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The basic motivation for the theoretical investigation
of the three-nucleon problem is to use the three-body
data to add to our knowledge of the interaction between
nucleons. The first and owly success in this direction
occurred in 1935:at a time when the two-nucleon data
was completely consistent with a zero-range force,
Thomas (1935) showed that such an interaction would

give an infinite triton binding energy. Since then, there
has been steady progress in our understanding of the
three-body equations and systems, matched by an
equally steady but faster growth in the study of the
two-nucleon system and in the complexity of the
assumed two-nucleon interaction. Only in the last year
has there been any sign that realistic three-nucleon
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calculations are becoming feasible. Such calculations
can in principle clarify two fundamental issues: first, the
accuracy of the existing potential-model predictions for
the off-the-energy-shell elements of the two-nucleon
scattering matrix; and second, the existence and strength
of any explicit three-nucleon forces.

By far the most important three-nucleon observable
is the triton binding energy. The early calculations of
this quantity used variational methods* and the equiv-
alent two-body methodt' to estimate the triton binding
energy for a variety of simple interactions. It was soon
established that the triton is much more sensitive than
the deuteron to the details of the nuclear force. Rarita
and Present (1937) showed that simple central nuclear
potentials cannot simultaneously account for the bind-
ing energies of the deuteron, triton, and n particle. This
result was subsequently attributed to the presence of
noncentral nuclear forces. The first quantitative calcula-
tion of the triton binding energy with tensor forces w'as

by Gerjuoy and Schwinger (1942). Later calculations
established that a central plus tensor force was sufh-
ciently flexible to fit both the existing two-nucleon data
and the triton binding energy (Clapp, 1949; Hu and
Hsu, 1951; Pease and Feshbach, 1952). By 1950 the
two-nucleon data indicated the presence of short-range
repulsion, and the calculations of Feshbach and
Rubinow (1955) and Ohmura (formerly Kikuta) et al
(Kikuta, Morita, and Yamada, 1957; 1956; Ohmura,
1959) demonstrated that the triton binding energy was
sensitive to this property of the two-nucleon interaction.
The task of solving the three-nucleon problem with
potentials that contain both noncentral and short-range
repulsive terms, and that fit the observed tw'o-body

data, has only recently been carried through using-

*Variational calculations of the triton binding energy with
simple central potentials have been far too numerous to quote
here. The earliest such calculations are those of Thomas (1935)
and Rarita and Present (1937). Calculations including hard
cores are those of Kikuta, Morita, and Yamada (1957); Ohmura
{1959); Ohmura and Ohmura (1962); Tang, Schmid, and
Herndon (1965); van Wageningen and Kok (1967); Blatt and
Derrick (1958).

t The equivalent two-body method has been revived recently
despite its major disadvantage —that it is a inite approximation
yielding no information on its own accuracy. For recent cal-
culations using the method, see van Wageningen and Kok (1967);
Fiedeldey, Erens, van Wageningen, Homan, and Kok (1968);
Bodmer and Ali (1964); Kok (unpublished, 1968) .
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variational techniques to solve the Schrodinger equa-
tion (Delves, Blatt, Pask, and Davies, 1969). The
difhculties encountered are inherent in the form of the
interaction rather than in the method of solution.

An alternative formulation of the problem is given by
the Faddeev equations, and a number of recent calcula-
tions have used direct 6nite-diAerence methods for the
solution of these equations. For local potentials, this
involves the solution of a set of coupled integral equa-
tions in at least two continuous variables; so far, only
the simplest ca,se of three spinless particles has been
solved (Osborn, 1967; Humberston, Hall, and Osborn,
1968). However, the problem is simplified to the solu-
tion of coupled integral equations in just ore continuous
variable if separable nonlocal interactions are assumed;
i.e., the partial-wave projection of the potential is
expressed as

v((r, r') = Qx g„(r)g„(r').

This approach, which was pioneered by Mitra, (1962),
Kharchenko (1962), and Sitenko and Kharchenko
(1963), has the chief advantage of permitting a sim-
plification of both the bound-state and scattering
problems, two problems which hitherto had only been
investigated separately. Furthermore, it provides a
simple framework in which to investigate the sensitivity
of three-nucleon properties to the variation of particUlar
tw'o-nucleon parameters. However, it is evident that
this approach is unsuitable for testing most models for
the nucleon —nucleon interaction. There is no particular
physical interest in making a separable expansion for
the interaction, and it is probably preferable to try and
tackle the three-body problem with local (or at least
asymptotically local) potentials; one would then include
the most reliable feature of the nucleon —nucleon inter-
action: the one-pion-exchange component. The basic
idea of the separable potential approach, the introduc-
tion of a particular interaction chosen to simplify the
three-body equation, was predated (by some years) by
the work of Skorniakov and Ter-Martirosian (1956).

In spite of our limited knowledge of the three-
nucleon, bound-state wave functions, the study of

magnetic moments (Sachs and Schwinger, 1946; Villars,
1947) and charge and magnetic form factors (Collard,
Hofstader, Hughes, Johansson, Yearian, Day, and
Wagner, 1964; Schiff, 1964; Gibson and SchiG, 1965;
Gibson, 1965) has led to useful results. There is clear
evidence for appreciable modifications of the magnetic
properties (though none for the charge properties) of
nucleons within the three-particle nuclei. Such modifica-
tions, often referred to as interaction or exchange eGects,
are due primarily to electromagnetic interactions with
virtual mesons. In addition, it seems likely that mesonic
effects are significant in the P decay of 'He (Blin-Stoyle
and Papageorgiou, 1964; Blin-Stoyle, 1964) . However,
a full analysis of mesonic eGects requires not only a
Ieliable theory of strong interactions but also a three-

nucleon wave function which bears at least some corre-
spondence to the interactions from which the mesonic
currents are derived.

The uncertainties in the structure of the three-
nucleon continuum wave functions allow only prelimin-
ary and incomplete interpreta, tions of the neutron—
deuteron scattering and radiative-capture reactions and
the electromagnetic disintegrations of the three-particle
nuclei. However, Faddeev's theory of three-particle
scattering (Faddeev, 1963; 1961) and the recognition
that the gross properties of the positive-energy, three-
nucleon wave functions could be obtained using simple
two-nucleon interaction mechanisms of a separable non-
local type (Yamaguchi and Yamaguchi, 1954),* ha, s

provided a simple basis for future work in this field
(Amado, 1963; Lovelace, 1964; Aaron, Amado, and
Yam, 1966; 1965; 1964; Phillips, 1968a; 1968b; 1966;
Barbour and Phillips, 1968) .

The purpose of this article is to present a (necessarily
rather condensed) picture of the physical significance
of existing three-nucleon calculations with local or
separable interactions, and of the electromagnetic and
weak interactions of the three-nucleon systems. Though
the complexities of the three-body problem and of the
two-nucleon interaction lead to difhculties in inter-
preting the details of the quantitative results, we shall
see that the gross features of both the three-nucleon-
scattering and bound-state data can indeed be under-
stood in terms of the main features of the nonrelativistic
interaction between two nucleons. Furthermore, it is
possible to gain some qualitative ideas as to the depend-
ence of three-nucleon observables, particularly the
triton binding energy, on various aspects of the two-
nucleon interaction. Unfortunately, most of the existing
three-nucleon data, with the exception of the triton
energy and the doublet 5-wave neutron —deuteron
scattering length, are rather insensitive to the details
of the nuclear force. Three-body calculations a,iso pro-
vide insight into the possible structure of the three-
nucleon wave functions. It is this information which
provides the ba.sis for the interpretation of the electro-
magnetic and weak-interaction properties of the three-
particle nuclei.

We do not attempt in this article to cover the
mathematical techniques behind the three-body calcu-
lations; a number of detai1.ed reviews of these and related
subjects have already appeared in the literature (Noyes,
1968; Faddeev, 1965; Watson and Kiuttall, 1967; Duck,
1968). We refer the reader to Faddeev (1965) and
Watson and Nuttall (1967) for the subtleties of the
mathematical aspects of three-body scattering theory;

*The Yamaguchi potential is the most commonly used non-
local, separable potential. It can be adjusted to 6t the 'So and
'S1 effective-range parameters, and if a tensor component is
included, the deuteron quadrupole moment and D-state prob-
ability. This procedure leads to an approximate fit to the medium-
energy nucleon —nucleon data, but does not give the change of
sign of the g-wave phase shifts at high energies.
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to Duck (1968) for the details of the separable-inter-
action approach; and to Noyes (1968) for a discussion
of the significance of properties of the two-nucleon
interaction to the nuclear three-body problem.

II. GROUND STATES OF THREE NUCLEONS

A. General Features

Because of the existence of noncentral nuclear forces,
the only absolute space —time quantum numbers of the
three-particle nuclei are the total angular momentum J,
its projection J„and the parity x. Conservation of
charge implies that T, is also conserved; and for a
completely charge-independent Hamiltonian, the iso-
topic spin T' is also a good quantum number. However,
in the real world the Coulomb interaction in 'He, and
the breakdown of charge independence implied by the
difference in the proton and neutron masses and mag-
netic moments, as well as any explicit charge depend-
ence of the nuclear potential, all imply that T' is only
an approximate quantum number. Thus the complete
wave function of 'He or 'H may be written as a linear
combination of terms with various values for the orbita).
angular momentum L, the total spin 5, and the isotopic
spin T. However, the dominant component of the three-
nucleon wave function, the principal S state, can be
derived from the assumption of spin- and isospin-
independent, central nucleon-nucleon forces. This state
is completely symmetric under interchange of the space
coordinates of the particles and has the quantum
numbers

(J, I., 5, ~, T) = (1/2, 0, 1/2, +, 1/2) .

spin and space vectors associated with the system.
Sachs (1953) extended the Gerjuoy —Schwinger classifi-
cation by including the isospin formalism. This classi6-
cation omitted three (rather unimportant) states, which
were included later in the similar construction of Cohen
and Willis (1962). The second classilcation, due
primarily to Derrick and Blatt (1958), factors out the
rotational symmetry of the wave function by intro-
ducing a set of Euler angles to describe the relevant
rotations. Similar classifications have been given by
Shimamoto (1959) and by Feshbach (1942) . The
arbitrary (J, s, T) three-nucleon state has been con-
sidered by Kalotas and Delves (1964) . We give here a
brief resume of the salient properties of the Derrick and
Blatt classification, which was historically the first to
be brought to systematic completion and which has been
used in much of the later work.

The wave function depends on the position vectors r;,
the spin coordina, tes 1;, and the isospin coordinates g; of
the particle; i= 1, 2, 3. Removal of the dependence on
the center-of-mass vector leaves six coordinates to
describe the spatial motion of the particles. The three
interparticle distances r», r», and r» may be taken as
three of these six coordinates. The remaining three
coordinates may be chosen as the Euler angles n, P, and

p which define the orientation of the triangle formed by
vectors r;. Our aim is to separate the dependence of the
wave function on the interparticle distances r;, from its
much simpler dependence on the spin, isospin, and
Euler-angle variables by making an expansion in a
convenient complete set of spin —isospin-Euler-angle
functions I';:

This result is consistent with experiment: First, the
isotopic spin is T= 1/2, since 'He and 'H are particle-
stable nuclei of roughly equal binding energies, whereas
the trineutron and 'Li are almost certainly not stable
at all (see Sec. III). Second, the total angula, r momen-
tum is indeed 5=1/2 by direct measurement of the
optical hyperfine structure of tritium (Li, 1951);with
2 =1/2 the electric quadrupole moment is necessa, rily
zero. Third, the experimental results on the magnetic
moments, electromagnetic form factors, the photo-
disintegration of 'H and 'He, and the inverse processes
(see Sec. V) strongly indicate that the dominant com-
ponent of the ground state is spatially symmetric with
L=O.

Although the quantum numbers L, 5, and T are not
conserved with actual nuclear forces, they can still be
used to simplify and systematize the construction of the
most general three-nucleon wave function. Two distinct
ways of doing this have appeared in the literature. The
erst, due originally to Gerjuoy and Schwinger (1942),
is based on the observation that all three-nucleon wave
functions with J= 1/2 can be constructed by operating
on the principal S-state function by means of scalar
functions (i.e., functions which commute with J) of the

We start by recalling the permutation symmetries
available to an arbitrary three-particle wave function.

Each partition of the number 3, namely 3=3, 3=
2+1, and 3=1+1+1, is associated with a different
irreducible representation of the permutation group on
three objects. The partition 3=3 gives rise to the com-
pletely symmetric representation, i.e., all permutations
are "represented" by +1. The partition 3=1+1+1
gives rise to the completely antisymmetric representa-
tion. To shorten our notation, we denote the symmetric
representation by the letter s; the antisymmetric repre-
sentation by the letter a. The third irreducible repre-
sentation, corresponding to the partition on 3=2+1,
is less generally familiar; it will be denoted by the letter
m for "mixed. " Given any function F(1, 2, 3) of three
things, we can decompose it into three mutually
orthogonal functions:

p —p,+p +p
The function F, is completely symmetric,

F,(1, 2, 3) = ~6/P(1, 2, 3)+F(2, 1, 3)+F(1,3, 2)

+F(3, 2, 1)+F(2,3, 1)+P(3, 1, 2)], (2,2)



The arbitrary function F(1, 2, 3) may be written as the
sum of two functions G(12, 3) and P(12, 3) which are,
respectively, even and odd under the interchange of
1 and 2. The equation (2.4) can then be used to define
the functions G and H . Each of these functions can
be further decomposed into a part which is symmetric
and a part which is antisymmetric under the interchange
of 2 and 3. We have, for example,

G„,i——-', [G(12, 3) +G(31, 2) —2G(23, 1)], (2.4a)

G„,2 ———',[G(12, 3) —G(31, 2) ], (2.4b)

where G,~ and G,~ or II,~ and H, 2 are the basis
functions for the mixed representation of the permuta-
tion group, the permutation (i, j) being represented by
a 2-by-2 matrix.

For the internal function f; [Eq. (2.1)] all permuta-
tion symmetry types are possible. Since the spin states
are constructed from just two linearly independent
functions (the two components of the nucleon spinors),
only states of symmetric and mixed permutation sym-
metry are possible, and these states correspond, respec-
tively, to total spin of 3/2 and 1/2. Similarly, the isospin
3/2 and 1/2 states have symmetric and mixed permuta-
tion symmetry. The Euler-angle functions, which deter-
mine the orientation in space of the triangle formed by
the three particles, are the conventional rotation
matrices which represent the rotation necessary to
bring a system of axes fixed to the triangle (the body
axes) into coincidencewith a space-fixed system of axes.
The analytic properties of these functions are well
known [see, for example, Kalotas and Delves (1964)
and the references cited there]. For a given orbital
angular momentum L there are (2L+1)' independent
Euler-angle functions:

p, M= L, L+1,. ~ +L. ——

The suKx M denotes the projection of L on the space-
fixed axes, and the suKx p, the projection on the body-
6xed axes. The symmetry properties of the D„M~ depend
on the choice of body axes. If the body axes of Kalotas
and Delves are adopted, symmetrized Euler-angle
functions can be defined which are either completely
symmetric or antisyrrnnetric; the mixed representation
does not occur. These functions have the form
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Ii, is completely antisymmetric,

F~(1, 21 3) = i6[F(1) 2) 3) F—(2~ 1~ 3) F(113~ 2)

—F(3, 2, 1)+F(2,3, 1)+F(3, 1, 2)], (2.3)

and F is given by

F„,(1, 2, 3) =—'[4F(1, 2, 3) —2F(2, 3, 1) —2F(3, 1, 2)].
(2.4)

where pir ——a or s and @=0, 1,.~, L. The coeflicients A
and 8 are given in Kalotas and Delves (1964). The
parity of the functions is ( —1)&. For each value of p,
except @=0, there is one symmetric and one antisym-
metric function, while for @=0 there is only one func-
tion, which is sylnmetric or antisymmetric accordingly
as L is even or odd. Hence, for example, we obtain the
following even-parity functions:

L=0: Yoo(s, 0);
L, =1: Yir'(a 0).
L= 2: YM'(s, 0),

M= —1, 0, +1;
Y~'(s, 2), Y~'(a, 2);

3II= —2 to+2.
Thus, apart from the trivial degeneracy in 3I, there are
five independent Euler-angle functions for the J"= 1/2+
three-nucleon system.

We now have to construct the spin —isospin —Euler-
angle functions Y; of Eq. (2.1) . These may be built up
to have definite permutation symmetry and de6nite
total angular momentum. Functions of symmetric, anti-
symmetric, and mixed permutation symmetry are
possible; we write schematically as Y„Y„and Y,& and
Y,2. An over-all antisymmetric wave function is
written by multiplying these angular functions by an
internal function of appropriate adjoint symmetry. We
obtain three different types of products, each of which
is separately antisymmetric; they are

B. Qualitative Discussion of the Triton Bound-State

We do not expect all of the 10 states to be equally
important in the triton. First let us consider the Sstates:
The principal S state has a completely symmetric
internal function. It follows immediately that the
expectation values of the odd-parity nuclear interac-
tions are indentically zero. Further, the spatial distribu-
tion of each nucleon is independent of whether it corre-
sponds to a neutron or a proton. Thus, the effective
interaction in the principal 5 state is the isospin-

f .~ Y,i+fm, i—Y,2

We note that the third combination is antisymmetric,
but that the separate terms f,~Y,i and —f,iY,g by
themselves are not.

