing angle. When
the mixing angle is chosen to be 45°, which is in agree-
ment with experiment for the p width, and the pion mass
is set equal to zero, one finds that m,=m, and m, 2=
my2+m,?, in agreement with what seems to be observed.

For a simple illustration we may consider pion-
nucleon scattering. With the choice of

_ (Ga/Gy—1)
A

in (11.45), the couplings that contribute to the Z-spin
antisymmetric amplitude (~3[7s, 7.]) are

gy d

-

and
[(GA/GV_ 1)

Zf 2 ]HZ'Yu"\I"d) X 9.

In the limit s—o the forward-scattering amplitude
only has a contribution coming from the second term,
since the s terms are proportional to (s—m?)~! and
(uw—m?)~L. Setting this equal to zero leads to

G4/Gv=1, (11.53)

an algebraic relation not contained in the theory with-
out the high-energy assumption. If the Lagrangian is
enlarged to include the A decuplet, the expression for
G4/Gy is altered in a way which depends on the width
of the A.

In view of the heuristic nature of the proposal for the
new ‘“rules” which are to accompany the tree-graph
approximation, it is a little early to assess their sound-
ness. They do provide a way of bringing in representa-
tion mixing and of reproducing the very interesting
results of Gilman and Harari (1968) based on current-
algebra and superconvergence relations, and they may
suggest ways of avoiding the difficulties that we found
in our discussion of the Super Lagrangian in Sec. X.

The two approaches to calculating vertex functions,
direct tree-graph calculation or configuration mixing,
differ dramatically in their treatments of 4pm and wpm
couplings. The two methods predict radically different
pm angular distributions for A—p+=: Tree graphs
yield a predominantly S-wave pr state, and configura-
tion mixing, a D-wave state. It has so far not been
possible to reconcile the two predictions. The problem
with wpr coupling is that while such an interaction
plays an important role in the superconvergence rela-
tions, there is no way of introducing a wpm vertex into
an effective Lagrangian without violating either PCAC
or the field algebra. It is evident from (10.1)-(10.6),
for example, that our Lagrangian does not contain a
term that describes the wpr vertex. We do not expect
to see such a term directly, since the p and w belong to
(8,1)+(1,8) [with a (1,1) admixture] and the pion
belongs to (3,3)+(3, 3). This is also the case for the
A meson, but there the symmetry breaking induced an
Apm coupling. We cannot construct a coupling which,
when ¢—0o’+Z, leads to a term of the type

Tr (F,Fre). (11.54)

The reason for this is that the dual field Fw=e*F,,
has the same parity properties as the field G*, but has
opposite charge conjugation transformation properties.

For example, a coupling like
Tr (F,™® Fe&wBBT_F,,@ FOwBB)
F,®=F,4G,, (11.55)

which is chiral invariant, has its @ and p terms appear

in the combination
—ai Tr (F,Fw[o, ¢]). (11.56)

Thus when o—0’+Z, only the K mesons will have a
wKK* interaction. We can, of course, write down a



coupling like
Tr (F,,® Fowp F,© Feowp Y (11.57)

which leads to the desired vertex, but such a term does
not satisfy the PCAC condition (Arnowitt, Friedman,
and Nath, 1969; see also Brown and West, 1968, for a
discussion using dispersion-relation techniques). This
difficulty of reconciling PCAC with the PVV vertex
was first noted for the process w%—2vy (Sutherland,
1967) where it was shown that if 9*A, were used to
extrapolate the #%—2y amplitude off the pion mass
shell, then the amplitude vanishes as the pion mass
goes to zero. For an effective Lagrangian where
9*A, x ¢ no such off mass-shell dependence can appear
so that the 7%—2y vertex must vanish in this case.

A term of the form (11.57) which violates PCAC
does give rise to a nonvanishing 7*—2y vertex. If
9*A, were still used as the pion interpolating field, then
again w%—2vy would vanish for zero pion mass.

