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This paper reviews recent developments of effective Lagrangians and field algebras as means of treating chiral symmetry
and partially conserved axial current (PCAC) for the study of elementary particle physics. The techniques employed
are developed in considerable detail. As examples, we concentrate primarily on spin 0 and 1, linear and nonlinear realiza-
tions of SU(2) XSU(2) and SU(3) XSU(3) and some of the signi6cant predictions of the theory are derived. The
paper contains an extensive discussion of an effective Lagrangian with nonets of real scalar, pseudoscalar, vector, and
axial-vector mesons that illustrate the problems of broken SU(3) X SU(3).
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I. INTRODUCTION

The algebraic formulation of chiral symmetry by
Gell-Mann (1962; 1964) has opened up a new, fertile
field of study in elementary particle physics. f The
postulated local commutation relations for the vector-
and axial-current densities,

L js (x),B'(y) 3. .o= 5 jss (x), js&(r) ~*~o

= ~f-s.jo'(x) ~(x y)—
[js (x), jsoe(y)g, ~~,=if tt, j&p(x)il(x —y), (1.1)

bring the problem of determining the current matrix
elements into the realm of quantum Geld theory, with
the accompanying difhculties that arise from multi-

particle states. In most calculations, therefore, little use
has been made of the locality of the current commuta-
tors. The content of (1.1) has only been used in inte-
grated form in "Kard—Takahashi identities"* and a
number of approximations have been made.

(i) It has generally been assumed that the divergence
of the axial current, when used as the interpolating
field for the pseudoscalar n~esons, yields the smoothest
possible off-shell continuation for matrix elements
involving such mesons. In a I.agrangian model, the
relat. ion

ct"js„(x)= (const) g(x),

where Q(x) is the pion Geld, certainly satisfies this
condition in lowest-order perturbation theory. Ke shall
refer to (1.2) as the partially conserved axial-current
condition, or PCAC. f

(ii) The idea of the vector dominance of current
matrix elements' has been implemented by the replace-
ment of the currents by the interpolating fields of vector
mesons (Kroll, Lee, and Zumino, 1967), treated as
stable particles.

(iii) The most important assumption has been the
replacement of the sum over intermediate states of
certain quantum numbers by a sum over a few low-spin,
single-particle states. With this assumption only con-
tact terms (which may be polynomials in some of the
scalar variables) and single-particle pole terms appear
in the calculations.

*See the papers of Schnitzer and Weinberg (1967), GeGen
(1967), Brown and West (1967), Das, Mathur, and Okubo
(1967), Arnowitt, Friedman and Nath (1967), Gerstein and
Schnitzer (1968), and Arnowitt, Friedman, Nath, and Suitor
(1968). A recent discussion of chiral symmetry may be found in
the articles of Dashen (1969}and Dashen and Weinstein (1969).

f GeH.-mann and Levy (1960), Nambu (1960), and Chou
Kuang-Chao (1961);Bernstein, Fubini, Gell-Mann, and Thirring
(1960).

f Sakurai (1960); Gell-Mann and Zachariasen (1961).
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A number of people* observed that these techniques
could be more completely represented by appropriately
constructed effective Lagrangians, f with which lowest-
order perturbation calculations, not involving any
closed loops, were to be carried out. The eGective
Lagrangian method suGers from the defect that if one
wishes to include more particles, one has to start all
over again. A corresponding advantage is that one is
sure of consistency of the calculatioos, whatever the
reaction involving the particles included at the start.
Thus in a system involving ~'s, p's, and A's one must
simultaneously deal with xx, xp, and xA scattering to
ensure consistency in a current-algebra calculation: this
is automatically satis6ed by a Lagrangian. EGective
Lagrangians are also useful models which can be used to
test the particular assumptions made in any more con-
ventional current-algebra calculation. In addition, there
is still a great deal of arbitrariness in the construction
of eGective Lagrangians, especially for the case of
SU(3) XSU(3). This is due partly to the intrinsic
abitrariness of the approach and partly to the experi-
mental uncertainty about the existence and properties
of axial-vector and scalar mesons. The study of these
Lagrangians, therefore, can give us a feeling for the
limitations of the current-algebra approach and an
understanding of the enormous variety of the assump-
tions made and predictions resulting that have recently
been appearing in the literature.

Finally, a word about our references. This is a review
of the use of eGective Lagrangians and Geld algebras for
exploring some of the consequences of current algebra
and PCAC. Consequently, we have made no attempt to
give a complete bibliography for all the work done on
current algebras using non-Lagrangian methods. The
references we do cite are only some of the many excellent
current-algebra and Ward —Takahashi identity treat-
ments of the problems we discuss. They are mentioned
so that the reader can make the connection between
these methods and the use of eGective Lagrangians.
For a more complete bibliography in current algebra the
reader is referred to the monographs by Adler and
D ashen (1968) and by Renner (1968) that were
mentioned at the beginning of the Introduction, to the
rapporteur talk by Weinberg (Vienna, 1968), and to
the other references appended in a postbibliographic
note.

The plan of the paper is the following: In Sec. II we
discuss the Lagrangian formalism, i.e., how currents are
de6ned so that their integrated densities obey the

*steinberg (1967); Schvringer (1967); ass and Zumino
(1967); Bardeen and Lee (1968); Lee and Nieh (1968); Cronin
(1967);Arnowitt, Friedman, and Nath (1967). Minamikawa and
Miyamoto (1967); Shiozaki (1968); Yamaguchi (1968); and
Sabo (1968}.

t Some early papers are Schwinger (1957); Polkinghorne
(1958); Gursey (1960; 1961); and Kramer, Rollnik, and Stech
(1959).

required algebraic properties. In this section we also
discuss the tree-graph approximation and show that the
symmetry of the Lagrangian is maintained by it. In
Sec. III we discuss various ways of implementing ehiral
SU(2) )&SU(2) for pions. We discuss in some detail a
model containing an isoscalar 0+ meson, and show that
in the limit that the mass of this particle goes to inanity,
we obtain a nonlinear realization of the symmetry. The
uniqueness of the nonlinear realization is established,
and the connection with the Goldstone bosons is brieQy
discussed. In Sec. IV we discuss the Yang —Mills
Lagrangian and show that its use allows us to construct
a theory in which the currents are proportional to the
spin-1 meson fields. The commutation relations of the
currents are discussed and the Schwinger terms derived.

In Sec. V the Yang-Mills theory, as modi6ed above,
is generalized to satisfy chiral symmetry by the inclusion
of axial-vector mesons. Covariant derivatives for the
scalar and pseudoscalar fields are constructed. These
ideas are used in Sec. VI to construct a Lagrangian
which is then studied in detail. We describe how a
mixing between the pseudoscalar Geld and the axial-
vector field can be diagonalized, and we derive expres-
sions for the pox and Ape couplings in agreement with
current algebra results. We also show that a nonlinear
realization for the axial field is possible, but not likely.
In Sec. VII the Yang —Mills formalism is generalized to
SU(3) )&SU(3) . A convenient 3)&3 matrix notation for
octets is introduced. The various w'ays in which octet
SU(3) symmetry breaking can be introduced into the
theory are discussed. Section VIII generalizes the
developments of Sec. III to unitary symmetry. The
diGerent invariants are discussed, as is octet symmetry
breaking. The model is further considered in Sec. IX,
where nonlinear realizations are treated. In Sec. X we
discuss in some detail a Lagrangian containing nonets
of scalar and pseudoscalar mesons interacting with
nonets of vector and axial mesons. Some numerical
results are presented.

In Sec. XI some miscellaneous topics, which could
not be discussed in depth, are brieQy touched upon.
They are (i) the question of coupling to photons, (ii)
chiral symmetry for baryons, and (iii) a new way of
obtaining further relations between coupling constants,
due to Weinberg. In the Ave appendices we discuss
(i) the transformation properties of fields under
SU(2) &(SU(2), (ii) the transformation properties of
6elds under SU(3) &&SU(3), (iii) our conventions for
calculating decay widths, (iv) the Gell-Mann matrices,
and (v) some mathematical material appropriate to the
nonlinear realizations of transformation groups. The
bibliography includes literature available to us through
May 1969.

IL THE LAGRANGIAN FORMALISM

The equations of motion for a system described by
a Lagrangian density function of certain fields g~(x)
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and their derivatives If the internal indices were separated from the space-
time indices, it would be manifest that in (2.8) the
latter are summed over. The proportionality constant

are the Euler-Lagrange equations, which take the form —i is determined by consideration of the unitary trans-
formation that implements (2.5). Consider the general-8„82 8 8„@g x =82 8@, x 2.2 ized charge Qe dined by

when the Lagrangian density is of second order in the
derivatives. The labels A here refer to internal sym-
metry states such as the i-spin state, as well as to the
space-time components if the Geld is a tensor or a
spin or.

The canonical momentum is defined by

Qe—= dsxjps(x), (2.9)

in which the index J3 refers to the internal variable
alone. Using (2.3) we may write this in the form

~'(x) = ag/8, (y, ( x) ). (2.3) Qe(xp) = —zC"ac
*p/s gp

d'x'~" (x') yc(x'). (2.10)

We shall later treat the fields as operators, and assume
for them the canonical commutation relations

(~'(x), 4z(y) 3*-.o= —zae"a(x —y) (2 4)

The distinction between covariant and contravariant
indices is irrelevant for the internal-symmetry indices
but is necessary for the spatial indices as we are using
the (1, —1, —1, —1) metric.

The quantity of central interest to us is the current
associated with some internal symmetry. We arrive at
its definition by considering the fields to be altered by an
infinitesimal space-time-dependent gauge transf orma-
tion of the form

yg(x) —+y~(x)+ay~(x) =y~(x)+iC~ecnz(x) yc(x),

(2.5)
so that

Lp»(, ), ~»(»)g= —ic»»» f i»'L»" (»'),@»(»)]i»(»')

= —Cusc4c(x). (2.11)

From this it follows that the unitary transformation

U= exp L
—"z(x)Q,3 (2.12)

with infinitesimal nz(x) transforms P"(x) as follows:

U/A(x) U QA(x) z(2B(x) EQ—B) 4A(x) 3

=@"(x)+iCgzcnz(x) yc(x). (2.13)

This is just the transformation law postulated in (2.5) .
With this definition of the current we may rewrite

(2.7) in the form

8&= "(x)8j&„s(x)——8&~&(x)j„(x) (2.14)

from which we obtain the important equations (Gell-

The constant CAB' depends on the internal variables
(such as i spin) alone, as does the function c(e(x) . Thus
this equation holds for every space —time component of
the field. The change induced in the Lagrangian density
by this transformation is

82
82 = aug(x)+ 8„8$»z(x)

8$~ x 8 aug~ x

j'(*)= 8(8')—/8(8"~z(x) ),
8&j„z(x)= 8(32)—/anz(x) (2.15)

The coeKcients CAB' can be determined from the
commutation relations for the Q~ required by the group
property of the unitary transformations U. If the Lie
algebra is characterized by

(
"(,(&A»(»))

BZ
=a„~ z, (x) C„~c(x)

8 8.$~ x )
(2.7)

A) B & ABC C)

then using (2.10) we have

L'p p ~= e»»»~»»» f »f ~'~—
XL (*)4 (*), '(y)4o(y)3

(2.16)

Here the equation of motion (2.2) has been used in the
second step. For a constant gauge transformation (ns
independent of x) the invarialce of the Lagrangian
density implies the existence of a conserved current
deGned by

j„&(x)= zTax/8(a y-~(x) )jC&Bc(f)c(x) (2.&).

= z (d x)C~gNC~z"H(x) &N(x)

(2.17)

C3EANCNBQ& (x) 4Q(x) j
if»»» —»C»»0 fN»W(»)At(»)=—
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provided that

CMANCNBQ CMBNCNAQ efABCCMCQ ~

Ke may write this in the form

(+A) MN(CB) N'Q (CB)MN(CA) NQ efABC(+C) MQ (2 18)

Thus the C~~~ must be chosen to be the Sf' matrix
element of a matrix representation C~ of the generalized
charges QA. For example, if the QA obey the connnuta-
tion relations of SU(2), then

The second one has to do with the properties of the
"tree-graph" approximation (no closed-loop graphs)
to the scattering matrix. As was noted by a number of
authors (Nambu, 1968; Lee and Nieh, 1968; Boulware
and Brown, 1968; and Coleman, Wess, and Zumino,
1969), the "tree-graph" approximation may be con-
sidered as a Grst term in a systematic expansion of the
scattering matrix. We outline the argument following
the discussion of Coleman et aL Given a Lagrangian
Z(p) consider

+MAN (2 )MNi (2.19) z(p, x) =—(1/x')z(Xy). (2.23)

where the T~ are i-spin matrices. The multiplicity of
possible labels is three here (A = 1, 2, 3) and in general
matches the number of generators of the transforma-
tions U (as the QA are sometimes called), as can be seen
from (2.12) and (2.13). The indices M and 1V, on the
other hand, have the multiplicity of the Gelds under
consideration.

The scattering matrix for a physical system described
by the Lagrangian density (2.1) and the canonical
commutation relations (2.4) can formally be obtained
by writing 2 in the form

A given connected Feynman diagram can be seen to
have a definite power of the parameter A, associated
with it. Let E be the number of its external lines, I the
number of internal lines, I. the number of loops (the
number of internal integrations), V the number of
vertices, and S; (i=1, 2, ~, V) the number of lines
a,ttached to the ith vertex. Since a vert. ex with E; lines
comes from a term involving E; Geld operators multi-
plied together, and there is a factor X ' in front of the
Lagrangian, each vertex carries the power E;—2 of the
parameter. Thus the diagram carries a power given by

Z(4A, ~o4A) =ZO+Z e, (2.20) (2.24)

where Zo is the Lagrangian density describing the
system without interaction, and then "computing" the
matrix elements of the operator

zA

S= Q — «t &a&(Z;ne(xi) ~ ~ Zine(xn) ). (2.21)
tS s

The terms in this series are given by the collection of
all Feynman graphs computed according to rules ap-
propriate to the spins of the particles involved and the
vertices that appear in Z;„e(x).There are two important
properties of this formal* series solution that should be
noted. The Grst one has to do with the behavior of the
scattering matrix under a point transformation of the
fields

4A(~) =XA(*)g(x(*)) g(o) =1 (2 22)

As was shown by Chisholm (1961) Lsee also Kamefuchi,
O'Raifeartaigh, and Salam (1961)$, the scattering
matrix elements, in contrast to the Green's functions,
are unchanged by such a local transformation that does
not involve the derivatives of the fields. This result may
be viewed as a concrete illustration of the general result
that the scattering matrix, connecting the "in" and
"out" fields, does not specify a unique local interpolating
field (Haag, 1958;Nishijima, 1958; Zimmermann, 1958;
and Borchers, 1960); if gA (x') is a suitable local inter-
polating Geld, so is a local function of it.

~ The formal character of the expansion should be stressed as
one frequently deals with unrenormalizable theories for which no
real meaning can be ascribed to the series.

Since a line is either an internal line or an external one,

(2.25)

I'=E+2I 2V. —
The number of loops is given by

L=I V+1, —
so that

P=E+2I.—2.

(2.26)

(2.27)

(2.28)

Then
(2.29)

Z(xg(&x), le) = (1/1~') Z(1~xg(1x) ) (2.30)

Thus the power counting is the same, and a tree graph
is again characterized by

(2.31)

Thus for a given process, characterized by a fixed E,
terms with diferent numbers of loops carry diGerent
powers of A.. The tree graphs, for which L=O, are thus
the lowest order terms in a systematic expansion of
powers of A,. H follows from this that invariance proper-
ties of the Lagrangian are maintained by the tree-graph
contributions alone, as is the invariance of the tree-
graph approximation to the scattering matrix under

point transformations. For the latter it is only necessary
to introduce X into the transformation via
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From the equality of the scattering matrices for Z(P
and 2'(@)—=Z(pg(@) ) follows the equality of the terms
proportional to XE 2. *

A final comment which leads us naturally into the
next section is that if all of the fields p~ are independent,
the transformation law (2.5) is a linear one, whereas if
some of the fields are functions of the others, we speak
of a nonlinear realization of the symmetry.

nl. CHrRAL SVMMETRY ZOR Iroma

The symmetry which will be considered here is one
first proposed by Gell-RIann (1962), namely SU(2) X
SU(2). The transformations are generated by a set of
six generalized charges, Q" and Qs" (A = 1, 2, 3), which
obey the cominutation relations

require that

t Qs", 4Bj=0 (3.7)

8g= —(nx B),

and we propose that

(3.9)

which is inconsistent with (3.5) and the Jacobi identity

tQs" LQ.-' 4CJ)-(Qs' Lg.-",4cl)=(Lgs", Qs'j, 4cl.

(3.8)

Thus, to construct a linear realization of the symmetry
known as chirul symmetry, we must introduce other
Gelds.

The simplest possibility is to introduce a scalar Geld
o.A carrying i spin 1. Ke then have

)
=MATC

[g",Qs'j = ie~Bcgs',

t:Q;", Qs'3 = iB~BCQ'.

&/P—BQ—s & A. J
= —(g x &)a,

$'a~ = —(g x Q) ~.

(3 1) It follows from these relations that

(3.10)

The nomenclature is reLated to the commutation rela-
tions

8'(sls'+d') = —2$. Iix B—2B exp=0. (3.11)

Lg+", Q+'j = ie~BCQ+',

Pg+", Q j=0,
obeyed by the operators

Q
A —i (QA~Q 2)

s(BA )'+a(B.d)'. (3.12)

Thus a satisfactory Lagrangian would be
3.3

Thus Q'+ d' is a chiral invariant and so, for constant
gauge functions, is

(3 2)

~= s(BA )'+ s(B.&) '—aB'(4'+ &')The construction of Lagrangians which are invariant
under unitary transformations generated by these
operators is made nontrivial by the requirement that
parity be conserved, and

+-,'X(ps+ Bs)s+ ~ ~ (3.13)

BZ = B„f B"—n x Q
. B„d B"n x 0—

to which we could also add any ever function of the
pseudoscalar invariant g d.

For space-time-dependent gauge functions we have
Let us construct some simp/e invariant Lagrangians
containing the pion field of i spin i. The statement that
the i spin of the pion is 1 is equivalent to writing and

B4A= iLnBQ, CAN = BBACnBAC

= —(nxy)g.

8'Z= —B Q Beg x d —B B Beg xp

from which we can determine the currents
Me&

(3.15)

This is just the infinitesimal version of

exp ( i n Q) P~ exp (in Q) =—PBLexp ( —in T) )B~,

j„=gxB„Q+BxB„d,

js„——B x B„Q+Q x B„B (3.16)

where the T are the 3X3-dimensional i-spin matrices
with (T")B~———iesB~. In order to test the invariance
of a Lagrangian, i.e., to see whether

(3.6)

we need to know Lgs", QB I. This must be a scalar. A
linear realization involving the pion field alone wou d

~ The parameter 5 (if one expresses the Lagrangian in now
unfamiliar unitsf) quite naturally plays the role of X in the ex-
pansion, so that the tree-graph approximation bears a formal
resemblance to the %KB approximation, as noted by Nambu.

If we require these currents to have the same CP'

(or GP) transformation properties, then the B must be
an even G-parity field. Such a d (with its "abnormal"
charge conjunction properties) could not couple to two
pions (statistics) or to three pions (G parity). Also
since the G parity of the SE system with S, orbital
angular momentum L,, and i spin T is (—1)B+ +r there
can be no coupling of the d to a T= 1 'Po state. Such a
particle would be, to say the least, difjcult to produce.
If the 6 had odd G parity, its simplest decay would be
into 6ve pions (d-I+3sr because of spin and parity), but
it could couple to nucleons. The axial current in this
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O'Q= go,

8'o= —g Q. (3.17)

LThis implies that we are dealing with a (si, —,') repre
sentation of SU(2) XSU(2). See Appendix A for a
discussion of this. ] Again Qs+o' can be seen to be
invariant, and a chiral-invariant Lagrangian is

case would be a second class current (Weinberg, 1958)
and with CI' transformation properties opposite to the
usual axial current could lead to CI' violation (Maiani,
1968). These speculations are not really within the
scope of this review, and we continue by considering
an alternate possibility, that of including an i-spin-0
scalar field tr(x) . We require that

as the squares of the masses so that

SZ~ =P A,op )

Pity =P 3Xo'p ~ (3.24)

os f . . —— (3.25)

Thus symmetry breaking introduces a 0-x mass splitting
absent in the symmetric Lagrangian. One may use this
Lagrangian to calculate xx scattering in the tree-graph
approximation. The graphs that contribute are shown
in Fig. 2, and the amplitude is given by*

Note that )t may be expressed in terms of f and the
masses, )i= (nz '—tn s) /2f '. Also, rl,s 3—m s= —2ps,
which implies p'(0 if the 0 is massive. Combining
(3.24) with (3.23) we find that

1 (g g) 2+1(g ~)2 1~2()2+~2)+1)()2+gs)2+. ,

(3 18)
1 4),'f '

8 y8,i, +2l )+L„Spy

The 0- can couple to any even number of pions* as well
as to baryons and is a perfectly acceptable particle. It
can also couple to the vacuum, i.e., it can have a non-
vanishing vacuum expectation value without violating
Lorentz invariance, parity or G parity. Such a non-
vanishing vacuum expectation value can, of course, only
arise when chiral symmetry is broken, since of the fields

(o, Q) that transform among themselves, one is singled
out. We shall see that if the symmetry is broken by a
term of the form

&ss=f.m.'~, (3.19)

0 S = 0 S p 0 X =op 0 S

then necessarily (o )sWO. The above choice of symmetry
breaking is particularly interesting to us because from

8'ass = —f.m.sg f (3.20)
it follows that

Bsjs„=f sr' sQ.