For the three-nucleon J=1/2, n. =+, and T=1/2
system the result of the construction is summarized in
Table I. There are 10 states: three S states, four I'
states and three D states. In this table, an entry m refers
to a pair of functions of mixed symmetry; thus the
expansion (2.1) contains 16 terms and the three-body
Schrodinger equation has been reduced from a partial
differential equation in six independent variables to a
set of 16 coupled partial differential equations with only
three independent variables.
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independent part of the even-parity nuclear forces. By
the Pauli principle, such an interaction is also spin
independent, and hence the eGective force in the
principal 5 states of the three-particle nuclei is

(2.5)

where 'V,+ is the central force in the triplet-even state
of the two-body system and 'V,+ is the central force in
the singlet-even state. There is also a very small contri-
bution from the spin-independent part of the quadratic
L S force. The principal 5 state is expected to remain
the most important even in the presence of strong tensor
forces; in practice it contributes more than 90% of the
normalization of the wave function.

The second 5 state has a fully antisymmetric internal
function, which is therefore zero whenever the triangle
formed by the three particles is isosceles. The more
zeros a function has, the larger its derivatives and hence
the larger its kinetic energy; accordingly, the coupling
of this state into the ground-state wave function is
expected to be completely unimportant. This is well
borne out by recent variational estimates (Delves,
Blatt, Pask, and Davies, 1969),which give a probability
of around 0.003% for this state.

The third 5 state has an internal function of mixed
symmetry and is important enough to have attained a
notation all to itself: it is usually referred to as the S'
state. It is mixed in to first order by the difference
between the singlet and triplet potentials, and since this
diR'erence is small, we do not expect more than a few
percent S' state. The exact S' probability I'(S') turns
out to affect the theoretical predictions for a number of
observable parameters; these include the charge form
factors of ~H and 'He (Sec.V.B), the radiative —deuteron
capture (Sec. V.D) and the P decay of the triton (Sec.
VI.A) . Estimates for I'(S') range from 0.1% to 4% and
depend quite strongly on the form of the potential used
(Ohmura, 1969).

The I' states are all expected to be very small. They
are coupled in to first order by the L S potential and
to second order by the tensor potential. Estimates show
that the L S force is rather unimportant in the triton
(Derrick, 1960), and this result is borne out in practice.
To a good first approximation, I' states and L S forces
may be neglected,

The D states on the other hand cannot be neglected.
They are coupled to the principal 5 state by the non-
central part of the two-nucleon potential, i.e., chieAy

by the tensor potential; and this potential is very strong
in any current fit to the two-body data. The triton D-
state probability may be as high as 9%; calculations
using separable and local potentials both lead to D-state
probabilities of about 6% and 9%, respectively, for
potentials yielding deuteron D states of 4% and 7%,
respectively (see Table III) . It was noted long ago that
the tensor force reduces the ratio of the theoretical

TABLE I. Classification of triton wave functions.

Spectroscopic
classification I

Permutation symmetry

Euler Spin-
Internal angles isospin

'SI/2 1/2

1/2

1/2 'JJ2

1/2

1/2

4p 1/2

3/2

2 3/2

2 3/2

2 3/2

binding energy of light nuclei to the binding energy of
the deuteron (Inglis, 1939). There are two effects
responsible for this result: First, in the triton a nucleon
pair has approximately a probability of one-half of
being in a singlet spin state in which the tensor force
does not act at all. Second, because of the large spatial
extent of the deuteron, the centrifugal barrier, which
acts against the admixture of D states, is less effective
in the deuteron than it is in the triton. Any actual
nuclear potential to be used in triton calculations must
be adjusted so that it at least fits the deuteron binding
energy. Thus a potential with a large tensor force (e.g. ,
the Hamada-johnston potential) will give less binding
for the triton than a potential with smaller tensor
component.

There is also the possibility of T=3/2 states gener-
ated by Coulomb forces, charge-dependent nuclear
forces, and the neutron-proton mass difference. Of these
states the most important is a mixed-symmetry 5 state
in 'He. Recent detailed calculations (Ohmura, 1967,
1969; Bell, unpublished) indicate that a T=3/2 ad-
mixture of 0.01% to 0.001% is likely.

We now sum up: Because of the dominance of the
principal 5 state, the main effective central force is the
average of the singlet-even and triplet-even central
forces (2.5). Although there is a contribution from the
quadratic L S force, the operator (2.5) gives the only
significant expectation value in the principal 5 state of
the triton. The other forces act only indirectly, by
admixing the D, 5', and I' states. In determining the
binding energy, the triplet-even tensor force which
admixes the D states is the most important. Next in
importance is the difference between the triplet-even
and singlet-even forces; this difference, a Bartlett force,
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TABLE II. Expectation values of the various components of the
Hamada-Johnston Hamiltonian in 'H (Humberston, Hawkins,
Hennell, and Wallace, 1968); units are megaelectron volts. The
calculation has not converged.

Triton energy —2.79

Kinetic energy +75.71

Central

Tensor

Spin —orbit

Quadratic spin —orbit

—40.36

—35.79

—0.99
—1.53

admixes the S' state. Of least importance are the L.8
force, the quadratic L S force, and odd-parity forces.
Tables II and III give weight to these statements.
Table II lists the expectation values of the various
components of the Hamada —Johnston potential
(Harnada and Johnston, 1962) obtained in varia, tional
calculations (Delves and Blatt, 1967; Humberston,
Hawkins, Hennell, and Wallace, 1.968; Davies, 1967a;
1967b). (The Hamada —Johnston potential, which in-
cludes one-pion exchange and a repulsive hard core, has
central, tensor, spin —orbit, and quadratic spin —orbit
components and provides a semiquantitative fit to the
two-nucleon data, .) Table III gives the theoretical
probability densities of the various triton admixtures
for a number of two-nucleon interactions. The varia-
tional results (Delves, Blatt, Pask, and Davies, 1969)
are for the Harnada —Johnston potential. The separable-
potential results (Phillips, unpublished; see Phillips,
1968; Borysowicz and Dabrowski, 1967)* correspond
to approximate fits to the two-nucleon data, but indicate
the sort of variations that are to be expected as the
parameters of the two-nucleon interaction are varied.

The eGect of short-range repulsion in central potential
models on the theoretical binding energy is illustrated
in Fig. 1.The variational calculations of Ohmura (1959)
and Tang, Schmid, and Herndon (1965) assumed local
exponential potentials with a hard core; the low-energy
parameters were taken to be a, = —23.69 fm, r, = 2.7 fm,
a~=5.28 fm, and r&

——1.70 fm. The Ohmura results are
upper bounds and those of Tang et al. (1965), were
estimated using both upper and lower bounds. The
Borysowicz —Dabrowski (1967) calculation used a non-
local separable potential with a hard-shell repulsion.
Because of the nonlocality of this potential, the proba-
bility density inside the core radius is finite but small.
The low-energy parameters of the potential differ from
the exponential potential only- in the value of the
singlet-eGective range which was taken to be r, =2.S fm.
The results corresponding to the local and nonlocal
potentials are very similar and indicate a fairly rapid
decrease in the magnitude of the binding energy with
increasing core radius (van Wageningen and Kok,
1967). There are two opposing effects at work which
lead to this net result: The introduction of the hard core
eliminates part of the configuration space of the three-
particle system, causing an increase in the kinetic
energy; it increases by a factor of 2 as the core radius
increased from 0 to 0.6 fm (Kikuta, Morita, and
Yamada, 1957; 1956; Ohmura, 1959). However, there
is a compensating eGect in the potential energy: In
order to retain the fit to the two-body data, the attrac-

Two-nucleon potential I'(~') 'Po I'(D) % ~(P) %

TABLE III. Theoretical predictions for the probability densi-
ties of —S', D, and P states of the triton. The variational results
are taken from Delves, Blatt, Pask, and Davies (1969) and the
separable-model results from Phillips (unpublished) and
Borysowicz and Dabrowski (1967).

C. Calculations of the Triton Binding Energy

A most important physical problem is to determine
the dependence of the theoretical triton binding energy
on the various properties of the two-nucleon interaction.
Among the important properties of this interaction
which are not uniquely determined by two-nucleon
experiments are: The short- and medium-range radial
dependence of the interaction and in particular the
short-range repulsion; the relative strengths of the
tensor and central components; and the off-the-energy-
shell behavior of the scattering amplitudes, which in
part is related to the locality or nonlocality of phenom-
enological potentials. These properties and their effect
on the triton binding energy are usually considered
independently and within the context of simple models
for the nucleon —nucleon interaction. The results of such
an approach should not be taken too literally.

Harnada —Johnston

Noncentral separable; no
repulsion

Singlet
effective range

(fm}

0.0

0.0 2. 70

4.0 2. 70

S.S 2. 70

7.0 2. 70

Central separable; with short-
range repulsion

Singlet-
Core radius effective range

(fm) {fm)

1.60

1 ~ 40

1.32

1.29

1.27

0.0
0.0
S.77

8.05

10.0

0.03

0.0

0.0
0.02

*A later calculation using the same potential (Ja6e and Reiner,
1968) gave binding energies that di8ered from those of Borysowicz
and Dabrowski i1967l by 0.4 MeV.

0.4
2.5

2.5 2.0

0.0
0.0

0.0

0.0
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FIG. 1. The effect of short-range repulsion on the energy of
the triton. The abscissa represents the hard-core radius. The
circles and triangles refer to two sets of variational calculations
with local exponential potentials: the circles, by Kikuta, Morita,
and Yamada (1957) and Ohmura (1959); the triangles, by Tang,
Schlnid, and Herndon (1965).The crosses correspond to a direct
calculation using nonlocal separable potentials by Borysowic7
and Dabrowski (1967).

tion just outside the repulsive core must be increased
(i.e., a "sticky core" is introduced) . If a tensor force is
included, the central force approaches the "sticky core"
limit more rapidly (Biedenharn, Blatt, and Kalos,
1958). Therefore, a more realistic calculation including
such effects may indicate that Fig. 1 overestimates the
effect of the hard core on the triton binding energy.
Indeed, an extreme (and of course unrealistic) calcula-
tion including only the centra/ Part of a (central and
tensor) potential leads to an increusitsg triton binding
energy with increasing hard-core radius (Blatt and
Derrick, 1958).

One can simulate short-range repulsion in the nu-
cleon —nucleon interaction in various ways; e.g., local
hard-core and soft-core potentials, strongly velocity-
dependent potentials, and nonlocal separable potentials
with either smooth or sharp repulsion. (A nonlocal
potential may, of course, be represented as a velocity-
dependent potential. ) Tabakin (1965) has investigated
the sensitivity of the theoretical triton binding energy
to the type of short-range repulsion in a separable
potential model. Using two spin-independent potential
models fitted to the same on-shell scattering data, he
found that the use of a hard-shell repulsion results in
5% less binding than a smooth repulsion. However, a
calculation by Folk and Bonnem (1965) found that a
velocity-dependent or a hard-core representation of the
repulsion gave essentially the same binding energy if
the potentials have the same S-wave phase shifts.
Similarly, the equivalence of local hard-core and soft-
core potentials has been demonstrated in a simple model
(Afnan and Tang, 1968) .
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Fro. 2. The eBect of the strength of the tensor force on the
energy of the triton. The abscissa represents the central potential
strength S('V,+). An increase in S('V,+) corresponds to a
decrease in the tensor-potential strength. The circles refer to a
variational calculation (Blatt, Derrick, and Lyness, 1963) with
local Pease-Feshbach potentials and the crosses to a direct cal-
culation (Phillips, 1968c) with nonlocal separable potentials.

An early investigation of the sensitivity of the triton
binding energy to the properties of the nucleon —nucleon
tensor force is due to Pease and Feshbach (1952). This
variational calculation assumed a Yukawa-type central-
plus-tensor potential with no hard core. The range of the
tensor component was varied, keeping all the low-
energy scattering parameters roughly constant with the
exception of the triplet-effective range. The calculation
was repeated with an improved wave function by Slatt,
Derrick, and Lyness (1963).The results show that, as
expected, the binding energy decreases quite rapidly as
the fraction of the triplet interaction contributed by the
tensor force is increased. The inclusion of tensor forces
in a separable model calculation is straightforward and
leads to qualitatively similar results. Purely attractive
S-wave Yamaguchi interactions (Yamaguchi and
Yamaguchi, 1954) overbind the triton by about 3 MeV;
the actual value of the binding energy depends quite
strongly on the singlet-effective range. But the inclusion
of a tensor force, for which the deuteron D state is 4%,
leads to a reduction of about 2 MeV in the binding
energy (Sitenko and Kharchenko, 1965; Bhakar and
Mitra, 1965). These calculations have been extended
so as to include the predictions corresponding to a
deuteron D-state probability of 5.5% to 7%, all other
low-energy parameters being kept constant (Phillips,
1968).

The main effect of the tensor force in the loca1 and
nonlocal calculations is shown vividly in Fig. 2, which
plots the energy of the triton against the nondimen-
sional strength parameter of the central component of
the potential. For both the Pease-Feshbach potential



504 REvIEws oE MQDERN PHYsIcs JULY 1769

(Pease and Feshbach, 1952) and the separable Yama-
guchi potential (Yamaguchi and Yamaguchi, 1954),
the binding energy is a strongly decreasing function of
the tensor strength.

The importance of the off-the-energy-shell behavior
of the nucleon —nucleon scattering amplitudes is illus-
trated by recent calculations of Kok, Krens, and van
Wageningen (1968). Jt is possible to construct a local
potential, a generalized Bargmann potential (Newton,
1960), to fit the phase shifts of a nonlocal separable
potential at ag energies. Kok et al. found that a separ-
able Yamaguchi potential binds a system of three
identical, spinless particles with an energy of —12.4755
MeV and the equivalent generalized Bargmann poten-
tial binds with an energy of —10.90 MeV; this difference
in the oG-the-energy shell behavior leads to a difference
of ~14% in the three-particle binding energy. This
result suggests that the unknown behavior of the two-

body, t-matrix oG shell leads to an uncertainty of ~1.2
MeV in the triton binding energy.

It is' evident from this discussion that the triton
binding energy is likely to be sensitive to various two-
nucleon properties which cannot easily be determined.
A detailed description of the nucleon —nucleon short-
range repulsion is beyond the scope of any nonrelativis-
tic theory: Deuteron photodisintegration is sensitive to
the ratio of the tensor-to-central components of the
nuclear force, and nucleon —nucleon bremsstrahlung may
give information on the oG-shell behavior of the ampli-
tudes; but the interpretations of both these phenomena
are clouded by the problem of mesonic exchange correc-
tions to the electromagnetic Hamiltonian. Accordingly,
the testing of phenomenological potentials in the three-
nucleon system is likely to play an important role in the
understanding of the fundamentals of the nucleon-
nucleon interaction. However, the interpretation of such
calculations requires reliable estimates of the eBects of
three-body forces and relativistic corrections. *

With a more ambitious attempt to calculate the
triton binding energy for an interaction yielding a
detailed 6t to the two-body-data, the computational
difhculties rise sharply. Separable potential calculations
have been carried out by Schrenk and Mitra (Schrenk
and Mitra, 1967;Mitra, Schrenk, and Bhasin, 1966) and

by Dabrowski and Dworzecki (1968; to be published)
using (central and tensor) attractive interactions in the
triplet state and a central potential, including also a
repulsive term in the singlet state. Their results are
roughly comparable: both calculations omerbimd the
triton by 0.3-1.5 MeV. Since the interactions used do
not provide a detailed 6t to the two-body data, it is as
yet too early to assess the relevance of this overbinding

*Recent papers on three-body forces include: Loiseau and
Nogami (1967);Pask (1967);Brown, Green, and Gerace (1968);
McKellar and Rajaraman (1968). Relativistic e6'ects have been
considered by: Primako6 (1947); Gupta, Bhakar, and Mitra
(196').

when compared with the underbinding (by a similar
amount) for a local phenomenological potential (see
below) .

Investigations of the nuclear three-body problem
using "realistic" local phenomonological potentials in-
volve the use of variational techniques. A sequence of
such calculations have been carried out~ for a number
of local potentials 6tted to the two-nucleon data and
containing hard cores and noncentral components.