It is also possible to generate an wpmr coupling from a
chiral-invariant term (maintaining PCAC) but which
violates the field algebra:

Tr (VD FOwA,BB—V,OF©wA,BB),  (11.58)

The nonzero vacuum expectation values of oy and og
contributing to B and B, yield the wpr coupling.
Despite the presence of a term like Eq. (11.58), how-
ever, the 7%—2y vertex still vanishes, as it must in any
effective-Lagrangian model preserving PCAC. The
conventional contribution to #°—2vy arising from wpmr
(Gell-Mann, Sharp, and Wagner, 1962) is canceled by
what are equivalent to subtraction terms arising from
the breaking by (11.58) of the field-current identity.
This alternative, therefore, is unsatisfactory if we wish
to link #° decay to the wpr interaction.

One interpretation of this difficulty is that PVV
couplings do not fit into the framework of the
SU(3)X SU(3) field algebra because it is a coupling
which must be generated through the intermediary of
baryon (or quark) loops. Such triangle graphs are
excluded from the effective-Lagrangian treatment. It
has been recently observed by Adler (1969) that in
electrodynamics (i.e., a quarklike model) a careful
examination of the divergence of the axial current
appearing in such triangle graphs shows that the formal
current-algebra manipulations are not correct and that
an effective PVV coupling does appear.

An alternative approach, yielding the same result, is
to deal more carefully with the operator definition of
the axial current as a product of field operators. When
this is done in a gauge-invariant way, an effective myy
coupling appears (Schwinger, 1951; Hagen, 1969).
Again, this is a subtlety not included in the effective-
Lagrangian, tree-graph approximation.

XII. CONCLUSIONS

We have described in considerable detail the method
of effective Lagrangians to provide the reader with a use-
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ful tool for studying the consequences of broken chiral
symmetries and of field algebras. We have discussed
some of the significant results obtained by many authors
using these techniques or the equivalent approach of
applying pole dominance and smoothness assumptions
to two-, three-, and four-point functions. While effective
Lagrangians easily reproduce the soft-pion results, i.e.,
m—N scattering lengths, the real test of its applicability
awaits the experimental verification of its ‘“‘hard-pion”
predictions.

For SU(2) XSU(2), the relation between v, and
v, (or v in Sec. VI) given by Eq. (6.16), when com-
pared with present experimental determinations of
Ypre and v, clearly requires the existence of the A;(4)
axial-vector meson.* Given v, and v, both the mass
of the 4; [Eq. (6.13) or (10.61)] and its decay prop-
erties [see Eq. (6.19) and Appendix C] are determined.
Experimental verifications of these predictions are
crucial tests of the model, especially in light of the quite
different predictions of Gilman and Harari discussed
in Sec. XI.

The question of the existence of scalar particles
becomes important when generalizing effective Lagrang-
ians to treat SU(3) X SU(3). One attractive possibility,
discussed in Sec. IX, is that only some of the scalar
fields, such as the ox, represent real scalar particles.
We treat in more detail in Sec. X the example of an
SU(3)XSU(3) field algebra where all the fields are
represented by particles. Two particular problems are
discussed; V—y couplings and Weinberg’s sum rule in
SU(3) X SU(3) (equality of Schwinger terms), and the
problem of fitting the known meson masses given the
“observed” value of f, f1.(0) /fx so different from unity.
In the former we have seen how the effective-Lagrangian
model demonstrates the connection between Weinberg’s
sum rule, the field—current identity, and PCAC. It is
interesting that our super Lagrangian, with Schwinger
terms equal, generates kinetic-energy mixing for the Fy
and a generalized mixing angle § compatible with present
experiments. An important feature of the model is the
explicit correction to the results of Oakes and Sakurai
coming from the kappa meson. Our results show how 6
can be sensitive to second-order SU(3) breaking terms
in an SU(3) X SU(3) symmetry-breaking model.