This, however, is just the PCAC condition referred to
in the Introduction. With this choice of symmetry
breaking, the total Lagrangian (3.18)+(3.19) can be
treated in a conventional way, except for the fact that
the term linear in o leads to "tadpole graphs" (Fig. 1) .j'
To eliminate these graphs we write

f Q,sf s)—
i
4)+

16~m. E
(3.27)

Let us now' turn to the possibility of a moelinear
realzsatioe in which we do not admit the existence of
fields other than that of the pion (Bardeen and Lee,
1968; Schwinger, 1968; Weinberg, 1968). The most
general form for 8'g is

(3.28)

or, equivalently,

t gs", 4if=s@t

ft(g')+t'Isn't

fs($') (3.29)

There is a relation between the functions ft and fs that
follows from the Jacobi identity (3.8), which takes the
form

E~(p) ~ &( ) 34= —(5 x tr) x Q. (3.30)

After some simple algebraic manipulations one finds

4)(' 4)'Xi, +2& i+4s&s,i, +2&, (3.26)
d' &m,'—I

so that the predicted scattering lengths are)

1 1 ( 12)'f,s 8X'f.'&—
i
10)+

16m m & m.s —4m ' m.s )

that the relation
and determine 0-p from the condition that terms linear
in o' disappear from the Lagrangian. With our Lagrang- 1+2f&(x)L~f&(x) Idx j+2xfs(x) L~ft (*)ldx 3
ian this leads to the condition —f, (x)fs(x) =0, (3.31)

p'os+)toss+—f,m .'=0 (3.23)

*Only if additional symmetry-breaking terms are added.
t' Tadpole graphs are discussed by Coleman and Glashow

(1964) .

The coefficients of —
ques and —tso's may be identified

*It is easily checked that when one of the pion four-momenta
vanishes, so that s=t=l=m ', the amplitude goes to zero as
required by the Adler (1965) condition.

t We use the normalization of states {P'i p)=2ps&(p —p') as
in Gasiorowicz (1966). The scattering amplitude f(W, 8} is
related to T by f= —(8+') T/W, where 8' is the center-of-mass
total energy. We also use b g~q

——3PD, 5 ~bpq
——P2+P1+Po,

8 &By~= P&—P&+Po, where the P; are i-spin projection operators.



S. GAsIoRowIcz AND D. A. GEzmN Effective Lagrangians 537

f2(x) =0

the differential equation has the simple solution

(3.32)

where x= g2, must be satisfied. Thus, given one of the
functions we can always 6nd the other. In the special
case that

/7l /'m'

/
/

0

~17 7r
/ /

/

7r 7r

fi(x) = ff'(0) -x]"2 (3.33)

This is, in fact, the most general case because iff2(x) AO,
then it is alw'ays possible to Gnd a new Geld ~ related
to /by

p= ~g(m2) (3.34)

in terms of which the Jacobi identity is satisfied with
the form

(3.35)8'm = )f2(m2) .
Since

S'y= yf, (x)+~(y ~)g'(y)f2(x)

=8'mg(y)+2mg'(y) (m 8'm),

where the prime denotes differentiation with respect to
p= % ) it f011ows that

FrG. 2. Tree graphs for xx scattering including a real 0 meson.

6eld, but satis6es

~2(x) +y'(x) =f.'. (3.38)

~= 2(~A)'+k(~.~)', (3.39)

since &r2+ P2 is not merely a chiral-invariant operator but
is actually a numerical constant. With this Lagrangian
the currents turn out to be

We have set f~(0) =f This .guarantees the correct form
for the pion mass term in (3.44) below. This is the non-
linear model of Gell-Mann and Levy (1960).The most
general Lagrangian containing no more than two

derivatives is

(f2y) g(3') =fi(x); 2f2(y) g'(y) = g'(y)f2(x) (3 36)

From (3.34) we have

x= rg'(y),
so that

3.=4 &'A»

32y=fBpo' O'Bpf.

It is interesting to notice that

j jp+j j p —Q2(Q g)2 (p Q p)2+$2(p &)2

(3.40)

dg g'(y) (dg/dx)

dy 1-2yg(dg/dx)
'

From (3.36) and (3.31) we have

f, (x) dg 1 1+df,'(x) /dx

f,( )
='

dy g (y)
=

f ( ) - t.df'( )/d j
Hence

+o'(B„g)' 208„—o($ 8&.y).
= (0'+")((~A ) '+ (~.~) ')
=2 (3.41)

More generally, a simple calculation of the energy
momentum tensor yields*

T„„=(BZ/8(8&P)j B„y g~—
1.e.)

g(y) =~Lx+f '(*)j'";

'=f '(0) (0'/I 0'+ Ef (0') 0'I ), (3 3&)

= (1lf-') Lj. 3 +32 32. 2g .(3 '3 +—32- j2 ) $.

(3.42)

so that in a power-series expansion m2= (2+ ~ ~ .
The case f2 ——0 is equivalent to the 0 model considered

earlier, with the proviso that 0 (x) is not an independent

Let us now continue by introducing symmetry
breaking in the form

Zsg=m„2f 0. (3.43)

This implies the PCAC condition (3.21). In terms of
the. pion field the total Lagrangian reads

'(~ y)'+-'L(e '-e)'/(f ' e') j+f ~ '(f-'

=!('.y)' :.'y'+(1/2f-') (-e-'.@)'

(~ 2/gf 2) (g2)2+, (3.~)

I'IG. 1. A typical tadpole graph.

*This form appears in the current model of Sugawara (1968).
Because the Schwinger terms are not c numbers, however, the
model discussed above has a di6erent structure. See also Sommer-
6eld (1968).
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IIQo'
I p ~)= Qo*&

I p &)=~.Qo*
I p, ~&; (3 51)

T'(Po» Po &'Pr ~ Po 0) =I:1/(2~)'j(1/f')
i.e., the state Qo'I p, a) must be a discrete positive

Xp p&,o(m~' —s)+L7&w(m~' —«)+& o~sv(m~' tr)j parity state, unless Qo'I p, a)=0. If po,,+ denotes the
creation operator for the state

I p, u) so that
lpga)=4,

, lo&,From this one finds the scattering lengths

The terms quartic in the meson Geld may be used to implies that for a discrete state, such as the one-pion
ca.lculate the pion-pion scattering amplitude (Lee and
Nieh, 1968) state [ p, cg,

ao ——('7/16or) (m /f„'),

~= —(1/8~) (m./f ')

in agreement with those obtained by Weinberg (1966)
using current algebra, PCAC, and smoothness condi-
tions which in eGect correspond to those implied by
restricting the number of derivatives that appear in the
Lagrangian.

It has been observed by YVeinberg (1967) Lsee also
Bardeen and Lee (1969)] that the scattering matrix of
the nonlinear realization may be obtained from that of
the linear 0. model if the mass of the 0 is allowed to
become very large. The limit m, ~~ is obtained if
p'—&—~ and X—+—~ such that yz 2 remains finite
(3.24) . In that limit

In the first model

Q 'I 0&=0. (3.52)

(3.53)

In this case we have genuine parity doublets; the d is
degenerate in mass with the pion. The commutation
relation (3.53) yields i-spin 1 for the state Qo'! p, a&.
If there were an i-spin-2 component, then a subsequent
application of Qo' would yield an i-spin-2 pion, degener-
ate with the ordinary pion, and this is not acceptable.

In the second model

Qo'
I p, &)=I:Q ', 4,.+3

I 0),

provided the vacuum is a unique invariant state for
which

and

X/mP+ ',f.', -—-
p'/m. ~—-'„

1 (m, ' .)' s

(2e.) ' "
m, ' m, '

Here the neutral 0. meson, degenerate in mass with the
(3.47) pion triplet, in effect acts as a parity partner for all of

them.
In the nonlinear model o(x) is just a shorthand

notation for

m' —m'

Thus"'

(3.54)

(3.55)
(3.48)

This is just the result obtained in Eq. (3.45) above.
One may in fact show that the Lagrangian (3.18) goes
over into (3.39) in that limit, although the proof,
strictly speaking, only holds in the tree-graph approx-
imation. If in the equation of motion for the 0 field

Cj o.= —p,'0+ ho. (o'+ Q') (3.49)

one takes the limit h,~po/f, o—~oe, then (3.38) necessarily
results, provided the momenta are small compared with
the 0 mass. If there are closed loops, one integrates over
the momenta and the limits become very delicate.

The three models discussed in this section show dif-
ferent ways in which chiral symmetry can be satisfied.
The symmetry requirement that for the Hamiltonian H

does not contain a pion mass term. The pion mass arises
as a result of symmetry breaking. Once there is sym-
metry breaking, then in the last two models

(&(a) &o—=0'oW0. (3.56)

This implies that (3.52) can no longer be true since

(0 I
I Qo*', y, .+j

I 0)= zL;o-o. (3.57)

yields on the right-hand side a state containing one,
two, .~ ~ pairs of pions, whose total energy and rnomen-
tum are (~„,p). This is only possible if the pions are
massless. Indeed, the chiral symmetric Lagrangian

I Qo', Hj=0 (3.50)
Here 0-~ stands for the y-Fourier co111ponent. of the negative-

frequency part af the operator o (z) .
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There is nothing pathological about this, since 8„jt;"/0
implies that Qo' is no longer a constant of the motion.
The definition of o (x) in (3.54) for the nonlinear model
implies that in this case, even without an explicit
symmetry-breaking term in the Lagrangian,

Lagrangian, —A(B»y„—B„y»)s, we have

BZI, =B rr x ti (B»y"—B"y»).

This leads to
J»= 9 x (B»p~ B»p»)

(4 3)

(4.4)

(3.58)

This comes about because o.o
——f„/0 in (3.57). We

speak of this as "spontaneous symmetry breaking" and
it has been shown (Goldstone, 1961; Goldstone, Salam,
and Weinberg, 1962; Bludman and Klein, 1963) that
in many situations such a spontaneous symmetry
breakdown is accompanied by the appearance of
massless particles, the "Goldstone bosons. " LThis point
of view, which in the symmetry limit identifies pions as
massless Goldstone bosons is originally due to Nambu
and collaborators (Nambu and Jona-Lasinio, 1961;
Nambu and Lurie, 1962) and has recently been stressed
by Dashen (1969). For a recent review and bibliog-
raphy, see Kibble (1967).j In the real-o model, too,
spontaneous symmetry breaking can occur. Without
the symmetry-breaking "driving term, " i.e., with
f =0, the condition that eliminates tadpoles, Eq.
(3.23) reads

Bf»„(x)= —a x f„„(x).

Consequently with

(4.7)

which is not what we want.
To get the field-current proportionality (hereafter

called field algebra) we recall the work of Yang and
Mills (1954) Lsee also Utiyama (1956); Bludman
(1955)j, who explored the question of constructing
theories in which the notion of space —time-dependent
gauges is extended to i spin. LSee also Glashow and
Gell-Mann (1961) for a generalization to other non-
abelian gauge theories. $ They showed that if the trans-
formation law for the vector field is written as*

By„(x)= —n x y„(x)+ (1/yo) B„e, (4.5)

then the field f„„(x),defined by

f„„(x)=B„y„(x)—B„y„(x)+y,y„(x) x fi„(x), (4.6)

can easily be seen to transform under (4.5) according to

o'o(Zoo —lI ) =0. (3.59) (4.8)
The nontrivial solution gives oo/0 and, by (3.24),
yields massless pions. *

IV. VECTOR MESONS AND FIELD ALGEBRA

we have

bZ =-'f ~ e ~ f~"=0.

If to this totally invariant term we add

(49)

The inclusion of vector mesons in a Lagrangian
enormously increases the number of possible couplings
and hence the number of arbitrary constants in the
theory. A very powerful restriction is provided by the
requirement that the current be proportional to the
vector-meson field (Kroll, Lee, and Zumino, 1967).
This is the most direct way of implementing the experi-
mentally well-supported idea of vector-meson domin-
ance of the current matrix elementsf (Sakurai, 1960;
Gell-Mann and Zacha. riasen, 1961). To see how this
restriction works, we note that ordinarily an i-spin-1
vector meson would transform according to

we see that
Zy= gamp y„y", (4.10)

BZI——mosy» $—rr x y»+ (1/yo) B"rrj
= (mo'/To) y„'B» n (4.11)

from which it follows that (Lee and Zumino, 1967)

j.= —(mo'/Vo) y» (4.12)

We now study the cumoeical commututiox relations and
their implication for the commutation relations among
the currents. We start with

Bp»(x) = —n x y»(x).
Consequently

(B»g» B»g») = —R x (B»g„—B„p»)

(41) 2= —-'f f»"+-'mosff y»+as(fi).

The momentum conjugate to g„ is given by

(4.13)

—(B„trx fi„B„trx g„),—(4.2)
so that

oo" (x) =Bc/B(Boy„(x) )= —f'"(x) (4.14)

so that for the conventional kinetic-energy term of the oro(x) =0,

oo'(x) = —fo'(x) = f*'(x). (4.15)
* In a recent paper, B.T-ee (1969j has discussed the renormaliza-

tion of the linear 0 model and shorn that this feature persists
in higher orders.

f For a recent review of the experimental situation, see Joos
I,'1967). The paper of Kroll, Lee, and Zumino (1967) contains a
detailed bibliography on vector meson dominance.

*The Jacobi identity for i-spin rotations acting on a 6eld can
be written as p„b»7x= —S &&»x and for a vector field, because
of the distributive properties of the derivative, (4.5) as well as
(4.1) satisfy the condition.
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The canonical commutation relations are

L~ (+) p»'(y) g* o= iB bB 'iB(

In order to calculate the equal time commutators
among the currents we must express p p in terms of the
x ~. The equation of motion is

6eld algebra, we cannot include terms like io(B„iI))o ii)
the Lagrangian, since

~(l(BA)')=B"0 (—B.»xk) (4.23)

leads to additional current terms. If, however, we
consider

—B„f""=mooy" —gof&" x y„+Bg,/By„ (4.17) DA =BA+&oy. x 4 (4.24)

If we set v=0 we get

—B f"'=mooyo —yof" x y;+(BZ,/Byo);
i.e.,

oy'= ——B oo' ——y. x oo' — —— (4 18)
sso gap mo ~go

In the last term we shall only consider those forms of
22 in which the only dependence on y„ is through terms
like

we see that

B(D„P)= —B„»x (I)—» x B„y yo (—y„x (» x y) )

+go —Bp» —»xyp ~xf
yo )

(4.25)

so that the coupling via the "covariant derivative, " as
in the case of Z2 discussed above, preserves the field-
current proportionality. A useful identity is

l(B.X+~oy. x X)'
Thus,

Bgo/B yo =yo @ x (Bog+ 7 by o x 1() =yo i( x f Mo/B (Bo1()j;
i.e., the last term in (4.18) only involves the 6elds g
and their conjugate momenta, which commute with p;
and x'. We may thus ignore the last term in calculating
the commutation relation,

I D., &.jX=D,(B.X+~oy. x X) —(p~~)

=B&(Bvg+poyv x g)

+Voyi x (B.1(',+Toy. x 1(',) —()i~)')

of„„xg,

valid for all isovector fields g.

(4.26)

L '(*)»'(y)h*-.o=l —(1/ o')B' '(*)
—(VO/mO') eammPm (&)&in(+) y Pb (y) 1

= —(1/m, o) B'(—9; B~B(x—y) )
—(70/mo') '-P-'(~) (—iB"B~B(x—y) )

= (i/mo2) B~BQ(x—y)

+ (iso/mo') e, bP '(x) B(x—y) . (4.19)

Multiplication by (mo'/yo) ' yields LI.ee, Weinberg, and
Zumino (1967)j
Lj'(~), jb'(y) j. ..=i'~ j."(*)B(x—y)

+ (imo'/yo') B~B'B(x—y) . (4.20)

The second term is a c-number "Schwinger term"
(Schwinger, 1959; Goto and Imamura, 1955). The
existence of such terms is required on very general
grounds, but their form is usually not known or not
very well defined. It is one of the attractions of 6eld
algebra that the Schwinger terms are well defined.
Schwinger terms have been calculated for a renor-
maliz able theory by Johnson and Low (1966),
Hamprecht (1967), Polkinghorne (1967), and given a
general discussion by Gross and Jackiw (1967).

It can be easily shown that

Ljo(x), jb'(y) j „,=ie~,B(x—y)j,o(x). (4.21)

It is of course evident that

Lj."(x),jb'(y) j, ,=0. (4.22)

If we wish to couple the vector mesons to other fields
(e.g., the pion field) and at the same time preserve

g (+)— i (f (6))&+im &(P (+))&

we construct

(5.2)

go —i(g (+)gg (-)) (5.3)

a combination which is invariant under reBections.
This Lagrangian, when expressed in terms of y„and a„,
yields

&o= —4(Bi y~ B~yi+'Yoyi x &+voai x a~)'

——,'(B„a„—B„a„yyoy„xa„—goy„x a„)'

+omo'(y„'+a„o). (5.4)

We introduce the notation

so that

Fpv= Bgayv Bs yy+'Yoygc x yv+Voay x ave

Gp„=Bpa„+goya x ar——B~ag goya x ap) (5.5)

@=—i(&")'—4(G~)'+kmo'(y'+a') (5 6)

*This corresponds to assigning the spin-1 mesons to the
reducible representation (1, 0}e(0, &} of SU(2) XSU(2) .