The earlier calculations in this sequence served to
show two things. First, as expected, the calculated
binding energy decreased sharply with increasing tensor
potential strength. Second, the results show in dis-

tressing clarity the "sticky core" effect referred to
earlier. As the tensor strength is increased, the two-

body data appear to require (at least in the potential
models considered) that the central potential become
rapidly very deep over a narrow region outside the hard-
core radius. The Hamada-Johnston central potential
(Hamada and Johnston, 1962), for instance, reaches a
peak attractive depth of well over 1000 MeV in both
the singlet and triplet states, over a narrow range of less
than 0.5 fm outside the hard core. This ill-mannered
behavior makes it very dificult to construct adequate
variational wave functions for these potentials, and this
is reAected in the clear lack of convergence of the ear1.y
calculations. f However, later work appears to have over-
come the difficulty (Delves, Blatt, Pask, and Davies,
1969), partly by introducing terms in the trial function
which involve explicitly the deuteron wave function
(and hence reproduce the very strong two-body cor-
relations implied by the sticky core nature of the
potential), and partly by the brute-force method of
including many terms in the trial function. The upper
bounds E„(N), found by Delves et a/ for the H. amada-
Johnston potential with trial functions containing up to
X=40 terms, are shown in Fig. 3. From this Ggure one
would estimate that E(N) has converged to the exact
value E„(~) for the potential used to within at most
a few tenths of a megaelectron volt. This is consistent
with the lower bounds EL(N) computed from the same
wave functions, which are shown in Fig. 4. These are
still very far from the upper bounds, values of EL(40)~
—60 MeV being the best available. However, if we
de6ne a parameter q,

Il(N) = ttEL(N) —E)/PE —E (N) $, (2.6)

then it is well understood that, for large E, values of
Il))1 are to be expected (Delves, Blatt, Pask and
Davies, 1969); the upper bound is much closer to the

*Delves aIId Blatt (1967); Davies (1967a; 1967b) Blatt,.
Derrick, and Lyness (1963); Derrick and Blatt (1960); Blatt
and Delves (1960); Delves, Blatt, Pask, and Davies (1969).

t We do not wish to blame the variational approach for this.
The form of~the potential leads to similar difhculties for a direct
Gnite-difterence solution of the equations; such a solution appears
still quite impracticable today.
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FIG. 3. Upper (O) and modified lower (Q) bounds on the
triton binding energy E„(N) for two distinct wave functions A
and B. The lower bounds are de6ned by Eq. (2.6) of the text.
Figures 3—5 are taken from Delves, Slatt, Pask, and Davies
(1969) and relate to calculations with the Hamada-Johnston
potential (Hamada and Johnston, 1962) .

attributed to a three-body potential, relativistic effects,
or a "defect" in the Hamada-Johnston potential.
Existing estimates of the contribution from three-body
potentials and relativistic effects are in the range 1.5
to 2 MeV, *but these estimates are not suSciently com-
plete to be definitive. A single calculation yields no
information on the sensitivity of the triton binding
energy to the detailed structure of the potential, and it
is important that this sensitivity should be explored.
This is especially so since there exist potential 6ts
(Bressel, Kerman, and Rouben, 1968; Reid, 1968) to
the two-body data, whose radial dependence is very
much less singular than that of the Hamada —Johnston
potential.

exact eigenvalue than the lower. For interactions with
hard cores, we expect values of several hundreds for q.
If we are willing to guess g, we can of course solve Kq.
(2.6) for the eigenvalue E; more realistically, a lower
bound on g leads to a lower bound on E. Such "lower
bounds" are plotted in Fig. 3 for the assumptions q =50,
g= j.00 and show that the direct lower bounds of Fig. 4
are quite consistent with the apparent convergence of
the upper bounds. The 6nal values quoted by Delves
et al. , including an estimate of the numerical accuracy
of the calculation, are

E'rr(H. J.) = —6.7&1.0 MeV,

-P(~') =2% &(I')=003%, &(D) =9%.
The 5'- and D-state probabilities as a function of E are
shown in Fig. 5.

A value of around 7 MeV for the binding energy
leaves a discrepancy of 1.5 MeV with experiment, to be
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FrG. 4. Unmodified Temple lower bounds for the wave functions
A and 8 of Fig. 3.

III. POSSIBLE EXCITED STATES OF
THREE NUCLEONS

IO

P,%
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A number of searches have been made for possible
excited bound and unbound resonant states of three
nucleons. The most interesting possibility is a bound
state of three neutrons ( rs). Initial evidence (Adjacic,
Cerineo, Lakovic, Paie, claus, and Tomas, 1965) in the
sH(rs, P) 3I reaction for a bound trineutron has not
been supported by later experimental work on the same
reaction (Thornton, Blair, Jones, and Willard, 1966;
Fuschini, Maroni, Uguzzori, Verodini, and Vitale,
1967). No evidence was found in the 'Li+rs reaction
(Fukikawa and Morinaga, 1968) trLi(e, se) sLi or
7Li(N, p) rH- -n+slf or in the 'He+m reaction
(Kaufman, Perez-Mandez, and Sperinde, 1968); in this
last reaction an upper limit of 0.074+0.015 pb/sr was
established for the cross section for a trineutron with
energy —3 to +3 MeV. Further, there is no evidence
in the 'He(p, rs)3p reaction for excited 3p states
(Anderson, Wong, McClure, and Pohl, 1965; Cookson,
1966), nor for a NeP state in sHe(m, P) sseP (Antolkovic,
Cerineo, Pail"., Tomas, Ajdjacic, Lalovic, van Oers, and
claus, 1966) . With regard to possible excited ppn states,
Kim, Bunch, Devins, and Foster (1966) reported three
narrow peaks in the proton spectrum in 'He(p, p') ppe

*Recent papers on three-body forces include: Loiseau and
Nogami (1967);Pask (1967); Brown, Green, and Gerace (1968);
McKellar and Rajaman (1968). Relativistic eRects have been
considered by: Primakoff (1947); Gupta, Bhakar, and Mitra
(1965).
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N

FIG. 5. The triton S'- and D-state probabilities for wave
function B.
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reactions. But Cerny, Detraz, Pugh, and claus (unpub-
lished) found no evidence for such peaks in the same
reaction at a slightly lower energy, and inelastic electron
scattering on 'He gave no evidence for excited states for
excitation energies up to 17 MeV (Frosch, Crannell,
McCarthy, Rand, Safrata, Suelzle, and Yearian, 1967) .

Theoretical information on three-nucleon excited
states is very limited. Calculations with purely attrac-
tive, spin-independent central forces give rise to a
7=1/2, 7=1/2 S-wave bound excited state which is
present whenever the two-body subsystem is bound;
this is the case both for local (Osborn, 1967; Humber-
ston, Hall, and Osborn, 1968) and separable interactions
(Aaron, Amado, and Yam, 1964a). The wave function
of this excited state corresponds to a nucleon in an
extended orbit about a compact two-nucleon subsystem
(Osborn, 1967; Humberston, Hall, and Osborn, 1968),
and we shall see in Sec. IV.A that the state is an essen-
tially two-body one, owing its existence to the single-
particle exchange diagram between the odd particle and
the bound two-body subsystem. The inclusion of spin-
dependent and tensor forces weakens the attraction in
the three-nucleon system, and for this case neither local
nor separable potential calculations show any evidence
for a T= 1/2 bound excited state.

The most favorable system in which to look for a
T=3/2 state is the three-neutron system. It is easy to
show that, provided the spin —isospin independence of
nuclear forces Li.e., SU(4) symmetry' is a fair approx-
imation, any bound m' is primarily supported by the
triplet-odd, two-nucleon interaction. With spin —isospin
independent nuclear forces, the 7=3/2, S=1/2 new
state and the T= 1/2, S=3/2 exp state are degenerate.
Thus an S=1/2 trineutron should be reflected in the
S=3/2 nep system. The phase-shift analysis (van Oers
and Brockman, 1967) and separable-model calculations
(Aaron, Amado, and Yam, 1965; 1964b; Phillips, 1966)
are in complete agreement in their predictions for the
5=3/2 neutron —deutron scattering amplitude; the S-
wave and D-wave phase shifts are negative, and the
P-wave phase shift, though positive, is less than 34 in
the energy range 0 to 14 MeV. In order to admit the
possibility of a strong attraction in the S=3/2 nnp
state and hence the possibility of bound 'e with S= 1/2,
it would be necessary to disregard the phase-shift
analysis and include strong odd-parity nuclear forces in
the separable-model calculations. Alternatively, there
may be a T=3/2, 5=3/2 trineutron bound state; such
a state is completely dependent on the triplet-odd
nuclear force. Thus it seems likely that the existence of
a trineutron depends on the strength of the triplet-odd
and in particular the 3P' nucleon —nucleon interaction.
As emphasized by Mitra and Bhasin (1966) (see also
Mitra, 1966), this has the effect of disentangling the
question of the existence of a 'e from that of a 4n.

Similarly, the evidence (Okamoto and Davies, 1967)
against the existence of 'e provided by the systematics

of the neutron separation energies in light nuclei with
X=3 is not conclusive. It should also be noted that
noncentral forces play an. important part in the triplet-
odd, two-nucleon state. Accordingly, it may be a poor
approximation to assume that the orbital angular
momentum and total spin of a trineutron system are
constants of motion.

There have been a number of calculations which
looked for a three-neutron bound state. A calculation
by Okamoto and Davies (1967) found that the Pease-
Feshbach potential (Pease and Feshbach, 1952) wa, s
too weak (by a factor of 2) to bind the P&~2 three-
neutron state. (S and 1.were assumed to be constants
of motion. ) The Pease-Feshbach potential is independ-
ent of the parity of the two-nucleon state, and the 'P
scattering for this potential is primarily determined by
the fit of the potential parameters to the '5 data. As a
result, the attraction in the 'P two-nucleon state is
greater than that given by more modern potentials.
The 'P&~2 and 'P~~~2 three-neutron states were considered
by Barbi (1967) using central, local, exponential poten-
tials with and without hard cores; this calculation has
been repeated by Bell and Delves (to be published)
using much more refined trial functions. In both
calculations 'e was found to be unbound for acceptable
values of the potential parameters.

These local-potential results disagree with a calcula-
tion using P-state, central, separaMe potentials by
Mitra and Bhasin (1966), who concluded that, for a
reasonable choice of the potential strength, 'e is bound.
However, this calculation appears to contain a numer-
ical error; an application of the lower-bound technique
by Hall and Post (1967) shows very simply that, for
the potential strengths quoted, the trineutron cannot
be bound. We also note that the features of the two-
nucleon S state (the deuteron bound state and the
singlet antibound state), which lead us to expect a
separable model to give a reasonable representation of
the 5-wave interaction (Amado, 1963;Lovelace, 1964),
are completely missing in the P states.

In conclusion, the bulk of the experimental and
theoretical evidence is against the existence of a bound
'e. In addition, it seems possible that there are no
excited states at all of 'H and 'He.

IV. THE THREE-NUCLEON CONTINUUM STATES

A. Zero-Energy Neutron-Deuteron Scattering

The theoretical problems associated with the calcula-
tion of the neutron —deuteron scattering amplitudes are
far less severe for energies below the threshold for three-
particle breakup. In fact for these energies calculations
using simple two-nucleon interactions may be su%ciently
precise that meaningful comparisons may be made
between the scattering and the bound-state results.

Of particular importance is the zero-energy scattering
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which is parametrized by two numbers, the doublet and
quartet scattering lengths, 'a and 'a, respectively. The
experimental situation was for many years both static
and ambiguous; the data was consistent with either of
two sets of scattering lengths (Hurst and Alcock, 1951):

Set A: 'a=0 7%0 3 fm, 4a= 6.4~0.1 fm;

Set B: 'a=8 3~0.1 fm 4a=2.6&0.2 fm. (4.1)

Much of the early theoretical work (that is, up to and
including 1964-1965) was devoted to removing this
ambiguity in the experimental data. This work came
down heavily in favor of set A, and a recent experiment
(Alkimenkov, Luschikov, Nikolenko, T aran, and
Shapiro, 1967) involving the scattering of polarized
neutrons from polarized deuterons conirmed that 4a is
larger than 'a. However, an analysis (van Oers and
Seagrave, 1967; Seagrave and van Oers, 1967) of the
latest experimental results (Donaldson, Bartolini, and
Otuski, 1966; Bartolini, Donaldson, and Groves, 1968;
Gissler, 1963) revise set A significantly to read*

Set A' 'a=0.15~0.05 fm 4a= 6.13~0.04 fm.

The difference between the doublet scattering lengths
of sets A and A' is quite large; for a given potential
shape a change of 'a from 0.7 to 0.1 fm is accompanied
typically by an increase of the order of 0.5 to 1 MeV in
the triton binding energy. Independent con6rmation of
set A' would therefore be very desirable. The set A' is
determined from the recent measurements of the coher-
ent neutron scattering amplitude (Bartolini, Donaldson,
and Groves, 1969),

fa.g (o..g/4——n.) 't'= 'a+'a/2 =6.21&0.04 fm,

and the spin-incoherent cross section (Gissler, 1963)

(3/v2) f;„,=&2(o",/4e. ) '"='a —'a= 5 99&0.06 fm.

These equations are presented graphically in Fig. 6.
It should be noted that the new solution, set A', corre-
sponds to a total cross section for free neutrons of
Og...——3.154&0.04 b. The set-A results, which are in-

dicated by the shaded rectangle, are based on the
measurements of the ratio of 'a/4a=0. 12&0.04 (Hurst
and Alcock, 1951) (obtained by scattering from ortho-
and paradeuterium) and the value of o,=3.44&0.06 b
for the total cross section for epithermal neutrons
(Fermi and Marshall, 1949). As emphasized by Sea-
grave and van Oers (1967), the epithermal value for
the cross section is in disagreement with the value
0 f, =3.2~0.1 b obtained from extrapolating the elastic
cross section to zero energy and the value given above
of ~f, =3.154~0.04 b; it is likely that corrections due

70———
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to residual binding eGects could account for this
discrepancy (Lgvseth, 1962). However, in order to
reconcile the Hurst —Alcock experiment (Hurst and
Alcock, 1967) with the new data, it would be necessary
to double the quoted error in the value for 'u/4a.

For centra/ potentials, variational calculations* all
give results for the quartet scattering length in good
agreement with set A (or set A'). But for the doublet
state widely varying results for 'a were obtained. This is
not at all surprising; the symmetry of the quartet state
ensures that the particles stay well apart, and hence the
quartet scattering length is relatively insensitive to the
details of the force law and to details of the trial func-
tion used. This is not so for the doublet state, and early
calculations used inadequate trial functions for this
state. Of the more recent variational calculations, that
of Pett (1967) gave a preliminary value for 'a; its
good agreement with set A' is certainly accidental,
since a better trial function should lower the scattering
length 'a to near that of Humberston (1964), who
obtained a value of —2 fm for a central Yukawa
potential. That this value is algebraically too small
for either set A or A' is not surprising, since the
actual potential used certainly strongly overbinds the
triton.

The separable-model results) for central potentials
give quartet scattering lengths in good agreement with
set A (or set A'). The absence of short-range repulsion
and tensor forces in these calculations result in too much
attraction in the 'S~p state. Consequently, the values

FIG. 6. Plot of 4u vs 2a showing the intersections of the two
linear relations derived from the coherent and incoherent n—d
date, together with portions of the ellipses corresponding to the
indicated values for Og„,. The set-A values for 'u and 4u are shown
as a shaded rectangle. This is taken in part from van oers and
Seagrave (1967).

*The figures quoted in the text are those which follow from
the later results of Bartolini et cl. (1968) for the n-D coherent-
scattering length. Note that the abstract of this reference mis-
quoted 'u =0.13~0.05 fm.

* Sartori and Rubinow (1958); Burke and Haaa (1959);
E6rnov (1959};Humberston (1964); Pett {1967}.

t Aaron, Amado, and Yam {1965, 1964b); Phillips (1966a);
Mitra and Bhasin (1963); Sitenko and Kharchenko (1963).
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for the doublet scattering length are algebraically too
small; they range from —1 to —2 fm.

The triton binding energy is known to be sensitive to
the potential shape; for example, Yukawa and separable
potentials fitted to the same low-energy data give
binding energies of 12.76 and 11.24 MeV, respectively
(Noyes and Osborn, 1968). Thus, it is instructive to
compare Humberston's (1964) Yukawa potential
result for 'u with those obtained by solving the neutron-
deutero~ scattering problem exactly, using central
separable potentials. A separable-model calculation by
Sitenko, Kharchenko, and Petrov (1966) illustrates the
way that 2u varies as the singlet scattering length and
effective range are varied. Humberston's result corre-
sponds to a rather weak singlet interaction with a, =
—7.42 fm and r, =3.25 fm and unfortunately lies out-
side the region considered by Sitenko. Nevertheless, it
is evident that a separable-model calculation using the
same low-energy parameters as Humberston leads to a
considerably larger (algebraically) scattering length
'a —0.3 fm. For a separable potential, a change in 'a
from —0.3 to —2.0 fm is accompanied by an increase
of the order of 2 MeV in the triton binding energy. Thus
the doublet scattering length seems to be at least as
sensitive (and maybe more sensitive) as the binding
energy to the shape of the potential.