The problem of fitting the meson masses appearing
in the super Lagrangian to their observed values proved
to be surprisingly nontrivial. Indeed, no precise fit to
the spin-0— and -1~ nonets could be made without
having presently unacceptably low values for some of
the scalar meson masses or taking fx f4(0) /fx closer to
one than given by experiment. Three possibilities
require further exploration: (i) A more complicated
choice for £¢ in Eq. (8.6) is required. (ii) The masses
given by the effective Lagrangian cannot be too

* As in the limit m,— o discussed in Sec. IX, the limit my—
is equivalent to a nonlinear realization for @, [Eq. (6.24)].
Taking mq— e in (6.16) yields v,xr=4%v0.
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precisely fit. (iii) If radiative corrections could be taken
into account or if 64 differs slightly from 6y, the value
for fr f+.(0) /fx that should be used is in fact closer to 1.
In connection with (ii), it has long been a puzzle to
some theorists why large SU(3) breaking mass shifts
don’t arise due to the large variations in the widths of
decaying multiplets because the decay products (i, K,
K, 7, for example) have such large mass splittings.
Since this effect comes about through closed-loop graphs,
perhaps an effective Lagrangian cannot include such
corrections. Whatever the explanation is, it is significant
that there should exist such severe restrictions on the
choice of parameters in the model.

Finally, even if experiments do confirm the predic-
tions of some appropriately constructed Lagrangian,
we would still be dealing with a model with a limited
range of applicability. We have seen that even in the
context of spin-0 and -1 particles, the wpr (and con-
sequently wmy) coupling is not included in the model.
More fundamentally, such problems as treating uni-
tarity and the high-energy behavior of amplitudes and
the associated problem of dealing with the many higher-
spin multiplets on Regge trajectories do not at present
seem relevant to an effective-Lagrangian approach.
Nevertheless within the relevant range of experience,
effective Lagrangians are a useful tool and can give
valuable insight into the nature of broken chiral
symmetry.
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APPENDIX A: TRANSFORMATIONS OF FIELDS
UNDER SU(2) X SU(2)

We deal with transformations generated by the
“charges”

Q.=3%(Q=+0Qs) (A1)

which satisfy the commutation relations

[Q+2, Q1= 1ea 04",

[Q_}_a} Q—b]’: 0) (AZ)
and are related by the parity operator
PQ,P1=Q_. (A3)

The transformation properties of an irreducible tensor
of 4-spin ¢ are given by

UsdaUy'=p[exp (—ie-T) Ipa, (A4)

where
(AS)

and the T form a (2{+41) X (2¢41) matrix representa-
tion of the charges Q., say. If we want to specify the
transformation properties of a field under SU(2)X
SU(2), we must also write the response of the field to

Up=exp (—ia-Qs)

U_=exp (—i8:Q-). (A6)
A field that transforms as
Uspap Ui t=dcr[exp (—ieT)Jea (A7)
and
U_¢AB‘U_”I=¢AD'[6XP (——’L'@'T’)]D ‘B’ (AS)

where the T/ form a (2¢/41) X (2¢4+1) matrix repre-
sentation of the charges, is said to transform as a (¢, ¢')
representation of SU(2) X SU(2). The transformation

law (A8) is equivalent to
U_¢pap-U=[exp (i3-T") Iz p'dan" (A9)

because there exists a matrix C which has the property
that

CT*Cl=—T. (A10)
In the representation in which T is imaginary,
Cap=[exp (—irTy) Jap=(—1)""B54 5. (All)

Consider, as a first example, a field transforming as
(1, 0). This implies that

U,9aUs ' =op[exp (—ia-T) Jaa,

U_¢aU-'=¢4. (A12)
For the field ¥4 defined by
Ya=PosP, (A13)
we have
UAaU'=yp[exp (—iaT)Isa,
Uppa Uy t=vs; (A14)

i.e., we see that Y4 transforms as (0, 1). We can com-
bine these to write

exp (—ie-Q,) exp(—i8+Q-)pa exp(i3-Q-) exp(ie-Q,)
=exp [—3i(a+8) - Q—3i(e—() - Qslos
Xexp [3i(e+8)-Q+3i(e—8)-Qs]