V. VECTOR MESONS AND CHIRAL SYMMETRY

If chiral symmetry is to be implemented, the triplet
of i-spin-1 mesons can be supplemented by a triplet of
axial mesons, for which we will also require field —current
proportionality. * We de6ne the 6elds

(5.1)

where a„are axial-meson fields. With the help of
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The gauge transformations now are

BP»= a x9»+(1/70)B»~&

—+XR~

B'y»= —g x a„,

$'a»= —g x p»+ (1/'r0) B»g,

and it is easy to show that

B'F»»= —g x G

B'G»„= —$ x F„„.

we get

B(B~)=0; B(D„y) = — x D„g. (5.16)

The complication comes in the axial transformation.
We see, for example, that

B'(B»&) = B-»I3 4 0-BA (5.17)

B (a.'0) =(1/&o)B.O 4 —axe. 0+a. 0 (5 18)
(5.8)

Hence

(5.7)
To compensate for the B»g term we need a scalar term
involving a„ linearly. The possibility of a» g suggests
itself. %e Gnd that

Thus the first two terms in 20 are invariant, while the
mass term yields

&'(B,o+&0&» p) = —
g (D»Q —&00&»). (5.19)

B~o= (~ /vo) p»' B"+p

B zo=(~'/yo)a B"y

Similarly, a short calculation shows that

B'(D„p—yooa„) = y(B„O.+boa„g).
(5.9)

Thus, with (Lee and Nieh, 1968)

(5.20)

showing that Geld algebra is satisfied by both the vector
and the axial currents. Both currents are evidently
conserved and the proportionality constant relating
current to ffeld is the same in both cases. LThis is the
Geld-algebraic statement of "Weinberg's Second Sum
Rule, " (Weinberg, 1967).g The current commutation
relations can be obtained from the canonical commuta-
tion relations. For the vector mesons

6»tT: B»0'++OR» ' fq

~A —=BA+Voe» x0—vo a»

B'6»0= —
g h»f

O'A»Q= gd»0,

(5.21)

(5.22)

my" B2/B——(B yg) = —P"=F'~

and for the axial mesons

(5 I) and thus

t(g ~)2+t(g g) 2 1~2(@2+~2)+... (5 23)

sg"=M/B(B ap) = —G"=6~

The equations of motion for the axial Geld are

—B„G» =y,F»" x a„+yoG»" x y +mp'a"

from which we obtain

(5.11)

(5.12)

is chiral invariant.
The combination of 20 from (5.6) and the above term

give the simplest chiral-invariant Lagrangian. We can,
however, construct other invariant terms which involve
more derivatives. For example, using (5.8) and (5.22)
we can check that

aBk xii xF x ak xA x g~ (5'13)

80 =0 8$= —ax/ (5.14)

B'0= —
g Q; B'Q= go., (5.15)

The commutation relations can easily be calculated
with the help of this expression. We limit ourselves to
the remark that the coeQicient of B~~g is the same as
in Eq. (4.18) so that the Schwinger terms for the
axial-current commutation relations are the same as
for the vector-current commutators (Weinberg, 1967).
This does not hold for all models. For the 0 model, for
example, the coefficients of —i8&8(x—y) in Lj,'(x),
j& (y)j and L j&.'(x), j~b (y) j are P,Pt, B~Q' anP—

8~0, respec—tively
Let us now turn to the coupling of the vector and

axial mesons to pions (and the o a,s an independent or
dependent ffeld) . With

B'(F„„bpgxh"Q) =2(g d "Q) (G„, 4»Q)

—2g F„„xhvgh»0. (5 24)

where use has been made of the antisymmetry of F„,
and 6„„.Similarly,

B'(G „b,»ya ~) = —g F„„xa»ya &

—(G" ~"0) (P '~"0) (5.25)
Hence

B'(-'F„„A»Q x deg+G„„h»pd'0) =0. (5.26)

Ke shall actually carry this term along because it
satisffes all the requirements we have imposed. LThis
is the counterpart of the ~ term in Wess and Zumino
(1967) in Sec. V, for example. j

In order to break chiral symmetry in a way which
leads to the PCAC condition we again add

Zs~=m 'Jo (5.27)
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The constant J wil! be determined later. It is clear that

B„jo"=m~fQ (5.28)

The cross term A„.D"Q can now be eliminated by a
proper choice of $. It appears in the axial-vector mass
term and in (D„g)'. The condition is that

but, as we shall see in the next section, the pion field
will have to be renormalized. It is there that we shall
work out the consequences of the form of

ei.e.,
mo't —Vooo(1 —

Voodoo)
=0;

$ =Voto/Lmp + (Vo&o) $. (6.4)
j(~slav ~vpv+Vopp x gv+Voay x av)

' (B„a„B„—a„+7py„x a„—Vpip„x a„)'-

+ompo(g„'+a„') + o (a„oyVoa„y) '

+ o (r/~Q+Voyu x Q
—Vo«p) '

+p" (~~9 ~ ip~+VoP~ 0 +Vpay a ) '~"0

+x(8„a„B„a„+—7pt/„x a„—Vpg„x a„) ~ Q~gg"o.

+m, 'fo, (5..29)

in which we shall also take

a=—op+ a'= op —( 1/2o p) P'+ ~ ~ ~ (5.30)

for convenience. Including real scalar mesons will
change very little.

vI. coUI LING comsTANTs Im sv(2)xsv(2)
The predictions of the Lagrangian (5.29) are easily

obtained provided that note be taken of the following
feature:

When 0'= 0'p+o' is inserted into h„Q, then

8"jo„=m ofZi/'g, =m, 'f—,Q„ (6.8)

f Z 1/of— (6.9)

The pion mass term appears only in O'. The coeKcient
of ——,'Q„o is to be m '. Thus

The coefficient of -', (D„P)' is now

(1 V—ohio) '+'mo'f'= mo'/L~o'+ (Vooo)
'j'(6 5)

If we now define the regormatised meson fie!d P„by

(6.6)

then the coefficient of oi (D„Q„)' will be unity, provided
that

Z = Lmo'+ (Vo&o) 'g/mo' (6.7)

This renormalization of the Q.eld brings the kinetic-
energy term into standard form, which is necessary to
allow us to interpret the Fourier components of g„(x)
as creation or annihilation operators for properly
normalized one-meson states.

The PCAC condition now reads

I
AoQ Dilly VP(roayVoo ap, . (6.1) m '=m 'f Z"/op

The square of this contains a cross term of the form
a„.DI'Q, and this leads to mixing between the axial
meson and the pion as soon as the symmetry is broken.
To get rid of this cross term we introduce a new axial
field A„(x) by means of

i.e.,
o ~f Zl/P t6.10)

Next we consider the coefficient of —',A„' which me call
no~'. Ke see that

(6 2)
mg'= mp'+ (Vpo p) '. (6.11)

The Lagrangian in (5.29) now takes the form

2= —4 (f„„+VpA„xA„+VptA„x D„/+7AD„Q x A„

+V,t'DI Q x D„Q) —
4 (D~A.—D.A&+ tVo f&.x y)

+-', mp'g '+-,'mp'(A +tD g) '

+!(~.'+70 A.+Vg DA)'

+oL(1 Vo&o) Dy4 Voto Dy4 VoirpAy 7(P Av]

+-', /i(f„„+VpA„x A„+VptA„x D„g

+VptD„Q x A,+7pPD„Q x D„Q)
~ t:(1-7~-.) D.~-V,-~ —V~-'D ~-7;A &

x D1 Voodoo) D"Q—VooA" V—ohio'D"Q —Voa'A']-
+,(D„A„D+„+V,tf„„xy)—

.L(1—Volvo) D"Q—Vo~pA" —Voto'D"g —Voo'A"j

X (8"o'+7op A"+7ping D"g) +fm. 'o'. (6.3)

The coeKcient of ~g„' is the square of the p mass, so
that mo'= ni, ' and hence

Z= (mg/m, ) '.

Note that (6.7) and (6.10) combine to give

7 2f 2/m 2 1—m 2/mA2

If we set my=&2m, in Eq. (6.13), we obtain

27o'f.'/mo'= 1,

(6.12)

(6.13)

(6.14)

which is known as the KSFR relation (Kawarabayashi
and Suzuki, 1966; Riazzuddin and Fayazuddin, 1966).
This relation does not follow from our effective Lagrang-
ian which incorporates p dominance, PCAC, and the
current commutation relations. It does seem to hold,
approximately, using experimentally determined values
for f and m~o, the relation predicts vp'/4ir 2.6, a
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reasonable, if slightly large, value. Several authors have
obtained the KSFR relation by using an additional
assumption. Sakurai (1966) assumes that the pion-
nucleon scattering length (at —as) is given by p exchange.
Wess and Zumino (1967) make the equivalent assump-
tion for their effective Lagrangian involving nucleons.
The same result can be obtained by explaining the x+
scattering lengths by p exchange (Ademollo, 1966). In
all cases the coupling constant yo appears rather than

on the mass shell. Brown and Goble (1968) on the
other hand obtain the KSFR relation by yp replacing
po. They use the current algebra determination of the
P-wave scattering length and use an efI'ective range
approximation to extrapolate the scattering amplitude
to the p resonance. Since yp „/yo in eGective-Lagrang-
ian models, Brown and Goble's assumption about the
extrapolation of the P-wave scattering amplitude would
have to be modified when yp /yo, because yp has a
dependence on the mass of the p Lsee Eq. (6.17) below(.

We now proceed to calculate the pmr and Ape
couplings. The relevant terms in (6.3) are

At (8„9, 8—„y„+2'—)Z'isA„x D„Q,+ yppZD„Q„x -D„Q,)'

A(8+„8—„A„+2yp—(Z'I'8 y„x y„)'

+ 2 (8lafr+Vplpp Qr)

+sz(8.9.—8.e.) I:Z(1—»&~P)'D"0 xD"0

Z"'vo"(1 —vol .) (D"4—. Ax"+A" x D"4.) 3.

Upon integrating by parts we find that the term linear
in y„and bilinear in Q„ is

soy. g. x 8"4.+ttzvoPZ pzZ(1 —volvo)'j—

)(Q 9„$,x 8 Qr.

In the tree-graph approximation for the process p—+2m

we can replace —pg„by p'9„, where p is the four
momentum of the p. We get*)

, , (mAs —m' zm' 1 t

v...=v. 1-VI, ,
' — ',

I
. (6»)

E masm, '
yo mA'j

On the mass shell

( m~s —m,' 1 zmp' m ps't

v,-=vol1 — 2, '+2 ' ',
&I, (616)

2m' 2 'rp mA 3

*The implications of this form for the shape of electromag-
netically produced p's have been analyzed by Schwinger (1968)
and by GeGen and Walsh (1968).Since these analyses have been
made, based on the Novosibirsk e++e ~x++x colliding-beam
data, ORSAY has reported their measurements of this reaction
at the Vienna high-energy conference. They obtained cross
sections .which yield somewhat different values for y, and y,
Than were obtained by Schwinger or GeGen and Walsh. Con-
secluently, the experimental situation is as yet unresolved.

"This is in agreement with the effective Lagrangian results of
Wess and Zumino (1967}and the current-algebra calculations of
Schnitzer and Weinberg (1967), Brown and West (1968),
Arnowitt, Friedman, and Nath (1967), and others.

whereas for p =0 we get

Ppre' +Op (6.17)

On the mass shell the eGective-Lagrangian term is

( m '&"'( zm s't

zA,.=pommel 1— ',
I I

1+ '
I9„.A x y„

Vo 1"
m ')'~' zm '

——I1— '
I

'
(8„9.—8„9„) 8 A xy„. (6.19)

ma'& go

The Grst term is an S-wave coupling of the form

( m s)i/s( Km
~om, I

1— ',
I I

1+
mApi vo

(6.20)

and the second term includes both 5- and D-wave
couplings of the form

yp ( mps&'~s Irmr'
(P Qe~'. P'~Q "), —(6 21)

m, I, mg'j

where Q is the four momentum of the A. The calcula-
tion of the decay rates is discussed in Appendix C.

In conclusion we may ask whether chiral invariance,
except for the PCAC symmetry-breaking term, can be
maintained without the existence of an axial field. We
proceed as in our discussion. of the 0 field and try

fiei "4'+fs8~4) (6.22)

where fi and fs are assumed to be functions of P' alone.
Familiar manipulations show that with

f, = 1/~, fs= 1/ypo, (6.23)

the Jacobi identity is satisfied, so that

a.=(1/so~)(8 0+&oe x0) =(1/7o )D 0 ("24)

:I:t is also possible to see this by noting that

8't:(1/vo~) DA j= (1/vo) 8.5—0 x 9., (6 2&)

and this is just the transformation law for the axial
field. With (6.24) and using o8„n+Q 8„/=0, we see
that in this case

a„@=0; A„g =0. (6.26)

a result that is required in order to obtain the correct
normalization of the matrix element of the i-spin
current between two pion states with zero momentum
transfer.

The terms linear in A„, 9„, and p, can similarly be
obtained. We leave out some of the algebra and just
write the resulting coupling:

qppZ—'~'Q9 A~xp

—«Z I petro(1 —7oo'o$) LCI 9„'A"x Q

+ (8„9„8„9„)~—8&A, x g,]. (6.18)
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Thus the original Lagrangian (6.3) becomes

1 /1 1 1——
I

—&„.~y-Pa„D„y—a„D„y I4 &u
" "goo " "goo. " )

and the use of the identity*

kmn ijk km j ink = imk kje)

we can show that

bp„„'=—f;;snoop„o,

bG„,'= f;&o—n'G„„'.

(7 4)

(7.5)

+ m,' y„'+, , (D„g)' +m sj'a (.6.27)
Pp 0'

Note that there is no ~ term. The following results
emerge after some simple calculations:

Since fo;; 0 it——follows that the ninth vector and axial
mesons are completely decoupled and only undergo the
trivial gauge transformation. For the axial transforma-
tions we take

(7 6)
and

(i) The coeflicient of -', (B„g,)' can be made unity if
the renormalized meson fi.eld is denned by This leads to

(7.7)

gP 4 f.„psG o,

gG i f PjP o

g =
I

m /voto I g. (6.28)

(7.8)
(ii) The PCAC condition allows us to make the

identification

~=f.(V~o/m. )

It follows that P„'PI""i and G 'G&"' are separatelv

(6 29) invariant under the vector transformations, while it is

only the combinations
(iii) The requirement that the coeKcient of ——,Q„s

be m ' implies that
and

1 (p tppvf+G 'iGgvi) (7.9)

f.~o = (m,/Vo)'. (6.30)

The only quantity of interest, the ~m coupling con-
stant, is obtained from

which on the mass shell leads to the relation y, /go= y,
which is in disagreement with experiment. Ke are thus
led to the conclusion that within the framework of the
effective Lagrangian approach, a reaL axial meson with
T=1 is required.

VII. TRANSFORMATION PROPERTIES UNDER
SU(3) XSU(3)

".'=8.V ' 8V.'+Vof* '(V'—V."+O'&') (7 1)

A straightforward generalization (Glashow and
Gell-Mann, 1961) of (5.5) suggests the following field
quantities:

-'m '(V 'V"+n 'O,") (7.10)

that are invariant under chiral transformations, with
the latter only invariant under constant gauge trans-
formations. The sum of the two terms yields a chiral-
invariant Lagrangian with the currents satisfying the

field algebru.
Before continuing with the very convenient 3)&3

matrix formalism and the transformation of the spin-0
mesons, let us brieQy discuss symmetry breaking for
SU(3) alone. We shall introduce octet breaking in the
form

'f .'(&;+—'-it35ds* )f""'"
+,'mo'V~'(b g+v-S$'ds~&) V"s, (7 11)

with f and $' giving the magnitude of the symmetry
breaking in the two terms. Terms with fs,; are excluded

by symmetry. For the d;;k, see Appendix D. For present
purposes we shall write this Lagrangian by introducing
an 8X8 (or 9X9) matrix Ds de6ned by

(Ds) 'i = dsv. (7.12)
Then

G '=& & '—& + '+y f (V '8 '—V'6, ") . (7 2) &= xf ~(1+~—&Ds)fl'"+ 'mosV (r1+vS&' D)-sV»

b V„'= (1/po) B„n' f;;on&V„', —

8R„' —f;,sn& 8,„",
'

(7.3)

where the f;;o are the structure constants of SU(3) as
delned by Gell-Mann (1962). These are listed in
Appendix D together with some other relations of
interest in SU(3). With the variations

*This identity and others we shaH use later follow from one of
the following:

LA }:8,C]]+4» f:C A]]+CC t:A 8]]=o
fA, f8, C}}—fB, f C, A } }+LC,LA, 8]]=0,
fC, f A, 8]}—fA, f 8, C]}+$8, fC, A}]=0,

by replacing A, 8, C by X;, X~, )&, using the commutation or anti-
commutation relations, and multiplying by ) and taking traces.



with f„„and V„ forming an eight- (or nine-) component
column vector and f„„r, V„~ forming an eight- (or
nine-) component row vector. The matrix vSDs is given
by

(i+i')
1—s$'

li-ir)
(~+V)(i+i) "

)1S2
(1—st')(1 —sk) '" V.' (7 19)

(&-ir) (&—&() "'1

(7.14)V3Ds=
~mwo wmmw\wm t mmmwme

I
I

o —1I

for an octet theory (the boxes refer to rows and columns
labeled 1, 2, 3; 4, 5, 6, 7; 8; respectively), or

S. G)LsroRowrcz )tNn D. A. Gxrss. N Egsctsss Lagrarigsa)ss 545

The current now has the form

+s'= fi o' (7.20)

v3Ds= 2 I
I (7.15) This implies a change in the nonlinear term in f„„' If.

V„'=S'V„', then

f„,'=S;(B„V,' B.f"„'+—(S;S /S;) f;; V„'V.")=S,f„—„'

(—1 v2) I'—2
U—

)/

0) l, «) (7.16)

for a nonet theory. (By a nonet theory we mean one in
w'hich the ninth vector meson is degenerate in mass with
the octet in the absence of symmetry breaking. ) As
noted above, the ninth vector meson does not trans-
form under SU(3) and it is completely decoupled in the
symmetric Lagrangian. For a nonet theory the (8, 0)
submatrix can be diagonalized:

Since we noir have

1+5Z= 'f f—s"-'+-'m' P (V ')'+ ~ ~ (7 21)s p& 2

it follows that

( (&+Y)(&+o '

)
d"f.:—=mo' (1—sk') (1—st) ' V '+". (7 22)

&i-ir) ~i-ii)- )
Thus with the appropriate mixing* of the (8, 0) states
the Lagrangian (7.13) now reads (1+&)(1+&')-'

~=-!(1+~)Z (f.:)'-!(1—,'~) Z (f.:)'

--:(1-2~)(f..')'+l "(1+~') Z (V:)'
i 0

+-',mo'(1 —-'$') Q (Vj) '+-', mo'(1 —2&') (V„') '. (7.17)

To be able to use the conventional commutation
relations we must renormalize the above fields so that
the kinetic energy terms have unit coefficients again.

Ke thus write

(1-2S) (1-2&')-'

Thus the commutator

(1+5')'(1+5) '
1S2 2

Ljo",i-9=I — (1—lk')'(1 —lE) ' LVo", V-'j
+0

(1-2~')'(1-2~)-'

(7.24)
has Schwinger terms of the form

( ;;(&+i)'")
V r (1 1P)i/2 V r,

(i-ii)" )

i=0,'1, 2, 3

i=4, 5, 6, 7. (7.18)
ZVPS0

1——,'f' c) B(x—y).
+0

1—2$'

(7.25)

*Mixing was first noted by Glashow (1963) and Sakurai
(1963). The possibility of various kinds of mixing was 6rst
discussed in detail by Coleman and Schnitzer (1964).The most
recent discussion is that of Kroll, Lee, and Zun)ino (1967) and
Kiininel (1968),

Thus if there is symmetry breaking in the mass terms,
the Schwinger terms are not invariant under SU(3),
and one cannot obtain a generalization of the Weinberg
sum rules. It is an attractive hypothesis to assume that
$'=0 (Oakes and Sakurai, 1967; Kimmel, 1968). One
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consequence of this assumption is, as can be read o6
from (7.23), that (Coleman and Schnitzer, 1964)

zzz„z = zzz,
2 =Nzoz/(1+ $);

22' *2 ——ms2/(1 ——2I P);

22',
z = zzz02/( l.—2p), (7.26)

the Gell-Mann-Okubo mass formula for m ' with the
nonet mixing angle (Okubo, 1963) which is satisfied to
within 5%%uq. The ru pm—ass degeneracy is independent
of the choice of $' or f. It follows from our decision to
take the symmetry breaking proportional to ds&;.

U the ninth vector meson is split off by the addition
of a term like

8.

V„= —Q X;V„'. (7.34)

The matrices P; and some of their properties are listed
in Appendix D. Since

f;,,Z, = —(i/2) P.;, Z;1,

d...~,= (1/2) IX,, X;}, (7.35)

The eigenvalues of this matrix yield the masses of the
"mixed" vector mesons.

It turns out to be very convenient to work with a
3)&3 matrix formulation of the equations. We dehne
the matrix V„by

I~f Ofy&+ Izn 2pv Ovyo
we can write the field strengths in the form

(7.27)
(z»/~2) t.v~ V.]

( cos 0 sin 0)

(—sin 8 cos 0)
(7.29)

with tan 28= 2v2$/(n+$) for the first matrix and
tan 20=242)'/(P+P') for the second. The procedure
for dealing with this situation is the following. First we
transform the fields according to

with U chosen such that

(7.30)

(1-( vz() (~„0)
Ur!