The separable-model calculations have been extended.
so as to include a tensor component (Sitenko and
Kharchenko, 1965; Phillips, 1968; Mitra, Schrenk, and
Bhasin, 1966) . In the calculation of Phillips (1968) the
parameters of the potential were adjusted to 6t the
deuteron binding energy and quadrupole moment, the
triplet scattering length, and the singlet scattering
length; the deuteron D-state probability I'D and the
rather poorly determined singlet-effective range r, were

allowed to vary. The predictions of this calculation for
both the doublet scattering length and triton binding
energy are shown in Fig. 7. Ke see that it is possible to
choose I'~ and r, to 6t both the experimental binding
energy and the doublet scattering length of set A, but
not of set A'. Taken at its face value, this calculation
makes the set A' very inconvenient, and hence it is
important to try to estimate the magnitude of the eGects
not included in the calculation. The most important of
these effects is the repulsive core. It is quite conceivable
that the core is more effective in reducing the binding
energy than in increasing the scattering length, thus
making it possible to 6t the set A', provided low values
for I'z and r, are taken. Accordingly, it is interesting to
look at the recent separable calculation of Schrenk and
Mitra (1967) which does include a repulsive soft core
(but only in the singlet state). This calculation also
fails to 6t simultaneously the binding energy and the
doublet scattering length of set A' and again favors the
set A.

Variational calculations have also been carried out
on 'a with local potentials which fit the two-body data
(Davies, 1967a; 1967b; Delves and Blatt, 1967; Delves,
Lyness, and Blatt, I964; Delves, Blatt, Pask, and
Davies, 1969). These calculations yield an upper bound
on 'u, and the most accurate results for the Hamada-
Johnston (H.J.) potential (Hamada and Johnston,
1962) to date are shown in Fig. 8, taken from Delves,
Blatt, Pask, and Davies (1969).The numerical accuracy
for 'a is not very high, and the Anal value quoted is

'a= 1.2&1.0 fm (H.J. potential) .

This value is associated with a triton binding for the
same potential of around 7 MeV. If we estimate the
change in 'a associated with an increase in the binding
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e6'ective-range expansion

k cot 8= —1/a+-', rsk'+ ~ ~ . (4.2)

o,fm
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N

FrG. 8. Doublet scattering length ~u for two distinct trial
functions 8 and 13 .E is the number of terms in the trial function.

B. Structure of the Low-Energy S—D Scattering
Amplitudes

At nonzero energies the even-parity J= 1/2 state
contains two coupled channels; the S-state doublet
channel is coupled to the D-state quartet scattering
state. Hence the scattering matrix is 2)&2 and is
characterized by three real parameters: two eigenphase
shifts and a mixing parameter. One of these eigenphase
shifts, the doublet phase shift 8, contains the doublet
scattering length. There is similarly a quartet alpha
phase shift belonging to the J=3/2 even-pa, rity state
which contains the quartet scattering length; and these
scattering lengths are defined by the well-known
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Pro, 9. The quartet phase shift 0 cot (45); The unbroken
line is the calculated P/D result. The experimental points are
from van Oers and Seagrave (1967).

energy to the observed 8.4 MeV, we find an extrapolated
value

sa =0.8&1.0 fm (Ez = —8.4 MeV) .

That is, neither separable nor local potentials fitted to
the triton binding energy appear to like set A', a,lthough
it is still within the error bounds quoted above. How-
ever, we see below that the relation between the doublet
scattering length and triton binding energy is nontrivia, l

and likely to be highly potential dependent; it is there-
fore perhaps too early to read any significance into this
difhculty.

Van Oers and Seagrave (1967) have carried out an
approximate phase-shift analysis of low-energy I—d

scattering; their results for the quartet and doublet
5-wave phase shifts are shown in Figs. 9 and 10. The
quartet phase shifts are fitted well for small k' by an
expansion of the form (4.2) although the effective
range rs is not well determined. (The phase shif ts at very
low energies are not accurately enough known, while at
higher energies the assumptions which have gone into
this preliminary phase shift analysis are questionable. )
A straight-line fit to the data shown corresponds to the
parameters

4' 2.2 fm, 4@=6.6 fm.

The doublet k cot (sb), on the other hand, shows no
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Fro. 10. The doublet phase shift k cot ('8). The unbroken
line is the calculated N/D result 6tted to a scattering length of
'-'a=0. 11 fm. The experimental points are from the phase-shift
analysis of van Oers and Seagrave (1967).

*The original suggestion for a pole in k cot 5 vras made by J. A.
Gammel and G. I.. Baker in a private communication quoted by
Delves {1960a).

recognizable linear portion. On the contrary, the experi-
mental points strongly suggest that a continuation of
h cot (sb) below threshold will contain a pole for a small

imaginary value of k. This suggestion agrees with the
calculated doublet phase shifts for a separable model
(Phillips, unpublished; see Phillips and Barton, 1969;
Barton and Phillips, to be published) . The existence of
such a singularity has been suggested previously
(Delves, 1960a)~ from an analysis of the I-d wave
function in a resonating-group calculation, and on the
grounds that, in the absence of a singularity, the meas-
ured small value of 'a is inconsistent with either the
triton binding energy or the observed electric-dipole,
e—d photodisintegration cross section.

We should expect a pole in k cotb whenever the
attraction between the two scattering systems is
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suKciently large. If we consider the t matrix

t(k) =k 'single~,

we see that a pole in k cot 8 corresponds to a zero in t.
Moreover, t is real below threshold (at least over a
sufFiciently small range determined by the range of the
potentials —see below) and has a pole at each bound
state of the system, with positive residue. It therefore
necessarily has a zero (a pole in k cot 5) between each
bound state. We saw earlier that the three-body system
fails to support a bound-excited state only because the
singlet and triplet interactions diGer. Since the singlet
interaction is only slightly less strong than the triplet,
we expect the pole in k cot 5 to remain, although the
excited state has moved up above the scattering thresh-
old (Delves, 1968). This argument gives a qualitative
explanation of the existence of a pole in k cot 5; how-
ever, the structure of the scattering amplitude below
threshold is more complex than such an outline might
suggest. In a potential scattering model with short-
range forces, the scattering length passes through zero
and becomes negative as the excited state becomes
unbound. The observed doublet e—d scattering length
is positive, and hence the potential-model picture is

incomplete. The reason has been pointed out by
Phillips and Barton (1969), Barton and Phillips (to be
published), and independently by Reiner (1969):
For a nonnegligible energy range around threshold,
both the doublet and quartet scattering amplitudes are
dominated by an exceedingly long-range interaction
generated by the exchange of a proton between two
alternative deuteron states.

The on-the-energy-shell partial-wave amplitudes for
e—d scattering have right-hand- and left-hand-cut
singularities. The two-body and three-body unitarity
relations imply that there are two right-hand cuts with
branch points at k'=0 and k'=4/3ng, where uj is the
deuteron binding energy (i.e., oz ——0.2316 fm '), and k
is the relative e—d momentum. The position of the left-
hand-cut singularities are determined by the range of
the forces. In e—d scattering the longest-range force is
due to proton exchange, and the associated cut is close
to the scattering region. To see this we observe that the
position of the cut is determined by the condition for
an intermediate Nlp state with the same energy as the
initial and final e-d states. If p„and p„' are, respec-
tively, the momenta of bound and incoming neutrons
in the deuteron rest frame, this condition gives p„=in'
and p„"+2p„'p„—3p„'=0. That is, p„" must lie
between p„' and 9p„'; and since k= 2/3p„', the partial-
wave amplitude is expected to have a cut with branch
points at k'= —4n~'/9 and k'= —4nd .

It is useful to introduce the notation z=3k'/4ne'
Then the two-body and three-body unitarity branch
points lie at a=0 and s=i, respectively; the branch
points of the proton-exchange cut are at s= —

3 and
s= —3; the triton pole lies at s'= —2.9; and all other

left-hand singularities are much further from the origin
than —

z3 Barton and Phillips, to be published) . Thus,
it is expected that to a reasonable accuracy, some of the
features of the on-shell, S-wave m—d amplitudes near
the elastic threshold can be understood in a two-body
V/D approach dominated by the proton-excha, nge
interaction.

It is straightforward to calculate the contribution for
the proton-exchange diagram. (Note that the above
condition, p„=inc, implies that the strength of this
interaction is determined by the deuteron wave func-
tion outside the range of the nuclear forces, i.e., by the
two-nucleon 'S~ effective range parameters. ) Barton
and Phillips give an approximate solution for the X/D
equations with a proton-exchange interaction. For three
spinless particles the solution explicitly displays a bound
excited state which should come into existence as soon
as the "deuteron" becomes bound. This result provides
a simple physical interpretation of the numerical results
of Osborn (1967) and Aaron, Amado, and Yarn (1964a)
for spinless particles interacting via local and nonlocal
potentials.

For particles with spin, the sign of the proton-
exchange force depends on the total spin of the system.
If the appropriate spin-coupling constants are inserted,
the 5-wave exchange force is repulsive in the quartet
spin state and attractive in the doublet. The long-range
repulsion in the quartet state implies that at low
energies the particles cannot penetrate to the region
where the other forces of shorter range can act. Thus
the low-energy quartet amplitude, and in particular 4a,

are almost completely specified by the parameters of the
proton-exchange diagram, i.e., by the two-nucleon '5~
effective-range parameters. The two-body model, with-
out adjustable parameters, gives 4a—6.3 fm and the
phase shifts shown in Fig. 9 (Barton and Phillips, to
be published). This calculation for the quartet state
bears a strong resemblance to that of Skorniakov and
Ter-Matirosiam (1956). These authors set up a very
similar integral equation for the t-matrix under the
assumption of zero-range forces, and showed that a
quartet scattering length 4a=5.1 fm followed by using
only the deuteron binding energy as input.

In the doublet state the proton-exchange force is
attractive, and shorter-range forces are important. The
latter are represented by Barton and Phillips by an
additional constant background interaction to give a
closed expression for k cot 8 containing one adjustable
parameter which is fitted to the measured scattering
length. This expression, which is plotted in Fig. 10,
indicates that the pole in k cotb just below threshold
is an automatic result of 6tting the observed doublet
scattering length and of the attractive proton-exchange
force.

These simple calculations have quite far-reaching
implications when we consider the information available
about the two-nucleon interaction from the data. In
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particular, we see that once the deuteron binding energy
is known, the spin 3/2 channel near threshold (including
a) overs no mew uiformatioe zvhatsoever about nuclear

forces. By contrast, in the spin 1/2 channel, the value
of 'e is determined by real three-body effects and could
well be sensitive to details of the two-body force which
are not easily detected in the two-body system. The
same is true of the triton binding energy. But even in
this channel, once a numerically small value of 'u has
been achieved, the subsequent energy variation of
k cot ('5) follows automatically and therefore yields eo
nm qua/ideative information. To gather any new informa-
tion on the nuclear forces which is not included in a
calculation of the triton binding energy and doublet
scattering length, we must either move to higher
energies (around or above the breakup threshold) or
seek a precision fit that is better than the 10%—20%
accuracy implicit in the model described.

C. Behavior near the Breakup Thresho1d

0 (breakup) ~ k'. (4.3)

There is a corresponding k singularity in cot b at 0=0
(Delves, 1961). For the J~= 1/2+ or 3/2+ state and in
the crude approximation in which coupled D states are
ignored, the S-state scattering matrix contains the
elastic channel and an infinite number of breakup
channels; but near threshold only the lowest of the
breakup channels, the phase-space channel, survives
(Delves, 1960b). If we formally drop all except the
elastic-scattering and the phase-space channel, the
resulting 2&2 matrix is characterized by eigenphase
shifts 8 (elastic) and hp(breakup) and a mixing param-
eter e.

f' cos e sin e) (exp (2ib )

(—sine cosa) ( 0

0

exp (2ihg) )
cos 6 —sin 6

X! l. (4.4)
sin e cos e

Above threshold, the 8 and e have well-behaved
(real) expansions (Delves, 1961):

Above the threshold for deuteron breakup, the phys-
ical scattering matrix contains also the breakup channel.
The opening of this channel also induces a singularity in
the other matrix elements and, in particular, in the
eigenphaseshift 8 . The singularities induced are anal-
ogous to the familiar "signer cusps" induced in elastic
scattering by the opening of an excited elastic-scattering
channel, but they are not nearly so prominent. The
inelastic scattering cross section has the following
behavior near the threshold at k'=0:

Now below threshold it, is':the (1X1) scattering matrix
exp (i28 ) which is unitary, and cot 8 has the expansion

cot S.—b.,+b.,k'+Q. ,—.,m(1 —i) fk4y ~ ~ (4.6)

That is, there is a finite singularity in d' cot 8 /d(k')'
at A=O, and this carries over to a finite singularity in
the second derivative of the elastic-scattering cross
section at the breakup threshold:

(d'0.g/dE') ~~—(d'0..)/dE') ~~——finite. (4.7)

This weak predicted singularity is in contradiction to
the numerical results of Aaron, Amado, and Yam
(1964a). The calculations of these authors show a dis-
continuity in do/dE at the breakup threshold for a
model of three spinless particles. This discontinuity
occurs in a situation when the eigenphaseshif t is passing
through m in the region of the inelastic threshold, in
which case the power expansions (4.5) and (4.6) are
no longer meaningful.

D. Elastic Scattering and Breakup

Ke turn now to the subject of the interpretation of
the mass of experimental data on the elastic scattering
of neutrons and of protons by deuterons and of the
corresponding breakup reactions. Unfortunately, nearly
all of the theoretical work on these processes has been
exploratory, containing so many simplifying assump-
tions that it is not possible to interpret the results other
than in the most qualitative manner.

There exists a lengthy sequence of papers, chivy by
Massey and his school, examining the elastic scattering
problem using the resonating-group approximation

t see, for instance, De Borde and Massey (1966)* and
rderences cited there). The resonating-group method
yields an approximation of unknown quality, and
perhaps the major achievement of this series of papers
is that they show that a reasonable fit is possible to the
low-energy, elastic-scattering cross sections and angular
distributions, using a suitable "equivalent central
potential. " This equivalent potential has exchange
properties similar to that needed to fit the two-nucleon
data, but a rather larger range. In view of the crudity of
the calculations, we might feel justified in concluding
that the main features of the low-energy, elastic-scat-
tering process are not strongly dependent on the details
of the two-nucleon interaction (such as noncentral
forces and repulsive cores) and the three-body aspects
of the problem. This conclusion agrees well of course
with that given by the N/D calculation discussed
earlier; we remark that, at least at low energies, the
observed scattering is dominated by the quartet state.

The resonating-group and also variational calcula-
tions with simple trial functions involve gross approx-

cot 8 =8 0+8 2k'+8 4k'+",
tan e =k'(eo+e2k'+. ~ ) . (4 3)

*This article gives a revievr of the resonating-group calcula-
tIons carried out on eM scattering.
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FIG. il. Neutron-deuteron elastic-scattering angular distributions at neutron laboratory energy of 2.45 MeV; comparison of theory
(Aaron, Amado, and Yam, 1966; Phillips, 1966a) with experiment (Adair, Kazaki, and Walt, 1953; Seagrave and Henkel, 1955).

imations to the three-particle aspects of the problem.
These approximations are made in the cause of com-
putational convenience, and for energies below' the
inelastic threshold it has been clear how' to improve the
calculations, given enough computing power. However,
above the breakup threshold, there has been a more
serious block. Until the work of Faddeev (1963, 1961),
it was not in fact known how to set up a mathematically
sound theory of three-particle scattering above the
breakup threshold, and it is only since this work that
any signiicant progress has been made. The direction
in which computational progress has been made since
is well known. The Faddeev equations are a set of
coupled three-dimensional integral equations and are
not tractable on current computers. *A particular form
for the two-body interaction, the sepamble approxima-
tion, reduces the Faddeev equation to a small set of
one-dimensional integral equations. This is a drastic
approximation to the interaction, but it permits the
exact treatment of the three-particle aspects of the
problem. We might hope to obtain signiicant results
in this way, provided that the separable interaction can
give at least a Grst approximation to reality. Indeed,

~ Such statements are always dangerously temporary. At
least one direct attack on these three-dimensional integral equa-
tions with local potentials is now in progress.

Amado (1963) and Lovelace (1964) have shown that,
gt least in the two-nucleon S states, it can. The basic
assumption is that the singularities associated with the
deuteron bound state and the singlet antibound state
dominate the oG-the-energy, two-nucleon amplitude
that occurs in the Faddeev equations. The separable
approximation yields simple analytic expressions for
the two-nucleon amplitudes which have the correct
analytic structure in the neighborhood of the two-
nucleon bound and antibound states; and, in addition,
the two-particle unitarity relation is satisied, leading
to equations which obey the three-particle unitarity
relations. There has been only one definitive test of the
accuracy of approximations of this kind (Kok, Erens,
and van Wageningen, 1968):The loca/ Hulthen poten-
tial and the separable nonlocal Yamaguchi potential may
be adjusted to give exactly the same energy and wave
function for the two-body bound state, and as a result
the corresponding two-body scatter ng amplitudes have
identical structure in the vicinity of the two-body,
bound-state pole. Kok et u/. found that a Yamaguchi
potential binds a system of three identical, spinless
particles with an energy of —12.4755 MeV; the equiv-
alent Hulthbn potential binds with an energy of
—14.59 MeV. That is, the properties of the scattering
amplitudes in the neighborhood of the two-body, bound-
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state pole are sufhcient to determine the three-particle
binding energy to an accuracy of only ~85%. Inspec-
tion of the structure of the kernel of the Faddeev equa-
tions suggests that the accuracy of the separable
approximation is better if the Iow-energy, three-particle,
continuum states are considered. However, reliable
estimates of this accuracy have been prevented by the
difBculties encountered when using local potentials in
continuum-state calculations.