=¢p[exp (—ia-T) Jna, (A15)



and
exp [—3i(e+0) - Q—3i(a—0) Qs
Xexp [3i(e+8) - Q+3i(«—0) - Qs]
=yp-Lexp (—i3:T)Jz-a". (A16)
If we now set =0 and take e infinitesimal, we get

—i[ @ Q, pa]=—ipp( @ T)pa,

—iLaQ,¥a ]=—ip(aT)pa (A17)
If we set = — @, we get
—i[ @ Qs, pa = —idp(a-T)pa,
—iL Qs ¥a]=wWn (a-T)pa (A18)
Using
(I*) pa= —1ierBa (A19)

for the 3X3-dimensional matrix representation of the
charges, we see that (A17) and (A18) may be written
in the form

ddpa=—(axd)a,
dar=—(aex{)a,
§oa=—(axd)a,
Fba=(axd)a- (A20)

Hence the even- and odd-parity combinations ¢a==y4-,
denoted by =4 and w4, respectively, satisfy

E=—axX,
dm=—aXm,
VE=—axm,

dm=—axX. (A21)

These are just the transformation laws (3.9) and (3.10).

As a second example we will consider a field that
transforms as (%, 1). Making use of the equivalence
expressed in Eq. (A9), we write

exp (—ie-Q4) Mup- exp (- Q)

~[exp (iar/2) JicMen- (A22)
and
exp (—18+Q-) Mas- exp (if-Q-)
=Mac[exp (—iB+%/2) Jer. (A23)
It follows from this that
exp (—iaQ) M exp (ie-Q)
=exp (tax/2) M exp (—ia-</2),
exp (—iea-Qs) M exp (e Qs)
=exp (ta-v/2)M exp (a-x/2). (A24)
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If we now write the 2)X2 matrix M in the form

M=31+ix-=, (A25)
then the above relations lead to
(214 m)=—izraxm,
¥ (Z1+ieem) =iZat— a-=l. (A26)

These are just the relations that tell us that 2 has
2 spin 0, = has 7 spin 1, and (3.17) is satisfied.
Under the parity transformation,

PMP-i=Mt (A27)
and
exp (—ia-Qs) M T exp (ta-Qs)
=exp (—ia 2/2)Mtexp (—ia-2/2). (A28)
Hence
exp (—ia-Qs) MM T exp (- Qs)
=exp (ta-v/2) MM exp (—ie-=/2). (A29)

From this it follows that Tr MM+ is chiral invariant.
Actually, since
MMt=MM, (A30)

it follows that

MMt=MtM=(Z*+=)1 (A31)

is chiral invariant. For a nonlinear realization we may
set

MM'= (22+=2)1=f2(const)1. (A32)

A parametrization equivalent to that of (A25), namely
M=f,exp (i=-P), (A33)

where P is a new (equally good) pseudoscalar field, has
frequently been used (Chang and Gursey, 1967; Brown,
1967).

APPENDIX B: TRANSFORMATIONS OF FIELDS
UNDER SU(3) XSU(3)

The development here exactly parallels that of
Appendix A. The equivalence expressed in (A9) no
longer holds, so that the transformation laws have to
be specified a little more carefully. If we label the
SU(3) representation by the multiplicity (e.g., 1, 3, 3,
8,-++) (this will cause no confusion in the cases of
interest here) then the transformation law for a field
transforming under SU(3) XSU(3) according to
(m, n) is

exp (—ia- Q) exp (—i8:Q_) M5
Xexp(iB-Q-) exp (ia-Qy)

=[exp (e-F) JacMcp [exp (—i8-F) o5, (B1)
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where the F and F’ are matrix representations of the
SU(3) generators in the m and n representations,
respectively. If the field transforms under (m, n), then
F’ must be taken to be matrices in the n representation.