(V2$ 1+a.) Eo X )

then the (8, 0) submatrix in (7.11) takes the form

I'1-t vip ) (1—~' v2~ )'f 'I—- !f"+-'m'v„'! !v .
1+-)

' "
E~~e 1+P)

(7.28)

The two matrices cannot be diagonalized simultane-
ously. The matrices that do diagonalize them are of the
form

—(z~,/V2) Le„,e„j (7.36)

—-'Tr (P, P&"+G G&")+-',zzz22Tr (V„V&+O',„O',~)

when use is made of

(7.39)

(7.40)

To construct synunetry-breaking terms like (7.11) we
observe that

G„„=8„8„—B„Ct„—(zoo/v2) L V„, 8„1

+ (its/v2)! V„, Q,„j. (7.37)

The transformation laws read

&V.= (1/») ~.~+(z/&&) L~, V.l,
Se„=(z/a2) L, O,„j,

6'V„= (i/P2) P, e„),
3'0',„=(1/») B„P+(i/V2) [P, V„), (7.38)

etc. The chiral-invariant Lagrangian (7.9), (7.10) is
seen to be

&y= 1+2(~—$) &2t (n+$)2+8/)"2 are the eigenvalues
of the matrix appearing in the kinetic-energy term in
(7.28) . Next, the fields are renormalized by choosing

Tr (P XsP~") = 'P 'P~"~'Tr (XA,X-)
—d8, .p &pP&2 (7.41)

0)
!V„'=—Z'"V '

&O ~12)"
We shall construct symmetry-breaking terms somewhat

(7.32) differently in Sec. IX. We note that a term like (7.27)
can also be written in terms of the F„„.It is given by

mszZ-'~2Ur! !UZ—Igz

( 't/2$' 1+P)
(7.33)

so that the kinetic-energy terms have unit coeKcient.
The mass matrix appearing with the renormalized fields
now becomes

—(1/12) ~(Tr P")'+ (1/6) P~ (Ts«.)' (7 42)-
I,et us now turn to the spin-0 fields. Ke deal with a

set of nine scalar fields 0; and nine pseudoscalar fields g;.
(We are assuming that the mesons belong to the repre-
sentation (3, 3)+(5,3) of SU(3) XSU(3). This is
discussed in Appendix B.j For these fields we take the
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transformation laws to be

f—osee,4o,

~ai = fijsrrjaAg (7.43)

Hence

b'(BBt) =(i/N) {ff,B}Bt—(s/N)B{P, Btj

=(i/v2)p, BBt {, (7.55)

&'4'= desPjao,

6'a'= —d'jaggks. (7.44)

and similarly

o'(BtB) = (i/V2—)[P, BtB). (7.56)

In 3&(3 matrix notation these have the form

~~-(/~)[, ~j,
ha= (i/V2) [er, ag,

We can thus immediately see that

O'Tr SB =0.
(7.45) Thus

(7.57)

and
A=(1/~2){e, },
~'a= —(1/v2) {y,y}. (7.46)

As a generalization of d,„@and h„a in (5.21), we write

~.~=B.~-( vo/&) LV., ~3 (v./~-&) {ff., },
j),„a=8„a (iso—/v2') [V„,a)+ (po/V2) {O',„,P}.
Thus, for example,

~'(~~) = (1/~) {BZ,.}+(1/&){~,B..j

+ho{:[tl,O:.), ~l-!(iso)[V., {I3, j3
+l~.(~., {~,~j}

—(&o/~) { (1/v)~.p+('/~2) D, V.j}
Simple manipulations of identities lead to

8'(h„y) = (1/~2 f P, B„a} s(i yo—) {P,[V„,aj} Z&= det (a+~)+ det (a—iy) (7.61)

Tr BBt= Tr (as+qP+i[P, o j) = Tr (a'+@') (7.58)

is a chiral invariant. Similarly, since

S'(BBt)s= (i/K2) BBt[8,BBtj+ (i/V2) [P, BBtjBBt
= (i/~2) [I3, (BB')'3,

we see that

T. (»t)'= T. (++~'-'I, e3)' (7 59)

is a chiral invariant, and so is the even parity part of it,
which has the form

Tr (o +$ +4a'P —2agag) . (7.60)

Terms like Tr (BBt)" for N)3 can be expressed in
terms of the lower invariants. * Finally, we note that
for transformations that do not involve the ninth meson

= (1/vZ) {P,~„a}.

+lv {e,{e,~.}&

is also a chiral invariant (Levy, 1967) .t
Symmetry-breaking terms which lead to PCAC are

of the form

Similarly,

~'(~.a) = —(1/~2) {P,~A } (7.49)

&sa=foao+fsas= (1/&)fo Tr (&oa)

+ (1/v2) fs Tr (tulsa) = Tr ( fo). (7.62).
Thus

Consequently,

8' Tr (h„Pd «P+h„ah~a) =0.

—:T[(L. )'+(L.~)'3 (7.51) (7.64)base ——(i/v2) Tr (n[@,fj),

Bjp =fs fossa"

&j s,"= ( fedos +fsdsk )4"

may serve as a chiral-invariant kinetic-energy term for
the spinless mesons.

To construct other invariants it is useful to consider
the quantities

so that)
(7.65)

(7.66)

8'Esca ———Tr ( f{(1/V2)P, Pj) = —(1/&2) Tr (P{f, Qj)
7.50

(7.63)

and

8'B= (i/v2) {tie, Bj

h'B'= —(i/v2') {8,B'}.

B=o+iqh,

B'=o iit—
It follows from (7.46) that

e To establish this one may use Burgoyne's identity (Coleman,
1965) which states that for traceless matrices

Tr(ABCD+ABDC+ACBD+A CDB+ADBC+ADCB)
=Tr (AD) Tr (BC}+Tr (AB) Tr (CD)

+ Tr {AC) Tr (JBD).
t See Appendix B.
f The association of a nonconserved vector current with a

(7 54) scalar field was first noted by Bernstein and Weinberg (1960).
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We shall see that there are indications that both fo and

f8 do not vanish, i.e. , there is chiral symmetry breaking
as well as octet SU(3) breaking. All the other f's must,
of course, vanish if i spin and hypercharge are to remain
good symmetries. We postpone mention of nonlinear
realizations to the next section.

VIIL SPIN-ZERO MESONS IN SU(3) X SU(3)

We begin by considering a chiral-invariant Lagrang-
ian which consists of the kinetic-energy terms

Thus SU(3) symmetry breaking (caused by f8) is of
the same order of magnitude as chiral symmetry
breaking (caused by fs and fo). As was pointed out by
Gell-Mann, Oakes, and Renner (1968), this suggests
that the chain of symmetry violations is more likely
to be

SU(3) XSU(3)-+SU(2) XSU(2)~SU(2),

SU(3) XSU(3)-+SU(3)-+SU(2) .
Z =-', Tr (8„)'+-', Tr (B„y)',

a mass term

(8.1) Let us continue by eliminating the tadpole graphs by
writing

(8.9)

and a coupling term of the form

~c=&c(X, F, Z),

X=Tr (@'+o'),

F=Tr (o4+g'+4c'P —2a~y),
Z= det (c+iy)+ det (c—iy).

We should note the following points:

(8.3)

(8.4)

Z—= (c),= 0 a 0

(o o

Z'= (a+b) Z abI, —
Z'= (a'+ab+b') Z —ab(a+b) I.

(8.10)

(8.11)

2 Tr (B„BB&BtBB~+B„BtB&BBtB)

=Tr I (c2+y') (B„cB&o+B„yB&y)

+P.c, 8"&PLED, cjI (8 6)

If the symmetry breaking enters through

then we have
zBR——Tr ( f, o), (8.7)

8"io = I:(3)'"fo+(s)I"fs3 ==m-'f. A.

8"gs, = [(') "fo '( )"fags-z= mz—'f-z4z (8.8)—

The experimental facts that f fz and m ~((mzm thus
imply that

(a) The presence of Z implies that the 0 component
of the axial current is not conserved and that PCAC is
not satisfied for that current. We shall see in a moment
that this violation is required if the only symmetry-
breaking terms are of the form given in (7.62).

(b) This is still not the most general Lagrangian
involving two derivatives. It is clear from the trans-
formation properties of the 6elds that the following
combinations are also invariant:

I2 Tr (B„BBtB"BBt+B„BtBBIBtB)
=Tr (B„ooB "oc+.8„$$.8~//+ 28„oc8~$@

+28„apB"QooB„PcB."—Q B„o$8"o—4&)
. (8.5)

We Qnd that

X=Tr P'+Tr o "+2Tr o'Z+ (2a'+b') (8.12)

F=2a'+b'+4(a'+ab+b') Tr Zo' —4ab(a+b) Tr o'

+4(a+b) Tr Zo" 4ab Tr o".+—4(u+. b) Tr Z@'

4ab Tr P'+2—Tr o'Zo'Z —2 Tr @ZgZ

+4 Tr (Z I P', cr'J ) —4 Tr Z~'/+4 Tr Zo"

+Tr o."+Tr g'+4 Tr o "P—2 Tr c'Pa'P. (8.13)

Also, using (3.19) we ind that, aside from a numerical
factor,

Z=6a'b+6a(a+b) Tr a' —6a Tr Zo.'

+3(2a+b) (Tr o')' —6 Tr o' Tr Zo' —3(2a+b) Tr o"

+6 Tr Zo"—3(2a+b) (Tr P) '+6 Tr @Tr Z$

+3(2a+ b) Tr P' —6 Tr ZP'+ (Tr o.') '—3 Tr o
' Tr c'2

—3 Tr o '(Tr @)'—6 Tr o.'qP+3 Tr o' Tr P'

+6 Tr Q Tr a'/+2 Tr o". (8.14)

Kith the notation

BZc(2a'+b' 2a4+b4, 6a'b)/BX=L. ,

B~c(2a'+b', 2a'+b', 6a'b) /8&= I, —

BZc(2a'+b' 2a'+b', 6a'b) /BZ= Lg, —

8 v2fo' — (8.9) 82gc(2a'+b', 2a'+b', 6a'b)/BXBY= L~, etc. , (8.15)—
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Tr 4'=4 ~+24 +rb. +2/fr/r 4/r +24/r@x'+4' 'e+/b'e~

T Z~ = (~."+2~- ~=)
+-', (a+b) (24z+4/r +24-zvrco)

+2u(3 "~+6 "~)'+b[3 "~o 2-(6 '")-~]'

Tr fo' p—' Tr Zo'+2L, Tr o.'Z

+L„[4(u'+ab+b') Tr Zo' 4ab—(a+b) Tr o']

+L,[6u(a+b) Tr o'—6u Tr Zo']=0. (8.16)

we see that the condition that there be no terms linear in the form
in 0-' reduces to

If we write

we obtain the following equations for I and e:

(8.17)
Tr ZpZP= u (P ~+2/ +rtr )+u-b(2$lr+@~ +2/-z&+go)

+2g2(3 1/2g+6 1/2g)2+b2[3 1 2y —2 (6 1/2) P ]2

(8.22)
u p'+2L—,+4(a'+ab+b') L„6aL,=—O,

4ub(u+b)L +6u(a+b) L 0 (8 18) The mass terms may be diagonalized by the introduc-
tion of new fields,

Note that

(-:)'"f.+(k)'"f = -f-=&( + )
=

vga�

(/J,
' 2' 4u'L—„6bL—g), —

(l) '/2fe —-'(-') '"f =rr/x'fx=&[l (a+b) re+~]

=e-', (a+b) [&2—2I,

g= (l)'"~o+ (-:)'"~,

e = (k)'/'eo-(-:)'"x.

We now observe that the combination

4 ~+24 '4' +4'»'

(8.23)

4(a' ab—+b') L—„—6aL,].
(8.19)

We can also exhibit the mass terms. The terms quad-
ratic in the pseudoscalar fields are given by

—-,'p'Tr P'+L, Tr P'

+L„[4(a+b) Tr ZP' 4ab Tr—Pm —2 Tr Z/Z@7

+L,[6 Tr P Tr ZP —6 Tr ZP'+3 (2a+ b) Tr P2

—3(2a+b) (Tr P)']. (8.20)

The terms quadratic in the scalar fields are somewhat
more complicated:

—~~p2 Tr o'2+L, Tr o "+L„[4(a+0)Tr Zo'e

—4ab Tr o "+2Tr Zo'Zo']

+L,[6TrZ "—6Tr 'Tr Z '+3(2u+b) Tr ')'

3(2u+b) T—r o."]+2L»(Tr Zo')2

+8I. [(a'+ab+b') Tr Zo' —ab(a+b) Tr o']2

+18L„[a(a+b) Tr o' —a Tr Zo.']'

+8L,„TrZo'[(u'+ab+b') Tr Zo'

—ab(a+b) Tr 'o+]12 L„TrZ&r'

X[a(a+b) Tr o'—a Tr Zo']

+24L„[(u'+ab+b') Tr Zo' ab(a+b) —Tr o']

X[a(a+b) Tr o' —a Tr Zo']. (8.21)

%'e now observe the following: If Zg is independent of
Z then the terms quadratic in the meson held appear

appears in all terms, i.e., in the absence of a Z depend-
ence the pions, and one of the isoscalar mesons are
degenerate. This is far from true experimentally, and
we thus see that we must, in e6ect, abandon PCAC for
the ninth axial current.

If we use (8.22) to work out the pion and E masses
from (8.20), we find that

Thus the ratio
f» (a+b) /v——2

f~lf-= (a+b) l2a

(8.26)

(8.27)

divers from unity if 5/a. This condition is essential,
however, to ensure that m~'/m '.

We shall not bother to study this model further.
Given the masses of the pseudoscalar mesons, x, E, g, g',
and the masses of the scalar mesons o. , o/r, o„, o, (if we

were sure about them) and f„,fir we could only deter-
mine 10 of the 12 quantities p,', u, 0, L„.~, I.„that have
appeared so far. Fixing some of them* and making
models is not really the subject of this paper. Instead,
we shall next turn to the subject of nonlinear realiza-
tions of SU(3) XSU(3).

* If we demand renormalizability we can set I.„=L,„=~ ~ ~ =
I.„=O. This was done by Levy (196?) and Gasiorowicz and
Germen (1968). Such a criterion has certainly not played any
role in the development of effective Lagrangians.

tn '= p,
'—2I.,—4u'I.„—6bL„,

rn/r'= y' —2L,—4 (a' —ab+ b') I. 6aL, . (8.25)—
Comparison with (8.19) shows that
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IX. NONLINEAR REALIZATIGNS OF SU(3)X SU(3) We see from this expression that

In our discussion of chiral symmetry for pions
(Sec. III) we saw that we could arrive at a nonlinear
realization of the' 'symmetry in two ways that turned
out to be equivalent:

In particular

(os)o=~3F, (9.12)

~s =v3F6os —(1/2&F) dpi pi~ — (9 11)

(1) We found that the chiral invariant

o'(x) +ps(x)
(~s)o= o. (9.13)

could be used to define o.(x) as a nonlinear function of
the pion field.

The last result implies that in the nonlinear realization
in tchich no scalar particles exist, b= a; i.e.,

(2) We obtained the same result by letting m,—+oo.

A more systematic approach to the problem has been
developed by Coleman, Wess, and Zumino (1969) and
Isham(1969), *and we shaH briefly refer to it in Appen-
dix E. At this stage, howsoever, we shall try to follow the
above procedures in discussing the case of SU(3) X
SU(3) .

Let us recall the results from Sec. VII that with

In this model

fx=f-.

=P I

(9.1.4)

(9.15)

we have

B=o+Q,
Bt=a —i', (9.1)

Z = const+ 6a' Tr a+3a' Tr qP —3a'(Tr @)'+ ~ ~ ~

=const —3a'(v3Xo) '+ (9.16)

and

b'BB~= (i/v2) [jg, BBt)

b'BtB= —(i/V2) Q, BtBj.
If we now usslme that

~= gc„y",

i.e., that

[o, it 1=0,

BtB=BBt,
and it follows that

s'aa t =0.

This implies that we may write

BBt =o'+re'= F'I,

(9 2)

(9.3)

(9.4)

(9 5)

(9.6)

(9.7)

(9.8)

4a'I —=)tiP,

6aL,—=gp, g',

b/a=—r, (9.17)

Thus the mass terms come from the term quadratic in
theleldinZandfrom Tr ( fo), whe.n (9.10) isinserted.
There are three unknown coeScients in the theory:
fo, f~, and the coeKcient of the Z term (&2F=f~=f
and is 6xed). When these are evaluated in terms of the
masses of m, E, and q', it turns out that the mass of theI is predicted to lie at 1640 MeV, which is quite
unsatisfactory.

It turns out that another nonlinear realization* of
interest emerges if we look at what happens when we

let some of the parameters go to infinity. If we look at
Eqs. (8.20) and (8.21) and introduce the notation

p 2Lg=p 1

the analog of (3.38). With this nonlinear relation we
we find the following expressions for the masses:

constants, so that we have ns.'= tzi'(1 & rrt), ——

=: ~ ( ..)'+-', ~ (~.e)'+~.(Z)+ ~ (f.) ( . )

in which we make the replacement

~=FI (1/2F)y' (1/8Fo)y4+ —". (9.10)—

~~=~i'Ll-(1-r++) ~-~j,

rn, '= pro(1 —3$+rrt),

..'=~'Ll-(1+ +~)~+.3, (9.18)

~ The application to SU(3) CASU{3} is discussed by Callan,
Coleman, Wess, and Zumino (1969) and by Bardeen and Lee
(1969), as well as by Isbam (1969), Dietz and Honerkamp
(1968), Macfarlane and Weisz (1968), and Macfarlane, Sudbery,
and Weisz (1969).

while the masses of the two i-spin-0 pseudoscalar

*There are some "uninteresting" realizations. This topic is
thoroughly discussed in Bardeen and Lee (1969).
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particles can be obtained by diagonalizing

kA't t'E1—
s (1+2»') k

—s(4—«) nj

+-'ys'ttis(1 —
s (2+»') )+-'s (4+2») ttj

+sv2@4st PL(»' —1)5+ (»—1)nj (9 19)

Let us now ask what happens when p~'—+~. If we want
to keep the pion and E masses finite, we must have

It is interesting to compare (9.26) with a result ob-
tained first by Glashow and Weinberg (Glashow and
Weinberg, 1968)* by satisfying two- and three-point-
function Ward-Takahashi identities with meson poles,
including the kappa meson. They found that if the
SU(3)XSU(3) symmetry is broken in the manner
assumed for the Lagrangian discussed here, then the
second-order SU(3) breaking correction to the E,s
form factor is given by

If r/1 this implies that

$= 1/(1+»') tt =»/(1+»') .

With these values we find that:

(9.20)

(9.21)

(a) The mass»tt, of the scalar E remains finite.
(b) The mass of one of the pseudoscalar i-spin-0

particles remains 6nite while the other goes to infinity.
(c) The mass of the scalar i-spin-1 particle goes to

infinity. The masses of the i-spin-0 scalar particles
involves undetermined parameters (L„,L~, ~ ~ ~ ) and
can be made finite or infinite. If the latter choice is
made, we have a theory in which there exist an octet of
pseudoscalar mesons and a set of scalar E mesons. The
absence of a ninth pseudoscalar meson need not disturb
us: we are, after all, working with SU(3) and not U(3),
and there is no need to connect the ninth meson with
the octet. The scalar E mesons play the role of "Gold-
stone bosons" corresponding to the nonconserved
strangeness changing vector current (Glashow and
Weinberg, 1968). With this choice of parameters we
find

f=at»t, '

and, as before,
(9.22)

(9.23)

It follows from (9.22) that

fs (1/V3) (1—»)——»N. 'f . (9.24)

Hence the coeScient of the scalar field on the right-
hand side of (7.65) is

(1/A) (1—») m, zsfs4s f = ts (1—») t»t, sf;
i.e., the scalar E meson (vr) decay constant is given by

f„=,(1—»)f . (9.25)

Hence we get, combining (9.23) and (9.25),

ftr+f„=f . (9.26)

(9.27)

For the particular class of effective Lagrangians con-
sidered here so far, with derivative couplings of the form
of Eqs. (8.5) and (8.6) omitted, the strangeness chang-
ing vector current defined does not renormalize f+ so
long as we restrict ourselves, in the spirit of effective
Lagrangians, to tree graphs. Consequently, we would
obtain f+(0) = 1. Since these effective Lagrangians are
particular models satisfying the assumptions made by
Glashow and Weinberg, (9.27) should also be valid. It
is easy to see that (9.26) is a solution to f+(0) =
(f '+fz f s)/2fz—f =1. More generally, however, as
will be seen in the next section, the addition of the terms
(8.5) and (8.6) and the inclusion of spin-1 field
introduce the derivative couplings which renormalize
the fields and modify the currents. As a result, f+(0) N 1
and Eq. (9.26) is modified. On the other hand, unless
terms with many derivatives are added, our effective
Lagrangians should satisfy Eq. (9.27).

It is worth making a point here about the experi-
mental determination of the value of f» or, more con-
veniently, the ratio ftr/f . One could determine f&
directly from E» decay provided the axial-vector
Cabibbo angle were known precisely enough. Unfor-
tunately, this angle is not known at present. Until
forced to do otherwise, we can define the axial-vector
Cabibbo angle to be equal to the vector angle, Never-
theless, this angle cannot be precisely determined until
we learn the renormalization effects for the various
semileptonic decay form factors. This is a problem for
the theorist. The best we can do at present is to deter-
mine the Cabibbo angle, using E,e decay, in terms of the
form factor f+(0).f This yields the relation based on

*A preliminary, but more extensive discussion of this work
may be found in Glashow (1968). See also Glashow, Schnitzer,
and lvVv einberg (1967), and Nieh (1967).

t The cosine of the Cabibbo angle could be determined from
accurate measurements of nonstrangeness changing semileptonic
decays. The cosine is so close to 1, however, that the poorly
known radiative corrections produce large uncertainties in the
angle. Nevertheless, present analyses of the beta decay of '40
has led to the value sin 8=0.1~0.01,with a more recent measure-
ment yielding sin 8=0.19&0.01. A value of sin 8=0.2 combined
with the most recent average of Eev+ decay rates, 6xing f+ (0)sin tt =
0.221&0.003, predicts f+(0) =1.11&0.06. This value for f+(0) is
inconsistent with the models discussed here which favor f+(0) ~ 1.
Despite the uncertainties in this method of evaluating 8, unless
the K,~ decay rate is in error, we would be hard pressed to re-
concQe the t'P data with a value of f+ (0) less than 1 by more than
a few percent.
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x», E», and E,3 decay rates,

fxff f+(0) = 1.25L1—0.024/f+'(0) ).
A deviation of f+(0) from 1 by 20% only yields a
correction of 1% to the right-hand side. f+(0) ~0.95
yields*

f~/f-=1 22f+(o) (9.28)

Any consistent effective Lagrangian approach to
SU(3) )& SU(3) symmetry breaking should predict
values for fz/f for f+(0) that reasonably satisfy Eq.
(9.28) .