The existing calculations of the neutron-deuteron
elastic and inelastic cross sections by Aaron, Amado, and
Yam (1966; 1965; 1964b) and Phillips (1966) have
made the simplest possible assumption about the separ-
able interactions, including only central 'So and 'S&

components. Such interactions give rise to too much
attraction in the doublet neutron —deuteron state. In
order to bring the theoretical doublet scattering length
into agreement with experiment, it is necessary to
introduce at least one phenomenological parameter.
Aa,ron et ul. take this parameter to be the deuteron
wave-function renormalization parameter Z, i.e., the
deuteron is not entirely a composite structure resulting
from a 'S~ central interaction. Phillips introduces a
6ctitious three-body potential. Both of these approaches
have the merit of simplicity and the important advan-
tage that the three-particIe unitarity relations are
obeyed. Both also allow the triton binding energy and
the doublet scattering length of set A to be Gtted
simultaneously.

The predictions for the angular distributions in
elastic neuteron —deuteron scattering at energies 2.45,
3.27, and 14 MeV are compared with the experimental
results in Figs. 11 to 13. Apart from some differences
at forward angles between the results of Blanc, Cambon,
and Verdenne (1966) with those of Seagrave and

Cranberg (1957) and Brullmann, Gerber, Meier,
and Scherrer (1959), the experimental data are in
reasonable agreement. The discrepancy between the
two calculations at 14 MeV is primarily due to the fact
that an insuf5cient number of partial waves were
included in the calculation of Phillips. The phase-shift-
analysis results (van Oers and Brockman, 1967) are
also included in Fig. 13. The separable-model calcula-
tions are equivalent to solving coupled Lippmann-
Schwinger equations with effective nucleon-deuteron
and nucleon —singlet potentials. These potentials are
nonlocal, energy dependent, and correspond to the
exchange of a nucleon from one three-body conlgura-
tion to another. The basic exchange nature of the inter-
action produces the strong backward peaking in Figs.
11 to 13. The complete solution of the three-body
equations includes the unitarity corrections, which in
turn result in a large imaginary part for the forward
amplitude and the forward peaking; the enhancement
of the forward peak at 14 MeV due to the presence of
the inelastic channel is quite marked. The fact that the
agreement is less good in the forward direction is to be
expected; here high impact parameter collisions in-

volving the interaction in states other than the two-
nucleon S states are certainly important. Nevertheless,
these results suggest that the major features of the
elastic scattering can be reproduced by extremely simple
nuclear forces. In addition, the total cross sections,
which are related to the elastic amplitudes by the optical
theorem, are in agreement with the latest experimental
values (Glasgow and Foster, 1967). We again caution
that it is important not to be too dazzled by the agree-
ment with experiment. At low and moderate energies,
the scattering is dominated by the quartet state. In this
state the nucleons are kept far apart so that the fine



REVIEWS OZ MODERN PHYSICS ' JULY 1969

IOO

IO

E

q 20

b

FIG. . 13. ¹utron-deuteron elastic-
scattering angular distributions at
neutron laboratory energy of 14 MeV;
comparison of theoretical phase-shift
analysis (Aaron, Amado, and Yam, 1966;
Phillips, 1966) with experiment (Sea-
grave and Cranberg, 1957; Allred, Arm-
strong, and Rosen, 1953).

IO

l.0 08
I . I . I.

0.6 OA 0.Z 0 -0.2 -0.4
COSINE 8„CENTER QF MASS

I

-0.6
I

-0,8 -I.O

details of the interaction are unimportant and the dis-
tortion of the deuteron is small. Thus the elastic and
total neutron —deuteron cross sections are not a partic-
ularly useful test of a dynamical three-body calculation.

Calculations have also been carried out on the break-
up reaction n+d~n+rs+ p (Aaron, Amado, and Yam,
1966; Phillips, 1966). The basic mechanism of the
separable-model calculations of the breakup reac-
tion corresponds to an isobar Diodel; breakup occurs as
the result of the production, propagation, and subse-
quent decay of virtual deuterons and singlet antibound
states. In this case the numerical problems associated
with the complex singularities of the three-body equa-
tions require special treatment. One possible technique,
6rst used by Hetherington and Schick (1965), is to
solve the integral equations for complex momentum and
then continue the solutions to the physical region. The
calculation of Aaron and Amado adopted this technique
and must be considered more reliable than that of
Phillips.

The various sets of experimental data* on the breakup
reaction are, where comparable, in agreement with each
other. In Figs. 14 and 15 the results of Aaron and
Amado for the energy spectrum of the breakup reaction
are compared with some of the experimental data
(Cerineo et a/. , 1964; Ilakovac et a/. , 1963).The general
features of the spectrum are given quite well. The agree-
ment is not as good as that obtained for the elastic-
scattering cross sections, and this is probably due to the
fact that the breakup reaction is more sensitive to the

*Cerineo, Ilakovac, claus, Tomas, and Valkovic (1964);
Ilakovac, Kuo, Petravic, Slaus, and Tomas (1963);Voitovetskii,
Korsunskii, arid Pazhin (1965); Bar-Avraham, Fox, Porath,
Adam, and Frieder (1967); Debertin, Hoffmann, and Rossle (to
be published) .

doublet state arid hence to the details of the nuclear
interaction. The fact that the theoretical cross section
is too low at small angles and too high at large ones is
presumably due to the neglect of the high-momentum
components of the interaction.

Thus, the separable-model calculations can reproduce
the gross features of the low-energy, three-nucleon
system; in so doing, they indicate that sophisticated
three-body dynamics are essential and that the details
of the nuclear interaction are relatively unimportant.
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FIG. 14. The proton energy spectrum for neutron —deuteron
breakup for laboratory proton angle 4.80; comparison of theory
(Aaron, Amado, and Yam, 1966) and experiment (Cerineo,
Dakovac, Alans, Tomag, and Vaikovic, 1964). The solid an
dotted lines indicate the effect of varying the neutron-neutron
scatternig lengths from —17 to —24 fm.
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We emphasize how inconvenient this is for a program
aiming to add to our knowledge of the two-nucleon
interaction from three-body calculations. The only
features of the three-body system which have been
unambiguously shown to be sensitive to the details of
the interaction are the binding energy Ez and the
doublet scattering length 2a (even the triton D-state
probability appears to be essentially numerically deter-
mined by the deuteron D-state probability). There is
even no convincing evidence that Ez and 'u are in any
eGective sense independent parameters, although cur-
rent difBculties in 6tting set A' for 'u with local potentials
indicate that they may be.

This conclusion does not mean that there is eo infor-
mation to be gained from three-body calculations: it
does mean that, as for the two-nucleon analysis, progress
will not come easily, but will depend on detailed and
accurate 6tting to the experimental data.

E. The Neutron-Neutron Scattering Length and the
D(N, p) 2N Reaction

One two-body potential which is hardly known at all
from direct experiments is that between two neutrons.
There have therefore been a number of attempts to
extract information on the 2n potential from three-body
systems.

A strong 6nal-state interaction between neutrons with
small relative momentum is primarily responsible for
the peak in the spectrum of the D(n, p) 2N reaction near
the maximum proton energy. Figure 14 shows the effect
of varying the '50 neutron —neutron scattering length
(a„„)in the separable-interaction calculation:it appears
that it would be dificult to distinguish the two cases,
a„„=—23.78 and —17.00 fm, experimentally. (The
fact that the results of Fig. 14 correspond to varying
a„„in the 6nal propagator only is unlikely to affect this
conclusion). Nevertheless, this reaction has been con-
sidered as a possible source of information on neutron-
neutron scattering. The usual assumption that the
shape of the 6nal-state interaction peak is insensitive
to the neutron —proton interaction requires justification.
If the production mechanism for the p+(2n) system
(i.e., the mechanism that produces a proton and a
noninteracting neutron —neutron system) were short
range, then it would be possible to use the Watson-
Migdal final-state interaction theory (Watson, 1952;
Migdal, 1955). The cross section for small neutron-
neutron momentum k would then have the form

The factor k in the numerator is a phase-space term
and C is a slowly varying function of k. However, a
long-range production mechanism for the p+ (21)
system would imply that it is more dificult to isolate
the two neutrons and, in so doing, avoid the complex-
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FIG. 15. The proton energy spectrum for neutron-deuteron
breakup at various values for the laboratory proton angle OL„.

comparison of theory (Aaron, Amado, and Yam, 1966) with
experiment (Ilakovac, Kuo, Petravic, claus, and Tomas, 1963).

ities of the three-body aspects of the problem. The
difference between simple examples of short-range and
long-range reaction mechanisms has been discussed by
Phillips (1964).

Several values for a have been derived from the
D(m, p) 2e reaction (Ilakovac et a/. , 1963; Voitovetskii
eI, al. , 1965; Bar-Avraham, Fox, Porath, Adam, and
Freider, 1967; Slobodrian, Conzett, and Resmini, 1968) .
As pointed out by Slobodrian et al. , the experimental
data analyzed in these papers are self-consistent within
the experimental errors, statistical uncertainties, and
the difference in resolution. But in spite of this, the
results for the neutron —neutron scattering length show
a considerable spread: u„„=—21.7&1 fm (Ilakovac
et al. , 1963), —23.6(+2.0, —1.6) fm (Voitovetskiiet al. ,
1965), —14.0&3 fm (Bar-Avraham et al. , 1967), and
—16.7(+2.6, —3.0) fm (Slobodrian et aL, 1968). The
differences in the values obtained for a„„must be due
to theoretical inaccuracies in the analysis. In fact, the
calculations of Ilakovac et al. , Voitovetskii et ul. , and
Bar-Avraham eI, ul. correspond to various production
mechanisms for the p+ (2e) system, all of which have
long range and are likely to strongly inQuence the shape
of the energy spectrum. Cerineo, Ilakovac, claus, and
Tomas (1963) use the Born approximation and include
terms that correspond to the pickup of a neutron by
the incident neutron and the knockout of a proton by
the incident neutron. Both of these reaction mechanisms
have a range determined approximately by the size of
the deuteron. The calculation of Bar-Avraham et al.
(1967) uses an impulse approximation which is roughly
equivalent to the proton knockout term of Cerineo et al.
Voitovetskii et al. (1965) used a technique based on
Feynman diagrams, including terms corresponding to
an interaction range given by the deuteron size.

The most reasonable determination of a„„from the
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FIo. 16. General behavior of existing data on proton polariza-
tion in protorl-deuteron elastic scattering up to 50 MeV; taken
from Noyes (1966).

nucleon-deuteron reaction is due to Slobodrian et al.
(1968). This involves the comparative analysis of the
D(n, p) 2n and D(p, n) 2p reactions and rests on the
assumption that the mechanism producing the nucleon
and the singlet dinucleon system is the same in both
reactions. However, very little is known about the
eGect of Coulomb forces in a three-nucleon scattering
state and this assumption may not be valid.

The separable-interaction calculations, which are
exact for the interaction used, indicate that it is a
formidable task to estimate a„„ from the neutron-
deuteron reaction. In the three-nucleon Anal state the
interactions between the various pairs of particles are
coherent. The information about the interaction of a
given pair is in principle distributed over the entire
amplitude. In the Faddeev theory the amplitude for
the production of the p+ (2n) system is simply the sum
of all ways in which the three nucleons can scatter with-
out ending with a neutron-neutron interaction. In
general, there will be long-range terms in the p+(2n)
production mechanism corresponding to outgoing
neutron —proton scattered waves in the n+ (np) channel.
LThis is most easily seen by considering the Faddeev
equations in configuration space (Noyes, 1968).g The
importance of such terms will vary from model to model.
But they are expected to be significant in the separable
interaction calculations since the basic process is a
nucleon exchange from one nucleon-dinucleon system
to another. This is borne out by the results of Aaron,
Amado, and Yam (1966). They found that the nd—+

p+(2n) amplitude varies rapidly in the region near
the high-energy end of the proton spectrum. This
amplitude with a 6nal-state neutron —neutron inter-
action gave a broad unpronounced peak. . But the inclu-
sion of the terms in which a neutron and a proton
interacted last led to an enhancement of the peak. This

result and the general question of how three-particle
amplitudes depend on the interaction of given pairs of
particles has been discussed by Amado (1967).

F. Polarization in Nucleon-Deuteron Scattering

We conclude this discussion of the continuum states
with a brief look at the polarization data. Early experi-
mental work on this subject was contradictory (White,
Chisholm, and Brown, 1958; Bucher, Bererley, Cobb,
and Hereford, 1959; Shafroth, Chalmers, Strait, and
Segel, 1960). However, the experimental situation has
now settled down: there are quite good measurements
of the neutron polarization in neutron-deuteron scat-
tering, " of the protons in proton-deuteron scattering, t
and of the tensor polarization of the deuteron in proton-
deuteron scattering. f As emphasized by Noyes (1966),
this data must certainly contain much valuable informa-
tion on the two- and three-particle interactions; we
reproduce Fig. 16 to emphasize the amount of excellent
information going begging. However, apart from an
oversimplified model calculation at 3 Mev by Delves
(1962; 1959) and a simple diffraction model calculation
at 40 MeV by Hufner and de-Shalit (1965), attempts
at theoretical interpretation are completely lacking.
Hopefully, this lack will be remedied in the next few
years.

V. ELECTROMAGNETIC PROPERTIES OF
THREE-NUCLEON SYSTEMS

A. Magnetic Moments of 'H and 'He

The magnetic moments of the three-particle nuclei
demonstrate the importance of the distortion of the
electromagnetic nucleon structure in the presence of
nuclear interactions (i.e., the interaction effect). The
interaction effect also plays an important role in the
analysis of the magnetic form factors (Sec. V.B) and
in the photocapture and disintegration reactions
(Secs. V.D and V.E). In the absence of interaction
currents, the magnetic moment operator is

M= Q I-', L1—r, (i)]p„d(i)

+ lL1+ .( ) Xu.&( )+L(')jI.
For the principal 5 state there is no orbital contribution,
and since the spatial symmetry implies that the two

*Briillmann, Gerber, Meier, and Scherrer (1959); Cranberg
(1959);Walter and Kelsey (1963);Malonify, Simmons, Perkins,
and Walter (1966).

t Conzett, Igo, and Knox (1964); Conzett, Goldberg, Shield,
Slobodrian, and Yanabe (1964); Skakun, Strashinskii, and
Kyucharev (1964); Chalmers, Cox, Seth, and Strait (1965);
Clegg (1966); Gruebler, Haeberli, and Extermann (1966);
McKee, Clark, Slobodrian, and Tirrol (1968, 1966).

f Young, Ivanovitch, and Olsen (1965);Young and ivanovitch
(I966); Extermann (1966),
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like nucleons are in a singlet spin state, the spin con-
tribution comes entirely from the spin magnetic moment
of the unlike nucleon (i.e., the proton for 'H and the
neutron for 'He) . Furthermore, under fairly reasonable
assumptions regarding the structure of ground-state
wave functions, the inclusion of other symmetry
admixtures reduces the 'H magnetic moment and
increases the 'He magnetic moment (Sachs and
Schwinger, 1946; Sachs, 1953).This disagrees with the
experimental results:

and
p, ('H) =p„+0.186 nuclear magnetons

p, ('He) =p„—0.215 nuclear magnetons.

It is useful to express these discrepancies in terms of
the isovector and isoscalar magnetic moments of the
'He —'H doublet. Assuming that the probability densi-
ties of the principal S state, S' state, and D states are
P(S), P(S'), and P(D), one obtains the following for
the isoscalar and isovector moments:

p. =-',
[ p('He)+ p(3H) j

=
2 (IJ„+p )[P(S)+P(S')—P(D)1+~P(D),

p.=kD ('He) —p('H) )
=-', ( „—„)[P(S)—,'P(S')+-;P(D) j—;P(D).

For P(D) =6% and P(S') =1.2% (see Table III),
p, =0.417, which is in reasonable agreement with the
experimental value of 0.425, but the isovector moment
p,,= —2.20 diGers considerably from the experimental
value of —2.55.

If there are charge-exchange, momentum-dependent,
or nonlocal terms in the nucleon —nucleon interaction,
the position of the nucleon can no longer be considered
as a point of constant charge, and additional elec-
tromagnetic interaction currents are necessary in order
to allow for charge conservation. This in turn leads to
corrections to the magnetic moments of nuclei.