The matrices satisfy the commutation relations
[Fa) Fb]:ibeGFc (a; b>c=1) 27""8)- (B2)

The fact that the fields F,* and G,* [see (7.5) and
(7.8)] transform under SU(3)XSU(3) as (8,1)+
(1, 8) is established straightforwardly if use is made of
the fact that in the 8 representation (the adjoint
representation) the matrices F can be written in terms
of the structure constants

(F")A3= —*ikaB- (B3)

Let us now consider the representation (3, 3)+ (3, 3).
For a field that transforms as (3, 3) we have

exp (—ia-Q,) exp (—i4+Q-)Mus
Xexp (i3-Q-) exp (ia-Qy)
=[exp ((e2/2) JacMep-Lexp (—iB-3/2) Ip's- (B4)

since the 3A\/’s form a 3X3-dimensional representation
of the generators. The matrices —3\;* satisfy the same
commutation relations but are not equivalent to the set
1. Thus they yield a representation 3 of the generators.
Hence, for a field transforming as (3, 3) we have

exp (—ia-Qy) exp (—i8-Q-)Na's

Xexp (i3-Q-) exp (ie-Q,)
=[exp (—ia-2*/2)Jac'Nep[exp (i+2*/2) Ios
=[exp (i8-2/2) IspNeplexp (—ied/2) Jear.  (BS)

The last line follows from the Hermiticity of the A
matrices. Thus the matrix N7 has the same transforma-
tion properties as M except that a and @ are inter-
changed. This however implies that

NT=PMP. (B6)
We can deduce from (B4) and (BS) that
exp (—ia* Q)M exp (12:Q)
=exp (ta:d/2) M exp (—iad/2),
exp (—i0+Qs) M exp (1a-Qs5)
=exp (1a*X/2) M exp (ia-2/2), (B7)
which allows us to make the identification
M=B (B8)
with B defined as in (7.52). Similarly,
NT=Bt, (BY)

We easily show that
exp (—ia-Q;) BBt exp (10 Qs)

=exp (a*2/2) BBt exp (—ia:)/2),
exp (—ia+Qs)BTBexp (10 Qs)

=exp (—iaA/2)BtBexp (a-2/2). (B10)
Thus if
BtB=BB", (B11)
which implies that
o=2C.p", (B12)
we may set
BfB=BBt=¢24¢*= (const)1. (B13)

Under these circumstances, corresponding to the exist-
ence of a pseudoscalar nonet only, we may also use the
parametrization

B=eiP (B14)
with P an equivalent nonet pseudoscalar field.
We also note that (B7) implies that
exp (—ia+Q) det M exp (a-Q)=det M. (BI1S)
However,
exp (—ia+Q;) det M exp (1a-Qs)
=det [exp ({a-d) M ]
—exp [i(6'2)ap] det M. (B16)
Hence
2I=det B+det Bt (B17)

is chiral invariant, provided ay=0. Making use of the
fact that

6 det U= easctrimUaUnUecm
=(Tr U)*=3Tr U Tr U4-2Tr U?, (B18)
we can write
6]=(Tro)?—3Tro Tro*—3 Tr o (Tr ¢)2+3 Tr ¢ Tr ¢?
+6 Tr ¢ Tr 6¢+2 Tr 6*—6 Tr o¢?. (B19)
APPENDIX C: DECAY RATES
Consider the decay

A(Q)—B(p)+C(q)

with the quantities in the parentheses denoting the
four momenta of the particles. From the Feynman
rules we calculate

®=i(27)*%(Q—p—q)(p,q| Lasc|Q), (CI)



and we write

=—(2m)%%(p, ¢ | Lapc| Q). (C2)

With the normalization of states {p’ | p)=2pd(p’—p)
we get

)3 1
Ir= ()50 —p-0) - oo
d*q &*p
— =% (C3
(2J +1 ag;sl )290 2170 ( )
Hence
11 > epme| oW
- = . - 4
81 2J4+1 Ma2 Pom. (€4)

Here pe.m. is the center-of-mass momentum of the decay
products and is given by

2mapem.=[N(ma?, mg?, me*) ]2, (CS)
where
Nz, v, 8) = 2?4 y* 22— 20y —2yz— 2zx.
We now consider two examples:
(I) For the decay
ot
the matrix element is given by
M= prn* (p) (Pu—qu) - (Co)

Hence

> Jo e

spins

Yorr? (P — @) u(p— @), L (Q*Q*/m,?) —g*]

= —Yere’ (P— )%
Noting that here

Pomn. =% (m—4m?) P =[—5(p—q)*]",
we get
2 Yprs® Pon o

= —3—12; fr—n;z—gsz:’iTMev. )
With m,="765 MeV and ma~V2m,, we get

I'= (v¢*/4m)52(§+10)* MeV, (C8)
where we have denoted xm,2/vo by 8.