In order to calculate matrix elements we may proceed
in one of several ways. One is to calculate the matrix
element with all the scalar mesons present and then
take the appropriate limits

~I'~~, M1/(1+r'), n ~r& (9 29)

in such a way that the masses that remain 6nite
approach their experimental value. This approach was
illustrated for the mx scattering length in Sec. III
(Eq. (3.48) ].Another approach is to find an expression
for the fields that represent particles, as in Eq. (9.8),
for example. Such a relation can be obtained by taking
the limit (9.29) in the equation of motion, as was
illustrated in Eq. (3.49). When this is done for our
Lagrangian (8.1)—(8.4), a horrible implicit equation
for 0. emerges. It turns out that the relation implied by
that equation can be greatly simplified if a transforma-
tion to a new set of fields is made. The transformation
looks as follows.

If we write the Lagrangian (8.1)-(8.4) in terms of
the 6elds B and Bt, it takes the form

Z=-', Tr (B„Br7&B') (p'/2) Tr BBt-

+~c(J~, I;~)+ s Tr Lf(B+B')j (9 3o)
with

X=Tr (BBt),
F=Tr (BBtBBt),
Z= det B+det Bt. (9.31)

Now the 6rst nonlinear realization which we considered
satisfied

BBt=8 tB=F'I (9.32)

and contained only pseudoscalar 6elds. A parametriza-
tion that satisfies (9.32) Lsuch as suggested by Chang
and Gursey {1967)and Brown {1967),for example] is

(9.33)Pg2iP

where
P= (1/&2) P X;P; (9.34)

and the P, are the nine pseudoscalar fields that enter

~The value fE/f, f+(0) =1.28 that has been widely quoted
in the literature was based on an earlier value for the E,3+ decay
rate, More recent measurements have increased this rate by 7%.

the theory. (We have the freedom to keep the ninth
pseudoscalar meson or not. Since X and F are numerical
constants, Po only enters in Z and we can make the
mass of P'o whatever we like. This is similar to the
decoupling of the ninth vector meson noted in Sec. VII.)
For the second nonlinear realization Bardeen and Lee
(1969) have shown that the form

giPgiSye —iS~iP (9.35)

X. THE "SUPER LAGRANGIAN"

So far we have discussed effective Lagrangians with
SU(3) &&SU(3) symmetry that have been constructed
with either spin-1 or spin-0 fields. In this section we
shall examine the eGects of coupling the spin-0 and -1
fields together into a "Super Lagrangian" satisfying
PCAC and the algebra of fields.

We will generalize the SU(2) && SU(2) efFective
Lagrangian of Sec. V to SU(3) &&SU(3), with the
additional diBerence that the scalar fields will describe
real 0+ mesons. There is growing experimenta1. evidence
for 0+ resonances, a T=O 0 meson with mass around
700 MeV, with the rest of the nonet clustered around
1 GeU. Their existence is still in doubt, but so is that
of some of the axial mesons. Why not, therefore, treat
the 0+ and the 1+ mesons on the same footing? Thus in
generalizing Eq. (5.29) to SU(3) &(SU(3) we no longer
take o'+g' as a c number; we will therefore add
invariant meson-meson terms of the type discussed in
Sec. VII to Zo, and, for added Rexibility, include the
invariant 0+-0 interaction terms given by Eqs. (8.5)
and (8.6) (with ci„replaced by the chiral-covariant
derivative 6„). Next we generalize Eq. (5.26) to
SU(3) && SU(3) . To do this, we make use of the simple
chiral transformation properties of I'„,&G„., EI'BA"B+,
and d ~8+0 "8:

5'(F„,~G„„)=+ (i/u2) Pt, F„„aG„„j,
~'~~B~ Bt= (i/~/2) [jS ~~B~ Btj
8'2 ~B'6"B= (i/v2) [j9, EsB' 5—"Bj. (101)

Clearly

i Tr P(F„„+G )gsBg"Bt+ (F „—G „)gi'B tg"B.
is parity and SU(3) )&SU(3) invariant and Hermitian.
Since B=o+ip, this is easily seen to reduce to (5.26)
for the case of SU(2) )&SU(2).

should be taken. Here, because of the form of Z, only
the strange scalar fields S; (i=4, 5, 6, 7) remain, and
all eight pseudoscalar fields P; remain. Note that since

BBt —eiPeiSg2g—iSg
—iP (9.36)

it follows that Tr BBt and Tr BBtBBt are numerical
constants. Also, if we ignore the ninth pseudoscalar
meson Po, det 8 is a numerical constant, so that the
Lagrangian becomes, in the absence of terms like Eqs.
(8.5) and (8.6),

Z=-', Tr B„BB&Bt+', Tr f(B+-Bt). (9.37)
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The chiral-invariant Lagrangian that we have con-
structed so far appears as

S,= —-', Tr (P F~"+G„„G~")+'rN,-'-Tr (V„V~+6„e~)

+k Tr (~ a~"a+~A~"4) —at
' Tr (a'+4')

+-',X[Tr (y'+a') ]'+ -', Z' Tr [(BBt)'+ (BtB)mj

+xirti Tr (A„BAI"BtBBt+B„Bth&BBtB)

+-'st& Tr (~„BBth&BBt+A„BtBA"BtB)

+ (iyeb/2rme') Tr [(F„„+G„„)6&BA"Bt

+ (F„„G„„)l—PBt4"Bj (10.2)

We have by no means exhausted the possibilities for
adding chiral-invariant terms to Z. We could, for
example, add higher powers of the coeScients of p'
and X'.*We must, however, add one additional term, as
@re will see in a moment. Since the observations on
symmetry breaking made in Sec. VIII still apply, we
must add to Zo the symmetry-breaking terms

Zi ——Tr ( fa)+ i3gts(det B+det Bt) (10.3)

given in Eqs. (7.61) and (7.62) . Zi leads to PCAC for
eight of the nine axial currents and introduces non-
vanishing vacuum expectation values for o.o and tTS that
lead to symmetry-breaking effects in Zo. It is not hard
to see, however, that (10.1)+(10.2) maintains the
mass degeneracy of the nonstrange vector mesons. The
Z* are shifted by contributions from $ Tr (h„oA"o)
analogous to the Ai —p mass splitting seen in SU(2) X
SU(2); this mass shift is interesting and we will come
back to it later. The axial mesons are all shifted by the
mass term arising from 2 Tr (h„PA&P). Since the ninth-
vector and axial-vector fields do not transform under
SU(3) XSU(3), as pointed out earlier, we could add
terms like those in Eq. (7.42) to split off the ninth-
vector and axial-vector mesons from the nonet, and
these would be enough to permit a fitting of the spin-1
meson masses since, in fact, m,~m„. Such a procedure
would, however, identify the p meson as a pure unitary
singlet, with the decay ~EL' occurring purely as a
result of a SU(3) breaking interaction not contained
in our Lagrangian. This is very unattractive, since the
coupling is consistent with the conventional SU(3)
mixing approach.

The conventional SU(3) symmetry-breaking term
Tr (V„gV&+8„&Q&),which is the simple chiral exten-
sion of the mass term in Eq. (7.13), will produce ~
mixing. It has the disadvantage of destroying the
equality of the Schwinger terms in SU(3)XSU(3)
and, more important, is chiral invariant only under
SU(2) XSU(2)-, so that PCAC is only satisfied by the
pion. A kinetic-energy mixing term Tr (F„„hqFI""+
G„.X G""e) also violates PCAC for the K and st although
it maintains the equality of the Schwinger terms. While

* If one wishes to go to the limiting case of the scalar masses
(other than the o ) going to infinity, such higher powers are
necessary.

we cannot rule out the possibility that either or both
of these symmetry-breaking .terms will be necessary, it
is interesting that ~ mixing can be obtained without
them by adding the chiral invariant

Tr [(F„„+G„„)(F&"+G&")BBt

+(P —G ) (F~" Ge")—BtBj (10.4)

with
&=&o+&i+&2 (10.5)

Z, = -', ~ Tr [(F„,+.G„„)'BB'+(P„. G„,)'B'Bj—
-hid(» P—p.)' I'24(T«—p.)' (10 6)

A similar Lagrangian has been discussed by Mitter and
Swank (1968) who also obtained some of the results
given below. We repeat that the Lagrangian is by no
means unique, as there are many additional terms that
could be added to (10.5), terms that preserve PCAC
and the 6eld algebra; in particular, the meson-meson
part of Ze contains only a very special form of Zo [as
defined in Eq. (8.3)j.Our a,im in this section, however,
is not to write the most general Lagrangian, but rather
to provide the techniques and to give some insight into
the problems of SU(3) XSU(3) in a field algebra.

In what follows we shall outline the steps taken to
obtain the final expressions for the meson masses and
renormalization constants. We shall then discuss the
couplings of the vector mesons to the vector currents
(related to the p, td, P-y couplings), and then show

to Zo. When ro, 08 acquire nonzero vacuum expectation
values through the addition of Zj, BSt and BtJ3 acquire
constant terms which produce, in (10.4), vector and
axial-vector kitsetic-energy mixing terms. A chiral-
invariant term like Tr [(V„+6,„)(VI'+(V)BBt+
( V„—6,„)( Vl' 6,")B"B—j which yields mass-mixing
terms after 'symmetry breaking, contributes to the
currents, breaking the current-field proportionality.
We see, therefore, that in the effective-Lagrangian
approach, the combined conditions of Geld —current
proportionality and PCAC for the pseudoscalar meson
octet requires that ~ mixing arises in the kinetic-
energy term only (Mitter and Swank, 1968; Gasiorow-
icz and Geffen, 1968, unpublished). The field —current
proportionality, it will be recalled, has the attractive
feature of generating c-number Schwinger terms. The
additional term (10.4), which preserves field algebra
and PCAC, yields mixing and hence SU(3) breaking
in the vector-meson nonet, while maintaining the
equality of all the Schwinger terms in SU(3) XSU(3).
This is a very interesting result and lends support to
the conjecture made by many authors that this equality
was indeed correct.

We can now complete our "Super Lagrangian" by
adding to Ze [Eq. (10.2)j and 2& [Eq. (10.3)j a final
contribution 22, consisting of (10.4) and an additional
kinetic-energy term which breaks V —Vx(p —te) and
2 —Ax degeneracies:
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O'= 2+0'1
(s 0 0

Z= 0 u 0

loo1
(10.7)

how the many parameters in the Lagrangian are sur-
prisingly and severely restricted by the requirement
that the particle masses and the value of fx/f f~(0) be
6tted to their experimental values.

As shown earlier, the tadpoles can be eliminated by
introducing new scalar Qelds 0', with zero vacuum
expectation values:

Before we can 6nd expressions for the spin-0 meson
masses, we must 6rst isolate their kinetic-energy terms
in 2 and renormalize the 6elds. One contribution to the
kinetic energy comes from the coupling to the vector
and axial mesons: the case of such a coupling of x to A~
in SV(2) &&SU(2) was treated in Sec. VI. The second
contribution comes from the terms proportional to g~
and gs in Zs when the substitution (10.7) is made.

(2) Consider erst the generalization of Sec. VI, the
elimination of the direct pseudoscalar —axial-vector-
meson couplings for the nonets. %e do this by intro-
ducing a new axial-vector 6eld A„, de6ned by

(iO. i2)A„=C„—$„$.The relation between f, written in the form NZ+sI,
and Z is unaffected by the presence of vector mesons

th-efo- the same as obtamed for the spin 0 The matrix &„P (not the transPose) can be defined as

La ran ian of Sec. VIII. With om choice of the meson — o ows: if D„P is symbolically denoted by

meson interaction it reads

u= p' —X(2a'+b') V(a'+—ab+b')+2pga,

w= a(a+b) (X'b —2yg). (i0.8)
D qh= (10.13)

In order to obtain expressions for the masses of the
various particles we must examine the quadratic terms
and the kinetic-energy terms for the various fields.

(1) The quadratic terms in the scalar fields are again
the same as in Sec. VIII. They read*

', o '(I"P 3—a—9,'+2'—b)

', (rx')pP V—(—a'+ah+—b')+2' a]

then

(10.14)

', os'fpP H—X-(a b)'—'A'(a'—+2b'—)+',pg(4a b)]-—
—-'gos+P —-'g(2a+b)' —X/(2a'+b') ~4@g(2a+—b) ]
+ ',v2osoo(a b) -P, (2a+b)—+ask'(a+b) —yg], (10.9)

where we have written

"2—"2 y(2as+b2) (10.10)

Similarly, the terxns quadratic in the pseudoscalar 6elds
are unchanged and have the form

'sf-'(pP Va—' 2ygb)— —
;'bx'ppp V(a'——ab+b')——2pga]—

—-'g'[PP —-'X (a'+/2b') —-', pg(4a —b)]
', @o'[pP s—X'-(2a'+b—

')+Hag�

(2a+b) ]
+y/2gyp(a —b) [-',X'(a+b)+ pg). (10.11)

i.e., the (11), (12), (21), (22) components of the
matrix are multiplied by cx; the (13), (23), (31), (32)
components, by P; and the (33) component, by y. The
matrix in (10.14) is the most general form permitted
that preserves i-spin and hypercharge invariance. The
chiral-covariant derivative now becomes

'.~=D.~—(1/&) vo{'...}

=D„y (1/v2) q, {A„+u„y,—Z+"}
=D.~—(1/&&) vo{&.~, '}

—(1/&2) go{A„,&}+'". (io.i5)

The first two terms on the right-hand side, which will
contribute to the pseudoscalar kinetic energy, can be
written as

L'1—(1/&')vs(o~) j L1—(1/~)vs(~+&)o] )
[1—(1/&) vo(2~) ] [1—(1/&) vo(u+b) p].

l L'1 —(I/&2)vo(ra+&)Oj L1—(1/V2)vo(~+1)Oj L1—(1/~) Vo(&4') j
(10.16)

[1—(1/&) vo(2~) ].
DA —(1/~) so{&A, &}= Li —(1/&2) ~o(2

* Vive use the notation a '=r,o'+2~ +o and a+=2cz+o&-+2o~,c&, and simBarly for the pseudoscalar, vector, and axial mesons.
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—', (r+1)f[1+-',»(a'+b') —»ab]
(10.19)1+-'(r+1)'f'[1+-',qi(a'+b') —»abj '

rf [1+(»—»)b'j
mop =

1+r'f'[1+ (»—»)b'j '

with f=v2ypa/—mp, r=b/a—

(10.20)

(3) Unlike the case of SU(2) XSU(2), where we
deal with only a T=O o field, the extension to SU(3) X
SU(3) with nine scalar fields results in a direct coupling
term between the E* field, V„~, and the scalar K field
(the kappa meson) cr». This arises from i[V„,oj in

h„o [Eq. (7.47)] when op acquires a nonvanishing
vacuum expectation value. We eliminate this coupling
by defining new vector fields U„by

where

V„=U„+ix[6„o',Zj, (10.21)

~ &'= & o'+ (imp/&2) [V~ Zg (10 22)

Since Z contains only the diagonal matrices ) p and X8,

and [P, X,7=0 unless j=4, 5, 6, 7, only the strangeness
&1 parts of U„differ from V„. In using (10.22) to
eliminate Lk„o. in 2, (10.21) must be used to introduce
U„ into (10.22). Thus

~„~=~„o'+ (.~,/v2) [Pa„o', Z j, Z]
—(imp/V2) [U„, Zj. (10.23)

If b,„o' is denoted by the matrix

The terms in 4 that will contribute to the pseudoscalar-
meson kinetic energy after the substitutions (10.7),
(10.12), and (10.15) are

2 Tr h„Q6"@+ m—pP Tr C„C"+p» Tr (6„$6"QoP)

—-', gp Tr (b,„~h&$o) . (10.17)

The constants n, P, and y defined in Eq. (10.14) are
determined by the condition that the new fields A„have
no direct coupling to 8„$, i.e., that coefficients of terms
like A„'Bi'@' vanish. The proper choice is

f[1+(ni —»)a'l
1+f'[1+(» »)a'—j "

Elimination of the 6„0-'U& cross terms from the kinetic-
energy terms

—', Tr d„o.h~~+ ',»-Tr (Z'h„~h~o)

+p» Tr (h„o Zb, "oZ) (10.26)

and the vector-meson mass term gamp'Tr V„V& yields
the expression

—(1/&) vp[1+p»(a'+b')+»abj
SSp K= (10.27)1+ef'(r —1)'[1+p»(a'+ b')+»ab j

(4) Given n, P, y, and ~, it is straightforward though
tedious to rewrite 2 in terms of the new fje1ds 0-, A„,
and U„. In isolating the pseudoscalar and scalar kinetic-
energy terms there is mixing between the 0 and 8
components which can be removed by introducing the
new fields p„, p», o,', o»', related to the old fields by the
nonet transformation discussed in Sec. VII, i.e.,

(10.28)

and similarly for the scalar mesons. The lvnetic-energy
terms now turn out to be

1+(gi —») a'
P[( .4.)'+( .4P)'j1+f,[1 ( ),j

1+-',-gi (a'+ b') »ab—
1+~(r+1)'f'[1+p»(a'+b') »abl—

1+(ni —») b'

1+r'f '[1+(»—»)b'j

for the pseudoscalar mesons, and

l[(~.-.')'+(~:,')'X1+(.+")"j
,(,, 1+-',»(a'+b')+»ab

1+'(r 1) f-'[1—+pni(a'+b')+cab j
+p(~ +» ) [1+(»+»)b j (10 30)

for the scalar mesons.
To make the coefficients of the kinetic-energy terms

unity we introduce renormalized 6elds

4 =~e "'4 4»=~ex '"4»,

(10.31)
(10.24)

The Z~
—', Z, -', etc., are given by the coeScients of

—,'(h„Q )', ', (A„o ')', etc-., in Eqs. (10.29) and (10.30).
With the notation

[~„.', Zj=

(5—s) ~

)
(b —a) ~ . (10.25)

(a—b) ~ (a b) ~—
I'.=—1+f'[1+(»—»)aq,
I' —= 1+-', (r+1)'f'[1+-',g (a'+b') —g abj,
I'» =—1+r'f'[1+ (»—»)b'j

r„=1+-',(»—1)PfP[1+,'»(aP+bP)+»
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these may be rewritten as

z,„r-=z,„'-=I'. '-f 1+(~, ~2)a'),

Zez '= I'z 't'I+yet(a'+b') —nsab),

Z&x '= I'x 'D+(nt ns) —b'),

z..-'= Z,„-'=1+(rlt+212) a',

Z.x '=1+ (et+@2)b',

Z. —=I;L1+l. ("+b')+"b). (».32b)

When the renormalized fields are introduced into (10.9)
and (10.11), we find that the masses are

m~ =Ze~(l42 —X a —2l4gb) &

mz' Z4——zfyts ),'—(a' ab—+b') —214ga),

m. '=Z, (i422 —3) 'a2+2pgb),

m,z2=Z zLl422 —X'(a2+ab+b')+2pga), (10.33)

rvhile the masses of the isoscalar spin-0 mesons are
obtained by diagonalizing

2&x'(pt' )'b') Zex—+2y&'(142' X'a'+ 2pg—b) Z4,

Ue, Us by the mixing angle found in Sec. VII Lsee Eqs.
(7.29), (7.30), (7.31)), with pv replacing 42:

Us ——cos 8U„+sin OU»,

Uo= —sin 0Us+cos eU», (10.38)

tan 20= 2V2$/($+l4r). (10.39)

Actually, arith the exception of Uz, the U and V GeMs
are identical. The axial-vector kinetic-energy terms and
mixing are obtained by replacing $r by $g, and hence
p& by pA in the above expressions. Analogously to Eq.
(10.31) the renormalized spin-1 fields are given by

V.=Z,.-I~2U. ,

2 =ZA

(10.40)

Z+'sp —ZA x —~ ~p

Z«-'=Zgz —' ——1—-', (1+r') t,

Zr,—'——Z«—' ——,
' (r' —1) (t'8t'+ (1+sr) ')"' sr ), —

and
+2',ga(Z, @,x)»-x- (10.34) 'x '= « '+s("'-') (L8"+('+")')'"+"»

(10.41)

-'o»2 (l422 —2Xb2 —3) 'b2) Z x
+-'o. 2(l422 —4Xas —3) 'a2 —214gb) Z

—2v2a(Xb+l4g) (Z.»z.,)'"oxo.„, (10.35)

respectively.
(5) The vector and axial-vector fields are treated

similarly. Just as in the case of 2r-A& mixing treated in
our earlier discussion of SU(2) XSU(2), the spin-0
kinetic-energy terms also contribute to the masses of
the axial-vector mesons and to the mass of the E*vector
meson. In addition we must take into account the
contribution to the spin-1 kinetic-energy terms that
comes from Z2 LEq. (10.6)), which implies that here
too the kinetic-energy terms have to be renorma1ized. *
After some computation one Gnds that the vector-
meson kinetic-energy terms are

2 (1 (as) (F uu) 2 lt"I 1$(as+b2) )(Fzuv) 2

—;L1—;g( +b)+-:(b-")(~.+).))(F ")'

with
(10.36)

* For simplicity we have omitted terms like —Pr'/12(Tr Vu)2
and —1'~'/12(Tr Au)' from Z2.