By far the most important correction (the exchange
magnetic moment) arises from the interaction of the
electromagnetic field with a charged pion exchanged
between nucleons. Isovector and isoscalar photons have
G parity of +1 and —1, respectively, and a system of m

pions has G parity of (—1)".Thus, the coupling of the
photon to the one-pion exchange component of the
nucleon —nucleon interaction results in a correction to
the isovector magnetic moment. Villars (1947), using
lowest-order perturbation theory, showed that the
magnetic-moment contribution due to one-pion ex-
change accounts for the sign and order of magnitude of
the discrepancy in the isovector magnetic moment.
Corrections to the isoscalar magnetic moment depend
on the shorter-range two-pion and p-meson exchange
components and are much more difFicult to estimate,
but they are expected to be an order of magnitude
smaller than the corrections to the isovector moment.

In the absence of a complete meson-theoretic treatment,
phenomenological representations of interaction cur-
rents and relativistic corrections have also been con-
sidered (Sachs, 1953). It should be emphasized that a
complete understanding of these phenomena requires
not only a reliable theory of strong interactions, but
also a three-nucleon wave function which bears at
least some relation to the interactions from which the
mesonic currents are derived. Existing treatments of
the magnetic moments should be considered as order of
magnitude estimates. Furthermore, it seems unlikely
that the understanding of these phenomena will

improve significantly in the near future.

B.The Electromagnetic Form Factors of 'H and 'He

ZF~(q) = exp (irl x)%*p,~(x, x;)@d'x Pr; (5.1).
Here p,b, is the charge-density operator which depends
on the spatial distribution functions for the charge
densities of a free proton f~& and a free neutron f~"

To first order in the electromagnetic interaction, the
elastic scattering of an electron from a particle with
angular momentum 1/2 is given by the Rosenbluth
formula (Rosenbluth, 1950). This formula expresses
the results of electron scattering in terms of two func-
tions of the momentum transfer, the charge and
magnetic form factors of the target particle. These
functions may be identified with the Fourier transform
of the spatial distributions of the electric charge and
magnetic moment of the target.

A number of very precise electron-scattering experi-
ments from 'H and 'He have been performed (Coils, rd,
Hofstadter, Hughes, Johansson, Yearian, Day, and
Wagner, 1964) and analyzed in this way (Schiff, 1964) .
The interpretation of the magnetic-form-factor results
is uncertain because of the existence of appreciable
magnetic-interaction currents; for example, the inter-
action-current contribution to the isovector magnetic
rnornent is of the order of 0.3 nm. On the other hand,
the electric-multipole interaction with photons at low
energies depends largely on the charge distribution,
i.e., directly on the nuclear wave function but not
directly on the details of the nuclear interaction. Thus
it is possible that the eGects of charge interaction
currents may be small (Siegert's theorem) (Siegert,
1937). Accordingly, we shall deal primarily with the
charge-form-factor data. These data provide the most
reliable and exacting information available on the
properties of the three-nucleon bound-state wave
functions.

If charge-exchange eGects are absent and if the
charge properties of free and bound nucleons are the
same, the charge form factors of 'He and 'H are, in the
impulse approximation, given by
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We have

p, (x, r;) = Q {-',L1+,(i)]f, (x—r,)

+-,'L1—.(i)]f,r "(x—r;) J. (5.2)

The integration over x in (5.1) may be performed by
changing variables from x to x—r;. This causes the
nucleon-charge form factors P, h~ and F,h" to appear as
multiplying factors. We introduce the vectors

Then for either 'He or 'H

3
ZF.h(q) = — d'ys d'r@exp (i sq ys-)

2

As in the case of the static magnetic moments, any
treatment of the magnetic form factors must include
interaction effects. In the impulse approximation for
either 'He or 'H we have

d'yr, d'r;; exp (isq ys)

X fLF .;(q)+F .;(q)]~*~(&)~
+P'-."(C)—F-."(V)]+*r*(&)~(&)++F.(V) l (5 4)

In the impulse approximation the nucleons are treated
as free particles, and hence there is no orbital-angular-
momentum term in (5.4). In the q'=0 limit this leads
to an uncertainty of the order of 2% in values for the
static magnetic moments of 'He and 'H. The function
F,(q) is the form factor arising from magnetic-inter-
action currents and is usually decomposed into an
isoscalar and a dominant isovector term:

F,'"8(q) =F„+F,„,
F,'"(q) =F,. F„. —

In calculating the charge form factors of 'H and 'He,
it is usual to assume that the wave functions of both
nuclei are substantially the same; the charge-dependent
effects, of which the most important is the Coulomb
potential, are relatively weak and, to Grst order, do not
affect the wave function. Yet, experimentally, the 'H
and 'He form factors are not equal to each other. For
small q' we have

F.s(V) =1—sr.hV+".
where r,i, is the root-mean-square radius of the charge
distribution in the nucleus. The experiments give
(Collard et al. , 1964)

r,h('He) = 1.87&0.05 fm,

r,h('H) = 1.70&0.05 fm.

At higher momentum transfer the 'He charge form
factor continues to fall more rapidly with q than the
'H form factor. These results are not necessarily
inconsistent with the assumption of equality of the
two wave functions, since the charge form factor
measures the charge distribution. In 'H and 'He we
have two like parti. cles and one unlike; in 'H, the
unlike particle is charged, while in 'He the like particles
are charged. We would therefore expect the form
factors to differ if the like particles have a diGerent
distribution from the unlike particle. In particular, if
the like particles are spread over a bigger region of
space than the unlike particle, then the observed
difference in the form factors can be accounted for.
Schiff (1964) has pointed out that this is to be expected,
since the interaction between the like particles, which
are necessarily in a singlet state, is weaker than that
between the unlike particles, which are either in a
singlet or triplet state. Thus, in this model the S' state,
which is generated by the difference in the triplet and
singlet two-nucleon interactions, is expected to provide
a major contribution to the difference between the 'H
and 'He charge form factors.

In terms of the classification of the three-nucleon
wave function given in Sec. II.A, the most important
admixtures are expected to be the S' and the D states.
In addition, the T= 3/2 mixed-symmetry S-state
component, which is induced in the 'He wave function
by the Coulomb potential, may conceivably be impor-
tant. It is straightforward to analyze the form factors in
terms of the various admixtures; one can then hope to
estimate the probabilities of the various states. The
first such estimate (Schiff, 1964) assumed only the S'
state contributed to the difference in the charge form
factors and showed that, with the wave function used,
a probability P(S') of 4% was needed to explain the
data. Dalitz and Thacker (1965) have indicated that
the use of a wave function whose asymptotic form is
correctly related to the binding energies of the nucleons
of the system reduces the necessary 5'-state proba-
bility. In addition, Levinger and Srivastava (1965) have
emphasized the importance of the value of the neutron-
charge form factor in the analysis. Subsequent ca,lcula-
tions (Gibson and Schiff, 1965; Gibson, 1965) have
included the effects of the D states and the 7=3/2
state. These results indicate erst that the D states
contribute significantly to the form factors for small
values of q', but cannot account for the experimental
difference in the charge form factors; and second, that
it is possible to reach agreement with the experiment
with quite reasonable values for P(S'), P(D), and
F"(rj) without invoking charge-interaction effects. This
does not mean that interaction e8ects are not impor-
tant, and in particular the possibility of the modification
of the isovector form factor at high q' cannot be dis-
counted (Sarker, 1965) .

We give here a simplified analysis, neglecting the
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D-state part of the bound-state wave functions. The
three-nucleon wave functions are taken as

~'" = F.+(;F-.F.)+("'F'-"'F.') (55)

and
O'I = u Fo+ (v2F t—v~F2), (5.6)

where Fo, (F&, F2), and (F~', F2') are the 5, S', and
T=3/2 spin —Euler-angle functions. For the two nuclei
we assume identical S and S' states and include a
T=3/2 admixture in the 'He wave function only.

The function m is spatially symmetric. The S'
functions e& and e2 may be constructed from the function

g (ij, k), which is symmetric under interchange of
particles i and j, to have the symmetry properties
(2.4a) and (2.4b). We have

v, =6—'I'Lg(12, 3)+g(13, 2) —2g(23, 1)j, (5.7)

v2
——2 '~'Lg(12, 3)—g(13, 2)]. (5.8)

The T= 3/2 functions v&' and v2' may be constructed in
an identical way from the function g'(i j, k) .

Substitution of (5.5) and (5.6) into the equation
for the charge form factor (5.3) and neglect of the
(5', 5') and (T=3/2, T=3/2) terms gives

F"'"'(q) = LF.~"(q)+ 2F.h" (q) lF~(q)

—3LF""(q)—F""(q)]LF2(q)+F~'(q)), (5 9)

F.&'"(q) = L2F.~"(q)+F„.g&(q) jF~(q)

+l&F""(q)-F."(q)jF (q)

The body form factors Il&, P&, and P&' are

reproduced if P(S') 4% and P(T=3/2) =0 (Schiff,
1964) . If the shape of the S' and T=3/2 wave functions
are the same, this fit to the charge data is unchanged,
provided P(S')"'+-'P(T=3/2)" is kept constant.
(This fit to the form-factor data gives 0.75 fm' for the
diGerence in the squares of the charge radii; the experi-
mental result is 0.607&0.18 fm'. )

%e have not included the D-state contribution to the
form factors. The analysis of Gibson (1965) includes a
6% D state. This state at low q' accounts for 20% of
the diGerence in the charge form factors. A tolerable
6t to the data is obtained with zero neutron form
factors if P(5') = 2.5% and P(T=3/2) =0 or P(5') =
2.0% and P(T=3/2) =0.25%. Recent calculations of
the eGect of the Coulomb force in a model consisting of
three scalar nucleons indicate that a T= 3/2 admixture
of 0.01% to 0.001% is more likely than 0.25% (Ohmura,
1969, 1967; Bell and Delves, to be published). An
admixture as high as 0.25% would therefore repre-
sent a significant breakdown of charge independence in
the two-nucleon potential. Furthermore, a P(5') of
2.5% is rather large in view of the evidence from
variational calculations (Davies, 1967a; 1967b; Delves,
Blatt, Pask, and Davies, 1969) and model calculations
using separable two-nucleon interactions (Bhakar and
Mitra, 1965; see also Table III) . These results indicate
that an S' probability of around 1.5%-2% would be
more acceptable. The discrepancy, however. is not very
large; moreover, the form-factor data may be made
compatible with P(S') 1.5% if the neutron form
factor is not taken to be zero (Levinger and Srivastava,
1965; Gupta, Bhakar, and Mitra, 1967). Thus, if we
take

F~(q) = d'y d'x exp (i-;q. o) u', (5.11) F,h" (q) 0.02q',

F2(q) = —3 d'y d'x exp (i-', q. y) uvt, (5.12)

F2'(q) = —3 d'y d'x exp (i-';q p) uvre', (5.13)

where y=gj, and r=r23 It is possible to relate these
form factors to the body form factors that specify the
distribution of the like and unlike nucleons of the
bound state (Schiff, 1964) .

%e look 6rst at the diGerence between P,h'H' and
p 3H ~

F.~'"'(q) —F.~'"(q) = —F.~"(q) I:F~(q)+3F2'(q)j
—F""(q)Ll F~(q) —F2(q) —kF2'(q) 3 (5 14)

Now P,~~ and FI are large. Hence this diGerence is
particularly sensitive to F2 (the S' contribution), F,'
(the T=3/2 contribution), and the neutron-charge
form factor. For zero neutron form factor and for
simple analytic forms for the wave functions, the
experimental values for (5.14) are approximately

then the neutron form factor alone accounts for 30%
of the experimental diGerence in the squares of the
charge radii.

An alternative possibility is to introduce different
wave functions for 'He and 'H, in addition to the
difference implied by a T=3/2 state in 'He. The most
obvious diGerence is in the asymptotic behavior of the
wave functions. For example, the asymptotic behavior
of the wave function, obtained when the bound-state
problem is solved using separable potentials, may be
adjusted to correspond to the actual binding energies
of 'He or of 'H. Keeping the principal S state only, the
diGerence in the square of the charge radii that results
from the different asymptotic form of 'He and 'I is
0.18 fm' (Phillips, unpublished); that is, 30% of the
experimental value for this diGerence. A similar result
occurs for the Dalitz —Thacker wave function (Dalitz
and Thacker, 1965). However, wave functions of this
kind almost certainly overemphasize the importance of
the asymptotic behavior. This is borne out by recent
calculations by Ohmura (1967). Assuming the existence
of central spin-independent nuclear forces only, Ohmura
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which are in basic agreement with those expected from
three-body calculations. At the present level of sophis-
tication there is no need to introduce interaction
currents or relativistic corrections to the form factors.
This is not the case for the magnetic form factors; here
phenomenological interaction effects are necessary to
fit both the isovector and isoscalar magnetic form
factors (Gibson, 1965).

O.OI

0

Xp8l' I

4 5
q~(F2)

Fro. 17. The body form factor P&(q') of 3Ge—'H doublet
predicted by a number of variational wave functions (Delves
and Blatt, 1967; Davies, 1967a; 1967b). The experimental points
taken from Levinger and Srivastiva (1965) were obtained by
analyzing the data of Collard, Hoftadter, Hughes, Johansson,
Yearian, Day, and Wagner |,'1964) with diferent values for the
neutron-charge form factor.

estimates that the diGerence in the square of the charge
radii resulting from the Coulomb potential is ~O.I fm'.
This calculation also predicts that the Coulomb expan-
sion of the principal 5 state is three to five times more
important in determining the radii than the distortion
of the bound state. Thus, as far as the Coulomb poten-
tial is concerned, we expect only minor diGerences
between the wave functions of 'He and 'H, and these
diGerences are probably better represented by a
modification of the principal S state than by admixing
a T= 3/2 state into the 'He wave functions.

There remains the question of the absolute magnitude
of the charge form factors. It turns out that this is
easier to fit than the 'H —'He difference. This is because
we have an initial condition F(0) =1, and an initial
slope determined uniquely by the charge radius. Hence
any wave function with the correct radius will fit at
least the initial portion of the form-factor curve.
Moreover, the curve, on a logarithmic scale, is essen-
tially straight, and it is not until we reach q' 7—8 fm '
that any structure begins to appear. At these momen-
tum transfers, the form factor appears to drop below
the straight line predicted for a Gaussian charge dis-
tribution; this eGect is what should be expected from
the presence of a repulsive core in the two-body inter-
action. Figure 17 shows the experimental Ii j form
factor, together with the predictions (Delves and Blatt,
1967; Davies, 1967a; 1967b) of a number of wave
functions; these straddle the experimental curve, even
though none represents a particularly good wave
function. We also see that it is not enough to 6t the
triton binding energy; two of the curves presented
correspond to wave functions yielding essentially the
same energy, but quite diGerent form factors.

To conclude, the. charge-form-factor results corre-
spond to three-nucleon, bound-state wave functions

C. The Coulomb Energy of 'He

The diGerence between the binding energy of 'H
and 'He is experimentally found to be

6=0.764 MeV.

If the nucleon-nucleon strong Hamiltonian is charge
symmetric, this diGerence must be wholly ascribed to
electromagnetic eGects, of which the most important is
the Coulomb repulsion between the protons in 'He. It
has been assumed in the past that charge symmetry of
the nuclear Hamiltonian (as opposed to charge in-
dependence) is established quite strongly from the
observed energy diGerences between mirror nuclei
(Wilkinson and Hay, 1966; Okamoto, 1966) and from
the observed approximate equality of the eN and pp
scattering lengths (Heller, Signell, and Yoder, 1964;
Haddock, Salter, Zeller, Czier, and Nygram, 1965).
However, there are always difhculties inherent in
reliably interpreting such quantitative results in com-
plex nuclei; moreover, equality of the ee and pp
scattering lengths is not alone sufhcient to establish
charge symmetry of the nuclear interaction.

The three-body nuclei should provide a very clear-cut
test of charge symmetry, since they are simple enough
for a fairly complete analysis of the problem. Direct
variational calculations of the 'H —'He energy diGerence
(Delves, Blatt, Pask, and Davies, 1969; Delves and
Blatt, 1967), assuming charge symmetry and protons
of 6nite size, lead to an estimate

E(Coulomb) ~0.6 MeV.

These estimates are likely, however, to be on the low
side since the wave functions used underbind the
triton; hence they tend to be too spread out. This is
confirmed by a comparison of the charge form factor
and, in particular, the rms radii of the wave functions.
A number of authors have therefore calculated the
Coulomb energy with wave functions which are con-
sistent with the observed electron-scattering form
factors. The most recent result, by Okamoto and
Lucas (1M7), for the electromagnetic-binding-energy
diGerence is 0.63&0.03 MeV. This value corresponds
to using a Gaussian wave function with two-nucleon
soft cores and protons of finite size. It also includes
corrections due to the neutron-proton mass diGerence,
the magnetic interaction energy, corrections to vacuum
polarization eGects, and. to the electric polarizability of
the nucleons, which together result in a reduction of
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about 0.1 MeV in the energy difference. The final
result of these calculations is a discrepancy of about
0.13 MeV in the binding-energy difference of 'H and
'He. If we accept this, we conclude that the e-n inter-
action is about 1% stronger than the p—p interaction
(Okamoto, 1966) . Alternatively, charge-asymmetric
three-body forces may exist in appreciable strength.