(II) For either of the decays
A%—pE47T
we write the matrix element in the form
M=ele, [Ag”—B(p*Q"/m4’) ). (C9)
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Then .
> Jom |2~(Ag"~—B” )42
SplnS
QnQa pvps
ma 2 g“ﬂ mp2 — &8
=24? (1+ r2)+2ABi(1— —_— r2)
m,?
+219f(m"2 o 2 ) (C10)
2m 2 2ma2)’
where
r=(p-Q)/2ma*= (ma>+m2—m.2) /ms2. (C11)

The results of Sec. VI are that
A= 'YOmp( 1 —mp2/mA2) U2{ 1+ [1 - (mAz/maz) 735} 5

= —yomy(1—m,/ma®) V2 (ma?/m;?) 6. (C12)
Hence
T 4pr=264(ye?/4m) (1—0.885+0.195%), (C13)
so that
Tapr 1—-0.885+40.1952
—_—~ ) Ci4
j - 140.666+0.1152 ( )

The value of 6 is not known very accurately. The
determination from the p width is uncertain to the
extent that this width is uncertain. Its determination
from the 4 width is complicated by the fact that there
is a contribution from the A—3r [see Gerstein and
Schnitzer (1968) for a discussion of this] background,
and, if there is a o, from the decay

A—o-+t.
For the latter, if the matrix element is given by

M="40r€4"** qQ, (ClS)

then
2 | M 2=y aor[ (ma2—m 2+ m2) 2 dm>m 2] 4 g2,

spins

(C16)
For the Lagrangian in (6.3) one finds that
Yaor=2vo(mo/ma) [1—38(ma?/m;?)], (C17)
so that if we take m,=m, for simplicity, we get
T aewreA (vye?/4m) (1—5)2 MeV. (C18)

One could also determine § from the helicity of the p
in the decay of the A, since the matrix elements are

mu:A,
M= [(Ep/mp)A —(ps*/mam,) B]. (C19)

Of some relevance may be the fact that apparently the
A’s are not being photoproduced.
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APPENDIX D: THE GELL-MANN MATRICES*

For completeness we list the canonical Gell-Mann
matrices:

100 010
=311 01 0 }; MN=| 1 0 0 };
001 000
0 —i 0 1 0 0
h=1 1 0 0 }; A= <O -1 0 };
o o0 o o o0 o0
001 0 0 —i
M=f 0 0 O }; As= (0 0 0 };
100 i 0 o0
000 0 o0 o0
N=f 0 0 1 ]; M= <0 0 —i };
010 0o 0
1 0 O
=m0 1 0 (D1)
0 0 -2
They satisfy the relations
Tr A= 20;5;
D M= 20 iiehe;
{Niy N} =2ds 6N (D2)

The fi5 are antisymmetric under the interchange of any
two subscripts. Their values are listed below:

ijk S

123 1

147 1/2
156 —1/2
246 1/2
257 1/2
345 1/2
367 ~1/2
458 \3/2
678 \3/2

All others vanish.

* For further properties of the A matrices see Macfarlane,
Sudbery, and Weisz (1968).

The coefhicients d;j are symmetric under the inter-
change of any two subscripts. The values of the d;j are
listed below:

ijk dije
118 1V3
146 1/2
157 1/2
228 1/V3
247 —1/2
256 1/2
338 1/V3
344 1/2
355 1/2
366 —1/2
377 —1/2
448 —1/2V3
558 —1/2V3
668 —1/2V3
778 —1/2V3
888 —1/V3

and
doij= (%) 1%8:;.