„,=3P,/(b2 —"), ),=L8P+(&+~.)2)"2 (10.37)

The Gelds U~, U„ that enter into I'„„' are related to

m~ '= Zy~l'„mp',

the axial-vector mesons have masses given by

mA~' =Zv~l'~ma'

~Ax —Zvx IX~0

(10.42)

(10.43)

while nsA, ' and nsAX' are obtained by solving

m~x'+ m~„' = -'2 ms'(I'„+ I'x) (Zgx+ Zg„)+m, '(Zgx —Z~„),

mAX mAs =
I 4(Is+I») (Zhz ZA&) me

+L32Z~@~xy~2/(9&+ p~) ')m, 4}'",

m22/mos=s(r' —1)f (2$9+~l)4L8t'+($+pz) ) '»

X } 1+ (21&
—

212) (b'+ a') ). (10.44)

(6) Before discussing these various mass formulas,
it will be valuable to use the results of the last two
paragraphs to discuss the vacuum-to-one-particle mat-
rix elements of the currents, i.e., f, fz, f„F„etc.The
quantities f and fz can easily be obtained by combining
Eqs. (8.17), (8.19), (10.8), (10.31), and (10.33). In
fact they are given by just Eq. (9.23) with a correction

where 1=gas, sr ——pra2, and sg ——p~a2. For Z~„-' and
ZA~ ', replace sy by sA in Zy„' and Zyx '. With the
exception of the E* meson, the vector-meson masses
are only changed by the renormalization constants

} V=2r, ti, X(=—P, y, (o)),
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made for the renormalization of the Gelds:

f„=42aZ'e, 't',

f~= (1/K2) (a+b)Zetr '" (10.45)

unmixed 6elds. %e examine the case of vector currents;
similar results follow for the axial currents. ~ In terms
of the renormalized, physical vector fields, Eq. (10.48)
becomes

We omit the expressions for f„and f» here since they are
not presently observable. The scalar K decay constant,
f. is similarly found to be Lsee Eq. (9.25) )

j *'= —(mp'/yp) V„',

jse (mp /Yp) ~et& (10.48)

A glance at Eq. (9.27) shows that f+(0), the zero-
momentum-transfer E,3 form factor, is no longer unity
because of the renormalizations of the fields. It should
be noted that (9.27), obtained by Glashow and Wein-
berg, must still be valid for the super Lagrangian. The
relation f+(0) = (f '+ &~' f„')/2f—~ f, follows if one
assumes PCAC (or the use of the divergence of the
axial currents to extrapolate to zero e. and E masses),
SU(3) XSU(3), current commutation relations, and,
most important, that f+(0), when extrapolated off the
x and E mass shells, does not depend on the extrap-
olated values of these masses. In an effective-Lagrang-
ian calculation off+(0) in the tree-graph approximation,
only the graph involving the E*, but not the kappa,
otc, contributes to f+ It is e. asy to see from the Lagrang-
ian that the E*Em interaction must have the structure

gtE.*(4x8"4-)+g (8s.E.* 8.E.*)—8"4x8'4.,

analogous to the structure of the pmm interaction in
Sec. VI. Direct calculations show that such terms do
not yield any E or e. mass dependence in f+, though
they do give a mass dependence (proportional to
Pcs —P„s) for f In this co.nnection it is important to
note that the PCAC conditions 8j&s„=m.'f.p„etc.,
which follow from the effective Lagrangian do not
ensure the absence of a dependence on the masses of
the pseudoscalar mesons for every extrapolation.

Consequently, the experimental decay rates for
e», E„~,and E,p LEq. (9.28) j imply that*

-'L1+ (f '/fz') —(f '/f~') j=0.82 (+5%) (10.47)

if the axial and vector Cabibbo angles are taken as
equal. This numerical condition, we shall see, severely
restricts the values of the parameters in our Lagrangian.

Consider next the matrix elements of the currents
connecting the vacuum to one-particle spin-1 states.
The currents are given by the Geld algebra

j„'=—(mp'/pp) Zy. '"V„', i=1, 2, 3(p),

j;=—(mp /pp) Z vK" sV„'+ (mp'/yp) (2/v3) tt

X (a b)f—;;sh„o, i=4, ~ ~ 7(Ee, tt),

j = —(mp /pp) LZy '" cos 8Ves+Z&x't' sin 8V„xg

(&6 4') ~

2» = (mp h' p) tt Zvp" »n 8Ve'+Zvx"' cos 8V„xj

(10.49)

with tan 28= 2V2t/(t+sv). With the constants F, Pz,
etc. (sometimes called G„Glc,, ~, g„gr~, , ..., m, /&,
~ ~, etc.), de6ned in the usual way,

(0
I j."I P'&e) F e &0 I

je'si
I p e&=Fee„, etc. (10.50)

Eq. (10.49) yields

F — Z 1/2(m s/~ )

Pic*= —Zirc"'(m '/p )

F = —Zix'" sin 8(mp'/yp),

Pe = —Zyp cos 8(mp /yp) . (10.51)

Ke assume that the hadronic electromagnetic current
is given by j„&'&+(1/K3)j„t@ and therefore omit. con-
sideration of matrix elements of j„('~.Kith this assump
tion I",', P„', Iiq' can be obtained from tlute leptonic
decay rates of the vector mesons, e.g., ~g+q—.ith
the help of the mass relations (10.42) we can calculate
ratios like (Zv„/Zv ) 'ts and 6nally obtain

F,= —m, mp/yp,

Frc*= —mx.ms/P„yp,

F = —sin 8(m„mp/yp),

Fe= —cos 8(memp/yp) . (10.52)

The coupling constant p, is de6ned by) F,= —m,s/y„
so that mp/yp=m, /y, . Equation (10.52) is not sur-
prising if we note that the c-number Schwinger terms
in our Lagrangian are just F,s/m, ' and (Fe'/me')+
(F„'/m„') for the i=1, 2, 3 and i=8 vector currents,
respectively. From (10.52) it follows that

where V„', 8„' are the original unrenormalized and Fe /me)—=l —
l
cos8,F, &m, J

P (mi
&m, i

—=
l

—
l
sin 8, (10.53)

*The experimental errors in the decay rates are small (&2%)
but the radiative corrections are not known and we estimate
that they could mme the right-hand side of (10.47) uncertain
by as much as 5%.

* Equation (10.48) extends to the unitary singlet currents in
the absence of terms like (Tr V )s in the Lagrangian.

1' Some authors use a ye which is one-half the value defined here.
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so that 8 is often referred to as the generalized mixing
angle; it divers from the standard angle because of
renormalization eGects and is 6xed by the two mass
ratios m, '/m@' and m,P/m„' which determine t and s~
(or $ and pv) by (10.41) and (10.42). With new
variables de6ned by

and inserting the expressions for F~~ and P, from
(10.52) which yields

(10.59)

If we write F,=m, '/p„we may cast the above
equation into the form

we obtain

pt (mp'/m„')+(mp'/mp'))=1 —x+-,'y,

D m '/m ') —(m '/mq') 1=-',L8x'+ (y+x) '1'i'. (10.54)

The solution of' this equation is straightforward, though
sensitive to ns, '—nz„'. Kith the presently accepted
values m~=765 MeV, m„=783 MeV, and m&=1019
MeV, it turns out that 8=40.3'. This is to be compared
with the standard nonet angle 8=35.3' for nz, =ps„
(i.e., sv ——0). A generalized mixing angle of 40' agrees
quite well with the present experimental value obtained
from p, &o, and P leptonic decay rates measured at Orsay
and Desy, 8, „«=40' (Vienna, 1968). The "super-
Lagrangian" predictions for P„P„,and P& come close
to those of Das et al (Das, .Mathur, and Okubo, 1967),
who assumed the equality of all the vector Schwinger
terms, assumed a Gell-Mann —Okubo type of relation
for the P~', and neglected all 0+ contributions to the
V„x Schwinger terms (effectively taking f„'=0).

The importance of the 0+ contributions can more
accurately be gauged if we note that the assumptions
that go into the construction of the "super Lagrangian"
correspond very closely to those made by Oakes and
Sakurai (Oakes and Sakurai, 1967), who take a kinetic-
energy mixing-mass formula in addition to the Weinberg
sum rule and treat f„P=0. The equation that they obtain
for the generalized mixing angle is

cos' 8 sin' 8 4

my m(P 3mx e 3mp

which yields 8=28'. The "super Lagrangian" mixing
angle satisfies a similar equation )these results only
follow if there is no (Tr V„)P mass term in the La-
grangianl:

The erst factor on the right-hand side is unity when
the KSFR relation holds, or when the A~ mass is used

t Eq. (10.43) or Eq. (6.13) with yp replaced by p,j,
it is given by

mp'/2f„'yp'= my '/2(mg '—m ') (10.61)

A. =1+(gg—gp)u', (10.62)

The present experimental value for yp (y,'/4x 2)
corresponds to a value of no~ ~980 MeV rather than
mg, 42m, = 1080 MeV, but the experimental situation
for both mg and y, is still uncertain.

The value of fP/f ' is thus of the order of 0.16. This
is much smaller than the estimate of Glashow and
Weinberg (Glashow and Weinberg, 1968), who obtain
f„'/f P~0.34 by setting mz, =@2m, and mz&=V2m&~
As pointed out earlier, all the equations used by
Glashow and Keinberg hold for the "super Lagrangian"
so that our relations for the much better known vector-
meson masses tend to rule out the axial-vector mass
choices made by them, though the addition of a (Tr V„)'
term would give us more freedom to increase e. As we
shall see, and as also noted by Glashow and steinberg,
an increase in f„' leads to a lower value of the kappa
mass. In view of the lack of evidence for a lower-mass
kappa and a suggestion that the Err 0+, T=2 phase
shift rises through 90' in the j.-1.2-0eV region, we
prefer to use the low value of e to 6t the parameters in
the "super Lagrangian. "

(7) Let us now consider the problem of fitting the
spin-0 masses using Eqs. (10.32) and (10.33) and the
results of paragraph (6). The equations are really
simpler than they look. Using our result that mp/pp=
m,/7, we see that (10.45) implies f'=y, 'f 'Zq /m, ', so
that if we de6ne

cos' 8 sinP 8 41'„1
m„' 3mxe' 3m'' '

obtained by combining (10.39), (10.41), and (10.42).
The two equations coincide for I'„=1. That this indeed
corresponds to f„P=0 can be seen as follows: Writing

I'„=1+p (p~0.08) (10.57)

then I ~ ant) Z@g become

I' =1+f'A;

Ke may thus write

f.'y, '/m, ' 1

1 f 'yp'/mp' 4—(10.63)

(the numerical value follows from the value of 8 and the
masses), we find that fP is proportional to p by equating
the V„&~~ and V„& ~ Schwinger terms,

(Fsr "/mxeP) +f,P =F~P/m, ', ( 10.58)

We saw in the last paragraph that f py, '/m, ' may be
related to experiment or to m~ '/m, '; in view of the
experimental uncertainties it is probably safe to say
that f 'y,p/m, p is in the neighborhood of p to within 25%.
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Ke de6ne the parameter

f,'y, '/sN, ' rig. '
1—J'.'y '/m ' srs ' (10.64)

we Gnd the following inequality for r:

(4r+2 —2r') Es—r(r+1) s+$16rs/(r —1)'j(e/A) &0.

(10.70)

x= (r—1)/(r+1),
which satisfy the following relations

(10.66)

y'R+Q= —.
A'

fK'/j' '
1 A(f~'If-' 1) '— —

f~' 1—e/A

f ' (1—») (1+e)
(10.67)

We can thus solve of R and Q in terms of e, A, and ce.

The definition (10.62) of A„ implies that

4R 1 r' —1 R+Q e/A Ps-"'+1—
(r+1)' 2 A r

(10.68)

The requirement the, t A &0 )see (10.63) $ leads to the
inequality

r(r'+1) &2' (10.69)

As an example of the scale involved, we see that with
e small (e &0.10),f~'/f s tends to be close to 1.5, so that
with A close to unity, Xa varies between 2 and 4. For
the lower value, (10.69) then implies that r& 1.4. We
cannot choose r very much larger because then some
other renormalization constant may become negative.
The erst one to do so is Z ~. After some tedious algebra

which can vary between 1 and —', . Another parameter
that we know something about from the work in the
last paragraph is I'.=1+e, the vector-meson mass
equations yield &~0.08; we may want to vary it a little
but still keep it small. As a third input we shall take

f f+(0) /f~= 1—r—a =0.82&0.04. (10.65)

Folding in the arbitrarily chosen 5% error discussed in
the last paragraph, we see that co can vary between
0.14 and 0.22. With the help of Eq. (9.27) for f~(0)
and (10.60) for f„'/f ', we Inay use (10.64) to express
f~'/J ' in terms of e, A, and &o. Indeed e, A, and &e deter-
mine all parameters of Eq. (10.32), except for r= 0/a.
Although the three input parameters vary only over
relatively narrow ranges, it turns out that the solutions
are particularly sensitive to their values (especially e

and ~). The requirement that the renormalization
constants Ze and Z, remain positive (and hence the
renormalized fields Hermitian) severely restricts the
allowable range of the parameter r. This can be seen
as follows: Let us rewrite our equations in simplified
form by introduciog the quantities

To illustrate the implications of this let us set r=2.
Then (10.70) and (10.69) combined imply thats/A& s.
Ke cannot vary So as much as we like since co is so
restricted and JVO decreases as e increases. Hence with

0.08 and A 1 we may expect r to lie in the range
1.4&r&1.8.*

The restrictions on the parameters arise from the
conQict between the fact that the vector-meson masses
come close to fitting a nonet theory and the very large
deviation of f f+(0) /JK from unity (if a single Cabibbo
angle is assumed). The effective Lagrangian does not
naturally lead to a nonet theory unless symmetry-
breaking effects are small, while the value off f+(0) /f~
indicates large symmetry breaking. For values of

f f+(0)/f& closer to unity, the ranges of parameters
become much more acceptable.

Let us now consider the kappa-meson mass since this
plays a key role in SU(3) symmetry breaking. We can
simplify our algebra by taking srs '=0 in (10.33). We
then And

rrs,K' A f~' r—1 1+e
srsK' 1+A f 'r+1 (10.71)

*It is interesting to note that
) (0

~
as

~
0)/(0

~

e'p ~0) =
VX( (1—r)/(2+r) ( ~$, i.e., the octet tadpole is quite a bit
smaller than the chiral synImetry violatmg, SU(3) preserving
tadpole (Gell-Mann, Gales, and Renner, 1968).

WIth A/(1+A) &s, fz'/f ' &1.6, and r &1.8 we have

m.K'/srsxs& 0.23(1+e) /e.

For &=0.08 given by the vector-meson masses, m,~&
865 MeV. The much larger value for e (and smaller
value for fzs/f I) required by Glashow and Weinberg
yields a lower value for this bound. If we want m,z &

1 GeV, we must take &&0.08, i.e., relax somewhat the
precise 6t of the vector-meson masses. This is reason-
able: for example, a value of e=0.05 would be consistent
with Eq. (10.65) with nonet symmetry (8=35' is within
the exPerimental errors) and rle ——1019 MeV, ersKe=

891 MeV, and m, =m„= 770 MeV. If one further chooses
A=1, i.e., mg =1080 MeV and ra=0 2, r=1..7, then
one 6nds ns,~'=4.1@&~2. The X and m masses can be
6tted, but the T'=0 mesons are slightly oG: m, =565
MeV, as~=948 MeV. A computer search of solutions
was made with A = 1,Gtting the pseudoscalar and vector
masses (but taking srr ——0 so that sos„=srs, ) and the
pseudoscalar meson masses (allowing a 1%variation in
the rl and Xs masses) . The value taken for e is flexible,
however, since it is so sensitive to the value taken for the
p mass. f~/f f~(0) was varied between 1.15 and 1.25
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and we required that m &900 MeV. The only ac-
ceptable solutions with m.~&1 Gev were found with

fir/f f+(0) &1.21. In all cases, 1—f~(0) 0.02 showing
that the second-order SU(3) symmetry-breaking
deviation of f+(0) from 1 (Ademollo and Gatto, 1964)
is very small. The fact that f+(0) &1 is in agreement
with the arguments of Bjorken and Quinn (1968).
None of these solutions can be regarded as entirely
satisfactory since the E& mass is consistently found
close to a value of 1.65 GeV, quite far from the presently
favored range of 1.2 to 1.3 GeV. Taking a smaller
value for the A& mass, however, would greatly improve
the value for as~~. It was not possible to 6nd any
solutions when the X is identified as the E(1420).
Given the sensitivity of the equations to the input data,
the results of a computer search are not very meaning-
ful, at least until better values of the scalar and axial
meson masses are obtained; perhaps hts to decay
widths will be helpful.

It may be that the trouble lies with the conventional
approach, which ignores representation mixing )for a
discussion. of this see Gilman and Harari (1968)j: in
the symmetry limit, the spin 0 mesons fit into a (3, 3) 6
(3, 3) representation (nonet), while the spin 1 mesons
fit into the (8, 1)$(l, 8) representation, which is not
a nonet. The observed facts, m„~m„m, (&m„, m~ are
quite diferent, a situation that seems to be dificult for
the "super Lagrangian" to adjust to. There certainly
seem to be limitations to the accuracy to which these
methods may be used in the study of symmetry
breaking in SU(3) XSU(3).

XI. MISCELLANEOUS TOPICS

A. CouylinN, to Photons

There is increasing evidence for the utility of the
notion of the "vector dominance" of the electromag-
netic current, i.e, , of the connection between the
processes

k=3, 8. (11.3)

The electromagnetic potentials eC„must appear in the
Lagrangian in such a way that under the transformation

(11.4)

the Lagrangian remains invariant. A trivial way to
satisfy this is by using the 6eld strengths C„„=B„C„—
B„C„asin the free-photon Lagrangian

Another "minimal" coupling is obtained by noting that
if

(11.6)

then the combinations

V„"—(eC&'/yo) C . (11.7)

are invariant under a combination of (11.4) and (11.2)
with the special choice of vector gauge function given
by (11.6). Now the transformation (11.2) leaves all
but the vector-meson mass terms invariant. Hence the
gauge-invariant coupling of the electromagnetic held
may be achieved by replacing —,'»&0'( V„("&)-' ' by
-', mo'(V ("' e/yoC")C—)' for 4=3, 8 and adding—~((&„C'„—(&,4„)' to the Lagrangian. With the usual
dehnition of the electric current by

example. In processes involving more than one photon,
gauge invariance of the photon couplings is not trivial
(e.g. , the need for "sea-gull graphs" in Compton scat-
tering), and it is therefore useful to exhibit explicitly how

electromagnetic couplings enter effective Lagrangians.
Recall that the transformation law for the vector

mesons, obtained in Sec. VII, is

&V.= (1/7o) ~p~+ (~/v2) L~, Vp3 (11 2)

When the "direction" of n is in the (3, 8) plane, then
the transformation law for the vector mesons V3 and Vs

simplihes to

we have
J ( &) each=/Bc~ (11.8)

+A-+B.
eC(3) 8Z eC(s) 8Z

~
(e&)—

g V~(3) &0 g y~(s)

This connection is implicit in what we have done, as
long as we (i) accept the identification of the hadronic
electric current in terms of SU(3) generating currents
(Coleman and Glashow, 1961; Cabibbo and Gatto,
1961)

with a possible additional unitary singlet term (Nauen-
berg, 1964) and (ii) implement vector dominance of the
SU(3) currents, as was done in Secs. IV and X, for

the condition (11.1) requires that we choose

(11.10)

C(3) C(') = 1/&3

eC(3)mn' eC(s)mn'
V (&)— V ((&)y. .. (1 1 9)

Vn Vn

For photon-vector-meson couplings (corresponding to
calculating (V )

j„("&
~
0) in the "tree-graph" approxi-

mation), we see that since
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The direct coupling from the mass term leads, in
general, to a photon —vector-mesori "mixing. " This is
diagonalized by the introduction of new vector-meson
fields corresponding to the unitary spin components
0=3 and 8. Ke forego a detailed discussion and instead
refer the reader to the papers of Kroll, I.ee, and Zumino
(1967), Lee and Zumino (1967), Schwinger (1964;
1968),Lee and Nieh (1968),Wick and Zumino (1967),
and Gerstein, Lee, Nieh, and Schnitzer (1967) for
further study.