An argument against this conclusion, i.e., that there
is an apparent breakdown of charge symmetry in the
three-body system, comes from the separable-model
energy calculations of Mitra and his coworkers (Gupta
and Mitra, 1967).They hand a Coulomb energy that is
too high, and they claim that the inclusion of the
repulsive core effects, which they have omitted so far,
should bring the Coulomb energy into agreement with
experiment. However, it has been recently suggested
(Okamoto and Lucas, 1968) that this high value for the
Coulomb energy may be due to the use of a 'So nucleon—
nucleon interaction which is too attractive.

The crucial point in this problem is the extent to
which the charge form factor of 'He determines the
Coulomb energy. Ke give here a qualitative discussion
of this point. The Coulomb energy is

&F..=(e'I'I 2 c;; I

e'"
&
—(e'nI Q c;; I

~'n&,

(5.15)

where, allowing for extended charge distributions for
the nucleons, we have

dp
(r*', e IC" I r' ', e.'&= —, —,exp(~r'. ; p) F'(p)F (p)

X8~(r;,—ru') t'~(p~ —p&'), (5.16)
where

F'(p) = 2I:1+r.(~) 3F"(p)+kL1 —r.(~)X"(p).

Reversing the order of integration in (5.15) gives

3 e' d'p
(oI gC;;I+&= ——, —, d'r;, d'p~

4 2x' p'

X (exp (ir;, p)+*I ('F&+F")'+ (F&' F"')—
Comparing Eq. (5.17) with Eq. (5.3), we note that the
Coulomb energy involves the Fourier transform with
regard to the variable r, but that the charge form
factor depends on the transform with regard to the
variable y. Thus the relation between the Coulomb
energy and the form factor is, in principle, dependent
on the details of the wave function. An analogous
situation occurs for heavier mirror nuclei. But here the
antisymmetrization of the wave function is more
effective than in the three-nucleon system in lessening
the importance of the details of the wave function.

If the wave function is such that the dependence on

p and r are similar, one can relate the Coulomb energy

to the form factor. For example, if in (5.5) and (5.6)

u=u( Q r~P) =u(2pP+gr23'), (5.18)

s&
—(y&2+y3&2 2y, &2)f( P y, ,2) (5 19)

and
~x'= (r&2'+rsP —2y23') f'( Q r~P), (5.20)

then we obtain a result similar to that of de La Rappelle
(1964):

28
~PI LF"(p) —F"*(p)jI:F~(~3p)—3F2(v3p) j

D. Radiative Capture of Thermal Neutrons by
Deuterons

We look now at those processes connecting the
bound- and scattering-state wave functions of three
nucleons. In this section radiative capture of thermal
neutrons by deuterons is considered and, in Secs. V.E
and V.F, the photodisintegration and electrodis-
integration of the three-particle nuclei are discussed.
We emphasize that all these processes are extremely
dificult to interpret, mainly as a result of the com-
plexities of three-nucleon continuum states. In fact, the
primary theoretical interest of these reactions is in the

+I F"'(p)+2F'(p) F"(p) 3I —3F2'(~3p) jI, (5 21)

where I' j, P2, and F&' are the body form fa,ctors occurring
in Eqs. (5.9) to (5.13).

Inspection of (5.21) gives a number of results. First,
the range of momentum transfer for which the form
factors are known is in principle sufhcient to determine
the Coulomb energy to an accuracy of a few percent.
Second, the 8' and 7=3/2 states and a nonzero neutron
form factor that are necessary to explain the experi-
mental difference between the charge form factors of
'He and 'H all result in a decrease in the Coulomb
energy. Third, if P", Ii~, and Ii.' are neglected, it seems
that the effect of decreasing F" (i.e., increasing the size
of the proton) is to decrease hE, . In fact, hF, increases,
since, in order to retain the fit to P "', it is necessary to
increase significantly the magnitude of F&.

We emphasize that (5.21) is only valid if the wave
functions have the form (5.18)-(5.20) . The calculations
of Okamoto and Lucas (1967) correspond to introducing
a soft two-nucleon core in (5.18), i.e., a core in the r
variable but not directly in the y variable. For this case
the Coulomb energy is less than the right-hand side of
(5.21). However, the functional dependence in (5.18)
may not be a good starting point for the introduction
of a two-nucleon soft core. In particular. , virtual
scattering within the bound state of a nucleon from a
two-nucleon pair may result in a wave function which
is more spread out with respect to the y variable and
hence a Coulomb energy greater than the right-hand
side of (5.21).



analysis of the sca, ttering corrections, and very little can
be deduced about the properties of the three-nucleon,
bound-state wave functions.

It is instructive to compare the radiative neutron-
deuteron capture process with neutron-proton capture:

n+~d+y,
n+d~'H+y

At low energies only Mi transitions are important, and.

the cross sections exhibit the characteristic 1/v be-
havior. For 22-km/sec neutrons the experimental cross
sections (Cox, Wynchank, and Collie, 1965; Jurney
and Motz, unpublished) are

0-„„=334.2&0.5 mb,

o.~=0.60+0.05 mb.

The reason for this large difference in the cross sections
of two apparently similar processes was first given by
Schiff (1937) and is easily understood by sketching an
outline of the calculations.

If the internal magnetic structure of the nucleons
and any magnetic interaction e6ects are neglected, the
relevant matrix element in n—p capture is given by

~~= Qe'x I t.~.(1)+t -a.(2) I
'4'x+'4'x)

where 'Q, 'Q are the triplet and singlet pa, rts of the
initial-state wave function. Because of the orthogonality
of (a), the triplet- and singlet-spin wave functions and

(b) of the deuteron- and triplet-scattering-space wave
functions (they are eigenfunctions of the same Hamil-
tonian at di6erent energies), the only nonvanishing
term is

~e=k(t.—t.) Qd I
'4)

This overlap would also be zero if the Harniltonian
were spin independent, since we should then have
'P='P. However, the Hamiltonian is not spin inde-

pendent; in fact, at low energies 'p is very different
from 'g, due to the singlet resonance, and the cross
section that we find is large. The experimenlat cross
section, however, is even larger, by some 10%; this
discrepancy is attributed to the "interaction effect"
(the distortion of the nucleon structure inside the
nucleus) (Noyes, 1965, 1967).

For e—d capture the magnetic-dipole amplitude
involves the overlap of the triton and the e-d wa.ve
functions

MSH ——(+8H I p.I a, (1)+0,(2)j+p„a,(3) I
'e~+'@~).

If the Hamiltonian is spin and charge independent, the
triton wave function is then the completely space-
symmetric principal S state, in which the spins of the
two neutrons are antiparallel. Since the principal
S state is an eigenstate of the magnetic-dipole-transition
operator, the matrix element vanishes. %hen we include

spin-dependent effects, the triton wave function con-
tains an 5'-state component of mixed symmetry, and
there is a finite probability that the two neutrons are in
a triplet spin state. We then obtain nonzero transition
rates from both the I-d quartet and doublet states to
the S' triton state. Both of these transitions depend on
the S' probability, and hence the cross section for n—d
capture must be small. This small magnetic-dipole
cross section is the basis of the suggestion that the e—d
capture reaction may be a possible source of information
on the strength of the parity nonconserving com-
ponents of the nuclear interactions (Blin-Stoyle and
Feshbach, 1961).

Of course, it is quite simple to make a plane-wave
calculation of the magnetic-dipole cross section; if we
do this, we And

P(S')=O.7+0.5%.
This is in reasonably good agreement with the available
estimates of P(S'). However, this agreement is quite
fortuitous. First, in the analysis of n pcaptu—re and of
magnetic moments and magnetic form factors of the
three-nucleon bound states, there is strong evidence for
large interaction or magnetic-exchange eGects. Simple
phenomenological treatments indicate that the neutron—
deuteron capture amplitudes due to the interaction
eGect interfere destructively with the spin —magnetic-
moment amplitude (Austern, 1951;Radha and Meister,
1964; 1965); this is true in the plane-wave and the
zero-distortion approximations for the neutron —deuteron
scattering state.

Second, neutron-deuteron scattering corrections are
expected to be important. A two-body model for the
neutron —deuteron system shows that the plane-wave
approximation is quite inadequate (Barucchi, Bosco,
and Nata, 1965; Erdas, Milani, Pompei, and Seatzu,
1966), and a complete separable-model calculation
shows tha, t there are indeed very large scattering
corrections (Philhps, 1968a; 1968b). There is a con-
siderable reduction in the quartet amplitude. The
results for the doublet amplitude show that the dis-
tortion of the deuteron, which is included automatically
by the exact treatment of the three-body aspects of the
neutron —deuteron system, plays a very significant role.
In fact, the distortion is sufFicient to reverse the zero-
distortion result (i.e., that the interaction effect and
nucleon spin magnetic amplitudes interfere destruc-
tively).

Perhaps the most signi6cant result is that, without
the interaction eGect, the experimental capture cross
section cannot be reconciled with reasonable values for
P(S') once the three-particle aspects are adequately
treated. This is in complete contrast to the encouraging
results of a Born-approximation calculation. Since the
interaction eGects can be treated only phenomenologi-
cally, it becomes quite impossible to deduce P(S')
from the data being 6tted.
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E. Photodisintegration of Three-Particle Nuclei

We now consider the competing two-body and three-
body breakup reactions:

y+'He ('H) —&d+ p (ri),

y+' He(' H)~+p+ p(n)

LA comprehensive account of these reactions up to 1964
is given by Fetisov, Gorbunov, and Varflomameev
(1965).j Unlike the situation in radiative neutron-
deuteron capture, the nature of the electromagnetic-
transition operator in the photodisintegration pro-
cesses is well understood; the experimental angular
distributions agree moderately well with the assumption
that Ei transitions form the major contributions. Thus,
given adequate initial- and final-state wave functions,
it should be possible to reproduce the main features of
the low-energy experimental data.

Dzhibuti, Mamasakhlisov, and Macharadze (1964)*
have speculated as to vrh:ther the electric-dipole-
transition operator should be represented as E r or
A p. However, insofar as the long-wavelength approxi-
mation for the photon is valid, E r is expected to be the
better representation of the E1 operator (Siegert, 1937).

There have been a number of calculations of the
electric-dipole cross sections using simple models for the
initial and final states. The early calculations (see
Fetisov, Gorbunov, and Varflomameev, 1965) gave a
reasonable fit to the tzo-body breakup cross sections,
being, in general, some 20% to 30% below experiment.
In most cases the final-state interactions were neglected,
the justification being that the third nucleon is in a
P wave relative to the deuteron and that the elastic
'P&&& nucleon-deuteron phase shift is small. The validity
of this argument in a situation in which there are both
distortion of the deuteron and inelastic eGects is
doubtful. Calculations which neglect the deuteron
distortion suggest that final-state interactions are
important (Eichmann, 1963; Fetisov, 1967).A calcula-
tion using separable potentials, and hence including
both distortion and inelasticity, shows that final-state
interactions increase the total cross section by about
25% (Barbour and Phillips, 1968).

The calculations on the three-body breakup reaction
have had a much more colorful history. The crudest
theory, which assumes plane-wave hnal states and E1
transitions, gives a theoretical cross section approxi-
mately three times the experimental cross section.
The final-state interactions have been included approxi-
mately by a number of authors (Eichmann, 1963;
Fetisov, 1967; Delves, 1962). Fetisov (1967) includes
the final-state proton —proton interaction and finds that
the neutron spectrum is predicted qualitatively, but the
total cross section remains much too large. The electric-
dipole transition operator has the eGect of emphasizing

If we put in the experimental results (for 'He breakup)
up to 170 MeV, we find (Fetisov, Gorbunov, and
Varflomameev, 1965)

~ ~

dE~
~~g) = 1.34~0.05 mb)

~ ~ ~

dE~
o sN = 1.42+0.07 mb.

Thus

~ ~ ~

dE~
az =2.76~0.I8 mb. (5.24)

These cross sections include also E2 and higher-order
transitions. If we extract the estimated E2 contribution,
we find (Fetisov, Gorbunov, and Varflomameev, 1965)

Jz ——2.53&0.19 mb 2J~~ 2J3~. (5.25)

the asymptotic form of the three-nucleon wave func-
tions. Fetisov (1966) and Knight, O' Connell, and Prats
(1967a; 1967b)* found that the use of a bound-state
wave function with an asymptotic form determined by
the binding energies of the nucleons of the system
reduces the cross section by a large factor. Fetisov found
that for the Da'litz-Thacker wave function (Dalitz and
Thacker, 1965), theory and experiment are in rough
(30%) agreement for both the two- and three-body
breakup. However, an examination of the predictions
of the Bremsstrahlung-weighted, electric-dipole sum
rule shows that these calculations are inadequate
(Barton, 1967; Gerasimov, 1967).

It is well known that under suKciently restrictive
conditions various sum rules for the Ei and Mi absorp-
tion cross sections may be derived. These sum rules are
important because they do not depend on the final-
state wave functions. The Bremsstrahlung-weighted
sum rule has the additional advantage in that it is
independent, within the limits of the validity of
Siegert's theorem, of the details of the nuclear forces.
We have

co dE~Jr—— a~i(E„) — —' =-~ss'n(ssR„„)', (5.22)
0 7

where 0. is the 6ne-structure constant and R„„,the rms
distance between the center of mass of the neutron and
proton distributions within the bound state. For a
spatially symmetric wave function and for point
protons, (2/3)R~ is the rms radius of the charge
distribution. We have used the notation J~ to show that
it refers to the total cross section. We can clearly split
the sum rule into two-body and three-body breakup
contributions:

(5.23)

* See also Carron (1968). * See also O' Connell and Prats (1968) .
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Jr' Js~' x4s'a ——(-',R~'——) ', (5.26)

where E~„' is the new separation between the neutron
and proton distributions. If we assume that the triplet
two-nucleon force in this model has, say, the same
eR'ective strength as the real two-nucleon singlet force,
then the difference between the real and the model
three-nucleon bound-state wave functions is small and
R~ R„„'. Combining (5.26) and (5.22) with the
experimental result (5.25), we obtain

Jmv' —2jav (5.27)

That is, the cross section for three-body breakup is
extremely sensitive to whether the Anal-state inter-
actions correspond to a bound or unbound deuteron. In
other words, the existence or nonexistence of the two-
body channel is strongly reQected in the cross section
for the three-body channel. Thus, any calculation of the
three-body photodisintegration must include a final-
state wave function in which there is information
concerning the existence of the deuteron and the two-
body channel. This is the conclusion reached by
Barton (1967) and Gersimov (1967) from an alterna-
tive split of the sum rule (5.22) into isospin T=1/2
and T=3/2 components.

The dynamical reason for the sensitivity of the 6nal-
state interactions to the potential responsible for the
deuteron is that the amplitude A» for three-body
breakup has a pole. If p is the relative momentum of a
triplet two-nucleon subsystem and q is the momentum
of a third nucleon with respect to this subsystem, then

lim (p'+se)A~(p, q) =A»(q) g&(p), (5.28)
~a

where A»(q) is the amplitude for two-body breakup,
and g&(p)/(p'+ee) and ee are the wave function and
binding energy of the deuteron.

A calculation by Barbour and Phillips (1968), using
an exact separable model for the Anal-state interactions

This result and (5.22) for a spatially symmetric 'He
vield a charge radius of

R,= 1.62~0.06 fm.

If we include the 6nite-proton size, this becomes

R, (fi nite protons) = 1.81+0.06 fm,

and is in good agreement with electron-scattering data
(Collard, Hofstadter, Hughes, Johansson, Yearian,
Day, and Wagner, 1964) .

A rather surprising result is obtained if the sum rule
(5.22) is considered for a model three-nucleon system in
which the two-nucleon interaction responsible for the
deuteron has been weakened such that the deuteron is
unbound. In this model the two-body channel is absent
and the calculation of the three-body breakup cross
section is aGected by changes in the three-nucleon
bound and scattering states. The sum rule prediction is
independent of the final state:

e+'H- -d+p+e,
e+'Hc- -n+p+p+e,

and for the reaction

(A)

(B)

e+'H=:e+ e+p+ e (C)

These reactions were analyzed in the impulse approxi-
mation, keeping only those terms corresponding to the
scattering from the ejected proton (Griffy and Oakes,
1965; 1964). The interactions between the ejected
proton and the remaining two nucleons were neglected.
The excitation energy is quite large and the neglect of
final-state interactions in (A) may be a fair approxi-
mation. But in (B) and (C), where three nucleons
share the energy, it is unlikely that interactions between
them can be ignored. However, GriBy and Oakes
primarily use their theory to relate Reactions (C) and
(B) and thereby isolate the "experimental" data
for the simpler Reaction (A) . The variation of the cross
section of (A) with the proton angle was studied for
Axed electron angle and energy.