APPENDIX E: NONLINEAR REALIZATIONS

In a recent paper, Coleman, Wess, and Zumino
(1969) have given a complete discussion of nonlinear
realizations for compact, semisimple Lie groups. We
shall not attempt to do anything more than outline the
general argument. The point of departure is the
equivalence of all fields obtained by transformations of
the type shown in Eq. (2.22). This strongly suggests a
geometrical approach* to the problem. Quite generally
then, the fields (¢, ¢) will be taken as coordinates on a
manifold, and under the group G a transformation law
for these coordinates is given:

g(e,¥) =(¢',¥). (E1)

For this transformation law the group properties must
hold, e.g.,

81(¢(¢,¥))=g:(¢',¥)
=(¢",¥")
= (818) (&, ¥). (E2)

The transformation of fields in (2.22) suggests that the
origin is unchanged under the change of coordinates,
ie., it is distinguished for physical reasons. Those
elements g of G for which

8(0,0)=(0,0) (E3)
form a subgroup H, the stability group of the origin.
* This geometrical view is also espoused by Finkelstein (1968),

Isham (1969), Meetz (1968), Volkov (1968), and Hiida, Ohnuki,
and Yamaguchi (1968).



If wo first consider the special case that there are no
fields ¢, we may, with the help of # (which is assumed
given), give a simple realization of G on the manifold.
In this case there is only one orbit* (i.e., every point is
connected to the origin by some g€ G), and it is possible
to represent the manifold by the cosets of the stability
group. Recall that the set of cosets, G/H, is given by
xH, where x runs through the group. Now for y€G,
yxH is again a coset, i.e., a group element takes us from
one coset to another. We may thus take G/H as our
manifold and as coordinates take those parameters that
parametrize the cosets.

For the group of interest to us, every element of G
may be written in the product form

g=exp (—i£-Q) exp (—iu-Q),

where the Q are the generators of the subgroup H, and
the Q are the generators orthogonal to the Q. Hence
&s parametrize the cosets and can now be taken as
coordinates for our manifold. Their transformation law
is given as follows: for an arbitrary group element go,
goexp (—7&-Q) is again a group element. We may
therefore write

goexp (—i&-Q) =exp (—i&-Q) exp (—iu’-Q), (ES)

where

(E4)

¥=¥(% g),

w'=u'(§ g). (E6)
Thus the transformation
gt EE(E g) (E7)

is the desired nonlinear realization. The authors of the
paper cited above show that when there are other fields
¥ present, it is always possible to bring their transforma-
tion law into the form

go: ¥y—Dlexp (—iw'-Q) .

D(h) is a linear unitary representation of the subgroup
H. The transformation law of the ¢ as well as that of
the & has the property that it is linear, i.e., independent
of & (the meson field) when g is restricted to the sub-
group H. In that case

hexp (—ig-Q) =[h exp (—i&- Q) T
—~[exp (—i€-hQk) Th

(E8)

=[exp (=it Q)Jr.  (E9)
Hence exp (—7u’+Q) =% and (E8) reads
h: y—D(h)Y. (E10)

* In fact, our separation of fields into ¢ and ¢ is made on the
basis that if ¢ =0, there is only one orbit.
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From (E.9) we see that

¥=D®(h)E, (E11)

where D® (k) is the adjoint representation restricted
to H and Q.

The important result is that any nonlinear realization
can, by a coordinate transformation, be cast into the
form given by (E7) and (E8), and that the realization
depends only on the subgroup H and its representation
D(h). A special application of this standard procedure
may be found in the paper by Bardeen and Lee (1969),
who use it to derive Eq. (9.34).
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Postbibliographic Note

Chiral symmetry continues to be an extremely active
field of theoretical research. As noted by Renner (1968),
over 500 papers on this subject had been published by
mid-1967. It is not feasible to try to list all the papers
that have appeared since that time. We here list a
number of references, which, when combined with
Adler and Dashen (1968), and Renner (1968), will
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