B.Baryons

In order to do justice to the subject matter in a paper
of reasonable length, we have concentrated on treating
systems of spin 0 and 1 in great detail. Since many
applications of effective I agrangians involve spin-~
particles, and since there is a very large literature
dealing with this subject, we feel that completeness
demands a brief description of the complications caused
by spin-~ particles.

A spin-'soctet transforms as follows under SU(3):

~/A= &QB(o'+)BA= fACB~C4'B (11 12)

Ke take the transformation law for the chiral trans-
formation to be

when chiral symmetry is broken through:

o —+o'+Z.

We now observe that

(11.22)

~V%= (i/~) L~, 4+1B+(i/~)4 f~, B}
= (i/~2) I~, fA} (11.23)

and
"o'BP = (i/V2) Ia, BP }; (11.24)

i.e., these combinations transform like B. Similarly,

~'Bty, = (i/WZ) I—~, Bty, } (11.25)

0+B W--B.

(11.27)

(11.28)

Possible invariants are schematically shown below

B9+ 4'+B

O'PM 1 = —(i/v2) I n, fM t }, (11.26)

so that these combinations transform like Bt. The
adjoints of these four combinations are

&'4~ = f~czrrcVeg—a (11.13)

We may combine the two transformation laws and
write them in 3&3 matrix form

where

Note that

g+ = (i/v2) t u, pp j
~'4+=~(iW~) k~, 4+3

4+= (1~Vs) 1t

4=1(1+Vs)

(11.14)

(11.15)

(11.16)

(11.17)

(11.29)

where the solid lines indicate "mass"-type invariants
such as

and it transforms like f~, i.e.,

~4= (i/&2) L~ 4j
sV~=w(i/vz) L~, 41

(11.18)

(11.19)

Tr Btg+BP, Tr PMtgpB,

and the dotted lines indicate "kinetic-energy"-type
invariants such as

Tr B P+y"8 P+B

Thus it is easy to see that terms like Tr (P~P~) are
chiral invariant. Since y~'= 1 it follow's that

or terms which are invariants when coupled to vector
or axial mesons such as

Terms like

P~v"~A'~ 4vA'~

(11.20)

(11.21)

Tr LBV+vV+B(~. ~.)j-
Tr LB9+o„~4 (I""—G~")j.

(11.30)

do not vanish. Thus, as is well known, mass terms,
which, unlike kinetic-energy terms, appear in the
combination P+P +P P+, break chiral symmetry.
This does not cause any serious difhculties because we
may use the spin 0 fields B and Bt LEq. (7.52) j to
construct spin ~i objects for which mass terms emerge

EP~P '=+,
PBP '=Bt. (11.31)

Note that, in addition to /~/~= 0, P~o„pP~=0 as weH.

The number of invariant couplings is restricted by
parity:
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We may also use nonlinear realizations for the spin-0
6elds.

When parity is taken into account, there is only one
possible "mass"-type term,

-' » (P+W-B'+4-B '4+B)
=Tr {PW~+PA@}

+i Tr (Fv N4 Pv 4—4 ) (1132)

This term does give a contribution to the mass when we
let 0~a.'+Z. If we wish to preserve field algebra, we
must use covariant derivatives for the "kinetic-energy"-
type terms. We note that (7.47) implies that

6„(oa~)=8„(oag) —(ivp/v2) t V„,oa~j
w(iv, /%2) Ie„,~a~ j {11.33)

transforms like 8 and Bt, respectively. Hence

~,(4+B)=8,(4+B) (~vo/~—) L~„4+Bj
—(ivo/V2) I8„,P BI (11.34)

SU(2) &&SU(2), which we do by writing

t'0 &l

(o ~)
'

~+
I= (1/W& (~+~ g)

(0 —ir') /v2 j
({0++}/D

B=/

(11.37)

We take 0= (f~' Q')—'i'; i.e., Z= (f,/v2)I and o'=
Q'/2v—2f + ~ ~ ~ . The relevant terms in (11.36) now

are

i'„8V+ ', af '~ -,'a+0—' -,'iaf.&—V4-~& y

+ '(b, —b4-)A ~f gx8~$

+s(b4 ba)f-k—V.V4~4"8"0 (1138)

We note the following:

(a) The nucleon mass is

Let us, for the sake of simplicity, restrict ourselves to

will, for example, transform like 8.
To illustrate the kind of couplings that emerge, let

us consider the following, quite general Lagrangian
involving baryons and spin zero mesons:

m = gaf—
(b) Making use of the fact that

(11.39)

'& Tr (0+v.8V+-+P v.8V )--
+ '.a» (0+&--B'+P-BV+B)

+ ',ibi Tr (Pp-„)+8&BBt+~ ~ .)
+ 'ibm Tr (P+v-4' B+8"B'+'")
+4ib, Tr ()+8 BB V A++

".)
+4ib4 «(0+B8"B'vA++" )

+ &mesonie (11 35)

The coeflicient of the leading term can be chosen to
be unity by appropriately renormalizing the baryon
Geld. For the same reason we do not gain any generality
(for what we want to discuss) by including terms like
Tr (P+v„8"Q+BBt+~ ~ ). Such terms are necessary,
however, if we are to obtain the observed values of the
baryon octet masses. When this Lagrangian is written
in terms of the ir, P, and P fields, and the shift 0—+a'+Z
is made, the terms that give the mass and contribute
to meson-baryon scattering are

i Tr (Pv.8V)+«r (P&N&)+a» (PA4)

+a Tr (PZfo')+a Tr (Po'fZ)+is Tr (PV4Zfy)
—ia Tr (Pv 44'&) +ib T (kvA'8"44)

—bg Tr (PV„V408 yZ)+ib2Tr (PV„fy8 y)

+b& Tr (PV„V40Z8~y)+ib4 Tr (P»8&@yk)
—b~ » (PV.V 58 "4f&)+ib4 Tr (6'N"A)

+b4 Tr (PV„V4Z8&4') . (11.36)

8(8"f)=2is 8"0.$+
8'(8V) =hi~ 8"IlvA+",
~'(8"4) =f 8"5+ " (11.40)

we see that the baryonic part of the vector current is

and the baryonic part of the axial current is

so that
2'.v4~4D (b4 ba)f-'—j, —

Gg/Gi =1—(b4 —b3)f '.

(11.42)

(11.43)

= (m/f. )9—(b,—b,)f.'j
= (m/f ) (Gg/Gy). (11.44)

This is just the relation of Goldberger and Treiman
(1958).

We may eliminate the pseudoscalar coupling term
iTV4vf g by introducing a new nucleon Geld Sdehned by

/=exp (ihvs~ Q)N (11.45)

with X=1/2f The transfor. med Lagrangian now has

(c) The coeKcient of igv4~$. $ obtained from the
fourth term of (11.38) and the last one (upon inte-
grating by parts and omitting irrelevant terms) is

g = ——',af„(b4—ba) mf—
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the form

sNy„8»V —miV N —(g/2m) 3 y„'ys~~V 8"g
—(1/2f ')Ny„cN g x4)vg+ ~ ~ -. (11,46)

We have omitted a pair term NNg' since we only want
to look at the amplitude proportional to ~~L»p, » j. In
the soft-pion limit the gradient term does not contribute
and the remaining term yields the threshold result

-'(a —as) = (I4'/8~f ') (1+@/m) '. (11.47)

This is the relation of Adler (1965) and Weisberger
(1965).

There is a large literature dealing with the implica-
tions of chiral symmetry for the interactions of baryons.
We quote the papers that have come to our attention:
in addition to the pioneering papers of Schwinger
(1957),Kramer, Rollnik, and Stech (1959), Gell-Mann
and Levy (1960), and Gursey (1960), we refer the
reader to the papers of Weinberg (1967), Schwinger
(1967), Wess and Zumino (1967), Bardeen and Lee
(1968), Cronin (1967), Chang and Gursey (1967),
Brown (1967), Mani, Tornozawa, and Yao (1967),Lee
(1968), Kramer (1968), and Schechter, Ueda, and
Venturi (1969).

C. Representation Mixing

The techniques developed above lead, in the calcula-
tion of three-point functions (vertices), to the same
results as have been obtained by the standard current
algebra treatments with their pole dominance and
smoothness assumptions (Schnitzer and Weinb erg,
1967; Arnowitt, Friedman, and Nath, 1967; Brown and
West, 1968; Gerstein, Schnitzer, and Weinberg, 1968;
Gerstein and Schnitzer, 1968). We have also seen in
several examples (the sr4r scattering lengths in Sec. III
and the threshold theorem form of the Adler —Keisberger
relation in Sec. XI.B) that threshold results for the
four-point functions are similarly reproduced. There
exists, however, a class of sum rules which are derived
on the basis of assumptions which have no place in the
Lagrangian formalism: these are integral sum rules
whose convergence is justi6ed by an appeal to the
Regge model for high-energy behavior. An example of
such a sum rule is the Adler-Weisberger relation in the
original form

fGA't ' 2m' dv=1+ —Lat 4 (v) —a'4,4 +(v) g, (11.48)
EGv) erg' p v

which, after a resonance-saturation assumption (w}Qch
does have a Lagrangian counterpart in the tree-graph
approximation), yields further relations between
coupling constants. Such a sum rule does not have
anything to do with chiral symmetry. The above equa-
tion (11.48) follows from Eq. (11.47) in the previous
subsection, and from the assumption that the pion-

nucleon scattering amplitude corresponding to a 2"= j.
exchange in the t channel needs no subtractions in a
dispersion-relation representation. Nevertheless, like
PCAC and vector dominance, it might be interesting
to "build in" the extra assumption and extract addi-
tional information from it. This has recently been
suggested by Weinberg (1969) and by Wess and
Zumino (unpublished) . The procedure suggested is the
following:

(a) Scattering amplitudes are constructed in the
usual tree-graph approximation. These have a poly-
nomial dependence on the energy that comes from the
derivatives in the vertices, from the energy dependence
of the coupling constants, and from the propagators.

(b) The energy-independent part of the amplitude is
set equal to zero for those amplitudes which should go
to zero at high energies according to the Regge model,
(The higher powers of the energy are not discussed in
this heuristic prescription. )

The results obtained by Weinberg in considering the
forward scattering of massless pious (»r+A +m '+8) a—re.
the following:

(1) A matrix element of the axial current, LX (X)gzA,
which depends on the helicity X and the i-spin labels of
the initial and inal target states A and 8, is deined. *
The requirement that the T=i exchange amplitude
vanishes at high energies (i.e., has a vanishing energy-
independent part) leads to

LX (X), Xe())j=ie e»T». (11.49)

This implies that the one-particle states of any given
helicity must form representations (not necessarily
irreducible) of SU(2) XSU(2).

(2) If a mass matrix is de6ned

(~)BA=mA 4Ay (11.50)

then the requirement that the T= 2 exchange amplitude
has the required behavior implies that

lt is then shown that this relation implies that the mass
matrix may be written in the form

3p=mp'() )+m4s() ), (11.52)

*Weinberg defines (X (X)) eA by (&, P', X'
( jsP+j44 ~

A, P, X )
~E8q), (X (X))~~, where A and 8 are one-particle states with
the given helicities and momenta in the z direction, a is the
isovector index, and 8=p+ (p'+mg') "2=p'+ {p' +m~') I' This
definition has the advantage that the definition of X (X) is in-
variant under boosts in the z direction, since for a four vector

exp(i&E'3) (VO~V~) exp( —i|IC~) =e+&(Vo~VI) (sinh g= p/m).

where mp '(X) is a chiral invariant ['i.e., it commutes
with X ()i)j and m4'(X) is the fourth component of a
chiral four vector, i.e., it transforms like the 0. in the
(s, s) representation (+, cr) . If the T=0 amplitude also



564 REv)xws o) Monmtu( PH)(sxcs ~ JUL)( 1969

went to zero at high energies, m4'(X) would vanish and
then M' would be a chiral invariant, i.e., al1 the masses
would have. to be equal. In the real world this is not the
case, and therefore, particle states of definite mass must
belong to reducible representations of SU(2) XSU(2).
If it is further assumed that differences of the forward-
scattering amplitude for different helicities vanish at
high energies, then mo'(X) andm4'(X) are independent
of helicity.

(3) Weinberg also shows that for X=O states of self-
charge conjugate isomultiplets (i.e., nonstrange bosons),
all the vectors in the reducible representations of
SU(2) &&SU(2) must have the same value of the
quantum number GP( —1)~ (where P is the parity).
Thus a representation of SU(2) &&SU(2) may contain
the particles ~, p, 0, A(, f, ~ ~ or )), co, Q, X, 8, ~ ~ ~ . If we
want to build up a reducible representation that con-
tains the pion and a certain number of its chiral
"partners, " none of which have T=2, we must con-
struct it out of irreducible representations svhich contain
only T=O and T= 1, i.e., out of (0, 0), (-', , -', ) (1, 0) Q
(0, 1), and (1, 0) Q (0, 1) . The equivalence of SU(2) &(

SU(2) and SO(4) allows us to use the nomenclature
appropriate to the rotation group, and the irreducible
representations are labeled scalar, vector, and tensor
(magnetic and electric). If we want to have a mass
term (quadratic in the helds) that transforms as a
vector V, the fields must contain V and 5 or T at least
once since in the square, V must appear in the reduc-
tion. The simplest reducible representation SQ V turns
out to be uninteresting (it contains two scalar isosing-
lets and the pion) . The next nontrivial representation
is VQT, and it contains a o-, the pion, p, and A~.
Straightforward algebraic manipulations of the SO(4)
algebra, for which we have no space, leads to the con-
clusion that the x and the A~ are both mixtures of V
and the "electric" part of T, the cr belongs to V, and p,
to the "magnetic" part of T. The decay rates for ~2m,
A~—+pm, etc. , depend on the mixing angle between VI,
and TI,4. There is a V mass and a T mass, and the mass
matrix depends on these and the mixing angle. When
the mixing angle is chosen. to be 45, which is in agree-
ment with experiment for the p width, and the pion mass
is set equal to zero, one finds that m, =vs and m~, '=
m,,'+m, ', in agreement with what seems to be observed.

For a simple illustration we may consider pion—
nucleon scattering. With the choice of

(Gg/Gv —1)

in (11.45), the couplings that contribute to the i-spin
antisynunetric amplitude ( ~)re, r j) are

In the limit s—+~ the forward-scattering amplitude
only has a contribution coming from the second term,
since the ps terms are proportional to (s—m') ' and

(u —m') '. Setting this equal to zero leads to

Gg/Gr= 1, (11.53)

Tr (F (+)F(+)Ivvg 13t F ( )F( )Ivvg tg)——

F (6)—p ~G (11.55)

which is chiral invariant, has its co and p terms appear
in the combination

an algebraic relation not contained in the theory with-
out the high-energy assumption. If the Lagrangian is
enlarged to include the 6 decuplet, the expression for
Gz/Gv is altered in a way which depends on the width
of the A.

In view of the heuristic nature of the proposal for the
new' "rules" which are to accompany the tree-graph
approximation, it is a little early to assess their sound-
ness. They do provide a way of bringing in representa-
tion mixing and of reproducing the very interesting
results of Gilman and Harari (1968) based on current-
algebra and superconvergence relations, and they may
suggest ways of avoiding the diQiculties that we found
in our discussion of the Super Lagrangian in Sec. X.

The two approaches to calculating vertex functions,
direct tree-graph calculation or configuration mixing,
diGer dramatically in their treatments of A pm and ~per

couplings. The two methods predict radically diQerent
p)r angular distributions for A-+p+x: Tree graphs
yield a predominantly S-wave pm state, and configura-
tion mixing, a D-wave state. It has so far not been
possible to reconcile the two predictions. The problem
with ~p~ coupling is that while such an interaction
plays an important role in the superconvergence rela-
tions, there is no way of introducing a cop~ vertex into
an eGective Lagrangian without violating either PCAC
or the held algebra. It is evident from (10.1)—(10.6),
for example, that our Lagrangian does not contain a
term that describes the cope vertex. We do not expect
to see such a term directly, since the p and cv belong to
(8, 1)+(1,8) )with a (1, 1) admixture] and the pion
belongs to (3, 3)+(3,3). This is also the case for the
A meson, but there the symmetry breaking induced an
Ape coupling. We cannot construct a coupling which,
when a-+o'+Z, leads to a term of the type

Tr (F„„F~"y). (11.54)

The reason for this is that the dual held P('v= e&"&'F„—
has the same parity properties as the Geld 6&", but has
opposite charge con)ugation transformation properties.
For example, a coupling like

ai Tr (F„—„F&"$o,@J). (11.56)
(G~/Gv —1)

tb yxa y. Thus when 0—+o'+Z, only the E mesons will have a
&EE* interaction. We can, of course, write down a
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coupling like

Tr (P &+)P&+)r~B—P &
—)P&—)r~Bt) (11 57)

which leads to the desired vertex, but such a term does
not satisfy the PCAC condition (Arnowitt, Friedman,
and Nath, 1969; see also Brown and West, 1968, for a
discussion using dispersion-relation techniques) . This

difhculty of reconciling PCAC with the PVV vertex
was first noted for the process Ir'—&2y (Sutherland,
1967) where it was shown that if &)"A„were used to
extrapolate the m ~2y amplitude oB the pion mass
shell, then the amplitude vanishes as the pion mass
goes to zero. For an effective Lagrangian where
8&A„~ P no such off mass-shell dependence can appear
so that the ~ —+2y vertex must vanish in this case.

A term of the form (11.57) which violates PCAC
does give rise to a nonvanishing m"—+2y vertex. If
8&A„were still used as the pion interpolating field, then
again x'—+2y would vanish for zero pion mass.

It is also possible to generate an ~pm coupling from a
chiral-invariant term (maintaining PCAC) but which
violates the field algebra:

Tr (V„&+'F&+»"D„BBt V„& &5'&»"B—„BtB), (11.58)

The nonzero vacuum expectation values of 0-0 and 0-8

contributing to 8 and B~, yield the cope coupling.
Despite the presence of a term like Eq. (11.58), how-
ever, the x —+2p vertex still vanishes, as it must in any
effective-Lagrangian model preserving PCAC. The
conventional contribution to m'—+2p arising from copm

(Gell-Mann, Sharp, and Wagner, 1962) is canceled by
what are equivalent to subtraction terms arising from.
the breaking by (11.58) of the field-current identity.
This alternative, therefore, is unsatisfactory if we wish
to link xo decay to the a&px interaction.

One interpretation of this difficulty is that PVV
couplings do not fit into the framework of the
SU(3) XSU(3) field algebra because it is a coupling
which must be generated through the intermediary of
baryon (or quark) loops. Such triangle graphs are
excluded from the effective-Lagrangian treatment. It
has been recently observed by Adler (1969) that in
electrodynamics (i.e., a quarklike model) a careful
examination of the divergence of the axial current
appearing in such triangle graphs shows that the formal,
current-algebra manipulations are not correct and that
an effective PV V coupling does appear.

An alternative approach, yielding the same result, is
to deal more carefully with the operator definition of
the axial current as a product of field operators. When
this is done in a gauge-invariant way, an effective x&p
coupling appears (Schwinger, 1951; Hagen, 1969).
Again, this is a subtlety not included in the eGective-
Lagrangian, tree-graph approximation.