If the ejected proton is initially at rest, then for given
final electron energy. and angle there is a unique proton
angle. However, the proton has an initial momentum
distribution that is characteristic of the structure of the
bound-state wave function. Thus the observed variation
with proton angle reQects the momentum distribution of
the proton in the bound state. The experimental data

and hence incorporating (5.28), gives results for the
three-body breakup which change markedly (as in
5.27) if the final-state interactions do not include
information about the existence of the deuteron.
Furthermore, for a particular bound-state wave func-
tion whose asymptotic behavior is determined by the
binding energy of the nucleons, this calculation is in
good agreement with both the two- and three-body
breakup sections.

The angular distributions in the photodisintegration
reaction are sensitive to the details of the three-nucleon
wave functions and to the Ej, M1, and E2 multipole
transitions. A recent calculation of the two-body cross
section (Gibson, 1967) included unretarded E1, 3II1,
and E2 transitions and assumed a three-nucleon bound-
state wave which contained S, S', and D admixtures.
The leading retardation correction to the E1 transition
is expected to be of the same order of magnitude as the
E2 transition. Retardation corrections have been
studied by Bailey, Griffiths, and Donnelly (1967) and
Carron (1968).The absence in all these calculations of a
reasonable treatment of the 6nal-state interactions
prevents a clearcut interpretation of the results.

F.Electrodisintegration of Three-Particle Nuclei

The inelastic-scattering experiments of Johansson
(1964) measured the cross section of coincidences
between scattered electrons and the ejected protons for
the reactions

I
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are in fact sensitive to the asymptotic region of the
bound state and the theoretical analysis distinguishes
markedly among various radial forms of the three-body
wave functions (Griffy and Oaks, 1964) .

The electron —proton coincidence cross sections can
also be analyzed by means of dispersion-relation
techniques (Griffy and Oakes, 1965) . These techniques
have been used only in their simplest form; proton-pole
terms, which are determined by the asymptotic nor-
malization of the bound-state wave function and the
proton form factors, are assumed to dominate. This
model reproduces the shape of the coincidence cross
sections for Reactions (A) and (C) and its the shape
of the integrated cross sections (Gibson and West,
1967). However, if the pole approximation is nor-
malized to the coincidence measurements, then the
normalization of the integrated cross section exceeds
that of the experimental points by 30% to 70%. A
more detailed calculation of the electromagnetic vertex
and the use of the impulse approximation fails to
remove this discrepancy; qualitative agreement is
obtained, however, if the He coincidence data is
reanalyzed without reference to the 'H data (Gibson
and West, 1967). We conclude that more detailed
experiments and theoretical work are needed in order to
exploit the potential of inelastic electron scattering as a
source of information on the three-body bound and
continuum states.

VI. WEAK INTERACTIONS OF THREE-ÃUCLEOÃ
SYSTEMS

A. Beta Decay of the Triton

The major physical interest in the beta decay of the
triton is centered on the interpretation of the role of
nuclear exchange effects. If exchange eGects are not
included, then the comparison of this decay with that
of the neutron indicates that the impulse approximation
for the 'H decay rate needs to be enhanced; the actual
magnitude of the enhancement depends quite sensitively
on the probability densities for the S' and D states of
the triton (Blin-Stoyle, 1964; Blin-Stoyle and
Papageorgiou, 1965a; 1965b; Blin-Stoyle and Nair,
1966; Blin-Stoyle and Myo Tint, 1967; Freeman,
Montague, Murray, White, and Burcham, 1964).

The ft value for an allowed decay is given by the
following expression:

( ft) '= (m'e4/2~%' ln 2) LGy'
( Mp ~'+G~'

~
M„~'j.

(6.1)
In this equation Gp and Gz are the polar vector and
axial vector coupling constants, while M~ and M~ are
the matrix elements of the corresponding weak Hamil-
tonians. An analysis of 0+ to 0+ decays (Freeman et ul. ,
1964; Lee and Wu, 1965; Blin-Stoyle and Nair, 1966)
yields a value for'Q:

Gy = 1 4052~0 0049X 10 '0 erg fm'.

Hence
Mv'= 1 and Mg'= 3.

Gg'/Gp'= 1.365&0.050.

The measured ft value for 'H is (Porter, 1959)

( ft) 'I ——1137&20sec,

while, if we ignore the differences between the 'H and
'He wave functions, we again have in~ediately

This result is independent of the structure of the 'H
nucleus. However, the axial-vector matrix element does
depend on this structure; dropping terms depending
on 2'= 3/2 and P states, we have (Blatt, 1952)

M '=3LP(S) —~P(S')+)P(D) j.
The terms P(S), P(S'), P(D) are the probabilities of
the principal S, the 5', and the D states.

In principle, a comparison between the neutron and
triton decay rate thus yields quite sharp information on
the probabilities P(S') and P (D) . In practice, however,
there are a number of corrections which must be in-

cluded 6rst. The most straightforward are the radiative
corrections to the measured ( ft) values which change
the raw Qgures quoted above (Berman and Sirlin,
1962)* to

( ft) „=1120&21sec,

( ft) 'H = 1173&20sec.

These lead to an "experimental" value of
~

Mg ~'.

~
Mg P exptl=2. 83(+0.13, —0.12).

The "theoretical" value depends both on the proba-
bilities P(S') and P(D) and on relativistic and meson

exchange contributions. Relativistic eBects alone lead to
a small (2%) reduction in Mz (Blin-Stoyle and

* See also Blin-Stoy]e and Nair I'1966). The 6gures quoted are
due to R. J. Blin-Stoyle (private communication).

The neutron decay yields a value for Gz. For this decay,
the latest experimental ft value is (Christensen, Nielson,
Baknee, Brown, and Rusted, 1967)

( ft) „=1133&20sec,

in contrast to the previous long-standing value
(Sosnovskii, Spivak, Prokofiev, Katikov, and
Dobrynim, 1959)

( ft) „=1228+35 sec.

We look ahead at the following discussions to note that
the reasonable agreement with experiment found
depends crucially on the acceptance of this new value
for ( ft) „.It would be very desirable to have independent
con6rrnation of this value.

Now for the neutron we have
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TABLE IV. Values of the axial-vector matrix element
(
NA~''

for triton beta decay corresponding to various assumed S'- and
D-state probabilities. The last column shows the required
percentage enhancement of ( MA (' from relativistic and mesonic
corrections which would yield agreement with the value
I ~~ P.-*"i=2g3(+o i3 —o i2).

P(D) P($')

Required
exchange

correction (%)

2

2.84

2.76

2.70

2.47

+1.9a2.3

+3.4+2.3
+5.3&2.3

+9.2a2. 4

Papageorgiou, 1965b); however, the exchange effects
are more dificult to estimate. We may make a com-
parison between theory and experiment in terms of the
mesonic enhancement of

~
MA ~' required to yield

agreement with the experimental value. The required
enhancement is shown in Table IV for various values
of P(S') and P(D). The figures there assume that there
are no exchange corrections to 3', which is true if the
polar vector current is conserved. The percentage
values (6, 1.2) and (9, 2) for the probabilities LP(D),
P(S') j bracket the range of values predicted by
various separable and local potential models. The
spread reQects closely the deuteron D-state probability
in these models, the lower values corresponding to
P(D) =4% and the higher to around 7%; and we see
that a reliable assessment of the exchange contributions
would vield valuable information on these models.

An estimate of the exchange contributions to M~ has
been made by Blin-Stoyle and Tint (1967), who show
that the assumption that the divergence of the d.xial-
vector current is proportional to the pion field (i.e.,
partially conserved axial-vector current or PCAC
theory) relates these effects to the observed cross
section and polarization for the reaction

P+P—id+x.

for threshold pions. The net result of their comparison
is a reduction rather than an enhancement of M~,. but
this numerical result depends on the values assumed for
both the production cross section and the deuteron
polarization produced, and a recent remeasurement of
the cross section (Rose, 1967) changes the previously
accepted values (Woodruff, 1960) by a factor of 2.
It would be desirable to have an independent remeasure-
ment of this cross section and also of the (still more
difficult) deuteron polarization. At least until these
measurements have been repeated, we conclude that
there is nn current serious disagreement between theory
and experiment. This conclusion is backed by earlier
phenomenological treatments of the exchange con-
tributions (Blin-Stoyle and Papageorgiou, 1965a;
Blin-Stoyle and Nair, 1966), which show that effects in
the range 6%—10% may well be expected.

B. Muon Capture in 'He

The reaction
y+'H~- -'H+v (6.2)

diA'ers from the inverse beta-decay reaction a1most
solely in the large energy release which occurs. It
therefore yields, in principle, the same sort of in-
formation as does the beta-decay process, and has
been used by a number of authors to discuss the
y-nucleon interaction. The capture reaction can go to
either (a) the ground state of 'H or (b) to a two-body
scattering state or (c) to a three-body scattering state;
the experimental capture rates are currently measured
as (Zaimidoroga, Kulyukin, Pontecorvo, Sulyaer,
Falomkin, Filippov, Trupk-Sitmikov, and Scheibokov,
1963; Auerba, ch, Esterling, Hill, Jenkins, Land, and
Lipman, 1965; Clay, Keuffel, Wagner, and Edelstein,
1966)

I'(breakup) =665(+170, —430) sec '

1"I=1505+46sec '. (6.3)

Of these two rates, the capture rate to the triton
ground state is more accurately measured. and is easier
to interpret, although Some very preliminary calculations
have been carried out for both the two-body channel
(b) (Pascual and Pascual, 1967) and three-body
channel (c) (Yano, 1964; Wong and Pascual, 1967) .

A review of early work on channel (a) has been given
by Primakoff (1959). If the basic IJ, N interaction is—the
same as the e—E interaction, then the capture process
should be determined by the same matrix elements
(6.1) as the triton beta decay; moreover, the coupling
constants Gy and Gg should also be the same. However,
the jM-capture process has three features which are not
significant in beta decay and which stem from the large
momentum transfers involved. First, relativistic correc-
tions are significant, contributing perhaps some 3%—4%
to the capture rate (Goulard and Primakoff, 1964) in a
model-dependent direction. Second, the finite nuclear-
size corrections also contribute a few percent (Fujii and
Primakoff, 1959).Third, and the point of main interest,
there is expected to be an appreciable induced pseudo-
scalar contribution to the capture rate characterized by
a coupling constant G„ in an effective pseudoscalar
interaction term. The Goldberger and Treiman pre-
diction for the induced pseudoscalar coupling constant
(Goldberger and Treiman, 1958) can also be obtained
from the PCAC hypothesis (see, e.g., Kim and
Primakoff, 1965):J

G„/GA= 7. (6.4)

The measurements of p, capture in hydrogen are
complicated by molecular effects and yield

. 7(G„jGA(15. . (6.5)

There have been a number of attempts to extract a
value for this ratio from the 'He capture rate (e.g. ,

Fujii and Primakoff; 1959; Kim and Primakoff, 1965) .
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A recent and extensive calculation is that of Peachey
(1968). He evaluates the matrix elements involved
allowing for the relativistic and hnite-size corrections
and for exchange eGects and using an explicit form for
the 'H wave function. The form used contains S'- and
D-state components in addition to the principal S state,
but with relatively simple radial dependence; the
calculations were carried out with both Gauss and a
modified Irving radial dependence for all states. The
results were quite insensitive to the S' probability a.t
around 1%, to the D-state probability between 5%
and 9% and to the size parameters used for these
states. This is what we might expect since they form
only a small correction to the whole capture rate. The
results were sensitive to the size parameter of the
principa, l S state; this was fixed by fitting the Coulomb
energy of 'He. A rather different size parameter results
if the charge radius is 6tted. Making allowance for this
uncertainty and for the many others in the calculation,
Peachey's 6nal value is

G„/Gg =9&4, (6.6)

vrhich is consistent with the PCAC and with the
hydrogen-capture estimate. A very simiIar calculation
by Peterson (1968) leads to the rather pessimistic
conclusion that the data determine G„/Gz only within
the limits 6&G~/GO&33. However, this assumption
depends on the very large exchange contributions
allowed by Peterson from a fit to the 'H beta decay, but
using the "old" fl value for the neutron. If these ex-
change contributions are reduced, the allowed values
of G„/G~ in Peterson's calculations split into two bands,
in agreement with the result of Peachey. The lower of
these two ba,nds yields again essentially Peachey's
result.

VII. SUMMARY AND CONCLUSIONS

The primary aim nf this article has been to explore
the relation between the experimental data on the
nuclear three-body system and the underlying inter-
action between nucleons. The difficulties of the three-
body problem as such and the complexity of the two-
nucleon interaction have meant that in most calcula-
tions drastic simplifying assumptions are made.
Nevertheless, it is possible to account for many of the
gross features of the three-nucleon-scattering and
bound-state data, and to investigate the importance of
the various components of the two-nucleon interaction.
The three-body calculations also provide insight into
the structure of those features of the three-nucleon wave
functions which are essential for the interpretation of
the electromagnetic- and weak-interaction properties
of the three-particle nuclei.

In conclusion we would like to emphasize the
following:

(1) The study of the three-nucleon ground state with

simplified interactions illustrates that the triton energy

is sensitive to several, but as yet poorly understood,
fea, tures of the two-nucleon interaction; in particular,
the relative strengths of the central and tensor com-
ponents, the short-range repulsion, and the off-the-
energy-shell properties.

(2) The variational calculations on the nuclear
three-body system with the Hamada —Johnston poten-
tial show that the state of the art in computing is now
such that we may make reliable three-body predictions
for two-body potentials which have been Gtted in detail
to the two-body data. For the H.J. potential, the
theoretical energy of the triton is —6.7~1.0 MeV.
Bearing in mind the uncertainties due to relativistic
corrections, three-body forces and the quoted estimate
of the numerical error, this value is sufFiciently close to
the experimental value of —8.49 MeV such that the
acceptability of the Hamada-Johnston potential, from
the point of view of the three-nucleon system, is not in
question.

(3) The ultimate usefulness of three-nucleon calcula-
tions in discriminating between various fits to the
two-nucleon data depends upon the understanding of
the extent to which the system can be treated as a
nonrelativistic three-body prob1em; reliable estimates
of the corrections due to three-body forces and relativity
do not exist at present.

(4) There is no clearcut evidence to support the
existence of three-nucleon excited resonant states, or
particle stable states other than 'H and 'He.

(5) The latest experimental values for the doublet
and quartet neutron-deuteron scattering lengths,
'a=0.15&0.05 fm and @=6.13&0.04 fm, diger con-
siderably from the older values 'a=0.7~0.3 fm and
4u=6.4~0.1 fm. For simple separable potentials, and
possibly for the Hamada-Johnston potential, it is
possible to reconcile the older value for the doublet
scattering length, but not the newer value, with the
experimental triton binding energy.

(6) The S-wave scattering of neutrons by deuteron
below the inelastic threshold yields limited information:
the absolute magnitude of the quartet amplitude and
the energy dependence of both the quartet and the
doublet amplitudes are approximately determined
by the triplet-even, two-nucleon, effective-range
parameters.

(7) Separable, central interactions can account for
the main features of the elastic, and to a lesser extent
the inelastic, cross sections for low- and moderate-
energy neutron —deuteron scattering. It is important to
realize that those features of the elastic-scattering data
that depend on the quartet spin state are not a particu-
larly useful test of a dynamical three-body calculation,
since in the quartet state the details of interaction and
distortion of the deuteron are unimportant.

(8) The existing estimates of the neutron-neutron
scattering length from the d(n, p) 2x reaction are model
dependent, and it seems unlikely that this reaction can
give useful information of this kind.
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(9) The nucleon —deuteron polarization data probably
contains much valuable information on the two- and
three-particle interactions but attempts at theoretical
interpretation are almost completely lacking.

(10) The experimental charge form factors of 'H and
'He can be understood in terms of the charge properties
of free nucleons and three-body wave functions whose
properties are similar to those obtained in nonrelativistic
three-nucleon calculations.

(11) The magnetic moments and form factors, and
the predominately magnetic-dipole radiative capture of
thermal neutrons by deuterons all imply that the
electromagnetic properties of the nucleons are modified
in the presence of nuclear interactions, i.e., magnetic-
interaction effects.

(12) The analysis of the 'He —'H Coulomb energy
diGerence suggests a possible deviation from charge
symmetry of nuclear forces or possibly charge-inter-
action effects; until one has accurate 'He and 'I wave
functions, it is not possible to discuss this question
quantitatively.

(13) Final-state interactions are important in the
analysis of the low-energy photodisintegration of 'He.
This and the limited accuracy of the experimental data
prevent detailed comparison of theory with experiment.

(14) The analysis of the beta decay of the triton
indicates that at present there is no serious disagree-
ment between theory and experiment. The reconciliation
of the experimental ft values for the neutron and the
triton requires that relativistic and mesonic corrections
give rise to a 4% to 9% enhancement of the square of
the axial-vector matrix element that enters in the beta
decay of the triton.

(15) Muon capture in 'He permits an estimate of
the induced pseudoscalar coupling constant which
agrees with theoretical predictions and the value
obtained for muon capture in hydrogen.
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