XII. CONCLUSIONS

We have described in considerable detail the method
of effective Lagrangians to provide the reader with a use-

ful tool for studying the consequences of broken chiral
symmetries and of field algebras. We have discussed
some of the significant results obtained by many authors
using these techniques or the equivalent approach of
applying pole dominance and smoothness assumptions
to two-, three-, and four-point functions. While effective
Lagrangians easily reproduce the soft-pion results, i.e.,
m-E scattering lengths, the real test of its applicability
awaits the experimental verification of its "hard-pion"
predictions.

For SU(2) XSU(2), the relation between y, and

y, (or ys in Sec. VI) given by Eq. (6.16), when com-
pared with present experimental determinations of

and y„clearly requires the existence of the Ai(A, )
axial-vector meson. * Given 7, and y, both the mass
of the Ai t Eq. (6.13) or (10.61)) and its decay prop-
erties Lsee Eq. (6.19) and Appendix Cj are determined.
Experimental verifications of these predictions are
crucial tests of the model, especially in light of the quite
different predictions of Gilman and Harari discussed
in Sec. XI.

The question of the existence of scalar particles
becomes important when generalizing eBective Lagrang-
ians to treat SU(3) XSU(3) . One attractive possibility,
discussed in Sec. IX, is that only some of the scalar
6elds, such as the Og, represent real scalar particles.
We treat in more detail in Sec. X the example of an
SU(3) XSU(3) field algebra where all the fields are
represented by particles. Two particular problems are
discussed; V-7 couplings and Weinberg's sum rule in
SU(3) XSU(3) (equality of Schwinger terms), and the
problem of fitting the known meson masses given the
"observed" value off f+(0) /fz so different from unity.
In the former we have seen how the effective-Lagrangian
model demonstrates the connection between Weinberg's
sum rule, the field —current identity, and PCAC. It is
interesting that our super Lagrangian, with Schwinger
terms equal, generates kinetic-energy mixing for the Fz
and a generalized mixing angle 8 compatible with present
experiments. An important feature of the model is the
explicit correction to the results of Oakes and Sakurai
coming from the kappa meson. Our results show how 8
can be sensitive to second-order SU(3) breaking terms
in an SU(3) X SU(3) symmetry-breaking model.

The problem of fitting the meson masses appearing
in the super Lagrangian to their observed values proved
to be surprisingly nontrivial. Indeed, no precise 6t to
the spin-0 and -1 nonets could be made without
having presently unacceptably low values for some of
the scalar meson masses or taking f f+(0)/fx closer to
one than given by experiment. Three possibilities
require further exploration: (i) A more complicated
choice for Zc in Eq. (8.6) is required. (ii) The masses
given by the effective Lagrangian cannot be too

As in the limit md~co discussed in Sec. IX, the limit @&~~CO
is equivalent to a nonlinear realization for &t„(Eq. (6.24)g.
Taking re-+co in (6.16) yields y„,=$ys.
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precisely fit. (iii) If radiative corrections could be taken
into account or if 0& differs slightly from 8&, the value
for f f+(0) /fx that should be used is in fact closer to 1.
In connection with (ii), it has long been a puzzle to
some theorists why large SU(3) breaking mass shifts
don't arise due to the large variations in the widths of
decaying multiplets because the decay products (x, E,
E, g, for example) have such large mass sphttings.
Since this effect comes about through closed-loop graphs,
perhaps an effective Lagrangian cannot include such
corrections. Whatever the explanation is, it is significant
that there should exist such severe restrictions on the
choice of parameters in the model.

I'inally, even if experiments do confirm the predic-
tions of some appropriately constructed Lagrangian,
we would still be dealing with a model with a limited
range of applicability. We have seen that even in the
con.text of spin-0 and -1 particles, the cops (and con-
sequently &chirp) couphng is not included in the model.
More fundamentally, such problems as treating uni-
tarity and the high-energy behavior of amplitudes and
the associated problem of dealing with the many higher-
spin multiplets on Regge trajectories do not at present
seem relevant to an effective-Lagrangian approach.
Nevertheless within the relevant range of experience,
effective Lagrangians are a useful tool and can give
valuable insight into the nature of broken chiral
symmetry.

The transformation properties of an irreducible tensor
of i-spin t are given by

where

U+4~U+ '=&D[exp (—i& T)7»

U+=exp (—iu Q~)

(.A4)

(A5)

and the T form a (2t+1) && (2t+1) matrix representa-
tion of the charges Q+, say. If we want to specify the
transformation properties of a field under SU(2))&
SU(2), we must also write the response of the field to

U =exp (—iy Q ). (A6)

A field that transforms as

and
U„@pa U+-'=4ca [exp (—ie T)7c~ (A7)

U @gR U =[exp (Q T')7II D 4~ D (A9)

because there exists a matrix C which has the property
that

U p~s U =Q~D [exp (—ig.T')7D D, (AS)

where the T' form a {2t'+1)&&(2t'+1) matrix repre-
sentation of the charges, is said to transform as a (i, i')
representation of SU(2) &(SU(2). The transformation
law (A8) is equivalent to
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U+4~U+ '=Pa[exp (—ia T)7»,

U 4~U

For the field fz defined by.
(A12)

(A13)

In the representation in which T2 is imaginary,

CzD ——[exp (—ixT2') QD ( 1)" E6g, D. (A11)

Consider, as a first example, a field transforming as
(1, 0). This implies that

APPENDIX A' TRANSFORMATIONS OF FIELDS
UNDER SU(2) XSU(2)

We deal with transformations generated by the
"charges"

we have

U p~ U =fE [exp ( i a T) 7E—~,
(A14)

Q+= l(Q~Q:)
which satisfy the commutation relations

[Q+', Q+'7=i' Q+',

LQ+, Q-'7= o

and are related by the parity operator

PQ+P '=Q-

(A1)

(A2)

(A3)

exp (—ie Q+) exp( ig Q )P—~ exp(ig Q ) exp(ia Q+)

=exp L
—ki(~+5) Q—2i(~—5) Q~7&~

&«xp[vi(~+)) Q+-'i(e —5) Q~7

yD[exp ( -i et T)7», — (A15)

i.e., we see that f~ transforms as (0, 1) . We can com-
bine these to write
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If we now write the 2)&2 matrix M in the form

exp L
——:z(n+5) Q —zz(n —0) Qz]%4.

Xem [zz(n+0) Q+zz(n —0) Qz]

=Pa [exp( —9 T)]a~ (A16)

If we now set n= g and take n infinitesimal, we get

M=ZI+i~ ez

then the above relations lead to

B(Zl +is zz) = i~ n—x ze,

8'(Z'I+is zz) =iZn s—n zzl.

(A25)

(A26)

—z[n Q, y ]=—~ (n T)„,
—z[n. Q, Pg ]= intra —(n T) a ~ .

These are just the relations that tell us that Z has
i spin 0, zz has i spin 1, and (3.1/) is satisfied.

Under the parity transformation,
If we set Il= —n, we get I'MI '=Mt (A27)

Using

- [ Q, ~.]=-~.('T)-,
—z[n Qz, P~ ]=zPa (n T) a ~ .

(I )ay= isa—~

(A18) exp (—in Qe)Mt exp (in Qz).

=exp ( in—~/2)Mt exp ( in —~/2). (A28)
(A19)

Hence

exp ( in —Qz) MMt exp (in Qz)

=exp (in s/2)MMt exp ( in —~/2). (A29)by~= —(n x y) „,
&ztiA ———(n x zti)g,

i1'Qx ———(n xQ)~,
$' ztig. ——( n x i') g ..

From this it follows that Tr MM+ is chiral invariant.
Actually, since

(A30)

(A20) it follows that

for the 3)(3-dimensional matrix representation of the
charges, we see that (A17) and (A18) may be written
in the form

Hence the even- and odd-parity combinations @~&/~,
denoted by Z& and x&, respectively, satisfy

MMt =MtM= (Z'+ze')1 (A31)

is chiral invariant. For a nonlinear realization we may
set

MM t = (Zz+ zzz) 1 =f z (const) 1. (A32)

A parametrization equivalent to that of (A25), namely

(A21) M=f exp (i~ P), (A33)

Thyrse are)ust the transformation laws (3.9) and (3.10) where P is a new (equally good) pseudoscalar Geld, has
As a second examPle we will consider a Geld that frequentlybeenused (Changand Gursey, 1967;Ilrown,

transforms as (~, -', ). Making use of the equivalence 1967)
expressed. in Eq. (A9), we write

exp ( iy Q )—Mga exp (Q Q )

=Mac [exp (—zy ~/2)]c.a..

It follows from this that

exp (—in Q)M exp (in Q)

=exp (in ~/2)M exp (—in s/2),

exp (—in. Qz) M exp (in Qz)

(A23)

= exp (i n ~/2) M exp (in s/2) . (A24)

exp ( in Q+—)Mga exp (in Q+)

=[exp (in ~/2)]~cMca' (A22)
and

APPENDIX 3: TRANSFORMATIONS OF FIELDS
UNDER SU(3) XSU(3)

The development here exactly parallels that of
Appendix A. The equivalence expressed in (A9) no
longer holds, so that the transformation laws have to
be speci6ed a little more carefully. If we label the
SU(3) representation by the multiplicity (e.g., 1, 3, 3,
8, ~ ~ ~ ) (this will cause no confusion in the cases of
interest here) then the transformation law for a Geld
transforming under SU(3) XSU(3) according to
(m, n) is

exp ( in Q+) exp—( ig Q ) M-ga

Xexp(ig Q ) exp (in Q+)

=[exp (in P)]&cMc& [exp (—ig F)$ a, (81)
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where the F and F' are matrix representations of the
SU(3) generators in the m and n representations,
respectively. If the field transforms under (m, n), then
P' must be taken to be matrices in the n representation,

The matrices satisfy the commutation relations

[F' Fb5= if~,F-' (II, fi, c= 1, 2, ~ ~ ~, 8). (82)

The fact that the fields F„„' and G„„' [see (7.5) and
(7.8) $ transform under SU(3) )&SU(3) as (8, 1)+
(1,8) is established straightforwardly if use is made of
the fact that in the 8 representation (the adjoint
representation) the ma, trices F can be written in terms
of the structure constants

Thus if

which implies that

O=ZC y",

(811)

(812)

We easily shovr that

exp ( —in Qb) BBt exp (in Qb)

=exp (in 2/2)BBt exp ( i—n X/2),

exp (—in Q,)B'B exp (in Q, )

=exp ( in.—X/2)BtB exp (in 2/2). (810)

(F")~S = ~f~~II (83)

Let us now consider the representation (3, 3)+(3, 3) .
For a field that transforms as (3, 3) we have

we may set

BtB=BBt=o'+qP = (const) l . (813)

S =I'MI '

We can deduce from (84) and (35) that

exp ( in Q)M—exp (in Q)

=exp (in 2/2)M exp ( in 2/2—),

exp (—in. Qb) M exp (i n Qb)

(86)

= exp (i n 2/2) M exp (in.X/2), (87)

which allows us to make the identi6cation

exp (—in. Q+) exp (—Q Q )M~E.

&&exp (ig. Q ) exp (in Q+)

=[exp (in ~/2) l~UMUD Lexp (—i' ~/2) jD s (84)

since the ~X s form a 3)&3-dimensional representation
of the generators. The matrices —-', X;* satisfy the same
commutation relations but are not equivalent to the set
~P,.Thus they yield a representation 3 of the generators.
Hence, for a field transforming as (3, 3) we have

exp (—in Q+) exp ( iy Q—) Ittg E

&&exp (i' Q ) exp (in Q+)

= [exp (—in 2/2) ]q U 1'D[exp (ig 2*/2) ]DII

=[exp (ig 2/2) jsDÃUD[exp (—in X/2) jo ~ . (85)

The last line follows from the Hermiticity of the )
matrices. Thus the matrix S~ has the same transforma-
tion properties as M except that n and g are inter-
changed. This however implies that

2I=det B+det Bt (817)

is chiral invariant, provided F0=0. Making use of the
fact that

6det U=e~, ey) U,pUMU,

= (Tr U)' —3 Tr U Tr U'+2 Tr U', (818)

we can write

6I= (Tr o ) '—3 Tr o Tr 0'—3 Tr 0 (Tr P) '+3 Tr o. Tr 4P

+6 Tr P Tr 0/+2 Tr 2—6 Tr og. (319)

APPENDIX C: DECAY RATES

Consider the decay

~(Q)~B(p)+C(e)

Under these circumstances, corresponding to the exist-
ence of a pseudoscalar nonet only, we may also use the
parametrization

(814)

with E' an equivalent nonet pseudoscalar 6eld.
We also note that (37) implies that

exp (—in Q) det M exp (in Q) =det M. (815)

However,

exp ( in Q—b) det M exp (in Qb)

=det [exp (in Z)Mj

= exp [i(6'")no/ det M. (816)

with B defined as in (7.52) . Similarly,

(88) with the quantities in the parentheses denoting the
four momenta of the particles. From the Feynman
rules we calculate

X~=Bt. (89) 61=i(2 ) ~(Q-p-V) (p, V I ~..U I Q), (C1)
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and we write

(2lr) ' 1
dr = (2~)4b(Q —p —q)

2QQ (2tr)2

Hence

l &&I
— Z I

~ I'
I

—' . (c3)
E2JA+1,p, , i 2qp 2Pp

'

(C2)

With the normalization of states (p'
~ p) =2ppb(y' —y)

we get

P /mt /'=/ Ag" B— Ag &—B
spins E tnA" mA' i

gvpi

= 2A'"( 1+,r' )+2ABt( 1— r'
)

mA' l /' mA'

2mp' i & m, ' i

/'m ' tn 2

I,2mp2 2m„'i ' (C10)

P.,l.. /
mt f'

82r 2JA+1 mA'
(C4)

where

= (p Q)/ mA'= (mA'+m '—m ')/mA2 (C11)

A =pomp(1 mp'/tn—A ) '/'I 1+L1—(mA2/mp2) r7b} .
The results of Sec. VI are thatHere p, is the center-of-mass momentum of the decay

products and is given by

2mAp, .va. = D (tnA, m/2, mot') 7 (C5) B=—gee (1 m'/mA'—)"2(tnA'/m ')b (C12)

Hence

X(x, y, s) =~ta+y2+s2 —22:y—2ys —2sx.
so that

I'Ap, ~64(yp2/41r) (1—0.88b+0.192), (C13)

We now consider two examples:

(I) For the decay

I'A, 1—0.888+0.192
I',„1+0.66b+0.11b2

(C14)

~'ll'+ lr

the matrix element is given by

~=V:-4"(/) (p. q.)—
Hence

2 I
~ I'=V '(p —q) (p q).L(QpQ"—/mp2) g""7—

spine

v"-'(p q)'— —

The value of 8 is not known very accurately. The
determination from the p width is uncertain to the
extent that this width is uncertain. Its determination
from the A width is complicated by the fact that there
is a contribution from the A —+3lr t see Gerstein and
Schnitzer (1968) for a discussion of this7 background,
and, if there is a 0, from the decay

For the latter, if the matrix element is given by
Noting that here

p
— ( 12m4m 2) 1/2 —L" 1 (p q) 271/2 then

YA4))r&A gy) (C15)

we get

2 * 3 2
P f' ~

52
I) M v

3 4~ ~2

spine

For the Lagrangian in (6.3) one finds that
(C16)

With m, = 765 MeV and mA~m„we get

I"= (pp2/42r) 52(4+ sb) ' MeV,

where we have denoted amp2/yp by b.
(II) For either of the decays

yA, = 2&p(m, /mA) $1 ', b(mA'/m, '—) 7—(c17)
so that if we take ns, =no, for simplicity, we get

(CS)
I"A, 4(yp2/4lr) (1—b) ' MeV. (C18)

One could also determine 8 from the helicity of the p
in the decay of the A&, since the matrix elements are

Ao~p++lr+

we write the matrix element in the form

opAQ pLAgl v B(psQvlmA2) 7 (C9)

5K$$ A )

JiIQQ ——
t (Ep/mp) A —(P,'/mAm, ) B7. (C19)

Of some relevance may be the fact that apparently the
A's are not being photoproduced,
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APPENDIX D: THE GELL-MANN MATMCES*

For completeness we list the canonical Gell-Mann
matrices:

The coeKcients d;;I, are symmetric under the inter-
change of any two subscripts. The values of the d;;» are
hsted below:

(0

(0 0 1)
A4= 0 0 0

11 0 0)

0)
0

.)

(1 0 0)
X0= (-', )"'l 0 1 0

I, ~ )

(0

(0

1 0)
0 0

~ )

0

)
(0

Pg= 0

0

0 0

)

(1 0

0

zjk

118
146
157
228
247
256
338
344
355
366
377
448
558
668
778
888

1/v3'

1/2
1/2
1/&3

—1/2
1/2
1/VS
1/2
1/2

—1/2
—1/2
-1/2@3
—1/2@3
—1/2vS
—1/2%3
—1/V3

(000)
0 0

('
0

0 0) do'0= (3) '"b*0~

APPENDIX E: NONLINEAR REALIZATIONS

(1 0 0

g —(1 ) 1/2 0

0 —2

They satisfy the relations

Tr X;X,=28;;;

P„,X,)=2if,g,)1g)

In a recent paper, Coleman, Ness, and Zumino
(1969) have given a complete discussion of nonlinear
realizations for compact, semisimple Lie groups. We
shall not attempt to do anything more than outline the
general argument. The point of departure is the
equivalence of all Gelds obtained by transformations of
the type shown in Eq. (2.22) . This strongly suggests a
geometrical approach* to the problem. Quite generally
then, the 6elds (p, f) will be taken as coordinates on a
manifold, and under the group G a transformation law
for these coordinates is given:

fX;, X;}=2d;,yXy. g(4, 4) = (4', 4"). (E1)

The f;;& are antisymmetric under the interchange of any
two subscripts. Their values are listed below:

For this transformation law the group properties must
hold, e.g.,

gi(g(4, 4) )=gi(4', 4')
~jk

123
147
156
246
257
345
367
458
678

fijk

1/2
—1/2

1/2
1/2
1/2

—1/2
v3/2
V3/2

II 1/

= (gg) (y P) (E2)

The transformation of 6elds in (2.22) suggests that the
origin is unchanged under the change of coordinates,
i.e., it is distinguished for physical reasons. Those
elements g of G for which

g(o, o) = (o, o) (E3)

form a subgroup H, the stability group of the origin.

All others vanish.
~ This geometrical view is also espoused by Finkelstein (1968),

For further properties of the ) matrices see Macfarlane, Isham (1969),Meetz (1968),Volkov (1968), and Hiida, Ohnuki,
Sudbery, and Weisz (1968). and Yamaguchi (1968).
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If v o Grst consider the special case that there are no
fields f, we may, with the help of H (which is assumed
given), give a simple realization of G on the manifold.
In this case there is only one orbit (i.e., every point is
connected to the origin by some g C G), and it is possible
to represent the manifold by the cosets of the stability
group R.ecall that the set of cosets, G/H, is given by
xB, where x runs through the group. Now for y&G,
yxB is again a coset, i.e., a group element takes us from
one coset to another. We may thus take GjH as our
manifold and as coordinates take those parameters that
parametrize the cosets.

For the group of interest to us, every element of 6
may be written in the product form

f=exp ( s~'Q) exp ( su Q) (E4)

where the Q are the generators of the subgroup H, and
the Q are the generators orthogonal to the Q. Hence
g's parametrize the cosets and can now be taken as
coordinates for our manifold. Their transformation law
is given as follows: for an arbitrary group element go,

gsexp ( —ig Q) is again a, group element. We may
therefore write

gs exp (—i( Q) =exp (—ig'Q) exp ( iu' Q), (E5—,)

where

C= C(4, gs),

u'= u'((, gs).

Thus the transformation

(E6)

go: K~V(6, gs) (E7)

is the desired nonlinear realization. The authors of the
paper cited above show that when there are other 6elds
P present, it is always possible to bring their transforma-
tion law into the form

go: y DLexp( —iu' Q)1P. (ES)

h exp ( ig Q) =—Lh exp (—i).Q) h-'jh

=
t exp ( —i( hQh ') jh

= [exp ( —ig'. Q) jh.

Hence exp (—iu' Q) =h and (ES) reads

h: P—+D(h) f.

(E9)

(E10)

D(h) is a linear unitary representation of the subgroup
H. The transformation law of the f as well as that of
the $ has the property that it is linear, i.e., independent
of ( (the meson Geld) when gs is restricted to the sub-
group B. In that case

From (E.9) we see that

('=D"&(h) (, (E11)

where D&s&(h) is the adjoint representation restricted
to H and Q.

The important result is that any nonlinear realization
can, by a coordinate transformation, be cast into the
form given by (E7) and (ES), and that the realization
depends only on the subgroup B and its representation
D(h). A special application of this standard procedure
may be found in the paper by Bardeen and Lee (1969),
who use it to derive Eq. (9.34) .
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